spu: fix typo
[pcsx_rearmed.git] / plugins / dfsound / spu.c
... / ...
CommitLineData
1/***************************************************************************
2 spu.c - description
3 -------------------
4 begin : Wed May 15 2002
5 copyright : (C) 2002 by Pete Bernert
6 email : BlackDove@addcom.de
7
8 Portions (C) GraÅžvydas "notaz" Ignotas, 2010-2012,2014,2015
9
10 ***************************************************************************/
11/***************************************************************************
12 * *
13 * This program is free software; you can redistribute it and/or modify *
14 * it under the terms of the GNU General Public License as published by *
15 * the Free Software Foundation; either version 2 of the License, or *
16 * (at your option) any later version. See also the license.txt file for *
17 * additional informations. *
18 * *
19 ***************************************************************************/
20
21#if !defined(_WIN32) && !defined(NO_OS)
22#include <sys/time.h> // gettimeofday in xa.c
23#define THREAD_ENABLED 1
24#endif
25#include "stdafx.h"
26
27#define _IN_SPU
28
29#include "externals.h"
30#include "registers.h"
31#include "out.h"
32#include "spu_config.h"
33
34#ifdef __arm__
35#include "arm_features.h"
36#endif
37
38#ifdef HAVE_ARMV7
39 #define ssat32_to_16(v) \
40 asm("ssat %0,#16,%1" : "=r" (v) : "r" (v))
41#else
42 #define ssat32_to_16(v) do { \
43 if (v < -32768) v = -32768; \
44 else if (v > 32767) v = 32767; \
45 } while (0)
46#endif
47
48#define PSXCLK 33868800 /* 33.8688 MHz */
49
50// intended to be ~1 frame
51#define IRQ_NEAR_BLOCKS 32
52
53/*
54#if defined (USEMACOSX)
55static char * libraryName = N_("Mac OS X Sound");
56#elif defined (USEALSA)
57static char * libraryName = N_("ALSA Sound");
58#elif defined (USEOSS)
59static char * libraryName = N_("OSS Sound");
60#elif defined (USESDL)
61static char * libraryName = N_("SDL Sound");
62#elif defined (USEPULSEAUDIO)
63static char * libraryName = N_("PulseAudio Sound");
64#else
65static char * libraryName = N_("NULL Sound");
66#endif
67
68static char * libraryInfo = N_("P.E.Op.S. Sound Driver V1.7\nCoded by Pete Bernert and the P.E.Op.S. team\n");
69*/
70
71// globals
72
73SPUInfo spu;
74SPUConfig spu_config;
75
76static int iFMod[NSSIZE];
77static int RVB[NSSIZE * 2];
78int ChanBuf[NSSIZE];
79
80#define CDDA_BUFFER_SIZE (16384 * sizeof(uint32_t)) // must be power of 2
81
82////////////////////////////////////////////////////////////////////////
83// CODE AREA
84////////////////////////////////////////////////////////////////////////
85
86// dirty inline func includes
87
88#include "reverb.c"
89#include "adsr.c"
90
91////////////////////////////////////////////////////////////////////////
92// helpers for simple interpolation
93
94//
95// easy interpolation on upsampling, no special filter, just "Pete's common sense" tm
96//
97// instead of having n equal sample values in a row like:
98// ____
99// |____
100//
101// we compare the current delta change with the next delta change.
102//
103// if curr_delta is positive,
104//
105// - and next delta is smaller (or changing direction):
106// \.
107// -__
108//
109// - and next delta significant (at least twice) bigger:
110// --_
111// \.
112//
113// - and next delta is nearly same:
114// \.
115// \.
116//
117//
118// if curr_delta is negative,
119//
120// - and next delta is smaller (or changing direction):
121// _--
122// /
123//
124// - and next delta significant (at least twice) bigger:
125// /
126// __-
127//
128// - and next delta is nearly same:
129// /
130// /
131//
132
133static void InterpolateUp(int *SB, int sinc)
134{
135 if(SB[32]==1) // flag == 1? calc step and set flag... and don't change the value in this pass
136 {
137 const int id1=SB[30]-SB[29]; // curr delta to next val
138 const int id2=SB[31]-SB[30]; // and next delta to next-next val :)
139
140 SB[32]=0;
141
142 if(id1>0) // curr delta positive
143 {
144 if(id2<id1)
145 {SB[28]=id1;SB[32]=2;}
146 else
147 if(id2<(id1<<1))
148 SB[28]=(id1*sinc)>>16;
149 else
150 SB[28]=(id1*sinc)>>17;
151 }
152 else // curr delta negative
153 {
154 if(id2>id1)
155 {SB[28]=id1;SB[32]=2;}
156 else
157 if(id2>(id1<<1))
158 SB[28]=(id1*sinc)>>16;
159 else
160 SB[28]=(id1*sinc)>>17;
161 }
162 }
163 else
164 if(SB[32]==2) // flag 1: calc step and set flag... and don't change the value in this pass
165 {
166 SB[32]=0;
167
168 SB[28]=(SB[28]*sinc)>>17;
169 //if(sinc<=0x8000)
170 // SB[29]=SB[30]-(SB[28]*((0x10000/sinc)-1));
171 //else
172 SB[29]+=SB[28];
173 }
174 else // no flags? add bigger val (if possible), calc smaller step, set flag1
175 SB[29]+=SB[28];
176}
177
178//
179// even easier interpolation on downsampling, also no special filter, again just "Pete's common sense" tm
180//
181
182static void InterpolateDown(int *SB, int sinc)
183{
184 if(sinc>=0x20000L) // we would skip at least one val?
185 {
186 SB[29]+=(SB[30]-SB[29])/2; // add easy weight
187 if(sinc>=0x30000L) // we would skip even more vals?
188 SB[29]+=(SB[31]-SB[30])/2; // add additional next weight
189 }
190}
191
192////////////////////////////////////////////////////////////////////////
193// helpers for gauss interpolation
194
195#define gval0 (((short*)(&SB[29]))[gpos&3])
196#define gval(x) ((int)((short*)(&SB[29]))[(gpos+x)&3])
197
198#include "gauss_i.h"
199
200////////////////////////////////////////////////////////////////////////
201
202#include "xa.c"
203
204static void do_irq(void)
205{
206 //if(!(spu.spuStat & STAT_IRQ))
207 {
208 spu.spuStat |= STAT_IRQ; // asserted status?
209 if(spu.irqCallback) spu.irqCallback();
210 }
211}
212
213static int check_irq(int ch, unsigned char *pos)
214{
215 if((spu.spuCtrl & (CTRL_ON|CTRL_IRQ)) == (CTRL_ON|CTRL_IRQ) && pos == spu.pSpuIrq)
216 {
217 //printf("ch%d irq %04x\n", ch, pos - spu.spuMemC);
218 do_irq();
219 return 1;
220 }
221 return 0;
222}
223
224void check_irq_io(unsigned int addr)
225{
226 unsigned int irq_addr = regAreaGet(H_SPUirqAddr) << 3;
227 //addr &= ~7; // ?
