update gitignore
[pcsx_rearmed.git] / plugins / dfsound / spu.c
... / ...
CommitLineData
1/***************************************************************************
2 spu.c - description
3 -------------------
4 begin : Wed May 15 2002
5 copyright : (C) 2002 by Pete Bernert
6 email : BlackDove@addcom.de
7
8 Portions (C) GraÅžvydas "notaz" Ignotas, 2010-2012,2014,2015
9
10 ***************************************************************************/
11/***************************************************************************
12 * *
13 * This program is free software; you can redistribute it and/or modify *
14 * it under the terms of the GNU General Public License as published by *
15 * the Free Software Foundation; either version 2 of the License, or *
16 * (at your option) any later version. See also the license.txt file for *
17 * additional informations. *
18 * *
19 ***************************************************************************/
20
21#include <assert.h>
22#include "stdafx.h"
23
24#define _IN_SPU
25
26#include "externals.h"
27#include "registers.h"
28#include "out.h"
29#include "spu_config.h"
30
31#ifdef __arm__
32#include "arm_features.h"
33#endif
34
35#ifdef HAVE_ARMV7
36 #define ssat32_to_16(v) \
37 asm("ssat %0,#16,%1" : "=r" (v) : "r" (v))
38#else
39 #define ssat32_to_16(v) do { \
40 if (v < -32768) v = -32768; \
41 else if (v > 32767) v = 32767; \
42 } while (0)
43#endif
44
45#define PSXCLK 33868800 /* 33.8688 MHz */
46
47// intended to be ~1 frame
48#define IRQ_NEAR_BLOCKS 32
49
50/*
51#if defined (USEMACOSX)
52static char * libraryName = N_("Mac OS X Sound");
53#elif defined (USEALSA)
54static char * libraryName = N_("ALSA Sound");
55#elif defined (USEOSS)
56static char * libraryName = N_("OSS Sound");
57#elif defined (USESDL)
58static char * libraryName = N_("SDL Sound");
59#elif defined (USEPULSEAUDIO)
60static char * libraryName = N_("PulseAudio Sound");
61#else
62static char * libraryName = N_("NULL Sound");
63#endif
64
65static char * libraryInfo = N_("P.E.Op.S. Sound Driver V1.7\nCoded by Pete Bernert and the P.E.Op.S. team\n");
66*/
67
68// globals
69
70SPUInfo spu;
71SPUConfig spu_config;
72
73static int iFMod[NSSIZE];
74static int RVB[NSSIZE * 2];
75int ChanBuf[NSSIZE];
76
77#define CDDA_BUFFER_SIZE (16384 * sizeof(uint32_t)) // must be power of 2
78
79////////////////////////////////////////////////////////////////////////
80// CODE AREA
81////////////////////////////////////////////////////////////////////////
82
83// dirty inline func includes
84
85#include "reverb.c"
86#include "adsr.c"
87
88////////////////////////////////////////////////////////////////////////
89// helpers for simple interpolation
90
91//
92// easy interpolation on upsampling, no special filter, just "Pete's common sense" tm
93//
94// instead of having n equal sample values in a row like:
95// ____
96// |____
97//
98// we compare the current delta change with the next delta change.
99//
100// if curr_delta is positive,
101//
102// - and next delta is smaller (or changing direction):
103// \.
104// -__
105//
106// - and next delta significant (at least twice) bigger:
107// --_
108// \.
109//
110// - and next delta is nearly same:
111// \.
112// \.
113//
114//
115// if curr_delta is negative,
116//
117// - and next delta is smaller (or changing direction):
118// _--
119// /
120//
121// - and next delta significant (at least twice) bigger:
122// /
123// __-
124//
125// - and next delta is nearly same:
126// /
127// /
128//
129
130static void InterpolateUp(sample_buf *sb, int sinc)
131{
132 int *SB = sb->SB;
133 if (sb->sinc_old != sinc)
134 {
135 sb->sinc_old = sinc;
136 SB[32] = 1;
137 }
138 if(SB[32]==1) // flag == 1? calc step and set flag... and don't change the value in this pass
139 {
140 const int id1=SB[30]-SB[29]; // curr delta to next val
141 const int id2=SB[31]-SB[30]; // and next delta to next-next val :)
142
143 SB[32]=0;
144
145 if(id1>0) // curr delta positive
146 {
147 if(id2<id1)
148 {SB[28]=id1;SB[32]=2;}
149 else
150 if(id2<(id1<<1))
151 SB[28]=(id1*sinc)>>16;
152 else
153 SB[28]=(id1*sinc)>>17;
154 }
155 else // curr delta negative
156 {
157 if(id2>id1)
158 {SB[28]=id1;SB[32]=2;}
159 else
160 if(id2>(id1<<1))
161 SB[28]=(id1*sinc)>>16;
162 else
163 SB[28]=(id1*sinc)>>17;
164 }
165 }
166 else
167 if(SB[32]==2) // flag 1: calc step and set flag... and don't change the value in this pass
168 {
169 SB[32]=0;
170
171 SB[28]=(SB[28]*sinc)>>17;
172 //if(sinc<=0x8000)
173 // SB[29]=SB[30]-(SB[28]*((0x10000/sinc)-1));
174 //else
175 SB[29]+=SB[28];
176 }
177 else // no flags? add bigger val (if possible), calc smaller step, set flag1
178 SB[29]+=SB[28];
179}
180
181//
182// even easier interpolation on downsampling, also no special filter, again just "Pete's common sense" tm
183//
184
185static void InterpolateDown(sample_buf *sb, int sinc)
186{
187 int *SB = sb->SB;
188 if(sinc>=0x20000L) // we would skip at least one val?
189 {
190 SB[29]+=(SB[30]-SB[29])/2; // add easy weight
191 if(sinc>=0x30000L) // we would skip even more vals?
192 SB[29]+=(SB[31]-SB[30])/2; // add additional next weight
193 }
194}
195
196////////////////////////////////////////////////////////////////////////
197
198#include "gauss_i.h"
199#include "xa.c"
200
201static void do_irq(void)
202{
203 //if(!(spu.spuStat & STAT_IRQ))
204 {
205 spu.spuStat |= STAT_IRQ; // asserted status?
206 if(spu.irqCallback) spu.irqCallback(0);
207 }
208}
209
210static int check_irq(int ch, unsigned char *pos)
211{
212 if((spu.spuCtrl & (CTRL_ON|CTRL_IRQ)) == (CTRL_ON|CTRL_IRQ) && pos == spu.pSpuIrq)
213 {
214 //printf("ch%d irq %04zx\n", ch, pos - spu.spuMemC);
215 do_irq();
216 return 1;
217 }
218 return 0;
219}
220
221void check_irq_io(unsigned int addr)
222{
223 unsigned int irq_addr = regAreaGet(H_SPUirqAddr) << 3;
224 //addr &= ~7; // ?
