3632b919eaa6e1453246ecbeea7b092a3205a0e4
[picodrive.git] / pico / carthw / svp / compiler.c
1 // SSP1601 to ARM recompiler
2
3 // (c) Copyright 2008, Grazvydas "notaz" Ignotas
4 // Free for non-commercial use.
5
6 #include "../../pico_int.h"
7 #include "../../../cpu/drc/cmn.h"
8 #include "compiler.h"
9
10 // FIXME: asm has these hardcoded
11 #define SSP_BLOCKTAB_ENTS       (0x5090/2)
12 #define SSP_BLOCKTAB_IRAM_ONE   (0x800/2) // table entries
13 #define SSP_BLOCKTAB_IRAM_ENTS  (15*SSP_BLOCKTAB_IRAM_ONE)
14
15 static u32 **ssp_block_table; // [0x5090/2];
16 static u32 **ssp_block_table_iram; // [15][0x800/2];
17
18 static u32 *tcache_ptr = NULL;
19
20 static int nblocks = 0;
21 static int n_in_ops = 0;
22
23 extern ssp1601_t *ssp;
24
25 #define rPC    ssp->gr[SSP_PC].h
26 #define rPMC   ssp->gr[SSP_PMC]
27
28 #define SSP_FLAG_Z (1<<0xd)
29 #define SSP_FLAG_N (1<<0xf)
30
31 #ifndef ARM
32 //#define DUMP_BLOCK 0x0c9a
33 void ssp_drc_next(void){}
34 void ssp_drc_next_patch(void){}
35 void ssp_drc_end(void){}
36 #endif
37
38 #define COUNT_OP
39 #include "../../../cpu/drc/emit_arm.c"
40
41 // -----------------------------------------------------
42
43 static int get_inc(int mode)
44 {
45         int inc = (mode >> 11) & 7;
46         if (inc != 0) {
47                 if (inc != 7) inc--;
48                 inc = 1 << inc; // 0 1 2 4 8 16 32 128
49                 if (mode & 0x8000) inc = -inc; // decrement mode
50         }
51         return inc;
52 }
53
54 u32 ssp_pm_read(int reg)
55 {
56         u32 d = 0, mode;
57
58         if (ssp->emu_status & SSP_PMC_SET)
59         {
60                 ssp->pmac_read[reg] = rPMC.v;
61                 ssp->emu_status &= ~SSP_PMC_SET;
62                 return 0;
63         }
64
65         // just in case
66         ssp->emu_status &= ~SSP_PMC_HAVE_ADDR;
67
68         mode = ssp->pmac_read[reg]>>16;
69         if      ((mode & 0xfff0) == 0x0800) // ROM
70         {
71                 d = ((unsigned short *)Pico.rom)[ssp->pmac_read[reg]&0xfffff];
72                 ssp->pmac_read[reg] += 1;
73         }
74         else if ((mode & 0x47ff) == 0x0018) // DRAM
75         {
76                 unsigned short *dram = (unsigned short *)svp->dram;
77                 int inc = get_inc(mode);
78                 d = dram[ssp->pmac_read[reg]&0xffff];
79                 ssp->pmac_read[reg] += inc;
80         }
81
82         // PMC value corresponds to last PMR accessed
83         rPMC.v = ssp->pmac_read[reg];
84
85         return d;
86 }
87
88 #define overwrite_write(dst, d) \
89 { \
90         if (d & 0xf000) { dst &= ~0xf000; dst |= d & 0xf000; } \
91         if (d & 0x0f00) { dst &= ~0x0f00; dst |= d & 0x0f00; } \
92         if (d & 0x00f0) { dst &= ~0x00f0; dst |= d & 0x00f0; } \
93         if (d & 0x000f) { dst &= ~0x000f; dst |= d & 0x000f; } \
94 }
95
96 void ssp_pm_write(u32 d, int reg)
97 {
98         unsigned short *dram;
99         int mode, addr;
100
101         if (ssp->emu_status & SSP_PMC_SET)
102         {
103                 ssp->pmac_write[reg] = rPMC.v;
104                 ssp->emu_status &= ~SSP_PMC_SET;
105                 return;
106         }
107
108         // just in case
109         ssp->emu_status &= ~SSP_PMC_HAVE_ADDR;
110
111         dram = (unsigned short *)svp->dram;
112         mode = ssp->pmac_write[reg]>>16;
113         addr = ssp->pmac_write[reg]&0xffff;
114         if      ((mode & 0x43ff) == 0x0018) // DRAM
115         {
116                 int inc = get_inc(mode);
117                 if (mode & 0x0400) {
118                        overwrite_write(dram[addr], d);
119                 } else dram[addr] = d;
120                 ssp->pmac_write[reg] += inc;
121         }
122         else if ((mode & 0xfbff) == 0x4018) // DRAM, cell inc
123         {
124                 if (mode & 0x0400) {
125                        overwrite_write(dram[addr], d);
126                 } else dram[addr] = d;
127                 ssp->pmac_write[reg] += (addr&1) ? 0x1f : 1;
128         }
129         else if ((mode & 0x47ff) == 0x001c) // IRAM
130         {
131                 int inc = get_inc(mode);
132                 ((unsigned short *)svp->iram_rom)[addr&0x3ff] = d;
133                 ssp->pmac_write[reg] += inc;
134                 ssp->drc.iram_dirty = 1;
135         }
136
137         rPMC.v = ssp->pmac_write[reg];
138 }
139
140
141 // -----------------------------------------------------
142
143 // 14 IRAM blocks
144 static unsigned char iram_context_map[] =
145 {
146          0, 0, 0, 0, 1, 0, 0, 0, // 04
147          0, 0, 0, 0, 0, 0, 2, 0, // 0e
148          0, 0, 0, 0, 0, 3, 0, 4, // 15 17
149          5, 0, 0, 6, 0, 7, 0, 0, // 18 1b 1d
150          8, 9, 0, 0, 0,10, 0, 0, // 20 21 25
151          0, 0, 0, 0, 0, 0, 0, 0,
152          0, 0,11, 0, 0,12, 0, 0, // 32 35
153         13,14, 0, 0, 0, 0, 0, 0  // 38 39
154 };
155
156 int ssp_get_iram_context(void)
157 {
158         unsigned char *ir = (unsigned char *)svp->iram_rom;
159         int val1, val = ir[0x083^1] + ir[0x4FA^1] + ir[0x5F7^1] + ir[0x47B^1];
160         val1 = iram_context_map[(val>>1)&0x3f];
161
162         if (val1 == 0) {
163                 elprintf(EL_ANOMALY, "svp: iram ctx val: %02x PC=%04x\n", (val>>1)&0x3f, rPC);
164                 //debug_dump2file(name, svp->iram_rom, 0x800);
165                 //exit(1);
166         }
167         return val1;
168 }
169
170 // -----------------------------------------------------
171
172 /* regs with known values */
173 static struct
174 {
175         ssp_reg_t gr[8];
176         unsigned char r[8];
177         unsigned int pmac_read[5];
178         unsigned int pmac_write[5];
179         ssp_reg_t pmc;
180         unsigned int emu_status;
181 } known_regs;
182
183 #define KRREG_X     (1 << SSP_X)
184 #define KRREG_Y     (1 << SSP_Y)
185 #define KRREG_A     (1 << SSP_A)        /* AH only */
186 #define KRREG_ST    (1 << SSP_ST)
187 #define KRREG_STACK (1 << SSP_STACK)
188 #define KRREG_PC    (1 << SSP_PC)
189 #define KRREG_P     (1 << SSP_P)
190 #define KRREG_PR0   (1 << 8)
191 #define KRREG_PR4   (1 << 12)
192 #define KRREG_AL    (1 << 16)
193 #define KRREG_PMCM  (1 << 18)           /* only mode word of PMC */
194 #define KRREG_PMC   (1 << 19)
195 #define KRREG_PM0R  (1 << 20)
196 #define KRREG_PM1R  (1 << 21)
197 #define KRREG_PM2R  (1 << 22)
198 #define KRREG_PM3R  (1 << 23)
199 #define KRREG_PM4R  (1 << 24)
200 #define KRREG_PM0W  (1 << 25)
201 #define KRREG_PM1W  (1 << 26)
202 #define KRREG_PM2W  (1 << 27)
203 #define KRREG_PM3W  (1 << 28)
204 #define KRREG_PM4W  (1 << 29)
205
206 /* bitfield of known register values */
207 static u32 known_regb = 0;
208
209 /* known vals, which need to be flushed
210  * (only ST, P, r0-r7, PMCx, PMxR, PMxW)
211  * ST means flags are being held in ARM PSR
212  * P means that it needs to be recalculated
213  */
214 static u32 dirty_regb = 0;
215
216 /* known values of host regs.
