recompilation-caused frameskip workaround
[pcsx_rearmed.git] / libpcsxcore / new_dynarec / new_dynarec.c
CommitLineData
57871462 1/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
2 * Mupen64plus - new_dynarec.c *
20d507ba 3 * Copyright (C) 2009-2011 Ari64 *
57871462 4 * *
5 * This program is free software; you can redistribute it and/or modify *
6 * it under the terms of the GNU General Public License as published by *
7 * the Free Software Foundation; either version 2 of the License, or *
8 * (at your option) any later version. *
9 * *
10 * This program is distributed in the hope that it will be useful, *
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
13 * GNU General Public License for more details. *
14 * *
15 * You should have received a copy of the GNU General Public License *
16 * along with this program; if not, write to the *
17 * Free Software Foundation, Inc., *
18 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. *
19 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
20
21#include <stdlib.h>
22#include <stdint.h> //include for uint64_t
23#include <assert.h>
4600ba03 24#include <sys/mman.h>
57871462 25
3d624f89 26#include "emu_if.h" //emulator interface
57871462 27
4600ba03 28//#define DISASM
29//#define assem_debug printf
30//#define inv_debug printf
31#define assem_debug(...)
32#define inv_debug(...)
57871462 33
34#ifdef __i386__
35#include "assem_x86.h"
36#endif
37#ifdef __x86_64__
38#include "assem_x64.h"
39#endif
40#ifdef __arm__
41#include "assem_arm.h"
42#endif
43
44#define MAXBLOCK 4096
45#define MAX_OUTPUT_BLOCK_SIZE 262144
46#define CLOCK_DIVIDER 2
47
48struct regstat
49{
50 signed char regmap_entry[HOST_REGS];
51 signed char regmap[HOST_REGS];
52 uint64_t was32;
53 uint64_t is32;
54 uint64_t wasdirty;
55 uint64_t dirty;
56 uint64_t u;
57 uint64_t uu;
58 u_int wasconst;
59 u_int isconst;
60 uint64_t constmap[HOST_REGS];
61};
62
63struct ll_entry
64{
65 u_int vaddr;
66 u_int reg32;
67 void *addr;
68 struct ll_entry *next;
69};
70
71 u_int start;
72 u_int *source;
73 u_int pagelimit;
74 char insn[MAXBLOCK][10];
75 u_char itype[MAXBLOCK];
76 u_char opcode[MAXBLOCK];
77 u_char opcode2[MAXBLOCK];
78 u_char bt[MAXBLOCK];
79 u_char rs1[MAXBLOCK];
80 u_char rs2[MAXBLOCK];
81 u_char rt1[MAXBLOCK];
82 u_char rt2[MAXBLOCK];
83 u_char us1[MAXBLOCK];
84 u_char us2[MAXBLOCK];
85 u_char dep1[MAXBLOCK];
86 u_char dep2[MAXBLOCK];
87 u_char lt1[MAXBLOCK];
bedfea38 88 static uint64_t gte_rs[MAXBLOCK]; // gte: 32 data and 32 ctl regs
89 static uint64_t gte_rt[MAXBLOCK];
90 static uint64_t gte_unneeded[MAXBLOCK];
91 static int gte_reads_flags; // gte flag read encountered
57871462 92 int imm[MAXBLOCK];
93 u_int ba[MAXBLOCK];
94 char likely[MAXBLOCK];
95 char is_ds[MAXBLOCK];
e1190b87 96 char ooo[MAXBLOCK];
57871462 97 uint64_t unneeded_reg[MAXBLOCK];
98 uint64_t unneeded_reg_upper[MAXBLOCK];
99 uint64_t branch_unneeded_reg[MAXBLOCK];
100 uint64_t branch_unneeded_reg_upper[MAXBLOCK];
101 uint64_t p32[MAXBLOCK];
102 uint64_t pr32[MAXBLOCK];
103 signed char regmap_pre[MAXBLOCK][HOST_REGS];
104 signed char regmap[MAXBLOCK][HOST_REGS];
105 signed char regmap_entry[MAXBLOCK][HOST_REGS];
106 uint64_t constmap[MAXBLOCK][HOST_REGS];
57871462 107 struct regstat regs[MAXBLOCK];
108 struct regstat branch_regs[MAXBLOCK];
e1190b87 109 signed char minimum_free_regs[MAXBLOCK];
57871462 110 u_int needed_reg[MAXBLOCK];
111 uint64_t requires_32bit[MAXBLOCK];
112 u_int wont_dirty[MAXBLOCK];
113 u_int will_dirty[MAXBLOCK];
114 int ccadj[MAXBLOCK];
115 int slen;
116 u_int instr_addr[MAXBLOCK];
117 u_int link_addr[MAXBLOCK][3];
118 int linkcount;
119 u_int stubs[MAXBLOCK*3][8];
120 int stubcount;
121 u_int literals[1024][2];
122 int literalcount;
123 int is_delayslot;
124 int cop1_usable;
125 u_char *out;
126 struct ll_entry *jump_in[4096];
127 struct ll_entry *jump_out[4096];
128 struct ll_entry *jump_dirty[4096];
129 u_int hash_table[65536][4] __attribute__((aligned(16)));
130 char shadow[1048576] __attribute__((aligned(16)));
131 void *copy;
132 int expirep;
af4ee1fe 133#ifndef PCSX
57871462 134 u_int using_tlb;
af4ee1fe 135#else
136 static const u_int using_tlb=0;
137#endif
dadf55f2 138 static u_int sp_in_mirror;
2f546f9a 139 int new_dynarec_did_compile;
57871462 140 u_int stop_after_jal;
141 extern u_char restore_candidate[512];
142 extern int cycle_count;
143
144 /* registers that may be allocated */
145 /* 1-31 gpr */
146#define HIREG 32 // hi
147#define LOREG 33 // lo
148#define FSREG 34 // FPU status (FCSR)
149#define CSREG 35 // Coprocessor status
150#define CCREG 36 // Cycle count
151#define INVCP 37 // Pointer to invalid_code
619e5ded 152#define MMREG 38 // Pointer to memory_map
153#define ROREG 39 // ram offset (if rdram!=0x80000000)
154#define TEMPREG 40
155#define FTEMP 40 // FPU temporary register
156#define PTEMP 41 // Prefetch temporary register
157#define TLREG 42 // TLB mapping offset
158#define RHASH 43 // Return address hash
159#define RHTBL 44 // Return address hash table address
160#define RTEMP 45 // JR/JALR address register
161#define MAXREG 45
162#define AGEN1 46 // Address generation temporary register
163#define AGEN2 47 // Address generation temporary register
164#define MGEN1 48 // Maptable address generation temporary register
165#define MGEN2 49 // Maptable address generation temporary register
166#define BTREG 50 // Branch target temporary register
57871462 167
168 /* instruction types */
169#define NOP 0 // No operation
170#define LOAD 1 // Load
171#define STORE 2 // Store
172#define LOADLR 3 // Unaligned load
173#define STORELR 4 // Unaligned store
174#define MOV 5 // Move
175#define ALU 6 // Arithmetic/logic
176#define MULTDIV 7 // Multiply/divide
177#define SHIFT 8 // Shift by register
178#define SHIFTIMM 9// Shift by immediate
179#define IMM16 10 // 16-bit immediate
180#define RJUMP 11 // Unconditional jump to register
181#define UJUMP 12 // Unconditional jump
182#define CJUMP 13 // Conditional branch (BEQ/BNE/BGTZ/BLEZ)
183#define SJUMP 14 // Conditional branch (regimm format)
184#define COP0 15 // Coprocessor 0
185#define COP1 16 // Coprocessor 1
186#define C1LS 17 // Coprocessor 1 load/store
187#define FJUMP 18 // Conditional branch (floating point)
188#define FLOAT 19 // Floating point unit
189#define FCONV 20 // Convert integer to float
190#define FCOMP 21 // Floating point compare (sets FSREG)
191#define SYSCALL 22// SYSCALL
192#define OTHER 23 // Other
193#define SPAN 24 // Branch/delay slot spans 2 pages
194#define NI 25 // Not implemented
7139f3c8 195#define HLECALL 26// PCSX fake opcodes for HLE
b9b61529 196#define COP2 27 // Coprocessor 2 move
197#define C2LS 28 // Coprocessor 2 load/store
198#define C2OP 29 // Coprocessor 2 operation
1e973cb0 199#define INTCALL 30// Call interpreter to handle rare corner cases
57871462 200
201 /* stubs */
202#define CC_STUB 1
203#define FP_STUB 2
204#define LOADB_STUB 3
205#define LOADH_STUB 4
206#define LOADW_STUB 5
207#define LOADD_STUB 6
208#define LOADBU_STUB 7
209#define LOADHU_STUB 8
210#define STOREB_STUB 9
211#define STOREH_STUB 10
212#define STOREW_STUB 11
213#define STORED_STUB 12
214#define STORELR_STUB 13
215#define INVCODE_STUB 14
216
217 /* branch codes */
218#define TAKEN 1
219#define NOTTAKEN 2
220#define NULLDS 3
221
222// asm linkage
223int new_recompile_block(int addr);
224void *get_addr_ht(u_int vaddr);
225void invalidate_block(u_int block);
226void invalidate_addr(u_int addr);
227void remove_hash(int vaddr);
228void jump_vaddr();
229void dyna_linker();
230void dyna_linker_ds();
231void verify_code();
232void verify_code_vm();
233void verify_code_ds();
234void cc_interrupt();
235void fp_exception();
236void fp_exception_ds();
237void jump_syscall();
7139f3c8 238void jump_syscall_hle();
57871462 239void jump_eret();
7139f3c8 240void jump_hlecall();
1e973cb0 241void jump_intcall();
7139f3c8 242void new_dyna_leave();
57871462 243
244// TLB
245void TLBWI_new();
246void TLBWR_new();
247void read_nomem_new();
248void read_nomemb_new();
249void read_nomemh_new();
250void read_nomemd_new();
251void write_nomem_new();
252void write_nomemb_new();
253void write_nomemh_new();
254void write_nomemd_new();
255void write_rdram_new();
256void write_rdramb_new();
257void write_rdramh_new();
258void write_rdramd_new();
259extern u_int memory_map[1048576];
260
261// Needed by assembler
262void wb_register(signed char r,signed char regmap[],uint64_t dirty,uint64_t is32);
263void wb_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty);
264void wb_needed_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr);
265void load_all_regs(signed char i_regmap[]);
266void load_needed_regs(signed char i_regmap[],signed char next_regmap[]);
267void load_regs_entry(int t);
268void load_all_consts(signed char regmap[],int is32,u_int dirty,int i);
269
270int tracedebug=0;
271
272//#define DEBUG_CYCLE_COUNT 1
273
94d23bb9 274static void tlb_hacks()
57871462 275{
94d23bb9 276#ifndef DISABLE_TLB
57871462 277 // Goldeneye hack
278 if (strncmp((char *) ROM_HEADER->nom, "GOLDENEYE",9) == 0)
279 {
280 u_int addr;
281 int n;
282 switch (ROM_HEADER->Country_code&0xFF)
283 {
284 case 0x45: // U
285 addr=0x34b30;
286 break;
287 case 0x4A: // J
288 addr=0x34b70;
289 break;
290 case 0x50: // E
291 addr=0x329f0;
292 break;
293 default:
294 // Unknown country code
295 addr=0;
296 break;
297 }
298 u_int rom_addr=(u_int)rom;
299 #ifdef ROM_COPY
300 // Since memory_map is 32-bit, on 64-bit systems the rom needs to be
301 // in the lower 4G of memory to use this hack. Copy it if necessary.
302 if((void *)rom>(void *)0xffffffff) {
303 munmap(ROM_COPY, 67108864);
304 if(mmap(ROM_COPY, 12582912,
305 PROT_READ | PROT_WRITE,
306 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS,
307 -1, 0) <= 0) {printf("mmap() failed\n");}
308 memcpy(ROM_COPY,rom,12582912);
309 rom_addr=(u_int)ROM_COPY;
310 }
311 #endif
312 if(addr) {
313 for(n=0x7F000;n<0x80000;n++) {
314 memory_map[n]=(((u_int)(rom_addr+addr-0x7F000000))>>2)|0x40000000;
315 }
316 }
317 }
94d23bb9 318#endif
57871462 319}
320
94d23bb9 321static u_int get_page(u_int vaddr)
57871462 322{
0ce47d46 323#ifndef PCSX
57871462 324 u_int page=(vaddr^0x80000000)>>12;
0ce47d46 325#else
326 u_int page=vaddr&~0xe0000000;
327 if (page < 0x1000000)
328 page &= ~0x0e00000; // RAM mirrors
329 page>>=12;
330#endif
94d23bb9 331#ifndef DISABLE_TLB
57871462 332 if(page>262143&&tlb_LUT_r[vaddr>>12]) page=(tlb_LUT_r[vaddr>>12]^0x80000000)>>12;
94d23bb9 333#endif
57871462 334 if(page>2048) page=2048+(page&2047);
94d23bb9 335 return page;
336}
337
338static u_int get_vpage(u_int vaddr)
339{
340 u_int vpage=(vaddr^0x80000000)>>12;
341#ifndef DISABLE_TLB
57871462 342 if(vpage>262143&&tlb_LUT_r[vaddr>>12]) vpage&=2047; // jump_dirty uses a hash of the virtual address instead
94d23bb9 343#endif
57871462 344 if(vpage>2048) vpage=2048+(vpage&2047);
94d23bb9 345 return vpage;
346}
347
348// Get address from virtual address
349// This is called from the recompiled JR/JALR instructions
350void *get_addr(u_int vaddr)
351{
352 u_int page=get_page(vaddr);
353 u_int vpage=get_vpage(vaddr);
57871462 354 struct ll_entry *head;
355 //printf("TRACE: count=%d next=%d (get_addr %x,page %d)\n",Count,next_interupt,vaddr,page);
356 head=jump_in[page];
357 while(head!=NULL) {
358 if(head->vaddr==vaddr&&head->reg32==0) {
359 //printf("TRACE: count=%d next=%d (get_addr match %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
360 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
361 ht_bin[3]=ht_bin[1];
362 ht_bin[2]=ht_bin[0];
363 ht_bin[1]=(int)head->addr;
364 ht_bin[0]=vaddr;
365 return head->addr;
366 }
367 head=head->next;
368 }
369 head=jump_dirty[vpage];
370 while(head!=NULL) {
371 if(head->vaddr==vaddr&&head->reg32==0) {
372 //printf("TRACE: count=%d next=%d (get_addr match dirty %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
373 // Don't restore blocks which are about to expire from the cache
374 if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
375 if(verify_dirty(head->addr)) {
376 //printf("restore candidate: %x (%d) d=%d\n",vaddr,page,invalid_code[vaddr>>12]);
377 invalid_code[vaddr>>12]=0;
9be4ba64 378 inv_code_start=inv_code_end=~0;
57871462 379 memory_map[vaddr>>12]|=0x40000000;
380 if(vpage<2048) {
94d23bb9 381#ifndef DISABLE_TLB
57871462 382 if(tlb_LUT_r[vaddr>>12]) {
383 invalid_code[tlb_LUT_r[vaddr>>12]>>12]=0;
384 memory_map[tlb_LUT_r[vaddr>>12]>>12]|=0x40000000;
385 }
94d23bb9 386#endif
57871462 387 restore_candidate[vpage>>3]|=1<<(vpage&7);
388 }
389 else restore_candidate[page>>3]|=1<<(page&7);
390 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
391 if(ht_bin[0]==vaddr) {
392 ht_bin[1]=(int)head->addr; // Replace existing entry
393 }
394 else
395 {
396 ht_bin[3]=ht_bin[1];
397 ht_bin[2]=ht_bin[0];
398 ht_bin[1]=(int)head->addr;
399 ht_bin[0]=vaddr;
400 }
401 return head->addr;
402 }
403 }
404 head=head->next;
405 }
406 //printf("TRACE: count=%d next=%d (get_addr no-match %x)\n",Count,next_interupt,vaddr);
407 int r=new_recompile_block(vaddr);
408 if(r==0) return get_addr(vaddr);
409 // Execute in unmapped page, generate pagefault execption
410 Status|=2;
411 Cause=(vaddr<<31)|0x8;
412 EPC=(vaddr&1)?vaddr-5:vaddr;
413 BadVAddr=(vaddr&~1);
414 Context=(Context&0xFF80000F)|((BadVAddr>>9)&0x007FFFF0);
415 EntryHi=BadVAddr&0xFFFFE000;
416 return get_addr_ht(0x80000000);
417}
418// Look up address in hash table first
419void *get_addr_ht(u_int vaddr)
420{
421 //printf("TRACE: count=%d next=%d (get_addr_ht %x)\n",Count,next_interupt,vaddr);
422 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
423 if(ht_bin[0]==vaddr) return (void *)ht_bin[1];
424 if(ht_bin[2]==vaddr) return (void *)ht_bin[3];
425 return get_addr(vaddr);
426}
427
428void *get_addr_32(u_int vaddr,u_int flags)
429{
7139f3c8 430#ifdef FORCE32
431 return get_addr(vaddr);
560e4a12 432#else
57871462 433 //printf("TRACE: count=%d next=%d (get_addr_32 %x,flags %x)\n",Count,next_interupt,vaddr,flags);
434 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
435 if(ht_bin[0]==vaddr) return (void *)ht_bin[1];
436 if(ht_bin[2]==vaddr) return (void *)ht_bin[3];
94d23bb9 437 u_int page=get_page(vaddr);
438 u_int vpage=get_vpage(vaddr);
57871462 439 struct ll_entry *head;
440 head=jump_in[page];
441 while(head!=NULL) {
442 if(head->vaddr==vaddr&&(head->reg32&flags)==0) {
443 //printf("TRACE: count=%d next=%d (get_addr_32 match %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
444 if(head->reg32==0) {
445 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
446 if(ht_bin[0]==-1) {
447 ht_bin[1]=(int)head->addr;
448 ht_bin[0]=vaddr;
449 }else if(ht_bin[2]==-1) {
450 ht_bin[3]=(int)head->addr;
451 ht_bin[2]=vaddr;
452 }
453 //ht_bin[3]=ht_bin[1];
454 //ht_bin[2]=ht_bin[0];
455 //ht_bin[1]=(int)head->addr;
456 //ht_bin[0]=vaddr;
457 }
458 return head->addr;
459 }
460 head=head->next;
461 }
462 head=jump_dirty[vpage];
463 while(head!=NULL) {
464 if(head->vaddr==vaddr&&(head->reg32&flags)==0) {
465 //printf("TRACE: count=%d next=%d (get_addr_32 match dirty %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
466 // Don't restore blocks which are about to expire from the cache
467 if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
468 if(verify_dirty(head->addr)) {
469 //printf("restore candidate: %x (%d) d=%d\n",vaddr,page,invalid_code[vaddr>>12]);
470 invalid_code[vaddr>>12]=0;
9be4ba64 471 inv_code_start=inv_code_end=~0;
57871462 472 memory_map[vaddr>>12]|=0x40000000;
473 if(vpage<2048) {
94d23bb9 474#ifndef DISABLE_TLB
57871462 475 if(tlb_LUT_r[vaddr>>12]) {
476 invalid_code[tlb_LUT_r[vaddr>>12]>>12]=0;
477 memory_map[tlb_LUT_r[vaddr>>12]>>12]|=0x40000000;
478 }
94d23bb9 479#endif
57871462 480 restore_candidate[vpage>>3]|=1<<(vpage&7);
481 }
482 else restore_candidate[page>>3]|=1<<(page&7);
483 if(head->reg32==0) {
484 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
485 if(ht_bin[0]==-1) {
486 ht_bin[1]=(int)head->addr;
487 ht_bin[0]=vaddr;
488 }else if(ht_bin[2]==-1) {
489 ht_bin[3]=(int)head->addr;
490 ht_bin[2]=vaddr;
491 }
492 //ht_bin[3]=ht_bin[1];
493 //ht_bin[2]=ht_bin[0];
494 //ht_bin[1]=(int)head->addr;
495 //ht_bin[0]=vaddr;
496 }
497 return head->addr;
498 }
499 }
500 head=head->next;
501 }
502 //printf("TRACE: count=%d next=%d (get_addr_32 no-match %x,flags %x)\n",Count,next_interupt,vaddr,flags);
503 int r=new_recompile_block(vaddr);
504 if(r==0) return get_addr(vaddr);
505 // Execute in unmapped page, generate pagefault execption
506 Status|=2;
507 Cause=(vaddr<<31)|0x8;
508 EPC=(vaddr&1)?vaddr-5:vaddr;
509 BadVAddr=(vaddr&~1);
510 Context=(Context&0xFF80000F)|((BadVAddr>>9)&0x007FFFF0);
511 EntryHi=BadVAddr&0xFFFFE000;
512 return get_addr_ht(0x80000000);
560e4a12 513#endif
57871462 514}
515
516void clear_all_regs(signed char regmap[])
517{
518 int hr;
519 for (hr=0;hr<HOST_REGS;hr++) regmap[hr]=-1;
520}
521
522signed char get_reg(signed char regmap[],int r)
523{
524 int hr;
525 for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap[hr]==r) return hr;
526 return -1;
527}
528
529// Find a register that is available for two consecutive cycles
530signed char get_reg2(signed char regmap1[],signed char regmap2[],int r)
531{
532 int hr;
533 for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap1[hr]==r&&regmap2[hr]==r) return hr;
534 return -1;
535}
536
537int count_free_regs(signed char regmap[])
538{
539 int count=0;
540 int hr;
541 for(hr=0;hr<HOST_REGS;hr++)
542 {
543 if(hr!=EXCLUDE_REG) {
544 if(regmap[hr]<0) count++;
545 }
546 }
547 return count;
548}
549
550void dirty_reg(struct regstat *cur,signed char reg)
551{
552 int hr;
553 if(!reg) return;
554 for (hr=0;hr<HOST_REGS;hr++) {
555 if((cur->regmap[hr]&63)==reg) {
556 cur->dirty|=1<<hr;
557 }
558 }
559}
560
561// If we dirty the lower half of a 64 bit register which is now being
562// sign-extended, we need to dump the upper half.
563// Note: Do this only after completion of the instruction, because
564// some instructions may need to read the full 64-bit value even if
565// overwriting it (eg SLTI, DSRA32).
566static void flush_dirty_uppers(struct regstat *cur)
567{
568 int hr,reg;
569 for (hr=0;hr<HOST_REGS;hr++) {
570 if((cur->dirty>>hr)&1) {
571 reg=cur->regmap[hr];
572 if(reg>=64)
573 if((cur->is32>>(reg&63))&1) cur->regmap[hr]=-1;
574 }
575 }
576}
577
578void set_const(struct regstat *cur,signed char reg,uint64_t value)
579{
580 int hr;
581 if(!reg) return;
582 for (hr=0;hr<HOST_REGS;hr++) {
583 if(cur->regmap[hr]==reg) {
584 cur->isconst|=1<<hr;
585 cur->constmap[hr]=value;
586 }
587 else if((cur->regmap[hr]^64)==reg) {
588 cur->isconst|=1<<hr;
589 cur->constmap[hr]=value>>32;
590 }
591 }
592}
593
594void clear_const(struct regstat *cur,signed char reg)
595{
596 int hr;
597 if(!reg) return;
598 for (hr=0;hr<HOST_REGS;hr++) {
599 if((cur->regmap[hr]&63)==reg) {
600 cur->isconst&=~(1<<hr);
601 }
602 }
603}
604
605int is_const(struct regstat *cur,signed char reg)
606{
607 int hr;
79c75f1b 608 if(reg<0) return 0;
57871462 609 if(!reg) return 1;
610 for (hr=0;hr<HOST_REGS;hr++) {
611 if((cur->regmap[hr]&63)==reg) {
612 return (cur->isconst>>hr)&1;
613 }
614 }
615 return 0;
616}
617uint64_t get_const(struct regstat *cur,signed char reg)
618{
619 int hr;
620 if(!reg) return 0;
621 for (hr=0;hr<HOST_REGS;hr++) {
622 if(cur->regmap[hr]==reg) {
623 return cur->constmap[hr];
624 }
625 }
626 printf("Unknown constant in r%d\n",reg);
627 exit(1);
628}
629
630// Least soon needed registers
631// Look at the next ten instructions and see which registers
632// will be used. Try not to reallocate these.
633void lsn(u_char hsn[], int i, int *preferred_reg)
634{
635 int j;
636 int b=-1;
637 for(j=0;j<9;j++)
638 {
639 if(i+j>=slen) {
640 j=slen-i-1;
641 break;
642 }
643 if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
644 {
645 // Don't go past an unconditonal jump
646 j++;
647 break;
648 }
649 }
650 for(;j>=0;j--)
651 {
652 if(rs1[i+j]) hsn[rs1[i+j]]=j;
653 if(rs2[i+j]) hsn[rs2[i+j]]=j;
654 if(rt1[i+j]) hsn[rt1[i+j]]=j;
655 if(rt2[i+j]) hsn[rt2[i+j]]=j;
656 if(itype[i+j]==STORE || itype[i+j]==STORELR) {
657 // Stores can allocate zero
658 hsn[rs1[i+j]]=j;
659 hsn[rs2[i+j]]=j;
660 }
661 // On some architectures stores need invc_ptr
662 #if defined(HOST_IMM8)
b9b61529 663 if(itype[i+j]==STORE || itype[i+j]==STORELR || (opcode[i+j]&0x3b)==0x39 || (opcode[i+j]&0x3b)==0x3a) {
57871462 664 hsn[INVCP]=j;
665 }
666 #endif
667 if(i+j>=0&&(itype[i+j]==UJUMP||itype[i+j]==CJUMP||itype[i+j]==SJUMP||itype[i+j]==FJUMP))
668 {
669 hsn[CCREG]=j;
670 b=j;
671 }
672 }
673 if(b>=0)
674 {
675 if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
676 {
677 // Follow first branch
678 int t=(ba[i+b]-start)>>2;
679 j=7-b;if(t+j>=slen) j=slen-t-1;
680 for(;j>=0;j--)
681 {
682 if(rs1[t+j]) if(hsn[rs1[t+j]]>j+b+2) hsn[rs1[t+j]]=j+b+2;
683 if(rs2[t+j]) if(hsn[rs2[t+j]]>j+b+2) hsn[rs2[t+j]]=j+b+2;
684 //if(rt1[t+j]) if(hsn[rt1[t+j]]>j+b+2) hsn[rt1[t+j]]=j+b+2;
685 //if(rt2[t+j]) if(hsn[rt2[t+j]]>j+b+2) hsn[rt2[t+j]]=j+b+2;
686 }
687 }
688 // TODO: preferred register based on backward branch
689 }
690 // Delay slot should preferably not overwrite branch conditions or cycle count
691 if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)) {
692 if(rs1[i-1]) if(hsn[rs1[i-1]]>1) hsn[rs1[i-1]]=1;
693 if(rs2[i-1]) if(hsn[rs2[i-1]]>1) hsn[rs2[i-1]]=1;
694 hsn[CCREG]=1;
695 // ...or hash tables
696 hsn[RHASH]=1;
697 hsn[RHTBL]=1;
698 }
699 // Coprocessor load/store needs FTEMP, even if not declared
b9b61529 700 if(itype[i]==C1LS||itype[i]==C2LS) {
57871462 701 hsn[FTEMP]=0;
702 }
703 // Load L/R also uses FTEMP as a temporary register
704 if(itype[i]==LOADLR) {
705 hsn[FTEMP]=0;
706 }
b7918751 707 // Also SWL/SWR/SDL/SDR
708 if(opcode[i]==0x2a||opcode[i]==0x2e||opcode[i]==0x2c||opcode[i]==0x2d) {
57871462 709 hsn[FTEMP]=0;
710 }
711 // Don't remove the TLB registers either
b9b61529 712 if(itype[i]==LOAD || itype[i]==LOADLR || itype[i]==STORE || itype[i]==STORELR || itype[i]==C1LS || itype[i]==C2LS) {
57871462 713 hsn[TLREG]=0;
714 }
715 // Don't remove the miniht registers
716 if(itype[i]==UJUMP||itype[i]==RJUMP)
717 {
718 hsn[RHASH]=0;
719 hsn[RHTBL]=0;
720 }
721}
722
723// We only want to allocate registers if we're going to use them again soon
724int needed_again(int r, int i)
725{
726 int j;
727 int b=-1;
728 int rn=10;
57871462 729
730 if(i>0&&(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000))
731 {
732 if(ba[i-1]<start || ba[i-1]>start+slen*4-4)
733 return 0; // Don't need any registers if exiting the block
734 }
735 for(j=0;j<9;j++)
736 {
737 if(i+j>=slen) {
738 j=slen-i-1;
739 break;
740 }
741 if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
742 {
743 // Don't go past an unconditonal jump
744 j++;
745 break;
746 }
1e973cb0 747 if(itype[i+j]==SYSCALL||itype[i+j]==HLECALL||itype[i+j]==INTCALL||((source[i+j]&0xfc00003f)==0x0d))
57871462 748 {
749 break;
750 }
751 }
752 for(;j>=1;j--)
753 {
754 if(rs1[i+j]==r) rn=j;
755 if(rs2[i+j]==r) rn=j;
756 if((unneeded_reg[i+j]>>r)&1) rn=10;
757 if(i+j>=0&&(itype[i+j]==UJUMP||itype[i+j]==CJUMP||itype[i+j]==SJUMP||itype[i+j]==FJUMP))
758 {
759 b=j;
760 }
761 }
762 /*
763 if(b>=0)
764 {
765 if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
766 {
767 // Follow first branch
768 int o=rn;
769 int t=(ba[i+b]-start)>>2;
770 j=7-b;if(t+j>=slen) j=slen-t-1;
771 for(;j>=0;j--)
772 {
773 if(!((unneeded_reg[t+j]>>r)&1)) {
774 if(rs1[t+j]==r) if(rn>j+b+2) rn=j+b+2;
775 if(rs2[t+j]==r) if(rn>j+b+2) rn=j+b+2;
776 }
777 else rn=o;
778 }
779 }
780 }*/
b7217e13 781 if(rn<10) return 1;
57871462 782 return 0;
783}
784
785// Try to match register allocations at the end of a loop with those
786// at the beginning
787int loop_reg(int i, int r, int hr)
788{
789 int j,k;
790 for(j=0;j<9;j++)
791 {
792 if(i+j>=slen) {
793 j=slen-i-1;
794 break;
795 }
796 if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
797 {
798 // Don't go past an unconditonal jump
799 j++;
800 break;
801 }
802 }
803 k=0;
804 if(i>0){
805 if(itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)
806 k--;
807 }
808 for(;k<j;k++)
809 {
810 if(r<64&&((unneeded_reg[i+k]>>r)&1)) return hr;
811 if(r>64&&((unneeded_reg_upper[i+k]>>r)&1)) return hr;
812 if(i+k>=0&&(itype[i+k]==UJUMP||itype[i+k]==CJUMP||itype[i+k]==SJUMP||itype[i+k]==FJUMP))
813 {
814 if(ba[i+k]>=start && ba[i+k]<(start+i*4))
815 {
816 int t=(ba[i+k]-start)>>2;
817 int reg=get_reg(regs[t].regmap_entry,r);
818 if(reg>=0) return reg;
819 //reg=get_reg(regs[t+1].regmap_entry,r);
820 //if(reg>=0) return reg;
821 }
822 }
823 }
824 return hr;
825}
826
827
828// Allocate every register, preserving source/target regs
829void alloc_all(struct regstat *cur,int i)
830{
831 int hr;
832
833 for(hr=0;hr<HOST_REGS;hr++) {
834 if(hr!=EXCLUDE_REG) {
835 if(((cur->regmap[hr]&63)!=rs1[i])&&((cur->regmap[hr]&63)!=rs2[i])&&
836 ((cur->regmap[hr]&63)!=rt1[i])&&((cur->regmap[hr]&63)!=rt2[i]))
837 {
838 cur->regmap[hr]=-1;
839 cur->dirty&=~(1<<hr);
840 }
841 // Don't need zeros
842 if((cur->regmap[hr]&63)==0)
843 {
844 cur->regmap[hr]=-1;
845 cur->dirty&=~(1<<hr);
846 }
847 }
848 }
849}
850
4600ba03 851#ifndef FORCE32
57871462 852void div64(int64_t dividend,int64_t divisor)
853{
854 lo=dividend/divisor;
855 hi=dividend%divisor;
856 //printf("TRACE: ddiv %8x%8x %8x%8x\n" ,(int)reg[HIREG],(int)(reg[HIREG]>>32)
857 // ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
858}
859void divu64(uint64_t dividend,uint64_t divisor)
860{
861 lo=dividend/divisor;
862 hi=dividend%divisor;
863 //printf("TRACE: ddivu %8x%8x %8x%8x\n",(int)reg[HIREG],(int)(reg[HIREG]>>32)
864 // ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
865}
866
867void mult64(uint64_t m1,uint64_t m2)
868{
869 unsigned long long int op1, op2, op3, op4;
870 unsigned long long int result1, result2, result3, result4;
871 unsigned long long int temp1, temp2, temp3, temp4;
872 int sign = 0;
873
874 if (m1 < 0)
875 {
876 op2 = -m1;
877 sign = 1 - sign;
878 }
879 else op2 = m1;
880 if (m2 < 0)
881 {
882 op4 = -m2;
883 sign = 1 - sign;
884 }
885 else op4 = m2;
886
887 op1 = op2 & 0xFFFFFFFF;
888 op2 = (op2 >> 32) & 0xFFFFFFFF;
889 op3 = op4 & 0xFFFFFFFF;
890 op4 = (op4 >> 32) & 0xFFFFFFFF;
891
892 temp1 = op1 * op3;
893 temp2 = (temp1 >> 32) + op1 * op4;
894 temp3 = op2 * op3;
895 temp4 = (temp3 >> 32) + op2 * op4;
896
897 result1 = temp1 & 0xFFFFFFFF;
898 result2 = temp2 + (temp3 & 0xFFFFFFFF);
899 result3 = (result2 >> 32) + temp4;
900 result4 = (result3 >> 32);
901
902 lo = result1 | (result2 << 32);
903 hi = (result3 & 0xFFFFFFFF) | (result4 << 32);
904 if (sign)
905 {
906 hi = ~hi;
907 if (!lo) hi++;
908 else lo = ~lo + 1;
909 }
910}
911
912void multu64(uint64_t m1,uint64_t m2)
913{
914 unsigned long long int op1, op2, op3, op4;
915 unsigned long long int result1, result2, result3, result4;
916 unsigned long long int temp1, temp2, temp3, temp4;
917
918 op1 = m1 & 0xFFFFFFFF;
919 op2 = (m1 >> 32) & 0xFFFFFFFF;
920 op3 = m2 & 0xFFFFFFFF;
921 op4 = (m2 >> 32) & 0xFFFFFFFF;
922
923 temp1 = op1 * op3;
924 temp2 = (temp1 >> 32) + op1 * op4;
925 temp3 = op2 * op3;
926 temp4 = (temp3 >> 32) + op2 * op4;
927
928 result1 = temp1 & 0xFFFFFFFF;
929 result2 = temp2 + (temp3 & 0xFFFFFFFF);
930 result3 = (result2 >> 32) + temp4;
931 result4 = (result3 >> 32);
932
933 lo = result1 | (result2 << 32);
934 hi = (result3 & 0xFFFFFFFF) | (result4 << 32);
935
936 //printf("TRACE: dmultu %8x%8x %8x%8x\n",(int)reg[HIREG],(int)(reg[HIREG]>>32)
937 // ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
938}
939
940uint64_t ldl_merge(uint64_t original,uint64_t loaded,u_int bits)
941{
942 if(bits) {
943 original<<=64-bits;
944 original>>=64-bits;
945 loaded<<=bits;
946 original|=loaded;
947 }
948 else original=loaded;
949 return original;
950}
951uint64_t ldr_merge(uint64_t original,uint64_t loaded,u_int bits)
952{
953 if(bits^56) {
954 original>>=64-(bits^56);
955 original<<=64-(bits^56);
956 loaded>>=bits^56;
957 original|=loaded;
958 }
959 else original=loaded;
960 return original;
961}
4600ba03 962#endif
57871462 963
964#ifdef __i386__
965#include "assem_x86.c"
966#endif
967#ifdef __x86_64__
968#include "assem_x64.c"
969#endif
970#ifdef __arm__
971#include "assem_arm.c"
972#endif
973
974// Add virtual address mapping to linked list
975void ll_add(struct ll_entry **head,int vaddr,void *addr)
976{
977 struct ll_entry *new_entry;
978 new_entry=malloc(sizeof(struct ll_entry));
979 assert(new_entry!=NULL);
980 new_entry->vaddr=vaddr;
981 new_entry->reg32=0;
982 new_entry->addr=addr;
983 new_entry->next=*head;
984 *head=new_entry;
985}
986
987// Add virtual address mapping for 32-bit compiled block
988void ll_add_32(struct ll_entry **head,int vaddr,u_int reg32,void *addr)
989{
7139f3c8 990 ll_add(head,vaddr,addr);
991#ifndef FORCE32
992 (*head)->reg32=reg32;
993#endif
57871462 994}
995
996// Check if an address is already compiled
997// but don't return addresses which are about to expire from the cache
998void *check_addr(u_int vaddr)
999{
1000 u_int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
1001 if(ht_bin[0]==vaddr) {
1002 if(((ht_bin[1]-MAX_OUTPUT_BLOCK_SIZE-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
1003 if(isclean(ht_bin[1])) return (void *)ht_bin[1];
1004 }
1005 if(ht_bin[2]==vaddr) {
1006 if(((ht_bin[3]-MAX_OUTPUT_BLOCK_SIZE-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
1007 if(isclean(ht_bin[3])) return (void *)ht_bin[3];
1008 }
94d23bb9 1009 u_int page=get_page(vaddr);
57871462 1010 struct ll_entry *head;
1011 head=jump_in[page];
1012 while(head!=NULL) {
1013 if(head->vaddr==vaddr&&head->reg32==0) {
1014 if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1015 // Update existing entry with current address
1016 if(ht_bin[0]==vaddr) {
1017 ht_bin[1]=(int)head->addr;
1018 return head->addr;
1019 }
1020 if(ht_bin[2]==vaddr) {
1021 ht_bin[3]=(int)head->addr;
1022 return head->addr;
1023 }
1024 // Insert into hash table with low priority.
1025 // Don't evict existing entries, as they are probably
1026 // addresses that are being accessed frequently.
1027 if(ht_bin[0]==-1) {
1028 ht_bin[1]=(int)head->addr;
1029 ht_bin[0]=vaddr;
1030 }else if(ht_bin[2]==-1) {
1031 ht_bin[3]=(int)head->addr;
1032 ht_bin[2]=vaddr;
1033 }
1034 return head->addr;
1035 }
1036 }
1037 head=head->next;
1038 }
1039 return 0;
1040}
1041
1042void remove_hash(int vaddr)
1043{
1044 //printf("remove hash: %x\n",vaddr);
1045 int *ht_bin=hash_table[(((vaddr)>>16)^vaddr)&0xFFFF];
1046 if(ht_bin[2]==vaddr) {
1047 ht_bin[2]=ht_bin[3]=-1;
1048 }
1049 if(ht_bin[0]==vaddr) {
1050 ht_bin[0]=ht_bin[2];
1051 ht_bin[1]=ht_bin[3];
1052 ht_bin[2]=ht_bin[3]=-1;
1053 }
1054}
1055
1056void ll_remove_matching_addrs(struct ll_entry **head,int addr,int shift)
1057{
1058 struct ll_entry *next;
1059 while(*head) {
1060 if(((u_int)((*head)->addr)>>shift)==(addr>>shift) ||
1061 ((u_int)((*head)->addr-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(addr>>shift))
1062 {
1063 inv_debug("EXP: Remove pointer to %x (%x)\n",(int)(*head)->addr,(*head)->vaddr);
1064 remove_hash((*head)->vaddr);
1065 next=(*head)->next;
1066 free(*head);
1067 *head=next;
1068 }
1069 else
1070 {
1071 head=&((*head)->next);
1072 }
1073 }
1074}
1075
1076// Remove all entries from linked list
1077void ll_clear(struct ll_entry **head)
1078{
1079 struct ll_entry *cur;
1080 struct ll_entry *next;
1081 if(cur=*head) {
1082 *head=0;
1083 while(cur) {
1084 next=cur->next;
1085 free(cur);
1086 cur=next;
1087 }
1088 }
1089}
1090
1091// Dereference the pointers and remove if it matches
1092void ll_kill_pointers(struct ll_entry *head,int addr,int shift)
1093{
1094 while(head) {
1095 int ptr=get_pointer(head->addr);
1096 inv_debug("EXP: Lookup pointer to %x at %x (%x)\n",(int)ptr,(int)head->addr,head->vaddr);
1097 if(((ptr>>shift)==(addr>>shift)) ||
1098 (((ptr-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(addr>>shift)))
1099 {
5088bb70 1100 inv_debug("EXP: Kill pointer at %x (%x)\n",(int)head->addr,head->vaddr);
f76eeef9 1101 u_int host_addr=(u_int)kill_pointer(head->addr);
dd3a91a1 1102 #ifdef __arm__
1103 needs_clear_cache[(host_addr-(u_int)BASE_ADDR)>>17]|=1<<(((host_addr-(u_int)BASE_ADDR)>>12)&31);
1104 #endif
57871462 1105 }
1106 head=head->next;
1107 }
1108}
1109
1110// This is called when we write to a compiled block (see do_invstub)
f76eeef9 1111void invalidate_page(u_int page)
57871462 1112{
57871462 1113 struct ll_entry *head;
1114 struct ll_entry *next;
1115 head=jump_in[page];
1116 jump_in[page]=0;
1117 while(head!=NULL) {
1118 inv_debug("INVALIDATE: %x\n",head->vaddr);
1119 remove_hash(head->vaddr);
1120 next=head->next;
1121 free(head);
1122 head=next;
1123 }
1124 head=jump_out[page];
1125 jump_out[page]=0;
1126 while(head!=NULL) {
1127 inv_debug("INVALIDATE: kill pointer to %x (%x)\n",head->vaddr,(int)head->addr);
f76eeef9 1128 u_int host_addr=(u_int)kill_pointer(head->addr);
dd3a91a1 1129 #ifdef __arm__
1130 needs_clear_cache[(host_addr-(u_int)BASE_ADDR)>>17]|=1<<(((host_addr-(u_int)BASE_ADDR)>>12)&31);
1131 #endif
57871462 1132 next=head->next;
1133 free(head);
1134 head=next;
1135 }
57871462 1136}
9be4ba64 1137
1138static void invalidate_block_range(u_int block, u_int first, u_int last)
57871462 1139{
94d23bb9 1140 u_int page=get_page(block<<12);
57871462 1141 //printf("first=%d last=%d\n",first,last);
f76eeef9 1142 invalidate_page(page);
57871462 1143 assert(first+5>page); // NB: this assumes MAXBLOCK<=4096 (4 pages)
1144 assert(last<page+5);
1145 // Invalidate the adjacent pages if a block crosses a 4K boundary
1146 while(first<page) {
1147 invalidate_page(first);
1148 first++;
1149 }
1150 for(first=page+1;first<last;first++) {
1151 invalidate_page(first);
1152 }
dd3a91a1 1153 #ifdef __arm__
1154 do_clear_cache();
1155 #endif
57871462 1156
1157 // Don't trap writes
1158 invalid_code[block]=1;
94d23bb9 1159#ifndef DISABLE_TLB
57871462 1160 // If there is a valid TLB entry for this page, remove write protect
1161 if(tlb_LUT_w[block]) {
1162 assert(tlb_LUT_r[block]==tlb_LUT_w[block]);
1163 // CHECK: Is this right?
1164 memory_map[block]=((tlb_LUT_w[block]&0xFFFFF000)-(block<<12)+(unsigned int)rdram-0x80000000)>>2;
1165 u_int real_block=tlb_LUT_w[block]>>12;
1166 invalid_code[real_block]=1;
1167 if(real_block>=0x80000&&real_block<0x80800) memory_map[real_block]=((u_int)rdram-0x80000000)>>2;
1168 }
1169 else if(block>=0x80000&&block<0x80800) memory_map[block]=((u_int)rdram-0x80000000)>>2;
94d23bb9 1170#endif
f76eeef9 1171
57871462 1172 #ifdef USE_MINI_HT
1173 memset(mini_ht,-1,sizeof(mini_ht));
1174 #endif
1175}
9be4ba64 1176
1177void invalidate_block(u_int block)
1178{
1179 u_int page=get_page(block<<12);
1180 u_int vpage=get_vpage(block<<12);
1181 inv_debug("INVALIDATE: %x (%d)\n",block<<12,page);
1182 //inv_debug("invalid_code[block]=%d\n",invalid_code[block]);
1183 u_int first,last;
1184 first=last=page;
1185 struct ll_entry *head;
1186 head=jump_dirty[vpage];
1187 //printf("page=%d vpage=%d\n",page,vpage);
1188 while(head!=NULL) {
1189 u_int start,end;
1190 if(vpage>2047||(head->vaddr>>12)==block) { // Ignore vaddr hash collision
1191 get_bounds((int)head->addr,&start,&end);
1192 //printf("start: %x end: %x\n",start,end);
1193 if(page<2048&&start>=0x80000000&&end<0x80000000+RAM_SIZE) {
1194 if(((start-(u_int)rdram)>>12)<=page&&((end-1-(u_int)rdram)>>12)>=page) {
1195 if((((start-(u_int)rdram)>>12)&2047)<first) first=((start-(u_int)rdram)>>12)&2047;
1196 if((((end-1-(u_int)rdram)>>12)&2047)>last) last=((end-1-(u_int)rdram)>>12)&2047;
1197 }
1198 }
1199#ifndef DISABLE_TLB
1200 if(page<2048&&(signed int)start>=(signed int)0xC0000000&&(signed int)end>=(signed int)0xC0000000) {
1201 if(((start+memory_map[start>>12]-(u_int)rdram)>>12)<=page&&((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)>=page) {
1202 if((((start+memory_map[start>>12]-(u_int)rdram)>>12)&2047)<first) first=((start+memory_map[start>>12]-(u_int)rdram)>>12)&2047;
1203 if((((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)&2047)>last) last=((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)&2047;
1204 }
1205 }
1206#endif
1207 }
1208 head=head->next;
1209 }
1210 invalidate_block_range(block,first,last);
1211}
1212
57871462 1213void invalidate_addr(u_int addr)
1214{
9be4ba64 1215#ifdef PCSX
1216 //static int rhits;
1217 // this check is done by the caller
1218 //if (inv_code_start<=addr&&addr<=inv_code_end) { rhits++; return; }
1219 u_int page=get_page(addr);
1220 if(page<2048) { // RAM
1221 struct ll_entry *head;
1222 u_int addr_min=~0, addr_max=0;
1223 int mask=RAM_SIZE-1;
1224 int pg1;
1225 inv_code_start=addr&~0xfff;
1226 inv_code_end=addr|0xfff;
1227 pg1=page;
1228 if (pg1>0) {
1229 // must check previous page too because of spans..
1230 pg1--;
1231 inv_code_start-=0x1000;
1232 }
1233 for(;pg1<=page;pg1++) {
1234 for(head=jump_dirty[pg1];head!=NULL;head=head->next) {
1235 u_int start,end;
1236 get_bounds((int)head->addr,&start,&end);
1237 if((start&mask)<=(addr&mask)&&(addr&mask)<(end&mask)) {
1238 if(start<addr_min) addr_min=start;
1239 if(end>addr_max) addr_max=end;
1240 }
1241 else if(addr<start) {
1242 if(start<inv_code_end)
1243 inv_code_end=start-1;
1244 }
1245 else {
1246 if(end>inv_code_start)
1247 inv_code_start=end;
1248 }
1249 }
1250 }
1251 if (addr_min!=~0) {
1252 inv_debug("INV ADDR: %08x hit %08x-%08x\n", addr, addr_min, addr_max);
1253 inv_code_start=inv_code_end=~0;
1254 invalidate_block_range(addr>>12,(addr_min&mask)>>12,(addr_max&mask)>>12);
1255 return;
1256 }
1257 else {
1258 inv_debug("INV ADDR: %08x miss, inv %08x-%08x, sk %d\n", addr, inv_code_start, inv_code_end, 0);//rhits);
1259 }
1260 //rhits=0;
1261 if(page!=0) // FIXME: don't know what's up with page 0 (Klonoa)
1262 return;
1263 }
1264#endif
57871462 1265 invalidate_block(addr>>12);
1266}
9be4ba64 1267
dd3a91a1 1268// This is called when loading a save state.
1269// Anything could have changed, so invalidate everything.
57871462 1270void invalidate_all_pages()
1271{
1272 u_int page,n;
1273 for(page=0;page<4096;page++)
1274 invalidate_page(page);
1275 for(page=0;page<1048576;page++)
1276 if(!invalid_code[page]) {
1277 restore_candidate[(page&2047)>>3]|=1<<(page&7);
1278 restore_candidate[((page&2047)>>3)+256]|=1<<(page&7);
1279 }
1280 #ifdef __arm__
1281 __clear_cache((void *)BASE_ADDR,(void *)BASE_ADDR+(1<<TARGET_SIZE_2));
1282 #endif
1283 #ifdef USE_MINI_HT
1284 memset(mini_ht,-1,sizeof(mini_ht));
1285 #endif
94d23bb9 1286 #ifndef DISABLE_TLB
57871462 1287 // TLB
1288 for(page=0;page<0x100000;page++) {
1289 if(tlb_LUT_r[page]) {
1290 memory_map[page]=((tlb_LUT_r[page]&0xFFFFF000)-(page<<12)+(unsigned int)rdram-0x80000000)>>2;
1291 if(!tlb_LUT_w[page]||!invalid_code[page])
1292 memory_map[page]|=0x40000000; // Write protect
1293 }
1294 else memory_map[page]=-1;
1295 if(page==0x80000) page=0xC0000;
1296 }
1297 tlb_hacks();
94d23bb9 1298 #endif
57871462 1299}
1300
1301// Add an entry to jump_out after making a link
1302void add_link(u_int vaddr,void *src)
1303{
94d23bb9 1304 u_int page=get_page(vaddr);
57871462 1305 inv_debug("add_link: %x -> %x (%d)\n",(int)src,vaddr,page);
76f71c27 1306 int *ptr=(int *)(src+4);
1307 assert((*ptr&0x0fff0000)==0x059f0000);
57871462 1308 ll_add(jump_out+page,vaddr,src);
1309 //int ptr=get_pointer(src);
1310 //inv_debug("add_link: Pointer is to %x\n",(int)ptr);
1311}
1312
1313// If a code block was found to be unmodified (bit was set in
1314// restore_candidate) and it remains unmodified (bit is clear
1315// in invalid_code) then move the entries for that 4K page from
1316// the dirty list to the clean list.
1317void clean_blocks(u_int page)
1318{
1319 struct ll_entry *head;
1320 inv_debug("INV: clean_blocks page=%d\n",page);
1321 head=jump_dirty[page];
1322 while(head!=NULL) {
1323 if(!invalid_code[head->vaddr>>12]) {
1324 // Don't restore blocks which are about to expire from the cache
1325 if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1326 u_int start,end;
1327 if(verify_dirty((int)head->addr)) {
1328 //printf("Possibly Restore %x (%x)\n",head->vaddr, (int)head->addr);
1329 u_int i;
1330 u_int inv=0;
1331 get_bounds((int)head->addr,&start,&end);
4cb76aa4 1332 if(start-(u_int)rdram<RAM_SIZE) {
57871462 1333 for(i=(start-(u_int)rdram+0x80000000)>>12;i<=(end-1-(u_int)rdram+0x80000000)>>12;i++) {
1334 inv|=invalid_code[i];
1335 }
1336 }
1337 if((signed int)head->vaddr>=(signed int)0xC0000000) {
1338 u_int addr = (head->vaddr+(memory_map[head->vaddr>>12]<<2));
1339 //printf("addr=%x start=%x end=%x\n",addr,start,end);
1340 if(addr<start||addr>=end) inv=1;
1341 }
4cb76aa4 1342 else if((signed int)head->vaddr>=(signed int)0x80000000+RAM_SIZE) {
57871462 1343 inv=1;
1344 }
1345 if(!inv) {
1346 void * clean_addr=(void *)get_clean_addr((int)head->addr);
1347 if((((u_int)clean_addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1348 u_int ppage=page;
94d23bb9 1349#ifndef DISABLE_TLB
57871462 1350 if(page<2048&&tlb_LUT_r[head->vaddr>>12]) ppage=(tlb_LUT_r[head->vaddr>>12]^0x80000000)>>12;
94d23bb9 1351#endif
57871462 1352 inv_debug("INV: Restored %x (%x/%x)\n",head->vaddr, (int)head->addr, (int)clean_addr);
1353 //printf("page=%x, addr=%x\n",page,head->vaddr);
1354 //assert(head->vaddr>>12==(page|0x80000));
1355 ll_add_32(jump_in+ppage,head->vaddr,head->reg32,clean_addr);
1356 int *ht_bin=hash_table[((head->vaddr>>16)^head->vaddr)&0xFFFF];
1357 if(!head->reg32) {
1358 if(ht_bin[0]==head->vaddr) {
1359 ht_bin[1]=(int)clean_addr; // Replace existing entry
1360 }
1361 if(ht_bin[2]==head->vaddr) {
1362 ht_bin[3]=(int)clean_addr; // Replace existing entry
1363 }
1364 }
1365 }
1366 }
1367 }
1368 }
1369 }
1370 head=head->next;
1371 }
1372}
1373
1374
1375void mov_alloc(struct regstat *current,int i)
1376{
1377 // Note: Don't need to actually alloc the source registers
1378 if((~current->is32>>rs1[i])&1) {
1379 //alloc_reg64(current,i,rs1[i]);
1380 alloc_reg64(current,i,rt1[i]);
1381 current->is32&=~(1LL<<rt1[i]);
1382 } else {
1383 //alloc_reg(current,i,rs1[i]);
1384 alloc_reg(current,i,rt1[i]);
1385 current->is32|=(1LL<<rt1[i]);
1386 }
1387 clear_const(current,rs1[i]);
1388 clear_const(current,rt1[i]);
1389 dirty_reg(current,rt1[i]);
1390}
1391
1392void shiftimm_alloc(struct regstat *current,int i)
1393{
1394 clear_const(current,rs1[i]);
1395 clear_const(current,rt1[i]);
1396 if(opcode2[i]<=0x3) // SLL/SRL/SRA
1397 {
1398 if(rt1[i]) {
1399 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1400 else lt1[i]=rs1[i];
1401 alloc_reg(current,i,rt1[i]);
1402 current->is32|=1LL<<rt1[i];
1403 dirty_reg(current,rt1[i]);
1404 }
1405 }
1406 if(opcode2[i]>=0x38&&opcode2[i]<=0x3b) // DSLL/DSRL/DSRA
1407 {
1408 if(rt1[i]) {
1409 if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1410 alloc_reg64(current,i,rt1[i]);
1411 current->is32&=~(1LL<<rt1[i]);
1412 dirty_reg(current,rt1[i]);
1413 }
1414 }
1415 if(opcode2[i]==0x3c) // DSLL32
1416 {
1417 if(rt1[i]) {
1418 if(rs1[i]) alloc_reg(current,i,rs1[i]);
1419 alloc_reg64(current,i,rt1[i]);
1420 current->is32&=~(1LL<<rt1[i]);
1421 dirty_reg(current,rt1[i]);
1422 }
1423 }
1424 if(opcode2[i]==0x3e) // DSRL32
1425 {
1426 if(rt1[i]) {
1427 alloc_reg64(current,i,rs1[i]);
1428 if(imm[i]==32) {
1429 alloc_reg64(current,i,rt1[i]);
1430 current->is32&=~(1LL<<rt1[i]);
1431 } else {
1432 alloc_reg(current,i,rt1[i]);
1433 current->is32|=1LL<<rt1[i];
1434 }
1435 dirty_reg(current,rt1[i]);
1436 }
1437 }
1438 if(opcode2[i]==0x3f) // DSRA32
1439 {
1440 if(rt1[i]) {
1441 alloc_reg64(current,i,rs1[i]);
1442 alloc_reg(current,i,rt1[i]);
1443 current->is32|=1LL<<rt1[i];
1444 dirty_reg(current,rt1[i]);
1445 }
1446 }
1447}
1448
1449void shift_alloc(struct regstat *current,int i)
1450{
1451 if(rt1[i]) {
1452 if(opcode2[i]<=0x07) // SLLV/SRLV/SRAV
1453 {
1454 if(rs1[i]) alloc_reg(current,i,rs1[i]);
1455 if(rs2[i]) alloc_reg(current,i,rs2[i]);
1456 alloc_reg(current,i,rt1[i]);
e1190b87 1457 if(rt1[i]==rs2[i]) {
1458 alloc_reg_temp(current,i,-1);
1459 minimum_free_regs[i]=1;
1460 }
57871462 1461 current->is32|=1LL<<rt1[i];
1462 } else { // DSLLV/DSRLV/DSRAV
1463 if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1464 if(rs2[i]) alloc_reg(current,i,rs2[i]);
1465 alloc_reg64(current,i,rt1[i]);
1466 current->is32&=~(1LL<<rt1[i]);
1467 if(opcode2[i]==0x16||opcode2[i]==0x17) // DSRLV and DSRAV need a temporary register
e1190b87 1468 {
57871462 1469 alloc_reg_temp(current,i,-1);
e1190b87 1470 minimum_free_regs[i]=1;
1471 }
57871462 1472 }
1473 clear_const(current,rs1[i]);
1474 clear_const(current,rs2[i]);
1475 clear_const(current,rt1[i]);
1476 dirty_reg(current,rt1[i]);
1477 }
1478}
1479
1480void alu_alloc(struct regstat *current,int i)
1481{
1482 if(opcode2[i]>=0x20&&opcode2[i]<=0x23) { // ADD/ADDU/SUB/SUBU
1483 if(rt1[i]) {
1484 if(rs1[i]&&rs2[i]) {
1485 alloc_reg(current,i,rs1[i]);
1486 alloc_reg(current,i,rs2[i]);
1487 }
1488 else {
1489 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1490 if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg(current,i,rs2[i]);
1491 }
1492 alloc_reg(current,i,rt1[i]);
1493 }
1494 current->is32|=1LL<<rt1[i];
1495 }
1496 if(opcode2[i]==0x2a||opcode2[i]==0x2b) { // SLT/SLTU
1497 if(rt1[i]) {
1498 if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1499 {
1500 alloc_reg64(current,i,rs1[i]);
1501 alloc_reg64(current,i,rs2[i]);
1502 alloc_reg(current,i,rt1[i]);
1503 } else {
1504 alloc_reg(current,i,rs1[i]);
1505 alloc_reg(current,i,rs2[i]);
1506 alloc_reg(current,i,rt1[i]);
1507 }
1508 }
1509 current->is32|=1LL<<rt1[i];
1510 }
1511 if(opcode2[i]>=0x24&&opcode2[i]<=0x27) { // AND/OR/XOR/NOR
1512 if(rt1[i]) {
1513 if(rs1[i]&&rs2[i]) {
1514 alloc_reg(current,i,rs1[i]);
1515 alloc_reg(current,i,rs2[i]);
1516 }
1517 else
1518 {
1519 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1520 if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg(current,i,rs2[i]);
1521 }
1522 alloc_reg(current,i,rt1[i]);
1523 if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1524 {
1525 if(!((current->uu>>rt1[i])&1)) {
1526 alloc_reg64(current,i,rt1[i]);
1527 }
1528 if(get_reg(current->regmap,rt1[i]|64)>=0) {
1529 if(rs1[i]&&rs2[i]) {
1530 alloc_reg64(current,i,rs1[i]);
1531 alloc_reg64(current,i,rs2[i]);
1532 }
1533 else
1534 {
1535 // Is is really worth it to keep 64-bit values in registers?
