spu/cdda: sync cdda to spu playback
[pcsx_rearmed.git] / libpcsxcore / new_dynarec / new_dynarec.c
CommitLineData
57871462 1/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
2 * Mupen64plus - new_dynarec.c *
20d507ba 3 * Copyright (C) 2009-2011 Ari64 *
57871462 4 * *
5 * This program is free software; you can redistribute it and/or modify *
6 * it under the terms of the GNU General Public License as published by *
7 * the Free Software Foundation; either version 2 of the License, or *
8 * (at your option) any later version. *
9 * *
10 * This program is distributed in the hope that it will be useful, *
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
13 * GNU General Public License for more details. *
14 * *
15 * You should have received a copy of the GNU General Public License *
16 * along with this program; if not, write to the *
17 * Free Software Foundation, Inc., *
18 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. *
19 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
20
21#include <stdlib.h>
22#include <stdint.h> //include for uint64_t
23#include <assert.h>
4600ba03 24#include <sys/mman.h>
57871462 25
3d624f89 26#include "emu_if.h" //emulator interface
57871462 27
4600ba03 28//#define DISASM
29//#define assem_debug printf
30//#define inv_debug printf
31#define assem_debug(...)
32#define inv_debug(...)
57871462 33
34#ifdef __i386__
35#include "assem_x86.h"
36#endif
37#ifdef __x86_64__
38#include "assem_x64.h"
39#endif
40#ifdef __arm__
41#include "assem_arm.h"
42#endif
43
44#define MAXBLOCK 4096
45#define MAX_OUTPUT_BLOCK_SIZE 262144
46#define CLOCK_DIVIDER 2
47
48struct regstat
49{
50 signed char regmap_entry[HOST_REGS];
51 signed char regmap[HOST_REGS];
52 uint64_t was32;
53 uint64_t is32;
54 uint64_t wasdirty;
55 uint64_t dirty;
56 uint64_t u;
57 uint64_t uu;
58 u_int wasconst;
59 u_int isconst;
60 uint64_t constmap[HOST_REGS];
61};
62
63struct ll_entry
64{
65 u_int vaddr;
66 u_int reg32;
67 void *addr;
68 struct ll_entry *next;
69};
70
71 u_int start;
72 u_int *source;
73 u_int pagelimit;
74 char insn[MAXBLOCK][10];
75 u_char itype[MAXBLOCK];
76 u_char opcode[MAXBLOCK];
77 u_char opcode2[MAXBLOCK];
78 u_char bt[MAXBLOCK];
79 u_char rs1[MAXBLOCK];
80 u_char rs2[MAXBLOCK];
81 u_char rt1[MAXBLOCK];
82 u_char rt2[MAXBLOCK];
83 u_char us1[MAXBLOCK];
84 u_char us2[MAXBLOCK];
85 u_char dep1[MAXBLOCK];
86 u_char dep2[MAXBLOCK];
87 u_char lt1[MAXBLOCK];
bedfea38 88 static uint64_t gte_rs[MAXBLOCK]; // gte: 32 data and 32 ctl regs
89 static uint64_t gte_rt[MAXBLOCK];
90 static uint64_t gte_unneeded[MAXBLOCK];
91 static int gte_reads_flags; // gte flag read encountered
57871462 92 int imm[MAXBLOCK];
93 u_int ba[MAXBLOCK];
94 char likely[MAXBLOCK];
95 char is_ds[MAXBLOCK];
e1190b87 96 char ooo[MAXBLOCK];
57871462 97 uint64_t unneeded_reg[MAXBLOCK];
98 uint64_t unneeded_reg_upper[MAXBLOCK];
99 uint64_t branch_unneeded_reg[MAXBLOCK];
100 uint64_t branch_unneeded_reg_upper[MAXBLOCK];
101 uint64_t p32[MAXBLOCK];
102 uint64_t pr32[MAXBLOCK];
103 signed char regmap_pre[MAXBLOCK][HOST_REGS];
104 signed char regmap[MAXBLOCK][HOST_REGS];
105 signed char regmap_entry[MAXBLOCK][HOST_REGS];
106 uint64_t constmap[MAXBLOCK][HOST_REGS];
57871462 107 struct regstat regs[MAXBLOCK];
108 struct regstat branch_regs[MAXBLOCK];
e1190b87 109 signed char minimum_free_regs[MAXBLOCK];
57871462 110 u_int needed_reg[MAXBLOCK];
111 uint64_t requires_32bit[MAXBLOCK];
112 u_int wont_dirty[MAXBLOCK];
113 u_int will_dirty[MAXBLOCK];
114 int ccadj[MAXBLOCK];
115 int slen;
116 u_int instr_addr[MAXBLOCK];
117 u_int link_addr[MAXBLOCK][3];
118 int linkcount;
119 u_int stubs[MAXBLOCK*3][8];
120 int stubcount;
121 u_int literals[1024][2];
122 int literalcount;
123 int is_delayslot;
124 int cop1_usable;
125 u_char *out;
126 struct ll_entry *jump_in[4096];
127 struct ll_entry *jump_out[4096];
128 struct ll_entry *jump_dirty[4096];
129 u_int hash_table[65536][4] __attribute__((aligned(16)));
130 char shadow[1048576] __attribute__((aligned(16)));
131 void *copy;
132 int expirep;
af4ee1fe 133#ifndef PCSX
57871462 134 u_int using_tlb;
af4ee1fe 135#else
136 static const u_int using_tlb=0;
137#endif
dadf55f2 138 static u_int sp_in_mirror;
57871462 139 u_int stop_after_jal;
140 extern u_char restore_candidate[512];
141 extern int cycle_count;
142
143 /* registers that may be allocated */
144 /* 1-31 gpr */
145#define HIREG 32 // hi
146#define LOREG 33 // lo
147#define FSREG 34 // FPU status (FCSR)
148#define CSREG 35 // Coprocessor status
149#define CCREG 36 // Cycle count
150#define INVCP 37 // Pointer to invalid_code
619e5ded 151#define MMREG 38 // Pointer to memory_map
152#define ROREG 39 // ram offset (if rdram!=0x80000000)
153#define TEMPREG 40
154#define FTEMP 40 // FPU temporary register
155#define PTEMP 41 // Prefetch temporary register
156#define TLREG 42 // TLB mapping offset
157#define RHASH 43 // Return address hash
158#define RHTBL 44 // Return address hash table address
159#define RTEMP 45 // JR/JALR address register
160#define MAXREG 45
161#define AGEN1 46 // Address generation temporary register
162#define AGEN2 47 // Address generation temporary register
163#define MGEN1 48 // Maptable address generation temporary register
164#define MGEN2 49 // Maptable address generation temporary register
165#define BTREG 50 // Branch target temporary register
57871462 166
167 /* instruction types */
168#define NOP 0 // No operation
169#define LOAD 1 // Load
170#define STORE 2 // Store
171#define LOADLR 3 // Unaligned load
172#define STORELR 4 // Unaligned store
173#define MOV 5 // Move
174#define ALU 6 // Arithmetic/logic
175#define MULTDIV 7 // Multiply/divide
176#define SHIFT 8 // Shift by register
177#define SHIFTIMM 9// Shift by immediate
178#define IMM16 10 // 16-bit immediate
179#define RJUMP 11 // Unconditional jump to register
180#define UJUMP 12 // Unconditional jump
181#define CJUMP 13 // Conditional branch (BEQ/BNE/BGTZ/BLEZ)
182#define SJUMP 14 // Conditional branch (regimm format)
183#define COP0 15 // Coprocessor 0
184#define COP1 16 // Coprocessor 1
185#define C1LS 17 // Coprocessor 1 load/store
186#define FJUMP 18 // Conditional branch (floating point)
187#define FLOAT 19 // Floating point unit
188#define FCONV 20 // Convert integer to float
189#define FCOMP 21 // Floating point compare (sets FSREG)
190#define SYSCALL 22// SYSCALL
191#define OTHER 23 // Other
192#define SPAN 24 // Branch/delay slot spans 2 pages
193#define NI 25 // Not implemented
7139f3c8 194#define HLECALL 26// PCSX fake opcodes for HLE
b9b61529 195#define COP2 27 // Coprocessor 2 move
196#define C2LS 28 // Coprocessor 2 load/store
197#define C2OP 29 // Coprocessor 2 operation
1e973cb0 198#define INTCALL 30// Call interpreter to handle rare corner cases
57871462 199
200 /* stubs */
201#define CC_STUB 1
202#define FP_STUB 2
203#define LOADB_STUB 3
204#define LOADH_STUB 4
205#define LOADW_STUB 5
206#define LOADD_STUB 6
207#define LOADBU_STUB 7
208#define LOADHU_STUB 8
209#define STOREB_STUB 9
210#define STOREH_STUB 10
211#define STOREW_STUB 11
212#define STORED_STUB 12
213#define STORELR_STUB 13
214#define INVCODE_STUB 14
215
216 /* branch codes */
217#define TAKEN 1
218#define NOTTAKEN 2
219#define NULLDS 3
220
221// asm linkage
222int new_recompile_block(int addr);
223void *get_addr_ht(u_int vaddr);
224void invalidate_block(u_int block);
225void invalidate_addr(u_int addr);
226void remove_hash(int vaddr);
227void jump_vaddr();
228void dyna_linker();
229void dyna_linker_ds();
230void verify_code();
231void verify_code_vm();
232void verify_code_ds();
233void cc_interrupt();
234void fp_exception();
235void fp_exception_ds();
236void jump_syscall();
7139f3c8 237void jump_syscall_hle();
57871462 238void jump_eret();
7139f3c8 239void jump_hlecall();
1e973cb0 240void jump_intcall();
7139f3c8 241void new_dyna_leave();
57871462 242
243// TLB
244void TLBWI_new();
245void TLBWR_new();
246void read_nomem_new();
247void read_nomemb_new();
248void read_nomemh_new();
249void read_nomemd_new();
250void write_nomem_new();
251void write_nomemb_new();
252void write_nomemh_new();
253void write_nomemd_new();
254void write_rdram_new();
255void write_rdramb_new();
256void write_rdramh_new();
257void write_rdramd_new();
258extern u_int memory_map[1048576];
259
260// Needed by assembler
261void wb_register(signed char r,signed char regmap[],uint64_t dirty,uint64_t is32);
262void wb_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty);
263void wb_needed_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr);
264void load_all_regs(signed char i_regmap[]);
265void load_needed_regs(signed char i_regmap[],signed char next_regmap[]);
266void load_regs_entry(int t);
267void load_all_consts(signed char regmap[],int is32,u_int dirty,int i);
268
269int tracedebug=0;
270
271//#define DEBUG_CYCLE_COUNT 1
272
94d23bb9 273static void tlb_hacks()
57871462 274{
94d23bb9 275#ifndef DISABLE_TLB
57871462 276 // Goldeneye hack
277 if (strncmp((char *) ROM_HEADER->nom, "GOLDENEYE",9) == 0)
278 {
279 u_int addr;
280 int n;
281 switch (ROM_HEADER->Country_code&0xFF)
282 {
283 case 0x45: // U
284 addr=0x34b30;
285 break;
286 case 0x4A: // J
287 addr=0x34b70;
288 break;
289 case 0x50: // E
290 addr=0x329f0;
291 break;
292 default:
293 // Unknown country code
294 addr=0;
295 break;
296 }
297 u_int rom_addr=(u_int)rom;
298 #ifdef ROM_COPY
299 // Since memory_map is 32-bit, on 64-bit systems the rom needs to be
300 // in the lower 4G of memory to use this hack. Copy it if necessary.
301 if((void *)rom>(void *)0xffffffff) {
302 munmap(ROM_COPY, 67108864);
303 if(mmap(ROM_COPY, 12582912,
304 PROT_READ | PROT_WRITE,
305 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS,
306 -1, 0) <= 0) {printf("mmap() failed\n");}
307 memcpy(ROM_COPY,rom,12582912);
308 rom_addr=(u_int)ROM_COPY;
309 }
310 #endif
311 if(addr) {
312 for(n=0x7F000;n<0x80000;n++) {
313 memory_map[n]=(((u_int)(rom_addr+addr-0x7F000000))>>2)|0x40000000;
314 }
315 }
316 }
94d23bb9 317#endif
57871462 318}
319
94d23bb9 320static u_int get_page(u_int vaddr)
57871462 321{
0ce47d46 322#ifndef PCSX
57871462 323 u_int page=(vaddr^0x80000000)>>12;
0ce47d46 324#else
325 u_int page=vaddr&~0xe0000000;
326 if (page < 0x1000000)
327 page &= ~0x0e00000; // RAM mirrors
328 page>>=12;
329#endif
94d23bb9 330#ifndef DISABLE_TLB
57871462 331 if(page>262143&&tlb_LUT_r[vaddr>>12]) page=(tlb_LUT_r[vaddr>>12]^0x80000000)>>12;
94d23bb9 332#endif
57871462 333 if(page>2048) page=2048+(page&2047);
94d23bb9 334 return page;
335}
336
337static u_int get_vpage(u_int vaddr)
338{
339 u_int vpage=(vaddr^0x80000000)>>12;
340#ifndef DISABLE_TLB
57871462 341 if(vpage>262143&&tlb_LUT_r[vaddr>>12]) vpage&=2047; // jump_dirty uses a hash of the virtual address instead
94d23bb9 342#endif
57871462 343 if(vpage>2048) vpage=2048+(vpage&2047);
94d23bb9 344 return vpage;
345}
346
347// Get address from virtual address
348// This is called from the recompiled JR/JALR instructions
349void *get_addr(u_int vaddr)
350{
351 u_int page=get_page(vaddr);
352 u_int vpage=get_vpage(vaddr);
57871462 353 struct ll_entry *head;
354 //printf("TRACE: count=%d next=%d (get_addr %x,page %d)\n",Count,next_interupt,vaddr,page);
355 head=jump_in[page];
356 while(head!=NULL) {
357 if(head->vaddr==vaddr&&head->reg32==0) {
358 //printf("TRACE: count=%d next=%d (get_addr match %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
359 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
360 ht_bin[3]=ht_bin[1];
361 ht_bin[2]=ht_bin[0];
362 ht_bin[1]=(int)head->addr;
363 ht_bin[0]=vaddr;
364 return head->addr;
365 }
366 head=head->next;
367 }
368 head=jump_dirty[vpage];
369 while(head!=NULL) {
370 if(head->vaddr==vaddr&&head->reg32==0) {
371 //printf("TRACE: count=%d next=%d (get_addr match dirty %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
372 // Don't restore blocks which are about to expire from the cache
373 if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
374 if(verify_dirty(head->addr)) {
375 //printf("restore candidate: %x (%d) d=%d\n",vaddr,page,invalid_code[vaddr>>12]);
376 invalid_code[vaddr>>12]=0;
9be4ba64 377 inv_code_start=inv_code_end=~0;
57871462 378 memory_map[vaddr>>12]|=0x40000000;
379 if(vpage<2048) {
94d23bb9 380#ifndef DISABLE_TLB
57871462 381 if(tlb_LUT_r[vaddr>>12]) {
382 invalid_code[tlb_LUT_r[vaddr>>12]>>12]=0;
383 memory_map[tlb_LUT_r[vaddr>>12]>>12]|=0x40000000;
384 }
94d23bb9 385#endif
57871462 386 restore_candidate[vpage>>3]|=1<<(vpage&7);
387 }
388 else restore_candidate[page>>3]|=1<<(page&7);
389 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
390 if(ht_bin[0]==vaddr) {
391 ht_bin[1]=(int)head->addr; // Replace existing entry
392 }
393 else
394 {
395 ht_bin[3]=ht_bin[1];
396 ht_bin[2]=ht_bin[0];
397 ht_bin[1]=(int)head->addr;
398 ht_bin[0]=vaddr;
399 }
400 return head->addr;
401 }
402 }
403 head=head->next;
404 }
405 //printf("TRACE: count=%d next=%d (get_addr no-match %x)\n",Count,next_interupt,vaddr);
406 int r=new_recompile_block(vaddr);
407 if(r==0) return get_addr(vaddr);
408 // Execute in unmapped page, generate pagefault execption
409 Status|=2;
410 Cause=(vaddr<<31)|0x8;
411 EPC=(vaddr&1)?vaddr-5:vaddr;
412 BadVAddr=(vaddr&~1);
413 Context=(Context&0xFF80000F)|((BadVAddr>>9)&0x007FFFF0);
414 EntryHi=BadVAddr&0xFFFFE000;
415 return get_addr_ht(0x80000000);
416}
417// Look up address in hash table first
418void *get_addr_ht(u_int vaddr)
419{
420 //printf("TRACE: count=%d next=%d (get_addr_ht %x)\n",Count,next_interupt,vaddr);
421 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
422 if(ht_bin[0]==vaddr) return (void *)ht_bin[1];
423 if(ht_bin[2]==vaddr) return (void *)ht_bin[3];
424 return get_addr(vaddr);
425}
426
427void *get_addr_32(u_int vaddr,u_int flags)
428{
7139f3c8 429#ifdef FORCE32
430 return get_addr(vaddr);
560e4a12 431#else
57871462 432 //printf("TRACE: count=%d next=%d (get_addr_32 %x,flags %x)\n",Count,next_interupt,vaddr,flags);
433 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
434 if(ht_bin[0]==vaddr) return (void *)ht_bin[1];
435 if(ht_bin[2]==vaddr) return (void *)ht_bin[3];
94d23bb9 436 u_int page=get_page(vaddr);
437 u_int vpage=get_vpage(vaddr);
57871462 438 struct ll_entry *head;
439 head=jump_in[page];
440 while(head!=NULL) {
441 if(head->vaddr==vaddr&&(head->reg32&flags)==0) {
442 //printf("TRACE: count=%d next=%d (get_addr_32 match %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
443 if(head->reg32==0) {
444 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
445 if(ht_bin[0]==-1) {
446 ht_bin[1]=(int)head->addr;
447 ht_bin[0]=vaddr;
448 }else if(ht_bin[2]==-1) {
449 ht_bin[3]=(int)head->addr;
450 ht_bin[2]=vaddr;
451 }
452 //ht_bin[3]=ht_bin[1];
453 //ht_bin[2]=ht_bin[0];
454 //ht_bin[1]=(int)head->addr;
455 //ht_bin[0]=vaddr;
456 }
457 return head->addr;
458 }
459 head=head->next;
460 }
461 head=jump_dirty[vpage];
462 while(head!=NULL) {
463 if(head->vaddr==vaddr&&(head->reg32&flags)==0) {
464 //printf("TRACE: count=%d next=%d (get_addr_32 match dirty %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
465 // Don't restore blocks which are about to expire from the cache
466 if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
467 if(verify_dirty(head->addr)) {
468 //printf("restore candidate: %x (%d) d=%d\n",vaddr,page,invalid_code[vaddr>>12]);
469 invalid_code[vaddr>>12]=0;
9be4ba64 470 inv_code_start=inv_code_end=~0;
57871462 471 memory_map[vaddr>>12]|=0x40000000;
472 if(vpage<2048) {
94d23bb9 473#ifndef DISABLE_TLB
57871462 474 if(tlb_LUT_r[vaddr>>12]) {
475 invalid_code[tlb_LUT_r[vaddr>>12]>>12]=0;
476 memory_map[tlb_LUT_r[vaddr>>12]>>12]|=0x40000000;
477 }
94d23bb9 478#endif
57871462 479 restore_candidate[vpage>>3]|=1<<(vpage&7);
480 }
481 else restore_candidate[page>>3]|=1<<(page&7);
482 if(head->reg32==0) {
483 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
484 if(ht_bin[0]==-1) {
485 ht_bin[1]=(int)head->addr;
486 ht_bin[0]=vaddr;
487 }else if(ht_bin[2]==-1) {
488 ht_bin[3]=(int)head->addr;
489 ht_bin[2]=vaddr;
490 }
491 //ht_bin[3]=ht_bin[1];
492 //ht_bin[2]=ht_bin[0];
493 //ht_bin[1]=(int)head->addr;
494 //ht_bin[0]=vaddr;
495 }
496 return head->addr;
497 }
498 }
499 head=head->next;
500 }
501 //printf("TRACE: count=%d next=%d (get_addr_32 no-match %x,flags %x)\n",Count,next_interupt,vaddr,flags);
502 int r=new_recompile_block(vaddr);
503 if(r==0) return get_addr(vaddr);
504 // Execute in unmapped page, generate pagefault execption
505 Status|=2;
506 Cause=(vaddr<<31)|0x8;
507 EPC=(vaddr&1)?vaddr-5:vaddr;
508 BadVAddr=(vaddr&~1);
509 Context=(Context&0xFF80000F)|((BadVAddr>>9)&0x007FFFF0);
510 EntryHi=BadVAddr&0xFFFFE000;
511 return get_addr_ht(0x80000000);
560e4a12 512#endif
57871462 513}
514
515void clear_all_regs(signed char regmap[])
516{
517 int hr;
518 for (hr=0;hr<HOST_REGS;hr++) regmap[hr]=-1;
519}
520
521signed char get_reg(signed char regmap[],int r)
522{
523 int hr;
524 for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap[hr]==r) return hr;
525 return -1;
526}
527
528// Find a register that is available for two consecutive cycles
529signed char get_reg2(signed char regmap1[],signed char regmap2[],int r)
530{
531 int hr;
532 for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap1[hr]==r&&regmap2[hr]==r) return hr;
533 return -1;
534}
535
536int count_free_regs(signed char regmap[])
537{
538 int count=0;
539 int hr;
540 for(hr=0;hr<HOST_REGS;hr++)
541 {
542 if(hr!=EXCLUDE_REG) {
543 if(regmap[hr]<0) count++;
544 }
545 }
546 return count;
547}
548
549void dirty_reg(struct regstat *cur,signed char reg)
550{
551 int hr;
552 if(!reg) return;
553 for (hr=0;hr<HOST_REGS;hr++) {
554 if((cur->regmap[hr]&63)==reg) {
555 cur->dirty|=1<<hr;
556 }
557 }
558}
559
560// If we dirty the lower half of a 64 bit register which is now being
561// sign-extended, we need to dump the upper half.
562// Note: Do this only after completion of the instruction, because
563// some instructions may need to read the full 64-bit value even if
564// overwriting it (eg SLTI, DSRA32).
565static void flush_dirty_uppers(struct regstat *cur)
566{
567 int hr,reg;
568 for (hr=0;hr<HOST_REGS;hr++) {
569 if((cur->dirty>>hr)&1) {
570 reg=cur->regmap[hr];
571 if(reg>=64)
572 if((cur->is32>>(reg&63))&1) cur->regmap[hr]=-1;
573 }
574 }
575}
576
577void set_const(struct regstat *cur,signed char reg,uint64_t value)
578{
579 int hr;
580 if(!reg) return;
581 for (hr=0;hr<HOST_REGS;hr++) {
582 if(cur->regmap[hr]==reg) {
583 cur->isconst|=1<<hr;
584 cur->constmap[hr]=value;
585 }
586 else if((cur->regmap[hr]^64)==reg) {
587 cur->isconst|=1<<hr;
588 cur->constmap[hr]=value>>32;
589 }
590 }
591}
592
593void clear_const(struct regstat *cur,signed char reg)
594{
595 int hr;
596 if(!reg) return;
597 for (hr=0;hr<HOST_REGS;hr++) {
598 if((cur->regmap[hr]&63)==reg) {
599 cur->isconst&=~(1<<hr);
600 }
601 }
602}
603
604int is_const(struct regstat *cur,signed char reg)
605{
606 int hr;
79c75f1b 607 if(reg<0) return 0;
57871462 608 if(!reg) return 1;
609 for (hr=0;hr<HOST_REGS;hr++) {
610 if((cur->regmap[hr]&63)==reg) {
611 return (cur->isconst>>hr)&1;
612 }
613 }
614 return 0;
615}
616uint64_t get_const(struct regstat *cur,signed char reg)
617{
618 int hr;
619 if(!reg) return 0;
620 for (hr=0;hr<HOST_REGS;hr++) {
621 if(cur->regmap[hr]==reg) {
622 return cur->constmap[hr];
623 }
624 }
625 printf("Unknown constant in r%d\n",reg);
626 exit(1);
627}
628
629// Least soon needed registers
630// Look at the next ten instructions and see which registers
631// will be used. Try not to reallocate these.
632void lsn(u_char hsn[], int i, int *preferred_reg)
633{
634 int j;
635 int b=-1;
636 for(j=0;j<9;j++)
637 {
638 if(i+j>=slen) {
639 j=slen-i-1;
640 break;
641 }
642 if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
643 {
644 // Don't go past an unconditonal jump
645 j++;
646 break;
647 }
648 }
649 for(;j>=0;j--)
650 {
651 if(rs1[i+j]) hsn[rs1[i+j]]=j;
652 if(rs2[i+j]) hsn[rs2[i+j]]=j;
653 if(rt1[i+j]) hsn[rt1[i+j]]=j;
654 if(rt2[i+j]) hsn[rt2[i+j]]=j;
655 if(itype[i+j]==STORE || itype[i+j]==STORELR) {
656 // Stores can allocate zero
657 hsn[rs1[i+j]]=j;
658 hsn[rs2[i+j]]=j;
659 }
660 // On some architectures stores need invc_ptr
661 #if defined(HOST_IMM8)
b9b61529 662 if(itype[i+j]==STORE || itype[i+j]==STORELR || (opcode[i+j]&0x3b)==0x39 || (opcode[i+j]&0x3b)==0x3a) {
57871462 663 hsn[INVCP]=j;
664 }
665 #endif
666 if(i+j>=0&&(itype[i+j]==UJUMP||itype[i+j]==CJUMP||itype[i+j]==SJUMP||itype[i+j]==FJUMP))
667 {
668 hsn[CCREG]=j;
669 b=j;
670 }
671 }
672 if(b>=0)
673 {
674 if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
675 {
676 // Follow first branch
677 int t=(ba[i+b]-start)>>2;
678 j=7-b;if(t+j>=slen) j=slen-t-1;
679 for(;j>=0;j--)
680 {
681 if(rs1[t+j]) if(hsn[rs1[t+j]]>j+b+2) hsn[rs1[t+j]]=j+b+2;
682 if(rs2[t+j]) if(hsn[rs2[t+j]]>j+b+2) hsn[rs2[t+j]]=j+b+2;
683 //if(rt1[t+j]) if(hsn[rt1[t+j]]>j+b+2) hsn[rt1[t+j]]=j+b+2;
684 //if(rt2[t+j]) if(hsn[rt2[t+j]]>j+b+2) hsn[rt2[t+j]]=j+b+2;
685 }
686 }
687 // TODO: preferred register based on backward branch
688 }
689 // Delay slot should preferably not overwrite branch conditions or cycle count
690 if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)) {
691 if(rs1[i-1]) if(hsn[rs1[i-1]]>1) hsn[rs1[i-1]]=1;
692 if(rs2[i-1]) if(hsn[rs2[i-1]]>1) hsn[rs2[i-1]]=1;
693 hsn[CCREG]=1;
694 // ...or hash tables
695 hsn[RHASH]=1;
696 hsn[RHTBL]=1;
697 }
698 // Coprocessor load/store needs FTEMP, even if not declared
b9b61529 699 if(itype[i]==C1LS||itype[i]==C2LS) {
57871462 700 hsn[FTEMP]=0;
701 }
702 // Load L/R also uses FTEMP as a temporary register
703 if(itype[i]==LOADLR) {
704 hsn[FTEMP]=0;
705 }
b7918751 706 // Also SWL/SWR/SDL/SDR
707 if(opcode[i]==0x2a||opcode[i]==0x2e||opcode[i]==0x2c||opcode[i]==0x2d) {
57871462 708 hsn[FTEMP]=0;
709 }
710 // Don't remove the TLB registers either
b9b61529 711 if(itype[i]==LOAD || itype[i]==LOADLR || itype[i]==STORE || itype[i]==STORELR || itype[i]==C1LS || itype[i]==C2LS) {
57871462 712 hsn[TLREG]=0;
713 }
714 // Don't remove the miniht registers
715 if(itype[i]==UJUMP||itype[i]==RJUMP)
716 {
717 hsn[RHASH]=0;
718 hsn[RHTBL]=0;
719 }
720}
721
722// We only want to allocate registers if we're going to use them again soon
723int needed_again(int r, int i)
724{
725 int j;
726 int b=-1;
727 int rn=10;
57871462 728
729 if(i>0&&(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000))
730 {
731 if(ba[i-1]<start || ba[i-1]>start+slen*4-4)
732 return 0; // Don't need any registers if exiting the block
733 }
734 for(j=0;j<9;j++)
735 {
736 if(i+j>=slen) {
737 j=slen-i-1;
738 break;
739 }
740 if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
741 {
742 // Don't go past an unconditonal jump
743 j++;
744 break;
745 }
1e973cb0 746 if(itype[i+j]==SYSCALL||itype[i+j]==HLECALL||itype[i+j]==INTCALL||((source[i+j]&0xfc00003f)==0x0d))
57871462 747 {
748 break;
749 }
750 }
751 for(;j>=1;j--)
752 {
753 if(rs1[i+j]==r) rn=j;
754 if(rs2[i+j]==r) rn=j;
755 if((unneeded_reg[i+j]>>r)&1) rn=10;
756 if(i+j>=0&&(itype[i+j]==UJUMP||itype[i+j]==CJUMP||itype[i+j]==SJUMP||itype[i+j]==FJUMP))
757 {
758 b=j;
759 }
760 }
761 /*
762 if(b>=0)
763 {
764 if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
765 {
766 // Follow first branch
767 int o=rn;
768 int t=(ba[i+b]-start)>>2;
769 j=7-b;if(t+j>=slen) j=slen-t-1;
770 for(;j>=0;j--)
771 {
772 if(!((unneeded_reg[t+j]>>r)&1)) {
773 if(rs1[t+j]==r) if(rn>j+b+2) rn=j+b+2;
774 if(rs2[t+j]==r) if(rn>j+b+2) rn=j+b+2;
775 }
776 else rn=o;
777 }
778 }
779 }*/
b7217e13 780 if(rn<10) return 1;
57871462 781 return 0;
782}
783
784// Try to match register allocations at the end of a loop with those
785// at the beginning
786int loop_reg(int i, int r, int hr)
787{
788 int j,k;
789 for(j=0;j<9;j++)
790 {
791 if(i+j>=slen) {
792 j=slen-i-1;
793 break;
794 }
795 if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
796 {
797 // Don't go past an unconditonal jump
798 j++;
799 break;
800 }
801 }
802 k=0;
803 if(i>0){
804 if(itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)
805 k--;
806 }
807 for(;k<j;k++)
808 {
809 if(r<64&&((unneeded_reg[i+k]>>r)&1)) return hr;
810 if(r>64&&((unneeded_reg_upper[i+k]>>r)&1)) return hr;
811 if(i+k>=0&&(itype[i+k]==UJUMP||itype[i+k]==CJUMP||itype[i+k]==SJUMP||itype[i+k]==FJUMP))
812 {
813 if(ba[i+k]>=start && ba[i+k]<(start+i*4))
814 {
815 int t=(ba[i+k]-start)>>2;
816 int reg=get_reg(regs[t].regmap_entry,r);
817 if(reg>=0) return reg;
818 //reg=get_reg(regs[t+1].regmap_entry,r);
819 //if(reg>=0) return reg;
820 }
821 }
822 }
823 return hr;
824}
825
826
827// Allocate every register, preserving source/target regs
828void alloc_all(struct regstat *cur,int i)
829{
830 int hr;
831
832 for(hr=0;hr<HOST_REGS;hr++) {
833 if(hr!=EXCLUDE_REG) {
834 if(((cur->regmap[hr]&63)!=rs1[i])&&((cur->regmap[hr]&63)!=rs2[i])&&
835 ((cur->regmap[hr]&63)!=rt1[i])&&((cur->regmap[hr]&63)!=rt2[i]))
836 {
837 cur->regmap[hr]=-1;
838 cur->dirty&=~(1<<hr);
839 }
840 // Don't need zeros
841 if((cur->regmap[hr]&63)==0)
842 {
843 cur->regmap[hr]=-1;
844 cur->dirty&=~(1<<hr);
845 }
846 }
847 }
848}
849
4600ba03 850#ifndef FORCE32
57871462 851void div64(int64_t dividend,int64_t divisor)
852{
853 lo=dividend/divisor;
854 hi=dividend%divisor;
855 //printf("TRACE: ddiv %8x%8x %8x%8x\n" ,(int)reg[HIREG],(int)(reg[HIREG]>>32)
856 // ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
857}
858void divu64(uint64_t dividend,uint64_t divisor)
859{
860 lo=dividend/divisor;
861 hi=dividend%divisor;
862 //printf("TRACE: ddivu %8x%8x %8x%8x\n",(int)reg[HIREG],(int)(reg[HIREG]>>32)
863 // ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
864}
865
866void mult64(uint64_t m1,uint64_t m2)
867{
868 unsigned long long int op1, op2, op3, op4;
869 unsigned long long int result1, result2, result3, result4;
870 unsigned long long int temp1, temp2, temp3, temp4;
871 int sign = 0;
872
873 if (m1 < 0)
874 {
875 op2 = -m1;
876 sign = 1 - sign;
877 }
878 else op2 = m1;
879 if (m2 < 0)
880 {
881 op4 = -m2;
882 sign = 1 - sign;
883 }
884 else op4 = m2;
885
886 op1 = op2 & 0xFFFFFFFF;
887 op2 = (op2 >> 32) & 0xFFFFFFFF;
888 op3 = op4 & 0xFFFFFFFF;
889 op4 = (op4 >> 32) & 0xFFFFFFFF;
890
891 temp1 = op1 * op3;
892 temp2 = (temp1 >> 32) + op1 * op4;
893 temp3 = op2 * op3;
894 temp4 = (temp3 >> 32) + op2 * op4;
895
896 result1 = temp1 & 0xFFFFFFFF;
897 result2 = temp2 + (temp3 & 0xFFFFFFFF);
898 result3 = (result2 >> 32) + temp4;
899 result4 = (result3 >> 32);
900
901 lo = result1 | (result2 << 32);
902 hi = (result3 & 0xFFFFFFFF) | (result4 << 32);
903 if (sign)
904 {
905 hi = ~hi;
906 if (!lo) hi++;
907 else lo = ~lo + 1;
908 }
909}
910
911void multu64(uint64_t m1,uint64_t m2)
912{
913 unsigned long long int op1, op2, op3, op4;
914 unsigned long long int result1, result2, result3, result4;
915 unsigned long long int temp1, temp2, temp3, temp4;
916
917 op1 = m1 & 0xFFFFFFFF;
918 op2 = (m1 >> 32) & 0xFFFFFFFF;
919 op3 = m2 & 0xFFFFFFFF;
920 op4 = (m2 >> 32) & 0xFFFFFFFF;
921
922 temp1 = op1 * op3;
923 temp2 = (temp1 >> 32) + op1 * op4;
924 temp3 = op2 * op3;
925 temp4 = (temp3 >> 32) + op2 * op4;
926
927 result1 = temp1 & 0xFFFFFFFF;
928 result2 = temp2 + (temp3 & 0xFFFFFFFF);
929 result3 = (result2 >> 32) + temp4;
930 result4 = (result3 >> 32);
931
932 lo = result1 | (result2 << 32);
933 hi = (result3 & 0xFFFFFFFF) | (result4 << 32);
934
935 //printf("TRACE: dmultu %8x%8x %8x%8x\n",(int)reg[HIREG],(int)(reg[HIREG]>>32)
936 // ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
937}
938
939uint64_t ldl_merge(uint64_t original,uint64_t loaded,u_int bits)
940{
941 if(bits) {
942 original<<=64-bits;
943 original>>=64-bits;
944 loaded<<=bits;
945 original|=loaded;
946 }
947 else original=loaded;
948 return original;
949}
950uint64_t ldr_merge(uint64_t original,uint64_t loaded,u_int bits)
951{
952 if(bits^56) {
953 original>>=64-(bits^56);
954 original<<=64-(bits^56);
955 loaded>>=bits^56;
956 original|=loaded;
957 }
958 else original=loaded;
959 return original;
960}
4600ba03 961#endif
57871462 962
963#ifdef __i386__
964#include "assem_x86.c"
965#endif
966#ifdef __x86_64__
967#include "assem_x64.c"
968#endif
969#ifdef __arm__
970#include "assem_arm.c"
971#endif
972
973// Add virtual address mapping to linked list
974void ll_add(struct ll_entry **head,int vaddr,void *addr)
975{
976 struct ll_entry *new_entry;
977 new_entry=malloc(sizeof(struct ll_entry));
978 assert(new_entry!=NULL);
979 new_entry->vaddr=vaddr;
980 new_entry->reg32=0;
981 new_entry->addr=addr;
982 new_entry->next=*head;
983 *head=new_entry;
984}
985
986// Add virtual address mapping for 32-bit compiled block
987void ll_add_32(struct ll_entry **head,int vaddr,u_int reg32,void *addr)
988{
7139f3c8 989 ll_add(head,vaddr,addr);
990#ifndef FORCE32
991 (*head)->reg32=reg32;
992#endif
57871462 993}
994
995// Check if an address is already compiled
996// but don't return addresses which are about to expire from the cache
997void *check_addr(u_int vaddr)
998{
999 u_int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
1000 if(ht_bin[0]==vaddr) {
1001 if(((ht_bin[1]-MAX_OUTPUT_BLOCK_SIZE-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
1002 if(isclean(ht_bin[1])) return (void *)ht_bin[1];
1003 }
1004 if(ht_bin[2]==vaddr) {
1005 if(((ht_bin[3]-MAX_OUTPUT_BLOCK_SIZE-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
1006 if(isclean(ht_bin[3])) return (void *)ht_bin[3];
1007 }
94d23bb9 1008 u_int page=get_page(vaddr);
57871462 1009 struct ll_entry *head;
1010 head=jump_in[page];
1011 while(head!=NULL) {
1012 if(head->vaddr==vaddr&&head->reg32==0) {
1013 if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1014 // Update existing entry with current address
1015 if(ht_bin[0]==vaddr) {
1016 ht_bin[1]=(int)head->addr;
1017 return head->addr;
1018 }
1019 if(ht_bin[2]==vaddr) {
1020 ht_bin[3]=(int)head->addr;
1021 return head->addr;
1022 }
1023 // Insert into hash table with low priority.