228 if((spu.spuCtrl & (CTRL_ON|CTRL_IRQ)) == (CTRL_ON|CTRL_IRQ) && addr == irq_addr)
229 {
230 //printf("io irq %04x\n", irq_addr);
231 do_irq();
232 }
233}
234
235////////////////////////////////////////////////////////////////////////
236// START SOUND... called by main thread to setup a new sound on a channel
237////////////////////////////////////////////////////////////////////////
238
239static void StartSoundSB(int *SB)
240{
241 SB[26]=0; // init mixing vars
242 SB[27]=0;
243
244 SB[28]=0;
245 SB[29]=0; // init our interpolation helpers
246 SB[30]=0;
247 SB[31]=0;
248}
249
250static void StartSoundMain(int ch)
251{
252 SPUCHAN *s_chan = &spu.s_chan[ch];
253
254 StartADSR(ch);
255 StartREVERB(ch);
256
257 s_chan->prevflags=2;
258 s_chan->iSBPos=27;
259 s_chan->spos=0;
260
261 s_chan->pCurr = spu.spuMemC + ((regAreaGetCh(ch, 6) & ~1) << 3);
262
263 spu.dwNewChannel&=~(1<<ch); // clear new channel bit
264 spu.dwChannelDead&=~(1<<ch);
265 spu.dwChannelsAudible|=1<<ch;
266}
267
268static void StartSound(int ch)
269{
270 StartSoundMain(ch);
271 StartSoundSB(spu.SB + ch * SB_SIZE);
272}
273
274////////////////////////////////////////////////////////////////////////
275// ALL KIND OF HELPERS
276////////////////////////////////////////////////////////////////////////
277
278INLINE int FModChangeFrequency(int *SB, int pitch, int ns)
279{
280 unsigned int NP=pitch;
281 int sinc;
282
283 NP=((32768L+iFMod[ns])*NP)>>15;
284
285 if(NP>0x3fff) NP=0x3fff;
286 if(NP<0x1) NP=0x1;
287
288 sinc=NP<<4; // calc frequency
289 if(spu_config.iUseInterpolation==1) // freq change in simple interpolation mode
290 SB[32]=1;
291 iFMod[ns]=0;
292
293 return sinc;
294}
295
296////////////////////////////////////////////////////////////////////////
297
298INLINE void StoreInterpolationVal(int *SB, int sinc, int fa, int fmod_freq)
299{
300 if(fmod_freq) // fmod freq channel
301 SB[29]=fa;
302 else
303 {
304 ssat32_to_16(fa);
305
306 if(spu_config.iUseInterpolation>=2) // gauss/cubic interpolation
307 {
308 int gpos = SB[28];
309 gval0 = fa;
310 gpos = (gpos+1) & 3;
311 SB[28] = gpos;
312 }
313 else
314 if(spu_config.iUseInterpolation==1) // simple interpolation
315 {
316 SB[28] = 0;
317 SB[29] = SB[30]; // -> helpers for simple linear interpolation: delay real val for two slots, and calc the two deltas, for a 'look at the future behaviour'
318 SB[30] = SB[31];
319 SB[31] = fa;
320 SB[32] = 1; // -> flag: calc new interolation
321 }
322 else SB[29]=fa; // no interpolation
323 }
324}
325
326////////////////////////////////////////////////////////////////////////
327
328INLINE int iGetInterpolationVal(int *SB, int sinc, int spos, int fmod_freq)
329{
330 int fa;
331
332 if(fmod_freq) return SB[29];
333
334 switch(spu_config.iUseInterpolation)
335 {
336 //--------------------------------------------------//
337 case 3: // cubic interpolation
338 {
339 long xd;int gpos;
340 xd = (spos >> 1)+1;
341 gpos = SB[28];
342
343 fa = gval(3) - 3*gval(2) + 3*gval(1) - gval0;
344 fa *= (xd - (2<<15)) / 6;
345 fa >>= 15;
346 fa += gval(2) - gval(1) - gval(1) + gval0;
347 fa *= (xd - (1<<15)) >> 1;
348 fa >>= 15;
349 fa += gval(1) - gval0;
350 fa *= xd;
351 fa >>= 15;
352 fa = fa + gval0;
353
354 } break;
355 //--------------------------------------------------//
356 case 2: // gauss interpolation
357 {
358 int vl, vr;int gpos;
359 vl = (spos >> 6) & ~3;
360 gpos = SB[28];
361 vr=(gauss[vl]*(int)gval0) >> 15;
362 vr+=(gauss[vl+1]*gval(1)) >> 15;
363 vr+=(gauss[vl+2]*gval(2)) >> 15;
364 vr+=(gauss[vl+3]*gval(3)) >> 15;
365 fa = vr;
366 } break;
367 //--------------------------------------------------//
368 case 1: // simple interpolation
369 {
370 if(sinc<0x10000L) // -> upsampling?
371 InterpolateUp(SB, sinc); // --> interpolate up
372 else InterpolateDown(SB, sinc); // --> else down
373 fa=SB[29];
374 } break;
375 //--------------------------------------------------//
376 default: // no interpolation
377 {
378 fa=SB[29];
379 } break;
380 //--------------------------------------------------//
381 }
382
383 return fa;
384}
385
386static void decode_block_data(int *dest, const unsigned char *src, int predict_nr, int shift_factor)
387{
388 static const int f[16][2] = {
389 { 0, 0 },
390 { 60, 0 },
391 { 115, -52 },
392 { 98, -55 },
393 { 122, -60 }
394 };
395 int nSample;
396 int fa, s_1, s_2, d, s;
397
398 s_1 = dest[27];
399 s_2 = dest[26];
400
401 for (nSample = 0; nSample < 28; src++)
402 {
403 d = (int)*src;
404 s = (int)(signed short)((d & 0x0f) << 12);
405
406 fa = s >> shift_factor;
407 fa += ((s_1 * f[predict_nr][0])>>6) + ((s_2 * f[predict_nr][1])>>6);
408 s_2=s_1;s_1=fa;
409
410 dest[nSample++] = fa;
411
412 s = (int)(signed short)((d & 0xf0) << 8);
413 fa = s >> shift_factor;
414 fa += ((s_1 * f[predict_nr][0])>>6) + ((s_2 * f[predict_nr][1])>>6);
415 s_2=s_1;s_1=fa;
416
417 dest[nSample++] = fa;
418 }
419}
420
421static int decode_block(void *unused, int ch, int *SB)
422{
423 SPUCHAN *s_chan = &spu.s_chan[ch];
424 unsigned char *start;
425 int predict_nr, shift_factor, flags;
426 int ret = 0;
427
428 start = s_chan->pCurr; // set up the current pos
429 if (start == spu.spuMemC) // ?
