3 * (C) notaz, 2009,2010,2013
4 * (C) irixxxx, 2018-2024
6 * This work is licensed under the terms of MAME license.
7 * See COPYING file in the top-level directory.
10 * - tcache, block descriptor, block entry buffer overflows result in oldest
11 * blocks being deleted until enough space is available
12 * - link and list element buffer overflows result in failure and exit
13 * - jumps between blocks are tracked for SMC handling (in block_entry->links),
14 * except jumps from global to CPU-local tcaches
17 * - static register allocation
18 * - remaining register caching and tracking in temporaries
19 * - block-local branch linking
21 * - some constant propagation
22 * - call stack caching for host block entry address
23 * - delay, poll, and idle loop detection and handling
24 * - some T/M flag optimizations where the value is known or isn't used
27 * - better constant propagation
35 #include <pico/pico_int.h>
36 #include <pico/arm_features.h>
39 #include "../drc/cmn.h"
43 #define PROPAGATE_CONSTANTS 1
44 #define LINK_BRANCHES 1
45 #define BRANCH_CACHE 1
47 #define ALIAS_REGISTERS 1
48 #define REMAP_REGISTER 1
49 #define LOOP_DETECTION 1
50 #define LOOP_OPTIMIZER 1
52 #define DIV_OPTIMIZER 1
54 #define MAX_LITERAL_OFFSET 0x200 // max. MOVA, MOV @(PC) offset
55 #define MAX_LOCAL_TARGETS (BLOCK_INSN_LIMIT / 4)
56 #define MAX_LOCAL_BRANCHES (BLOCK_INSN_LIMIT / 2)
59 // 01 - warnings/errors
60 // 02 - block info/smc
62 // 08 - runtime block entry log
63 // 10 - smc self-check
64 // 20 - runtime block entry counter
65 // 40 - rcache checking
66 // 80 - branch cache statistics
68 // 200 - compare trace
69 // 400 - block entry backtrace on exit
70 // 800 - state dump on exit
72 #define DRC_DEBUG 0//x847
76 #define dbg(l,...) { \
77 if ((l) & DRC_DEBUG) \
78 elprintf(EL_STATUS, ##__VA_ARGS__); \
80 #include "mame/sh2dasm.h"
81 #include <platform/libpicofe/linux/host_dasm.h>
82 static int insns_compiled, hash_collisions, host_insn_count;
92 #define FETCH_OP(pc) \
96 ((dr_pc_base[(a) / 2] << 16) | dr_pc_base[(a) / 2 + 1])
98 #define CHECK_UNHANDLED_BITS(mask, label) { \
99 if ((op & (mask)) != 0) \
106 #define GET_Rm GET_Fx
116 #define T_save 0x00000800
123 static struct op_data {
126 u8 size; // 0, 1, 2 - byte, word, long
127 s8 rm; // branch or load/store data reg
128 u32 source; // bitmask of src regs
129 u32 dest; // bitmask of dest regs
130 u32 imm; // immediate/io address/branch target
131 // (for literal - address, not value)
132 } ops[BLOCK_INSN_LIMIT];
137 OP_BRANCH_N, // conditional known not to be taken
138 OP_BRANCH_CT, // conditional, branch if T set
139 OP_BRANCH_CF, // conditional, branch if T clear
140 OP_BRANCH_R, // indirect
141 OP_BRANCH_RF, // indirect far (PC + Rm)
142 OP_SETCLRT, // T flag set/clear
143 OP_MOVE, // register move
144 OP_LOAD_CONST,// load const to register
145 OP_LOAD_POOL, // literal pool load, imm is address
146 OP_MOVA, // MOVA instruction
147 OP_SLEEP, // SLEEP instruction
148 OP_RTE, // RTE instruction
149 OP_TRAPA, // TRAPA instruction
150 OP_LDC, // LDC instruction
151 OP_DIV0, // DIV0[US] instruction
156 u32 state:1; // 0: expect DIV1/ROTCL, 1: expect DIV1
157 u32 rn:5, rm:5, ro:5; // rn and rm for DIV1, ro for ROTCL
158 u32 div1:8, rotcl:8; // DIV1 count, ROTCL count
160 union _div { u32 imm; struct div div; }; // XXX tut-tut type punning...
161 #define div(opd) ((union _div *)&((opd)->imm))->div
163 // XXX consider trap insns: OP_TRAPA, OP_UNDEFINED?
164 #define OP_ISBRANCH(op) ((BITRANGE(OP_BRANCH, OP_BRANCH_RF)| BITMASK1(OP_RTE)) \
166 #define OP_ISBRAUC(op) (BITMASK4(OP_BRANCH, OP_BRANCH_R, OP_BRANCH_RF, OP_RTE) \
168 #define OP_ISBRACND(op) (BITMASK2(OP_BRANCH_CT, OP_BRANCH_CF) \
170 #define OP_ISBRAIMM(op) (BITMASK3(OP_BRANCH, OP_BRANCH_CT, OP_BRANCH_CF) \
172 #define OP_ISBRAIND(op) (BITMASK3(OP_BRANCH_R, OP_BRANCH_RF, OP_RTE) \
178 static u8 *tcache_dsm_ptrs[3];
179 static char sh2dasm_buff[64];
180 #define do_host_disasm(tcid) \
181 host_dasm(tcache_dsm_ptrs[tcid], emith_insn_ptr() - tcache_dsm_ptrs[tcid]); \
182 tcache_dsm_ptrs[tcid] = emith_insn_ptr()
184 #define do_host_disasm(x)
187 #define SH2_DUMP(sh2, reason) { \
188 char ms = (sh2)->is_slave ? 's' : 'm'; \
189 printf("%csh2 %s %08lx\n", ms, reason, (ulong)(sh2)->pc); \
190 printf("%csh2 r0-7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n", ms, \
191 (ulong)(sh2)->r[0], (ulong)(sh2)->r[1], (ulong)(sh2)->r[2], (ulong)(sh2)->r[3], \
192 (ulong)(sh2)->r[4], (ulong)(sh2)->r[5], (ulong)(sh2)->r[6], (ulong)(sh2)->r[7]); \
193 printf("%csh2 r8-15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n", ms, \
194 (ulong)(sh2)->r[8], (ulong)(sh2)->r[9], (ulong)(sh2)->r[10], (ulong)(sh2)->r[11], \
195 (ulong)(sh2)->r[12], (ulong)(sh2)->r[13], (ulong)(sh2)->r[14], (ulong)(sh2)->r[15]); \
196 printf("%csh2 pc-ml %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n", ms, \
197 (ulong)(sh2)->pc, (ulong)(sh2)->ppc, (ulong)(sh2)->pr, (ulong)(sh2)->sr, \
198 (ulong)(sh2)->gbr, (ulong)(sh2)->vbr, (ulong)(sh2)->mach, (ulong)(sh2)->macl); \
199 printf("%csh2 tmp-p %08x %08x %08x %08x %08x %08lx %08x %08x\n", ms, \
200 (sh2)->drc_tmp, (sh2)->irq_cycles, \
201 (sh2)->pdb_io_csum[0], (sh2)->pdb_io_csum[1], (sh2)->state, \
202 (ulong)(sh2)->poll_addr, (sh2)->poll_cycles, (sh2)->poll_cnt); \
205 #if (DRC_DEBUG & (256|512|1024))
206 static SH2 csh2[2][8];
207 static FILE *trace[2];
211 static u32 lastpc, lastcnt;
212 static void *lastblock;
214 #if (DRC_DEBUG & (8|256|512|1024)) || defined(PDB)
215 static void REGPARM(3) *sh2_drc_log_entry(void *block, SH2 *sh2, u32 sr)
219 dbg(8, "= %csh2 enter %08x %p, c=%d", sh2->is_slave?'s':'m',
220 sh2->pc, block, ((signed int)sr >> 12)+1);
221 pdb_step(sh2, sh2->pc);
222 #elif (DRC_DEBUG & 8)
223 if (lastpc != sh2->pc) {
225 dbg(8, "= %csh2 enter %08x %p (%d times), c=%d", sh2->is_slave?'s':'m',
226 lastpc, lastblock, lastcnt, (signed int)sr >> 12);
227 dbg(8, "= %csh2 enter %08x %p, c=%d", sh2->is_slave?'s':'m',
228 sh2->pc, block, (signed int)sr >> 12);
234 #elif (DRC_DEBUG & 256)
237 int idx = sh2->is_slave;
238 if (!trace[0] && !topen[0]++) {
239 trace[0] = fopen("pico.trace0", "wb");
240 trace[1] = fopen("pico.trace1", "wb");
242 if (trace[idx] && csh2[idx][0].pc != sh2->pc) {
243 fwrite(sh2, offsetof(SH2, read8_map), 1, trace[idx]);
244 fwrite(&sh2->pdb_io_csum, sizeof(sh2->pdb_io_csum), 1, trace[idx]);
245 memcpy(&csh2[idx][0], sh2, offsetof(SH2, poll_cnt)+4);
246 csh2[idx][0].is_slave = idx;
249 #elif (DRC_DEBUG & 512)
252 int idx = sh2->is_slave;
253 if (!trace[0] && !topen[0]++) {
254 trace[0] = fopen("pico.trace0", "rb");
255 trace[1] = fopen("pico.trace1", "rb");
257 if (trace[idx] && csh2[idx][0].pc != sh2->pc) {
258 if (!fread(&fsh2, offsetof(SH2, read8_map), 1, trace[idx]) ||
259 !fread(&fsh2.pdb_io_csum, sizeof(sh2->pdb_io_csum), 1, trace[idx])) {
260 printf("trace eof at %08lx\n",ftell(trace[idx]));
263 fsh2.sr = (fsh2.sr & 0x3ff) | (sh2->sr & ~0x3ff);
265 if (memcmp(&fsh2, sh2, offsetof(SH2, read8_map)) ||
266 0)//memcmp(&fsh2.pdb_io_csum, &sh2->pdb_io_csum, sizeof(sh2->pdb_io_csum)))
268 printf("difference at %08lx!\n",ftell(trace[idx]));
269 SH2_DUMP(&fsh2, "file");
270 SH2_DUMP(sh2, "current");
271 SH2_DUMP(&csh2[idx][0], "previous");
272 SH2_DUMP(&csh2[idx][1], "previous");
273 char *ps = (char *)sh2, *pf = (char *)&fsh2;
274 for (idx = 0; idx < offsetof(SH2, read8_map); idx += sizeof(u32))
275 if (*(u32 *)(ps+idx) != *(u32 *)(pf+idx))
276 printf("diff reg %ld\n",(long)idx/sizeof(u32));
279 memcpy(&csh2[idx][1], &csh2[idx][0], offsetof(SH2, poll_cnt)+4);
283 #elif (DRC_DEBUG & 1024)
285 int x = sh2->is_slave, i;
286 for (i = 0; i < ARRAY_SIZE(csh2[x])-1; i++)
287 memcpy(&csh2[x][i], &csh2[x][i+1], offsetof(SH2, poll_cnt)+4);
288 memcpy(&csh2[x][ARRAY_SIZE(csh2[x])-1], sh2, offsetof(SH2, poll_cnt)+4);
289 csh2[x][0].is_slave = x;
298 // we have 3 translation cache buffers, split from one drc/cmn buffer.
299 // BIOS shares tcache with data array because it's only used for init
300 // and can be discarded early
301 #define TCACHE_BUFFERS 3
305 u8 *base; // ring buffer memory
306 unsigned item_sz; // size of one buffer item
307 unsigned size; // number of itmes in ring
308 int first, next; // read and write pointers
309 int used; // number of used items in ring
312 enum { BL_JMP=1, BL_LDJMP, BL_JCCBLX };
315 short type; // BL_JMP et al
317 void *jump; // insn address
318 void *blx; // block link/exit area if any
319 u8 jdisp[12]; // jump backup buffer
320 struct block_link *next; // either in block_entry->links or unresolved
321 struct block_link *o_next; // ...in block_entry->o_links
322 struct block_link *prev;
323 struct block_link *o_prev;
324 struct block_entry *target;// target block this is linked in (be->links)
329 u8 *tcache_ptr; // translated block for above PC
330 struct block_entry *next; // chain in hash_table with same pc hash
331 struct block_entry *prev;
332 struct block_link *links; // incoming links to this entry
333 struct block_link *o_links;// outgoing links from this entry
335 struct block_desc *block;
343 u32 addr; // block start SH2 PC address
344 u32 addr_lit; // block start SH2 literal pool addr
345 int size; // ..of recompiled insns
346 int size_lit; // ..of (insns+)literal pool
347 u8 *tcache_ptr; // start address of block in cache
348 u16 crc; // crc of insns and literals
349 u16 active; // actively used or deactivated?
350 struct block_list *list;
355 struct block_entry *entryp;
359 struct block_desc *block; // block reference
360 struct block_list *next; // pointers for doubly linked list
361 struct block_list *prev;
362 struct block_list **head; // list head (for removing from list)
363 struct block_list *l_next;
366 static u8 *tcache_ptr; // ptr for code emitters
368 // XXX: need to tune sizes
370 static struct ring_buffer tcache_ring[TCACHE_BUFFERS];
371 static const int tcache_sizes[TCACHE_BUFFERS] = {
372 DRC_TCACHE_SIZE * 30 / 32, // ROM (rarely used), DRAM
373 DRC_TCACHE_SIZE / 32, // BIOS, data array in master sh2
374 DRC_TCACHE_SIZE / 32, // ... slave
377 #define BLOCK_MAX_COUNT(tcid) ((tcid) ? 256 : 32*256)
378 static struct ring_buffer block_ring[TCACHE_BUFFERS];
379 static struct block_desc *block_tables[TCACHE_BUFFERS];
381 #define ENTRY_MAX_COUNT(tcid) ((tcid) ? 8*512 : 256*512)
382 static struct ring_buffer entry_ring[TCACHE_BUFFERS];
383 static struct block_entry *entry_tables[TCACHE_BUFFERS];
385 // we have block_link_pool to avoid using mallocs
386 #define BLOCK_LINK_MAX_COUNT(tcid) ((tcid) ? 512 : 32*512)
387 static struct block_link *block_link_pool[TCACHE_BUFFERS];
388 static int block_link_pool_counts[TCACHE_BUFFERS];
389 static struct block_link **unresolved_links[TCACHE_BUFFERS];
390 static struct block_link *blink_free[TCACHE_BUFFERS];
392 // used for invalidation
393 #define RAM_SIZE(tcid) ((tcid) ? 0x1000 : 0x40000)
394 #define INVAL_PAGE_SIZE 0x100
396 static struct block_list *inactive_blocks[TCACHE_BUFFERS];
398 // array of pointers to block_lists for RAM and 2 data arrays
399 // each array has len: sizeof(mem) / INVAL_PAGE_SIZE
400 static struct block_list **inval_lookup[TCACHE_BUFFERS];
402 #define HASH_TABLE_SIZE(tcid) ((tcid) ? 512 : 32*512)
403 static struct block_entry **hash_tables[TCACHE_BUFFERS];
405 #define HASH_FUNC(hash_tab, addr, mask) \
406 (hash_tab)[((addr) >> 1) & (mask)]
408 #define BLOCK_LIST_MAX_COUNT (64*1024)
409 static struct block_list *block_list_pool;
410 static int block_list_pool_count;
411 static struct block_list *blist_free;
413 #if (DRC_DEBUG & 128)
422 // host register tracking
423 enum cache_reg_htype {
424 HRT_TEMP = 1, // is for temps and args
425 HRT_REG = 2, // is for sh2 regs
428 enum cache_reg_flags {
429 HRF_DIRTY = 1 << 0, // has "dirty" value to be written to ctx
430 HRF_PINNED = 1 << 1, // has a pinned mapping
431 HRF_S16 = 1 << 2, // has a sign extended 16 bit value
432 HRF_U16 = 1 << 3, // has a zero extended 16 bit value
435 enum cache_reg_type {
437 HR_CACHED, // vreg has sh2_reg_e
438 HR_TEMP, // reg used for temp storage
442 u8 hreg:6; // "host" reg
443 u8 htype:2; // TEMP or REG?
444 u8 flags:4; // DIRTY, PINNED?
445 u8 type:2; // CACHED or TEMP?
446 u8 locked:2; // LOCKED reference counter
447 u16 stamp; // kind of a timestamp
448 u32 gregs; // "guest" reg mask
451 // guest register tracking
452 enum guest_reg_flags {
453 GRF_DIRTY = 1 << 0, // reg has "dirty" value to be written to ctx
454 GRF_CONST = 1 << 1, // reg has a constant
455 GRF_CDIRTY = 1 << 2, // constant not yet written to ctx
456 GRF_STATIC = 1 << 3, // reg has static mapping to vreg
457 GRF_PINNED = 1 << 4, // reg has pinned mapping to vreg
461 u8 flags; // guest flags: is constant, is dirty?
462 s8 sreg; // cache reg for static mapping
463 s8 vreg; // cache_reg this is currently mapped to, -1 if not mapped
464 s8 cnst; // const index if this is constant
468 // possibly needed in code emitter
469 static int rcache_get_tmp(void);
470 static void rcache_free_tmp(int hr);
472 // Note: Register assignment goes by ABI convention. Caller save registers are
473 // TEMPORARY, callee save registers are PRESERVED. Unusable regs are omitted.
474 // there must be at least the free (not context or statically mapped) amount of
475 // PRESERVED/TEMPORARY registers used by handlers in worst case (currently 4).
476 // there must be at least 3 PARAM, and PARAM+TEMPORARY must be at least 4.
477 // SR must and R0 should by all means be statically mapped.
478 // XXX the static definition of SR MUST match that in compiler.h
480 #if defined(__arm__) || defined(_M_ARM)
481 #include "../drc/emit_arm.c"
482 #elif defined(__aarch64__) || defined(_M_ARM64)
483 #include "../drc/emit_arm64.c"
484 #elif defined(__mips__)
485 #include "../drc/emit_mips.c"
486 #elif defined(__riscv__) || defined(__riscv)
487 #include "../drc/emit_riscv.c"
488 #elif defined(__powerpc__) || defined(__PPC__) || defined(__ppc__) || defined(_M_PPC)
489 #include "../drc/emit_ppc.c"
490 #elif defined(__i386__) || defined(_M_X86)
491 #include "../drc/emit_x86.c"
492 #elif defined(__x86_64__) || defined(_M_X64)
493 #include "../drc/emit_x86.c"
495 #error unsupported arch
498 static const signed char hregs_param[] = PARAM_REGS;
499 static const signed char hregs_temp [] = TEMPORARY_REGS;
500 static const signed char hregs_saved[] = PRESERVED_REGS;
501 static const signed char regs_static[] = STATIC_SH2_REGS;
504 (ARRAY_SIZE(hregs_param)+ARRAY_SIZE(hregs_temp)+ARRAY_SIZE(hregs_saved)-1)
505 static cache_reg_t cache_regs[CACHE_REGS];
507 static signed char reg_map_host[HOST_REGS];
509 static guest_reg_t guest_regs[SH2_REGS];
511 // generated functions called from C, to be called only through host_call()
512 static void REGPARM(1) (*sh2_drc_entry)(SH2 *sh2);
514 void REGPARM(1) (*sh2_drc_save_sr)(SH2 *sh2);
515 void REGPARM(1) (*sh2_drc_restore_sr)(SH2 *sh2);
518 // generated DRC helper functions, only called from generated code via emith_call*()
519 static void REGPARM(1) (*sh2_drc_dispatcher)(u32 pc);
521 static u32 REGPARM(2) (*sh2_drc_dispatcher_call)(u32 pc);
522 static void REGPARM(1) (*sh2_drc_dispatcher_return)(u32 pc);
524 static void REGPARM(1) (*sh2_drc_exit)(u32 pc);
525 static void (*sh2_drc_test_irq)(void);
527 static u32 REGPARM(1) (*sh2_drc_read8)(u32 a);
528 static u32 REGPARM(1) (*sh2_drc_read16)(u32 a);
529 static u32 REGPARM(1) (*sh2_drc_read32)(u32 a);
530 static u32 REGPARM(1) (*sh2_drc_read8_poll)(u32 a);
531 static u32 REGPARM(1) (*sh2_drc_read16_poll)(u32 a);
532 static u32 REGPARM(1) (*sh2_drc_read32_poll)(u32 a);
533 static void REGPARM(2) (*sh2_drc_write8)(u32 a, u32 d);
534 static void REGPARM(2) (*sh2_drc_write16)(u32 a, u32 d);
535 static void REGPARM(2) (*sh2_drc_write32)(u32 a, u32 d);
537 // flags for memory access
538 #define MF_SIZEMASK 0x03 // size of access
539 #define MF_POSTINCR 0x10 // post increment (for read_rr)
540 #define MF_PREDECR MF_POSTINCR // pre decrement (for write_rr)
541 #define MF_POLLING 0x20 // include polling check in read
543 // address space stuff
544 static int dr_ctx_get_mem_ptr(SH2 *sh2, u32 a, u32 *mask)
549 // check if region is mapped memory
550 memptr = p32x_sh2_get_mem_ptr(a, mask, sh2);
554 if (memptr == sh2->p_bios) // BIOS
555 poffs = offsetof(SH2, p_bios);
556 else if (memptr == sh2->p_da) // data array
557 poffs = offsetof(SH2, p_da);
558 else if (memptr == sh2->p_sdram) // SDRAM
559 poffs = offsetof(SH2, p_sdram);
560 else if (memptr == sh2->p_rom) // ROM
561 poffs = offsetof(SH2, p_rom);
566 static int dr_get_tcache_id(u32 pc, int is_slave)
570 if ((pc & 0xe0000000) == 0xc0000000)
571 tcid = 1 + is_slave; // data array
572 if ((pc & ~0xfff) == 0)
573 tcid = 1 + is_slave; // BIOS
577 static struct block_entry *dr_get_entry(u32 pc, int is_slave, int *tcache_id)
579 struct block_entry *be;
581 *tcache_id = dr_get_tcache_id(pc, is_slave);
583 be = HASH_FUNC(hash_tables[*tcache_id], pc, HASH_TABLE_SIZE(*tcache_id) - 1);
584 if (be != NULL) // don't ask... gcc code generation hint
585 for (; be != NULL; be = be->next)
592 // ---------------------------------------------------------------
594 // ring buffer management
595 #define RING_INIT(r,m,n) *(r) = (struct ring_buffer) { .base = (u8 *)m, \
596 .item_sz = sizeof(*(m)), .size = n };
598 static void *ring_alloc(struct ring_buffer *rb, int count)
600 // allocate space in ring buffer
603 p = rb->base + rb->next * rb->item_sz;
604 if (rb->next+count > rb->size) {
605 rb->used += rb->size - rb->next;
606 p = rb->base; // wrap if overflow at end
610 if (rb->next == rb->size) rb->next = 0;
617 static void ring_wrap(struct ring_buffer *rb)
619 // insufficient space at end of buffer memory, wrap around
620 rb->used += rb->size - rb->next;
624 static void ring_free(struct ring_buffer *rb, int count)
626 // free oldest space in ring buffer
628 if (rb->first >= rb->size) rb->first -= rb->size;
633 static void ring_free_p(struct ring_buffer *rb, void *p)
635 // free ring buffer space upto given pointer
636 rb->first = ((u8 *)p - rb->base) / rb->item_sz;
638 rb->used = rb->next - rb->first;
639 if (rb->used < 0) rb->used += rb->size;
642 static void *ring_reset(struct ring_buffer *rb)
644 // reset to initial state
645 rb->first = rb->next = rb->used = 0;
646 return rb->base + rb->next * rb->item_sz;
649 static void *ring_first(struct ring_buffer *rb)
651 return rb->base + rb->first * rb->item_sz;
654 static void *ring_next(struct ring_buffer *rb)
656 return rb->base + rb->next * rb->item_sz;
661 static void add_to_block_list(struct block_list **blist, struct block_desc *block)
663 struct block_list *added;
667 blist_free = added->next;
668 } else if (block_list_pool_count >= BLOCK_LIST_MAX_COUNT) {
669 printf( "block list overflow\n");
672 added = block_list_pool + block_list_pool_count;
673 block_list_pool_count ++;
676 added->block = block;
677 added->l_next = block->list;
683 (*blist)->prev = added;
684 added->next = *blist;
688 static void rm_from_block_lists(struct block_desc *block)
690 struct block_list *entry;
693 while (entry != NULL) {
694 if (entry->prev != NULL)
695 entry->prev->next = entry->next;
697 *(entry->head) = entry->next;
698 if (entry->next != NULL)
699 entry->next->prev = entry->prev;
701 entry->next = blist_free;
704 entry = entry->l_next;
709 static void discard_block_list(struct block_list **blist)
711 struct block_list *next, *current = *blist;
712 while (current != NULL) {
713 next = current->next;
714 current->next = blist_free;
715 blist_free = current;
721 static void add_to_hashlist(struct block_entry *be, int tcache_id)
723 u32 tcmask = HASH_TABLE_SIZE(tcache_id) - 1;
724 struct block_entry **head = &HASH_FUNC(hash_tables[tcache_id], be->pc, tcmask);
733 if (be->next != NULL) {
734 printf(" %08lx@%p: entry hash collision with %08lx@%p\n",
735 (ulong)be->pc, be->tcache_ptr, (ulong)be->next->pc, be->next->tcache_ptr);
741 static void rm_from_hashlist(struct block_entry *be, int tcache_id)
743 u32 tcmask = HASH_TABLE_SIZE(tcache_id) - 1;
744 struct block_entry **head = &HASH_FUNC(hash_tables[tcache_id], be->pc, tcmask);
747 struct block_entry *current = be;
748 while (current->prev != NULL)
749 current = current->prev;
750 if (current != *head)
751 dbg(1, "rm_from_hashlist @%p: be %p %08x missing?", head, be, be->pc);
754 if (be->prev != NULL)
755 be->prev->next = be->next;
758 if (be->next != NULL)
759 be->next->prev = be->prev;
764 static void add_to_hashlist_unresolved(struct block_link *bl, int tcache_id)
766 u32 tcmask = HASH_TABLE_SIZE(tcache_id) - 1;
767 struct block_link **head = &HASH_FUNC(unresolved_links[tcache_id], bl->target_pc, tcmask);
770 struct block_link *current = *head;
771 while (current != NULL && current != bl)
772 current = current->next;
774 dbg(1, "add_to_hashlist_unresolved @%p: bl %p %p %08x already in?", head, bl, bl->target, bl->target_pc);
777 bl->target = NULL; // marker for not resolved
785 static void rm_from_hashlist_unresolved(struct block_link *bl, int tcache_id)
787 u32 tcmask = HASH_TABLE_SIZE(tcache_id) - 1;
788 struct block_link **head = &HASH_FUNC(unresolved_links[tcache_id], bl->target_pc, tcmask);
791 struct block_link *current = bl;
792 while (current->prev != NULL)
793 current = current->prev;
794 if (current != *head)
795 dbg(1, "rm_from_hashlist_unresolved @%p: bl %p %p %08x missing?", head, bl, bl->target, bl->target_pc);
798 if (bl->prev != NULL)
799 bl->prev->next = bl->next;
802 if (bl->next != NULL)
803 bl->next->prev = bl->prev;
806 static void dr_block_link(struct block_entry *be, struct block_link *bl, int emit_jump)
808 dbg(2, "- %slink from %p to pc %08x entry %p", emit_jump ? "":"early ",
809 bl->jump, bl->target_pc, be->tcache_ptr);
813 int jsz = emith_jump_patch_size();
814 if (bl->type == BL_JMP) { // patch: jump @entry
815 // inlined: @jump far jump to target
816 emith_jump_patch(jump, be->tcache_ptr, &jump);
817 } else if (bl->type == BL_LDJMP) { // write: jump @entry
818 // inlined: @jump far jump to target
819 emith_jump_at(jump, be->tcache_ptr);
820 jsz = emith_jump_at_size();
821 } else if (bl->type == BL_JCCBLX) { // patch: jump cond -> jump @entry
822 if (emith_jump_patch_inrange(bl->jump, be->tcache_ptr)) {
823 // inlined: @jump near jumpcc to target
824 emith_jump_patch(jump, be->tcache_ptr, &jump);
825 } else { // dispatcher cond immediate
826 // via blx: @jump near jumpcc to blx; @blx far jump
827 emith_jump_patch(jump, bl->blx, &jump);
828 emith_jump_at(bl->blx, be->tcache_ptr);
829 host_instructions_updated(bl->blx, (char *)bl->blx + emith_jump_at_size(),
830 ((uintptr_t)bl->blx & 0x1f) + emith_jump_at_size()-1 > 0x1f);
833 printf("unknown BL type %d\n", bl->type);
836 host_instructions_updated(jump, jump + jsz, ((uintptr_t)jump & 0x1f) + jsz-1 > 0x1f);
839 // move bl to block_entry
843 be->links->prev = bl;
844 bl->next = be->links;
848 static void dr_block_unlink(struct block_link *bl, int emit_jump)
850 dbg(2,"- unlink from %p to pc %08x", bl->jump, bl->target_pc);
855 int jsz = emith_jump_patch_size();
856 if (bl->type == BL_JMP) { // jump_patch @dispatcher
857 // inlined: @jump far jump to dispatcher
858 emith_jump_patch(jump, sh2_drc_dispatcher, &jump);
859 } else if (bl->type == BL_LDJMP) { // restore: load pc, jump @dispatcher
860 // inlined: @jump load target_pc, far jump to dispatcher
861 memcpy(jump, bl->jdisp, emith_jump_at_size());
862 jsz = emith_jump_at_size();
863 } else if (bl->type == BL_JCCBLX) { // jump cond @blx; @blx: load pc, jump
864 // via blx: @jump near jumpcc to blx; @blx load target_pc, far jump
865 emith_jump_patch(bl->jump, bl->blx, &jump);
866 memcpy(bl->blx, bl->jdisp, emith_jump_at_size());
867 host_instructions_updated(bl->blx, (char *)bl->blx + emith_jump_at_size(), 1);
869 printf("unknown BL type %d\n", bl->type);
872 // update cpu caches since the previous jump target doesn't exist anymore
873 host_instructions_updated(jump, jump + jsz, 1);
877 bl->prev->next = bl->next;
879 bl->target->links = bl->next;
881 bl->next->prev = bl->prev;
887 static struct block_link *dr_prepare_ext_branch(struct block_entry *owner, u32 pc, int is_slave, int tcache_id)
890 struct block_link *bl = block_link_pool[tcache_id];
891 int cnt = block_link_pool_counts[tcache_id];
892 int target_tcache_id;
894 // get the target block entry
895 target_tcache_id = dr_get_tcache_id(pc, is_slave);
896 if (target_tcache_id && target_tcache_id != tcache_id)
900 if (blink_free[tcache_id] != NULL) {
901 bl = blink_free[tcache_id];
902 blink_free[tcache_id] = bl->next;
903 } else if (cnt >= BLOCK_LINK_MAX_COUNT(tcache_id)) {
904 dbg(1, "bl overflow for tcache %d", tcache_id);
908 block_link_pool_counts[tcache_id] = cnt+1;
911 // prepare link and add to outgoing list of owner
912 bl->tcache_id = tcache_id;
914 bl->jump = tcache_ptr;
916 bl->o_next = owner->o_links;
919 add_to_hashlist_unresolved(bl, tcache_id);
926 static void dr_mark_memory(int mark, struct block_desc *block, int tcache_id, u32 nolit)
928 u8 *drc_ram_blk = NULL, *lit_ram_blk = NULL;
929 u32 addr, end, mask = 0, shift = 0, idx;
931 // mark memory blocks as containing compiled code
932 if ((block->addr & 0xc7fc0000) == 0x06000000
933 || (block->addr & 0xfffff000) == 0xc0000000)
935 if (tcache_id != 0) {
937 drc_ram_blk = Pico32xMem->drcblk_da[tcache_id-1];
938 lit_ram_blk = Pico32xMem->drclit_da[tcache_id-1];
939 shift = SH2_DRCBLK_DA_SHIFT;
943 drc_ram_blk = Pico32xMem->drcblk_ram;
944 lit_ram_blk = Pico32xMem->drclit_ram;
945 shift = SH2_DRCBLK_RAM_SHIFT;
947 mask = RAM_SIZE(tcache_id) - 1;
949 // mark recompiled insns
950 addr = block->addr & ~((1 << shift) - 1);
951 end = block->addr + block->size;
952 for (idx = (addr & mask) >> shift; addr < end; addr += (1 << shift))
953 drc_ram_blk[idx++] += mark;
956 if (addr < (block->addr_lit & ~((1 << shift) - 1)))
957 addr = block->addr_lit & ~((1 << shift) - 1);
958 end = block->addr_lit + block->size_lit;
959 for (idx = (addr & mask) >> shift; addr < end; addr += (1 << shift))
960 drc_ram_blk[idx++] += mark;
962 // mark for literals disabled
964 addr = nolit & ~((1 << shift) - 1);
965 end = block->addr_lit + block->size_lit;
966 for (idx = (addr & mask) >> shift; addr < end; addr += (1 << shift))
967 lit_ram_blk[idx++] = 1;
971 rm_from_block_lists(block);
973 // add to invalidation lookup lists
974 addr = block->addr & ~(INVAL_PAGE_SIZE - 1);
975 end = block->addr + block->size;
