gpu_neon: handle command reset register
[pcsx_rearmed.git] / libpcsxcore / new_dynarec / new_dynarec.c
CommitLineData
57871462 1/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
2 * Mupen64plus - new_dynarec.c *
20d507ba 3 * Copyright (C) 2009-2011 Ari64 *
57871462 4 * *
5 * This program is free software; you can redistribute it and/or modify *
6 * it under the terms of the GNU General Public License as published by *
7 * the Free Software Foundation; either version 2 of the License, or *
8 * (at your option) any later version. *
9 * *
10 * This program is distributed in the hope that it will be useful, *
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
13 * GNU General Public License for more details. *
14 * *
15 * You should have received a copy of the GNU General Public License *
16 * along with this program; if not, write to the *
17 * Free Software Foundation, Inc., *
18 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. *
19 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
20
21#include <stdlib.h>
22#include <stdint.h> //include for uint64_t
23#include <assert.h>
4600ba03 24#include <sys/mman.h>
57871462 25
3d624f89 26#include "emu_if.h" //emulator interface
57871462 27
4600ba03 28//#define DISASM
29//#define assem_debug printf
30//#define inv_debug printf
31#define assem_debug(...)
32#define inv_debug(...)
57871462 33
34#ifdef __i386__
35#include "assem_x86.h"
36#endif
37#ifdef __x86_64__
38#include "assem_x64.h"
39#endif
40#ifdef __arm__
41#include "assem_arm.h"
42#endif
43
44#define MAXBLOCK 4096
45#define MAX_OUTPUT_BLOCK_SIZE 262144
2573466a 46
57871462 47struct regstat
48{
49 signed char regmap_entry[HOST_REGS];
50 signed char regmap[HOST_REGS];
51 uint64_t was32;
52 uint64_t is32;
53 uint64_t wasdirty;
54 uint64_t dirty;
55 uint64_t u;
56 uint64_t uu;
57 u_int wasconst;
58 u_int isconst;
8575a877 59 u_int loadedconst; // host regs that have constants loaded
60 u_int waswritten; // MIPS regs that were used as store base before
57871462 61};
62
63struct ll_entry
64{
65 u_int vaddr;
66 u_int reg32;
67 void *addr;
68 struct ll_entry *next;
69};
70
71 u_int start;
72 u_int *source;
73 u_int pagelimit;
74 char insn[MAXBLOCK][10];
75 u_char itype[MAXBLOCK];
76 u_char opcode[MAXBLOCK];
77 u_char opcode2[MAXBLOCK];
78 u_char bt[MAXBLOCK];
79 u_char rs1[MAXBLOCK];
80 u_char rs2[MAXBLOCK];
81 u_char rt1[MAXBLOCK];
82 u_char rt2[MAXBLOCK];
83 u_char us1[MAXBLOCK];
84 u_char us2[MAXBLOCK];
85 u_char dep1[MAXBLOCK];
86 u_char dep2[MAXBLOCK];
87 u_char lt1[MAXBLOCK];
bedfea38 88 static uint64_t gte_rs[MAXBLOCK]; // gte: 32 data and 32 ctl regs
89 static uint64_t gte_rt[MAXBLOCK];
90 static uint64_t gte_unneeded[MAXBLOCK];
ffb0b9e0 91 static u_int smrv[32]; // speculated MIPS register values
92 static u_int smrv_strong; // mask or regs that are likely to have correct values
93 static u_int smrv_weak; // same, but somewhat less likely
94 static u_int smrv_strong_next; // same, but after current insn executes
95 static u_int smrv_weak_next;
57871462 96 int imm[MAXBLOCK];
97 u_int ba[MAXBLOCK];
98 char likely[MAXBLOCK];
99 char is_ds[MAXBLOCK];
e1190b87 100 char ooo[MAXBLOCK];
57871462 101 uint64_t unneeded_reg[MAXBLOCK];
102 uint64_t unneeded_reg_upper[MAXBLOCK];
103 uint64_t branch_unneeded_reg[MAXBLOCK];
104 uint64_t branch_unneeded_reg_upper[MAXBLOCK];
105 uint64_t p32[MAXBLOCK];
106 uint64_t pr32[MAXBLOCK];
107 signed char regmap_pre[MAXBLOCK][HOST_REGS];
956f3129 108 static uint64_t current_constmap[HOST_REGS];
109 static uint64_t constmap[MAXBLOCK][HOST_REGS];
110 static struct regstat regs[MAXBLOCK];
111 static struct regstat branch_regs[MAXBLOCK];
e1190b87 112 signed char minimum_free_regs[MAXBLOCK];
57871462 113 u_int needed_reg[MAXBLOCK];
114 uint64_t requires_32bit[MAXBLOCK];
115 u_int wont_dirty[MAXBLOCK];
116 u_int will_dirty[MAXBLOCK];
117 int ccadj[MAXBLOCK];
118 int slen;
119 u_int instr_addr[MAXBLOCK];
120 u_int link_addr[MAXBLOCK][3];
121 int linkcount;
122 u_int stubs[MAXBLOCK*3][8];
123 int stubcount;
124 u_int literals[1024][2];
125 int literalcount;
126 int is_delayslot;
127 int cop1_usable;
128 u_char *out;
129 struct ll_entry *jump_in[4096];
130 struct ll_entry *jump_out[4096];
131 struct ll_entry *jump_dirty[4096];
132 u_int hash_table[65536][4] __attribute__((aligned(16)));
133 char shadow[1048576] __attribute__((aligned(16)));
134 void *copy;
135 int expirep;
af4ee1fe 136#ifndef PCSX
57871462 137 u_int using_tlb;
af4ee1fe 138#else
139 static const u_int using_tlb=0;
140#endif
2f546f9a 141 int new_dynarec_did_compile;
0ff8c62c 142 int new_dynarec_hacks;
57871462 143 u_int stop_after_jal;
144 extern u_char restore_candidate[512];
145 extern int cycle_count;
146
147 /* registers that may be allocated */
148 /* 1-31 gpr */
149#define HIREG 32 // hi
150#define LOREG 33 // lo
151#define FSREG 34 // FPU status (FCSR)
152#define CSREG 35 // Coprocessor status
153#define CCREG 36 // Cycle count
154#define INVCP 37 // Pointer to invalid_code
619e5ded 155#define MMREG 38 // Pointer to memory_map
156#define ROREG 39 // ram offset (if rdram!=0x80000000)
157#define TEMPREG 40
158#define FTEMP 40 // FPU temporary register
159#define PTEMP 41 // Prefetch temporary register
160#define TLREG 42 // TLB mapping offset
161#define RHASH 43 // Return address hash
162#define RHTBL 44 // Return address hash table address
163#define RTEMP 45 // JR/JALR address register
164#define MAXREG 45
165#define AGEN1 46 // Address generation temporary register
166#define AGEN2 47 // Address generation temporary register
167#define MGEN1 48 // Maptable address generation temporary register
168#define MGEN2 49 // Maptable address generation temporary register
169#define BTREG 50 // Branch target temporary register
57871462 170
171 /* instruction types */
172#define NOP 0 // No operation
173#define LOAD 1 // Load
174#define STORE 2 // Store
175#define LOADLR 3 // Unaligned load
176#define STORELR 4 // Unaligned store
177#define MOV 5 // Move
178#define ALU 6 // Arithmetic/logic
179#define MULTDIV 7 // Multiply/divide
180#define SHIFT 8 // Shift by register
181#define SHIFTIMM 9// Shift by immediate
182#define IMM16 10 // 16-bit immediate
183#define RJUMP 11 // Unconditional jump to register
184#define UJUMP 12 // Unconditional jump
185#define CJUMP 13 // Conditional branch (BEQ/BNE/BGTZ/BLEZ)
186#define SJUMP 14 // Conditional branch (regimm format)
187#define COP0 15 // Coprocessor 0
188#define COP1 16 // Coprocessor 1
189#define C1LS 17 // Coprocessor 1 load/store
190#define FJUMP 18 // Conditional branch (floating point)
191#define FLOAT 19 // Floating point unit
192#define FCONV 20 // Convert integer to float
193#define FCOMP 21 // Floating point compare (sets FSREG)
194#define SYSCALL 22// SYSCALL
195#define OTHER 23 // Other
196#define SPAN 24 // Branch/delay slot spans 2 pages
197#define NI 25 // Not implemented
7139f3c8 198#define HLECALL 26// PCSX fake opcodes for HLE
b9b61529 199#define COP2 27 // Coprocessor 2 move
200#define C2LS 28 // Coprocessor 2 load/store
201#define C2OP 29 // Coprocessor 2 operation
1e973cb0 202#define INTCALL 30// Call interpreter to handle rare corner cases
57871462 203
204 /* stubs */
205#define CC_STUB 1
206#define FP_STUB 2
207#define LOADB_STUB 3
208#define LOADH_STUB 4
209#define LOADW_STUB 5
210#define LOADD_STUB 6
211#define LOADBU_STUB 7
212#define LOADHU_STUB 8
213#define STOREB_STUB 9
214#define STOREH_STUB 10
215#define STOREW_STUB 11
216#define STORED_STUB 12
217#define STORELR_STUB 13
218#define INVCODE_STUB 14
219
220 /* branch codes */
221#define TAKEN 1
222#define NOTTAKEN 2
223#define NULLDS 3
224
225// asm linkage
226int new_recompile_block(int addr);
227void *get_addr_ht(u_int vaddr);
228void invalidate_block(u_int block);
229void invalidate_addr(u_int addr);
230void remove_hash(int vaddr);
231void jump_vaddr();
232void dyna_linker();
233void dyna_linker_ds();
234void verify_code();
235void verify_code_vm();
236void verify_code_ds();
237void cc_interrupt();
238void fp_exception();
239void fp_exception_ds();
240void jump_syscall();
7139f3c8 241void jump_syscall_hle();
57871462 242void jump_eret();
7139f3c8 243void jump_hlecall();
1e973cb0 244void jump_intcall();
7139f3c8 245void new_dyna_leave();
57871462 246
247// TLB
248void TLBWI_new();
249void TLBWR_new();
250void read_nomem_new();
251void read_nomemb_new();
252void read_nomemh_new();
253void read_nomemd_new();
254void write_nomem_new();
255void write_nomemb_new();
256void write_nomemh_new();
257void write_nomemd_new();
258void write_rdram_new();
259void write_rdramb_new();
260void write_rdramh_new();
261void write_rdramd_new();
262extern u_int memory_map[1048576];
263
264// Needed by assembler
265void wb_register(signed char r,signed char regmap[],uint64_t dirty,uint64_t is32);
266void wb_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty);
267void wb_needed_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr);
268void load_all_regs(signed char i_regmap[]);
269void load_needed_regs(signed char i_regmap[],signed char next_regmap[]);
270void load_regs_entry(int t);
271void load_all_consts(signed char regmap[],int is32,u_int dirty,int i);
272
273int tracedebug=0;
274
275//#define DEBUG_CYCLE_COUNT 1
276
4e9dcd7f 277int cycle_multiplier; // 100 for 1.0
278
279static int CLOCK_ADJUST(int x)
280{
281 int s=(x>>31)|1;
282 return (x * cycle_multiplier + s * 50) / 100;
283}
284
94d23bb9 285static void tlb_hacks()
57871462 286{
94d23bb9 287#ifndef DISABLE_TLB
57871462 288 // Goldeneye hack
289 if (strncmp((char *) ROM_HEADER->nom, "GOLDENEYE",9) == 0)
290 {
291 u_int addr;
292 int n;
293 switch (ROM_HEADER->Country_code&0xFF)
294 {
295 case 0x45: // U
296 addr=0x34b30;
297 break;
298 case 0x4A: // J
299 addr=0x34b70;
300 break;
301 case 0x50: // E
302 addr=0x329f0;
303 break;
304 default:
305 // Unknown country code
306 addr=0;
307 break;
308 }
309 u_int rom_addr=(u_int)rom;
310 #ifdef ROM_COPY
311 // Since memory_map is 32-bit, on 64-bit systems the rom needs to be
312 // in the lower 4G of memory to use this hack. Copy it if necessary.
313 if((void *)rom>(void *)0xffffffff) {
314 munmap(ROM_COPY, 67108864);
315 if(mmap(ROM_COPY, 12582912,
316 PROT_READ | PROT_WRITE,
317 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS,
318 -1, 0) <= 0) {printf("mmap() failed\n");}
319 memcpy(ROM_COPY,rom,12582912);
320 rom_addr=(u_int)ROM_COPY;
321 }
322 #endif
323 if(addr) {
324 for(n=0x7F000;n<0x80000;n++) {
325 memory_map[n]=(((u_int)(rom_addr+addr-0x7F000000))>>2)|0x40000000;
326 }
327 }
328 }
94d23bb9 329#endif
57871462 330}
331
94d23bb9 332static u_int get_page(u_int vaddr)
57871462 333{
0ce47d46 334#ifndef PCSX
57871462 335 u_int page=(vaddr^0x80000000)>>12;
0ce47d46 336#else
337 u_int page=vaddr&~0xe0000000;
338 if (page < 0x1000000)
339 page &= ~0x0e00000; // RAM mirrors
340 page>>=12;
341#endif
94d23bb9 342#ifndef DISABLE_TLB
57871462 343 if(page>262143&&tlb_LUT_r[vaddr>>12]) page=(tlb_LUT_r[vaddr>>12]^0x80000000)>>12;
94d23bb9 344#endif
57871462 345 if(page>2048) page=2048+(page&2047);
94d23bb9 346 return page;
347}
348
d25604ca 349#ifndef PCSX
94d23bb9 350static u_int get_vpage(u_int vaddr)
351{
352 u_int vpage=(vaddr^0x80000000)>>12;
353#ifndef DISABLE_TLB
57871462 354 if(vpage>262143&&tlb_LUT_r[vaddr>>12]) vpage&=2047; // jump_dirty uses a hash of the virtual address instead
94d23bb9 355#endif
57871462 356 if(vpage>2048) vpage=2048+(vpage&2047);
94d23bb9 357 return vpage;
358}
d25604ca 359#else
360// no virtual mem in PCSX
361static u_int get_vpage(u_int vaddr)
362{
363 return get_page(vaddr);
364}
365#endif
94d23bb9 366
367// Get address from virtual address
368// This is called from the recompiled JR/JALR instructions
369void *get_addr(u_int vaddr)
370{
371 u_int page=get_page(vaddr);
372 u_int vpage=get_vpage(vaddr);
57871462 373 struct ll_entry *head;
374 //printf("TRACE: count=%d next=%d (get_addr %x,page %d)\n",Count,next_interupt,vaddr,page);
375 head=jump_in[page];
376 while(head!=NULL) {
377 if(head->vaddr==vaddr&&head->reg32==0) {
378 //printf("TRACE: count=%d next=%d (get_addr match %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
379 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
380 ht_bin[3]=ht_bin[1];
381 ht_bin[2]=ht_bin[0];
382 ht_bin[1]=(int)head->addr;
383 ht_bin[0]=vaddr;
384 return head->addr;
385 }
386 head=head->next;
387 }
388 head=jump_dirty[vpage];
389 while(head!=NULL) {
390 if(head->vaddr==vaddr&&head->reg32==0) {
391 //printf("TRACE: count=%d next=%d (get_addr match dirty %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
392 // Don't restore blocks which are about to expire from the cache
393 if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
394 if(verify_dirty(head->addr)) {
395 //printf("restore candidate: %x (%d) d=%d\n",vaddr,page,invalid_code[vaddr>>12]);
396 invalid_code[vaddr>>12]=0;
9be4ba64 397 inv_code_start=inv_code_end=~0;
63cb0298 398#ifndef DISABLE_TLB
57871462 399 memory_map[vaddr>>12]|=0x40000000;
63cb0298 400#endif
57871462 401 if(vpage<2048) {
94d23bb9 402#ifndef DISABLE_TLB
57871462 403 if(tlb_LUT_r[vaddr>>12]) {
404 invalid_code[tlb_LUT_r[vaddr>>12]>>12]=0;
405 memory_map[tlb_LUT_r[vaddr>>12]>>12]|=0x40000000;
406 }
94d23bb9 407#endif
57871462 408 restore_candidate[vpage>>3]|=1<<(vpage&7);
409 }
410 else restore_candidate[page>>3]|=1<<(page&7);
411 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
412 if(ht_bin[0]==vaddr) {
413 ht_bin[1]=(int)head->addr; // Replace existing entry
414 }
415 else
416 {
417 ht_bin[3]=ht_bin[1];
418 ht_bin[2]=ht_bin[0];
419 ht_bin[1]=(int)head->addr;
420 ht_bin[0]=vaddr;
421 }
422 return head->addr;
423 }
424 }
425 head=head->next;
426 }
427 //printf("TRACE: count=%d next=%d (get_addr no-match %x)\n",Count,next_interupt,vaddr);
428 int r=new_recompile_block(vaddr);
429 if(r==0) return get_addr(vaddr);
430 // Execute in unmapped page, generate pagefault execption
431 Status|=2;
432 Cause=(vaddr<<31)|0x8;
433 EPC=(vaddr&1)?vaddr-5:vaddr;
434 BadVAddr=(vaddr&~1);
435 Context=(Context&0xFF80000F)|((BadVAddr>>9)&0x007FFFF0);
436 EntryHi=BadVAddr&0xFFFFE000;
437 return get_addr_ht(0x80000000);
438}
439// Look up address in hash table first
440void *get_addr_ht(u_int vaddr)
441{
442 //printf("TRACE: count=%d next=%d (get_addr_ht %x)\n",Count,next_interupt,vaddr);
443 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
444 if(ht_bin[0]==vaddr) return (void *)ht_bin[1];
445 if(ht_bin[2]==vaddr) return (void *)ht_bin[3];
446 return get_addr(vaddr);
447}
448
449void *get_addr_32(u_int vaddr,u_int flags)
450{
7139f3c8 451#ifdef FORCE32
452 return get_addr(vaddr);
560e4a12 453#else
57871462 454 //printf("TRACE: count=%d next=%d (get_addr_32 %x,flags %x)\n",Count,next_interupt,vaddr,flags);
455 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
456 if(ht_bin[0]==vaddr) return (void *)ht_bin[1];
457 if(ht_bin[2]==vaddr) return (void *)ht_bin[3];
94d23bb9 458 u_int page=get_page(vaddr);
459 u_int vpage=get_vpage(vaddr);
57871462 460 struct ll_entry *head;
461 head=jump_in[page];
462 while(head!=NULL) {
463 if(head->vaddr==vaddr&&(head->reg32&flags)==0) {
464 //printf("TRACE: count=%d next=%d (get_addr_32 match %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
465 if(head->reg32==0) {
466 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
467 if(ht_bin[0]==-1) {
468 ht_bin[1]=(int)head->addr;
469 ht_bin[0]=vaddr;
470 }else if(ht_bin[2]==-1) {
471 ht_bin[3]=(int)head->addr;
472 ht_bin[2]=vaddr;
473 }
474 //ht_bin[3]=ht_bin[1];
475 //ht_bin[2]=ht_bin[0];
476 //ht_bin[1]=(int)head->addr;
477 //ht_bin[0]=vaddr;
478 }
479 return head->addr;
480 }
481 head=head->next;
482 }
483 head=jump_dirty[vpage];
484 while(head!=NULL) {
485 if(head->vaddr==vaddr&&(head->reg32&flags)==0) {
486 //printf("TRACE: count=%d next=%d (get_addr_32 match dirty %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
487 // Don't restore blocks which are about to expire from the cache
488 if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
489 if(verify_dirty(head->addr)) {
490 //printf("restore candidate: %x (%d) d=%d\n",vaddr,page,invalid_code[vaddr>>12]);
491 invalid_code[vaddr>>12]=0;
9be4ba64 492 inv_code_start=inv_code_end=~0;
57871462 493 memory_map[vaddr>>12]|=0x40000000;
494 if(vpage<2048) {
94d23bb9 495#ifndef DISABLE_TLB
57871462 496 if(tlb_LUT_r[vaddr>>12]) {
497 invalid_code[tlb_LUT_r[vaddr>>12]>>12]=0;
498 memory_map[tlb_LUT_r[vaddr>>12]>>12]|=0x40000000;
499 }
94d23bb9 500#endif
57871462 501 restore_candidate[vpage>>3]|=1<<(vpage&7);
502 }
503 else restore_candidate[page>>3]|=1<<(page&7);
504 if(head->reg32==0) {
505 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
506 if(ht_bin[0]==-1) {
507 ht_bin[1]=(int)head->addr;
508 ht_bin[0]=vaddr;
509 }else if(ht_bin[2]==-1) {
510 ht_bin[3]=(int)head->addr;
511 ht_bin[2]=vaddr;
512 }
513 //ht_bin[3]=ht_bin[1];
514 //ht_bin[2]=ht_bin[0];
515 //ht_bin[1]=(int)head->addr;
516 //ht_bin[0]=vaddr;
517 }
518 return head->addr;
519 }
520 }
521 head=head->next;
522 }
523 //printf("TRACE: count=%d next=%d (get_addr_32 no-match %x,flags %x)\n",Count,next_interupt,vaddr,flags);
524 int r=new_recompile_block(vaddr);
525 if(r==0) return get_addr(vaddr);
526 // Execute in unmapped page, generate pagefault execption
527 Status|=2;
528 Cause=(vaddr<<31)|0x8;
529 EPC=(vaddr&1)?vaddr-5:vaddr;
530 BadVAddr=(vaddr&~1);
531 Context=(Context&0xFF80000F)|((BadVAddr>>9)&0x007FFFF0);
532 EntryHi=BadVAddr&0xFFFFE000;
533 return get_addr_ht(0x80000000);
560e4a12 534#endif
57871462 535}
536
537void clear_all_regs(signed char regmap[])
538{
539 int hr;
540 for (hr=0;hr<HOST_REGS;hr++) regmap[hr]=-1;
541}
542
543signed char get_reg(signed char regmap[],int r)
544{
545 int hr;
546 for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap[hr]==r) return hr;
547 return -1;
548}
549
550// Find a register that is available for two consecutive cycles
551signed char get_reg2(signed char regmap1[],signed char regmap2[],int r)
552{
553 int hr;
554 for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap1[hr]==r&&regmap2[hr]==r) return hr;
555 return -1;
556}
557
558int count_free_regs(signed char regmap[])
559{
560 int count=0;
561 int hr;
562 for(hr=0;hr<HOST_REGS;hr++)
563 {
564 if(hr!=EXCLUDE_REG) {
565 if(regmap[hr]<0) count++;
566 }
567 }
568 return count;
569}
570
571void dirty_reg(struct regstat *cur,signed char reg)
572{
573 int hr;
574 if(!reg) return;
575 for (hr=0;hr<HOST_REGS;hr++) {
576 if((cur->regmap[hr]&63)==reg) {
577 cur->dirty|=1<<hr;
578 }
579 }
580}
581
582// If we dirty the lower half of a 64 bit register which is now being
583// sign-extended, we need to dump the upper half.
584// Note: Do this only after completion of the instruction, because
585// some instructions may need to read the full 64-bit value even if
586// overwriting it (eg SLTI, DSRA32).
587static void flush_dirty_uppers(struct regstat *cur)
588{
589 int hr,reg;
590 for (hr=0;hr<HOST_REGS;hr++) {
591 if((cur->dirty>>hr)&1) {
592 reg=cur->regmap[hr];
593 if(reg>=64)
594 if((cur->is32>>(reg&63))&1) cur->regmap[hr]=-1;
595 }
596 }
597}
598
599void set_const(struct regstat *cur,signed char reg,uint64_t value)
600{
601 int hr;
602 if(!reg) return;
603 for (hr=0;hr<HOST_REGS;hr++) {
604 if(cur->regmap[hr]==reg) {
605 cur->isconst|=1<<hr;
956f3129 606 current_constmap[hr]=value;
57871462 607 }
608 else if((cur->regmap[hr]^64)==reg) {
609 cur->isconst|=1<<hr;
956f3129 610 current_constmap[hr]=value>>32;
57871462 611 }
612 }
613}
614
615void clear_const(struct regstat *cur,signed char reg)
616{
617 int hr;
618 if(!reg) return;
619 for (hr=0;hr<HOST_REGS;hr++) {
620 if((cur->regmap[hr]&63)==reg) {
621 cur->isconst&=~(1<<hr);
622 }
623 }
624}
625
626int is_const(struct regstat *cur,signed char reg)
627{
628 int hr;
79c75f1b 629 if(reg<0) return 0;
57871462 630 if(!reg) return 1;
631 for (hr=0;hr<HOST_REGS;hr++) {
632 if((cur->regmap[hr]&63)==reg) {
633 return (cur->isconst>>hr)&1;
634 }
635 }
636 return 0;
637}
638uint64_t get_const(struct regstat *cur,signed char reg)
639{
640 int hr;
641 if(!reg) return 0;
642 for (hr=0;hr<HOST_REGS;hr++) {
643 if(cur->regmap[hr]==reg) {
956f3129 644 return current_constmap[hr];
57871462 645 }
646 }
647 printf("Unknown constant in r%d\n",reg);
648 exit(1);
649}
650
651// Least soon needed registers
652// Look at the next ten instructions and see which registers
653// will be used. Try not to reallocate these.
654void lsn(u_char hsn[], int i, int *preferred_reg)
655{
656 int j;
657 int b=-1;
658 for(j=0;j<9;j++)
659 {
660 if(i+j>=slen) {
661 j=slen-i-1;
662 break;
663 }
664 if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
665 {
666 // Don't go past an unconditonal jump
667 j++;
668 break;
669 }
670 }
671 for(;j>=0;j--)
672 {
673 if(rs1[i+j]) hsn[rs1[i+j]]=j;
674 if(rs2[i+j]) hsn[rs2[i+j]]=j;
675 if(rt1[i+j]) hsn[rt1[i+j]]=j;
676 if(rt2[i+j]) hsn[rt2[i+j]]=j;
677 if(itype[i+j]==STORE || itype[i+j]==STORELR) {
678 // Stores can allocate zero
679 hsn[rs1[i+j]]=j;
680 hsn[rs2[i+j]]=j;
681 }
682 // On some architectures stores need invc_ptr
683 #if defined(HOST_IMM8)
b9b61529 684 if(itype[i+j]==STORE || itype[i+j]==STORELR || (opcode[i+j]&0x3b)==0x39 || (opcode[i+j]&0x3b)==0x3a) {
57871462 685 hsn[INVCP]=j;
686 }
687 #endif
688 if(i+j>=0&&(itype[i+j]==UJUMP||itype[i+j]==CJUMP||itype[i+j]==SJUMP||itype[i+j]==FJUMP))
689 {
690 hsn[CCREG]=j;
691 b=j;
692 }
693 }
694 if(b>=0)
695 {
696 if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
697 {
698 // Follow first branch
699 int t=(ba[i+b]-start)>>2;
700 j=7-b;if(t+j>=slen) j=slen-t-1;
701 for(;j>=0;j--)
702 {
703 if(rs1[t+j]) if(hsn[rs1[t+j]]>j+b+2) hsn[rs1[t+j]]=j+b+2;
704 if(rs2[t+j]) if(hsn[rs2[t+j]]>j+b+2) hsn[rs2[t+j]]=j+b+2;
705 //if(rt1[t+j]) if(hsn[rt1[t+j]]>j+b+2) hsn[rt1[t+j]]=j+b+2;
706 //if(rt2[t+j]) if(hsn[rt2[t+j]]>j+b+2) hsn[rt2[t+j]]=j+b+2;
707 }
708 }
709 // TODO: preferred register based on backward branch
710 }
711 // Delay slot should preferably not overwrite branch conditions or cycle count
712 if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)) {
713 if(rs1[i-1]) if(hsn[rs1[i-1]]>1) hsn[rs1[i-1]]=1;
714 if(rs2[i-1]) if(hsn[rs2[i-1]]>1) hsn[rs2[i-1]]=1;
715 hsn[CCREG]=1;
716 // ...or hash tables
717 hsn[RHASH]=1;
718 hsn[RHTBL]=1;
719 }
720 // Coprocessor load/store needs FTEMP, even if not declared
b9b61529 721 if(itype[i]==C1LS||itype[i]==C2LS) {
57871462 722 hsn[FTEMP]=0;
723 }
724 // Load L/R also uses FTEMP as a temporary register
725 if(itype[i]==LOADLR) {
726 hsn[FTEMP]=0;
727 }
b7918751 728 // Also SWL/SWR/SDL/SDR
729 if(opcode[i]==0x2a||opcode[i]==0x2e||opcode[i]==0x2c||opcode[i]==0x2d) {
57871462 730 hsn[FTEMP]=0;
731 }
732 // Don't remove the TLB registers either
b9b61529 733 if(itype[i]==LOAD || itype[i]==LOADLR || itype[i]==STORE || itype[i]==STORELR || itype[i]==C1LS || itype[i]==C2LS) {
57871462 734 hsn[TLREG]=0;
735 }
736 // Don't remove the miniht registers
737 if(itype[i]==UJUMP||itype[i]==RJUMP)
738 {
739 hsn[RHASH]=0;
740 hsn[RHTBL]=0;
741 }
742}
743
744// We only want to allocate registers if we're going to use them again soon
745int needed_again(int r, int i)
746{
747 int j;
748 int b=-1;
749 int rn=10;
57871462 750
751 if(i>0&&(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000))
752 {
753 if(ba[i-1]<start || ba[i-1]>start+slen*4-4)
754 return 0; // Don't need any registers if exiting the block
755 }
756 for(j=0;j<9;j++)
757 {
758 if(i+j>=slen) {
759 j=slen-i-1;
760 break;
761 }
762 if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
763 {
764 // Don't go past an unconditonal jump
765 j++;
766 break;
767 }
1e973cb0 768 if(itype[i+j]==SYSCALL||itype[i+j]==HLECALL||itype[i+j]==INTCALL||((source[i+j]&0xfc00003f)==0x0d))
57871462 769 {
770 break;
771 }
772 }
773 for(;j>=1;j--)
774 {
775 if(rs1[i+j]==r) rn=j;
776 if(rs2[i+j]==r) rn=j;
777 if((unneeded_reg[i+j]>>r)&1) rn=10;
778 if(i+j>=0&&(itype[i+j]==UJUMP||itype[i+j]==CJUMP||itype[i+j]==SJUMP||itype[i+j]==FJUMP))
779 {
780 b=j;
781 }
782 }
783 /*
784 if(b>=0)
785 {
786 if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
787 {
788 // Follow first branch
789 int o=rn;
790 int t=(ba[i+b]-start)>>2;
791 j=7-b;if(t+j>=slen) j=slen-t-1;
792 for(;j>=0;j--)
793 {
794 if(!((unneeded_reg[t+j]>>r)&1)) {
795 if(rs1[t+j]==r) if(rn>j+b+2) rn=j+b+2;
796 if(rs2[t+j]==r) if(rn>j+b+2) rn=j+b+2;
797 }
798 else rn=o;
799 }
800 }
801 }*/
b7217e13 802 if(rn<10) return 1;
57871462 803 return 0;
804}
805
806// Try to match register allocations at the end of a loop with those
807// at the beginning
808int loop_reg(int i, int r, int hr)
809{
810 int j,k;
811 for(j=0;j<9;j++)
812 {
813 if(i+j>=slen) {
814 j=slen-i-1;
815 break;
816 }
817 if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
818 {
819 // Don't go past an unconditonal jump
820 j++;
821 break;
822 }
823 }
824 k=0;
825 if(i>0){
826 if(itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)
827 k--;
828 }
829 for(;k<j;k++)
830 {
831 if(r<64&&((unneeded_reg[i+k]>>r)&1)) return hr;
832 if(r>64&&((unneeded_reg_upper[i+k]>>r)&1)) return hr;
833 if(i+k>=0&&(itype[i+k]==UJUMP||itype[i+k]==CJUMP||itype[i+k]==SJUMP||itype[i+k]==FJUMP))
834 {
835 if(ba[i+k]>=start && ba[i+k]<(start+i*4))
836 {
837 int t=(ba[i+k]-start)>>2;
838 int reg=get_reg(regs[t].regmap_entry,r);
839 if(reg>=0) return reg;
840 //reg=get_reg(regs[t+1].regmap_entry,r);
841 //if(reg>=0) return reg;
842 }
843 }
844 }
845 return hr;
846}
847
848
849// Allocate every register, preserving source/target regs
850void alloc_all(struct regstat *cur,int i)
851{
852 int hr;
853
854 for(hr=0;hr<HOST_REGS;hr++) {
855 if(hr!=EXCLUDE_REG) {
856 if(((cur->regmap[hr]&63)!=rs1[i])&&((cur->regmap[hr]&63)!=rs2[i])&&
857 ((cur->regmap[hr]&63)!=rt1[i])&&((cur->regmap[hr]&63)!=rt2[i]))
858 {
859 cur->regmap[hr]=-1;
860 cur->dirty&=~(1<<hr);
861 }
862 // Don't need zeros
863 if((cur->regmap[hr]&63)==0)
864 {
865 cur->regmap[hr]=-1;
866 cur->dirty&=~(1<<hr);
867 }
868 }
869 }
870}
871
4600ba03 872#ifndef FORCE32
57871462 873void div64(int64_t dividend,int64_t divisor)
874{
875 lo=dividend/divisor;
876 hi=dividend%divisor;
877 //printf("TRACE: ddiv %8x%8x %8x%8x\n" ,(int)reg[HIREG],(int)(reg[HIREG]>>32)
878 // ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
879}
880void divu64(uint64_t dividend,uint64_t divisor)
881{
882 lo=dividend/divisor;
883 hi=dividend%divisor;
884 //printf("TRACE: ddivu %8x%8x %8x%8x\n",(int)reg[HIREG],(int)(reg[HIREG]>>32)
885 // ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
886}
887
888void mult64(uint64_t m1,uint64_t m2)
889{
890 unsigned long long int op1, op2, op3, op4;
891 unsigned long long int result1, result2, result3, result4;
892 unsigned long long int temp1, temp2, temp3, temp4;
893 int sign = 0;
894
895 if (m1 < 0)
896 {
897 op2 = -m1;
898 sign = 1 - sign;
899 }
900 else op2 = m1;
901 if (m2 < 0)
902 {
903 op4 = -m2;
904 sign = 1 - sign;
905 }
906 else op4 = m2;
907
908 op1 = op2 & 0xFFFFFFFF;
909 op2 = (op2 >> 32) & 0xFFFFFFFF;
910 op3 = op4 & 0xFFFFFFFF;
911 op4 = (op4 >> 32) & 0xFFFFFFFF;
912
913 temp1 = op1 * op3;
914 temp2 = (temp1 >> 32) + op1 * op4;
915 temp3 = op2 * op3;
916 temp4 = (temp3 >> 32) + op2 * op4;
917
918 result1 = temp1 & 0xFFFFFFFF;
919 result2 = temp2 + (temp3 & 0xFFFFFFFF);
920 result3 = (result2 >> 32) + temp4;
921 result4 = (result3 >> 32);
922
923 lo = result1 | (result2 << 32);
924 hi = (result3 & 0xFFFFFFFF) | (result4 << 32);
925 if (sign)
926 {
927 hi = ~hi;
928 if (!lo) hi++;
929 else lo = ~lo + 1;
930 }
931}
932
933void multu64(uint64_t m1,uint64_t m2)
934{
935 unsigned long long int op1, op2, op3, op4;
936 unsigned long long int result1, result2, result3, result4;
937 unsigned long long int temp1, temp2, temp3, temp4;
938
939 op1 = m1 & 0xFFFFFFFF;
940 op2 = (m1 >> 32) & 0xFFFFFFFF;
941 op3 = m2 & 0xFFFFFFFF;
942 op4 = (m2 >> 32) & 0xFFFFFFFF;
943
944 temp1 = op1 * op3;
945 temp2 = (temp1 >> 32) + op1 * op4;
946 temp3 = op2 * op3;
947 temp4 = (temp3 >> 32) + op2 * op4;
948
949 result1 = temp1 & 0xFFFFFFFF;
950 result2 = temp2 + (temp3 & 0xFFFFFFFF);
951 result3 = (result2 >> 32) + temp4;
952 result4 = (result3 >> 32);
953
954 lo = result1 | (result2 << 32);
955 hi = (result3 & 0xFFFFFFFF) | (result4 << 32);
956
957 //printf("TRACE: dmultu %8x%8x %8x%8x\n",(int)reg[HIREG],(int)(reg[HIREG]>>32)
958 // ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
959}
960
961uint64_t ldl_merge(uint64_t original,uint64_t loaded,u_int bits)
962{
963 if(bits) {
964 original<<=64-bits;
965 original>>=64-bits;
966 loaded<<=bits;
967 original|=loaded;
968 }
969 else original=loaded;
970 return original;
971}
972uint64_t ldr_merge(uint64_t original,uint64_t loaded,u_int bits)
973{
974 if(bits^56) {
975 original>>=64-(bits^56);
976 original<<=64-(bits^56);
977 loaded>>=bits^56;
978 original|=loaded;
979 }
980 else original=loaded;
981 return original;
982}
4600ba03 983#endif
57871462 984
985#ifdef __i386__
986#include "assem_x86.c"
987#endif
988#ifdef __x86_64__
989#include "assem_x64.c"
990#endif
991#ifdef __arm__
992#include "assem_arm.c"
993#endif
994
995// Add virtual address mapping to linked list
996void ll_add(struct ll_entry **head,int vaddr,void *addr)
997{
998 struct ll_entry *new_entry;
999 new_entry=malloc(sizeof(struct ll_entry));
1000 assert(new_entry!=NULL);
1001 new_entry->vaddr=vaddr;
1002 new_entry->reg32=0;
1003 new_entry->addr=addr;
1004 new_entry->next=*head;
1005 *head=new_entry;
1006}
1007
1008// Add virtual address mapping for 32-bit compiled block
1009void ll_add_32(struct ll_entry **head,int vaddr,u_int reg32,void *addr)
1010{
7139f3c8 1011 ll_add(head,vaddr,addr);
1012#ifndef FORCE32
1013 (*head)->reg32=reg32;
1014#endif
57871462 1015}
1016
1017// Check if an address is already compiled
1018// but don't return addresses which are about to expire from the cache
1019void *check_addr(u_int vaddr)
1020{
1021 u_int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
1022 if(ht_bin[0]==vaddr) {
1023 if(((ht_bin[1]-MAX_OUTPUT_BLOCK_SIZE-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
1024 if(isclean(ht_bin[1])) return (void *)ht_bin[1];
1025 }
1026 if(ht_bin[2]==vaddr) {
1027 if(((ht_bin[3]-MAX_OUTPUT_BLOCK_SIZE-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
1028 if(isclean(ht_bin[3])) return (void *)ht_bin[3];
1029 }
94d23bb9 1030 u_int page=get_page(vaddr);
57871462 1031 struct ll_entry *head;
1032 head=jump_in[page];
1033 while(head!=NULL) {
1034 if(head->vaddr==vaddr&&head->reg32==0) {
1035 if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1036 // Update existing entry with current address
1037 if(ht_bin[0]==vaddr) {
1038 ht_bin[1]=(int)head->addr;
1039 return head->addr;
1040 }
1041 if(ht_bin[2]==vaddr) {
1042 ht_bin[3]=(int)head->addr;
1043 return head->addr;
1044 }
1045 // Insert into hash table with low priority.
1046 // Don't evict existing entries, as they are probably
1047 // addresses that are being accessed frequently.
1048 if(ht_bin[0]==-1) {
1049 ht_bin[1]=(int)head->addr;
1050 ht_bin[0]=vaddr;
1051 }else if(ht_bin[2]==-1) {
1052 ht_bin[3]=(int)head->addr;
1053 ht_bin[2]=vaddr;
1054 }
1055 return head->addr;
1056 }
1057 }
1058 head=head->next;
1059 }
1060 return 0;
1061}
1062
1063void remove_hash(int vaddr)
1064{
1065 //printf("remove hash: %x\n",vaddr);
1066 int *ht_bin=hash_table[(((vaddr)>>16)^vaddr)&0xFFFF];
1067 if(ht_bin[2]==vaddr) {
1068 ht_bin[2]=ht_bin[3]=-1;
1069 }
1070 if(ht_bin[0]==vaddr) {
1071 ht_bin[0]=ht_bin[2];
1072 ht_bin[1]=ht_bin[3];
1073 ht_bin[2]=ht_bin[3]=-1;
1074 }
1075}
1076
1077void ll_remove_matching_addrs(struct ll_entry **head,int addr,int shift)
1078{
1079 struct ll_entry *next;
1080 while(*head) {
1081 if(((u_int)((*head)->addr)>>shift)==(addr>>shift) ||
1082 ((u_int)((*head)->addr-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(addr>>shift))
1083 {
1084 inv_debug("EXP: Remove pointer to %x (%x)\n",(int)(*head)->addr,(*head)->vaddr);
1085 remove_hash((*head)->vaddr);
1086 next=(*head)->next;
1087 free(*head);
1088 *head=next;
1089 }
1090 else
1091 {
1092 head=&((*head)->next);
1093 }
1094 }
1095}
1096
1097// Remove all entries from linked list
1098void ll_clear(struct ll_entry **head)
1099{
1100 struct ll_entry *cur;
1101 struct ll_entry *next;
1102 if(cur=*head) {
1103 *head=0;
1104 while(cur) {
1105 next=cur->next;
1106 free(cur);
1107 cur=next;
1108 }
1109 }
1110}
1111
1112// Dereference the pointers and remove if it matches
1113void ll_kill_pointers(struct ll_entry *head,int addr,int shift)
1114{
1115 while(head) {
1116 int ptr=get_pointer(head->addr);
1117 inv_debug("EXP: Lookup pointer to %x at %x (%x)\n",(int)ptr,(int)head->addr,head->vaddr);
1118 if(((ptr>>shift)==(addr>>shift)) ||
1119 (((ptr-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(addr>>shift)))
1120 {
5088bb70 1121 inv_debug("EXP: Kill pointer at %x (%x)\n",(int)head->addr,head->vaddr);
f76eeef9 1122 u_int host_addr=(u_int)kill_pointer(head->addr);
dd3a91a1 1123 #ifdef __arm__
1124 needs_clear_cache[(host_addr-(u_int)BASE_ADDR)>>17]|=1<<(((host_addr-(u_int)BASE_ADDR)>>12)&31);
1125 #endif
57871462 1126 }
1127 head=head->next;
1128 }
1129}
1130
1131// This is called when we write to a compiled block (see do_invstub)
f76eeef9 1132void invalidate_page(u_int page)
57871462 1133{
57871462 1134 struct ll_entry *head;
1135 struct ll_entry *next;
1136 head=jump_in[page];
1137 jump_in[page]=0;
1138 while(head!=NULL) {
1139 inv_debug("INVALIDATE: %x\n",head->vaddr);
1140 remove_hash(head->vaddr);
1141 next=head->next;
1142 free(head);
1143 head=next;
1144 }
1145 head=jump_out[page];
1146 jump_out[page]=0;
1147 while(head!=NULL) {
1148 inv_debug("INVALIDATE: kill pointer to %x (%x)\n",head->vaddr,(int)head->addr);
f76eeef9 1149 u_int host_addr=(u_int)kill_pointer(head->addr);
dd3a91a1 1150 #ifdef __arm__
1151 needs_clear_cache[(host_addr-(u_int)BASE_ADDR)>>17]|=1<<(((host_addr-(u_int)BASE_ADDR)>>12)&31);
1152 #endif
57871462 1153 next=head->next;
1154 free(head);
1155 head=next;
1156 }
57871462 1157}
9be4ba64 1158
1159static void invalidate_block_range(u_int block, u_int first, u_int last)
57871462 1160{
94d23bb9 1161 u_int page=get_page(block<<12);
57871462 1162 //printf("first=%d last=%d\n",first,last);
f76eeef9 1163 invalidate_page(page);
57871462 1164 assert(first+5>page); // NB: this assumes MAXBLOCK<=4096 (4 pages)
1165 assert(last<page+5);
1166 // Invalidate the adjacent pages if a block crosses a 4K boundary
1167 while(first<page) {
1168 invalidate_page(first);
1169 first++;
1170 }
1171 for(first=page+1;first<last;first++) {
1172 invalidate_page(first);
1173 }
dd3a91a1 1174 #ifdef __arm__
1175 do_clear_cache();
1176 #endif
57871462 1177
1178 // Don't trap writes
1179 invalid_code[block]=1;
94d23bb9 1180#ifndef DISABLE_TLB
57871462 1181 // If there is a valid TLB entry for this page, remove write protect
1182 if(tlb_LUT_w[block]) {
1183 assert(tlb_LUT_r[block]==tlb_LUT_w[block]);
1184 // CHECK: Is this right?
1185 memory_map[block]=((tlb_LUT_w[block]&0xFFFFF000)-(block<<12)+(unsigned int)rdram-0x80000000)>>2;
1186 u_int real_block=tlb_LUT_w[block]>>12;
1187 invalid_code[real_block]=1;
1188 if(real_block>=0x80000&&real_block<0x80800) memory_map[real_block]=((u_int)rdram-0x80000000)>>2;
1189 }
1190 else if(block>=0x80000&&block<0x80800) memory_map[block]=((u_int)rdram-0x80000000)>>2;
94d23bb9 1191#endif
f76eeef9 1192
57871462 1193 #ifdef USE_MINI_HT
1194 memset(mini_ht,-1,sizeof(mini_ht));
1195 #endif
1196}
9be4ba64 1197
1198void invalidate_block(u_int block)
1199{
1200 u_int page=get_page(block<<12);
1201 u_int vpage=get_vpage(block<<12);
1202 inv_debug("INVALIDATE: %x (%d)\n",block<<12,page);
1203 //inv_debug("invalid_code[block]=%d\n",invalid_code[block]);
1204 u_int first,last;
1205 first=last=page;
1206 struct ll_entry *head;
1207 head=jump_dirty[vpage];
1208 //printf("page=%d vpage=%d\n",page,vpage);
1209 while(head!=NULL) {
1210 u_int start,end;
1211 if(vpage>2047||(head->vaddr>>12)==block) { // Ignore vaddr hash collision
1212 get_bounds((int)head->addr,&start,&end);
1213 //printf("start: %x end: %x\n",start,end);
1214 if(page<2048&&start>=0x80000000&&end<0x80000000+RAM_SIZE) {
1215 if(((start-(u_int)rdram)>>12)<=page&&((end-1-(u_int)rdram)>>12)>=page) {
1216 if((((start-(u_int)rdram)>>12)&2047)<first) first=((start-(u_int)rdram)>>12)&2047;
1217 if((((end-1-(u_int)rdram)>>12)&2047)>last) last=((end-1-(u_int)rdram)>>12)&2047;
1218 }
1219 }
1220#ifndef DISABLE_TLB
1221 if(page<2048&&(signed int)start>=(signed int)0xC0000000&&(signed int)end>=(signed int)0xC0000000) {
1222 if(((start+memory_map[start>>12]-(u_int)rdram)>>12)<=page&&((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)>=page) {
1223 if((((start+memory_map[start>>12]-(u_int)rdram)>>12)&2047)<first) first=((start+memory_map[start>>12]-(u_int)rdram)>>12)&2047;
1224 if((((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)&2047)>last) last=((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)&2047;
1225 }
1226 }
1227#endif
1228 }
1229 head=head->next;
1230 }
1231 invalidate_block_range(block,first,last);
1232}
1233
57871462 1234void invalidate_addr(u_int addr)
1235{
9be4ba64 1236#ifdef PCSX
1237 //static int rhits;
1238 // this check is done by the caller
1239 //if (inv_code_start<=addr&&addr<=inv_code_end) { rhits++; return; }
d25604ca 1240 u_int page=get_vpage(addr);
9be4ba64 1241 if(page<2048) { // RAM
1242 struct ll_entry *head;
1243 u_int addr_min=~0, addr_max=0;
1244 int mask=RAM_SIZE-1;
1245 int pg1;
1246 inv_code_start=addr&~0xfff;
1247 inv_code_end=addr|0xfff;
1248 pg1=page;
1249 if (pg1>0) {
1250 // must check previous page too because of spans..
1251 pg1--;
1252 inv_code_start-=0x1000;
1253 }
1254 for(;pg1<=page;pg1++) {
1255 for(head=jump_dirty[pg1];head!=NULL;head=head->next) {
1256 u_int start,end;
1257 get_bounds((int)head->addr,&start,&end);
1258 if((start&mask)<=(addr&mask)&&(addr&mask)<(end&mask)) {
1259 if(start<addr_min) addr_min=start;
1260 if(end>addr_max) addr_max=end;
1261 }
1262 else if(addr<start) {
1263 if(start<inv_code_end)
1264 inv_code_end=start-1;
1265 }
1266 else {
1267 if(end>inv_code_start)
1268 inv_code_start=end;
1269 }
1270 }
1271 }
1272 if (addr_min!=~0) {
1273 inv_debug("INV ADDR: %08x hit %08x-%08x\n", addr, addr_min, addr_max);
1274 inv_code_start=inv_code_end=~0;
1275 invalidate_block_range(addr>>12,(addr_min&mask)>>12,(addr_max&mask)>>12);
1276 return;
1277 }
1278 else {
d25604ca 1279 inv_debug("INV ADDR: %08x miss, inv %08x-%08x, sk %d\n", addr, inv_code_start, inv_code_end, 0);
9be4ba64 1280 return;
d25604ca 1281 }
9be4ba64 1282 }
1283#endif
57871462 1284 invalidate_block(addr>>12);
1285}
9be4ba64 1286
dd3a91a1 1287// This is called when loading a save state.
1288// Anything could have changed, so invalidate everything.
57871462 1289void invalidate_all_pages()
1290{
1291 u_int page,n;
1292 for(page=0;page<4096;page++)
1293 invalidate_page(page);
1294 for(page=0;page<1048576;page++)
1295 if(!invalid_code[page]) {
1296 restore_candidate[(page&2047)>>3]|=1<<(page&7);
1297 restore_candidate[((page&2047)>>3)+256]|=1<<(page&7);
1298 }
1299 #ifdef __arm__
1300 __clear_cache((void *)BASE_ADDR,(void *)BASE_ADDR+(1<<TARGET_SIZE_2));
1301 #endif
1302 #ifdef USE_MINI_HT
1303 memset(mini_ht,-1,sizeof(mini_ht));
1304 #endif
94d23bb9 1305 #ifndef DISABLE_TLB
57871462 1306 // TLB
1307 for(page=0;page<0x100000;page++) {
1308 if(tlb_LUT_r[page]) {
1309 memory_map[page]=((tlb_LUT_r[page]&0xFFFFF000)-(page<<12)+(unsigned int)rdram-0x80000000)>>2;
1310 if(!tlb_LUT_w[page]||!invalid_code[page])
1311 memory_map[page]|=0x40000000; // Write protect
1312 }
1313 else memory_map[page]=-1;
1314 if(page==0x80000) page=0xC0000;
1315 }
1316 tlb_hacks();
94d23bb9 1317 #endif
57871462 1318}
1319
1320// Add an entry to jump_out after making a link
1321void add_link(u_int vaddr,void *src)
1322{
94d23bb9 1323 u_int page=get_page(vaddr);
57871462 1324 inv_debug("add_link: %x -> %x (%d)\n",(int)src,vaddr,page);
76f71c27 1325 int *ptr=(int *)(src+4);
1326 assert((*ptr&0x0fff0000)==0x059f0000);
57871462 1327 ll_add(jump_out+page,vaddr,src);
1328 //int ptr=get_pointer(src);
1329 //inv_debug("add_link: Pointer is to %x\n",(int)ptr);
1330}
1331
1332// If a code block was found to be unmodified (bit was set in
1333// restore_candidate) and it remains unmodified (bit is clear
1334// in invalid_code) then move the entries for that 4K page from
1335// the dirty list to the clean list.
1336void clean_blocks(u_int page)
1337{
1338 struct ll_entry *head;
1339 inv_debug("INV: clean_blocks page=%d\n",page);
1340 head=jump_dirty[page];
1341 while(head!=NULL) {
1342 if(!invalid_code[head->vaddr>>12]) {
1343 // Don't restore blocks which are about to expire from the cache
1344 if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1345 u_int start,end;
1346 if(verify_dirty((int)head->addr)) {
1347 //printf("Possibly Restore %x (%x)\n",head->vaddr, (int)head->addr);
1348 u_int i;
1349 u_int inv=0;
1350 get_bounds((int)head->addr,&start,&end);
4cb76aa4 1351 if(start-(u_int)rdram<RAM_SIZE) {
57871462 1352 for(i=(start-(u_int)rdram+0x80000000)>>12;i<=(end-1-(u_int)rdram+0x80000000)>>12;i++) {
1353 inv|=invalid_code[i];
1354 }
1355 }
63cb0298 1356#ifndef DISABLE_TLB
57871462 1357 if((signed int)head->vaddr>=(signed int)0xC0000000) {
1358 u_int addr = (head->vaddr+(memory_map[head->vaddr>>12]<<2));
1359 //printf("addr=%x start=%x end=%x\n",addr,start,end);
1360 if(addr<start||addr>=end) inv=1;
1361 }
63cb0298 1362#endif
4cb76aa4 1363 else if((signed int)head->vaddr>=(signed int)0x80000000+RAM_SIZE) {
57871462 1364 inv=1;
1365 }
1366 if(!inv) {
1367 void * clean_addr=(void *)get_clean_addr((int)head->addr);
1368 if((((u_int)clean_addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1369 u_int ppage=page;
94d23bb9 1370#ifndef DISABLE_TLB
57871462 1371 if(page<2048&&tlb_LUT_r[head->vaddr>>12]) ppage=(tlb_LUT_r[head->vaddr>>12]^0x80000000)>>12;
94d23bb9 1372#endif
57871462 1373 inv_debug("INV: Restored %x (%x/%x)\n",head->vaddr, (int)head->addr, (int)clean_addr);
1374 //printf("page=%x, addr=%x\n",page,head->vaddr);
1375 //assert(head->vaddr>>12==(page|0x80000));
1376 ll_add_32(jump_in+ppage,head->vaddr,head->reg32,clean_addr);
1377 int *ht_bin=hash_table[((head->vaddr>>16)^head->vaddr)&0xFFFF];
1378 if(!head->reg32) {
1379 if(ht_bin[0]==head->vaddr) {
1380 ht_bin[1]=(int)clean_addr; // Replace existing entry
1381 }
1382 if(ht_bin[2]==head->vaddr) {
1383 ht_bin[3]=(int)clean_addr; // Replace existing entry
1384 }
1385 }
1386 }
1387 }
1388 }
1389 }
1390 }
1391 head=head->next;
1392 }
1393}
1394
1395
1396void mov_alloc(struct regstat *current,int i)
1397{
1398 // Note: Don't need to actually alloc the source registers
1399 if((~current->is32>>rs1[i])&1) {
1400 //alloc_reg64(current,i,rs1[i]);
1401 alloc_reg64(current,i,rt1[i]);
1402 current->is32&=~(1LL<<rt1[i]);
1403 } else {
1404 //alloc_reg(current,i,rs1[i]);
1405 alloc_reg(current,i,rt1[i]);
1406 current->is32|=(1LL<<rt1[i]);
1407 }
1408 clear_const(current,rs1[i]);
1409 clear_const(current,rt1[i]);
1410 dirty_reg(current,rt1[i]);
1411}
1412
1413void shiftimm_alloc(struct regstat *current,int i)
1414{
57871462 1415 if(opcode2[i]<=0x3) // SLL/SRL/SRA
1416 {
1417 if(rt1[i]) {
1418 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1419 else lt1[i]=rs1[i];
1420 alloc_reg(current,i,rt1[i]);
1421 current->is32|=1LL<<rt1[i];
1422 dirty_reg(current,rt1[i]);
dc49e339 1423 if(is_const(current,rs1[i])) {
1424 int v=get_const(current,rs1[i]);
1425 if(opcode2[i]==0x00) set_const(current,rt1[i],v<<imm[i]);
1426 if(opcode2[i]==0x02) set_const(current,rt1[i],(u_int)v>>imm[i]);
1427 if(opcode2[i]==0x03) set_const(current,rt1[i],v>>imm[i]);
1428 }
1429 else clear_const(current,rt1[i]);
57871462 1430 }
1431 }
dc49e339 1432 else
1433 {
1434 clear_const(current,rs1[i]);
1435 clear_const(current,rt1[i]);
1436 }
1437
57871462 1438 if(opcode2[i]>=0x38&&opcode2[i]<=0x3b) // DSLL/DSRL/DSRA
1439 {
1440 if(rt1[i]) {
1441 if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1442 alloc_reg64(current,i,rt1[i]);
1443 current->is32&=~(1LL<<rt1[i]);
1444 dirty_reg(current,rt1[i]);
1445 }
1446 }
1447 if(opcode2[i]==0x3c) // DSLL32
1448 {
1449 if(rt1[i]) {
1450 if(rs1[i]) alloc_reg(current,i,rs1[i]);
1451 alloc_reg64(current,i,rt1[i]);
1452 current->is32&=~(1LL<<rt1[i]);
1453 dirty_reg(current,rt1[i]);
1454 }
1455 }
1456 if(opcode2[i]==0x3e) // DSRL32
1457 {
1458 if(rt1[i]) {
1459 alloc_reg64(current,i,rs1[i]);
1460 if(imm[i]==32) {
1461 alloc_reg64(current,i,rt1[i]);
1462 current->is32&=~(1LL<<rt1[i]);
1463 } else {
1464 alloc_reg(current,i,rt1[i]);
1465 current->is32|=1LL<<rt1[i];
1466 }
1467 dirty_reg(current,rt1[i]);
1468 }
1469 }
1470 if(opcode2[i]==0x3f) // DSRA32
1471 {
1472 if(rt1[i]) {
1473 alloc_reg64(current,i,rs1[i]);
1474 alloc_reg(current,i,rt1[i]);
1475 current->is32|=1LL<<rt1[i];
1476 dirty_reg(current,rt1[i]);
1477 }
1478 }
1479}
1480
1481void shift_alloc(struct regstat *current,int i)
1482{
1483 if(rt1[i]) {
1484 if(opcode2[i]<=0x07) // SLLV/SRLV/SRAV
1485 {
1486 if(rs1[i]) alloc_reg(current,i,rs1[i]);
1487 if(rs2[i]) alloc_reg(current,i,rs2[i]);
1488 alloc_reg(current,i,rt1[i]);
e1190b87 1489 if(rt1[i]==rs2[i]) {
1490 alloc_reg_temp(current,i,-1);
1491 minimum_free_regs[i]=1;
1492 }
57871462 1493 current->is32|=1LL<<rt1[i];
1494 } else { // DSLLV/DSRLV/DSRAV
1495 if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1496 if(rs2[i]) alloc_reg(current,i,rs2[i]);
1497 alloc_reg64(current,i,rt1[i]);
1498 current->is32&=~(1LL<<rt1[i]);
1499 if(opcode2[i]==0x16||opcode2[i]==0x17) // DSRLV and DSRAV need a temporary register
e1190b87 1500 {
57871462 1501 alloc_reg_temp(current,i,-1);
e1190b87 1502 minimum_free_regs[i]=1;
1503 }
57871462 1504 }
1505 clear_const(current,rs1[i]);
1506 clear_const(current,rs2[i]);
1507 clear_const(current,rt1[i]);
1508 dirty_reg(current,rt1[i]);
1509 }
1510}
1511
1512void alu_alloc(struct regstat *current,int i)
1513{
1514 if(opcode2[i]>=0x20&&opcode2[i]<=0x23) { // ADD/ADDU/SUB/SUBU
1515 if(rt1[i]) {
1516 if(rs1[i]&&rs2[i]) {
1517 alloc_reg(current,i,rs1[i]);
1518 alloc_reg(current,i,rs2[i]);
1519 }
1520 else {
1521 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1522 if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg(current,i,rs2[i]);
1523 }
1524 alloc_reg(current,i,rt1[i]);
1525 }
1526 current->is32|=1LL<<rt1[i];
1527 }
1528 if(opcode2[i]==0x2a||opcode2[i]==0x2b) { // SLT/SLTU
1529 if(rt1[i]) {
1530 if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1531 {
1532 alloc_reg64(current,i,rs1[i]);
1533 alloc_reg64(current,i,rs2[i]);
1534 alloc_reg(current,i,rt1[i]);
1535 } else {
1536 alloc_reg(current,i,rs1[i]);
1537 alloc_reg(current,i,rs2[i]);
1538 alloc_reg(current,i,rt1[i]);
1539 }
1540 }
1541 current->is32|=1LL<<rt1[i];
1542 }
1543 if(opcode2[i]>=0x24&&opcode2[i]<=0x27) { // AND/OR/XOR/NOR
1544 if(rt1[i]) {
1545 if(rs1[i]&&rs2[i]) {
1546 alloc_reg(current,i,rs1[i]);
1547 alloc_reg(current,i,rs2[i]);
1548 }
1549 else
1550 {
1551 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1552 if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg(current,i,rs2[i]);
1553 }
1554 alloc_reg(current,i,rt1[i]);
1555 if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1556 {
1557 if(!((current->uu>>rt1[i])&1)) {
1558 alloc_reg64(current,i,rt1[i]);
1559 }
1560 if(get_reg(current->regmap,rt1[i]|64)>=0) {
1561 if(rs1[i]&&rs2[i]) {
1562 alloc_reg64(current,i,rs1[i]);
1563 alloc_reg64(current,i,rs2[i]);
1564 }
1565 else
1566 {
1567 // Is is really worth it to keep 64-bit values in registers?
