tune the preloads a bit
[sdl_omap.git] / src / video / mmx.h
CommitLineData
e14743d1 1/* mmx.h
2
3 MultiMedia eXtensions GCC interface library for IA32.
4
5 To use this library, simply include this header file
6 and compile with GCC. You MUST have inlining enabled
7 in order for mmx_ok() to work; this can be done by
8 simply using -O on the GCC command line.
9
10 Compiling with -DMMX_TRACE will cause detailed trace
11 output to be sent to stderr for each mmx operation.
12 This adds lots of code, and obviously slows execution to
13 a crawl, but can be very useful for debugging.
14
15 THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY
16 EXPRESS OR IMPLIED WARRANTIES, INCLUDING, WITHOUT
17 LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY
18 AND FITNESS FOR ANY PARTICULAR PURPOSE.
19
20 1997-99 by H. Dietz and R. Fisher
21
22 Notes:
23 It appears that the latest gas has the pand problem fixed, therefore
24 I'll undefine BROKEN_PAND by default.
25*/
26
27#ifndef _MMX_H
28#define _MMX_H
29
30
31/* Warning: at this writing, the version of GAS packaged
32 with most Linux distributions does not handle the
33 parallel AND operation mnemonic correctly. If the
34 symbol BROKEN_PAND is defined, a slower alternative
35 coding will be used. If execution of mmxtest results
36 in an illegal instruction fault, define this symbol.
37*/
38#undef BROKEN_PAND
39
40
41/* The type of an value that fits in an MMX register
42 (note that long long constant values MUST be suffixed
43 by LL and unsigned long long values by ULL, lest
44 they be truncated by the compiler)
45*/
46typedef union {
47 long long q; /* Quadword (64-bit) value */
48 unsigned long long uq; /* Unsigned Quadword */
49 int d[2]; /* 2 Doubleword (32-bit) values */
50 unsigned int ud[2]; /* 2 Unsigned Doubleword */
51 short w[4]; /* 4 Word (16-bit) values */
52 unsigned short uw[4]; /* 4 Unsigned Word */
53 char b[8]; /* 8 Byte (8-bit) values */
54 unsigned char ub[8]; /* 8 Unsigned Byte */
55 float s[2]; /* Single-precision (32-bit) value */
56} __attribute__ ((aligned (8))) mmx_t; /* On an 8-byte (64-bit) boundary */
57
58
59#if 0
60/* Function to test if multimedia instructions are supported...
61*/
62inline extern int
63mm_support(void)
64{
65 /* Returns 1 if MMX instructions are supported,
66 3 if Cyrix MMX and Extended MMX instructions are supported
67 5 if AMD MMX and 3DNow! instructions are supported
68 0 if hardware does not support any of these
69 */
70 register int rval = 0;
71
72 __asm__ __volatile__ (
73 /* See if CPUID instruction is supported ... */
74 /* ... Get copies of EFLAGS into eax and ecx */
75 "pushf\n\t"
76 "popl %%eax\n\t"
77 "movl %%eax, %%ecx\n\t"
78
79 /* ... Toggle the ID bit in one copy and store */
80 /* to the EFLAGS reg */
81 "xorl $0x200000, %%eax\n\t"
82 "push %%eax\n\t"
83 "popf\n\t"
84
85 /* ... Get the (hopefully modified) EFLAGS */
86 "pushf\n\t"
87 "popl %%eax\n\t"
88
89 /* ... Compare and test result */
90 "xorl %%eax, %%ecx\n\t"
91 "testl $0x200000, %%ecx\n\t"
92 "jz NotSupported1\n\t" /* CPUID not supported */
93
94
95 /* Get standard CPUID information, and
96 go to a specific vendor section */
97 "movl $0, %%eax\n\t"
98 "cpuid\n\t"
99
100 /* Check for Intel */
101 "cmpl $0x756e6547, %%ebx\n\t"
102 "jne TryAMD\n\t"
103 "cmpl $0x49656e69, %%edx\n\t"
104 "jne TryAMD\n\t"
105 "cmpl $0x6c65746e, %%ecx\n"
106 "jne TryAMD\n\t"
107 "jmp Intel\n\t"
108
109 /* Check for AMD */
110 "\nTryAMD:\n\t"
111 "cmpl $0x68747541, %%ebx\n\t"
112 "jne TryCyrix\n\t"
113 "cmpl $0x69746e65, %%edx\n\t"
114 "jne TryCyrix\n\t"
115 "cmpl $0x444d4163, %%ecx\n"
116 "jne TryCyrix\n\t"
117 "jmp AMD\n\t"
118
119 /* Check for Cyrix */
120 "\nTryCyrix:\n\t"
121 "cmpl $0x69727943, %%ebx\n\t"
122 "jne NotSupported2\n\t"
123 "cmpl $0x736e4978, %%edx\n\t"
124 "jne NotSupported3\n\t"
125 "cmpl $0x64616574, %%ecx\n\t"
126 "jne NotSupported4\n\t"