217  * -1            - unknown
218  * 000000-00ffff - 16bit value
219  * 100000-10ffff - base reg (r7) + 16bit val
220  * 0r0000        - means reg (low) eq gr[r].h, r != AL
221  */
222 static int hostreg_r[4];
223
224 static void hostreg_clear(void)
225 {
226         int i;
227         for (i = 0; i < 4; i++)
228                 hostreg_r[i] = -1;
229 }
230
231 static void hostreg_sspreg_changed(int sspreg)
232 {
233         int i;
234         for (i = 0; i < 4; i++)
235                 if (hostreg_r[i] == (sspreg<<16)) hostreg_r[i] = -1;
236 }
237
238
239 #define PROGRAM(x)   ((unsigned short *)svp->iram_rom)[x]
240 #define PROGRAM_P(x) ((unsigned short *)svp->iram_rom + (x))
241
242 void tr_unhandled(void)
243 {
244         //FILE *f = fopen("tcache.bin", "wb");
245         //fwrite(tcache, 1, (tcache_ptr - tcache)*4, f);
246         //fclose(f);
247         elprintf(EL_ANOMALY, "unhandled @ %04x\n", known_regs.gr[SSP_PC].h<<1);
248         //exit(1);
249 }
250
251 /* update P, if needed. Trashes r0 */
252 static void tr_flush_dirty_P(void)
253 {
254         // TODO: const regs
255         if (!(dirty_regb & KRREG_P)) return;
256         EOP_MOV_REG_ASR(10, 4, 16);             // mov  r10, r4, asr #16
257         EOP_MOV_REG_LSL( 0, 4, 16);             // mov  r0,  r4, lsl #16
258         EOP_MOV_REG_ASR( 0, 0, 15);             // mov  r0,  r0, asr #15
259         EOP_MUL(10, 0, 10);                     // mul  r10, r0, r10
260         dirty_regb &= ~KRREG_P;
261         hostreg_r[0] = -1;
262 }
263
264 /* write dirty pr to host reg. Nothing is trashed */
265 static void tr_flush_dirty_pr(int r)
266 {
267         int ror = 0, reg;
268
269         if (!(dirty_regb & (1 << (r+8)))) return;
270
271         switch (r&3) {
272                 case 0: ror =    0; break;
273                 case 1: ror = 24/2; break;
274                 case 2: ror = 16/2; break;
275         }
276         reg = (r < 4) ? 8 : 9;
277         EOP_BIC_IMM(reg,reg,ror,0xff);
278         if (known_regs.r[r] != 0)
279                 EOP_ORR_IMM(reg,reg,ror,known_regs.r[r]);
280         dirty_regb &= ~(1 << (r+8));
281 }
282
283 /* write all dirty pr0-pr7 to host regs. Nothing is trashed */
284 static void tr_flush_dirty_prs(void)
285 {
286         int i, ror = 0, reg;
287         int dirty = dirty_regb >> 8;
288         if ((dirty&7) == 7) {
289                 emith_move_r_imm(8, known_regs.r[0]|(known_regs.r[1]<<8)|(known_regs.r[2]<<16));
290                 dirty &= ~7;
291         }
292         if ((dirty&0x70) == 0x70) {
293                 emith_move_r_imm(9, known_regs.r[4]|(known_regs.r[5]<<8)|(known_regs.r[6]<<16));
294                 dirty &= ~0x70;
295         }
296         /* r0-r7 */
297         for (i = 0; dirty && i < 8; i++, dirty >>= 1)
298         {
299                 if (!(dirty&1)) continue;
300                 switch (i&3) {
301                         case 0: ror =    0; break;
302                         case 1: ror = 24/2; break;
303                         case 2: ror = 16/2; break;
304                 }
305                 reg = (i < 4) ? 8 : 9;
306                 EOP_BIC_IMM(reg,reg,ror,0xff);
307                 if (known_regs.r[i] != 0)
308                         EOP_ORR_IMM(reg,reg,ror,known_regs.r[i]);
309         }
310         dirty_regb &= ~0xff00;
311 }
312
313 /* write dirty pr and "forget" it. Nothing is trashed. */
314 static void tr_release_pr(int r)
315 {
316         tr_flush_dirty_pr(r);
317         known_regb &= ~(1 << (r+8));
318 }
319
320 /* fush ARM PSR to r6. Trashes r1 */
321 static void tr_flush_dirty_ST(void)
322 {
323         if (!(dirty_regb & KRREG_ST)) return;
324         EOP_BIC_IMM(6,6,0,0x0f);
325         EOP_MRS(1);
326         EOP_ORR_REG_LSR(6,6,1,28);
327         dirty_regb &= ~KRREG_ST;
328         hostreg_r[1] = -1;
329 }
330
331 /* inverse of above. Trashes r1 */
332 static void tr_make_dirty_ST(void)
333 {
334         if (dirty_regb & KRREG_ST) return;
335         if (known_regb & KRREG_ST) {
336                 int flags = 0;
337                 if (known_regs.gr[SSP_ST].h & SSP_FLAG_N) flags |= 8;
338                 if (known_regs.gr[SSP_ST].h & SSP_FLAG_Z) flags |= 4;
339                 EOP_MSR_IMM(4/2, flags);
340         } else {
341                 EOP_MOV_REG_LSL(1, 6, 28);
342                 EOP_MSR_REG(1);
343                 hostreg_r[1] = -1;
344         }
345         dirty_regb |= KRREG_ST;
346 }
347
348 /* load 16bit val into host reg r0-r3. Nothing is trashed */
349 static void tr_mov16(int r, int val)
350 {
351         if (hostreg_r[r] != val) {
352                 emith_move_r_imm(r, val);
353                 hostreg_r[r] = val;
354         }
355 }
356
357 static void tr_mov16_cond(int cond, int r, int val)
358 {
359         emith_op_imm(cond, 0, A_OP_MOV, r, val);
360         hostreg_r[r] = -1;
361 }
362
363 /* trashes r1 */
364 static void tr_flush_dirty_pmcrs(void)
365 {
366         u32 i, val = (u32)-1;
367         if (!(dirty_regb & 0x3ff80000)) return;
368
369         if (dirty_regb & KRREG_PMC) {
370                 val = known_regs.pmc.v;
371                 emith_move_r_imm(1, val);
372                 EOP_STR_IMM(1,7,0x400+SSP_PMC*4);
373
374                 if (known_regs.emu_status & (SSP_PMC_SET|SSP_PMC_HAVE_ADDR)) {
375                         elprintf(EL_ANOMALY, "!! SSP_PMC_SET|SSP_PMC_HAVE_ADDR set on flush\n");
376                         tr_unhandled();
377                 }
378         }
379         for (i = 0; i < 5; i++)
380         {
381                 if (dirty_regb & (1 << (20+i))) {
382                         if (val != known_regs.pmac_read[i]) {
383                                 val = known_regs.pmac_read[i];
384                                 emith_move_r_imm(1, val);
385                         }
386                         EOP_STR_IMM(1,7,0x454+i*4); // pmac_read
387                 }
388                 if (dirty_regb & (1 << (25+i))) {
389                         if (val != known_regs.pmac_write[i]) {
390                                 val = known_regs.pmac_write[i];
391                                 emith_move_r_imm(1, val);
392                         }
393                         EOP_STR_IMM(1,7,0x46c+i*4); // pmac_write
394                 }
395         }
396         dirty_regb &= ~0x3ff80000;
397         hostreg_r[1] = -1;
398 }
399
400 /* read bank word to r0 (upper bits zero). Thrashes r1. */
401 static void tr_bank_read(int addr) /* word addr 0-0x1ff */
402 {
403         int breg = 7;
404         if (addr > 0x7f) {
405                 if (hostreg_r[1] != (0x100000|((addr&0x180)<<1))) {
406                         EOP_ADD_IMM(1,7,30/2,(addr&0x180)>>1);  // add  r1, r7, ((op&0x180)<<1)
407                         hostreg_r[1] = 0x100000|((addr&0x180)<<1);
408                 }
409                 breg = 1;
410         }
411         EOP_LDRH_IMM(0,breg,(addr&0x7f)<<1);    // ldrh r0, [r1, (op&0x7f)<<1]
412         hostreg_r[0] = -1;
413 }
414
415 /* write r0 to bank. Trashes r1. */
416 static void tr_bank_write(int addr)
417 {
418         int breg = 7;
419         if (addr > 0x7f) {
420                 if (hostreg_r[1] != (0x100000|((addr&0x180)<<1))) {
421                         EOP_ADD_IMM(1,7,30/2,(addr&0x180)>>1);  // add  r1, r7, ((op&0x180)<<1)
422                         hostreg_r[1] = 0x100000|((addr&0x180)<<1);
423                 }
424                 breg = 1;
425         }
426         EOP_STRH_IMM(0,breg,(addr&0x7f)<<1);            // strh r0, [r1, (op&0x7f)<<1]
427 }
428
429 /* handle RAM bank pointer modifiers. if need_modulo, trash r1-r3, else nothing */
430 static void tr_ptrr_mod(int r, int mod, int need_modulo, int count)
431 {
432         int modulo_shift = -1;  /* unknown */
433
434         if (mod == 0) return;
435
436         if (!need_modulo || mod == 1) // +!
437                 modulo_shift = 8;
438         else if (need_modulo && (known_regb & KRREG_ST)) {
439                 modulo_shift = known_regs.gr[SSP_ST].h & 7;
440                 if (modulo_shift == 0) modulo_shift = 8;
441         }
442
443         if (modulo_shift == -1)
444         {
445                 int reg = (r < 4) ? 8 : 9;
446                 tr_release_pr(r);
447                 if (dirty_regb & KRREG_ST) {
448                         // avoid flushing ARM flags
449                         EOP_AND_IMM(1, 6, 0, 0x70);
450                         EOP_SUB_IMM(1, 1, 0, 0x10);
451                         EOP_AND_IMM(1, 1, 0, 0x70);
452                         EOP_ADD_IMM(1, 1, 0, 0x10);
453                 } else {
454                         EOP_C_DOP_IMM(A_COND_AL,A_OP_AND,1,6,1,0,0x70); // ands  r1, r6, #0x70
455                         EOP_C_DOP_IMM(A_COND_EQ,A_OP_MOV,0,0,1,0,0x80); // moveq r1, #0x80
456                 }
457                 EOP_MOV_REG_LSR(1, 1, 4);               // mov r1, r1, lsr #4
458                 EOP_RSB_IMM(2, 1, 0, 8);                // rsb r1, r1, #8
459                 EOP_MOV_IMM(3, 8/2, count);             // mov r3, #0x01000000
460                 if (r&3)
461                         EOP_ADD_IMM(1, 1, 0, (r&3)*8);  // add r1, r1, #(r&3)*8
462                 EOP_MOV_REG2_ROR(reg,reg,1);            // mov reg, reg, ror r1
463                 if (mod == 2)
464                      EOP_SUB_REG2_LSL(reg,reg,3,2);     // sub reg, reg, #0x01000000 << r2
465                 else EOP_ADD_REG2_LSL(reg,reg,3,2);
466                 EOP_RSB_IMM(1, 1, 0, 32);               // rsb r1, r1, #32
467                 EOP_MOV_REG2_ROR(reg,reg,1);            // mov reg, reg, ror r1
468                 hostreg_r[1] = hostreg_r[2] = hostreg_r[3] = -1;
469         }
470         else if (known_regb & (1 << (r + 8)))
471         {
472                 int modulo = (1 << modulo_shift) - 1;
473                 if (mod == 2)
474                      known_regs.r[r] = (known_regs.r[r] & ~modulo) | ((known_regs.r[r] - count) & modulo);
475                 else known_regs.r[r] = (known_regs.r[r] & ~modulo) | ((known_regs.r[r] + count) & modulo);
476         }
477         else
478         {
479                 int reg = (r < 4) ? 8 : 9;
480                 int ror = ((r&3) + 1)*8 - (8 - modulo_shift);
481                 EOP_MOV_REG_ROR(reg,reg,ror);
482                 // {add|sub} reg, reg, #1<<shift
483                 EOP_C_DOP_IMM(A_COND_AL,(mod==2)?A_OP_SUB:A_OP_ADD,0,reg,reg, 8/2, count << (8 - modulo_shift));
484                 EOP_MOV_REG_ROR(reg,reg,32-ror);
485         }
486 }
487
488 /* handle writes r0 to (rX). Trashes r1.