430 ret = 1;
431
432 if (s_chan->prevflags & 1) // 1: stop/loop
433 {
434 if (!(s_chan->prevflags & 2))
435 ret = 1;
436
437 start = s_chan->pLoop;
438 }
439
440 check_irq(ch, start);
441
442 predict_nr = start[0];
443 shift_factor = predict_nr & 0xf;
444 predict_nr >>= 4;
445
446 decode_block_data(SB, start + 2, predict_nr, shift_factor);
447
448 flags = start[1];
449 if (flags & 4 && !s_chan->bIgnoreLoop)
450 s_chan->pLoop = start; // loop adress
451
452 start += 16;
453
454 s_chan->pCurr = start; // store values for next cycle
455 s_chan->prevflags = flags;
456
457 return ret;
458}
459
460// do block, but ignore sample data
461static int skip_block(int ch)
462{
463 SPUCHAN *s_chan = &spu.s_chan[ch];
464 unsigned char *start = s_chan->pCurr;
465 int flags;
466 int ret = 0;
467
468 if (s_chan->prevflags & 1) {
469 if (!(s_chan->prevflags & 2))
470 ret = 1;
471
472 start = s_chan->pLoop;
473 }
474
475 check_irq(ch, start);
476
477 flags = start[1];
478 if (flags & 4 && !s_chan->bIgnoreLoop)
479 s_chan->pLoop = start;
480
481 start += 16;
482
483 s_chan->pCurr = start;
484 s_chan->prevflags = flags;
485
486 return ret;
487}
488
489// if irq is going to trigger sooner than in upd_samples, set upd_samples
490static void scan_for_irq(int ch, unsigned int *upd_samples)
491{
492 SPUCHAN *s_chan = &spu.s_chan[ch];
493 int pos, sinc, sinc_inv, end;
494 unsigned char *block;
495 int flags;
496
497 block = s_chan->pCurr;
498 pos = s_chan->spos;
499 sinc = s_chan->sinc;
500 end = pos + *upd_samples * sinc;
501
502 pos += (28 - s_chan->iSBPos) << 16;
503 while (pos < end)
504 {
505 if (block == spu.pSpuIrq)
506 break;
507 flags = block[1];
508 block += 16;
509 if (flags & 1) { // 1: stop/loop
510 block = s_chan->pLoop;
511 }
512 pos += 28 << 16;
513 }
514
515 if (pos < end)
516 {
517 sinc_inv = s_chan->sinc_inv;
518 if (sinc_inv == 0)
519 sinc_inv = s_chan->sinc_inv = (0x80000000u / (uint32_t)sinc) << 1;
520
521 pos -= s_chan->spos;
522 *upd_samples = (((uint64_t)pos * sinc_inv) >> 32) + 1;
523 //xprintf("ch%02d: irq sched: %3d %03d\n",
524 // ch, *upd_samples, *upd_samples * 60 * 263 / 44100);
525 }
526}
527
528#define make_do_samples(name, fmod_code, interp_start, interp1_code, interp2_code, interp_end) \
529static noinline int do_samples_##name( \
530 int (*decode_f)(void *context, int ch, int *SB), void *ctx, \
531 int ch, int ns_to, int *SB, int sinc, int *spos, int *sbpos) \
532{ \
533 int ns, d, fa; \
534 int ret = ns_to; \
535 interp_start; \
536 \
537 for (ns = 0; ns < ns_to; ns++) \
538 { \
539 fmod_code; \
540 \
541 *spos += sinc; \
542 while (*spos >= 0x10000) \
543 { \
544 fa = SB[(*sbpos)++]; \
545 if (*sbpos >= 28) \
546 { \
547 *sbpos = 0; \
548 d = decode_f(ctx, ch, SB); \
549 if (d && ns < ret) \
550 ret = ns; \
551 } \
552 \
553 interp1_code; \
554 *spos -= 0x10000; \
555 } \
556 \
557 interp2_code; \
558 } \
559 \
560 interp_end; \
561 \
562 return ret; \
563}
564
565#define fmod_recv_check \
566 if(spu.s_chan[ch].bFMod==1 && iFMod[ns]) \
567 sinc = FModChangeFrequency(SB, spu.s_chan[ch].iRawPitch, ns)
568
569make_do_samples(default, fmod_recv_check, ,
570 StoreInterpolationVal(SB, sinc, fa, spu.s_chan[ch].bFMod==2),
571 ChanBuf[ns] = iGetInterpolationVal(SB, sinc, *spos, spu.s_chan[ch].bFMod==2), )
572make_do_samples(noint, , fa = SB[29], , ChanBuf[ns] = fa, SB[29] = fa)
573
574#define simple_interp_store \
575 SB[28] = 0; \
576 SB[29] = SB[30]; \
577 SB[30] = SB[31]; \
578 SB[31] = fa; \
579 SB[32] = 1
580
581#define simple_interp_get \
582 if(sinc<0x10000) /* -> upsampling? */ \
583 InterpolateUp(SB, sinc); /* --> interpolate up */ \
584 else InterpolateDown(SB, sinc); /* --> else down */ \
585 ChanBuf[ns] = SB[29]
586
587make_do_samples(simple, , ,
588 simple_interp_store, simple_interp_get, )
589
590static int do_samples_skip(int ch, int ns_to)
591{
592 SPUCHAN *s_chan = &spu.s_chan[ch];
593 int spos = s_chan->spos;
594 int sinc = s_chan->sinc;
595 int ret = ns_to, ns, d;
596
597 spos += s_chan->iSBPos << 16;
598
599 for (ns = 0; ns < ns_to; ns++)
600 {
601 spos += sinc;
602 while (spos >= 28*0x10000)
603 {
604 d = skip_block(ch);
605 if (d && ns < ret)
606 ret = ns;
607 spos -= 28*0x10000;
608 }
609 }
610
611 s_chan->iSBPos = spos >> 16;
612 s_chan->spos = spos & 0xffff;
613
614 return ret;
615}
616
617static void do_lsfr_samples(int ns_to, int ctrl,
618 unsigned int *dwNoiseCount, unsigned int *dwNoiseVal)
619{
620 unsigned int counter = *dwNoiseCount;
621 unsigned int val = *dwNoiseVal;
622 unsigned int level, shift, bit;
623 int ns;
624
625 // modified from DrHell/shalma, no fraction
626 level = (ctrl >> 10) & 0x0f;
627 level = 0x8000 >> level;
628
629 for (ns = 0; ns < ns_to; ns++)
630 {
631 counter += 2;
632 if (counter >= level)
633 {
634 counter -= level;
635 shift = (val >> 10) & 0x1f;
636 bit = (0x69696969 >> shift) & 1;
637 bit ^= (val >> 15) & 1;
638 val = (val << 1) | bit;
639 }
640
641 ChanBuf[ns] = (signed short)val;
642 }
643
644 *dwNoiseCount = counter;
645 *dwNoiseVal = val;
646}
647
648static int do_samples_noise(int ch, int ns_to)
649{
650 int ret;
651
652 ret = do_samples_skip(ch, ns_to);
653
654 do_lsfr_samples(ns_to, spu.spuCtrl, &spu.dwNoiseCount, &spu.dwNoiseVal);
655
656 return ret;
657}
658
659#ifdef HAVE_ARMV5
660// asm code; lv and rv must be 0-3fff
661extern void mix_chan(int *SSumLR, int count, int lv, int rv);