225 if((spu.spuCtrl & (CTRL_ON|CTRL_IRQ)) == (CTRL_ON|CTRL_IRQ) && addr == irq_addr)
226 {
227 //printf("io irq %04x\n", irq_addr);
228 do_irq();
229 }
230}
231
232////////////////////////////////////////////////////////////////////////
233// START SOUND... called by main thread to setup a new sound on a channel
234////////////////////////////////////////////////////////////////////////
235
236static void ResetInterpolation(sample_buf *sb)
237{
238 memset(&sb->interp, 0, sizeof(sb->interp));
239 sb->sinc_old = -1;
240}
241
242static void StartSoundSB(sample_buf *sb)
243{
244 sb->SB[26] = 0; // init mixing vars
245 sb->SB[27] = 0;
246 ResetInterpolation(sb);
247}
248
249static void StartSoundMain(int ch)
250{
251 SPUCHAN *s_chan = &spu.s_chan[ch];
252
253 StartADSR(ch);
254 StartREVERB(ch);
255
256 s_chan->prevflags = 2;
257 s_chan->iSBPos = 27;
258 s_chan->spos = 0;
259 s_chan->bStarting = 1;
260
261 s_chan->pCurr = spu.spuMemC + ((regAreaGetCh(ch, 6) & ~1) << 3);
262
263 spu.dwNewChannel&=~(1<<ch); // clear new channel bit
264 spu.dwChannelDead&=~(1<<ch);
265 spu.dwChannelsAudible|=1<<ch;
266}
267
268static void StartSound(int ch)
269{
270 StartSoundMain(ch);
271 StartSoundSB(&spu.sb[ch]);
272}
273
274////////////////////////////////////////////////////////////////////////
275// ALL KIND OF HELPERS
276////////////////////////////////////////////////////////////////////////
277
278INLINE int FModChangeFrequency(int pitch, int ns, int *fmod_buf)
279{
280 pitch = (signed short)pitch;
281 pitch = ((32768 + fmod_buf[ns]) * pitch) >> 15;
282 pitch &= 0xffff;
283 if (pitch > 0x3fff)
284 pitch = 0x3fff;
285
286 fmod_buf[ns] = 0;
287
288 return pitch << 4;
289}
290
291INLINE void StoreInterpolationGaussCubic(sample_buf *sb, int fa)
292{
293 int gpos = sb->interp.gauss.pos & 3;
294 sb->interp.gauss.val[gpos++] = fa;
295 sb->interp.gauss.pos = gpos & 3;
296}
297
298#define gval(x) (int)sb->interp.gauss.val[(gpos + x) & 3]
299
300INLINE int GetInterpolationCubic(const sample_buf *sb, int spos)
301{
302 int gpos = sb->interp.gauss.pos;
303 int xd = (spos >> 1) + 1;
304 int fa;
305
306 fa = gval(3) - 3*gval(2) + 3*gval(1) - gval(0);
307 fa *= (xd - (2<<15)) / 6;
308 fa >>= 15;
309 fa += gval(2) - gval(1) - gval(1) + gval(0);
310 fa *= (xd - (1<<15)) >> 1;
311 fa >>= 15;
312 fa += gval(1) - gval(0);
313 fa *= xd;
314 fa >>= 15;
315 fa = fa + gval(0);
316 return fa;
317}
318
319INLINE int GetInterpolationGauss(const sample_buf *sb, int spos)
320{
321 int gpos = sb->interp.gauss.pos;
322 int vl = (spos >> 6) & ~3;
323 int vr;
324 vr = (gauss[vl+0] * gval(0)) >> 15;
325 vr += (gauss[vl+1] * gval(1)) >> 15;
326 vr += (gauss[vl+2] * gval(2)) >> 15;
327 vr += (gauss[vl+3] * gval(3)) >> 15;
328 return vr;
329}
330
331static void decode_block_data(int *dest, const unsigned char *src, int predict_nr, int shift_factor)
332{
333 static const int f[16][2] = {
334 { 0, 0 },
335 { 60, 0 },
336 { 115, -52 },
337 { 98, -55 },
338 { 122, -60 }
339 };
340 int nSample;
341 int fa, s_1, s_2, d, s;
342
343 s_1 = dest[27];
344 s_2 = dest[26];
345
346 for (nSample = 0; nSample < 28; src++)
347 {
348 d = (int)*src;
349 s = (int)(signed short)((d & 0x0f) << 12);
350
351 fa = s >> shift_factor;
352 fa += ((s_1 * f[predict_nr][0])>>6) + ((s_2 * f[predict_nr][1])>>6);
353 ssat32_to_16(fa);
354 s_2 = s_1; s_1 = fa;
355
356 dest[nSample++] = fa;
357
358 s = (int)(signed short)((d & 0xf0) << 8);
359 fa = s >> shift_factor;
360 fa += ((s_1 * f[predict_nr][0])>>6) + ((s_2 * f[predict_nr][1])>>6);
361 ssat32_to_16(fa);
362 s_2 = s_1; s_1 = fa;
363
364 dest[nSample++] = fa;
365 }
366}
367
368static int decode_block(void *unused, int ch, int *SB)
369{
370 SPUCHAN *s_chan = &spu.s_chan[ch];
371 unsigned char *start;
372 int predict_nr, shift_factor, flags;
373 int ret = 0;
374
375 start = s_chan->pCurr; // set up the current pos
376 if (start - spu.spuMemC < 0x1000) { // ?
377 //log_unhandled("ch%02d plays decode bufs @%05lx\n",
378 // ch, (long)(start - spu.spuMemC));
379 ret = 1;
380 }
381
382 if (s_chan->prevflags & 1) // 1: stop/loop
383 {
384 if (!(s_chan->prevflags & 2))
385 ret = 1;
386
387 start = s_chan->pLoop;
388 }
389
390 check_irq(ch, start);
391
392 predict_nr = start[0];
393 shift_factor = predict_nr & 0xf;
394 predict_nr >>= 4;
395
396 decode_block_data(SB, start + 2, predict_nr, shift_factor);
397
398 flags = start[1];
399 if (flags & 4 && !s_chan->bIgnoreLoop)
400 s_chan->pLoop = start; // loop adress
401
402 start += 16;
403
404 s_chan->pCurr = start; // store values for next cycle
405 s_chan->prevflags = flags;
406 s_chan->bStarting = 0;
407
408 return ret;
409}
410
411// do block, but ignore sample data
412static int skip_block(int ch)
413{
414 SPUCHAN *s_chan = &spu.s_chan[ch];
415 unsigned char *start = s_chan->pCurr;
416 int flags;
417 int ret = 0;
418
419 if (s_chan->prevflags & 1) {
420 if (!(s_chan->prevflags & 2))
421 ret = 1;
422
423 start = s_chan->pLoop;
424 }
425
426 check_irq(ch, start);
427
428 flags = start[1];
429 if (flags & 4 && !s_chan->bIgnoreLoop)
430 s_chan->pLoop = start;
431
432 start += 16;
433
434 s_chan->pCurr = start;
435 s_chan->prevflags = flags;
436 s_chan->bStarting = 0;
437
438 return ret;
439}
440
441// if irq is going to trigger sooner than in upd_samples, set upd_samples