976 for (idx = (addr & mask) / INVAL_PAGE_SIZE; addr < end; addr += INVAL_PAGE_SIZE)
977 add_to_block_list(&inval_lookup[tcache_id][idx++], block);
979 if (addr < (block->addr_lit & ~(INVAL_PAGE_SIZE - 1)))
980 addr = block->addr_lit & ~(INVAL_PAGE_SIZE - 1);
981 end = block->addr_lit + block->size_lit;
982 for (idx = (addr & mask) / INVAL_PAGE_SIZE; addr < end; addr += INVAL_PAGE_SIZE)
983 add_to_block_list(&inval_lookup[tcache_id][idx++], block);
988 static u32 dr_check_nolit(u32 start, u32 end, int tcache_id)
990 u8 *lit_ram_blk = NULL;
991 u32 mask = 0, shift = 0, addr, idx;
993 if ((start & 0xc7fc0000) == 0x06000000
994 || (start & 0xfffff000) == 0xc0000000)
996 if (tcache_id != 0) {
998 lit_ram_blk = Pico32xMem->drclit_da[tcache_id-1];
999 shift = SH2_DRCBLK_DA_SHIFT;
1003 lit_ram_blk = Pico32xMem->drclit_ram;
1004 shift = SH2_DRCBLK_RAM_SHIFT;
1006 mask = RAM_SIZE(tcache_id) - 1;
1008 addr = start & ~((1 << shift) - 1);
1009 for (idx = (addr & mask) >> shift; addr < end; addr += (1 << shift))
1010 if (lit_ram_blk[idx++])
1013 return (addr < start ? start : addr > end ? end : addr);
1019 static void dr_rm_block_entry(struct block_desc *bd, int tcache_id, u32 nolit, int free)
1021 struct block_link *bl;
1024 free = free || nolit; // block is invalid if literals are overwritten
1025 dbg(2," %sing block %08x-%08x,%08x-%08x, blkid %d,%d", free?"delet":"disabl",
1026 bd->addr, bd->addr + bd->size, bd->addr_lit, bd->addr_lit + bd->size_lit,
1027 tcache_id, bd - block_tables[tcache_id]);
1028 if (bd->addr == 0 || bd->entry_count == 0) {
1029 dbg(1, " killing dead block!? %08x", bd->addr);
1033 // remove from hash table, make incoming links unresolved
1035 for (i = 0; i < bd->entry_count; i++) {
1036 rm_from_hashlist(&bd->entryp[i], tcache_id);
1039 while ((bl = bd->entryp[i].links) != NULL) {
1040 dr_block_unlink(bl, 1);
1041 add_to_hashlist_unresolved(bl, tcache_id);
1046 dr_mark_memory(-1, bd, tcache_id, nolit);
1047 add_to_block_list(&inactive_blocks[tcache_id], bd);
1053 // revoke outgoing links
1054 for (bl = bd->entryp[0].o_links; bl != NULL; bl = bl->o_next) {
1056 dr_block_unlink(bl, 0);
1058 rm_from_hashlist_unresolved(bl, tcache_id);
1060 bl->next = blink_free[bl->tcache_id];
1061 blink_free[bl->tcache_id] = bl;
1063 bd->entryp[0].o_links = NULL;
1066 rm_from_block_lists(bd);
1067 bd->addr = bd->size = bd->addr_lit = bd->size_lit = 0;
1068 bd->entry_count = 0;
1070 emith_update_cache();
1073 static struct block_desc *dr_find_inactive_block(int tcache_id, u16 crc,
1074 u32 addr, int size, u32 addr_lit, int size_lit)
1076 struct block_list **head = &inactive_blocks[tcache_id];
1077 struct block_list *current;
1079 for (current = *head; current != NULL; current = current->next) {
1080 struct block_desc *block = current->block;
1081 if (block->crc == crc && block->addr == addr && block->size == size &&
1082 block->addr_lit == addr_lit && block->size_lit == size_lit)
1084 rm_from_block_lists(block);
1091 static struct block_desc *dr_add_block(int entries, u32 addr, int size,
1092 u32 addr_lit, int size_lit, u16 crc, int is_slave, int *blk_id)
1094 struct block_entry *be;
1095 struct block_desc *bd;
1098 // do a lookup to get tcache_id and override check
1099 be = dr_get_entry(addr, is_slave, &tcache_id);
1101 dbg(1, "block override for %08x", addr);
1103 if (block_ring[tcache_id].used + 1 > block_ring[tcache_id].size ||
1104 entry_ring[tcache_id].used + entries > entry_ring[tcache_id].size) {
1105 dbg(1, "bd overflow for tcache %d", tcache_id);
1109 *blk_id = block_ring[tcache_id].next;
1110 bd = ring_alloc(&block_ring[tcache_id], 1);
1111 bd->entryp = ring_alloc(&entry_ring[tcache_id], entries);
1115 bd->addr_lit = addr_lit;
1116 bd->size_lit = size_lit;
1117 bd->tcache_ptr = tcache_ptr;
1121 bd->entry_count = 0;
1129 static void dr_link_blocks(struct block_entry *be, int tcache_id)
1132 u32 tcmask = HASH_TABLE_SIZE(tcache_id) - 1;
1134 struct block_link **head = &HASH_FUNC(unresolved_links[tcache_id], pc, tcmask);
1135 struct block_link *bl = *head, *next;
1137 while (bl != NULL) {
1139 if (bl->target_pc == pc && (!bl->tcache_id || bl->tcache_id == tcache_id)) {
1140 rm_from_hashlist_unresolved(bl, bl->tcache_id);
1141 dr_block_link(be, bl, 1);
1148 static void dr_link_outgoing(struct block_entry *be, int tcache_id, int is_slave)
1151 struct block_link *bl;
1152 int target_tcache_id;
1154 for (bl = be->o_links; bl; bl = bl->o_next) {
1155 if (bl->target == NULL) {
1156 be = dr_get_entry(bl->target_pc, is_slave, &target_tcache_id);
1157 if (be != NULL && (!target_tcache_id || target_tcache_id == tcache_id)) {
1158 // remove bl from unresolved_links (must've been since target was NULL)
1159 rm_from_hashlist_unresolved(bl, bl->tcache_id);
1160 dr_block_link(be, bl, 1);
1167 static void dr_activate_block(struct block_desc *bd, int tcache_id, int is_slave)
1172 for (i = 0; i < bd->entry_count; i++) {
1173 struct block_entry *entry = &bd->entryp[i];
1174 add_to_hashlist(entry, tcache_id);
1175 // incoming branches
1176 dr_link_blocks(entry, tcache_id);
1178 dr_link_blocks(entry, is_slave?2:1);
1179 // outgoing branches
1180 dr_link_outgoing(entry, tcache_id, is_slave);
1183 // mark memory for overwrite detection
1184 dr_mark_memory(1, bd, tcache_id, 0);
1188 static void REGPARM(3) *dr_lookup_block(u32 pc, SH2 *sh2, int *tcache_id)
1190 struct block_entry *be = NULL;
1193 be = dr_get_entry(pc, sh2->is_slave, tcache_id);
1195 block = be->tcache_ptr;
1199 be->block->refcount++;
1204 static void dr_free_oldest_block(int tcache_id)
1206 struct block_desc *bf;
1208 bf = ring_first(&block_ring[tcache_id]);
1209 if (bf->addr && bf->entry_count)
1210 dr_rm_block_entry(bf, tcache_id, 0, 1);
1211 ring_free(&block_ring[tcache_id], 1);
1213 if (block_ring[tcache_id].used) {
1214 bf = ring_first(&block_ring[tcache_id]);
1215 ring_free_p(&entry_ring[tcache_id], bf->entryp);
1216 ring_free_p(&tcache_ring[tcache_id], bf->tcache_ptr);
1218 // reset since size of code block isn't known if no successor block exists
1219 ring_reset(&block_ring[tcache_id]);
1220 ring_reset(&entry_ring[tcache_id]);
1221 ring_reset(&tcache_ring[tcache_id]);
1225 static inline void dr_reserve_cache(int tcache_id, struct ring_buffer *rb, int count)
1227 // while not enough space available
1228 if (rb->next + count >= rb->size){
1229 // not enough space in rest of buffer -> wrap around
1230 while (rb->first >= rb->next && rb->used)
1231 dr_free_oldest_block(tcache_id);
1232 if (rb->first == 0 && rb->used)
1233 dr_free_oldest_block(tcache_id);
1236 while (rb->first >= rb->next && rb->next + count > rb->first && rb->used)
1237 dr_free_oldest_block(tcache_id);
1240 static u8 *dr_prepare_cache(int tcache_id, int insn_count, int entry_count)
1242 int bf = block_ring[tcache_id].first;
1244 // reserve one block desc
1245 if (block_ring[tcache_id].used >= block_ring[tcache_id].size)
1246 dr_free_oldest_block(tcache_id);
1247 // reserve block entries
1248 dr_reserve_cache(tcache_id, &entry_ring[tcache_id], entry_count);
1249 // reserve cache space
1250 dr_reserve_cache(tcache_id, &tcache_ring[tcache_id], insn_count*128);
1252 if (bf != block_ring[tcache_id].first) {
1253 // deleted some block(s), clear branch cache and return stack
1256 memset32(sh2s[tcache_id-1].branch_cache, -1, sizeof(sh2s[0].branch_cache)/4);
1258 memset32(sh2s[0].branch_cache, -1, sizeof(sh2s[0].branch_cache)/4);
1259 memset32(sh2s[1].branch_cache, -1, sizeof(sh2s[1].branch_cache)/4);
1264 memset32(sh2s[tcache_id-1].rts_cache, -1, sizeof(sh2s[0].rts_cache)/4);
1265 sh2s[tcache_id-1].rts_cache_idx = 0;
1267 memset32(sh2s[0].rts_cache, -1, sizeof(sh2s[0].rts_cache)/4);
1268 memset32(sh2s[1].rts_cache, -1, sizeof(sh2s[1].rts_cache)/4);
1269 sh2s[0].rts_cache_idx = sh2s[1].rts_cache_idx = 0;
1274 return ring_next(&tcache_ring[tcache_id]);
1277 static void dr_flush_tcache(int tcid)
1281 elprintf(EL_STATUS, "tcache #%d flush! (%d/%d, bds %d/%d bes %d/%d)", tcid,
1282 tcache_ring[tcid].used, tcache_ring[tcid].size, block_ring[tcid].used,
1283 block_ring[tcid].size, entry_ring[tcid].used, entry_ring[tcid].size);
1286 ring_reset(&tcache_ring[tcid]);
1287 ring_reset(&block_ring[tcid]);
1288 ring_reset(&entry_ring[tcid]);
1290 block_link_pool_counts[tcid] = 0;
1291 blink_free[tcid] = NULL;
1292 memset(unresolved_links[tcid], 0, sizeof(*unresolved_links[0]) * HASH_TABLE_SIZE(tcid));
1293 memset(hash_tables[tcid], 0, sizeof(*hash_tables[0]) * HASH_TABLE_SIZE(tcid));
1295 if (tcid == 0) { // ROM, RAM
1296 memset(Pico32xMem->drcblk_ram, 0, sizeof(Pico32xMem->drcblk_ram));
1297 memset(Pico32xMem->drclit_ram, 0, sizeof(Pico32xMem->drclit_ram));
1298 memset(sh2s[0].branch_cache, -1, sizeof(sh2s[0].branch_cache));
1299 memset(sh2s[1].branch_cache, -1, sizeof(sh2s[1].branch_cache));
1300 memset(sh2s[0].rts_cache, -1, sizeof(sh2s[0].rts_cache));
1301 memset(sh2s[1].rts_cache, -1, sizeof(sh2s[1].rts_cache));
1302 sh2s[0].rts_cache_idx = sh2s[1].rts_cache_idx = 0;
1304 memset(Pico32xMem->drcblk_ram, 0, sizeof(Pico32xMem->drcblk_ram));
1305 memset(Pico32xMem->drclit_ram, 0, sizeof(Pico32xMem->drclit_ram));
1306 memset(Pico32xMem->drcblk_da[tcid - 1], 0, sizeof(Pico32xMem->drcblk_da[tcid - 1]));
1307 memset(Pico32xMem->drclit_da[tcid - 1], 0, sizeof(Pico32xMem->drclit_da[tcid - 1]));
1308 memset(sh2s[tcid - 1].branch_cache, -1, sizeof(sh2s[0].branch_cache));
1309 memset(sh2s[tcid - 1].rts_cache, -1, sizeof(sh2s[0].rts_cache));
1310 sh2s[tcid - 1].rts_cache_idx = 0;
1313 tcache_dsm_ptrs[tcid] = tcache_ring[tcid].base;
1316 for (i = 0; i < RAM_SIZE(tcid) / INVAL_PAGE_SIZE; i++)
1317 discard_block_list(&inval_lookup[tcid][i]);
1318 discard_block_list(&inactive_blocks[tcid]);
1321 static void *dr_failure(void)
1323 printf("recompilation failed\n");
1327 // ---------------------------------------------------------------
1329 // NB rcache allocation dependencies:
1330 // - get_reg_arg/get_tmp_arg first (might evict other regs just allocated)
1331 // - get_reg(..., NULL) before get_reg(..., &hr) if it might get the same reg
1332 // - get_reg(..., RC_GR_READ/RMW, ...) before WRITE (might evict needed reg)
1334 // register cache / constant propagation stuff
1346 gconst_t gconsts[ARRAY_SIZE(guest_regs)];
1348 static int rcache_get_reg_(sh2_reg_e r, rc_gr_mode mode, int do_locking, int *hr);
1349 static inline int rcache_is_cached(sh2_reg_e r);
1350 static void rcache_add_vreg_alias(int x, sh2_reg_e r);
1351 static void rcache_remove_vreg_alias(int x, sh2_reg_e r);
1352 static void rcache_evict_vreg(int x);
1353 static void rcache_remap_vreg(int x);
1354 static int rcache_get_reg(sh2_reg_e r, rc_gr_mode mode, int *hr);
1356 static void rcache_set_x16(int hr, int s16_, int u16_)
1358 int x = reg_map_host[hr];
1360 cache_regs[x].flags &= ~(HRF_S16|HRF_U16);
1361 if (s16_) cache_regs[x].flags |= HRF_S16;
1362 if (u16_) cache_regs[x].flags |= HRF_U16;
1366 static void rcache_copy_x16(int hr, int hr2)
1368 int x = reg_map_host[hr], y = reg_map_host[hr2];
1369 if (x >= 0 && y >= 0) {
1370 cache_regs[x].flags = (cache_regs[x].flags & ~(HRF_S16|HRF_U16)) |
1371 (cache_regs[y].flags & (HRF_S16|HRF_U16));
1375 static int rcache_is_s16(int hr)
1377 int x = reg_map_host[hr];
1378 return (x >= 0 ? cache_regs[x].flags & HRF_S16 : 0);
1381 static int rcache_is_u16(int hr)
1383 int x = reg_map_host[hr];
1384 return (x >= 0 ? cache_regs[x].flags & HRF_U16 : 0);
1387 #define RCACHE_DUMP(msg) { \
1391 printf("cache dump %s:\n",msg); \
1392 printf(" cache_regs:\n"); \
1393 for (i = 0; i < ARRAY_SIZE(cache_regs); i++) { \
1394 cp = &cache_regs[i]; \
1395 if (cp->type != HR_FREE || cp->gregs || cp->locked || cp->flags) \
1396 printf(" %d: hr=%d t=%d f=%x c=%d m=%lx\n", i, cp->hreg, cp->type, cp->flags, cp->locked, (ulong)cp->gregs); \
1398 printf(" guest_regs:\n"); \
1399 for (i = 0; i < ARRAY_SIZE(guest_regs); i++) { \
1400 gp = &guest_regs[i]; \
1401 if (gp->vreg != -1 || gp->sreg >= 0 || gp->flags) \
1402 printf(" %d: v=%d f=%x s=%d c=%d\n", i, gp->vreg, gp->flags, gp->sreg, gp->cnst); \
1404 printf(" gconsts:\n"); \
1405 for (i = 0; i < ARRAY_SIZE(gconsts); i++) { \
1406 if (gconsts[i].gregs) \
1407 printf(" %d: m=%lx v=%lx\n", i, (ulong)gconsts[i].gregs, (ulong)gconsts[i].val); \
1411 #define RCACHE_CHECK(msg) { \
1414 int i, x, m = 0, d = 0; \
1415 for (i = 0; i < ARRAY_SIZE(cache_regs); i++) { \
1416 cp = &cache_regs[i]; \
1417 if (cp->flags & HRF_PINNED) m |= (1 << i); \
1418 if (cp->type == HR_FREE || cp->type == HR_TEMP) continue; \
1419 /* check connectivity greg->vreg */ \
1420 FOR_ALL_BITS_SET_DO(cp->gregs, x, \
1421 if (guest_regs[x].vreg != i) \
1422 { d = 1; printf("cache check v=%d r=%d not connected?\n",i,x); } \
1425 for (i = 0; i < ARRAY_SIZE(guest_regs); i++) { \
1426 gp = &guest_regs[i]; \
1427 if (gp->vreg != -1 && !(cache_regs[gp->vreg].gregs & (1 << i))) \
1428 { d = 1; printf("cache check r=%d v=%d not connected?\n", i, gp->vreg); }\
1429 if (gp->vreg != -1 && cache_regs[gp->vreg].type != HR_CACHED) \
1430 { d = 1; printf("cache check r=%d v=%d wrong type?\n", i, gp->vreg); }\
1431 if ((gp->flags & GRF_CONST) && !(gconsts[gp->cnst].gregs & (1 << i))) \
1432 { d = 1; printf("cache check r=%d c=%d not connected?\n", i, gp->cnst); }\
1433 if ((gp->flags & GRF_CDIRTY) && (gp->vreg != -1 || !(gp->flags & GRF_CONST)))\
1434 { d = 1; printf("cache check r=%d CDIRTY?\n", i); } \
1435 if (gp->flags & (GRF_STATIC|GRF_PINNED)) { \
1436 if (gp->sreg == -1 || !(cache_regs[gp->sreg].flags & HRF_PINNED))\
1437 { d = 1; printf("cache check r=%d v=%d not pinned?\n", i, gp->vreg); } \
1438 else m &= ~(1 << gp->sreg); \
1441 for (i = 0; i < ARRAY_SIZE(gconsts); i++) { \
1442 FOR_ALL_BITS_SET_DO(gconsts[i].gregs, x, \
1443 if (guest_regs[x].cnst != i || !(guest_regs[x].flags & GRF_CONST)) \
1444 { d = 1; printf("cache check c=%d v=%d not connected?\n",i,x); } \
1448 { d = 1; printf("cache check m=%x pinning wrong?\n",m); } \
1449 if (d) RCACHE_DUMP(msg) \
1451 printf("locked regs %s:\n",msg); \
1452 for (i = 0; i < ARRAY_SIZE(cache_regs); i++) { \
1453 cp = &cache_regs[i]; \
1455 printf(" %d: hr=%d t=%d f=%x c=%d m=%x\n", i, cp->hreg, cp->type, cp->flags, cp->locked, cp->gregs); \
1460 static inline int gconst_alloc(sh2_reg_e r)
1464 for (i = 0; i < ARRAY_SIZE(gconsts); i++) {
1465 gconsts[i].gregs &= ~(1 << r);
1466 if (gconsts[i].gregs == 0 && n < 0)
1470 gconsts[n].gregs = (1 << r);
1472 printf("all gconst buffers in use, aborting\n");
1473 exit(1); // cannot happen - more constants than guest regs?
1478 static void gconst_set(sh2_reg_e r, u32 val)
1480 int i = gconst_alloc(r);
1482 guest_regs[r].flags |= GRF_CONST;
1483 guest_regs[r].cnst = i;
1484 gconsts[i].val = val;
1487 static void gconst_new(sh2_reg_e r, u32 val)
1490 guest_regs[r].flags |= GRF_CDIRTY;
1492 // throw away old r that we might have cached
1493 if (guest_regs[r].vreg >= 0)
1494 rcache_remove_vreg_alias(guest_regs[r].vreg, r);
1497 static int gconst_get(sh2_reg_e r, u32 *val)
1499 if (guest_regs[r].flags & GRF_CONST) {
1500 *val = gconsts[guest_regs[r].cnst].val;
1507 static int gconst_check(sh2_reg_e r)
1509 if (guest_regs[r].flags & (GRF_CONST|GRF_CDIRTY))
1514 // update hr if dirty, else do nothing
1515 static int gconst_try_read(int vreg, sh2_reg_e r)
1520 if (guest_regs[r].flags & GRF_CDIRTY) {
1521 x = guest_regs[r].cnst;
1523 emith_move_r_imm(cache_regs[vreg].hreg, v);
1524 rcache_set_x16(cache_regs[vreg].hreg, v == (s16)v, v == (u16)v);
1525 FOR_ALL_BITS_SET_DO(gconsts[x].gregs, i,
1527 if (guest_regs[i].vreg >= 0 && guest_regs[i].vreg != vreg)
1528 rcache_remove_vreg_alias(guest_regs[i].vreg, i);
1529 if (guest_regs[i].vreg < 0)
1530 rcache_add_vreg_alias(vreg, i);
1531 guest_regs[i].flags &= ~GRF_CDIRTY;
1532 guest_regs[i].flags |= GRF_DIRTY;
1534 cache_regs[vreg].type = HR_CACHED;
1535 cache_regs[vreg].flags |= HRF_DIRTY;
1541 static u32 gconst_dirty_mask(void)
1546 for (i = 0; i < ARRAY_SIZE(guest_regs); i++)
1547 if (guest_regs[i].flags & GRF_CDIRTY)
1552 static void gconst_kill(sh2_reg_e r)
1554 if (guest_regs[r].flags & (GRF_CONST|GRF_CDIRTY))
1555 gconsts[guest_regs[r].cnst].gregs &= ~(1 << r);
1556 guest_regs[r].flags &= ~(GRF_CONST|GRF_CDIRTY);
1559 static void gconst_copy(sh2_reg_e rd, sh2_reg_e rs)
1562 if (guest_regs[rs].flags & GRF_CONST) {
1563 guest_regs[rd].flags |= GRF_CONST;
1564 if (guest_regs[rd].vreg < 0)
1565 guest_regs[rd].flags |= GRF_CDIRTY;
1566 guest_regs[rd].cnst = guest_regs[rs].cnst;
1567 gconsts[guest_regs[rd].cnst].gregs |= (1 << rd);
1571 static void gconst_clean(void)
1575 for (i = 0; i < ARRAY_SIZE(guest_regs); i++)
1576 if (guest_regs[i].flags & GRF_CDIRTY) {
1577 // using RC_GR_READ here: it will call gconst_try_read,
1578 // cache the reg and mark it dirty.
1579 rcache_get_reg_(i, RC_GR_READ, 0, NULL);
1583 static void gconst_invalidate(void)
1587 for (i = 0; i < ARRAY_SIZE(guest_regs); i++) {
1588 if (guest_regs[i].flags & (GRF_CONST|GRF_CDIRTY))
1589 gconsts[guest_regs[i].cnst].gregs &= ~(1 << i);
1590 guest_regs[i].flags &= ~(GRF_CONST|GRF_CDIRTY);
1595 static u16 rcache_counter;
1596 // SH2 register usage bitmasks
1597 static u32 rcache_vregs_reg; // regs of type HRT_REG (for pinning)
1598 static u32 rcache_regs_static; // statically allocated regs
1599 static u32 rcache_regs_pinned; // pinned regs
1600 static u32 rcache_regs_now; // regs used in current insn
1601 static u32 rcache_regs_soon; // regs used in the next few insns
1602 static u32 rcache_regs_late; // regs used in later insns
1603 static u32 rcache_regs_discard; // regs overwritten without being used
1604 static u32 rcache_regs_clean; // regs needing cleaning
1606 static void rcache_lock_vreg(int x)
1609 cache_regs[x].locked ++;
1611 if (cache_regs[x].type == HR_FREE) {
1612 printf("locking free vreg %x, aborting\n", x);
1615 if (!cache_regs[x].locked) {
1616 printf("locking overflow vreg %x, aborting\n", x);
1623 static void rcache_unlock_vreg(int x)
1627 if (cache_regs[x].type == HR_FREE) {
1628 printf("unlocking free vreg %x, aborting\n", x);
1632 if (cache_regs[x].locked)
1633 cache_regs[x].locked --;
1637 static void rcache_free_vreg(int x)
1639 cache_regs[x].type = cache_regs[x].locked ? HR_TEMP : HR_FREE;
1640 cache_regs[x].flags &= HRF_PINNED;
1641 cache_regs[x].gregs = 0;
1644 static void rcache_unmap_vreg(int x)
1648 FOR_ALL_BITS_SET_DO(cache_regs[x].gregs, i,
1649 if (guest_regs[i].flags & GRF_DIRTY) {
1650 // if a dirty reg is unmapped save its value to context
1651 if ((~rcache_regs_discard | rcache_regs_now) & (1 << i))
1652 emith_ctx_write(cache_regs[x].hreg, i * 4);
1653 guest_regs[i].flags &= ~GRF_DIRTY;
1655 guest_regs[i].vreg = -1);
1656 rcache_free_vreg(x);
1659 static void rcache_move_vreg(int d, int x)
1663 cache_regs[d].type = HR_CACHED;
1664 cache_regs[d].gregs = cache_regs[x].gregs;
1665 cache_regs[d].flags &= HRF_PINNED;
1666 cache_regs[d].flags |= cache_regs[x].flags & ~HRF_PINNED;
1667 cache_regs[d].locked = 0;
1668 cache_regs[d].stamp = cache_regs[x].stamp;
1669 emith_move_r_r(cache_regs[d].hreg, cache_regs[x].hreg);
1670 for (i = 0; i < ARRAY_SIZE(guest_regs); i++)
1671 if (guest_regs[i].vreg == x)
1672 guest_regs[i].vreg = d;
1673 rcache_free_vreg(x);
1676 static void rcache_clean_vreg(int x)
1678 u32 rns = rcache_regs_now | rcache_regs_soon;
1681 if (cache_regs[x].flags & HRF_DIRTY) { // writeback
1682 cache_regs[x].flags &= ~HRF_DIRTY;
1683 rcache_lock_vreg(x);
1684 FOR_ALL_BITS_SET_DO(cache_regs[x].gregs, r,
1685 if (guest_regs[r].flags & GRF_DIRTY) {
1686 if (guest_regs[r].flags & (GRF_STATIC|GRF_PINNED)) {
1687 if (guest_regs[r].vreg != guest_regs[r].sreg &&
1688 !cache_regs[guest_regs[r].sreg].locked &&
1689 ((~rcache_regs_discard | rcache_regs_now) & (1 << r)) &&
1690 !(rns & cache_regs[guest_regs[r].sreg].gregs)) {
1691 // statically mapped reg not in its sreg. move back to sreg
1692 rcache_evict_vreg(guest_regs[r].sreg);
1693 emith_move_r_r(cache_regs[guest_regs[r].sreg].hreg,
1694 cache_regs[guest_regs[r].vreg].hreg);
1695 rcache_copy_x16(cache_regs[guest_regs[r].sreg].hreg,
1696 cache_regs[guest_regs[r].vreg].hreg);
1697 rcache_remove_vreg_alias(x, r);
1698 rcache_add_vreg_alias(guest_regs[r].sreg, r);
1699 cache_regs[guest_regs[r].sreg].flags |= HRF_DIRTY;
1701 // cannot remap. keep dirty for writeback in unmap
1702 cache_regs[x].flags |= HRF_DIRTY;
1704 if ((~rcache_regs_discard | rcache_regs_now) & (1 << r))
1705 emith_ctx_write(cache_regs[x].hreg, r * 4);
1706 guest_regs[r].flags &= ~GRF_DIRTY;
1708 rcache_regs_clean &= ~(1 << r);
1710 rcache_unlock_vreg(x);
1714 RCACHE_CHECK("after clean");
1718 static void rcache_add_vreg_alias(int x, sh2_reg_e r)
1720 cache_regs[x].gregs |= (1 << r);
1721 guest_regs[r].vreg = x;
1722 cache_regs[x].type = HR_CACHED;
1725 static void rcache_remove_vreg_alias(int x, sh2_reg_e r)
1727 cache_regs[x].gregs &= ~(1 << r);
1728 if (!cache_regs[x].gregs) {
1729 // no reg mapped -> free vreg
1730 if (cache_regs[x].locked)
1731 cache_regs[x].type = HR_TEMP;
1733 rcache_free_vreg(x);
1735 guest_regs[r].vreg = -1;
1738 static void rcache_evict_vreg(int x)
1740 rcache_remap_vreg(x);
1741 rcache_unmap_vreg(x);
1744 static void rcache_evict_vreg_aliases(int x, sh2_reg_e r)
1746 rcache_remove_vreg_alias(x, r);
1747 rcache_evict_vreg(x);
1748 rcache_add_vreg_alias(x, r);
1751 static int rcache_allocate(int what, int minprio)
1753 // evict reg with oldest stamp (only for HRT_REG, no temps)
1754 int i, i_prio, oldest = -1, prio = 0;
1755 u16 min_stamp = (u16)-1;
1757 for (i = ARRAY_SIZE(cache_regs)-1; i >= 0; i--) {
1758 // consider only non-static, unpinned, unlocked REG or TEMP
1759 if ((cache_regs[i].flags & HRF_PINNED) || cache_regs[i].locked)
1761 if ((what > 0 && !(cache_regs[i].htype & HRT_REG)) || // get a REG
1762 (what == 0 && (cache_regs[i].htype & HRT_TEMP)) || // get a non-TEMP
1763 (what < 0 && !(cache_regs[i].htype & HRT_TEMP))) // get a TEMP
1765 if (cache_regs[i].type == HR_FREE || cache_regs[i].type == HR_TEMP) {
1771 if (cache_regs[i].type == HR_CACHED) {
1772 if (rcache_regs_now & cache_regs[i].gregs)
1773 // REGs needed for the current insn
1775 else if (rcache_regs_soon & cache_regs[i].gregs)
1776 // REGs needed in the next insns
1778 else if (rcache_regs_late & cache_regs[i].gregs)
1779 // REGs needed in some future insn
1781 else if (~rcache_regs_discard & cache_regs[i].gregs)
1782 // REGs not needed in the foreseeable future
1785 // REGs soon overwritten anyway
1787 if (!(cache_regs[i].flags & HRF_DIRTY)) i_prio ++;
1789 if (prio < i_prio || (prio == i_prio && cache_regs[i].stamp < min_stamp)) {
1790 min_stamp = cache_regs[i].stamp;
1798 if (prio < minprio || oldest == -1)
1801 if (cache_regs[oldest].type == HR_CACHED)
1802 rcache_evict_vreg(oldest);
1804 rcache_free_vreg(oldest);
1809 static int rcache_allocate_vreg(int needed)
1813 x = rcache_allocate(1, needed ? 0 : 4);
1815 x = rcache_allocate(-1, 0);
1819 static int rcache_allocate_nontemp(void)
1821 int x = rcache_allocate(0, 4);
1825 static int rcache_allocate_temp(void)
1827 int x = rcache_allocate(-1, 0);
1829 x = rcache_allocate(0, 0);
1833 // maps a host register to a REG
1834 static int rcache_map_reg(sh2_reg_e r, int hr)
1841 // lookup the TEMP hr maps to
1842 i = reg_map_host[hr];
1845 printf("invalid host register %d\n", hr);
1849 // remove old mappings of r and i if one exists
1850 if (guest_regs[r].vreg >= 0)
1851 rcache_remove_vreg_alias(guest_regs[r].vreg, r);
1852 if (cache_regs[i].type == HR_CACHED)
1853 rcache_evict_vreg(i);
1855 cache_regs[i].type = HR_CACHED;
1856 cache_regs[i].gregs = 1 << r;
1857 cache_regs[i].locked = 0;
1858 cache_regs[i].stamp = ++rcache_counter;
1859 cache_regs[i].flags |= HRF_DIRTY;
1860 rcache_lock_vreg(i);
1861 guest_regs[r].flags |= GRF_DIRTY;
1862 guest_regs[r].vreg = i;
1864 RCACHE_CHECK("after map");
1866 return cache_regs[i].hreg;
1868 return rcache_get_reg(r, RC_GR_WRITE, NULL);
1872 // remap vreg from a TEMP to a REG if it will be used (upcoming TEMP invalidation)
1873 static void rcache_remap_vreg(int x)
1876 u32 rsl_d = rcache_regs_soon | rcache_regs_late;
1879 // x must be a cached vreg
1880 if (cache_regs[x].type != HR_CACHED || cache_regs[x].locked)
1882 // don't do it if x isn't used
1883 if (!(rsl_d & cache_regs[x].gregs)) {
1884 // clean here to avoid data loss on invalidation
1885 rcache_clean_vreg(x);
1889 FOR_ALL_BITS_SET_DO(cache_regs[x].gregs, d,
1890 if ((guest_regs[d].flags & (GRF_STATIC|GRF_PINNED)) &&
1891 !cache_regs[guest_regs[d].sreg].locked &&
1892 !((rsl_d|rcache_regs_now) & cache_regs[guest_regs[d].sreg].gregs)) {
1893 // STATIC not in its sreg and sreg is available
1894 rcache_evict_vreg(guest_regs[d].sreg);
1895 rcache_move_vreg(guest_regs[d].sreg, x);
1900 // allocate a non-TEMP vreg
1901 rcache_lock_vreg(x); // lock to avoid evicting x
1902 d = rcache_allocate_nontemp();
1903 rcache_unlock_vreg(x);
1905 rcache_clean_vreg(x);
1909 // move vreg to new location
1910 rcache_move_vreg(d, x);
1912 RCACHE_CHECK("after remap");
1915 rcache_clean_vreg(x);
1919 static void rcache_alias_vreg(sh2_reg_e rd, sh2_reg_e rs)
1924 // if s isn't constant, it must be in cache for aliasing
1925 if (!gconst_check(rs))
1926 rcache_get_reg_(rs, RC_GR_READ, 0, NULL);
1928 // if d and s are not already aliased
1929 x = guest_regs[rs].vreg;
1930 if (guest_regs[rd].vreg != x) {
1931 // remove possible old mapping of dst
1932 if (guest_regs[rd].vreg >= 0)
1933 rcache_remove_vreg_alias(guest_regs[rd].vreg, rd);
1934 // make dst an alias of src
1936 rcache_add_vreg_alias(x, rd);
1937 // if d is now in cache, it must be dirty
1938 if (guest_regs[rd].vreg >= 0) {
1939 x = guest_regs[rd].vreg;
1940 cache_regs[x].flags |= HRF_DIRTY;
1941 guest_regs[rd].flags |= GRF_DIRTY;
1945 gconst_copy(rd, rs);
1947 RCACHE_CHECK("after alias");
1950 int hr_s = rcache_get_reg(rs, RC_GR_READ, NULL);
1951 int hr_d = rcache_get_reg(rd, RC_GR_WRITE, NULL);
1953 emith_move_r_r(hr_d, hr_s);
1954 gconst_copy(rd, rs);
1958 // note: must not be called when doing conditional code
1959 static int rcache_get_reg_(sh2_reg_e r, rc_gr_mode mode, int do_locking, int *hr)
1963 u32 rsp_d = (rcache_regs_soon | rcache_regs_static | rcache_regs_pinned) &
1964 ~rcache_regs_discard;
1966 dst = src = guest_regs[r].vreg;
1968 rcache_lock_vreg(src); // lock to avoid evicting src
1969 // good opportunity to relocate a remapped STATIC?