127 /* Drop through to Cyrix... */
128
129
130 /* Cyrix Section */
131 /* See if extended CPUID level 80000001 is supported */
132 /* The value of CPUID/80000001 for the 6x86MX is undefined
133 according to the Cyrix CPU Detection Guide (Preliminary
134 Rev. 1.01 table 1), so we'll check the value of eax for
135 CPUID/0 to see if standard CPUID level 2 is supported.
136 According to the table, the only CPU which supports level
137 2 is also the only one which supports extended CPUID levels.
138 */
139 "cmpl $0x2, %%eax\n\t"
140 "jne MMXtest\n\t" /* Use standard CPUID instead */
141
142 /* Extended CPUID supported (in theory), so get extended
143 features */
144 "movl $0x80000001, %%eax\n\t"
145 "cpuid\n\t"
146 "testl $0x00800000, %%eax\n\t" /* Test for MMX */
147 "jz NotSupported5\n\t" /* MMX not supported */
148 "testl $0x01000000, %%eax\n\t" /* Test for Ext'd MMX */
149 "jnz EMMXSupported\n\t"
150 "movl $1, %0:\n\n\t" /* MMX Supported */
151 "jmp Return\n\n"
152 "EMMXSupported:\n\t"
153 "movl $3, %0:\n\n\t" /* EMMX and MMX Supported */
154 "jmp Return\n\t"
155
156
157 /* AMD Section */
158 "AMD:\n\t"
159
160 /* See if extended CPUID is supported */
161 "movl $0x80000000, %%eax\n\t"
162 "cpuid\n\t"
163 "cmpl $0x80000000, %%eax\n\t"
164 "jl MMXtest\n\t" /* Use standard CPUID instead */
165
166 /* Extended CPUID supported, so get extended features */
167 "movl $0x80000001, %%eax\n\t"
168 "cpuid\n\t"
169 "testl $0x00800000, %%edx\n\t" /* Test for MMX */
170 "jz NotSupported6\n\t" /* MMX not supported */
171 "testl $0x80000000, %%edx\n\t" /* Test for 3DNow! */
172 "jnz ThreeDNowSupported\n\t"
173 "movl $1, %0:\n\n\t" /* MMX Supported */
174 "jmp Return\n\n"
175 "ThreeDNowSupported:\n\t"
176 "movl $5, %0:\n\n\t" /* 3DNow! and MMX Supported */
177 "jmp Return\n\t"
178
179
180 /* Intel Section */
181 "Intel:\n\t"
182
183 /* Check for MMX */
184 "MMXtest:\n\t"
185 "movl $1, %%eax\n\t"
186 "cpuid\n\t"
187 "testl $0x00800000, %%edx\n\t" /* Test for MMX */
188 "jz NotSupported7\n\t" /* MMX Not supported */
189 "movl $1, %0:\n\n\t" /* MMX Supported */
190 "jmp Return\n\t"
191
192 /* Nothing supported */
193 "\nNotSupported1:\n\t"
194 "#movl $101, %0:\n\n\t"
195 "\nNotSupported2:\n\t"
196 "#movl $102, %0:\n\n\t"
197 "\nNotSupported3:\n\t"
198 "#movl $103, %0:\n\n\t"
199 "\nNotSupported4:\n\t"
200 "#movl $104, %0:\n\n\t"
201 "\nNotSupported5:\n\t"
202 "#movl $105, %0:\n\n\t"
203 "\nNotSupported6:\n\t"
204 "#movl $106, %0:\n\n\t"
205 "\nNotSupported7:\n\t"
206 "#movl $107, %0:\n\n\t"
207 "movl $0, %0:\n\n\t"
208
209 "Return:\n\t"
210 : "=a" (rval)
211 : /* no input */
212 : "eax", "ebx", "ecx", "edx"
213 );
214
215 /* Return */
216 return(rval);
217}
218
219/* Function to test if mmx instructions are supported...
