2 * SSP1601 to ARM recompiler
3 * (C) notaz, 2008,2009,2010
4 * (C) irixxxx, 2019-2023
6 * This work is licensed under the terms of MAME license.
7 * See COPYING file in the top-level directory.
10 #include <pico/pico_int.h>
11 #include <cpu/drc/cmn.h>
14 // FIXME: asm has these hardcoded
15 #define SSP_BLOCKTAB_ENTS (0x5090/2)
16 #define SSP_BLOCKTAB_IRAM_ONE (0x800/2) // table entries
17 #define SSP_BLOCKTAB_IRAM_ENTS (15*SSP_BLOCKTAB_IRAM_ONE)
19 static u32 **ssp_block_table; // [0x5090/2];
20 static u32 **ssp_block_table_iram; // [15][0x800/2];
22 static u32 *tcache_ptr = NULL;
24 static int nblocks = 0;
25 static int n_in_ops = 0;
27 extern ssp1601_t *ssp;
29 #define rPC ssp->gr[SSP_PC].h
30 #define rPMC ssp->gr[SSP_PMC]
32 #define SSP_FLAG_Z (1<<0xd)
33 #define SSP_FLAG_N (1<<0xf)
36 //#define DUMP_BLOCK 0x0c9a
37 void ssp_drc_next(void){}
38 void ssp_drc_next_patch(void){}
39 void ssp_drc_end(void){}
43 #include <cpu/drc/emit_arm.c>
45 // -----------------------------------------------------
47 static int get_inc(int mode)
49 int inc = (mode >> 11) & 7;
52 inc = 1 << inc; // 0 1 2 4 8 16 32 128
53 if (mode & 0x8000) inc = -inc; // decrement mode
58 u32 ssp_pm_read(int reg)
62 if (ssp->emu_status & SSP_PMC_SET)
64 ssp->pmac_read[reg] = rPMC.v;
65 ssp->emu_status &= ~SSP_PMC_SET;
70 ssp->emu_status &= ~SSP_PMC_HAVE_ADDR;
72 mode = ssp->pmac_read[reg]>>16;
73 if ((mode & 0xfff0) == 0x0800) // ROM
75 d = ((unsigned short *)Pico.rom)[ssp->pmac_read[reg]&0xfffff];
76 ssp->pmac_read[reg] += 1;
78 else if ((mode & 0x47ff) == 0x0018) // DRAM
80 unsigned short *dram = (unsigned short *)svp->dram;
81 int inc = get_inc(mode);
82 d = dram[ssp->pmac_read[reg]&0xffff];
83 ssp->pmac_read[reg] += inc;
86 // PMC value corresponds to last PMR accessed
87 rPMC.v = ssp->pmac_read[reg];
92 #define overwrite_write(dst, d) \
94 if (d & 0xf000) { dst &= ~0xf000; dst |= d & 0xf000; } \
95 if (d & 0x0f00) { dst &= ~0x0f00; dst |= d & 0x0f00; } \
96 if (d & 0x00f0) { dst &= ~0x00f0; dst |= d & 0x00f0; } \
97 if (d & 0x000f) { dst &= ~0x000f; dst |= d & 0x000f; } \
100 void ssp_pm_write(u32 d, int reg)
102 unsigned short *dram;
105 if (ssp->emu_status & SSP_PMC_SET)
107 ssp->pmac_write[reg] = rPMC.v;
108 ssp->emu_status &= ~SSP_PMC_SET;
113 ssp->emu_status &= ~SSP_PMC_HAVE_ADDR;
115 dram = (unsigned short *)svp->dram;
116 mode = ssp->pmac_write[reg]>>16;
117 addr = ssp->pmac_write[reg]&0xffff;
118 if ((mode & 0x43ff) == 0x0018) // DRAM
120 int inc = get_inc(mode);
122 overwrite_write(dram[addr], d);
123 } else dram[addr] = d;
124 ssp->pmac_write[reg] += inc;
126 else if ((mode & 0xfbff) == 0x4018) // DRAM, cell inc
129 overwrite_write(dram[addr], d);
130 } else dram[addr] = d;
131 ssp->pmac_write[reg] += (addr&1) ? 0x1f : 1;
133 else if ((mode & 0x47ff) == 0x001c) // IRAM
135 int inc = get_inc(mode);
136 ((unsigned short *)svp->iram_rom)[addr&0x3ff] = d;
137 ssp->pmac_write[reg] += inc;
138 ssp->drc.iram_dirty = 1;
141 rPMC.v = ssp->pmac_write[reg];
145 // -----------------------------------------------------
148 static unsigned char iram_context_map[] =
150 0, 0, 0, 0, 1, 0, 0, 0, // 04
151 0, 0, 0, 0, 0, 0, 2, 0, // 0e
152 0, 0, 0, 0, 0, 3, 0, 4, // 15 17
153 5, 0, 0, 6, 0, 7, 0, 0, // 18 1b 1d
154 8, 9, 0, 0, 0,10, 0, 0, // 20 21 25
155 0, 0, 0, 0, 0, 0, 0, 0,
156 0, 0,11, 0, 0,12, 0, 0, // 32 35
157 13,14, 0, 0, 0, 0, 0, 0 // 38 39
160 int ssp_get_iram_context(void)
162 unsigned char *ir = (unsigned char *)svp->iram_rom;
163 int val1, val = ir[0x083^1] + ir[0x4FA^1] + ir[0x5F7^1] + ir[0x47B^1];
164 val1 = iram_context_map[(val>>1)&0x3f];
167 elprintf(EL_ANOMALY, "svp: iram ctx val: %02x PC=%04x\n", (val>>1)&0x3f, rPC);
168 //debug_dump2file(name, svp->iram_rom, 0x800);
174 // -----------------------------------------------------
176 /* regs with known values */
181 unsigned int pmac_read[5];
182 unsigned int pmac_write[5];
184 unsigned int emu_status;
187 #define KRREG_X (1 << SSP_X)
188 #define KRREG_Y (1 << SSP_Y)
189 #define KRREG_A (1 << SSP_A) /* AH only */
190 #define KRREG_ST (1 << SSP_ST)
191 #define KRREG_STACK (1 << SSP_STACK)
192 #define KRREG_PC (1 << SSP_PC)
193 #define KRREG_P (1 << SSP_P)
194 #define KRREG_PR0 (1 << 8)
195 #define KRREG_PR4 (1 << 12)
196 #define KRREG_AL (1 << 16)
197 #define KRREG_PMCM (1 << 18) /* only mode word of PMC */
198 #define KRREG_PMC (1 << 19)
199 #define KRREG_PM0R (1 << 20)
200 #define KRREG_PM1R (1 << 21)
201 #define KRREG_PM2R (1 << 22)
202 #define KRREG_PM3R (1 << 23)
203 #define KRREG_PM4R (1 << 24)
204 #define KRREG_PM0W (1 << 25)
205 #define KRREG_PM1W (1 << 26)
206 #define KRREG_PM2W (1 << 27)
207 #define KRREG_PM3W (1 << 28)
208 #define KRREG_PM4W (1 << 29)
210 /* bitfield of known register values */
211 static u32 known_regb = 0;
213 /* known vals, which need to be flushed
214 * (only ST, P, r0-r7, PMCx, PMxR, PMxW)
215 * ST means flags are being held in ARM PSR
216 * P means that it needs to be recalculated
218 static u32 dirty_regb = 0;
220 /* known values of host regs.
