SDL-1.2.14
[sdl_omap.git] / src / stdlib / SDL_qsort.c
CommitLineData
e14743d1 1/* qsort.c
2 * (c) 1998 Gareth McCaughan
3 *
4 * This is a drop-in replacement for the C library's |qsort()| routine.
5 *
6 * Features:
7 * - Median-of-three pivoting (and more)
8 * - Truncation and final polishing by a single insertion sort
9 * - Early truncation when no swaps needed in pivoting step
10 * - Explicit recursion, guaranteed not to overflow
11 * - A few little wrinkles stolen from the GNU |qsort()|.
12 * - separate code for non-aligned / aligned / word-size objects
13 *
14 * This code may be reproduced freely provided
15 * - this file is retained unaltered apart from minor
16 * changes for portability and efficiency
17 * - no changes are made to this comment
18 * - any changes that *are* made are clearly flagged
19 * - the _ID string below is altered by inserting, after
20 * the date, the string " altered" followed at your option
21 * by other material. (Exceptions: you may change the name
22 * of the exported routine without changing the ID string.
23 * You may change the values of the macros TRUNC_* and
24 * PIVOT_THRESHOLD without changing the ID string, provided
25 * they remain constants with TRUNC_nonaligned, TRUNC_aligned
26 * and TRUNC_words/WORD_BYTES between 8 and 24, and
27 * PIVOT_THRESHOLD between 32 and 200.)
28 *
29 * You may use it in anything you like; you may make money
30 * out of it; you may distribute it in object form or as
31 * part of an executable without including source code;
32 * you don't have to credit me. (But it would be nice if
33 * you did.)
34 *
35 * If you find problems with this code, or find ways of
36 * making it significantly faster, please let me know!
37 * My e-mail address, valid as of early 1998 and certainly
38 * OK for at least the next 18 months, is
39 * gjm11@dpmms.cam.ac.uk
40 * Thanks!
41 *
42 * Gareth McCaughan Peterhouse Cambridge 1998
43 */
44#include "SDL_config.h"
45
46/*
47#include <assert.h>
48#include <stdlib.h>
49#include <string.h>
50*/
51#include "SDL_stdinc.h"
52
53#ifdef assert
54#undef assert
55#endif
56#define assert(X)
57#ifdef malloc
58#undef malloc
59#endif
60#define malloc SDL_malloc
61#ifdef free
62#undef free
63#endif
64#define free SDL_free
65#ifdef memcpy
66#undef memcpy
67#endif
68#define memcpy SDL_memcpy
69#ifdef memmove
70#undef memmove
71#endif
72#define memmove SDL_memmove
73#ifdef qsort
74#undef qsort
75#endif
76#define qsort SDL_qsort
77
78
79#ifndef HAVE_QSORT
80
81static char _ID[]="<qsort.c gjm 1.12 1998-03-19>";
82
83/* How many bytes are there per word? (Must be a power of 2,
84 * and must in fact equal sizeof(int).)
85 */
86#define WORD_BYTES sizeof(int)
87
88/* How big does our stack need to be? Answer: one entry per
89 * bit in a |size_t|.
90 */
91#define STACK_SIZE (8*sizeof(size_t))
92
93/* Different situations have slightly different requirements,
94 * and we make life epsilon easier by using different truncation
95 * points for the three different cases.
96 * So far, I have tuned TRUNC_words and guessed that the same
97 * value might work well for the other two cases. Of course
98 * what works well on my machine might work badly on yours.
99 */
100#define TRUNC_nonaligned 12
101#define TRUNC_aligned 12
102#define TRUNC_words 12*WORD_BYTES /* nb different meaning */
103
104/* We use a simple pivoting algorithm for shortish sub-arrays
105 * and a more complicated one for larger ones. The threshold
106 * is PIVOT_THRESHOLD.
107 */
108#define PIVOT_THRESHOLD 40
109
110typedef struct { char * first; char * last; } stack_entry;
111#define pushLeft {stack[stacktop].first=ffirst;stack[stacktop++].last=last;}
112#define pushRight {stack[stacktop].first=first;stack[stacktop++].last=llast;}
113#define doLeft {first=ffirst;llast=last;continue;}
114#define doRight {ffirst=first;last=llast;continue;}
115#define pop {if (--stacktop<0) break;\
116 first=ffirst=stack[stacktop].first;\
117 last=llast=stack[stacktop].last;\
118 continue;}
119
120/* Some comments on the implementation.