1568 #ifdef NATIVE_64BIT
1569 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg64(current,i,rs1[i]);
1570 if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg64(current,i,rs2[i]);
1571 #endif
1572 }
1573 }
1574 current->is32&=~(1LL<<rt1[i]);
1575 } else {
1576 current->is32|=1LL<<rt1[i];
1577 }
1578 }
1579 }
1580 if(opcode2[i]>=0x2c&&opcode2[i]<=0x2f) { // DADD/DADDU/DSUB/DSUBU
1581 if(rt1[i]) {
1582 if(rs1[i]&&rs2[i]) {
1583 if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1584 alloc_reg64(current,i,rs1[i]);
1585 alloc_reg64(current,i,rs2[i]);
1586 alloc_reg64(current,i,rt1[i]);
1587 } else {
1588 alloc_reg(current,i,rs1[i]);
1589 alloc_reg(current,i,rs2[i]);
1590 alloc_reg(current,i,rt1[i]);
1591 }
1592 }
1593 else {
1594 alloc_reg(current,i,rt1[i]);
1595 if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1596 // DADD used as move, or zeroing
1597 // If we have a 64-bit source, then make the target 64 bits too
1598 if(rs1[i]&&!((current->is32>>rs1[i])&1)) {
1599 if(get_reg(current->regmap,rs1[i])>=0) alloc_reg64(current,i,rs1[i]);
1600 alloc_reg64(current,i,rt1[i]);
1601 } else if(rs2[i]&&!((current->is32>>rs2[i])&1)) {
1602 if(get_reg(current->regmap,rs2[i])>=0) alloc_reg64(current,i,rs2[i]);
1603 alloc_reg64(current,i,rt1[i]);
1604 }
1605 if(opcode2[i]>=0x2e&&rs2[i]) {
1606 // DSUB used as negation - 64-bit result
1607 // If we have a 32-bit register, extend it to 64 bits
1608 if(get_reg(current->regmap,rs2[i])>=0) alloc_reg64(current,i,rs2[i]);
1609 alloc_reg64(current,i,rt1[i]);
1610 }
1611 }
1612 }
1613 if(rs1[i]&&rs2[i]) {
1614 current->is32&=~(1LL<<rt1[i]);
1615 } else if(rs1[i]) {
1616 current->is32&=~(1LL<<rt1[i]);
1617 if((current->is32>>rs1[i])&1)
1618 current->is32|=1LL<<rt1[i];
1619 } else if(rs2[i]) {
1620 current->is32&=~(1LL<<rt1[i]);
1621 if((current->is32>>rs2[i])&1)
1622 current->is32|=1LL<<rt1[i];
1623 } else {
1624 current->is32|=1LL<<rt1[i];
1625 }
1626 }
1627 }
1628 clear_const(current,rs1[i]);
1629 clear_const(current,rs2[i]);
1630 clear_const(current,rt1[i]);
1631 dirty_reg(current,rt1[i]);
1632}
1633
1634void imm16_alloc(struct regstat *current,int i)
1635{
1636 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1637 else lt1[i]=rs1[i];
1638 if(rt1[i]) alloc_reg(current,i,rt1[i]);
1639 if(opcode[i]==0x18||opcode[i]==0x19) { // DADDI/DADDIU
1640 current->is32&=~(1LL<<rt1[i]);
1641 if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1642 // TODO: Could preserve the 32-bit flag if the immediate is zero
1643 alloc_reg64(current,i,rt1[i]);
1644 alloc_reg64(current,i,rs1[i]);
1645 }
1646 clear_const(current,rs1[i]);
1647 clear_const(current,rt1[i]);
1648 }
1649 else if(opcode[i]==0x0a||opcode[i]==0x0b) { // SLTI/SLTIU
1650 if((~current->is32>>rs1[i])&1) alloc_reg64(current,i,rs1[i]);
1651 current->is32|=1LL<<rt1[i];
1652 clear_const(current,rs1[i]);
1653 clear_const(current,rt1[i]);
1654 }
1655 else if(opcode[i]>=0x0c&&opcode[i]<=0x0e) { // ANDI/ORI/XORI
1656 if(((~current->is32>>rs1[i])&1)&&opcode[i]>0x0c) {
1657 if(rs1[i]!=rt1[i]) {
1658 if(needed_again(rs1[i],i)) alloc_reg64(current,i,rs1[i]);
1659 alloc_reg64(current,i,rt1[i]);
1660 current->is32&=~(1LL<<rt1[i]);
1661 }
1662 }
1663 else current->is32|=1LL<<rt1[i]; // ANDI clears upper bits
1664 if(is_const(current,rs1[i])) {
1665 int v=get_const(current,rs1[i]);
1666 if(opcode[i]==0x0c) set_const(current,rt1[i],v&imm[i]);
1667 if(opcode[i]==0x0d) set_const(current,rt1[i],v|imm[i]);
1668 if(opcode[i]==0x0e) set_const(current,rt1[i],v^imm[i]);
1669 }
1670 else clear_const(current,rt1[i]);
1671 }
1672 else if(opcode[i]==0x08||opcode[i]==0x09) { // ADDI/ADDIU
1673 if(is_const(current,rs1[i])) {
1674 int v=get_const(current,rs1[i]);
1675 set_const(current,rt1[i],v+imm[i]);
1676 }
1677 else clear_const(current,rt1[i]);
1678 current->is32|=1LL<<rt1[i];
1679 }
1680 else {
1681 set_const(current,rt1[i],((long long)((short)imm[i]))<<16); // LUI
1682 current->is32|=1LL<<rt1[i];
1683 }
1684 dirty_reg(current,rt1[i]);
1685}
1686
1687void load_alloc(struct regstat *current,int i)
1688{
1689 clear_const(current,rt1[i]);
1690 //if(rs1[i]!=rt1[i]&&needed_again(rs1[i],i)) clear_const(current,rs1[i]); // Does this help or hurt?
1691 if(!rs1[i]) current->u&=~1LL; // Allow allocating r0 if it's the source register
1692 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
373d1d07 1693 if(rt1[i]&&!((current->u>>rt1[i])&1)) {
57871462 1694 alloc_reg(current,i,rt1[i]);
373d1d07 1695 assert(get_reg(current->regmap,rt1[i])>=0);
57871462 1696 if(opcode[i]==0x27||opcode[i]==0x37) // LWU/LD
1697 {
1698 current->is32&=~(1LL<<rt1[i]);
1699 alloc_reg64(current,i,rt1[i]);
1700 }
1701 else if(opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
1702 {
1703 current->is32&=~(1LL<<rt1[i]);
1704 alloc_reg64(current,i,rt1[i]);
1705 alloc_all(current,i);
1706 alloc_reg64(current,i,FTEMP);
e1190b87 1707 minimum_free_regs[i]=HOST_REGS;
57871462 1708 }
1709 else current->is32|=1LL<<rt1[i];
1710 dirty_reg(current,rt1[i]);
1711 // If using TLB, need a register for pointer to the mapping table
1712 if(using_tlb) alloc_reg(current,i,TLREG);
1713 // LWL/LWR need a temporary register for the old value
1714 if(opcode[i]==0x22||opcode[i]==0x26)
1715 {
1716 alloc_reg(current,i,FTEMP);
1717 alloc_reg_temp(current,i,-1);
e1190b87 1718 minimum_free_regs[i]=1;
57871462 1719 }
1720 }
1721 else
1722 {
373d1d07 1723 // Load to r0 or unneeded register (dummy load)
57871462 1724 // but we still need a register to calculate the address
535d208a 1725 if(opcode[i]==0x22||opcode[i]==0x26)
1726 {
1727 alloc_reg(current,i,FTEMP); // LWL/LWR need another temporary
1728 }
373d1d07 1729 // If using TLB, need a register for pointer to the mapping table
1730 if(using_tlb) alloc_reg(current,i,TLREG);
57871462 1731 alloc_reg_temp(current,i,-1);
e1190b87 1732 minimum_free_regs[i]=1;
535d208a 1733 if(opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
1734 {
1735 alloc_all(current,i);
1736 alloc_reg64(current,i,FTEMP);
e1190b87 1737 minimum_free_regs[i]=HOST_REGS;
535d208a 1738 }
57871462 1739 }
1740}
1741
1742void store_alloc(struct regstat *current,int i)
1743{
1744 clear_const(current,rs2[i]);
1745 if(!(rs2[i])) current->u&=~1LL; // Allow allocating r0 if necessary
1746 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1747 alloc_reg(current,i,rs2[i]);
1748 if(opcode[i]==0x2c||opcode[i]==0x2d||opcode[i]==0x3f) { // 64-bit SDL/SDR/SD
1749 alloc_reg64(current,i,rs2[i]);
1750 if(rs2[i]) alloc_reg(current,i,FTEMP);
1751 }
1752 // If using TLB, need a register for pointer to the mapping table
1753 if(using_tlb) alloc_reg(current,i,TLREG);
1754 #if defined(HOST_IMM8)
1755 // On CPUs without 32-bit immediates we need a pointer to invalid_code
1756 else alloc_reg(current,i,INVCP);
1757 #endif
b7918751 1758 if(opcode[i]==0x2a||opcode[i]==0x2e||opcode[i]==0x2c||opcode[i]==0x2d) { // SWL/SWL/SDL/SDR
57871462 1759 alloc_reg(current,i,FTEMP);
1760 }
1761 // We need a temporary register for address generation
1762 alloc_reg_temp(current,i,-1);
e1190b87 1763 minimum_free_regs[i]=1;
57871462 1764}
1765
1766void c1ls_alloc(struct regstat *current,int i)
1767{
1768 //clear_const(current,rs1[i]); // FIXME
1769 clear_const(current,rt1[i]);
1770 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1771 alloc_reg(current,i,CSREG); // Status
1772 alloc_reg(current,i,FTEMP);
1773 if(opcode[i]==0x35||opcode[i]==0x3d) { // 64-bit LDC1/SDC1
1774 alloc_reg64(current,i,FTEMP);
1775 }
1776 // If using TLB, need a register for pointer to the mapping table
1777 if(using_tlb) alloc_reg(current,i,TLREG);
1778 #if defined(HOST_IMM8)
1779 // On CPUs without 32-bit immediates we need a pointer to invalid_code
1780 else if((opcode[i]&0x3b)==0x39) // SWC1/SDC1
1781 alloc_reg(current,i,INVCP);
1782 #endif
1783 // We need a temporary register for address generation
1784 alloc_reg_temp(current,i,-1);
1785}
1786
b9b61529 1787void c2ls_alloc(struct regstat *current,int i)
1788{
1789 clear_const(current,rt1[i]);
1790 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1791 alloc_reg(current,i,FTEMP);
1792 // If using TLB, need a register for pointer to the mapping table
1793 if(using_tlb) alloc_reg(current,i,TLREG);
1794 #if defined(HOST_IMM8)
1795 // On CPUs without 32-bit immediates we need a pointer to invalid_code
1796 else if((opcode[i]&0x3b)==0x3a) // SWC2/SDC2
1797 alloc_reg(current,i,INVCP);
1798 #endif
1799 // We need a temporary register for address generation
1800 alloc_reg_temp(current,i,-1);
e1190b87 1801 minimum_free_regs[i]=1;
b9b61529 1802}
1803
57871462 1804#ifndef multdiv_alloc
1805void multdiv_alloc(struct regstat *current,int i)
1806{
1807 // case 0x18: MULT
1808 // case 0x19: MULTU
1809 // case 0x1A: DIV
1810 // case 0x1B: DIVU
1811 // case 0x1C: DMULT
1812 // case 0x1D: DMULTU
1813 // case 0x1E: DDIV
1814 // case 0x1F: DDIVU
1815 clear_const(current,rs1[i]);
1816 clear_const(current,rs2[i]);
1817 if(rs1[i]&&rs2[i])
1818 {
1819 if((opcode2[i]&4)==0) // 32-bit
1820 {
1821 current->u&=~(1LL<<HIREG);
1822 current->u&=~(1LL<<LOREG);
1823 alloc_reg(current,i,HIREG);
1824 alloc_reg(current,i,LOREG);
1825 alloc_reg(current,i,rs1[i]);
1826 alloc_reg(current,i,rs2[i]);
1827 current->is32|=1LL<<HIREG;
1828 current->is32|=1LL<<LOREG;
1829 dirty_reg(current,HIREG);
1830 dirty_reg(current,LOREG);
1831 }
1832 else // 64-bit
1833 {
1834 current->u&=~(1LL<<HIREG);
1835 current->u&=~(1LL<<LOREG);
1836 current->uu&=~(1LL<<HIREG);
1837 current->uu&=~(1LL<<LOREG);
1838 alloc_reg64(current,i,HIREG);
1839 //if(HOST_REGS>10) alloc_reg64(current,i,LOREG);
1840 alloc_reg64(current,i,rs1[i]);
1841 alloc_reg64(current,i,rs2[i]);
1842 alloc_all(current,i);
1843 current->is32&=~(1LL<<HIREG);
1844 current->is32&=~(1LL<<LOREG);
1845 dirty_reg(current,HIREG);
1846 dirty_reg(current,LOREG);
e1190b87 1847 minimum_free_regs[i]=HOST_REGS;
57871462 1848 }
1849 }
1850 else
1851 {
1852 // Multiply by zero is zero.
1853 // MIPS does not have a divide by zero exception.
1854 // The result is undefined, we return zero.
1855 alloc_reg(current,i,HIREG);
1856 alloc_reg(current,i,LOREG);
1857 current->is32|=1LL<<HIREG;
1858 current->is32|=1LL<<LOREG;
1859 dirty_reg(current,HIREG);
1860 dirty_reg(current,LOREG);
1861 }
1862}
1863#endif
1864
1865void cop0_alloc(struct regstat *current,int i)
1866{
1867 if(opcode2[i]==0) // MFC0
1868 {
1869 if(rt1[i]) {
1870 clear_const(current,rt1[i]);
1871 alloc_all(current,i);
1872 alloc_reg(current,i,rt1[i]);
1873 current->is32|=1LL<<rt1[i];
1874 dirty_reg(current,rt1[i]);
1875 }
1876 }
1877 else if(opcode2[i]==4) // MTC0
1878 {
1879 if(rs1[i]){
1880 clear_const(current,rs1[i]);
1881 alloc_reg(current,i,rs1[i]);
1882 alloc_all(current,i);
1883 }
1884 else {
1885 alloc_all(current,i); // FIXME: Keep r0
1886 current->u&=~1LL;
1887 alloc_reg(current,i,0);
1888 }
1889 }
1890 else
1891 {
1892 // TLBR/TLBWI/TLBWR/TLBP/ERET
1893 assert(opcode2[i]==0x10);
1894 alloc_all(current,i);
1895 }
e1190b87 1896 minimum_free_regs[i]=HOST_REGS;
57871462 1897}
1898
1899void cop1_alloc(struct regstat *current,int i)
1900{
1901 alloc_reg(current,i,CSREG); // Load status
1902 if(opcode2[i]<3) // MFC1/DMFC1/CFC1
1903 {
7de557a6 1904 if(rt1[i]){
1905 clear_const(current,rt1[i]);
1906 if(opcode2[i]==1) {
1907 alloc_reg64(current,i,rt1[i]); // DMFC1
1908 current->is32&=~(1LL<<rt1[i]);
1909 }else{
1910 alloc_reg(current,i,rt1[i]); // MFC1/CFC1
1911 current->is32|=1LL<<rt1[i];
1912 }
1913 dirty_reg(current,rt1[i]);
57871462 1914 }
57871462 1915 alloc_reg_temp(current,i,-1);
1916 }
1917 else if(opcode2[i]>3) // MTC1/DMTC1/CTC1
1918 {
1919 if(rs1[i]){
1920 clear_const(current,rs1[i]);
1921 if(opcode2[i]==5)
1922 alloc_reg64(current,i,rs1[i]); // DMTC1
1923 else
1924 alloc_reg(current,i,rs1[i]); // MTC1/CTC1
1925 alloc_reg_temp(current,i,-1);
1926 }
1927 else {
1928 current->u&=~1LL;
1929 alloc_reg(current,i,0);
1930 alloc_reg_temp(current,i,-1);
1931 }
1932 }
e1190b87 1933 minimum_free_regs[i]=1;
57871462 1934}
1935void fconv_alloc(struct regstat *current,int i)
1936{
1937 alloc_reg(current,i,CSREG); // Load status
1938 alloc_reg_temp(current,i,-1);
e1190b87 1939 minimum_free_regs[i]=1;
57871462 1940}
1941void float_alloc(struct regstat *current,int i)
1942{
1943 alloc_reg(current,i,CSREG); // Load status
1944 alloc_reg_temp(current,i,-1);
e1190b87 1945 minimum_free_regs[i]=1;
57871462 1946}
b9b61529 1947void c2op_alloc(struct regstat *current,int i)
1948{
1949 alloc_reg_temp(current,i,-1);
1950}
57871462 1951void fcomp_alloc(struct regstat *current,int i)
1952{
1953 alloc_reg(current,i,CSREG); // Load status
1954 alloc_reg(current,i,FSREG); // Load flags
1955 dirty_reg(current,FSREG); // Flag will be modified
1956 alloc_reg_temp(current,i,-1);
e1190b87 1957 minimum_free_regs[i]=1;
57871462 1958}
1959
1960void syscall_alloc(struct regstat *current,int i)
1961{
1962 alloc_cc(current,i);
1963 dirty_reg(current,CCREG);
1964 alloc_all(current,i);
e1190b87 1965 minimum_free_regs[i]=HOST_REGS;
57871462 1966 current->isconst=0;
1967}
1968
1969void delayslot_alloc(struct regstat *current,int i)
1970{
1971 switch(itype[i]) {
1972 case UJUMP:
1973 case CJUMP:
1974 case SJUMP:
1975 case RJUMP:
1976 case FJUMP:
1977 case SYSCALL:
7139f3c8 1978 case HLECALL:
57871462 1979 case SPAN:
1980 assem_debug("jump in the delay slot. this shouldn't happen.\n");//exit(1);
1981 printf("Disabled speculative precompilation\n");
1982 stop_after_jal=1;
1983 break;
1984 case IMM16:
1985 imm16_alloc(current,i);
1986 break;
1987 case LOAD:
1988 case LOADLR:
1989 load_alloc(current,i);
1990 break;
1991 case STORE:
1992 case STORELR:
1993 store_alloc(current,i);
1994 break;
1995 case ALU:
1996 alu_alloc(current,i);
1997 break;
1998 case SHIFT:
1999 shift_alloc(current,i);
2000 break;
2001 case MULTDIV:
2002 multdiv_alloc(current,i);
2003 break;
2004 case SHIFTIMM:
2005 shiftimm_alloc(current,i);
2006 break;
2007 case MOV:
2008 mov_alloc(current,i);
2009 break;
2010 case COP0:
2011 cop0_alloc(current,i);
2012 break;
2013 case COP1:
b9b61529 2014 case COP2:
57871462 2015 cop1_alloc(current,i);
2016 break;
2017 case C1LS:
2018 c1ls_alloc(current,i);
2019 break;
b9b61529 2020 case C2LS:
2021 c2ls_alloc(current,i);
2022 break;
57871462 2023 case FCONV:
2024 fconv_alloc(current,i);
2025 break;
2026 case FLOAT:
2027 float_alloc(current,i);
2028 break;
2029 case FCOMP:
2030 fcomp_alloc(current,i);
2031 break;
b9b61529 2032 case C2OP:
2033 c2op_alloc(current,i);
2034 break;
57871462 2035 }
2036}
2037
2038// Special case where a branch and delay slot span two pages in virtual memory
2039static void pagespan_alloc(struct regstat *current,int i)
2040{
2041 current->isconst=0;
2042 current->wasconst=0;
2043 regs[i].wasconst=0;
e1190b87 2044 minimum_free_regs[i]=HOST_REGS;
57871462 2045 alloc_all(current,i);
2046 alloc_cc(current,i);
2047 dirty_reg(current,CCREG);
2048 if(opcode[i]==3) // JAL
2049 {
2050 alloc_reg(current,i,31);
2051 dirty_reg(current,31);
2052 }
2053 if(opcode[i]==0&&(opcode2[i]&0x3E)==8) // JR/JALR
2054 {
2055 alloc_reg(current,i,rs1[i]);
5067f341 2056 if (rt1[i]!=0) {
2057 alloc_reg(current,i,rt1[i]);
2058 dirty_reg(current,rt1[i]);
57871462 2059 }
2060 }
2061 if((opcode[i]&0x2E)==4) // BEQ/BNE/BEQL/BNEL
2062 {
2063 if(rs1[i]) alloc_reg(current,i,rs1[i]);
2064 if(rs2[i]) alloc_reg(current,i,rs2[i]);
2065 if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
2066 {
2067 if(rs1[i]) alloc_reg64(current,i,rs1[i]);
2068 if(rs2[i]) alloc_reg64(current,i,rs2[i]);
2069 }
2070 }
2071 else
2072 if((opcode[i]&0x2E)==6) // BLEZ/BGTZ/BLEZL/BGTZL
2073 {
2074 if(rs1[i]) alloc_reg(current,i,rs1[i]);
2075 if(!((current->is32>>rs1[i])&1))
2076 {
2077 if(rs1[i]) alloc_reg64(current,i,rs1[i]);
2078 }
2079 }
2080 else
2081 if(opcode[i]==0x11) // BC1
2082 {
2083 alloc_reg(current,i,FSREG);
2084 alloc_reg(current,i,CSREG);
2085 }
2086 //else ...
2087}
2088
2089add_stub(int type,int addr,int retaddr,int a,int b,int c,int d,int e)
2090{
2091 stubs[stubcount][0]=type;
2092 stubs[stubcount][1]=addr;
2093 stubs[stubcount][2]=retaddr;
2094 stubs[stubcount][3]=a;
2095 stubs[stubcount][4]=b;
2096 stubs[stubcount][5]=c;
2097 stubs[stubcount][6]=d;
2098 stubs[stubcount][7]=e;
2099 stubcount++;
2100}
2101
2102// Write out a single register
2103void wb_register(signed char r,signed char regmap[],uint64_t dirty,uint64_t is32)
2104{
2105 int hr;
2106 for(hr=0;hr<HOST_REGS;hr++) {
2107 if(hr!=EXCLUDE_REG) {
2108 if((regmap[hr]&63)==r) {
2109 if((dirty>>hr)&1) {
2110 if(regmap[hr]<64) {
2111 emit_storereg(r,hr);
24385cae 2112#ifndef FORCE32
57871462 2113 if((is32>>regmap[hr])&1) {
2114 emit_sarimm(hr,31,hr);
2115 emit_storereg(r|64,hr);
2116 }
24385cae 2117#endif
57871462 2118 }else{
2119 emit_storereg(r|64,hr);
2120 }
2121 }
2122 }
2123 }
2124 }
2125}
2126
2127int mchecksum()
2128{
2129 //if(!tracedebug) return 0;
2130 int i;
2131 int sum=0;
2132 for(i=0;i<2097152;i++) {
2133 unsigned int temp=sum;
2134 sum<<=1;
2135 sum|=(~temp)>>31;
2136 sum^=((u_int *)rdram)[i];
2137 }
2138 return sum;
2139}
2140int rchecksum()
2141{
2142 int i;
2143 int sum=0;
2144 for(i=0;i<64;i++)
2145 sum^=((u_int *)reg)[i];
2146 return sum;
2147}
57871462 2148void rlist()
2149{
2150 int i;
2151 printf("TRACE: ");
2152 for(i=0;i<32;i++)
2153 printf("r%d:%8x%8x ",i,((int *)(reg+i))[1],((int *)(reg+i))[0]);
2154 printf("\n");
3d624f89 2155#ifndef DISABLE_COP1
57871462 2156 printf("TRACE: ");
2157 for(i=0;i<32;i++)
2158 printf("f%d:%8x%8x ",i,((int*)reg_cop1_simple[i])[1],*((int*)reg_cop1_simple[i]));
2159 printf("\n");
3d624f89 2160#endif
57871462 2161}
2162
2163void enabletrace()
2164{
2165 tracedebug=1;
2166}
2167
2168void memdebug(int i)
2169{
2170 //printf("TRACE: count=%d next=%d (checksum %x) lo=%8x%8x\n",Count,next_interupt,mchecksum(),(int)(reg[LOREG]>>32),(int)reg[LOREG]);
2171 //printf("TRACE: count=%d next=%d (rchecksum %x)\n",Count,next_interupt,rchecksum());
2172 //rlist();
2173 //if(tracedebug) {
2174 //if(Count>=-2084597794) {
2175 if((signed int)Count>=-2084597794&&(signed int)Count<0) {
2176 //if(0) {
2177 printf("TRACE: count=%d next=%d (checksum %x)\n",Count,next_interupt,mchecksum());
2178 //printf("TRACE: count=%d next=%d (checksum %x) Status=%x\n",Count,next_interupt,mchecksum(),Status);
2179 //printf("TRACE: count=%d next=%d (checksum %x) hi=%8x%8x\n",Count,next_interupt,mchecksum(),(int)(reg[HIREG]>>32),(int)reg[HIREG]);
2180 rlist();
2181 #ifdef __i386__
2182 printf("TRACE: %x\n",(&i)[-1]);
2183 #endif
2184 #ifdef __arm__
2185 int j;
2186 printf("TRACE: %x \n",(&j)[10]);
2187 printf("TRACE: %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x\n",(&j)[1],(&j)[2],(&j)[3],(&j)[4],(&j)[5],(&j)[6],(&j)[7],(&j)[8],(&j)[9],(&j)[10],(&j)[11],(&j)[12],(&j)[13],(&j)[14],(&j)[15],(&j)[16],(&j)[17],(&j)[18],(&j)[19],(&j)[20]);
2188 #endif
2189 //fflush(stdout);
2190 }
2191 //printf("TRACE: %x\n",(&i)[-1]);
2192}
2193
2194void tlb_debug(u_int cause, u_int addr, u_int iaddr)
2195{
2196 printf("TLB Exception: instruction=%x addr=%x cause=%x\n",iaddr, addr, cause);
2197}
2198
2199void alu_assemble(int i,struct regstat *i_regs)
2200{
2201 if(opcode2[i]>=0x20&&opcode2[i]<=0x23) { // ADD/ADDU/SUB/SUBU
2202 if(rt1[i]) {
2203 signed char s1,s2,t;
2204 t=get_reg(i_regs->regmap,rt1[i]);
2205 if(t>=0) {
2206 s1=get_reg(i_regs->regmap,rs1[i]);
2207 s2=get_reg(i_regs->regmap,rs2[i]);
2208 if(rs1[i]&&rs2[i]) {
2209 assert(s1>=0);
2210 assert(s2>=0);
2211 if(opcode2[i]&2) emit_sub(s1,s2,t);
2212 else emit_add(s1,s2,t);
2213 }
2214 else if(rs1[i]) {
2215 if(s1>=0) emit_mov(s1,t);
2216 else emit_loadreg(rs1[i],t);
2217 }
2218 else if(rs2[i]) {
2219 if(s2>=0) {
2220 if(opcode2[i]&2) emit_neg(s2,t);
2221 else emit_mov(s2,t);
2222 }
2223 else {
2224 emit_loadreg(rs2[i],t);
2225 if(opcode2[i]&2) emit_neg(t,t);
2226 }
2227 }
2228 else emit_zeroreg(t);
2229 }
2230 }
2231 }
2232 if(opcode2[i]>=0x2c&&opcode2[i]<=0x2f) { // DADD/DADDU/DSUB/DSUBU
2233 if(rt1[i]) {
2234 signed char s1l,s2l,s1h,s2h,tl,th;
2235 tl=get_reg(i_regs->regmap,rt1[i]);
2236 th=get_reg(i_regs->regmap,rt1[i]|64);
2237 if(tl>=0) {
2238 s1l=get_reg(i_regs->regmap,rs1[i]);
2239 s2l=get_reg(i_regs->regmap,rs2[i]);
2240 s1h=get_reg(i_regs->regmap,rs1[i]|64);
2241 s2h=get_reg(i_regs->regmap,rs2[i]|64);
2242 if(rs1[i]&&rs2[i]) {
2243 assert(s1l>=0);
2244 assert(s2l>=0);
2245 if(opcode2[i]&2) emit_subs(s1l,s2l,tl);
2246 else emit_adds(s1l,s2l,tl);
2247 if(th>=0) {
2248 #ifdef INVERTED_CARRY
2249 if(opcode2[i]&2) {if(s1h!=th) emit_mov(s1h,th);emit_sbb(th,s2h);}
2250 #else
2251 if(opcode2[i]&2) emit_sbc(s1h,s2h,th);
2252 #endif
2253 else emit_add(s1h,s2h,th);
2254 }
2255 }
2256 else if(rs1[i]) {
2257 if(s1l>=0) emit_mov(s1l,tl);
2258 else emit_loadreg(rs1[i],tl);
2259 if(th>=0) {
2260 if(s1h>=0) emit_mov(s1h,th);
2261 else emit_loadreg(rs1[i]|64,th);
2262 }
2263 }
2264 else if(rs2[i]) {
2265 if(s2l>=0) {
2266 if(opcode2[i]&2) emit_negs(s2l,tl);
2267 else emit_mov(s2l,tl);
2268 }
2269 else {
2270 emit_loadreg(rs2[i],tl);
2271 if(opcode2[i]&2) emit_negs(tl,tl);
2272 }
2273 if(th>=0) {
2274 #ifdef INVERTED_CARRY
2275 if(s2h>=0) emit_mov(s2h,th);
2276 else emit_loadreg(rs2[i]|64,th);
2277 if(opcode2[i]&2) {
2278 emit_adcimm(-1,th); // x86 has inverted carry flag
2279 emit_not(th,th);
2280 }
2281 #else
2282 if(opcode2[i]&2) {
2283 if(s2h>=0) emit_rscimm(s2h,0,th);
2284 else {
2285 emit_loadreg(rs2[i]|64,th);
2286 emit_rscimm(th,0,th);
2287 }
2288 }else{
2289 if(s2h>=0) emit_mov(s2h,th);
2290 else emit_loadreg(rs2[i]|64,th);
2291 }
2292 #endif
2293 }
2294 }
2295 else {
2296 emit_zeroreg(tl);
2297 if(th>=0) emit_zeroreg(th);
2298 }
2299 }
2300 }
2301 }
2302 if(opcode2[i]==0x2a||opcode2[i]==0x2b) { // SLT/SLTU
2303 if(rt1[i]) {
2304 signed char s1l,s1h,s2l,s2h,t;
2305 if(!((i_regs->was32>>rs1[i])&(i_regs->was32>>rs2[i])&1))
2306 {
2307 t=get_reg(i_regs->regmap,rt1[i]);
2308 //assert(t>=0);
2309 if(t>=0) {
2310 s1l=get_reg(i_regs->regmap,rs1[i]);
2311 s1h=get_reg(i_regs->regmap,rs1[i]|64);
2312 s2l=get_reg(i_regs->regmap,rs2[i]);
2313 s2h=get_reg(i_regs->regmap,rs2[i]|64);
2314 if(rs2[i]==0) // rx<r0
2315 {
2316 assert(s1h>=0);
2317 if(opcode2[i]==0x2a) // SLT
2318 emit_shrimm(s1h,31,t);
2319 else // SLTU (unsigned can not be less than zero)
2320 emit_zeroreg(t);
2321 }
2322 else if(rs1[i]==0) // r0<rx
2323 {
2324 assert(s2h>=0);
2325 if(opcode2[i]==0x2a) // SLT
2326 emit_set_gz64_32(s2h,s2l,t);
2327 else // SLTU (set if not zero)
2328 emit_set_nz64_32(s2h,s2l,t);
2329 }
2330 else {
2331 assert(s1l>=0);assert(s1h>=0);
2332 assert(s2l>=0);assert(s2h>=0);
2333 if(opcode2[i]==0x2a) // SLT
2334 emit_set_if_less64_32(s1h,s1l,s2h,s2l,t);
2335 else // SLTU
2336 emit_set_if_carry64_32(s1h,s1l,s2h,s2l,t);
2337 }
2338 }
2339 } else {
2340 t=get_reg(i_regs->regmap,rt1[i]);
2341 //assert(t>=0);
2342 if(t>=0) {
2343 s1l=get_reg(i_regs->regmap,rs1[i]);
2344 s2l=get_reg(i_regs->regmap,rs2[i]);
2345 if(rs2[i]==0) // rx<r0
2346 {
2347 assert(s1l>=0);
2348 if(opcode2[i]==0x2a) // SLT
2349 emit_shrimm(s1l,31,t);
2350 else // SLTU (unsigned can not be less than zero)
2351 emit_zeroreg(t);
2352 }
2353 else if(rs1[i]==0) // r0<rx
2354 {
2355 assert(s2l>=0);
2356 if(opcode2[i]==0x2a) // SLT
2357 emit_set_gz32(s2l,t);
2358 else // SLTU (set if not zero)
2359 emit_set_nz32(s2l,t);
2360 }
2361 else{
2362 assert(s1l>=0);assert(s2l>=0);
2363 if(opcode2[i]==0x2a) // SLT
2364 emit_set_if_less32(s1l,s2l,t);
2365 else // SLTU
2366 emit_set_if_carry32(s1l,s2l,t);
2367 }
2368 }
2369 }
2370 }
2371 }
2372 if(opcode2[i]>=0x24&&opcode2[i]<=0x27) { // AND/OR/XOR/NOR
2373 if(rt1[i]) {
2374 signed char s1l,s1h,s2l,s2h,th,tl;
2375 tl=get_reg(i_regs->regmap,rt1[i]);
2376 th=get_reg(i_regs->regmap,rt1[i]|64);
2377 if(!((i_regs->was32>>rs1[i])&(i_regs->was32>>rs2[i])&1)&&th>=0)
2378 {
2379 assert(tl>=0);
2380 if(tl>=0) {
2381 s1l=get_reg(i_regs->regmap,rs1[i]);
2382 s1h=get_reg(i_regs->regmap,rs1[i]|64);
2383 s2l=get_reg(i_regs->regmap,rs2[i]);
2384 s2h=get_reg(i_regs->regmap,rs2[i]|64);
2385 if(rs1[i]&&rs2[i]) {
2386 assert(s1l>=0);assert(s1h>=0);
2387 assert(s2l>=0);assert(s2h>=0);
2388 if(opcode2[i]==0x24) { // AND
2389 emit_and(s1l,s2l,tl);
2390 emit_and(s1h,s2h,th);
2391 } else
2392 if(opcode2[i]==0x25) { // OR
2393 emit_or(s1l,s2l,tl);
2394 emit_or(s1h,s2h,th);
2395 } else
2396 if(opcode2[i]==0x26) { // XOR
2397 emit_xor(s1l,s2l,tl);
2398 emit_xor(s1h,s2h,th);
2399 } else
2400 if(opcode2[i]==0x27) { // NOR
2401 emit_or(s1l,s2l,tl);
2402 emit_or(s1h,s2h,th);
2403 emit_not(tl,tl);
2404 emit_not(th,th);
2405 }
2406 }
2407 else
2408 {
2409 if(opcode2[i]==0x24) { // AND
2410 emit_zeroreg(tl);
2411 emit_zeroreg(th);
2412 } else
2413 if(opcode2[i]==0x25||opcode2[i]==0x26) { // OR/XOR
2414 if(rs1[i]){
2415 if(s1l>=0) emit_mov(s1l,tl);
2416 else emit_loadreg(rs1[i],tl);
2417 if(s1h>=0) emit_mov(s1h,th);
2418 else emit_loadreg(rs1[i]|64,th);
2419 }
2420 else
2421 if(rs2[i]){
2422 if(s2l>=0) emit_mov(s2l,tl);
2423 else emit_loadreg(rs2[i],tl);
2424 if(s2h>=0) emit_mov(s2h,th);
2425 else emit_loadreg(rs2[i]|64,th);
2426 }
2427 else{
2428 emit_zeroreg(tl);
2429 emit_zeroreg(th);
2430 }
2431 } else
2432 if(opcode2[i]==0x27) { // NOR
2433 if(rs1[i]){
2434 if(s1l>=0) emit_not(s1l,tl);
2435 else{
2436 emit_loadreg(rs1[i],tl);
2437 emit_not(tl,tl);
2438 }
2439 if(s1h>=0) emit_not(s1h,th);
2440 else{
2441 emit_loadreg(rs1[i]|64,th);
2442 emit_not(th,th);
2443 }
2444 }
2445 else
2446 if(rs2[i]){
2447 if(s2l>=0) emit_not(s2l,tl);
2448 else{
2449 emit_loadreg(rs2[i],tl);
2450 emit_not(tl,tl);
2451 }
2452 if(s2h>=0) emit_not(s2h,th);
2453 else{
2454 emit_loadreg(rs2[i]|64,th);
2455 emit_not(th,th);
2456 }
2457 }
2458 else {
2459 emit_movimm(-1,tl);
2460 emit_movimm(-1,th);
2461 }
2462 }
2463 }
2464 }
2465 }
2466 else
2467 {
2468 // 32 bit
2469 if(tl>=0) {
2470 s1l=get_reg(i_regs->regmap,rs1[i]);
2471 s2l=get_reg(i_regs->regmap,rs2[i]);
2472 if(rs1[i]&&rs2[i]) {
2473 assert(s1l>=0);
2474 assert(s2l>=0);
2475 if(opcode2[i]==0x24) { // AND
2476 emit_and(s1l,s2l,tl);
2477 } else
2478 if(opcode2[i]==0x25) { // OR
2479 emit_or(s1l,s2l,tl);
2480 } else
2481 if(opcode2[i]==0x26) { // XOR
2482 emit_xor(s1l,s2l,tl);
2483 } else
2484 if(opcode2[i]==0x27) { // NOR
2485 emit_or(s1l,s2l,tl);
2486 emit_not(tl,tl);
2487 }
2488 }
2489 else
2490 {
2491 if(opcode2[i]==0x24) { // AND
2492 emit_zeroreg(tl);
2493 } else
2494 if(opcode2[i]==0x25||opcode2[i]==0x26) { // OR/XOR
2495 if(rs1[i]){
2496 if(s1l>=0) emit_mov(s1l,tl);
2497 else emit_loadreg(rs1[i],tl); // CHECK: regmap_entry?
2498 }
2499 else
2500 if(rs2[i]){
2501 if(s2l>=0) emit_mov(s2l,tl);
2502 else emit_loadreg(rs2[i],tl); // CHECK: regmap_entry?
2503 }
2504 else emit_zeroreg(tl);
2505 } else
2506 if(opcode2[i]==0x27) { // NOR
2507 if(rs1[i]){
2508 if(s1l>=0) emit_not(s1l,tl);
2509 else {
2510 emit_loadreg(rs1[i],tl);
2511 emit_not(tl,tl);
2512 }
2513 }
2514 else
2515 if(rs2[i]){
2516 if(s2l>=0) emit_not(s2l,tl);
2517 else {
2518 emit_loadreg(rs2[i],tl);
2519 emit_not(tl,tl);
2520 }
2521 }
2522 else emit_movimm(-1,tl);
2523 }
2524 }
2525 }
2526 }
2527 }
2528 }
2529}
2530
2531void imm16_assemble(int i,struct regstat *i_regs)
2532{
2533 if (opcode[i]==0x0f) { // LUI
2534 if(rt1[i]) {
2535 signed char t;
2536 t=get_reg(i_regs->regmap,rt1[i]);
2537 //assert(t>=0);
2538 if(t>=0) {
2539 if(!((i_regs->isconst>>t)&1))
2540 emit_movimm(imm[i]<<16,t);
2541 }
2542 }
2543 }
2544 if(opcode[i]==0x08||opcode[i]==0x09) { // ADDI/ADDIU
2545 if(rt1[i]) {
2546 signed char s,t;
2547 t=get_reg(i_regs->regmap,rt1[i]);
2548 s=get_reg(i_regs->regmap,rs1[i]);
2549 if(rs1[i]) {
2550 //assert(t>=0);
2551 //assert(s>=0);
2552 if(t>=0) {
2553 if(!((i_regs->isconst>>t)&1)) {
2554 if(s<0) {
2555 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2556 emit_addimm(t,imm[i],t);
2557 }else{
2558 if(!((i_regs->wasconst>>s)&1))
2559 emit_addimm(s,imm[i],t);
2560 else
2561 emit_movimm(constmap[i][s]+imm[i],t);
2562 }
2563 }
2564 }
2565 } else {
2566 if(t>=0) {
2567 if(!((i_regs->isconst>>t)&1))
2568 emit_movimm(imm[i],t);
2569 }
2570 }
2571 }
2572 }
2573 if(opcode[i]==0x18||opcode[i]==0x19) { // DADDI/DADDIU
2574 if(rt1[i]) {
2575 signed char sh,sl,th,tl;
2576 th=get_reg(i_regs->regmap,rt1[i]|64);
2577 tl=get_reg(i_regs->regmap,rt1[i]);
2578 sh=get_reg(i_regs->regmap,rs1[i]|64);
2579 sl=get_reg(i_regs->regmap,rs1[i]);
2580 if(tl>=0) {
2581 if(rs1[i]) {
2582 assert(sh>=0);
2583 assert(sl>=0);
2584 if(th>=0) {
2585 emit_addimm64_32(sh,sl,imm[i],th,tl);
2586 }
2587 else {
2588 emit_addimm(sl,imm[i],tl);
2589 }
2590 } else {
2591 emit_movimm(imm[i],tl);
2592 if(th>=0) emit_movimm(((signed int)imm[i])>>31,th);
2593 }
2594 }
2595 }
2596 }
2597 else if(opcode[i]==0x0a||opcode[i]==0x0b) { // SLTI/SLTIU
2598 if(rt1[i]) {
2599 //assert(rs1[i]!=0); // r0 might be valid, but it's probably a bug
2600 signed char sh,sl,t;
2601 t=get_reg(i_regs->regmap,rt1[i]);
2602 sh=get_reg(i_regs->regmap,rs1[i]|64);
2603 sl=get_reg(i_regs->regmap,rs1[i]);
2604 //assert(t>=0);
2605 if(t>=0) {
2606 if(rs1[i]>0) {
2607 if(sh<0) assert((i_regs->was32>>rs1[i])&1);
2608 if(sh<0||((i_regs->was32>>rs1[i])&1)) {
2609 if(opcode[i]==0x0a) { // SLTI
2610 if(sl<0) {
2611 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2612 emit_slti32(t,imm[i],t);
2613 }else{
2614 emit_slti32(sl,imm[i],t);
2615 }
2616 }
2617 else { // SLTIU
2618 if(sl<0) {
2619 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2620 emit_sltiu32(t,imm[i],t);
2621 }else{
2622 emit_sltiu32(sl,imm[i],t);
2623 }
2624 }
2625 }else{ // 64-bit
2626 assert(sl>=0);
2627 if(opcode[i]==0x0a) // SLTI
2628 emit_slti64_32(sh,sl,imm[i],t);
2629 else // SLTIU
2630 emit_sltiu64_32(sh,sl,imm[i],t);
2631 }
2632 }else{
2633 // SLTI(U) with r0 is just stupid,
2634 // nonetheless examples can be found
2635 if(opcode[i]==0x0a) // SLTI
2636 if(0<imm[i]) emit_movimm(1,t);
2637 else emit_zeroreg(t);
2638 else // SLTIU
2639 {
2640 if(imm[i]) emit_movimm(1,t);
2641 else emit_zeroreg(t);
2642 }
2643 }
2644 }
2645 }
2646 }
2647 else if(opcode[i]>=0x0c&&opcode[i]<=0x0e) { // ANDI/ORI/XORI
2648 if(rt1[i]) {
2649 signed char sh,sl,th,tl;
2650 th=get_reg(i_regs->regmap,rt1[i]|64);
2651 tl=get_reg(i_regs->regmap,rt1[i]);
2652 sh=get_reg(i_regs->regmap,rs1[i]|64);
2653 sl=get_reg(i_regs->regmap,rs1[i]);
2654 if(tl>=0 && !((i_regs->isconst>>tl)&1)) {
2655 if(opcode[i]==0x0c) //ANDI
2656 {
2657 if(rs1[i]) {
2658 if(sl<0) {
2659 if(i_regs->regmap_entry[tl]!=rs1[i]) emit_loadreg(rs1[i],tl);
2660 emit_andimm(tl,imm[i],tl);
2661 }else{
2662 if(!((i_regs->wasconst>>sl)&1))
2663 emit_andimm(sl,imm[i],tl);
2664 else
2665 emit_movimm(constmap[i][sl]&imm[i],tl);
2666 }
2667 }
2668 else
2669 emit_zeroreg(tl);
2670 if(th>=0) emit_zeroreg(th);
2671 }
2672 else
2673 {
2674 if(rs1[i]) {
2675 if(sl<0) {
2676 if(i_regs->regmap_entry[tl]!=rs1[i]) emit_loadreg(rs1[i],tl);
2677 }
2678 if(th>=0) {
2679 if(sh<0) {
2680 emit_loadreg(rs1[i]|64,th);
2681 }else{
2682 emit_mov(sh,th);
2683 }
2684 }
2685 if(opcode[i]==0x0d) //ORI
2686 if(sl<0) {
2687 emit_orimm(tl,imm[i],tl);
2688 }else{
2689 if(!((i_regs->wasconst>>sl)&1))
2690 emit_orimm(sl,imm[i],tl);
2691 else
2692 emit_movimm(constmap[i][sl]|imm[i],tl);
2693 }
2694 if(opcode[i]==0x0e) //XORI
2695 if(sl<0) {
2696 emit_xorimm(tl,imm[i],tl);
2697 }else{
2698 if(!((i_regs->wasconst>>sl)&1))
2699 emit_xorimm(sl,imm[i],tl);
2700 else
2701 emit_movimm(constmap[i][sl]^imm[i],tl);
2702 }
2703 }
2704 else {
2705 emit_movimm(imm[i],tl);
2706 if(th>=0) emit_zeroreg(th);
2707 }
2708 }
2709 }
2710 }
2711 }
2712}
2713
2714void shiftimm_assemble(int i,struct regstat *i_regs)
2715{
2716 if(opcode2[i]<=0x3) // SLL/SRL/SRA
2717 {
2718 if(rt1[i]) {
2719 signed char s,t;
2720 t=get_reg(i_regs->regmap,rt1[i]);
2721 s=get_reg(i_regs->regmap,rs1[i]);
2722 //assert(t>=0);
dc49e339 2723 if(t>=0&&!((i_regs->isconst>>t)&1)){
57871462 2724 if(rs1[i]==0)
2725 {
2726 emit_zeroreg(t);
2727 }
2728 else
2729 {
2730 if(s<0&&i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2731 if(imm[i]) {
2732 if(opcode2[i]==0) // SLL
2733 {
2734 emit_shlimm(s<0?t:s,imm[i],t);
2735 }
2736 if(opcode2[i]==2) // SRL
2737 {
2738 emit_shrimm(s<0?t:s,imm[i],t);
2739 }
2740 if(opcode2[i]==3) // SRA
2741 {
2742 emit_sarimm(s<0?t:s,imm[i],t);
2743 }
2744 }else{
2745 // Shift by zero
2746 if(s>=0 && s!=t) emit_mov(s,t);
2747 }
2748 }
2749 }
2750 //emit_storereg(rt1[i],t); //DEBUG
2751 }
2752 }
2753 if(opcode2[i]>=0x38&&opcode2[i]<=0x3b) // DSLL/DSRL/DSRA
2754 {
2755 if(rt1[i]) {
2756 signed char sh,sl,th,tl;
2757 th=get_reg(i_regs->regmap,rt1[i]|64);
2758 tl=get_reg(i_regs->regmap,rt1[i]);
2759 sh=get_reg(i_regs->regmap,rs1[i]|64);
2760 sl=get_reg(i_regs->regmap,rs1[i]);
2761 if(tl>=0) {
2762 if(rs1[i]==0)
2763 {
2764 emit_zeroreg(tl);
2765 if(th>=0) emit_zeroreg(th);
2766 }
2767 else
2768 {
2769 assert(sl>=0);
2770 assert(sh>=0);
2771 if(imm[i]) {
2772 if(opcode2[i]==0x38) // DSLL
2773 {
2774 if(th>=0) emit_shldimm(sh,sl,imm[i],th);
2775 emit_shlimm(sl,imm[i],tl);
2776 }
2777 if(opcode2[i]==0x3a) // DSRL
2778 {
2779 emit_shrdimm(sl,sh,imm[i],tl);
2780 if(th>=0) emit_shrimm(sh,imm[i],th);
2781 }
2782 if(opcode2[i]==0x3b) // DSRA
2783 {
2784 emit_shrdimm(sl,sh,imm[i],tl);
2785 if(th>=0) emit_sarimm(sh,imm[i],th);
2786 }
2787 }else{
2788 // Shift by zero
2789 if(sl!=tl) emit_mov(sl,tl);
2790 if(th>=0&&sh!=th) emit_mov(sh,th);
2791 }
2792 }
2793 }
2794 }
2795 }
2796 if(opcode2[i]==0x3c) // DSLL32
2797 {
2798 if(rt1[i]) {
2799 signed char sl,tl,th;
2800 tl=get_reg(i_regs->regmap,rt1[i]);
2801 th=get_reg(i_regs->regmap,rt1[i]|64);
2802 sl=get_reg(i_regs->regmap,rs1[i]);
2803 if(th>=0||tl>=0){
2804 assert(tl>=0);
2805 assert(th>=0);
2806 assert(sl>=0);
2807 emit_mov(sl,th);
2808 emit_zeroreg(tl);
2809 if(imm[i]>32)
2810 {
2811 emit_shlimm(th,imm[i]&31,th);
2812 }
2813 }
2814 }
2815 }
2816 if(opcode2[i]==0x3e) // DSRL32
2817 {
2818 if(rt1[i]) {
2819 signed char sh,tl,th;
2820 tl=get_reg(i_regs->regmap,rt1[i]);
2821 th=get_reg(i_regs->regmap,rt1[i]|64);
2822 sh=get_reg(i_regs->regmap,rs1[i]|64);
2823 if(tl>=0){
2824 assert(sh>=0);
2825 emit_mov(sh,tl);
2826 if(th>=0) emit_zeroreg(th);
2827 if(imm[i]>32)
2828 {
2829 emit_shrimm(tl,imm[i]&31,tl);
2830 }
2831 }
2832 }
2833 }
2834 if(opcode2[i]==0x3f) // DSRA32
2835 {
2836 if(rt1[i]) {
2837 signed char sh,tl;
2838 tl=get_reg(i_regs->regmap,rt1[i]);
2839 sh=get_reg(i_regs->regmap,rs1[i]|64);
2840 if(tl>=0){
2841 assert(sh>=0);
2842 emit_mov(sh,tl);
2843 if(imm[i]>32)
2844 {
2845 emit_sarimm(tl,imm[i]&31,tl);
2846 }
2847 }
2848 }
2849 }
2850}
2851
2852#ifndef shift_assemble
2853void shift_assemble(int i,struct regstat *i_regs)
2854{
2855 printf("Need shift_assemble for this architecture.\n");
2856 exit(1);
2857}
2858#endif
2859
2860void load_assemble(int i,struct regstat *i_regs)
2861{
2862 int s,th,tl,addr,map=-1;
2863 int offset;
2864 int jaddr=0;
5bf843dc 2865 int memtarget=0,c=0;
b1570849 2866 int fastload_reg_override=0;
57871462 2867 u_int hr,reglist=0;
2868 th=get_reg(i_regs->regmap,rt1[i]|64);
2869 tl=get_reg(i_regs->regmap,rt1[i]);
2870 s=get_reg(i_regs->regmap,rs1[i]);
2871 offset=imm[i];
2872 for(hr=0;hr<HOST_REGS;hr++) {
2873 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
2874 }
2875 if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
2876 if(s>=0) {
2877 c=(i_regs->wasconst>>s)&1;
af4ee1fe 2878 if (c) {
2879 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
2880 if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
2881 }
57871462 2882 }
57871462 2883 //printf("load_assemble: c=%d\n",c);
2884 //if(c) printf("load_assemble: const=%x\n",(int)constmap[i][s]+offset);
2885 // FIXME: Even if the load is a NOP, we should check for pagefaults...
