9cc0f883677851ba650d727562bfb9b075fb4cda
[picodrive.git] / pico / carthw / svp / compiler.c
1 /*
2  * SSP1601 to ARM recompiler
3  * (C) notaz, 2008,2009,2010
4  * (C) irixxxx, 2019-2023
5  *
6  * This work is licensed under the terms of MAME license.
7  * See COPYING file in the top-level directory.
8  */
9
10 #include <pico/pico_int.h>
11 #include <cpu/drc/cmn.h>
12 #include "compiler.h"
13
14 // FIXME: asm has these hardcoded
15 #define SSP_BLOCKTAB_ENTS       (0x5090/2)
16 #define SSP_BLOCKTAB_IRAM_ONE   (0x800/2) // table entries
17 #define SSP_BLOCKTAB_IRAM_ENTS  (15*SSP_BLOCKTAB_IRAM_ONE)
18
19 static u32 **ssp_block_table; // [0x5090/2];
20 static u32 **ssp_block_table_iram; // [15][0x800/2];
21
22 static u32 *tcache_ptr = NULL;
23
24 static int nblocks = 0;
25 static int n_in_ops = 0;
26
27 extern ssp1601_t *ssp;
28
29 #define rPC    ssp->gr[SSP_PC].h
30 #define rPMC   ssp->gr[SSP_PMC]
31
32 #define SSP_FLAG_Z (1<<0xd)
33 #define SSP_FLAG_N (1<<0xf)
34
35 #ifndef __arm__
36 //#define DUMP_BLOCK 0x0c9a
37 void ssp_drc_next(void){}
38 void ssp_drc_next_patch(void){}
39 void ssp_drc_end(void){}
40 #endif
41
42 #define COUNT_OP
43 #include <cpu/drc/emit_arm.c>
44
45 // -----------------------------------------------------
46
47 static int get_inc(int mode)
48 {
49         int inc = (mode >> 11) & 7;
50         if (inc != 0) {
51                 if (inc != 7) inc--;
52                 inc = 1 << inc; // 0 1 2 4 8 16 32 128
53                 if (mode & 0x8000) inc = -inc; // decrement mode
54         }
55         return inc;
56 }
57
58 u32 ssp_pm_read(int reg)
59 {
60         u32 d = 0, mode;
61
62         if (ssp->emu_status & SSP_PMC_SET)
63         {
64                 ssp->pmac_read[reg] = rPMC.v;
65                 ssp->emu_status &= ~SSP_PMC_SET;
66                 return 0;
67         }
68
69         // just in case
70         ssp->emu_status &= ~SSP_PMC_HAVE_ADDR;
71
72         mode = ssp->pmac_read[reg]>>16;
73         if      ((mode & 0xfff0) == 0x0800) // ROM
74         {
75                 d = ((unsigned short *)Pico.rom)[ssp->pmac_read[reg]&0xfffff];
76                 ssp->pmac_read[reg] += 1;
77         }
78         else if ((mode & 0x47ff) == 0x0018) // DRAM
79         {
80                 unsigned short *dram = (unsigned short *)svp->dram;
81                 int inc = get_inc(mode);
82                 d = dram[ssp->pmac_read[reg]&0xffff];
83                 ssp->pmac_read[reg] += inc;
84         }
85
86         // PMC value corresponds to last PMR accessed
87         rPMC.v = ssp->pmac_read[reg];
88
89         return d;
90 }
91
92 #define overwrite_write(dst, d) \
93 { \
94         if (d & 0xf000) { dst &= ~0xf000; dst |= d & 0xf000; } \
95         if (d & 0x0f00) { dst &= ~0x0f00; dst |= d & 0x0f00; } \
96         if (d & 0x00f0) { dst &= ~0x00f0; dst |= d & 0x00f0; } \
97         if (d & 0x000f) { dst &= ~0x000f; dst |= d & 0x000f; } \
98 }
99
100 void ssp_pm_write(u32 d, int reg)
101 {
102         unsigned short *dram;
103         int mode, addr;
104
105         if (ssp->emu_status & SSP_PMC_SET)
106         {
107                 ssp->pmac_write[reg] = rPMC.v;
108                 ssp->emu_status &= ~SSP_PMC_SET;
109                 return;
110         }
111
112         // just in case
113         ssp->emu_status &= ~SSP_PMC_HAVE_ADDR;
114
115         dram = (unsigned short *)svp->dram;
116         mode = ssp->pmac_write[reg]>>16;
117         addr = ssp->pmac_write[reg]&0xffff;
118         if      ((mode & 0x43ff) == 0x0018) // DRAM
119         {
120                 int inc = get_inc(mode);
121                 if (mode & 0x0400) {
122                        overwrite_write(dram[addr], d);
123                 } else dram[addr] = d;
124                 ssp->pmac_write[reg] += inc;
125         }
126         else if ((mode & 0xfbff) == 0x4018) // DRAM, cell inc
127         {
128                 if (mode & 0x0400) {
129                        overwrite_write(dram[addr], d);
130                 } else dram[addr] = d;
131                 ssp->pmac_write[reg] += (addr&1) ? 0x1f : 1;
132         }
133         else if ((mode & 0x47ff) == 0x001c) // IRAM
134         {
135                 int inc = get_inc(mode);
136                 ((unsigned short *)svp->iram_rom)[addr&0x3ff] = d;
137                 ssp->pmac_write[reg] += inc;
138                 ssp->drc.iram_dirty = 1;
139         }
140
141         rPMC.v = ssp->pmac_write[reg];
142 }
143
144
145 // -----------------------------------------------------
146
147 // 14 IRAM blocks
148 static unsigned char iram_context_map[] =
149 {
150          0, 0, 0, 0, 1, 0, 0, 0, // 04
151          0, 0, 0, 0, 0, 0, 2, 0, // 0e
152          0, 0, 0, 0, 0, 3, 0, 4, // 15 17
153          5, 0, 0, 6, 0, 7, 0, 0, // 18 1b 1d
154          8, 9, 0, 0, 0,10, 0, 0, // 20 21 25
155          0, 0, 0, 0, 0, 0, 0, 0,
156          0, 0,11, 0, 0,12, 0, 0, // 32 35
157         13,14, 0, 0, 0, 0, 0, 0  // 38 39
158 };
159
160 int ssp_get_iram_context(void)
161 {
162         unsigned char *ir = (unsigned char *)svp->iram_rom;
163         int val1, val = ir[0x083^1] + ir[0x4FA^1] + ir[0x5F7^1] + ir[0x47B^1];
164         val1 = iram_context_map[(val>>1)&0x3f];
165
166         if (val1 == 0) {
167                 elprintf(EL_ANOMALY, "svp: iram ctx val: %02x PC=%04x\n", (val>>1)&0x3f, rPC);
168                 //debug_dump2file(name, svp->iram_rom, 0x800);
169                 //exit(1);
170         }
171         return val1;
172 }
173
174 // -----------------------------------------------------
175
176 /* regs with known values */
177 static struct
178 {
179         ssp_reg_t gr[8];
180         unsigned char r[8];
181         unsigned int pmac_read[5];
182         unsigned int pmac_write[5];
183         ssp_reg_t pmc;
184         unsigned int emu_status;
185 } known_regs;
186
187 #define KRREG_X     (1 << SSP_X)
188 #define KRREG_Y     (1 << SSP_Y)
189 #define KRREG_A     (1 << SSP_A)        /* AH only */
190 #define KRREG_ST    (1 << SSP_ST)
191 #define KRREG_STACK (1 << SSP_STACK)
192 #define KRREG_PC    (1 << SSP_PC)
193 #define KRREG_P     (1 << SSP_P)
194 #define KRREG_PR0   (1 << 8)
195 #define KRREG_PR4   (1 << 12)
196 #define KRREG_AL    (1 << 16)
197 #define KRREG_PMCM  (1 << 18)           /* only mode word of PMC */
198 #define KRREG_PMC   (1 << 19)
199 #define KRREG_PM0R  (1 << 20)
200 #define KRREG_PM1R  (1 << 21)
201 #define KRREG_PM2R  (1 << 22)
202 #define KRREG_PM3R  (1 << 23)
203 #define KRREG_PM4R  (1 << 24)
204 #define KRREG_PM0W  (1 << 25)
205 #define KRREG_PM1W  (1 << 26)
206 #define KRREG_PM2W  (1 << 27)
207 #define KRREG_PM3W  (1 << 28)
208 #define KRREG_PM4W  (1 << 29)
209
210 /* bitfield of known register values */
211 static u32 known_regb = 0;
212
213 /* known vals, which need to be flushed
214  * (only ST, P, r0-r7, PMCx, PMxR, PMxW)
215  * ST means flags are being held in ARM PSR
216  * P means that it needs to be recalculated
217  */
218 static u32 dirty_regb = 0;
219
220 /* known values of host regs.