1536 #ifdef NATIVE_64BIT
1537 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg64(current,i,rs1[i]);
1538 if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg64(current,i,rs2[i]);
1539 #endif
1540 }
1541 }
1542 current->is32&=~(1LL<<rt1[i]);
1543 } else {
1544 current->is32|=1LL<<rt1[i];
1545 }
1546 }
1547 }
1548 if(opcode2[i]>=0x2c&&opcode2[i]<=0x2f) { // DADD/DADDU/DSUB/DSUBU
1549 if(rt1[i]) {
1550 if(rs1[i]&&rs2[i]) {
1551 if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1552 alloc_reg64(current,i,rs1[i]);
1553 alloc_reg64(current,i,rs2[i]);
1554 alloc_reg64(current,i,rt1[i]);
1555 } else {
1556 alloc_reg(current,i,rs1[i]);
1557 alloc_reg(current,i,rs2[i]);
1558 alloc_reg(current,i,rt1[i]);
1559 }
1560 }
1561 else {
1562 alloc_reg(current,i,rt1[i]);
1563 if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1564 // DADD used as move, or zeroing
1565 // If we have a 64-bit source, then make the target 64 bits too
1566 if(rs1[i]&&!((current->is32>>rs1[i])&1)) {
1567 if(get_reg(current->regmap,rs1[i])>=0) alloc_reg64(current,i,rs1[i]);
1568 alloc_reg64(current,i,rt1[i]);
1569 } else if(rs2[i]&&!((current->is32>>rs2[i])&1)) {
1570 if(get_reg(current->regmap,rs2[i])>=0) alloc_reg64(current,i,rs2[i]);
1571 alloc_reg64(current,i,rt1[i]);
1572 }
1573 if(opcode2[i]>=0x2e&&rs2[i]) {
1574 // DSUB used as negation - 64-bit result
1575 // If we have a 32-bit register, extend it to 64 bits
1576 if(get_reg(current->regmap,rs2[i])>=0) alloc_reg64(current,i,rs2[i]);
1577 alloc_reg64(current,i,rt1[i]);
1578 }
1579 }
1580 }
1581 if(rs1[i]&&rs2[i]) {
1582 current->is32&=~(1LL<<rt1[i]);
1583 } else if(rs1[i]) {
1584 current->is32&=~(1LL<<rt1[i]);
1585 if((current->is32>>rs1[i])&1)
1586 current->is32|=1LL<<rt1[i];
1587 } else if(rs2[i]) {
1588 current->is32&=~(1LL<<rt1[i]);
1589 if((current->is32>>rs2[i])&1)
1590 current->is32|=1LL<<rt1[i];
1591 } else {
1592 current->is32|=1LL<<rt1[i];
1593 }
1594 }
1595 }
1596 clear_const(current,rs1[i]);
1597 clear_const(current,rs2[i]);
1598 clear_const(current,rt1[i]);
1599 dirty_reg(current,rt1[i]);
1600}
1601
1602void imm16_alloc(struct regstat *current,int i)
1603{
1604 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1605 else lt1[i]=rs1[i];
1606 if(rt1[i]) alloc_reg(current,i,rt1[i]);
1607 if(opcode[i]==0x18||opcode[i]==0x19) { // DADDI/DADDIU
1608 current->is32&=~(1LL<<rt1[i]);
1609 if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1610 // TODO: Could preserve the 32-bit flag if the immediate is zero
1611 alloc_reg64(current,i,rt1[i]);
1612 alloc_reg64(current,i,rs1[i]);
1613 }
1614 clear_const(current,rs1[i]);
1615 clear_const(current,rt1[i]);
1616 }
1617 else if(opcode[i]==0x0a||opcode[i]==0x0b) { // SLTI/SLTIU
1618 if((~current->is32>>rs1[i])&1) alloc_reg64(current,i,rs1[i]);
1619 current->is32|=1LL<<rt1[i];
1620 clear_const(current,rs1[i]);
1621 clear_const(current,rt1[i]);
1622 }
1623 else if(opcode[i]>=0x0c&&opcode[i]<=0x0e) { // ANDI/ORI/XORI
1624 if(((~current->is32>>rs1[i])&1)&&opcode[i]>0x0c) {
1625 if(rs1[i]!=rt1[i]) {
1626 if(needed_again(rs1[i],i)) alloc_reg64(current,i,rs1[i]);
1627 alloc_reg64(current,i,rt1[i]);
1628 current->is32&=~(1LL<<rt1[i]);
1629 }
1630 }
1631 else current->is32|=1LL<<rt1[i]; // ANDI clears upper bits
1632 if(is_const(current,rs1[i])) {
1633 int v=get_const(current,rs1[i]);
1634 if(opcode[i]==0x0c) set_const(current,rt1[i],v&imm[i]);
1635 if(opcode[i]==0x0d) set_const(current,rt1[i],v|imm[i]);
1636 if(opcode[i]==0x0e) set_const(current,rt1[i],v^imm[i]);
1637 }
1638 else clear_const(current,rt1[i]);
1639 }
1640 else if(opcode[i]==0x08||opcode[i]==0x09) { // ADDI/ADDIU
1641 if(is_const(current,rs1[i])) {
1642 int v=get_const(current,rs1[i]);
1643 set_const(current,rt1[i],v+imm[i]);
1644 }
1645 else clear_const(current,rt1[i]);
1646 current->is32|=1LL<<rt1[i];
1647 }
1648 else {
1649 set_const(current,rt1[i],((long long)((short)imm[i]))<<16); // LUI
1650 current->is32|=1LL<<rt1[i];
1651 }
1652 dirty_reg(current,rt1[i]);
1653}
1654
1655void load_alloc(struct regstat *current,int i)
1656{
1657 clear_const(current,rt1[i]);
1658 //if(rs1[i]!=rt1[i]&&needed_again(rs1[i],i)) clear_const(current,rs1[i]); // Does this help or hurt?
1659 if(!rs1[i]) current->u&=~1LL; // Allow allocating r0 if it's the source register
1660 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
373d1d07 1661 if(rt1[i]&&!((current->u>>rt1[i])&1)) {
57871462 1662 alloc_reg(current,i,rt1[i]);
373d1d07 1663 assert(get_reg(current->regmap,rt1[i])>=0);
57871462 1664 if(opcode[i]==0x27||opcode[i]==0x37) // LWU/LD
1665 {
1666 current->is32&=~(1LL<<rt1[i]);
1667 alloc_reg64(current,i,rt1[i]);
1668 }
1669 else if(opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
1670 {
1671 current->is32&=~(1LL<<rt1[i]);
1672 alloc_reg64(current,i,rt1[i]);
1673 alloc_all(current,i);
1674 alloc_reg64(current,i,FTEMP);
e1190b87 1675 minimum_free_regs[i]=HOST_REGS;
57871462 1676 }
1677 else current->is32|=1LL<<rt1[i];
1678 dirty_reg(current,rt1[i]);
1679 // If using TLB, need a register for pointer to the mapping table
1680 if(using_tlb) alloc_reg(current,i,TLREG);
1681 // LWL/LWR need a temporary register for the old value
1682 if(opcode[i]==0x22||opcode[i]==0x26)
1683 {
1684 alloc_reg(current,i,FTEMP);
1685 alloc_reg_temp(current,i,-1);
e1190b87 1686 minimum_free_regs[i]=1;
57871462 1687 }
1688 }
1689 else
1690 {
373d1d07 1691 // Load to r0 or unneeded register (dummy load)
57871462 1692 // but we still need a register to calculate the address
535d208a 1693 if(opcode[i]==0x22||opcode[i]==0x26)
1694 {
1695 alloc_reg(current,i,FTEMP); // LWL/LWR need another temporary
1696 }
373d1d07 1697 // If using TLB, need a register for pointer to the mapping table
1698 if(using_tlb) alloc_reg(current,i,TLREG);
57871462 1699 alloc_reg_temp(current,i,-1);
e1190b87 1700 minimum_free_regs[i]=1;
535d208a 1701 if(opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
1702 {
1703 alloc_all(current,i);
1704 alloc_reg64(current,i,FTEMP);
e1190b87 1705 minimum_free_regs[i]=HOST_REGS;
535d208a 1706 }
57871462 1707 }
1708}
1709
1710void store_alloc(struct regstat *current,int i)
1711{
1712 clear_const(current,rs2[i]);
1713 if(!(rs2[i])) current->u&=~1LL; // Allow allocating r0 if necessary
1714 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1715 alloc_reg(current,i,rs2[i]);
1716 if(opcode[i]==0x2c||opcode[i]==0x2d||opcode[i]==0x3f) { // 64-bit SDL/SDR/SD
1717 alloc_reg64(current,i,rs2[i]);
1718 if(rs2[i]) alloc_reg(current,i,FTEMP);
1719 }
1720 // If using TLB, need a register for pointer to the mapping table
1721 if(using_tlb) alloc_reg(current,i,TLREG);
1722 #if defined(HOST_IMM8)
1723 // On CPUs without 32-bit immediates we need a pointer to invalid_code
1724 else alloc_reg(current,i,INVCP);
1725 #endif
b7918751 1726 if(opcode[i]==0x2a||opcode[i]==0x2e||opcode[i]==0x2c||opcode[i]==0x2d) { // SWL/SWL/SDL/SDR
57871462 1727 alloc_reg(current,i,FTEMP);
1728 }
1729 // We need a temporary register for address generation
1730 alloc_reg_temp(current,i,-1);
e1190b87 1731 minimum_free_regs[i]=1;
57871462 1732}
1733
1734void c1ls_alloc(struct regstat *current,int i)
1735{
1736 //clear_const(current,rs1[i]); // FIXME
1737 clear_const(current,rt1[i]);
1738 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1739 alloc_reg(current,i,CSREG); // Status
1740 alloc_reg(current,i,FTEMP);
1741 if(opcode[i]==0x35||opcode[i]==0x3d) { // 64-bit LDC1/SDC1
1742 alloc_reg64(current,i,FTEMP);
1743 }
1744 // If using TLB, need a register for pointer to the mapping table
1745 if(using_tlb) alloc_reg(current,i,TLREG);
1746 #if defined(HOST_IMM8)
1747 // On CPUs without 32-bit immediates we need a pointer to invalid_code
1748 else if((opcode[i]&0x3b)==0x39) // SWC1/SDC1
1749 alloc_reg(current,i,INVCP);
1750 #endif
1751 // We need a temporary register for address generation
1752 alloc_reg_temp(current,i,-1);
1753}
1754
b9b61529 1755void c2ls_alloc(struct regstat *current,int i)
1756{
1757 clear_const(current,rt1[i]);
1758 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1759 alloc_reg(current,i,FTEMP);
1760 // If using TLB, need a register for pointer to the mapping table
1761 if(using_tlb) alloc_reg(current,i,TLREG);
1762 #if defined(HOST_IMM8)
1763 // On CPUs without 32-bit immediates we need a pointer to invalid_code
1764 else if((opcode[i]&0x3b)==0x3a) // SWC2/SDC2
1765 alloc_reg(current,i,INVCP);
1766 #endif
1767 // We need a temporary register for address generation
1768 alloc_reg_temp(current,i,-1);
e1190b87 1769 minimum_free_regs[i]=1;
b9b61529 1770}
1771
57871462 1772#ifndef multdiv_alloc
1773void multdiv_alloc(struct regstat *current,int i)
1774{
1775 // case 0x18: MULT
1776 // case 0x19: MULTU
1777 // case 0x1A: DIV
1778 // case 0x1B: DIVU
1779 // case 0x1C: DMULT
1780 // case 0x1D: DMULTU
1781 // case 0x1E: DDIV
1782 // case 0x1F: DDIVU
1783 clear_const(current,rs1[i]);
1784 clear_const(current,rs2[i]);
1785 if(rs1[i]&&rs2[i])
1786 {
1787 if((opcode2[i]&4)==0) // 32-bit
1788 {
1789 current->u&=~(1LL<<HIREG);
1790 current->u&=~(1LL<<LOREG);
1791 alloc_reg(current,i,HIREG);
1792 alloc_reg(current,i,LOREG);
1793 alloc_reg(current,i,rs1[i]);
1794 alloc_reg(current,i,rs2[i]);
1795 current->is32|=1LL<<HIREG;
1796 current->is32|=1LL<<LOREG;
1797 dirty_reg(current,HIREG);
1798 dirty_reg(current,LOREG);
1799 }
1800 else // 64-bit
1801 {
1802 current->u&=~(1LL<<HIREG);
1803 current->u&=~(1LL<<LOREG);
1804 current->uu&=~(1LL<<HIREG);
1805 current->uu&=~(1LL<<LOREG);
1806 alloc_reg64(current,i,HIREG);
1807 //if(HOST_REGS>10) alloc_reg64(current,i,LOREG);
1808 alloc_reg64(current,i,rs1[i]);
1809 alloc_reg64(current,i,rs2[i]);
1810 alloc_all(current,i);
1811 current->is32&=~(1LL<<HIREG);
1812 current->is32&=~(1LL<<LOREG);
1813 dirty_reg(current,HIREG);
1814 dirty_reg(current,LOREG);
e1190b87 1815 minimum_free_regs[i]=HOST_REGS;
57871462 1816 }
1817 }
1818 else
1819 {
1820 // Multiply by zero is zero.
1821 // MIPS does not have a divide by zero exception.
1822 // The result is undefined, we return zero.
1823 alloc_reg(current,i,HIREG);
1824 alloc_reg(current,i,LOREG);
1825 current->is32|=1LL<<HIREG;
1826 current->is32|=1LL<<LOREG;
1827 dirty_reg(current,HIREG);
1828 dirty_reg(current,LOREG);
1829 }
1830}
1831#endif
1832
1833void cop0_alloc(struct regstat *current,int i)
1834{
1835 if(opcode2[i]==0) // MFC0
1836 {
1837 if(rt1[i]) {
1838 clear_const(current,rt1[i]);
1839 alloc_all(current,i);
1840 alloc_reg(current,i,rt1[i]);
1841 current->is32|=1LL<<rt1[i];
1842 dirty_reg(current,rt1[i]);
1843 }
1844 }
1845 else if(opcode2[i]==4) // MTC0
1846 {
1847 if(rs1[i]){
1848 clear_const(current,rs1[i]);
1849 alloc_reg(current,i,rs1[i]);
1850 alloc_all(current,i);
1851 }
1852 else {
1853 alloc_all(current,i); // FIXME: Keep r0
1854 current->u&=~1LL;
1855 alloc_reg(current,i,0);
1856 }
1857 }
1858 else
1859 {
1860 // TLBR/TLBWI/TLBWR/TLBP/ERET
1861 assert(opcode2[i]==0x10);
1862 alloc_all(current,i);
1863 }
e1190b87 1864 minimum_free_regs[i]=HOST_REGS;
57871462 1865}
1866
1867void cop1_alloc(struct regstat *current,int i)
1868{
1869 alloc_reg(current,i,CSREG); // Load status
1870 if(opcode2[i]<3) // MFC1/DMFC1/CFC1
1871 {
7de557a6 1872 if(rt1[i]){
1873 clear_const(current,rt1[i]);
1874 if(opcode2[i]==1) {
1875 alloc_reg64(current,i,rt1[i]); // DMFC1
1876 current->is32&=~(1LL<<rt1[i]);
1877 }else{
1878 alloc_reg(current,i,rt1[i]); // MFC1/CFC1
1879 current->is32|=1LL<<rt1[i];
1880 }
1881 dirty_reg(current,rt1[i]);
57871462 1882 }
57871462 1883 alloc_reg_temp(current,i,-1);
1884 }
1885 else if(opcode2[i]>3) // MTC1/DMTC1/CTC1
1886 {
1887 if(rs1[i]){
1888 clear_const(current,rs1[i]);
1889 if(opcode2[i]==5)
1890 alloc_reg64(current,i,rs1[i]); // DMTC1
1891 else
1892 alloc_reg(current,i,rs1[i]); // MTC1/CTC1
1893 alloc_reg_temp(current,i,-1);
1894 }
1895 else {
1896 current->u&=~1LL;
1897 alloc_reg(current,i,0);
1898 alloc_reg_temp(current,i,-1);
1899 }
1900 }
e1190b87 1901 minimum_free_regs[i]=1;
57871462 1902}
1903void fconv_alloc(struct regstat *current,int i)
1904{
1905 alloc_reg(current,i,CSREG); // Load status
1906 alloc_reg_temp(current,i,-1);
e1190b87 1907 minimum_free_regs[i]=1;
57871462 1908}
1909void float_alloc(struct regstat *current,int i)
1910{
1911 alloc_reg(current,i,CSREG); // Load status
1912 alloc_reg_temp(current,i,-1);
e1190b87 1913 minimum_free_regs[i]=1;
57871462 1914}
b9b61529 1915void c2op_alloc(struct regstat *current,int i)
1916{
1917 alloc_reg_temp(current,i,-1);
1918}
57871462 1919void fcomp_alloc(struct regstat *current,int i)
1920{
1921 alloc_reg(current,i,CSREG); // Load status
1922 alloc_reg(current,i,FSREG); // Load flags
1923 dirty_reg(current,FSREG); // Flag will be modified
1924 alloc_reg_temp(current,i,-1);
e1190b87 1925 minimum_free_regs[i]=1;
57871462 1926}
1927
1928void syscall_alloc(struct regstat *current,int i)
1929{
1930 alloc_cc(current,i);
1931 dirty_reg(current,CCREG);
1932 alloc_all(current,i);
e1190b87 1933 minimum_free_regs[i]=HOST_REGS;
57871462 1934 current->isconst=0;
1935}
1936
1937void delayslot_alloc(struct regstat *current,int i)
1938{
1939 switch(itype[i]) {
1940 case UJUMP:
1941 case CJUMP:
1942 case SJUMP:
1943 case RJUMP:
1944 case FJUMP:
1945 case SYSCALL:
7139f3c8 1946 case HLECALL:
57871462 1947 case SPAN:
1948 assem_debug("jump in the delay slot. this shouldn't happen.\n");//exit(1);
1949 printf("Disabled speculative precompilation\n");
1950 stop_after_jal=1;
1951 break;
1952 case IMM16:
1953 imm16_alloc(current,i);
1954 break;
1955 case LOAD:
1956 case LOADLR:
1957 load_alloc(current,i);
1958 break;
1959 case STORE:
1960 case STORELR:
1961 store_alloc(current,i);
1962 break;
1963 case ALU:
1964 alu_alloc(current,i);
1965 break;
1966 case SHIFT:
1967 shift_alloc(current,i);
1968 break;
1969 case MULTDIV:
1970 multdiv_alloc(current,i);
1971 break;
1972 case SHIFTIMM:
1973 shiftimm_alloc(current,i);
1974 break;
1975 case MOV:
1976 mov_alloc(current,i);
1977 break;
1978 case COP0:
1979 cop0_alloc(current,i);
1980 break;
1981 case COP1:
b9b61529 1982 case COP2:
57871462 1983 cop1_alloc(current,i);
1984 break;
1985 case C1LS:
1986 c1ls_alloc(current,i);
1987 break;
b9b61529 1988 case C2LS:
1989 c2ls_alloc(current,i);
1990 break;
57871462 1991 case FCONV:
1992 fconv_alloc(current,i);
1993 break;
1994 case FLOAT:
1995 float_alloc(current,i);
1996 break;
1997 case FCOMP:
1998 fcomp_alloc(current,i);
1999 break;
b9b61529 2000 case C2OP:
2001 c2op_alloc(current,i);
2002 break;
57871462 2003 }
2004}
2005
2006// Special case where a branch and delay slot span two pages in virtual memory
2007static void pagespan_alloc(struct regstat *current,int i)
2008{
2009 current->isconst=0;
2010 current->wasconst=0;
2011 regs[i].wasconst=0;
e1190b87 2012 minimum_free_regs[i]=HOST_REGS;
57871462 2013 alloc_all(current,i);
2014 alloc_cc(current,i);
2015 dirty_reg(current,CCREG);
2016 if(opcode[i]==3) // JAL
2017 {
2018 alloc_reg(current,i,31);
2019 dirty_reg(current,31);
2020 }
2021 if(opcode[i]==0&&(opcode2[i]&0x3E)==8) // JR/JALR
2022 {
2023 alloc_reg(current,i,rs1[i]);
5067f341 2024 if (rt1[i]!=0) {
2025 alloc_reg(current,i,rt1[i]);
2026 dirty_reg(current,rt1[i]);
57871462 2027 }
2028 }
2029 if((opcode[i]&0x2E)==4) // BEQ/BNE/BEQL/BNEL
2030 {
2031 if(rs1[i]) alloc_reg(current,i,rs1[i]);
2032 if(rs2[i]) alloc_reg(current,i,rs2[i]);
2033 if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
2034 {
2035 if(rs1[i]) alloc_reg64(current,i,rs1[i]);
2036 if(rs2[i]) alloc_reg64(current,i,rs2[i]);
2037 }
2038 }
2039 else
2040 if((opcode[i]&0x2E)==6) // BLEZ/BGTZ/BLEZL/BGTZL
2041 {
2042 if(rs1[i]) alloc_reg(current,i,rs1[i]);
2043 if(!((current->is32>>rs1[i])&1))
2044 {
2045 if(rs1[i]) alloc_reg64(current,i,rs1[i]);
2046 }
2047 }
2048 else
2049 if(opcode[i]==0x11) // BC1
2050 {
2051 alloc_reg(current,i,FSREG);
2052 alloc_reg(current,i,CSREG);
2053 }
2054 //else ...
2055}
2056
2057add_stub(int type,int addr,int retaddr,int a,int b,int c,int d,int e)
2058{
2059 stubs[stubcount][0]=type;
2060 stubs[stubcount][1]=addr;
2061 stubs[stubcount][2]=retaddr;
2062 stubs[stubcount][3]=a;
2063 stubs[stubcount][4]=b;
2064 stubs[stubcount][5]=c;
2065 stubs[stubcount][6]=d;
2066 stubs[stubcount][7]=e;
2067 stubcount++;
2068}
2069
2070// Write out a single register
2071void wb_register(signed char r,signed char regmap[],uint64_t dirty,uint64_t is32)
2072{
2073 int hr;
2074 for(hr=0;hr<HOST_REGS;hr++) {
2075 if(hr!=EXCLUDE_REG) {
2076 if((regmap[hr]&63)==r) {
2077 if((dirty>>hr)&1) {
2078 if(regmap[hr]<64) {
2079 emit_storereg(r,hr);
24385cae 2080#ifndef FORCE32
57871462 2081 if((is32>>regmap[hr])&1) {
2082 emit_sarimm(hr,31,hr);
2083 emit_storereg(r|64,hr);
2084 }
24385cae 2085#endif
57871462 2086 }else{
2087 emit_storereg(r|64,hr);
2088 }
2089 }
2090 }
2091 }
2092 }
2093}
2094
2095int mchecksum()
2096{
2097 //if(!tracedebug) return 0;
2098 int i;
2099 int sum=0;
2100 for(i=0;i<2097152;i++) {
2101 unsigned int temp=sum;
2102 sum<<=1;
2103 sum|=(~temp)>>31;
2104 sum^=((u_int *)rdram)[i];
2105 }
2106 return sum;
2107}
2108int rchecksum()
2109{
2110 int i;
2111 int sum=0;
2112 for(i=0;i<64;i++)
2113 sum^=((u_int *)reg)[i];
2114 return sum;
2115}
57871462 2116void rlist()
2117{
2118 int i;
2119 printf("TRACE: ");
2120 for(i=0;i<32;i++)
2121 printf("r%d:%8x%8x ",i,((int *)(reg+i))[1],((int *)(reg+i))[0]);
2122 printf("\n");
3d624f89 2123#ifndef DISABLE_COP1
57871462 2124 printf("TRACE: ");
2125 for(i=0;i<32;i++)
2126 printf("f%d:%8x%8x ",i,((int*)reg_cop1_simple[i])[1],*((int*)reg_cop1_simple[i]));
2127 printf("\n");
3d624f89 2128#endif
57871462 2129}
2130
2131void enabletrace()
2132{
2133 tracedebug=1;
2134}
2135
2136void memdebug(int i)
2137{
2138 //printf("TRACE: count=%d next=%d (checksum %x) lo=%8x%8x\n",Count,next_interupt,mchecksum(),(int)(reg[LOREG]>>32),(int)reg[LOREG]);
2139 //printf("TRACE: count=%d next=%d (rchecksum %x)\n",Count,next_interupt,rchecksum());
2140 //rlist();
2141 //if(tracedebug) {
2142 //if(Count>=-2084597794) {
2143 if((signed int)Count>=-2084597794&&(signed int)Count<0) {
2144 //if(0) {
2145 printf("TRACE: count=%d next=%d (checksum %x)\n",Count,next_interupt,mchecksum());
2146 //printf("TRACE: count=%d next=%d (checksum %x) Status=%x\n",Count,next_interupt,mchecksum(),Status);
2147 //printf("TRACE: count=%d next=%d (checksum %x) hi=%8x%8x\n",Count,next_interupt,mchecksum(),(int)(reg[HIREG]>>32),(int)reg[HIREG]);
2148 rlist();
2149 #ifdef __i386__
2150 printf("TRACE: %x\n",(&i)[-1]);
2151 #endif
2152 #ifdef __arm__
2153 int j;
2154 printf("TRACE: %x \n",(&j)[10]);
2155 printf("TRACE: %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x\n",(&j)[1],(&j)[2],(&j)[3],(&j)[4],(&j)[5],(&j)[6],(&j)[7],(&j)[8],(&j)[9],(&j)[10],(&j)[11],(&j)[12],(&j)[13],(&j)[14],(&j)[15],(&j)[16],(&j)[17],(&j)[18],(&j)[19],(&j)[20]);
2156 #endif
2157 //fflush(stdout);
2158 }
2159 //printf("TRACE: %x\n",(&i)[-1]);
2160}
2161
2162void tlb_debug(u_int cause, u_int addr, u_int iaddr)
2163{
2164 printf("TLB Exception: instruction=%x addr=%x cause=%x\n",iaddr, addr, cause);
2165}
2166
2167void alu_assemble(int i,struct regstat *i_regs)
2168{
2169 if(opcode2[i]>=0x20&&opcode2[i]<=0x23) { // ADD/ADDU/SUB/SUBU
2170 if(rt1[i]) {
2171 signed char s1,s2,t;
2172 t=get_reg(i_regs->regmap,rt1[i]);
2173 if(t>=0) {
2174 s1=get_reg(i_regs->regmap,rs1[i]);
2175 s2=get_reg(i_regs->regmap,rs2[i]);
2176 if(rs1[i]&&rs2[i]) {
2177 assert(s1>=0);
2178 assert(s2>=0);
2179 if(opcode2[i]&2) emit_sub(s1,s2,t);
2180 else emit_add(s1,s2,t);
2181 }
2182 else if(rs1[i]) {
2183 if(s1>=0) emit_mov(s1,t);
2184 else emit_loadreg(rs1[i],t);
2185 }
2186 else if(rs2[i]) {
2187 if(s2>=0) {
2188 if(opcode2[i]&2) emit_neg(s2,t);
2189 else emit_mov(s2,t);
2190 }
2191 else {
2192 emit_loadreg(rs2[i],t);
2193 if(opcode2[i]&2) emit_neg(t,t);
2194 }
2195 }
2196 else emit_zeroreg(t);
2197 }
2198 }
2199 }
2200 if(opcode2[i]>=0x2c&&opcode2[i]<=0x2f) { // DADD/DADDU/DSUB/DSUBU
2201 if(rt1[i]) {
2202 signed char s1l,s2l,s1h,s2h,tl,th;
2203 tl=get_reg(i_regs->regmap,rt1[i]);
2204 th=get_reg(i_regs->regmap,rt1[i]|64);
2205 if(tl>=0) {
2206 s1l=get_reg(i_regs->regmap,rs1[i]);
2207 s2l=get_reg(i_regs->regmap,rs2[i]);
2208 s1h=get_reg(i_regs->regmap,rs1[i]|64);
2209 s2h=get_reg(i_regs->regmap,rs2[i]|64);
2210 if(rs1[i]&&rs2[i]) {
2211 assert(s1l>=0);
2212 assert(s2l>=0);
2213 if(opcode2[i]&2) emit_subs(s1l,s2l,tl);
2214 else emit_adds(s1l,s2l,tl);
2215 if(th>=0) {
2216 #ifdef INVERTED_CARRY
2217 if(opcode2[i]&2) {if(s1h!=th) emit_mov(s1h,th);emit_sbb(th,s2h);}
2218 #else
2219 if(opcode2[i]&2) emit_sbc(s1h,s2h,th);
2220 #endif
2221 else emit_add(s1h,s2h,th);
2222 }
2223 }
2224 else if(rs1[i]) {
2225 if(s1l>=0) emit_mov(s1l,tl);
2226 else emit_loadreg(rs1[i],tl);
2227 if(th>=0) {
2228 if(s1h>=0) emit_mov(s1h,th);
2229 else emit_loadreg(rs1[i]|64,th);
2230 }
2231 }
2232 else if(rs2[i]) {
2233 if(s2l>=0) {
2234 if(opcode2[i]&2) emit_negs(s2l,tl);
2235 else emit_mov(s2l,tl);
2236 }
2237 else {
2238 emit_loadreg(rs2[i],tl);
2239 if(opcode2[i]&2) emit_negs(tl,tl);
2240 }
2241 if(th>=0) {
2242 #ifdef INVERTED_CARRY
2243 if(s2h>=0) emit_mov(s2h,th);
2244 else emit_loadreg(rs2[i]|64,th);
2245 if(opcode2[i]&2) {
2246 emit_adcimm(-1,th); // x86 has inverted carry flag
2247 emit_not(th,th);
2248 }
2249 #else
2250 if(opcode2[i]&2) {
2251 if(s2h>=0) emit_rscimm(s2h,0,th);
2252 else {
2253 emit_loadreg(rs2[i]|64,th);
2254 emit_rscimm(th,0,th);
2255 }
2256 }else{
2257 if(s2h>=0) emit_mov(s2h,th);
2258 else emit_loadreg(rs2[i]|64,th);
2259 }
2260 #endif
2261 }
2262 }
2263 else {
2264 emit_zeroreg(tl);
2265 if(th>=0) emit_zeroreg(th);
2266 }
2267 }
2268 }
2269 }
2270 if(opcode2[i]==0x2a||opcode2[i]==0x2b) { // SLT/SLTU
2271 if(rt1[i]) {
2272 signed char s1l,s1h,s2l,s2h,t;
2273 if(!((i_regs->was32>>rs1[i])&(i_regs->was32>>rs2[i])&1))
2274 {
2275 t=get_reg(i_regs->regmap,rt1[i]);
2276 //assert(t>=0);
2277 if(t>=0) {
2278 s1l=get_reg(i_regs->regmap,rs1[i]);
2279 s1h=get_reg(i_regs->regmap,rs1[i]|64);
2280 s2l=get_reg(i_regs->regmap,rs2[i]);
2281 s2h=get_reg(i_regs->regmap,rs2[i]|64);
2282 if(rs2[i]==0) // rx<r0
2283 {
2284 assert(s1h>=0);
2285 if(opcode2[i]==0x2a) // SLT
2286 emit_shrimm(s1h,31,t);
2287 else // SLTU (unsigned can not be less than zero)
2288 emit_zeroreg(t);
2289 }
2290 else if(rs1[i]==0) // r0<rx
2291 {
2292 assert(s2h>=0);
2293 if(opcode2[i]==0x2a) // SLT
2294 emit_set_gz64_32(s2h,s2l,t);
2295 else // SLTU (set if not zero)
2296 emit_set_nz64_32(s2h,s2l,t);
2297 }
2298 else {
2299 assert(s1l>=0);assert(s1h>=0);
2300 assert(s2l>=0);assert(s2h>=0);
2301 if(opcode2[i]==0x2a) // SLT
2302 emit_set_if_less64_32(s1h,s1l,s2h,s2l,t);
2303 else // SLTU
2304 emit_set_if_carry64_32(s1h,s1l,s2h,s2l,t);
2305 }
2306 }
2307 } else {
2308 t=get_reg(i_regs->regmap,rt1[i]);
2309 //assert(t>=0);
2310 if(t>=0) {
2311 s1l=get_reg(i_regs->regmap,rs1[i]);
2312 s2l=get_reg(i_regs->regmap,rs2[i]);
2313 if(rs2[i]==0) // rx<r0
2314 {
2315 assert(s1l>=0);
2316 if(opcode2[i]==0x2a) // SLT
2317 emit_shrimm(s1l,31,t);
2318 else // SLTU (unsigned can not be less than zero)
2319 emit_zeroreg(t);
2320 }
2321 else if(rs1[i]==0) // r0<rx
2322 {
2323 assert(s2l>=0);
2324 if(opcode2[i]==0x2a) // SLT
2325 emit_set_gz32(s2l,t);
2326 else // SLTU (set if not zero)
2327 emit_set_nz32(s2l,t);
2328 }
2329 else{
2330 assert(s1l>=0);assert(s2l>=0);
2331 if(opcode2[i]==0x2a) // SLT
2332 emit_set_if_less32(s1l,s2l,t);
2333 else // SLTU
2334 emit_set_if_carry32(s1l,s2l,t);
2335 }
2336 }
2337 }
2338 }
2339 }
2340 if(opcode2[i]>=0x24&&opcode2[i]<=0x27) { // AND/OR/XOR/NOR
2341 if(rt1[i]) {
2342 signed char s1l,s1h,s2l,s2h,th,tl;
2343 tl=get_reg(i_regs->regmap,rt1[i]);
2344 th=get_reg(i_regs->regmap,rt1[i]|64);
2345 if(!((i_regs->was32>>rs1[i])&(i_regs->was32>>rs2[i])&1)&&th>=0)
2346 {
2347 assert(tl>=0);
2348 if(tl>=0) {
2349 s1l=get_reg(i_regs->regmap,rs1[i]);
2350 s1h=get_reg(i_regs->regmap,rs1[i]|64);
2351 s2l=get_reg(i_regs->regmap,rs2[i]);
2352 s2h=get_reg(i_regs->regmap,rs2[i]|64);
2353 if(rs1[i]&&rs2[i]) {
2354 assert(s1l>=0);assert(s1h>=0);
2355 assert(s2l>=0);assert(s2h>=0);
2356 if(opcode2[i]==0x24) { // AND
2357 emit_and(s1l,s2l,tl);
2358 emit_and(s1h,s2h,th);
2359 } else
2360 if(opcode2[i]==0x25) { // OR
2361 emit_or(s1l,s2l,tl);
2362 emit_or(s1h,s2h,th);
2363 } else
2364 if(opcode2[i]==0x26) { // XOR
2365 emit_xor(s1l,s2l,tl);
2366 emit_xor(s1h,s2h,th);
2367 } else
2368 if(opcode2[i]==0x27) { // NOR
2369 emit_or(s1l,s2l,tl);
2370 emit_or(s1h,s2h,th);
2371 emit_not(tl,tl);
2372 emit_not(th,th);
2373 }
2374 }
2375 else
2376 {
2377 if(opcode2[i]==0x24) { // AND
2378 emit_zeroreg(tl);
2379 emit_zeroreg(th);
2380 } else
2381 if(opcode2[i]==0x25||opcode2[i]==0x26) { // OR/XOR
2382 if(rs1[i]){
2383 if(s1l>=0) emit_mov(s1l,tl);
2384 else emit_loadreg(rs1[i],tl);
2385 if(s1h>=0) emit_mov(s1h,th);
2386 else emit_loadreg(rs1[i]|64,th);
2387 }
2388 else
2389 if(rs2[i]){
2390 if(s2l>=0) emit_mov(s2l,tl);
2391 else emit_loadreg(rs2[i],tl);
2392 if(s2h>=0) emit_mov(s2h,th);
2393 else emit_loadreg(rs2[i]|64,th);
2394 }
2395 else{
2396 emit_zeroreg(tl);
2397 emit_zeroreg(th);
2398 }
2399 } else
2400 if(opcode2[i]==0x27) { // NOR
2401 if(rs1[i]){
2402 if(s1l>=0) emit_not(s1l,tl);
2403 else{
2404 emit_loadreg(rs1[i],tl);
2405 emit_not(tl,tl);
2406 }
2407 if(s1h>=0) emit_not(s1h,th);
2408 else{
2409 emit_loadreg(rs1[i]|64,th);
2410 emit_not(th,th);
2411 }
2412 }
2413 else
2414 if(rs2[i]){
2415 if(s2l>=0) emit_not(s2l,tl);
2416 else{
2417 emit_loadreg(rs2[i],tl);
2418 emit_not(tl,tl);
2419 }
2420 if(s2h>=0) emit_not(s2h,th);
2421 else{
2422 emit_loadreg(rs2[i]|64,th);
2423 emit_not(th,th);
2424 }
2425 }
2426 else {
2427 emit_movimm(-1,tl);
2428 emit_movimm(-1,th);
2429 }
2430 }
2431 }
2432 }
2433 }
2434 else
2435 {
2436 // 32 bit
2437 if(tl>=0) {
2438 s1l=get_reg(i_regs->regmap,rs1[i]);
2439 s2l=get_reg(i_regs->regmap,rs2[i]);
2440 if(rs1[i]&&rs2[i]) {
2441 assert(s1l>=0);
2442 assert(s2l>=0);
2443 if(opcode2[i]==0x24) { // AND
2444 emit_and(s1l,s2l,tl);
2445 } else
2446 if(opcode2[i]==0x25) { // OR
2447 emit_or(s1l,s2l,tl);
2448 } else
2449 if(opcode2[i]==0x26) { // XOR
2450 emit_xor(s1l,s2l,tl);
2451 } else
2452 if(opcode2[i]==0x27) { // NOR
2453 emit_or(s1l,s2l,tl);
2454 emit_not(tl,tl);
2455 }
2456 }
2457 else
2458 {
2459 if(opcode2[i]==0x24) { // AND
2460 emit_zeroreg(tl);
2461 } else
2462 if(opcode2[i]==0x25||opcode2[i]==0x26) { // OR/XOR
2463 if(rs1[i]){
2464 if(s1l>=0) emit_mov(s1l,tl);
2465 else emit_loadreg(rs1[i],tl); // CHECK: regmap_entry?
2466 }
2467 else
2468 if(rs2[i]){
2469 if(s2l>=0) emit_mov(s2l,tl);
2470 else emit_loadreg(rs2[i],tl); // CHECK: regmap_entry?
2471 }
2472 else emit_zeroreg(tl);
2473 } else
2474 if(opcode2[i]==0x27) { // NOR
2475 if(rs1[i]){
2476 if(s1l>=0) emit_not(s1l,tl);
2477 else {
2478 emit_loadreg(rs1[i],tl);
2479 emit_not(tl,tl);
2480 }
2481 }
2482 else
2483 if(rs2[i]){
2484 if(s2l>=0) emit_not(s2l,tl);
2485 else {
2486 emit_loadreg(rs2[i],tl);
2487 emit_not(tl,tl);
2488 }
2489 }
2490 else emit_movimm(-1,tl);
2491 }
2492 }
2493 }
2494 }
2495 }
2496 }
2497}
2498
2499void imm16_assemble(int i,struct regstat *i_regs)
2500{
2501 if (opcode[i]==0x0f) { // LUI
2502 if(rt1[i]) {
2503 signed char t;
2504 t=get_reg(i_regs->regmap,rt1[i]);
2505 //assert(t>=0);
2506 if(t>=0) {
2507 if(!((i_regs->isconst>>t)&1))
2508 emit_movimm(imm[i]<<16,t);
2509 }
2510 }
2511 }
2512 if(opcode[i]==0x08||opcode[i]==0x09) { // ADDI/ADDIU
2513 if(rt1[i]) {
2514 signed char s,t;
2515 t=get_reg(i_regs->regmap,rt1[i]);
2516 s=get_reg(i_regs->regmap,rs1[i]);
2517 if(rs1[i]) {
2518 //assert(t>=0);
2519 //assert(s>=0);
2520 if(t>=0) {
2521 if(!((i_regs->isconst>>t)&1)) {
2522 if(s<0) {
2523 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2524 emit_addimm(t,imm[i],t);
2525 }else{
2526 if(!((i_regs->wasconst>>s)&1))
2527 emit_addimm(s,imm[i],t);
2528 else
2529 emit_movimm(constmap[i][s]+imm[i],t);
2530 }
2531 }
2532 }
2533 } else {
2534 if(t>=0) {
2535 if(!((i_regs->isconst>>t)&1))
2536 emit_movimm(imm[i],t);
2537 }
2538 }
2539 }
2540 }
2541 if(opcode[i]==0x18||opcode[i]==0x19) { // DADDI/DADDIU
2542 if(rt1[i]) {
2543 signed char sh,sl,th,tl;
2544 th=get_reg(i_regs->regmap,rt1[i]|64);
2545 tl=get_reg(i_regs->regmap,rt1[i]);
2546 sh=get_reg(i_regs->regmap,rs1[i]|64);
2547 sl=get_reg(i_regs->regmap,rs1[i]);
2548 if(tl>=0) {
2549 if(rs1[i]) {
2550 assert(sh>=0);
2551 assert(sl>=0);
2552 if(th>=0) {
2553 emit_addimm64_32(sh,sl,imm[i],th,tl);
2554 }
2555 else {
2556 emit_addimm(sl,imm[i],tl);
2557 }
2558 } else {
2559 emit_movimm(imm[i],tl);
2560 if(th>=0) emit_movimm(((signed int)imm[i])>>31,th);
2561 }
2562 }
2563 }
2564 }
2565 else if(opcode[i]==0x0a||opcode[i]==0x0b) { // SLTI/SLTIU
2566 if(rt1[i]) {
2567 //assert(rs1[i]!=0); // r0 might be valid, but it's probably a bug
2568 signed char sh,sl,t;
2569 t=get_reg(i_regs->regmap,rt1[i]);
2570 sh=get_reg(i_regs->regmap,rs1[i]|64);
2571 sl=get_reg(i_regs->regmap,rs1[i]);
2572 //assert(t>=0);
2573 if(t>=0) {
2574 if(rs1[i]>0) {
2575 if(sh<0) assert((i_regs->was32>>rs1[i])&1);
2576 if(sh<0||((i_regs->was32>>rs1[i])&1)) {
2577 if(opcode[i]==0x0a) { // SLTI
2578 if(sl<0) {
2579 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2580 emit_slti32(t,imm[i],t);
2581 }else{
2582 emit_slti32(sl,imm[i],t);
2583 }
2584 }
2585 else { // SLTIU
2586 if(sl<0) {
2587 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2588 emit_sltiu32(t,imm[i],t);
2589 }else{
2590 emit_sltiu32(sl,imm[i],t);
2591 }
2592 }
2593 }else{ // 64-bit
2594 assert(sl>=0);
2595 if(opcode[i]==0x0a) // SLTI
2596 emit_slti64_32(sh,sl,imm[i],t);
2597 else // SLTIU
2598 emit_sltiu64_32(sh,sl,imm[i],t);
2599 }
2600 }else{
2601 // SLTI(U) with r0 is just stupid,
2602 // nonetheless examples can be found
2603 if(opcode[i]==0x0a) // SLTI
2604 if(0<imm[i]) emit_movimm(1,t);
2605 else emit_zeroreg(t);
2606 else // SLTIU
2607 {
2608 if(imm[i]) emit_movimm(1,t);
2609 else emit_zeroreg(t);
2610 }
2611 }
2612 }
2613 }
2614 }
2615 else if(opcode[i]>=0x0c&&opcode[i]<=0x0e) { // ANDI/ORI/XORI
2616 if(rt1[i]) {
2617 signed char sh,sl,th,tl;
2618 th=get_reg(i_regs->regmap,rt1[i]|64);
2619 tl=get_reg(i_regs->regmap,rt1[i]);
2620 sh=get_reg(i_regs->regmap,rs1[i]|64);
2621 sl=get_reg(i_regs->regmap,rs1[i]);
2622 if(tl>=0 && !((i_regs->isconst>>tl)&1)) {
2623 if(opcode[i]==0x0c) //ANDI
2624 {
2625 if(rs1[i]) {
2626 if(sl<0) {
2627 if(i_regs->regmap_entry[tl]!=rs1[i]) emit_loadreg(rs1[i],tl);
2628 emit_andimm(tl,imm[i],tl);
2629 }else{
2630 if(!((i_regs->wasconst>>sl)&1))
2631 emit_andimm(sl,imm[i],tl);
2632 else
2633 emit_movimm(constmap[i][sl]&imm[i],tl);
2634 }
2635 }
2636 else
2637 emit_zeroreg(tl);
2638 if(th>=0) emit_zeroreg(th);
2639 }
2640 else
2641 {
2642 if(rs1[i]) {
2643 if(sl<0) {
2644 if(i_regs->regmap_entry[tl]!=rs1[i]) emit_loadreg(rs1[i],tl);
2645 }
2646 if(th>=0) {
2647 if(sh<0) {
2648 emit_loadreg(rs1[i]|64,th);
2649 }else{
2650 emit_mov(sh,th);
2651 }
2652 }
2653 if(opcode[i]==0x0d) //ORI
2654 if(sl<0) {
2655 emit_orimm(tl,imm[i],tl);
2656 }else{
2657 if(!((i_regs->wasconst>>sl)&1))
2658 emit_orimm(sl,imm[i],tl);
2659 else
2660 emit_movimm(constmap[i][sl]|imm[i],tl);
2661 }
2662 if(opcode[i]==0x0e) //XORI
2663 if(sl<0) {
2664 emit_xorimm(tl,imm[i],tl);
2665 }else{
2666 if(!((i_regs->wasconst>>sl)&1))
2667 emit_xorimm(sl,imm[i],tl);
2668 else
2669 emit_movimm(constmap[i][sl]^imm[i],tl);
2670 }
2671 }
2672 else {
2673 emit_movimm(imm[i],tl);
2674 if(th>=0) emit_zeroreg(th);
2675 }
2676 }
2677 }
2678 }
2679 }
2680}
2681
2682void shiftimm_assemble(int i,struct regstat *i_regs)
2683{
2684 if(opcode2[i]<=0x3) // SLL/SRL/SRA
2685 {
2686 if(rt1[i]) {
2687 signed char s,t;
2688 t=get_reg(i_regs->regmap,rt1[i]);
2689 s=get_reg(i_regs->regmap,rs1[i]);
2690 //assert(t>=0);
2691 if(t>=0){
2692 if(rs1[i]==0)
2693 {
2694 emit_zeroreg(t);
2695 }
2696 else
2697 {
2698 if(s<0&&i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2699 if(imm[i]) {
2700 if(opcode2[i]==0) // SLL
2701 {
2702 emit_shlimm(s<0?t:s,imm[i],t);
2703 }
2704 if(opcode2[i]==2) // SRL
2705 {
2706 emit_shrimm(s<0?t:s,imm[i],t);
2707 }
2708 if(opcode2[i]==3) // SRA
2709 {
2710 emit_sarimm(s<0?t:s,imm[i],t);
2711 }
2712 }else{
2713 // Shift by zero
2714 if(s>=0 && s!=t) emit_mov(s,t);
2715 }
2716 }
2717 }
2718 //emit_storereg(rt1[i],t); //DEBUG
2719 }
2720 }
2721 if(opcode2[i]>=0x38&&opcode2[i]<=0x3b) // DSLL/DSRL/DSRA
2722 {
2723 if(rt1[i]) {
2724 signed char sh,sl,th,tl;
2725 th=get_reg(i_regs->regmap,rt1[i]|64);
2726 tl=get_reg(i_regs->regmap,rt1[i]);
2727 sh=get_reg(i_regs->regmap,rs1[i]|64);
2728 sl=get_reg(i_regs->regmap,rs1[i]);
2729 if(tl>=0) {
2730 if(rs1[i]==0)
2731 {
2732 emit_zeroreg(tl);
2733 if(th>=0) emit_zeroreg(th);
2734 }
2735 else
2736 {
2737 assert(sl>=0);
2738 assert(sh>=0);
2739 if(imm[i]) {
2740 if(opcode2[i]==0x38) // DSLL
2741 {
2742 if(th>=0) emit_shldimm(sh,sl,imm[i],th);
2743 emit_shlimm(sl,imm[i],tl);
2744 }
2745 if(opcode2[i]==0x3a) // DSRL
2746 {
2747 emit_shrdimm(sl,sh,imm[i],tl);
2748 if(th>=0) emit_shrimm(sh,imm[i],th);
2749 }
2750 if(opcode2[i]==0x3b) // DSRA
2751 {
2752 emit_shrdimm(sl,sh,imm[i],tl);
2753 if(th>=0) emit_sarimm(sh,imm[i],th);
2754 }
2755 }else{
2756 // Shift by zero
2757 if(sl!=tl) emit_mov(sl,tl);
2758 if(th>=0&&sh!=th) emit_mov(sh,th);
2759 }
2760 }
2761 }
2762 }
2763 }
2764 if(opcode2[i]==0x3c) // DSLL32
2765 {
2766 if(rt1[i]) {
2767 signed char sl,tl,th;
2768 tl=get_reg(i_regs->regmap,rt1[i]);
2769 th=get_reg(i_regs->regmap,rt1[i]|64);
2770 sl=get_reg(i_regs->regmap,rs1[i]);
2771 if(th>=0||tl>=0){
2772 assert(tl>=0);
2773 assert(th>=0);
2774 assert(sl>=0);
2775 emit_mov(sl,th);
2776 emit_zeroreg(tl);
2777 if(imm[i]>32)
2778 {
2779 emit_shlimm(th,imm[i]&31,th);
2780 }
2781 }
2782 }
2783 }
2784 if(opcode2[i]==0x3e) // DSRL32
2785 {
2786 if(rt1[i]) {
2787 signed char sh,tl,th;
2788 tl=get_reg(i_regs->regmap,rt1[i]);
2789 th=get_reg(i_regs->regmap,rt1[i]|64);
2790 sh=get_reg(i_regs->regmap,rs1[i]|64);
2791 if(tl>=0){
2792 assert(sh>=0);
2793 emit_mov(sh,tl);
2794 if(th>=0) emit_zeroreg(th);
2795 if(imm[i]>32)
2796 {
2797 emit_shrimm(tl,imm[i]&31,tl);
2798 }
2799 }
2800 }
2801 }
2802 if(opcode2[i]==0x3f) // DSRA32
2803 {
2804 if(rt1[i]) {
2805 signed char sh,tl;
2806 tl=get_reg(i_regs->regmap,rt1[i]);
2807 sh=get_reg(i_regs->regmap,rs1[i]|64);
2808 if(tl>=0){
2809 assert(sh>=0);
2810 emit_mov(sh,tl);
2811 if(imm[i]>32)
2812 {
2813 emit_sarimm(tl,imm[i]&31,tl);
2814 }
2815 }
2816 }
2817 }
2818}
2819
2820#ifndef shift_assemble
2821void shift_assemble(int i,struct regstat *i_regs)
2822{
2823 printf("Need shift_assemble for this architecture.\n");
2824 exit(1);
2825}
2826#endif
2827
2828void load_assemble(int i,struct regstat *i_regs)
2829{
2830 int s,th,tl,addr,map=-1;
2831 int offset;
2832 int jaddr=0;
5bf843dc 2833 int memtarget=0,c=0;
b1570849 2834 int fastload_reg_override=0;
57871462 2835 u_int hr,reglist=0;
2836 th=get_reg(i_regs->regmap,rt1[i]|64);
2837 tl=get_reg(i_regs->regmap,rt1[i]);
2838 s=get_reg(i_regs->regmap,rs1[i]);
2839 offset=imm[i];
2840 for(hr=0;hr<HOST_REGS;hr++) {
2841 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
2842 }
2843 if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
2844 if(s>=0) {
2845 c=(i_regs->wasconst>>s)&1;
af4ee1fe 2846 if (c) {
2847 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
2848 if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
2849 }
57871462 2850 }
57871462 2851 //printf("load_assemble: c=%d\n",c);
2852 //if(c) printf("load_assemble: const=%x\n",(int)constmap[i][s]+offset);
2853 // FIXME: Even if the load is a NOP, we should check for pagefaults...