5bf843dc 2886#ifdef PCSX
f18c0f46 2887 if(tl<0&&(!c||(((u_int)constmap[i][s]+offset)>>16)==0x1f80)
2888 ||rt1[i]==0) {
5bf843dc 2889 // could be FIFO, must perform the read
f18c0f46 2890 // ||dummy read
5bf843dc 2891 assem_debug("(forced read)\n");
2892 tl=get_reg(i_regs->regmap,-1);
2893 assert(tl>=0);
5bf843dc 2894 }
f18c0f46 2895#endif
5bf843dc 2896 if(offset||s<0||c) addr=tl;
2897 else addr=s;
535d208a 2898 //if(tl<0) tl=get_reg(i_regs->regmap,-1);
2899 if(tl>=0) {
2900 //printf("load_assemble: c=%d\n",c);
2901 //if(c) printf("load_assemble: const=%x\n",(int)constmap[i][s]+offset);
2902 assert(tl>=0); // Even if the load is a NOP, we must check for pagefaults and I/O
2903 reglist&=~(1<<tl);
2904 if(th>=0) reglist&=~(1<<th);
2905 if(!using_tlb) {
2906 if(!c) {
2907 #ifdef RAM_OFFSET
2908 map=get_reg(i_regs->regmap,ROREG);
2909 if(map<0) emit_loadreg(ROREG,map=HOST_TEMPREG);
2910 #endif
57871462 2911//#define R29_HACK 1
535d208a 2912 #ifdef R29_HACK
2913 // Strmnnrmn's speed hack
2914 if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
2915 #endif
2916 {
ffb0b9e0 2917 jaddr=emit_fastpath_cmp_jump(i,addr,&fastload_reg_override);
57871462 2918 }
535d208a 2919 }
2920 }else{ // using tlb
2921 int x=0;
2922 if (opcode[i]==0x20||opcode[i]==0x24) x=3; // LB/LBU
2923 if (opcode[i]==0x21||opcode[i]==0x25) x=2; // LH/LHU
2924 map=get_reg(i_regs->regmap,TLREG);
2925 assert(map>=0);
ea3d2e6e 2926 reglist&=~(1<<map);
535d208a 2927 map=do_tlb_r(addr,tl,map,x,-1,-1,c,constmap[i][s]+offset);
2928 do_tlb_r_branch(map,c,constmap[i][s]+offset,&jaddr);
2929 }
2930 int dummy=(rt1[i]==0)||(tl!=get_reg(i_regs->regmap,rt1[i])); // ignore loads to r0 and unneeded reg
2931 if (opcode[i]==0x20) { // LB
2932 if(!c||memtarget) {
2933 if(!dummy) {
57871462 2934 #ifdef HOST_IMM_ADDR32
2935 if(c)
2936 emit_movsbl_tlb((constmap[i][s]+offset)^3,map,tl);
2937 else
2938 #endif
2939 {
2940 //emit_xorimm(addr,3,tl);
2941 //gen_tlb_addr_r(tl,map);
2942 //emit_movsbl_indexed((int)rdram-0x80000000,tl,tl);
535d208a 2943 int x=0,a=tl;
2002a1db 2944#ifdef BIG_ENDIAN_MIPS
57871462 2945 if(!c) emit_xorimm(addr,3,tl);
2946 else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2002a1db 2947#else
535d208a 2948 if(!c) a=addr;
dadf55f2 2949#endif
b1570849 2950 if(fastload_reg_override) a=fastload_reg_override;
2951
535d208a 2952 emit_movsbl_indexed_tlb(x,a,map,tl);
57871462 2953 }
57871462 2954 }
535d208a 2955 if(jaddr)
2956 add_stub(LOADB_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
57871462 2957 }
535d208a 2958 else
2959 inline_readstub(LOADB_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2960 }
2961 if (opcode[i]==0x21) { // LH
2962 if(!c||memtarget) {
2963 if(!dummy) {
57871462 2964 #ifdef HOST_IMM_ADDR32
2965 if(c)
2966 emit_movswl_tlb((constmap[i][s]+offset)^2,map,tl);
2967 else
2968 #endif
2969 {
535d208a 2970 int x=0,a=tl;
2002a1db 2971#ifdef BIG_ENDIAN_MIPS
57871462 2972 if(!c) emit_xorimm(addr,2,tl);
2973 else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
2002a1db 2974#else
535d208a 2975 if(!c) a=addr;
dadf55f2 2976#endif
b1570849 2977 if(fastload_reg_override) a=fastload_reg_override;
57871462 2978 //#ifdef
2979 //emit_movswl_indexed_tlb(x,tl,map,tl);
2980 //else
2981 if(map>=0) {
535d208a 2982 gen_tlb_addr_r(a,map);
2983 emit_movswl_indexed(x,a,tl);
2984 }else{
2985 #ifdef RAM_OFFSET
2986 emit_movswl_indexed(x,a,tl);
2987 #else
2988 emit_movswl_indexed((int)rdram-0x80000000+x,a,tl);
2989 #endif
2990 }
57871462 2991 }
57871462 2992 }
535d208a 2993 if(jaddr)
2994 add_stub(LOADH_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
57871462 2995 }
535d208a 2996 else
2997 inline_readstub(LOADH_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2998 }
2999 if (opcode[i]==0x23) { // LW
3000 if(!c||memtarget) {
3001 if(!dummy) {
dadf55f2 3002 int a=addr;
b1570849 3003 if(fastload_reg_override) a=fastload_reg_override;
57871462 3004 //emit_readword_indexed((int)rdram-0x80000000,addr,tl);
3005 #ifdef HOST_IMM_ADDR32
3006 if(c)
3007 emit_readword_tlb(constmap[i][s]+offset,map,tl);
3008 else
3009 #endif
dadf55f2 3010 emit_readword_indexed_tlb(0,a,map,tl);
57871462 3011 }
535d208a 3012 if(jaddr)
3013 add_stub(LOADW_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
57871462 3014 }
535d208a 3015 else
3016 inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
3017 }
3018 if (opcode[i]==0x24) { // LBU
3019 if(!c||memtarget) {
3020 if(!dummy) {
57871462 3021 #ifdef HOST_IMM_ADDR32
3022 if(c)
3023 emit_movzbl_tlb((constmap[i][s]+offset)^3,map,tl);
3024 else
3025 #endif
3026 {
3027 //emit_xorimm(addr,3,tl);
3028 //gen_tlb_addr_r(tl,map);
3029 //emit_movzbl_indexed((int)rdram-0x80000000,tl,tl);
535d208a 3030 int x=0,a=tl;
2002a1db 3031#ifdef BIG_ENDIAN_MIPS
57871462 3032 if(!c) emit_xorimm(addr,3,tl);
3033 else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2002a1db 3034#else
535d208a 3035 if(!c) a=addr;
dadf55f2 3036#endif
b1570849 3037 if(fastload_reg_override) a=fastload_reg_override;
3038
535d208a 3039 emit_movzbl_indexed_tlb(x,a,map,tl);
57871462 3040 }
57871462 3041 }
535d208a 3042 if(jaddr)
3043 add_stub(LOADBU_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
57871462 3044 }
535d208a 3045 else
3046 inline_readstub(LOADBU_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
3047 }
3048 if (opcode[i]==0x25) { // LHU
3049 if(!c||memtarget) {
3050 if(!dummy) {
57871462 3051 #ifdef HOST_IMM_ADDR32
3052 if(c)
3053 emit_movzwl_tlb((constmap[i][s]+offset)^2,map,tl);
3054 else
3055 #endif
3056 {
535d208a 3057 int x=0,a=tl;
2002a1db 3058#ifdef BIG_ENDIAN_MIPS
57871462 3059 if(!c) emit_xorimm(addr,2,tl);
3060 else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
2002a1db 3061#else
535d208a 3062 if(!c) a=addr;
dadf55f2 3063#endif
b1570849 3064 if(fastload_reg_override) a=fastload_reg_override;
57871462 3065 //#ifdef
3066 //emit_movzwl_indexed_tlb(x,tl,map,tl);
3067 //#else
3068 if(map>=0) {
535d208a 3069 gen_tlb_addr_r(a,map);
3070 emit_movzwl_indexed(x,a,tl);
3071 }else{
3072 #ifdef RAM_OFFSET
3073 emit_movzwl_indexed(x,a,tl);
3074 #else
3075 emit_movzwl_indexed((int)rdram-0x80000000+x,a,tl);
3076 #endif
3077 }
57871462 3078 }
3079 }
535d208a 3080 if(jaddr)
3081 add_stub(LOADHU_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
57871462 3082 }
535d208a 3083 else
3084 inline_readstub(LOADHU_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
3085 }
3086 if (opcode[i]==0x27) { // LWU
3087 assert(th>=0);
3088 if(!c||memtarget) {
3089 if(!dummy) {
dadf55f2 3090 int a=addr;
b1570849 3091 if(fastload_reg_override) a=fastload_reg_override;
57871462 3092 //emit_readword_indexed((int)rdram-0x80000000,addr,tl);
3093 #ifdef HOST_IMM_ADDR32
3094 if(c)
3095 emit_readword_tlb(constmap[i][s]+offset,map,tl);
3096 else
3097 #endif
dadf55f2 3098 emit_readword_indexed_tlb(0,a,map,tl);
57871462 3099 }
535d208a 3100 if(jaddr)
3101 add_stub(LOADW_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3102 }
3103 else {
3104 inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
57871462 3105 }
535d208a 3106 emit_zeroreg(th);
3107 }
3108 if (opcode[i]==0x37) { // LD
3109 if(!c||memtarget) {
3110 if(!dummy) {
dadf55f2 3111 int a=addr;
b1570849 3112 if(fastload_reg_override) a=fastload_reg_override;
57871462 3113 //gen_tlb_addr_r(tl,map);
3114 //if(th>=0) emit_readword_indexed((int)rdram-0x80000000,addr,th);
3115 //emit_readword_indexed((int)rdram-0x7FFFFFFC,addr,tl);
3116 #ifdef HOST_IMM_ADDR32
3117 if(c)
3118 emit_readdword_tlb(constmap[i][s]+offset,map,th,tl);
3119 else
3120 #endif
dadf55f2 3121 emit_readdword_indexed_tlb(0,a,map,th,tl);
57871462 3122 }
535d208a 3123 if(jaddr)
3124 add_stub(LOADD_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
57871462 3125 }
535d208a 3126 else
3127 inline_readstub(LOADD_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
57871462 3128 }
535d208a 3129 }
3130 //emit_storereg(rt1[i],tl); // DEBUG
57871462 3131 //if(opcode[i]==0x23)
3132 //if(opcode[i]==0x24)
3133 //if(opcode[i]==0x23||opcode[i]==0x24)
3134 /*if(opcode[i]==0x21||opcode[i]==0x23||opcode[i]==0x24)
3135 {
3136 //emit_pusha();
3137 save_regs(0x100f);
3138 emit_readword((int)&last_count,ECX);
3139 #ifdef __i386__
3140 if(get_reg(i_regs->regmap,CCREG)<0)
3141 emit_loadreg(CCREG,HOST_CCREG);
3142 emit_add(HOST_CCREG,ECX,HOST_CCREG);
3143 emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3144 emit_writeword(HOST_CCREG,(int)&Count);
3145 #endif
3146 #ifdef __arm__
3147 if(get_reg(i_regs->regmap,CCREG)<0)
3148 emit_loadreg(CCREG,0);
3149 else
3150 emit_mov(HOST_CCREG,0);
3151 emit_add(0,ECX,0);
3152 emit_addimm(0,2*ccadj[i],0);
3153 emit_writeword(0,(int)&Count);
3154 #endif
3155 emit_call((int)memdebug);
3156 //emit_popa();
3157 restore_regs(0x100f);
3158 }/**/
3159}
3160
3161#ifndef loadlr_assemble
3162void loadlr_assemble(int i,struct regstat *i_regs)
3163{
3164 printf("Need loadlr_assemble for this architecture.\n");
3165 exit(1);
3166}
3167#endif
3168
3169void store_assemble(int i,struct regstat *i_regs)
3170{
3171 int s,th,tl,map=-1;
3172 int addr,temp;
3173 int offset;
3174 int jaddr=0,jaddr2,type;
666a299d 3175 int memtarget=0,c=0;
57871462 3176 int agr=AGEN1+(i&1);
b1570849 3177 int faststore_reg_override=0;
57871462 3178 u_int hr,reglist=0;
3179 th=get_reg(i_regs->regmap,rs2[i]|64);
3180 tl=get_reg(i_regs->regmap,rs2[i]);
3181 s=get_reg(i_regs->regmap,rs1[i]);
3182 temp=get_reg(i_regs->regmap,agr);
3183 if(temp<0) temp=get_reg(i_regs->regmap,-1);
3184 offset=imm[i];
3185 if(s>=0) {
3186 c=(i_regs->wasconst>>s)&1;
af4ee1fe 3187 if(c) {
3188 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
3189 if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
3190 }
57871462 3191 }
3192 assert(tl>=0);
3193 assert(temp>=0);
3194 for(hr=0;hr<HOST_REGS;hr++) {
3195 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3196 }
3197 if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
3198 if(offset||s<0||c) addr=temp;
3199 else addr=s;
3200 if(!using_tlb) {
3201 if(!c) {
ffb0b9e0 3202 #ifndef PCSX
57871462 3203 #ifdef R29_HACK
3204 // Strmnnrmn's speed hack
4cb76aa4 3205 if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
57871462 3206 #endif
4cb76aa4 3207 emit_cmpimm(addr,RAM_SIZE);
57871462 3208 #ifdef DESTRUCTIVE_SHIFT
3209 if(s==addr) emit_mov(s,temp);
3210 #endif
3211 #ifdef R29_HACK
dadf55f2 3212 memtarget=1;
4cb76aa4 3213 if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
57871462 3214 #endif
3215 {
3216 jaddr=(int)out;
3217 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
3218 // Hint to branch predictor that the branch is unlikely to be taken
3219 if(rs1[i]>=28)
3220 emit_jno_unlikely(0);
3221 else
3222 #endif
3223 emit_jno(0);
3224 }
ffb0b9e0 3225 #else
3226 jaddr=emit_fastpath_cmp_jump(i,addr,&faststore_reg_override);
3227 #endif
57871462 3228 }
3229 }else{ // using tlb
3230 int x=0;
3231 if (opcode[i]==0x28) x=3; // SB
3232 if (opcode[i]==0x29) x=2; // SH
3233 map=get_reg(i_regs->regmap,TLREG);
3234 assert(map>=0);
ea3d2e6e 3235 reglist&=~(1<<map);
57871462 3236 map=do_tlb_w(addr,temp,map,x,c,constmap[i][s]+offset);
3237 do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr);
3238 }
3239
3240 if (opcode[i]==0x28) { // SB
3241 if(!c||memtarget) {
97a238a6 3242 int x=0,a=temp;
2002a1db 3243#ifdef BIG_ENDIAN_MIPS
57871462 3244 if(!c) emit_xorimm(addr,3,temp);
3245 else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2002a1db 3246#else
97a238a6 3247 if(!c) a=addr;
dadf55f2 3248#endif
b1570849 3249 if(faststore_reg_override) a=faststore_reg_override;
57871462 3250 //gen_tlb_addr_w(temp,map);
3251 //emit_writebyte_indexed(tl,(int)rdram-0x80000000,temp);
97a238a6 3252 emit_writebyte_indexed_tlb(tl,x,a,map,a);
57871462 3253 }
3254 type=STOREB_STUB;
3255 }
3256 if (opcode[i]==0x29) { // SH
3257 if(!c||memtarget) {
97a238a6 3258 int x=0,a=temp;
2002a1db 3259#ifdef BIG_ENDIAN_MIPS
57871462 3260 if(!c) emit_xorimm(addr,2,temp);
3261 else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
2002a1db 3262#else
97a238a6 3263 if(!c) a=addr;
dadf55f2 3264#endif
b1570849 3265 if(faststore_reg_override) a=faststore_reg_override;
57871462 3266 //#ifdef
3267 //emit_writehword_indexed_tlb(tl,x,temp,map,temp);
3268 //#else
3269 if(map>=0) {
97a238a6 3270 gen_tlb_addr_w(a,map);
3271 emit_writehword_indexed(tl,x,a);
57871462 3272 }else
97a238a6 3273 emit_writehword_indexed(tl,(int)rdram-0x80000000+x,a);
57871462 3274 }
3275 type=STOREH_STUB;
3276 }
3277 if (opcode[i]==0x2B) { // SW
dadf55f2 3278 if(!c||memtarget) {
3279 int a=addr;
b1570849 3280 if(faststore_reg_override) a=faststore_reg_override;
57871462 3281 //emit_writeword_indexed(tl,(int)rdram-0x80000000,addr);
dadf55f2 3282 emit_writeword_indexed_tlb(tl,0,a,map,temp);
3283 }
57871462 3284 type=STOREW_STUB;
3285 }
3286 if (opcode[i]==0x3F) { // SD
3287 if(!c||memtarget) {
dadf55f2 3288 int a=addr;
b1570849 3289 if(faststore_reg_override) a=faststore_reg_override;
57871462 3290 if(rs2[i]) {
3291 assert(th>=0);
3292 //emit_writeword_indexed(th,(int)rdram-0x80000000,addr);
3293 //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,addr);
dadf55f2 3294 emit_writedword_indexed_tlb(th,tl,0,a,map,temp);
57871462 3295 }else{
3296 // Store zero
3297 //emit_writeword_indexed(tl,(int)rdram-0x80000000,temp);
3298 //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,temp);
dadf55f2 3299 emit_writedword_indexed_tlb(tl,tl,0,a,map,temp);
57871462 3300 }
3301 }
3302 type=STORED_STUB;
3303 }
b96d3df7 3304#ifdef PCSX
3305 if(jaddr) {
3306 // PCSX store handlers don't check invcode again
3307 reglist|=1<<addr;
3308 add_stub(type,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3309 jaddr=0;
3310 }
3311#endif
0ff8c62c 3312 if(!using_tlb&&!(i_regs->waswritten&(1<<rs1[i]))&&!(new_dynarec_hacks&NDHACK_NO_SMC_CHECK)) {
57871462 3313 if(!c||memtarget) {
3314 #ifdef DESTRUCTIVE_SHIFT
3315 // The x86 shift operation is 'destructive'; it overwrites the
3316 // source register, so we need to make a copy first and use that.
3317 addr=temp;
3318 #endif
3319 #if defined(HOST_IMM8)
3320 int ir=get_reg(i_regs->regmap,INVCP);
3321 assert(ir>=0);
3322 emit_cmpmem_indexedsr12_reg(ir,addr,1);
3323 #else
3324 emit_cmpmem_indexedsr12_imm((int)invalid_code,addr,1);
3325 #endif
0bbd1454 3326 #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3327 emit_callne(invalidate_addr_reg[addr]);
3328 #else
57871462 3329 jaddr2=(int)out;
3330 emit_jne(0);
3331 add_stub(INVCODE_STUB,jaddr2,(int)out,reglist|(1<<HOST_CCREG),addr,0,0,0);
0bbd1454 3332 #endif
57871462 3333 }
3334 }
3eaa7048 3335 if(jaddr) {
3336 add_stub(type,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3337 } else if(c&&!memtarget) {
3338 inline_writestub(type,i,constmap[i][s]+offset,i_regs->regmap,rs2[i],ccadj[i],reglist);
3339 }
57871462 3340 //if(opcode[i]==0x2B || opcode[i]==0x3F)
3341 //if(opcode[i]==0x2B || opcode[i]==0x28)
3342 //if(opcode[i]==0x2B || opcode[i]==0x29)
3343 //if(opcode[i]==0x2B)
3344 /*if(opcode[i]==0x2B || opcode[i]==0x28 || opcode[i]==0x29 || opcode[i]==0x3F)
3345 {
28d74ee8 3346 #ifdef __i386__
3347 emit_pusha();
3348 #endif
3349 #ifdef __arm__
57871462 3350 save_regs(0x100f);
28d74ee8 3351 #endif
57871462 3352 emit_readword((int)&last_count,ECX);
3353 #ifdef __i386__
3354 if(get_reg(i_regs->regmap,CCREG)<0)
3355 emit_loadreg(CCREG,HOST_CCREG);
3356 emit_add(HOST_CCREG,ECX,HOST_CCREG);
3357 emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3358 emit_writeword(HOST_CCREG,(int)&Count);
3359 #endif
3360 #ifdef __arm__
3361 if(get_reg(i_regs->regmap,CCREG)<0)
3362 emit_loadreg(CCREG,0);
3363 else
3364 emit_mov(HOST_CCREG,0);
3365 emit_add(0,ECX,0);
3366 emit_addimm(0,2*ccadj[i],0);
3367 emit_writeword(0,(int)&Count);
3368 #endif
3369 emit_call((int)memdebug);
28d74ee8 3370 #ifdef __i386__
3371 emit_popa();
3372 #endif
3373 #ifdef __arm__
57871462 3374 restore_regs(0x100f);
28d74ee8 3375 #endif
57871462 3376 }/**/
3377}
3378
3379void storelr_assemble(int i,struct regstat *i_regs)
3380{
3381 int s,th,tl;
3382 int temp;
3383 int temp2;
3384 int offset;
3385 int jaddr=0,jaddr2;
3386 int case1,case2,case3;
3387 int done0,done1,done2;
af4ee1fe 3388 int memtarget=0,c=0;
fab5d06d 3389 int agr=AGEN1+(i&1);
57871462 3390 u_int hr,reglist=0;
3391 th=get_reg(i_regs->regmap,rs2[i]|64);
3392 tl=get_reg(i_regs->regmap,rs2[i]);
3393 s=get_reg(i_regs->regmap,rs1[i]);
fab5d06d 3394 temp=get_reg(i_regs->regmap,agr);
3395 if(temp<0) temp=get_reg(i_regs->regmap,-1);
57871462 3396 offset=imm[i];
3397 if(s>=0) {
3398 c=(i_regs->isconst>>s)&1;
af4ee1fe 3399 if(c) {
3400 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
3401 if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
3402 }
57871462 3403 }
3404 assert(tl>=0);
3405 for(hr=0;hr<HOST_REGS;hr++) {
3406 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3407 }
535d208a 3408 assert(temp>=0);
3409 if(!using_tlb) {
3410 if(!c) {
3411 emit_cmpimm(s<0||offset?temp:s,RAM_SIZE);
3412 if(!offset&&s!=temp) emit_mov(s,temp);
3413 jaddr=(int)out;
3414 emit_jno(0);
3415 }
3416 else
3417 {
3418 if(!memtarget||!rs1[i]) {
57871462 3419 jaddr=(int)out;
3420 emit_jmp(0);
3421 }
57871462 3422 }
535d208a 3423 #ifdef RAM_OFFSET
3424 int map=get_reg(i_regs->regmap,ROREG);
3425 if(map<0) emit_loadreg(ROREG,map=HOST_TEMPREG);
3426 gen_tlb_addr_w(temp,map);
3427 #else
3428 if((u_int)rdram!=0x80000000)
3429 emit_addimm_no_flags((u_int)rdram-(u_int)0x80000000,temp);
3430 #endif
3431 }else{ // using tlb
3432 int map=get_reg(i_regs->regmap,TLREG);
3433 assert(map>=0);
ea3d2e6e 3434 reglist&=~(1<<map);
535d208a 3435 map=do_tlb_w(c||s<0||offset?temp:s,temp,map,0,c,constmap[i][s]+offset);
3436 if(!c&&!offset&&s>=0) emit_mov(s,temp);
3437 do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr);
3438 if(!jaddr&&!memtarget) {
3439 jaddr=(int)out;
3440 emit_jmp(0);
57871462 3441 }
535d208a 3442 gen_tlb_addr_w(temp,map);
3443 }
3444
3445 if (opcode[i]==0x2C||opcode[i]==0x2D) { // SDL/SDR
3446 temp2=get_reg(i_regs->regmap,FTEMP);
3447 if(!rs2[i]) temp2=th=tl;
3448 }
57871462 3449
2002a1db 3450#ifndef BIG_ENDIAN_MIPS
3451 emit_xorimm(temp,3,temp);
3452#endif
535d208a 3453 emit_testimm(temp,2);
3454 case2=(int)out;
3455 emit_jne(0);
3456 emit_testimm(temp,1);
3457 case1=(int)out;
3458 emit_jne(0);
3459 // 0
3460 if (opcode[i]==0x2A) { // SWL
3461 emit_writeword_indexed(tl,0,temp);
3462 }
3463 if (opcode[i]==0x2E) { // SWR
3464 emit_writebyte_indexed(tl,3,temp);
3465 }
3466 if (opcode[i]==0x2C) { // SDL
3467 emit_writeword_indexed(th,0,temp);
3468 if(rs2[i]) emit_mov(tl,temp2);
3469 }
3470 if (opcode[i]==0x2D) { // SDR
3471 emit_writebyte_indexed(tl,3,temp);
3472 if(rs2[i]) emit_shldimm(th,tl,24,temp2);
3473 }
3474 done0=(int)out;
3475 emit_jmp(0);
3476 // 1
3477 set_jump_target(case1,(int)out);
3478 if (opcode[i]==0x2A) { // SWL
3479 // Write 3 msb into three least significant bytes
3480 if(rs2[i]) emit_rorimm(tl,8,tl);
3481 emit_writehword_indexed(tl,-1,temp);
3482 if(rs2[i]) emit_rorimm(tl,16,tl);
3483 emit_writebyte_indexed(tl,1,temp);
3484 if(rs2[i]) emit_rorimm(tl,8,tl);
3485 }
3486 if (opcode[i]==0x2E) { // SWR
3487 // Write two lsb into two most significant bytes
3488 emit_writehword_indexed(tl,1,temp);
3489 }
3490 if (opcode[i]==0x2C) { // SDL
3491 if(rs2[i]) emit_shrdimm(tl,th,8,temp2);
3492 // Write 3 msb into three least significant bytes
3493 if(rs2[i]) emit_rorimm(th,8,th);
3494 emit_writehword_indexed(th,-1,temp);
3495 if(rs2[i]) emit_rorimm(th,16,th);
3496 emit_writebyte_indexed(th,1,temp);
3497 if(rs2[i]) emit_rorimm(th,8,th);
3498 }
3499 if (opcode[i]==0x2D) { // SDR
3500 if(rs2[i]) emit_shldimm(th,tl,16,temp2);
3501 // Write two lsb into two most significant bytes
3502 emit_writehword_indexed(tl,1,temp);
3503 }
3504 done1=(int)out;
3505 emit_jmp(0);
3506 // 2
3507 set_jump_target(case2,(int)out);
3508 emit_testimm(temp,1);
3509 case3=(int)out;
3510 emit_jne(0);
3511 if (opcode[i]==0x2A) { // SWL
3512 // Write two msb into two least significant bytes
3513 if(rs2[i]) emit_rorimm(tl,16,tl);
3514 emit_writehword_indexed(tl,-2,temp);
3515 if(rs2[i]) emit_rorimm(tl,16,tl);
3516 }
3517 if (opcode[i]==0x2E) { // SWR
3518 // Write 3 lsb into three most significant bytes
3519 emit_writebyte_indexed(tl,-1,temp);
3520 if(rs2[i]) emit_rorimm(tl,8,tl);
3521 emit_writehword_indexed(tl,0,temp);
3522 if(rs2[i]) emit_rorimm(tl,24,tl);
3523 }
3524 if (opcode[i]==0x2C) { // SDL
3525 if(rs2[i]) emit_shrdimm(tl,th,16,temp2);
3526 // Write two msb into two least significant bytes
3527 if(rs2[i]) emit_rorimm(th,16,th);
3528 emit_writehword_indexed(th,-2,temp);
3529 if(rs2[i]) emit_rorimm(th,16,th);
3530 }
3531 if (opcode[i]==0x2D) { // SDR
3532 if(rs2[i]) emit_shldimm(th,tl,8,temp2);
3533 // Write 3 lsb into three most significant bytes
3534 emit_writebyte_indexed(tl,-1,temp);
3535 if(rs2[i]) emit_rorimm(tl,8,tl);
3536 emit_writehword_indexed(tl,0,temp);
3537 if(rs2[i]) emit_rorimm(tl,24,tl);
3538 }
3539 done2=(int)out;
3540 emit_jmp(0);
3541 // 3
3542 set_jump_target(case3,(int)out);
3543 if (opcode[i]==0x2A) { // SWL
3544 // Write msb into least significant byte
3545 if(rs2[i]) emit_rorimm(tl,24,tl);
3546 emit_writebyte_indexed(tl,-3,temp);
3547 if(rs2[i]) emit_rorimm(tl,8,tl);
3548 }
3549 if (opcode[i]==0x2E) { // SWR
3550 // Write entire word
3551 emit_writeword_indexed(tl,-3,temp);
3552 }
3553 if (opcode[i]==0x2C) { // SDL
3554 if(rs2[i]) emit_shrdimm(tl,th,24,temp2);
3555 // Write msb into least significant byte
3556 if(rs2[i]) emit_rorimm(th,24,th);
3557 emit_writebyte_indexed(th,-3,temp);
3558 if(rs2[i]) emit_rorimm(th,8,th);
3559 }
3560 if (opcode[i]==0x2D) { // SDR
3561 if(rs2[i]) emit_mov(th,temp2);
3562 // Write entire word
3563 emit_writeword_indexed(tl,-3,temp);
3564 }
3565 set_jump_target(done0,(int)out);
3566 set_jump_target(done1,(int)out);
3567 set_jump_target(done2,(int)out);
3568 if (opcode[i]==0x2C) { // SDL
3569 emit_testimm(temp,4);
57871462 3570 done0=(int)out;
57871462 3571 emit_jne(0);
535d208a 3572 emit_andimm(temp,~3,temp);
3573 emit_writeword_indexed(temp2,4,temp);
3574 set_jump_target(done0,(int)out);
3575 }
3576 if (opcode[i]==0x2D) { // SDR
3577 emit_testimm(temp,4);
3578 done0=(int)out;
3579 emit_jeq(0);
3580 emit_andimm(temp,~3,temp);
3581 emit_writeword_indexed(temp2,-4,temp);
57871462 3582 set_jump_target(done0,(int)out);
57871462 3583 }
535d208a 3584 if(!c||!memtarget)
3585 add_stub(STORELR_STUB,jaddr,(int)out,i,(int)i_regs,temp,ccadj[i],reglist);
0ff8c62c 3586 if(!using_tlb&&!(i_regs->waswritten&(1<<rs1[i]))&&!(new_dynarec_hacks&NDHACK_NO_SMC_CHECK)) {
535d208a 3587 #ifdef RAM_OFFSET
3588 int map=get_reg(i_regs->regmap,ROREG);
3589 if(map<0) map=HOST_TEMPREG;
3590 gen_orig_addr_w(temp,map);
3591 #else
57871462 3592 emit_addimm_no_flags((u_int)0x80000000-(u_int)rdram,temp);
535d208a 3593 #endif
57871462 3594 #if defined(HOST_IMM8)
3595 int ir=get_reg(i_regs->regmap,INVCP);
3596 assert(ir>=0);
3597 emit_cmpmem_indexedsr12_reg(ir,temp,1);
3598 #else
3599 emit_cmpmem_indexedsr12_imm((int)invalid_code,temp,1);
3600 #endif
535d208a 3601 #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3602 emit_callne(invalidate_addr_reg[temp]);
3603 #else
57871462 3604 jaddr2=(int)out;
3605 emit_jne(0);
3606 add_stub(INVCODE_STUB,jaddr2,(int)out,reglist|(1<<HOST_CCREG),temp,0,0,0);
535d208a 3607 #endif
57871462 3608 }
3609 /*
3610 emit_pusha();
3611 //save_regs(0x100f);
3612 emit_readword((int)&last_count,ECX);
3613 if(get_reg(i_regs->regmap,CCREG)<0)
3614 emit_loadreg(CCREG,HOST_CCREG);
3615 emit_add(HOST_CCREG,ECX,HOST_CCREG);
3616 emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3617 emit_writeword(HOST_CCREG,(int)&Count);
3618 emit_call((int)memdebug);
3619 emit_popa();
3620 //restore_regs(0x100f);
3621 /**/
3622}
3623
3624void c1ls_assemble(int i,struct regstat *i_regs)
3625{
3d624f89 3626#ifndef DISABLE_COP1
57871462 3627 int s,th,tl;
3628 int temp,ar;
3629 int map=-1;
3630 int offset;
3631 int c=0;
3632 int jaddr,jaddr2=0,jaddr3,type;
3633 int agr=AGEN1+(i&1);
3634 u_int hr,reglist=0;
3635 th=get_reg(i_regs->regmap,FTEMP|64);
3636 tl=get_reg(i_regs->regmap,FTEMP);
3637 s=get_reg(i_regs->regmap,rs1[i]);
3638 temp=get_reg(i_regs->regmap,agr);
3639 if(temp<0) temp=get_reg(i_regs->regmap,-1);
3640 offset=imm[i];
3641 assert(tl>=0);
3642 assert(rs1[i]>0);
3643 assert(temp>=0);
3644 for(hr=0;hr<HOST_REGS;hr++) {
3645 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3646 }
3647 if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
3648 if (opcode[i]==0x31||opcode[i]==0x35) // LWC1/LDC1
3649 {
3650 // Loads use a temporary register which we need to save
3651 reglist|=1<<temp;
3652 }
3653 if (opcode[i]==0x39||opcode[i]==0x3D) // SWC1/SDC1
3654 ar=temp;
3655 else // LWC1/LDC1
3656 ar=tl;
3657 //if(s<0) emit_loadreg(rs1[i],ar); //address_generation does this now
3658 //else c=(i_regs->wasconst>>s)&1;
3659 if(s>=0) c=(i_regs->wasconst>>s)&1;
3660 // Check cop1 unusable
3661 if(!cop1_usable) {
3662 signed char rs=get_reg(i_regs->regmap,CSREG);
3663 assert(rs>=0);
3664 emit_testimm(rs,0x20000000);
3665 jaddr=(int)out;
3666 emit_jeq(0);
3667 add_stub(FP_STUB,jaddr,(int)out,i,rs,(int)i_regs,is_delayslot,0);
3668 cop1_usable=1;
3669 }
3670 if (opcode[i]==0x39) { // SWC1 (get float address)
3671 emit_readword((int)&reg_cop1_simple[(source[i]>>16)&0x1f],tl);
3672 }
3673 if (opcode[i]==0x3D) { // SDC1 (get double address)
3674 emit_readword((int)&reg_cop1_double[(source[i]>>16)&0x1f],tl);
3675 }
3676 // Generate address + offset
3677 if(!using_tlb) {
3678 if(!c)
4cb76aa4 3679 emit_cmpimm(offset||c||s<0?ar:s,RAM_SIZE);
57871462 3680 }
3681 else
3682 {
3683 map=get_reg(i_regs->regmap,TLREG);
3684 assert(map>=0);
ea3d2e6e 3685 reglist&=~(1<<map);
57871462 3686 if (opcode[i]==0x31||opcode[i]==0x35) { // LWC1/LDC1
3687 map=do_tlb_r(offset||c||s<0?ar:s,ar,map,0,-1,-1,c,constmap[i][s]+offset);
3688 }
3689 if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3690 map=do_tlb_w(offset||c||s<0?ar:s,ar,map,0,c,constmap[i][s]+offset);
3691 }
3692 }
3693 if (opcode[i]==0x39) { // SWC1 (read float)
3694 emit_readword_indexed(0,tl,tl);
3695 }
3696 if (opcode[i]==0x3D) { // SDC1 (read double)
3697 emit_readword_indexed(4,tl,th);
3698 emit_readword_indexed(0,tl,tl);
3699 }
3700 if (opcode[i]==0x31) { // LWC1 (get target address)
3701 emit_readword((int)&reg_cop1_simple[(source[i]>>16)&0x1f],temp);
3702 }
3703 if (opcode[i]==0x35) { // LDC1 (get target address)
3704 emit_readword((int)&reg_cop1_double[(source[i]>>16)&0x1f],temp);
3705 }
3706 if(!using_tlb) {
3707 if(!c) {
3708 jaddr2=(int)out;
3709 emit_jno(0);
3710 }
4cb76aa4 3711 else if(((signed int)(constmap[i][s]+offset))>=(signed int)0x80000000+RAM_SIZE) {
57871462 3712 jaddr2=(int)out;
3713 emit_jmp(0); // inline_readstub/inline_writestub? Very rare case
3714 }
3715 #ifdef DESTRUCTIVE_SHIFT
3716 if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3717 if(!offset&&!c&&s>=0) emit_mov(s,ar);
3718 }
3719 #endif
3720 }else{
3721 if (opcode[i]==0x31||opcode[i]==0x35) { // LWC1/LDC1
3722 do_tlb_r_branch(map,c,constmap[i][s]+offset,&jaddr2);
3723 }
3724 if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3725 do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr2);
3726 }
3727 }
3728 if (opcode[i]==0x31) { // LWC1
3729 //if(s>=0&&!c&&!offset) emit_mov(s,tl);
3730 //gen_tlb_addr_r(ar,map);
3731 //emit_readword_indexed((int)rdram-0x80000000,tl,tl);
3732 #ifdef HOST_IMM_ADDR32
3733 if(c) emit_readword_tlb(constmap[i][s]+offset,map,tl);
3734 else
3735 #endif
3736 emit_readword_indexed_tlb(0,offset||c||s<0?tl:s,map,tl);
3737 type=LOADW_STUB;
3738 }
3739 if (opcode[i]==0x35) { // LDC1
3740 assert(th>=0);
3741 //if(s>=0&&!c&&!offset) emit_mov(s,tl);
3742 //gen_tlb_addr_r(ar,map);
3743 //emit_readword_indexed((int)rdram-0x80000000,tl,th);
3744 //emit_readword_indexed((int)rdram-0x7FFFFFFC,tl,tl);
3745 #ifdef HOST_IMM_ADDR32
3746 if(c) emit_readdword_tlb(constmap[i][s]+offset,map,th,tl);
3747 else
3748 #endif
3749 emit_readdword_indexed_tlb(0,offset||c||s<0?tl:s,map,th,tl);
3750 type=LOADD_STUB;
3751 }
3752 if (opcode[i]==0x39) { // SWC1
3753 //emit_writeword_indexed(tl,(int)rdram-0x80000000,temp);
3754 emit_writeword_indexed_tlb(tl,0,offset||c||s<0?temp:s,map,temp);
3755 type=STOREW_STUB;
3756 }
3757 if (opcode[i]==0x3D) { // SDC1
3758 assert(th>=0);
3759 //emit_writeword_indexed(th,(int)rdram-0x80000000,temp);
3760 //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,temp);
3761 emit_writedword_indexed_tlb(th,tl,0,offset||c||s<0?temp:s,map,temp);
3762 type=STORED_STUB;
3763 }
0ff8c62c 3764 if(!using_tlb&&!(i_regs->waswritten&(1<<rs1[i]))&&!(new_dynarec_hacks&NDHACK_NO_SMC_CHECK)) {
57871462 3765 if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3766 #ifndef DESTRUCTIVE_SHIFT
3767 temp=offset||c||s<0?ar:s;
3768 #endif
3769 #if defined(HOST_IMM8)
3770 int ir=get_reg(i_regs->regmap,INVCP);
3771 assert(ir>=0);
3772 emit_cmpmem_indexedsr12_reg(ir,temp,1);
3773 #else
3774 emit_cmpmem_indexedsr12_imm((int)invalid_code,temp,1);
3775 #endif
0bbd1454 3776 #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3777 emit_callne(invalidate_addr_reg[temp]);
3778 #else
57871462 3779 jaddr3=(int)out;
3780 emit_jne(0);
3781 add_stub(INVCODE_STUB,jaddr3,(int)out,reglist|(1<<HOST_CCREG),temp,0,0,0);
0bbd1454 3782 #endif
57871462 3783 }
3784 }
3785 if(jaddr2) add_stub(type,jaddr2,(int)out,i,offset||c||s<0?ar:s,(int)i_regs,ccadj[i],reglist);
3786 if (opcode[i]==0x31) { // LWC1 (write float)
3787 emit_writeword_indexed(tl,0,temp);
3788 }
3789 if (opcode[i]==0x35) { // LDC1 (write double)
3790 emit_writeword_indexed(th,4,temp);
3791 emit_writeword_indexed(tl,0,temp);
3792 }
3793 //if(opcode[i]==0x39)
3794 /*if(opcode[i]==0x39||opcode[i]==0x31)
3795 {
3796 emit_pusha();
3797 emit_readword((int)&last_count,ECX);
3798 if(get_reg(i_regs->regmap,CCREG)<0)
3799 emit_loadreg(CCREG,HOST_CCREG);
3800 emit_add(HOST_CCREG,ECX,HOST_CCREG);
3801 emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3802 emit_writeword(HOST_CCREG,(int)&Count);
3803 emit_call((int)memdebug);
3804 emit_popa();
3805 }/**/
3d624f89 3806#else
3807 cop1_unusable(i, i_regs);
3808#endif
57871462 3809}
3810
b9b61529 3811void c2ls_assemble(int i,struct regstat *i_regs)
3812{
3813 int s,tl;
3814 int ar;
3815 int offset;
1fd1aceb 3816 int memtarget=0,c=0;
c2e3bd42 3817 int jaddr2=0,jaddr3,type;
b9b61529 3818 int agr=AGEN1+(i&1);
ffb0b9e0 3819 int fastio_reg_override=0;
b9b61529 3820 u_int hr,reglist=0;
3821 u_int copr=(source[i]>>16)&0x1f;
3822 s=get_reg(i_regs->regmap,rs1[i]);
3823 tl=get_reg(i_regs->regmap,FTEMP);
3824 offset=imm[i];
3825 assert(rs1[i]>0);
3826 assert(tl>=0);
3827 assert(!using_tlb);
3828
3829 for(hr=0;hr<HOST_REGS;hr++) {
3830 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3831 }
3832 if(i_regs->regmap[HOST_CCREG]==CCREG)
3833 reglist&=~(1<<HOST_CCREG);
3834
3835 // get the address
3836 if (opcode[i]==0x3a) { // SWC2
3837 ar=get_reg(i_regs->regmap,agr);
3838 if(ar<0) ar=get_reg(i_regs->regmap,-1);
3839 reglist|=1<<ar;
3840 } else { // LWC2
3841 ar=tl;
3842 }
1fd1aceb 3843 if(s>=0) c=(i_regs->wasconst>>s)&1;
3844 memtarget=c&&(((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE);
b9b61529 3845 if (!offset&&!c&&s>=0) ar=s;
3846 assert(ar>=0);
3847
3848 if (opcode[i]==0x3a) { // SWC2
3849 cop2_get_dreg(copr,tl,HOST_TEMPREG);
1fd1aceb 3850 type=STOREW_STUB;
b9b61529 3851 }
1fd1aceb 3852 else
b9b61529 3853 type=LOADW_STUB;
1fd1aceb 3854
3855 if(c&&!memtarget) {
3856 jaddr2=(int)out;
3857 emit_jmp(0); // inline_readstub/inline_writestub?
b9b61529 3858 }
1fd1aceb 3859 else {
3860 if(!c) {
ffb0b9e0 3861 jaddr2=emit_fastpath_cmp_jump(i,ar,&fastio_reg_override);
1fd1aceb 3862 }
3863 if (opcode[i]==0x32) { // LWC2
3864 #ifdef HOST_IMM_ADDR32
3865 if(c) emit_readword_tlb(constmap[i][s]+offset,-1,tl);
3866 else
3867 #endif
ffb0b9e0 3868 int a=ar;
3869 if(fastio_reg_override) a=fastio_reg_override;
3870 emit_readword_indexed(0,a,tl);
1fd1aceb 3871 }
3872 if (opcode[i]==0x3a) { // SWC2
3873 #ifdef DESTRUCTIVE_SHIFT
3874 if(!offset&&!c&&s>=0) emit_mov(s,ar);
3875 #endif
ffb0b9e0 3876 int a=ar;
3877 if(fastio_reg_override) a=fastio_reg_override;
3878 emit_writeword_indexed(tl,0,a);
1fd1aceb 3879 }
b9b61529 3880 }
3881 if(jaddr2)
3882 add_stub(type,jaddr2,(int)out,i,ar,(int)i_regs,ccadj[i],reglist);
0ff8c62c 3883 if(opcode[i]==0x3a) // SWC2
3884 if(!(i_regs->waswritten&(1<<rs1[i]))&&!(new_dynarec_hacks&NDHACK_NO_SMC_CHECK)) {
b9b61529 3885#if defined(HOST_IMM8)
3886 int ir=get_reg(i_regs->regmap,INVCP);
3887 assert(ir>=0);
3888 emit_cmpmem_indexedsr12_reg(ir,ar,1);
3889#else
3890 emit_cmpmem_indexedsr12_imm((int)invalid_code,ar,1);
3891#endif
0bbd1454 3892 #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3893 emit_callne(invalidate_addr_reg[ar]);
3894 #else
b9b61529 3895 jaddr3=(int)out;
3896 emit_jne(0);
3897 add_stub(INVCODE_STUB,jaddr3,(int)out,reglist|(1<<HOST_CCREG),ar,0,0,0);
0bbd1454 3898 #endif
b9b61529 3899 }
3900 if (opcode[i]==0x32) { // LWC2
3901 cop2_put_dreg(copr,tl,HOST_TEMPREG);
3902 }
3903}
3904
57871462 3905#ifndef multdiv_assemble
3906void multdiv_assemble(int i,struct regstat *i_regs)
3907{
3908 printf("Need multdiv_assemble for this architecture.\n");
3909 exit(1);
3910}
3911#endif
3912
3913void mov_assemble(int i,struct regstat *i_regs)
3914{
3915 //if(opcode2[i]==0x10||opcode2[i]==0x12) { // MFHI/MFLO
3916 //if(opcode2[i]==0x11||opcode2[i]==0x13) { // MTHI/MTLO
57871462 3917 if(rt1[i]) {
3918 signed char sh,sl,th,tl;
3919 th=get_reg(i_regs->regmap,rt1[i]|64);
3920 tl=get_reg(i_regs->regmap,rt1[i]);
3921 //assert(tl>=0);
3922 if(tl>=0) {
3923 sh=get_reg(i_regs->regmap,rs1[i]|64);
3924 sl=get_reg(i_regs->regmap,rs1[i]);
3925 if(sl>=0) emit_mov(sl,tl);
3926 else emit_loadreg(rs1[i],tl);
3927 if(th>=0) {
3928 if(sh>=0) emit_mov(sh,th);
3929 else emit_loadreg(rs1[i]|64,th);
3930 }
3931 }
3932 }
3933}
3934
3935#ifndef fconv_assemble
3936void fconv_assemble(int i,struct regstat *i_regs)
3937{
3938 printf("Need fconv_assemble for this architecture.\n");
3939 exit(1);
3940}
3941#endif
3942
3943#if 0
3944void float_assemble(int i,struct regstat *i_regs)
3945{
3946 printf("Need float_assemble for this architecture.\n");
3947 exit(1);
3948}
3949#endif
3950
3951void syscall_assemble(int i,struct regstat *i_regs)
3952{
3953 signed char ccreg=get_reg(i_regs->regmap,CCREG);
3954 assert(ccreg==HOST_CCREG);
3955 assert(!is_delayslot);
3956 emit_movimm(start+i*4,EAX); // Get PC
2573466a 3957 emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i]),HOST_CCREG); // CHECK: is this right? There should probably be an extra cycle...
7139f3c8 3958 emit_jmp((int)jump_syscall_hle); // XXX
3959}
3960
3961void hlecall_assemble(int i,struct regstat *i_regs)
3962{
3963 signed char ccreg=get_reg(i_regs->regmap,CCREG);
3964 assert(ccreg==HOST_CCREG);
3965 assert(!is_delayslot);
3966 emit_movimm(start+i*4+4,0); // Get PC
67ba0fb4 3967 emit_movimm((int)psxHLEt[source[i]&7],1);
2573466a 3968 emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i]),HOST_CCREG); // XXX
67ba0fb4 3969 emit_jmp((int)jump_hlecall);
57871462 3970}
3971
1e973cb0 3972void intcall_assemble(int i,struct regstat *i_regs)
3973{
3974 signed char ccreg=get_reg(i_regs->regmap,CCREG);
3975 assert(ccreg==HOST_CCREG);
3976 assert(!is_delayslot);
3977 emit_movimm(start+i*4,0); // Get PC
2573466a 3978 emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i]),HOST_CCREG);
1e973cb0 3979 emit_jmp((int)jump_intcall);
3980}
3981
57871462 3982void ds_assemble(int i,struct regstat *i_regs)
3983{
ffb0b9e0 3984 speculate_register_values(i);
57871462 3985 is_delayslot=1;
3986 switch(itype[i]) {
3987 case ALU:
3988 alu_assemble(i,i_regs);break;
3989 case IMM16:
3990 imm16_assemble(i,i_regs);break;
3991 case SHIFT:
3992 shift_assemble(i,i_regs);break;
3993 case SHIFTIMM:
3994 shiftimm_assemble(i,i_regs);break;
3995 case LOAD:
3996 load_assemble(i,i_regs);break;
3997 case LOADLR:
3998 loadlr_assemble(i,i_regs);break;
3999 case STORE:
4000 store_assemble(i,i_regs);break;
4001 case STORELR:
4002 storelr_assemble(i,i_regs);break;
4003 case COP0:
4004 cop0_assemble(i,i_regs);break;
4005 case COP1:
4006 cop1_assemble(i,i_regs);break;
4007 case C1LS:
4008 c1ls_assemble(i,i_regs);break;
b9b61529 4009 case COP2:
4010 cop2_assemble(i,i_regs);break;
4011 case C2LS:
4012 c2ls_assemble(i,i_regs);break;
4013 case C2OP:
4014 c2op_assemble(i,i_regs);break;
57871462 4015 case FCONV:
4016 fconv_assemble(i,i_regs);break;
4017 case FLOAT:
4018 float_assemble(i,i_regs);break;
4019 case FCOMP:
4020 fcomp_assemble(i,i_regs);break;
4021 case MULTDIV:
4022 multdiv_assemble(i,i_regs);break;
4023 case MOV:
4024 mov_assemble(i,i_regs);break;
4025 case SYSCALL:
7139f3c8 4026 case HLECALL:
1e973cb0 4027 case INTCALL:
57871462 4028 case SPAN:
4029 case UJUMP:
4030 case RJUMP:
4031 case CJUMP:
4032 case SJUMP:
4033 case FJUMP:
4034 printf("Jump in the delay slot. This is probably a bug.\n");
4035 }
4036 is_delayslot=0;
4037}
4038
4039// Is the branch target a valid internal jump?
4040int internal_branch(uint64_t i_is32,int addr)
4041{
4042 if(addr&1) return 0; // Indirect (register) jump
4043 if(addr>=start && addr<start+slen*4-4)
4044 {
4045 int t=(addr-start)>>2;
4046 // Delay slots are not valid branch targets
4047 //if(t>0&&(itype[t-1]==RJUMP||itype[t-1]==UJUMP||itype[t-1]==CJUMP||itype[t-1]==SJUMP||itype[t-1]==FJUMP)) return 0;
4048 // 64 -> 32 bit transition requires a recompile
4049 /*if(is32[t]&~unneeded_reg_upper[t]&~i_is32)
4050 {
4051 if(requires_32bit[t]&~i_is32) printf("optimizable: no\n");
4052 else printf("optimizable: yes\n");
4053 }*/
4054 //if(is32[t]&~unneeded_reg_upper[t]&~i_is32) return 0;
a28c6ce8 4055#ifndef FORCE32
57871462 4056 if(requires_32bit[t]&~i_is32) return 0;
a28c6ce8 4057 else
4058#endif
4059 return 1;
57871462 4060 }
4061 return 0;
4062}
4063
4064#ifndef wb_invalidate
4065void wb_invalidate(signed char pre[],signed char entry[],uint64_t dirty,uint64_t is32,
4066 uint64_t u,uint64_t uu)
4067{
4068 int hr;
4069 for(hr=0;hr<HOST_REGS;hr++) {
4070 if(hr!=EXCLUDE_REG) {
4071 if(pre[hr]!=entry[hr]) {
4072 if(pre[hr]>=0) {
4073 if((dirty>>hr)&1) {
4074 if(get_reg(entry,pre[hr])<0) {
4075 if(pre[hr]<64) {
4076 if(!((u>>pre[hr])&1)) {
4077 emit_storereg(pre[hr],hr);
4078 if( ((is32>>pre[hr])&1) && !((uu>>pre[hr])&1) ) {
4079 emit_sarimm(hr,31,hr);
4080 emit_storereg(pre[hr]|64,hr);
4081 }
4082 }
4083 }else{
4084 if(!((uu>>(pre[hr]&63))&1) && !((is32>>(pre[hr]&63))&1)) {
4085 emit_storereg(pre[hr],hr);
4086 }
4087 }
4088 }
4089 }
4090 }
4091 }
4092 }
4093 }
4094 // Move from one register to another (no writeback)
4095 for(hr=0;hr<HOST_REGS;hr++) {
4096 if(hr!=EXCLUDE_REG) {
4097 if(pre[hr]!=entry[hr]) {
4098 if(pre[hr]>=0&&(pre[hr]&63)<TEMPREG) {
4099 int nr;
4100 if((nr=get_reg(entry,pre[hr]))>=0) {
4101 emit_mov(hr,nr);
4102 }
4103 }
4104 }
4105 }
4106 }
4107}
4108#endif
4109
4110// Load the specified registers
4111// This only loads the registers given as arguments because
4112// we don't want to load things that will be overwritten
4113void load_regs(signed char entry[],signed char regmap[],int is32,int rs1,int rs2)
4114{
4115 int hr;
4116 // Load 32-bit regs
4117 for(hr=0;hr<HOST_REGS;hr++) {
4118 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4119 if(entry[hr]!=regmap[hr]) {
4120 if(regmap[hr]==rs1||regmap[hr]==rs2)
4121 {
4122 if(regmap[hr]==0) {
4123 emit_zeroreg(hr);
4124 }
4125 else
4126 {
4127 emit_loadreg(regmap[hr],hr);
4128 }
4129 }
4130 }
4131 }
4132 }
4133 //Load 64-bit regs
4134 for(hr=0;hr<HOST_REGS;hr++) {
4135 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4136 if(entry[hr]!=regmap[hr]) {
4137 if(regmap[hr]-64==rs1||regmap[hr]-64==rs2)
4138 {
4139 assert(regmap[hr]!=64);
4140 if((is32>>(regmap[hr]&63))&1) {
4141 int lr=get_reg(regmap,regmap[hr]-64);
4142 if(lr>=0)
4143 emit_sarimm(lr,31,hr);
4144 else
4145 emit_loadreg(regmap[hr],hr);
4146 }
4147 else
4148 {
4149 emit_loadreg(regmap[hr],hr);
4150 }
4151 }
4152 }
4153 }
4154 }
4155}
4156
4157// Load registers prior to the start of a loop
4158// so that they are not loaded within the loop
4159static void loop_preload(signed char pre[],signed char entry[])
4160{
4161 int hr;
4162 for(hr=0;hr<HOST_REGS;hr++) {
4163 if(hr!=EXCLUDE_REG) {
4164 if(pre[hr]!=entry[hr]) {
4165 if(entry[hr]>=0) {
4166 if(get_reg(pre,entry[hr])<0) {
4167 assem_debug("loop preload:\n");
4168 //printf("loop preload: %d\n",hr);
4169 if(entry[hr]==0) {
4170 emit_zeroreg(hr);
4171 }
4172 else if(entry[hr]<TEMPREG)
4173 {
4174 emit_loadreg(entry[hr],hr);
4175 }
4176 else if(entry[hr]-64<TEMPREG)
4177 {
4178 emit_loadreg(entry[hr],hr);
4179 }
4180 }
4181 }
4182 }
4183 }
4184 }
4185}
4186
4187// Generate address for load/store instruction
b9b61529 4188// goes to AGEN for writes, FTEMP for LOADLR and cop1/2 loads
57871462 4189void address_generation(int i,struct regstat *i_regs,signed char entry[])
4190{
b9b61529 4191 if(itype[i]==LOAD||itype[i]==LOADLR||itype[i]==STORE||itype[i]==STORELR||itype[i]==C1LS||itype[i]==C2LS) {
5194fb95 4192 int ra=-1;
57871462 4193 int agr=AGEN1+(i&1);
4194 int mgr=MGEN1+(i&1);
4195 if(itype[i]==LOAD) {
4196 ra=get_reg(i_regs->regmap,rt1[i]);
535d208a 4197 if(ra<0) ra=get_reg(i_regs->regmap,-1);
4198 assert(ra>=0);
57871462 4199 }
4200 if(itype[i]==LOADLR) {
4201 ra=get_reg(i_regs->regmap,FTEMP);
4202 }
4203 if(itype[i]==STORE||itype[i]==STORELR) {
4204 ra=get_reg(i_regs->regmap,agr);
4205 if(ra<0) ra=get_reg(i_regs->regmap,-1);
4206 }
b9b61529 4207 if(itype[i]==C1LS||itype[i]==C2LS) {
4208 if ((opcode[i]&0x3b)==0x31||(opcode[i]&0x3b)==0x32) // LWC1/LDC1/LWC2/LDC2
57871462 4209 ra=get_reg(i_regs->regmap,FTEMP);
1fd1aceb 4210 else { // SWC1/SDC1/SWC2/SDC2
57871462 4211 ra=get_reg(i_regs->regmap,agr);
4212 if(ra<0) ra=get_reg(i_regs->regmap,-1);
4213 }
4214 }
4215 int rs=get_reg(i_regs->regmap,rs1[i]);
4216 int rm=get_reg(i_regs->regmap,TLREG);
4217 if(ra>=0) {
4218 int offset=imm[i];
4219 int c=(i_regs->wasconst>>rs)&1;
4220 if(rs1[i]==0) {
4221 // Using r0 as a base address
4222 /*if(rm>=0) {
4223 if(!entry||entry[rm]!=mgr) {
4224 generate_map_const(offset,rm);
4225 } // else did it in the previous cycle
4226 }*/
4227 if(!entry||entry[ra]!=agr) {
4228 if (opcode[i]==0x22||opcode[i]==0x26) {
4229 emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
4230 }else if (opcode[i]==0x1a||opcode[i]==0x1b) {
4231 emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
4232 }else{
4233 emit_movimm(offset,ra);
4234 }
4235 } // else did it in the previous cycle
4236 }
4237 else if(rs<0) {
4238 if(!entry||entry[ra]!=rs1[i])
4239 emit_loadreg(rs1[i],ra);
4240 //if(!entry||entry[ra]!=rs1[i])
4241 // printf("poor load scheduling!\n");
4242 }
4243 else if(c) {
63cb0298 4244#ifndef DISABLE_TLB
57871462 4245 if(rm>=0) {
4246 if(!entry||entry[rm]!=mgr) {
b9b61529 4247 if(itype[i]==STORE||itype[i]==STORELR||(opcode[i]&0x3b)==0x39||(opcode[i]&0x3b)==0x3a) {
57871462 4248 // Stores to memory go thru the mapper to detect self-modifying
4249 // code, loads don't.
4250 if((unsigned int)(constmap[i][rs]+offset)>=0xC0000000 ||
4cb76aa4 4251 (unsigned int)(constmap[i][rs]+offset)<0x80000000+RAM_SIZE )
57871462 4252 generate_map_const(constmap[i][rs]+offset,rm);
4253 }else{
4254 if((signed int)(constmap[i][rs]+offset)>=(signed int)0xC0000000)
4255 generate_map_const(constmap[i][rs]+offset,rm);
4256 }
4257 }
4258 }
63cb0298 4259#endif
57871462 4260 if(rs1[i]!=rt1[i]||itype[i]!=LOAD) {
4261 if(!entry||entry[ra]!=agr) {
4262 if (opcode[i]==0x22||opcode[i]==0x26) {
4263 emit_movimm((constmap[i][rs]+offset)&0xFFFFFFFC,ra); // LWL/LWR
4264 }else if (opcode[i]==0x1a||opcode[i]==0x1b) {
4265 emit_movimm((constmap[i][rs]+offset)&0xFFFFFFF8,ra); // LDL/LDR
4266 }else{
4267 #ifdef HOST_IMM_ADDR32
b9b61529 4268 if((itype[i]!=LOAD&&(opcode[i]&0x3b)!=0x31&&(opcode[i]&0x3b)!=0x32) || // LWC1/LDC1/LWC2/LDC2
57871462 4269 (using_tlb&&((signed int)constmap[i][rs]+offset)>=(signed int)0xC0000000))
4270 #endif
4271 emit_movimm(constmap[i][rs]+offset,ra);
8575a877 4272 regs[i].loadedconst|=1<<ra;
57871462 4273 }
4274 } // else did it in the previous cycle
4275 } // else load_consts already did it
4276 }
4277 if(offset&&!c&&rs1[i]) {
4278 if(rs>=0) {
4279 emit_addimm(rs,offset,ra);
4280 }else{
4281 emit_addimm(ra,offset,ra);
4282 }
4283 }
4284 }
4285 }
4286 // Preload constants for next instruction
b9b61529 4287 if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS||itype[i+1]==C2LS) {
57871462 4288 int agr,ra;
63cb0298 4289 #if !defined(HOST_IMM_ADDR32) && !defined(DISABLE_TLB)
57871462 4290 // Mapper entry
4291 agr=MGEN1+((i+1)&1);
4292 ra=get_reg(i_regs->regmap,agr);
4293 if(ra>=0) {
4294 int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
4295 int offset=imm[i+1];
4296 int c=(regs[i+1].wasconst>>rs)&1;
4297 if(c) {
b9b61529 4298 if(itype[i+1]==STORE||itype[i+1]==STORELR
4299 ||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1, SWC2/SDC2
57871462 4300 // Stores to memory go thru the mapper to detect self-modifying
4301 // code, loads don't.
4302 if((unsigned int)(constmap[i+1][rs]+offset)>=0xC0000000 ||
4cb76aa4 4303 (unsigned int)(constmap[i+1][rs]+offset)<0x80000000+RAM_SIZE )
57871462 4304 generate_map_const(constmap[i+1][rs]+offset,ra);
4305 }else{
4306 if((signed int)(constmap[i+1][rs]+offset)>=(signed int)0xC0000000)
4307 generate_map_const(constmap[i+1][rs]+offset,ra);
4308 }
4309 }
4310 /*else if(rs1[i]==0) {
4311 generate_map_const(offset,ra);
4312 }*/
4313 }
4314 #endif
4315 // Actual address
4316 agr=AGEN1+((i+1)&1);
4317 ra=get_reg(i_regs->regmap,agr);
4318 if(ra>=0) {
4319 int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
4320 int offset=imm[i+1];
4321 int c=(regs[i+1].wasconst>>rs)&1;
4322 if(c&&(rs1[i+1]!=rt1[i+1]||itype[i+1]!=LOAD)) {
4323 if (opcode[i+1]==0x22||opcode[i+1]==0x26) {
4324 emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFFC,ra); // LWL/LWR
4325 }else if (opcode[i+1]==0x1a||opcode[i+1]==0x1b) {
4326 emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFF8,ra); // LDL/LDR
4327 }else{
4328 #ifdef HOST_IMM_ADDR32
b9b61529 4329 if((itype[i+1]!=LOAD&&(opcode[i+1]&0x3b)!=0x31&&(opcode[i+1]&0x3b)!=0x32) || // LWC1/LDC1/LWC2/LDC2
57871462 4330 (using_tlb&&((signed int)constmap[i+1][rs]+offset)>=(signed int)0xC0000000))
4331 #endif
4332 emit_movimm(constmap[i+1][rs]+offset,ra);
8575a877 4333 regs[i+1].loadedconst|=1<<ra;
57871462 4334 }
4335 }
4336 else if(rs1[i+1]==0) {
4337 // Using r0 as a base address
4338 if (opcode[i+1]==0x22||opcode[i+1]==0x26) {
4339 emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
4340 }else if (opcode[i+1]==0x1a||opcode[i+1]==0x1b) {
4341 emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
4342 }else{
4343 emit_movimm(offset,ra);
4344 }
4345 }
4346 }
4347 }
4348}
4349
4350int get_final_value(int hr, int i, int *value)
4351{
4352 int reg=regs[i].regmap[hr];
4353 while(i<slen-1) {
4354 if(regs[i+1].regmap[hr]!=reg) break;
4355 if(!((regs[i+1].isconst>>hr)&1)) break;
4356 if(bt[i+1]) break;
4357 i++;
4358 }
4359 if(i<slen-1) {
4360 if(itype[i]==UJUMP||itype[i]==RJUMP||itype[i]==CJUMP||itype[i]==SJUMP) {
4361 *value=constmap[i][hr];
4362 return 1;
4363 }
4364 if(!bt[i+1]) {
4365 if(itype[i+1]==UJUMP||itype[i+1]==RJUMP||itype[i+1]==CJUMP||itype[i+1]==SJUMP) {
4366 // Load in delay slot, out-of-order execution
4367 if(itype[i+2]==LOAD&&rs1[i+2]==reg&&rt1[i+2]==reg&&((regs[i+1].wasconst>>hr)&1))
4368 {
4369 #ifdef HOST_IMM_ADDR32
4370 if(!using_tlb||((signed int)constmap[i][hr]+imm[i+2])<(signed int)0xC0000000) return 0;
4371 #endif
4372 // Precompute load address
4373 *value=constmap[i][hr]+imm[i+2];
4374 return 1;
4375 }
4376 }
4377 if(itype[i+1]==LOAD&&rs1[i+1]==reg&&rt1[i+1]==reg)
4378 {
4379 #ifdef HOST_IMM_ADDR32
4380 if(!using_tlb||((signed int)constmap[i][hr]+imm[i+1])<(signed int)0xC0000000) return 0;
4381 #endif
4382 // Precompute load address
4383 *value=constmap[i][hr]+imm[i+1];
4384 //printf("c=%x imm=%x\n",(int)constmap[i][hr],imm[i+1]);
4385 return 1;
4386 }
4387 }
4388 }
4389 *value=constmap[i][hr];
4390 //printf("c=%x\n",(int)constmap[i][hr]);
4391 if(i==slen-1) return 1;
4392 if(reg<64) {
4393 return !((unneeded_reg[i+1]>>reg)&1);
4394 }else{
4395 return !((unneeded_reg_upper[i+1]>>reg)&1);
4396 }
4397}
4398
4399// Load registers with known constants
4400void load_consts(signed char pre[],signed char regmap[],int is32,int i)
4401{
8575a877 4402 int hr,hr2;
4403 // propagate loaded constant flags
4404 if(i==0||bt[i])
4405 regs[i].loadedconst=0;
4406 else {
4407 for(hr=0;hr<HOST_REGS;hr++) {
4408 if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((regs[i-1].isconst>>hr)&1)&&pre[hr]==regmap[hr]
4409 &&regmap[hr]==regs[i-1].regmap[hr]&&((regs[i-1].loadedconst>>hr)&1))
4410 {
4411 regs[i].loadedconst|=1<<hr;
4412 }
4413 }
4414 }
57871462 4415 // Load 32-bit regs
4416 for(hr=0;hr<HOST_REGS;hr++) {
4417 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4418 //if(entry[hr]!=regmap[hr]) {
8575a877 4419 if(!((regs[i].loadedconst>>hr)&1)) {
57871462 4420 if(((regs[i].isconst>>hr)&1)&&regmap[hr]<64&&regmap[hr]>0) {
8575a877 4421 int value,similar=0;
57871462 4422 if(get_final_value(hr,i,&value)) {
8575a877 4423 // see if some other register has similar value
4424 for(hr2=0;hr2<HOST_REGS;hr2++) {
4425 if(hr2!=EXCLUDE_REG&&((regs[i].loadedconst>>hr2)&1)) {
4426 if(is_similar_value(value,constmap[i][hr2])) {
4427 similar=1;
4428 break;
4429 }
4430 }
4431 }
4432 if(similar) {
4433 int value2;
4434 if(get_final_value(hr2,i,&value2)) // is this needed?