489  * fortunately we can ignore modulo increment modes for writes. */
490 static void tr_rX_write(int op)
491 {
492         if ((op&3) == 3)
493         {
494                 int mod = (op>>2) & 3; // direct addressing
495                 tr_bank_write((op & 0x100) + mod);
496         }
497         else
498         {
499                 int r = (op&3) | ((op>>6)&4);
500                 if (known_regb & (1 << (r + 8))) {
501                         tr_bank_write((op&0x100) | known_regs.r[r]);
502                 } else {
503                         int reg = (r < 4) ? 8 : 9;
504                         int ror = ((4 - (r&3))*8) & 0x1f;
505                         EOP_AND_IMM(1,reg,ror/2,0xff);                  // and r1, r{7,8}, <mask>
506                         if (r >= 4)
507                                 EOP_ORR_IMM(1,1,((ror-8)&0x1f)/2,1);            // orr r1, r1, 1<<shift
508                         if (r&3) EOP_ADD_REG_LSR(1,7,1, (r&3)*8-1);     // add r1, r7, r1, lsr #lsr
509                         else     EOP_ADD_REG_LSL(1,7,1,1);
510                         EOP_STRH_SIMPLE(0,1);                           // strh r0, [r1]
511                         hostreg_r[1] = -1;
512                 }
513                 tr_ptrr_mod(r, (op>>2) & 3, 0, 1);
514         }
515 }
516
517 /* read (rX) to r0. Trashes r1-r3. */
518 static void tr_rX_read(int r, int mod)
519 {
520         if ((r&3) == 3)
521         {
522                 tr_bank_read(((r << 6) & 0x100) + mod); // direct addressing
523         }
524         else
525         {
526                 if (known_regb & (1 << (r + 8))) {
527                         tr_bank_read(((r << 6) & 0x100) | known_regs.r[r]);
528                 } else {
529                         int reg = (r < 4) ? 8 : 9;
530                         int ror = ((4 - (r&3))*8) & 0x1f;
531                         EOP_AND_IMM(1,reg,ror/2,0xff);                  // and r1, r{7,8}, <mask>
532                         if (r >= 4)
533                                 EOP_ORR_IMM(1,1,((ror-8)&0x1f)/2,1);            // orr r1, r1, 1<<shift
534                         if (r&3) EOP_ADD_REG_LSR(1,7,1, (r&3)*8-1);     // add r1, r7, r1, lsr #lsr
535                         else     EOP_ADD_REG_LSL(1,7,1,1);
536                         EOP_LDRH_SIMPLE(0,1);                           // ldrh r0, [r1]
537                         hostreg_r[0] = hostreg_r[1] = -1;
538                 }
539                 tr_ptrr_mod(r, mod, 1, 1);
540         }
541 }
542
543 /* read ((rX)) to r0. Trashes r1,r2. */
544 static void tr_rX_read2(int op)
545 {
546         int r = (op&3) | ((op>>6)&4); // src
547
548         if ((r&3) == 3) {
549                 tr_bank_read((op&0x100) | ((op>>2)&3));
550         } else if (known_regb & (1 << (r+8))) {
551                 tr_bank_read((op&0x100) | known_regs.r[r]);
552         } else {
553                 int reg = (r < 4) ? 8 : 9;
554                 int ror = ((4 - (r&3))*8) & 0x1f;
555                 EOP_AND_IMM(1,reg,ror/2,0xff);                  // and r1, r{7,8}, <mask>
556                 if (r >= 4)
557                         EOP_ORR_IMM(1,1,((ror-8)&0x1f)/2,1);            // orr r1, r1, 1<<shift
558                 if (r&3) EOP_ADD_REG_LSR(1,7,1, (r&3)*8-1);     // add r1, r7, r1, lsr #lsr
559                 else     EOP_ADD_REG_LSL(1,7,1,1);
560                 EOP_LDRH_SIMPLE(0,1);                           // ldrh r0, [r1]
561         }
562         EOP_LDR_IMM(2,7,0x48c);                                 // ptr_iram_rom
563         EOP_ADD_REG_LSL(2,2,0,1);                               // add  r2, r2, r0, lsl #1
564         EOP_ADD_IMM(0,0,0,1);                                   // add  r0, r0, #1
565         if ((r&3) == 3) {
566                 tr_bank_write((op&0x100) | ((op>>2)&3));
567         } else if (known_regb & (1 << (r+8))) {
568                 tr_bank_write((op&0x100) | known_regs.r[r]);
569         } else {
570                 EOP_STRH_SIMPLE(0,1);                           // strh r0, [r1]
571                 hostreg_r[1] = -1;
572         }
573         EOP_LDRH_SIMPLE(0,2);                                   // ldrh r0, [r2]
574         hostreg_r[0] = hostreg_r[2] = -1;
575 }
576
577 // check if AL is going to be used later in block
578 static int tr_predict_al_need(void)
579 {
580         int tmpv, tmpv2, op, pc = known_regs.gr[SSP_PC].h;
581
582         while (1)
583         {
584                 op = PROGRAM(pc);
585                 switch (op >> 9)
586                 {
587                         // ld d, s
588                         case 0x00:
589                                 tmpv2 = (op >> 4) & 0xf; // dst
590                                 tmpv  = op & 0xf; // src
591                                 if ((tmpv2 == SSP_A && tmpv == SSP_P) || tmpv2 == SSP_AL) // ld A, P; ld AL, *
592                                         return 0;
593                                 break;
594
595                         // ld (ri), s
596                         case 0x02:
597                         // ld ri, s
598                         case 0x0a:
599                         // OP a, s
600                         case 0x10: case 0x30: case 0x40: case 0x60: case 0x70:
601                                 tmpv  = op & 0xf; // src
602                                 if (tmpv == SSP_AL) // OP *, AL
603                                         return 1;
604                                 break;
605
606                         case 0x04:
607                         case 0x06:
608                         case 0x14:
609                         case 0x34:
610                         case 0x44:
611                         case 0x64:
612                         case 0x74: pc++; break;
613
614                         // call cond, addr
615                         case 0x24:
616                         // bra cond, addr
617                         case 0x26:
618                         // mod cond, op
619                         case 0x48:
620                         // mpys?
621                         case 0x1b:
622                         // mpya (rj), (ri), b
623                         case 0x4b: return 1;
624
625                         // mld (rj), (ri), b
626                         case 0x5b: return 0; // cleared anyway
627
628                         // and A, *
629                         case 0x50:
630                                 tmpv  = op & 0xf; // src
631                                 if (tmpv == SSP_AL) return 1;
632                         case 0x51: case 0x53: case 0x54: case 0x55: case 0x59: case 0x5c:
633                                 return 0;
634                 }
635                 pc++;
636         }
637 }
638
639
640 /* get ARM cond which would mean that SSP cond is satisfied. No trash. */
641 static int tr_cond_check(int op)
642 {
643         int f = (op & 0x100) >> 8;
644         switch (op&0xf0) {
645                 case 0x00: return A_COND_AL;    /* always true */
646                 case 0x50:                      /* Z matches f(?) bit */
647                         if (dirty_regb & KRREG_ST) return f ? A_COND_EQ : A_COND_NE;
648                         EOP_TST_IMM(6, 0, 4);
649                         return f ? A_COND_NE : A_COND_EQ;
650                 case 0x70:                      /* N matches f(?) bit */
651                         if (dirty_regb & KRREG_ST) return f ? A_COND_MI : A_COND_PL;
652                         EOP_TST_IMM(6, 0, 8);
653                         return f ? A_COND_NE : A_COND_EQ;
654                 default:
655                         elprintf(EL_ANOMALY, "unimplemented cond?\n");
656                         tr_unhandled();
657                         return 0;
658         }
659 }
660
661 static int tr_neg_cond(int cond)
662 {
663         switch (cond) {
664                 case A_COND_AL: elprintf(EL_ANOMALY, "neg for AL?\n"); exit(1);
665                 case A_COND_EQ: return A_COND_NE;
666                 case A_COND_NE: return A_COND_EQ;
667                 case A_COND_MI: return A_COND_PL;
668                 case A_COND_PL: return A_COND_MI;
669                 default:        elprintf(EL_ANOMALY, "bad cond for neg\n"); exit(1);
670         }
671         return 0;
672 }
673
674 static int tr_aop_ssp2arm(int op)
675 {
676         switch (op) {
677                 case 1: return A_OP_SUB;
678                 case 3: return A_OP_CMP;
679                 case 4: return A_OP_ADD;
680                 case 5: return A_OP_AND;
681                 case 6: return A_OP_ORR;
682                 case 7: return A_OP_EOR;
683         }
684
685         tr_unhandled();
686         return 0;
687 }
688
689 // -----------------------------------------------------
690
691 //@ r4:  XXYY
692 //@ r5:  A
693 //@ r6:  STACK and emu flags
694 //@ r7:  SSP context
695 //@ r10: P
696
697 // read general reg to r0. Trashes r1
698 static void tr_GR0_to_r0(int op)
699 {
700         tr_mov16(0, 0xffff);
701 }
702
703 static void tr_X_to_r0(int op)
704 {
705         if (hostreg_r[0] != (SSP_X<<16)) {
706                 EOP_MOV_REG_LSR(0, 4, 16);      // mov  r0, r4, lsr #16
707                 hostreg_r[0] = SSP_X<<16;
708         }
709 }
710
711 static void tr_Y_to_r0(int op)
712 {
713         if (hostreg_r[0] != (SSP_Y<<16)) {
714                 EOP_MOV_REG_SIMPLE(0, 4);       // mov  r0, r4
715                 hostreg_r[0] = SSP_Y<<16;
716         }
717 }
718
719 static void tr_A_to_r0(int op)
720 {
721         if (hostreg_r[0] != (SSP_A<<16)) {
722                 EOP_MOV_REG_LSR(0, 5, 16);      // mov  r0, r5, lsr #16  @ AH
723                 hostreg_r[0] = SSP_A<<16;
724         }
725 }
726
727 static void tr_ST_to_r0(int op)
728 {
729         // VR doesn't need much accuracy here..