1024 // Don't evict existing entries, as they are probably
1025 // addresses that are being accessed frequently.
1026 if(ht_bin[0]==-1) {
1027 ht_bin[1]=(int)head->addr;
1028 ht_bin[0]=vaddr;
1029 }else if(ht_bin[2]==-1) {
1030 ht_bin[3]=(int)head->addr;
1031 ht_bin[2]=vaddr;
1032 }
1033 return head->addr;
1034 }
1035 }
1036 head=head->next;
1037 }
1038 return 0;
1039}
1040
1041void remove_hash(int vaddr)
1042{
1043 //printf("remove hash: %x\n",vaddr);
1044 int *ht_bin=hash_table[(((vaddr)>>16)^vaddr)&0xFFFF];
1045 if(ht_bin[2]==vaddr) {
1046 ht_bin[2]=ht_bin[3]=-1;
1047 }
1048 if(ht_bin[0]==vaddr) {
1049 ht_bin[0]=ht_bin[2];
1050 ht_bin[1]=ht_bin[3];
1051 ht_bin[2]=ht_bin[3]=-1;
1052 }
1053}
1054
1055void ll_remove_matching_addrs(struct ll_entry **head,int addr,int shift)
1056{
1057 struct ll_entry *next;
1058 while(*head) {
1059 if(((u_int)((*head)->addr)>>shift)==(addr>>shift) ||
1060 ((u_int)((*head)->addr-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(addr>>shift))
1061 {
1062 inv_debug("EXP: Remove pointer to %x (%x)\n",(int)(*head)->addr,(*head)->vaddr);
1063 remove_hash((*head)->vaddr);
1064 next=(*head)->next;
1065 free(*head);
1066 *head=next;
1067 }
1068 else
1069 {
1070 head=&((*head)->next);
1071 }
1072 }
1073}
1074
1075// Remove all entries from linked list
1076void ll_clear(struct ll_entry **head)
1077{
1078 struct ll_entry *cur;
1079 struct ll_entry *next;
1080 if(cur=*head) {
1081 *head=0;
1082 while(cur) {
1083 next=cur->next;
1084 free(cur);
1085 cur=next;
1086 }
1087 }
1088}
1089
1090// Dereference the pointers and remove if it matches
1091void ll_kill_pointers(struct ll_entry *head,int addr,int shift)
1092{
1093 while(head) {
1094 int ptr=get_pointer(head->addr);
1095 inv_debug("EXP: Lookup pointer to %x at %x (%x)\n",(int)ptr,(int)head->addr,head->vaddr);
1096 if(((ptr>>shift)==(addr>>shift)) ||
1097 (((ptr-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(addr>>shift)))
1098 {
5088bb70 1099 inv_debug("EXP: Kill pointer at %x (%x)\n",(int)head->addr,head->vaddr);
f76eeef9 1100 u_int host_addr=(u_int)kill_pointer(head->addr);
dd3a91a1 1101 #ifdef __arm__
1102 needs_clear_cache[(host_addr-(u_int)BASE_ADDR)>>17]|=1<<(((host_addr-(u_int)BASE_ADDR)>>12)&31);
1103 #endif
57871462 1104 }
1105 head=head->next;
1106 }
1107}
1108
1109// This is called when we write to a compiled block (see do_invstub)
f76eeef9 1110void invalidate_page(u_int page)
57871462 1111{
57871462 1112 struct ll_entry *head;
1113 struct ll_entry *next;
1114 head=jump_in[page];
1115 jump_in[page]=0;
1116 while(head!=NULL) {
1117 inv_debug("INVALIDATE: %x\n",head->vaddr);
1118 remove_hash(head->vaddr);
1119 next=head->next;
1120 free(head);
1121 head=next;
1122 }
1123 head=jump_out[page];
1124 jump_out[page]=0;
1125 while(head!=NULL) {
1126 inv_debug("INVALIDATE: kill pointer to %x (%x)\n",head->vaddr,(int)head->addr);
f76eeef9 1127 u_int host_addr=(u_int)kill_pointer(head->addr);
dd3a91a1 1128 #ifdef __arm__
1129 needs_clear_cache[(host_addr-(u_int)BASE_ADDR)>>17]|=1<<(((host_addr-(u_int)BASE_ADDR)>>12)&31);
1130 #endif
57871462 1131 next=head->next;
1132 free(head);
1133 head=next;
1134 }
57871462 1135}
9be4ba64 1136
1137static void invalidate_block_range(u_int block, u_int first, u_int last)
57871462 1138{
94d23bb9 1139 u_int page=get_page(block<<12);
57871462 1140 //printf("first=%d last=%d\n",first,last);
f76eeef9 1141 invalidate_page(page);
57871462 1142 assert(first+5>page); // NB: this assumes MAXBLOCK<=4096 (4 pages)
1143 assert(last<page+5);
1144 // Invalidate the adjacent pages if a block crosses a 4K boundary
1145 while(first<page) {
1146 invalidate_page(first);
1147 first++;
1148 }
1149 for(first=page+1;first<last;first++) {
1150 invalidate_page(first);
1151 }
dd3a91a1 1152 #ifdef __arm__
1153 do_clear_cache();
1154 #endif
57871462 1155
1156 // Don't trap writes
1157 invalid_code[block]=1;
94d23bb9 1158#ifndef DISABLE_TLB
57871462 1159 // If there is a valid TLB entry for this page, remove write protect
1160 if(tlb_LUT_w[block]) {
1161 assert(tlb_LUT_r[block]==tlb_LUT_w[block]);
1162 // CHECK: Is this right?
1163 memory_map[block]=((tlb_LUT_w[block]&0xFFFFF000)-(block<<12)+(unsigned int)rdram-0x80000000)>>2;
1164 u_int real_block=tlb_LUT_w[block]>>12;
1165 invalid_code[real_block]=1;
1166 if(real_block>=0x80000&&real_block<0x80800) memory_map[real_block]=((u_int)rdram-0x80000000)>>2;
1167 }
1168 else if(block>=0x80000&&block<0x80800) memory_map[block]=((u_int)rdram-0x80000000)>>2;
94d23bb9 1169#endif
f76eeef9 1170
57871462 1171 #ifdef USE_MINI_HT
1172 memset(mini_ht,-1,sizeof(mini_ht));
1173 #endif
1174}
9be4ba64 1175
1176void invalidate_block(u_int block)
1177{
1178 u_int page=get_page(block<<12);
1179 u_int vpage=get_vpage(block<<12);
1180 inv_debug("INVALIDATE: %x (%d)\n",block<<12,page);
1181 //inv_debug("invalid_code[block]=%d\n",invalid_code[block]);
1182 u_int first,last;
1183 first=last=page;
1184 struct ll_entry *head;
1185 head=jump_dirty[vpage];
1186 //printf("page=%d vpage=%d\n",page,vpage);
1187 while(head!=NULL) {
1188 u_int start,end;
1189 if(vpage>2047||(head->vaddr>>12)==block) { // Ignore vaddr hash collision
1190 get_bounds((int)head->addr,&start,&end);
1191 //printf("start: %x end: %x\n",start,end);
1192 if(page<2048&&start>=0x80000000&&end<0x80000000+RAM_SIZE) {
1193 if(((start-(u_int)rdram)>>12)<=page&&((end-1-(u_int)rdram)>>12)>=page) {
1194 if((((start-(u_int)rdram)>>12)&2047)<first) first=((start-(u_int)rdram)>>12)&2047;
1195 if((((end-1-(u_int)rdram)>>12)&2047)>last) last=((end-1-(u_int)rdram)>>12)&2047;
1196 }
1197 }
1198#ifndef DISABLE_TLB
1199 if(page<2048&&(signed int)start>=(signed int)0xC0000000&&(signed int)end>=(signed int)0xC0000000) {
1200 if(((start+memory_map[start>>12]-(u_int)rdram)>>12)<=page&&((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)>=page) {
1201 if((((start+memory_map[start>>12]-(u_int)rdram)>>12)&2047)<first) first=((start+memory_map[start>>12]-(u_int)rdram)>>12)&2047;
1202 if((((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)&2047)>last) last=((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)&2047;
1203 }
1204 }
1205#endif
1206 }
1207 head=head->next;
1208 }
1209 invalidate_block_range(block,first,last);
1210}
1211
57871462 1212void invalidate_addr(u_int addr)
1213{
9be4ba64 1214#ifdef PCSX
1215 //static int rhits;
1216 // this check is done by the caller
1217 //if (inv_code_start<=addr&&addr<=inv_code_end) { rhits++; return; }
1218 u_int page=get_page(addr);
1219 if(page<2048) { // RAM
1220 struct ll_entry *head;
1221 u_int addr_min=~0, addr_max=0;
1222 int mask=RAM_SIZE-1;
1223 int pg1;
1224 inv_code_start=addr&~0xfff;
1225 inv_code_end=addr|0xfff;
1226 pg1=page;
1227 if (pg1>0) {
1228 // must check previous page too because of spans..
1229 pg1--;
1230 inv_code_start-=0x1000;
1231 }
1232 for(;pg1<=page;pg1++) {
1233 for(head=jump_dirty[pg1];head!=NULL;head=head->next) {
1234 u_int start,end;
1235 get_bounds((int)head->addr,&start,&end);
1236 if((start&mask)<=(addr&mask)&&(addr&mask)<(end&mask)) {
1237 if(start<addr_min) addr_min=start;
1238 if(end>addr_max) addr_max=end;
1239 }
1240 else if(addr<start) {
1241 if(start<inv_code_end)
1242 inv_code_end=start-1;
1243 }
1244 else {
1245 if(end>inv_code_start)
1246 inv_code_start=end;
1247 }
1248 }
1249 }
1250 if (addr_min!=~0) {
1251 inv_debug("INV ADDR: %08x hit %08x-%08x\n", addr, addr_min, addr_max);
1252 inv_code_start=inv_code_end=~0;
1253 invalidate_block_range(addr>>12,(addr_min&mask)>>12,(addr_max&mask)>>12);
1254 return;
1255 }
1256 else {
1257 inv_debug("INV ADDR: %08x miss, inv %08x-%08x, sk %d\n", addr, inv_code_start, inv_code_end, 0);//rhits);
1258 }
1259 //rhits=0;
1260 if(page!=0) // FIXME: don't know what's up with page 0 (Klonoa)
1261 return;
1262 }
1263#endif
57871462 1264 invalidate_block(addr>>12);
1265}
9be4ba64 1266
dd3a91a1 1267// This is called when loading a save state.
1268// Anything could have changed, so invalidate everything.
57871462 1269void invalidate_all_pages()
1270{
1271 u_int page,n;
1272 for(page=0;page<4096;page++)
1273 invalidate_page(page);
1274 for(page=0;page<1048576;page++)
1275 if(!invalid_code[page]) {
1276 restore_candidate[(page&2047)>>3]|=1<<(page&7);
1277 restore_candidate[((page&2047)>>3)+256]|=1<<(page&7);
1278 }
1279 #ifdef __arm__
1280 __clear_cache((void *)BASE_ADDR,(void *)BASE_ADDR+(1<<TARGET_SIZE_2));
1281 #endif
1282 #ifdef USE_MINI_HT
1283 memset(mini_ht,-1,sizeof(mini_ht));
1284 #endif
94d23bb9 1285 #ifndef DISABLE_TLB
57871462 1286 // TLB
1287 for(page=0;page<0x100000;page++) {
1288 if(tlb_LUT_r[page]) {
1289 memory_map[page]=((tlb_LUT_r[page]&0xFFFFF000)-(page<<12)+(unsigned int)rdram-0x80000000)>>2;
1290 if(!tlb_LUT_w[page]||!invalid_code[page])
1291 memory_map[page]|=0x40000000; // Write protect
1292 }
1293 else memory_map[page]=-1;
1294 if(page==0x80000) page=0xC0000;
1295 }
1296 tlb_hacks();
94d23bb9 1297 #endif
57871462 1298}
1299
1300// Add an entry to jump_out after making a link
1301void add_link(u_int vaddr,void *src)
1302{
94d23bb9 1303 u_int page=get_page(vaddr);
57871462 1304 inv_debug("add_link: %x -> %x (%d)\n",(int)src,vaddr,page);
76f71c27 1305 int *ptr=(int *)(src+4);
1306 assert((*ptr&0x0fff0000)==0x059f0000);
57871462 1307 ll_add(jump_out+page,vaddr,src);
1308 //int ptr=get_pointer(src);
1309 //inv_debug("add_link: Pointer is to %x\n",(int)ptr);
1310}
1311
1312// If a code block was found to be unmodified (bit was set in
1313// restore_candidate) and it remains unmodified (bit is clear
1314// in invalid_code) then move the entries for that 4K page from
1315// the dirty list to the clean list.
1316void clean_blocks(u_int page)
1317{
1318 struct ll_entry *head;
1319 inv_debug("INV: clean_blocks page=%d\n",page);
1320 head=jump_dirty[page];
1321 while(head!=NULL) {
1322 if(!invalid_code[head->vaddr>>12]) {
1323 // Don't restore blocks which are about to expire from the cache
1324 if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1325 u_int start,end;
1326 if(verify_dirty((int)head->addr)) {
1327 //printf("Possibly Restore %x (%x)\n",head->vaddr, (int)head->addr);
1328 u_int i;
1329 u_int inv=0;
1330 get_bounds((int)head->addr,&start,&end);
4cb76aa4 1331 if(start-(u_int)rdram<RAM_SIZE) {
57871462 1332 for(i=(start-(u_int)rdram+0x80000000)>>12;i<=(end-1-(u_int)rdram+0x80000000)>>12;i++) {
1333 inv|=invalid_code[i];
1334 }
1335 }
1336 if((signed int)head->vaddr>=(signed int)0xC0000000) {
1337 u_int addr = (head->vaddr+(memory_map[head->vaddr>>12]<<2));
1338 //printf("addr=%x start=%x end=%x\n",addr,start,end);
1339 if(addr<start||addr>=end) inv=1;
1340 }
4cb76aa4 1341 else if((signed int)head->vaddr>=(signed int)0x80000000+RAM_SIZE) {
57871462 1342 inv=1;
1343 }
1344 if(!inv) {
1345 void * clean_addr=(void *)get_clean_addr((int)head->addr);
1346 if((((u_int)clean_addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1347 u_int ppage=page;
94d23bb9 1348#ifndef DISABLE_TLB
57871462 1349 if(page<2048&&tlb_LUT_r[head->vaddr>>12]) ppage=(tlb_LUT_r[head->vaddr>>12]^0x80000000)>>12;
94d23bb9 1350#endif
57871462 1351 inv_debug("INV: Restored %x (%x/%x)\n",head->vaddr, (int)head->addr, (int)clean_addr);
1352 //printf("page=%x, addr=%x\n",page,head->vaddr);
1353 //assert(head->vaddr>>12==(page|0x80000));
1354 ll_add_32(jump_in+ppage,head->vaddr,head->reg32,clean_addr);
1355 int *ht_bin=hash_table[((head->vaddr>>16)^head->vaddr)&0xFFFF];
1356 if(!head->reg32) {
1357 if(ht_bin[0]==head->vaddr) {
1358 ht_bin[1]=(int)clean_addr; // Replace existing entry
1359 }
1360 if(ht_bin[2]==head->vaddr) {
1361 ht_bin[3]=(int)clean_addr; // Replace existing entry
1362 }
1363 }
1364 }
1365 }
1366 }
1367 }
1368 }
1369 head=head->next;
1370 }
1371}
1372
1373
1374void mov_alloc(struct regstat *current,int i)
1375{
1376 // Note: Don't need to actually alloc the source registers
1377 if((~current->is32>>rs1[i])&1) {
1378 //alloc_reg64(current,i,rs1[i]);
1379 alloc_reg64(current,i,rt1[i]);
1380 current->is32&=~(1LL<<rt1[i]);
1381 } else {
1382 //alloc_reg(current,i,rs1[i]);
1383 alloc_reg(current,i,rt1[i]);
1384 current->is32|=(1LL<<rt1[i]);
1385 }
1386 clear_const(current,rs1[i]);
1387 clear_const(current,rt1[i]);
1388 dirty_reg(current,rt1[i]);
1389}
1390
1391void shiftimm_alloc(struct regstat *current,int i)
1392{
1393 clear_const(current,rs1[i]);
1394 clear_const(current,rt1[i]);
1395 if(opcode2[i]<=0x3) // SLL/SRL/SRA
1396 {
1397 if(rt1[i]) {
1398 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1399 else lt1[i]=rs1[i];
1400 alloc_reg(current,i,rt1[i]);
1401 current->is32|=1LL<<rt1[i];
1402 dirty_reg(current,rt1[i]);
1403 }
1404 }
1405 if(opcode2[i]>=0x38&&opcode2[i]<=0x3b) // DSLL/DSRL/DSRA
1406 {
1407 if(rt1[i]) {
1408 if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1409 alloc_reg64(current,i,rt1[i]);
1410 current->is32&=~(1LL<<rt1[i]);
1411 dirty_reg(current,rt1[i]);
1412 }
1413 }
1414 if(opcode2[i]==0x3c) // DSLL32
1415 {
1416 if(rt1[i]) {
1417 if(rs1[i]) alloc_reg(current,i,rs1[i]);
1418 alloc_reg64(current,i,rt1[i]);
1419 current->is32&=~(1LL<<rt1[i]);
1420 dirty_reg(current,rt1[i]);
1421 }
1422 }
1423 if(opcode2[i]==0x3e) // DSRL32
1424 {
1425 if(rt1[i]) {
1426 alloc_reg64(current,i,rs1[i]);
1427 if(imm[i]==32) {
1428 alloc_reg64(current,i,rt1[i]);
1429 current->is32&=~(1LL<<rt1[i]);
1430 } else {
1431 alloc_reg(current,i,rt1[i]);
1432 current->is32|=1LL<<rt1[i];
1433 }
1434 dirty_reg(current,rt1[i]);
1435 }
1436 }
1437 if(opcode2[i]==0x3f) // DSRA32
1438 {
1439 if(rt1[i]) {
1440 alloc_reg64(current,i,rs1[i]);
1441 alloc_reg(current,i,rt1[i]);
1442 current->is32|=1LL<<rt1[i];
1443 dirty_reg(current,rt1[i]);
1444 }
1445 }
1446}
1447
1448void shift_alloc(struct regstat *current,int i)
1449{
1450 if(rt1[i]) {
1451 if(opcode2[i]<=0x07) // SLLV/SRLV/SRAV
1452 {
1453 if(rs1[i]) alloc_reg(current,i,rs1[i]);
1454 if(rs2[i]) alloc_reg(current,i,rs2[i]);
1455 alloc_reg(current,i,rt1[i]);
e1190b87 1456 if(rt1[i]==rs2[i]) {
1457 alloc_reg_temp(current,i,-1);
1458 minimum_free_regs[i]=1;
1459 }
57871462 1460 current->is32|=1LL<<rt1[i];
1461 } else { // DSLLV/DSRLV/DSRAV
1462 if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1463 if(rs2[i]) alloc_reg(current,i,rs2[i]);
1464 alloc_reg64(current,i,rt1[i]);
1465 current->is32&=~(1LL<<rt1[i]);
1466 if(opcode2[i]==0x16||opcode2[i]==0x17) // DSRLV and DSRAV need a temporary register
e1190b87 1467 {
57871462 1468 alloc_reg_temp(current,i,-1);
e1190b87 1469 minimum_free_regs[i]=1;
1470 }
57871462 1471 }
1472 clear_const(current,rs1[i]);
1473 clear_const(current,rs2[i]);
1474 clear_const(current,rt1[i]);
1475 dirty_reg(current,rt1[i]);
1476 }
1477}
1478
1479void alu_alloc(struct regstat *current,int i)
1480{
1481 if(opcode2[i]>=0x20&&opcode2[i]<=0x23) { // ADD/ADDU/SUB/SUBU
1482 if(rt1[i]) {
1483 if(rs1[i]&&rs2[i]) {
1484 alloc_reg(current,i,rs1[i]);
1485 alloc_reg(current,i,rs2[i]);
1486 }
1487 else {
1488 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1489 if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg(current,i,rs2[i]);
1490 }
1491 alloc_reg(current,i,rt1[i]);
1492 }
1493 current->is32|=1LL<<rt1[i];
1494 }
1495 if(opcode2[i]==0x2a||opcode2[i]==0x2b) { // SLT/SLTU
1496 if(rt1[i]) {
1497 if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1498 {
1499 alloc_reg64(current,i,rs1[i]);
1500 alloc_reg64(current,i,rs2[i]);
1501 alloc_reg(current,i,rt1[i]);
1502 } else {
1503 alloc_reg(current,i,rs1[i]);
1504 alloc_reg(current,i,rs2[i]);
1505 alloc_reg(current,i,rt1[i]);
1506 }
1507 }
1508 current->is32|=1LL<<rt1[i];
1509 }
1510 if(opcode2[i]>=0x24&&opcode2[i]<=0x27) { // AND/OR/XOR/NOR
1511 if(rt1[i]) {
1512 if(rs1[i]&&rs2[i]) {
1513 alloc_reg(current,i,rs1[i]);
1514 alloc_reg(current,i,rs2[i]);
1515 }
1516 else
1517 {
1518 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1519 if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg(current,i,rs2[i]);
1520 }
1521 alloc_reg(current,i,rt1[i]);
1522 if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1523 {
1524 if(!((current->uu>>rt1[i])&1)) {
1525 alloc_reg64(current,i,rt1[i]);
1526 }
1527 if(get_reg(current->regmap,rt1[i]|64)>=0) {
1528 if(rs1[i]&&rs2[i]) {
1529 alloc_reg64(current,i,rs1[i]);
1530 alloc_reg64(current,i,rs2[i]);
1531 }
1532 else
1533 {
1534 // Is is really worth it to keep 64-bit values in registers?
1535 #ifdef NATIVE_64BIT
1536 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg64(current,i,rs1[i]);
1537 if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg64(current,i,rs2[i]);
1538 #endif
1539 }
1540 }
1541 current->is32&=~(1LL<<rt1[i]);
1542 } else {
1543 current->is32|=1LL<<rt1[i];
1544 }
1545 }
1546 }
1547 if(opcode2[i]>=0x2c&&opcode2[i]<=0x2f) { // DADD/DADDU/DSUB/DSUBU
1548 if(rt1[i]) {
1549 if(rs1[i]&&rs2[i]) {
1550 if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1551 alloc_reg64(current,i,rs1[i]);
1552 alloc_reg64(current,i,rs2[i]);
1553 alloc_reg64(current,i,rt1[i]);
1554 } else {
1555 alloc_reg(current,i,rs1[i]);
1556 alloc_reg(current,i,rs2[i]);
1557 alloc_reg(current,i,rt1[i]);
1558 }
1559 }
1560 else {
1561 alloc_reg(current,i,rt1[i]);
1562 if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1563 // DADD used as move, or zeroing
1564 // If we have a 64-bit source, then make the target 64 bits too
1565 if(rs1[i]&&!((current->is32>>rs1[i])&1)) {
1566 if(get_reg(current->regmap,rs1[i])>=0) alloc_reg64(current,i,rs1[i]);
1567 alloc_reg64(current,i,rt1[i]);
1568 } else if(rs2[i]&&!((current->is32>>rs2[i])&1)) {
1569 if(get_reg(current->regmap,rs2[i])>=0) alloc_reg64(current,i,rs2[i]);
1570 alloc_reg64(current,i,rt1[i]);
1571 }
1572 if(opcode2[i]>=0x2e&&rs2[i]) {
1573 // DSUB used as negation - 64-bit result
1574 // If we have a 32-bit register, extend it to 64 bits
1575 if(get_reg(current->regmap,rs2[i])>=0) alloc_reg64(current,i,rs2[i]);
1576 alloc_reg64(current,i,rt1[i]);
1577 }
1578 }
1579 }
1580 if(rs1[i]&&rs2[i]) {
1581 current->is32&=~(1LL<<rt1[i]);
1582 } else if(rs1[i]) {
1583 current->is32&=~(1LL<<rt1[i]);
1584 if((current->is32>>rs1[i])&1)
1585 current->is32|=1LL<<rt1[i];
1586 } else if(rs2[i]) {
1587 current->is32&=~(1LL<<rt1[i]);
1588 if((current->is32>>rs2[i])&1)
1589 current->is32|=1LL<<rt1[i];
1590 } else {
1591 current->is32|=1LL<<rt1[i];
1592 }
1593 }
1594 }
1595 clear_const(current,rs1[i]);
1596 clear_const(current,rs2[i]);
1597 clear_const(current,rt1[i]);
1598 dirty_reg(current,rt1[i]);
1599}
1600
1601void imm16_alloc(struct regstat *current,int i)
1602{
1603 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1604 else lt1[i]=rs1[i];
1605 if(rt1[i]) alloc_reg(current,i,rt1[i]);
1606 if(opcode[i]==0x18||opcode[i]==0x19) { // DADDI/DADDIU
1607 current->is32&=~(1LL<<rt1[i]);
1608 if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1609 // TODO: Could preserve the 32-bit flag if the immediate is zero
1610 alloc_reg64(current,i,rt1[i]);
1611 alloc_reg64(current,i,rs1[i]);
1612 }
1613 clear_const(current,rs1[i]);
1614 clear_const(current,rt1[i]);
1615 }
1616 else if(opcode[i]==0x0a||opcode[i]==0x0b) { // SLTI/SLTIU
1617 if((~current->is32>>rs1[i])&1) alloc_reg64(current,i,rs1[i]);
1618 current->is32|=1LL<<rt1[i];
1619 clear_const(current,rs1[i]);
1620 clear_const(current,rt1[i]);
1621 }
1622 else if(opcode[i]>=0x0c&&opcode[i]<=0x0e) { // ANDI/ORI/XORI
1623 if(((~current->is32>>rs1[i])&1)&&opcode[i]>0x0c) {
1624 if(rs1[i]!=rt1[i]) {
1625 if(needed_again(rs1[i],i)) alloc_reg64(current,i,rs1[i]);
1626 alloc_reg64(current,i,rt1[i]);
1627 current->is32&=~(1LL<<rt1[i]);
1628 }
1629 }
1630 else current->is32|=1LL<<rt1[i]; // ANDI clears upper bits
1631 if(is_const(current,rs1[i])) {
1632 int v=get_const(current,rs1[i]);
1633 if(opcode[i]==0x0c) set_const(current,rt1[i],v&imm[i]);
1634 if(opcode[i]==0x0d) set_const(current,rt1[i],v|imm[i]);
1635 if(opcode[i]==0x0e) set_const(current,rt1[i],v^imm[i]);
1636 }
1637 else clear_const(current,rt1[i]);
1638 }
1639 else if(opcode[i]==0x08||opcode[i]==0x09) { // ADDI/ADDIU
1640 if(is_const(current,rs1[i])) {
1641 int v=get_const(current,rs1[i]);
1642 set_const(current,rt1[i],v+imm[i]);
1643 }
1644 else clear_const(current,rt1[i]);
1645 current->is32|=1LL<<rt1[i];
1646 }
1647 else {
1648 set_const(current,rt1[i],((long long)((short)imm[i]))<<16); // LUI
1649 current->is32|=1LL<<rt1[i];
1650 }
1651 dirty_reg(current,rt1[i]);
1652}
1653
1654void load_alloc(struct regstat *current,int i)
1655{
1656 clear_const(current,rt1[i]);
1657 //if(rs1[i]!=rt1[i]&&needed_again(rs1[i],i)) clear_const(current,rs1[i]); // Does this help or hurt?
1658 if(!rs1[i]) current->u&=~1LL; // Allow allocating r0 if it's the source register
1659 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
373d1d07 1660 if(rt1[i]&&!((current->u>>rt1[i])&1)) {
57871462 1661 alloc_reg(current,i,rt1[i]);
373d1d07 1662 assert(get_reg(current->regmap,rt1[i])>=0);
57871462 1663 if(opcode[i]==0x27||opcode[i]==0x37) // LWU/LD
1664 {
1665 current->is32&=~(1LL<<rt1[i]);
1666 alloc_reg64(current,i,rt1[i]);
1667 }
1668 else if(opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
1669 {
1670 current->is32&=~(1LL<<rt1[i]);
1671 alloc_reg64(current,i,rt1[i]);
1672 alloc_all(current,i);
1673 alloc_reg64(current,i,FTEMP);
e1190b87 1674 minimum_free_regs[i]=HOST_REGS;
57871462 1675 }
1676 else current->is32|=1LL<<rt1[i];
1677 dirty_reg(current,rt1[i]);
1678 // If using TLB, need a register for pointer to the mapping table
1679 if(using_tlb) alloc_reg(current,i,TLREG);
1680 // LWL/LWR need a temporary register for the old value
1681 if(opcode[i]==0x22||opcode[i]==0x26)
1682 {
1683 alloc_reg(current,i,FTEMP);
1684 alloc_reg_temp(current,i,-1);
e1190b87 1685 minimum_free_regs[i]=1;
57871462 1686 }
1687 }
1688 else
1689 {
373d1d07 1690 // Load to r0 or unneeded register (dummy load)
57871462 1691 // but we still need a register to calculate the address
535d208a 1692 if(opcode[i]==0x22||opcode[i]==0x26)
1693 {
1694 alloc_reg(current,i,FTEMP); // LWL/LWR need another temporary
1695 }
373d1d07 1696 // If using TLB, need a register for pointer to the mapping table
1697 if(using_tlb) alloc_reg(current,i,TLREG);
57871462 1698 alloc_reg_temp(current,i,-1);
e1190b87 1699 minimum_free_regs[i]=1;
535d208a 1700 if(opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
1701 {
1702 alloc_all(current,i);
1703 alloc_reg64(current,i,FTEMP);
e1190b87 1704 minimum_free_regs[i]=HOST_REGS;
535d208a 1705 }
57871462 1706 }
1707}
1708
1709void store_alloc(struct regstat *current,int i)
1710{
1711 clear_const(current,rs2[i]);
1712 if(!(rs2[i])) current->u&=~1LL; // Allow allocating r0 if necessary
1713 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1714 alloc_reg(current,i,rs2[i]);
1715 if(opcode[i]==0x2c||opcode[i]==0x2d||opcode[i]==0x3f) { // 64-bit SDL/SDR/SD
1716 alloc_reg64(current,i,rs2[i]);
1717 if(rs2[i]) alloc_reg(current,i,FTEMP);
1718 }
1719 // If using TLB, need a register for pointer to the mapping table
1720 if(using_tlb) alloc_reg(current,i,TLREG);
1721 #if defined(HOST_IMM8)
1722 // On CPUs without 32-bit immediates we need a pointer to invalid_code
1723 else alloc_reg(current,i,INVCP);
1724 #endif
b7918751 1725 if(opcode[i]==0x2a||opcode[i]==0x2e||opcode[i]==0x2c||opcode[i]==0x2d) { // SWL/SWL/SDL/SDR
57871462 1726 alloc_reg(current,i,FTEMP);
1727 }
1728 // We need a temporary register for address generation
1729 alloc_reg_temp(current,i,-1);
e1190b87 1730 minimum_free_regs[i]=1;
57871462 1731}
1732
1733void c1ls_alloc(struct regstat *current,int i)
1734{
1735 //clear_const(current,rs1[i]); // FIXME
1736 clear_const(current,rt1[i]);
1737 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1738 alloc_reg(current,i,CSREG); // Status
1739 alloc_reg(current,i,FTEMP);
1740 if(opcode[i]==0x35||opcode[i]==0x3d) { // 64-bit LDC1/SDC1
1741 alloc_reg64(current,i,FTEMP);
1742 }
1743 // If using TLB, need a register for pointer to the mapping table
1744 if(using_tlb) alloc_reg(current,i,TLREG);
1745 #if defined(HOST_IMM8)
1746 // On CPUs without 32-bit immediates we need a pointer to invalid_code
1747 else if((opcode[i]&0x3b)==0x39) // SWC1/SDC1
1748 alloc_reg(current,i,INVCP);
1749 #endif
1750 // We need a temporary register for address generation
1751 alloc_reg_temp(current,i,-1);
1752}
1753
b9b61529 1754void c2ls_alloc(struct regstat *current,int i)
1755{
1756 clear_const(current,rt1[i]);
1757 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1758 alloc_reg(current,i,FTEMP);
1759 // If using TLB, need a register for pointer to the mapping table
1760 if(using_tlb) alloc_reg(current,i,TLREG);
1761 #if defined(HOST_IMM8)
1762 // On CPUs without 32-bit immediates we need a pointer to invalid_code
1763 else if((opcode[i]&0x3b)==0x3a) // SWC2/SDC2
1764 alloc_reg(current,i,INVCP);
1765 #endif
1766 // We need a temporary register for address generation
1767 alloc_reg_temp(current,i,-1);
e1190b87 1768 minimum_free_regs[i]=1;
b9b61529 1769}
1770
57871462 1771#ifndef multdiv_alloc
1772void multdiv_alloc(struct regstat *current,int i)
1773{
1774 // case 0x18: MULT
1775 // case 0x19: MULTU
1776 // case 0x1A: DIV
1777 // case 0x1B: DIVU
1778 // case 0x1C: DMULT
1779 // case 0x1D: DMULTU
1780 // case 0x1E: DDIV
1781 // case 0x1F: DDIVU
1782 clear_const(current,rs1[i]);
1783 clear_const(current,rs2[i]);
1784 if(rs1[i]&&rs2[i])
1785 {
1786 if((opcode2[i]&4)==0) // 32-bit
1787 {
1788 current->u&=~(1LL<<HIREG);
1789 current->u&=~(1LL<<LOREG);
1790 alloc_reg(current,i,HIREG);
1791 alloc_reg(current,i,LOREG);
1792 alloc_reg(current,i,rs1[i]);
1793 alloc_reg(current,i,rs2[i]);
1794 current->is32|=1LL<<HIREG;
1795 current->is32|=1LL<<LOREG;
1796 dirty_reg(current,HIREG);
1797 dirty_reg(current,LOREG);
1798 }
1799 else // 64-bit
1800 {
1801 current->u&=~(1LL<<HIREG);
1802 current->u&=~(1LL<<LOREG);
1803 current->uu&=~(1LL<<HIREG);
1804 current->uu&=~(1LL<<LOREG);
1805 alloc_reg64(current,i,HIREG);
1806 //if(HOST_REGS>10) alloc_reg64(current,i,LOREG);
1807 alloc_reg64(current,i,rs1[i]);
1808 alloc_reg64(current,i,rs2[i]);
1809 alloc_all(current,i);
1810 current->is32&=~(1LL<<HIREG);
1811 current->is32&=~(1LL<<LOREG);
1812 dirty_reg(current,HIREG);
1813 dirty_reg(current,LOREG);
e1190b87 1814 minimum_free_regs[i]=HOST_REGS;
57871462 1815 }
1816 }
1817 else
1818 {
1819 // Multiply by zero is zero.
1820 // MIPS does not have a divide by zero exception.
1821 // The result is undefined, we return zero.
