new ability to adjust psx cpu clock
[pcsx_rearmed.git] / libpcsxcore / new_dynarec / new_dynarec.c
CommitLineData
57871462 1/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
2 * Mupen64plus - new_dynarec.c *
20d507ba 3 * Copyright (C) 2009-2011 Ari64 *
57871462 4 * *
5 * This program is free software; you can redistribute it and/or modify *
6 * it under the terms of the GNU General Public License as published by *
7 * the Free Software Foundation; either version 2 of the License, or *
8 * (at your option) any later version. *
9 * *
10 * This program is distributed in the hope that it will be useful, *
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
13 * GNU General Public License for more details. *
14 * *
15 * You should have received a copy of the GNU General Public License *
16 * along with this program; if not, write to the *
17 * Free Software Foundation, Inc., *
18 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. *
19 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
20
21#include <stdlib.h>
22#include <stdint.h> //include for uint64_t
23#include <assert.h>
4600ba03 24#include <sys/mman.h>
57871462 25
3d624f89 26#include "emu_if.h" //emulator interface
57871462 27
4600ba03 28//#define DISASM
29//#define assem_debug printf
30//#define inv_debug printf
31#define assem_debug(...)
32#define inv_debug(...)
57871462 33
34#ifdef __i386__
35#include "assem_x86.h"
36#endif
37#ifdef __x86_64__
38#include "assem_x64.h"
39#endif
40#ifdef __arm__
41#include "assem_arm.h"
42#endif
43
44#define MAXBLOCK 4096
45#define MAX_OUTPUT_BLOCK_SIZE 262144
2573466a 46
47int cycle_multiplier; // 100 for 1.0
48#define CLOCK_ADJUST(x) (((x) * cycle_multiplier + 50) / 100)
57871462 49
50struct regstat
51{
52 signed char regmap_entry[HOST_REGS];
53 signed char regmap[HOST_REGS];
54 uint64_t was32;
55 uint64_t is32;
56 uint64_t wasdirty;
57 uint64_t dirty;
58 uint64_t u;
59 uint64_t uu;
60 u_int wasconst;
61 u_int isconst;
62 uint64_t constmap[HOST_REGS];
63};
64
65struct ll_entry
66{
67 u_int vaddr;
68 u_int reg32;
69 void *addr;
70 struct ll_entry *next;
71};
72
73 u_int start;
74 u_int *source;
75 u_int pagelimit;
76 char insn[MAXBLOCK][10];
77 u_char itype[MAXBLOCK];
78 u_char opcode[MAXBLOCK];
79 u_char opcode2[MAXBLOCK];
80 u_char bt[MAXBLOCK];
81 u_char rs1[MAXBLOCK];
82 u_char rs2[MAXBLOCK];
83 u_char rt1[MAXBLOCK];
84 u_char rt2[MAXBLOCK];
85 u_char us1[MAXBLOCK];
86 u_char us2[MAXBLOCK];
87 u_char dep1[MAXBLOCK];
88 u_char dep2[MAXBLOCK];
89 u_char lt1[MAXBLOCK];
bedfea38 90 static uint64_t gte_rs[MAXBLOCK]; // gte: 32 data and 32 ctl regs
91 static uint64_t gte_rt[MAXBLOCK];
92 static uint64_t gte_unneeded[MAXBLOCK];
93 static int gte_reads_flags; // gte flag read encountered
ffb0b9e0 94 static u_int smrv[32]; // speculated MIPS register values
95 static u_int smrv_strong; // mask or regs that are likely to have correct values
96 static u_int smrv_weak; // same, but somewhat less likely
97 static u_int smrv_strong_next; // same, but after current insn executes
98 static u_int smrv_weak_next;
57871462 99 int imm[MAXBLOCK];
100 u_int ba[MAXBLOCK];
101 char likely[MAXBLOCK];
102 char is_ds[MAXBLOCK];
e1190b87 103 char ooo[MAXBLOCK];
57871462 104 uint64_t unneeded_reg[MAXBLOCK];
105 uint64_t unneeded_reg_upper[MAXBLOCK];
106 uint64_t branch_unneeded_reg[MAXBLOCK];
107 uint64_t branch_unneeded_reg_upper[MAXBLOCK];
108 uint64_t p32[MAXBLOCK];
109 uint64_t pr32[MAXBLOCK];
110 signed char regmap_pre[MAXBLOCK][HOST_REGS];
111 signed char regmap[MAXBLOCK][HOST_REGS];
112 signed char regmap_entry[MAXBLOCK][HOST_REGS];
113 uint64_t constmap[MAXBLOCK][HOST_REGS];
57871462 114 struct regstat regs[MAXBLOCK];
115 struct regstat branch_regs[MAXBLOCK];
e1190b87 116 signed char minimum_free_regs[MAXBLOCK];
57871462 117 u_int needed_reg[MAXBLOCK];
118 uint64_t requires_32bit[MAXBLOCK];
119 u_int wont_dirty[MAXBLOCK];
120 u_int will_dirty[MAXBLOCK];
121 int ccadj[MAXBLOCK];
122 int slen;
123 u_int instr_addr[MAXBLOCK];
124 u_int link_addr[MAXBLOCK][3];
125 int linkcount;
126 u_int stubs[MAXBLOCK*3][8];
127 int stubcount;
128 u_int literals[1024][2];
129 int literalcount;
130 int is_delayslot;
131 int cop1_usable;
132 u_char *out;
133 struct ll_entry *jump_in[4096];
134 struct ll_entry *jump_out[4096];
135 struct ll_entry *jump_dirty[4096];
136 u_int hash_table[65536][4] __attribute__((aligned(16)));
137 char shadow[1048576] __attribute__((aligned(16)));
138 void *copy;
139 int expirep;
af4ee1fe 140#ifndef PCSX
57871462 141 u_int using_tlb;
af4ee1fe 142#else
143 static const u_int using_tlb=0;
144#endif
2f546f9a 145 int new_dynarec_did_compile;
57871462 146 u_int stop_after_jal;
147 extern u_char restore_candidate[512];
148 extern int cycle_count;
149
150 /* registers that may be allocated */
151 /* 1-31 gpr */
152#define HIREG 32 // hi
153#define LOREG 33 // lo
154#define FSREG 34 // FPU status (FCSR)
155#define CSREG 35 // Coprocessor status
156#define CCREG 36 // Cycle count
157#define INVCP 37 // Pointer to invalid_code
619e5ded 158#define MMREG 38 // Pointer to memory_map
159#define ROREG 39 // ram offset (if rdram!=0x80000000)
160#define TEMPREG 40
161#define FTEMP 40 // FPU temporary register
162#define PTEMP 41 // Prefetch temporary register
163#define TLREG 42 // TLB mapping offset
164#define RHASH 43 // Return address hash
165#define RHTBL 44 // Return address hash table address
166#define RTEMP 45 // JR/JALR address register
167#define MAXREG 45
168#define AGEN1 46 // Address generation temporary register
169#define AGEN2 47 // Address generation temporary register
170#define MGEN1 48 // Maptable address generation temporary register
171#define MGEN2 49 // Maptable address generation temporary register
172#define BTREG 50 // Branch target temporary register
57871462 173
174 /* instruction types */
175#define NOP 0 // No operation
176#define LOAD 1 // Load
177#define STORE 2 // Store
178#define LOADLR 3 // Unaligned load
179#define STORELR 4 // Unaligned store
180#define MOV 5 // Move
181#define ALU 6 // Arithmetic/logic
182#define MULTDIV 7 // Multiply/divide
183#define SHIFT 8 // Shift by register
184#define SHIFTIMM 9// Shift by immediate
185#define IMM16 10 // 16-bit immediate
186#define RJUMP 11 // Unconditional jump to register
187#define UJUMP 12 // Unconditional jump
188#define CJUMP 13 // Conditional branch (BEQ/BNE/BGTZ/BLEZ)
189#define SJUMP 14 // Conditional branch (regimm format)
190#define COP0 15 // Coprocessor 0
191#define COP1 16 // Coprocessor 1
192#define C1LS 17 // Coprocessor 1 load/store
193#define FJUMP 18 // Conditional branch (floating point)
194#define FLOAT 19 // Floating point unit
195#define FCONV 20 // Convert integer to float
196#define FCOMP 21 // Floating point compare (sets FSREG)
197#define SYSCALL 22// SYSCALL
198#define OTHER 23 // Other
199#define SPAN 24 // Branch/delay slot spans 2 pages
200#define NI 25 // Not implemented
7139f3c8 201#define HLECALL 26// PCSX fake opcodes for HLE
b9b61529 202#define COP2 27 // Coprocessor 2 move
203#define C2LS 28 // Coprocessor 2 load/store
204#define C2OP 29 // Coprocessor 2 operation
1e973cb0 205#define INTCALL 30// Call interpreter to handle rare corner cases
57871462 206
207 /* stubs */
208#define CC_STUB 1
209#define FP_STUB 2
210#define LOADB_STUB 3
211#define LOADH_STUB 4
212#define LOADW_STUB 5
213#define LOADD_STUB 6
214#define LOADBU_STUB 7
215#define LOADHU_STUB 8
216#define STOREB_STUB 9
217#define STOREH_STUB 10
218#define STOREW_STUB 11
219#define STORED_STUB 12
220#define STORELR_STUB 13
221#define INVCODE_STUB 14
222
223 /* branch codes */
224#define TAKEN 1
225#define NOTTAKEN 2
226#define NULLDS 3
227
228// asm linkage
229int new_recompile_block(int addr);
230void *get_addr_ht(u_int vaddr);
231void invalidate_block(u_int block);
232void invalidate_addr(u_int addr);
233void remove_hash(int vaddr);
234void jump_vaddr();
235void dyna_linker();
236void dyna_linker_ds();
237void verify_code();
238void verify_code_vm();
239void verify_code_ds();
240void cc_interrupt();
241void fp_exception();
242void fp_exception_ds();
243void jump_syscall();
7139f3c8 244void jump_syscall_hle();
57871462 245void jump_eret();
7139f3c8 246void jump_hlecall();
1e973cb0 247void jump_intcall();
7139f3c8 248void new_dyna_leave();
57871462 249
250// TLB
251void TLBWI_new();
252void TLBWR_new();
253void read_nomem_new();
254void read_nomemb_new();
255void read_nomemh_new();
256void read_nomemd_new();
257void write_nomem_new();
258void write_nomemb_new();
259void write_nomemh_new();
260void write_nomemd_new();
261void write_rdram_new();
262void write_rdramb_new();
263void write_rdramh_new();
264void write_rdramd_new();
265extern u_int memory_map[1048576];
266
267// Needed by assembler
268void wb_register(signed char r,signed char regmap[],uint64_t dirty,uint64_t is32);
269void wb_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty);
270void wb_needed_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr);
271void load_all_regs(signed char i_regmap[]);
272void load_needed_regs(signed char i_regmap[],signed char next_regmap[]);
273void load_regs_entry(int t);
274void load_all_consts(signed char regmap[],int is32,u_int dirty,int i);
275
276int tracedebug=0;
277
278//#define DEBUG_CYCLE_COUNT 1
279
94d23bb9 280static void tlb_hacks()
57871462 281{
94d23bb9 282#ifndef DISABLE_TLB
57871462 283 // Goldeneye hack
284 if (strncmp((char *) ROM_HEADER->nom, "GOLDENEYE",9) == 0)
285 {
286 u_int addr;
287 int n;
288 switch (ROM_HEADER->Country_code&0xFF)
289 {
290 case 0x45: // U
291 addr=0x34b30;
292 break;
293 case 0x4A: // J
294 addr=0x34b70;
295 break;
296 case 0x50: // E
297 addr=0x329f0;
298 break;
299 default:
300 // Unknown country code
301 addr=0;
302 break;
303 }
304 u_int rom_addr=(u_int)rom;
305 #ifdef ROM_COPY
306 // Since memory_map is 32-bit, on 64-bit systems the rom needs to be
307 // in the lower 4G of memory to use this hack. Copy it if necessary.
308 if((void *)rom>(void *)0xffffffff) {
309 munmap(ROM_COPY, 67108864);
310 if(mmap(ROM_COPY, 12582912,
311 PROT_READ | PROT_WRITE,
312 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS,
313 -1, 0) <= 0) {printf("mmap() failed\n");}
314 memcpy(ROM_COPY,rom,12582912);
315 rom_addr=(u_int)ROM_COPY;
316 }
317 #endif
318 if(addr) {
319 for(n=0x7F000;n<0x80000;n++) {
320 memory_map[n]=(((u_int)(rom_addr+addr-0x7F000000))>>2)|0x40000000;
321 }
322 }
323 }
94d23bb9 324#endif
57871462 325}
326
94d23bb9 327static u_int get_page(u_int vaddr)
57871462 328{
0ce47d46 329#ifndef PCSX
57871462 330 u_int page=(vaddr^0x80000000)>>12;
0ce47d46 331#else
332 u_int page=vaddr&~0xe0000000;
333 if (page < 0x1000000)
334 page &= ~0x0e00000; // RAM mirrors
335 page>>=12;
336#endif
94d23bb9 337#ifndef DISABLE_TLB
57871462 338 if(page>262143&&tlb_LUT_r[vaddr>>12]) page=(tlb_LUT_r[vaddr>>12]^0x80000000)>>12;
94d23bb9 339#endif
57871462 340 if(page>2048) page=2048+(page&2047);
94d23bb9 341 return page;
342}
343
344static u_int get_vpage(u_int vaddr)
345{
346 u_int vpage=(vaddr^0x80000000)>>12;
347#ifndef DISABLE_TLB
57871462 348 if(vpage>262143&&tlb_LUT_r[vaddr>>12]) vpage&=2047; // jump_dirty uses a hash of the virtual address instead
94d23bb9 349#endif
57871462 350 if(vpage>2048) vpage=2048+(vpage&2047);
94d23bb9 351 return vpage;
352}
353
354// Get address from virtual address
355// This is called from the recompiled JR/JALR instructions
356void *get_addr(u_int vaddr)
357{
358 u_int page=get_page(vaddr);
359 u_int vpage=get_vpage(vaddr);
57871462 360 struct ll_entry *head;
361 //printf("TRACE: count=%d next=%d (get_addr %x,page %d)\n",Count,next_interupt,vaddr,page);
362 head=jump_in[page];
363 while(head!=NULL) {
364 if(head->vaddr==vaddr&&head->reg32==0) {
365 //printf("TRACE: count=%d next=%d (get_addr match %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
366 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
367 ht_bin[3]=ht_bin[1];
368 ht_bin[2]=ht_bin[0];
369 ht_bin[1]=(int)head->addr;
370 ht_bin[0]=vaddr;
371 return head->addr;
372 }
373 head=head->next;
374 }
375 head=jump_dirty[vpage];
376 while(head!=NULL) {
377 if(head->vaddr==vaddr&&head->reg32==0) {
378 //printf("TRACE: count=%d next=%d (get_addr match dirty %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
379 // Don't restore blocks which are about to expire from the cache
380 if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
381 if(verify_dirty(head->addr)) {
382 //printf("restore candidate: %x (%d) d=%d\n",vaddr,page,invalid_code[vaddr>>12]);
383 invalid_code[vaddr>>12]=0;
9be4ba64 384 inv_code_start=inv_code_end=~0;
63cb0298 385#ifndef DISABLE_TLB
57871462 386 memory_map[vaddr>>12]|=0x40000000;
63cb0298 387#endif
57871462 388 if(vpage<2048) {
94d23bb9 389#ifndef DISABLE_TLB
57871462 390 if(tlb_LUT_r[vaddr>>12]) {
391 invalid_code[tlb_LUT_r[vaddr>>12]>>12]=0;
392 memory_map[tlb_LUT_r[vaddr>>12]>>12]|=0x40000000;
393 }
94d23bb9 394#endif
57871462 395 restore_candidate[vpage>>3]|=1<<(vpage&7);
396 }
397 else restore_candidate[page>>3]|=1<<(page&7);
398 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
399 if(ht_bin[0]==vaddr) {
400 ht_bin[1]=(int)head->addr; // Replace existing entry
401 }
402 else
403 {
404 ht_bin[3]=ht_bin[1];
405 ht_bin[2]=ht_bin[0];
406 ht_bin[1]=(int)head->addr;
407 ht_bin[0]=vaddr;
408 }
409 return head->addr;
410 }
411 }
412 head=head->next;
413 }
414 //printf("TRACE: count=%d next=%d (get_addr no-match %x)\n",Count,next_interupt,vaddr);
415 int r=new_recompile_block(vaddr);
416 if(r==0) return get_addr(vaddr);
417 // Execute in unmapped page, generate pagefault execption
418 Status|=2;
419 Cause=(vaddr<<31)|0x8;
420 EPC=(vaddr&1)?vaddr-5:vaddr;
421 BadVAddr=(vaddr&~1);
422 Context=(Context&0xFF80000F)|((BadVAddr>>9)&0x007FFFF0);
423 EntryHi=BadVAddr&0xFFFFE000;
424 return get_addr_ht(0x80000000);
425}
426// Look up address in hash table first
427void *get_addr_ht(u_int vaddr)
428{
429 //printf("TRACE: count=%d next=%d (get_addr_ht %x)\n",Count,next_interupt,vaddr);
430 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
431 if(ht_bin[0]==vaddr) return (void *)ht_bin[1];
432 if(ht_bin[2]==vaddr) return (void *)ht_bin[3];
433 return get_addr(vaddr);
434}
435
436void *get_addr_32(u_int vaddr,u_int flags)
437{
7139f3c8 438#ifdef FORCE32
439 return get_addr(vaddr);
560e4a12 440#else
57871462 441 //printf("TRACE: count=%d next=%d (get_addr_32 %x,flags %x)\n",Count,next_interupt,vaddr,flags);
442 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
443 if(ht_bin[0]==vaddr) return (void *)ht_bin[1];
444 if(ht_bin[2]==vaddr) return (void *)ht_bin[3];
94d23bb9 445 u_int page=get_page(vaddr);
446 u_int vpage=get_vpage(vaddr);
57871462 447 struct ll_entry *head;
448 head=jump_in[page];
449 while(head!=NULL) {
450 if(head->vaddr==vaddr&&(head->reg32&flags)==0) {
451 //printf("TRACE: count=%d next=%d (get_addr_32 match %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
452 if(head->reg32==0) {
453 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
454 if(ht_bin[0]==-1) {
455 ht_bin[1]=(int)head->addr;
456 ht_bin[0]=vaddr;
457 }else if(ht_bin[2]==-1) {
458 ht_bin[3]=(int)head->addr;
459 ht_bin[2]=vaddr;
460 }
461 //ht_bin[3]=ht_bin[1];
462 //ht_bin[2]=ht_bin[0];
463 //ht_bin[1]=(int)head->addr;
464 //ht_bin[0]=vaddr;
465 }
466 return head->addr;
467 }
468 head=head->next;
469 }
470 head=jump_dirty[vpage];
471 while(head!=NULL) {
472 if(head->vaddr==vaddr&&(head->reg32&flags)==0) {
473 //printf("TRACE: count=%d next=%d (get_addr_32 match dirty %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
474 // Don't restore blocks which are about to expire from the cache
475 if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
476 if(verify_dirty(head->addr)) {
477 //printf("restore candidate: %x (%d) d=%d\n",vaddr,page,invalid_code[vaddr>>12]);
478 invalid_code[vaddr>>12]=0;
9be4ba64 479 inv_code_start=inv_code_end=~0;
57871462 480 memory_map[vaddr>>12]|=0x40000000;
481 if(vpage<2048) {
94d23bb9 482#ifndef DISABLE_TLB
57871462 483 if(tlb_LUT_r[vaddr>>12]) {
484 invalid_code[tlb_LUT_r[vaddr>>12]>>12]=0;
485 memory_map[tlb_LUT_r[vaddr>>12]>>12]|=0x40000000;
486 }
94d23bb9 487#endif
57871462 488 restore_candidate[vpage>>3]|=1<<(vpage&7);
489 }
490 else restore_candidate[page>>3]|=1<<(page&7);
491 if(head->reg32==0) {
492 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
493 if(ht_bin[0]==-1) {
494 ht_bin[1]=(int)head->addr;
495 ht_bin[0]=vaddr;
496 }else if(ht_bin[2]==-1) {
497 ht_bin[3]=(int)head->addr;
498 ht_bin[2]=vaddr;
499 }
500 //ht_bin[3]=ht_bin[1];
501 //ht_bin[2]=ht_bin[0];
502 //ht_bin[1]=(int)head->addr;
503 //ht_bin[0]=vaddr;
504 }
505 return head->addr;
506 }
507 }
508 head=head->next;
509 }
510 //printf("TRACE: count=%d next=%d (get_addr_32 no-match %x,flags %x)\n",Count,next_interupt,vaddr,flags);
511 int r=new_recompile_block(vaddr);
512 if(r==0) return get_addr(vaddr);
513 // Execute in unmapped page, generate pagefault execption
514 Status|=2;
515 Cause=(vaddr<<31)|0x8;
516 EPC=(vaddr&1)?vaddr-5:vaddr;
517 BadVAddr=(vaddr&~1);
518 Context=(Context&0xFF80000F)|((BadVAddr>>9)&0x007FFFF0);
519 EntryHi=BadVAddr&0xFFFFE000;
520 return get_addr_ht(0x80000000);
560e4a12 521#endif
57871462 522}
523
524void clear_all_regs(signed char regmap[])
525{
526 int hr;
527 for (hr=0;hr<HOST_REGS;hr++) regmap[hr]=-1;
528}
529
530signed char get_reg(signed char regmap[],int r)
531{
532 int hr;
533 for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap[hr]==r) return hr;
534 return -1;
535}
536
537// Find a register that is available for two consecutive cycles
538signed char get_reg2(signed char regmap1[],signed char regmap2[],int r)
539{
540 int hr;
541 for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap1[hr]==r&&regmap2[hr]==r) return hr;
542 return -1;
543}
544
545int count_free_regs(signed char regmap[])
546{
547 int count=0;
548 int hr;
549 for(hr=0;hr<HOST_REGS;hr++)
550 {
551 if(hr!=EXCLUDE_REG) {
552 if(regmap[hr]<0) count++;
553 }
554 }
555 return count;
556}
557
558void dirty_reg(struct regstat *cur,signed char reg)
559{
560 int hr;
561 if(!reg) return;
562 for (hr=0;hr<HOST_REGS;hr++) {
563 if((cur->regmap[hr]&63)==reg) {
564 cur->dirty|=1<<hr;
565 }
566 }
567}
568
569// If we dirty the lower half of a 64 bit register which is now being
570// sign-extended, we need to dump the upper half.
571// Note: Do this only after completion of the instruction, because
572// some instructions may need to read the full 64-bit value even if
573// overwriting it (eg SLTI, DSRA32).
574static void flush_dirty_uppers(struct regstat *cur)
575{
576 int hr,reg;
577 for (hr=0;hr<HOST_REGS;hr++) {
578 if((cur->dirty>>hr)&1) {
579 reg=cur->regmap[hr];
580 if(reg>=64)
581 if((cur->is32>>(reg&63))&1) cur->regmap[hr]=-1;
582 }
583 }
584}
585
586void set_const(struct regstat *cur,signed char reg,uint64_t value)
587{
588 int hr;
589 if(!reg) return;
590 for (hr=0;hr<HOST_REGS;hr++) {
591 if(cur->regmap[hr]==reg) {
592 cur->isconst|=1<<hr;
593 cur->constmap[hr]=value;
594 }
595 else if((cur->regmap[hr]^64)==reg) {
596 cur->isconst|=1<<hr;
597 cur->constmap[hr]=value>>32;
598 }
599 }
600}
601
602void clear_const(struct regstat *cur,signed char reg)
603{
604 int hr;
605 if(!reg) return;
606 for (hr=0;hr<HOST_REGS;hr++) {
607 if((cur->regmap[hr]&63)==reg) {
608 cur->isconst&=~(1<<hr);
609 }
610 }
611}
612
613int is_const(struct regstat *cur,signed char reg)
614{
615 int hr;
79c75f1b 616 if(reg<0) return 0;
57871462 617 if(!reg) return 1;
618 for (hr=0;hr<HOST_REGS;hr++) {
619 if((cur->regmap[hr]&63)==reg) {
620 return (cur->isconst>>hr)&1;
621 }
622 }
623 return 0;
624}
625uint64_t get_const(struct regstat *cur,signed char reg)
626{
627 int hr;
628 if(!reg) return 0;
629 for (hr=0;hr<HOST_REGS;hr++) {
630 if(cur->regmap[hr]==reg) {
631 return cur->constmap[hr];
632 }
633 }
634 printf("Unknown constant in r%d\n",reg);
635 exit(1);
636}
637
638// Least soon needed registers
639// Look at the next ten instructions and see which registers
640// will be used. Try not to reallocate these.
641void lsn(u_char hsn[], int i, int *preferred_reg)
642{
643 int j;
644 int b=-1;
645 for(j=0;j<9;j++)
646 {
647 if(i+j>=slen) {
648 j=slen-i-1;
649 break;
650 }
651 if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
652 {
653 // Don't go past an unconditonal jump
654 j++;
655 break;
656 }
657 }
658 for(;j>=0;j--)
659 {
660 if(rs1[i+j]) hsn[rs1[i+j]]=j;
661 if(rs2[i+j]) hsn[rs2[i+j]]=j;
662 if(rt1[i+j]) hsn[rt1[i+j]]=j;
663 if(rt2[i+j]) hsn[rt2[i+j]]=j;
664 if(itype[i+j]==STORE || itype[i+j]==STORELR) {
665 // Stores can allocate zero
666 hsn[rs1[i+j]]=j;
667 hsn[rs2[i+j]]=j;
668 }
669 // On some architectures stores need invc_ptr
670 #if defined(HOST_IMM8)
b9b61529 671 if(itype[i+j]==STORE || itype[i+j]==STORELR || (opcode[i+j]&0x3b)==0x39 || (opcode[i+j]&0x3b)==0x3a) {
57871462 672 hsn[INVCP]=j;
673 }
674 #endif
675 if(i+j>=0&&(itype[i+j]==UJUMP||itype[i+j]==CJUMP||itype[i+j]==SJUMP||itype[i+j]==FJUMP))
676 {
677 hsn[CCREG]=j;
678 b=j;
679 }
680 }
681 if(b>=0)
682 {
683 if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
684 {
685 // Follow first branch
686 int t=(ba[i+b]-start)>>2;
687 j=7-b;if(t+j>=slen) j=slen-t-1;
688 for(;j>=0;j--)
689 {
690 if(rs1[t+j]) if(hsn[rs1[t+j]]>j+b+2) hsn[rs1[t+j]]=j+b+2;
691 if(rs2[t+j]) if(hsn[rs2[t+j]]>j+b+2) hsn[rs2[t+j]]=j+b+2;
692 //if(rt1[t+j]) if(hsn[rt1[t+j]]>j+b+2) hsn[rt1[t+j]]=j+b+2;
693 //if(rt2[t+j]) if(hsn[rt2[t+j]]>j+b+2) hsn[rt2[t+j]]=j+b+2;
694 }
695 }
696 // TODO: preferred register based on backward branch
697 }
698 // Delay slot should preferably not overwrite branch conditions or cycle count
699 if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)) {
700 if(rs1[i-1]) if(hsn[rs1[i-1]]>1) hsn[rs1[i-1]]=1;
701 if(rs2[i-1]) if(hsn[rs2[i-1]]>1) hsn[rs2[i-1]]=1;
702 hsn[CCREG]=1;
703 // ...or hash tables
704 hsn[RHASH]=1;
705 hsn[RHTBL]=1;
706 }
707 // Coprocessor load/store needs FTEMP, even if not declared
b9b61529 708 if(itype[i]==C1LS||itype[i]==C2LS) {
57871462 709 hsn[FTEMP]=0;
710 }
711 // Load L/R also uses FTEMP as a temporary register
712 if(itype[i]==LOADLR) {
713 hsn[FTEMP]=0;
714 }
b7918751 715 // Also SWL/SWR/SDL/SDR
716 if(opcode[i]==0x2a||opcode[i]==0x2e||opcode[i]==0x2c||opcode[i]==0x2d) {
57871462 717 hsn[FTEMP]=0;
718 }
719 // Don't remove the TLB registers either
b9b61529 720 if(itype[i]==LOAD || itype[i]==LOADLR || itype[i]==STORE || itype[i]==STORELR || itype[i]==C1LS || itype[i]==C2LS) {
57871462 721 hsn[TLREG]=0;
722 }
723 // Don't remove the miniht registers
724 if(itype[i]==UJUMP||itype[i]==RJUMP)
725 {
726 hsn[RHASH]=0;
727 hsn[RHTBL]=0;
728 }
729}
730
731// We only want to allocate registers if we're going to use them again soon
732int needed_again(int r, int i)
733{
734 int j;
735 int b=-1;
736 int rn=10;
57871462 737
738 if(i>0&&(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000))
739 {
740 if(ba[i-1]<start || ba[i-1]>start+slen*4-4)
741 return 0; // Don't need any registers if exiting the block
742 }
743 for(j=0;j<9;j++)
744 {
745 if(i+j>=slen) {
746 j=slen-i-1;
747 break;
748 }
749 if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
750 {
751 // Don't go past an unconditonal jump
752 j++;
753 break;
754 }
1e973cb0 755 if(itype[i+j]==SYSCALL||itype[i+j]==HLECALL||itype[i+j]==INTCALL||((source[i+j]&0xfc00003f)==0x0d))
57871462 756 {
757 break;
758 }
759 }
760 for(;j>=1;j--)
761 {
762 if(rs1[i+j]==r) rn=j;
763 if(rs2[i+j]==r) rn=j;
764 if((unneeded_reg[i+j]>>r)&1) rn=10;
765 if(i+j>=0&&(itype[i+j]==UJUMP||itype[i+j]==CJUMP||itype[i+j]==SJUMP||itype[i+j]==FJUMP))
766 {
767 b=j;
768 }
769 }
770 /*
771 if(b>=0)
772 {
773 if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
774 {
775 // Follow first branch
776 int o=rn;
777 int t=(ba[i+b]-start)>>2;
778 j=7-b;if(t+j>=slen) j=slen-t-1;
779 for(;j>=0;j--)
780 {
781 if(!((unneeded_reg[t+j]>>r)&1)) {
782 if(rs1[t+j]==r) if(rn>j+b+2) rn=j+b+2;
783 if(rs2[t+j]==r) if(rn>j+b+2) rn=j+b+2;
784 }
785 else rn=o;
786 }
787 }
788 }*/
b7217e13 789 if(rn<10) return 1;
57871462 790 return 0;
791}
792
793// Try to match register allocations at the end of a loop with those
794// at the beginning
795int loop_reg(int i, int r, int hr)
796{
797 int j,k;
798 for(j=0;j<9;j++)
799 {
800 if(i+j>=slen) {
801 j=slen-i-1;
802 break;
803 }
804 if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
805 {
806 // Don't go past an unconditonal jump
807 j++;
808 break;
809 }
810 }
811 k=0;
812 if(i>0){
813 if(itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)
814 k--;
815 }
816 for(;k<j;k++)
817 {
818 if(r<64&&((unneeded_reg[i+k]>>r)&1)) return hr;
819 if(r>64&&((unneeded_reg_upper[i+k]>>r)&1)) return hr;
820 if(i+k>=0&&(itype[i+k]==UJUMP||itype[i+k]==CJUMP||itype[i+k]==SJUMP||itype[i+k]==FJUMP))
821 {
822 if(ba[i+k]>=start && ba[i+k]<(start+i*4))
823 {
824 int t=(ba[i+k]-start)>>2;
825 int reg=get_reg(regs[t].regmap_entry,r);
826 if(reg>=0) return reg;
827 //reg=get_reg(regs[t+1].regmap_entry,r);
828 //if(reg>=0) return reg;
829 }
830 }
831 }
832 return hr;
833}
834
835
836// Allocate every register, preserving source/target regs
837void alloc_all(struct regstat *cur,int i)
838{
839 int hr;
840
841 for(hr=0;hr<HOST_REGS;hr++) {
842 if(hr!=EXCLUDE_REG) {
843 if(((cur->regmap[hr]&63)!=rs1[i])&&((cur->regmap[hr]&63)!=rs2[i])&&
844 ((cur->regmap[hr]&63)!=rt1[i])&&((cur->regmap[hr]&63)!=rt2[i]))
845 {
846 cur->regmap[hr]=-1;
847 cur->dirty&=~(1<<hr);
848 }
849 // Don't need zeros
850 if((cur->regmap[hr]&63)==0)
851 {
852 cur->regmap[hr]=-1;
853 cur->dirty&=~(1<<hr);
854 }
855 }
856 }
857}
858
4600ba03 859#ifndef FORCE32
57871462 860void div64(int64_t dividend,int64_t divisor)
861{
862 lo=dividend/divisor;
863 hi=dividend%divisor;
864 //printf("TRACE: ddiv %8x%8x %8x%8x\n" ,(int)reg[HIREG],(int)(reg[HIREG]>>32)
865 // ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
866}
867void divu64(uint64_t dividend,uint64_t divisor)
868{
869 lo=dividend/divisor;
870 hi=dividend%divisor;
871 //printf("TRACE: ddivu %8x%8x %8x%8x\n",(int)reg[HIREG],(int)(reg[HIREG]>>32)
872 // ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
873}
874
875void mult64(uint64_t m1,uint64_t m2)
876{
877 unsigned long long int op1, op2, op3, op4;
878 unsigned long long int result1, result2, result3, result4;
879 unsigned long long int temp1, temp2, temp3, temp4;
880 int sign = 0;
881
882 if (m1 < 0)
883 {
884 op2 = -m1;
885 sign = 1 - sign;
886 }
887 else op2 = m1;
888 if (m2 < 0)
889 {
890 op4 = -m2;
891 sign = 1 - sign;
892 }
893 else op4 = m2;
894
895 op1 = op2 & 0xFFFFFFFF;
896 op2 = (op2 >> 32) & 0xFFFFFFFF;
897 op3 = op4 & 0xFFFFFFFF;
898 op4 = (op4 >> 32) & 0xFFFFFFFF;
899
900 temp1 = op1 * op3;
901 temp2 = (temp1 >> 32) + op1 * op4;
902 temp3 = op2 * op3;
903 temp4 = (temp3 >> 32) + op2 * op4;
904
905 result1 = temp1 & 0xFFFFFFFF;
906 result2 = temp2 + (temp3 & 0xFFFFFFFF);
907 result3 = (result2 >> 32) + temp4;
908 result4 = (result3 >> 32);
909
910 lo = result1 | (result2 << 32);
911 hi = (result3 & 0xFFFFFFFF) | (result4 << 32);
912 if (sign)
913 {
914 hi = ~hi;
915 if (!lo) hi++;
916 else lo = ~lo + 1;
917 }
918}
919
920void multu64(uint64_t m1,uint64_t m2)
921{
922 unsigned long long int op1, op2, op3, op4;
923 unsigned long long int result1, result2, result3, result4;
924 unsigned long long int temp1, temp2, temp3, temp4;
925
926 op1 = m1 & 0xFFFFFFFF;
927 op2 = (m1 >> 32) & 0xFFFFFFFF;
928 op3 = m2 & 0xFFFFFFFF;
929 op4 = (m2 >> 32) & 0xFFFFFFFF;
930
931 temp1 = op1 * op3;
932 temp2 = (temp1 >> 32) + op1 * op4;
933 temp3 = op2 * op3;
934 temp4 = (temp3 >> 32) + op2 * op4;
935
936 result1 = temp1 & 0xFFFFFFFF;
937 result2 = temp2 + (temp3 & 0xFFFFFFFF);
938 result3 = (result2 >> 32) + temp4;
939 result4 = (result3 >> 32);
940
941 lo = result1 | (result2 << 32);
942 hi = (result3 & 0xFFFFFFFF) | (result4 << 32);
943
944 //printf("TRACE: dmultu %8x%8x %8x%8x\n",(int)reg[HIREG],(int)(reg[HIREG]>>32)
945 // ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
946}
947
948uint64_t ldl_merge(uint64_t original,uint64_t loaded,u_int bits)
949{
950 if(bits) {
951 original<<=64-bits;
952 original>>=64-bits;
953 loaded<<=bits;
954 original|=loaded;
955 }
956 else original=loaded;
957 return original;
958}
959uint64_t ldr_merge(uint64_t original,uint64_t loaded,u_int bits)
960{
961 if(bits^56) {
962 original>>=64-(bits^56);
963 original<<=64-(bits^56);
964 loaded>>=bits^56;
965 original|=loaded;
966 }
967 else original=loaded;
968 return original;
969}
4600ba03 970#endif
57871462 971
972#ifdef __i386__
973#include "assem_x86.c"
974#endif
975#ifdef __x86_64__
976#include "assem_x64.c"
977#endif
978#ifdef __arm__
979#include "assem_arm.c"
980#endif
981
982// Add virtual address mapping to linked list
983void ll_add(struct ll_entry **head,int vaddr,void *addr)
984{
985 struct ll_entry *new_entry;
986 new_entry=malloc(sizeof(struct ll_entry));
987 assert(new_entry!=NULL);
988 new_entry->vaddr=vaddr;
989 new_entry->reg32=0;
990 new_entry->addr=addr;
991 new_entry->next=*head;
992 *head=new_entry;
993}
994
995// Add virtual address mapping for 32-bit compiled block
996void ll_add_32(struct ll_entry **head,int vaddr,u_int reg32,void *addr)
997{
7139f3c8 998 ll_add(head,vaddr,addr);
999#ifndef FORCE32
1000 (*head)->reg32=reg32;
1001#endif
57871462 1002}
1003
1004// Check if an address is already compiled
1005// but don't return addresses which are about to expire from the cache
1006void *check_addr(u_int vaddr)
1007{
1008 u_int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
1009 if(ht_bin[0]==vaddr) {
1010 if(((ht_bin[1]-MAX_OUTPUT_BLOCK_SIZE-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
1011 if(isclean(ht_bin[1])) return (void *)ht_bin[1];
1012 }
1013 if(ht_bin[2]==vaddr) {
1014 if(((ht_bin[3]-MAX_OUTPUT_BLOCK_SIZE-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
1015 if(isclean(ht_bin[3])) return (void *)ht_bin[3];
1016 }
94d23bb9 1017 u_int page=get_page(vaddr);
57871462 1018 struct ll_entry *head;
1019 head=jump_in[page];
1020 while(head!=NULL) {
1021 if(head->vaddr==vaddr&&head->reg32==0) {
1022 if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1023 // Update existing entry with current address
1024 if(ht_bin[0]==vaddr) {
1025 ht_bin[1]=(int)head->addr;
1026 return head->addr;
1027 }
1028 if(ht_bin[2]==vaddr) {
1029 ht_bin[3]=(int)head->addr;
1030 return head->addr;
1031 }
1032 // Insert into hash table with low priority.
1033 // Don't evict existing entries, as they are probably
1034 // addresses that are being accessed frequently.
1035 if(ht_bin[0]==-1) {
1036 ht_bin[1]=(int)head->addr;
1037 ht_bin[0]=vaddr;
1038 }else if(ht_bin[2]==-1) {
1039 ht_bin[3]=(int)head->addr;
1040 ht_bin[2]=vaddr;
1041 }
1042 return head->addr;
1043 }
1044 }
1045 head=head->next;
1046 }
1047 return 0;
1048}
1049
1050void remove_hash(int vaddr)
1051{
1052 //printf("remove hash: %x\n",vaddr);
1053 int *ht_bin=hash_table[(((vaddr)>>16)^vaddr)&0xFFFF];
1054 if(ht_bin[2]==vaddr) {
1055 ht_bin[2]=ht_bin[3]=-1;
1056 }
1057 if(ht_bin[0]==vaddr) {
1058 ht_bin[0]=ht_bin[2];
1059 ht_bin[1]=ht_bin[3];
1060 ht_bin[2]=ht_bin[3]=-1;
1061 }
1062}
1063
1064void ll_remove_matching_addrs(struct ll_entry **head,int addr,int shift)
1065{
1066 struct ll_entry *next;
1067 while(*head) {
1068 if(((u_int)((*head)->addr)>>shift)==(addr>>shift) ||
1069 ((u_int)((*head)->addr-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(addr>>shift))
1070 {
1071 inv_debug("EXP: Remove pointer to %x (%x)\n",(int)(*head)->addr,(*head)->vaddr);
1072 remove_hash((*head)->vaddr);
1073 next=(*head)->next;
1074 free(*head);
1075 *head=next;
1076 }
1077 else
1078 {
1079 head=&((*head)->next);
1080 }
1081 }
1082}
1083
1084// Remove all entries from linked list
1085void ll_clear(struct ll_entry **head)
1086{
1087 struct ll_entry *cur;
1088 struct ll_entry *next;
1089 if(cur=*head) {
1090 *head=0;
1091 while(cur) {
1092 next=cur->next;
1093 free(cur);
1094 cur=next;
1095 }
1096 }
1097}
1098
1099// Dereference the pointers and remove if it matches
1100void ll_kill_pointers(struct ll_entry *head,int addr,int shift)
1101{
1102 while(head) {
1103 int ptr=get_pointer(head->addr);
1104 inv_debug("EXP: Lookup pointer to %x at %x (%x)\n",(int)ptr,(int)head->addr,head->vaddr);
1105 if(((ptr>>shift)==(addr>>shift)) ||
1106 (((ptr-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(addr>>shift)))
1107 {
5088bb70 1108 inv_debug("EXP: Kill pointer at %x (%x)\n",(int)head->addr,head->vaddr);
f76eeef9 1109 u_int host_addr=(u_int)kill_pointer(head->addr);
dd3a91a1 1110 #ifdef __arm__
1111 needs_clear_cache[(host_addr-(u_int)BASE_ADDR)>>17]|=1<<(((host_addr-(u_int)BASE_ADDR)>>12)&31);
1112 #endif
57871462 1113 }
1114 head=head->next;
1115 }
1116}
1117
1118// This is called when we write to a compiled block (see do_invstub)
f76eeef9 1119void invalidate_page(u_int page)
57871462 1120{
57871462 1121 struct ll_entry *head;
1122 struct ll_entry *next;
1123 head=jump_in[page];
1124 jump_in[page]=0;
1125 while(head!=NULL) {
1126 inv_debug("INVALIDATE: %x\n",head->vaddr);
1127 remove_hash(head->vaddr);
1128 next=head->next;
1129 free(head);
1130 head=next;
1131 }
1132 head=jump_out[page];
1133 jump_out[page]=0;
1134 while(head!=NULL) {
1135 inv_debug("INVALIDATE: kill pointer to %x (%x)\n",head->vaddr,(int)head->addr);
f76eeef9 1136 u_int host_addr=(u_int)kill_pointer(head->addr);
dd3a91a1 1137 #ifdef __arm__
1138 needs_clear_cache[(host_addr-(u_int)BASE_ADDR)>>17]|=1<<(((host_addr-(u_int)BASE_ADDR)>>12)&31);
1139 #endif
57871462 1140 next=head->next;
1141 free(head);
1142 head=next;
1143 }
57871462 1144}
9be4ba64 1145
1146static void invalidate_block_range(u_int block, u_int first, u_int last)
57871462 1147{
94d23bb9 1148 u_int page=get_page(block<<12);
57871462 1149 //printf("first=%d last=%d\n",first,last);
f76eeef9 1150 invalidate_page(page);
57871462 1151 assert(first+5>page); // NB: this assumes MAXBLOCK<=4096 (4 pages)
1152 assert(last<page+5);
1153 // Invalidate the adjacent pages if a block crosses a 4K boundary
1154 while(first<page) {
1155 invalidate_page(first);
1156 first++;
1157 }
1158 for(first=page+1;first<last;first++) {
1159 invalidate_page(first);
1160 }
dd3a91a1 1161 #ifdef __arm__
1162 do_clear_cache();
1163 #endif
57871462 1164
1165 // Don't trap writes
1166 invalid_code[block]=1;
94d23bb9 1167#ifndef DISABLE_TLB
57871462 1168 // If there is a valid TLB entry for this page, remove write protect
1169 if(tlb_LUT_w[block]) {
1170 assert(tlb_LUT_r[block]==tlb_LUT_w[block]);
1171 // CHECK: Is this right?
1172 memory_map[block]=((tlb_LUT_w[block]&0xFFFFF000)-(block<<12)+(unsigned int)rdram-0x80000000)>>2;
1173 u_int real_block=tlb_LUT_w[block]>>12;
1174 invalid_code[real_block]=1;
1175 if(real_block>=0x80000&&real_block<0x80800) memory_map[real_block]=((u_int)rdram-0x80000000)>>2;
1176 }
1177 else if(block>=0x80000&&block<0x80800) memory_map[block]=((u_int)rdram-0x80000000)>>2;
94d23bb9 1178#endif
f76eeef9 1179
57871462 1180 #ifdef USE_MINI_HT
1181 memset(mini_ht,-1,sizeof(mini_ht));
1182 #endif
1183}
9be4ba64 1184
1185void invalidate_block(u_int block)
1186{
1187 u_int page=get_page(block<<12);
1188 u_int vpage=get_vpage(block<<12);
1189 inv_debug("INVALIDATE: %x (%d)\n",block<<12,page);
1190 //inv_debug("invalid_code[block]=%d\n",invalid_code[block]);
1191 u_int first,last;
1192 first=last=page;
1193 struct ll_entry *head;
1194 head=jump_dirty[vpage];
1195 //printf("page=%d vpage=%d\n",page,vpage);
1196 while(head!=NULL) {
1197 u_int start,end;
1198 if(vpage>2047||(head->vaddr>>12)==block) { // Ignore vaddr hash collision
1199 get_bounds((int)head->addr,&start,&end);
1200 //printf("start: %x end: %x\n",start,end);
1201 if(page<2048&&start>=0x80000000&&end<0x80000000+RAM_SIZE) {
1202 if(((start-(u_int)rdram)>>12)<=page&&((end-1-(u_int)rdram)>>12)>=page) {
1203 if((((start-(u_int)rdram)>>12)&2047)<first) first=((start-(u_int)rdram)>>12)&2047;
1204 if((((end-1-(u_int)rdram)>>12)&2047)>last) last=((end-1-(u_int)rdram)>>12)&2047;
1205 }
1206 }
1207#ifndef DISABLE_TLB
1208 if(page<2048&&(signed int)start>=(signed int)0xC0000000&&(signed int)end>=(signed int)0xC0000000) {
1209 if(((start+memory_map[start>>12]-(u_int)rdram)>>12)<=page&&((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)>=page) {
1210 if((((start+memory_map[start>>12]-(u_int)rdram)>>12)&2047)<first) first=((start+memory_map[start>>12]-(u_int)rdram)>>12)&2047;
1211 if((((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)&2047)>last) last=((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)&2047;
1212 }
1213 }
1214#endif
1215 }
1216 head=head->next;
1217 }
1218 invalidate_block_range(block,first,last);
1219}
1220
57871462 1221void invalidate_addr(u_int addr)
1222{
9be4ba64 1223#ifdef PCSX
1224 //static int rhits;
1225 // this check is done by the caller
1226 //if (inv_code_start<=addr&&addr<=inv_code_end) { rhits++; return; }
1227 u_int page=get_page(addr);
1228 if(page<2048) { // RAM
1229 struct ll_entry *head;
1230 u_int addr_min=~0, addr_max=0;
1231 int mask=RAM_SIZE-1;
1232 int pg1;
1233 inv_code_start=addr&~0xfff;
1234 inv_code_end=addr|0xfff;
1235 pg1=page;
1236 if (pg1>0) {
1237 // must check previous page too because of spans..
1238 pg1--;
1239 inv_code_start-=0x1000;
1240 }
1241 for(;pg1<=page;pg1++) {
1242 for(head=jump_dirty[pg1];head!=NULL;head=head->next) {
1243 u_int start,end;
1244 get_bounds((int)head->addr,&start,&end);
1245 if((start&mask)<=(addr&mask)&&(addr&mask)<(end&mask)) {
1246 if(start<addr_min) addr_min=start;
1247 if(end>addr_max) addr_max=end;
1248 }
1249 else if(addr<start) {
1250 if(start<inv_code_end)
1251 inv_code_end=start-1;
1252 }
1253 else {
1254 if(end>inv_code_start)
1255 inv_code_start=end;
1256 }
1257 }
1258 }
1259 if (addr_min!=~0) {
1260 inv_debug("INV ADDR: %08x hit %08x-%08x\n", addr, addr_min, addr_max);
1261 inv_code_start=inv_code_end=~0;
1262 invalidate_block_range(addr>>12,(addr_min&mask)>>12,(addr_max&mask)>>12);
1263 return;
1264 }
1265 else {
1266 inv_debug("INV ADDR: %08x miss, inv %08x-%08x, sk %d\n", addr, inv_code_start, inv_code_end, 0);//rhits);
1267 }
1268 //rhits=0;
1269 if(page!=0) // FIXME: don't know what's up with page 0 (Klonoa)
1270 return;
1271 }
1272#endif
57871462 1273 invalidate_block(addr>>12);
1274}
9be4ba64 1275
dd3a91a1 1276// This is called when loading a save state.
1277// Anything could have changed, so invalidate everything.
57871462 1278void invalidate_all_pages()
1279{
1280 u_int page,n;
1281 for(page=0;page<4096;page++)
1282 invalidate_page(page);
1283 for(page=0;page<1048576;page++)
1284 if(!invalid_code[page]) {
1285 restore_candidate[(page&2047)>>3]|=1<<(page&7);
1286 restore_candidate[((page&2047)>>3)+256]|=1<<(page&7);
1287 }
1288 #ifdef __arm__
1289 __clear_cache((void *)BASE_ADDR,(void *)BASE_ADDR+(1<<TARGET_SIZE_2));
1290 #endif
1291 #ifdef USE_MINI_HT
1292 memset(mini_ht,-1,sizeof(mini_ht));
1293 #endif
94d23bb9 1294 #ifndef DISABLE_TLB
57871462 1295 // TLB
1296 for(page=0;page<0x100000;page++) {
1297 if(tlb_LUT_r[page]) {
1298 memory_map[page]=((tlb_LUT_r[page]&0xFFFFF000)-(page<<12)+(unsigned int)rdram-0x80000000)>>2;
1299 if(!tlb_LUT_w[page]||!invalid_code[page])
1300 memory_map[page]|=0x40000000; // Write protect
1301 }
1302 else memory_map[page]=-1;
1303 if(page==0x80000) page=0xC0000;
1304 }
1305 tlb_hacks();
94d23bb9 1306 #endif
57871462 1307}
1308
1309// Add an entry to jump_out after making a link
1310void add_link(u_int vaddr,void *src)
1311{
94d23bb9 1312 u_int page=get_page(vaddr);
57871462 1313 inv_debug("add_link: %x -> %x (%d)\n",(int)src,vaddr,page);
76f71c27 1314 int *ptr=(int *)(src+4);
1315 assert((*ptr&0x0fff0000)==0x059f0000);
57871462 1316 ll_add(jump_out+page,vaddr,src);
1317 //int ptr=get_pointer(src);
1318 //inv_debug("add_link: Pointer is to %x\n",(int)ptr);
1319}
1320
1321// If a code block was found to be unmodified (bit was set in
1322// restore_candidate) and it remains unmodified (bit is clear
1323// in invalid_code) then move the entries for that 4K page from
1324// the dirty list to the clean list.
1325void clean_blocks(u_int page)
1326{
1327 struct ll_entry *head;
1328 inv_debug("INV: clean_blocks page=%d\n",page);
1329 head=jump_dirty[page];
1330 while(head!=NULL) {
1331 if(!invalid_code[head->vaddr>>12]) {
1332 // Don't restore blocks which are about to expire from the cache
1333 if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1334 u_int start,end;
1335 if(verify_dirty((int)head->addr)) {
1336 //printf("Possibly Restore %x (%x)\n",head->vaddr, (int)head->addr);
1337 u_int i;
1338 u_int inv=0;
1339 get_bounds((int)head->addr,&start,&end);
4cb76aa4 1340 if(start-(u_int)rdram<RAM_SIZE) {
57871462 1341 for(i=(start-(u_int)rdram+0x80000000)>>12;i<=(end-1-(u_int)rdram+0x80000000)>>12;i++) {
1342 inv|=invalid_code[i];
1343 }
1344 }
63cb0298 1345#ifndef DISABLE_TLB
57871462 1346 if((signed int)head->vaddr>=(signed int)0xC0000000) {
1347 u_int addr = (head->vaddr+(memory_map[head->vaddr>>12]<<2));
1348 //printf("addr=%x start=%x end=%x\n",addr,start,end);
1349 if(addr<start||addr>=end) inv=1;
1350 }
63cb0298 1351#endif
4cb76aa4 1352 else if((signed int)head->vaddr>=(signed int)0x80000000+RAM_SIZE) {
57871462 1353 inv=1;
1354 }
1355 if(!inv) {
1356 void * clean_addr=(void *)get_clean_addr((int)head->addr);
1357 if((((u_int)clean_addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1358 u_int ppage=page;
94d23bb9 1359#ifndef DISABLE_TLB
57871462 1360 if(page<2048&&tlb_LUT_r[head->vaddr>>12]) ppage=(tlb_LUT_r[head->vaddr>>12]^0x80000000)>>12;
94d23bb9 1361#endif
57871462 1362 inv_debug("INV: Restored %x (%x/%x)\n",head->vaddr, (int)head->addr, (int)clean_addr);
1363 //printf("page=%x, addr=%x\n",page,head->vaddr);
1364 //assert(head->vaddr>>12==(page|0x80000));
1365 ll_add_32(jump_in+ppage,head->vaddr,head->reg32,clean_addr);
1366 int *ht_bin=hash_table[((head->vaddr>>16)^head->vaddr)&0xFFFF];
1367 if(!head->reg32) {
1368 if(ht_bin[0]==head->vaddr) {
1369 ht_bin[1]=(int)clean_addr; // Replace existing entry
1370 }
1371 if(ht_bin[2]==head->vaddr) {
1372 ht_bin[3]=(int)clean_addr; // Replace existing entry
1373 }
1374 }
1375 }
1376 }
1377 }
1378 }
1379 }
1380 head=head->next;
1381 }
1382}
1383
1384
1385void mov_alloc(struct regstat *current,int i)
1386{
1387 // Note: Don't need to actually alloc the source registers
1388 if((~current->is32>>rs1[i])&1) {
1389 //alloc_reg64(current,i,rs1[i]);
1390 alloc_reg64(current,i,rt1[i]);
1391 current->is32&=~(1LL<<rt1[i]);
1392 } else {
1393 //alloc_reg(current,i,rs1[i]);
1394 alloc_reg(current,i,rt1[i]);
1395 current->is32|=(1LL<<rt1[i]);
1396 }
1397 clear_const(current,rs1[i]);
1398 clear_const(current,rt1[i]);
1399 dirty_reg(current,rt1[i]);
1400}
1401
1402void shiftimm_alloc(struct regstat *current,int i)
1403{
57871462 1404 if(opcode2[i]<=0x3) // SLL/SRL/SRA
1405 {
1406 if(rt1[i]) {
1407 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1408 else lt1[i]=rs1[i];
1409 alloc_reg(current,i,rt1[i]);
1410 current->is32|=1LL<<rt1[i];
1411 dirty_reg(current,rt1[i]);
dc49e339 1412 if(is_const(current,rs1[i])) {
1413 int v=get_const(current,rs1[i]);
1414 if(opcode2[i]==0x00) set_const(current,rt1[i],v<<imm[i]);
1415 if(opcode2[i]==0x02) set_const(current,rt1[i],(u_int)v>>imm[i]);
1416 if(opcode2[i]==0x03) set_const(current,rt1[i],v>>imm[i]);
1417 }
1418 else clear_const(current,rt1[i]);
57871462 1419 }
1420 }
dc49e339 1421 else
1422 {
1423 clear_const(current,rs1[i]);
1424 clear_const(current,rt1[i]);
1425 }
1426
57871462 1427 if(opcode2[i]>=0x38&&opcode2[i]<=0x3b) // DSLL/DSRL/DSRA
1428 {
1429 if(rt1[i]) {
1430 if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1431 alloc_reg64(current,i,rt1[i]);
1432 current->is32&=~(1LL<<rt1[i]);
1433 dirty_reg(current,rt1[i]);
1434 }
1435 }
1436 if(opcode2[i]==0x3c) // DSLL32
1437 {
1438 if(rt1[i]) {
1439 if(rs1[i]) alloc_reg(current,i,rs1[i]);
1440 alloc_reg64(current,i,rt1[i]);
1441 current->is32&=~(1LL<<rt1[i]);
1442 dirty_reg(current,rt1[i]);
1443 }
1444 }
1445 if(opcode2[i]==0x3e) // DSRL32
1446 {
1447 if(rt1[i]) {
1448 alloc_reg64(current,i,rs1[i]);
1449 if(imm[i]==32) {
1450 alloc_reg64(current,i,rt1[i]);
1451 current->is32&=~(1LL<<rt1[i]);
1452 } else {
1453 alloc_reg(current,i,rt1[i]);
1454 current->is32|=1LL<<rt1[i];
1455 }
1456 dirty_reg(current,rt1[i]);
1457 }
1458 }
1459 if(opcode2[i]==0x3f) // DSRA32
1460 {
1461 if(rt1[i]) {
1462 alloc_reg64(current,i,rs1[i]);
1463 alloc_reg(current,i,rt1[i]);
1464 current->is32|=1LL<<rt1[i];
1465 dirty_reg(current,rt1[i]);
1466 }
1467 }
1468}
1469
1470void shift_alloc(struct regstat *current,int i)
1471{
1472 if(rt1[i]) {
1473 if(opcode2[i]<=0x07) // SLLV/SRLV/SRAV
1474 {
1475 if(rs1[i]) alloc_reg(current,i,rs1[i]);
1476 if(rs2[i]) alloc_reg(current,i,rs2[i]);
1477 alloc_reg(current,i,rt1[i]);
e1190b87 1478 if(rt1[i]==rs2[i]) {
1479 alloc_reg_temp(current,i,-1);
1480 minimum_free_regs[i]=1;
1481 }
57871462 1482 current->is32|=1LL<<rt1[i];
1483 } else { // DSLLV/DSRLV/DSRAV
1484 if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1485 if(rs2[i]) alloc_reg(current,i,rs2[i]);
1486 alloc_reg64(current,i,rt1[i]);
1487 current->is32&=~(1LL<<rt1[i]);
1488 if(opcode2[i]==0x16||opcode2[i]==0x17) // DSRLV and DSRAV need a temporary register
e1190b87 1489 {
57871462 1490 alloc_reg_temp(current,i,-1);
e1190b87 1491 minimum_free_regs[i]=1;
1492 }
57871462 1493 }
1494 clear_const(current,rs1[i]);
1495 clear_const(current,rs2[i]);
1496 clear_const(current,rt1[i]);
1497 dirty_reg(current,rt1[i]);
1498 }
1499}
1500
1501void alu_alloc(struct regstat *current,int i)
1502{
1503 if(opcode2[i]>=0x20&&opcode2[i]<=0x23) { // ADD/ADDU/SUB/SUBU
1504 if(rt1[i]) {
1505 if(rs1[i]&&rs2[i]) {
1506 alloc_reg(current,i,rs1[i]);
1507 alloc_reg(current,i,rs2[i]);
1508 }
1509 else {
1510 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1511 if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg(current,i,rs2[i]);
1512 }
1513 alloc_reg(current,i,rt1[i]);
1514 }
1515 current->is32|=1LL<<rt1[i];
1516 }
1517 if(opcode2[i]==0x2a||opcode2[i]==0x2b) { // SLT/SLTU
1518 if(rt1[i]) {
1519 if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1520 {
1521 alloc_reg64(current,i,rs1[i]);
1522 alloc_reg64(current,i,rs2[i]);
1523 alloc_reg(current,i,rt1[i]);
1524 } else {
1525 alloc_reg(current,i,rs1[i]);
1526 alloc_reg(current,i,rs2[i]);
1527 alloc_reg(current,i,rt1[i]);
1528 }
1529 }
1530 current->is32|=1LL<<rt1[i];
1531 }
1532 if(opcode2[i]>=0x24&&opcode2[i]<=0x27) { // AND/OR/XOR/NOR
1533 if(rt1[i]) {
1534 if(rs1[i]&&rs2[i]) {
1535 alloc_reg(current,i,rs1[i]);
1536 alloc_reg(current,i,rs2[i]);
1537 }
1538 else
1539 {
1540 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1541 if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg(current,i,rs2[i]);
1542 }
1543 alloc_reg(current,i,rt1[i]);
1544 if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1545 {
1546 if(!((current->uu>>rt1[i])&1)) {
1547 alloc_reg64(current,i,rt1[i]);
1548 }
1549 if(get_reg(current->regmap,rt1[i]|64)>=0) {
1550 if(rs1[i]&&rs2[i]) {
1551 alloc_reg64(current,i,rs1[i]);
1552 alloc_reg64(current,i,rs2[i]);
1553 }
1554 else
1555 {
1556 // Is is really worth it to keep 64-bit values in registers?