730         EOP_MOV_REG_LSR(0, 6, 4);               // mov  r0, r6, lsr #4
731         EOP_AND_IMM(0, 0, 0, 0x67);             // and  r0, r0, #0x67
732         hostreg_r[0] = -1;
733 }
734
735 static void tr_STACK_to_r0(int op)
736 {
737         // 448
738         EOP_SUB_IMM(6, 6,  8/2, 0x20);          // sub  r6, r6, #1<<29
739         EOP_ADD_IMM(1, 7, 24/2, 0x04);          // add  r1, r7, 0x400
740         EOP_ADD_IMM(1, 1, 0, 0x48);             // add  r1, r1, 0x048
741         EOP_ADD_REG_LSR(1, 1, 6, 28);           // add  r1, r1, r6, lsr #28
742         EOP_LDRH_SIMPLE(0, 1);                  // ldrh r0, [r1]
743         hostreg_r[0] = hostreg_r[1] = -1;
744 }
745
746 static void tr_PC_to_r0(int op)
747 {
748         tr_mov16(0, known_regs.gr[SSP_PC].h);
749 }
750
751 static void tr_P_to_r0(int op)
752 {
753         tr_flush_dirty_P();
754         EOP_MOV_REG_LSR(0, 10, 16);             // mov  r0, r10, lsr #16
755         hostreg_r[0] = -1;
756 }
757
758 static void tr_AL_to_r0(int op)
759 {
760         if (op == 0x000f) {
761                 if (known_regb & KRREG_PMC) {
762                         known_regs.emu_status &= ~(SSP_PMC_SET|SSP_PMC_HAVE_ADDR);
763                 } else {
764                         EOP_LDR_IMM(0,7,0x484);                 // ldr r1, [r7, #0x484] // emu_status
765                         EOP_BIC_IMM(0,0,0,SSP_PMC_SET|SSP_PMC_HAVE_ADDR);
766                         EOP_STR_IMM(0,7,0x484);
767                 }
768         }
769
770         if (hostreg_r[0] != (SSP_AL<<16)) {
771                 EOP_MOV_REG_SIMPLE(0, 5);       // mov  r0, r5
772                 hostreg_r[0] = SSP_AL<<16;
773         }
774 }
775
776 static void tr_PMX_to_r0(int reg)
777 {
778         if ((known_regb & KRREG_PMC) && (known_regs.emu_status & SSP_PMC_SET))
779         {
780                 known_regs.pmac_read[reg] = known_regs.pmc.v;
781                 known_regs.emu_status &= ~SSP_PMC_SET;
782                 known_regb |= 1 << (20+reg);
783                 dirty_regb |= 1 << (20+reg);
784                 return;
785         }
786
787         if ((known_regb & KRREG_PMC) && (known_regb & (1 << (20+reg))))
788         {
789                 u32 pmcv = known_regs.pmac_read[reg];
790                 int mode = pmcv>>16;
791                 known_regs.emu_status &= ~SSP_PMC_HAVE_ADDR;
792
793                 if      ((mode & 0xfff0) == 0x0800)
794                 {
795                         EOP_LDR_IMM(1,7,0x488);         // rom_ptr
796                         emith_move_r_imm(0, (pmcv&0xfffff)<<1);
797                         EOP_LDRH_REG(0,1,0);            // ldrh r0, [r1, r0]
798                         known_regs.pmac_read[reg] += 1;
799                 }
800                 else if ((mode & 0x47ff) == 0x0018) // DRAM
801                 {
802                         int inc = get_inc(mode);
803                         EOP_LDR_IMM(1,7,0x490);         // dram_ptr
804                         emith_move_r_imm(0, (pmcv&0xffff)<<1);
805                         EOP_LDRH_REG(0,1,0);            // ldrh r0, [r1, r0]
806                         if (reg == 4 && (pmcv == 0x187f03 || pmcv == 0x187f04)) // wait loop detection
807                         {
808                                 int flag = (pmcv == 0x187f03) ? SSP_WAIT_30FE06 : SSP_WAIT_30FE08;
809                                 tr_flush_dirty_ST();
810                                 EOP_LDR_IMM(1,7,0x484);                 // ldr r1, [r7, #0x484] // emu_status
811                                 EOP_TST_REG_SIMPLE(0,0);
812                                 EOP_C_DOP_IMM(A_COND_EQ,A_OP_SUB,0,11,11,22/2,1);       // subeq r11, r11, #1024
813                                 EOP_C_DOP_IMM(A_COND_EQ,A_OP_ORR,0, 1, 1,24/2,flag>>8); // orreq r1, r1, #SSP_WAIT_30FE08
814                                 EOP_STR_IMM(1,7,0x484);                 // str r1, [r7, #0x484] // emu_status
815                         }
816                         known_regs.pmac_read[reg] += inc;
817                 }
818                 else
819                 {
820                         tr_unhandled();
821                 }
822                 known_regs.pmc.v = known_regs.pmac_read[reg];
823                 //known_regb |= KRREG_PMC;
824                 dirty_regb |= KRREG_PMC;
825                 dirty_regb |= 1 << (20+reg);
826                 hostreg_r[0] = hostreg_r[1] = -1;
827                 return;
828         }
829
830         known_regb &= ~KRREG_PMC;
831         dirty_regb &= ~KRREG_PMC;
832         known_regb &= ~(1 << (20+reg));
833         dirty_regb &= ~(1 << (20+reg));
834
835         // call the C code to handle this
836         tr_flush_dirty_ST();
837         //tr_flush_dirty_pmcrs();
838         tr_mov16(0, reg);
839         emith_call(ssp_pm_read);
840         hostreg_clear();
841 }
842
843 static void tr_PM0_to_r0(int op)
844 {
845         tr_PMX_to_r0(0);
846 }
847
848 static void tr_PM1_to_r0(int op)
849 {
850         tr_PMX_to_r0(1);
851 }
852
853 static void tr_PM2_to_r0(int op)
854 {
855         tr_PMX_to_r0(2);
856 }
857
858 static void tr_XST_to_r0(int op)
859 {
860         EOP_ADD_IMM(0, 7, 24/2, 4);     // add r0, r7, #0x400
861         EOP_LDRH_IMM(0, 0, SSP_XST*4+2);
862 }
863
864 static void tr_PM4_to_r0(int op)
865 {
866         tr_PMX_to_r0(4);
867 }
868
869 static void tr_PMC_to_r0(int op)
870 {
871         if (known_regb & KRREG_PMC)
872         {
873                 if (known_regs.emu_status & SSP_PMC_HAVE_ADDR) {
874                         known_regs.emu_status |= SSP_PMC_SET;
875                         known_regs.emu_status &= ~SSP_PMC_HAVE_ADDR;
876                         // do nothing - this is handled elsewhere
877                 } else {
878                         tr_mov16(0, known_regs.pmc.l);
879                         known_regs.emu_status |= SSP_PMC_HAVE_ADDR;
880                 }
881         }
882         else
883         {
884                 EOP_LDR_IMM(1,7,0x484);                 // ldr r1, [r7, #0x484] // emu_status
885                 tr_flush_dirty_ST();
886                 if (op != 0x000e)
887                         EOP_LDR_IMM(0, 7, 0x400+SSP_PMC*4);
888                 EOP_TST_IMM(1, 0, SSP_PMC_HAVE_ADDR);
889                 EOP_C_DOP_IMM(A_COND_EQ,A_OP_ORR,0, 1, 1, 0, SSP_PMC_HAVE_ADDR); // orreq r1, r1, #..
890                 EOP_C_DOP_IMM(A_COND_NE,A_OP_BIC,0, 1, 1, 0, SSP_PMC_HAVE_ADDR); // bicne r1, r1, #..
891                 EOP_C_DOP_IMM(A_COND_NE,A_OP_ORR,0, 1, 1, 0, SSP_PMC_SET);       // orrne r1, r1, #..
892                 EOP_STR_IMM(1,7,0x484);
893                 hostreg_r[0] = hostreg_r[1] = -1;
894         }
895 }
896
897
898 typedef void (tr_read_func)(int op);
899
900 static tr_read_func *tr_read_funcs[16] =
901 {
902         tr_GR0_to_r0,
903         tr_X_to_r0,
904         tr_Y_to_r0,
905         tr_A_to_r0,
906         tr_ST_to_r0,
907         tr_STACK_to_r0,
908         tr_PC_to_r0,
909         tr_P_to_r0,
910         tr_PM0_to_r0,
911         tr_PM1_to_r0,
912         tr_PM2_to_r0,
913         tr_XST_to_r0,
914         tr_PM4_to_r0,
915         (tr_read_func *)tr_unhandled,
916         tr_PMC_to_r0,
917         tr_AL_to_r0
918 };
919
920
921 // write r0 to general reg handlers. Trashes r1
922 #define TR_WRITE_R0_TO_REG(reg) \
923 { \
924         hostreg_sspreg_changed(reg); \
925         hostreg_r[0] = (reg)<<16; \
926         if (const_val != -1) { \
927                 known_regs.gr[reg].h = const_val; \
928                 known_regb |= 1 << (reg); \
929         } else { \
930                 known_regb &= ~(1 << (reg)); \
931         } \
932 }
933
934 static void tr_r0_to_GR0(int const_val)
935 {
936         // do nothing
937 }
938
939 static void tr_r0_to_X(int const_val)
940 {
941         EOP_MOV_REG_LSL(4, 4, 16);              // mov  r4, r4, lsl #16
942         EOP_MOV_REG_LSR(4, 4, 16);              // mov  r4, r4, lsr #16
943         EOP_ORR_REG_LSL(4, 4, 0, 16);           // orr  r4, r4, r0, lsl #16
944         dirty_regb |= KRREG_P;                  // touching X or Y makes P dirty.
945         TR_WRITE_R0_TO_REG(SSP_X);
946 }
947
948 static void tr_r0_to_Y(int const_val)
949 {
950         EOP_MOV_REG_LSR(4, 4, 16);              // mov  r4, r4, lsr #16
951         EOP_ORR_REG_LSL(4, 4, 0, 16);           // orr  r4, r4, r0, lsl #16
952         EOP_MOV_REG_ROR(4, 4, 16);              // mov  r4, r4, ror #16
953         dirty_regb |= KRREG_P;
954         TR_WRITE_R0_TO_REG(SSP_Y);
955 }
956
957 static void tr_r0_to_A(int const_val)
958 {
959         if (tr_predict_al_need()) {
960                 EOP_MOV_REG_LSL(5, 5, 16);      // mov  r5, r5, lsl #16
961                 EOP_MOV_REG_LSR(5, 5, 16);      // mov  r5, r5, lsr #16  @ AL
962                 EOP_ORR_REG_LSL(5, 5, 0, 16);   // orr  r5, r5, r0, lsl #16
963         }
964         else
965                 EOP_MOV_REG_LSL(5, 0, 16);
966         TR_WRITE_R0_TO_REG(SSP_A);
967 }
968
969 static void tr_r0_to_ST(int const_val)
970 {
971         // VR doesn't need much accuracy here..