1822 alloc_reg(current,i,HIREG);
1823 alloc_reg(current,i,LOREG);
1824 current->is32|=1LL<<HIREG;
1825 current->is32|=1LL<<LOREG;
1826 dirty_reg(current,HIREG);
1827 dirty_reg(current,LOREG);
1828 }
1829}
1830#endif
1831
1832void cop0_alloc(struct regstat *current,int i)
1833{
1834 if(opcode2[i]==0) // MFC0
1835 {
1836 if(rt1[i]) {
1837 clear_const(current,rt1[i]);
1838 alloc_all(current,i);
1839 alloc_reg(current,i,rt1[i]);
1840 current->is32|=1LL<<rt1[i];
1841 dirty_reg(current,rt1[i]);
1842 }
1843 }
1844 else if(opcode2[i]==4) // MTC0
1845 {
1846 if(rs1[i]){
1847 clear_const(current,rs1[i]);
1848 alloc_reg(current,i,rs1[i]);
1849 alloc_all(current,i);
1850 }
1851 else {
1852 alloc_all(current,i); // FIXME: Keep r0
1853 current->u&=~1LL;
1854 alloc_reg(current,i,0);
1855 }
1856 }
1857 else
1858 {
1859 // TLBR/TLBWI/TLBWR/TLBP/ERET
1860 assert(opcode2[i]==0x10);
1861 alloc_all(current,i);
1862 }
e1190b87 1863 minimum_free_regs[i]=HOST_REGS;
57871462 1864}
1865
1866void cop1_alloc(struct regstat *current,int i)
1867{
1868 alloc_reg(current,i,CSREG); // Load status
1869 if(opcode2[i]<3) // MFC1/DMFC1/CFC1
1870 {
7de557a6 1871 if(rt1[i]){
1872 clear_const(current,rt1[i]);
1873 if(opcode2[i]==1) {
1874 alloc_reg64(current,i,rt1[i]); // DMFC1
1875 current->is32&=~(1LL<<rt1[i]);
1876 }else{
1877 alloc_reg(current,i,rt1[i]); // MFC1/CFC1
1878 current->is32|=1LL<<rt1[i];
1879 }
1880 dirty_reg(current,rt1[i]);
57871462 1881 }
57871462 1882 alloc_reg_temp(current,i,-1);
1883 }
1884 else if(opcode2[i]>3) // MTC1/DMTC1/CTC1
1885 {
1886 if(rs1[i]){
1887 clear_const(current,rs1[i]);
1888 if(opcode2[i]==5)
1889 alloc_reg64(current,i,rs1[i]); // DMTC1
1890 else
1891 alloc_reg(current,i,rs1[i]); // MTC1/CTC1
1892 alloc_reg_temp(current,i,-1);
1893 }
1894 else {
1895 current->u&=~1LL;
1896 alloc_reg(current,i,0);
1897 alloc_reg_temp(current,i,-1);
1898 }
1899 }
e1190b87 1900 minimum_free_regs[i]=1;
57871462 1901}
1902void fconv_alloc(struct regstat *current,int i)
1903{
1904 alloc_reg(current,i,CSREG); // Load status
1905 alloc_reg_temp(current,i,-1);
e1190b87 1906 minimum_free_regs[i]=1;
57871462 1907}
1908void float_alloc(struct regstat *current,int i)
1909{
1910 alloc_reg(current,i,CSREG); // Load status
1911 alloc_reg_temp(current,i,-1);
e1190b87 1912 minimum_free_regs[i]=1;
57871462 1913}
b9b61529 1914void c2op_alloc(struct regstat *current,int i)
1915{
1916 alloc_reg_temp(current,i,-1);
1917}
57871462 1918void fcomp_alloc(struct regstat *current,int i)
1919{
1920 alloc_reg(current,i,CSREG); // Load status
1921 alloc_reg(current,i,FSREG); // Load flags
1922 dirty_reg(current,FSREG); // Flag will be modified
1923 alloc_reg_temp(current,i,-1);
e1190b87 1924 minimum_free_regs[i]=1;
57871462 1925}
1926
1927void syscall_alloc(struct regstat *current,int i)
1928{
1929 alloc_cc(current,i);
1930 dirty_reg(current,CCREG);
1931 alloc_all(current,i);
e1190b87 1932 minimum_free_regs[i]=HOST_REGS;
57871462 1933 current->isconst=0;
1934}
1935
1936void delayslot_alloc(struct regstat *current,int i)
1937{
1938 switch(itype[i]) {
1939 case UJUMP:
1940 case CJUMP:
1941 case SJUMP:
1942 case RJUMP:
1943 case FJUMP:
1944 case SYSCALL:
7139f3c8 1945 case HLECALL:
57871462 1946 case SPAN:
1947 assem_debug("jump in the delay slot. this shouldn't happen.\n");//exit(1);
1948 printf("Disabled speculative precompilation\n");
1949 stop_after_jal=1;
1950 break;
1951 case IMM16:
1952 imm16_alloc(current,i);
1953 break;
1954 case LOAD:
1955 case LOADLR:
1956 load_alloc(current,i);
1957 break;
1958 case STORE:
1959 case STORELR:
1960 store_alloc(current,i);
1961 break;
1962 case ALU:
1963 alu_alloc(current,i);
1964 break;
1965 case SHIFT:
1966 shift_alloc(current,i);
1967 break;
1968 case MULTDIV:
1969 multdiv_alloc(current,i);
1970 break;
1971 case SHIFTIMM:
1972 shiftimm_alloc(current,i);
1973 break;
1974 case MOV:
1975 mov_alloc(current,i);
1976 break;
1977 case COP0:
1978 cop0_alloc(current,i);
1979 break;
1980 case COP1:
b9b61529 1981 case COP2:
57871462 1982 cop1_alloc(current,i);
1983 break;
1984 case C1LS:
1985 c1ls_alloc(current,i);
1986 break;
b9b61529 1987 case C2LS:
1988 c2ls_alloc(current,i);
1989 break;
57871462 1990 case FCONV:
1991 fconv_alloc(current,i);
1992 break;
1993 case FLOAT:
1994 float_alloc(current,i);
1995 break;
1996 case FCOMP:
1997 fcomp_alloc(current,i);
1998 break;
b9b61529 1999 case C2OP:
2000 c2op_alloc(current,i);
2001 break;
57871462 2002 }
2003}
2004
2005// Special case where a branch and delay slot span two pages in virtual memory
2006static void pagespan_alloc(struct regstat *current,int i)
2007{
2008 current->isconst=0;
2009 current->wasconst=0;
2010 regs[i].wasconst=0;
e1190b87 2011 minimum_free_regs[i]=HOST_REGS;
57871462 2012 alloc_all(current,i);
2013 alloc_cc(current,i);
2014 dirty_reg(current,CCREG);
2015 if(opcode[i]==3) // JAL
2016 {
2017 alloc_reg(current,i,31);
2018 dirty_reg(current,31);
2019 }
2020 if(opcode[i]==0&&(opcode2[i]&0x3E)==8) // JR/JALR
2021 {
2022 alloc_reg(current,i,rs1[i]);
5067f341 2023 if (rt1[i]!=0) {
2024 alloc_reg(current,i,rt1[i]);
2025 dirty_reg(current,rt1[i]);
57871462 2026 }
2027 }
2028 if((opcode[i]&0x2E)==4) // BEQ/BNE/BEQL/BNEL
2029 {
2030 if(rs1[i]) alloc_reg(current,i,rs1[i]);
2031 if(rs2[i]) alloc_reg(current,i,rs2[i]);
2032 if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
2033 {
2034 if(rs1[i]) alloc_reg64(current,i,rs1[i]);
2035 if(rs2[i]) alloc_reg64(current,i,rs2[i]);
2036 }
2037 }
2038 else
2039 if((opcode[i]&0x2E)==6) // BLEZ/BGTZ/BLEZL/BGTZL
2040 {
2041 if(rs1[i]) alloc_reg(current,i,rs1[i]);
2042 if(!((current->is32>>rs1[i])&1))
2043 {
2044 if(rs1[i]) alloc_reg64(current,i,rs1[i]);
2045 }
2046 }
2047 else
2048 if(opcode[i]==0x11) // BC1
2049 {
2050 alloc_reg(current,i,FSREG);
2051 alloc_reg(current,i,CSREG);
2052 }
2053 //else ...
2054}
2055
2056add_stub(int type,int addr,int retaddr,int a,int b,int c,int d,int e)
2057{
2058 stubs[stubcount][0]=type;
2059 stubs[stubcount][1]=addr;
2060 stubs[stubcount][2]=retaddr;
2061 stubs[stubcount][3]=a;
2062 stubs[stubcount][4]=b;
2063 stubs[stubcount][5]=c;
2064 stubs[stubcount][6]=d;
2065 stubs[stubcount][7]=e;
2066 stubcount++;
2067}
2068
2069// Write out a single register
2070void wb_register(signed char r,signed char regmap[],uint64_t dirty,uint64_t is32)
2071{
2072 int hr;
2073 for(hr=0;hr<HOST_REGS;hr++) {
2074 if(hr!=EXCLUDE_REG) {
2075 if((regmap[hr]&63)==r) {
2076 if((dirty>>hr)&1) {
2077 if(regmap[hr]<64) {
2078 emit_storereg(r,hr);
24385cae 2079#ifndef FORCE32
57871462 2080 if((is32>>regmap[hr])&1) {
2081 emit_sarimm(hr,31,hr);
2082 emit_storereg(r|64,hr);
2083 }
24385cae 2084#endif
57871462 2085 }else{
2086 emit_storereg(r|64,hr);
2087 }
2088 }
2089 }
2090 }
2091 }
2092}
2093
2094int mchecksum()
2095{
2096 //if(!tracedebug) return 0;
2097 int i;
2098 int sum=0;
2099 for(i=0;i<2097152;i++) {
2100 unsigned int temp=sum;
2101 sum<<=1;
2102 sum|=(~temp)>>31;
2103 sum^=((u_int *)rdram)[i];
2104 }
2105 return sum;
2106}
2107int rchecksum()
2108{
2109 int i;
2110 int sum=0;
2111 for(i=0;i<64;i++)
2112 sum^=((u_int *)reg)[i];
2113 return sum;
2114}
57871462 2115void rlist()
2116{
2117 int i;
2118 printf("TRACE: ");
2119 for(i=0;i<32;i++)
2120 printf("r%d:%8x%8x ",i,((int *)(reg+i))[1],((int *)(reg+i))[0]);
2121 printf("\n");
3d624f89 2122#ifndef DISABLE_COP1
57871462 2123 printf("TRACE: ");
2124 for(i=0;i<32;i++)
2125 printf("f%d:%8x%8x ",i,((int*)reg_cop1_simple[i])[1],*((int*)reg_cop1_simple[i]));
2126 printf("\n");
3d624f89 2127#endif
57871462 2128}
2129
2130void enabletrace()
2131{
2132 tracedebug=1;
2133}
2134
2135void memdebug(int i)
2136{
2137 //printf("TRACE: count=%d next=%d (checksum %x) lo=%8x%8x\n",Count,next_interupt,mchecksum(),(int)(reg[LOREG]>>32),(int)reg[LOREG]);
2138 //printf("TRACE: count=%d next=%d (rchecksum %x)\n",Count,next_interupt,rchecksum());
2139 //rlist();
2140 //if(tracedebug) {
2141 //if(Count>=-2084597794) {
2142 if((signed int)Count>=-2084597794&&(signed int)Count<0) {
2143 //if(0) {
2144 printf("TRACE: count=%d next=%d (checksum %x)\n",Count,next_interupt,mchecksum());
2145 //printf("TRACE: count=%d next=%d (checksum %x) Status=%x\n",Count,next_interupt,mchecksum(),Status);
2146 //printf("TRACE: count=%d next=%d (checksum %x) hi=%8x%8x\n",Count,next_interupt,mchecksum(),(int)(reg[HIREG]>>32),(int)reg[HIREG]);
2147 rlist();
2148 #ifdef __i386__
2149 printf("TRACE: %x\n",(&i)[-1]);
2150 #endif
2151 #ifdef __arm__
2152 int j;
2153 printf("TRACE: %x \n",(&j)[10]);
2154 printf("TRACE: %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x\n",(&j)[1],(&j)[2],(&j)[3],(&j)[4],(&j)[5],(&j)[6],(&j)[7],(&j)[8],(&j)[9],(&j)[10],(&j)[11],(&j)[12],(&j)[13],(&j)[14],(&j)[15],(&j)[16],(&j)[17],(&j)[18],(&j)[19],(&j)[20]);
2155 #endif
2156 //fflush(stdout);
2157 }
2158 //printf("TRACE: %x\n",(&i)[-1]);
2159}
2160
2161void tlb_debug(u_int cause, u_int addr, u_int iaddr)
2162{
2163 printf("TLB Exception: instruction=%x addr=%x cause=%x\n",iaddr, addr, cause);
2164}
2165
2166void alu_assemble(int i,struct regstat *i_regs)
2167{
2168 if(opcode2[i]>=0x20&&opcode2[i]<=0x23) { // ADD/ADDU/SUB/SUBU
2169 if(rt1[i]) {
2170 signed char s1,s2,t;
2171 t=get_reg(i_regs->regmap,rt1[i]);
2172 if(t>=0) {
2173 s1=get_reg(i_regs->regmap,rs1[i]);
2174 s2=get_reg(i_regs->regmap,rs2[i]);
2175 if(rs1[i]&&rs2[i]) {
2176 assert(s1>=0);
2177 assert(s2>=0);
2178 if(opcode2[i]&2) emit_sub(s1,s2,t);
2179 else emit_add(s1,s2,t);
2180 }
2181 else if(rs1[i]) {
2182 if(s1>=0) emit_mov(s1,t);
2183 else emit_loadreg(rs1[i],t);
2184 }
2185 else if(rs2[i]) {
2186 if(s2>=0) {
2187 if(opcode2[i]&2) emit_neg(s2,t);
2188 else emit_mov(s2,t);
2189 }
2190 else {
2191 emit_loadreg(rs2[i],t);
2192 if(opcode2[i]&2) emit_neg(t,t);
2193 }
2194 }
2195 else emit_zeroreg(t);
2196 }
2197 }
2198 }
2199 if(opcode2[i]>=0x2c&&opcode2[i]<=0x2f) { // DADD/DADDU/DSUB/DSUBU
2200 if(rt1[i]) {
2201 signed char s1l,s2l,s1h,s2h,tl,th;
2202 tl=get_reg(i_regs->regmap,rt1[i]);
2203 th=get_reg(i_regs->regmap,rt1[i]|64);
2204 if(tl>=0) {
2205 s1l=get_reg(i_regs->regmap,rs1[i]);
2206 s2l=get_reg(i_regs->regmap,rs2[i]);
2207 s1h=get_reg(i_regs->regmap,rs1[i]|64);
2208 s2h=get_reg(i_regs->regmap,rs2[i]|64);
2209 if(rs1[i]&&rs2[i]) {
2210 assert(s1l>=0);
2211 assert(s2l>=0);
2212 if(opcode2[i]&2) emit_subs(s1l,s2l,tl);
2213 else emit_adds(s1l,s2l,tl);
2214 if(th>=0) {
2215 #ifdef INVERTED_CARRY
2216 if(opcode2[i]&2) {if(s1h!=th) emit_mov(s1h,th);emit_sbb(th,s2h);}
2217 #else
2218 if(opcode2[i]&2) emit_sbc(s1h,s2h,th);
2219 #endif
2220 else emit_add(s1h,s2h,th);
2221 }
2222 }
2223 else if(rs1[i]) {
2224 if(s1l>=0) emit_mov(s1l,tl);
2225 else emit_loadreg(rs1[i],tl);
2226 if(th>=0) {
2227 if(s1h>=0) emit_mov(s1h,th);
2228 else emit_loadreg(rs1[i]|64,th);
2229 }
2230 }
2231 else if(rs2[i]) {
2232 if(s2l>=0) {
2233 if(opcode2[i]&2) emit_negs(s2l,tl);
2234 else emit_mov(s2l,tl);
2235 }
2236 else {
2237 emit_loadreg(rs2[i],tl);
2238 if(opcode2[i]&2) emit_negs(tl,tl);
2239 }
2240 if(th>=0) {
2241 #ifdef INVERTED_CARRY
2242 if(s2h>=0) emit_mov(s2h,th);
2243 else emit_loadreg(rs2[i]|64,th);
2244 if(opcode2[i]&2) {
2245 emit_adcimm(-1,th); // x86 has inverted carry flag
2246 emit_not(th,th);
2247 }
2248 #else
2249 if(opcode2[i]&2) {
2250 if(s2h>=0) emit_rscimm(s2h,0,th);
2251 else {
2252 emit_loadreg(rs2[i]|64,th);
2253 emit_rscimm(th,0,th);
2254 }
2255 }else{
2256 if(s2h>=0) emit_mov(s2h,th);
2257 else emit_loadreg(rs2[i]|64,th);
2258 }
2259 #endif
2260 }
2261 }
2262 else {
2263 emit_zeroreg(tl);
2264 if(th>=0) emit_zeroreg(th);
2265 }
2266 }
2267 }
2268 }
2269 if(opcode2[i]==0x2a||opcode2[i]==0x2b) { // SLT/SLTU
2270 if(rt1[i]) {
2271 signed char s1l,s1h,s2l,s2h,t;
2272 if(!((i_regs->was32>>rs1[i])&(i_regs->was32>>rs2[i])&1))
2273 {
2274 t=get_reg(i_regs->regmap,rt1[i]);
2275 //assert(t>=0);
2276 if(t>=0) {
2277 s1l=get_reg(i_regs->regmap,rs1[i]);
2278 s1h=get_reg(i_regs->regmap,rs1[i]|64);
2279 s2l=get_reg(i_regs->regmap,rs2[i]);
2280 s2h=get_reg(i_regs->regmap,rs2[i]|64);
2281 if(rs2[i]==0) // rx<r0
2282 {
2283 assert(s1h>=0);
2284 if(opcode2[i]==0x2a) // SLT
2285 emit_shrimm(s1h,31,t);
2286 else // SLTU (unsigned can not be less than zero)
2287 emit_zeroreg(t);
2288 }
2289 else if(rs1[i]==0) // r0<rx
2290 {
2291 assert(s2h>=0);
2292 if(opcode2[i]==0x2a) // SLT
2293 emit_set_gz64_32(s2h,s2l,t);
2294 else // SLTU (set if not zero)
2295 emit_set_nz64_32(s2h,s2l,t);
2296 }
2297 else {
2298 assert(s1l>=0);assert(s1h>=0);
2299 assert(s2l>=0);assert(s2h>=0);
2300 if(opcode2[i]==0x2a) // SLT
2301 emit_set_if_less64_32(s1h,s1l,s2h,s2l,t);
2302 else // SLTU
2303 emit_set_if_carry64_32(s1h,s1l,s2h,s2l,t);
2304 }
2305 }
2306 } else {
2307 t=get_reg(i_regs->regmap,rt1[i]);
2308 //assert(t>=0);
2309 if(t>=0) {
2310 s1l=get_reg(i_regs->regmap,rs1[i]);
2311 s2l=get_reg(i_regs->regmap,rs2[i]);
2312 if(rs2[i]==0) // rx<r0
2313 {
2314 assert(s1l>=0);
2315 if(opcode2[i]==0x2a) // SLT
2316 emit_shrimm(s1l,31,t);
2317 else // SLTU (unsigned can not be less than zero)
2318 emit_zeroreg(t);
2319 }
2320 else if(rs1[i]==0) // r0<rx
2321 {
2322 assert(s2l>=0);
2323 if(opcode2[i]==0x2a) // SLT
2324 emit_set_gz32(s2l,t);
2325 else // SLTU (set if not zero)
2326 emit_set_nz32(s2l,t);
2327 }
2328 else{
2329 assert(s1l>=0);assert(s2l>=0);
2330 if(opcode2[i]==0x2a) // SLT
2331 emit_set_if_less32(s1l,s2l,t);
2332 else // SLTU
2333 emit_set_if_carry32(s1l,s2l,t);
2334 }
2335 }
2336 }
2337 }
2338 }
2339 if(opcode2[i]>=0x24&&opcode2[i]<=0x27) { // AND/OR/XOR/NOR
2340 if(rt1[i]) {
2341 signed char s1l,s1h,s2l,s2h,th,tl;
2342 tl=get_reg(i_regs->regmap,rt1[i]);
2343 th=get_reg(i_regs->regmap,rt1[i]|64);
2344 if(!((i_regs->was32>>rs1[i])&(i_regs->was32>>rs2[i])&1)&&th>=0)
2345 {
2346 assert(tl>=0);
2347 if(tl>=0) {
2348 s1l=get_reg(i_regs->regmap,rs1[i]);
2349 s1h=get_reg(i_regs->regmap,rs1[i]|64);
2350 s2l=get_reg(i_regs->regmap,rs2[i]);
2351 s2h=get_reg(i_regs->regmap,rs2[i]|64);
2352 if(rs1[i]&&rs2[i]) {
2353 assert(s1l>=0);assert(s1h>=0);
2354 assert(s2l>=0);assert(s2h>=0);
2355 if(opcode2[i]==0x24) { // AND
2356 emit_and(s1l,s2l,tl);
2357 emit_and(s1h,s2h,th);
2358 } else
2359 if(opcode2[i]==0x25) { // OR
2360 emit_or(s1l,s2l,tl);
2361 emit_or(s1h,s2h,th);
2362 } else
2363 if(opcode2[i]==0x26) { // XOR
2364 emit_xor(s1l,s2l,tl);
2365 emit_xor(s1h,s2h,th);
2366 } else
2367 if(opcode2[i]==0x27) { // NOR
2368 emit_or(s1l,s2l,tl);
2369 emit_or(s1h,s2h,th);
2370 emit_not(tl,tl);
2371 emit_not(th,th);
2372 }
2373 }
2374 else
2375 {
2376 if(opcode2[i]==0x24) { // AND
2377 emit_zeroreg(tl);
2378 emit_zeroreg(th);
2379 } else
2380 if(opcode2[i]==0x25||opcode2[i]==0x26) { // OR/XOR
2381 if(rs1[i]){
2382 if(s1l>=0) emit_mov(s1l,tl);
2383 else emit_loadreg(rs1[i],tl);
2384 if(s1h>=0) emit_mov(s1h,th);
2385 else emit_loadreg(rs1[i]|64,th);
2386 }
2387 else
2388 if(rs2[i]){
2389 if(s2l>=0) emit_mov(s2l,tl);
2390 else emit_loadreg(rs2[i],tl);
2391 if(s2h>=0) emit_mov(s2h,th);
2392 else emit_loadreg(rs2[i]|64,th);
2393 }
2394 else{
2395 emit_zeroreg(tl);
2396 emit_zeroreg(th);
2397 }
2398 } else
2399 if(opcode2[i]==0x27) { // NOR
2400 if(rs1[i]){
2401 if(s1l>=0) emit_not(s1l,tl);
2402 else{
2403 emit_loadreg(rs1[i],tl);
2404 emit_not(tl,tl);
2405 }
2406 if(s1h>=0) emit_not(s1h,th);
2407 else{
2408 emit_loadreg(rs1[i]|64,th);
2409 emit_not(th,th);
2410 }
2411 }
2412 else
2413 if(rs2[i]){
2414 if(s2l>=0) emit_not(s2l,tl);
2415 else{
2416 emit_loadreg(rs2[i],tl);
2417 emit_not(tl,tl);
2418 }
2419 if(s2h>=0) emit_not(s2h,th);
2420 else{
2421 emit_loadreg(rs2[i]|64,th);
2422 emit_not(th,th);
2423 }
2424 }
2425 else {
2426 emit_movimm(-1,tl);
2427 emit_movimm(-1,th);
2428 }
2429 }
2430 }
2431 }
2432 }
2433 else
2434 {
2435 // 32 bit
2436 if(tl>=0) {
2437 s1l=get_reg(i_regs->regmap,rs1[i]);
2438 s2l=get_reg(i_regs->regmap,rs2[i]);
2439 if(rs1[i]&&rs2[i]) {
2440 assert(s1l>=0);
2441 assert(s2l>=0);
2442 if(opcode2[i]==0x24) { // AND
2443 emit_and(s1l,s2l,tl);
2444 } else
2445 if(opcode2[i]==0x25) { // OR
2446 emit_or(s1l,s2l,tl);
2447 } else
2448 if(opcode2[i]==0x26) { // XOR
2449 emit_xor(s1l,s2l,tl);
2450 } else
2451 if(opcode2[i]==0x27) { // NOR
2452 emit_or(s1l,s2l,tl);
2453 emit_not(tl,tl);
2454 }
2455 }
2456 else
2457 {
2458 if(opcode2[i]==0x24) { // AND
2459 emit_zeroreg(tl);
2460 } else
2461 if(opcode2[i]==0x25||opcode2[i]==0x26) { // OR/XOR
2462 if(rs1[i]){
2463 if(s1l>=0) emit_mov(s1l,tl);
2464 else emit_loadreg(rs1[i],tl); // CHECK: regmap_entry?
2465 }
2466 else
2467 if(rs2[i]){
2468 if(s2l>=0) emit_mov(s2l,tl);
2469 else emit_loadreg(rs2[i],tl); // CHECK: regmap_entry?
2470 }
2471 else emit_zeroreg(tl);
2472 } else
2473 if(opcode2[i]==0x27) { // NOR
2474 if(rs1[i]){
2475 if(s1l>=0) emit_not(s1l,tl);
2476 else {
2477 emit_loadreg(rs1[i],tl);
2478 emit_not(tl,tl);
2479 }
2480 }
2481 else
2482 if(rs2[i]){
2483 if(s2l>=0) emit_not(s2l,tl);
2484 else {
2485 emit_loadreg(rs2[i],tl);
2486 emit_not(tl,tl);
2487 }
2488 }
2489 else emit_movimm(-1,tl);
2490 }
2491 }
2492 }
2493 }
2494 }
2495 }
2496}
2497
2498void imm16_assemble(int i,struct regstat *i_regs)
2499{
2500 if (opcode[i]==0x0f) { // LUI
2501 if(rt1[i]) {
2502 signed char t;
2503 t=get_reg(i_regs->regmap,rt1[i]);
2504 //assert(t>=0);
2505 if(t>=0) {
2506 if(!((i_regs->isconst>>t)&1))
2507 emit_movimm(imm[i]<<16,t);
2508 }
2509 }
2510 }
2511 if(opcode[i]==0x08||opcode[i]==0x09) { // ADDI/ADDIU
2512 if(rt1[i]) {
2513 signed char s,t;
2514 t=get_reg(i_regs->regmap,rt1[i]);
2515 s=get_reg(i_regs->regmap,rs1[i]);
2516 if(rs1[i]) {
2517 //assert(t>=0);
2518 //assert(s>=0);
2519 if(t>=0) {
2520 if(!((i_regs->isconst>>t)&1)) {
2521 if(s<0) {
2522 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2523 emit_addimm(t,imm[i],t);
2524 }else{
2525 if(!((i_regs->wasconst>>s)&1))
2526 emit_addimm(s,imm[i],t);
2527 else
2528 emit_movimm(constmap[i][s]+imm[i],t);
2529 }
2530 }
2531 }
2532 } else {
2533 if(t>=0) {
2534 if(!((i_regs->isconst>>t)&1))
2535 emit_movimm(imm[i],t);
2536 }
2537 }
2538 }
2539 }
2540 if(opcode[i]==0x18||opcode[i]==0x19) { // DADDI/DADDIU
2541 if(rt1[i]) {
2542 signed char sh,sl,th,tl;
2543 th=get_reg(i_regs->regmap,rt1[i]|64);
2544 tl=get_reg(i_regs->regmap,rt1[i]);
2545 sh=get_reg(i_regs->regmap,rs1[i]|64);
2546 sl=get_reg(i_regs->regmap,rs1[i]);
2547 if(tl>=0) {
2548 if(rs1[i]) {
2549 assert(sh>=0);
2550 assert(sl>=0);
2551 if(th>=0) {
2552 emit_addimm64_32(sh,sl,imm[i],th,tl);
2553 }
2554 else {
2555 emit_addimm(sl,imm[i],tl);
2556 }
2557 } else {
2558 emit_movimm(imm[i],tl);
2559 if(th>=0) emit_movimm(((signed int)imm[i])>>31,th);
2560 }
2561 }
2562 }
2563 }
2564 else if(opcode[i]==0x0a||opcode[i]==0x0b) { // SLTI/SLTIU
2565 if(rt1[i]) {
2566 //assert(rs1[i]!=0); // r0 might be valid, but it's probably a bug
2567 signed char sh,sl,t;
2568 t=get_reg(i_regs->regmap,rt1[i]);
2569 sh=get_reg(i_regs->regmap,rs1[i]|64);
2570 sl=get_reg(i_regs->regmap,rs1[i]);
2571 //assert(t>=0);
2572 if(t>=0) {
2573 if(rs1[i]>0) {
2574 if(sh<0) assert((i_regs->was32>>rs1[i])&1);
2575 if(sh<0||((i_regs->was32>>rs1[i])&1)) {
2576 if(opcode[i]==0x0a) { // SLTI
2577 if(sl<0) {
2578 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2579 emit_slti32(t,imm[i],t);
2580 }else{
2581 emit_slti32(sl,imm[i],t);
2582 }
2583 }
2584 else { // SLTIU
2585 if(sl<0) {
2586 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2587 emit_sltiu32(t,imm[i],t);
2588 }else{
2589 emit_sltiu32(sl,imm[i],t);
2590 }
2591 }
2592 }else{ // 64-bit
2593 assert(sl>=0);
2594 if(opcode[i]==0x0a) // SLTI
2595 emit_slti64_32(sh,sl,imm[i],t);
2596 else // SLTIU
2597 emit_sltiu64_32(sh,sl,imm[i],t);
2598 }
2599 }else{
2600 // SLTI(U) with r0 is just stupid,
2601 // nonetheless examples can be found
2602 if(opcode[i]==0x0a) // SLTI
2603 if(0<imm[i]) emit_movimm(1,t);
2604 else emit_zeroreg(t);
2605 else // SLTIU
2606 {
2607 if(imm[i]) emit_movimm(1,t);
2608 else emit_zeroreg(t);
2609 }
2610 }
2611 }
2612 }
2613 }
2614 else if(opcode[i]>=0x0c&&opcode[i]<=0x0e) { // ANDI/ORI/XORI
2615 if(rt1[i]) {
2616 signed char sh,sl,th,tl;
2617 th=get_reg(i_regs->regmap,rt1[i]|64);
2618 tl=get_reg(i_regs->regmap,rt1[i]);
2619 sh=get_reg(i_regs->regmap,rs1[i]|64);
2620 sl=get_reg(i_regs->regmap,rs1[i]);
2621 if(tl>=0 && !((i_regs->isconst>>tl)&1)) {
2622 if(opcode[i]==0x0c) //ANDI
2623 {
2624 if(rs1[i]) {
2625 if(sl<0) {
2626 if(i_regs->regmap_entry[tl]!=rs1[i]) emit_loadreg(rs1[i],tl);
2627 emit_andimm(tl,imm[i],tl);
2628 }else{
2629 if(!((i_regs->wasconst>>sl)&1))
2630 emit_andimm(sl,imm[i],tl);
2631 else
2632 emit_movimm(constmap[i][sl]&imm[i],tl);
2633 }
2634 }
2635 else
2636 emit_zeroreg(tl);
2637 if(th>=0) emit_zeroreg(th);
2638 }
2639 else
2640 {
2641 if(rs1[i]) {
2642 if(sl<0) {
2643 if(i_regs->regmap_entry[tl]!=rs1[i]) emit_loadreg(rs1[i],tl);
2644 }
2645 if(th>=0) {
2646 if(sh<0) {
2647 emit_loadreg(rs1[i]|64,th);
2648 }else{
2649 emit_mov(sh,th);
2650 }
2651 }
2652 if(opcode[i]==0x0d) //ORI
2653 if(sl<0) {
2654 emit_orimm(tl,imm[i],tl);
2655 }else{
2656 if(!((i_regs->wasconst>>sl)&1))
2657 emit_orimm(sl,imm[i],tl);
2658 else
2659 emit_movimm(constmap[i][sl]|imm[i],tl);
2660 }
2661 if(opcode[i]==0x0e) //XORI
2662 if(sl<0) {
2663 emit_xorimm(tl,imm[i],tl);
2664 }else{
2665 if(!((i_regs->wasconst>>sl)&1))
2666 emit_xorimm(sl,imm[i],tl);
2667 else
2668 emit_movimm(constmap[i][sl]^imm[i],tl);
2669 }
2670 }
2671 else {
2672 emit_movimm(imm[i],tl);
2673 if(th>=0) emit_zeroreg(th);
2674 }
2675 }
2676 }
2677 }
2678 }
2679}
2680
2681void shiftimm_assemble(int i,struct regstat *i_regs)
2682{
2683 if(opcode2[i]<=0x3) // SLL/SRL/SRA
2684 {
2685 if(rt1[i]) {
2686 signed char s,t;
2687 t=get_reg(i_regs->regmap,rt1[i]);
2688 s=get_reg(i_regs->regmap,rs1[i]);
2689 //assert(t>=0);
2690 if(t>=0){
2691 if(rs1[i]==0)
2692 {
2693 emit_zeroreg(t);
2694 }
2695 else
2696 {
2697 if(s<0&&i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2698 if(imm[i]) {
2699 if(opcode2[i]==0) // SLL
2700 {
2701 emit_shlimm(s<0?t:s,imm[i],t);
2702 }
2703 if(opcode2[i]==2) // SRL
2704 {
2705 emit_shrimm(s<0?t:s,imm[i],t);
2706 }
2707 if(opcode2[i]==3) // SRA
2708 {
2709 emit_sarimm(s<0?t:s,imm[i],t);
2710 }
2711 }else{
2712 // Shift by zero
2713 if(s>=0 && s!=t) emit_mov(s,t);
2714 }
2715 }
2716 }
2717 //emit_storereg(rt1[i],t); //DEBUG
2718 }
2719 }
2720 if(opcode2[i]>=0x38&&opcode2[i]<=0x3b) // DSLL/DSRL/DSRA
2721 {
2722 if(rt1[i]) {
2723 signed char sh,sl,th,tl;
2724 th=get_reg(i_regs->regmap,rt1[i]|64);
2725 tl=get_reg(i_regs->regmap,rt1[i]);
2726 sh=get_reg(i_regs->regmap,rs1[i]|64);
2727 sl=get_reg(i_regs->regmap,rs1[i]);
2728 if(tl>=0) {
2729 if(rs1[i]==0)
2730 {
2731 emit_zeroreg(tl);
2732 if(th>=0) emit_zeroreg(th);
2733 }
2734 else
2735 {
2736 assert(sl>=0);
2737 assert(sh>=0);
2738 if(imm[i]) {
2739 if(opcode2[i]==0x38) // DSLL
2740 {
2741 if(th>=0) emit_shldimm(sh,sl,imm[i],th);
2742 emit_shlimm(sl,imm[i],tl);
2743 }
2744 if(opcode2[i]==0x3a) // DSRL
2745 {
2746 emit_shrdimm(sl,sh,imm[i],tl);
2747 if(th>=0) emit_shrimm(sh,imm[i],th);
2748 }
2749 if(opcode2[i]==0x3b) // DSRA
2750 {
2751 emit_shrdimm(sl,sh,imm[i],tl);
2752 if(th>=0) emit_sarimm(sh,imm[i],th);
2753 }
2754 }else{
2755 // Shift by zero
2756 if(sl!=tl) emit_mov(sl,tl);
2757 if(th>=0&&sh!=th) emit_mov(sh,th);
2758 }
2759 }
2760 }
2761 }
2762 }
2763 if(opcode2[i]==0x3c) // DSLL32
2764 {
2765 if(rt1[i]) {
2766 signed char sl,tl,th;
2767 tl=get_reg(i_regs->regmap,rt1[i]);
2768 th=get_reg(i_regs->regmap,rt1[i]|64);
2769 sl=get_reg(i_regs->regmap,rs1[i]);
2770 if(th>=0||tl>=0){
2771 assert(tl>=0);
2772 assert(th>=0);
2773 assert(sl>=0);
2774 emit_mov(sl,th);
2775 emit_zeroreg(tl);
2776 if(imm[i]>32)
2777 {
2778 emit_shlimm(th,imm[i]&31,th);
2779 }
2780 }
2781 }
2782 }
2783 if(opcode2[i]==0x3e) // DSRL32
2784 {
2785 if(rt1[i]) {
2786 signed char sh,tl,th;
2787 tl=get_reg(i_regs->regmap,rt1[i]);
2788 th=get_reg(i_regs->regmap,rt1[i]|64);
2789 sh=get_reg(i_regs->regmap,rs1[i]|64);
2790 if(tl>=0){
2791 assert(sh>=0);
2792 emit_mov(sh,tl);
2793 if(th>=0) emit_zeroreg(th);
2794 if(imm[i]>32)
2795 {
2796 emit_shrimm(tl,imm[i]&31,tl);
2797 }
2798 }
2799 }
2800 }
2801 if(opcode2[i]==0x3f) // DSRA32
2802 {
2803 if(rt1[i]) {
2804 signed char sh,tl;
2805 tl=get_reg(i_regs->regmap,rt1[i]);
2806 sh=get_reg(i_regs->regmap,rs1[i]|64);
2807 if(tl>=0){
2808 assert(sh>=0);
2809 emit_mov(sh,tl);
2810 if(imm[i]>32)
2811 {
2812 emit_sarimm(tl,imm[i]&31,tl);
2813 }
2814 }
2815 }
2816 }
2817}
2818
2819#ifndef shift_assemble
2820void shift_assemble(int i,struct regstat *i_regs)
2821{
2822 printf("Need shift_assemble for this architecture.\n");
2823 exit(1);
2824}
2825#endif
2826
2827void load_assemble(int i,struct regstat *i_regs)
2828{
2829 int s,th,tl,addr,map=-1;
2830 int offset;
2831 int jaddr=0;
5bf843dc 2832 int memtarget=0,c=0;
b1570849 2833 int fastload_reg_override=0;
57871462 2834 u_int hr,reglist=0;
2835 th=get_reg(i_regs->regmap,rt1[i]|64);
2836 tl=get_reg(i_regs->regmap,rt1[i]);
2837 s=get_reg(i_regs->regmap,rs1[i]);
2838 offset=imm[i];
2839 for(hr=0;hr<HOST_REGS;hr++) {
2840 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
2841 }
2842 if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
2843 if(s>=0) {
2844 c=(i_regs->wasconst>>s)&1;
af4ee1fe 2845 if (c) {
2846 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
2847 if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
2848 }
57871462 2849 }
57871462 2850 //printf("load_assemble: c=%d\n",c);
2851 //if(c) printf("load_assemble: const=%x\n",(int)constmap[i][s]+offset);
2852 // FIXME: Even if the load is a NOP, we should check for pagefaults...