1970 if ((guest_regs[r].flags & (GRF_STATIC|GRF_PINNED)) &&
1971 src != guest_regs[r].sreg && (src < 0 || mode != RC_GR_READ) &&
1972 !cache_regs[guest_regs[r].sreg].locked &&
1973 !((rsp_d|rcache_regs_now) & cache_regs[guest_regs[r].sreg].gregs)) {
1974 dst = guest_regs[r].sreg;
1975 rcache_evict_vreg(dst);
1976 } else if (dst < 0) {
1977 // allocate a cache register
1978 if ((dst = rcache_allocate_vreg(rsp_d & (1 << r))) < 0) {
1979 printf("no registers to evict, aborting\n");
1983 tr = &cache_regs[dst];
1984 tr->stamp = rcache_counter;
1985 // remove r from src
1986 if (src >= 0 && src != dst)
1987 rcache_remove_vreg_alias(src, r);
1988 rcache_unlock_vreg(src);
1990 // if r has a constant it may have aliases
1991 if (mode != RC_GR_WRITE && gconst_try_read(dst, r))
1994 // if r will be modified, check for aliases being needed rsn
1995 ali = tr->gregs & ~(1 << r);
1996 if (mode != RC_GR_READ && src == dst && ali) {
1998 if ((rsp_d|rcache_regs_now) & ali) {
1999 if ((guest_regs[r].flags & (GRF_STATIC|GRF_PINNED)) &&
2000 guest_regs[r].sreg == dst && !tr->locked) {
2001 // split aliases if r is STATIC in sreg and dst isn't already locked
2003 FOR_ALL_BITS_SET_DO(ali, t,
2004 if ((guest_regs[t].flags & (GRF_STATIC|GRF_PINNED)) &&
2005 !(ali & ~(1 << t)) &&
2006 !cache_regs[guest_regs[t].sreg].locked &&
2007 !((rsp_d|rcache_regs_now) & cache_regs[guest_regs[t].sreg].gregs)) {
2008 // alias is a single STATIC and its sreg is available
2009 x = guest_regs[t].sreg;
2010 rcache_evict_vreg(x);
2012 rcache_lock_vreg(dst); // lock to avoid evicting dst
2013 x = rcache_allocate_vreg(rsp_d & ali);
2014 rcache_unlock_vreg(dst);
2019 rcache_remove_vreg_alias(src, r);
2021 rcache_move_vreg(x, dst);
2025 rcache_lock_vreg(src); // lock to avoid evicting src
2026 x = rcache_allocate_vreg(rsp_d & (1 << r));
2027 rcache_unlock_vreg(src);
2029 rcache_remove_vreg_alias(src, r);
2031 tr = &cache_regs[dst];
2032 tr->stamp = rcache_counter;
2037 // aliases not needed or no vreg available, remove them
2038 rcache_evict_vreg_aliases(dst, r);
2042 rcache_add_vreg_alias(dst, r);
2044 // handle dst register transfer
2045 if (src < 0 && mode != RC_GR_WRITE)
2046 emith_ctx_read(tr->hreg, r * 4);
2048 *hr = (src >= 0 ? cache_regs[src].hreg : tr->hreg);
2049 rcache_lock_vreg(src >= 0 ? src : dst);
2050 } else if (src >= 0 && mode != RC_GR_WRITE && cache_regs[src].hreg != tr->hreg)
2051 emith_move_r_r(tr->hreg, cache_regs[src].hreg);
2055 rcache_lock_vreg(dst);
2056 if (mode != RC_GR_READ) {
2057 tr->flags |= HRF_DIRTY;
2058 guest_regs[r].flags |= GRF_DIRTY;
2060 rcache_set_x16(tr->hreg, 0, 0);
2061 } else if (src >= 0 && cache_regs[src].hreg != tr->hreg)
2062 rcache_copy_x16(tr->hreg, cache_regs[src].hreg);
2064 RCACHE_CHECK("after getreg");
2069 static int rcache_get_reg(sh2_reg_e r, rc_gr_mode mode, int *hr)
2071 return rcache_get_reg_(r, mode, 1, hr);
2074 static void rcache_pin_reg(sh2_reg_e r)
2078 // don't pin if static or already pinned
2079 if (guest_regs[r].flags & (GRF_STATIC|GRF_PINNED))
2082 rcache_regs_soon |= (1 << r); // kludge to prevent allocation of a temp
2083 hr = rcache_get_reg_(r, RC_GR_RMW, 0, NULL);
2084 x = reg_map_host[hr];
2086 // can only pin non-TEMPs
2087 if (!(cache_regs[x].htype & HRT_TEMP)) {
2088 guest_regs[r].flags |= GRF_PINNED;
2089 cache_regs[x].flags |= HRF_PINNED;
2090 guest_regs[r].sreg = x;
2091 rcache_regs_pinned |= (1 << r);
2094 RCACHE_CHECK("after pin");
2098 static int rcache_get_tmp(void)
2102 i = rcache_allocate_temp();
2104 printf("cannot allocate temp\n");
2108 cache_regs[i].type = HR_TEMP;
2109 rcache_lock_vreg(i);
2111 return cache_regs[i].hreg;
2114 static int rcache_get_vreg_hr(int hr)
2118 i = reg_map_host[hr];
2119 if (i < 0 || cache_regs[i].locked) {
2120 printf("host register %d is locked\n", hr);
2124 if (cache_regs[i].type == HR_CACHED)
2125 rcache_evict_vreg(i);
2126 else if (cache_regs[i].type == HR_TEMP && cache_regs[i].locked) {
2127 printf("host reg %d already used, aborting\n", hr);
2134 static int rcache_get_vreg_arg(int arg)
2138 host_arg2reg(hr, arg);
2139 return rcache_get_vreg_hr(hr);
2142 // get a reg to be used as function arg
2143 static int rcache_get_tmp_arg(int arg)
2145 int x = rcache_get_vreg_arg(arg);
2146 cache_regs[x].type = HR_TEMP;
2147 rcache_lock_vreg(x);
2149 return cache_regs[x].hreg;
2152 // ... as return value after a call
2153 static int rcache_get_tmp_ret(void)
2155 int x = rcache_get_vreg_hr(RET_REG);
2156 cache_regs[x].type = HR_TEMP;
2157 rcache_lock_vreg(x);
2159 return cache_regs[x].hreg;
2162 // same but caches a reg if access is readonly (announced by hr being NULL)
2163 static int rcache_get_reg_arg(int arg, sh2_reg_e r, int *hr)
2165 int i, srcr, dstr, dstid, keep;
2167 host_arg2reg(dstr, arg);
2169 i = guest_regs[r].vreg;
2170 if (i >= 0 && cache_regs[i].type == HR_CACHED && cache_regs[i].hreg == dstr)
2171 // r is already in arg, avoid evicting
2174 dstid = rcache_get_vreg_arg(arg);
2175 dstr = cache_regs[dstid].hreg;
2177 if (rcache_is_cached(r)) {
2178 // r is needed later on anyway
2179 srcr = rcache_get_reg_(r, RC_GR_READ, 0, NULL);
2181 } else if ((guest_regs[r].flags & GRF_CDIRTY) && gconst_get(r, &val)) {
2182 // r has an uncomitted const - load into arg, but keep constant uncomitted
2184 emith_move_r_imm(srcr, val);
2187 // must read from ctx
2189 emith_ctx_read(srcr, r * 4);
2193 if (cache_regs[dstid].type == HR_CACHED)
2194 rcache_evict_vreg(dstid);
2196 cache_regs[dstid].type = HR_TEMP;
2199 // arg is a copy of cached r
2200 emith_move_r_r(dstr, srcr);
2201 else if (keep && guest_regs[r].vreg < 0)
2202 // keep arg as vreg for r
2203 rcache_add_vreg_alias(dstid, r);
2206 if (dstr != srcr) // must lock srcr if not copied here
2207 rcache_lock_vreg(reg_map_host[srcr]);
2210 cache_regs[dstid].stamp = ++rcache_counter;
2211 rcache_lock_vreg(dstid);
2213 RCACHE_CHECK("after getarg");
2218 static void rcache_free_tmp(int hr)
2220 int i = reg_map_host[hr];
2222 if (i < 0 || cache_regs[i].type != HR_TEMP) {
2223 printf("rcache_free_tmp fail: #%i hr %d, type %d\n", i, hr, cache_regs[i].type);
2227 rcache_unlock_vreg(i);
2230 // saves temporary result either in REG or in drctmp
2231 static int rcache_save_tmp(int hr)
2235 // find REG, either free or unlocked temp or oldest non-hinted cached
2236 i = rcache_allocate_nontemp();
2238 // if none is available, store in drctmp
2239 emith_ctx_write(hr, offsetof(SH2, drc_tmp));
2240 rcache_free_tmp(hr);
2244 cache_regs[i].type = HR_CACHED;
2245 cache_regs[i].gregs = 0; // not storing any guest register
2246 cache_regs[i].flags &= HRF_PINNED;
2247 cache_regs[i].locked = 0;
2248 cache_regs[i].stamp = ++rcache_counter;
2249 rcache_lock_vreg(i);
2250 emith_move_r_r(cache_regs[i].hreg, hr);
2251 rcache_free_tmp(hr);
2255 static int rcache_restore_tmp(int x)
2259 // find REG with tmp store: cached but with no gregs
2261 if (cache_regs[x].type != HR_CACHED || cache_regs[x].gregs) {
2262 printf("invalid tmp storage %d\n", x);
2265 // found, transform to a TEMP
2266 cache_regs[x].type = HR_TEMP;
2267 return cache_regs[x].hreg;
2270 // if not available, create a TEMP store and fetch from drctmp
2271 hr = rcache_get_tmp();
2272 emith_ctx_read(hr, offsetof(SH2, drc_tmp));
2277 static void rcache_free(int hr)
2279 int x = reg_map_host[hr];
2280 rcache_unlock_vreg(x);
2283 static void rcache_unlock(int x)
2286 cache_regs[x].locked = 0;
2289 static void rcache_unlock_all(void)
2292 for (i = 0; i < ARRAY_SIZE(cache_regs); i++)
2293 cache_regs[i].locked = 0;
2296 static void rcache_unpin_all(void)
2300 for (i = 0; i < ARRAY_SIZE(guest_regs); i++) {
2301 if (guest_regs[i].flags & GRF_PINNED) {
2302 guest_regs[i].flags &= ~GRF_PINNED;
2303 cache_regs[guest_regs[i].sreg].flags &= ~HRF_PINNED;
2304 guest_regs[i].sreg = -1;
2305 rcache_regs_pinned &= ~(1 << i);
2309 RCACHE_CHECK("after unpin");
2313 static void rcache_save_pinned(void)
2317 // save pinned regs to context
2318 for (i = 0; i < ARRAY_SIZE(guest_regs); i++)
2319 if ((guest_regs[i].flags & GRF_PINNED) && guest_regs[i].vreg >= 0)
2320 emith_ctx_write(cache_regs[guest_regs[i].vreg].hreg, i * 4);
2323 static inline void rcache_set_usage_now(u32 mask)
2325 rcache_regs_now = mask;
2328 static inline void rcache_set_usage_soon(u32 mask)
2330 rcache_regs_soon = mask;
2333 static inline void rcache_set_usage_late(u32 mask)
2335 rcache_regs_late = mask;
2338 static inline void rcache_set_usage_discard(u32 mask)
2340 rcache_regs_discard = mask;
2343 static inline int rcache_is_cached(sh2_reg_e r)
2345 // is r in cache or needed RSN?
2346 u32 rsc = rcache_regs_soon | rcache_regs_clean;
2347 return (guest_regs[r].vreg >= 0 || (rsc & (1 << r)));
2350 static inline int rcache_is_hreg_used(int hr)
2352 int x = reg_map_host[hr];
2354 return cache_regs[x].type != HR_FREE &&
2355 (cache_regs[x].type != HR_TEMP || cache_regs[x].locked);
2358 static inline u32 rcache_used_hregs_mask(void)
2363 for (i = 0; i < ARRAY_SIZE(cache_regs); i++)
2364 if ((cache_regs[i].htype & HRT_TEMP) && cache_regs[i].type != HR_FREE &&
2365 (cache_regs[i].type != HR_TEMP || cache_regs[i].locked))
2366 mask |= 1 << cache_regs[i].hreg;
2371 static inline u32 rcache_dirty_mask(void)
2376 for (i = 0; i < ARRAY_SIZE(guest_regs); i++)
2377 if (guest_regs[i].flags & GRF_DIRTY)
2379 mask |= gconst_dirty_mask();
2384 static inline u32 rcache_cached_mask(void)
2389 for (i = 0; i < ARRAY_SIZE(cache_regs); i++)
2390 if (cache_regs[i].type == HR_CACHED)
2391 mask |= cache_regs[i].gregs;
2396 static void rcache_clean_tmp(void)
2400 rcache_regs_clean = (1 << ARRAY_SIZE(guest_regs)) - 1;
2401 for (i = 0; i < ARRAY_SIZE(cache_regs); i++)
2402 if (cache_regs[i].type == HR_CACHED && (cache_regs[i].htype & HRT_TEMP)) {
2404 rcache_remap_vreg(i);
2406 rcache_regs_clean = 0;
2409 static void rcache_clean_masked(u32 mask)
2414 rcache_regs_clean |= mask;
2415 mask = rcache_regs_clean;
2417 // clean constants where all aliases are covered by the mask, exempt statics
2418 // to avoid flushing them to context if sreg isn't available
2419 m = mask & ~(rcache_regs_static | rcache_regs_pinned);
2420 for (i = 0; i < ARRAY_SIZE(gconsts); i++)
2421 if ((gconsts[i].gregs & m) && !(gconsts[i].gregs & ~mask)) {
2422 FOR_ALL_BITS_SET_DO(gconsts[i].gregs, r,
2423 if (guest_regs[r].flags & GRF_CDIRTY) {
2424 hr = rcache_get_reg_(r, RC_GR_READ, 0, NULL);
2425 rcache_clean_vreg(reg_map_host[hr]);
2429 // clean vregs where all aliases are covered by the mask
2430 for (i = 0; i < ARRAY_SIZE(cache_regs); i++)
2431 if (cache_regs[i].type == HR_CACHED &&
2432 (cache_regs[i].gregs & mask) && !(cache_regs[i].gregs & ~mask))
2433 rcache_clean_vreg(i);
2436 static void rcache_clean(void)
2441 rcache_regs_clean = (1 << ARRAY_SIZE(guest_regs)) - 1;
2442 for (i = ARRAY_SIZE(cache_regs)-1; i >= 0; i--)
2443 if (cache_regs[i].type == HR_CACHED)
2444 rcache_clean_vreg(i);
2446 // relocate statics to their sregs (necessary before conditional jumps)
2447 for (i = 0; i < ARRAY_SIZE(guest_regs); i++) {
2448 if ((guest_regs[i].flags & (GRF_STATIC|GRF_PINNED)) &&
2449 guest_regs[i].vreg != guest_regs[i].sreg) {
2450 rcache_lock_vreg(guest_regs[i].vreg);
2451 rcache_evict_vreg(guest_regs[i].sreg);
2452 rcache_unlock_vreg(guest_regs[i].vreg);
2453 if (guest_regs[i].vreg < 0)
2454 emith_ctx_read(cache_regs[guest_regs[i].sreg].hreg, i*4);
2456 emith_move_r_r(cache_regs[guest_regs[i].sreg].hreg,
2457 cache_regs[guest_regs[i].vreg].hreg);
2458 rcache_copy_x16(cache_regs[guest_regs[i].sreg].hreg,
2459 cache_regs[guest_regs[i].vreg].hreg);
2460 rcache_remove_vreg_alias(guest_regs[i].vreg, i);
2462 cache_regs[guest_regs[i].sreg].gregs = 1 << i;
2463 cache_regs[guest_regs[i].sreg].type = HR_CACHED;
2464 cache_regs[guest_regs[i].sreg].flags |= HRF_DIRTY|HRF_PINNED;
2465 guest_regs[i].flags |= GRF_DIRTY;
2466 guest_regs[i].vreg = guest_regs[i].sreg;
2469 rcache_regs_clean = 0;
2472 static void rcache_invalidate_tmp(void)
2476 for (i = 0; i < ARRAY_SIZE(cache_regs); i++) {
2477 if (cache_regs[i].htype & HRT_TEMP) {
2479 if (cache_regs[i].type == HR_CACHED)
2480 rcache_evict_vreg(i);
2482 rcache_free_vreg(i);
2487 static void rcache_invalidate(void)
2490 gconst_invalidate();
2491 rcache_unlock_all();
2493 for (i = 0; i < ARRAY_SIZE(cache_regs); i++)
2494 rcache_free_vreg(i);
2496 for (i = 0; i < ARRAY_SIZE(guest_regs); i++) {
2497 guest_regs[i].flags &= GRF_STATIC;
2498 if (!(guest_regs[i].flags & GRF_STATIC))
2499 guest_regs[i].vreg = -1;
2501 cache_regs[guest_regs[i].sreg].gregs = 1 << i;
2502 cache_regs[guest_regs[i].sreg].type = HR_CACHED;
2503 cache_regs[guest_regs[i].sreg].flags |= HRF_DIRTY|HRF_PINNED;
2504 guest_regs[i].flags |= GRF_DIRTY;
2505 guest_regs[i].vreg = guest_regs[i].sreg;
2510 rcache_regs_now = rcache_regs_soon = rcache_regs_late = 0;
2511 rcache_regs_discard = rcache_regs_clean = 0;
2514 static void rcache_flush(void)
2517 rcache_invalidate();
2520 static void rcache_create(void)
2524 // create cache_regs as host register representation
2525 // RET_REG/params should be first TEMPs to avoid allocation conflicts in calls
2526 cache_regs[x++] = (cache_reg_t) {.hreg = RET_REG, .htype = HRT_TEMP};
2527 for (i = 0; i < ARRAY_SIZE(hregs_param); i++)
2528 if (hregs_param[i] != RET_REG)
2529 cache_regs[x++] = (cache_reg_t){.hreg = hregs_param[i],.htype = HRT_TEMP};
2531 for (i = 0; i < ARRAY_SIZE(hregs_temp); i++)
2532 if (hregs_temp[i] != RET_REG)
2533 cache_regs[x++] = (cache_reg_t){.hreg = hregs_temp[i], .htype = HRT_TEMP};
2535 for (i = ARRAY_SIZE(hregs_saved)-1; i >= 0; i--)
2536 if (hregs_saved[i] != CONTEXT_REG)
2537 cache_regs[x++] = (cache_reg_t){.hreg = hregs_saved[i], .htype = HRT_REG};
2539 if (x != ARRAY_SIZE(cache_regs)) {
2540 printf("rcache_create failed (conflicting register count)\n");
2544 // mapping from host_register to cache regs index
2545 memset(reg_map_host, -1, sizeof(reg_map_host));
2546 for (i = 0; i < ARRAY_SIZE(cache_regs); i++) {
2547 if (cache_regs[i].htype)
2548 reg_map_host[cache_regs[i].hreg] = i;
2549 if (cache_regs[i].htype == HRT_REG)
2550 rcache_vregs_reg |= (1 << i);
2553 // create static host register mapping for SH2 regs
2554 for (i = 0; i < ARRAY_SIZE(guest_regs); i++) {
2555 guest_regs[i] = (guest_reg_t){.sreg = -1};
2557 for (i = 0; i < ARRAY_SIZE(regs_static); i += 2) {
2558 for (x = ARRAY_SIZE(cache_regs)-1; x >= 0; x--)
2559 if (cache_regs[x].hreg == regs_static[i+1]) break;
2561 guest_regs[regs_static[i]] = (guest_reg_t){.flags = GRF_STATIC,.sreg = x};
2562 rcache_regs_static |= (1 << regs_static[i]);
2563 rcache_vregs_reg &= ~(1 << x);
2567 printf("DRC registers created, %ld host regs (%d REG, %d STATIC, 1 CTX)\n",
2568 CACHE_REGS+1L, count_bits(rcache_vregs_reg),count_bits(rcache_regs_static));
2571 static void rcache_init(void)
2573 // create DRC data structures
2576 rcache_invalidate();
2578 RCACHE_CHECK("after init");
2582 // ---------------------------------------------------------------
2584 // swap 32 bit value read from mem in generated code (same as CPU_BE2)
2585 static void emit_le_swap(int cond, int r)
2589 emith_ror(r, r, 16);
2591 emith_ror_c(cond, r, r, 16);
2595 // fix memory byte ptr in generated code (same as MEM_BE2)
2596 static void emit_le_ptr8(int cond, int r)
2600 emith_eor_r_imm_ptr(r, 1);
2602 emith_eor_r_imm_ptr_c(cond, r, 1);
2606 // split address by mask, in base part (upper) and offset (lower, signed!)
2607 static uptr split_address(uptr la, uptr mask, s32 *offs)
2609 uptr sign = (mask>>1) + 1; // sign bit in offset
2610 *offs = (la & mask) | (la & sign ? ~mask : 0); // offset part, sign extended
2611 la = (la & ~mask) + ((la & sign) << 1); // base part, corrected for offs sign
2613 // arm32 offset has an add/sub flag and an unsigned 8 bit value, which only
2614 // allows values of [-255...255]. the value -256 thus can't be used.
2615 if (*offs < 0) { // TODO not working at all with negative offsets on ARM?
2616 //if (*offs == -sign) {
2624 // NB may return either REG or TEMP
2625 static int emit_get_rbase_and_offs(SH2 *sh2, sh2_reg_e r, int rmode, s32 *offs)
2627 uptr omask = emith_rw_offs_max(); // offset mask
2634 // is r constant and points to a memory region?
2635 if (! gconst_get(r, &a))
2637 poffs = dr_ctx_get_mem_ptr(sh2, a + *offs, &mask);
2641 if (mask < 0x20000) {
2642 // data array, BIOS, DRAM, can't safely access directly since host addr may
2643 // change (BIOS,da code may run on either core, DRAM may be switched)
2644 hr = rcache_get_tmp();
2645 a = (a + *offs) & mask;
2646 if (poffs == offsetof(SH2, p_da)) {
2647 // access sh2->data_array directly
2648 a = split_address(a + offsetof(SH2, data_array), omask, offs);
2649 emith_add_r_r_ptr_imm(hr, CONTEXT_REG, a);
2651 a = split_address(a, omask, offs);
2652 emith_ctx_read_ptr(hr, poffs);
2654 emith_add_r_r_ptr_imm(hr, hr, a);
2659 // ROM, SDRAM. Host address should be mmapped to be equal to SH2 address.
2660 la = (uptr)*(void **)((char *)sh2 + poffs);
2662 // if r is in rcache or needed soon anyway, and offs is relative to region,
2663 // and address translation fits in add_ptr_imm (s32), then use rcached const
2664 if (la == (s32)la && !(((a & mask) + *offs) & ~mask) && rcache_is_cached(r)) {
2665 #if CPU_IS_LE // need to fix odd address for correct byte addressing
2666 if (a & 1) *offs += (*offs&1) ? 2 : -2;
2668 la -= (s32)((a & ~mask) - *offs); // diff between reg and memory
2669 hr = hr2 = rcache_get_reg(r, rmode, NULL);
2670 if ((s32)a < 0) emith_uext_ptr(hr2);
2671 la = split_address(la, omask, offs);
2673 hr = rcache_get_tmp();
2674 emith_add_r_r_ptr_imm(hr, hr2, la);
2678 // known fixed host address
2679 la = split_address(la + ((a + *offs) & mask), omask, offs);
2681 // offset only. optimize for hosts having short indexed addressing
2682 la = *offs & ~0x7f; // keep the lower bits for endianess handling
2685 hr = rcache_get_tmp();
2686 emith_move_r_ptr_imm(hr, la);
2691 // read const data from const ROM address
2692 static int emit_get_rom_data(SH2 *sh2, sh2_reg_e r, s32 offs, int size, u32 *val)
2697 if (gconst_get(r, &a)) {
2699 // check if rom is memory mapped (not bank switched), and address is in rom
2700 if (p32x_sh2_mem_is_rom(a, sh2) && p32x_sh2_get_mem_ptr(a, &mask, sh2) == sh2->p_rom) {
2701 switch (size & MF_SIZEMASK) {
2702 case 0: *val = (s8)p32x_sh2_read8(a, sh2s); break; // 8
2703 case 1: *val = (s16)p32x_sh2_read16(a, sh2s); break; // 16
2704 case 2: *val = p32x_sh2_read32(a, sh2s); break; // 32
2712 static void emit_move_r_imm32(sh2_reg_e dst, u32 imm)
2714 #if PROPAGATE_CONSTANTS
2715 gconst_new(dst, imm);
2717 int hr = rcache_get_reg(dst, RC_GR_WRITE, NULL);
2718 emith_move_r_imm(hr, imm);
2722 static void emit_move_r_r(sh2_reg_e dst, sh2_reg_e src)
2724 if (gconst_check(src) || rcache_is_cached(src))
2725 rcache_alias_vreg(dst, src);
2727 int hr_d = rcache_get_reg(dst, RC_GR_WRITE, NULL);
2728 emith_ctx_read(hr_d, src * 4);
2732 static void emit_add_r_imm(sh2_reg_e r, u32 imm)
2735 int isgc = gconst_get(r, &val);
2738 if (!isgc || rcache_is_cached(r)) {
2739 // not constant, or r is already in cache
2740 hr = rcache_get_reg(r, RC_GR_RMW, &hr2);
2741 emith_add_r_r_imm(hr, hr2, imm);
2744 gconst_set(r, val + imm);
2746 gconst_new(r, val + imm);
2749 static void emit_sub_r_imm(sh2_reg_e r, u32 imm)
2752 int isgc = gconst_get(r, &val);
2755 if (!isgc || rcache_is_cached(r)) {
2756 // not constant, or r is already in cache
2757 hr = rcache_get_reg(r, RC_GR_RMW, &hr2);
2758 emith_sub_r_r_imm(hr, hr2, imm);
2761 gconst_set(r, val - imm);
2763 gconst_new(r, val - imm);
2766 static void emit_sync_t_to_sr(void)
2768 // avoid reloading SR from context if there's nothing to do
2769 if (emith_get_t_cond() >= 0) {
2770 int sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
2776 static int emit_memhandler_read(int size)
2780 emit_sync_t_to_sr();
2783 // must writeback cycles for poll detection stuff
2784 if (guest_regs[SHR_SR].vreg != -1)
2785 rcache_unmap_vreg(guest_regs[SHR_SR].vreg);
2787 rcache_invalidate_tmp();
2789 if (size & MF_POLLING)
2790 switch (size & MF_SIZEMASK) {
2791 case 0: emith_call(sh2_drc_read8_poll); break; // 8
2792 case 1: emith_call(sh2_drc_read16_poll); break; // 16
2793 case 2: emith_call(sh2_drc_read32_poll); break; // 32
2796 switch (size & MF_SIZEMASK) {
2797 case 0: emith_call(sh2_drc_read8); break; // 8
2798 case 1: emith_call(sh2_drc_read16); break; // 16
2799 case 2: emith_call(sh2_drc_read32); break; // 32
2802 hr = rcache_get_tmp_ret();
2803 rcache_set_x16(hr, (size & MF_SIZEMASK) < 2, 0);
2808 static void emit_memhandler_write(int size)
2810 emit_sync_t_to_sr();
2813 if (guest_regs[SHR_SR].vreg != -1)
2814 rcache_unmap_vreg(guest_regs[SHR_SR].vreg);
2816 rcache_invalidate_tmp();
2818 switch (size & MF_SIZEMASK) {
2819 case 0: emith_call(sh2_drc_write8); break; // 8
2820 case 1: emith_call(sh2_drc_write16); break; // 16
2821 case 2: emith_call(sh2_drc_write32); break; // 32
2825 // rd = @(Rs,#offs); rd < 0 -> return a temp
2826 static int emit_memhandler_read_rr(SH2 *sh2, sh2_reg_e rd, sh2_reg_e rs, s32 offs, int size)
2831 #if PROPAGATE_CONSTANTS
2832 if (emit_get_rom_data(sh2, rs, offs, size, &val)) {
2833 if (rd == SHR_TMP) {
2834 hr2 = rcache_get_tmp();
2835 emith_move_r_imm(hr2, val);
2837 emit_move_r_imm32(rd, val);
2838 hr2 = rcache_get_reg(rd, RC_GR_RMW, NULL);
2840 rcache_set_x16(hr2, val == (s16)val, val == (u16)val);
2841 if (size & MF_POSTINCR)
2842 emit_add_r_imm(rs, 1 << (size & MF_SIZEMASK));
2846 val = size & MF_POSTINCR;
2847 hr = emit_get_rbase_and_offs(sh2, rs, val ? RC_GR_RMW : RC_GR_READ, &offs);
2850 hr2 = rcache_get_tmp();
2852 hr2 = rcache_get_reg(rd, RC_GR_WRITE, NULL);
2853 switch (size & MF_SIZEMASK) {
2854 case 0: emith_read8s_r_r_offs(hr2, hr, MEM_BE2(offs)); break; // 8
2855 case 1: emith_read16s_r_r_offs(hr2, hr, offs); break; // 16
2856 case 2: emith_read_r_r_offs(hr2, hr, offs); emit_le_swap(-1, hr2); break;
2859 if (size & MF_POSTINCR)
2860 emit_add_r_imm(rs, 1 << (size & MF_SIZEMASK));
2865 if (gconst_get(rs, &val) && !rcache_is_cached(rs)) {
2866 hr = rcache_get_tmp_arg(0);
2867 emith_move_r_imm(hr, val + offs);
2868 if (size & MF_POSTINCR)
2869 gconst_new(rs, val + (1 << (size & MF_SIZEMASK)));
2870 } else if (size & MF_POSTINCR) {
2871 hr = rcache_get_tmp_arg(0);
2872 hr2 = rcache_get_reg(rs, RC_GR_RMW, NULL);
2873 emith_add_r_r_imm(hr, hr2, offs);
2874 emith_add_r_imm(hr2, 1 << (size & MF_SIZEMASK));
2875 if (gconst_get(rs, &val))
2876 gconst_set(rs, val + (1 << (size & MF_SIZEMASK)));
2878 hr = rcache_get_reg_arg(0, rs, &hr2);
2879 if (offs || hr != hr2)
2880 emith_add_r_r_imm(hr, hr2, offs);
2882 hr = emit_memhandler_read(size);
2887 hr2 = rcache_map_reg(rd, hr);
2890 emith_move_r_r(hr2, hr);
2891 rcache_free_tmp(hr);
2896 // @(Rs,#offs) = rd; rd < 0 -> write arg1
2897 static void emit_memhandler_write_rr(SH2 *sh2, sh2_reg_e rd, sh2_reg_e rs, s32 offs, int size)
2902 if (rd == SHR_TMP) {
2903 host_arg2reg(hr2, 1); // already locked and prepared by caller
2904 } else if ((size & MF_PREDECR) && rd == rs) { // must avoid caching rd in arg1
2905 hr2 = rcache_get_reg_arg(1, rd, &hr);
2907 emith_move_r_r(hr2, hr);
2911 hr2 = rcache_get_reg_arg(1, rd, NULL);
2913 rcache_unlock(guest_regs[rd].vreg); // unlock in case rd is in arg0
2915 if (gconst_get(rs, &val) && !rcache_is_cached(rs)) {
2916 hr = rcache_get_tmp_arg(0);
2917 if (size & MF_PREDECR) {
2918 val -= 1 << (size & MF_SIZEMASK);
2919 gconst_new(rs, val);
2921 emith_move_r_imm(hr, val + offs);
2922 } else if (offs || (size & MF_PREDECR)) {
2923 if (size & MF_PREDECR)
2924 emit_sub_r_imm(rs, 1 << (size & MF_SIZEMASK));
2925 rcache_unlock(guest_regs[rs].vreg); // unlock in case rs is in arg0
2926 hr = rcache_get_reg_arg(0, rs, &hr2);
2927 if (offs || hr != hr2)
2928 emith_add_r_r_imm(hr, hr2, offs);
2930 hr = rcache_get_reg_arg(0, rs, NULL);
2932 emit_memhandler_write(size);
2935 // rd = @(Rx,Ry); rd < 0 -> return a temp
2936 static int emit_indirect_indexed_read(SH2 *sh2, sh2_reg_e rd, sh2_reg_e rx, sh2_reg_e ry, int size)
2940 #if PROPAGATE_CONSTANTS
2943 // if offs is larger than 0x01000000, it's most probably the base address part
2944 if (gconst_get(ry, &offs) && offs < 0x01000000)
2945 return emit_memhandler_read_rr(sh2, rd, rx, offs, size);
2946 if (gconst_get(rx, &offs) && offs < 0x01000000)
2947 return emit_memhandler_read_rr(sh2, rd, ry, offs, size);
2949 hr = rcache_get_reg_arg(0, rx, &tx);
2950 ty = rcache_get_reg(ry, RC_GR_READ, NULL);
2951 emith_add_r_r_r(hr, tx, ty);
2952 hr = emit_memhandler_read(size);
2957 hr2 = rcache_map_reg(rd, hr);
2960 emith_move_r_r(hr2, hr);
2961 rcache_free_tmp(hr);
2966 // @(Rx,Ry) = rd; rd < 0 -> write arg1
2967 static void emit_indirect_indexed_write(SH2 *sh2, sh2_reg_e rd, sh2_reg_e rx, sh2_reg_e ry, int size)
2970 #if PROPAGATE_CONSTANTS
2973 // if offs is larger than 0x01000000, it's most probably the base address part
2974 if (gconst_get(ry, &offs) && offs < 0x01000000)
2975 return emit_memhandler_write_rr(sh2, rd, rx, offs, size);
2976 if (gconst_get(rx, &offs) && offs < 0x01000000)
2977 return emit_memhandler_write_rr(sh2, rd, ry, offs, size);
2980 rcache_get_reg_arg(1, rd, NULL);
2981 hr = rcache_get_reg_arg(0, rx, &tx);
2982 ty = rcache_get_reg(ry, RC_GR_READ, NULL);
2983 emith_add_r_r_r(hr, tx, ty);
2984 emit_memhandler_write(size);
2988 static void emit_indirect_read_double(SH2 *sh2, int *rnr, int *rmr, sh2_reg_e rn, sh2_reg_e rm, int size)
2992 // unlock rn, rm here to avoid REG shortage in MAC operation
2993 tmp = emit_memhandler_read_rr(sh2, SHR_TMP, rn, 0, size | MF_POSTINCR);
2994 rcache_unlock(guest_regs[rn].vreg);
2995 tmp = rcache_save_tmp(tmp);
2996 *rmr = emit_memhandler_read_rr(sh2, SHR_TMP, rm, 0, size | MF_POSTINCR);
2997 rcache_unlock(guest_regs[rm].vreg);
2998 *rnr = rcache_restore_tmp(tmp);
3001 static void emit_do_static_regs(int is_write, int tmpr)
3005 for (i = 0; i < ARRAY_SIZE(guest_regs); i++) {
3006 if (guest_regs[i].flags & (GRF_STATIC|GRF_PINNED))
3007 r = cache_regs[guest_regs[i].vreg].hreg;
3011 for (count = 1; i < ARRAY_SIZE(guest_regs) - 1; i++, r++) {
3012 if ((guest_regs[i + 1].flags & (GRF_STATIC|GRF_PINNED)) &&
3013 cache_regs[guest_regs[i + 1].vreg].hreg == r + 1)
3020 // i, r point to last item
3022 emith_ctx_write_multiple(r - count + 1, (i - count + 1) * 4, count, tmpr);
3024 emith_ctx_read_multiple(r - count + 1, (i - count + 1) * 4, count, tmpr);
3027 emith_ctx_write(r, i * 4);
3029 emith_ctx_read(r, i * 4);
3035 // divide operation replacement functions, called by compiled code. Only the
3036 // 32:16 cases and the 64:32 cases described in the SH2 prog man are replaced.