1557 #ifdef NATIVE_64BIT
1558 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg64(current,i,rs1[i]);
1559 if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg64(current,i,rs2[i]);
1560 #endif
1561 }
1562 }
1563 current->is32&=~(1LL<<rt1[i]);
1564 } else {
1565 current->is32|=1LL<<rt1[i];
1566 }
1567 }
1568 }
1569 if(opcode2[i]>=0x2c&&opcode2[i]<=0x2f) { // DADD/DADDU/DSUB/DSUBU
1570 if(rt1[i]) {
1571 if(rs1[i]&&rs2[i]) {
1572 if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1573 alloc_reg64(current,i,rs1[i]);
1574 alloc_reg64(current,i,rs2[i]);
1575 alloc_reg64(current,i,rt1[i]);
1576 } else {
1577 alloc_reg(current,i,rs1[i]);
1578 alloc_reg(current,i,rs2[i]);
1579 alloc_reg(current,i,rt1[i]);
1580 }
1581 }
1582 else {
1583 alloc_reg(current,i,rt1[i]);
1584 if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1585 // DADD used as move, or zeroing
1586 // If we have a 64-bit source, then make the target 64 bits too
1587 if(rs1[i]&&!((current->is32>>rs1[i])&1)) {
1588 if(get_reg(current->regmap,rs1[i])>=0) alloc_reg64(current,i,rs1[i]);
1589 alloc_reg64(current,i,rt1[i]);
1590 } else if(rs2[i]&&!((current->is32>>rs2[i])&1)) {
1591 if(get_reg(current->regmap,rs2[i])>=0) alloc_reg64(current,i,rs2[i]);
1592 alloc_reg64(current,i,rt1[i]);
1593 }
1594 if(opcode2[i]>=0x2e&&rs2[i]) {
1595 // DSUB used as negation - 64-bit result
1596 // If we have a 32-bit register, extend it to 64 bits
1597 if(get_reg(current->regmap,rs2[i])>=0) alloc_reg64(current,i,rs2[i]);
1598 alloc_reg64(current,i,rt1[i]);
1599 }
1600 }
1601 }
1602 if(rs1[i]&&rs2[i]) {
1603 current->is32&=~(1LL<<rt1[i]);
1604 } else if(rs1[i]) {
1605 current->is32&=~(1LL<<rt1[i]);
1606 if((current->is32>>rs1[i])&1)
1607 current->is32|=1LL<<rt1[i];
1608 } else if(rs2[i]) {
1609 current->is32&=~(1LL<<rt1[i]);
1610 if((current->is32>>rs2[i])&1)
1611 current->is32|=1LL<<rt1[i];
1612 } else {
1613 current->is32|=1LL<<rt1[i];
1614 }
1615 }
1616 }
1617 clear_const(current,rs1[i]);
1618 clear_const(current,rs2[i]);
1619 clear_const(current,rt1[i]);
1620 dirty_reg(current,rt1[i]);
1621}
1622
1623void imm16_alloc(struct regstat *current,int i)
1624{
1625 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1626 else lt1[i]=rs1[i];
1627 if(rt1[i]) alloc_reg(current,i,rt1[i]);
1628 if(opcode[i]==0x18||opcode[i]==0x19) { // DADDI/DADDIU
1629 current->is32&=~(1LL<<rt1[i]);
1630 if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1631 // TODO: Could preserve the 32-bit flag if the immediate is zero
1632 alloc_reg64(current,i,rt1[i]);
1633 alloc_reg64(current,i,rs1[i]);
1634 }
1635 clear_const(current,rs1[i]);
1636 clear_const(current,rt1[i]);
1637 }
1638 else if(opcode[i]==0x0a||opcode[i]==0x0b) { // SLTI/SLTIU
1639 if((~current->is32>>rs1[i])&1) alloc_reg64(current,i,rs1[i]);
1640 current->is32|=1LL<<rt1[i];
1641 clear_const(current,rs1[i]);
1642 clear_const(current,rt1[i]);
1643 }
1644 else if(opcode[i]>=0x0c&&opcode[i]<=0x0e) { // ANDI/ORI/XORI
1645 if(((~current->is32>>rs1[i])&1)&&opcode[i]>0x0c) {
1646 if(rs1[i]!=rt1[i]) {
1647 if(needed_again(rs1[i],i)) alloc_reg64(current,i,rs1[i]);
1648 alloc_reg64(current,i,rt1[i]);
1649 current->is32&=~(1LL<<rt1[i]);
1650 }
1651 }
1652 else current->is32|=1LL<<rt1[i]; // ANDI clears upper bits
1653 if(is_const(current,rs1[i])) {
1654 int v=get_const(current,rs1[i]);
1655 if(opcode[i]==0x0c) set_const(current,rt1[i],v&imm[i]);
1656 if(opcode[i]==0x0d) set_const(current,rt1[i],v|imm[i]);
1657 if(opcode[i]==0x0e) set_const(current,rt1[i],v^imm[i]);
1658 }
1659 else clear_const(current,rt1[i]);
1660 }
1661 else if(opcode[i]==0x08||opcode[i]==0x09) { // ADDI/ADDIU
1662 if(is_const(current,rs1[i])) {
1663 int v=get_const(current,rs1[i]);
1664 set_const(current,rt1[i],v+imm[i]);
1665 }
1666 else clear_const(current,rt1[i]);
1667 current->is32|=1LL<<rt1[i];
1668 }
1669 else {
1670 set_const(current,rt1[i],((long long)((short)imm[i]))<<16); // LUI
1671 current->is32|=1LL<<rt1[i];
1672 }
1673 dirty_reg(current,rt1[i]);
1674}
1675
1676void load_alloc(struct regstat *current,int i)
1677{
1678 clear_const(current,rt1[i]);
1679 //if(rs1[i]!=rt1[i]&&needed_again(rs1[i],i)) clear_const(current,rs1[i]); // Does this help or hurt?
1680 if(!rs1[i]) current->u&=~1LL; // Allow allocating r0 if it's the source register
1681 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
373d1d07 1682 if(rt1[i]&&!((current->u>>rt1[i])&1)) {
57871462 1683 alloc_reg(current,i,rt1[i]);
373d1d07 1684 assert(get_reg(current->regmap,rt1[i])>=0);
57871462 1685 if(opcode[i]==0x27||opcode[i]==0x37) // LWU/LD
1686 {
1687 current->is32&=~(1LL<<rt1[i]);
1688 alloc_reg64(current,i,rt1[i]);
1689 }
1690 else if(opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
1691 {
1692 current->is32&=~(1LL<<rt1[i]);
1693 alloc_reg64(current,i,rt1[i]);
1694 alloc_all(current,i);
1695 alloc_reg64(current,i,FTEMP);
e1190b87 1696 minimum_free_regs[i]=HOST_REGS;
57871462 1697 }
1698 else current->is32|=1LL<<rt1[i];
1699 dirty_reg(current,rt1[i]);
1700 // If using TLB, need a register for pointer to the mapping table
1701 if(using_tlb) alloc_reg(current,i,TLREG);
1702 // LWL/LWR need a temporary register for the old value
1703 if(opcode[i]==0x22||opcode[i]==0x26)
1704 {
1705 alloc_reg(current,i,FTEMP);
1706 alloc_reg_temp(current,i,-1);
e1190b87 1707 minimum_free_regs[i]=1;
57871462 1708 }
1709 }
1710 else
1711 {
373d1d07 1712 // Load to r0 or unneeded register (dummy load)
57871462 1713 // but we still need a register to calculate the address
535d208a 1714 if(opcode[i]==0x22||opcode[i]==0x26)
1715 {
1716 alloc_reg(current,i,FTEMP); // LWL/LWR need another temporary
1717 }
373d1d07 1718 // If using TLB, need a register for pointer to the mapping table
1719 if(using_tlb) alloc_reg(current,i,TLREG);
57871462 1720 alloc_reg_temp(current,i,-1);
e1190b87 1721 minimum_free_regs[i]=1;
535d208a 1722 if(opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
1723 {
1724 alloc_all(current,i);
1725 alloc_reg64(current,i,FTEMP);
e1190b87 1726 minimum_free_regs[i]=HOST_REGS;
535d208a 1727 }
57871462 1728 }
1729}
1730
1731void store_alloc(struct regstat *current,int i)
1732{
1733 clear_const(current,rs2[i]);
1734 if(!(rs2[i])) current->u&=~1LL; // Allow allocating r0 if necessary
1735 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1736 alloc_reg(current,i,rs2[i]);
1737 if(opcode[i]==0x2c||opcode[i]==0x2d||opcode[i]==0x3f) { // 64-bit SDL/SDR/SD
1738 alloc_reg64(current,i,rs2[i]);
1739 if(rs2[i]) alloc_reg(current,i,FTEMP);
1740 }
1741 // If using TLB, need a register for pointer to the mapping table
1742 if(using_tlb) alloc_reg(current,i,TLREG);
1743 #if defined(HOST_IMM8)
1744 // On CPUs without 32-bit immediates we need a pointer to invalid_code
1745 else alloc_reg(current,i,INVCP);
1746 #endif
b7918751 1747 if(opcode[i]==0x2a||opcode[i]==0x2e||opcode[i]==0x2c||opcode[i]==0x2d) { // SWL/SWL/SDL/SDR
57871462 1748 alloc_reg(current,i,FTEMP);
1749 }
1750 // We need a temporary register for address generation
1751 alloc_reg_temp(current,i,-1);
e1190b87 1752 minimum_free_regs[i]=1;
57871462 1753}
1754
1755void c1ls_alloc(struct regstat *current,int i)
1756{
1757 //clear_const(current,rs1[i]); // FIXME
1758 clear_const(current,rt1[i]);
1759 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1760 alloc_reg(current,i,CSREG); // Status
1761 alloc_reg(current,i,FTEMP);
1762 if(opcode[i]==0x35||opcode[i]==0x3d) { // 64-bit LDC1/SDC1
1763 alloc_reg64(current,i,FTEMP);
1764 }
1765 // If using TLB, need a register for pointer to the mapping table
1766 if(using_tlb) alloc_reg(current,i,TLREG);
1767 #if defined(HOST_IMM8)
1768 // On CPUs without 32-bit immediates we need a pointer to invalid_code
1769 else if((opcode[i]&0x3b)==0x39) // SWC1/SDC1
1770 alloc_reg(current,i,INVCP);
1771 #endif
1772 // We need a temporary register for address generation
1773 alloc_reg_temp(current,i,-1);
1774}
1775
b9b61529 1776void c2ls_alloc(struct regstat *current,int i)
1777{
1778 clear_const(current,rt1[i]);
1779 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1780 alloc_reg(current,i,FTEMP);
1781 // If using TLB, need a register for pointer to the mapping table
1782 if(using_tlb) alloc_reg(current,i,TLREG);
1783 #if defined(HOST_IMM8)
1784 // On CPUs without 32-bit immediates we need a pointer to invalid_code
1785 else if((opcode[i]&0x3b)==0x3a) // SWC2/SDC2
1786 alloc_reg(current,i,INVCP);
1787 #endif
1788 // We need a temporary register for address generation
1789 alloc_reg_temp(current,i,-1);
e1190b87 1790 minimum_free_regs[i]=1;
b9b61529 1791}
1792
57871462 1793#ifndef multdiv_alloc
1794void multdiv_alloc(struct regstat *current,int i)
1795{
1796 // case 0x18: MULT
1797 // case 0x19: MULTU
1798 // case 0x1A: DIV
1799 // case 0x1B: DIVU
1800 // case 0x1C: DMULT
1801 // case 0x1D: DMULTU
1802 // case 0x1E: DDIV
1803 // case 0x1F: DDIVU
1804 clear_const(current,rs1[i]);
1805 clear_const(current,rs2[i]);
1806 if(rs1[i]&&rs2[i])
1807 {
1808 if((opcode2[i]&4)==0) // 32-bit
1809 {
1810 current->u&=~(1LL<<HIREG);
1811 current->u&=~(1LL<<LOREG);
1812 alloc_reg(current,i,HIREG);
1813 alloc_reg(current,i,LOREG);
1814 alloc_reg(current,i,rs1[i]);
1815 alloc_reg(current,i,rs2[i]);
1816 current->is32|=1LL<<HIREG;
1817 current->is32|=1LL<<LOREG;
1818 dirty_reg(current,HIREG);
1819 dirty_reg(current,LOREG);
1820 }
1821 else // 64-bit
1822 {
1823 current->u&=~(1LL<<HIREG);
1824 current->u&=~(1LL<<LOREG);
1825 current->uu&=~(1LL<<HIREG);
1826 current->uu&=~(1LL<<LOREG);
1827 alloc_reg64(current,i,HIREG);
1828 //if(HOST_REGS>10) alloc_reg64(current,i,LOREG);
1829 alloc_reg64(current,i,rs1[i]);
1830 alloc_reg64(current,i,rs2[i]);
1831 alloc_all(current,i);
1832 current->is32&=~(1LL<<HIREG);
1833 current->is32&=~(1LL<<LOREG);
1834 dirty_reg(current,HIREG);
1835 dirty_reg(current,LOREG);
e1190b87 1836 minimum_free_regs[i]=HOST_REGS;
57871462 1837 }
1838 }
1839 else
1840 {
1841 // Multiply by zero is zero.
1842 // MIPS does not have a divide by zero exception.
1843 // The result is undefined, we return zero.
1844 alloc_reg(current,i,HIREG);
1845 alloc_reg(current,i,LOREG);
1846 current->is32|=1LL<<HIREG;
1847 current->is32|=1LL<<LOREG;
1848 dirty_reg(current,HIREG);
1849 dirty_reg(current,LOREG);
1850 }
1851}
1852#endif
1853
1854void cop0_alloc(struct regstat *current,int i)
1855{
1856 if(opcode2[i]==0) // MFC0
1857 {
1858 if(rt1[i]) {
1859 clear_const(current,rt1[i]);
1860 alloc_all(current,i);
1861 alloc_reg(current,i,rt1[i]);
1862 current->is32|=1LL<<rt1[i];
1863 dirty_reg(current,rt1[i]);
1864 }
1865 }
1866 else if(opcode2[i]==4) // MTC0
1867 {
1868 if(rs1[i]){
1869 clear_const(current,rs1[i]);
1870 alloc_reg(current,i,rs1[i]);
1871 alloc_all(current,i);
1872 }
1873 else {
1874 alloc_all(current,i); // FIXME: Keep r0
1875 current->u&=~1LL;
1876 alloc_reg(current,i,0);
1877 }
1878 }
1879 else
1880 {
1881 // TLBR/TLBWI/TLBWR/TLBP/ERET
1882 assert(opcode2[i]==0x10);
1883 alloc_all(current,i);
1884 }
e1190b87 1885 minimum_free_regs[i]=HOST_REGS;
57871462 1886}
1887
1888void cop1_alloc(struct regstat *current,int i)
1889{
1890 alloc_reg(current,i,CSREG); // Load status
1891 if(opcode2[i]<3) // MFC1/DMFC1/CFC1
1892 {
7de557a6 1893 if(rt1[i]){
1894 clear_const(current,rt1[i]);
1895 if(opcode2[i]==1) {
1896 alloc_reg64(current,i,rt1[i]); // DMFC1
1897 current->is32&=~(1LL<<rt1[i]);
1898 }else{
1899 alloc_reg(current,i,rt1[i]); // MFC1/CFC1
1900 current->is32|=1LL<<rt1[i];
1901 }
1902 dirty_reg(current,rt1[i]);
57871462 1903 }
57871462 1904 alloc_reg_temp(current,i,-1);
1905 }
1906 else if(opcode2[i]>3) // MTC1/DMTC1/CTC1
1907 {
1908 if(rs1[i]){
1909 clear_const(current,rs1[i]);
1910 if(opcode2[i]==5)
1911 alloc_reg64(current,i,rs1[i]); // DMTC1
1912 else
1913 alloc_reg(current,i,rs1[i]); // MTC1/CTC1
1914 alloc_reg_temp(current,i,-1);
1915 }
1916 else {
1917 current->u&=~1LL;
1918 alloc_reg(current,i,0);
1919 alloc_reg_temp(current,i,-1);
1920 }
1921 }
e1190b87 1922 minimum_free_regs[i]=1;
57871462 1923}
1924void fconv_alloc(struct regstat *current,int i)
1925{
1926 alloc_reg(current,i,CSREG); // Load status
1927 alloc_reg_temp(current,i,-1);
e1190b87 1928 minimum_free_regs[i]=1;
57871462 1929}
1930void float_alloc(struct regstat *current,int i)
1931{
1932 alloc_reg(current,i,CSREG); // Load status
1933 alloc_reg_temp(current,i,-1);
e1190b87 1934 minimum_free_regs[i]=1;
57871462 1935}
b9b61529 1936void c2op_alloc(struct regstat *current,int i)
1937{
1938 alloc_reg_temp(current,i,-1);
1939}
57871462 1940void fcomp_alloc(struct regstat *current,int i)
1941{
1942 alloc_reg(current,i,CSREG); // Load status
1943 alloc_reg(current,i,FSREG); // Load flags
1944 dirty_reg(current,FSREG); // Flag will be modified
1945 alloc_reg_temp(current,i,-1);
e1190b87 1946 minimum_free_regs[i]=1;
57871462 1947}
1948
1949void syscall_alloc(struct regstat *current,int i)
1950{
1951 alloc_cc(current,i);
1952 dirty_reg(current,CCREG);
1953 alloc_all(current,i);
e1190b87 1954 minimum_free_regs[i]=HOST_REGS;
57871462 1955 current->isconst=0;
1956}
1957
1958void delayslot_alloc(struct regstat *current,int i)
1959{
1960 switch(itype[i]) {
1961 case UJUMP:
1962 case CJUMP:
1963 case SJUMP:
1964 case RJUMP:
1965 case FJUMP:
1966 case SYSCALL:
7139f3c8 1967 case HLECALL:
57871462 1968 case SPAN:
1969 assem_debug("jump in the delay slot. this shouldn't happen.\n");//exit(1);
1970 printf("Disabled speculative precompilation\n");
1971 stop_after_jal=1;
1972 break;
1973 case IMM16:
1974 imm16_alloc(current,i);
1975 break;
1976 case LOAD:
1977 case LOADLR:
1978 load_alloc(current,i);
1979 break;
1980 case STORE:
1981 case STORELR:
1982 store_alloc(current,i);
1983 break;
1984 case ALU:
1985 alu_alloc(current,i);
1986 break;
1987 case SHIFT:
1988 shift_alloc(current,i);
1989 break;
1990 case MULTDIV:
1991 multdiv_alloc(current,i);
1992 break;
1993 case SHIFTIMM:
1994 shiftimm_alloc(current,i);
1995 break;
1996 case MOV:
1997 mov_alloc(current,i);
1998 break;
1999 case COP0:
2000 cop0_alloc(current,i);
2001 break;
2002 case COP1:
b9b61529 2003 case COP2:
57871462 2004 cop1_alloc(current,i);
2005 break;
2006 case C1LS:
2007 c1ls_alloc(current,i);
2008 break;
b9b61529 2009 case C2LS:
2010 c2ls_alloc(current,i);
2011 break;
57871462 2012 case FCONV:
2013 fconv_alloc(current,i);
2014 break;
2015 case FLOAT:
2016 float_alloc(current,i);
2017 break;
2018 case FCOMP:
2019 fcomp_alloc(current,i);
2020 break;
b9b61529 2021 case C2OP:
2022 c2op_alloc(current,i);
2023 break;
57871462 2024 }
2025}
2026
2027// Special case where a branch and delay slot span two pages in virtual memory
2028static void pagespan_alloc(struct regstat *current,int i)
2029{
2030 current->isconst=0;
2031 current->wasconst=0;
2032 regs[i].wasconst=0;
e1190b87 2033 minimum_free_regs[i]=HOST_REGS;
57871462 2034 alloc_all(current,i);
2035 alloc_cc(current,i);
2036 dirty_reg(current,CCREG);
2037 if(opcode[i]==3) // JAL
2038 {
2039 alloc_reg(current,i,31);
2040 dirty_reg(current,31);
2041 }
2042 if(opcode[i]==0&&(opcode2[i]&0x3E)==8) // JR/JALR
2043 {
2044 alloc_reg(current,i,rs1[i]);
5067f341 2045 if (rt1[i]!=0) {
2046 alloc_reg(current,i,rt1[i]);
2047 dirty_reg(current,rt1[i]);
57871462 2048 }
2049 }
2050 if((opcode[i]&0x2E)==4) // BEQ/BNE/BEQL/BNEL
2051 {
2052 if(rs1[i]) alloc_reg(current,i,rs1[i]);
2053 if(rs2[i]) alloc_reg(current,i,rs2[i]);
2054 if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
2055 {
2056 if(rs1[i]) alloc_reg64(current,i,rs1[i]);
2057 if(rs2[i]) alloc_reg64(current,i,rs2[i]);
2058 }
2059 }
2060 else
2061 if((opcode[i]&0x2E)==6) // BLEZ/BGTZ/BLEZL/BGTZL
2062 {
2063 if(rs1[i]) alloc_reg(current,i,rs1[i]);
2064 if(!((current->is32>>rs1[i])&1))
2065 {
2066 if(rs1[i]) alloc_reg64(current,i,rs1[i]);
2067 }
2068 }
2069 else
2070 if(opcode[i]==0x11) // BC1
2071 {
2072 alloc_reg(current,i,FSREG);
2073 alloc_reg(current,i,CSREG);
2074 }
2075 //else ...
2076}
2077
2078add_stub(int type,int addr,int retaddr,int a,int b,int c,int d,int e)
2079{
2080 stubs[stubcount][0]=type;
2081 stubs[stubcount][1]=addr;
2082 stubs[stubcount][2]=retaddr;
2083 stubs[stubcount][3]=a;
2084 stubs[stubcount][4]=b;
2085 stubs[stubcount][5]=c;
2086 stubs[stubcount][6]=d;
2087 stubs[stubcount][7]=e;
2088 stubcount++;
2089}
2090
2091// Write out a single register
2092void wb_register(signed char r,signed char regmap[],uint64_t dirty,uint64_t is32)
2093{
2094 int hr;
2095 for(hr=0;hr<HOST_REGS;hr++) {
2096 if(hr!=EXCLUDE_REG) {
2097 if((regmap[hr]&63)==r) {
2098 if((dirty>>hr)&1) {
2099 if(regmap[hr]<64) {
2100 emit_storereg(r,hr);
24385cae 2101#ifndef FORCE32
57871462 2102 if((is32>>regmap[hr])&1) {
2103 emit_sarimm(hr,31,hr);
2104 emit_storereg(r|64,hr);
2105 }
24385cae 2106#endif
57871462 2107 }else{
2108 emit_storereg(r|64,hr);
2109 }
2110 }
2111 }
2112 }
2113 }
2114}
2115
2116int mchecksum()
2117{
2118 //if(!tracedebug) return 0;
2119 int i;
2120 int sum=0;
2121 for(i=0;i<2097152;i++) {
2122 unsigned int temp=sum;
2123 sum<<=1;
2124 sum|=(~temp)>>31;
2125 sum^=((u_int *)rdram)[i];
2126 }
2127 return sum;
2128}
2129int rchecksum()
2130{
2131 int i;
2132 int sum=0;
2133 for(i=0;i<64;i++)
2134 sum^=((u_int *)reg)[i];
2135 return sum;
2136}
57871462 2137void rlist()
2138{
2139 int i;
2140 printf("TRACE: ");
2141 for(i=0;i<32;i++)
2142 printf("r%d:%8x%8x ",i,((int *)(reg+i))[1],((int *)(reg+i))[0]);
2143 printf("\n");
3d624f89 2144#ifndef DISABLE_COP1
57871462 2145 printf("TRACE: ");
2146 for(i=0;i<32;i++)
2147 printf("f%d:%8x%8x ",i,((int*)reg_cop1_simple[i])[1],*((int*)reg_cop1_simple[i]));
2148 printf("\n");
3d624f89 2149#endif
57871462 2150}
2151
2152void enabletrace()
2153{
2154 tracedebug=1;
2155}
2156
2157void memdebug(int i)
2158{
2159 //printf("TRACE: count=%d next=%d (checksum %x) lo=%8x%8x\n",Count,next_interupt,mchecksum(),(int)(reg[LOREG]>>32),(int)reg[LOREG]);
2160 //printf("TRACE: count=%d next=%d (rchecksum %x)\n",Count,next_interupt,rchecksum());
2161 //rlist();
2162 //if(tracedebug) {
2163 //if(Count>=-2084597794) {
2164 if((signed int)Count>=-2084597794&&(signed int)Count<0) {
2165 //if(0) {
2166 printf("TRACE: count=%d next=%d (checksum %x)\n",Count,next_interupt,mchecksum());
2167 //printf("TRACE: count=%d next=%d (checksum %x) Status=%x\n",Count,next_interupt,mchecksum(),Status);
2168 //printf("TRACE: count=%d next=%d (checksum %x) hi=%8x%8x\n",Count,next_interupt,mchecksum(),(int)(reg[HIREG]>>32),(int)reg[HIREG]);
2169 rlist();
2170 #ifdef __i386__
2171 printf("TRACE: %x\n",(&i)[-1]);
2172 #endif
2173 #ifdef __arm__
2174 int j;
2175 printf("TRACE: %x \n",(&j)[10]);
2176 printf("TRACE: %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x\n",(&j)[1],(&j)[2],(&j)[3],(&j)[4],(&j)[5],(&j)[6],(&j)[7],(&j)[8],(&j)[9],(&j)[10],(&j)[11],(&j)[12],(&j)[13],(&j)[14],(&j)[15],(&j)[16],(&j)[17],(&j)[18],(&j)[19],(&j)[20]);
2177 #endif
2178 //fflush(stdout);
2179 }
2180 //printf("TRACE: %x\n",(&i)[-1]);
2181}
2182
2183void tlb_debug(u_int cause, u_int addr, u_int iaddr)
2184{
2185 printf("TLB Exception: instruction=%x addr=%x cause=%x\n",iaddr, addr, cause);
2186}
2187
2188void alu_assemble(int i,struct regstat *i_regs)
2189{
2190 if(opcode2[i]>=0x20&&opcode2[i]<=0x23) { // ADD/ADDU/SUB/SUBU
2191 if(rt1[i]) {
2192 signed char s1,s2,t;
2193 t=get_reg(i_regs->regmap,rt1[i]);
2194 if(t>=0) {
2195 s1=get_reg(i_regs->regmap,rs1[i]);
2196 s2=get_reg(i_regs->regmap,rs2[i]);
2197 if(rs1[i]&&rs2[i]) {
2198 assert(s1>=0);
2199 assert(s2>=0);
2200 if(opcode2[i]&2) emit_sub(s1,s2,t);
2201 else emit_add(s1,s2,t);
2202 }
2203 else if(rs1[i]) {
2204 if(s1>=0) emit_mov(s1,t);
2205 else emit_loadreg(rs1[i],t);
2206 }
2207 else if(rs2[i]) {
2208 if(s2>=0) {
2209 if(opcode2[i]&2) emit_neg(s2,t);
2210 else emit_mov(s2,t);
2211 }
2212 else {
2213 emit_loadreg(rs2[i],t);
2214 if(opcode2[i]&2) emit_neg(t,t);
2215 }
2216 }
2217 else emit_zeroreg(t);
2218 }
2219 }
2220 }
2221 if(opcode2[i]>=0x2c&&opcode2[i]<=0x2f) { // DADD/DADDU/DSUB/DSUBU
2222 if(rt1[i]) {
2223 signed char s1l,s2l,s1h,s2h,tl,th;
2224 tl=get_reg(i_regs->regmap,rt1[i]);
2225 th=get_reg(i_regs->regmap,rt1[i]|64);
2226 if(tl>=0) {
2227 s1l=get_reg(i_regs->regmap,rs1[i]);
2228 s2l=get_reg(i_regs->regmap,rs2[i]);
2229 s1h=get_reg(i_regs->regmap,rs1[i]|64);
2230 s2h=get_reg(i_regs->regmap,rs2[i]|64);
2231 if(rs1[i]&&rs2[i]) {
2232 assert(s1l>=0);
2233 assert(s2l>=0);
2234 if(opcode2[i]&2) emit_subs(s1l,s2l,tl);
2235 else emit_adds(s1l,s2l,tl);
2236 if(th>=0) {
2237 #ifdef INVERTED_CARRY
2238 if(opcode2[i]&2) {if(s1h!=th) emit_mov(s1h,th);emit_sbb(th,s2h);}
2239 #else
2240 if(opcode2[i]&2) emit_sbc(s1h,s2h,th);
2241 #endif
2242 else emit_add(s1h,s2h,th);
2243 }
2244 }
2245 else if(rs1[i]) {
2246 if(s1l>=0) emit_mov(s1l,tl);
2247 else emit_loadreg(rs1[i],tl);
2248 if(th>=0) {
2249 if(s1h>=0) emit_mov(s1h,th);
2250 else emit_loadreg(rs1[i]|64,th);
2251 }
2252 }
2253 else if(rs2[i]) {
2254 if(s2l>=0) {
2255 if(opcode2[i]&2) emit_negs(s2l,tl);
2256 else emit_mov(s2l,tl);
2257 }
2258 else {
2259 emit_loadreg(rs2[i],tl);
2260 if(opcode2[i]&2) emit_negs(tl,tl);
2261 }
2262 if(th>=0) {
2263 #ifdef INVERTED_CARRY
2264 if(s2h>=0) emit_mov(s2h,th);
2265 else emit_loadreg(rs2[i]|64,th);
2266 if(opcode2[i]&2) {
2267 emit_adcimm(-1,th); // x86 has inverted carry flag
2268 emit_not(th,th);
2269 }
2270 #else
2271 if(opcode2[i]&2) {
2272 if(s2h>=0) emit_rscimm(s2h,0,th);
2273 else {
2274 emit_loadreg(rs2[i]|64,th);
2275 emit_rscimm(th,0,th);
2276 }
2277 }else{
2278 if(s2h>=0) emit_mov(s2h,th);
2279 else emit_loadreg(rs2[i]|64,th);
2280 }
2281 #endif
2282 }
2283 }
2284 else {
2285 emit_zeroreg(tl);
2286 if(th>=0) emit_zeroreg(th);
2287 }
2288 }
2289 }
2290 }
2291 if(opcode2[i]==0x2a||opcode2[i]==0x2b) { // SLT/SLTU
2292 if(rt1[i]) {
2293 signed char s1l,s1h,s2l,s2h,t;
2294 if(!((i_regs->was32>>rs1[i])&(i_regs->was32>>rs2[i])&1))
2295 {
2296 t=get_reg(i_regs->regmap,rt1[i]);
2297 //assert(t>=0);
2298 if(t>=0) {
2299 s1l=get_reg(i_regs->regmap,rs1[i]);
2300 s1h=get_reg(i_regs->regmap,rs1[i]|64);
2301 s2l=get_reg(i_regs->regmap,rs2[i]);
2302 s2h=get_reg(i_regs->regmap,rs2[i]|64);
2303 if(rs2[i]==0) // rx<r0
2304 {
2305 assert(s1h>=0);
2306 if(opcode2[i]==0x2a) // SLT
2307 emit_shrimm(s1h,31,t);
2308 else // SLTU (unsigned can not be less than zero)
2309 emit_zeroreg(t);
2310 }
2311 else if(rs1[i]==0) // r0<rx
2312 {
2313 assert(s2h>=0);
2314 if(opcode2[i]==0x2a) // SLT
2315 emit_set_gz64_32(s2h,s2l,t);
2316 else // SLTU (set if not zero)
2317 emit_set_nz64_32(s2h,s2l,t);
2318 }
2319 else {
2320 assert(s1l>=0);assert(s1h>=0);
2321 assert(s2l>=0);assert(s2h>=0);
2322 if(opcode2[i]==0x2a) // SLT
2323 emit_set_if_less64_32(s1h,s1l,s2h,s2l,t);
2324 else // SLTU
2325 emit_set_if_carry64_32(s1h,s1l,s2h,s2l,t);
2326 }
2327 }
2328 } else {
2329 t=get_reg(i_regs->regmap,rt1[i]);
2330 //assert(t>=0);
2331 if(t>=0) {
2332 s1l=get_reg(i_regs->regmap,rs1[i]);
2333 s2l=get_reg(i_regs->regmap,rs2[i]);
2334 if(rs2[i]==0) // rx<r0
2335 {
2336 assert(s1l>=0);
2337 if(opcode2[i]==0x2a) // SLT
2338 emit_shrimm(s1l,31,t);
2339 else // SLTU (unsigned can not be less than zero)
2340 emit_zeroreg(t);
2341 }
2342 else if(rs1[i]==0) // r0<rx
2343 {
2344 assert(s2l>=0);
2345 if(opcode2[i]==0x2a) // SLT
2346 emit_set_gz32(s2l,t);
2347 else // SLTU (set if not zero)
2348 emit_set_nz32(s2l,t);
2349 }
2350 else{
2351 assert(s1l>=0);assert(s2l>=0);
2352 if(opcode2[i]==0x2a) // SLT
2353 emit_set_if_less32(s1l,s2l,t);
2354 else // SLTU
2355 emit_set_if_carry32(s1l,s2l,t);
2356 }
2357 }
2358 }
2359 }
2360 }
2361 if(opcode2[i]>=0x24&&opcode2[i]<=0x27) { // AND/OR/XOR/NOR
2362 if(rt1[i]) {
2363 signed char s1l,s1h,s2l,s2h,th,tl;
2364 tl=get_reg(i_regs->regmap,rt1[i]);
2365 th=get_reg(i_regs->regmap,rt1[i]|64);
2366 if(!((i_regs->was32>>rs1[i])&(i_regs->was32>>rs2[i])&1)&&th>=0)
2367 {
2368 assert(tl>=0);
2369 if(tl>=0) {
2370 s1l=get_reg(i_regs->regmap,rs1[i]);
2371 s1h=get_reg(i_regs->regmap,rs1[i]|64);
2372 s2l=get_reg(i_regs->regmap,rs2[i]);
2373 s2h=get_reg(i_regs->regmap,rs2[i]|64);
2374 if(rs1[i]&&rs2[i]) {
2375 assert(s1l>=0);assert(s1h>=0);
2376 assert(s2l>=0);assert(s2h>=0);
2377 if(opcode2[i]==0x24) { // AND
2378 emit_and(s1l,s2l,tl);
2379 emit_and(s1h,s2h,th);
2380 } else
2381 if(opcode2[i]==0x25) { // OR
2382 emit_or(s1l,s2l,tl);
2383 emit_or(s1h,s2h,th);
2384 } else
2385 if(opcode2[i]==0x26) { // XOR
2386 emit_xor(s1l,s2l,tl);
2387 emit_xor(s1h,s2h,th);
2388 } else
2389 if(opcode2[i]==0x27) { // NOR
2390 emit_or(s1l,s2l,tl);
2391 emit_or(s1h,s2h,th);
2392 emit_not(tl,tl);
2393 emit_not(th,th);
2394 }
2395 }
2396 else
2397 {
2398 if(opcode2[i]==0x24) { // AND
2399 emit_zeroreg(tl);
2400 emit_zeroreg(th);
2401 } else
2402 if(opcode2[i]==0x25||opcode2[i]==0x26) { // OR/XOR
2403 if(rs1[i]){
2404 if(s1l>=0) emit_mov(s1l,tl);
2405 else emit_loadreg(rs1[i],tl);
2406 if(s1h>=0) emit_mov(s1h,th);
2407 else emit_loadreg(rs1[i]|64,th);
2408 }
2409 else
2410 if(rs2[i]){
2411 if(s2l>=0) emit_mov(s2l,tl);
2412 else emit_loadreg(rs2[i],tl);
2413 if(s2h>=0) emit_mov(s2h,th);
2414 else emit_loadreg(rs2[i]|64,th);
2415 }
2416 else{
2417 emit_zeroreg(tl);
2418 emit_zeroreg(th);
2419 }
2420 } else
2421 if(opcode2[i]==0x27) { // NOR
2422 if(rs1[i]){
2423 if(s1l>=0) emit_not(s1l,tl);
2424 else{
2425 emit_loadreg(rs1[i],tl);
2426 emit_not(tl,tl);
2427 }
2428 if(s1h>=0) emit_not(s1h,th);
2429 else{
2430 emit_loadreg(rs1[i]|64,th);
2431 emit_not(th,th);
2432 }
2433 }
2434 else
2435 if(rs2[i]){
2436 if(s2l>=0) emit_not(s2l,tl);
2437 else{
2438 emit_loadreg(rs2[i],tl);
2439 emit_not(tl,tl);
2440 }
2441 if(s2h>=0) emit_not(s2h,th);
2442 else{
2443 emit_loadreg(rs2[i]|64,th);
2444 emit_not(th,th);
2445 }
2446 }
2447 else {
2448 emit_movimm(-1,tl);
2449 emit_movimm(-1,th);
2450 }
2451 }
2452 }
2453 }
2454 }
2455 else
2456 {
2457 // 32 bit
2458 if(tl>=0) {
2459 s1l=get_reg(i_regs->regmap,rs1[i]);
2460 s2l=get_reg(i_regs->regmap,rs2[i]);
2461 if(rs1[i]&&rs2[i]) {
2462 assert(s1l>=0);
2463 assert(s2l>=0);
2464 if(opcode2[i]==0x24) { // AND
2465 emit_and(s1l,s2l,tl);
2466 } else
2467 if(opcode2[i]==0x25) { // OR
2468 emit_or(s1l,s2l,tl);
2469 } else
2470 if(opcode2[i]==0x26) { // XOR
2471 emit_xor(s1l,s2l,tl);
2472 } else
2473 if(opcode2[i]==0x27) { // NOR
2474 emit_or(s1l,s2l,tl);
2475 emit_not(tl,tl);
2476 }
2477 }
2478 else
2479 {
2480 if(opcode2[i]==0x24) { // AND
2481 emit_zeroreg(tl);
2482 } else
2483 if(opcode2[i]==0x25||opcode2[i]==0x26) { // OR/XOR
2484 if(rs1[i]){
2485 if(s1l>=0) emit_mov(s1l,tl);
2486 else emit_loadreg(rs1[i],tl); // CHECK: regmap_entry?
2487 }
2488 else
2489 if(rs2[i]){
2490 if(s2l>=0) emit_mov(s2l,tl);
2491 else emit_loadreg(rs2[i],tl); // CHECK: regmap_entry?
2492 }
2493 else emit_zeroreg(tl);
2494 } else
2495 if(opcode2[i]==0x27) { // NOR
2496 if(rs1[i]){
2497 if(s1l>=0) emit_not(s1l,tl);
2498 else {
2499 emit_loadreg(rs1[i],tl);
2500 emit_not(tl,tl);
2501 }
2502 }
2503 else
2504 if(rs2[i]){
2505 if(s2l>=0) emit_not(s2l,tl);
2506 else {
2507 emit_loadreg(rs2[i],tl);
2508 emit_not(tl,tl);
2509 }
2510 }
2511 else emit_movimm(-1,tl);
2512 }
2513 }
2514 }
2515 }
2516 }
2517 }
2518}
2519
2520void imm16_assemble(int i,struct regstat *i_regs)
2521{
2522 if (opcode[i]==0x0f) { // LUI
2523 if(rt1[i]) {
2524 signed char t;
2525 t=get_reg(i_regs->regmap,rt1[i]);
2526 //assert(t>=0);
2527 if(t>=0) {
2528 if(!((i_regs->isconst>>t)&1))
2529 emit_movimm(imm[i]<<16,t);
2530 }
2531 }
2532 }
2533 if(opcode[i]==0x08||opcode[i]==0x09) { // ADDI/ADDIU
2534 if(rt1[i]) {
2535 signed char s,t;
2536 t=get_reg(i_regs->regmap,rt1[i]);
2537 s=get_reg(i_regs->regmap,rs1[i]);
2538 if(rs1[i]) {
2539 //assert(t>=0);
2540 //assert(s>=0);
2541 if(t>=0) {
2542 if(!((i_regs->isconst>>t)&1)) {
2543 if(s<0) {
2544 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2545 emit_addimm(t,imm[i],t);
2546 }else{
2547 if(!((i_regs->wasconst>>s)&1))
2548 emit_addimm(s,imm[i],t);
2549 else
2550 emit_movimm(constmap[i][s]+imm[i],t);
2551 }
2552 }
2553 }
2554 } else {
2555 if(t>=0) {
2556 if(!((i_regs->isconst>>t)&1))
2557 emit_movimm(imm[i],t);
2558 }
2559 }
2560 }
2561 }
2562 if(opcode[i]==0x18||opcode[i]==0x19) { // DADDI/DADDIU
2563 if(rt1[i]) {
2564 signed char sh,sl,th,tl;
2565 th=get_reg(i_regs->regmap,rt1[i]|64);
2566 tl=get_reg(i_regs->regmap,rt1[i]);
2567 sh=get_reg(i_regs->regmap,rs1[i]|64);
2568 sl=get_reg(i_regs->regmap,rs1[i]);
2569 if(tl>=0) {
2570 if(rs1[i]) {
2571 assert(sh>=0);
2572 assert(sl>=0);
2573 if(th>=0) {
2574 emit_addimm64_32(sh,sl,imm[i],th,tl);
2575 }
2576 else {
2577 emit_addimm(sl,imm[i],tl);
2578 }
2579 } else {
2580 emit_movimm(imm[i],tl);
2581 if(th>=0) emit_movimm(((signed int)imm[i])>>31,th);
2582 }
2583 }
2584 }
2585 }
2586 else if(opcode[i]==0x0a||opcode[i]==0x0b) { // SLTI/SLTIU
2587 if(rt1[i]) {
2588 //assert(rs1[i]!=0); // r0 might be valid, but it's probably a bug
2589 signed char sh,sl,t;
2590 t=get_reg(i_regs->regmap,rt1[i]);
2591 sh=get_reg(i_regs->regmap,rs1[i]|64);
2592 sl=get_reg(i_regs->regmap,rs1[i]);
2593 //assert(t>=0);
2594 if(t>=0) {
2595 if(rs1[i]>0) {
2596 if(sh<0) assert((i_regs->was32>>rs1[i])&1);
2597 if(sh<0||((i_regs->was32>>rs1[i])&1)) {
2598 if(opcode[i]==0x0a) { // SLTI
2599 if(sl<0) {
2600 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2601 emit_slti32(t,imm[i],t);
2602 }else{
2603 emit_slti32(sl,imm[i],t);
2604 }
2605 }
2606 else { // SLTIU
2607 if(sl<0) {
2608 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2609 emit_sltiu32(t,imm[i],t);
2610 }else{
2611 emit_sltiu32(sl,imm[i],t);
2612 }
2613 }
2614 }else{ // 64-bit
2615 assert(sl>=0);
2616 if(opcode[i]==0x0a) // SLTI
2617 emit_slti64_32(sh,sl,imm[i],t);
2618 else // SLTIU
2619 emit_sltiu64_32(sh,sl,imm[i],t);
2620 }
2621 }else{
2622 // SLTI(U) with r0 is just stupid,
2623 // nonetheless examples can be found
2624 if(opcode[i]==0x0a) // SLTI
2625 if(0<imm[i]) emit_movimm(1,t);
2626 else emit_zeroreg(t);
2627 else // SLTIU
2628 {
2629 if(imm[i]) emit_movimm(1,t);
2630 else emit_zeroreg(t);
2631 }
2632 }
2633 }
2634 }
2635 }
2636 else if(opcode[i]>=0x0c&&opcode[i]<=0x0e) { // ANDI/ORI/XORI
2637 if(rt1[i]) {
2638 signed char sh,sl,th,tl;
2639 th=get_reg(i_regs->regmap,rt1[i]|64);
2640 tl=get_reg(i_regs->regmap,rt1[i]);
2641 sh=get_reg(i_regs->regmap,rs1[i]|64);
2642 sl=get_reg(i_regs->regmap,rs1[i]);
2643 if(tl>=0 && !((i_regs->isconst>>tl)&1)) {
2644 if(opcode[i]==0x0c) //ANDI
2645 {
2646 if(rs1[i]) {
2647 if(sl<0) {
2648 if(i_regs->regmap_entry[tl]!=rs1[i]) emit_loadreg(rs1[i],tl);
2649 emit_andimm(tl,imm[i],tl);
2650 }else{
2651 if(!((i_regs->wasconst>>sl)&1))
2652 emit_andimm(sl,imm[i],tl);
2653 else
2654 emit_movimm(constmap[i][sl]&imm[i],tl);
2655 }
2656 }
2657 else
2658 emit_zeroreg(tl);
2659 if(th>=0) emit_zeroreg(th);
2660 }
2661 else
2662 {
2663 if(rs1[i]) {
2664 if(sl<0) {
2665 if(i_regs->regmap_entry[tl]!=rs1[i]) emit_loadreg(rs1[i],tl);
2666 }
2667 if(th>=0) {
2668 if(sh<0) {
2669 emit_loadreg(rs1[i]|64,th);
2670 }else{
2671 emit_mov(sh,th);
2672 }
2673 }
2674 if(opcode[i]==0x0d) //ORI
2675 if(sl<0) {
2676 emit_orimm(tl,imm[i],tl);
2677 }else{
2678 if(!((i_regs->wasconst>>sl)&1))
2679 emit_orimm(sl,imm[i],tl);
2680 else
2681 emit_movimm(constmap[i][sl]|imm[i],tl);
2682 }
2683 if(opcode[i]==0x0e) //XORI
2684 if(sl<0) {
2685 emit_xorimm(tl,imm[i],tl);
2686 }else{
2687 if(!((i_regs->wasconst>>sl)&1))
2688 emit_xorimm(sl,imm[i],tl);
2689 else
2690 emit_movimm(constmap[i][sl]^imm[i],tl);
2691 }
2692 }
2693 else {
2694 emit_movimm(imm[i],tl);
2695 if(th>=0) emit_zeroreg(th);
2696 }
2697 }
2698 }
2699 }
2700 }
2701}
2702
2703void shiftimm_assemble(int i,struct regstat *i_regs)
2704{
2705 if(opcode2[i]<=0x3) // SLL/SRL/SRA
2706 {
2707 if(rt1[i]) {
2708 signed char s,t;
2709 t=get_reg(i_regs->regmap,rt1[i]);
2710 s=get_reg(i_regs->regmap,rs1[i]);
2711 //assert(t>=0);
dc49e339 2712 if(t>=0&&!((i_regs->isconst>>t)&1)){
57871462 2713 if(rs1[i]==0)
2714 {
2715 emit_zeroreg(t);
2716 }
2717 else
2718 {
2719 if(s<0&&i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2720 if(imm[i]) {
2721 if(opcode2[i]==0) // SLL
2722 {
2723 emit_shlimm(s<0?t:s,imm[i],t);
2724 }
2725 if(opcode2[i]==2) // SRL
2726 {
2727 emit_shrimm(s<0?t:s,imm[i],t);
2728 }
2729 if(opcode2[i]==3) // SRA
2730 {
2731 emit_sarimm(s<0?t:s,imm[i],t);
2732 }
2733 }else{
2734 // Shift by zero
2735 if(s>=0 && s!=t) emit_mov(s,t);
2736 }
2737 }
2738 }
2739 //emit_storereg(rt1[i],t); //DEBUG
2740 }
2741 }
2742 if(opcode2[i]>=0x38&&opcode2[i]<=0x3b) // DSLL/DSRL/DSRA
2743 {
2744 if(rt1[i]) {
2745 signed char sh,sl,th,tl;
2746 th=get_reg(i_regs->regmap,rt1[i]|64);
2747 tl=get_reg(i_regs->regmap,rt1[i]);
2748 sh=get_reg(i_regs->regmap,rs1[i]|64);
2749 sl=get_reg(i_regs->regmap,rs1[i]);
2750 if(tl>=0) {
2751 if(rs1[i]==0)
2752 {
2753 emit_zeroreg(tl);
2754 if(th>=0) emit_zeroreg(th);
2755 }
2756 else
2757 {
2758 assert(sl>=0);
2759 assert(sh>=0);
2760 if(imm[i]) {
2761 if(opcode2[i]==0x38) // DSLL
2762 {
2763 if(th>=0) emit_shldimm(sh,sl,imm[i],th);
2764 emit_shlimm(sl,imm[i],tl);
2765 }
2766 if(opcode2[i]==0x3a) // DSRL
2767 {
2768 emit_shrdimm(sl,sh,imm[i],tl);
2769 if(th>=0) emit_shrimm(sh,imm[i],th);
2770 }
2771 if(opcode2[i]==0x3b) // DSRA
2772 {
2773 emit_shrdimm(sl,sh,imm[i],tl);
2774 if(th>=0) emit_sarimm(sh,imm[i],th);
2775 }
2776 }else{
2777 // Shift by zero
2778 if(sl!=tl) emit_mov(sl,tl);
2779 if(th>=0&&sh!=th) emit_mov(sh,th);
2780 }
2781 }
2782 }
2783 }
2784 }
2785 if(opcode2[i]==0x3c) // DSLL32
2786 {
2787 if(rt1[i]) {
2788 signed char sl,tl,th;
2789 tl=get_reg(i_regs->regmap,rt1[i]);
2790 th=get_reg(i_regs->regmap,rt1[i]|64);
2791 sl=get_reg(i_regs->regmap,rs1[i]);
2792 if(th>=0||tl>=0){
2793 assert(tl>=0);
2794 assert(th>=0);
2795 assert(sl>=0);
2796 emit_mov(sl,th);
2797 emit_zeroreg(tl);
2798 if(imm[i]>32)
2799 {
2800 emit_shlimm(th,imm[i]&31,th);
2801 }
2802 }
2803 }
2804 }
2805 if(opcode2[i]==0x3e) // DSRL32
2806 {
2807 if(rt1[i]) {
2808 signed char sh,tl,th;
2809 tl=get_reg(i_regs->regmap,rt1[i]);
2810 th=get_reg(i_regs->regmap,rt1[i]|64);
2811 sh=get_reg(i_regs->regmap,rs1[i]|64);
2812 if(tl>=0){
2813 assert(sh>=0);
2814 emit_mov(sh,tl);
2815 if(th>=0) emit_zeroreg(th);
2816 if(imm[i]>32)
2817 {
2818 emit_shrimm(tl,imm[i]&31,tl);
2819 }
2820 }
2821 }
2822 }
2823 if(opcode2[i]==0x3f) // DSRA32
2824 {
2825 if(rt1[i]) {
2826 signed char sh,tl;
2827 tl=get_reg(i_regs->regmap,rt1[i]);
2828 sh=get_reg(i_regs->regmap,rs1[i]|64);
2829 if(tl>=0){
2830 assert(sh>=0);
2831 emit_mov(sh,tl);
2832 if(imm[i]>32)
2833 {
2834 emit_sarimm(tl,imm[i]&31,tl);
2835 }
2836 }
2837 }
2838 }
2839}
2840
2841#ifndef shift_assemble
2842void shift_assemble(int i,struct regstat *i_regs)
2843{
2844 printf("Need shift_assemble for this architecture.\n");
2845 exit(1);
2846}
2847#endif
2848
2849void load_assemble(int i,struct regstat *i_regs)
2850{
2851 int s,th,tl,addr,map=-1;
2852 int offset;
2853 int jaddr=0;
5bf843dc 2854 int memtarget=0,c=0;
b1570849 2855 int fastload_reg_override=0;
57871462 2856 u_int hr,reglist=0;
2857 th=get_reg(i_regs->regmap,rt1[i]|64);
2858 tl=get_reg(i_regs->regmap,rt1[i]);
2859 s=get_reg(i_regs->regmap,rs1[i]);
2860 offset=imm[i];
2861 for(hr=0;hr<HOST_REGS;hr++) {
2862 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
2863 }
2864 if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
2865 if(s>=0) {
2866 c=(i_regs->wasconst>>s)&1;
af4ee1fe 2867 if (c) {
2868 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
2869 if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
2870 }
57871462 2871 }
57871462 2872 //printf("load_assemble: c=%d\n",c);
2873 //if(c) printf("load_assemble: const=%x\n",(int)constmap[i][s]+offset);
2874 // FIXME: Even if the load is a NOP, we should check for pagefaults...