972         EOP_AND_IMM(1, 0,   0, 0x67);           // and   r1, r0, #0x67
973         EOP_AND_IMM(6, 6, 8/2, 0xe0);           // and   r6, r6, #7<<29     @ preserve STACK
974         EOP_ORR_REG_LSL(6, 6, 1, 4);            // orr   r6, r6, r1, lsl #4
975         TR_WRITE_R0_TO_REG(SSP_ST);
976         hostreg_r[1] = -1;
977         dirty_regb &= ~KRREG_ST;
978 }
979
980 static void tr_r0_to_STACK(int const_val)
981 {
982         // 448
983         EOP_ADD_IMM(1, 7, 24/2, 0x04);          // add  r1, r7, 0x400
984         EOP_ADD_IMM(1, 1, 0, 0x48);             // add  r1, r1, 0x048
985         EOP_ADD_REG_LSR(1, 1, 6, 28);           // add  r1, r1, r6, lsr #28
986         EOP_STRH_SIMPLE(0, 1);                  // strh r0, [r1]
987         EOP_ADD_IMM(6, 6,  8/2, 0x20);          // add  r6, r6, #1<<29
988         hostreg_r[1] = -1;
989 }
990
991 static void tr_r0_to_PC(int const_val)
992 {
993 /*
994  * do nothing - dispatcher will take care of this
995         EOP_MOV_REG_LSL(1, 0, 16);              // mov  r1, r0, lsl #16
996         EOP_STR_IMM(1,7,0x400+6*4);             // str  r1, [r7, #(0x400+6*8)]
997         hostreg_r[1] = -1;
998 */
999 }
1000
1001 static void tr_r0_to_AL(int const_val)
1002 {
1003         EOP_MOV_REG_LSR(5, 5, 16);              // mov  r5, r5, lsr #16
1004         EOP_ORR_REG_LSL(5, 5, 0, 16);           // orr  r5, r5, r0, lsl #16
1005         EOP_MOV_REG_ROR(5, 5, 16);              // mov  r5, r5, ror #16
1006         hostreg_sspreg_changed(SSP_AL);
1007         if (const_val != -1) {
1008                 known_regs.gr[SSP_A].l = const_val;
1009                 known_regb |= 1 << SSP_AL;
1010         } else
1011                 known_regb &= ~(1 << SSP_AL);
1012 }
1013
1014 static void tr_r0_to_PMX(int reg)
1015 {
1016         if ((known_regb & KRREG_PMC) && (known_regs.emu_status & SSP_PMC_SET))
1017         {
1018                 known_regs.pmac_write[reg] = known_regs.pmc.v;
1019                 known_regs.emu_status &= ~SSP_PMC_SET;
1020                 known_regb |= 1 << (25+reg);
1021                 dirty_regb |= 1 << (25+reg);
1022                 return;
1023         }
1024
1025         if ((known_regb & KRREG_PMC) && (known_regb & (1 << (25+reg))))
1026         {
1027                 int mode, addr;
1028
1029                 known_regs.emu_status &= ~SSP_PMC_HAVE_ADDR;
1030
1031                 mode = known_regs.pmac_write[reg]>>16;
1032                 addr = known_regs.pmac_write[reg]&0xffff;
1033                 if      ((mode & 0x43ff) == 0x0018) // DRAM
1034                 {
1035                         int inc = get_inc(mode);
1036                         if (mode & 0x0400) tr_unhandled();
1037                         EOP_LDR_IMM(1,7,0x490);         // dram_ptr
1038                         emith_move_r_imm(2, addr << 1);
1039                         EOP_STRH_REG(0,1,2);            // strh r0, [r1, r2]
1040                         known_regs.pmac_write[reg] += inc;
1041                 }
1042                 else if ((mode & 0xfbff) == 0x4018) // DRAM, cell inc
1043                 {
1044                         if (mode & 0x0400) tr_unhandled();
1045                         EOP_LDR_IMM(1,7,0x490);         // dram_ptr
1046                         emith_move_r_imm(2, addr << 1);
1047                         EOP_STRH_REG(0,1,2);            // strh r0, [r1, r2]
1048                         known_regs.pmac_write[reg] += (addr&1) ? 31 : 1;
1049                 }
1050                 else if ((mode & 0x47ff) == 0x001c) // IRAM
1051                 {
1052                         int inc = get_inc(mode);
1053                         EOP_LDR_IMM(1,7,0x48c);         // iram_ptr
1054                         emith_move_r_imm(2, (addr&0x3ff) << 1);
1055                         EOP_STRH_REG(0,1,2);            // strh r0, [r1, r2]
1056                         EOP_MOV_IMM(1,0,1);
1057                         EOP_STR_IMM(1,7,0x494);         // iram_dirty
1058                         known_regs.pmac_write[reg] += inc;
1059                 }
1060                 else
1061                         tr_unhandled();
1062
1063                 known_regs.pmc.v = known_regs.pmac_write[reg];
1064                 //known_regb |= KRREG_PMC;
1065                 dirty_regb |= KRREG_PMC;
1066                 dirty_regb |= 1 << (25+reg);
1067                 hostreg_r[1] = hostreg_r[2] = -1;
1068                 return;
1069         }
1070
1071         known_regb &= ~KRREG_PMC;
1072         dirty_regb &= ~KRREG_PMC;
1073         known_regb &= ~(1 << (25+reg));
1074         dirty_regb &= ~(1 << (25+reg));
1075
1076         // call the C code to handle this
1077         tr_flush_dirty_ST();
1078         //tr_flush_dirty_pmcrs();
1079         tr_mov16(1, reg);
1080         emith_call(ssp_pm_write);
1081         hostreg_clear();
1082 }
1083
1084 static void tr_r0_to_PM0(int const_val)
1085 {
1086         tr_r0_to_PMX(0);
1087 }
1088
1089 static void tr_r0_to_PM1(int const_val)
1090 {
1091         tr_r0_to_PMX(1);
1092 }
1093
1094 static void tr_r0_to_PM2(int const_val)
1095 {
1096         tr_r0_to_PMX(2);
1097 }
1098
1099 static void tr_r0_to_PM4(int const_val)
1100 {
1101         tr_r0_to_PMX(4);
1102 }
1103
1104 static void tr_r0_to_PMC(int const_val)
1105 {
1106         if ((known_regb & KRREG_PMC) && const_val != -1)
1107         {
1108                 if (known_regs.emu_status & SSP_PMC_HAVE_ADDR) {
1109                         known_regs.emu_status |= SSP_PMC_SET;
1110                         known_regs.emu_status &= ~SSP_PMC_HAVE_ADDR;
1111                         known_regs.pmc.h = const_val;
1112                 } else {
1113                         known_regs.emu_status |= SSP_PMC_HAVE_ADDR;
1114                         known_regs.pmc.l = const_val;
1115                 }
1116         }
1117         else
1118         {
1119                 tr_flush_dirty_ST();
1120                 if (known_regb & KRREG_PMC) {
1121                         emith_move_r_imm(1, known_regs.pmc.v);
1122                         EOP_STR_IMM(1,7,0x400+SSP_PMC*4);
1123                         known_regb &= ~KRREG_PMC;
1124                         dirty_regb &= ~KRREG_PMC;