5bf843dc 2854#ifdef PCSX
f18c0f46 2855 if(tl<0&&(!c||(((u_int)constmap[i][s]+offset)>>16)==0x1f80)
2856 ||rt1[i]==0) {
5bf843dc 2857 // could be FIFO, must perform the read
f18c0f46 2858 // ||dummy read
5bf843dc 2859 assem_debug("(forced read)\n");
2860 tl=get_reg(i_regs->regmap,-1);
2861 assert(tl>=0);
5bf843dc 2862 }
f18c0f46 2863#endif
5bf843dc 2864 if(offset||s<0||c) addr=tl;
2865 else addr=s;
535d208a 2866 //if(tl<0) tl=get_reg(i_regs->regmap,-1);
2867 if(tl>=0) {
2868 //printf("load_assemble: c=%d\n",c);
2869 //if(c) printf("load_assemble: const=%x\n",(int)constmap[i][s]+offset);
2870 assert(tl>=0); // Even if the load is a NOP, we must check for pagefaults and I/O
2871 reglist&=~(1<<tl);
2872 if(th>=0) reglist&=~(1<<th);
2873 if(!using_tlb) {
2874 if(!c) {
2875 #ifdef RAM_OFFSET
2876 map=get_reg(i_regs->regmap,ROREG);
2877 if(map<0) emit_loadreg(ROREG,map=HOST_TEMPREG);
2878 #endif
57871462 2879//#define R29_HACK 1
535d208a 2880 #ifdef R29_HACK
2881 // Strmnnrmn's speed hack
2882 if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
2883 #endif
2884 {
dadf55f2 2885 #ifdef PCSX
2886 if(sp_in_mirror&&rs1[i]==29) {
2887 emit_andimm(addr,~0x00e00000,HOST_TEMPREG);
2888 emit_cmpimm(HOST_TEMPREG,RAM_SIZE);
b1570849 2889 fastload_reg_override=HOST_TEMPREG;
dadf55f2 2890 }
2891 else
2892 #endif
535d208a 2893 emit_cmpimm(addr,RAM_SIZE);
2894 jaddr=(int)out;
2895 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
2896 // Hint to branch predictor that the branch is unlikely to be taken
2897 if(rs1[i]>=28)
2898 emit_jno_unlikely(0);
2899 else
57871462 2900 #endif
535d208a 2901 emit_jno(0);
57871462 2902 }
535d208a 2903 }
2904 }else{ // using tlb
2905 int x=0;
2906 if (opcode[i]==0x20||opcode[i]==0x24) x=3; // LB/LBU
2907 if (opcode[i]==0x21||opcode[i]==0x25) x=2; // LH/LHU
2908 map=get_reg(i_regs->regmap,TLREG);
2909 assert(map>=0);
ea3d2e6e 2910 reglist&=~(1<<map);
535d208a 2911 map=do_tlb_r(addr,tl,map,x,-1,-1,c,constmap[i][s]+offset);
2912 do_tlb_r_branch(map,c,constmap[i][s]+offset,&jaddr);
2913 }
2914 int dummy=(rt1[i]==0)||(tl!=get_reg(i_regs->regmap,rt1[i])); // ignore loads to r0 and unneeded reg
2915 if (opcode[i]==0x20) { // LB
2916 if(!c||memtarget) {
2917 if(!dummy) {
57871462 2918 #ifdef HOST_IMM_ADDR32
2919 if(c)
2920 emit_movsbl_tlb((constmap[i][s]+offset)^3,map,tl);
2921 else
2922 #endif
2923 {
2924 //emit_xorimm(addr,3,tl);
2925 //gen_tlb_addr_r(tl,map);
2926 //emit_movsbl_indexed((int)rdram-0x80000000,tl,tl);
535d208a 2927 int x=0,a=tl;
2002a1db 2928#ifdef BIG_ENDIAN_MIPS
57871462 2929 if(!c) emit_xorimm(addr,3,tl);
2930 else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2002a1db 2931#else
535d208a 2932 if(!c) a=addr;
dadf55f2 2933#endif
b1570849 2934 if(fastload_reg_override) a=fastload_reg_override;
2935
535d208a 2936 emit_movsbl_indexed_tlb(x,a,map,tl);
57871462 2937 }
57871462 2938 }
535d208a 2939 if(jaddr)
2940 add_stub(LOADB_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
57871462 2941 }
535d208a 2942 else
2943 inline_readstub(LOADB_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2944 }
2945 if (opcode[i]==0x21) { // LH
2946 if(!c||memtarget) {
2947 if(!dummy) {
57871462 2948 #ifdef HOST_IMM_ADDR32
2949 if(c)
2950 emit_movswl_tlb((constmap[i][s]+offset)^2,map,tl);
2951 else
2952 #endif
2953 {
535d208a 2954 int x=0,a=tl;
2002a1db 2955#ifdef BIG_ENDIAN_MIPS
57871462 2956 if(!c) emit_xorimm(addr,2,tl);
2957 else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
2002a1db 2958#else
535d208a 2959 if(!c) a=addr;
dadf55f2 2960#endif
b1570849 2961 if(fastload_reg_override) a=fastload_reg_override;
57871462 2962 //#ifdef
2963 //emit_movswl_indexed_tlb(x,tl,map,tl);
2964 //else
2965 if(map>=0) {
535d208a 2966 gen_tlb_addr_r(a,map);
2967 emit_movswl_indexed(x,a,tl);
2968 }else{
2969 #ifdef RAM_OFFSET
2970 emit_movswl_indexed(x,a,tl);
2971 #else
2972 emit_movswl_indexed((int)rdram-0x80000000+x,a,tl);
2973 #endif
2974 }
57871462 2975 }
57871462 2976 }
535d208a 2977 if(jaddr)
2978 add_stub(LOADH_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
57871462 2979 }
535d208a 2980 else
2981 inline_readstub(LOADH_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2982 }
2983 if (opcode[i]==0x23) { // LW
2984 if(!c||memtarget) {
2985 if(!dummy) {
dadf55f2 2986 int a=addr;
b1570849 2987 if(fastload_reg_override) a=fastload_reg_override;
57871462 2988 //emit_readword_indexed((int)rdram-0x80000000,addr,tl);
2989 #ifdef HOST_IMM_ADDR32
2990 if(c)
2991 emit_readword_tlb(constmap[i][s]+offset,map,tl);
2992 else
2993 #endif
dadf55f2 2994 emit_readword_indexed_tlb(0,a,map,tl);
57871462 2995 }
535d208a 2996 if(jaddr)
2997 add_stub(LOADW_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
57871462 2998 }
535d208a 2999 else
3000 inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
3001 }
3002 if (opcode[i]==0x24) { // LBU
3003 if(!c||memtarget) {
3004 if(!dummy) {
57871462 3005 #ifdef HOST_IMM_ADDR32
3006 if(c)
3007 emit_movzbl_tlb((constmap[i][s]+offset)^3,map,tl);
3008 else
3009 #endif
3010 {
3011 //emit_xorimm(addr,3,tl);
3012 //gen_tlb_addr_r(tl,map);
3013 //emit_movzbl_indexed((int)rdram-0x80000000,tl,tl);
535d208a 3014 int x=0,a=tl;
2002a1db 3015#ifdef BIG_ENDIAN_MIPS
57871462 3016 if(!c) emit_xorimm(addr,3,tl);
3017 else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2002a1db 3018#else
535d208a 3019 if(!c) a=addr;
dadf55f2 3020#endif
b1570849 3021 if(fastload_reg_override) a=fastload_reg_override;
3022
535d208a 3023 emit_movzbl_indexed_tlb(x,a,map,tl);
57871462 3024 }
57871462 3025 }
535d208a 3026 if(jaddr)
3027 add_stub(LOADBU_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
57871462 3028 }
535d208a 3029 else
3030 inline_readstub(LOADBU_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
3031 }
3032 if (opcode[i]==0x25) { // LHU
3033 if(!c||memtarget) {
3034 if(!dummy) {
57871462 3035 #ifdef HOST_IMM_ADDR32
3036 if(c)
3037 emit_movzwl_tlb((constmap[i][s]+offset)^2,map,tl);
3038 else
3039 #endif
3040 {
535d208a 3041 int x=0,a=tl;
2002a1db 3042#ifdef BIG_ENDIAN_MIPS
57871462 3043 if(!c) emit_xorimm(addr,2,tl);
3044 else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
2002a1db 3045#else
535d208a 3046 if(!c) a=addr;
dadf55f2 3047#endif
b1570849 3048 if(fastload_reg_override) a=fastload_reg_override;
57871462 3049 //#ifdef
3050 //emit_movzwl_indexed_tlb(x,tl,map,tl);
3051 //#else
3052 if(map>=0) {
535d208a 3053 gen_tlb_addr_r(a,map);
3054 emit_movzwl_indexed(x,a,tl);
3055 }else{
3056 #ifdef RAM_OFFSET
3057 emit_movzwl_indexed(x,a,tl);
3058 #else
3059 emit_movzwl_indexed((int)rdram-0x80000000+x,a,tl);
3060 #endif
3061 }
57871462 3062 }
3063 }
535d208a 3064 if(jaddr)
3065 add_stub(LOADHU_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
57871462 3066 }
535d208a 3067 else
3068 inline_readstub(LOADHU_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
3069 }
3070 if (opcode[i]==0x27) { // LWU
3071 assert(th>=0);
3072 if(!c||memtarget) {
3073 if(!dummy) {
dadf55f2 3074 int a=addr;
b1570849 3075 if(fastload_reg_override) a=fastload_reg_override;
57871462 3076 //emit_readword_indexed((int)rdram-0x80000000,addr,tl);
3077 #ifdef HOST_IMM_ADDR32
3078 if(c)
3079 emit_readword_tlb(constmap[i][s]+offset,map,tl);
3080 else
3081 #endif
dadf55f2 3082 emit_readword_indexed_tlb(0,a,map,tl);
57871462 3083 }
535d208a 3084 if(jaddr)
3085 add_stub(LOADW_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3086 }
3087 else {
3088 inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
57871462 3089 }
535d208a 3090 emit_zeroreg(th);
3091 }
3092 if (opcode[i]==0x37) { // LD
3093 if(!c||memtarget) {
3094 if(!dummy) {
dadf55f2 3095 int a=addr;
b1570849 3096 if(fastload_reg_override) a=fastload_reg_override;
57871462 3097 //gen_tlb_addr_r(tl,map);
3098 //if(th>=0) emit_readword_indexed((int)rdram-0x80000000,addr,th);
3099 //emit_readword_indexed((int)rdram-0x7FFFFFFC,addr,tl);
3100 #ifdef HOST_IMM_ADDR32
3101 if(c)
3102 emit_readdword_tlb(constmap[i][s]+offset,map,th,tl);
3103 else
3104 #endif
dadf55f2 3105 emit_readdword_indexed_tlb(0,a,map,th,tl);
57871462 3106 }
535d208a 3107 if(jaddr)
3108 add_stub(LOADD_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
57871462 3109 }
535d208a 3110 else
3111 inline_readstub(LOADD_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
57871462 3112 }
535d208a 3113 }
3114 //emit_storereg(rt1[i],tl); // DEBUG
57871462 3115 //if(opcode[i]==0x23)
3116 //if(opcode[i]==0x24)
3117 //if(opcode[i]==0x23||opcode[i]==0x24)
3118 /*if(opcode[i]==0x21||opcode[i]==0x23||opcode[i]==0x24)
3119 {
3120 //emit_pusha();
3121 save_regs(0x100f);
3122 emit_readword((int)&last_count,ECX);
3123 #ifdef __i386__
3124 if(get_reg(i_regs->regmap,CCREG)<0)
3125 emit_loadreg(CCREG,HOST_CCREG);
3126 emit_add(HOST_CCREG,ECX,HOST_CCREG);
3127 emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3128 emit_writeword(HOST_CCREG,(int)&Count);
3129 #endif
3130 #ifdef __arm__
3131 if(get_reg(i_regs->regmap,CCREG)<0)
3132 emit_loadreg(CCREG,0);
3133 else
3134 emit_mov(HOST_CCREG,0);
3135 emit_add(0,ECX,0);
3136 emit_addimm(0,2*ccadj[i],0);
3137 emit_writeword(0,(int)&Count);
3138 #endif
3139 emit_call((int)memdebug);
3140 //emit_popa();
3141 restore_regs(0x100f);
3142 }/**/
3143}
3144
3145#ifndef loadlr_assemble
3146void loadlr_assemble(int i,struct regstat *i_regs)
3147{
3148 printf("Need loadlr_assemble for this architecture.\n");
3149 exit(1);
3150}
3151#endif
3152
3153void store_assemble(int i,struct regstat *i_regs)
3154{
3155 int s,th,tl,map=-1;
3156 int addr,temp;
3157 int offset;
3158 int jaddr=0,jaddr2,type;
666a299d 3159 int memtarget=0,c=0;
57871462 3160 int agr=AGEN1+(i&1);
b1570849 3161 int faststore_reg_override=0;
57871462 3162 u_int hr,reglist=0;
3163 th=get_reg(i_regs->regmap,rs2[i]|64);
3164 tl=get_reg(i_regs->regmap,rs2[i]);
3165 s=get_reg(i_regs->regmap,rs1[i]);
3166 temp=get_reg(i_regs->regmap,agr);
3167 if(temp<0) temp=get_reg(i_regs->regmap,-1);
3168 offset=imm[i];
3169 if(s>=0) {
3170 c=(i_regs->wasconst>>s)&1;
af4ee1fe 3171 if(c) {
3172 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
3173 if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
3174 }
57871462 3175 }
3176 assert(tl>=0);
3177 assert(temp>=0);
3178 for(hr=0;hr<HOST_REGS;hr++) {
3179 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3180 }
3181 if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
3182 if(offset||s<0||c) addr=temp;
3183 else addr=s;
3184 if(!using_tlb) {
3185 if(!c) {
dadf55f2 3186 #ifdef PCSX
3187 if(sp_in_mirror&&rs1[i]==29) {
3188 emit_andimm(addr,~0x00e00000,HOST_TEMPREG);
3189 emit_cmpimm(HOST_TEMPREG,RAM_SIZE);
b1570849 3190 faststore_reg_override=HOST_TEMPREG;
dadf55f2 3191 }
3192 else
3193 #endif
57871462 3194 #ifdef R29_HACK
3195 // Strmnnrmn's speed hack
4cb76aa4 3196 if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
57871462 3197 #endif
4cb76aa4 3198 emit_cmpimm(addr,RAM_SIZE);
57871462 3199 #ifdef DESTRUCTIVE_SHIFT
3200 if(s==addr) emit_mov(s,temp);
3201 #endif
3202 #ifdef R29_HACK
dadf55f2 3203 memtarget=1;
4cb76aa4 3204 if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
57871462 3205 #endif
3206 {
3207 jaddr=(int)out;
3208 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
3209 // Hint to branch predictor that the branch is unlikely to be taken
3210 if(rs1[i]>=28)
3211 emit_jno_unlikely(0);
3212 else
3213 #endif
3214 emit_jno(0);
3215 }
3216 }
3217 }else{ // using tlb
3218 int x=0;
3219 if (opcode[i]==0x28) x=3; // SB
3220 if (opcode[i]==0x29) x=2; // SH
3221 map=get_reg(i_regs->regmap,TLREG);
3222 assert(map>=0);
ea3d2e6e 3223 reglist&=~(1<<map);
57871462 3224 map=do_tlb_w(addr,temp,map,x,c,constmap[i][s]+offset);
3225 do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr);
3226 }
3227
3228 if (opcode[i]==0x28) { // SB
3229 if(!c||memtarget) {
97a238a6 3230 int x=0,a=temp;
2002a1db 3231#ifdef BIG_ENDIAN_MIPS
57871462 3232 if(!c) emit_xorimm(addr,3,temp);
3233 else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2002a1db 3234#else
97a238a6 3235 if(!c) a=addr;
dadf55f2 3236#endif
b1570849 3237 if(faststore_reg_override) a=faststore_reg_override;
57871462 3238 //gen_tlb_addr_w(temp,map);
3239 //emit_writebyte_indexed(tl,(int)rdram-0x80000000,temp);
97a238a6 3240 emit_writebyte_indexed_tlb(tl,x,a,map,a);
57871462 3241 }
3242 type=STOREB_STUB;
3243 }
3244 if (opcode[i]==0x29) { // SH
3245 if(!c||memtarget) {
97a238a6 3246 int x=0,a=temp;
2002a1db 3247#ifdef BIG_ENDIAN_MIPS
57871462 3248 if(!c) emit_xorimm(addr,2,temp);
3249 else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
2002a1db 3250#else
97a238a6 3251 if(!c) a=addr;
dadf55f2 3252#endif
b1570849 3253 if(faststore_reg_override) a=faststore_reg_override;
57871462 3254 //#ifdef
3255 //emit_writehword_indexed_tlb(tl,x,temp,map,temp);
3256 //#else
3257 if(map>=0) {
97a238a6 3258 gen_tlb_addr_w(a,map);
3259 emit_writehword_indexed(tl,x,a);
57871462 3260 }else
97a238a6 3261 emit_writehword_indexed(tl,(int)rdram-0x80000000+x,a);
57871462 3262 }
3263 type=STOREH_STUB;
3264 }
3265 if (opcode[i]==0x2B) { // SW
dadf55f2 3266 if(!c||memtarget) {
3267 int a=addr;
b1570849 3268 if(faststore_reg_override) a=faststore_reg_override;
57871462 3269 //emit_writeword_indexed(tl,(int)rdram-0x80000000,addr);
dadf55f2 3270 emit_writeword_indexed_tlb(tl,0,a,map,temp);
3271 }
57871462 3272 type=STOREW_STUB;
3273 }
3274 if (opcode[i]==0x3F) { // SD
3275 if(!c||memtarget) {
dadf55f2 3276 int a=addr;
b1570849 3277 if(faststore_reg_override) a=faststore_reg_override;
57871462 3278 if(rs2[i]) {
3279 assert(th>=0);
3280 //emit_writeword_indexed(th,(int)rdram-0x80000000,addr);
3281 //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,addr);
dadf55f2 3282 emit_writedword_indexed_tlb(th,tl,0,a,map,temp);
57871462 3283 }else{
3284 // Store zero
3285 //emit_writeword_indexed(tl,(int)rdram-0x80000000,temp);
3286 //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,temp);
dadf55f2 3287 emit_writedword_indexed_tlb(tl,tl,0,a,map,temp);
57871462 3288 }
3289 }
3290 type=STORED_STUB;
3291 }
b96d3df7 3292#ifdef PCSX
3293 if(jaddr) {
3294 // PCSX store handlers don't check invcode again
3295 reglist|=1<<addr;
3296 add_stub(type,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3297 jaddr=0;
3298 }
3299#endif
57871462 3300 if(!using_tlb) {
3301 if(!c||memtarget) {
3302 #ifdef DESTRUCTIVE_SHIFT
3303 // The x86 shift operation is 'destructive'; it overwrites the
3304 // source register, so we need to make a copy first and use that.
3305 addr=temp;
3306 #endif
3307 #if defined(HOST_IMM8)
3308 int ir=get_reg(i_regs->regmap,INVCP);
3309 assert(ir>=0);
3310 emit_cmpmem_indexedsr12_reg(ir,addr,1);
3311 #else
3312 emit_cmpmem_indexedsr12_imm((int)invalid_code,addr,1);
3313 #endif
0bbd1454 3314 #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3315 emit_callne(invalidate_addr_reg[addr]);
3316 #else
57871462 3317 jaddr2=(int)out;
3318 emit_jne(0);
3319 add_stub(INVCODE_STUB,jaddr2,(int)out,reglist|(1<<HOST_CCREG),addr,0,0,0);
0bbd1454 3320 #endif
57871462 3321 }
3322 }
3eaa7048 3323 if(jaddr) {
3324 add_stub(type,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3325 } else if(c&&!memtarget) {
3326 inline_writestub(type,i,constmap[i][s]+offset,i_regs->regmap,rs2[i],ccadj[i],reglist);
3327 }
57871462 3328 //if(opcode[i]==0x2B || opcode[i]==0x3F)
3329 //if(opcode[i]==0x2B || opcode[i]==0x28)
3330 //if(opcode[i]==0x2B || opcode[i]==0x29)
3331 //if(opcode[i]==0x2B)
3332 /*if(opcode[i]==0x2B || opcode[i]==0x28 || opcode[i]==0x29 || opcode[i]==0x3F)
3333 {
28d74ee8 3334 #ifdef __i386__
3335 emit_pusha();
3336 #endif
3337 #ifdef __arm__
57871462 3338 save_regs(0x100f);
28d74ee8 3339 #endif
57871462 3340 emit_readword((int)&last_count,ECX);
3341 #ifdef __i386__
3342 if(get_reg(i_regs->regmap,CCREG)<0)
3343 emit_loadreg(CCREG,HOST_CCREG);
3344 emit_add(HOST_CCREG,ECX,HOST_CCREG);
3345 emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3346 emit_writeword(HOST_CCREG,(int)&Count);
3347 #endif
3348 #ifdef __arm__
3349 if(get_reg(i_regs->regmap,CCREG)<0)
3350 emit_loadreg(CCREG,0);
3351 else
3352 emit_mov(HOST_CCREG,0);
3353 emit_add(0,ECX,0);
3354 emit_addimm(0,2*ccadj[i],0);
3355 emit_writeword(0,(int)&Count);
3356 #endif
3357 emit_call((int)memdebug);
28d74ee8 3358 #ifdef __i386__
3359 emit_popa();
3360 #endif
3361 #ifdef __arm__
57871462 3362 restore_regs(0x100f);
28d74ee8 3363 #endif
57871462 3364 }/**/
3365}
3366
3367void storelr_assemble(int i,struct regstat *i_regs)
3368{
3369 int s,th,tl;
3370 int temp;
3371 int temp2;
3372 int offset;
3373 int jaddr=0,jaddr2;
3374 int case1,case2,case3;
3375 int done0,done1,done2;
af4ee1fe 3376 int memtarget=0,c=0;
fab5d06d 3377 int agr=AGEN1+(i&1);
57871462 3378 u_int hr,reglist=0;
3379 th=get_reg(i_regs->regmap,rs2[i]|64);
3380 tl=get_reg(i_regs->regmap,rs2[i]);
3381 s=get_reg(i_regs->regmap,rs1[i]);
fab5d06d 3382 temp=get_reg(i_regs->regmap,agr);
3383 if(temp<0) temp=get_reg(i_regs->regmap,-1);
57871462 3384 offset=imm[i];
3385 if(s>=0) {
3386 c=(i_regs->isconst>>s)&1;
af4ee1fe 3387 if(c) {
3388 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
3389 if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
3390 }
57871462 3391 }
3392 assert(tl>=0);
3393 for(hr=0;hr<HOST_REGS;hr++) {
3394 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3395 }
535d208a 3396 assert(temp>=0);
3397 if(!using_tlb) {
3398 if(!c) {
3399 emit_cmpimm(s<0||offset?temp:s,RAM_SIZE);
3400 if(!offset&&s!=temp) emit_mov(s,temp);
3401 jaddr=(int)out;
3402 emit_jno(0);
3403 }
3404 else
3405 {
3406 if(!memtarget||!rs1[i]) {
57871462 3407 jaddr=(int)out;
3408 emit_jmp(0);
3409 }
57871462 3410 }
535d208a 3411 #ifdef RAM_OFFSET
3412 int map=get_reg(i_regs->regmap,ROREG);
3413 if(map<0) emit_loadreg(ROREG,map=HOST_TEMPREG);
3414 gen_tlb_addr_w(temp,map);
3415 #else
3416 if((u_int)rdram!=0x80000000)
3417 emit_addimm_no_flags((u_int)rdram-(u_int)0x80000000,temp);
3418 #endif
3419 }else{ // using tlb
3420 int map=get_reg(i_regs->regmap,TLREG);
3421 assert(map>=0);
ea3d2e6e 3422 reglist&=~(1<<map);
535d208a 3423 map=do_tlb_w(c||s<0||offset?temp:s,temp,map,0,c,constmap[i][s]+offset);
3424 if(!c&&!offset&&s>=0) emit_mov(s,temp);
3425 do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr);
3426 if(!jaddr&&!memtarget) {
3427 jaddr=(int)out;
3428 emit_jmp(0);
57871462 3429 }
535d208a 3430 gen_tlb_addr_w(temp,map);
3431 }
3432
3433 if (opcode[i]==0x2C||opcode[i]==0x2D) { // SDL/SDR
3434 temp2=get_reg(i_regs->regmap,FTEMP);
3435 if(!rs2[i]) temp2=th=tl;
3436 }
57871462 3437
2002a1db 3438#ifndef BIG_ENDIAN_MIPS
3439 emit_xorimm(temp,3,temp);
3440#endif
535d208a 3441 emit_testimm(temp,2);
3442 case2=(int)out;
3443 emit_jne(0);
3444 emit_testimm(temp,1);
3445 case1=(int)out;
3446 emit_jne(0);
3447 // 0
3448 if (opcode[i]==0x2A) { // SWL
3449 emit_writeword_indexed(tl,0,temp);
3450 }
3451 if (opcode[i]==0x2E) { // SWR
3452 emit_writebyte_indexed(tl,3,temp);
3453 }
3454 if (opcode[i]==0x2C) { // SDL
3455 emit_writeword_indexed(th,0,temp);
3456 if(rs2[i]) emit_mov(tl,temp2);
3457 }
3458 if (opcode[i]==0x2D) { // SDR
3459 emit_writebyte_indexed(tl,3,temp);
3460 if(rs2[i]) emit_shldimm(th,tl,24,temp2);
3461 }
3462 done0=(int)out;
3463 emit_jmp(0);
3464 // 1
3465 set_jump_target(case1,(int)out);
3466 if (opcode[i]==0x2A) { // SWL
3467 // Write 3 msb into three least significant bytes
3468 if(rs2[i]) emit_rorimm(tl,8,tl);
3469 emit_writehword_indexed(tl,-1,temp);
3470 if(rs2[i]) emit_rorimm(tl,16,tl);
3471 emit_writebyte_indexed(tl,1,temp);
3472 if(rs2[i]) emit_rorimm(tl,8,tl);
3473 }
3474 if (opcode[i]==0x2E) { // SWR
3475 // Write two lsb into two most significant bytes
3476 emit_writehword_indexed(tl,1,temp);
3477 }
3478 if (opcode[i]==0x2C) { // SDL
3479 if(rs2[i]) emit_shrdimm(tl,th,8,temp2);
3480 // Write 3 msb into three least significant bytes
3481 if(rs2[i]) emit_rorimm(th,8,th);
3482 emit_writehword_indexed(th,-1,temp);
3483 if(rs2[i]) emit_rorimm(th,16,th);
3484 emit_writebyte_indexed(th,1,temp);
3485 if(rs2[i]) emit_rorimm(th,8,th);
3486 }
3487 if (opcode[i]==0x2D) { // SDR
3488 if(rs2[i]) emit_shldimm(th,tl,16,temp2);
3489 // Write two lsb into two most significant bytes
3490 emit_writehword_indexed(tl,1,temp);
3491 }
3492 done1=(int)out;
3493 emit_jmp(0);
3494 // 2
3495 set_jump_target(case2,(int)out);
3496 emit_testimm(temp,1);
3497 case3=(int)out;
3498 emit_jne(0);
3499 if (opcode[i]==0x2A) { // SWL
3500 // Write two msb into two least significant bytes
3501 if(rs2[i]) emit_rorimm(tl,16,tl);
3502 emit_writehword_indexed(tl,-2,temp);
3503 if(rs2[i]) emit_rorimm(tl,16,tl);
3504 }
3505 if (opcode[i]==0x2E) { // SWR
3506 // Write 3 lsb into three most significant bytes
3507 emit_writebyte_indexed(tl,-1,temp);
3508 if(rs2[i]) emit_rorimm(tl,8,tl);
3509 emit_writehword_indexed(tl,0,temp);
3510 if(rs2[i]) emit_rorimm(tl,24,tl);
3511 }
3512 if (opcode[i]==0x2C) { // SDL
3513 if(rs2[i]) emit_shrdimm(tl,th,16,temp2);
3514 // Write two msb into two least significant bytes
3515 if(rs2[i]) emit_rorimm(th,16,th);
3516 emit_writehword_indexed(th,-2,temp);
3517 if(rs2[i]) emit_rorimm(th,16,th);
3518 }
3519 if (opcode[i]==0x2D) { // SDR
3520 if(rs2[i]) emit_shldimm(th,tl,8,temp2);
3521 // Write 3 lsb into three most significant bytes
3522 emit_writebyte_indexed(tl,-1,temp);
3523 if(rs2[i]) emit_rorimm(tl,8,tl);
3524 emit_writehword_indexed(tl,0,temp);
3525 if(rs2[i]) emit_rorimm(tl,24,tl);
3526 }
3527 done2=(int)out;
3528 emit_jmp(0);
3529 // 3
3530 set_jump_target(case3,(int)out);
3531 if (opcode[i]==0x2A) { // SWL
3532 // Write msb into least significant byte
3533 if(rs2[i]) emit_rorimm(tl,24,tl);
3534 emit_writebyte_indexed(tl,-3,temp);
3535 if(rs2[i]) emit_rorimm(tl,8,tl);
3536 }
3537 if (opcode[i]==0x2E) { // SWR
3538 // Write entire word
3539 emit_writeword_indexed(tl,-3,temp);
3540 }
3541 if (opcode[i]==0x2C) { // SDL
3542 if(rs2[i]) emit_shrdimm(tl,th,24,temp2);
3543 // Write msb into least significant byte
3544 if(rs2[i]) emit_rorimm(th,24,th);
3545 emit_writebyte_indexed(th,-3,temp);
3546 if(rs2[i]) emit_rorimm(th,8,th);
3547 }
3548 if (opcode[i]==0x2D) { // SDR
3549 if(rs2[i]) emit_mov(th,temp2);
3550 // Write entire word
3551 emit_writeword_indexed(tl,-3,temp);
3552 }
3553 set_jump_target(done0,(int)out);
3554 set_jump_target(done1,(int)out);
3555 set_jump_target(done2,(int)out);
3556 if (opcode[i]==0x2C) { // SDL
3557 emit_testimm(temp,4);
57871462 3558 done0=(int)out;
57871462 3559 emit_jne(0);
535d208a 3560 emit_andimm(temp,~3,temp);
3561 emit_writeword_indexed(temp2,4,temp);
3562 set_jump_target(done0,(int)out);
3563 }
3564 if (opcode[i]==0x2D) { // SDR
3565 emit_testimm(temp,4);
3566 done0=(int)out;
3567 emit_jeq(0);
3568 emit_andimm(temp,~3,temp);
3569 emit_writeword_indexed(temp2,-4,temp);
57871462 3570 set_jump_target(done0,(int)out);
57871462 3571 }
535d208a 3572 if(!c||!memtarget)
3573 add_stub(STORELR_STUB,jaddr,(int)out,i,(int)i_regs,temp,ccadj[i],reglist);
57871462 3574 if(!using_tlb) {
535d208a 3575 #ifdef RAM_OFFSET
3576 int map=get_reg(i_regs->regmap,ROREG);
3577 if(map<0) map=HOST_TEMPREG;
3578 gen_orig_addr_w(temp,map);
3579 #else
57871462 3580 emit_addimm_no_flags((u_int)0x80000000-(u_int)rdram,temp);
535d208a 3581 #endif
57871462 3582 #if defined(HOST_IMM8)
3583 int ir=get_reg(i_regs->regmap,INVCP);
3584 assert(ir>=0);
3585 emit_cmpmem_indexedsr12_reg(ir,temp,1);
3586 #else
3587 emit_cmpmem_indexedsr12_imm((int)invalid_code,temp,1);
3588 #endif
535d208a 3589 #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3590 emit_callne(invalidate_addr_reg[temp]);
3591 #else
57871462 3592 jaddr2=(int)out;
3593 emit_jne(0);
3594 add_stub(INVCODE_STUB,jaddr2,(int)out,reglist|(1<<HOST_CCREG),temp,0,0,0);
535d208a 3595 #endif
57871462 3596 }
3597 /*
3598 emit_pusha();
3599 //save_regs(0x100f);
3600 emit_readword((int)&last_count,ECX);
3601 if(get_reg(i_regs->regmap,CCREG)<0)
3602 emit_loadreg(CCREG,HOST_CCREG);
3603 emit_add(HOST_CCREG,ECX,HOST_CCREG);
3604 emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3605 emit_writeword(HOST_CCREG,(int)&Count);
3606 emit_call((int)memdebug);
3607 emit_popa();
3608 //restore_regs(0x100f);
3609 /**/
3610}
3611
3612void c1ls_assemble(int i,struct regstat *i_regs)
3613{
3d624f89 3614#ifndef DISABLE_COP1
57871462 3615 int s,th,tl;
3616 int temp,ar;
3617 int map=-1;
3618 int offset;
3619 int c=0;
3620 int jaddr,jaddr2=0,jaddr3,type;
3621 int agr=AGEN1+(i&1);
3622 u_int hr,reglist=0;
3623 th=get_reg(i_regs->regmap,FTEMP|64);
3624 tl=get_reg(i_regs->regmap,FTEMP);
3625 s=get_reg(i_regs->regmap,rs1[i]);
3626 temp=get_reg(i_regs->regmap,agr);
3627 if(temp<0) temp=get_reg(i_regs->regmap,-1);
3628 offset=imm[i];
3629 assert(tl>=0);
3630 assert(rs1[i]>0);
3631 assert(temp>=0);
3632 for(hr=0;hr<HOST_REGS;hr++) {
3633 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3634 }
3635 if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
3636 if (opcode[i]==0x31||opcode[i]==0x35) // LWC1/LDC1
3637 {
3638 // Loads use a temporary register which we need to save
3639 reglist|=1<<temp;
3640 }
3641 if (opcode[i]==0x39||opcode[i]==0x3D) // SWC1/SDC1
3642 ar=temp;
3643 else // LWC1/LDC1
3644 ar=tl;
3645 //if(s<0) emit_loadreg(rs1[i],ar); //address_generation does this now
3646 //else c=(i_regs->wasconst>>s)&1;
3647 if(s>=0) c=(i_regs->wasconst>>s)&1;
3648 // Check cop1 unusable
3649 if(!cop1_usable) {
3650 signed char rs=get_reg(i_regs->regmap,CSREG);
3651 assert(rs>=0);
3652 emit_testimm(rs,0x20000000);
3653 jaddr=(int)out;
3654 emit_jeq(0);
3655 add_stub(FP_STUB,jaddr,(int)out,i,rs,(int)i_regs,is_delayslot,0);
3656 cop1_usable=1;
3657 }
3658 if (opcode[i]==0x39) { // SWC1 (get float address)
3659 emit_readword((int)&reg_cop1_simple[(source[i]>>16)&0x1f],tl);
3660 }
3661 if (opcode[i]==0x3D) { // SDC1 (get double address)
3662 emit_readword((int)&reg_cop1_double[(source[i]>>16)&0x1f],tl);
3663 }
3664 // Generate address + offset
3665 if(!using_tlb) {
3666 if(!c)
4cb76aa4 3667 emit_cmpimm(offset||c||s<0?ar:s,RAM_SIZE);
57871462 3668 }
3669 else
3670 {
3671 map=get_reg(i_regs->regmap,TLREG);
3672 assert(map>=0);
ea3d2e6e 3673 reglist&=~(1<<map);
57871462 3674 if (opcode[i]==0x31||opcode[i]==0x35) { // LWC1/LDC1
3675 map=do_tlb_r(offset||c||s<0?ar:s,ar,map,0,-1,-1,c,constmap[i][s]+offset);
3676 }
3677 if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3678 map=do_tlb_w(offset||c||s<0?ar:s,ar,map,0,c,constmap[i][s]+offset);
3679 }
3680 }
3681 if (opcode[i]==0x39) { // SWC1 (read float)
3682 emit_readword_indexed(0,tl,tl);
3683 }
3684 if (opcode[i]==0x3D) { // SDC1 (read double)
3685 emit_readword_indexed(4,tl,th);
3686 emit_readword_indexed(0,tl,tl);
3687 }
3688 if (opcode[i]==0x31) { // LWC1 (get target address)
3689 emit_readword((int)&reg_cop1_simple[(source[i]>>16)&0x1f],temp);
3690 }
3691 if (opcode[i]==0x35) { // LDC1 (get target address)
3692 emit_readword((int)&reg_cop1_double[(source[i]>>16)&0x1f],temp);
3693 }
3694 if(!using_tlb) {
3695 if(!c) {
3696 jaddr2=(int)out;
3697 emit_jno(0);
3698 }
4cb76aa4 3699 else if(((signed int)(constmap[i][s]+offset))>=(signed int)0x80000000+RAM_SIZE) {
57871462 3700 jaddr2=(int)out;
3701 emit_jmp(0); // inline_readstub/inline_writestub? Very rare case
3702 }
3703 #ifdef DESTRUCTIVE_SHIFT
3704 if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3705 if(!offset&&!c&&s>=0) emit_mov(s,ar);
3706 }
3707 #endif
3708 }else{
3709 if (opcode[i]==0x31||opcode[i]==0x35) { // LWC1/LDC1
3710 do_tlb_r_branch(map,c,constmap[i][s]+offset,&jaddr2);
3711 }
3712 if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3713 do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr2);
3714 }
3715 }
3716 if (opcode[i]==0x31) { // LWC1
3717 //if(s>=0&&!c&&!offset) emit_mov(s,tl);
3718 //gen_tlb_addr_r(ar,map);
3719 //emit_readword_indexed((int)rdram-0x80000000,tl,tl);
3720 #ifdef HOST_IMM_ADDR32
3721 if(c) emit_readword_tlb(constmap[i][s]+offset,map,tl);
3722 else
3723 #endif
3724 emit_readword_indexed_tlb(0,offset||c||s<0?tl:s,map,tl);
3725 type=LOADW_STUB;
3726 }
3727 if (opcode[i]==0x35) { // LDC1
3728 assert(th>=0);
3729 //if(s>=0&&!c&&!offset) emit_mov(s,tl);
3730 //gen_tlb_addr_r(ar,map);
3731 //emit_readword_indexed((int)rdram-0x80000000,tl,th);
3732 //emit_readword_indexed((int)rdram-0x7FFFFFFC,tl,tl);
3733 #ifdef HOST_IMM_ADDR32
3734 if(c) emit_readdword_tlb(constmap[i][s]+offset,map,th,tl);
3735 else
3736 #endif
3737 emit_readdword_indexed_tlb(0,offset||c||s<0?tl:s,map,th,tl);
3738 type=LOADD_STUB;
3739 }
3740 if (opcode[i]==0x39) { // SWC1
3741 //emit_writeword_indexed(tl,(int)rdram-0x80000000,temp);
3742 emit_writeword_indexed_tlb(tl,0,offset||c||s<0?temp:s,map,temp);
3743 type=STOREW_STUB;
3744 }
3745 if (opcode[i]==0x3D) { // SDC1
3746 assert(th>=0);
3747 //emit_writeword_indexed(th,(int)rdram-0x80000000,temp);
3748 //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,temp);
3749 emit_writedword_indexed_tlb(th,tl,0,offset||c||s<0?temp:s,map,temp);
3750 type=STORED_STUB;
3751 }
3752 if(!using_tlb) {
3753 if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3754 #ifndef DESTRUCTIVE_SHIFT
3755 temp=offset||c||s<0?ar:s;
3756 #endif
3757 #if defined(HOST_IMM8)
3758 int ir=get_reg(i_regs->regmap,INVCP);
3759 assert(ir>=0);
3760 emit_cmpmem_indexedsr12_reg(ir,temp,1);
3761 #else
3762 emit_cmpmem_indexedsr12_imm((int)invalid_code,temp,1);
3763 #endif
0bbd1454 3764 #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3765 emit_callne(invalidate_addr_reg[temp]);
3766 #else
57871462 3767 jaddr3=(int)out;
3768 emit_jne(0);
3769 add_stub(INVCODE_STUB,jaddr3,(int)out,reglist|(1<<HOST_CCREG),temp,0,0,0);
0bbd1454 3770 #endif
57871462 3771 }
3772 }
3773 if(jaddr2) add_stub(type,jaddr2,(int)out,i,offset||c||s<0?ar:s,(int)i_regs,ccadj[i],reglist);
3774 if (opcode[i]==0x31) { // LWC1 (write float)
3775 emit_writeword_indexed(tl,0,temp);
3776 }
3777 if (opcode[i]==0x35) { // LDC1 (write double)
3778 emit_writeword_indexed(th,4,temp);
3779 emit_writeword_indexed(tl,0,temp);
3780 }
3781 //if(opcode[i]==0x39)
3782 /*if(opcode[i]==0x39||opcode[i]==0x31)
3783 {
3784 emit_pusha();
3785 emit_readword((int)&last_count,ECX);
3786 if(get_reg(i_regs->regmap,CCREG)<0)
3787 emit_loadreg(CCREG,HOST_CCREG);
3788 emit_add(HOST_CCREG,ECX,HOST_CCREG);
3789 emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3790 emit_writeword(HOST_CCREG,(int)&Count);
3791 emit_call((int)memdebug);
3792 emit_popa();
3793 }/**/
3d624f89 3794#else
3795 cop1_unusable(i, i_regs);
3796#endif
57871462 3797}
3798
b9b61529 3799void c2ls_assemble(int i,struct regstat *i_regs)
3800{
3801 int s,tl;
3802 int ar;
3803 int offset;
1fd1aceb 3804 int memtarget=0,c=0;
c2e3bd42 3805 int jaddr2=0,jaddr3,type;
b9b61529 3806 int agr=AGEN1+(i&1);
3807 u_int hr,reglist=0;
3808 u_int copr=(source[i]>>16)&0x1f;
3809 s=get_reg(i_regs->regmap,rs1[i]);
3810 tl=get_reg(i_regs->regmap,FTEMP);
3811 offset=imm[i];
3812 assert(rs1[i]>0);
3813 assert(tl>=0);
3814 assert(!using_tlb);
3815
3816 for(hr=0;hr<HOST_REGS;hr++) {
3817 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3818 }
3819 if(i_regs->regmap[HOST_CCREG]==CCREG)
3820 reglist&=~(1<<HOST_CCREG);
3821
3822 // get the address
3823 if (opcode[i]==0x3a) { // SWC2
3824 ar=get_reg(i_regs->regmap,agr);
3825 if(ar<0) ar=get_reg(i_regs->regmap,-1);
3826 reglist|=1<<ar;
3827 } else { // LWC2
3828 ar=tl;
3829 }
1fd1aceb 3830 if(s>=0) c=(i_regs->wasconst>>s)&1;
3831 memtarget=c&&(((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE);
b9b61529 3832 if (!offset&&!c&&s>=0) ar=s;
3833 assert(ar>=0);
3834
3835 if (opcode[i]==0x3a) { // SWC2
3836 cop2_get_dreg(copr,tl,HOST_TEMPREG);
1fd1aceb 3837 type=STOREW_STUB;
b9b61529 3838 }
1fd1aceb 3839 else
b9b61529 3840 type=LOADW_STUB;
1fd1aceb 3841
3842 if(c&&!memtarget) {
3843 jaddr2=(int)out;
3844 emit_jmp(0); // inline_readstub/inline_writestub?
b9b61529 3845 }
1fd1aceb 3846 else {
3847 if(!c) {
3848 emit_cmpimm(offset||c||s<0?ar:s,RAM_SIZE);
3849 jaddr2=(int)out;
3850 emit_jno(0);
3851 }
3852 if (opcode[i]==0x32) { // LWC2
3853 #ifdef HOST_IMM_ADDR32
3854 if(c) emit_readword_tlb(constmap[i][s]+offset,-1,tl);
3855 else
3856 #endif
3857 emit_readword_indexed(0,ar,tl);
3858 }
3859 if (opcode[i]==0x3a) { // SWC2
3860 #ifdef DESTRUCTIVE_SHIFT
3861 if(!offset&&!c&&s>=0) emit_mov(s,ar);
3862 #endif
3863 emit_writeword_indexed(tl,0,ar);
3864 }
b9b61529 3865 }
3866 if(jaddr2)
3867 add_stub(type,jaddr2,(int)out,i,ar,(int)i_regs,ccadj[i],reglist);
3868 if (opcode[i]==0x3a) { // SWC2
3869#if defined(HOST_IMM8)
3870 int ir=get_reg(i_regs->regmap,INVCP);
3871 assert(ir>=0);
3872 emit_cmpmem_indexedsr12_reg(ir,ar,1);
3873#else
3874 emit_cmpmem_indexedsr12_imm((int)invalid_code,ar,1);
3875#endif
0bbd1454 3876 #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3877 emit_callne(invalidate_addr_reg[ar]);
3878 #else
b9b61529 3879 jaddr3=(int)out;
3880 emit_jne(0);
3881 add_stub(INVCODE_STUB,jaddr3,(int)out,reglist|(1<<HOST_CCREG),ar,0,0,0);
0bbd1454 3882 #endif
b9b61529 3883 }
3884 if (opcode[i]==0x32) { // LWC2
3885 cop2_put_dreg(copr,tl,HOST_TEMPREG);
3886 }
3887}
3888
57871462 3889#ifndef multdiv_assemble
3890void multdiv_assemble(int i,struct regstat *i_regs)
3891{
3892 printf("Need multdiv_assemble for this architecture.\n");
3893 exit(1);
3894}
3895#endif
3896
3897void mov_assemble(int i,struct regstat *i_regs)
3898{
3899 //if(opcode2[i]==0x10||opcode2[i]==0x12) { // MFHI/MFLO
3900 //if(opcode2[i]==0x11||opcode2[i]==0x13) { // MTHI/MTLO
57871462 3901 if(rt1[i]) {
3902 signed char sh,sl,th,tl;
3903 th=get_reg(i_regs->regmap,rt1[i]|64);
3904 tl=get_reg(i_regs->regmap,rt1[i]);
3905 //assert(tl>=0);
3906 if(tl>=0) {
3907 sh=get_reg(i_regs->regmap,rs1[i]|64);
3908 sl=get_reg(i_regs->regmap,rs1[i]);
3909 if(sl>=0) emit_mov(sl,tl);
3910 else emit_loadreg(rs1[i],tl);
3911 if(th>=0) {
3912 if(sh>=0) emit_mov(sh,th);
3913 else emit_loadreg(rs1[i]|64,th);
3914 }
3915 }
3916 }
3917}
3918
3919#ifndef fconv_assemble
3920void fconv_assemble(int i,struct regstat *i_regs)
3921{
3922 printf("Need fconv_assemble for this architecture.\n");
3923 exit(1);
3924}
3925#endif
3926
3927#if 0
3928void float_assemble(int i,struct regstat *i_regs)
3929{
3930 printf("Need float_assemble for this architecture.\n");
3931 exit(1);
3932}
3933#endif
3934
3935void syscall_assemble(int i,struct regstat *i_regs)
3936{
3937 signed char ccreg=get_reg(i_regs->regmap,CCREG);
3938 assert(ccreg==HOST_CCREG);
3939 assert(!is_delayslot);
3940 emit_movimm(start+i*4,EAX); // Get PC
3941 emit_addimm(HOST_CCREG,CLOCK_DIVIDER*ccadj[i],HOST_CCREG); // CHECK: is this right? There should probably be an extra cycle...
7139f3c8 3942 emit_jmp((int)jump_syscall_hle); // XXX
3943}
3944
3945void hlecall_assemble(int i,struct regstat *i_regs)
3946{
3947 signed char ccreg=get_reg(i_regs->regmap,CCREG);
3948 assert(ccreg==HOST_CCREG);
3949 assert(!is_delayslot);
3950 emit_movimm(start+i*4+4,0); // Get PC
67ba0fb4 3951 emit_movimm((int)psxHLEt[source[i]&7],1);
7139f3c8 3952 emit_addimm(HOST_CCREG,CLOCK_DIVIDER*ccadj[i],HOST_CCREG); // XXX
67ba0fb4 3953 emit_jmp((int)jump_hlecall);
57871462 3954}
3955
1e973cb0 3956void intcall_assemble(int i,struct regstat *i_regs)
3957{
3958 signed char ccreg=get_reg(i_regs->regmap,CCREG);
3959 assert(ccreg==HOST_CCREG);
3960 assert(!is_delayslot);
3961 emit_movimm(start+i*4,0); // Get PC
3962 emit_addimm(HOST_CCREG,CLOCK_DIVIDER*ccadj[i],HOST_CCREG);
3963 emit_jmp((int)jump_intcall);
3964}
3965
57871462 3966void ds_assemble(int i,struct regstat *i_regs)
3967{
3968 is_delayslot=1;
3969 switch(itype[i]) {
3970 case ALU:
3971 alu_assemble(i,i_regs);break;
3972 case IMM16:
3973 imm16_assemble(i,i_regs);break;
3974 case SHIFT:
3975 shift_assemble(i,i_regs);break;
3976 case SHIFTIMM:
3977 shiftimm_assemble(i,i_regs);break;
3978 case LOAD:
3979 load_assemble(i,i_regs);break;
3980 case LOADLR:
3981 loadlr_assemble(i,i_regs);break;
3982 case STORE:
3983 store_assemble(i,i_regs);break;
3984 case STORELR:
3985 storelr_assemble(i,i_regs);break;
3986 case COP0:
3987 cop0_assemble(i,i_regs);break;
3988 case COP1:
3989 cop1_assemble(i,i_regs);break;
3990 case C1LS:
3991 c1ls_assemble(i,i_regs);break;
b9b61529 3992 case COP2:
3993 cop2_assemble(i,i_regs);break;
3994 case C2LS:
3995 c2ls_assemble(i,i_regs);break;
3996 case C2OP:
3997 c2op_assemble(i,i_regs);break;
57871462 3998 case FCONV:
3999 fconv_assemble(i,i_regs);break;
4000 case FLOAT:
4001 float_assemble(i,i_regs);break;
4002 case FCOMP:
4003 fcomp_assemble(i,i_regs);break;
4004 case MULTDIV:
4005 multdiv_assemble(i,i_regs);break;
4006 case MOV:
4007 mov_assemble(i,i_regs);break;
4008 case SYSCALL:
7139f3c8 4009 case HLECALL:
1e973cb0 4010 case INTCALL:
57871462 4011 case SPAN:
4012 case UJUMP:
4013 case RJUMP:
4014 case CJUMP:
4015 case SJUMP:
4016 case FJUMP:
4017 printf("Jump in the delay slot. This is probably a bug.\n");
4018 }
4019 is_delayslot=0;
4020}
4021
4022// Is the branch target a valid internal jump?
4023int internal_branch(uint64_t i_is32,int addr)
4024{
4025 if(addr&1) return 0; // Indirect (register) jump
4026 if(addr>=start && addr<start+slen*4-4)
4027 {
4028 int t=(addr-start)>>2;
4029 // Delay slots are not valid branch targets
4030 //if(t>0&&(itype[t-1]==RJUMP||itype[t-1]==UJUMP||itype[t-1]==CJUMP||itype[t-1]==SJUMP||itype[t-1]==FJUMP)) return 0;
4031 // 64 -> 32 bit transition requires a recompile
4032 /*if(is32[t]&~unneeded_reg_upper[t]&~i_is32)
4033 {
4034 if(requires_32bit[t]&~i_is32) printf("optimizable: no\n");
4035 else printf("optimizable: yes\n");
4036 }*/
4037 //if(is32[t]&~unneeded_reg_upper[t]&~i_is32) return 0;
a28c6ce8 4038#ifndef FORCE32
57871462 4039 if(requires_32bit[t]&~i_is32) return 0;
a28c6ce8 4040 else
4041#endif
4042 return 1;
57871462 4043 }
4044 return 0;
4045}
4046
4047#ifndef wb_invalidate
4048void wb_invalidate(signed char pre[],signed char entry[],uint64_t dirty,uint64_t is32,
4049 uint64_t u,uint64_t uu)
4050{
4051 int hr;
4052 for(hr=0;hr<HOST_REGS;hr++) {
4053 if(hr!=EXCLUDE_REG) {
4054 if(pre[hr]!=entry[hr]) {
4055 if(pre[hr]>=0) {
4056 if((dirty>>hr)&1) {
4057 if(get_reg(entry,pre[hr])<0) {
4058 if(pre[hr]<64) {
4059 if(!((u>>pre[hr])&1)) {
4060 emit_storereg(pre[hr],hr);
4061 if( ((is32>>pre[hr])&1) && !((uu>>pre[hr])&1) ) {
4062 emit_sarimm(hr,31,hr);
4063 emit_storereg(pre[hr]|64,hr);
4064 }
4065 }
4066 }else{
4067 if(!((uu>>(pre[hr]&63))&1) && !((is32>>(pre[hr]&63))&1)) {
4068 emit_storereg(pre[hr],hr);
4069 }
4070 }
4071 }
4072 }
4073 }
4074 }
4075 }
4076 }
4077 // Move from one register to another (no writeback)
4078 for(hr=0;hr<HOST_REGS;hr++) {
4079 if(hr!=EXCLUDE_REG) {
4080 if(pre[hr]!=entry[hr]) {
4081 if(pre[hr]>=0&&(pre[hr]&63)<TEMPREG) {
4082 int nr;
4083 if((nr=get_reg(entry,pre[hr]))>=0) {
4084 emit_mov(hr,nr);
4085 }
4086 }
4087 }
4088 }
4089 }
4090}
4091#endif
4092
4093// Load the specified registers
4094// This only loads the registers given as arguments because
4095// we don't want to load things that will be overwritten
4096void load_regs(signed char entry[],signed char regmap[],int is32,int rs1,int rs2)
4097{
4098 int hr;
4099 // Load 32-bit regs
4100 for(hr=0;hr<HOST_REGS;hr++) {
4101 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4102 if(entry[hr]!=regmap[hr]) {
4103 if(regmap[hr]==rs1||regmap[hr]==rs2)
4104 {
4105 if(regmap[hr]==0) {
4106 emit_zeroreg(hr);
4107 }
4108 else
4109 {
4110 emit_loadreg(regmap[hr],hr);
4111 }
4112 }
4113 }
4114 }
4115 }
4116 //Load 64-bit regs
4117 for(hr=0;hr<HOST_REGS;hr++) {
4118 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4119 if(entry[hr]!=regmap[hr]) {
4120 if(regmap[hr]-64==rs1||regmap[hr]-64==rs2)
4121 {
4122 assert(regmap[hr]!=64);
4123 if((is32>>(regmap[hr]&63))&1) {
4124 int lr=get_reg(regmap,regmap[hr]-64);
4125 if(lr>=0)
4126 emit_sarimm(lr,31,hr);
4127 else
4128 emit_loadreg(regmap[hr],hr);
4129 }
4130 else
4131 {
4132 emit_loadreg(regmap[hr],hr);
4133 }
4134 }
4135 }
4136 }
4137 }
4138}
4139
4140// Load registers prior to the start of a loop
4141// so that they are not loaded within the loop
4142static void loop_preload(signed char pre[],signed char entry[])
4143{
4144 int hr;
4145 for(hr=0;hr<HOST_REGS;hr++) {
4146 if(hr!=EXCLUDE_REG) {
4147 if(pre[hr]!=entry[hr]) {
4148 if(entry[hr]>=0) {
4149 if(get_reg(pre,entry[hr])<0) {
4150 assem_debug("loop preload:\n");
4151 //printf("loop preload: %d\n",hr);
4152 if(entry[hr]==0) {
4153 emit_zeroreg(hr);
4154 }
4155 else if(entry[hr]<TEMPREG)
4156 {
4157 emit_loadreg(entry[hr],hr);
4158 }
4159 else if(entry[hr]-64<TEMPREG)
4160 {
4161 emit_loadreg(entry[hr],hr);
4162 }
4163 }
4164 }
4165 }
4166 }
4167 }
4168}
4169
4170// Generate address for load/store instruction
b9b61529 4171// goes to AGEN for writes, FTEMP for LOADLR and cop1/2 loads
57871462 4172void address_generation(int i,struct regstat *i_regs,signed char entry[])
4173{
b9b61529 4174 if(itype[i]==LOAD||itype[i]==LOADLR||itype[i]==STORE||itype[i]==STORELR||itype[i]==C1LS||itype[i]==C2LS) {
5194fb95 4175 int ra=-1;
57871462 4176 int agr=AGEN1+(i&1);
4177 int mgr=MGEN1+(i&1);
4178 if(itype[i]==LOAD) {
4179 ra=get_reg(i_regs->regmap,rt1[i]);
535d208a 4180 if(ra<0) ra=get_reg(i_regs->regmap,-1);
4181 assert(ra>=0);
57871462 4182 }
4183 if(itype[i]==LOADLR) {
4184 ra=get_reg(i_regs->regmap,FTEMP);
4185 }
4186 if(itype[i]==STORE||itype[i]==STORELR) {
4187 ra=get_reg(i_regs->regmap,agr);
4188 if(ra<0) ra=get_reg(i_regs->regmap,-1);
4189 }
b9b61529 4190 if(itype[i]==C1LS||itype[i]==C2LS) {
4191 if ((opcode[i]&0x3b)==0x31||(opcode[i]&0x3b)==0x32) // LWC1/LDC1/LWC2/LDC2
57871462 4192 ra=get_reg(i_regs->regmap,FTEMP);
1fd1aceb 4193 else { // SWC1/SDC1/SWC2/SDC2
57871462 4194 ra=get_reg(i_regs->regmap,agr);
4195 if(ra<0) ra=get_reg(i_regs->regmap,-1);
4196 }
4197 }
4198 int rs=get_reg(i_regs->regmap,rs1[i]);
4199 int rm=get_reg(i_regs->regmap,TLREG);
4200 if(ra>=0) {
4201 int offset=imm[i];
4202 int c=(i_regs->wasconst>>rs)&1;
4203 if(rs1[i]==0) {
4204 // Using r0 as a base address
4205 /*if(rm>=0) {
4206 if(!entry||entry[rm]!=mgr) {
4207 generate_map_const(offset,rm);
4208 } // else did it in the previous cycle
4209 }*/
4210 if(!entry||entry[ra]!=agr) {
4211 if (opcode[i]==0x22||opcode[i]==0x26) {
4212 emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
4213 }else if (opcode[i]==0x1a||opcode[i]==0x1b) {
4214 emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
4215 }else{
4216 emit_movimm(offset,ra);
4217 }
4218 } // else did it in the previous cycle
4219 }
4220 else if(rs<0) {
4221 if(!entry||entry[ra]!=rs1[i])
4222 emit_loadreg(rs1[i],ra);
4223 //if(!entry||entry[ra]!=rs1[i])
4224 // printf("poor load scheduling!\n");
4225 }
4226 else if(c) {
4227 if(rm>=0) {
4228 if(!entry||entry[rm]!=mgr) {
b9b61529 4229 if(itype[i]==STORE||itype[i]==STORELR||(opcode[i]&0x3b)==0x39||(opcode[i]&0x3b)==0x3a) {
57871462 4230 // Stores to memory go thru the mapper to detect self-modifying
4231 // code, loads don't.
4232 if((unsigned int)(constmap[i][rs]+offset)>=0xC0000000 ||
4cb76aa4 4233 (unsigned int)(constmap[i][rs]+offset)<0x80000000+RAM_SIZE )
57871462 4234 generate_map_const(constmap[i][rs]+offset,rm);
4235 }else{
4236 if((signed int)(constmap[i][rs]+offset)>=(signed int)0xC0000000)
4237 generate_map_const(constmap[i][rs]+offset,rm);
4238 }
4239 }
4240 }
4241 if(rs1[i]!=rt1[i]||itype[i]!=LOAD) {
4242 if(!entry||entry[ra]!=agr) {
4243 if (opcode[i]==0x22||opcode[i]==0x26) {
4244 emit_movimm((constmap[i][rs]+offset)&0xFFFFFFFC,ra); // LWL/LWR
4245 }else if (opcode[i]==0x1a||opcode[i]==0x1b) {
4246 emit_movimm((constmap[i][rs]+offset)&0xFFFFFFF8,ra); // LDL/LDR
4247 }else{
4248 #ifdef HOST_IMM_ADDR32
b9b61529 4249 if((itype[i]!=LOAD&&(opcode[i]&0x3b)!=0x31&&(opcode[i]&0x3b)!=0x32) || // LWC1/LDC1/LWC2/LDC2
57871462 4250 (using_tlb&&((signed int)constmap[i][rs]+offset)>=(signed int)0xC0000000))
4251 #endif
4252 emit_movimm(constmap[i][rs]+offset,ra);
4253 }
4254 } // else did it in the previous cycle
4255 } // else load_consts already did it
4256 }
4257 if(offset&&!c&&rs1[i]) {
4258 if(rs>=0) {
4259 emit_addimm(rs,offset,ra);
4260 }else{
4261 emit_addimm(ra,offset,ra);
4262 }
4263 }
4264 }
4265 }
4266 // Preload constants for next instruction
b9b61529 4267 if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS||itype[i+1]==C2LS) {
57871462 4268 int agr,ra;
4269 #ifndef HOST_IMM_ADDR32
4270 // Mapper entry
4271 agr=MGEN1+((i+1)&1);
4272 ra=get_reg(i_regs->regmap,agr);
4273 if(ra>=0) {
4274 int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
4275 int offset=imm[i+1];
4276 int c=(regs[i+1].wasconst>>rs)&1;
4277 if(c) {
b9b61529 4278 if(itype[i+1]==STORE||itype[i+1]==STORELR
4279 ||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1, SWC2/SDC2
57871462 4280 // Stores to memory go thru the mapper to detect self-modifying
4281 // code, loads don't.