5bf843dc 2853#ifdef PCSX
f18c0f46 2854 if(tl<0&&(!c||(((u_int)constmap[i][s]+offset)>>16)==0x1f80)
2855 ||rt1[i]==0) {
5bf843dc 2856 // could be FIFO, must perform the read
f18c0f46 2857 // ||dummy read
5bf843dc 2858 assem_debug("(forced read)\n");
2859 tl=get_reg(i_regs->regmap,-1);
2860 assert(tl>=0);
5bf843dc 2861 }
f18c0f46 2862#endif
5bf843dc 2863 if(offset||s<0||c) addr=tl;
2864 else addr=s;
535d208a 2865 //if(tl<0) tl=get_reg(i_regs->regmap,-1);
2866 if(tl>=0) {
2867 //printf("load_assemble: c=%d\n",c);
2868 //if(c) printf("load_assemble: const=%x\n",(int)constmap[i][s]+offset);
2869 assert(tl>=0); // Even if the load is a NOP, we must check for pagefaults and I/O
2870 reglist&=~(1<<tl);
2871 if(th>=0) reglist&=~(1<<th);
2872 if(!using_tlb) {
2873 if(!c) {
2874 #ifdef RAM_OFFSET
2875 map=get_reg(i_regs->regmap,ROREG);
2876 if(map<0) emit_loadreg(ROREG,map=HOST_TEMPREG);
2877 #endif
57871462 2878//#define R29_HACK 1
535d208a 2879 #ifdef R29_HACK
2880 // Strmnnrmn's speed hack
2881 if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
2882 #endif
2883 {
dadf55f2 2884 #ifdef PCSX
2885 if(sp_in_mirror&&rs1[i]==29) {
2886 emit_andimm(addr,~0x00e00000,HOST_TEMPREG);
2887 emit_cmpimm(HOST_TEMPREG,RAM_SIZE);
b1570849 2888 fastload_reg_override=HOST_TEMPREG;
dadf55f2 2889 }
2890 else
2891 #endif
535d208a 2892 emit_cmpimm(addr,RAM_SIZE);
2893 jaddr=(int)out;
2894 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
2895 // Hint to branch predictor that the branch is unlikely to be taken
2896 if(rs1[i]>=28)
2897 emit_jno_unlikely(0);
2898 else
57871462 2899 #endif
535d208a 2900 emit_jno(0);
57871462 2901 }
535d208a 2902 }
2903 }else{ // using tlb
2904 int x=0;
2905 if (opcode[i]==0x20||opcode[i]==0x24) x=3; // LB/LBU
2906 if (opcode[i]==0x21||opcode[i]==0x25) x=2; // LH/LHU
2907 map=get_reg(i_regs->regmap,TLREG);
2908 assert(map>=0);
ea3d2e6e 2909 reglist&=~(1<<map);
535d208a 2910 map=do_tlb_r(addr,tl,map,x,-1,-1,c,constmap[i][s]+offset);
2911 do_tlb_r_branch(map,c,constmap[i][s]+offset,&jaddr);
2912 }
2913 int dummy=(rt1[i]==0)||(tl!=get_reg(i_regs->regmap,rt1[i])); // ignore loads to r0 and unneeded reg
2914 if (opcode[i]==0x20) { // LB
2915 if(!c||memtarget) {
2916 if(!dummy) {
57871462 2917 #ifdef HOST_IMM_ADDR32
2918 if(c)
2919 emit_movsbl_tlb((constmap[i][s]+offset)^3,map,tl);
2920 else
2921 #endif
2922 {
2923 //emit_xorimm(addr,3,tl);
2924 //gen_tlb_addr_r(tl,map);
2925 //emit_movsbl_indexed((int)rdram-0x80000000,tl,tl);
535d208a 2926 int x=0,a=tl;
2002a1db 2927#ifdef BIG_ENDIAN_MIPS
57871462 2928 if(!c) emit_xorimm(addr,3,tl);
2929 else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2002a1db 2930#else
535d208a 2931 if(!c) a=addr;
dadf55f2 2932#endif
b1570849 2933 if(fastload_reg_override) a=fastload_reg_override;
2934
535d208a 2935 emit_movsbl_indexed_tlb(x,a,map,tl);
57871462 2936 }
57871462 2937 }
535d208a 2938 if(jaddr)
2939 add_stub(LOADB_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
57871462 2940 }
535d208a 2941 else
2942 inline_readstub(LOADB_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2943 }
2944 if (opcode[i]==0x21) { // LH
2945 if(!c||memtarget) {
2946 if(!dummy) {
57871462 2947 #ifdef HOST_IMM_ADDR32
2948 if(c)
2949 emit_movswl_tlb((constmap[i][s]+offset)^2,map,tl);
2950 else
2951 #endif
2952 {
535d208a 2953 int x=0,a=tl;
2002a1db 2954#ifdef BIG_ENDIAN_MIPS
57871462 2955 if(!c) emit_xorimm(addr,2,tl);
2956 else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
2002a1db 2957#else
535d208a 2958 if(!c) a=addr;
dadf55f2 2959#endif
b1570849 2960 if(fastload_reg_override) a=fastload_reg_override;
57871462 2961 //#ifdef
2962 //emit_movswl_indexed_tlb(x,tl,map,tl);
2963 //else
2964 if(map>=0) {
535d208a 2965 gen_tlb_addr_r(a,map);
2966 emit_movswl_indexed(x,a,tl);
2967 }else{
2968 #ifdef RAM_OFFSET
2969 emit_movswl_indexed(x,a,tl);
2970 #else
2971 emit_movswl_indexed((int)rdram-0x80000000+x,a,tl);
2972 #endif
2973 }
57871462 2974 }
57871462 2975 }
535d208a 2976 if(jaddr)
2977 add_stub(LOADH_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
57871462 2978 }
535d208a 2979 else
2980 inline_readstub(LOADH_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2981 }
2982 if (opcode[i]==0x23) { // LW
2983 if(!c||memtarget) {
2984 if(!dummy) {
dadf55f2 2985 int a=addr;
b1570849 2986 if(fastload_reg_override) a=fastload_reg_override;
57871462 2987 //emit_readword_indexed((int)rdram-0x80000000,addr,tl);
2988 #ifdef HOST_IMM_ADDR32
2989 if(c)
2990 emit_readword_tlb(constmap[i][s]+offset,map,tl);
2991 else
2992 #endif
dadf55f2 2993 emit_readword_indexed_tlb(0,a,map,tl);
57871462 2994 }
535d208a 2995 if(jaddr)
2996 add_stub(LOADW_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
57871462 2997 }
535d208a 2998 else
2999 inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
3000 }
3001 if (opcode[i]==0x24) { // LBU
3002 if(!c||memtarget) {
3003 if(!dummy) {
57871462 3004 #ifdef HOST_IMM_ADDR32
3005 if(c)
3006 emit_movzbl_tlb((constmap[i][s]+offset)^3,map,tl);
3007 else
3008 #endif
3009 {
3010 //emit_xorimm(addr,3,tl);
3011 //gen_tlb_addr_r(tl,map);
3012 //emit_movzbl_indexed((int)rdram-0x80000000,tl,tl);
535d208a 3013 int x=0,a=tl;
2002a1db 3014#ifdef BIG_ENDIAN_MIPS
57871462 3015 if(!c) emit_xorimm(addr,3,tl);
3016 else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2002a1db 3017#else
535d208a 3018 if(!c) a=addr;
dadf55f2 3019#endif
b1570849 3020 if(fastload_reg_override) a=fastload_reg_override;
3021
535d208a 3022 emit_movzbl_indexed_tlb(x,a,map,tl);
57871462 3023 }
57871462 3024 }
535d208a 3025 if(jaddr)
3026 add_stub(LOADBU_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
57871462 3027 }
535d208a 3028 else
3029 inline_readstub(LOADBU_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
3030 }
3031 if (opcode[i]==0x25) { // LHU
3032 if(!c||memtarget) {
3033 if(!dummy) {
57871462 3034 #ifdef HOST_IMM_ADDR32
3035 if(c)
3036 emit_movzwl_tlb((constmap[i][s]+offset)^2,map,tl);
3037 else
3038 #endif
3039 {
535d208a 3040 int x=0,a=tl;
2002a1db 3041#ifdef BIG_ENDIAN_MIPS
57871462 3042 if(!c) emit_xorimm(addr,2,tl);
3043 else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
2002a1db 3044#else
535d208a 3045 if(!c) a=addr;
dadf55f2 3046#endif
b1570849 3047 if(fastload_reg_override) a=fastload_reg_override;
57871462 3048 //#ifdef
3049 //emit_movzwl_indexed_tlb(x,tl,map,tl);
3050 //#else
3051 if(map>=0) {
535d208a 3052 gen_tlb_addr_r(a,map);
3053 emit_movzwl_indexed(x,a,tl);
3054 }else{
3055 #ifdef RAM_OFFSET
3056 emit_movzwl_indexed(x,a,tl);
3057 #else
3058 emit_movzwl_indexed((int)rdram-0x80000000+x,a,tl);
3059 #endif
3060 }
57871462 3061 }
3062 }
535d208a 3063 if(jaddr)
3064 add_stub(LOADHU_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
57871462 3065 }
535d208a 3066 else
3067 inline_readstub(LOADHU_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
3068 }
3069 if (opcode[i]==0x27) { // LWU
3070 assert(th>=0);
3071 if(!c||memtarget) {
3072 if(!dummy) {
dadf55f2 3073 int a=addr;
b1570849 3074 if(fastload_reg_override) a=fastload_reg_override;
57871462 3075 //emit_readword_indexed((int)rdram-0x80000000,addr,tl);
3076 #ifdef HOST_IMM_ADDR32
3077 if(c)
3078 emit_readword_tlb(constmap[i][s]+offset,map,tl);
3079 else
3080 #endif
dadf55f2 3081 emit_readword_indexed_tlb(0,a,map,tl);
57871462 3082 }
535d208a 3083 if(jaddr)
3084 add_stub(LOADW_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3085 }
3086 else {
3087 inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
57871462 3088 }
535d208a 3089 emit_zeroreg(th);
3090 }
3091 if (opcode[i]==0x37) { // LD
3092 if(!c||memtarget) {
3093 if(!dummy) {
dadf55f2 3094 int a=addr;
b1570849 3095 if(fastload_reg_override) a=fastload_reg_override;
57871462 3096 //gen_tlb_addr_r(tl,map);
3097 //if(th>=0) emit_readword_indexed((int)rdram-0x80000000,addr,th);
3098 //emit_readword_indexed((int)rdram-0x7FFFFFFC,addr,tl);
3099 #ifdef HOST_IMM_ADDR32
3100 if(c)
3101 emit_readdword_tlb(constmap[i][s]+offset,map,th,tl);
3102 else
3103 #endif
dadf55f2 3104 emit_readdword_indexed_tlb(0,a,map,th,tl);
57871462 3105 }
535d208a 3106 if(jaddr)
3107 add_stub(LOADD_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
57871462 3108 }
535d208a 3109 else
3110 inline_readstub(LOADD_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
57871462 3111 }
535d208a 3112 }
3113 //emit_storereg(rt1[i],tl); // DEBUG
57871462 3114 //if(opcode[i]==0x23)
3115 //if(opcode[i]==0x24)
3116 //if(opcode[i]==0x23||opcode[i]==0x24)
3117 /*if(opcode[i]==0x21||opcode[i]==0x23||opcode[i]==0x24)
3118 {
3119 //emit_pusha();
3120 save_regs(0x100f);
3121 emit_readword((int)&last_count,ECX);
3122 #ifdef __i386__
3123 if(get_reg(i_regs->regmap,CCREG)<0)
3124 emit_loadreg(CCREG,HOST_CCREG);
3125 emit_add(HOST_CCREG,ECX,HOST_CCREG);
3126 emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3127 emit_writeword(HOST_CCREG,(int)&Count);
3128 #endif
3129 #ifdef __arm__
3130 if(get_reg(i_regs->regmap,CCREG)<0)
3131 emit_loadreg(CCREG,0);
3132 else
3133 emit_mov(HOST_CCREG,0);
3134 emit_add(0,ECX,0);
3135 emit_addimm(0,2*ccadj[i],0);
3136 emit_writeword(0,(int)&Count);
3137 #endif
3138 emit_call((int)memdebug);
3139 //emit_popa();
3140 restore_regs(0x100f);
3141 }/**/
3142}
3143
3144#ifndef loadlr_assemble
3145void loadlr_assemble(int i,struct regstat *i_regs)
3146{
3147 printf("Need loadlr_assemble for this architecture.\n");
3148 exit(1);
3149}
3150#endif
3151
3152void store_assemble(int i,struct regstat *i_regs)
3153{
3154 int s,th,tl,map=-1;
3155 int addr,temp;
3156 int offset;
3157 int jaddr=0,jaddr2,type;
666a299d 3158 int memtarget=0,c=0;
57871462 3159 int agr=AGEN1+(i&1);
b1570849 3160 int faststore_reg_override=0;
57871462 3161 u_int hr,reglist=0;
3162 th=get_reg(i_regs->regmap,rs2[i]|64);
3163 tl=get_reg(i_regs->regmap,rs2[i]);
3164 s=get_reg(i_regs->regmap,rs1[i]);
3165 temp=get_reg(i_regs->regmap,agr);
3166 if(temp<0) temp=get_reg(i_regs->regmap,-1);
3167 offset=imm[i];
3168 if(s>=0) {
3169 c=(i_regs->wasconst>>s)&1;
af4ee1fe 3170 if(c) {
3171 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
3172 if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
3173 }
57871462 3174 }
3175 assert(tl>=0);
3176 assert(temp>=0);
3177 for(hr=0;hr<HOST_REGS;hr++) {
3178 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3179 }
3180 if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
3181 if(offset||s<0||c) addr=temp;
3182 else addr=s;
3183 if(!using_tlb) {
3184 if(!c) {
dadf55f2 3185 #ifdef PCSX
3186 if(sp_in_mirror&&rs1[i]==29) {
3187 emit_andimm(addr,~0x00e00000,HOST_TEMPREG);
3188 emit_cmpimm(HOST_TEMPREG,RAM_SIZE);
b1570849 3189 faststore_reg_override=HOST_TEMPREG;
dadf55f2 3190 }
3191 else
3192 #endif
57871462 3193 #ifdef R29_HACK
3194 // Strmnnrmn's speed hack
4cb76aa4 3195 if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
57871462 3196 #endif
4cb76aa4 3197 emit_cmpimm(addr,RAM_SIZE);
57871462 3198 #ifdef DESTRUCTIVE_SHIFT
3199 if(s==addr) emit_mov(s,temp);
3200 #endif
3201 #ifdef R29_HACK
dadf55f2 3202 memtarget=1;
4cb76aa4 3203 if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
57871462 3204 #endif
3205 {
3206 jaddr=(int)out;
3207 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
3208 // Hint to branch predictor that the branch is unlikely to be taken
3209 if(rs1[i]>=28)
3210 emit_jno_unlikely(0);
3211 else
3212 #endif
3213 emit_jno(0);
3214 }
3215 }
3216 }else{ // using tlb
3217 int x=0;
3218 if (opcode[i]==0x28) x=3; // SB
3219 if (opcode[i]==0x29) x=2; // SH
3220 map=get_reg(i_regs->regmap,TLREG);
3221 assert(map>=0);
ea3d2e6e 3222 reglist&=~(1<<map);
57871462 3223 map=do_tlb_w(addr,temp,map,x,c,constmap[i][s]+offset);
3224 do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr);
3225 }
3226
3227 if (opcode[i]==0x28) { // SB
3228 if(!c||memtarget) {
97a238a6 3229 int x=0,a=temp;
2002a1db 3230#ifdef BIG_ENDIAN_MIPS
57871462 3231 if(!c) emit_xorimm(addr,3,temp);
3232 else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2002a1db 3233#else
97a238a6 3234 if(!c) a=addr;
dadf55f2 3235#endif
b1570849 3236 if(faststore_reg_override) a=faststore_reg_override;
57871462 3237 //gen_tlb_addr_w(temp,map);
3238 //emit_writebyte_indexed(tl,(int)rdram-0x80000000,temp);
97a238a6 3239 emit_writebyte_indexed_tlb(tl,x,a,map,a);
57871462 3240 }
3241 type=STOREB_STUB;
3242 }
3243 if (opcode[i]==0x29) { // SH
3244 if(!c||memtarget) {
97a238a6 3245 int x=0,a=temp;
2002a1db 3246#ifdef BIG_ENDIAN_MIPS
57871462 3247 if(!c) emit_xorimm(addr,2,temp);
3248 else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
2002a1db 3249#else
97a238a6 3250 if(!c) a=addr;
dadf55f2 3251#endif
b1570849 3252 if(faststore_reg_override) a=faststore_reg_override;
57871462 3253 //#ifdef
3254 //emit_writehword_indexed_tlb(tl,x,temp,map,temp);
3255 //#else
3256 if(map>=0) {
97a238a6 3257 gen_tlb_addr_w(a,map);
3258 emit_writehword_indexed(tl,x,a);
57871462 3259 }else
97a238a6 3260 emit_writehword_indexed(tl,(int)rdram-0x80000000+x,a);
57871462 3261 }
3262 type=STOREH_STUB;
3263 }
3264 if (opcode[i]==0x2B) { // SW
dadf55f2 3265 if(!c||memtarget) {
3266 int a=addr;
b1570849 3267 if(faststore_reg_override) a=faststore_reg_override;
57871462 3268 //emit_writeword_indexed(tl,(int)rdram-0x80000000,addr);
dadf55f2 3269 emit_writeword_indexed_tlb(tl,0,a,map,temp);
3270 }
57871462 3271 type=STOREW_STUB;
3272 }
3273 if (opcode[i]==0x3F) { // SD
3274 if(!c||memtarget) {
dadf55f2 3275 int a=addr;
b1570849 3276 if(faststore_reg_override) a=faststore_reg_override;
57871462 3277 if(rs2[i]) {
3278 assert(th>=0);
3279 //emit_writeword_indexed(th,(int)rdram-0x80000000,addr);
3280 //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,addr);
dadf55f2 3281 emit_writedword_indexed_tlb(th,tl,0,a,map,temp);
57871462 3282 }else{
3283 // Store zero
3284 //emit_writeword_indexed(tl,(int)rdram-0x80000000,temp);
3285 //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,temp);
dadf55f2 3286 emit_writedword_indexed_tlb(tl,tl,0,a,map,temp);
57871462 3287 }
3288 }
3289 type=STORED_STUB;
3290 }
b96d3df7 3291#ifdef PCSX
3292 if(jaddr) {
3293 // PCSX store handlers don't check invcode again
3294 reglist|=1<<addr;
3295 add_stub(type,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3296 jaddr=0;
3297 }
3298#endif
57871462 3299 if(!using_tlb) {
3300 if(!c||memtarget) {
3301 #ifdef DESTRUCTIVE_SHIFT
3302 // The x86 shift operation is 'destructive'; it overwrites the
3303 // source register, so we need to make a copy first and use that.
3304 addr=temp;
3305 #endif
3306 #if defined(HOST_IMM8)
3307 int ir=get_reg(i_regs->regmap,INVCP);
3308 assert(ir>=0);
3309 emit_cmpmem_indexedsr12_reg(ir,addr,1);
3310 #else
3311 emit_cmpmem_indexedsr12_imm((int)invalid_code,addr,1);
3312 #endif
0bbd1454 3313 #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3314 emit_callne(invalidate_addr_reg[addr]);
3315 #else
57871462 3316 jaddr2=(int)out;
3317 emit_jne(0);
3318 add_stub(INVCODE_STUB,jaddr2,(int)out,reglist|(1<<HOST_CCREG),addr,0,0,0);
0bbd1454 3319 #endif
57871462 3320 }
3321 }
3eaa7048 3322 if(jaddr) {
3323 add_stub(type,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3324 } else if(c&&!memtarget) {
3325 inline_writestub(type,i,constmap[i][s]+offset,i_regs->regmap,rs2[i],ccadj[i],reglist);
3326 }
57871462 3327 //if(opcode[i]==0x2B || opcode[i]==0x3F)
3328 //if(opcode[i]==0x2B || opcode[i]==0x28)
3329 //if(opcode[i]==0x2B || opcode[i]==0x29)
3330 //if(opcode[i]==0x2B)
3331 /*if(opcode[i]==0x2B || opcode[i]==0x28 || opcode[i]==0x29 || opcode[i]==0x3F)
3332 {
28d74ee8 3333 #ifdef __i386__
3334 emit_pusha();
3335 #endif
3336 #ifdef __arm__
57871462 3337 save_regs(0x100f);
28d74ee8 3338 #endif
57871462 3339 emit_readword((int)&last_count,ECX);
3340 #ifdef __i386__
3341 if(get_reg(i_regs->regmap,CCREG)<0)
3342 emit_loadreg(CCREG,HOST_CCREG);
3343 emit_add(HOST_CCREG,ECX,HOST_CCREG);
3344 emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3345 emit_writeword(HOST_CCREG,(int)&Count);
3346 #endif
3347 #ifdef __arm__
3348 if(get_reg(i_regs->regmap,CCREG)<0)
3349 emit_loadreg(CCREG,0);
3350 else
3351 emit_mov(HOST_CCREG,0);
3352 emit_add(0,ECX,0);
3353 emit_addimm(0,2*ccadj[i],0);
3354 emit_writeword(0,(int)&Count);
3355 #endif
3356 emit_call((int)memdebug);
28d74ee8 3357 #ifdef __i386__
3358 emit_popa();
3359 #endif
3360 #ifdef __arm__
57871462 3361 restore_regs(0x100f);
28d74ee8 3362 #endif
57871462 3363 }/**/
3364}
3365
3366void storelr_assemble(int i,struct regstat *i_regs)
3367{
3368 int s,th,tl;
3369 int temp;
3370 int temp2;
3371 int offset;
3372 int jaddr=0,jaddr2;
3373 int case1,case2,case3;
3374 int done0,done1,done2;
af4ee1fe 3375 int memtarget=0,c=0;
fab5d06d 3376 int agr=AGEN1+(i&1);
57871462 3377 u_int hr,reglist=0;
3378 th=get_reg(i_regs->regmap,rs2[i]|64);
3379 tl=get_reg(i_regs->regmap,rs2[i]);
3380 s=get_reg(i_regs->regmap,rs1[i]);
fab5d06d 3381 temp=get_reg(i_regs->regmap,agr);
3382 if(temp<0) temp=get_reg(i_regs->regmap,-1);
57871462 3383 offset=imm[i];
3384 if(s>=0) {
3385 c=(i_regs->isconst>>s)&1;
af4ee1fe 3386 if(c) {
3387 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
3388 if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
3389 }
57871462 3390 }
3391 assert(tl>=0);
3392 for(hr=0;hr<HOST_REGS;hr++) {
3393 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3394 }
535d208a 3395 assert(temp>=0);
3396 if(!using_tlb) {
3397 if(!c) {
3398 emit_cmpimm(s<0||offset?temp:s,RAM_SIZE);
3399 if(!offset&&s!=temp) emit_mov(s,temp);
3400 jaddr=(int)out;
3401 emit_jno(0);
3402 }
3403 else
3404 {
3405 if(!memtarget||!rs1[i]) {
57871462 3406 jaddr=(int)out;
3407 emit_jmp(0);
3408 }
57871462 3409 }
535d208a 3410 #ifdef RAM_OFFSET
3411 int map=get_reg(i_regs->regmap,ROREG);
3412 if(map<0) emit_loadreg(ROREG,map=HOST_TEMPREG);
3413 gen_tlb_addr_w(temp,map);
3414 #else
3415 if((u_int)rdram!=0x80000000)
3416 emit_addimm_no_flags((u_int)rdram-(u_int)0x80000000,temp);
3417 #endif
3418 }else{ // using tlb
3419 int map=get_reg(i_regs->regmap,TLREG);
3420 assert(map>=0);
ea3d2e6e 3421 reglist&=~(1<<map);
535d208a 3422 map=do_tlb_w(c||s<0||offset?temp:s,temp,map,0,c,constmap[i][s]+offset);
3423 if(!c&&!offset&&s>=0) emit_mov(s,temp);
3424 do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr);
3425 if(!jaddr&&!memtarget) {
3426 jaddr=(int)out;
3427 emit_jmp(0);
57871462 3428 }
535d208a 3429 gen_tlb_addr_w(temp,map);
3430 }
3431
3432 if (opcode[i]==0x2C||opcode[i]==0x2D) { // SDL/SDR
3433 temp2=get_reg(i_regs->regmap,FTEMP);
3434 if(!rs2[i]) temp2=th=tl;
3435 }
57871462 3436
2002a1db 3437#ifndef BIG_ENDIAN_MIPS
3438 emit_xorimm(temp,3,temp);
3439#endif
535d208a 3440 emit_testimm(temp,2);
3441 case2=(int)out;
3442 emit_jne(0);
3443 emit_testimm(temp,1);
3444 case1=(int)out;
3445 emit_jne(0);
3446 // 0
3447 if (opcode[i]==0x2A) { // SWL
3448 emit_writeword_indexed(tl,0,temp);
3449 }
3450 if (opcode[i]==0x2E) { // SWR
3451 emit_writebyte_indexed(tl,3,temp);
3452 }
3453 if (opcode[i]==0x2C) { // SDL
3454 emit_writeword_indexed(th,0,temp);
3455 if(rs2[i]) emit_mov(tl,temp2);
3456 }
3457 if (opcode[i]==0x2D) { // SDR
3458 emit_writebyte_indexed(tl,3,temp);
3459 if(rs2[i]) emit_shldimm(th,tl,24,temp2);
3460 }
3461 done0=(int)out;
3462 emit_jmp(0);
3463 // 1
3464 set_jump_target(case1,(int)out);
3465 if (opcode[i]==0x2A) { // SWL
3466 // Write 3 msb into three least significant bytes
3467 if(rs2[i]) emit_rorimm(tl,8,tl);
3468 emit_writehword_indexed(tl,-1,temp);
3469 if(rs2[i]) emit_rorimm(tl,16,tl);
3470 emit_writebyte_indexed(tl,1,temp);
3471 if(rs2[i]) emit_rorimm(tl,8,tl);
3472 }
3473 if (opcode[i]==0x2E) { // SWR
3474 // Write two lsb into two most significant bytes
3475 emit_writehword_indexed(tl,1,temp);
3476 }
3477 if (opcode[i]==0x2C) { // SDL
3478 if(rs2[i]) emit_shrdimm(tl,th,8,temp2);
3479 // Write 3 msb into three least significant bytes
3480 if(rs2[i]) emit_rorimm(th,8,th);
3481 emit_writehword_indexed(th,-1,temp);
3482 if(rs2[i]) emit_rorimm(th,16,th);
3483 emit_writebyte_indexed(th,1,temp);
3484 if(rs2[i]) emit_rorimm(th,8,th);
3485 }
3486 if (opcode[i]==0x2D) { // SDR
3487 if(rs2[i]) emit_shldimm(th,tl,16,temp2);
3488 // Write two lsb into two most significant bytes
3489 emit_writehword_indexed(tl,1,temp);
3490 }
3491 done1=(int)out;
3492 emit_jmp(0);
3493 // 2
3494 set_jump_target(case2,(int)out);
3495 emit_testimm(temp,1);
3496 case3=(int)out;
3497 emit_jne(0);
3498 if (opcode[i]==0x2A) { // SWL
3499 // Write two msb into two least significant bytes
3500 if(rs2[i]) emit_rorimm(tl,16,tl);
3501 emit_writehword_indexed(tl,-2,temp);
3502 if(rs2[i]) emit_rorimm(tl,16,tl);
3503 }
3504 if (opcode[i]==0x2E) { // SWR
3505 // Write 3 lsb into three most significant bytes
3506 emit_writebyte_indexed(tl,-1,temp);
3507 if(rs2[i]) emit_rorimm(tl,8,tl);
3508 emit_writehword_indexed(tl,0,temp);
3509 if(rs2[i]) emit_rorimm(tl,24,tl);
3510 }
3511 if (opcode[i]==0x2C) { // SDL
3512 if(rs2[i]) emit_shrdimm(tl,th,16,temp2);
3513 // Write two msb into two least significant bytes
3514 if(rs2[i]) emit_rorimm(th,16,th);
3515 emit_writehword_indexed(th,-2,temp);
3516 if(rs2[i]) emit_rorimm(th,16,th);
3517 }
3518 if (opcode[i]==0x2D) { // SDR
3519 if(rs2[i]) emit_shldimm(th,tl,8,temp2);
3520 // Write 3 lsb into three most significant bytes
3521 emit_writebyte_indexed(tl,-1,temp);
3522 if(rs2[i]) emit_rorimm(tl,8,tl);
3523 emit_writehword_indexed(tl,0,temp);
3524 if(rs2[i]) emit_rorimm(tl,24,tl);
3525 }
3526 done2=(int)out;
3527 emit_jmp(0);
3528 // 3
3529 set_jump_target(case3,(int)out);
3530 if (opcode[i]==0x2A) { // SWL
3531 // Write msb into least significant byte
3532 if(rs2[i]) emit_rorimm(tl,24,tl);
3533 emit_writebyte_indexed(tl,-3,temp);
3534 if(rs2[i]) emit_rorimm(tl,8,tl);
3535 }
3536 if (opcode[i]==0x2E) { // SWR
3537 // Write entire word
3538 emit_writeword_indexed(tl,-3,temp);
3539 }
3540 if (opcode[i]==0x2C) { // SDL
3541 if(rs2[i]) emit_shrdimm(tl,th,24,temp2);
3542 // Write msb into least significant byte
3543 if(rs2[i]) emit_rorimm(th,24,th);
3544 emit_writebyte_indexed(th,-3,temp);
3545 if(rs2[i]) emit_rorimm(th,8,th);
3546 }
3547 if (opcode[i]==0x2D) { // SDR
3548 if(rs2[i]) emit_mov(th,temp2);
3549 // Write entire word
3550 emit_writeword_indexed(tl,-3,temp);
3551 }
3552 set_jump_target(done0,(int)out);
3553 set_jump_target(done1,(int)out);
3554 set_jump_target(done2,(int)out);
3555 if (opcode[i]==0x2C) { // SDL
3556 emit_testimm(temp,4);
57871462 3557 done0=(int)out;
57871462 3558 emit_jne(0);
535d208a 3559 emit_andimm(temp,~3,temp);
3560 emit_writeword_indexed(temp2,4,temp);
3561 set_jump_target(done0,(int)out);
3562 }
3563 if (opcode[i]==0x2D) { // SDR
3564 emit_testimm(temp,4);
3565 done0=(int)out;
3566 emit_jeq(0);
3567 emit_andimm(temp,~3,temp);
3568 emit_writeword_indexed(temp2,-4,temp);
57871462 3569 set_jump_target(done0,(int)out);
57871462 3570 }
535d208a 3571 if(!c||!memtarget)
3572 add_stub(STORELR_STUB,jaddr,(int)out,i,(int)i_regs,temp,ccadj[i],reglist);
57871462 3573 if(!using_tlb) {
535d208a 3574 #ifdef RAM_OFFSET
3575 int map=get_reg(i_regs->regmap,ROREG);
3576 if(map<0) map=HOST_TEMPREG;
3577 gen_orig_addr_w(temp,map);
3578 #else
57871462 3579 emit_addimm_no_flags((u_int)0x80000000-(u_int)rdram,temp);
535d208a 3580 #endif
57871462 3581 #if defined(HOST_IMM8)
3582 int ir=get_reg(i_regs->regmap,INVCP);
3583 assert(ir>=0);
3584 emit_cmpmem_indexedsr12_reg(ir,temp,1);
3585 #else
3586 emit_cmpmem_indexedsr12_imm((int)invalid_code,temp,1);
3587 #endif
535d208a 3588 #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3589 emit_callne(invalidate_addr_reg[temp]);
3590 #else
57871462 3591 jaddr2=(int)out;
3592 emit_jne(0);
3593 add_stub(INVCODE_STUB,jaddr2,(int)out,reglist|(1<<HOST_CCREG),temp,0,0,0);
535d208a 3594 #endif
57871462 3595 }
3596 /*
3597 emit_pusha();
3598 //save_regs(0x100f);
3599 emit_readword((int)&last_count,ECX);
3600 if(get_reg(i_regs->regmap,CCREG)<0)
3601 emit_loadreg(CCREG,HOST_CCREG);
3602 emit_add(HOST_CCREG,ECX,HOST_CCREG);
3603 emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3604 emit_writeword(HOST_CCREG,(int)&Count);
3605 emit_call((int)memdebug);
3606 emit_popa();
3607 //restore_regs(0x100f);
3608 /**/
3609}
3610
3611void c1ls_assemble(int i,struct regstat *i_regs)
3612{
3d624f89 3613#ifndef DISABLE_COP1
57871462 3614 int s,th,tl;
3615 int temp,ar;
3616 int map=-1;
3617 int offset;
3618 int c=0;
3619 int jaddr,jaddr2=0,jaddr3,type;
3620 int agr=AGEN1+(i&1);
3621 u_int hr,reglist=0;
3622 th=get_reg(i_regs->regmap,FTEMP|64);
3623 tl=get_reg(i_regs->regmap,FTEMP);
3624 s=get_reg(i_regs->regmap,rs1[i]);
3625 temp=get_reg(i_regs->regmap,agr);
3626 if(temp<0) temp=get_reg(i_regs->regmap,-1);
3627 offset=imm[i];
3628 assert(tl>=0);
3629 assert(rs1[i]>0);
3630 assert(temp>=0);
3631 for(hr=0;hr<HOST_REGS;hr++) {
3632 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3633 }
3634 if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
3635 if (opcode[i]==0x31||opcode[i]==0x35) // LWC1/LDC1
3636 {
3637 // Loads use a temporary register which we need to save
3638 reglist|=1<<temp;
3639 }
3640 if (opcode[i]==0x39||opcode[i]==0x3D) // SWC1/SDC1
3641 ar=temp;
3642 else // LWC1/LDC1
3643 ar=tl;
3644 //if(s<0) emit_loadreg(rs1[i],ar); //address_generation does this now
3645 //else c=(i_regs->wasconst>>s)&1;
3646 if(s>=0) c=(i_regs->wasconst>>s)&1;
3647 // Check cop1 unusable
3648 if(!cop1_usable) {
3649 signed char rs=get_reg(i_regs->regmap,CSREG);
3650 assert(rs>=0);
3651 emit_testimm(rs,0x20000000);
3652 jaddr=(int)out;
3653 emit_jeq(0);
3654 add_stub(FP_STUB,jaddr,(int)out,i,rs,(int)i_regs,is_delayslot,0);
3655 cop1_usable=1;
3656 }
3657 if (opcode[i]==0x39) { // SWC1 (get float address)
3658 emit_readword((int)&reg_cop1_simple[(source[i]>>16)&0x1f],tl);
3659 }
3660 if (opcode[i]==0x3D) { // SDC1 (get double address)
3661 emit_readword((int)&reg_cop1_double[(source[i]>>16)&0x1f],tl);
3662 }
3663 // Generate address + offset
3664 if(!using_tlb) {
3665 if(!c)
4cb76aa4 3666 emit_cmpimm(offset||c||s<0?ar:s,RAM_SIZE);
57871462 3667 }
3668 else
3669 {
3670 map=get_reg(i_regs->regmap,TLREG);
3671 assert(map>=0);
ea3d2e6e 3672 reglist&=~(1<<map);
57871462 3673 if (opcode[i]==0x31||opcode[i]==0x35) { // LWC1/LDC1
3674 map=do_tlb_r(offset||c||s<0?ar:s,ar,map,0,-1,-1,c,constmap[i][s]+offset);
3675 }
3676 if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3677 map=do_tlb_w(offset||c||s<0?ar:s,ar,map,0,c,constmap[i][s]+offset);
3678 }
3679 }
3680 if (opcode[i]==0x39) { // SWC1 (read float)
3681 emit_readword_indexed(0,tl,tl);
3682 }
3683 if (opcode[i]==0x3D) { // SDC1 (read double)
3684 emit_readword_indexed(4,tl,th);
3685 emit_readword_indexed(0,tl,tl);
3686 }
3687 if (opcode[i]==0x31) { // LWC1 (get target address)
3688 emit_readword((int)&reg_cop1_simple[(source[i]>>16)&0x1f],temp);
3689 }
3690 if (opcode[i]==0x35) { // LDC1 (get target address)
3691 emit_readword((int)&reg_cop1_double[(source[i]>>16)&0x1f],temp);
3692 }
3693 if(!using_tlb) {
3694 if(!c) {
3695 jaddr2=(int)out;
3696 emit_jno(0);
3697 }
4cb76aa4 3698 else if(((signed int)(constmap[i][s]+offset))>=(signed int)0x80000000+RAM_SIZE) {
57871462 3699 jaddr2=(int)out;
3700 emit_jmp(0); // inline_readstub/inline_writestub? Very rare case
3701 }
3702 #ifdef DESTRUCTIVE_SHIFT
3703 if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3704 if(!offset&&!c&&s>=0) emit_mov(s,ar);
3705 }
3706 #endif
3707 }else{
3708 if (opcode[i]==0x31||opcode[i]==0x35) { // LWC1/LDC1
3709 do_tlb_r_branch(map,c,constmap[i][s]+offset,&jaddr2);
3710 }
3711 if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3712 do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr2);
3713 }
3714 }
3715 if (opcode[i]==0x31) { // LWC1
3716 //if(s>=0&&!c&&!offset) emit_mov(s,tl);
3717 //gen_tlb_addr_r(ar,map);
3718 //emit_readword_indexed((int)rdram-0x80000000,tl,tl);
3719 #ifdef HOST_IMM_ADDR32
3720 if(c) emit_readword_tlb(constmap[i][s]+offset,map,tl);
3721 else
3722 #endif
3723 emit_readword_indexed_tlb(0,offset||c||s<0?tl:s,map,tl);
3724 type=LOADW_STUB;
3725 }
3726 if (opcode[i]==0x35) { // LDC1
3727 assert(th>=0);
3728 //if(s>=0&&!c&&!offset) emit_mov(s,tl);
3729 //gen_tlb_addr_r(ar,map);
3730 //emit_readword_indexed((int)rdram-0x80000000,tl,th);
3731 //emit_readword_indexed((int)rdram-0x7FFFFFFC,tl,tl);
3732 #ifdef HOST_IMM_ADDR32
3733 if(c) emit_readdword_tlb(constmap[i][s]+offset,map,th,tl);
3734 else
3735 #endif
3736 emit_readdword_indexed_tlb(0,offset||c||s<0?tl:s,map,th,tl);
3737 type=LOADD_STUB;
3738 }
3739 if (opcode[i]==0x39) { // SWC1
3740 //emit_writeword_indexed(tl,(int)rdram-0x80000000,temp);
3741 emit_writeword_indexed_tlb(tl,0,offset||c||s<0?temp:s,map,temp);
3742 type=STOREW_STUB;
3743 }
3744 if (opcode[i]==0x3D) { // SDC1
3745 assert(th>=0);
3746 //emit_writeword_indexed(th,(int)rdram-0x80000000,temp);
3747 //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,temp);
3748 emit_writedword_indexed_tlb(th,tl,0,offset||c||s<0?temp:s,map,temp);
3749 type=STORED_STUB;
3750 }
3751 if(!using_tlb) {
3752 if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3753 #ifndef DESTRUCTIVE_SHIFT
3754 temp=offset||c||s<0?ar:s;
3755 #endif
3756 #if defined(HOST_IMM8)
3757 int ir=get_reg(i_regs->regmap,INVCP);
3758 assert(ir>=0);
3759 emit_cmpmem_indexedsr12_reg(ir,temp,1);
3760 #else
3761 emit_cmpmem_indexedsr12_imm((int)invalid_code,temp,1);
3762 #endif
0bbd1454 3763 #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3764 emit_callne(invalidate_addr_reg[temp]);
3765 #else
57871462 3766 jaddr3=(int)out;
3767 emit_jne(0);
3768 add_stub(INVCODE_STUB,jaddr3,(int)out,reglist|(1<<HOST_CCREG),temp,0,0,0);
0bbd1454 3769 #endif
57871462 3770 }
3771 }
3772 if(jaddr2) add_stub(type,jaddr2,(int)out,i,offset||c||s<0?ar:s,(int)i_regs,ccadj[i],reglist);
3773 if (opcode[i]==0x31) { // LWC1 (write float)
3774 emit_writeword_indexed(tl,0,temp);
3775 }
3776 if (opcode[i]==0x35) { // LDC1 (write double)
3777 emit_writeword_indexed(th,4,temp);
3778 emit_writeword_indexed(tl,0,temp);
3779 }
3780 //if(opcode[i]==0x39)
3781 /*if(opcode[i]==0x39||opcode[i]==0x31)
3782 {
3783 emit_pusha();
3784 emit_readword((int)&last_count,ECX);
3785 if(get_reg(i_regs->regmap,CCREG)<0)
3786 emit_loadreg(CCREG,HOST_CCREG);
3787 emit_add(HOST_CCREG,ECX,HOST_CCREG);
3788 emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3789 emit_writeword(HOST_CCREG,(int)&Count);
3790 emit_call((int)memdebug);
3791 emit_popa();
3792 }/**/
3d624f89 3793#else
3794 cop1_unusable(i, i_regs);
3795#endif
57871462 3796}
3797
b9b61529 3798void c2ls_assemble(int i,struct regstat *i_regs)
3799{
3800 int s,tl;
3801 int ar;
3802 int offset;
1fd1aceb 3803 int memtarget=0,c=0;
c2e3bd42 3804 int jaddr2=0,jaddr3,type;
b9b61529 3805 int agr=AGEN1+(i&1);
3806 u_int hr,reglist=0;
3807 u_int copr=(source[i]>>16)&0x1f;
3808 s=get_reg(i_regs->regmap,rs1[i]);
3809 tl=get_reg(i_regs->regmap,FTEMP);
3810 offset=imm[i];
3811 assert(rs1[i]>0);
3812 assert(tl>=0);
3813 assert(!using_tlb);
3814
3815 for(hr=0;hr<HOST_REGS;hr++) {
3816 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3817 }
3818 if(i_regs->regmap[HOST_CCREG]==CCREG)
3819 reglist&=~(1<<HOST_CCREG);
3820
3821 // get the address
3822 if (opcode[i]==0x3a) { // SWC2
3823 ar=get_reg(i_regs->regmap,agr);
3824 if(ar<0) ar=get_reg(i_regs->regmap,-1);
3825 reglist|=1<<ar;
3826 } else { // LWC2
3827 ar=tl;
3828 }
1fd1aceb 3829 if(s>=0) c=(i_regs->wasconst>>s)&1;
3830 memtarget=c&&(((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE);
b9b61529 3831 if (!offset&&!c&&s>=0) ar=s;
3832 assert(ar>=0);
3833
3834 if (opcode[i]==0x3a) { // SWC2
3835 cop2_get_dreg(copr,tl,HOST_TEMPREG);
1fd1aceb 3836 type=STOREW_STUB;
b9b61529 3837 }
1fd1aceb 3838 else
b9b61529 3839 type=LOADW_STUB;
1fd1aceb 3840
3841 if(c&&!memtarget) {
3842 jaddr2=(int)out;
3843 emit_jmp(0); // inline_readstub/inline_writestub?