5bf843dc 2875#ifdef PCSX
f18c0f46 2876 if(tl<0&&(!c||(((u_int)constmap[i][s]+offset)>>16)==0x1f80)
2877 ||rt1[i]==0) {
5bf843dc 2878 // could be FIFO, must perform the read
f18c0f46 2879 // ||dummy read
5bf843dc 2880 assem_debug("(forced read)\n");
2881 tl=get_reg(i_regs->regmap,-1);
2882 assert(tl>=0);
5bf843dc 2883 }
f18c0f46 2884#endif
5bf843dc 2885 if(offset||s<0||c) addr=tl;
2886 else addr=s;
535d208a 2887 //if(tl<0) tl=get_reg(i_regs->regmap,-1);
2888 if(tl>=0) {
2889 //printf("load_assemble: c=%d\n",c);
2890 //if(c) printf("load_assemble: const=%x\n",(int)constmap[i][s]+offset);
2891 assert(tl>=0); // Even if the load is a NOP, we must check for pagefaults and I/O
2892 reglist&=~(1<<tl);
2893 if(th>=0) reglist&=~(1<<th);
2894 if(!using_tlb) {
2895 if(!c) {
2896 #ifdef RAM_OFFSET
2897 map=get_reg(i_regs->regmap,ROREG);
2898 if(map<0) emit_loadreg(ROREG,map=HOST_TEMPREG);
2899 #endif
57871462 2900//#define R29_HACK 1
535d208a 2901 #ifdef R29_HACK
2902 // Strmnnrmn's speed hack
2903 if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
2904 #endif
2905 {
ffb0b9e0 2906 jaddr=emit_fastpath_cmp_jump(i,addr,&fastload_reg_override);
57871462 2907 }
535d208a 2908 }
2909 }else{ // using tlb
2910 int x=0;
2911 if (opcode[i]==0x20||opcode[i]==0x24) x=3; // LB/LBU
2912 if (opcode[i]==0x21||opcode[i]==0x25) x=2; // LH/LHU
2913 map=get_reg(i_regs->regmap,TLREG);
2914 assert(map>=0);
ea3d2e6e 2915 reglist&=~(1<<map);
535d208a 2916 map=do_tlb_r(addr,tl,map,x,-1,-1,c,constmap[i][s]+offset);
2917 do_tlb_r_branch(map,c,constmap[i][s]+offset,&jaddr);
2918 }
2919 int dummy=(rt1[i]==0)||(tl!=get_reg(i_regs->regmap,rt1[i])); // ignore loads to r0 and unneeded reg
2920 if (opcode[i]==0x20) { // LB
2921 if(!c||memtarget) {
2922 if(!dummy) {
57871462 2923 #ifdef HOST_IMM_ADDR32
2924 if(c)
2925 emit_movsbl_tlb((constmap[i][s]+offset)^3,map,tl);
2926 else
2927 #endif
2928 {
2929 //emit_xorimm(addr,3,tl);
2930 //gen_tlb_addr_r(tl,map);
2931 //emit_movsbl_indexed((int)rdram-0x80000000,tl,tl);
535d208a 2932 int x=0,a=tl;
2002a1db 2933#ifdef BIG_ENDIAN_MIPS
57871462 2934 if(!c) emit_xorimm(addr,3,tl);
2935 else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2002a1db 2936#else
535d208a 2937 if(!c) a=addr;
dadf55f2 2938#endif
b1570849 2939 if(fastload_reg_override) a=fastload_reg_override;
2940
535d208a 2941 emit_movsbl_indexed_tlb(x,a,map,tl);
57871462 2942 }
57871462 2943 }
535d208a 2944 if(jaddr)
2945 add_stub(LOADB_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
57871462 2946 }
535d208a 2947 else
2948 inline_readstub(LOADB_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2949 }
2950 if (opcode[i]==0x21) { // LH
2951 if(!c||memtarget) {
2952 if(!dummy) {
57871462 2953 #ifdef HOST_IMM_ADDR32
2954 if(c)
2955 emit_movswl_tlb((constmap[i][s]+offset)^2,map,tl);
2956 else
2957 #endif
2958 {
535d208a 2959 int x=0,a=tl;
2002a1db 2960#ifdef BIG_ENDIAN_MIPS
57871462 2961 if(!c) emit_xorimm(addr,2,tl);
2962 else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
2002a1db 2963#else
535d208a 2964 if(!c) a=addr;
dadf55f2 2965#endif
b1570849 2966 if(fastload_reg_override) a=fastload_reg_override;
57871462 2967 //#ifdef
2968 //emit_movswl_indexed_tlb(x,tl,map,tl);
2969 //else
2970 if(map>=0) {
535d208a 2971 gen_tlb_addr_r(a,map);
2972 emit_movswl_indexed(x,a,tl);
2973 }else{
2974 #ifdef RAM_OFFSET
2975 emit_movswl_indexed(x,a,tl);
2976 #else
2977 emit_movswl_indexed((int)rdram-0x80000000+x,a,tl);
2978 #endif
2979 }
57871462 2980 }
57871462 2981 }
535d208a 2982 if(jaddr)
2983 add_stub(LOADH_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
57871462 2984 }
535d208a 2985 else
2986 inline_readstub(LOADH_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2987 }
2988 if (opcode[i]==0x23) { // LW
2989 if(!c||memtarget) {
2990 if(!dummy) {
dadf55f2 2991 int a=addr;
b1570849 2992 if(fastload_reg_override) a=fastload_reg_override;
57871462 2993 //emit_readword_indexed((int)rdram-0x80000000,addr,tl);
2994 #ifdef HOST_IMM_ADDR32
2995 if(c)
2996 emit_readword_tlb(constmap[i][s]+offset,map,tl);
2997 else
2998 #endif
dadf55f2 2999 emit_readword_indexed_tlb(0,a,map,tl);
57871462 3000 }
535d208a 3001 if(jaddr)
3002 add_stub(LOADW_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
57871462 3003 }
535d208a 3004 else
3005 inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
3006 }
3007 if (opcode[i]==0x24) { // LBU
3008 if(!c||memtarget) {
3009 if(!dummy) {
57871462 3010 #ifdef HOST_IMM_ADDR32
3011 if(c)
3012 emit_movzbl_tlb((constmap[i][s]+offset)^3,map,tl);
3013 else
3014 #endif
3015 {
3016 //emit_xorimm(addr,3,tl);
3017 //gen_tlb_addr_r(tl,map);
3018 //emit_movzbl_indexed((int)rdram-0x80000000,tl,tl);
535d208a 3019 int x=0,a=tl;
2002a1db 3020#ifdef BIG_ENDIAN_MIPS
57871462 3021 if(!c) emit_xorimm(addr,3,tl);
3022 else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2002a1db 3023#else
535d208a 3024 if(!c) a=addr;
dadf55f2 3025#endif
b1570849 3026 if(fastload_reg_override) a=fastload_reg_override;
3027
535d208a 3028 emit_movzbl_indexed_tlb(x,a,map,tl);
57871462 3029 }
57871462 3030 }
535d208a 3031 if(jaddr)
3032 add_stub(LOADBU_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
57871462 3033 }
535d208a 3034 else
3035 inline_readstub(LOADBU_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
3036 }
3037 if (opcode[i]==0x25) { // LHU
3038 if(!c||memtarget) {
3039 if(!dummy) {
57871462 3040 #ifdef HOST_IMM_ADDR32
3041 if(c)
3042 emit_movzwl_tlb((constmap[i][s]+offset)^2,map,tl);
3043 else
3044 #endif
3045 {
535d208a 3046 int x=0,a=tl;
2002a1db 3047#ifdef BIG_ENDIAN_MIPS
57871462 3048 if(!c) emit_xorimm(addr,2,tl);
3049 else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
2002a1db 3050#else
535d208a 3051 if(!c) a=addr;
dadf55f2 3052#endif
b1570849 3053 if(fastload_reg_override) a=fastload_reg_override;
57871462 3054 //#ifdef
3055 //emit_movzwl_indexed_tlb(x,tl,map,tl);
3056 //#else
3057 if(map>=0) {
535d208a 3058 gen_tlb_addr_r(a,map);
3059 emit_movzwl_indexed(x,a,tl);
3060 }else{
3061 #ifdef RAM_OFFSET
3062 emit_movzwl_indexed(x,a,tl);
3063 #else
3064 emit_movzwl_indexed((int)rdram-0x80000000+x,a,tl);
3065 #endif
3066 }
57871462 3067 }
3068 }
535d208a 3069 if(jaddr)
3070 add_stub(LOADHU_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
57871462 3071 }
535d208a 3072 else
3073 inline_readstub(LOADHU_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
3074 }
3075 if (opcode[i]==0x27) { // LWU
3076 assert(th>=0);
3077 if(!c||memtarget) {
3078 if(!dummy) {
dadf55f2 3079 int a=addr;
b1570849 3080 if(fastload_reg_override) a=fastload_reg_override;
57871462 3081 //emit_readword_indexed((int)rdram-0x80000000,addr,tl);
3082 #ifdef HOST_IMM_ADDR32
3083 if(c)
3084 emit_readword_tlb(constmap[i][s]+offset,map,tl);
3085 else
3086 #endif
dadf55f2 3087 emit_readword_indexed_tlb(0,a,map,tl);
57871462 3088 }
535d208a 3089 if(jaddr)
3090 add_stub(LOADW_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3091 }
3092 else {
3093 inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
57871462 3094 }
535d208a 3095 emit_zeroreg(th);
3096 }
3097 if (opcode[i]==0x37) { // LD
3098 if(!c||memtarget) {
3099 if(!dummy) {
dadf55f2 3100 int a=addr;
b1570849 3101 if(fastload_reg_override) a=fastload_reg_override;
57871462 3102 //gen_tlb_addr_r(tl,map);
3103 //if(th>=0) emit_readword_indexed((int)rdram-0x80000000,addr,th);
3104 //emit_readword_indexed((int)rdram-0x7FFFFFFC,addr,tl);
3105 #ifdef HOST_IMM_ADDR32
3106 if(c)
3107 emit_readdword_tlb(constmap[i][s]+offset,map,th,tl);
3108 else
3109 #endif
dadf55f2 3110 emit_readdword_indexed_tlb(0,a,map,th,tl);
57871462 3111 }
535d208a 3112 if(jaddr)
3113 add_stub(LOADD_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
57871462 3114 }
535d208a 3115 else
3116 inline_readstub(LOADD_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
57871462 3117 }
535d208a 3118 }
3119 //emit_storereg(rt1[i],tl); // DEBUG
57871462 3120 //if(opcode[i]==0x23)
3121 //if(opcode[i]==0x24)
3122 //if(opcode[i]==0x23||opcode[i]==0x24)
3123 /*if(opcode[i]==0x21||opcode[i]==0x23||opcode[i]==0x24)
3124 {
3125 //emit_pusha();
3126 save_regs(0x100f);
3127 emit_readword((int)&last_count,ECX);
3128 #ifdef __i386__
3129 if(get_reg(i_regs->regmap,CCREG)<0)
3130 emit_loadreg(CCREG,HOST_CCREG);
3131 emit_add(HOST_CCREG,ECX,HOST_CCREG);
3132 emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3133 emit_writeword(HOST_CCREG,(int)&Count);
3134 #endif
3135 #ifdef __arm__
3136 if(get_reg(i_regs->regmap,CCREG)<0)
3137 emit_loadreg(CCREG,0);
3138 else
3139 emit_mov(HOST_CCREG,0);
3140 emit_add(0,ECX,0);
3141 emit_addimm(0,2*ccadj[i],0);
3142 emit_writeword(0,(int)&Count);
3143 #endif
3144 emit_call((int)memdebug);
3145 //emit_popa();
3146 restore_regs(0x100f);
3147 }/**/
3148}
3149
3150#ifndef loadlr_assemble
3151void loadlr_assemble(int i,struct regstat *i_regs)
3152{
3153 printf("Need loadlr_assemble for this architecture.\n");
3154 exit(1);
3155}
3156#endif
3157
3158void store_assemble(int i,struct regstat *i_regs)
3159{
3160 int s,th,tl,map=-1;
3161 int addr,temp;
3162 int offset;
3163 int jaddr=0,jaddr2,type;
666a299d 3164 int memtarget=0,c=0;
57871462 3165 int agr=AGEN1+(i&1);
b1570849 3166 int faststore_reg_override=0;
57871462 3167 u_int hr,reglist=0;
3168 th=get_reg(i_regs->regmap,rs2[i]|64);
3169 tl=get_reg(i_regs->regmap,rs2[i]);
3170 s=get_reg(i_regs->regmap,rs1[i]);
3171 temp=get_reg(i_regs->regmap,agr);
3172 if(temp<0) temp=get_reg(i_regs->regmap,-1);
3173 offset=imm[i];
3174 if(s>=0) {
3175 c=(i_regs->wasconst>>s)&1;
af4ee1fe 3176 if(c) {
3177 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
3178 if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
3179 }
57871462 3180 }
3181 assert(tl>=0);
3182 assert(temp>=0);
3183 for(hr=0;hr<HOST_REGS;hr++) {
3184 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3185 }
3186 if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
3187 if(offset||s<0||c) addr=temp;
3188 else addr=s;
3189 if(!using_tlb) {
3190 if(!c) {
ffb0b9e0 3191 #ifndef PCSX
57871462 3192 #ifdef R29_HACK
3193 // Strmnnrmn's speed hack
4cb76aa4 3194 if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
57871462 3195 #endif
4cb76aa4 3196 emit_cmpimm(addr,RAM_SIZE);
57871462 3197 #ifdef DESTRUCTIVE_SHIFT
3198 if(s==addr) emit_mov(s,temp);
3199 #endif
3200 #ifdef R29_HACK
dadf55f2 3201 memtarget=1;
4cb76aa4 3202 if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
57871462 3203 #endif
3204 {
3205 jaddr=(int)out;
3206 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
3207 // Hint to branch predictor that the branch is unlikely to be taken
3208 if(rs1[i]>=28)
3209 emit_jno_unlikely(0);
3210 else
3211 #endif
3212 emit_jno(0);
3213 }
ffb0b9e0 3214 #else
3215 jaddr=emit_fastpath_cmp_jump(i,addr,&faststore_reg_override);
3216 #endif
57871462 3217 }
3218 }else{ // using tlb
3219 int x=0;
3220 if (opcode[i]==0x28) x=3; // SB
3221 if (opcode[i]==0x29) x=2; // SH
3222 map=get_reg(i_regs->regmap,TLREG);
3223 assert(map>=0);
ea3d2e6e 3224 reglist&=~(1<<map);
57871462 3225 map=do_tlb_w(addr,temp,map,x,c,constmap[i][s]+offset);
3226 do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr);
3227 }
3228
3229 if (opcode[i]==0x28) { // SB
3230 if(!c||memtarget) {
97a238a6 3231 int x=0,a=temp;
2002a1db 3232#ifdef BIG_ENDIAN_MIPS
57871462 3233 if(!c) emit_xorimm(addr,3,temp);
3234 else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2002a1db 3235#else
97a238a6 3236 if(!c) a=addr;
dadf55f2 3237#endif
b1570849 3238 if(faststore_reg_override) a=faststore_reg_override;
57871462 3239 //gen_tlb_addr_w(temp,map);
3240 //emit_writebyte_indexed(tl,(int)rdram-0x80000000,temp);
97a238a6 3241 emit_writebyte_indexed_tlb(tl,x,a,map,a);
57871462 3242 }
3243 type=STOREB_STUB;
3244 }
3245 if (opcode[i]==0x29) { // SH
3246 if(!c||memtarget) {
97a238a6 3247 int x=0,a=temp;
2002a1db 3248#ifdef BIG_ENDIAN_MIPS
57871462 3249 if(!c) emit_xorimm(addr,2,temp);
3250 else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
2002a1db 3251#else
97a238a6 3252 if(!c) a=addr;
dadf55f2 3253#endif
b1570849 3254 if(faststore_reg_override) a=faststore_reg_override;
57871462 3255 //#ifdef
3256 //emit_writehword_indexed_tlb(tl,x,temp,map,temp);
3257 //#else
3258 if(map>=0) {
97a238a6 3259 gen_tlb_addr_w(a,map);
3260 emit_writehword_indexed(tl,x,a);
57871462 3261 }else
97a238a6 3262 emit_writehword_indexed(tl,(int)rdram-0x80000000+x,a);
57871462 3263 }
3264 type=STOREH_STUB;
3265 }
3266 if (opcode[i]==0x2B) { // SW
dadf55f2 3267 if(!c||memtarget) {
3268 int a=addr;
b1570849 3269 if(faststore_reg_override) a=faststore_reg_override;
57871462 3270 //emit_writeword_indexed(tl,(int)rdram-0x80000000,addr);
dadf55f2 3271 emit_writeword_indexed_tlb(tl,0,a,map,temp);
3272 }
57871462 3273 type=STOREW_STUB;
3274 }
3275 if (opcode[i]==0x3F) { // SD
3276 if(!c||memtarget) {
dadf55f2 3277 int a=addr;
b1570849 3278 if(faststore_reg_override) a=faststore_reg_override;
57871462 3279 if(rs2[i]) {
3280 assert(th>=0);
3281 //emit_writeword_indexed(th,(int)rdram-0x80000000,addr);
3282 //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,addr);
dadf55f2 3283 emit_writedword_indexed_tlb(th,tl,0,a,map,temp);
57871462 3284 }else{
3285 // Store zero
3286 //emit_writeword_indexed(tl,(int)rdram-0x80000000,temp);
3287 //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,temp);
dadf55f2 3288 emit_writedword_indexed_tlb(tl,tl,0,a,map,temp);
57871462 3289 }
3290 }
3291 type=STORED_STUB;
3292 }
b96d3df7 3293#ifdef PCSX
3294 if(jaddr) {
3295 // PCSX store handlers don't check invcode again
3296 reglist|=1<<addr;
3297 add_stub(type,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3298 jaddr=0;
3299 }
3300#endif
57871462 3301 if(!using_tlb) {
3302 if(!c||memtarget) {
3303 #ifdef DESTRUCTIVE_SHIFT
3304 // The x86 shift operation is 'destructive'; it overwrites the
3305 // source register, so we need to make a copy first and use that.
3306 addr=temp;
3307 #endif
3308 #if defined(HOST_IMM8)
3309 int ir=get_reg(i_regs->regmap,INVCP);
3310 assert(ir>=0);
3311 emit_cmpmem_indexedsr12_reg(ir,addr,1);
3312 #else
3313 emit_cmpmem_indexedsr12_imm((int)invalid_code,addr,1);
3314 #endif
0bbd1454 3315 #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3316 emit_callne(invalidate_addr_reg[addr]);
3317 #else
57871462 3318 jaddr2=(int)out;
3319 emit_jne(0);
3320 add_stub(INVCODE_STUB,jaddr2,(int)out,reglist|(1<<HOST_CCREG),addr,0,0,0);
0bbd1454 3321 #endif
57871462 3322 }
3323 }
3eaa7048 3324 if(jaddr) {
3325 add_stub(type,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3326 } else if(c&&!memtarget) {
3327 inline_writestub(type,i,constmap[i][s]+offset,i_regs->regmap,rs2[i],ccadj[i],reglist);
3328 }
57871462 3329 //if(opcode[i]==0x2B || opcode[i]==0x3F)
3330 //if(opcode[i]==0x2B || opcode[i]==0x28)
3331 //if(opcode[i]==0x2B || opcode[i]==0x29)
3332 //if(opcode[i]==0x2B)
3333 /*if(opcode[i]==0x2B || opcode[i]==0x28 || opcode[i]==0x29 || opcode[i]==0x3F)
3334 {
28d74ee8 3335 #ifdef __i386__
3336 emit_pusha();
3337 #endif
3338 #ifdef __arm__
57871462 3339 save_regs(0x100f);
28d74ee8 3340 #endif
57871462 3341 emit_readword((int)&last_count,ECX);
3342 #ifdef __i386__
3343 if(get_reg(i_regs->regmap,CCREG)<0)
3344 emit_loadreg(CCREG,HOST_CCREG);
3345 emit_add(HOST_CCREG,ECX,HOST_CCREG);
3346 emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3347 emit_writeword(HOST_CCREG,(int)&Count);
3348 #endif
3349 #ifdef __arm__
3350 if(get_reg(i_regs->regmap,CCREG)<0)
3351 emit_loadreg(CCREG,0);
3352 else
3353 emit_mov(HOST_CCREG,0);
3354 emit_add(0,ECX,0);
3355 emit_addimm(0,2*ccadj[i],0);
3356 emit_writeword(0,(int)&Count);
3357 #endif
3358 emit_call((int)memdebug);
28d74ee8 3359 #ifdef __i386__
3360 emit_popa();
3361 #endif
3362 #ifdef __arm__
57871462 3363 restore_regs(0x100f);
28d74ee8 3364 #endif
57871462 3365 }/**/
3366}
3367
3368void storelr_assemble(int i,struct regstat *i_regs)
3369{
3370 int s,th,tl;
3371 int temp;
3372 int temp2;
3373 int offset;
3374 int jaddr=0,jaddr2;
3375 int case1,case2,case3;
3376 int done0,done1,done2;
af4ee1fe 3377 int memtarget=0,c=0;
fab5d06d 3378 int agr=AGEN1+(i&1);
57871462 3379 u_int hr,reglist=0;
3380 th=get_reg(i_regs->regmap,rs2[i]|64);
3381 tl=get_reg(i_regs->regmap,rs2[i]);
3382 s=get_reg(i_regs->regmap,rs1[i]);
fab5d06d 3383 temp=get_reg(i_regs->regmap,agr);
3384 if(temp<0) temp=get_reg(i_regs->regmap,-1);
57871462 3385 offset=imm[i];
3386 if(s>=0) {
3387 c=(i_regs->isconst>>s)&1;
af4ee1fe 3388 if(c) {
3389 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
3390 if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
3391 }
57871462 3392 }
3393 assert(tl>=0);
3394 for(hr=0;hr<HOST_REGS;hr++) {
3395 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3396 }
535d208a 3397 assert(temp>=0);
3398 if(!using_tlb) {
3399 if(!c) {
3400 emit_cmpimm(s<0||offset?temp:s,RAM_SIZE);
3401 if(!offset&&s!=temp) emit_mov(s,temp);
3402 jaddr=(int)out;
3403 emit_jno(0);
3404 }
3405 else
3406 {
3407 if(!memtarget||!rs1[i]) {
57871462 3408 jaddr=(int)out;
3409 emit_jmp(0);
3410 }
57871462 3411 }
535d208a 3412 #ifdef RAM_OFFSET
3413 int map=get_reg(i_regs->regmap,ROREG);
3414 if(map<0) emit_loadreg(ROREG,map=HOST_TEMPREG);
3415 gen_tlb_addr_w(temp,map);
3416 #else
3417 if((u_int)rdram!=0x80000000)
3418 emit_addimm_no_flags((u_int)rdram-(u_int)0x80000000,temp);
3419 #endif
3420 }else{ // using tlb
3421 int map=get_reg(i_regs->regmap,TLREG);
3422 assert(map>=0);
ea3d2e6e 3423 reglist&=~(1<<map);
535d208a 3424 map=do_tlb_w(c||s<0||offset?temp:s,temp,map,0,c,constmap[i][s]+offset);
3425 if(!c&&!offset&&s>=0) emit_mov(s,temp);
3426 do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr);
3427 if(!jaddr&&!memtarget) {
3428 jaddr=(int)out;
3429 emit_jmp(0);
57871462 3430 }
535d208a 3431 gen_tlb_addr_w(temp,map);
3432 }
3433
3434 if (opcode[i]==0x2C||opcode[i]==0x2D) { // SDL/SDR
3435 temp2=get_reg(i_regs->regmap,FTEMP);
3436 if(!rs2[i]) temp2=th=tl;
3437 }
57871462 3438
2002a1db 3439#ifndef BIG_ENDIAN_MIPS
3440 emit_xorimm(temp,3,temp);
3441#endif
535d208a 3442 emit_testimm(temp,2);
3443 case2=(int)out;
3444 emit_jne(0);
3445 emit_testimm(temp,1);
3446 case1=(int)out;
3447 emit_jne(0);
3448 // 0
3449 if (opcode[i]==0x2A) { // SWL
3450 emit_writeword_indexed(tl,0,temp);
3451 }
3452 if (opcode[i]==0x2E) { // SWR
3453 emit_writebyte_indexed(tl,3,temp);
3454 }
3455 if (opcode[i]==0x2C) { // SDL
3456 emit_writeword_indexed(th,0,temp);
3457 if(rs2[i]) emit_mov(tl,temp2);
3458 }
3459 if (opcode[i]==0x2D) { // SDR
3460 emit_writebyte_indexed(tl,3,temp);
3461 if(rs2[i]) emit_shldimm(th,tl,24,temp2);
3462 }
3463 done0=(int)out;
3464 emit_jmp(0);
3465 // 1
3466 set_jump_target(case1,(int)out);
3467 if (opcode[i]==0x2A) { // SWL
3468 // Write 3 msb into three least significant bytes
3469 if(rs2[i]) emit_rorimm(tl,8,tl);
3470 emit_writehword_indexed(tl,-1,temp);
3471 if(rs2[i]) emit_rorimm(tl,16,tl);
3472 emit_writebyte_indexed(tl,1,temp);
3473 if(rs2[i]) emit_rorimm(tl,8,tl);
3474 }
3475 if (opcode[i]==0x2E) { // SWR
3476 // Write two lsb into two most significant bytes
3477 emit_writehword_indexed(tl,1,temp);
3478 }
3479 if (opcode[i]==0x2C) { // SDL
3480 if(rs2[i]) emit_shrdimm(tl,th,8,temp2);
3481 // Write 3 msb into three least significant bytes
3482 if(rs2[i]) emit_rorimm(th,8,th);
3483 emit_writehword_indexed(th,-1,temp);
3484 if(rs2[i]) emit_rorimm(th,16,th);
3485 emit_writebyte_indexed(th,1,temp);
3486 if(rs2[i]) emit_rorimm(th,8,th);
3487 }
3488 if (opcode[i]==0x2D) { // SDR
3489 if(rs2[i]) emit_shldimm(th,tl,16,temp2);
3490 // Write two lsb into two most significant bytes
3491 emit_writehword_indexed(tl,1,temp);
3492 }
3493 done1=(int)out;
3494 emit_jmp(0);
3495 // 2
3496 set_jump_target(case2,(int)out);
3497 emit_testimm(temp,1);
3498 case3=(int)out;
3499 emit_jne(0);
3500 if (opcode[i]==0x2A) { // SWL
3501 // Write two msb into two least significant bytes
3502 if(rs2[i]) emit_rorimm(tl,16,tl);
3503 emit_writehword_indexed(tl,-2,temp);
3504 if(rs2[i]) emit_rorimm(tl,16,tl);
3505 }
3506 if (opcode[i]==0x2E) { // SWR
3507 // Write 3 lsb into three most significant bytes
3508 emit_writebyte_indexed(tl,-1,temp);
3509 if(rs2[i]) emit_rorimm(tl,8,tl);
3510 emit_writehword_indexed(tl,0,temp);
3511 if(rs2[i]) emit_rorimm(tl,24,tl);
3512 }
3513 if (opcode[i]==0x2C) { // SDL
3514 if(rs2[i]) emit_shrdimm(tl,th,16,temp2);
3515 // Write two msb into two least significant bytes
3516 if(rs2[i]) emit_rorimm(th,16,th);
3517 emit_writehword_indexed(th,-2,temp);
3518 if(rs2[i]) emit_rorimm(th,16,th);
3519 }
3520 if (opcode[i]==0x2D) { // SDR
3521 if(rs2[i]) emit_shldimm(th,tl,8,temp2);
3522 // Write 3 lsb into three most significant bytes
3523 emit_writebyte_indexed(tl,-1,temp);
3524 if(rs2[i]) emit_rorimm(tl,8,tl);
3525 emit_writehword_indexed(tl,0,temp);
3526 if(rs2[i]) emit_rorimm(tl,24,tl);
3527 }
3528 done2=(int)out;
3529 emit_jmp(0);
3530 // 3
3531 set_jump_target(case3,(int)out);
3532 if (opcode[i]==0x2A) { // SWL
3533 // Write msb into least significant byte
3534 if(rs2[i]) emit_rorimm(tl,24,tl);
3535 emit_writebyte_indexed(tl,-3,temp);
3536 if(rs2[i]) emit_rorimm(tl,8,tl);
3537 }
3538 if (opcode[i]==0x2E) { // SWR
3539 // Write entire word
3540 emit_writeword_indexed(tl,-3,temp);
3541 }
3542 if (opcode[i]==0x2C) { // SDL
3543 if(rs2[i]) emit_shrdimm(tl,th,24,temp2);
3544 // Write msb into least significant byte
3545 if(rs2[i]) emit_rorimm(th,24,th);
3546 emit_writebyte_indexed(th,-3,temp);
3547 if(rs2[i]) emit_rorimm(th,8,th);
3548 }
3549 if (opcode[i]==0x2D) { // SDR
3550 if(rs2[i]) emit_mov(th,temp2);
3551 // Write entire word
3552 emit_writeword_indexed(tl,-3,temp);
3553 }
3554 set_jump_target(done0,(int)out);
3555 set_jump_target(done1,(int)out);
3556 set_jump_target(done2,(int)out);
3557 if (opcode[i]==0x2C) { // SDL
3558 emit_testimm(temp,4);
57871462 3559 done0=(int)out;
57871462 3560 emit_jne(0);
535d208a 3561 emit_andimm(temp,~3,temp);
3562 emit_writeword_indexed(temp2,4,temp);
3563 set_jump_target(done0,(int)out);
3564 }
3565 if (opcode[i]==0x2D) { // SDR
3566 emit_testimm(temp,4);
3567 done0=(int)out;
3568 emit_jeq(0);
3569 emit_andimm(temp,~3,temp);
3570 emit_writeword_indexed(temp2,-4,temp);
57871462 3571 set_jump_target(done0,(int)out);
57871462 3572 }
535d208a 3573 if(!c||!memtarget)
3574 add_stub(STORELR_STUB,jaddr,(int)out,i,(int)i_regs,temp,ccadj[i],reglist);
57871462 3575 if(!using_tlb) {
535d208a 3576 #ifdef RAM_OFFSET
3577 int map=get_reg(i_regs->regmap,ROREG);
3578 if(map<0) map=HOST_TEMPREG;
3579 gen_orig_addr_w(temp,map);
3580 #else
57871462 3581 emit_addimm_no_flags((u_int)0x80000000-(u_int)rdram,temp);
535d208a 3582 #endif
57871462 3583 #if defined(HOST_IMM8)
3584 int ir=get_reg(i_regs->regmap,INVCP);
3585 assert(ir>=0);
3586 emit_cmpmem_indexedsr12_reg(ir,temp,1);
3587 #else
3588 emit_cmpmem_indexedsr12_imm((int)invalid_code,temp,1);
3589 #endif
535d208a 3590 #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3591 emit_callne(invalidate_addr_reg[temp]);
3592 #else
57871462 3593 jaddr2=(int)out;
3594 emit_jne(0);
3595 add_stub(INVCODE_STUB,jaddr2,(int)out,reglist|(1<<HOST_CCREG),temp,0,0,0);
535d208a 3596 #endif
57871462 3597 }
3598 /*
3599 emit_pusha();
3600 //save_regs(0x100f);
3601 emit_readword((int)&last_count,ECX);
3602 if(get_reg(i_regs->regmap,CCREG)<0)
3603 emit_loadreg(CCREG,HOST_CCREG);
3604 emit_add(HOST_CCREG,ECX,HOST_CCREG);
3605 emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3606 emit_writeword(HOST_CCREG,(int)&Count);
3607 emit_call((int)memdebug);
3608 emit_popa();
3609 //restore_regs(0x100f);
3610 /**/
3611}
3612
3613void c1ls_assemble(int i,struct regstat *i_regs)
3614{
3d624f89 3615#ifndef DISABLE_COP1
57871462 3616 int s,th,tl;
3617 int temp,ar;
3618 int map=-1;
3619 int offset;
3620 int c=0;
3621 int jaddr,jaddr2=0,jaddr3,type;
3622 int agr=AGEN1+(i&1);
3623 u_int hr,reglist=0;
3624 th=get_reg(i_regs->regmap,FTEMP|64);
3625 tl=get_reg(i_regs->regmap,FTEMP);
3626 s=get_reg(i_regs->regmap,rs1[i]);
3627 temp=get_reg(i_regs->regmap,agr);
3628 if(temp<0) temp=get_reg(i_regs->regmap,-1);
3629 offset=imm[i];
3630 assert(tl>=0);
3631 assert(rs1[i]>0);
3632 assert(temp>=0);
3633 for(hr=0;hr<HOST_REGS;hr++) {
3634 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3635 }
3636 if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
3637 if (opcode[i]==0x31||opcode[i]==0x35) // LWC1/LDC1
3638 {
3639 // Loads use a temporary register which we need to save
3640 reglist|=1<<temp;
3641 }
3642 if (opcode[i]==0x39||opcode[i]==0x3D) // SWC1/SDC1
3643 ar=temp;
3644 else // LWC1/LDC1
3645 ar=tl;
3646 //if(s<0) emit_loadreg(rs1[i],ar); //address_generation does this now
3647 //else c=(i_regs->wasconst>>s)&1;
3648 if(s>=0) c=(i_regs->wasconst>>s)&1;
3649 // Check cop1 unusable
3650 if(!cop1_usable) {
3651 signed char rs=get_reg(i_regs->regmap,CSREG);
3652 assert(rs>=0);
3653 emit_testimm(rs,0x20000000);
3654 jaddr=(int)out;
3655 emit_jeq(0);
3656 add_stub(FP_STUB,jaddr,(int)out,i,rs,(int)i_regs,is_delayslot,0);
3657 cop1_usable=1;
3658 }
3659 if (opcode[i]==0x39) { // SWC1 (get float address)
3660 emit_readword((int)&reg_cop1_simple[(source[i]>>16)&0x1f],tl);
3661 }
3662 if (opcode[i]==0x3D) { // SDC1 (get double address)
3663 emit_readword((int)&reg_cop1_double[(source[i]>>16)&0x1f],tl);
3664 }
3665 // Generate address + offset
3666 if(!using_tlb) {
3667 if(!c)
4cb76aa4 3668 emit_cmpimm(offset||c||s<0?ar:s,RAM_SIZE);
57871462 3669 }
3670 else
3671 {
3672 map=get_reg(i_regs->regmap,TLREG);
3673 assert(map>=0);
ea3d2e6e 3674 reglist&=~(1<<map);
57871462 3675 if (opcode[i]==0x31||opcode[i]==0x35) { // LWC1/LDC1
3676 map=do_tlb_r(offset||c||s<0?ar:s,ar,map,0,-1,-1,c,constmap[i][s]+offset);
3677 }
3678 if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3679 map=do_tlb_w(offset||c||s<0?ar:s,ar,map,0,c,constmap[i][s]+offset);
3680 }
3681 }
3682 if (opcode[i]==0x39) { // SWC1 (read float)
3683 emit_readword_indexed(0,tl,tl);
3684 }
3685 if (opcode[i]==0x3D) { // SDC1 (read double)
3686 emit_readword_indexed(4,tl,th);
3687 emit_readword_indexed(0,tl,tl);
3688 }
3689 if (opcode[i]==0x31) { // LWC1 (get target address)
3690 emit_readword((int)&reg_cop1_simple[(source[i]>>16)&0x1f],temp);
3691 }
3692 if (opcode[i]==0x35) { // LDC1 (get target address)
3693 emit_readword((int)&reg_cop1_double[(source[i]>>16)&0x1f],temp);
3694 }
3695 if(!using_tlb) {
3696 if(!c) {
3697 jaddr2=(int)out;
3698 emit_jno(0);
3699 }
4cb76aa4 3700 else if(((signed int)(constmap[i][s]+offset))>=(signed int)0x80000000+RAM_SIZE) {
57871462 3701 jaddr2=(int)out;
3702 emit_jmp(0); // inline_readstub/inline_writestub? Very rare case
3703 }
3704 #ifdef DESTRUCTIVE_SHIFT
3705 if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3706 if(!offset&&!c&&s>=0) emit_mov(s,ar);
3707 }
3708 #endif
3709 }else{
3710 if (opcode[i]==0x31||opcode[i]==0x35) { // LWC1/LDC1
3711 do_tlb_r_branch(map,c,constmap[i][s]+offset,&jaddr2);
3712 }
3713 if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3714 do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr2);
3715 }
3716 }
3717 if (opcode[i]==0x31) { // LWC1
3718 //if(s>=0&&!c&&!offset) emit_mov(s,tl);
3719 //gen_tlb_addr_r(ar,map);
3720 //emit_readword_indexed((int)rdram-0x80000000,tl,tl);
3721 #ifdef HOST_IMM_ADDR32
3722 if(c) emit_readword_tlb(constmap[i][s]+offset,map,tl);
3723 else
3724 #endif
3725 emit_readword_indexed_tlb(0,offset||c||s<0?tl:s,map,tl);
3726 type=LOADW_STUB;
3727 }
3728 if (opcode[i]==0x35) { // LDC1
3729 assert(th>=0);
3730 //if(s>=0&&!c&&!offset) emit_mov(s,tl);
3731 //gen_tlb_addr_r(ar,map);
3732 //emit_readword_indexed((int)rdram-0x80000000,tl,th);
3733 //emit_readword_indexed((int)rdram-0x7FFFFFFC,tl,tl);
3734 #ifdef HOST_IMM_ADDR32
3735 if(c) emit_readdword_tlb(constmap[i][s]+offset,map,th,tl);
3736 else
3737 #endif
3738 emit_readdword_indexed_tlb(0,offset||c||s<0?tl:s,map,th,tl);
3739 type=LOADD_STUB;
3740 }
3741 if (opcode[i]==0x39) { // SWC1
3742 //emit_writeword_indexed(tl,(int)rdram-0x80000000,temp);
3743 emit_writeword_indexed_tlb(tl,0,offset||c||s<0?temp:s,map,temp);
3744 type=STOREW_STUB;
3745 }
3746 if (opcode[i]==0x3D) { // SDC1
3747 assert(th>=0);
3748 //emit_writeword_indexed(th,(int)rdram-0x80000000,temp);
3749 //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,temp);
3750 emit_writedword_indexed_tlb(th,tl,0,offset||c||s<0?temp:s,map,temp);
3751 type=STORED_STUB;
3752 }
3753 if(!using_tlb) {
3754 if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3755 #ifndef DESTRUCTIVE_SHIFT
3756 temp=offset||c||s<0?ar:s;
3757 #endif
3758 #if defined(HOST_IMM8)
3759 int ir=get_reg(i_regs->regmap,INVCP);
3760 assert(ir>=0);
3761 emit_cmpmem_indexedsr12_reg(ir,temp,1);
3762 #else
3763 emit_cmpmem_indexedsr12_imm((int)invalid_code,temp,1);
3764 #endif
0bbd1454 3765 #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3766 emit_callne(invalidate_addr_reg[temp]);
3767 #else
57871462 3768 jaddr3=(int)out;
3769 emit_jne(0);
3770 add_stub(INVCODE_STUB,jaddr3,(int)out,reglist|(1<<HOST_CCREG),temp,0,0,0);
0bbd1454 3771 #endif
57871462 3772 }
3773 }
3774 if(jaddr2) add_stub(type,jaddr2,(int)out,i,offset||c||s<0?ar:s,(int)i_regs,ccadj[i],reglist);
3775 if (opcode[i]==0x31) { // LWC1 (write float)
3776 emit_writeword_indexed(tl,0,temp);
3777 }
3778 if (opcode[i]==0x35) { // LDC1 (write double)
3779 emit_writeword_indexed(th,4,temp);
3780 emit_writeword_indexed(tl,0,temp);
3781 }
3782 //if(opcode[i]==0x39)
3783 /*if(opcode[i]==0x39||opcode[i]==0x31)
3784 {
3785 emit_pusha();
3786 emit_readword((int)&last_count,ECX);
3787 if(get_reg(i_regs->regmap,CCREG)<0)
3788 emit_loadreg(CCREG,HOST_CCREG);
3789 emit_add(HOST_CCREG,ECX,HOST_CCREG);
3790 emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3791 emit_writeword(HOST_CCREG,(int)&Count);
3792 emit_call((int)memdebug);
3793 emit_popa();
3794 }/**/
3d624f89 3795#else
3796 cop1_unusable(i, i_regs);
3797#endif
57871462 3798}
3799
b9b61529 3800void c2ls_assemble(int i,struct regstat *i_regs)
3801{
3802 int s,tl;
3803 int ar;
3804 int offset;
1fd1aceb 3805 int memtarget=0,c=0;
c2e3bd42 3806 int jaddr2=0,jaddr3,type;
b9b61529 3807 int agr=AGEN1+(i&1);
ffb0b9e0 3808 int fastio_reg_override=0;
b9b61529 3809 u_int hr,reglist=0;
3810 u_int copr=(source[i]>>16)&0x1f;
3811 s=get_reg(i_regs->regmap,rs1[i]);
3812 tl=get_reg(i_regs->regmap,FTEMP);
3813 offset=imm[i];
3814 assert(rs1[i]>0);
3815 assert(tl>=0);
3816 assert(!using_tlb);
3817
3818 for(hr=0;hr<HOST_REGS;hr++) {
3819 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3820 }
3821 if(i_regs->regmap[HOST_CCREG]==CCREG)
3822 reglist&=~(1<<HOST_CCREG);
3823
3824 // get the address
3825 if (opcode[i]==0x3a) { // SWC2
3826 ar=get_reg(i_regs->regmap,agr);
3827 if(ar<0) ar=get_reg(i_regs->regmap,-1);
3828 reglist|=1<<ar;
3829 } else { // LWC2
3830 ar=tl;
3831 }
1fd1aceb 3832 if(s>=0) c=(i_regs->wasconst>>s)&1;
3833 memtarget=c&&(((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE);
b9b61529 3834 if (!offset&&!c&&s>=0) ar=s;
3835 assert(ar>=0);
3836
3837 if (opcode[i]==0x3a) { // SWC2
3838 cop2_get_dreg(copr,tl,HOST_TEMPREG);
1fd1aceb 3839 type=STOREW_STUB;
b9b61529 3840 }
1fd1aceb 3841 else
b9b61529 3842 type=LOADW_STUB;
1fd1aceb 3843
3844 if(c&&!memtarget) {
3845 jaddr2=(int)out;
3846 emit_jmp(0); // inline_readstub/inline_writestub?
b9b61529 3847 }
1fd1aceb 3848 else {
3849 if(!c) {
ffb0b9e0 3850 jaddr2=emit_fastpath_cmp_jump(i,ar,&fastio_reg_override);
1fd1aceb 3851 }
3852 if (opcode[i]==0x32) { // LWC2
3853 #ifdef HOST_IMM_ADDR32
3854 if(c) emit_readword_tlb(constmap[i][s]+offset,-1,tl);
3855 else
3856 #endif
ffb0b9e0 3857 int a=ar;
3858 if(fastio_reg_override) a=fastio_reg_override;
3859 emit_readword_indexed(0,a,tl);
1fd1aceb 3860 }
3861 if (opcode[i]==0x3a) { // SWC2
3862 #ifdef DESTRUCTIVE_SHIFT
3863 if(!offset&&!c&&s>=0) emit_mov(s,ar);
3864 #endif
ffb0b9e0 3865 int a=ar;
3866 if(fastio_reg_override) a=fastio_reg_override;
3867 emit_writeword_indexed(tl,0,a);
1fd1aceb 3868 }
b9b61529 3869 }
3870 if(jaddr2)
3871 add_stub(type,jaddr2,(int)out,i,ar,(int)i_regs,ccadj[i],reglist);
3872 if (opcode[i]==0x3a) { // SWC2
3873#if defined(HOST_IMM8)
3874 int ir=get_reg(i_regs->regmap,INVCP);
3875 assert(ir>=0);
3876 emit_cmpmem_indexedsr12_reg(ir,ar,1);
3877#else
3878 emit_cmpmem_indexedsr12_imm((int)invalid_code,ar,1);
3879#endif
0bbd1454 3880 #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3881 emit_callne(invalidate_addr_reg[ar]);
3882 #else
b9b61529 3883 jaddr3=(int)out;
3884 emit_jne(0);
3885 add_stub(INVCODE_STUB,jaddr3,(int)out,reglist|(1<<HOST_CCREG),ar,0,0,0);
0bbd1454 3886 #endif
b9b61529 3887 }
3888 if (opcode[i]==0x32) { // LWC2
3889 cop2_put_dreg(copr,tl,HOST_TEMPREG);
3890 }
3891}
3892
57871462 3893#ifndef multdiv_assemble
3894void multdiv_assemble(int i,struct regstat *i_regs)
3895{
3896 printf("Need multdiv_assemble for this architecture.\n");
3897 exit(1);
3898}
3899#endif
3900
3901void mov_assemble(int i,struct regstat *i_regs)
3902{
3903 //if(opcode2[i]==0x10||opcode2[i]==0x12) { // MFHI/MFLO
3904 //if(opcode2[i]==0x11||opcode2[i]==0x13) { // MTHI/MTLO
57871462 3905 if(rt1[i]) {
3906 signed char sh,sl,th,tl;
3907 th=get_reg(i_regs->regmap,rt1[i]|64);
3908 tl=get_reg(i_regs->regmap,rt1[i]);
3909 //assert(tl>=0);
3910 if(tl>=0) {
3911 sh=get_reg(i_regs->regmap,rs1[i]|64);
3912 sl=get_reg(i_regs->regmap,rs1[i]);
3913 if(sl>=0) emit_mov(sl,tl);
3914 else emit_loadreg(rs1[i],tl);
3915 if(th>=0) {
3916 if(sh>=0) emit_mov(sh,th);
3917 else emit_loadreg(rs1[i]|64,th);
3918 }
3919 }
3920 }
3921}
3922
3923#ifndef fconv_assemble
3924void fconv_assemble(int i,struct regstat *i_regs)
3925{
3926 printf("Need fconv_assemble for this architecture.\n");
3927 exit(1);
3928}
3929#endif
3930
3931#if 0
3932void float_assemble(int i,struct regstat *i_regs)
3933{
3934 printf("Need float_assemble for this architecture.\n");
3935 exit(1);
3936}
3937#endif
3938
3939void syscall_assemble(int i,struct regstat *i_regs)
3940{
3941 signed char ccreg=get_reg(i_regs->regmap,CCREG);
3942 assert(ccreg==HOST_CCREG);
3943 assert(!is_delayslot);
3944 emit_movimm(start+i*4,EAX); // Get PC
2573466a 3945 emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i]),HOST_CCREG); // CHECK: is this right? There should probably be an extra cycle...
7139f3c8 3946 emit_jmp((int)jump_syscall_hle); // XXX
3947}
3948
3949void hlecall_assemble(int i,struct regstat *i_regs)
3950{
3951 signed char ccreg=get_reg(i_regs->regmap,CCREG);
3952 assert(ccreg==HOST_CCREG);
3953 assert(!is_delayslot);
3954 emit_movimm(start+i*4+4,0); // Get PC
67ba0fb4 3955 emit_movimm((int)psxHLEt[source[i]&7],1);
2573466a 3956 emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i]),HOST_CCREG); // XXX
67ba0fb4 3957 emit_jmp((int)jump_hlecall);
57871462 3958}
3959
1e973cb0 3960void intcall_assemble(int i,struct regstat *i_regs)
3961{
3962 signed char ccreg=get_reg(i_regs->regmap,CCREG);
3963 assert(ccreg==HOST_CCREG);
3964 assert(!is_delayslot);
3965 emit_movimm(start+i*4,0); // Get PC
2573466a 3966 emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i]),HOST_CCREG);
1e973cb0 3967 emit_jmp((int)jump_intcall);
3968}
3969
57871462 3970void ds_assemble(int i,struct regstat *i_regs)
3971{
ffb0b9e0 3972 speculate_register_values(i);
57871462 3973 is_delayslot=1;
3974 switch(itype[i]) {
3975 case ALU:
3976 alu_assemble(i,i_regs);break;
3977 case IMM16:
3978 imm16_assemble(i,i_regs);break;
3979 case SHIFT:
3980 shift_assemble(i,i_regs);break;
3981 case SHIFTIMM:
3982 shiftimm_assemble(i,i_regs);break;
3983 case LOAD:
3984 load_assemble(i,i_regs);break;
3985 case LOADLR:
3986 loadlr_assemble(i,i_regs);break;
3987 case STORE:
3988 store_assemble(i,i_regs);break;
3989 case STORELR:
3990 storelr_assemble(i,i_regs);break;
3991 case COP0:
3992 cop0_assemble(i,i_regs);break;
3993 case COP1:
3994 cop1_assemble(i,i_regs);break;
3995 case C1LS:
3996 c1ls_assemble(i,i_regs);break;
b9b61529 3997 case COP2:
3998 cop2_assemble(i,i_regs);break;
3999 case C2LS:
4000 c2ls_assemble(i,i_regs);break;
4001 case C2OP:
4002 c2op_assemble(i,i_regs);break;
57871462 4003 case FCONV:
4004 fconv_assemble(i,i_regs);break;
4005 case FLOAT:
4006 float_assemble(i,i_regs);break;
4007 case FCOMP:
4008 fcomp_assemble(i,i_regs);break;
4009 case MULTDIV:
4010 multdiv_assemble(i,i_regs);break;
4011 case MOV:
4012 mov_assemble(i,i_regs);break;
4013 case SYSCALL:
7139f3c8 4014 case HLECALL:
1e973cb0 4015 case INTCALL:
57871462 4016 case SPAN:
4017 case UJUMP:
4018 case RJUMP:
4019 case CJUMP:
4020 case SJUMP:
4021 case FJUMP:
4022 printf("Jump in the delay slot. This is probably a bug.\n");
4023 }
4024 is_delayslot=0;
4025}
4026
4027// Is the branch target a valid internal jump?
4028int internal_branch(uint64_t i_is32,int addr)
4029{
4030 if(addr&1) return 0; // Indirect (register) jump
4031 if(addr>=start && addr<start+slen*4-4)
4032 {
4033 int t=(addr-start)>>2;
4034 // Delay slots are not valid branch targets
4035 //if(t>0&&(itype[t-1]==RJUMP||itype[t-1]==UJUMP||itype[t-1]==CJUMP||itype[t-1]==SJUMP||itype[t-1]==FJUMP)) return 0;
4036 // 64 -> 32 bit transition requires a recompile
4037 /*if(is32[t]&~unneeded_reg_upper[t]&~i_is32)
4038 {
4039 if(requires_32bit[t]&~i_is32) printf("optimizable: no\n");
4040 else printf("optimizable: yes\n");
4041 }*/
4042 //if(is32[t]&~unneeded_reg_upper[t]&~i_is32) return 0;
a28c6ce8 4043#ifndef FORCE32
57871462 4044 if(requires_32bit[t]&~i_is32) return 0;
a28c6ce8 4045 else
4046#endif
4047 return 1;
57871462 4048 }
4049 return 0;
4050}
4051
4052#ifndef wb_invalidate
4053void wb_invalidate(signed char pre[],signed char entry[],uint64_t dirty,uint64_t is32,
4054 uint64_t u,uint64_t uu)
4055{
4056 int hr;
4057 for(hr=0;hr<HOST_REGS;hr++) {
4058 if(hr!=EXCLUDE_REG) {
4059 if(pre[hr]!=entry[hr]) {
4060 if(pre[hr]>=0) {
4061 if((dirty>>hr)&1) {
4062 if(get_reg(entry,pre[hr])<0) {
4063 if(pre[hr]<64) {
4064 if(!((u>>pre[hr])&1)) {
4065 emit_storereg(pre[hr],hr);
4066 if( ((is32>>pre[hr])&1) && !((uu>>pre[hr])&1) ) {
4067 emit_sarimm(hr,31,hr);
4068 emit_storereg(pre[hr]|64,hr);
4069 }
4070 }
4071 }else{
4072 if(!((uu>>(pre[hr]&63))&1) && !((is32>>(pre[hr]&63))&1)) {
4073 emit_storereg(pre[hr],hr);
4074 }
4075 }
4076 }
4077 }
4078 }
4079 }
4080 }
4081 }
4082 // Move from one register to another (no writeback)
4083 for(hr=0;hr<HOST_REGS;hr++) {
4084 if(hr!=EXCLUDE_REG) {
4085 if(pre[hr]!=entry[hr]) {
4086 if(pre[hr]>=0&&(pre[hr]&63)<TEMPREG) {
4087 int nr;
4088 if((nr=get_reg(entry,pre[hr]))>=0) {
4089 emit_mov(hr,nr);
4090 }
4091 }
4092 }
4093 }
4094 }
4095}
4096#endif
4097
4098// Load the specified registers
4099// This only loads the registers given as arguments because
4100// we don't want to load things that will be overwritten
4101void load_regs(signed char entry[],signed char regmap[],int is32,int rs1,int rs2)
4102{
4103 int hr;
4104 // Load 32-bit regs
4105 for(hr=0;hr<HOST_REGS;hr++) {
4106 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4107 if(entry[hr]!=regmap[hr]) {
4108 if(regmap[hr]==rs1||regmap[hr]==rs2)
4109 {
4110 if(regmap[hr]==0) {
4111 emit_zeroreg(hr);
4112 }
4113 else
4114 {
4115 emit_loadreg(regmap[hr],hr);
4116 }
4117 }
4118 }
4119 }
4120 }
4121 //Load 64-bit regs
4122 for(hr=0;hr<HOST_REGS;hr++) {
4123 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4124 if(entry[hr]!=regmap[hr]) {
4125 if(regmap[hr]-64==rs1||regmap[hr]-64==rs2)
4126 {
4127 assert(regmap[hr]!=64);
4128 if((is32>>(regmap[hr]&63))&1) {
4129 int lr=get_reg(regmap,regmap[hr]-64);
4130 if(lr>=0)
4131 emit_sarimm(lr,31,hr);
4132 else
4133 emit_loadreg(regmap[hr],hr);
4134 }
4135 else
4136 {
4137 emit_loadreg(regmap[hr],hr);
4138 }
4139 }
4140 }
4141 }
4142 }
4143}
4144
4145// Load registers prior to the start of a loop
4146// so that they are not loaded within the loop
4147static void loop_preload(signed char pre[],signed char entry[])
4148{
4149 int hr;
4150 for(hr=0;hr<HOST_REGS;hr++) {
4151 if(hr!=EXCLUDE_REG) {
4152 if(pre[hr]!=entry[hr]) {
4153 if(entry[hr]>=0) {
4154 if(get_reg(pre,entry[hr])<0) {
4155 assem_debug("loop preload:\n");
4156 //printf("loop preload: %d\n",hr);
4157 if(entry[hr]==0) {
4158 emit_zeroreg(hr);
4159 }
4160 else if(entry[hr]<TEMPREG)
4161 {
4162 emit_loadreg(entry[hr],hr);
4163 }
4164 else if(entry[hr]-64<TEMPREG)
4165 {
4166 emit_loadreg(entry[hr],hr);
4167 }
4168 }
4169 }
4170 }
4171 }
4172 }
4173}
4174
4175// Generate address for load/store instruction
b9b61529 4176// goes to AGEN for writes, FTEMP for LOADLR and cop1/2 loads
57871462 4177void address_generation(int i,struct regstat *i_regs,signed char entry[])
4178{
b9b61529 4179 if(itype[i]==LOAD||itype[i]==LOADLR||itype[i]==STORE||itype[i]==STORELR||itype[i]==C1LS||itype[i]==C2LS) {
5194fb95 4180 int ra=-1;
57871462 4181 int agr=AGEN1+(i&1);
4182 int mgr=MGEN1+(i&1);
4183 if(itype[i]==LOAD) {
4184 ra=get_reg(i_regs->regmap,rt1[i]);
535d208a 4185 if(ra<0) ra=get_reg(i_regs->regmap,-1);
4186 assert(ra>=0);
57871462 4187 }
4188 if(itype[i]==LOADLR) {
4189 ra=get_reg(i_regs->regmap,FTEMP);
4190 }
4191 if(itype[i]==STORE||itype[i]==STORELR) {
4192 ra=get_reg(i_regs->regmap,agr);
4193 if(ra<0) ra=get_reg(i_regs->regmap,-1);
4194 }
b9b61529 4195 if(itype[i]==C1LS||itype[i]==C2LS) {
4196 if ((opcode[i]&0x3b)==0x31||(opcode[i]&0x3b)==0x32) // LWC1/LDC1/LWC2/LDC2
57871462 4197 ra=get_reg(i_regs->regmap,FTEMP);
1fd1aceb 4198 else { // SWC1/SDC1/SWC2/SDC2
57871462 4199 ra=get_reg(i_regs->regmap,agr);
4200 if(ra<0) ra=get_reg(i_regs->regmap,-1);
4201 }
4202 }
4203 int rs=get_reg(i_regs->regmap,rs1[i]);
4204 int rm=get_reg(i_regs->regmap,TLREG);
4205 if(ra>=0) {
4206 int offset=imm[i];
4207 int c=(i_regs->wasconst>>rs)&1;
4208 if(rs1[i]==0) {
4209 // Using r0 as a base address
4210 /*if(rm>=0) {
4211 if(!entry||entry[rm]!=mgr) {
4212 generate_map_const(offset,rm);
4213 } // else did it in the previous cycle
4214 }*/
4215 if(!entry||entry[ra]!=agr) {
4216 if (opcode[i]==0x22||opcode[i]==0x26) {
4217 emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
4218 }else if (opcode[i]==0x1a||opcode[i]==0x1b) {
4219 emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
4220 }else{
4221 emit_movimm(offset,ra);
4222 }
4223 } // else did it in the previous cycle
4224 }
4225 else if(rs<0) {
4226 if(!entry||entry[ra]!=rs1[i])
4227 emit_loadreg(rs1[i],ra);
4228 //if(!entry||entry[ra]!=rs1[i])
4229 // printf("poor load scheduling!\n");
4230 }
4231 else if(c) {
63cb0298 4232#ifndef DISABLE_TLB
57871462 4233 if(rm>=0) {
4234 if(!entry||entry[rm]!=mgr) {
b9b61529 4235 if(itype[i]==STORE||itype[i]==STORELR||(opcode[i]&0x3b)==0x39||(opcode[i]&0x3b)==0x3a) {
57871462 4236 // Stores to memory go thru the mapper to detect self-modifying
4237 // code, loads don't.
4238 if((unsigned int)(constmap[i][rs]+offset)>=0xC0000000 ||
4cb76aa4 4239 (unsigned int)(constmap[i][rs]+offset)<0x80000000+RAM_SIZE )
57871462 4240 generate_map_const(constmap[i][rs]+offset,rm);
4241 }else{
4242 if((signed int)(constmap[i][rs]+offset)>=(signed int)0xC0000000)
4243 generate_map_const(constmap[i][rs]+offset,rm);
4244 }
4245 }
4246 }
63cb0298 4247#endif
57871462 4248 if(rs1[i]!=rt1[i]||itype[i]!=LOAD) {
4249 if(!entry||entry[ra]!=agr) {
4250 if (opcode[i]==0x22||opcode[i]==0x26) {
4251 emit_movimm((constmap[i][rs]+offset)&0xFFFFFFFC,ra); // LWL/LWR
4252 }else if (opcode[i]==0x1a||opcode[i]==0x1b) {
4253 emit_movimm((constmap[i][rs]+offset)&0xFFFFFFF8,ra); // LDL/LDR
4254 }else{
4255 #ifdef HOST_IMM_ADDR32
b9b61529 4256 if((itype[i]!=LOAD&&(opcode[i]&0x3b)!=0x31&&(opcode[i]&0x3b)!=0x32) || // LWC1/LDC1/LWC2/LDC2
57871462 4257 (using_tlb&&((signed int)constmap[i][rs]+offset)>=(signed int)0xC0000000))
4258 #endif
4259 emit_movimm(constmap[i][rs]+offset,ra);
4260 }
4261 } // else did it in the previous cycle
4262 } // else load_consts already did it
4263 }
4264 if(offset&&!c&&rs1[i]) {
4265 if(rs>=0) {
4266 emit_addimm(rs,offset,ra);
4267 }else{
4268 emit_addimm(ra,offset,ra);
4269 }
4270 }
4271 }
4272 }
4273 // Preload constants for next instruction
b9b61529 4274 if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS||itype[i+1]==C2LS) {
57871462 4275 int agr,ra;
63cb0298 4276 #if !defined(HOST_IMM_ADDR32) && !defined(DISABLE_TLB)
57871462 4277 // Mapper entry
4278 agr=MGEN1+((i+1)&1);
4279 ra=get_reg(i_regs->regmap,agr);
4280 if(ra>=0) {
4281 int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
4282 int offset=imm[i+1];
4283 int c=(regs[i+1].wasconst>>rs)&1;
4284 if(c) {
b9b61529 4285 if(itype[i+1]==STORE||itype[i+1]==STORELR
4286 ||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1, SWC2/SDC2
57871462 4287 // Stores to memory go thru the mapper to detect self-modifying
4288 // code, loads don't.