662extern void mix_chan_rvb(int *SSumLR, int count, int lv, int rv, int *rvb);
663#else
664static void mix_chan(int *SSumLR, int count, int lv, int rv)
665{
666 const int *src = ChanBuf;
667 int l, r;
668
669 while (count--)
670 {
671 int sval = *src++;
672
673 l = (sval * lv) >> 14;
674 r = (sval * rv) >> 14;
675 *SSumLR++ += l;
676 *SSumLR++ += r;
677 }
678}
679
680static void mix_chan_rvb(int *SSumLR, int count, int lv, int rv, int *rvb)
681{
682 const int *src = ChanBuf;
683 int *dst = SSumLR;
684 int *drvb = rvb;
685 int l, r;
686
687 while (count--)
688 {
689 int sval = *src++;
690
691 l = (sval * lv) >> 14;
692 r = (sval * rv) >> 14;
693 *dst++ += l;
694 *dst++ += r;
695 *drvb++ += l;
696 *drvb++ += r;
697 }
698}
699#endif
700
701// 0x0800-0x0bff Voice 1
702// 0x0c00-0x0fff Voice 3
703static noinline void do_decode_bufs(unsigned short *mem, int which,
704 int count, int decode_pos)
705{
706 unsigned short *dst = &mem[0x800/2 + which*0x400/2];
707 const int *src = ChanBuf;
708 int cursor = decode_pos;
709
710 while (count-- > 0)
711 {
712 cursor &= 0x1ff;
713 dst[cursor] = *src++;
714 cursor++;
715 }
716
717 // decode_pos is updated and irqs are checked later, after voice loop
718}
719
720static void do_silent_chans(int ns_to, int silentch)
721{
722 unsigned int mask;
723 SPUCHAN *s_chan;
724 int ch;
725
726 mask = silentch & 0xffffff;
727 for (ch = 0; mask != 0; ch++, mask >>= 1)
728 {
729 if (!(mask & 1)) continue;
730 if (spu.dwChannelDead & (1<<ch)) continue;
731
732 s_chan = &spu.s_chan[ch];
733 if (s_chan->pCurr > spu.pSpuIrq && s_chan->pLoop > spu.pSpuIrq)
734 continue;
735
736 s_chan->spos += s_chan->iSBPos << 16;
737 s_chan->iSBPos = 0;
738
739 s_chan->spos += s_chan->sinc * ns_to;
740 while (s_chan->spos >= 28 * 0x10000)
741 {
742 unsigned char *start = s_chan->pCurr;
743
744 skip_block(ch);
745 if (start == s_chan->pCurr || start - spu.spuMemC < 0x1000)
746 {
747 // looping on self or stopped(?)
748 spu.dwChannelDead |= 1<<ch;
749 s_chan->spos = 0;
750 break;
751 }
752
753 s_chan->spos -= 28 * 0x10000;
754 }
755 }
756}
757
758static void do_channels(int ns_to)
759{
760 unsigned int mask;
761 int do_rvb, ch, d;
762 SPUCHAN *s_chan;
763 int *SB, sinc;
764
765 do_rvb = spu.rvb->StartAddr && spu_config.iUseReverb;
766 if (do_rvb)
767 memset(RVB, 0, ns_to * sizeof(RVB[0]) * 2);
768
769 mask = spu.dwNewChannel & 0xffffff;
770 for (ch = 0; mask != 0; ch++, mask >>= 1) {
771 if (mask & 1)
772 StartSound(ch);
773 }
774
775 mask = spu.dwChannelsAudible & 0xffffff;
776 for (ch = 0; mask != 0; ch++, mask >>= 1) // loop em all...
777 {
778 if (!(mask & 1)) continue; // channel not playing? next
779
780 s_chan = &spu.s_chan[ch];
781 SB = spu.SB + ch * SB_SIZE;
782 sinc = s_chan->sinc;
783
784 if (s_chan->bNoise)
785 d = do_samples_noise(ch, ns_to);
786 else if (s_chan->bFMod == 2
787 || (s_chan->bFMod == 0 && spu_config.iUseInterpolation == 0))
788 d = do_samples_noint(decode_block, NULL, ch, ns_to,
789 SB, sinc, &s_chan->spos, &s_chan->iSBPos);
790 else if (s_chan->bFMod == 0 && spu_config.iUseInterpolation == 1)
791 d = do_samples_simple(decode_block, NULL, ch, ns_to,
792 SB, sinc, &s_chan->spos, &s_chan->iSBPos);
793 else
794 d = do_samples_default(decode_block, NULL, ch, ns_to,
795 SB, sinc, &s_chan->spos, &s_chan->iSBPos);
796
797 d = MixADSR(&s_chan->ADSRX, d);
798 if (d < ns_to) {
799 spu.dwChannelsAudible &= ~(1 << ch);
800 s_chan->ADSRX.State = ADSR_RELEASE;
801 s_chan->ADSRX.EnvelopeVol = 0;
802 memset(&ChanBuf[d], 0, (ns_to - d) * sizeof(ChanBuf[0]));
803 }
804
805 if (ch == 1 || ch == 3)
806 {
807 do_decode_bufs(spu.spuMem, ch/2, ns_to, spu.decode_pos);
808 spu.decode_dirty_ch |= 1 << ch;
809 }
810
811 if (s_chan->bFMod == 2) // fmod freq channel
812 memcpy(iFMod, &ChanBuf, ns_to * sizeof(iFMod[0]));
813 if (s_chan->bRVBActive && do_rvb)
814 mix_chan_rvb(spu.SSumLR, ns_to, s_chan->iLeftVolume, s_chan->iRightVolume, RVB);
815 else
816 mix_chan(spu.SSumLR, ns_to, s_chan->iLeftVolume, s_chan->iRightVolume);
817 }
818
819 if (spu.rvb->StartAddr) {
820 if (do_rvb)
821 REVERBDo(spu.SSumLR, RVB, ns_to, spu.rvb->CurrAddr);
822
823 spu.rvb->CurrAddr += ns_to / 2;
824 while (spu.rvb->CurrAddr >= 0x40000)
825 spu.rvb->CurrAddr -= 0x40000 - spu.rvb->StartAddr;
826 }
827}
828
829static void do_samples_finish(int *SSumLR, int ns_to,
830 int silentch, int decode_pos);
831
832// optional worker thread handling
833
834#if defined(THREAD_ENABLED) || defined(WANT_THREAD_CODE)
835
836// worker thread state
837static struct spu_worker {
838 union {
839 struct {
840 unsigned int exit_thread;
841 unsigned int i_ready;
842 unsigned int i_reaped;
843 unsigned int last_boot_cnt; // dsp
844 unsigned int ram_dirty;
845 };
846 // aligning for C64X_DSP
847 unsigned int _pad0[128/4];
848 };
849 union {
850 struct {
851 unsigned int i_done;
852 unsigned int active; // dsp
853 unsigned int boot_cnt;
854 };
855 unsigned int _pad1[128/4];
856 };
857 struct work_item {
858 int ns_to;
859 int ctrl;
860 int decode_pos;
861 int rvb_addr;
862 unsigned int channels_new;
863 unsigned int channels_on;
864 unsigned int channels_silent;
865 struct {
866 int spos;
867 int sbpos;
868 int sinc;
869 int start;
870 int loop;
871 int ns_to;
872 short vol_l;
873 short vol_r;
874 ADSRInfoEx adsr;
875 // might also want to add fmod flags..