121 * 1. When we finish partitioning the array into "low"
122 * and "high", we forget entirely about short subarrays,
123 * because they'll be done later by insertion sort.
124 * Doing lots of little insertion sorts might be a win
125 * on large datasets for locality-of-reference reasons,
126 * but it makes the code much nastier and increases
127 * bookkeeping overhead.
128 * 2. We always save the shorter and get to work on the
129 * longer. This guarantees that every time we push
130 * an item onto the stack its size is <= 1/2 of that
131 * of its parent; so the stack can't need more than
132 * log_2(max-array-size) entries.
133 * 3. We choose a pivot by looking at the first, last
134 * and middle elements. We arrange them into order
135 * because it's easy to do that in conjunction with
136 * choosing the pivot, and it makes things a little
137 * easier in the partitioning step. Anyway, the pivot
138 * is the middle of these three. It's still possible
139 * to construct datasets where the algorithm takes
140 * time of order n^2, but it simply never happens in
141 * practice.
142 * 3' Newsflash: On further investigation I find that
143 * it's easy to construct datasets where median-of-3
144 * simply isn't good enough. So on large-ish subarrays
145 * we do a more sophisticated pivoting: we take three
146 * sets of 3 elements, find their medians, and then
147 * take the median of those.
148 * 4. We copy the pivot element to a separate place
149 * because that way we can always do our comparisons
150 * directly against a pointer to that separate place,
151 * and don't have to wonder "did we move the pivot
152 * element?". This makes the inner loop better.
153 * 5. It's possible to make the pivoting even more
154 * reliable by looking at more candidates when n
155 * is larger. (Taking this to its logical conclusion
156 * results in a variant of quicksort that doesn't
157 * have that n^2 worst case.) However, the overhead
158 * from the extra bookkeeping means that it's just
159 * not worth while.
160 * 6. This is pretty clean and portable code. Here are
161 * all the potential portability pitfalls and problems
162 * I know of:
163 * - In one place (the insertion sort) I construct
164 * a pointer that points just past the end of the
165 * supplied array, and assume that (a) it won't
166 * compare equal to any pointer within the array,
167 * and (b) it will compare equal to a pointer
168 * obtained by stepping off the end of the array.
169 * These might fail on some segmented architectures.
170 * - I assume that there are 8 bits in a |char| when
171 * computing the size of stack needed. This would
172 * fail on machines with 9-bit or 16-bit bytes.
173 * - I assume that if |((int)base&(sizeof(int)-1))==0|
174 * and |(size&(sizeof(int)-1))==0| then it's safe to
175 * get at array elements via |int*|s, and that if
176 * actually |size==sizeof(int)| as well then it's
177 * safe to treat the elements as |int|s. This might
178 * fail on systems that convert pointers to integers
179 * in non-standard ways.
180 * - I assume that |8*sizeof(size_t)<=INT_MAX|. This
181 * would be false on a machine with 8-bit |char|s,
182 * 16-bit |int|s and 4096-bit |size_t|s. :-)
183 */
184
185/* The recursion logic is the same in each case: */
186#define Recurse(Trunc) \
187 { size_t l=last-ffirst,r=llast-first; \
188 if (l<Trunc) { \
189 if (r>=Trunc) doRight \
190 else pop \
191 } \
192 else if (l<=r) { pushLeft; doRight } \
193 else if (r>=Trunc) { pushRight; doLeft }\
194 else doLeft \
195 }
196
197/* and so is the pivoting logic: */
198#define Pivot(swapper,sz) \
199 if ((size_t)(last-first)>PIVOT_THRESHOLD*sz) mid=pivot_big(first,mid,last,sz,compare);\
200 else { \
201 if (compare(first,mid)<0) { \
202 if (compare(mid,last)>0) { \
203 swapper(mid,last); \
204 if (compare(first,mid)>0) swapper(first,mid);\
205 } \
206 } \
207 else { \
208 if (compare(mid,last)>0) swapper(first,last)\
209 else { \
210 swapper(first,mid); \
211 if (compare(mid,last)>0) swapper(mid,last);\
212 } \
213 } \
214 first+=sz; last-=sz; \
215 }
216
217#ifdef DEBUG_QSORT
218#include <stdio.h>
219#endif
220
221/* and so is the partitioning logic: */
222#define Partition(swapper,sz) { \
223 int swapped=0; \
224 do { \
225 while (compare(first,pivot)<0) first+=sz; \
226 while (compare(pivot,last)<0) last-=sz; \
227 if (first<last) { \
228 swapper(first,last); swapped=1; \
229 first+=sz; last-=sz; } \
230 else if (first==last) { first+=sz; last-=sz; break; }\
231 } while (first<=last); \
232 if (!swapped) pop \
233}
234
235/* and so is the pre-insertion-sort operation of putting
236 * the smallest element into place as a sentinel.