4435 emit_movimm_from(value2,hr2,value,hr);
4436 else
4437 emit_movimm(value,hr);
4438 }
4439 else if(value==0) {
57871462 4440 emit_zeroreg(hr);
4441 }
4442 else {
4443 emit_movimm(value,hr);
4444 }
4445 }
8575a877 4446 regs[i].loadedconst|=1<<hr;
57871462 4447 }
4448 }
4449 }
4450 }
4451 // Load 64-bit regs
4452 for(hr=0;hr<HOST_REGS;hr++) {
4453 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4454 //if(entry[hr]!=regmap[hr]) {
4455 if(i==0||!((regs[i-1].isconst>>hr)&1)||pre[hr]!=regmap[hr]||bt[i]) {
4456 if(((regs[i].isconst>>hr)&1)&&regmap[hr]>64) {
4457 if((is32>>(regmap[hr]&63))&1) {
4458 int lr=get_reg(regmap,regmap[hr]-64);
4459 assert(lr>=0);
4460 emit_sarimm(lr,31,hr);
4461 }
4462 else
4463 {
4464 int value;
4465 if(get_final_value(hr,i,&value)) {
4466 if(value==0) {
4467 emit_zeroreg(hr);
4468 }
4469 else {
4470 emit_movimm(value,hr);
4471 }
4472 }
4473 }
4474 }
4475 }
4476 }
4477 }
4478}
4479void load_all_consts(signed char regmap[],int is32,u_int dirty,int i)
4480{
4481 int hr;
4482 // Load 32-bit regs
4483 for(hr=0;hr<HOST_REGS;hr++) {
4484 if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((dirty>>hr)&1)) {
4485 if(((regs[i].isconst>>hr)&1)&&regmap[hr]<64&&regmap[hr]>0) {
4486 int value=constmap[i][hr];
4487 if(value==0) {
4488 emit_zeroreg(hr);
4489 }
4490 else {
4491 emit_movimm(value,hr);
4492 }
4493 }
4494 }
4495 }
4496 // Load 64-bit regs
4497 for(hr=0;hr<HOST_REGS;hr++) {
4498 if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((dirty>>hr)&1)) {
4499 if(((regs[i].isconst>>hr)&1)&&regmap[hr]>64) {
4500 if((is32>>(regmap[hr]&63))&1) {
4501 int lr=get_reg(regmap,regmap[hr]-64);
4502 assert(lr>=0);
4503 emit_sarimm(lr,31,hr);
4504 }
4505 else
4506 {
4507 int value=constmap[i][hr];
4508 if(value==0) {
4509 emit_zeroreg(hr);
4510 }
4511 else {
4512 emit_movimm(value,hr);
4513 }
4514 }
4515 }
4516 }
4517 }
4518}
4519
4520// Write out all dirty registers (except cycle count)
4521void wb_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty)
4522{
4523 int hr;
4524 for(hr=0;hr<HOST_REGS;hr++) {
4525 if(hr!=EXCLUDE_REG) {
4526 if(i_regmap[hr]>0) {
4527 if(i_regmap[hr]!=CCREG) {
4528 if((i_dirty>>hr)&1) {
4529 if(i_regmap[hr]<64) {
4530 emit_storereg(i_regmap[hr],hr);
24385cae 4531#ifndef FORCE32
57871462 4532 if( ((i_is32>>i_regmap[hr])&1) ) {
4533 #ifdef DESTRUCTIVE_WRITEBACK
4534 emit_sarimm(hr,31,hr);
4535 emit_storereg(i_regmap[hr]|64,hr);
4536 #else
4537 emit_sarimm(hr,31,HOST_TEMPREG);
4538 emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4539 #endif
4540 }
24385cae 4541#endif
57871462 4542 }else{
4543 if( !((i_is32>>(i_regmap[hr]&63))&1) ) {
4544 emit_storereg(i_regmap[hr],hr);
4545 }
4546 }
4547 }
4548 }
4549 }
4550 }
4551 }
4552}
4553// Write out dirty registers that we need to reload (pair with load_needed_regs)
4554// This writes the registers not written by store_regs_bt
4555void wb_needed_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4556{
4557 int hr;
4558 int t=(addr-start)>>2;
4559 for(hr=0;hr<HOST_REGS;hr++) {
4560 if(hr!=EXCLUDE_REG) {
4561 if(i_regmap[hr]>0) {
4562 if(i_regmap[hr]!=CCREG) {
4563 if(i_regmap[hr]==regs[t].regmap_entry[hr] && ((regs[t].dirty>>hr)&1) && !(((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4564 if((i_dirty>>hr)&1) {
4565 if(i_regmap[hr]<64) {
4566 emit_storereg(i_regmap[hr],hr);
24385cae 4567#ifndef FORCE32
57871462 4568 if( ((i_is32>>i_regmap[hr])&1) ) {
4569 #ifdef DESTRUCTIVE_WRITEBACK
4570 emit_sarimm(hr,31,hr);
4571 emit_storereg(i_regmap[hr]|64,hr);
4572 #else
4573 emit_sarimm(hr,31,HOST_TEMPREG);
4574 emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4575 #endif
4576 }
24385cae 4577#endif
57871462 4578 }else{
4579 if( !((i_is32>>(i_regmap[hr]&63))&1) ) {
4580 emit_storereg(i_regmap[hr],hr);
4581 }
4582 }
4583 }
4584 }
4585 }
4586 }
4587 }
4588 }
4589}
4590
4591// Load all registers (except cycle count)
4592void load_all_regs(signed char i_regmap[])
4593{
4594 int hr;
4595 for(hr=0;hr<HOST_REGS;hr++) {
4596 if(hr!=EXCLUDE_REG) {
4597 if(i_regmap[hr]==0) {
4598 emit_zeroreg(hr);
4599 }
4600 else
ea3d2e6e 4601 if(i_regmap[hr]>0 && (i_regmap[hr]&63)<TEMPREG && i_regmap[hr]!=CCREG)
57871462 4602 {
4603 emit_loadreg(i_regmap[hr],hr);
4604 }
4605 }
4606 }
4607}
4608
4609// Load all current registers also needed by next instruction
4610void load_needed_regs(signed char i_regmap[],signed char next_regmap[])
4611{
4612 int hr;
4613 for(hr=0;hr<HOST_REGS;hr++) {
4614 if(hr!=EXCLUDE_REG) {
4615 if(get_reg(next_regmap,i_regmap[hr])>=0) {
4616 if(i_regmap[hr]==0) {
4617 emit_zeroreg(hr);
4618 }
4619 else
ea3d2e6e 4620 if(i_regmap[hr]>0 && (i_regmap[hr]&63)<TEMPREG && i_regmap[hr]!=CCREG)
57871462 4621 {
4622 emit_loadreg(i_regmap[hr],hr);
4623 }
4624 }
4625 }
4626 }
4627}
4628
4629// Load all regs, storing cycle count if necessary
4630void load_regs_entry(int t)
4631{
4632 int hr;
2573466a 4633 if(is_ds[t]) emit_addimm(HOST_CCREG,CLOCK_ADJUST(1),HOST_CCREG);
4634 else if(ccadj[t]) emit_addimm(HOST_CCREG,-CLOCK_ADJUST(ccadj[t]),HOST_CCREG);
57871462 4635 if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
4636 emit_storereg(CCREG,HOST_CCREG);
4637 }
4638 // Load 32-bit regs
4639 for(hr=0;hr<HOST_REGS;hr++) {
ea3d2e6e 4640 if(regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<TEMPREG) {
57871462 4641 if(regs[t].regmap_entry[hr]==0) {
4642 emit_zeroreg(hr);
4643 }
4644 else if(regs[t].regmap_entry[hr]!=CCREG)
4645 {
4646 emit_loadreg(regs[t].regmap_entry[hr],hr);
4647 }
4648 }
4649 }
4650 // Load 64-bit regs
4651 for(hr=0;hr<HOST_REGS;hr++) {
ea3d2e6e 4652 if(regs[t].regmap_entry[hr]>=64&&regs[t].regmap_entry[hr]<TEMPREG+64) {
57871462 4653 assert(regs[t].regmap_entry[hr]!=64);
4654 if((regs[t].was32>>(regs[t].regmap_entry[hr]&63))&1) {
4655 int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4656 if(lr<0) {
4657 emit_loadreg(regs[t].regmap_entry[hr],hr);
4658 }
4659 else
4660 {
4661 emit_sarimm(lr,31,hr);
4662 }
4663 }
4664 else
4665 {
4666 emit_loadreg(regs[t].regmap_entry[hr],hr);
4667 }
4668 }
4669 }
4670}
4671
4672// Store dirty registers prior to branch
4673void store_regs_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4674{
4675 if(internal_branch(i_is32,addr))
4676 {
4677 int t=(addr-start)>>2;
4678 int hr;
4679 for(hr=0;hr<HOST_REGS;hr++) {
4680 if(hr!=EXCLUDE_REG) {
4681 if(i_regmap[hr]>0 && i_regmap[hr]!=CCREG) {
4682 if(i_regmap[hr]!=regs[t].regmap_entry[hr] || !((regs[t].dirty>>hr)&1) || (((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4683 if((i_dirty>>hr)&1) {
4684 if(i_regmap[hr]<64) {
4685 if(!((unneeded_reg[t]>>i_regmap[hr])&1)) {
4686 emit_storereg(i_regmap[hr],hr);
4687 if( ((i_is32>>i_regmap[hr])&1) && !((unneeded_reg_upper[t]>>i_regmap[hr])&1) ) {
4688 #ifdef DESTRUCTIVE_WRITEBACK
4689 emit_sarimm(hr,31,hr);
4690 emit_storereg(i_regmap[hr]|64,hr);
4691 #else
4692 emit_sarimm(hr,31,HOST_TEMPREG);
4693 emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4694 #endif
4695 }
4696 }
4697 }else{
4698 if( !((i_is32>>(i_regmap[hr]&63))&1) && !((unneeded_reg_upper[t]>>(i_regmap[hr]&63))&1) ) {
4699 emit_storereg(i_regmap[hr],hr);
4700 }
4701 }
4702 }
4703 }
4704 }
4705 }
4706 }
4707 }
4708 else
4709 {
4710 // Branch out of this block, write out all dirty regs
4711 wb_dirtys(i_regmap,i_is32,i_dirty);
4712 }
4713}
4714
4715// Load all needed registers for branch target
4716void load_regs_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4717{
4718 //if(addr>=start && addr<(start+slen*4))
4719 if(internal_branch(i_is32,addr))
4720 {
4721 int t=(addr-start)>>2;
4722 int hr;
4723 // Store the cycle count before loading something else
4724 if(i_regmap[HOST_CCREG]!=CCREG) {
4725 assert(i_regmap[HOST_CCREG]==-1);
4726 }
4727 if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
4728 emit_storereg(CCREG,HOST_CCREG);
4729 }
4730 // Load 32-bit regs
4731 for(hr=0;hr<HOST_REGS;hr++) {
ea3d2e6e 4732 if(hr!=EXCLUDE_REG&&regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<TEMPREG) {
57871462 4733 #ifdef DESTRUCTIVE_WRITEBACK
4734 if(i_regmap[hr]!=regs[t].regmap_entry[hr] || ( !((regs[t].dirty>>hr)&1) && ((i_dirty>>hr)&1) && (((i_is32&~unneeded_reg_upper[t])>>i_regmap[hr])&1) ) || (((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4735 #else
4736 if(i_regmap[hr]!=regs[t].regmap_entry[hr] ) {
4737 #endif
4738 if(regs[t].regmap_entry[hr]==0) {
4739 emit_zeroreg(hr);
4740 }
4741 else if(regs[t].regmap_entry[hr]!=CCREG)
4742 {
4743 emit_loadreg(regs[t].regmap_entry[hr],hr);
4744 }
4745 }
4746 }
4747 }
4748 //Load 64-bit regs
4749 for(hr=0;hr<HOST_REGS;hr++) {
ea3d2e6e 4750 if(hr!=EXCLUDE_REG&&regs[t].regmap_entry[hr]>=64&&regs[t].regmap_entry[hr]<TEMPREG+64) {
57871462 4751 if(i_regmap[hr]!=regs[t].regmap_entry[hr]) {
4752 assert(regs[t].regmap_entry[hr]!=64);
4753 if((i_is32>>(regs[t].regmap_entry[hr]&63))&1) {
4754 int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4755 if(lr<0) {
4756 emit_loadreg(regs[t].regmap_entry[hr],hr);
4757 }
4758 else
4759 {
4760 emit_sarimm(lr,31,hr);
4761 }
4762 }
4763 else
4764 {
4765 emit_loadreg(regs[t].regmap_entry[hr],hr);
4766 }
4767 }
4768 else if((i_is32>>(regs[t].regmap_entry[hr]&63))&1) {
4769 int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4770 assert(lr>=0);
4771 emit_sarimm(lr,31,hr);
4772 }
4773 }
4774 }
4775 }
4776}
4777
4778int match_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4779{
4780 if(addr>=start && addr<start+slen*4-4)
4781 {
4782 int t=(addr-start)>>2;
4783 int hr;
4784 if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) return 0;
4785 for(hr=0;hr<HOST_REGS;hr++)
4786 {
4787 if(hr!=EXCLUDE_REG)
4788 {
4789 if(i_regmap[hr]!=regs[t].regmap_entry[hr])
4790 {
ea3d2e6e 4791 if(regs[t].regmap_entry[hr]>=0&&(regs[t].regmap_entry[hr]|64)<TEMPREG+64)
57871462 4792 {
4793 return 0;
4794 }
4795 else
4796 if((i_dirty>>hr)&1)
4797 {
ea3d2e6e 4798 if(i_regmap[hr]<TEMPREG)
57871462 4799 {
4800 if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4801 return 0;
4802 }
ea3d2e6e 4803 else if(i_regmap[hr]>=64&&i_regmap[hr]<TEMPREG+64)
57871462 4804 {
4805 if(!((unneeded_reg_upper[t]>>(i_regmap[hr]&63))&1))
4806 return 0;
4807 }
4808 }
4809 }
4810 else // Same register but is it 32-bit or dirty?
4811 if(i_regmap[hr]>=0)
4812 {
4813 if(!((regs[t].dirty>>hr)&1))
4814 {
4815 if((i_dirty>>hr)&1)
4816 {
4817 if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4818 {
4819 //printf("%x: dirty no match\n",addr);
4820 return 0;
4821 }
4822 }
4823 }
4824 if((((regs[t].was32^i_is32)&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)
4825 {
4826 //printf("%x: is32 no match\n",addr);
4827 return 0;
4828 }
4829 }
4830 }
4831 }
4832 //if(is32[t]&~unneeded_reg_upper[t]&~i_is32) return 0;
a28c6ce8 4833#ifndef FORCE32
57871462 4834 if(requires_32bit[t]&~i_is32) return 0;
a28c6ce8 4835#endif
57871462 4836 // Delay slots are not valid branch targets
4837 //if(t>0&&(itype[t-1]==RJUMP||itype[t-1]==UJUMP||itype[t-1]==CJUMP||itype[t-1]==SJUMP||itype[t-1]==FJUMP)) return 0;
4838 // Delay slots require additional processing, so do not match
4839 if(is_ds[t]) return 0;
4840 }
4841 else
4842 {
4843 int hr;
4844 for(hr=0;hr<HOST_REGS;hr++)
4845 {
4846 if(hr!=EXCLUDE_REG)
4847 {
4848 if(i_regmap[hr]>=0)
4849 {
4850 if(hr!=HOST_CCREG||i_regmap[hr]!=CCREG)
4851 {
4852 if((i_dirty>>hr)&1)
4853 {
4854 return 0;
4855 }
4856 }
4857 }
4858 }
4859 }
4860 }
4861 return 1;
4862}
4863
4864// Used when a branch jumps into the delay slot of another branch
4865void ds_assemble_entry(int i)
4866{
4867 int t=(ba[i]-start)>>2;
4868 if(!instr_addr[t]) instr_addr[t]=(u_int)out;
4869 assem_debug("Assemble delay slot at %x\n",ba[i]);
4870 assem_debug("<->\n");
4871 if(regs[t].regmap_entry[HOST_CCREG]==CCREG&&regs[t].regmap[HOST_CCREG]!=CCREG)
4872 wb_register(CCREG,regs[t].regmap_entry,regs[t].wasdirty,regs[t].was32);
4873 load_regs(regs[t].regmap_entry,regs[t].regmap,regs[t].was32,rs1[t],rs2[t]);
4874 address_generation(t,&regs[t],regs[t].regmap_entry);
b9b61529 4875 if(itype[t]==STORE||itype[t]==STORELR||(opcode[t]&0x3b)==0x39||(opcode[t]&0x3b)==0x3a)
57871462 4876 load_regs(regs[t].regmap_entry,regs[t].regmap,regs[t].was32,INVCP,INVCP);
4877 cop1_usable=0;
4878 is_delayslot=0;
4879 switch(itype[t]) {
4880 case ALU:
4881 alu_assemble(t,&regs[t]);break;
4882 case IMM16:
4883 imm16_assemble(t,&regs[t]);break;
4884 case SHIFT:
4885 shift_assemble(t,&regs[t]);break;
4886 case SHIFTIMM:
4887 shiftimm_assemble(t,&regs[t]);break;
4888 case LOAD:
4889 load_assemble(t,&regs[t]);break;
4890 case LOADLR:
4891 loadlr_assemble(t,&regs[t]);break;
4892 case STORE:
4893 store_assemble(t,&regs[t]);break;
4894 case STORELR:
4895 storelr_assemble(t,&regs[t]);break;
4896 case COP0:
4897 cop0_assemble(t,&regs[t]);break;
4898 case COP1:
4899 cop1_assemble(t,&regs[t]);break;
4900 case C1LS:
4901 c1ls_assemble(t,&regs[t]);break;
b9b61529 4902 case COP2:
4903 cop2_assemble(t,&regs[t]);break;
4904 case C2LS:
4905 c2ls_assemble(t,&regs[t]);break;
4906 case C2OP:
4907 c2op_assemble(t,&regs[t]);break;
57871462 4908 case FCONV:
4909 fconv_assemble(t,&regs[t]);break;
4910 case FLOAT:
4911 float_assemble(t,&regs[t]);break;
4912 case FCOMP:
4913 fcomp_assemble(t,&regs[t]);break;
4914 case MULTDIV:
4915 multdiv_assemble(t,&regs[t]);break;
4916 case MOV:
4917 mov_assemble(t,&regs[t]);break;
4918 case SYSCALL:
7139f3c8 4919 case HLECALL:
1e973cb0 4920 case INTCALL:
57871462 4921 case SPAN:
4922 case UJUMP:
4923 case RJUMP:
4924 case CJUMP:
4925 case SJUMP:
4926 case FJUMP:
4927 printf("Jump in the delay slot. This is probably a bug.\n");
4928 }
4929 store_regs_bt(regs[t].regmap,regs[t].is32,regs[t].dirty,ba[i]+4);
4930 load_regs_bt(regs[t].regmap,regs[t].is32,regs[t].dirty,ba[i]+4);
4931 if(internal_branch(regs[t].is32,ba[i]+4))
4932 assem_debug("branch: internal\n");
4933 else
4934 assem_debug("branch: external\n");
4935 assert(internal_branch(regs[t].is32,ba[i]+4));
4936 add_to_linker((int)out,ba[i]+4,internal_branch(regs[t].is32,ba[i]+4));
4937 emit_jmp(0);
4938}
4939
4940void do_cc(int i,signed char i_regmap[],int *adj,int addr,int taken,int invert)
4941{
4942 int count;
4943 int jaddr;
4944 int idle=0;
4945 if(itype[i]==RJUMP)
4946 {
4947 *adj=0;
4948 }
4949 //if(ba[i]>=start && ba[i]<(start+slen*4))
4950 if(internal_branch(branch_regs[i].is32,ba[i]))
4951 {
4952 int t=(ba[i]-start)>>2;
4953 if(is_ds[t]) *adj=-1; // Branch into delay slot adds an extra cycle
4954 else *adj=ccadj[t];
4955 }
4956 else
4957 {
4958 *adj=0;
4959 }
4960 count=ccadj[i];
4961 if(taken==TAKEN && i==(ba[i]-start)>>2 && source[i+1]==0) {
4962 // Idle loop
4963 if(count&1) emit_addimm_and_set_flags(2*(count+2),HOST_CCREG);
4964 idle=(int)out;
4965 //emit_subfrommem(&idlecount,HOST_CCREG); // Count idle cycles
4966 emit_andimm(HOST_CCREG,3,HOST_CCREG);
4967 jaddr=(int)out;
4968 emit_jmp(0);
4969 }
4970 else if(*adj==0||invert) {
2573466a 4971 emit_addimm_and_set_flags(CLOCK_ADJUST(count+2),HOST_CCREG);
57871462 4972 jaddr=(int)out;
4973 emit_jns(0);
4974 }
4975 else
4976 {
2573466a 4977 emit_cmpimm(HOST_CCREG,-CLOCK_ADJUST(count+2));
57871462 4978 jaddr=(int)out;
4979 emit_jns(0);
4980 }
4981 add_stub(CC_STUB,jaddr,idle?idle:(int)out,(*adj==0||invert||idle)?0:(count+2),i,addr,taken,0);
4982}
4983
4984void do_ccstub(int n)
4985{
4986 literal_pool(256);
4987 assem_debug("do_ccstub %x\n",start+stubs[n][4]*4);
4988 set_jump_target(stubs[n][1],(int)out);
4989 int i=stubs[n][4];
4990 if(stubs[n][6]==NULLDS) {
4991 // Delay slot instruction is nullified ("likely" branch)
4992 wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
4993 }
4994 else if(stubs[n][6]!=TAKEN) {
4995 wb_dirtys(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty);
4996 }
4997 else {
4998 if(internal_branch(branch_regs[i].is32,ba[i]))
4999 wb_needed_dirtys(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5000 }
5001 if(stubs[n][5]!=-1)
5002 {
5003 // Save PC as return address
5004 emit_movimm(stubs[n][5],EAX);
5005 emit_writeword(EAX,(int)&pcaddr);
5006 }
5007 else
5008 {
5009 // Return address depends on which way the branch goes
5010 if(itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
5011 {
5012 int s1l=get_reg(branch_regs[i].regmap,rs1[i]);
5013 int s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
5014 int s2l=get_reg(branch_regs[i].regmap,rs2[i]);
5015 int s2h=get_reg(branch_regs[i].regmap,rs2[i]|64);
5016 if(rs1[i]==0)
5017 {
5018 s1l=s2l;s1h=s2h;
5019 s2l=s2h=-1;
5020 }
5021 else if(rs2[i]==0)
5022 {
5023 s2l=s2h=-1;
5024 }
5025 if((branch_regs[i].is32>>rs1[i])&(branch_regs[i].is32>>rs2[i])&1) {
5026 s1h=s2h=-1;
5027 }
5028 assert(s1l>=0);
5029 #ifdef DESTRUCTIVE_WRITEBACK
5030 if(rs1[i]) {
5031 if((branch_regs[i].dirty>>s1l)&(branch_regs[i].is32>>rs1[i])&1)
5032 emit_loadreg(rs1[i],s1l);
5033 }
5034 else {
5035 if((branch_regs[i].dirty>>s1l)&(branch_regs[i].is32>>rs2[i])&1)
5036 emit_loadreg(rs2[i],s1l);
5037 }
5038 if(s2l>=0)
5039 if((branch_regs[i].dirty>>s2l)&(branch_regs[i].is32>>rs2[i])&1)
5040 emit_loadreg(rs2[i],s2l);
5041 #endif
5042 int hr=0;
5194fb95 5043 int addr=-1,alt=-1,ntaddr=-1;
57871462 5044 while(hr<HOST_REGS)
5045 {
5046 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
5047 (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
5048 (branch_regs[i].regmap[hr]&63)!=rs2[i] )
5049 {
5050 addr=hr++;break;
5051 }
5052 hr++;
5053 }
5054 while(hr<HOST_REGS)
5055 {
5056 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
5057 (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
5058 (branch_regs[i].regmap[hr]&63)!=rs2[i] )
5059 {
5060 alt=hr++;break;
5061 }
5062 hr++;
5063 }
5064 if((opcode[i]&0x2E)==6) // BLEZ/BGTZ needs another register
5065 {
5066 while(hr<HOST_REGS)
5067 {
5068 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
5069 (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
5070 (branch_regs[i].regmap[hr]&63)!=rs2[i] )
5071 {
5072 ntaddr=hr;break;
5073 }
5074 hr++;
5075 }
5076 assert(hr<HOST_REGS);
5077 }
5078 if((opcode[i]&0x2f)==4) // BEQ
5079 {
5080 #ifdef HAVE_CMOV_IMM
5081 if(s1h<0) {
5082 if(s2l>=0) emit_cmp(s1l,s2l);
5083 else emit_test(s1l,s1l);
5084 emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
5085 }
5086 else
5087 #endif
5088 {
5089 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
5090 if(s1h>=0) {
5091 if(s2h>=0) emit_cmp(s1h,s2h);
5092 else emit_test(s1h,s1h);
5093 emit_cmovne_reg(alt,addr);
5094 }
5095 if(s2l>=0) emit_cmp(s1l,s2l);
5096 else emit_test(s1l,s1l);
5097 emit_cmovne_reg(alt,addr);
5098 }
5099 }
5100 if((opcode[i]&0x2f)==5) // BNE
5101 {
5102 #ifdef HAVE_CMOV_IMM
5103 if(s1h<0) {
5104 if(s2l>=0) emit_cmp(s1l,s2l);
5105 else emit_test(s1l,s1l);
5106 emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
5107 }
5108 else
5109 #endif
5110 {
5111 emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
5112 if(s1h>=0) {
5113 if(s2h>=0) emit_cmp(s1h,s2h);
5114 else emit_test(s1h,s1h);
5115 emit_cmovne_reg(alt,addr);
5116 }
5117 if(s2l>=0) emit_cmp(s1l,s2l);
5118 else emit_test(s1l,s1l);
5119 emit_cmovne_reg(alt,addr);
5120 }
5121 }
5122 if((opcode[i]&0x2f)==6) // BLEZ
5123 {
5124 //emit_movimm(ba[i],alt);
5125 //emit_movimm(start+i*4+8,addr);
5126 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
5127 emit_cmpimm(s1l,1);
5128 if(s1h>=0) emit_mov(addr,ntaddr);
5129 emit_cmovl_reg(alt,addr);
5130 if(s1h>=0) {
5131 emit_test(s1h,s1h);
5132 emit_cmovne_reg(ntaddr,addr);
5133 emit_cmovs_reg(alt,addr);
5134 }
5135 }
5136 if((opcode[i]&0x2f)==7) // BGTZ
5137 {
5138 //emit_movimm(ba[i],addr);
5139 //emit_movimm(start+i*4+8,ntaddr);
5140 emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
5141 emit_cmpimm(s1l,1);
5142 if(s1h>=0) emit_mov(addr,alt);
5143 emit_cmovl_reg(ntaddr,addr);
5144 if(s1h>=0) {
5145 emit_test(s1h,s1h);
5146 emit_cmovne_reg(alt,addr);
5147 emit_cmovs_reg(ntaddr,addr);
5148 }
5149 }
5150 if((opcode[i]==1)&&(opcode2[i]&0x2D)==0) // BLTZ
5151 {
5152 //emit_movimm(ba[i],alt);
5153 //emit_movimm(start+i*4+8,addr);
5154 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
5155 if(s1h>=0) emit_test(s1h,s1h);
5156 else emit_test(s1l,s1l);
5157 emit_cmovs_reg(alt,addr);
5158 }
5159 if((opcode[i]==1)&&(opcode2[i]&0x2D)==1) // BGEZ
5160 {
5161 //emit_movimm(ba[i],addr);
5162 //emit_movimm(start+i*4+8,alt);
5163 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
5164 if(s1h>=0) emit_test(s1h,s1h);
5165 else emit_test(s1l,s1l);
5166 emit_cmovs_reg(alt,addr);
5167 }
5168 if(opcode[i]==0x11 && opcode2[i]==0x08 ) {
5169 if(source[i]&0x10000) // BC1T
5170 {
5171 //emit_movimm(ba[i],alt);
5172 //emit_movimm(start+i*4+8,addr);
5173 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
5174 emit_testimm(s1l,0x800000);
5175 emit_cmovne_reg(alt,addr);
5176 }
5177 else // BC1F
5178 {
5179 //emit_movimm(ba[i],addr);
5180 //emit_movimm(start+i*4+8,alt);
5181 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
5182 emit_testimm(s1l,0x800000);
5183 emit_cmovne_reg(alt,addr);
5184 }
5185 }
5186 emit_writeword(addr,(int)&pcaddr);
5187 }
5188 else
5189 if(itype[i]==RJUMP)
5190 {
5191 int r=get_reg(branch_regs[i].regmap,rs1[i]);
5192 if(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]) {
5193 r=get_reg(branch_regs[i].regmap,RTEMP);
5194 }
5195 emit_writeword(r,(int)&pcaddr);
5196 }
5197 else {printf("Unknown branch type in do_ccstub\n");exit(1);}
5198 }
5199 // Update cycle count
5200 assert(branch_regs[i].regmap[HOST_CCREG]==CCREG||branch_regs[i].regmap[HOST_CCREG]==-1);
2573466a 5201 if(stubs[n][3]) emit_addimm(HOST_CCREG,CLOCK_ADJUST((int)stubs[n][3]),HOST_CCREG);
57871462 5202 emit_call((int)cc_interrupt);
2573466a 5203 if(stubs[n][3]) emit_addimm(HOST_CCREG,-CLOCK_ADJUST((int)stubs[n][3]),HOST_CCREG);
57871462 5204 if(stubs[n][6]==TAKEN) {
5205 if(internal_branch(branch_regs[i].is32,ba[i]))
5206 load_needed_regs(branch_regs[i].regmap,regs[(ba[i]-start)>>2].regmap_entry);
5207 else if(itype[i]==RJUMP) {
5208 if(get_reg(branch_regs[i].regmap,RTEMP)>=0)
5209 emit_readword((int)&pcaddr,get_reg(branch_regs[i].regmap,RTEMP));
5210 else
5211 emit_loadreg(rs1[i],get_reg(branch_regs[i].regmap,rs1[i]));
5212 }
5213 }else if(stubs[n][6]==NOTTAKEN) {
5214 if(i<slen-2) load_needed_regs(branch_regs[i].regmap,regmap_pre[i+2]);
5215 else load_all_regs(branch_regs[i].regmap);
5216 }else if(stubs[n][6]==NULLDS) {
5217 // Delay slot instruction is nullified ("likely" branch)
5218 if(i<slen-2) load_needed_regs(regs[i].regmap,regmap_pre[i+2]);
5219 else load_all_regs(regs[i].regmap);
5220 }else{
5221 load_all_regs(branch_regs[i].regmap);
5222 }
5223 emit_jmp(stubs[n][2]); // return address
5224
5225 /* This works but uses a lot of memory...
5226 emit_readword((int)&last_count,ECX);
5227 emit_add(HOST_CCREG,ECX,EAX);
5228 emit_writeword(EAX,(int)&Count);
5229 emit_call((int)gen_interupt);
5230 emit_readword((int)&Count,HOST_CCREG);
5231 emit_readword((int)&next_interupt,EAX);
5232 emit_readword((int)&pending_exception,EBX);
5233 emit_writeword(EAX,(int)&last_count);
5234 emit_sub(HOST_CCREG,EAX,HOST_CCREG);
5235 emit_test(EBX,EBX);
5236 int jne_instr=(int)out;
5237 emit_jne(0);
5238 if(stubs[n][3]) emit_addimm(HOST_CCREG,-2*stubs[n][3],HOST_CCREG);
5239 load_all_regs(branch_regs[i].regmap);
5240 emit_jmp(stubs[n][2]); // return address
5241 set_jump_target(jne_instr,(int)out);
5242 emit_readword((int)&pcaddr,EAX);
5243 // Call get_addr_ht instead of doing the hash table here.
5244 // This code is executed infrequently and takes up a lot of space
5245 // so smaller is better.
5246 emit_storereg(CCREG,HOST_CCREG);
5247 emit_pushreg(EAX);
5248 emit_call((int)get_addr_ht);
5249 emit_loadreg(CCREG,HOST_CCREG);
5250 emit_addimm(ESP,4,ESP);
5251 emit_jmpreg(EAX);*/
5252}
5253
5254add_to_linker(int addr,int target,int ext)
5255{
5256 link_addr[linkcount][0]=addr;
5257 link_addr[linkcount][1]=target;
5258 link_addr[linkcount][2]=ext;
5259 linkcount++;
5260}
5261
eba830cd 5262static void ujump_assemble_write_ra(int i)
5263{
5264 int rt;
5265 unsigned int return_address;
5266 rt=get_reg(branch_regs[i].regmap,31);
5267 assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5268 //assert(rt>=0);
5269 return_address=start+i*4+8;
5270 if(rt>=0) {
5271 #ifdef USE_MINI_HT
5272 if(internal_branch(branch_regs[i].is32,return_address)&&rt1[i+1]!=31) {
5273 int temp=-1; // note: must be ds-safe
5274 #ifdef HOST_TEMPREG
5275 temp=HOST_TEMPREG;
5276 #endif
5277 if(temp>=0) do_miniht_insert(return_address,rt,temp);
5278 else emit_movimm(return_address,rt);
5279 }
5280 else
5281 #endif
5282 {
5283 #ifdef REG_PREFETCH
5284 if(temp>=0)
5285 {
5286 if(i_regmap[temp]!=PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5287 }
5288 #endif
5289 emit_movimm(return_address,rt); // PC into link register
5290 #ifdef IMM_PREFETCH
5291 emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5292 #endif
5293 }
5294 }
5295}
5296
57871462 5297void ujump_assemble(int i,struct regstat *i_regs)
5298{
5299 signed char *i_regmap=i_regs->regmap;
eba830cd 5300 int ra_done=0;
57871462 5301 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5302 address_generation(i+1,i_regs,regs[i].regmap_entry);
5303 #ifdef REG_PREFETCH
5304 int temp=get_reg(branch_regs[i].regmap,PTEMP);
5305 if(rt1[i]==31&&temp>=0)
5306 {
5307 int return_address=start+i*4+8;
5308 if(get_reg(branch_regs[i].regmap,31)>0)
5309 if(i_regmap[temp]==PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5310 }
5311 #endif
eba830cd 5312 if(rt1[i]==31&&(rt1[i]==rs1[i+1]||rt1[i]==rs2[i+1])) {
5313 ujump_assemble_write_ra(i); // writeback ra for DS
5314 ra_done=1;
57871462 5315 }
4ef8f67d 5316 ds_assemble(i+1,i_regs);
5317 uint64_t bc_unneeded=branch_regs[i].u;
5318 uint64_t bc_unneeded_upper=branch_regs[i].uu;
5319 bc_unneeded|=1|(1LL<<rt1[i]);
5320 bc_unneeded_upper|=1|(1LL<<rt1[i]);
5321 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5322 bc_unneeded,bc_unneeded_upper);
5323 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
eba830cd 5324 if(!ra_done&&rt1[i]==31)
5325 ujump_assemble_write_ra(i);
57871462 5326 int cc,adj;
5327 cc=get_reg(branch_regs[i].regmap,CCREG);
5328 assert(cc==HOST_CCREG);
5329 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5330 #ifdef REG_PREFETCH
5331 if(rt1[i]==31&&temp>=0) emit_prefetchreg(temp);
5332 #endif
5333 do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
2573466a 5334 if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
57871462 5335 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5336 if(internal_branch(branch_regs[i].is32,ba[i]))
5337 assem_debug("branch: internal\n");
5338 else
5339 assem_debug("branch: external\n");
5340 if(internal_branch(branch_regs[i].is32,ba[i])&&is_ds[(ba[i]-start)>>2]) {
5341 ds_assemble_entry(i);
5342 }
5343 else {
5344 add_to_linker((int)out,ba[i],internal_branch(branch_regs[i].is32,ba[i]));
5345 emit_jmp(0);
5346 }
5347}
5348
eba830cd 5349static void rjump_assemble_write_ra(int i)
5350{
5351 int rt,return_address;
5352 assert(rt1[i+1]!=rt1[i]);
5353 assert(rt2[i+1]!=rt1[i]);
5354 rt=get_reg(branch_regs[i].regmap,rt1[i]);
5355 assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5356 assert(rt>=0);
5357 return_address=start+i*4+8;
5358 #ifdef REG_PREFETCH
5359 if(temp>=0)
5360 {
5361 if(i_regmap[temp]!=PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5362 }
5363 #endif
5364 emit_movimm(return_address,rt); // PC into link register
5365 #ifdef IMM_PREFETCH
5366 emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5367 #endif
5368}
5369
57871462 5370void rjump_assemble(int i,struct regstat *i_regs)
5371{
5372 signed char *i_regmap=i_regs->regmap;
5373 int temp;
5374 int rs,cc,adj;
eba830cd 5375 int ra_done=0;
57871462 5376 rs=get_reg(branch_regs[i].regmap,rs1[i]);
5377 assert(rs>=0);
5378 if(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]) {
5379 // Delay slot abuse, make a copy of the branch address register
5380 temp=get_reg(branch_regs[i].regmap,RTEMP);
5381 assert(temp>=0);
5382 assert(regs[i].regmap[temp]==RTEMP);
5383 emit_mov(rs,temp);
5384 rs=temp;
5385 }
5386 address_generation(i+1,i_regs,regs[i].regmap_entry);
5387 #ifdef REG_PREFETCH
5388 if(rt1[i]==31)
5389 {
5390 if((temp=get_reg(branch_regs[i].regmap,PTEMP))>=0) {
5391 int return_address=start+i*4+8;
5392 if(i_regmap[temp]==PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5393 }
5394 }
5395 #endif
5396 #ifdef USE_MINI_HT
5397 if(rs1[i]==31) {
5398 int rh=get_reg(regs[i].regmap,RHASH);
5399 if(rh>=0) do_preload_rhash(rh);
5400 }
5401 #endif
eba830cd 5402 if(rt1[i]!=0&&(rt1[i]==rs1[i+1]||rt1[i]==rs2[i+1])) {
5403 rjump_assemble_write_ra(i);
5404 ra_done=1;
57871462 5405 }
d5910d5d 5406 ds_assemble(i+1,i_regs);
5407 uint64_t bc_unneeded=branch_regs[i].u;
5408 uint64_t bc_unneeded_upper=branch_regs[i].uu;
5409 bc_unneeded|=1|(1LL<<rt1[i]);
5410 bc_unneeded_upper|=1|(1LL<<rt1[i]);
5411 bc_unneeded&=~(1LL<<rs1[i]);
5412 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5413 bc_unneeded,bc_unneeded_upper);
5414 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],CCREG);
eba830cd 5415 if(!ra_done&&rt1[i]!=0)
5416 rjump_assemble_write_ra(i);
57871462 5417 cc=get_reg(branch_regs[i].regmap,CCREG);
5418 assert(cc==HOST_CCREG);
5419 #ifdef USE_MINI_HT
5420 int rh=get_reg(branch_regs[i].regmap,RHASH);
5421 int ht=get_reg(branch_regs[i].regmap,RHTBL);
5422 if(rs1[i]==31) {
5423 if(regs[i].regmap[rh]!=RHASH) do_preload_rhash(rh);
5424 do_preload_rhtbl(ht);
5425 do_rhash(rs,rh);
5426 }
5427 #endif
5428 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,-1);
5429 #ifdef DESTRUCTIVE_WRITEBACK
5430 if((branch_regs[i].dirty>>rs)&(branch_regs[i].is32>>rs1[i])&1) {
5431 if(rs1[i]!=rt1[i+1]&&rs1[i]!=rt2[i+1]) {
5432 emit_loadreg(rs1[i],rs);
5433 }
5434 }
5435 #endif
5436 #ifdef REG_PREFETCH
5437 if(rt1[i]==31&&temp>=0) emit_prefetchreg(temp);
5438 #endif
5439 #ifdef USE_MINI_HT
5440 if(rs1[i]==31) {
5441 do_miniht_load(ht,rh);
5442 }
5443 #endif
5444 //do_cc(i,branch_regs[i].regmap,&adj,-1,TAKEN);
5445 //if(adj) emit_addimm(cc,2*(ccadj[i]+2-adj),cc); // ??? - Shouldn't happen
5446 //assert(adj==0);
2573466a 5447 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),HOST_CCREG);
57871462 5448 add_stub(CC_STUB,(int)out,jump_vaddr_reg[rs],0,i,-1,TAKEN,0);
911f2d55 5449#ifdef PCSX
5450 if(itype[i+1]==COP0&&(source[i+1]&0x3f)==0x10)
5451 // special case for RFE
5452 emit_jmp(0);
5453 else
5454#endif
57871462 5455 emit_jns(0);
5456 //load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,-1);
5457 #ifdef USE_MINI_HT
5458 if(rs1[i]==31) {
5459 do_miniht_jump(rs,rh,ht);
5460 }
5461 else
5462 #endif
5463 {
5464 //if(rs!=EAX) emit_mov(rs,EAX);
5465 //emit_jmp((int)jump_vaddr_eax);
5466 emit_jmp(jump_vaddr_reg[rs]);
5467 }
5468 /* Check hash table
5469 temp=!rs;
5470 emit_mov(rs,temp);
5471 emit_shrimm(rs,16,rs);
5472 emit_xor(temp,rs,rs);
5473 emit_movzwl_reg(rs,rs);
5474 emit_shlimm(rs,4,rs);
5475 emit_cmpmem_indexed((int)hash_table,rs,temp);
5476 emit_jne((int)out+14);
5477 emit_readword_indexed((int)hash_table+4,rs,rs);
5478 emit_jmpreg(rs);
5479 emit_cmpmem_indexed((int)hash_table+8,rs,temp);
5480 emit_addimm_no_flags(8,rs);
5481 emit_jeq((int)out-17);
5482 // No hit on hash table, call compiler
5483 emit_pushreg(temp);
5484//DEBUG >
5485#ifdef DEBUG_CYCLE_COUNT
5486 emit_readword((int)&last_count,ECX);
5487 emit_add(HOST_CCREG,ECX,HOST_CCREG);
5488 emit_readword((int)&next_interupt,ECX);
5489 emit_writeword(HOST_CCREG,(int)&Count);
5490 emit_sub(HOST_CCREG,ECX,HOST_CCREG);
5491 emit_writeword(ECX,(int)&last_count);
5492#endif
5493//DEBUG <
5494 emit_storereg(CCREG,HOST_CCREG);
5495 emit_call((int)get_addr);
5496 emit_loadreg(CCREG,HOST_CCREG);
5497 emit_addimm(ESP,4,ESP);
5498 emit_jmpreg(EAX);*/
5499 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5500 if(rt1[i]!=31&&i<slen-2&&(((u_int)out)&7)) emit_mov(13,13);
5501 #endif
5502}
5503
5504void cjump_assemble(int i,struct regstat *i_regs)
5505{
5506 signed char *i_regmap=i_regs->regmap;
5507 int cc;
5508 int match;
5509 match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5510 assem_debug("match=%d\n",match);
5511 int s1h,s1l,s2h,s2l;
5512 int prev_cop1_usable=cop1_usable;
5513 int unconditional=0,nop=0;
5514 int only32=0;
57871462 5515 int invert=0;
5516 int internal=internal_branch(branch_regs[i].is32,ba[i]);
5517 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
57871462 5518 if(!match) invert=1;
5519 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5520 if(i>(ba[i]-start)>>2) invert=1;
5521 #endif
e1190b87 5522
5523 if(ooo[i]) {
57871462 5524 s1l=get_reg(branch_regs[i].regmap,rs1[i]);
5525 s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
5526 s2l=get_reg(branch_regs[i].regmap,rs2[i]);
5527 s2h=get_reg(branch_regs[i].regmap,rs2[i]|64);
5528 }
5529 else {
5530 s1l=get_reg(i_regmap,rs1[i]);
5531 s1h=get_reg(i_regmap,rs1[i]|64);
5532 s2l=get_reg(i_regmap,rs2[i]);
5533 s2h=get_reg(i_regmap,rs2[i]|64);
5534 }
5535 if(rs1[i]==0&&rs2[i]==0)
5536 {
5537 if(opcode[i]&1) nop=1;
5538 else unconditional=1;
5539 //assert(opcode[i]!=5);
5540 //assert(opcode[i]!=7);
5541 //assert(opcode[i]!=0x15);
5542 //assert(opcode[i]!=0x17);
5543 }
5544 else if(rs1[i]==0)
5545 {
5546 s1l=s2l;s1h=s2h;
5547 s2l=s2h=-1;
5548 only32=(regs[i].was32>>rs2[i])&1;
5549 }
5550 else if(rs2[i]==0)
5551 {
5552 s2l=s2h=-1;
5553 only32=(regs[i].was32>>rs1[i])&1;
5554 }
5555 else {
5556 only32=(regs[i].was32>>rs1[i])&(regs[i].was32>>rs2[i])&1;
5557 }
5558
e1190b87 5559 if(ooo[i]) {
57871462 5560 // Out of order execution (delay slot first)
5561 //printf("OOOE\n");
5562 address_generation(i+1,i_regs,regs[i].regmap_entry);
5563 ds_assemble(i+1,i_regs);
5564 int adj;
5565 uint64_t bc_unneeded=branch_regs[i].u;
5566 uint64_t bc_unneeded_upper=branch_regs[i].uu;
5567 bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
5568 bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
5569 bc_unneeded|=1;
5570 bc_unneeded_upper|=1;
5571 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5572 bc_unneeded,bc_unneeded_upper);
5573 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs2[i]);
5574 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5575 cc=get_reg(branch_regs[i].regmap,CCREG);
5576 assert(cc==HOST_CCREG);
5577 if(unconditional)
5578 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5579 //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
5580 //assem_debug("cycle count (adj)\n");
5581 if(unconditional) {
5582 do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5583 if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
2573466a 5584 if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
57871462 5585 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5586 if(internal)
5587 assem_debug("branch: internal\n");
5588 else
5589 assem_debug("branch: external\n");
5590 if(internal&&is_ds[(ba[i]-start)>>2]) {
5591 ds_assemble_entry(i);
5592 }
5593 else {
5594 add_to_linker((int)out,ba[i],internal);
5595 emit_jmp(0);
5596 }
5597 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5598 if(((u_int)out)&7) emit_addnop(0);
5599 #endif
5600 }
5601 }
5602 else if(nop) {
2573466a 5603 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),cc);
57871462 5604 int jaddr=(int)out;
5605 emit_jns(0);
5606 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5607 }
5608 else {
5609 int taken=0,nottaken=0,nottaken1=0;
5610 do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
2573466a 5611 if(adj&&!invert) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
57871462 5612 if(!only32)
5613 {
5614 assert(s1h>=0);
5615 if(opcode[i]==4) // BEQ
5616 {
5617 if(s2h>=0) emit_cmp(s1h,s2h);
5618 else emit_test(s1h,s1h);
5619 nottaken1=(int)out;
5620 emit_jne(1);
5621 }
5622 if(opcode[i]==5) // BNE
5623 {
5624 if(s2h>=0) emit_cmp(s1h,s2h);
5625 else emit_test(s1h,s1h);
5626 if(invert) taken=(int)out;
5627 else add_to_linker((int)out,ba[i],internal);
5628 emit_jne(0);
5629 }
5630 if(opcode[i]==6) // BLEZ
5631 {
5632 emit_test(s1h,s1h);
5633 if(invert) taken=(int)out;
5634 else add_to_linker((int)out,ba[i],internal);
5635 emit_js(0);
5636 nottaken1=(int)out;
5637 emit_jne(1);
5638 }
5639 if(opcode[i]==7) // BGTZ
5640 {
5641 emit_test(s1h,s1h);
5642 nottaken1=(int)out;
5643 emit_js(1);
5644 if(invert) taken=(int)out;
5645 else add_to_linker((int)out,ba[i],internal);
5646 emit_jne(0);
5647 }
5648 } // if(!only32)
5649
5650 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5651 assert(s1l>=0);
5652 if(opcode[i]==4) // BEQ
5653 {
5654 if(s2l>=0) emit_cmp(s1l,s2l);
5655 else emit_test(s1l,s1l);
5656 if(invert){
5657 nottaken=(int)out;
5658 emit_jne(1);
5659 }else{
5660 add_to_linker((int)out,ba[i],internal);
5661 emit_jeq(0);
5662 }
5663 }
5664 if(opcode[i]==5) // BNE
5665 {
5666 if(s2l>=0) emit_cmp(s1l,s2l);
5667 else emit_test(s1l,s1l);
5668 if(invert){
5669 nottaken=(int)out;
5670 emit_jeq(1);
5671 }else{
5672 add_to_linker((int)out,ba[i],internal);
5673 emit_jne(0);
5674 }
5675 }
5676 if(opcode[i]==6) // BLEZ
5677 {
5678 emit_cmpimm(s1l,1);
5679 if(invert){
5680 nottaken=(int)out;
5681 emit_jge(1);
5682 }else{
5683 add_to_linker((int)out,ba[i],internal);
5684 emit_jl(0);
5685 }
5686 }
5687 if(opcode[i]==7) // BGTZ
5688 {
5689 emit_cmpimm(s1l,1);
5690 if(invert){
5691 nottaken=(int)out;
5692 emit_jl(1);
5693 }else{
5694 add_to_linker((int)out,ba[i],internal);
5695 emit_jge(0);
5696 }
5697 }
5698 if(invert) {
5699 if(taken) set_jump_target(taken,(int)out);
5700 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5701 if(match&&(!internal||!is_ds[(ba[i]-start)>>2])) {
5702 if(adj) {
2573466a 5703 emit_addimm(cc,-CLOCK_ADJUST(adj),cc);
57871462 5704 add_to_linker((int)out,ba[i],internal);
5705 }else{
5706 emit_addnop(13);
5707 add_to_linker((int)out,ba[i],internal*2);
5708 }
5709 emit_jmp(0);
5710 }else
5711 #endif
5712 {
2573466a 5713 if(adj) emit_addimm(cc,-CLOCK_ADJUST(adj),cc);
57871462 5714 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5715 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5716 if(internal)
5717 assem_debug("branch: internal\n");
5718 else
5719 assem_debug("branch: external\n");
5720 if(internal&&is_ds[(ba[i]-start)>>2]) {
5721 ds_assemble_entry(i);
5722 }
5723 else {
5724 add_to_linker((int)out,ba[i],internal);
5725 emit_jmp(0);
5726 }
5727 }
5728 set_jump_target(nottaken,(int)out);
5729 }
5730
5731 if(nottaken1) set_jump_target(nottaken1,(int)out);
5732 if(adj) {
2573466a 5733 if(!invert) emit_addimm(cc,CLOCK_ADJUST(adj),cc);
57871462 5734 }
5735 } // (!unconditional)
5736 } // if(ooo)
5737 else
5738 {
5739 // In-order execution (branch first)
5740 //if(likely[i]) printf("IOL\n");
5741 //else
5742 //printf("IOE\n");
5743 int taken=0,nottaken=0,nottaken1=0;
5744 if(!unconditional&&!nop) {
5745 if(!only32)
5746 {
5747 assert(s1h>=0);
5748 if((opcode[i]&0x2f)==4) // BEQ
5749 {
5750 if(s2h>=0) emit_cmp(s1h,s2h);
5751 else emit_test(s1h,s1h);
5752 nottaken1=(int)out;
5753 emit_jne(2);
5754 }
5755 if((opcode[i]&0x2f)==5) // BNE
5756 {
5757 if(s2h>=0) emit_cmp(s1h,s2h);
5758 else emit_test(s1h,s1h);
5759 taken=(int)out;
5760 emit_jne(1);
5761 }
5762 if((opcode[i]&0x2f)==6) // BLEZ
5763 {
5764 emit_test(s1h,s1h);
5765 taken=(int)out;
5766 emit_js(1);
5767 nottaken1=(int)out;
5768 emit_jne(2);
5769 }
5770 if((opcode[i]&0x2f)==7) // BGTZ
5771 {
5772 emit_test(s1h,s1h);
5773 nottaken1=(int)out;
5774 emit_js(2);
5775 taken=(int)out;
5776 emit_jne(1);
5777 }
5778 } // if(!only32)
5779
5780 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5781 assert(s1l>=0);
5782 if((opcode[i]&0x2f)==4) // BEQ
5783 {
5784 if(s2l>=0) emit_cmp(s1l,s2l);
5785 else emit_test(s1l,s1l);
5786 nottaken=(int)out;
5787 emit_jne(2);
5788 }
5789 if((opcode[i]&0x2f)==5) // BNE
5790 {
5791 if(s2l>=0) emit_cmp(s1l,s2l);
5792 else emit_test(s1l,s1l);
5793 nottaken=(int)out;
5794 emit_jeq(2);
5795 }
5796 if((opcode[i]&0x2f)==6) // BLEZ
5797 {
5798 emit_cmpimm(s1l,1);
5799 nottaken=(int)out;
5800 emit_jge(2);
5801 }
5802 if((opcode[i]&0x2f)==7) // BGTZ
5803 {
5804 emit_cmpimm(s1l,1);
5805 nottaken=(int)out;
5806 emit_jl(2);
5807 }
5808 } // if(!unconditional)
5809 int adj;
5810 uint64_t ds_unneeded=branch_regs[i].u;
5811 uint64_t ds_unneeded_upper=branch_regs[i].uu;
5812 ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
5813 ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
5814 if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
5815 ds_unneeded|=1;
5816 ds_unneeded_upper|=1;
5817 // branch taken
5818 if(!nop) {
5819 if(taken) set_jump_target(taken,(int)out);
5820 assem_debug("1:\n");
5821 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5822 ds_unneeded,ds_unneeded_upper);
5823 // load regs
5824 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5825 address_generation(i+1,&branch_regs[i],0);
5826 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
5827 ds_assemble(i+1,&branch_regs[i]);
5828 cc=get_reg(branch_regs[i].regmap,CCREG);
5829 if(cc==-1) {
5830 emit_loadreg(CCREG,cc=HOST_CCREG);
5831 // CHECK: Is the following instruction (fall thru) allocated ok?
5832 }
5833 assert(cc==HOST_CCREG);
5834 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5835 do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
5836 assem_debug("cycle count (adj)\n");
2573466a 5837 if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
57871462 5838 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5839 if(internal)
5840 assem_debug("branch: internal\n");
5841 else
5842 assem_debug("branch: external\n");
5843 if(internal&&is_ds[(ba[i]-start)>>2]) {
5844 ds_assemble_entry(i);
5845 }
5846 else {
5847 add_to_linker((int)out,ba[i],internal);
5848 emit_jmp(0);
5849 }
5850 }
5851 // branch not taken
5852 cop1_usable=prev_cop1_usable;
5853 if(!unconditional) {
5854 if(nottaken1) set_jump_target(nottaken1,(int)out);
5855 set_jump_target(nottaken,(int)out);
5856 assem_debug("2:\n");
5857 if(!likely[i]) {
5858 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5859 ds_unneeded,ds_unneeded_upper);
5860 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5861 address_generation(i+1,&branch_regs[i],0);
5862 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5863 ds_assemble(i+1,&branch_regs[i]);
5864 }
5865 cc=get_reg(branch_regs[i].regmap,CCREG);
5866 if(cc==-1&&!likely[i]) {
5867 // Cycle count isn't in a register, temporarily load it then write it out
5868 emit_loadreg(CCREG,HOST_CCREG);
2573466a 5869 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),HOST_CCREG);
57871462 5870 int jaddr=(int)out;
5871 emit_jns(0);
5872 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5873 emit_storereg(CCREG,HOST_CCREG);
5874 }
5875 else{
5876 cc=get_reg(i_regmap,CCREG);
5877 assert(cc==HOST_CCREG);
2573466a 5878 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),cc);
57871462 5879 int jaddr=(int)out;
5880 emit_jns(0);
5881 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
5882 }
5883 }
5884 }
5885}
5886
5887void sjump_assemble(int i,struct regstat *i_regs)
5888{
5889 signed char *i_regmap=i_regs->regmap;
5890 int cc;
5891 int match;
5892 match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5893 assem_debug("smatch=%d\n",match);
5894 int s1h,s1l;
5895 int prev_cop1_usable=cop1_usable;
5896 int unconditional=0,nevertaken=0;
5897 int only32=0;
57871462 5898 int invert=0;
5899 int internal=internal_branch(branch_regs[i].is32,ba[i]);
5900 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
57871462 5901 if(!match) invert=1;
5902 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5903 if(i>(ba[i]-start)>>2) invert=1;
5904 #endif
5905
5906 //if(opcode2[i]>=0x10) return; // FIXME (BxxZAL)
df894a3a 5907 //assert(opcode2[i]<0x10||rs1[i]==0); // FIXME (BxxZAL)
57871462 5908
e1190b87 5909 if(ooo[i]) {
57871462 5910 s1l=get_reg(branch_regs[i].regmap,rs1[i]);
5911 s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
5912 }
5913 else {
5914 s1l=get_reg(i_regmap,rs1[i]);
5915 s1h=get_reg(i_regmap,rs1[i]|64);
5916 }
5917 if(rs1[i]==0)
5918 {
5919 if(opcode2[i]&1) unconditional=1;
5920 else nevertaken=1;
5921 // These are never taken (r0 is never less than zero)
5922 //assert(opcode2[i]!=0);
5923 //assert(opcode2[i]!=2);
5924 //assert(opcode2[i]!=0x10);
5925 //assert(opcode2[i]!=0x12);
5926 }
5927 else {
5928 only32=(regs[i].was32>>rs1[i])&1;
5929 }
5930
e1190b87 5931 if(ooo[i]) {
57871462 5932 // Out of order execution (delay slot first)
5933 //printf("OOOE\n");
5934 address_generation(i+1,i_regs,regs[i].regmap_entry);
5935 ds_assemble(i+1,i_regs);
5936 int adj;
5937 uint64_t bc_unneeded=branch_regs[i].u;
5938 uint64_t bc_unneeded_upper=branch_regs[i].uu;
5939 bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
5940 bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
5941 bc_unneeded|=1;
5942 bc_unneeded_upper|=1;
5943 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5944 bc_unneeded,bc_unneeded_upper);
5945 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs1[i]);
5946 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5947 if(rt1[i]==31) {
5948 int rt,return_address;
57871462 5949 rt=get_reg(branch_regs[i].regmap,31);
5950 assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5951 if(rt>=0) {
5952 // Save the PC even if the branch is not taken
5953 return_address=start+i*4+8;
5954 emit_movimm(return_address,rt); // PC into link register
5955 #ifdef IMM_PREFETCH
5956 if(!nevertaken) emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5957 #endif
5958 }
5959 }
5960 cc=get_reg(branch_regs[i].regmap,CCREG);
5961 assert(cc==HOST_CCREG);
5962 if(unconditional)
5963 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5964 //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
5965 assem_debug("cycle count (adj)\n");
5966 if(unconditional) {
5967 do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5968 if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
2573466a 5969 if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
57871462 5970 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5971 if(internal)
5972 assem_debug("branch: internal\n");
5973 else
5974 assem_debug("branch: external\n");
5975 if(internal&&is_ds[(ba[i]-start)>>2]) {
5976 ds_assemble_entry(i);
5977 }
5978 else {
5979 add_to_linker((int)out,ba[i],internal);
5980 emit_jmp(0);
5981 }
5982 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5983 if(((u_int)out)&7) emit_addnop(0);
5984 #endif
5985 }
5986 }
5987 else if(nevertaken) {
2573466a 5988 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),cc);
57871462 5989 int jaddr=(int)out;
5990 emit_jns(0);
5991 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5992 }
5993 else {
5994 int nottaken=0;
5995 do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
2573466a 5996 if(adj&&!invert) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
57871462 5997 if(!only32)
5998 {
5999 assert(s1h>=0);
df894a3a 6000 if((opcode2[i]&0xf)==0) // BLTZ/BLTZAL
57871462 6001 {
6002 emit_test(s1h,s1h);
6003 if(invert){
6004 nottaken=(int)out;
6005 emit_jns(1);
6006 }else{
6007 add_to_linker((int)out,ba[i],internal);
6008 emit_js(0);
6009 }
6010 }
df894a3a 6011 if((opcode2[i]&0xf)==1) // BGEZ/BLTZAL
57871462 6012 {
6013 emit_test(s1h,s1h);
6014 if(invert){
6015 nottaken=(int)out;
6016 emit_js(1);
6017 }else{
6018 add_to_linker((int)out,ba[i],internal);
6019 emit_jns(0);
6020 }
6021 }
6022 } // if(!only32)
6023 else
6024 {
6025 assert(s1l>=0);
df894a3a 6026 if((opcode2[i]&0xf)==0) // BLTZ/BLTZAL
57871462 6027 {
6028 emit_test(s1l,s1l);
6029 if(invert){
6030 nottaken=(int)out;
6031 emit_jns(1);
6032 }else{
6033 add_to_linker((int)out,ba[i],internal);
6034 emit_js(0);
6035 }
6036 }
df894a3a 6037 if((opcode2[i]&0xf)==1) // BGEZ/BLTZAL
57871462 6038 {
6039 emit_test(s1l,s1l);
6040 if(invert){
6041 nottaken=(int)out;
6042 emit_js(1);
6043 }else{
6044 add_to_linker((int)out,ba[i],internal);
6045 emit_jns(0);
6046 }
6047 }
6048 } // if(!only32)
6049
6050 if(invert) {
6051 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
6052 if(match&&(!internal||!is_ds[(ba[i]-start)>>2])) {
6053 if(adj) {
2573466a 6054 emit_addimm(cc,-CLOCK_ADJUST(adj),cc);
57871462 6055 add_to_linker((int)out,ba[i],internal);
6056 }else{
6057 emit_addnop(13);
6058 add_to_linker((int)out,ba[i],internal*2);
6059 }
6060 emit_jmp(0);
6061 }else
6062 #endif
6063 {
2573466a 6064 if(adj) emit_addimm(cc,-CLOCK_ADJUST(adj),cc);
57871462 6065 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6066 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6067 if(internal)
6068 assem_debug("branch: internal\n");
6069 else
6070 assem_debug("branch: external\n");
6071 if(internal&&is_ds[(ba[i]-start)>>2]) {
6072 ds_assemble_entry(i);
6073 }
6074 else {
6075 add_to_linker((int)out,ba[i],internal);
6076 emit_jmp(0);
6077 }
6078 }
6079 set_jump_target(nottaken,(int)out);
6080 }
6081
6082 if(adj) {
2573466a 6083 if(!invert) emit_addimm(cc,CLOCK_ADJUST(adj),cc);
57871462 6084 }
6085 } // (!unconditional)
6086 } // if(ooo)
6087 else
6088 {
6089 // In-order execution (branch first)
6090 //printf("IOE\n");
6091 int nottaken=0;
a6491170 6092 if(rt1[i]==31) {
6093 int rt,return_address;
a6491170 6094 rt=get_reg(branch_regs[i].regmap,31);
6095 if(rt>=0) {
6096 // Save the PC even if the branch is not taken
6097 return_address=start+i*4+8;
6098 emit_movimm(return_address,rt); // PC into link register
6099 #ifdef IMM_PREFETCH
6100 emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
6101 #endif
6102 }
6103 }
57871462 6104 if(!unconditional) {
6105 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
6106 if(!only32)
6107 {
6108 assert(s1h>=0);
a6491170 6109 if((opcode2[i]&0x0d)==0) // BLTZ/BLTZL/BLTZAL/BLTZALL
57871462 6110 {
6111 emit_test(s1h,s1h);
6112 nottaken=(int)out;
6113 emit_jns(1);
6114 }
a6491170 6115 if((opcode2[i]&0x0d)==1) // BGEZ/BGEZL/BGEZAL/BGEZALL
57871462 6116 {
6117 emit_test(s1h,s1h);
6118 nottaken=(int)out;
6119 emit_js(1);
6120 }
6121 } // if(!only32)
6122 else
6123 {
6124 assert(s1l>=0);
a6491170 6125 if((opcode2[i]&0x0d)==0) // BLTZ/BLTZL/BLTZAL/BLTZALL
57871462 6126 {
6127 emit_test(s1l,s1l);
6128 nottaken=(int)out;
6129 emit_jns(1);
6130 }
a6491170 6131 if((opcode2[i]&0x0d)==1) // BGEZ/BGEZL/BGEZAL/BGEZALL
57871462 6132 {
6133 emit_test(s1l,s1l);
6134 nottaken=(int)out;
6135 emit_js(1);
6136 }
6137 }
6138 } // if(!unconditional)
6139 int adj;
6140 uint64_t ds_unneeded=branch_regs[i].u;
6141 uint64_t ds_unneeded_upper=branch_regs[i].uu;
6142 ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6143 ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6144 if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
6145 ds_unneeded|=1;
6146 ds_unneeded_upper|=1;
6147 // branch taken
6148 if(!nevertaken) {
6149 //assem_debug("1:\n");
6150 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6151 ds_unneeded,ds_unneeded_upper);
6152 // load regs
6153 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
6154 address_generation(i+1,&branch_regs[i],0);
6155 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
6156 ds_assemble(i+1,&branch_regs[i]);
6157 cc=get_reg(branch_regs[i].regmap,CCREG);
6158 if(cc==-1) {
6159 emit_loadreg(CCREG,cc=HOST_CCREG);
6160 // CHECK: Is the following instruction (fall thru) allocated ok?