1125                 }
1126                 EOP_LDR_IMM(1,7,0x484);                 // ldr r1, [r7, #0x484] // emu_status
1127                 EOP_ADD_IMM(2,7,24/2,4);                // add r2, r7, #0x400
1128                 EOP_TST_IMM(1, 0, SSP_PMC_HAVE_ADDR);
1129                 EOP_C_AM3_IMM(A_COND_EQ,1,0,2,0,0,1,SSP_PMC*4);         // strxx r0, [r2, #SSP_PMC]
1130                 EOP_C_AM3_IMM(A_COND_NE,1,0,2,0,0,1,SSP_PMC*4+2);
1131                 EOP_C_DOP_IMM(A_COND_EQ,A_OP_ORR,0, 1, 1, 0, SSP_PMC_HAVE_ADDR); // orreq r1, r1, #..
1132                 EOP_C_DOP_IMM(A_COND_NE,A_OP_BIC,0, 1, 1, 0, SSP_PMC_HAVE_ADDR); // bicne r1, r1, #..
1133                 EOP_C_DOP_IMM(A_COND_NE,A_OP_ORR,0, 1, 1, 0, SSP_PMC_SET);       // orrne r1, r1, #..
1134                 EOP_STR_IMM(1,7,0x484);
1135                 hostreg_r[1] = hostreg_r[2] = -1;
1136         }
1137 }
1138
1139 typedef void (tr_write_func)(int const_val);
1140
1141 static tr_write_func *tr_write_funcs[16] =
1142 {
1143         tr_r0_to_GR0,
1144         tr_r0_to_X,
1145         tr_r0_to_Y,
1146         tr_r0_to_A,
1147         tr_r0_to_ST,
1148         tr_r0_to_STACK,
1149         tr_r0_to_PC,
1150         (tr_write_func *)tr_unhandled,
1151         tr_r0_to_PM0,
1152         tr_r0_to_PM1,
1153         tr_r0_to_PM2,
1154         (tr_write_func *)tr_unhandled,
1155         tr_r0_to_PM4,
1156         (tr_write_func *)tr_unhandled,
1157         tr_r0_to_PMC,
1158         tr_r0_to_AL
1159 };
1160
1161 static void tr_mac_load_XY(int op)
1162 {
1163         tr_rX_read(op&3, (op>>2)&3); // X
1164         EOP_MOV_REG_LSL(4, 0, 16);
1165         tr_rX_read(((op>>4)&3)|4, (op>>6)&3); // Y
1166         EOP_ORR_REG_SIMPLE(4, 0);
1167         dirty_regb |= KRREG_P;
1168         hostreg_sspreg_changed(SSP_X);
1169         hostreg_sspreg_changed(SSP_Y);
1170         known_regb &= ~KRREG_X;
1171         known_regb &= ~KRREG_Y;
1172 }
1173
1174 // -----------------------------------------------------
1175
1176 static int tr_detect_set_pm(unsigned int op, int *pc, int imm)
1177 {
1178         u32 pmcv, tmpv;
1179         if (!((op&0xfef0) == 0x08e0 && (PROGRAM(*pc)&0xfef0) == 0x08e0)) return 0;
1180
1181         // programming PMC:
1182         // ldi PMC, imm1
1183         // ldi PMC, imm2
1184         (*pc)++;
1185         pmcv = imm | (PROGRAM((*pc)++) << 16);
1186         known_regs.pmc.v = pmcv;
1187         known_regb |= KRREG_PMC;
1188         dirty_regb |= KRREG_PMC;
1189         known_regs.emu_status |= SSP_PMC_SET;
1190         n_in_ops++;
1191
1192         // check for possible reg programming
1193         tmpv = PROGRAM(*pc);
1194         if ((tmpv & 0xfff8) == 0x08 || (tmpv & 0xff8f) == 0x80)
1195         {
1196                 int is_write = (tmpv & 0xff8f) == 0x80;
1197                 int reg = is_write ? ((tmpv>>4)&0x7) : (tmpv&0x7);
1198                 if (reg > 4) tr_unhandled();
1199                 if ((tmpv & 0x0f) != 0 && (tmpv & 0xf0) != 0) tr_unhandled();
1200                 if (is_write)
1201                         known_regs.pmac_write[reg] = pmcv;
1202                 else
1203                         known_regs.pmac_read[reg] = pmcv;
1204                 known_regb |= is_write ? (1 << (reg+25)) : (1 << (reg+20));
1205                 dirty_regb |= is_write ? (1 << (reg+25)) : (1 << (reg+20));
1206                 known_regs.emu_status &= ~SSP_PMC_SET;
1207                 (*pc)++;
1208                 n_in_ops++;
1209                 return 5;
1210         }
1211
1212         tr_unhandled();
1213         return 4;
1214 }
1215
1216 static const short pm0_block_seq[] = { 0x0880, 0, 0x0880, 0, 0x0840, 0x60 };
1217
1218 static int tr_detect_pm0_block(unsigned int op, int *pc, int imm)
1219 {
1220         // ldi ST, 0
1221         // ldi PM0, 0
1222         // ldi PM0, 0
1223         // ldi ST, 60h
1224         unsigned short *pp;
1225         if (op != 0x0840 || imm != 0) return 0;
1226         pp = PROGRAM_P(*pc);
1227         if (memcmp(pp, pm0_block_seq, sizeof(pm0_block_seq)) != 0) return 0;
1228
1229         EOP_AND_IMM(6, 6, 8/2, 0xe0);           // and   r6, r6, #7<<29     @ preserve STACK
1230         EOP_ORR_IMM(6, 6, 24/2, 6);             // orr   r6, r6, 0x600
1231         hostreg_sspreg_changed(SSP_ST);
1232         known_regs.gr[SSP_ST].h = 0x60;
1233         known_regb |= 1 << SSP_ST;
1234         dirty_regb &= ~KRREG_ST;
1235         (*pc) += 3*2;
1236         n_in_ops += 3;
1237         return 4*2;
1238 }
1239
1240 static int tr_detect_rotate(unsigned int op, int *pc, int imm)
1241 {
1242         // @ 3DA2 and 426A
1243         // ld PMC, (r3|00)
1244         // ld (r3|00), PMC
1245         // ld -, AL
1246         if (op != 0x02e3 || PROGRAM(*pc) != 0x04e3 || PROGRAM(*pc + 1) != 0x000f) return 0;
1247
1248         tr_bank_read(0);
1249         EOP_MOV_REG_LSL(0, 0, 4);
1250         EOP_ORR_REG_LSR(0, 0, 0, 16);
1251         tr_bank_write(0);
1252         (*pc) += 2;
1253         n_in_ops += 2;
1254         return 3;
1255 }
1256
1257 // -----------------------------------------------------
1258
1259 static int translate_op(unsigned int op, int *pc, int imm, int *end_cond, int *jump_pc)
1260 {
1261         u32 tmpv, tmpv2, tmpv3;
1262         int ret = 0;
1263         known_regs.gr[SSP_PC].h = *pc;
1264
1265         switch (op >> 9)
1266         {
1267                 // ld d, s
1268                 case 0x00:
1269                         if (op == 0) { ret++; break; } // nop
1270                         tmpv  = op & 0xf; // src
1271                         tmpv2 = (op >> 4) & 0xf; // dst
1272                         if (tmpv2 == SSP_A && tmpv == SSP_P) { // ld A, P
1273                                 tr_flush_dirty_P();
1274                                 EOP_MOV_REG_SIMPLE(5, 10);
1275                                 hostreg_sspreg_changed(SSP_A);
1276                                 known_regb &= ~(KRREG_A|KRREG_AL);
1277                                 ret++; break;
1278                         }
1279                         tr_read_funcs[tmpv](op);
1280                         tr_write_funcs[tmpv2]((known_regb & (1 << tmpv)) ? known_regs.gr[tmpv].h : -1);
1281                         if (tmpv2 == SSP_PC) {
1282                                 ret |= 0x10000;
1283                                 *end_cond = -A_COND_AL;
1284                         }
1285                         ret++; break;
1286
1287                 // ld d, (ri)
1288                 case 0x01: {
1289                         int r = (op&3) | ((op>>6)&4);
1290                         int mod = (op>>2)&3;
1291                         tmpv = (op >> 4) & 0xf; // dst
1292                         ret = tr_detect_rotate(op, pc, imm);
1293                         if (ret > 0) break;
1294                         if (tmpv != 0)
1295                                 tr_rX_read(r, mod);
1296                         else {
1297                                 int cnt = 1;
1298                                 while (PROGRAM(*pc) == op) {
1299                                         (*pc)++; cnt++; ret++;
1300                                         n_in_ops++;
1301                                 }
1302                                 tr_ptrr_mod(r, mod, 1, cnt); // skip
1303                         }
1304                         tr_write_funcs[tmpv](-1);
1305                         if (tmpv == SSP_PC) {
1306                                 ret |= 0x10000;
1307                                 *end_cond = -A_COND_AL;
1308                         }
1309                         ret++; break;
1310                 }
1311
1312                 // ld (ri), s
1313                 case 0x02:
1314                         tmpv = (op >> 4) & 0xf; // src
1315                         tr_read_funcs[tmpv](op);
1316                         tr_rX_write(op);
1317                         ret++; break;
1318
1319                 // ld a, adr
1320                 case 0x03:
1321                         tr_bank_read(op&0x1ff);
1322                         tr_r0_to_A(-1);
1323                         ret++; break;
1324
1325                 // ldi d, imm
1326                 case 0x04:
1327                         tmpv = (op & 0xf0) >> 4; // dst
1328                         ret = tr_detect_pm0_block(op, pc, imm);
1329                         if (ret > 0) break;
1330                         ret = tr_detect_set_pm(op, pc, imm);
1331                         if (ret > 0) break;
1332                         tr_mov16(0, imm);
1333                         tr_write_funcs[tmpv](imm);
1334                         if (tmpv == SSP_PC) {
1335                                 ret |= 0x10000;
1336                                 *jump_pc = imm;
1337                         }
1338                         ret += 2; break;
1339
1340                 // ld d, ((ri))
1341                 case 0x05:
1342                         tmpv2 = (op >> 4) & 0xf;  // dst
1343                         tr_rX_read2(op);
1344                         tr_write_funcs[tmpv2](-1);
1345                         if (tmpv2 == SSP_PC) {
1346                                 ret |= 0x10000;
1347                                 *end_cond = -A_COND_AL;
1348                         }
1349                         ret += 3; break;
1350
1351                 // ldi (ri), imm
1352                 case 0x06:
1353                         tr_mov16(0, imm);
1354                         tr_rX_write(op);
1355                         ret += 2; break;
1356
1357                 // ld adr, a
1358                 case 0x07:
1359                         tr_A_to_r0(op);
1360                         tr_bank_write(op&0x1ff);
1361                         ret++; break;
1362
1363                 // ld d, ri
1364                 case 0x09: {
1365                         int r;
1366                         r = (op&3) | ((op>>6)&4); // src
1367                         tmpv2 = (op >> 4) & 0xf;  // dst
1368                         if ((r&3) == 3) tr_unhandled();
1369
1370                         if (known_regb & (1 << (r+8))) {
1371                                 tr_mov16(0, known_regs.r[r]);
1372                                 tr_write_funcs[tmpv2](known_regs.r[r]);
1373                         } else {
1374                                 int reg = (r < 4) ? 8 : 9;
1375                                 if (r&3) EOP_MOV_REG_LSR(0, reg, (r&3)*8);      // mov r0, r{7,8}, lsr #lsr
1376                                 EOP_AND_IMM(0, (r&3)?0:reg, 0, 0xff);           // and r0, r{7,8}, <mask>
1377                                 hostreg_r[0] = -1;
1378                                 tr_write_funcs[tmpv2](-1);
1379                         }
1380                         ret++; break;
1381                 }
1382
1383                 // ld ri, s
1384                 case 0x0a: {
1385                         int r;
1386                         r = (op&3) | ((op>>6)&4); // dst
1387                         tmpv = (op >> 4) & 0xf;   // src
1388                         if ((r&3) == 3) tr_unhandled();
1389
1390                         if (known_regb & (1 << tmpv)) {
1391                                 known_regs.r[r] = known_regs.gr[tmpv].h;
1392                                 known_regb |= 1 << (r + 8);
1393                                 dirty_regb |= 1 << (r + 8);
1394                         } else {
1395                                 int reg = (r < 4) ? 8 : 9;
1396                                 int ror = ((4 - (r&3))*8) & 0x1f;
1397                                 tr_read_funcs[tmpv](op);
1398                                 EOP_BIC_IMM(reg, reg, ror/2, 0xff);             // bic r{7,8}, r{7,8}, <mask>
1399                                 EOP_AND_IMM(0, 0, 0, 0xff);                     // and r0, r0, 0xff
1400                                 EOP_ORR_REG_LSL(reg, reg, 0, (r&3)*8);          // orr r{7,8}, r{7,8}, r0, lsl #lsl
1401                                 hostreg_r[0] = -1;
1402                                 known_regb &= ~(1 << (r+8));
1403                                 dirty_regb &= ~(1 << (r+8));
1404                         }
1405                         ret++; break;
1406                 }
1407
1408                 // ldi ri, simm
1409                 case 0x0c: case 0x0d: case 0x0e: case 0x0f:
1410                         tmpv = (op>>8)&7;
1411                         known_regs.r[tmpv] = op;
1412                         known_regb |= 1 << (tmpv + 8);
1413                         dirty_regb |= 1 << (tmpv + 8);
1414                         ret++; break;
1415
1416                 // call cond, addr
1417                 case 0x24: {
1418                         u32 *jump_op = NULL;
1419                         tmpv = tr_cond_check(op);
1420                         if (tmpv != A_COND_AL) {
1421                                 jump_op = tcache_ptr;
1422                                 EOP_MOV_IMM(0, 0, 0); // placeholder for branch
1423                         }
1424                         tr_mov16(0, *pc);
1425                         tr_r0_to_STACK(*pc);
1426                         if (tmpv != A_COND_AL) {
1427                                 u32 *real_ptr = tcache_ptr;
1428                                 tcache_ptr = jump_op;
1429                                 EOP_C_B(tr_neg_cond(tmpv),0,real_ptr - jump_op - 2);
1430                                 tcache_ptr = real_ptr;
1431                         }
1432                         tr_mov16_cond(tmpv, 0, imm);
1433                         if (tmpv != A_COND_AL)
1434                                 tr_mov16_cond(tr_neg_cond(tmpv), 0, *pc);
1435                         tr_r0_to_PC(tmpv == A_COND_AL ? imm : -1);
1436                         ret |= 0x10000;
1437                         *end_cond = tmpv;
1438                         *jump_pc = imm;
1439                         ret += 2; break;
1440                 }
1441
1442                 // ld d, (a)
1443                 case 0x25:
1444                         tmpv2 = (op >> 4) & 0xf;  // dst
1445                         tr_A_to_r0(op);
1446                         EOP_LDR_IMM(1,7,0x48c);                                 // ptr_iram_rom
1447                         EOP_ADD_REG_LSL(0,1,0,1);                               // add  r0, r1, r0, lsl #1
1448                         EOP_LDRH_SIMPLE(0,0);                                   // ldrh r0, [r0]
1449                         hostreg_r[0] = hostreg_r[1] = -1;
1450                         tr_write_funcs[tmpv2](-1);
1451                         if (tmpv2 == SSP_PC) {
1452                                 ret |= 0x10000;
1453                                 *end_cond = -A_COND_AL;
1454                         }
1455                         ret += 3; break;
1456
1457                 // bra cond, addr
1458                 case 0x26:
1459                         tmpv = tr_cond_check(op);
1460                         tr_mov16_cond(tmpv, 0, imm);
1461                         if (tmpv != A_COND_AL)
1462                                 tr_mov16_cond(tr_neg_cond(tmpv), 0, *pc);
1463                         tr_r0_to_PC(tmpv == A_COND_AL ? imm : -1);
1464                         ret |= 0x10000;
1465                         *end_cond = tmpv;
1466                         *jump_pc = imm;
1467                         ret += 2; break;
1468
1469                 // mod cond, op
1470                 case 0x48: {
1471                         // check for repeats of this op
1472                         tmpv = 1; // count
1473                         while (PROGRAM(*pc) == op && (op & 7) != 6) {
1474                                 (*pc)++; tmpv++;
1475                                 n_in_ops++;
1476                         }
1477                         if ((op&0xf0) != 0) // !always
1478                                 tr_make_dirty_ST();
1479
1480                         tmpv2 = tr_cond_check(op);
1481                         switch (op & 7) {
1482                                 case 2: EOP_C_DOP_REG_XIMM(tmpv2,A_OP_MOV,1,0,5,tmpv,A_AM1_ASR,5); break; // shr (arithmetic)
1483                                 case 3: EOP_C_DOP_REG_XIMM(tmpv2,A_OP_MOV,1,0,5,tmpv,A_AM1_LSL,5); break; // shl
1484                                 case 6: EOP_C_DOP_IMM(tmpv2,A_OP_RSB,1,5,5,0,0); break; // neg
1485                                 case 7: EOP_C_DOP_REG_XIMM(tmpv2,A_OP_EOR,0,5,1,31,A_AM1_ASR,5); // eor  r1, r5, r5, asr #31
1486                                         EOP_C_DOP_REG_XIMM(tmpv2,A_OP_ADD,1,1,5,31,A_AM1_LSR,5); // adds r5, r1, r5, lsr #31
1487                                         hostreg_r[1] = -1; break; // abs
1488                                 default: tr_unhandled();
1489                         }
1490
1491                         hostreg_sspreg_changed(SSP_A);
1492                         dirty_regb |=  KRREG_ST;
1493                         known_regb &= ~KRREG_ST;
1494                         known_regb &= ~(KRREG_A|KRREG_AL);
1495                         ret += tmpv; break;
1496                 }
1497
1498                 // mpys?