876 } ch[24];
877 int SSumLR[NSSIZE * 2];
878 } i[4];
879} *worker;
880
881#define WORK_MAXCNT (sizeof(worker->i) / sizeof(worker->i[0]))
882#define WORK_I_MASK (WORK_MAXCNT - 1)
883
884static void thread_work_start(void);
885static void thread_work_wait_sync(struct work_item *work, int force);
886static void thread_sync_caches(void);
887static int thread_get_i_done(void);
888
889static int decode_block_work(void *context, int ch, int *SB)
890{
891 const unsigned char *ram = spu.spuMemC;
892 int predict_nr, shift_factor, flags;
893 struct work_item *work = context;
894 int start = work->ch[ch].start;
895 int loop = work->ch[ch].loop;
896
897 predict_nr = ram[start];
898 shift_factor = predict_nr & 0xf;
899 predict_nr >>= 4;
900
901 decode_block_data(SB, ram + start + 2, predict_nr, shift_factor);
902
903 flags = ram[start + 1];
904 if (flags & 4)
905 loop = start; // loop adress
906
907 start += 16;
908
909 if (flags & 1) // 1: stop/loop
910 start = loop;
911
912 work->ch[ch].start = start & 0x7ffff;
913 work->ch[ch].loop = loop;
914
915 return 0;
916}
917
918static void queue_channel_work(int ns_to, unsigned int silentch)
919{
920 struct work_item *work;
921 SPUCHAN *s_chan;
922 unsigned int mask;
923 int ch, d;
924
925 work = &worker->i[worker->i_ready & WORK_I_MASK];
926 work->ns_to = ns_to;
927 work->ctrl = spu.spuCtrl;
928 work->decode_pos = spu.decode_pos;
929 work->channels_silent = silentch;
930
931 mask = work->channels_new = spu.dwNewChannel & 0xffffff;
932 for (ch = 0; mask != 0; ch++, mask >>= 1) {
933 if (mask & 1)
934 StartSoundMain(ch);
935 }
936
937 mask = work->channels_on = spu.dwChannelsAudible & 0xffffff;
938 spu.decode_dirty_ch |= mask & 0x0a;
939
940 for (ch = 0; mask != 0; ch++, mask >>= 1)
941 {
942 if (!(mask & 1)) continue;
943
944 s_chan = &spu.s_chan[ch];
945 work->ch[ch].spos = s_chan->spos;
946 work->ch[ch].sbpos = s_chan->iSBPos;
947 work->ch[ch].sinc = s_chan->sinc;
948 work->ch[ch].adsr = s_chan->ADSRX;
949 work->ch[ch].vol_l = s_chan->iLeftVolume;
950 work->ch[ch].vol_r = s_chan->iRightVolume;
951 work->ch[ch].start = s_chan->pCurr - spu.spuMemC;
952 work->ch[ch].loop = s_chan->pLoop - spu.spuMemC;
953 if (s_chan->prevflags & 1)
954 work->ch[ch].start = work->ch[ch].loop;
955
956 d = do_samples_skip(ch, ns_to);
957 work->ch[ch].ns_to = d;
958
959 // note: d is not accurate on skip
960 d = SkipADSR(&s_chan->ADSRX, d);
961 if (d < ns_to) {
962 spu.dwChannelsAudible &= ~(1 << ch);
963 s_chan->ADSRX.State = ADSR_RELEASE;
964 s_chan->ADSRX.EnvelopeVol = 0;
965 }
966 }
967
968 work->rvb_addr = 0;
969 if (spu.rvb->StartAddr) {
970 if (spu_config.iUseReverb)
971 work->rvb_addr = spu.rvb->CurrAddr;
972
973 spu.rvb->CurrAddr += ns_to / 2;
974 while (spu.rvb->CurrAddr >= 0x40000)
975 spu.rvb->CurrAddr -= 0x40000 - spu.rvb->StartAddr;
976 }
977
978 worker->i_ready++;
979 thread_work_start();
980}
981
982static void do_channel_work(struct work_item *work)
983{
984 unsigned int mask;
985 unsigned int decode_dirty_ch = 0;
986 const SPUCHAN *s_chan;
987 int *SB, sinc, spos, sbpos;
988 int d, ch, ns_to;
989
990 ns_to = work->ns_to;
991
992 if (work->rvb_addr)
993 memset(RVB, 0, ns_to * sizeof(RVB[0]) * 2);
994
995 mask = work->channels_new;
996 for (ch = 0; mask != 0; ch++, mask >>= 1) {
997 if (mask & 1)
998 StartSoundSB(spu.SB + ch * SB_SIZE);
999 }
1000
1001 mask = work->channels_on;
1002 for (ch = 0; mask != 0; ch++, mask >>= 1)
1003 {
1004 if (!(mask & 1)) continue;
1005
1006 d = work->ch[ch].ns_to;
1007 spos = work->ch[ch].spos;
1008 sbpos = work->ch[ch].sbpos;
1009 sinc = work->ch[ch].sinc;
1010
1011 s_chan = &spu.s_chan[ch];
1012 SB = spu.SB + ch * SB_SIZE;
1013
1014 if (s_chan->bNoise)
1015 do_lsfr_samples(d, work->ctrl, &spu.dwNoiseCount, &spu.dwNoiseVal);
1016 else if (s_chan->bFMod == 2
1017 || (s_chan->bFMod == 0 && spu_config.iUseInterpolation == 0))
1018 do_samples_noint(decode_block_work, work, ch, d, SB, sinc, &spos, &sbpos);
1019 else if (s_chan->bFMod == 0 && spu_config.iUseInterpolation == 1)
1020 do_samples_simple(decode_block_work, work, ch, d, SB, sinc, &spos, &sbpos);
1021 else
1022 do_samples_default(decode_block_work, work, ch, d, SB, sinc, &spos, &sbpos);
1023
1024 d = MixADSR(&work->ch[ch].adsr, d);
1025 if (d < ns_to) {
1026 work->ch[ch].adsr.EnvelopeVol = 0;
1027 memset(&ChanBuf[d], 0, (ns_to - d) * sizeof(ChanBuf[0]));
1028 }
1029
1030 if (ch == 1 || ch == 3)
1031 {
1032 do_decode_bufs(spu.spuMem, ch/2, ns_to, work->decode_pos);
1033 decode_dirty_ch |= 1 << ch;
1034 }
1035
1036 if (s_chan->bFMod == 2) // fmod freq channel
1037 memcpy(iFMod, &ChanBuf, ns_to * sizeof(iFMod[0]));
1038 if (s_chan->bRVBActive && work->rvb_addr)
1039 mix_chan_rvb(work->SSumLR, ns_to,
1040 work->ch[ch].vol_l, work->ch[ch].vol_r, RVB);
1041 else
1042 mix_chan(work->SSumLR, ns_to, work->ch[ch].vol_l, work->ch[ch].vol_r);
1043 }
1044
1045 if (work->rvb_addr)
1046 REVERBDo(work->SSumLR, RVB, ns_to, work->rvb_addr);
1047}
1048
1049static void sync_worker_thread(int force)
1050{
1051 struct work_item *work;
1052 int done, used_space;
1053
1054 // rvb offsets will change, thread may be using them
1055 force |= spu.rvb->dirty && spu.rvb->StartAddr;
1056
1057 done = thread_get_i_done() - worker->i_reaped;
1058 used_space = worker->i_ready - worker->i_reaped;
1059
1060 //printf("done: %d use: %d dsp: %u/%u\n", done, used_space,
1061 // worker->boot_cnt, worker->i_done);
1062
1063 while ((force && used_space > 0) || used_space >= WORK_MAXCNT || done > 0) {
1064 work = &worker->i[worker->i_reaped & WORK_I_MASK];
1065 thread_work_wait_sync(work, force);
1066
1067 do_samples_finish(work->SSumLR, work->ns_to,
1068 work->channels_silent, work->decode_pos);
1069
1070 worker->i_reaped++;
1071 done = thread_get_i_done() - worker->i_reaped;
1072 used_space = worker->i_ready - worker->i_reaped;
1073 }
1074 if (force)
1075 thread_sync_caches();
1076}
1077
1078#else
1079
1080static void queue_channel_work(int ns_to, int silentch) {}
1081static void sync_worker_thread(int force) {}
1082
1083static const void * const worker = NULL;
1084
1085#endif // THREAD_ENABLED
1086
1087////////////////////////////////////////////////////////////////////////
1088// MAIN SPU FUNCTION
1089// here is the main job handler...