4282 if((unsigned int)(constmap[i+1][rs]+offset)>=0xC0000000 ||
4cb76aa4 4283 (unsigned int)(constmap[i+1][rs]+offset)<0x80000000+RAM_SIZE )
57871462 4284 generate_map_const(constmap[i+1][rs]+offset,ra);
4285 }else{
4286 if((signed int)(constmap[i+1][rs]+offset)>=(signed int)0xC0000000)
4287 generate_map_const(constmap[i+1][rs]+offset,ra);
4288 }
4289 }
4290 /*else if(rs1[i]==0) {
4291 generate_map_const(offset,ra);
4292 }*/
4293 }
4294 #endif
4295 // Actual address
4296 agr=AGEN1+((i+1)&1);
4297 ra=get_reg(i_regs->regmap,agr);
4298 if(ra>=0) {
4299 int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
4300 int offset=imm[i+1];
4301 int c=(regs[i+1].wasconst>>rs)&1;
4302 if(c&&(rs1[i+1]!=rt1[i+1]||itype[i+1]!=LOAD)) {
4303 if (opcode[i+1]==0x22||opcode[i+1]==0x26) {
4304 emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFFC,ra); // LWL/LWR
4305 }else if (opcode[i+1]==0x1a||opcode[i+1]==0x1b) {
4306 emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFF8,ra); // LDL/LDR
4307 }else{
4308 #ifdef HOST_IMM_ADDR32
b9b61529 4309 if((itype[i+1]!=LOAD&&(opcode[i+1]&0x3b)!=0x31&&(opcode[i+1]&0x3b)!=0x32) || // LWC1/LDC1/LWC2/LDC2
57871462 4310 (using_tlb&&((signed int)constmap[i+1][rs]+offset)>=(signed int)0xC0000000))
4311 #endif
4312 emit_movimm(constmap[i+1][rs]+offset,ra);
4313 }
4314 }
4315 else if(rs1[i+1]==0) {
4316 // Using r0 as a base address
4317 if (opcode[i+1]==0x22||opcode[i+1]==0x26) {
4318 emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
4319 }else if (opcode[i+1]==0x1a||opcode[i+1]==0x1b) {
4320 emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
4321 }else{
4322 emit_movimm(offset,ra);
4323 }
4324 }
4325 }
4326 }
4327}
4328
4329int get_final_value(int hr, int i, int *value)
4330{
4331 int reg=regs[i].regmap[hr];
4332 while(i<slen-1) {
4333 if(regs[i+1].regmap[hr]!=reg) break;
4334 if(!((regs[i+1].isconst>>hr)&1)) break;
4335 if(bt[i+1]) break;
4336 i++;
4337 }
4338 if(i<slen-1) {
4339 if(itype[i]==UJUMP||itype[i]==RJUMP||itype[i]==CJUMP||itype[i]==SJUMP) {
4340 *value=constmap[i][hr];
4341 return 1;
4342 }
4343 if(!bt[i+1]) {
4344 if(itype[i+1]==UJUMP||itype[i+1]==RJUMP||itype[i+1]==CJUMP||itype[i+1]==SJUMP) {
4345 // Load in delay slot, out-of-order execution
4346 if(itype[i+2]==LOAD&&rs1[i+2]==reg&&rt1[i+2]==reg&&((regs[i+1].wasconst>>hr)&1))
4347 {
4348 #ifdef HOST_IMM_ADDR32
4349 if(!using_tlb||((signed int)constmap[i][hr]+imm[i+2])<(signed int)0xC0000000) return 0;
4350 #endif
4351 // Precompute load address
4352 *value=constmap[i][hr]+imm[i+2];
4353 return 1;
4354 }
4355 }
4356 if(itype[i+1]==LOAD&&rs1[i+1]==reg&&rt1[i+1]==reg)
4357 {
4358 #ifdef HOST_IMM_ADDR32
4359 if(!using_tlb||((signed int)constmap[i][hr]+imm[i+1])<(signed int)0xC0000000) return 0;
4360 #endif
4361 // Precompute load address
4362 *value=constmap[i][hr]+imm[i+1];
4363 //printf("c=%x imm=%x\n",(int)constmap[i][hr],imm[i+1]);
4364 return 1;
4365 }
4366 }
4367 }
4368 *value=constmap[i][hr];
4369 //printf("c=%x\n",(int)constmap[i][hr]);
4370 if(i==slen-1) return 1;
4371 if(reg<64) {
4372 return !((unneeded_reg[i+1]>>reg)&1);
4373 }else{
4374 return !((unneeded_reg_upper[i+1]>>reg)&1);
4375 }
4376}
4377
4378// Load registers with known constants
4379void load_consts(signed char pre[],signed char regmap[],int is32,int i)
4380{
4381 int hr;
4382 // Load 32-bit regs
4383 for(hr=0;hr<HOST_REGS;hr++) {
4384 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4385 //if(entry[hr]!=regmap[hr]) {
4386 if(i==0||!((regs[i-1].isconst>>hr)&1)||pre[hr]!=regmap[hr]||bt[i]) {
4387 if(((regs[i].isconst>>hr)&1)&&regmap[hr]<64&&regmap[hr]>0) {
4388 int value;
4389 if(get_final_value(hr,i,&value)) {
4390 if(value==0) {
4391 emit_zeroreg(hr);
4392 }
4393 else {
4394 emit_movimm(value,hr);
4395 }
4396 }
4397 }
4398 }
4399 }
4400 }
4401 // Load 64-bit regs
4402 for(hr=0;hr<HOST_REGS;hr++) {
4403 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4404 //if(entry[hr]!=regmap[hr]) {
4405 if(i==0||!((regs[i-1].isconst>>hr)&1)||pre[hr]!=regmap[hr]||bt[i]) {
4406 if(((regs[i].isconst>>hr)&1)&&regmap[hr]>64) {
4407 if((is32>>(regmap[hr]&63))&1) {
4408 int lr=get_reg(regmap,regmap[hr]-64);
4409 assert(lr>=0);
4410 emit_sarimm(lr,31,hr);
4411 }
4412 else
4413 {
4414 int value;
4415 if(get_final_value(hr,i,&value)) {
4416 if(value==0) {
4417 emit_zeroreg(hr);
4418 }
4419 else {
4420 emit_movimm(value,hr);
4421 }
4422 }
4423 }
4424 }
4425 }
4426 }
4427 }
4428}
4429void load_all_consts(signed char regmap[],int is32,u_int dirty,int i)
4430{
4431 int hr;
4432 // Load 32-bit regs
4433 for(hr=0;hr<HOST_REGS;hr++) {
4434 if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((dirty>>hr)&1)) {
4435 if(((regs[i].isconst>>hr)&1)&&regmap[hr]<64&&regmap[hr]>0) {
4436 int value=constmap[i][hr];
4437 if(value==0) {
4438 emit_zeroreg(hr);
4439 }
4440 else {
4441 emit_movimm(value,hr);
4442 }
4443 }
4444 }
4445 }
4446 // Load 64-bit regs
4447 for(hr=0;hr<HOST_REGS;hr++) {
4448 if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((dirty>>hr)&1)) {
4449 if(((regs[i].isconst>>hr)&1)&&regmap[hr]>64) {
4450 if((is32>>(regmap[hr]&63))&1) {
4451 int lr=get_reg(regmap,regmap[hr]-64);
4452 assert(lr>=0);
4453 emit_sarimm(lr,31,hr);
4454 }
4455 else
4456 {
4457 int value=constmap[i][hr];
4458 if(value==0) {
4459 emit_zeroreg(hr);
4460 }
4461 else {
4462 emit_movimm(value,hr);
4463 }
4464 }
4465 }
4466 }
4467 }
4468}
4469
4470// Write out all dirty registers (except cycle count)
4471void wb_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty)
4472{
4473 int hr;
4474 for(hr=0;hr<HOST_REGS;hr++) {
4475 if(hr!=EXCLUDE_REG) {
4476 if(i_regmap[hr]>0) {
4477 if(i_regmap[hr]!=CCREG) {
4478 if((i_dirty>>hr)&1) {
4479 if(i_regmap[hr]<64) {
4480 emit_storereg(i_regmap[hr],hr);
24385cae 4481#ifndef FORCE32
57871462 4482 if( ((i_is32>>i_regmap[hr])&1) ) {
4483 #ifdef DESTRUCTIVE_WRITEBACK
4484 emit_sarimm(hr,31,hr);
4485 emit_storereg(i_regmap[hr]|64,hr);
4486 #else
4487 emit_sarimm(hr,31,HOST_TEMPREG);
4488 emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4489 #endif
4490 }
24385cae 4491#endif
57871462 4492 }else{
4493 if( !((i_is32>>(i_regmap[hr]&63))&1) ) {
4494 emit_storereg(i_regmap[hr],hr);
4495 }
4496 }
4497 }
4498 }
4499 }
4500 }
4501 }
4502}
4503// Write out dirty registers that we need to reload (pair with load_needed_regs)
4504// This writes the registers not written by store_regs_bt
4505void wb_needed_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4506{
4507 int hr;
4508 int t=(addr-start)>>2;
4509 for(hr=0;hr<HOST_REGS;hr++) {
4510 if(hr!=EXCLUDE_REG) {
4511 if(i_regmap[hr]>0) {
4512 if(i_regmap[hr]!=CCREG) {
4513 if(i_regmap[hr]==regs[t].regmap_entry[hr] && ((regs[t].dirty>>hr)&1) && !(((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4514 if((i_dirty>>hr)&1) {
4515 if(i_regmap[hr]<64) {
4516 emit_storereg(i_regmap[hr],hr);
24385cae 4517#ifndef FORCE32
57871462 4518 if( ((i_is32>>i_regmap[hr])&1) ) {
4519 #ifdef DESTRUCTIVE_WRITEBACK
4520 emit_sarimm(hr,31,hr);
4521 emit_storereg(i_regmap[hr]|64,hr);
4522 #else
4523 emit_sarimm(hr,31,HOST_TEMPREG);
4524 emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4525 #endif
4526 }
24385cae 4527#endif
57871462 4528 }else{
4529 if( !((i_is32>>(i_regmap[hr]&63))&1) ) {
4530 emit_storereg(i_regmap[hr],hr);
4531 }
4532 }
4533 }
4534 }
4535 }
4536 }
4537 }
4538 }
4539}
4540
4541// Load all registers (except cycle count)
4542void load_all_regs(signed char i_regmap[])
4543{
4544 int hr;
4545 for(hr=0;hr<HOST_REGS;hr++) {
4546 if(hr!=EXCLUDE_REG) {
4547 if(i_regmap[hr]==0) {
4548 emit_zeroreg(hr);
4549 }
4550 else
ea3d2e6e 4551 if(i_regmap[hr]>0 && (i_regmap[hr]&63)<TEMPREG && i_regmap[hr]!=CCREG)
57871462 4552 {
4553 emit_loadreg(i_regmap[hr],hr);
4554 }
4555 }
4556 }
4557}
4558
4559// Load all current registers also needed by next instruction
4560void load_needed_regs(signed char i_regmap[],signed char next_regmap[])
4561{
4562 int hr;
4563 for(hr=0;hr<HOST_REGS;hr++) {
4564 if(hr!=EXCLUDE_REG) {
4565 if(get_reg(next_regmap,i_regmap[hr])>=0) {
4566 if(i_regmap[hr]==0) {
4567 emit_zeroreg(hr);
4568 }
4569 else
ea3d2e6e 4570 if(i_regmap[hr]>0 && (i_regmap[hr]&63)<TEMPREG && i_regmap[hr]!=CCREG)
57871462 4571 {
4572 emit_loadreg(i_regmap[hr],hr);
4573 }
4574 }
4575 }
4576 }
4577}
4578
4579// Load all regs, storing cycle count if necessary
4580void load_regs_entry(int t)
4581{
4582 int hr;
4583 if(is_ds[t]) emit_addimm(HOST_CCREG,CLOCK_DIVIDER,HOST_CCREG);
4584 else if(ccadj[t]) emit_addimm(HOST_CCREG,-ccadj[t]*CLOCK_DIVIDER,HOST_CCREG);
4585 if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
4586 emit_storereg(CCREG,HOST_CCREG);
4587 }
4588 // Load 32-bit regs
4589 for(hr=0;hr<HOST_REGS;hr++) {
ea3d2e6e 4590 if(regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<TEMPREG) {
57871462 4591 if(regs[t].regmap_entry[hr]==0) {
4592 emit_zeroreg(hr);
4593 }
4594 else if(regs[t].regmap_entry[hr]!=CCREG)
4595 {
4596 emit_loadreg(regs[t].regmap_entry[hr],hr);
4597 }
4598 }
4599 }
4600 // Load 64-bit regs
4601 for(hr=0;hr<HOST_REGS;hr++) {
ea3d2e6e 4602 if(regs[t].regmap_entry[hr]>=64&&regs[t].regmap_entry[hr]<TEMPREG+64) {
57871462 4603 assert(regs[t].regmap_entry[hr]!=64);
4604 if((regs[t].was32>>(regs[t].regmap_entry[hr]&63))&1) {
4605 int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4606 if(lr<0) {
4607 emit_loadreg(regs[t].regmap_entry[hr],hr);
4608 }
4609 else
4610 {
4611 emit_sarimm(lr,31,hr);
4612 }
4613 }
4614 else
4615 {
4616 emit_loadreg(regs[t].regmap_entry[hr],hr);
4617 }
4618 }
4619 }
4620}
4621
4622// Store dirty registers prior to branch
4623void store_regs_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4624{
4625 if(internal_branch(i_is32,addr))
4626 {
4627 int t=(addr-start)>>2;
4628 int hr;
4629 for(hr=0;hr<HOST_REGS;hr++) {
4630 if(hr!=EXCLUDE_REG) {
4631 if(i_regmap[hr]>0 && i_regmap[hr]!=CCREG) {
4632 if(i_regmap[hr]!=regs[t].regmap_entry[hr] || !((regs[t].dirty>>hr)&1) || (((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4633 if((i_dirty>>hr)&1) {
4634 if(i_regmap[hr]<64) {
4635 if(!((unneeded_reg[t]>>i_regmap[hr])&1)) {
4636 emit_storereg(i_regmap[hr],hr);
4637 if( ((i_is32>>i_regmap[hr])&1) && !((unneeded_reg_upper[t]>>i_regmap[hr])&1) ) {
4638 #ifdef DESTRUCTIVE_WRITEBACK
4639 emit_sarimm(hr,31,hr);
4640 emit_storereg(i_regmap[hr]|64,hr);
4641 #else
4642 emit_sarimm(hr,31,HOST_TEMPREG);
4643 emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4644 #endif
4645 }
4646 }
4647 }else{
4648 if( !((i_is32>>(i_regmap[hr]&63))&1) && !((unneeded_reg_upper[t]>>(i_regmap[hr]&63))&1) ) {
4649 emit_storereg(i_regmap[hr],hr);
4650 }
4651 }
4652 }
4653 }
4654 }
4655 }
4656 }
4657 }
4658 else
4659 {
4660 // Branch out of this block, write out all dirty regs
4661 wb_dirtys(i_regmap,i_is32,i_dirty);
4662 }
4663}
4664
4665// Load all needed registers for branch target
4666void load_regs_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4667{
4668 //if(addr>=start && addr<(start+slen*4))
4669 if(internal_branch(i_is32,addr))
4670 {
4671 int t=(addr-start)>>2;
4672 int hr;
4673 // Store the cycle count before loading something else
4674 if(i_regmap[HOST_CCREG]!=CCREG) {
4675 assert(i_regmap[HOST_CCREG]==-1);
4676 }
4677 if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
4678 emit_storereg(CCREG,HOST_CCREG);
4679 }
4680 // Load 32-bit regs
4681 for(hr=0;hr<HOST_REGS;hr++) {
ea3d2e6e 4682 if(hr!=EXCLUDE_REG&&regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<TEMPREG) {
57871462 4683 #ifdef DESTRUCTIVE_WRITEBACK
4684 if(i_regmap[hr]!=regs[t].regmap_entry[hr] || ( !((regs[t].dirty>>hr)&1) && ((i_dirty>>hr)&1) && (((i_is32&~unneeded_reg_upper[t])>>i_regmap[hr])&1) ) || (((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4685 #else
4686 if(i_regmap[hr]!=regs[t].regmap_entry[hr] ) {
4687 #endif
4688 if(regs[t].regmap_entry[hr]==0) {
4689 emit_zeroreg(hr);
4690 }
4691 else if(regs[t].regmap_entry[hr]!=CCREG)
4692 {
4693 emit_loadreg(regs[t].regmap_entry[hr],hr);
4694 }
4695 }
4696 }
4697 }
4698 //Load 64-bit regs
4699 for(hr=0;hr<HOST_REGS;hr++) {
ea3d2e6e 4700 if(hr!=EXCLUDE_REG&&regs[t].regmap_entry[hr]>=64&&regs[t].regmap_entry[hr]<TEMPREG+64) {
57871462 4701 if(i_regmap[hr]!=regs[t].regmap_entry[hr]) {
4702 assert(regs[t].regmap_entry[hr]!=64);
4703 if((i_is32>>(regs[t].regmap_entry[hr]&63))&1) {
4704 int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4705 if(lr<0) {
4706 emit_loadreg(regs[t].regmap_entry[hr],hr);
4707 }
4708 else
4709 {
4710 emit_sarimm(lr,31,hr);
4711 }
4712 }
4713 else
4714 {
4715 emit_loadreg(regs[t].regmap_entry[hr],hr);
4716 }
4717 }
4718 else if((i_is32>>(regs[t].regmap_entry[hr]&63))&1) {
4719 int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4720 assert(lr>=0);
4721 emit_sarimm(lr,31,hr);
4722 }
4723 }
4724 }
4725 }
4726}
4727
4728int match_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4729{
4730 if(addr>=start && addr<start+slen*4-4)
4731 {
4732 int t=(addr-start)>>2;
4733 int hr;
4734 if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) return 0;
4735 for(hr=0;hr<HOST_REGS;hr++)
4736 {
4737 if(hr!=EXCLUDE_REG)
4738 {
4739 if(i_regmap[hr]!=regs[t].regmap_entry[hr])
4740 {
ea3d2e6e 4741 if(regs[t].regmap_entry[hr]>=0&&(regs[t].regmap_entry[hr]|64)<TEMPREG+64)
57871462 4742 {
4743 return 0;
4744 }
4745 else
4746 if((i_dirty>>hr)&1)
4747 {
ea3d2e6e 4748 if(i_regmap[hr]<TEMPREG)
57871462 4749 {
4750 if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4751 return 0;
4752 }
ea3d2e6e 4753 else if(i_regmap[hr]>=64&&i_regmap[hr]<TEMPREG+64)
57871462 4754 {
4755 if(!((unneeded_reg_upper[t]>>(i_regmap[hr]&63))&1))
4756 return 0;
4757 }
4758 }
4759 }
4760 else // Same register but is it 32-bit or dirty?
4761 if(i_regmap[hr]>=0)
4762 {
4763 if(!((regs[t].dirty>>hr)&1))
4764 {
4765 if((i_dirty>>hr)&1)
4766 {
4767 if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4768 {
4769 //printf("%x: dirty no match\n",addr);
4770 return 0;
4771 }
4772 }
4773 }
4774 if((((regs[t].was32^i_is32)&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)
4775 {
4776 //printf("%x: is32 no match\n",addr);
4777 return 0;
4778 }
4779 }
4780 }
4781 }
4782 //if(is32[t]&~unneeded_reg_upper[t]&~i_is32) return 0;
a28c6ce8 4783#ifndef FORCE32
57871462 4784 if(requires_32bit[t]&~i_is32) return 0;
a28c6ce8 4785#endif
57871462 4786 // Delay slots are not valid branch targets
4787 //if(t>0&&(itype[t-1]==RJUMP||itype[t-1]==UJUMP||itype[t-1]==CJUMP||itype[t-1]==SJUMP||itype[t-1]==FJUMP)) return 0;
4788 // Delay slots require additional processing, so do not match
4789 if(is_ds[t]) return 0;
4790 }
4791 else
4792 {
4793 int hr;
4794 for(hr=0;hr<HOST_REGS;hr++)
4795 {
4796 if(hr!=EXCLUDE_REG)
4797 {
4798 if(i_regmap[hr]>=0)
4799 {
4800 if(hr!=HOST_CCREG||i_regmap[hr]!=CCREG)
4801 {
4802 if((i_dirty>>hr)&1)
4803 {
4804 return 0;
4805 }
4806 }
4807 }
4808 }
4809 }
4810 }
4811 return 1;
4812}
4813
4814// Used when a branch jumps into the delay slot of another branch
4815void ds_assemble_entry(int i)
4816{
4817 int t=(ba[i]-start)>>2;
4818 if(!instr_addr[t]) instr_addr[t]=(u_int)out;
4819 assem_debug("Assemble delay slot at %x\n",ba[i]);
4820 assem_debug("<->\n");
4821 if(regs[t].regmap_entry[HOST_CCREG]==CCREG&&regs[t].regmap[HOST_CCREG]!=CCREG)
4822 wb_register(CCREG,regs[t].regmap_entry,regs[t].wasdirty,regs[t].was32);
4823 load_regs(regs[t].regmap_entry,regs[t].regmap,regs[t].was32,rs1[t],rs2[t]);
4824 address_generation(t,&regs[t],regs[t].regmap_entry);
b9b61529 4825 if(itype[t]==STORE||itype[t]==STORELR||(opcode[t]&0x3b)==0x39||(opcode[t]&0x3b)==0x3a)
57871462 4826 load_regs(regs[t].regmap_entry,regs[t].regmap,regs[t].was32,INVCP,INVCP);
4827 cop1_usable=0;
4828 is_delayslot=0;
4829 switch(itype[t]) {
4830 case ALU:
4831 alu_assemble(t,&regs[t]);break;
4832 case IMM16:
4833 imm16_assemble(t,&regs[t]);break;
4834 case SHIFT:
4835 shift_assemble(t,&regs[t]);break;
4836 case SHIFTIMM:
4837 shiftimm_assemble(t,&regs[t]);break;
4838 case LOAD:
4839 load_assemble(t,&regs[t]);break;
4840 case LOADLR:
4841 loadlr_assemble(t,&regs[t]);break;
4842 case STORE:
4843 store_assemble(t,&regs[t]);break;
4844 case STORELR:
4845 storelr_assemble(t,&regs[t]);break;
4846 case COP0:
4847 cop0_assemble(t,&regs[t]);break;
4848 case COP1:
4849 cop1_assemble(t,&regs[t]);break;
4850 case C1LS:
4851 c1ls_assemble(t,&regs[t]);break;
b9b61529 4852 case COP2:
4853 cop2_assemble(t,&regs[t]);break;
4854 case C2LS:
4855 c2ls_assemble(t,&regs[t]);break;
4856 case C2OP:
4857 c2op_assemble(t,&regs[t]);break;
57871462 4858 case FCONV:
4859 fconv_assemble(t,&regs[t]);break;
4860 case FLOAT:
4861 float_assemble(t,&regs[t]);break;
4862 case FCOMP:
4863 fcomp_assemble(t,&regs[t]);break;
4864 case MULTDIV:
4865 multdiv_assemble(t,&regs[t]);break;
4866 case MOV:
4867 mov_assemble(t,&regs[t]);break;
4868 case SYSCALL:
7139f3c8 4869 case HLECALL:
1e973cb0 4870 case INTCALL:
57871462 4871 case SPAN:
4872 case UJUMP:
4873 case RJUMP:
4874 case CJUMP:
4875 case SJUMP:
4876 case FJUMP:
4877 printf("Jump in the delay slot. This is probably a bug.\n");
4878 }
4879 store_regs_bt(regs[t].regmap,regs[t].is32,regs[t].dirty,ba[i]+4);
4880 load_regs_bt(regs[t].regmap,regs[t].is32,regs[t].dirty,ba[i]+4);
4881 if(internal_branch(regs[t].is32,ba[i]+4))
4882 assem_debug("branch: internal\n");
4883 else
4884 assem_debug("branch: external\n");
4885 assert(internal_branch(regs[t].is32,ba[i]+4));
4886 add_to_linker((int)out,ba[i]+4,internal_branch(regs[t].is32,ba[i]+4));
4887 emit_jmp(0);
4888}
4889
4890void do_cc(int i,signed char i_regmap[],int *adj,int addr,int taken,int invert)
4891{
4892 int count;
4893 int jaddr;
4894 int idle=0;
4895 if(itype[i]==RJUMP)
4896 {
4897 *adj=0;
4898 }
4899 //if(ba[i]>=start && ba[i]<(start+slen*4))
4900 if(internal_branch(branch_regs[i].is32,ba[i]))
4901 {
4902 int t=(ba[i]-start)>>2;
4903 if(is_ds[t]) *adj=-1; // Branch into delay slot adds an extra cycle
4904 else *adj=ccadj[t];
4905 }
4906 else
4907 {
4908 *adj=0;
4909 }
4910 count=ccadj[i];
4911 if(taken==TAKEN && i==(ba[i]-start)>>2 && source[i+1]==0) {
4912 // Idle loop
4913 if(count&1) emit_addimm_and_set_flags(2*(count+2),HOST_CCREG);
4914 idle=(int)out;
4915 //emit_subfrommem(&idlecount,HOST_CCREG); // Count idle cycles
4916 emit_andimm(HOST_CCREG,3,HOST_CCREG);
4917 jaddr=(int)out;
4918 emit_jmp(0);
4919 }
4920 else if(*adj==0||invert) {
4921 emit_addimm_and_set_flags(CLOCK_DIVIDER*(count+2),HOST_CCREG);
4922 jaddr=(int)out;
4923 emit_jns(0);
4924 }
4925 else
4926 {
eeb1feeb 4927 emit_cmpimm(HOST_CCREG,-CLOCK_DIVIDER*(count+2));
57871462 4928 jaddr=(int)out;
4929 emit_jns(0);
4930 }
4931 add_stub(CC_STUB,jaddr,idle?idle:(int)out,(*adj==0||invert||idle)?0:(count+2),i,addr,taken,0);
4932}
4933
4934void do_ccstub(int n)
4935{
4936 literal_pool(256);
4937 assem_debug("do_ccstub %x\n",start+stubs[n][4]*4);
4938 set_jump_target(stubs[n][1],(int)out);
4939 int i=stubs[n][4];
4940 if(stubs[n][6]==NULLDS) {
4941 // Delay slot instruction is nullified ("likely" branch)
4942 wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
4943 }
4944 else if(stubs[n][6]!=TAKEN) {
4945 wb_dirtys(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty);
4946 }
4947 else {
4948 if(internal_branch(branch_regs[i].is32,ba[i]))
4949 wb_needed_dirtys(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
4950 }
4951 if(stubs[n][5]!=-1)
4952 {
4953 // Save PC as return address
4954 emit_movimm(stubs[n][5],EAX);
4955 emit_writeword(EAX,(int)&pcaddr);
4956 }
4957 else
4958 {
4959 // Return address depends on which way the branch goes
4960 if(itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
4961 {
4962 int s1l=get_reg(branch_regs[i].regmap,rs1[i]);
4963 int s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
4964 int s2l=get_reg(branch_regs[i].regmap,rs2[i]);
4965 int s2h=get_reg(branch_regs[i].regmap,rs2[i]|64);
4966 if(rs1[i]==0)
4967 {
4968 s1l=s2l;s1h=s2h;
4969 s2l=s2h=-1;
4970 }
4971 else if(rs2[i]==0)
4972 {
4973 s2l=s2h=-1;
4974 }
4975 if((branch_regs[i].is32>>rs1[i])&(branch_regs[i].is32>>rs2[i])&1) {
4976 s1h=s2h=-1;
4977 }
4978 assert(s1l>=0);
4979 #ifdef DESTRUCTIVE_WRITEBACK
4980 if(rs1[i]) {
4981 if((branch_regs[i].dirty>>s1l)&(branch_regs[i].is32>>rs1[i])&1)
4982 emit_loadreg(rs1[i],s1l);
4983 }
4984 else {
4985 if((branch_regs[i].dirty>>s1l)&(branch_regs[i].is32>>rs2[i])&1)
4986 emit_loadreg(rs2[i],s1l);
4987 }
4988 if(s2l>=0)
4989 if((branch_regs[i].dirty>>s2l)&(branch_regs[i].is32>>rs2[i])&1)
4990 emit_loadreg(rs2[i],s2l);
4991 #endif
4992 int hr=0;
5194fb95 4993 int addr=-1,alt=-1,ntaddr=-1;
57871462 4994 while(hr<HOST_REGS)
4995 {
4996 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4997 (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
4998 (branch_regs[i].regmap[hr]&63)!=rs2[i] )
4999 {
5000 addr=hr++;break;
5001 }
5002 hr++;
5003 }
5004 while(hr<HOST_REGS)
5005 {
5006 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
5007 (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
5008 (branch_regs[i].regmap[hr]&63)!=rs2[i] )
5009 {
5010 alt=hr++;break;
5011 }
5012 hr++;
5013 }
5014 if((opcode[i]&0x2E)==6) // BLEZ/BGTZ needs another register
5015 {
5016 while(hr<HOST_REGS)
5017 {
5018 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
5019 (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
5020 (branch_regs[i].regmap[hr]&63)!=rs2[i] )
5021 {
5022 ntaddr=hr;break;
5023 }
5024 hr++;
5025 }
5026 assert(hr<HOST_REGS);
5027 }
5028 if((opcode[i]&0x2f)==4) // BEQ
5029 {
5030 #ifdef HAVE_CMOV_IMM
5031 if(s1h<0) {
5032 if(s2l>=0) emit_cmp(s1l,s2l);
5033 else emit_test(s1l,s1l);
5034 emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
5035 }
5036 else
5037 #endif
5038 {
5039 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
5040 if(s1h>=0) {
5041 if(s2h>=0) emit_cmp(s1h,s2h);
5042 else emit_test(s1h,s1h);
5043 emit_cmovne_reg(alt,addr);
5044 }
5045 if(s2l>=0) emit_cmp(s1l,s2l);
5046 else emit_test(s1l,s1l);
5047 emit_cmovne_reg(alt,addr);
5048 }
5049 }
5050 if((opcode[i]&0x2f)==5) // BNE
5051 {
5052 #ifdef HAVE_CMOV_IMM
5053 if(s1h<0) {
5054 if(s2l>=0) emit_cmp(s1l,s2l);
5055 else emit_test(s1l,s1l);
5056 emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
5057 }
5058 else
5059 #endif
5060 {
5061 emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
5062 if(s1h>=0) {
5063 if(s2h>=0) emit_cmp(s1h,s2h);
5064 else emit_test(s1h,s1h);
5065 emit_cmovne_reg(alt,addr);
5066 }
5067 if(s2l>=0) emit_cmp(s1l,s2l);
5068 else emit_test(s1l,s1l);
5069 emit_cmovne_reg(alt,addr);
5070 }
5071 }
5072 if((opcode[i]&0x2f)==6) // BLEZ
5073 {
5074 //emit_movimm(ba[i],alt);
5075 //emit_movimm(start+i*4+8,addr);
5076 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
5077 emit_cmpimm(s1l,1);
5078 if(s1h>=0) emit_mov(addr,ntaddr);
5079 emit_cmovl_reg(alt,addr);
5080 if(s1h>=0) {
5081 emit_test(s1h,s1h);
5082 emit_cmovne_reg(ntaddr,addr);
5083 emit_cmovs_reg(alt,addr);
5084 }
5085 }
5086 if((opcode[i]&0x2f)==7) // BGTZ
5087 {
5088 //emit_movimm(ba[i],addr);
5089 //emit_movimm(start+i*4+8,ntaddr);
5090 emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
5091 emit_cmpimm(s1l,1);
5092 if(s1h>=0) emit_mov(addr,alt);
5093 emit_cmovl_reg(ntaddr,addr);
5094 if(s1h>=0) {
5095 emit_test(s1h,s1h);
5096 emit_cmovne_reg(alt,addr);
5097 emit_cmovs_reg(ntaddr,addr);
5098 }
5099 }
5100 if((opcode[i]==1)&&(opcode2[i]&0x2D)==0) // BLTZ
5101 {
5102 //emit_movimm(ba[i],alt);
5103 //emit_movimm(start+i*4+8,addr);
5104 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
5105 if(s1h>=0) emit_test(s1h,s1h);
5106 else emit_test(s1l,s1l);
5107 emit_cmovs_reg(alt,addr);
5108 }
5109 if((opcode[i]==1)&&(opcode2[i]&0x2D)==1) // BGEZ
5110 {
5111 //emit_movimm(ba[i],addr);
5112 //emit_movimm(start+i*4+8,alt);
5113 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
5114 if(s1h>=0) emit_test(s1h,s1h);
5115 else emit_test(s1l,s1l);
5116 emit_cmovs_reg(alt,addr);
5117 }
5118 if(opcode[i]==0x11 && opcode2[i]==0x08 ) {
5119 if(source[i]&0x10000) // BC1T
5120 {
5121 //emit_movimm(ba[i],alt);
5122 //emit_movimm(start+i*4+8,addr);
5123 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
5124 emit_testimm(s1l,0x800000);
5125 emit_cmovne_reg(alt,addr);
5126 }
5127 else // BC1F
5128 {
5129 //emit_movimm(ba[i],addr);
5130 //emit_movimm(start+i*4+8,alt);
5131 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
5132 emit_testimm(s1l,0x800000);
5133 emit_cmovne_reg(alt,addr);
5134 }
5135 }
5136 emit_writeword(addr,(int)&pcaddr);
5137 }
5138 else
5139 if(itype[i]==RJUMP)
5140 {
5141 int r=get_reg(branch_regs[i].regmap,rs1[i]);
5142 if(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]) {
5143 r=get_reg(branch_regs[i].regmap,RTEMP);
5144 }
5145 emit_writeword(r,(int)&pcaddr);
5146 }
5147 else {printf("Unknown branch type in do_ccstub\n");exit(1);}
5148 }
5149 // Update cycle count
5150 assert(branch_regs[i].regmap[HOST_CCREG]==CCREG||branch_regs[i].regmap[HOST_CCREG]==-1);
5151 if(stubs[n][3]) emit_addimm(HOST_CCREG,CLOCK_DIVIDER*stubs[n][3],HOST_CCREG);
5152 emit_call((int)cc_interrupt);
5153 if(stubs[n][3]) emit_addimm(HOST_CCREG,-CLOCK_DIVIDER*stubs[n][3],HOST_CCREG);
5154 if(stubs[n][6]==TAKEN) {
5155 if(internal_branch(branch_regs[i].is32,ba[i]))
5156 load_needed_regs(branch_regs[i].regmap,regs[(ba[i]-start)>>2].regmap_entry);
5157 else if(itype[i]==RJUMP) {
5158 if(get_reg(branch_regs[i].regmap,RTEMP)>=0)
5159 emit_readword((int)&pcaddr,get_reg(branch_regs[i].regmap,RTEMP));
5160 else
5161 emit_loadreg(rs1[i],get_reg(branch_regs[i].regmap,rs1[i]));
5162 }
5163 }else if(stubs[n][6]==NOTTAKEN) {
5164 if(i<slen-2) load_needed_regs(branch_regs[i].regmap,regmap_pre[i+2]);
5165 else load_all_regs(branch_regs[i].regmap);
5166 }else if(stubs[n][6]==NULLDS) {
5167 // Delay slot instruction is nullified ("likely" branch)
5168 if(i<slen-2) load_needed_regs(regs[i].regmap,regmap_pre[i+2]);
5169 else load_all_regs(regs[i].regmap);
5170 }else{
5171 load_all_regs(branch_regs[i].regmap);
5172 }
5173 emit_jmp(stubs[n][2]); // return address
5174
5175 /* This works but uses a lot of memory...
5176 emit_readword((int)&last_count,ECX);
5177 emit_add(HOST_CCREG,ECX,EAX);
5178 emit_writeword(EAX,(int)&Count);
5179 emit_call((int)gen_interupt);
5180 emit_readword((int)&Count,HOST_CCREG);
5181 emit_readword((int)&next_interupt,EAX);
5182 emit_readword((int)&pending_exception,EBX);
5183 emit_writeword(EAX,(int)&last_count);
5184 emit_sub(HOST_CCREG,EAX,HOST_CCREG);
5185 emit_test(EBX,EBX);
5186 int jne_instr=(int)out;
5187 emit_jne(0);
5188 if(stubs[n][3]) emit_addimm(HOST_CCREG,-2*stubs[n][3],HOST_CCREG);
5189 load_all_regs(branch_regs[i].regmap);
5190 emit_jmp(stubs[n][2]); // return address
5191 set_jump_target(jne_instr,(int)out);
5192 emit_readword((int)&pcaddr,EAX);
5193 // Call get_addr_ht instead of doing the hash table here.
5194 // This code is executed infrequently and takes up a lot of space
5195 // so smaller is better.
5196 emit_storereg(CCREG,HOST_CCREG);
5197 emit_pushreg(EAX);
5198 emit_call((int)get_addr_ht);
5199 emit_loadreg(CCREG,HOST_CCREG);
5200 emit_addimm(ESP,4,ESP);
5201 emit_jmpreg(EAX);*/
5202}
5203
5204add_to_linker(int addr,int target,int ext)
5205{
5206 link_addr[linkcount][0]=addr;
5207 link_addr[linkcount][1]=target;
5208 link_addr[linkcount][2]=ext;
5209 linkcount++;
5210}
5211
eba830cd 5212static void ujump_assemble_write_ra(int i)
5213{
5214 int rt;
5215 unsigned int return_address;
5216 rt=get_reg(branch_regs[i].regmap,31);
5217 assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5218 //assert(rt>=0);
5219 return_address=start+i*4+8;
5220 if(rt>=0) {
5221 #ifdef USE_MINI_HT
5222 if(internal_branch(branch_regs[i].is32,return_address)&&rt1[i+1]!=31) {
5223 int temp=-1; // note: must be ds-safe
5224 #ifdef HOST_TEMPREG
5225 temp=HOST_TEMPREG;
5226 #endif
5227 if(temp>=0) do_miniht_insert(return_address,rt,temp);
5228 else emit_movimm(return_address,rt);
5229 }
5230 else
5231 #endif
5232 {
5233 #ifdef REG_PREFETCH
5234 if(temp>=0)
5235 {
5236 if(i_regmap[temp]!=PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5237 }
5238 #endif
5239 emit_movimm(return_address,rt); // PC into link register
5240 #ifdef IMM_PREFETCH
5241 emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5242 #endif
5243 }
5244 }
5245}
5246
57871462 5247void ujump_assemble(int i,struct regstat *i_regs)
5248{
5249 signed char *i_regmap=i_regs->regmap;
eba830cd 5250 int ra_done=0;
57871462 5251 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5252 address_generation(i+1,i_regs,regs[i].regmap_entry);
5253 #ifdef REG_PREFETCH
5254 int temp=get_reg(branch_regs[i].regmap,PTEMP);
5255 if(rt1[i]==31&&temp>=0)
5256 {
5257 int return_address=start+i*4+8;
5258 if(get_reg(branch_regs[i].regmap,31)>0)
5259 if(i_regmap[temp]==PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5260 }
5261 #endif
eba830cd 5262 if(rt1[i]==31&&(rt1[i]==rs1[i+1]||rt1[i]==rs2[i+1])) {
5263 ujump_assemble_write_ra(i); // writeback ra for DS
5264 ra_done=1;
57871462 5265 }
4ef8f67d 5266 ds_assemble(i+1,i_regs);
5267 uint64_t bc_unneeded=branch_regs[i].u;
5268 uint64_t bc_unneeded_upper=branch_regs[i].uu;
5269 bc_unneeded|=1|(1LL<<rt1[i]);
5270 bc_unneeded_upper|=1|(1LL<<rt1[i]);
5271 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5272 bc_unneeded,bc_unneeded_upper);
5273 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
eba830cd 5274 if(!ra_done&&rt1[i]==31)
5275 ujump_assemble_write_ra(i);
57871462 5276 int cc,adj;
5277 cc=get_reg(branch_regs[i].regmap,CCREG);
5278 assert(cc==HOST_CCREG);
5279 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5280 #ifdef REG_PREFETCH
5281 if(rt1[i]==31&&temp>=0) emit_prefetchreg(temp);
5282 #endif
5283 do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5284 if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5285 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5286 if(internal_branch(branch_regs[i].is32,ba[i]))
5287 assem_debug("branch: internal\n");
5288 else
5289 assem_debug("branch: external\n");
5290 if(internal_branch(branch_regs[i].is32,ba[i])&&is_ds[(ba[i]-start)>>2]) {
5291 ds_assemble_entry(i);
5292 }
5293 else {
5294 add_to_linker((int)out,ba[i],internal_branch(branch_regs[i].is32,ba[i]));
5295 emit_jmp(0);
5296 }
5297}
5298
eba830cd 5299static void rjump_assemble_write_ra(int i)
5300{
5301 int rt,return_address;
5302 assert(rt1[i+1]!=rt1[i]);
5303 assert(rt2[i+1]!=rt1[i]);
5304 rt=get_reg(branch_regs[i].regmap,rt1[i]);
5305 assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5306 assert(rt>=0);
5307 return_address=start+i*4+8;
5308 #ifdef REG_PREFETCH
5309 if(temp>=0)
5310 {
5311 if(i_regmap[temp]!=PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5312 }
5313 #endif
5314 emit_movimm(return_address,rt); // PC into link register
5315 #ifdef IMM_PREFETCH
5316 emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5317 #endif
5318}
5319
57871462 5320void rjump_assemble(int i,struct regstat *i_regs)
5321{
5322 signed char *i_regmap=i_regs->regmap;
5323 int temp;
5324 int rs,cc,adj;
eba830cd 5325 int ra_done=0;
57871462 5326 rs=get_reg(branch_regs[i].regmap,rs1[i]);
5327 assert(rs>=0);
5328 if(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]) {
5329 // Delay slot abuse, make a copy of the branch address register
5330 temp=get_reg(branch_regs[i].regmap,RTEMP);
5331 assert(temp>=0);
5332 assert(regs[i].regmap[temp]==RTEMP);
5333 emit_mov(rs,temp);
5334 rs=temp;
5335 }
5336 address_generation(i+1,i_regs,regs[i].regmap_entry);
5337 #ifdef REG_PREFETCH
5338 if(rt1[i]==31)
5339 {
5340 if((temp=get_reg(branch_regs[i].regmap,PTEMP))>=0) {
5341 int return_address=start+i*4+8;
5342 if(i_regmap[temp]==PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5343 }
5344 }
5345 #endif
5346 #ifdef USE_MINI_HT
5347 if(rs1[i]==31) {
5348 int rh=get_reg(regs[i].regmap,RHASH);
5349 if(rh>=0) do_preload_rhash(rh);
5350 }
5351 #endif
eba830cd 5352 if(rt1[i]!=0&&(rt1[i]==rs1[i+1]||rt1[i]==rs2[i+1])) {
5353 rjump_assemble_write_ra(i);
5354 ra_done=1;
57871462 5355 }
d5910d5d 5356 ds_assemble(i+1,i_regs);
5357 uint64_t bc_unneeded=branch_regs[i].u;
5358 uint64_t bc_unneeded_upper=branch_regs[i].uu;
5359 bc_unneeded|=1|(1LL<<rt1[i]);
5360 bc_unneeded_upper|=1|(1LL<<rt1[i]);
5361 bc_unneeded&=~(1LL<<rs1[i]);
5362 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5363 bc_unneeded,bc_unneeded_upper);
5364 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],CCREG);
eba830cd 5365 if(!ra_done&&rt1[i]!=0)
5366 rjump_assemble_write_ra(i);
57871462 5367 cc=get_reg(branch_regs[i].regmap,CCREG);
5368 assert(cc==HOST_CCREG);
5369 #ifdef USE_MINI_HT
5370 int rh=get_reg(branch_regs[i].regmap,RHASH);
5371 int ht=get_reg(branch_regs[i].regmap,RHTBL);
5372 if(rs1[i]==31) {
5373 if(regs[i].regmap[rh]!=RHASH) do_preload_rhash(rh);
5374 do_preload_rhtbl(ht);
5375 do_rhash(rs,rh);
5376 }
5377 #endif
5378 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,-1);
5379 #ifdef DESTRUCTIVE_WRITEBACK
5380 if((branch_regs[i].dirty>>rs)&(branch_regs[i].is32>>rs1[i])&1) {
5381 if(rs1[i]!=rt1[i+1]&&rs1[i]!=rt2[i+1]) {
5382 emit_loadreg(rs1[i],rs);
5383 }
5384 }
5385 #endif
5386 #ifdef REG_PREFETCH
5387 if(rt1[i]==31&&temp>=0) emit_prefetchreg(temp);
5388 #endif
5389 #ifdef USE_MINI_HT
5390 if(rs1[i]==31) {
5391 do_miniht_load(ht,rh);
5392 }
5393 #endif
5394 //do_cc(i,branch_regs[i].regmap,&adj,-1,TAKEN);
5395 //if(adj) emit_addimm(cc,2*(ccadj[i]+2-adj),cc); // ??? - Shouldn't happen
5396 //assert(adj==0);
5397 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
5398 add_stub(CC_STUB,(int)out,jump_vaddr_reg[rs],0,i,-1,TAKEN,0);
5399 emit_jns(0);
5400 //load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,-1);
5401 #ifdef USE_MINI_HT
5402 if(rs1[i]==31) {
5403 do_miniht_jump(rs,rh,ht);
5404 }
5405 else
5406 #endif
5407 {
5408 //if(rs!=EAX) emit_mov(rs,EAX);
5409 //emit_jmp((int)jump_vaddr_eax);
5410 emit_jmp(jump_vaddr_reg[rs]);
5411 }
5412 /* Check hash table
5413 temp=!rs;
5414 emit_mov(rs,temp);
5415 emit_shrimm(rs,16,rs);
5416 emit_xor(temp,rs,rs);
5417 emit_movzwl_reg(rs,rs);
5418 emit_shlimm(rs,4,rs);
5419 emit_cmpmem_indexed((int)hash_table,rs,temp);
5420 emit_jne((int)out+14);
5421 emit_readword_indexed((int)hash_table+4,rs,rs);
5422 emit_jmpreg(rs);
5423 emit_cmpmem_indexed((int)hash_table+8,rs,temp);
5424 emit_addimm_no_flags(8,rs);
5425 emit_jeq((int)out-17);
5426 // No hit on hash table, call compiler
5427 emit_pushreg(temp);
5428//DEBUG >
5429#ifdef DEBUG_CYCLE_COUNT
5430 emit_readword((int)&last_count,ECX);
5431 emit_add(HOST_CCREG,ECX,HOST_CCREG);
5432 emit_readword((int)&next_interupt,ECX);
5433 emit_writeword(HOST_CCREG,(int)&Count);
5434 emit_sub(HOST_CCREG,ECX,HOST_CCREG);
5435 emit_writeword(ECX,(int)&last_count);
5436#endif
5437//DEBUG <
5438 emit_storereg(CCREG,HOST_CCREG);
5439 emit_call((int)get_addr);
5440 emit_loadreg(CCREG,HOST_CCREG);
5441 emit_addimm(ESP,4,ESP);
5442 emit_jmpreg(EAX);*/
5443 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5444 if(rt1[i]!=31&&i<slen-2&&(((u_int)out)&7)) emit_mov(13,13);
5445 #endif
5446}
5447
5448void cjump_assemble(int i,struct regstat *i_regs)
5449{
5450 signed char *i_regmap=i_regs->regmap;
5451 int cc;
5452 int match;
5453 match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5454 assem_debug("match=%d\n",match);
5455 int s1h,s1l,s2h,s2l;
5456 int prev_cop1_usable=cop1_usable;
5457 int unconditional=0,nop=0;
5458 int only32=0;
57871462 5459 int invert=0;
5460 int internal=internal_branch(branch_regs[i].is32,ba[i]);
5461 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
57871462 5462 if(!match) invert=1;
5463 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5464 if(i>(ba[i]-start)>>2) invert=1;
5465 #endif
e1190b87 5466
5467 if(ooo[i]) {
57871462 5468 s1l=get_reg(branch_regs[i].regmap,rs1[i]);
5469 s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
5470 s2l=get_reg(branch_regs[i].regmap,rs2[i]);
5471 s2h=get_reg(branch_regs[i].regmap,rs2[i]|64);
5472 }
5473 else {
5474 s1l=get_reg(i_regmap,rs1[i]);
5475 s1h=get_reg(i_regmap,rs1[i]|64);
5476 s2l=get_reg(i_regmap,rs2[i]);
5477 s2h=get_reg(i_regmap,rs2[i]|64);
5478 }
5479 if(rs1[i]==0&&rs2[i]==0)
5480 {
5481 if(opcode[i]&1) nop=1;
5482 else unconditional=1;
5483 //assert(opcode[i]!=5);
5484 //assert(opcode[i]!=7);
5485 //assert(opcode[i]!=0x15);
5486 //assert(opcode[i]!=0x17);
5487 }
5488 else if(rs1[i]==0)
5489 {
5490 s1l=s2l;s1h=s2h;
5491 s2l=s2h=-1;
5492 only32=(regs[i].was32>>rs2[i])&1;
5493 }
5494 else if(rs2[i]==0)
5495 {
5496 s2l=s2h=-1;
5497 only32=(regs[i].was32>>rs1[i])&1;
5498 }
5499 else {
5500 only32=(regs[i].was32>>rs1[i])&(regs[i].was32>>rs2[i])&1;
5501 }
5502
e1190b87 5503 if(ooo[i]) {
57871462 5504 // Out of order execution (delay slot first)
5505 //printf("OOOE\n");
5506 address_generation(i+1,i_regs,regs[i].regmap_entry);
5507 ds_assemble(i+1,i_regs);
5508 int adj;
5509 uint64_t bc_unneeded=branch_regs[i].u;
5510 uint64_t bc_unneeded_upper=branch_regs[i].uu;
5511 bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
5512 bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
5513 bc_unneeded|=1;
5514 bc_unneeded_upper|=1;
5515 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5516 bc_unneeded,bc_unneeded_upper);
5517 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs2[i]);
5518 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5519 cc=get_reg(branch_regs[i].regmap,CCREG);
5520 assert(cc==HOST_CCREG);
5521 if(unconditional)
5522 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5523 //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
5524 //assem_debug("cycle count (adj)\n");
5525 if(unconditional) {
5526 do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5527 if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
5528 if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5529 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5530 if(internal)
5531 assem_debug("branch: internal\n");
5532 else
5533 assem_debug("branch: external\n");
5534 if(internal&&is_ds[(ba[i]-start)>>2]) {
5535 ds_assemble_entry(i);
5536 }
5537 else {
5538 add_to_linker((int)out,ba[i],internal);
5539 emit_jmp(0);
5540 }
5541 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5542 if(((u_int)out)&7) emit_addnop(0);
5543 #endif
5544 }
5545 }
5546 else if(nop) {
5547 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
5548 int jaddr=(int)out;
5549 emit_jns(0);
5550 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5551 }
5552 else {
5553 int taken=0,nottaken=0,nottaken1=0;
5554 do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
5555 if(adj&&!invert) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5556 if(!only32)
5557 {
5558 assert(s1h>=0);
5559 if(opcode[i]==4) // BEQ
5560 {
5561 if(s2h>=0) emit_cmp(s1h,s2h);
5562 else emit_test(s1h,s1h);
5563 nottaken1=(int)out;
5564 emit_jne(1);
5565 }
5566 if(opcode[i]==5) // BNE
5567 {
5568 if(s2h>=0) emit_cmp(s1h,s2h);
5569 else emit_test(s1h,s1h);
5570 if(invert) taken=(int)out;
5571 else add_to_linker((int)out,ba[i],internal);
5572 emit_jne(0);
5573 }
5574 if(opcode[i]==6) // BLEZ
5575 {
5576 emit_test(s1h,s1h);
5577 if(invert) taken=(int)out;
5578 else add_to_linker((int)out,ba[i],internal);
5579 emit_js(0);
5580 nottaken1=(int)out;
5581 emit_jne(1);
5582 }
5583 if(opcode[i]==7) // BGTZ
5584 {
5585 emit_test(s1h,s1h);
5586 nottaken1=(int)out;
5587 emit_js(1);
5588 if(invert) taken=(int)out;
5589 else add_to_linker((int)out,ba[i],internal);
5590 emit_jne(0);
5591 }
5592 } // if(!only32)
5593
5594 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5595 assert(s1l>=0);
5596 if(opcode[i]==4) // BEQ
5597 {
5598 if(s2l>=0) emit_cmp(s1l,s2l);
5599 else emit_test(s1l,s1l);
5600 if(invert){
5601 nottaken=(int)out;
5602 emit_jne(1);
5603 }else{
5604 add_to_linker((int)out,ba[i],internal);
5605 emit_jeq(0);
5606 }
5607 }
5608 if(opcode[i]==5) // BNE
5609 {
5610 if(s2l>=0) emit_cmp(s1l,s2l);
5611 else emit_test(s1l,s1l);
5612 if(invert){
5613 nottaken=(int)out;
5614 emit_jeq(1);
5615 }else{
5616 add_to_linker((int)out,ba[i],internal);
5617 emit_jne(0);
5618 }
5619 }
5620 if(opcode[i]==6) // BLEZ
5621 {
5622 emit_cmpimm(s1l,1);
5623 if(invert){
5624 nottaken=(int)out;
5625 emit_jge(1);
5626 }else{
5627 add_to_linker((int)out,ba[i],internal);
5628 emit_jl(0);
5629 }
5630 }
5631 if(opcode[i]==7) // BGTZ
5632 {
5633 emit_cmpimm(s1l,1);
5634 if(invert){
5635 nottaken=(int)out;
5636 emit_jl(1);
5637 }else{
5638 add_to_linker((int)out,ba[i],internal);
5639 emit_jge(0);
5640 }
5641 }
5642 if(invert) {
5643 if(taken) set_jump_target(taken,(int)out);
5644 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5645 if(match&&(!internal||!is_ds[(ba[i]-start)>>2])) {
5646 if(adj) {
5647 emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5648 add_to_linker((int)out,ba[i],internal);
5649 }else{
5650 emit_addnop(13);
5651 add_to_linker((int)out,ba[i],internal*2);
5652 }
5653 emit_jmp(0);
5654 }else
5655 #endif
5656 {
5657 if(adj) emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5658 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5659 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5660 if(internal)
5661 assem_debug("branch: internal\n");
5662 else
5663 assem_debug("branch: external\n");
5664 if(internal&&is_ds[(ba[i]-start)>>2]) {
5665 ds_assemble_entry(i);
5666 }
5667 else {
5668 add_to_linker((int)out,ba[i],internal);
5669 emit_jmp(0);
5670 }
5671 }
5672 set_jump_target(nottaken,(int)out);
5673 }
5674
5675 if(nottaken1) set_jump_target(nottaken1,(int)out);
5676 if(adj) {
5677 if(!invert) emit_addimm(cc,CLOCK_DIVIDER*adj,cc);
5678 }
5679 } // (!unconditional)
5680 } // if(ooo)
5681 else
5682 {
5683 // In-order execution (branch first)
5684 //if(likely[i]) printf("IOL\n");
5685 //else
5686 //printf("IOE\n");
5687 int taken=0,nottaken=0,nottaken1=0;
5688 if(!unconditional&&!nop) {
5689 if(!only32)
5690 {
5691 assert(s1h>=0);
5692 if((opcode[i]&0x2f)==4) // BEQ
5693 {
5694 if(s2h>=0) emit_cmp(s1h,s2h);
5695 else emit_test(s1h,s1h);
5696 nottaken1=(int)out;
5697 emit_jne(2);
5698 }
5699 if((opcode[i]&0x2f)==5) // BNE
5700 {
5701 if(s2h>=0) emit_cmp(s1h,s2h);
5702 else emit_test(s1h,s1h);
5703 taken=(int)out;
5704 emit_jne(1);
5705 }
5706 if((opcode[i]&0x2f)==6) // BLEZ
5707 {
5708 emit_test(s1h,s1h);
5709 taken=(int)out;
5710 emit_js(1);
5711 nottaken1=(int)out;
5712 emit_jne(2);
5713 }
5714 if((opcode[i]&0x2f)==7) // BGTZ
5715 {
5716 emit_test(s1h,s1h);
5717 nottaken1=(int)out;
5718 emit_js(2);
5719 taken=(int)out;
5720 emit_jne(1);
5721 }
5722 } // if(!only32)
5723
5724 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5725 assert(s1l>=0);
5726 if((opcode[i]&0x2f)==4) // BEQ
5727 {
5728 if(s2l>=0) emit_cmp(s1l,s2l);
5729 else emit_test(s1l,s1l);
5730 nottaken=(int)out;
5731 emit_jne(2);
5732 }
5733 if((opcode[i]&0x2f)==5) // BNE
5734 {
5735 if(s2l>=0) emit_cmp(s1l,s2l);
5736 else emit_test(s1l,s1l);
5737 nottaken=(int)out;
5738 emit_jeq(2);
5739 }
5740 if((opcode[i]&0x2f)==6) // BLEZ
5741 {
5742 emit_cmpimm(s1l,1);
5743 nottaken=(int)out;
5744 emit_jge(2);
5745 }
5746 if((opcode[i]&0x2f)==7) // BGTZ
5747 {
5748 emit_cmpimm(s1l,1);
5749 nottaken=(int)out;
5750 emit_jl(2);
5751 }
5752 } // if(!unconditional)
5753 int adj;
5754 uint64_t ds_unneeded=branch_regs[i].u;
5755 uint64_t ds_unneeded_upper=branch_regs[i].uu;
5756 ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
5757 ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
5758 if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
5759 ds_unneeded|=1;
5760 ds_unneeded_upper|=1;
5761 // branch taken
5762 if(!nop) {
5763 if(taken) set_jump_target(taken,(int)out);
5764 assem_debug("1:\n");
5765 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5766 ds_unneeded,ds_unneeded_upper);
5767 // load regs
5768 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5769 address_generation(i+1,&branch_regs[i],0);
5770 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
5771 ds_assemble(i+1,&branch_regs[i]);
5772 cc=get_reg(branch_regs[i].regmap,CCREG);
5773 if(cc==-1) {
5774 emit_loadreg(CCREG,cc=HOST_CCREG);
5775 // CHECK: Is the following instruction (fall thru) allocated ok?
5776 }
5777 assert(cc==HOST_CCREG);
5778 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5779 do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
5780 assem_debug("cycle count (adj)\n");
5781 if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5782 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5783 if(internal)
5784 assem_debug("branch: internal\n");
5785 else
5786 assem_debug("branch: external\n");
5787 if(internal&&is_ds[(ba[i]-start)>>2]) {
5788 ds_assemble_entry(i);
5789 }
5790 else {
5791 add_to_linker((int)out,ba[i],internal);
5792 emit_jmp(0);
5793 }
5794 }
5795 // branch not taken
5796 cop1_usable=prev_cop1_usable;
5797 if(!unconditional) {
5798 if(nottaken1) set_jump_target(nottaken1,(int)out);
5799 set_jump_target(nottaken,(int)out);
5800 assem_debug("2:\n");
5801 if(!likely[i]) {
5802 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5803 ds_unneeded,ds_unneeded_upper);
5804 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5805 address_generation(i+1,&branch_regs[i],0);
5806 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5807 ds_assemble(i+1,&branch_regs[i]);
5808 }
5809 cc=get_reg(branch_regs[i].regmap,CCREG);
5810 if(cc==-1&&!likely[i]) {
5811 // Cycle count isn't in a register, temporarily load it then write it out
5812 emit_loadreg(CCREG,HOST_CCREG);
5813 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
5814 int jaddr=(int)out;
5815 emit_jns(0);
5816 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5817 emit_storereg(CCREG,HOST_CCREG);
5818 }
5819 else{
5820 cc=get_reg(i_regmap,CCREG);
5821 assert(cc==HOST_CCREG);
5822 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
5823 int jaddr=(int)out;
5824 emit_jns(0);
5825 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
5826 }
5827 }
5828 }
5829}
5830
5831void sjump_assemble(int i,struct regstat *i_regs)
5832{
5833 signed char *i_regmap=i_regs->regmap;
5834 int cc;
5835 int match;
5836 match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5837 assem_debug("smatch=%d\n",match);
5838 int s1h,s1l;
5839 int prev_cop1_usable=cop1_usable;
5840 int unconditional=0,nevertaken=0;
5841 int only32=0;
57871462 5842 int invert=0;
5843 int internal=internal_branch(branch_regs[i].is32,ba[i]);
5844 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
57871462 5845 if(!match) invert=1;
5846 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5847 if(i>(ba[i]-start)>>2) invert=1;
5848 #endif
5849
5850 //if(opcode2[i]>=0x10) return; // FIXME (BxxZAL)
df894a3a 5851 //assert(opcode2[i]<0x10||rs1[i]==0); // FIXME (BxxZAL)
57871462 5852
e1190b87 5853 if(ooo[i]) {
57871462 5854 s1l=get_reg(branch_regs[i].regmap,rs1[i]);
5855 s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
5856 }
5857 else {
5858 s1l=get_reg(i_regmap,rs1[i]);
5859 s1h=get_reg(i_regmap,rs1[i]|64);
5860 }
5861 if(rs1[i]==0)
5862 {
5863 if(opcode2[i]&1) unconditional=1;
5864 else nevertaken=1;
5865 // These are never taken (r0 is never less than zero)
5866 //assert(opcode2[i]!=0);
5867 //assert(opcode2[i]!=2);
5868 //assert(opcode2[i]!=0x10);
5869 //assert(opcode2[i]!=0x12);
5870 }
5871 else {
5872 only32=(regs[i].was32>>rs1[i])&1;
5873 }
5874
e1190b87 5875 if(ooo[i]) {
57871462 5876 // Out of order execution (delay slot first)
5877 //printf("OOOE\n");
5878 address_generation(i+1,i_regs,regs[i].regmap_entry);
5879 ds_assemble(i+1,i_regs);
5880 int adj;
5881 uint64_t bc_unneeded=branch_regs[i].u;
5882 uint64_t bc_unneeded_upper=branch_regs[i].uu;
5883 bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
5884 bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
5885 bc_unneeded|=1;
5886 bc_unneeded_upper|=1;
5887 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5888 bc_unneeded,bc_unneeded_upper);
5889 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs1[i]);
5890 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5891 if(rt1[i]==31) {
5892 int rt,return_address;
57871462 5893 rt=get_reg(branch_regs[i].regmap,31);
5894 assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5895 if(rt>=0) {
5896 // Save the PC even if the branch is not taken
5897 return_address=start+i*4+8;
5898 emit_movimm(return_address,rt); // PC into link register
5899 #ifdef IMM_PREFETCH
5900 if(!nevertaken) emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5901 #endif
5902 }
5903 }
5904 cc=get_reg(branch_regs[i].regmap,CCREG);
5905 assert(cc==HOST_CCREG);
5906 if(unconditional)
5907 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5908 //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
5909 assem_debug("cycle count (adj)\n");
5910 if(unconditional) {
5911 do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5912 if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
5913 if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5914 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5915 if(internal)
5916 assem_debug("branch: internal\n");
5917 else
5918 assem_debug("branch: external\n");
5919 if(internal&&is_ds[(ba[i]-start)>>2]) {
5920 ds_assemble_entry(i);
5921 }
5922 else {
5923 add_to_linker((int)out,ba[i],internal);
5924 emit_jmp(0);
5925 }
5926 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5927 if(((u_int)out)&7) emit_addnop(0);
5928 #endif
5929 }
5930 }
5931 else if(nevertaken) {
5932 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
5933 int jaddr=(int)out;
5934 emit_jns(0);
5935 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5936 }
5937 else {
5938 int nottaken=0;
5939 do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
5940 if(adj&&!invert) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5941 if(!only32)
5942 {
5943 assert(s1h>=0);
df894a3a 5944 if((opcode2[i]&0xf)==0) // BLTZ/BLTZAL
57871462 5945 {
5946 emit_test(s1h,s1h);
5947 if(invert){
5948 nottaken=(int)out;
5949 emit_jns(1);
5950 }else{
5951 add_to_linker((int)out,ba[i],internal);
5952 emit_js(0);
5953 }
5954 }
df894a3a 5955 if((opcode2[i]&0xf)==1) // BGEZ/BLTZAL
57871462 5956 {
5957 emit_test(s1h,s1h);
5958 if(invert){
5959 nottaken=(int)out;
5960 emit_js(1);
5961 }else{
5962 add_to_linker((int)out,ba[i],internal);
5963 emit_jns(0);
5964 }
5965 }
5966 } // if(!only32)
5967 else
5968 {
5969 assert(s1l>=0);
df894a3a 5970 if((opcode2[i]&0xf)==0) // BLTZ/BLTZAL
57871462 5971 {
5972 emit_test(s1l,s1l);
5973 if(invert){
5974 nottaken=(int)out;
5975 emit_jns(1);
5976 }else{
5977 add_to_linker((int)out,ba[i],internal);
5978 emit_js(0);
5979 }
5980 }
df894a3a 5981 if((opcode2[i]&0xf)==1) // BGEZ/BLTZAL
57871462 5982 {
5983 emit_test(s1l,s1l);
5984 if(invert){
5985 nottaken=(int)out;
5986 emit_js(1);
5987 }else{
5988 add_to_linker((int)out,ba[i],internal);
5989 emit_jns(0);
5990 }
5991 }
5992 } // if(!only32)
5993
5994 if(invert) {
5995 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5996 if(match&&(!internal||!is_ds[(ba[i]-start)>>2])) {
5997 if(adj) {
5998 emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5999 add_to_linker((int)out,ba[i],internal);
6000 }else{
6001 emit_addnop(13);
6002 add_to_linker((int)out,ba[i],internal*2);
6003 }
6004 emit_jmp(0);
6005 }else
6006 #endif
6007 {
6008 if(adj) emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
6009 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6010 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6011 if(internal)
6012 assem_debug("branch: internal\n");
6013 else
6014 assem_debug("branch: external\n");
6015 if(internal&&is_ds[(ba[i]-start)>>2]) {
6016 ds_assemble_entry(i);
6017 }
6018 else {
6019 add_to_linker((int)out,ba[i],internal);
6020 emit_jmp(0);
6021 }
6022 }
6023 set_jump_target(nottaken,(int)out);
6024 }
6025
6026 if(adj) {
6027 if(!invert) emit_addimm(cc,CLOCK_DIVIDER*adj,cc);
6028 }
6029 } // (!unconditional)
6030 } // if(ooo)
6031 else
6032 {
6033 // In-order execution (branch first)
6034 //printf("IOE\n");
6035 int nottaken=0;
a6491170 6036 if(rt1[i]==31) {
6037 int rt,return_address;
a6491170 6038 rt=get_reg(branch_regs[i].regmap,31);
6039 if(rt>=0) {
6040 // Save the PC even if the branch is not taken
6041 return_address=start+i*4+8;
6042 emit_movimm(return_address,rt); // PC into link register
6043 #ifdef IMM_PREFETCH
6044 emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
6045 #endif
6046 }
6047 }
57871462 6048 if(!unconditional) {
6049 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
6050 if(!only32)
6051 {
6052 assert(s1h>=0);
a6491170 6053 if((opcode2[i]&0x0d)==0) // BLTZ/BLTZL/BLTZAL/BLTZALL
57871462 6054 {
6055 emit_test(s1h,s1h);
6056 nottaken=(int)out;
6057 emit_jns(1);
6058 }
a6491170 6059 if((opcode2[i]&0x0d)==1) // BGEZ/BGEZL/BGEZAL/BGEZALL
57871462 6060 {
6061 emit_test(s1h,s1h);
6062 nottaken=(int)out;
6063 emit_js(1);
6064 }
6065 } // if(!only32)
6066 else
6067 {
6068 assert(s1l>=0);
a6491170 6069 if((opcode2[i]&0x0d)==0) // BLTZ/BLTZL/BLTZAL/BLTZALL
57871462 6070 {
6071 emit_test(s1l,s1l);
6072 nottaken=(int)out;
6073 emit_jns(1);
6074 }
a6491170 6075 if((opcode2[i]&0x0d)==1) // BGEZ/BGEZL/BGEZAL/BGEZALL
57871462 6076 {
6077 emit_test(s1l,s1l);
6078 nottaken=(int)out;
6079 emit_js(1);
6080 }
6081 }
6082 } // if(!unconditional)
6083 int adj;
6084 uint64_t ds_unneeded=branch_regs[i].u;
6085 uint64_t ds_unneeded_upper=branch_regs[i].uu;
6086 ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6087 ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6088 if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
6089 ds_unneeded|=1;
6090 ds_unneeded_upper|=1;
6091 // branch taken
6092 if(!nevertaken) {
6093 //assem_debug("1:\n");
6094 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6095 ds_unneeded,ds_unneeded_upper);
6096 // load regs
6097 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
6098 address_generation(i+1,&branch_regs[i],0);
6099 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
6100 ds_assemble(i+1,&branch_regs[i]);
6101 cc=get_reg(branch_regs[i].regmap,CCREG);
6102 if(cc==-1) {
6103 emit_loadreg(CCREG,cc=HOST_CCREG);
6104 // CHECK: Is the following instruction (fall thru) allocated ok?
