X-Git-Url: https://notaz.gp2x.de/cgi-bin/gitweb.cgi?a=blobdiff_plain;f=plugins%2Fdfsound%2Freverb.c;h=c0ecea1dafa67dea1a2612a788efd527b5b1dcd5;hb=HEAD;hp=ec570fb3e1375eb03315bab6808972232d12574f;hpb=7b2c4897f089ab6eee7bc2ce2873c2b11058e04e;p=pcsx_rearmed.git diff --git a/plugins/dfsound/reverb.c b/plugins/dfsound/reverb.c index ec570fb3..c736c1cc 100644 --- a/plugins/dfsound/reverb.c +++ b/plugins/dfsound/reverb.c @@ -20,6 +20,8 @@ ***************************************************************************/ #include "stdafx.h" +#include "spu.h" +#include #define _IN_REVERB @@ -41,130 +43,167 @@ INLINE void StartREVERB(int ch) //////////////////////////////////////////////////////////////////////// -INLINE int rvb2ram_offs(int curr, int space, int iOff) +INLINE int rvb_wrap(int ofs, int space) { - iOff += curr; - if (iOff >= 0x40000) iOff -= space; - return iOff; +#if 0 + int mask = (0x3ffff - ofs) >> 31; + ofs = ofs - (space & mask); +#else + if (ofs >= 0x40000) + ofs -= space; +#endif + //assert(ofs >= 0x40000 - space); + //assert(ofs < 0x40000); + return ofs; +} + +INLINE int rvb2ram_offs(int curr, int space, int ofs) +{ + ofs += curr; + return rvb_wrap(ofs, space); } // get_buffer content helper: takes care about wraps #define g_buffer(var) \ - ((int)(signed short)spu.spuMem[rvb2ram_offs(curr_addr, space, rvb->var)]) + ((int)(signed short)LE16TOH(spuMem[rvb2ram_offs(curr_addr, space, var)])) // saturate iVal and store it as var -#define s_buffer(var, iVal) \ +#define s_buffer_w(var, iVal) \ ssat32_to_16(iVal); \ - spu.spuMem[rvb2ram_offs(curr_addr, space, rvb->var)] = iVal - -#define s_buffer1(var, iVal) \ - ssat32_to_16(iVal); \ - spu.spuMem[rvb2ram_offs(curr_addr, space, rvb->var + 1)] = iVal + spuMem[rvb2ram_offs(curr_addr, space, var)] = HTOLE16(iVal) //////////////////////////////////////////////////////////////////////// -// portions based on spu2-x from PCSX2 -static void MixREVERB(int *SSumLR, int *RVB, int ns_to, int curr_addr) +static void reverb_interpolate(sample_buf *sb, int curr_addr, + int out0[2], int out1[2]) +{ + int spos = (curr_addr - 3) & 3; + int dpos = curr_addr & 3; + int i; + + for (i = 0; i < 2; i++) + sb->SB_rvb[i][dpos] = sb->SB_rvb[i][4 | dpos] = out0[i]; + + // mednafen uses some 20 coefs here, we just reuse gauss [0] and [128] + for (i = 0; i < 2; i++) + { + const int *s; + s = &sb->SB_rvb[i][spos]; + out0[i] = (s[0] * 0x12c7 + s[1] * 0x59b3 + s[2] * 0x1307) >> 15; + out1[i] = (s[0] * 0x019c + s[1] * 0x3def + s[2] * 0x3e4c + s[3] * 0x01a8) >> 