221  * -1            - unknown
222  * 000000-00ffff - 16bit value
223  * 100000-10ffff - base reg (r7) + 16bit val
224  * 0r0000        - means reg (low) eq gr[r].h, r != AL
225  */
226 static int hostreg_r[4];
227
228 static void hostreg_clear(void)
229 {
230         int i;
231         for (i = 0; i < 4; i++)
232                 hostreg_r[i] = -1;
233 }
234
235 static void hostreg_sspreg_changed(int sspreg)
236 {
237         int i;
238         for (i = 0; i < 4; i++)
239                 if (hostreg_r[i] == (sspreg<<16)) hostreg_r[i] = -1;
240 }
241
242
243 #define PROGRAM(x)   ((unsigned short *)svp->iram_rom)[x]
244 #define PROGRAM_P(x) ((unsigned short *)svp->iram_rom + (x))
245
246 void tr_unhandled(void)
247 {
248         //FILE *f = fopen("tcache.bin", "wb");
249         //fwrite(tcache, 1, (tcache_ptr - tcache)*4, f);
250         //fclose(f);
251         elprintf(EL_ANOMALY, "unhandled @ %04x\n", known_regs.gr[SSP_PC].h<<1);
252         //exit(1);
253 }
254
255 /* update P, if needed. Trashes r0 */
256 static void tr_flush_dirty_P(void)
257 {
258         // TODO: const regs
259         if (!(dirty_regb & KRREG_P)) return;
260         EOP_MOV_REG_ASR(10, 4, 16);             // mov  r10, r4, asr #16
261         EOP_MOV_REG_LSL( 0, 4, 16);             // mov  r0,  r4, lsl #16
262         EOP_MOV_REG_ASR( 0, 0, 15);             // mov  r0,  r0, asr #15
263         EOP_MUL(10, 0, 10);                     // mul  r10, r0, r10
264         dirty_regb &= ~KRREG_P;
265         hostreg_r[0] = -1;
266 }
267
268 /* write dirty pr to host reg. Nothing is trashed */
269 static void tr_flush_dirty_pr(int r)
270 {
271         int ror = 0, reg;
272
273         if (!(dirty_regb & (1 << (r+8)))) return;
274
275         switch (r&3) {
276                 case 0: ror =    0; break;
277                 case 1: ror = 24/2; break;
278                 case 2: ror = 16/2; break;
279         }
280         reg = (r < 4) ? 8 : 9;
281         EOP_BIC_IMM(reg,reg,ror,0xff);
282         if (known_regs.r[r] != 0)
283                 EOP_ORR_IMM(reg,reg,ror,known_regs.r[r]);
284         dirty_regb &= ~(1 << (r+8));
285 }
286
287 /* write all dirty pr0-pr7 to host regs. Nothing is trashed */
288 static void tr_flush_dirty_prs(void)
289 {
290         int i, ror = 0, reg;
291         int dirty = dirty_regb >> 8;
292         if ((dirty&7) == 7) {
293                 emith_move_r_imm(8, known_regs.r[0]|(known_regs.r[1]<<8)|(known_regs.r[2]<<16));
294                 dirty &= ~7;
295         }
296         if ((dirty&0x70) == 0x70) {
297                 emith_move_r_imm(9, known_regs.r[4]|(known_regs.r[5]<<8)|(known_regs.r[6]<<16));
298                 dirty &= ~0x70;
299         }
300         /* r0-r7 */
301         for (i = 0; dirty && i < 8; i++, dirty >>= 1)
302         {
303                 if (!(dirty&1)) continue;
304                 switch (i&3) {
305                         case 0: ror =    0; break;
306                         case 1: ror = 24/2; break;
307                         case 2: ror = 16/2; break;
308                 }
309                 reg = (i < 4) ? 8 : 9;
310                 EOP_BIC_IMM(reg,reg,ror,0xff);
311                 if (known_regs.r[i] != 0)
312                         EOP_ORR_IMM(reg,reg,ror,known_regs.r[i]);
313         }
314         dirty_regb &= ~0xff00;
315 }
316
317 /* write dirty pr and "forget" it. Nothing is trashed. */
318 static void tr_release_pr(int r)
319 {
320         tr_flush_dirty_pr(r);
321         known_regb &= ~(1 << (r+8));
322 }
323
324 /* fush ARM PSR to r6. Trashes r1 */
325 static void tr_flush_dirty_ST(void)
326 {
327         if (!(dirty_regb & KRREG_ST)) return;
328         EOP_BIC_IMM(6,6,0,0x0f);
329         EOP_MRS(1);
330         EOP_ORR_REG_LSR(6,6,1,28);
331         dirty_regb &= ~KRREG_ST;
332         hostreg_r[1] = -1;
333 }
334
335 /* inverse of above. Trashes r1 */
336 static void tr_make_dirty_ST(void)
337 {
338         if (dirty_regb & KRREG_ST) return;
339         if (known_regb & KRREG_ST) {
340                 int flags = 0;
341                 if (known_regs.gr[SSP_ST].h & SSP_FLAG_N) flags |= 8;
342                 if (known_regs.gr[SSP_ST].h & SSP_FLAG_Z) flags |= 4;
343                 EOP_MSR_IMM(4/2, flags);
344         } else {
345                 EOP_MOV_REG_LSL(1, 6, 28);
346                 EOP_MSR_REG(1);
347                 hostreg_r[1] = -1;
348         }
349         dirty_regb |= KRREG_ST;
350 }
351
352 /* load 16bit val into host reg r0-r3. Nothing is trashed */
353 static void tr_mov16(int r, int val)
354 {
355         if (hostreg_r[r] != val) {
356                 emith_move_r_imm(r, val);
357                 hostreg_r[r] = val;
358         }
359 }
360
361 static void tr_mov16_cond(int cond, int r, int val)
362 {
363         emith_move_r_imm_c(cond, r, val);
364         hostreg_r[r] = -1;
365 }
366
367 /* trashes r1 */
368 static void tr_flush_dirty_pmcrs(void)
369 {
370         u32 i, val = (u32)-1;
371         if (!(dirty_regb & 0x3ff80000)) return;
372
373         if (dirty_regb & KRREG_PMC) {
374                 val = known_regs.pmc.v;
375                 emith_move_r_imm(1, val);
376                 EOP_STR_IMM(1,7,0x400+SSP_PMC*4);
377
378                 if (known_regs.emu_status & (SSP_PMC_SET|SSP_PMC_HAVE_ADDR)) {
379                         elprintf(EL_ANOMALY, "!! SSP_PMC_SET|SSP_PMC_HAVE_ADDR set on flush\n");
380                         tr_unhandled();
381                 }
382         }
383         for (i = 0; i < 5; i++)
384         {
385                 if (dirty_regb & (1 << (20+i))) {
386                         if (val != known_regs.pmac_read[i]) {
387                                 val = known_regs.pmac_read[i];
388                                 emith_move_r_imm(1, val);
389                         }
390                         EOP_STR_IMM(1,7,0x454+i*4); // pmac_read
391                 }
392                 if (dirty_regb & (1 << (25+i))) {
393                         if (val != known_regs.pmac_write[i]) {
394                                 val = known_regs.pmac_write[i];
395                                 emith_move_r_imm(1, val);
396                         }
397                         EOP_STR_IMM(1,7,0x46c+i*4); // pmac_write
398                 }
399         }
400         dirty_regb &= ~0x3ff80000;
401         hostreg_r[1] = -1;
402 }
403
404 /* read bank word to r0 (upper bits zero). Thrashes r1. */
405 static void tr_bank_read(int addr) /* word addr 0-0x1ff */
406 {
407         int breg = 7;
408         if (addr > 0x7f) {
409                 if (hostreg_r[1] != (0x100000|((addr&0x180)<<1))) {
410                         EOP_ADD_IMM(1,7,30/2,(addr&0x180)>>1);  // add  r1, r7, ((op&0x180)<<1)
411                         hostreg_r[1] = 0x100000|((addr&0x180)<<1);
412                 }
413                 breg = 1;
414         }
415         EOP_LDRH_IMM(0,breg,(addr&0x7f)<<1);    // ldrh r0, [r1, (op&0x7f)<<1]
416         hostreg_r[0] = -1;
417 }
418
419 /* write r0 to bank. Trashes r1. */
420 static void tr_bank_write(int addr)
421 {
422         int breg = 7;
423         if (addr > 0x7f) {
424                 if (hostreg_r[1] != (0x100000|((addr&0x180)<<1))) {
425                         EOP_ADD_IMM(1,7,30/2,(addr&0x180)>>1);  // add  r1, r7, ((op&0x180)<<1)
426                         hostreg_r[1] = 0x100000|((addr&0x180)<<1);
427                 }
428                 breg = 1;
429         }
430         EOP_STRH_IMM(0,breg,(addr&0x7f)<<1);            // strh r0, [r1, (op&0x7f)<<1]
431 }
432
433 /* handle RAM bank pointer modifiers. if need_modulo, trash r1-r3, else nothing */
434 static void tr_ptrr_mod(int r, int mod, int need_modulo, int count)
435 {
436         int modulo_shift = -1;  /* unknown */
437
438         if (mod == 0) return;
439
440         if (!need_modulo || mod == 1) // +!
441                 modulo_shift = 8;
442         else if (need_modulo && (known_regb & KRREG_ST)) {
443                 modulo_shift = known_regs.gr[SSP_ST].h & 7;
444                 if (modulo_shift == 0) modulo_shift = 8;
445         }
446
447         if (modulo_shift == -1)
448         {
449                 int reg = (r < 4) ? 8 : 9;
450                 tr_release_pr(r);
451                 if (dirty_regb & KRREG_ST) {
452                         // avoid flushing ARM flags
453                         EOP_AND_IMM(1, 6, 0, 0x70);
454                         EOP_SUB_IMM(1, 1, 0, 0x10);
455                         EOP_AND_IMM(1, 1, 0, 0x70);
456                         EOP_ADD_IMM(1, 1, 0, 0x10);
457                 } else {
458                         EOP_C_DOP_IMM(A_COND_AL,A_OP_AND,1,6,1,0,0x70); // ands  r1, r6, #0x70
459                         EOP_C_DOP_IMM(A_COND_EQ,A_OP_MOV,0,0,1,0,0x80); // moveq r1, #0x80
460                 }
461                 EOP_MOV_REG_LSR(1, 1, 4);               // mov r1, r1, lsr #4
462                 EOP_RSB_IMM(2, 1, 0, 8);                // rsb r1, r1, #8
463                 EOP_MOV_IMM(3, 8/2, count);             // mov r3, #0x01000000
464                 if (r&3)
465                         EOP_ADD_IMM(1, 1, 0, (r&3)*8);  // add r1, r1, #(r&3)*8
466                 EOP_MOV_REG2_ROR(reg,reg,1);            // mov reg, reg, ror r1
467                 if (mod == 2)
468                      EOP_SUB_REG2_LSL(reg,reg,3,2);     // sub reg, reg, #0x01000000 << r2
469                 else EOP_ADD_REG2_LSL(reg,reg,3,2);
470                 EOP_RSB_IMM(1, 1, 0, 32);               // rsb r1, r1, #32
471                 EOP_MOV_REG2_ROR(reg,reg,1);            // mov reg, reg, ror r1
472                 hostreg_r[1] = hostreg_r[2] = hostreg_r[3] = -1;
473         }
474         else if (known_regb & (1 << (r + 8)))
475         {
476                 int modulo = (1 << modulo_shift) - 1;
477                 if (mod == 2)
478                      known_regs.r[r] = (known_regs.r[r] & ~modulo) | ((known_regs.r[r] - count) & modulo);
479                 else known_regs.r[r] = (known_regs.r[r] & ~modulo) | ((known_regs.r[r] + count) & modulo);
480                 dirty_regb |= (1 << (r + 8));
481         }
482         else
483         {
484                 int reg = (r < 4) ? 8 : 9;
485                 int ror = ((r&3) + 1)*8 - (8 - modulo_shift);
486                 EOP_MOV_REG_ROR(reg,reg,ror);
487                 // {add|sub} reg, reg, #1<<shift
488                 EOP_C_DOP_IMM(A_COND_AL,(mod==2)?A_OP_SUB:A_OP_ADD,0,reg,reg, 8/2, count << (8 - modulo_shift));
489                 EOP_MOV_REG_ROR(reg,reg,32-ror);
490         }
491 }
492
493 /* handle writes r0 to (rX). Trashes r1.