3038 // This is surprisingly difficult since the SH2 division operation is generating
3039 // the result in the dividend during the operation, leaving some remainder-like
3040 // stuff in the bits unused for the result, and leaving the T and Q status bits
3041 // in a state depending on the operands and the result. Q always reflects the
3042 // last result bit generated (i.e. bit 0 of the result). For T:
3043 // 32:16 T = top bit of the 16 bit remainder-like
3044 // 64:32 T = resulting T of the DIV0U/S operation
3045 // The remainder-like depends on outcome of the last generated result bit.
3047 static uint32_t REGPARM(3) sh2_drc_divu32(uint32_t dv, uint32_t *dt, uint32_t ds)
3049 if (likely(ds > dv && (uint16_t)ds == 0)) {
3050 // good case: no overflow, divisor not 0, lower 16 bits 0
3051 uint32_t quot = dv / (ds>>16), rem = dv - (quot * (ds>>16));
3052 if (~quot&1) rem -= ds>>16;
3053 *dt = (rem>>15) & 1;
3054 return (uint16_t)quot | ((2*rem + (quot>>31)) << 16);
3056 // bad case: use the sh2 algo to get the right result
3057 int q = 0, t = 0, s = 16;
3059 uint32_t v = dv>>31;
3063 if (q) dv += ds, q = dv < v;
3064 else dv -= ds, q = dv > v;
3072 static uint32_t REGPARM(3) sh2_drc_divu64(uint32_t dh, uint32_t *dl, uint32_t ds)
3074 uint64_t dv = *dl | ((uint64_t)dh << 32);
3075 if (likely(ds > dh)) {
3076 // good case: no overflow, divisor not 0
3077 uint32_t quot = dv / ds, rem = dv - ((uint64_t)quot * ds);
3078 if (~quot&1) rem -= ds;
3082 // bad case: use the sh2 algo to get the right result
3083 int q = 0, t = 0, s = 32;
3085 uint64_t v = dv>>63;
3089 if (q) dv += ((uint64_t)ds << 32), q = dv < v;
3090 else dv -= ((uint64_t)ds << 32), q = dv > v;
3098 static uint32_t REGPARM(3) sh2_drc_divs32(int32_t dv, uint32_t *dt, int32_t ds)
3100 uint32_t adv = abs(dv), ads = abs(ds)>>16;
3101 if (likely(ads > adv>>16 && ds != 0x80000000 && (int16_t)ds == 0)) {
3102 // good case: no overflow, divisor not 0 and not MIN_INT, lower 16 bits 0
3103 uint32_t quot = adv / ads, rem = adv - (quot * ads);
3104 int m1 = (rem ? dv^ds : ds) < 0;
3105 if (rem && dv < 0) rem = (quot&1 ? -rem : +ads-rem);
3106 else rem = (quot&1 ? +rem : -ads+rem);
3107 quot = ((dv^ds)<0 ? -quot : +quot) - m1;
3108 *dt = (rem>>15) & 1;
3109 return (uint16_t)quot | ((2*rem + (quot>>31)) << 16);
3111 // bad case: use the sh2 algo to get the right result
3112 int m = (uint32_t)ds>>31, q = (uint32_t)dv>>31, t = m^q, s = 16;
3114 uint32_t v = (uint32_t)dv>>31;
3118 if (m^q) dv += ds, q = (uint32_t)dv < v;
3119 else dv -= ds, q = (uint32_t)dv > v;
3120 q ^= m^t, t = !(m^q);
3122 *dt = (uint32_t)dv>>31;
3127 static uint32_t REGPARM(3) sh2_drc_divs64(int32_t dh, uint32_t *dl, int32_t ds)
3129 int64_t _dv = *dl | ((int64_t)dh << 32);
3130 uint32_t ads = abs(ds);
3131 if (likely(_dv >= 0 && ads > _dv>>32 && ds != 0x80000000) ||
3132 likely(_dv < 0 && ads > -_dv>>32 && ds != 0x80000000)) {
3133 uint64_t adv = (_dv < 0 ? -_dv : _dv); // no llabs in older toolchains
3134 // good case: no overflow, divisor not 0 and not MIN_INT
3135 uint32_t quot = adv / ads, rem = adv - ((uint64_t)quot * ads);
3136 int m1 = (rem ? dh^ds : ds) < 0;
3137 if (rem && dh < 0) rem = (quot&1 ? -rem : +ads-rem);
3138 else rem = (quot&1 ? +rem : -ads+rem);
3139 quot = ((dh^ds)<0 ? -quot : +quot) - m1;
3143 // bad case: use the sh2 algo to get the right result
3144 uint64_t dv = (uint64_t)_dv;
3145 int m = (uint32_t)ds>>31, q = (uint64_t)dv>>63, t = m^q, s = 32;
3147 uint64_t v = (uint64_t)dv>>63;
3151 if (m^q) dv += ((uint64_t)ds << 32), q = dv < v;
3152 else dv -= ((uint64_t)ds << 32), q = dv > v;
3153 q ^= m^t, t = !(m^q);
3161 // block local link stuff
3165 struct block_link *bl;
3169 static inline int find_in_linkage(const struct linkage *array, int size, u32 pc)
3172 for (i = 0; i < size; i++)
3173 if (pc == array[i].pc)
3179 static int find_in_sorted_linkage(const struct linkage *array, int size, u32 pc)
3181 // binary search in sorted array
3182 int left = 0, right = size-1;
3183 while (left <= right)
3185 int middle = (left + right) / 2;
3186 if (array[middle].pc == pc)
3188 else if (array[middle].pc < pc)
3196 static void emit_branch_linkage_code(SH2 *sh2, struct block_desc *block, int tcache_id,
3197 const struct linkage *targets, int target_count,
3198 const struct linkage *links, int link_count)
3200 struct block_link *bl;
3204 for (u = 0; u < link_count; u++) {
3206 // look up local branch targets
3207 if (links[u].mask & 0x2) {
3208 v = find_in_sorted_linkage(targets, target_count, links[u].pc);
3209 if (v < 0 || ! targets[v].ptr) {
3210 // forward branch not yet resolved, prepare external linking
3211 emith_jump_patch(links[u].ptr, tcache_ptr, NULL);
3212 bl = dr_prepare_ext_branch(block->entryp, links[u].pc, sh2->is_slave, tcache_id);
3214 bl->type = BL_LDJMP;
3215 tmp = rcache_get_tmp_arg(0);
3216 emith_move_r_imm(tmp, links[u].pc);
3217 rcache_free_tmp(tmp);
3218 emith_jump_patchable(sh2_drc_dispatcher);
3219 } else if (emith_jump_patch_inrange(links[u].ptr, targets[v].ptr)) {
3220 // inrange local branch
3221 emith_jump_patch(links[u].ptr, targets[v].ptr, NULL);
3224 emith_jump_patch(links[u].ptr, tcache_ptr, NULL);
3225 emith_jump(targets[v].ptr);
3228 // external or exit, emit blx area entry
3229 void *target = (links[u].mask & 0x1 ? sh2_drc_exit : sh2_drc_dispatcher);
3231 links[u].bl->blx = tcache_ptr;
3232 emith_jump_patch(links[u].ptr, tcache_ptr, NULL);
3233 tmp = rcache_get_tmp_arg(0);
3234 emith_move_r_imm(tmp, links[u].pc & ~1);
3235 rcache_free_tmp(tmp);
3241 #define DELAY_SAVE_T(sr) { \
3242 int t_ = rcache_get_tmp(); \
3243 emith_bic_r_imm(sr, T_save); \
3244 emith_and_r_r_imm(t_, sr, 1); \
3245 emith_or_r_r_lsl(sr, t_, T_SHIFT); \
3246 rcache_free_tmp(t_); \
3249 #define FLUSH_CYCLES(sr) \
3251 emith_sub_r_imm(sr, cycles << 12); \
3252 else if (cycles < 0) /* may happen after a branch not taken */ \
3253 emith_add_r_imm(sr, -cycles << 12); \
3256 static void *dr_get_pc_base(u32 pc, SH2 *sh2);
3257 static void sh2_smc_rm_blocks(u32 a, int len, int tcache_id, int free);
3259 static void REGPARM(2) *sh2_translate(SH2 *sh2, int tcache_id)
3261 // branch targets in current block
3262 static struct linkage branch_targets[MAX_LOCAL_TARGETS];
3263 int branch_target_count = 0;
3264 // unresolved local or external targets with block link/exit area if needed
3265 static struct linkage blx_targets[MAX_LOCAL_BRANCHES];
3266 int blx_target_count = 0;
3268 static u8 op_flags[BLOCK_INSN_LIMIT];
3270 enum flg_states { FLG_UNKNOWN, FLG_UNUSED, FLG_0, FLG_1 };
3277 u32 pending_branch_direct:1;
3278 u32 pending_branch_indirect:1;
3279 u32 Tflag:2, Mflag:2;
3283 // loops with pinned registers for optimzation
3284 // pinned regs are like statics and don't need saving/restoring inside a loop
3285 static struct linkage pinned_loops[MAX_LOCAL_TARGETS/16];
3286 int pinned_loop_count = 0;
3289 // PC of current, first, last SH2 insn
3290 u32 pc, base_pc, end_pc;
3291 u32 base_literals, end_literals;
3292 u8 *block_entry_ptr;
3293 struct block_desc *block;
3294 struct block_entry *entry;
3295 struct block_link *bl;
3297 struct op_data *opd;
3303 u32 u, m1, m2, m3, m4;
3309 // get base/validate PC
3310 dr_pc_base = dr_get_pc_base(base_pc, sh2);
3311 if (dr_pc_base == (void *)-1) {
3312 printf("invalid PC, aborting: %08lx\n", (long)base_pc);
3313 // FIXME: be less destructive
3317 // initial passes to disassemble and analyze the block
3318 crc = scan_block(base_pc, sh2->is_slave, op_flags, &end_pc, &base_literals, &end_literals);
3319 end_literals = dr_check_nolit(base_literals, end_literals, tcache_id);
3320 if (base_literals == end_literals) // map empty lit section to end of code
3321 base_literals = end_literals = end_pc;
3323 // if there is already a translated but inactive block, reuse it
3324 block = dr_find_inactive_block(tcache_id, crc, base_pc, end_pc - base_pc,
3325 base_literals, end_literals - base_literals);
3327 #if (DRC_DEBUG & (256|512))
3328 // remove any (partial) old blocks which might get in the way, to make sure
3329 // the same branch targets are used in the recording/playback code. Not needed
3330 // normally since the SH2 code wasn't overwritten and should be the same.
3331 sh2_smc_rm_blocks(base_pc, end_pc - base_pc, tcache_id, 0);
3335 dbg(2, "== %csh2 reuse block %08x-%08x,%08x-%08x -> %p", sh2->is_slave ? 's' : 'm',
3336 base_pc, end_pc, base_literals, end_literals, block->entryp->tcache_ptr);
3337 dr_activate_block(block, tcache_id, sh2->is_slave);
3338 emith_update_cache();
3339 return block->entryp[0].tcache_ptr;
3342 // collect branch_targets that don't land on delay slots
3343 m1 = m2 = m3 = m4 = v = op = 0;
3344 for (pc = base_pc, i = 0; pc < end_pc; i++, pc += 2) {
3345 if (op_flags[i] & OF_DELAY_OP)
3346 op_flags[i] &= ~OF_BTARGET;
3347 if (op_flags[i] & OF_BTARGET) {
3348 if (branch_target_count < ARRAY_SIZE(branch_targets))
3349 branch_targets[branch_target_count++] = (struct linkage) { .pc = pc };
3351 printf("warning: linkage overflow\n");
3356 if (ops[i].op == OP_LDC && (ops[i].dest & BITMASK1(SHR_SR)) && pc+2 < end_pc)
3357 op_flags[i+1] |= OF_BTARGET; // RTE entrypoint in case of SR.IMASK change
3358 // unify T and SR since rcache doesn't know about "virtual" guest regs
3359 if (ops[i].source & BITMASK1(SHR_T)) ops[i].source |= BITMASK1(SHR_SR);
3360 if (ops[i].dest & BITMASK1(SHR_T)) ops[i].source |= BITMASK1(SHR_SR);
3361 if (ops[i].dest & BITMASK1(SHR_T)) ops[i].dest |= BITMASK1(SHR_SR);
3363 // loop types detected:
3364 // 1. target: ... BRA target -> idle loop
3365 // 2. target: ... delay insn ... BF target -> delay loop
3366 // 3. target: ... poll insn ... BF/BT target -> poll loop
3367 // 4. target: ... poll insn ... BF/BT exit ... BRA target, exit: -> poll
3369 // a. no further branch targets between target and back jump.
3370 // b. no unconditional branch insn inside the loop.
3371 // c. exactly one poll or delay insn is allowed inside a delay/poll loop
3372 // (scan_block marks loops only if they meet conditions a through c)
3373 // d. idle loops do not modify anything but PC,SR and contain no branches
3374 // e. delay/poll loops do not modify anything but the concerned reg,PC,SR
3375 // f. loading constants into registers inside the loop is allowed
3376 // g. a delay/poll loop must have a conditional branch somewhere
3377 // h. an idle loop must not have a conditional branch
3378 if (op_flags[i] & OF_BTARGET) {
3379 // possible loop entry point
3380 drcf.loop_type = op_flags[i] & OF_LOOP;
3381 drcf.pending_branch_direct = drcf.pending_branch_indirect = 0;
3382 op = OF_IDLE_LOOP; // loop type
3384 m1 = m2 = m3 = m4 = 0;
3385 if (!drcf.loop_type) // reset basic loop it it isn't recognized as loop
3386 op_flags[i] &= ~OF_BASIC_LOOP;
3388 if (drcf.loop_type) {
3389 // calculate reg masks for loop pinning
3390 m4 |= ops[i].source & ~m3;
3392 // detect loop type, and store poll/delay register
3393 if (op_flags[i] & OF_POLL_INSN) {
3395 m1 |= ops[i].dest; // loop poll/delay regs
3396 } else if (op_flags[i] & OF_DELAY_INSN) {
3399 } else if (ops[i].op != OP_LOAD_POOL && ops[i].op != OP_LOAD_CONST
3400 && (ops[i].op != OP_MOVE || op != OF_POLL_LOOP)) {
3401 // not (MOV @(PC) or MOV # or (MOV reg and poll)), condition f
3402 m2 |= ops[i].dest; // regs modified by other insns
3405 if (OP_ISBRAIMM(ops[i].op)) {
3406 if (ops[i].imm == base_pc + 2*v)
3407 drcf.pending_branch_direct = 1; // backward branch detected
3409 op_flags[v] &= ~OF_BASIC_LOOP; // no basic loop
3411 if (OP_ISBRACND(ops[i].op))
3412 drcf.pending_branch_indirect = 1; // conditions g,h - cond.branch
3413 // poll/idle loops terminate with their backwards branch to the loop start
3414 if (drcf.pending_branch_direct && !(op_flags[i+1] & OF_DELAY_OP)) {
3415 m2 &= ~(m1 | BITMASK3(SHR_PC, SHR_SR, SHR_T)); // conditions d,e + g,h
3416 if (m2 || ((op == OF_IDLE_LOOP) == (drcf.pending_branch_indirect)))
3417 op = 0; // conditions not met
3418 op_flags[v] = (op_flags[v] & ~OF_LOOP) | op; // set loop type
3421 if (op_flags[v] & OF_BASIC_LOOP) {
3422 m3 &= ~rcache_regs_static & ~BITMASK5(SHR_PC, SHR_PR, SHR_SR, SHR_T, SHR_MEM);
3423 if (m3 && count_bits(m3) < count_bits(rcache_vregs_reg) &&
3424 pinned_loop_count < ARRAY_SIZE(pinned_loops)-1) {
3425 pinned_loops[pinned_loop_count++] =
3426 (struct linkage) { .pc = base_pc + 2*v, .mask = m3 };
3428 op_flags[v] &= ~OF_BASIC_LOOP;
3436 tcache_ptr = dr_prepare_cache(tcache_id, (end_pc - base_pc) / 2, branch_target_count);
3438 tcache_dsm_ptrs[tcache_id] = tcache_ptr;
3441 block = dr_add_block(branch_target_count, base_pc, end_pc - base_pc,
3442 base_literals, end_literals-base_literals, crc, sh2->is_slave, &blkid_main);
3446 block_entry_ptr = tcache_ptr;
3447 dbg(2, "== %csh2 block #%d,%d %08x-%08x,%08x-%08x -> %p", sh2->is_slave ? 's' : 'm',
3448 tcache_id, blkid_main, base_pc, end_pc, base_literals, end_literals, block_entry_ptr);
3451 // clear stale state after compile errors
3452 rcache_invalidate();
3453 emith_invalidate_t();
3454 drcf = (struct drcf) { 0 };
3456 pinned_loops[pinned_loop_count].pc = -1;
3457 pinned_loop_count = 0;
3460 // -------------------------------------------------
3461 // 3rd pass: actual compilation
3464 for (i = 0; pc < end_pc; i++)
3466 u32 delay_dep_fw = 0, delay_dep_bk = 0;
3470 if (op_flags[i] & OF_BTARGET)
3474 sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
3477 drcf.Mflag = FLG_UNKNOWN;
3483 v = block->entry_count;
3484 entry = &block->entryp[v];
3485 if (v < branch_target_count)
3487 entry = &block->entryp[v];
3489 entry->tcache_ptr = tcache_ptr;
3490 entry->links = entry->o_links = NULL;
3492 entry->block = block;
3494 block->entry_count++;
3496 dbg(2, "-- %csh2 block #%d,%d entry %08x -> %p",
3497 sh2->is_slave ? 's' : 'm', tcache_id, blkid_main,
3501 dbg(1, "too many entryp for block #%d,%d pc=%08x",
3502 tcache_id, blkid_main, pc);
3506 v = find_in_sorted_linkage(branch_targets, branch_target_count, pc);
3508 branch_targets[v].ptr = tcache_ptr;
3510 drcf.loop_type = op_flags[i] & OF_LOOP;
3511 drcf.delay_reg = -1;
3512 drcf.polling = (drcf.loop_type == OF_POLL_LOOP ? MF_POLLING : 0);
3517 #if (DRC_DEBUG & 0x10)
3518 tmp = rcache_get_tmp_arg(0);
3519 emith_move_r_imm(tmp, pc);
3520 tmp = emit_memhandler_read(1);
3521 tmp2 = rcache_get_tmp();
3522 tmp3 = rcache_get_tmp();
3523 emith_move_r_imm(tmp2, (s16)FETCH_OP(pc));
3524 emith_move_r_imm(tmp3, 0);
3525 emith_cmp_r_r(tmp, tmp2);
3526 EMITH_SJMP_START(DCOND_EQ);
3527 emith_read_r_r_offs_c(DCOND_NE, tmp3, tmp3, 0); // crash
3528 EMITH_SJMP_END(DCOND_EQ);
3529 rcache_free_tmp(tmp);
3530 rcache_free_tmp(tmp2);
3531 rcache_free_tmp(tmp3);
3535 sr = rcache_get_reg(SHR_SR, RC_GR_READ, NULL);
3538 if (op_flags[i] & OF_BASIC_LOOP) {
3539 if (pinned_loops[pinned_loop_count].pc == pc) {
3540 // pin needed regs on loop entry
3541 FOR_ALL_BITS_SET_DO(pinned_loops[pinned_loop_count].mask, v, rcache_pin_reg(v));
3543 // store current PC as loop target
3544 pinned_loops[pinned_loop_count].ptr = tcache_ptr;
3547 op_flags[i] &= ~OF_BASIC_LOOP;
3550 if (op_flags[i] & OF_BASIC_LOOP) {
3551 // if exiting a pinned loop pinned regs must be written back to ctx
3552 // since they are reloaded in the loop entry code
3553 emith_cmp_r_imm(sr, 0);
3554 EMITH_JMP_START(DCOND_GE);
3555 rcache_save_pinned();
3557 if (blx_target_count < ARRAY_SIZE(blx_targets)) {
3558 // exit via stub in blx table (saves some 1-3 insns in the main flow)
3559 blx_targets[blx_target_count++] =
3560 (struct linkage) { .pc = pc, .ptr = tcache_ptr, .mask = 0x1 };
3561 emith_jump_patchable(tcache_ptr);
3563 // blx table full, must inline exit code
3564 tmp = rcache_get_tmp_arg(0);
3565 emith_move_r_imm(tmp, pc);
3566 emith_jump(sh2_drc_exit);
3567 rcache_free_tmp(tmp);
3569 EMITH_JMP_END(DCOND_GE);
3573 if (blx_target_count < ARRAY_SIZE(blx_targets)) {
3574 // exit via stub in blx table (saves some 1-3 insns in the main flow)
3575 emith_cmp_r_imm(sr, 0);
3576 blx_targets[blx_target_count++] =
3577 (struct linkage) { .pc = pc, .ptr = tcache_ptr, .mask = 0x1 };
3578 emith_jump_cond_patchable(DCOND_LT, tcache_ptr);
3580 // blx table full, must inline exit code
3581 tmp = rcache_get_tmp_arg(0);
3582 emith_cmp_r_imm(sr, 0);
3583 EMITH_SJMP_START(DCOND_GE);
3584 emith_move_r_imm_c(DCOND_LT, tmp, pc);
3585 emith_jump_cond(DCOND_LT, sh2_drc_exit);
3586 EMITH_SJMP_END(DCOND_GE);
3587 rcache_free_tmp(tmp);
3591 #if (DRC_DEBUG & 32)
3592 // block hit counter
3593 tmp = rcache_get_tmp_arg(0);
3594 tmp2 = rcache_get_tmp_arg(1);
3595 emith_move_r_ptr_imm(tmp, (uptr)entry);
3596 emith_read_r_r_offs(tmp2, tmp, offsetof(struct block_entry, entry_count));
3597 emith_add_r_imm(tmp2, 1);
3598 emith_write_r_r_offs(tmp2, tmp, offsetof(struct block_entry, entry_count));
3599 rcache_free_tmp(tmp);
3600 rcache_free_tmp(tmp2);
3603 #if (DRC_DEBUG & (8|256|512|1024))
3604 sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
3607 tmp = rcache_used_hregs_mask();
3608 emith_save_caller_regs(tmp);
3609 emit_do_static_regs(1, 0);
3610 rcache_get_reg_arg(2, SHR_SR, NULL);
3611 tmp2 = rcache_get_tmp_arg(0);
3612 tmp3 = rcache_get_tmp_arg(1);
3613 tmp4 = rcache_get_tmp();
3614 emith_move_r_ptr_imm(tmp2, tcache_ptr);
3615 emith_move_r_r_ptr(tmp3, CONTEXT_REG);
3616 emith_move_r_imm(tmp4, pc);
3617 emith_ctx_write(tmp4, SHR_PC * 4);
3618 rcache_invalidate_tmp();
3619 emith_abicall(sh2_drc_log_entry);
3620 emith_restore_caller_regs(tmp);
3623 do_host_disasm(tcache_id);
3624 rcache_unlock_all();
3628 if (!(op_flags[i] & OF_DELAY_OP)) {
3629 sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
3632 emit_move_r_imm32(SHR_PC, pc);
3635 tmp = rcache_used_hregs_mask();
3636 emith_save_caller_regs(tmp);
3637 emit_do_static_regs(1, 0);
3638 emith_pass_arg_r(0, CONTEXT_REG);
3639 emith_abicall(do_sh2_cmp);
3640 emith_restore_caller_regs(tmp);
3644 // emit blx area if limits are approached
3645 if (blx_target_count && (blx_target_count > ARRAY_SIZE(blx_targets)-4 ||
3646 !emith_jump_patch_inrange(blx_targets[0].ptr, tcache_ptr+0x100))) {
3648 rcache_invalidate_tmp();
3650 emith_jump_patchable(tcache_ptr);
3651 emit_branch_linkage_code(sh2, block, tcache_id, branch_targets,
3652 branch_target_count, blx_targets, blx_target_count);
3653 blx_target_count = 0;
3654 do_host_disasm(tcache_id);
3655 emith_jump_patch(jp, tcache_ptr, NULL);
3663 DasmSH2(sh2dasm_buff, pc, op);
3664 if (op_flags[i] & OF_BTARGET) {
3665 if ((op_flags[i] & OF_LOOP) == OF_DELAY_LOOP) tmp3 = '+';
3666 else if ((op_flags[i] & OF_LOOP) == OF_POLL_LOOP) tmp3 = '=';
3667 else if ((op_flags[i] & OF_LOOP) == OF_IDLE_LOOP) tmp3 = '~';
3669 } else if (drcf.loop_type) tmp3 = '.';
3671 printf("%c%08lx %04x %s\n", tmp3, (ulong)pc, op, sh2dasm_buff);
3683 if (op_flags[i] & OF_DELAY_OP)
3685 // handle delay slot dependencies
3686 delay_dep_fw = opd->dest & ops[i-1].source;
3687 delay_dep_bk = opd->source & ops[i-1].dest;
3688 if (delay_dep_fw & BITMASK1(SHR_T)) {
3689 sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
3693 if (delay_dep_bk & BITMASK1(SHR_PC)) {
3694 if (opd->op != OP_LOAD_POOL && opd->op != OP_MOVA) {
3695 // can only be those 2 really..
3696 elprintf_sh2(sh2, EL_ANOMALY,
3697 "drc: illegal slot insn %04x @ %08x?", op, pc - 2);
3699 // store PC for MOVA/MOV @PC address calculation
3701 ; // case OP_BRANCH - addr already resolved in scan_block
3703 switch (ops[i-1].op) {
3705 emit_move_r_imm32(SHR_PC, ops[i-1].imm);
3709 sr = rcache_get_reg(SHR_SR, RC_GR_READ, NULL);
3710 tmp = rcache_get_reg(SHR_PC, RC_GR_WRITE, NULL);
3711 emith_move_r_imm(tmp, pc);
3712 tmp2 = emith_tst_t(sr, (ops[i-1].op == OP_BRANCH_CT));
3713 tmp3 = emith_invert_cond(tmp2);
3714 EMITH_SJMP_START(tmp3);
3715 emith_move_r_imm_c(tmp2, tmp, ops[i-1].imm);
3716 EMITH_SJMP_END(tmp3);
3718 case OP_BRANCH_N: // BT/BF known not to be taken
3719 // XXX could modify opd->imm instead?
3720 emit_move_r_imm32(SHR_PC, pc);
3722 // case OP_BRANCH_R OP_BRANCH_RF - PC already loaded
3726 //if (delay_dep_fw & ~BITMASK1(SHR_T))
3727 // dbg(1, "unhandled delay_dep_fw: %x", delay_dep_fw & ~BITMASK1(SHR_T));
3728 if (delay_dep_bk & ~BITMASK2(SHR_PC, SHR_PR))
3729 dbg(1, "unhandled delay_dep_bk: %x", delay_dep_bk);
3732 // inform cache about future register usage
3733 u32 late = 0; // regs read by future ops
3734 u32 write = 0; // regs written to (to detect write before read)
3735 u32 soon = 0; // regs read soon
3736 for (v = 1; v <= 9; v++) {
3737 // no sense in looking any further than the next rcache flush
3738 tmp = ((op_flags[i+v] & OF_BTARGET) || (op_flags[i+v-1] & OF_DELAY_OP) ||
3739 (OP_ISBRACND(opd[v-1].op) && !(op_flags[i+v] & OF_DELAY_OP)));
3740 // XXX looking behind cond branch to avoid evicting regs used later?