4289 if((unsigned int)(constmap[i+1][rs]+offset)>=0xC0000000 ||
4cb76aa4 4290 (unsigned int)(constmap[i+1][rs]+offset)<0x80000000+RAM_SIZE )
57871462 4291 generate_map_const(constmap[i+1][rs]+offset,ra);
4292 }else{
4293 if((signed int)(constmap[i+1][rs]+offset)>=(signed int)0xC0000000)
4294 generate_map_const(constmap[i+1][rs]+offset,ra);
4295 }
4296 }
4297 /*else if(rs1[i]==0) {
4298 generate_map_const(offset,ra);
4299 }*/
4300 }
4301 #endif
4302 // Actual address
4303 agr=AGEN1+((i+1)&1);
4304 ra=get_reg(i_regs->regmap,agr);
4305 if(ra>=0) {
4306 int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
4307 int offset=imm[i+1];
4308 int c=(regs[i+1].wasconst>>rs)&1;
4309 if(c&&(rs1[i+1]!=rt1[i+1]||itype[i+1]!=LOAD)) {
4310 if (opcode[i+1]==0x22||opcode[i+1]==0x26) {
4311 emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFFC,ra); // LWL/LWR
4312 }else if (opcode[i+1]==0x1a||opcode[i+1]==0x1b) {
4313 emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFF8,ra); // LDL/LDR
4314 }else{
4315 #ifdef HOST_IMM_ADDR32
b9b61529 4316 if((itype[i+1]!=LOAD&&(opcode[i+1]&0x3b)!=0x31&&(opcode[i+1]&0x3b)!=0x32) || // LWC1/LDC1/LWC2/LDC2
57871462 4317 (using_tlb&&((signed int)constmap[i+1][rs]+offset)>=(signed int)0xC0000000))
4318 #endif
4319 emit_movimm(constmap[i+1][rs]+offset,ra);
4320 }
4321 }
4322 else if(rs1[i+1]==0) {
4323 // Using r0 as a base address
4324 if (opcode[i+1]==0x22||opcode[i+1]==0x26) {
4325 emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
4326 }else if (opcode[i+1]==0x1a||opcode[i+1]==0x1b) {
4327 emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
4328 }else{
4329 emit_movimm(offset,ra);
4330 }
4331 }
4332 }
4333 }
4334}
4335
4336int get_final_value(int hr, int i, int *value)
4337{
4338 int reg=regs[i].regmap[hr];
4339 while(i<slen-1) {
4340 if(regs[i+1].regmap[hr]!=reg) break;
4341 if(!((regs[i+1].isconst>>hr)&1)) break;
4342 if(bt[i+1]) break;
4343 i++;
4344 }
4345 if(i<slen-1) {
4346 if(itype[i]==UJUMP||itype[i]==RJUMP||itype[i]==CJUMP||itype[i]==SJUMP) {
4347 *value=constmap[i][hr];
4348 return 1;
4349 }
4350 if(!bt[i+1]) {
4351 if(itype[i+1]==UJUMP||itype[i+1]==RJUMP||itype[i+1]==CJUMP||itype[i+1]==SJUMP) {
4352 // Load in delay slot, out-of-order execution
4353 if(itype[i+2]==LOAD&&rs1[i+2]==reg&&rt1[i+2]==reg&&((regs[i+1].wasconst>>hr)&1))
4354 {
4355 #ifdef HOST_IMM_ADDR32
4356 if(!using_tlb||((signed int)constmap[i][hr]+imm[i+2])<(signed int)0xC0000000) return 0;
4357 #endif
4358 // Precompute load address
4359 *value=constmap[i][hr]+imm[i+2];
4360 return 1;
4361 }
4362 }
4363 if(itype[i+1]==LOAD&&rs1[i+1]==reg&&rt1[i+1]==reg)
4364 {
4365 #ifdef HOST_IMM_ADDR32
4366 if(!using_tlb||((signed int)constmap[i][hr]+imm[i+1])<(signed int)0xC0000000) return 0;
4367 #endif
4368 // Precompute load address
4369 *value=constmap[i][hr]+imm[i+1];
4370 //printf("c=%x imm=%x\n",(int)constmap[i][hr],imm[i+1]);
4371 return 1;
4372 }
4373 }
4374 }
4375 *value=constmap[i][hr];
4376 //printf("c=%x\n",(int)constmap[i][hr]);
4377 if(i==slen-1) return 1;
4378 if(reg<64) {
4379 return !((unneeded_reg[i+1]>>reg)&1);
4380 }else{
4381 return !((unneeded_reg_upper[i+1]>>reg)&1);
4382 }
4383}
4384
4385// Load registers with known constants
4386void load_consts(signed char pre[],signed char regmap[],int is32,int i)
4387{
4388 int hr;
4389 // Load 32-bit regs
4390 for(hr=0;hr<HOST_REGS;hr++) {
4391 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4392 //if(entry[hr]!=regmap[hr]) {
4393 if(i==0||!((regs[i-1].isconst>>hr)&1)||pre[hr]!=regmap[hr]||bt[i]) {
4394 if(((regs[i].isconst>>hr)&1)&&regmap[hr]<64&&regmap[hr]>0) {
4395 int value;
4396 if(get_final_value(hr,i,&value)) {
4397 if(value==0) {
4398 emit_zeroreg(hr);
4399 }
4400 else {
4401 emit_movimm(value,hr);
4402 }
4403 }
4404 }
4405 }
4406 }
4407 }
4408 // Load 64-bit regs
4409 for(hr=0;hr<HOST_REGS;hr++) {
4410 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4411 //if(entry[hr]!=regmap[hr]) {
4412 if(i==0||!((regs[i-1].isconst>>hr)&1)||pre[hr]!=regmap[hr]||bt[i]) {
4413 if(((regs[i].isconst>>hr)&1)&&regmap[hr]>64) {
4414 if((is32>>(regmap[hr]&63))&1) {
4415 int lr=get_reg(regmap,regmap[hr]-64);
4416 assert(lr>=0);
4417 emit_sarimm(lr,31,hr);
4418 }
4419 else
4420 {
4421 int value;
4422 if(get_final_value(hr,i,&value)) {
4423 if(value==0) {
4424 emit_zeroreg(hr);
4425 }
4426 else {
4427 emit_movimm(value,hr);
4428 }
4429 }
4430 }
4431 }
4432 }
4433 }
4434 }
4435}
4436void load_all_consts(signed char regmap[],int is32,u_int dirty,int i)
4437{
4438 int hr;
4439 // Load 32-bit regs
4440 for(hr=0;hr<HOST_REGS;hr++) {
4441 if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((dirty>>hr)&1)) {
4442 if(((regs[i].isconst>>hr)&1)&&regmap[hr]<64&&regmap[hr]>0) {
4443 int value=constmap[i][hr];
4444 if(value==0) {
4445 emit_zeroreg(hr);
4446 }
4447 else {
4448 emit_movimm(value,hr);
4449 }
4450 }
4451 }
4452 }
4453 // Load 64-bit regs
4454 for(hr=0;hr<HOST_REGS;hr++) {
4455 if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((dirty>>hr)&1)) {
4456 if(((regs[i].isconst>>hr)&1)&&regmap[hr]>64) {
4457 if((is32>>(regmap[hr]&63))&1) {
4458 int lr=get_reg(regmap,regmap[hr]-64);
4459 assert(lr>=0);
4460 emit_sarimm(lr,31,hr);
4461 }
4462 else
4463 {
4464 int value=constmap[i][hr];
4465 if(value==0) {
4466 emit_zeroreg(hr);
4467 }
4468 else {
4469 emit_movimm(value,hr);
4470 }
4471 }
4472 }
4473 }
4474 }
4475}
4476
4477// Write out all dirty registers (except cycle count)
4478void wb_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty)
4479{
4480 int hr;
4481 for(hr=0;hr<HOST_REGS;hr++) {
4482 if(hr!=EXCLUDE_REG) {
4483 if(i_regmap[hr]>0) {
4484 if(i_regmap[hr]!=CCREG) {
4485 if((i_dirty>>hr)&1) {
4486 if(i_regmap[hr]<64) {
4487 emit_storereg(i_regmap[hr],hr);
24385cae 4488#ifndef FORCE32
57871462 4489 if( ((i_is32>>i_regmap[hr])&1) ) {
4490 #ifdef DESTRUCTIVE_WRITEBACK
4491 emit_sarimm(hr,31,hr);
4492 emit_storereg(i_regmap[hr]|64,hr);
4493 #else
4494 emit_sarimm(hr,31,HOST_TEMPREG);
4495 emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4496 #endif
4497 }
24385cae 4498#endif
57871462 4499 }else{
4500 if( !((i_is32>>(i_regmap[hr]&63))&1) ) {
4501 emit_storereg(i_regmap[hr],hr);
4502 }
4503 }
4504 }
4505 }
4506 }
4507 }
4508 }
4509}
4510// Write out dirty registers that we need to reload (pair with load_needed_regs)
4511// This writes the registers not written by store_regs_bt
4512void wb_needed_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4513{
4514 int hr;
4515 int t=(addr-start)>>2;
4516 for(hr=0;hr<HOST_REGS;hr++) {
4517 if(hr!=EXCLUDE_REG) {
4518 if(i_regmap[hr]>0) {
4519 if(i_regmap[hr]!=CCREG) {
4520 if(i_regmap[hr]==regs[t].regmap_entry[hr] && ((regs[t].dirty>>hr)&1) && !(((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4521 if((i_dirty>>hr)&1) {
4522 if(i_regmap[hr]<64) {
4523 emit_storereg(i_regmap[hr],hr);
24385cae 4524#ifndef FORCE32
57871462 4525 if( ((i_is32>>i_regmap[hr])&1) ) {
4526 #ifdef DESTRUCTIVE_WRITEBACK
4527 emit_sarimm(hr,31,hr);
4528 emit_storereg(i_regmap[hr]|64,hr);
4529 #else
4530 emit_sarimm(hr,31,HOST_TEMPREG);
4531 emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4532 #endif
4533 }
24385cae 4534#endif
57871462 4535 }else{
4536 if( !((i_is32>>(i_regmap[hr]&63))&1) ) {
4537 emit_storereg(i_regmap[hr],hr);
4538 }
4539 }
4540 }
4541 }
4542 }
4543 }
4544 }
4545 }
4546}
4547
4548// Load all registers (except cycle count)
4549void load_all_regs(signed char i_regmap[])
4550{
4551 int hr;
4552 for(hr=0;hr<HOST_REGS;hr++) {
4553 if(hr!=EXCLUDE_REG) {
4554 if(i_regmap[hr]==0) {
4555 emit_zeroreg(hr);
4556 }
4557 else
ea3d2e6e 4558 if(i_regmap[hr]>0 && (i_regmap[hr]&63)<TEMPREG && i_regmap[hr]!=CCREG)
57871462 4559 {
4560 emit_loadreg(i_regmap[hr],hr);
4561 }
4562 }
4563 }
4564}
4565
4566// Load all current registers also needed by next instruction
4567void load_needed_regs(signed char i_regmap[],signed char next_regmap[])
4568{
4569 int hr;
4570 for(hr=0;hr<HOST_REGS;hr++) {
4571 if(hr!=EXCLUDE_REG) {
4572 if(get_reg(next_regmap,i_regmap[hr])>=0) {
4573 if(i_regmap[hr]==0) {
4574 emit_zeroreg(hr);
4575 }
4576 else
ea3d2e6e 4577 if(i_regmap[hr]>0 && (i_regmap[hr]&63)<TEMPREG && i_regmap[hr]!=CCREG)
57871462 4578 {
4579 emit_loadreg(i_regmap[hr],hr);
4580 }
4581 }
4582 }
4583 }
4584}
4585
4586// Load all regs, storing cycle count if necessary
4587void load_regs_entry(int t)
4588{
4589 int hr;
2573466a 4590 if(is_ds[t]) emit_addimm(HOST_CCREG,CLOCK_ADJUST(1),HOST_CCREG);
4591 else if(ccadj[t]) emit_addimm(HOST_CCREG,-CLOCK_ADJUST(ccadj[t]),HOST_CCREG);
57871462 4592 if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
4593 emit_storereg(CCREG,HOST_CCREG);
4594 }
4595 // Load 32-bit regs
4596 for(hr=0;hr<HOST_REGS;hr++) {
ea3d2e6e 4597 if(regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<TEMPREG) {
57871462 4598 if(regs[t].regmap_entry[hr]==0) {
4599 emit_zeroreg(hr);
4600 }
4601 else if(regs[t].regmap_entry[hr]!=CCREG)
4602 {
4603 emit_loadreg(regs[t].regmap_entry[hr],hr);
4604 }
4605 }
4606 }
4607 // Load 64-bit regs
4608 for(hr=0;hr<HOST_REGS;hr++) {
ea3d2e6e 4609 if(regs[t].regmap_entry[hr]>=64&&regs[t].regmap_entry[hr]<TEMPREG+64) {
57871462 4610 assert(regs[t].regmap_entry[hr]!=64);
4611 if((regs[t].was32>>(regs[t].regmap_entry[hr]&63))&1) {
4612 int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4613 if(lr<0) {
4614 emit_loadreg(regs[t].regmap_entry[hr],hr);
4615 }
4616 else
4617 {
4618 emit_sarimm(lr,31,hr);
4619 }
4620 }
4621 else
4622 {
4623 emit_loadreg(regs[t].regmap_entry[hr],hr);
4624 }
4625 }
4626 }
4627}
4628
4629// Store dirty registers prior to branch
4630void store_regs_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4631{
4632 if(internal_branch(i_is32,addr))
4633 {
4634 int t=(addr-start)>>2;
4635 int hr;
4636 for(hr=0;hr<HOST_REGS;hr++) {
4637 if(hr!=EXCLUDE_REG) {
4638 if(i_regmap[hr]>0 && i_regmap[hr]!=CCREG) {
4639 if(i_regmap[hr]!=regs[t].regmap_entry[hr] || !((regs[t].dirty>>hr)&1) || (((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4640 if((i_dirty>>hr)&1) {
4641 if(i_regmap[hr]<64) {
4642 if(!((unneeded_reg[t]>>i_regmap[hr])&1)) {
4643 emit_storereg(i_regmap[hr],hr);
4644 if( ((i_is32>>i_regmap[hr])&1) && !((unneeded_reg_upper[t]>>i_regmap[hr])&1) ) {
4645 #ifdef DESTRUCTIVE_WRITEBACK
4646 emit_sarimm(hr,31,hr);
4647 emit_storereg(i_regmap[hr]|64,hr);
4648 #else
4649 emit_sarimm(hr,31,HOST_TEMPREG);
4650 emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4651 #endif
4652 }
4653 }
4654 }else{
4655 if( !((i_is32>>(i_regmap[hr]&63))&1) && !((unneeded_reg_upper[t]>>(i_regmap[hr]&63))&1) ) {
4656 emit_storereg(i_regmap[hr],hr);
4657 }
4658 }
4659 }
4660 }
4661 }
4662 }
4663 }
4664 }
4665 else
4666 {
4667 // Branch out of this block, write out all dirty regs
4668 wb_dirtys(i_regmap,i_is32,i_dirty);
4669 }
4670}
4671
4672// Load all needed registers for branch target
4673void load_regs_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4674{
4675 //if(addr>=start && addr<(start+slen*4))
4676 if(internal_branch(i_is32,addr))
4677 {
4678 int t=(addr-start)>>2;
4679 int hr;
4680 // Store the cycle count before loading something else
4681 if(i_regmap[HOST_CCREG]!=CCREG) {
4682 assert(i_regmap[HOST_CCREG]==-1);
4683 }
4684 if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
4685 emit_storereg(CCREG,HOST_CCREG);
4686 }
4687 // Load 32-bit regs
4688 for(hr=0;hr<HOST_REGS;hr++) {
ea3d2e6e 4689 if(hr!=EXCLUDE_REG&&regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<TEMPREG) {
57871462 4690 #ifdef DESTRUCTIVE_WRITEBACK
4691 if(i_regmap[hr]!=regs[t].regmap_entry[hr] || ( !((regs[t].dirty>>hr)&1) && ((i_dirty>>hr)&1) && (((i_is32&~unneeded_reg_upper[t])>>i_regmap[hr])&1) ) || (((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4692 #else
4693 if(i_regmap[hr]!=regs[t].regmap_entry[hr] ) {
4694 #endif
4695 if(regs[t].regmap_entry[hr]==0) {
4696 emit_zeroreg(hr);
4697 }
4698 else if(regs[t].regmap_entry[hr]!=CCREG)
4699 {
4700 emit_loadreg(regs[t].regmap_entry[hr],hr);
4701 }
4702 }
4703 }
4704 }
4705 //Load 64-bit regs
4706 for(hr=0;hr<HOST_REGS;hr++) {
ea3d2e6e 4707 if(hr!=EXCLUDE_REG&&regs[t].regmap_entry[hr]>=64&&regs[t].regmap_entry[hr]<TEMPREG+64) {
57871462 4708 if(i_regmap[hr]!=regs[t].regmap_entry[hr]) {
4709 assert(regs[t].regmap_entry[hr]!=64);
4710 if((i_is32>>(regs[t].regmap_entry[hr]&63))&1) {
4711 int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4712 if(lr<0) {
4713 emit_loadreg(regs[t].regmap_entry[hr],hr);
4714 }
4715 else
4716 {
4717 emit_sarimm(lr,31,hr);
4718 }
4719 }
4720 else
4721 {
4722 emit_loadreg(regs[t].regmap_entry[hr],hr);
4723 }
4724 }
4725 else if((i_is32>>(regs[t].regmap_entry[hr]&63))&1) {
4726 int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4727 assert(lr>=0);
4728 emit_sarimm(lr,31,hr);
4729 }
4730 }
4731 }
4732 }
4733}
4734
4735int match_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4736{
4737 if(addr>=start && addr<start+slen*4-4)
4738 {
4739 int t=(addr-start)>>2;
4740 int hr;
4741 if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) return 0;
4742 for(hr=0;hr<HOST_REGS;hr++)
4743 {
4744 if(hr!=EXCLUDE_REG)
4745 {
4746 if(i_regmap[hr]!=regs[t].regmap_entry[hr])
4747 {
ea3d2e6e 4748 if(regs[t].regmap_entry[hr]>=0&&(regs[t].regmap_entry[hr]|64)<TEMPREG+64)
57871462 4749 {
4750 return 0;
4751 }
4752 else
4753 if((i_dirty>>hr)&1)
4754 {
ea3d2e6e 4755 if(i_regmap[hr]<TEMPREG)
57871462 4756 {
4757 if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4758 return 0;
4759 }
ea3d2e6e 4760 else if(i_regmap[hr]>=64&&i_regmap[hr]<TEMPREG+64)
57871462 4761 {
4762 if(!((unneeded_reg_upper[t]>>(i_regmap[hr]&63))&1))
4763 return 0;
4764 }
4765 }
4766 }
4767 else // Same register but is it 32-bit or dirty?
4768 if(i_regmap[hr]>=0)
4769 {
4770 if(!((regs[t].dirty>>hr)&1))
4771 {
4772 if((i_dirty>>hr)&1)
4773 {
4774 if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4775 {
4776 //printf("%x: dirty no match\n",addr);
4777 return 0;
4778 }
4779 }
4780 }
4781 if((((regs[t].was32^i_is32)&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)
4782 {
4783 //printf("%x: is32 no match\n",addr);
4784 return 0;
4785 }
4786 }
4787 }
4788 }
4789 //if(is32[t]&~unneeded_reg_upper[t]&~i_is32) return 0;
a28c6ce8 4790#ifndef FORCE32
57871462 4791 if(requires_32bit[t]&~i_is32) return 0;
a28c6ce8 4792#endif
57871462 4793 // Delay slots are not valid branch targets
4794 //if(t>0&&(itype[t-1]==RJUMP||itype[t-1]==UJUMP||itype[t-1]==CJUMP||itype[t-1]==SJUMP||itype[t-1]==FJUMP)) return 0;
4795 // Delay slots require additional processing, so do not match
4796 if(is_ds[t]) return 0;
4797 }
4798 else
4799 {
4800 int hr;
4801 for(hr=0;hr<HOST_REGS;hr++)
4802 {
4803 if(hr!=EXCLUDE_REG)
4804 {
4805 if(i_regmap[hr]>=0)
4806 {
4807 if(hr!=HOST_CCREG||i_regmap[hr]!=CCREG)
4808 {
4809 if((i_dirty>>hr)&1)
4810 {
4811 return 0;
4812 }
4813 }
4814 }
4815 }
4816 }
4817 }
4818 return 1;
4819}
4820
4821// Used when a branch jumps into the delay slot of another branch
4822void ds_assemble_entry(int i)
4823{
4824 int t=(ba[i]-start)>>2;
4825 if(!instr_addr[t]) instr_addr[t]=(u_int)out;
4826 assem_debug("Assemble delay slot at %x\n",ba[i]);
4827 assem_debug("<->\n");
4828 if(regs[t].regmap_entry[HOST_CCREG]==CCREG&&regs[t].regmap[HOST_CCREG]!=CCREG)
4829 wb_register(CCREG,regs[t].regmap_entry,regs[t].wasdirty,regs[t].was32);
4830 load_regs(regs[t].regmap_entry,regs[t].regmap,regs[t].was32,rs1[t],rs2[t]);
4831 address_generation(t,&regs[t],regs[t].regmap_entry);
b9b61529 4832 if(itype[t]==STORE||itype[t]==STORELR||(opcode[t]&0x3b)==0x39||(opcode[t]&0x3b)==0x3a)
57871462 4833 load_regs(regs[t].regmap_entry,regs[t].regmap,regs[t].was32,INVCP,INVCP);
4834 cop1_usable=0;
4835 is_delayslot=0;
4836 switch(itype[t]) {
4837 case ALU:
4838 alu_assemble(t,&regs[t]);break;
4839 case IMM16:
4840 imm16_assemble(t,&regs[t]);break;
4841 case SHIFT:
4842 shift_assemble(t,&regs[t]);break;
4843 case SHIFTIMM:
4844 shiftimm_assemble(t,&regs[t]);break;
4845 case LOAD:
4846 load_assemble(t,&regs[t]);break;
4847 case LOADLR:
4848 loadlr_assemble(t,&regs[t]);break;
4849 case STORE:
4850 store_assemble(t,&regs[t]);break;
4851 case STORELR:
4852 storelr_assemble(t,&regs[t]);break;
4853 case COP0:
4854 cop0_assemble(t,&regs[t]);break;
4855 case COP1:
4856 cop1_assemble(t,&regs[t]);break;
4857 case C1LS:
4858 c1ls_assemble(t,&regs[t]);break;
b9b61529 4859 case COP2:
4860 cop2_assemble(t,&regs[t]);break;
4861 case C2LS:
4862 c2ls_assemble(t,&regs[t]);break;
4863 case C2OP:
4864 c2op_assemble(t,&regs[t]);break;
57871462 4865 case FCONV:
4866 fconv_assemble(t,&regs[t]);break;
4867 case FLOAT:
4868 float_assemble(t,&regs[t]);break;
4869 case FCOMP:
4870 fcomp_assemble(t,&regs[t]);break;
4871 case MULTDIV:
4872 multdiv_assemble(t,&regs[t]);break;
4873 case MOV:
4874 mov_assemble(t,&regs[t]);break;
4875 case SYSCALL:
7139f3c8 4876 case HLECALL:
1e973cb0 4877 case INTCALL:
57871462 4878 case SPAN:
4879 case UJUMP:
4880 case RJUMP:
4881 case CJUMP:
4882 case SJUMP:
4883 case FJUMP:
4884 printf("Jump in the delay slot. This is probably a bug.\n");
4885 }
4886 store_regs_bt(regs[t].regmap,regs[t].is32,regs[t].dirty,ba[i]+4);
4887 load_regs_bt(regs[t].regmap,regs[t].is32,regs[t].dirty,ba[i]+4);
4888 if(internal_branch(regs[t].is32,ba[i]+4))
4889 assem_debug("branch: internal\n");
4890 else
4891 assem_debug("branch: external\n");
4892 assert(internal_branch(regs[t].is32,ba[i]+4));
4893 add_to_linker((int)out,ba[i]+4,internal_branch(regs[t].is32,ba[i]+4));
4894 emit_jmp(0);
4895}
4896
4897void do_cc(int i,signed char i_regmap[],int *adj,int addr,int taken,int invert)
4898{
4899 int count;
4900 int jaddr;
4901 int idle=0;
4902 if(itype[i]==RJUMP)
4903 {
4904 *adj=0;
4905 }
4906 //if(ba[i]>=start && ba[i]<(start+slen*4))
4907 if(internal_branch(branch_regs[i].is32,ba[i]))
4908 {
4909 int t=(ba[i]-start)>>2;
4910 if(is_ds[t]) *adj=-1; // Branch into delay slot adds an extra cycle
4911 else *adj=ccadj[t];
4912 }
4913 else
4914 {
4915 *adj=0;
4916 }
4917 count=ccadj[i];
4918 if(taken==TAKEN && i==(ba[i]-start)>>2 && source[i+1]==0) {
4919 // Idle loop
4920 if(count&1) emit_addimm_and_set_flags(2*(count+2),HOST_CCREG);
4921 idle=(int)out;
4922 //emit_subfrommem(&idlecount,HOST_CCREG); // Count idle cycles
4923 emit_andimm(HOST_CCREG,3,HOST_CCREG);
4924 jaddr=(int)out;
4925 emit_jmp(0);
4926 }
4927 else if(*adj==0||invert) {
2573466a 4928 emit_addimm_and_set_flags(CLOCK_ADJUST(count+2),HOST_CCREG);
57871462 4929 jaddr=(int)out;
4930 emit_jns(0);
4931 }
4932 else
4933 {
2573466a 4934 emit_cmpimm(HOST_CCREG,-CLOCK_ADJUST(count+2));
57871462 4935 jaddr=(int)out;
4936 emit_jns(0);
4937 }
4938 add_stub(CC_STUB,jaddr,idle?idle:(int)out,(*adj==0||invert||idle)?0:(count+2),i,addr,taken,0);
4939}
4940
4941void do_ccstub(int n)
4942{
4943 literal_pool(256);
4944 assem_debug("do_ccstub %x\n",start+stubs[n][4]*4);
4945 set_jump_target(stubs[n][1],(int)out);
4946 int i=stubs[n][4];
4947 if(stubs[n][6]==NULLDS) {
4948 // Delay slot instruction is nullified ("likely" branch)
4949 wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
4950 }
4951 else if(stubs[n][6]!=TAKEN) {
4952 wb_dirtys(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty);
4953 }
4954 else {
4955 if(internal_branch(branch_regs[i].is32,ba[i]))
4956 wb_needed_dirtys(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
4957 }
4958 if(stubs[n][5]!=-1)
4959 {
4960 // Save PC as return address
4961 emit_movimm(stubs[n][5],EAX);
4962 emit_writeword(EAX,(int)&pcaddr);
4963 }
4964 else
4965 {
4966 // Return address depends on which way the branch goes
4967 if(itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
4968 {
4969 int s1l=get_reg(branch_regs[i].regmap,rs1[i]);
4970 int s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
4971 int s2l=get_reg(branch_regs[i].regmap,rs2[i]);
4972 int s2h=get_reg(branch_regs[i].regmap,rs2[i]|64);
4973 if(rs1[i]==0)
4974 {
4975 s1l=s2l;s1h=s2h;
4976 s2l=s2h=-1;
4977 }
4978 else if(rs2[i]==0)
4979 {
4980 s2l=s2h=-1;
4981 }
4982 if((branch_regs[i].is32>>rs1[i])&(branch_regs[i].is32>>rs2[i])&1) {
4983 s1h=s2h=-1;
4984 }
4985 assert(s1l>=0);
4986 #ifdef DESTRUCTIVE_WRITEBACK
4987 if(rs1[i]) {
4988 if((branch_regs[i].dirty>>s1l)&(branch_regs[i].is32>>rs1[i])&1)
4989 emit_loadreg(rs1[i],s1l);
4990 }
4991 else {
4992 if((branch_regs[i].dirty>>s1l)&(branch_regs[i].is32>>rs2[i])&1)
4993 emit_loadreg(rs2[i],s1l);
4994 }
4995 if(s2l>=0)
4996 if((branch_regs[i].dirty>>s2l)&(branch_regs[i].is32>>rs2[i])&1)
4997 emit_loadreg(rs2[i],s2l);
4998 #endif
4999 int hr=0;
5194fb95 5000 int addr=-1,alt=-1,ntaddr=-1;
57871462 5001 while(hr<HOST_REGS)
5002 {
5003 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
5004 (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
5005 (branch_regs[i].regmap[hr]&63)!=rs2[i] )
5006 {
5007 addr=hr++;break;
5008 }
5009 hr++;
5010 }
5011 while(hr<HOST_REGS)
5012 {
5013 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
5014 (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
5015 (branch_regs[i].regmap[hr]&63)!=rs2[i] )
5016 {
5017 alt=hr++;break;
5018 }
5019 hr++;
5020 }
5021 if((opcode[i]&0x2E)==6) // BLEZ/BGTZ needs another register
5022 {
5023 while(hr<HOST_REGS)
5024 {
5025 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
5026 (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
5027 (branch_regs[i].regmap[hr]&63)!=rs2[i] )
5028 {
5029 ntaddr=hr;break;
5030 }
5031 hr++;
5032 }
5033 assert(hr<HOST_REGS);
5034 }
5035 if((opcode[i]&0x2f)==4) // BEQ
5036 {
5037 #ifdef HAVE_CMOV_IMM
5038 if(s1h<0) {
5039 if(s2l>=0) emit_cmp(s1l,s2l);
5040 else emit_test(s1l,s1l);
5041 emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
5042 }
5043 else
5044 #endif
5045 {
5046 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
5047 if(s1h>=0) {
5048 if(s2h>=0) emit_cmp(s1h,s2h);
5049 else emit_test(s1h,s1h);
5050 emit_cmovne_reg(alt,addr);
5051 }
5052 if(s2l>=0) emit_cmp(s1l,s2l);
5053 else emit_test(s1l,s1l);
5054 emit_cmovne_reg(alt,addr);
5055 }
5056 }
5057 if((opcode[i]&0x2f)==5) // BNE
5058 {
5059 #ifdef HAVE_CMOV_IMM
5060 if(s1h<0) {
5061 if(s2l>=0) emit_cmp(s1l,s2l);
5062 else emit_test(s1l,s1l);
5063 emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
5064 }
5065 else
5066 #endif
5067 {
5068 emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
5069 if(s1h>=0) {
5070 if(s2h>=0) emit_cmp(s1h,s2h);
5071 else emit_test(s1h,s1h);
5072 emit_cmovne_reg(alt,addr);
5073 }
5074 if(s2l>=0) emit_cmp(s1l,s2l);
5075 else emit_test(s1l,s1l);
5076 emit_cmovne_reg(alt,addr);
5077 }
5078 }
5079 if((opcode[i]&0x2f)==6) // BLEZ
5080 {
5081 //emit_movimm(ba[i],alt);
5082 //emit_movimm(start+i*4+8,addr);
5083 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
5084 emit_cmpimm(s1l,1);
5085 if(s1h>=0) emit_mov(addr,ntaddr);
5086 emit_cmovl_reg(alt,addr);
5087 if(s1h>=0) {
5088 emit_test(s1h,s1h);
5089 emit_cmovne_reg(ntaddr,addr);
5090 emit_cmovs_reg(alt,addr);
5091 }
5092 }
5093 if((opcode[i]&0x2f)==7) // BGTZ
5094 {
5095 //emit_movimm(ba[i],addr);
5096 //emit_movimm(start+i*4+8,ntaddr);
5097 emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
5098 emit_cmpimm(s1l,1);
5099 if(s1h>=0) emit_mov(addr,alt);
5100 emit_cmovl_reg(ntaddr,addr);
5101 if(s1h>=0) {
5102 emit_test(s1h,s1h);
5103 emit_cmovne_reg(alt,addr);
5104 emit_cmovs_reg(ntaddr,addr);
5105 }
5106 }
5107 if((opcode[i]==1)&&(opcode2[i]&0x2D)==0) // BLTZ
5108 {
5109 //emit_movimm(ba[i],alt);
5110 //emit_movimm(start+i*4+8,addr);
5111 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
5112 if(s1h>=0) emit_test(s1h,s1h);
5113 else emit_test(s1l,s1l);
5114 emit_cmovs_reg(alt,addr);
5115 }
5116 if((opcode[i]==1)&&(opcode2[i]&0x2D)==1) // BGEZ
5117 {
5118 //emit_movimm(ba[i],addr);
5119 //emit_movimm(start+i*4+8,alt);
5120 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
5121 if(s1h>=0) emit_test(s1h,s1h);
5122 else emit_test(s1l,s1l);
5123 emit_cmovs_reg(alt,addr);
5124 }
5125 if(opcode[i]==0x11 && opcode2[i]==0x08 ) {
5126 if(source[i]&0x10000) // BC1T
5127 {
5128 //emit_movimm(ba[i],alt);
5129 //emit_movimm(start+i*4+8,addr);
5130 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
5131 emit_testimm(s1l,0x800000);
5132 emit_cmovne_reg(alt,addr);
5133 }
5134 else // BC1F
5135 {
5136 //emit_movimm(ba[i],addr);
5137 //emit_movimm(start+i*4+8,alt);
5138 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
5139 emit_testimm(s1l,0x800000);
5140 emit_cmovne_reg(alt,addr);
5141 }
5142 }
5143 emit_writeword(addr,(int)&pcaddr);
5144 }
5145 else
5146 if(itype[i]==RJUMP)
5147 {
5148 int r=get_reg(branch_regs[i].regmap,rs1[i]);
5149 if(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]) {
5150 r=get_reg(branch_regs[i].regmap,RTEMP);
5151 }
5152 emit_writeword(r,(int)&pcaddr);
5153 }
5154 else {printf("Unknown branch type in do_ccstub\n");exit(1);}
5155 }
5156 // Update cycle count
5157 assert(branch_regs[i].regmap[HOST_CCREG]==CCREG||branch_regs[i].regmap[HOST_CCREG]==-1);
2573466a 5158 if(stubs[n][3]) emit_addimm(HOST_CCREG,CLOCK_ADJUST((int)stubs[n][3]),HOST_CCREG);
57871462 5159 emit_call((int)cc_interrupt);
2573466a 5160 if(stubs[n][3]) emit_addimm(HOST_CCREG,-CLOCK_ADJUST((int)stubs[n][3]),HOST_CCREG);
57871462 5161 if(stubs[n][6]==TAKEN) {
5162 if(internal_branch(branch_regs[i].is32,ba[i]))
5163 load_needed_regs(branch_regs[i].regmap,regs[(ba[i]-start)>>2].regmap_entry);
5164 else if(itype[i]==RJUMP) {
5165 if(get_reg(branch_regs[i].regmap,RTEMP)>=0)
5166 emit_readword((int)&pcaddr,get_reg(branch_regs[i].regmap,RTEMP));
5167 else
5168 emit_loadreg(rs1[i],get_reg(branch_regs[i].regmap,rs1[i]));
5169 }
5170 }else if(stubs[n][6]==NOTTAKEN) {
5171 if(i<slen-2) load_needed_regs(branch_regs[i].regmap,regmap_pre[i+2]);
5172 else load_all_regs(branch_regs[i].regmap);
5173 }else if(stubs[n][6]==NULLDS) {
5174 // Delay slot instruction is nullified ("likely" branch)
5175 if(i<slen-2) load_needed_regs(regs[i].regmap,regmap_pre[i+2]);
5176 else load_all_regs(regs[i].regmap);
5177 }else{
5178 load_all_regs(branch_regs[i].regmap);
5179 }
5180 emit_jmp(stubs[n][2]); // return address
5181
5182 /* This works but uses a lot of memory...
5183 emit_readword((int)&last_count,ECX);
5184 emit_add(HOST_CCREG,ECX,EAX);
5185 emit_writeword(EAX,(int)&Count);
5186 emit_call((int)gen_interupt);
5187 emit_readword((int)&Count,HOST_CCREG);
5188 emit_readword((int)&next_interupt,EAX);
5189 emit_readword((int)&pending_exception,EBX);
5190 emit_writeword(EAX,(int)&last_count);
5191 emit_sub(HOST_CCREG,EAX,HOST_CCREG);
5192 emit_test(EBX,EBX);
5193 int jne_instr=(int)out;
5194 emit_jne(0);
5195 if(stubs[n][3]) emit_addimm(HOST_CCREG,-2*stubs[n][3],HOST_CCREG);
5196 load_all_regs(branch_regs[i].regmap);
5197 emit_jmp(stubs[n][2]); // return address
5198 set_jump_target(jne_instr,(int)out);
5199 emit_readword((int)&pcaddr,EAX);
5200 // Call get_addr_ht instead of doing the hash table here.
5201 // This code is executed infrequently and takes up a lot of space
5202 // so smaller is better.
5203 emit_storereg(CCREG,HOST_CCREG);
5204 emit_pushreg(EAX);
5205 emit_call((int)get_addr_ht);
5206 emit_loadreg(CCREG,HOST_CCREG);
5207 emit_addimm(ESP,4,ESP);
5208 emit_jmpreg(EAX);*/
5209}
5210
5211add_to_linker(int addr,int target,int ext)
5212{
5213 link_addr[linkcount][0]=addr;
5214 link_addr[linkcount][1]=target;
5215 link_addr[linkcount][2]=ext;
5216 linkcount++;
5217}
5218
eba830cd 5219static void ujump_assemble_write_ra(int i)
5220{
5221 int rt;
5222 unsigned int return_address;
5223 rt=get_reg(branch_regs[i].regmap,31);
5224 assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5225 //assert(rt>=0);
5226 return_address=start+i*4+8;
5227 if(rt>=0) {
5228 #ifdef USE_MINI_HT
5229 if(internal_branch(branch_regs[i].is32,return_address)&&rt1[i+1]!=31) {
5230 int temp=-1; // note: must be ds-safe
5231 #ifdef HOST_TEMPREG
5232 temp=HOST_TEMPREG;
5233 #endif
5234 if(temp>=0) do_miniht_insert(return_address,rt,temp);
5235 else emit_movimm(return_address,rt);
5236 }
5237 else
5238 #endif
5239 {
5240 #ifdef REG_PREFETCH
5241 if(temp>=0)
5242 {
5243 if(i_regmap[temp]!=PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5244 }
5245 #endif
5246 emit_movimm(return_address,rt); // PC into link register
5247 #ifdef IMM_PREFETCH
5248 emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5249 #endif
5250 }
5251 }
5252}
5253
57871462 5254void ujump_assemble(int i,struct regstat *i_regs)
5255{
5256 signed char *i_regmap=i_regs->regmap;
eba830cd 5257 int ra_done=0;
57871462 5258 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5259 address_generation(i+1,i_regs,regs[i].regmap_entry);
5260 #ifdef REG_PREFETCH
5261 int temp=get_reg(branch_regs[i].regmap,PTEMP);
5262 if(rt1[i]==31&&temp>=0)
5263 {
5264 int return_address=start+i*4+8;
5265 if(get_reg(branch_regs[i].regmap,31)>0)
5266 if(i_regmap[temp]==PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5267 }
5268 #endif
eba830cd 5269 if(rt1[i]==31&&(rt1[i]==rs1[i+1]||rt1[i]==rs2[i+1])) {
5270 ujump_assemble_write_ra(i); // writeback ra for DS
5271 ra_done=1;
57871462 5272 }
4ef8f67d 5273 ds_assemble(i+1,i_regs);
5274 uint64_t bc_unneeded=branch_regs[i].u;
5275 uint64_t bc_unneeded_upper=branch_regs[i].uu;
5276 bc_unneeded|=1|(1LL<<rt1[i]);
5277 bc_unneeded_upper|=1|(1LL<<rt1[i]);
5278 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5279 bc_unneeded,bc_unneeded_upper);
5280 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
eba830cd 5281 if(!ra_done&&rt1[i]==31)
5282 ujump_assemble_write_ra(i);
57871462 5283 int cc,adj;
5284 cc=get_reg(branch_regs[i].regmap,CCREG);
5285 assert(cc==HOST_CCREG);
5286 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5287 #ifdef REG_PREFETCH
5288 if(rt1[i]==31&&temp>=0) emit_prefetchreg(temp);
5289 #endif
5290 do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
2573466a 5291 if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
57871462 5292 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5293 if(internal_branch(branch_regs[i].is32,ba[i]))
5294 assem_debug("branch: internal\n");
5295 else
5296 assem_debug("branch: external\n");
5297 if(internal_branch(branch_regs[i].is32,ba[i])&&is_ds[(ba[i]-start)>>2]) {
5298 ds_assemble_entry(i);
5299 }
5300 else {
5301 add_to_linker((int)out,ba[i],internal_branch(branch_regs[i].is32,ba[i]));
5302 emit_jmp(0);
5303 }
5304}
5305
eba830cd 5306static void rjump_assemble_write_ra(int i)
5307{
5308 int rt,return_address;
5309 assert(rt1[i+1]!=rt1[i]);
5310 assert(rt2[i+1]!=rt1[i]);
5311 rt=get_reg(branch_regs[i].regmap,rt1[i]);
5312 assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5313 assert(rt>=0);
5314 return_address=start+i*4+8;
5315 #ifdef REG_PREFETCH
5316 if(temp>=0)
5317 {
5318 if(i_regmap[temp]!=PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5319 }
5320 #endif
5321 emit_movimm(return_address,rt); // PC into link register
5322 #ifdef IMM_PREFETCH
5323 emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5324 #endif
5325}
5326
57871462 5327void rjump_assemble(int i,struct regstat *i_regs)
5328{
5329 signed char *i_regmap=i_regs->regmap;
5330 int temp;
5331 int rs,cc,adj;
eba830cd 5332 int ra_done=0;
57871462 5333 rs=get_reg(branch_regs[i].regmap,rs1[i]);
5334 assert(rs>=0);
5335 if(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]) {
5336 // Delay slot abuse, make a copy of the branch address register
5337 temp=get_reg(branch_regs[i].regmap,RTEMP);
5338 assert(temp>=0);
5339 assert(regs[i].regmap[temp]==RTEMP);
5340 emit_mov(rs,temp);
5341 rs=temp;
5342 }
5343 address_generation(i+1,i_regs,regs[i].regmap_entry);
5344 #ifdef REG_PREFETCH
5345 if(rt1[i]==31)
5346 {
5347 if((temp=get_reg(branch_regs[i].regmap,PTEMP))>=0) {
5348 int return_address=start+i*4+8;
5349 if(i_regmap[temp]==PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5350 }
5351 }
5352 #endif
5353 #ifdef USE_MINI_HT
5354 if(rs1[i]==31) {
5355 int rh=get_reg(regs[i].regmap,RHASH);
5356 if(rh>=0) do_preload_rhash(rh);
5357 }
5358 #endif
eba830cd 5359 if(rt1[i]!=0&&(rt1[i]==rs1[i+1]||rt1[i]==rs2[i+1])) {
5360 rjump_assemble_write_ra(i);
5361 ra_done=1;
57871462 5362 }
d5910d5d 5363 ds_assemble(i+1,i_regs);
5364 uint64_t bc_unneeded=branch_regs[i].u;
5365 uint64_t bc_unneeded_upper=branch_regs[i].uu;
5366 bc_unneeded|=1|(1LL<<rt1[i]);
5367 bc_unneeded_upper|=1|(1LL<<rt1[i]);
5368 bc_unneeded&=~(1LL<<rs1[i]);
5369 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5370 bc_unneeded,bc_unneeded_upper);
5371 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],CCREG);
eba830cd 5372 if(!ra_done&&rt1[i]!=0)
5373 rjump_assemble_write_ra(i);
57871462 5374 cc=get_reg(branch_regs[i].regmap,CCREG);
5375 assert(cc==HOST_CCREG);
5376 #ifdef USE_MINI_HT
5377 int rh=get_reg(branch_regs[i].regmap,RHASH);
5378 int ht=get_reg(branch_regs[i].regmap,RHTBL);
5379 if(rs1[i]==31) {
5380 if(regs[i].regmap[rh]!=RHASH) do_preload_rhash(rh);
5381 do_preload_rhtbl(ht);
5382 do_rhash(rs,rh);
5383 }
5384 #endif
5385 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,-1);
5386 #ifdef DESTRUCTIVE_WRITEBACK
5387 if((branch_regs[i].dirty>>rs)&(branch_regs[i].is32>>rs1[i])&1) {
5388 if(rs1[i]!=rt1[i+1]&&rs1[i]!=rt2[i+1]) {
5389 emit_loadreg(rs1[i],rs);
5390 }
5391 }
5392 #endif
5393 #ifdef REG_PREFETCH
5394 if(rt1[i]==31&&temp>=0) emit_prefetchreg(temp);
5395 #endif
5396 #ifdef USE_MINI_HT
5397 if(rs1[i]==31) {
5398 do_miniht_load(ht,rh);
5399 }
5400 #endif
5401 //do_cc(i,branch_regs[i].regmap,&adj,-1,TAKEN);
5402 //if(adj) emit_addimm(cc,2*(ccadj[i]+2-adj),cc); // ??? - Shouldn't happen
5403 //assert(adj==0);
2573466a 5404 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),HOST_CCREG);
57871462 5405 add_stub(CC_STUB,(int)out,jump_vaddr_reg[rs],0,i,-1,TAKEN,0);
5406 emit_jns(0);
5407 //load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,-1);
5408 #ifdef USE_MINI_HT
5409 if(rs1[i]==31) {
5410 do_miniht_jump(rs,rh,ht);
5411 }
5412 else
5413 #endif
5414 {
5415 //if(rs!=EAX) emit_mov(rs,EAX);
5416 //emit_jmp((int)jump_vaddr_eax);
5417 emit_jmp(jump_vaddr_reg[rs]);
5418 }
5419 /* Check hash table
5420 temp=!rs;
5421 emit_mov(rs,temp);
5422 emit_shrimm(rs,16,rs);
5423 emit_xor(temp,rs,rs);
5424 emit_movzwl_reg(rs,rs);
5425 emit_shlimm(rs,4,rs);
5426 emit_cmpmem_indexed((int)hash_table,rs,temp);
5427 emit_jne((int)out+14);
5428 emit_readword_indexed((int)hash_table+4,rs,rs);
5429 emit_jmpreg(rs);
5430 emit_cmpmem_indexed((int)hash_table+8,rs,temp);
5431 emit_addimm_no_flags(8,rs);
5432 emit_jeq((int)out-17);
5433 // No hit on hash table, call compiler
5434 emit_pushreg(temp);
5435//DEBUG >
5436#ifdef DEBUG_CYCLE_COUNT
5437 emit_readword((int)&last_count,ECX);
5438 emit_add(HOST_CCREG,ECX,HOST_CCREG);
5439 emit_readword((int)&next_interupt,ECX);
5440 emit_writeword(HOST_CCREG,(int)&Count);
5441 emit_sub(HOST_CCREG,ECX,HOST_CCREG);
5442 emit_writeword(ECX,(int)&last_count);
5443#endif
5444//DEBUG <
5445 emit_storereg(CCREG,HOST_CCREG);
5446 emit_call((int)get_addr);
5447 emit_loadreg(CCREG,HOST_CCREG);
5448 emit_addimm(ESP,4,ESP);
5449 emit_jmpreg(EAX);*/
5450 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5451 if(rt1[i]!=31&&i<slen-2&&(((u_int)out)&7)) emit_mov(13,13);
5452 #endif
5453}
5454
5455void cjump_assemble(int i,struct regstat *i_regs)
5456{
5457 signed char *i_regmap=i_regs->regmap;
5458 int cc;
5459 int match;
5460 match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5461 assem_debug("match=%d\n",match);
5462 int s1h,s1l,s2h,s2l;
5463 int prev_cop1_usable=cop1_usable;
5464 int unconditional=0,nop=0;
5465 int only32=0;
57871462 5466 int invert=0;
5467 int internal=internal_branch(branch_regs[i].is32,ba[i]);
5468 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
57871462 5469 if(!match) invert=1;
5470 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5471 if(i>(ba[i]-start)>>2) invert=1;
5472 #endif
e1190b87 5473
5474 if(ooo[i]) {
57871462 5475 s1l=get_reg(branch_regs[i].regmap,rs1[i]);
5476 s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
5477 s2l=get_reg(branch_regs[i].regmap,rs2[i]);
5478 s2h=get_reg(branch_regs[i].regmap,rs2[i]|64);
5479 }
5480 else {
5481 s1l=get_reg(i_regmap,rs1[i]);
5482 s1h=get_reg(i_regmap,rs1[i]|64);
5483 s2l=get_reg(i_regmap,rs2[i]);
5484 s2h=get_reg(i_regmap,rs2[i]|64);
5485 }
5486 if(rs1[i]==0&&rs2[i]==0)
5487 {
5488 if(opcode[i]&1) nop=1;
5489 else unconditional=1;
5490 //assert(opcode[i]!=5);
5491 //assert(opcode[i]!=7);
5492 //assert(opcode[i]!=0x15);
5493 //assert(opcode[i]!=0x17);
5494 }
5495 else if(rs1[i]==0)
5496 {
5497 s1l=s2l;s1h=s2h;
5498 s2l=s2h=-1;
5499 only32=(regs[i].was32>>rs2[i])&1;
5500 }
5501 else if(rs2[i]==0)
5502 {
5503 s2l=s2h=-1;
5504 only32=(regs[i].was32>>rs1[i])&1;
5505 }
5506 else {
5507 only32=(regs[i].was32>>rs1[i])&(regs[i].was32>>rs2[i])&1;
5508 }
5509
e1190b87 5510 if(ooo[i]) {
57871462 5511 // Out of order execution (delay slot first)
5512 //printf("OOOE\n");
5513 address_generation(i+1,i_regs,regs[i].regmap_entry);
5514 ds_assemble(i+1,i_regs);
5515 int adj;
5516 uint64_t bc_unneeded=branch_regs[i].u;
5517 uint64_t bc_unneeded_upper=branch_regs[i].uu;
5518 bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
5519 bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
5520 bc_unneeded|=1;
5521 bc_unneeded_upper|=1;
5522 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5523 bc_unneeded,bc_unneeded_upper);
5524 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs2[i]);
5525 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5526 cc=get_reg(branch_regs[i].regmap,CCREG);
5527 assert(cc==HOST_CCREG);
5528 if(unconditional)
5529 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5530 //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
5531 //assem_debug("cycle count (adj)\n");
5532 if(unconditional) {
5533 do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5534 if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
2573466a 5535 if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
57871462 5536 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5537 if(internal)
5538 assem_debug("branch: internal\n");
5539 else
5540 assem_debug("branch: external\n");
5541 if(internal&&is_ds[(ba[i]-start)>>2]) {
5542 ds_assemble_entry(i);
5543 }
5544 else {
5545 add_to_linker((int)out,ba[i],internal);
5546 emit_jmp(0);
5547 }
5548 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5549 if(((u_int)out)&7) emit_addnop(0);
5550 #endif
5551 }
5552 }
5553 else if(nop) {
2573466a 5554 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),cc);
57871462 5555 int jaddr=(int)out;
5556 emit_jns(0);
5557 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5558 }
5559 else {
5560 int taken=0,nottaken=0,nottaken1=0;
5561 do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
2573466a 5562 if(adj&&!invert) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
57871462 5563 if(!only32)
5564 {
5565 assert(s1h>=0);
5566 if(opcode[i]==4) // BEQ
5567 {
5568 if(s2h>=0) emit_cmp(s1h,s2h);
5569 else emit_test(s1h,s1h);
5570 nottaken1=(int)out;
5571 emit_jne(1);
5572 }
5573 if(opcode[i]==5) // BNE
5574 {
5575 if(s2h>=0) emit_cmp(s1h,s2h);
5576 else emit_test(s1h,s1h);
5577 if(invert) taken=(int)out;
5578 else add_to_linker((int)out,ba[i],internal);
5579 emit_jne(0);
5580 }
5581 if(opcode[i]==6) // BLEZ
5582 {
5583 emit_test(s1h,s1h);
5584 if(invert) taken=(int)out;
5585 else add_to_linker((int)out,ba[i],internal);
5586 emit_js(0);
5587 nottaken1=(int)out;
5588 emit_jne(1);
5589 }
5590 if(opcode[i]==7) // BGTZ
5591 {
5592 emit_test(s1h,s1h);
5593 nottaken1=(int)out;
5594 emit_js(1);
5595 if(invert) taken=(int)out;
5596 else add_to_linker((int)out,ba[i],internal);
5597 emit_jne(0);
5598 }
5599 } // if(!only32)
5600
5601 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5602 assert(s1l>=0);
5603 if(opcode[i]==4) // BEQ
5604 {
5605 if(s2l>=0) emit_cmp(s1l,s2l);
5606 else emit_test(s1l,s1l);
5607 if(invert){
5608 nottaken=(int)out;
5609 emit_jne(1);
5610 }else{
5611 add_to_linker((int)out,ba[i],internal);
5612 emit_jeq(0);
5613 }
5614 }
5615 if(opcode[i]==5) // BNE
5616 {
5617 if(s2l>=0) emit_cmp(s1l,s2l);
5618 else emit_test(s1l,s1l);
5619 if(invert){
5620 nottaken=(int)out;
5621 emit_jeq(1);
5622 }else{
5623 add_to_linker((int)out,ba[i],internal);
5624 emit_jne(0);
5625 }
5626 }
5627 if(opcode[i]==6) // BLEZ
5628 {
5629 emit_cmpimm(s1l,1);
5630 if(invert){
5631 nottaken=(int)out;
5632 emit_jge(1);
5633 }else{
5634 add_to_linker((int)out,ba[i],internal);
5635 emit_jl(0);
5636 }
5637 }
5638 if(opcode[i]==7) // BGTZ
5639 {
5640 emit_cmpimm(s1l,1);
5641 if(invert){
5642 nottaken=(int)out;
5643 emit_jl(1);
5644 }else{
5645 add_to_linker((int)out,ba[i],internal);
5646 emit_jge(0);
5647 }
5648 }
5649 if(invert) {
5650 if(taken) set_jump_target(taken,(int)out);
5651 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5652 if(match&&(!internal||!is_ds[(ba[i]-start)>>2])) {
5653 if(adj) {
2573466a 5654 emit_addimm(cc,-CLOCK_ADJUST(adj),cc);
57871462 5655 add_to_linker((int)out,ba[i],internal);
5656 }else{
5657 emit_addnop(13);
5658 add_to_linker((int)out,ba[i],internal*2);
5659 }
5660 emit_jmp(0);
5661 }else
5662 #endif
5663 {
2573466a 5664 if(adj) emit_addimm(cc,-CLOCK_ADJUST(adj),cc);
57871462 5665 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5666 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5667 if(internal)
5668 assem_debug("branch: internal\n");
5669 else
5670 assem_debug("branch: external\n");
5671 if(internal&&is_ds[(ba[i]-start)>>2]) {
5672 ds_assemble_entry(i);
5673 }
5674 else {
5675 add_to_linker((int)out,ba[i],internal);
5676 emit_jmp(0);
5677 }
5678 }
5679 set_jump_target(nottaken,(int)out);
5680 }
5681
5682 if(nottaken1) set_jump_target(nottaken1,(int)out);
5683 if(adj) {
2573466a 5684 if(!invert) emit_addimm(cc,CLOCK_ADJUST(adj),cc);
57871462 5685 }
5686 } // (!unconditional)
5687 } // if(ooo)
5688 else
5689 {
5690 // In-order execution (branch first)
5691 //if(likely[i]) printf("IOL\n");
5692 //else
5693 //printf("IOE\n");
5694 int taken=0,nottaken=0,nottaken1=0;
5695 if(!unconditional&&!nop) {
5696 if(!only32)
5697 {
5698 assert(s1h>=0);
5699 if((opcode[i]&0x2f)==4) // BEQ
5700 {
5701 if(s2h>=0) emit_cmp(s1h,s2h);
5702 else emit_test(s1h,s1h);
5703 nottaken1=(int)out;
5704 emit_jne(2);
5705 }
5706 if((opcode[i]&0x2f)==5) // BNE
5707 {
5708 if(s2h>=0) emit_cmp(s1h,s2h);
5709 else emit_test(s1h,s1h);
5710 taken=(int)out;
5711 emit_jne(1);
5712 }
5713 if((opcode[i]&0x2f)==6) // BLEZ
5714 {
5715 emit_test(s1h,s1h);
5716 taken=(int)out;
5717 emit_js(1);
5718 nottaken1=(int)out;
5719 emit_jne(2);
5720 }
5721 if((opcode[i]&0x2f)==7) // BGTZ
5722 {
5723 emit_test(s1h,s1h);
5724 nottaken1=(int)out;
5725 emit_js(2);
5726 taken=(int)out;
5727 emit_jne(1);
5728 }
5729 } // if(!only32)
5730
5731 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5732 assert(s1l>=0);
5733 if((opcode[i]&0x2f)==4) // BEQ
5734 {
5735 if(s2l>=0) emit_cmp(s1l,s2l);
5736 else emit_test(s1l,s1l);
5737 nottaken=(int)out;
5738 emit_jne(2);
5739 }
5740 if((opcode[i]&0x2f)==5) // BNE
5741 {
5742 if(s2l>=0) emit_cmp(s1l,s2l);
5743 else emit_test(s1l,s1l);
5744 nottaken=(int)out;
5745 emit_jeq(2);
5746 }
5747 if((opcode[i]&0x2f)==6) // BLEZ
5748 {
5749 emit_cmpimm(s1l,1);
5750 nottaken=(int)out;
5751 emit_jge(2);
5752 }
5753 if((opcode[i]&0x2f)==7) // BGTZ
5754 {
5755 emit_cmpimm(s1l,1);
5756 nottaken=(int)out;
5757 emit_jl(2);
5758 }
5759 } // if(!unconditional)
5760 int adj;
5761 uint64_t ds_unneeded=branch_regs[i].u;
5762 uint64_t ds_unneeded_upper=branch_regs[i].uu;
5763 ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
5764 ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
5765 if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
5766 ds_unneeded|=1;
5767 ds_unneeded_upper|=1;
5768 // branch taken
5769 if(!nop) {
5770 if(taken) set_jump_target(taken,(int)out);
5771 assem_debug("1:\n");
5772 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5773 ds_unneeded,ds_unneeded_upper);
5774 // load regs
5775 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5776 address_generation(i+1,&branch_regs[i],0);
5777 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
5778 ds_assemble(i+1,&branch_regs[i]);
5779 cc=get_reg(branch_regs[i].regmap,CCREG);
5780 if(cc==-1) {
5781 emit_loadreg(CCREG,cc=HOST_CCREG);
5782 // CHECK: Is the following instruction (fall thru) allocated ok?
5783 }
5784 assert(cc==HOST_CCREG);
5785 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5786 do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
5787 assem_debug("cycle count (adj)\n");
2573466a 5788 if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
57871462 5789 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5790 if(internal)
5791 assem_debug("branch: internal\n");
5792 else
5793 assem_debug("branch: external\n");
5794 if(internal&&is_ds[(ba[i]-start)>>2]) {
5795 ds_assemble_entry(i);
5796 }
5797 else {
5798 add_to_linker((int)out,ba[i],internal);
5799 emit_jmp(0);
5800 }
5801 }
5802 // branch not taken
5803 cop1_usable=prev_cop1_usable;
5804 if(!unconditional) {
5805 if(nottaken1) set_jump_target(nottaken1,(int)out);
5806 set_jump_target(nottaken,(int)out);
5807 assem_debug("2:\n");
5808 if(!likely[i]) {
5809 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5810 ds_unneeded,ds_unneeded_upper);
5811 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5812 address_generation(i+1,&branch_regs[i],0);
5813 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5814 ds_assemble(i+1,&branch_regs[i]);
5815 }
5816 cc=get_reg(branch_regs[i].regmap,CCREG);
5817 if(cc==-1&&!likely[i]) {
5818 // Cycle count isn't in a register, temporarily load it then write it out
5819 emit_loadreg(CCREG,HOST_CCREG);
2573466a 5820 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),HOST_CCREG);
57871462 5821 int jaddr=(int)out;
5822 emit_jns(0);
5823 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5824 emit_storereg(CCREG,HOST_CCREG);
5825 }
5826 else{
5827 cc=get_reg(i_regmap,CCREG);
5828 assert(cc==HOST_CCREG);
2573466a 5829 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),cc);
57871462 5830 int jaddr=(int)out;
5831 emit_jns(0);
5832 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
5833 }
5834 }
5835 }
5836}
5837
5838void sjump_assemble(int i,struct regstat *i_regs)
5839{
5840 signed char *i_regmap=i_regs->regmap;
5841 int cc;
5842 int match;
5843 match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5844 assem_debug("smatch=%d\n",match);
5845 int s1h,s1l;
5846 int prev_cop1_usable=cop1_usable;
5847 int unconditional=0,nevertaken=0;
5848 int only32=0;
57871462 5849 int invert=0;
5850 int internal=internal_branch(branch_regs[i].is32,ba[i]);
5851 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
57871462 5852 if(!match) invert=1;
5853 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5854 if(i>(ba[i]-start)>>2) invert=1;
5855 #endif
5856
5857 //if(opcode2[i]>=0x10) return; // FIXME (BxxZAL)
df894a3a 5858 //assert(opcode2[i]<0x10||rs1[i]==0); // FIXME (BxxZAL)
57871462 5859
e1190b87 5860 if(ooo[i]) {
57871462 5861 s1l=get_reg(branch_regs[i].regmap,rs1[i]);
5862 s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
5863 }
5864 else {
5865 s1l=get_reg(i_regmap,rs1[i]);
5866 s1h=get_reg(i_regmap,rs1[i]|64);
5867 }
5868 if(rs1[i]==0)
5869 {
5870 if(opcode2[i]&1) unconditional=1;
5871 else nevertaken=1;
5872 // These are never taken (r0 is never less than zero)
5873 //assert(opcode2[i]!=0);
5874 //assert(opcode2[i]!=2);
5875 //assert(opcode2[i]!=0x10);
5876 //assert(opcode2[i]!=0x12);
5877 }
5878 else {
5879 only32=(regs[i].was32>>rs1[i])&1;
5880 }
5881
e1190b87 5882 if(ooo[i]) {
57871462 5883 // Out of order execution (delay slot first)
5884 //printf("OOOE\n");
5885 address_generation(i+1,i_regs,regs[i].regmap_entry);
5886 ds_assemble(i+1,i_regs);
5887 int adj;
5888 uint64_t bc_unneeded=branch_regs[i].u;
5889 uint64_t bc_unneeded_upper=branch_regs[i].uu;
5890 bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
5891 bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
5892 bc_unneeded|=1;
5893 bc_unneeded_upper|=1;
5894 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5895 bc_unneeded,bc_unneeded_upper);
5896 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs1[i]);
5897 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5898 if(rt1[i]==31) {
5899 int rt,return_address;
57871462 5900 rt=get_reg(branch_regs[i].regmap,31);
5901 assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5902 if(rt>=0) {
5903 // Save the PC even if the branch is not taken
5904 return_address=start+i*4+8;
5905 emit_movimm(return_address,rt); // PC into link register
5906 #ifdef IMM_PREFETCH
5907 if(!nevertaken) emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5908 #endif
5909 }
5910 }
5911 cc=get_reg(branch_regs[i].regmap,CCREG);
5912 assert(cc==HOST_CCREG);
5913 if(unconditional)
5914 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5915 //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
5916 assem_debug("cycle count (adj)\n");
5917 if(unconditional) {
5918 do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5919 if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
2573466a 5920 if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
57871462 5921 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5922 if(internal)
5923 assem_debug("branch: internal\n");
5924 else
5925 assem_debug("branch: external\n");
5926 if(internal&&is_ds[(ba[i]-start)>>2]) {
5927 ds_assemble_entry(i);
5928 }
5929 else {
5930 add_to_linker((int)out,ba[i],internal);
5931 emit_jmp(0);
5932 }
5933 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5934 if(((u_int)out)&7) emit_addnop(0);
5935 #endif
5936 }
5937 }
5938 else if(nevertaken) {
2573466a 5939 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),cc);
57871462 5940 int jaddr=(int)out;
5941 emit_jns(0);
5942 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5943 }
5944 else {
5945 int nottaken=0;
5946 do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
2573466a 5947 if(adj&&!invert) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
57871462 5948 if(!only32)
5949 {
5950 assert(s1h>=0);
df894a3a 5951 if((opcode2[i]&0xf)==0) // BLTZ/BLTZAL
57871462 5952 {
5953 emit_test(s1h,s1h);
5954 if(invert){
5955 nottaken=(int)out;
5956 emit_jns(1);
5957 }else{
5958 add_to_linker((int)out,ba[i],internal);
5959 emit_js(0);
5960 }
5961 }
df894a3a 5962 if((opcode2[i]&0xf)==1) // BGEZ/BLTZAL
57871462 5963 {
5964 emit_test(s1h,s1h);
5965 if(invert){
5966 nottaken=(int)out;
5967 emit_js(1);
5968 }else{
5969 add_to_linker((int)out,ba[i],internal);
5970 emit_jns(0);
5971 }
5972 }
5973 } // if(!only32)
5974 else
5975 {
5976 assert(s1l>=0);
df894a3a 5977 if((opcode2[i]&0xf)==0) // BLTZ/BLTZAL
57871462 5978 {
5979 emit_test(s1l,s1l);
5980 if(invert){
5981 nottaken=(int)out;
5982 emit_jns(1);
5983 }else{
5984 add_to_linker((int)out,ba[i],internal);
5985 emit_js(0);
5986 }
5987 }
df894a3a 5988 if((opcode2[i]&0xf)==1) // BGEZ/BLTZAL
57871462 5989 {
5990 emit_test(s1l,s1l);
5991 if(invert){
5992 nottaken=(int)out;
5993 emit_js(1);
5994 }else{
5995 add_to_linker((int)out,ba[i],internal);
5996 emit_jns(0);
5997 }
5998 }
5999 } // if(!only32)
6000
6001 if(invert) {
6002 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
6003 if(match&&(!internal||!is_ds[(ba[i]-start)>>2])) {
6004 if(adj) {
2573466a 6005 emit_addimm(cc,-CLOCK_ADJUST(adj),cc);
57871462 6006 add_to_linker((int)out,ba[i],internal);
6007 }else{
6008 emit_addnop(13);
6009 add_to_linker((int)out,ba[i],internal*2);
6010 }
6011 emit_jmp(0);
6012 }else
6013 #endif
6014 {
2573466a 6015 if(adj) emit_addimm(cc,-CLOCK_ADJUST(adj),cc);
57871462 6016 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6017 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6018 if(internal)
6019 assem_debug("branch: internal\n");
6020 else
6021 assem_debug("branch: external\n");
6022 if(internal&&is_ds[(ba[i]-start)>>2]) {
6023 ds_assemble_entry(i);
6024 }
6025 else {
6026 add_to_linker((int)out,ba[i],internal);
6027 emit_jmp(0);
6028 }
6029 }
6030 set_jump_target(nottaken,(int)out);
6031 }
6032
6033 if(adj) {
2573466a 6034 if(!invert) emit_addimm(cc,CLOCK_ADJUST(adj),cc);
57871462 6035 }
6036 } // (!unconditional)
6037 } // if(ooo)
6038 else
6039 {
6040 // In-order execution (branch first)
6041 //printf("IOE\n");
6042 int nottaken=0;
a6491170 6043 if(rt1[i]==31) {
6044 int rt,return_address;
a6491170 6045 rt=get_reg(branch_regs[i].regmap,31);
6046 if(rt>=0) {
6047 // Save the PC even if the branch is not taken
6048 return_address=start+i*4+8;
6049 emit_movimm(return_address,rt); // PC into link register
6050 #ifdef IMM_PREFETCH
6051 emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
6052 #endif
6053 }
6054 }
57871462 6055 if(!unconditional) {
6056 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
6057 if(!only32)
6058 {
6059 assert(s1h>=0);
a6491170 6060 if((opcode2[i]&0x0d)==0) // BLTZ/BLTZL/BLTZAL/BLTZALL
57871462 6061 {
6062 emit_test(s1h,s1h);
6063 nottaken=(int)out;
6064 emit_jns(1);
6065 }
a6491170 6066 if((opcode2[i]&0x0d)==1) // BGEZ/BGEZL/BGEZAL/BGEZALL
57871462 6067 {
6068 emit_test(s1h,s1h);
6069 nottaken=(int)out;
6070 emit_js(1);
6071 }
6072 } // if(!only32)
6073 else
6074 {
6075 assert(s1l>=0);
a6491170 6076 if((opcode2[i]&0x0d)==0) // BLTZ/BLTZL/BLTZAL/BLTZALL
57871462 6077 {
6078 emit_test(s1l,s1l);
6079 nottaken=(int)out;
6080 emit_jns(1);
6081 }
a6491170 6082 if((opcode2[i]&0x0d)==1) // BGEZ/BGEZL/BGEZAL/BGEZALL
57871462 6083 {
6084 emit_test(s1l,s1l);
6085 nottaken=(int)out;
6086 emit_js(1);
6087 }
6088 }
6089 } // if(!unconditional)
6090 int adj;
6091 uint64_t ds_unneeded=branch_regs[i].u;
6092 uint64_t ds_unneeded_upper=branch_regs[i].uu;
6093 ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6094 ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6095 if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
6096 ds_unneeded|=1;
6097 ds_unneeded_upper|=1;
6098 // branch taken
6099 if(!nevertaken) {
6100 //assem_debug("1:\n");
6101 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6102 ds_unneeded,ds_unneeded_upper);
6103 // load regs
6104 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
6105 address_generation(i+1,&branch_regs[i],0);
6106 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
6107 ds_assemble(i+1,&branch_regs[i]);
6108 cc=get_reg(branch_regs[i].regmap,CCREG);
6109 if(cc==-1) {
6110 emit_loadreg(CCREG,cc=HOST_CCREG);
6111 // CHECK: Is the following instruction (fall thru) allocated ok?