220*/
221inline extern int
222mmx_ok(void)
223{
224 /* Returns 1 if MMX instructions are supported, 0 otherwise */
225 return ( mm_support() & 0x1 );
226}
227#endif
228
229/* Helper functions for the instruction macros that follow...
230 (note that memory-to-register, m2r, instructions are nearly
231 as efficient as register-to-register, r2r, instructions;
232 however, memory-to-memory instructions are really simulated
233 as a convenience, and are only 1/3 as efficient)
234*/
235#ifdef MMX_TRACE
236
237/* Include the stuff for printing a trace to stderr...
238*/
239
240#define mmx_i2r(op, imm, reg) \
241 { \
242 mmx_t mmx_trace; \
243 mmx_trace.uq = (imm); \
244 printf(#op "_i2r(" #imm "=0x%08x%08x, ", \
245 mmx_trace.d[1], mmx_trace.d[0]); \
246 __asm__ __volatile__ ("movq %%" #reg ", %0" \
247 : "=X" (mmx_trace) \
248 : /* nothing */ ); \
249 printf(#reg "=0x%08x%08x) => ", \
250 mmx_trace.d[1], mmx_trace.d[0]); \
251 __asm__ __volatile__ (#op " %0, %%" #reg \
252 : /* nothing */ \
253 : "X" (imm)); \
254 __asm__ __volatile__ ("movq %%" #reg ", %0" \
255 : "=X" (mmx_trace) \
256 : /* nothing */ ); \
257 printf(#reg "=0x%08x%08x\n", \
258 mmx_trace.d[1], mmx_trace.d[0]); \
259 }
260
261#define mmx_m2r(op, mem, reg) \
262 { \
263 mmx_t mmx_trace; \
264 mmx_trace = (mem); \
265 printf(#op "_m2r(" #mem "=0x%08x%08x, ", \
266 mmx_trace.d[1], mmx_trace.d[0]); \
267 __asm__ __volatile__ ("movq %%" #reg ", %0" \
268 : "=X" (mmx_trace) \
269 : /* nothing */ ); \
270 printf(#reg "=0x%08x%08x) => ", \
271 mmx_trace.d[1], mmx_trace.d[0]); \
272 __asm__ __volatile__ (#op " %0, %%" #reg \
273 : /* nothing */ \
274 : "X" (mem)); \
275 __asm__ __volatile__ ("movq %%" #reg ", %0" \
276 : "=X" (mmx_trace) \
277 : /* nothing */ ); \
278 printf(#reg "=0x%08x%08x\n", \
279 mmx_trace.d[1], mmx_trace.d[0]); \
280 }
281
282#define mmx_r2m(op, reg, mem) \
283 { \
284 mmx_t mmx_trace; \
285 __asm__ __volatile__ ("movq %%" #reg ", %0" \
286 : "=X" (mmx_trace) \
287 : /* nothing */ ); \
288 printf(#op "_r2m(" #reg "=0x%08x%08x, ", \
289 mmx_trace.d[1], mmx_trace.d[0]); \
290 mmx_trace = (mem); \
291 printf(#mem "=0x%08x%08x) => ", \
292 mmx_trace.d[1], mmx_trace.d[0]); \
293 __asm__ __volatile__ (#op " %%" #reg ", %0" \
294 : "=X" (mem) \
295 : /* nothing */ ); \
296 mmx_trace = (mem); \
297 printf(#mem "=0x%08x%08x\n", \
298 mmx_trace.d[1], mmx_trace.d[0]); \
299 }
300
301#define mmx_r2r(op, regs, regd) \