442static void scan_for_irq(int ch, unsigned int *upd_samples)
443{
444 SPUCHAN *s_chan = &spu.s_chan[ch];
445 int pos, sinc, sinc_inv, end;
446 unsigned char *block;
447 int flags;
448
449 block = s_chan->pCurr;
450 pos = s_chan->spos;
451 sinc = s_chan->sinc;
452 end = pos + *upd_samples * sinc;
453 if (s_chan->prevflags & 1) // 1: stop/loop
454 block = s_chan->pLoop;
455
456 pos += (28 - s_chan->iSBPos) << 16;
457 while (pos < end)
458 {
459 if (block == spu.pSpuIrq)
460 break;
461 flags = block[1];
462 block += 16;
463 if (flags & 1) { // 1: stop/loop
464 block = s_chan->pLoop;
465 }
466 pos += 28 << 16;
467 }
468
469 if (pos < end)
470 {
471 sinc_inv = s_chan->sinc_inv;
472 if (sinc_inv == 0)
473 sinc_inv = s_chan->sinc_inv = (0x80000000u / (uint32_t)sinc) << 1;
474
475 pos -= s_chan->spos;
476 *upd_samples = (((uint64_t)pos * sinc_inv) >> 32) + 1;
477 //xprintf("ch%02d: irq sched: %3d %03d\n",
478 // ch, *upd_samples, *upd_samples * 60 * 263 / 44100);
479 }
480}
481
482#define make_do_samples(name, fmod_code, interp_start, interp_store, interp_get, interp_end) \
483static noinline int name(int *dst, \
484 int (*decode_f)(void *context, int ch, int *SB), void *ctx, \
485 int ch, int ns_to, sample_buf *sb, int sinc, int *spos, int *sbpos) \
486{ \
487 int ns, d, fa; \
488 int ret = ns_to; \
489 interp_start; \
490 \
491 for (ns = 0; ns < ns_to; ns++) \
492 { \
493 fmod_code; \
494 \
495 *spos += sinc; \
496 while (*spos >= 0x10000) \
497 { \
498 fa = sb->SB[(*sbpos)++]; \
499 if (*sbpos >= 28) \
500 { \
501 *sbpos = 0; \
502 d = decode_f(ctx, ch, sb->SB); \
503 if (d && ns < ret) \
504 ret = ns; \
505 } \
506 \
507 interp_store; \
508 *spos -= 0x10000; \
509 } \
510 \
511 interp_get; \
512 } \
513 \
514 interp_end; \
515 \
516 return ret; \
517}
518
519// helpers for simple linear interpolation: delay real val for two slots,
520// and calc the two deltas, for a 'look at the future behaviour'
521#define simple_interp_store \
522 sb->SB[28] = 0; \
523 sb->SB[29] = sb->SB[30]; \
524 sb->SB[30] = sb->SB[31]; \
525 sb->SB[31] = fa; \
526 sb->SB[32] = 1
527
528#define simple_interp_get \
529 if(sinc<0x10000) /* -> upsampling? */ \
530 InterpolateUp(sb, sinc); /* --> interpolate up */ \
531 else InterpolateDown(sb, sinc); /* --> else down */ \
532 dst[ns] = sb->SB[29]
533
534make_do_samples(do_samples_nointerp, , fa = sb->SB[29],
535 , dst[ns] = fa, sb->SB[29] = fa)
536make_do_samples(do_samples_simple, , ,
537 simple_interp_store, simple_interp_get, )
538make_do_samples(do_samples_gauss, , ,
539 StoreInterpolationGaussCubic(sb, fa),
540 dst[ns] = GetInterpolationGauss(sb, *spos), )
541make_do_samples(do_samples_cubic, , ,
542 StoreInterpolationGaussCubic(sb, fa),
543 dst[ns] = GetInterpolationCubic(sb, *spos), )
544make_do_samples(do_samples_fmod,
545 sinc = FModChangeFrequency(spu.s_chan[ch].iRawPitch, ns, iFMod), ,
546 StoreInterpolationGaussCubic(sb, fa),
547 dst[ns] = GetInterpolationGauss(sb, *spos), )
548
549INLINE int do_samples_adpcm(int *dst,
550 int (*decode_f)(void *context, int ch, int *SB), void *ctx,
551 int ch, int ns_to, int fmod, sample_buf *sb, int sinc, int *spos, int *sbpos)
552{
553 int interp = spu.interpolation;
554 if (fmod == 1)
555 return do_samples_fmod(dst, decode_f, ctx, ch, ns_to, sb, sinc, spos, sbpos);
556 if (fmod)
557 interp = 2;
558 switch (interp) {
559 case 0:
560 return do_samples_nointerp(dst, decode_f, ctx, ch, ns_to, sb, sinc, spos, sbpos);
561 case 1:
562 return do_samples_simple (dst, decode_f, ctx, ch, ns_to, sb, sinc, spos, sbpos);
563 default:
564 return do_samples_gauss (dst, decode_f, ctx, ch, ns_to, sb, sinc, spos, sbpos);
565 case 3:
566 return do_samples_cubic (dst, decode_f, ctx, ch, ns_to, sb, sinc, spos, sbpos);
567 }
568}
569
570static int do_samples_skip(int ch, int ns_to)
571{
572 SPUCHAN *s_chan = &spu.s_chan[ch];
573 int spos = s_chan->spos;
574 int sinc = s_chan->sinc;
575 int ret = ns_to, ns, d;
576
577 spos += s_chan->iSBPos << 16;
578
579 for (ns = 0; ns < ns_to; ns++)
580 {
581 spos += sinc;
582 while (spos >= 28*0x10000)
583 {
584 d = skip_block(ch);
585 if (d && ns < ret)
586 ret = ns;
587 spos -= 28*0x10000;
588 }
589 }
590
591 s_chan->iSBPos = spos >> 16;
592 s_chan->spos = spos & 0xffff;
593
594 return ret;
595}
596
597static int do_samples_skip_fmod(int ch, int ns_to, int *fmod_buf)
598{
599 SPUCHAN *s_chan = &spu.s_chan[ch];
600 int spos = s_chan->spos;
601 int ret = ns_to, ns, d;
602
603 spos += s_chan->iSBPos << 16;
604
605 for (ns = 0; ns < ns_to; ns++)
606 {
607 spos += FModChangeFrequency(s_chan->iRawPitch, ns, fmod_buf);
608 while (spos >= 28*0x10000)
609 {
610 d = skip_block(ch);
611 if (d && ns < ret)
612 ret = ns;
613 spos -= 28*0x10000;
614 }
615 }
616
617 s_chan->iSBPos = spos >> 16;
618 s_chan->spos = spos & 0xffff;
619
620 return ret;
621}
622
623static void do_lsfr_samples(int *dst, int ns_to, int ctrl,
624 unsigned int *dwNoiseCount, unsigned int *dwNoiseVal)
625{
626 unsigned int counter = *dwNoiseCount;
627 unsigned int val = *dwNoiseVal;
628 unsigned int level, shift, bit;
629 int ns;
630
631 // modified from DrHell/shalma, no fraction
632 level = (ctrl >> 10) & 0x0f;
633 level = 0x8000 >> level;
634
635 for (ns = 0; ns < ns_to; ns++)
636 {
637 counter += 2;