b9b61529 3844 }
1fd1aceb 3845 else {
3846 if(!c) {
3847 emit_cmpimm(offset||c||s<0?ar:s,RAM_SIZE);
3848 jaddr2=(int)out;
3849 emit_jno(0);
3850 }
3851 if (opcode[i]==0x32) { // LWC2
3852 #ifdef HOST_IMM_ADDR32
3853 if(c) emit_readword_tlb(constmap[i][s]+offset,-1,tl);
3854 else
3855 #endif
3856 emit_readword_indexed(0,ar,tl);
3857 }
3858 if (opcode[i]==0x3a) { // SWC2
3859 #ifdef DESTRUCTIVE_SHIFT
3860 if(!offset&&!c&&s>=0) emit_mov(s,ar);
3861 #endif
3862 emit_writeword_indexed(tl,0,ar);
3863 }
b9b61529 3864 }
3865 if(jaddr2)
3866 add_stub(type,jaddr2,(int)out,i,ar,(int)i_regs,ccadj[i],reglist);
3867 if (opcode[i]==0x3a) { // SWC2
3868#if defined(HOST_IMM8)
3869 int ir=get_reg(i_regs->regmap,INVCP);
3870 assert(ir>=0);
3871 emit_cmpmem_indexedsr12_reg(ir,ar,1);
3872#else
3873 emit_cmpmem_indexedsr12_imm((int)invalid_code,ar,1);
3874#endif
0bbd1454 3875 #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3876 emit_callne(invalidate_addr_reg[ar]);
3877 #else
b9b61529 3878 jaddr3=(int)out;
3879 emit_jne(0);
3880 add_stub(INVCODE_STUB,jaddr3,(int)out,reglist|(1<<HOST_CCREG),ar,0,0,0);
0bbd1454 3881 #endif
b9b61529 3882 }
3883 if (opcode[i]==0x32) { // LWC2
3884 cop2_put_dreg(copr,tl,HOST_TEMPREG);
3885 }
3886}
3887
57871462 3888#ifndef multdiv_assemble
3889void multdiv_assemble(int i,struct regstat *i_regs)
3890{
3891 printf("Need multdiv_assemble for this architecture.\n");
3892 exit(1);
3893}
3894#endif
3895
3896void mov_assemble(int i,struct regstat *i_regs)
3897{
3898 //if(opcode2[i]==0x10||opcode2[i]==0x12) { // MFHI/MFLO
3899 //if(opcode2[i]==0x11||opcode2[i]==0x13) { // MTHI/MTLO
57871462 3900 if(rt1[i]) {
3901 signed char sh,sl,th,tl;
3902 th=get_reg(i_regs->regmap,rt1[i]|64);
3903 tl=get_reg(i_regs->regmap,rt1[i]);
3904 //assert(tl>=0);
3905 if(tl>=0) {
3906 sh=get_reg(i_regs->regmap,rs1[i]|64);
3907 sl=get_reg(i_regs->regmap,rs1[i]);
3908 if(sl>=0) emit_mov(sl,tl);
3909 else emit_loadreg(rs1[i],tl);
3910 if(th>=0) {
3911 if(sh>=0) emit_mov(sh,th);
3912 else emit_loadreg(rs1[i]|64,th);
3913 }
3914 }
3915 }
3916}
3917
3918#ifndef fconv_assemble
3919void fconv_assemble(int i,struct regstat *i_regs)
3920{
3921 printf("Need fconv_assemble for this architecture.\n");
3922 exit(1);
3923}
3924#endif
3925
3926#if 0
3927void float_assemble(int i,struct regstat *i_regs)
3928{
3929 printf("Need float_assemble for this architecture.\n");
3930 exit(1);
3931}
3932#endif
3933
3934void syscall_assemble(int i,struct regstat *i_regs)
3935{
3936 signed char ccreg=get_reg(i_regs->regmap,CCREG);
3937 assert(ccreg==HOST_CCREG);
3938 assert(!is_delayslot);
3939 emit_movimm(start+i*4,EAX); // Get PC
3940 emit_addimm(HOST_CCREG,CLOCK_DIVIDER*ccadj[i],HOST_CCREG); // CHECK: is this right? There should probably be an extra cycle...
7139f3c8 3941 emit_jmp((int)jump_syscall_hle); // XXX
3942}
3943
3944void hlecall_assemble(int i,struct regstat *i_regs)
3945{
3946 signed char ccreg=get_reg(i_regs->regmap,CCREG);
3947 assert(ccreg==HOST_CCREG);
3948 assert(!is_delayslot);
3949 emit_movimm(start+i*4+4,0); // Get PC
67ba0fb4 3950 emit_movimm((int)psxHLEt[source[i]&7],1);
7139f3c8 3951 emit_addimm(HOST_CCREG,CLOCK_DIVIDER*ccadj[i],HOST_CCREG); // XXX
67ba0fb4 3952 emit_jmp((int)jump_hlecall);
57871462 3953}
3954
1e973cb0 3955void intcall_assemble(int i,struct regstat *i_regs)
3956{
3957 signed char ccreg=get_reg(i_regs->regmap,CCREG);
3958 assert(ccreg==HOST_CCREG);
3959 assert(!is_delayslot);
3960 emit_movimm(start+i*4,0); // Get PC
3961 emit_addimm(HOST_CCREG,CLOCK_DIVIDER*ccadj[i],HOST_CCREG);
3962 emit_jmp((int)jump_intcall);
3963}
3964
57871462 3965void ds_assemble(int i,struct regstat *i_regs)
3966{
3967 is_delayslot=1;
3968 switch(itype[i]) {
3969 case ALU:
3970 alu_assemble(i,i_regs);break;
3971 case IMM16:
3972 imm16_assemble(i,i_regs);break;
3973 case SHIFT:
3974 shift_assemble(i,i_regs);break;
3975 case SHIFTIMM:
3976 shiftimm_assemble(i,i_regs);break;
3977 case LOAD:
3978 load_assemble(i,i_regs);break;
3979 case LOADLR:
3980 loadlr_assemble(i,i_regs);break;
3981 case STORE:
3982 store_assemble(i,i_regs);break;
3983 case STORELR:
3984 storelr_assemble(i,i_regs);break;
3985 case COP0:
3986 cop0_assemble(i,i_regs);break;
3987 case COP1:
3988 cop1_assemble(i,i_regs);break;
3989 case C1LS:
3990 c1ls_assemble(i,i_regs);break;
b9b61529 3991 case COP2:
3992 cop2_assemble(i,i_regs);break;
3993 case C2LS:
3994 c2ls_assemble(i,i_regs);break;
3995 case C2OP:
3996 c2op_assemble(i,i_regs);break;
57871462 3997 case FCONV:
3998 fconv_assemble(i,i_regs);break;
3999 case FLOAT:
4000 float_assemble(i,i_regs);break;
4001 case FCOMP:
4002 fcomp_assemble(i,i_regs);break;
4003 case MULTDIV:
4004 multdiv_assemble(i,i_regs);break;
4005 case MOV:
4006 mov_assemble(i,i_regs);break;
4007 case SYSCALL:
7139f3c8 4008 case HLECALL:
1e973cb0 4009 case INTCALL:
57871462 4010 case SPAN:
4011 case UJUMP:
4012 case RJUMP:
4013 case CJUMP:
4014 case SJUMP:
4015 case FJUMP:
4016 printf("Jump in the delay slot. This is probably a bug.\n");
4017 }
4018 is_delayslot=0;
4019}
4020
4021// Is the branch target a valid internal jump?
4022int internal_branch(uint64_t i_is32,int addr)
4023{
4024 if(addr&1) return 0; // Indirect (register) jump
4025 if(addr>=start && addr<start+slen*4-4)
4026 {
4027 int t=(addr-start)>>2;
4028 // Delay slots are not valid branch targets
4029 //if(t>0&&(itype[t-1]==RJUMP||itype[t-1]==UJUMP||itype[t-1]==CJUMP||itype[t-1]==SJUMP||itype[t-1]==FJUMP)) return 0;
4030 // 64 -> 32 bit transition requires a recompile
4031 /*if(is32[t]&~unneeded_reg_upper[t]&~i_is32)
4032 {
4033 if(requires_32bit[t]&~i_is32) printf("optimizable: no\n");
4034 else printf("optimizable: yes\n");
4035 }*/
4036 //if(is32[t]&~unneeded_reg_upper[t]&~i_is32) return 0;
a28c6ce8 4037#ifndef FORCE32
57871462 4038 if(requires_32bit[t]&~i_is32) return 0;
a28c6ce8 4039 else
4040#endif
4041 return 1;
57871462 4042 }
4043 return 0;
4044}
4045
4046#ifndef wb_invalidate
4047void wb_invalidate(signed char pre[],signed char entry[],uint64_t dirty,uint64_t is32,
4048 uint64_t u,uint64_t uu)
4049{
4050 int hr;
4051 for(hr=0;hr<HOST_REGS;hr++) {
4052 if(hr!=EXCLUDE_REG) {
4053 if(pre[hr]!=entry[hr]) {
4054 if(pre[hr]>=0) {
4055 if((dirty>>hr)&1) {
4056 if(get_reg(entry,pre[hr])<0) {
4057 if(pre[hr]<64) {
4058 if(!((u>>pre[hr])&1)) {
4059 emit_storereg(pre[hr],hr);
4060 if( ((is32>>pre[hr])&1) && !((uu>>pre[hr])&1) ) {
4061 emit_sarimm(hr,31,hr);
4062 emit_storereg(pre[hr]|64,hr);
4063 }
4064 }
4065 }else{
4066 if(!((uu>>(pre[hr]&63))&1) && !((is32>>(pre[hr]&63))&1)) {
4067 emit_storereg(pre[hr],hr);
4068 }
4069 }
4070 }
4071 }
4072 }
4073 }
4074 }
4075 }
4076 // Move from one register to another (no writeback)
4077 for(hr=0;hr<HOST_REGS;hr++) {
4078 if(hr!=EXCLUDE_REG) {
4079 if(pre[hr]!=entry[hr]) {
4080 if(pre[hr]>=0&&(pre[hr]&63)<TEMPREG) {
4081 int nr;
4082 if((nr=get_reg(entry,pre[hr]))>=0) {
4083 emit_mov(hr,nr);
4084 }
4085 }
4086 }
4087 }
4088 }
4089}
4090#endif
4091
4092// Load the specified registers
4093// This only loads the registers given as arguments because
4094// we don't want to load things that will be overwritten
4095void load_regs(signed char entry[],signed char regmap[],int is32,int rs1,int rs2)
4096{
4097 int hr;
4098 // Load 32-bit regs
4099 for(hr=0;hr<HOST_REGS;hr++) {
4100 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4101 if(entry[hr]!=regmap[hr]) {
4102 if(regmap[hr]==rs1||regmap[hr]==rs2)
4103 {
4104 if(regmap[hr]==0) {
4105 emit_zeroreg(hr);
4106 }
4107 else
4108 {
4109 emit_loadreg(regmap[hr],hr);
4110 }
4111 }
4112 }
4113 }
4114 }
4115 //Load 64-bit regs
4116 for(hr=0;hr<HOST_REGS;hr++) {
4117 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4118 if(entry[hr]!=regmap[hr]) {
4119 if(regmap[hr]-64==rs1||regmap[hr]-64==rs2)
4120 {
4121 assert(regmap[hr]!=64);
4122 if((is32>>(regmap[hr]&63))&1) {
4123 int lr=get_reg(regmap,regmap[hr]-64);
4124 if(lr>=0)
4125 emit_sarimm(lr,31,hr);
4126 else
4127 emit_loadreg(regmap[hr],hr);
4128 }
4129 else
4130 {
4131 emit_loadreg(regmap[hr],hr);
4132 }
4133 }
4134 }
4135 }
4136 }
4137}
4138
4139// Load registers prior to the start of a loop
4140// so that they are not loaded within the loop
4141static void loop_preload(signed char pre[],signed char entry[])
4142{
4143 int hr;
4144 for(hr=0;hr<HOST_REGS;hr++) {
4145 if(hr!=EXCLUDE_REG) {
4146 if(pre[hr]!=entry[hr]) {
4147 if(entry[hr]>=0) {
4148 if(get_reg(pre,entry[hr])<0) {
4149 assem_debug("loop preload:\n");
4150 //printf("loop preload: %d\n",hr);
4151 if(entry[hr]==0) {
4152 emit_zeroreg(hr);
4153 }
4154 else if(entry[hr]<TEMPREG)
4155 {
4156 emit_loadreg(entry[hr],hr);
4157 }
4158 else if(entry[hr]-64<TEMPREG)
4159 {
4160 emit_loadreg(entry[hr],hr);
4161 }
4162 }
4163 }
4164 }
4165 }
4166 }
4167}
4168
4169// Generate address for load/store instruction
b9b61529 4170// goes to AGEN for writes, FTEMP for LOADLR and cop1/2 loads
57871462 4171void address_generation(int i,struct regstat *i_regs,signed char entry[])
4172{
b9b61529 4173 if(itype[i]==LOAD||itype[i]==LOADLR||itype[i]==STORE||itype[i]==STORELR||itype[i]==C1LS||itype[i]==C2LS) {
5194fb95 4174 int ra=-1;
57871462 4175 int agr=AGEN1+(i&1);
4176 int mgr=MGEN1+(i&1);
4177 if(itype[i]==LOAD) {
4178 ra=get_reg(i_regs->regmap,rt1[i]);
535d208a 4179 if(ra<0) ra=get_reg(i_regs->regmap,-1);
4180 assert(ra>=0);
57871462 4181 }
4182 if(itype[i]==LOADLR) {
4183 ra=get_reg(i_regs->regmap,FTEMP);
4184 }
4185 if(itype[i]==STORE||itype[i]==STORELR) {
4186 ra=get_reg(i_regs->regmap,agr);
4187 if(ra<0) ra=get_reg(i_regs->regmap,-1);
4188 }
b9b61529 4189 if(itype[i]==C1LS||itype[i]==C2LS) {
4190 if ((opcode[i]&0x3b)==0x31||(opcode[i]&0x3b)==0x32) // LWC1/LDC1/LWC2/LDC2
57871462 4191 ra=get_reg(i_regs->regmap,FTEMP);
1fd1aceb 4192 else { // SWC1/SDC1/SWC2/SDC2
57871462 4193 ra=get_reg(i_regs->regmap,agr);
4194 if(ra<0) ra=get_reg(i_regs->regmap,-1);
4195 }
4196 }
4197 int rs=get_reg(i_regs->regmap,rs1[i]);
4198 int rm=get_reg(i_regs->regmap,TLREG);
4199 if(ra>=0) {
4200 int offset=imm[i];
4201 int c=(i_regs->wasconst>>rs)&1;
4202 if(rs1[i]==0) {
4203 // Using r0 as a base address
4204 /*if(rm>=0) {
4205 if(!entry||entry[rm]!=mgr) {
4206 generate_map_const(offset,rm);
4207 } // else did it in the previous cycle
4208 }*/
4209 if(!entry||entry[ra]!=agr) {
4210 if (opcode[i]==0x22||opcode[i]==0x26) {
4211 emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
4212 }else if (opcode[i]==0x1a||opcode[i]==0x1b) {
4213 emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
4214 }else{
4215 emit_movimm(offset,ra);
4216 }
4217 } // else did it in the previous cycle
4218 }
4219 else if(rs<0) {
4220 if(!entry||entry[ra]!=rs1[i])
4221 emit_loadreg(rs1[i],ra);
4222 //if(!entry||entry[ra]!=rs1[i])
4223 // printf("poor load scheduling!\n");
4224 }
4225 else if(c) {
4226 if(rm>=0) {
4227 if(!entry||entry[rm]!=mgr) {
b9b61529 4228 if(itype[i]==STORE||itype[i]==STORELR||(opcode[i]&0x3b)==0x39||(opcode[i]&0x3b)==0x3a) {
57871462 4229 // Stores to memory go thru the mapper to detect self-modifying
4230 // code, loads don't.
4231 if((unsigned int)(constmap[i][rs]+offset)>=0xC0000000 ||
4cb76aa4 4232 (unsigned int)(constmap[i][rs]+offset)<0x80000000+RAM_SIZE )
57871462 4233 generate_map_const(constmap[i][rs]+offset,rm);
4234 }else{
4235 if((signed int)(constmap[i][rs]+offset)>=(signed int)0xC0000000)
4236 generate_map_const(constmap[i][rs]+offset,rm);
4237 }
4238 }
4239 }
4240 if(rs1[i]!=rt1[i]||itype[i]!=LOAD) {
4241 if(!entry||entry[ra]!=agr) {
4242 if (opcode[i]==0x22||opcode[i]==0x26) {
4243 emit_movimm((constmap[i][rs]+offset)&0xFFFFFFFC,ra); // LWL/LWR
4244 }else if (opcode[i]==0x1a||opcode[i]==0x1b) {
4245 emit_movimm((constmap[i][rs]+offset)&0xFFFFFFF8,ra); // LDL/LDR
4246 }else{
4247 #ifdef HOST_IMM_ADDR32
b9b61529 4248 if((itype[i]!=LOAD&&(opcode[i]&0x3b)!=0x31&&(opcode[i]&0x3b)!=0x32) || // LWC1/LDC1/LWC2/LDC2
57871462 4249 (using_tlb&&((signed int)constmap[i][rs]+offset)>=(signed int)0xC0000000))
4250 #endif
4251 emit_movimm(constmap[i][rs]+offset,ra);
4252 }
4253 } // else did it in the previous cycle
4254 } // else load_consts already did it
4255 }
4256 if(offset&&!c&&rs1[i]) {
4257 if(rs>=0) {
4258 emit_addimm(rs,offset,ra);
4259 }else{
4260 emit_addimm(ra,offset,ra);
4261 }
4262 }
4263 }
4264 }
4265 // Preload constants for next instruction
b9b61529 4266 if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS||itype[i+1]==C2LS) {
57871462 4267 int agr,ra;
4268 #ifndef HOST_IMM_ADDR32
4269 // Mapper entry
4270 agr=MGEN1+((i+1)&1);
4271 ra=get_reg(i_regs->regmap,agr);
4272 if(ra>=0) {
4273 int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
4274 int offset=imm[i+1];
4275 int c=(regs[i+1].wasconst>>rs)&1;
4276 if(c) {
b9b61529 4277 if(itype[i+1]==STORE||itype[i+1]==STORELR
4278 ||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1, SWC2/SDC2
57871462 4279 // Stores to memory go thru the mapper to detect self-modifying
4280 // code, loads don't.
4281 if((unsigned int)(constmap[i+1][rs]+offset)>=0xC0000000 ||
4cb76aa4 4282 (unsigned int)(constmap[i+1][rs]+offset)<0x80000000+RAM_SIZE )
57871462 4283 generate_map_const(constmap[i+1][rs]+offset,ra);
4284 }else{
4285 if((signed int)(constmap[i+1][rs]+offset)>=(signed int)0xC0000000)
4286 generate_map_const(constmap[i+1][rs]+offset,ra);
4287 }
4288 }
4289 /*else if(rs1[i]==0) {
4290 generate_map_const(offset,ra);
4291 }*/
4292 }
4293 #endif
4294 // Actual address
4295 agr=AGEN1+((i+1)&1);
4296 ra=get_reg(i_regs->regmap,agr);
4297 if(ra>=0) {
4298 int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
4299 int offset=imm[i+1];
4300 int c=(regs[i+1].wasconst>>rs)&1;
4301 if(c&&(rs1[i+1]!=rt1[i+1]||itype[i+1]!=LOAD)) {
4302 if (opcode[i+1]==0x22||opcode[i+1]==0x26) {
4303 emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFFC,ra); // LWL/LWR
4304 }else if (opcode[i+1]==0x1a||opcode[i+1]==0x1b) {
4305 emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFF8,ra); // LDL/LDR
4306 }else{
4307 #ifdef HOST_IMM_ADDR32
b9b61529 4308 if((itype[i+1]!=LOAD&&(opcode[i+1]&0x3b)!=0x31&&(opcode[i+1]&0x3b)!=0x32) || // LWC1/LDC1/LWC2/LDC2
57871462 4309 (using_tlb&&((signed int)constmap[i+1][rs]+offset)>=(signed int)0xC0000000))
4310 #endif
4311 emit_movimm(constmap[i+1][rs]+offset,ra);
4312 }
4313 }
4314 else if(rs1[i+1]==0) {
4315 // Using r0 as a base address
4316 if (opcode[i+1]==0x22||opcode[i+1]==0x26) {
4317 emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
4318 }else if (opcode[i+1]==0x1a||opcode[i+1]==0x1b) {
4319 emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
4320 }else{
4321 emit_movimm(offset,ra);
4322 }
4323 }
4324 }
4325 }
4326}
4327
4328int get_final_value(int hr, int i, int *value)
4329{
4330 int reg=regs[i].regmap[hr];
4331 while(i<slen-1) {
4332 if(regs[i+1].regmap[hr]!=reg) break;
4333 if(!((regs[i+1].isconst>>hr)&1)) break;
4334 if(bt[i+1]) break;
4335 i++;
4336 }
4337 if(i<slen-1) {
4338 if(itype[i]==UJUMP||itype[i]==RJUMP||itype[i]==CJUMP||itype[i]==SJUMP) {
4339 *value=constmap[i][hr];
4340 return 1;
4341 }
4342 if(!bt[i+1]) {
4343 if(itype[i+1]==UJUMP||itype[i+1]==RJUMP||itype[i+1]==CJUMP||itype[i+1]==SJUMP) {
4344 // Load in delay slot, out-of-order execution
4345 if(itype[i+2]==LOAD&&rs1[i+2]==reg&&rt1[i+2]==reg&&((regs[i+1].wasconst>>hr)&1))
4346 {
4347 #ifdef HOST_IMM_ADDR32
4348 if(!using_tlb||((signed int)constmap[i][hr]+imm[i+2])<(signed int)0xC0000000) return 0;
4349 #endif
4350 // Precompute load address
4351 *value=constmap[i][hr]+imm[i+2];
4352 return 1;
4353 }
4354 }
4355 if(itype[i+1]==LOAD&&rs1[i+1]==reg&&rt1[i+1]==reg)
4356 {
4357 #ifdef HOST_IMM_ADDR32
4358 if(!using_tlb||((signed int)constmap[i][hr]+imm[i+1])<(signed int)0xC0000000) return 0;
4359 #endif
4360 // Precompute load address
4361 *value=constmap[i][hr]+imm[i+1];
4362 //printf("c=%x imm=%x\n",(int)constmap[i][hr],imm[i+1]);
4363 return 1;
4364 }
4365 }
4366 }
4367 *value=constmap[i][hr];
4368 //printf("c=%x\n",(int)constmap[i][hr]);
4369 if(i==slen-1) return 1;
4370 if(reg<64) {
4371 return !((unneeded_reg[i+1]>>reg)&1);
4372 }else{
4373 return !((unneeded_reg_upper[i+1]>>reg)&1);
4374 }
4375}
4376
4377// Load registers with known constants
4378void load_consts(signed char pre[],signed char regmap[],int is32,int i)
4379{
4380 int hr;
4381 // Load 32-bit regs
4382 for(hr=0;hr<HOST_REGS;hr++) {
4383 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4384 //if(entry[hr]!=regmap[hr]) {
4385 if(i==0||!((regs[i-1].isconst>>hr)&1)||pre[hr]!=regmap[hr]||bt[i]) {
4386 if(((regs[i].isconst>>hr)&1)&&regmap[hr]<64&&regmap[hr]>0) {
4387 int value;
4388 if(get_final_value(hr,i,&value)) {
4389 if(value==0) {
4390 emit_zeroreg(hr);
4391 }
4392 else {
4393 emit_movimm(value,hr);
4394 }
4395 }
4396 }
4397 }
4398 }
4399 }
4400 // Load 64-bit regs
4401 for(hr=0;hr<HOST_REGS;hr++) {
4402 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4403 //if(entry[hr]!=regmap[hr]) {
4404 if(i==0||!((regs[i-1].isconst>>hr)&1)||pre[hr]!=regmap[hr]||bt[i]) {
4405 if(((regs[i].isconst>>hr)&1)&&regmap[hr]>64) {
4406 if((is32>>(regmap[hr]&63))&1) {
4407 int lr=get_reg(regmap,regmap[hr]-64);
4408 assert(lr>=0);
4409 emit_sarimm(lr,31,hr);
4410 }
4411 else
4412 {
4413 int value;
4414 if(get_final_value(hr,i,&value)) {
4415 if(value==0) {
4416 emit_zeroreg(hr);
4417 }
4418 else {
4419 emit_movimm(value,hr);
4420 }
4421 }
4422 }
4423 }
4424 }
4425 }
4426 }
4427}
4428void load_all_consts(signed char regmap[],int is32,u_int dirty,int i)
4429{
4430 int hr;
4431 // Load 32-bit regs
4432 for(hr=0;hr<HOST_REGS;hr++) {
4433 if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((dirty>>hr)&1)) {
4434 if(((regs[i].isconst>>hr)&1)&&regmap[hr]<64&&regmap[hr]>0) {
4435 int value=constmap[i][hr];
4436 if(value==0) {
4437 emit_zeroreg(hr);
4438 }
4439 else {
4440 emit_movimm(value,hr);
4441 }
4442 }
4443 }
4444 }
4445 // Load 64-bit regs
4446 for(hr=0;hr<HOST_REGS;hr++) {
4447 if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((dirty>>hr)&1)) {
4448 if(((regs[i].isconst>>hr)&1)&&regmap[hr]>64) {
4449 if((is32>>(regmap[hr]&63))&1) {
4450 int lr=get_reg(regmap,regmap[hr]-64);
4451 assert(lr>=0);
4452 emit_sarimm(lr,31,hr);
4453 }
4454 else
4455 {
4456 int value=constmap[i][hr];
4457 if(value==0) {
4458 emit_zeroreg(hr);
4459 }
4460 else {
4461 emit_movimm(value,hr);
4462 }
4463 }
4464 }
4465 }
4466 }
4467}
4468
4469// Write out all dirty registers (except cycle count)
4470void wb_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty)
4471{
4472 int hr;
4473 for(hr=0;hr<HOST_REGS;hr++) {
4474 if(hr!=EXCLUDE_REG) {
4475 if(i_regmap[hr]>0) {
4476 if(i_regmap[hr]!=CCREG) {
4477 if((i_dirty>>hr)&1) {
4478 if(i_regmap[hr]<64) {
4479 emit_storereg(i_regmap[hr],hr);
24385cae 4480#ifndef FORCE32
57871462 4481 if( ((i_is32>>i_regmap[hr])&1) ) {
4482 #ifdef DESTRUCTIVE_WRITEBACK
4483 emit_sarimm(hr,31,hr);
4484 emit_storereg(i_regmap[hr]|64,hr);
4485 #else
4486 emit_sarimm(hr,31,HOST_TEMPREG);
4487 emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4488 #endif
4489 }
24385cae 4490#endif
57871462 4491 }else{
4492 if( !((i_is32>>(i_regmap[hr]&63))&1) ) {
4493 emit_storereg(i_regmap[hr],hr);
4494 }
4495 }
4496 }
4497 }
4498 }
4499 }
4500 }
4501}
4502// Write out dirty registers that we need to reload (pair with load_needed_regs)
4503// This writes the registers not written by store_regs_bt
4504void wb_needed_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4505{
4506 int hr;
4507 int t=(addr-start)>>2;
4508 for(hr=0;hr<HOST_REGS;hr++) {
4509 if(hr!=EXCLUDE_REG) {
4510 if(i_regmap[hr]>0) {
4511 if(i_regmap[hr]!=CCREG) {
4512 if(i_regmap[hr]==regs[t].regmap_entry[hr] && ((regs[t].dirty>>hr)&1) && !(((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4513 if((i_dirty>>hr)&1) {
4514 if(i_regmap[hr]<64) {
4515 emit_storereg(i_regmap[hr],hr);
24385cae 4516#ifndef FORCE32
57871462 4517 if( ((i_is32>>i_regmap[hr])&1) ) {
4518 #ifdef DESTRUCTIVE_WRITEBACK
4519 emit_sarimm(hr,31,hr);
4520 emit_storereg(i_regmap[hr]|64,hr);
4521 #else
4522 emit_sarimm(hr,31,HOST_TEMPREG);
4523 emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4524 #endif
4525 }
24385cae 4526#endif
57871462 4527 }else{
4528 if( !((i_is32>>(i_regmap[hr]&63))&1) ) {
4529 emit_storereg(i_regmap[hr],hr);
4530 }
4531 }
4532 }
4533 }
4534 }
4535 }
4536 }
4537 }
4538}
4539
4540// Load all registers (except cycle count)
4541void load_all_regs(signed char i_regmap[])
4542{
4543 int hr;
4544 for(hr=0;hr<HOST_REGS;hr++) {
4545 if(hr!=EXCLUDE_REG) {
4546 if(i_regmap[hr]==0) {
4547 emit_zeroreg(hr);
4548 }
4549 else
ea3d2e6e 4550 if(i_regmap[hr]>0 && (i_regmap[hr]&63)<TEMPREG && i_regmap[hr]!=CCREG)
57871462 4551 {
4552 emit_loadreg(i_regmap[hr],hr);
4553 }
4554 }
4555 }
4556}
4557
4558// Load all current registers also needed by next instruction
4559void load_needed_regs(signed char i_regmap[],signed char next_regmap[])
4560{
4561 int hr;
4562 for(hr=0;hr<HOST_REGS;hr++) {
4563 if(hr!=EXCLUDE_REG) {
4564 if(get_reg(next_regmap,i_regmap[hr])>=0) {
4565 if(i_regmap[hr]==0) {
4566 emit_zeroreg(hr);
4567 }
4568 else
ea3d2e6e 4569 if(i_regmap[hr]>0 && (i_regmap[hr]&63)<TEMPREG && i_regmap[hr]!=CCREG)
57871462 4570 {
4571 emit_loadreg(i_regmap[hr],hr);
4572 }
4573 }
4574 }
4575 }
4576}
4577
4578// Load all regs, storing cycle count if necessary
4579void load_regs_entry(int t)
4580{
4581 int hr;
4582 if(is_ds[t]) emit_addimm(HOST_CCREG,CLOCK_DIVIDER,HOST_CCREG);
4583 else if(ccadj[t]) emit_addimm(HOST_CCREG,-ccadj[t]*CLOCK_DIVIDER,HOST_CCREG);
4584 if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
4585 emit_storereg(CCREG,HOST_CCREG);
4586 }
4587 // Load 32-bit regs
4588 for(hr=0;hr<HOST_REGS;hr++) {
ea3d2e6e 4589 if(regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<TEMPREG) {
57871462 4590 if(regs[t].regmap_entry[hr]==0) {
4591 emit_zeroreg(hr);
4592 }
4593 else if(regs[t].regmap_entry[hr]!=CCREG)
4594 {
4595 emit_loadreg(regs[t].regmap_entry[hr],hr);
4596 }
4597 }
4598 }
4599 // Load 64-bit regs
4600 for(hr=0;hr<HOST_REGS;hr++) {
ea3d2e6e 4601 if(regs[t].regmap_entry[hr]>=64&&regs[t].regmap_entry[hr]<TEMPREG+64) {
57871462 4602 assert(regs[t].regmap_entry[hr]!=64);
4603 if((regs[t].was32>>(regs[t].regmap_entry[hr]&63))&1) {
4604 int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4605 if(lr<0) {
4606 emit_loadreg(regs[t].regmap_entry[hr],hr);
4607 }
4608 else
4609 {
4610 emit_sarimm(lr,31,hr);
4611 }
4612 }
4613 else
4614 {
4615 emit_loadreg(regs[t].regmap_entry[hr],hr);
4616 }
4617 }
4618 }
4619}
4620
4621// Store dirty registers prior to branch
4622void store_regs_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4623{
4624 if(internal_branch(i_is32,addr))
4625 {
4626 int t=(addr-start)>>2;
4627 int hr;
4628 for(hr=0;hr<HOST_REGS;hr++) {
4629 if(hr!=EXCLUDE_REG) {
4630 if(i_regmap[hr]>0 && i_regmap[hr]!=CCREG) {
4631 if(i_regmap[hr]!=regs[t].regmap_entry[hr] || !((regs[t].dirty>>hr)&1) || (((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4632 if((i_dirty>>hr)&1) {
4633 if(i_regmap[hr]<64) {
4634 if(!((unneeded_reg[t]>>i_regmap[hr])&1)) {
4635 emit_storereg(i_regmap[hr],hr);
4636 if( ((i_is32>>i_regmap[hr])&1) && !((unneeded_reg_upper[t]>>i_regmap[hr])&1) ) {
4637 #ifdef DESTRUCTIVE_WRITEBACK
4638 emit_sarimm(hr,31,hr);
4639 emit_storereg(i_regmap[hr]|64,hr);
4640 #else
4641 emit_sarimm(hr,31,HOST_TEMPREG);
4642 emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4643 #endif
4644 }
4645 }
4646 }else{
4647 if( !((i_is32>>(i_regmap[hr]&63))&1) && !((unneeded_reg_upper[t]>>(i_regmap[hr]&63))&1) ) {
4648 emit_storereg(i_regmap[hr],hr);
4649 }
4650 }
4651 }
4652 }
4653 }
4654 }
4655 }
4656 }
4657 else
4658 {
4659 // Branch out of this block, write out all dirty regs
4660 wb_dirtys(i_regmap,i_is32,i_dirty);
4661 }
4662}
4663
4664// Load all needed registers for branch target
4665void load_regs_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4666{
4667 //if(addr>=start && addr<(start+slen*4))
4668 if(internal_branch(i_is32,addr))
4669 {
4670 int t=(addr-start)>>2;
4671 int hr;
4672 // Store the cycle count before loading something else
4673 if(i_regmap[HOST_CCREG]!=CCREG) {
4674 assert(i_regmap[HOST_CCREG]==-1);
4675 }
4676 if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
4677 emit_storereg(CCREG,HOST_CCREG);
4678 }
4679 // Load 32-bit regs
4680 for(hr=0;hr<HOST_REGS;hr++) {
ea3d2e6e 4681 if(hr!=EXCLUDE_REG&&regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<TEMPREG) {
57871462 4682 #ifdef DESTRUCTIVE_WRITEBACK
4683 if(i_regmap[hr]!=regs[t].regmap_entry[hr] || ( !((regs[t].dirty>>hr)&1) && ((i_dirty>>hr)&1) && (((i_is32&~unneeded_reg_upper[t])>>i_regmap[hr])&1) ) || (((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4684 #else
4685 if(i_regmap[hr]!=regs[t].regmap_entry[hr] ) {
4686 #endif
4687 if(regs[t].regmap_entry[hr]==0) {
4688 emit_zeroreg(hr);
4689 }
4690 else if(regs[t].regmap_entry[hr]!=CCREG)
4691 {
4692 emit_loadreg(regs[t].regmap_entry[hr],hr);
4693 }
4694 }
4695 }
4696 }
4697 //Load 64-bit regs
4698 for(hr=0;hr<HOST_REGS;hr++) {
ea3d2e6e 4699 if(hr!=EXCLUDE_REG&&regs[t].regmap_entry[hr]>=64&&regs[t].regmap_entry[hr]<TEMPREG+64) {
57871462 4700 if(i_regmap[hr]!=regs[t].regmap_entry[hr]) {
4701 assert(regs[t].regmap_entry[hr]!=64);
4702 if((i_is32>>(regs[t].regmap_entry[hr]&63))&1) {
4703 int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4704 if(lr<0) {
4705 emit_loadreg(regs[t].regmap_entry[hr],hr);
4706 }
4707 else
4708 {
4709 emit_sarimm(lr,31,hr);
4710 }
4711 }
4712 else
4713 {
4714 emit_loadreg(regs[t].regmap_entry[hr],hr);
4715 }
4716 }
4717 else if((i_is32>>(regs[t].regmap_entry[hr]&63))&1) {
4718 int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4719 assert(lr>=0);
4720 emit_sarimm(lr,31,hr);
4721 }
4722 }
4723 }
4724 }
4725}
4726
4727int match_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4728{
4729 if(addr>=start && addr<start+slen*4-4)
4730 {
4731 int t=(addr-start)>>2;
4732 int hr;
4733 if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) return 0;
4734 for(hr=0;hr<HOST_REGS;hr++)
4735 {
4736 if(hr!=EXCLUDE_REG)
4737 {
4738 if(i_regmap[hr]!=regs[t].regmap_entry[hr])
4739 {
ea3d2e6e 4740 if(regs[t].regmap_entry[hr]>=0&&(regs[t].regmap_entry[hr]|64)<TEMPREG+64)
57871462 4741 {
4742 return 0;
4743 }
4744 else
4745 if((i_dirty>>hr)&1)
4746 {
ea3d2e6e 4747 if(i_regmap[hr]<TEMPREG)
57871462 4748 {
4749 if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4750 return 0;
4751 }
ea3d2e6e 4752 else if(i_regmap[hr]>=64&&i_regmap[hr]<TEMPREG+64)
57871462 4753 {
4754 if(!((unneeded_reg_upper[t]>>(i_regmap[hr]&63))&1))
4755 return 0;
4756 }
4757 }
4758 }
4759 else // Same register but is it 32-bit or dirty?