6161 }
6162 assert(cc==HOST_CCREG);
6163 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6164 do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
6165 assem_debug("cycle count (adj)\n");
2573466a 6166 if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
57871462 6167 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6168 if(internal)
6169 assem_debug("branch: internal\n");
6170 else
6171 assem_debug("branch: external\n");
6172 if(internal&&is_ds[(ba[i]-start)>>2]) {
6173 ds_assemble_entry(i);
6174 }
6175 else {
6176 add_to_linker((int)out,ba[i],internal);
6177 emit_jmp(0);
6178 }
6179 }
6180 // branch not taken
6181 cop1_usable=prev_cop1_usable;
6182 if(!unconditional) {
6183 set_jump_target(nottaken,(int)out);
6184 assem_debug("1:\n");
6185 if(!likely[i]) {
6186 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6187 ds_unneeded,ds_unneeded_upper);
6188 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
6189 address_generation(i+1,&branch_regs[i],0);
6190 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
6191 ds_assemble(i+1,&branch_regs[i]);
6192 }
6193 cc=get_reg(branch_regs[i].regmap,CCREG);
6194 if(cc==-1&&!likely[i]) {
6195 // Cycle count isn't in a register, temporarily load it then write it out
6196 emit_loadreg(CCREG,HOST_CCREG);
2573466a 6197 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),HOST_CCREG);
57871462 6198 int jaddr=(int)out;
6199 emit_jns(0);
6200 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
6201 emit_storereg(CCREG,HOST_CCREG);
6202 }
6203 else{
6204 cc=get_reg(i_regmap,CCREG);
6205 assert(cc==HOST_CCREG);
2573466a 6206 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),cc);
57871462 6207 int jaddr=(int)out;
6208 emit_jns(0);
6209 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
6210 }
6211 }
6212 }
6213}
6214
6215void fjump_assemble(int i,struct regstat *i_regs)
6216{
6217 signed char *i_regmap=i_regs->regmap;
6218 int cc;
6219 int match;
6220 match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6221 assem_debug("fmatch=%d\n",match);
6222 int fs,cs;
6223 int eaddr;
57871462 6224 int invert=0;
6225 int internal=internal_branch(branch_regs[i].is32,ba[i]);
6226 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
57871462 6227 if(!match) invert=1;
6228 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
6229 if(i>(ba[i]-start)>>2) invert=1;
6230 #endif
6231
e1190b87 6232 if(ooo[i]) {
57871462 6233 fs=get_reg(branch_regs[i].regmap,FSREG);
6234 address_generation(i+1,i_regs,regs[i].regmap_entry); // Is this okay?
6235 }
6236 else {
6237 fs=get_reg(i_regmap,FSREG);
6238 }
6239
6240 // Check cop1 unusable
6241 if(!cop1_usable) {
6242 cs=get_reg(i_regmap,CSREG);
6243 assert(cs>=0);
6244 emit_testimm(cs,0x20000000);
6245 eaddr=(int)out;
6246 emit_jeq(0);
6247 add_stub(FP_STUB,eaddr,(int)out,i,cs,(int)i_regs,0,0);
6248 cop1_usable=1;
6249 }
6250
e1190b87 6251 if(ooo[i]) {
57871462 6252 // Out of order execution (delay slot first)
6253 //printf("OOOE\n");
6254 ds_assemble(i+1,i_regs);
6255 int adj;
6256 uint64_t bc_unneeded=branch_regs[i].u;
6257 uint64_t bc_unneeded_upper=branch_regs[i].uu;
6258 bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
6259 bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
6260 bc_unneeded|=1;
6261 bc_unneeded_upper|=1;
6262 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6263 bc_unneeded,bc_unneeded_upper);
6264 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs1[i]);
6265 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
6266 cc=get_reg(branch_regs[i].regmap,CCREG);
6267 assert(cc==HOST_CCREG);
6268 do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
6269 assem_debug("cycle count (adj)\n");
6270 if(1) {
6271 int nottaken=0;
2573466a 6272 if(adj&&!invert) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
57871462 6273 if(1) {
6274 assert(fs>=0);
6275 emit_testimm(fs,0x800000);
6276 if(source[i]&0x10000) // BC1T
6277 {
6278 if(invert){
6279 nottaken=(int)out;
6280 emit_jeq(1);
6281 }else{
6282 add_to_linker((int)out,ba[i],internal);
6283 emit_jne(0);
6284 }
6285 }
6286 else // BC1F
6287 if(invert){
6288 nottaken=(int)out;
6289 emit_jne(1);
6290 }else{
6291 add_to_linker((int)out,ba[i],internal);
6292 emit_jeq(0);
6293 }
6294 {
6295 }
6296 } // if(!only32)
6297
6298 if(invert) {
2573466a 6299 if(adj) emit_addimm(cc,-CLOCK_ADJUST(adj),cc);
57871462 6300 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
6301 else if(match) emit_addnop(13);
6302 #endif
6303 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6304 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6305 if(internal)
6306 assem_debug("branch: internal\n");
6307 else
6308 assem_debug("branch: external\n");
6309 if(internal&&is_ds[(ba[i]-start)>>2]) {
6310 ds_assemble_entry(i);
6311 }
6312 else {
6313 add_to_linker((int)out,ba[i],internal);
6314 emit_jmp(0);
6315 }
6316 set_jump_target(nottaken,(int)out);
6317 }
6318
6319 if(adj) {
2573466a 6320 if(!invert) emit_addimm(cc,CLOCK_ADJUST(adj),cc);
57871462 6321 }
6322 } // (!unconditional)
6323 } // if(ooo)
6324 else
6325 {
6326 // In-order execution (branch first)
6327 //printf("IOE\n");
6328 int nottaken=0;
6329 if(1) {
6330 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
6331 if(1) {
6332 assert(fs>=0);
6333 emit_testimm(fs,0x800000);
6334 if(source[i]&0x10000) // BC1T
6335 {
6336 nottaken=(int)out;
6337 emit_jeq(1);
6338 }
6339 else // BC1F
6340 {
6341 nottaken=(int)out;
6342 emit_jne(1);
6343 }
6344 }
6345 } // if(!unconditional)
6346 int adj;
6347 uint64_t ds_unneeded=branch_regs[i].u;
6348 uint64_t ds_unneeded_upper=branch_regs[i].uu;
6349 ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6350 ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6351 if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
6352 ds_unneeded|=1;
6353 ds_unneeded_upper|=1;
6354 // branch taken
6355 //assem_debug("1:\n");
6356 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6357 ds_unneeded,ds_unneeded_upper);
6358 // load regs
6359 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
6360 address_generation(i+1,&branch_regs[i],0);
6361 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
6362 ds_assemble(i+1,&branch_regs[i]);
6363 cc=get_reg(branch_regs[i].regmap,CCREG);
6364 if(cc==-1) {
6365 emit_loadreg(CCREG,cc=HOST_CCREG);
6366 // CHECK: Is the following instruction (fall thru) allocated ok?
6367 }
6368 assert(cc==HOST_CCREG);
6369 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6370 do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
6371 assem_debug("cycle count (adj)\n");
2573466a 6372 if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
57871462 6373 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6374 if(internal)
6375 assem_debug("branch: internal\n");
6376 else
6377 assem_debug("branch: external\n");
6378 if(internal&&is_ds[(ba[i]-start)>>2]) {
6379 ds_assemble_entry(i);
6380 }
6381 else {
6382 add_to_linker((int)out,ba[i],internal);
6383 emit_jmp(0);
6384 }
6385
6386 // branch not taken
6387 if(1) { // <- FIXME (don't need this)
6388 set_jump_target(nottaken,(int)out);
6389 assem_debug("1:\n");
6390 if(!likely[i]) {
6391 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6392 ds_unneeded,ds_unneeded_upper);
6393 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
6394 address_generation(i+1,&branch_regs[i],0);
6395 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
6396 ds_assemble(i+1,&branch_regs[i]);
6397 }
6398 cc=get_reg(branch_regs[i].regmap,CCREG);
6399 if(cc==-1&&!likely[i]) {
6400 // Cycle count isn't in a register, temporarily load it then write it out
6401 emit_loadreg(CCREG,HOST_CCREG);
2573466a 6402 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),HOST_CCREG);
57871462 6403 int jaddr=(int)out;
6404 emit_jns(0);
6405 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
6406 emit_storereg(CCREG,HOST_CCREG);
6407 }
6408 else{
6409 cc=get_reg(i_regmap,CCREG);
6410 assert(cc==HOST_CCREG);
2573466a 6411 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),cc);
57871462 6412 int jaddr=(int)out;
6413 emit_jns(0);
6414 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
6415 }
6416 }
6417 }
6418}
6419
6420static void pagespan_assemble(int i,struct regstat *i_regs)
6421{
6422 int s1l=get_reg(i_regs->regmap,rs1[i]);
6423 int s1h=get_reg(i_regs->regmap,rs1[i]|64);
6424 int s2l=get_reg(i_regs->regmap,rs2[i]);
6425 int s2h=get_reg(i_regs->regmap,rs2[i]|64);
6426 void *nt_branch=NULL;
6427 int taken=0;
6428 int nottaken=0;
6429 int unconditional=0;
6430 if(rs1[i]==0)
6431 {
6432 s1l=s2l;s1h=s2h;
6433 s2l=s2h=-1;
6434 }
6435 else if(rs2[i]==0)
6436 {
6437 s2l=s2h=-1;
6438 }
6439 if((i_regs->is32>>rs1[i])&(i_regs->is32>>rs2[i])&1) {
6440 s1h=s2h=-1;
6441 }
6442 int hr=0;
6443 int addr,alt,ntaddr;
6444 if(i_regs->regmap[HOST_BTREG]<0) {addr=HOST_BTREG;}
6445 else {
6446 while(hr<HOST_REGS)
6447 {
6448 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
6449 (i_regs->regmap[hr]&63)!=rs1[i] &&
6450 (i_regs->regmap[hr]&63)!=rs2[i] )
6451 {
6452 addr=hr++;break;
6453 }
6454 hr++;
6455 }
6456 }
6457 while(hr<HOST_REGS)
6458 {
6459 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG && hr!=HOST_BTREG &&
6460 (i_regs->regmap[hr]&63)!=rs1[i] &&
6461 (i_regs->regmap[hr]&63)!=rs2[i] )
6462 {
6463 alt=hr++;break;
6464 }
6465 hr++;
6466 }
6467 if((opcode[i]&0x2E)==6) // BLEZ/BGTZ needs another register
6468 {
6469 while(hr<HOST_REGS)
6470 {
6471 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG && hr!=HOST_BTREG &&
6472 (i_regs->regmap[hr]&63)!=rs1[i] &&
6473 (i_regs->regmap[hr]&63)!=rs2[i] )
6474 {
6475 ntaddr=hr;break;
6476 }
6477 hr++;
6478 }
6479 }
6480 assert(hr<HOST_REGS);
6481 if((opcode[i]&0x2e)==4||opcode[i]==0x11) { // BEQ/BNE/BEQL/BNEL/BC1
6482 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,CCREG,CCREG);
6483 }
2573466a 6484 emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i]+2),HOST_CCREG);
57871462 6485 if(opcode[i]==2) // J
6486 {
6487 unconditional=1;
6488 }
6489 if(opcode[i]==3) // JAL
6490 {
6491 // TODO: mini_ht
6492 int rt=get_reg(i_regs->regmap,31);
6493 emit_movimm(start+i*4+8,rt);
6494 unconditional=1;
6495 }
6496 if(opcode[i]==0&&(opcode2[i]&0x3E)==8) // JR/JALR
6497 {
6498 emit_mov(s1l,addr);
6499 if(opcode2[i]==9) // JALR
6500 {
5067f341 6501 int rt=get_reg(i_regs->regmap,rt1[i]);
57871462 6502 emit_movimm(start+i*4+8,rt);
6503 }
6504 }
6505 if((opcode[i]&0x3f)==4) // BEQ
6506 {
6507 if(rs1[i]==rs2[i])
6508 {
6509 unconditional=1;
6510 }
6511 else
6512 #ifdef HAVE_CMOV_IMM
6513 if(s1h<0) {
6514 if(s2l>=0) emit_cmp(s1l,s2l);
6515 else emit_test(s1l,s1l);
6516 emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
6517 }
6518 else
6519 #endif
6520 {
6521 assert(s1l>=0);
6522 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
6523 if(s1h>=0) {
6524 if(s2h>=0) emit_cmp(s1h,s2h);
6525 else emit_test(s1h,s1h);
6526 emit_cmovne_reg(alt,addr);
6527 }
6528 if(s2l>=0) emit_cmp(s1l,s2l);
6529 else emit_test(s1l,s1l);
6530 emit_cmovne_reg(alt,addr);
6531 }
6532 }
6533 if((opcode[i]&0x3f)==5) // BNE
6534 {
6535 #ifdef HAVE_CMOV_IMM
6536 if(s1h<0) {
6537 if(s2l>=0) emit_cmp(s1l,s2l);
6538 else emit_test(s1l,s1l);
6539 emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
6540 }
6541 else
6542 #endif
6543 {
6544 assert(s1l>=0);
6545 emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
6546 if(s1h>=0) {
6547 if(s2h>=0) emit_cmp(s1h,s2h);
6548 else emit_test(s1h,s1h);
6549 emit_cmovne_reg(alt,addr);
6550 }
6551 if(s2l>=0) emit_cmp(s1l,s2l);
6552 else emit_test(s1l,s1l);
6553 emit_cmovne_reg(alt,addr);
6554 }
6555 }
6556 if((opcode[i]&0x3f)==0x14) // BEQL
6557 {
6558 if(s1h>=0) {
6559 if(s2h>=0) emit_cmp(s1h,s2h);
6560 else emit_test(s1h,s1h);
6561 nottaken=(int)out;
6562 emit_jne(0);
6563 }
6564 if(s2l>=0) emit_cmp(s1l,s2l);
6565 else emit_test(s1l,s1l);
6566 if(nottaken) set_jump_target(nottaken,(int)out);
6567 nottaken=(int)out;
6568 emit_jne(0);
6569 }
6570 if((opcode[i]&0x3f)==0x15) // BNEL
6571 {
6572 if(s1h>=0) {
6573 if(s2h>=0) emit_cmp(s1h,s2h);
6574 else emit_test(s1h,s1h);
6575 taken=(int)out;
6576 emit_jne(0);
6577 }
6578 if(s2l>=0) emit_cmp(s1l,s2l);
6579 else emit_test(s1l,s1l);
6580 nottaken=(int)out;
6581 emit_jeq(0);
6582 if(taken) set_jump_target(taken,(int)out);
6583 }
6584 if((opcode[i]&0x3f)==6) // BLEZ
6585 {
6586 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
6587 emit_cmpimm(s1l,1);
6588 if(s1h>=0) emit_mov(addr,ntaddr);
6589 emit_cmovl_reg(alt,addr);
6590 if(s1h>=0) {
6591 emit_test(s1h,s1h);
6592 emit_cmovne_reg(ntaddr,addr);
6593 emit_cmovs_reg(alt,addr);
6594 }
6595 }
6596 if((opcode[i]&0x3f)==7) // BGTZ
6597 {
6598 emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
6599 emit_cmpimm(s1l,1);
6600 if(s1h>=0) emit_mov(addr,alt);
6601 emit_cmovl_reg(ntaddr,addr);
6602 if(s1h>=0) {
6603 emit_test(s1h,s1h);
6604 emit_cmovne_reg(alt,addr);
6605 emit_cmovs_reg(ntaddr,addr);
6606 }
6607 }
6608 if((opcode[i]&0x3f)==0x16) // BLEZL
6609 {
6610 assert((opcode[i]&0x3f)!=0x16);
6611 }
6612 if((opcode[i]&0x3f)==0x17) // BGTZL
6613 {
6614 assert((opcode[i]&0x3f)!=0x17);
6615 }
6616 assert(opcode[i]!=1); // BLTZ/BGEZ
6617
6618 //FIXME: Check CSREG
6619 if(opcode[i]==0x11 && opcode2[i]==0x08 ) {
6620 if((source[i]&0x30000)==0) // BC1F
6621 {
6622 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
6623 emit_testimm(s1l,0x800000);
6624 emit_cmovne_reg(alt,addr);
6625 }
6626 if((source[i]&0x30000)==0x10000) // BC1T
6627 {
6628 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
6629 emit_testimm(s1l,0x800000);
6630 emit_cmovne_reg(alt,addr);
6631 }
6632 if((source[i]&0x30000)==0x20000) // BC1FL
6633 {
6634 emit_testimm(s1l,0x800000);
6635 nottaken=(int)out;
6636 emit_jne(0);
6637 }
6638 if((source[i]&0x30000)==0x30000) // BC1TL
6639 {
6640 emit_testimm(s1l,0x800000);
6641 nottaken=(int)out;
6642 emit_jeq(0);
6643 }
6644 }
6645
6646 assert(i_regs->regmap[HOST_CCREG]==CCREG);
6647 wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
6648 if(likely[i]||unconditional)
6649 {
6650 emit_movimm(ba[i],HOST_BTREG);
6651 }
6652 else if(addr!=HOST_BTREG)
6653 {
6654 emit_mov(addr,HOST_BTREG);
6655 }
6656 void *branch_addr=out;
6657 emit_jmp(0);
6658 int target_addr=start+i*4+5;
6659 void *stub=out;
6660 void *compiled_target_addr=check_addr(target_addr);
6661 emit_extjump_ds((int)branch_addr,target_addr);
6662 if(compiled_target_addr) {
6663 set_jump_target((int)branch_addr,(int)compiled_target_addr);
6664 add_link(target_addr,stub);
6665 }
6666 else set_jump_target((int)branch_addr,(int)stub);
6667 if(likely[i]) {
6668 // Not-taken path
6669 set_jump_target((int)nottaken,(int)out);
6670 wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
6671 void *branch_addr=out;
6672 emit_jmp(0);
6673 int target_addr=start+i*4+8;
6674 void *stub=out;
6675 void *compiled_target_addr=check_addr(target_addr);
6676 emit_extjump_ds((int)branch_addr,target_addr);
6677 if(compiled_target_addr) {
6678 set_jump_target((int)branch_addr,(int)compiled_target_addr);
6679 add_link(target_addr,stub);
6680 }
6681 else set_jump_target((int)branch_addr,(int)stub);
6682 }
6683}
6684
6685// Assemble the delay slot for the above
6686static void pagespan_ds()
6687{
6688 assem_debug("initial delay slot:\n");
6689 u_int vaddr=start+1;
94d23bb9 6690 u_int page=get_page(vaddr);
6691 u_int vpage=get_vpage(vaddr);
57871462 6692 ll_add(jump_dirty+vpage,vaddr,(void *)out);
6693 do_dirty_stub_ds();
6694 ll_add(jump_in+page,vaddr,(void *)out);
6695 assert(regs[0].regmap_entry[HOST_CCREG]==CCREG);
6696 if(regs[0].regmap[HOST_CCREG]!=CCREG)
6697 wb_register(CCREG,regs[0].regmap_entry,regs[0].wasdirty,regs[0].was32);
6698 if(regs[0].regmap[HOST_BTREG]!=BTREG)
6699 emit_writeword(HOST_BTREG,(int)&branch_target);
6700 load_regs(regs[0].regmap_entry,regs[0].regmap,regs[0].was32,rs1[0],rs2[0]);
6701 address_generation(0,&regs[0],regs[0].regmap_entry);
b9b61529 6702 if(itype[0]==STORE||itype[0]==STORELR||(opcode[0]&0x3b)==0x39||(opcode[0]&0x3b)==0x3a)
57871462 6703 load_regs(regs[0].regmap_entry,regs[0].regmap,regs[0].was32,INVCP,INVCP);
6704 cop1_usable=0;
6705 is_delayslot=0;
6706 switch(itype[0]) {
6707 case ALU:
6708 alu_assemble(0,&regs[0]);break;
6709 case IMM16:
6710 imm16_assemble(0,&regs[0]);break;
6711 case SHIFT:
6712 shift_assemble(0,&regs[0]);break;
6713 case SHIFTIMM:
6714 shiftimm_assemble(0,&regs[0]);break;
6715 case LOAD:
6716 load_assemble(0,&regs[0]);break;
6717 case LOADLR:
6718 loadlr_assemble(0,&regs[0]);break;
6719 case STORE:
6720 store_assemble(0,&regs[0]);break;
6721 case STORELR:
6722 storelr_assemble(0,&regs[0]);break;
6723 case COP0:
6724 cop0_assemble(0,&regs[0]);break;
6725 case COP1:
6726 cop1_assemble(0,&regs[0]);break;
6727 case C1LS:
6728 c1ls_assemble(0,&regs[0]);break;
b9b61529 6729 case COP2:
6730 cop2_assemble(0,&regs[0]);break;
6731 case C2LS:
6732 c2ls_assemble(0,&regs[0]);break;
6733 case C2OP:
6734 c2op_assemble(0,&regs[0]);break;
57871462 6735 case FCONV:
6736 fconv_assemble(0,&regs[0]);break;
6737 case FLOAT:
6738 float_assemble(0,&regs[0]);break;
6739 case FCOMP:
6740 fcomp_assemble(0,&regs[0]);break;
6741 case MULTDIV:
6742 multdiv_assemble(0,&regs[0]);break;
6743 case MOV:
6744 mov_assemble(0,&regs[0]);break;
6745 case SYSCALL:
7139f3c8 6746 case HLECALL:
1e973cb0 6747 case INTCALL:
57871462 6748 case SPAN:
6749 case UJUMP:
6750 case RJUMP:
6751 case CJUMP:
6752 case SJUMP:
6753 case FJUMP:
6754 printf("Jump in the delay slot. This is probably a bug.\n");
6755 }
6756 int btaddr=get_reg(regs[0].regmap,BTREG);
6757 if(btaddr<0) {
6758 btaddr=get_reg(regs[0].regmap,-1);
6759 emit_readword((int)&branch_target,btaddr);
6760 }
6761 assert(btaddr!=HOST_CCREG);
6762 if(regs[0].regmap[HOST_CCREG]!=CCREG) emit_loadreg(CCREG,HOST_CCREG);
6763#ifdef HOST_IMM8
6764 emit_movimm(start+4,HOST_TEMPREG);
6765 emit_cmp(btaddr,HOST_TEMPREG);
6766#else
6767 emit_cmpimm(btaddr,start+4);
6768#endif
6769 int branch=(int)out;
6770 emit_jeq(0);
6771 store_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,-1);
6772 emit_jmp(jump_vaddr_reg[btaddr]);
6773 set_jump_target(branch,(int)out);
6774 store_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,start+4);
6775 load_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,start+4);
6776}
6777
6778// Basic liveness analysis for MIPS registers
6779void unneeded_registers(int istart,int iend,int r)
6780{
6781 int i;
bedfea38 6782 uint64_t u,uu,gte_u,b,bu,gte_bu;
0ff8c62c 6783 uint64_t temp_u,temp_uu,temp_gte_u=0;
57871462 6784 uint64_t tdep;
0ff8c62c 6785 uint64_t gte_u_unknown=0;
6786 if(new_dynarec_hacks&NDHACK_GTE_UNNEEDED)
6787 gte_u_unknown=~0ll;
57871462 6788 if(iend==slen-1) {
6789 u=1;uu=1;
0ff8c62c 6790 gte_u=gte_u_unknown;
57871462 6791 }else{
6792 u=unneeded_reg[iend+1];
6793 uu=unneeded_reg_upper[iend+1];
6794 u=1;uu=1;
0ff8c62c 6795 gte_u=gte_unneeded[iend+1];
57871462 6796 }
bedfea38 6797
57871462 6798 for (i=iend;i>=istart;i--)
6799 {
6800 //printf("unneeded registers i=%d (%d,%d) r=%d\n",i,istart,iend,r);
6801 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
6802 {
6803 // If subroutine call, flag return address as a possible branch target
6804 if(rt1[i]==31 && i<slen-2) bt[i+2]=1;
6805
6806 if(ba[i]<start || ba[i]>=(start+slen*4))
6807 {
6808 // Branch out of this block, flush all regs
6809 u=1;
6810 uu=1;
0ff8c62c 6811 gte_u=gte_u_unknown;
57871462 6812 /* Hexagon hack
6813 if(itype[i]==UJUMP&&rt1[i]==31)
6814 {
6815 uu=u=0x300C00F; // Discard at, v0-v1, t6-t9
6816 }
6817 if(itype[i]==RJUMP&&rs1[i]==31)
6818 {
6819 uu=u=0x300C0F3; // Discard at, a0-a3, t6-t9
6820 }
4cb76aa4 6821 if(start>0x80000400&&start<0x80000000+RAM_SIZE) {
57871462 6822 if(itype[i]==UJUMP&&rt1[i]==31)
6823 {
6824 //uu=u=0x30300FF0FLL; // Discard at, v0-v1, t0-t9, lo, hi
6825 uu=u=0x300FF0F; // Discard at, v0-v1, t0-t9
6826 }
6827 if(itype[i]==RJUMP&&rs1[i]==31)
6828 {
6829 //uu=u=0x30300FFF3LL; // Discard at, a0-a3, t0-t9, lo, hi
6830 uu=u=0x300FFF3; // Discard at, a0-a3, t0-t9
6831 }
6832 }*/
6833 branch_unneeded_reg[i]=u;
6834 branch_unneeded_reg_upper[i]=uu;
6835 // Merge in delay slot
6836 tdep=(~uu>>rt1[i+1])&1;
6837 u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6838 uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6839 u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6840 uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6841 uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6842 u|=1;uu|=1;
bedfea38 6843 gte_u|=gte_rt[i+1];
6844 gte_u&=~gte_rs[i+1];
57871462 6845 // If branch is "likely" (and conditional)
6846 // then we skip the delay slot on the fall-thru path
6847 if(likely[i]) {
6848 if(i<slen-1) {
6849 u&=unneeded_reg[i+2];
6850 uu&=unneeded_reg_upper[i+2];
bedfea38 6851 gte_u&=gte_unneeded[i+2];
57871462 6852 }
6853 else
6854 {
6855 u=1;
6856 uu=1;
0ff8c62c 6857 gte_u=gte_u_unknown;
57871462 6858 }
6859 }
6860 }
6861 else
6862 {
6863 // Internal branch, flag target
6864 bt[(ba[i]-start)>>2]=1;
6865 if(ba[i]<=start+i*4) {
6866 // Backward branch
6867 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
6868 {
6869 // Unconditional branch
6870 temp_u=1;temp_uu=1;
bedfea38 6871 temp_gte_u=0;
57871462 6872 } else {
6873 // Conditional branch (not taken case)
6874 temp_u=unneeded_reg[i+2];
6875 temp_uu=unneeded_reg_upper[i+2];
bedfea38 6876 temp_gte_u&=gte_unneeded[i+2];
57871462 6877 }
6878 // Merge in delay slot
6879 tdep=(~temp_uu>>rt1[i+1])&1;
6880 temp_u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6881 temp_uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6882 temp_u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6883 temp_uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6884 temp_uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6885 temp_u|=1;temp_uu|=1;
bedfea38 6886 temp_gte_u|=gte_rt[i+1];
6887 temp_gte_u&=~gte_rs[i+1];
57871462 6888 // If branch is "likely" (and conditional)
6889 // then we skip the delay slot on the fall-thru path
6890 if(likely[i]) {
6891 if(i<slen-1) {
6892 temp_u&=unneeded_reg[i+2];
6893 temp_uu&=unneeded_reg_upper[i+2];
bedfea38 6894 temp_gte_u&=gte_unneeded[i+2];
57871462 6895 }
6896 else
6897 {
6898 temp_u=1;
6899 temp_uu=1;
0ff8c62c 6900 temp_gte_u=gte_u_unknown;
57871462 6901 }
6902 }
6903 tdep=(~temp_uu>>rt1[i])&1;
6904 temp_u|=(1LL<<rt1[i])|(1LL<<rt2[i]);
6905 temp_uu|=(1LL<<rt1[i])|(1LL<<rt2[i]);
6906 temp_u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
6907 temp_uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
6908 temp_uu&=~((tdep<<dep1[i])|(tdep<<dep2[i]));
6909 temp_u|=1;temp_uu|=1;
bedfea38 6910 temp_gte_u|=gte_rt[i];
6911 temp_gte_u&=~gte_rs[i];
57871462 6912 unneeded_reg[i]=temp_u;
6913 unneeded_reg_upper[i]=temp_uu;
bedfea38 6914 gte_unneeded[i]=temp_gte_u;
57871462 6915 // Only go three levels deep. This recursion can take an
6916 // excessive amount of time if there are a lot of nested loops.
6917 if(r<2) {
6918 unneeded_registers((ba[i]-start)>>2,i-1,r+1);
6919 }else{
6920 unneeded_reg[(ba[i]-start)>>2]=1;
6921 unneeded_reg_upper[(ba[i]-start)>>2]=1;
0ff8c62c 6922 gte_unneeded[(ba[i]-start)>>2]=gte_u_unknown;
57871462 6923 }
6924 } /*else*/ if(1) {
6925 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
6926 {
6927 // Unconditional branch
6928 u=unneeded_reg[(ba[i]-start)>>2];
6929 uu=unneeded_reg_upper[(ba[i]-start)>>2];
bedfea38 6930 gte_u=gte_unneeded[(ba[i]-start)>>2];
57871462 6931 branch_unneeded_reg[i]=u;
6932 branch_unneeded_reg_upper[i]=uu;
6933 //u=1;
6934 //uu=1;
6935 //branch_unneeded_reg[i]=u;
6936 //branch_unneeded_reg_upper[i]=uu;
6937 // Merge in delay slot
6938 tdep=(~uu>>rt1[i+1])&1;
6939 u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6940 uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6941 u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6942 uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6943 uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6944 u|=1;uu|=1;
bedfea38 6945 gte_u|=gte_rt[i+1];
6946 gte_u&=~gte_rs[i+1];
57871462 6947 } else {
6948 // Conditional branch
6949 b=unneeded_reg[(ba[i]-start)>>2];
6950 bu=unneeded_reg_upper[(ba[i]-start)>>2];
bedfea38 6951 gte_bu=gte_unneeded[(ba[i]-start)>>2];
57871462 6952 branch_unneeded_reg[i]=b;
6953 branch_unneeded_reg_upper[i]=bu;
6954 //b=1;
6955 //bu=1;
6956 //branch_unneeded_reg[i]=b;
6957 //branch_unneeded_reg_upper[i]=bu;
6958 // Branch delay slot
6959 tdep=(~uu>>rt1[i+1])&1;
6960 b|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6961 bu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6962 b&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6963 bu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6964 bu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6965 b|=1;bu|=1;
bedfea38 6966 gte_bu|=gte_rt[i+1];
6967 gte_bu&=~gte_rs[i+1];
57871462 6968 // If branch is "likely" then we skip the
6969 // delay slot on the fall-thru path
6970 if(likely[i]) {
6971 u=b;
6972 uu=bu;
bedfea38 6973 gte_u=gte_bu;
57871462 6974 if(i<slen-1) {
6975 u&=unneeded_reg[i+2];
6976 uu&=unneeded_reg_upper[i+2];
bedfea38 6977 gte_u&=gte_unneeded[i+2];
57871462 6978 //u=1;
6979 //uu=1;
6980 }
6981 } else {
6982 u&=b;
6983 uu&=bu;
bedfea38 6984 gte_u&=gte_bu;
57871462 6985 //u=1;
6986 //uu=1;
6987 }
6988 if(i<slen-1) {
6989 branch_unneeded_reg[i]&=unneeded_reg[i+2];
6990 branch_unneeded_reg_upper[i]&=unneeded_reg_upper[i+2];
6991 //branch_unneeded_reg[i]=1;
6992 //branch_unneeded_reg_upper[i]=1;
6993 } else {
6994 branch_unneeded_reg[i]=1;
6995 branch_unneeded_reg_upper[i]=1;
6996 }
6997 }
6998 }
6999 }
7000 }
1e973cb0 7001 else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
57871462 7002 {
7003 // SYSCALL instruction (software interrupt)
7004 u=1;
7005 uu=1;
7006 }
7007 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
7008 {
7009 // ERET instruction (return from interrupt)
7010 u=1;
7011 uu=1;
7012 }
7013 //u=uu=1; // DEBUG
7014 tdep=(~uu>>rt1[i])&1;
7015 // Written registers are unneeded
7016 u|=1LL<<rt1[i];
7017 u|=1LL<<rt2[i];
7018 uu|=1LL<<rt1[i];
7019 uu|=1LL<<rt2[i];
bedfea38 7020 gte_u|=gte_rt[i];
57871462 7021 // Accessed registers are needed
7022 u&=~(1LL<<rs1[i]);
7023 u&=~(1LL<<rs2[i]);
7024 uu&=~(1LL<<us1[i]);
7025 uu&=~(1LL<<us2[i]);
bedfea38 7026 gte_u&=~gte_rs[i];
eaa11918 7027 if(gte_rs[i]&&rt1[i]&&(unneeded_reg[i+1]&(1ll<<rt1[i])))
cbbd8dd7 7028 gte_u|=gte_rs[i]&gte_unneeded[i+1]; // MFC2/CFC2 to dead register, unneeded
57871462 7029 // Source-target dependencies
7030 uu&=~(tdep<<dep1[i]);
7031 uu&=~(tdep<<dep2[i]);
7032 // R0 is always unneeded
7033 u|=1;uu|=1;
7034 // Save it
7035 unneeded_reg[i]=u;
7036 unneeded_reg_upper[i]=uu;
bedfea38 7037 gte_unneeded[i]=gte_u;
57871462 7038 /*
7039 printf("ur (%d,%d) %x: ",istart,iend,start+i*4);
7040 printf("U:");
7041 int r;
7042 for(r=1;r<=CCREG;r++) {
7043 if((unneeded_reg[i]>>r)&1) {
7044 if(r==HIREG) printf(" HI");
7045 else if(r==LOREG) printf(" LO");
7046 else printf(" r%d",r);
7047 }
7048 }
7049 printf(" UU:");
7050 for(r=1;r<=CCREG;r++) {
7051 if(((unneeded_reg_upper[i]&~unneeded_reg[i])>>r)&1) {
7052 if(r==HIREG) printf(" HI");
7053 else if(r==LOREG) printf(" LO");
7054 else printf(" r%d",r);
7055 }
7056 }
7057 printf("\n");*/
7058 }
252c20fc 7059#ifdef FORCE32
7060 for (i=iend;i>=istart;i--)
7061 {
7062 unneeded_reg_upper[i]=branch_unneeded_reg_upper[i]=-1LL;
7063 }
7064#endif
57871462 7065}
7066
7067// Identify registers which are likely to contain 32-bit values
7068// This is used to predict whether any branches will jump to a
7069// location with 64-bit values in registers.
7070static void provisional_32bit()
7071{
7072 int i,j;
7073 uint64_t is32=1;
7074 uint64_t lastbranch=1;
7075
7076 for(i=0;i<slen;i++)
7077 {
7078 if(i>0) {
7079 if(itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP) {
7080 if(i>1) is32=lastbranch;
7081 else is32=1;
7082 }
7083 }
7084 if(i>1)
7085 {
7086 if(itype[i-2]==CJUMP||itype[i-2]==SJUMP||itype[i-2]==FJUMP) {
7087 if(likely[i-2]) {
7088 if(i>2) is32=lastbranch;
7089 else is32=1;
7090 }
7091 }
7092 if((opcode[i-2]&0x2f)==0x05) // BNE/BNEL
7093 {
7094 if(rs1[i-2]==0||rs2[i-2]==0)
7095 {
7096 if(rs1[i-2]) {
7097 is32|=1LL<<rs1[i-2];
7098 }
7099 if(rs2[i-2]) {
7100 is32|=1LL<<rs2[i-2];
7101 }
7102 }
7103 }
7104 }
7105 // If something jumps here with 64-bit values
7106 // then promote those registers to 64 bits
7107 if(bt[i])
7108 {
7109 uint64_t temp_is32=is32;
7110 for(j=i-1;j>=0;j--)
7111 {
7112 if(ba[j]==start+i*4)
7113 //temp_is32&=branch_regs[j].is32;
7114 temp_is32&=p32[j];
7115 }
7116 for(j=i;j<slen;j++)
7117 {
7118 if(ba[j]==start+i*4)
7119 temp_is32=1;
7120 }
7121 is32=temp_is32;
7122 }
7123 int type=itype[i];
7124 int op=opcode[i];
7125 int op2=opcode2[i];
7126 int rt=rt1[i];
7127 int s1=rs1[i];
7128 int s2=rs2[i];
7129 if(type==UJUMP||type==RJUMP||type==CJUMP||type==SJUMP||type==FJUMP) {
7130 // Branches don't write registers, consider the delay slot instead.
7131 type=itype[i+1];
7132 op=opcode[i+1];
7133 op2=opcode2[i+1];
7134 rt=rt1[i+1];
7135 s1=rs1[i+1];
7136 s2=rs2[i+1];
7137 lastbranch=is32;
7138 }
7139 switch(type) {
7140 case LOAD:
7141 if(opcode[i]==0x27||opcode[i]==0x37|| // LWU/LD
7142 opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
7143 is32&=~(1LL<<rt);
7144 else
7145 is32|=1LL<<rt;
7146 break;
7147 case STORE:
7148 case STORELR:
7149 break;
7150 case LOADLR:
7151 if(op==0x1a||op==0x1b) is32&=~(1LL<<rt); // LDR/LDL
7152 if(op==0x22) is32|=1LL<<rt; // LWL
7153 break;
7154 case IMM16:
7155 if (op==0x08||op==0x09|| // ADDI/ADDIU
7156 op==0x0a||op==0x0b|| // SLTI/SLTIU
7157 op==0x0c|| // ANDI
7158 op==0x0f) // LUI
7159 {
7160 is32|=1LL<<rt;
7161 }
7162 if(op==0x18||op==0x19) { // DADDI/DADDIU
7163 is32&=~(1LL<<rt);
7164 //if(imm[i]==0)
7165 // is32|=((is32>>s1)&1LL)<<rt;
7166 }
7167 if(op==0x0d||op==0x0e) { // ORI/XORI
7168 uint64_t sr=((is32>>s1)&1LL);
7169 is32&=~(1LL<<rt);
7170 is32|=sr<<rt;
7171 }
7172 break;
7173 case UJUMP:
7174 break;
7175 case RJUMP:
7176 break;
7177 case CJUMP:
7178 break;
7179 case SJUMP:
7180 break;
7181 case FJUMP:
7182 break;
7183 case ALU:
7184 if(op2>=0x20&&op2<=0x23) { // ADD/ADDU/SUB/SUBU
7185 is32|=1LL<<rt;
7186 }
7187 if(op2==0x2a||op2==0x2b) { // SLT/SLTU
7188 is32|=1LL<<rt;
7189 }
7190 else if(op2>=0x24&&op2<=0x27) { // AND/OR/XOR/NOR
7191 uint64_t sr=((is32>>s1)&(is32>>s2)&1LL);
7192 is32&=~(1LL<<rt);
7193 is32|=sr<<rt;
7194 }
7195 else if(op2>=0x2c&&op2<=0x2d) { // DADD/DADDU
7196 if(s1==0&&s2==0) {
7197 is32|=1LL<<rt;
7198 }
7199 else if(s2==0) {
7200 uint64_t sr=((is32>>s1)&1LL);
7201 is32&=~(1LL<<rt);
7202 is32|=sr<<rt;
7203 }
7204 else if(s1==0) {
7205 uint64_t sr=((is32>>s2)&1LL);
7206 is32&=~(1LL<<rt);
7207 is32|=sr<<rt;
7208 }
7209 else {
7210 is32&=~(1LL<<rt);
7211 }
7212 }
7213 else if(op2>=0x2e&&op2<=0x2f) { // DSUB/DSUBU
7214 if(s1==0&&s2==0) {
7215 is32|=1LL<<rt;
7216 }
7217 else if(s2==0) {
7218 uint64_t sr=((is32>>s1)&1LL);
7219 is32&=~(1LL<<rt);
7220 is32|=sr<<rt;
7221 }
7222 else {
7223 is32&=~(1LL<<rt);
7224 }
7225 }
7226 break;
7227 case MULTDIV:
7228 if (op2>=0x1c&&op2<=0x1f) { // DMULT/DMULTU/DDIV/DDIVU
7229 is32&=~((1LL<<HIREG)|(1LL<<LOREG));
7230 }
7231 else {
7232 is32|=(1LL<<HIREG)|(1LL<<LOREG);
7233 }
7234 break;
7235 case MOV:
7236 {
7237 uint64_t sr=((is32>>s1)&1LL);
7238 is32&=~(1LL<<rt);
7239 is32|=sr<<rt;
7240 }
7241 break;
7242 case SHIFT:
7243 if(op2>=0x14&&op2<=0x17) is32&=~(1LL<<rt); // DSLLV/DSRLV/DSRAV
7244 else is32|=1LL<<rt; // SLLV/SRLV/SRAV
7245 break;
7246 case SHIFTIMM:
7247 is32|=1LL<<rt;
7248 // DSLL/DSRL/DSRA/DSLL32/DSRL32 but not DSRA32 have 64-bit result
7249 if(op2>=0x38&&op2<0x3f) is32&=~(1LL<<rt);
7250 break;
7251 case COP0:
7252 if(op2==0) is32|=1LL<<rt; // MFC0
7253 break;
7254 case COP1:
b9b61529 7255 case COP2:
57871462 7256 if(op2==0) is32|=1LL<<rt; // MFC1
7257 if(op2==1) is32&=~(1LL<<rt); // DMFC1
7258 if(op2==2) is32|=1LL<<rt; // CFC1
7259 break;
7260 case C1LS:
b9b61529 7261 case C2LS:
57871462 7262 break;
7263 case FLOAT:
7264 case FCONV:
7265 break;
7266 case FCOMP:
7267 break;
b9b61529 7268 case C2OP:
57871462 7269 case SYSCALL:
7139f3c8 7270 case HLECALL:
57871462 7271 break;
7272 default:
7273 break;
7274 }
7275 is32|=1;
7276 p32[i]=is32;
7277
7278 if(i>0)
7279 {
7280 if(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)
7281 {
7282 if(rt1[i-1]==31) // JAL/JALR
7283 {
7284 // Subroutine call will return here, don't alloc any registers
7285 is32=1;
7286 }
7287 else if(i+1<slen)
7288 {
7289 // Internal branch will jump here, match registers to caller
7290 is32=0x3FFFFFFFFLL;
7291 }
7292 }
7293 }
7294 }
7295}
7296
7297// Identify registers which may be assumed to contain 32-bit values
7298// and where optimizations will rely on this.
7299// This is used to determine whether backward branches can safely
7300// jump to a location with 64-bit values in registers.
7301static void provisional_r32()
7302{
7303 u_int r32=0;
7304 int i;
7305
7306 for (i=slen-1;i>=0;i--)
7307 {
7308 int hr;
7309 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
7310 {
7311 if(ba[i]<start || ba[i]>=(start+slen*4))
7312 {
7313 // Branch out of this block, don't need anything
7314 r32=0;
7315 }
7316 else
7317 {
7318 // Internal branch
7319 // Need whatever matches the target
7320 // (and doesn't get overwritten by the delay slot instruction)
7321 r32=0;
7322 int t=(ba[i]-start)>>2;
7323 if(ba[i]>start+i*4) {
7324 // Forward branch
7325 //if(!(requires_32bit[t]&~regs[i].was32))
7326 // r32|=requires_32bit[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
7327 if(!(pr32[t]&~regs[i].was32))
7328 r32|=pr32[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
7329 }else{
7330 // Backward branch
7331 if(!(regs[t].was32&~unneeded_reg_upper[t]&~regs[i].was32))
7332 r32|=regs[t].was32&~unneeded_reg_upper[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
7333 }
7334 }
7335 // Conditional branch may need registers for following instructions
7336 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
7337 {
7338 if(i<slen-2) {
7339 //r32|=requires_32bit[i+2];
7340 r32|=pr32[i+2];
7341 r32&=regs[i].was32;
7342 // Mark this address as a branch target since it may be called
7343 // upon return from interrupt
7344 //bt[i+2]=1;
7345 }
7346 }
7347 // Merge in delay slot
7348 if(!likely[i]) {
7349 // These are overwritten unless the branch is "likely"
7350 // and the delay slot is nullified if not taken
7351 r32&=~(1LL<<rt1[i+1]);
7352 r32&=~(1LL<<rt2[i+1]);
7353 }
7354 // Assume these are needed (delay slot)
7355 if(us1[i+1]>0)
7356 {
7357 if((regs[i].was32>>us1[i+1])&1) r32|=1LL<<us1[i+1];
7358 }
7359 if(us2[i+1]>0)
7360 {
7361 if((regs[i].was32>>us2[i+1])&1) r32|=1LL<<us2[i+1];
7362 }
7363 if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1))
7364 {
7365 if((regs[i].was32>>dep1[i+1])&1) r32|=1LL<<dep1[i+1];
7366 }
7367 if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1))
7368 {
7369 if((regs[i].was32>>dep2[i+1])&1) r32|=1LL<<dep2[i+1];
7370 }
7371 }
1e973cb0 7372 else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
57871462 7373 {
7374 // SYSCALL instruction (software interrupt)
7375 r32=0;
7376 }
7377 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
7378 {
7379 // ERET instruction (return from interrupt)
7380 r32=0;
7381 }
7382 // Check 32 bits
7383 r32&=~(1LL<<rt1[i]);
7384 r32&=~(1LL<<rt2[i]);
7385 if(us1[i]>0)
7386 {
7387 if((regs[i].was32>>us1[i])&1) r32|=1LL<<us1[i];
7388 }
7389 if(us2[i]>0)
7390 {
7391 if((regs[i].was32>>us2[i])&1) r32|=1LL<<us2[i];
7392 }
7393 if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1))
7394 {
7395 if((regs[i].was32>>dep1[i])&1) r32|=1LL<<dep1[i];
7396 }
7397 if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1))
7398 {
7399 if((regs[i].was32>>dep2[i])&1) r32|=1LL<<dep2[i];
7400 }
7401 //requires_32bit[i]=r32;
7402 pr32[i]=r32;
7403
7404 // Dirty registers which are 32-bit, require 32-bit input
7405 // as they will be written as 32-bit values
7406 for(hr=0;hr<HOST_REGS;hr++)
7407 {
7408 if(regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64) {
7409 if((regs[i].was32>>regs[i].regmap_entry[hr])&(regs[i].wasdirty>>hr)&1) {
7410 if(!((unneeded_reg_upper[i]>>regs[i].regmap_entry[hr])&1))
7411 pr32[i]|=1LL<<regs[i].regmap_entry[hr];
7412 //requires_32bit[i]|=1LL<<regs[i].regmap_entry[hr];
7413 }
7414 }
7415 }
7416 }
7417}
7418
7419// Write back dirty registers as soon as we will no longer modify them,
7420// so that we don't end up with lots of writes at the branches.
7421void clean_registers(int istart,int iend,int wr)
7422{
7423 int i;
7424 int r;
7425 u_int will_dirty_i,will_dirty_next,temp_will_dirty;
7426 u_int wont_dirty_i,wont_dirty_next,temp_wont_dirty;
7427 if(iend==slen-1) {
7428 will_dirty_i=will_dirty_next=0;
7429 wont_dirty_i=wont_dirty_next=0;
7430 }else{
7431 will_dirty_i=will_dirty_next=will_dirty[iend+1];
7432 wont_dirty_i=wont_dirty_next=wont_dirty[iend+1];
7433 }
7434 for (i=iend;i>=istart;i--)
7435 {
7436 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
7437 {
7438 if(ba[i]<start || ba[i]>=(start+slen*4))
7439 {
7440 // Branch out of this block, flush all regs
7441 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
7442 {
7443 // Unconditional branch
7444 will_dirty_i=0;
7445 wont_dirty_i=0;
7446 // Merge in delay slot (will dirty)
7447 for(r=0;r<HOST_REGS;r++) {
7448 if(r!=EXCLUDE_REG) {
7449 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7450 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7451 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7452 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7453 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7454 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7455 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7456 if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7457 if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7458 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7459 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7460 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7461 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7462 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7463 }
7464 }
7465 }
7466 else
7467 {
7468 // Conditional branch
7469 will_dirty_i=0;
7470 wont_dirty_i=wont_dirty_next;
7471 // Merge in delay slot (will dirty)
7472 for(r=0;r<HOST_REGS;r++) {
7473 if(r!=EXCLUDE_REG) {
7474 if(!likely[i]) {
7475 // Might not dirty if likely branch is not taken
7476 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7477 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7478 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7479 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7480 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7481 if(branch_regs[i].regmap[r]==0) will_dirty_i&=~(1<<r);
7482 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7483 //if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7484 //if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7485 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7486 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7487 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7488 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7489 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7490 }
7491 }
7492 }
7493 }
7494 // Merge in delay slot (wont dirty)
7495 for(r=0;r<HOST_REGS;r++) {
7496 if(r!=EXCLUDE_REG) {
7497 if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7498 if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7499 if((regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7500 if((regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7501 if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7502 if((branch_regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7503 if((branch_regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7504 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7505 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7506 if(branch_regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7507 }
7508 }
7509 if(wr) {
7510 #ifndef DESTRUCTIVE_WRITEBACK
7511 branch_regs[i].dirty&=wont_dirty_i;
7512 #endif
7513 branch_regs[i].dirty|=will_dirty_i;
7514 }
7515 }
7516 else
7517 {
7518 // Internal branch
7519 if(ba[i]<=start+i*4) {
7520 // Backward branch
7521 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
7522 {
7523 // Unconditional branch
7524 temp_will_dirty=0;
7525 temp_wont_dirty=0;
7526 // Merge in delay slot (will dirty)
7527 for(r=0;r<HOST_REGS;r++) {
7528 if(r!=EXCLUDE_REG) {
7529 if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7530 if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7531 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7532 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7533 if((branch_regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7534 if(branch_regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
7535 if(branch_regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7536 if((regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7537 if((regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7538 if((regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7539 if((regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7540 if((regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7541 if(regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
7542 if(regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7543 }
7544 }
7545 } else {
7546 // Conditional branch (not taken case)
7547 temp_will_dirty=will_dirty_next;
7548 temp_wont_dirty=wont_dirty_next;
7549 // Merge in delay slot (will dirty)
7550 for(r=0;r<HOST_REGS;r++) {
7551 if(r!=EXCLUDE_REG) {
7552 if(!likely[i]) {
7553 // Will not dirty if likely branch is not taken
7554 if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7555 if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7556 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7557 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7558 if((branch_regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7559 if(branch_regs[i].regmap[r]==0) temp_will_dirty&=~(1<<r);
7560 if(branch_regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7561 //if((regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7562 //if((regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7563 if((regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7564 if((regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7565 if((regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7566 if(regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
7567 if(regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7568 }
7569 }
7570 }
7571 }
7572 // Merge in delay slot (wont dirty)
7573 for(r=0;r<HOST_REGS;r++) {
7574 if(r!=EXCLUDE_REG) {
7575 if((regs[i].regmap[r]&63)==rt1[i]) temp_wont_dirty|=1<<r;
7576 if((regs[i].regmap[r]&63)==rt2[i]) temp_wont_dirty|=1<<r;
7577 if((regs[i].regmap[r]&63)==rt1[i+1]) temp_wont_dirty|=1<<r;
7578 if((regs[i].regmap[r]&63)==rt2[i+1]) temp_wont_dirty|=1<<r;
7579 if(regs[i].regmap[r]==CCREG) temp_wont_dirty|=1<<r;
7580 if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_wont_dirty|=1<<r;
7581 if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_wont_dirty|=1<<r;
7582 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_wont_dirty|=1<<r;
7583 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_wont_dirty|=1<<r;
7584 if(branch_regs[i].regmap[r]==CCREG) temp_wont_dirty|=1<<r;
7585 }
7586 }
7587 // Deal with changed mappings
7588 if(i<iend) {
7589 for(r=0;r<HOST_REGS;r++) {
7590 if(r!=EXCLUDE_REG) {
7591 if(regs[i].regmap[r]!=regmap_pre[i][r]) {
7592 temp_will_dirty&=~(1<<r);
7593 temp_wont_dirty&=~(1<<r);
7594 if((regmap_pre[i][r]&63)>0 && (regmap_pre[i][r]&63)<34) {
7595 temp_will_dirty|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7596 temp_wont_dirty|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7597 } else {
7598 temp_will_dirty|=1<<r;
7599 temp_wont_dirty|=1<<r;
7600 }
7601 }
7602 }
7603 }
7604 }
7605 if(wr) {
7606 will_dirty[i]=temp_will_dirty;
7607 wont_dirty[i]=temp_wont_dirty;
7608 clean_registers((ba[i]-start)>>2,i-1,0);
7609 }else{
7610 // Limit recursion. It can take an excessive amount
7611 // of time if there are a lot of nested loops.
7612 will_dirty[(ba[i]-start)>>2]=0;
7613 wont_dirty[(ba[i]-start)>>2]=-1;
7614 }
7615 }
7616 /*else*/ if(1)
7617 {
7618 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
7619 {
7620 // Unconditional branch
7621 will_dirty_i=0;
7622 wont_dirty_i=0;
7623 //if(ba[i]>start+i*4) { // Disable recursion (for debugging)
7624 for(r=0;r<HOST_REGS;r++) {
7625 if(r!=EXCLUDE_REG) {
7626 if(branch_regs[i].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
7627 will_dirty_i|=will_dirty[(ba[i]-start)>>2]&(1<<r);
7628 wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
7629 }
e3234ecf 7630 if(branch_regs[i].regmap[r]>=0) {
7631 will_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>(branch_regs[i].regmap[r]&63))&1)<<r;
7632 wont_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>(branch_regs[i].regmap[r]&63))&1)<<r;
7633 }
57871462 7634 }
7635 }
7636 //}
7637 // Merge in delay slot
7638 for(r=0;r<HOST_REGS;r++) {
7639 if(r!=EXCLUDE_REG) {
7640 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7641 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7642 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7643 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7644 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7645 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7646 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7647 if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7648 if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7649 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7650 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7651 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7652 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7653 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7654 }
7655 }
7656 } else {
7657 // Conditional branch
7658 will_dirty_i=will_dirty_next;
7659 wont_dirty_i=wont_dirty_next;
7660 //if(ba[i]>start+i*4) { // Disable recursion (for debugging)
7661 for(r=0;r<HOST_REGS;r++) {
7662 if(r!=EXCLUDE_REG) {
e3234ecf 7663 signed char target_reg=branch_regs[i].regmap[r];
7664 if(target_reg==regs[(ba[i]-start)>>2].regmap_entry[r]) {
57871462 7665 will_dirty_i&=will_dirty[(ba[i]-start)>>2]&(1<<r);
7666 wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
7667 }
e3234ecf 7668 else if(target_reg>=0) {
7669 will_dirty_i&=((unneeded_reg[(ba[i]-start)>>2]>>(target_reg&63))&1)<<r;
7670 wont_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>(target_reg&63))&1)<<r;
57871462 7671 }
7672 // Treat delay slot as part of branch too
7673 /*if(regs[i+1].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
7674 will_dirty[i+1]&=will_dirty[(ba[i]-start)>>2]&(1<<r);
7675 wont_dirty[i+1]|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
7676 }
7677 else
7678 {
7679 will_dirty[i+1]&=~(1<<r);
7680 }*/
7681 }
7682 }
7683 //}
7684 // Merge in delay slot
7685 for(r=0;r<HOST_REGS;r++) {
7686 if(r!=EXCLUDE_REG) {
7687 if(!likely[i]) {
7688 // Might not dirty if likely branch is not taken
7689 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7690 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7691 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7692 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7693 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7694 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7695 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7696 //if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7697 //if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7698 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7699 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7700 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7701 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7702 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7703 }
7704 }
7705 }
7706 }
e3234ecf 7707 // Merge in delay slot (won't dirty)
57871462 7708 for(r=0;r<HOST_REGS;r++) {
7709 if(r!=EXCLUDE_REG) {
7710 if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7711 if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7712 if((regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7713 if((regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7714 if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7715 if((branch_regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7716 if((branch_regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7717 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7718 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7719 if(branch_regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7720 }
7721 }
7722 if(wr) {
7723 #ifndef DESTRUCTIVE_WRITEBACK
7724 branch_regs[i].dirty&=wont_dirty_i;
7725 #endif
7726 branch_regs[i].dirty|=will_dirty_i;
7727 }
7728 }
7729 }
7730 }
1e973cb0 7731 else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
57871462 7732 {
7733 // SYSCALL instruction (software interrupt)
7734 will_dirty_i=0;
7735 wont_dirty_i=0;
7736 }
7737 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
7738 {
7739 // ERET instruction (return from interrupt)
7740 will_dirty_i=0;
7741 wont_dirty_i=0;
7742 }
7743 will_dirty_next=will_dirty_i;
7744 wont_dirty_next=wont_dirty_i;
7745 for(r=0;r<HOST_REGS;r++) {
7746 if(r!=EXCLUDE_REG) {
7747 if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7748 if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7749 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7750 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7751 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7752 if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7753 if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7754 if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7755 if(i>istart) {
7756 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=FJUMP)
7757 {
7758 // Don't store a register immediately after writing it,
7759 // may prevent dual-issue.