1499                 case 0x1b:
1500                         tr_flush_dirty_P();
1501                         tr_mac_load_XY(op);
1502                         tr_make_dirty_ST();
1503                         EOP_C_DOP_REG_XIMM(A_COND_AL,A_OP_SUB,1,5,5,0,A_AM1_LSL,10); // subs r5, r5, r10
1504                         hostreg_sspreg_changed(SSP_A);
1505                         known_regb &= ~(KRREG_A|KRREG_AL);
1506                         dirty_regb |= KRREG_ST;
1507                         ret++; break;
1508
1509                 // mpya (rj), (ri), b
1510                 case 0x4b:
1511                         tr_flush_dirty_P();
1512                         tr_mac_load_XY(op);
1513                         tr_make_dirty_ST();
1514                         EOP_C_DOP_REG_XIMM(A_COND_AL,A_OP_ADD,1,5,5,0,A_AM1_LSL,10); // adds r5, r5, r10
1515                         hostreg_sspreg_changed(SSP_A);
1516                         known_regb &= ~(KRREG_A|KRREG_AL);
1517                         dirty_regb |= KRREG_ST;
1518                         ret++; break;
1519
1520                 // mld (rj), (ri), b
1521                 case 0x5b:
1522                         EOP_C_DOP_IMM(A_COND_AL,A_OP_MOV,1,0,5,0,0); // movs r5, #0
1523                         hostreg_sspreg_changed(SSP_A);
1524                         known_regs.gr[SSP_A].v = 0;
1525                         known_regb |= (KRREG_A|KRREG_AL);
1526                         dirty_regb |= KRREG_ST;
1527                         tr_mac_load_XY(op);
1528                         ret++; break;
1529
1530                 // OP a, s
1531                 case 0x10:
1532                 case 0x30:
1533                 case 0x40:
1534                 case 0x50:
1535                 case 0x60:
1536                 case 0x70:
1537                         tmpv = op & 0xf; // src
1538                         tmpv2 = tr_aop_ssp2arm(op>>13); // op
1539                         tmpv3 = (tmpv2 == A_OP_CMP) ? 0 : 5;
1540                         if (tmpv == SSP_P) {
1541                                 tr_flush_dirty_P();
1542                                 EOP_C_DOP_REG_XIMM(A_COND_AL,tmpv2,1,5,tmpv3, 0,A_AM1_LSL,10); // OPs r5, r5, r10
1543                         } else if (tmpv == SSP_A) {
1544                                 EOP_C_DOP_REG_XIMM(A_COND_AL,tmpv2,1,5,tmpv3, 0,A_AM1_LSL, 5); // OPs r5, r5, r5
1545                         } else {
1546                                 tr_read_funcs[tmpv](op);
1547                                 EOP_C_DOP_REG_XIMM(A_COND_AL,tmpv2,1,5,tmpv3,16,A_AM1_LSL, 0); // OPs r5, r5, r0, lsl #16
1548                         }
1549                         hostreg_sspreg_changed(SSP_A);
1550                         known_regb &= ~(KRREG_A|KRREG_AL|KRREG_ST);
1551                         dirty_regb |= KRREG_ST;
1552                         ret++; break;
1553
1554                 // OP a, (ri)
1555                 case 0x11:
1556                 case 0x31:
1557                 case 0x41:
1558                 case 0x51:
1559                 case 0x61:
1560                 case 0x71:
1561                         tmpv2 = tr_aop_ssp2arm(op>>13); // op
1562                         tmpv3 = (tmpv2 == A_OP_CMP) ? 0 : 5;
1563                         tr_rX_read((op&3)|((op>>6)&4), (op>>2)&3);
1564                         EOP_C_DOP_REG_XIMM(A_COND_AL,tmpv2,1,5,tmpv3,16,A_AM1_LSL,0);   // OPs r5, r5, r0, lsl #16
1565                         hostreg_sspreg_changed(SSP_A);
1566                         known_regb &= ~(KRREG_A|KRREG_AL|KRREG_ST);
1567                         dirty_regb |= KRREG_ST;
1568                         ret++; break;
1569
1570                 // OP a, adr
1571                 case 0x13:
1572                 case 0x33:
1573                 case 0x43:
1574                 case 0x53:
1575                 case 0x63:
1576                 case 0x73:
1577                         tmpv2 = tr_aop_ssp2arm(op>>13); // op
1578                         tmpv3 = (tmpv2 == A_OP_CMP) ? 0 : 5;
1579                         tr_bank_read(op&0x1ff);
1580                         EOP_C_DOP_REG_XIMM(A_COND_AL,tmpv2,1,5,tmpv3,16,A_AM1_LSL,0);   // OPs r5, r5, r0, lsl #16
1581                         hostreg_sspreg_changed(SSP_A);
1582                         known_regb &= ~(KRREG_A|KRREG_AL|KRREG_ST);
1583                         dirty_regb |= KRREG_ST;
1584                         ret++; break;
1585
1586                 // OP a, imm
1587                 case 0x14:
1588                 case 0x34:
1589                 case 0x44:
1590                 case 0x54:
1591                 case 0x64:
1592                 case 0x74:
1593                         tmpv = (op & 0xf0) >> 4;
1594                         tmpv2 = tr_aop_ssp2arm(op>>13); // op
1595                         tmpv3 = (tmpv2 == A_OP_CMP) ? 0 : 5;
1596                         tr_mov16(0, imm);
1597                         EOP_C_DOP_REG_XIMM(A_COND_AL,tmpv2,1,5,tmpv3,16,A_AM1_LSL,0);   // OPs r5, r5, r0, lsl #16
1598                         hostreg_sspreg_changed(SSP_A);
1599                         known_regb &= ~(KRREG_A|KRREG_AL|KRREG_ST);
1600                         dirty_regb |= KRREG_ST;
1601                         ret += 2; break;
1602
1603                 // OP a, ((ri))
1604                 case 0x15:
1605                 case 0x35:
1606                 case 0x45:
1607                 case 0x55:
1608                 case 0x65:
1609                 case 0x75:
1610                         tmpv2 = tr_aop_ssp2arm(op>>13); // op
1611                         tmpv3 = (tmpv2 == A_OP_CMP) ? 0 : 5;
1612                         tr_rX_read2(op);
1613                         EOP_C_DOP_REG_XIMM(A_COND_AL,tmpv2,1,5,tmpv3,16,A_AM1_LSL,0);   // OPs r5, r5, r0, lsl #16
1614                         hostreg_sspreg_changed(SSP_A);
1615                         known_regb &= ~(KRREG_A|KRREG_AL|KRREG_ST);
1616                         dirty_regb |= KRREG_ST;
1617                         ret += 3; break;
1618
1619                 // OP a, ri
1620                 case 0x19:
1621                 case 0x39:
1622                 case 0x49:
1623                 case 0x59:
1624                 case 0x69:
1625                 case 0x79: {
1626                         int r;
1627                         tmpv2 = tr_aop_ssp2arm(op>>13); // op
1628                         tmpv3 = (tmpv2 == A_OP_CMP) ? 0 : 5;
1629                         r = (op&3) | ((op>>6)&4); // src
1630                         if ((r&3) == 3) tr_unhandled();
1631
1632                         if (known_regb & (1 << (r+8))) {
1633                                 EOP_C_DOP_IMM(A_COND_AL,tmpv2,1,5,tmpv3,16/2,known_regs.r[r]);  // OPs r5, r5, #val<<16
1634                         } else {
1635                                 int reg = (r < 4) ? 8 : 9;
1636                                 if (r&3) EOP_MOV_REG_LSR(0, reg, (r&3)*8);      // mov r0, r{7,8}, lsr #lsr
1637                                 EOP_AND_IMM(0, (r&3)?0:reg, 0, 0xff);           // and r0, r{7,8}, <mask>
1638                                 EOP_C_DOP_REG_XIMM(A_COND_AL,tmpv2,1,5,tmpv3,16,A_AM1_LSL,0);   // OPs r5, r5, r0, lsl #16
1639                                 hostreg_r[0] = -1;
1640                         }
1641                         hostreg_sspreg_changed(SSP_A);
1642                         known_regb &= ~(KRREG_A|KRREG_AL|KRREG_ST);
1643                         dirty_regb |= KRREG_ST;
1644                         ret++; break;
1645                 }
1646
1647                 // OP simm
1648                 case 0x1c:
1649                 case 0x3c:
1650                 case 0x4c:
1651                 case 0x5c:
1652                 case 0x6c:
1653                 case 0x7c:
1654                         tmpv2 = tr_aop_ssp2arm(op>>13); // op
1655                         tmpv3 = (tmpv2 == A_OP_CMP) ? 0 : 5;
1656                         EOP_C_DOP_IMM(A_COND_AL,tmpv2,1,5,tmpv3,16/2,op & 0xff);        // OPs r5, r5, #val<<16
1657                         hostreg_sspreg_changed(SSP_A);
1658                         known_regb &= ~(KRREG_A|KRREG_AL|KRREG_ST);
1659                         dirty_regb |= KRREG_ST;
1660                         ret++; break;
1661         }
1662
1663         n_in_ops++;
1664
1665         return ret;
1666 }
1667
1668 static void emit_block_prologue(void)
1669 {
1670         // check if there are enough cycles..