222 * 000000-00ffff - 16bit value
223 * 100000-10ffff - base reg (r7) + 16bit val
224 * 0r0000 - means reg (low) eq gr[r].h, r != AL
226 static int hostreg_r[4];
228 static void hostreg_clear(void)
231 for (i = 0; i < 4; i++)
235 static void hostreg_sspreg_changed(int sspreg)
238 for (i = 0; i < 4; i++)
239 if (hostreg_r[i] == (sspreg<<16)) hostreg_r[i] = -1;
243 #define PROGRAM(x) ((unsigned short *)svp->iram_rom)[x]
244 #define PROGRAM_P(x) ((unsigned short *)svp->iram_rom + (x))
246 void tr_unhandled(void)
248 //FILE *f = fopen("tcache.bin", "wb");
249 //fwrite(tcache, 1, (tcache_ptr - tcache)*4, f);
251 elprintf(EL_ANOMALY, "unhandled @ %04x\n", known_regs.gr[SSP_PC].h<<1);
255 /* update P, if needed. Trashes r0 */
256 static void tr_flush_dirty_P(void)
259 if (!(dirty_regb & KRREG_P)) return;
260 EOP_MOV_REG_ASR(10, 4, 16); // mov r10, r4, asr #16
261 EOP_MOV_REG_LSL( 0, 4, 16); // mov r0, r4, lsl #16
262 EOP_MOV_REG_ASR( 0, 0, 15); // mov r0, r0, asr #15
263 EOP_MUL(10, 0, 10); // mul r10, r0, r10
264 dirty_regb &= ~KRREG_P;
268 /* write dirty pr to host reg. Nothing is trashed */
269 static void tr_flush_dirty_pr(int r)
273 if (!(dirty_regb & (1 << (r+8)))) return;
276 case 0: ror = 0; break;
277 case 1: ror = 24/2; break;
278 case 2: ror = 16/2; break;
280 reg = (r < 4) ? 8 : 9;
281 EOP_BIC_IMM(reg,reg,ror,0xff);
282 if (known_regs.r[r] != 0)
283 EOP_ORR_IMM(reg,reg,ror,known_regs.r[r]);
284 dirty_regb &= ~(1 << (r+8));
287 /* write all dirty pr0-pr7 to host regs. Nothing is trashed */
288 static void tr_flush_dirty_prs(void)
291 int dirty = dirty_regb >> 8;
292 if ((dirty&7) == 7) {
293 emith_move_r_imm(8, known_regs.r[0]|(known_regs.r[1]<<8)|(known_regs.r[2]<<16));
296 if ((dirty&0x70) == 0x70) {
297 emith_move_r_imm(9, known_regs.r[4]|(known_regs.r[5]<<8)|(known_regs.r[6]<<16));
301 for (i = 0; dirty && i < 8; i++, dirty >>= 1)
303 if (!(dirty&1)) continue;
305 case 0: ror = 0; break;
306 case 1: ror = 24/2; break;
307 case 2: ror = 16/2; break;
309 reg = (i < 4) ? 8 : 9;
310 EOP_BIC_IMM(reg,reg,ror,0xff);
311 if (known_regs.r[i] != 0)
312 EOP_ORR_IMM(reg,reg,ror,known_regs.r[i]);
314 dirty_regb &= ~0xff00;
317 /* write dirty pr and "forget" it. Nothing is trashed. */
318 static void tr_release_pr(int r)
320 tr_flush_dirty_pr(r);
321 known_regb &= ~(1 << (r+8));
324 /* fush ARM PSR to r6. Trashes r1 */
325 static void tr_flush_dirty_ST(void)
327 if (!(dirty_regb & KRREG_ST)) return;
328 EOP_BIC_IMM(6,6,0,0x0f);
330 EOP_ORR_REG_LSR(6,6,1,28);
331 dirty_regb &= ~KRREG_ST;
335 /* inverse of above. Trashes r1 */
336 static void tr_make_dirty_ST(void)
338 if (dirty_regb & KRREG_ST) return;
339 if (known_regb & KRREG_ST) {
341 if (known_regs.gr[SSP_ST].h & SSP_FLAG_N) flags |= 8;
342 if (known_regs.gr[SSP_ST].h & SSP_FLAG_Z) flags |= 4;
343 EOP_MSR_IMM(4/2, flags);
345 EOP_MOV_REG_LSL(1, 6, 28);
349 dirty_regb |= KRREG_ST;
352 /* load 16bit val into host reg r0-r3. Nothing is trashed */
353 static void tr_mov16(int r, int val)
355 if (hostreg_r[r] != val) {
356 emith_move_r_imm(r, val);
361 static void tr_mov16_cond(int cond, int r, int val)
363 emith_move_r_imm_c(cond, r, val);
368 static void tr_flush_dirty_pmcrs(void)
370 u32 i, val = (u32)-1;
371 if (!(dirty_regb & 0x3ff80000)) return;
373 if (dirty_regb & KRREG_PMC) {
374 val = known_regs.pmc.v;
375 emith_move_r_imm(1, val);
376 EOP_STR_IMM(1,7,0x400+SSP_PMC*4);
378 if (known_regs.emu_status & (SSP_PMC_SET|SSP_PMC_HAVE_ADDR)) {
379 elprintf(EL_ANOMALY, "!! SSP_PMC_SET|SSP_PMC_HAVE_ADDR set on flush\n");
383 for (i = 0; i < 5; i++)
385 if (dirty_regb & (1 << (20+i))) {
386 if (val != known_regs.pmac_read[i]) {
387 val = known_regs.pmac_read[i];
388 emith_move_r_imm(1, val);
390 EOP_STR_IMM(1,7,0x454+i*4); // pmac_read
392 if (dirty_regb & (1 << (25+i))) {
393 if (val != known_regs.pmac_write[i]) {
394 val = known_regs.pmac_write[i];
395 emith_move_r_imm(1, val);
397 EOP_STR_IMM(1,7,0x46c+i*4); // pmac_write
400 dirty_regb &= ~0x3ff80000;
404 /* read bank word to r0 (upper bits zero). Thrashes r1. */
405 static void tr_bank_read(int addr) /* word addr 0-0x1ff */
409 if (hostreg_r[1] != (0x100000|((addr&0x180)<<1))) {
410 EOP_ADD_IMM(1,7,30/2,(addr&0x180)>>1); // add r1, r7, ((op&0x180)<<1)
411 hostreg_r[1] = 0x100000|((addr&0x180)<<1);
415 EOP_LDRH_IMM(0,breg,(addr&0x7f)<<1); // ldrh r0, [r1, (op&0x7f)<<1]
419 /* write r0 to bank. Trashes r1. */
420 static void tr_bank_write(int addr)
424 if (hostreg_r[1] != (0x100000|((addr&0x180)<<1))) {
425 EOP_ADD_IMM(1,7,30/2,(addr&0x180)>>1); // add r1, r7, ((op&0x180)<<1)
426 hostreg_r[1] = 0x100000|((addr&0x180)<<1);
430 EOP_STRH_IMM(0,breg,(addr&0x7f)<<1); // strh r0, [r1, (op&0x7f)<<1]
433 /* handle RAM bank pointer modifiers. if need_modulo, trash r1-r3, else nothing */
434 static void tr_ptrr_mod(int r, int mod, int need_modulo, int count)
436 int modulo_shift = -1; /* unknown */
438 if (mod == 0) return;
440 if (!need_modulo || mod == 1) // +!
442 else if (need_modulo && (known_regb & KRREG_ST)) {
443 modulo_shift = known_regs.gr[SSP_ST].h & 7;
444 if (modulo_shift == 0) modulo_shift = 8;
447 if (modulo_shift == -1)
449 int reg = (r < 4) ? 8 : 9;
451 if (dirty_regb & KRREG_ST) {
452 // avoid flushing ARM flags
453 EOP_AND_IMM(1, 6, 0, 0x70);
454 EOP_SUB_IMM(1, 1, 0, 0x10);
455 EOP_AND_IMM(1, 1, 0, 0x70);
456 EOP_ADD_IMM(1, 1, 0, 0x10);
458 EOP_C_DOP_IMM(A_COND_AL,A_OP_AND,1,6,1,0,0x70); // ands r1, r6, #0x70
459 EOP_C_DOP_IMM(A_COND_EQ,A_OP_MOV,0,0,1,0,0x80); // moveq r1, #0x80
461 EOP_MOV_REG_LSR(1, 1, 4); // mov r1, r1, lsr #4
462 EOP_RSB_IMM(2, 1, 0, 8); // rsb r1, r1, #8
463 EOP_MOV_IMM(3, 8/2, count); // mov r3, #0x01000000
465 EOP_ADD_IMM(1, 1, 0, (r&3)*8); // add r1, r1, #(r&3)*8
466 EOP_MOV_REG2_ROR(reg,reg,1); // mov reg, reg, ror r1
468 EOP_SUB_REG2_LSL(reg,reg,3,2); // sub reg, reg, #0x01000000 << r2
469 else EOP_ADD_REG2_LSL(reg,reg,3,2);
470 EOP_RSB_IMM(1, 1, 0, 32); // rsb r1, r1, #32
471 EOP_MOV_REG2_ROR(reg,reg,1); // mov reg, reg, ror r1
472 hostreg_r[1] = hostreg_r[2] = hostreg_r[3] = -1;
474 else if (known_regb & (1 << (r + 8)))
476 int modulo = (1 << modulo_shift) - 1;
478 known_regs.r[r] = (known_regs.r[r] & ~modulo) | ((known_regs.r[r] - count) & modulo);
479 else known_regs.r[r] = (known_regs.r[r] & ~modulo) | ((known_regs.r[r] + count) & modulo);
480 dirty_regb |= (1 << (r + 8));
484 int reg = (r < 4) ? 8 : 9;
485 int ror = ((r&3) + 1)*8 - (8 - modulo_shift);
486 EOP_MOV_REG_ROR(reg,reg,ror);
487 // {add|sub} reg, reg, #1<<shift
488 EOP_C_DOP_IMM(A_COND_AL,(mod==2)?A_OP_SUB:A_OP_ADD,0,reg,reg, 8/2, count << (8 - modulo_shift));
489 EOP_MOV_REG_ROR(reg,reg,32-ror);
493 /* handle writes r0 to (rX). Trashes r1.