7760 if((regs[i].regmap[r]&63)==rt1[i-1]) wont_dirty_i|=1<<r;
7761 if((regs[i].regmap[r]&63)==rt2[i-1]) wont_dirty_i|=1<<r;
7762 }
7763 }
7764 }
7765 }
7766 // Save it
7767 will_dirty[i]=will_dirty_i;
7768 wont_dirty[i]=wont_dirty_i;
7769 // Mark registers that won't be dirtied as not dirty
7770 if(wr) {
7771 /*printf("wr (%d,%d) %x will:",istart,iend,start+i*4);
7772 for(r=0;r<HOST_REGS;r++) {
7773 if((will_dirty_i>>r)&1) {
7774 printf(" r%d",r);
7775 }
7776 }
7777 printf("\n");*/
7778
7779 //if(i==istart||(itype[i-1]!=RJUMP&&itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=FJUMP)) {
7780 regs[i].dirty|=will_dirty_i;
7781 #ifndef DESTRUCTIVE_WRITEBACK
7782 regs[i].dirty&=wont_dirty_i;
7783 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
7784 {
7785 if(i<iend-1&&itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000) {
7786 for(r=0;r<HOST_REGS;r++) {
7787 if(r!=EXCLUDE_REG) {
7788 if(regs[i].regmap[r]==regmap_pre[i+2][r]) {
7789 regs[i+2].wasdirty&=wont_dirty_i|~(1<<r);
7790 }else {/*printf("i: %x (%d) mismatch(+2): %d\n",start+i*4,i,r);/*assert(!((wont_dirty_i>>r)&1));*/}
7791 }
7792 }
7793 }
7794 }
7795 else
7796 {
7797 if(i<iend) {
7798 for(r=0;r<HOST_REGS;r++) {
7799 if(r!=EXCLUDE_REG) {
7800 if(regs[i].regmap[r]==regmap_pre[i+1][r]) {
7801 regs[i+1].wasdirty&=wont_dirty_i|~(1<<r);
7802 }else {/*printf("i: %x (%d) mismatch(+1): %d\n",start+i*4,i,r);/*assert(!((wont_dirty_i>>r)&1));*/}
7803 }
7804 }
7805 }
7806 }
7807 #endif
7808 //}
7809 }
7810 // Deal with changed mappings
7811 temp_will_dirty=will_dirty_i;
7812 temp_wont_dirty=wont_dirty_i;
7813 for(r=0;r<HOST_REGS;r++) {
7814 if(r!=EXCLUDE_REG) {
7815 int nr;
7816 if(regs[i].regmap[r]==regmap_pre[i][r]) {
7817 if(wr) {
7818 #ifndef DESTRUCTIVE_WRITEBACK
7819 regs[i].wasdirty&=wont_dirty_i|~(1<<r);
7820 #endif
7821 regs[i].wasdirty|=will_dirty_i&(1<<r);
7822 }
7823 }
f776eb14 7824 else if(regmap_pre[i][r]>=0&&(nr=get_reg(regs[i].regmap,regmap_pre[i][r]))>=0) {
57871462 7825 // Register moved to a different register
7826 will_dirty_i&=~(1<<r);
7827 wont_dirty_i&=~(1<<r);
7828 will_dirty_i|=((temp_will_dirty>>nr)&1)<<r;
7829 wont_dirty_i|=((temp_wont_dirty>>nr)&1)<<r;
7830 if(wr) {
7831 #ifndef DESTRUCTIVE_WRITEBACK
7832 regs[i].wasdirty&=wont_dirty_i|~(1<<r);
7833 #endif
7834 regs[i].wasdirty|=will_dirty_i&(1<<r);
7835 }
7836 }
7837 else {
7838 will_dirty_i&=~(1<<r);
7839 wont_dirty_i&=~(1<<r);
7840 if((regmap_pre[i][r]&63)>0 && (regmap_pre[i][r]&63)<34) {
7841 will_dirty_i|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7842 wont_dirty_i|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7843 } else {
7844 wont_dirty_i|=1<<r;
7845 /*printf("i: %x (%d) mismatch: %d\n",start+i*4,i,r);/*assert(!((will_dirty>>r)&1));*/
7846 }
7847 }
7848 }
7849 }
7850 }
7851}
7852
4600ba03 7853#ifdef DISASM
57871462 7854 /* disassembly */
7855void disassemble_inst(int i)
7856{
7857 if (bt[i]) printf("*"); else printf(" ");
7858 switch(itype[i]) {
7859 case UJUMP:
7860 printf (" %x: %s %8x\n",start+i*4,insn[i],ba[i]);break;
7861 case CJUMP:
7862 printf (" %x: %s r%d,r%d,%8x\n",start+i*4,insn[i],rs1[i],rs2[i],i?start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14):*ba);break;
7863 case SJUMP:
7864 printf (" %x: %s r%d,%8x\n",start+i*4,insn[i],rs1[i],start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14));break;
7865 case FJUMP:
7866 printf (" %x: %s %8x\n",start+i*4,insn[i],ba[i]);break;
7867 case RJUMP:
74426039 7868 if (opcode[i]==0x9&&rt1[i]!=31)
5067f341 7869 printf (" %x: %s r%d,r%d\n",start+i*4,insn[i],rt1[i],rs1[i]);
7870 else
7871 printf (" %x: %s r%d\n",start+i*4,insn[i],rs1[i]);
7872 break;
57871462 7873 case SPAN:
7874 printf (" %x: %s (pagespan) r%d,r%d,%8x\n",start+i*4,insn[i],rs1[i],rs2[i],ba[i]);break;
7875 case IMM16:
7876 if(opcode[i]==0xf) //LUI
7877 printf (" %x: %s r%d,%4x0000\n",start+i*4,insn[i],rt1[i],imm[i]&0xffff);
7878 else
7879 printf (" %x: %s r%d,r%d,%d\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
7880 break;
7881 case LOAD:
7882 case LOADLR:
7883 printf (" %x: %s r%d,r%d+%x\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
7884 break;
7885 case STORE:
7886 case STORELR:
7887 printf (" %x: %s r%d,r%d+%x\n",start+i*4,insn[i],rs2[i],rs1[i],imm[i]);
7888 break;
7889 case ALU:
7890 case SHIFT:
7891 printf (" %x: %s r%d,r%d,r%d\n",start+i*4,insn[i],rt1[i],rs1[i],rs2[i]);
7892 break;
7893 case MULTDIV:
7894 printf (" %x: %s r%d,r%d\n",start+i*4,insn[i],rs1[i],rs2[i]);
7895 break;
7896 case SHIFTIMM:
7897 printf (" %x: %s r%d,r%d,%d\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
7898 break;
7899 case MOV:
7900 if((opcode2[i]&0x1d)==0x10)
7901 printf (" %x: %s r%d\n",start+i*4,insn[i],rt1[i]);
7902 else if((opcode2[i]&0x1d)==0x11)
7903 printf (" %x: %s r%d\n",start+i*4,insn[i],rs1[i]);
7904 else
7905 printf (" %x: %s\n",start+i*4,insn[i]);
7906 break;
7907 case COP0:
7908 if(opcode2[i]==0)
7909 printf (" %x: %s r%d,cpr0[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC0
7910 else if(opcode2[i]==4)
7911 printf (" %x: %s r%d,cpr0[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC0
7912 else printf (" %x: %s\n",start+i*4,insn[i]);
7913 break;
7914 case COP1:
7915 if(opcode2[i]<3)
7916 printf (" %x: %s r%d,cpr1[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC1
7917 else if(opcode2[i]>3)
7918 printf (" %x: %s r%d,cpr1[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC1
7919 else printf (" %x: %s\n",start+i*4,insn[i]);
7920 break;
b9b61529 7921 case COP2:
7922 if(opcode2[i]<3)
7923 printf (" %x: %s r%d,cpr2[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC2
7924 else if(opcode2[i]>3)
7925 printf (" %x: %s r%d,cpr2[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC2
7926 else printf (" %x: %s\n",start+i*4,insn[i]);
7927 break;
57871462 7928 case C1LS:
7929 printf (" %x: %s cpr1[%d],r%d+%x\n",start+i*4,insn[i],(source[i]>>16)&0x1f,rs1[i],imm[i]);
7930 break;
b9b61529 7931 case C2LS:
7932 printf (" %x: %s cpr2[%d],r%d+%x\n",start+i*4,insn[i],(source[i]>>16)&0x1f,rs1[i],imm[i]);
7933 break;
1e973cb0 7934 case INTCALL:
7935 printf (" %x: %s (INTCALL)\n",start+i*4,insn[i]);
7936 break;
57871462 7937 default:
7938 //printf (" %s %8x\n",insn[i],source[i]);
7939 printf (" %x: %s\n",start+i*4,insn[i]);
7940 }
7941}
4600ba03 7942#else
7943static void disassemble_inst(int i) {}
7944#endif // DISASM
57871462 7945
dc990066 7946// clear the state completely, instead of just marking
7947// things invalid like invalidate_all_pages() does
7948void new_dynarec_clear_full()
57871462 7949{
57871462 7950 int n;
35775df7 7951 out=(u_char *)BASE_ADDR;
7952 memset(invalid_code,1,sizeof(invalid_code));
7953 memset(hash_table,0xff,sizeof(hash_table));
57871462 7954 memset(mini_ht,-1,sizeof(mini_ht));
7955 memset(restore_candidate,0,sizeof(restore_candidate));
dc990066 7956 memset(shadow,0,sizeof(shadow));
57871462 7957 copy=shadow;
7958 expirep=16384; // Expiry pointer, +2 blocks
7959 pending_exception=0;
7960 literalcount=0;
57871462 7961 stop_after_jal=0;
9be4ba64 7962 inv_code_start=inv_code_end=~0;
57871462 7963 // TLB
af4ee1fe 7964#ifndef DISABLE_TLB
57871462 7965 using_tlb=0;
7966 for(n=0;n<524288;n++) // 0 .. 0x7FFFFFFF
7967 memory_map[n]=-1;
7968 for(n=524288;n<526336;n++) // 0x80000000 .. 0x807FFFFF
7969 memory_map[n]=((u_int)rdram-0x80000000)>>2;
7970 for(n=526336;n<1048576;n++) // 0x80800000 .. 0xFFFFFFFF
7971 memory_map[n]=-1;
63cb0298 7972#endif
dc990066 7973 for(n=0;n<4096;n++) ll_clear(jump_in+n);
7974 for(n=0;n<4096;n++) ll_clear(jump_out+n);
7975 for(n=0;n<4096;n++) ll_clear(jump_dirty+n);
7976}
7977
7978void new_dynarec_init()
7979{
7980 printf("Init new dynarec\n");
7981 out=(u_char *)BASE_ADDR;
7982 if (mmap (out, 1<<TARGET_SIZE_2,
7983 PROT_READ | PROT_WRITE | PROT_EXEC,
7984 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS,
7985 -1, 0) <= 0) {printf("mmap() failed\n");}
7986#ifdef MUPEN64
7987 rdword=&readmem_dword;
7988 fake_pc.f.r.rs=&readmem_dword;
7989 fake_pc.f.r.rt=&readmem_dword;
7990 fake_pc.f.r.rd=&readmem_dword;
7991#endif
7992 int n;
2573466a 7993 cycle_multiplier=200;
dc990066 7994 new_dynarec_clear_full();
7995#ifdef HOST_IMM8
7996 // Copy this into local area so we don't have to put it in every literal pool
7997 invc_ptr=invalid_code;
7998#endif
24385cae 7999#ifdef MUPEN64
57871462 8000 for(n=0;n<0x8000;n++) { // 0 .. 0x7FFFFFFF
8001 writemem[n] = write_nomem_new;
8002 writememb[n] = write_nomemb_new;
8003 writememh[n] = write_nomemh_new;
24385cae 8004#ifndef FORCE32
57871462 8005 writememd[n] = write_nomemd_new;
24385cae 8006#endif
57871462 8007 readmem[n] = read_nomem_new;
8008 readmemb[n] = read_nomemb_new;
8009 readmemh[n] = read_nomemh_new;
24385cae 8010#ifndef FORCE32
57871462 8011 readmemd[n] = read_nomemd_new;
24385cae 8012#endif
57871462 8013 }
8014 for(n=0x8000;n<0x8080;n++) { // 0x80000000 .. 0x807FFFFF
8015 writemem[n] = write_rdram_new;
8016 writememb[n] = write_rdramb_new;
8017 writememh[n] = write_rdramh_new;
24385cae 8018#ifndef FORCE32
57871462 8019 writememd[n] = write_rdramd_new;
24385cae 8020#endif
57871462 8021 }
8022 for(n=0xC000;n<0x10000;n++) { // 0xC0000000 .. 0xFFFFFFFF
8023 writemem[n] = write_nomem_new;
8024 writememb[n] = write_nomemb_new;
8025 writememh[n] = write_nomemh_new;
24385cae 8026#ifndef FORCE32
57871462 8027 writememd[n] = write_nomemd_new;
24385cae 8028#endif
57871462 8029 readmem[n] = read_nomem_new;
8030 readmemb[n] = read_nomemb_new;
8031 readmemh[n] = read_nomemh_new;
24385cae 8032#ifndef FORCE32
57871462 8033 readmemd[n] = read_nomemd_new;
24385cae 8034#endif
57871462 8035 }
24385cae 8036#endif
57871462 8037 tlb_hacks();
8038 arch_init();
8039}
8040
8041void new_dynarec_cleanup()
8042{
8043 int n;
8044 if (munmap ((void *)BASE_ADDR, 1<<TARGET_SIZE_2) < 0) {printf("munmap() failed\n");}
8045 for(n=0;n<4096;n++) ll_clear(jump_in+n);
8046 for(n=0;n<4096;n++) ll_clear(jump_out+n);
8047 for(n=0;n<4096;n++) ll_clear(jump_dirty+n);
8048 #ifdef ROM_COPY
8049 if (munmap (ROM_COPY, 67108864) < 0) {printf("munmap() failed\n");}
8050 #endif
8051}
8052
8053int new_recompile_block(int addr)
8054{
8055/*
8056 if(addr==0x800cd050) {
8057 int block;
8058 for(block=0x80000;block<0x80800;block++) invalidate_block(block);
8059 int n;
8060 for(n=0;n<=2048;n++) ll_clear(jump_dirty+n);
8061 }
8062*/
8063 //if(Count==365117028) tracedebug=1;
8064 assem_debug("NOTCOMPILED: addr = %x -> %x\n", (int)addr, (int)out);
8065 //printf("NOTCOMPILED: addr = %x -> %x\n", (int)addr, (int)out);
8066 //printf("TRACE: count=%d next=%d (compile %x)\n",Count,next_interupt,addr);
8067 //if(debug)
8068 //printf("TRACE: count=%d next=%d (checksum %x)\n",Count,next_interupt,mchecksum());
8069 //printf("fpu mapping=%x enabled=%x\n",(Status & 0x04000000)>>26,(Status & 0x20000000)>>29);
8070 /*if(Count>=312978186) {
8071 rlist();
8072 }*/
8073 //rlist();
8074 start = (u_int)addr&~3;
8075 //assert(((u_int)addr&1)==0);
2f546f9a 8076 new_dynarec_did_compile=1;
7139f3c8 8077#ifdef PCSX
9ad4d757 8078 if (Config.HLE && start == 0x80001000) // hlecall
560e4a12 8079 {
7139f3c8 8080 // XXX: is this enough? Maybe check hleSoftCall?
bb5285ef 8081 u_int beginning=(u_int)out;
7139f3c8 8082 u_int page=get_page(start);
7139f3c8 8083 invalid_code[start>>12]=0;
8084 emit_movimm(start,0);
8085 emit_writeword(0,(int)&pcaddr);
bb5285ef 8086 emit_jmp((int)new_dyna_leave);
15776b68 8087 literal_pool(0);
bb5285ef 8088#ifdef __arm__
8089 __clear_cache((void *)beginning,out);
8090#endif
9ad4d757 8091 ll_add(jump_in+page,start,(void *)beginning);
7139f3c8 8092 return 0;
8093 }
560e4a12 8094 else if ((u_int)addr < 0x00200000 ||
8095 (0xa0000000 <= addr && addr < 0xa0200000)) {
7139f3c8 8096 // used for BIOS calls mostly?
560e4a12 8097 source = (u_int *)((u_int)rdram+(start&0x1fffff));
8098 pagelimit = (addr&0xa0000000)|0x00200000;
8099 }
8100 else if (!Config.HLE && (
8101/* (0x9fc00000 <= addr && addr < 0x9fc80000) ||*/
8102 (0xbfc00000 <= addr && addr < 0xbfc80000))) {
8103 // BIOS
8104 source = (u_int *)((u_int)psxR+(start&0x7ffff));
8105 pagelimit = (addr&0xfff00000)|0x80000;
7139f3c8 8106 }
8107 else
8108#endif
3d624f89 8109#ifdef MUPEN64
57871462 8110 if ((int)addr >= 0xa4000000 && (int)addr < 0xa4001000) {
8111 source = (u_int *)((u_int)SP_DMEM+start-0xa4000000);
8112 pagelimit = 0xa4001000;
8113 }
3d624f89 8114 else
8115#endif
4cb76aa4 8116 if ((int)addr >= 0x80000000 && (int)addr < 0x80000000+RAM_SIZE) {
57871462 8117 source = (u_int *)((u_int)rdram+start-0x80000000);
4cb76aa4 8118 pagelimit = 0x80000000+RAM_SIZE;
57871462 8119 }
90ae6d4e 8120#ifndef DISABLE_TLB
57871462 8121 else if ((signed int)addr >= (signed int)0xC0000000) {
8122 //printf("addr=%x mm=%x\n",(u_int)addr,(memory_map[start>>12]<<2));
8123 //if(tlb_LUT_r[start>>12])
8124 //source = (u_int *)(((int)rdram)+(tlb_LUT_r[start>>12]&0xFFFFF000)+(((int)addr)&0xFFF)-0x80000000);
8125 if((signed int)memory_map[start>>12]>=0) {
8126 source = (u_int *)((u_int)(start+(memory_map[start>>12]<<2)));
8127 pagelimit=(start+4096)&0xFFFFF000;
8128 int map=memory_map[start>>12];
8129 int i;
8130 for(i=0;i<5;i++) {
8131 //printf("start: %x next: %x\n",map,memory_map[pagelimit>>12]);
8132 if((map&0xBFFFFFFF)==(memory_map[pagelimit>>12]&0xBFFFFFFF)) pagelimit+=4096;
8133 }
8134 assem_debug("pagelimit=%x\n",pagelimit);
8135 assem_debug("mapping=%x (%x)\n",memory_map[start>>12],(memory_map[start>>12]<<2)+start);
8136 }
8137 else {
8138 assem_debug("Compile at unmapped memory address: %x \n", (int)addr);
8139 //assem_debug("start: %x next: %x\n",memory_map[start>>12],memory_map[(start+4096)>>12]);
560e4a12 8140 return -1; // Caller will invoke exception handler
57871462 8141 }
8142 //printf("source= %x\n",(int)source);
8143 }
90ae6d4e 8144#endif
57871462 8145 else {
8146 printf("Compile at bogus memory address: %x \n", (int)addr);
8147 exit(1);
8148 }
8149
8150 /* Pass 1: disassemble */
8151 /* Pass 2: register dependencies, branch targets */
8152 /* Pass 3: register allocation */
8153 /* Pass 4: branch dependencies */
8154 /* Pass 5: pre-alloc */
8155 /* Pass 6: optimize clean/dirty state */
8156 /* Pass 7: flag 32-bit registers */
8157 /* Pass 8: assembly */
8158 /* Pass 9: linker */
8159 /* Pass 10: garbage collection / free memory */
8160
8161 int i,j;
8162 int done=0;
8163 unsigned int type,op,op2;
8164
8165 //printf("addr = %x source = %x %x\n", addr,source,source[0]);
8166
8167 /* Pass 1 disassembly */
8168
8169 for(i=0;!done;i++) {
e1190b87 8170 bt[i]=0;likely[i]=0;ooo[i]=0;op2=0;
8171 minimum_free_regs[i]=0;
57871462 8172 opcode[i]=op=source[i]>>26;
8173 switch(op)
8174 {
8175 case 0x00: strcpy(insn[i],"special"); type=NI;
8176 op2=source[i]&0x3f;
8177 switch(op2)
8178 {
8179 case 0x00: strcpy(insn[i],"SLL"); type=SHIFTIMM; break;
8180 case 0x02: strcpy(insn[i],"SRL"); type=SHIFTIMM; break;
8181 case 0x03: strcpy(insn[i],"SRA"); type=SHIFTIMM; break;
8182 case 0x04: strcpy(insn[i],"SLLV"); type=SHIFT; break;
8183 case 0x06: strcpy(insn[i],"SRLV"); type=SHIFT; break;
8184 case 0x07: strcpy(insn[i],"SRAV"); type=SHIFT; break;
8185 case 0x08: strcpy(insn[i],"JR"); type=RJUMP; break;
8186 case 0x09: strcpy(insn[i],"JALR"); type=RJUMP; break;
8187 case 0x0C: strcpy(insn[i],"SYSCALL"); type=SYSCALL; break;
8188 case 0x0D: strcpy(insn[i],"BREAK"); type=OTHER; break;
8189 case 0x0F: strcpy(insn[i],"SYNC"); type=OTHER; break;
8190 case 0x10: strcpy(insn[i],"MFHI"); type=MOV; break;
8191 case 0x11: strcpy(insn[i],"MTHI"); type=MOV; break;
8192 case 0x12: strcpy(insn[i],"MFLO"); type=MOV; break;
8193 case 0x13: strcpy(insn[i],"MTLO"); type=MOV; break;
57871462 8194 case 0x18: strcpy(insn[i],"MULT"); type=MULTDIV; break;
8195 case 0x19: strcpy(insn[i],"MULTU"); type=MULTDIV; break;
8196 case 0x1A: strcpy(insn[i],"DIV"); type=MULTDIV; break;
8197 case 0x1B: strcpy(insn[i],"DIVU"); type=MULTDIV; break;
57871462 8198 case 0x20: strcpy(insn[i],"ADD"); type=ALU; break;
8199 case 0x21: strcpy(insn[i],"ADDU"); type=ALU; break;
8200 case 0x22: strcpy(insn[i],"SUB"); type=ALU; break;
8201 case 0x23: strcpy(insn[i],"SUBU"); type=ALU; break;
8202 case 0x24: strcpy(insn[i],"AND"); type=ALU; break;
8203 case 0x25: strcpy(insn[i],"OR"); type=ALU; break;
8204 case 0x26: strcpy(insn[i],"XOR"); type=ALU; break;
8205 case 0x27: strcpy(insn[i],"NOR"); type=ALU; break;
8206 case 0x2A: strcpy(insn[i],"SLT"); type=ALU; break;
8207 case 0x2B: strcpy(insn[i],"SLTU"); type=ALU; break;
57871462 8208 case 0x30: strcpy(insn[i],"TGE"); type=NI; break;
8209 case 0x31: strcpy(insn[i],"TGEU"); type=NI; break;
8210 case 0x32: strcpy(insn[i],"TLT"); type=NI; break;
8211 case 0x33: strcpy(insn[i],"TLTU"); type=NI; break;
8212 case 0x34: strcpy(insn[i],"TEQ"); type=NI; break;
8213 case 0x36: strcpy(insn[i],"TNE"); type=NI; break;
7f2607ea 8214#ifndef FORCE32
8215 case 0x14: strcpy(insn[i],"DSLLV"); type=SHIFT; break;
8216 case 0x16: strcpy(insn[i],"DSRLV"); type=SHIFT; break;
8217 case 0x17: strcpy(insn[i],"DSRAV"); type=SHIFT; break;
8218 case 0x1C: strcpy(insn[i],"DMULT"); type=MULTDIV; break;
8219 case 0x1D: strcpy(insn[i],"DMULTU"); type=MULTDIV; break;
8220 case 0x1E: strcpy(insn[i],"DDIV"); type=MULTDIV; break;
8221 case 0x1F: strcpy(insn[i],"DDIVU"); type=MULTDIV; break;
8222 case 0x2C: strcpy(insn[i],"DADD"); type=ALU; break;
8223 case 0x2D: strcpy(insn[i],"DADDU"); type=ALU; break;
8224 case 0x2E: strcpy(insn[i],"DSUB"); type=ALU; break;
8225 case 0x2F: strcpy(insn[i],"DSUBU"); type=ALU; break;
57871462 8226 case 0x38: strcpy(insn[i],"DSLL"); type=SHIFTIMM; break;
8227 case 0x3A: strcpy(insn[i],"DSRL"); type=SHIFTIMM; break;
8228 case 0x3B: strcpy(insn[i],"DSRA"); type=SHIFTIMM; break;
8229 case 0x3C: strcpy(insn[i],"DSLL32"); type=SHIFTIMM; break;
8230 case 0x3E: strcpy(insn[i],"DSRL32"); type=SHIFTIMM; break;
8231 case 0x3F: strcpy(insn[i],"DSRA32"); type=SHIFTIMM; break;
7f2607ea 8232#endif
57871462 8233 }
8234 break;
8235 case 0x01: strcpy(insn[i],"regimm"); type=NI;
8236 op2=(source[i]>>16)&0x1f;
8237 switch(op2)
8238 {
8239 case 0x00: strcpy(insn[i],"BLTZ"); type=SJUMP; break;
8240 case 0x01: strcpy(insn[i],"BGEZ"); type=SJUMP; break;
8241 case 0x02: strcpy(insn[i],"BLTZL"); type=SJUMP; break;
8242 case 0x03: strcpy(insn[i],"BGEZL"); type=SJUMP; break;
8243 case 0x08: strcpy(insn[i],"TGEI"); type=NI; break;
8244 case 0x09: strcpy(insn[i],"TGEIU"); type=NI; break;
8245 case 0x0A: strcpy(insn[i],"TLTI"); type=NI; break;
8246 case 0x0B: strcpy(insn[i],"TLTIU"); type=NI; break;
8247 case 0x0C: strcpy(insn[i],"TEQI"); type=NI; break;
8248 case 0x0E: strcpy(insn[i],"TNEI"); type=NI; break;
8249 case 0x10: strcpy(insn[i],"BLTZAL"); type=SJUMP; break;
8250 case 0x11: strcpy(insn[i],"BGEZAL"); type=SJUMP; break;
8251 case 0x12: strcpy(insn[i],"BLTZALL"); type=SJUMP; break;
8252 case 0x13: strcpy(insn[i],"BGEZALL"); type=SJUMP; break;
8253 }
8254 break;
8255 case 0x02: strcpy(insn[i],"J"); type=UJUMP; break;
8256 case 0x03: strcpy(insn[i],"JAL"); type=UJUMP; break;
8257 case 0x04: strcpy(insn[i],"BEQ"); type=CJUMP; break;
8258 case 0x05: strcpy(insn[i],"BNE"); type=CJUMP; break;
8259 case 0x06: strcpy(insn[i],"BLEZ"); type=CJUMP; break;
8260 case 0x07: strcpy(insn[i],"BGTZ"); type=CJUMP; break;
8261 case 0x08: strcpy(insn[i],"ADDI"); type=IMM16; break;
8262 case 0x09: strcpy(insn[i],"ADDIU"); type=IMM16; break;
8263 case 0x0A: strcpy(insn[i],"SLTI"); type=IMM16; break;
8264 case 0x0B: strcpy(insn[i],"SLTIU"); type=IMM16; break;
8265 case 0x0C: strcpy(insn[i],"ANDI"); type=IMM16; break;
8266 case 0x0D: strcpy(insn[i],"ORI"); type=IMM16; break;
8267 case 0x0E: strcpy(insn[i],"XORI"); type=IMM16; break;
8268 case 0x0F: strcpy(insn[i],"LUI"); type=IMM16; break;
8269 case 0x10: strcpy(insn[i],"cop0"); type=NI;
8270 op2=(source[i]>>21)&0x1f;
8271 switch(op2)
8272 {
8273 case 0x00: strcpy(insn[i],"MFC0"); type=COP0; break;
8274 case 0x04: strcpy(insn[i],"MTC0"); type=COP0; break;
8275 case 0x10: strcpy(insn[i],"tlb"); type=NI;
8276 switch(source[i]&0x3f)
8277 {
8278 case 0x01: strcpy(insn[i],"TLBR"); type=COP0; break;
8279 case 0x02: strcpy(insn[i],"TLBWI"); type=COP0; break;
8280 case 0x06: strcpy(insn[i],"TLBWR"); type=COP0; break;
8281 case 0x08: strcpy(insn[i],"TLBP"); type=COP0; break;
576bbd8f 8282#ifdef PCSX
8283 case 0x10: strcpy(insn[i],"RFE"); type=COP0; break;
8284#else
57871462 8285 case 0x18: strcpy(insn[i],"ERET"); type=COP0; break;
576bbd8f 8286#endif
57871462 8287 }
8288 }
8289 break;
8290 case 0x11: strcpy(insn[i],"cop1"); type=NI;
8291 op2=(source[i]>>21)&0x1f;
8292 switch(op2)
8293 {
8294 case 0x00: strcpy(insn[i],"MFC1"); type=COP1; break;
8295 case 0x01: strcpy(insn[i],"DMFC1"); type=COP1; break;
8296 case 0x02: strcpy(insn[i],"CFC1"); type=COP1; break;
8297 case 0x04: strcpy(insn[i],"MTC1"); type=COP1; break;
8298 case 0x05: strcpy(insn[i],"DMTC1"); type=COP1; break;
8299 case 0x06: strcpy(insn[i],"CTC1"); type=COP1; break;
8300 case 0x08: strcpy(insn[i],"BC1"); type=FJUMP;
8301 switch((source[i]>>16)&0x3)
8302 {
8303 case 0x00: strcpy(insn[i],"BC1F"); break;
8304 case 0x01: strcpy(insn[i],"BC1T"); break;
8305 case 0x02: strcpy(insn[i],"BC1FL"); break;
8306 case 0x03: strcpy(insn[i],"BC1TL"); break;
8307 }
8308 break;
8309 case 0x10: strcpy(insn[i],"C1.S"); type=NI;
8310 switch(source[i]&0x3f)
8311 {
8312 case 0x00: strcpy(insn[i],"ADD.S"); type=FLOAT; break;
8313 case 0x01: strcpy(insn[i],"SUB.S"); type=FLOAT; break;
8314 case 0x02: strcpy(insn[i],"MUL.S"); type=FLOAT; break;
8315 case 0x03: strcpy(insn[i],"DIV.S"); type=FLOAT; break;
8316 case 0x04: strcpy(insn[i],"SQRT.S"); type=FLOAT; break;
8317 case 0x05: strcpy(insn[i],"ABS.S"); type=FLOAT; break;
8318 case 0x06: strcpy(insn[i],"MOV.S"); type=FLOAT; break;
8319 case 0x07: strcpy(insn[i],"NEG.S"); type=FLOAT; break;
8320 case 0x08: strcpy(insn[i],"ROUND.L.S"); type=FCONV; break;
8321 case 0x09: strcpy(insn[i],"TRUNC.L.S"); type=FCONV; break;
8322 case 0x0A: strcpy(insn[i],"CEIL.L.S"); type=FCONV; break;
8323 case 0x0B: strcpy(insn[i],"FLOOR.L.S"); type=FCONV; break;
8324 case 0x0C: strcpy(insn[i],"ROUND.W.S"); type=FCONV; break;
8325 case 0x0D: strcpy(insn[i],"TRUNC.W.S"); type=FCONV; break;
8326 case 0x0E: strcpy(insn[i],"CEIL.W.S"); type=FCONV; break;
8327 case 0x0F: strcpy(insn[i],"FLOOR.W.S"); type=FCONV; break;
8328 case 0x21: strcpy(insn[i],"CVT.D.S"); type=FCONV; break;
8329 case 0x24: strcpy(insn[i],"CVT.W.S"); type=FCONV; break;
8330 case 0x25: strcpy(insn[i],"CVT.L.S"); type=FCONV; break;
8331 case 0x30: strcpy(insn[i],"C.F.S"); type=FCOMP; break;
8332 case 0x31: strcpy(insn[i],"C.UN.S"); type=FCOMP; break;
8333 case 0x32: strcpy(insn[i],"C.EQ.S"); type=FCOMP; break;
8334 case 0x33: strcpy(insn[i],"C.UEQ.S"); type=FCOMP; break;
8335 case 0x34: strcpy(insn[i],"C.OLT.S"); type=FCOMP; break;
8336 case 0x35: strcpy(insn[i],"C.ULT.S"); type=FCOMP; break;
8337 case 0x36: strcpy(insn[i],"C.OLE.S"); type=FCOMP; break;
8338 case 0x37: strcpy(insn[i],"C.ULE.S"); type=FCOMP; break;
8339 case 0x38: strcpy(insn[i],"C.SF.S"); type=FCOMP; break;
8340 case 0x39: strcpy(insn[i],"C.NGLE.S"); type=FCOMP; break;
8341 case 0x3A: strcpy(insn[i],"C.SEQ.S"); type=FCOMP; break;
8342 case 0x3B: strcpy(insn[i],"C.NGL.S"); type=FCOMP; break;
8343 case 0x3C: strcpy(insn[i],"C.LT.S"); type=FCOMP; break;
8344 case 0x3D: strcpy(insn[i],"C.NGE.S"); type=FCOMP; break;
8345 case 0x3E: strcpy(insn[i],"C.LE.S"); type=FCOMP; break;
8346 case 0x3F: strcpy(insn[i],"C.NGT.S"); type=FCOMP; break;
8347 }
8348 break;
8349 case 0x11: strcpy(insn[i],"C1.D"); type=NI;
8350 switch(source[i]&0x3f)
8351 {
8352 case 0x00: strcpy(insn[i],"ADD.D"); type=FLOAT; break;
8353 case 0x01: strcpy(insn[i],"SUB.D"); type=FLOAT; break;
8354 case 0x02: strcpy(insn[i],"MUL.D"); type=FLOAT; break;
8355 case 0x03: strcpy(insn[i],"DIV.D"); type=FLOAT; break;
8356 case 0x04: strcpy(insn[i],"SQRT.D"); type=FLOAT; break;
8357 case 0x05: strcpy(insn[i],"ABS.D"); type=FLOAT; break;
8358 case 0x06: strcpy(insn[i],"MOV.D"); type=FLOAT; break;
8359 case 0x07: strcpy(insn[i],"NEG.D"); type=FLOAT; break;
8360 case 0x08: strcpy(insn[i],"ROUND.L.D"); type=FCONV; break;
8361 case 0x09: strcpy(insn[i],"TRUNC.L.D"); type=FCONV; break;
8362 case 0x0A: strcpy(insn[i],"CEIL.L.D"); type=FCONV; break;
8363 case 0x0B: strcpy(insn[i],"FLOOR.L.D"); type=FCONV; break;
8364 case 0x0C: strcpy(insn[i],"ROUND.W.D"); type=FCONV; break;
8365 case 0x0D: strcpy(insn[i],"TRUNC.W.D"); type=FCONV; break;
8366 case 0x0E: strcpy(insn[i],"CEIL.W.D"); type=FCONV; break;
8367 case 0x0F: strcpy(insn[i],"FLOOR.W.D"); type=FCONV; break;
8368 case 0x20: strcpy(insn[i],"CVT.S.D"); type=FCONV; break;
8369 case 0x24: strcpy(insn[i],"CVT.W.D"); type=FCONV; break;
8370 case 0x25: strcpy(insn[i],"CVT.L.D"); type=FCONV; break;
8371 case 0x30: strcpy(insn[i],"C.F.D"); type=FCOMP; break;
8372 case 0x31: strcpy(insn[i],"C.UN.D"); type=FCOMP; break;
8373 case 0x32: strcpy(insn[i],"C.EQ.D"); type=FCOMP; break;
8374 case 0x33: strcpy(insn[i],"C.UEQ.D"); type=FCOMP; break;
8375 case 0x34: strcpy(insn[i],"C.OLT.D"); type=FCOMP; break;
8376 case 0x35: strcpy(insn[i],"C.ULT.D"); type=FCOMP; break;
8377 case 0x36: strcpy(insn[i],"C.OLE.D"); type=FCOMP; break;
8378 case 0x37: strcpy(insn[i],"C.ULE.D"); type=FCOMP; break;
8379 case 0x38: strcpy(insn[i],"C.SF.D"); type=FCOMP; break;
8380 case 0x39: strcpy(insn[i],"C.NGLE.D"); type=FCOMP; break;
8381 case 0x3A: strcpy(insn[i],"C.SEQ.D"); type=FCOMP; break;
8382 case 0x3B: strcpy(insn[i],"C.NGL.D"); type=FCOMP; break;
8383 case 0x3C: strcpy(insn[i],"C.LT.D"); type=FCOMP; break;
8384 case 0x3D: strcpy(insn[i],"C.NGE.D"); type=FCOMP; break;
8385 case 0x3E: strcpy(insn[i],"C.LE.D"); type=FCOMP; break;
8386 case 0x3F: strcpy(insn[i],"C.NGT.D"); type=FCOMP; break;
8387 }
8388 break;
8389 case 0x14: strcpy(insn[i],"C1.W"); type=NI;
8390 switch(source[i]&0x3f)
8391 {
8392 case 0x20: strcpy(insn[i],"CVT.S.W"); type=FCONV; break;
8393 case 0x21: strcpy(insn[i],"CVT.D.W"); type=FCONV; break;
8394 }
8395 break;
8396 case 0x15: strcpy(insn[i],"C1.L"); type=NI;
8397 switch(source[i]&0x3f)
8398 {
8399 case 0x20: strcpy(insn[i],"CVT.S.L"); type=FCONV; break;
8400 case 0x21: strcpy(insn[i],"CVT.D.L"); type=FCONV; break;
8401 }
8402 break;
8403 }
8404 break;
909168d6 8405#ifndef FORCE32
57871462 8406 case 0x14: strcpy(insn[i],"BEQL"); type=CJUMP; break;
8407 case 0x15: strcpy(insn[i],"BNEL"); type=CJUMP; break;
8408 case 0x16: strcpy(insn[i],"BLEZL"); type=CJUMP; break;
8409 case 0x17: strcpy(insn[i],"BGTZL"); type=CJUMP; break;
8410 case 0x18: strcpy(insn[i],"DADDI"); type=IMM16; break;
8411 case 0x19: strcpy(insn[i],"DADDIU"); type=IMM16; break;
8412 case 0x1A: strcpy(insn[i],"LDL"); type=LOADLR; break;
8413 case 0x1B: strcpy(insn[i],"LDR"); type=LOADLR; break;
996cc15d 8414#endif
57871462 8415 case 0x20: strcpy(insn[i],"LB"); type=LOAD; break;
8416 case 0x21: strcpy(insn[i],"LH"); type=LOAD; break;
8417 case 0x22: strcpy(insn[i],"LWL"); type=LOADLR; break;
8418 case 0x23: strcpy(insn[i],"LW"); type=LOAD; break;
8419 case 0x24: strcpy(insn[i],"LBU"); type=LOAD; break;
8420 case 0x25: strcpy(insn[i],"LHU"); type=LOAD; break;
8421 case 0x26: strcpy(insn[i],"LWR"); type=LOADLR; break;
64bd6f82 8422#ifndef FORCE32
57871462 8423 case 0x27: strcpy(insn[i],"LWU"); type=LOAD; break;
64bd6f82 8424#endif
57871462 8425 case 0x28: strcpy(insn[i],"SB"); type=STORE; break;
8426 case 0x29: strcpy(insn[i],"SH"); type=STORE; break;
8427 case 0x2A: strcpy(insn[i],"SWL"); type=STORELR; break;
8428 case 0x2B: strcpy(insn[i],"SW"); type=STORE; break;
996cc15d 8429#ifndef FORCE32
57871462 8430 case 0x2C: strcpy(insn[i],"SDL"); type=STORELR; break;
8431 case 0x2D: strcpy(insn[i],"SDR"); type=STORELR; break;
996cc15d 8432#endif
57871462 8433 case 0x2E: strcpy(insn[i],"SWR"); type=STORELR; break;
8434 case 0x2F: strcpy(insn[i],"CACHE"); type=NOP; break;
8435 case 0x30: strcpy(insn[i],"LL"); type=NI; break;
8436 case 0x31: strcpy(insn[i],"LWC1"); type=C1LS; break;
996cc15d 8437#ifndef FORCE32
57871462 8438 case 0x34: strcpy(insn[i],"LLD"); type=NI; break;
8439 case 0x35: strcpy(insn[i],"LDC1"); type=C1LS; break;
8440 case 0x37: strcpy(insn[i],"LD"); type=LOAD; break;
996cc15d 8441#endif
57871462 8442 case 0x38: strcpy(insn[i],"SC"); type=NI; break;
8443 case 0x39: strcpy(insn[i],"SWC1"); type=C1LS; break;
996cc15d 8444#ifndef FORCE32
57871462 8445 case 0x3C: strcpy(insn[i],"SCD"); type=NI; break;
8446 case 0x3D: strcpy(insn[i],"SDC1"); type=C1LS; break;
8447 case 0x3F: strcpy(insn[i],"SD"); type=STORE; break;
996cc15d 8448#endif
b9b61529 8449#ifdef PCSX
8450 case 0x12: strcpy(insn[i],"COP2"); type=NI;
8451 op2=(source[i]>>21)&0x1f;
bedfea38 8452 //if (op2 & 0x10) {
8453 if (source[i]&0x3f) { // use this hack to support old savestates with patched gte insns
c7abc864 8454 if (gte_handlers[source[i]&0x3f]!=NULL) {
bedfea38 8455 if (gte_regnames[source[i]&0x3f]!=NULL)
8456 strcpy(insn[i],gte_regnames[source[i]&0x3f]);
8457 else
8458 snprintf(insn[i], sizeof(insn[i]), "COP2 %x", source[i]&0x3f);
c7abc864 8459 type=C2OP;
8460 }
8461 }
8462 else switch(op2)
b9b61529 8463 {
8464 case 0x00: strcpy(insn[i],"MFC2"); type=COP2; break;
8465 case 0x02: strcpy(insn[i],"CFC2"); type=COP2; break;
8466 case 0x04: strcpy(insn[i],"MTC2"); type=COP2; break;
8467 case 0x06: strcpy(insn[i],"CTC2"); type=COP2; break;
b9b61529 8468 }
8469 break;
8470 case 0x32: strcpy(insn[i],"LWC2"); type=C2LS; break;
8471 case 0x3A: strcpy(insn[i],"SWC2"); type=C2LS; break;
8472 case 0x3B: strcpy(insn[i],"HLECALL"); type=HLECALL; break;
8473#endif
90ae6d4e 8474 default: strcpy(insn[i],"???"); type=NI;
75dec299 8475 printf("NI %08x @%08x (%08x)\n", source[i], addr + i*4, addr);
90ae6d4e 8476 break;
57871462 8477 }
8478 itype[i]=type;
8479 opcode2[i]=op2;
8480 /* Get registers/immediates */
8481 lt1[i]=0;
8482 us1[i]=0;
8483 us2[i]=0;
8484 dep1[i]=0;
8485 dep2[i]=0;
bedfea38 8486 gte_rs[i]=gte_rt[i]=0;
57871462 8487 switch(type) {
8488 case LOAD:
8489 rs1[i]=(source[i]>>21)&0x1f;
8490 rs2[i]=0;
8491 rt1[i]=(source[i]>>16)&0x1f;
8492 rt2[i]=0;
8493 imm[i]=(short)source[i];
8494 break;
8495 case STORE:
8496 case STORELR:
8497 rs1[i]=(source[i]>>21)&0x1f;
8498 rs2[i]=(source[i]>>16)&0x1f;
8499 rt1[i]=0;
8500 rt2[i]=0;
8501 imm[i]=(short)source[i];
8502 if(op==0x2c||op==0x2d||op==0x3f) us1[i]=rs2[i]; // 64-bit SDL/SDR/SD
8503 break;
8504 case LOADLR:
8505 // LWL/LWR only load part of the register,
8506 // therefore the target register must be treated as a source too
8507 rs1[i]=(source[i]>>21)&0x1f;
8508 rs2[i]=(source[i]>>16)&0x1f;
8509 rt1[i]=(source[i]>>16)&0x1f;
8510 rt2[i]=0;
8511 imm[i]=(short)source[i];
8512 if(op==0x1a||op==0x1b) us1[i]=rs2[i]; // LDR/LDL
8513 if(op==0x26) dep1[i]=rt1[i]; // LWR
8514 break;
8515 case IMM16:
8516 if (op==0x0f) rs1[i]=0; // LUI instruction has no source register
8517 else rs1[i]=(source[i]>>21)&0x1f;
8518 rs2[i]=0;
8519 rt1[i]=(source[i]>>16)&0x1f;
8520 rt2[i]=0;
8521 if(op>=0x0c&&op<=0x0e) { // ANDI/ORI/XORI
8522 imm[i]=(unsigned short)source[i];
8523 }else{
8524 imm[i]=(short)source[i];
8525 }
8526 if(op==0x18||op==0x19) us1[i]=rs1[i]; // DADDI/DADDIU
8527 if(op==0x0a||op==0x0b) us1[i]=rs1[i]; // SLTI/SLTIU
8528 if(op==0x0d||op==0x0e) dep1[i]=rs1[i]; // ORI/XORI
8529 break;
8530 case UJUMP:
8531 rs1[i]=0;
8532 rs2[i]=0;
8533 rt1[i]=0;
8534 rt2[i]=0;
8535 // The JAL instruction writes to r31.
8536 if (op&1) {
8537 rt1[i]=31;
8538 }
8539 rs2[i]=CCREG;
8540 break;
8541 case RJUMP:
8542 rs1[i]=(source[i]>>21)&0x1f;
8543 rs2[i]=0;
8544 rt1[i]=0;
8545 rt2[i]=0;
5067f341 8546 // The JALR instruction writes to rd.
57871462 8547 if (op2&1) {
5067f341 8548 rt1[i]=(source[i]>>11)&0x1f;
57871462 8549 }
8550 rs2[i]=CCREG;
8551 break;
8552 case CJUMP:
8553 rs1[i]=(source[i]>>21)&0x1f;
8554 rs2[i]=(source[i]>>16)&0x1f;
8555 rt1[i]=0;
8556 rt2[i]=0;
8557 if(op&2) { // BGTZ/BLEZ
8558 rs2[i]=0;
8559 }
8560 us1[i]=rs1[i];
8561 us2[i]=rs2[i];
8562 likely[i]=op>>4;
8563 break;
8564 case SJUMP:
8565 rs1[i]=(source[i]>>21)&0x1f;
8566 rs2[i]=CCREG;
8567 rt1[i]=0;
8568 rt2[i]=0;
8569 us1[i]=rs1[i];
8570 if(op2&0x10) { // BxxAL
8571 rt1[i]=31;
8572 // NOTE: If the branch is not taken, r31 is still overwritten
8573 }
8574 likely[i]=(op2&2)>>1;
8575 break;
8576 case FJUMP:
8577 rs1[i]=FSREG;
8578 rs2[i]=CSREG;
8579 rt1[i]=0;
8580 rt2[i]=0;
8581 likely[i]=((source[i])>>17)&1;
8582 break;
8583 case ALU:
8584 rs1[i]=(source[i]>>21)&0x1f; // source
8585 rs2[i]=(source[i]>>16)&0x1f; // subtract amount
8586 rt1[i]=(source[i]>>11)&0x1f; // destination
8587 rt2[i]=0;
8588 if(op2==0x2a||op2==0x2b) { // SLT/SLTU
8589 us1[i]=rs1[i];us2[i]=rs2[i];
8590 }
8591 else if(op2>=0x24&&op2<=0x27) { // AND/OR/XOR/NOR
8592 dep1[i]=rs1[i];dep2[i]=rs2[i];
8593 }
8594 else if(op2>=0x2c&&op2<=0x2f) { // DADD/DSUB
8595 dep1[i]=rs1[i];dep2[i]=rs2[i];
8596 }
8597 break;
8598 case MULTDIV:
8599 rs1[i]=(source[i]>>21)&0x1f; // source
8600 rs2[i]=(source[i]>>16)&0x1f; // divisor
8601 rt1[i]=HIREG;
8602 rt2[i]=LOREG;
8603 if (op2>=0x1c&&op2<=0x1f) { // DMULT/DMULTU/DDIV/DDIVU
8604 us1[i]=rs1[i];us2[i]=rs2[i];
8605 }
8606 break;
8607 case MOV:
8608 rs1[i]=0;
8609 rs2[i]=0;
8610 rt1[i]=0;
8611 rt2[i]=0;
8612 if(op2==0x10) rs1[i]=HIREG; // MFHI
8613 if(op2==0x11) rt1[i]=HIREG; // MTHI
8614 if(op2==0x12) rs1[i]=LOREG; // MFLO
8615 if(op2==0x13) rt1[i]=LOREG; // MTLO
8616 if((op2&0x1d)==0x10) rt1[i]=(source[i]>>11)&0x1f; // MFxx
8617 if((op2&0x1d)==0x11) rs1[i]=(source[i]>>21)&0x1f; // MTxx
8618 dep1[i]=rs1[i];
8619 break;
8620 case SHIFT:
8621 rs1[i]=(source[i]>>16)&0x1f; // target of shift
8622 rs2[i]=(source[i]>>21)&0x1f; // shift amount
8623 rt1[i]=(source[i]>>11)&0x1f; // destination
8624 rt2[i]=0;
8625 // DSLLV/DSRLV/DSRAV are 64-bit
8626 if(op2>=0x14&&op2<=0x17) us1[i]=rs1[i];
8627 break;
8628 case SHIFTIMM:
8629 rs1[i]=(source[i]>>16)&0x1f;
8630 rs2[i]=0;
8631 rt1[i]=(source[i]>>11)&0x1f;
8632 rt2[i]=0;
8633 imm[i]=(source[i]>>6)&0x1f;
8634 // DSxx32 instructions
8635 if(op2>=0x3c) imm[i]|=0x20;
8636 // DSLL/DSRL/DSRA/DSRA32/DSRL32 but not DSLL32 require 64-bit source
8637 if(op2>=0x38&&op2!=0x3c) us1[i]=rs1[i];
8638 break;
8639 case COP0:
8640 rs1[i]=0;
8641 rs2[i]=0;
8642 rt1[i]=0;
8643 rt2[i]=0;
8644 if(op2==0) rt1[i]=(source[i]>>16)&0x1F; // MFC0
8645 if(op2==4) rs1[i]=(source[i]>>16)&0x1F; // MTC0
8646 if(op2==4&&((source[i]>>11)&0x1f)==12) rt2[i]=CSREG; // Status
8647 if(op2==16) if((source[i]&0x3f)==0x18) rs2[i]=CCREG; // ERET
8648 break;
8649 case COP1:
8650 rs1[i]=0;
8651 rs2[i]=0;
8652 rt1[i]=0;
8653 rt2[i]=0;
8654 if(op2<3) rt1[i]=(source[i]>>16)&0x1F; // MFC1/DMFC1/CFC1
8655 if(op2>3) rs1[i]=(source[i]>>16)&0x1F; // MTC1/DMTC1/CTC1
8656 if(op2==5) us1[i]=rs1[i]; // DMTC1
8657 rs2[i]=CSREG;
8658 break;
bedfea38 8659 case COP2:
8660 rs1[i]=0;
8661 rs2[i]=0;
8662 rt1[i]=0;
8663 rt2[i]=0;
8664 if(op2<3) rt1[i]=(source[i]>>16)&0x1F; // MFC2/CFC2
8665 if(op2>3) rs1[i]=(source[i]>>16)&0x1F; // MTC2/CTC2
8666 rs2[i]=CSREG;
8667 int gr=(source[i]>>11)&0x1F;
8668 switch(op2)
8669 {
8670 case 0x00: gte_rs[i]=1ll<<gr; break; // MFC2
8671 case 0x04: gte_rt[i]=1ll<<gr; break; // MTC2
0ff8c62c 8672 case 0x02: gte_rs[i]=1ll<<(gr+32); break; // CFC2
bedfea38 8673 case 0x06: gte_rt[i]=1ll<<(gr+32); break; // CTC2
8674 }
8675 break;
57871462 8676 case C1LS:
8677 rs1[i]=(source[i]>>21)&0x1F;
8678 rs2[i]=CSREG;
8679 rt1[i]=0;
8680 rt2[i]=0;
8681 imm[i]=(short)source[i];
8682 break;
b9b61529 8683 case C2LS:
8684 rs1[i]=(source[i]>>21)&0x1F;
8685 rs2[i]=0;
8686 rt1[i]=0;
8687 rt2[i]=0;
8688 imm[i]=(short)source[i];
bedfea38 8689 if(op==0x32) gte_rt[i]=1ll<<((source[i]>>16)&0x1F); // LWC2
8690 else gte_rs[i]=1ll<<((source[i]>>16)&0x1F); // SWC2
8691 break;
8692 case C2OP:
8693 rs1[i]=0;
8694 rs2[i]=0;
8695 rt1[i]=0;
8696 rt2[i]=0;
2167bef6 8697 gte_rs[i]=gte_reg_reads[source[i]&0x3f];
8698 gte_rt[i]=gte_reg_writes[source[i]&0x3f];
8699 gte_rt[i]|=1ll<<63; // every op changes flags
587a5b1c 8700 if((source[i]&0x3f)==GTE_MVMVA) {
8701 int v = (source[i] >> 15) & 3;
8702 gte_rs[i]&=~0xe3fll;
8703 if(v==3) gte_rs[i]|=0xe00ll;
8704 else gte_rs[i]|=3ll<<(v*2);
8705 }
b9b61529 8706 break;
57871462 8707 case FLOAT:
8708 case FCONV:
8709 rs1[i]=0;
8710 rs2[i]=CSREG;
8711 rt1[i]=0;
8712 rt2[i]=0;
8713 break;
8714 case FCOMP:
8715 rs1[i]=FSREG;
8716 rs2[i]=CSREG;
8717 rt1[i]=FSREG;
8718 rt2[i]=0;
8719 break;
8720 case SYSCALL:
7139f3c8 8721 case HLECALL:
1e973cb0 8722 case INTCALL:
57871462 8723 rs1[i]=CCREG;
8724 rs2[i]=0;
8725 rt1[i]=0;
8726 rt2[i]=0;
8727 break;
8728 default:
8729 rs1[i]=0;
8730 rs2[i]=0;
8731 rt1[i]=0;
8732 rt2[i]=0;
8733 }
8734 /* Calculate branch target addresses */
8735 if(type==UJUMP)
8736 ba[i]=((start+i*4+4)&0xF0000000)|(((unsigned int)source[i]<<6)>>4);
8737 else if(type==CJUMP&&rs1[i]==rs2[i]&&(op&1))
8738 ba[i]=start+i*4+8; // Ignore never taken branch
8739 else if(type==SJUMP&&rs1[i]==0&&!(op2&1))
8740 ba[i]=start+i*4+8; // Ignore never taken branch
8741 else if(type==CJUMP||type==SJUMP||type==FJUMP)
8742 ba[i]=start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14);
8743 else ba[i]=-1;
26869094 8744#ifdef PCSX
3e535354 8745 if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)) {
8746 int do_in_intrp=0;
8747 // branch in delay slot?
8748 if(type==RJUMP||type==UJUMP||type==CJUMP||type==SJUMP||type==FJUMP) {
8749 // don't handle first branch and call interpreter if it's hit
8750 printf("branch in delay slot @%08x (%08x)\n", addr + i*4, addr);
8751 do_in_intrp=1;
8752 }
8753 // basic load delay detection
8754 else if((type==LOAD||type==LOADLR||type==COP0||type==COP2||type==C2LS)&&rt1[i]!=0) {
8755 int t=(ba[i-1]-start)/4;
8756 if(0 <= t && t < i &&(rt1[i]==rs1[t]||rt1[i]==rs2[t])&&itype[t]!=CJUMP&&itype[t]!=SJUMP) {
8757 // jump target wants DS result - potential load delay effect
8758 printf("load delay @%08x (%08x)\n", addr + i*4, addr);
8759 do_in_intrp=1;
8760 bt[t+1]=1; // expected return from interpreter
8761 }
8762 else if(i>=2&&rt1[i-2]==2&&rt1[i]==2&&rs1[i]!=2&&rs2[i]!=2&&rs1[i-1]!=2&&rs2[i-1]!=2&&
8763 !(i>=3&&(itype[i-3]==RJUMP||itype[i-3]==UJUMP||itype[i-3]==CJUMP||itype[i-3]==SJUMP))) {
8764 // v0 overwrite like this is a sign of trouble, bail out
8765 printf("v0 overwrite @%08x (%08x)\n", addr + i*4, addr);
8766 do_in_intrp=1;
8767 }
8768 }
3e535354 8769 if(do_in_intrp) {
8770 rs1[i-1]=CCREG;
8771 rs2[i-1]=rt1[i-1]=rt2[i-1]=0;
26869094 8772 ba[i-1]=-1;
8773 itype[i-1]=INTCALL;
8774 done=2;
3e535354 8775 i--; // don't compile the DS
26869094 8776 }
3e535354 8777 }
26869094 8778#endif
3e535354 8779 /* Is this the end of the block? */
8780 if(i>0&&(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)) {
5067f341 8781 if(rt1[i-1]==0) { // Continue past subroutine call (JAL)
1e973cb0 8782 done=2;
57871462 8783 }
8784 else {
8785 if(stop_after_jal) done=1;
8786 // Stop on BREAK
8787 if((source[i+1]&0xfc00003f)==0x0d) done=1;
8788 }
8789 // Don't recompile stuff that's already compiled
8790 if(check_addr(start+i*4+4)) done=1;
8791 // Don't get too close to the limit
8792 if(i>MAXBLOCK/2) done=1;
8793 }
75dec299 8794 if(itype[i]==SYSCALL&&stop_after_jal) done=1;
1e973cb0 8795 if(itype[i]==HLECALL||itype[i]==INTCALL) done=2;
8796 if(done==2) {
8797 // Does the block continue due to a branch?
8798 for(j=i-1;j>=0;j--)
8799 {
2a706964 8800 if(ba[j]==start+i*4) done=j=0; // Branch into delay slot
1e973cb0 8801 if(ba[j]==start+i*4+4) done=j=0;
8802 if(ba[j]==start+i*4+8) done=j=0;
8803 }
8804 }
75dec299 8805 //assert(i<MAXBLOCK-1);
57871462 8806 if(start+i*4==pagelimit-4) done=1;
8807 assert(start+i*4<pagelimit);
8808 if (i==MAXBLOCK-1) done=1;
8809 // Stop if we're compiling junk
8810 if(itype[i]==NI&&opcode[i]==0x11) {
8811 done=stop_after_jal=1;
8812 printf("Disabled speculative precompilation\n");
8813 }
8814 }
8815 slen=i;
8816 if(itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==RJUMP||itype[i-1]==FJUMP) {
8817 if(start+i*4==pagelimit) {
8818 itype[i-1]=SPAN;
8819 }
8820 }
8821 assert(slen>0);
8822
8823 /* Pass 2 - Register dependencies and branch targets */
8824
8825 unneeded_registers(0,slen-1,0);
8826
8827 /* Pass 3 - Register allocation */
8828
8829 struct regstat current; // Current register allocations/status
8830 current.is32=1;
8831 current.dirty=0;
8832 current.u=unneeded_reg[0];
8833 current.uu=unneeded_reg_upper[0];
8834 clear_all_regs(current.regmap);
8835 alloc_reg(&current,0,CCREG);
8836 dirty_reg(&current,CCREG);
8837 current.isconst=0;
8838 current.wasconst=0;
27727b63 8839 current.waswritten=0;
57871462 8840 int ds=0;
8841 int cc=0;
5194fb95 8842 int hr=-1;
6ebf4adf 8843
8844#ifndef FORCE32
57871462 8845 provisional_32bit();
6ebf4adf 8846#endif
57871462 8847 if((u_int)addr&1) {
8848 // First instruction is delay slot
8849 cc=-1;
8850 bt[1]=1;
8851 ds=1;
8852 unneeded_reg[0]=1;
8853 unneeded_reg_upper[0]=1;
8854 current.regmap[HOST_BTREG]=BTREG;
8855 }
8856
8857 for(i=0;i<slen;i++)
8858 {
8859 if(bt[i])
8860 {
8861 int hr;
8862 for(hr=0;hr<HOST_REGS;hr++)
8863 {
8864 // Is this really necessary?