3741 if (pc + 2*v <= end_pc && !tmp) { // (pc already incremented above)
3742 late |= opd[v].source & ~write;
3743 // ignore source regs after they have been written to
3744 write |= opd[v].dest;
3745 // regs needed in the next few instructions
3751 rcache_set_usage_now(opd[0].source); // current insn
3752 rcache_set_usage_soon(soon); // insns 1-4
3753 rcache_set_usage_late(late & ~soon); // insns 5-9
3754 rcache_set_usage_discard(write & ~(late|soon));
3756 // upcoming rcache_flush, start writing back unused dirty stuff
3757 rcache_clean_masked(rcache_dirty_mask() & ~(write|opd[0].dest));
3762 // never taken, just use up cycles
3767 if (opd->dest & BITMASK1(SHR_PR))
3768 emit_move_r_imm32(SHR_PR, pc + 2);
3769 drcf.pending_branch_direct = 1;
3773 if (opd->dest & BITMASK1(SHR_PR))
3774 emit_move_r_imm32(SHR_PR, pc + 2);
3775 emit_move_r_r(SHR_PC, opd->rm);
3776 drcf.pending_branch_indirect = 1;
3780 tmp2 = rcache_get_reg(GET_Rn(), RC_GR_READ, NULL);
3781 tmp = rcache_get_reg(SHR_PC, RC_GR_WRITE, NULL);
3782 emith_move_r_imm(tmp, pc + 2);
3783 if (opd->dest & BITMASK1(SHR_PR)) {
3784 tmp3 = rcache_get_reg(SHR_PR, RC_GR_WRITE, NULL);
3785 emith_move_r_r(tmp3, tmp);
3787 emith_add_r_r(tmp, tmp2);
3788 if (gconst_get(GET_Rn(), &u))
3789 gconst_set(SHR_PC, pc + 2 + u);
3790 drcf.pending_branch_indirect = 1;
3793 case OP_SLEEP: // SLEEP 0000000000011011
3794 printf("TODO sleep\n");
3797 case OP_RTE: // RTE 0000000000101011
3798 emith_invalidate_t();
3800 tmp = emit_memhandler_read_rr(sh2, SHR_PC, SHR_SP, 0, 2 | MF_POSTINCR);
3803 tmp = emit_memhandler_read_rr(sh2, SHR_TMP, SHR_SP, 0, 2 | MF_POSTINCR);
3804 sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
3805 emith_write_sr(sr, tmp);
3806 rcache_free_tmp(tmp);
3808 drcf.pending_branch_indirect = 1;
3812 elprintf_sh2(sh2, EL_ANOMALY, "drc: unhandled op %04x @ %08x", op, pc-2);
3813 opd->imm = (op_flags[i] & OF_B_IN_DS) ? 6 : 4;
3815 case OP_TRAPA: // TRAPA #imm 11000011iiiiiiii
3817 tmp = rcache_get_reg_arg(1, SHR_SR, &tmp2);
3819 emith_clear_msb(tmp, tmp2, 22);
3820 emit_memhandler_write_rr(sh2, SHR_TMP, SHR_SP, 0, 2 | MF_PREDECR);
3822 if (opd->op == OP_TRAPA) {
3823 tmp = rcache_get_tmp_arg(1);
3824 emith_move_r_imm(tmp, pc);
3825 } else if (drcf.pending_branch_indirect) {
3826 tmp = rcache_get_reg_arg(1, SHR_PC, NULL);
3828 tmp = rcache_get_tmp_arg(1);
3829 emith_move_r_imm(tmp, pc - 2);
3831 emit_memhandler_write_rr(sh2, SHR_TMP, SHR_SP, 0, 2 | MF_PREDECR);
3833 emit_memhandler_read_rr(sh2, SHR_PC, SHR_VBR, opd->imm * 4, 2);
3834 // indirect jump -> back to dispatcher
3835 drcf.pending_branch_indirect = 1;
3839 #if PROPAGATE_CONSTANTS
3840 if ((opd->imm && opd->imm >= base_pc && opd->imm < end_literals) ||
3841 p32x_sh2_mem_is_rom(opd->imm, sh2))
3844 u = FETCH32(opd->imm);
3846 u = (s16)FETCH_OP(opd->imm);
3847 gconst_new(GET_Rn(), u);
3852 if (opd->imm != 0) {
3853 tmp = rcache_get_tmp_arg(0);
3854 emith_move_r_imm(tmp, opd->imm);
3856 // have to calculate read addr from PC for delay slot
3857 tmp = rcache_get_reg_arg(0, SHR_PC, &tmp2);
3858 if (opd->size == 2) {
3859 emith_add_r_r_imm(tmp, tmp2, 2 + (op & 0xff) * 4);
3860 emith_bic_r_imm(tmp, 3);
3863 emith_add_r_r_imm(tmp, tmp2, 2 + (op & 0xff) * 2);
3865 tmp2 = emit_memhandler_read(opd->size);
3866 tmp3 = rcache_map_reg(GET_Rn(), tmp2);
3868 emith_move_r_r(tmp3, tmp2);
3869 rcache_free_tmp(tmp2);
3874 case OP_MOVA: // MOVA @(disp,PC),R0 11000111dddddddd
3876 emit_move_r_imm32(SHR_R0, opd->imm);
3878 // have to calculate addr from PC for delay slot
3879 tmp2 = rcache_get_reg(SHR_PC, RC_GR_READ, NULL);
3880 tmp = rcache_get_reg(SHR_R0, RC_GR_WRITE, NULL);
3881 emith_add_r_r_imm(tmp, tmp2, 2 + (op & 0xff) * 4);
3882 emith_bic_r_imm(tmp, 3);
3887 switch ((op >> 12) & 0x0f)
3889 /////////////////////////////////////////////
3896 case 0: // STC SR,Rn 0000nnnn00000010
3899 case 1: // STC GBR,Rn 0000nnnn00010010
3902 case 2: // STC VBR,Rn 0000nnnn00100010
3908 if (tmp2 == SHR_SR) {
3909 sr = rcache_get_reg(SHR_SR, RC_GR_READ, NULL);
3911 tmp = rcache_get_reg(GET_Rn(), RC_GR_WRITE, NULL);
3912 emith_clear_msb(tmp, sr, 22); // reserved bits defined by ISA as 0
3914 emit_move_r_r(GET_Rn(), tmp2);
3916 case 0x04: // MOV.B Rm,@(R0,Rn) 0000nnnnmmmm0100
3917 case 0x05: // MOV.W Rm,@(R0,Rn) 0000nnnnmmmm0101
3918 case 0x06: // MOV.L Rm,@(R0,Rn) 0000nnnnmmmm0110
3919 sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
3921 emit_indirect_indexed_write(sh2, GET_Rm(), SHR_R0, GET_Rn(), op & 3);
3923 case 0x07: // MUL.L Rm,Rn 0000nnnnmmmm0111
3924 tmp = rcache_get_reg(GET_Rn(), RC_GR_READ, NULL);
3925 tmp2 = rcache_get_reg(GET_Rm(), RC_GR_READ, NULL);
3926 tmp3 = rcache_get_reg(SHR_MACL, RC_GR_WRITE, NULL);
3927 emith_mul(tmp3, tmp2, tmp);
3932 case 0: // CLRT 0000000000001000
3933 sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
3935 if (~rcache_regs_discard & BITMASK1(SHR_T))
3939 case 1: // SETT 0000000000011000
3940 sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
3942 if (~rcache_regs_discard & BITMASK1(SHR_T))
3946 case 2: // CLRMAC 0000000000101000
3947 emit_move_r_imm32(SHR_MACL, 0);
3948 emit_move_r_imm32(SHR_MACH, 0);
3957 case 0: // NOP 0000000000001001
3959 case 1: // DIV0U 0000000000011001
3960 sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
3961 emith_invalidate_t();
3962 emith_bic_r_imm(sr, M|Q|T);
3965 if (div(opd).div1 == 16 && div(opd).ro == div(opd).rn) {
3967 rcache_get_reg_arg(0, div(opd).rn, NULL);
3968 rcache_get_reg_arg(2, div(opd).rm, NULL);
3969 tmp = rcache_get_tmp_arg(1);
3970 emith_add_r_r_ptr_imm(tmp, CONTEXT_REG, offsetof(SH2, drc_tmp));
3971 rcache_invalidate_tmp();
3972 emith_abicall(sh2_drc_divu32);
3973 tmp = rcache_get_tmp_ret();
3974 tmp2 = rcache_map_reg(div(opd).rn, tmp);
3976 emith_move_r_r(tmp2, tmp);
3978 tmp3 = rcache_get_tmp();
3979 emith_and_r_r_imm(tmp3, tmp2, 1); // Q = !Rn[0]
3980 emith_eor_r_r_imm(tmp3, tmp3, 1);
3981 emith_or_r_r_lsl(sr, tmp3, Q_SHIFT);
3982 emith_ctx_read(tmp3, offsetof(SH2, drc_tmp));
3983 emith_or_r_r_r(sr, sr, tmp3); // T
3984 rcache_free_tmp(tmp3);
3985 skip_op = div(opd).div1 + div(opd).rotcl;
3988 else if (div(opd).div1 == 32 && div(opd).ro != div(opd).rn) {
3990 tmp4 = rcache_get_reg(div(opd).ro, RC_GR_READ, NULL);
3991 emith_ctx_write(tmp4, offsetof(SH2, drc_tmp));
3993 rcache_get_reg_arg(0, div(opd).rn, NULL);
3994 rcache_get_reg_arg(2, div(opd).rm, NULL);
3995 tmp = rcache_get_tmp_arg(1);
3996 emith_add_r_r_ptr_imm(tmp, CONTEXT_REG, offsetof(SH2, drc_tmp));
3997 rcache_invalidate_tmp();
3998 emith_abicall(sh2_drc_divu64);
3999 tmp = rcache_get_tmp_ret();
4000 tmp2 = rcache_map_reg(div(opd).rn, tmp);
4001 tmp4 = rcache_get_reg(div(opd).ro, RC_GR_WRITE, NULL);
4003 emith_move_r_r(tmp2, tmp);
4004 emith_ctx_read(tmp4, offsetof(SH2, drc_tmp));
4006 tmp3 = rcache_get_tmp();
4007 emith_and_r_r_imm(tmp3, tmp4, 1); // Q = !Ro[0]
4008 emith_eor_r_r_imm(tmp3, tmp3, 1);
4009 emith_or_r_r_lsl(sr, tmp3, Q_SHIFT);
4010 rcache_free_tmp(tmp3);
4011 skip_op = div(opd).div1 + div(opd).rotcl;
4016 case 2: // MOVT Rn 0000nnnn00101001
4017 sr = rcache_get_reg(SHR_SR, RC_GR_READ, NULL);
4019 tmp2 = rcache_get_reg(GET_Rn(), RC_GR_WRITE, NULL);
4020 emith_clear_msb(tmp2, sr, 31);
4029 case 0: // STS MACH,Rn 0000nnnn00001010
4032 case 1: // STS MACL,Rn 0000nnnn00011010
4035 case 2: // STS PR,Rn 0000nnnn00101010
4041 emit_move_r_r(GET_Rn(), tmp2);
4043 case 0x0c: // MOV.B @(R0,Rm),Rn 0000nnnnmmmm1100
4044 case 0x0d: // MOV.W @(R0,Rm),Rn 0000nnnnmmmm1101
4045 case 0x0e: // MOV.L @(R0,Rm),Rn 0000nnnnmmmm1110
4046 sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
4048 emit_indirect_indexed_read(sh2, GET_Rn(), SHR_R0, GET_Rm(), (op & 3) | drcf.polling);
4050 case 0x0f: // MAC.L @Rm+,@Rn+ 0000nnnnmmmm1111
4051 emit_indirect_read_double(sh2, &tmp, &tmp2, GET_Rn(), GET_Rm(), 2);
4052 sr = rcache_get_reg(SHR_SR, RC_GR_READ, NULL);
4053 tmp3 = rcache_get_reg(SHR_MACL, RC_GR_RMW, NULL);
4054 tmp4 = rcache_get_reg(SHR_MACH, RC_GR_RMW, NULL);
4055 emith_sh2_macl(tmp3, tmp4, tmp, tmp2, sr);
4056 rcache_free_tmp(tmp2);
4057 rcache_free_tmp(tmp);
4062 /////////////////////////////////////////////
4063 case 0x01: // MOV.L Rm,@(disp,Rn) 0001nnnnmmmmdddd
4064 sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
4066 emit_memhandler_write_rr(sh2, GET_Rm(), GET_Rn(), (op & 0x0f) * 4, 2);
4072 case 0x00: // MOV.B Rm,@Rn 0010nnnnmmmm0000
4073 case 0x01: // MOV.W Rm,@Rn 0010nnnnmmmm0001
4074 case 0x02: // MOV.L Rm,@Rn 0010nnnnmmmm0010
4075 sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
4077 emit_memhandler_write_rr(sh2, GET_Rm(), GET_Rn(), 0, op & 3);
4079 case 0x04: // MOV.B Rm,@-Rn 0010nnnnmmmm0100
4080 case 0x05: // MOV.W Rm,@-Rn 0010nnnnmmmm0101
4081 case 0x06: // MOV.L Rm,@-Rn 0010nnnnmmmm0110
4082 sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
4084 emit_memhandler_write_rr(sh2, GET_Rm(), GET_Rn(), 0, (op & 3) | MF_PREDECR);
4086 case 0x07: // DIV0S Rm,Rn 0010nnnnmmmm0111
4087 sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
4088 emith_invalidate_t();
4089 emith_bic_r_imm(sr, M|Q|T);
4090 drcf.Mflag = FLG_UNKNOWN;
4092 if (div(opd).div1 == 16 && div(opd).ro == div(opd).rn) {
4094 tmp = rcache_get_reg_arg(0, div(opd).rn, NULL);
4095 tmp2 = rcache_get_reg_arg(2, div(opd).rm, NULL);
4096 tmp3 = rcache_get_tmp_arg(1);
4097 emith_lsr(tmp3, tmp2, 31);
4098 emith_or_r_r_lsl(sr, tmp3, M_SHIFT); // M = Rm[31]
4099 emith_add_r_r_ptr_imm(tmp3, CONTEXT_REG, offsetof(SH2, drc_tmp));
4100 rcache_invalidate_tmp();
4101 emith_abicall(sh2_drc_divs32);
4102 tmp = rcache_get_tmp_ret();
4103 tmp2 = rcache_map_reg(div(opd).rn, tmp);
4105 emith_move_r_r(tmp2, tmp);
4106 tmp3 = rcache_get_tmp();
4108 emith_eor_r_r_r_lsr(tmp3, tmp2, sr, M_SHIFT);
4109 emith_and_r_r_imm(tmp3, tmp3, 1);
4110 emith_eor_r_r_imm(tmp3, tmp3, 1);
4111 emith_or_r_r_lsl(sr, tmp3, Q_SHIFT); // Q = !Rn[0]^M
4112 emith_ctx_read(tmp3, offsetof(SH2, drc_tmp));
4113 emith_or_r_r_r(sr, sr, tmp3); // T
4114 rcache_free_tmp(tmp3);
4115 skip_op = div(opd).div1 + div(opd).rotcl;
4118 else if (div(opd).div1 == 32 && div(opd).ro != div(opd).rn) {
4120 tmp4 = rcache_get_reg(div(opd).ro, RC_GR_READ, NULL);
4121 emith_ctx_write(tmp4, offsetof(SH2, drc_tmp));
4123 tmp = rcache_get_reg_arg(0, div(opd).rn, NULL);
4124 tmp2 = rcache_get_reg_arg(2, div(opd).rm, NULL);
4125 tmp3 = rcache_get_tmp_arg(1);
4126 emith_lsr(tmp3, tmp2, 31);
4127 emith_or_r_r_lsl(sr, tmp3, M_SHIFT); // M = Rm[31]
4128 emith_eor_r_r_lsr(tmp3, tmp, 31);
4129 emith_or_r_r(sr, tmp3); // T = Rn[31]^M
4130 emith_add_r_r_ptr_imm(tmp3, CONTEXT_REG, offsetof(SH2, drc_tmp));
4131 rcache_invalidate_tmp();
4132 emith_abicall(sh2_drc_divs64);
4133 tmp = rcache_get_tmp_ret();
4134 tmp2 = rcache_map_reg(div(opd).rn, tmp);
4135 tmp4 = rcache_get_reg(div(opd).ro, RC_GR_WRITE, NULL);
4137 emith_move_r_r(tmp2, tmp);
4138 emith_ctx_read(tmp4, offsetof(SH2, drc_tmp));
4140 tmp3 = rcache_get_tmp();
4141 emith_eor_r_r_r_lsr(tmp3, tmp4, sr, M_SHIFT);
4142 emith_and_r_r_imm(tmp3, tmp3, 1);
4143 emith_eor_r_r_imm(tmp3, tmp3, 1);
4144 emith_or_r_r_lsl(sr, tmp3, Q_SHIFT); // Q = !Ro[0]^M
4145 rcache_free_tmp(tmp3);
4146 skip_op = div(opd).div1 + div(opd).rotcl;
4151 tmp2 = rcache_get_reg(GET_Rn(), RC_GR_READ, NULL);
4152 tmp3 = rcache_get_reg(GET_Rm(), RC_GR_READ, NULL);
4153 tmp = rcache_get_tmp();
4154 emith_lsr(tmp, tmp2, 31); // Q = Nn
4155 emith_or_r_r_lsl(sr, tmp, Q_SHIFT);
4156 emith_lsr(tmp, tmp3, 31); // M = Nm
4157 emith_or_r_r_lsl(sr, tmp, M_SHIFT);
4158 emith_eor_r_r_lsr(tmp, tmp2, 31);
4159 emith_or_r_r(sr, tmp); // T = Q^M
4163 case 0x08: // TST Rm,Rn 0010nnnnmmmm1000
4164 sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
4165 tmp2 = rcache_get_reg(GET_Rn(), RC_GR_READ, NULL);
4166 tmp3 = rcache_get_reg(GET_Rm(), RC_GR_READ, NULL);
4167 emith_clr_t_cond(sr);
4168 emith_tst_r_r(tmp2, tmp3);
4169 emith_set_t_cond(sr, DCOND_EQ);
4171 case 0x09: // AND Rm,Rn 0010nnnnmmmm1001
4172 if (GET_Rm() != GET_Rn()) {
4173 tmp2 = rcache_get_reg(GET_Rm(), RC_GR_READ, NULL);
4174 tmp = rcache_get_reg(GET_Rn(), RC_GR_RMW, &tmp3);
4175 emith_and_r_r_r(tmp, tmp3, tmp2);
4178 case 0x0a: // XOR Rm,Rn 0010nnnnmmmm1010
4179 #if PROPAGATE_CONSTANTS
4180 if (GET_Rn() == GET_Rm()) {
4181 gconst_new(GET_Rn(), 0);
4185 tmp2 = rcache_get_reg(GET_Rm(), RC_GR_READ, NULL);
4186 tmp = rcache_get_reg(GET_Rn(), RC_GR_RMW, &tmp3);
4187 emith_eor_r_r_r(tmp, tmp3, tmp2);
4189 case 0x0b: // OR Rm,Rn 0010nnnnmmmm1011
4190 if (GET_Rm() != GET_Rn()) {
4191 tmp2 = rcache_get_reg(GET_Rm(), RC_GR_READ, NULL);
4192 tmp = rcache_get_reg(GET_Rn(), RC_GR_RMW, &tmp3);
4193 emith_or_r_r_r(tmp, tmp3, tmp2);
4196 case 0x0c: // CMP/STR Rm,Rn 0010nnnnmmmm1100
4197 tmp = rcache_get_tmp();
4198 tmp2 = rcache_get_reg(GET_Rn(), RC_GR_READ, NULL);
4199 tmp3 = rcache_get_reg(GET_Rm(), RC_GR_READ, NULL);
4200 emith_eor_r_r_r(tmp, tmp2, tmp3);
4201 sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
4202 emith_clr_t_cond(sr);
4203 emith_tst_r_imm(tmp, 0x000000ff);
4204 EMITH_SJMP_START(DCOND_EQ);
4205 emith_tst_r_imm_c(DCOND_NE, tmp, 0x0000ff00);
4206 EMITH_SJMP_START(DCOND_EQ);
4207 emith_tst_r_imm_c(DCOND_NE, tmp, 0x00ff0000);
4208 EMITH_SJMP_START(DCOND_EQ);
4209 emith_tst_r_imm_c(DCOND_NE, tmp, 0xff000000);
4210 EMITH_SJMP_END(DCOND_EQ);
4211 EMITH_SJMP_END(DCOND_EQ);
4212 EMITH_SJMP_END(DCOND_EQ);
4213 emith_set_t_cond(sr, DCOND_EQ);
4214 rcache_free_tmp(tmp);
4216 case 0x0d: // XTRCT Rm,Rn 0010nnnnmmmm1101
4217 tmp2 = rcache_get_reg(GET_Rm(), RC_GR_READ, NULL);
4218 tmp = rcache_get_reg(GET_Rn(), RC_GR_RMW, &tmp3);
4219 emith_lsr(tmp, tmp3, 16);
4220 emith_or_r_r_lsl(tmp, tmp2, 16);
4222 case 0x0e: // MULU.W Rm,Rn 0010nnnnmmmm1110
4223 case 0x0f: // MULS.W Rm,Rn 0010nnnnmmmm1111
4224 tmp2 = rcache_get_reg(GET_Rn(), RC_GR_READ, NULL);
4225 tmp3 = rcache_get_reg(GET_Rm(), RC_GR_READ, NULL);
4226 tmp = rcache_get_reg(SHR_MACL, RC_GR_WRITE, NULL);
4229 if (! rcache_is_s16(tmp2)) {
4230 emith_sext(tmp, tmp2, 16);
4233 if (! rcache_is_s16(tmp3)) {
4234 tmp4 = rcache_get_tmp();
4235 emith_sext(tmp4, tmp3, 16);
4238 if (! rcache_is_u16(tmp2)) {
4239 emith_clear_msb(tmp, tmp2, 16);
4242 if (! rcache_is_u16(tmp3)) {
4243 tmp4 = rcache_get_tmp();
4244 emith_clear_msb(tmp4, tmp3, 16);
4247 emith_mul(tmp, tmp2, tmp4);
4249 rcache_free_tmp(tmp4);
4254 /////////////////////////////////////////////
4258 case 0x00: // CMP/EQ Rm,Rn 0011nnnnmmmm0000
4259 case 0x02: // CMP/HS Rm,Rn 0011nnnnmmmm0010
4260 case 0x03: // CMP/GE Rm,Rn 0011nnnnmmmm0011
4261 case 0x06: // CMP/HI Rm,Rn 0011nnnnmmmm0110
4262 case 0x07: // CMP/GT Rm,Rn 0011nnnnmmmm0111
4263 sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
4264 tmp2 = rcache_get_reg(GET_Rn(), RC_GR_READ, NULL);
4265 tmp3 = rcache_get_reg(GET_Rm(), RC_GR_READ, NULL);
4268 case 0x00: // CMP/EQ
4271 case 0x02: // CMP/HS
4274 case 0x03: // CMP/GE
4277 case 0x06: // CMP/HI
4280 case 0x07: // CMP/GT
4284 emith_clr_t_cond(sr);
4285 emith_cmp_r_r(tmp2, tmp3);
4286 emith_set_t_cond(sr, tmp);
4288 case 0x04: // DIV1 Rm,Rn 0011nnnnmmmm0100
4289 // Q1 = carry(Rn = (Rn << 1) | T)
4291 // Q2 = carry(Rn += Rm)
4293 // Q2 = carry(Rn -= Rm)
4295 // T = (Q == M) = !(Q ^ M) = !(Q1 ^ Q2)
4296 tmp3 = rcache_get_reg(GET_Rm(), RC_GR_READ, NULL);
4297 tmp2 = rcache_get_reg(GET_Rn(), RC_GR_RMW, NULL);
4298 sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
4300 tmp = rcache_get_tmp();
4301 if (drcf.Mflag != FLG_0) {
4302 emith_and_r_r_imm(tmp, sr, M);
4303 emith_eor_r_r_lsr(sr, tmp, M_SHIFT - Q_SHIFT); // Q ^= M
4305 rcache_free_tmp(tmp);
4306 // shift Rn, add T, add or sub Rm, set T = !(Q1 ^ Q2)
4307 // in: (Q ^ M) passed in Q
4308 emith_sh2_div1_step(tmp2, tmp3, sr);
4309 tmp = rcache_get_tmp();
4310 emith_or_r_imm(sr, Q); // Q = !T
4311 emith_and_r_r_imm(tmp, sr, T);
4312 emith_eor_r_r_lsl(sr, tmp, Q_SHIFT);
4313 if (drcf.Mflag != FLG_0) { // Q = M ^ !T = M ^ Q1 ^ Q2
4314 emith_and_r_r_imm(tmp, sr, M);
4315 emith_eor_r_r_lsr(sr, tmp, M_SHIFT - Q_SHIFT);
4317 rcache_free_tmp(tmp);
4319 case 0x05: // DMULU.L Rm,Rn 0011nnnnmmmm0101
4320 tmp = rcache_get_reg(GET_Rn(), RC_GR_READ, NULL);
4321 tmp2 = rcache_get_reg(GET_Rm(), RC_GR_READ, NULL);
4322 tmp3 = rcache_get_reg(SHR_MACL, RC_GR_WRITE, NULL);
4323 tmp4 = rcache_get_reg(SHR_MACH, RC_GR_WRITE, NULL);
4324 emith_mul_u64(tmp3, tmp4, tmp, tmp2);
4326 case 0x08: // SUB Rm,Rn 0011nnnnmmmm1000
4327 #if PROPAGATE_CONSTANTS
4328 if (GET_Rn() == GET_Rm()) {
4329 gconst_new(GET_Rn(), 0);
4333 case 0x0c: // ADD Rm,Rn 0011nnnnmmmm1100
4334 tmp2 = rcache_get_reg(GET_Rm(), RC_GR_READ, NULL);
4335 tmp = rcache_get_reg(GET_Rn(), RC_GR_RMW, &tmp3);
4337 emith_add_r_r_r(tmp, tmp3, tmp2);
4339 emith_sub_r_r_r(tmp, tmp3, tmp2);
4341 case 0x0a: // SUBC Rm,Rn 0011nnnnmmmm1010
4342 case 0x0e: // ADDC Rm,Rn 0011nnnnmmmm1110
4343 tmp2 = rcache_get_reg(GET_Rm(), RC_GR_READ, NULL);
4344 tmp = rcache_get_reg(GET_Rn(), RC_GR_RMW, &tmp3);
4345 sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
4348 if (rcache_regs_discard & BITMASK1(SHR_T)) {
4350 emith_t_to_carry(sr, 0);
4351 emith_adc_r_r_r(tmp, tmp3, tmp2);
4353 emith_t_to_carry(sr, 1);
4354 emith_sbc_r_r_r(tmp, tmp3, tmp2);
4359 EMITH_HINT_COND(DCOND_CS);
4360 if (op & 4) { // adc
4361 emith_tpop_carry(sr, 0);
4362 emith_adcf_r_r_r(tmp, tmp3, tmp2);
4363 emith_tpush_carry(sr, 0);
4365 emith_tpop_carry(sr, 1);
4366 emith_sbcf_r_r_r(tmp, tmp3, tmp2);
4367 emith_tpush_carry(sr, 1);
4371 case 0x0b: // SUBV Rm,Rn 0011nnnnmmmm1011
4372 case 0x0f: // ADDV Rm,Rn 0011nnnnmmmm1111
4373 tmp2 = rcache_get_reg(GET_Rm(), RC_GR_READ, NULL);
4374 tmp = rcache_get_reg(GET_Rn(), RC_GR_RMW, &tmp3);
4375 sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
4377 if (rcache_regs_discard & BITMASK1(SHR_T)) {
4379 emith_add_r_r_r(tmp,tmp3,tmp2);
4381 emith_sub_r_r_r(tmp,tmp3,tmp2);
4385 emith_clr_t_cond(sr);
4386 EMITH_HINT_COND(DCOND_VS);
4388 emith_addf_r_r_r(tmp, tmp3, tmp2);
4390 emith_subf_r_r_r(tmp, tmp3, tmp2);
4391 emith_set_t_cond(sr, DCOND_VS);
4394 case 0x0d: // DMULS.L Rm,Rn 0011nnnnmmmm1101
4395 tmp = rcache_get_reg(GET_Rn(), RC_GR_READ, NULL);
4396 tmp2 = rcache_get_reg(GET_Rm(), RC_GR_READ, NULL);
4397 tmp3 = rcache_get_reg(SHR_MACL, RC_GR_WRITE, NULL);
4398 tmp4 = rcache_get_reg(SHR_MACH, RC_GR_WRITE, NULL);
4399 emith_mul_s64(tmp3, tmp4, tmp, tmp2);
4404 /////////////////////////////////////////////
4411 case 0: // SHLL Rn 0100nnnn00000000
4412 case 2: // SHAL Rn 0100nnnn00100000
4413 tmp = rcache_get_reg(GET_Rn(), RC_GR_RMW, &tmp2);
4414 sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
4416 if (rcache_regs_discard & BITMASK1(SHR_T))
4417 emith_lsl(tmp, tmp2, 1);
4421 emith_invalidate_t();
4422 emith_lslf(tmp, tmp2, 1);
4423 emith_carry_to_t(sr, 0);
4426 case 1: // DT Rn 0100nnnn00010000
4427 sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
4429 if (drcf.loop_type == OF_DELAY_LOOP) {
4430 if (drcf.delay_reg == -1)
4431 drcf.delay_reg = GET_Rn();
4433 drcf.polling = drcf.loop_type = 0;
4436 tmp = rcache_get_reg(GET_Rn(), RC_GR_RMW, &tmp2);
4437 emith_clr_t_cond(sr);
4438 EMITH_HINT_COND(DCOND_EQ);
4439 emith_subf_r_r_imm(tmp, tmp2, 1);
4440 emith_set_t_cond(sr, DCOND_EQ);
4441 emith_or_r_imm(sr, SH2_NO_POLLING);
4448 case 0: // SHLR Rn 0100nnnn00000001
4449 case 2: // SHAR Rn 0100nnnn00100001
4450 tmp = rcache_get_reg(GET_Rn(), RC_GR_RMW, &tmp2);
4451 sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
4453 if (rcache_regs_discard & BITMASK1(SHR_T)) {
4455 emith_asr(tmp,tmp2,1);
4457 emith_lsr(tmp,tmp2,1);
4461 emith_invalidate_t();
4463 emith_asrf(tmp, tmp2, 1);
4465 emith_lsrf(tmp, tmp2, 1);
4466 emith_carry_to_t(sr, 0);
4469 case 1: // CMP/PZ Rn 0100nnnn00010001
4470 tmp = rcache_get_reg(GET_Rn(), RC_GR_READ, NULL);
4471 sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
4472 emith_clr_t_cond(sr);
4473 emith_cmp_r_imm(tmp, 0);
4474 emith_set_t_cond(sr, DCOND_GE);
4482 case 0x02: // STS.L MACH,@-Rn 0100nnnn00000010
4485 case 0x12: // STS.L MACL,@-Rn 0100nnnn00010010
4488 case 0x22: // STS.L PR,@-Rn 0100nnnn00100010
4491 case 0x03: // STC.L SR,@-Rn 0100nnnn00000011
4494 case 0x13: // STC.L GBR,@-Rn 0100nnnn00010011
4497 case 0x23: // STC.L VBR,@-Rn 0100nnnn00100011
4503 if (tmp == SHR_SR) {
4504 tmp3 = rcache_get_reg_arg(1, tmp, &tmp4);
4506 emith_clear_msb(tmp3, tmp4, 22); // reserved bits defined by ISA as 0
4508 tmp3 = rcache_get_reg_arg(1, tmp, NULL);
4509 emit_memhandler_write_rr(sh2, SHR_TMP, GET_Rn(), 0, 2 | MF_PREDECR);
4515 case 0x04: // ROTL Rn 0100nnnn00000100
4516 case 0x05: // ROTR Rn 0100nnnn00000101
4517 tmp = rcache_get_reg(GET_Rn(), RC_GR_RMW, &tmp2);
4518 sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
4520 if (rcache_regs_discard & BITMASK1(SHR_T)) {
4522 emith_ror(tmp, tmp2, 1);
4524 emith_rol(tmp, tmp2, 1);
4528 emith_invalidate_t();
4530 emith_rorf(tmp, tmp2, 1);
4532 emith_rolf(tmp, tmp2, 1);
4533 emith_carry_to_t(sr, 0);
4536 case 0x24: // ROTCL Rn 0100nnnn00100100
4537 case 0x25: // ROTCR Rn 0100nnnn00100101
4538 tmp = rcache_get_reg(GET_Rn(), RC_GR_RMW, NULL);
4539 sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
4542 if (rcache_regs_discard & BITMASK1(SHR_T)) {
4543 emith_t_to_carry(sr, 0);
4551 emith_tpop_carry(sr, 0);
4556 emith_tpush_carry(sr, 0);
4559 case 0x15: // CMP/PL Rn 0100nnnn00010101
4560 tmp = rcache_get_reg(GET_Rn(), RC_GR_READ, NULL);
4561 sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
4562 emith_clr_t_cond(sr);
4563 emith_cmp_r_imm(tmp, 0);
4564 emith_set_t_cond(sr, DCOND_GT);
4572 case 0x06: // LDS.L @Rm+,MACH 0100mmmm00000110
4575 case 0x16: // LDS.L @Rm+,MACL 0100mmmm00010110
4578 case 0x26: // LDS.L @Rm+,PR 0100mmmm00100110
4581 case 0x07: // LDC.L @Rm+,SR 0100mmmm00000111
4584 case 0x17: // LDC.L @Rm+,GBR 0100mmmm00010111
4587 case 0x27: // LDC.L @Rm+,VBR 0100mmmm00100111
4593 if (tmp == SHR_SR) {
4594 emith_invalidate_t();
4595 tmp2 = emit_memhandler_read_rr(sh2, SHR_TMP, GET_Rn(), 0, 2 | MF_POSTINCR);
4596 sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
4597 emith_write_sr(sr, tmp2);
4598 rcache_free_tmp(tmp2);
4601 emit_memhandler_read_rr(sh2, tmp, GET_Rn(), 0, 2 | MF_POSTINCR);
4607 case 0: // SHLL2 Rn 0100nnnn00001000
4608 // SHLR2 Rn 0100nnnn00001001
4611 case 1: // SHLL8 Rn 0100nnnn00011000
4612 // SHLR8 Rn 0100nnnn00011001
4615 case 2: // SHLL16 Rn 0100nnnn00101000
4616 // SHLR16 Rn 0100nnnn00101001
4622 tmp2 = rcache_get_reg(GET_Rn(), RC_GR_RMW, &tmp3);
4624 emith_lsr(tmp2, tmp3, tmp);
4626 emith_lsl(tmp2, tmp3, tmp);
4631 case 0: // LDS Rm,MACH 0100mmmm00001010
4634 case 1: // LDS Rm,MACL 0100mmmm00011010
4637 case 2: // LDS Rm,PR 0100mmmm00101010
4643 emit_move_r_r(tmp2, GET_Rn());
4648 case 1: // TAS.B @Rn 0100nnnn00011011
4649 // XXX: is TAS working on 32X?