237 * Doing this makes the inner loop nicer. I got this
238 * idea from the GNU implementation of qsort().
239 */
240#define PreInsertion(swapper,limit,sz) \
241 first=base; \
242 last=first + (nmemb>limit ? limit : nmemb-1)*sz;\
243 while (last!=base) { \
244 if (compare(first,last)>0) first=last; \
245 last-=sz; } \
246 if (first!=base) swapper(first,(char*)base);
247
248/* and so is the insertion sort, in the first two cases: */
249#define Insertion(swapper) \
250 last=((char*)base)+nmemb*size; \
251 for (first=((char*)base)+size;first!=last;first+=size) { \
252 char *test; \
253 /* Find the right place for |first|. \
254 * My apologies for var reuse. */ \
255 for (test=first-size;compare(test,first)>0;test-=size) ; \
256 test+=size; \
257 if (test!=first) { \
258 /* Shift everything in [test,first) \
259 * up by one, and place |first| \
260 * where |test| is. */ \
261 memcpy(pivot,first,size); \
262 memmove(test+size,test,first-test); \
263 memcpy(test,pivot,size); \
264 } \
265 }
266
267#define SWAP_nonaligned(a,b) { \
268 register char *aa=(a),*bb=(b); \
269 register size_t sz=size; \
270 do { register char t=*aa; *aa++=*bb; *bb++=t; } while (--sz); }
271
272#define SWAP_aligned(a,b) { \
273 register int *aa=(int*)(a),*bb=(int*)(b); \
274 register size_t sz=size; \
275 do { register int t=*aa;*aa++=*bb; *bb++=t; } while (sz-=WORD_BYTES); }
276
277#define SWAP_words(a,b) { \
278 register int t=*((int*)a); *((int*)a)=*((int*)b); *((int*)b)=t; }
279
280/* ---------------------------------------------------------------------- */
281
282static char * pivot_big(char *first, char *mid, char *last, size_t size,
283 int compare(const void *, const void *)) {
284 size_t d=(((last-first)/size)>>3)*size;
285 char *m1,*m2,*m3;
286 { char *a=first, *b=first+d, *c=first+2*d;
287#ifdef DEBUG_QSORT
288fprintf(stderr,"< %d %d %d\n",*(int*)a,*(int*)b,*(int*)c);
289#endif
290 m1 = compare(a,b)<0 ?
291 (compare(b,c)<0 ? b : (compare(a,c)<0 ? c : a))
292 : (compare(a,c)<0 ? a : (compare(b,c)<0 ? c : b));
293 }
294 { char *a=mid-d, *b=mid, *c=mid+d;
295#ifdef DEBUG_QSORT
296fprintf(stderr,". %d %d %d\n",*(int*)a,*(int*)b,*(int*)c);
297#endif
298 m2 = compare(a,b)<0 ?
299 (compare(b,c)<0 ? b : (compare(a,c)<0 ? c : a))
300 : (compare(a,c)<0 ? a : (compare(b,c)<0 ? c : b));
301 }
302 { char *a=last-2*d, *b=last-d, *c=last;
303#ifdef DEBUG_QSORT
304fprintf(stderr,"> %d %d %d\n",*(int*)a,*(int*)b,*(int*)c);
305#endif
306 m3 = compare(a,b)<0 ?
307 (compare(b,c)<0 ? b : (compare(a,c)<0 ? c : a))
308 : (compare(a,c)<0 ? a : (compare(b,c)<0 ? c : b));
309 }
310#ifdef DEBUG_QSORT
311fprintf(stderr,"-> %d %d %d\n",*(int*)m1,*(int*)m2,*(int*)m3);
312#endif
313 return compare(m1,m2)<0 ?