638 if (counter >= level)
639 {
640 counter -= level;
641 shift = (val >> 10) & 0x1f;
642 bit = (0x69696969 >> shift) & 1;
643 bit ^= (val >> 15) & 1;
644 val = (val << 1) | bit;
645 }
646
647 dst[ns] = (signed short)val;
648 }
649
650 *dwNoiseCount = counter;
651 *dwNoiseVal = val;
652}
653
654static int do_samples_noise(int *dst, int ch, int ns_to)
655{
656 int ret;
657
658 ret = do_samples_skip(ch, ns_to);
659
660 do_lsfr_samples(dst, ns_to, spu.spuCtrl, &spu.dwNoiseCount, &spu.dwNoiseVal);
661
662 return ret;
663}
664
665#ifdef HAVE_ARMV5
666// asm code; lv and rv must be 0-3fff
667extern void mix_chan(int *SSumLR, int count, int lv, int rv);
668extern void mix_chan_rvb(int *SSumLR, int count, int lv, int rv, int *rvb);
669#else
670static void mix_chan(int *SSumLR, int count, int lv, int rv)
671{
672 const int *src = ChanBuf;
673 int l, r;
674
675 while (count--)
676 {
677 int sval = *src++;
678
679 l = (sval * lv) >> 14;
680 r = (sval * rv) >> 14;
681 *SSumLR++ += l;
682 *SSumLR++ += r;
683 }
684}
685
686static void mix_chan_rvb(int *SSumLR, int count, int lv, int rv, int *rvb)
687{
688 const int *src = ChanBuf;
689 int *dst = SSumLR;
690 int *drvb = rvb;
691 int l, r;
692
693 while (count--)
694 {
695 int sval = *src++;
696
697 l = (sval * lv) >> 14;
698 r = (sval * rv) >> 14;
699 *dst++ += l;
700 *dst++ += r;
701 *drvb++ += l;
702 *drvb++ += r;
703 }
704}
705#endif
706
707// 0x0800-0x0bff Voice 1
708// 0x0c00-0x0fff Voice 3
709static noinline void do_decode_bufs(unsigned short *mem, int which,
710 int count, int decode_pos)
711{
712 unsigned short *dst = &mem[0x800/2 + which*0x400/2];
713 const int *src = ChanBuf;
714 int cursor = decode_pos;
715
716 while (count-- > 0)
717 {
718 cursor &= 0x1ff;
719 dst[cursor] = *src++;
720 cursor++;
721 }
722
723 // decode_pos is updated and irqs are checked later, after voice loop
724}
725
726static void do_silent_chans(int ns_to, int silentch)
727{
728 unsigned int mask;
729 SPUCHAN *s_chan;
730 int ch;
731
732 mask = silentch & 0xffffff;
733 for (ch = 0; mask != 0; ch++, mask >>= 1)
734 {
735 if (!(mask & 1)) continue;
736 if (spu.dwChannelDead & (1<<ch)) continue;
737
738 s_chan = &spu.s_chan[ch];
739 if (s_chan->pCurr > spu.pSpuIrq && s_chan->pLoop > spu.pSpuIrq)
740 continue;
741
742 s_chan->spos += s_chan->iSBPos << 16;
743 s_chan->iSBPos = 0;
744
745 s_chan->spos += s_chan->sinc * ns_to;
746 while (s_chan->spos >= 28 * 0x10000)
747 {
748 unsigned char *start = s_chan->pCurr;
749
750 skip_block(ch);
751 if (start == s_chan->pCurr || start - spu.spuMemC < 0x1000)
752 {
753 // looping on self or stopped(?)
754 spu.dwChannelDead |= 1<<ch;
755 s_chan->spos = 0;
756 break;
757 }
758
759 s_chan->spos -= 28 * 0x10000;
760 }
761 }
762}
763
764static void do_channels(int ns_to)
765{
766 unsigned int mask;
767 int do_rvb, ch, d;
768 SPUCHAN *s_chan;
769
770 if (unlikely(spu.interpolation != spu_config.iUseInterpolation))
771 {
772 spu.interpolation = spu_config.iUseInterpolation;
773 mask = spu.dwChannelsAudible & 0xffffff;
774 for (ch = 0; mask != 0; ch++, mask >>= 1)
775 if (mask & 1)
776 ResetInterpolation(&spu.sb[ch]);
777 }
778
779 do_rvb = spu.rvb->StartAddr && spu_config.iUseReverb;
780 if (do_rvb)
781 memset(RVB, 0, ns_to * sizeof(RVB[0]) * 2);
782
783 mask = spu.dwNewChannel & 0xffffff;
784 for (ch = 0; mask != 0; ch++, mask >>= 1) {
785 if (mask & 1)
786 StartSound(ch);
787 }
788
789 mask = spu.dwChannelsAudible & 0xffffff;
790 for (ch = 0; mask != 0; ch++, mask >>= 1) // loop em all...
791 {
792 if (!(mask & 1)) continue; // channel not playing? next
793
794 s_chan = &spu.s_chan[ch];
795 if (s_chan->bNoise)
796 d = do_samples_noise(ChanBuf, ch, ns_to);
797 else
798 d = do_samples_adpcm(ChanBuf, decode_block, NULL, ch, ns_to, s_chan->bFMod,
799 &spu.sb[ch], s_chan->sinc, &s_chan->spos, &s_chan->iSBPos);
800
801 if (!s_chan->bStarting) {
802 d = MixADSR(ChanBuf, &s_chan->ADSRX, d);
803 if (d < ns_to) {
804 spu.dwChannelsAudible &= ~(1 << ch);
805 s_chan->ADSRX.State = ADSR_RELEASE;
806 s_chan->ADSRX.EnvelopeVol = 0;
807 memset(&ChanBuf[d], 0, (ns_to - d) * sizeof(ChanBuf[0]));
808 }
809 }
810
811 if (ch == 1 || ch == 3)
812 {
813 do_decode_bufs(spu.spuMem, ch/2, ns_to, spu.decode_pos);
814 spu.decode_dirty_ch |= 1 << ch;
815 }
816
817 if (s_chan->bFMod == 2) // fmod freq channel
818 memcpy(iFMod, &ChanBuf, ns_to * sizeof(iFMod[0]));
819 if (!(spu.spuCtrl & CTRL_MUTE))
820 ;
821 else if (s_chan->bRVBActive && do_rvb)
822 mix_chan_rvb(spu.SSumLR, ns_to, s_chan->iLeftVolume, s_chan->iRightVolume, RVB);
823 else
824 mix_chan(spu.SSumLR, ns_to, s_chan->iLeftVolume, s_chan->iRightVolume);
825 }
826
827 MixXA(spu.SSumLR, RVB, ns_to, spu.decode_pos);
828
829 if (spu.rvb->StartAddr) {
830 if (do_rvb)
831 REVERBDo(spu.SSumLR, RVB, ns_to, spu.rvb->CurrAddr);
832
833 spu.rvb->CurrAddr += ns_to / 2;
834 while (spu.rvb->CurrAddr >= 0x40000)
835 spu.rvb->CurrAddr -= 0x40000 - spu.rvb->StartAddr;
836 }
837}
838
839static void do_samples_finish(int *SSumLR, int ns_to,
840 int silentch, int decode_pos);
841
842// optional worker thread handling
843
844#if P_HAVE_PTHREAD || defined(WANT_THREAD_CODE)
845
846// worker thread state
847static struct spu_worker {
848 union {
849 struct {
850 unsigned int exit_thread;
851 unsigned int i_ready;