302 { \
303 mmx_t mmx_trace; \
304 __asm__ __volatile__ ("movq %%" #regs ", %0" \
305 : "=X" (mmx_trace) \
306 : /* nothing */ ); \
307 printf(#op "_r2r(" #regs "=0x%08x%08x, ", \
308 mmx_trace.d[1], mmx_trace.d[0]); \
309 __asm__ __volatile__ ("movq %%" #regd ", %0" \
310 : "=X" (mmx_trace) \
311 : /* nothing */ ); \
312 printf(#regd "=0x%08x%08x) => ", \
313 mmx_trace.d[1], mmx_trace.d[0]); \
314 __asm__ __volatile__ (#op " %" #regs ", %" #regd); \
315 __asm__ __volatile__ ("movq %%" #regd ", %0" \
316 : "=X" (mmx_trace) \
317 : /* nothing */ ); \
318 printf(#regd "=0x%08x%08x\n", \
319 mmx_trace.d[1], mmx_trace.d[0]); \
320 }
321
322#define mmx_m2m(op, mems, memd) \
323 { \
324 mmx_t mmx_trace; \
325 mmx_trace = (mems); \
326 printf(#op "_m2m(" #mems "=0x%08x%08x, ", \
327 mmx_trace.d[1], mmx_trace.d[0]); \
328 mmx_trace = (memd); \
329 printf(#memd "=0x%08x%08x) => ", \
330 mmx_trace.d[1], mmx_trace.d[0]); \
331 __asm__ __volatile__ ("movq %0, %%mm0\n\t" \
332 #op " %1, %%mm0\n\t" \
333 "movq %%mm0, %0" \
334 : "=X" (memd) \
335 : "X" (mems)); \
336 mmx_trace = (memd); \
337 printf(#memd "=0x%08x%08x\n", \
338 mmx_trace.d[1], mmx_trace.d[0]); \
339 }
340
341#else
342
343/* These macros are a lot simpler without the tracing...
344*/
345
346#define mmx_i2r(op, imm, reg) \
347 __asm__ __volatile__ (#op " %0, %%" #reg \
348 : /* nothing */ \
349 : "X" (imm) )
350
351#define mmx_m2r(op, mem, reg) \
352 __asm__ __volatile__ (#op " %0, %%" #reg \
353 : /* nothing */ \
354 : "m" (mem))
355
356#define mmx_r2m(op, reg, mem) \
357 __asm__ __volatile__ (#op " %%" #reg ", %0" \
358 : "=X" (mem) \
359 : /* nothing */ )
360
361#define mmx_r2r(op, regs, regd) \
362 __asm__ __volatile__ (#op " %" #regs ", %" #regd)
363
364#define mmx_m2m(op, mems, memd) \
365 __asm__ __volatile__ ("movq %0, %%mm0\n\t" \
366 #op " %1, %%mm0\n\t" \
367 "movq %%mm0, %0" \
368 : "=X" (memd) \
369 : "X" (mems))
370
371#endif
372
373
374/* 1x64 MOVe Quadword
375 (this is both a load and a store...
376 in fact, it is the only way to store)
377*/
378#define movq_m2r(var, reg) mmx_m2r(movq, var, reg)
379#define movq_r2m(reg, var) mmx_r2m(movq, reg, var)
380#define movq_r2r(regs, regd) mmx_r2r(movq, regs, regd)
381#define movq(vars, vard) \
382 __asm__ __volatile__ ("movq %1, %%mm0\n\t" \
383 "movq %%mm0, %0" \
384 : "=X" (vard) \
385 : "X" (vars))
386
387
388/* 1x32 MOVe Doubleword
389 (like movq, this is both load and store...