494 * fortunately we can ignore modulo increment modes for writes. */
495 static void tr_rX_write(int op)
499 int mod = (op>>2) & 3; // direct addressing
500 tr_bank_write((op & 0x100) + mod);
504 int r = (op&3) | ((op>>6)&4);
505 if (known_regb & (1 << (r + 8))) {
506 tr_bank_write((op&0x100) | known_regs.r[r]);
508 int reg = (r < 4) ? 8 : 9;
509 int ror = ((4 - (r&3))*8) & 0x1f;
510 EOP_AND_IMM(1,reg,ror/2,0xff); // and r1, r{7,8}, <mask>
512 EOP_ORR_IMM(1,1,((ror-8)&0x1f)/2,1); // orr r1, r1, 1<<shift
513 if (r&3) EOP_ADD_REG_LSR(1,7,1, (r&3)*8-1); // add r1, r7, r1, lsr #lsr
514 else EOP_ADD_REG_LSL(1,7,1,1);
515 EOP_STRH_SIMPLE(0,1); // strh r0, [r1]
518 tr_ptrr_mod(r, (op>>2) & 3, 0, 1);
522 /* read (rX) to r0. Trashes r1-r3. */
523 static void tr_rX_read(int r, int mod)
527 tr_bank_read(((r << 6) & 0x100) + mod); // direct addressing
531 if (known_regb & (1 << (r + 8))) {
532 tr_bank_read(((r << 6) & 0x100) | known_regs.r[r]);
534 int reg = (r < 4) ? 8 : 9;
535 int ror = ((4 - (r&3))*8) & 0x1f;
536 EOP_AND_IMM(1,reg,ror/2,0xff); // and r1, r{7,8}, <mask>
538 EOP_ORR_IMM(1,1,((ror-8)&0x1f)/2,1); // orr r1, r1, 1<<shift
539 if (r&3) EOP_ADD_REG_LSR(1,7,1, (r&3)*8-1); // add r1, r7, r1, lsr #lsr
540 else EOP_ADD_REG_LSL(1,7,1,1);
541 EOP_LDRH_SIMPLE(0,1); // ldrh r0, [r1]
542 hostreg_r[0] = hostreg_r[1] = -1;
544 tr_ptrr_mod(r, mod, 1, 1);
548 /* read ((rX)) to r0. Trashes r1,r2. */
549 static void tr_rX_read2(int op)
551 int r = (op&3) | ((op>>6)&4); // src
554 tr_bank_read((op&0x100) | ((op>>2)&3));
555 } else if (known_regb & (1 << (r+8))) {
556 tr_bank_read((op&0x100) | known_regs.r[r]);
558 int reg = (r < 4) ? 8 : 9;
559 int ror = ((4 - (r&3))*8) & 0x1f;
560 EOP_AND_IMM(1,reg,ror/2,0xff); // and r1, r{7,8}, <mask>
562 EOP_ORR_IMM(1,1,((ror-8)&0x1f)/2,1); // orr r1, r1, 1<<shift
563 if (r&3) EOP_ADD_REG_LSR(1,7,1, (r&3)*8-1); // add r1, r7, r1, lsr #lsr
564 else EOP_ADD_REG_LSL(1,7,1,1);
565 EOP_LDRH_SIMPLE(0,1); // ldrh r0, [r1]
567 EOP_LDR_IMM(2,7,0x48c); // ptr_iram_rom
568 EOP_ADD_REG_LSL(2,2,0,1); // add r2, r2, r0, lsl #1
569 EOP_ADD_IMM(0,0,0,1); // add r0, r0, #1
571 tr_bank_write((op&0x100) | ((op>>2)&3));
572 } else if (known_regb & (1 << (r+8))) {
573 tr_bank_write((op&0x100) | known_regs.r[r]);
575 EOP_STRH_SIMPLE(0,1); // strh r0, [r1]
578 EOP_LDRH_SIMPLE(0,2); // ldrh r0, [r2]
579 hostreg_r[0] = hostreg_r[2] = -1;
582 // check if AL is going to be used later in block
583 static int tr_predict_al_need(void)
585 int tmpv, tmpv2, op, pc = known_regs.gr[SSP_PC].h;
594 tmpv2 = (op >> 4) & 0xf; // dst
595 tmpv = op & 0xf; // src
596 if ((tmpv2 == SSP_A && tmpv == SSP_P) || tmpv2 == SSP_AL) // ld A, P; ld AL, *
605 case 0x10: case 0x30: case 0x40: case 0x60: case 0x70:
606 tmpv = op & 0xf; // src
607 if (tmpv == SSP_AL) // OP *, AL
617 case 0x74: pc++; break;
627 // mpya (rj), (ri), b
631 case 0x5b: return 0; // cleared anyway
635 tmpv = op & 0xf; // src
636 if (tmpv == SSP_AL) return 1;
637 case 0x51: case 0x53: case 0x54: case 0x55: case 0x59: case 0x5c:
645 /* get ARM cond which would mean that SSP cond is satisfied. No trash. */
646 static int tr_cond_check(int op)
648 int f = (op & 0x100) >> 8;
650 case 0x00: return A_COND_AL; /* always true */
651 case 0x50: /* Z matches f(?) bit */
652 if (dirty_regb & KRREG_ST) return f ? A_COND_EQ : A_COND_NE;
653 EOP_TST_IMM(6, 0, 4);
654 return f ? A_COND_NE : A_COND_EQ;
655 case 0x70: /* N matches f(?) bit */
656 if (dirty_regb & KRREG_ST) return f ? A_COND_MI : A_COND_PL;
657 EOP_TST_IMM(6, 0, 8);
658 return f ? A_COND_NE : A_COND_EQ;
660 elprintf(EL_ANOMALY, "unimplemented cond?\n");
666 static int tr_neg_cond(int cond)
669 case A_COND_AL: elprintf(EL_ANOMALY, "neg for AL?\n"); exit(1);
670 case A_COND_EQ: return A_COND_NE;
671 case A_COND_NE: return A_COND_EQ;
672 case A_COND_MI: return A_COND_PL;
673 case A_COND_PL: return A_COND_MI;
674 default: elprintf(EL_ANOMALY, "bad cond for neg\n"); exit(1);
679 static int tr_aop_ssp2arm(int op)
682 case 1: return A_OP_SUB;
683 case 3: return A_OP_CMP;
684 case 4: return A_OP_ADD;
685 case 5: return A_OP_AND;
686 case 6: return A_OP_ORR;
687 case 7: return A_OP_EOR;
695 /* spacial version of call for calling C needed on ios, since we use r9.. */
696 static void emith_call_c_func(void *target)
698 EOP_STMFD_SP(M2(7,9));
700 EOP_LDMFD_SP(M2(7,9));
703 #define emith_call_c_func emith_call
706 // -----------------------------------------------------
710 //@ r6: STACK and emu flags
714 // read general reg to r0. Trashes r1
715 static void tr_GR0_to_r0(int op)
720 static void tr_X_to_r0(int op)
722 if (hostreg_r[0] != (SSP_X<<16)) {
723 EOP_MOV_REG_LSR(0, 4, 16); // mov r0, r4, lsr #16
724 hostreg_r[0] = SSP_X<<16;
728 static void tr_Y_to_r0(int op)
730 if (hostreg_r[0] != (SSP_Y<<16)) {
731 EOP_MOV_REG_SIMPLE(0, 4); // mov r0, r4
732 hostreg_r[0] = SSP_Y<<16;
736 static void tr_A_to_r0(int op)
738 if (hostreg_r[0] != (SSP_A<<16)) {
739 EOP_MOV_REG_LSR(0, 5, 16); // mov r0, r5, lsr #16 @ AH
740 hostreg_r[0] = SSP_A<<16;
744 static void tr_ST_to_r0(int op)
746 // VR doesn't need much accuracy here..