1090////////////////////////////////////////////////////////////////////////
1091
1092void do_samples(unsigned int cycles_to, int do_direct)
1093{
1094 unsigned int silentch;
1095 int cycle_diff;
1096 int ns_to;
1097
1098 cycle_diff = cycles_to - spu.cycles_played;
1099 if (cycle_diff < -2*1048576 || cycle_diff > 2*1048576)
1100 {
1101 //xprintf("desync %u %d\n", cycles_to, cycle_diff);
1102 spu.cycles_played = cycles_to;
1103 return;
1104 }
1105
1106 silentch = ~(spu.dwChannelsAudible | spu.dwNewChannel) & 0xffffff;
1107
1108 do_direct |= (silentch == 0xffffff);
1109 if (worker != NULL)
1110 sync_worker_thread(do_direct);
1111
1112 if (cycle_diff < 2 * 768)
1113 return;
1114
1115 ns_to = (cycle_diff / 768 + 1) & ~1;
1116 if (ns_to > NSSIZE) {
1117 // should never happen
1118 //xprintf("ns_to oflow %d %d\n", ns_to, NSSIZE);
1119 ns_to = NSSIZE;
1120 }
1121
1122 //////////////////////////////////////////////////////
1123 // special irq handling in the decode buffers (0x0000-0x1000)
1124 // we know:
1125 // the decode buffers are located in spu memory in the following way:
1126 // 0x0000-0x03ff CD audio left
1127 // 0x0400-0x07ff CD audio right
1128 // 0x0800-0x0bff Voice 1
1129 // 0x0c00-0x0fff Voice 3
1130 // and decoded data is 16 bit for one sample
1131 // we assume:
1132 // even if voices 1/3 are off or no cd audio is playing, the internal
1133 // play positions will move on and wrap after 0x400 bytes.
1134 // Therefore: we just need a pointer from spumem+0 to spumem+3ff, and
1135 // increase this pointer on each sample by 2 bytes. If this pointer
1136 // (or 0x400 offsets of this pointer) hits the spuirq address, we generate
1137 // an IRQ.
1138
1139 if (unlikely((spu.spuCtrl & CTRL_IRQ)
1140 && spu.pSpuIrq < spu.spuMemC+0x1000))
1141 {
1142 int irq_pos = (spu.pSpuIrq - spu.spuMemC) / 2 & 0x1ff;
1143 int left = (irq_pos - spu.decode_pos) & 0x1ff;
1144 if (0 < left && left <= ns_to)
1145 {
1146 //xprintf("decoder irq %x\n", spu.decode_pos);
1147 do_irq();
1148 }
1149 }
1150 check_irq_io(spu.spuAddr);
1151
1152 if (unlikely(spu.rvb->dirty))
1153 REVERBPrep();
1154
1155 if (do_direct || worker == NULL || !spu_config.iUseThread) {
1156 do_channels(ns_to);
1157 do_samples_finish(spu.SSumLR, ns_to, silentch, spu.decode_pos);
1158 }
1159 else {
1160 queue_channel_work(ns_to, silentch);
1161 }
1162
1163 // advance "stopped" channels that can cause irqs
1164 // (all chans are always playing on the real thing..)
1165 if (spu.spuCtrl & CTRL_IRQ)
1166 do_silent_chans(ns_to, silentch);
1167
1168 spu.cycles_played += ns_to * 768;
1169 spu.decode_pos = (spu.decode_pos + ns_to) & 0x1ff;
1170}
1171
1172static void do_samples_finish(int *SSumLR, int ns_to,
1173 int silentch, int decode_pos)
1174{
1175 int vol_l = ((int)regAreaGet(H_SPUmvolL) << 17) >> 17;
1176 int vol_r = ((int)regAreaGet(H_SPUmvolR) << 17) >> 17;
1177 int ns;
1178 int d;
1179
1180 // must clear silent channel decode buffers
1181 if(unlikely(silentch & spu.decode_dirty_ch & (1<<1)))
1182 {
1183 memset(&spu.spuMem[0x800/2], 0, 0x400);
1184 spu.decode_dirty_ch &= ~(1<<1);
1185 }
1186 if(unlikely(silentch & spu.decode_dirty_ch & (1<<3)))
1187 {
1188 memset(&spu.spuMem[0xc00/2], 0, 0x400);
1189 spu.decode_dirty_ch &= ~(1<<3);
1190 }
1191
1192 MixXA(SSumLR, ns_to, decode_pos);
1193
1194 vol_l = vol_l * spu_config.iVolume >> 10;
1195 vol_r = vol_r * spu_config.iVolume >> 10;
1196
1197 if (!(spu.spuCtrl & 0x4000) || !(vol_l | vol_r))
1198 {
1199 // muted? (rare)
1200 memset(spu.pS, 0, ns_to * 2 * sizeof(spu.pS[0]));
1201 memset(SSumLR, 0, ns_to * 2 * sizeof(SSumLR[0]));
1202 spu.pS += ns_to * 2;
1203 }
1204 else
1205 for (ns = 0; ns < ns_to * 2; )
1206 {
1207 d = SSumLR[ns]; SSumLR[ns] = 0;
1208 d = d * vol_l >> 14;
1209 ssat32_to_16(d);
1210 *spu.pS++ = d;
1211 ns++;
1212
1213 d = SSumLR[ns]; SSumLR[ns] = 0;
1214 d = d * vol_r >> 14;
1215 ssat32_to_16(d);
1216 *spu.pS++ = d;
1217 ns++;
1218 }
1219}
1220
1221void schedule_next_irq(void)
1222{
1223 unsigned int upd_samples;
1224 int ch;
1225
1226 if (spu.scheduleCallback == NULL)
1227 return;
1228
1229 upd_samples = 44100 / 50;
1230
1231 for (ch = 0; ch < MAXCHAN; ch++)
1232 {
1233 if (spu.dwChannelDead & (1 << ch))
1234 continue;
1235 if ((unsigned long)(spu.pSpuIrq - spu.s_chan[ch].pCurr) > IRQ_NEAR_BLOCKS * 16
1236 && (unsigned long)(spu.pSpuIrq - spu.s_chan[ch].pLoop) > IRQ_NEAR_BLOCKS * 16)
1237 continue;
1238 if (spu.s_chan[ch].sinc == 0)
1239 continue;
1240
1241 scan_for_irq(ch, &upd_samples);
1242 }
1243
1244 if (unlikely(spu.pSpuIrq < spu.spuMemC + 0x1000))
1245 {
1246 int irq_pos = (spu.pSpuIrq - spu.spuMemC) / 2 & 0x1ff;
1247 int left = (irq_pos - spu.decode_pos) & 0x1ff;
1248 if (0 < left && left < upd_samples) {
1249 //xprintf("decode: %3d (%3d/%3d)\n", left, spu.decode_pos, irq_pos);
1250 upd_samples = left;