4760 if(i_regmap[hr]>=0)
4761 {
4762 if(!((regs[t].dirty>>hr)&1))
4763 {
4764 if((i_dirty>>hr)&1)
4765 {
4766 if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4767 {
4768 //printf("%x: dirty no match\n",addr);
4769 return 0;
4770 }
4771 }
4772 }
4773 if((((regs[t].was32^i_is32)&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)
4774 {
4775 //printf("%x: is32 no match\n",addr);
4776 return 0;
4777 }
4778 }
4779 }
4780 }
4781 //if(is32[t]&~unneeded_reg_upper[t]&~i_is32) return 0;
a28c6ce8 4782#ifndef FORCE32
57871462 4783 if(requires_32bit[t]&~i_is32) return 0;
a28c6ce8 4784#endif
57871462 4785 // Delay slots are not valid branch targets
4786 //if(t>0&&(itype[t-1]==RJUMP||itype[t-1]==UJUMP||itype[t-1]==CJUMP||itype[t-1]==SJUMP||itype[t-1]==FJUMP)) return 0;
4787 // Delay slots require additional processing, so do not match
4788 if(is_ds[t]) return 0;
4789 }
4790 else
4791 {
4792 int hr;
4793 for(hr=0;hr<HOST_REGS;hr++)
4794 {
4795 if(hr!=EXCLUDE_REG)
4796 {
4797 if(i_regmap[hr]>=0)
4798 {
4799 if(hr!=HOST_CCREG||i_regmap[hr]!=CCREG)
4800 {
4801 if((i_dirty>>hr)&1)
4802 {
4803 return 0;
4804 }
4805 }
4806 }
4807 }
4808 }
4809 }
4810 return 1;
4811}
4812
4813// Used when a branch jumps into the delay slot of another branch
4814void ds_assemble_entry(int i)
4815{
4816 int t=(ba[i]-start)>>2;
4817 if(!instr_addr[t]) instr_addr[t]=(u_int)out;
4818 assem_debug("Assemble delay slot at %x\n",ba[i]);
4819 assem_debug("<->\n");
4820 if(regs[t].regmap_entry[HOST_CCREG]==CCREG&&regs[t].regmap[HOST_CCREG]!=CCREG)
4821 wb_register(CCREG,regs[t].regmap_entry,regs[t].wasdirty,regs[t].was32);
4822 load_regs(regs[t].regmap_entry,regs[t].regmap,regs[t].was32,rs1[t],rs2[t]);
4823 address_generation(t,&regs[t],regs[t].regmap_entry);
b9b61529 4824 if(itype[t]==STORE||itype[t]==STORELR||(opcode[t]&0x3b)==0x39||(opcode[t]&0x3b)==0x3a)
57871462 4825 load_regs(regs[t].regmap_entry,regs[t].regmap,regs[t].was32,INVCP,INVCP);
4826 cop1_usable=0;
4827 is_delayslot=0;
4828 switch(itype[t]) {
4829 case ALU:
4830 alu_assemble(t,&regs[t]);break;
4831 case IMM16:
4832 imm16_assemble(t,&regs[t]);break;
4833 case SHIFT:
4834 shift_assemble(t,&regs[t]);break;
4835 case SHIFTIMM:
4836 shiftimm_assemble(t,&regs[t]);break;
4837 case LOAD:
4838 load_assemble(t,&regs[t]);break;
4839 case LOADLR:
4840 loadlr_assemble(t,&regs[t]);break;
4841 case STORE:
4842 store_assemble(t,&regs[t]);break;
4843 case STORELR:
4844 storelr_assemble(t,&regs[t]);break;
4845 case COP0:
4846 cop0_assemble(t,&regs[t]);break;
4847 case COP1:
4848 cop1_assemble(t,&regs[t]);break;
4849 case C1LS:
4850 c1ls_assemble(t,&regs[t]);break;
b9b61529 4851 case COP2:
4852 cop2_assemble(t,&regs[t]);break;
4853 case C2LS:
4854 c2ls_assemble(t,&regs[t]);break;
4855 case C2OP:
4856 c2op_assemble(t,&regs[t]);break;
57871462 4857 case FCONV:
4858 fconv_assemble(t,&regs[t]);break;
4859 case FLOAT:
4860 float_assemble(t,&regs[t]);break;
4861 case FCOMP:
4862 fcomp_assemble(t,&regs[t]);break;
4863 case MULTDIV:
4864 multdiv_assemble(t,&regs[t]);break;
4865 case MOV:
4866 mov_assemble(t,&regs[t]);break;
4867 case SYSCALL:
7139f3c8 4868 case HLECALL:
1e973cb0 4869 case INTCALL:
57871462 4870 case SPAN:
4871 case UJUMP:
4872 case RJUMP:
4873 case CJUMP:
4874 case SJUMP:
4875 case FJUMP:
4876 printf("Jump in the delay slot. This is probably a bug.\n");
4877 }
4878 store_regs_bt(regs[t].regmap,regs[t].is32,regs[t].dirty,ba[i]+4);
4879 load_regs_bt(regs[t].regmap,regs[t].is32,regs[t].dirty,ba[i]+4);
4880 if(internal_branch(regs[t].is32,ba[i]+4))
4881 assem_debug("branch: internal\n");
4882 else
4883 assem_debug("branch: external\n");
4884 assert(internal_branch(regs[t].is32,ba[i]+4));
4885 add_to_linker((int)out,ba[i]+4,internal_branch(regs[t].is32,ba[i]+4));
4886 emit_jmp(0);
4887}
4888
4889void do_cc(int i,signed char i_regmap[],int *adj,int addr,int taken,int invert)
4890{
4891 int count;
4892 int jaddr;
4893 int idle=0;
4894 if(itype[i]==RJUMP)
4895 {
4896 *adj=0;
4897 }
4898 //if(ba[i]>=start && ba[i]<(start+slen*4))
4899 if(internal_branch(branch_regs[i].is32,ba[i]))
4900 {
4901 int t=(ba[i]-start)>>2;
4902 if(is_ds[t]) *adj=-1; // Branch into delay slot adds an extra cycle
4903 else *adj=ccadj[t];
4904 }
4905 else
4906 {
4907 *adj=0;
4908 }
4909 count=ccadj[i];
4910 if(taken==TAKEN && i==(ba[i]-start)>>2 && source[i+1]==0) {
4911 // Idle loop
4912 if(count&1) emit_addimm_and_set_flags(2*(count+2),HOST_CCREG);
4913 idle=(int)out;
4914 //emit_subfrommem(&idlecount,HOST_CCREG); // Count idle cycles
4915 emit_andimm(HOST_CCREG,3,HOST_CCREG);
4916 jaddr=(int)out;
4917 emit_jmp(0);
4918 }
4919 else if(*adj==0||invert) {
4920 emit_addimm_and_set_flags(CLOCK_DIVIDER*(count+2),HOST_CCREG);
4921 jaddr=(int)out;
4922 emit_jns(0);
4923 }
4924 else
4925 {
eeb1feeb 4926 emit_cmpimm(HOST_CCREG,-CLOCK_DIVIDER*(count+2));
57871462 4927 jaddr=(int)out;
4928 emit_jns(0);
4929 }
4930 add_stub(CC_STUB,jaddr,idle?idle:(int)out,(*adj==0||invert||idle)?0:(count+2),i,addr,taken,0);
4931}
4932
4933void do_ccstub(int n)
4934{
4935 literal_pool(256);
4936 assem_debug("do_ccstub %x\n",start+stubs[n][4]*4);
4937 set_jump_target(stubs[n][1],(int)out);
4938 int i=stubs[n][4];
4939 if(stubs[n][6]==NULLDS) {
4940 // Delay slot instruction is nullified ("likely" branch)
4941 wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
4942 }
4943 else if(stubs[n][6]!=TAKEN) {
4944 wb_dirtys(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty);
4945 }
4946 else {
4947 if(internal_branch(branch_regs[i].is32,ba[i]))
4948 wb_needed_dirtys(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
4949 }
4950 if(stubs[n][5]!=-1)
4951 {
4952 // Save PC as return address
4953 emit_movimm(stubs[n][5],EAX);
4954 emit_writeword(EAX,(int)&pcaddr);
4955 }
4956 else
4957 {
4958 // Return address depends on which way the branch goes
4959 if(itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
4960 {
4961 int s1l=get_reg(branch_regs[i].regmap,rs1[i]);
4962 int s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
4963 int s2l=get_reg(branch_regs[i].regmap,rs2[i]);
4964 int s2h=get_reg(branch_regs[i].regmap,rs2[i]|64);
4965 if(rs1[i]==0)
4966 {
4967 s1l=s2l;s1h=s2h;
4968 s2l=s2h=-1;
4969 }
4970 else if(rs2[i]==0)
4971 {
4972 s2l=s2h=-1;
4973 }
4974 if((branch_regs[i].is32>>rs1[i])&(branch_regs[i].is32>>rs2[i])&1) {
4975 s1h=s2h=-1;
4976 }
4977 assert(s1l>=0);
4978 #ifdef DESTRUCTIVE_WRITEBACK
4979 if(rs1[i]) {
4980 if((branch_regs[i].dirty>>s1l)&(branch_regs[i].is32>>rs1[i])&1)
4981 emit_loadreg(rs1[i],s1l);
4982 }
4983 else {
4984 if((branch_regs[i].dirty>>s1l)&(branch_regs[i].is32>>rs2[i])&1)
4985 emit_loadreg(rs2[i],s1l);
4986 }
4987 if(s2l>=0)
4988 if((branch_regs[i].dirty>>s2l)&(branch_regs[i].is32>>rs2[i])&1)
4989 emit_loadreg(rs2[i],s2l);
4990 #endif
4991 int hr=0;
5194fb95 4992 int addr=-1,alt=-1,ntaddr=-1;
57871462 4993 while(hr<HOST_REGS)
4994 {
4995 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4996 (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
4997 (branch_regs[i].regmap[hr]&63)!=rs2[i] )
4998 {
4999 addr=hr++;break;
5000 }
5001 hr++;
5002 }
5003 while(hr<HOST_REGS)
5004 {
5005 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
5006 (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
5007 (branch_regs[i].regmap[hr]&63)!=rs2[i] )
5008 {
5009 alt=hr++;break;
5010 }
5011 hr++;
5012 }
5013 if((opcode[i]&0x2E)==6) // BLEZ/BGTZ needs another register
5014 {
5015 while(hr<HOST_REGS)
5016 {
5017 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
5018 (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
5019 (branch_regs[i].regmap[hr]&63)!=rs2[i] )
5020 {
5021 ntaddr=hr;break;
5022 }
5023 hr++;
5024 }
5025 assert(hr<HOST_REGS);
5026 }
5027 if((opcode[i]&0x2f)==4) // BEQ
5028 {
5029 #ifdef HAVE_CMOV_IMM
5030 if(s1h<0) {
5031 if(s2l>=0) emit_cmp(s1l,s2l);
5032 else emit_test(s1l,s1l);
5033 emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
5034 }
5035 else
5036 #endif
5037 {
5038 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
5039 if(s1h>=0) {
5040 if(s2h>=0) emit_cmp(s1h,s2h);
5041 else emit_test(s1h,s1h);
5042 emit_cmovne_reg(alt,addr);
5043 }
5044 if(s2l>=0) emit_cmp(s1l,s2l);
5045 else emit_test(s1l,s1l);
5046 emit_cmovne_reg(alt,addr);
5047 }
5048 }
5049 if((opcode[i]&0x2f)==5) // BNE
5050 {
5051 #ifdef HAVE_CMOV_IMM
5052 if(s1h<0) {
5053 if(s2l>=0) emit_cmp(s1l,s2l);
5054 else emit_test(s1l,s1l);
5055 emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
5056 }
5057 else
5058 #endif
5059 {
5060 emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
5061 if(s1h>=0) {
5062 if(s2h>=0) emit_cmp(s1h,s2h);
5063 else emit_test(s1h,s1h);
5064 emit_cmovne_reg(alt,addr);
5065 }
5066 if(s2l>=0) emit_cmp(s1l,s2l);
5067 else emit_test(s1l,s1l);
5068 emit_cmovne_reg(alt,addr);
5069 }
5070 }
5071 if((opcode[i]&0x2f)==6) // BLEZ
5072 {
5073 //emit_movimm(ba[i],alt);
5074 //emit_movimm(start+i*4+8,addr);
5075 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
5076 emit_cmpimm(s1l,1);
5077 if(s1h>=0) emit_mov(addr,ntaddr);
5078 emit_cmovl_reg(alt,addr);
5079 if(s1h>=0) {
5080 emit_test(s1h,s1h);
5081 emit_cmovne_reg(ntaddr,addr);
5082 emit_cmovs_reg(alt,addr);
5083 }
5084 }
5085 if((opcode[i]&0x2f)==7) // BGTZ
5086 {
5087 //emit_movimm(ba[i],addr);
5088 //emit_movimm(start+i*4+8,ntaddr);
5089 emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
5090 emit_cmpimm(s1l,1);
5091 if(s1h>=0) emit_mov(addr,alt);
5092 emit_cmovl_reg(ntaddr,addr);
5093 if(s1h>=0) {
5094 emit_test(s1h,s1h);
5095 emit_cmovne_reg(alt,addr);
5096 emit_cmovs_reg(ntaddr,addr);
5097 }
5098 }
5099 if((opcode[i]==1)&&(opcode2[i]&0x2D)==0) // BLTZ
5100 {
5101 //emit_movimm(ba[i],alt);
5102 //emit_movimm(start+i*4+8,addr);
5103 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
5104 if(s1h>=0) emit_test(s1h,s1h);
5105 else emit_test(s1l,s1l);
5106 emit_cmovs_reg(alt,addr);
5107 }
5108 if((opcode[i]==1)&&(opcode2[i]&0x2D)==1) // BGEZ
5109 {
5110 //emit_movimm(ba[i],addr);
5111 //emit_movimm(start+i*4+8,alt);
5112 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
5113 if(s1h>=0) emit_test(s1h,s1h);
5114 else emit_test(s1l,s1l);
5115 emit_cmovs_reg(alt,addr);
5116 }
5117 if(opcode[i]==0x11 && opcode2[i]==0x08 ) {
5118 if(source[i]&0x10000) // BC1T
5119 {
5120 //emit_movimm(ba[i],alt);
5121 //emit_movimm(start+i*4+8,addr);
5122 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
5123 emit_testimm(s1l,0x800000);
5124 emit_cmovne_reg(alt,addr);
5125 }
5126 else // BC1F
5127 {
5128 //emit_movimm(ba[i],addr);
5129 //emit_movimm(start+i*4+8,alt);
5130 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
5131 emit_testimm(s1l,0x800000);
5132 emit_cmovne_reg(alt,addr);
5133 }
5134 }
5135 emit_writeword(addr,(int)&pcaddr);
5136 }
5137 else
5138 if(itype[i]==RJUMP)
5139 {
5140 int r=get_reg(branch_regs[i].regmap,rs1[i]);
5141 if(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]) {
5142 r=get_reg(branch_regs[i].regmap,RTEMP);
5143 }
5144 emit_writeword(r,(int)&pcaddr);
5145 }
5146 else {printf("Unknown branch type in do_ccstub\n");exit(1);}
5147 }
5148 // Update cycle count
5149 assert(branch_regs[i].regmap[HOST_CCREG]==CCREG||branch_regs[i].regmap[HOST_CCREG]==-1);
5150 if(stubs[n][3]) emit_addimm(HOST_CCREG,CLOCK_DIVIDER*stubs[n][3],HOST_CCREG);
5151 emit_call((int)cc_interrupt);
5152 if(stubs[n][3]) emit_addimm(HOST_CCREG,-CLOCK_DIVIDER*stubs[n][3],HOST_CCREG);
5153 if(stubs[n][6]==TAKEN) {
5154 if(internal_branch(branch_regs[i].is32,ba[i]))
5155 load_needed_regs(branch_regs[i].regmap,regs[(ba[i]-start)>>2].regmap_entry);
5156 else if(itype[i]==RJUMP) {
5157 if(get_reg(branch_regs[i].regmap,RTEMP)>=0)
5158 emit_readword((int)&pcaddr,get_reg(branch_regs[i].regmap,RTEMP));
5159 else
5160 emit_loadreg(rs1[i],get_reg(branch_regs[i].regmap,rs1[i]));
5161 }
5162 }else if(stubs[n][6]==NOTTAKEN) {
5163 if(i<slen-2) load_needed_regs(branch_regs[i].regmap,regmap_pre[i+2]);
5164 else load_all_regs(branch_regs[i].regmap);
5165 }else if(stubs[n][6]==NULLDS) {
5166 // Delay slot instruction is nullified ("likely" branch)
5167 if(i<slen-2) load_needed_regs(regs[i].regmap,regmap_pre[i+2]);
5168 else load_all_regs(regs[i].regmap);
5169 }else{
5170 load_all_regs(branch_regs[i].regmap);
5171 }
5172 emit_jmp(stubs[n][2]); // return address
5173
5174 /* This works but uses a lot of memory...
5175 emit_readword((int)&last_count,ECX);
5176 emit_add(HOST_CCREG,ECX,EAX);
5177 emit_writeword(EAX,(int)&Count);
5178 emit_call((int)gen_interupt);
5179 emit_readword((int)&Count,HOST_CCREG);
5180 emit_readword((int)&next_interupt,EAX);
5181 emit_readword((int)&pending_exception,EBX);
5182 emit_writeword(EAX,(int)&last_count);
5183 emit_sub(HOST_CCREG,EAX,HOST_CCREG);
5184 emit_test(EBX,EBX);
5185 int jne_instr=(int)out;
5186 emit_jne(0);
5187 if(stubs[n][3]) emit_addimm(HOST_CCREG,-2*stubs[n][3],HOST_CCREG);
5188 load_all_regs(branch_regs[i].regmap);
5189 emit_jmp(stubs[n][2]); // return address
5190 set_jump_target(jne_instr,(int)out);
5191 emit_readword((int)&pcaddr,EAX);
5192 // Call get_addr_ht instead of doing the hash table here.
5193 // This code is executed infrequently and takes up a lot of space
5194 // so smaller is better.
5195 emit_storereg(CCREG,HOST_CCREG);
5196 emit_pushreg(EAX);
5197 emit_call((int)get_addr_ht);
5198 emit_loadreg(CCREG,HOST_CCREG);
5199 emit_addimm(ESP,4,ESP);
5200 emit_jmpreg(EAX);*/
5201}
5202
5203add_to_linker(int addr,int target,int ext)
5204{
5205 link_addr[linkcount][0]=addr;
5206 link_addr[linkcount][1]=target;
5207 link_addr[linkcount][2]=ext;
5208 linkcount++;
5209}
5210
eba830cd 5211static void ujump_assemble_write_ra(int i)
5212{
5213 int rt;
5214 unsigned int return_address;
5215 rt=get_reg(branch_regs[i].regmap,31);
5216 assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5217 //assert(rt>=0);
5218 return_address=start+i*4+8;
5219 if(rt>=0) {
5220 #ifdef USE_MINI_HT
5221 if(internal_branch(branch_regs[i].is32,return_address)&&rt1[i+1]!=31) {
5222 int temp=-1; // note: must be ds-safe
5223 #ifdef HOST_TEMPREG
5224 temp=HOST_TEMPREG;
5225 #endif
5226 if(temp>=0) do_miniht_insert(return_address,rt,temp);
5227 else emit_movimm(return_address,rt);
5228 }
5229 else
5230 #endif
5231 {
5232 #ifdef REG_PREFETCH
5233 if(temp>=0)
5234 {
5235 if(i_regmap[temp]!=PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5236 }
5237 #endif
5238 emit_movimm(return_address,rt); // PC into link register
5239 #ifdef IMM_PREFETCH
5240 emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5241 #endif
5242 }
5243 }
5244}
5245
57871462 5246void ujump_assemble(int i,struct regstat *i_regs)
5247{
5248 signed char *i_regmap=i_regs->regmap;
eba830cd 5249 int ra_done=0;
57871462 5250 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5251 address_generation(i+1,i_regs,regs[i].regmap_entry);
5252 #ifdef REG_PREFETCH
5253 int temp=get_reg(branch_regs[i].regmap,PTEMP);
5254 if(rt1[i]==31&&temp>=0)
5255 {
5256 int return_address=start+i*4+8;
5257 if(get_reg(branch_regs[i].regmap,31)>0)
5258 if(i_regmap[temp]==PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5259 }
5260 #endif
eba830cd 5261 if(rt1[i]==31&&(rt1[i]==rs1[i+1]||rt1[i]==rs2[i+1])) {
5262 ujump_assemble_write_ra(i); // writeback ra for DS
5263 ra_done=1;
57871462 5264 }
4ef8f67d 5265 ds_assemble(i+1,i_regs);
5266 uint64_t bc_unneeded=branch_regs[i].u;
5267 uint64_t bc_unneeded_upper=branch_regs[i].uu;
5268 bc_unneeded|=1|(1LL<<rt1[i]);
5269 bc_unneeded_upper|=1|(1LL<<rt1[i]);
5270 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5271 bc_unneeded,bc_unneeded_upper);
5272 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
eba830cd 5273 if(!ra_done&&rt1[i]==31)
5274 ujump_assemble_write_ra(i);
57871462 5275 int cc,adj;
5276 cc=get_reg(branch_regs[i].regmap,CCREG);
5277 assert(cc==HOST_CCREG);
5278 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5279 #ifdef REG_PREFETCH
5280 if(rt1[i]==31&&temp>=0) emit_prefetchreg(temp);
5281 #endif
5282 do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5283 if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5284 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5285 if(internal_branch(branch_regs[i].is32,ba[i]))
5286 assem_debug("branch: internal\n");
5287 else
5288 assem_debug("branch: external\n");
5289 if(internal_branch(branch_regs[i].is32,ba[i])&&is_ds[(ba[i]-start)>>2]) {
5290 ds_assemble_entry(i);
5291 }
5292 else {
5293 add_to_linker((int)out,ba[i],internal_branch(branch_regs[i].is32,ba[i]));
5294 emit_jmp(0);
5295 }
5296}
5297
eba830cd 5298static void rjump_assemble_write_ra(int i)
5299{
5300 int rt,return_address;
5301 assert(rt1[i+1]!=rt1[i]);
5302 assert(rt2[i+1]!=rt1[i]);
5303 rt=get_reg(branch_regs[i].regmap,rt1[i]);
5304 assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5305 assert(rt>=0);
5306 return_address=start+i*4+8;
5307 #ifdef REG_PREFETCH
5308 if(temp>=0)
5309 {
5310 if(i_regmap[temp]!=PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5311 }
5312 #endif
5313 emit_movimm(return_address,rt); // PC into link register
5314 #ifdef IMM_PREFETCH
5315 emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5316 #endif
5317}
5318
57871462 5319void rjump_assemble(int i,struct regstat *i_regs)
5320{
5321 signed char *i_regmap=i_regs->regmap;
5322 int temp;
5323 int rs,cc,adj;
eba830cd 5324 int ra_done=0;
57871462 5325 rs=get_reg(branch_regs[i].regmap,rs1[i]);
5326 assert(rs>=0);
5327 if(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]) {
5328 // Delay slot abuse, make a copy of the branch address register
5329 temp=get_reg(branch_regs[i].regmap,RTEMP);
5330 assert(temp>=0);
5331 assert(regs[i].regmap[temp]==RTEMP);
5332 emit_mov(rs,temp);
5333 rs=temp;
5334 }
5335 address_generation(i+1,i_regs,regs[i].regmap_entry);
5336 #ifdef REG_PREFETCH
5337 if(rt1[i]==31)
5338 {
5339 if((temp=get_reg(branch_regs[i].regmap,PTEMP))>=0) {
5340 int return_address=start+i*4+8;
5341 if(i_regmap[temp]==PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5342 }
5343 }
5344 #endif
5345 #ifdef USE_MINI_HT
5346 if(rs1[i]==31) {
5347 int rh=get_reg(regs[i].regmap,RHASH);
5348 if(rh>=0) do_preload_rhash(rh);
5349 }
5350 #endif
eba830cd 5351 if(rt1[i]!=0&&(rt1[i]==rs1[i+1]||rt1[i]==rs2[i+1])) {
5352 rjump_assemble_write_ra(i);
5353 ra_done=1;
57871462 5354 }
d5910d5d 5355 ds_assemble(i+1,i_regs);
5356 uint64_t bc_unneeded=branch_regs[i].u;
5357 uint64_t bc_unneeded_upper=branch_regs[i].uu;
5358 bc_unneeded|=1|(1LL<<rt1[i]);
5359 bc_unneeded_upper|=1|(1LL<<rt1[i]);
5360 bc_unneeded&=~(1LL<<rs1[i]);
5361 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5362 bc_unneeded,bc_unneeded_upper);
5363 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],CCREG);
eba830cd 5364 if(!ra_done&&rt1[i]!=0)
5365 rjump_assemble_write_ra(i);
57871462 5366 cc=get_reg(branch_regs[i].regmap,CCREG);
5367 assert(cc==HOST_CCREG);
5368 #ifdef USE_MINI_HT
5369 int rh=get_reg(branch_regs[i].regmap,RHASH);
5370 int ht=get_reg(branch_regs[i].regmap,RHTBL);
5371 if(rs1[i]==31) {
5372 if(regs[i].regmap[rh]!=RHASH) do_preload_rhash(rh);
5373 do_preload_rhtbl(ht);
5374 do_rhash(rs,rh);
5375 }
5376 #endif
5377 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,-1);
5378 #ifdef DESTRUCTIVE_WRITEBACK
5379 if((branch_regs[i].dirty>>rs)&(branch_regs[i].is32>>rs1[i])&1) {
5380 if(rs1[i]!=rt1[i+1]&&rs1[i]!=rt2[i+1]) {
5381 emit_loadreg(rs1[i],rs);
5382 }
5383 }
5384 #endif
5385 #ifdef REG_PREFETCH
5386 if(rt1[i]==31&&temp>=0) emit_prefetchreg(temp);
5387 #endif
5388 #ifdef USE_MINI_HT
5389 if(rs1[i]==31) {
5390 do_miniht_load(ht,rh);
5391 }
5392 #endif
5393 //do_cc(i,branch_regs[i].regmap,&adj,-1,TAKEN);
5394 //if(adj) emit_addimm(cc,2*(ccadj[i]+2-adj),cc); // ??? - Shouldn't happen
5395 //assert(adj==0);
5396 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
5397 add_stub(CC_STUB,(int)out,jump_vaddr_reg[rs],0,i,-1,TAKEN,0);
5398 emit_jns(0);
5399 //load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,-1);
5400 #ifdef USE_MINI_HT
5401 if(rs1[i]==31) {
5402 do_miniht_jump(rs,rh,ht);
5403 }
5404 else
5405 #endif
5406 {
5407 //if(rs!=EAX) emit_mov(rs,EAX);
5408 //emit_jmp((int)jump_vaddr_eax);
5409 emit_jmp(jump_vaddr_reg[rs]);
5410 }
5411 /* Check hash table
5412 temp=!rs;
5413 emit_mov(rs,temp);
5414 emit_shrimm(rs,16,rs);
5415 emit_xor(temp,rs,rs);
5416 emit_movzwl_reg(rs,rs);
5417 emit_shlimm(rs,4,rs);
5418 emit_cmpmem_indexed((int)hash_table,rs,temp);
5419 emit_jne((int)out+14);
5420 emit_readword_indexed((int)hash_table+4,rs,rs);
5421 emit_jmpreg(rs);
5422 emit_cmpmem_indexed((int)hash_table+8,rs,temp);
5423 emit_addimm_no_flags(8,rs);
5424 emit_jeq((int)out-17);
5425 // No hit on hash table, call compiler
5426 emit_pushreg(temp);
5427//DEBUG >
5428#ifdef DEBUG_CYCLE_COUNT
5429 emit_readword((int)&last_count,ECX);
5430 emit_add(HOST_CCREG,ECX,HOST_CCREG);
5431 emit_readword((int)&next_interupt,ECX);
5432 emit_writeword(HOST_CCREG,(int)&Count);
5433 emit_sub(HOST_CCREG,ECX,HOST_CCREG);
5434 emit_writeword(ECX,(int)&last_count);
5435#endif
5436//DEBUG <
5437 emit_storereg(CCREG,HOST_CCREG);
5438 emit_call((int)get_addr);
5439 emit_loadreg(CCREG,HOST_CCREG);
5440 emit_addimm(ESP,4,ESP);
5441 emit_jmpreg(EAX);*/
5442 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5443 if(rt1[i]!=31&&i<slen-2&&(((u_int)out)&7)) emit_mov(13,13);
5444 #endif
5445}
5446
5447void cjump_assemble(int i,struct regstat *i_regs)
5448{
5449 signed char *i_regmap=i_regs->regmap;
5450 int cc;
5451 int match;
5452 match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5453 assem_debug("match=%d\n",match);
5454 int s1h,s1l,s2h,s2l;
5455 int prev_cop1_usable=cop1_usable;
5456 int unconditional=0,nop=0;
5457 int only32=0;
57871462 5458 int invert=0;
5459 int internal=internal_branch(branch_regs[i].is32,ba[i]);
5460 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
57871462 5461 if(!match) invert=1;
5462 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5463 if(i>(ba[i]-start)>>2) invert=1;
5464 #endif
e1190b87 5465
5466 if(ooo[i]) {
57871462 5467 s1l=get_reg(branch_regs[i].regmap,rs1[i]);
5468 s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
5469 s2l=get_reg(branch_regs[i].regmap,rs2[i]);
5470 s2h=get_reg(branch_regs[i].regmap,rs2[i]|64);
5471 }
5472 else {
5473 s1l=get_reg(i_regmap,rs1[i]);
5474 s1h=get_reg(i_regmap,rs1[i]|64);
5475 s2l=get_reg(i_regmap,rs2[i]);
5476 s2h=get_reg(i_regmap,rs2[i]|64);
5477 }
5478 if(rs1[i]==0&&rs2[i]==0)
5479 {
5480 if(opcode[i]&1) nop=1;
5481 else unconditional=1;
5482 //assert(opcode[i]!=5);
5483 //assert(opcode[i]!=7);
5484 //assert(opcode[i]!=0x15);
5485 //assert(opcode[i]!=0x17);
5486 }
5487 else if(rs1[i]==0)
5488 {
5489 s1l=s2l;s1h=s2h;
5490 s2l=s2h=-1;
5491 only32=(regs[i].was32>>rs2[i])&1;
5492 }
5493 else if(rs2[i]==0)
5494 {
5495 s2l=s2h=-1;
5496 only32=(regs[i].was32>>rs1[i])&1;
5497 }
5498 else {
5499 only32=(regs[i].was32>>rs1[i])&(regs[i].was32>>rs2[i])&1;
5500 }
5501
e1190b87 5502 if(ooo[i]) {
57871462 5503 // Out of order execution (delay slot first)
5504 //printf("OOOE\n");
5505 address_generation(i+1,i_regs,regs[i].regmap_entry);
5506 ds_assemble(i+1,i_regs);
5507 int adj;
5508 uint64_t bc_unneeded=branch_regs[i].u;
5509 uint64_t bc_unneeded_upper=branch_regs[i].uu;
5510 bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
5511 bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
5512 bc_unneeded|=1;
5513 bc_unneeded_upper|=1;
5514 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5515 bc_unneeded,bc_unneeded_upper);
5516 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs2[i]);
5517 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5518 cc=get_reg(branch_regs[i].regmap,CCREG);
5519 assert(cc==HOST_CCREG);
5520 if(unconditional)
5521 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5522 //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
5523 //assem_debug("cycle count (adj)\n");
5524 if(unconditional) {
5525 do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5526 if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
5527 if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5528 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5529 if(internal)
5530 assem_debug("branch: internal\n");
5531 else
5532 assem_debug("branch: external\n");
5533 if(internal&&is_ds[(ba[i]-start)>>2]) {
5534 ds_assemble_entry(i);
5535 }
5536 else {
5537 add_to_linker((int)out,ba[i],internal);
5538 emit_jmp(0);
5539 }
5540 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5541 if(((u_int)out)&7) emit_addnop(0);
5542 #endif
5543 }
5544 }
5545 else if(nop) {
5546 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
5547 int jaddr=(int)out;
5548 emit_jns(0);
5549 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5550 }
5551 else {
5552 int taken=0,nottaken=0,nottaken1=0;
5553 do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
5554 if(adj&&!invert) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5555 if(!only32)
5556 {
5557 assert(s1h>=0);
5558 if(opcode[i]==4) // BEQ
5559 {
5560 if(s2h>=0) emit_cmp(s1h,s2h);
5561 else emit_test(s1h,s1h);
5562 nottaken1=(int)out;
5563 emit_jne(1);
5564 }
5565 if(opcode[i]==5) // BNE
5566 {
5567 if(s2h>=0) emit_cmp(s1h,s2h);
5568 else emit_test(s1h,s1h);
5569 if(invert) taken=(int)out;
5570 else add_to_linker((int)out,ba[i],internal);
5571 emit_jne(0);
5572 }
5573 if(opcode[i]==6) // BLEZ
5574 {
5575 emit_test(s1h,s1h);
5576 if(invert) taken=(int)out;
5577 else add_to_linker((int)out,ba[i],internal);
5578 emit_js(0);
5579 nottaken1=(int)out;
5580 emit_jne(1);
5581 }
5582 if(opcode[i]==7) // BGTZ
5583 {
5584 emit_test(s1h,s1h);
5585 nottaken1=(int)out;
5586 emit_js(1);
5587 if(invert) taken=(int)out;
5588 else add_to_linker((int)out,ba[i],internal);
5589 emit_jne(0);
5590 }
5591 } // if(!only32)
5592
5593 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5594 assert(s1l>=0);
5595 if(opcode[i]==4) // BEQ
5596 {
5597 if(s2l>=0) emit_cmp(s1l,s2l);
5598 else emit_test(s1l,s1l);
5599 if(invert){
5600 nottaken=(int)out;
5601 emit_jne(1);
5602 }else{
5603 add_to_linker((int)out,ba[i],internal);
5604 emit_jeq(0);
5605 }
5606 }
5607 if(opcode[i]==5) // BNE
5608 {
5609 if(s2l>=0) emit_cmp(s1l,s2l);
5610 else emit_test(s1l,s1l);
5611 if(invert){
5612 nottaken=(int)out;
5613 emit_jeq(1);
5614 }else{
5615 add_to_linker((int)out,ba[i],internal);
5616 emit_jne(0);
5617 }
5618 }
5619 if(opcode[i]==6) // BLEZ
5620 {
5621 emit_cmpimm(s1l,1);
5622 if(invert){
5623 nottaken=(int)out;
5624 emit_jge(1);
5625 }else{
5626 add_to_linker((int)out,ba[i],internal);
5627 emit_jl(0);
5628 }
5629 }
5630 if(opcode[i]==7) // BGTZ
5631 {
5632 emit_cmpimm(s1l,1);
5633 if(invert){
5634 nottaken=(int)out;
5635 emit_jl(1);
5636 }else{
5637 add_to_linker((int)out,ba[i],internal);
5638 emit_jge(0);
5639 }
5640 }
5641 if(invert) {
5642 if(taken) set_jump_target(taken,(int)out);
5643 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5644 if(match&&(!internal||!is_ds[(ba[i]-start)>>2])) {
5645 if(adj) {
5646 emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5647 add_to_linker((int)out,ba[i],internal);
5648 }else{
5649 emit_addnop(13);
5650 add_to_linker((int)out,ba[i],internal*2);
5651 }
5652 emit_jmp(0);
5653 }else
5654 #endif
5655 {
5656 if(adj) emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5657 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5658 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5659 if(internal)
5660 assem_debug("branch: internal\n");
5661 else
5662 assem_debug("branch: external\n");
5663 if(internal&&is_ds[(ba[i]-start)>>2]) {
5664 ds_assemble_entry(i);
5665 }
5666 else {
5667 add_to_linker((int)out,ba[i],internal);
5668 emit_jmp(0);
5669 }
5670 }
5671 set_jump_target(nottaken,(int)out);
5672 }
5673
5674 if(nottaken1) set_jump_target(nottaken1,(int)out);
5675 if(adj) {
5676 if(!invert) emit_addimm(cc,CLOCK_DIVIDER*adj,cc);
5677 }
5678 } // (!unconditional)
5679 } // if(ooo)
5680 else
5681 {
5682 // In-order execution (branch first)
5683 //if(likely[i]) printf("IOL\n");
5684 //else
5685 //printf("IOE\n");
5686 int taken=0,nottaken=0,nottaken1=0;
5687 if(!unconditional&&!nop) {
5688 if(!only32)
5689 {
5690 assert(s1h>=0);
5691 if((opcode[i]&0x2f)==4) // BEQ
5692 {
5693 if(s2h>=0) emit_cmp(s1h,s2h);
5694 else emit_test(s1h,s1h);
5695 nottaken1=(int)out;
5696 emit_jne(2);
5697 }
5698 if((opcode[i]&0x2f)==5) // BNE
5699 {
5700 if(s2h>=0) emit_cmp(s1h,s2h);
5701 else emit_test(s1h,s1h);
5702 taken=(int)out;
5703 emit_jne(1);
5704 }
5705 if((opcode[i]&0x2f)==6) // BLEZ
5706 {
5707 emit_test(s1h,s1h);
5708 taken=(int)out;
5709 emit_js(1);
5710 nottaken1=(int)out;
5711 emit_jne(2);
5712 }
5713 if((opcode[i]&0x2f)==7) // BGTZ
5714 {
5715 emit_test(s1h,s1h);
5716 nottaken1=(int)out;
5717 emit_js(2);
5718 taken=(int)out;
5719 emit_jne(1);
5720 }
5721 } // if(!only32)
5722
5723 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5724 assert(s1l>=0);
5725 if((opcode[i]&0x2f)==4) // BEQ
5726 {
5727 if(s2l>=0) emit_cmp(s1l,s2l);
5728 else emit_test(s1l,s1l);
5729 nottaken=(int)out;
5730 emit_jne(2);
5731 }
5732 if((opcode[i]&0x2f)==5) // BNE
5733 {
5734 if(s2l>=0) emit_cmp(s1l,s2l);
5735 else emit_test(s1l,s1l);
5736 nottaken=(int)out;
5737 emit_jeq(2);
5738 }
5739 if((opcode[i]&0x2f)==6) // BLEZ
5740 {
5741 emit_cmpimm(s1l,1);
5742 nottaken=(int)out;
5743 emit_jge(2);
5744 }
5745 if((opcode[i]&0x2f)==7) // BGTZ
5746 {
5747 emit_cmpimm(s1l,1);
5748 nottaken=(int)out;
5749 emit_jl(2);
5750 }
5751 } // if(!unconditional)
5752 int adj;
5753 uint64_t ds_unneeded=branch_regs[i].u;
5754 uint64_t ds_unneeded_upper=branch_regs[i].uu;
5755 ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
5756 ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
5757 if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
5758 ds_unneeded|=1;
5759 ds_unneeded_upper|=1;
5760 // branch taken
5761 if(!nop) {
5762 if(taken) set_jump_target(taken,(int)out);
5763 assem_debug("1:\n");
5764 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5765 ds_unneeded,ds_unneeded_upper);
5766 // load regs
5767 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5768 address_generation(i+1,&branch_regs[i],0);
5769 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
5770 ds_assemble(i+1,&branch_regs[i]);
5771 cc=get_reg(branch_regs[i].regmap,CCREG);
5772 if(cc==-1) {
5773 emit_loadreg(CCREG,cc=HOST_CCREG);
5774 // CHECK: Is the following instruction (fall thru) allocated ok?