747 EOP_MOV_REG_LSR(0, 6, 4); // mov r0, r6, lsr #4
748 EOP_AND_IMM(0, 0, 0, 0x67); // and r0, r0, #0x67
752 static void tr_STACK_to_r0(int op)
755 EOP_SUB_IMM(6, 6, 8/2, 0x20); // sub r6, r6, #1<<29
756 EOP_ADD_IMM(1, 7, 24/2, 0x04); // add r1, r7, 0x400
757 EOP_ADD_IMM(1, 1, 0, 0x48); // add r1, r1, 0x048
758 EOP_ADD_REG_LSR(1, 1, 6, 28); // add r1, r1, r6, lsr #28
759 EOP_LDRH_SIMPLE(0, 1); // ldrh r0, [r1]
760 hostreg_r[0] = hostreg_r[1] = -1;
763 static void tr_PC_to_r0(int op)
765 tr_mov16(0, known_regs.gr[SSP_PC].h);
768 static void tr_P_to_r0(int op)
771 EOP_MOV_REG_LSR(0, 10, 16); // mov r0, r10, lsr #16
775 static void tr_AL_to_r0(int op)
778 if (known_regb & KRREG_PMC) {
779 known_regs.emu_status &= ~(SSP_PMC_SET|SSP_PMC_HAVE_ADDR);
781 EOP_LDR_IMM(0,7,0x484); // ldr r1, [r7, #0x484] // emu_status
782 EOP_BIC_IMM(0,0,0,SSP_PMC_SET|SSP_PMC_HAVE_ADDR);
783 EOP_STR_IMM(0,7,0x484);
787 if (hostreg_r[0] != (SSP_AL<<16)) {
788 EOP_MOV_REG_SIMPLE(0, 5); // mov r0, r5
789 hostreg_r[0] = SSP_AL<<16;
793 static void tr_PMX_to_r0(int reg)
795 if ((known_regb & KRREG_PMC) && (known_regs.emu_status & SSP_PMC_SET))
797 known_regs.pmac_read[reg] = known_regs.pmc.v;
798 known_regs.emu_status &= ~SSP_PMC_SET;
799 known_regb |= 1 << (20+reg);
800 dirty_regb |= 1 << (20+reg);
804 if ((known_regb & KRREG_PMC) && (known_regb & (1 << (20+reg))))
806 u32 pmcv = known_regs.pmac_read[reg];
808 known_regs.emu_status &= ~SSP_PMC_HAVE_ADDR;
810 if ((mode & 0xfff0) == 0x0800)
812 EOP_LDR_IMM(1,7,0x488); // rom_ptr
813 emith_move_r_imm(0, (pmcv&0xfffff)<<1);
814 EOP_LDRH_REG(0,1,0); // ldrh r0, [r1, r0]
815 known_regs.pmac_read[reg] += 1;
817 else if ((mode & 0x47ff) == 0x0018) // DRAM
819 int inc = get_inc(mode);
820 EOP_LDR_IMM(1,7,0x490); // dram_ptr
821 emith_move_r_imm(0, (pmcv&0xffff)<<1);
822 EOP_LDRH_REG(0,1,0); // ldrh r0, [r1, r0]
823 if (reg == 4 && (pmcv == 0x187f03 || pmcv == 0x187f04)) // wait loop detection
825 int flag = (pmcv == 0x187f03) ? SSP_WAIT_30FE06 : SSP_WAIT_30FE08;
827 EOP_LDR_IMM(1,7,0x484); // ldr r1, [r7, #0x484] // emu_status
828 EOP_TST_REG_SIMPLE(0,0);
829 EOP_C_DOP_IMM(A_COND_EQ,A_OP_SUB,0,11,11,22/2,1); // subeq r11, r11, #1024
830 EOP_C_DOP_IMM(A_COND_EQ,A_OP_ORR,0, 1, 1,24/2,flag>>8); // orreq r1, r1, #SSP_WAIT_30FE08
831 EOP_STR_IMM(1,7,0x484); // str r1, [r7, #0x484] // emu_status
833 known_regs.pmac_read[reg] += inc;
839 known_regs.pmc.v = known_regs.pmac_read[reg];
840 //known_regb |= KRREG_PMC;
841 dirty_regb |= KRREG_PMC;
842 dirty_regb |= 1 << (20+reg);
843 hostreg_r[0] = hostreg_r[1] = -1;
847 tr_flush_dirty_pmcrs();
848 known_regb &= ~KRREG_PMC;
849 dirty_regb &= ~KRREG_PMC;
850 known_regb &= ~(1 << (20+reg));
851 dirty_regb &= ~(1 << (20+reg));
853 // call the C code to handle this
856 emith_call_c_func(ssp_pm_read);
860 static void tr_PM0_to_r0(int op)
865 static void tr_PM1_to_r0(int op)
870 static void tr_PM2_to_r0(int op)
875 static void tr_XST_to_r0(int op)
877 EOP_ADD_IMM(0, 7, 24/2, 4); // add r0, r7, #0x400
878 EOP_LDRH_IMM(0, 0, SSP_XST*4+2);
881 static void tr_PM4_to_r0(int op)
886 static void tr_PMC_to_r0(int op)
888 if (known_regb & KRREG_PMC)
890 if (known_regs.emu_status & SSP_PMC_HAVE_ADDR) {
891 known_regs.emu_status |= SSP_PMC_SET;
892 known_regs.emu_status &= ~SSP_PMC_HAVE_ADDR;
893 // do nothing - this is handled elsewhere
895 tr_mov16(0, known_regs.pmc.l);
896 known_regs.emu_status |= SSP_PMC_HAVE_ADDR;
901 EOP_LDR_IMM(1,7,0x484); // ldr r1, [r7, #0x484] // emu_status
904 EOP_LDR_IMM(0, 7, 0x400+SSP_PMC*4);
905 EOP_TST_IMM(1, 0, SSP_PMC_HAVE_ADDR);
906 EOP_C_DOP_IMM(A_COND_EQ,A_OP_ORR,0, 1, 1, 0, SSP_PMC_HAVE_ADDR); // orreq r1, r1, #..
907 EOP_C_DOP_IMM(A_COND_NE,A_OP_BIC,0, 1, 1, 0, SSP_PMC_HAVE_ADDR); // bicne r1, r1, #..
908 EOP_C_DOP_IMM(A_COND_NE,A_OP_ORR,0, 1, 1, 0, SSP_PMC_SET); // orrne r1, r1, #..
909 EOP_STR_IMM(1,7,0x484);
910 hostreg_r[0] = hostreg_r[1] = -1;
915 typedef void (tr_read_func)(int op);
917 static tr_read_func *tr_read_funcs[16] =
932 (tr_read_func *)tr_unhandled,
938 // write r0 to general reg handlers. Trashes r1
939 #define TR_WRITE_R0_TO_REG(reg) \
941 hostreg_sspreg_changed(reg); \
942 hostreg_r[0] = (reg)<<16; \
943 if (const_val != -1) { \
944 known_regs.gr[reg].h = const_val; \
945 known_regb |= 1 << (reg); \
947 known_regb &= ~(1 << (reg)); \
951 static void tr_r0_to_GR0(int const_val)
956 static void tr_r0_to_X(int const_val)
958 EOP_MOV_REG_LSL(4, 4, 16); // mov r4, r4, lsl #16
959 EOP_MOV_REG_LSR(4, 4, 16); // mov r4, r4, lsr #16
960 EOP_ORR_REG_LSL(4, 4, 0, 16); // orr r4, r4, r0, lsl #16
961 dirty_regb |= KRREG_P; // touching X or Y makes P dirty.