852 unsigned int i_reaped;
853 unsigned int last_boot_cnt; // dsp
854 unsigned int ram_dirty;
855 };
856 // aligning for C64X_DSP
857 unsigned int _pad0[128/4];
858 };
859 union {
860 struct {
861 unsigned int i_done;
862 unsigned int active; // dsp
863 unsigned int boot_cnt;
864 };
865 unsigned int _pad1[128/4];
866 };
867 struct work_item {
868 int ns_to;
869 int ctrl;
870 int decode_pos;
871 int rvb_addr;
872 unsigned int channels_new;
873 unsigned int channels_on;
874 unsigned int channels_silent;
875 struct {
876 int spos;
877 int sbpos;
878 int sinc;
879 int start;
880 int loop;
881 short vol_l;
882 short vol_r;
883 unsigned short ns_to;
884 unsigned short bNoise:1;
885 unsigned short bFMod:2;
886 unsigned short bRVBActive:1;
887 unsigned short bStarting:1;
888 ADSRInfoEx adsr;
889 } ch[24];
890 int SSumLR[NSSIZE * 2];
891 } i[4];
892} *worker;
893
894#define WORK_MAXCNT (sizeof(worker->i) / sizeof(worker->i[0]))
895#define WORK_I_MASK (WORK_MAXCNT - 1)
896
897static void thread_work_start(void);
898static void thread_work_wait_sync(struct work_item *work, int force);
899static void thread_sync_caches(void);
900static int thread_get_i_done(void);
901
902static int decode_block_work(void *context, int ch, int *SB)
903{
904 const unsigned char *ram = spu.spuMemC;
905 int predict_nr, shift_factor, flags;
906 struct work_item *work = context;
907 int start = work->ch[ch].start;
908 int loop = work->ch[ch].loop;
909
910 predict_nr = ram[start];
911 shift_factor = predict_nr & 0xf;
912 predict_nr >>= 4;
913
914 decode_block_data(SB, ram + start + 2, predict_nr, shift_factor);
915
916 flags = ram[start + 1];
917 if (flags & 4)
918 loop = start; // loop adress
919
920 start += 16;
921
922 if (flags & 1) // 1: stop/loop
923 start = loop;
924
925 work->ch[ch].start = start & 0x7ffff;
926 work->ch[ch].loop = loop;
927
928 return 0;
929}
930
931static void queue_channel_work(int ns_to, unsigned int silentch)
932{
933 int tmpFMod[NSSIZE];
934 struct work_item *work;
935 SPUCHAN *s_chan;
936 unsigned int mask;
937 int ch, d;
938
939 work = &worker->i[worker->i_ready & WORK_I_MASK];
940 work->ns_to = ns_to;
941 work->ctrl = spu.spuCtrl;
942 work->decode_pos = spu.decode_pos;
943 work->channels_silent = silentch;
944
945 mask = work->channels_new = spu.dwNewChannel & 0xffffff;
946 for (ch = 0; mask != 0; ch++, mask >>= 1) {
947 if (mask & 1)
948 StartSound(ch);
949 }
950
951 mask = work->channels_on = spu.dwChannelsAudible & 0xffffff;
952 spu.decode_dirty_ch |= mask & 0x0a;
953
954 for (ch = 0; mask != 0; ch++, mask >>= 1)
955 {
956 if (!(mask & 1)) continue;
957
958 s_chan = &spu.s_chan[ch];
959 work->ch[ch].spos = s_chan->spos;
960 work->ch[ch].sbpos = s_chan->iSBPos;
961 work->ch[ch].sinc = s_chan->sinc;
962 work->ch[ch].adsr = s_chan->ADSRX;
963 work->ch[ch].vol_l = s_chan->iLeftVolume;
964 work->ch[ch].vol_r = s_chan->iRightVolume;
965 work->ch[ch].start = s_chan->pCurr - spu.spuMemC;
966 work->ch[ch].loop = s_chan->pLoop - spu.spuMemC;
967 work->ch[ch].bNoise = s_chan->bNoise;
968 work->ch[ch].bFMod = s_chan->bFMod;
969 work->ch[ch].bRVBActive = s_chan->bRVBActive;
970 work->ch[ch].bStarting = s_chan->bStarting;
971 if (s_chan->prevflags & 1)
972 work->ch[ch].start = work->ch[ch].loop;
973
974 if (unlikely(s_chan->bFMod == 2))
975 {
976 // sucks, have to do double work
977 assert(!s_chan->bNoise);
978 d = do_samples_gauss(tmpFMod, decode_block, NULL, ch, ns_to,
979 &spu.sb[ch], s_chan->sinc, &s_chan->spos, &s_chan->iSBPos);
980 if (!s_chan->bStarting) {
981 d = MixADSR(tmpFMod, &s_chan->ADSRX, d);
982 if (d < ns_to) {
983 spu.dwChannelsAudible &= ~(1 << ch);
984 s_chan->ADSRX.State = ADSR_RELEASE;
985 s_chan->ADSRX.EnvelopeVol = 0;
986 }
987 }
988 memset(&tmpFMod[d], 0, (ns_to - d) * sizeof(tmpFMod[d]));
989 work->ch[ch].ns_to = d;
990 continue;
991 }
992 if (unlikely(s_chan->bFMod))
993 d = do_samples_skip_fmod(ch, ns_to, tmpFMod);
994 else
995 d = do_samples_skip(ch, ns_to);
996 work->ch[ch].ns_to = d;
997
998 if (!s_chan->bStarting) {
999 // note: d is not accurate on skip
1000 d = SkipADSR(&s_chan->ADSRX, d);
1001 if (d < ns_to) {
1002 spu.dwChannelsAudible &= ~(1 << ch);
1003 s_chan->ADSRX.State = ADSR_RELEASE;
1004 s_chan->ADSRX.EnvelopeVol = 0;
1005 }
1006 }
1007 } // for (ch;;)
1008
1009 work->rvb_addr = 0;
1010 if (spu.rvb->StartAddr) {
1011 if (spu_config.iUseReverb)
1012 work->rvb_addr = spu.rvb->CurrAddr;
1013
1014 spu.rvb->CurrAddr += ns_to / 2;
1015 while (spu.rvb->CurrAddr >= 0x40000)
1016 spu.rvb->CurrAddr -= 0x40000 - spu.rvb->StartAddr;
1017 }
1018
1019 worker->i_ready++;
1020 thread_work_start();
1021}
1022
1023static void do_channel_work(struct work_item *work)
1024{
1025 unsigned int mask;
1026 int spos, sbpos;
1027 int d, ch, ns_to;
1028
1029 ns_to = work->ns_to;
1030
1031 if (unlikely(spu.interpolation != spu_config.iUseInterpolation))
1032 {
1033 spu.interpolation = spu_config.iUseInterpolation;
1034 mask = work->channels_on;
1035 for (ch = 0; mask != 0; ch++, mask >>= 1)
1036 if (mask & 1)
1037 ResetInterpolation(&spu.sb_thread[ch]);
1038 }
1039
1040 if (work->rvb_addr)
1041 memset(RVB, 0, ns_to * sizeof(RVB[0]) * 2);
1042
1043 mask = work->channels_new;
1044 for (ch = 0; mask != 0; ch++, mask >>= 1) {
1045 if (mask & 1)