494  * fortunately we can ignore modulo increment modes for writes. */
495 static void tr_rX_write(int op)
496 {
497         if ((op&3) == 3)
498         {
499                 int mod = (op>>2) & 3; // direct addressing
500                 tr_bank_write((op & 0x100) + mod);
501         }
502         else
503         {
504                 int r = (op&3) | ((op>>6)&4);
505                 if (known_regb & (1 << (r + 8))) {
506                         tr_bank_write((op&0x100) | known_regs.r[r]);
507                 } else {
508                         int reg = (r < 4) ? 8 : 9;
509                         int ror = ((4 - (r&3))*8) & 0x1f;
510                         EOP_AND_IMM(1,reg,ror/2,0xff);                  // and r1, r{7,8}, <mask>
511                         if (r >= 4)
512                                 EOP_ORR_IMM(1,1,((ror-8)&0x1f)/2,1);            // orr r1, r1, 1<<shift
513                         if (r&3) EOP_ADD_REG_LSR(1,7,1, (r&3)*8-1);     // add r1, r7, r1, lsr #lsr
514                         else     EOP_ADD_REG_LSL(1,7,1,1);
515                         EOP_STRH_SIMPLE(0,1);                           // strh r0, [r1]
516                         hostreg_r[1] = -1;
517                 }
518                 tr_ptrr_mod(r, (op>>2) & 3, 0, 1);
519         }
520 }
521
522 /* read (rX) to r0. Trashes r1-r3. */
523 static void tr_rX_read(int r, int mod)
524 {
525         if ((r&3) == 3)
526         {
527                 tr_bank_read(((r << 6) & 0x100) + mod); // direct addressing
528         }
529         else
530         {
531                 if (known_regb & (1 << (r + 8))) {
532                         tr_bank_read(((r << 6) & 0x100) | known_regs.r[r]);
533                 } else {
534                         int reg = (r < 4) ? 8 : 9;
535                         int ror = ((4 - (r&3))*8) & 0x1f;
536                         EOP_AND_IMM(1,reg,ror/2,0xff);                  // and r1, r{7,8}, <mask>
537                         if (r >= 4)
538                                 EOP_ORR_IMM(1,1,((ror-8)&0x1f)/2,1);            // orr r1, r1, 1<<shift
539                         if (r&3) EOP_ADD_REG_LSR(1,7,1, (r&3)*8-1);     // add r1, r7, r1, lsr #lsr
540                         else     EOP_ADD_REG_LSL(1,7,1,1);
541                         EOP_LDRH_SIMPLE(0,1);                           // ldrh r0, [r1]
542                         hostreg_r[0] = hostreg_r[1] = -1;
543                 }
544                 tr_ptrr_mod(r, mod, 1, 1);
545         }
546 }
547
548 /* read ((rX)) to r0. Trashes r1,r2. */
549 static void tr_rX_read2(int op)
550 {
551         int r = (op&3) | ((op>>6)&4); // src
552
553         if ((r&3) == 3) {
554                 tr_bank_read((op&0x100) | ((op>>2)&3));
555         } else if (known_regb & (1 << (r+8))) {
556                 tr_bank_read((op&0x100) | known_regs.r[r]);
557         } else {
558                 int reg = (r < 4) ? 8 : 9;
559                 int ror = ((4 - (r&3))*8) & 0x1f;
560                 EOP_AND_IMM(1,reg,ror/2,0xff);                  // and r1, r{7,8}, <mask>
561                 if (r >= 4)
562                         EOP_ORR_IMM(1,1,((ror-8)&0x1f)/2,1);            // orr r1, r1, 1<<shift
563                 if (r&3) EOP_ADD_REG_LSR(1,7,1, (r&3)*8-1);     // add r1, r7, r1, lsr #lsr
564                 else     EOP_ADD_REG_LSL(1,7,1,1);
565                 EOP_LDRH_SIMPLE(0,1);                           // ldrh r0, [r1]
566         }
567         EOP_LDR_IMM(2,7,0x48c);                                 // ptr_iram_rom
568         EOP_ADD_REG_LSL(2,2,0,1);                               // add  r2, r2, r0, lsl #1
569         EOP_ADD_IMM(0,0,0,1);                                   // add  r0, r0, #1
570         if ((r&3) == 3) {
571                 tr_bank_write((op&0x100) | ((op>>2)&3));
572         } else if (known_regb & (1 << (r+8))) {
573                 tr_bank_write((op&0x100) | known_regs.r[r]);
574         } else {
575                 EOP_STRH_SIMPLE(0,1);                           // strh r0, [r1]
576                 hostreg_r[1] = -1;
577         }
578         EOP_LDRH_SIMPLE(0,2);                                   // ldrh r0, [r2]
579         hostreg_r[0] = hostreg_r[2] = -1;
580 }
581
582 // check if AL is going to be used later in block
583 static int tr_predict_al_need(void)
584 {
585         int tmpv, tmpv2, op, pc = known_regs.gr[SSP_PC].h;
586
587         while (1)
588         {
589                 op = PROGRAM(pc);
590                 switch (op >> 9)
591                 {
592                         // ld d, s
593                         case 0x00:
594                                 tmpv2 = (op >> 4) & 0xf; // dst
595                                 tmpv  = op & 0xf; // src
596                                 if ((tmpv2 == SSP_A && tmpv == SSP_P) || tmpv2 == SSP_AL) // ld A, P; ld AL, *
597                                         return 0;
598                                 break;
599
600                         // ld (ri), s
601                         case 0x02:
602                         // ld ri, s
603                         case 0x0a:
604                         // OP a, s
605                         case 0x10: case 0x30: case 0x40: case 0x60: case 0x70:
606                                 tmpv  = op & 0xf; // src
607                                 if (tmpv == SSP_AL) // OP *, AL
608                                         return 1;
609                                 break;
610
611                         case 0x04:
612                         case 0x06:
613                         case 0x14:
614                         case 0x34:
615                         case 0x44:
616                         case 0x64:
617                         case 0x74: pc++; break;
618
619                         // call cond, addr
620                         case 0x24:
621                         // bra cond, addr
622                         case 0x26:
623                         // mod cond, op
624                         case 0x48:
625                         // mpys?
626                         case 0x1b:
627                         // mpya (rj), (ri), b
628                         case 0x4b: return 1;
629
630                         // mld (rj), (ri), b
631                         case 0x5b: return 0; // cleared anyway
632
633                         // and A, *
634                         case 0x50:
635                                 tmpv  = op & 0xf; // src
636                                 if (tmpv == SSP_AL) return 1;
637                         case 0x51: case 0x53: case 0x54: case 0x55: case 0x59: case 0x5c:
638                                 return 0;
639                 }
640                 pc++;
641         }
642 }
643
644
645 /* get ARM cond which would mean that SSP cond is satisfied. No trash. */
646 static int tr_cond_check(int op)
647 {
648         int f = (op & 0x100) >> 8;
649         switch (op&0xf0) {
650                 case 0x00: return A_COND_AL;    /* always true */
651                 case 0x50:                      /* Z matches f(?) bit */
652                         if (dirty_regb & KRREG_ST) return f ? A_COND_EQ : A_COND_NE;
653                         EOP_TST_IMM(6, 0, 4);
654                         return f ? A_COND_NE : A_COND_EQ;
655                 case 0x70:                      /* N matches f(?) bit */
656                         if (dirty_regb & KRREG_ST) return f ? A_COND_MI : A_COND_PL;
657                         EOP_TST_IMM(6, 0, 8);
658                         return f ? A_COND_NE : A_COND_EQ;
659                 default:
660                         elprintf(EL_ANOMALY, "unimplemented cond?\n");
661                         tr_unhandled();
662                         return 0;
663         }
664 }
665
666 static int tr_neg_cond(int cond)
667 {
668         switch (cond) {
669                 case A_COND_AL: elprintf(EL_ANOMALY, "neg for AL?\n"); exit(1);
670                 case A_COND_EQ: return A_COND_NE;
671                 case A_COND_NE: return A_COND_EQ;
672                 case A_COND_MI: return A_COND_PL;
673                 case A_COND_PL: return A_COND_MI;
674                 default:        elprintf(EL_ANOMALY, "bad cond for neg\n"); exit(1);
675         }
676         return 0;
677 }
678
679 static int tr_aop_ssp2arm(int op)
680 {
681         switch (op) {
682                 case 1: return A_OP_SUB;
683                 case 3: return A_OP_CMP;
684                 case 4: return A_OP_ADD;
685                 case 5: return A_OP_AND;
686                 case 6: return A_OP_ORR;
687                 case 7: return A_OP_EOR;
688         }
689
690         tr_unhandled();
691         return 0;
692 }
693
694 #ifdef __MACH__
695 /* spacial version of call for calling C needed on ios, since we use r9.. */
696 static void emith_call_c_func(void *target)
697 {
698         EOP_STMFD_SP(M2(7,9));
699         emith_call(target);
700         EOP_LDMFD_SP(M2(7,9));
701 }
702 #else
703 #define emith_call_c_func emith_call
704 #endif
705
706 // -----------------------------------------------------
707
708 //@ r4:  XXYY
709 //@ r5:  A
710 //@ r6:  STACK and emu flags
711 //@ r7:  SSP context
712 //@ r10: P
713
714 // read general reg to r0. Trashes r1
715 static void tr_GR0_to_r0(int op)
716 {
717         tr_mov16(0, 0xffff);
718 }
719
720 static void tr_X_to_r0(int op)
721 {
722         if (hostreg_r[0] != (SSP_X<<16)) {
723                 EOP_MOV_REG_LSR(0, 4, 16);      // mov  r0, r4, lsr #16
724                 hostreg_r[0] = SSP_X<<16;
725         }
726 }
727
728 static void tr_Y_to_r0(int op)
729 {
730         if (hostreg_r[0] != (SSP_Y<<16)) {
731                 EOP_MOV_REG_SIMPLE(0, 4);       // mov  r0, r4
732                 hostreg_r[0] = SSP_Y<<16;
733         }
734 }
735
736 static void tr_A_to_r0(int op)
737 {
738         if (hostreg_r[0] != (SSP_A<<16)) {
739                 EOP_MOV_REG_LSR(0, 5, 16);      // mov  r0, r5, lsr #16  @ AH
740                 hostreg_r[0] = SSP_A<<16;
741         }
742 }
743
744 static void tr_ST_to_r0(int op)
745 {
746         // VR doesn't need much accuracy here..