390 but is most useful for moving things between
391 mmx registers and ordinary registers)
392*/
393#define movd_m2r(var, reg) mmx_m2r(movd, var, reg)
394#define movd_r2m(reg, var) mmx_r2m(movd, reg, var)
395#define movd_r2r(regs, regd) mmx_r2r(movd, regs, regd)
396#define movd(vars, vard) \
397 __asm__ __volatile__ ("movd %1, %%mm0\n\t" \
398 "movd %%mm0, %0" \
399 : "=X" (vard) \
400 : "X" (vars))
401
402
403/* 2x32, 4x16, and 8x8 Parallel ADDs
404*/
405#define paddd_m2r(var, reg) mmx_m2r(paddd, var, reg)
406#define paddd_r2r(regs, regd) mmx_r2r(paddd, regs, regd)
407#define paddd(vars, vard) mmx_m2m(paddd, vars, vard)
408
409#define paddw_m2r(var, reg) mmx_m2r(paddw, var, reg)
410#define paddw_r2r(regs, regd) mmx_r2r(paddw, regs, regd)
411#define paddw(vars, vard) mmx_m2m(paddw, vars, vard)
412
413#define paddb_m2r(var, reg) mmx_m2r(paddb, var, reg)
414#define paddb_r2r(regs, regd) mmx_r2r(paddb, regs, regd)
415#define paddb(vars, vard) mmx_m2m(paddb, vars, vard)
416
417
418/* 4x16 and 8x8 Parallel ADDs using Saturation arithmetic
419*/
420#define paddsw_m2r(var, reg) mmx_m2r(paddsw, var, reg)
421#define paddsw_r2r(regs, regd) mmx_r2r(paddsw, regs, regd)
422#define paddsw(vars, vard) mmx_m2m(paddsw, vars, vard)
423
424#define paddsb_m2r(var, reg) mmx_m2r(paddsb, var, reg)
425#define paddsb_r2r(regs, regd) mmx_r2r(paddsb, regs, regd)
426#define paddsb(vars, vard) mmx_m2m(paddsb, vars, vard)
427
428
429/* 4x16 and 8x8 Parallel ADDs using Unsigned Saturation arithmetic
430*/
431#define paddusw_m2r(var, reg) mmx_m2r(paddusw, var, reg)
432#define paddusw_r2r(regs, regd) mmx_r2r(paddusw, regs, regd)
433#define paddusw(vars, vard) mmx_m2m(paddusw, vars, vard)
434
435#define paddusb_m2r(var, reg) mmx_m2r(paddusb, var, reg)
436#define paddusb_r2r(regs, regd) mmx_r2r(paddusb, regs, regd)
437#define paddusb(vars, vard) mmx_m2m(paddusb, vars, vard)
438
439
440/* 2x32, 4x16, and 8x8 Parallel SUBs
441*/
442#define psubd_m2r(var, reg) mmx_m2r(psubd, var, reg)
443#define psubd_r2r(regs, regd) mmx_r2r(psubd, regs, regd)
444#define psubd(vars, vard) mmx_m2m(psubd, vars, vard)
445
446#define psubw_m2r(var, reg) mmx_m2r(psubw, var, reg)
447#define psubw_r2r(regs, regd) mmx_r2r(psubw, regs, regd)
448#define psubw(vars, vard) mmx_m2m(psubw, vars, vard)
449
450#define psubb_m2r(var, reg) mmx_m2r(psubb, var, reg)
451#define psubb_r2r(regs, regd) mmx_r2r(psubb, regs, regd)
452#define psubb(vars, vard) mmx_m2m(psubb, vars, vard)
453
454
455/* 4x16 and 8x8 Parallel SUBs using Saturation arithmetic
456*/
457#define psubsw_m2r(var, reg) mmx_m2r(psubsw, var, reg)
458#define psubsw_r2r(regs, regd) mmx_r2r(psubsw, regs, regd)
459#define psubsw(vars, vard) mmx_m2m(psubsw, vars, vard)
460
461#define psubsb_m2r(var, reg) mmx_m2r(psubsb, var, reg)
462#define psubsb_r2r(regs, regd) mmx_r2r(psubsb, regs, regd)
463#define psubsb(vars, vard) mmx_m2m(psubsb, vars, vard)
464
465