6105 }
6106 assert(cc==HOST_CCREG);
6107 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6108 do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
6109 assem_debug("cycle count (adj)\n");
6110 if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
6111 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6112 if(internal)
6113 assem_debug("branch: internal\n");
6114 else
6115 assem_debug("branch: external\n");
6116 if(internal&&is_ds[(ba[i]-start)>>2]) {
6117 ds_assemble_entry(i);
6118 }
6119 else {
6120 add_to_linker((int)out,ba[i],internal);
6121 emit_jmp(0);
6122 }
6123 }
6124 // branch not taken
6125 cop1_usable=prev_cop1_usable;
6126 if(!unconditional) {
6127 set_jump_target(nottaken,(int)out);
6128 assem_debug("1:\n");
6129 if(!likely[i]) {
6130 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6131 ds_unneeded,ds_unneeded_upper);
6132 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
6133 address_generation(i+1,&branch_regs[i],0);
6134 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
6135 ds_assemble(i+1,&branch_regs[i]);
6136 }
6137 cc=get_reg(branch_regs[i].regmap,CCREG);
6138 if(cc==-1&&!likely[i]) {
6139 // Cycle count isn't in a register, temporarily load it then write it out
6140 emit_loadreg(CCREG,HOST_CCREG);
6141 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
6142 int jaddr=(int)out;
6143 emit_jns(0);
6144 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
6145 emit_storereg(CCREG,HOST_CCREG);
6146 }
6147 else{
6148 cc=get_reg(i_regmap,CCREG);
6149 assert(cc==HOST_CCREG);
6150 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
6151 int jaddr=(int)out;
6152 emit_jns(0);
6153 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
6154 }
6155 }
6156 }
6157}
6158
6159void fjump_assemble(int i,struct regstat *i_regs)
6160{
6161 signed char *i_regmap=i_regs->regmap;
6162 int cc;
6163 int match;
6164 match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6165 assem_debug("fmatch=%d\n",match);
6166 int fs,cs;
6167 int eaddr;
57871462 6168 int invert=0;
6169 int internal=internal_branch(branch_regs[i].is32,ba[i]);
6170 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
57871462 6171 if(!match) invert=1;
6172 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
6173 if(i>(ba[i]-start)>>2) invert=1;
6174 #endif
6175
e1190b87 6176 if(ooo[i]) {
57871462 6177 fs=get_reg(branch_regs[i].regmap,FSREG);
6178 address_generation(i+1,i_regs,regs[i].regmap_entry); // Is this okay?
6179 }
6180 else {
6181 fs=get_reg(i_regmap,FSREG);
6182 }
6183
6184 // Check cop1 unusable
6185 if(!cop1_usable) {
6186 cs=get_reg(i_regmap,CSREG);
6187 assert(cs>=0);
6188 emit_testimm(cs,0x20000000);
6189 eaddr=(int)out;
6190 emit_jeq(0);
6191 add_stub(FP_STUB,eaddr,(int)out,i,cs,(int)i_regs,0,0);
6192 cop1_usable=1;
6193 }
6194
e1190b87 6195 if(ooo[i]) {
57871462 6196 // Out of order execution (delay slot first)
6197 //printf("OOOE\n");
6198 ds_assemble(i+1,i_regs);
6199 int adj;
6200 uint64_t bc_unneeded=branch_regs[i].u;
6201 uint64_t bc_unneeded_upper=branch_regs[i].uu;
6202 bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
6203 bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
6204 bc_unneeded|=1;
6205 bc_unneeded_upper|=1;
6206 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6207 bc_unneeded,bc_unneeded_upper);
6208 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs1[i]);
6209 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
6210 cc=get_reg(branch_regs[i].regmap,CCREG);
6211 assert(cc==HOST_CCREG);
6212 do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
6213 assem_debug("cycle count (adj)\n");
6214 if(1) {
6215 int nottaken=0;
6216 if(adj&&!invert) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
6217 if(1) {
6218 assert(fs>=0);
6219 emit_testimm(fs,0x800000);
6220 if(source[i]&0x10000) // BC1T
6221 {
6222 if(invert){
6223 nottaken=(int)out;
6224 emit_jeq(1);
6225 }else{
6226 add_to_linker((int)out,ba[i],internal);
6227 emit_jne(0);
6228 }
6229 }
6230 else // BC1F
6231 if(invert){
6232 nottaken=(int)out;
6233 emit_jne(1);
6234 }else{
6235 add_to_linker((int)out,ba[i],internal);
6236 emit_jeq(0);
6237 }
6238 {
6239 }
6240 } // if(!only32)
6241
6242 if(invert) {
6243 if(adj) emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
6244 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
6245 else if(match) emit_addnop(13);
6246 #endif
6247 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6248 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6249 if(internal)
6250 assem_debug("branch: internal\n");
6251 else
6252 assem_debug("branch: external\n");
6253 if(internal&&is_ds[(ba[i]-start)>>2]) {
6254 ds_assemble_entry(i);
6255 }
6256 else {
6257 add_to_linker((int)out,ba[i],internal);
6258 emit_jmp(0);
6259 }
6260 set_jump_target(nottaken,(int)out);
6261 }
6262
6263 if(adj) {
6264 if(!invert) emit_addimm(cc,CLOCK_DIVIDER*adj,cc);
6265 }
6266 } // (!unconditional)
6267 } // if(ooo)
6268 else
6269 {
6270 // In-order execution (branch first)
6271 //printf("IOE\n");
6272 int nottaken=0;
6273 if(1) {
6274 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
6275 if(1) {
6276 assert(fs>=0);
6277 emit_testimm(fs,0x800000);
6278 if(source[i]&0x10000) // BC1T
6279 {
6280 nottaken=(int)out;
6281 emit_jeq(1);
6282 }
6283 else // BC1F
6284 {
6285 nottaken=(int)out;
6286 emit_jne(1);
6287 }
6288 }
6289 } // if(!unconditional)
6290 int adj;
6291 uint64_t ds_unneeded=branch_regs[i].u;
6292 uint64_t ds_unneeded_upper=branch_regs[i].uu;
6293 ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6294 ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6295 if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
6296 ds_unneeded|=1;
6297 ds_unneeded_upper|=1;
6298 // branch taken
6299 //assem_debug("1:\n");
6300 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6301 ds_unneeded,ds_unneeded_upper);
6302 // load regs
6303 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
6304 address_generation(i+1,&branch_regs[i],0);
6305 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
6306 ds_assemble(i+1,&branch_regs[i]);
6307 cc=get_reg(branch_regs[i].regmap,CCREG);
6308 if(cc==-1) {
6309 emit_loadreg(CCREG,cc=HOST_CCREG);
6310 // CHECK: Is the following instruction (fall thru) allocated ok?
6311 }
6312 assert(cc==HOST_CCREG);
6313 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6314 do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
6315 assem_debug("cycle count (adj)\n");
6316 if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
6317 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6318 if(internal)
6319 assem_debug("branch: internal\n");
6320 else
6321 assem_debug("branch: external\n");
6322 if(internal&&is_ds[(ba[i]-start)>>2]) {
6323 ds_assemble_entry(i);
6324 }
6325 else {
6326 add_to_linker((int)out,ba[i],internal);
6327 emit_jmp(0);
6328 }
6329
6330 // branch not taken
6331 if(1) { // <- FIXME (don't need this)
6332 set_jump_target(nottaken,(int)out);
6333 assem_debug("1:\n");
6334 if(!likely[i]) {
6335 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6336 ds_unneeded,ds_unneeded_upper);
6337 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
6338 address_generation(i+1,&branch_regs[i],0);
6339 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
6340 ds_assemble(i+1,&branch_regs[i]);
6341 }
6342 cc=get_reg(branch_regs[i].regmap,CCREG);
6343 if(cc==-1&&!likely[i]) {
6344 // Cycle count isn't in a register, temporarily load it then write it out
6345 emit_loadreg(CCREG,HOST_CCREG);
6346 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
6347 int jaddr=(int)out;
6348 emit_jns(0);
6349 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
6350 emit_storereg(CCREG,HOST_CCREG);
6351 }
6352 else{
6353 cc=get_reg(i_regmap,CCREG);
6354 assert(cc==HOST_CCREG);
6355 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
6356 int jaddr=(int)out;
6357 emit_jns(0);
6358 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
6359 }
6360 }
6361 }
6362}
6363
6364static void pagespan_assemble(int i,struct regstat *i_regs)
6365{
6366 int s1l=get_reg(i_regs->regmap,rs1[i]);
6367 int s1h=get_reg(i_regs->regmap,rs1[i]|64);
6368 int s2l=get_reg(i_regs->regmap,rs2[i]);
6369 int s2h=get_reg(i_regs->regmap,rs2[i]|64);
6370 void *nt_branch=NULL;
6371 int taken=0;
6372 int nottaken=0;
6373 int unconditional=0;
6374 if(rs1[i]==0)
6375 {
6376 s1l=s2l;s1h=s2h;
6377 s2l=s2h=-1;
6378 }
6379 else if(rs2[i]==0)
6380 {
6381 s2l=s2h=-1;
6382 }
6383 if((i_regs->is32>>rs1[i])&(i_regs->is32>>rs2[i])&1) {
6384 s1h=s2h=-1;
6385 }
6386 int hr=0;
6387 int addr,alt,ntaddr;
6388 if(i_regs->regmap[HOST_BTREG]<0) {addr=HOST_BTREG;}
6389 else {
6390 while(hr<HOST_REGS)
6391 {
6392 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
6393 (i_regs->regmap[hr]&63)!=rs1[i] &&
6394 (i_regs->regmap[hr]&63)!=rs2[i] )
6395 {
6396 addr=hr++;break;
6397 }
6398 hr++;
6399 }
6400 }
6401 while(hr<HOST_REGS)
6402 {
6403 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG && hr!=HOST_BTREG &&
6404 (i_regs->regmap[hr]&63)!=rs1[i] &&
6405 (i_regs->regmap[hr]&63)!=rs2[i] )
6406 {
6407 alt=hr++;break;
6408 }
6409 hr++;
6410 }
6411 if((opcode[i]&0x2E)==6) // BLEZ/BGTZ needs another register
6412 {
6413 while(hr<HOST_REGS)
6414 {
6415 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG && hr!=HOST_BTREG &&
6416 (i_regs->regmap[hr]&63)!=rs1[i] &&
6417 (i_regs->regmap[hr]&63)!=rs2[i] )
6418 {
6419 ntaddr=hr;break;
6420 }
6421 hr++;
6422 }
6423 }
6424 assert(hr<HOST_REGS);
6425 if((opcode[i]&0x2e)==4||opcode[i]==0x11) { // BEQ/BNE/BEQL/BNEL/BC1
6426 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,CCREG,CCREG);
6427 }
6428 emit_addimm(HOST_CCREG,CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
6429 if(opcode[i]==2) // J
6430 {
6431 unconditional=1;
6432 }
6433 if(opcode[i]==3) // JAL
6434 {
6435 // TODO: mini_ht
6436 int rt=get_reg(i_regs->regmap,31);
6437 emit_movimm(start+i*4+8,rt);
6438 unconditional=1;
6439 }
6440 if(opcode[i]==0&&(opcode2[i]&0x3E)==8) // JR/JALR
6441 {
6442 emit_mov(s1l,addr);
6443 if(opcode2[i]==9) // JALR
6444 {
5067f341 6445 int rt=get_reg(i_regs->regmap,rt1[i]);
57871462 6446 emit_movimm(start+i*4+8,rt);
6447 }
6448 }
6449 if((opcode[i]&0x3f)==4) // BEQ
6450 {
6451 if(rs1[i]==rs2[i])
6452 {
6453 unconditional=1;
6454 }
6455 else
6456 #ifdef HAVE_CMOV_IMM
6457 if(s1h<0) {
6458 if(s2l>=0) emit_cmp(s1l,s2l);
6459 else emit_test(s1l,s1l);
6460 emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
6461 }
6462 else
6463 #endif
6464 {
6465 assert(s1l>=0);
6466 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
6467 if(s1h>=0) {
6468 if(s2h>=0) emit_cmp(s1h,s2h);
6469 else emit_test(s1h,s1h);
6470 emit_cmovne_reg(alt,addr);
6471 }
6472 if(s2l>=0) emit_cmp(s1l,s2l);
6473 else emit_test(s1l,s1l);
6474 emit_cmovne_reg(alt,addr);
6475 }
6476 }
6477 if((opcode[i]&0x3f)==5) // BNE
6478 {
6479 #ifdef HAVE_CMOV_IMM
6480 if(s1h<0) {
6481 if(s2l>=0) emit_cmp(s1l,s2l);
6482 else emit_test(s1l,s1l);
6483 emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
6484 }
6485 else
6486 #endif
6487 {
6488 assert(s1l>=0);
6489 emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
6490 if(s1h>=0) {
6491 if(s2h>=0) emit_cmp(s1h,s2h);
6492 else emit_test(s1h,s1h);
6493 emit_cmovne_reg(alt,addr);
6494 }
6495 if(s2l>=0) emit_cmp(s1l,s2l);
6496 else emit_test(s1l,s1l);
6497 emit_cmovne_reg(alt,addr);
6498 }
6499 }
6500 if((opcode[i]&0x3f)==0x14) // BEQL
6501 {
6502 if(s1h>=0) {
6503 if(s2h>=0) emit_cmp(s1h,s2h);
6504 else emit_test(s1h,s1h);
6505 nottaken=(int)out;
6506 emit_jne(0);
6507 }
6508 if(s2l>=0) emit_cmp(s1l,s2l);
6509 else emit_test(s1l,s1l);
6510 if(nottaken) set_jump_target(nottaken,(int)out);
6511 nottaken=(int)out;
6512 emit_jne(0);
6513 }
6514 if((opcode[i]&0x3f)==0x15) // BNEL
6515 {
6516 if(s1h>=0) {
6517 if(s2h>=0) emit_cmp(s1h,s2h);
6518 else emit_test(s1h,s1h);
6519 taken=(int)out;
6520 emit_jne(0);
6521 }
6522 if(s2l>=0) emit_cmp(s1l,s2l);
6523 else emit_test(s1l,s1l);
6524 nottaken=(int)out;
6525 emit_jeq(0);
6526 if(taken) set_jump_target(taken,(int)out);
6527 }
6528 if((opcode[i]&0x3f)==6) // BLEZ
6529 {
6530 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
6531 emit_cmpimm(s1l,1);
6532 if(s1h>=0) emit_mov(addr,ntaddr);
6533 emit_cmovl_reg(alt,addr);
6534 if(s1h>=0) {
6535 emit_test(s1h,s1h);
6536 emit_cmovne_reg(ntaddr,addr);
6537 emit_cmovs_reg(alt,addr);
6538 }
6539 }
6540 if((opcode[i]&0x3f)==7) // BGTZ
6541 {
6542 emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
6543 emit_cmpimm(s1l,1);
6544 if(s1h>=0) emit_mov(addr,alt);
6545 emit_cmovl_reg(ntaddr,addr);
6546 if(s1h>=0) {
6547 emit_test(s1h,s1h);
6548 emit_cmovne_reg(alt,addr);
6549 emit_cmovs_reg(ntaddr,addr);
6550 }
6551 }
6552 if((opcode[i]&0x3f)==0x16) // BLEZL
6553 {
6554 assert((opcode[i]&0x3f)!=0x16);
6555 }
6556 if((opcode[i]&0x3f)==0x17) // BGTZL
6557 {
6558 assert((opcode[i]&0x3f)!=0x17);
6559 }
6560 assert(opcode[i]!=1); // BLTZ/BGEZ
6561
6562 //FIXME: Check CSREG
6563 if(opcode[i]==0x11 && opcode2[i]==0x08 ) {
6564 if((source[i]&0x30000)==0) // BC1F
6565 {
6566 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
6567 emit_testimm(s1l,0x800000);
6568 emit_cmovne_reg(alt,addr);
6569 }
6570 if((source[i]&0x30000)==0x10000) // BC1T
6571 {
6572 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
6573 emit_testimm(s1l,0x800000);
6574 emit_cmovne_reg(alt,addr);
6575 }
6576 if((source[i]&0x30000)==0x20000) // BC1FL
6577 {
6578 emit_testimm(s1l,0x800000);
6579 nottaken=(int)out;
6580 emit_jne(0);
6581 }
6582 if((source[i]&0x30000)==0x30000) // BC1TL
6583 {
6584 emit_testimm(s1l,0x800000);
6585 nottaken=(int)out;
6586 emit_jeq(0);
6587 }
6588 }
6589
6590 assert(i_regs->regmap[HOST_CCREG]==CCREG);
6591 wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
6592 if(likely[i]||unconditional)
6593 {
6594 emit_movimm(ba[i],HOST_BTREG);
6595 }
6596 else if(addr!=HOST_BTREG)
6597 {
6598 emit_mov(addr,HOST_BTREG);
6599 }
6600 void *branch_addr=out;
6601 emit_jmp(0);
6602 int target_addr=start+i*4+5;
6603 void *stub=out;
6604 void *compiled_target_addr=check_addr(target_addr);
6605 emit_extjump_ds((int)branch_addr,target_addr);
6606 if(compiled_target_addr) {
6607 set_jump_target((int)branch_addr,(int)compiled_target_addr);
6608 add_link(target_addr,stub);
6609 }
6610 else set_jump_target((int)branch_addr,(int)stub);
6611 if(likely[i]) {
6612 // Not-taken path
6613 set_jump_target((int)nottaken,(int)out);
6614 wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
6615 void *branch_addr=out;
6616 emit_jmp(0);
6617 int target_addr=start+i*4+8;
6618 void *stub=out;
6619 void *compiled_target_addr=check_addr(target_addr);
6620 emit_extjump_ds((int)branch_addr,target_addr);
6621 if(compiled_target_addr) {
6622 set_jump_target((int)branch_addr,(int)compiled_target_addr);
6623 add_link(target_addr,stub);
6624 }
6625 else set_jump_target((int)branch_addr,(int)stub);
6626 }
6627}
6628
6629// Assemble the delay slot for the above
6630static void pagespan_ds()
6631{
6632 assem_debug("initial delay slot:\n");
6633 u_int vaddr=start+1;
94d23bb9 6634 u_int page=get_page(vaddr);
6635 u_int vpage=get_vpage(vaddr);
57871462 6636 ll_add(jump_dirty+vpage,vaddr,(void *)out);
6637 do_dirty_stub_ds();
6638 ll_add(jump_in+page,vaddr,(void *)out);
6639 assert(regs[0].regmap_entry[HOST_CCREG]==CCREG);
6640 if(regs[0].regmap[HOST_CCREG]!=CCREG)
6641 wb_register(CCREG,regs[0].regmap_entry,regs[0].wasdirty,regs[0].was32);
6642 if(regs[0].regmap[HOST_BTREG]!=BTREG)
6643 emit_writeword(HOST_BTREG,(int)&branch_target);
6644 load_regs(regs[0].regmap_entry,regs[0].regmap,regs[0].was32,rs1[0],rs2[0]);
6645 address_generation(0,&regs[0],regs[0].regmap_entry);
b9b61529 6646 if(itype[0]==STORE||itype[0]==STORELR||(opcode[0]&0x3b)==0x39||(opcode[0]&0x3b)==0x3a)
57871462 6647 load_regs(regs[0].regmap_entry,regs[0].regmap,regs[0].was32,INVCP,INVCP);
6648 cop1_usable=0;
6649 is_delayslot=0;
6650 switch(itype[0]) {
6651 case ALU:
6652 alu_assemble(0,&regs[0]);break;
6653 case IMM16:
6654 imm16_assemble(0,&regs[0]);break;
6655 case SHIFT:
6656 shift_assemble(0,&regs[0]);break;
6657 case SHIFTIMM:
6658 shiftimm_assemble(0,&regs[0]);break;
6659 case LOAD:
6660 load_assemble(0,&regs[0]);break;
6661 case LOADLR:
6662 loadlr_assemble(0,&regs[0]);break;
6663 case STORE:
6664 store_assemble(0,&regs[0]);break;
6665 case STORELR:
6666 storelr_assemble(0,&regs[0]);break;
6667 case COP0:
6668 cop0_assemble(0,&regs[0]);break;
6669 case COP1:
6670 cop1_assemble(0,&regs[0]);break;
6671 case C1LS:
6672 c1ls_assemble(0,&regs[0]);break;
b9b61529 6673 case COP2:
6674 cop2_assemble(0,&regs[0]);break;
6675 case C2LS:
6676 c2ls_assemble(0,&regs[0]);break;
6677 case C2OP:
6678 c2op_assemble(0,&regs[0]);break;
57871462 6679 case FCONV:
6680 fconv_assemble(0,&regs[0]);break;
6681 case FLOAT:
6682 float_assemble(0,&regs[0]);break;
6683 case FCOMP:
6684 fcomp_assemble(0,&regs[0]);break;
6685 case MULTDIV:
6686 multdiv_assemble(0,&regs[0]);break;
6687 case MOV:
6688 mov_assemble(0,&regs[0]);break;
6689 case SYSCALL:
7139f3c8 6690 case HLECALL:
1e973cb0 6691 case INTCALL:
57871462 6692 case SPAN:
6693 case UJUMP:
6694 case RJUMP:
6695 case CJUMP:
6696 case SJUMP:
6697 case FJUMP:
6698 printf("Jump in the delay slot. This is probably a bug.\n");
6699 }
6700 int btaddr=get_reg(regs[0].regmap,BTREG);
6701 if(btaddr<0) {
6702 btaddr=get_reg(regs[0].regmap,-1);
6703 emit_readword((int)&branch_target,btaddr);
6704 }
6705 assert(btaddr!=HOST_CCREG);
6706 if(regs[0].regmap[HOST_CCREG]!=CCREG) emit_loadreg(CCREG,HOST_CCREG);
6707#ifdef HOST_IMM8
6708 emit_movimm(start+4,HOST_TEMPREG);
6709 emit_cmp(btaddr,HOST_TEMPREG);
6710#else
6711 emit_cmpimm(btaddr,start+4);
6712#endif
6713 int branch=(int)out;
6714 emit_jeq(0);
6715 store_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,-1);
6716 emit_jmp(jump_vaddr_reg[btaddr]);
6717 set_jump_target(branch,(int)out);
6718 store_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,start+4);
6719 load_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,start+4);
6720}
6721
6722// Basic liveness analysis for MIPS registers
6723void unneeded_registers(int istart,int iend,int r)
6724{
6725 int i;
bedfea38 6726 uint64_t u,uu,gte_u,b,bu,gte_bu;
6727 uint64_t temp_u,temp_uu,temp_gte_u;
57871462 6728 uint64_t tdep;
6729 if(iend==slen-1) {
6730 u=1;uu=1;
6731 }else{
6732 u=unneeded_reg[iend+1];
6733 uu=unneeded_reg_upper[iend+1];
6734 u=1;uu=1;
6735 }
bedfea38 6736 gte_u=temp_gte_u=0;
6737
57871462 6738 for (i=iend;i>=istart;i--)
6739 {
6740 //printf("unneeded registers i=%d (%d,%d) r=%d\n",i,istart,iend,r);
6741 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
6742 {
6743 // If subroutine call, flag return address as a possible branch target
6744 if(rt1[i]==31 && i<slen-2) bt[i+2]=1;
6745
6746 if(ba[i]<start || ba[i]>=(start+slen*4))
6747 {
6748 // Branch out of this block, flush all regs
6749 u=1;
6750 uu=1;
bedfea38 6751 gte_u=0;
57871462 6752 /* Hexagon hack
6753 if(itype[i]==UJUMP&&rt1[i]==31)
6754 {
6755 uu=u=0x300C00F; // Discard at, v0-v1, t6-t9
6756 }
6757 if(itype[i]==RJUMP&&rs1[i]==31)
6758 {
6759 uu=u=0x300C0F3; // Discard at, a0-a3, t6-t9
6760 }
4cb76aa4 6761 if(start>0x80000400&&start<0x80000000+RAM_SIZE) {
57871462 6762 if(itype[i]==UJUMP&&rt1[i]==31)
6763 {
6764 //uu=u=0x30300FF0FLL; // Discard at, v0-v1, t0-t9, lo, hi
6765 uu=u=0x300FF0F; // Discard at, v0-v1, t0-t9
6766 }
6767 if(itype[i]==RJUMP&&rs1[i]==31)
6768 {
6769 //uu=u=0x30300FFF3LL; // Discard at, a0-a3, t0-t9, lo, hi
6770 uu=u=0x300FFF3; // Discard at, a0-a3, t0-t9
6771 }
6772 }*/
6773 branch_unneeded_reg[i]=u;
6774 branch_unneeded_reg_upper[i]=uu;
6775 // Merge in delay slot
6776 tdep=(~uu>>rt1[i+1])&1;
6777 u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6778 uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6779 u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6780 uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6781 uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6782 u|=1;uu|=1;
bedfea38 6783 gte_u|=gte_rt[i+1];
6784 gte_u&=~gte_rs[i+1];
57871462 6785 // If branch is "likely" (and conditional)
6786 // then we skip the delay slot on the fall-thru path
6787 if(likely[i]) {
6788 if(i<slen-1) {
6789 u&=unneeded_reg[i+2];
6790 uu&=unneeded_reg_upper[i+2];
bedfea38 6791 gte_u&=gte_unneeded[i+2];
57871462 6792 }
6793 else
6794 {
6795 u=1;
6796 uu=1;
bedfea38 6797 gte_u=0;
57871462 6798 }
6799 }
6800 }
6801 else
6802 {
6803 // Internal branch, flag target
6804 bt[(ba[i]-start)>>2]=1;
6805 if(ba[i]<=start+i*4) {
6806 // Backward branch
6807 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
6808 {
6809 // Unconditional branch
6810 temp_u=1;temp_uu=1;
bedfea38 6811 temp_gte_u=0;
57871462 6812 } else {
6813 // Conditional branch (not taken case)
6814 temp_u=unneeded_reg[i+2];
6815 temp_uu=unneeded_reg_upper[i+2];
bedfea38 6816 temp_gte_u&=gte_unneeded[i+2];
57871462 6817 }
6818 // Merge in delay slot
6819 tdep=(~temp_uu>>rt1[i+1])&1;
6820 temp_u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6821 temp_uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6822 temp_u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6823 temp_uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6824 temp_uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6825 temp_u|=1;temp_uu|=1;
bedfea38 6826 temp_gte_u|=gte_rt[i+1];
6827 temp_gte_u&=~gte_rs[i+1];
57871462 6828 // If branch is "likely" (and conditional)
6829 // then we skip the delay slot on the fall-thru path
6830 if(likely[i]) {
6831 if(i<slen-1) {
6832 temp_u&=unneeded_reg[i+2];
6833 temp_uu&=unneeded_reg_upper[i+2];
bedfea38 6834 temp_gte_u&=gte_unneeded[i+2];
57871462 6835 }
6836 else
6837 {
6838 temp_u=1;
6839 temp_uu=1;
bedfea38 6840 temp_gte_u=0;
57871462 6841 }
6842 }
6843 tdep=(~temp_uu>>rt1[i])&1;
6844 temp_u|=(1LL<<rt1[i])|(1LL<<rt2[i]);
6845 temp_uu|=(1LL<<rt1[i])|(1LL<<rt2[i]);
6846 temp_u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
6847 temp_uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
6848 temp_uu&=~((tdep<<dep1[i])|(tdep<<dep2[i]));
6849 temp_u|=1;temp_uu|=1;
bedfea38 6850 temp_gte_u|=gte_rt[i];
6851 temp_gte_u&=~gte_rs[i];
57871462 6852 unneeded_reg[i]=temp_u;
6853 unneeded_reg_upper[i]=temp_uu;
bedfea38 6854 gte_unneeded[i]=temp_gte_u;
57871462 6855 // Only go three levels deep. This recursion can take an
6856 // excessive amount of time if there are a lot of nested loops.
6857 if(r<2) {
6858 unneeded_registers((ba[i]-start)>>2,i-1,r+1);
6859 }else{
6860 unneeded_reg[(ba[i]-start)>>2]=1;
6861 unneeded_reg_upper[(ba[i]-start)>>2]=1;
bedfea38 6862 gte_unneeded[(ba[i]-start)>>2]=0;
57871462 6863 }
6864 } /*else*/ if(1) {
6865 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
6866 {
6867 // Unconditional branch
6868 u=unneeded_reg[(ba[i]-start)>>2];
6869 uu=unneeded_reg_upper[(ba[i]-start)>>2];
bedfea38 6870 gte_u=gte_unneeded[(ba[i]-start)>>2];
57871462 6871 branch_unneeded_reg[i]=u;
6872 branch_unneeded_reg_upper[i]=uu;
6873 //u=1;
6874 //uu=1;
6875 //branch_unneeded_reg[i]=u;
6876 //branch_unneeded_reg_upper[i]=uu;
6877 // Merge in delay slot
6878 tdep=(~uu>>rt1[i+1])&1;
6879 u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6880 uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6881 u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6882 uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6883 uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6884 u|=1;uu|=1;
bedfea38 6885 gte_u|=gte_rt[i+1];
6886 gte_u&=~gte_rs[i+1];
57871462 6887 } else {
6888 // Conditional branch
6889 b=unneeded_reg[(ba[i]-start)>>2];
6890 bu=unneeded_reg_upper[(ba[i]-start)>>2];
bedfea38 6891 gte_bu=gte_unneeded[(ba[i]-start)>>2];
57871462 6892 branch_unneeded_reg[i]=b;
6893 branch_unneeded_reg_upper[i]=bu;
6894 //b=1;
6895 //bu=1;
6896 //branch_unneeded_reg[i]=b;
6897 //branch_unneeded_reg_upper[i]=bu;
6898 // Branch delay slot
6899 tdep=(~uu>>rt1[i+1])&1;
6900 b|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6901 bu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6902 b&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6903 bu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6904 bu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6905 b|=1;bu|=1;
bedfea38 6906 gte_bu|=gte_rt[i+1];
6907 gte_bu&=~gte_rs[i+1];
57871462 6908 // If branch is "likely" then we skip the
6909 // delay slot on the fall-thru path
6910 if(likely[i]) {
6911 u=b;
6912 uu=bu;
bedfea38 6913 gte_u=gte_bu;
57871462 6914 if(i<slen-1) {
6915 u&=unneeded_reg[i+2];
6916 uu&=unneeded_reg_upper[i+2];
bedfea38 6917 gte_u&=gte_unneeded[i+2];
57871462 6918 //u=1;
6919 //uu=1;
6920 }
6921 } else {
6922 u&=b;
6923 uu&=bu;
bedfea38 6924 gte_u&=gte_bu;
57871462 6925 //u=1;
6926 //uu=1;
6927 }
6928 if(i<slen-1) {
6929 branch_unneeded_reg[i]&=unneeded_reg[i+2];
6930 branch_unneeded_reg_upper[i]&=unneeded_reg_upper[i+2];
6931 //branch_unneeded_reg[i]=1;
6932 //branch_unneeded_reg_upper[i]=1;
6933 } else {
6934 branch_unneeded_reg[i]=1;
6935 branch_unneeded_reg_upper[i]=1;
6936 }
6937 }
6938 }
6939 }
6940 }
1e973cb0 6941 else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
57871462 6942 {
6943 // SYSCALL instruction (software interrupt)
6944 u=1;
6945 uu=1;
6946 }
6947 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
6948 {
6949 // ERET instruction (return from interrupt)
6950 u=1;
6951 uu=1;
6952 }
6953 //u=uu=1; // DEBUG
6954 tdep=(~uu>>rt1[i])&1;
6955 // Written registers are unneeded
6956 u|=1LL<<rt1[i];
6957 u|=1LL<<rt2[i];
6958 uu|=1LL<<rt1[i];
6959 uu|=1LL<<rt2[i];
bedfea38 6960 gte_u|=gte_rt[i];
57871462 6961 // Accessed registers are needed
6962 u&=~(1LL<<rs1[i]);
6963 u&=~(1LL<<rs2[i]);
6964 uu&=~(1LL<<us1[i]);
6965 uu&=~(1LL<<us2[i]);
bedfea38 6966 gte_u&=~gte_rs[i];
57871462 6967 // Source-target dependencies
6968 uu&=~(tdep<<dep1[i]);
6969 uu&=~(tdep<<dep2[i]);
6970 // R0 is always unneeded
6971 u|=1;uu|=1;
6972 // Save it
6973 unneeded_reg[i]=u;
6974 unneeded_reg_upper[i]=uu;
bedfea38 6975 gte_unneeded[i]=gte_u;
57871462 6976 /*
6977 printf("ur (%d,%d) %x: ",istart,iend,start+i*4);
6978 printf("U:");
6979 int r;
6980 for(r=1;r<=CCREG;r++) {
6981 if((unneeded_reg[i]>>r)&1) {
6982 if(r==HIREG) printf(" HI");
6983 else if(r==LOREG) printf(" LO");
6984 else printf(" r%d",r);
6985 }
6986 }
6987 printf(" UU:");
6988 for(r=1;r<=CCREG;r++) {
6989 if(((unneeded_reg_upper[i]&~unneeded_reg[i])>>r)&1) {
6990 if(r==HIREG) printf(" HI");
6991 else if(r==LOREG) printf(" LO");
6992 else printf(" r%d",r);
6993 }
6994 }
6995 printf("\n");*/
6996 }
252c20fc 6997#ifdef FORCE32
6998 for (i=iend;i>=istart;i--)
6999 {
7000 unneeded_reg_upper[i]=branch_unneeded_reg_upper[i]=-1LL;
7001 }
7002#endif
57871462 7003}
7004
7005// Identify registers which are likely to contain 32-bit values
7006// This is used to predict whether any branches will jump to a
7007// location with 64-bit values in registers.
7008static void provisional_32bit()
7009{
7010 int i,j;
7011 uint64_t is32=1;
7012 uint64_t lastbranch=1;
7013
7014 for(i=0;i<slen;i++)
7015 {
7016 if(i>0) {
7017 if(itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP) {
7018 if(i>1) is32=lastbranch;
7019 else is32=1;
7020 }
7021 }
7022 if(i>1)
7023 {
7024 if(itype[i-2]==CJUMP||itype[i-2]==SJUMP||itype[i-2]==FJUMP) {
7025 if(likely[i-2]) {
7026 if(i>2) is32=lastbranch;
7027 else is32=1;
7028 }
7029 }
7030 if((opcode[i-2]&0x2f)==0x05) // BNE/BNEL
7031 {
7032 if(rs1[i-2]==0||rs2[i-2]==0)
7033 {
7034 if(rs1[i-2]) {
7035 is32|=1LL<<rs1[i-2];
7036 }
7037 if(rs2[i-2]) {
7038 is32|=1LL<<rs2[i-2];
7039 }
7040 }
7041 }
7042 }
7043 // If something jumps here with 64-bit values
7044 // then promote those registers to 64 bits
7045 if(bt[i])
7046 {
7047 uint64_t temp_is32=is32;
7048 for(j=i-1;j>=0;j--)
7049 {
7050 if(ba[j]==start+i*4)
7051 //temp_is32&=branch_regs[j].is32;
7052 temp_is32&=p32[j];
7053 }
7054 for(j=i;j<slen;j++)
7055 {
7056 if(ba[j]==start+i*4)
7057 temp_is32=1;
7058 }
7059 is32=temp_is32;
7060 }
7061 int type=itype[i];
7062 int op=opcode[i];
7063 int op2=opcode2[i];
7064 int rt=rt1[i];
7065 int s1=rs1[i];
7066 int s2=rs2[i];
7067 if(type==UJUMP||type==RJUMP||type==CJUMP||type==SJUMP||type==FJUMP) {
7068 // Branches don't write registers, consider the delay slot instead.
7069 type=itype[i+1];
7070 op=opcode[i+1];
7071 op2=opcode2[i+1];
7072 rt=rt1[i+1];
7073 s1=rs1[i+1];
7074 s2=rs2[i+1];
7075 lastbranch=is32;
7076 }
7077 switch(type) {
7078 case LOAD:
7079 if(opcode[i]==0x27||opcode[i]==0x37|| // LWU/LD
7080 opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
7081 is32&=~(1LL<<rt);
7082 else
7083 is32|=1LL<<rt;
7084 break;
7085 case STORE:
7086 case STORELR:
7087 break;
7088 case LOADLR:
7089 if(op==0x1a||op==0x1b) is32&=~(1LL<<rt); // LDR/LDL
7090 if(op==0x22) is32|=1LL<<rt; // LWL
7091 break;
7092 case IMM16:
7093 if (op==0x08||op==0x09|| // ADDI/ADDIU
7094 op==0x0a||op==0x0b|| // SLTI/SLTIU
7095 op==0x0c|| // ANDI
7096 op==0x0f) // LUI
7097 {
7098 is32|=1LL<<rt;
7099 }
7100 if(op==0x18||op==0x19) { // DADDI/DADDIU
7101 is32&=~(1LL<<rt);
7102 //if(imm[i]==0)
7103 // is32|=((is32>>s1)&1LL)<<rt;
7104 }
7105 if(op==0x0d||op==0x0e) { // ORI/XORI
7106 uint64_t sr=((is32>>s1)&1LL);
7107 is32&=~(1LL<<rt);
7108 is32|=sr<<rt;
7109 }
7110 break;
7111 case UJUMP:
7112 break;
7113 case RJUMP:
7114 break;
7115 case CJUMP:
7116 break;
7117 case SJUMP:
7118 break;
7119 case FJUMP:
7120 break;
7121 case ALU:
7122 if(op2>=0x20&&op2<=0x23) { // ADD/ADDU/SUB/SUBU
7123 is32|=1LL<<rt;
7124 }
7125 if(op2==0x2a||op2==0x2b) { // SLT/SLTU
7126 is32|=1LL<<rt;
7127 }
7128 else if(op2>=0x24&&op2<=0x27) { // AND/OR/XOR/NOR
7129 uint64_t sr=((is32>>s1)&(is32>>s2)&1LL);
7130 is32&=~(1LL<<rt);
7131 is32|=sr<<rt;
7132 }
7133 else if(op2>=0x2c&&op2<=0x2d) { // DADD/DADDU
7134 if(s1==0&&s2==0) {
7135 is32|=1LL<<rt;
7136 }
7137 else if(s2==0) {
7138 uint64_t sr=((is32>>s1)&1LL);
7139 is32&=~(1LL<<rt);
7140 is32|=sr<<rt;
7141 }
7142 else if(s1==0) {
7143 uint64_t sr=((is32>>s2)&1LL);
7144 is32&=~(1LL<<rt);
7145 is32|=sr<<rt;
7146 }
7147 else {
7148 is32&=~(1LL<<rt);
7149 }
7150 }
7151 else if(op2>=0x2e&&op2<=0x2f) { // DSUB/DSUBU
7152 if(s1==0&&s2==0) {
7153 is32|=1LL<<rt;
7154 }
7155 else if(s2==0) {
7156 uint64_t sr=((is32>>s1)&1LL);
7157 is32&=~(1LL<<rt);
7158 is32|=sr<<rt;
7159 }
7160 else {
7161 is32&=~(1LL<<rt);
7162 }
7163 }
7164 break;
7165 case MULTDIV:
7166 if (op2>=0x1c&&op2<=0x1f) { // DMULT/DMULTU/DDIV/DDIVU
7167 is32&=~((1LL<<HIREG)|(1LL<<LOREG));
7168 }
7169 else {
7170 is32|=(1LL<<HIREG)|(1LL<<LOREG);
7171 }
7172 break;
7173 case MOV:
7174 {
7175 uint64_t sr=((is32>>s1)&1LL);
7176 is32&=~(1LL<<rt);
7177 is32|=sr<<rt;
7178 }
7179 break;
7180 case SHIFT:
7181 if(op2>=0x14&&op2<=0x17) is32&=~(1LL<<rt); // DSLLV/DSRLV/DSRAV
7182 else is32|=1LL<<rt; // SLLV/SRLV/SRAV
7183 break;
7184 case SHIFTIMM:
7185 is32|=1LL<<rt;
7186 // DSLL/DSRL/DSRA/DSLL32/DSRL32 but not DSRA32 have 64-bit result
7187 if(op2>=0x38&&op2<0x3f) is32&=~(1LL<<rt);
7188 break;
7189 case COP0:
7190 if(op2==0) is32|=1LL<<rt; // MFC0
7191 break;
7192 case COP1:
b9b61529 7193 case COP2:
57871462 7194 if(op2==0) is32|=1LL<<rt; // MFC1
7195 if(op2==1) is32&=~(1LL<<rt); // DMFC1
7196 if(op2==2) is32|=1LL<<rt; // CFC1
7197 break;
7198 case C1LS:
b9b61529 7199 case C2LS:
57871462 7200 break;
7201 case FLOAT:
7202 case FCONV:
7203 break;
7204 case FCOMP:
7205 break;
b9b61529 7206 case C2OP:
57871462 7207 case SYSCALL:
7139f3c8 7208 case HLECALL:
57871462 7209 break;
7210 default:
7211 break;
7212 }
7213 is32|=1;
7214 p32[i]=is32;
7215
7216 if(i>0)
7217 {
7218 if(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)
7219 {
7220 if(rt1[i-1]==31) // JAL/JALR
7221 {
7222 // Subroutine call will return here, don't alloc any registers
7223 is32=1;
7224 }
7225 else if(i+1<slen)
7226 {
7227 // Internal branch will jump here, match registers to caller
7228 is32=0x3FFFFFFFFLL;
7229 }
7230 }
7231 }
7232 }
7233}
7234
7235// Identify registers which may be assumed to contain 32-bit values
7236// and where optimizations will rely on this.
7237// This is used to determine whether backward branches can safely
7238// jump to a location with 64-bit values in registers.
7239static void provisional_r32()
7240{
7241 u_int r32=0;
7242 int i;
7243
7244 for (i=slen-1;i>=0;i--)
7245 {
7246 int hr;
7247 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
7248 {
7249 if(ba[i]<start || ba[i]>=(start+slen*4))
7250 {
7251 // Branch out of this block, don't need anything
7252 r32=0;
7253 }
7254 else
7255 {
7256 // Internal branch
7257 // Need whatever matches the target
7258 // (and doesn't get overwritten by the delay slot instruction)
7259 r32=0;
7260 int t=(ba[i]-start)>>2;
7261 if(ba[i]>start+i*4) {
7262 // Forward branch
7263 //if(!(requires_32bit[t]&~regs[i].was32))
7264 // r32|=requires_32bit[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
7265 if(!(pr32[t]&~regs[i].was32))
7266 r32|=pr32[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
7267 }else{
7268 // Backward branch
7269 if(!(regs[t].was32&~unneeded_reg_upper[t]&~regs[i].was32))
7270 r32|=regs[t].was32&~unneeded_reg_upper[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
7271 }
7272 }
7273 // Conditional branch may need registers for following instructions
7274 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
7275 {
7276 if(i<slen-2) {
7277 //r32|=requires_32bit[i+2];
7278 r32|=pr32[i+2];
7279 r32&=regs[i].was32;
7280 // Mark this address as a branch target since it may be called
7281 // upon return from interrupt
7282 //bt[i+2]=1;
7283 }
7284 }
7285 // Merge in delay slot
7286 if(!likely[i]) {
7287 // These are overwritten unless the branch is "likely"
7288 // and the delay slot is nullified if not taken
7289 r32&=~(1LL<<rt1[i+1]);
7290 r32&=~(1LL<<rt2[i+1]);
7291 }
7292 // Assume these are needed (delay slot)
7293 if(us1[i+1]>0)
7294 {
7295 if((regs[i].was32>>us1[i+1])&1) r32|=1LL<<us1[i+1];
7296 }
7297 if(us2[i+1]>0)
7298 {
7299 if((regs[i].was32>>us2[i+1])&1) r32|=1LL<<us2[i+1];
7300 }
7301 if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1))
7302 {
7303 if((regs[i].was32>>dep1[i+1])&1) r32|=1LL<<dep1[i+1];
7304 }
7305 if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1))
7306 {
7307 if((regs[i].was32>>dep2[i+1])&1) r32|=1LL<<dep2[i+1];
7308 }
7309 }
1e973cb0 7310 else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
57871462 7311 {
7312 // SYSCALL instruction (software interrupt)
7313 r32=0;
7314 }
7315 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
7316 {
7317 // ERET instruction (return from interrupt)
7318 r32=0;
7319 }
7320 // Check 32 bits
7321 r32&=~(1LL<<rt1[i]);
7322 r32&=~(1LL<<rt2[i]);
7323 if(us1[i]>0)
7324 {
7325 if((regs[i].was32>>us1[i])&1) r32|=1LL<<us1[i];
7326 }
7327 if(us2[i]>0)
7328 {
7329 if((regs[i].was32>>us2[i])&1) r32|=1LL<<us2[i];
7330 }
7331 if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1))
7332 {
7333 if((regs[i].was32>>dep1[i])&1) r32|=1LL<<dep1[i];
7334 }
7335 if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1))
7336 {
7337 if((regs[i].was32>>dep2[i])&1) r32|=1LL<<dep2[i];
7338 }
7339 //requires_32bit[i]=r32;
7340 pr32[i]=r32;
7341
7342 // Dirty registers which are 32-bit, require 32-bit input
7343 // as they will be written as 32-bit values
7344 for(hr=0;hr<HOST_REGS;hr++)
7345 {
7346 if(regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64) {
7347 if((regs[i].was32>>regs[i].regmap_entry[hr])&(regs[i].wasdirty>>hr)&1) {
7348 if(!((unneeded_reg_upper[i]>>regs[i].regmap_entry[hr])&1))
7349 pr32[i]|=1LL<<regs[i].regmap_entry[hr];
7350 //requires_32bit[i]|=1LL<<regs[i].regmap_entry[hr];
7351 }
7352 }
7353 }
7354 }
7355}
7356
7357// Write back dirty registers as soon as we will no longer modify them,
7358// so that we don't end up with lots of writes at the branches.
7359void clean_registers(int istart,int iend,int wr)
7360{
7361 int i;
7362 int r;
7363 u_int will_dirty_i,will_dirty_next,temp_will_dirty;
7364 u_int wont_dirty_i,wont_dirty_next,temp_wont_dirty;
7365 if(iend==slen-1) {
7366 will_dirty_i=will_dirty_next=0;
7367 wont_dirty_i=wont_dirty_next=0;
7368 }else{
7369 will_dirty_i=will_dirty_next=will_dirty[iend+1];
7370 wont_dirty_i=wont_dirty_next=wont_dirty[iend+1];
7371 }
7372 for (i=iend;i>=istart;i--)
7373 {
7374 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
7375 {
7376 if(ba[i]<start || ba[i]>=(start+slen*4))
7377 {
7378 // Branch out of this block, flush all regs
7379 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
7380 {
7381 // Unconditional branch
7382 will_dirty_i=0;
7383 wont_dirty_i=0;
7384 // Merge in delay slot (will dirty)
7385 for(r=0;r<HOST_REGS;r++) {
7386 if(r!=EXCLUDE_REG) {
7387 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7388 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7389 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7390 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7391 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7392 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7393 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7394 if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7395 if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7396 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7397 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7398 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7399 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7400 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7401 }
7402 }
7403 }
7404 else
7405 {
7406 // Conditional branch
7407 will_dirty_i=0;
7408 wont_dirty_i=wont_dirty_next;
7409 // Merge in delay slot (will dirty)
7410 for(r=0;r<HOST_REGS;r++) {
7411 if(r!=EXCLUDE_REG) {
7412 if(!likely[i]) {
7413 // Might not dirty if likely branch is not taken
7414 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7415 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7416 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7417 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7418 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7419 if(branch_regs[i].regmap[r]==0) will_dirty_i&=~(1<<r);
7420 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7421 //if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7422 //if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7423 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7424 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7425 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7426 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7427 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7428 }
7429 }
7430 }
7431 }
7432 // Merge in delay slot (wont dirty)
7433 for(r=0;r<HOST_REGS;r++) {
7434 if(r!=EXCLUDE_REG) {
7435 if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7436 if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7437 if((regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7438 if((regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7439 if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7440 if((branch_regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7441 if((branch_regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7442 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7443 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7444 if(branch_regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7445 }
7446 }
7447 if(wr) {
7448 #ifndef DESTRUCTIVE_WRITEBACK
7449 branch_regs[i].dirty&=wont_dirty_i;
7450 #endif
7451 branch_regs[i].dirty|=will_dirty_i;
7452 }
7453 }
7454 else
7455 {
7456 // Internal branch
7457 if(ba[i]<=start+i*4) {
7458 // Backward branch
7459 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
7460 {
7461 // Unconditional branch
7462 temp_will_dirty=0;
7463 temp_wont_dirty=0;
7464 // Merge in delay slot (will dirty)
7465 for(r=0;r<HOST_REGS;r++) {
7466 if(r!=EXCLUDE_REG) {
7467 if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7468 if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7469 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7470 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7471 if((branch_regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7472 if(branch_regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
7473 if(branch_regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7474 if((regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7475 if((regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7476 if((regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7477 if((regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7478 if((regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7479 if(regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
7480 if(regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7481 }
7482 }
7483 } else {
7484 // Conditional branch (not taken case)
7485 temp_will_dirty=will_dirty_next;
7486 temp_wont_dirty=wont_dirty_next;
7487 // Merge in delay slot (will dirty)
7488 for(r=0;r<HOST_REGS;r++) {
7489 if(r!=EXCLUDE_REG) {
7490 if(!likely[i]) {
7491 // Will not dirty if likely branch is not taken
7492 if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7493 if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7494 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7495 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7496 if((branch_regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7497 if(branch_regs[i].regmap[r]==0) temp_will_dirty&=~(1<<r);
7498 if(branch_regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7499 //if((regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7500 //if((regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7501 if((regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7502 if((regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7503 if((regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7504 if(regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
7505 if(regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7506 }
7507 }
7508 }
7509 }
7510 // Merge in delay slot (wont dirty)
7511 for(r=0;r<HOST_REGS;r++) {
7512 if(r!=EXCLUDE_REG) {
7513 if((regs[i].regmap[r]&63)==rt1[i]) temp_wont_dirty|=1<<r;
7514 if((regs[i].regmap[r]&63)==rt2[i]) temp_wont_dirty|=1<<r;
7515 if((regs[i].regmap[r]&63)==rt1[i+1]) temp_wont_dirty|=1<<r;
7516 if((regs[i].regmap[r]&63)==rt2[i+1]) temp_wont_dirty|=1<<r;
7517 if(regs[i].regmap[r]==CCREG) temp_wont_dirty|=1<<r;
7518 if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_wont_dirty|=1<<r;
7519 if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_wont_dirty|=1<<r;
7520 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_wont_dirty|=1<<r;
7521 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_wont_dirty|=1<<r;
7522 if(branch_regs[i].regmap[r]==CCREG) temp_wont_dirty|=1<<r;
7523 }
7524 }
7525 // Deal with changed mappings
7526 if(i<iend) {
7527 for(r=0;r<HOST_REGS;r++) {
7528 if(r!=EXCLUDE_REG) {
7529 if(regs[i].regmap[r]!=regmap_pre[i][r]) {
7530 temp_will_dirty&=~(1<<r);
7531 temp_wont_dirty&=~(1<<r);
7532 if((regmap_pre[i][r]&63)>0 && (regmap_pre[i][r]&63)<34) {
7533 temp_will_dirty|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7534 temp_wont_dirty|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7535 } else {
7536 temp_will_dirty|=1<<r;
7537 temp_wont_dirty|=1<<r;
7538 }
7539 }
7540 }
7541 }
7542 }
7543 if(wr) {
7544 will_dirty[i]=temp_will_dirty;
7545 wont_dirty[i]=temp_wont_dirty;
7546 clean_registers((ba[i]-start)>>2,i-1,0);
7547 }else{
7548 // Limit recursion. It can take an excessive amount
7549 // of time if there are a lot of nested loops.
7550 will_dirty[(ba[i]-start)>>2]=0;
7551 wont_dirty[(ba[i]-start)>>2]=-1;
7552 }
7553 }
7554 /*else*/ if(1)
7555 {
7556 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
7557 {
7558 // Unconditional branch
7559 will_dirty_i=0;
7560 wont_dirty_i=0;
7561 //if(ba[i]>start+i*4) { // Disable recursion (for debugging)
7562 for(r=0;r<HOST_REGS;r++) {
7563 if(r!=EXCLUDE_REG) {
7564 if(branch_regs[i].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
7565 will_dirty_i|=will_dirty[(ba[i]-start)>>2]&(1<<r);
7566 wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
7567 }
e3234ecf 7568 if(branch_regs[i].regmap[r]>=0) {
7569 will_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>(branch_regs[i].regmap[r]&63))&1)<<r;
7570 wont_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>(branch_regs[i].regmap[r]&63))&1)<<r;
7571 }
57871462 7572 }
7573 }
7574 //}
7575 // Merge in delay slot
7576 for(r=0;r<HOST_REGS;r++) {
7577 if(r!=EXCLUDE_REG) {
7578 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7579 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7580 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7581 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7582 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7583 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7584 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7585 if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7586 if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7587 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7588 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7589 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7590 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7591 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7592 }
7593 }
7594 } else {
7595 // Conditional branch
7596 will_dirty_i=will_dirty_next;
7597 wont_dirty_i=wont_dirty_next;
7598 //if(ba[i]>start+i*4) { // Disable recursion (for debugging)
7599 for(r=0;r<HOST_REGS;r++) {
7600 if(r!=EXCLUDE_REG) {
e3234ecf 7601 signed char target_reg=branch_regs[i].regmap[r];
7602 if(target_reg==regs[(ba[i]-start)>>2].regmap_entry[r]) {
57871462 7603 will_dirty_i&=will_dirty[(ba[i]-start)>>2]&(1<<r);
7604 wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
7605 }
e3234ecf 7606 else if(target_reg>=0) {
7607 will_dirty_i&=((unneeded_reg[(ba[i]-start)>>2]>>(target_reg&63))&1)<<r;
7608 wont_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>(target_reg&63))&1)<<r;
57871462 7609 }
7610 // Treat delay slot as part of branch too
7611 /*if(regs[i+1].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
7612 will_dirty[i+1]&=will_dirty[(ba[i]-start)>>2]&(1<<r);
7613 wont_dirty[i+1]|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
7614 }
7615 else
7616 {
7617 will_dirty[i+1]&=~(1<<r);
7618 }*/
7619 }
7620 }
7621 //}
7622 // Merge in delay slot
7623 for(r=0;r<HOST_REGS;r++) {
7624 if(r!=EXCLUDE_REG) {
7625 if(!likely[i]) {
7626 // Might not dirty if likely branch is not taken
7627 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7628 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7629 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7630 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7631 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7632 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7633 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7634 //if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7635 //if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7636 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7637 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7638 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7639 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7640 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7641 }
7642 }
7643 }
7644 }
e3234ecf 7645 // Merge in delay slot (won't dirty)
57871462 7646 for(r=0;r<HOST_REGS;r++) {
7647 if(r!=EXCLUDE_REG) {
7648 if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7649 if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7650 if((regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7651 if((regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7652 if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7653 if((branch_regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7654 if((branch_regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7655 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7656 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7657 if(branch_regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7658 }
7659 }
7660 if(wr) {
7661 #ifndef DESTRUCTIVE_WRITEBACK
7662 branch_regs[i].dirty&=wont_dirty_i;
7663 #endif
7664 branch_regs[i].dirty|=will_dirty_i;
7665 }
7666 }
7667 }
7668 }
1e973cb0 7669 else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
57871462 7670 {
7671 // SYSCALL instruction (software interrupt)
7672 will_dirty_i=0;
7673 wont_dirty_i=0;
7674 }
7675 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
7676 {
7677 // ERET instruction (return from interrupt)
7678 will_dirty_i=0;
7679 wont_dirty_i=0;
7680 }
7681 will_dirty_next=will_dirty_i;
7682 wont_dirty_next=wont_dirty_i;
7683 for(r=0;r<HOST_REGS;r++) {
7684 if(r!=EXCLUDE_REG) {
7685 if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7686 if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7687 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7688 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7689 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7690 if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7691 if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7692 if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7693 if(i>istart) {
7694 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=FJUMP)
7695 {
7696 // Don't store a register immediately after writing it,
7697 // may prevent dual-issue.