1046 StartSoundSB(&spu.sb_thread[ch]);
1047 }
1048
1049 mask = work->channels_on;
1050 for (ch = 0; mask != 0; ch++, mask >>= 1)
1051 {
1052 if (!(mask & 1)) continue;
1053
1054 d = work->ch[ch].ns_to;
1055 spos = work->ch[ch].spos;
1056 sbpos = work->ch[ch].sbpos;
1057
1058 if (work->ch[ch].bNoise)
1059 do_lsfr_samples(ChanBuf, d, work->ctrl, &spu.dwNoiseCount, &spu.dwNoiseVal);
1060 else
1061 do_samples_adpcm(ChanBuf, decode_block_work, work, ch, d, work->ch[ch].bFMod,
1062 &spu.sb_thread[ch], work->ch[ch].sinc, &spos, &sbpos);
1063
1064 d = MixADSR(ChanBuf, &work->ch[ch].adsr, d);
1065 if (d < ns_to) {
1066 work->ch[ch].adsr.EnvelopeVol = 0;
1067 memset(&ChanBuf[d], 0, (ns_to - d) * sizeof(ChanBuf[0]));
1068 }
1069
1070 if (ch == 1 || ch == 3)
1071 do_decode_bufs(spu.spuMem, ch/2, ns_to, work->decode_pos);
1072
1073 if (work->ch[ch].bFMod == 2) // fmod freq channel
1074 memcpy(iFMod, &ChanBuf, ns_to * sizeof(iFMod[0]));
1075 if (work->ch[ch].bRVBActive && work->rvb_addr)
1076 mix_chan_rvb(work->SSumLR, ns_to,
1077 work->ch[ch].vol_l, work->ch[ch].vol_r, RVB);
1078 else
1079 mix_chan(work->SSumLR, ns_to, work->ch[ch].vol_l, work->ch[ch].vol_r);
1080 }
1081
1082 if (work->rvb_addr)
1083 REVERBDo(work->SSumLR, RVB, ns_to, work->rvb_addr);
1084}
1085
1086static void sync_worker_thread(int force)
1087{
1088 struct work_item *work;
1089 int done, used_space;
1090
1091 // rvb offsets will change, thread may be using them
1092 force |= spu.rvb->dirty && spu.rvb->StartAddr;
1093
1094 done = thread_get_i_done() - worker->i_reaped;
1095 used_space = worker->i_ready - worker->i_reaped;
1096
1097 //printf("done: %d use: %d dsp: %u/%u\n", done, used_space,
1098 // worker->boot_cnt, worker->i_done);
1099
1100 while ((force && used_space > 0) || used_space >= WORK_MAXCNT || done > 0) {
1101 work = &worker->i[worker->i_reaped & WORK_I_MASK];
1102 thread_work_wait_sync(work, force);
1103
1104 MixXA(work->SSumLR, RVB, work->ns_to, work->decode_pos);
1105 do_samples_finish(work->SSumLR, work->ns_to,
1106 work->channels_silent, work->decode_pos);
1107
1108 worker->i_reaped++;
1109 done = thread_get_i_done() - worker->i_reaped;
1110 used_space = worker->i_ready - worker->i_reaped;
1111 }
1112 if (force)
1113 thread_sync_caches();
1114}
1115
1116#else
1117
1118static void queue_channel_work(int ns_to, int silentch) {}
1119static void sync_worker_thread(int force) {}
1120
1121static const void * const worker = NULL;
1122
1123#endif // P_HAVE_PTHREAD || defined(WANT_THREAD_CODE)
1124
1125////////////////////////////////////////////////////////////////////////
1126// MAIN SPU FUNCTION
1127// here is the main job handler...
1128////////////////////////////////////////////////////////////////////////
1129
1130void do_samples(unsigned int cycles_to, int do_direct)
1131{
1132 unsigned int silentch;
1133 int cycle_diff;
1134 int ns_to;
1135
1136 cycle_diff = cycles_to - spu.cycles_played;
1137 if (cycle_diff < -2*1048576 || cycle_diff > 2*1048576)
1138 {
1139 //xprintf("desync %u %d\n", cycles_to, cycle_diff);
1140 spu.cycles_played = cycles_to;
1141 return;
1142 }
1143
1144 silentch = ~(spu.dwChannelsAudible | spu.dwNewChannel) & 0xffffff;
1145
1146 do_direct |= (silentch == 0xffffff);
1147 if (worker != NULL)
1148 sync_worker_thread(do_direct);
1149
1150 if (cycle_diff < 2 * 768)
1151 return;
1152
1153 ns_to = (cycle_diff / 768 + 1) & ~1;
1154 if (ns_to > NSSIZE) {
1155 // should never happen
1156 //xprintf("ns_to oflow %d %d\n", ns_to, NSSIZE);
1157 ns_to = NSSIZE;
1158 }
1159
1160 //////////////////////////////////////////////////////
1161 // special irq handling in the decode buffers (0x0000-0x1000)
1162 // we know:
1163 // the decode buffers are located in spu memory in the following way:
1164 // 0x0000-0x03ff CD audio left
1165 // 0x0400-0x07ff CD audio right
1166 // 0x0800-0x0bff Voice 1
1167 // 0x0c00-0x0fff Voice 3
1168 // and decoded data is 16 bit for one sample
1169 // we assume:
1170 // even if voices 1/3 are off or no cd audio is playing, the internal
1171 // play positions will move on and wrap after 0x400 bytes.
1172 // Therefore: we just need a pointer from spumem+0 to spumem+3ff, and
1173 // increase this pointer on each sample by 2 bytes. If this pointer
1174 // (or 0x400 offsets of this pointer) hits the spuirq address, we generate
1175 // an IRQ.
1176
1177 if (unlikely((spu.spuCtrl & CTRL_IRQ)
1178 && spu.pSpuIrq < spu.spuMemC+0x1000))
1179 {
1180 int irq_pos = (spu.pSpuIrq - spu.spuMemC) / 2 & 0x1ff;
1181 int left = (irq_pos - spu.decode_pos) & 0x1ff;
1182 if (0 < left && left <= ns_to)
1183 {
1184 //xprintf("decoder irq %x\n", spu.decode_pos);
1185 do_irq();
1186 }
1187 }
1188 if (!spu.cycles_dma_end || (int)(spu.cycles_dma_end - cycles_to) < 0) {
1189 spu.cycles_dma_end = 0;
1190 check_irq_io(spu.spuAddr);
1191 }
1192
1193 if (unlikely(spu.rvb->dirty))
1194 REVERBPrep();
1195
1196 if (do_direct || worker == NULL || !spu_config.iUseThread) {
1197 do_channels(ns_to);
1198 do_samples_finish(spu.SSumLR, ns_to, silentch, spu.decode_pos);
1199 }
1200 else {
1201 queue_channel_work(ns_to, silentch);
1202 //sync_worker_thread(1); // uncomment for debug
1203 }
1204
1205 // advance "stopped" channels that can cause irqs
1206 // (all chans are always playing on the real thing..)