747         EOP_MOV_REG_LSR(0, 6, 4);               // mov  r0, r6, lsr #4
748         EOP_AND_IMM(0, 0, 0, 0x67);             // and  r0, r0, #0x67
749         hostreg_r[0] = -1;
750 }
751
752 static void tr_STACK_to_r0(int op)
753 {
754         // 448
755         EOP_SUB_IMM(6, 6,  8/2, 0x20);          // sub  r6, r6, #1<<29
756         EOP_ADD_IMM(1, 7, 24/2, 0x04);          // add  r1, r7, 0x400
757         EOP_ADD_IMM(1, 1, 0, 0x48);             // add  r1, r1, 0x048
758         EOP_ADD_REG_LSR(1, 1, 6, 28);           // add  r1, r1, r6, lsr #28
759         EOP_LDRH_SIMPLE(0, 1);                  // ldrh r0, [r1]
760         hostreg_r[0] = hostreg_r[1] = -1;
761 }
762
763 static void tr_PC_to_r0(int op)
764 {
765         tr_mov16(0, known_regs.gr[SSP_PC].h);
766 }
767
768 static void tr_P_to_r0(int op)
769 {
770         tr_flush_dirty_P();
771         EOP_MOV_REG_LSR(0, 10, 16);             // mov  r0, r10, lsr #16
772         hostreg_r[0] = -1;
773 }
774
775 static void tr_AL_to_r0(int op)
776 {
777         if (op == 0x000f) {
778                 if (known_regb & KRREG_PMC) {
779                         known_regs.emu_status &= ~(SSP_PMC_SET|SSP_PMC_HAVE_ADDR);
780                 } else {
781                         EOP_LDR_IMM(0,7,0x484);                 // ldr r1, [r7, #0x484] // emu_status
782                         EOP_BIC_IMM(0,0,0,SSP_PMC_SET|SSP_PMC_HAVE_ADDR);
783                         EOP_STR_IMM(0,7,0x484);
784                 }
785         }
786
787         if (hostreg_r[0] != (SSP_AL<<16)) {
788                 EOP_MOV_REG_SIMPLE(0, 5);       // mov  r0, r5
789                 hostreg_r[0] = SSP_AL<<16;
790         }
791 }
792
793 static void tr_PMX_to_r0(int reg)
794 {
795         if ((known_regb & KRREG_PMC) && (known_regs.emu_status & SSP_PMC_SET))
796         {
797                 known_regs.pmac_read[reg] = known_regs.pmc.v;
798                 known_regs.emu_status &= ~SSP_PMC_SET;
799                 known_regb |= 1 << (20+reg);
800                 dirty_regb |= 1 << (20+reg);
801                 return;
802         }
803
804         if ((known_regb & KRREG_PMC) && (known_regb & (1 << (20+reg))))
805         {
806                 u32 pmcv = known_regs.pmac_read[reg];
807                 int mode = pmcv>>16;
808                 known_regs.emu_status &= ~SSP_PMC_HAVE_ADDR;
809
810                 if      ((mode & 0xfff0) == 0x0800)
811                 {
812                         EOP_LDR_IMM(1,7,0x488);         // rom_ptr
813                         emith_move_r_imm(0, (pmcv&0xfffff)<<1);
814                         EOP_LDRH_REG(0,1,0);            // ldrh r0, [r1, r0]
815                         known_regs.pmac_read[reg] += 1;
816                 }
817                 else if ((mode & 0x47ff) == 0x0018) // DRAM
818                 {
819                         int inc = get_inc(mode);
820                         EOP_LDR_IMM(1,7,0x490);         // dram_ptr
821                         emith_move_r_imm(0, (pmcv&0xffff)<<1);
822                         EOP_LDRH_REG(0,1,0);            // ldrh r0, [r1, r0]
823                         if (reg == 4 && (pmcv == 0x187f03 || pmcv == 0x187f04)) // wait loop detection
824                         {
825                                 int flag = (pmcv == 0x187f03) ? SSP_WAIT_30FE06 : SSP_WAIT_30FE08;
826                                 tr_flush_dirty_ST();
827                                 EOP_LDR_IMM(1,7,0x484);                 // ldr r1, [r7, #0x484] // emu_status
828                                 EOP_TST_REG_SIMPLE(0,0);
829                                 EOP_C_DOP_IMM(A_COND_EQ,A_OP_SUB,0,11,11,22/2,1);       // subeq r11, r11, #1024
830                                 EOP_C_DOP_IMM(A_COND_EQ,A_OP_ORR,0, 1, 1,24/2,flag>>8); // orreq r1, r1, #SSP_WAIT_30FE08
831                                 EOP_STR_IMM(1,7,0x484);                 // str r1, [r7, #0x484] // emu_status
832                         }
833                         known_regs.pmac_read[reg] += inc;
834                 }
835                 else
836                 {
837                         tr_unhandled();
838                 }
839                 known_regs.pmc.v = known_regs.pmac_read[reg];
840                 //known_regb |= KRREG_PMC;
841                 dirty_regb |= KRREG_PMC;
842                 dirty_regb |= 1 << (20+reg);
843                 hostreg_r[0] = hostreg_r[1] = -1;
844                 return;
845         }
846
847         tr_flush_dirty_pmcrs();
848         known_regb &= ~KRREG_PMC;
849         dirty_regb &= ~KRREG_PMC;
850         known_regb &= ~(1 << (20+reg));
851         dirty_regb &= ~(1 << (20+reg));
852
853         // call the C code to handle this
854         tr_flush_dirty_ST();
855         tr_mov16(0, reg);
856         emith_call_c_func(ssp_pm_read);
857         hostreg_clear();
858 }
859
860 static void tr_PM0_to_r0(int op)
861 {
862         tr_PMX_to_r0(0);
863 }
864
865 static void tr_PM1_to_r0(int op)
866 {
867         tr_PMX_to_r0(1);
868 }
869
870 static void tr_PM2_to_r0(int op)
871 {
872         tr_PMX_to_r0(2);
873 }
874
875 static void tr_XST_to_r0(int op)
876 {
877         EOP_ADD_IMM(0, 7, 24/2, 4);     // add r0, r7, #0x400
878         EOP_LDRH_IMM(0, 0, SSP_XST*4+2);
879 }
880
881 static void tr_PM4_to_r0(int op)
882 {
883         tr_PMX_to_r0(4);
884 }
885
886 static void tr_PMC_to_r0(int op)
887 {
888         if (known_regb & KRREG_PMC)
889         {
890                 if (known_regs.emu_status & SSP_PMC_HAVE_ADDR) {
891                         known_regs.emu_status |= SSP_PMC_SET;
892                         known_regs.emu_status &= ~SSP_PMC_HAVE_ADDR;
893                         // do nothing - this is handled elsewhere
894                 } else {
895                         tr_mov16(0, known_regs.pmc.l);
896                         known_regs.emu_status |= SSP_PMC_HAVE_ADDR;
897                 }
898         }
899         else
900         {
901                 EOP_LDR_IMM(1,7,0x484);                 // ldr r1, [r7, #0x484] // emu_status
902                 tr_flush_dirty_ST();
903                 if (op != 0x000e)
904                         EOP_LDR_IMM(0, 7, 0x400+SSP_PMC*4);
905                 EOP_TST_IMM(1, 0, SSP_PMC_HAVE_ADDR);
906                 EOP_C_DOP_IMM(A_COND_EQ,A_OP_ORR,0, 1, 1, 0, SSP_PMC_HAVE_ADDR); // orreq r1, r1, #..
907                 EOP_C_DOP_IMM(A_COND_NE,A_OP_BIC,0, 1, 1, 0, SSP_PMC_HAVE_ADDR); // bicne r1, r1, #..
908                 EOP_C_DOP_IMM(A_COND_NE,A_OP_ORR,0, 1, 1, 0, SSP_PMC_SET);       // orrne r1, r1, #..
909                 EOP_STR_IMM(1,7,0x484);
910                 hostreg_r[0] = hostreg_r[1] = -1;
911         }
912 }
913
914
915 typedef void (tr_read_func)(int op);
916
917 static tr_read_func *tr_read_funcs[16] =
918 {
919         tr_GR0_to_r0,
920         tr_X_to_r0,
921         tr_Y_to_r0,
922         tr_A_to_r0,
923         tr_ST_to_r0,
924         tr_STACK_to_r0,
925         tr_PC_to_r0,
926         tr_P_to_r0,
927         tr_PM0_to_r0,
928         tr_PM1_to_r0,
929         tr_PM2_to_r0,
930         tr_XST_to_r0,
931         tr_PM4_to_r0,
932         (tr_read_func *)tr_unhandled,
933         tr_PMC_to_r0,
934         tr_AL_to_r0
935 };
936
937
938 // write r0 to general reg handlers. Trashes r1
939 #define TR_WRITE_R0_TO_REG(reg) \
940 { \
941         hostreg_sspreg_changed(reg); \
942         hostreg_r[0] = (reg)<<16; \
943         if (const_val != -1) { \
944                 known_regs.gr[reg].h = const_val; \
945                 known_regb |= 1 << (reg); \
946         } else { \
947                 known_regb &= ~(1 << (reg)); \
948         } \
949 }
950
951 static void tr_r0_to_GR0(int const_val)
952 {
953         // do nothing
954 }
955
956 static void tr_r0_to_X(int const_val)
957 {
958         EOP_MOV_REG_LSL(4, 4, 16);              // mov  r4, r4, lsl #16
959         EOP_MOV_REG_LSR(4, 4, 16);              // mov  r4, r4, lsr #16
960         EOP_ORR_REG_LSL(4, 4, 0, 16);           // orr  r4, r4, r0, lsl #16
961         dirty_regb |= KRREG_P;                  // touching X or Y makes P dirty.
962         TR_WRITE_R0_TO_REG(SSP_X);
963 }
964
965 static void tr_r0_to_Y(int const_val)
966 {
967         EOP_MOV_REG_LSR(4, 4, 16);              // mov  r4, r4, lsr #16
968         EOP_ORR_REG_LSL(4, 4, 0, 16);           // orr  r4, r4, r0, lsl #16
969         EOP_MOV_REG_ROR(4, 4, 16);              // mov  r4, r4, ror #16
970         dirty_regb |= KRREG_P;
971         TR_WRITE_R0_TO_REG(SSP_Y);
972 }
973
974 static void tr_r0_to_A(int const_val)
975 {
976         if (tr_predict_al_need()) {
977                 EOP_MOV_REG_LSL(5, 5, 16);      // mov  r5, r5, lsl #16
978                 EOP_MOV_REG_LSR(5, 5, 16);      // mov  r5, r5, lsr #16  @ AL
979                 EOP_ORR_REG_LSL(5, 5, 0, 16);   // orr  r5, r5, r0, lsl #16
980         }
981         else
982                 EOP_MOV_REG_LSL(5, 0, 16);
983         TR_WRITE_R0_TO_REG(SSP_A);
984 }
985
986 static void tr_r0_to_ST(int const_val)
987 {
988         // VR doesn't need much accuracy here..