15; + } +} + +static void MixREVERB(int *SSumLR, int *RVB, int ns_to, int curr_addr, + int do_filter) { + unsigned short *spuMem = spu.spuMem; const REVERBInfo *rvb = spu.rvb; - int IIR_ALPHA = rvb->IIR_ALPHA; - int IIR_COEF = rvb->IIR_COEF; + sample_buf *sb = &spu.sb[MAXCHAN]; int space = 0x40000 - rvb->StartAddr; - int l, r, ns; + int mlsame_m2o = rvb->mLSAME + space - 1; + int mrsame_m2o = rvb->mRSAME + space - 1; + int mldiff_m2o = rvb->mLDIFF + space - 1; + int mrdiff_m2o = rvb->mRDIFF + space - 1; + int vCOMB1 = rvb->vCOMB1 >> 1, vCOMB2 = rvb->vCOMB2 >> 1; + int vCOMB3 = rvb->vCOMB3 >> 1, vCOMB4 = rvb->vCOMB4 >> 1; + int vAPF1 = rvb->vAPF1 >> 1, vAPF2 = rvb->vAPF2 >> 1; + int vLIN = rvb->vLIN >> 1, vRIN = rvb->vRIN >> 1; + int vWALL = rvb->vWALL >> 1; + int vIIR = rvb->vIIR; + int ns; + +#if P_HAVE_PTHREAD || defined(WANT_THREAD_CODE) + sb = &spu.sb_thread[MAXCHAN]; +#endif + if (mlsame_m2o >= space) mlsame_m2o -= space; + if (mrsame_m2o >= space) mrsame_m2o -= space; + if (mldiff_m2o >= space) mldiff_m2o -= space; + if (mrdiff_m2o >= space) mrdiff_m2o -= space; for (ns = 0; ns < ns_to * 2; ) { - int ACC0, ACC1, FB_A0, FB_A1, FB_B0, FB_B1; - int mix_dest_a0, mix_dest_a1, mix_dest_b0, mix_dest_b1; - - int input_L = RVB[ns] * rvb->IN_COEF_L; - int input_R = RVB[ns+1] * rvb->IN_COEF_R; - - int IIR_INPUT_A0 = ((g_buffer(IIR_SRC_A0) * IIR_COEF) + input_L) >> 15; - int IIR_INPUT_A1 = ((g_buffer(IIR_SRC_A1) * IIR_COEF) + input_R) >> 15; - int IIR_INPUT_B0 = ((g_buffer(IIR_SRC_B0) * IIR_COEF) + input_L) >> 15; - int IIR_INPUT_B1 = ((g_buffer(IIR_SRC_B1) * IIR_COEF) + input_R) >> 15; - - int iir_dest_a0 = g_buffer(IIR_DEST_A0); - int iir_dest_a1 = g_buffer(IIR_DEST_A1); - int iir_dest_b0 = g_buffer(IIR_DEST_B0); - int iir_dest_b1 = g_buffer(IIR_DEST_B1); - - int IIR_A0 = iir_dest_a0 + ((IIR_INPUT_A0 - iir_dest_a0) * IIR_ALPHA >> 15); - int IIR_A1 = iir_dest_a1 + ((IIR_INPUT_A1 - iir_dest_a1) * IIR_ALPHA >> 15); - int IIR_B0 = iir_dest_b0 + ((IIR_INPUT_B0 - iir_dest_b0) * IIR_ALPHA >> 15); - int IIR_B1 = iir_dest_b1 + ((IIR_INPUT_B1 - iir_dest_b1) * IIR_ALPHA >> 15); + int Lin = RVB[ns]; + int Rin = RVB[ns+1]; + int mlsame_m2 = g_buffer(mlsame_m2o) << (15-1); + int mrsame_m2 = g_buffer(mrsame_m2o) << (15-1); + int mldiff_m2 = g_buffer(mldiff_m2o) << (15-1); + int mrdiff_m2 = g_buffer(mrdiff_m2o) << (15-1); + int Lout, Rout, out0[2], out1[2]; + + ssat32_to_16(Lin); Lin *= vLIN; + ssat32_to_16(Rin); Rin *= vRIN; + + // from nocash psx-spx + mlsame_m2 += ((Lin + g_buffer(rvb->dLSAME) * vWALL - mlsame_m2) >> 15) * vIIR; + mrsame_m2 += ((Rin + g_buffer(rvb->dRSAME) * vWALL - mrsame_m2) >> 15) * vIIR; + mldiff_m2 += ((Lin + g_buffer(rvb->dLDIFF) * vWALL - mldiff_m2) >> 15) * vIIR; + mrdiff_m2 += ((Rin + g_buffer(rvb->dRDIFF) * vWALL - mrdiff_m2) >> 15) * vIIR; + mlsame_m2 >>= (15-1); s_buffer_w(rvb->mLSAME, mlsame_m2); + mrsame_m2 >>= (15-1); s_buffer_w(rvb->mRSAME, mrsame_m2); + mldiff_m2 >>= (15-1); s_buffer_w(rvb->mLDIFF, mldiff_m2); + mrdiff_m2 >>= (15-1); s_buffer_w(rvb->mRDIFF, mrdiff_m2); + + Lout = vCOMB1 * g_buffer(rvb->mLCOMB1) + vCOMB2 * g_buffer(rvb->mLCOMB2) + + vCOMB3 * g_buffer(rvb->mLCOMB3) + vCOMB4 * g_buffer(rvb->mLCOMB4); + Rout = vCOMB1 * g_buffer(rvb->mRCOMB1) + vCOMB2 * g_buffer(rvb->mRCOMB2) + + vCOMB3 * g_buffer(rvb->mRCOMB3) + vCOMB4 * g_buffer(rvb->mRCOMB4); preload(SSumLR + ns + 64*2/4 - 4); - s_buffer1(IIR_DEST_A0, IIR_A0); - s_buffer1(IIR_DEST_A1, IIR_A1); - s_buffer1(IIR_DEST_B0, IIR_B0); - s_buffer1(IIR_DEST_B1, IIR_B1); + Lout -= vAPF1 * g_buffer(rvb->mLAPF1_dAPF1); Lout >>= (15-1); + Rout -= vAPF1 * g_buffer(rvb->mRAPF1_dAPF1); Rout >>= (15-1); + s_buffer_w(rvb->mLAPF1, Lout); + s_buffer_w(rvb->mRAPF1, Rout); + Lout = Lout * vAPF1 + (g_buffer(rvb->mLAPF1_dAPF1) << (15-1)); + Rout = Rout * vAPF1 + (g_buffer(rvb->mRAPF1_dAPF1) << (15-1)); preload(RVB + ns + 64*2/4 - 4); - ACC0 = (g_buffer(ACC_SRC_A0) * rvb->ACC_COEF_A + - g_buffer(ACC_SRC_B0) * rvb->ACC_COEF_B + - g_buffer(ACC_SRC_C0) * rvb->ACC_COEF_C + - g_buffer(ACC_SRC_D0) * rvb->ACC_COEF_D) >> 15; - ACC1 = (g_buffer(ACC_SRC_A1) * rvb->ACC_COEF_A + - g_buffer(ACC_SRC_B1) * rvb->ACC_COEF_B + - g_buffer(ACC_SRC_C1) * rvb->ACC_COEF_C + - g_buffer(ACC_SRC_D1) * rvb->ACC_COEF_D) >> 15; - - FB_A0 = g_buffer(FB_SRC_A0); - FB_A1 = g_buffer(FB_SRC_A1); - FB_B0 = g_buffer(FB_SRC_B0); - FB_B1 = g_buffer(FB_SRC_B1); + Lout -= vAPF2 * g_buffer(rvb->mLAPF2_dAPF2); Lout >>= (15-1); + Rout -= vAPF2 * g_buffer(rvb->mRAPF2_dAPF2); Rout >>= (15-1); + s_buffer_w(rvb->mLAPF2, Lout); + s_buffer_w(rvb->mRAPF2, Rout); + Lout = Lout * vAPF2 + (g_buffer(rvb->mLAPF2_dAPF2) << (15-1)); + Rout = Rout * vAPF2 + (g_buffer(rvb->mRAPF2_dAPF2) << (15-1)); - mix_dest_a0 = ACC0 - ((FB_A0 * rvb->FB_ALPHA) >> 15); - mix_dest_a1 = ACC1 - ((FB_A1 * rvb->FB_ALPHA) >> 15); + out0[0] = out1[0] = (Lout >> (15-1)) * rvb->VolLeft >> 15; + out0[1] = out1[1] = (Rout >> (15-1)) * rvb->VolRight >> 15; + if (do_filter) + reverb_interpolate(sb, curr_addr, out0, out1); - mix_dest_b0 = FB_A0 + (((ACC0 - FB_A0) * rvb->FB_ALPHA - FB_B0 * rvb->FB_X) >> 15); - mix_dest_b1 = FB_A1 + (((ACC1 - FB_A1) * rvb->FB_ALPHA - FB_B1 * rvb->FB_X) >> 15); - - s_buffer(MIX_DEST_A0, mix_dest_a0); - s_buffer(MIX_DEST_A1, mix_dest_a1); - s_buffer(MIX_DEST_B0, mix_dest_b0); - s_buffer(MIX_DEST_B1, mix_dest_b1); - - l = (mix_dest_a0 + mix_dest_b0) / 2; - r = (mix_dest_a1 + mix_dest_b1) / 2; - - l = (l * rvb->VolLeft) >> 15; // 15? - r = (r * rvb->VolRight) >> 15; - - SSumLR[ns++] += l; - SSumLR[ns++] += r; - SSumLR[ns++] += l; - SSumLR[ns++] += r; + SSumLR[ns++] += out0[0]; + SSumLR[ns++] += out0[1]; + SSumLR[ns++] += out1[0]; + SSumLR[ns++] += out1[1]; curr_addr++; - if (curr_addr >= 0x40000) curr_addr = rvb->StartAddr; + curr_addr = rvb_wrap(curr_addr, space); } } static void MixREVERB_off(int *SSumLR, int ns_to, int curr_addr) { const REVERBInfo *rvb = spu.rvb; + unsigned short *spuMem = spu.spuMem; int space = 0x40000 - rvb->StartAddr; - int l, r, ns; + int Lout, Rout, ns; for (ns = 0; ns < ns_to * 2; ) { preload(SSumLR + ns + 64*2/4 - 4); - l = (g_buffer(MIX_DEST_A0) + g_buffer(MIX_DEST_B0)) / 2; - r = (g_buffer(MIX_DEST_A1) + g_buffer(MIX_DEST_B1)) / 2; + // todo: is this missing COMB and APF1? + Lout = g_buffer(rvb->mLAPF2_dAPF2); + Rout = g_buffer(rvb->mLAPF2_dAPF2); - l = (l * rvb->VolLeft) >> 15; - r = (r * rvb->VolRight) >> 15; + Lout = (Lout * rvb->VolLeft) >> 15; + Rout = (Rout * rvb->VolRight) >> 15; - SSumLR[ns++] += l; - SSumLR[ns++] += r; - SSumLR[ns++] += l; - SSumLR[ns++] += r; + SSumLR[ns++] += Lout; + SSumLR[ns++] += Rout; + SSumLR[ns++] += Lout; + SSumLR[ns++] += Rout; curr_addr++; if (curr_addr >= 0x40000) curr_addr = rvb->StartAddr; @@ -176,7 +215,7 @@ static void REVERBPrep(void) REVERBInfo *rvb = spu.rvb; int space, t; - t = spu.regArea[(H_SPUReverbAddr - 0xc00) >> 1]; + t = regAreaGet(H_SPUReverbAddr); if (t == 0xFFFF || t <= 0x200) spu.rvb->StartAddr = spu.rvb->CurrAddr = 0; else if (spu.rvb->StartAddr != (t << 2)) @@ -198,30 +237,30 @@ static void REVERBPrep(void) t -= space; \ rvb->d = t - prep_offs(IIR_SRC_A0, 32); - prep_offs(IIR_SRC_A1, 34); - prep_offs(IIR_SRC_B0, 36); - prep_offs(IIR_SRC_B1, 38); - prep_offs(IIR_DEST_A0, 20); - prep_offs(IIR_DEST_A1, 22); - prep_offs(IIR_DEST_B0, 36); - prep_offs(IIR_DEST_B1, 38); - prep_offs(ACC_SRC_A0, 24); - prep_offs(ACC_SRC_A1, 26); - prep_offs(ACC_SRC_B0, 28); - prep_offs(ACC_SRC_B1, 30); - prep_offs(ACC_SRC_C0, 40); - prep_offs(ACC_SRC_C1, 42); - prep_offs(ACC_SRC_D0, 44); - prep_offs(ACC_SRC_D1, 46); - prep_offs(MIX_DEST_A0, 52); - prep_offs(MIX_DEST_A1, 