4650 sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
4652 rcache_get_reg_arg(0, GET_Rn(), NULL);
4653 tmp = emit_memhandler_read(0);
4654 sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
4655 emith_clr_t_cond(sr);
4656 emith_cmp_r_imm(tmp, 0);
4657 emith_set_t_cond(sr, DCOND_EQ);
4658 emith_or_r_imm(tmp, 0x80);
4659 tmp2 = rcache_get_tmp_arg(1); // assuming it differs to tmp
4660 emith_move_r_r(tmp2, tmp);
4661 rcache_free_tmp(tmp);
4662 rcache_get_reg_arg(0, GET_Rn(), NULL);
4663 emit_memhandler_write(0);
4672 case 0: // LDC Rm,SR 0100mmmm00001110
4675 case 1: // LDC Rm,GBR 0100mmmm00011110
4678 case 2: // LDC Rm,VBR 0100mmmm00101110
4684 if (tmp2 == SHR_SR) {
4685 emith_invalidate_t();
4686 sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
4687 tmp = rcache_get_reg(GET_Rn(), RC_GR_READ, NULL);
4688 emith_write_sr(sr, tmp);
4691 emit_move_r_r(tmp2, GET_Rn());
4693 case 0x0f: // MAC.W @Rm+,@Rn+ 0100nnnnmmmm1111
4694 emit_indirect_read_double(sh2, &tmp, &tmp2, GET_Rn(), GET_Rm(), 1);
4695 sr = rcache_get_reg(SHR_SR, RC_GR_READ, NULL);
4696 tmp3 = rcache_get_reg(SHR_MACL, RC_GR_RMW, NULL);
4697 tmp4 = rcache_get_reg(SHR_MACH, RC_GR_RMW, NULL);
4698 emith_sh2_macw(tmp3, tmp4, tmp, tmp2, sr);
4699 rcache_free_tmp(tmp2);
4700 rcache_free_tmp(tmp);
4705 /////////////////////////////////////////////
4706 case 0x05: // MOV.L @(disp,Rm),Rn 0101nnnnmmmmdddd
4707 sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
4709 emit_memhandler_read_rr(sh2, GET_Rn(), GET_Rm(), (op & 0x0f) * 4, 2 | drcf.polling);
4712 /////////////////////////////////////////////
4716 case 0x00: // MOV.B @Rm,Rn 0110nnnnmmmm0000
4717 case 0x01: // MOV.W @Rm,Rn 0110nnnnmmmm0001
4718 case 0x02: // MOV.L @Rm,Rn 0110nnnnmmmm0010
4719 case 0x04: // MOV.B @Rm+,Rn 0110nnnnmmmm0100
4720 case 0x05: // MOV.W @Rm+,Rn 0110nnnnmmmm0101
4721 case 0x06: // MOV.L @Rm+,Rn 0110nnnnmmmm0110
4722 sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
4724 tmp = ((op & 7) >= 4 && GET_Rn() != GET_Rm()) ? MF_POSTINCR : drcf.polling;
4725 emit_memhandler_read_rr(sh2, GET_Rn(), GET_Rm(), 0, (op & 3) | tmp);
4727 case 0x03: // MOV Rm,Rn 0110nnnnmmmm0011
4728 emit_move_r_r(GET_Rn(), GET_Rm());
4730 default: // 0x07 ... 0x0f
4731 tmp = rcache_get_reg(GET_Rm(), RC_GR_READ, NULL);
4732 tmp2 = rcache_get_reg(GET_Rn(), RC_GR_WRITE, NULL);
4735 case 0x07: // NOT Rm,Rn 0110nnnnmmmm0111
4736 emith_mvn_r_r(tmp2, tmp);
4738 case 0x08: // SWAP.B Rm,Rn 0110nnnnmmmm1000
4741 tmp3 = rcache_get_tmp();
4742 tmp4 = rcache_get_tmp();
4743 emith_lsr(tmp3, tmp, 16);
4744 emith_or_r_r_lsl(tmp3, tmp, 24);
4745 emith_and_r_r_imm(tmp4, tmp, 0xff00);
4746 emith_or_r_r_lsl(tmp3, tmp4, 8);
4747 emith_rol(tmp2, tmp3, 16);
4748 rcache_free_tmp(tmp4);
4750 rcache_free_tmp(tmp3);
4752 case 0x09: // SWAP.W Rm,Rn 0110nnnnmmmm1001
4753 emith_rol(tmp2, tmp, 16);
4755 case 0x0a: // NEGC Rm,Rn 0110nnnnmmmm1010
4756 sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
4759 if (rcache_regs_discard & BITMASK1(SHR_T)) {
4760 emith_t_to_carry(sr, 1);
4761 emith_negc_r_r(tmp2, tmp);
4765 EMITH_HINT_COND(DCOND_CS);
4766 emith_tpop_carry(sr, 1);
4767 emith_negcf_r_r(tmp2, tmp);
4768 emith_tpush_carry(sr, 1);
4771 case 0x0b: // NEG Rm,Rn 0110nnnnmmmm1011
4772 emith_neg_r_r(tmp2, tmp);
4774 case 0x0c: // EXTU.B Rm,Rn 0110nnnnmmmm1100
4775 emith_clear_msb(tmp2, tmp, 24);
4776 rcache_set_x16(tmp2, 1, 1);
4778 case 0x0d: // EXTU.W Rm,Rn 0110nnnnmmmm1101
4779 emith_clear_msb(tmp2, tmp, 16);
4780 rcache_set_x16(tmp2, 0, 1);
4782 case 0x0e: // EXTS.B Rm,Rn 0110nnnnmmmm1110
4783 emith_sext(tmp2, tmp, 8);
4784 rcache_set_x16(tmp2, 1, 0);
4786 case 0x0f: // EXTS.W Rm,Rn 0110nnnnmmmm1111
4787 emith_sext(tmp2, tmp, 16);
4788 rcache_set_x16(tmp2, 1, 0);
4795 /////////////////////////////////////////////
4796 case 0x07: // ADD #imm,Rn 0111nnnniiiiiiii
4797 if (op & 0x80) // adding negative
4798 emit_sub_r_imm(GET_Rn(), (u8)-op);
4800 emit_add_r_imm(GET_Rn(), (u8)op);
4803 /////////////////////////////////////////////
4805 switch (op & 0x0f00)
4807 case 0x0000: // MOV.B R0,@(disp,Rn) 10000000nnnndddd
4808 case 0x0100: // MOV.W R0,@(disp,Rn) 10000001nnnndddd
4809 sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
4811 tmp = (op & 0x100) >> 8;
4812 emit_memhandler_write_rr(sh2, SHR_R0, GET_Rm(), (op & 0x0f) << tmp, tmp);
4814 case 0x0400: // MOV.B @(disp,Rm),R0 10000100mmmmdddd
4815 case 0x0500: // MOV.W @(disp,Rm),R0 10000101mmmmdddd
4816 sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
4818 tmp = (op & 0x100) >> 8;
4819 emit_memhandler_read_rr(sh2, SHR_R0, GET_Rm(), (op & 0x0f) << tmp, tmp | drcf.polling);
4821 case 0x0800: // CMP/EQ #imm,R0 10001000iiiiiiii
4822 tmp2 = rcache_get_reg(SHR_R0, RC_GR_READ, NULL);
4823 sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
4824 emith_clr_t_cond(sr);
4825 emith_cmp_r_imm(tmp2, (s8)(op & 0xff));
4826 emith_set_t_cond(sr, DCOND_EQ);
4831 /////////////////////////////////////////////
4833 switch (op & 0x0f00)
4835 case 0x0000: // MOV.B R0,@(disp,GBR) 11000000dddddddd
4836 case 0x0100: // MOV.W R0,@(disp,GBR) 11000001dddddddd
4837 case 0x0200: // MOV.L R0,@(disp,GBR) 11000010dddddddd
4838 sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
4840 tmp = (op & 0x300) >> 8;
4841 emit_memhandler_write_rr(sh2, SHR_R0, SHR_GBR, (op & 0xff) << tmp, tmp);
4843 case 0x0400: // MOV.B @(disp,GBR),R0 11000100dddddddd
4844 case 0x0500: // MOV.W @(disp,GBR),R0 11000101dddddddd
4845 case 0x0600: // MOV.L @(disp,GBR),R0 11000110dddddddd
4846 sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
4848 tmp = (op & 0x300) >> 8;
4849 emit_memhandler_read_rr(sh2, SHR_R0, SHR_GBR, (op & 0xff) << tmp, tmp | drcf.polling);
4851 case 0x0800: // TST #imm,R0 11001000iiiiiiii
4852 tmp = rcache_get_reg(SHR_R0, RC_GR_READ, NULL);
4853 sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
4854 emith_clr_t_cond(sr);
4855 emith_tst_r_imm(tmp, op & 0xff);
4856 emith_set_t_cond(sr, DCOND_EQ);
4858 case 0x0900: // AND #imm,R0 11001001iiiiiiii
4859 tmp = rcache_get_reg(SHR_R0, RC_GR_RMW, &tmp2);
4860 emith_and_r_r_imm(tmp, tmp2, (op & 0xff));
4862 case 0x0a00: // XOR #imm,R0 11001010iiiiiiii
4864 tmp = rcache_get_reg(SHR_R0, RC_GR_RMW, &tmp2);
4865 emith_eor_r_r_imm(tmp, tmp2, (op & 0xff));
4868 case 0x0b00: // OR #imm,R0 11001011iiiiiiii
4870 tmp = rcache_get_reg(SHR_R0, RC_GR_RMW, &tmp2);
4871 emith_or_r_r_imm(tmp, tmp2, (op & 0xff));
4874 case 0x0c00: // TST.B #imm,@(R0,GBR) 11001100iiiiiiii
4875 sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
4877 tmp = emit_indirect_indexed_read(sh2, SHR_TMP, SHR_R0, SHR_GBR, 0 | drcf.polling);
4878 sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
4879 emith_clr_t_cond(sr);
4880 emith_tst_r_imm(tmp, op & 0xff);
4881 emith_set_t_cond(sr, DCOND_EQ);
4882 rcache_free_tmp(tmp);
4884 case 0x0d00: // AND.B #imm,@(R0,GBR) 11001101iiiiiiii
4885 sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
4887 tmp = emit_indirect_indexed_read(sh2, SHR_TMP, SHR_R0, SHR_GBR, 0);
4888 tmp2 = rcache_get_tmp_arg(1);
4889 emith_and_r_r_imm(tmp2, tmp, (op & 0xff));
4891 case 0x0e00: // XOR.B #imm,@(R0,GBR) 11001110iiiiiiii
4892 sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
4894 tmp = emit_indirect_indexed_read(sh2, SHR_TMP, SHR_R0, SHR_GBR, 0);
4895 tmp2 = rcache_get_tmp_arg(1);
4896 emith_eor_r_r_imm(tmp2, tmp, (op & 0xff));
4898 case 0x0f00: // OR.B #imm,@(R0,GBR) 11001111iiiiiiii
4899 sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
4901 tmp = emit_indirect_indexed_read(sh2, SHR_TMP, SHR_R0, SHR_GBR, 0);
4902 tmp2 = rcache_get_tmp_arg(1);
4903 emith_or_r_r_imm(tmp2, tmp, (op & 0xff));
4905 rcache_free_tmp(tmp);
4906 emit_indirect_indexed_write(sh2, SHR_TMP, SHR_R0, SHR_GBR, 0);
4911 /////////////////////////////////////////////
4912 case 0x0e: // MOV #imm,Rn 1110nnnniiiiiiii
4913 emit_move_r_imm32(GET_Rn(), (s8)op);
4918 if (!(op_flags[i] & OF_B_IN_DS)) {
4919 elprintf_sh2(sh2, EL_ANOMALY,
4920 "drc: illegal op %04x @ %08x", op, pc - 2);
4926 rcache_unlock_all();
4927 rcache_set_usage_now(0);
4929 RCACHE_CHECK("after insn");
4932 cycles += opd->cycles;
4934 if (op_flags[i+1] & OF_DELAY_OP) {
4935 do_host_disasm(tcache_id);
4940 if (drcf.test_irq && !drcf.pending_branch_direct) {
4941 sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
4944 if (!drcf.pending_branch_indirect)
4945 emit_move_r_imm32(SHR_PC, pc);
4947 emith_call(sh2_drc_test_irq);
4952 if (drcf.pending_branch_direct)
4954 struct op_data *opd_b = (op_flags[i] & OF_DELAY_OP) ? opd-1 : opd;
4955 u32 target_pc = opd_b->imm;
4958 void *target = NULL;
4960 if (OP_ISBRACND(opd_b->op))
4961 ctaken = (op_flags[i] & OF_DELAY_OP) ? 1 : 2;
4962 cycles += ctaken; // assume branch taken
4965 if ((drcf.loop_type == OF_IDLE_LOOP ||
4966 (drcf.loop_type == OF_DELAY_LOOP && drcf.delay_reg >= 0)))
4968 // idle or delay loop
4969 emit_sync_t_to_sr();
4970 emith_sh2_delay_loop(cycles, drcf.delay_reg);
4971 rcache_unlock_all(); // may lock delay_reg
4972 drcf.polling = drcf.loop_type = drcf.pinning = 0;
4977 void *rtsadd = NULL, *rtsret = NULL;
4978 if ((opd_b->dest & BITMASK1(SHR_PR)) && pc+2 < end_pc) {
4979 // BSR - save rts data
4980 tmp = rcache_get_tmp_arg(1);
4981 rtsadd = tcache_ptr;
4982 emith_move_r_imm_s8_patchable(tmp, 0);
4984 rcache_invalidate_tmp();
4985 emith_call(sh2_drc_dispatcher_call);
4986 rtsret = tcache_ptr;
4990 // XXX move below cond test if not changing host cond (MIPS delay slot)?
4991 sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
4995 if (OP_ISBRACND(opd_b->op)) {
4996 // BT[S], BF[S] - emit condition test
4997 cond = (opd_b->op == OP_BRANCH_CF) ? DCOND_EQ : DCOND_NE;
4998 if (delay_dep_fw & BITMASK1(SHR_T)) {
5000 emith_tst_r_imm(sr, T_save);
5002 cond = emith_tst_t(sr, (opd_b->op == OP_BRANCH_CT));
5003 if (emith_get_t_cond() >= 0) {
5004 if (opd_b->op == OP_BRANCH_CT)
5005 emith_or_r_imm_c(cond, sr, T);
5007 emith_bic_r_imm_c(cond, sr, T);
5012 // no modification of host status/flags between here and branching!
5014 v = find_in_sorted_linkage(branch_targets, branch_target_count, target_pc);
5018 if (branch_targets[v].ptr) {
5019 // local backward jump, link here now since host PC is already known
5020 target = branch_targets[v].ptr;
5022 if (pinned_loops[pinned_loop_count].pc == target_pc) {
5023 // backward jump at end of optimized loop
5025 target = pinned_loops[pinned_loop_count].ptr;
5026 pinned_loop_count ++;
5030 if (emith_jump_patch_inrange(tcache_ptr, target)) {
5031 emith_jump_cond(cond, target);
5033 // not reachable directly, must use far branch
5034 EMITH_JMP_START(emith_invert_cond(cond));
5036 EMITH_JMP_END(emith_invert_cond(cond));
5040 rcache_invalidate();
5042 } else if (blx_target_count < MAX_LOCAL_BRANCHES) {
5043 // local forward jump
5044 target = tcache_ptr;
5045 blx_targets[blx_target_count++] =
5046 (struct linkage) { .pc = target_pc, .ptr = target, .mask = 0x2 };
5048 emith_jump_cond_patchable(cond, target);
5050 emith_jump_patchable(target);
5051 rcache_invalidate();
5054 // no space for resolving forward branch, handle it as external
5055 dbg(1, "warning: too many unresolved branches");
5060 // can't resolve branch locally, make a block exit
5061 bl = dr_prepare_ext_branch(block->entryp, target_pc, sh2->is_slave, tcache_id);
5064 if (bl && blx_target_count < ARRAY_SIZE(blx_targets)) {
5065 // conditional jumps get a blx stub for the far jump
5066 bl->type = BL_JCCBLX;
5067 target = tcache_ptr;
5068 blx_targets[blx_target_count++] =
5069 (struct linkage) { .pc = target_pc, .ptr = target, .bl = bl };
5070 emith_jump_cond_patchable(cond, target);
5072 // not linkable, or blx table full; inline jump @dispatcher
5073 EMITH_JMP_START(emith_invert_cond(cond));
5075 bl->jump = tcache_ptr;
5076 emith_flush(); // flush to inhibit insn swapping
5077 bl->type = BL_LDJMP;
5079 tmp = rcache_get_tmp_arg(0);
5080 emith_move_r_imm(tmp, target_pc);
5081 rcache_free_tmp(tmp);
5082 target = sh2_drc_dispatcher;
5084 emith_jump_patchable(target);
5085 EMITH_JMP_END(emith_invert_cond(cond));
5088 // jump @dispatcher - ARM 32bit version with conditional execution
5089 EMITH_SJMP_START(emith_invert_cond(cond));
5090 tmp = rcache_get_tmp_arg(0);
5091 emith_move_r_imm_c(cond, tmp, target_pc);
5092 rcache_free_tmp(tmp);
5093 target = sh2_drc_dispatcher;
5096 bl->jump = tcache_ptr;
5099 emith_jump_cond_patchable(cond, target);
5100 EMITH_SJMP_END(emith_invert_cond(cond));
5103 // unconditional, has the far jump inlined
5105 emith_flush(); // flush to inhibit insn swapping
5106 bl->type = BL_LDJMP;
5109 tmp = rcache_get_tmp_arg(0);
5110 emith_move_r_imm(tmp, target_pc);
5111 rcache_free_tmp(tmp);
5112 target = sh2_drc_dispatcher;
5114 emith_jump_patchable(target);
5115 rcache_invalidate();
5121 emith_move_r_imm_s8_patch(rtsadd, tcache_ptr - (u8 *)rtsret);
5124 // branch not taken, correct cycle count (now, cycles < 0)
5127 // set T bit to reflect branch not taken for OP_BRANCH_CT/CF
5128 if (emith_get_t_cond() >= 0) // T is synced for all other cases
5129 emith_set_t(sr, opd_b->op == OP_BRANCH_CF);
5131 drcf.pending_branch_direct = 0;
5132 if (target_pc >= base_pc && target_pc < pc)
5133 drcf.polling = drcf.loop_type = 0;
5135 else if (drcf.pending_branch_indirect) {
5138 tmp = rcache_get_reg_arg(0, SHR_PC, NULL);
5141 struct op_data *opd_b = (op_flags[i] & OF_DELAY_OP) ? opd-1 : opd;
5142 void *rtsadd = NULL, *rtsret = NULL;
5144 if ((opd_b->dest & BITMASK1(SHR_PR)) && pc+2 < end_pc) {
5145 // JSR, BSRF - save rts data
5146 tmp = rcache_get_tmp_arg(1);
5147 rtsadd = tcache_ptr;
5148 emith_move_r_imm_s8_patchable(tmp, 0);
5150 rcache_invalidate_tmp();
5151 emith_call(sh2_drc_dispatcher_call);
5152 rtsret = tcache_ptr;
5156 sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
5162 if (opd_b->rm == SHR_PR) {
5163 // RTS - restore rts data, else jump to dispatcher
5164 emith_jump(sh2_drc_dispatcher_return);
5167 if (gconst_get(SHR_PC, &target_pc)) {
5168 // JMP, JSR, BRAF, BSRF const - treat like unconditional direct branch
5169 bl = dr_prepare_ext_branch(block->entryp, target_pc, sh2->is_slave, tcache_id);
5170 if (bl) // pc already loaded somewhere else, can patch jump only
5172 emith_jump_patchable(sh2_drc_dispatcher);
5174 // JMP, JSR, BRAF, BSRF not const
5175 emith_jump(sh2_drc_dispatcher);
5177 rcache_invalidate();
5181 emith_move_r_imm_s8_patch(rtsadd, tcache_ptr - (u8 *)rtsret);
5184 drcf.pending_branch_indirect = 0;
5185 drcf.polling = drcf.loop_type = 0;
5187 rcache_unlock_all();
5189 do_host_disasm(tcache_id);
5192 // check the last op
5193 if (op_flags[i-1] & OF_DELAY_OP)
5198 if (! OP_ISBRAUC(opd->op) || (opd->dest & BITMASK1(SHR_PR)))
5200 tmp = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
5205 bl = dr_prepare_ext_branch(block->entryp, pc, sh2->is_slave, tcache_id);
5207 emith_flush(); // flush to inhibit insn swapping
5208 bl->type = BL_LDJMP;
5210 tmp = rcache_get_tmp_arg(0);
5211 emith_move_r_imm(tmp, pc);
5212 emith_jump_patchable(sh2_drc_dispatcher);
5213 rcache_invalidate();
5217 // link unresolved branches, emitting blx area entries as needed
5218 emit_branch_linkage_code(sh2, block, tcache_id, branch_targets,
5219 branch_target_count, blx_targets, blx_target_count);
5222 do_host_disasm(tcache_id);
5224 emith_pool_commit(0);
5226 // fill blx backup; do this last to backup final patched code
5227 for (i = 0; i < block->entry_count; i++)
5228 for (bl = block->entryp[i].o_links; bl; bl = bl->o_next)
5229 memcpy(bl->jdisp, bl->blx ? bl->blx : bl->jump, emith_jump_at_size());
5231 ring_alloc(&tcache_ring[tcache_id], tcache_ptr - block_entry_ptr);
5232 host_instructions_updated(block_entry_ptr, tcache_ptr, 1);
5234 dr_activate_block(block, tcache_id, sh2->is_slave);
5235 emith_update_cache();
5237 do_host_disasm(tcache_id);
5239 dbg(2, " block #%d,%d -> %p tcache %d/%d, insns %d -> %d %.3f",
5240 tcache_id, blkid_main, tcache_ptr,
5241 tcache_ring[tcache_id].used, tcache_ring[tcache_id].size,
5242 insns_compiled, host_insn_count, (float)host_insn_count / insns_compiled);
5243 if ((sh2->pc & 0xc6000000) == 0x02000000) { // ROM
5244 dbg(2, " hash collisions %d/%d", hash_collisions, block_ring[tcache_id].used);
5245 Pico32x.emu_flags |= P32XF_DRC_ROM_C;
5249 tcache_dsm_ptrs[tcache_id] = block_entry_ptr;
5250 do_host_disasm(tcache_id);
5254 return block_entry_ptr;
5257 static void sh2_generate_utils(void)
5259 int arg0, arg1, arg2, arg3, sr, tmp, tmp2;
5261 int hic = host_insn_count; // don't count utils for insn statistics
5264 host_arg2reg(arg0, 0);
5265 host_arg2reg(arg1, 1);
5266 host_arg2reg(arg2, 2);
5267 host_arg2reg(arg3, 3);
5269 // sh2_drc_write8(u32 a, u32 d)
5270 sh2_drc_write8 = (void *)tcache_ptr;
5271 emith_ctx_read_ptr(arg2, offsetof(SH2, write8_tab));
5272 emith_sh2_wcall(arg0, arg1, arg2, arg3);
5275 // sh2_drc_write16(u32 a, u32 d)
5276 sh2_drc_write16 = (void *)tcache_ptr;
5277 emith_ctx_read_ptr(arg2, offsetof(SH2, write16_tab));
5278 emith_sh2_wcall(arg0, arg1, arg2, arg3);
5281 // sh2_drc_write32(u32 a, u32 d)
5282 sh2_drc_write32 = (void *)tcache_ptr;
5283 emith_ctx_read_ptr(arg2, offsetof(SH2, write32_tab));
5284 emith_sh2_wcall(arg0, arg1, arg2, arg3);
5287 // d = sh2_drc_read8(u32 a)
5288 sh2_drc_read8 = (void *)tcache_ptr;
5289 emith_ctx_read_ptr(arg1, offsetof(SH2, read8_map));
5290 EMITH_HINT_COND(DCOND_CS);
5291 emith_sh2_rcall(arg0, arg1, arg2, arg3);
5292 EMITH_SJMP_START(DCOND_CS);
5293 emith_and_r_r_c(DCOND_CC, arg0, arg3);
5294 emit_le_ptr8(DCOND_CC, arg0);
5295 emith_read8s_r_r_r_c(DCOND_CC, RET_REG, arg2, arg0);
5296 emith_ret_c(DCOND_CC);
5297 EMITH_SJMP_END(DCOND_CS);
5298 emith_move_r_r_ptr(arg1, CONTEXT_REG);
5299 emith_abijump_reg(arg2);
5302 // d = sh2_drc_read16(u32 a)
5303 sh2_drc_read16 = (void *)tcache_ptr;
5304 emith_ctx_read_ptr(arg1, offsetof(SH2, read16_map));
5305 EMITH_HINT_COND(DCOND_CS);
5306 emith_sh2_rcall(arg0, arg1, arg2, arg3);
5307 EMITH_SJMP_START(DCOND_CS);
5308 emith_and_r_r_c(DCOND_CC, arg0, arg3);
5309 emith_read16s_r_r_r_c(DCOND_CC, RET_REG, arg2, arg0);
5310 emith_ret_c(DCOND_CC);
5311 EMITH_SJMP_END(DCOND_CS);
5312 emith_move_r_r_ptr(arg1, CONTEXT_REG);
5313 emith_abijump_reg(arg2);
5316 // d = sh2_drc_read32(u32 a)
5317 sh2_drc_read32 = (void *)tcache_ptr;
5318 emith_ctx_read_ptr(arg1, offsetof(SH2, read32_map));
5319 EMITH_HINT_COND(DCOND_CS);
5320 emith_sh2_rcall(arg0, arg1, arg2, arg3);
5321 EMITH_SJMP_START(DCOND_CS);
5322 emith_and_r_r_c(DCOND_CC, arg0, arg3);
5323 emith_read_r_r_r_c(DCOND_CC, RET_REG, arg2, arg0);
5324 emit_le_swap(DCOND_CC, RET_REG);
5325 emith_ret_c(DCOND_CC);
5326 EMITH_SJMP_END(DCOND_CS);
5327 emith_move_r_r_ptr(arg1, CONTEXT_REG);
5328 emith_abijump_reg(arg2);
5331 // d = sh2_drc_read8_poll(u32 a)
5332 sh2_drc_read8_poll = (void *)tcache_ptr;
5333 emith_ctx_read_ptr(arg1, offsetof(SH2, read8_map));
5334 EMITH_HINT_COND(DCOND_CS);
5335 emith_sh2_rcall(arg0, arg1, arg2, arg3);
5336 EMITH_SJMP_START(DCOND_CC);
5337 emith_move_r_r_ptr_c(DCOND_CS, arg1, CONTEXT_REG);
5338 emith_abijump_reg_c(DCOND_CS, arg2);
5339 EMITH_SJMP_END(DCOND_CC);
5340 emith_and_r_r_r(arg1, arg0, arg3);
5341 emit_le_ptr8(-1, arg1);
5342 emith_read8s_r_r_r(arg1, arg2, arg1);
5343 emith_push_ret(arg1);
5344 emith_move_r_r_ptr(arg2, CONTEXT_REG);
5345 emith_abicall(p32x_sh2_poll_memory8);
5346 emith_pop_and_ret(arg1);
5349 // d = sh2_drc_read16_poll(u32 a)
5350 sh2_drc_read16_poll = (void *)tcache_ptr;
5351 emith_ctx_read_ptr(arg1, offsetof(SH2, read16_map));
5352 EMITH_HINT_COND(DCOND_CS);
5353 emith_sh2_rcall(arg0, arg1, arg2, arg3);
5354 EMITH_SJMP_START(DCOND_CC);
5355 emith_move_r_r_ptr_c(DCOND_CS, arg1, CONTEXT_REG);
5356 emith_abijump_reg_c(DCOND_CS, arg2);
5357 EMITH_SJMP_END(DCOND_CC);
5358 emith_and_r_r_r(arg1, arg0, arg3);
5359 emith_read16s_r_r_r(arg1, arg2, arg1);
5360 emith_push_ret(arg1);
5361 emith_move_r_r_ptr(arg2, CONTEXT_REG);
5362 emith_abicall(p32x_sh2_poll_memory16);
5363 emith_pop_and_ret(arg1);
5366 // d = sh2_drc_read32_poll(u32 a)
5367 sh2_drc_read32_poll = (void *)tcache_ptr;
5368 emith_ctx_read_ptr(arg1, offsetof(SH2, read32_map));
5369 EMITH_HINT_COND(DCOND_CS);
5370 emith_sh2_rcall(arg0, arg1, arg2, arg3);
5371 EMITH_SJMP_START(DCOND_CC);
5372 emith_move_r_r_ptr_c(DCOND_CS, arg1, CONTEXT_REG);
5373 emith_abijump_reg_c(DCOND_CS, arg2);
5374 EMITH_SJMP_END(DCOND_CC);
5375 emith_and_r_r_r(arg1, arg0, arg3);
5376 emith_read_r_r_r(arg1, arg2, arg1);
5377 emit_le_swap(-1, arg1);
5378 emith_push_ret(arg1);
5379 emith_move_r_r_ptr(arg2, CONTEXT_REG);
5380 emith_abicall(p32x_sh2_poll_memory32);
5381 emith_pop_and_ret(arg1);
5384 // sh2_drc_exit(u32 pc)
5385 sh2_drc_exit = (void *)tcache_ptr;
5386 emith_ctx_write(arg0, SHR_PC * 4);
5387 emit_do_static_regs(1, arg2);
5388 emith_sh2_drc_exit();
5391 // sh2_drc_dispatcher(u32 pc)
5392 sh2_drc_dispatcher = (void *)tcache_ptr;
5393 emith_ctx_write(arg0, SHR_PC * 4);
5395 // check if PC is in branch target cache
5396 emith_and_r_r_imm(arg1, arg0, (ARRAY_SIZE(sh2s->branch_cache)-1)*8);
5397 emith_add_r_r_r_lsl_ptr(arg1, CONTEXT_REG, arg1, sizeof(void *) == 8 ? 1 : 0);
5398 emith_read_r_r_offs(arg2, arg1, offsetof(SH2, branch_cache));
5399 emith_cmp_r_r(arg2, arg0);
5400 EMITH_SJMP_START(DCOND_NE);
5401 #if (DRC_DEBUG & 128)
5402 emith_move_r_ptr_imm(arg2, (uptr)&bchit);
5403 emith_read_r_r_offs_c(DCOND_EQ, arg3, arg2, 0);
5404 emith_add_r_imm_c(DCOND_EQ, arg3, 1);
5405 emith_write_r_r_offs_c(DCOND_EQ, arg3, arg2, 0);
5407 emith_read_r_r_offs_ptr_c(DCOND_EQ, RET_REG, arg1, offsetof(SH2, branch_cache) + sizeof(void *));
5408 emith_jump_reg_c(DCOND_EQ, RET_REG);
5409 EMITH_SJMP_END(DCOND_NE);
5411 emith_move_r_r_ptr(arg1, CONTEXT_REG);
5412 emith_add_r_r_ptr_imm(arg2, CONTEXT_REG, offsetof(SH2, drc_tmp));
5413 emith_abicall(dr_lookup_block);
5414 // store PC and block entry ptr (in arg0) in branch target cache
5415 emith_tst_r_r_ptr(RET_REG, RET_REG);
5416 EMITH_SJMP_START(DCOND_EQ);
5418 #if (DRC_DEBUG & 128)
5419 emith_move_r_ptr_imm(arg2, (uptr)&bcmiss);
5420 emith_read_r_r_offs_c(DCOND_NE, arg3, arg2, 0);
5421 emith_add_r_imm_c(DCOND_NE, arg3, 1);
5422 emith_write_r_r_offs_c(DCOND_NE, arg3, arg2, 0);
5424 emith_ctx_read_c(DCOND_NE, arg2, SHR_PC * 4);
5425 emith_and_r_r_imm(arg1, arg2, (ARRAY_SIZE(sh2s->branch_cache)-1)*8);
5426 emith_add_r_r_r_lsl_ptr(arg1, CONTEXT_REG, arg1, sizeof(void *) == 8 ? 1 : 0);
5427 emith_write_r_r_offs_c(DCOND_NE, arg2, arg1, offsetof(SH2, branch_cache));
5428 emith_write_r_r_offs_ptr_c(DCOND_NE, RET_REG, arg1, offsetof(SH2, branch_cache) + sizeof(void *));
5430 emith_jump_reg_c(DCOND_NE, RET_REG);
5431 EMITH_SJMP_END(DCOND_EQ);
5432 // lookup failed, call sh2_translate()
5433 emith_move_r_r_ptr(arg0, CONTEXT_REG);
5434 emith_ctx_read(arg1, offsetof(SH2, drc_tmp)); // tcache_id
5435 emith_abicall(sh2_translate);
5436 emith_tst_r_r_ptr(RET_REG, RET_REG);
5437 EMITH_SJMP_START(DCOND_EQ);
5438 emith_jump_reg_c(DCOND_NE, RET_REG);
5439 EMITH_SJMP_END(DCOND_EQ);
5440 // XXX: can't translate, fail
5441 emith_abicall(dr_failure);
5445 // pc = sh2_drc_dispatcher_call(u32 pc)
5446 sh2_drc_dispatcher_call = (void *)tcache_ptr;
5447 emith_ctx_read(arg2, offsetof(SH2, rts_cache_idx));
5448 emith_add_r_imm(arg2, (u32)(2*sizeof(void *)));
5449 emith_and_r_imm(arg2, (ARRAY_SIZE(sh2s->rts_cache)-1) * 2*sizeof(void *));
5450 emith_ctx_write(arg2, offsetof(SH2, rts_cache_idx));
5451 emith_add_r_r_r_lsl_ptr(arg3, CONTEXT_REG, arg2, 0);
5452 rcache_get_reg_arg(2, SHR_PR, NULL);
5453 emith_add_r_ret(arg1);
5454 emith_write_r_r_offs_ptr(arg1, arg3, offsetof(SH2, rts_cache)+sizeof(void *));
5455 emith_write_r_r_offs(arg2, arg3, offsetof(SH2, rts_cache));
5460 // sh2_drc_dispatcher_return(u32 pc)
5461 sh2_drc_dispatcher_return = (void *)tcache_ptr;
5462 emith_ctx_read(arg2, offsetof(SH2, rts_cache_idx));
5463 emith_add_r_r_r_lsl_ptr(arg1, CONTEXT_REG, arg2, 0);
5464 emith_read_r_r_offs(arg3, arg1, offsetof(SH2, rts_cache));
5465 emith_cmp_r_r(arg0, arg3);
5466 #if (DRC_DEBUG & 128)
5467 EMITH_SJMP_START(DCOND_EQ);
5468 emith_move_r_ptr_imm(arg3, (uptr)&rcmiss);
5469 emith_read_r_r_offs_c(DCOND_NE, arg1, arg3, 0);
5470 emith_add_r_imm_c(DCOND_NE, arg1, 1);
5471 emith_write_r_r_offs_c(DCOND_NE, arg1, arg3, 0);
5472 emith_jump_cond(DCOND_NE, sh2_drc_dispatcher);
5473 EMITH_SJMP_END(DCOND_EQ);
5475 emith_jump_cond(DCOND_NE, sh2_drc_dispatcher);
5477 emith_read_r_r_offs_ptr(arg0, arg1, offsetof(SH2, rts_cache) + sizeof(void *));
5478 emith_sub_r_imm(arg2, (u32)(2*sizeof(void *)));
5479 emith_and_r_imm(arg2, (ARRAY_SIZE(sh2s->rts_cache)-1) * 2*sizeof(void *));
5480 emith_ctx_write(arg2, offsetof(SH2, rts_cache_idx));
5481 #if (DRC_DEBUG & 128)
5482 emith_move_r_ptr_imm(arg3, (uptr)&rchit);
5483 emith_read_r_r_offs(arg1, arg3, 0);
5484 emith_add_r_imm(arg1, 1);
5485 emith_write_r_r_offs(arg1, arg3, 0);
5487 emith_jump_reg(arg0);
5491 // sh2_drc_test_irq(void)
5492 // assumes it's called from main function (may jump to dispatcher)
5493 sh2_drc_test_irq = (void *)tcache_ptr;
5494 emith_ctx_read(arg1, offsetof(SH2, pending_level));
5495 sr = rcache_get_reg(SHR_SR, RC_GR_READ, NULL);
5496 emith_lsr(arg0, sr, I_SHIFT);
5497 emith_and_r_imm(arg0, 0x0f);
5498 emith_cmp_r_r(arg1, arg0); // pending_level > ((sr >> 4) & 0x0f)?