989         EOP_AND_IMM(1, 0,   0, 0x67);           // and   r1, r0, #0x67
990         EOP_AND_IMM(6, 6, 8/2, 0xe0);           // and   r6, r6, #7<<29     @ preserve STACK
991         EOP_ORR_REG_LSL(6, 6, 1, 4);            // orr   r6, r6, r1, lsl #4
992         TR_WRITE_R0_TO_REG(SSP_ST);
993         hostreg_r[1] = -1;
994         known_regb &= ~KRREG_ST;
995         dirty_regb &= ~KRREG_ST;
996 }
997
998 static void tr_r0_to_STACK(int const_val)
999 {
1000         // 448
1001         EOP_ADD_IMM(1, 7, 24/2, 0x04);          // add  r1, r7, 0x400
1002         EOP_ADD_IMM(1, 1, 0, 0x48);             // add  r1, r1, 0x048
1003         EOP_ADD_REG_LSR(1, 1, 6, 28);           // add  r1, r1, r6, lsr #28
1004         EOP_STRH_SIMPLE(0, 1);                  // strh r0, [r1]
1005         EOP_ADD_IMM(6, 6,  8/2, 0x20);          // add  r6, r6, #1<<29
1006         hostreg_r[1] = -1;
1007 }
1008
1009 static void tr_r0_to_PC(int const_val)
1010 {
1011 /*
1012  * do nothing - dispatcher will take care of this
1013         EOP_MOV_REG_LSL(1, 0, 16);              // mov  r1, r0, lsl #16
1014         EOP_STR_IMM(1,7,0x400+6*4);             // str  r1, [r7, #(0x400+6*8)]
1015         hostreg_r[1] = -1;
1016 */
1017 }
1018
1019 static void tr_r0_to_AL(int const_val)
1020 {
1021         EOP_MOV_REG_LSR(5, 5, 16);              // mov  r5, r5, lsr #16
1022         EOP_ORR_REG_LSL(5, 5, 0, 16);           // orr  r5, r5, r0, lsl #16
1023         EOP_MOV_REG_ROR(5, 5, 16);              // mov  r5, r5, ror #16
1024         hostreg_sspreg_changed(SSP_AL);
1025         if (const_val != -1) {
1026                 known_regs.gr[SSP_A].l = const_val;
1027                 known_regb |=  KRREG_AL;
1028         } else
1029                 known_regb &= ~KRREG_AL;
1030 }
1031
1032 static void tr_r0_to_PMX(int reg)
1033 {
1034         if ((known_regb & KRREG_PMC) && (known_regs.emu_status & SSP_PMC_SET))
1035         {
1036                 known_regs.pmac_write[reg] = known_regs.pmc.v;
1037                 known_regs.emu_status &= ~SSP_PMC_SET;
1038                 known_regb |= 1 << (25+reg);
1039                 dirty_regb |= 1 << (25+reg);
1040                 return;
1041         }
1042
1043         if ((known_regb & KRREG_PMC) && (known_regb & (1 << (25+reg))))
1044         {
1045                 int mode, addr;
1046
1047                 known_regs.emu_status &= ~SSP_PMC_HAVE_ADDR;
1048
1049                 mode = known_regs.pmac_write[reg]>>16;
1050                 addr = known_regs.pmac_write[reg]&0xffff;
1051                 if      ((mode & 0x43ff) == 0x0018) // DRAM
1052                 {
1053                         int inc = get_inc(mode);
1054                         if (mode & 0x0400) tr_unhandled();
1055                         EOP_LDR_IMM(1,7,0x490);         // dram_ptr
1056                         emith_move_r_imm(2, addr << 1);
1057                         EOP_STRH_REG(0,1,2);            // strh r0, [r1, r2]
1058                         known_regs.pmac_write[reg] += inc;
1059                 }
1060                 else if ((mode & 0xfbff) == 0x4018) // DRAM, cell inc
1061                 {
1062                         if (mode & 0x0400) tr_unhandled();
1063                         EOP_LDR_IMM(1,7,0x490);         // dram_ptr
1064                         emith_move_r_imm(2, addr << 1);
1065                         EOP_STRH_REG(0,1,2);            // strh r0, [r1, r2]
1066                         known_regs.pmac_write[reg] += (addr&1) ? 31 : 1;
1067                 }
1068                 else if ((mode & 0x47ff) == 0x001c) // IRAM
1069                 {
1070                         int inc = get_inc(mode);
1071                         EOP_LDR_IMM(1,7,0x48c);         // iram_ptr
1072                         emith_move_r_imm(2, (addr&0x3ff) << 1);
1073                         EOP_STRH_REG(0,1,2);            // strh r0, [r1, r2]
1074                         EOP_MOV_IMM(1,0,1);
1075                         EOP_STR_IMM(1,7,0x494);         // iram_dirty
1076                         known_regs.pmac_write[reg] += inc;
1077                 }
1078                 else
1079                         tr_unhandled();
1080
1081                 known_regs.pmc.v = known_regs.pmac_write[reg];
1082                 //known_regb |= KRREG_PMC;
1083                 dirty_regb |= KRREG_PMC;
1084                 dirty_regb |= 1 << (25+reg);
1085                 hostreg_r[1] = hostreg_r[2] = -1;
1086                 return;
1087         }
1088
1089         tr_flush_dirty_pmcrs();
1090         known_regb &= ~KRREG_PMC;
1091         dirty_regb &= ~KRREG_PMC;
1092         known_regb &= ~(1 << (25+reg));
1093         dirty_regb &= ~(1 << (25+reg));
1094
1095         // call the C code to handle this
1096         tr_flush_dirty_ST();
1097         tr_mov16(1, reg);
1098         emith_call_c_func(ssp_pm_write);
1099         hostreg_clear();
1100 }
1101
1102 static void tr_r0_to_PM0(int const_val)
1103 {
1104         tr_r0_to_PMX(0);
1105 }
1106
1107 static void tr_r0_to_PM1(int const_val)
1108 {
1109         tr_r0_to_PMX(1);
1110 }
1111
1112 static void tr_r0_to_PM2(int const_val)
1113 {
1114         tr_r0_to_PMX(2);
1115 }
1116
1117 static void tr_r0_to_PM4(int const_val)
1118 {
1119         tr_r0_to_PMX(4);
1120 }
1121
1122 static void tr_r0_to_PMC(int const_val)
1123 {
1124         if ((known_regb & KRREG_PMC) && const_val != -1)
1125         {
1126                 if (known_regs.emu_status & SSP_PMC_HAVE_ADDR) {
1127                         known_regs.emu_status |= SSP_PMC_SET;
1128                         known_regs.emu_status &= ~SSP_PMC_HAVE_ADDR;
1129                         known_regs.pmc.h = const_val;
1130                 } else {
1131                         known_regs.emu_status |= SSP_PMC_HAVE_ADDR;
1132                         known_regs.pmc.l = const_val;
1133                 }
1134                 dirty_regb |= KRREG_PMC;
1135         }
1136         else
1137         {
1138                 tr_flush_dirty_ST();
1139                 if (dirty_regb & KRREG_PMC) {
1140                         emith_move_r_imm(1, known_regs.pmc.v);
1141                         EOP_STR_IMM(1,7,0x400+SSP_PMC*4);
1142                         dirty_regb &= ~KRREG_PMC;
1143                 }
1144                 known_regb &= ~KRREG_PMC;