7698 if((regs[i].regmap[r]&63)==rt1[i-1]) wont_dirty_i|=1<<r;
7699 if((regs[i].regmap[r]&63)==rt2[i-1]) wont_dirty_i|=1<<r;
7700 }
7701 }
7702 }
7703 }
7704 // Save it
7705 will_dirty[i]=will_dirty_i;
7706 wont_dirty[i]=wont_dirty_i;
7707 // Mark registers that won't be dirtied as not dirty
7708 if(wr) {
7709 /*printf("wr (%d,%d) %x will:",istart,iend,start+i*4);
7710 for(r=0;r<HOST_REGS;r++) {
7711 if((will_dirty_i>>r)&1) {
7712 printf(" r%d",r);
7713 }
7714 }
7715 printf("\n");*/
7716
7717 //if(i==istart||(itype[i-1]!=RJUMP&&itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=FJUMP)) {
7718 regs[i].dirty|=will_dirty_i;
7719 #ifndef DESTRUCTIVE_WRITEBACK
7720 regs[i].dirty&=wont_dirty_i;
7721 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
7722 {
7723 if(i<iend-1&&itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000) {
7724 for(r=0;r<HOST_REGS;r++) {
7725 if(r!=EXCLUDE_REG) {
7726 if(regs[i].regmap[r]==regmap_pre[i+2][r]) {
7727 regs[i+2].wasdirty&=wont_dirty_i|~(1<<r);
7728 }else {/*printf("i: %x (%d) mismatch(+2): %d\n",start+i*4,i,r);/*assert(!((wont_dirty_i>>r)&1));*/}
7729 }
7730 }
7731 }
7732 }
7733 else
7734 {
7735 if(i<iend) {
7736 for(r=0;r<HOST_REGS;r++) {
7737 if(r!=EXCLUDE_REG) {
7738 if(regs[i].regmap[r]==regmap_pre[i+1][r]) {
7739 regs[i+1].wasdirty&=wont_dirty_i|~(1<<r);
7740 }else {/*printf("i: %x (%d) mismatch(+1): %d\n",start+i*4,i,r);/*assert(!((wont_dirty_i>>r)&1));*/}
7741 }
7742 }
7743 }
7744 }
7745 #endif
7746 //}
7747 }
7748 // Deal with changed mappings
7749 temp_will_dirty=will_dirty_i;
7750 temp_wont_dirty=wont_dirty_i;
7751 for(r=0;r<HOST_REGS;r++) {
7752 if(r!=EXCLUDE_REG) {
7753 int nr;
7754 if(regs[i].regmap[r]==regmap_pre[i][r]) {
7755 if(wr) {
7756 #ifndef DESTRUCTIVE_WRITEBACK
7757 regs[i].wasdirty&=wont_dirty_i|~(1<<r);
7758 #endif
7759 regs[i].wasdirty|=will_dirty_i&(1<<r);
7760 }
7761 }
f776eb14 7762 else if(regmap_pre[i][r]>=0&&(nr=get_reg(regs[i].regmap,regmap_pre[i][r]))>=0) {
57871462 7763 // Register moved to a different register
7764 will_dirty_i&=~(1<<r);
7765 wont_dirty_i&=~(1<<r);
7766 will_dirty_i|=((temp_will_dirty>>nr)&1)<<r;
7767 wont_dirty_i|=((temp_wont_dirty>>nr)&1)<<r;
7768 if(wr) {
7769 #ifndef DESTRUCTIVE_WRITEBACK
7770 regs[i].wasdirty&=wont_dirty_i|~(1<<r);
7771 #endif
7772 regs[i].wasdirty|=will_dirty_i&(1<<r);
7773 }
7774 }
7775 else {
7776 will_dirty_i&=~(1<<r);
7777 wont_dirty_i&=~(1<<r);
7778 if((regmap_pre[i][r]&63)>0 && (regmap_pre[i][r]&63)<34) {
7779 will_dirty_i|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7780 wont_dirty_i|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7781 } else {
7782 wont_dirty_i|=1<<r;
7783 /*printf("i: %x (%d) mismatch: %d\n",start+i*4,i,r);/*assert(!((will_dirty>>r)&1));*/
7784 }
7785 }
7786 }
7787 }
7788 }
7789}
7790
4600ba03 7791#ifdef DISASM
57871462 7792 /* disassembly */
7793void disassemble_inst(int i)
7794{
7795 if (bt[i]) printf("*"); else printf(" ");
7796 switch(itype[i]) {
7797 case UJUMP:
7798 printf (" %x: %s %8x\n",start+i*4,insn[i],ba[i]);break;
7799 case CJUMP:
7800 printf (" %x: %s r%d,r%d,%8x\n",start+i*4,insn[i],rs1[i],rs2[i],i?start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14):*ba);break;
7801 case SJUMP:
7802 printf (" %x: %s r%d,%8x\n",start+i*4,insn[i],rs1[i],start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14));break;
7803 case FJUMP:
7804 printf (" %x: %s %8x\n",start+i*4,insn[i],ba[i]);break;
7805 case RJUMP:
74426039 7806 if (opcode[i]==0x9&&rt1[i]!=31)
5067f341 7807 printf (" %x: %s r%d,r%d\n",start+i*4,insn[i],rt1[i],rs1[i]);
7808 else
7809 printf (" %x: %s r%d\n",start+i*4,insn[i],rs1[i]);
7810 break;
57871462 7811 case SPAN:
7812 printf (" %x: %s (pagespan) r%d,r%d,%8x\n",start+i*4,insn[i],rs1[i],rs2[i],ba[i]);break;
7813 case IMM16:
7814 if(opcode[i]==0xf) //LUI
7815 printf (" %x: %s r%d,%4x0000\n",start+i*4,insn[i],rt1[i],imm[i]&0xffff);
7816 else
7817 printf (" %x: %s r%d,r%d,%d\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
7818 break;
7819 case LOAD:
7820 case LOADLR:
7821 printf (" %x: %s r%d,r%d+%x\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
7822 break;
7823 case STORE:
7824 case STORELR:
7825 printf (" %x: %s r%d,r%d+%x\n",start+i*4,insn[i],rs2[i],rs1[i],imm[i]);
7826 break;
7827 case ALU:
7828 case SHIFT:
7829 printf (" %x: %s r%d,r%d,r%d\n",start+i*4,insn[i],rt1[i],rs1[i],rs2[i]);
7830 break;
7831 case MULTDIV:
7832 printf (" %x: %s r%d,r%d\n",start+i*4,insn[i],rs1[i],rs2[i]);
7833 break;
7834 case SHIFTIMM:
7835 printf (" %x: %s r%d,r%d,%d\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
7836 break;
7837 case MOV:
7838 if((opcode2[i]&0x1d)==0x10)
7839 printf (" %x: %s r%d\n",start+i*4,insn[i],rt1[i]);
7840 else if((opcode2[i]&0x1d)==0x11)
7841 printf (" %x: %s r%d\n",start+i*4,insn[i],rs1[i]);
7842 else
7843 printf (" %x: %s\n",start+i*4,insn[i]);
7844 break;
7845 case COP0:
7846 if(opcode2[i]==0)
7847 printf (" %x: %s r%d,cpr0[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC0
7848 else if(opcode2[i]==4)
7849 printf (" %x: %s r%d,cpr0[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC0
7850 else printf (" %x: %s\n",start+i*4,insn[i]);
7851 break;
7852 case COP1:
7853 if(opcode2[i]<3)
7854 printf (" %x: %s r%d,cpr1[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC1
7855 else if(opcode2[i]>3)
7856 printf (" %x: %s r%d,cpr1[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC1
7857 else printf (" %x: %s\n",start+i*4,insn[i]);
7858 break;
b9b61529 7859 case COP2:
7860 if(opcode2[i]<3)
7861 printf (" %x: %s r%d,cpr2[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC2
7862 else if(opcode2[i]>3)
7863 printf (" %x: %s r%d,cpr2[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC2
7864 else printf (" %x: %s\n",start+i*4,insn[i]);
7865 break;
57871462 7866 case C1LS:
7867 printf (" %x: %s cpr1[%d],r%d+%x\n",start+i*4,insn[i],(source[i]>>16)&0x1f,rs1[i],imm[i]);
7868 break;
b9b61529 7869 case C2LS:
7870 printf (" %x: %s cpr2[%d],r%d+%x\n",start+i*4,insn[i],(source[i]>>16)&0x1f,rs1[i],imm[i]);
7871 break;
1e973cb0 7872 case INTCALL:
7873 printf (" %x: %s (INTCALL)\n",start+i*4,insn[i]);
7874 break;
57871462 7875 default:
7876 //printf (" %s %8x\n",insn[i],source[i]);
7877 printf (" %x: %s\n",start+i*4,insn[i]);
7878 }
7879}
4600ba03 7880#else
7881static void disassemble_inst(int i) {}
7882#endif // DISASM
57871462 7883
dc990066 7884// clear the state completely, instead of just marking
7885// things invalid like invalidate_all_pages() does
7886void new_dynarec_clear_full()
57871462 7887{
57871462 7888 int n;
35775df7 7889 out=(u_char *)BASE_ADDR;
7890 memset(invalid_code,1,sizeof(invalid_code));
7891 memset(hash_table,0xff,sizeof(hash_table));
57871462 7892 memset(mini_ht,-1,sizeof(mini_ht));
7893 memset(restore_candidate,0,sizeof(restore_candidate));
dc990066 7894 memset(shadow,0,sizeof(shadow));
57871462 7895 copy=shadow;
7896 expirep=16384; // Expiry pointer, +2 blocks
7897 pending_exception=0;
7898 literalcount=0;
57871462 7899 stop_after_jal=0;
9be4ba64 7900 inv_code_start=inv_code_end=~0;
bedfea38 7901 gte_reads_flags=0;
57871462 7902 // TLB
af4ee1fe 7903#ifndef DISABLE_TLB
57871462 7904 using_tlb=0;
af4ee1fe 7905#endif
dadf55f2 7906 sp_in_mirror=0;
57871462 7907 for(n=0;n<524288;n++) // 0 .. 0x7FFFFFFF
7908 memory_map[n]=-1;
7909 for(n=524288;n<526336;n++) // 0x80000000 .. 0x807FFFFF
7910 memory_map[n]=((u_int)rdram-0x80000000)>>2;
7911 for(n=526336;n<1048576;n++) // 0x80800000 .. 0xFFFFFFFF
7912 memory_map[n]=-1;
dc990066 7913 for(n=0;n<4096;n++) ll_clear(jump_in+n);
7914 for(n=0;n<4096;n++) ll_clear(jump_out+n);
7915 for(n=0;n<4096;n++) ll_clear(jump_dirty+n);
7916}
7917
7918void new_dynarec_init()
7919{
7920 printf("Init new dynarec\n");
7921 out=(u_char *)BASE_ADDR;
7922 if (mmap (out, 1<<TARGET_SIZE_2,
7923 PROT_READ | PROT_WRITE | PROT_EXEC,
7924 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS,
7925 -1, 0) <= 0) {printf("mmap() failed\n");}
7926#ifdef MUPEN64
7927 rdword=&readmem_dword;
7928 fake_pc.f.r.rs=&readmem_dword;
7929 fake_pc.f.r.rt=&readmem_dword;
7930 fake_pc.f.r.rd=&readmem_dword;
7931#endif
7932 int n;
7933 new_dynarec_clear_full();
7934#ifdef HOST_IMM8
7935 // Copy this into local area so we don't have to put it in every literal pool
7936 invc_ptr=invalid_code;
7937#endif
24385cae 7938#ifdef MUPEN64
57871462 7939 for(n=0;n<0x8000;n++) { // 0 .. 0x7FFFFFFF
7940 writemem[n] = write_nomem_new;
7941 writememb[n] = write_nomemb_new;
7942 writememh[n] = write_nomemh_new;
24385cae 7943#ifndef FORCE32
57871462 7944 writememd[n] = write_nomemd_new;
24385cae 7945#endif
57871462 7946 readmem[n] = read_nomem_new;
7947 readmemb[n] = read_nomemb_new;
7948 readmemh[n] = read_nomemh_new;
24385cae 7949#ifndef FORCE32
57871462 7950 readmemd[n] = read_nomemd_new;
24385cae 7951#endif
57871462 7952 }
7953 for(n=0x8000;n<0x8080;n++) { // 0x80000000 .. 0x807FFFFF
7954 writemem[n] = write_rdram_new;
7955 writememb[n] = write_rdramb_new;
7956 writememh[n] = write_rdramh_new;
24385cae 7957#ifndef FORCE32
57871462 7958 writememd[n] = write_rdramd_new;
24385cae 7959#endif
57871462 7960 }
7961 for(n=0xC000;n<0x10000;n++) { // 0xC0000000 .. 0xFFFFFFFF
7962 writemem[n] = write_nomem_new;
7963 writememb[n] = write_nomemb_new;
7964 writememh[n] = write_nomemh_new;
24385cae 7965#ifndef FORCE32
57871462 7966 writememd[n] = write_nomemd_new;
24385cae 7967#endif
57871462 7968 readmem[n] = read_nomem_new;
7969 readmemb[n] = read_nomemb_new;
7970 readmemh[n] = read_nomemh_new;
24385cae 7971#ifndef FORCE32
57871462 7972 readmemd[n] = read_nomemd_new;
24385cae 7973#endif
57871462 7974 }
24385cae 7975#endif
57871462 7976 tlb_hacks();
7977 arch_init();
7978}
7979
7980void new_dynarec_cleanup()
7981{
7982 int n;
7983 if (munmap ((void *)BASE_ADDR, 1<<TARGET_SIZE_2) < 0) {printf("munmap() failed\n");}
7984 for(n=0;n<4096;n++) ll_clear(jump_in+n);
7985 for(n=0;n<4096;n++) ll_clear(jump_out+n);
7986 for(n=0;n<4096;n++) ll_clear(jump_dirty+n);
7987 #ifdef ROM_COPY
7988 if (munmap (ROM_COPY, 67108864) < 0) {printf("munmap() failed\n");}
7989 #endif
7990}
7991
7992int new_recompile_block(int addr)
7993{
7994/*
7995 if(addr==0x800cd050) {
7996 int block;
7997 for(block=0x80000;block<0x80800;block++) invalidate_block(block);
7998 int n;
7999 for(n=0;n<=2048;n++) ll_clear(jump_dirty+n);
8000 }
8001*/
8002 //if(Count==365117028) tracedebug=1;
8003 assem_debug("NOTCOMPILED: addr = %x -> %x\n", (int)addr, (int)out);
8004 //printf("NOTCOMPILED: addr = %x -> %x\n", (int)addr, (int)out);
8005 //printf("TRACE: count=%d next=%d (compile %x)\n",Count,next_interupt,addr);
8006 //if(debug)
8007 //printf("TRACE: count=%d next=%d (checksum %x)\n",Count,next_interupt,mchecksum());
8008 //printf("fpu mapping=%x enabled=%x\n",(Status & 0x04000000)>>26,(Status & 0x20000000)>>29);
8009 /*if(Count>=312978186) {
8010 rlist();
8011 }*/
8012 //rlist();
8013 start = (u_int)addr&~3;
8014 //assert(((u_int)addr&1)==0);
2f546f9a 8015 new_dynarec_did_compile=1;
7139f3c8 8016#ifdef PCSX
dadf55f2 8017 if(!sp_in_mirror&&(signed int)(psxRegs.GPR.n.sp&0xffe00000)>0x80200000&&
8018 0x10000<=psxRegs.GPR.n.sp&&(psxRegs.GPR.n.sp&~0xe0e00000)<RAM_SIZE) {
c2e3bd42 8019 printf("SP hack enabled (%08x), @%08x\n", psxRegs.GPR.n.sp, psxRegs.pc);
dadf55f2 8020 sp_in_mirror=1;
8021 }
9ad4d757 8022 if (Config.HLE && start == 0x80001000) // hlecall
560e4a12 8023 {
7139f3c8 8024 // XXX: is this enough? Maybe check hleSoftCall?
bb5285ef 8025 u_int beginning=(u_int)out;
7139f3c8 8026 u_int page=get_page(start);
7139f3c8 8027 invalid_code[start>>12]=0;
8028 emit_movimm(start,0);
8029 emit_writeword(0,(int)&pcaddr);
bb5285ef 8030 emit_jmp((int)new_dyna_leave);
15776b68 8031 literal_pool(0);
bb5285ef 8032#ifdef __arm__
8033 __clear_cache((void *)beginning,out);
8034#endif
9ad4d757 8035 ll_add(jump_in+page,start,(void *)beginning);
7139f3c8 8036 return 0;
8037 }
560e4a12 8038 else if ((u_int)addr < 0x00200000 ||
8039 (0xa0000000 <= addr && addr < 0xa0200000)) {
7139f3c8 8040 // used for BIOS calls mostly?
560e4a12 8041 source = (u_int *)((u_int)rdram+(start&0x1fffff));
8042 pagelimit = (addr&0xa0000000)|0x00200000;
8043 }
8044 else if (!Config.HLE && (
8045/* (0x9fc00000 <= addr && addr < 0x9fc80000) ||*/
8046 (0xbfc00000 <= addr && addr < 0xbfc80000))) {
8047 // BIOS
8048 source = (u_int *)((u_int)psxR+(start&0x7ffff));
8049 pagelimit = (addr&0xfff00000)|0x80000;
7139f3c8 8050 }
8051 else
8052#endif
3d624f89 8053#ifdef MUPEN64
57871462 8054 if ((int)addr >= 0xa4000000 && (int)addr < 0xa4001000) {
8055 source = (u_int *)((u_int)SP_DMEM+start-0xa4000000);
8056 pagelimit = 0xa4001000;
8057 }
3d624f89 8058 else
8059#endif
4cb76aa4 8060 if ((int)addr >= 0x80000000 && (int)addr < 0x80000000+RAM_SIZE) {
57871462 8061 source = (u_int *)((u_int)rdram+start-0x80000000);
4cb76aa4 8062 pagelimit = 0x80000000+RAM_SIZE;
57871462 8063 }
90ae6d4e 8064#ifndef DISABLE_TLB
57871462 8065 else if ((signed int)addr >= (signed int)0xC0000000) {
8066 //printf("addr=%x mm=%x\n",(u_int)addr,(memory_map[start>>12]<<2));
8067 //if(tlb_LUT_r[start>>12])
8068 //source = (u_int *)(((int)rdram)+(tlb_LUT_r[start>>12]&0xFFFFF000)+(((int)addr)&0xFFF)-0x80000000);
8069 if((signed int)memory_map[start>>12]>=0) {
8070 source = (u_int *)((u_int)(start+(memory_map[start>>12]<<2)));
8071 pagelimit=(start+4096)&0xFFFFF000;
8072 int map=memory_map[start>>12];
8073 int i;
8074 for(i=0;i<5;i++) {
8075 //printf("start: %x next: %x\n",map,memory_map[pagelimit>>12]);
8076 if((map&0xBFFFFFFF)==(memory_map[pagelimit>>12]&0xBFFFFFFF)) pagelimit+=4096;
8077 }
8078 assem_debug("pagelimit=%x\n",pagelimit);
8079 assem_debug("mapping=%x (%x)\n",memory_map[start>>12],(memory_map[start>>12]<<2)+start);
8080 }
8081 else {
8082 assem_debug("Compile at unmapped memory address: %x \n", (int)addr);
8083 //assem_debug("start: %x next: %x\n",memory_map[start>>12],memory_map[(start+4096)>>12]);
560e4a12 8084 return -1; // Caller will invoke exception handler
57871462 8085 }
8086 //printf("source= %x\n",(int)source);
8087 }
90ae6d4e 8088#endif
57871462 8089 else {
8090 printf("Compile at bogus memory address: %x \n", (int)addr);
8091 exit(1);
8092 }
8093
8094 /* Pass 1: disassemble */
8095 /* Pass 2: register dependencies, branch targets */
8096 /* Pass 3: register allocation */
8097 /* Pass 4: branch dependencies */
8098 /* Pass 5: pre-alloc */
8099 /* Pass 6: optimize clean/dirty state */
8100 /* Pass 7: flag 32-bit registers */
8101 /* Pass 8: assembly */
8102 /* Pass 9: linker */
8103 /* Pass 10: garbage collection / free memory */
8104
8105 int i,j;
8106 int done=0;
8107 unsigned int type,op,op2;
8108
8109 //printf("addr = %x source = %x %x\n", addr,source,source[0]);
8110
8111 /* Pass 1 disassembly */
8112
8113 for(i=0;!done;i++) {
e1190b87 8114 bt[i]=0;likely[i]=0;ooo[i]=0;op2=0;
8115 minimum_free_regs[i]=0;
57871462 8116 opcode[i]=op=source[i]>>26;
8117 switch(op)
8118 {
8119 case 0x00: strcpy(insn[i],"special"); type=NI;
8120 op2=source[i]&0x3f;
8121 switch(op2)
8122 {
8123 case 0x00: strcpy(insn[i],"SLL"); type=SHIFTIMM; break;
8124 case 0x02: strcpy(insn[i],"SRL"); type=SHIFTIMM; break;
8125 case 0x03: strcpy(insn[i],"SRA"); type=SHIFTIMM; break;
8126 case 0x04: strcpy(insn[i],"SLLV"); type=SHIFT; break;
8127 case 0x06: strcpy(insn[i],"SRLV"); type=SHIFT; break;
8128 case 0x07: strcpy(insn[i],"SRAV"); type=SHIFT; break;
8129 case 0x08: strcpy(insn[i],"JR"); type=RJUMP; break;
8130 case 0x09: strcpy(insn[i],"JALR"); type=RJUMP; break;
8131 case 0x0C: strcpy(insn[i],"SYSCALL"); type=SYSCALL; break;
8132 case 0x0D: strcpy(insn[i],"BREAK"); type=OTHER; break;
8133 case 0x0F: strcpy(insn[i],"SYNC"); type=OTHER; break;
8134 case 0x10: strcpy(insn[i],"MFHI"); type=MOV; break;
8135 case 0x11: strcpy(insn[i],"MTHI"); type=MOV; break;
8136 case 0x12: strcpy(insn[i],"MFLO"); type=MOV; break;
8137 case 0x13: strcpy(insn[i],"MTLO"); type=MOV; break;
57871462 8138 case 0x18: strcpy(insn[i],"MULT"); type=MULTDIV; break;
8139 case 0x19: strcpy(insn[i],"MULTU"); type=MULTDIV; break;
8140 case 0x1A: strcpy(insn[i],"DIV"); type=MULTDIV; break;
8141 case 0x1B: strcpy(insn[i],"DIVU"); type=MULTDIV; break;
57871462 8142 case 0x20: strcpy(insn[i],"ADD"); type=ALU; break;
8143 case 0x21: strcpy(insn[i],"ADDU"); type=ALU; break;
8144 case 0x22: strcpy(insn[i],"SUB"); type=ALU; break;
8145 case 0x23: strcpy(insn[i],"SUBU"); type=ALU; break;
8146 case 0x24: strcpy(insn[i],"AND"); type=ALU; break;
8147 case 0x25: strcpy(insn[i],"OR"); type=ALU; break;
8148 case 0x26: strcpy(insn[i],"XOR"); type=ALU; break;
8149 case 0x27: strcpy(insn[i],"NOR"); type=ALU; break;
8150 case 0x2A: strcpy(insn[i],"SLT"); type=ALU; break;
8151 case 0x2B: strcpy(insn[i],"SLTU"); type=ALU; break;
57871462 8152 case 0x30: strcpy(insn[i],"TGE"); type=NI; break;
8153 case 0x31: strcpy(insn[i],"TGEU"); type=NI; break;
8154 case 0x32: strcpy(insn[i],"TLT"); type=NI; break;
8155 case 0x33: strcpy(insn[i],"TLTU"); type=NI; break;
8156 case 0x34: strcpy(insn[i],"TEQ"); type=NI; break;
8157 case 0x36: strcpy(insn[i],"TNE"); type=NI; break;
7f2607ea 8158#ifndef FORCE32
8159 case 0x14: strcpy(insn[i],"DSLLV"); type=SHIFT; break;
8160 case 0x16: strcpy(insn[i],"DSRLV"); type=SHIFT; break;
8161 case 0x17: strcpy(insn[i],"DSRAV"); type=SHIFT; break;
8162 case 0x1C: strcpy(insn[i],"DMULT"); type=MULTDIV; break;
8163 case 0x1D: strcpy(insn[i],"DMULTU"); type=MULTDIV; break;
8164 case 0x1E: strcpy(insn[i],"DDIV"); type=MULTDIV; break;
8165 case 0x1F: strcpy(insn[i],"DDIVU"); type=MULTDIV; break;
8166 case 0x2C: strcpy(insn[i],"DADD"); type=ALU; break;
8167 case 0x2D: strcpy(insn[i],"DADDU"); type=ALU; break;
8168 case 0x2E: strcpy(insn[i],"DSUB"); type=ALU; break;
8169 case 0x2F: strcpy(insn[i],"DSUBU"); type=ALU; break;
57871462 8170 case 0x38: strcpy(insn[i],"DSLL"); type=SHIFTIMM; break;
8171 case 0x3A: strcpy(insn[i],"DSRL"); type=SHIFTIMM; break;
8172 case 0x3B: strcpy(insn[i],"DSRA"); type=SHIFTIMM; break;
8173 case 0x3C: strcpy(insn[i],"DSLL32"); type=SHIFTIMM; break;
8174 case 0x3E: strcpy(insn[i],"DSRL32"); type=SHIFTIMM; break;
8175 case 0x3F: strcpy(insn[i],"DSRA32"); type=SHIFTIMM; break;
7f2607ea 8176#endif
57871462 8177 }
8178 break;
8179 case 0x01: strcpy(insn[i],"regimm"); type=NI;
8180 op2=(source[i]>>16)&0x1f;
8181 switch(op2)
8182 {
8183 case 0x00: strcpy(insn[i],"BLTZ"); type=SJUMP; break;
8184 case 0x01: strcpy(insn[i],"BGEZ"); type=SJUMP; break;
8185 case 0x02: strcpy(insn[i],"BLTZL"); type=SJUMP; break;
8186 case 0x03: strcpy(insn[i],"BGEZL"); type=SJUMP; break;
8187 case 0x08: strcpy(insn[i],"TGEI"); type=NI; break;
8188 case 0x09: strcpy(insn[i],"TGEIU"); type=NI; break;
8189 case 0x0A: strcpy(insn[i],"TLTI"); type=NI; break;
8190 case 0x0B: strcpy(insn[i],"TLTIU"); type=NI; break;
8191 case 0x0C: strcpy(insn[i],"TEQI"); type=NI; break;
8192 case 0x0E: strcpy(insn[i],"TNEI"); type=NI; break;
8193 case 0x10: strcpy(insn[i],"BLTZAL"); type=SJUMP; break;
8194 case 0x11: strcpy(insn[i],"BGEZAL"); type=SJUMP; break;
8195 case 0x12: strcpy(insn[i],"BLTZALL"); type=SJUMP; break;
8196 case 0x13: strcpy(insn[i],"BGEZALL"); type=SJUMP; break;
8197 }
8198 break;
8199 case 0x02: strcpy(insn[i],"J"); type=UJUMP; break;
8200 case 0x03: strcpy(insn[i],"JAL"); type=UJUMP; break;
8201 case 0x04: strcpy(insn[i],"BEQ"); type=CJUMP; break;
8202 case 0x05: strcpy(insn[i],"BNE"); type=CJUMP; break;
8203 case 0x06: strcpy(insn[i],"BLEZ"); type=CJUMP; break;
8204 case 0x07: strcpy(insn[i],"BGTZ"); type=CJUMP; break;
8205 case 0x08: strcpy(insn[i],"ADDI"); type=IMM16; break;
8206 case 0x09: strcpy(insn[i],"ADDIU"); type=IMM16; break;
8207 case 0x0A: strcpy(insn[i],"SLTI"); type=IMM16; break;
8208 case 0x0B: strcpy(insn[i],"SLTIU"); type=IMM16; break;
8209 case 0x0C: strcpy(insn[i],"ANDI"); type=IMM16; break;
8210 case 0x0D: strcpy(insn[i],"ORI"); type=IMM16; break;
8211 case 0x0E: strcpy(insn[i],"XORI"); type=IMM16; break;
8212 case 0x0F: strcpy(insn[i],"LUI"); type=IMM16; break;
8213 case 0x10: strcpy(insn[i],"cop0"); type=NI;
8214 op2=(source[i]>>21)&0x1f;
8215 switch(op2)
8216 {
8217 case 0x00: strcpy(insn[i],"MFC0"); type=COP0; break;
8218 case 0x04: strcpy(insn[i],"MTC0"); type=COP0; break;
8219 case 0x10: strcpy(insn[i],"tlb"); type=NI;
8220 switch(source[i]&0x3f)
8221 {
8222 case 0x01: strcpy(insn[i],"TLBR"); type=COP0; break;
8223 case 0x02: strcpy(insn[i],"TLBWI"); type=COP0; break;
8224 case 0x06: strcpy(insn[i],"TLBWR"); type=COP0; break;
8225 case 0x08: strcpy(insn[i],"TLBP"); type=COP0; break;
576bbd8f 8226#ifdef PCSX
8227 case 0x10: strcpy(insn[i],"RFE"); type=COP0; break;
8228#else
57871462 8229 case 0x18: strcpy(insn[i],"ERET"); type=COP0; break;
576bbd8f 8230#endif
57871462 8231 }
8232 }
8233 break;
8234 case 0x11: strcpy(insn[i],"cop1"); type=NI;
8235 op2=(source[i]>>21)&0x1f;
8236 switch(op2)
8237 {
8238 case 0x00: strcpy(insn[i],"MFC1"); type=COP1; break;
8239 case 0x01: strcpy(insn[i],"DMFC1"); type=COP1; break;
8240 case 0x02: strcpy(insn[i],"CFC1"); type=COP1; break;
8241 case 0x04: strcpy(insn[i],"MTC1"); type=COP1; break;
8242 case 0x05: strcpy(insn[i],"DMTC1"); type=COP1; break;
8243 case 0x06: strcpy(insn[i],"CTC1"); type=COP1; break;
8244 case 0x08: strcpy(insn[i],"BC1"); type=FJUMP;
8245 switch((source[i]>>16)&0x3)
8246 {
8247 case 0x00: strcpy(insn[i],"BC1F"); break;
8248 case 0x01: strcpy(insn[i],"BC1T"); break;
8249 case 0x02: strcpy(insn[i],"BC1FL"); break;
8250 case 0x03: strcpy(insn[i],"BC1TL"); break;
8251 }
8252 break;
8253 case 0x10: strcpy(insn[i],"C1.S"); type=NI;
8254 switch(source[i]&0x3f)
8255 {
8256 case 0x00: strcpy(insn[i],"ADD.S"); type=FLOAT; break;
8257 case 0x01: strcpy(insn[i],"SUB.S"); type=FLOAT; break;
8258 case 0x02: strcpy(insn[i],"MUL.S"); type=FLOAT; break;
8259 case 0x03: strcpy(insn[i],"DIV.S"); type=FLOAT; break;
8260 case 0x04: strcpy(insn[i],"SQRT.S"); type=FLOAT; break;
8261 case 0x05: strcpy(insn[i],"ABS.S"); type=FLOAT; break;
8262 case 0x06: strcpy(insn[i],"MOV.S"); type=FLOAT; break;
8263 case 0x07: strcpy(insn[i],"NEG.S"); type=FLOAT; break;
8264 case 0x08: strcpy(insn[i],"ROUND.L.S"); type=FCONV; break;
8265 case 0x09: strcpy(insn[i],"TRUNC.L.S"); type=FCONV; break;
8266 case 0x0A: strcpy(insn[i],"CEIL.L.S"); type=FCONV; break;
8267 case 0x0B: strcpy(insn[i],"FLOOR.L.S"); type=FCONV; break;
8268 case 0x0C: strcpy(insn[i],"ROUND.W.S"); type=FCONV; break;
8269 case 0x0D: strcpy(insn[i],"TRUNC.W.S"); type=FCONV; break;
8270 case 0x0E: strcpy(insn[i],"CEIL.W.S"); type=FCONV; break;
8271 case 0x0F: strcpy(insn[i],"FLOOR.W.S"); type=FCONV; break;
8272 case 0x21: strcpy(insn[i],"CVT.D.S"); type=FCONV; break;
8273 case 0x24: strcpy(insn[i],"CVT.W.S"); type=FCONV; break;
8274 case 0x25: strcpy(insn[i],"CVT.L.S"); type=FCONV; break;
8275 case 0x30: strcpy(insn[i],"C.F.S"); type=FCOMP; break;
8276 case 0x31: strcpy(insn[i],"C.UN.S"); type=FCOMP; break;
8277 case 0x32: strcpy(insn[i],"C.EQ.S"); type=FCOMP; break;
8278 case 0x33: strcpy(insn[i],"C.UEQ.S"); type=FCOMP; break;
8279 case 0x34: strcpy(insn[i],"C.OLT.S"); type=FCOMP; break;
8280 case 0x35: strcpy(insn[i],"C.ULT.S"); type=FCOMP; break;
8281 case 0x36: strcpy(insn[i],"C.OLE.S"); type=FCOMP; break;
8282 case 0x37: strcpy(insn[i],"C.ULE.S"); type=FCOMP; break;
8283 case 0x38: strcpy(insn[i],"C.SF.S"); type=FCOMP; break;
8284 case 0x39: strcpy(insn[i],"C.NGLE.S"); type=FCOMP; break;
8285 case 0x3A: strcpy(insn[i],"C.SEQ.S"); type=FCOMP; break;
8286 case 0x3B: strcpy(insn[i],"C.NGL.S"); type=FCOMP; break;
8287 case 0x3C: strcpy(insn[i],"C.LT.S"); type=FCOMP; break;
8288 case 0x3D: strcpy(insn[i],"C.NGE.S"); type=FCOMP; break;
8289 case 0x3E: strcpy(insn[i],"C.LE.S"); type=FCOMP; break;
8290 case 0x3F: strcpy(insn[i],"C.NGT.S"); type=FCOMP; break;
8291 }
8292 break;
8293 case 0x11: strcpy(insn[i],"C1.D"); type=NI;
8294 switch(source[i]&0x3f)
8295 {
8296 case 0x00: strcpy(insn[i],"ADD.D"); type=FLOAT; break;
8297 case 0x01: strcpy(insn[i],"SUB.D"); type=FLOAT; break;
8298 case 0x02: strcpy(insn[i],"MUL.D"); type=FLOAT; break;
8299 case 0x03: strcpy(insn[i],"DIV.D"); type=FLOAT; break;
8300 case 0x04: strcpy(insn[i],"SQRT.D"); type=FLOAT; break;
8301 case 0x05: strcpy(insn[i],"ABS.D"); type=FLOAT; break;
8302 case 0x06: strcpy(insn[i],"MOV.D"); type=FLOAT; break;
8303 case 0x07: strcpy(insn[i],"NEG.D"); type=FLOAT; break;
8304 case 0x08: strcpy(insn[i],"ROUND.L.D"); type=FCONV; break;
8305 case 0x09: strcpy(insn[i],"TRUNC.L.D"); type=FCONV; break;
8306 case 0x0A: strcpy(insn[i],"CEIL.L.D"); type=FCONV; break;
8307 case 0x0B: strcpy(insn[i],"FLOOR.L.D"); type=FCONV; break;
8308 case 0x0C: strcpy(insn[i],"ROUND.W.D"); type=FCONV; break;
8309 case 0x0D: strcpy(insn[i],"TRUNC.W.D"); type=FCONV; break;
8310 case 0x0E: strcpy(insn[i],"CEIL.W.D"); type=FCONV; break;
8311 case 0x0F: strcpy(insn[i],"FLOOR.W.D"); type=FCONV; break;
8312 case 0x20: strcpy(insn[i],"CVT.S.D"); type=FCONV; break;
8313 case 0x24: strcpy(insn[i],"CVT.W.D"); type=FCONV; break;
8314 case 0x25: strcpy(insn[i],"CVT.L.D"); type=FCONV; break;
8315 case 0x30: strcpy(insn[i],"C.F.D"); type=FCOMP; break;
8316 case 0x31: strcpy(insn[i],"C.UN.D"); type=FCOMP; break;
8317 case 0x32: strcpy(insn[i],"C.EQ.D"); type=FCOMP; break;
8318 case 0x33: strcpy(insn[i],"C.UEQ.D"); type=FCOMP; break;
8319 case 0x34: strcpy(insn[i],"C.OLT.D"); type=FCOMP; break;
8320 case 0x35: strcpy(insn[i],"C.ULT.D"); type=FCOMP; break;
8321 case 0x36: strcpy(insn[i],"C.OLE.D"); type=FCOMP; break;
8322 case 0x37: strcpy(insn[i],"C.ULE.D"); type=FCOMP; break;
8323 case 0x38: strcpy(insn[i],"C.SF.D"); type=FCOMP; break;
8324 case 0x39: strcpy(insn[i],"C.NGLE.D"); type=FCOMP; break;
8325 case 0x3A: strcpy(insn[i],"C.SEQ.D"); type=FCOMP; break;
8326 case 0x3B: strcpy(insn[i],"C.NGL.D"); type=FCOMP; break;
8327 case 0x3C: strcpy(insn[i],"C.LT.D"); type=FCOMP; break;
8328 case 0x3D: strcpy(insn[i],"C.NGE.D"); type=FCOMP; break;
8329 case 0x3E: strcpy(insn[i],"C.LE.D"); type=FCOMP; break;
8330 case 0x3F: strcpy(insn[i],"C.NGT.D"); type=FCOMP; break;
8331 }
8332 break;
8333 case 0x14: strcpy(insn[i],"C1.W"); type=NI;
8334 switch(source[i]&0x3f)
8335 {
8336 case 0x20: strcpy(insn[i],"CVT.S.W"); type=FCONV; break;
8337 case 0x21: strcpy(insn[i],"CVT.D.W"); type=FCONV; break;
8338 }
8339 break;
8340 case 0x15: strcpy(insn[i],"C1.L"); type=NI;
8341 switch(source[i]&0x3f)
8342 {
8343 case 0x20: strcpy(insn[i],"CVT.S.L"); type=FCONV; break;
8344 case 0x21: strcpy(insn[i],"CVT.D.L"); type=FCONV; break;
8345 }
8346 break;
8347 }
8348 break;
909168d6 8349#ifndef FORCE32
57871462 8350 case 0x14: strcpy(insn[i],"BEQL"); type=CJUMP; break;
8351 case 0x15: strcpy(insn[i],"BNEL"); type=CJUMP; break;
8352 case 0x16: strcpy(insn[i],"BLEZL"); type=CJUMP; break;
8353 case 0x17: strcpy(insn[i],"BGTZL"); type=CJUMP; break;
8354 case 0x18: strcpy(insn[i],"DADDI"); type=IMM16; break;
8355 case 0x19: strcpy(insn[i],"DADDIU"); type=IMM16; break;
8356 case 0x1A: strcpy(insn[i],"LDL"); type=LOADLR; break;
8357 case 0x1B: strcpy(insn[i],"LDR"); type=LOADLR; break;
996cc15d 8358#endif
57871462 8359 case 0x20: strcpy(insn[i],"LB"); type=LOAD; break;
8360 case 0x21: strcpy(insn[i],"LH"); type=LOAD; break;
8361 case 0x22: strcpy(insn[i],"LWL"); type=LOADLR; break;
8362 case 0x23: strcpy(insn[i],"LW"); type=LOAD; break;
8363 case 0x24: strcpy(insn[i],"LBU"); type=LOAD; break;
8364 case 0x25: strcpy(insn[i],"LHU"); type=LOAD; break;
8365 case 0x26: strcpy(insn[i],"LWR"); type=LOADLR; break;
64bd6f82 8366#ifndef FORCE32
57871462 8367 case 0x27: strcpy(insn[i],"LWU"); type=LOAD; break;
64bd6f82 8368#endif
57871462 8369 case 0x28: strcpy(insn[i],"SB"); type=STORE; break;
8370 case 0x29: strcpy(insn[i],"SH"); type=STORE; break;
8371 case 0x2A: strcpy(insn[i],"SWL"); type=STORELR; break;
8372 case 0x2B: strcpy(insn[i],"SW"); type=STORE; break;
996cc15d 8373#ifndef FORCE32
57871462 8374 case 0x2C: strcpy(insn[i],"SDL"); type=STORELR; break;
8375 case 0x2D: strcpy(insn[i],"SDR"); type=STORELR; break;
996cc15d 8376#endif
57871462 8377 case 0x2E: strcpy(insn[i],"SWR"); type=STORELR; break;
8378 case 0x2F: strcpy(insn[i],"CACHE"); type=NOP; break;
8379 case 0x30: strcpy(insn[i],"LL"); type=NI; break;
8380 case 0x31: strcpy(insn[i],"LWC1"); type=C1LS; break;
996cc15d 8381#ifndef FORCE32
57871462 8382 case 0x34: strcpy(insn[i],"LLD"); type=NI; break;
8383 case 0x35: strcpy(insn[i],"LDC1"); type=C1LS; break;
8384 case 0x37: strcpy(insn[i],"LD"); type=LOAD; break;
996cc15d 8385#endif
57871462 8386 case 0x38: strcpy(insn[i],"SC"); type=NI; break;
8387 case 0x39: strcpy(insn[i],"SWC1"); type=C1LS; break;
996cc15d 8388#ifndef FORCE32
57871462 8389 case 0x3C: strcpy(insn[i],"SCD"); type=NI; break;
8390 case 0x3D: strcpy(insn[i],"SDC1"); type=C1LS; break;
8391 case 0x3F: strcpy(insn[i],"SD"); type=STORE; break;
996cc15d 8392#endif
b9b61529 8393#ifdef PCSX
8394 case 0x12: strcpy(insn[i],"COP2"); type=NI;
8395 op2=(source[i]>>21)&0x1f;
bedfea38 8396 //if (op2 & 0x10) {
8397 if (source[i]&0x3f) { // use this hack to support old savestates with patched gte insns
c7abc864 8398 if (gte_handlers[source[i]&0x3f]!=NULL) {
bedfea38 8399 if (gte_regnames[source[i]&0x3f]!=NULL)
8400 strcpy(insn[i],gte_regnames[source[i]&0x3f]);
8401 else
8402 snprintf(insn[i], sizeof(insn[i]), "COP2 %x", source[i]&0x3f);
c7abc864 8403 type=C2OP;
8404 }
8405 }
8406 else switch(op2)
b9b61529 8407 {
8408 case 0x00: strcpy(insn[i],"MFC2"); type=COP2; break;
8409 case 0x02: strcpy(insn[i],"CFC2"); type=COP2; break;
8410 case 0x04: strcpy(insn[i],"MTC2"); type=COP2; break;
8411 case 0x06: strcpy(insn[i],"CTC2"); type=COP2; break;
b9b61529 8412 }
8413 break;
8414 case 0x32: strcpy(insn[i],"LWC2"); type=C2LS; break;
8415 case 0x3A: strcpy(insn[i],"SWC2"); type=C2LS; break;
8416 case 0x3B: strcpy(insn[i],"HLECALL"); type=HLECALL; break;
8417#endif
90ae6d4e 8418 default: strcpy(insn[i],"???"); type=NI;
75dec299 8419 printf("NI %08x @%08x (%08x)\n", source[i], addr + i*4, addr);
90ae6d4e 8420 break;
57871462 8421 }
8422 itype[i]=type;
8423 opcode2[i]=op2;
8424 /* Get registers/immediates */
8425 lt1[i]=0;
8426 us1[i]=0;
8427 us2[i]=0;
8428 dep1[i]=0;
8429 dep2[i]=0;
bedfea38 8430 gte_rs[i]=gte_rt[i]=0;
57871462 8431 switch(type) {
8432 case LOAD:
8433 rs1[i]=(source[i]>>21)&0x1f;
8434 rs2[i]=0;
8435 rt1[i]=(source[i]>>16)&0x1f;
8436 rt2[i]=0;
8437 imm[i]=(short)source[i];
8438 break;
8439 case STORE:
8440 case STORELR:
8441 rs1[i]=(source[i]>>21)&0x1f;
8442 rs2[i]=(source[i]>>16)&0x1f;
8443 rt1[i]=0;
8444 rt2[i]=0;
8445 imm[i]=(short)source[i];
8446 if(op==0x2c||op==0x2d||op==0x3f) us1[i]=rs2[i]; // 64-bit SDL/SDR/SD
8447 break;
8448 case LOADLR:
8449 // LWL/LWR only load part of the register,
8450 // therefore the target register must be treated as a source too
8451 rs1[i]=(source[i]>>21)&0x1f;
8452 rs2[i]=(source[i]>>16)&0x1f;
8453 rt1[i]=(source[i]>>16)&0x1f;
8454 rt2[i]=0;
8455 imm[i]=(short)source[i];
8456 if(op==0x1a||op==0x1b) us1[i]=rs2[i]; // LDR/LDL
8457 if(op==0x26) dep1[i]=rt1[i]; // LWR
8458 break;
8459 case IMM16:
8460 if (op==0x0f) rs1[i]=0; // LUI instruction has no source register
8461 else rs1[i]=(source[i]>>21)&0x1f;
8462 rs2[i]=0;
8463 rt1[i]=(source[i]>>16)&0x1f;
8464 rt2[i]=0;
8465 if(op>=0x0c&&op<=0x0e) { // ANDI/ORI/XORI
8466 imm[i]=(unsigned short)source[i];
8467 }else{
8468 imm[i]=(short)source[i];
8469 }
8470 if(op==0x18||op==0x19) us1[i]=rs1[i]; // DADDI/DADDIU
8471 if(op==0x0a||op==0x0b) us1[i]=rs1[i]; // SLTI/SLTIU
8472 if(op==0x0d||op==0x0e) dep1[i]=rs1[i]; // ORI/XORI
8473 break;
8474 case UJUMP:
8475 rs1[i]=0;
8476 rs2[i]=0;
8477 rt1[i]=0;
8478 rt2[i]=0;
8479 // The JAL instruction writes to r31.
8480 if (op&1) {
8481 rt1[i]=31;
8482 }
8483 rs2[i]=CCREG;
8484 break;
8485 case RJUMP:
8486 rs1[i]=(source[i]>>21)&0x1f;
8487 rs2[i]=0;
8488 rt1[i]=0;
8489 rt2[i]=0;
5067f341 8490 // The JALR instruction writes to rd.
57871462 8491 if (op2&1) {
5067f341 8492 rt1[i]=(source[i]>>11)&0x1f;
57871462 8493 }
8494 rs2[i]=CCREG;
8495 break;
8496 case CJUMP:
8497 rs1[i]=(source[i]>>21)&0x1f;
8498 rs2[i]=(source[i]>>16)&0x1f;
8499 rt1[i]=0;
8500 rt2[i]=0;
8501 if(op&2) { // BGTZ/BLEZ
8502 rs2[i]=0;
8503 }
8504 us1[i]=rs1[i];
8505 us2[i]=rs2[i];
8506 likely[i]=op>>4;
8507 break;
8508 case SJUMP:
8509 rs1[i]=(source[i]>>21)&0x1f;
8510 rs2[i]=CCREG;
8511 rt1[i]=0;
8512 rt2[i]=0;
8513 us1[i]=rs1[i];
8514 if(op2&0x10) { // BxxAL
8515 rt1[i]=31;
8516 // NOTE: If the branch is not taken, r31 is still overwritten
8517 }
8518 likely[i]=(op2&2)>>1;
8519 break;
8520 case FJUMP:
8521 rs1[i]=FSREG;
8522 rs2[i]=CSREG;
8523 rt1[i]=0;
8524 rt2[i]=0;
8525 likely[i]=((source[i])>>17)&1;
8526 break;
8527 case ALU:
8528 rs1[i]=(source[i]>>21)&0x1f; // source
8529 rs2[i]=(source[i]>>16)&0x1f; // subtract amount
8530 rt1[i]=(source[i]>>11)&0x1f; // destination
8531 rt2[i]=0;
8532 if(op2==0x2a||op2==0x2b) { // SLT/SLTU
8533 us1[i]=rs1[i];us2[i]=rs2[i];
8534 }
8535 else if(op2>=0x24&&op2<=0x27) { // AND/OR/XOR/NOR
8536 dep1[i]=rs1[i];dep2[i]=rs2[i];
8537 }
8538 else if(op2>=0x2c&&op2<=0x2f) { // DADD/DSUB
8539 dep1[i]=rs1[i];dep2[i]=rs2[i];
8540 }
8541 break;
8542 case MULTDIV:
8543 rs1[i]=(source[i]>>21)&0x1f; // source
8544 rs2[i]=(source[i]>>16)&0x1f; // divisor
8545 rt1[i]=HIREG;
8546 rt2[i]=LOREG;
8547 if (op2>=0x1c&&op2<=0x1f) { // DMULT/DMULTU/DDIV/DDIVU
8548 us1[i]=rs1[i];us2[i]=rs2[i];
8549 }
8550 break;
8551 case MOV:
8552 rs1[i]=0;
8553 rs2[i]=0;
8554 rt1[i]=0;
8555 rt2[i]=0;
8556 if(op2==0x10) rs1[i]=HIREG; // MFHI
8557 if(op2==0x11) rt1[i]=HIREG; // MTHI
8558 if(op2==0x12) rs1[i]=LOREG; // MFLO
8559 if(op2==0x13) rt1[i]=LOREG; // MTLO
8560 if((op2&0x1d)==0x10) rt1[i]=(source[i]>>11)&0x1f; // MFxx
8561 if((op2&0x1d)==0x11) rs1[i]=(source[i]>>21)&0x1f; // MTxx
8562 dep1[i]=rs1[i];
8563 break;
8564 case SHIFT:
8565 rs1[i]=(source[i]>>16)&0x1f; // target of shift
8566 rs2[i]=(source[i]>>21)&0x1f; // shift amount
8567 rt1[i]=(source[i]>>11)&0x1f; // destination
8568 rt2[i]=0;
8569 // DSLLV/DSRLV/DSRAV are 64-bit
8570 if(op2>=0x14&&op2<=0x17) us1[i]=rs1[i];
8571 break;
8572 case SHIFTIMM:
8573 rs1[i]=(source[i]>>16)&0x1f;
8574 rs2[i]=0;
8575 rt1[i]=(source[i]>>11)&0x1f;
8576 rt2[i]=0;
8577 imm[i]=(source[i]>>6)&0x1f;
8578 // DSxx32 instructions
8579 if(op2>=0x3c) imm[i]|=0x20;
8580 // DSLL/DSRL/DSRA/DSRA32/DSRL32 but not DSLL32 require 64-bit source
8581 if(op2>=0x38&&op2!=0x3c) us1[i]=rs1[i];
8582 break;
8583 case COP0:
8584 rs1[i]=0;
8585 rs2[i]=0;
8586 rt1[i]=0;
8587 rt2[i]=0;
8588 if(op2==0) rt1[i]=(source[i]>>16)&0x1F; // MFC0
8589 if(op2==4) rs1[i]=(source[i]>>16)&0x1F; // MTC0
8590 if(op2==4&&((source[i]>>11)&0x1f)==12) rt2[i]=CSREG; // Status
8591 if(op2==16) if((source[i]&0x3f)==0x18) rs2[i]=CCREG; // ERET
8592 break;
8593 case COP1:
8594 rs1[i]=0;
8595 rs2[i]=0;
8596 rt1[i]=0;
8597 rt2[i]=0;
8598 if(op2<3) rt1[i]=(source[i]>>16)&0x1F; // MFC1/DMFC1/CFC1
8599 if(op2>3) rs1[i]=(source[i]>>16)&0x1F; // MTC1/DMTC1/CTC1
8600 if(op2==5) us1[i]=rs1[i]; // DMTC1
8601 rs2[i]=CSREG;
8602 break;
bedfea38 8603 case COP2:
8604 rs1[i]=0;
8605 rs2[i]=0;
8606 rt1[i]=0;
8607 rt2[i]=0;
8608 if(op2<3) rt1[i]=(source[i]>>16)&0x1F; // MFC2/CFC2
8609 if(op2>3) rs1[i]=(source[i]>>16)&0x1F; // MTC2/CTC2
8610 rs2[i]=CSREG;
8611 int gr=(source[i]>>11)&0x1F;
8612 switch(op2)
8613 {
8614 case 0x00: gte_rs[i]=1ll<<gr; break; // MFC2
8615 case 0x04: gte_rt[i]=1ll<<gr; break; // MTC2
8616 case 0x02: gte_rs[i]=1ll<<(gr+32); // CFC2
8617 if(gr==31&&!gte_reads_flags) {
d3f3bf09 8618 assem_debug("gte flag read encountered @%08x\n",addr + i*4);
bedfea38 8619 gte_reads_flags=1;
8620 }
8621 break;
8622 case 0x06: gte_rt[i]=1ll<<(gr+32); break; // CTC2
8623 }
8624 break;
57871462 8625 case C1LS:
8626 rs1[i]=(source[i]>>21)&0x1F;
8627 rs2[i]=CSREG;
8628 rt1[i]=0;
8629 rt2[i]=0;
8630 imm[i]=(short)source[i];
8631 break;
b9b61529 8632 case C2LS:
8633 rs1[i]=(source[i]>>21)&0x1F;
8634 rs2[i]=0;
8635 rt1[i]=0;
8636 rt2[i]=0;
8637 imm[i]=(short)source[i];
bedfea38 8638 if(op==0x32) gte_rt[i]=1ll<<((source[i]>>16)&0x1F); // LWC2
8639 else gte_rs[i]=1ll<<((source[i]>>16)&0x1F); // SWC2
8640 break;
8641 case C2OP:
8642 rs1[i]=0;
8643 rs2[i]=0;
8644 rt1[i]=0;
8645 rt2[i]=0;
8646 gte_rt[i]=1ll<<63; // every op changes flags
8647 // TODO: other regs?
b9b61529 8648 break;
57871462 8649 case FLOAT:
8650 case FCONV:
8651 rs1[i]=0;
8652 rs2[i]=CSREG;
8653 rt1[i]=0;
8654 rt2[i]=0;
8655 break;
8656 case FCOMP:
8657 rs1[i]=FSREG;
8658 rs2[i]=CSREG;
8659 rt1[i]=FSREG;
8660 rt2[i]=0;
8661 break;
8662 case SYSCALL:
7139f3c8 8663 case HLECALL:
1e973cb0 8664 case INTCALL:
57871462 8665 rs1[i]=CCREG;
8666 rs2[i]=0;
8667 rt1[i]=0;
8668 rt2[i]=0;
8669 break;
8670 default:
8671 rs1[i]=0;
8672 rs2[i]=0;
8673 rt1[i]=0;
8674 rt2[i]=0;
8675 }
8676 /* Calculate branch target addresses */
8677 if(type==UJUMP)
8678 ba[i]=((start+i*4+4)&0xF0000000)|(((unsigned int)source[i]<<6)>>4);
8679 else if(type==CJUMP&&rs1[i]==rs2[i]&&(op&1))
8680 ba[i]=start+i*4+8; // Ignore never taken branch
8681 else if(type==SJUMP&&rs1[i]==0&&!(op2&1))
8682 ba[i]=start+i*4+8; // Ignore never taken branch
8683 else if(type==CJUMP||type==SJUMP||type==FJUMP)
8684 ba[i]=start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14);
8685 else ba[i]=-1;
26869094 8686#ifdef PCSX
3e535354 8687 if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)) {
8688 int do_in_intrp=0;
8689 // branch in delay slot?
8690 if(type==RJUMP||type==UJUMP||type==CJUMP||type==SJUMP||type==FJUMP) {
8691 // don't handle first branch and call interpreter if it's hit
8692 printf("branch in delay slot @%08x (%08x)\n", addr + i*4, addr);
8693 do_in_intrp=1;
8694 }
8695 // basic load delay detection
8696 else if((type==LOAD||type==LOADLR||type==COP0||type==COP2||type==C2LS)&&rt1[i]!=0) {
8697 int t=(ba[i-1]-start)/4;
8698 if(0 <= t && t < i &&(rt1[i]==rs1[t]||rt1[i]==rs2[t])&&itype[t]!=CJUMP&&itype[t]!=SJUMP) {
8699 // jump target wants DS result - potential load delay effect
8700 printf("load delay @%08x (%08x)\n", addr + i*4, addr);
8701 do_in_intrp=1;
8702 bt[t+1]=1; // expected return from interpreter
8703 }
8704 else if(i>=2&&rt1[i-2]==2&&rt1[i]==2&&rs1[i]!=2&&rs2[i]!=2&&rs1[i-1]!=2&&rs2[i-1]!=2&&
8705 !(i>=3&&(itype[i-3]==RJUMP||itype[i-3]==UJUMP||itype[i-3]==CJUMP||itype[i-3]==SJUMP))) {
8706 // v0 overwrite like this is a sign of trouble, bail out
8707 printf("v0 overwrite @%08x (%08x)\n", addr + i*4, addr);
8708 do_in_intrp=1;
8709 }
8710 }
3e535354 8711 if(do_in_intrp) {
8712 rs1[i-1]=CCREG;
8713 rs2[i-1]=rt1[i-1]=rt2[i-1]=0;
26869094 8714 ba[i-1]=-1;
8715 itype[i-1]=INTCALL;
8716 done=2;
3e535354 8717 i--; // don't compile the DS
26869094 8718 }
3e535354 8719 }
26869094 8720#endif
3e535354 8721 /* Is this the end of the block? */
8722 if(i>0&&(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)) {
5067f341 8723 if(rt1[i-1]==0) { // Continue past subroutine call (JAL)
1e973cb0 8724 done=2;
57871462 8725 }
8726 else {
8727 if(stop_after_jal) done=1;
8728 // Stop on BREAK
8729 if((source[i+1]&0xfc00003f)==0x0d) done=1;
8730 }
8731 // Don't recompile stuff that's already compiled
8732 if(check_addr(start+i*4+4)) done=1;
8733 // Don't get too close to the limit
8734 if(i>MAXBLOCK/2) done=1;
8735 }
75dec299 8736 if(itype[i]==SYSCALL&&stop_after_jal) done=1;
1e973cb0 8737 if(itype[i]==HLECALL||itype[i]==INTCALL) done=2;
8738 if(done==2) {
8739 // Does the block continue due to a branch?
8740 for(j=i-1;j>=0;j--)
8741 {
2a706964 8742 if(ba[j]==start+i*4) done=j=0; // Branch into delay slot
1e973cb0 8743 if(ba[j]==start+i*4+4) done=j=0;
8744 if(ba[j]==start+i*4+8) done=j=0;
8745 }
8746 }
75dec299 8747 //assert(i<MAXBLOCK-1);
57871462 8748 if(start+i*4==pagelimit-4) done=1;
8749 assert(start+i*4<pagelimit);
8750 if (i==MAXBLOCK-1) done=1;
8751 // Stop if we're compiling junk
8752 if(itype[i]==NI&&opcode[i]==0x11) {
8753 done=stop_after_jal=1;
8754 printf("Disabled speculative precompilation\n");
8755 }
8756 }
8757 slen=i;
8758 if(itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==RJUMP||itype[i-1]==FJUMP) {
8759 if(start+i*4==pagelimit) {
8760 itype[i-1]=SPAN;
8761 }
8762 }
8763 assert(slen>0);
8764
8765 /* Pass 2 - Register dependencies and branch targets */
8766
8767 unneeded_registers(0,slen-1,0);
8768
8769 /* Pass 3 - Register allocation */
8770
8771 struct regstat current; // Current register allocations/status
8772 current.is32=1;
8773 current.dirty=0;
8774 current.u=unneeded_reg[0];
8775 current.uu=unneeded_reg_upper[0];
8776 clear_all_regs(current.regmap);
8777 alloc_reg(&current,0,CCREG);
8778 dirty_reg(&current,CCREG);
8779 current.isconst=0;
8780 current.wasconst=0;
8781 int ds=0;
8782 int cc=0;
5194fb95 8783 int hr=-1;
6ebf4adf 8784
8785#ifndef FORCE32
57871462 8786 provisional_32bit();
6ebf4adf 8787#endif
57871462 8788 if((u_int)addr&1) {
8789 // First instruction is delay slot
8790 cc=-1;
8791 bt[1]=1;
8792 ds=1;
8793 unneeded_reg[0]=1;
8794 unneeded_reg_upper[0]=1;
8795 current.regmap[HOST_BTREG]=BTREG;
8796 }
8797
8798 for(i=0;i<slen;i++)
8799 {
8800 if(bt[i])
8801 {
8802 int hr;
8803 for(hr=0;hr<HOST_REGS;hr++)
8804 {
8805 // Is this really necessary?