5775 }
5776 assert(cc==HOST_CCREG);
5777 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5778 do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
5779 assem_debug("cycle count (adj)\n");
5780 if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5781 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5782 if(internal)
5783 assem_debug("branch: internal\n");
5784 else
5785 assem_debug("branch: external\n");
5786 if(internal&&is_ds[(ba[i]-start)>>2]) {
5787 ds_assemble_entry(i);
5788 }
5789 else {
5790 add_to_linker((int)out,ba[i],internal);
5791 emit_jmp(0);
5792 }
5793 }
5794 // branch not taken
5795 cop1_usable=prev_cop1_usable;
5796 if(!unconditional) {
5797 if(nottaken1) set_jump_target(nottaken1,(int)out);
5798 set_jump_target(nottaken,(int)out);
5799 assem_debug("2:\n");
5800 if(!likely[i]) {
5801 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5802 ds_unneeded,ds_unneeded_upper);
5803 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5804 address_generation(i+1,&branch_regs[i],0);
5805 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5806 ds_assemble(i+1,&branch_regs[i]);
5807 }
5808 cc=get_reg(branch_regs[i].regmap,CCREG);
5809 if(cc==-1&&!likely[i]) {
5810 // Cycle count isn't in a register, temporarily load it then write it out
5811 emit_loadreg(CCREG,HOST_CCREG);
5812 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
5813 int jaddr=(int)out;
5814 emit_jns(0);
5815 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5816 emit_storereg(CCREG,HOST_CCREG);
5817 }
5818 else{
5819 cc=get_reg(i_regmap,CCREG);
5820 assert(cc==HOST_CCREG);
5821 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
5822 int jaddr=(int)out;
5823 emit_jns(0);
5824 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
5825 }
5826 }
5827 }
5828}
5829
5830void sjump_assemble(int i,struct regstat *i_regs)
5831{
5832 signed char *i_regmap=i_regs->regmap;
5833 int cc;
5834 int match;
5835 match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5836 assem_debug("smatch=%d\n",match);
5837 int s1h,s1l;
5838 int prev_cop1_usable=cop1_usable;
5839 int unconditional=0,nevertaken=0;
5840 int only32=0;
57871462 5841 int invert=0;
5842 int internal=internal_branch(branch_regs[i].is32,ba[i]);
5843 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
57871462 5844 if(!match) invert=1;
5845 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5846 if(i>(ba[i]-start)>>2) invert=1;
5847 #endif
5848
5849 //if(opcode2[i]>=0x10) return; // FIXME (BxxZAL)
df894a3a 5850 //assert(opcode2[i]<0x10||rs1[i]==0); // FIXME (BxxZAL)
57871462 5851
e1190b87 5852 if(ooo[i]) {
57871462 5853 s1l=get_reg(branch_regs[i].regmap,rs1[i]);
5854 s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
5855 }
5856 else {
5857 s1l=get_reg(i_regmap,rs1[i]);
5858 s1h=get_reg(i_regmap,rs1[i]|64);
5859 }
5860 if(rs1[i]==0)
5861 {
5862 if(opcode2[i]&1) unconditional=1;
5863 else nevertaken=1;
5864 // These are never taken (r0 is never less than zero)
5865 //assert(opcode2[i]!=0);
5866 //assert(opcode2[i]!=2);
5867 //assert(opcode2[i]!=0x10);
5868 //assert(opcode2[i]!=0x12);
5869 }
5870 else {
5871 only32=(regs[i].was32>>rs1[i])&1;
5872 }
5873
e1190b87 5874 if(ooo[i]) {
57871462 5875 // Out of order execution (delay slot first)
5876 //printf("OOOE\n");
5877 address_generation(i+1,i_regs,regs[i].regmap_entry);
5878 ds_assemble(i+1,i_regs);
5879 int adj;
5880 uint64_t bc_unneeded=branch_regs[i].u;
5881 uint64_t bc_unneeded_upper=branch_regs[i].uu;
5882 bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
5883 bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
5884 bc_unneeded|=1;
5885 bc_unneeded_upper|=1;
5886 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5887 bc_unneeded,bc_unneeded_upper);
5888 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs1[i]);
5889 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5890 if(rt1[i]==31) {
5891 int rt,return_address;
57871462 5892 rt=get_reg(branch_regs[i].regmap,31);
5893 assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5894 if(rt>=0) {
5895 // Save the PC even if the branch is not taken
5896 return_address=start+i*4+8;
5897 emit_movimm(return_address,rt); // PC into link register
5898 #ifdef IMM_PREFETCH
5899 if(!nevertaken) emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5900 #endif
5901 }
5902 }
5903 cc=get_reg(branch_regs[i].regmap,CCREG);
5904 assert(cc==HOST_CCREG);
5905 if(unconditional)
5906 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5907 //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
5908 assem_debug("cycle count (adj)\n");
5909 if(unconditional) {
5910 do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5911 if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
5912 if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5913 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5914 if(internal)
5915 assem_debug("branch: internal\n");
5916 else
5917 assem_debug("branch: external\n");
5918 if(internal&&is_ds[(ba[i]-start)>>2]) {
5919 ds_assemble_entry(i);
5920 }
5921 else {
5922 add_to_linker((int)out,ba[i],internal);
5923 emit_jmp(0);
5924 }
5925 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5926 if(((u_int)out)&7) emit_addnop(0);
5927 #endif
5928 }
5929 }
5930 else if(nevertaken) {
5931 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
5932 int jaddr=(int)out;
5933 emit_jns(0);
5934 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5935 }
5936 else {
5937 int nottaken=0;
5938 do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
5939 if(adj&&!invert) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5940 if(!only32)
5941 {
5942 assert(s1h>=0);
df894a3a 5943 if((opcode2[i]&0xf)==0) // BLTZ/BLTZAL
57871462 5944 {
5945 emit_test(s1h,s1h);
5946 if(invert){
5947 nottaken=(int)out;
5948 emit_jns(1);
5949 }else{
5950 add_to_linker((int)out,ba[i],internal);
5951 emit_js(0);
5952 }
5953 }
df894a3a 5954 if((opcode2[i]&0xf)==1) // BGEZ/BLTZAL
57871462 5955 {
5956 emit_test(s1h,s1h);
5957 if(invert){
5958 nottaken=(int)out;
5959 emit_js(1);
5960 }else{
5961 add_to_linker((int)out,ba[i],internal);
5962 emit_jns(0);
5963 }
5964 }
5965 } // if(!only32)
5966 else
5967 {
5968 assert(s1l>=0);
df894a3a 5969 if((opcode2[i]&0xf)==0) // BLTZ/BLTZAL
57871462 5970 {
5971 emit_test(s1l,s1l);
5972 if(invert){
5973 nottaken=(int)out;
5974 emit_jns(1);
5975 }else{
5976 add_to_linker((int)out,ba[i],internal);
5977 emit_js(0);
5978 }
5979 }
df894a3a 5980 if((opcode2[i]&0xf)==1) // BGEZ/BLTZAL
57871462 5981 {
5982 emit_test(s1l,s1l);
5983 if(invert){
5984 nottaken=(int)out;
5985 emit_js(1);
5986 }else{
5987 add_to_linker((int)out,ba[i],internal);
5988 emit_jns(0);
5989 }
5990 }
5991 } // if(!only32)
5992
5993 if(invert) {
5994 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5995 if(match&&(!internal||!is_ds[(ba[i]-start)>>2])) {
5996 if(adj) {
5997 emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5998 add_to_linker((int)out,ba[i],internal);
5999 }else{
6000 emit_addnop(13);
6001 add_to_linker((int)out,ba[i],internal*2);
6002 }
6003 emit_jmp(0);
6004 }else
6005 #endif
6006 {
6007 if(adj) emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
6008 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6009 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6010 if(internal)
6011 assem_debug("branch: internal\n");
6012 else
6013 assem_debug("branch: external\n");
6014 if(internal&&is_ds[(ba[i]-start)>>2]) {
6015 ds_assemble_entry(i);
6016 }
6017 else {
6018 add_to_linker((int)out,ba[i],internal);
6019 emit_jmp(0);
6020 }
6021 }
6022 set_jump_target(nottaken,(int)out);
6023 }
6024
6025 if(adj) {
6026 if(!invert) emit_addimm(cc,CLOCK_DIVIDER*adj,cc);
6027 }
6028 } // (!unconditional)
6029 } // if(ooo)
6030 else
6031 {
6032 // In-order execution (branch first)
6033 //printf("IOE\n");
6034 int nottaken=0;
a6491170 6035 if(rt1[i]==31) {
6036 int rt,return_address;
a6491170 6037 rt=get_reg(branch_regs[i].regmap,31);
6038 if(rt>=0) {
6039 // Save the PC even if the branch is not taken
6040 return_address=start+i*4+8;
6041 emit_movimm(return_address,rt); // PC into link register
6042 #ifdef IMM_PREFETCH
6043 emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
6044 #endif
6045 }
6046 }
57871462 6047 if(!unconditional) {
6048 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
6049 if(!only32)
6050 {
6051 assert(s1h>=0);
a6491170 6052 if((opcode2[i]&0x0d)==0) // BLTZ/BLTZL/BLTZAL/BLTZALL
57871462 6053 {
6054 emit_test(s1h,s1h);
6055 nottaken=(int)out;
6056 emit_jns(1);
6057 }
a6491170 6058 if((opcode2[i]&0x0d)==1) // BGEZ/BGEZL/BGEZAL/BGEZALL
57871462 6059 {
6060 emit_test(s1h,s1h);
6061 nottaken=(int)out;
6062 emit_js(1);
6063 }
6064 } // if(!only32)
6065 else
6066 {
6067 assert(s1l>=0);
a6491170 6068 if((opcode2[i]&0x0d)==0) // BLTZ/BLTZL/BLTZAL/BLTZALL
57871462 6069 {
6070 emit_test(s1l,s1l);
6071 nottaken=(int)out;
6072 emit_jns(1);
6073 }
a6491170 6074 if((opcode2[i]&0x0d)==1) // BGEZ/BGEZL/BGEZAL/BGEZALL
57871462 6075 {
6076 emit_test(s1l,s1l);
6077 nottaken=(int)out;
6078 emit_js(1);
6079 }
6080 }
6081 } // if(!unconditional)
6082 int adj;
6083 uint64_t ds_unneeded=branch_regs[i].u;
6084 uint64_t ds_unneeded_upper=branch_regs[i].uu;
6085 ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6086 ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6087 if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
6088 ds_unneeded|=1;
6089 ds_unneeded_upper|=1;
6090 // branch taken
6091 if(!nevertaken) {
6092 //assem_debug("1:\n");
6093 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6094 ds_unneeded,ds_unneeded_upper);
6095 // load regs
6096 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
6097 address_generation(i+1,&branch_regs[i],0);
6098 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
6099 ds_assemble(i+1,&branch_regs[i]);
6100 cc=get_reg(branch_regs[i].regmap,CCREG);
6101 if(cc==-1) {
6102 emit_loadreg(CCREG,cc=HOST_CCREG);
6103 // CHECK: Is the following instruction (fall thru) allocated ok?
6104 }
6105 assert(cc==HOST_CCREG);
6106 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6107 do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
6108 assem_debug("cycle count (adj)\n");
6109 if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
6110 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6111 if(internal)
6112 assem_debug("branch: internal\n");
6113 else
6114 assem_debug("branch: external\n");
6115 if(internal&&is_ds[(ba[i]-start)>>2]) {
6116 ds_assemble_entry(i);
6117 }
6118 else {
6119 add_to_linker((int)out,ba[i],internal);
6120 emit_jmp(0);
6121 }
6122 }
6123 // branch not taken
6124 cop1_usable=prev_cop1_usable;
6125 if(!unconditional) {
6126 set_jump_target(nottaken,(int)out);
6127 assem_debug("1:\n");
6128 if(!likely[i]) {
6129 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6130 ds_unneeded,ds_unneeded_upper);
6131 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
6132 address_generation(i+1,&branch_regs[i],0);
6133 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
6134 ds_assemble(i+1,&branch_regs[i]);
6135 }
6136 cc=get_reg(branch_regs[i].regmap,CCREG);
6137 if(cc==-1&&!likely[i]) {
6138 // Cycle count isn't in a register, temporarily load it then write it out
6139 emit_loadreg(CCREG,HOST_CCREG);
6140 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
6141 int jaddr=(int)out;
6142 emit_jns(0);
6143 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
6144 emit_storereg(CCREG,HOST_CCREG);
6145 }
6146 else{
6147 cc=get_reg(i_regmap,CCREG);
6148 assert(cc==HOST_CCREG);
6149 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
6150 int jaddr=(int)out;
6151 emit_jns(0);
6152 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
6153 }
6154 }
6155 }
6156}
6157
6158void fjump_assemble(int i,struct regstat *i_regs)
6159{
6160 signed char *i_regmap=i_regs->regmap;
6161 int cc;
6162 int match;
6163 match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6164 assem_debug("fmatch=%d\n",match);
6165 int fs,cs;
6166 int eaddr;
57871462 6167 int invert=0;
6168 int internal=internal_branch(branch_regs[i].is32,ba[i]);
6169 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
57871462 6170 if(!match) invert=1;
6171 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
6172 if(i>(ba[i]-start)>>2) invert=1;
6173 #endif
6174
e1190b87 6175 if(ooo[i]) {
57871462 6176 fs=get_reg(branch_regs[i].regmap,FSREG);
6177 address_generation(i+1,i_regs,regs[i].regmap_entry); // Is this okay?
6178 }
6179 else {
6180 fs=get_reg(i_regmap,FSREG);
6181 }
6182
6183 // Check cop1 unusable
6184 if(!cop1_usable) {
6185 cs=get_reg(i_regmap,CSREG);
6186 assert(cs>=0);
6187 emit_testimm(cs,0x20000000);
6188 eaddr=(int)out;
6189 emit_jeq(0);
6190 add_stub(FP_STUB,eaddr,(int)out,i,cs,(int)i_regs,0,0);
6191 cop1_usable=1;
6192 }
6193
e1190b87 6194 if(ooo[i]) {
57871462 6195 // Out of order execution (delay slot first)
6196 //printf("OOOE\n");
6197 ds_assemble(i+1,i_regs);
6198 int adj;
6199 uint64_t bc_unneeded=branch_regs[i].u;
6200 uint64_t bc_unneeded_upper=branch_regs[i].uu;
6201 bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
6202 bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
6203 bc_unneeded|=1;
6204 bc_unneeded_upper|=1;
6205 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6206 bc_unneeded,bc_unneeded_upper);
6207 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs1[i]);
6208 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
6209 cc=get_reg(branch_regs[i].regmap,CCREG);
6210 assert(cc==HOST_CCREG);
6211 do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
6212 assem_debug("cycle count (adj)\n");
6213 if(1) {
6214 int nottaken=0;
6215 if(adj&&!invert) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
6216 if(1) {
6217 assert(fs>=0);
6218 emit_testimm(fs,0x800000);
6219 if(source[i]&0x10000) // BC1T
6220 {
6221 if(invert){
6222 nottaken=(int)out;
6223 emit_jeq(1);
6224 }else{
6225 add_to_linker((int)out,ba[i],internal);
6226 emit_jne(0);
6227 }
6228 }
6229 else // BC1F
6230 if(invert){
6231 nottaken=(int)out;
6232 emit_jne(1);
6233 }else{
6234 add_to_linker((int)out,ba[i],internal);
6235 emit_jeq(0);
6236 }
6237 {
6238 }
6239 } // if(!only32)
6240
6241 if(invert) {
6242 if(adj) emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
6243 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
6244 else if(match) emit_addnop(13);
6245 #endif
6246 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6247 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6248 if(internal)
6249 assem_debug("branch: internal\n");
6250 else
6251 assem_debug("branch: external\n");
6252 if(internal&&is_ds[(ba[i]-start)>>2]) {
6253 ds_assemble_entry(i);
6254 }
6255 else {
6256 add_to_linker((int)out,ba[i],internal);
6257 emit_jmp(0);
6258 }
6259 set_jump_target(nottaken,(int)out);
6260 }
6261
6262 if(adj) {
6263 if(!invert) emit_addimm(cc,CLOCK_DIVIDER*adj,cc);
6264 }
6265 } // (!unconditional)
6266 } // if(ooo)
6267 else
6268 {
6269 // In-order execution (branch first)
6270 //printf("IOE\n");
6271 int nottaken=0;
6272 if(1) {
6273 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
6274 if(1) {
6275 assert(fs>=0);
6276 emit_testimm(fs,0x800000);
6277 if(source[i]&0x10000) // BC1T
6278 {
6279 nottaken=(int)out;
6280 emit_jeq(1);
6281 }
6282 else // BC1F
6283 {
6284 nottaken=(int)out;
6285 emit_jne(1);
6286 }
6287 }
6288 } // if(!unconditional)
6289 int adj;
6290 uint64_t ds_unneeded=branch_regs[i].u;
6291 uint64_t ds_unneeded_upper=branch_regs[i].uu;
6292 ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6293 ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6294 if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
6295 ds_unneeded|=1;
6296 ds_unneeded_upper|=1;
6297 // branch taken
6298 //assem_debug("1:\n");
6299 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6300 ds_unneeded,ds_unneeded_upper);
6301 // load regs
6302 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
6303 address_generation(i+1,&branch_regs[i],0);
6304 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
6305 ds_assemble(i+1,&branch_regs[i]);
6306 cc=get_reg(branch_regs[i].regmap,CCREG);
6307 if(cc==-1) {
6308 emit_loadreg(CCREG,cc=HOST_CCREG);
6309 // CHECK: Is the following instruction (fall thru) allocated ok?
6310 }
6311 assert(cc==HOST_CCREG);
6312 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6313 do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
6314 assem_debug("cycle count (adj)\n");
6315 if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
6316 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6317 if(internal)
6318 assem_debug("branch: internal\n");
6319 else
6320 assem_debug("branch: external\n");
6321 if(internal&&is_ds[(ba[i]-start)>>2]) {
6322 ds_assemble_entry(i);
6323 }
6324 else {
6325 add_to_linker((int)out,ba[i],internal);
6326 emit_jmp(0);
6327 }
6328
6329 // branch not taken
6330 if(1) { // <- FIXME (don't need this)
6331 set_jump_target(nottaken,(int)out);
6332 assem_debug("1:\n");
6333 if(!likely[i]) {
6334 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6335 ds_unneeded,ds_unneeded_upper);
6336 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
6337 address_generation(i+1,&branch_regs[i],0);
6338 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
6339 ds_assemble(i+1,&branch_regs[i]);
6340 }
6341 cc=get_reg(branch_regs[i].regmap,CCREG);
6342 if(cc==-1&&!likely[i]) {
6343 // Cycle count isn't in a register, temporarily load it then write it out
6344 emit_loadreg(CCREG,HOST_CCREG);
6345 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
6346 int jaddr=(int)out;
6347 emit_jns(0);
6348 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
6349 emit_storereg(CCREG,HOST_CCREG);
6350 }
6351 else{
6352 cc=get_reg(i_regmap,CCREG);
6353 assert(cc==HOST_CCREG);
6354 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
6355 int jaddr=(int)out;
6356 emit_jns(0);
6357 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
6358 }
6359 }
6360 }
6361}
6362
6363static void pagespan_assemble(int i,struct regstat *i_regs)
6364{
6365 int s1l=get_reg(i_regs->regmap,rs1[i]);
6366 int s1h=get_reg(i_regs->regmap,rs1[i]|64);
6367 int s2l=get_reg(i_regs->regmap,rs2[i]);
6368 int s2h=get_reg(i_regs->regmap,rs2[i]|64);
6369 void *nt_branch=NULL;
6370 int taken=0;
6371 int nottaken=0;
6372 int unconditional=0;
6373 if(rs1[i]==0)
6374 {
6375 s1l=s2l;s1h=s2h;
6376 s2l=s2h=-1;
6377 }
6378 else if(rs2[i]==0)
6379 {
6380 s2l=s2h=-1;
6381 }
6382 if((i_regs->is32>>rs1[i])&(i_regs->is32>>rs2[i])&1) {
6383 s1h=s2h=-1;
6384 }
6385 int hr=0;
6386 int addr,alt,ntaddr;
6387 if(i_regs->regmap[HOST_BTREG]<0) {addr=HOST_BTREG;}
6388 else {
6389 while(hr<HOST_REGS)
6390 {
6391 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
6392 (i_regs->regmap[hr]&63)!=rs1[i] &&
6393 (i_regs->regmap[hr]&63)!=rs2[i] )
6394 {
6395 addr=hr++;break;
6396 }
6397 hr++;
6398 }
6399 }
6400 while(hr<HOST_REGS)
6401 {
6402 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG && hr!=HOST_BTREG &&
6403 (i_regs->regmap[hr]&63)!=rs1[i] &&
6404 (i_regs->regmap[hr]&63)!=rs2[i] )
6405 {
6406 alt=hr++;break;
6407 }
6408 hr++;
6409 }
6410 if((opcode[i]&0x2E)==6) // BLEZ/BGTZ needs another register
6411 {
6412 while(hr<HOST_REGS)
6413 {
6414 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG && hr!=HOST_BTREG &&
6415 (i_regs->regmap[hr]&63)!=rs1[i] &&
6416 (i_regs->regmap[hr]&63)!=rs2[i] )
6417 {
6418 ntaddr=hr;break;
6419 }
6420 hr++;
6421 }
6422 }
6423 assert(hr<HOST_REGS);
6424 if((opcode[i]&0x2e)==4||opcode[i]==0x11) { // BEQ/BNE/BEQL/BNEL/BC1
6425 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,CCREG,CCREG);
6426 }
6427 emit_addimm(HOST_CCREG,CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
6428 if(opcode[i]==2) // J
6429 {
6430 unconditional=1;
6431 }
6432 if(opcode[i]==3) // JAL
6433 {
6434 // TODO: mini_ht
6435 int rt=get_reg(i_regs->regmap,31);
6436 emit_movimm(start+i*4+8,rt);
6437 unconditional=1;
6438 }
6439 if(opcode[i]==0&&(opcode2[i]&0x3E)==8) // JR/JALR
6440 {
6441 emit_mov(s1l,addr);
6442 if(opcode2[i]==9) // JALR
6443 {
5067f341 6444 int rt=get_reg(i_regs->regmap,rt1[i]);
57871462 6445 emit_movimm(start+i*4+8,rt);
6446 }
6447 }
6448 if((opcode[i]&0x3f)==4) // BEQ
6449 {
6450 if(rs1[i]==rs2[i])
6451 {
6452 unconditional=1;
6453 }
6454 else
6455 #ifdef HAVE_CMOV_IMM
6456 if(s1h<0) {
6457 if(s2l>=0) emit_cmp(s1l,s2l);
6458 else emit_test(s1l,s1l);
6459 emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
6460 }
6461 else
6462 #endif
6463 {
6464 assert(s1l>=0);
6465 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
6466 if(s1h>=0) {
6467 if(s2h>=0) emit_cmp(s1h,s2h);
6468 else emit_test(s1h,s1h);
6469 emit_cmovne_reg(alt,addr);
6470 }
6471 if(s2l>=0) emit_cmp(s1l,s2l);
6472 else emit_test(s1l,s1l);
6473 emit_cmovne_reg(alt,addr);
6474 }
6475 }
6476 if((opcode[i]&0x3f)==5) // BNE
6477 {
6478 #ifdef HAVE_CMOV_IMM
6479 if(s1h<0) {
6480 if(s2l>=0) emit_cmp(s1l,s2l);
6481 else emit_test(s1l,s1l);
6482 emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
6483 }
6484 else
6485 #endif
6486 {
6487 assert(s1l>=0);
6488 emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
6489 if(s1h>=0) {
6490 if(s2h>=0) emit_cmp(s1h,s2h);
6491 else emit_test(s1h,s1h);
6492 emit_cmovne_reg(alt,addr);
6493 }
6494 if(s2l>=0) emit_cmp(s1l,s2l);
6495 else emit_test(s1l,s1l);
6496 emit_cmovne_reg(alt,addr);
6497 }
6498 }
6499 if((opcode[i]&0x3f)==0x14) // BEQL
6500 {
6501 if(s1h>=0) {
6502 if(s2h>=0) emit_cmp(s1h,s2h);
6503 else emit_test(s1h,s1h);
6504 nottaken=(int)out;
6505 emit_jne(0);
6506 }
6507 if(s2l>=0) emit_cmp(s1l,s2l);
6508 else emit_test(s1l,s1l);
6509 if(nottaken) set_jump_target(nottaken,(int)out);
6510 nottaken=(int)out;
6511 emit_jne(0);
6512 }
6513 if((opcode[i]&0x3f)==0x15) // BNEL
6514 {
6515 if(s1h>=0) {
6516 if(s2h>=0) emit_cmp(s1h,s2h);
6517 else emit_test(s1h,s1h);
6518 taken=(int)out;
6519 emit_jne(0);
6520 }
6521 if(s2l>=0) emit_cmp(s1l,s2l);
6522 else emit_test(s1l,s1l);
6523 nottaken=(int)out;
6524 emit_jeq(0);
6525 if(taken) set_jump_target(taken,(int)out);
6526 }
6527 if((opcode[i]&0x3f)==6) // BLEZ
6528 {
6529 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
6530 emit_cmpimm(s1l,1);
6531 if(s1h>=0) emit_mov(addr,ntaddr);
6532 emit_cmovl_reg(alt,addr);
6533 if(s1h>=0) {
6534 emit_test(s1h,s1h);
6535 emit_cmovne_reg(ntaddr,addr);
6536 emit_cmovs_reg(alt,addr);
6537 }
6538 }
6539 if((opcode[i]&0x3f)==7) // BGTZ
6540 {
6541 emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
6542 emit_cmpimm(s1l,1);
6543 if(s1h>=0) emit_mov(addr,alt);
6544 emit_cmovl_reg(ntaddr,addr);
6545 if(s1h>=0) {
6546 emit_test(s1h,s1h);
6547 emit_cmovne_reg(alt,addr);
6548 emit_cmovs_reg(ntaddr,addr);
6549 }
6550 }
6551 if((opcode[i]&0x3f)==0x16) // BLEZL
6552 {
6553 assert((opcode[i]&0x3f)!=0x16);
6554 }
6555 if((opcode[i]&0x3f)==0x17) // BGTZL
6556 {
6557 assert((opcode[i]&0x3f)!=0x17);
6558 }
6559 assert(opcode[i]!=1); // BLTZ/BGEZ
6560
6561 //FIXME: Check CSREG
6562 if(opcode[i]==0x11 && opcode2[i]==0x08 ) {
6563 if((source[i]&0x30000)==0) // BC1F
6564 {
6565 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
6566 emit_testimm(s1l,0x800000);
6567 emit_cmovne_reg(alt,addr);
6568 }
6569 if((source[i]&0x30000)==0x10000) // BC1T
6570 {
6571 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
6572 emit_testimm(s1l,0x800000);
6573 emit_cmovne_reg(alt,addr);
6574 }
6575 if((source[i]&0x30000)==0x20000) // BC1FL
6576 {
6577 emit_testimm(s1l,0x800000);
6578 nottaken=(int)out;
6579 emit_jne(0);
6580 }
6581 if((source[i]&0x30000)==0x30000) // BC1TL
6582 {
6583 emit_testimm(s1l,0x800000);
6584 nottaken=(int)out;
6585 emit_jeq(0);
6586 }
6587 }
6588
6589 assert(i_regs->regmap[HOST_CCREG]==CCREG);
6590 wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
6591 if(likely[i]||unconditional)
6592 {
6593 emit_movimm(ba[i],HOST_BTREG);
6594 }
6595 else if(addr!=HOST_BTREG)
6596 {
6597 emit_mov(addr,HOST_BTREG);
6598 }
6599 void *branch_addr=out;
6600 emit_jmp(0);
6601 int target_addr=start+i*4+5;
6602 void *stub=out;
6603 void *compiled_target_addr=check_addr(target_addr);
6604 emit_extjump_ds((int)branch_addr,target_addr);
6605 if(compiled_target_addr) {
6606 set_jump_target((int)branch_addr,(int)compiled_target_addr);
6607 add_link(target_addr,stub);
6608 }
6609 else set_jump_target((int)branch_addr,(int)stub);
6610 if(likely[i]) {
6611 // Not-taken path
6612 set_jump_target((int)nottaken,(int)out);
6613 wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
6614 void *branch_addr=out;
6615 emit_jmp(0);
6616 int target_addr=start+i*4+8;
6617 void *stub=out;
6618 void *compiled_target_addr=check_addr(target_addr);
6619 emit_extjump_ds((int)branch_addr,target_addr);
6620 if(compiled_target_addr) {
6621 set_jump_target((int)branch_addr,(int)compiled_target_addr);
6622 add_link(target_addr,stub);
6623 }
6624 else set_jump_target((int)branch_addr,(int)stub);
6625 }
6626}
6627
6628// Assemble the delay slot for the above
6629static void pagespan_ds()
6630{
6631 assem_debug("initial delay slot:\n");
6632 u_int vaddr=start+1;
94d23bb9 6633 u_int page=get_page(vaddr);
6634 u_int vpage=get_vpage(vaddr);
57871462 6635 ll_add(jump_dirty+vpage,vaddr,(void *)out);
6636 do_dirty_stub_ds();
6637 ll_add(jump_in+page,vaddr,(void *)out);
6638 assert(regs[0].regmap_entry[HOST_CCREG]==CCREG);
6639 if(regs[0].regmap[HOST_CCREG]!=CCREG)
6640 wb_register(CCREG,regs[0].regmap_entry,regs[0].wasdirty,regs[0].was32);
6641 if(regs[0].regmap[HOST_BTREG]!=BTREG)
6642 emit_writeword(HOST_BTREG,(int)&branch_target);
6643 load_regs(regs[0].regmap_entry,regs[0].regmap,regs[0].was32,rs1[0],rs2[0]);
6644 address_generation(0,&regs[0],regs[0].regmap_entry);
b9b61529 6645 if(itype[0]==STORE||itype[0]==STORELR||(opcode[0]&0x3b)==0x39||(opcode[0]&0x3b)==0x3a)
57871462 6646 load_regs(regs[0].regmap_entry,regs[0].regmap,regs[0].was32,INVCP,INVCP);
6647 cop1_usable=0;
6648 is_delayslot=0;
6649 switch(itype[0]) {
6650 case ALU:
6651 alu_assemble(0,&regs[0]);break;
6652 case IMM16:
6653 imm16_assemble(0,&regs[0]);break;
6654 case SHIFT:
6655 shift_assemble(0,&regs[0]);break;
6656 case SHIFTIMM:
6657 shiftimm_assemble(0,&regs[0]);break;
6658 case LOAD:
6659 load_assemble(0,&regs[0]);break;
6660 case LOADLR:
6661 loadlr_assemble(0,&regs[0]);break;
6662 case STORE:
6663 store_assemble(0,&regs[0]);break;
6664 case STORELR:
6665 storelr_assemble(0,&regs[0]);break;
6666 case COP0:
6667 cop0_assemble(0,&regs[0]);break;
6668 case COP1:
6669 cop1_assemble(0,&regs[0]);break;
6670 case C1LS:
6671 c1ls_assemble(0,&regs[0]);break;
b9b61529 6672 case COP2:
6673 cop2_assemble(0,&regs[0]);break;
6674 case C2LS:
6675 c2ls_assemble(0,&regs[0]);break;
6676 case C2OP:
6677 c2op_assemble(0,&regs[0]);break;
57871462 6678 case FCONV:
6679 fconv_assemble(0,&regs[0]);break;
6680 case FLOAT:
6681 float_assemble(0,&regs[0]);break;
6682 case FCOMP:
6683 fcomp_assemble(0,&regs[0]);break;
6684 case MULTDIV:
6685 multdiv_assemble(0,&regs[0]);break;
6686 case MOV:
6687 mov_assemble(0,&regs[0]);break;
6688 case SYSCALL:
7139f3c8 6689 case HLECALL:
1e973cb0 6690 case INTCALL:
57871462 6691 case SPAN:
6692 case UJUMP:
6693 case RJUMP:
6694 case CJUMP:
6695 case SJUMP:
6696 case FJUMP:
6697 printf("Jump in the delay slot. This is probably a bug.\n");
6698 }
6699 int btaddr=get_reg(regs[0].regmap,BTREG);
6700 if(btaddr<0) {
6701 btaddr=get_reg(regs[0].regmap,-1);
6702 emit_readword((int)&branch_target,btaddr);
6703 }
6704 assert(btaddr!=HOST_CCREG);
6705 if(regs[0].regmap[HOST_CCREG]!=CCREG) emit_loadreg(CCREG,HOST_CCREG);
6706#ifdef HOST_IMM8
6707 emit_movimm(start+4,HOST_TEMPREG);
6708 emit_cmp(btaddr,HOST_TEMPREG);
6709#else
6710 emit_cmpimm(btaddr,start+4);
6711#endif
6712 int branch=(int)out;
6713 emit_jeq(0);
6714 store_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,-1);
6715 emit_jmp(jump_vaddr_reg[btaddr]);
6716 set_jump_target(branch,(int)out);
6717 store_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,start+4);
6718 load_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,start+4);
6719}
6720
6721// Basic liveness analysis for MIPS registers
6722void unneeded_registers(int istart,int iend,int r)
6723{
6724 int i;
bedfea38 6725 uint64_t u,uu,gte_u,b,bu,gte_bu;
6726 uint64_t temp_u,temp_uu,temp_gte_u;
57871462 6727 uint64_t tdep;
6728 if(iend==slen-1) {
6729 u=1;uu=1;
6730 }else{
6731 u=unneeded_reg[iend+1];
6732 uu=unneeded_reg_upper[iend+1];
6733 u=1;uu=1;
6734 }
bedfea38 6735 gte_u=temp_gte_u=0;
6736
57871462 6737 for (i=iend;i>=istart;i--)
6738 {
6739 //printf("unneeded registers i=%d (%d,%d) r=%d\n",i,istart,iend,r);
6740 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
6741 {
6742 // If subroutine call, flag return address as a possible branch target
6743 if(rt1[i]==31 && i<slen-2) bt[i+2]=1;
6744
6745 if(ba[i]<start || ba[i]>=(start+slen*4))
6746 {
6747 // Branch out of this block, flush all regs
6748 u=1;
6749 uu=1;
bedfea38 6750 gte_u=0;
57871462 6751 /* Hexagon hack
6752 if(itype[i]==UJUMP&&rt1[i]==31)
6753 {
6754 uu=u=0x300C00F; // Discard at, v0-v1, t6-t9
6755 }
6756 if(itype[i]==RJUMP&&rs1[i]==31)
6757 {
6758 uu=u=0x300C0F3; // Discard at, a0-a3, t6-t9
6759 }
4cb76aa4 6760 if(start>0x80000400&&start<0x80000000+RAM_SIZE) {
57871462 6761 if(itype[i]==UJUMP&&rt1[i]==31)
6762 {
6763 //uu=u=0x30300FF0FLL; // Discard at, v0-v1, t0-t9, lo, hi
6764 uu=u=0x300FF0F; // Discard at, v0-v1, t0-t9
6765 }
6766 if(itype[i]==RJUMP&&rs1[i]==31)
6767 {
6768 //uu=u=0x30300FFF3LL; // Discard at, a0-a3, t0-t9, lo, hi
6769 uu=u=0x300FFF3; // Discard at, a0-a3, t0-t9
6770 }
6771 }*/
6772 branch_unneeded_reg[i]=u;
6773 branch_unneeded_reg_upper[i]=uu;
6774 // Merge in delay slot
6775 tdep=(~uu>>rt1[i+1])&1;
6776 u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6777 uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6778 u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6779 uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6780 uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6781 u|=1;uu|=1;
bedfea38 6782 gte_u|=gte_rt[i+1];
6783 gte_u&=~gte_rs[i+1];
57871462 6784 // If branch is "likely" (and conditional)
6785 // then we skip the delay slot on the fall-thru path
6786 if(likely[i]) {
6787 if(i<slen-1) {
6788 u&=unneeded_reg[i+2];
6789 uu&=unneeded_reg_upper[i+2];
bedfea38 6790 gte_u&=gte_unneeded[i+2];
57871462 6791 }
6792 else
6793 {
6794 u=1;
6795 uu=1;
bedfea38 6796 gte_u=0;
57871462 6797 }
6798 }
6799 }
6800 else
6801 {
6802 // Internal branch, flag target
6803 bt[(ba[i]-start)>>2]=1;
6804 if(ba[i]<=start+i*4) {
6805 // Backward branch
6806 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
6807 {
6808 // Unconditional branch
6809 temp_u=1;temp_uu=1;
bedfea38 6810 temp_gte_u=0;
57871462 6811 } else {
6812 // Conditional branch (not taken case)
6813 temp_u=unneeded_reg[i+2];
6814 temp_uu=unneeded_reg_upper[i+2];
bedfea38 6815 temp_gte_u&=gte_unneeded[i+2];
57871462 6816 }
6817 // Merge in delay slot
6818 tdep=(~temp_uu>>rt1[i+1])&1;
6819 temp_u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6820 temp_uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6821 temp_u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6822 temp_uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6823 temp_uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6824 temp_u|=1;temp_uu|=1;
bedfea38 6825 temp_gte_u|=gte_rt[i+1];
6826 temp_gte_u&=~gte_rs[i+1];
57871462 6827 // If branch is "likely" (and conditional)
6828 // then we skip the delay slot on the fall-thru path
6829 if(likely[i]) {
6830 if(i<slen-1) {
6831 temp_u&=unneeded_reg[i+2];
6832 temp_uu&=unneeded_reg_upper[i+2];
bedfea38 6833 temp_gte_u&=gte_unneeded[i+2];
57871462 6834 }
6835 else
6836 {
6837 temp_u=1;
6838 temp_uu=1;
bedfea38 6839 temp_gte_u=0;
57871462 6840 }
6841 }
6842 tdep=(~temp_uu>>rt1[i])&1;
6843 temp_u|=(1LL<<rt1[i])|(1LL<<rt2[i]);
6844 temp_uu|=(1LL<<rt1[i])|(1LL<<rt2[i]);
6845 temp_u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
6846 temp_uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
6847 temp_uu&=~((tdep<<dep1[i])|(tdep<<dep2[i]));
6848 temp_u|=1;temp_uu|=1;
bedfea38 6849 temp_gte_u|=gte_rt[i];
6850 temp_gte_u&=~gte_rs[i];
57871462 6851 unneeded_reg[i]=temp_u;
6852 unneeded_reg_upper[i]=temp_uu;
bedfea38 6853 gte_unneeded[i]=temp_gte_u;
57871462 6854 // Only go three levels deep. This recursion can take an
6855 // excessive amount of time if there are a lot of nested loops.