54); - prep_offs(MIX_DEST_B0, 56); - prep_offs(MIX_DEST_B1, 58); - prep_offs2(FB_SRC_A0, 52, 0); - prep_offs2(FB_SRC_A1, 54, 0); - prep_offs2(FB_SRC_B0, 56, 2); - prep_offs2(FB_SRC_B1, 58, 2); + prep_offs(mLSAME, 0x14); + prep_offs(mRSAME, 0x16); + prep_offs(mLCOMB1, 0x18); + prep_offs(mRCOMB1, 0x1a); + prep_offs(mLCOMB2, 0x1c); + prep_offs(mRCOMB2, 0x1e); + prep_offs(dLSAME, 0x20); + prep_offs(dRSAME, 0x22); + prep_offs(mLDIFF, 0x24); + prep_offs(mRDIFF, 0x26); + prep_offs(mLCOMB3, 0x28); + prep_offs(mRCOMB3, 0x2a); + prep_offs(mLCOMB4, 0x2c); + prep_offs(mRCOMB4, 0x2e); + prep_offs(dLDIFF, 0x30); + prep_offs(dRDIFF, 0x32); + prep_offs(mLAPF1, 0x34); + prep_offs(mRAPF1, 0x36); + prep_offs(mLAPF2, 0x38); + prep_offs(mRAPF2, 0x3a); + prep_offs2(mLAPF1_dAPF1, 0x34, 0); + prep_offs2(mRAPF1_dAPF1, 0x36, 0); + prep_offs2(mLAPF2_dAPF2, 0x38, 2); + prep_offs2(mRAPF2_dAPF2, 0x3a, 2); #undef prep_offs #undef prep_offs2 @@ -232,7 +271,7 @@ INLINE void REVERBDo(int *SSumLR, int *RVB, int ns_to, int curr_addr) { if (spu.spuCtrl & 0x80) // -> reverb on? oki { - MixREVERB(SSumLR, RVB, ns_to, curr_addr); + MixREVERB(SSumLR, RVB, ns_to, curr_addr, 0); //spu.interpolation > 1); } else if (spu.rvb->VolLeft || spu.rvb->VolRight) { @@ -244,180 +283,4 @@ INLINE void REVERBDo(int *SSumLR, int *RVB, int ns_to, int curr_addr) #endif -/* ------------------------------------------------------------------------------ -PSX reverb hardware notes -by Neill Corlett ------------------------------------------------------------------------------ - -Yadda yadda disclaimer yadda probably not perfect yadda well it's okay anyway -yadda yadda. - ------------------------------------------------------------------------------ - -Basics ------- - -- The reverb buffer is 22khz 16-bit mono PCM. -- It starts at the reverb address given by 1DA2, extends to - the end of sound RAM, and wraps back to the 1DA2 address. - -Setting the address at 1DA2 resets the current reverb work address. - -This work address ALWAYS increments every 1/22050 sec., regardless of -whether reverb is enabled (bit 7 of 1DAA set). - -And the contents of the reverb buffer ALWAYS play, scaled by the -"reverberation depth left/right" volumes (1D84/1D86). -(which, by the way, appear to be scaled so 3FFF=approx. 