1145                 EOP_LDR_IMM(1,7,0x484);                 // ldr r1, [r7, #0x484] // emu_status
1146                 EOP_ADD_IMM(2,7,24/2,4);                // add r2, r7, #0x400
1147                 EOP_TST_IMM(1, 0, SSP_PMC_HAVE_ADDR);
1148                 EOP_C_AM3_IMM(A_COND_EQ,1,0,2,0,0,1,SSP_PMC*4);         // strxx r0, [r2, #SSP_PMC]
1149                 EOP_C_AM3_IMM(A_COND_NE,1,0,2,0,0,1,SSP_PMC*4+2);
1150                 EOP_C_DOP_IMM(A_COND_EQ,A_OP_ORR,0, 1, 1, 0, SSP_PMC_HAVE_ADDR); // orreq r1, r1, #..
1151                 EOP_C_DOP_IMM(A_COND_NE,A_OP_BIC,0, 1, 1, 0, SSP_PMC_HAVE_ADDR); // bicne r1, r1, #..
1152                 EOP_C_DOP_IMM(A_COND_NE,A_OP_ORR,0, 1, 1, 0, SSP_PMC_SET);       // orrne r1, r1, #..
1153                 EOP_STR_IMM(1,7,0x484);
1154                 hostreg_r[1] = hostreg_r[2] = -1;
1155         }
1156 }
1157
1158 typedef void (tr_write_func)(int const_val);
1159
1160 static tr_write_func *tr_write_funcs[16] =
1161 {
1162         tr_r0_to_GR0,
1163         tr_r0_to_X,
1164         tr_r0_to_Y,
1165         tr_r0_to_A,
1166         tr_r0_to_ST,
1167         tr_r0_to_STACK,
1168         tr_r0_to_PC,
1169         (tr_write_func *)tr_unhandled,
1170         tr_r0_to_PM0,
1171         tr_r0_to_PM1,
1172         tr_r0_to_PM2,
1173         (tr_write_func *)tr_unhandled,
1174         tr_r0_to_PM4,
1175         (tr_write_func *)tr_unhandled,
1176         tr_r0_to_PMC,
1177         tr_r0_to_AL
1178 };
1179
1180 static void tr_mac_load_XY(int op)
1181 {
1182         tr_rX_read(op&3, (op>>2)&3); // X
1183         EOP_MOV_REG_LSL(4, 0, 16);
1184         tr_rX_read(((op>>4)&3)|4, (op>>6)&3); // Y
1185         EOP_ORR_REG_SIMPLE(4, 0);
1186         dirty_regb |= KRREG_P;
1187         hostreg_sspreg_changed(SSP_X);
1188         hostreg_sspreg_changed(SSP_Y);
1189         known_regb &= ~KRREG_X;
1190         known_regb &= ~KRREG_Y;
1191 }
1192
1193 // -----------------------------------------------------
1194
1195 static int tr_detect_set_pm(unsigned int op, int *pc, int imm)
1196 {
1197         u32 pmcv, tmpv;
1198         if (!((op&0xfef0) == 0x08e0 && (PROGRAM(*pc)&0xfef0) == 0x08e0)) return 0;
1199
1200         // programming PMC:
1201         // ldi PMC, imm1
1202         // ldi PMC, imm2
1203         (*pc)++;
1204         pmcv = imm | (PROGRAM((*pc)++) << 16);
1205         known_regs.pmc.v = pmcv;
1206         known_regb |= KRREG_PMC;
1207         dirty_regb |= KRREG_PMC;
1208         known_regs.emu_status |= SSP_PMC_SET;
1209         n_in_ops++;
1210
1211         // check for possible reg programming
1212         tmpv = PROGRAM(*pc);
1213         if ((tmpv & 0xfff8) == 0x08 || (tmpv & 0xff8f) == 0x80)
1214         {
1215                 int is_write = (tmpv & 0xff8f) == 0x80;
1216                 int reg = is_write ? ((tmpv>>4)&0x7) : (tmpv&0x7);
1217                 if (reg > 4) tr_unhandled();
1218                 if ((tmpv & 0x0f) != 0 && (tmpv & 0xf0) != 0) tr_unhandled();
1219                 if (is_write)
1220                         known_regs.pmac_write[reg] = pmcv;
1221                 else
1222                         known_regs.pmac_read[reg] = pmcv;
1223                 known_regb |= is_write ? (1 << (reg+25)) : (1 << (reg+20));
1224                 dirty_regb |= is_write ? (1 << (reg+25)) : (1 << (reg+20));
1225                 known_regs.emu_status &= ~SSP_PMC_SET;
1226                 (*pc)++;
1227                 n_in_ops++;
1228                 return 5;
1229         }
1230
1231         tr_unhandled();
1232         return 4;
1233 }
1234
1235 static const short pm0_block_seq[] = { 0x0880, 0, 0x0880, 0, 0x0840, 0x60 };
1236
1237 static int tr_detect_pm0_block(unsigned int op, int *pc, int imm)
1238 {
1239         // ldi ST, 0
1240         // ldi PM0, 0
1241         // ldi PM0, 0
1242         // ldi ST, 60h
1243         unsigned short *pp;
1244         if (op != 0x0840 || imm != 0) return 0;
1245         pp = PROGRAM_P(*pc);
1246         if (memcmp(pp, pm0_block_seq, sizeof(pm0_block_seq)) != 0) return 0;
1247
1248         EOP_AND_IMM(6, 6, 8/2, 0xe0);           // and   r6, r6, #7<<29     @ preserve STACK
1249         EOP_ORR_IMM(6, 6, 24/2, 6);             // orr   r6, r6, 0x600
1250         hostreg_sspreg_changed(SSP_ST);
1251         known_regs.gr[SSP_ST].h = 0x60;
1252         known_regb |=  KRREG_ST;
1253         dirty_regb &= ~KRREG_ST;
1254         (*pc) += 3*2;
1255         n_in_ops += 3;
1256         return 4*2;
1257 }
1258
1259 static int tr_detect_rotate(unsigned int op, int *pc, int imm)
1260 {
1261         // @ 3DA2 and 426A
1262         // ld PMC, (r3|00)
1263         // ld (r3|00), PMC
1264         // ld -, AL
1265         if (op != 0x02e3 || PROGRAM(*pc) != 0x04e3 || PROGRAM(*pc + 1) != 0x000f) return 0;
1266
1267         tr_bank_read(0);
1268         EOP_MOV_REG_LSL(0, 0, 4);
1269         EOP_ORR_REG_LSR(0, 0, 0, 16);
1270         tr_bank_write(0);
1271         (*pc) += 2;
1272         n_in_ops += 2;
1273         return 3;
1274 }
1275
1276 // -----------------------------------------------------
1277
1278 static int translate_op(unsigned int op, int *pc, int imm, int *end_cond, int *jump_pc)
1279 {
1280         u32 tmpv, tmpv2, tmpv3;
1281         int ret = 0;
1282         known_regs.gr[SSP_PC].h = *pc;
1283
1284         switch (op >> 9)
1285         {
1286                 // ld d, s
1287                 case 0x00:
1288                         if (op == 0) { ret++; break; } // nop
1289                         tmpv  = op & 0xf; // src
1290                         tmpv2 = (op >> 4) & 0xf; // dst
1291                         if (tmpv2 == SSP_A && tmpv == SSP_P) { // ld A, P
1292                                 tr_flush_dirty_P();
1293                                 EOP_MOV_REG_SIMPLE(5, 10);
1294                                 hostreg_sspreg_changed(SSP_A);
1295                                 known_regb &= ~(KRREG_A|KRREG_AL);
1296                                 ret++; break;
1297                         }
1298                         tr_read_funcs[tmpv](op);
1299                         tr_write_funcs[tmpv2]((known_regb & (1 << tmpv)) ? known_regs.gr[tmpv].h : -1);
1300                         if (tmpv2 == SSP_PC) {
1301                                 ret |= 0x10000;
1302                                 *end_cond = -A_COND_AL;
1303                         }
1304                         ret++; break;
1305
1306                 // ld d, (ri)
1307                 case 0x01: {
1308                         int r = (op&3) | ((op>>6)&4);
1309                         int mod = (op>>2)&3;
1310                         tmpv = (op >> 4) & 0xf; // dst
1311                         ret = tr_detect_rotate(op, pc, imm);
1312                         if (ret > 0) break;
1313                         if (tmpv != 0)
1314                                 tr_rX_read(r, mod);
1315                         else {
1316                                 int cnt = 1;
1317                                 while (PROGRAM(*pc) == op) {
1318                                         (*pc)++; cnt++; ret++;
1319                                         n_in_ops++;
1320                                 }
1321                                 tr_ptrr_mod(r, mod, 1, cnt); // skip
1322                         }
1323                         tr_write_funcs[tmpv](-1);
1324                         if (tmpv == SSP_PC) {
1325                                 ret |= 0x10000;
1326                                 *end_cond = -A_COND_AL;
1327                         }
1328                         ret++; break;
1329                 }
1330
1331                 // ld (ri), s
1332                 case 0x02:
1333                         tmpv = (op >> 4) & 0xf; // src
1334                         tr_read_funcs[tmpv](op);
1335                         tr_rX_write(op);
1336                         ret++; break;
1337
1338                 // ld a, adr
1339                 case 0x03:
1340                         tr_bank_read(op&0x1ff);
1341                         tr_r0_to_A(-1);
1342                         ret++; break;
1343
1344                 // ldi d, imm
1345                 case 0x04:
1346                         tmpv = (op & 0xf0) >> 4; // dst
1347                         ret = tr_detect_pm0_block(op, pc, imm);
1348                         if (ret > 0) break;
1349                         ret = tr_detect_set_pm(op, pc, imm);
1350                         if (ret > 0) break;
1351                         tr_mov16(0, imm);
1352                         tr_write_funcs[tmpv](imm);
1353                         if (tmpv == SSP_PC) {
1354                                 ret |= 0x10000;
1355                                 *jump_pc = imm;
1356                         }
1357                         ret += 2; break;
1358
1359                 // ld d, ((ri))
1360                 case 0x05:
1361                         tmpv2 = (op >> 4) & 0xf;  // dst
1362                         tr_rX_read2(op);
1363                         tr_write_funcs[tmpv2](-1);
1364                         if (tmpv2 == SSP_PC) {
1365                                 ret |= 0x10000;
1366                                 *end_cond = -A_COND_AL;
1367                         }
1368                         ret += 3; break;
1369
1370                 // ldi (ri), imm
1371                 case 0x06:
1372                         tr_mov16(0, imm);
1373                         tr_rX_write(op);
1374                         ret += 2; break;
1375
1376                 // ld adr, a
1377                 case 0x07:
1378                         tr_A_to_r0(op);
1379                         tr_bank_write(op&0x1ff);
1380                         ret++; break;
1381
1382                 // ld d, ri
1383                 case 0x09: {
1384                         int r;
1385                         r = (op&3) | ((op>>6)&4); // src
1386                         tmpv2 = (op >> 4) & 0xf;  // dst
1387                         if ((r&3) == 3) tr_unhandled();
1388
1389                         if (known_regb & (1 << (r+8))) {
1390                                 tr_mov16(0, known_regs.r[r]);
1391                                 tr_write_funcs[tmpv2](known_regs.r[r]);
1392                         } else {
1393                                 int reg = (r < 4) ? 8 : 9;
1394                                 if (r&3) EOP_MOV_REG_LSR(0, reg, (r&3)*8);      // mov r0, r{7,8}, lsr #lsr
1395                                 EOP_AND_IMM(0, (r&3)?0:reg, 0, 0xff);           // and r0, r{7,8}, <mask>
1396                                 hostreg_r[0] = -1;
1397                                 tr_write_funcs[tmpv2](-1);
1398                         }
1399                         ret++; break;
1400                 }
1401
1402                 // ld ri, s
1403                 case 0x0a: {
1404                         int r;
1405                         r = (op&3) | ((op>>6)&4); // dst
1406                         tmpv = (op >> 4) & 0xf;   // src
1407                         if ((r&3) == 3) tr_unhandled();
1408
1409                         if (known_regb & (1 << tmpv)) {
1410                                 known_regs.r[r] = known_regs.gr[tmpv].h;
1411                                 known_regb |= 1 << (r + 8);
1412                                 dirty_regb |= 1 << (r + 8);
1413                         } else {
1414                                 int reg = (r < 4) ? 8 : 9;
1415                                 int ror = ((4 - (r&3))*8) & 0x1f;
1416                                 tr_read_funcs[tmpv](op);
1417                                 EOP_BIC_IMM(reg, reg, ror/2, 0xff);             // bic r{7,8}, r{7,8}, <mask>
1418                                 EOP_AND_IMM(0, 0, 0, 0xff);                     // and r0, r0, 0xff
1419                                 EOP_ORR_REG_LSL(reg, reg, 0, (r&3)*8);          // orr r{7,8}, r{7,8}, r0, lsl #lsl
1420                                 hostreg_r[0] = -1;
1421                                 known_regb &= ~(1 << (r+8));
1422                                 dirty_regb &= ~(1 << (r+8));
1423                         }
1424                         ret++; break;
1425                 }
1426
1427                 // ldi ri, simm
1428                 case 0x0c: case 0x0d: case 0x0e: case 0x0f:
1429                         tmpv = (op>>8)&7;
1430                         known_regs.r[tmpv] = op;
1431                         known_regb |= 1 << (tmpv + 8);
1432                         dirty_regb |= 1 << (tmpv + 8);
1433                         ret++; break;
1434
1435                 // call cond, addr
1436                 case 0x24: {
1437                         u32 *jump_op = NULL;
1438                         tmpv = tr_cond_check(op);
1439                         if (tmpv != A_COND_AL) {
1440                                 jump_op = tcache_ptr;
1441                                 EOP_C_B(tmpv, 0, 0); // placeholder for branch
1442                         }
1443                         tr_mov16(0, *pc);
1444                         tr_r0_to_STACK(*pc);
1445                         if (tmpv != A_COND_AL)
1446                                 EOP_C_B_PTR(jump_op, tr_neg_cond(tmpv), 0,
1447                                                 tcache_ptr - jump_op - 2);
1448                         tr_mov16_cond(tmpv, 0, imm);
1449                         if (tmpv != A_COND_AL)
1450                                 tr_mov16_cond(tr_neg_cond(tmpv), 0, *pc);
1451                         tr_r0_to_PC(tmpv == A_COND_AL ? imm : -1);
1452                         ret |= 0x10000;
1453                         *end_cond = tmpv;
1454                         *jump_pc = imm;
1455                         ret += 2; break;
1456                 }
1457
1458                 // ld d, (a)
1459                 case 0x25:
1460                         tmpv2 = (op >> 4) & 0xf;  // dst
1461                         tr_A_to_r0(op);
1462                         EOP_LDR_IMM(1,7,0x48c);                                 // ptr_iram_rom
1463                         EOP_ADD_REG_LSL(0,1,0,1);                               // add  r0, r1, r0, lsl #1
1464                         EOP_LDRH_SIMPLE(0,0);                                   // ldrh r0, [r0]
1465                         hostreg_r[0] = hostreg_r[1] = -1;
1466                         tr_write_funcs[tmpv2](-1);
1467                         if (tmpv2 == SSP_PC) {
1468                                 ret |= 0x10000;
1469                                 *end_cond = -A_COND_AL;
1470                         }
1471                         ret += 3; break;
1472
1473                 // bra cond, addr
1474                 case 0x26:
1475                         tmpv = tr_cond_check(op);
1476                         tr_mov16_cond(tmpv, 0, imm);
1477                         if (tmpv != A_COND_AL)
1478                                 tr_mov16_cond(tr_neg_cond(tmpv), 0, *pc);
1479                         tr_r0_to_PC(tmpv == A_COND_AL ? imm : -1);
1480                         ret |= 0x10000;
1481                         *end_cond = tmpv;
1482                         *jump_pc = imm;
1483                         ret += 2; break;
1484
1485                 // mod cond, op
1486                 case 0x48: {
1487                         // check for repeats of this op
1488                         tmpv = 1; // count
1489                         while (PROGRAM(*pc) == op && (op & 7) != 6) {
1490                                 (*pc)++; tmpv++;
1491                                 n_in_ops++;
1492                         }
1493                         if ((op&0xf0) != 0) // !always
1494                                 tr_make_dirty_ST();
1495
1496                         tmpv2 = tr_cond_check(op);
1497                         switch (op & 7) {
1498                                 case 2: EOP_C_DOP_REG_XIMM(tmpv2,A_OP_MOV,1,0,5,tmpv,A_AM1_ASR,5); break; // shr (arithmetic)
1499                                 case 3: EOP_C_DOP_REG_XIMM(tmpv2,A_OP_MOV,1,0,5,tmpv,A_AM1_LSL,5); break; // shl
1500                                 case 6: EOP_C_DOP_IMM(tmpv2,A_OP_RSB,1,5,5,0,0); break; // neg
1501                                 case 7: EOP_C_DOP_REG_XIMM(tmpv2,A_OP_EOR,0,5,1,31,A_AM1_ASR,5); // eor  r1, r5, r5, asr #31
1502                                         EOP_C_DOP_REG_XIMM(tmpv2,A_OP_ADD,1,1,5,31,A_AM1_LSR,5); // adds r5, r1, r5, lsr #31
1503                                         hostreg_r[1] = -1; break; // abs
1504                                 default: tr_unhandled();
1505                         }
1506
1507                         hostreg_sspreg_changed(SSP_A);
1508                         dirty_regb |=  KRREG_ST;
1509                         known_regb &= ~KRREG_ST;
1510                         known_regb &= ~(KRREG_A|KRREG_AL);
1511                         ret += tmpv; break;
1512                 }
1513
1514                 // mpys?