1207 if (spu.spuCtrl & CTRL_IRQ)
1208 do_silent_chans(ns_to, silentch);
1209
1210 spu.cycles_played += ns_to * 768;
1211 spu.decode_pos = (spu.decode_pos + ns_to) & 0x1ff;
1212#if 0
1213 static int ccount; static time_t ctime; ccount++;
1214 if (time(NULL) != ctime)
1215 { printf("%d\n", ccount); ccount = 0; ctime = time(NULL); }
1216#endif
1217}
1218
1219static void do_samples_finish(int *SSumLR, int ns_to,
1220 int silentch, int decode_pos)
1221{
1222 int vol_l = ((int)regAreaGet(H_SPUmvolL) << 17) >> 17;
1223 int vol_r = ((int)regAreaGet(H_SPUmvolR) << 17) >> 17;
1224 int ns;
1225 int d;
1226
1227 // must clear silent channel decode buffers
1228 if(unlikely(silentch & spu.decode_dirty_ch & (1<<1)))
1229 {
1230 memset(&spu.spuMem[0x800/2], 0, 0x400);
1231 spu.decode_dirty_ch &= ~(1<<1);
1232 }
1233 if(unlikely(silentch & spu.decode_dirty_ch & (1<<3)))
1234 {
1235 memset(&spu.spuMem[0xc00/2], 0, 0x400);
1236 spu.decode_dirty_ch &= ~(1<<3);
1237 }
1238
1239 vol_l = vol_l * spu_config.iVolume >> 10;
1240 vol_r = vol_r * spu_config.iVolume >> 10;
1241
1242 if (!(vol_l | vol_r))
1243 {
1244 // muted? (rare)
1245 memset(spu.pS, 0, ns_to * 2 * sizeof(spu.pS[0]));
1246 memset(SSumLR, 0, ns_to * 2 * sizeof(SSumLR[0]));
1247 spu.pS += ns_to * 2;
1248 }
1249 else
1250 for (ns = 0; ns < ns_to * 2; )
1251 {
1252 d = SSumLR[ns]; SSumLR[ns] = 0;
1253 d = d * vol_l >> 14;
1254 ssat32_to_16(d);
1255 *spu.pS++ = d;
1256 ns++;
1257
1258 d = SSumLR[ns]; SSumLR[ns] = 0;
1259 d = d * vol_r >> 14;
1260 ssat32_to_16(d);
1261 *spu.pS++ = d;
1262 ns++;
1263 }
1264}
1265
1266void schedule_next_irq(void)
1267{
1268 unsigned int upd_samples;
1269 int ch;
1270
1271 if (spu.scheduleCallback == NULL)
1272 return;
1273
1274 upd_samples = 44100 / 50;
1275
1276 for (ch = 0; ch < MAXCHAN; ch++)
1277 {
1278 if (spu.dwChannelDead & (1 << ch))
1279 continue;
1280 if ((unsigned long)(spu.pSpuIrq - spu.s_chan[ch].pCurr) > IRQ_NEAR_BLOCKS * 16
1281 && (unsigned long)(spu.pSpuIrq - spu.s_chan[ch].pLoop) > IRQ_NEAR_BLOCKS * 16)
1282 continue;
1283 if (spu.s_chan[ch].sinc == 0)
1284 continue;
1285
1286 scan_for_irq(ch, &upd_samples);
1287 }
1288
1289 if (unlikely(spu.pSpuIrq < spu.spuMemC + 0x1000))
1290 {
1291 int irq_pos = (spu.pSpuIrq - spu.spuMemC) / 2 & 0x1ff;
1292 int left = (irq_pos - spu.decode_pos) & 0x1ff;
1293 if (0 < left && left < upd_samples) {
1294 //xprintf("decode: %3d (%3d/%3d)\n", left, spu.decode_pos, irq_pos);
1295 upd_samples = left;
1296 }
1297 }
1298
1299 if (upd_samples < 44100 / 50)
1300 spu.scheduleCallback(upd_samples * 768);
1301}
1302
1303// SPU ASYNC... even newer epsxe func
1304// 1 time every 'cycle' cycles... harhar
1305
1306// rearmed: called dynamically now
1307
1308void CALLBACK SPUasync(unsigned int cycle, unsigned int flags)
1309{
1310 do_samples(cycle, 0);
1311
1312 if (spu.spuCtrl & CTRL_IRQ)
1313 schedule_next_irq();
1314
1315 if (flags & 1) {
1316 out_current->feed(spu.pSpuBuffer, (unsigned char *)spu.pS - spu.pSpuBuffer);
1317 spu.pS = (short *)spu.pSpuBuffer;
1318
1319 if (spu_config.iTempo) {
1320 if (!out_current->busy())
1321 // cause more samples to be generated
1322 // (and break some games because of bad sync)
1323 spu.cycles_played -= 44100 / 60 / 2 * 768;
1324 }
1325 }
1326}
1327
1328// SPU UPDATE... new epsxe func
1329// 1 time every 32 hsync lines
1330// (312/32)x50 in pal
1331// (262/32)x60 in ntsc
1332
1333// since epsxe 1.5.2 (linux) uses SPUupdate, not SPUasync, I will
1334// leave that func in the linux port, until epsxe linux is using
1335// the async function as well
1336
1337void CALLBACK SPUupdate(void)
1338{
1339}
1340
1341// XA AUDIO
1342
1343void CALLBACK SPUplayADPCMchannel(xa_decode_t *xap, unsigned int cycle, int unused)
1344{
1345 if(!xap) return;
1346 if(!xap->freq) return; // no xa freq ? bye
1347
1348 if (spu.XAPlay == spu.XAFeed)
1349 do_samples(cycle, 1); // catch up to prevent source underflows later
1350
1351 FeedXA(xap); // call main XA feeder
1352 spu.xapGlobal = xap; // store info for save states
1353}
1354
1355// CDDA AUDIO
1356int CALLBACK SPUplayCDDAchannel(short *pcm, int nbytes, unsigned int cycle, int unused)
1357{
1358 if (!pcm) return -1;
1359 if (nbytes<=0) return -1;
1360
1361 if (spu.CDDAPlay == spu.CDDAFeed)
1362 do_samples(cycle, 1); // catch up to prevent source underflows later
1363
1364 FeedCDDA((unsigned char *)pcm, nbytes);
1365 return 0;
1366}
1367
1368// to be called after state load
1369void ClearWorkingState(void)
1370{
1371 memset(iFMod, 0, sizeof(iFMod));
1372 spu.pS=(short *)spu.pSpuBuffer; // setup soundbuffer pointer
1373}
1374
1375// SETUPSTREAMS: init most of the spu buffers
1376static void SetupStreams(void)
1377{
1378 spu.pSpuBuffer = (unsigned char *)malloc(32768); // alloc mixing buffer
1379 spu.SSumLR = calloc(NSSIZE * 2, sizeof(spu.SSumLR[0]));
1380
1381 spu.XAStart = malloc(44100 * sizeof(uint32_t)); // alloc xa buffer
1382 spu.XAEnd = spu.XAStart + 44100;
1383 spu.XAPlay = spu.XAStart;
1384 spu.XAFeed = spu.XAStart;
1385
1386 spu.CDDAStart = malloc(CDDA_BUFFER_SIZE); // alloc cdda buffer
1387 spu.CDDAEnd = spu.CDDAStart + CDDA_BUFFER_SIZE / sizeof(uint32_t);
1388 spu.CDDAPlay = spu.CDDAStart;
1389 spu.CDDAFeed = spu.CDDAStart;
1390
1391 ClearWorkingState();
1392}
1393
1394// REMOVESTREAMS: free most buffer
1395static void RemoveStreams(void)
1396{
1397 free(spu.pSpuBuffer); // free mixing buffer
1398 spu.pSpuBuffer = NULL;
1399 free(spu.SSumLR);
1400 spu.SSumLR = NULL;
1401 free(spu.XAStart); // free XA buffer
1402 spu.XAStart = NULL;
1403 free(spu.CDDAStart); // free CDDA buffer
1404 spu.CDDAStart = NULL;
1405}
1406
1407#if defined(C64X_DSP)
1408
1409/* special code for TI C64x DSP */
1410#include "spu_c64x.c"
1411
1412#elif P_HAVE_PTHREAD
1413
1414#include <pthread.h>
1415#include <semaphore.h>
1416#include <unistd.h>