1.0, 4000=-1.0) - ------------------------------------------------------------------------------ - -Register names --------------- - -These are probably not their real names. -These are probably not even correct names. -We will use them anyway, because we can. - -1DC0: FB_SRC_A (offset) -1DC2: FB_SRC_B (offset) -1DC4: IIR_ALPHA (coef.) -1DC6: ACC_COEF_A (coef.) -1DC8: ACC_COEF_B (coef.) -1DCA: ACC_COEF_C (coef.) -1DCC: ACC_COEF_D (coef.) -1DCE: IIR_COEF (coef.) -1DD0: FB_ALPHA (coef.) -1DD2: FB_X (coef.) -1DD4: IIR_DEST_A0 (offset) -1DD6: IIR_DEST_A1 (offset) -1DD8: ACC_SRC_A0 (offset) -1DDA: ACC_SRC_A1 (offset) -1DDC: ACC_SRC_B0 (offset) -1DDE: ACC_SRC_B1 (offset) -1DE0: IIR_SRC_A0 (offset) -1DE2: IIR_SRC_A1 (offset) -1DE4: IIR_DEST_B0 (offset) -1DE6: IIR_DEST_B1 (offset) -1DE8: ACC_SRC_C0 (offset) -1DEA: ACC_SRC_C1 (offset) -1DEC: ACC_SRC_D0 (offset) -1DEE: ACC_SRC_D1 (offset) -1DF0: IIR_SRC_B1 (offset) -1DF2: IIR_SRC_B0 (offset) -1DF4: MIX_DEST_A0 (offset) -1DF6: MIX_DEST_A1 (offset) -1DF8: MIX_DEST_B0 (offset) -1DFA: MIX_DEST_B1 (offset) -1DFC: IN_COEF_L (coef.) -1DFE: IN_COEF_R (coef.) - -The coefficients are signed fractional values. --32768 would be -1.0 - 32768 would be 1.0 (if it were possible... the highest is of course 32767) - -The offsets are (byte/8) offsets into the reverb buffer. -i.e. you multiply them by 8, you get byte offsets. -You can also think of them as (samples/4) offsets. -They appear to be signed. They can be negative. -None of the documented presets make them negative, though. - -Yes, 1DF0 and 1DF2 appear to be backwards. Not a typo. - ------------------------------------------------------------------------------ - -What it does ------------- - -We take all reverb sources: -- regular channels that have the reverb bit on -- cd and external sources, if their reverb bits are on -and mix them into one stereo 44100hz signal. - -Lowpass/downsample that to 22050hz. The PSX uses a proper bandlimiting -algorithm here, but I haven't figured out the hysterically exact specifics. -I use an 8-tap filter with these coefficients, which are nice but probably -not the real ones: - -0.037828187894 -0.157538631280 -0.321159685278 -0.449322115345 -0.449322115345 -0.321159685278 -0.157538631280 -0.037828187894 - -So we have two input samples (INPUT_SAMPLE_L, INPUT_SAMPLE_R) every 22050hz. - -* IN MY EMULATION, I divide these by 2 to make it clip less. - (and of course the L/R output coefficients are adjusted to compensate) - The real thing appears to not do this. - -At every 22050hz tick: -- If the reverb bit is enabled (bit 7 of 1DAA), execute the reverb - steady-state algorithm described below -- AFTERWARDS, retrieve the "wet out" L and R samples from the reverb buffer - (This part may not be exactly right