6112 }
6113 assert(cc==HOST_CCREG);
6114 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6115 do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
6116 assem_debug("cycle count (adj)\n");
2573466a 6117 if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
57871462 6118 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6119 if(internal)
6120 assem_debug("branch: internal\n");
6121 else
6122 assem_debug("branch: external\n");
6123 if(internal&&is_ds[(ba[i]-start)>>2]) {
6124 ds_assemble_entry(i);
6125 }
6126 else {
6127 add_to_linker((int)out,ba[i],internal);
6128 emit_jmp(0);
6129 }
6130 }
6131 // branch not taken
6132 cop1_usable=prev_cop1_usable;
6133 if(!unconditional) {
6134 set_jump_target(nottaken,(int)out);
6135 assem_debug("1:\n");
6136 if(!likely[i]) {
6137 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6138 ds_unneeded,ds_unneeded_upper);
6139 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
6140 address_generation(i+1,&branch_regs[i],0);
6141 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
6142 ds_assemble(i+1,&branch_regs[i]);
6143 }
6144 cc=get_reg(branch_regs[i].regmap,CCREG);
6145 if(cc==-1&&!likely[i]) {
6146 // Cycle count isn't in a register, temporarily load it then write it out
6147 emit_loadreg(CCREG,HOST_CCREG);
2573466a 6148 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),HOST_CCREG);
57871462 6149 int jaddr=(int)out;
6150 emit_jns(0);
6151 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
6152 emit_storereg(CCREG,HOST_CCREG);
6153 }
6154 else{
6155 cc=get_reg(i_regmap,CCREG);
6156 assert(cc==HOST_CCREG);
2573466a 6157 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),cc);
57871462 6158 int jaddr=(int)out;
6159 emit_jns(0);
6160 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
6161 }
6162 }
6163 }
6164}
6165
6166void fjump_assemble(int i,struct regstat *i_regs)
6167{
6168 signed char *i_regmap=i_regs->regmap;
6169 int cc;
6170 int match;
6171 match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6172 assem_debug("fmatch=%d\n",match);
6173 int fs,cs;
6174 int eaddr;
57871462 6175 int invert=0;
6176 int internal=internal_branch(branch_regs[i].is32,ba[i]);
6177 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
57871462 6178 if(!match) invert=1;
6179 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
6180 if(i>(ba[i]-start)>>2) invert=1;
6181 #endif
6182
e1190b87 6183 if(ooo[i]) {
57871462 6184 fs=get_reg(branch_regs[i].regmap,FSREG);
6185 address_generation(i+1,i_regs,regs[i].regmap_entry); // Is this okay?
6186 }
6187 else {
6188 fs=get_reg(i_regmap,FSREG);
6189 }
6190
6191 // Check cop1 unusable
6192 if(!cop1_usable) {
6193 cs=get_reg(i_regmap,CSREG);
6194 assert(cs>=0);
6195 emit_testimm(cs,0x20000000);
6196 eaddr=(int)out;
6197 emit_jeq(0);
6198 add_stub(FP_STUB,eaddr,(int)out,i,cs,(int)i_regs,0,0);
6199 cop1_usable=1;
6200 }
6201
e1190b87 6202 if(ooo[i]) {
57871462 6203 // Out of order execution (delay slot first)
6204 //printf("OOOE\n");
6205 ds_assemble(i+1,i_regs);
6206 int adj;
6207 uint64_t bc_unneeded=branch_regs[i].u;
6208 uint64_t bc_unneeded_upper=branch_regs[i].uu;
6209 bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
6210 bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
6211 bc_unneeded|=1;
6212 bc_unneeded_upper|=1;
6213 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6214 bc_unneeded,bc_unneeded_upper);
6215 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs1[i]);
6216 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
6217 cc=get_reg(branch_regs[i].regmap,CCREG);
6218 assert(cc==HOST_CCREG);
6219 do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
6220 assem_debug("cycle count (adj)\n");
6221 if(1) {
6222 int nottaken=0;
2573466a 6223 if(adj&&!invert) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
57871462 6224 if(1) {
6225 assert(fs>=0);
6226 emit_testimm(fs,0x800000);
6227 if(source[i]&0x10000) // BC1T
6228 {
6229 if(invert){
6230 nottaken=(int)out;
6231 emit_jeq(1);
6232 }else{
6233 add_to_linker((int)out,ba[i],internal);
6234 emit_jne(0);
6235 }
6236 }
6237 else // BC1F
6238 if(invert){
6239 nottaken=(int)out;
6240 emit_jne(1);
6241 }else{
6242 add_to_linker((int)out,ba[i],internal);
6243 emit_jeq(0);
6244 }
6245 {
6246 }
6247 } // if(!only32)
6248
6249 if(invert) {
2573466a 6250 if(adj) emit_addimm(cc,-CLOCK_ADJUST(adj),cc);
57871462 6251 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
6252 else if(match) emit_addnop(13);
6253 #endif
6254 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6255 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6256 if(internal)
6257 assem_debug("branch: internal\n");
6258 else
6259 assem_debug("branch: external\n");
6260 if(internal&&is_ds[(ba[i]-start)>>2]) {
6261 ds_assemble_entry(i);
6262 }
6263 else {
6264 add_to_linker((int)out,ba[i],internal);
6265 emit_jmp(0);
6266 }
6267 set_jump_target(nottaken,(int)out);
6268 }
6269
6270 if(adj) {
2573466a 6271 if(!invert) emit_addimm(cc,CLOCK_ADJUST(adj),cc);
57871462 6272 }
6273 } // (!unconditional)
6274 } // if(ooo)
6275 else
6276 {
6277 // In-order execution (branch first)
6278 //printf("IOE\n");
6279 int nottaken=0;
6280 if(1) {
6281 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
6282 if(1) {
6283 assert(fs>=0);
6284 emit_testimm(fs,0x800000);
6285 if(source[i]&0x10000) // BC1T
6286 {
6287 nottaken=(int)out;
6288 emit_jeq(1);
6289 }
6290 else // BC1F
6291 {
6292 nottaken=(int)out;
6293 emit_jne(1);
6294 }
6295 }
6296 } // if(!unconditional)
6297 int adj;
6298 uint64_t ds_unneeded=branch_regs[i].u;
6299 uint64_t ds_unneeded_upper=branch_regs[i].uu;
6300 ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6301 ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6302 if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
6303 ds_unneeded|=1;
6304 ds_unneeded_upper|=1;
6305 // branch taken
6306 //assem_debug("1:\n");
6307 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6308 ds_unneeded,ds_unneeded_upper);
6309 // load regs
6310 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
6311 address_generation(i+1,&branch_regs[i],0);
6312 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
6313 ds_assemble(i+1,&branch_regs[i]);
6314 cc=get_reg(branch_regs[i].regmap,CCREG);
6315 if(cc==-1) {
6316 emit_loadreg(CCREG,cc=HOST_CCREG);
6317 // CHECK: Is the following instruction (fall thru) allocated ok?
6318 }
6319 assert(cc==HOST_CCREG);
6320 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6321 do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
6322 assem_debug("cycle count (adj)\n");
2573466a 6323 if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
57871462 6324 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6325 if(internal)
6326 assem_debug("branch: internal\n");
6327 else
6328 assem_debug("branch: external\n");
6329 if(internal&&is_ds[(ba[i]-start)>>2]) {
6330 ds_assemble_entry(i);
6331 }
6332 else {
6333 add_to_linker((int)out,ba[i],internal);
6334 emit_jmp(0);
6335 }
6336
6337 // branch not taken
6338 if(1) { // <- FIXME (don't need this)
6339 set_jump_target(nottaken,(int)out);
6340 assem_debug("1:\n");
6341 if(!likely[i]) {
6342 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6343 ds_unneeded,ds_unneeded_upper);
6344 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
6345 address_generation(i+1,&branch_regs[i],0);
6346 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
6347 ds_assemble(i+1,&branch_regs[i]);
6348 }
6349 cc=get_reg(branch_regs[i].regmap,CCREG);
6350 if(cc==-1&&!likely[i]) {
6351 // Cycle count isn't in a register, temporarily load it then write it out
6352 emit_loadreg(CCREG,HOST_CCREG);
2573466a 6353 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),HOST_CCREG);
57871462 6354 int jaddr=(int)out;
6355 emit_jns(0);
6356 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
6357 emit_storereg(CCREG,HOST_CCREG);
6358 }
6359 else{
6360 cc=get_reg(i_regmap,CCREG);
6361 assert(cc==HOST_CCREG);
2573466a 6362 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),cc);
57871462 6363 int jaddr=(int)out;
6364 emit_jns(0);
6365 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
6366 }
6367 }
6368 }
6369}
6370
6371static void pagespan_assemble(int i,struct regstat *i_regs)
6372{
6373 int s1l=get_reg(i_regs->regmap,rs1[i]);
6374 int s1h=get_reg(i_regs->regmap,rs1[i]|64);
6375 int s2l=get_reg(i_regs->regmap,rs2[i]);
6376 int s2h=get_reg(i_regs->regmap,rs2[i]|64);
6377 void *nt_branch=NULL;
6378 int taken=0;
6379 int nottaken=0;
6380 int unconditional=0;
6381 if(rs1[i]==0)
6382 {
6383 s1l=s2l;s1h=s2h;
6384 s2l=s2h=-1;
6385 }
6386 else if(rs2[i]==0)
6387 {
6388 s2l=s2h=-1;
6389 }
6390 if((i_regs->is32>>rs1[i])&(i_regs->is32>>rs2[i])&1) {
6391 s1h=s2h=-1;
6392 }
6393 int hr=0;
6394 int addr,alt,ntaddr;
6395 if(i_regs->regmap[HOST_BTREG]<0) {addr=HOST_BTREG;}
6396 else {
6397 while(hr<HOST_REGS)
6398 {
6399 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
6400 (i_regs->regmap[hr]&63)!=rs1[i] &&
6401 (i_regs->regmap[hr]&63)!=rs2[i] )
6402 {
6403 addr=hr++;break;
6404 }
6405 hr++;
6406 }
6407 }
6408 while(hr<HOST_REGS)
6409 {
6410 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG && hr!=HOST_BTREG &&
6411 (i_regs->regmap[hr]&63)!=rs1[i] &&
6412 (i_regs->regmap[hr]&63)!=rs2[i] )
6413 {
6414 alt=hr++;break;
6415 }
6416 hr++;
6417 }
6418 if((opcode[i]&0x2E)==6) // BLEZ/BGTZ needs another register
6419 {
6420 while(hr<HOST_REGS)
6421 {
6422 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG && hr!=HOST_BTREG &&
6423 (i_regs->regmap[hr]&63)!=rs1[i] &&
6424 (i_regs->regmap[hr]&63)!=rs2[i] )
6425 {
6426 ntaddr=hr;break;
6427 }
6428 hr++;
6429 }
6430 }
6431 assert(hr<HOST_REGS);
6432 if((opcode[i]&0x2e)==4||opcode[i]==0x11) { // BEQ/BNE/BEQL/BNEL/BC1
6433 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,CCREG,CCREG);
6434 }
2573466a 6435 emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i]+2),HOST_CCREG);
57871462 6436 if(opcode[i]==2) // J
6437 {
6438 unconditional=1;
6439 }
6440 if(opcode[i]==3) // JAL
6441 {
6442 // TODO: mini_ht
6443 int rt=get_reg(i_regs->regmap,31);
6444 emit_movimm(start+i*4+8,rt);
6445 unconditional=1;
6446 }
6447 if(opcode[i]==0&&(opcode2[i]&0x3E)==8) // JR/JALR
6448 {
6449 emit_mov(s1l,addr);
6450 if(opcode2[i]==9) // JALR
6451 {
5067f341 6452 int rt=get_reg(i_regs->regmap,rt1[i]);
57871462 6453 emit_movimm(start+i*4+8,rt);
6454 }
6455 }
6456 if((opcode[i]&0x3f)==4) // BEQ
6457 {
6458 if(rs1[i]==rs2[i])
6459 {
6460 unconditional=1;
6461 }
6462 else
6463 #ifdef HAVE_CMOV_IMM
6464 if(s1h<0) {
6465 if(s2l>=0) emit_cmp(s1l,s2l);
6466 else emit_test(s1l,s1l);
6467 emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
6468 }
6469 else
6470 #endif
6471 {
6472 assert(s1l>=0);
6473 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
6474 if(s1h>=0) {
6475 if(s2h>=0) emit_cmp(s1h,s2h);
6476 else emit_test(s1h,s1h);
6477 emit_cmovne_reg(alt,addr);
6478 }
6479 if(s2l>=0) emit_cmp(s1l,s2l);
6480 else emit_test(s1l,s1l);
6481 emit_cmovne_reg(alt,addr);
6482 }
6483 }
6484 if((opcode[i]&0x3f)==5) // BNE
6485 {
6486 #ifdef HAVE_CMOV_IMM
6487 if(s1h<0) {
6488 if(s2l>=0) emit_cmp(s1l,s2l);
6489 else emit_test(s1l,s1l);
6490 emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
6491 }
6492 else
6493 #endif
6494 {
6495 assert(s1l>=0);
6496 emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
6497 if(s1h>=0) {
6498 if(s2h>=0) emit_cmp(s1h,s2h);
6499 else emit_test(s1h,s1h);
6500 emit_cmovne_reg(alt,addr);
6501 }
6502 if(s2l>=0) emit_cmp(s1l,s2l);
6503 else emit_test(s1l,s1l);
6504 emit_cmovne_reg(alt,addr);
6505 }
6506 }
6507 if((opcode[i]&0x3f)==0x14) // BEQL
6508 {
6509 if(s1h>=0) {
6510 if(s2h>=0) emit_cmp(s1h,s2h);
6511 else emit_test(s1h,s1h);
6512 nottaken=(int)out;
6513 emit_jne(0);
6514 }
6515 if(s2l>=0) emit_cmp(s1l,s2l);
6516 else emit_test(s1l,s1l);
6517 if(nottaken) set_jump_target(nottaken,(int)out);
6518 nottaken=(int)out;
6519 emit_jne(0);
6520 }
6521 if((opcode[i]&0x3f)==0x15) // BNEL
6522 {
6523 if(s1h>=0) {
6524 if(s2h>=0) emit_cmp(s1h,s2h);
6525 else emit_test(s1h,s1h);
6526 taken=(int)out;
6527 emit_jne(0);
6528 }
6529 if(s2l>=0) emit_cmp(s1l,s2l);
6530 else emit_test(s1l,s1l);
6531 nottaken=(int)out;
6532 emit_jeq(0);
6533 if(taken) set_jump_target(taken,(int)out);
6534 }
6535 if((opcode[i]&0x3f)==6) // BLEZ
6536 {
6537 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
6538 emit_cmpimm(s1l,1);
6539 if(s1h>=0) emit_mov(addr,ntaddr);
6540 emit_cmovl_reg(alt,addr);
6541 if(s1h>=0) {
6542 emit_test(s1h,s1h);
6543 emit_cmovne_reg(ntaddr,addr);
6544 emit_cmovs_reg(alt,addr);
6545 }
6546 }
6547 if((opcode[i]&0x3f)==7) // BGTZ
6548 {
6549 emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
6550 emit_cmpimm(s1l,1);
6551 if(s1h>=0) emit_mov(addr,alt);
6552 emit_cmovl_reg(ntaddr,addr);
6553 if(s1h>=0) {
6554 emit_test(s1h,s1h);
6555 emit_cmovne_reg(alt,addr);
6556 emit_cmovs_reg(ntaddr,addr);
6557 }
6558 }
6559 if((opcode[i]&0x3f)==0x16) // BLEZL
6560 {
6561 assert((opcode[i]&0x3f)!=0x16);
6562 }
6563 if((opcode[i]&0x3f)==0x17) // BGTZL
6564 {
6565 assert((opcode[i]&0x3f)!=0x17);
6566 }
6567 assert(opcode[i]!=1); // BLTZ/BGEZ
6568
6569 //FIXME: Check CSREG
6570 if(opcode[i]==0x11 && opcode2[i]==0x08 ) {
6571 if((source[i]&0x30000)==0) // BC1F
6572 {
6573 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
6574 emit_testimm(s1l,0x800000);
6575 emit_cmovne_reg(alt,addr);
6576 }
6577 if((source[i]&0x30000)==0x10000) // BC1T
6578 {
6579 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
6580 emit_testimm(s1l,0x800000);
6581 emit_cmovne_reg(alt,addr);
6582 }
6583 if((source[i]&0x30000)==0x20000) // BC1FL
6584 {
6585 emit_testimm(s1l,0x800000);
6586 nottaken=(int)out;
6587 emit_jne(0);
6588 }
6589 if((source[i]&0x30000)==0x30000) // BC1TL
6590 {
6591 emit_testimm(s1l,0x800000);
6592 nottaken=(int)out;
6593 emit_jeq(0);
6594 }
6595 }
6596
6597 assert(i_regs->regmap[HOST_CCREG]==CCREG);
6598 wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
6599 if(likely[i]||unconditional)
6600 {
6601 emit_movimm(ba[i],HOST_BTREG);
6602 }
6603 else if(addr!=HOST_BTREG)
6604 {
6605 emit_mov(addr,HOST_BTREG);
6606 }
6607 void *branch_addr=out;
6608 emit_jmp(0);
6609 int target_addr=start+i*4+5;
6610 void *stub=out;
6611 void *compiled_target_addr=check_addr(target_addr);
6612 emit_extjump_ds((int)branch_addr,target_addr);
6613 if(compiled_target_addr) {
6614 set_jump_target((int)branch_addr,(int)compiled_target_addr);
6615 add_link(target_addr,stub);
6616 }
6617 else set_jump_target((int)branch_addr,(int)stub);
6618 if(likely[i]) {
6619 // Not-taken path
6620 set_jump_target((int)nottaken,(int)out);
6621 wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
6622 void *branch_addr=out;
6623 emit_jmp(0);
6624 int target_addr=start+i*4+8;
6625 void *stub=out;
6626 void *compiled_target_addr=check_addr(target_addr);
6627 emit_extjump_ds((int)branch_addr,target_addr);
6628 if(compiled_target_addr) {
6629 set_jump_target((int)branch_addr,(int)compiled_target_addr);
6630 add_link(target_addr,stub);
6631 }
6632 else set_jump_target((int)branch_addr,(int)stub);
6633 }
6634}
6635
6636// Assemble the delay slot for the above
6637static void pagespan_ds()
6638{
6639 assem_debug("initial delay slot:\n");
6640 u_int vaddr=start+1;
94d23bb9 6641 u_int page=get_page(vaddr);
6642 u_int vpage=get_vpage(vaddr);
57871462 6643 ll_add(jump_dirty+vpage,vaddr,(void *)out);
6644 do_dirty_stub_ds();
6645 ll_add(jump_in+page,vaddr,(void *)out);
6646 assert(regs[0].regmap_entry[HOST_CCREG]==CCREG);
6647 if(regs[0].regmap[HOST_CCREG]!=CCREG)
6648 wb_register(CCREG,regs[0].regmap_entry,regs[0].wasdirty,regs[0].was32);
6649 if(regs[0].regmap[HOST_BTREG]!=BTREG)
6650 emit_writeword(HOST_BTREG,(int)&branch_target);
6651 load_regs(regs[0].regmap_entry,regs[0].regmap,regs[0].was32,rs1[0],rs2[0]);
6652 address_generation(0,&regs[0],regs[0].regmap_entry);
b9b61529 6653 if(itype[0]==STORE||itype[0]==STORELR||(opcode[0]&0x3b)==0x39||(opcode[0]&0x3b)==0x3a)
57871462 6654 load_regs(regs[0].regmap_entry,regs[0].regmap,regs[0].was32,INVCP,INVCP);
6655 cop1_usable=0;
6656 is_delayslot=0;
6657 switch(itype[0]) {
6658 case ALU:
6659 alu_assemble(0,&regs[0]);break;
6660 case IMM16:
6661 imm16_assemble(0,&regs[0]);break;
6662 case SHIFT:
6663 shift_assemble(0,&regs[0]);break;
6664 case SHIFTIMM:
6665 shiftimm_assemble(0,&regs[0]);break;
6666 case LOAD:
6667 load_assemble(0,&regs[0]);break;
6668 case LOADLR:
6669 loadlr_assemble(0,&regs[0]);break;
6670 case STORE:
6671 store_assemble(0,&regs[0]);break;
6672 case STORELR:
6673 storelr_assemble(0,&regs[0]);break;
6674 case COP0:
6675 cop0_assemble(0,&regs[0]);break;
6676 case COP1:
6677 cop1_assemble(0,&regs[0]);break;
6678 case C1LS:
6679 c1ls_assemble(0,&regs[0]);break;
b9b61529 6680 case COP2:
6681 cop2_assemble(0,&regs[0]);break;
6682 case C2LS:
6683 c2ls_assemble(0,&regs[0]);break;
6684 case C2OP:
6685 c2op_assemble(0,&regs[0]);break;
57871462 6686 case FCONV:
6687 fconv_assemble(0,&regs[0]);break;
6688 case FLOAT:
6689 float_assemble(0,&regs[0]);break;
6690 case FCOMP:
6691 fcomp_assemble(0,&regs[0]);break;
6692 case MULTDIV:
6693 multdiv_assemble(0,&regs[0]);break;
6694 case MOV:
6695 mov_assemble(0,&regs[0]);break;
6696 case SYSCALL:
7139f3c8 6697 case HLECALL:
1e973cb0 6698 case INTCALL:
57871462 6699 case SPAN:
6700 case UJUMP:
6701 case RJUMP:
6702 case CJUMP:
6703 case SJUMP:
6704 case FJUMP:
6705 printf("Jump in the delay slot. This is probably a bug.\n");
6706 }
6707 int btaddr=get_reg(regs[0].regmap,BTREG);
6708 if(btaddr<0) {
6709 btaddr=get_reg(regs[0].regmap,-1);
6710 emit_readword((int)&branch_target,btaddr);
6711 }
6712 assert(btaddr!=HOST_CCREG);
6713 if(regs[0].regmap[HOST_CCREG]!=CCREG) emit_loadreg(CCREG,HOST_CCREG);
6714#ifdef HOST_IMM8
6715 emit_movimm(start+4,HOST_TEMPREG);
6716 emit_cmp(btaddr,HOST_TEMPREG);
6717#else
6718 emit_cmpimm(btaddr,start+4);
6719#endif
6720 int branch=(int)out;
6721 emit_jeq(0);
6722 store_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,-1);
6723 emit_jmp(jump_vaddr_reg[btaddr]);
6724 set_jump_target(branch,(int)out);
6725 store_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,start+4);
6726 load_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,start+4);
6727}
6728
6729// Basic liveness analysis for MIPS registers
6730void unneeded_registers(int istart,int iend,int r)
6731{
6732 int i;
bedfea38 6733 uint64_t u,uu,gte_u,b,bu,gte_bu;
6734 uint64_t temp_u,temp_uu,temp_gte_u;
57871462 6735 uint64_t tdep;
6736 if(iend==slen-1) {
6737 u=1;uu=1;
6738 }else{
6739 u=unneeded_reg[iend+1];
6740 uu=unneeded_reg_upper[iend+1];
6741 u=1;uu=1;
6742 }
bedfea38 6743 gte_u=temp_gte_u=0;
6744
57871462 6745 for (i=iend;i>=istart;i--)
6746 {
6747 //printf("unneeded registers i=%d (%d,%d) r=%d\n",i,istart,iend,r);
6748 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
6749 {
6750 // If subroutine call, flag return address as a possible branch target
6751 if(rt1[i]==31 && i<slen-2) bt[i+2]=1;
6752
6753 if(ba[i]<start || ba[i]>=(start+slen*4))
6754 {
6755 // Branch out of this block, flush all regs
6756 u=1;
6757 uu=1;
bedfea38 6758 gte_u=0;
57871462 6759 /* Hexagon hack
6760 if(itype[i]==UJUMP&&rt1[i]==31)
6761 {
6762 uu=u=0x300C00F; // Discard at, v0-v1, t6-t9
6763 }
6764 if(itype[i]==RJUMP&&rs1[i]==31)
6765 {
6766 uu=u=0x300C0F3; // Discard at, a0-a3, t6-t9
6767 }
4cb76aa4 6768 if(start>0x80000400&&start<0x80000000+RAM_SIZE) {
57871462 6769 if(itype[i]==UJUMP&&rt1[i]==31)
6770 {
6771 //uu=u=0x30300FF0FLL; // Discard at, v0-v1, t0-t9, lo, hi
6772 uu=u=0x300FF0F; // Discard at, v0-v1, t0-t9
6773 }
6774 if(itype[i]==RJUMP&&rs1[i]==31)
6775 {
6776 //uu=u=0x30300FFF3LL; // Discard at, a0-a3, t0-t9, lo, hi
6777 uu=u=0x300FFF3; // Discard at, a0-a3, t0-t9
6778 }
6779 }*/
6780 branch_unneeded_reg[i]=u;
6781 branch_unneeded_reg_upper[i]=uu;
6782 // Merge in delay slot
6783 tdep=(~uu>>rt1[i+1])&1;
6784 u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6785 uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6786 u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6787 uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6788 uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6789 u|=1;uu|=1;
bedfea38 6790 gte_u|=gte_rt[i+1];
6791 gte_u&=~gte_rs[i+1];
57871462 6792 // If branch is "likely" (and conditional)
6793 // then we skip the delay slot on the fall-thru path
6794 if(likely[i]) {
6795 if(i<slen-1) {
6796 u&=unneeded_reg[i+2];
6797 uu&=unneeded_reg_upper[i+2];
bedfea38 6798 gte_u&=gte_unneeded[i+2];
57871462 6799 }
6800 else
6801 {
6802 u=1;
6803 uu=1;
bedfea38 6804 gte_u=0;
57871462 6805 }
6806 }
6807 }
6808 else
6809 {
6810 // Internal branch, flag target
6811 bt[(ba[i]-start)>>2]=1;
6812 if(ba[i]<=start+i*4) {
6813 // Backward branch
6814 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
6815 {
6816 // Unconditional branch
6817 temp_u=1;temp_uu=1;
bedfea38 6818 temp_gte_u=0;
57871462 6819 } else {
6820 // Conditional branch (not taken case)
6821 temp_u=unneeded_reg[i+2];
6822 temp_uu=unneeded_reg_upper[i+2];
bedfea38 6823 temp_gte_u&=gte_unneeded[i+2];
57871462 6824 }
6825 // Merge in delay slot
6826 tdep=(~temp_uu>>rt1[i+1])&1;
6827 temp_u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6828 temp_uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6829 temp_u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6830 temp_uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6831 temp_uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6832 temp_u|=1;temp_uu|=1;
bedfea38 6833 temp_gte_u|=gte_rt[i+1];
6834 temp_gte_u&=~gte_rs[i+1];
57871462 6835 // If branch is "likely" (and conditional)
6836 // then we skip the delay slot on the fall-thru path
6837 if(likely[i]) {
6838 if(i<slen-1) {
6839 temp_u&=unneeded_reg[i+2];
6840 temp_uu&=unneeded_reg_upper[i+2];
bedfea38 6841 temp_gte_u&=gte_unneeded[i+2];
57871462 6842 }
6843 else
6844 {
6845 temp_u=1;
6846 temp_uu=1;
bedfea38 6847 temp_gte_u=0;
57871462 6848 }
6849 }
6850 tdep=(~temp_uu>>rt1[i])&1;
6851 temp_u|=(1LL<<rt1[i])|(1LL<<rt2[i]);
6852 temp_uu|=(1LL<<rt1[i])|(1LL<<rt2[i]);
6853 temp_u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
6854 temp_uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
6855 temp_uu&=~((tdep<<dep1[i])|(tdep<<dep2[i]));
6856 temp_u|=1;temp_uu|=1;
bedfea38 6857 temp_gte_u|=gte_rt[i];
6858 temp_gte_u&=~gte_rs[i];
57871462 6859 unneeded_reg[i]=temp_u;
6860 unneeded_reg_upper[i]=temp_uu;
bedfea38 6861 gte_unneeded[i]=temp_gte_u;
57871462 6862 // Only go three levels deep. This recursion can take an
6863 // excessive amount of time if there are a lot of nested loops.
6864 if(r<2) {
6865 unneeded_registers((ba[i]-start)>>2,i-1,r+1);
6866 }else{
6867 unneeded_reg[(ba[i]-start)>>2]=1;
6868 unneeded_reg_upper[(ba[i]-start)>>2]=1;
bedfea38 6869 gte_unneeded[(ba[i]-start)>>2]=0;
57871462 6870 }
6871 } /*else*/ if(1) {
6872 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
6873 {
6874 // Unconditional branch
6875 u=unneeded_reg[(ba[i]-start)>>2];
6876 uu=unneeded_reg_upper[(ba[i]-start)>>2];
bedfea38 6877 gte_u=gte_unneeded[(ba[i]-start)>>2];
57871462 6878 branch_unneeded_reg[i]=u;
6879 branch_unneeded_reg_upper[i]=uu;
6880 //u=1;
6881 //uu=1;
6882 //branch_unneeded_reg[i]=u;
6883 //branch_unneeded_reg_upper[i]=uu;
6884 // Merge in delay slot
6885 tdep=(~uu>>rt1[i+1])&1;
6886 u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6887 uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6888 u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6889 uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6890 uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6891 u|=1;uu|=1;
bedfea38 6892 gte_u|=gte_rt[i+1];
6893 gte_u&=~gte_rs[i+1];
57871462 6894 } else {
6895 // Conditional branch
6896 b=unneeded_reg[(ba[i]-start)>>2];
6897 bu=unneeded_reg_upper[(ba[i]-start)>>2];
bedfea38 6898 gte_bu=gte_unneeded[(ba[i]-start)>>2];
57871462 6899 branch_unneeded_reg[i]=b;
6900 branch_unneeded_reg_upper[i]=bu;
6901 //b=1;
6902 //bu=1;
6903 //branch_unneeded_reg[i]=b;
6904 //branch_unneeded_reg_upper[i]=bu;
6905 // Branch delay slot
6906 tdep=(~uu>>rt1[i+1])&1;
6907 b|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6908 bu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6909 b&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6910 bu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6911 bu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6912 b|=1;bu|=1;
bedfea38 6913 gte_bu|=gte_rt[i+1];
6914 gte_bu&=~gte_rs[i+1];
57871462 6915 // If branch is "likely" then we skip the
6916 // delay slot on the fall-thru path
6917 if(likely[i]) {
6918 u=b;
6919 uu=bu;
bedfea38 6920 gte_u=gte_bu;
57871462 6921 if(i<slen-1) {
6922 u&=unneeded_reg[i+2];
6923 uu&=unneeded_reg_upper[i+2];
bedfea38 6924 gte_u&=gte_unneeded[i+2];
57871462 6925 //u=1;
6926 //uu=1;
6927 }
6928 } else {
6929 u&=b;
6930 uu&=bu;
bedfea38 6931 gte_u&=gte_bu;
57871462 6932 //u=1;
6933 //uu=1;
6934 }
6935 if(i<slen-1) {
6936 branch_unneeded_reg[i]&=unneeded_reg[i+2];
6937 branch_unneeded_reg_upper[i]&=unneeded_reg_upper[i+2];
6938 //branch_unneeded_reg[i]=1;
6939 //branch_unneeded_reg_upper[i]=1;
6940 } else {
6941 branch_unneeded_reg[i]=1;
6942 branch_unneeded_reg_upper[i]=1;
6943 }
6944 }
6945 }
6946 }
6947 }
1e973cb0 6948 else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
57871462 6949 {
6950 // SYSCALL instruction (software interrupt)
6951 u=1;
6952 uu=1;
6953 }
6954 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
6955 {
6956 // ERET instruction (return from interrupt)
6957 u=1;
6958 uu=1;
6959 }
6960 //u=uu=1; // DEBUG
6961 tdep=(~uu>>rt1[i])&1;
6962 // Written registers are unneeded
6963 u|=1LL<<rt1[i];
6964 u|=1LL<<rt2[i];
6965 uu|=1LL<<rt1[i];
6966 uu|=1LL<<rt2[i];
bedfea38 6967 gte_u|=gte_rt[i];
57871462 6968 // Accessed registers are needed
6969 u&=~(1LL<<rs1[i]);
6970 u&=~(1LL<<rs2[i]);
6971 uu&=~(1LL<<us1[i]);
6972 uu&=~(1LL<<us2[i]);
bedfea38 6973 gte_u&=~gte_rs[i];
57871462 6974 // Source-target dependencies
6975 uu&=~(tdep<<dep1[i]);
6976 uu&=~(tdep<<dep2[i]);
6977 // R0 is always unneeded
6978 u|=1;uu|=1;
6979 // Save it
6980 unneeded_reg[i]=u;
6981 unneeded_reg_upper[i]=uu;
bedfea38 6982 gte_unneeded[i]=gte_u;
57871462 6983 /*
6984 printf("ur (%d,%d) %x: ",istart,iend,start+i*4);
6985 printf("U:");
6986 int r;
6987 for(r=1;r<=CCREG;r++) {
6988 if((unneeded_reg[i]>>r)&1) {
6989 if(r==HIREG) printf(" HI");
6990 else if(r==LOREG) printf(" LO");
6991 else printf(" r%d",r);
6992 }
6993 }
6994 printf(" UU:");
6995 for(r=1;r<=CCREG;r++) {
6996 if(((unneeded_reg_upper[i]&~unneeded_reg[i])>>r)&1) {
6997 if(r==HIREG) printf(" HI");
6998 else if(r==LOREG) printf(" LO");
6999 else printf(" r%d",r);
7000 }
7001 }
7002 printf("\n");*/
7003 }
252c20fc 7004#ifdef FORCE32
7005 for (i=iend;i>=istart;i--)
7006 {
7007 unneeded_reg_upper[i]=branch_unneeded_reg_upper[i]=-1LL;
7008 }
7009#endif
57871462 7010}
7011
7012// Identify registers which are likely to contain 32-bit values
7013// This is used to predict whether any branches will jump to a
7014// location with 64-bit values in registers.
7015static void provisional_32bit()
7016{
7017 int i,j;
7018 uint64_t is32=1;
7019 uint64_t lastbranch=1;
7020
7021 for(i=0;i<slen;i++)
7022 {
7023 if(i>0) {
7024 if(itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP) {
7025 if(i>1) is32=lastbranch;
7026 else is32=1;
7027 }
7028 }
7029 if(i>1)
7030 {
7031 if(itype[i-2]==CJUMP||itype[i-2]==SJUMP||itype[i-2]==FJUMP) {
7032 if(likely[i-2]) {
7033 if(i>2) is32=lastbranch;
7034 else is32=1;
7035 }
7036 }
7037 if((opcode[i-2]&0x2f)==0x05) // BNE/BNEL
7038 {
7039 if(rs1[i-2]==0||rs2[i-2]==0)
7040 {
7041 if(rs1[i-2]) {
7042 is32|=1LL<<rs1[i-2];
7043 }
7044 if(rs2[i-2]) {
7045 is32|=1LL<<rs2[i-2];
7046 }
7047 }
7048 }
7049 }
7050 // If something jumps here with 64-bit values
7051 // then promote those registers to 64 bits
7052 if(bt[i])
7053 {
7054 uint64_t temp_is32=is32;
7055 for(j=i-1;j>=0;j--)
7056 {
7057 if(ba[j]==start+i*4)
7058 //temp_is32&=branch_regs[j].is32;
7059 temp_is32&=p32[j];
7060 }
7061 for(j=i;j<slen;j++)
7062 {
7063 if(ba[j]==start+i*4)
7064 temp_is32=1;
7065 }
7066 is32=temp_is32;
7067 }
7068 int type=itype[i];
7069 int op=opcode[i];
7070 int op2=opcode2[i];
7071 int rt=rt1[i];
7072 int s1=rs1[i];
7073 int s2=rs2[i];
7074 if(type==UJUMP||type==RJUMP||type==CJUMP||type==SJUMP||type==FJUMP) {
7075 // Branches don't write registers, consider the delay slot instead.
7076 type=itype[i+1];
7077 op=opcode[i+1];
7078 op2=opcode2[i+1];
7079 rt=rt1[i+1];
7080 s1=rs1[i+1];
7081 s2=rs2[i+1];
7082 lastbranch=is32;
7083 }
7084 switch(type) {
7085 case LOAD:
7086 if(opcode[i]==0x27||opcode[i]==0x37|| // LWU/LD
7087 opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
7088 is32&=~(1LL<<rt);
7089 else
7090 is32|=1LL<<rt;
7091 break;
7092 case STORE:
7093 case STORELR:
7094 break;
7095 case LOADLR:
7096 if(op==0x1a||op==0x1b) is32&=~(1LL<<rt); // LDR/LDL
7097 if(op==0x22) is32|=1LL<<rt; // LWL
7098 break;
7099 case IMM16:
7100 if (op==0x08||op==0x09|| // ADDI/ADDIU
7101 op==0x0a||op==0x0b|| // SLTI/SLTIU
7102 op==0x0c|| // ANDI
7103 op==0x0f) // LUI
7104 {
7105 is32|=1LL<<rt;
7106 }
7107 if(op==0x18||op==0x19) { // DADDI/DADDIU
7108 is32&=~(1LL<<rt);
7109 //if(imm[i]==0)
7110 // is32|=((is32>>s1)&1LL)<<rt;
7111 }
7112 if(op==0x0d||op==0x0e) { // ORI/XORI
7113 uint64_t sr=((is32>>s1)&1LL);
7114 is32&=~(1LL<<rt);
7115 is32|=sr<<rt;
7116 }
7117 break;
7118 case UJUMP:
7119 break;
7120 case RJUMP:
7121 break;
7122 case CJUMP:
7123 break;
7124 case SJUMP:
7125 break;
7126 case FJUMP:
7127 break;
7128 case ALU:
7129 if(op2>=0x20&&op2<=0x23) { // ADD/ADDU/SUB/SUBU
7130 is32|=1LL<<rt;
7131 }
7132 if(op2==0x2a||op2==0x2b) { // SLT/SLTU
7133 is32|=1LL<<rt;
7134 }
7135 else if(op2>=0x24&&op2<=0x27) { // AND/OR/XOR/NOR
7136 uint64_t sr=((is32>>s1)&(is32>>s2)&1LL);
7137 is32&=~(1LL<<rt);
7138 is32|=sr<<rt;
7139 }
7140 else if(op2>=0x2c&&op2<=0x2d) { // DADD/DADDU
7141 if(s1==0&&s2==0) {
7142 is32|=1LL<<rt;
7143 }
7144 else if(s2==0) {
7145 uint64_t sr=((is32>>s1)&1LL);
7146 is32&=~(1LL<<rt);
7147 is32|=sr<<rt;
7148 }
7149 else if(s1==0) {
7150 uint64_t sr=((is32>>s2)&1LL);
7151 is32&=~(1LL<<rt);
7152 is32|=sr<<rt;
7153 }
7154 else {
7155 is32&=~(1LL<<rt);
7156 }
7157 }
7158 else if(op2>=0x2e&&op2<=0x2f) { // DSUB/DSUBU
7159 if(s1==0&&s2==0) {
7160 is32|=1LL<<rt;
7161 }
7162 else if(s2==0) {
7163 uint64_t sr=((is32>>s1)&1LL);
7164 is32&=~(1LL<<rt);
7165 is32|=sr<<rt;
7166 }
7167 else {
7168 is32&=~(1LL<<rt);
7169 }
7170 }
7171 break;
7172 case MULTDIV:
7173 if (op2>=0x1c&&op2<=0x1f) { // DMULT/DMULTU/DDIV/DDIVU
7174 is32&=~((1LL<<HIREG)|(1LL<<LOREG));
7175 }
7176 else {
7177 is32|=(1LL<<HIREG)|(1LL<<LOREG);
7178 }
7179 break;
7180 case MOV:
7181 {
7182 uint64_t sr=((is32>>s1)&1LL);
7183 is32&=~(1LL<<rt);
7184 is32|=sr<<rt;
7185 }
7186 break;
7187 case SHIFT:
7188 if(op2>=0x14&&op2<=0x17) is32&=~(1LL<<rt); // DSLLV/DSRLV/DSRAV
7189 else is32|=1LL<<rt; // SLLV/SRLV/SRAV
7190 break;
7191 case SHIFTIMM:
7192 is32|=1LL<<rt;
7193 // DSLL/DSRL/DSRA/DSLL32/DSRL32 but not DSRA32 have 64-bit result
7194 if(op2>=0x38&&op2<0x3f) is32&=~(1LL<<rt);
7195 break;
7196 case COP0:
7197 if(op2==0) is32|=1LL<<rt; // MFC0
7198 break;
7199 case COP1:
b9b61529 7200 case COP2:
57871462 7201 if(op2==0) is32|=1LL<<rt; // MFC1
7202 if(op2==1) is32&=~(1LL<<rt); // DMFC1
7203 if(op2==2) is32|=1LL<<rt; // CFC1
7204 break;
7205 case C1LS:
b9b61529 7206 case C2LS:
57871462 7207 break;
7208 case FLOAT:
7209 case FCONV:
7210 break;
7211 case FCOMP:
7212 break;
b9b61529 7213 case C2OP:
57871462 7214 case SYSCALL:
7139f3c8 7215 case HLECALL:
57871462 7216 break;
7217 default:
7218 break;
7219 }
7220 is32|=1;
7221 p32[i]=is32;
7222
7223 if(i>0)
7224 {
7225 if(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)
7226 {
7227 if(rt1[i-1]==31) // JAL/JALR
7228 {
7229 // Subroutine call will return here, don't alloc any registers
7230 is32=1;
7231 }
7232 else if(i+1<slen)
7233 {
7234 // Internal branch will jump here, match registers to caller
7235 is32=0x3FFFFFFFFLL;
7236 }
7237 }
7238 }
7239 }
7240}
7241
7242// Identify registers which may be assumed to contain 32-bit values
7243// and where optimizations will rely on this.
7244// This is used to determine whether backward branches can safely
7245// jump to a location with 64-bit values in registers.
7246static void provisional_r32()
7247{
7248 u_int r32=0;
7249 int i;
7250
7251 for (i=slen-1;i>=0;i--)
7252 {
7253 int hr;
7254 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
7255 {
7256 if(ba[i]<start || ba[i]>=(start+slen*4))
7257 {
7258 // Branch out of this block, don't need anything
7259 r32=0;
7260 }
7261 else
7262 {
7263 // Internal branch
7264 // Need whatever matches the target
7265 // (and doesn't get overwritten by the delay slot instruction)
7266 r32=0;
7267 int t=(ba[i]-start)>>2;
7268 if(ba[i]>start+i*4) {
7269 // Forward branch
7270 //if(!(requires_32bit[t]&~regs[i].was32))
7271 // r32|=requires_32bit[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
7272 if(!(pr32[t]&~regs[i].was32))
7273 r32|=pr32[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
7274 }else{
7275 // Backward branch
7276 if(!(regs[t].was32&~unneeded_reg_upper[t]&~regs[i].was32))
7277 r32|=regs[t].was32&~unneeded_reg_upper[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
7278 }
7279 }
7280 // Conditional branch may need registers for following instructions
7281 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
7282 {
7283 if(i<slen-2) {
7284 //r32|=requires_32bit[i+2];
7285 r32|=pr32[i+2];
7286 r32&=regs[i].was32;
7287 // Mark this address as a branch target since it may be called
7288 // upon return from interrupt
7289 //bt[i+2]=1;
7290 }
7291 }
7292 // Merge in delay slot
7293 if(!likely[i]) {
7294 // These are overwritten unless the branch is "likely"
7295 // and the delay slot is nullified if not taken
7296 r32&=~(1LL<<rt1[i+1]);
7297 r32&=~(1LL<<rt2[i+1]);
7298 }
7299 // Assume these are needed (delay slot)
7300 if(us1[i+1]>0)
7301 {
7302 if((regs[i].was32>>us1[i+1])&1) r32|=1LL<<us1[i+1];
7303 }
7304 if(us2[i+1]>0)
7305 {
7306 if((regs[i].was32>>us2[i+1])&1) r32|=1LL<<us2[i+1];
7307 }
7308 if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1))
7309 {
7310 if((regs[i].was32>>dep1[i+1])&1) r32|=1LL<<dep1[i+1];
7311 }
7312 if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1))
7313 {
7314 if((regs[i].was32>>dep2[i+1])&1) r32|=1LL<<dep2[i+1];
7315 }
7316 }
1e973cb0 7317 else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
57871462 7318 {
7319 // SYSCALL instruction (software interrupt)
7320 r32=0;
7321 }
7322 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
7323 {
7324 // ERET instruction (return from interrupt)
7325 r32=0;
7326 }
7327 // Check 32 bits
7328 r32&=~(1LL<<rt1[i]);
7329 r32&=~(1LL<<rt2[i]);
7330 if(us1[i]>0)
7331 {
7332 if((regs[i].was32>>us1[i])&1) r32|=1LL<<us1[i];
7333 }
7334 if(us2[i]>0)
7335 {
7336 if((regs[i].was32>>us2[i])&1) r32|=1LL<<us2[i];
7337 }
7338 if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1))
7339 {
7340 if((regs[i].was32>>dep1[i])&1) r32|=1LL<<dep1[i];
7341 }
7342 if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1))
7343 {
7344 if((regs[i].was32>>dep2[i])&1) r32|=1LL<<dep2[i];
7345 }
7346 //requires_32bit[i]=r32;
7347 pr32[i]=r32;
7348
7349 // Dirty registers which are 32-bit, require 32-bit input
7350 // as they will be written as 32-bit values
7351 for(hr=0;hr<HOST_REGS;hr++)
7352 {
7353 if(regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64) {
7354 if((regs[i].was32>>regs[i].regmap_entry[hr])&(regs[i].wasdirty>>hr)&1) {
7355 if(!((unneeded_reg_upper[i]>>regs[i].regmap_entry[hr])&1))
7356 pr32[i]|=1LL<<regs[i].regmap_entry[hr];
7357 //requires_32bit[i]|=1LL<<regs[i].regmap_entry[hr];
7358 }
7359 }
7360 }
7361 }
7362}
7363
7364// Write back dirty registers as soon as we will no longer modify them,
7365// so that we don't end up with lots of writes at the branches.
7366void clean_registers(int istart,int iend,int wr)
7367{
7368 int i;
7369 int r;
7370 u_int will_dirty_i,will_dirty_next,temp_will_dirty;
7371 u_int wont_dirty_i,wont_dirty_next,temp_wont_dirty;
7372 if(iend==slen-1) {
7373 will_dirty_i=will_dirty_next=0;
7374 wont_dirty_i=wont_dirty_next=0;
7375 }else{
7376 will_dirty_i=will_dirty_next=will_dirty[iend+1];
7377 wont_dirty_i=wont_dirty_next=wont_dirty[iend+1];
7378 }
7379 for (i=iend;i>=istart;i--)
7380 {
7381 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
7382 {
7383 if(ba[i]<start || ba[i]>=(start+slen*4))
7384 {
7385 // Branch out of this block, flush all regs
7386 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
7387 {
7388 // Unconditional branch
7389 will_dirty_i=0;
7390 wont_dirty_i=0;
7391 // Merge in delay slot (will dirty)
7392 for(r=0;r<HOST_REGS;r++) {
7393 if(r!=EXCLUDE_REG) {
7394 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7395 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7396 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7397 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7398 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7399 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7400 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7401 if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7402 if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7403 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7404 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7405 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7406 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7407 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7408 }
7409 }
7410 }
7411 else
7412 {
7413 // Conditional branch
7414 will_dirty_i=0;
7415 wont_dirty_i=wont_dirty_next;
7416 // Merge in delay slot (will dirty)
7417 for(r=0;r<HOST_REGS;r++) {
7418 if(r!=EXCLUDE_REG) {
7419 if(!likely[i]) {
7420 // Might not dirty if likely branch is not taken
7421 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7422 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7423 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7424 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7425 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7426 if(branch_regs[i].regmap[r]==0) will_dirty_i&=~(1<<r);
7427 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7428 //if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7429 //if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7430 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7431 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7432 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7433 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7434 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7435 }
7436 }
7437 }
7438 }
7439 // Merge in delay slot (wont dirty)
7440 for(r=0;r<HOST_REGS;r++) {
7441 if(r!=EXCLUDE_REG) {
7442 if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7443 if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7444 if((regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7445 if((regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7446 if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7447 if((branch_regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7448 if((branch_regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7449 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7450 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7451 if(branch_regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7452 }
7453 }
7454 if(wr) {
7455 #ifndef DESTRUCTIVE_WRITEBACK
7456 branch_regs[i].dirty&=wont_dirty_i;
7457 #endif
7458 branch_regs[i].dirty|=will_dirty_i;
7459 }
7460 }
7461 else
7462 {
7463 // Internal branch
7464 if(ba[i]<=start+i*4) {
7465 // Backward branch
7466 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
7467 {
7468 // Unconditional branch
7469 temp_will_dirty=0;
7470 temp_wont_dirty=0;
7471 // Merge in delay slot (will dirty)
7472 for(r=0;r<HOST_REGS;r++) {
7473 if(r!=EXCLUDE_REG) {
7474 if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7475 if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7476 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7477 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7478 if((branch_regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7479 if(branch_regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
7480 if(branch_regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7481 if((regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7482 if((regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7483 if((regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7484 if((regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7485 if((regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7486 if(regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
7487 if(regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7488 }
7489 }
7490 } else {
7491 // Conditional branch (not taken case)
7492 temp_will_dirty=will_dirty_next;
7493 temp_wont_dirty=wont_dirty_next;
7494 // Merge in delay slot (will dirty)
7495 for(r=0;r<HOST_REGS;r++) {
7496 if(r!=EXCLUDE_REG) {
7497 if(!likely[i]) {
7498 // Will not dirty if likely branch is not taken
7499 if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7500 if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7501 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7502 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7503 if((branch_regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7504 if(branch_regs[i].regmap[r]==0) temp_will_dirty&=~(1<<r);
7505 if(branch_regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7506 //if((regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7507 //if((regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7508 if((regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7509 if((regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7510 if((regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7511 if(regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
7512 if(regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7513 }
7514 }
7515 }
7516 }
7517 // Merge in delay slot (wont dirty)
7518 for(r=0;r<HOST_REGS;r++) {
7519 if(r!=EXCLUDE_REG) {
7520 if((regs[i].regmap[r]&63)==rt1[i]) temp_wont_dirty|=1<<r;
7521 if((regs[i].regmap[r]&63)==rt2[i]) temp_wont_dirty|=1<<r;
7522 if((regs[i].regmap[r]&63)==rt1[i+1]) temp_wont_dirty|=1<<r;
7523 if((regs[i].regmap[r]&63)==rt2[i+1]) temp_wont_dirty|=1<<r;
7524 if(regs[i].regmap[r]==CCREG) temp_wont_dirty|=1<<r;
7525 if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_wont_dirty|=1<<r;
7526 if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_wont_dirty|=1<<r;
7527 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_wont_dirty|=1<<r;
7528 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_wont_dirty|=1<<r;
7529 if(branch_regs[i].regmap[r]==CCREG) temp_wont_dirty|=1<<r;
7530 }
7531 }
7532 // Deal with changed mappings
7533 if(i<iend) {
7534 for(r=0;r<HOST_REGS;r++) {
7535 if(r!=EXCLUDE_REG) {
7536 if(regs[i].regmap[r]!=regmap_pre[i][r]) {
7537 temp_will_dirty&=~(1<<r);
7538 temp_wont_dirty&=~(1<<r);
7539 if((regmap_pre[i][r]&63)>0 && (regmap_pre[i][r]&63)<34) {
7540 temp_will_dirty|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7541 temp_wont_dirty|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7542 } else {
7543 temp_will_dirty|=1<<r;
7544 temp_wont_dirty|=1<<r;
7545 }
7546 }
7547 }
7548 }
7549 }
7550 if(wr) {
7551 will_dirty[i]=temp_will_dirty;
7552 wont_dirty[i]=temp_wont_dirty;
7553 clean_registers((ba[i]-start)>>2,i-1,0);
7554 }else{
7555 // Limit recursion. It can take an excessive amount
7556 // of time if there are a lot of nested loops.
7557 will_dirty[(ba[i]-start)>>2]=0;
7558 wont_dirty[(ba[i]-start)>>2]=-1;
7559 }
7560 }
7561 /*else*/ if(1)
7562 {
7563 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
7564 {
7565 // Unconditional branch
7566 will_dirty_i=0;
7567 wont_dirty_i=0;
7568 //if(ba[i]>start+i*4) { // Disable recursion (for debugging)
7569 for(r=0;r<HOST_REGS;r++) {
7570 if(r!=EXCLUDE_REG) {
7571 if(branch_regs[i].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
7572 will_dirty_i|=will_dirty[(ba[i]-start)>>2]&(1<<r);
7573 wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
7574 }
e3234ecf 7575 if(branch_regs[i].regmap[r]>=0) {
7576 will_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>(branch_regs[i].regmap[r]&63))&1)<<r;
7577 wont_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>(branch_regs[i].regmap[r]&63))&1)<<r;
7578 }
57871462 7579 }
7580 }
7581 //}
7582 // Merge in delay slot
7583 for(r=0;r<HOST_REGS;r++) {
7584 if(r!=EXCLUDE_REG) {
7585 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7586 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7587 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7588 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7589 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7590 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7591 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7592 if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7593 if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7594 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7595 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7596 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7597 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7598 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7599 }
7600 }
7601 } else {
7602 // Conditional branch
7603 will_dirty_i=will_dirty_next;
7604 wont_dirty_i=wont_dirty_next;
7605 //if(ba[i]>start+i*4) { // Disable recursion (for debugging)
7606 for(r=0;r<HOST_REGS;r++) {
7607 if(r!=EXCLUDE_REG) {
e3234ecf 7608 signed char target_reg=branch_regs[i].regmap[r];
7609 if(target_reg==regs[(ba[i]-start)>>2].regmap_entry[r]) {
57871462 7610 will_dirty_i&=will_dirty[(ba[i]-start)>>2]&(1<<r);
7611 wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
7612 }
e3234ecf 7613 else if(target_reg>=0) {
7614 will_dirty_i&=((unneeded_reg[(ba[i]-start)>>2]>>(target_reg&63))&1)<<r;
7615 wont_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>(target_reg&63))&1)<<r;
57871462 7616 }
7617 // Treat delay slot as part of branch too
7618 /*if(regs[i+1].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
7619 will_dirty[i+1]&=will_dirty[(ba[i]-start)>>2]&(1<<r);
7620 wont_dirty[i+1]|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
7621 }
7622 else
7623 {
7624 will_dirty[i+1]&=~(1<<r);
7625 }*/
7626 }
7627 }
7628 //}
7629 // Merge in delay slot
7630 for(r=0;r<HOST_REGS;r++) {
7631 if(r!=EXCLUDE_REG) {
7632 if(!likely[i]) {
7633 // Might not dirty if likely branch is not taken
7634 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7635 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7636 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7637 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7638 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7639 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7640 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7641 //if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7642 //if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7643 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7644 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7645 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7646 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7647 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7648 }
7649 }
7650 }
7651 }
e3234ecf 7652 // Merge in delay slot (won't dirty)
57871462 7653 for(r=0;r<HOST_REGS;r++) {
7654 if(r!=EXCLUDE_REG) {
7655 if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7656 if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7657 if((regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7658 if((regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7659 if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7660 if((branch_regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7661 if((branch_regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7662 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7663 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7664 if(branch_regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7665 }
7666 }
7667 if(wr) {
7668 #ifndef DESTRUCTIVE_WRITEBACK
7669 branch_regs[i].dirty&=wont_dirty_i;
7670 #endif
7671 branch_regs[i].dirty|=will_dirty_i;
7672 }
7673 }
7674 }
7675 }
1e973cb0 7676 else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
57871462 7677 {
7678 // SYSCALL instruction (software interrupt)
7679 will_dirty_i=0;
7680 wont_dirty_i=0;
7681 }
7682 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
7683 {
7684 // ERET instruction (return from interrupt)
7685 will_dirty_i=0;
7686 wont_dirty_i=0;
7687 }
7688 will_dirty_next=will_dirty_i;
7689 wont_dirty_next=wont_dirty_i;
7690 for(r=0;r<HOST_REGS;r++) {
7691 if(r!=EXCLUDE_REG) {
7692 if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7693 if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7694 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7695 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7696 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7697 if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7698 if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7699 if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7700 if(i>istart) {
7701 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=FJUMP)
7702 {
7703 // Don't store a register immediately after writing it,
7704 // may prevent dual-issue.