8865 if(current.regmap[hr]==0) current.regmap[hr]=-1;
8866 }
8867 current.isconst=0;
27727b63 8868 current.waswritten=0;
57871462 8869 }
8870 if(i>1)
8871 {
8872 if((opcode[i-2]&0x2f)==0x05) // BNE/BNEL
8873 {
8874 if(rs1[i-2]==0||rs2[i-2]==0)
8875 {
8876 if(rs1[i-2]) {
8877 current.is32|=1LL<<rs1[i-2];
8878 int hr=get_reg(current.regmap,rs1[i-2]|64);
8879 if(hr>=0) current.regmap[hr]=-1;
8880 }
8881 if(rs2[i-2]) {
8882 current.is32|=1LL<<rs2[i-2];
8883 int hr=get_reg(current.regmap,rs2[i-2]|64);
8884 if(hr>=0) current.regmap[hr]=-1;
8885 }
8886 }
8887 }
8888 }
6ebf4adf 8889#ifndef FORCE32
57871462 8890 // If something jumps here with 64-bit values
8891 // then promote those registers to 64 bits
8892 if(bt[i])
8893 {
8894 uint64_t temp_is32=current.is32;
8895 for(j=i-1;j>=0;j--)
8896 {
8897 if(ba[j]==start+i*4)
8898 temp_is32&=branch_regs[j].is32;
8899 }
8900 for(j=i;j<slen;j++)
8901 {
8902 if(ba[j]==start+i*4)
8903 //temp_is32=1;
8904 temp_is32&=p32[j];
8905 }
8906 if(temp_is32!=current.is32) {
8907 //printf("dumping 32-bit regs (%x)\n",start+i*4);
311301dc 8908 #ifndef DESTRUCTIVE_WRITEBACK
8909 if(ds)
8910 #endif
57871462 8911 for(hr=0;hr<HOST_REGS;hr++)
8912 {
8913 int r=current.regmap[hr];
8914 if(r>0&&r<64)
8915 {
8916 if((current.dirty>>hr)&((current.is32&~temp_is32)>>r)&1) {
8917 temp_is32|=1LL<<r;
8918 //printf("restore %d\n",r);
8919 }
8920 }
8921 }
57871462 8922 current.is32=temp_is32;
8923 }
8924 }
6ebf4adf 8925#else
24385cae 8926 current.is32=-1LL;
8927#endif
8928
57871462 8929 memcpy(regmap_pre[i],current.regmap,sizeof(current.regmap));
8930 regs[i].wasconst=current.isconst;
8931 regs[i].was32=current.is32;
8932 regs[i].wasdirty=current.dirty;
8575a877 8933 regs[i].loadedconst=0;
6ebf4adf 8934 #if defined(DESTRUCTIVE_WRITEBACK) && !defined(FORCE32)
57871462 8935 // To change a dirty register from 32 to 64 bits, we must write
8936 // it out during the previous cycle (for branches, 2 cycles)
8937 if(i<slen-1&&bt[i+1]&&itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP)
8938 {
8939 uint64_t temp_is32=current.is32;
8940 for(j=i-1;j>=0;j--)
8941 {
8942 if(ba[j]==start+i*4+4)
8943 temp_is32&=branch_regs[j].is32;
8944 }
8945 for(j=i;j<slen;j++)
8946 {
8947 if(ba[j]==start+i*4+4)
8948 //temp_is32=1;
8949 temp_is32&=p32[j];
8950 }
8951 if(temp_is32!=current.is32) {
8952 //printf("pre-dumping 32-bit regs (%x)\n",start+i*4);
8953 for(hr=0;hr<HOST_REGS;hr++)
8954 {
8955 int r=current.regmap[hr];
8956 if(r>0)
8957 {
8958 if((current.dirty>>hr)&((current.is32&~temp_is32)>>(r&63))&1) {
8959 if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP)
8960 {
8961 if(rs1[i]!=(r&63)&&rs2[i]!=(r&63))
8962 {
8963 //printf("dump %d/r%d\n",hr,r);
8964 current.regmap[hr]=-1;
8965 if(get_reg(current.regmap,r|64)>=0)
8966 current.regmap[get_reg(current.regmap,r|64)]=-1;
8967 }
8968 }
8969 }
8970 }
8971 }
8972 }
8973 }
8974 else if(i<slen-2&&bt[i+2]&&(source[i-1]>>16)!=0x1000&&(itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP))
8975 {
8976 uint64_t temp_is32=current.is32;
8977 for(j=i-1;j>=0;j--)
8978 {
8979 if(ba[j]==start+i*4+8)
8980 temp_is32&=branch_regs[j].is32;
8981 }
8982 for(j=i;j<slen;j++)
8983 {
8984 if(ba[j]==start+i*4+8)
8985 //temp_is32=1;
8986 temp_is32&=p32[j];
8987 }
8988 if(temp_is32!=current.is32) {
8989 //printf("pre-dumping 32-bit regs (%x)\n",start+i*4);
8990 for(hr=0;hr<HOST_REGS;hr++)
8991 {
8992 int r=current.regmap[hr];
8993 if(r>0)
8994 {
8995 if((current.dirty>>hr)&((current.is32&~temp_is32)>>(r&63))&1) {
8996 if(rs1[i]!=(r&63)&&rs2[i]!=(r&63)&&rs1[i+1]!=(r&63)&&rs2[i+1]!=(r&63))
8997 {
8998 //printf("dump %d/r%d\n",hr,r);
8999 current.regmap[hr]=-1;
9000 if(get_reg(current.regmap,r|64)>=0)
9001 current.regmap[get_reg(current.regmap,r|64)]=-1;
9002 }
9003 }
9004 }
9005 }
9006 }
9007 }
9008 #endif
9009 if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP) {
9010 if(i+1<slen) {
9011 current.u=unneeded_reg[i+1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
9012 current.uu=unneeded_reg_upper[i+1]&~((1LL<<us1[i])|(1LL<<us2[i]));
9013 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9014 current.u|=1;
9015 current.uu|=1;
9016 } else {
9017 current.u=1;
9018 current.uu=1;
9019 }
9020 } else {
9021 if(i+1<slen) {
9022 current.u=branch_unneeded_reg[i]&~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
9023 current.uu=branch_unneeded_reg_upper[i]&~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
9024 if((~current.uu>>rt1[i+1])&1) current.uu&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
9025 current.u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
9026 current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
9027 current.u|=1;
9028 current.uu|=1;
9029 } else { printf("oops, branch at end of block with no delay slot\n");exit(1); }
9030 }
9031 is_ds[i]=ds;
9032 if(ds) {
9033 ds=0; // Skip delay slot, already allocated as part of branch
9034 // ...but we need to alloc it in case something jumps here
9035 if(i+1<slen) {
9036 current.u=branch_unneeded_reg[i-1]&unneeded_reg[i+1];
9037 current.uu=branch_unneeded_reg_upper[i-1]&unneeded_reg_upper[i+1];
9038 }else{
9039 current.u=branch_unneeded_reg[i-1];
9040 current.uu=branch_unneeded_reg_upper[i-1];
9041 }
9042 current.u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
9043 current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
9044 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9045 current.u|=1;
9046 current.uu|=1;
9047 struct regstat temp;
9048 memcpy(&temp,&current,sizeof(current));
9049 temp.wasdirty=temp.dirty;
9050 temp.was32=temp.is32;
9051 // TODO: Take into account unconditional branches, as below
9052 delayslot_alloc(&temp,i);
9053 memcpy(regs[i].regmap,temp.regmap,sizeof(temp.regmap));
9054 regs[i].wasdirty=temp.wasdirty;
9055 regs[i].was32=temp.was32;
9056 regs[i].dirty=temp.dirty;
9057 regs[i].is32=temp.is32;
9058 regs[i].isconst=0;
9059 regs[i].wasconst=0;
9060 current.isconst=0;
9061 // Create entry (branch target) regmap
9062 for(hr=0;hr<HOST_REGS;hr++)
9063 {
9064 int r=temp.regmap[hr];
9065 if(r>=0) {
9066 if(r!=regmap_pre[i][hr]) {
9067 regs[i].regmap_entry[hr]=-1;
9068 }
9069 else
9070 {
9071 if(r<64){
9072 if((current.u>>r)&1) {
9073 regs[i].regmap_entry[hr]=-1;
9074 regs[i].regmap[hr]=-1;
9075 //Don't clear regs in the delay slot as the branch might need them
9076 //current.regmap[hr]=-1;
9077 }else
9078 regs[i].regmap_entry[hr]=r;
9079 }
9080 else {
9081 if((current.uu>>(r&63))&1) {
9082 regs[i].regmap_entry[hr]=-1;
9083 regs[i].regmap[hr]=-1;
9084 //Don't clear regs in the delay slot as the branch might need them
9085 //current.regmap[hr]=-1;
9086 }else
9087 regs[i].regmap_entry[hr]=r;
9088 }
9089 }
9090 } else {
9091 // First instruction expects CCREG to be allocated
9092 if(i==0&&hr==HOST_CCREG)
9093 regs[i].regmap_entry[hr]=CCREG;
9094 else
9095 regs[i].regmap_entry[hr]=-1;
9096 }
9097 }
9098 }
9099 else { // Not delay slot
9100 switch(itype[i]) {
9101 case UJUMP:
9102 //current.isconst=0; // DEBUG
9103 //current.wasconst=0; // DEBUG
9104 //regs[i].wasconst=0; // DEBUG
9105 clear_const(&current,rt1[i]);
9106 alloc_cc(&current,i);
9107 dirty_reg(&current,CCREG);
9108 if (rt1[i]==31) {
9109 alloc_reg(&current,i,31);
9110 dirty_reg(&current,31);
4ef8f67d 9111 //assert(rs1[i+1]!=31&&rs2[i+1]!=31);
9112 //assert(rt1[i+1]!=rt1[i]);
57871462 9113 #ifdef REG_PREFETCH
9114 alloc_reg(&current,i,PTEMP);
9115 #endif
9116 //current.is32|=1LL<<rt1[i];
9117 }
269bb29a 9118 ooo[i]=1;
9119 delayslot_alloc(&current,i+1);
57871462 9120 //current.isconst=0; // DEBUG
9121 ds=1;
9122 //printf("i=%d, isconst=%x\n",i,current.isconst);
9123 break;
9124 case RJUMP:
9125 //current.isconst=0;
9126 //current.wasconst=0;
9127 //regs[i].wasconst=0;
9128 clear_const(&current,rs1[i]);
9129 clear_const(&current,rt1[i]);
9130 alloc_cc(&current,i);
9131 dirty_reg(&current,CCREG);
9132 if(rs1[i]!=rt1[i+1]&&rs1[i]!=rt2[i+1]) {
9133 alloc_reg(&current,i,rs1[i]);
5067f341 9134 if (rt1[i]!=0) {
9135 alloc_reg(&current,i,rt1[i]);
9136 dirty_reg(&current,rt1[i]);
68b3faee 9137 assert(rs1[i+1]!=rt1[i]&&rs2[i+1]!=rt1[i]);
076655d1 9138 assert(rt1[i+1]!=rt1[i]);
57871462 9139 #ifdef REG_PREFETCH
9140 alloc_reg(&current,i,PTEMP);
9141 #endif
9142 }
9143 #ifdef USE_MINI_HT
9144 if(rs1[i]==31) { // JALR
9145 alloc_reg(&current,i,RHASH);
9146 #ifndef HOST_IMM_ADDR32
9147 alloc_reg(&current,i,RHTBL);
9148 #endif
9149 }
9150 #endif
9151 delayslot_alloc(&current,i+1);
9152 } else {
9153 // The delay slot overwrites our source register,
9154 // allocate a temporary register to hold the old value.
9155 current.isconst=0;
9156 current.wasconst=0;
9157 regs[i].wasconst=0;
9158 delayslot_alloc(&current,i+1);
9159 current.isconst=0;
9160 alloc_reg(&current,i,RTEMP);
9161 }
9162 //current.isconst=0; // DEBUG
e1190b87 9163 ooo[i]=1;
57871462 9164 ds=1;
9165 break;
9166 case CJUMP:
9167 //current.isconst=0;
9168 //current.wasconst=0;
9169 //regs[i].wasconst=0;
9170 clear_const(&current,rs1[i]);
9171 clear_const(&current,rs2[i]);
9172 if((opcode[i]&0x3E)==4) // BEQ/BNE
9173 {
9174 alloc_cc(&current,i);
9175 dirty_reg(&current,CCREG);
9176 if(rs1[i]) alloc_reg(&current,i,rs1[i]);
9177 if(rs2[i]) alloc_reg(&current,i,rs2[i]);
9178 if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
9179 {
9180 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
9181 if(rs2[i]) alloc_reg64(&current,i,rs2[i]);
9182 }
9183 if((rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]))||
9184 (rs2[i]&&(rs2[i]==rt1[i+1]||rs2[i]==rt2[i+1]))) {
9185 // The delay slot overwrites one of our conditions.
9186 // Allocate the branch condition registers instead.
57871462 9187 current.isconst=0;
9188 current.wasconst=0;
9189 regs[i].wasconst=0;
9190 if(rs1[i]) alloc_reg(&current,i,rs1[i]);
9191 if(rs2[i]) alloc_reg(&current,i,rs2[i]);
9192 if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
9193 {
9194 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
9195 if(rs2[i]) alloc_reg64(&current,i,rs2[i]);
9196 }
9197 }
e1190b87 9198 else
9199 {
9200 ooo[i]=1;
9201 delayslot_alloc(&current,i+1);
9202 }
57871462 9203 }
9204 else
9205 if((opcode[i]&0x3E)==6) // BLEZ/BGTZ
9206 {
9207 alloc_cc(&current,i);
9208 dirty_reg(&current,CCREG);
9209 alloc_reg(&current,i,rs1[i]);
9210 if(!(current.is32>>rs1[i]&1))
9211 {
9212 alloc_reg64(&current,i,rs1[i]);
9213 }
9214 if(rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1])) {
9215 // The delay slot overwrites one of our conditions.
9216 // Allocate the branch condition registers instead.
57871462 9217 current.isconst=0;
9218 current.wasconst=0;
9219 regs[i].wasconst=0;
9220 if(rs1[i]) alloc_reg(&current,i,rs1[i]);
9221 if(!((current.is32>>rs1[i])&1))
9222 {
9223 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
9224 }
9225 }
e1190b87 9226 else
9227 {
9228 ooo[i]=1;
9229 delayslot_alloc(&current,i+1);
9230 }
57871462 9231 }
9232 else
9233 // Don't alloc the delay slot yet because we might not execute it
9234 if((opcode[i]&0x3E)==0x14) // BEQL/BNEL
9235 {
9236 current.isconst=0;
9237 current.wasconst=0;
9238 regs[i].wasconst=0;
9239 alloc_cc(&current,i);
9240 dirty_reg(&current,CCREG);
9241 alloc_reg(&current,i,rs1[i]);
9242 alloc_reg(&current,i,rs2[i]);
9243 if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
9244 {
9245 alloc_reg64(&current,i,rs1[i]);
9246 alloc_reg64(&current,i,rs2[i]);
9247 }
9248 }
9249 else
9250 if((opcode[i]&0x3E)==0x16) // BLEZL/BGTZL
9251 {
9252 current.isconst=0;
9253 current.wasconst=0;
9254 regs[i].wasconst=0;
9255 alloc_cc(&current,i);
9256 dirty_reg(&current,CCREG);
9257 alloc_reg(&current,i,rs1[i]);
9258 if(!(current.is32>>rs1[i]&1))
9259 {
9260 alloc_reg64(&current,i,rs1[i]);
9261 }
9262 }
9263 ds=1;
9264 //current.isconst=0;
9265 break;
9266 case SJUMP:
9267 //current.isconst=0;
9268 //current.wasconst=0;
9269 //regs[i].wasconst=0;
9270 clear_const(&current,rs1[i]);
9271 clear_const(&current,rt1[i]);
9272 //if((opcode2[i]&0x1E)==0x0) // BLTZ/BGEZ
9273 if((opcode2[i]&0x0E)==0x0) // BLTZ/BGEZ
9274 {
9275 alloc_cc(&current,i);
9276 dirty_reg(&current,CCREG);
9277 alloc_reg(&current,i,rs1[i]);
9278 if(!(current.is32>>rs1[i]&1))
9279 {
9280 alloc_reg64(&current,i,rs1[i]);
9281 }
9282 if (rt1[i]==31) { // BLTZAL/BGEZAL
9283 alloc_reg(&current,i,31);
9284 dirty_reg(&current,31);
57871462 9285 //#ifdef REG_PREFETCH
9286 //alloc_reg(&current,i,PTEMP);
9287 //#endif
9288 //current.is32|=1LL<<rt1[i];
9289 }
e1190b87 9290 if((rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1])) // The delay slot overwrites the branch condition.
9291 ||(rt1[i]==31&&(rs1[i+1]==31||rs2[i+1]==31||rt1[i+1]==31||rt2[i+1]==31))) { // DS touches $ra
57871462 9292 // Allocate the branch condition registers instead.
57871462 9293 current.isconst=0;
9294 current.wasconst=0;
9295 regs[i].wasconst=0;
9296 if(rs1[i]) alloc_reg(&current,i,rs1[i]);
9297 if(!((current.is32>>rs1[i])&1))
9298 {
9299 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
9300 }
9301 }
e1190b87 9302 else
9303 {
9304 ooo[i]=1;
9305 delayslot_alloc(&current,i+1);
9306 }
57871462 9307 }
9308 else
9309 // Don't alloc the delay slot yet because we might not execute it
9310 if((opcode2[i]&0x1E)==0x2) // BLTZL/BGEZL
9311 {
9312 current.isconst=0;
9313 current.wasconst=0;
9314 regs[i].wasconst=0;
9315 alloc_cc(&current,i);
9316 dirty_reg(&current,CCREG);
9317 alloc_reg(&current,i,rs1[i]);
9318 if(!(current.is32>>rs1[i]&1))
9319 {
9320 alloc_reg64(&current,i,rs1[i]);
9321 }
9322 }
9323 ds=1;
9324 //current.isconst=0;
9325 break;
9326 case FJUMP:
9327 current.isconst=0;
9328 current.wasconst=0;
9329 regs[i].wasconst=0;
9330 if(likely[i]==0) // BC1F/BC1T
9331 {
9332 // TODO: Theoretically we can run out of registers here on x86.
9333 // The delay slot can allocate up to six, and we need to check
9334 // CSREG before executing the delay slot. Possibly we can drop
9335 // the cycle count and then reload it after checking that the
9336 // FPU is in a usable state, or don't do out-of-order execution.
9337 alloc_cc(&current,i);
9338 dirty_reg(&current,CCREG);
9339 alloc_reg(&current,i,FSREG);
9340 alloc_reg(&current,i,CSREG);
9341 if(itype[i+1]==FCOMP) {
9342 // The delay slot overwrites the branch condition.
9343 // Allocate the branch condition registers instead.
57871462 9344 alloc_cc(&current,i);
9345 dirty_reg(&current,CCREG);
9346 alloc_reg(&current,i,CSREG);
9347 alloc_reg(&current,i,FSREG);
9348 }
9349 else {
e1190b87 9350 ooo[i]=1;
57871462 9351 delayslot_alloc(&current,i+1);
9352 alloc_reg(&current,i+1,CSREG);
9353 }
9354 }
9355 else
9356 // Don't alloc the delay slot yet because we might not execute it
9357 if(likely[i]) // BC1FL/BC1TL
9358 {
9359 alloc_cc(&current,i);
9360 dirty_reg(&current,CCREG);
9361 alloc_reg(&current,i,CSREG);
9362 alloc_reg(&current,i,FSREG);
9363 }
9364 ds=1;
9365 current.isconst=0;
9366 break;
9367 case IMM16:
9368 imm16_alloc(&current,i);
9369 break;
9370 case LOAD:
9371 case LOADLR:
9372 load_alloc(&current,i);
9373 break;
9374 case STORE:
9375 case STORELR:
9376 store_alloc(&current,i);
9377 break;
9378 case ALU:
9379 alu_alloc(&current,i);
9380 break;
9381 case SHIFT:
9382 shift_alloc(&current,i);
9383 break;
9384 case MULTDIV:
9385 multdiv_alloc(&current,i);
9386 break;
9387 case SHIFTIMM:
9388 shiftimm_alloc(&current,i);
9389 break;
9390 case MOV:
9391 mov_alloc(&current,i);
9392 break;
9393 case COP0:
9394 cop0_alloc(&current,i);
9395 break;
9396 case COP1:
b9b61529 9397 case COP2:
57871462 9398 cop1_alloc(&current,i);
9399 break;
9400 case C1LS:
9401 c1ls_alloc(&current,i);
9402 break;
b9b61529 9403 case C2LS:
9404 c2ls_alloc(&current,i);
9405 break;
9406 case C2OP:
9407 c2op_alloc(&current,i);
9408 break;
57871462 9409 case FCONV:
9410 fconv_alloc(&current,i);
9411 break;
9412 case FLOAT:
9413 float_alloc(&current,i);
9414 break;
9415 case FCOMP:
9416 fcomp_alloc(&current,i);
9417 break;
9418 case SYSCALL:
7139f3c8 9419 case HLECALL:
1e973cb0 9420 case INTCALL:
57871462 9421 syscall_alloc(&current,i);
9422 break;
9423 case SPAN:
9424 pagespan_alloc(&current,i);
9425 break;
9426 }
9427
9428 // Drop the upper half of registers that have become 32-bit
9429 current.uu|=current.is32&((1LL<<rt1[i])|(1LL<<rt2[i]));
9430 if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP) {
9431 current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
9432 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9433 current.uu|=1;
9434 } else {
9435 current.uu|=current.is32&((1LL<<rt1[i+1])|(1LL<<rt2[i+1]));
9436 current.uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
9437 if((~current.uu>>rt1[i+1])&1) current.uu&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
9438 current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
9439 current.uu|=1;
9440 }
9441
9442 // Create entry (branch target) regmap
9443 for(hr=0;hr<HOST_REGS;hr++)
9444 {
9445 int r,or,er;
9446 r=current.regmap[hr];
9447 if(r>=0) {
9448 if(r!=regmap_pre[i][hr]) {
9449 // TODO: delay slot (?)
9450 or=get_reg(regmap_pre[i],r); // Get old mapping for this register
9451 if(or<0||(r&63)>=TEMPREG){
9452 regs[i].regmap_entry[hr]=-1;
9453 }
9454 else
9455 {
9456 // Just move it to a different register
9457 regs[i].regmap_entry[hr]=r;
9458 // If it was dirty before, it's still dirty
9459 if((regs[i].wasdirty>>or)&1) dirty_reg(&current,r&63);
9460 }
9461 }
9462 else
9463 {
9464 // Unneeded
9465 if(r==0){
9466 regs[i].regmap_entry[hr]=0;
9467 }
9468 else
9469 if(r<64){
9470 if((current.u>>r)&1) {
9471 regs[i].regmap_entry[hr]=-1;
9472 //regs[i].regmap[hr]=-1;
9473 current.regmap[hr]=-1;
9474 }else
9475 regs[i].regmap_entry[hr]=r;
9476 }
9477 else {
9478 if((current.uu>>(r&63))&1) {
9479 regs[i].regmap_entry[hr]=-1;
9480 //regs[i].regmap[hr]=-1;
9481 current.regmap[hr]=-1;
9482 }else
9483 regs[i].regmap_entry[hr]=r;
9484 }
9485 }
9486 } else {
9487 // Branches expect CCREG to be allocated at the target
9488 if(regmap_pre[i][hr]==CCREG)
9489 regs[i].regmap_entry[hr]=CCREG;
9490 else
9491 regs[i].regmap_entry[hr]=-1;
9492 }
9493 }
9494 memcpy(regs[i].regmap,current.regmap,sizeof(current.regmap));
9495 }
27727b63 9496
9497 if(i>0&&(itype[i-1]==STORE||itype[i-1]==STORELR||(itype[i-1]==C2LS&&opcode[i-1]==0x3a))&&(u_int)imm[i-1]<0x800)
9498 current.waswritten|=1<<rs1[i-1];
9499 current.waswritten&=~(1<<rt1[i]);
9500 current.waswritten&=~(1<<rt2[i]);
9501 if((itype[i]==STORE||itype[i]==STORELR||(itype[i]==C2LS&&opcode[i]==0x3a))&&(u_int)imm[i]>=0x800)
9502 current.waswritten&=~(1<<rs1[i]);
9503
57871462 9504 /* Branch post-alloc */
9505 if(i>0)
9506 {
9507 current.was32=current.is32;
9508 current.wasdirty=current.dirty;
9509 switch(itype[i-1]) {
9510 case UJUMP:
9511 memcpy(&branch_regs[i-1],&current,sizeof(current));
9512 branch_regs[i-1].isconst=0;
9513 branch_regs[i-1].wasconst=0;
9514 branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
9515 branch_regs[i-1].uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
9516 alloc_cc(&branch_regs[i-1],i-1);
9517 dirty_reg(&branch_regs[i-1],CCREG);
9518 if(rt1[i-1]==31) { // JAL
9519 alloc_reg(&branch_regs[i-1],i-1,31);
9520 dirty_reg(&branch_regs[i-1],31);
9521 branch_regs[i-1].is32|=1LL<<31;
9522 }
9523 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
956f3129 9524 memcpy(constmap[i],constmap[i-1],sizeof(current_constmap));
57871462 9525 break;
9526 case RJUMP:
9527 memcpy(&branch_regs[i-1],&current,sizeof(current));
9528 branch_regs[i-1].isconst=0;
9529 branch_regs[i-1].wasconst=0;
9530 branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
9531 branch_regs[i-1].uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
9532 alloc_cc(&branch_regs[i-1],i-1);
9533 dirty_reg(&branch_regs[i-1],CCREG);
9534 alloc_reg(&branch_regs[i-1],i-1,rs1[i-1]);
5067f341 9535 if(rt1[i-1]!=0) { // JALR
9536 alloc_reg(&branch_regs[i-1],i-1,rt1[i-1]);
9537 dirty_reg(&branch_regs[i-1],rt1[i-1]);
9538 branch_regs[i-1].is32|=1LL<<rt1[i-1];
57871462 9539 }
9540 #ifdef USE_MINI_HT
9541 if(rs1[i-1]==31) { // JALR
9542 alloc_reg(&branch_regs[i-1],i-1,RHASH);
9543 #ifndef HOST_IMM_ADDR32
9544 alloc_reg(&branch_regs[i-1],i-1,RHTBL);
9545 #endif
9546 }
9547 #endif
9548 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
956f3129 9549 memcpy(constmap[i],constmap[i-1],sizeof(current_constmap));
57871462 9550 break;
9551 case CJUMP:
9552 if((opcode[i-1]&0x3E)==4) // BEQ/BNE
9553 {
9554 alloc_cc(&current,i-1);
9555 dirty_reg(&current,CCREG);
9556 if((rs1[i-1]&&(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]))||
9557 (rs2[i-1]&&(rs2[i-1]==rt1[i]||rs2[i-1]==rt2[i]))) {
9558 // The delay slot overwrote one of our conditions
9559 // Delay slot goes after the test (in order)
9560 current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
9561 current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
9562 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9563 current.u|=1;
9564 current.uu|=1;
9565 delayslot_alloc(&current,i);
9566 current.isconst=0;
9567 }
9568 else
9569 {
9570 current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
9571 current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
9572 // Alloc the branch condition registers
9573 if(rs1[i-1]) alloc_reg(&current,i-1,rs1[i-1]);
9574 if(rs2[i-1]) alloc_reg(&current,i-1,rs2[i-1]);
9575 if(!((current.is32>>rs1[i-1])&(current.is32>>rs2[i-1])&1))
9576 {
9577 if(rs1[i-1]) alloc_reg64(&current,i-1,rs1[i-1]);
9578 if(rs2[i-1]) alloc_reg64(&current,i-1,rs2[i-1]);
9579 }
9580 }
9581 memcpy(&branch_regs[i-1],&current,sizeof(current));
9582 branch_regs[i-1].isconst=0;
9583 branch_regs[i-1].wasconst=0;
9584 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
956f3129 9585 memcpy(constmap[i],constmap[i-1],sizeof(current_constmap));
57871462 9586 }
9587 else
9588 if((opcode[i-1]&0x3E)==6) // BLEZ/BGTZ
9589 {
9590 alloc_cc(&current,i-1);
9591 dirty_reg(&current,CCREG);
9592 if(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]) {
9593 // The delay slot overwrote the branch condition
9594 // Delay slot goes after the test (in order)
9595 current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
9596 current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
9597 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9598 current.u|=1;
9599 current.uu|=1;
9600 delayslot_alloc(&current,i);
9601 current.isconst=0;
9602 }
9603 else
9604 {
9605 current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
9606 current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
9607 // Alloc the branch condition register
9608 alloc_reg(&current,i-1,rs1[i-1]);
9609 if(!(current.is32>>rs1[i-1]&1))
9610 {
9611 alloc_reg64(&current,i-1,rs1[i-1]);
9612 }
9613 }
9614 memcpy(&branch_regs[i-1],&current,sizeof(current));
9615 branch_regs[i-1].isconst=0;
9616 branch_regs[i-1].wasconst=0;
9617 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
956f3129 9618 memcpy(constmap[i],constmap[i-1],sizeof(current_constmap));
57871462 9619 }
9620 else
9621 // Alloc the delay slot in case the branch is taken
9622 if((opcode[i-1]&0x3E)==0x14) // BEQL/BNEL
9623 {
9624 memcpy(&branch_regs[i-1],&current,sizeof(current));
9625 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9626 branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9627 if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9628 alloc_cc(&branch_regs[i-1],i);
9629 dirty_reg(&branch_regs[i-1],CCREG);
9630 delayslot_alloc(&branch_regs[i-1],i);
9631 branch_regs[i-1].isconst=0;
9632 alloc_reg(&current,i,CCREG); // Not taken path
9633 dirty_reg(&current,CCREG);
9634 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9635 }
9636 else
9637 if((opcode[i-1]&0x3E)==0x16) // BLEZL/BGTZL
9638 {
9639 memcpy(&branch_regs[i-1],&current,sizeof(current));
9640 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9641 branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9642 if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9643 alloc_cc(&branch_regs[i-1],i);
9644 dirty_reg(&branch_regs[i-1],CCREG);
9645 delayslot_alloc(&branch_regs[i-1],i);
9646 branch_regs[i-1].isconst=0;
9647 alloc_reg(&current,i,CCREG); // Not taken path
9648 dirty_reg(&current,CCREG);
9649 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9650 }
9651 break;
9652 case SJUMP:
9653 //if((opcode2[i-1]&0x1E)==0) // BLTZ/BGEZ
9654 if((opcode2[i-1]&0x0E)==0) // BLTZ/BGEZ
9655 {
9656 alloc_cc(&current,i-1);
9657 dirty_reg(&current,CCREG);
9658 if(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]) {
9659 // The delay slot overwrote the branch condition
9660 // Delay slot goes after the test (in order)
9661 current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
9662 current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
9663 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9664 current.u|=1;
9665 current.uu|=1;
9666 delayslot_alloc(&current,i);
9667 current.isconst=0;
9668 }
9669 else
9670 {
9671 current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
9672 current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
9673 // Alloc the branch condition register
9674 alloc_reg(&current,i-1,rs1[i-1]);
9675 if(!(current.is32>>rs1[i-1]&1))
9676 {
9677 alloc_reg64(&current,i-1,rs1[i-1]);
9678 }
9679 }
9680 memcpy(&branch_regs[i-1],&current,sizeof(current));
9681 branch_regs[i-1].isconst=0;
9682 branch_regs[i-1].wasconst=0;
9683 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
956f3129 9684 memcpy(constmap[i],constmap[i-1],sizeof(current_constmap));
57871462 9685 }
9686 else
9687 // Alloc the delay slot in case the branch is taken
9688 if((opcode2[i-1]&0x1E)==2) // BLTZL/BGEZL
9689 {
9690 memcpy(&branch_regs[i-1],&current,sizeof(current));
9691 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9692 branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9693 if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9694 alloc_cc(&branch_regs[i-1],i);
9695 dirty_reg(&branch_regs[i-1],CCREG);
9696 delayslot_alloc(&branch_regs[i-1],i);
9697 branch_regs[i-1].isconst=0;
9698 alloc_reg(&current,i,CCREG); // Not taken path
9699 dirty_reg(&current,CCREG);
9700 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9701 }
9702 // FIXME: BLTZAL/BGEZAL
9703 if(opcode2[i-1]&0x10) { // BxxZAL
9704 alloc_reg(&branch_regs[i-1],i-1,31);
9705 dirty_reg(&branch_regs[i-1],31);
9706 branch_regs[i-1].is32|=1LL<<31;
9707 }
9708 break;
9709 case FJUMP:
9710 if(likely[i-1]==0) // BC1F/BC1T
9711 {
9712 alloc_cc(&current,i-1);
9713 dirty_reg(&current,CCREG);
9714 if(itype[i]==FCOMP) {
9715 // The delay slot overwrote the branch condition
9716 // Delay slot goes after the test (in order)
9717 delayslot_alloc(&current,i);
9718 current.isconst=0;
9719 }
9720 else
9721 {
9722 current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
9723 current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
9724 // Alloc the branch condition register
9725 alloc_reg(&current,i-1,FSREG);
9726 }
9727 memcpy(&branch_regs[i-1],&current,sizeof(current));
9728 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9729 }
9730 else // BC1FL/BC1TL
9731 {
9732 // Alloc the delay slot in case the branch is taken
9733 memcpy(&branch_regs[i-1],&current,sizeof(current));
9734 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9735 branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9736 if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9737 alloc_cc(&branch_regs[i-1],i);
9738 dirty_reg(&branch_regs[i-1],CCREG);
9739 delayslot_alloc(&branch_regs[i-1],i);
9740 branch_regs[i-1].isconst=0;
9741 alloc_reg(&current,i,CCREG); // Not taken path
9742 dirty_reg(&current,CCREG);
9743 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9744 }
9745 break;
9746 }
9747
9748 if(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)
9749 {
9750 if(rt1[i-1]==31) // JAL/JALR
9751 {
9752 // Subroutine call will return here, don't alloc any registers
9753 current.is32=1;
9754 current.dirty=0;
9755 clear_all_regs(current.regmap);
9756 alloc_reg(&current,i,CCREG);
9757 dirty_reg(&current,CCREG);
9758 }
9759 else if(i+1<slen)
9760 {
9761 // Internal branch will jump here, match registers to caller
9762 current.is32=0x3FFFFFFFFLL;
9763 current.dirty=0;
9764 clear_all_regs(current.regmap);
9765 alloc_reg(&current,i,CCREG);
9766 dirty_reg(&current,CCREG);
9767 for(j=i-1;j>=0;j--)
9768 {
9769 if(ba[j]==start+i*4+4) {
9770 memcpy(current.regmap,branch_regs[j].regmap,sizeof(current.regmap));
9771 current.is32=branch_regs[j].is32;
9772 current.dirty=branch_regs[j].dirty;
9773 break;
9774 }
9775 }
9776 while(j>=0) {
9777 if(ba[j]==start+i*4+4) {
9778 for(hr=0;hr<HOST_REGS;hr++) {
9779 if(current.regmap[hr]!=branch_regs[j].regmap[hr]) {
9780 current.regmap[hr]=-1;
9781 }
9782 current.is32&=branch_regs[j].is32;
9783 current.dirty&=branch_regs[j].dirty;
9784 }
9785 }
9786 j--;
9787 }
9788 }
9789 }
9790 }
9791
9792 // Count cycles in between branches
9793 ccadj[i]=cc;
7139f3c8 9794 if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP||itype[i]==SYSCALL||itype[i]==HLECALL))
57871462 9795 {
9796 cc=0;
9797 }
19776aef 9798#if defined(PCSX) && !defined(DRC_DBG)
054175e9 9799 else if(itype[i]==C2OP&&gte_cycletab[source[i]&0x3f]>2)
9800 {
9801 // GTE runs in parallel until accessed, divide by 2 for a rough guess
9802 cc+=gte_cycletab[source[i]&0x3f]/2;
9803 }
fb407447 9804 else if(/*itype[i]==LOAD||*/itype[i]==STORE||itype[i]==C1LS) // load causes weird timing issues
9805 {
9806 cc+=2; // 2 cycle penalty (after CLOCK_DIVIDER)
9807 }
9808 else if(itype[i]==C2LS)
9809 {
9810 cc+=4;
9811 }
9812#endif
57871462 9813 else
9814 {
9815 cc++;
9816 }
9817
9818 flush_dirty_uppers(&current);
9819 if(!is_ds[i]) {
9820 regs[i].is32=current.is32;
9821 regs[i].dirty=current.dirty;
9822 regs[i].isconst=current.isconst;
956f3129 9823 memcpy(constmap[i],current_constmap,sizeof(current_constmap));
57871462 9824 }
9825 for(hr=0;hr<HOST_REGS;hr++) {
9826 if(hr!=EXCLUDE_REG&&regs[i].regmap[hr]>=0) {
9827 if(regmap_pre[i][hr]!=regs[i].regmap[hr]) {
9828 regs[i].wasconst&=~(1<<hr);
9829 }
9830 }
9831 }
9832 if(current.regmap[HOST_BTREG]==BTREG) current.regmap[HOST_BTREG]=-1;
27727b63 9833 regs[i].waswritten=current.waswritten;
57871462 9834 }
9835
9836 /* Pass 4 - Cull unused host registers */
9837
9838 uint64_t nr=0;
9839
9840 for (i=slen-1;i>=0;i--)
9841 {
9842 int hr;
9843 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
9844 {
9845 if(ba[i]<start || ba[i]>=(start+slen*4))
9846 {
9847 // Branch out of this block, don't need anything
9848 nr=0;
9849 }
9850 else
9851 {
9852 // Internal branch
9853 // Need whatever matches the target
9854 nr=0;
9855 int t=(ba[i]-start)>>2;
9856 for(hr=0;hr<HOST_REGS;hr++)
9857 {
9858 if(regs[i].regmap_entry[hr]>=0) {
9859 if(regs[i].regmap_entry[hr]==regs[t].regmap_entry[hr]) nr|=1<<hr;
9860 }
9861 }
9862 }
9863 // Conditional branch may need registers for following instructions
9864 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
9865 {
9866 if(i<slen-2) {
9867 nr|=needed_reg[i+2];
9868 for(hr=0;hr<HOST_REGS;hr++)
9869 {
9870 if(regmap_pre[i+2][hr]>=0&&get_reg(regs[i+2].regmap_entry,regmap_pre[i+2][hr])<0) nr&=~(1<<hr);
9871 //if((regmap_entry[i+2][hr])>=0) if(!((nr>>hr)&1)) printf("%x-bogus(%d=%d)\n",start+i*4,hr,regmap_entry[i+2][hr]);
9872 }
9873 }
9874 }
9875 // Don't need stuff which is overwritten
f5955059 9876 //if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
9877 //if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
57871462 9878 // Merge in delay slot
9879 for(hr=0;hr<HOST_REGS;hr++)
9880 {
9881 if(!likely[i]) {
9882 // These are overwritten unless the branch is "likely"
9883 // and the delay slot is nullified if not taken
9884 if(rt1[i+1]&&rt1[i+1]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9885 if(rt2[i+1]&&rt2[i+1]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9886 }
9887 if(us1[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9888 if(us2[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9889 if(rs1[i+1]==regmap_pre[i][hr]) nr|=1<<hr;
9890 if(rs2[i+1]==regmap_pre[i][hr]) nr|=1<<hr;
9891 if(us1[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9892 if(us2[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9893 if(rs1[i+1]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9894 if(rs2[i+1]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9895 if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1)) {
9896 if(dep1[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9897 if(dep2[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9898 }
9899 if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1)) {
9900 if(dep1[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9901 if(dep2[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9902 }
b9b61529 9903 if(itype[i+1]==STORE || itype[i+1]==STORELR || (opcode[i+1]&0x3b)==0x39 || (opcode[i+1]&0x3b)==0x3a) {
57871462 9904 if(regmap_pre[i][hr]==INVCP) nr|=1<<hr;
9905 if(regs[i].regmap_entry[hr]==INVCP) nr|=1<<hr;
9906 }
9907 }
9908 }
1e973cb0 9909 else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
57871462 9910 {
9911 // SYSCALL instruction (software interrupt)
9912 nr=0;
9913 }
9914 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
9915 {
9916 // ERET instruction (return from interrupt)
9917 nr=0;
9918 }
9919 else // Non-branch
9920 {
9921 if(i<slen-1) {
9922 for(hr=0;hr<HOST_REGS;hr++) {
9923 if(regmap_pre[i+1][hr]>=0&&get_reg(regs[i+1].regmap_entry,regmap_pre[i+1][hr])<0) nr&=~(1<<hr);
9924 if(regs[i].regmap[hr]!=regmap_pre[i+1][hr]) nr&=~(1<<hr);
9925 if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
9926 if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
9927 }
9928 }
9929 }
9930 for(hr=0;hr<HOST_REGS;hr++)
9931 {
9932 // Overwritten registers are not needed
9933 if(rt1[i]&&rt1[i]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9934 if(rt2[i]&&rt2[i]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9935 if(FTEMP==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9936 // Source registers are needed
9937 if(us1[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9938 if(us2[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9939 if(rs1[i]==regmap_pre[i][hr]) nr|=1<<hr;
9940 if(rs2[i]==regmap_pre[i][hr]) nr|=1<<hr;
9941 if(us1[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9942 if(us2[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9943 if(rs1[i]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9944 if(rs2[i]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9945 if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1)) {
9946 if(dep1[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9947 if(dep1[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9948 }
9949 if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1)) {
9950 if(dep2[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9951 if(dep2[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9952 }
b9b61529 9953 if(itype[i]==STORE || itype[i]==STORELR || (opcode[i]&0x3b)==0x39 || (opcode[i]&0x3b)==0x3a) {
57871462 9954 if(regmap_pre[i][hr]==INVCP) nr|=1<<hr;
9955 if(regs[i].regmap_entry[hr]==INVCP) nr|=1<<hr;
9956 }
9957 // Don't store a register immediately after writing it,
9958 // may prevent dual-issue.
9959 // But do so if this is a branch target, otherwise we
9960 // might have to load the register before the branch.
9961 if(i>0&&!bt[i]&&((regs[i].wasdirty>>hr)&1)) {
9962 if((regmap_pre[i][hr]>0&&regmap_pre[i][hr]<64&&!((unneeded_reg[i]>>regmap_pre[i][hr])&1)) ||
9963 (regmap_pre[i][hr]>64&&!((unneeded_reg_upper[i]>>(regmap_pre[i][hr]&63))&1)) ) {
9964 if(rt1[i-1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9965 if(rt2[i-1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9966 }
9967 if((regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64&&!((unneeded_reg[i]>>regs[i].regmap_entry[hr])&1)) ||
9968 (regs[i].regmap_entry[hr]>64&&!((unneeded_reg_upper[i]>>(regs[i].regmap_entry[hr]&63))&1)) ) {
9969 if(rt1[i-1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9970 if(rt2[i-1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9971 }
9972 }
9973 }
9974 // Cycle count is needed at branches. Assume it is needed at the target too.
9975 if(i==0||bt[i]||itype[i]==CJUMP||itype[i]==FJUMP||itype[i]==SPAN) {
9976 if(regmap_pre[i][HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
9977 if(regs[i].regmap_entry[HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
9978 }
9979 // Save it
9980 needed_reg[i]=nr;
9981
9982 // Deallocate unneeded registers
9983 for(hr=0;hr<HOST_REGS;hr++)
9984 {
9985 if(!((nr>>hr)&1)) {
9986 if(regs[i].regmap_entry[hr]!=CCREG) regs[i].regmap_entry[hr]=-1;
9987 if((regs[i].regmap[hr]&63)!=rs1[i] && (regs[i].regmap[hr]&63)!=rs2[i] &&
9988 (regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
9989 (regs[i].regmap[hr]&63)!=PTEMP && (regs[i].regmap[hr]&63)!=CCREG)
9990 {
9991 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
9992 {
9993 if(likely[i]) {
9994 regs[i].regmap[hr]=-1;
9995 regs[i].isconst&=~(1<<hr);
79c75f1b 9996 if(i<slen-2) {
9997 regmap_pre[i+2][hr]=-1;
9998 regs[i+2].wasconst&=~(1<<hr);
9999 }
57871462 10000 }
10001 }
10002 }
10003 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
10004 {
10005 int d1=0,d2=0,map=0,temp=0;
10006 if(get_reg(regs[i].regmap,rt1[i+1]|64)>=0||get_reg(branch_regs[i].regmap,rt1[i+1]|64)>=0)
10007 {
10008 d1=dep1[i+1];
10009 d2=dep2[i+1];
10010 }
10011 if(using_tlb) {
10012 if(itype[i+1]==LOAD || itype[i+1]==LOADLR ||
10013 itype[i+1]==STORE || itype[i+1]==STORELR ||
b9b61529 10014 itype[i+1]==C1LS || itype[i+1]==C2LS)
57871462 10015 map=TLREG;
10016 } else
b9b61529 10017 if(itype[i+1]==STORE || itype[i+1]==STORELR ||
10018 (opcode[i+1]&0x3b)==0x39 || (opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1 || SWC2/SDC2
57871462 10019 map=INVCP;
10020 }
10021 if(itype[i+1]==LOADLR || itype[i+1]==STORELR ||
b9b61529 10022 itype[i+1]==C1LS || itype[i+1]==C2LS)
57871462 10023 temp=FTEMP;
10024 if((regs[i].regmap[hr]&63)!=rs1[i] && (regs[i].regmap[hr]&63)!=rs2[i] &&
10025 (regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
10026 (regs[i].regmap[hr]&63)!=rt1[i+1] && (regs[i].regmap[hr]&63)!=rt2[i+1] &&
10027 (regs[i].regmap[hr]^64)!=us1[i+1] && (regs[i].regmap[hr]^64)!=us2[i+1] &&
10028 (regs[i].regmap[hr]^64)!=d1 && (regs[i].regmap[hr]^64)!=d2 &&
10029 regs[i].regmap[hr]!=rs1[i+1] && regs[i].regmap[hr]!=rs2[i+1] &&
10030 (regs[i].regmap[hr]&63)!=temp && regs[i].regmap[hr]!=PTEMP &&
10031 regs[i].regmap[hr]!=RHASH && regs[i].regmap[hr]!=RHTBL &&
10032 regs[i].regmap[hr]!=RTEMP && regs[i].regmap[hr]!=CCREG &&
10033 regs[i].regmap[hr]!=map )
10034 {
10035 regs[i].regmap[hr]=-1;
10036 regs[i].isconst&=~(1<<hr);
10037 if((branch_regs[i].regmap[hr]&63)!=rs1[i] && (branch_regs[i].regmap[hr]&63)!=rs2[i] &&
10038 (branch_regs[i].regmap[hr]&63)!=rt1[i] && (branch_regs[i].regmap[hr]&63)!=rt2[i] &&
10039 (branch_regs[i].regmap[hr]&63)!=rt1[i+1] && (branch_regs[i].regmap[hr]&63)!=rt2[i+1] &&
10040 (branch_regs[i].regmap[hr]^64)!=us1[i+1] && (branch_regs[i].regmap[hr]^64)!=us2[i+1] &&
10041 (branch_regs[i].regmap[hr]^64)!=d1 && (branch_regs[i].regmap[hr]^64)!=d2 &&
10042 branch_regs[i].regmap[hr]!=rs1[i+1] && branch_regs[i].regmap[hr]!=rs2[i+1] &&
10043 (branch_regs[i].regmap[hr]&63)!=temp && branch_regs[i].regmap[hr]!=PTEMP &&
10044 branch_regs[i].regmap[hr]!=RHASH && branch_regs[i].regmap[hr]!=RHTBL &&
10045 branch_regs[i].regmap[hr]!=RTEMP && branch_regs[i].regmap[hr]!=CCREG &&
10046 branch_regs[i].regmap[hr]!=map)
10047 {
10048 branch_regs[i].regmap[hr]=-1;
10049 branch_regs[i].regmap_entry[hr]=-1;
10050 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
10051 {
10052 if(!likely[i]&&i<slen-2) {
10053 regmap_pre[i+2][hr]=-1;
79c75f1b 10054 regs[i+2].wasconst&=~(1<<hr);
57871462 10055 }
10056 }
10057 }
10058 }
10059 }
10060 else
10061 {
10062 // Non-branch
10063 if(i>0)
10064 {
10065 int d1=0,d2=0,map=-1,temp=-1;
10066 if(get_reg(regs[i].regmap,rt1[i]|64)>=0)
10067 {
10068 d1=dep1[i];
10069 d2=dep2[i];
10070 }
10071 if(using_tlb) {
10072 if(itype[i]==LOAD || itype[i]==LOADLR ||
10073 itype[i]==STORE || itype[i]==STORELR ||
b9b61529 10074 itype[i]==C1LS || itype[i]==C2LS)
57871462 10075 map=TLREG;
b9b61529 10076 } else if(itype[i]==STORE || itype[i]==STORELR ||
10077 (opcode[i]&0x3b)==0x39 || (opcode[i]&0x3b)==0x3a) { // SWC1/SDC1 || SWC2/SDC2
57871462 10078 map=INVCP;
10079 }
10080 if(itype[i]==LOADLR || itype[i]==STORELR ||
b9b61529 10081 itype[i]==C1LS || itype[i]==C2LS)
57871462 10082 temp=FTEMP;
10083 if((regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
10084 (regs[i].regmap[hr]^64)!=us1[i] && (regs[i].regmap[hr]^64)!=us2[i] &&
10085 (regs[i].regmap[hr]^64)!=d1 && (regs[i].regmap[hr]^64)!=d2 &&
10086 regs[i].regmap[hr]!=rs1[i] && regs[i].regmap[hr]!=rs2[i] &&
10087 (regs[i].regmap[hr]&63)!=temp && regs[i].regmap[hr]!=map &&
10088 (itype[i]!=SPAN||regs[i].regmap[hr]!=CCREG))
10089 {
10090 if(i<slen-1&&!is_ds[i]) {
10091 if(regmap_pre[i+1][hr]!=-1 || regs[i].regmap[hr]!=-1)
10092 if(regmap_pre[i+1][hr]!=regs[i].regmap[hr])
10093 if(regs[i].regmap[hr]<64||!((regs[i].was32>>(regs[i].regmap[hr]&63))&1))
10094 {
10095 printf("fail: %x (%d %d!=%d)\n",start+i*4,hr,regmap_pre[i+1][hr],regs[i].regmap[hr]);
10096 assert(regmap_pre[i+1][hr]==regs[i].regmap[hr]);
10097 }
10098 regmap_pre[i+1][hr]=-1;
10099 if(regs[i+1].regmap_entry[hr]==CCREG) regs[i+1].regmap_entry[hr]=-1;
79c75f1b 10100 regs[i+1].wasconst&=~(1<<hr);
57871462 10101 }
10102 regs[i].regmap[hr]=-1;
10103 regs[i].isconst&=~(1<<hr);
10104 }
10105 }
10106 }
10107 }
10108 }
10109 }
10110
10111 /* Pass 5 - Pre-allocate registers */
10112
10113 // If a register is allocated during a loop, try to allocate it for the
10114 // entire loop, if possible. This avoids loading/storing registers
10115 // inside of the loop.
198df76f 10116
57871462 10117 signed char f_regmap[HOST_REGS];
10118 clear_all_regs(f_regmap);
10119 for(i=0;i<slen-1;i++)
10120 {
10121 if(itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
10122 {
10123 if(ba[i]>=start && ba[i]<(start+i*4))
10124 if(itype[i+1]==NOP||itype[i+1]==MOV||itype[i+1]==ALU
10125 ||itype[i+1]==SHIFTIMM||itype[i+1]==IMM16||itype[i+1]==LOAD
10126 ||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS
10127 ||itype[i+1]==SHIFT||itype[i+1]==COP1||itype[i+1]==FLOAT
b9b61529 10128 ||itype[i+1]==FCOMP||itype[i+1]==FCONV
10129 ||itype[i+1]==COP2||itype[i+1]==C2LS||itype[i+1]==C2OP)
57871462 10130 {
10131 int t=(ba[i]-start)>>2;
10132 if(t>0&&(itype[t-1]!=UJUMP&&itype[t-1]!=RJUMP&&itype[t-1]!=CJUMP&&itype[t-1]!=SJUMP&&itype[t-1]!=FJUMP)) // loop_preload can't handle jumps into delay slots
198df76f 10133 if(t<2||(itype[t-2]!=UJUMP&&itype[t-2]!=RJUMP)||rt1[t-2]!=31) // call/ret assumes no registers allocated
57871462 10134 for(hr=0;hr<HOST_REGS;hr++)
10135 {
10136 if(regs[i].regmap[hr]>64) {
10137 if(!((regs[i].dirty>>hr)&1))
10138 f_regmap[hr]=regs[i].regmap[hr];
10139 else f_regmap[hr]=-1;
10140 }
b372a952 10141 else if(regs[i].regmap[hr]>=0) {
10142 if(f_regmap[hr]!=regs[i].regmap[hr]) {
10143 // dealloc old register
10144 int n;
10145 for(n=0;n<HOST_REGS;n++)
10146 {
10147 if(f_regmap[n]==regs[i].regmap[hr]) {f_regmap[n]=-1;}
10148 }
10149 // and alloc new one
10150 f_regmap[hr]=regs[i].regmap[hr];
10151 }
10152 }
57871462 10153 if(branch_regs[i].regmap[hr]>64) {
10154 if(!((branch_regs[i].dirty>>hr)&1))
10155 f_regmap[hr]=branch_regs[i].regmap[hr];
10156 else f_regmap[hr]=-1;
10157 }
b372a952 10158 else if(branch_regs[i].regmap[hr]>=0) {
10159 if(f_regmap[hr]!=branch_regs[i].regmap[hr]) {
10160 // dealloc old register
10161 int n;
10162 for(n=0;n<HOST_REGS;n++)
10163 {
10164 if(f_regmap[n]==branch_regs[i].regmap[hr]) {f_regmap[n]=-1;}
10165 }
10166 // and alloc new one
10167 f_regmap[hr]=branch_regs[i].regmap[hr];
10168 }
10169 }
e1190b87 10170 if(ooo[i]) {
10171 if(count_free_regs(regs[i].regmap)<=minimum_free_regs[i+1])
10172 f_regmap[hr]=branch_regs[i].regmap[hr];
10173 }else{
10174 if(count_free_regs(branch_regs[i].regmap)<=minimum_free_regs[i+1])
57871462 10175 f_regmap[hr]=branch_regs[i].regmap[hr];
10176 }
10177 // Avoid dirty->clean transition
e1190b87 10178 #ifdef DESTRUCTIVE_WRITEBACK
57871462 10179 if(t>0) if(get_reg(regmap_pre[t],f_regmap[hr])>=0) if((regs[t].wasdirty>>get_reg(regmap_pre[t],f_regmap[hr]))&1) f_regmap[hr]=-1;
e1190b87 10180 #endif
10181 // This check is only strictly required in the DESTRUCTIVE_WRITEBACK
10182 // case above, however it's always a good idea. We can't hoist the
10183 // load if the register was already allocated, so there's no point
10184 // wasting time analyzing most of these cases. It only "succeeds"
10185 // when the mapping was different and the load can be replaced with
10186 // a mov, which is of negligible benefit. So such cases are
10187 // skipped below.
57871462 10188 if(f_regmap[hr]>0) {
198df76f 10189 if(regs[t].regmap[hr]==f_regmap[hr]||(regs[t].regmap_entry[hr]<0&&get_reg(regmap_pre[t],f_regmap[hr])<0)) {
57871462 10190 int r=f_regmap[hr];
10191 for(j=t;j<=i;j++)
10192 {
10193 //printf("Test %x -> %x, %x %d/%d\n",start+i*4,ba[i],start+j*4,hr,r);
10194 if(r<34&&((unneeded_reg[j]>>r)&1)) break;
10195 if(r>63&&((unneeded_reg_upper[j]>>(r&63))&1)) break;
10196 if(r>63) {
10197 // NB This can exclude the case where the upper-half
10198 // register is lower numbered than the lower-half
10199 // register. Not sure if it's worth fixing...
10200 if(get_reg(regs[j].regmap,r&63)<0) break;
e1190b87 10201 if(get_reg(regs[j].regmap_entry,r&63)<0) break;
57871462 10202 if(regs[j].is32&(1LL<<(r&63))) break;
10203 }
10204 if(regs[j].regmap[hr]==f_regmap[hr]&&(f_regmap[hr]&63)<TEMPREG) {
10205 //printf("Hit %x -> %x, %x %d/%d\n",start+i*4,ba[i],start+j*4,hr,r);
10206 int k;
10207 if(regs[i].regmap[hr]==-1&&branch_regs[i].regmap[hr]==-1) {
10208 if(get_reg(regs[i+2].regmap,f_regmap[hr])>=0) break;
10209 if(r>63) {
10210 if(get_reg(regs[i].regmap,r&63)<0) break;
10211 if(get_reg(branch_regs[i].regmap,r&63)<0) break;
10212 }
10213 k=i;
10214 while(k>1&&regs[k-1].regmap[hr]==-1) {
e1190b87 10215 if(count_free_regs(regs[k-1].regmap)<=minimum_free_regs[k-1]) {
10216 //printf("no free regs for store %x\n",start+(k-1)*4);
10217 break;
57871462 10218 }
57871462 10219 if(get_reg(regs[k-1].regmap,f_regmap[hr])>=0) {
10220 //printf("no-match due to different register\n");
10221 break;
10222 }
10223 if(itype[k-2]==UJUMP||itype[k-2]==RJUMP||itype[k-2]==CJUMP||itype[k-2]==SJUMP||itype[k-2]==FJUMP) {
10224 //printf("no-match due to branch\n");
10225 break;
10226 }
10227 // call/ret fast path assumes no registers allocated
198df76f 10228 if(k>2&&(itype[k-3]==UJUMP||itype[k-3]==RJUMP)&&rt1[k-3]==31) {
57871462 10229 break;
10230 }
10231 if(r>63) {
10232 // NB This can exclude the case where the upper-half
10233 // register is lower numbered than the lower-half
10234 // register. Not sure if it's worth fixing...