314 (compare(m2,m3)<0 ? m2 : (compare(m1,m3)<0 ? m3 : m1))
315 : (compare(m1,m3)<0 ? m1 : (compare(m2,m3)<0 ? m3 : m2));
316}
317
318/* ---------------------------------------------------------------------- */
319
320static void qsort_nonaligned(void *base, size_t nmemb, size_t size,
321 int (*compare)(const void *, const void *)) {
322
323 stack_entry stack[STACK_SIZE];
324 int stacktop=0;
325 char *first,*last;
326 char *pivot=malloc(size);
327 size_t trunc=TRUNC_nonaligned*size;
328 assert(pivot!=0);
329
330 first=(char*)base; last=first+(nmemb-1)*size;
331
332 if ((size_t)(last-first)>trunc) {
333 char *ffirst=first, *llast=last;
334 while (1) {
335 /* Select pivot */
336 { char * mid=first+size*((last-first)/size >> 1);
337 Pivot(SWAP_nonaligned,size);
338 memcpy(pivot,mid,size);
339 }
340 /* Partition. */
341 Partition(SWAP_nonaligned,size);
342 /* Prepare to recurse/iterate. */
343 Recurse(trunc)
344 }
345 }
346 PreInsertion(SWAP_nonaligned,TRUNC_nonaligned,size);
347 Insertion(SWAP_nonaligned);
348 free(pivot);
349}
350
351static void qsort_aligned(void *base, size_t nmemb, size_t size,
352 int (*compare)(const void *, const void *)) {
353
354 stack_entry stack[STACK_SIZE];
355 int stacktop=0;
356 char *first,*last;
357 char *pivot=malloc(size);
358 size_t trunc=TRUNC_aligned*size;
359 assert(pivot!=0);
360
361 first=(char*)base; last=first+(nmemb-1)*size;
362
363 if ((size_t)(last-first)>trunc) {
364 char *ffirst=first,*llast=last;
365 while (1) {
366 /* Select pivot */
367 { char * mid=first+size*((last-first)/size >> 1);
368 Pivot(SWAP_aligned,size);
369 memcpy(pivot,mid,size);
370 }
371 /* Partition. */
372 Partition(SWAP_aligned,size);
373 /* Prepare to recurse/iterate. */
374 Recurse(trunc)
375 }
376 }
377 PreInsertion(SWAP_aligned,TRUNC_aligned,size);
378 Insertion(SWAP_aligned);
379 free(pivot);
380}
381
382static void qsort_words(void *base, size_t nmemb,
383 int (*compare)(const void *, const void *)) {
384
385 stack_entry stack[STACK_SIZE];
386 int stacktop=0;
387 char *first,*last;
388 char *pivot=malloc(WORD_BYTES);
389 assert(pivot!=0);
390
391 first=(char*)base; last=first+(nmemb-1)*WORD_BYTES;
392
393 if (last-first>TRUNC_words) {
394 char *ffirst=first, *llast=last;
395 while (1) {
396#ifdef DEBUG_QSORT
397fprintf(stderr,"Doing %d:%d: ",
398 (first-(char*)base)/WORD_BYTES,
399 (last-(char*)base)/WORD_BYTES);
400#endif
401 /* Select pivot */
402 { char * mid=first+WORD_BYTES*((last-first) / (2*WORD_BYTES));
403 Pivot(SWAP_words,WORD_BYTES);
404 *(int*)pivot=*(int*)mid;
405 }
406#ifdef DEBUG_QSORT
407fprintf(stderr,"pivot=%d\n",*(int*)pivot);
408#endif
409 /* Partition. */
410 Partition(SWAP_words,WORD_BYTES);
411 /* Prepare to recurse/iterate. */
412 Recurse(TRUNC_words)
413 }
414 }
415 PreInsertion(SWAP_words,(TRUNC_words/WORD_BYTES),WORD_BYTES);
416 /* Now do insertion sort. */
417 last=((char*)base)+nmemb*WORD_BYTES;
418 for (first=((char*)base)+WORD_BYTES;first!=last;first+=WORD_BYTES) {
419 /* Find the right place for |first|. My apologies for var reuse */
420 int *pl=(int*)(first-WORD_BYTES),*pr=(int*)first;
421 *(int*)pivot=*(int*)first;
422 for (;compare(pl,pivot)>0;pr=pl,--pl) {
423 *pr=*pl; }
424 if (pr!=(int*)first) *pr=*(int*)pivot;
425 }
426 free(pivot);
427}
428
429/* ---------------------------------------------------------------------- */
430
431void qsort(void *base, size_t nmemb, size_t size,
432 int (*compare)(const void *, const void *)) {
433
434 if (nmemb<=1) return;
435 if (((uintptr_t)base|size)&(WORD_BYTES-1))
436 qsort_nonaligned(base,nmemb,size,compare);
437 else if (size!=WORD_BYTES)
438 qsort_aligned(base,nmemb,size,compare);
439 else
440 qsort_words(base,nmemb,compare);
441}
442
443#endif /* !HAVE_QSORT */