7705 if((regs[i].regmap[r]&63)==rt1[i-1]) wont_dirty_i|=1<<r;
7706 if((regs[i].regmap[r]&63)==rt2[i-1]) wont_dirty_i|=1<<r;
7707 }
7708 }
7709 }
7710 }
7711 // Save it
7712 will_dirty[i]=will_dirty_i;
7713 wont_dirty[i]=wont_dirty_i;
7714 // Mark registers that won't be dirtied as not dirty
7715 if(wr) {
7716 /*printf("wr (%d,%d) %x will:",istart,iend,start+i*4);
7717 for(r=0;r<HOST_REGS;r++) {
7718 if((will_dirty_i>>r)&1) {
7719 printf(" r%d",r);
7720 }
7721 }
7722 printf("\n");*/
7723
7724 //if(i==istart||(itype[i-1]!=RJUMP&&itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=FJUMP)) {
7725 regs[i].dirty|=will_dirty_i;
7726 #ifndef DESTRUCTIVE_WRITEBACK
7727 regs[i].dirty&=wont_dirty_i;
7728 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
7729 {
7730 if(i<iend-1&&itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000) {
7731 for(r=0;r<HOST_REGS;r++) {
7732 if(r!=EXCLUDE_REG) {
7733 if(regs[i].regmap[r]==regmap_pre[i+2][r]) {
7734 regs[i+2].wasdirty&=wont_dirty_i|~(1<<r);
7735 }else {/*printf("i: %x (%d) mismatch(+2): %d\n",start+i*4,i,r);/*assert(!((wont_dirty_i>>r)&1));*/}
7736 }
7737 }
7738 }
7739 }
7740 else
7741 {
7742 if(i<iend) {
7743 for(r=0;r<HOST_REGS;r++) {
7744 if(r!=EXCLUDE_REG) {
7745 if(regs[i].regmap[r]==regmap_pre[i+1][r]) {
7746 regs[i+1].wasdirty&=wont_dirty_i|~(1<<r);
7747 }else {/*printf("i: %x (%d) mismatch(+1): %d\n",start+i*4,i,r);/*assert(!((wont_dirty_i>>r)&1));*/}
7748 }
7749 }
7750 }
7751 }
7752 #endif
7753 //}
7754 }
7755 // Deal with changed mappings
7756 temp_will_dirty=will_dirty_i;
7757 temp_wont_dirty=wont_dirty_i;
7758 for(r=0;r<HOST_REGS;r++) {
7759 if(r!=EXCLUDE_REG) {
7760 int nr;
7761 if(regs[i].regmap[r]==regmap_pre[i][r]) {
7762 if(wr) {
7763 #ifndef DESTRUCTIVE_WRITEBACK
7764 regs[i].wasdirty&=wont_dirty_i|~(1<<r);
7765 #endif
7766 regs[i].wasdirty|=will_dirty_i&(1<<r);
7767 }
7768 }
f776eb14 7769 else if(regmap_pre[i][r]>=0&&(nr=get_reg(regs[i].regmap,regmap_pre[i][r]))>=0) {
57871462 7770 // Register moved to a different register
7771 will_dirty_i&=~(1<<r);
7772 wont_dirty_i&=~(1<<r);
7773 will_dirty_i|=((temp_will_dirty>>nr)&1)<<r;
7774 wont_dirty_i|=((temp_wont_dirty>>nr)&1)<<r;
7775 if(wr) {
7776 #ifndef DESTRUCTIVE_WRITEBACK
7777 regs[i].wasdirty&=wont_dirty_i|~(1<<r);
7778 #endif
7779 regs[i].wasdirty|=will_dirty_i&(1<<r);
7780 }
7781 }
7782 else {
7783 will_dirty_i&=~(1<<r);
7784 wont_dirty_i&=~(1<<r);
7785 if((regmap_pre[i][r]&63)>0 && (regmap_pre[i][r]&63)<34) {
7786 will_dirty_i|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7787 wont_dirty_i|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7788 } else {
7789 wont_dirty_i|=1<<r;
7790 /*printf("i: %x (%d) mismatch: %d\n",start+i*4,i,r);/*assert(!((will_dirty>>r)&1));*/
7791 }
7792 }
7793 }
7794 }
7795 }
7796}
7797
4600ba03 7798#ifdef DISASM
57871462 7799 /* disassembly */
7800void disassemble_inst(int i)
7801{
7802 if (bt[i]) printf("*"); else printf(" ");
7803 switch(itype[i]) {
7804 case UJUMP:
7805 printf (" %x: %s %8x\n",start+i*4,insn[i],ba[i]);break;
7806 case CJUMP:
7807 printf (" %x: %s r%d,r%d,%8x\n",start+i*4,insn[i],rs1[i],rs2[i],i?start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14):*ba);break;
7808 case SJUMP:
7809 printf (" %x: %s r%d,%8x\n",start+i*4,insn[i],rs1[i],start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14));break;
7810 case FJUMP:
7811 printf (" %x: %s %8x\n",start+i*4,insn[i],ba[i]);break;
7812 case RJUMP:
74426039 7813 if (opcode[i]==0x9&&rt1[i]!=31)
5067f341 7814 printf (" %x: %s r%d,r%d\n",start+i*4,insn[i],rt1[i],rs1[i]);
7815 else
7816 printf (" %x: %s r%d\n",start+i*4,insn[i],rs1[i]);
7817 break;
57871462 7818 case SPAN:
7819 printf (" %x: %s (pagespan) r%d,r%d,%8x\n",start+i*4,insn[i],rs1[i],rs2[i],ba[i]);break;
7820 case IMM16:
7821 if(opcode[i]==0xf) //LUI
7822 printf (" %x: %s r%d,%4x0000\n",start+i*4,insn[i],rt1[i],imm[i]&0xffff);
7823 else
7824 printf (" %x: %s r%d,r%d,%d\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
7825 break;
7826 case LOAD:
7827 case LOADLR:
7828 printf (" %x: %s r%d,r%d+%x\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
7829 break;
7830 case STORE:
7831 case STORELR:
7832 printf (" %x: %s r%d,r%d+%x\n",start+i*4,insn[i],rs2[i],rs1[i],imm[i]);
7833 break;
7834 case ALU:
7835 case SHIFT:
7836 printf (" %x: %s r%d,r%d,r%d\n",start+i*4,insn[i],rt1[i],rs1[i],rs2[i]);
7837 break;
7838 case MULTDIV:
7839 printf (" %x: %s r%d,r%d\n",start+i*4,insn[i],rs1[i],rs2[i]);
7840 break;
7841 case SHIFTIMM:
7842 printf (" %x: %s r%d,r%d,%d\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
7843 break;
7844 case MOV:
7845 if((opcode2[i]&0x1d)==0x10)
7846 printf (" %x: %s r%d\n",start+i*4,insn[i],rt1[i]);
7847 else if((opcode2[i]&0x1d)==0x11)
7848 printf (" %x: %s r%d\n",start+i*4,insn[i],rs1[i]);
7849 else
7850 printf (" %x: %s\n",start+i*4,insn[i]);
7851 break;
7852 case COP0:
7853 if(opcode2[i]==0)
7854 printf (" %x: %s r%d,cpr0[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC0
7855 else if(opcode2[i]==4)
7856 printf (" %x: %s r%d,cpr0[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC0
7857 else printf (" %x: %s\n",start+i*4,insn[i]);
7858 break;
7859 case COP1:
7860 if(opcode2[i]<3)
7861 printf (" %x: %s r%d,cpr1[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC1
7862 else if(opcode2[i]>3)
7863 printf (" %x: %s r%d,cpr1[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC1
7864 else printf (" %x: %s\n",start+i*4,insn[i]);
7865 break;
b9b61529 7866 case COP2:
7867 if(opcode2[i]<3)
7868 printf (" %x: %s r%d,cpr2[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC2
7869 else if(opcode2[i]>3)
7870 printf (" %x: %s r%d,cpr2[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC2
7871 else printf (" %x: %s\n",start+i*4,insn[i]);
7872 break;
57871462 7873 case C1LS:
7874 printf (" %x: %s cpr1[%d],r%d+%x\n",start+i*4,insn[i],(source[i]>>16)&0x1f,rs1[i],imm[i]);
7875 break;
b9b61529 7876 case C2LS:
7877 printf (" %x: %s cpr2[%d],r%d+%x\n",start+i*4,insn[i],(source[i]>>16)&0x1f,rs1[i],imm[i]);
7878 break;
1e973cb0 7879 case INTCALL:
7880 printf (" %x: %s (INTCALL)\n",start+i*4,insn[i]);
7881 break;
57871462 7882 default:
7883 //printf (" %s %8x\n",insn[i],source[i]);
7884 printf (" %x: %s\n",start+i*4,insn[i]);
7885 }
7886}
4600ba03 7887#else
7888static void disassemble_inst(int i) {}
7889#endif // DISASM
57871462 7890
dc990066 7891// clear the state completely, instead of just marking
7892// things invalid like invalidate_all_pages() does
7893void new_dynarec_clear_full()
57871462 7894{
57871462 7895 int n;
35775df7 7896 out=(u_char *)BASE_ADDR;
7897 memset(invalid_code,1,sizeof(invalid_code));
7898 memset(hash_table,0xff,sizeof(hash_table));
57871462 7899 memset(mini_ht,-1,sizeof(mini_ht));
7900 memset(restore_candidate,0,sizeof(restore_candidate));
dc990066 7901 memset(shadow,0,sizeof(shadow));
57871462 7902 copy=shadow;
7903 expirep=16384; // Expiry pointer, +2 blocks
7904 pending_exception=0;
7905 literalcount=0;
57871462 7906 stop_after_jal=0;
9be4ba64 7907 inv_code_start=inv_code_end=~0;
bedfea38 7908 gte_reads_flags=0;
57871462 7909 // TLB
af4ee1fe 7910#ifndef DISABLE_TLB
57871462 7911 using_tlb=0;
7912 for(n=0;n<524288;n++) // 0 .. 0x7FFFFFFF
7913 memory_map[n]=-1;
7914 for(n=524288;n<526336;n++) // 0x80000000 .. 0x807FFFFF
7915 memory_map[n]=((u_int)rdram-0x80000000)>>2;
7916 for(n=526336;n<1048576;n++) // 0x80800000 .. 0xFFFFFFFF
7917 memory_map[n]=-1;
63cb0298 7918#endif
dc990066 7919 for(n=0;n<4096;n++) ll_clear(jump_in+n);
7920 for(n=0;n<4096;n++) ll_clear(jump_out+n);
7921 for(n=0;n<4096;n++) ll_clear(jump_dirty+n);
7922}
7923
7924void new_dynarec_init()
7925{
7926 printf("Init new dynarec\n");
7927 out=(u_char *)BASE_ADDR;
7928 if (mmap (out, 1<<TARGET_SIZE_2,
7929 PROT_READ | PROT_WRITE | PROT_EXEC,
7930 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS,
7931 -1, 0) <= 0) {printf("mmap() failed\n");}
7932#ifdef MUPEN64
7933 rdword=&readmem_dword;
7934 fake_pc.f.r.rs=&readmem_dword;
7935 fake_pc.f.r.rt=&readmem_dword;
7936 fake_pc.f.r.rd=&readmem_dword;
7937#endif
7938 int n;
2573466a 7939 cycle_multiplier=200;
dc990066 7940 new_dynarec_clear_full();
7941#ifdef HOST_IMM8
7942 // Copy this into local area so we don't have to put it in every literal pool
7943 invc_ptr=invalid_code;
7944#endif
24385cae 7945#ifdef MUPEN64
57871462 7946 for(n=0;n<0x8000;n++) { // 0 .. 0x7FFFFFFF
7947 writemem[n] = write_nomem_new;
7948 writememb[n] = write_nomemb_new;
7949 writememh[n] = write_nomemh_new;
24385cae 7950#ifndef FORCE32
57871462 7951 writememd[n] = write_nomemd_new;
24385cae 7952#endif
57871462 7953 readmem[n] = read_nomem_new;
7954 readmemb[n] = read_nomemb_new;
7955 readmemh[n] = read_nomemh_new;
24385cae 7956#ifndef FORCE32
57871462 7957 readmemd[n] = read_nomemd_new;
24385cae 7958#endif
57871462 7959 }
7960 for(n=0x8000;n<0x8080;n++) { // 0x80000000 .. 0x807FFFFF
7961 writemem[n] = write_rdram_new;
7962 writememb[n] = write_rdramb_new;
7963 writememh[n] = write_rdramh_new;
24385cae 7964#ifndef FORCE32
57871462 7965 writememd[n] = write_rdramd_new;
24385cae 7966#endif
57871462 7967 }
7968 for(n=0xC000;n<0x10000;n++) { // 0xC0000000 .. 0xFFFFFFFF
7969 writemem[n] = write_nomem_new;
7970 writememb[n] = write_nomemb_new;
7971 writememh[n] = write_nomemh_new;
24385cae 7972#ifndef FORCE32
57871462 7973 writememd[n] = write_nomemd_new;
24385cae 7974#endif
57871462 7975 readmem[n] = read_nomem_new;
7976 readmemb[n] = read_nomemb_new;
7977 readmemh[n] = read_nomemh_new;
24385cae 7978#ifndef FORCE32
57871462 7979 readmemd[n] = read_nomemd_new;
24385cae 7980#endif
57871462 7981 }
24385cae 7982#endif
57871462 7983 tlb_hacks();
7984 arch_init();
7985}
7986
7987void new_dynarec_cleanup()
7988{
7989 int n;
7990 if (munmap ((void *)BASE_ADDR, 1<<TARGET_SIZE_2) < 0) {printf("munmap() failed\n");}
7991 for(n=0;n<4096;n++) ll_clear(jump_in+n);
7992 for(n=0;n<4096;n++) ll_clear(jump_out+n);
7993 for(n=0;n<4096;n++) ll_clear(jump_dirty+n);
7994 #ifdef ROM_COPY
7995 if (munmap (ROM_COPY, 67108864) < 0) {printf("munmap() failed\n");}
7996 #endif
7997}
7998
7999int new_recompile_block(int addr)
8000{
8001/*
8002 if(addr==0x800cd050) {
8003 int block;
8004 for(block=0x80000;block<0x80800;block++) invalidate_block(block);
8005 int n;
8006 for(n=0;n<=2048;n++) ll_clear(jump_dirty+n);
8007 }
8008*/
8009 //if(Count==365117028) tracedebug=1;
8010 assem_debug("NOTCOMPILED: addr = %x -> %x\n", (int)addr, (int)out);
8011 //printf("NOTCOMPILED: addr = %x -> %x\n", (int)addr, (int)out);
8012 //printf("TRACE: count=%d next=%d (compile %x)\n",Count,next_interupt,addr);
8013 //if(debug)
8014 //printf("TRACE: count=%d next=%d (checksum %x)\n",Count,next_interupt,mchecksum());
8015 //printf("fpu mapping=%x enabled=%x\n",(Status & 0x04000000)>>26,(Status & 0x20000000)>>29);
8016 /*if(Count>=312978186) {
8017 rlist();
8018 }*/
8019 //rlist();
8020 start = (u_int)addr&~3;
8021 //assert(((u_int)addr&1)==0);
2f546f9a 8022 new_dynarec_did_compile=1;
7139f3c8 8023#ifdef PCSX
9ad4d757 8024 if (Config.HLE && start == 0x80001000) // hlecall
560e4a12 8025 {
7139f3c8 8026 // XXX: is this enough? Maybe check hleSoftCall?
bb5285ef 8027 u_int beginning=(u_int)out;
7139f3c8 8028 u_int page=get_page(start);
7139f3c8 8029 invalid_code[start>>12]=0;
8030 emit_movimm(start,0);
8031 emit_writeword(0,(int)&pcaddr);
bb5285ef 8032 emit_jmp((int)new_dyna_leave);
15776b68 8033 literal_pool(0);
bb5285ef 8034#ifdef __arm__
8035 __clear_cache((void *)beginning,out);
8036#endif
9ad4d757 8037 ll_add(jump_in+page,start,(void *)beginning);
7139f3c8 8038 return 0;
8039 }
560e4a12 8040 else if ((u_int)addr < 0x00200000 ||
8041 (0xa0000000 <= addr && addr < 0xa0200000)) {
7139f3c8 8042 // used for BIOS calls mostly?
560e4a12 8043 source = (u_int *)((u_int)rdram+(start&0x1fffff));
8044 pagelimit = (addr&0xa0000000)|0x00200000;
8045 }
8046 else if (!Config.HLE && (
8047/* (0x9fc00000 <= addr && addr < 0x9fc80000) ||*/
8048 (0xbfc00000 <= addr && addr < 0xbfc80000))) {
8049 // BIOS
8050 source = (u_int *)((u_int)psxR+(start&0x7ffff));
8051 pagelimit = (addr&0xfff00000)|0x80000;
7139f3c8 8052 }
8053 else
8054#endif
3d624f89 8055#ifdef MUPEN64
57871462 8056 if ((int)addr >= 0xa4000000 && (int)addr < 0xa4001000) {
8057 source = (u_int *)((u_int)SP_DMEM+start-0xa4000000);
8058 pagelimit = 0xa4001000;
8059 }
3d624f89 8060 else
8061#endif
4cb76aa4 8062 if ((int)addr >= 0x80000000 && (int)addr < 0x80000000+RAM_SIZE) {
57871462 8063 source = (u_int *)((u_int)rdram+start-0x80000000);
4cb76aa4 8064 pagelimit = 0x80000000+RAM_SIZE;
57871462 8065 }
90ae6d4e 8066#ifndef DISABLE_TLB
57871462 8067 else if ((signed int)addr >= (signed int)0xC0000000) {
8068 //printf("addr=%x mm=%x\n",(u_int)addr,(memory_map[start>>12]<<2));
8069 //if(tlb_LUT_r[start>>12])
8070 //source = (u_int *)(((int)rdram)+(tlb_LUT_r[start>>12]&0xFFFFF000)+(((int)addr)&0xFFF)-0x80000000);
8071 if((signed int)memory_map[start>>12]>=0) {
8072 source = (u_int *)((u_int)(start+(memory_map[start>>12]<<2)));
8073 pagelimit=(start+4096)&0xFFFFF000;
8074 int map=memory_map[start>>12];
8075 int i;
8076 for(i=0;i<5;i++) {
8077 //printf("start: %x next: %x\n",map,memory_map[pagelimit>>12]);
8078 if((map&0xBFFFFFFF)==(memory_map[pagelimit>>12]&0xBFFFFFFF)) pagelimit+=4096;
8079 }
8080 assem_debug("pagelimit=%x\n",pagelimit);
8081 assem_debug("mapping=%x (%x)\n",memory_map[start>>12],(memory_map[start>>12]<<2)+start);
8082 }
8083 else {
8084 assem_debug("Compile at unmapped memory address: %x \n", (int)addr);
8085 //assem_debug("start: %x next: %x\n",memory_map[start>>12],memory_map[(start+4096)>>12]);
560e4a12 8086 return -1; // Caller will invoke exception handler
57871462 8087 }
8088 //printf("source= %x\n",(int)source);
8089 }
90ae6d4e 8090#endif
57871462 8091 else {
8092 printf("Compile at bogus memory address: %x \n", (int)addr);
8093 exit(1);
8094 }
8095
8096 /* Pass 1: disassemble */
8097 /* Pass 2: register dependencies, branch targets */
8098 /* Pass 3: register allocation */
8099 /* Pass 4: branch dependencies */
8100 /* Pass 5: pre-alloc */
8101 /* Pass 6: optimize clean/dirty state */
8102 /* Pass 7: flag 32-bit registers */
8103 /* Pass 8: assembly */
8104 /* Pass 9: linker */
8105 /* Pass 10: garbage collection / free memory */
8106
8107 int i,j;
8108 int done=0;
8109 unsigned int type,op,op2;
8110
8111 //printf("addr = %x source = %x %x\n", addr,source,source[0]);
8112
8113 /* Pass 1 disassembly */
8114
8115 for(i=0;!done;i++) {
e1190b87 8116 bt[i]=0;likely[i]=0;ooo[i]=0;op2=0;
8117 minimum_free_regs[i]=0;
57871462 8118 opcode[i]=op=source[i]>>26;
8119 switch(op)
8120 {
8121 case 0x00: strcpy(insn[i],"special"); type=NI;
8122 op2=source[i]&0x3f;
8123 switch(op2)
8124 {
8125 case 0x00: strcpy(insn[i],"SLL"); type=SHIFTIMM; break;
8126 case 0x02: strcpy(insn[i],"SRL"); type=SHIFTIMM; break;
8127 case 0x03: strcpy(insn[i],"SRA"); type=SHIFTIMM; break;
8128 case 0x04: strcpy(insn[i],"SLLV"); type=SHIFT; break;
8129 case 0x06: strcpy(insn[i],"SRLV"); type=SHIFT; break;
8130 case 0x07: strcpy(insn[i],"SRAV"); type=SHIFT; break;
8131 case 0x08: strcpy(insn[i],"JR"); type=RJUMP; break;
8132 case 0x09: strcpy(insn[i],"JALR"); type=RJUMP; break;
8133 case 0x0C: strcpy(insn[i],"SYSCALL"); type=SYSCALL; break;
8134 case 0x0D: strcpy(insn[i],"BREAK"); type=OTHER; break;
8135 case 0x0F: strcpy(insn[i],"SYNC"); type=OTHER; break;
8136 case 0x10: strcpy(insn[i],"MFHI"); type=MOV; break;
8137 case 0x11: strcpy(insn[i],"MTHI"); type=MOV; break;
8138 case 0x12: strcpy(insn[i],"MFLO"); type=MOV; break;
8139 case 0x13: strcpy(insn[i],"MTLO"); type=MOV; break;
57871462 8140 case 0x18: strcpy(insn[i],"MULT"); type=MULTDIV; break;
8141 case 0x19: strcpy(insn[i],"MULTU"); type=MULTDIV; break;
8142 case 0x1A: strcpy(insn[i],"DIV"); type=MULTDIV; break;
8143 case 0x1B: strcpy(insn[i],"DIVU"); type=MULTDIV; break;
57871462 8144 case 0x20: strcpy(insn[i],"ADD"); type=ALU; break;
8145 case 0x21: strcpy(insn[i],"ADDU"); type=ALU; break;
8146 case 0x22: strcpy(insn[i],"SUB"); type=ALU; break;
8147 case 0x23: strcpy(insn[i],"SUBU"); type=ALU; break;
8148 case 0x24: strcpy(insn[i],"AND"); type=ALU; break;
8149 case 0x25: strcpy(insn[i],"OR"); type=ALU; break;
8150 case 0x26: strcpy(insn[i],"XOR"); type=ALU; break;
8151 case 0x27: strcpy(insn[i],"NOR"); type=ALU; break;
8152 case 0x2A: strcpy(insn[i],"SLT"); type=ALU; break;
8153 case 0x2B: strcpy(insn[i],"SLTU"); type=ALU; break;
57871462 8154 case 0x30: strcpy(insn[i],"TGE"); type=NI; break;
8155 case 0x31: strcpy(insn[i],"TGEU"); type=NI; break;
8156 case 0x32: strcpy(insn[i],"TLT"); type=NI; break;
8157 case 0x33: strcpy(insn[i],"TLTU"); type=NI; break;
8158 case 0x34: strcpy(insn[i],"TEQ"); type=NI; break;
8159 case 0x36: strcpy(insn[i],"TNE"); type=NI; break;
7f2607ea 8160#ifndef FORCE32
8161 case 0x14: strcpy(insn[i],"DSLLV"); type=SHIFT; break;
8162 case 0x16: strcpy(insn[i],"DSRLV"); type=SHIFT; break;
8163 case 0x17: strcpy(insn[i],"DSRAV"); type=SHIFT; break;
8164 case 0x1C: strcpy(insn[i],"DMULT"); type=MULTDIV; break;
8165 case 0x1D: strcpy(insn[i],"DMULTU"); type=MULTDIV; break;
8166 case 0x1E: strcpy(insn[i],"DDIV"); type=MULTDIV; break;
8167 case 0x1F: strcpy(insn[i],"DDIVU"); type=MULTDIV; break;
8168 case 0x2C: strcpy(insn[i],"DADD"); type=ALU; break;
8169 case 0x2D: strcpy(insn[i],"DADDU"); type=ALU; break;
8170 case 0x2E: strcpy(insn[i],"DSUB"); type=ALU; break;
8171 case 0x2F: strcpy(insn[i],"DSUBU"); type=ALU; break;
57871462 8172 case 0x38: strcpy(insn[i],"DSLL"); type=SHIFTIMM; break;
8173 case 0x3A: strcpy(insn[i],"DSRL"); type=SHIFTIMM; break;
8174 case 0x3B: strcpy(insn[i],"DSRA"); type=SHIFTIMM; break;
8175 case 0x3C: strcpy(insn[i],"DSLL32"); type=SHIFTIMM; break;
8176 case 0x3E: strcpy(insn[i],"DSRL32"); type=SHIFTIMM; break;
8177 case 0x3F: strcpy(insn[i],"DSRA32"); type=SHIFTIMM; break;
7f2607ea 8178#endif
57871462 8179 }
8180 break;
8181 case 0x01: strcpy(insn[i],"regimm"); type=NI;
8182 op2=(source[i]>>16)&0x1f;
8183 switch(op2)
8184 {
8185 case 0x00: strcpy(insn[i],"BLTZ"); type=SJUMP; break;
8186 case 0x01: strcpy(insn[i],"BGEZ"); type=SJUMP; break;
8187 case 0x02: strcpy(insn[i],"BLTZL"); type=SJUMP; break;
8188 case 0x03: strcpy(insn[i],"BGEZL"); type=SJUMP; break;
8189 case 0x08: strcpy(insn[i],"TGEI"); type=NI; break;
8190 case 0x09: strcpy(insn[i],"TGEIU"); type=NI; break;
8191 case 0x0A: strcpy(insn[i],"TLTI"); type=NI; break;
8192 case 0x0B: strcpy(insn[i],"TLTIU"); type=NI; break;
8193 case 0x0C: strcpy(insn[i],"TEQI"); type=NI; break;
8194 case 0x0E: strcpy(insn[i],"TNEI"); type=NI; break;
8195 case 0x10: strcpy(insn[i],"BLTZAL"); type=SJUMP; break;
8196 case 0x11: strcpy(insn[i],"BGEZAL"); type=SJUMP; break;
8197 case 0x12: strcpy(insn[i],"BLTZALL"); type=SJUMP; break;
8198 case 0x13: strcpy(insn[i],"BGEZALL"); type=SJUMP; break;
8199 }
8200 break;
8201 case 0x02: strcpy(insn[i],"J"); type=UJUMP; break;
8202 case 0x03: strcpy(insn[i],"JAL"); type=UJUMP; break;
8203 case 0x04: strcpy(insn[i],"BEQ"); type=CJUMP; break;
8204 case 0x05: strcpy(insn[i],"BNE"); type=CJUMP; break;
8205 case 0x06: strcpy(insn[i],"BLEZ"); type=CJUMP; break;
8206 case 0x07: strcpy(insn[i],"BGTZ"); type=CJUMP; break;
8207 case 0x08: strcpy(insn[i],"ADDI"); type=IMM16; break;
8208 case 0x09: strcpy(insn[i],"ADDIU"); type=IMM16; break;
8209 case 0x0A: strcpy(insn[i],"SLTI"); type=IMM16; break;
8210 case 0x0B: strcpy(insn[i],"SLTIU"); type=IMM16; break;
8211 case 0x0C: strcpy(insn[i],"ANDI"); type=IMM16; break;
8212 case 0x0D: strcpy(insn[i],"ORI"); type=IMM16; break;
8213 case 0x0E: strcpy(insn[i],"XORI"); type=IMM16; break;
8214 case 0x0F: strcpy(insn[i],"LUI"); type=IMM16; break;
8215 case 0x10: strcpy(insn[i],"cop0"); type=NI;
8216 op2=(source[i]>>21)&0x1f;
8217 switch(op2)
8218 {
8219 case 0x00: strcpy(insn[i],"MFC0"); type=COP0; break;
8220 case 0x04: strcpy(insn[i],"MTC0"); type=COP0; break;
8221 case 0x10: strcpy(insn[i],"tlb"); type=NI;
8222 switch(source[i]&0x3f)
8223 {
8224 case 0x01: strcpy(insn[i],"TLBR"); type=COP0; break;
8225 case 0x02: strcpy(insn[i],"TLBWI"); type=COP0; break;
8226 case 0x06: strcpy(insn[i],"TLBWR"); type=COP0; break;
8227 case 0x08: strcpy(insn[i],"TLBP"); type=COP0; break;
576bbd8f 8228#ifdef PCSX
8229 case 0x10: strcpy(insn[i],"RFE"); type=COP0; break;
8230#else
57871462 8231 case 0x18: strcpy(insn[i],"ERET"); type=COP0; break;
576bbd8f 8232#endif
57871462 8233 }
8234 }
8235 break;
8236 case 0x11: strcpy(insn[i],"cop1"); type=NI;
8237 op2=(source[i]>>21)&0x1f;
8238 switch(op2)
8239 {
8240 case 0x00: strcpy(insn[i],"MFC1"); type=COP1; break;
8241 case 0x01: strcpy(insn[i],"DMFC1"); type=COP1; break;
8242 case 0x02: strcpy(insn[i],"CFC1"); type=COP1; break;
8243 case 0x04: strcpy(insn[i],"MTC1"); type=COP1; break;
8244 case 0x05: strcpy(insn[i],"DMTC1"); type=COP1; break;
8245 case 0x06: strcpy(insn[i],"CTC1"); type=COP1; break;
8246 case 0x08: strcpy(insn[i],"BC1"); type=FJUMP;
8247 switch((source[i]>>16)&0x3)
8248 {
8249 case 0x00: strcpy(insn[i],"BC1F"); break;
8250 case 0x01: strcpy(insn[i],"BC1T"); break;
8251 case 0x02: strcpy(insn[i],"BC1FL"); break;
8252 case 0x03: strcpy(insn[i],"BC1TL"); break;
8253 }
8254 break;
8255 case 0x10: strcpy(insn[i],"C1.S"); type=NI;
8256 switch(source[i]&0x3f)
8257 {
8258 case 0x00: strcpy(insn[i],"ADD.S"); type=FLOAT; break;
8259 case 0x01: strcpy(insn[i],"SUB.S"); type=FLOAT; break;
8260 case 0x02: strcpy(insn[i],"MUL.S"); type=FLOAT; break;
8261 case 0x03: strcpy(insn[i],"DIV.S"); type=FLOAT; break;
8262 case 0x04: strcpy(insn[i],"SQRT.S"); type=FLOAT; break;
8263 case 0x05: strcpy(insn[i],"ABS.S"); type=FLOAT; break;
8264 case 0x06: strcpy(insn[i],"MOV.S"); type=FLOAT; break;
8265 case 0x07: strcpy(insn[i],"NEG.S"); type=FLOAT; break;
8266 case 0x08: strcpy(insn[i],"ROUND.L.S"); type=FCONV; break;
8267 case 0x09: strcpy(insn[i],"TRUNC.L.S"); type=FCONV; break;
8268 case 0x0A: strcpy(insn[i],"CEIL.L.S"); type=FCONV; break;
8269 case 0x0B: strcpy(insn[i],"FLOOR.L.S"); type=FCONV; break;
8270 case 0x0C: strcpy(insn[i],"ROUND.W.S"); type=FCONV; break;
8271 case 0x0D: strcpy(insn[i],"TRUNC.W.S"); type=FCONV; break;
8272 case 0x0E: strcpy(insn[i],"CEIL.W.S"); type=FCONV; break;
8273 case 0x0F: strcpy(insn[i],"FLOOR.W.S"); type=FCONV; break;
8274 case 0x21: strcpy(insn[i],"CVT.D.S"); type=FCONV; break;
8275 case 0x24: strcpy(insn[i],"CVT.W.S"); type=FCONV; break;
8276 case 0x25: strcpy(insn[i],"CVT.L.S"); type=FCONV; break;
8277 case 0x30: strcpy(insn[i],"C.F.S"); type=FCOMP; break;
8278 case 0x31: strcpy(insn[i],"C.UN.S"); type=FCOMP; break;
8279 case 0x32: strcpy(insn[i],"C.EQ.S"); type=FCOMP; break;
8280 case 0x33: strcpy(insn[i],"C.UEQ.S"); type=FCOMP; break;
8281 case 0x34: strcpy(insn[i],"C.OLT.S"); type=FCOMP; break;
8282 case 0x35: strcpy(insn[i],"C.ULT.S"); type=FCOMP; break;
8283 case 0x36: strcpy(insn[i],"C.OLE.S"); type=FCOMP; break;
8284 case 0x37: strcpy(insn[i],"C.ULE.S"); type=FCOMP; break;
8285 case 0x38: strcpy(insn[i],"C.SF.S"); type=FCOMP; break;
8286 case 0x39: strcpy(insn[i],"C.NGLE.S"); type=FCOMP; break;
8287 case 0x3A: strcpy(insn[i],"C.SEQ.S"); type=FCOMP; break;
8288 case 0x3B: strcpy(insn[i],"C.NGL.S"); type=FCOMP; break;
8289 case 0x3C: strcpy(insn[i],"C.LT.S"); type=FCOMP; break;
8290 case 0x3D: strcpy(insn[i],"C.NGE.S"); type=FCOMP; break;
8291 case 0x3E: strcpy(insn[i],"C.LE.S"); type=FCOMP; break;
8292 case 0x3F: strcpy(insn[i],"C.NGT.S"); type=FCOMP; break;
8293 }
8294 break;
8295 case 0x11: strcpy(insn[i],"C1.D"); type=NI;
8296 switch(source[i]&0x3f)
8297 {
8298 case 0x00: strcpy(insn[i],"ADD.D"); type=FLOAT; break;
8299 case 0x01: strcpy(insn[i],"SUB.D"); type=FLOAT; break;
8300 case 0x02: strcpy(insn[i],"MUL.D"); type=FLOAT; break;
8301 case 0x03: strcpy(insn[i],"DIV.D"); type=FLOAT; break;
8302 case 0x04: strcpy(insn[i],"SQRT.D"); type=FLOAT; break;
8303 case 0x05: strcpy(insn[i],"ABS.D"); type=FLOAT; break;
8304 case 0x06: strcpy(insn[i],"MOV.D"); type=FLOAT; break;
8305 case 0x07: strcpy(insn[i],"NEG.D"); type=FLOAT; break;
8306 case 0x08: strcpy(insn[i],"ROUND.L.D"); type=FCONV; break;
8307 case 0x09: strcpy(insn[i],"TRUNC.L.D"); type=FCONV; break;
8308 case 0x0A: strcpy(insn[i],"CEIL.L.D"); type=FCONV; break;
8309 case 0x0B: strcpy(insn[i],"FLOOR.L.D"); type=FCONV; break;
8310 case 0x0C: strcpy(insn[i],"ROUND.W.D"); type=FCONV; break;
8311 case 0x0D: strcpy(insn[i],"TRUNC.W.D"); type=FCONV; break;
8312 case 0x0E: strcpy(insn[i],"CEIL.W.D"); type=FCONV; break;
8313 case 0x0F: strcpy(insn[i],"FLOOR.W.D"); type=FCONV; break;
8314 case 0x20: strcpy(insn[i],"CVT.S.D"); type=FCONV; break;
8315 case 0x24: strcpy(insn[i],"CVT.W.D"); type=FCONV; break;
8316 case 0x25: strcpy(insn[i],"CVT.L.D"); type=FCONV; break;
8317 case 0x30: strcpy(insn[i],"C.F.D"); type=FCOMP; break;
8318 case 0x31: strcpy(insn[i],"C.UN.D"); type=FCOMP; break;
8319 case 0x32: strcpy(insn[i],"C.EQ.D"); type=FCOMP; break;
8320 case 0x33: strcpy(insn[i],"C.UEQ.D"); type=FCOMP; break;
8321 case 0x34: strcpy(insn[i],"C.OLT.D"); type=FCOMP; break;
8322 case 0x35: strcpy(insn[i],"C.ULT.D"); type=FCOMP; break;
8323 case 0x36: strcpy(insn[i],"C.OLE.D"); type=FCOMP; break;
8324 case 0x37: strcpy(insn[i],"C.ULE.D"); type=FCOMP; break;
8325 case 0x38: strcpy(insn[i],"C.SF.D"); type=FCOMP; break;
8326 case 0x39: strcpy(insn[i],"C.NGLE.D"); type=FCOMP; break;
8327 case 0x3A: strcpy(insn[i],"C.SEQ.D"); type=FCOMP; break;
8328 case 0x3B: strcpy(insn[i],"C.NGL.D"); type=FCOMP; break;
8329 case 0x3C: strcpy(insn[i],"C.LT.D"); type=FCOMP; break;
8330 case 0x3D: strcpy(insn[i],"C.NGE.D"); type=FCOMP; break;
8331 case 0x3E: strcpy(insn[i],"C.LE.D"); type=FCOMP; break;
8332 case 0x3F: strcpy(insn[i],"C.NGT.D"); type=FCOMP; break;
8333 }
8334 break;
8335 case 0x14: strcpy(insn[i],"C1.W"); type=NI;
8336 switch(source[i]&0x3f)
8337 {
8338 case 0x20: strcpy(insn[i],"CVT.S.W"); type=FCONV; break;
8339 case 0x21: strcpy(insn[i],"CVT.D.W"); type=FCONV; break;
8340 }
8341 break;
8342 case 0x15: strcpy(insn[i],"C1.L"); type=NI;
8343 switch(source[i]&0x3f)
8344 {
8345 case 0x20: strcpy(insn[i],"CVT.S.L"); type=FCONV; break;
8346 case 0x21: strcpy(insn[i],"CVT.D.L"); type=FCONV; break;
8347 }
8348 break;
8349 }
8350 break;
909168d6 8351#ifndef FORCE32
57871462 8352 case 0x14: strcpy(insn[i],"BEQL"); type=CJUMP; break;
8353 case 0x15: strcpy(insn[i],"BNEL"); type=CJUMP; break;
8354 case 0x16: strcpy(insn[i],"BLEZL"); type=CJUMP; break;
8355 case 0x17: strcpy(insn[i],"BGTZL"); type=CJUMP; break;
8356 case 0x18: strcpy(insn[i],"DADDI"); type=IMM16; break;
8357 case 0x19: strcpy(insn[i],"DADDIU"); type=IMM16; break;
8358 case 0x1A: strcpy(insn[i],"LDL"); type=LOADLR; break;
8359 case 0x1B: strcpy(insn[i],"LDR"); type=LOADLR; break;
996cc15d 8360#endif
57871462 8361 case 0x20: strcpy(insn[i],"LB"); type=LOAD; break;
8362 case 0x21: strcpy(insn[i],"LH"); type=LOAD; break;
8363 case 0x22: strcpy(insn[i],"LWL"); type=LOADLR; break;
8364 case 0x23: strcpy(insn[i],"LW"); type=LOAD; break;
8365 case 0x24: strcpy(insn[i],"LBU"); type=LOAD; break;
8366 case 0x25: strcpy(insn[i],"LHU"); type=LOAD; break;
8367 case 0x26: strcpy(insn[i],"LWR"); type=LOADLR; break;
64bd6f82 8368#ifndef FORCE32
57871462 8369 case 0x27: strcpy(insn[i],"LWU"); type=LOAD; break;
64bd6f82 8370#endif
57871462 8371 case 0x28: strcpy(insn[i],"SB"); type=STORE; break;
8372 case 0x29: strcpy(insn[i],"SH"); type=STORE; break;
8373 case 0x2A: strcpy(insn[i],"SWL"); type=STORELR; break;
8374 case 0x2B: strcpy(insn[i],"SW"); type=STORE; break;
996cc15d 8375#ifndef FORCE32
57871462 8376 case 0x2C: strcpy(insn[i],"SDL"); type=STORELR; break;
8377 case 0x2D: strcpy(insn[i],"SDR"); type=STORELR; break;
996cc15d 8378#endif
57871462 8379 case 0x2E: strcpy(insn[i],"SWR"); type=STORELR; break;
8380 case 0x2F: strcpy(insn[i],"CACHE"); type=NOP; break;
8381 case 0x30: strcpy(insn[i],"LL"); type=NI; break;
8382 case 0x31: strcpy(insn[i],"LWC1"); type=C1LS; break;
996cc15d 8383#ifndef FORCE32
57871462 8384 case 0x34: strcpy(insn[i],"LLD"); type=NI; break;
8385 case 0x35: strcpy(insn[i],"LDC1"); type=C1LS; break;
8386 case 0x37: strcpy(insn[i],"LD"); type=LOAD; break;
996cc15d 8387#endif
57871462 8388 case 0x38: strcpy(insn[i],"SC"); type=NI; break;
8389 case 0x39: strcpy(insn[i],"SWC1"); type=C1LS; break;
996cc15d 8390#ifndef FORCE32
57871462 8391 case 0x3C: strcpy(insn[i],"SCD"); type=NI; break;
8392 case 0x3D: strcpy(insn[i],"SDC1"); type=C1LS; break;
8393 case 0x3F: strcpy(insn[i],"SD"); type=STORE; break;
996cc15d 8394#endif
b9b61529 8395#ifdef PCSX
8396 case 0x12: strcpy(insn[i],"COP2"); type=NI;
8397 op2=(source[i]>>21)&0x1f;
bedfea38 8398 //if (op2 & 0x10) {
8399 if (source[i]&0x3f) { // use this hack to support old savestates with patched gte insns
c7abc864 8400 if (gte_handlers[source[i]&0x3f]!=NULL) {
bedfea38 8401 if (gte_regnames[source[i]&0x3f]!=NULL)
8402 strcpy(insn[i],gte_regnames[source[i]&0x3f]);
8403 else
8404 snprintf(insn[i], sizeof(insn[i]), "COP2 %x", source[i]&0x3f);
c7abc864 8405 type=C2OP;
8406 }
8407 }
8408 else switch(op2)
b9b61529 8409 {
8410 case 0x00: strcpy(insn[i],"MFC2"); type=COP2; break;
8411 case 0x02: strcpy(insn[i],"CFC2"); type=COP2; break;
8412 case 0x04: strcpy(insn[i],"MTC2"); type=COP2; break;
8413 case 0x06: strcpy(insn[i],"CTC2"); type=COP2; break;
b9b61529 8414 }
8415 break;
8416 case 0x32: strcpy(insn[i],"LWC2"); type=C2LS; break;
8417 case 0x3A: strcpy(insn[i],"SWC2"); type=C2LS; break;
8418 case 0x3B: strcpy(insn[i],"HLECALL"); type=HLECALL; break;
8419#endif
90ae6d4e 8420 default: strcpy(insn[i],"???"); type=NI;
75dec299 8421 printf("NI %08x @%08x (%08x)\n", source[i], addr + i*4, addr);
90ae6d4e 8422 break;
57871462 8423 }
8424 itype[i]=type;
8425 opcode2[i]=op2;
8426 /* Get registers/immediates */
8427 lt1[i]=0;
8428 us1[i]=0;
8429 us2[i]=0;
8430 dep1[i]=0;
8431 dep2[i]=0;
bedfea38 8432 gte_rs[i]=gte_rt[i]=0;
57871462 8433 switch(type) {
8434 case LOAD:
8435 rs1[i]=(source[i]>>21)&0x1f;
8436 rs2[i]=0;
8437 rt1[i]=(source[i]>>16)&0x1f;
8438 rt2[i]=0;
8439 imm[i]=(short)source[i];
8440 break;
8441 case STORE:
8442 case STORELR:
8443 rs1[i]=(source[i]>>21)&0x1f;
8444 rs2[i]=(source[i]>>16)&0x1f;
8445 rt1[i]=0;
8446 rt2[i]=0;
8447 imm[i]=(short)source[i];
8448 if(op==0x2c||op==0x2d||op==0x3f) us1[i]=rs2[i]; // 64-bit SDL/SDR/SD
8449 break;
8450 case LOADLR:
8451 // LWL/LWR only load part of the register,
8452 // therefore the target register must be treated as a source too
8453 rs1[i]=(source[i]>>21)&0x1f;
8454 rs2[i]=(source[i]>>16)&0x1f;
8455 rt1[i]=(source[i]>>16)&0x1f;
8456 rt2[i]=0;
8457 imm[i]=(short)source[i];
8458 if(op==0x1a||op==0x1b) us1[i]=rs2[i]; // LDR/LDL
8459 if(op==0x26) dep1[i]=rt1[i]; // LWR
8460 break;
8461 case IMM16:
8462 if (op==0x0f) rs1[i]=0; // LUI instruction has no source register
8463 else rs1[i]=(source[i]>>21)&0x1f;
8464 rs2[i]=0;
8465 rt1[i]=(source[i]>>16)&0x1f;
8466 rt2[i]=0;
8467 if(op>=0x0c&&op<=0x0e) { // ANDI/ORI/XORI
8468 imm[i]=(unsigned short)source[i];
8469 }else{
8470 imm[i]=(short)source[i];
8471 }
8472 if(op==0x18||op==0x19) us1[i]=rs1[i]; // DADDI/DADDIU
8473 if(op==0x0a||op==0x0b) us1[i]=rs1[i]; // SLTI/SLTIU
8474 if(op==0x0d||op==0x0e) dep1[i]=rs1[i]; // ORI/XORI
8475 break;
8476 case UJUMP:
8477 rs1[i]=0;
8478 rs2[i]=0;
8479 rt1[i]=0;
8480 rt2[i]=0;
8481 // The JAL instruction writes to r31.
8482 if (op&1) {
8483 rt1[i]=31;
8484 }
8485 rs2[i]=CCREG;
8486 break;
8487 case RJUMP:
8488 rs1[i]=(source[i]>>21)&0x1f;
8489 rs2[i]=0;
8490 rt1[i]=0;
8491 rt2[i]=0;
5067f341 8492 // The JALR instruction writes to rd.
57871462 8493 if (op2&1) {
5067f341 8494 rt1[i]=(source[i]>>11)&0x1f;
57871462 8495 }
8496 rs2[i]=CCREG;
8497 break;
8498 case CJUMP:
8499 rs1[i]=(source[i]>>21)&0x1f;
8500 rs2[i]=(source[i]>>16)&0x1f;
8501 rt1[i]=0;
8502 rt2[i]=0;
8503 if(op&2) { // BGTZ/BLEZ
8504 rs2[i]=0;
8505 }
8506 us1[i]=rs1[i];
8507 us2[i]=rs2[i];
8508 likely[i]=op>>4;
8509 break;
8510 case SJUMP:
8511 rs1[i]=(source[i]>>21)&0x1f;
8512 rs2[i]=CCREG;
8513 rt1[i]=0;
8514 rt2[i]=0;
8515 us1[i]=rs1[i];
8516 if(op2&0x10) { // BxxAL
8517 rt1[i]=31;
8518 // NOTE: If the branch is not taken, r31 is still overwritten
8519 }
8520 likely[i]=(op2&2)>>1;
8521 break;
8522 case FJUMP:
8523 rs1[i]=FSREG;
8524 rs2[i]=CSREG;
8525 rt1[i]=0;
8526 rt2[i]=0;
8527 likely[i]=((source[i])>>17)&1;
8528 break;
8529 case ALU:
8530 rs1[i]=(source[i]>>21)&0x1f; // source
8531 rs2[i]=(source[i]>>16)&0x1f; // subtract amount
8532 rt1[i]=(source[i]>>11)&0x1f; // destination
8533 rt2[i]=0;
8534 if(op2==0x2a||op2==0x2b) { // SLT/SLTU
8535 us1[i]=rs1[i];us2[i]=rs2[i];
8536 }
8537 else if(op2>=0x24&&op2<=0x27) { // AND/OR/XOR/NOR
8538 dep1[i]=rs1[i];dep2[i]=rs2[i];
8539 }
8540 else if(op2>=0x2c&&op2<=0x2f) { // DADD/DSUB
8541 dep1[i]=rs1[i];dep2[i]=rs2[i];
8542 }
8543 break;
8544 case MULTDIV:
8545 rs1[i]=(source[i]>>21)&0x1f; // source
8546 rs2[i]=(source[i]>>16)&0x1f; // divisor
8547 rt1[i]=HIREG;
8548 rt2[i]=LOREG;
8549 if (op2>=0x1c&&op2<=0x1f) { // DMULT/DMULTU/DDIV/DDIVU
8550 us1[i]=rs1[i];us2[i]=rs2[i];
8551 }
8552 break;
8553 case MOV:
8554 rs1[i]=0;
8555 rs2[i]=0;
8556 rt1[i]=0;
8557 rt2[i]=0;
8558 if(op2==0x10) rs1[i]=HIREG; // MFHI
8559 if(op2==0x11) rt1[i]=HIREG; // MTHI
8560 if(op2==0x12) rs1[i]=LOREG; // MFLO
8561 if(op2==0x13) rt1[i]=LOREG; // MTLO
8562 if((op2&0x1d)==0x10) rt1[i]=(source[i]>>11)&0x1f; // MFxx
8563 if((op2&0x1d)==0x11) rs1[i]=(source[i]>>21)&0x1f; // MTxx
8564 dep1[i]=rs1[i];
8565 break;
8566 case SHIFT:
8567 rs1[i]=(source[i]>>16)&0x1f; // target of shift
8568 rs2[i]=(source[i]>>21)&0x1f; // shift amount
8569 rt1[i]=(source[i]>>11)&0x1f; // destination
8570 rt2[i]=0;
8571 // DSLLV/DSRLV/DSRAV are 64-bit
8572 if(op2>=0x14&&op2<=0x17) us1[i]=rs1[i];
8573 break;
8574 case SHIFTIMM:
8575 rs1[i]=(source[i]>>16)&0x1f;
8576 rs2[i]=0;
8577 rt1[i]=(source[i]>>11)&0x1f;
8578 rt2[i]=0;
8579 imm[i]=(source[i]>>6)&0x1f;
8580 // DSxx32 instructions
8581 if(op2>=0x3c) imm[i]|=0x20;
8582 // DSLL/DSRL/DSRA/DSRA32/DSRL32 but not DSLL32 require 64-bit source
8583 if(op2>=0x38&&op2!=0x3c) us1[i]=rs1[i];
8584 break;
8585 case COP0:
8586 rs1[i]=0;
8587 rs2[i]=0;
8588 rt1[i]=0;
8589 rt2[i]=0;
8590 if(op2==0) rt1[i]=(source[i]>>16)&0x1F; // MFC0
8591 if(op2==4) rs1[i]=(source[i]>>16)&0x1F; // MTC0
8592 if(op2==4&&((source[i]>>11)&0x1f)==12) rt2[i]=CSREG; // Status
8593 if(op2==16) if((source[i]&0x3f)==0x18) rs2[i]=CCREG; // ERET
8594 break;
8595 case COP1:
8596 rs1[i]=0;
8597 rs2[i]=0;
8598 rt1[i]=0;
8599 rt2[i]=0;
8600 if(op2<3) rt1[i]=(source[i]>>16)&0x1F; // MFC1/DMFC1/CFC1
8601 if(op2>3) rs1[i]=(source[i]>>16)&0x1F; // MTC1/DMTC1/CTC1
8602 if(op2==5) us1[i]=rs1[i]; // DMTC1
8603 rs2[i]=CSREG;
8604 break;
bedfea38 8605 case COP2:
8606 rs1[i]=0;
8607 rs2[i]=0;
8608 rt1[i]=0;
8609 rt2[i]=0;
8610 if(op2<3) rt1[i]=(source[i]>>16)&0x1F; // MFC2/CFC2
8611 if(op2>3) rs1[i]=(source[i]>>16)&0x1F; // MTC2/CTC2
8612 rs2[i]=CSREG;
8613 int gr=(source[i]>>11)&0x1F;
8614 switch(op2)
8615 {
8616 case 0x00: gte_rs[i]=1ll<<gr; break; // MFC2
8617 case 0x04: gte_rt[i]=1ll<<gr; break; // MTC2
8618 case 0x02: gte_rs[i]=1ll<<(gr+32); // CFC2
8619 if(gr==31&&!gte_reads_flags) {
d3f3bf09 8620 assem_debug("gte flag read encountered @%08x\n",addr + i*4);
bedfea38 8621 gte_reads_flags=1;
8622 }
8623 break;
8624 case 0x06: gte_rt[i]=1ll<<(gr+32); break; // CTC2
8625 }
8626 break;
57871462 8627 case C1LS:
8628 rs1[i]=(source[i]>>21)&0x1F;
8629 rs2[i]=CSREG;
8630 rt1[i]=0;
8631 rt2[i]=0;
8632 imm[i]=(short)source[i];
8633 break;
b9b61529 8634 case C2LS:
8635 rs1[i]=(source[i]>>21)&0x1F;
8636 rs2[i]=0;
8637 rt1[i]=0;
8638 rt2[i]=0;
8639 imm[i]=(short)source[i];
bedfea38 8640 if(op==0x32) gte_rt[i]=1ll<<((source[i]>>16)&0x1F); // LWC2
8641 else gte_rs[i]=1ll<<((source[i]>>16)&0x1F); // SWC2
8642 break;
8643 case C2OP:
8644 rs1[i]=0;
8645 rs2[i]=0;
8646 rt1[i]=0;
8647 rt2[i]=0;
8648 gte_rt[i]=1ll<<63; // every op changes flags
8649 // TODO: other regs?
b9b61529 8650 break;
57871462 8651 case FLOAT:
8652 case FCONV:
8653 rs1[i]=0;
8654 rs2[i]=CSREG;
8655 rt1[i]=0;
8656 rt2[i]=0;
8657 break;
8658 case FCOMP:
8659 rs1[i]=FSREG;
8660 rs2[i]=CSREG;
8661 rt1[i]=FSREG;
8662 rt2[i]=0;
8663 break;
8664 case SYSCALL:
7139f3c8 8665 case HLECALL:
1e973cb0 8666 case INTCALL:
57871462 8667 rs1[i]=CCREG;
8668 rs2[i]=0;
8669 rt1[i]=0;
8670 rt2[i]=0;
8671 break;
8672 default:
8673 rs1[i]=0;
8674 rs2[i]=0;
8675 rt1[i]=0;
8676 rt2[i]=0;
8677 }
8678 /* Calculate branch target addresses */
8679 if(type==UJUMP)
8680 ba[i]=((start+i*4+4)&0xF0000000)|(((unsigned int)source[i]<<6)>>4);
8681 else if(type==CJUMP&&rs1[i]==rs2[i]&&(op&1))
8682 ba[i]=start+i*4+8; // Ignore never taken branch
8683 else if(type==SJUMP&&rs1[i]==0&&!(op2&1))
8684 ba[i]=start+i*4+8; // Ignore never taken branch
8685 else if(type==CJUMP||type==SJUMP||type==FJUMP)
8686 ba[i]=start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14);
8687 else ba[i]=-1;
26869094 8688#ifdef PCSX
3e535354 8689 if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)) {
8690 int do_in_intrp=0;
8691 // branch in delay slot?
8692 if(type==RJUMP||type==UJUMP||type==CJUMP||type==SJUMP||type==FJUMP) {
8693 // don't handle first branch and call interpreter if it's hit
8694 printf("branch in delay slot @%08x (%08x)\n", addr + i*4, addr);
8695 do_in_intrp=1;
8696 }
8697 // basic load delay detection
8698 else if((type==LOAD||type==LOADLR||type==COP0||type==COP2||type==C2LS)&&rt1[i]!=0) {
8699 int t=(ba[i-1]-start)/4;
8700 if(0 <= t && t < i &&(rt1[i]==rs1[t]||rt1[i]==rs2[t])&&itype[t]!=CJUMP&&itype[t]!=SJUMP) {
8701 // jump target wants DS result - potential load delay effect
8702 printf("load delay @%08x (%08x)\n", addr + i*4, addr);
8703 do_in_intrp=1;
8704 bt[t+1]=1; // expected return from interpreter
8705 }
8706 else if(i>=2&&rt1[i-2]==2&&rt1[i]==2&&rs1[i]!=2&&rs2[i]!=2&&rs1[i-1]!=2&&rs2[i-1]!=2&&
8707 !(i>=3&&(itype[i-3]==RJUMP||itype[i-3]==UJUMP||itype[i-3]==CJUMP||itype[i-3]==SJUMP))) {
8708 // v0 overwrite like this is a sign of trouble, bail out
8709 printf("v0 overwrite @%08x (%08x)\n", addr + i*4, addr);
8710 do_in_intrp=1;
8711 }
8712 }
3e535354 8713 if(do_in_intrp) {
8714 rs1[i-1]=CCREG;
8715 rs2[i-1]=rt1[i-1]=rt2[i-1]=0;
26869094 8716 ba[i-1]=-1;
8717 itype[i-1]=INTCALL;
8718 done=2;
3e535354 8719 i--; // don't compile the DS
26869094 8720 }
3e535354 8721 }
26869094 8722#endif
3e535354 8723 /* Is this the end of the block? */
8724 if(i>0&&(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)) {
5067f341 8725 if(rt1[i-1]==0) { // Continue past subroutine call (JAL)
1e973cb0 8726 done=2;
57871462 8727 }
8728 else {
8729 if(stop_after_jal) done=1;
8730 // Stop on BREAK
8731 if((source[i+1]&0xfc00003f)==0x0d) done=1;
8732 }
8733 // Don't recompile stuff that's already compiled
8734 if(check_addr(start+i*4+4)) done=1;
8735 // Don't get too close to the limit
8736 if(i>MAXBLOCK/2) done=1;
8737 }
75dec299 8738 if(itype[i]==SYSCALL&&stop_after_jal) done=1;
1e973cb0 8739 if(itype[i]==HLECALL||itype[i]==INTCALL) done=2;
8740 if(done==2) {
8741 // Does the block continue due to a branch?
8742 for(j=i-1;j>=0;j--)
8743 {
2a706964 8744 if(ba[j]==start+i*4) done=j=0; // Branch into delay slot
1e973cb0 8745 if(ba[j]==start+i*4+4) done=j=0;
8746 if(ba[j]==start+i*4+8) done=j=0;
8747 }
8748 }
75dec299 8749 //assert(i<MAXBLOCK-1);
57871462 8750 if(start+i*4==pagelimit-4) done=1;
8751 assert(start+i*4<pagelimit);
8752 if (i==MAXBLOCK-1) done=1;
8753 // Stop if we're compiling junk
8754 if(itype[i]==NI&&opcode[i]==0x11) {
8755 done=stop_after_jal=1;
8756 printf("Disabled speculative precompilation\n");
8757 }
8758 }
8759 slen=i;
8760 if(itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==RJUMP||itype[i-1]==FJUMP) {
8761 if(start+i*4==pagelimit) {
8762 itype[i-1]=SPAN;
8763 }
8764 }
8765 assert(slen>0);
8766
8767 /* Pass 2 - Register dependencies and branch targets */
8768
8769 unneeded_registers(0,slen-1,0);
8770
8771 /* Pass 3 - Register allocation */
8772
8773 struct regstat current; // Current register allocations/status
8774 current.is32=1;
8775 current.dirty=0;
8776 current.u=unneeded_reg[0];
8777 current.uu=unneeded_reg_upper[0];
8778 clear_all_regs(current.regmap);
8779 alloc_reg(&current,0,CCREG);
8780 dirty_reg(&current,CCREG);
8781 current.isconst=0;
8782 current.wasconst=0;
8783 int ds=0;
8784 int cc=0;
5194fb95 8785 int hr=-1;
6ebf4adf 8786
8787#ifndef FORCE32
57871462 8788 provisional_32bit();
6ebf4adf 8789#endif
57871462 8790 if((u_int)addr&1) {
8791 // First instruction is delay slot
8792 cc=-1;
8793 bt[1]=1;
8794 ds=1;
8795 unneeded_reg[0]=1;
8796 unneeded_reg_upper[0]=1;
8797 current.regmap[HOST_BTREG]=BTREG;
8798 }
8799
8800 for(i=0;i<slen;i++)
8801 {
8802 if(bt[i])
8803 {
8804 int hr;
8805 for(hr=0;hr<HOST_REGS;hr++)
8806 {
8807 // Is this really necessary?