1515                 case 0x1b:
1516                         tr_flush_dirty_P();
1517                         tr_mac_load_XY(op);
1518                         tr_make_dirty_ST();
1519                         EOP_C_DOP_REG_XIMM(A_COND_AL,A_OP_SUB,1,5,5,0,A_AM1_LSL,10); // subs r5, r5, r10
1520                         hostreg_sspreg_changed(SSP_A);
1521                         dirty_regb |= KRREG_ST;
1522                         known_regb &= ~(KRREG_A|KRREG_AL|KRREG_ST);
1523                         ret++; break;
1524
1525                 // mpya (rj), (ri), b
1526                 case 0x4b:
1527                         tr_flush_dirty_P();
1528                         tr_mac_load_XY(op);
1529                         tr_make_dirty_ST();
1530                         EOP_C_DOP_REG_XIMM(A_COND_AL,A_OP_ADD,1,5,5,0,A_AM1_LSL,10); // adds r5, r5, r10
1531                         hostreg_sspreg_changed(SSP_A);
1532                         dirty_regb |= KRREG_ST;
1533                         known_regb &= ~(KRREG_A|KRREG_AL|KRREG_ST);
1534                         ret++; break;
1535
1536                 // mld (rj), (ri), b
1537                 case 0x5b:
1538                         EOP_C_DOP_IMM(A_COND_AL,A_OP_MOV,1,0,5,0,0); // movs r5, #0
1539                         hostreg_sspreg_changed(SSP_A);
1540                         known_regs.gr[SSP_A].v = 0;
1541                         dirty_regb |= KRREG_ST;
1542                         known_regb &= ~KRREG_ST;
1543                         known_regb |= (KRREG_A|KRREG_AL);
1544                         tr_mac_load_XY(op);
1545                         ret++; break;
1546
1547                 // OP a, s
1548                 case 0x10:
1549                 case 0x30:
1550                 case 0x40:
1551                 case 0x50:
1552                 case 0x60:
1553                 case 0x70:
1554                         tmpv = op & 0xf; // src
1555                         tmpv2 = tr_aop_ssp2arm(op>>13); // op
1556                         tmpv3 = (tmpv2 == A_OP_CMP) ? 0 : 5;
1557                         if (tmpv == SSP_P) {
1558                                 tr_flush_dirty_P();
1559                                 EOP_C_DOP_REG_XIMM(A_COND_AL,tmpv2,1,5,tmpv3, 0,A_AM1_LSL,10); // OPs r5, r5, r10
1560                         } else if (tmpv == SSP_A) {
1561                                 EOP_C_DOP_REG_XIMM(A_COND_AL,tmpv2,1,5,tmpv3, 0,A_AM1_LSL, 5); // OPs r5, r5, r5
1562                         } else {
1563                                 tr_read_funcs[tmpv](op);
1564                                 EOP_C_DOP_REG_XIMM(A_COND_AL,tmpv2,1,5,tmpv3,16,A_AM1_LSL, 0); // OPs r5, r5, r0, lsl #16
1565                         }
1566                         hostreg_sspreg_changed(SSP_A);
1567                         known_regb &= ~(KRREG_A|KRREG_AL|KRREG_ST);
1568                         dirty_regb |= KRREG_ST;
1569                         ret++; break;
1570
1571                 // OP a, (ri)
1572                 case 0x11:
1573                 case 0x31:
1574                 case 0x41:
1575                 case 0x51:
1576                 case 0x61:
1577                 case 0x71:
1578                         tmpv2 = tr_aop_ssp2arm(op>>13); // op
1579                         tmpv3 = (tmpv2 == A_OP_CMP) ? 0 : 5;
1580                         tr_rX_read((op&3)|((op>>6)&4), (op>>2)&3);
1581                         EOP_C_DOP_REG_XIMM(A_COND_AL,tmpv2,1,5,tmpv3,16,A_AM1_LSL,0);   // OPs r5, r5, r0, lsl #16
1582                         hostreg_sspreg_changed(SSP_A);
1583                         known_regb &= ~(KRREG_A|KRREG_AL|KRREG_ST);
1584                         dirty_regb |= KRREG_ST;
1585                         ret++; break;
1586
1587                 // OP a, adr
1588                 case 0x13:
1589                 case 0x33:
1590                 case 0x43:
1591                 case 0x53:
1592                 case 0x63:
1593                 case 0x73:
1594                         tmpv2 = tr_aop_ssp2arm(op>>13); // op
1595                         tmpv3 = (tmpv2 == A_OP_CMP) ? 0 : 5;
1596                         tr_bank_read(op&0x1ff);
1597                         EOP_C_DOP_REG_XIMM(A_COND_AL,tmpv2,1,5,tmpv3,16,A_AM1_LSL,0);   // OPs r5, r5, r0, lsl #16
1598                         hostreg_sspreg_changed(SSP_A);
1599                         known_regb &= ~(KRREG_A|KRREG_AL|KRREG_ST);
1600                         dirty_regb |= KRREG_ST;
1601                         ret++; break;
1602
1603                 // OP a, imm
1604                 case 0x14:
1605                 case 0x34:
1606                 case 0x44:
1607                 case 0x54:
1608                 case 0x64:
1609                 case 0x74:
1610                         tmpv = (op & 0xf0) >> 4;
1611                         tmpv2 = tr_aop_ssp2arm(op>>13); // op
1612                         tmpv3 = (tmpv2 == A_OP_CMP) ? 0 : 5;
1613                         tr_mov16(0, imm);
1614                         EOP_C_DOP_REG_XIMM(A_COND_AL,tmpv2,1,5,tmpv3,16,A_AM1_LSL,0);   // OPs r5, r5, r0, lsl #16
1615                         hostreg_sspreg_changed(SSP_A);
1616                         known_regb &= ~(KRREG_A|KRREG_AL|KRREG_ST);
1617                         dirty_regb |= KRREG_ST;
1618                         ret += 2; break;
1619
1620                 // OP a, ((ri))
1621                 case 0x15:
1622                 case 0x35:
1623                 case 0x45:
1624                 case 0x55:
1625                 case 0x65:
1626                 case 0x75:
1627                         tmpv2 = tr_aop_ssp2arm(op>>13); // op
1628                         tmpv3 = (tmpv2 == A_OP_CMP) ? 0 : 5;
1629                         tr_rX_read2(op);
1630                         EOP_C_DOP_REG_XIMM(A_COND_AL,tmpv2,1,5,tmpv3,16,A_AM1_LSL,0);   // OPs r5, r5, r0, lsl #16
1631                         hostreg_sspreg_changed(SSP_A);
1632                         known_regb &= ~(KRREG_A|KRREG_AL|KRREG_ST);
1633                         dirty_regb |= KRREG_ST;
1634                         ret += 3; break;
1635
1636                 // OP a, ri
1637                 case 0x19:
1638                 case 0x39:
1639                 case 0x49:
1640                 case 0x59:
1641                 case 0x69:
1642                 case 0x79: {
1643                         int r;
1644                         tmpv2 = tr_aop_ssp2arm(op>>13); // op
1645                         tmpv3 = (tmpv2 == A_OP_CMP) ? 0 : 5;
1646                         r = (op&3) | ((op>>6)&4); // src
1647                         if ((r&3) == 3) tr_unhandled();
1648
1649                         if (known_regb & (1 << (r+8))) {
1650                                 EOP_C_DOP_IMM(A_COND_AL,tmpv2,1,5,tmpv3,16/2,known_regs.r[r]);  // OPs r5, r5, #val<<16
1651                         } else {
1652                                 int reg = (r < 4) ? 8 : 9;
1653                                 if (r&3) EOP_MOV_REG_LSR(0, reg, (r&3)*8);      // mov r0, r{7,8}, lsr #lsr
1654                                 EOP_AND_IMM(0, (r&3)?0:reg, 0, 0xff);           // and r0, r{7,8}, <mask>
1655                                 EOP_C_DOP_REG_XIMM(A_COND_AL,tmpv2,1,5,tmpv3,16,A_AM1_LSL,0);   // OPs r5, r5, r0, lsl #16
1656                                 hostreg_r[0] = -1;
1657                         }
1658                         hostreg_sspreg_changed(SSP_A);
1659                         known_regb &= ~(KRREG_A|KRREG_AL|KRREG_ST);
1660                         dirty_regb |= KRREG_ST;
1661                         ret++; break;
1662                 }
1663
1664                 // OP simm
1665                 case 0x1c:
1666                 case 0x3c:
1667                 case 0x4c:
1668                 case 0x5c:
1669                 case 0x6c:
1670                 case 0x7c:
1671                         tmpv2 = tr_aop_ssp2arm(op>>13); // op
1672                         tmpv3 = (tmpv2 == A_OP_CMP) ? 0 : 5;
1673                         EOP_C_DOP_IMM(A_COND_AL,tmpv2,1,5,tmpv3,16/2,op & 0xff);        // OPs r5, r5, #val<<16
1674                         hostreg_sspreg_changed(SSP_A);
1675                         known_regb &= ~(KRREG_A|KRREG_AL|KRREG_ST);
1676                         dirty_regb |= KRREG_ST;
1677                         ret++; break;
1678         }
1679
1680         n_in_ops++;
1681
1682         return ret;
1683 }
1684
1685 static void emit_block_prologue(void)
1686 {
1687         // check if there are enough cycles..