962 TR_WRITE_R0_TO_REG(SSP_X);
965 static void tr_r0_to_Y(int const_val)
967 EOP_MOV_REG_LSR(4, 4, 16); // mov r4, r4, lsr #16
968 EOP_ORR_REG_LSL(4, 4, 0, 16); // orr r4, r4, r0, lsl #16
969 EOP_MOV_REG_ROR(4, 4, 16); // mov r4, r4, ror #16
970 dirty_regb |= KRREG_P;
971 TR_WRITE_R0_TO_REG(SSP_Y);
974 static void tr_r0_to_A(int const_val)
976 if (tr_predict_al_need()) {
977 EOP_MOV_REG_LSL(5, 5, 16); // mov r5, r5, lsl #16
978 EOP_MOV_REG_LSR(5, 5, 16); // mov r5, r5, lsr #16 @ AL
979 EOP_ORR_REG_LSL(5, 5, 0, 16); // orr r5, r5, r0, lsl #16
982 EOP_MOV_REG_LSL(5, 0, 16);
983 TR_WRITE_R0_TO_REG(SSP_A);
986 static void tr_r0_to_ST(int const_val)
988 // VR doesn't need much accuracy here..
989 EOP_AND_IMM(1, 0, 0, 0x67); // and r1, r0, #0x67
990 EOP_AND_IMM(6, 6, 8/2, 0xe0); // and r6, r6, #7<<29 @ preserve STACK
991 EOP_ORR_REG_LSL(6, 6, 1, 4); // orr r6, r6, r1, lsl #4
992 TR_WRITE_R0_TO_REG(SSP_ST);
994 known_regb &= ~KRREG_ST;
995 dirty_regb &= ~KRREG_ST;
998 static void tr_r0_to_STACK(int const_val)
1001 EOP_ADD_IMM(1, 7, 24/2, 0x04); // add r1, r7, 0x400
1002 EOP_ADD_IMM(1, 1, 0, 0x48); // add r1, r1, 0x048
1003 EOP_ADD_REG_LSR(1, 1, 6, 28); // add r1, r1, r6, lsr #28
1004 EOP_STRH_SIMPLE(0, 1); // strh r0, [r1]
1005 EOP_ADD_IMM(6, 6, 8/2, 0x20); // add r6, r6, #1<<29
1009 static void tr_r0_to_PC(int const_val)
1012 * do nothing - dispatcher will take care of this
1013 EOP_MOV_REG_LSL(1, 0, 16); // mov r1, r0, lsl #16
1014 EOP_STR_IMM(1,7,0x400+6*4); // str r1, [r7, #(0x400+6*8)]
1019 static void tr_r0_to_AL(int const_val)
1021 EOP_MOV_REG_LSR(5, 5, 16); // mov r5, r5, lsr #16
1022 EOP_ORR_REG_LSL(5, 5, 0, 16); // orr r5, r5, r0, lsl #16
1023 EOP_MOV_REG_ROR(5, 5, 16); // mov r5, r5, ror #16
1024 hostreg_sspreg_changed(SSP_AL);
1025 if (const_val != -1) {
1026 known_regs.gr[SSP_A].l = const_val;
1027 known_regb |= KRREG_AL;
1029 known_regb &= ~KRREG_AL;
1032 static void tr_r0_to_PMX(int reg)
1034 if ((known_regb & KRREG_PMC) && (known_regs.emu_status & SSP_PMC_SET))
1036 known_regs.pmac_write[reg] = known_regs.pmc.v;
1037 known_regs.emu_status &= ~SSP_PMC_SET;
1038 known_regb |= 1 << (25+reg);
1039 dirty_regb |= 1 << (25+reg);
1043 if ((known_regb & KRREG_PMC) && (known_regb & (1 << (25+reg))))
1047 known_regs.emu_status &= ~SSP_PMC_HAVE_ADDR;
1049 mode = known_regs.pmac_write[reg]>>16;
1050 addr = known_regs.pmac_write[reg]&0xffff;
1051 if ((mode & 0x43ff) == 0x0018) // DRAM
1053 int inc = get_inc(mode);
1054 if (mode & 0x0400) tr_unhandled();
1055 EOP_LDR_IMM(1,7,0x490); // dram_ptr
1056 emith_move_r_imm(2, addr << 1);
1057 EOP_STRH_REG(0,1,2); // strh r0, [r1, r2]
1058 known_regs.pmac_write[reg] += inc;
1060 else if ((mode & 0xfbff) == 0x4018) // DRAM, cell inc
1062 if (mode & 0x0400) tr_unhandled();
1063 EOP_LDR_IMM(1,7,0x490); // dram_ptr
1064 emith_move_r_imm(2, addr << 1);
1065 EOP_STRH_REG(0,1,2); // strh r0, [r1, r2]
1066 known_regs.pmac_write[reg] += (addr&1) ? 31 : 1;
1068 else if ((mode & 0x47ff) == 0x001c) // IRAM
1070 int inc = get_inc(mode);
1071 EOP_LDR_IMM(1,7,0x48c); // iram_ptr
1072 emith_move_r_imm(2, (addr&0x3ff) << 1);
1073 EOP_STRH_REG(0,1,2); // strh r0, [r1, r2]
1075 EOP_STR_IMM(1,7,0x494); // iram_dirty
1076 known_regs.pmac_write[reg] += inc;
1081 known_regs.pmc.v = known_regs.pmac_write[reg];
1082 //known_regb |= KRREG_PMC;
1083 dirty_regb |= KRREG_PMC;
1084 dirty_regb |= 1 << (25+reg);
1085 hostreg_r[1] = hostreg_r[2] = -1;
1089 tr_flush_dirty_pmcrs();
1090 known_regb &= ~KRREG_PMC;
1091 dirty_regb &= ~KRREG_PMC;
1092 known_regb &= ~(1 << (25+reg));
1093 dirty_regb &= ~(1 << (25+reg));
1095 // call the C code to handle this
1096 tr_flush_dirty_ST();
1098 emith_call_c_func(ssp_pm_write);
1102 static void tr_r0_to_PM0(int const_val)
1107 static void tr_r0_to_PM1(int const_val)
1112 static void tr_r0_to_PM2(int const_val)
1117 static void tr_r0_to_PM4(int const_val)
1122 static void tr_r0_to_PMC(int const_val)
1124 if ((known_regb & KRREG_PMC) && const_val != -1)
1126 if (known_regs.emu_status & SSP_PMC_HAVE_ADDR) {
1127 known_regs.emu_status |= SSP_PMC_SET;
1128 known_regs.emu_status &= ~SSP_PMC_HAVE_ADDR;
1129 known_regs.pmc.h = const_val;
1131 known_regs.emu_status |= SSP_PMC_HAVE_ADDR;
1132 known_regs.pmc.l = const_val;
1134 dirty_regb |= KRREG_PMC;
1138 tr_flush_dirty_ST();
1139 if (dirty_regb & KRREG_PMC) {
1140 emith_move_r_imm(1, known_regs.pmc.v);
1141 EOP_STR_IMM(1,7,0x400+SSP_PMC*4);
1142 dirty_regb &= ~KRREG_PMC;
1144 known_regb &= ~KRREG_PMC;