466/* 4x16 and 8x8 Parallel SUBs using Unsigned Saturation arithmetic
467*/
468#define psubusw_m2r(var, reg) mmx_m2r(psubusw, var, reg)
469#define psubusw_r2r(regs, regd) mmx_r2r(psubusw, regs, regd)
470#define psubusw(vars, vard) mmx_m2m(psubusw, vars, vard)
471
472#define psubusb_m2r(var, reg) mmx_m2r(psubusb, var, reg)
473#define psubusb_r2r(regs, regd) mmx_r2r(psubusb, regs, regd)
474#define psubusb(vars, vard) mmx_m2m(psubusb, vars, vard)
475
476
477/* 4x16 Parallel MULs giving Low 4x16 portions of results
478*/
479#define pmullw_m2r(var, reg) mmx_m2r(pmullw, var, reg)
480#define pmullw_r2r(regs, regd) mmx_r2r(pmullw, regs, regd)
481#define pmullw(vars, vard) mmx_m2m(pmullw, vars, vard)
482
483
484/* 4x16 Parallel MULs giving High 4x16 portions of results
485*/
486#define pmulhw_m2r(var, reg) mmx_m2r(pmulhw, var, reg)
487#define pmulhw_r2r(regs, regd) mmx_r2r(pmulhw, regs, regd)
488#define pmulhw(vars, vard) mmx_m2m(pmulhw, vars, vard)
489
490
491/* 4x16->2x32 Parallel Mul-ADD
492 (muls like pmullw, then adds adjacent 16-bit fields
493 in the multiply result to make the final 2x32 result)
494*/
495#define pmaddwd_m2r(var, reg) mmx_m2r(pmaddwd, var, reg)
496#define pmaddwd_r2r(regs, regd) mmx_r2r(pmaddwd, regs, regd)
497#define pmaddwd(vars, vard) mmx_m2m(pmaddwd, vars, vard)
498
499
500/* 1x64 bitwise AND
501*/
502#ifdef BROKEN_PAND
503#define pand_m2r(var, reg) \
504 { \
505 mmx_m2r(pandn, (mmx_t) -1LL, reg); \
506 mmx_m2r(pandn, var, reg); \
507 }
508#define pand_r2r(regs, regd) \
509 { \
510 mmx_m2r(pandn, (mmx_t) -1LL, regd); \
511 mmx_r2r(pandn, regs, regd) \
512 }
513#define pand(vars, vard) \
514 { \
515 movq_m2r(vard, mm0); \
516 mmx_m2r(pandn, (mmx_t) -1LL, mm0); \
517 mmx_m2r(pandn, vars, mm0); \
518 movq_r2m(mm0, vard); \
519 }
520#else
521#define pand_m2r(var, reg) mmx_m2r(pand, var, reg)
522#define pand_r2r(regs, regd) mmx_r2r(pand, regs, regd)
523#define pand(vars, vard) mmx_m2m(pand, vars, vard)
524#endif
525
526
527/* 1x64 bitwise AND with Not the destination
528*/
529#define pandn_m2r(var, reg) mmx_m2r(pandn, var, reg)
530#define pandn_r2r(regs, regd) mmx_r2r(pandn, regs, regd)
531#define pandn(vars, vard) mmx_m2m(pandn, vars, vard)
532
533
534/* 1x64 bitwise OR
535*/
536#define por_m2r(var, reg) mmx_m2r(por, var, reg)
537#define por_r2r(regs, regd) mmx_r2r(por, regs, regd)
538#define por(vars, vard) mmx_m2m(por, vars, vard)
539
540
541/* 1x64 bitwise eXclusive OR
542*/
543#define pxor_m2r(var, reg) mmx_m2r(pxor, var, reg)
544#define pxor_r2r(regs, regd) mmx_r2r(pxor, regs, regd)
545#define pxor(vars, vard) mmx_m2m(pxor, vars, vard)
546
547
548/* 2x32, 4x16, and 8x8 Parallel CoMPare for EQuality
549 (resulting fields are either 0 or -1)
550*/
551#define pcmpeqd_m2r(var, reg) mmx_m2r(pcmpeqd, var, reg)
552#define pcmpeqd_r2r(regs, regd) mmx_r2r(pcmpeqd, regs, regd)
553#define pcmpeqd(vars, vard) mmx_m2m(pcmpeqd, vars, vard)
554
555#define pcmpeqw_m2r(var, reg) mmx_m2r(pcmpeqw, var, reg)