8808 if(current.regmap[hr]==0) current.regmap[hr]=-1;
8809 }
8810 current.isconst=0;
8811 }
8812 if(i>1)
8813 {
8814 if((opcode[i-2]&0x2f)==0x05) // BNE/BNEL
8815 {
8816 if(rs1[i-2]==0||rs2[i-2]==0)
8817 {
8818 if(rs1[i-2]) {
8819 current.is32|=1LL<<rs1[i-2];
8820 int hr=get_reg(current.regmap,rs1[i-2]|64);
8821 if(hr>=0) current.regmap[hr]=-1;
8822 }
8823 if(rs2[i-2]) {
8824 current.is32|=1LL<<rs2[i-2];
8825 int hr=get_reg(current.regmap,rs2[i-2]|64);
8826 if(hr>=0) current.regmap[hr]=-1;
8827 }
8828 }
8829 }
8830 }
6ebf4adf 8831#ifndef FORCE32
57871462 8832 // If something jumps here with 64-bit values
8833 // then promote those registers to 64 bits
8834 if(bt[i])
8835 {
8836 uint64_t temp_is32=current.is32;
8837 for(j=i-1;j>=0;j--)
8838 {
8839 if(ba[j]==start+i*4)
8840 temp_is32&=branch_regs[j].is32;
8841 }
8842 for(j=i;j<slen;j++)
8843 {
8844 if(ba[j]==start+i*4)
8845 //temp_is32=1;
8846 temp_is32&=p32[j];
8847 }
8848 if(temp_is32!=current.is32) {
8849 //printf("dumping 32-bit regs (%x)\n",start+i*4);
311301dc 8850 #ifndef DESTRUCTIVE_WRITEBACK
8851 if(ds)
8852 #endif
57871462 8853 for(hr=0;hr<HOST_REGS;hr++)
8854 {
8855 int r=current.regmap[hr];
8856 if(r>0&&r<64)
8857 {
8858 if((current.dirty>>hr)&((current.is32&~temp_is32)>>r)&1) {
8859 temp_is32|=1LL<<r;
8860 //printf("restore %d\n",r);
8861 }
8862 }
8863 }
57871462 8864 current.is32=temp_is32;
8865 }
8866 }
6ebf4adf 8867#else
24385cae 8868 current.is32=-1LL;
8869#endif
8870
57871462 8871 memcpy(regmap_pre[i],current.regmap,sizeof(current.regmap));
8872 regs[i].wasconst=current.isconst;
8873 regs[i].was32=current.is32;
8874 regs[i].wasdirty=current.dirty;
6ebf4adf 8875 #if defined(DESTRUCTIVE_WRITEBACK) && !defined(FORCE32)
57871462 8876 // To change a dirty register from 32 to 64 bits, we must write
8877 // it out during the previous cycle (for branches, 2 cycles)
8878 if(i<slen-1&&bt[i+1]&&itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP)
8879 {
8880 uint64_t temp_is32=current.is32;
8881 for(j=i-1;j>=0;j--)
8882 {
8883 if(ba[j]==start+i*4+4)
8884 temp_is32&=branch_regs[j].is32;
8885 }
8886 for(j=i;j<slen;j++)
8887 {
8888 if(ba[j]==start+i*4+4)
8889 //temp_is32=1;
8890 temp_is32&=p32[j];
8891 }
8892 if(temp_is32!=current.is32) {
8893 //printf("pre-dumping 32-bit regs (%x)\n",start+i*4);
8894 for(hr=0;hr<HOST_REGS;hr++)
8895 {
8896 int r=current.regmap[hr];
8897 if(r>0)
8898 {
8899 if((current.dirty>>hr)&((current.is32&~temp_is32)>>(r&63))&1) {
8900 if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP)
8901 {
8902 if(rs1[i]!=(r&63)&&rs2[i]!=(r&63))
8903 {
8904 //printf("dump %d/r%d\n",hr,r);
8905 current.regmap[hr]=-1;
8906 if(get_reg(current.regmap,r|64)>=0)
8907 current.regmap[get_reg(current.regmap,r|64)]=-1;
8908 }
8909 }
8910 }
8911 }
8912 }
8913 }
8914 }
8915 else if(i<slen-2&&bt[i+2]&&(source[i-1]>>16)!=0x1000&&(itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP))
8916 {
8917 uint64_t temp_is32=current.is32;
8918 for(j=i-1;j>=0;j--)
8919 {
8920 if(ba[j]==start+i*4+8)
8921 temp_is32&=branch_regs[j].is32;
8922 }
8923 for(j=i;j<slen;j++)
8924 {
8925 if(ba[j]==start+i*4+8)
8926 //temp_is32=1;
8927 temp_is32&=p32[j];
8928 }
8929 if(temp_is32!=current.is32) {
8930 //printf("pre-dumping 32-bit regs (%x)\n",start+i*4);
8931 for(hr=0;hr<HOST_REGS;hr++)
8932 {
8933 int r=current.regmap[hr];
8934 if(r>0)
8935 {
8936 if((current.dirty>>hr)&((current.is32&~temp_is32)>>(r&63))&1) {
8937 if(rs1[i]!=(r&63)&&rs2[i]!=(r&63)&&rs1[i+1]!=(r&63)&&rs2[i+1]!=(r&63))
8938 {
8939 //printf("dump %d/r%d\n",hr,r);
8940 current.regmap[hr]=-1;
8941 if(get_reg(current.regmap,r|64)>=0)
8942 current.regmap[get_reg(current.regmap,r|64)]=-1;
8943 }
8944 }
8945 }
8946 }
8947 }
8948 }
8949 #endif
8950 if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP) {
8951 if(i+1<slen) {
8952 current.u=unneeded_reg[i+1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
8953 current.uu=unneeded_reg_upper[i+1]&~((1LL<<us1[i])|(1LL<<us2[i]));
8954 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
8955 current.u|=1;
8956 current.uu|=1;
8957 } else {
8958 current.u=1;
8959 current.uu=1;
8960 }
8961 } else {
8962 if(i+1<slen) {
8963 current.u=branch_unneeded_reg[i]&~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
8964 current.uu=branch_unneeded_reg_upper[i]&~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
8965 if((~current.uu>>rt1[i+1])&1) current.uu&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
8966 current.u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
8967 current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
8968 current.u|=1;
8969 current.uu|=1;
8970 } else { printf("oops, branch at end of block with no delay slot\n");exit(1); }
8971 }
8972 is_ds[i]=ds;
8973 if(ds) {
8974 ds=0; // Skip delay slot, already allocated as part of branch
8975 // ...but we need to alloc it in case something jumps here
8976 if(i+1<slen) {
8977 current.u=branch_unneeded_reg[i-1]&unneeded_reg[i+1];
8978 current.uu=branch_unneeded_reg_upper[i-1]&unneeded_reg_upper[i+1];
8979 }else{
8980 current.u=branch_unneeded_reg[i-1];
8981 current.uu=branch_unneeded_reg_upper[i-1];
8982 }
8983 current.u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
8984 current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
8985 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
8986 current.u|=1;
8987 current.uu|=1;
8988 struct regstat temp;
8989 memcpy(&temp,&current,sizeof(current));
8990 temp.wasdirty=temp.dirty;
8991 temp.was32=temp.is32;
8992 // TODO: Take into account unconditional branches, as below
8993 delayslot_alloc(&temp,i);
8994 memcpy(regs[i].regmap,temp.regmap,sizeof(temp.regmap));
8995 regs[i].wasdirty=temp.wasdirty;
8996 regs[i].was32=temp.was32;
8997 regs[i].dirty=temp.dirty;
8998 regs[i].is32=temp.is32;
8999 regs[i].isconst=0;
9000 regs[i].wasconst=0;
9001 current.isconst=0;
9002 // Create entry (branch target) regmap
9003 for(hr=0;hr<HOST_REGS;hr++)
9004 {
9005 int r=temp.regmap[hr];
9006 if(r>=0) {
9007 if(r!=regmap_pre[i][hr]) {
9008 regs[i].regmap_entry[hr]=-1;
9009 }
9010 else
9011 {
9012 if(r<64){
9013 if((current.u>>r)&1) {
9014 regs[i].regmap_entry[hr]=-1;
9015 regs[i].regmap[hr]=-1;
9016 //Don't clear regs in the delay slot as the branch might need them
9017 //current.regmap[hr]=-1;
9018 }else
9019 regs[i].regmap_entry[hr]=r;
9020 }
9021 else {
9022 if((current.uu>>(r&63))&1) {
9023 regs[i].regmap_entry[hr]=-1;
9024 regs[i].regmap[hr]=-1;
9025 //Don't clear regs in the delay slot as the branch might need them
9026 //current.regmap[hr]=-1;
9027 }else
9028 regs[i].regmap_entry[hr]=r;
9029 }
9030 }
9031 } else {
9032 // First instruction expects CCREG to be allocated
9033 if(i==0&&hr==HOST_CCREG)
9034 regs[i].regmap_entry[hr]=CCREG;
9035 else
9036 regs[i].regmap_entry[hr]=-1;
9037 }
9038 }
9039 }
9040 else { // Not delay slot
9041 switch(itype[i]) {
9042 case UJUMP:
9043 //current.isconst=0; // DEBUG
9044 //current.wasconst=0; // DEBUG
9045 //regs[i].wasconst=0; // DEBUG
9046 clear_const(&current,rt1[i]);
9047 alloc_cc(&current,i);
9048 dirty_reg(&current,CCREG);
9049 if (rt1[i]==31) {
9050 alloc_reg(&current,i,31);
9051 dirty_reg(&current,31);
4ef8f67d 9052 //assert(rs1[i+1]!=31&&rs2[i+1]!=31);
9053 //assert(rt1[i+1]!=rt1[i]);
57871462 9054 #ifdef REG_PREFETCH
9055 alloc_reg(&current,i,PTEMP);
9056 #endif
9057 //current.is32|=1LL<<rt1[i];
9058 }
269bb29a 9059 ooo[i]=1;
9060 delayslot_alloc(&current,i+1);
57871462 9061 //current.isconst=0; // DEBUG
9062 ds=1;
9063 //printf("i=%d, isconst=%x\n",i,current.isconst);
9064 break;
9065 case RJUMP:
9066 //current.isconst=0;
9067 //current.wasconst=0;
9068 //regs[i].wasconst=0;
9069 clear_const(&current,rs1[i]);
9070 clear_const(&current,rt1[i]);
9071 alloc_cc(&current,i);
9072 dirty_reg(&current,CCREG);
9073 if(rs1[i]!=rt1[i+1]&&rs1[i]!=rt2[i+1]) {
9074 alloc_reg(&current,i,rs1[i]);
5067f341 9075 if (rt1[i]!=0) {
9076 alloc_reg(&current,i,rt1[i]);
9077 dirty_reg(&current,rt1[i]);
68b3faee 9078 assert(rs1[i+1]!=rt1[i]&&rs2[i+1]!=rt1[i]);
076655d1 9079 assert(rt1[i+1]!=rt1[i]);
57871462 9080 #ifdef REG_PREFETCH
9081 alloc_reg(&current,i,PTEMP);
9082 #endif
9083 }
9084 #ifdef USE_MINI_HT
9085 if(rs1[i]==31) { // JALR
9086 alloc_reg(&current,i,RHASH);
9087 #ifndef HOST_IMM_ADDR32
9088 alloc_reg(&current,i,RHTBL);
9089 #endif
9090 }
9091 #endif
9092 delayslot_alloc(&current,i+1);
9093 } else {
9094 // The delay slot overwrites our source register,
9095 // allocate a temporary register to hold the old value.
9096 current.isconst=0;
9097 current.wasconst=0;
9098 regs[i].wasconst=0;
9099 delayslot_alloc(&current,i+1);
9100 current.isconst=0;
9101 alloc_reg(&current,i,RTEMP);
9102 }
9103 //current.isconst=0; // DEBUG
e1190b87 9104 ooo[i]=1;
57871462 9105 ds=1;
9106 break;
9107 case CJUMP:
9108 //current.isconst=0;
9109 //current.wasconst=0;
9110 //regs[i].wasconst=0;
9111 clear_const(&current,rs1[i]);
9112 clear_const(&current,rs2[i]);
9113 if((opcode[i]&0x3E)==4) // BEQ/BNE
9114 {
9115 alloc_cc(&current,i);
9116 dirty_reg(&current,CCREG);
9117 if(rs1[i]) alloc_reg(&current,i,rs1[i]);
9118 if(rs2[i]) alloc_reg(&current,i,rs2[i]);
9119 if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
9120 {
9121 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
9122 if(rs2[i]) alloc_reg64(&current,i,rs2[i]);
9123 }
9124 if((rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]))||
9125 (rs2[i]&&(rs2[i]==rt1[i+1]||rs2[i]==rt2[i+1]))) {
9126 // The delay slot overwrites one of our conditions.
9127 // Allocate the branch condition registers instead.
57871462 9128 current.isconst=0;
9129 current.wasconst=0;
9130 regs[i].wasconst=0;
9131 if(rs1[i]) alloc_reg(&current,i,rs1[i]);
9132 if(rs2[i]) alloc_reg(&current,i,rs2[i]);
9133 if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
9134 {
9135 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
9136 if(rs2[i]) alloc_reg64(&current,i,rs2[i]);
9137 }
9138 }
e1190b87 9139 else
9140 {
9141 ooo[i]=1;
9142 delayslot_alloc(&current,i+1);
9143 }
57871462 9144 }
9145 else
9146 if((opcode[i]&0x3E)==6) // BLEZ/BGTZ
9147 {
9148 alloc_cc(&current,i);
9149 dirty_reg(&current,CCREG);
9150 alloc_reg(&current,i,rs1[i]);
9151 if(!(current.is32>>rs1[i]&1))
9152 {
9153 alloc_reg64(&current,i,rs1[i]);
9154 }
9155 if(rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1])) {
9156 // The delay slot overwrites one of our conditions.
9157 // Allocate the branch condition registers instead.
57871462 9158 current.isconst=0;
9159 current.wasconst=0;
9160 regs[i].wasconst=0;
9161 if(rs1[i]) alloc_reg(&current,i,rs1[i]);
9162 if(!((current.is32>>rs1[i])&1))
9163 {
9164 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
9165 }
9166 }
e1190b87 9167 else
9168 {
9169 ooo[i]=1;
9170 delayslot_alloc(&current,i+1);
9171 }
57871462 9172 }
9173 else
9174 // Don't alloc the delay slot yet because we might not execute it
9175 if((opcode[i]&0x3E)==0x14) // BEQL/BNEL
9176 {
9177 current.isconst=0;
9178 current.wasconst=0;
9179 regs[i].wasconst=0;
9180 alloc_cc(&current,i);
9181 dirty_reg(&current,CCREG);
9182 alloc_reg(&current,i,rs1[i]);
9183 alloc_reg(&current,i,rs2[i]);
9184 if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
9185 {
9186 alloc_reg64(&current,i,rs1[i]);
9187 alloc_reg64(&current,i,rs2[i]);
9188 }
9189 }
9190 else
9191 if((opcode[i]&0x3E)==0x16) // BLEZL/BGTZL
9192 {
9193 current.isconst=0;
9194 current.wasconst=0;
9195 regs[i].wasconst=0;
9196 alloc_cc(&current,i);
9197 dirty_reg(&current,CCREG);
9198 alloc_reg(&current,i,rs1[i]);
9199 if(!(current.is32>>rs1[i]&1))
9200 {
9201 alloc_reg64(&current,i,rs1[i]);
9202 }
9203 }
9204 ds=1;
9205 //current.isconst=0;
9206 break;
9207 case SJUMP:
9208 //current.isconst=0;
9209 //current.wasconst=0;
9210 //regs[i].wasconst=0;
9211 clear_const(&current,rs1[i]);
9212 clear_const(&current,rt1[i]);
9213 //if((opcode2[i]&0x1E)==0x0) // BLTZ/BGEZ
9214 if((opcode2[i]&0x0E)==0x0) // BLTZ/BGEZ
9215 {
9216 alloc_cc(&current,i);
9217 dirty_reg(&current,CCREG);
9218 alloc_reg(&current,i,rs1[i]);
9219 if(!(current.is32>>rs1[i]&1))
9220 {
9221 alloc_reg64(&current,i,rs1[i]);
9222 }
9223 if (rt1[i]==31) { // BLTZAL/BGEZAL
9224 alloc_reg(&current,i,31);
9225 dirty_reg(&current,31);
57871462 9226 //#ifdef REG_PREFETCH
9227 //alloc_reg(&current,i,PTEMP);
9228 //#endif
9229 //current.is32|=1LL<<rt1[i];
9230 }
e1190b87 9231 if((rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1])) // The delay slot overwrites the branch condition.
9232 ||(rt1[i]==31&&(rs1[i+1]==31||rs2[i+1]==31||rt1[i+1]==31||rt2[i+1]==31))) { // DS touches $ra
57871462 9233 // Allocate the branch condition registers instead.
57871462 9234 current.isconst=0;
9235 current.wasconst=0;
9236 regs[i].wasconst=0;
9237 if(rs1[i]) alloc_reg(&current,i,rs1[i]);
9238 if(!((current.is32>>rs1[i])&1))
9239 {
9240 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
9241 }
9242 }
e1190b87 9243 else
9244 {
9245 ooo[i]=1;
9246 delayslot_alloc(&current,i+1);
9247 }
57871462 9248 }
9249 else
9250 // Don't alloc the delay slot yet because we might not execute it
9251 if((opcode2[i]&0x1E)==0x2) // BLTZL/BGEZL
9252 {
9253 current.isconst=0;
9254 current.wasconst=0;
9255 regs[i].wasconst=0;
9256 alloc_cc(&current,i);
9257 dirty_reg(&current,CCREG);
9258 alloc_reg(&current,i,rs1[i]);
9259 if(!(current.is32>>rs1[i]&1))
9260 {
9261 alloc_reg64(&current,i,rs1[i]);
9262 }
9263 }
9264 ds=1;
9265 //current.isconst=0;
9266 break;
9267 case FJUMP:
9268 current.isconst=0;
9269 current.wasconst=0;
9270 regs[i].wasconst=0;
9271 if(likely[i]==0) // BC1F/BC1T
9272 {
9273 // TODO: Theoretically we can run out of registers here on x86.
9274 // The delay slot can allocate up to six, and we need to check
9275 // CSREG before executing the delay slot. Possibly we can drop
9276 // the cycle count and then reload it after checking that the
9277 // FPU is in a usable state, or don't do out-of-order execution.
9278 alloc_cc(&current,i);
9279 dirty_reg(&current,CCREG);
9280 alloc_reg(&current,i,FSREG);
9281 alloc_reg(&current,i,CSREG);
9282 if(itype[i+1]==FCOMP) {
9283 // The delay slot overwrites the branch condition.
9284 // Allocate the branch condition registers instead.
57871462 9285 alloc_cc(&current,i);
9286 dirty_reg(&current,CCREG);
9287 alloc_reg(&current,i,CSREG);
9288 alloc_reg(&current,i,FSREG);
9289 }
9290 else {
e1190b87 9291 ooo[i]=1;
57871462 9292 delayslot_alloc(&current,i+1);
9293 alloc_reg(&current,i+1,CSREG);
9294 }
9295 }
9296 else
9297 // Don't alloc the delay slot yet because we might not execute it
9298 if(likely[i]) // BC1FL/BC1TL
9299 {
9300 alloc_cc(&current,i);
9301 dirty_reg(&current,CCREG);
9302 alloc_reg(&current,i,CSREG);
9303 alloc_reg(&current,i,FSREG);
9304 }
9305 ds=1;
9306 current.isconst=0;
9307 break;
9308 case IMM16:
9309 imm16_alloc(&current,i);
9310 break;
9311 case LOAD:
9312 case LOADLR:
9313 load_alloc(&current,i);
9314 break;
9315 case STORE:
9316 case STORELR:
9317 store_alloc(&current,i);
9318 break;
9319 case ALU:
9320 alu_alloc(&current,i);
9321 break;
9322 case SHIFT:
9323 shift_alloc(&current,i);
9324 break;
9325 case MULTDIV:
9326 multdiv_alloc(&current,i);
9327 break;
9328 case SHIFTIMM:
9329 shiftimm_alloc(&current,i);
9330 break;
9331 case MOV:
9332 mov_alloc(&current,i);
9333 break;
9334 case COP0:
9335 cop0_alloc(&current,i);
9336 break;
9337 case COP1:
b9b61529 9338 case COP2:
57871462 9339 cop1_alloc(&current,i);
9340 break;
9341 case C1LS:
9342 c1ls_alloc(&current,i);
9343 break;
b9b61529 9344 case C2LS:
9345 c2ls_alloc(&current,i);
9346 break;
9347 case C2OP:
9348 c2op_alloc(&current,i);
9349 break;
57871462 9350 case FCONV:
9351 fconv_alloc(&current,i);
9352 break;
9353 case FLOAT:
9354 float_alloc(&current,i);
9355 break;
9356 case FCOMP:
9357 fcomp_alloc(&current,i);
9358 break;
9359 case SYSCALL:
7139f3c8 9360 case HLECALL:
1e973cb0 9361 case INTCALL:
57871462 9362 syscall_alloc(&current,i);
9363 break;
9364 case SPAN:
9365 pagespan_alloc(&current,i);
9366 break;
9367 }
9368
9369 // Drop the upper half of registers that have become 32-bit
9370 current.uu|=current.is32&((1LL<<rt1[i])|(1LL<<rt2[i]));
9371 if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP) {
9372 current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
9373 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9374 current.uu|=1;
9375 } else {
9376 current.uu|=current.is32&((1LL<<rt1[i+1])|(1LL<<rt2[i+1]));
9377 current.uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
9378 if((~current.uu>>rt1[i+1])&1) current.uu&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
9379 current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
9380 current.uu|=1;
9381 }
9382
9383 // Create entry (branch target) regmap
9384 for(hr=0;hr<HOST_REGS;hr++)
9385 {
9386 int r,or,er;
9387 r=current.regmap[hr];
9388 if(r>=0) {
9389 if(r!=regmap_pre[i][hr]) {
9390 // TODO: delay slot (?)
9391 or=get_reg(regmap_pre[i],r); // Get old mapping for this register
9392 if(or<0||(r&63)>=TEMPREG){
9393 regs[i].regmap_entry[hr]=-1;
9394 }
9395 else
9396 {
9397 // Just move it to a different register
9398 regs[i].regmap_entry[hr]=r;
9399 // If it was dirty before, it's still dirty
9400 if((regs[i].wasdirty>>or)&1) dirty_reg(&current,r&63);
9401 }
9402 }
9403 else
9404 {
9405 // Unneeded
9406 if(r==0){
9407 regs[i].regmap_entry[hr]=0;
9408 }
9409 else
9410 if(r<64){
9411 if((current.u>>r)&1) {
9412 regs[i].regmap_entry[hr]=-1;
9413 //regs[i].regmap[hr]=-1;
9414 current.regmap[hr]=-1;
9415 }else
9416 regs[i].regmap_entry[hr]=r;
9417 }
9418 else {
9419 if((current.uu>>(r&63))&1) {
9420 regs[i].regmap_entry[hr]=-1;
9421 //regs[i].regmap[hr]=-1;
9422 current.regmap[hr]=-1;
9423 }else
9424 regs[i].regmap_entry[hr]=r;
9425 }
9426 }
9427 } else {
9428 // Branches expect CCREG to be allocated at the target
9429 if(regmap_pre[i][hr]==CCREG)
9430 regs[i].regmap_entry[hr]=CCREG;
9431 else
9432 regs[i].regmap_entry[hr]=-1;
9433 }
9434 }
9435 memcpy(regs[i].regmap,current.regmap,sizeof(current.regmap));
9436 }
9437 /* Branch post-alloc */
9438 if(i>0)
9439 {
9440 current.was32=current.is32;
9441 current.wasdirty=current.dirty;
9442 switch(itype[i-1]) {
9443 case UJUMP:
9444 memcpy(&branch_regs[i-1],&current,sizeof(current));
9445 branch_regs[i-1].isconst=0;
9446 branch_regs[i-1].wasconst=0;
9447 branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
9448 branch_regs[i-1].uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
9449 alloc_cc(&branch_regs[i-1],i-1);
9450 dirty_reg(&branch_regs[i-1],CCREG);
9451 if(rt1[i-1]==31) { // JAL
9452 alloc_reg(&branch_regs[i-1],i-1,31);
9453 dirty_reg(&branch_regs[i-1],31);
9454 branch_regs[i-1].is32|=1LL<<31;
9455 }
9456 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9457 memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9458 break;
9459 case RJUMP:
9460 memcpy(&branch_regs[i-1],&current,sizeof(current));
9461 branch_regs[i-1].isconst=0;
9462 branch_regs[i-1].wasconst=0;
9463 branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
9464 branch_regs[i-1].uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
9465 alloc_cc(&branch_regs[i-1],i-1);
9466 dirty_reg(&branch_regs[i-1],CCREG);
9467 alloc_reg(&branch_regs[i-1],i-1,rs1[i-1]);
5067f341 9468 if(rt1[i-1]!=0) { // JALR
9469 alloc_reg(&branch_regs[i-1],i-1,rt1[i-1]);
9470 dirty_reg(&branch_regs[i-1],rt1[i-1]);
9471 branch_regs[i-1].is32|=1LL<<rt1[i-1];
57871462 9472 }
9473 #ifdef USE_MINI_HT
9474 if(rs1[i-1]==31) { // JALR
9475 alloc_reg(&branch_regs[i-1],i-1,RHASH);
9476 #ifndef HOST_IMM_ADDR32
9477 alloc_reg(&branch_regs[i-1],i-1,RHTBL);
9478 #endif
9479 }
9480 #endif
9481 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9482 memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9483 break;
9484 case CJUMP:
9485 if((opcode[i-1]&0x3E)==4) // BEQ/BNE
9486 {
9487 alloc_cc(&current,i-1);
9488 dirty_reg(&current,CCREG);
9489 if((rs1[i-1]&&(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]))||
9490 (rs2[i-1]&&(rs2[i-1]==rt1[i]||rs2[i-1]==rt2[i]))) {
9491 // The delay slot overwrote one of our conditions
9492 // Delay slot goes after the test (in order)
9493 current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
9494 current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
9495 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9496 current.u|=1;
9497 current.uu|=1;
9498 delayslot_alloc(&current,i);
9499 current.isconst=0;
9500 }
9501 else
9502 {
9503 current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
9504 current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
9505 // Alloc the branch condition registers
9506 if(rs1[i-1]) alloc_reg(&current,i-1,rs1[i-1]);
9507 if(rs2[i-1]) alloc_reg(&current,i-1,rs2[i-1]);
9508 if(!((current.is32>>rs1[i-1])&(current.is32>>rs2[i-1])&1))
9509 {
9510 if(rs1[i-1]) alloc_reg64(&current,i-1,rs1[i-1]);
9511 if(rs2[i-1]) alloc_reg64(&current,i-1,rs2[i-1]);
9512 }
9513 }
9514 memcpy(&branch_regs[i-1],&current,sizeof(current));
9515 branch_regs[i-1].isconst=0;
9516 branch_regs[i-1].wasconst=0;
9517 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9518 memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9519 }
9520 else
9521 if((opcode[i-1]&0x3E)==6) // BLEZ/BGTZ
9522 {
9523 alloc_cc(&current,i-1);
9524 dirty_reg(&current,CCREG);
9525 if(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]) {
9526 // The delay slot overwrote the branch condition
9527 // Delay slot goes after the test (in order)
9528 current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
9529 current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
9530 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9531 current.u|=1;
9532 current.uu|=1;
9533 delayslot_alloc(&current,i);
9534 current.isconst=0;
9535 }
9536 else
9537 {
9538 current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
9539 current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
9540 // Alloc the branch condition register
9541 alloc_reg(&current,i-1,rs1[i-1]);
9542 if(!(current.is32>>rs1[i-1]&1))
9543 {
9544 alloc_reg64(&current,i-1,rs1[i-1]);
9545 }
9546 }
9547 memcpy(&branch_regs[i-1],&current,sizeof(current));
9548 branch_regs[i-1].isconst=0;
9549 branch_regs[i-1].wasconst=0;
9550 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9551 memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9552 }
9553 else
9554 // Alloc the delay slot in case the branch is taken
9555 if((opcode[i-1]&0x3E)==0x14) // BEQL/BNEL
9556 {
9557 memcpy(&branch_regs[i-1],&current,sizeof(current));
9558 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9559 branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9560 if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9561 alloc_cc(&branch_regs[i-1],i);
9562 dirty_reg(&branch_regs[i-1],CCREG);
9563 delayslot_alloc(&branch_regs[i-1],i);
9564 branch_regs[i-1].isconst=0;
9565 alloc_reg(&current,i,CCREG); // Not taken path
9566 dirty_reg(&current,CCREG);
9567 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9568 }
9569 else
9570 if((opcode[i-1]&0x3E)==0x16) // BLEZL/BGTZL
9571 {
9572 memcpy(&branch_regs[i-1],&current,sizeof(current));
9573 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9574 branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9575 if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9576 alloc_cc(&branch_regs[i-1],i);
9577 dirty_reg(&branch_regs[i-1],CCREG);
9578 delayslot_alloc(&branch_regs[i-1],i);
9579 branch_regs[i-1].isconst=0;
9580 alloc_reg(&current,i,CCREG); // Not taken path
9581 dirty_reg(&current,CCREG);
9582 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9583 }
9584 break;
9585 case SJUMP:
9586 //if((opcode2[i-1]&0x1E)==0) // BLTZ/BGEZ
9587 if((opcode2[i-1]&0x0E)==0) // BLTZ/BGEZ
9588 {
9589 alloc_cc(&current,i-1);
9590 dirty_reg(&current,CCREG);
9591 if(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]) {
9592 // The delay slot overwrote the branch condition
9593 // Delay slot goes after the test (in order)
9594 current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
9595 current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
9596 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9597 current.u|=1;
9598 current.uu|=1;
9599 delayslot_alloc(&current,i);
9600 current.isconst=0;
9601 }
9602 else
9603 {
9604 current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
9605 current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
9606 // Alloc the branch condition register
9607 alloc_reg(&current,i-1,rs1[i-1]);
9608 if(!(current.is32>>rs1[i-1]&1))
9609 {
9610 alloc_reg64(&current,i-1,rs1[i-1]);
9611 }
9612 }
9613 memcpy(&branch_regs[i-1],&current,sizeof(current));
9614 branch_regs[i-1].isconst=0;
9615 branch_regs[i-1].wasconst=0;
9616 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9617 memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9618 }
9619 else
9620 // Alloc the delay slot in case the branch is taken
9621 if((opcode2[i-1]&0x1E)==2) // BLTZL/BGEZL
9622 {
9623 memcpy(&branch_regs[i-1],&current,sizeof(current));
9624 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9625 branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9626 if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9627 alloc_cc(&branch_regs[i-1],i);
9628 dirty_reg(&branch_regs[i-1],CCREG);
9629 delayslot_alloc(&branch_regs[i-1],i);
9630 branch_regs[i-1].isconst=0;
9631 alloc_reg(&current,i,CCREG); // Not taken path
9632 dirty_reg(&current,CCREG);
9633 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9634 }
9635 // FIXME: BLTZAL/BGEZAL
9636 if(opcode2[i-1]&0x10) { // BxxZAL
9637 alloc_reg(&branch_regs[i-1],i-1,31);
9638 dirty_reg(&branch_regs[i-1],31);
9639 branch_regs[i-1].is32|=1LL<<31;
9640 }
9641 break;
9642 case FJUMP:
9643 if(likely[i-1]==0) // BC1F/BC1T
9644 {
9645 alloc_cc(&current,i-1);
9646 dirty_reg(&current,CCREG);
9647 if(itype[i]==FCOMP) {
9648 // The delay slot overwrote the branch condition
9649 // Delay slot goes after the test (in order)
9650 delayslot_alloc(&current,i);
9651 current.isconst=0;
9652 }
9653 else
9654 {
9655 current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
9656 current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
9657 // Alloc the branch condition register
9658 alloc_reg(&current,i-1,FSREG);
9659 }
9660 memcpy(&branch_regs[i-1],&current,sizeof(current));
9661 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9662 }
9663 else // BC1FL/BC1TL
9664 {
9665 // Alloc the delay slot in case the branch is taken
9666 memcpy(&branch_regs[i-1],&current,sizeof(current));
9667 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9668 branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9669 if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9670 alloc_cc(&branch_regs[i-1],i);
9671 dirty_reg(&branch_regs[i-1],CCREG);
9672 delayslot_alloc(&branch_regs[i-1],i);
9673 branch_regs[i-1].isconst=0;
9674 alloc_reg(&current,i,CCREG); // Not taken path
9675 dirty_reg(&current,CCREG);
9676 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9677 }
9678 break;
9679 }
9680
9681 if(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)
9682 {
9683 if(rt1[i-1]==31) // JAL/JALR
9684 {
9685 // Subroutine call will return here, don't alloc any registers
9686 current.is32=1;
9687 current.dirty=0;
9688 clear_all_regs(current.regmap);
9689 alloc_reg(&current,i,CCREG);
9690 dirty_reg(&current,CCREG);
9691 }
9692 else if(i+1<slen)
9693 {
9694 // Internal branch will jump here, match registers to caller
9695 current.is32=0x3FFFFFFFFLL;
9696 current.dirty=0;
9697 clear_all_regs(current.regmap);
9698 alloc_reg(&current,i,CCREG);
9699 dirty_reg(&current,CCREG);
9700 for(j=i-1;j>=0;j--)
9701 {
9702 if(ba[j]==start+i*4+4) {
9703 memcpy(current.regmap,branch_regs[j].regmap,sizeof(current.regmap));
9704 current.is32=branch_regs[j].is32;
9705 current.dirty=branch_regs[j].dirty;
9706 break;
9707 }
9708 }
9709 while(j>=0) {
9710 if(ba[j]==start+i*4+4) {
9711 for(hr=0;hr<HOST_REGS;hr++) {
9712 if(current.regmap[hr]!=branch_regs[j].regmap[hr]) {
9713 current.regmap[hr]=-1;
9714 }
9715 current.is32&=branch_regs[j].is32;
9716 current.dirty&=branch_regs[j].dirty;
9717 }
9718 }
9719 j--;
9720 }
9721 }
9722 }
9723 }
9724
9725 // Count cycles in between branches
9726 ccadj[i]=cc;
7139f3c8 9727 if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP||itype[i]==SYSCALL||itype[i]==HLECALL))
57871462 9728 {
9729 cc=0;
9730 }
fb407447 9731#ifdef PCSX
9732 else if(/*itype[i]==LOAD||*/itype[i]==STORE||itype[i]==C1LS) // load causes weird timing issues
9733 {
9734 cc+=2; // 2 cycle penalty (after CLOCK_DIVIDER)
9735 }
9736 else if(itype[i]==C2LS)
9737 {
9738 cc+=4;
9739 }
9740#endif
57871462 9741 else
9742 {
9743 cc++;
9744 }
9745
9746 flush_dirty_uppers(&current);
9747 if(!is_ds[i]) {
9748 regs[i].is32=current.is32;
9749 regs[i].dirty=current.dirty;
9750 regs[i].isconst=current.isconst;
9751 memcpy(constmap[i],current.constmap,sizeof(current.constmap));
9752 }
9753 for(hr=0;hr<HOST_REGS;hr++) {
9754 if(hr!=EXCLUDE_REG&&regs[i].regmap[hr]>=0) {
9755 if(regmap_pre[i][hr]!=regs[i].regmap[hr]) {
9756 regs[i].wasconst&=~(1<<hr);
9757 }
9758 }
9759 }
9760 if(current.regmap[HOST_BTREG]==BTREG) current.regmap[HOST_BTREG]=-1;
9761 }
9762
9763 /* Pass 4 - Cull unused host registers */
9764
9765 uint64_t nr=0;
9766
9767 for (i=slen-1;i>=0;i--)
9768 {
9769 int hr;
9770 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
9771 {
9772 if(ba[i]<start || ba[i]>=(start+slen*4))
9773 {
9774 // Branch out of this block, don't need anything
9775 nr=0;
9776 }
9777 else
9778 {
9779 // Internal branch
9780 // Need whatever matches the target
9781 nr=0;
9782 int t=(ba[i]-start)>>2;
9783 for(hr=0;hr<HOST_REGS;hr++)
9784 {
9785 if(regs[i].regmap_entry[hr]>=0) {
9786 if(regs[i].regmap_entry[hr]==regs[t].regmap_entry[hr]) nr|=1<<hr;
9787 }
9788 }
9789 }
9790 // Conditional branch may need registers for following instructions
9791 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
9792 {
9793 if(i<slen-2) {
9794 nr|=needed_reg[i+2];
9795 for(hr=0;hr<HOST_REGS;hr++)
9796 {
9797 if(regmap_pre[i+2][hr]>=0&&get_reg(regs[i+2].regmap_entry,regmap_pre[i+2][hr])<0) nr&=~(1<<hr);
9798 //if((regmap_entry[i+2][hr])>=0) if(!((nr>>hr)&1)) printf("%x-bogus(%d=%d)\n",start+i*4,hr,regmap_entry[i+2][hr]);
9799 }
9800 }
9801 }
9802 // Don't need stuff which is overwritten
f5955059 9803 //if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
9804 //if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
57871462 9805 // Merge in delay slot
9806 for(hr=0;hr<HOST_REGS;hr++)
9807 {
9808 if(!likely[i]) {
9809 // These are overwritten unless the branch is "likely"
9810 // and the delay slot is nullified if not taken
9811 if(rt1[i+1]&&rt1[i+1]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9812 if(rt2[i+1]&&rt2[i+1]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9813 }
9814 if(us1[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9815 if(us2[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9816 if(rs1[i+1]==regmap_pre[i][hr]) nr|=1<<hr;
9817 if(rs2[i+1]==regmap_pre[i][hr]) nr|=1<<hr;
9818 if(us1[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9819 if(us2[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9820 if(rs1[i+1]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9821 if(rs2[i+1]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9822 if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1)) {
9823 if(dep1[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9824 if(dep2[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9825 }
9826 if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1)) {
9827 if(dep1[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9828 if(dep2[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9829 }
b9b61529 9830 if(itype[i+1]==STORE || itype[i+1]==STORELR || (opcode[i+1]&0x3b)==0x39 || (opcode[i+1]&0x3b)==0x3a) {
57871462 9831 if(regmap_pre[i][hr]==INVCP) nr|=1<<hr;
9832 if(regs[i].regmap_entry[hr]==INVCP) nr|=1<<hr;
9833 }
9834 }
9835 }
1e973cb0 9836 else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
57871462 9837 {
9838 // SYSCALL instruction (software interrupt)
9839 nr=0;
9840 }
9841 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
9842 {
9843 // ERET instruction (return from interrupt)
9844 nr=0;
9845 }
9846 else // Non-branch
9847 {
9848 if(i<slen-1) {
9849 for(hr=0;hr<HOST_REGS;hr++) {
9850 if(regmap_pre[i+1][hr]>=0&&get_reg(regs[i+1].regmap_entry,regmap_pre[i+1][hr])<0) nr&=~(1<<hr);
9851 if(regs[i].regmap[hr]!=regmap_pre[i+1][hr]) nr&=~(1<<hr);
9852 if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
9853 if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
9854 }
9855 }
9856 }
9857 for(hr=0;hr<HOST_REGS;hr++)
9858 {
9859 // Overwritten registers are not needed
9860 if(rt1[i]&&rt1[i]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9861 if(rt2[i]&&rt2[i]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9862 if(FTEMP==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9863 // Source registers are needed
9864 if(us1[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9865 if(us2[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9866 if(rs1[i]==regmap_pre[i][hr]) nr|=1<<hr;
9867 if(rs2[i]==regmap_pre[i][hr]) nr|=1<<hr;
9868 if(us1[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9869 if(us2[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9870 if(rs1[i]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9871 if(rs2[i]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9872 if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1)) {
9873 if(dep1[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9874 if(dep1[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9875 }
9876 if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1)) {
9877 if(dep2[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9878 if(dep2[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9879 }
b9b61529 9880 if(itype[i]==STORE || itype[i]==STORELR || (opcode[i]&0x3b)==0x39 || (opcode[i]&0x3b)==0x3a) {
57871462 9881 if(regmap_pre[i][hr]==INVCP) nr|=1<<hr;
9882 if(regs[i].regmap_entry[hr]==INVCP) nr|=1<<hr;
9883 }
9884 // Don't store a register immediately after writing it,
9885 // may prevent dual-issue.
9886 // But do so if this is a branch target, otherwise we
9887 // might have to load the register before the branch.
9888 if(i>0&&!bt[i]&&((regs[i].wasdirty>>hr)&1)) {
9889 if((regmap_pre[i][hr]>0&&regmap_pre[i][hr]<64&&!((unneeded_reg[i]>>regmap_pre[i][hr])&1)) ||
9890 (regmap_pre[i][hr]>64&&!((unneeded_reg_upper[i]>>(regmap_pre[i][hr]&63))&1)) ) {
9891 if(rt1[i-1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9892 if(rt2[i-1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9893 }
9894 if((regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64&&!((unneeded_reg[i]>>regs[i].regmap_entry[hr])&1)) ||
9895 (regs[i].regmap_entry[hr]>64&&!((unneeded_reg_upper[i]>>(regs[i].regmap_entry[hr]&63))&1)) ) {
9896 if(rt1[i-1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9897 if(rt2[i-1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9898 }
9899 }
9900 }
9901 // Cycle count is needed at branches. Assume it is needed at the target too.
9902 if(i==0||bt[i]||itype[i]==CJUMP||itype[i]==FJUMP||itype[i]==SPAN) {
9903 if(regmap_pre[i][HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
9904 if(regs[i].regmap_entry[HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
9905 }
9906 // Save it
9907 needed_reg[i]=nr;
9908
9909 // Deallocate unneeded registers
9910 for(hr=0;hr<HOST_REGS;hr++)
9911 {
9912 if(!((nr>>hr)&1)) {
9913 if(regs[i].regmap_entry[hr]!=CCREG) regs[i].regmap_entry[hr]=-1;
9914 if((regs[i].regmap[hr]&63)!=rs1[i] && (regs[i].regmap[hr]&63)!=rs2[i] &&
9915 (regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
9916 (regs[i].regmap[hr]&63)!=PTEMP && (regs[i].regmap[hr]&63)!=CCREG)
9917 {
9918 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
9919 {
9920 if(likely[i]) {
9921 regs[i].regmap[hr]=-1;
9922 regs[i].isconst&=~(1<<hr);
79c75f1b 9923 if(i<slen-2) {
9924 regmap_pre[i+2][hr]=-1;
9925 regs[i+2].wasconst&=~(1<<hr);
9926 }
57871462 9927 }
9928 }
9929 }
9930 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
9931 {
9932 int d1=0,d2=0,map=0,temp=0;
9933 if(get_reg(regs[i].regmap,rt1[i+1]|64)>=0||get_reg(branch_regs[i].regmap,rt1[i+1]|64)>=0)
9934 {
9935 d1=dep1[i+1];
9936 d2=dep2[i+1];
9937 }
9938 if(using_tlb) {
9939 if(itype[i+1]==LOAD || itype[i+1]==LOADLR ||
9940 itype[i+1]==STORE || itype[i+1]==STORELR ||
b9b61529 9941 itype[i+1]==C1LS || itype[i+1]==C2LS)
57871462 9942 map=TLREG;
9943 } else
b9b61529 9944 if(itype[i+1]==STORE || itype[i+1]==STORELR ||
9945 (opcode[i+1]&0x3b)==0x39 || (opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1 || SWC2/SDC2
57871462 9946 map=INVCP;
9947 }
9948 if(itype[i+1]==LOADLR || itype[i+1]==STORELR ||
b9b61529 9949 itype[i+1]==C1LS || itype[i+1]==C2LS)
57871462 9950 temp=FTEMP;
9951 if((regs[i].regmap[hr]&63)!=rs1[i] && (regs[i].regmap[hr]&63)!=rs2[i] &&
9952 (regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
9953 (regs[i].regmap[hr]&63)!=rt1[i+1] && (regs[i].regmap[hr]&63)!=rt2[i+1] &&
9954 (regs[i].regmap[hr]^64)!=us1[i+1] && (regs[i].regmap[hr]^64)!=us2[i+1] &&
9955 (regs[i].regmap[hr]^64)!=d1 && (regs[i].regmap[hr]^64)!=d2 &&
9956 regs[i].regmap[hr]!=rs1[i+1] && regs[i].regmap[hr]!=rs2[i+1] &&
9957 (regs[i].regmap[hr]&63)!=temp && regs[i].regmap[hr]!=PTEMP &&
9958 regs[i].regmap[hr]!=RHASH && regs[i].regmap[hr]!=RHTBL &&
9959 regs[i].regmap[hr]!=RTEMP && regs[i].regmap[hr]!=CCREG &&
9960 regs[i].regmap[hr]!=map )
9961 {
9962 regs[i].regmap[hr]=-1;
9963 regs[i].isconst&=~(1<<hr);
9964 if((branch_regs[i].regmap[hr]&63)!=rs1[i] && (branch_regs[i].regmap[hr]&63)!=rs2[i] &&
9965 (branch_regs[i].regmap[hr]&63)!=rt1[i] && (branch_regs[i].regmap[hr]&63)!=rt2[i] &&
9966 (branch_regs[i].regmap[hr]&63)!=rt1[i+1] && (branch_regs[i].regmap[hr]&63)!=rt2[i+1] &&
9967 (branch_regs[i].regmap[hr]^64)!=us1[i+1] && (branch_regs[i].regmap[hr]^64)!=us2[i+1] &&
9968 (branch_regs[i].regmap[hr]^64)!=d1 && (branch_regs[i].regmap[hr]^64)!=d2 &&
9969 branch_regs[i].regmap[hr]!=rs1[i+1] && branch_regs[i].regmap[hr]!=rs2[i+1] &&
9970 (branch_regs[i].regmap[hr]&63)!=temp && branch_regs[i].regmap[hr]!=PTEMP &&
9971 branch_regs[i].regmap[hr]!=RHASH && branch_regs[i].regmap[hr]!=RHTBL &&
9972 branch_regs[i].regmap[hr]!=RTEMP && branch_regs[i].regmap[hr]!=CCREG &&
9973 branch_regs[i].regmap[hr]!=map)
9974 {
9975 branch_regs[i].regmap[hr]=-1;
9976 branch_regs[i].regmap_entry[hr]=-1;
9977 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
9978 {
9979 if(!likely[i]&&i<slen-2) {
9980 regmap_pre[i+2][hr]=-1;
79c75f1b 9981 regs[i+2].wasconst&=~(1<<hr);
57871462 9982 }
9983 }
9984 }
9985 }
9986 }
9987 else
9988 {
9989 // Non-branch
9990 if(i>0)
9991 {
9992 int d1=0,d2=0,map=-1,temp=-1;
9993 if(get_reg(regs[i].regmap,rt1[i]|64)>=0)
9994 {
9995 d1=dep1[i];
9996 d2=dep2[i];
9997 }
9998 if(using_tlb) {
9999 if(itype[i]==LOAD || itype[i]==LOADLR ||
10000 itype[i]==STORE || itype[i]==STORELR ||
b9b61529 10001 itype[i]==C1LS || itype[i]==C2LS)
57871462 10002 map=TLREG;
b9b61529 10003 } else if(itype[i]==STORE || itype[i]==STORELR ||
10004 (opcode[i]&0x3b)==0x39 || (opcode[i]&0x3b)==0x3a) { // SWC1/SDC1 || SWC2/SDC2
57871462 10005 map=INVCP;
10006 }
10007 if(itype[i]==LOADLR || itype[i]==STORELR ||
b9b61529 10008 itype[i]==C1LS || itype[i]==C2LS)
57871462 10009 temp=FTEMP;
10010 if((regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
10011 (regs[i].regmap[hr]^64)!=us1[i] && (regs[i].regmap[hr]^64)!=us2[i] &&
10012 (regs[i].regmap[hr]^64)!=d1 && (regs[i].regmap[hr]^64)!=d2 &&
10013 regs[i].regmap[hr]!=rs1[i] && regs[i].regmap[hr]!=rs2[i] &&
10014 (regs[i].regmap[hr]&63)!=temp && regs[i].regmap[hr]!=map &&
10015 (itype[i]!=SPAN||regs[i].regmap[hr]!=CCREG))
10016 {
10017 if(i<slen-1&&!is_ds[i]) {
10018 if(regmap_pre[i+1][hr]!=-1 || regs[i].regmap[hr]!=-1)
10019 if(regmap_pre[i+1][hr]!=regs[i].regmap[hr])
10020 if(regs[i].regmap[hr]<64||!((regs[i].was32>>(regs[i].regmap[hr]&63))&1))
10021 {
10022 printf("fail: %x (%d %d!=%d)\n",start+i*4,hr,regmap_pre[i+1][hr],regs[i].regmap[hr]);
10023 assert(regmap_pre[i+1][hr]==regs[i].regmap[hr]);
10024 }
10025 regmap_pre[i+1][hr]=-1;
10026 if(regs[i+1].regmap_entry[hr]==CCREG) regs[i+1].regmap_entry[hr]=-1;
79c75f1b 10027 regs[i+1].wasconst&=~(1<<hr);
57871462 10028 }
10029 regs[i].regmap[hr]=-1;
10030 regs[i].isconst&=~(1<<hr);
10031 }
10032 }
10033 }
10034 }
10035 }
10036 }
10037
10038 /* Pass 5 - Pre-allocate registers */
10039
10040 // If a register is allocated during a loop, try to allocate it for the
10041 // entire loop, if possible. This avoids loading/storing registers
10042 // inside of the loop.
198df76f 10043
57871462 10044 signed char f_regmap[HOST_REGS];
10045 clear_all_regs(f_regmap);
10046 for(i=0;i<slen-1;i++)
10047 {
10048 if(itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
10049 {
10050 if(ba[i]>=start && ba[i]<(start+i*4))
10051 if(itype[i+1]==NOP||itype[i+1]==MOV||itype[i+1]==ALU
10052 ||itype[i+1]==SHIFTIMM||itype[i+1]==IMM16||itype[i+1]==LOAD
10053 ||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS
10054 ||itype[i+1]==SHIFT||itype[i+1]==COP1||itype[i+1]==FLOAT
b9b61529 10055 ||itype[i+1]==FCOMP||itype[i+1]==FCONV
10056 ||itype[i+1]==COP2||itype[i+1]==C2LS||itype[i+1]==C2OP)
57871462 10057 {
10058 int t=(ba[i]-start)>>2;
10059 if(t>0&&(itype[t-1]!=UJUMP&&itype[t-1]!=RJUMP&&itype[t-1]!=CJUMP&&itype[t-1]!=SJUMP&&itype[t-1]!=FJUMP)) // loop_preload can't handle jumps into delay slots
198df76f 10060 if(t<2||(itype[t-2]!=UJUMP&&itype[t-2]!=RJUMP)||rt1[t-2]!=31) // call/ret assumes no registers allocated
57871462 10061 for(hr=0;hr<HOST_REGS;hr++)
10062 {
10063 if(regs[i].regmap[hr]>64) {
10064 if(!((regs[i].dirty>>hr)&1))
10065 f_regmap[hr]=regs[i].regmap[hr];
10066 else f_regmap[hr]=-1;
10067 }
b372a952 10068 else if(regs[i].regmap[hr]>=0) {
10069 if(f_regmap[hr]!=regs[i].regmap[hr]) {
10070 // dealloc old register
10071 int n;
10072 for(n=0;n<HOST_REGS;n++)
10073 {
10074 if(f_regmap[n]==regs[i].regmap[hr]) {f_regmap[n]=-1;}
10075 }
10076 // and alloc new one
10077 f_regmap[hr]=regs[i].regmap[hr];
10078 }
10079 }
57871462 10080 if(branch_regs[i].regmap[hr]>64) {
10081 if(!((branch_regs[i].dirty>>hr)&1))
10082 f_regmap[hr]=branch_regs[i].regmap[hr];
10083 else f_regmap[hr]=-1;
10084 }
b372a952 10085 else if(branch_regs[i].regmap[hr]>=0) {
10086 if(f_regmap[hr]!=branch_regs[i].regmap[hr]) {
10087 // dealloc old register
10088 int n;
10089 for(n=0;n<HOST_REGS;n++)
10090 {
10091 if(f_regmap[n]==branch_regs[i].regmap[hr]) {f_regmap[n]=-1;}
10092 }
10093 // and alloc new one
10094 f_regmap[hr]=branch_regs[i].regmap[hr];
10095 }
10096 }
e1190b87 10097 if(ooo[i]) {
10098 if(count_free_regs(regs[i].regmap)<=minimum_free_regs[i+1])
10099 f_regmap[hr]=branch_regs[i].regmap[hr];
10100 }else{
10101 if(count_free_regs(branch_regs[i].regmap)<=minimum_free_regs[i+1])
57871462 10102 f_regmap[hr]=branch_regs[i].regmap[hr];
10103 }
10104 // Avoid dirty->clean transition
e1190b87 10105 #ifdef DESTRUCTIVE_WRITEBACK
57871462 10106 if(t>0) if(get_reg(regmap_pre[t],f_regmap[hr])>=0) if((regs[t].wasdirty>>get_reg(regmap_pre[t],f_regmap[hr]))&1) f_regmap[hr]=-1;
e1190b87 10107 #endif
10108 // This check is only strictly required in the DESTRUCTIVE_WRITEBACK
10109 // case above, however it's always a good idea. We can't hoist the
10110 // load if the register was already allocated, so there's no point
10111 // wasting time analyzing most of these cases. It only "succeeds"
10112 // when the mapping was different and the load can be replaced with
10113 // a mov, which is of negligible benefit. So such cases are
10114 // skipped below.
57871462 10115 if(f_regmap[hr]>0) {
198df76f 10116 if(regs[t].regmap[hr]==f_regmap[hr]||(regs[t].regmap_entry[hr]<0&&get_reg(regmap_pre[t],f_regmap[hr])<0)) {
57871462 10117 int r=f_regmap[hr];
10118 for(j=t;j<=i;j++)
10119 {
10120 //printf("Test %x -> %x, %x %d/%d\n",start+i*4,ba[i],start+j*4,hr,r);
10121 if(r<34&&((unneeded_reg[j]>>r)&1)) break;
10122 if(r>63&&((unneeded_reg_upper[j]>>(r&63))&1)) break;
10123 if(r>63) {
10124 // NB This can exclude the case where the upper-half
10125 // register is lower numbered than the lower-half
10126 // register. Not sure if it's worth fixing...
10127 if(get_reg(regs[j].regmap,r&63)<0) break;
e1190b87 10128 if(get_reg(regs[j].regmap_entry,r&63)<0) break;
57871462 10129 if(regs[j].is32&(1LL<<(r&63))) break;
10130 }
10131 if(regs[j].regmap[hr]==f_regmap[hr]&&(f_regmap[hr]&63)<TEMPREG) {
10132 //printf("Hit %x -> %x, %x %d/%d\n",start+i*4,ba[i],start+j*4,hr,r);
10133 int k;
10134 if(regs[i].regmap[hr]==-1&&branch_regs[i].regmap[hr]==-1) {
10135 if(get_reg(regs[i+2].regmap,f_regmap[hr])>=0) break;
10136 if(r>63) {
10137 if(get_reg(regs[i].regmap,r&63)<0) break;
10138 if(get_reg(branch_regs[i].regmap,r&63)<0) break;
10139 }
10140 k=i;
10141 while(k>1&&regs[k-1].regmap[hr]==-1) {
e1190b87 10142 if(count_free_regs(regs[k-1].regmap)<=minimum_free_regs[k-1]) {
10143 //printf("no free regs for store %x\n",start+(k-1)*4);
10144 break;
57871462 10145 }
57871462 10146 if(get_reg(regs[k-1].regmap,f_regmap[hr])>=0) {
10147 //printf("no-match due to different register\n");
10148 break;
10149 }
10150 if(itype[k-2]==UJUMP||itype[k-2]==RJUMP||itype[k-2]==CJUMP||itype[k-2]==SJUMP||itype[k-2]==FJUMP) {
10151 //printf("no-match due to branch\n");
10152 break;
10153 }
10154 // call/ret fast path assumes no registers allocated
198df76f 10155 if(k>2&&(itype[k-3]==UJUMP||itype[k-3]==RJUMP)&&rt1[k-3]==31) {
57871462 10156 break;
10157 }
10158 if(r>63) {
10159 // NB This can exclude the case where the upper-half
10160 // register is lower numbered than the lower-half
10161 // register. Not sure if it's worth fixing...