1688         // note: r0 must contain PC of current block
1689         EOP_CMP_IMM(11,0,0);                    // cmp r11, #0
1690         emith_jump_cond(A_COND_LE, ssp_drc_end);
1691 }
1692
1693 /* cond:
1694  * >0: direct (un)conditional jump
1695  * <0: indirect jump
1696  */
1697 static void *emit_block_epilogue(int cycles, int cond, int pc, int end_pc)
1698 {
1699         void *end_ptr = NULL;
1700
1701         if (cycles > 0xff) {
1702                 elprintf(EL_ANOMALY, "large cycle count: %i\n", cycles);
1703                 cycles = 0xff;
1704         }
1705         EOP_SUB_IMM(11,11,0,cycles);            // sub r11, r11, #cycles
1706
1707         if (cond < 0 || (end_pc >= 0x400 && pc < 0x400)) {
1708                 // indirect jump, or rom -> iram jump, must use dispatcher
1709                 emith_jump(ssp_drc_next);
1710         }
1711         else if (cond == A_COND_AL) {
1712                 u32 *target = (pc < 0x400) ?
1713                         ssp_block_table_iram[ssp->drc.iram_context * SSP_BLOCKTAB_IRAM_ONE + pc] :
1714                         ssp_block_table[pc];
1715                 if (target != NULL)
1716                         emith_jump(target);
1717                 else
1718                         emith_jump(ssp_drc_next);
1719         }
1720         else {
1721                 u32 *target1 = (pc     < 0x400) ?
1722                         ssp_block_table_iram[ssp->drc.iram_context * SSP_BLOCKTAB_IRAM_ONE + pc] :
1723                         ssp_block_table[pc];
1724                 u32 *target2 = (end_pc < 0x400) ?
1725                         ssp_block_table_iram[ssp->drc.iram_context * SSP_BLOCKTAB_IRAM_ONE + end_pc] :
1726                         ssp_block_table[end_pc];
1727                 if (target1 != NULL)
1728                      emith_jump_cond(cond, target1);
1729                 if (target2 != NULL)
1730                      emith_jump_cond(tr_neg_cond(cond), target2); // neg_cond, to be able to swap jumps if needed
1731 #ifndef __EPOC32__
1732                 // emit patchable branches
1733                 if (target1 == NULL)
1734                         emith_call_cond(cond, ssp_drc_next_patch);
1735                 if (target2 == NULL)
1736                         emith_call_cond(tr_neg_cond(cond), ssp_drc_next_patch);
1737 #else
1738                 // won't patch indirect jumps
1739                 if (target1 == NULL || target2 == NULL)
1740                         emith_jump(ssp_drc_next);
1741 #endif
1742         }
1743
1744         if (end_ptr == NULL)
1745                 end_ptr = tcache_ptr;
1746
1747         return end_ptr;
1748 }
1749
1750 void *ssp_translate_block(int pc)
1751 {
1752         unsigned int op, op1, imm, ccount = 0;
1753         unsigned int *block_start, *block_end;
1754         int ret, end_cond = A_COND_AL, jump_pc = -1;
1755
1756         //printf("translate %04x -> %04x\n", pc<<1, (tcache_ptr-tcache)<<2);
1757
1758         block_start = tcache_ptr;
1759         known_regb = 0;
1760         dirty_regb = KRREG_P;
1761         known_regs.emu_status = 0;
1762         hostreg_clear();
1763
1764         emit_block_prologue();
1765
1766         for (; ccount < 100;)
1767         {
1768                 op = PROGRAM(pc++);
1769                 op1 = op >> 9;
1770                 imm = (u32)-1;
1771
1772                 if ((op1 & 0xf) == 4 || (op1 & 0xf) == 6)
1773                         imm = PROGRAM(pc++); // immediate
1774
1775                 ret = translate_op(op, &pc, imm, &end_cond, &jump_pc);
1776                 if (ret <= 0)
1777                 {
1778                         elprintf(EL_ANOMALY, "NULL func! op=%08x (%02x)\n", op, op1);
1779                         //exit(1);
1780                 }
1781
1782                 ccount += ret & 0xffff;
1783                 if (ret & 0x10000) break;
1784         }
1785
1786         if (ccount >= 100) {
1787                 end_cond = A_COND_AL;
1788                 jump_pc = pc;
1789                 emith_move_r_imm(0, pc);
1790         }
1791
1792         tr_flush_dirty_prs();
1793         tr_flush_dirty_ST();
1794         tr_flush_dirty_pmcrs();
1795         block_end = emit_block_epilogue(ccount, end_cond, jump_pc, pc);
1796         emith_flush();
1797         emith_pool_commit(-1);
1798
1799         if (tcache_ptr - (u32 *)tcache > DRC_TCACHE_SIZE/4) {
1800                 elprintf(EL_ANOMALY|EL_STATUS|EL_SVP, "tcache overflow!\n");
1801                 exit(1);
1802         }
1803
1804         // stats
1805         nblocks++;
1806         //printf("%i blocks, %i bytes, k=%.3f\n", nblocks, (u8 *)tcache_ptr - tcache,
1807         //      (double)((u8 *)tcache_ptr - tcache) / (double)n_in_ops);
1808
1809 #ifdef DUMP_BLOCK
1810         {
1811                 FILE *f = fopen("tcache.bin", "wb");
1812                 fwrite(tcache, 1, (tcache_ptr - tcache)*4, f);
1813                 fclose(f);
1814         }
1815         printf("dumped tcache.bin\n");
1816         exit(0);
1817 #endif
1818
1819 #ifdef __arm__
1820         cache_flush_d_inval_i(block_start, block_end);
1821 #endif
1822
1823         return block_start;
1824 }
1825
1826
1827
1828 // -----------------------------------------------------
1829
1830 static void ssp1601_state_load(void)
1831 {
1832         ssp->drc.iram_dirty = 1;
1833         ssp->drc.iram_context = 0;
1834 }
1835
1836 void ssp1601_dyn_exit(void)
1837 {
1838         free(ssp_block_table);
1839         free(ssp_block_table_iram);
1840         ssp_block_table = ssp_block_table_iram = NULL;
1841
1842         drc_cmn_cleanup();
1843 }
1844
1845 int ssp1601_dyn_startup(void)
1846 {
1847         drc_cmn_init();
1848
1849         ssp_block_table = calloc(sizeof(ssp_block_table[0]), SSP_BLOCKTAB_ENTS);
1850         if (ssp_block_table == NULL)
1851                 return -1;
1852         ssp_block_table_iram = calloc(sizeof(ssp_block_table_iram[0]), SSP_BLOCKTAB_IRAM_ENTS);
1853         if (ssp_block_table_iram == NULL) {
1854                 free(ssp_block_table);
1855                 return -1;
1856         }
1857
1858         memset(tcache, 0, DRC_TCACHE_SIZE);
1859         tcache_ptr = (void *)tcache;
1860
1861         PicoLoadStateHook = ssp1601_state_load;
1862
1863         n_in_ops = 0;
1864 #ifdef __arm__
1865         // hle'd blocks
1866         ssp_block_table[0x800/2] = (void *) ssp_hle_800;
1867         ssp_block_table[0x902/2] = (void *) ssp_hle_902;
1868         ssp_block_table_iram[ 7 * SSP_BLOCKTAB_IRAM_ONE + 0x030/2] = (void *) ssp_hle_07_030;
1869         ssp_block_table_iram[ 7 * SSP_BLOCKTAB_IRAM_ONE + 0x036/2] = (void *) ssp_hle_07_036;
1870         ssp_block_table_iram[ 7 * SSP_BLOCKTAB_IRAM_ONE + 0x6d6/2] = (void *) ssp_hle_07_6d6;
1871         ssp_block_table_iram[11 * SSP_BLOCKTAB_IRAM_ONE + 0x12c/2] = (void *) ssp_hle_11_12c;
1872         ssp_block_table_iram[11 * SSP_BLOCKTAB_IRAM_ONE + 0x384/2] = (void *) ssp_hle_11_384;
1873         ssp_block_table_iram[11 * SSP_BLOCKTAB_IRAM_ONE + 0x38a/2] = (void *) ssp_hle_11_38a;
1874 #endif
1875
1876         return 0;
1877 }
1878
1879
1880 void ssp1601_dyn_reset(ssp1601_t *ssp)
1881 {
1882         ssp1601_reset(ssp);
1883         ssp->drc.iram_dirty = 1;
1884         ssp->drc.iram_context = 0;
1885         // must do this here because ssp is not available @ startup()
1886         ssp->drc.ptr_rom = (u32) Pico.rom;
1887         ssp->drc.ptr_iram_rom = (u32) svp->iram_rom;
1888         ssp->drc.ptr_dram = (u32) svp->dram;
1889         ssp->drc.ptr_btable = (u32) ssp_block_table;
1890         ssp->drc.ptr_btable_iram = (u32) ssp_block_table_iram;
1891
1892         // prevent new versions of IRAM from appearing
1893         memset(svp->iram_rom, 0, 0x800);
1894 }
1895
1896
1897 void ssp1601_dyn_run(int cycles)
1898 {
1899         if (ssp->emu_status & SSP_WAIT_MASK) return;
1900
1901 #ifdef DUMP_BLOCK
1902         ssp_translate_block(DUMP_BLOCK >> 1);
1903 #endif
1904 #ifdef __arm__
1905         ssp_drc_entry(ssp, cycles);
1906 #endif
1907 }
1908