556#define pcmpeqw_r2r(regs, regd) mmx_r2r(pcmpeqw, regs, regd)
557#define pcmpeqw(vars, vard) mmx_m2m(pcmpeqw, vars, vard)
558
559#define pcmpeqb_m2r(var, reg) mmx_m2r(pcmpeqb, var, reg)
560#define pcmpeqb_r2r(regs, regd) mmx_r2r(pcmpeqb, regs, regd)
561#define pcmpeqb(vars, vard) mmx_m2m(pcmpeqb, vars, vard)
562
563
564/* 2x32, 4x16, and 8x8 Parallel CoMPare for Greater Than
565 (resulting fields are either 0 or -1)
566*/
567#define pcmpgtd_m2r(var, reg) mmx_m2r(pcmpgtd, var, reg)
568#define pcmpgtd_r2r(regs, regd) mmx_r2r(pcmpgtd, regs, regd)
569#define pcmpgtd(vars, vard) mmx_m2m(pcmpgtd, vars, vard)
570
571#define pcmpgtw_m2r(var, reg) mmx_m2r(pcmpgtw, var, reg)
572#define pcmpgtw_r2r(regs, regd) mmx_r2r(pcmpgtw, regs, regd)
573#define pcmpgtw(vars, vard) mmx_m2m(pcmpgtw, vars, vard)
574
575#define pcmpgtb_m2r(var, reg) mmx_m2r(pcmpgtb, var, reg)
576#define pcmpgtb_r2r(regs, regd) mmx_r2r(pcmpgtb, regs, regd)
577#define pcmpgtb(vars, vard) mmx_m2m(pcmpgtb, vars, vard)
578
579
580/* 1x64, 2x32, and 4x16 Parallel Shift Left Logical
581*/
582#define psllq_i2r(imm, reg) mmx_i2r(psllq, imm, reg)
583#define psllq_m2r(var, reg) mmx_m2r(psllq, var, reg)
584#define psllq_r2r(regs, regd) mmx_r2r(psllq, regs, regd)
585#define psllq(vars, vard) mmx_m2m(psllq, vars, vard)
586
587#define pslld_i2r(imm, reg) mmx_i2r(pslld, imm, reg)
588#define pslld_m2r(var, reg) mmx_m2r(pslld, var, reg)
589#define pslld_r2r(regs, regd) mmx_r2r(pslld, regs, regd)
590#define pslld(vars, vard) mmx_m2m(pslld, vars, vard)
591
592#define psllw_i2r(imm, reg) mmx_i2r(psllw, imm, reg)
593#define psllw_m2r(var, reg) mmx_m2r(psllw, var, reg)
594#define psllw_r2r(regs, regd) mmx_r2r(psllw, regs, regd)
595#define psllw(vars, vard) mmx_m2m(psllw, vars, vard)
596
597
598/* 1x64, 2x32, and 4x16 Parallel Shift Right Logical
599*/
600#define psrlq_i2r(imm, reg) mmx_i2r(psrlq, imm, reg)
601#define psrlq_m2r(var, reg) mmx_m2r(psrlq, var, reg)
602#define psrlq_r2r(regs, regd) mmx_r2r(psrlq, regs, regd)
603#define psrlq(vars, vard) mmx_m2m(psrlq, vars, vard)
604
605#define psrld_i2r(imm, reg) mmx_i2r(psrld, imm, reg)
606#define psrld_m2r(var, reg) mmx_m2r(psrld, var, reg)
607#define psrld_r2r(regs, regd) mmx_r2r(psrld, regs, regd)
608#define psrld(vars, vard) mmx_m2m(psrld, vars, vard)
609
610#define psrlw_i2r(imm, reg) mmx_i2r(psrlw, imm, reg)
611#define psrlw_m2r(var, reg) mmx_m2r(psrlw, var, reg)
612#define psrlw_r2r(regs, regd) mmx_r2r(psrlw, regs, regd)
613#define psrlw(vars, vard) mmx_m2m(psrlw, vars, vard)
614
615
616/* 2x32 and 4x16 Parallel Shift Right Arithmetic
617*/
618#define psrad_i2r(imm, reg) mmx_i2r(psrad, imm, reg)
619#define psrad_m2r(var, reg) mmx_m2r(psrad, var, reg)
620#define psrad_r2r(regs, regd) mmx_r2r(psrad, regs, regd)
621#define psrad(vars, vard) mmx_m2m(psrad, vars, vard)
622
623#define psraw_i2r(imm, reg) mmx_i2r(psraw, imm, reg)
624#define psraw_m2r(var, reg) mmx_m2r(psraw, var, reg)