10235 if(get_reg(regs[k-1].regmap,r&63)<0) break;
10236 if(regs[k-1].is32&(1LL<<(r&63))) break;
10237 }
10238 k--;
10239 }
10240 if(i<slen-1) {
10241 if((regs[k].is32&(1LL<<f_regmap[hr]))!=
10242 (regs[i+2].was32&(1LL<<f_regmap[hr]))) {
10243 //printf("bad match after branch\n");
10244 break;
10245 }
10246 }
10247 if(regs[k-1].regmap[hr]==f_regmap[hr]&&regmap_pre[k][hr]==f_regmap[hr]) {
10248 //printf("Extend r%d, %x ->\n",hr,start+k*4);
10249 while(k<i) {
10250 regs[k].regmap_entry[hr]=f_regmap[hr];
10251 regs[k].regmap[hr]=f_regmap[hr];
10252 regmap_pre[k+1][hr]=f_regmap[hr];
10253 regs[k].wasdirty&=~(1<<hr);
10254 regs[k].dirty&=~(1<<hr);
10255 regs[k].wasdirty|=(1<<hr)&regs[k-1].dirty;
10256 regs[k].dirty|=(1<<hr)&regs[k].wasdirty;
10257 regs[k].wasconst&=~(1<<hr);
10258 regs[k].isconst&=~(1<<hr);
10259 k++;
10260 }
10261 }
10262 else {
10263 //printf("Fail Extend r%d, %x ->\n",hr,start+k*4);
10264 break;
10265 }
10266 assert(regs[i-1].regmap[hr]==f_regmap[hr]);
10267 if(regs[i-1].regmap[hr]==f_regmap[hr]&&regmap_pre[i][hr]==f_regmap[hr]) {
10268 //printf("OK fill %x (r%d)\n",start+i*4,hr);
10269 regs[i].regmap_entry[hr]=f_regmap[hr];
10270 regs[i].regmap[hr]=f_regmap[hr];
10271 regs[i].wasdirty&=~(1<<hr);
10272 regs[i].dirty&=~(1<<hr);
10273 regs[i].wasdirty|=(1<<hr)&regs[i-1].dirty;
10274 regs[i].dirty|=(1<<hr)&regs[i-1].dirty;
10275 regs[i].wasconst&=~(1<<hr);
10276 regs[i].isconst&=~(1<<hr);
10277 branch_regs[i].regmap_entry[hr]=f_regmap[hr];
10278 branch_regs[i].wasdirty&=~(1<<hr);
10279 branch_regs[i].wasdirty|=(1<<hr)&regs[i].dirty;
10280 branch_regs[i].regmap[hr]=f_regmap[hr];
10281 branch_regs[i].dirty&=~(1<<hr);
10282 branch_regs[i].dirty|=(1<<hr)&regs[i].dirty;
10283 branch_regs[i].wasconst&=~(1<<hr);
10284 branch_regs[i].isconst&=~(1<<hr);
10285 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000) {
10286 regmap_pre[i+2][hr]=f_regmap[hr];
10287 regs[i+2].wasdirty&=~(1<<hr);
10288 regs[i+2].wasdirty|=(1<<hr)&regs[i].dirty;
10289 assert((branch_regs[i].is32&(1LL<<f_regmap[hr]))==
10290 (regs[i+2].was32&(1LL<<f_regmap[hr])));
10291 }
10292 }
10293 }
10294 for(k=t;k<j;k++) {
e1190b87 10295 // Alloc register clean at beginning of loop,
10296 // but may dirty it in pass 6
57871462 10297 regs[k].regmap_entry[hr]=f_regmap[hr];
10298 regs[k].regmap[hr]=f_regmap[hr];
57871462 10299 regs[k].dirty&=~(1<<hr);
10300 regs[k].wasconst&=~(1<<hr);
10301 regs[k].isconst&=~(1<<hr);
e1190b87 10302 if(itype[k]==UJUMP||itype[k]==RJUMP||itype[k]==CJUMP||itype[k]==SJUMP||itype[k]==FJUMP) {
10303 branch_regs[k].regmap_entry[hr]=f_regmap[hr];
10304 branch_regs[k].regmap[hr]=f_regmap[hr];
10305 branch_regs[k].dirty&=~(1<<hr);
10306 branch_regs[k].wasconst&=~(1<<hr);
10307 branch_regs[k].isconst&=~(1<<hr);
10308 if(itype[k]!=RJUMP&&itype[k]!=UJUMP&&(source[k]>>16)!=0x1000) {
10309 regmap_pre[k+2][hr]=f_regmap[hr];
10310 regs[k+2].wasdirty&=~(1<<hr);
10311 assert((branch_regs[k].is32&(1LL<<f_regmap[hr]))==
10312 (regs[k+2].was32&(1LL<<f_regmap[hr])));
10313 }
10314 }
10315 else
10316 {
10317 regmap_pre[k+1][hr]=f_regmap[hr];
10318 regs[k+1].wasdirty&=~(1<<hr);
10319 }
57871462 10320 }
10321 if(regs[j].regmap[hr]==f_regmap[hr])
10322 regs[j].regmap_entry[hr]=f_regmap[hr];
10323 break;
10324 }
10325 if(j==i) break;
10326 if(regs[j].regmap[hr]>=0)
10327 break;
10328 if(get_reg(regs[j].regmap,f_regmap[hr])>=0) {
10329 //printf("no-match due to different register\n");
10330 break;
10331 }
10332 if((regs[j+1].is32&(1LL<<f_regmap[hr]))!=(regs[j].is32&(1LL<<f_regmap[hr]))) {
10333 //printf("32/64 mismatch %x %d\n",start+j*4,hr);
10334 break;
10335 }
e1190b87 10336 if(itype[j]==UJUMP||itype[j]==RJUMP||(source[j]>>16)==0x1000)
10337 {
10338 // Stop on unconditional branch
10339 break;
10340 }
10341 if(itype[j]==CJUMP||itype[j]==SJUMP||itype[j]==FJUMP)
10342 {
10343 if(ooo[j]) {
10344 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j+1])
10345 break;
10346 }else{
10347 if(count_free_regs(branch_regs[j].regmap)<=minimum_free_regs[j+1])
10348 break;
10349 }
10350 if(get_reg(branch_regs[j].regmap,f_regmap[hr])>=0) {
10351 //printf("no-match due to different register (branch)\n");
57871462 10352 break;
10353 }
10354 }
e1190b87 10355 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) {
10356 //printf("No free regs for store %x\n",start+j*4);
10357 break;
10358 }
57871462 10359 if(f_regmap[hr]>=64) {
10360 if(regs[j].is32&(1LL<<(f_regmap[hr]&63))) {
10361 break;
10362 }
10363 else
10364 {
10365 if(get_reg(regs[j].regmap,f_regmap[hr]&63)<0) {
10366 break;
10367 }
10368 }
10369 }
10370 }
10371 }
10372 }
10373 }
10374 }
10375 }else{
198df76f 10376 // Non branch or undetermined branch target
57871462 10377 for(hr=0;hr<HOST_REGS;hr++)
10378 {
10379 if(hr!=EXCLUDE_REG) {
10380 if(regs[i].regmap[hr]>64) {
10381 if(!((regs[i].dirty>>hr)&1))
10382 f_regmap[hr]=regs[i].regmap[hr];
10383 }
b372a952 10384 else if(regs[i].regmap[hr]>=0) {
10385 if(f_regmap[hr]!=regs[i].regmap[hr]) {
10386 // dealloc old register
10387 int n;
10388 for(n=0;n<HOST_REGS;n++)
10389 {
10390 if(f_regmap[n]==regs[i].regmap[hr]) {f_regmap[n]=-1;}
10391 }
10392 // and alloc new one
10393 f_regmap[hr]=regs[i].regmap[hr];
10394 }
10395 }
57871462 10396 }
10397 }
10398 // Try to restore cycle count at branch targets
10399 if(bt[i]) {
10400 for(j=i;j<slen-1;j++) {
10401 if(regs[j].regmap[HOST_CCREG]!=-1) break;
e1190b87 10402 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) {
10403 //printf("no free regs for store %x\n",start+j*4);
10404 break;
57871462 10405 }
57871462 10406 }
10407 if(regs[j].regmap[HOST_CCREG]==CCREG) {
10408 int k=i;
10409 //printf("Extend CC, %x -> %x\n",start+k*4,start+j*4);
10410 while(k<j) {
10411 regs[k].regmap_entry[HOST_CCREG]=CCREG;
10412 regs[k].regmap[HOST_CCREG]=CCREG;
10413 regmap_pre[k+1][HOST_CCREG]=CCREG;
10414 regs[k+1].wasdirty|=1<<HOST_CCREG;
10415 regs[k].dirty|=1<<HOST_CCREG;
10416 regs[k].wasconst&=~(1<<HOST_CCREG);
10417 regs[k].isconst&=~(1<<HOST_CCREG);
10418 k++;
10419 }
10420 regs[j].regmap_entry[HOST_CCREG]=CCREG;
10421 }
10422 // Work backwards from the branch target
10423 if(j>i&&f_regmap[HOST_CCREG]==CCREG)
10424 {
10425 //printf("Extend backwards\n");
10426 int k;
10427 k=i;
10428 while(regs[k-1].regmap[HOST_CCREG]==-1) {
e1190b87 10429 if(count_free_regs(regs[k-1].regmap)<=minimum_free_regs[k-1]) {
10430 //printf("no free regs for store %x\n",start+(k-1)*4);
10431 break;
57871462 10432 }
57871462 10433 k--;
10434 }
10435 if(regs[k-1].regmap[HOST_CCREG]==CCREG) {
10436 //printf("Extend CC, %x ->\n",start+k*4);
10437 while(k<=i) {
10438 regs[k].regmap_entry[HOST_CCREG]=CCREG;
10439 regs[k].regmap[HOST_CCREG]=CCREG;
10440 regmap_pre[k+1][HOST_CCREG]=CCREG;
10441 regs[k+1].wasdirty|=1<<HOST_CCREG;
10442 regs[k].dirty|=1<<HOST_CCREG;
10443 regs[k].wasconst&=~(1<<HOST_CCREG);
10444 regs[k].isconst&=~(1<<HOST_CCREG);
10445 k++;
10446 }
10447 }
10448 else {
10449 //printf("Fail Extend CC, %x ->\n",start+k*4);
10450 }
10451 }
10452 }
10453 if(itype[i]!=STORE&&itype[i]!=STORELR&&itype[i]!=C1LS&&itype[i]!=SHIFT&&
10454 itype[i]!=NOP&&itype[i]!=MOV&&itype[i]!=ALU&&itype[i]!=SHIFTIMM&&
10455 itype[i]!=IMM16&&itype[i]!=LOAD&&itype[i]!=COP1&&itype[i]!=FLOAT&&
e1190b87 10456 itype[i]!=FCONV&&itype[i]!=FCOMP)
57871462 10457 {
10458 memcpy(f_regmap,regs[i].regmap,sizeof(f_regmap));
10459 }
10460 }
10461 }
10462
d61de97e 10463 // Cache memory offset or tlb map pointer if a register is available
10464 #ifndef HOST_IMM_ADDR32
10465 #ifndef RAM_OFFSET
10466 if(using_tlb)
10467 #endif
10468 {
10469 int earliest_available[HOST_REGS];
10470 int loop_start[HOST_REGS];
10471 int score[HOST_REGS];
10472 int end[HOST_REGS];
10473 int reg=using_tlb?MMREG:ROREG;
10474
10475 // Init
10476 for(hr=0;hr<HOST_REGS;hr++) {
10477 score[hr]=0;earliest_available[hr]=0;
10478 loop_start[hr]=MAXBLOCK;
10479 }
10480 for(i=0;i<slen-1;i++)
10481 {
10482 // Can't do anything if no registers are available
10483 if(count_free_regs(regs[i].regmap)<=minimum_free_regs[i]) {
10484 for(hr=0;hr<HOST_REGS;hr++) {
10485 score[hr]=0;earliest_available[hr]=i+1;
10486 loop_start[hr]=MAXBLOCK;
10487 }
10488 }
10489 if(itype[i]==UJUMP||itype[i]==RJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP) {
10490 if(!ooo[i]) {
10491 if(count_free_regs(branch_regs[i].regmap)<=minimum_free_regs[i+1]) {
10492 for(hr=0;hr<HOST_REGS;hr++) {
10493 score[hr]=0;earliest_available[hr]=i+1;
10494 loop_start[hr]=MAXBLOCK;
10495 }
10496 }
198df76f 10497 }else{
10498 if(count_free_regs(regs[i].regmap)<=minimum_free_regs[i+1]) {
10499 for(hr=0;hr<HOST_REGS;hr++) {
10500 score[hr]=0;earliest_available[hr]=i+1;
10501 loop_start[hr]=MAXBLOCK;
10502 }
10503 }
d61de97e 10504 }
10505 }
10506 // Mark unavailable registers
10507 for(hr=0;hr<HOST_REGS;hr++) {
10508 if(regs[i].regmap[hr]>=0) {
10509 score[hr]=0;earliest_available[hr]=i+1;
10510 loop_start[hr]=MAXBLOCK;
10511 }
10512 if(itype[i]==UJUMP||itype[i]==RJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP) {
10513 if(branch_regs[i].regmap[hr]>=0) {
10514 score[hr]=0;earliest_available[hr]=i+2;
10515 loop_start[hr]=MAXBLOCK;
10516 }
10517 }
10518 }
10519 // No register allocations after unconditional jumps
10520 if(itype[i]==UJUMP||itype[i]==RJUMP||(source[i]>>16)==0x1000)
10521 {
10522 for(hr=0;hr<HOST_REGS;hr++) {
10523 score[hr]=0;earliest_available[hr]=i+2;
10524 loop_start[hr]=MAXBLOCK;
10525 }
10526 i++; // Skip delay slot too
10527 //printf("skip delay slot: %x\n",start+i*4);
10528 }
10529 else
10530 // Possible match
10531 if(itype[i]==LOAD||itype[i]==LOADLR||
10532 itype[i]==STORE||itype[i]==STORELR||itype[i]==C1LS) {
10533 for(hr=0;hr<HOST_REGS;hr++) {
10534 if(hr!=EXCLUDE_REG) {
10535 end[hr]=i-1;
10536 for(j=i;j<slen-1;j++) {
10537 if(regs[j].regmap[hr]>=0) break;
10538 if(itype[j]==UJUMP||itype[j]==RJUMP||itype[j]==CJUMP||itype[j]==SJUMP||itype[j]==FJUMP) {
10539 if(branch_regs[j].regmap[hr]>=0) break;
10540 if(ooo[j]) {
10541 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j+1]) break;
10542 }else{
10543 if(count_free_regs(branch_regs[j].regmap)<=minimum_free_regs[j+1]) break;
10544 }
10545 }
10546 else if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) break;
10547 if(itype[j]==UJUMP||itype[j]==RJUMP||itype[j]==CJUMP||itype[j]==SJUMP||itype[j]==FJUMP) {
10548 int t=(ba[j]-start)>>2;
10549 if(t<j&&t>=earliest_available[hr]) {
198df76f 10550 if(t==1||(t>1&&itype[t-2]!=UJUMP&&itype[t-2]!=RJUMP)||(t>1&&rt1[t-2]!=31)) { // call/ret assumes no registers allocated
10551 // Score a point for hoisting loop invariant
10552 if(t<loop_start[hr]) loop_start[hr]=t;
10553 //printf("set loop_start: i=%x j=%x (%x)\n",start+i*4,start+j*4,start+t*4);
10554 score[hr]++;
10555 end[hr]=j;
10556 }
d61de97e 10557 }
10558 else if(t<j) {
10559 if(regs[t].regmap[hr]==reg) {
10560 // Score a point if the branch target matches this register
10561 score[hr]++;
10562 end[hr]=j;
10563 }
10564 }
10565 if(itype[j+1]==LOAD||itype[j+1]==LOADLR||
10566 itype[j+1]==STORE||itype[j+1]==STORELR||itype[j+1]==C1LS) {
10567 score[hr]++;
10568 end[hr]=j;
10569 }
10570 }
10571 if(itype[j]==UJUMP||itype[j]==RJUMP||(source[j]>>16)==0x1000)
10572 {
10573 // Stop on unconditional branch
10574 break;
10575 }
10576 else
10577 if(itype[j]==LOAD||itype[j]==LOADLR||
10578 itype[j]==STORE||itype[j]==STORELR||itype[j]==C1LS) {
10579 score[hr]++;
10580 end[hr]=j;
10581 }
10582 }
10583 }
10584 }
10585 // Find highest score and allocate that register
10586 int maxscore=0;
10587 for(hr=0;hr<HOST_REGS;hr++) {
10588 if(hr!=EXCLUDE_REG) {
10589 if(score[hr]>score[maxscore]) {
10590 maxscore=hr;
10591 //printf("highest score: %d %d (%x->%x)\n",score[hr],hr,start+i*4,start+end[hr]*4);
10592 }
10593 }
10594 }
10595 if(score[maxscore]>1)
10596 {
10597 if(i<loop_start[maxscore]) loop_start[maxscore]=i;
10598 for(j=loop_start[maxscore];j<slen&&j<=end[maxscore];j++) {
10599 //if(regs[j].regmap[maxscore]>=0) {printf("oops: %x %x was %d=%d\n",loop_start[maxscore]*4+start,j*4+start,maxscore,regs[j].regmap[maxscore]);}
10600 assert(regs[j].regmap[maxscore]<0);
10601 if(j>loop_start[maxscore]) regs[j].regmap_entry[maxscore]=reg;
10602 regs[j].regmap[maxscore]=reg;
10603 regs[j].dirty&=~(1<<maxscore);
10604 regs[j].wasconst&=~(1<<maxscore);
10605 regs[j].isconst&=~(1<<maxscore);
10606 if(itype[j]==UJUMP||itype[j]==RJUMP||itype[j]==CJUMP||itype[j]==SJUMP||itype[j]==FJUMP) {
10607 branch_regs[j].regmap[maxscore]=reg;
10608 branch_regs[j].wasdirty&=~(1<<maxscore);
10609 branch_regs[j].dirty&=~(1<<maxscore);
10610 branch_regs[j].wasconst&=~(1<<maxscore);
10611 branch_regs[j].isconst&=~(1<<maxscore);
10612 if(itype[j]!=RJUMP&&itype[j]!=UJUMP&&(source[j]>>16)!=0x1000) {
10613 regmap_pre[j+2][maxscore]=reg;
10614 regs[j+2].wasdirty&=~(1<<maxscore);
10615 }
10616 // loop optimization (loop_preload)
10617 int t=(ba[j]-start)>>2;
198df76f 10618 if(t==loop_start[maxscore]) {
10619 if(t==1||(t>1&&itype[t-2]!=UJUMP&&itype[t-2]!=RJUMP)||(t>1&&rt1[t-2]!=31)) // call/ret assumes no registers allocated
10620 regs[t].regmap_entry[maxscore]=reg;
10621 }
d61de97e 10622 }
10623 else
10624 {
10625 if(j<1||(itype[j-1]!=RJUMP&&itype[j-1]!=UJUMP&&itype[j-1]!=CJUMP&&itype[j-1]!=SJUMP&&itype[j-1]!=FJUMP)) {
10626 regmap_pre[j+1][maxscore]=reg;
10627 regs[j+1].wasdirty&=~(1<<maxscore);
10628 }
10629 }
10630 }
10631 i=j-1;
10632 if(itype[j-1]==RJUMP||itype[j-1]==UJUMP||itype[j-1]==CJUMP||itype[j-1]==SJUMP||itype[j-1]==FJUMP) i++; // skip delay slot
10633 for(hr=0;hr<HOST_REGS;hr++) {
10634 score[hr]=0;earliest_available[hr]=i+i;
10635 loop_start[hr]=MAXBLOCK;
10636 }
10637 }
10638 }
10639 }
10640 }
10641 #endif
10642
57871462 10643 // This allocates registers (if possible) one instruction prior
10644 // to use, which can avoid a load-use penalty on certain CPUs.
10645 for(i=0;i<slen-1;i++)
10646 {
10647 if(!i||(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP))
10648 {
10649 if(!bt[i+1])
10650 {
b9b61529 10651 if(itype[i]==ALU||itype[i]==MOV||itype[i]==LOAD||itype[i]==SHIFTIMM||itype[i]==IMM16
10652 ||((itype[i]==COP1||itype[i]==COP2)&&opcode2[i]<3))
57871462 10653 {
10654 if(rs1[i+1]) {
10655 if((hr=get_reg(regs[i+1].regmap,rs1[i+1]))>=0)
10656 {
10657 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10658 {
10659 regs[i].regmap[hr]=regs[i+1].regmap[hr];
10660 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
10661 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
10662 regs[i].isconst&=~(1<<hr);
10663 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10664 constmap[i][hr]=constmap[i+1][hr];
10665 regs[i+1].wasdirty&=~(1<<hr);
10666 regs[i].dirty&=~(1<<hr);
10667 }
10668 }
10669 }
10670 if(rs2[i+1]) {
10671 if((hr=get_reg(regs[i+1].regmap,rs2[i+1]))>=0)
10672 {
10673 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10674 {
10675 regs[i].regmap[hr]=regs[i+1].regmap[hr];
10676 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
10677 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
10678 regs[i].isconst&=~(1<<hr);
10679 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10680 constmap[i][hr]=constmap[i+1][hr];
10681 regs[i+1].wasdirty&=~(1<<hr);
10682 regs[i].dirty&=~(1<<hr);
10683 }
10684 }
10685 }
198df76f 10686 // Preload target address for load instruction (non-constant)
57871462 10687 if(itype[i+1]==LOAD&&rs1[i+1]&&get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10688 if((hr=get_reg(regs[i+1].regmap,rt1[i+1]))>=0)
10689 {
10690 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10691 {
10692 regs[i].regmap[hr]=rs1[i+1];
10693 regmap_pre[i+1][hr]=rs1[i+1];
10694 regs[i+1].regmap_entry[hr]=rs1[i+1];
10695 regs[i].isconst&=~(1<<hr);
10696 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10697 constmap[i][hr]=constmap[i+1][hr];
10698 regs[i+1].wasdirty&=~(1<<hr);
10699 regs[i].dirty&=~(1<<hr);
10700 }
10701 }
10702 }
198df76f 10703 // Load source into target register
57871462 10704 if(lt1[i+1]&&get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10705 if((hr=get_reg(regs[i+1].regmap,rt1[i+1]))>=0)
10706 {
10707 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10708 {
10709 regs[i].regmap[hr]=rs1[i+1];
10710 regmap_pre[i+1][hr]=rs1[i+1];
10711 regs[i+1].regmap_entry[hr]=rs1[i+1];
10712 regs[i].isconst&=~(1<<hr);
10713 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10714 constmap[i][hr]=constmap[i+1][hr];
10715 regs[i+1].wasdirty&=~(1<<hr);
10716 regs[i].dirty&=~(1<<hr);
10717 }
10718 }
10719 }
198df76f 10720 // Preload map address
57871462 10721 #ifndef HOST_IMM_ADDR32
b9b61529 10722 if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS||itype[i+1]==C2LS) {
57871462 10723 hr=get_reg(regs[i+1].regmap,TLREG);
10724 if(hr>=0) {
10725 int sr=get_reg(regs[i+1].regmap,rs1[i+1]);
10726 if(sr>=0&&((regs[i+1].wasconst>>sr)&1)) {
10727 int nr;
10728 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10729 {
10730 regs[i].regmap[hr]=MGEN1+((i+1)&1);
10731 regmap_pre[i+1][hr]=MGEN1+((i+1)&1);
10732 regs[i+1].regmap_entry[hr]=MGEN1+((i+1)&1);
10733 regs[i].isconst&=~(1<<hr);
10734 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10735 constmap[i][hr]=constmap[i+1][hr];
10736 regs[i+1].wasdirty&=~(1<<hr);
10737 regs[i].dirty&=~(1<<hr);
10738 }
10739 else if((nr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1))>=0)
10740 {
10741 // move it to another register
10742 regs[i+1].regmap[hr]=-1;
10743 regmap_pre[i+2][hr]=-1;
10744 regs[i+1].regmap[nr]=TLREG;
10745 regmap_pre[i+2][nr]=TLREG;
10746 regs[i].regmap[nr]=MGEN1+((i+1)&1);
10747 regmap_pre[i+1][nr]=MGEN1+((i+1)&1);
10748 regs[i+1].regmap_entry[nr]=MGEN1+((i+1)&1);
10749 regs[i].isconst&=~(1<<nr);
10750 regs[i+1].isconst&=~(1<<nr);
10751 regs[i].dirty&=~(1<<nr);
10752 regs[i+1].wasdirty&=~(1<<nr);
10753 regs[i+1].dirty&=~(1<<nr);
10754 regs[i+2].wasdirty&=~(1<<nr);
10755 }
10756 }
10757 }
10758 }
10759 #endif
198df76f 10760 // Address for store instruction (non-constant)
b9b61529 10761 if(itype[i+1]==STORE||itype[i+1]==STORELR
10762 ||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SB/SH/SW/SD/SWC1/SDC1/SWC2/SDC2
57871462 10763 if(get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10764 hr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1);
10765 if(hr<0) hr=get_reg(regs[i+1].regmap,-1);
10766 else {regs[i+1].regmap[hr]=AGEN1+((i+1)&1);regs[i+1].isconst&=~(1<<hr);}
10767 assert(hr>=0);
10768 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10769 {
10770 regs[i].regmap[hr]=rs1[i+1];
10771 regmap_pre[i+1][hr]=rs1[i+1];
10772 regs[i+1].regmap_entry[hr]=rs1[i+1];
10773 regs[i].isconst&=~(1<<hr);
10774 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10775 constmap[i][hr]=constmap[i+1][hr];
10776 regs[i+1].wasdirty&=~(1<<hr);
10777 regs[i].dirty&=~(1<<hr);
10778 }
10779 }
10780 }
b9b61529 10781 if(itype[i+1]==LOADLR||(opcode[i+1]&0x3b)==0x31||(opcode[i+1]&0x3b)==0x32) { // LWC1/LDC1, LWC2/LDC2
57871462 10782 if(get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10783 int nr;
10784 hr=get_reg(regs[i+1].regmap,FTEMP);
10785 assert(hr>=0);
10786 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10787 {
10788 regs[i].regmap[hr]=rs1[i+1];
10789 regmap_pre[i+1][hr]=rs1[i+1];
10790 regs[i+1].regmap_entry[hr]=rs1[i+1];
10791 regs[i].isconst&=~(1<<hr);
10792 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10793 constmap[i][hr]=constmap[i+1][hr];
10794 regs[i+1].wasdirty&=~(1<<hr);
10795 regs[i].dirty&=~(1<<hr);
10796 }
10797 else if((nr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1))>=0)
10798 {
10799 // move it to another register
10800 regs[i+1].regmap[hr]=-1;
10801 regmap_pre[i+2][hr]=-1;
10802 regs[i+1].regmap[nr]=FTEMP;
10803 regmap_pre[i+2][nr]=FTEMP;
10804 regs[i].regmap[nr]=rs1[i+1];
10805 regmap_pre[i+1][nr]=rs1[i+1];
10806 regs[i+1].regmap_entry[nr]=rs1[i+1];
10807 regs[i].isconst&=~(1<<nr);
10808 regs[i+1].isconst&=~(1<<nr);
10809 regs[i].dirty&=~(1<<nr);
10810 regs[i+1].wasdirty&=~(1<<nr);
10811 regs[i+1].dirty&=~(1<<nr);
10812 regs[i+2].wasdirty&=~(1<<nr);
10813 }
10814 }
10815 }
b9b61529 10816 if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR/*||itype[i+1]==C1LS||||itype[i+1]==C2LS*/) {
57871462 10817 if(itype[i+1]==LOAD)
10818 hr=get_reg(regs[i+1].regmap,rt1[i+1]);
b9b61529 10819 if(itype[i+1]==LOADLR||(opcode[i+1]&0x3b)==0x31||(opcode[i+1]&0x3b)==0x32) // LWC1/LDC1, LWC2/LDC2
57871462 10820 hr=get_reg(regs[i+1].regmap,FTEMP);
b9b61529 10821 if(itype[i+1]==STORE||itype[i+1]==STORELR||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1/SWC2/SDC2
57871462 10822 hr=get_reg(regs[i+1].regmap,AGEN1+((i+1)&1));
10823 if(hr<0) hr=get_reg(regs[i+1].regmap,-1);
10824 }
10825 if(hr>=0&&regs[i].regmap[hr]<0) {
10826 int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
10827 if(rs>=0&&((regs[i+1].wasconst>>rs)&1)) {
10828 regs[i].regmap[hr]=AGEN1+((i+1)&1);
10829 regmap_pre[i+1][hr]=AGEN1+((i+1)&1);
10830 regs[i+1].regmap_entry[hr]=AGEN1+((i+1)&1);
10831 regs[i].isconst&=~(1<<hr);
10832 regs[i+1].wasdirty&=~(1<<hr);
10833 regs[i].dirty&=~(1<<hr);
10834 }
10835 }
10836 }
10837 }
10838 }
10839 }
10840 }
10841
10842 /* Pass 6 - Optimize clean/dirty state */
10843 clean_registers(0,slen-1,1);
10844
10845 /* Pass 7 - Identify 32-bit registers */
a28c6ce8 10846#ifndef FORCE32
57871462 10847 provisional_r32();
10848
10849 u_int r32=0;
10850
10851 for (i=slen-1;i>=0;i--)
10852 {
10853 int hr;
10854 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
10855 {
10856 if(ba[i]<start || ba[i]>=(start+slen*4))
10857 {
10858 // Branch out of this block, don't need anything
10859 r32=0;
10860 }
10861 else
10862 {
10863 // Internal branch
10864 // Need whatever matches the target
10865 // (and doesn't get overwritten by the delay slot instruction)
10866 r32=0;
10867 int t=(ba[i]-start)>>2;
10868 if(ba[i]>start+i*4) {
10869 // Forward branch
10870 if(!(requires_32bit[t]&~regs[i].was32))
10871 r32|=requires_32bit[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
10872 }else{
10873 // Backward branch
10874 //if(!(regs[t].was32&~unneeded_reg_upper[t]&~regs[i].was32))
10875 // r32|=regs[t].was32&~unneeded_reg_upper[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
10876 if(!(pr32[t]&~regs[i].was32))
10877 r32|=pr32[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
10878 }
10879 }
10880 // Conditional branch may need registers for following instructions
10881 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
10882 {
10883 if(i<slen-2) {
10884 r32|=requires_32bit[i+2];
10885 r32&=regs[i].was32;
10886 // Mark this address as a branch target since it may be called
10887 // upon return from interrupt
10888 bt[i+2]=1;
10889 }
10890 }
10891 // Merge in delay slot
10892 if(!likely[i]) {
10893 // These are overwritten unless the branch is "likely"
10894 // and the delay slot is nullified if not taken
10895 r32&=~(1LL<<rt1[i+1]);
10896 r32&=~(1LL<<rt2[i+1]);
10897 }
10898 // Assume these are needed (delay slot)
10899 if(us1[i+1]>0)
10900 {
10901 if((regs[i].was32>>us1[i+1])&1) r32|=1LL<<us1[i+1];
10902 }
10903 if(us2[i+1]>0)
10904 {
10905 if((regs[i].was32>>us2[i+1])&1) r32|=1LL<<us2[i+1];
10906 }
10907 if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1))
10908 {
10909 if((regs[i].was32>>dep1[i+1])&1) r32|=1LL<<dep1[i+1];
10910 }
10911 if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1))
10912 {
10913 if((regs[i].was32>>dep2[i+1])&1) r32|=1LL<<dep2[i+1];
10914 }
10915 }
1e973cb0 10916 else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
57871462 10917 {
10918 // SYSCALL instruction (software interrupt)
10919 r32=0;
10920 }
10921 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
10922 {
10923 // ERET instruction (return from interrupt)
10924 r32=0;
10925 }
10926 // Check 32 bits
10927 r32&=~(1LL<<rt1[i]);
10928 r32&=~(1LL<<rt2[i]);
10929 if(us1[i]>0)
10930 {
10931 if((regs[i].was32>>us1[i])&1) r32|=1LL<<us1[i];
10932 }
10933 if(us2[i]>0)
10934 {
10935 if((regs[i].was32>>us2[i])&1) r32|=1LL<<us2[i];
10936 }
10937 if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1))
10938 {
10939 if((regs[i].was32>>dep1[i])&1) r32|=1LL<<dep1[i];
10940 }
10941 if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1))
10942 {
10943 if((regs[i].was32>>dep2[i])&1) r32|=1LL<<dep2[i];
10944 }
10945 requires_32bit[i]=r32;
10946
10947 // Dirty registers which are 32-bit, require 32-bit input
10948 // as they will be written as 32-bit values
10949 for(hr=0;hr<HOST_REGS;hr++)
10950 {
10951 if(regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64) {
10952 if((regs[i].was32>>regs[i].regmap_entry[hr])&(regs[i].wasdirty>>hr)&1) {
10953 if(!((unneeded_reg_upper[i]>>regs[i].regmap_entry[hr])&1))
10954 requires_32bit[i]|=1LL<<regs[i].regmap_entry[hr];
10955 }
10956 }
10957 }
10958 //requires_32bit[i]=is32[i]&~unneeded_reg_upper[i]; // DEBUG
10959 }
04fd948a 10960#else
10961 for (i=slen-1;i>=0;i--)
10962 {
10963 if(itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
10964 {
10965 // Conditional branch
10966 if((source[i]>>16)!=0x1000&&i<slen-2) {
10967 // Mark this address as a branch target since it may be called
10968 // upon return from interrupt
10969 bt[i+2]=1;
10970 }
10971 }
10972 }
a28c6ce8 10973#endif
57871462 10974
10975 if(itype[slen-1]==SPAN) {
10976 bt[slen-1]=1; // Mark as a branch target so instruction can restart after exception
10977 }
4600ba03 10978
10979#ifdef DISASM
57871462 10980 /* Debug/disassembly */
57871462 10981 for(i=0;i<slen;i++)
10982 {
10983 printf("U:");
10984 int r;
10985 for(r=1;r<=CCREG;r++) {
10986 if((unneeded_reg[i]>>r)&1) {
10987 if(r==HIREG) printf(" HI");
10988 else if(r==LOREG) printf(" LO");
10989 else printf(" r%d",r);
10990 }
10991 }
90ae6d4e 10992#ifndef FORCE32
57871462 10993 printf(" UU:");
10994 for(r=1;r<=CCREG;r++) {
10995 if(((unneeded_reg_upper[i]&~unneeded_reg[i])>>r)&1) {
10996 if(r==HIREG) printf(" HI");
10997 else if(r==LOREG) printf(" LO");
10998 else printf(" r%d",r);
10999 }
11000 }
11001 printf(" 32:");
11002 for(r=0;r<=CCREG;r++) {
11003 //if(((is32[i]>>r)&(~unneeded_reg[i]>>r))&1) {
11004 if((regs[i].was32>>r)&1) {
11005 if(r==CCREG) printf(" CC");
11006 else if(r==HIREG) printf(" HI");
11007 else if(r==LOREG) printf(" LO");
11008 else printf(" r%d",r);
11009 }
11010 }
90ae6d4e 11011#endif
57871462 11012 printf("\n");
11013 #if defined(__i386__) || defined(__x86_64__)
11014 printf("pre: eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",regmap_pre[i][0],regmap_pre[i][1],regmap_pre[i][2],regmap_pre[i][3],regmap_pre[i][5],regmap_pre[i][6],regmap_pre[i][7]);
11015 #endif
11016 #ifdef __arm__
11017 printf("pre: r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d\n",regmap_pre[i][0],regmap_pre[i][1],regmap_pre[i][2],regmap_pre[i][3],regmap_pre[i][4],regmap_pre[i][5],regmap_pre[i][6],regmap_pre[i][7],regmap_pre[i][8],regmap_pre[i][9],regmap_pre[i][10],regmap_pre[i][12]);
11018 #endif
11019 printf("needs: ");
11020 if(needed_reg[i]&1) printf("eax ");
11021 if((needed_reg[i]>>1)&1) printf("ecx ");
11022 if((needed_reg[i]>>2)&1) printf("edx ");
11023 if((needed_reg[i]>>3)&1) printf("ebx ");
11024 if((needed_reg[i]>>5)&1) printf("ebp ");
11025 if((needed_reg[i]>>6)&1) printf("esi ");
11026 if((needed_reg[i]>>7)&1) printf("edi ");
11027 printf("r:");
11028 for(r=0;r<=CCREG;r++) {
11029 //if(((requires_32bit[i]>>r)&(~unneeded_reg[i]>>r))&1) {
11030 if((requires_32bit[i]>>r)&1) {
11031 if(r==CCREG) printf(" CC");
11032 else if(r==HIREG) printf(" HI");
11033 else if(r==LOREG) printf(" LO");
11034 else printf(" r%d",r);
11035 }
11036 }
11037 printf("\n");
11038 /*printf("pr:");
11039 for(r=0;r<=CCREG;r++) {
11040 //if(((requires_32bit[i]>>r)&(~unneeded_reg[i]>>r))&1) {
11041 if((pr32[i]>>r)&1) {
11042 if(r==CCREG) printf(" CC");
11043 else if(r==HIREG) printf(" HI");
11044 else if(r==LOREG) printf(" LO");
11045 else printf(" r%d",r);
11046 }
11047 }
11048 if(pr32[i]!=requires_32bit[i]) printf(" OOPS");
11049 printf("\n");*/
11050 #if defined(__i386__) || defined(__x86_64__)
11051 printf("entry: eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",regs[i].regmap_entry[0],regs[i].regmap_entry[1],regs[i].regmap_entry[2],regs[i].regmap_entry[3],regs[i].regmap_entry[5],regs[i].regmap_entry[6],regs[i].regmap_entry[7]);
11052 printf("dirty: ");
11053 if(regs[i].wasdirty&1) printf("eax ");
11054 if((regs[i].wasdirty>>1)&1) printf("ecx ");
11055 if((regs[i].wasdirty>>2)&1) printf("edx ");
11056 if((regs[i].wasdirty>>3)&1) printf("ebx ");
11057 if((regs[i].wasdirty>>5)&1) printf("ebp ");
11058 if((regs[i].wasdirty>>6)&1) printf("esi ");
11059 if((regs[i].wasdirty>>7)&1) printf("edi ");
11060 #endif
11061 #ifdef __arm__
11062 printf("entry: r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d\n",regs[i].regmap_entry[0],regs[i].regmap_entry[1],regs[i].regmap_entry[2],regs[i].regmap_entry[3],regs[i].regmap_entry[4],regs[i].regmap_entry[5],regs[i].regmap_entry[6],regs[i].regmap_entry[7],regs[i].regmap_entry[8],regs[i].regmap_entry[9],regs[i].regmap_entry[10],regs[i].regmap_entry[12]);
11063 printf("dirty: ");
11064 if(regs[i].wasdirty&1) printf("r0 ");
11065 if((regs[i].wasdirty>>1)&1) printf("r1 ");
11066 if((regs[i].wasdirty>>2)&1) printf("r2 ");
11067 if((regs[i].wasdirty>>3)&1) printf("r3 ");
11068 if((regs[i].wasdirty>>4)&1) printf("r4 ");
11069 if((regs[i].wasdirty>>5)&1) printf("r5 ");
11070 if((regs[i].wasdirty>>6)&1) printf("r6 ");
11071 if((regs[i].wasdirty>>7)&1) printf("r7 ");
11072 if((regs[i].wasdirty>>8)&1) printf("r8 ");
11073 if((regs[i].wasdirty>>9)&1) printf("r9 ");
11074 if((regs[i].wasdirty>>10)&1) printf("r10 ");
11075 if((regs[i].wasdirty>>12)&1) printf("r12 ");
11076 #endif
11077 printf("\n");
11078 disassemble_inst(i);
11079 //printf ("ccadj[%d] = %d\n",i,ccadj[i]);
11080 #if defined(__i386__) || defined(__x86_64__)
11081 printf("eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d dirty: ",regs[i].regmap[0],regs[i].regmap[1],regs[i].regmap[2],regs[i].regmap[3],regs[i].regmap[5],regs[i].regmap[6],regs[i].regmap[7]);
11082 if(regs[i].dirty&1) printf("eax ");
11083 if((regs[i].dirty>>1)&1) printf("ecx ");
11084 if((regs[i].dirty>>2)&1) printf("edx ");
11085 if((regs[i].dirty>>3)&1) printf("ebx ");
11086 if((regs[i].dirty>>5)&1) printf("ebp ");
11087 if((regs[i].dirty>>6)&1) printf("esi ");
11088 if((regs[i].dirty>>7)&1) printf("edi ");
11089 #endif
11090 #ifdef __arm__
11091 printf("r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d dirty: ",regs[i].regmap[0],regs[i].regmap[1],regs[i].regmap[2],regs[i].regmap[3],regs[i].regmap[4],regs[i].regmap[5],regs[i].regmap[6],regs[i].regmap[7],regs[i].regmap[8],regs[i].regmap[9],regs[i].regmap[10],regs[i].regmap[12]);
11092 if(regs[i].dirty&1) printf("r0 ");
11093 if((regs[i].dirty>>1)&1) printf("r1 ");
11094 if((regs[i].dirty>>2)&1) printf("r2 ");
11095 if((regs[i].dirty>>3)&1) printf("r3 ");
11096 if((regs[i].dirty>>4)&1) printf("r4 ");
11097 if((regs[i].dirty>>5)&1) printf("r5 ");
11098 if((regs[i].dirty>>6)&1) printf("r6 ");
11099 if((regs[i].dirty>>7)&1) printf("r7 ");
11100 if((regs[i].dirty>>8)&1) printf("r8 ");
11101 if((regs[i].dirty>>9)&1) printf("r9 ");
11102 if((regs[i].dirty>>10)&1) printf("r10 ");
11103 if((regs[i].dirty>>12)&1) printf("r12 ");
11104 #endif
11105 printf("\n");
11106 if(regs[i].isconst) {
11107 printf("constants: ");
11108 #if defined(__i386__) || defined(__x86_64__)
11109 if(regs[i].isconst&1) printf("eax=%x ",(int)constmap[i][0]);
11110 if((regs[i].isconst>>1)&1) printf("ecx=%x ",(int)constmap[i][1]);
11111 if((regs[i].isconst>>2)&1) printf("edx=%x ",(int)constmap[i][2]);
11112 if((regs[i].isconst>>3)&1) printf("ebx=%x ",(int)constmap[i][3]);
11113 if((regs[i].isconst>>5)&1) printf("ebp=%x ",(int)constmap[i][5]);
11114 if((regs[i].isconst>>6)&1) printf("esi=%x ",(int)constmap[i][6]);
11115 if((regs[i].isconst>>7)&1) printf("edi=%x ",(int)constmap[i][7]);
11116 #endif
11117 #ifdef __arm__
11118 if(regs[i].isconst&1) printf("r0=%x ",(int)constmap[i][0]);
11119 if((regs[i].isconst>>1)&1) printf("r1=%x ",(int)constmap[i][1]);
11120 if((regs[i].isconst>>2)&1) printf("r2=%x ",(int)constmap[i][2]);
11121 if((regs[i].isconst>>3)&1) printf("r3=%x ",(int)constmap[i][3]);
11122 if((regs[i].isconst>>4)&1) printf("r4=%x ",(int)constmap[i][4]);
11123 if((regs[i].isconst>>5)&1) printf("r5=%x ",(int)constmap[i][5]);
11124 if((regs[i].isconst>>6)&1) printf("r6=%x ",(int)constmap[i][6]);
11125 if((regs[i].isconst>>7)&1) printf("r7=%x ",(int)constmap[i][7]);
11126 if((regs[i].isconst>>8)&1) printf("r8=%x ",(int)constmap[i][8]);
11127 if((regs[i].isconst>>9)&1) printf("r9=%x ",(int)constmap[i][9]);
11128 if((regs[i].isconst>>10)&1) printf("r10=%x ",(int)constmap[i][10]);
11129 if((regs[i].isconst>>12)&1) printf("r12=%x ",(int)constmap[i][12]);
11130 #endif
11131 printf("\n");
11132 }
90ae6d4e 11133#ifndef FORCE32
57871462 11134 printf(" 32:");
11135 for(r=0;r<=CCREG;r++) {
11136 if((regs[i].is32>>r)&1) {
11137 if(r==CCREG) printf(" CC");
11138 else if(r==HIREG) printf(" HI");
11139 else if(r==LOREG) printf(" LO");
11140 else printf(" r%d",r);
11141 }
11142 }
11143 printf("\n");
90ae6d4e 11144#endif
57871462 11145 /*printf(" p32:");
11146 for(r=0;r<=CCREG;r++) {
11147 if((p32[i]>>r)&1) {
11148 if(r==CCREG) printf(" CC");
11149 else if(r==HIREG) printf(" HI");
11150 else if(r==LOREG) printf(" LO");
11151 else printf(" r%d",r);
11152 }
11153 }
11154 if(p32[i]!=regs[i].is32) printf(" NO MATCH\n");
11155 else printf("\n");*/
11156 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP) {
11157 #if defined(__i386__) || defined(__x86_64__)
11158 printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d dirty: ",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
11159 if(branch_regs[i].dirty&1) printf("eax ");
11160 if((branch_regs[i].dirty>>1)&1) printf("ecx ");
11161 if((branch_regs[i].dirty>>2)&1) printf("edx ");
11162 if((branch_regs[i].dirty>>3)&1) printf("ebx ");
11163 if((branch_regs[i].dirty>>5)&1) printf("ebp ");
11164 if((branch_regs[i].dirty>>6)&1) printf("esi ");
11165 if((branch_regs[i].dirty>>7)&1) printf("edi ");
11166 #endif
11167 #ifdef __arm__
11168 printf("branch(%d): r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d dirty: ",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[4],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7],branch_regs[i].regmap[8],branch_regs[i].regmap[9],branch_regs[i].regmap[10],branch_regs[i].regmap[12]);
11169 if(branch_regs[i].dirty&1) printf("r0 ");
11170 if((branch_regs[i].dirty>>1)&1) printf("r1 ");
11171 if((branch_regs[i].dirty>>2)&1) printf("r2 ");
11172 if((branch_regs[i].dirty>>3)&1) printf("r3 ");
11173 if((branch_regs[i].dirty>>4)&1) printf("r4 ");
11174 if((branch_regs[i].dirty>>5)&1) printf("r5 ");
11175 if((branch_regs[i].dirty>>6)&1) printf("r6 ");
11176 if((branch_regs[i].dirty>>7)&1) printf("r7 ");
11177 if((branch_regs[i].dirty>>8)&1) printf("r8 ");
11178 if((branch_regs[i].dirty>>9)&1) printf("r9 ");
11179 if((branch_regs[i].dirty>>10)&1) printf("r10 ");
11180 if((branch_regs[i].dirty>>12)&1) printf("r12 ");
11181 #endif
90ae6d4e 11182#ifndef FORCE32
57871462 11183 printf(" 32:");
11184 for(r=0;r<=CCREG;r++) {
11185 if((branch_regs[i].is32>>r)&1) {
11186 if(r==CCREG) printf(" CC");
11187 else if(r==HIREG) printf(" HI");
11188 else if(r==LOREG) printf(" LO");
11189 else printf(" r%d",r);
11190 }
11191 }
11192 printf("\n");
90ae6d4e 11193#endif
57871462 11194 }
11195 }
4600ba03 11196#endif // DISASM
57871462 11197
11198 /* Pass 8 - Assembly */
11199 linkcount=0;stubcount=0;
11200 ds=0;is_delayslot=0;
11201 cop1_usable=0;
11202 uint64_t is32_pre=0;
11203 u_int dirty_pre=0;
11204 u_int beginning=(u_int)out;
11205 if((u_int)addr&1) {
11206 ds=1;
11207 pagespan_ds();
11208 }
9ad4d757 11209 u_int instr_addr0_override=0;
11210
11211#ifdef PCSX
11212 if (start == 0x80030000) {
11213 // nasty hack for fastbios thing
96186eba 11214 // override block entry to this code
9ad4d757 11215 instr_addr0_override=(u_int)out;
11216 emit_movimm(start,0);
96186eba 11217 // abuse io address var as a flag that we
11218 // have already returned here once
11219 emit_readword((int)&address,1);
9ad4d757 11220 emit_writeword(0,(int)&pcaddr);
96186eba 11221 emit_writeword(0,(int)&address);
9ad4d757 11222 emit_cmp(0,1);
11223 emit_jne((int)new_dyna_leave);
11224 }
11225#endif
57871462 11226 for(i=0;i<slen;i++)
11227 {
11228 //if(ds) printf("ds: ");
4600ba03 11229 disassemble_inst(i);
57871462 11230 if(ds) {
11231 ds=0; // Skip delay slot
11232 if(bt[i]) assem_debug("OOPS - branch into delay slot\n");
11233 instr_addr[i]=0;
11234 } else {
ffb0b9e0 11235 speculate_register_values(i);
57871462 11236 #ifndef DESTRUCTIVE_WRITEBACK
11237 if(i<2||(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000))
11238 {
11239 wb_sx(regmap_pre[i],regs[i].regmap_entry,regs[i].wasdirty,is32_pre,regs[i].was32,
11240 unneeded_reg[i],unneeded_reg_upper[i]);
11241 wb_valid(regmap_pre[i],regs[i].regmap_entry,dirty_pre,regs[i].wasdirty,is32_pre,
11242 unneeded_reg[i],unneeded_reg_upper[i]);
11243 }
f776eb14 11244 if((itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)&&!likely[i]) {
11245 is32_pre=branch_regs[i].is32;
11246 dirty_pre=branch_regs[i].dirty;
11247 }else{
11248 is32_pre=regs[i].is32;
11249 dirty_pre=regs[i].dirty;
11250 }
57871462 11251 #endif
11252 // write back
11253 if(i<2||(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000))
11254 {
11255 wb_invalidate(regmap_pre[i],regs[i].regmap_entry,regs[i].wasdirty,regs[i].was32,
11256 unneeded_reg[i],unneeded_reg_upper[i]);
11257 loop_preload(regmap_pre[i],regs[i].regmap_entry);
11258 }
11259 // branch target entry point
11260 instr_addr[i]=(u_int)out;
11261 assem_debug("<->\n");
11262 // load regs
11263 if(regs[i].regmap_entry[HOST_CCREG]==CCREG&&regs[i].regmap[HOST_CCREG]!=CCREG)
11264 wb_register(CCREG,regs[i].regmap_entry,regs[i].wasdirty,regs[i].was32);
11265 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i],rs2[i]);
11266 address_generation(i,&regs[i],regs[i].regmap_entry);
11267 load_consts(regmap_pre[i],regs[i].regmap,regs[i].was32,i);
11268 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
11269 {
11270 // Load the delay slot registers if necessary
4ef8f67d 11271 if(rs1[i+1]!=rs1[i]&&rs1[i+1]!=rs2[i]&&(rs1[i+1]!=rt1[i]||rt1[i]==0))
57871462 11272 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i+1],rs1[i+1]);
4ef8f67d 11273 if(rs2[i+1]!=rs1[i+1]&&rs2[i+1]!=rs1[i]&&rs2[i+1]!=rs2[i]&&(rs2[i+1]!=rt1[i]||rt1[i]==0))
57871462 11274 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs2[i+1],rs2[i+1]);
b9b61529 11275 if(itype[i+1]==STORE||itype[i+1]==STORELR||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a)
57871462 11276 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,INVCP,INVCP);
11277 }
11278 else if(i+1<slen)
11279 {
11280 // Preload registers for following instruction
11281 if(rs1[i+1]!=rs1[i]&&rs1[i+1]!=rs2[i])
11282 if(rs1[i+1]!=rt1[i]&&rs1[i+1]!=rt2[i])
11283 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i+1],rs1[i+1]);
11284 if(rs2[i+1]!=rs1[i+1]&&rs2[i+1]!=rs1[i]&&rs2[i+1]!=rs2[i])
11285 if(rs2[i+1]!=rt1[i]&&rs2[i+1]!=rt2[i])
11286 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs2[i+1],rs2[i+1]);
11287 }
11288 // TODO: if(is_ooo(i)) address_generation(i+1);
11289 if(itype[i]==CJUMP||itype[i]==FJUMP)
11290 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,CCREG,CCREG);
b9b61529 11291 if(itype[i]==STORE||itype[i]==STORELR||(opcode[i]&0x3b)==0x39||(opcode[i]&0x3b)==0x3a)
57871462 11292 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,INVCP,INVCP);
11293 if(bt[i]) cop1_usable=0;
11294 // assemble
11295 switch(itype[i]) {
11296 case ALU:
11297 alu_assemble(i,&regs[i]);break;
11298 case IMM16:
11299 imm16_assemble(i,&regs[i]);break;
11300 case SHIFT:
11301 shift_assemble(i,&regs[i]);break;
11302 case SHIFTIMM:
11303 shiftimm_assemble(i,&regs[i]);break;
11304 case LOAD:
11305 load_assemble(i,&regs[i]);break;
11306 case LOADLR:
11307 loadlr_assemble(i,&regs[i]);break;
11308 case STORE:
11309 store_assemble(i,&regs[i]);break;
11310 case STORELR:
11311 storelr_assemble(i,&regs[i]);break;
11312 case COP0:
11313 cop0_assemble(i,&regs[i]);break;
11314 case COP1:
11315 cop1_assemble(i,&regs[i]);break;
11316 case C1LS:
11317 c1ls_assemble(i,&regs[i]);break;
b9b61529 11318 case COP2:
11319 cop2_assemble(i,&regs[i]);break;
11320 case C2LS:
11321 c2ls_assemble(i,&regs[i]);break;
11322 case C2OP:
11323 c2op_assemble(i,&regs[i]);break;
57871462 11324 case FCONV:
11325 fconv_assemble(i,&regs[i]);break;
11326 case FLOAT:
11327 float_assemble(i,&regs[i]);break;
11328 case FCOMP:
11329 fcomp_assemble(i,&regs[i]);break;
11330 case MULTDIV:
11331 multdiv_assemble(i,&regs[i]);break;
11332 case MOV:
11333 mov_assemble(i,&regs[i]);break;
11334 case SYSCALL:
11335 syscall_assemble(i,&regs[i]);break;
7139f3c8 11336 case HLECALL:
11337 hlecall_assemble(i,&regs[i]);break;
1e973cb0 11338 case INTCALL:
11339 intcall_assemble(i,&regs[i]);break;
57871462 11340 case UJUMP:
11341 ujump_assemble(i,&regs[i]);ds=1;break;
11342 case RJUMP:
11343 rjump_assemble(i,&regs[i]);ds=1;break;
11344 case CJUMP:
11345 cjump_assemble(i,&regs[i]);ds=1;break;
11346 case SJUMP:
11347 sjump_assemble(i,&regs[i]);ds=1;break;
11348 case FJUMP:
11349 fjump_assemble(i,&regs[i]);ds=1;break;
11350 case SPAN:
11351 pagespan_assemble(i,&regs[i]);break;
11352 }
11353 if(itype[i]==UJUMP||itype[i]==RJUMP||(source[i]>>16)==0x1000)
11354 literal_pool(1024);
11355 else
11356 literal_pool_jumpover(256);
11357 }
11358 }
11359 //assert(itype[i-2]==UJUMP||itype[i-2]==RJUMP||(source[i-2]>>16)==0x1000);
11360 // If the block did not end with an unconditional branch,
11361 // add a jump to the next instruction.
11362 if(i>1) {
11363 if(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000&&itype[i-1]!=SPAN) {
11364 assert(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP);
11365 assert(i==slen);
11366 if(itype[i-2]!=CJUMP&&itype[i-2]!=SJUMP&&itype[i-2]!=FJUMP) {
11367 store_regs_bt(regs[i-1].regmap,regs[i-1].is32,regs[i-1].dirty,start+i*4);
11368 if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
11369 emit_loadreg(CCREG,HOST_CCREG);
2573466a 11370 emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i-1]+1),HOST_CCREG);
57871462 11371 }
11372 else if(!likely[i-2])
11373 {
11374 store_regs_bt(branch_regs[i-2].regmap,branch_regs[i-2].is32,branch_regs[i-2].dirty,start+i*4);
11375 assert(branch_regs[i-2].regmap[HOST_CCREG]==CCREG);
11376 }
11377 else
11378 {
11379 store_regs_bt(regs[i-2].regmap,regs[i-2].is32,regs[i-2].dirty,start+i*4);
11380 assert(regs[i-2].regmap[HOST_CCREG]==CCREG);
11381 }
11382 add_to_linker((int)out,start+i*4,0);
11383 emit_jmp(0);
11384 }
11385 }
11386 else
11387 {
11388 assert(i>0);
11389 assert(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP);
11390 store_regs_bt(regs[i-1].regmap,regs[i-1].is32,regs[i-1].dirty,start+i*4);
11391 if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
11392 emit_loadreg(CCREG,HOST_CCREG);
2573466a 11393 emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i-1]+1),HOST_CCREG);
57871462 11394 add_to_linker((int)out,start+i*4,0);
11395 emit_jmp(0);
11396 }
11397
11398 // TODO: delay slot stubs?
11399 // Stubs
11400 for(i=0;i<stubcount;i++)
11401 {
11402 switch(stubs[i][0])
11403 {
11404 case LOADB_STUB:
11405 case LOADH_STUB:
11406 case LOADW_STUB:
11407 case LOADD_STUB:
11408 case LOADBU_STUB:
11409 case LOADHU_STUB:
11410 do_readstub(i);break;
11411 case STOREB_STUB:
11412 case STOREH_STUB:
11413 case STOREW_STUB:
11414 case STORED_STUB:
11415 do_writestub(i);break;
11416 case CC_STUB:
11417 do_ccstub(i);break;
11418 case INVCODE_STUB:
11419 do_invstub(i);break;
11420 case FP_STUB:
11421 do_cop1stub(i);break;
11422 case STORELR_STUB:
11423 do_unalignedwritestub(i);break;
11424 }
11425 }
11426
9ad4d757 11427 if (instr_addr0_override)
11428 instr_addr[0] = instr_addr0_override;
11429
57871462 11430 /* Pass 9 - Linker */
11431 for(i=0;i<linkcount;i++)
11432 {
11433 assem_debug("%8x -> %8x\n",link_addr[i][0],link_addr[i][1]);
11434 literal_pool(64);
11435 if(!link_addr[i][2])
11436 {
11437 void *stub=out;
11438 void *addr=check_addr(link_addr[i][1]);
11439 emit_extjump(link_addr[i][0],link_addr[i][1]);
11440 if(addr) {
11441 set_jump_target(link_addr[i][0],(int)addr);
11442 add_link(link_addr[i][1],stub);
11443 }
11444 else set_jump_target(link_addr[i][0],(int)stub);
11445 }
11446 else
11447 {
11448 // Internal branch
11449 int target=(link_addr[i][1]-start)>>2;
11450 assert(target>=0&&target<slen);
11451 assert(instr_addr[target]);
11452 //#ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
11453 //set_jump_target_fillslot(link_addr[i][0],instr_addr[target],link_addr[i][2]>>1);
11454 //#else
11455 set_jump_target(link_addr[i][0],instr_addr[target]);
11456 //#endif
11457 }
11458 }
11459 // External Branch Targets (jump_in)
11460 if(copy+slen*4>(void *)shadow+sizeof(shadow)) copy=shadow;
11461 for(i=0;i<slen;i++)
11462 {
11463 if(bt[i]||i==0)
11464 {
11465 if(instr_addr[i]) // TODO - delay slots (=null)
11466 {
11467 u_int vaddr=start+i*4;
94d23bb9 11468 u_int page=get_page(vaddr);
11469 u_int vpage=get_vpage(vaddr);
57871462 11470 literal_pool(256);
11471 //if(!(is32[i]&(~unneeded_reg_upper[i])&~(1LL<<CCREG)))
a28c6ce8 11472#ifndef FORCE32
57871462 11473 if(!requires_32bit[i])
a28c6ce8 11474#else
11475 if(1)
11476#endif
57871462 11477 {
11478 assem_debug("%8x (%d) <- %8x\n",instr_addr[i],i,start+i*4);
11479 assem_debug("jump_in: %x\n",start+i*4);
11480 ll_add(jump_dirty+vpage,vaddr,(void *)out);
11481 int entry_point=do_dirty_stub(i);
11482 ll_add(jump_in+page,vaddr,(void *)entry_point);
11483 // If there was an existing entry in the hash table,
11484 // replace it with the new address.
11485 // Don't add new entries. We'll insert the
11486 // ones that actually get used in check_addr().
11487 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
11488 if(ht_bin[0]==vaddr) {
11489 ht_bin[1]=entry_point;
11490 }
11491 if(ht_bin[2]==vaddr) {
11492 ht_bin[3]=entry_point;
11493 }
11494 }
11495 else
11496 {
11497 u_int r=requires_32bit[i]|!!(requires_32bit[i]>>32);
11498 assem_debug("%8x (%d) <- %8x\n",instr_addr[i],i,start+i*4);
11499 assem_debug("jump_in: %x (restricted - %x)\n",start+i*4,r);
11500 //int entry_point=(int)out;
11501 ////assem_debug("entry_point: %x\n",entry_point);
11502 //load_regs_entry(i);
11503 //if(entry_point==(int)out)
11504 // entry_point=instr_addr[i];
11505 //else
11506 // emit_jmp(instr_addr[i]);
11507 //ll_add_32(jump_in+page,vaddr,r,(void *)entry_point);
11508 ll_add_32(jump_dirty+vpage,vaddr,r,(void *)out);
11509 int entry_point=do_dirty_stub(i);
11510 ll_add_32(jump_in+page,vaddr,r,(void *)entry_point);
11511 }
11512 }
11513 }
11514 }
11515 // Write out the literal pool if necessary
11516 literal_pool(0);
11517 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
11518 // Align code
11519 if(((u_int)out)&7) emit_addnop(13);
11520 #endif
11521 assert((u_int)out-beginning<MAX_OUTPUT_BLOCK_SIZE);
11522 //printf("shadow buffer: %x-%x\n",(int)copy,(int)copy+slen*4);
11523 memcpy(copy,source,slen*4);
11524 copy+=slen*4;
11525
11526 #ifdef __arm__
11527 __clear_cache((void *)beginning,out);
11528 #endif
11529
11530 // If we're within 256K of the end of the buffer,
11531 // start over from the beginning. (Is 256K enough?)
11532 if((int)out>BASE_ADDR+(1<<TARGET_SIZE_2)-MAX_OUTPUT_BLOCK_SIZE) out=(u_char *)BASE_ADDR;
11533
11534 // Trap writes to any of the pages we compiled
11535 for(i=start>>12;i<=(start+slen*4)>>12;i++) {
11536 invalid_code[i]=0;
90ae6d4e 11537#ifndef DISABLE_TLB
57871462 11538 memory_map[i]|=0x40000000;
11539 if((signed int)start>=(signed int)0xC0000000) {
11540 assert(using_tlb);
11541 j=(((u_int)i<<12)+(memory_map[i]<<2)-(u_int)rdram+(u_int)0x80000000)>>12;
11542 invalid_code[j]=0;
11543 memory_map[j]|=0x40000000;
11544 //printf("write protect physical page: %x (virtual %x)\n",j<<12,start);
11545 }
90ae6d4e 11546#endif
57871462 11547 }
9be4ba64 11548 inv_code_start=inv_code_end=~0;
b12c9fb8 11549#ifdef PCSX
b96d3df7 11550 // for PCSX we need to mark all mirrors too
b12c9fb8 11551 if(get_page(start)<(RAM_SIZE>>12))
11552 for(i=start>>12;i<=(start+slen*4)>>12;i++)
b96d3df7 11553 invalid_code[((u_int)0x00000000>>12)|(i&0x1ff)]=
11554 invalid_code[((u_int)0x80000000>>12)|(i&0x1ff)]=
11555 invalid_code[((u_int)0xa0000000>>12)|(i&0x1ff)]=0;
b12c9fb8 11556#endif
57871462 11557
11558 /* Pass 10 - Free memory by expiring oldest blocks */
11559
11560 int end=((((int)out-BASE_ADDR)>>(TARGET_SIZE_2-16))+16384)&65535;
11561 while(expirep!=end)
11562 {
11563 int shift=TARGET_SIZE_2-3; // Divide into 8 blocks
11564 int base=BASE_ADDR+((expirep>>13)<<shift); // Base address of this block
11565 inv_debug("EXP: Phase %d\n",expirep);
11566 switch((expirep>>11)&3)
11567 {
11568 case 0:
11569 // Clear jump_in and jump_dirty
11570 ll_remove_matching_addrs(jump_in+(expirep&2047),base,shift);
11571 ll_remove_matching_addrs(jump_dirty+(expirep&2047),base,shift);
11572 ll_remove_matching_addrs(jump_in+2048+(expirep&2047),base,shift);
11573 ll_remove_matching_addrs(jump_dirty+2048+(expirep&2047),base,shift);
11574 break;
11575 case 1:
11576 // Clear pointers
11577 ll_kill_pointers(jump_out[expirep&2047],base,shift);
11578 ll_kill_pointers(jump_out[(expirep&2047)+2048],base,shift);
11579 break;
11580 case 2:
11581 // Clear hash table
11582 for(i=0;i<32;i++) {
11583 int *ht_bin=hash_table[((expirep&2047)<<5)+i];
11584 if((ht_bin[3]>>shift)==(base>>shift) ||
11585 ((ht_bin[3]-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(base>>shift)) {
11586 inv_debug("EXP: Remove hash %x -> %x\n",ht_bin[2],ht_bin[3]);
11587 ht_bin[2]=ht_bin[3]=-1;
11588 }
11589 if((ht_bin[1]>>shift)==(base>>shift) ||
11590 ((ht_bin[1]-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(base>>shift)) {
11591 inv_debug("EXP: Remove hash %x -> %x\n",ht_bin[0],ht_bin[1]);
11592 ht_bin[0]=ht_bin[2];
11593 ht_bin[1]=ht_bin[3];
11594 ht_bin[2]=ht_bin[3]=-1;
11595 }
11596 }
11597 break;
11598 case 3:
11599 // Clear jump_out
dd3a91a1 11600 #ifdef __arm__
11601 if((expirep&2047)==0)
11602 do_clear_cache();
11603 #endif
57871462 11604 ll_remove_matching_addrs(jump_out+(expirep&2047),base,shift);
11605 ll_remove_matching_addrs(jump_out+2048+(expirep&2047),base,shift);
11606 break;
11607 }
11608 expirep=(expirep+1)&65535;
11609 }
11610 return 0;
11611}
b9b61529 11612
11613// vim:shiftwidth=2:expandtab