8806 if(current.regmap[hr]==0) current.regmap[hr]=-1;
8807 }
8808 current.isconst=0;
8809 }
8810 if(i>1)
8811 {
8812 if((opcode[i-2]&0x2f)==0x05) // BNE/BNEL
8813 {
8814 if(rs1[i-2]==0||rs2[i-2]==0)
8815 {
8816 if(rs1[i-2]) {
8817 current.is32|=1LL<<rs1[i-2];
8818 int hr=get_reg(current.regmap,rs1[i-2]|64);
8819 if(hr>=0) current.regmap[hr]=-1;
8820 }
8821 if(rs2[i-2]) {
8822 current.is32|=1LL<<rs2[i-2];
8823 int hr=get_reg(current.regmap,rs2[i-2]|64);
8824 if(hr>=0) current.regmap[hr]=-1;
8825 }
8826 }
8827 }
8828 }
6ebf4adf 8829#ifndef FORCE32
57871462 8830 // If something jumps here with 64-bit values
8831 // then promote those registers to 64 bits
8832 if(bt[i])
8833 {
8834 uint64_t temp_is32=current.is32;
8835 for(j=i-1;j>=0;j--)
8836 {
8837 if(ba[j]==start+i*4)
8838 temp_is32&=branch_regs[j].is32;
8839 }
8840 for(j=i;j<slen;j++)
8841 {
8842 if(ba[j]==start+i*4)
8843 //temp_is32=1;
8844 temp_is32&=p32[j];
8845 }
8846 if(temp_is32!=current.is32) {
8847 //printf("dumping 32-bit regs (%x)\n",start+i*4);
311301dc 8848 #ifndef DESTRUCTIVE_WRITEBACK
8849 if(ds)
8850 #endif
57871462 8851 for(hr=0;hr<HOST_REGS;hr++)
8852 {
8853 int r=current.regmap[hr];
8854 if(r>0&&r<64)
8855 {
8856 if((current.dirty>>hr)&((current.is32&~temp_is32)>>r)&1) {
8857 temp_is32|=1LL<<r;
8858 //printf("restore %d\n",r);
8859 }
8860 }
8861 }
57871462 8862 current.is32=temp_is32;
8863 }
8864 }
6ebf4adf 8865#else
24385cae 8866 current.is32=-1LL;
8867#endif
8868
57871462 8869 memcpy(regmap_pre[i],current.regmap,sizeof(current.regmap));
8870 regs[i].wasconst=current.isconst;
8871 regs[i].was32=current.is32;
8872 regs[i].wasdirty=current.dirty;
6ebf4adf 8873 #if defined(DESTRUCTIVE_WRITEBACK) && !defined(FORCE32)
57871462 8874 // To change a dirty register from 32 to 64 bits, we must write
8875 // it out during the previous cycle (for branches, 2 cycles)
8876 if(i<slen-1&&bt[i+1]&&itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP)
8877 {
8878 uint64_t temp_is32=current.is32;
8879 for(j=i-1;j>=0;j--)
8880 {
8881 if(ba[j]==start+i*4+4)
8882 temp_is32&=branch_regs[j].is32;
8883 }
8884 for(j=i;j<slen;j++)
8885 {
8886 if(ba[j]==start+i*4+4)
8887 //temp_is32=1;
8888 temp_is32&=p32[j];
8889 }
8890 if(temp_is32!=current.is32) {
8891 //printf("pre-dumping 32-bit regs (%x)\n",start+i*4);
8892 for(hr=0;hr<HOST_REGS;hr++)
8893 {
8894 int r=current.regmap[hr];
8895 if(r>0)
8896 {
8897 if((current.dirty>>hr)&((current.is32&~temp_is32)>>(r&63))&1) {
8898 if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP)
8899 {
8900 if(rs1[i]!=(r&63)&&rs2[i]!=(r&63))
8901 {
8902 //printf("dump %d/r%d\n",hr,r);
8903 current.regmap[hr]=-1;
8904 if(get_reg(current.regmap,r|64)>=0)
8905 current.regmap[get_reg(current.regmap,r|64)]=-1;
8906 }
8907 }
8908 }
8909 }
8910 }
8911 }
8912 }
8913 else if(i<slen-2&&bt[i+2]&&(source[i-1]>>16)!=0x1000&&(itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP))
8914 {
8915 uint64_t temp_is32=current.is32;
8916 for(j=i-1;j>=0;j--)
8917 {
8918 if(ba[j]==start+i*4+8)
8919 temp_is32&=branch_regs[j].is32;
8920 }
8921 for(j=i;j<slen;j++)
8922 {
8923 if(ba[j]==start+i*4+8)
8924 //temp_is32=1;
8925 temp_is32&=p32[j];
8926 }
8927 if(temp_is32!=current.is32) {
8928 //printf("pre-dumping 32-bit regs (%x)\n",start+i*4);
8929 for(hr=0;hr<HOST_REGS;hr++)
8930 {
8931 int r=current.regmap[hr];
8932 if(r>0)
8933 {
8934 if((current.dirty>>hr)&((current.is32&~temp_is32)>>(r&63))&1) {
8935 if(rs1[i]!=(r&63)&&rs2[i]!=(r&63)&&rs1[i+1]!=(r&63)&&rs2[i+1]!=(r&63))
8936 {
8937 //printf("dump %d/r%d\n",hr,r);
8938 current.regmap[hr]=-1;
8939 if(get_reg(current.regmap,r|64)>=0)
8940 current.regmap[get_reg(current.regmap,r|64)]=-1;
8941 }
8942 }
8943 }
8944 }
8945 }
8946 }
8947 #endif
8948 if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP) {
8949 if(i+1<slen) {
8950 current.u=unneeded_reg[i+1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
8951 current.uu=unneeded_reg_upper[i+1]&~((1LL<<us1[i])|(1LL<<us2[i]));
8952 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
8953 current.u|=1;
8954 current.uu|=1;
8955 } else {
8956 current.u=1;
8957 current.uu=1;
8958 }
8959 } else {
8960 if(i+1<slen) {
8961 current.u=branch_unneeded_reg[i]&~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
8962 current.uu=branch_unneeded_reg_upper[i]&~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
8963 if((~current.uu>>rt1[i+1])&1) current.uu&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
8964 current.u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
8965 current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
8966 current.u|=1;
8967 current.uu|=1;
8968 } else { printf("oops, branch at end of block with no delay slot\n");exit(1); }
8969 }
8970 is_ds[i]=ds;
8971 if(ds) {
8972 ds=0; // Skip delay slot, already allocated as part of branch
8973 // ...but we need to alloc it in case something jumps here
8974 if(i+1<slen) {
8975 current.u=branch_unneeded_reg[i-1]&unneeded_reg[i+1];
8976 current.uu=branch_unneeded_reg_upper[i-1]&unneeded_reg_upper[i+1];
8977 }else{
8978 current.u=branch_unneeded_reg[i-1];
8979 current.uu=branch_unneeded_reg_upper[i-1];
8980 }
8981 current.u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
8982 current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
8983 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
8984 current.u|=1;
8985 current.uu|=1;
8986 struct regstat temp;
8987 memcpy(&temp,&current,sizeof(current));
8988 temp.wasdirty=temp.dirty;
8989 temp.was32=temp.is32;
8990 // TODO: Take into account unconditional branches, as below
8991 delayslot_alloc(&temp,i);
8992 memcpy(regs[i].regmap,temp.regmap,sizeof(temp.regmap));
8993 regs[i].wasdirty=temp.wasdirty;
8994 regs[i].was32=temp.was32;
8995 regs[i].dirty=temp.dirty;
8996 regs[i].is32=temp.is32;
8997 regs[i].isconst=0;
8998 regs[i].wasconst=0;
8999 current.isconst=0;
9000 // Create entry (branch target) regmap
9001 for(hr=0;hr<HOST_REGS;hr++)
9002 {
9003 int r=temp.regmap[hr];
9004 if(r>=0) {
9005 if(r!=regmap_pre[i][hr]) {
9006 regs[i].regmap_entry[hr]=-1;
9007 }
9008 else
9009 {
9010 if(r<64){
9011 if((current.u>>r)&1) {
9012 regs[i].regmap_entry[hr]=-1;
9013 regs[i].regmap[hr]=-1;
9014 //Don't clear regs in the delay slot as the branch might need them
9015 //current.regmap[hr]=-1;
9016 }else
9017 regs[i].regmap_entry[hr]=r;
9018 }
9019 else {
9020 if((current.uu>>(r&63))&1) {
9021 regs[i].regmap_entry[hr]=-1;
9022 regs[i].regmap[hr]=-1;
9023 //Don't clear regs in the delay slot as the branch might need them
9024 //current.regmap[hr]=-1;
9025 }else
9026 regs[i].regmap_entry[hr]=r;
9027 }
9028 }
9029 } else {
9030 // First instruction expects CCREG to be allocated
9031 if(i==0&&hr==HOST_CCREG)
9032 regs[i].regmap_entry[hr]=CCREG;
9033 else
9034 regs[i].regmap_entry[hr]=-1;
9035 }
9036 }
9037 }
9038 else { // Not delay slot
9039 switch(itype[i]) {
9040 case UJUMP:
9041 //current.isconst=0; // DEBUG
9042 //current.wasconst=0; // DEBUG
9043 //regs[i].wasconst=0; // DEBUG
9044 clear_const(&current,rt1[i]);
9045 alloc_cc(&current,i);
9046 dirty_reg(&current,CCREG);
9047 if (rt1[i]==31) {
9048 alloc_reg(&current,i,31);
9049 dirty_reg(&current,31);
4ef8f67d 9050 //assert(rs1[i+1]!=31&&rs2[i+1]!=31);
9051 //assert(rt1[i+1]!=rt1[i]);
57871462 9052 #ifdef REG_PREFETCH
9053 alloc_reg(&current,i,PTEMP);
9054 #endif
9055 //current.is32|=1LL<<rt1[i];
9056 }
269bb29a 9057 ooo[i]=1;
9058 delayslot_alloc(&current,i+1);
57871462 9059 //current.isconst=0; // DEBUG
9060 ds=1;
9061 //printf("i=%d, isconst=%x\n",i,current.isconst);
9062 break;
9063 case RJUMP:
9064 //current.isconst=0;
9065 //current.wasconst=0;
9066 //regs[i].wasconst=0;
9067 clear_const(&current,rs1[i]);
9068 clear_const(&current,rt1[i]);
9069 alloc_cc(&current,i);
9070 dirty_reg(&current,CCREG);
9071 if(rs1[i]!=rt1[i+1]&&rs1[i]!=rt2[i+1]) {
9072 alloc_reg(&current,i,rs1[i]);
5067f341 9073 if (rt1[i]!=0) {
9074 alloc_reg(&current,i,rt1[i]);
9075 dirty_reg(&current,rt1[i]);
68b3faee 9076 assert(rs1[i+1]!=rt1[i]&&rs2[i+1]!=rt1[i]);
076655d1 9077 assert(rt1[i+1]!=rt1[i]);
57871462 9078 #ifdef REG_PREFETCH
9079 alloc_reg(&current,i,PTEMP);
9080 #endif
9081 }
9082 #ifdef USE_MINI_HT
9083 if(rs1[i]==31) { // JALR
9084 alloc_reg(&current,i,RHASH);
9085 #ifndef HOST_IMM_ADDR32
9086 alloc_reg(&current,i,RHTBL);
9087 #endif
9088 }
9089 #endif
9090 delayslot_alloc(&current,i+1);
9091 } else {
9092 // The delay slot overwrites our source register,
9093 // allocate a temporary register to hold the old value.
9094 current.isconst=0;
9095 current.wasconst=0;
9096 regs[i].wasconst=0;
9097 delayslot_alloc(&current,i+1);
9098 current.isconst=0;
9099 alloc_reg(&current,i,RTEMP);
9100 }
9101 //current.isconst=0; // DEBUG
e1190b87 9102 ooo[i]=1;
57871462 9103 ds=1;
9104 break;
9105 case CJUMP:
9106 //current.isconst=0;
9107 //current.wasconst=0;
9108 //regs[i].wasconst=0;
9109 clear_const(&current,rs1[i]);
9110 clear_const(&current,rs2[i]);
9111 if((opcode[i]&0x3E)==4) // BEQ/BNE
9112 {
9113 alloc_cc(&current,i);
9114 dirty_reg(&current,CCREG);
9115 if(rs1[i]) alloc_reg(&current,i,rs1[i]);
9116 if(rs2[i]) alloc_reg(&current,i,rs2[i]);
9117 if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
9118 {
9119 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
9120 if(rs2[i]) alloc_reg64(&current,i,rs2[i]);
9121 }
9122 if((rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]))||
9123 (rs2[i]&&(rs2[i]==rt1[i+1]||rs2[i]==rt2[i+1]))) {
9124 // The delay slot overwrites one of our conditions.
9125 // Allocate the branch condition registers instead.
57871462 9126 current.isconst=0;
9127 current.wasconst=0;
9128 regs[i].wasconst=0;
9129 if(rs1[i]) alloc_reg(&current,i,rs1[i]);
9130 if(rs2[i]) alloc_reg(&current,i,rs2[i]);
9131 if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
9132 {
9133 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
9134 if(rs2[i]) alloc_reg64(&current,i,rs2[i]);
9135 }
9136 }
e1190b87 9137 else
9138 {
9139 ooo[i]=1;
9140 delayslot_alloc(&current,i+1);
9141 }
57871462 9142 }
9143 else
9144 if((opcode[i]&0x3E)==6) // BLEZ/BGTZ
9145 {
9146 alloc_cc(&current,i);
9147 dirty_reg(&current,CCREG);
9148 alloc_reg(&current,i,rs1[i]);
9149 if(!(current.is32>>rs1[i]&1))
9150 {
9151 alloc_reg64(&current,i,rs1[i]);
9152 }
9153 if(rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1])) {
9154 // The delay slot overwrites one of our conditions.
9155 // Allocate the branch condition registers instead.
57871462 9156 current.isconst=0;
9157 current.wasconst=0;
9158 regs[i].wasconst=0;
9159 if(rs1[i]) alloc_reg(&current,i,rs1[i]);
9160 if(!((current.is32>>rs1[i])&1))
9161 {
9162 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
9163 }
9164 }
e1190b87 9165 else
9166 {
9167 ooo[i]=1;
9168 delayslot_alloc(&current,i+1);
9169 }
57871462 9170 }
9171 else
9172 // Don't alloc the delay slot yet because we might not execute it
9173 if((opcode[i]&0x3E)==0x14) // BEQL/BNEL
9174 {
9175 current.isconst=0;
9176 current.wasconst=0;
9177 regs[i].wasconst=0;
9178 alloc_cc(&current,i);
9179 dirty_reg(&current,CCREG);
9180 alloc_reg(&current,i,rs1[i]);
9181 alloc_reg(&current,i,rs2[i]);
9182 if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
9183 {
9184 alloc_reg64(&current,i,rs1[i]);
9185 alloc_reg64(&current,i,rs2[i]);
9186 }
9187 }
9188 else
9189 if((opcode[i]&0x3E)==0x16) // BLEZL/BGTZL
9190 {
9191 current.isconst=0;
9192 current.wasconst=0;
9193 regs[i].wasconst=0;
9194 alloc_cc(&current,i);
9195 dirty_reg(&current,CCREG);
9196 alloc_reg(&current,i,rs1[i]);
9197 if(!(current.is32>>rs1[i]&1))
9198 {
9199 alloc_reg64(&current,i,rs1[i]);
9200 }
9201 }
9202 ds=1;
9203 //current.isconst=0;
9204 break;
9205 case SJUMP:
9206 //current.isconst=0;
9207 //current.wasconst=0;
9208 //regs[i].wasconst=0;
9209 clear_const(&current,rs1[i]);
9210 clear_const(&current,rt1[i]);
9211 //if((opcode2[i]&0x1E)==0x0) // BLTZ/BGEZ
9212 if((opcode2[i]&0x0E)==0x0) // BLTZ/BGEZ
9213 {
9214 alloc_cc(&current,i);
9215 dirty_reg(&current,CCREG);
9216 alloc_reg(&current,i,rs1[i]);
9217 if(!(current.is32>>rs1[i]&1))
9218 {
9219 alloc_reg64(&current,i,rs1[i]);
9220 }
9221 if (rt1[i]==31) { // BLTZAL/BGEZAL
9222 alloc_reg(&current,i,31);
9223 dirty_reg(&current,31);
57871462 9224 //#ifdef REG_PREFETCH
9225 //alloc_reg(&current,i,PTEMP);
9226 //#endif
9227 //current.is32|=1LL<<rt1[i];
9228 }
e1190b87 9229 if((rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1])) // The delay slot overwrites the branch condition.
9230 ||(rt1[i]==31&&(rs1[i+1]==31||rs2[i+1]==31||rt1[i+1]==31||rt2[i+1]==31))) { // DS touches $ra
57871462 9231 // Allocate the branch condition registers instead.
57871462 9232 current.isconst=0;
9233 current.wasconst=0;
9234 regs[i].wasconst=0;
9235 if(rs1[i]) alloc_reg(&current,i,rs1[i]);
9236 if(!((current.is32>>rs1[i])&1))
9237 {
9238 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
9239 }
9240 }
e1190b87 9241 else
9242 {
9243 ooo[i]=1;
9244 delayslot_alloc(&current,i+1);
9245 }
57871462 9246 }
9247 else
9248 // Don't alloc the delay slot yet because we might not execute it
9249 if((opcode2[i]&0x1E)==0x2) // BLTZL/BGEZL
9250 {
9251 current.isconst=0;
9252 current.wasconst=0;
9253 regs[i].wasconst=0;
9254 alloc_cc(&current,i);
9255 dirty_reg(&current,CCREG);
9256 alloc_reg(&current,i,rs1[i]);
9257 if(!(current.is32>>rs1[i]&1))
9258 {
9259 alloc_reg64(&current,i,rs1[i]);
9260 }
9261 }
9262 ds=1;
9263 //current.isconst=0;
9264 break;
9265 case FJUMP:
9266 current.isconst=0;
9267 current.wasconst=0;
9268 regs[i].wasconst=0;
9269 if(likely[i]==0) // BC1F/BC1T
9270 {
9271 // TODO: Theoretically we can run out of registers here on x86.
9272 // The delay slot can allocate up to six, and we need to check
9273 // CSREG before executing the delay slot. Possibly we can drop
9274 // the cycle count and then reload it after checking that the
9275 // FPU is in a usable state, or don't do out-of-order execution.
9276 alloc_cc(&current,i);
9277 dirty_reg(&current,CCREG);
9278 alloc_reg(&current,i,FSREG);
9279 alloc_reg(&current,i,CSREG);
9280 if(itype[i+1]==FCOMP) {
9281 // The delay slot overwrites the branch condition.
9282 // Allocate the branch condition registers instead.
57871462 9283 alloc_cc(&current,i);
9284 dirty_reg(&current,CCREG);
9285 alloc_reg(&current,i,CSREG);
9286 alloc_reg(&current,i,FSREG);
9287 }
9288 else {
e1190b87 9289 ooo[i]=1;
57871462 9290 delayslot_alloc(&current,i+1);
9291 alloc_reg(&current,i+1,CSREG);
9292 }
9293 }
9294 else
9295 // Don't alloc the delay slot yet because we might not execute it
9296 if(likely[i]) // BC1FL/BC1TL
9297 {
9298 alloc_cc(&current,i);
9299 dirty_reg(&current,CCREG);
9300 alloc_reg(&current,i,CSREG);
9301 alloc_reg(&current,i,FSREG);
9302 }
9303 ds=1;
9304 current.isconst=0;
9305 break;
9306 case IMM16:
9307 imm16_alloc(&current,i);
9308 break;
9309 case LOAD:
9310 case LOADLR:
9311 load_alloc(&current,i);
9312 break;
9313 case STORE:
9314 case STORELR:
9315 store_alloc(&current,i);
9316 break;
9317 case ALU:
9318 alu_alloc(&current,i);
9319 break;
9320 case SHIFT:
9321 shift_alloc(&current,i);
9322 break;
9323 case MULTDIV:
9324 multdiv_alloc(&current,i);
9325 break;
9326 case SHIFTIMM:
9327 shiftimm_alloc(&current,i);
9328 break;
9329 case MOV:
9330 mov_alloc(&current,i);
9331 break;
9332 case COP0:
9333 cop0_alloc(&current,i);
9334 break;
9335 case COP1:
b9b61529 9336 case COP2:
57871462 9337 cop1_alloc(&current,i);
9338 break;
9339 case C1LS:
9340 c1ls_alloc(&current,i);
9341 break;
b9b61529 9342 case C2LS:
9343 c2ls_alloc(&current,i);
9344 break;
9345 case C2OP:
9346 c2op_alloc(&current,i);
9347 break;
57871462 9348 case FCONV:
9349 fconv_alloc(&current,i);
9350 break;
9351 case FLOAT:
9352 float_alloc(&current,i);
9353 break;
9354 case FCOMP:
9355 fcomp_alloc(&current,i);
9356 break;
9357 case SYSCALL:
7139f3c8 9358 case HLECALL:
1e973cb0 9359 case INTCALL:
57871462 9360 syscall_alloc(&current,i);
9361 break;
9362 case SPAN:
9363 pagespan_alloc(&current,i);
9364 break;
9365 }
9366
9367 // Drop the upper half of registers that have become 32-bit
9368 current.uu|=current.is32&((1LL<<rt1[i])|(1LL<<rt2[i]));
9369 if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP) {
9370 current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
9371 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9372 current.uu|=1;
9373 } else {
9374 current.uu|=current.is32&((1LL<<rt1[i+1])|(1LL<<rt2[i+1]));
9375 current.uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
9376 if((~current.uu>>rt1[i+1])&1) current.uu&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
9377 current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
9378 current.uu|=1;
9379 }
9380
9381 // Create entry (branch target) regmap
9382 for(hr=0;hr<HOST_REGS;hr++)
9383 {
9384 int r,or,er;
9385 r=current.regmap[hr];
9386 if(r>=0) {
9387 if(r!=regmap_pre[i][hr]) {
9388 // TODO: delay slot (?)
9389 or=get_reg(regmap_pre[i],r); // Get old mapping for this register
9390 if(or<0||(r&63)>=TEMPREG){
9391 regs[i].regmap_entry[hr]=-1;
9392 }
9393 else
9394 {
9395 // Just move it to a different register
9396 regs[i].regmap_entry[hr]=r;
9397 // If it was dirty before, it's still dirty
9398 if((regs[i].wasdirty>>or)&1) dirty_reg(&current,r&63);
9399 }
9400 }
9401 else
9402 {
9403 // Unneeded
9404 if(r==0){
9405 regs[i].regmap_entry[hr]=0;
9406 }
9407 else
9408 if(r<64){
9409 if((current.u>>r)&1) {
9410 regs[i].regmap_entry[hr]=-1;
9411 //regs[i].regmap[hr]=-1;
9412 current.regmap[hr]=-1;
9413 }else
9414 regs[i].regmap_entry[hr]=r;
9415 }
9416 else {
9417 if((current.uu>>(r&63))&1) {
9418 regs[i].regmap_entry[hr]=-1;
9419 //regs[i].regmap[hr]=-1;
9420 current.regmap[hr]=-1;
9421 }else
9422 regs[i].regmap_entry[hr]=r;
9423 }
9424 }
9425 } else {
9426 // Branches expect CCREG to be allocated at the target
9427 if(regmap_pre[i][hr]==CCREG)
9428 regs[i].regmap_entry[hr]=CCREG;
9429 else
9430 regs[i].regmap_entry[hr]=-1;
9431 }
9432 }
9433 memcpy(regs[i].regmap,current.regmap,sizeof(current.regmap));
9434 }
9435 /* Branch post-alloc */
9436 if(i>0)
9437 {
9438 current.was32=current.is32;
9439 current.wasdirty=current.dirty;
9440 switch(itype[i-1]) {
9441 case UJUMP:
9442 memcpy(&branch_regs[i-1],&current,sizeof(current));
9443 branch_regs[i-1].isconst=0;
9444 branch_regs[i-1].wasconst=0;
9445 branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
9446 branch_regs[i-1].uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
9447 alloc_cc(&branch_regs[i-1],i-1);
9448 dirty_reg(&branch_regs[i-1],CCREG);
9449 if(rt1[i-1]==31) { // JAL
9450 alloc_reg(&branch_regs[i-1],i-1,31);
9451 dirty_reg(&branch_regs[i-1],31);
9452 branch_regs[i-1].is32|=1LL<<31;
9453 }
9454 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9455 memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9456 break;
9457 case RJUMP:
9458 memcpy(&branch_regs[i-1],&current,sizeof(current));
9459 branch_regs[i-1].isconst=0;
9460 branch_regs[i-1].wasconst=0;
9461 branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
9462 branch_regs[i-1].uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
9463 alloc_cc(&branch_regs[i-1],i-1);
9464 dirty_reg(&branch_regs[i-1],CCREG);
9465 alloc_reg(&branch_regs[i-1],i-1,rs1[i-1]);
5067f341 9466 if(rt1[i-1]!=0) { // JALR
9467 alloc_reg(&branch_regs[i-1],i-1,rt1[i-1]);
9468 dirty_reg(&branch_regs[i-1],rt1[i-1]);
9469 branch_regs[i-1].is32|=1LL<<rt1[i-1];
57871462 9470 }
9471 #ifdef USE_MINI_HT
9472 if(rs1[i-1]==31) { // JALR
9473 alloc_reg(&branch_regs[i-1],i-1,RHASH);
9474 #ifndef HOST_IMM_ADDR32
9475 alloc_reg(&branch_regs[i-1],i-1,RHTBL);
9476 #endif
9477 }
9478 #endif
9479 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9480 memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9481 break;
9482 case CJUMP:
9483 if((opcode[i-1]&0x3E)==4) // BEQ/BNE
9484 {
9485 alloc_cc(&current,i-1);
9486 dirty_reg(&current,CCREG);
9487 if((rs1[i-1]&&(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]))||
9488 (rs2[i-1]&&(rs2[i-1]==rt1[i]||rs2[i-1]==rt2[i]))) {
9489 // The delay slot overwrote one of our conditions
9490 // Delay slot goes after the test (in order)
9491 current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
9492 current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
9493 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9494 current.u|=1;
9495 current.uu|=1;
9496 delayslot_alloc(&current,i);
9497 current.isconst=0;
9498 }
9499 else
9500 {
9501 current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
9502 current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
9503 // Alloc the branch condition registers
9504 if(rs1[i-1]) alloc_reg(&current,i-1,rs1[i-1]);
9505 if(rs2[i-1]) alloc_reg(&current,i-1,rs2[i-1]);
9506 if(!((current.is32>>rs1[i-1])&(current.is32>>rs2[i-1])&1))
9507 {
9508 if(rs1[i-1]) alloc_reg64(&current,i-1,rs1[i-1]);
9509 if(rs2[i-1]) alloc_reg64(&current,i-1,rs2[i-1]);
9510 }
9511 }
9512 memcpy(&branch_regs[i-1],&current,sizeof(current));
9513 branch_regs[i-1].isconst=0;
9514 branch_regs[i-1].wasconst=0;
9515 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9516 memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9517 }
9518 else
9519 if((opcode[i-1]&0x3E)==6) // BLEZ/BGTZ
9520 {
9521 alloc_cc(&current,i-1);
9522 dirty_reg(&current,CCREG);
9523 if(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]) {
9524 // The delay slot overwrote the branch condition
9525 // Delay slot goes after the test (in order)
9526 current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
9527 current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
9528 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9529 current.u|=1;
9530 current.uu|=1;
9531 delayslot_alloc(&current,i);
9532 current.isconst=0;
9533 }
9534 else
9535 {
9536 current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
9537 current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
9538 // Alloc the branch condition register
9539 alloc_reg(&current,i-1,rs1[i-1]);
9540 if(!(current.is32>>rs1[i-1]&1))
9541 {
9542 alloc_reg64(&current,i-1,rs1[i-1]);
9543 }
9544 }
9545 memcpy(&branch_regs[i-1],&current,sizeof(current));
9546 branch_regs[i-1].isconst=0;
9547 branch_regs[i-1].wasconst=0;
9548 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9549 memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9550 }
9551 else
9552 // Alloc the delay slot in case the branch is taken
9553 if((opcode[i-1]&0x3E)==0x14) // BEQL/BNEL
9554 {
9555 memcpy(&branch_regs[i-1],&current,sizeof(current));
9556 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9557 branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9558 if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9559 alloc_cc(&branch_regs[i-1],i);
9560 dirty_reg(&branch_regs[i-1],CCREG);
9561 delayslot_alloc(&branch_regs[i-1],i);
9562 branch_regs[i-1].isconst=0;
9563 alloc_reg(&current,i,CCREG); // Not taken path
9564 dirty_reg(&current,CCREG);
9565 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9566 }
9567 else
9568 if((opcode[i-1]&0x3E)==0x16) // BLEZL/BGTZL
9569 {
9570 memcpy(&branch_regs[i-1],&current,sizeof(current));
9571 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9572 branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9573 if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9574 alloc_cc(&branch_regs[i-1],i);
9575 dirty_reg(&branch_regs[i-1],CCREG);
9576 delayslot_alloc(&branch_regs[i-1],i);
9577 branch_regs[i-1].isconst=0;
9578 alloc_reg(&current,i,CCREG); // Not taken path
9579 dirty_reg(&current,CCREG);
9580 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9581 }
9582 break;
9583 case SJUMP:
9584 //if((opcode2[i-1]&0x1E)==0) // BLTZ/BGEZ
9585 if((opcode2[i-1]&0x0E)==0) // BLTZ/BGEZ
9586 {
9587 alloc_cc(&current,i-1);
9588 dirty_reg(&current,CCREG);
9589 if(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]) {
9590 // The delay slot overwrote the branch condition
9591 // Delay slot goes after the test (in order)
9592 current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
9593 current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
9594 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9595 current.u|=1;
9596 current.uu|=1;
9597 delayslot_alloc(&current,i);
9598 current.isconst=0;
9599 }
9600 else
9601 {
9602 current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
9603 current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
9604 // Alloc the branch condition register
9605 alloc_reg(&current,i-1,rs1[i-1]);
9606 if(!(current.is32>>rs1[i-1]&1))
9607 {
9608 alloc_reg64(&current,i-1,rs1[i-1]);
9609 }
9610 }
9611 memcpy(&branch_regs[i-1],&current,sizeof(current));
9612 branch_regs[i-1].isconst=0;
9613 branch_regs[i-1].wasconst=0;
9614 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9615 memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9616 }
9617 else
9618 // Alloc the delay slot in case the branch is taken
9619 if((opcode2[i-1]&0x1E)==2) // BLTZL/BGEZL
9620 {
9621 memcpy(&branch_regs[i-1],&current,sizeof(current));
9622 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9623 branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9624 if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9625 alloc_cc(&branch_regs[i-1],i);
9626 dirty_reg(&branch_regs[i-1],CCREG);
9627 delayslot_alloc(&branch_regs[i-1],i);
9628 branch_regs[i-1].isconst=0;
9629 alloc_reg(&current,i,CCREG); // Not taken path
9630 dirty_reg(&current,CCREG);
9631 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9632 }
9633 // FIXME: BLTZAL/BGEZAL
9634 if(opcode2[i-1]&0x10) { // BxxZAL
9635 alloc_reg(&branch_regs[i-1],i-1,31);
9636 dirty_reg(&branch_regs[i-1],31);
9637 branch_regs[i-1].is32|=1LL<<31;
9638 }
9639 break;
9640 case FJUMP:
9641 if(likely[i-1]==0) // BC1F/BC1T
9642 {
9643 alloc_cc(&current,i-1);
9644 dirty_reg(&current,CCREG);
9645 if(itype[i]==FCOMP) {
9646 // The delay slot overwrote the branch condition
9647 // Delay slot goes after the test (in order)
9648 delayslot_alloc(&current,i);
9649 current.isconst=0;
9650 }
9651 else
9652 {
9653 current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
9654 current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
9655 // Alloc the branch condition register
9656 alloc_reg(&current,i-1,FSREG);
9657 }
9658 memcpy(&branch_regs[i-1],&current,sizeof(current));
9659 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9660 }
9661 else // BC1FL/BC1TL
9662 {
9663 // Alloc the delay slot in case the branch is taken
9664 memcpy(&branch_regs[i-1],&current,sizeof(current));
9665 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9666 branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9667 if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9668 alloc_cc(&branch_regs[i-1],i);
9669 dirty_reg(&branch_regs[i-1],CCREG);
9670 delayslot_alloc(&branch_regs[i-1],i);
9671 branch_regs[i-1].isconst=0;
9672 alloc_reg(&current,i,CCREG); // Not taken path
9673 dirty_reg(&current,CCREG);
9674 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9675 }
9676 break;
9677 }
9678
9679 if(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)
9680 {
9681 if(rt1[i-1]==31) // JAL/JALR
9682 {
9683 // Subroutine call will return here, don't alloc any registers
9684 current.is32=1;
9685 current.dirty=0;
9686 clear_all_regs(current.regmap);
9687 alloc_reg(&current,i,CCREG);
9688 dirty_reg(&current,CCREG);
9689 }
9690 else if(i+1<slen)
9691 {
9692 // Internal branch will jump here, match registers to caller
9693 current.is32=0x3FFFFFFFFLL;
9694 current.dirty=0;
9695 clear_all_regs(current.regmap);
9696 alloc_reg(&current,i,CCREG);
9697 dirty_reg(&current,CCREG);
9698 for(j=i-1;j>=0;j--)
9699 {
9700 if(ba[j]==start+i*4+4) {
9701 memcpy(current.regmap,branch_regs[j].regmap,sizeof(current.regmap));
9702 current.is32=branch_regs[j].is32;
9703 current.dirty=branch_regs[j].dirty;
9704 break;
9705 }
9706 }
9707 while(j>=0) {
9708 if(ba[j]==start+i*4+4) {
9709 for(hr=0;hr<HOST_REGS;hr++) {
9710 if(current.regmap[hr]!=branch_regs[j].regmap[hr]) {
9711 current.regmap[hr]=-1;
9712 }
9713 current.is32&=branch_regs[j].is32;
9714 current.dirty&=branch_regs[j].dirty;
9715 }
9716 }
9717 j--;
9718 }
9719 }
9720 }
9721 }
9722
9723 // Count cycles in between branches
9724 ccadj[i]=cc;
7139f3c8 9725 if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP||itype[i]==SYSCALL||itype[i]==HLECALL))
57871462 9726 {
9727 cc=0;
9728 }
fb407447 9729#ifdef PCSX
9730 else if(/*itype[i]==LOAD||*/itype[i]==STORE||itype[i]==C1LS) // load causes weird timing issues
9731 {
9732 cc+=2; // 2 cycle penalty (after CLOCK_DIVIDER)
9733 }
9734 else if(itype[i]==C2LS)
9735 {
9736 cc+=4;
9737 }
9738#endif
57871462 9739 else
9740 {
9741 cc++;
9742 }
9743
9744 flush_dirty_uppers(&current);
9745 if(!is_ds[i]) {
9746 regs[i].is32=current.is32;
9747 regs[i].dirty=current.dirty;
9748 regs[i].isconst=current.isconst;
9749 memcpy(constmap[i],current.constmap,sizeof(current.constmap));
9750 }
9751 for(hr=0;hr<HOST_REGS;hr++) {
9752 if(hr!=EXCLUDE_REG&&regs[i].regmap[hr]>=0) {
9753 if(regmap_pre[i][hr]!=regs[i].regmap[hr]) {
9754 regs[i].wasconst&=~(1<<hr);
9755 }
9756 }
9757 }
9758 if(current.regmap[HOST_BTREG]==BTREG) current.regmap[HOST_BTREG]=-1;
9759 }
9760
9761 /* Pass 4 - Cull unused host registers */
9762
9763 uint64_t nr=0;
9764
9765 for (i=slen-1;i>=0;i--)
9766 {
9767 int hr;
9768 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
9769 {
9770 if(ba[i]<start || ba[i]>=(start+slen*4))
9771 {
9772 // Branch out of this block, don't need anything
9773 nr=0;
9774 }
9775 else
9776 {
9777 // Internal branch
9778 // Need whatever matches the target
9779 nr=0;
9780 int t=(ba[i]-start)>>2;
9781 for(hr=0;hr<HOST_REGS;hr++)
9782 {
9783 if(regs[i].regmap_entry[hr]>=0) {
9784 if(regs[i].regmap_entry[hr]==regs[t].regmap_entry[hr]) nr|=1<<hr;
9785 }
9786 }
9787 }
9788 // Conditional branch may need registers for following instructions
9789 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
9790 {
9791 if(i<slen-2) {
9792 nr|=needed_reg[i+2];
9793 for(hr=0;hr<HOST_REGS;hr++)
9794 {
9795 if(regmap_pre[i+2][hr]>=0&&get_reg(regs[i+2].regmap_entry,regmap_pre[i+2][hr])<0) nr&=~(1<<hr);
9796 //if((regmap_entry[i+2][hr])>=0) if(!((nr>>hr)&1)) printf("%x-bogus(%d=%d)\n",start+i*4,hr,regmap_entry[i+2][hr]);
9797 }
9798 }
9799 }
9800 // Don't need stuff which is overwritten
f5955059 9801 //if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
9802 //if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
57871462 9803 // Merge in delay slot
9804 for(hr=0;hr<HOST_REGS;hr++)
9805 {
9806 if(!likely[i]) {
9807 // These are overwritten unless the branch is "likely"
9808 // and the delay slot is nullified if not taken
9809 if(rt1[i+1]&&rt1[i+1]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9810 if(rt2[i+1]&&rt2[i+1]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9811 }
9812 if(us1[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9813 if(us2[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9814 if(rs1[i+1]==regmap_pre[i][hr]) nr|=1<<hr;
9815 if(rs2[i+1]==regmap_pre[i][hr]) nr|=1<<hr;
9816 if(us1[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9817 if(us2[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9818 if(rs1[i+1]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9819 if(rs2[i+1]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9820 if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1)) {
9821 if(dep1[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9822 if(dep2[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9823 }
9824 if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1)) {
9825 if(dep1[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9826 if(dep2[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9827 }
b9b61529 9828 if(itype[i+1]==STORE || itype[i+1]==STORELR || (opcode[i+1]&0x3b)==0x39 || (opcode[i+1]&0x3b)==0x3a) {
57871462 9829 if(regmap_pre[i][hr]==INVCP) nr|=1<<hr;
9830 if(regs[i].regmap_entry[hr]==INVCP) nr|=1<<hr;
9831 }
9832 }
9833 }
1e973cb0 9834 else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
57871462 9835 {
9836 // SYSCALL instruction (software interrupt)
9837 nr=0;
9838 }
9839 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
9840 {
9841 // ERET instruction (return from interrupt)
9842 nr=0;
9843 }
9844 else // Non-branch
9845 {
9846 if(i<slen-1) {
9847 for(hr=0;hr<HOST_REGS;hr++) {
9848 if(regmap_pre[i+1][hr]>=0&&get_reg(regs[i+1].regmap_entry,regmap_pre[i+1][hr])<0) nr&=~(1<<hr);
9849 if(regs[i].regmap[hr]!=regmap_pre[i+1][hr]) nr&=~(1<<hr);
9850 if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
9851 if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
9852 }
9853 }
9854 }
9855 for(hr=0;hr<HOST_REGS;hr++)
9856 {
9857 // Overwritten registers are not needed
9858 if(rt1[i]&&rt1[i]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9859 if(rt2[i]&&rt2[i]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9860 if(FTEMP==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9861 // Source registers are needed
9862 if(us1[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9863 if(us2[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9864 if(rs1[i]==regmap_pre[i][hr]) nr|=1<<hr;
9865 if(rs2[i]==regmap_pre[i][hr]) nr|=1<<hr;
9866 if(us1[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9867 if(us2[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9868 if(rs1[i]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9869 if(rs2[i]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9870 if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1)) {
9871 if(dep1[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9872 if(dep1[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9873 }
9874 if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1)) {
9875 if(dep2[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9876 if(dep2[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9877 }
b9b61529 9878 if(itype[i]==STORE || itype[i]==STORELR || (opcode[i]&0x3b)==0x39 || (opcode[i]&0x3b)==0x3a) {
57871462 9879 if(regmap_pre[i][hr]==INVCP) nr|=1<<hr;
9880 if(regs[i].regmap_entry[hr]==INVCP) nr|=1<<hr;
9881 }
9882 // Don't store a register immediately after writing it,
9883 // may prevent dual-issue.
9884 // But do so if this is a branch target, otherwise we
9885 // might have to load the register before the branch.
9886 if(i>0&&!bt[i]&&((regs[i].wasdirty>>hr)&1)) {
9887 if((regmap_pre[i][hr]>0&&regmap_pre[i][hr]<64&&!((unneeded_reg[i]>>regmap_pre[i][hr])&1)) ||
9888 (regmap_pre[i][hr]>64&&!((unneeded_reg_upper[i]>>(regmap_pre[i][hr]&63))&1)) ) {
9889 if(rt1[i-1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9890 if(rt2[i-1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9891 }
9892 if((regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64&&!((unneeded_reg[i]>>regs[i].regmap_entry[hr])&1)) ||
9893 (regs[i].regmap_entry[hr]>64&&!((unneeded_reg_upper[i]>>(regs[i].regmap_entry[hr]&63))&1)) ) {
9894 if(rt1[i-1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9895 if(rt2[i-1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9896 }
9897 }
9898 }
9899 // Cycle count is needed at branches. Assume it is needed at the target too.
9900 if(i==0||bt[i]||itype[i]==CJUMP||itype[i]==FJUMP||itype[i]==SPAN) {
9901 if(regmap_pre[i][HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
9902 if(regs[i].regmap_entry[HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
9903 }
9904 // Save it
9905 needed_reg[i]=nr;
9906
9907 // Deallocate unneeded registers
9908 for(hr=0;hr<HOST_REGS;hr++)
9909 {
9910 if(!((nr>>hr)&1)) {
9911 if(regs[i].regmap_entry[hr]!=CCREG) regs[i].regmap_entry[hr]=-1;
9912 if((regs[i].regmap[hr]&63)!=rs1[i] && (regs[i].regmap[hr]&63)!=rs2[i] &&
9913 (regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
9914 (regs[i].regmap[hr]&63)!=PTEMP && (regs[i].regmap[hr]&63)!=CCREG)
9915 {
9916 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
9917 {
9918 if(likely[i]) {
9919 regs[i].regmap[hr]=-1;
9920 regs[i].isconst&=~(1<<hr);
79c75f1b 9921 if(i<slen-2) {
9922 regmap_pre[i+2][hr]=-1;
9923 regs[i+2].wasconst&=~(1<<hr);
9924 }
57871462 9925 }
9926 }
9927 }
9928 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
9929 {
9930 int d1=0,d2=0,map=0,temp=0;
9931 if(get_reg(regs[i].regmap,rt1[i+1]|64)>=0||get_reg(branch_regs[i].regmap,rt1[i+1]|64)>=0)
9932 {
9933 d1=dep1[i+1];
9934 d2=dep2[i+1];
9935 }
9936 if(using_tlb) {
9937 if(itype[i+1]==LOAD || itype[i+1]==LOADLR ||
9938 itype[i+1]==STORE || itype[i+1]==STORELR ||
b9b61529 9939 itype[i+1]==C1LS || itype[i+1]==C2LS)
57871462 9940 map=TLREG;
9941 } else
b9b61529 9942 if(itype[i+1]==STORE || itype[i+1]==STORELR ||
9943 (opcode[i+1]&0x3b)==0x39 || (opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1 || SWC2/SDC2
57871462 9944 map=INVCP;
9945 }
9946 if(itype[i+1]==LOADLR || itype[i+1]==STORELR ||
b9b61529 9947 itype[i+1]==C1LS || itype[i+1]==C2LS)
57871462 9948 temp=FTEMP;
9949 if((regs[i].regmap[hr]&63)!=rs1[i] && (regs[i].regmap[hr]&63)!=rs2[i] &&
9950 (regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
9951 (regs[i].regmap[hr]&63)!=rt1[i+1] && (regs[i].regmap[hr]&63)!=rt2[i+1] &&
9952 (regs[i].regmap[hr]^64)!=us1[i+1] && (regs[i].regmap[hr]^64)!=us2[i+1] &&
9953 (regs[i].regmap[hr]^64)!=d1 && (regs[i].regmap[hr]^64)!=d2 &&
9954 regs[i].regmap[hr]!=rs1[i+1] && regs[i].regmap[hr]!=rs2[i+1] &&
9955 (regs[i].regmap[hr]&63)!=temp && regs[i].regmap[hr]!=PTEMP &&
9956 regs[i].regmap[hr]!=RHASH && regs[i].regmap[hr]!=RHTBL &&
9957 regs[i].regmap[hr]!=RTEMP && regs[i].regmap[hr]!=CCREG &&
9958 regs[i].regmap[hr]!=map )
9959 {
9960 regs[i].regmap[hr]=-1;
9961 regs[i].isconst&=~(1<<hr);
9962 if((branch_regs[i].regmap[hr]&63)!=rs1[i] && (branch_regs[i].regmap[hr]&63)!=rs2[i] &&
9963 (branch_regs[i].regmap[hr]&63)!=rt1[i] && (branch_regs[i].regmap[hr]&63)!=rt2[i] &&
9964 (branch_regs[i].regmap[hr]&63)!=rt1[i+1] && (branch_regs[i].regmap[hr]&63)!=rt2[i+1] &&
9965 (branch_regs[i].regmap[hr]^64)!=us1[i+1] && (branch_regs[i].regmap[hr]^64)!=us2[i+1] &&
9966 (branch_regs[i].regmap[hr]^64)!=d1 && (branch_regs[i].regmap[hr]^64)!=d2 &&
9967 branch_regs[i].regmap[hr]!=rs1[i+1] && branch_regs[i].regmap[hr]!=rs2[i+1] &&
9968 (branch_regs[i].regmap[hr]&63)!=temp && branch_regs[i].regmap[hr]!=PTEMP &&
9969 branch_regs[i].regmap[hr]!=RHASH && branch_regs[i].regmap[hr]!=RHTBL &&
9970 branch_regs[i].regmap[hr]!=RTEMP && branch_regs[i].regmap[hr]!=CCREG &&
9971 branch_regs[i].regmap[hr]!=map)
9972 {
9973 branch_regs[i].regmap[hr]=-1;
9974 branch_regs[i].regmap_entry[hr]=-1;
9975 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
9976 {
9977 if(!likely[i]&&i<slen-2) {
9978 regmap_pre[i+2][hr]=-1;
79c75f1b 9979 regs[i+2].wasconst&=~(1<<hr);
57871462 9980 }
9981 }
9982 }
9983 }
9984 }
9985 else
9986 {
9987 // Non-branch
9988 if(i>0)
9989 {
9990 int d1=0,d2=0,map=-1,temp=-1;
9991 if(get_reg(regs[i].regmap,rt1[i]|64)>=0)
9992 {
9993 d1=dep1[i];
9994 d2=dep2[i];
9995 }
9996 if(using_tlb) {
9997 if(itype[i]==LOAD || itype[i]==LOADLR ||
9998 itype[i]==STORE || itype[i]==STORELR ||
b9b61529 9999 itype[i]==C1LS || itype[i]==C2LS)
57871462 10000 map=TLREG;
b9b61529 10001 } else if(itype[i]==STORE || itype[i]==STORELR ||
10002 (opcode[i]&0x3b)==0x39 || (opcode[i]&0x3b)==0x3a) { // SWC1/SDC1 || SWC2/SDC2
57871462 10003 map=INVCP;
10004 }
10005 if(itype[i]==LOADLR || itype[i]==STORELR ||
b9b61529 10006 itype[i]==C1LS || itype[i]==C2LS)
57871462 10007 temp=FTEMP;
10008 if((regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
10009 (regs[i].regmap[hr]^64)!=us1[i] && (regs[i].regmap[hr]^64)!=us2[i] &&
10010 (regs[i].regmap[hr]^64)!=d1 && (regs[i].regmap[hr]^64)!=d2 &&
10011 regs[i].regmap[hr]!=rs1[i] && regs[i].regmap[hr]!=rs2[i] &&
10012 (regs[i].regmap[hr]&63)!=temp && regs[i].regmap[hr]!=map &&
10013 (itype[i]!=SPAN||regs[i].regmap[hr]!=CCREG))
10014 {
10015 if(i<slen-1&&!is_ds[i]) {
10016 if(regmap_pre[i+1][hr]!=-1 || regs[i].regmap[hr]!=-1)
10017 if(regmap_pre[i+1][hr]!=regs[i].regmap[hr])
10018 if(regs[i].regmap[hr]<64||!((regs[i].was32>>(regs[i].regmap[hr]&63))&1))
10019 {
10020 printf("fail: %x (%d %d!=%d)\n",start+i*4,hr,regmap_pre[i+1][hr],regs[i].regmap[hr]);
10021 assert(regmap_pre[i+1][hr]==regs[i].regmap[hr]);
10022 }
10023 regmap_pre[i+1][hr]=-1;
10024 if(regs[i+1].regmap_entry[hr]==CCREG) regs[i+1].regmap_entry[hr]=-1;
79c75f1b 10025 regs[i+1].wasconst&=~(1<<hr);
57871462 10026 }
10027 regs[i].regmap[hr]=-1;
10028 regs[i].isconst&=~(1<<hr);
10029 }
10030 }
10031 }
10032 }
10033 }
10034 }
10035
10036 /* Pass 5 - Pre-allocate registers */
10037
10038 // If a register is allocated during a loop, try to allocate it for the
10039 // entire loop, if possible. This avoids loading/storing registers
10040 // inside of the loop.
198df76f 10041
57871462 10042 signed char f_regmap[HOST_REGS];
10043 clear_all_regs(f_regmap);
10044 for(i=0;i<slen-1;i++)
10045 {
10046 if(itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
10047 {
10048 if(ba[i]>=start && ba[i]<(start+i*4))
10049 if(itype[i+1]==NOP||itype[i+1]==MOV||itype[i+1]==ALU
10050 ||itype[i+1]==SHIFTIMM||itype[i+1]==IMM16||itype[i+1]==LOAD
10051 ||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS
10052 ||itype[i+1]==SHIFT||itype[i+1]==COP1||itype[i+1]==FLOAT
b9b61529 10053 ||itype[i+1]==FCOMP||itype[i+1]==FCONV
10054 ||itype[i+1]==COP2||itype[i+1]==C2LS||itype[i+1]==C2OP)
57871462 10055 {
10056 int t=(ba[i]-start)>>2;
10057 if(t>0&&(itype[t-1]!=UJUMP&&itype[t-1]!=RJUMP&&itype[t-1]!=CJUMP&&itype[t-1]!=SJUMP&&itype[t-1]!=FJUMP)) // loop_preload can't handle jumps into delay slots
198df76f 10058 if(t<2||(itype[t-2]!=UJUMP&&itype[t-2]!=RJUMP)||rt1[t-2]!=31) // call/ret assumes no registers allocated
57871462 10059 for(hr=0;hr<HOST_REGS;hr++)
10060 {
10061 if(regs[i].regmap[hr]>64) {
10062 if(!((regs[i].dirty>>hr)&1))
10063 f_regmap[hr]=regs[i].regmap[hr];
10064 else f_regmap[hr]=-1;
10065 }
b372a952 10066 else if(regs[i].regmap[hr]>=0) {
10067 if(f_regmap[hr]!=regs[i].regmap[hr]) {
10068 // dealloc old register
10069 int n;
10070 for(n=0;n<HOST_REGS;n++)
10071 {
10072 if(f_regmap[n]==regs[i].regmap[hr]) {f_regmap[n]=-1;}
10073 }
10074 // and alloc new one
10075 f_regmap[hr]=regs[i].regmap[hr];
10076 }
10077 }
57871462 10078 if(branch_regs[i].regmap[hr]>64) {
10079 if(!((branch_regs[i].dirty>>hr)&1))
10080 f_regmap[hr]=branch_regs[i].regmap[hr];
10081 else f_regmap[hr]=-1;
10082 }
b372a952 10083 else if(branch_regs[i].regmap[hr]>=0) {
10084 if(f_regmap[hr]!=branch_regs[i].regmap[hr]) {
10085 // dealloc old register
10086 int n;
10087 for(n=0;n<HOST_REGS;n++)
10088 {
10089 if(f_regmap[n]==branch_regs[i].regmap[hr]) {f_regmap[n]=-1;}
10090 }
10091 // and alloc new one
10092 f_regmap[hr]=branch_regs[i].regmap[hr];
10093 }
10094 }
e1190b87 10095 if(ooo[i]) {
10096 if(count_free_regs(regs[i].regmap)<=minimum_free_regs[i+1])
10097 f_regmap[hr]=branch_regs[i].regmap[hr];
10098 }else{
10099 if(count_free_regs(branch_regs[i].regmap)<=minimum_free_regs[i+1])
57871462 10100 f_regmap[hr]=branch_regs[i].regmap[hr];
10101 }
10102 // Avoid dirty->clean transition
e1190b87 10103 #ifdef DESTRUCTIVE_WRITEBACK
57871462 10104 if(t>0) if(get_reg(regmap_pre[t],f_regmap[hr])>=0) if((regs[t].wasdirty>>get_reg(regmap_pre[t],f_regmap[hr]))&1) f_regmap[hr]=-1;
e1190b87 10105 #endif
10106 // This check is only strictly required in the DESTRUCTIVE_WRITEBACK
10107 // case above, however it's always a good idea. We can't hoist the
10108 // load if the register was already allocated, so there's no point
10109 // wasting time analyzing most of these cases. It only "succeeds"
10110 // when the mapping was different and the load can be replaced with
10111 // a mov, which is of negligible benefit. So such cases are
10112 // skipped below.
57871462 10113 if(f_regmap[hr]>0) {
198df76f 10114 if(regs[t].regmap[hr]==f_regmap[hr]||(regs[t].regmap_entry[hr]<0&&get_reg(regmap_pre[t],f_regmap[hr])<0)) {
57871462 10115 int r=f_regmap[hr];
10116 for(j=t;j<=i;j++)
10117 {
10118 //printf("Test %x -> %x, %x %d/%d\n",start+i*4,ba[i],start+j*4,hr,r);
10119 if(r<34&&((unneeded_reg[j]>>r)&1)) break;
10120 if(r>63&&((unneeded_reg_upper[j]>>(r&63))&1)) break;
10121 if(r>63) {
10122 // NB This can exclude the case where the upper-half
10123 // register is lower numbered than the lower-half
10124 // register. Not sure if it's worth fixing...
10125 if(get_reg(regs[j].regmap,r&63)<0) break;
e1190b87 10126 if(get_reg(regs[j].regmap_entry,r&63)<0) break;
57871462 10127 if(regs[j].is32&(1LL<<(r&63))) break;
10128 }
10129 if(regs[j].regmap[hr]==f_regmap[hr]&&(f_regmap[hr]&63)<TEMPREG) {
10130 //printf("Hit %x -> %x, %x %d/%d\n",start+i*4,ba[i],start+j*4,hr,r);
10131 int k;
10132 if(regs[i].regmap[hr]==-1&&branch_regs[i].regmap[hr]==-1) {
10133 if(get_reg(regs[i+2].regmap,f_regmap[hr])>=0) break;
10134 if(r>63) {
10135 if(get_reg(regs[i].regmap,r&63)<0) break;
10136 if(get_reg(branch_regs[i].regmap,r&63)<0) break;
10137 }
10138 k=i;
10139 while(k>1&&regs[k-1].regmap[hr]==-1) {
e1190b87 10140 if(count_free_regs(regs[k-1].regmap)<=minimum_free_regs[k-1]) {
10141 //printf("no free regs for store %x\n",start+(k-1)*4);
10142 break;
57871462 10143 }
57871462 10144 if(get_reg(regs[k-1].regmap,f_regmap[hr])>=0) {
10145 //printf("no-match due to different register\n");
10146 break;
10147 }
10148 if(itype[k-2]==UJUMP||itype[k-2]==RJUMP||itype[k-2]==CJUMP||itype[k-2]==SJUMP||itype[k-2]==FJUMP) {
10149 //printf("no-match due to branch\n");
10150 break;
10151 }
10152 // call/ret fast path assumes no registers allocated
198df76f 10153 if(k>2&&(itype[k-3]==UJUMP||itype[k-3]==RJUMP)&&rt1[k-3]==31) {
57871462 10154 break;
10155 }
10156 if(r>63) {
10157 // NB This can exclude the case where the upper-half
10158 // register is lower numbered than the lower-half
10159 // register. Not sure if it's worth fixing...