1417
1418static struct {
1419 pthread_t thread;
1420 sem_t sem_avail;
1421 sem_t sem_done;
1422} t;
1423
1424/* generic pthread implementation */
1425
1426static void thread_work_start(void)
1427{
1428 sem_post(&t.sem_avail);
1429}
1430
1431static void thread_work_wait_sync(struct work_item *work, int force)
1432{
1433 sem_wait(&t.sem_done);
1434}
1435
1436static int thread_get_i_done(void)
1437{
1438 return worker->i_done;
1439}
1440
1441static void thread_sync_caches(void)
1442{
1443}
1444
1445static void *spu_worker_thread(void *unused)
1446{
1447 struct work_item *work;
1448
1449 while (1) {
1450 sem_wait(&t.sem_avail);
1451 if (worker->exit_thread)
1452 break;
1453
1454 work = &worker->i[worker->i_done & WORK_I_MASK];
1455 do_channel_work(work);
1456 worker->i_done++;
1457
1458 sem_post(&t.sem_done);
1459 }
1460
1461 return NULL;
1462}
1463
1464static void init_spu_thread(void)
1465{
1466 int ret;
1467
1468 if (sysconf(_SC_NPROCESSORS_ONLN) <= 1)
1469 return;
1470
1471 worker = calloc(1, sizeof(*worker));
1472 if (worker == NULL)
1473 return;
1474 ret = sem_init(&t.sem_avail, 0, 0);
1475 if (ret != 0)
1476 goto fail_sem_avail;
1477 ret = sem_init(&t.sem_done, 0, 0);
1478 if (ret != 0)
1479 goto fail_sem_done;
1480
1481 ret = pthread_create(&t.thread, NULL, spu_worker_thread, NULL);
1482 if (ret != 0)
1483 goto fail_thread;
1484
1485 spu_config.iThreadAvail = 1;
1486 return;
1487
1488fail_thread:
1489 sem_destroy(&t.sem_done);
1490fail_sem_done:
1491 sem_destroy(&t.sem_avail);
1492fail_sem_avail:
1493 free(worker);
1494 worker = NULL;
1495 spu_config.iThreadAvail = 0;
1496}
1497
1498static void exit_spu_thread(void)
1499{
1500 if (worker == NULL)
1501 return;
1502 worker->exit_thread = 1;
1503 sem_post(&t.sem_avail);
1504 pthread_join(t.thread, NULL);
1505 sem_destroy(&t.sem_done);
1506 sem_destroy(&t.sem_avail);
1507 free(worker);
1508 worker = NULL;
1509}
1510
1511#else // if !P_HAVE_PTHREAD
1512
1513static void init_spu_thread(void)
1514{
1515}
1516
1517static void exit_spu_thread(void)
1518{
1519}
1520
1521#endif
1522
1523// SPUINIT: this func will be called first by the main emu
1524long CALLBACK SPUinit(void)
1525{
1526 int i;
1527
1528 memset(&spu, 0, sizeof(spu));
1529 spu.spuMemC = calloc(1, 512 * 1024);
1530 InitADSR();
1531
1532 spu.s_chan = calloc(MAXCHAN+1, sizeof(spu.s_chan[0])); // channel + 1 infos (1 is security for fmod handling)
1533 spu.rvb = calloc(1, sizeof(REVERBInfo));
1534
1535 spu.spuAddr = 0;
1536 spu.decode_pos = 0;
1537 spu.pSpuIrq = spu.spuMemC;
1538
1539 SetupStreams(); // prepare streaming
1540
1541 if (spu_config.iVolume == 0)
1542 spu_config.iVolume = 768; // 1024 is 1.0
1543
1544 init_spu_thread();
1545
1546 for (i = 0; i < MAXCHAN; i++) // loop sound channels
1547 {
1548 spu.s_chan[i].ADSRX.SustainLevel = 0xf; // -> init sustain
1549 spu.s_chan[i].ADSRX.SustainIncrease = 1;
1550 spu.s_chan[i].pLoop = spu.spuMemC;
1551 spu.s_chan[i].pCurr = spu.spuMemC;
1552 spu.s_chan[i].bIgnoreLoop = 0;
1553 }
1554
1555 spu.bSpuInit=1; // flag: we are inited
1556
1557 return 0;
1558}
1559
1560// SPUOPEN: called by main emu after init
1561long CALLBACK SPUopen(void)
1562{
1563 if (spu.bSPUIsOpen) return 0; // security for some stupid main emus
1564
1565 SetupSound(); // setup sound (before init!)
1566
1567 spu.bSPUIsOpen = 1;
1568
1569 return PSE_SPU_ERR_SUCCESS;
1570}
1571
1572// SPUCLOSE: called before shutdown
1573long CALLBACK SPUclose(void)
1574{
1575 if (!spu.bSPUIsOpen) return 0; // some security
1576
1577 spu.bSPUIsOpen = 0; // no more open
1578
1579 out_current->finish(); // no more sound handling
1580
1581 return 0;
1582}
1583
1584// SPUSHUTDOWN: called by main emu on final exit
1585long CALLBACK SPUshutdown(void)
1586{
1587 SPUclose();
1588
1589 exit_spu_thread();
1590
1591 free(spu.spuMemC);
1592 spu.spuMemC = NULL;
1593 free(spu.s_chan);
1594 spu.s_chan = NULL;
1595 free(spu.rvb);
1596 spu.rvb = NULL;
1597
1598 RemoveStreams(); // no more streaming
1599 spu.bSpuInit=0;
1600
1601 return 0;
1602}
1603
1604// SETUP CALLBACKS
1605// this functions will be called once,
1606// passes a callback that should be called on SPU-IRQ/cdda volume change
1607void CALLBACK SPUregisterCallback(void (CALLBACK *callback)(int))
1608{
1609 spu.irqCallback = callback;
1610}
1611
1612void CALLBACK SPUregisterCDDAVolume(void (CALLBACK *CDDAVcallback)(short, short))
1613{
1614 //spu.cddavCallback = CDDAVcallback;
1615}
1616
1617void CALLBACK SPUregisterScheduleCb(void (CALLBACK *callback)(unsigned int))
1618{
1619 spu.scheduleCallback = callback;
1620}
1621
1622// COMMON PLUGIN INFO FUNCS
1623/*
1624char * CALLBACK PSEgetLibName(void)
1625{
1626 return _(libraryName);
1627}
1628
1629unsigned long CALLBACK PSEgetLibType(void)
1630{
1631 return PSE_LT_SPU;
1632}
1633
1634unsigned long CALLBACK PSEgetLibVersion(void)
1635{
1636 return (1 << 16) | (6 << 8);
1637}
1638
1639char * SPUgetLibInfos(void)
1640{
1641 return _(libraryInfo);
1642}
1643*/
1644
1645// debug
1646void spu_get_debug_info(int *chans_out, int *run_chans, int *fmod_chans_out, int *noise_chans_out)
1647{
1648 int ch = 0, fmod_chans = 0, noise_chans = 0, irq_chans = 0;
1649
1650 if (spu.s_chan == NULL)
1651 return;
1652
1653 for(;ch<MAXCHAN;ch++)
1654 {
1655 if (!(spu.dwChannelsAudible & (1<<ch)))
1656 continue;
1657 if (spu.s_chan[ch].bFMod == 2)
1658 fmod_chans |= 1 << ch;
1659 if (spu.s_chan[ch].bNoise)
1660 noise_chans |= 1 << ch;
1661 if((spu.spuCtrl&CTRL_IRQ) && spu.s_chan[ch].pCurr <= spu.pSpuIrq && spu.s_chan[ch].pLoop <= spu.pSpuIrq)
1662 irq_chans |= 1 << ch;
1663 }
1664
1665 *chans_out = spu.dwChannelsAudible;
1666 *run_chans = ~spu.dwChannelsAudible & ~spu.dwChannelDead & irq_chans;
1667 *fmod_chans_out = fmod_chans;
1668 *noise_chans_out = noise_chans;
1669}
1670
1671// vim:shiftwidth=1:expandtab