and I guessed at the coefs. TODO: check later.) - L is: 0.333 * (buffer[MIX_DEST_A0] + buffer[MIX_DEST_B0]) - R is: 0.333 * (buffer[MIX_DEST_A1] + buffer[MIX_DEST_B1]) -- Advance the current buffer position by 1 sample - -The wet out L and R are then upsampled to 44100hz and played at the -"reverberation depth left/right" (1D84/1D86) volume, independent of the main -volume. - ------------------------------------------------------------------------------ - -Reverb steady-state -------------------- - -The reverb steady-state algorithm is fairly clever, and of course by -"clever" I mean "batshit insane". - -buffer[x] is relative to the current buffer position, not the beginning of -the buffer. Note that all buffer offsets must wrap around so they're -contained within the reverb work area. - -Clipping is performed at the end... maybe also sooner, but definitely at -the end. - -IIR_INPUT_A0 = buffer[IIR_SRC_A0] * IIR_COEF + INPUT_SAMPLE_L * IN_COEF_L; -IIR_INPUT_A1 = buffer[IIR_SRC_A1] * IIR_COEF + INPUT_SAMPLE_R * IN_COEF_R; -IIR_INPUT_B0 = buffer[IIR_SRC_B0] * IIR_COEF + INPUT_SAMPLE_L * IN_COEF_L; -IIR_INPUT_B1 = buffer[IIR_SRC_B1] * IIR_COEF + INPUT_SAMPLE_R * IN_COEF_R; - -IIR_A0 = IIR_INPUT_A0 * IIR_ALPHA + buffer[IIR_DEST_A0] * (1.0 - IIR_ALPHA); -IIR_A1 = IIR_INPUT_A1 * IIR_ALPHA + buffer[IIR_DEST_A1] * (1.0 - IIR_ALPHA); -IIR_B0 = IIR_INPUT_B0 * IIR_ALPHA + buffer[IIR_DEST_B0] * (1.0 - IIR_ALPHA); -IIR_B1 = IIR_INPUT_B1 * IIR_ALPHA + buffer[IIR_DEST_B1] * (1.0 - IIR_ALPHA); - -buffer[IIR_DEST_A0 + 1sample] = IIR_A0; -buffer[IIR_DEST_A1 + 1sample] = IIR_A1; -buffer[IIR_DEST_B0 + 1sample] = IIR_B0; -buffer[IIR_DEST_B1 + 1sample] = IIR_B1; - -ACC0 = buffer[ACC_SRC_A0] * ACC_COEF_A + - buffer[ACC_SRC_B0] * ACC_COEF_B + - buffer[ACC_SRC_C0] * ACC_COEF_C + - buffer[ACC_SRC_D0] * ACC_COEF_D; -ACC1 = buffer[ACC_SRC_A1] * ACC_COEF_A + - buffer[ACC_SRC_B1] * ACC_COEF_B + - buffer[ACC_SRC_C1] * ACC_COEF_C + - buffer[ACC_SRC_D1] * ACC_COEF_D; - -FB_A0 = buffer[MIX_DEST_A0 - FB_SRC_A]; -FB_A1 = buffer[MIX_DEST_A1 - FB_SRC_A]; -FB_B0 = buffer[MIX_DEST_B0 - FB_SRC_B]; -FB_B1 = buffer[MIX_DEST_B1 - FB_SRC_B]; - -buffer[MIX_DEST_A0] = ACC0 - FB_A0 * FB_ALPHA; -buffer[MIX_DEST_A1] = ACC1 - FB_A1 * FB_ALPHA; -buffer[MIX_DEST_B0] = (FB_ALPHA * ACC0) - FB_A0 * (FB_ALPHA^0x8000) - FB_B0 * FB_X; -buffer[MIX_DEST_B1] = (FB_ALPHA * ACC1) - FB_A1 * (FB_ALPHA^0x8000) - FB_B1 * FB_X; - ------------------------------------------------------------------------------ -*/ - // vim:shiftwidth=1:expandtab