10160 if(get_reg(regs[k-1].regmap,r&63)<0) break;
10161 if(regs[k-1].is32&(1LL<<(r&63))) break;
10162 }
10163 k--;
10164 }
10165 if(i<slen-1) {
10166 if((regs[k].is32&(1LL<<f_regmap[hr]))!=
10167 (regs[i+2].was32&(1LL<<f_regmap[hr]))) {
10168 //printf("bad match after branch\n");
10169 break;
10170 }
10171 }
10172 if(regs[k-1].regmap[hr]==f_regmap[hr]&&regmap_pre[k][hr]==f_regmap[hr]) {
10173 //printf("Extend r%d, %x ->\n",hr,start+k*4);
10174 while(k<i) {
10175 regs[k].regmap_entry[hr]=f_regmap[hr];
10176 regs[k].regmap[hr]=f_regmap[hr];
10177 regmap_pre[k+1][hr]=f_regmap[hr];
10178 regs[k].wasdirty&=~(1<<hr);
10179 regs[k].dirty&=~(1<<hr);
10180 regs[k].wasdirty|=(1<<hr)&regs[k-1].dirty;
10181 regs[k].dirty|=(1<<hr)&regs[k].wasdirty;
10182 regs[k].wasconst&=~(1<<hr);
10183 regs[k].isconst&=~(1<<hr);
10184 k++;
10185 }
10186 }
10187 else {
10188 //printf("Fail Extend r%d, %x ->\n",hr,start+k*4);
10189 break;
10190 }
10191 assert(regs[i-1].regmap[hr]==f_regmap[hr]);
10192 if(regs[i-1].regmap[hr]==f_regmap[hr]&&regmap_pre[i][hr]==f_regmap[hr]) {
10193 //printf("OK fill %x (r%d)\n",start+i*4,hr);
10194 regs[i].regmap_entry[hr]=f_regmap[hr];
10195 regs[i].regmap[hr]=f_regmap[hr];
10196 regs[i].wasdirty&=~(1<<hr);
10197 regs[i].dirty&=~(1<<hr);
10198 regs[i].wasdirty|=(1<<hr)&regs[i-1].dirty;
10199 regs[i].dirty|=(1<<hr)&regs[i-1].dirty;
10200 regs[i].wasconst&=~(1<<hr);
10201 regs[i].isconst&=~(1<<hr);
10202 branch_regs[i].regmap_entry[hr]=f_regmap[hr];
10203 branch_regs[i].wasdirty&=~(1<<hr);
10204 branch_regs[i].wasdirty|=(1<<hr)&regs[i].dirty;
10205 branch_regs[i].regmap[hr]=f_regmap[hr];
10206 branch_regs[i].dirty&=~(1<<hr);
10207 branch_regs[i].dirty|=(1<<hr)&regs[i].dirty;
10208 branch_regs[i].wasconst&=~(1<<hr);
10209 branch_regs[i].isconst&=~(1<<hr);
10210 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000) {
10211 regmap_pre[i+2][hr]=f_regmap[hr];
10212 regs[i+2].wasdirty&=~(1<<hr);
10213 regs[i+2].wasdirty|=(1<<hr)&regs[i].dirty;
10214 assert((branch_regs[i].is32&(1LL<<f_regmap[hr]))==
10215 (regs[i+2].was32&(1LL<<f_regmap[hr])));
10216 }
10217 }
10218 }
10219 for(k=t;k<j;k++) {
e1190b87 10220 // Alloc register clean at beginning of loop,
10221 // but may dirty it in pass 6
57871462 10222 regs[k].regmap_entry[hr]=f_regmap[hr];
10223 regs[k].regmap[hr]=f_regmap[hr];
57871462 10224 regs[k].dirty&=~(1<<hr);
10225 regs[k].wasconst&=~(1<<hr);
10226 regs[k].isconst&=~(1<<hr);
e1190b87 10227 if(itype[k]==UJUMP||itype[k]==RJUMP||itype[k]==CJUMP||itype[k]==SJUMP||itype[k]==FJUMP) {
10228 branch_regs[k].regmap_entry[hr]=f_regmap[hr];
10229 branch_regs[k].regmap[hr]=f_regmap[hr];
10230 branch_regs[k].dirty&=~(1<<hr);
10231 branch_regs[k].wasconst&=~(1<<hr);
10232 branch_regs[k].isconst&=~(1<<hr);
10233 if(itype[k]!=RJUMP&&itype[k]!=UJUMP&&(source[k]>>16)!=0x1000) {
10234 regmap_pre[k+2][hr]=f_regmap[hr];
10235 regs[k+2].wasdirty&=~(1<<hr);
10236 assert((branch_regs[k].is32&(1LL<<f_regmap[hr]))==
10237 (regs[k+2].was32&(1LL<<f_regmap[hr])));
10238 }
10239 }
10240 else
10241 {
10242 regmap_pre[k+1][hr]=f_regmap[hr];
10243 regs[k+1].wasdirty&=~(1<<hr);
10244 }
57871462 10245 }
10246 if(regs[j].regmap[hr]==f_regmap[hr])
10247 regs[j].regmap_entry[hr]=f_regmap[hr];
10248 break;
10249 }
10250 if(j==i) break;
10251 if(regs[j].regmap[hr]>=0)
10252 break;
10253 if(get_reg(regs[j].regmap,f_regmap[hr])>=0) {
10254 //printf("no-match due to different register\n");
10255 break;
10256 }
10257 if((regs[j+1].is32&(1LL<<f_regmap[hr]))!=(regs[j].is32&(1LL<<f_regmap[hr]))) {
10258 //printf("32/64 mismatch %x %d\n",start+j*4,hr);
10259 break;
10260 }
e1190b87 10261 if(itype[j]==UJUMP||itype[j]==RJUMP||(source[j]>>16)==0x1000)
10262 {
10263 // Stop on unconditional branch
10264 break;
10265 }
10266 if(itype[j]==CJUMP||itype[j]==SJUMP||itype[j]==FJUMP)
10267 {
10268 if(ooo[j]) {
10269 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j+1])
10270 break;
10271 }else{
10272 if(count_free_regs(branch_regs[j].regmap)<=minimum_free_regs[j+1])
10273 break;
10274 }
10275 if(get_reg(branch_regs[j].regmap,f_regmap[hr])>=0) {
10276 //printf("no-match due to different register (branch)\n");
57871462 10277 break;
10278 }
10279 }
e1190b87 10280 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) {
10281 //printf("No free regs for store %x\n",start+j*4);
10282 break;
10283 }
57871462 10284 if(f_regmap[hr]>=64) {
10285 if(regs[j].is32&(1LL<<(f_regmap[hr]&63))) {
10286 break;
10287 }
10288 else
10289 {
10290 if(get_reg(regs[j].regmap,f_regmap[hr]&63)<0) {
10291 break;
10292 }
10293 }
10294 }
10295 }
10296 }
10297 }
10298 }
10299 }
10300 }else{
198df76f 10301 // Non branch or undetermined branch target
57871462 10302 for(hr=0;hr<HOST_REGS;hr++)
10303 {
10304 if(hr!=EXCLUDE_REG) {
10305 if(regs[i].regmap[hr]>64) {
10306 if(!((regs[i].dirty>>hr)&1))
10307 f_regmap[hr]=regs[i].regmap[hr];
10308 }
b372a952 10309 else if(regs[i].regmap[hr]>=0) {
10310 if(f_regmap[hr]!=regs[i].regmap[hr]) {
10311 // dealloc old register
10312 int n;
10313 for(n=0;n<HOST_REGS;n++)
10314 {
10315 if(f_regmap[n]==regs[i].regmap[hr]) {f_regmap[n]=-1;}
10316 }
10317 // and alloc new one
10318 f_regmap[hr]=regs[i].regmap[hr];
10319 }
10320 }
57871462 10321 }
10322 }
10323 // Try to restore cycle count at branch targets
10324 if(bt[i]) {
10325 for(j=i;j<slen-1;j++) {
10326 if(regs[j].regmap[HOST_CCREG]!=-1) break;
e1190b87 10327 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) {
10328 //printf("no free regs for store %x\n",start+j*4);
10329 break;
57871462 10330 }
57871462 10331 }
10332 if(regs[j].regmap[HOST_CCREG]==CCREG) {
10333 int k=i;
10334 //printf("Extend CC, %x -> %x\n",start+k*4,start+j*4);
10335 while(k<j) {
10336 regs[k].regmap_entry[HOST_CCREG]=CCREG;
10337 regs[k].regmap[HOST_CCREG]=CCREG;
10338 regmap_pre[k+1][HOST_CCREG]=CCREG;
10339 regs[k+1].wasdirty|=1<<HOST_CCREG;
10340 regs[k].dirty|=1<<HOST_CCREG;
10341 regs[k].wasconst&=~(1<<HOST_CCREG);
10342 regs[k].isconst&=~(1<<HOST_CCREG);
10343 k++;
10344 }
10345 regs[j].regmap_entry[HOST_CCREG]=CCREG;
10346 }
10347 // Work backwards from the branch target
10348 if(j>i&&f_regmap[HOST_CCREG]==CCREG)
10349 {
10350 //printf("Extend backwards\n");
10351 int k;
10352 k=i;
10353 while(regs[k-1].regmap[HOST_CCREG]==-1) {
e1190b87 10354 if(count_free_regs(regs[k-1].regmap)<=minimum_free_regs[k-1]) {
10355 //printf("no free regs for store %x\n",start+(k-1)*4);
10356 break;
57871462 10357 }
57871462 10358 k--;
10359 }
10360 if(regs[k-1].regmap[HOST_CCREG]==CCREG) {
10361 //printf("Extend CC, %x ->\n",start+k*4);
10362 while(k<=i) {
10363 regs[k].regmap_entry[HOST_CCREG]=CCREG;
10364 regs[k].regmap[HOST_CCREG]=CCREG;
10365 regmap_pre[k+1][HOST_CCREG]=CCREG;
10366 regs[k+1].wasdirty|=1<<HOST_CCREG;
10367 regs[k].dirty|=1<<HOST_CCREG;
10368 regs[k].wasconst&=~(1<<HOST_CCREG);
10369 regs[k].isconst&=~(1<<HOST_CCREG);
10370 k++;
10371 }
10372 }
10373 else {
10374 //printf("Fail Extend CC, %x ->\n",start+k*4);
10375 }
10376 }
10377 }
10378 if(itype[i]!=STORE&&itype[i]!=STORELR&&itype[i]!=C1LS&&itype[i]!=SHIFT&&
10379 itype[i]!=NOP&&itype[i]!=MOV&&itype[i]!=ALU&&itype[i]!=SHIFTIMM&&
10380 itype[i]!=IMM16&&itype[i]!=LOAD&&itype[i]!=COP1&&itype[i]!=FLOAT&&
e1190b87 10381 itype[i]!=FCONV&&itype[i]!=FCOMP)
57871462 10382 {
10383 memcpy(f_regmap,regs[i].regmap,sizeof(f_regmap));
10384 }
10385 }
10386 }
10387
d61de97e 10388 // Cache memory offset or tlb map pointer if a register is available
10389 #ifndef HOST_IMM_ADDR32
10390 #ifndef RAM_OFFSET
10391 if(using_tlb)
10392 #endif
10393 {
10394 int earliest_available[HOST_REGS];
10395 int loop_start[HOST_REGS];
10396 int score[HOST_REGS];
10397 int end[HOST_REGS];
10398 int reg=using_tlb?MMREG:ROREG;
10399
10400 // Init
10401 for(hr=0;hr<HOST_REGS;hr++) {
10402 score[hr]=0;earliest_available[hr]=0;
10403 loop_start[hr]=MAXBLOCK;
10404 }
10405 for(i=0;i<slen-1;i++)
10406 {
10407 // Can't do anything if no registers are available
10408 if(count_free_regs(regs[i].regmap)<=minimum_free_regs[i]) {
10409 for(hr=0;hr<HOST_REGS;hr++) {
10410 score[hr]=0;earliest_available[hr]=i+1;
10411 loop_start[hr]=MAXBLOCK;
10412 }
10413 }
10414 if(itype[i]==UJUMP||itype[i]==RJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP) {
10415 if(!ooo[i]) {
10416 if(count_free_regs(branch_regs[i].regmap)<=minimum_free_regs[i+1]) {
10417 for(hr=0;hr<HOST_REGS;hr++) {
10418 score[hr]=0;earliest_available[hr]=i+1;
10419 loop_start[hr]=MAXBLOCK;
10420 }
10421 }
198df76f 10422 }else{
10423 if(count_free_regs(regs[i].regmap)<=minimum_free_regs[i+1]) {
10424 for(hr=0;hr<HOST_REGS;hr++) {
10425 score[hr]=0;earliest_available[hr]=i+1;
10426 loop_start[hr]=MAXBLOCK;
10427 }
10428 }
d61de97e 10429 }
10430 }
10431 // Mark unavailable registers
10432 for(hr=0;hr<HOST_REGS;hr++) {
10433 if(regs[i].regmap[hr]>=0) {
10434 score[hr]=0;earliest_available[hr]=i+1;
10435 loop_start[hr]=MAXBLOCK;
10436 }
10437 if(itype[i]==UJUMP||itype[i]==RJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP) {
10438 if(branch_regs[i].regmap[hr]>=0) {
10439 score[hr]=0;earliest_available[hr]=i+2;
10440 loop_start[hr]=MAXBLOCK;
10441 }
10442 }
10443 }
10444 // No register allocations after unconditional jumps
10445 if(itype[i]==UJUMP||itype[i]==RJUMP||(source[i]>>16)==0x1000)
10446 {
10447 for(hr=0;hr<HOST_REGS;hr++) {
10448 score[hr]=0;earliest_available[hr]=i+2;
10449 loop_start[hr]=MAXBLOCK;
10450 }
10451 i++; // Skip delay slot too
10452 //printf("skip delay slot: %x\n",start+i*4);
10453 }
10454 else
10455 // Possible match
10456 if(itype[i]==LOAD||itype[i]==LOADLR||
10457 itype[i]==STORE||itype[i]==STORELR||itype[i]==C1LS) {
10458 for(hr=0;hr<HOST_REGS;hr++) {
10459 if(hr!=EXCLUDE_REG) {
10460 end[hr]=i-1;
10461 for(j=i;j<slen-1;j++) {
10462 if(regs[j].regmap[hr]>=0) break;
10463 if(itype[j]==UJUMP||itype[j]==RJUMP||itype[j]==CJUMP||itype[j]==SJUMP||itype[j]==FJUMP) {
10464 if(branch_regs[j].regmap[hr]>=0) break;
10465 if(ooo[j]) {
10466 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j+1]) break;
10467 }else{
10468 if(count_free_regs(branch_regs[j].regmap)<=minimum_free_regs[j+1]) break;
10469 }
10470 }
10471 else if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) break;
10472 if(itype[j]==UJUMP||itype[j]==RJUMP||itype[j]==CJUMP||itype[j]==SJUMP||itype[j]==FJUMP) {
10473 int t=(ba[j]-start)>>2;
10474 if(t<j&&t>=earliest_available[hr]) {
198df76f 10475 if(t==1||(t>1&&itype[t-2]!=UJUMP&&itype[t-2]!=RJUMP)||(t>1&&rt1[t-2]!=31)) { // call/ret assumes no registers allocated
10476 // Score a point for hoisting loop invariant
10477 if(t<loop_start[hr]) loop_start[hr]=t;
10478 //printf("set loop_start: i=%x j=%x (%x)\n",start+i*4,start+j*4,start+t*4);
10479 score[hr]++;
10480 end[hr]=j;
10481 }
d61de97e 10482 }
10483 else if(t<j) {
10484 if(regs[t].regmap[hr]==reg) {
10485 // Score a point if the branch target matches this register
10486 score[hr]++;
10487 end[hr]=j;
10488 }
10489 }
10490 if(itype[j+1]==LOAD||itype[j+1]==LOADLR||
10491 itype[j+1]==STORE||itype[j+1]==STORELR||itype[j+1]==C1LS) {
10492 score[hr]++;
10493 end[hr]=j;
10494 }
10495 }
10496 if(itype[j]==UJUMP||itype[j]==RJUMP||(source[j]>>16)==0x1000)
10497 {
10498 // Stop on unconditional branch
10499 break;
10500 }
10501 else
10502 if(itype[j]==LOAD||itype[j]==LOADLR||
10503 itype[j]==STORE||itype[j]==STORELR||itype[j]==C1LS) {
10504 score[hr]++;
10505 end[hr]=j;
10506 }
10507 }
10508 }
10509 }
10510 // Find highest score and allocate that register
10511 int maxscore=0;
10512 for(hr=0;hr<HOST_REGS;hr++) {
10513 if(hr!=EXCLUDE_REG) {
10514 if(score[hr]>score[maxscore]) {
10515 maxscore=hr;
10516 //printf("highest score: %d %d (%x->%x)\n",score[hr],hr,start+i*4,start+end[hr]*4);
10517 }
10518 }
10519 }
10520 if(score[maxscore]>1)
10521 {
10522 if(i<loop_start[maxscore]) loop_start[maxscore]=i;
10523 for(j=loop_start[maxscore];j<slen&&j<=end[maxscore];j++) {
10524 //if(regs[j].regmap[maxscore]>=0) {printf("oops: %x %x was %d=%d\n",loop_start[maxscore]*4+start,j*4+start,maxscore,regs[j].regmap[maxscore]);}
10525 assert(regs[j].regmap[maxscore]<0);
10526 if(j>loop_start[maxscore]) regs[j].regmap_entry[maxscore]=reg;
10527 regs[j].regmap[maxscore]=reg;
10528 regs[j].dirty&=~(1<<maxscore);
10529 regs[j].wasconst&=~(1<<maxscore);
10530 regs[j].isconst&=~(1<<maxscore);
10531 if(itype[j]==UJUMP||itype[j]==RJUMP||itype[j]==CJUMP||itype[j]==SJUMP||itype[j]==FJUMP) {
10532 branch_regs[j].regmap[maxscore]=reg;
10533 branch_regs[j].wasdirty&=~(1<<maxscore);
10534 branch_regs[j].dirty&=~(1<<maxscore);
10535 branch_regs[j].wasconst&=~(1<<maxscore);
10536 branch_regs[j].isconst&=~(1<<maxscore);
10537 if(itype[j]!=RJUMP&&itype[j]!=UJUMP&&(source[j]>>16)!=0x1000) {
10538 regmap_pre[j+2][maxscore]=reg;
10539 regs[j+2].wasdirty&=~(1<<maxscore);
10540 }
10541 // loop optimization (loop_preload)
10542 int t=(ba[j]-start)>>2;
198df76f 10543 if(t==loop_start[maxscore]) {
10544 if(t==1||(t>1&&itype[t-2]!=UJUMP&&itype[t-2]!=RJUMP)||(t>1&&rt1[t-2]!=31)) // call/ret assumes no registers allocated
10545 regs[t].regmap_entry[maxscore]=reg;
10546 }
d61de97e 10547 }
10548 else
10549 {
10550 if(j<1||(itype[j-1]!=RJUMP&&itype[j-1]!=UJUMP&&itype[j-1]!=CJUMP&&itype[j-1]!=SJUMP&&itype[j-1]!=FJUMP)) {
10551 regmap_pre[j+1][maxscore]=reg;
10552 regs[j+1].wasdirty&=~(1<<maxscore);
10553 }
10554 }
10555 }
10556 i=j-1;
10557 if(itype[j-1]==RJUMP||itype[j-1]==UJUMP||itype[j-1]==CJUMP||itype[j-1]==SJUMP||itype[j-1]==FJUMP) i++; // skip delay slot
10558 for(hr=0;hr<HOST_REGS;hr++) {
10559 score[hr]=0;earliest_available[hr]=i+i;
10560 loop_start[hr]=MAXBLOCK;
10561 }
10562 }
10563 }
10564 }
10565 }
10566 #endif
10567
57871462 10568 // This allocates registers (if possible) one instruction prior
10569 // to use, which can avoid a load-use penalty on certain CPUs.
10570 for(i=0;i<slen-1;i++)
10571 {
10572 if(!i||(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP))
10573 {
10574 if(!bt[i+1])
10575 {
b9b61529 10576 if(itype[i]==ALU||itype[i]==MOV||itype[i]==LOAD||itype[i]==SHIFTIMM||itype[i]==IMM16
10577 ||((itype[i]==COP1||itype[i]==COP2)&&opcode2[i]<3))
57871462 10578 {
10579 if(rs1[i+1]) {
10580 if((hr=get_reg(regs[i+1].regmap,rs1[i+1]))>=0)
10581 {
10582 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10583 {
10584 regs[i].regmap[hr]=regs[i+1].regmap[hr];
10585 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
10586 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
10587 regs[i].isconst&=~(1<<hr);
10588 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10589 constmap[i][hr]=constmap[i+1][hr];
10590 regs[i+1].wasdirty&=~(1<<hr);
10591 regs[i].dirty&=~(1<<hr);
10592 }
10593 }
10594 }
10595 if(rs2[i+1]) {
10596 if((hr=get_reg(regs[i+1].regmap,rs2[i+1]))>=0)
10597 {
10598 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10599 {
10600 regs[i].regmap[hr]=regs[i+1].regmap[hr];
10601 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
10602 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
10603 regs[i].isconst&=~(1<<hr);
10604 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10605 constmap[i][hr]=constmap[i+1][hr];
10606 regs[i+1].wasdirty&=~(1<<hr);
10607 regs[i].dirty&=~(1<<hr);
10608 }
10609 }
10610 }
198df76f 10611 // Preload target address for load instruction (non-constant)
57871462 10612 if(itype[i+1]==LOAD&&rs1[i+1]&&get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10613 if((hr=get_reg(regs[i+1].regmap,rt1[i+1]))>=0)
10614 {
10615 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10616 {
10617 regs[i].regmap[hr]=rs1[i+1];
10618 regmap_pre[i+1][hr]=rs1[i+1];
10619 regs[i+1].regmap_entry[hr]=rs1[i+1];
10620 regs[i].isconst&=~(1<<hr);
10621 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10622 constmap[i][hr]=constmap[i+1][hr];
10623 regs[i+1].wasdirty&=~(1<<hr);
10624 regs[i].dirty&=~(1<<hr);
10625 }
10626 }
10627 }
198df76f 10628 // Load source into target register
57871462 10629 if(lt1[i+1]&&get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10630 if((hr=get_reg(regs[i+1].regmap,rt1[i+1]))>=0)
10631 {
10632 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10633 {
10634 regs[i].regmap[hr]=rs1[i+1];
10635 regmap_pre[i+1][hr]=rs1[i+1];
10636 regs[i+1].regmap_entry[hr]=rs1[i+1];
10637 regs[i].isconst&=~(1<<hr);
10638 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10639 constmap[i][hr]=constmap[i+1][hr];
10640 regs[i+1].wasdirty&=~(1<<hr);
10641 regs[i].dirty&=~(1<<hr);
10642 }
10643 }
10644 }
198df76f 10645 // Preload map address
57871462 10646 #ifndef HOST_IMM_ADDR32
b9b61529 10647 if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS||itype[i+1]==C2LS) {
57871462 10648 hr=get_reg(regs[i+1].regmap,TLREG);
10649 if(hr>=0) {
10650 int sr=get_reg(regs[i+1].regmap,rs1[i+1]);
10651 if(sr>=0&&((regs[i+1].wasconst>>sr)&1)) {
10652 int nr;
10653 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10654 {
10655 regs[i].regmap[hr]=MGEN1+((i+1)&1);
10656 regmap_pre[i+1][hr]=MGEN1+((i+1)&1);
10657 regs[i+1].regmap_entry[hr]=MGEN1+((i+1)&1);
10658 regs[i].isconst&=~(1<<hr);
10659 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10660 constmap[i][hr]=constmap[i+1][hr];
10661 regs[i+1].wasdirty&=~(1<<hr);
10662 regs[i].dirty&=~(1<<hr);
10663 }
10664 else if((nr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1))>=0)
10665 {
10666 // move it to another register
10667 regs[i+1].regmap[hr]=-1;
10668 regmap_pre[i+2][hr]=-1;
10669 regs[i+1].regmap[nr]=TLREG;
10670 regmap_pre[i+2][nr]=TLREG;
10671 regs[i].regmap[nr]=MGEN1+((i+1)&1);
10672 regmap_pre[i+1][nr]=MGEN1+((i+1)&1);
10673 regs[i+1].regmap_entry[nr]=MGEN1+((i+1)&1);
10674 regs[i].isconst&=~(1<<nr);
10675 regs[i+1].isconst&=~(1<<nr);
10676 regs[i].dirty&=~(1<<nr);
10677 regs[i+1].wasdirty&=~(1<<nr);
10678 regs[i+1].dirty&=~(1<<nr);
10679 regs[i+2].wasdirty&=~(1<<nr);
10680 }
10681 }
10682 }
10683 }
10684 #endif
198df76f 10685 // Address for store instruction (non-constant)
b9b61529 10686 if(itype[i+1]==STORE||itype[i+1]==STORELR
10687 ||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SB/SH/SW/SD/SWC1/SDC1/SWC2/SDC2
57871462 10688 if(get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10689 hr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1);
10690 if(hr<0) hr=get_reg(regs[i+1].regmap,-1);
10691 else {regs[i+1].regmap[hr]=AGEN1+((i+1)&1);regs[i+1].isconst&=~(1<<hr);}
10692 assert(hr>=0);
10693 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10694 {
10695 regs[i].regmap[hr]=rs1[i+1];
10696 regmap_pre[i+1][hr]=rs1[i+1];
10697 regs[i+1].regmap_entry[hr]=rs1[i+1];
10698 regs[i].isconst&=~(1<<hr);
10699 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10700 constmap[i][hr]=constmap[i+1][hr];
10701 regs[i+1].wasdirty&=~(1<<hr);
10702 regs[i].dirty&=~(1<<hr);
10703 }
10704 }
10705 }
b9b61529 10706 if(itype[i+1]==LOADLR||(opcode[i+1]&0x3b)==0x31||(opcode[i+1]&0x3b)==0x32) { // LWC1/LDC1, LWC2/LDC2
57871462 10707 if(get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10708 int nr;
10709 hr=get_reg(regs[i+1].regmap,FTEMP);
10710 assert(hr>=0);
10711 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10712 {
10713 regs[i].regmap[hr]=rs1[i+1];
10714 regmap_pre[i+1][hr]=rs1[i+1];
10715 regs[i+1].regmap_entry[hr]=rs1[i+1];
10716 regs[i].isconst&=~(1<<hr);
10717 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10718 constmap[i][hr]=constmap[i+1][hr];
10719 regs[i+1].wasdirty&=~(1<<hr);
10720 regs[i].dirty&=~(1<<hr);
10721 }
10722 else if((nr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1))>=0)
10723 {
10724 // move it to another register
10725 regs[i+1].regmap[hr]=-1;
10726 regmap_pre[i+2][hr]=-1;
10727 regs[i+1].regmap[nr]=FTEMP;
10728 regmap_pre[i+2][nr]=FTEMP;
10729 regs[i].regmap[nr]=rs1[i+1];
10730 regmap_pre[i+1][nr]=rs1[i+1];
10731 regs[i+1].regmap_entry[nr]=rs1[i+1];
10732 regs[i].isconst&=~(1<<nr);
10733 regs[i+1].isconst&=~(1<<nr);
10734 regs[i].dirty&=~(1<<nr);
10735 regs[i+1].wasdirty&=~(1<<nr);
10736 regs[i+1].dirty&=~(1<<nr);
10737 regs[i+2].wasdirty&=~(1<<nr);
10738 }
10739 }
10740 }
b9b61529 10741 if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR/*||itype[i+1]==C1LS||||itype[i+1]==C2LS*/) {
57871462 10742 if(itype[i+1]==LOAD)
10743 hr=get_reg(regs[i+1].regmap,rt1[i+1]);
b9b61529 10744 if(itype[i+1]==LOADLR||(opcode[i+1]&0x3b)==0x31||(opcode[i+1]&0x3b)==0x32) // LWC1/LDC1, LWC2/LDC2
57871462 10745 hr=get_reg(regs[i+1].regmap,FTEMP);
b9b61529 10746 if(itype[i+1]==STORE||itype[i+1]==STORELR||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1/SWC2/SDC2
57871462 10747 hr=get_reg(regs[i+1].regmap,AGEN1+((i+1)&1));
10748 if(hr<0) hr=get_reg(regs[i+1].regmap,-1);
10749 }
10750 if(hr>=0&&regs[i].regmap[hr]<0) {
10751 int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
10752 if(rs>=0&&((regs[i+1].wasconst>>rs)&1)) {
10753 regs[i].regmap[hr]=AGEN1+((i+1)&1);
10754 regmap_pre[i+1][hr]=AGEN1+((i+1)&1);
10755 regs[i+1].regmap_entry[hr]=AGEN1+((i+1)&1);
10756 regs[i].isconst&=~(1<<hr);
10757 regs[i+1].wasdirty&=~(1<<hr);
10758 regs[i].dirty&=~(1<<hr);
10759 }
10760 }
10761 }
10762 }
10763 }
10764 }
10765 }
10766
10767 /* Pass 6 - Optimize clean/dirty state */
10768 clean_registers(0,slen-1,1);
10769
10770 /* Pass 7 - Identify 32-bit registers */
a28c6ce8 10771#ifndef FORCE32
57871462 10772 provisional_r32();
10773
10774 u_int r32=0;
10775
10776 for (i=slen-1;i>=0;i--)
10777 {
10778 int hr;
10779 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
10780 {
10781 if(ba[i]<start || ba[i]>=(start+slen*4))
10782 {
10783 // Branch out of this block, don't need anything
10784 r32=0;
10785 }
10786 else
10787 {
10788 // Internal branch
10789 // Need whatever matches the target
10790 // (and doesn't get overwritten by the delay slot instruction)
10791 r32=0;
10792 int t=(ba[i]-start)>>2;
10793 if(ba[i]>start+i*4) {
10794 // Forward branch
10795 if(!(requires_32bit[t]&~regs[i].was32))
10796 r32|=requires_32bit[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
10797 }else{
10798 // Backward branch
10799 //if(!(regs[t].was32&~unneeded_reg_upper[t]&~regs[i].was32))
10800 // r32|=regs[t].was32&~unneeded_reg_upper[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
10801 if(!(pr32[t]&~regs[i].was32))
10802 r32|=pr32[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
10803 }
10804 }
10805 // Conditional branch may need registers for following instructions
10806 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
10807 {
10808 if(i<slen-2) {
10809 r32|=requires_32bit[i+2];
10810 r32&=regs[i].was32;
10811 // Mark this address as a branch target since it may be called
10812 // upon return from interrupt
10813 bt[i+2]=1;
10814 }
10815 }
10816 // Merge in delay slot
10817 if(!likely[i]) {
10818 // These are overwritten unless the branch is "likely"
10819 // and the delay slot is nullified if not taken
10820 r32&=~(1LL<<rt1[i+1]);
10821 r32&=~(1LL<<rt2[i+1]);
10822 }
10823 // Assume these are needed (delay slot)
10824 if(us1[i+1]>0)
10825 {
10826 if((regs[i].was32>>us1[i+1])&1) r32|=1LL<<us1[i+1];
10827 }
10828 if(us2[i+1]>0)
10829 {
10830 if((regs[i].was32>>us2[i+1])&1) r32|=1LL<<us2[i+1];
10831 }
10832 if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1))
10833 {
10834 if((regs[i].was32>>dep1[i+1])&1) r32|=1LL<<dep1[i+1];
10835 }
10836 if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1))
10837 {
10838 if((regs[i].was32>>dep2[i+1])&1) r32|=1LL<<dep2[i+1];
10839 }
10840 }
1e973cb0 10841 else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
57871462 10842 {
10843 // SYSCALL instruction (software interrupt)
10844 r32=0;
10845 }
10846 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
10847 {
10848 // ERET instruction (return from interrupt)
10849 r32=0;
10850 }
10851 // Check 32 bits
10852 r32&=~(1LL<<rt1[i]);
10853 r32&=~(1LL<<rt2[i]);
10854 if(us1[i]>0)
10855 {
10856 if((regs[i].was32>>us1[i])&1) r32|=1LL<<us1[i];
10857 }
10858 if(us2[i]>0)
10859 {
10860 if((regs[i].was32>>us2[i])&1) r32|=1LL<<us2[i];
10861 }
10862 if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1))
10863 {
10864 if((regs[i].was32>>dep1[i])&1) r32|=1LL<<dep1[i];
10865 }
10866 if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1))
10867 {
10868 if((regs[i].was32>>dep2[i])&1) r32|=1LL<<dep2[i];
10869 }
10870 requires_32bit[i]=r32;
10871
10872 // Dirty registers which are 32-bit, require 32-bit input
10873 // as they will be written as 32-bit values
10874 for(hr=0;hr<HOST_REGS;hr++)
10875 {
10876 if(regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64) {
10877 if((regs[i].was32>>regs[i].regmap_entry[hr])&(regs[i].wasdirty>>hr)&1) {
10878 if(!((unneeded_reg_upper[i]>>regs[i].regmap_entry[hr])&1))
10879 requires_32bit[i]|=1LL<<regs[i].regmap_entry[hr];
10880 }
10881 }
10882 }
10883 //requires_32bit[i]=is32[i]&~unneeded_reg_upper[i]; // DEBUG
10884 }
04fd948a 10885#else
10886 for (i=slen-1;i>=0;i--)
10887 {
10888 if(itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
10889 {
10890 // Conditional branch
10891 if((source[i]>>16)!=0x1000&&i<slen-2) {
10892 // Mark this address as a branch target since it may be called
10893 // upon return from interrupt
10894 bt[i+2]=1;
10895 }
10896 }
10897 }
a28c6ce8 10898#endif
57871462 10899
10900 if(itype[slen-1]==SPAN) {
10901 bt[slen-1]=1; // Mark as a branch target so instruction can restart after exception
10902 }
4600ba03 10903
10904#ifdef DISASM
57871462 10905 /* Debug/disassembly */
57871462 10906 for(i=0;i<slen;i++)
10907 {
10908 printf("U:");
10909 int r;
10910 for(r=1;r<=CCREG;r++) {
10911 if((unneeded_reg[i]>>r)&1) {
10912 if(r==HIREG) printf(" HI");
10913 else if(r==LOREG) printf(" LO");
10914 else printf(" r%d",r);
10915 }
10916 }
90ae6d4e 10917#ifndef FORCE32
57871462 10918 printf(" UU:");
10919 for(r=1;r<=CCREG;r++) {
10920 if(((unneeded_reg_upper[i]&~unneeded_reg[i])>>r)&1) {
10921 if(r==HIREG) printf(" HI");
10922 else if(r==LOREG) printf(" LO");
10923 else printf(" r%d",r);
10924 }
10925 }
10926 printf(" 32:");
10927 for(r=0;r<=CCREG;r++) {
10928 //if(((is32[i]>>r)&(~unneeded_reg[i]>>r))&1) {
10929 if((regs[i].was32>>r)&1) {
10930 if(r==CCREG) printf(" CC");
10931 else if(r==HIREG) printf(" HI");
10932 else if(r==LOREG) printf(" LO");
10933 else printf(" r%d",r);
10934 }
10935 }
90ae6d4e 10936#endif
57871462 10937 printf("\n");
10938 #if defined(__i386__) || defined(__x86_64__)
10939 printf("pre: eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",regmap_pre[i][0],regmap_pre[i][1],regmap_pre[i][2],regmap_pre[i][3],regmap_pre[i][5],regmap_pre[i][6],regmap_pre[i][7]);
10940 #endif
10941 #ifdef __arm__
10942 printf("pre: r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d\n",regmap_pre[i][0],regmap_pre[i][1],regmap_pre[i][2],regmap_pre[i][3],regmap_pre[i][4],regmap_pre[i][5],regmap_pre[i][6],regmap_pre[i][7],regmap_pre[i][8],regmap_pre[i][9],regmap_pre[i][10],regmap_pre[i][12]);
10943 #endif
10944 printf("needs: ");
10945 if(needed_reg[i]&1) printf("eax ");
10946 if((needed_reg[i]>>1)&1) printf("ecx ");
10947 if((needed_reg[i]>>2)&1) printf("edx ");
10948 if((needed_reg[i]>>3)&1) printf("ebx ");
10949 if((needed_reg[i]>>5)&1) printf("ebp ");
10950 if((needed_reg[i]>>6)&1) printf("esi ");
10951 if((needed_reg[i]>>7)&1) printf("edi ");
10952 printf("r:");
10953 for(r=0;r<=CCREG;r++) {
10954 //if(((requires_32bit[i]>>r)&(~unneeded_reg[i]>>r))&1) {
10955 if((requires_32bit[i]>>r)&1) {
10956 if(r==CCREG) printf(" CC");
10957 else if(r==HIREG) printf(" HI");
10958 else if(r==LOREG) printf(" LO");
10959 else printf(" r%d",r);
10960 }
10961 }
10962 printf("\n");
10963 /*printf("pr:");
10964 for(r=0;r<=CCREG;r++) {
10965 //if(((requires_32bit[i]>>r)&(~unneeded_reg[i]>>r))&1) {
10966 if((pr32[i]>>r)&1) {
10967 if(r==CCREG) printf(" CC");
10968 else if(r==HIREG) printf(" HI");
10969 else if(r==LOREG) printf(" LO");
10970 else printf(" r%d",r);
10971 }
10972 }
10973 if(pr32[i]!=requires_32bit[i]) printf(" OOPS");
10974 printf("\n");*/
10975 #if defined(__i386__) || defined(__x86_64__)
10976 printf("entry: eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",regs[i].regmap_entry[0],regs[i].regmap_entry[1],regs[i].regmap_entry[2],regs[i].regmap_entry[3],regs[i].regmap_entry[5],regs[i].regmap_entry[6],regs[i].regmap_entry[7]);
10977 printf("dirty: ");
10978 if(regs[i].wasdirty&1) printf("eax ");
10979 if((regs[i].wasdirty>>1)&1) printf("ecx ");
10980 if((regs[i].wasdirty>>2)&1) printf("edx ");
10981 if((regs[i].wasdirty>>3)&1) printf("ebx ");
10982 if((regs[i].wasdirty>>5)&1) printf("ebp ");
10983 if((regs[i].wasdirty>>6)&1) printf("esi ");
10984 if((regs[i].wasdirty>>7)&1) printf("edi ");
10985 #endif
10986 #ifdef __arm__
10987 printf("entry: r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d\n",regs[i].regmap_entry[0],regs[i].regmap_entry[1],regs[i].regmap_entry[2],regs[i].regmap_entry[3],regs[i].regmap_entry[4],regs[i].regmap_entry[5],regs[i].regmap_entry[6],regs[i].regmap_entry[7],regs[i].regmap_entry[8],regs[i].regmap_entry[9],regs[i].regmap_entry[10],regs[i].regmap_entry[12]);
10988 printf("dirty: ");
10989 if(regs[i].wasdirty&1) printf("r0 ");
10990 if((regs[i].wasdirty>>1)&1) printf("r1 ");
10991 if((regs[i].wasdirty>>2)&1) printf("r2 ");
10992 if((regs[i].wasdirty>>3)&1) printf("r3 ");
10993 if((regs[i].wasdirty>>4)&1) printf("r4 ");
10994 if((regs[i].wasdirty>>5)&1) printf("r5 ");
10995 if((regs[i].wasdirty>>6)&1) printf("r6 ");
10996 if((regs[i].wasdirty>>7)&1) printf("r7 ");
10997 if((regs[i].wasdirty>>8)&1) printf("r8 ");
10998 if((regs[i].wasdirty>>9)&1) printf("r9 ");
10999 if((regs[i].wasdirty>>10)&1) printf("r10 ");
11000 if((regs[i].wasdirty>>12)&1) printf("r12 ");
11001 #endif
11002 printf("\n");
11003 disassemble_inst(i);
11004 //printf ("ccadj[%d] = %d\n",i,ccadj[i]);
11005 #if defined(__i386__) || defined(__x86_64__)
11006 printf("eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d dirty: ",regs[i].regmap[0],regs[i].regmap[1],regs[i].regmap[2],regs[i].regmap[3],regs[i].regmap[5],regs[i].regmap[6],regs[i].regmap[7]);
11007 if(regs[i].dirty&1) printf("eax ");
11008 if((regs[i].dirty>>1)&1) printf("ecx ");
11009 if((regs[i].dirty>>2)&1) printf("edx ");
11010 if((regs[i].dirty>>3)&1) printf("ebx ");
11011 if((regs[i].dirty>>5)&1) printf("ebp ");
11012 if((regs[i].dirty>>6)&1) printf("esi ");
11013 if((regs[i].dirty>>7)&1) printf("edi ");
11014 #endif
11015 #ifdef __arm__
11016 printf("r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d dirty: ",regs[i].regmap[0],regs[i].regmap[1],regs[i].regmap[2],regs[i].regmap[3],regs[i].regmap[4],regs[i].regmap[5],regs[i].regmap[6],regs[i].regmap[7],regs[i].regmap[8],regs[i].regmap[9],regs[i].regmap[10],regs[i].regmap[12]);
11017 if(regs[i].dirty&1) printf("r0 ");
11018 if((regs[i].dirty>>1)&1) printf("r1 ");
11019 if((regs[i].dirty>>2)&1) printf("r2 ");
11020 if((regs[i].dirty>>3)&1) printf("r3 ");
11021 if((regs[i].dirty>>4)&1) printf("r4 ");
11022 if((regs[i].dirty>>5)&1) printf("r5 ");
11023 if((regs[i].dirty>>6)&1) printf("r6 ");
11024 if((regs[i].dirty>>7)&1) printf("r7 ");
11025 if((regs[i].dirty>>8)&1) printf("r8 ");
11026 if((regs[i].dirty>>9)&1) printf("r9 ");
11027 if((regs[i].dirty>>10)&1) printf("r10 ");
11028 if((regs[i].dirty>>12)&1) printf("r12 ");
11029 #endif
11030 printf("\n");
11031 if(regs[i].isconst) {
11032 printf("constants: ");
11033 #if defined(__i386__) || defined(__x86_64__)
11034 if(regs[i].isconst&1) printf("eax=%x ",(int)constmap[i][0]);
11035 if((regs[i].isconst>>1)&1) printf("ecx=%x ",(int)constmap[i][1]);
11036 if((regs[i].isconst>>2)&1) printf("edx=%x ",(int)constmap[i][2]);
11037 if((regs[i].isconst>>3)&1) printf("ebx=%x ",(int)constmap[i][3]);
11038 if((regs[i].isconst>>5)&1) printf("ebp=%x ",(int)constmap[i][5]);
11039 if((regs[i].isconst>>6)&1) printf("esi=%x ",(int)constmap[i][6]);
11040 if((regs[i].isconst>>7)&1) printf("edi=%x ",(int)constmap[i][7]);
11041 #endif
11042 #ifdef __arm__
11043 if(regs[i].isconst&1) printf("r0=%x ",(int)constmap[i][0]);
11044 if((regs[i].isconst>>1)&1) printf("r1=%x ",(int)constmap[i][1]);
11045 if((regs[i].isconst>>2)&1) printf("r2=%x ",(int)constmap[i][2]);
11046 if((regs[i].isconst>>3)&1) printf("r3=%x ",(int)constmap[i][3]);
11047 if((regs[i].isconst>>4)&1) printf("r4=%x ",(int)constmap[i][4]);
11048 if((regs[i].isconst>>5)&1) printf("r5=%x ",(int)constmap[i][5]);
11049 if((regs[i].isconst>>6)&1) printf("r6=%x ",(int)constmap[i][6]);
11050 if((regs[i].isconst>>7)&1) printf("r7=%x ",(int)constmap[i][7]);
11051 if((regs[i].isconst>>8)&1) printf("r8=%x ",(int)constmap[i][8]);
11052 if((regs[i].isconst>>9)&1) printf("r9=%x ",(int)constmap[i][9]);
11053 if((regs[i].isconst>>10)&1) printf("r10=%x ",(int)constmap[i][10]);
11054 if((regs[i].isconst>>12)&1) printf("r12=%x ",(int)constmap[i][12]);
11055 #endif
11056 printf("\n");
11057 }
90ae6d4e 11058#ifndef FORCE32
57871462 11059 printf(" 32:");
11060 for(r=0;r<=CCREG;r++) {
11061 if((regs[i].is32>>r)&1) {
11062 if(r==CCREG) printf(" CC");
11063 else if(r==HIREG) printf(" HI");
11064 else if(r==LOREG) printf(" LO");
11065 else printf(" r%d",r);
11066 }
11067 }
11068 printf("\n");
90ae6d4e 11069#endif
57871462 11070 /*printf(" p32:");
11071 for(r=0;r<=CCREG;r++) {
11072 if((p32[i]>>r)&1) {
11073 if(r==CCREG) printf(" CC");
11074 else if(r==HIREG) printf(" HI");
11075 else if(r==LOREG) printf(" LO");
11076 else printf(" r%d",r);
11077 }
11078 }
11079 if(p32[i]!=regs[i].is32) printf(" NO MATCH\n");
11080 else printf("\n");*/
11081 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP) {
11082 #if defined(__i386__) || defined(__x86_64__)
11083 printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d dirty: ",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
11084 if(branch_regs[i].dirty&1) printf("eax ");
11085 if((branch_regs[i].dirty>>1)&1) printf("ecx ");
11086 if((branch_regs[i].dirty>>2)&1) printf("edx ");
11087 if((branch_regs[i].dirty>>3)&1) printf("ebx ");
11088 if((branch_regs[i].dirty>>5)&1) printf("ebp ");
11089 if((branch_regs[i].dirty>>6)&1) printf("esi ");
11090 if((branch_regs[i].dirty>>7)&1) printf("edi ");
11091 #endif
11092 #ifdef __arm__
11093 printf("branch(%d): r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d dirty: ",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[4],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7],branch_regs[i].regmap[8],branch_regs[i].regmap[9],branch_regs[i].regmap[10],branch_regs[i].regmap[12]);
11094 if(branch_regs[i].dirty&1) printf("r0 ");
11095 if((branch_regs[i].dirty>>1)&1) printf("r1 ");
11096 if((branch_regs[i].dirty>>2)&1) printf("r2 ");
11097 if((branch_regs[i].dirty>>3)&1) printf("r3 ");
11098 if((branch_regs[i].dirty>>4)&1) printf("r4 ");
11099 if((branch_regs[i].dirty>>5)&1) printf("r5 ");
11100 if((branch_regs[i].dirty>>6)&1) printf("r6 ");
11101 if((branch_regs[i].dirty>>7)&1) printf("r7 ");
11102 if((branch_regs[i].dirty>>8)&1) printf("r8 ");
11103 if((branch_regs[i].dirty>>9)&1) printf("r9 ");
11104 if((branch_regs[i].dirty>>10)&1) printf("r10 ");
11105 if((branch_regs[i].dirty>>12)&1) printf("r12 ");
11106 #endif
90ae6d4e 11107#ifndef FORCE32
57871462 11108 printf(" 32:");
11109 for(r=0;r<=CCREG;r++) {
11110 if((branch_regs[i].is32>>r)&1) {
11111 if(r==CCREG) printf(" CC");
11112 else if(r==HIREG) printf(" HI");
11113 else if(r==LOREG) printf(" LO");
11114 else printf(" r%d",r);
11115 }
11116 }
11117 printf("\n");
90ae6d4e 11118#endif
57871462 11119 }
11120 }
4600ba03 11121#endif // DISASM
57871462 11122
11123 /* Pass 8 - Assembly */
11124 linkcount=0;stubcount=0;
11125 ds=0;is_delayslot=0;
11126 cop1_usable=0;
11127 uint64_t is32_pre=0;
11128 u_int dirty_pre=0;
11129 u_int beginning=(u_int)out;
11130 if((u_int)addr&1) {
11131 ds=1;
11132 pagespan_ds();
11133 }
9ad4d757 11134 u_int instr_addr0_override=0;
11135
11136#ifdef PCSX
11137 if (start == 0x80030000) {
11138 // nasty hack for fastbios thing
96186eba 11139 // override block entry to this code
9ad4d757 11140 instr_addr0_override=(u_int)out;
11141 emit_movimm(start,0);
96186eba 11142 // abuse io address var as a flag that we
11143 // have already returned here once
11144 emit_readword((int)&address,1);
9ad4d757 11145 emit_writeword(0,(int)&pcaddr);
96186eba 11146 emit_writeword(0,(int)&address);
9ad4d757 11147 emit_cmp(0,1);
11148 emit_jne((int)new_dyna_leave);
11149 }
11150#endif
57871462 11151 for(i=0;i<slen;i++)
11152 {
11153 //if(ds) printf("ds: ");
4600ba03 11154 disassemble_inst(i);
57871462 11155 if(ds) {
11156 ds=0; // Skip delay slot
11157 if(bt[i]) assem_debug("OOPS - branch into delay slot\n");
11158 instr_addr[i]=0;
11159 } else {
11160 #ifndef DESTRUCTIVE_WRITEBACK
11161 if(i<2||(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000))
11162 {
11163 wb_sx(regmap_pre[i],regs[i].regmap_entry,regs[i].wasdirty,is32_pre,regs[i].was32,
11164 unneeded_reg[i],unneeded_reg_upper[i]);
11165 wb_valid(regmap_pre[i],regs[i].regmap_entry,dirty_pre,regs[i].wasdirty,is32_pre,
11166 unneeded_reg[i],unneeded_reg_upper[i]);
11167 }
f776eb14 11168 if((itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)&&!likely[i]) {
11169 is32_pre=branch_regs[i].is32;
11170 dirty_pre=branch_regs[i].dirty;
11171 }else{
11172 is32_pre=regs[i].is32;
11173 dirty_pre=regs[i].dirty;
11174 }
57871462 11175 #endif
11176 // write back
11177 if(i<2||(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000))
11178 {
11179 wb_invalidate(regmap_pre[i],regs[i].regmap_entry,regs[i].wasdirty,regs[i].was32,
11180 unneeded_reg[i],unneeded_reg_upper[i]);
11181 loop_preload(regmap_pre[i],regs[i].regmap_entry);
11182 }
11183 // branch target entry point
11184 instr_addr[i]=(u_int)out;
11185 assem_debug("<->\n");
11186 // load regs
11187 if(regs[i].regmap_entry[HOST_CCREG]==CCREG&&regs[i].regmap[HOST_CCREG]!=CCREG)
11188 wb_register(CCREG,regs[i].regmap_entry,regs[i].wasdirty,regs[i].was32);
11189 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i],rs2[i]);
11190 address_generation(i,&regs[i],regs[i].regmap_entry);
11191 load_consts(regmap_pre[i],regs[i].regmap,regs[i].was32,i);
11192 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
11193 {
11194 // Load the delay slot registers if necessary
4ef8f67d 11195 if(rs1[i+1]!=rs1[i]&&rs1[i+1]!=rs2[i]&&(rs1[i+1]!=rt1[i]||rt1[i]==0))
57871462 11196 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i+1],rs1[i+1]);
4ef8f67d 11197 if(rs2[i+1]!=rs1[i+1]&&rs2[i+1]!=rs1[i]&&rs2[i+1]!=rs2[i]&&(rs2[i+1]!=rt1[i]||rt1[i]==0))
57871462 11198 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs2[i+1],rs2[i+1]);
b9b61529 11199 if(itype[i+1]==STORE||itype[i+1]==STORELR||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a)
57871462 11200 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,INVCP,INVCP);
11201 }
11202 else if(i+1<slen)
11203 {
11204 // Preload registers for following instruction
11205 if(rs1[i+1]!=rs1[i]&&rs1[i+1]!=rs2[i])
11206 if(rs1[i+1]!=rt1[i]&&rs1[i+1]!=rt2[i])
11207 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i+1],rs1[i+1]);
11208 if(rs2[i+1]!=rs1[i+1]&&rs2[i+1]!=rs1[i]&&rs2[i+1]!=rs2[i])
11209 if(rs2[i+1]!=rt1[i]&&rs2[i+1]!=rt2[i])
11210 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs2[i+1],rs2[i+1]);
11211 }
11212 // TODO: if(is_ooo(i)) address_generation(i+1);
11213 if(itype[i]==CJUMP||itype[i]==FJUMP)
11214 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,CCREG,CCREG);
b9b61529 11215 if(itype[i]==STORE||itype[i]==STORELR||(opcode[i]&0x3b)==0x39||(opcode[i]&0x3b)==0x3a)
57871462 11216 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,INVCP,INVCP);
11217 if(bt[i]) cop1_usable=0;
11218 // assemble
11219 switch(itype[i]) {
11220 case ALU:
11221 alu_assemble(i,&regs[i]);break;
11222 case IMM16:
11223 imm16_assemble(i,&regs[i]);break;
11224 case SHIFT:
11225 shift_assemble(i,&regs[i]);break;
11226 case SHIFTIMM:
11227 shiftimm_assemble(i,&regs[i]);break;
11228 case LOAD:
11229 load_assemble(i,&regs[i]);break;
11230 case LOADLR:
11231 loadlr_assemble(i,&regs[i]);break;
11232 case STORE:
11233 store_assemble(i,&regs[i]);break;
11234 case STORELR:
11235 storelr_assemble(i,&regs[i]);break;
11236 case COP0:
11237 cop0_assemble(i,&regs[i]);break;
11238 case COP1:
11239 cop1_assemble(i,&regs[i]);break;
11240 case C1LS:
11241 c1ls_assemble(i,&regs[i]);break;
b9b61529 11242 case COP2:
11243 cop2_assemble(i,&regs[i]);break;
11244 case C2LS:
11245 c2ls_assemble(i,&regs[i]);break;
11246 case C2OP:
11247 c2op_assemble(i,&regs[i]);break;
57871462 11248 case FCONV:
11249 fconv_assemble(i,&regs[i]);break;
11250 case FLOAT:
11251 float_assemble(i,&regs[i]);break;
11252 case FCOMP:
11253 fcomp_assemble(i,&regs[i]);break;
11254 case MULTDIV:
11255 multdiv_assemble(i,&regs[i]);break;
11256 case MOV:
11257 mov_assemble(i,&regs[i]);break;
11258 case SYSCALL:
11259 syscall_assemble(i,&regs[i]);break;
7139f3c8 11260 case HLECALL:
11261 hlecall_assemble(i,&regs[i]);break;
1e973cb0 11262 case INTCALL:
11263 intcall_assemble(i,&regs[i]);break;
57871462 11264 case UJUMP:
11265 ujump_assemble(i,&regs[i]);ds=1;break;
11266 case RJUMP:
11267 rjump_assemble(i,&regs[i]);ds=1;break;
11268 case CJUMP:
11269 cjump_assemble(i,&regs[i]);ds=1;break;
11270 case SJUMP:
11271 sjump_assemble(i,&regs[i]);ds=1;break;
11272 case FJUMP:
11273 fjump_assemble(i,&regs[i]);ds=1;break;
11274 case SPAN:
11275 pagespan_assemble(i,&regs[i]);break;
11276 }
11277 if(itype[i]==UJUMP||itype[i]==RJUMP||(source[i]>>16)==0x1000)
11278 literal_pool(1024);
11279 else
11280 literal_pool_jumpover(256);
11281 }
11282 }
11283 //assert(itype[i-2]==UJUMP||itype[i-2]==RJUMP||(source[i-2]>>16)==0x1000);
11284 // If the block did not end with an unconditional branch,
11285 // add a jump to the next instruction.
11286 if(i>1) {
11287 if(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000&&itype[i-1]!=SPAN) {
11288 assert(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP);
11289 assert(i==slen);
11290 if(itype[i-2]!=CJUMP&&itype[i-2]!=SJUMP&&itype[i-2]!=FJUMP) {
11291 store_regs_bt(regs[i-1].regmap,regs[i-1].is32,regs[i-1].dirty,start+i*4);
11292 if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
11293 emit_loadreg(CCREG,HOST_CCREG);
11294 emit_addimm(HOST_CCREG,CLOCK_DIVIDER*(ccadj[i-1]+1),HOST_CCREG);
11295 }
11296 else if(!likely[i-2])
11297 {
11298 store_regs_bt(branch_regs[i-2].regmap,branch_regs[i-2].is32,branch_regs[i-2].dirty,start+i*4);
11299 assert(branch_regs[i-2].regmap[HOST_CCREG]==CCREG);
11300 }
11301 else
11302 {
11303 store_regs_bt(regs[i-2].regmap,regs[i-2].is32,regs[i-2].dirty,start+i*4);
11304 assert(regs[i-2].regmap[HOST_CCREG]==CCREG);
11305 }
11306 add_to_linker((int)out,start+i*4,0);
11307 emit_jmp(0);
11308 }
11309 }
11310 else
11311 {
11312 assert(i>0);
11313 assert(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP);
11314 store_regs_bt(regs[i-1].regmap,regs[i-1].is32,regs[i-1].dirty,start+i*4);
11315 if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
11316 emit_loadreg(CCREG,HOST_CCREG);
11317 emit_addimm(HOST_CCREG,CLOCK_DIVIDER*(ccadj[i-1]+1),HOST_CCREG);
11318 add_to_linker((int)out,start+i*4,0);
11319 emit_jmp(0);
11320 }
11321
11322 // TODO: delay slot stubs?
11323 // Stubs
11324 for(i=0;i<stubcount;i++)
11325 {
11326 switch(stubs[i][0])
11327 {
11328 case LOADB_STUB:
11329 case LOADH_STUB:
11330 case LOADW_STUB:
11331 case LOADD_STUB:
11332 case LOADBU_STUB:
11333 case LOADHU_STUB:
11334 do_readstub(i);break;
11335 case STOREB_STUB:
11336 case STOREH_STUB:
11337 case STOREW_STUB:
11338 case STORED_STUB:
11339 do_writestub(i);break;
11340 case CC_STUB:
11341 do_ccstub(i);break;
11342 case INVCODE_STUB:
11343 do_invstub(i);break;
11344 case FP_STUB:
11345 do_cop1stub(i);break;
11346 case STORELR_STUB:
11347 do_unalignedwritestub(i);break;
11348 }
11349 }
11350
9ad4d757 11351 if (instr_addr0_override)
11352 instr_addr[0] = instr_addr0_override;
11353
57871462 11354 /* Pass 9 - Linker */
11355 for(i=0;i<linkcount;i++)
11356 {
11357 assem_debug("%8x -> %8x\n",link_addr[i][0],link_addr[i][1]);
11358 literal_pool(64);
11359 if(!link_addr[i][2])
11360 {
11361 void *stub=out;
11362 void *addr=check_addr(link_addr[i][1]);
11363 emit_extjump(link_addr[i][0],link_addr[i][1]);
11364 if(addr) {
11365 set_jump_target(link_addr[i][0],(int)addr);
11366 add_link(link_addr[i][1],stub);
11367 }
11368 else set_jump_target(link_addr[i][0],(int)stub);
11369 }
11370 else
11371 {
11372 // Internal branch
11373 int target=(link_addr[i][1]-start)>>2;
11374 assert(target>=0&&target<slen);
11375 assert(instr_addr[target]);
11376 //#ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
11377 //set_jump_target_fillslot(link_addr[i][0],instr_addr[target],link_addr[i][2]>>1);
11378 //#else
11379 set_jump_target(link_addr[i][0],instr_addr[target]);
11380 //#endif
11381 }
11382 }
11383 // External Branch Targets (jump_in)
11384 if(copy+slen*4>(void *)shadow+sizeof(shadow)) copy=shadow;
11385 for(i=0;i<slen;i++)
11386 {
11387 if(bt[i]||i==0)
11388 {
11389 if(instr_addr[i]) // TODO - delay slots (=null)
11390 {
11391 u_int vaddr=start+i*4;
94d23bb9 11392 u_int page=get_page(vaddr);
11393 u_int vpage=get_vpage(vaddr);
57871462 11394 literal_pool(256);
11395 //if(!(is32[i]&(~unneeded_reg_upper[i])&~(1LL<<CCREG)))
a28c6ce8 11396#ifndef FORCE32
57871462 11397 if(!requires_32bit[i])
a28c6ce8 11398#else
11399 if(1)
11400#endif
57871462 11401 {
11402 assem_debug("%8x (%d) <- %8x\n",instr_addr[i],i,start+i*4);
11403 assem_debug("jump_in: %x\n",start+i*4);
11404 ll_add(jump_dirty+vpage,vaddr,(void *)out);
11405 int entry_point=do_dirty_stub(i);
11406 ll_add(jump_in+page,vaddr,(void *)entry_point);
11407 // If there was an existing entry in the hash table,
11408 // replace it with the new address.
11409 // Don't add new entries. We'll insert the
11410 // ones that actually get used in check_addr().
11411 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
11412 if(ht_bin[0]==vaddr) {
11413 ht_bin[1]=entry_point;
11414 }
11415 if(ht_bin[2]==vaddr) {
11416 ht_bin[3]=entry_point;
11417 }
11418 }
11419 else
11420 {
11421 u_int r=requires_32bit[i]|!!(requires_32bit[i]>>32);
11422 assem_debug("%8x (%d) <- %8x\n",instr_addr[i],i,start+i*4);
11423 assem_debug("jump_in: %x (restricted - %x)\n",start+i*4,r);
11424 //int entry_point=(int)out;
11425 ////assem_debug("entry_point: %x\n",entry_point);
11426 //load_regs_entry(i);
11427 //if(entry_point==(int)out)
11428 // entry_point=instr_addr[i];
11429 //else
11430 // emit_jmp(instr_addr[i]);
11431 //ll_add_32(jump_in+page,vaddr,r,(void *)entry_point);
11432 ll_add_32(jump_dirty+vpage,vaddr,r,(void *)out);
11433 int entry_point=do_dirty_stub(i);
11434 ll_add_32(jump_in+page,vaddr,r,(void *)entry_point);
11435 }
11436 }
11437 }
11438 }
11439 // Write out the literal pool if necessary
11440 literal_pool(0);
11441 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
11442 // Align code
11443 if(((u_int)out)&7) emit_addnop(13);
11444 #endif
11445 assert((u_int)out-beginning<MAX_OUTPUT_BLOCK_SIZE);
11446 //printf("shadow buffer: %x-%x\n",(int)copy,(int)copy+slen*4);
11447 memcpy(copy,source,slen*4);
11448 copy+=slen*4;
11449
11450 #ifdef __arm__
11451 __clear_cache((void *)beginning,out);
11452 #endif
11453
11454 // If we're within 256K of the end of the buffer,
11455 // start over from the beginning. (Is 256K enough?)
11456 if((int)out>BASE_ADDR+(1<<TARGET_SIZE_2)-MAX_OUTPUT_BLOCK_SIZE) out=(u_char *)BASE_ADDR;
11457
11458 // Trap writes to any of the pages we compiled
11459 for(i=start>>12;i<=(start+slen*4)>>12;i++) {
11460 invalid_code[i]=0;
90ae6d4e 11461#ifndef DISABLE_TLB
57871462 11462 memory_map[i]|=0x40000000;
11463 if((signed int)start>=(signed int)0xC0000000) {
11464 assert(using_tlb);
11465 j=(((u_int)i<<12)+(memory_map[i]<<2)-(u_int)rdram+(u_int)0x80000000)>>12;
11466 invalid_code[j]=0;
11467 memory_map[j]|=0x40000000;
11468 //printf("write protect physical page: %x (virtual %x)\n",j<<12,start);
11469 }
90ae6d4e 11470#endif
57871462 11471 }
9be4ba64 11472 inv_code_start=inv_code_end=~0;
b12c9fb8 11473#ifdef PCSX
b96d3df7 11474 // for PCSX we need to mark all mirrors too
b12c9fb8 11475 if(get_page(start)<(RAM_SIZE>>12))
11476 for(i=start>>12;i<=(start+slen*4)>>12;i++)
b96d3df7 11477 invalid_code[((u_int)0x00000000>>12)|(i&0x1ff)]=
11478 invalid_code[((u_int)0x80000000>>12)|(i&0x1ff)]=
11479 invalid_code[((u_int)0xa0000000>>12)|(i&0x1ff)]=0;
b12c9fb8 11480#endif
57871462 11481
11482 /* Pass 10 - Free memory by expiring oldest blocks */
11483
11484 int end=((((int)out-BASE_ADDR)>>(TARGET_SIZE_2-16))+16384)&65535;
11485 while(expirep!=end)
11486 {
11487 int shift=TARGET_SIZE_2-3; // Divide into 8 blocks
11488 int base=BASE_ADDR+((expirep>>13)<<shift); // Base address of this block
11489 inv_debug("EXP: Phase %d\n",expirep);
11490 switch((expirep>>11)&3)
11491 {
11492 case 0:
11493 // Clear jump_in and jump_dirty
11494 ll_remove_matching_addrs(jump_in+(expirep&2047),base,shift);
11495 ll_remove_matching_addrs(jump_dirty+(expirep&2047),base,shift);
11496 ll_remove_matching_addrs(jump_in+2048+(expirep&2047),base,shift);
11497 ll_remove_matching_addrs(jump_dirty+2048+(expirep&2047),base,shift);
11498 break;
11499 case 1:
11500 // Clear pointers
11501 ll_kill_pointers(jump_out[expirep&2047],base,shift);
11502 ll_kill_pointers(jump_out[(expirep&2047)+2048],base,shift);
11503 break;
11504 case 2:
11505 // Clear hash table
11506 for(i=0;i<32;i++) {
11507 int *ht_bin=hash_table[((expirep&2047)<<5)+i];
11508 if((ht_bin[3]>>shift)==(base>>shift) ||
11509 ((ht_bin[3]-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(base>>shift)) {
11510 inv_debug("EXP: Remove hash %x -> %x\n",ht_bin[2],ht_bin[3]);
11511 ht_bin[2]=ht_bin[3]=-1;
11512 }
11513 if((ht_bin[1]>>shift)==(base>>shift) ||
11514 ((ht_bin[1]-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(base>>shift)) {
11515 inv_debug("EXP: Remove hash %x -> %x\n",ht_bin[0],ht_bin[1]);
11516 ht_bin[0]=ht_bin[2];
11517 ht_bin[1]=ht_bin[3];
11518 ht_bin[2]=ht_bin[3]=-1;
11519 }
11520 }
11521 break;
11522 case 3:
11523 // Clear jump_out
dd3a91a1 11524 #ifdef __arm__
11525 if((expirep&2047)==0)
11526 do_clear_cache();
11527 #endif
57871462 11528 ll_remove_matching_addrs(jump_out+(expirep&2047),base,shift);
11529 ll_remove_matching_addrs(jump_out+2048+(expirep&2047),base,shift);
11530 break;
11531 }
11532 expirep=(expirep+1)&65535;
11533 }
11534 return 0;
11535}
b9b61529 11536
11537// vim:shiftwidth=2:expandtab