10162 if(get_reg(regs[k-1].regmap,r&63)<0) break;
10163 if(regs[k-1].is32&(1LL<<(r&63))) break;
10164 }
10165 k--;
10166 }
10167 if(i<slen-1) {
10168 if((regs[k].is32&(1LL<<f_regmap[hr]))!=
10169 (regs[i+2].was32&(1LL<<f_regmap[hr]))) {
10170 //printf("bad match after branch\n");
10171 break;
10172 }
10173 }
10174 if(regs[k-1].regmap[hr]==f_regmap[hr]&&regmap_pre[k][hr]==f_regmap[hr]) {
10175 //printf("Extend r%d, %x ->\n",hr,start+k*4);
10176 while(k<i) {
10177 regs[k].regmap_entry[hr]=f_regmap[hr];
10178 regs[k].regmap[hr]=f_regmap[hr];
10179 regmap_pre[k+1][hr]=f_regmap[hr];
10180 regs[k].wasdirty&=~(1<<hr);
10181 regs[k].dirty&=~(1<<hr);
10182 regs[k].wasdirty|=(1<<hr)&regs[k-1].dirty;
10183 regs[k].dirty|=(1<<hr)&regs[k].wasdirty;
10184 regs[k].wasconst&=~(1<<hr);
10185 regs[k].isconst&=~(1<<hr);
10186 k++;
10187 }
10188 }
10189 else {
10190 //printf("Fail Extend r%d, %x ->\n",hr,start+k*4);
10191 break;
10192 }
10193 assert(regs[i-1].regmap[hr]==f_regmap[hr]);
10194 if(regs[i-1].regmap[hr]==f_regmap[hr]&&regmap_pre[i][hr]==f_regmap[hr]) {
10195 //printf("OK fill %x (r%d)\n",start+i*4,hr);
10196 regs[i].regmap_entry[hr]=f_regmap[hr];
10197 regs[i].regmap[hr]=f_regmap[hr];
10198 regs[i].wasdirty&=~(1<<hr);
10199 regs[i].dirty&=~(1<<hr);
10200 regs[i].wasdirty|=(1<<hr)&regs[i-1].dirty;
10201 regs[i].dirty|=(1<<hr)&regs[i-1].dirty;
10202 regs[i].wasconst&=~(1<<hr);
10203 regs[i].isconst&=~(1<<hr);
10204 branch_regs[i].regmap_entry[hr]=f_regmap[hr];
10205 branch_regs[i].wasdirty&=~(1<<hr);
10206 branch_regs[i].wasdirty|=(1<<hr)&regs[i].dirty;
10207 branch_regs[i].regmap[hr]=f_regmap[hr];
10208 branch_regs[i].dirty&=~(1<<hr);
10209 branch_regs[i].dirty|=(1<<hr)&regs[i].dirty;
10210 branch_regs[i].wasconst&=~(1<<hr);
10211 branch_regs[i].isconst&=~(1<<hr);
10212 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000) {
10213 regmap_pre[i+2][hr]=f_regmap[hr];
10214 regs[i+2].wasdirty&=~(1<<hr);
10215 regs[i+2].wasdirty|=(1<<hr)&regs[i].dirty;
10216 assert((branch_regs[i].is32&(1LL<<f_regmap[hr]))==
10217 (regs[i+2].was32&(1LL<<f_regmap[hr])));
10218 }
10219 }
10220 }
10221 for(k=t;k<j;k++) {
e1190b87 10222 // Alloc register clean at beginning of loop,
10223 // but may dirty it in pass 6
57871462 10224 regs[k].regmap_entry[hr]=f_regmap[hr];
10225 regs[k].regmap[hr]=f_regmap[hr];
57871462 10226 regs[k].dirty&=~(1<<hr);
10227 regs[k].wasconst&=~(1<<hr);
10228 regs[k].isconst&=~(1<<hr);
e1190b87 10229 if(itype[k]==UJUMP||itype[k]==RJUMP||itype[k]==CJUMP||itype[k]==SJUMP||itype[k]==FJUMP) {
10230 branch_regs[k].regmap_entry[hr]=f_regmap[hr];
10231 branch_regs[k].regmap[hr]=f_regmap[hr];
10232 branch_regs[k].dirty&=~(1<<hr);
10233 branch_regs[k].wasconst&=~(1<<hr);
10234 branch_regs[k].isconst&=~(1<<hr);
10235 if(itype[k]!=RJUMP&&itype[k]!=UJUMP&&(source[k]>>16)!=0x1000) {
10236 regmap_pre[k+2][hr]=f_regmap[hr];
10237 regs[k+2].wasdirty&=~(1<<hr);
10238 assert((branch_regs[k].is32&(1LL<<f_regmap[hr]))==
10239 (regs[k+2].was32&(1LL<<f_regmap[hr])));
10240 }
10241 }
10242 else
10243 {
10244 regmap_pre[k+1][hr]=f_regmap[hr];
10245 regs[k+1].wasdirty&=~(1<<hr);
10246 }
57871462 10247 }
10248 if(regs[j].regmap[hr]==f_regmap[hr])
10249 regs[j].regmap_entry[hr]=f_regmap[hr];
10250 break;
10251 }
10252 if(j==i) break;
10253 if(regs[j].regmap[hr]>=0)
10254 break;
10255 if(get_reg(regs[j].regmap,f_regmap[hr])>=0) {
10256 //printf("no-match due to different register\n");
10257 break;
10258 }
10259 if((regs[j+1].is32&(1LL<<f_regmap[hr]))!=(regs[j].is32&(1LL<<f_regmap[hr]))) {
10260 //printf("32/64 mismatch %x %d\n",start+j*4,hr);
10261 break;
10262 }
e1190b87 10263 if(itype[j]==UJUMP||itype[j]==RJUMP||(source[j]>>16)==0x1000)
10264 {
10265 // Stop on unconditional branch
10266 break;
10267 }
10268 if(itype[j]==CJUMP||itype[j]==SJUMP||itype[j]==FJUMP)
10269 {
10270 if(ooo[j]) {
10271 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j+1])
10272 break;
10273 }else{
10274 if(count_free_regs(branch_regs[j].regmap)<=minimum_free_regs[j+1])
10275 break;
10276 }
10277 if(get_reg(branch_regs[j].regmap,f_regmap[hr])>=0) {
10278 //printf("no-match due to different register (branch)\n");
57871462 10279 break;
10280 }
10281 }
e1190b87 10282 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) {
10283 //printf("No free regs for store %x\n",start+j*4);
10284 break;
10285 }
57871462 10286 if(f_regmap[hr]>=64) {
10287 if(regs[j].is32&(1LL<<(f_regmap[hr]&63))) {
10288 break;
10289 }
10290 else
10291 {
10292 if(get_reg(regs[j].regmap,f_regmap[hr]&63)<0) {
10293 break;
10294 }
10295 }
10296 }
10297 }
10298 }
10299 }
10300 }
10301 }
10302 }else{
198df76f 10303 // Non branch or undetermined branch target
57871462 10304 for(hr=0;hr<HOST_REGS;hr++)
10305 {
10306 if(hr!=EXCLUDE_REG) {
10307 if(regs[i].regmap[hr]>64) {
10308 if(!((regs[i].dirty>>hr)&1))
10309 f_regmap[hr]=regs[i].regmap[hr];
10310 }
b372a952 10311 else if(regs[i].regmap[hr]>=0) {
10312 if(f_regmap[hr]!=regs[i].regmap[hr]) {
10313 // dealloc old register
10314 int n;
10315 for(n=0;n<HOST_REGS;n++)
10316 {
10317 if(f_regmap[n]==regs[i].regmap[hr]) {f_regmap[n]=-1;}
10318 }
10319 // and alloc new one
10320 f_regmap[hr]=regs[i].regmap[hr];
10321 }
10322 }
57871462 10323 }
10324 }
10325 // Try to restore cycle count at branch targets
10326 if(bt[i]) {
10327 for(j=i;j<slen-1;j++) {
10328 if(regs[j].regmap[HOST_CCREG]!=-1) break;
e1190b87 10329 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) {
10330 //printf("no free regs for store %x\n",start+j*4);
10331 break;
57871462 10332 }
57871462 10333 }
10334 if(regs[j].regmap[HOST_CCREG]==CCREG) {
10335 int k=i;
10336 //printf("Extend CC, %x -> %x\n",start+k*4,start+j*4);
10337 while(k<j) {
10338 regs[k].regmap_entry[HOST_CCREG]=CCREG;
10339 regs[k].regmap[HOST_CCREG]=CCREG;
10340 regmap_pre[k+1][HOST_CCREG]=CCREG;
10341 regs[k+1].wasdirty|=1<<HOST_CCREG;
10342 regs[k].dirty|=1<<HOST_CCREG;
10343 regs[k].wasconst&=~(1<<HOST_CCREG);
10344 regs[k].isconst&=~(1<<HOST_CCREG);
10345 k++;
10346 }
10347 regs[j].regmap_entry[HOST_CCREG]=CCREG;
10348 }
10349 // Work backwards from the branch target
10350 if(j>i&&f_regmap[HOST_CCREG]==CCREG)
10351 {
10352 //printf("Extend backwards\n");
10353 int k;
10354 k=i;
10355 while(regs[k-1].regmap[HOST_CCREG]==-1) {
e1190b87 10356 if(count_free_regs(regs[k-1].regmap)<=minimum_free_regs[k-1]) {
10357 //printf("no free regs for store %x\n",start+(k-1)*4);
10358 break;
57871462 10359 }
57871462 10360 k--;
10361 }
10362 if(regs[k-1].regmap[HOST_CCREG]==CCREG) {
10363 //printf("Extend CC, %x ->\n",start+k*4);
10364 while(k<=i) {
10365 regs[k].regmap_entry[HOST_CCREG]=CCREG;
10366 regs[k].regmap[HOST_CCREG]=CCREG;
10367 regmap_pre[k+1][HOST_CCREG]=CCREG;
10368 regs[k+1].wasdirty|=1<<HOST_CCREG;
10369 regs[k].dirty|=1<<HOST_CCREG;
10370 regs[k].wasconst&=~(1<<HOST_CCREG);
10371 regs[k].isconst&=~(1<<HOST_CCREG);
10372 k++;
10373 }
10374 }
10375 else {
10376 //printf("Fail Extend CC, %x ->\n",start+k*4);
10377 }
10378 }
10379 }
10380 if(itype[i]!=STORE&&itype[i]!=STORELR&&itype[i]!=C1LS&&itype[i]!=SHIFT&&
10381 itype[i]!=NOP&&itype[i]!=MOV&&itype[i]!=ALU&&itype[i]!=SHIFTIMM&&
10382 itype[i]!=IMM16&&itype[i]!=LOAD&&itype[i]!=COP1&&itype[i]!=FLOAT&&
e1190b87 10383 itype[i]!=FCONV&&itype[i]!=FCOMP)
57871462 10384 {
10385 memcpy(f_regmap,regs[i].regmap,sizeof(f_regmap));
10386 }
10387 }
10388 }
10389
d61de97e 10390 // Cache memory offset or tlb map pointer if a register is available
10391 #ifndef HOST_IMM_ADDR32
10392 #ifndef RAM_OFFSET
10393 if(using_tlb)
10394 #endif
10395 {
10396 int earliest_available[HOST_REGS];
10397 int loop_start[HOST_REGS];
10398 int score[HOST_REGS];
10399 int end[HOST_REGS];
10400 int reg=using_tlb?MMREG:ROREG;
10401
10402 // Init
10403 for(hr=0;hr<HOST_REGS;hr++) {
10404 score[hr]=0;earliest_available[hr]=0;
10405 loop_start[hr]=MAXBLOCK;
10406 }
10407 for(i=0;i<slen-1;i++)
10408 {
10409 // Can't do anything if no registers are available
10410 if(count_free_regs(regs[i].regmap)<=minimum_free_regs[i]) {
10411 for(hr=0;hr<HOST_REGS;hr++) {
10412 score[hr]=0;earliest_available[hr]=i+1;
10413 loop_start[hr]=MAXBLOCK;
10414 }
10415 }
10416 if(itype[i]==UJUMP||itype[i]==RJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP) {
10417 if(!ooo[i]) {
10418 if(count_free_regs(branch_regs[i].regmap)<=minimum_free_regs[i+1]) {
10419 for(hr=0;hr<HOST_REGS;hr++) {
10420 score[hr]=0;earliest_available[hr]=i+1;
10421 loop_start[hr]=MAXBLOCK;
10422 }
10423 }
198df76f 10424 }else{
10425 if(count_free_regs(regs[i].regmap)<=minimum_free_regs[i+1]) {
10426 for(hr=0;hr<HOST_REGS;hr++) {
10427 score[hr]=0;earliest_available[hr]=i+1;
10428 loop_start[hr]=MAXBLOCK;
10429 }
10430 }
d61de97e 10431 }
10432 }
10433 // Mark unavailable registers
10434 for(hr=0;hr<HOST_REGS;hr++) {
10435 if(regs[i].regmap[hr]>=0) {
10436 score[hr]=0;earliest_available[hr]=i+1;
10437 loop_start[hr]=MAXBLOCK;
10438 }
10439 if(itype[i]==UJUMP||itype[i]==RJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP) {
10440 if(branch_regs[i].regmap[hr]>=0) {
10441 score[hr]=0;earliest_available[hr]=i+2;
10442 loop_start[hr]=MAXBLOCK;
10443 }
10444 }
10445 }
10446 // No register allocations after unconditional jumps
10447 if(itype[i]==UJUMP||itype[i]==RJUMP||(source[i]>>16)==0x1000)
10448 {
10449 for(hr=0;hr<HOST_REGS;hr++) {
10450 score[hr]=0;earliest_available[hr]=i+2;
10451 loop_start[hr]=MAXBLOCK;
10452 }
10453 i++; // Skip delay slot too
10454 //printf("skip delay slot: %x\n",start+i*4);
10455 }
10456 else
10457 // Possible match
10458 if(itype[i]==LOAD||itype[i]==LOADLR||
10459 itype[i]==STORE||itype[i]==STORELR||itype[i]==C1LS) {
10460 for(hr=0;hr<HOST_REGS;hr++) {
10461 if(hr!=EXCLUDE_REG) {
10462 end[hr]=i-1;
10463 for(j=i;j<slen-1;j++) {
10464 if(regs[j].regmap[hr]>=0) break;
10465 if(itype[j]==UJUMP||itype[j]==RJUMP||itype[j]==CJUMP||itype[j]==SJUMP||itype[j]==FJUMP) {
10466 if(branch_regs[j].regmap[hr]>=0) break;
10467 if(ooo[j]) {
10468 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j+1]) break;
10469 }else{
10470 if(count_free_regs(branch_regs[j].regmap)<=minimum_free_regs[j+1]) break;
10471 }
10472 }
10473 else if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) break;
10474 if(itype[j]==UJUMP||itype[j]==RJUMP||itype[j]==CJUMP||itype[j]==SJUMP||itype[j]==FJUMP) {
10475 int t=(ba[j]-start)>>2;
10476 if(t<j&&t>=earliest_available[hr]) {
198df76f 10477 if(t==1||(t>1&&itype[t-2]!=UJUMP&&itype[t-2]!=RJUMP)||(t>1&&rt1[t-2]!=31)) { // call/ret assumes no registers allocated
10478 // Score a point for hoisting loop invariant
10479 if(t<loop_start[hr]) loop_start[hr]=t;
10480 //printf("set loop_start: i=%x j=%x (%x)\n",start+i*4,start+j*4,start+t*4);
10481 score[hr]++;
10482 end[hr]=j;
10483 }
d61de97e 10484 }
10485 else if(t<j) {
10486 if(regs[t].regmap[hr]==reg) {
10487 // Score a point if the branch target matches this register
10488 score[hr]++;
10489 end[hr]=j;
10490 }
10491 }
10492 if(itype[j+1]==LOAD||itype[j+1]==LOADLR||
10493 itype[j+1]==STORE||itype[j+1]==STORELR||itype[j+1]==C1LS) {
10494 score[hr]++;
10495 end[hr]=j;
10496 }
10497 }
10498 if(itype[j]==UJUMP||itype[j]==RJUMP||(source[j]>>16)==0x1000)
10499 {
10500 // Stop on unconditional branch
10501 break;
10502 }
10503 else
10504 if(itype[j]==LOAD||itype[j]==LOADLR||
10505 itype[j]==STORE||itype[j]==STORELR||itype[j]==C1LS) {
10506 score[hr]++;
10507 end[hr]=j;
10508 }
10509 }
10510 }
10511 }
10512 // Find highest score and allocate that register
10513 int maxscore=0;
10514 for(hr=0;hr<HOST_REGS;hr++) {
10515 if(hr!=EXCLUDE_REG) {
10516 if(score[hr]>score[maxscore]) {
10517 maxscore=hr;
10518 //printf("highest score: %d %d (%x->%x)\n",score[hr],hr,start+i*4,start+end[hr]*4);
10519 }
10520 }
10521 }
10522 if(score[maxscore]>1)
10523 {
10524 if(i<loop_start[maxscore]) loop_start[maxscore]=i;
10525 for(j=loop_start[maxscore];j<slen&&j<=end[maxscore];j++) {
10526 //if(regs[j].regmap[maxscore]>=0) {printf("oops: %x %x was %d=%d\n",loop_start[maxscore]*4+start,j*4+start,maxscore,regs[j].regmap[maxscore]);}
10527 assert(regs[j].regmap[maxscore]<0);
10528 if(j>loop_start[maxscore]) regs[j].regmap_entry[maxscore]=reg;
10529 regs[j].regmap[maxscore]=reg;
10530 regs[j].dirty&=~(1<<maxscore);
10531 regs[j].wasconst&=~(1<<maxscore);
10532 regs[j].isconst&=~(1<<maxscore);
10533 if(itype[j]==UJUMP||itype[j]==RJUMP||itype[j]==CJUMP||itype[j]==SJUMP||itype[j]==FJUMP) {
10534 branch_regs[j].regmap[maxscore]=reg;
10535 branch_regs[j].wasdirty&=~(1<<maxscore);
10536 branch_regs[j].dirty&=~(1<<maxscore);
10537 branch_regs[j].wasconst&=~(1<<maxscore);
10538 branch_regs[j].isconst&=~(1<<maxscore);
10539 if(itype[j]!=RJUMP&&itype[j]!=UJUMP&&(source[j]>>16)!=0x1000) {
10540 regmap_pre[j+2][maxscore]=reg;
10541 regs[j+2].wasdirty&=~(1<<maxscore);
10542 }
10543 // loop optimization (loop_preload)
10544 int t=(ba[j]-start)>>2;
198df76f 10545 if(t==loop_start[maxscore]) {
10546 if(t==1||(t>1&&itype[t-2]!=UJUMP&&itype[t-2]!=RJUMP)||(t>1&&rt1[t-2]!=31)) // call/ret assumes no registers allocated
10547 regs[t].regmap_entry[maxscore]=reg;
10548 }
d61de97e 10549 }
10550 else
10551 {
10552 if(j<1||(itype[j-1]!=RJUMP&&itype[j-1]!=UJUMP&&itype[j-1]!=CJUMP&&itype[j-1]!=SJUMP&&itype[j-1]!=FJUMP)) {
10553 regmap_pre[j+1][maxscore]=reg;
10554 regs[j+1].wasdirty&=~(1<<maxscore);
10555 }
10556 }
10557 }
10558 i=j-1;
10559 if(itype[j-1]==RJUMP||itype[j-1]==UJUMP||itype[j-1]==CJUMP||itype[j-1]==SJUMP||itype[j-1]==FJUMP) i++; // skip delay slot
10560 for(hr=0;hr<HOST_REGS;hr++) {
10561 score[hr]=0;earliest_available[hr]=i+i;
10562 loop_start[hr]=MAXBLOCK;
10563 }
10564 }
10565 }
10566 }
10567 }
10568 #endif
10569
57871462 10570 // This allocates registers (if possible) one instruction prior
10571 // to use, which can avoid a load-use penalty on certain CPUs.
10572 for(i=0;i<slen-1;i++)
10573 {
10574 if(!i||(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP))
10575 {
10576 if(!bt[i+1])
10577 {
b9b61529 10578 if(itype[i]==ALU||itype[i]==MOV||itype[i]==LOAD||itype[i]==SHIFTIMM||itype[i]==IMM16
10579 ||((itype[i]==COP1||itype[i]==COP2)&&opcode2[i]<3))
57871462 10580 {
10581 if(rs1[i+1]) {
10582 if((hr=get_reg(regs[i+1].regmap,rs1[i+1]))>=0)
10583 {
10584 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10585 {
10586 regs[i].regmap[hr]=regs[i+1].regmap[hr];
10587 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
10588 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
10589 regs[i].isconst&=~(1<<hr);
10590 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10591 constmap[i][hr]=constmap[i+1][hr];
10592 regs[i+1].wasdirty&=~(1<<hr);
10593 regs[i].dirty&=~(1<<hr);
10594 }
10595 }
10596 }
10597 if(rs2[i+1]) {
10598 if((hr=get_reg(regs[i+1].regmap,rs2[i+1]))>=0)
10599 {
10600 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10601 {
10602 regs[i].regmap[hr]=regs[i+1].regmap[hr];
10603 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
10604 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
10605 regs[i].isconst&=~(1<<hr);
10606 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10607 constmap[i][hr]=constmap[i+1][hr];
10608 regs[i+1].wasdirty&=~(1<<hr);
10609 regs[i].dirty&=~(1<<hr);
10610 }
10611 }
10612 }
198df76f 10613 // Preload target address for load instruction (non-constant)
57871462 10614 if(itype[i+1]==LOAD&&rs1[i+1]&&get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10615 if((hr=get_reg(regs[i+1].regmap,rt1[i+1]))>=0)
10616 {
10617 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10618 {
10619 regs[i].regmap[hr]=rs1[i+1];
10620 regmap_pre[i+1][hr]=rs1[i+1];
10621 regs[i+1].regmap_entry[hr]=rs1[i+1];
10622 regs[i].isconst&=~(1<<hr);
10623 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10624 constmap[i][hr]=constmap[i+1][hr];
10625 regs[i+1].wasdirty&=~(1<<hr);
10626 regs[i].dirty&=~(1<<hr);
10627 }
10628 }
10629 }
198df76f 10630 // Load source into target register
57871462 10631 if(lt1[i+1]&&get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10632 if((hr=get_reg(regs[i+1].regmap,rt1[i+1]))>=0)
10633 {
10634 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10635 {
10636 regs[i].regmap[hr]=rs1[i+1];
10637 regmap_pre[i+1][hr]=rs1[i+1];
10638 regs[i+1].regmap_entry[hr]=rs1[i+1];
10639 regs[i].isconst&=~(1<<hr);
10640 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10641 constmap[i][hr]=constmap[i+1][hr];
10642 regs[i+1].wasdirty&=~(1<<hr);
10643 regs[i].dirty&=~(1<<hr);
10644 }
10645 }
10646 }
198df76f 10647 // Preload map address
57871462 10648 #ifndef HOST_IMM_ADDR32
b9b61529 10649 if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS||itype[i+1]==C2LS) {
57871462 10650 hr=get_reg(regs[i+1].regmap,TLREG);
10651 if(hr>=0) {
10652 int sr=get_reg(regs[i+1].regmap,rs1[i+1]);
10653 if(sr>=0&&((regs[i+1].wasconst>>sr)&1)) {
10654 int nr;
10655 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10656 {
10657 regs[i].regmap[hr]=MGEN1+((i+1)&1);
10658 regmap_pre[i+1][hr]=MGEN1+((i+1)&1);
10659 regs[i+1].regmap_entry[hr]=MGEN1+((i+1)&1);
10660 regs[i].isconst&=~(1<<hr);
10661 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10662 constmap[i][hr]=constmap[i+1][hr];
10663 regs[i+1].wasdirty&=~(1<<hr);
10664 regs[i].dirty&=~(1<<hr);
10665 }
10666 else if((nr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1))>=0)
10667 {
10668 // move it to another register
10669 regs[i+1].regmap[hr]=-1;
10670 regmap_pre[i+2][hr]=-1;
10671 regs[i+1].regmap[nr]=TLREG;
10672 regmap_pre[i+2][nr]=TLREG;
10673 regs[i].regmap[nr]=MGEN1+((i+1)&1);
10674 regmap_pre[i+1][nr]=MGEN1+((i+1)&1);
10675 regs[i+1].regmap_entry[nr]=MGEN1+((i+1)&1);
10676 regs[i].isconst&=~(1<<nr);
10677 regs[i+1].isconst&=~(1<<nr);
10678 regs[i].dirty&=~(1<<nr);
10679 regs[i+1].wasdirty&=~(1<<nr);
10680 regs[i+1].dirty&=~(1<<nr);
10681 regs[i+2].wasdirty&=~(1<<nr);
10682 }
10683 }
10684 }
10685 }
10686 #endif
198df76f 10687 // Address for store instruction (non-constant)
b9b61529 10688 if(itype[i+1]==STORE||itype[i+1]==STORELR
10689 ||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SB/SH/SW/SD/SWC1/SDC1/SWC2/SDC2
57871462 10690 if(get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10691 hr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1);
10692 if(hr<0) hr=get_reg(regs[i+1].regmap,-1);
10693 else {regs[i+1].regmap[hr]=AGEN1+((i+1)&1);regs[i+1].isconst&=~(1<<hr);}
10694 assert(hr>=0);
10695 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10696 {
10697 regs[i].regmap[hr]=rs1[i+1];
10698 regmap_pre[i+1][hr]=rs1[i+1];
10699 regs[i+1].regmap_entry[hr]=rs1[i+1];
10700 regs[i].isconst&=~(1<<hr);
10701 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10702 constmap[i][hr]=constmap[i+1][hr];
10703 regs[i+1].wasdirty&=~(1<<hr);
10704 regs[i].dirty&=~(1<<hr);
10705 }
10706 }
10707 }
b9b61529 10708 if(itype[i+1]==LOADLR||(opcode[i+1]&0x3b)==0x31||(opcode[i+1]&0x3b)==0x32) { // LWC1/LDC1, LWC2/LDC2
57871462 10709 if(get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10710 int nr;
10711 hr=get_reg(regs[i+1].regmap,FTEMP);
10712 assert(hr>=0);
10713 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10714 {
10715 regs[i].regmap[hr]=rs1[i+1];
10716 regmap_pre[i+1][hr]=rs1[i+1];
10717 regs[i+1].regmap_entry[hr]=rs1[i+1];
10718 regs[i].isconst&=~(1<<hr);
10719 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10720 constmap[i][hr]=constmap[i+1][hr];
10721 regs[i+1].wasdirty&=~(1<<hr);
10722 regs[i].dirty&=~(1<<hr);
10723 }
10724 else if((nr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1))>=0)
10725 {
10726 // move it to another register
10727 regs[i+1].regmap[hr]=-1;
10728 regmap_pre[i+2][hr]=-1;
10729 regs[i+1].regmap[nr]=FTEMP;
10730 regmap_pre[i+2][nr]=FTEMP;
10731 regs[i].regmap[nr]=rs1[i+1];
10732 regmap_pre[i+1][nr]=rs1[i+1];
10733 regs[i+1].regmap_entry[nr]=rs1[i+1];
10734 regs[i].isconst&=~(1<<nr);
10735 regs[i+1].isconst&=~(1<<nr);
10736 regs[i].dirty&=~(1<<nr);
10737 regs[i+1].wasdirty&=~(1<<nr);
10738 regs[i+1].dirty&=~(1<<nr);
10739 regs[i+2].wasdirty&=~(1<<nr);
10740 }
10741 }
10742 }
b9b61529 10743 if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR/*||itype[i+1]==C1LS||||itype[i+1]==C2LS*/) {
57871462 10744 if(itype[i+1]==LOAD)
10745 hr=get_reg(regs[i+1].regmap,rt1[i+1]);
b9b61529 10746 if(itype[i+1]==LOADLR||(opcode[i+1]&0x3b)==0x31||(opcode[i+1]&0x3b)==0x32) // LWC1/LDC1, LWC2/LDC2
57871462 10747 hr=get_reg(regs[i+1].regmap,FTEMP);
b9b61529 10748 if(itype[i+1]==STORE||itype[i+1]==STORELR||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1/SWC2/SDC2
57871462 10749 hr=get_reg(regs[i+1].regmap,AGEN1+((i+1)&1));
10750 if(hr<0) hr=get_reg(regs[i+1].regmap,-1);
10751 }
10752 if(hr>=0&&regs[i].regmap[hr]<0) {
10753 int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
10754 if(rs>=0&&((regs[i+1].wasconst>>rs)&1)) {
10755 regs[i].regmap[hr]=AGEN1+((i+1)&1);
10756 regmap_pre[i+1][hr]=AGEN1+((i+1)&1);
10757 regs[i+1].regmap_entry[hr]=AGEN1+((i+1)&1);
10758 regs[i].isconst&=~(1<<hr);
10759 regs[i+1].wasdirty&=~(1<<hr);
10760 regs[i].dirty&=~(1<<hr);
10761 }
10762 }
10763 }
10764 }
10765 }
10766 }
10767 }
10768
10769 /* Pass 6 - Optimize clean/dirty state */
10770 clean_registers(0,slen-1,1);
10771
10772 /* Pass 7 - Identify 32-bit registers */
a28c6ce8 10773#ifndef FORCE32
57871462 10774 provisional_r32();
10775
10776 u_int r32=0;
10777
10778 for (i=slen-1;i>=0;i--)
10779 {
10780 int hr;
10781 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
10782 {
10783 if(ba[i]<start || ba[i]>=(start+slen*4))
10784 {
10785 // Branch out of this block, don't need anything
10786 r32=0;
10787 }
10788 else
10789 {
10790 // Internal branch
10791 // Need whatever matches the target
10792 // (and doesn't get overwritten by the delay slot instruction)
10793 r32=0;
10794 int t=(ba[i]-start)>>2;
10795 if(ba[i]>start+i*4) {
10796 // Forward branch
10797 if(!(requires_32bit[t]&~regs[i].was32))
10798 r32|=requires_32bit[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
10799 }else{
10800 // Backward branch
10801 //if(!(regs[t].was32&~unneeded_reg_upper[t]&~regs[i].was32))
10802 // r32|=regs[t].was32&~unneeded_reg_upper[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
10803 if(!(pr32[t]&~regs[i].was32))
10804 r32|=pr32[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
10805 }
10806 }
10807 // Conditional branch may need registers for following instructions
10808 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
10809 {
10810 if(i<slen-2) {
10811 r32|=requires_32bit[i+2];
10812 r32&=regs[i].was32;
10813 // Mark this address as a branch target since it may be called
10814 // upon return from interrupt
10815 bt[i+2]=1;
10816 }
10817 }
10818 // Merge in delay slot
10819 if(!likely[i]) {
10820 // These are overwritten unless the branch is "likely"
10821 // and the delay slot is nullified if not taken
10822 r32&=~(1LL<<rt1[i+1]);
10823 r32&=~(1LL<<rt2[i+1]);
10824 }
10825 // Assume these are needed (delay slot)
10826 if(us1[i+1]>0)
10827 {
10828 if((regs[i].was32>>us1[i+1])&1) r32|=1LL<<us1[i+1];
10829 }
10830 if(us2[i+1]>0)
10831 {
10832 if((regs[i].was32>>us2[i+1])&1) r32|=1LL<<us2[i+1];
10833 }
10834 if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1))
10835 {
10836 if((regs[i].was32>>dep1[i+1])&1) r32|=1LL<<dep1[i+1];
10837 }
10838 if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1))
10839 {
10840 if((regs[i].was32>>dep2[i+1])&1) r32|=1LL<<dep2[i+1];
10841 }
10842 }
1e973cb0 10843 else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
57871462 10844 {
10845 // SYSCALL instruction (software interrupt)
10846 r32=0;
10847 }
10848 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
10849 {
10850 // ERET instruction (return from interrupt)
10851 r32=0;
10852 }
10853 // Check 32 bits
10854 r32&=~(1LL<<rt1[i]);
10855 r32&=~(1LL<<rt2[i]);
10856 if(us1[i]>0)
10857 {
10858 if((regs[i].was32>>us1[i])&1) r32|=1LL<<us1[i];
10859 }
10860 if(us2[i]>0)
10861 {
10862 if((regs[i].was32>>us2[i])&1) r32|=1LL<<us2[i];
10863 }
10864 if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1))
10865 {
10866 if((regs[i].was32>>dep1[i])&1) r32|=1LL<<dep1[i];
10867 }
10868 if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1))
10869 {
10870 if((regs[i].was32>>dep2[i])&1) r32|=1LL<<dep2[i];
10871 }
10872 requires_32bit[i]=r32;
10873
10874 // Dirty registers which are 32-bit, require 32-bit input
10875 // as they will be written as 32-bit values
10876 for(hr=0;hr<HOST_REGS;hr++)
10877 {
10878 if(regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64) {
10879 if((regs[i].was32>>regs[i].regmap_entry[hr])&(regs[i].wasdirty>>hr)&1) {
10880 if(!((unneeded_reg_upper[i]>>regs[i].regmap_entry[hr])&1))
10881 requires_32bit[i]|=1LL<<regs[i].regmap_entry[hr];
10882 }
10883 }
10884 }
10885 //requires_32bit[i]=is32[i]&~unneeded_reg_upper[i]; // DEBUG
10886 }
04fd948a 10887#else
10888 for (i=slen-1;i>=0;i--)
10889 {
10890 if(itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
10891 {
10892 // Conditional branch
10893 if((source[i]>>16)!=0x1000&&i<slen-2) {
10894 // Mark this address as a branch target since it may be called
10895 // upon return from interrupt
10896 bt[i+2]=1;
10897 }
10898 }
10899 }
a28c6ce8 10900#endif
57871462 10901
10902 if(itype[slen-1]==SPAN) {
10903 bt[slen-1]=1; // Mark as a branch target so instruction can restart after exception
10904 }
4600ba03 10905
10906#ifdef DISASM
57871462 10907 /* Debug/disassembly */
57871462 10908 for(i=0;i<slen;i++)
10909 {
10910 printf("U:");
10911 int r;
10912 for(r=1;r<=CCREG;r++) {
10913 if((unneeded_reg[i]>>r)&1) {
10914 if(r==HIREG) printf(" HI");
10915 else if(r==LOREG) printf(" LO");
10916 else printf(" r%d",r);
10917 }
10918 }
90ae6d4e 10919#ifndef FORCE32
57871462 10920 printf(" UU:");
10921 for(r=1;r<=CCREG;r++) {
10922 if(((unneeded_reg_upper[i]&~unneeded_reg[i])>>r)&1) {
10923 if(r==HIREG) printf(" HI");
10924 else if(r==LOREG) printf(" LO");
10925 else printf(" r%d",r);
10926 }
10927 }
10928 printf(" 32:");
10929 for(r=0;r<=CCREG;r++) {
10930 //if(((is32[i]>>r)&(~unneeded_reg[i]>>r))&1) {
10931 if((regs[i].was32>>r)&1) {
10932 if(r==CCREG) printf(" CC");
10933 else if(r==HIREG) printf(" HI");
10934 else if(r==LOREG) printf(" LO");
10935 else printf(" r%d",r);
10936 }
10937 }
90ae6d4e 10938#endif
57871462 10939 printf("\n");
10940 #if defined(__i386__) || defined(__x86_64__)
10941 printf("pre: eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",regmap_pre[i][0],regmap_pre[i][1],regmap_pre[i][2],regmap_pre[i][3],regmap_pre[i][5],regmap_pre[i][6],regmap_pre[i][7]);
10942 #endif
10943 #ifdef __arm__
10944 printf("pre: r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d\n",regmap_pre[i][0],regmap_pre[i][1],regmap_pre[i][2],regmap_pre[i][3],regmap_pre[i][4],regmap_pre[i][5],regmap_pre[i][6],regmap_pre[i][7],regmap_pre[i][8],regmap_pre[i][9],regmap_pre[i][10],regmap_pre[i][12]);
10945 #endif
10946 printf("needs: ");
10947 if(needed_reg[i]&1) printf("eax ");
10948 if((needed_reg[i]>>1)&1) printf("ecx ");
10949 if((needed_reg[i]>>2)&1) printf("edx ");
10950 if((needed_reg[i]>>3)&1) printf("ebx ");
10951 if((needed_reg[i]>>5)&1) printf("ebp ");
10952 if((needed_reg[i]>>6)&1) printf("esi ");
10953 if((needed_reg[i]>>7)&1) printf("edi ");
10954 printf("r:");
10955 for(r=0;r<=CCREG;r++) {
10956 //if(((requires_32bit[i]>>r)&(~unneeded_reg[i]>>r))&1) {
10957 if((requires_32bit[i]>>r)&1) {
10958 if(r==CCREG) printf(" CC");
10959 else if(r==HIREG) printf(" HI");
10960 else if(r==LOREG) printf(" LO");
10961 else printf(" r%d",r);
10962 }
10963 }
10964 printf("\n");
10965 /*printf("pr:");
10966 for(r=0;r<=CCREG;r++) {
10967 //if(((requires_32bit[i]>>r)&(~unneeded_reg[i]>>r))&1) {
10968 if((pr32[i]>>r)&1) {
10969 if(r==CCREG) printf(" CC");
10970 else if(r==HIREG) printf(" HI");
10971 else if(r==LOREG) printf(" LO");
10972 else printf(" r%d",r);
10973 }
10974 }
10975 if(pr32[i]!=requires_32bit[i]) printf(" OOPS");
10976 printf("\n");*/
10977 #if defined(__i386__) || defined(__x86_64__)
10978 printf("entry: eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",regs[i].regmap_entry[0],regs[i].regmap_entry[1],regs[i].regmap_entry[2],regs[i].regmap_entry[3],regs[i].regmap_entry[5],regs[i].regmap_entry[6],regs[i].regmap_entry[7]);
10979 printf("dirty: ");
10980 if(regs[i].wasdirty&1) printf("eax ");
10981 if((regs[i].wasdirty>>1)&1) printf("ecx ");
10982 if((regs[i].wasdirty>>2)&1) printf("edx ");
10983 if((regs[i].wasdirty>>3)&1) printf("ebx ");
10984 if((regs[i].wasdirty>>5)&1) printf("ebp ");
10985 if((regs[i].wasdirty>>6)&1) printf("esi ");
10986 if((regs[i].wasdirty>>7)&1) printf("edi ");
10987 #endif
10988 #ifdef __arm__
10989 printf("entry: r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d\n",regs[i].regmap_entry[0],regs[i].regmap_entry[1],regs[i].regmap_entry[2],regs[i].regmap_entry[3],regs[i].regmap_entry[4],regs[i].regmap_entry[5],regs[i].regmap_entry[6],regs[i].regmap_entry[7],regs[i].regmap_entry[8],regs[i].regmap_entry[9],regs[i].regmap_entry[10],regs[i].regmap_entry[12]);
10990 printf("dirty: ");
10991 if(regs[i].wasdirty&1) printf("r0 ");
10992 if((regs[i].wasdirty>>1)&1) printf("r1 ");
10993 if((regs[i].wasdirty>>2)&1) printf("r2 ");
10994 if((regs[i].wasdirty>>3)&1) printf("r3 ");
10995 if((regs[i].wasdirty>>4)&1) printf("r4 ");
10996 if((regs[i].wasdirty>>5)&1) printf("r5 ");
10997 if((regs[i].wasdirty>>6)&1) printf("r6 ");
10998 if((regs[i].wasdirty>>7)&1) printf("r7 ");
10999 if((regs[i].wasdirty>>8)&1) printf("r8 ");
11000 if((regs[i].wasdirty>>9)&1) printf("r9 ");
11001 if((regs[i].wasdirty>>10)&1) printf("r10 ");
11002 if((regs[i].wasdirty>>12)&1) printf("r12 ");
11003 #endif
11004 printf("\n");
11005 disassemble_inst(i);
11006 //printf ("ccadj[%d] = %d\n",i,ccadj[i]);
11007 #if defined(__i386__) || defined(__x86_64__)
11008 printf("eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d dirty: ",regs[i].regmap[0],regs[i].regmap[1],regs[i].regmap[2],regs[i].regmap[3],regs[i].regmap[5],regs[i].regmap[6],regs[i].regmap[7]);
11009 if(regs[i].dirty&1) printf("eax ");
11010 if((regs[i].dirty>>1)&1) printf("ecx ");
11011 if((regs[i].dirty>>2)&1) printf("edx ");
11012 if((regs[i].dirty>>3)&1) printf("ebx ");
11013 if((regs[i].dirty>>5)&1) printf("ebp ");
11014 if((regs[i].dirty>>6)&1) printf("esi ");
11015 if((regs[i].dirty>>7)&1) printf("edi ");
11016 #endif
11017 #ifdef __arm__
11018 printf("r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d dirty: ",regs[i].regmap[0],regs[i].regmap[1],regs[i].regmap[2],regs[i].regmap[3],regs[i].regmap[4],regs[i].regmap[5],regs[i].regmap[6],regs[i].regmap[7],regs[i].regmap[8],regs[i].regmap[9],regs[i].regmap[10],regs[i].regmap[12]);
11019 if(regs[i].dirty&1) printf("r0 ");
11020 if((regs[i].dirty>>1)&1) printf("r1 ");
11021 if((regs[i].dirty>>2)&1) printf("r2 ");
11022 if((regs[i].dirty>>3)&1) printf("r3 ");
11023 if((regs[i].dirty>>4)&1) printf("r4 ");
11024 if((regs[i].dirty>>5)&1) printf("r5 ");
11025 if((regs[i].dirty>>6)&1) printf("r6 ");
11026 if((regs[i].dirty>>7)&1) printf("r7 ");
11027 if((regs[i].dirty>>8)&1) printf("r8 ");
11028 if((regs[i].dirty>>9)&1) printf("r9 ");
11029 if((regs[i].dirty>>10)&1) printf("r10 ");
11030 if((regs[i].dirty>>12)&1) printf("r12 ");
11031 #endif
11032 printf("\n");
11033 if(regs[i].isconst) {
11034 printf("constants: ");
11035 #if defined(__i386__) || defined(__x86_64__)
11036 if(regs[i].isconst&1) printf("eax=%x ",(int)constmap[i][0]);
11037 if((regs[i].isconst>>1)&1) printf("ecx=%x ",(int)constmap[i][1]);
11038 if((regs[i].isconst>>2)&1) printf("edx=%x ",(int)constmap[i][2]);
11039 if((regs[i].isconst>>3)&1) printf("ebx=%x ",(int)constmap[i][3]);
11040 if((regs[i].isconst>>5)&1) printf("ebp=%x ",(int)constmap[i][5]);
11041 if((regs[i].isconst>>6)&1) printf("esi=%x ",(int)constmap[i][6]);
11042 if((regs[i].isconst>>7)&1) printf("edi=%x ",(int)constmap[i][7]);
11043 #endif
11044 #ifdef __arm__
11045 if(regs[i].isconst&1) printf("r0=%x ",(int)constmap[i][0]);
11046 if((regs[i].isconst>>1)&1) printf("r1=%x ",(int)constmap[i][1]);
11047 if((regs[i].isconst>>2)&1) printf("r2=%x ",(int)constmap[i][2]);
11048 if((regs[i].isconst>>3)&1) printf("r3=%x ",(int)constmap[i][3]);
11049 if((regs[i].isconst>>4)&1) printf("r4=%x ",(int)constmap[i][4]);
11050 if((regs[i].isconst>>5)&1) printf("r5=%x ",(int)constmap[i][5]);
11051 if((regs[i].isconst>>6)&1) printf("r6=%x ",(int)constmap[i][6]);
11052 if((regs[i].isconst>>7)&1) printf("r7=%x ",(int)constmap[i][7]);
11053 if((regs[i].isconst>>8)&1) printf("r8=%x ",(int)constmap[i][8]);
11054 if((regs[i].isconst>>9)&1) printf("r9=%x ",(int)constmap[i][9]);
11055 if((regs[i].isconst>>10)&1) printf("r10=%x ",(int)constmap[i][10]);
11056 if((regs[i].isconst>>12)&1) printf("r12=%x ",(int)constmap[i][12]);
11057 #endif
11058 printf("\n");
11059 }
90ae6d4e 11060#ifndef FORCE32
57871462 11061 printf(" 32:");
11062 for(r=0;r<=CCREG;r++) {
11063 if((regs[i].is32>>r)&1) {
11064 if(r==CCREG) printf(" CC");
11065 else if(r==HIREG) printf(" HI");
11066 else if(r==LOREG) printf(" LO");
11067 else printf(" r%d",r);
11068 }
11069 }
11070 printf("\n");
90ae6d4e 11071#endif
57871462 11072 /*printf(" p32:");
11073 for(r=0;r<=CCREG;r++) {
11074 if((p32[i]>>r)&1) {
11075 if(r==CCREG) printf(" CC");
11076 else if(r==HIREG) printf(" HI");
11077 else if(r==LOREG) printf(" LO");
11078 else printf(" r%d",r);
11079 }
11080 }
11081 if(p32[i]!=regs[i].is32) printf(" NO MATCH\n");
11082 else printf("\n");*/
11083 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP) {
11084 #if defined(__i386__) || defined(__x86_64__)
11085 printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d dirty: ",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
11086 if(branch_regs[i].dirty&1) printf("eax ");
11087 if((branch_regs[i].dirty>>1)&1) printf("ecx ");
11088 if((branch_regs[i].dirty>>2)&1) printf("edx ");
11089 if((branch_regs[i].dirty>>3)&1) printf("ebx ");
11090 if((branch_regs[i].dirty>>5)&1) printf("ebp ");
11091 if((branch_regs[i].dirty>>6)&1) printf("esi ");
11092 if((branch_regs[i].dirty>>7)&1) printf("edi ");
11093 #endif
11094 #ifdef __arm__
11095 printf("branch(%d): r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d dirty: ",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[4],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7],branch_regs[i].regmap[8],branch_regs[i].regmap[9],branch_regs[i].regmap[10],branch_regs[i].regmap[12]);
11096 if(branch_regs[i].dirty&1) printf("r0 ");
11097 if((branch_regs[i].dirty>>1)&1) printf("r1 ");
11098 if((branch_regs[i].dirty>>2)&1) printf("r2 ");
11099 if((branch_regs[i].dirty>>3)&1) printf("r3 ");
11100 if((branch_regs[i].dirty>>4)&1) printf("r4 ");
11101 if((branch_regs[i].dirty>>5)&1) printf("r5 ");
11102 if((branch_regs[i].dirty>>6)&1) printf("r6 ");
11103 if((branch_regs[i].dirty>>7)&1) printf("r7 ");
11104 if((branch_regs[i].dirty>>8)&1) printf("r8 ");
11105 if((branch_regs[i].dirty>>9)&1) printf("r9 ");
11106 if((branch_regs[i].dirty>>10)&1) printf("r10 ");
11107 if((branch_regs[i].dirty>>12)&1) printf("r12 ");
11108 #endif
90ae6d4e 11109#ifndef FORCE32
57871462 11110 printf(" 32:");
11111 for(r=0;r<=CCREG;r++) {
11112 if((branch_regs[i].is32>>r)&1) {
11113 if(r==CCREG) printf(" CC");
11114 else if(r==HIREG) printf(" HI");
11115 else if(r==LOREG) printf(" LO");
11116 else printf(" r%d",r);
11117 }
11118 }
11119 printf("\n");
90ae6d4e 11120#endif
57871462 11121 }
11122 }
4600ba03 11123#endif // DISASM
57871462 11124
11125 /* Pass 8 - Assembly */
11126 linkcount=0;stubcount=0;
11127 ds=0;is_delayslot=0;
11128 cop1_usable=0;
11129 uint64_t is32_pre=0;
11130 u_int dirty_pre=0;
11131 u_int beginning=(u_int)out;
11132 if((u_int)addr&1) {
11133 ds=1;
11134 pagespan_ds();
11135 }
9ad4d757 11136 u_int instr_addr0_override=0;
11137
11138#ifdef PCSX
11139 if (start == 0x80030000) {
11140 // nasty hack for fastbios thing
96186eba 11141 // override block entry to this code
9ad4d757 11142 instr_addr0_override=(u_int)out;
11143 emit_movimm(start,0);
96186eba 11144 // abuse io address var as a flag that we
11145 // have already returned here once
11146 emit_readword((int)&address,1);
9ad4d757 11147 emit_writeword(0,(int)&pcaddr);
96186eba 11148 emit_writeword(0,(int)&address);
9ad4d757 11149 emit_cmp(0,1);
11150 emit_jne((int)new_dyna_leave);
11151 }
11152#endif
57871462 11153 for(i=0;i<slen;i++)
11154 {
11155 //if(ds) printf("ds: ");
4600ba03 11156 disassemble_inst(i);
57871462 11157 if(ds) {
11158 ds=0; // Skip delay slot
11159 if(bt[i]) assem_debug("OOPS - branch into delay slot\n");
11160 instr_addr[i]=0;
11161 } else {
ffb0b9e0 11162 speculate_register_values(i);
57871462 11163 #ifndef DESTRUCTIVE_WRITEBACK
11164 if(i<2||(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000))
11165 {
11166 wb_sx(regmap_pre[i],regs[i].regmap_entry,regs[i].wasdirty,is32_pre,regs[i].was32,
11167 unneeded_reg[i],unneeded_reg_upper[i]);
11168 wb_valid(regmap_pre[i],regs[i].regmap_entry,dirty_pre,regs[i].wasdirty,is32_pre,
11169 unneeded_reg[i],unneeded_reg_upper[i]);
11170 }
f776eb14 11171 if((itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)&&!likely[i]) {
11172 is32_pre=branch_regs[i].is32;
11173 dirty_pre=branch_regs[i].dirty;
11174 }else{
11175 is32_pre=regs[i].is32;
11176 dirty_pre=regs[i].dirty;
11177 }
57871462 11178 #endif
11179 // write back
11180 if(i<2||(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000))
11181 {
11182 wb_invalidate(regmap_pre[i],regs[i].regmap_entry,regs[i].wasdirty,regs[i].was32,
11183 unneeded_reg[i],unneeded_reg_upper[i]);
11184 loop_preload(regmap_pre[i],regs[i].regmap_entry);
11185 }
11186 // branch target entry point
11187 instr_addr[i]=(u_int)out;
11188 assem_debug("<->\n");
11189 // load regs
11190 if(regs[i].regmap_entry[HOST_CCREG]==CCREG&&regs[i].regmap[HOST_CCREG]!=CCREG)
11191 wb_register(CCREG,regs[i].regmap_entry,regs[i].wasdirty,regs[i].was32);
11192 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i],rs2[i]);
11193 address_generation(i,&regs[i],regs[i].regmap_entry);
11194 load_consts(regmap_pre[i],regs[i].regmap,regs[i].was32,i);
11195 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
11196 {
11197 // Load the delay slot registers if necessary
4ef8f67d 11198 if(rs1[i+1]!=rs1[i]&&rs1[i+1]!=rs2[i]&&(rs1[i+1]!=rt1[i]||rt1[i]==0))
57871462 11199 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i+1],rs1[i+1]);
4ef8f67d 11200 if(rs2[i+1]!=rs1[i+1]&&rs2[i+1]!=rs1[i]&&rs2[i+1]!=rs2[i]&&(rs2[i+1]!=rt1[i]||rt1[i]==0))
57871462 11201 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs2[i+1],rs2[i+1]);
b9b61529 11202 if(itype[i+1]==STORE||itype[i+1]==STORELR||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a)
57871462 11203 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,INVCP,INVCP);
11204 }
11205 else if(i+1<slen)
11206 {
11207 // Preload registers for following instruction
11208 if(rs1[i+1]!=rs1[i]&&rs1[i+1]!=rs2[i])
11209 if(rs1[i+1]!=rt1[i]&&rs1[i+1]!=rt2[i])
11210 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i+1],rs1[i+1]);
11211 if(rs2[i+1]!=rs1[i+1]&&rs2[i+1]!=rs1[i]&&rs2[i+1]!=rs2[i])
11212 if(rs2[i+1]!=rt1[i]&&rs2[i+1]!=rt2[i])
11213 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs2[i+1],rs2[i+1]);
11214 }
11215 // TODO: if(is_ooo(i)) address_generation(i+1);
11216 if(itype[i]==CJUMP||itype[i]==FJUMP)
11217 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,CCREG,CCREG);
b9b61529 11218 if(itype[i]==STORE||itype[i]==STORELR||(opcode[i]&0x3b)==0x39||(opcode[i]&0x3b)==0x3a)
57871462 11219 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,INVCP,INVCP);
11220 if(bt[i]) cop1_usable=0;
11221 // assemble
11222 switch(itype[i]) {
11223 case ALU:
11224 alu_assemble(i,&regs[i]);break;
11225 case IMM16:
11226 imm16_assemble(i,&regs[i]);break;
11227 case SHIFT:
11228 shift_assemble(i,&regs[i]);break;
11229 case SHIFTIMM:
11230 shiftimm_assemble(i,&regs[i]);break;
11231 case LOAD:
11232 load_assemble(i,&regs[i]);break;
11233 case LOADLR:
11234 loadlr_assemble(i,&regs[i]);break;
11235 case STORE:
11236 store_assemble(i,&regs[i]);break;
11237 case STORELR:
11238 storelr_assemble(i,&regs[i]);break;
11239 case COP0:
11240 cop0_assemble(i,&regs[i]);break;
11241 case COP1:
11242 cop1_assemble(i,&regs[i]);break;
11243 case C1LS:
11244 c1ls_assemble(i,&regs[i]);break;
b9b61529 11245 case COP2:
11246 cop2_assemble(i,&regs[i]);break;
11247 case C2LS:
11248 c2ls_assemble(i,&regs[i]);break;
11249 case C2OP:
11250 c2op_assemble(i,&regs[i]);break;
57871462 11251 case FCONV:
11252 fconv_assemble(i,&regs[i]);break;
11253 case FLOAT:
11254 float_assemble(i,&regs[i]);break;
11255 case FCOMP:
11256 fcomp_assemble(i,&regs[i]);break;
11257 case MULTDIV:
11258 multdiv_assemble(i,&regs[i]);break;
11259 case MOV:
11260 mov_assemble(i,&regs[i]);break;
11261 case SYSCALL:
11262 syscall_assemble(i,&regs[i]);break;
7139f3c8 11263 case HLECALL:
11264 hlecall_assemble(i,&regs[i]);break;
1e973cb0 11265 case INTCALL:
11266 intcall_assemble(i,&regs[i]);break;
57871462 11267 case UJUMP:
11268 ujump_assemble(i,&regs[i]);ds=1;break;
11269 case RJUMP:
11270 rjump_assemble(i,&regs[i]);ds=1;break;
11271 case CJUMP:
11272 cjump_assemble(i,&regs[i]);ds=1;break;
11273 case SJUMP:
11274 sjump_assemble(i,&regs[i]);ds=1;break;
11275 case FJUMP:
11276 fjump_assemble(i,&regs[i]);ds=1;break;
11277 case SPAN:
11278 pagespan_assemble(i,&regs[i]);break;
11279 }
11280 if(itype[i]==UJUMP||itype[i]==RJUMP||(source[i]>>16)==0x1000)
11281 literal_pool(1024);
11282 else
11283 literal_pool_jumpover(256);
11284 }
11285 }
11286 //assert(itype[i-2]==UJUMP||itype[i-2]==RJUMP||(source[i-2]>>16)==0x1000);
11287 // If the block did not end with an unconditional branch,
11288 // add a jump to the next instruction.
11289 if(i>1) {
11290 if(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000&&itype[i-1]!=SPAN) {
11291 assert(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP);
11292 assert(i==slen);
11293 if(itype[i-2]!=CJUMP&&itype[i-2]!=SJUMP&&itype[i-2]!=FJUMP) {
11294 store_regs_bt(regs[i-1].regmap,regs[i-1].is32,regs[i-1].dirty,start+i*4);
11295 if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
11296 emit_loadreg(CCREG,HOST_CCREG);
2573466a 11297 emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i-1]+1),HOST_CCREG);
57871462 11298 }
11299 else if(!likely[i-2])
11300 {
11301 store_regs_bt(branch_regs[i-2].regmap,branch_regs[i-2].is32,branch_regs[i-2].dirty,start+i*4);
11302 assert(branch_regs[i-2].regmap[HOST_CCREG]==CCREG);
11303 }
11304 else
11305 {
11306 store_regs_bt(regs[i-2].regmap,regs[i-2].is32,regs[i-2].dirty,start+i*4);
11307 assert(regs[i-2].regmap[HOST_CCREG]==CCREG);
11308 }
11309 add_to_linker((int)out,start+i*4,0);
11310 emit_jmp(0);
11311 }
11312 }
11313 else
11314 {
11315 assert(i>0);
11316 assert(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP);
11317 store_regs_bt(regs[i-1].regmap,regs[i-1].is32,regs[i-1].dirty,start+i*4);
11318 if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
11319 emit_loadreg(CCREG,HOST_CCREG);
2573466a 11320 emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i-1]+1),HOST_CCREG);
57871462 11321 add_to_linker((int)out,start+i*4,0);
11322 emit_jmp(0);
11323 }
11324
11325 // TODO: delay slot stubs?
11326 // Stubs
11327 for(i=0;i<stubcount;i++)
11328 {
11329 switch(stubs[i][0])
11330 {
11331 case LOADB_STUB:
11332 case LOADH_STUB:
11333 case LOADW_STUB:
11334 case LOADD_STUB:
11335 case LOADBU_STUB:
11336 case LOADHU_STUB:
11337 do_readstub(i);break;
11338 case STOREB_STUB:
11339 case STOREH_STUB:
11340 case STOREW_STUB:
11341 case STORED_STUB:
11342 do_writestub(i);break;
11343 case CC_STUB:
11344 do_ccstub(i);break;
11345 case INVCODE_STUB:
11346 do_invstub(i);break;
11347 case FP_STUB:
11348 do_cop1stub(i);break;
11349 case STORELR_STUB:
11350 do_unalignedwritestub(i);break;
11351 }
11352 }
11353
9ad4d757 11354 if (instr_addr0_override)
11355 instr_addr[0] = instr_addr0_override;
11356
57871462 11357 /* Pass 9 - Linker */
11358 for(i=0;i<linkcount;i++)
11359 {
11360 assem_debug("%8x -> %8x\n",link_addr[i][0],link_addr[i][1]);
11361 literal_pool(64);
11362 if(!link_addr[i][2])
11363 {
11364 void *stub=out;
11365 void *addr=check_addr(link_addr[i][1]);
11366 emit_extjump(link_addr[i][0],link_addr[i][1]);
11367 if(addr) {
11368 set_jump_target(link_addr[i][0],(int)addr);
11369 add_link(link_addr[i][1],stub);
11370 }
11371 else set_jump_target(link_addr[i][0],(int)stub);
11372 }
11373 else
11374 {
11375 // Internal branch
11376 int target=(link_addr[i][1]-start)>>2;
11377 assert(target>=0&&target<slen);
11378 assert(instr_addr[target]);
11379 //#ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
11380 //set_jump_target_fillslot(link_addr[i][0],instr_addr[target],link_addr[i][2]>>1);
11381 //#else
11382 set_jump_target(link_addr[i][0],instr_addr[target]);
11383 //#endif
11384 }
11385 }
11386 // External Branch Targets (jump_in)
11387 if(copy+slen*4>(void *)shadow+sizeof(shadow)) copy=shadow;
11388 for(i=0;i<slen;i++)
11389 {
11390 if(bt[i]||i==0)
11391 {
11392 if(instr_addr[i]) // TODO - delay slots (=null)
11393 {
11394 u_int vaddr=start+i*4;
94d23bb9 11395 u_int page=get_page(vaddr);
11396 u_int vpage=get_vpage(vaddr);
57871462 11397 literal_pool(256);
11398 //if(!(is32[i]&(~unneeded_reg_upper[i])&~(1LL<<CCREG)))
a28c6ce8 11399#ifndef FORCE32
57871462 11400 if(!requires_32bit[i])
a28c6ce8 11401#else
11402 if(1)
11403#endif
57871462 11404 {
11405 assem_debug("%8x (%d) <- %8x\n",instr_addr[i],i,start+i*4);
11406 assem_debug("jump_in: %x\n",start+i*4);
11407 ll_add(jump_dirty+vpage,vaddr,(void *)out);
11408 int entry_point=do_dirty_stub(i);
11409 ll_add(jump_in+page,vaddr,(void *)entry_point);
11410 // If there was an existing entry in the hash table,
11411 // replace it with the new address.
11412 // Don't add new entries. We'll insert the
11413 // ones that actually get used in check_addr().
11414 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
11415 if(ht_bin[0]==vaddr) {
11416 ht_bin[1]=entry_point;
11417 }
11418 if(ht_bin[2]==vaddr) {
11419 ht_bin[3]=entry_point;
11420 }
11421 }
11422 else
11423 {
11424 u_int r=requires_32bit[i]|!!(requires_32bit[i]>>32);
11425 assem_debug("%8x (%d) <- %8x\n",instr_addr[i],i,start+i*4);
11426 assem_debug("jump_in: %x (restricted - %x)\n",start+i*4,r);
11427 //int entry_point=(int)out;
11428 ////assem_debug("entry_point: %x\n",entry_point);
11429 //load_regs_entry(i);
11430 //if(entry_point==(int)out)
11431 // entry_point=instr_addr[i];
11432 //else
11433 // emit_jmp(instr_addr[i]);
11434 //ll_add_32(jump_in+page,vaddr,r,(void *)entry_point);
11435 ll_add_32(jump_dirty+vpage,vaddr,r,(void *)out);
11436 int entry_point=do_dirty_stub(i);
11437 ll_add_32(jump_in+page,vaddr,r,(void *)entry_point);
11438 }
11439 }
11440 }
11441 }
11442 // Write out the literal pool if necessary
11443 literal_pool(0);
11444 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
11445 // Align code
11446 if(((u_int)out)&7) emit_addnop(13);
11447 #endif
11448 assert((u_int)out-beginning<MAX_OUTPUT_BLOCK_SIZE);
11449 //printf("shadow buffer: %x-%x\n",(int)copy,(int)copy+slen*4);
11450 memcpy(copy,source,slen*4);
11451 copy+=slen*4;
11452
11453 #ifdef __arm__
11454 __clear_cache((void *)beginning,out);
11455 #endif
11456
11457 // If we're within 256K of the end of the buffer,
11458 // start over from the beginning. (Is 256K enough?)
11459 if((int)out>BASE_ADDR+(1<<TARGET_SIZE_2)-MAX_OUTPUT_BLOCK_SIZE) out=(u_char *)BASE_ADDR;
11460
11461 // Trap writes to any of the pages we compiled
11462 for(i=start>>12;i<=(start+slen*4)>>12;i++) {
11463 invalid_code[i]=0;
90ae6d4e 11464#ifndef DISABLE_TLB
57871462 11465 memory_map[i]|=0x40000000;
11466 if((signed int)start>=(signed int)0xC0000000) {
11467 assert(using_tlb);
11468 j=(((u_int)i<<12)+(memory_map[i]<<2)-(u_int)rdram+(u_int)0x80000000)>>12;
11469 invalid_code[j]=0;
11470 memory_map[j]|=0x40000000;
11471 //printf("write protect physical page: %x (virtual %x)\n",j<<12,start);
11472 }
90ae6d4e 11473#endif
57871462 11474 }
9be4ba64 11475 inv_code_start=inv_code_end=~0;
b12c9fb8 11476#ifdef PCSX
b96d3df7 11477 // for PCSX we need to mark all mirrors too
b12c9fb8 11478 if(get_page(start)<(RAM_SIZE>>12))
11479 for(i=start>>12;i<=(start+slen*4)>>12;i++)
b96d3df7 11480 invalid_code[((u_int)0x00000000>>12)|(i&0x1ff)]=
11481 invalid_code[((u_int)0x80000000>>12)|(i&0x1ff)]=
11482 invalid_code[((u_int)0xa0000000>>12)|(i&0x1ff)]=0;
b12c9fb8 11483#endif
57871462 11484
11485 /* Pass 10 - Free memory by expiring oldest blocks */
11486
11487 int end=((((int)out-BASE_ADDR)>>(TARGET_SIZE_2-16))+16384)&65535;
11488 while(expirep!=end)
11489 {
11490 int shift=TARGET_SIZE_2-3; // Divide into 8 blocks
11491 int base=BASE_ADDR+((expirep>>13)<<shift); // Base address of this block
11492 inv_debug("EXP: Phase %d\n",expirep);
11493 switch((expirep>>11)&3)
11494 {
11495 case 0:
11496 // Clear jump_in and jump_dirty
11497 ll_remove_matching_addrs(jump_in+(expirep&2047),base,shift);
11498 ll_remove_matching_addrs(jump_dirty+(expirep&2047),base,shift);
11499 ll_remove_matching_addrs(jump_in+2048+(expirep&2047),base,shift);
11500 ll_remove_matching_addrs(jump_dirty+2048+(expirep&2047),base,shift);
11501 break;
11502 case 1:
11503 // Clear pointers
11504 ll_kill_pointers(jump_out[expirep&2047],base,shift);
11505 ll_kill_pointers(jump_out[(expirep&2047)+2048],base,shift);
11506 break;
11507 case 2:
11508 // Clear hash table
11509 for(i=0;i<32;i++) {
11510 int *ht_bin=hash_table[((expirep&2047)<<5)+i];
11511 if((ht_bin[3]>>shift)==(base>>shift) ||
11512 ((ht_bin[3]-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(base>>shift)) {
11513 inv_debug("EXP: Remove hash %x -> %x\n",ht_bin[2],ht_bin[3]);
11514 ht_bin[2]=ht_bin[3]=-1;
11515 }
11516 if((ht_bin[1]>>shift)==(base>>shift) ||
11517 ((ht_bin[1]-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(base>>shift)) {
11518 inv_debug("EXP: Remove hash %x -> %x\n",ht_bin[0],ht_bin[1]);
11519 ht_bin[0]=ht_bin[2];
11520 ht_bin[1]=ht_bin[3];
11521 ht_bin[2]=ht_bin[3]=-1;
11522 }
11523 }
11524 break;
11525 case 3:
11526 // Clear jump_out
dd3a91a1 11527 #ifdef __arm__
11528 if((expirep&2047)==0)
11529 do_clear_cache();
11530 #endif
57871462 11531 ll_remove_matching_addrs(jump_out+(expirep&2047),base,shift);
11532 ll_remove_matching_addrs(jump_out+2048+(expirep&2047),base,shift);
11533 break;
11534 }
11535 expirep=(expirep+1)&65535;
11536 }
11537 return 0;
11538}
b9b61529 11539
11540// vim:shiftwidth=2:expandtab