1251 }
1252 }
1253
1254 if (upd_samples < 44100 / 50)
1255 spu.scheduleCallback(upd_samples * 768);
1256}
1257
1258// SPU ASYNC... even newer epsxe func
1259// 1 time every 'cycle' cycles... harhar
1260
1261// rearmed: called dynamically now
1262
1263void CALLBACK SPUasync(unsigned int cycle, unsigned int flags)
1264{
1265 do_samples(cycle, spu_config.iUseFixedUpdates);
1266
1267 if (spu.spuCtrl & CTRL_IRQ)
1268 schedule_next_irq();
1269
1270 if (flags & 1) {
1271 out_current->feed(spu.pSpuBuffer, (unsigned char *)spu.pS - spu.pSpuBuffer);
1272 spu.pS = (short *)spu.pSpuBuffer;
1273
1274 if (spu_config.iTempo) {
1275 if (!out_current->busy())
1276 // cause more samples to be generated
1277 // (and break some games because of bad sync)
1278 spu.cycles_played -= 44100 / 60 / 2 * 768;
1279 }
1280 }
1281}
1282
1283// SPU UPDATE... new epsxe func
1284// 1 time every 32 hsync lines
1285// (312/32)x50 in pal
1286// (262/32)x60 in ntsc
1287
1288// since epsxe 1.5.2 (linux) uses SPUupdate, not SPUasync, I will
1289// leave that func in the linux port, until epsxe linux is using
1290// the async function as well
1291
1292void CALLBACK SPUupdate(void)
1293{
1294}
1295
1296// XA AUDIO
1297
1298void CALLBACK SPUplayADPCMchannel(xa_decode_t *xap, unsigned int cycle, int is_start)
1299{
1300 if(!xap) return;
1301 if(!xap->freq) return; // no xa freq ? bye
1302
1303 if (is_start)
1304 do_samples(cycle, 1); // catch up to prevent source underflows later
1305
1306 FeedXA(xap); // call main XA feeder
1307}
1308
1309// CDDA AUDIO
1310int CALLBACK SPUplayCDDAchannel(short *pcm, int nbytes, unsigned int cycle, int is_start)
1311{
1312 if (!pcm) return -1;
1313 if (nbytes<=0) return -1;
1314
1315 if (is_start)
1316 do_samples(cycle, 1); // catch up to prevent source underflows later
1317
1318 return FeedCDDA((unsigned char *)pcm, nbytes);
1319}
1320
1321// to be called after state load
1322void ClearWorkingState(void)
1323{
1324 memset(iFMod, 0, sizeof(iFMod));
1325 spu.pS=(short *)spu.pSpuBuffer; // setup soundbuffer pointer
1326}
1327
1328// SETUPSTREAMS: init most of the spu buffers
1329static void SetupStreams(void)
1330{
1331 spu.pSpuBuffer = (unsigned char *)malloc(32768); // alloc mixing buffer
1332 spu.SSumLR = calloc(NSSIZE * 2, sizeof(spu.SSumLR[0]));
1333
1334 spu.XAStart = malloc(44100 * sizeof(uint32_t)); // alloc xa buffer
1335 spu.XAEnd = spu.XAStart + 44100;
1336 spu.XAPlay = spu.XAStart;
1337 spu.XAFeed = spu.XAStart;
1338
1339 spu.CDDAStart = malloc(CDDA_BUFFER_SIZE); // alloc cdda buffer
1340 spu.CDDAEnd = spu.CDDAStart + 16384;
1341 spu.CDDAPlay = spu.CDDAStart;
1342 spu.CDDAFeed = spu.CDDAStart;
1343
1344 ClearWorkingState();
1345}
1346
1347// REMOVESTREAMS: free most buffer
1348static void RemoveStreams(void)
1349{
1350 free(spu.pSpuBuffer); // free mixing buffer
1351 spu.pSpuBuffer = NULL;
1352 free(spu.SSumLR);
1353 spu.SSumLR = NULL;
1354 free(spu.XAStart); // free XA buffer
1355 spu.XAStart = NULL;
1356 free(spu.CDDAStart); // free CDDA buffer
1357 spu.CDDAStart = NULL;
1358}
1359
1360#if defined(C64X_DSP)
1361
1362/* special code for TI C64x DSP */
1363#include "spu_c64x.c"
1364
1365#elif defined(THREAD_ENABLED)
1366
1367#include <pthread.h>
1368#include <semaphore.h>
1369#include <unistd.h>
1370
1371static struct {
1372 pthread_t thread;
1373 sem_t sem_avail;
1374 sem_t sem_done;
1375} t;
1376
1377/* generic pthread implementation */
1378
1379static void thread_work_start(void)
1380{
1381 sem_post(&t.sem_avail);
1382}
1383
1384static void thread_work_wait_sync(struct work_item *work, int force)
1385{
1386 sem_wait(&t.sem_done);
1387}
1388
1389static int thread_get_i_done(void)
1390{
1391 return worker->i_done;
1392}
1393
1394static void thread_sync_caches(void)
1395{
1396}
1397
1398static void *spu_worker_thread(void *unused)
1399{
1400 struct work_item *work;
1401
1402 while (1) {
1403 sem_wait(&t.sem_avail);
1404 if (worker->exit_thread)
1405 break;
1406
1407 work = &worker->i[worker->i_done & WORK_I_MASK];
1408 do_channel_work(work);
1409 worker->i_done++;
1410
1411 sem_post(&t.sem_done);
1412 }
1413
1414 return NULL;
1415}
1416
1417static void init_spu_thread(void)
1418{
1419 int ret;
1420
1421 if (sysconf(_SC_NPROCESSORS_ONLN) <= 1)
1422 return;
1423
1424 worker = calloc(1, sizeof(*worker));
1425 if (worker == NULL)
1426 return;
1427 ret = sem_init(&t.sem_avail, 0, 0);
1428 if (ret != 0)
1429 goto fail_sem_avail;
1430 ret = sem_init(&t.sem_done, 0, 0);
1431 if (ret != 0)
1432 goto fail_sem_done;
1433
1434 ret = pthread_create(&t.thread, NULL, spu_worker_thread, NULL);
1435 if (ret != 0)
1436 goto fail_thread;
1437
1438 spu_config.iThreadAvail = 1;
1439 return;
1440
1441fail_thread:
1442 sem_destroy(&t.sem_done);
1443fail_sem_done:
1444 sem_destroy(&t.sem_avail);
1445fail_sem_avail:
1446 free(worker);