5499 EMITH_SJMP_START(DCOND_GT);
5500 emith_ret_c(DCOND_LE); // nope, return
5501 EMITH_SJMP_END(DCOND_GT);
5503 tmp = rcache_get_reg(SHR_SP, RC_GR_RMW, NULL);
5504 emith_sub_r_imm(tmp, 4*2);
5507 tmp = rcache_get_reg_arg(0, SHR_SP, &tmp2);
5508 emith_add_r_r_imm(tmp, tmp2, 4);
5509 tmp = rcache_get_reg_arg(1, SHR_SR, NULL);
5510 emith_clear_msb(tmp, tmp, 22);
5511 emith_move_r_r_ptr(arg2, CONTEXT_REG);
5512 rcache_invalidate_tmp();
5513 emith_abicall(p32x_sh2_write32); // XXX: use sh2_drc_write32?
5515 rcache_get_reg_arg(0, SHR_SP, NULL);
5516 rcache_get_reg_arg(1, SHR_PC, NULL);
5517 emith_move_r_r_ptr(arg2, CONTEXT_REG);
5518 rcache_invalidate_tmp();
5519 emith_abicall(p32x_sh2_write32);
5520 // update I, cycles, do callback
5521 emith_ctx_read(arg1, offsetof(SH2, pending_level));
5522 sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
5523 emith_bic_r_imm(sr, I);
5524 emith_or_r_r_lsl(sr, arg1, I_SHIFT);
5525 emith_sub_r_imm(sr, 13 << 12); // at least 13 cycles
5527 emith_move_r_r_ptr(arg0, CONTEXT_REG);
5528 emith_abicall_ctx(offsetof(SH2, irq_callback)); // vector = sh2->irq_callback(sh2, level);
5530 tmp = rcache_get_reg_arg(1, SHR_VBR, &tmp2);
5531 emith_add_r_r_r_lsl(arg0, tmp2, RET_REG, 2);
5532 emith_call(sh2_drc_read32);
5533 if (arg0 != RET_REG)
5534 emith_move_r_r(arg0, RET_REG);
5535 emith_call_cleanup();
5536 rcache_invalidate();
5537 emith_jump(sh2_drc_dispatcher);
5540 // sh2_drc_entry(SH2 *sh2)
5541 sh2_drc_entry = (void *)tcache_ptr;
5542 emith_sh2_drc_entry();
5543 emith_move_r_r_ptr(CONTEXT_REG, arg0); // move ctx, arg0
5544 emit_do_static_regs(0, arg2);
5545 emith_call(sh2_drc_test_irq);
5546 emith_ctx_read(arg0, SHR_PC * 4);
5547 emith_jump(sh2_drc_dispatcher);
5551 // sh2_drc_save_sr(SH2 *sh2)
5552 sh2_drc_save_sr = (void *)tcache_ptr;
5553 tmp = rcache_get_reg(SHR_SR, RC_GR_READ, NULL);
5554 emith_write_r_r_offs(tmp, arg0, SHR_SR * 4);
5555 rcache_invalidate();
5559 // sh2_drc_restore_sr(SH2 *sh2)
5560 sh2_drc_restore_sr = (void *)tcache_ptr;
5561 tmp = rcache_get_reg(SHR_SR, RC_GR_WRITE, NULL);
5562 emith_read_r_r_offs(tmp, arg0, SHR_SR * 4);
5570 #define MAKE_READ_WRAPPER(func) { \
5571 void *tmp = (void *)tcache_ptr; \
5574 emith_ctx_read(arg2, offsetof(SH2, pdb_io_csum[0])); \
5575 emith_addf_r_r(arg2, arg0); \
5576 emith_ctx_write(arg2, offsetof(SH2, pdb_io_csum[0])); \
5577 emith_ctx_read(arg2, offsetof(SH2, pdb_io_csum[1])); \
5578 emith_adc_r_imm(arg2, 0x01000000); \
5579 emith_ctx_write(arg2, offsetof(SH2, pdb_io_csum[1])); \
5580 emith_pop_and_ret(); \
5584 #define MAKE_WRITE_WRAPPER(func) { \
5585 void *tmp = (void *)tcache_ptr; \
5586 emith_ctx_read(arg2, offsetof(SH2, pdb_io_csum[0])); \
5587 emith_addf_r_r(arg2, arg1); \
5588 emith_ctx_write(arg2, offsetof(SH2, pdb_io_csum[0])); \
5589 emith_ctx_read(arg2, offsetof(SH2, pdb_io_csum[1])); \
5590 emith_adc_r_imm(arg2, 0x01000000); \
5591 emith_ctx_write(arg2, offsetof(SH2, pdb_io_csum[1])); \
5592 emith_move_r_r_ptr(arg2, CONTEXT_REG); \
5598 MAKE_READ_WRAPPER(sh2_drc_read8);
5599 MAKE_READ_WRAPPER(sh2_drc_read16);
5600 MAKE_READ_WRAPPER(sh2_drc_read32);
5601 MAKE_WRITE_WRAPPER(sh2_drc_write8);
5602 MAKE_WRITE_WRAPPER(sh2_drc_write16);
5603 MAKE_WRITE_WRAPPER(sh2_drc_write32);
5604 MAKE_READ_WRAPPER(sh2_drc_read8_poll);
5605 MAKE_READ_WRAPPER(sh2_drc_read16_poll);
5606 MAKE_READ_WRAPPER(sh2_drc_read32_poll);
5609 emith_pool_commit(0);
5610 rcache_invalidate();
5612 host_dasm_new_symbol(sh2_drc_entry);
5613 host_dasm_new_symbol(sh2_drc_dispatcher);
5615 host_dasm_new_symbol(sh2_drc_dispatcher_call);
5616 host_dasm_new_symbol(sh2_drc_dispatcher_return);
5618 host_dasm_new_symbol(sh2_drc_exit);
5619 host_dasm_new_symbol(sh2_drc_test_irq);
5620 host_dasm_new_symbol(sh2_drc_write8);
5621 host_dasm_new_symbol(sh2_drc_write16);
5622 host_dasm_new_symbol(sh2_drc_write32);
5623 host_dasm_new_symbol(sh2_drc_read8);
5624 host_dasm_new_symbol(sh2_drc_read16);
5625 host_dasm_new_symbol(sh2_drc_read32);
5626 host_dasm_new_symbol(sh2_drc_read8_poll);
5627 host_dasm_new_symbol(sh2_drc_read16_poll);
5628 host_dasm_new_symbol(sh2_drc_read32_poll);
5630 host_dasm_new_symbol(sh2_drc_save_sr);
5631 host_dasm_new_symbol(sh2_drc_restore_sr);
5636 host_insn_count = hic;
5640 static void sh2_smc_rm_blocks(u32 a, int len, int tcache_id, int free)
5642 struct block_list **blist, *entry, *next;
5643 u32 mask = RAM_SIZE(tcache_id) - 1;
5644 u32 wtmask = ~0x20000000; // writethrough area mask
5645 u32 start_addr, end_addr;
5646 u32 start_lit, end_lit;
5647 struct block_desc *block;
5648 int removed = 0, rest;
5650 // ignore cache-through
5654 blist = &inval_lookup[tcache_id][(a & mask) / INVAL_PAGE_SIZE];
5656 // go through the block list for this range
5657 while (entry != NULL) {
5659 block = entry->block;
5660 start_addr = block->addr & wtmask;
5661 end_addr = start_addr + block->size;
5662 start_lit = block->addr_lit & wtmask;
5663 end_lit = start_lit + block->size_lit;
5664 // disable/delete block if it covers the modified address
5665 if ((start_addr < a+len && a < end_addr) ||
5666 (start_lit < a+len && a < end_lit))
5668 dbg(2, "smc remove @%08x", a);
5669 end_addr = (start_lit < a+len && block->size_lit ? a : 0);
5670 dr_rm_block_entry(block, tcache_id, end_addr, free);
5675 rest = INVAL_PAGE_SIZE - (a & (INVAL_PAGE_SIZE-1));
5676 a += rest, len -= rest;
5681 dbg(2, "rm_blocks called @%08x, no work?", a);
5687 memset32(sh2s[tcache_id-1].branch_cache, -1, sizeof(sh2s[0].branch_cache)/4);
5689 memset32(sh2s[0].branch_cache, -1, sizeof(sh2s[0].branch_cache)/4);
5690 memset32(sh2s[1].branch_cache, -1, sizeof(sh2s[1].branch_cache)/4);
5695 memset32(sh2s[tcache_id-1].rts_cache, -1, sizeof(sh2s[0].rts_cache)/4);
5696 sh2s[tcache_id-1].rts_cache_idx = 0;
5698 memset32(sh2s[0].rts_cache, -1, sizeof(sh2s[0].rts_cache)/4);
5699 memset32(sh2s[1].rts_cache, -1, sizeof(sh2s[1].rts_cache)/4);
5700 sh2s[0].rts_cache_idx = sh2s[1].rts_cache_idx = 0;
5705 void sh2_drc_wcheck_ram(u32 a, unsigned len, SH2 *sh2)
5707 sh2_smc_rm_blocks(a, len, 0, 0);
5710 void sh2_drc_wcheck_da(u32 a, unsigned len, SH2 *sh2)
5712 sh2_smc_rm_blocks(a, len, 1 + sh2->is_slave, 0);
5715 int sh2_execute_drc(SH2 *sh2c, int cycles)
5719 // cycles are kept in SHR_SR unused bits (upper 20)
5720 // bit11 contains T saved for delay slot
5721 // others are usual SH2 flags
5723 sh2c->sr |= (cycles-1) << 12;
5725 lastpc = lastcnt = 0;
5728 sh2c->state |= SH2_IN_DRC;
5729 host_call(sh2_drc_entry, (SH2 *))(sh2c);
5730 sh2c->state &= ~SH2_IN_DRC;
5733 ret_cycles = (int32_t)sh2c->sr >> 12;
5734 if (ret_cycles >= 0)
5735 dbg(1, "warning: drc returned with cycles: %d, pc %08x", ret_cycles, sh2c->pc);
5738 dbg(8, "= %csh2 enter %08x %p (%d times), c=%d", sh2c->is_slave?'s':'m',
5739 lastpc, lastblock, lastcnt, (signed int)sh2c->sr >> 12);
5743 return ret_cycles+1;
5746 static void block_stats(void)
5752 printf("block stats:\n");
5753 for (b = 0; b < ARRAY_SIZE(block_tables); b++) {
5754 for (i = block_ring[b].first; i != block_ring[b].next; i = (i+1)%block_ring[b].size)
5755 if (block_tables[b][i].addr != 0)
5756 total += block_tables[b][i].refcount;
5758 printf("total: %ld\n",total);
5760 for (c = 0; c < 20; c++) {
5761 struct block_desc *blk, *maxb = NULL;
5763 for (b = 0; b < ARRAY_SIZE(block_tables); b++) {
5764 for (i = block_ring[b].first; i != block_ring[b].next; i = (i+1)%block_ring[b].size)
5765 if ((blk = &block_tables[b][i])->addr != 0 && blk->refcount > max) {
5766 max = blk->refcount;
5772 printf("%08lx %p %9d %2.3f%%\n", (ulong)maxb->addr, maxb->tcache_ptr, maxb->refcount,
5773 (double)maxb->refcount / total * 100.0);
5777 for (b = 0; b < ARRAY_SIZE(block_tables); b++)
5778 for (i = block_ring[b].first; i != block_ring[b].next; i = (i+1)%block_ring[b].size)
5779 block_tables[b][i].refcount = 0;
5783 void entry_stats(void)
5785 #if (DRC_DEBUG & 32)
5789 printf("block entry stats:\n");
5790 for (b = 0; b < ARRAY_SIZE(block_tables); b++) {
5791 for (i = block_ring[b].first; i != block_ring[b].next; i = (i+1)%block_ring[b].size)
5792 for (j = 0; j < block_tables[b][i].entry_count; j++)
5793 total += block_tables[b][i].entryp[j].entry_count;
5795 printf("total: %ld\n",total);
5797 for (c = 0; c < 20; c++) {
5798 struct block_desc *blk;
5799 struct block_entry *maxb = NULL;
5801 for (b = 0; b < ARRAY_SIZE(block_tables); b++) {
5802 for (i = block_ring[b].first; i != block_ring[b].next; i = (i+1)%block_ring[b].size) {
5803 blk = &block_tables[b][i];
5804 for (j = 0; j < blk->entry_count; j++)
5805 if (blk->entryp[j].entry_count > max) {
5806 max = blk->entryp[j].entry_count;
5807 maxb = &blk->entryp[j];
5813 printf("%08lx %p %9d %2.3f%%\n", (ulong)maxb->pc, maxb->tcache_ptr, maxb->entry_count,
5814 (double)100 * maxb->entry_count / total);
5815 maxb->entry_count = 0;
5818 for (b = 0; b < ARRAY_SIZE(block_tables); b++) {
5819 for (i = block_ring[b].first; i != block_ring[b].next; i = (i+1)%block_ring[b].size)
5820 for (j = 0; j < block_tables[b][i].entry_count; j++)
5821 block_tables[b][i].entryp[j].entry_count = 0;
5826 static void backtrace(void)
5828 #if (DRC_DEBUG & 1024)
5830 printf("backtrace master:\n");
5831 for (i = 0; i < ARRAY_SIZE(csh2[0]); i++)
5832 SH2_DUMP(&csh2[0][i], "bt msh2");
5833 printf("backtrace slave:\n");
5834 for (i = 0; i < ARRAY_SIZE(csh2[1]); i++)
5835 SH2_DUMP(&csh2[1][i], "bt ssh2");
5839 static void state_dump(void)
5841 #if (DRC_DEBUG & 2048)
5844 SH2_DUMP(&sh2s[0], "master");
5845 printf("VBR msh2: %lx\n", (ulong)sh2s[0].vbr);
5846 for (i = 0; i < 0x60; i++) {
5847 printf("%08lx ",(ulong)p32x_sh2_read32(sh2s[0].vbr + i*4, &sh2s[0]));
5848 if ((i+1) % 8 == 0) printf("\n");
5850 printf("stack msh2: %lx\n", (ulong)sh2s[0].r[15]);
5851 for (i = -0x30; i < 0x30; i++) {
5852 printf("%08lx ",(ulong)p32x_sh2_read32(sh2s[0].r[15] + i*4, &sh2s[0]));
5853 if ((i+1) % 8 == 0) printf("\n");
5855 SH2_DUMP(&sh2s[1], "slave");
5856 printf("VBR ssh2: %lx\n", (ulong)sh2s[1].vbr);
5857 for (i = 0; i < 0x60; i++) {
5858 printf("%08lx ",(ulong)p32x_sh2_read32(sh2s[1].vbr + i*4, &sh2s[1]));
5859 if ((i+1) % 8 == 0) printf("\n");
5861 printf("stack ssh2: %lx\n", (ulong)sh2s[1].r[15]);
5862 for (i = -0x30; i < 0x30; i++) {
5863 printf("%08lx ",(ulong)p32x_sh2_read32(sh2s[1].r[15] + i*4, &sh2s[1]));
5864 if ((i+1) % 8 == 0) printf("\n");
5869 static void bcache_stats(void)
5871 #if (DRC_DEBUG & 128)
5874 for (i = 1; i < ARRAY_SIZE(sh2s->rts_cache); i++)
5875 if (sh2s[0].rts_cache[i].pc == -1 && sh2s[1].rts_cache[i].pc == -1) break;
5877 printf("return cache hits:%d misses:%d depth: %d index: %d/%d\n", rchit, rcmiss, i,sh2s[0].rts_cache_idx,sh2s[1].rts_cache_idx);
5878 for (i = 0; i < ARRAY_SIZE(sh2s[0].rts_cache); i++) {
5879 printf("%08lx ",(ulong)sh2s[0].rts_cache[i].pc);
5880 if ((i+1) % 8 == 0) printf("\n");
5882 for (i = 0; i < ARRAY_SIZE(sh2s[1].rts_cache); i++) {
5883 printf("%08lx ",(ulong)sh2s[1].rts_cache[i].pc);
5884 if ((i+1) % 8 == 0) printf("\n");
5888 printf("branch cache hits:%d misses:%d\n", bchit, bcmiss);
5889 printf("branch cache master:\n");
5890 for (i = 0; i < ARRAY_SIZE(sh2s[0].branch_cache); i++) {
5891 printf("%08lx ",(ulong)sh2s[0].branch_cache[i].pc);
5892 if ((i+1) % 8 == 0) printf("\n");
5894 printf("branch cache slave:\n");
5895 for (i = 0; i < ARRAY_SIZE(sh2s[1].branch_cache); i++) {
5896 printf("%08lx ",(ulong)sh2s[1].branch_cache[i].pc);
5897 if ((i+1) % 8 == 0) printf("\n");
5903 void sh2_drc_flush_all(void)
5905 if (block_tables[0] == NULL)
5916 Pico32x.emu_flags &= ~P32XF_DRC_ROM_C;
5919 void sh2_drc_mem_setup(SH2 *sh2)
5921 // fill the DRC-only convenience pointers
5922 sh2->p_drcblk_da = Pico32xMem->drcblk_da[!!sh2->is_slave];
5923 sh2->p_drcblk_ram = Pico32xMem->drcblk_ram;
5926 int sh2_drc_init(SH2 *sh2)
5930 if (block_tables[0] == NULL)
5932 for (i = 0; i < TCACHE_BUFFERS; i++) {
5933 block_tables[i] = calloc(BLOCK_MAX_COUNT(i), sizeof(*block_tables[0]));
5934 if (block_tables[i] == NULL)
5936 entry_tables[i] = calloc(ENTRY_MAX_COUNT(i), sizeof(*entry_tables[0]));
5937 if (entry_tables[i] == NULL)
5939 block_link_pool[i] = calloc(BLOCK_LINK_MAX_COUNT(i),
5940 sizeof(*block_link_pool[0]));
5941 if (block_link_pool[i] == NULL)
5944 inval_lookup[i] = calloc(RAM_SIZE(i) / INVAL_PAGE_SIZE,
5945 sizeof(inval_lookup[0]));
5946 if (inval_lookup[i] == NULL)
5949 hash_tables[i] = calloc(HASH_TABLE_SIZE(i), sizeof(*hash_tables[0]));
5950 if (hash_tables[i] == NULL)
5953 unresolved_links[i] = calloc(HASH_TABLE_SIZE(i), sizeof(*unresolved_links[0]));
5954 if (unresolved_links[i] == NULL)
5956 //atexit(sh2_drc_finish);
5958 RING_INIT(&block_ring[i], block_tables[i], BLOCK_MAX_COUNT(i));
5959 RING_INIT(&entry_ring[i], entry_tables[i], ENTRY_MAX_COUNT(i));
5962 block_list_pool = calloc(BLOCK_LIST_MAX_COUNT, sizeof(*block_list_pool));
5963 if (block_list_pool == NULL)
5965 block_list_pool_count = 0;
5968 memset(block_link_pool_counts, 0, sizeof(block_link_pool_counts));
5969 memset(blink_free, 0, sizeof(blink_free));
5974 tcache_ptr = tcache;
5975 sh2_generate_utils();
5976 host_instructions_updated(tcache, tcache_ptr, 1);
5977 emith_update_cache();
5979 i = tcache_ptr - tcache;
5980 RING_INIT(&tcache_ring[0], tcache_ptr, tcache_sizes[0] - i);
5981 for (i = 1; i < ARRAY_SIZE(tcache_ring); i++) {
5982 RING_INIT(&tcache_ring[i], tcache_ring[i-1].base + tcache_ring[i-1].size,
5987 for (i = 0; i < ARRAY_SIZE(block_tables); i++)
5988 tcache_dsm_ptrs[i] = tcache_ring[i].base;
5990 tcache_dsm_ptrs[0] = tcache;
5994 hash_collisions = 0;
5997 memset(sh2->branch_cache, -1, sizeof(sh2->branch_cache));
5998 memset(sh2->rts_cache, -1, sizeof(sh2->rts_cache));
5999 sh2->rts_cache_idx = 0;
6004 sh2_drc_finish(sh2);
6008 void sh2_drc_finish(SH2 *sh2)
6012 if (block_tables[0] == NULL)
6015 #if (DRC_DEBUG & (256|512))
6016 if (trace[0]) fclose(trace[0]);
6017 if (trace[1]) fclose(trace[1]);
6018 trace[0] = trace[1] = NULL;
6022 for (i = 0; i < TCACHE_BUFFERS; i++) {
6023 printf("~~~ tcache %d\n", i);
6025 if (tcache_ring[i].first < tcache_ring[i].next) {
6026 tcache_dsm_ptrs[i] = tcache_ring[i].first;
6027 tcache_ptr = tcache_ring[i].next;
6029 } else if (tcache_ring[i].used) {
6030 tcache_dsm_ptrs[i] = tcache_ring[i].first;
6031 tcache_ptr = tcache_ring[i].base + tcache_ring[i].size;
6033 tcache_dsm_ptrs[i] = tcache_ring[i].base;
6034 tcache_ptr = tcache_ring[i].next;
6038 printf("max links: %d\n", block_link_pool_counts[i]);
6040 printf("max block list: %d\n", block_list_pool_count);
6043 sh2_drc_flush_all();
6045 for (i = 0; i < TCACHE_BUFFERS; i++) {
6046 if (block_tables[i] != NULL)
6047 free(block_tables[i]);
6048 block_tables[i] = NULL;
6049 if (entry_tables[i] != NULL)
6050 free(entry_tables[i]);
6051 entry_tables[i] = NULL;
6052 if (block_link_pool[i] != NULL)
6053 free(block_link_pool[i]);
6054 block_link_pool[i] = NULL;
6055 blink_free[i] = NULL;
6057 if (inval_lookup[i] != NULL)
6058 free(inval_lookup[i]);
6059 inval_lookup[i] = NULL;
6061 if (hash_tables[i] != NULL) {
6062 free(hash_tables[i]);
6063 hash_tables[i] = NULL;
6066 if (unresolved_links[i] != NULL) {
6067 free(unresolved_links[i]);
6068 unresolved_links[i] = NULL;
6072 if (block_list_pool != NULL)
6073 free(block_list_pool);
6074 block_list_pool = NULL;
6080 #endif /* DRC_SH2 */
6082 static void *dr_get_pc_base(u32 pc, SH2 *sh2)
6087 ret = p32x_sh2_get_mem_ptr(pc, &mask, sh2);
6088 if (ret == (void *)-1)
6091 return (char *)ret - (pc & ~mask);
6094 u16 scan_block(u32 base_pc, int is_slave, u8 *op_flags, u32 *end_pc_out,
6095 u32 *base_literals_out, u32 *end_literals_out)
6099 u32 end_pc, end_literals = 0;
6100 u32 lowest_literal = 0;
6101 u32 lowest_mova = 0;
6102 struct op_data *opd;
6103 int next_is_delay = 0;
6106 int i, i_end, i_div = -1;
6109 int last_btarget; // loop detector
6110 enum { T_UNKNOWN, T_CLEAR, T_SET } t; // T propagation state
6112 memset(op_flags, 0, sizeof(*op_flags) * BLOCK_INSN_LIMIT);
6113 op_flags[0] |= OF_BTARGET; // block start is always a target
6115 dr_pc_base = dr_get_pc_base(base_pc, &sh2s[!!is_slave]);
6117 // 1st pass: disassemble
6118 for (i = 0, pc = base_pc; ; i++, pc += 2) {
6119 // we need an ops[] entry after the last one initialized,
6120 // so do it before end_block checks
6122 opd->op = OP_UNHANDLED;
6124 opd->source = opd->dest = 0;
6128 if (next_is_delay) {
6129 op_flags[i] |= OF_DELAY_OP;
6132 else if (end_block || i >= BLOCK_INSN_LIMIT - 2)
6134 else if ((lowest_mova && lowest_mova <= pc) ||
6135 (lowest_literal && lowest_literal <= pc))
6136 break; // text area collides with data area
6140 switch ((op & 0xf000) >> 12)
6142 /////////////////////////////////////////////
6149 case 0: // STC SR,Rn 0000nnnn00000010
6150 tmp = BITMASK2(SHR_SR, SHR_T);
6152 case 1: // STC GBR,Rn 0000nnnn00010010
6153 tmp = BITMASK1(SHR_GBR);
6155 case 2: // STC VBR,Rn 0000nnnn00100010
6156 tmp = BITMASK1(SHR_VBR);
6163 opd->dest = BITMASK1(GET_Rn());
6166 CHECK_UNHANDLED_BITS(0xd0, undefined);
6167 // BRAF Rm 0000mmmm00100011
6168 // BSRF Rm 0000mmmm00000011
6169 opd->op = OP_BRANCH_RF;
6171 opd->source = BITMASK2(SHR_PC, opd->rm);
6172 opd->dest = BITMASK1(SHR_PC);
6174 opd->dest |= BITMASK1(SHR_PR);
6177 if (!(opd->dest & BITMASK1(SHR_PR)))
6178 end_block = !(op_flags[i+1+next_is_delay] & OF_BTARGET);
6180 op_flags[i+1+next_is_delay] |= OF_BTARGET;
6182 case 0x04: // MOV.B Rm,@(R0,Rn) 0000nnnnmmmm0100
6183 case 0x05: // MOV.W Rm,@(R0,Rn) 0000nnnnmmmm0101
6184 case 0x06: // MOV.L Rm,@(R0,Rn) 0000nnnnmmmm0110
6185 opd->source = BITMASK3(GET_Rm(), SHR_R0, GET_Rn());
6186 opd->dest = BITMASK1(SHR_MEM);
6189 // MUL.L Rm,Rn 0000nnnnmmmm0111
6190 opd->source = BITMASK2(GET_Rm(), GET_Rn());
6191 opd->dest = BITMASK1(SHR_MACL);
6195 CHECK_UNHANDLED_BITS(0xf00, undefined);
6198 case 0: // CLRT 0000000000001000
6199 opd->op = OP_SETCLRT;
6200 opd->dest = BITMASK1(SHR_T);
6203 case 1: // SETT 0000000000011000
6204 opd->op = OP_SETCLRT;
6205 opd->dest = BITMASK1(SHR_T);
6208 case 2: // CLRMAC 0000000000101000
6209 opd->dest = BITMASK2(SHR_MACL, SHR_MACH);
6218 case 0: // NOP 0000000000001001
6219 CHECK_UNHANDLED_BITS(0xf00, undefined);
6221 case 1: // DIV0U 0000000000011001
6222 CHECK_UNHANDLED_BITS(0xf00, undefined);
6224 opd->source = BITMASK1(SHR_SR);
6225 opd->dest = BITMASK2(SHR_SR, SHR_T);
6226 div(opd) = (struct div){ .rn=SHR_MEM, .rm=SHR_MEM, .ro=SHR_MEM };
6230 case 2: // MOVT Rn 0000nnnn00101001
6231 opd->source = BITMASK1(SHR_T);
6232 opd->dest = BITMASK1(GET_Rn());
6241 case 0: // STS MACH,Rn 0000nnnn00001010
6244 case 1: // STS MACL,Rn 0000nnnn00011010
6247 case 2: // STS PR,Rn 0000nnnn00101010
6254 opd->source = BITMASK1(tmp);
6255 opd->dest = BITMASK1(GET_Rn());
6258 CHECK_UNHANDLED_BITS(0xf00, undefined);
6261 case 0: // RTS 0000000000001011
6262 opd->op = OP_BRANCH_R;
6264 opd->source = BITMASK1(opd->rm);
6265 opd->dest = BITMASK1(SHR_PC);
6268 end_block = !(op_flags[i+1+next_is_delay] & OF_BTARGET);
6270 case 1: // SLEEP 0000000000011011
6275 case 2: // RTE 0000000000101011
6277 opd->source = BITMASK1(SHR_SP);
6278 opd->dest = BITMASK4(SHR_SP, SHR_SR, SHR_T, SHR_PC);
6281 end_block = !(op_flags[i+1+next_is_delay] & OF_BTARGET);
6287 case 0x0c: // MOV.B @(R0,Rm),Rn 0000nnnnmmmm1100
6288 case 0x0d: // MOV.W @(R0,Rm),Rn 0000nnnnmmmm1101
6289 case 0x0e: // MOV.L @(R0,Rm),Rn 0000nnnnmmmm1110
6290 opd->source = BITMASK3(GET_Rm(), SHR_R0, SHR_MEM);
6291 opd->dest = BITMASK1(GET_Rn());
6292 op_flags[i] |= OF_POLL_INSN;
6294 case 0x0f: // MAC.L @Rm+,@Rn+ 0000nnnnmmmm1111
6295 opd->source = BITMASK6(GET_Rm(), GET_Rn(), SHR_SR, SHR_MACL, SHR_MACH, SHR_MEM);
6296 opd->dest = BITMASK4(GET_Rm(), GET_Rn(), SHR_MACL, SHR_MACH);
6304 /////////////////////////////////////////////
6306 // MOV.L Rm,@(disp,Rn) 0001nnnnmmmmdddd
6307 opd->source = BITMASK2(GET_Rm(), GET_Rn());
6308 opd->dest = BITMASK1(SHR_MEM);
6309 opd->imm = (op & 0x0f) * 4;
6312 /////////////////////////////////////////////
6316 case 0x00: // MOV.B Rm,@Rn 0010nnnnmmmm0000
6317 case 0x01: // MOV.W Rm,@Rn 0010nnnnmmmm0001
6318 case 0x02: // MOV.L Rm,@Rn 0010nnnnmmmm0010