1145 EOP_LDR_IMM(1,7,0x484); // ldr r1, [r7, #0x484] // emu_status
1146 EOP_ADD_IMM(2,7,24/2,4); // add r2, r7, #0x400
1147 EOP_TST_IMM(1, 0, SSP_PMC_HAVE_ADDR);
1148 EOP_C_AM3_IMM(A_COND_EQ,1,0,2,0,0,1,SSP_PMC*4); // strxx r0, [r2, #SSP_PMC]
1149 EOP_C_AM3_IMM(A_COND_NE,1,0,2,0,0,1,SSP_PMC*4+2);
1150 EOP_C_DOP_IMM(A_COND_EQ,A_OP_ORR,0, 1, 1, 0, SSP_PMC_HAVE_ADDR); // orreq r1, r1, #..
1151 EOP_C_DOP_IMM(A_COND_NE,A_OP_BIC,0, 1, 1, 0, SSP_PMC_HAVE_ADDR); // bicne r1, r1, #..
1152 EOP_C_DOP_IMM(A_COND_NE,A_OP_ORR,0, 1, 1, 0, SSP_PMC_SET); // orrne r1, r1, #..
1153 EOP_STR_IMM(1,7,0x484);
1154 hostreg_r[1] = hostreg_r[2] = -1;
1158 typedef void (tr_write_func)(int const_val);
1160 static tr_write_func *tr_write_funcs[16] =
1169 (tr_write_func *)tr_unhandled,
1173 (tr_write_func *)tr_unhandled,
1175 (tr_write_func *)tr_unhandled,
1180 static void tr_mac_load_XY(int op)
1182 tr_rX_read(op&3, (op>>2)&3); // X
1183 EOP_MOV_REG_LSL(4, 0, 16);
1184 tr_rX_read(((op>>4)&3)|4, (op>>6)&3); // Y
1185 EOP_ORR_REG_SIMPLE(4, 0);
1186 dirty_regb |= KRREG_P;
1187 hostreg_sspreg_changed(SSP_X);
1188 hostreg_sspreg_changed(SSP_Y);
1189 known_regb &= ~KRREG_X;
1190 known_regb &= ~KRREG_Y;
1193 // -----------------------------------------------------
1195 static int tr_detect_set_pm(unsigned int op, int *pc, int imm)
1198 if (!((op&0xfef0) == 0x08e0 && (PROGRAM(*pc)&0xfef0) == 0x08e0)) return 0;
1204 pmcv = imm | (PROGRAM((*pc)++) << 16);
1205 known_regs.pmc.v = pmcv;
1206 known_regb |= KRREG_PMC;
1207 dirty_regb |= KRREG_PMC;
1208 known_regs.emu_status |= SSP_PMC_SET;
1211 // check for possible reg programming
1212 tmpv = PROGRAM(*pc);
1213 if ((tmpv & 0xfff8) == 0x08 || (tmpv & 0xff8f) == 0x80)
1215 int is_write = (tmpv & 0xff8f) == 0x80;
1216 int reg = is_write ? ((tmpv>>4)&0x7) : (tmpv&0x7);
1217 if (reg > 4) tr_unhandled();
1218 if ((tmpv & 0x0f) != 0 && (tmpv & 0xf0) != 0) tr_unhandled();
1220 known_regs.pmac_write[reg] = pmcv;
1222 known_regs.pmac_read[reg] = pmcv;
1223 known_regb |= is_write ? (1 << (reg+25)) : (1 << (reg+20));
1224 dirty_regb |= is_write ? (1 << (reg+25)) : (1 << (reg+20));
1225 known_regs.emu_status &= ~SSP_PMC_SET;
1235 static const short pm0_block_seq[] = { 0x0880, 0, 0x0880, 0, 0x0840, 0x60 };
1237 static int tr_detect_pm0_block(unsigned int op, int *pc, int imm)
1244 if (op != 0x0840 || imm != 0) return 0;
1245 pp = PROGRAM_P(*pc);
1246 if (memcmp(pp, pm0_block_seq, sizeof(pm0_block_seq)) != 0) return 0;
1248 EOP_AND_IMM(6, 6, 8/2, 0xe0); // and r6, r6, #7<<29 @ preserve STACK
1249 EOP_ORR_IMM(6, 6, 24/2, 6); // orr r6, r6, 0x600
1250 hostreg_sspreg_changed(SSP_ST);
1251 known_regs.gr[SSP_ST].h = 0x60;
1252 known_regb |= KRREG_ST;
1253 dirty_regb &= ~KRREG_ST;
1259 static int tr_detect_rotate(unsigned int op, int *pc, int imm)
1265 if (op != 0x02e3 || PROGRAM(*pc) != 0x04e3 || PROGRAM(*pc + 1) != 0x000f) return 0;
1268 EOP_MOV_REG_LSL(0, 0, 4);
1269 EOP_ORR_REG_LSR(0, 0, 0, 16);
1276 // -----------------------------------------------------
1278 static int translate_op(unsigned int op, int *pc, int imm, int *end_cond, int *jump_pc)
1280 u32 tmpv, tmpv2, tmpv3;
1282 known_regs.gr[SSP_PC].h = *pc;
1288 if (op == 0) { ret++; break; } // nop
1289 tmpv = op & 0xf; // src
1290 tmpv2 = (op >> 4) & 0xf; // dst
1291 if (tmpv2 == SSP_A && tmpv == SSP_P) { // ld A, P
1293 EOP_MOV_REG_SIMPLE(5, 10);
1294 hostreg_sspreg_changed(SSP_A);
1295 known_regb &= ~(KRREG_A|KRREG_AL);
1298 tr_read_funcs[tmpv](op);
1299 tr_write_funcs[tmpv2]((known_regb & (1 << tmpv)) ? known_regs.gr[tmpv].h : -1);
1300 if (tmpv2 == SSP_PC) {
1302 *end_cond = -A_COND_AL;
1308 int r = (op&3) | ((op>>6)&4);
1309 int mod = (op>>2)&3;
1310 tmpv = (op >> 4) & 0xf; // dst
1311 ret = tr_detect_rotate(op, pc, imm);
1317 while (PROGRAM(*pc) == op) {
1318 (*pc)++; cnt++; ret++;
1321 tr_ptrr_mod(r, mod, 1, cnt); // skip
1323 tr_write_funcs[tmpv](-1);
1324 if (tmpv == SSP_PC) {
1326 *end_cond = -A_COND_AL;
1333 tmpv = (op >> 4) & 0xf; // src
1334 tr_read_funcs[tmpv](op);
1340 tr_bank_read(op&0x1ff);
1346 tmpv = (op & 0xf0) >> 4; // dst
1347 ret = tr_detect_pm0_block(op, pc, imm);
1349 ret = tr_detect_set_pm(op, pc, imm);
1352 tr_write_funcs[tmpv](imm);
1353 if (tmpv == SSP_PC) {
1361 tmpv2 = (op >> 4) & 0xf; // dst
1363 tr_write_funcs[tmpv2](-1);
1364 if (tmpv2 == SSP_PC) {
1366 *end_cond = -A_COND_AL;
1379 tr_bank_write(op&0x1ff);
1385 r = (op&3) | ((op>>6)&4); // src
1386 tmpv2 = (op >> 4) & 0xf; // dst
1387 if ((r&3) == 3) tr_unhandled();
1389 if (known_regb & (1 << (r+8))) {
1390 tr_mov16(0, known_regs.r[r]);
1391 tr_write_funcs[tmpv2](known_regs.r[r]);
1393 int reg = (r < 4) ? 8 : 9;
1394 if (r&3) EOP_MOV_REG_LSR(0, reg, (r&3)*8); // mov r0, r{7,8}, lsr #lsr
1395 EOP_AND_IMM(0, (r&3)?0:reg, 0, 0xff); // and r0, r{7,8}, <mask>
1397 tr_write_funcs[tmpv2](-1);
1405 r = (op&3) | ((op>>6)&4); // dst
1406 tmpv = (op >> 4) & 0xf; // src
1407 if ((r&3) == 3) tr_unhandled();
1409 if (known_regb & (1 << tmpv)) {
1410 known_regs.r[r] = known_regs.gr[tmpv].h;
1411 known_regb |= 1 << (r + 8);
1412 dirty_regb |= 1 << (r + 8);
1414 int reg = (r < 4) ? 8 : 9;
1415 int ror = ((4 - (r&3))*8) & 0x1f;
1416 tr_read_funcs[tmpv](op);
1417 EOP_BIC_IMM(reg, reg, ror/2, 0xff); // bic r{7,8}, r{7,8}, <mask>
1418 EOP_AND_IMM(0, 0, 0, 0xff); // and r0, r0, 0xff
1419 EOP_ORR_REG_LSL(reg, reg, 0, (r&3)*8); // orr r{7,8}, r{7,8}, r0, lsl #lsl
1421 known_regb &= ~(1 << (r+8));
1422 dirty_regb &= ~(1 << (r+8));
1428 case 0x0c: case 0x0d: case 0x0e: case 0x0f:
1430 known_regs.r[tmpv] = op;
1431 known_regb |= 1 << (tmpv + 8);
1432 dirty_regb |= 1 << (tmpv + 8);
1437 u32 *jump_op = NULL;
1438 tmpv = tr_cond_check(op);
1439 if (tmpv != A_COND_AL) {
1440 jump_op = tcache_ptr;
1441 EOP_C_B(tmpv, 0, 0); // placeholder for branch
1444 tr_r0_to_STACK(*pc);
1445 if (tmpv != A_COND_AL)
1446 EOP_C_B_PTR(jump_op, tr_neg_cond(tmpv), 0,
1447 tcache_ptr - jump_op - 2);
1448 tr_mov16_cond(tmpv, 0, imm);
1449 if (tmpv != A_COND_AL)
1450 tr_mov16_cond(tr_neg_cond(tmpv), 0, *pc);
1451 tr_r0_to_PC(tmpv == A_COND_AL ? imm : -1);
1460 tmpv2 = (op >> 4) & 0xf; // dst
1462 EOP_LDR_IMM(1,7,0x48c); // ptr_iram_rom
1463 EOP_ADD_REG_LSL(0,1,0,1); // add r0, r1, r0, lsl #1
1464 EOP_LDRH_SIMPLE(0,0); // ldrh r0, [r0]
1465 hostreg_r[0] = hostreg_r[1] = -1;
1466 tr_write_funcs[tmpv2](-1);
1467 if (tmpv2 == SSP_PC) {
1469 *end_cond = -A_COND_AL;
1475 tmpv = tr_cond_check(op);
1476 tr_mov16_cond(tmpv, 0, imm);
1477 if (tmpv != A_COND_AL)
1478 tr_mov16_cond(tr_neg_cond(tmpv), 0, *pc);
1479 tr_r0_to_PC(tmpv == A_COND_AL ? imm : -1);
1487 // check for repeats of this op
1489 while (PROGRAM(*pc) == op && (op & 7) != 6) {
1493 if ((op&0xf0) != 0) // !always
1496 tmpv2 = tr_cond_check(op);
1498 case 2: EOP_C_DOP_REG_XIMM(tmpv2,A_OP_MOV,1,0,5,tmpv,A_AM1_ASR,5); break; // shr (arithmetic)
1499 case 3: EOP_C_DOP_REG_XIMM(tmpv2,A_OP_MOV,1,0,5,tmpv,A_AM1_LSL,5); break; // shl
1500 case 6: EOP_C_DOP_IMM(tmpv2,A_OP_RSB,1,5,5,0,0); break; // neg
1501 case 7: EOP_C_DOP_REG_XIMM(tmpv2,A_OP_EOR,0,5,1,31,A_AM1_ASR,5); // eor r1, r5, r5, asr #31
1502 EOP_C_DOP_REG_XIMM(tmpv2,A_OP_ADD,1,1,5,31,A_AM1_LSR,5); // adds r5, r1, r5, lsr #31
1503 hostreg_r[1] = -1; break; // abs
1504 default: tr_unhandled();
1507 hostreg_sspreg_changed(SSP_A);
1508 dirty_regb |= KRREG_ST;
1509 known_regb &= ~KRREG_ST;
1510 known_regb &= ~(KRREG_A|KRREG_AL);
1519 EOP_C_DOP_REG_XIMM(A_COND_AL,A_OP_SUB,1,5,5,0,A_AM1_LSL,10); // subs r5, r5, r10
1520 hostreg_sspreg_changed(SSP_A);
1521 dirty_regb |= KRREG_ST;
1522 known_regb &= ~(KRREG_A|KRREG_AL|KRREG_ST);
1525 // mpya (rj), (ri), b
1530 EOP_C_DOP_REG_XIMM(A_COND_AL,A_OP_ADD,1,5,5,0,A_AM1_LSL,10); // adds r5, r5, r10
1531 hostreg_sspreg_changed(SSP_A);
1532 dirty_regb |= KRREG_ST;
1533 known_regb &= ~(KRREG_A|KRREG_AL|KRREG_ST);
1536 // mld (rj), (ri), b
1538 EOP_C_DOP_IMM(A_COND_AL,A_OP_MOV,1,0,5,0,0); // movs r5, #0
1539 hostreg_sspreg_changed(SSP_A);
1540 known_regs.gr[SSP_A].v = 0;
1541 dirty_regb |= KRREG_ST;
1542 known_regb &= ~KRREG_ST;
1543 known_regb |= (KRREG_A|KRREG_AL);
1554 tmpv = op & 0xf; // src
1555 tmpv2 = tr_aop_ssp2arm(op>>13); // op
1556 tmpv3 = (tmpv2 == A_OP_CMP) ? 0 : 5;
1557 if (tmpv == SSP_P) {
1559 EOP_C_DOP_REG_XIMM(A_COND_AL,tmpv2,1,5,tmpv3, 0,A_AM1_LSL,10); // OPs r5, r5, r10
1560 } else if (tmpv == SSP_A) {
1561 EOP_C_DOP_REG_XIMM(A_COND_AL,tmpv2,1,5,tmpv3, 0,A_AM1_LSL, 5); // OPs r5, r5, r5
1563 tr_read_funcs[tmpv](op);
1564 EOP_C_DOP_REG_XIMM(A_COND_AL,tmpv2,1,5,tmpv3,16,A_AM1_LSL, 0); // OPs r5, r5, r0, lsl #16
1566 hostreg_sspreg_changed(SSP_A);
1567 known_regb &= ~(KRREG_A|KRREG_AL|KRREG_ST);
1568 dirty_regb |= KRREG_ST;
1578 tmpv2 = tr_aop_ssp2arm(op>>13); // op
1579 tmpv3 = (tmpv2 == A_OP_CMP) ? 0 : 5;
1580 tr_rX_read((op&3)|((op>>6)&4), (op>>2)&3);
1581 EOP_C_DOP_REG_XIMM(A_COND_AL,tmpv2,1,5,tmpv3,16,A_AM1_LSL,0); // OPs r5, r5, r0, lsl #16
1582 hostreg_sspreg_changed(SSP_A);
1583 known_regb &= ~(KRREG_A|KRREG_AL|KRREG_ST);
1584 dirty_regb |= KRREG_ST;
1594 tmpv2 = tr_aop_ssp2arm(op>>13); // op
1595 tmpv3 = (tmpv2 == A_OP_CMP) ? 0 : 5;
1596 tr_bank_read(op&0x1ff);
1597 EOP_C_DOP_REG_XIMM(A_COND_AL,tmpv2,1,5,tmpv3,16,A_AM1_LSL,0); // OPs r5, r5, r0, lsl #16
1598 hostreg_sspreg_changed(SSP_A);
1599 known_regb &= ~(KRREG_A|KRREG_AL|KRREG_ST);
1600 dirty_regb |= KRREG_ST;
1610 tmpv = (op & 0xf0) >> 4;
1611 tmpv2 = tr_aop_ssp2arm(op>>13); // op
1612 tmpv3 = (tmpv2 == A_OP_CMP) ? 0 : 5;
1614 EOP_C_DOP_REG_XIMM(A_COND_AL,tmpv2,1,5,tmpv3,16,A_AM1_LSL,0); // OPs r5, r5, r0, lsl #16
1615 hostreg_sspreg_changed(SSP_A);
1616 known_regb &= ~(KRREG_A|KRREG_AL|KRREG_ST);
1617 dirty_regb |= KRREG_ST;
1627 tmpv2 = tr_aop_ssp2arm(op>>13); // op
1628 tmpv3 = (tmpv2 == A_OP_CMP) ? 0 : 5;
1630 EOP_C_DOP_REG_XIMM(A_COND_AL,tmpv2,1,5,tmpv3,16,A_AM1_LSL,0); // OPs r5, r5, r0, lsl #16
1631 hostreg_sspreg_changed(SSP_A);
1632 known_regb &= ~(KRREG_A|KRREG_AL|KRREG_ST);
1633 dirty_regb |= KRREG_ST;
1644 tmpv2 = tr_aop_ssp2arm(op>>13); // op
1645 tmpv3 = (tmpv2 == A_OP_CMP) ? 0 : 5;
1646 r = (op&3) | ((op>>6)&4); // src
1647 if ((r&3) == 3) tr_unhandled();
1649 if (known_regb & (1 << (r+8))) {
1650 EOP_C_DOP_IMM(A_COND_AL,tmpv2,1,5,tmpv3,16/2,known_regs.r[r]); // OPs r5, r5, #val<<16
1652 int reg = (r < 4) ? 8 : 9;
1653 if (r&3) EOP_MOV_REG_LSR(0, reg, (r&3)*8); // mov r0, r{7,8}, lsr #lsr
1654 EOP_AND_IMM(0, (r&3)?0:reg, 0, 0xff); // and r0, r{7,8}, <mask>
1655 EOP_C_DOP_REG_XIMM(A_COND_AL,tmpv2,1,5,tmpv3,16,A_AM1_LSL,0); // OPs r5, r5, r0, lsl #16
1658 hostreg_sspreg_changed(SSP_A);
1659 known_regb &= ~(KRREG_A|KRREG_AL|KRREG_ST);
1660 dirty_regb |= KRREG_ST;
1671 tmpv2 = tr_aop_ssp2arm(op>>13); // op
1672 tmpv3 = (tmpv2 == A_OP_CMP) ? 0 : 5;
1673 EOP_C_DOP_IMM(A_COND_AL,tmpv2,1,5,tmpv3,16/2,op & 0xff); // OPs r5, r5, #val<<16
1674 hostreg_sspreg_changed(SSP_A);
1675 known_regb &= ~(KRREG_A|KRREG_AL|KRREG_ST);
1676 dirty_regb |= KRREG_ST;
1685 static void emit_block_prologue(void)
1687 // check if there are enough cycles..