1447 worker = NULL;
1448 spu_config.iThreadAvail = 0;
1449}
1450
1451static void exit_spu_thread(void)
1452{
1453 if (worker == NULL)
1454 return;
1455 worker->exit_thread = 1;
1456 sem_post(&t.sem_avail);
1457 pthread_join(t.thread, NULL);
1458 sem_destroy(&t.sem_done);
1459 sem_destroy(&t.sem_avail);
1460 free(worker);
1461 worker = NULL;
1462}
1463
1464#else // if !THREAD_ENABLED
1465
1466static void init_spu_thread(void)
1467{
1468}
1469
1470static void exit_spu_thread(void)
1471{
1472}
1473
1474#endif
1475
1476// SPUINIT: this func will be called first by the main emu
1477long CALLBACK SPUinit(void)
1478{
1479 int i;
1480
1481 spu.spuMemC = calloc(1, 512 * 1024);
1482 InitADSR();
1483
1484 spu.s_chan = calloc(MAXCHAN+1, sizeof(spu.s_chan[0])); // channel + 1 infos (1 is security for fmod handling)
1485 spu.rvb = calloc(1, sizeof(REVERBInfo));
1486 spu.SB = calloc(MAXCHAN, sizeof(spu.SB[0]) * SB_SIZE);
1487
1488 spu.spuAddr = 0;
1489 spu.decode_pos = 0;
1490 spu.pSpuIrq = spu.spuMemC;
1491
1492 SetupStreams(); // prepare streaming
1493
1494 if (spu_config.iVolume == 0)
1495 spu_config.iVolume = 768; // 1024 is 1.0
1496
1497 init_spu_thread();
1498
1499 for (i = 0; i < MAXCHAN; i++) // loop sound channels
1500 {
1501 spu.s_chan[i].ADSRX.SustainLevel = 0xf; // -> init sustain
1502 spu.s_chan[i].ADSRX.SustainIncrease = 1;
1503 spu.s_chan[i].pLoop = spu.spuMemC;
1504 spu.s_chan[i].pCurr = spu.spuMemC;
1505 spu.s_chan[i].bIgnoreLoop = 0;
1506 }
1507
1508 spu.bSpuInit=1; // flag: we are inited
1509
1510 return 0;
1511}
1512
1513// SPUOPEN: called by main emu after init
1514long CALLBACK SPUopen(void)
1515{
1516 if (spu.bSPUIsOpen) return 0; // security for some stupid main emus
1517
1518 SetupSound(); // setup sound (before init!)
1519
1520 spu.bSPUIsOpen = 1;
1521
1522 return PSE_SPU_ERR_SUCCESS;
1523}
1524
1525// SPUCLOSE: called before shutdown
1526long CALLBACK SPUclose(void)
1527{
1528 if (!spu.bSPUIsOpen) return 0; // some security
1529
1530 spu.bSPUIsOpen = 0; // no more open
1531
1532 out_current->finish(); // no more sound handling
1533
1534 return 0;
1535}
1536
1537// SPUSHUTDOWN: called by main emu on final exit
1538long CALLBACK SPUshutdown(void)
1539{
1540 SPUclose();
1541
1542 exit_spu_thread();
1543
1544 free(spu.spuMemC);
1545 spu.spuMemC = NULL;
1546 free(spu.SB);
1547 spu.SB = NULL;
1548 free(spu.s_chan);
1549 spu.s_chan = NULL;
1550 free(spu.rvb);
1551 spu.rvb = NULL;
1552
1553 RemoveStreams(); // no more streaming
1554 spu.bSpuInit=0;
1555
1556 return 0;
1557}
1558
1559// SPUTEST: we don't test, we are always fine ;)
1560long CALLBACK SPUtest(void)
1561{
1562 return 0;
1563}
1564
1565// SPUCONFIGURE: call config dialog
1566long CALLBACK SPUconfigure(void)
1567{
1568#ifdef _MACOSX
1569 DoConfiguration();
1570#else
1571// StartCfgTool("CFG");
1572#endif
1573 return 0;
1574}
1575
1576// SPUABOUT: show about window
1577void CALLBACK SPUabout(void)
1578{
1579#ifdef _MACOSX
1580 DoAbout();
1581#else
1582// StartCfgTool("ABOUT");
1583#endif
1584}
1585
1586// SETUP CALLBACKS
1587// this functions will be called once,
1588// passes a callback that should be called on SPU-IRQ/cdda volume change
1589void CALLBACK SPUregisterCallback(void (CALLBACK *callback)(void))
1590{
1591 spu.irqCallback = callback;
1592}
1593
1594void CALLBACK SPUregisterCDDAVolume(void (CALLBACK *CDDAVcallback)(short, short))
1595{
1596 spu.cddavCallback = CDDAVcallback;
1597}
1598
1599void CALLBACK SPUregisterScheduleCb(void (CALLBACK *callback)(unsigned int))
1600{
1601 spu.scheduleCallback = callback;
1602}
1603
1604// COMMON PLUGIN INFO FUNCS
1605/*
1606char * CALLBACK PSEgetLibName(void)
1607{
1608 return _(libraryName);
1609}
1610
1611unsigned long CALLBACK PSEgetLibType(void)
1612{
1613 return PSE_LT_SPU;
1614}
1615
1616unsigned long CALLBACK PSEgetLibVersion(void)
1617{
1618 return (1 << 16) | (6 << 8);
1619}
1620
1621char * SPUgetLibInfos(void)
1622{
1623 return _(libraryInfo);
1624}
1625*/
1626
1627// debug
1628void spu_get_debug_info(int *chans_out, int *run_chans, int *fmod_chans_out, int *noise_chans_out)
1629{
1630 int ch = 0, fmod_chans = 0, noise_chans = 0, irq_chans = 0;
1631
1632 if (spu.s_chan == NULL)
1633 return;
1634
1635 for(;ch<MAXCHAN;ch++)
1636 {
1637 if (!(spu.dwChannelsAudible & (1<<ch)))
1638 continue;
1639 if (spu.s_chan[ch].bFMod == 2)
1640 fmod_chans |= 1 << ch;
1641 if (spu.s_chan[ch].bNoise)
1642 noise_chans |= 1 << ch;
1643 if((spu.spuCtrl&CTRL_IRQ) && spu.s_chan[ch].pCurr <= spu.pSpuIrq && spu.s_chan[ch].pLoop <= spu.pSpuIrq)
1644 irq_chans |= 1 << ch;
1645 }
1646
1647 *chans_out = spu.dwChannelsAudible;
1648 *run_chans = ~spu.dwChannelsAudible & ~spu.dwChannelDead & irq_chans;
1649 *fmod_chans_out = fmod_chans;
1650 *noise_chans_out = noise_chans;
1651}
1652
1653// vim:shiftwidth=1:expandtab