625#define psraw_r2r(regs, regd) mmx_r2r(psraw, regs, regd)
626#define psraw(vars, vard) mmx_m2m(psraw, vars, vard)
627
628
629/* 2x32->4x16 and 4x16->8x8 PACK and Signed Saturate
630 (packs source and dest fields into dest in that order)
631*/
632#define packssdw_m2r(var, reg) mmx_m2r(packssdw, var, reg)
633#define packssdw_r2r(regs, regd) mmx_r2r(packssdw, regs, regd)
634#define packssdw(vars, vard) mmx_m2m(packssdw, vars, vard)
635
636#define packsswb_m2r(var, reg) mmx_m2r(packsswb, var, reg)
637#define packsswb_r2r(regs, regd) mmx_r2r(packsswb, regs, regd)
638#define packsswb(vars, vard) mmx_m2m(packsswb, vars, vard)
639
640
641/* 4x16->8x8 PACK and Unsigned Saturate
642 (packs source and dest fields into dest in that order)
643*/
644#define packuswb_m2r(var, reg) mmx_m2r(packuswb, var, reg)
645#define packuswb_r2r(regs, regd) mmx_r2r(packuswb, regs, regd)
646#define packuswb(vars, vard) mmx_m2m(packuswb, vars, vard)
647
648
649/* 2x32->1x64, 4x16->2x32, and 8x8->4x16 UNPaCK Low
650 (interleaves low half of dest with low half of source
651 as padding in each result field)
652*/
653#define punpckldq_m2r(var, reg) mmx_m2r(punpckldq, var, reg)
654#define punpckldq_r2r(regs, regd) mmx_r2r(punpckldq, regs, regd)
655#define punpckldq(vars, vard) mmx_m2m(punpckldq, vars, vard)
656
657#define punpcklwd_m2r(var, reg) mmx_m2r(punpcklwd, var, reg)
658#define punpcklwd_r2r(regs, regd) mmx_r2r(punpcklwd, regs, regd)
659#define punpcklwd(vars, vard) mmx_m2m(punpcklwd, vars, vard)
660
661#define punpcklbw_m2r(var, reg) mmx_m2r(punpcklbw, var, reg)
662#define punpcklbw_r2r(regs, regd) mmx_r2r(punpcklbw, regs, regd)
663#define punpcklbw(vars, vard) mmx_m2m(punpcklbw, vars, vard)
664
665
666/* 2x32->1x64, 4x16->2x32, and 8x8->4x16 UNPaCK High
667 (interleaves high half of dest with high half of source
668 as padding in each result field)
669*/
670#define punpckhdq_m2r(var, reg) mmx_m2r(punpckhdq, var, reg)
671#define punpckhdq_r2r(regs, regd) mmx_r2r(punpckhdq, regs, regd)
672#define punpckhdq(vars, vard) mmx_m2m(punpckhdq, vars, vard)
673
674#define punpckhwd_m2r(var, reg) mmx_m2r(punpckhwd, var, reg)
675#define punpckhwd_r2r(regs, regd) mmx_r2r(punpckhwd, regs, regd)
676#define punpckhwd(vars, vard) mmx_m2m(punpckhwd, vars, vard)
677
678#define punpckhbw_m2r(var, reg) mmx_m2r(punpckhbw, var, reg)
679#define punpckhbw_r2r(regs, regd) mmx_r2r(punpckhbw, regs, regd)
680#define punpckhbw(vars, vard) mmx_m2m(punpckhbw, vars, vard)
681
682
683/* Empty MMx State
684 (used to clean-up when going from mmx to float use
685 of the registers that are shared by both; note that
686 there is no float-to-mmx operation needed, because
687 only the float tag word info is corruptible)
688*/
689#ifdef MMX_TRACE
690
691#define emms() \
692 { \
693 printf("emms()\n"); \
694 __asm__ __volatile__ ("emms"); \
695 }
696
697#else
698
699#define emms() __asm__ __volatile__ ("emms")
700
701#endif
702
703#endif
704