1671         // note: r0 must contain PC of current block
1672         EOP_CMP_IMM(11,0,0);                    // cmp r11, #0
1673         emith_jump_cond(A_COND_LE, ssp_drc_end);
1674 }
1675
1676 /* cond:
1677  * >0: direct (un)conditional jump
1678  * <0: indirect jump
1679  */
1680 static void emit_block_epilogue(int cycles, int cond, int pc, int end_pc)
1681 {
1682         if (cycles > 0xff) { elprintf(EL_ANOMALY, "large cycle count: %i\n", cycles); cycles = 0xff; }
1683         EOP_SUB_IMM(11,11,0,cycles);            // sub r11, r11, #cycles
1684
1685         if (cond < 0 || (end_pc >= 0x400 && pc < 0x400)) {
1686                 // indirect jump, or rom -> iram jump, must use dispatcher
1687                 emith_jump(ssp_drc_next);
1688         }
1689         else if (cond == A_COND_AL) {
1690                 u32 *target = (pc < 0x400) ?
1691                         ssp_block_table_iram[ssp->drc.iram_context * SSP_BLOCKTAB_IRAM_ONE + pc] :
1692                         ssp_block_table[pc];
1693                 if (target != NULL)
1694                         emith_jump(target);
1695                 else {
1696                         int ops = emith_jump(ssp_drc_next);
1697                         // cause the next block to be emitted over jump instruction
1698                         tcache_ptr -= ops;
1699                 }
1700         }
1701         else {
1702                 u32 *target1 = (pc     < 0x400) ?
1703                         ssp_block_table_iram[ssp->drc.iram_context * SSP_BLOCKTAB_IRAM_ONE + pc] :
1704                         ssp_block_table[pc];
1705                 u32 *target2 = (end_pc < 0x400) ?
1706                         ssp_block_table_iram[ssp->drc.iram_context * SSP_BLOCKTAB_IRAM_ONE + end_pc] :
1707                         ssp_block_table[end_pc];
1708                 if (target1 != NULL)
1709                      emith_jump_cond(cond, target1);
1710                 if (target2 != NULL)
1711                      emith_jump_cond(tr_neg_cond(cond), target2); // neg_cond, to be able to swap jumps if needed
1712 #ifndef __EPOC32__
1713                 // emit patchable branches
1714                 if (target1 == NULL)
1715                         emith_call_cond(cond, ssp_drc_next_patch);
1716                 if (target2 == NULL)
1717                         emith_call_cond(tr_neg_cond(cond), ssp_drc_next_patch);
1718 #else
1719                 // won't patch indirect jumps
1720                 if (target1 == NULL || target2 == NULL)
1721                         emith_jump(ssp_drc_next);
1722 #endif
1723         }
1724 }
1725
1726 void *ssp_translate_block(int pc)
1727 {
1728         unsigned int op, op1, imm, ccount = 0;
1729         unsigned int *block_start;
1730         int ret, end_cond = A_COND_AL, jump_pc = -1;
1731
1732         //printf("translate %04x -> %04x\n", pc<<1, (tcache_ptr-tcache)<<2);
1733
1734         block_start = tcache_ptr;
1735         known_regb = 0;
1736         dirty_regb = KRREG_P;
1737         known_regs.emu_status = 0;
1738         hostreg_clear();
1739
1740         emit_block_prologue();
1741
1742         for (; ccount < 100;)
1743         {
1744                 op = PROGRAM(pc++);
1745                 op1 = op >> 9;
1746                 imm = (u32)-1;
1747
1748                 if ((op1 & 0xf) == 4 || (op1 & 0xf) == 6)
1749                         imm = PROGRAM(pc++); // immediate
1750
1751                 ret = translate_op(op, &pc, imm, &end_cond, &jump_pc);
1752                 if (ret <= 0)
1753                 {
1754                         elprintf(EL_ANOMALY, "NULL func! op=%08x (%02x)\n", op, op1);
1755                         //exit(1);
1756                 }
1757
1758                 ccount += ret & 0xffff;
1759                 if (ret & 0x10000) break;
1760         }
1761
1762         if (ccount >= 100) {
1763                 end_cond = A_COND_AL;
1764                 jump_pc = pc;
1765                 emith_move_r_imm(0, pc);
1766         }
1767
1768         tr_flush_dirty_prs();
1769         tr_flush_dirty_ST();
1770         tr_flush_dirty_pmcrs();
1771         emit_block_epilogue(ccount, end_cond, jump_pc, pc);
1772
1773         if (tcache_ptr - (u32 *)tcache > DRC_TCACHE_SIZE/4) {
1774                 elprintf(EL_ANOMALY|EL_STATUS|EL_SVP, "tcache overflow!\n");
1775                 fflush(stdout);
1776                 exit(1);
1777         }
1778
1779         // stats
1780         nblocks++;
1781         //printf("%i blocks, %i bytes, k=%.3f\n", nblocks, (tcache_ptr - tcache)*4,
1782         //      (double)(tcache_ptr - tcache) / (double)n_in_ops);
1783
1784 #ifdef DUMP_BLOCK
1785         {
1786                 FILE *f = fopen("tcache.bin", "wb");
1787                 fwrite(tcache, 1, (tcache_ptr - tcache)*4, f);
1788                 fclose(f);
1789         }
1790         printf("dumped tcache.bin\n");
1791         exit(0);
1792 #endif
1793
1794 #ifdef ARM
1795         cache_flush_d_inval_i(tcache, tcache_ptr);
1796 #endif
1797
1798         return block_start;
1799 }
1800
1801
1802
1803 // -----------------------------------------------------
1804
1805 static void ssp1601_state_load(void)
1806 {
1807         ssp->drc.iram_dirty = 1;
1808         ssp->drc.iram_context = 0;
1809 }
1810
1811 void ssp1601_dyn_exit(void)
1812 {
1813         free(ssp_block_table);
1814         free(ssp_block_table_iram);
1815         ssp_block_table = ssp_block_table_iram = NULL;
1816
1817         drc_cmn_cleanup();
1818 }
1819
1820 int ssp1601_dyn_startup(void)
1821 {
1822         drc_cmn_init();
1823
1824         ssp_block_table = calloc(sizeof(ssp_block_table[0]), SSP_BLOCKTAB_ENTS);
1825         if (ssp_block_table == NULL)
1826                 return -1;
1827         ssp_block_table_iram = calloc(sizeof(ssp_block_table_iram[0]), SSP_BLOCKTAB_IRAM_ENTS);
1828         if (ssp_block_table_iram == NULL) {
1829                 free(ssp_block_table);
1830                 return -1;
1831         }
1832
1833         memset(tcache, 0, DRC_TCACHE_SIZE);
1834         tcache_ptr = (void *)tcache;
1835
1836         PicoLoadStateHook = ssp1601_state_load;
1837
1838         n_in_ops = 0;
1839 #ifdef ARM
1840         // hle'd blocks
1841         ssp_block_table[0x800/2] = (void *) ssp_hle_800;
1842         ssp_block_table[0x902/2] = (void *) ssp_hle_902;
1843         ssp_block_table_iram[ 7 * SSP_BLOCKTAB_IRAM_ONE + 0x030/2] = (void *) ssp_hle_07_030;
1844         ssp_block_table_iram[ 7 * SSP_BLOCKTAB_IRAM_ONE + 0x036/2] = (void *) ssp_hle_07_036;
1845         ssp_block_table_iram[ 7 * SSP_BLOCKTAB_IRAM_ONE + 0x6d6/2] = (void *) ssp_hle_07_6d6;
1846         ssp_block_table_iram[11 * SSP_BLOCKTAB_IRAM_ONE + 0x12c/2] = (void *) ssp_hle_11_12c;
1847         ssp_block_table_iram[11 * SSP_BLOCKTAB_IRAM_ONE + 0x384/2] = (void *) ssp_hle_11_384;
1848         ssp_block_table_iram[11 * SSP_BLOCKTAB_IRAM_ONE + 0x38a/2] = (void *) ssp_hle_11_38a;
1849 #endif
1850
1851         return 0;
1852 }
1853
1854
1855 void ssp1601_dyn_reset(ssp1601_t *ssp)
1856 {
1857         ssp1601_reset(ssp);
1858         ssp->drc.iram_dirty = 1;
1859         ssp->drc.iram_context = 0;
1860         // must do this here because ssp is not available @ startup()
1861         ssp->drc.ptr_rom = (u32) Pico.rom;
1862         ssp->drc.ptr_iram_rom = (u32) svp->iram_rom;
1863         ssp->drc.ptr_dram = (u32) svp->dram;
1864         ssp->drc.ptr_btable = (u32) ssp_block_table;
1865         ssp->drc.ptr_btable_iram = (u32) ssp_block_table_iram;
1866
1867         // prevent new versions of IRAM from appearing
1868         memset(svp->iram_rom, 0, 0x800);
1869 }
1870
1871
1872 void ssp1601_dyn_run(int cycles)
1873 {
1874         if (ssp->emu_status & SSP_WAIT_MASK) return;
1875
1876 #ifdef DUMP_BLOCK
1877         ssp_translate_block(DUMP_BLOCK >> 1);
1878 #endif
1879 #ifdef ARM
1880         ssp_drc_entry(cycles);
1881 #endif
1882 }
1883