6319 opd->source = BITMASK2(GET_Rm(), GET_Rn());
6320 opd->dest = BITMASK1(SHR_MEM);
6322 case 0x04: // MOV.B Rm,@-Rn 0010nnnnmmmm0100
6323 case 0x05: // MOV.W Rm,@-Rn 0010nnnnmmmm0101
6324 case 0x06: // MOV.L Rm,@-Rn 0010nnnnmmmm0110
6325 opd->source = BITMASK2(GET_Rm(), GET_Rn());
6326 opd->dest = BITMASK2(GET_Rn(), SHR_MEM);
6328 case 0x07: // DIV0S Rm,Rn 0010nnnnmmmm0111
6330 opd->source = BITMASK3(SHR_SR, GET_Rm(), GET_Rn());
6331 opd->dest = BITMASK2(SHR_SR, SHR_T);
6332 div(opd) = (struct div){ .rn=GET_Rn(), .rm=GET_Rm(), .ro=SHR_MEM };
6336 case 0x08: // TST Rm,Rn 0010nnnnmmmm1000
6337 opd->source = BITMASK2(GET_Rm(), GET_Rn());
6338 opd->dest = BITMASK1(SHR_T);
6340 case 0x09: // AND Rm,Rn 0010nnnnmmmm1001
6341 case 0x0a: // XOR Rm,Rn 0010nnnnmmmm1010
6342 case 0x0b: // OR Rm,Rn 0010nnnnmmmm1011
6343 opd->source = BITMASK2(GET_Rm(), GET_Rn());
6344 opd->dest = BITMASK1(GET_Rn());
6346 case 0x0c: // CMP/STR Rm,Rn 0010nnnnmmmm1100
6347 opd->source = BITMASK2(GET_Rm(), GET_Rn());
6348 opd->dest = BITMASK1(SHR_T);
6350 case 0x0d: // XTRCT Rm,Rn 0010nnnnmmmm1101
6351 opd->source = BITMASK2(GET_Rm(), GET_Rn());
6352 opd->dest = BITMASK1(GET_Rn());
6354 case 0x0e: // MULU.W Rm,Rn 0010nnnnmmmm1110
6355 case 0x0f: // MULS.W Rm,Rn 0010nnnnmmmm1111
6356 opd->source = BITMASK2(GET_Rm(), GET_Rn());
6357 opd->dest = BITMASK1(SHR_MACL);
6364 /////////////////////////////////////////////
6368 case 0x00: // CMP/EQ Rm,Rn 0011nnnnmmmm0000
6369 case 0x02: // CMP/HS Rm,Rn 0011nnnnmmmm0010
6370 case 0x03: // CMP/GE Rm,Rn 0011nnnnmmmm0011
6371 case 0x06: // CMP/HI Rm,Rn 0011nnnnmmmm0110
6372 case 0x07: // CMP/GT Rm,Rn 0011nnnnmmmm0111
6373 opd->source = BITMASK2(GET_Rm(), GET_Rn());
6374 opd->dest = BITMASK1(SHR_T);
6376 case 0x04: // DIV1 Rm,Rn 0011nnnnmmmm0100
6377 opd->source = BITMASK4(GET_Rm(), GET_Rn(), SHR_SR, SHR_T);
6378 opd->dest = BITMASK3(GET_Rn(), SHR_SR, SHR_T);
6380 // divide operation: all DIV1 operations must use the same reg pair
6381 if (div(&ops[i_div]).rn == SHR_MEM)
6382 div(&ops[i_div]).rn=GET_Rn(), div(&ops[i_div]).rm=GET_Rm();
6383 if (div(&ops[i_div]).rn == GET_Rn() && div(&ops[i_div]).rm == GET_Rm()) {
6384 div(&ops[i_div]).div1 += 1;
6385 div(&ops[i_div]).state = 0;
6393 case 0x05: // DMULU.L Rm,Rn 0011nnnnmmmm0101
6394 case 0x0d: // DMULS.L Rm,Rn 0011nnnnmmmm1101
6395 opd->source = BITMASK2(GET_Rm(), GET_Rn());
6396 opd->dest = BITMASK2(SHR_MACL, SHR_MACH);
6399 case 0x08: // SUB Rm,Rn 0011nnnnmmmm1000
6400 case 0x0c: // ADD Rm,Rn 0011nnnnmmmm1100
6401 opd->source = BITMASK2(GET_Rm(), GET_Rn());
6402 opd->dest = BITMASK1(GET_Rn());
6404 case 0x0a: // SUBC Rm,Rn 0011nnnnmmmm1010
6405 case 0x0e: // ADDC Rm,Rn 0011nnnnmmmm1110
6406 opd->source = BITMASK3(GET_Rm(), GET_Rn(), SHR_T);
6407 opd->dest = BITMASK2(GET_Rn(), SHR_T);
6409 case 0x0b: // SUBV Rm,Rn 0011nnnnmmmm1011
6410 case 0x0f: // ADDV Rm,Rn 0011nnnnmmmm1111
6411 opd->source = BITMASK2(GET_Rm(), GET_Rn());
6412 opd->dest = BITMASK2(GET_Rn(), SHR_T);
6419 /////////////////////////////////////////////
6426 case 0: // SHLL Rn 0100nnnn00000000
6427 case 2: // SHAL Rn 0100nnnn00100000
6428 opd->source = BITMASK1(GET_Rn());
6429 opd->dest = BITMASK2(GET_Rn(), SHR_T);
6431 case 1: // DT Rn 0100nnnn00010000
6432 opd->source = BITMASK1(GET_Rn());
6433 opd->dest = BITMASK2(GET_Rn(), SHR_T);
6434 op_flags[i] |= OF_DELAY_INSN;
6443 case 0: // SHLR Rn 0100nnnn00000001
6444 case 2: // SHAR Rn 0100nnnn00100001
6445 opd->source = BITMASK1(GET_Rn());
6446 opd->dest = BITMASK2(GET_Rn(), SHR_T);
6448 case 1: // CMP/PZ Rn 0100nnnn00010001
6449 opd->source = BITMASK1(GET_Rn());
6450 opd->dest = BITMASK1(SHR_T);
6460 case 0x02: // STS.L MACH,@-Rn 0100nnnn00000010
6461 tmp = BITMASK1(SHR_MACH);
6463 case 0x12: // STS.L MACL,@-Rn 0100nnnn00010010
6464 tmp = BITMASK1(SHR_MACL);
6466 case 0x22: // STS.L PR,@-Rn 0100nnnn00100010
6467 tmp = BITMASK1(SHR_PR);
6469 case 0x03: // STC.L SR,@-Rn 0100nnnn00000011
6470 tmp = BITMASK2(SHR_SR, SHR_T);
6473 case 0x13: // STC.L GBR,@-Rn 0100nnnn00010011
6474 tmp = BITMASK1(SHR_GBR);
6477 case 0x23: // STC.L VBR,@-Rn 0100nnnn00100011
6478 tmp = BITMASK1(SHR_VBR);
6484 opd->source = BITMASK1(GET_Rn()) | tmp;
6485 opd->dest = BITMASK2(GET_Rn(), SHR_MEM);
6491 case 0x04: // ROTL Rn 0100nnnn00000100
6492 case 0x05: // ROTR Rn 0100nnnn00000101
6493 opd->source = BITMASK1(GET_Rn());
6494 opd->dest = BITMASK2(GET_Rn(), SHR_T);
6496 case 0x24: // ROTCL Rn 0100nnnn00100100
6498 // divide operation: all ROTCL operations must use the same register
6499 if (div(&ops[i_div]).ro == SHR_MEM)
6500 div(&ops[i_div]).ro = GET_Rn();
6501 if (div(&ops[i_div]).ro == GET_Rn() && !div(&ops[i_div]).state) {
6502 div(&ops[i_div]).rotcl += 1;
6503 div(&ops[i_div]).state = 1;
6510 case 0x25: // ROTCR Rn 0100nnnn00100101
6511 opd->source = BITMASK2(GET_Rn(), SHR_T);
6512 opd->dest = BITMASK2(GET_Rn(), SHR_T);
6514 case 0x15: // CMP/PL Rn 0100nnnn00010101
6515 opd->source = BITMASK1(GET_Rn());
6516 opd->dest = BITMASK1(SHR_T);
6526 case 0x06: // LDS.L @Rm+,MACH 0100mmmm00000110
6527 tmp = BITMASK1(SHR_MACH);
6529 case 0x16: // LDS.L @Rm+,MACL 0100mmmm00010110
6530 tmp = BITMASK1(SHR_MACL);
6532 case 0x26: // LDS.L @Rm+,PR 0100mmmm00100110
6533 tmp = BITMASK1(SHR_PR);
6535 case 0x07: // LDC.L @Rm+,SR 0100mmmm00000111
6536 tmp = BITMASK2(SHR_SR, SHR_T);
6540 case 0x17: // LDC.L @Rm+,GBR 0100mmmm00010111
6541 tmp = BITMASK1(SHR_GBR);
6545 case 0x27: // LDC.L @Rm+,VBR 0100mmmm00100111
6546 tmp = BITMASK1(SHR_VBR);
6553 opd->source = BITMASK2(GET_Rn(), SHR_MEM);
6554 opd->dest = BITMASK1(GET_Rn()) | tmp;
6561 // SHLL2 Rn 0100nnnn00001000
6562 // SHLR2 Rn 0100nnnn00001001
6565 // SHLL8 Rn 0100nnnn00011000
6566 // SHLR8 Rn 0100nnnn00011001
6569 // SHLL16 Rn 0100nnnn00101000
6570 // SHLR16 Rn 0100nnnn00101001
6575 opd->source = BITMASK1(GET_Rn());
6576 opd->dest = BITMASK1(GET_Rn());
6581 case 0: // LDS Rm,MACH 0100mmmm00001010
6584 case 1: // LDS Rm,MACL 0100mmmm00011010
6587 case 2: // LDS Rm,PR 0100mmmm00101010
6594 opd->source = BITMASK1(GET_Rn());
6595 opd->dest = BITMASK1(tmp);
6600 case 0: // JSR @Rm 0100mmmm00001011
6601 opd->dest = BITMASK1(SHR_PR);
6602 case 2: // JMP @Rm 0100mmmm00101011
6603 opd->op = OP_BRANCH_R;
6605 opd->source = BITMASK1(opd->rm);
6606 opd->dest |= BITMASK1(SHR_PC);
6609 if (!(opd->dest & BITMASK1(SHR_PR)))
6610 end_block = !(op_flags[i+1+next_is_delay] & OF_BTARGET);
6612 op_flags[i+1+next_is_delay] |= OF_BTARGET;
6614 case 1: // TAS.B @Rn 0100nnnn00011011
6615 opd->source = BITMASK2(GET_Rn(), SHR_MEM);
6616 opd->dest = BITMASK2(SHR_T, SHR_MEM);
6626 case 0: // LDC Rm,SR 0100mmmm00001110
6627 tmp = BITMASK2(SHR_SR, SHR_T);
6629 case 1: // LDC Rm,GBR 0100mmmm00011110
6630 tmp = BITMASK1(SHR_GBR);
6632 case 2: // LDC Rm,VBR 0100mmmm00101110
6633 tmp = BITMASK1(SHR_VBR);
6639 opd->source = BITMASK1(GET_Rn());
6643 // MAC.W @Rm+,@Rn+ 0100nnnnmmmm1111
6644 opd->source = BITMASK6(GET_Rm(), GET_Rn(), SHR_SR, SHR_MACL, SHR_MACH, SHR_MEM);
6645 opd->dest = BITMASK4(GET_Rm(), GET_Rn(), SHR_MACL, SHR_MACH);
6653 /////////////////////////////////////////////
6655 // MOV.L @(disp,Rm),Rn 0101nnnnmmmmdddd
6656 opd->source = BITMASK2(GET_Rm(), SHR_MEM);
6657 opd->dest = BITMASK1(GET_Rn());
6658 opd->imm = (op & 0x0f) * 4;
6659 op_flags[i] |= OF_POLL_INSN;
6662 /////////////////////////////////////////////
6666 case 0x04: // MOV.B @Rm+,Rn 0110nnnnmmmm0100
6667 case 0x05: // MOV.W @Rm+,Rn 0110nnnnmmmm0101
6668 case 0x06: // MOV.L @Rm+,Rn 0110nnnnmmmm0110
6669 opd->dest = BITMASK2(GET_Rm(), GET_Rn());
6670 opd->source = BITMASK2(GET_Rm(), SHR_MEM);
6672 case 0x00: // MOV.B @Rm,Rn 0110nnnnmmmm0000
6673 case 0x01: // MOV.W @Rm,Rn 0110nnnnmmmm0001
6674 case 0x02: // MOV.L @Rm,Rn 0110nnnnmmmm0010
6675 opd->dest = BITMASK1(GET_Rn());
6676 opd->source = BITMASK2(GET_Rm(), SHR_MEM);
6677 op_flags[i] |= OF_POLL_INSN;
6679 case 0x0a: // NEGC Rm,Rn 0110nnnnmmmm1010
6680 opd->source = BITMASK2(GET_Rm(), SHR_T);
6681 opd->dest = BITMASK2(GET_Rn(), SHR_T);
6683 case 0x03: // MOV Rm,Rn 0110nnnnmmmm0011
6686 case 0x07: // NOT Rm,Rn 0110nnnnmmmm0111
6687 case 0x08: // SWAP.B Rm,Rn 0110nnnnmmmm1000
6688 case 0x09: // SWAP.W Rm,Rn 0110nnnnmmmm1001
6689 case 0x0b: // NEG Rm,Rn 0110nnnnmmmm1011
6690 case 0x0c: // EXTU.B Rm,Rn 0110nnnnmmmm1100
6691 case 0x0d: // EXTU.W Rm,Rn 0110nnnnmmmm1101
6692 case 0x0e: // EXTS.B Rm,Rn 0110nnnnmmmm1110
6693 case 0x0f: // EXTS.W Rm,Rn 0110nnnnmmmm1111
6695 opd->source = BITMASK1(GET_Rm());
6696 opd->dest = BITMASK1(GET_Rn());
6701 /////////////////////////////////////////////
6703 // ADD #imm,Rn 0111nnnniiiiiiii
6704 opd->source = opd->dest = BITMASK1(GET_Rn());
6708 /////////////////////////////////////////////
6710 switch (op & 0x0f00)
6712 case 0x0000: // MOV.B R0,@(disp,Rn) 10000000nnnndddd
6713 opd->source = BITMASK2(GET_Rm(), SHR_R0);
6714 opd->dest = BITMASK1(SHR_MEM);
6715 opd->imm = (op & 0x0f);
6717 case 0x0100: // MOV.W R0,@(disp,Rn) 10000001nnnndddd
6718 opd->source = BITMASK2(GET_Rm(), SHR_R0);
6719 opd->dest = BITMASK1(SHR_MEM);
6720 opd->imm = (op & 0x0f) * 2;
6722 case 0x0400: // MOV.B @(disp,Rm),R0 10000100mmmmdddd
6723 opd->source = BITMASK2(GET_Rm(), SHR_MEM);
6724 opd->dest = BITMASK1(SHR_R0);
6725 opd->imm = (op & 0x0f);
6726 op_flags[i] |= OF_POLL_INSN;
6728 case 0x0500: // MOV.W @(disp,Rm),R0 10000101mmmmdddd
6729 opd->source = BITMASK2(GET_Rm(), SHR_MEM);
6730 opd->dest = BITMASK1(SHR_R0);
6731 opd->imm = (op & 0x0f) * 2;
6732 op_flags[i] |= OF_POLL_INSN;
6734 case 0x0800: // CMP/EQ #imm,R0 10001000iiiiiiii
6735 opd->source = BITMASK1(SHR_R0);
6736 opd->dest = BITMASK1(SHR_T);
6739 case 0x0d00: // BT/S label 10001101dddddddd
6740 case 0x0f00: // BF/S label 10001111dddddddd
6743 case 0x0900: // BT label 10001001dddddddd
6744 case 0x0b00: // BF label 10001011dddddddd
6745 opd->op = (op & 0x0200) ? OP_BRANCH_CF : OP_BRANCH_CT;
6746 opd->source = BITMASK2(SHR_PC, SHR_T);
6747 opd->dest = BITMASK1(SHR_PC);
6748 opd->imm = ((signed int)(op << 24) >> 23);
6750 if (base_pc <= opd->imm && opd->imm < base_pc + BLOCK_INSN_LIMIT * 2)
6751 op_flags[(opd->imm - base_pc) / 2] |= OF_BTARGET;
6758 /////////////////////////////////////////////
6760 // MOV.W @(disp,PC),Rn 1001nnnndddddddd
6761 opd->op = OP_LOAD_POOL;
6763 if (op_flags[i] & OF_DELAY_OP) {
6764 if (ops[i-1].op == OP_BRANCH)
6766 else if (ops[i-1].op != OP_BRANCH_N)
6769 opd->source = BITMASK2(SHR_PC, SHR_MEM);
6770 opd->dest = BITMASK1(GET_Rn());
6772 opd->imm = tmp + 2 + (op & 0xff) * 2;
6773 if (lowest_literal == 0 || opd->imm < lowest_literal)
6774 lowest_literal = opd->imm;
6779 /////////////////////////////////////////////
6781 // BSR label 1011dddddddddddd
6782 opd->dest = BITMASK1(SHR_PR);
6784 // BRA label 1010dddddddddddd
6785 opd->op = OP_BRANCH;
6786 opd->source = BITMASK1(SHR_PC);
6787 opd->dest |= BITMASK1(SHR_PC);
6788 opd->imm = ((signed int)(op << 20) >> 19);
6792 if (!(opd->dest & BITMASK1(SHR_PR))) {
6793 if (base_pc <= opd->imm && opd->imm < base_pc + BLOCK_INSN_LIMIT * 2) {
6794 op_flags[(opd->imm - base_pc) / 2] |= OF_BTARGET;
6796 end_block = !(op_flags[i+1+next_is_delay] & OF_BTARGET);
6798 end_block = !(op_flags[i+1+next_is_delay] & OF_BTARGET);
6800 op_flags[i+1+next_is_delay] |= OF_BTARGET;
6803 /////////////////////////////////////////////
6805 switch (op & 0x0f00)
6807 case 0x0000: // MOV.B R0,@(disp,GBR) 11000000dddddddd
6808 case 0x0100: // MOV.W R0,@(disp,GBR) 11000001dddddddd
6809 case 0x0200: // MOV.L R0,@(disp,GBR) 11000010dddddddd
6810 opd->source = BITMASK2(SHR_GBR, SHR_R0);
6811 opd->dest = BITMASK1(SHR_MEM);
6812 opd->size = (op & 0x300) >> 8;
6813 opd->imm = (op & 0xff) << opd->size;
6815 case 0x0400: // MOV.B @(disp,GBR),R0 11000100dddddddd
6816 case 0x0500: // MOV.W @(disp,GBR),R0 11000101dddddddd
6817 case 0x0600: // MOV.L @(disp,GBR),R0 11000110dddddddd
6818 opd->source = BITMASK2(SHR_GBR, SHR_MEM);
6819 opd->dest = BITMASK1(SHR_R0);
6820 opd->size = (op & 0x300) >> 8;
6821 opd->imm = (op & 0xff) << opd->size;
6822 op_flags[i] |= OF_POLL_INSN;
6824 case 0x0300: // TRAPA #imm 11000011iiiiiiii
6826 opd->source = BITMASK4(SHR_SP, SHR_PC, SHR_SR, SHR_T);
6827 opd->dest = BITMASK2(SHR_SP, SHR_PC);
6828 opd->imm = (op & 0xff);
6830 op_flags[i+1] |= OF_BTARGET;
6832 case 0x0700: // MOVA @(disp,PC),R0 11000111dddddddd
6835 if (op_flags[i] & OF_DELAY_OP) {
6836 if (ops[i-1].op == OP_BRANCH)
6838 else if (ops[i-1].op != OP_BRANCH_N)
6841 opd->dest = BITMASK1(SHR_R0);
6843 opd->imm = (tmp + 2 + (op & 0xff) * 4) & ~3;
6844 if (opd->imm >= base_pc) {
6845 if (lowest_mova == 0 || opd->imm < lowest_mova)
6846 lowest_mova = opd->imm;
6850 case 0x0800: // TST #imm,R0 11001000iiiiiiii
6851 opd->source = BITMASK1(SHR_R0);
6852 opd->dest = BITMASK1(SHR_T);
6853 opd->imm = op & 0xff;
6855 case 0x0900: // AND #imm,R0 11001001iiiiiiii
6856 opd->source = opd->dest = BITMASK1(SHR_R0);
6857 opd->imm = op & 0xff;
6859 case 0x0a00: // XOR #imm,R0 11001010iiiiiiii
6860 opd->source = opd->dest = BITMASK1(SHR_R0);
6861 opd->imm = op & 0xff;
6863 case 0x0b00: // OR #imm,R0 11001011iiiiiiii
6864 opd->source = opd->dest = BITMASK1(SHR_R0);
6865 opd->imm = op & 0xff;
6867 case 0x0c00: // TST.B #imm,@(R0,GBR) 11001100iiiiiiii
6868 opd->source = BITMASK3(SHR_GBR, SHR_R0, SHR_MEM);
6869 opd->dest = BITMASK1(SHR_T);
6870 opd->imm = op & 0xff;
6871 op_flags[i] |= OF_POLL_INSN;
6874 case 0x0d00: // AND.B #imm,@(R0,GBR) 11001101iiiiiiii
6875 case 0x0e00: // XOR.B #imm,@(R0,GBR) 11001110iiiiiiii
6876 case 0x0f00: // OR.B #imm,@(R0,GBR) 11001111iiiiiiii
6877 opd->source = BITMASK3(SHR_GBR, SHR_R0, SHR_MEM);
6878 opd->dest = BITMASK1(SHR_MEM);
6879 opd->imm = op & 0xff;
6887 /////////////////////////////////////////////
6889 // MOV.L @(disp,PC),Rn 1101nnnndddddddd
6890 opd->op = OP_LOAD_POOL;
6892 if (op_flags[i] & OF_DELAY_OP) {
6893 if (ops[i-1].op == OP_BRANCH)
6895 else if (ops[i-1].op != OP_BRANCH_N)
6898 opd->source = BITMASK2(SHR_PC, SHR_MEM);
6899 opd->dest = BITMASK1(GET_Rn());
6901 opd->imm = (tmp + 2 + (op & 0xff) * 4) & ~3;
6902 if (lowest_literal == 0 || opd->imm < lowest_literal)
6903 lowest_literal = opd->imm;
6908 /////////////////////////////////////////////
6910 // MOV #imm,Rn 1110nnnniiiiiiii
6911 opd->op = OP_LOAD_CONST;
6912 opd->dest = BITMASK1(GET_Rn());
6918 opd->op = OP_UNDEFINED;
6919 // an unhandled instruction is probably not code if it's not the 1st insn
6920 if (!(op_flags[i] & OF_DELAY_OP) && pc != base_pc)
6925 if (op_flags[i] & OF_DELAY_OP) {
6933 elprintf(EL_ANOMALY, "%csh2 drc: branch in DS @ %08x",
6934 is_slave ? 's' : 'm', pc);
6935 opd->op = OP_UNDEFINED;
6936 op_flags[i] |= OF_B_IN_DS;
6940 } else if (!is_divop && i_div >= 0)
6941 i_div = -1; // divide parser stop
6947 // 2nd pass: some analysis
6948 lowest_literal = end_literals = lowest_mova = 0;
6949 t = T_UNKNOWN; // T flag state
6951 op = 0; // delay/poll insns counter
6952 is_divop = 0; // divide op insns counter
6953 i_div = -1; // index of current divide op
6954 for (i = 0, pc = base_pc; i < i_end; i++, pc += 2) {
6956 crc += FETCH_OP(pc);
6958 // propagate T (TODO: DIV0U)
6959 if (op_flags[i] & OF_BTARGET)
6962 if ((opd->op == OP_BRANCH_CT && t == T_SET) ||
6963 (opd->op == OP_BRANCH_CF && t == T_CLEAR)) {
6964 opd->op = OP_BRANCH;
6965 opd->cycles = (op_flags[i + 1] & OF_DELAY_OP) ? 2 : 3;
6966 } else if ((opd->op == OP_BRANCH_CT && t == T_CLEAR) ||
6967 (opd->op == OP_BRANCH_CF && t == T_SET))
6968 opd->op = OP_BRANCH_N;
6969 else if (OP_ISBRACND(opd->op))
6970 t = (opd->op == OP_BRANCH_CF ? T_SET : T_CLEAR);
6971 else if (opd->op == OP_SETCLRT)
6972 t = (opd->imm ? T_SET : T_CLEAR);
6973 else if (opd->dest & BITMASK1(SHR_T))
6976 // "overscan" detection: unreachable code after unconditional branch
6977 // this can happen if the insn after a forward branch isn't a local target
6978 if (OP_ISBRAUC(opd->op)) {
6979 if (op_flags[i + 1] & OF_DELAY_OP) {
6980 if (i_end > i + 2 && !(op_flags[i + 2] & OF_BTARGET))
6983 if (i_end > i + 1 && !(op_flags[i + 1] & OF_BTARGET))
6988 // divide operation verification:
6989 // 1. there must not be a branch target inside
6990 // 2. nothing is in a delay slot (could only be DIV0)
6991 // 2. DIV0/n*(ROTCL+DIV1)/ROTCL:
6992 // div.div1 > 0 && div.rotcl == div.div1+1 && div.rn =! div.ro
6993 // 3. DIV0/n*DIV1/ROTCL:
6994 // div.div1 > 0 && div.rotcl == 1 && div.ro == div.rn
6996 if (op_flags[i] & OF_BTARGET) { // condition 1
6999 } else if (--is_divop == 0)
7001 } else if (opd->op == OP_DIV0) {
7002 struct div *div = &div(opd);
7003 is_divop = div->div1 + div->rotcl;
7004 if (op_flags[i] & OF_DELAY_OP) // condition 2
7006 else if (! div->div1 || ! ((div->ro == div->rn && div->rotcl == 1) ||
7007 (div->ro != div->rn && div->rotcl == div->div1+1)))
7008 opd->imm = 0; // condition 3+4
7013 // literal pool size detection
7014 if (opd->op == OP_MOVA && opd->imm >= base_pc)
7015 if (lowest_mova == 0 || opd->imm < lowest_mova)
7016 lowest_mova = opd->imm;
7017 if (opd->op == OP_LOAD_POOL) {
7018 if (opd->imm >= base_pc && opd->imm < end_pc + MAX_LITERAL_OFFSET) {
7019 if (end_literals < opd->imm + opd->size * 2)
7020 end_literals = opd->imm + opd->size * 2;
7021 if (lowest_literal == 0 || lowest_literal > opd->imm)
7022 lowest_literal = opd->imm;
7023 if (opd->size == 2) {
7024 // tweak for NFL: treat a 32bit literal as an address and check if it
7025 // points to the literal space. In that case handle it like MOVA.
7026 tmp = FETCH32(opd->imm) & ~0x20000000; // MUST ignore wt bit here
7027 if (tmp >= end_pc && tmp < end_pc + MAX_LITERAL_OFFSET)
7028 if (lowest_mova == 0 || tmp < lowest_mova)
7034 // inner loop detection
7035 // 1. a loop always starts with a branch target (for the backwards jump)
7036 // 2. it doesn't contain more than one polling and/or delaying insn
7037 // 3. it doesn't contain unconditional jumps
7038 // 4. no overlapping of loops
7039 if (op_flags[i] & OF_BTARGET) {
7040 last_btarget = i; // possible loop starting point
7043 // XXX let's hope nobody is putting a delay or poll insn in a delay slot :-/
7044 if (OP_ISBRAIMM(opd->op)) {
7045 // BSR, BRA, BT, BF with immediate target
7046 int i_tmp = (opd->imm - base_pc) / 2; // branch target, index in ops
7047 if (i_tmp == last_btarget) // candidate for basic loop optimizer
7048 op_flags[i_tmp] |= OF_BASIC_LOOP;
7049 if (i_tmp == last_btarget && op <= 1) {
7050 op_flags[i_tmp] |= OF_LOOP; // conditions met -> mark loop
7051 last_btarget = i+1; // condition 4
7052 } else if (opd->op == OP_BRANCH)
7053 last_btarget = i+1; // condition 3
7055 else if (OP_ISBRAIND(opd->op))
7056 // BRAF, BSRF, JMP, JSR, register indirect. treat it as off-limits jump
7057 last_btarget = i+1; // condition 3
7058 else if (op_flags[i] & (OF_POLL_INSN|OF_DELAY_INSN))
7059 op ++; // condition 2
7064 // end_literals is used to decide to inline a literal or not
7065 // XXX: need better detection if this actually is used in write
7066 if (lowest_literal >= base_pc) {
7067 if (lowest_literal < end_pc) {
7068 dbg(1, "warning: lowest_literal=%08x < end_pc=%08x", lowest_literal, end_pc);
7069 // TODO: does this always mean end_pc covers data?
7072 if (lowest_mova >= base_pc) {
7073 if (lowest_mova < end_literals) {
7074 dbg(1, "warning: mova=%08x < end_literals=%08x", lowest_mova, end_literals);
7075 end_literals = lowest_mova;
7077 if (lowest_mova < end_pc) {
7078 dbg(1, "warning: mova=%08x < end_pc=%08x", lowest_mova, end_pc);
7079 end_literals = end_pc;
7082 if (lowest_literal >= end_literals)
7083 lowest_literal = end_literals;
7085 if (lowest_literal && end_literals)
7086 for (pc = lowest_literal; pc < end_literals; pc += 2)
7087 crc += FETCH_OP(pc);
7089 *end_pc_out = end_pc;
7090 if (base_literals_out != NULL)
7091 *base_literals_out = (lowest_literal ? lowest_literal : end_pc);
7092 if (end_literals_out != NULL)
7093 *end_literals_out = (end_literals ? end_literals : end_pc);
7095 // crc overflow handling, twice to collect all overflows
7096 crc = (crc & 0xffff) + (crc >> 16);
7097 crc = (crc & 0xffff) + (crc >> 16);
7101 // vim:shiftwidth=2:ts=2:expandtab