1688 // note: r0 must contain PC of current block
1689 EOP_CMP_IMM(11,0,0); // cmp r11, #0
1690 emith_jump_cond(A_COND_LE, ssp_drc_end);
1694 * >0: direct (un)conditional jump
1697 static void *emit_block_epilogue(int cycles, int cond, int pc, int end_pc)
1699 void *end_ptr = NULL;
1701 if (cycles > 0xff) {
1702 elprintf(EL_ANOMALY, "large cycle count: %i\n", cycles);
1705 EOP_SUB_IMM(11,11,0,cycles); // sub r11, r11, #cycles
1707 if (cond < 0 || (end_pc >= 0x400 && pc < 0x400)) {
1708 // indirect jump, or rom -> iram jump, must use dispatcher
1709 emith_jump(ssp_drc_next);
1711 else if (cond == A_COND_AL) {
1712 u32 *target = (pc < 0x400) ?
1713 ssp_block_table_iram[ssp->drc.iram_context * SSP_BLOCKTAB_IRAM_ONE + pc] :
1714 ssp_block_table[pc];
1718 emith_jump(ssp_drc_next);
1721 u32 *target1 = (pc < 0x400) ?
1722 ssp_block_table_iram[ssp->drc.iram_context * SSP_BLOCKTAB_IRAM_ONE + pc] :
1723 ssp_block_table[pc];
1724 u32 *target2 = (end_pc < 0x400) ?
1725 ssp_block_table_iram[ssp->drc.iram_context * SSP_BLOCKTAB_IRAM_ONE + end_pc] :
1726 ssp_block_table[end_pc];
1727 if (target1 != NULL)
1728 emith_jump_cond(cond, target1);
1729 if (target2 != NULL)
1730 emith_jump_cond(tr_neg_cond(cond), target2); // neg_cond, to be able to swap jumps if needed
1732 // emit patchable branches
1733 if (target1 == NULL)
1734 emith_call_cond(cond, ssp_drc_next_patch);
1735 if (target2 == NULL)
1736 emith_call_cond(tr_neg_cond(cond), ssp_drc_next_patch);
1738 // won't patch indirect jumps
1739 if (target1 == NULL || target2 == NULL)
1740 emith_jump(ssp_drc_next);
1744 if (end_ptr == NULL)
1745 end_ptr = tcache_ptr;
1750 void *ssp_translate_block(int pc)
1752 unsigned int op, op1, imm, ccount = 0;
1753 unsigned int *block_start, *block_end;
1754 int ret, end_cond = A_COND_AL, jump_pc = -1;
1756 //printf("translate %04x -> %04x\n", pc<<1, (tcache_ptr-tcache)<<2);
1758 block_start = tcache_ptr;
1760 dirty_regb = KRREG_P;
1761 known_regs.emu_status = 0;
1764 emit_block_prologue();
1766 for (; ccount < 100;)
1772 if ((op1 & 0xf) == 4 || (op1 & 0xf) == 6)
1773 imm = PROGRAM(pc++); // immediate
1775 ret = translate_op(op, &pc, imm, &end_cond, &jump_pc);
1778 elprintf(EL_ANOMALY, "NULL func! op=%08x (%02x)\n", op, op1);
1782 ccount += ret & 0xffff;
1783 if (ret & 0x10000) break;
1786 if (ccount >= 100) {
1787 end_cond = A_COND_AL;
1789 emith_move_r_imm(0, pc);
1792 tr_flush_dirty_prs();
1793 tr_flush_dirty_ST();
1794 tr_flush_dirty_pmcrs();
1795 block_end = emit_block_epilogue(ccount, end_cond, jump_pc, pc);
1797 emith_pool_commit(-1);
1799 if (tcache_ptr - (u32 *)tcache > DRC_TCACHE_SIZE/4) {
1800 elprintf(EL_ANOMALY|EL_STATUS|EL_SVP, "tcache overflow!\n");
1806 //printf("%i blocks, %i bytes, k=%.3f\n", nblocks, (u8 *)tcache_ptr - tcache,
1807 // (double)((u8 *)tcache_ptr - tcache) / (double)n_in_ops);
1811 FILE *f = fopen("tcache.bin", "wb");
1812 fwrite(tcache, 1, (tcache_ptr - tcache)*4, f);
1815 printf("dumped tcache.bin\n");
1820 cache_flush_d_inval_i(block_start, block_end);
1828 // -----------------------------------------------------
1830 static void ssp1601_state_load(void)
1832 ssp->drc.iram_dirty = 1;
1833 ssp->drc.iram_context = 0;
1836 void ssp1601_dyn_exit(void)
1838 free(ssp_block_table);
1839 free(ssp_block_table_iram);
1840 ssp_block_table = ssp_block_table_iram = NULL;
1845 int ssp1601_dyn_startup(void)
1849 ssp_block_table = calloc(sizeof(ssp_block_table[0]), SSP_BLOCKTAB_ENTS);
1850 if (ssp_block_table == NULL)
1852 ssp_block_table_iram = calloc(sizeof(ssp_block_table_iram[0]), SSP_BLOCKTAB_IRAM_ENTS);
1853 if (ssp_block_table_iram == NULL) {
1854 free(ssp_block_table);
1858 memset(tcache, 0, DRC_TCACHE_SIZE);
1859 tcache_ptr = (void *)tcache;
1861 PicoLoadStateHook = ssp1601_state_load;
1866 ssp_block_table[0x800/2] = (void *) ssp_hle_800;
1867 ssp_block_table[0x902/2] = (void *) ssp_hle_902;
1868 ssp_block_table_iram[ 7 * SSP_BLOCKTAB_IRAM_ONE + 0x030/2] = (void *) ssp_hle_07_030;
1869 ssp_block_table_iram[ 7 * SSP_BLOCKTAB_IRAM_ONE + 0x036/2] = (void *) ssp_hle_07_036;
1870 ssp_block_table_iram[ 7 * SSP_BLOCKTAB_IRAM_ONE + 0x6d6/2] = (void *) ssp_hle_07_6d6;
1871 ssp_block_table_iram[11 * SSP_BLOCKTAB_IRAM_ONE + 0x12c/2] = (void *) ssp_hle_11_12c;
1872 ssp_block_table_iram[11 * SSP_BLOCKTAB_IRAM_ONE + 0x384/2] = (void *) ssp_hle_11_384;
1873 ssp_block_table_iram[11 * SSP_BLOCKTAB_IRAM_ONE + 0x38a/2] = (void *) ssp_hle_11_38a;
1880 void ssp1601_dyn_reset(ssp1601_t *ssp)
1883 ssp->drc.iram_dirty = 1;
1884 ssp->drc.iram_context = 0;
1885 // must do this here because ssp is not available @ startup()
1886 ssp->drc.ptr_rom = (u32) Pico.rom;
1887 ssp->drc.ptr_iram_rom = (u32) svp->iram_rom;
1888 ssp->drc.ptr_dram = (u32) svp->dram;
1889 ssp->drc.ptr_btable = (u32) ssp_block_table;
1890 ssp->drc.ptr_btable_iram = (u32) ssp_block_table_iram;
1892 // prevent new versions of IRAM from appearing
1893 memset(svp->iram_rom, 0, 0x800);
1897 void ssp1601_dyn_run(int cycles)
1899 if (ssp->emu_status & SSP_WAIT_MASK) return;
1902 ssp_translate_block(DUMP_BLOCK >> 1);
1905 ssp_drc_entry(ssp, cycles);