6856 if(r<2) {
6857 unneeded_registers((ba[i]-start)>>2,i-1,r+1);
6858 }else{
6859 unneeded_reg[(ba[i]-start)>>2]=1;
6860 unneeded_reg_upper[(ba[i]-start)>>2]=1;
bedfea38 6861 gte_unneeded[(ba[i]-start)>>2]=0;
57871462 6862 }
6863 } /*else*/ if(1) {
6864 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
6865 {
6866 // Unconditional branch
6867 u=unneeded_reg[(ba[i]-start)>>2];
6868 uu=unneeded_reg_upper[(ba[i]-start)>>2];
bedfea38 6869 gte_u=gte_unneeded[(ba[i]-start)>>2];
57871462 6870 branch_unneeded_reg[i]=u;
6871 branch_unneeded_reg_upper[i]=uu;
6872 //u=1;
6873 //uu=1;
6874 //branch_unneeded_reg[i]=u;
6875 //branch_unneeded_reg_upper[i]=uu;
6876 // Merge in delay slot
6877 tdep=(~uu>>rt1[i+1])&1;
6878 u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6879 uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6880 u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6881 uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6882 uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6883 u|=1;uu|=1;
bedfea38 6884 gte_u|=gte_rt[i+1];
6885 gte_u&=~gte_rs[i+1];
57871462 6886 } else {
6887 // Conditional branch
6888 b=unneeded_reg[(ba[i]-start)>>2];
6889 bu=unneeded_reg_upper[(ba[i]-start)>>2];
bedfea38 6890 gte_bu=gte_unneeded[(ba[i]-start)>>2];
57871462 6891 branch_unneeded_reg[i]=b;
6892 branch_unneeded_reg_upper[i]=bu;
6893 //b=1;
6894 //bu=1;
6895 //branch_unneeded_reg[i]=b;
6896 //branch_unneeded_reg_upper[i]=bu;
6897 // Branch delay slot
6898 tdep=(~uu>>rt1[i+1])&1;
6899 b|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6900 bu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6901 b&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6902 bu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6903 bu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6904 b|=1;bu|=1;
bedfea38 6905 gte_bu|=gte_rt[i+1];
6906 gte_bu&=~gte_rs[i+1];
57871462 6907 // If branch is "likely" then we skip the
6908 // delay slot on the fall-thru path
6909 if(likely[i]) {
6910 u=b;
6911 uu=bu;
bedfea38 6912 gte_u=gte_bu;
57871462 6913 if(i<slen-1) {
6914 u&=unneeded_reg[i+2];
6915 uu&=unneeded_reg_upper[i+2];
bedfea38 6916 gte_u&=gte_unneeded[i+2];
57871462 6917 //u=1;
6918 //uu=1;
6919 }
6920 } else {
6921 u&=b;
6922 uu&=bu;
bedfea38 6923 gte_u&=gte_bu;
57871462 6924 //u=1;
6925 //uu=1;
6926 }
6927 if(i<slen-1) {
6928 branch_unneeded_reg[i]&=unneeded_reg[i+2];
6929 branch_unneeded_reg_upper[i]&=unneeded_reg_upper[i+2];
6930 //branch_unneeded_reg[i]=1;
6931 //branch_unneeded_reg_upper[i]=1;
6932 } else {
6933 branch_unneeded_reg[i]=1;
6934 branch_unneeded_reg_upper[i]=1;
6935 }
6936 }
6937 }
6938 }
6939 }
1e973cb0 6940 else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
57871462 6941 {
6942 // SYSCALL instruction (software interrupt)
6943 u=1;
6944 uu=1;
6945 }
6946 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
6947 {
6948 // ERET instruction (return from interrupt)
6949 u=1;
6950 uu=1;
6951 }
6952 //u=uu=1; // DEBUG
6953 tdep=(~uu>>rt1[i])&1;
6954 // Written registers are unneeded
6955 u|=1LL<<rt1[i];
6956 u|=1LL<<rt2[i];
6957 uu|=1LL<<rt1[i];
6958 uu|=1LL<<rt2[i];
bedfea38 6959 gte_u|=gte_rt[i];
57871462 6960 // Accessed registers are needed
6961 u&=~(1LL<<rs1[i]);
6962 u&=~(1LL<<rs2[i]);
6963 uu&=~(1LL<<us1[i]);
6964 uu&=~(1LL<<us2[i]);
bedfea38 6965 gte_u&=~gte_rs[i];
57871462 6966 // Source-target dependencies
6967 uu&=~(tdep<<dep1[i]);
6968 uu&=~(tdep<<dep2[i]);
6969 // R0 is always unneeded
6970 u|=1;uu|=1;
6971 // Save it
6972 unneeded_reg[i]=u;
6973 unneeded_reg_upper[i]=uu;
bedfea38 6974 gte_unneeded[i]=gte_u;
57871462 6975 /*
6976 printf("ur (%d,%d) %x: ",istart,iend,start+i*4);
6977 printf("U:");
6978 int r;
6979 for(r=1;r<=CCREG;r++) {
6980 if((unneeded_reg[i]>>r)&1) {
6981 if(r==HIREG) printf(" HI");
6982 else if(r==LOREG) printf(" LO");
6983 else printf(" r%d",r);
6984 }
6985 }
6986 printf(" UU:");
6987 for(r=1;r<=CCREG;r++) {
6988 if(((unneeded_reg_upper[i]&~unneeded_reg[i])>>r)&1) {
6989 if(r==HIREG) printf(" HI");
6990 else if(r==LOREG) printf(" LO");
6991 else printf(" r%d",r);
6992 }
6993 }
6994 printf("\n");*/
6995 }
252c20fc 6996#ifdef FORCE32
6997 for (i=iend;i>=istart;i--)
6998 {
6999 unneeded_reg_upper[i]=branch_unneeded_reg_upper[i]=-1LL;
7000 }
7001#endif
57871462 7002}
7003
7004// Identify registers which are likely to contain 32-bit values
7005// This is used to predict whether any branches will jump to a
7006// location with 64-bit values in registers.
7007static void provisional_32bit()
7008{
7009 int i,j;
7010 uint64_t is32=1;
7011 uint64_t lastbranch=1;
7012
7013 for(i=0;i<slen;i++)
7014 {
7015 if(i>0) {
7016 if(itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP) {
7017 if(i>1) is32=lastbranch;
7018 else is32=1;
7019 }
7020 }
7021 if(i>1)
7022 {
7023 if(itype[i-2]==CJUMP||itype[i-2]==SJUMP||itype[i-2]==FJUMP) {
7024 if(likely[i-2]) {
7025 if(i>2) is32=lastbranch;
7026 else is32=1;
7027 }
7028 }
7029 if((opcode[i-2]&0x2f)==0x05) // BNE/BNEL
7030 {
7031 if(rs1[i-2]==0||rs2[i-2]==0)
7032 {
7033 if(rs1[i-2]) {
7034 is32|=1LL<<rs1[i-2];
7035 }
7036 if(rs2[i-2]) {
7037 is32|=1LL<<rs2[i-2];
7038 }
7039 }
7040 }
7041 }
7042 // If something jumps here with 64-bit values
7043 // then promote those registers to 64 bits
7044 if(bt[i])
7045 {
7046 uint64_t temp_is32=is32;
7047 for(j=i-1;j>=0;j--)
7048 {
7049 if(ba[j]==start+i*4)
7050 //temp_is32&=branch_regs[j].is32;
7051 temp_is32&=p32[j];
7052 }
7053 for(j=i;j<slen;j++)
7054 {
7055 if(ba[j]==start+i*4)
7056 temp_is32=1;
7057 }
7058 is32=temp_is32;
7059 }
7060 int type=itype[i];
7061 int op=opcode[i];
7062 int op2=opcode2[i];
7063 int rt=rt1[i];
7064 int s1=rs1[i];
7065 int s2=rs2[i];
7066 if(type==UJUMP||type==RJUMP||type==CJUMP||type==SJUMP||type==FJUMP) {
7067 // Branches don't write registers, consider the delay slot instead.
7068 type=itype[i+1];
7069 op=opcode[i+1];
7070 op2=opcode2[i+1];
7071 rt=rt1[i+1];
7072 s1=rs1[i+1];
7073 s2=rs2[i+1];
7074 lastbranch=is32;
7075 }
7076 switch(type) {
7077 case LOAD:
7078 if(opcode[i]==0x27||opcode[i]==0x37|| // LWU/LD
7079 opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
7080 is32&=~(1LL<<rt);
7081 else
7082 is32|=1LL<<rt;
7083 break;
7084 case STORE:
7085 case STORELR:
7086 break;
7087 case LOADLR:
7088 if(op==0x1a||op==0x1b) is32&=~(1LL<<rt); // LDR/LDL
7089 if(op==0x22) is32|=1LL<<rt; // LWL
7090 break;
7091 case IMM16:
7092 if (op==0x08||op==0x09|| // ADDI/ADDIU
7093 op==0x0a||op==0x0b|| // SLTI/SLTIU
7094 op==0x0c|| // ANDI
7095 op==0x0f) // LUI
7096 {
7097 is32|=1LL<<rt;
7098 }
7099 if(op==0x18||op==0x19) { // DADDI/DADDIU
7100 is32&=~(1LL<<rt);
7101 //if(imm[i]==0)
7102 // is32|=((is32>>s1)&1LL)<<rt;
7103 }
7104 if(op==0x0d||op==0x0e) { // ORI/XORI
7105 uint64_t sr=((is32>>s1)&1LL);
7106 is32&=~(1LL<<rt);
7107 is32|=sr<<rt;
7108 }
7109 break;
7110 case UJUMP:
7111 break;
7112 case RJUMP:
7113 break;
7114 case CJUMP:
7115 break;
7116 case SJUMP:
7117 break;
7118 case FJUMP:
7119 break;
7120 case ALU:
7121 if(op2>=0x20&&op2<=0x23) { // ADD/ADDU/SUB/SUBU
7122 is32|=1LL<<rt;
7123 }
7124 if(op2==0x2a||op2==0x2b) { // SLT/SLTU
7125 is32|=1LL<<rt;
7126 }
7127 else if(op2>=0x24&&op2<=0x27) { // AND/OR/XOR/NOR
7128 uint64_t sr=((is32>>s1)&(is32>>s2)&1LL);
7129 is32&=~(1LL<<rt);
7130 is32|=sr<<rt;
7131 }
7132 else if(op2>=0x2c&&op2<=0x2d) { // DADD/DADDU
7133 if(s1==0&&s2==0) {
7134 is32|=1LL<<rt;
7135 }
7136 else if(s2==0) {
7137 uint64_t sr=((is32>>s1)&1LL);
7138 is32&=~(1LL<<rt);
7139 is32|=sr<<rt;
7140 }
7141 else if(s1==0) {
7142 uint64_t sr=((is32>>s2)&1LL);
7143 is32&=~(1LL<<rt);
7144 is32|=sr<<rt;
7145 }
7146 else {
7147 is32&=~(1LL<<rt);
7148 }
7149 }
7150 else if(op2>=0x2e&&op2<=0x2f) { // DSUB/DSUBU
7151 if(s1==0&&s2==0) {
7152 is32|=1LL<<rt;
7153 }
7154 else if(s2==0) {
7155 uint64_t sr=((is32>>s1)&1LL);
7156 is32&=~(1LL<<rt);
7157 is32|=sr<<rt;
7158 }
7159 else {
7160 is32&=~(1LL<<rt);
7161 }
7162 }
7163 break;
7164 case MULTDIV:
7165 if (op2>=0x1c&&op2<=0x1f) { // DMULT/DMULTU/DDIV/DDIVU
7166 is32&=~((1LL<<HIREG)|(1LL<<LOREG));
7167 }
7168 else {
7169 is32|=(1LL<<HIREG)|(1LL<<LOREG);
7170 }
7171 break;
7172 case MOV:
7173 {
7174 uint64_t sr=((is32>>s1)&1LL);
7175 is32&=~(1LL<<rt);
7176 is32|=sr<<rt;
7177 }
7178 break;
7179 case SHIFT:
7180 if(op2>=0x14&&op2<=0x17) is32&=~(1LL<<rt); // DSLLV/DSRLV/DSRAV
7181 else is32|=1LL<<rt; // SLLV/SRLV/SRAV
7182 break;
7183 case SHIFTIMM:
7184 is32|=1LL<<rt;
7185 // DSLL/DSRL/DSRA/DSLL32/DSRL32 but not DSRA32 have 64-bit result
7186 if(op2>=0x38&&op2<0x3f) is32&=~(1LL<<rt);
7187 break;
7188 case COP0:
7189 if(op2==0) is32|=1LL<<rt; // MFC0
7190 break;
7191 case COP1:
b9b61529 7192 case COP2:
57871462 7193 if(op2==0) is32|=1LL<<rt; // MFC1
7194 if(op2==1) is32&=~(1LL<<rt); // DMFC1
7195 if(op2==2) is32|=1LL<<rt; // CFC1
7196 break;
7197 case C1LS:
b9b61529 7198 case C2LS:
57871462 7199 break;
7200 case FLOAT:
7201 case FCONV:
7202 break;
7203 case FCOMP:
7204 break;
b9b61529 7205 case C2OP:
57871462 7206 case SYSCALL:
7139f3c8 7207 case HLECALL:
57871462 7208 break;
7209 default:
7210 break;
7211 }
7212 is32|=1;
7213 p32[i]=is32;
7214
7215 if(i>0)
7216 {
7217 if(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)
7218 {
7219 if(rt1[i-1]==31) // JAL/JALR
7220 {
7221 // Subroutine call will return here, don't alloc any registers
7222 is32=1;
7223 }
7224 else if(i+1<slen)
7225 {
7226 // Internal branch will jump here, match registers to caller
7227 is32=0x3FFFFFFFFLL;
7228 }
7229 }
7230 }
7231 }
7232}
7233
7234// Identify registers which may be assumed to contain 32-bit values
7235// and where optimizations will rely on this.
7236// This is used to determine whether backward branches can safely
7237// jump to a location with 64-bit values in registers.
7238static void provisional_r32()
7239{
7240 u_int r32=0;
7241 int i;
7242
7243 for (i=slen-1;i>=0;i--)
7244 {
7245 int hr;
7246 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
7247 {
7248 if(ba[i]<start || ba[i]>=(start+slen*4))
7249 {
7250 // Branch out of this block, don't need anything
7251 r32=0;
7252 }
7253 else
7254 {
7255 // Internal branch
7256 // Need whatever matches the target
7257 // (and doesn't get overwritten by the delay slot instruction)
7258 r32=0;
7259 int t=(ba[i]-start)>>2;
7260 if(ba[i]>start+i*4) {
7261 // Forward branch
7262 //if(!(requires_32bit[t]&~regs[i].was32))
7263 // r32|=requires_32bit[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
7264 if(!(pr32[t]&~regs[i].was32))
7265 r32|=pr32[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
7266 }else{
7267 // Backward branch
7268 if(!(regs[t].was32&~unneeded_reg_upper[t]&~regs[i].was32))
7269 r32|=regs[t].was32&~unneeded_reg_upper[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
7270 }
7271 }
7272 // Conditional branch may need registers for following instructions
7273 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
7274 {
7275 if(i<slen-2) {
7276 //r32|=requires_32bit[i+2];
7277 r32|=pr32[i+2];
7278 r32&=regs[i].was32;
7279 // Mark this address as a branch target since it may be called
7280 // upon return from interrupt
7281 //bt[i+2]=1;
7282 }
7283 }
7284 // Merge in delay slot
7285 if(!likely[i]) {
7286 // These are overwritten unless the branch is "likely"
7287 // and the delay slot is nullified if not taken
7288 r32&=~(1LL<<rt1[i+1]);
7289 r32&=~(1LL<<rt2[i+1]);
7290 }
7291 // Assume these are needed (delay slot)
7292 if(us1[i+1]>0)
7293 {
7294 if((regs[i].was32>>us1[i+1])&1) r32|=1LL<<us1[i+1];
7295 }
7296 if(us2[i+1]>0)
7297 {
7298 if((regs[i].was32>>us2[i+1])&1) r32|=1LL<<us2[i+1];
7299 }
7300 if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1))
7301 {
7302 if((regs[i].was32>>dep1[i+1])&1) r32|=1LL<<dep1[i+1];
7303 }
7304 if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1))
7305 {
7306 if((regs[i].was32>>dep2[i+1])&1) r32|=1LL<<dep2[i+1];
7307 }
7308 }
1e973cb0 7309 else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
57871462 7310 {
7311 // SYSCALL instruction (software interrupt)
7312 r32=0;
7313 }
7314 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
7315 {
7316 // ERET instruction (return from interrupt)
7317 r32=0;
7318 }
7319 // Check 32 bits
7320 r32&=~(1LL<<rt1[i]);
7321 r32&=~(1LL<<rt2[i]);
7322 if(us1[i]>0)
7323 {
7324 if((regs[i].was32>>us1[i])&1) r32|=1LL<<us1[i];
7325 }
7326 if(us2[i]>0)
7327 {
7328 if((regs[i].was32>>us2[i])&1) r32|=1LL<<us2[i];
7329 }
7330 if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1))
7331 {
7332 if((regs[i].was32>>dep1[i])&1) r32|=1LL<<dep1[i];
7333 }
7334 if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1))
7335 {
7336 if((regs[i].was32>>dep2[i])&1) r32|=1LL<<dep2[i];
7337 }
7338 //requires_32bit[i]=r32;
7339 pr32[i]=r32;
7340
7341 // Dirty registers which are 32-bit, require 32-bit input
7342 // as they will be written as 32-bit values
7343 for(hr=0;hr<HOST_REGS;hr++)
7344 {
7345 if(regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64) {
7346 if((regs[i].was32>>regs[i].regmap_entry[hr])&(regs[i].wasdirty>>hr)&1) {
7347 if(!((unneeded_reg_upper[i]>>regs[i].regmap_entry[hr])&1))
7348 pr32[i]|=1LL<<regs[i].regmap_entry[hr];
7349 //requires_32bit[i]|=1LL<<regs[i].regmap_entry[hr];
7350 }
7351 }
7352 }
7353 }
7354}
7355
7356// Write back dirty registers as soon as we will no longer modify them,
7357// so that we don't end up with lots of writes at the branches.
7358void clean_registers(int istart,int iend,int wr)
7359{
7360 int i;
7361 int r;
7362 u_int will_dirty_i,will_dirty_next,temp_will_dirty;
7363 u_int wont_dirty_i,wont_dirty_next,temp_wont_dirty;
7364 if(iend==slen-1) {
7365 will_dirty_i=will_dirty_next=0;
7366 wont_dirty_i=wont_dirty_next=0;
7367 }else{
7368 will_dirty_i=will_dirty_next=will_dirty[iend+1];
7369 wont_dirty_i=wont_dirty_next=wont_dirty[iend+1];
7370 }
7371 for (i=iend;i>=istart;i--)
7372 {
7373 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
7374 {
7375 if(ba[i]<start || ba[i]>=(start+slen*4))
7376 {
7377 // Branch out of this block, flush all regs
7378 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
7379 {
7380 // Unconditional branch
7381 will_dirty_i=0;
7382 wont_dirty_i=0;
7383 // Merge in delay slot (will dirty)
7384 for(r=0;r<HOST_REGS;r++) {
7385 if(r!=EXCLUDE_REG) {
7386 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7387 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7388 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7389 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7390 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7391 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7392 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7393 if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7394 if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7395 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7396 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7397 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7398 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7399 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7400 }
7401 }
7402 }
7403 else
7404 {
7405 // Conditional branch
7406 will_dirty_i=0;
7407 wont_dirty_i=wont_dirty_next;
7408 // Merge in delay slot (will dirty)
7409 for(r=0;r<HOST_REGS;r++) {
7410 if(r!=EXCLUDE_REG) {
7411 if(!likely[i]) {
7412 // Might not dirty if likely branch is not taken
7413 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7414 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7415 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7416 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7417 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7418 if(branch_regs[i].regmap[r]==0) will_dirty_i&=~(1<<r);
7419 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7420 //if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7421 //if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7422 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7423 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7424 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7425 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7426 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7427 }
7428 }
7429 }
7430 }
7431 // Merge in delay slot (wont dirty)
7432 for(r=0;r<HOST_REGS;r++) {
7433 if(r!=EXCLUDE_REG) {
7434 if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7435 if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7436 if((regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7437 if((regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7438 if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7439 if((branch_regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7440 if((branch_regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7441 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7442 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7443 if(branch_regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7444 }
7445 }
7446 if(wr) {
7447 #ifndef DESTRUCTIVE_WRITEBACK
7448 branch_regs[i].dirty&=wont_dirty_i;
7449 #endif
7450 branch_regs[i].dirty|=will_dirty_i;
7451 }
7452 }
7453 else
7454 {
7455 // Internal branch
7456 if(ba[i]<=start+i*4) {
7457 // Backward branch
7458 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
7459 {
7460 // Unconditional branch
7461 temp_will_dirty=0;
7462 temp_wont_dirty=0;
7463 // Merge in delay slot (will dirty)
7464 for(r=0;r<HOST_REGS;r++) {
7465 if(r!=EXCLUDE_REG) {
7466 if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7467 if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7468 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7469 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7470 if((branch_regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7471 if(branch_regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
7472 if(branch_regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7473 if((regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7474 if((regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7475 if((regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7476 if((regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7477 if((regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7478 if(regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
7479 if(regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7480 }
7481 }
7482 } else {
7483 // Conditional branch (not taken case)
7484 temp_will_dirty=will_dirty_next;
7485 temp_wont_dirty=wont_dirty_next;
7486 // Merge in delay slot (will dirty)
7487 for(r=0;r<HOST_REGS;r++) {
7488 if(r!=EXCLUDE_REG) {
7489 if(!likely[i]) {
7490 // Will not dirty if likely branch is not taken
7491 if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7492 if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7493 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7494 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7495 if((branch_regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7496 if(branch_regs[i].regmap[r]==0) temp_will_dirty&=~(1<<r);
7497 if(branch_regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7498 //if((regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7499 //if((regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7500 if((regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7501 if((regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7502 if((regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7503 if(regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
7504 if(regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7505 }
7506 }
7507 }
7508 }
7509 // Merge in delay slot (wont dirty)
7510 for(r=0;r<HOST_REGS;r++) {
7511 if(r!=EXCLUDE_REG) {
7512 if((regs[i].regmap[r]&63)==rt1[i]) temp_wont_dirty|=1<<r;
7513 if((regs[i].regmap[r]&63)==rt2[i]) temp_wont_dirty|=1<<r;
7514 if((regs[i].regmap[r]&63)==rt1[i+1]) temp_wont_dirty|=1<<r;
7515 if((regs[i].regmap[r]&63)==rt2[i+1]) temp_wont_dirty|=1<<r;
7516 if(regs[i].regmap[r]==CCREG) temp_wont_dirty|=1<<r;
7517 if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_wont_dirty|=1<<r;
7518 if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_wont_dirty|=1<<r;
7519 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_wont_dirty|=1<<r;
7520 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_wont_dirty|=1<<r;
7521 if(branch_regs[i].regmap[r]==CCREG) temp_wont_dirty|=1<<r;
7522 }
7523 }
7524 // Deal with changed mappings
7525 if(i<iend) {
7526 for(r=0;r<HOST_REGS;r++) {
7527 if(r!=EXCLUDE_REG) {
7528 if(regs[i].regmap[r]!=regmap_pre[i][r]) {
7529 temp_will_dirty&=~(1<<r);
7530 temp_wont_dirty&=~(1<<r);
7531 if((regmap_pre[i][r]&63)>0 && (regmap_pre[i][r]&63)<34) {
7532 temp_will_dirty|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7533 temp_wont_dirty|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7534 } else {
7535 temp_will_dirty|=1<<r;
7536 temp_wont_dirty|=1<<r;
7537 }
7538 }
7539 }
7540 }
7541 }
7542 if(wr) {
7543 will_dirty[i]=temp_will_dirty;
7544 wont_dirty[i]=temp_wont_dirty;
7545 clean_registers((ba[i]-start)>>2,i-1,0);
7546 }else{
7547 // Limit recursion. It can take an excessive amount
7548 // of time if there are a lot of nested loops.
7549 will_dirty[(ba[i]-start)>>2]=0;
7550 wont_dirty[(ba[i]-start)>>2]=-1;
7551 }
7552 }
7553 /*else*/ if(1)
7554 {
7555 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
7556 {
7557 // Unconditional branch
7558 will_dirty_i=0;
7559 wont_dirty_i=0;
7560 //if(ba[i]>start+i*4) { // Disable recursion (for debugging)
7561 for(r=0;r<HOST_REGS;r++) {
7562 if(r!=EXCLUDE_REG) {
7563 if(branch_regs[i].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
7564 will_dirty_i|=will_dirty[(ba[i]-start)>>2]&(1<<r);
7565 wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
7566 }
e3234ecf 7567 if(branch_regs[i].regmap[r]>=0) {
7568 will_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>(branch_regs[i].regmap[r]&63))&1)<<r;
7569 wont_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>(branch_regs[i].regmap[r]&63))&1)<<r;
7570 }
57871462 7571 }
7572 }
7573 //}
7574 // Merge in delay slot
7575 for(r=0;r<HOST_REGS;r++) {
7576 if(r!=EXCLUDE_REG) {
7577 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7578 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7579 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7580 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7581 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7582 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7583 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7584 if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7585 if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7586 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7587 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7588 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7589 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7590 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7591 }
7592 }
7593 } else {
7594 // Conditional branch
7595 will_dirty_i=will_dirty_next;
7596 wont_dirty_i=wont_dirty_next;
7597 //if(ba[i]>start+i*4) { // Disable recursion (for debugging)
7598 for(r=0;r<HOST_REGS;r++) {
7599 if(r!=EXCLUDE_REG) {
e3234ecf 7600 signed char target_reg=branch_regs[i].regmap[r];
7601 if(target_reg==regs[(ba[i]-start)>>2].regmap_entry[r]) {
57871462 7602 will_dirty_i&=will_dirty[(ba[i]-start)>>2]&(1<<r);
7603 wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
7604 }
e3234ecf 7605 else if(target_reg>=0) {
7606 will_dirty_i&=((unneeded_reg[(ba[i]-start)>>2]>>(target_reg&63))&1)<<r;
7607 wont_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>(target_reg&63))&1)<<r;
57871462 7608 }
7609 // Treat delay slot as part of branch too
7610 /*if(regs[i+1].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
7611 will_dirty[i+1]&=will_dirty[(ba[i]-start)>>2]&(1<<r);
7612 wont_dirty[i+1]|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
7613 }
7614 else
7615 {
7616 will_dirty[i+1]&=~(1<<r);
7617 }*/
7618 }
7619 }
7620 //}
7621 // Merge in delay slot
7622 for(r=0;r<HOST_REGS;r++) {
7623 if(r!=EXCLUDE_REG) {
7624 if(!likely[i]) {
7625 // Might not dirty if likely branch is not taken
7626 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7627 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7628 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7629 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7630 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7631 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7632 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7633 //if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7634 //if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7635 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7636 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7637 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7638 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7639 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7640 }
7641 }
7642 }
7643 }
e3234ecf 7644 // Merge in delay slot (won't dirty)
57871462 7645 for(r=0;r<HOST_REGS;r++) {
7646 if(r!=EXCLUDE_REG) {
7647 if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7648 if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7649 if((regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7650 if((regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7651 if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7652 if((branch_regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7653 if((branch_regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7654 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7655 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7656 if(branch_regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7657 }
7658 }
7659 if(wr) {
7660 #ifndef DESTRUCTIVE_WRITEBACK
7661 branch_regs[i].dirty&=wont_dirty_i;
7662 #endif
7663 branch_regs[i].dirty|=will_dirty_i;
7664 }
7665 }
7666 }
7667 }
1e973cb0 7668 else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
57871462 7669 {
7670 // SYSCALL instruction (software interrupt)
7671 will_dirty_i=0;
7672 wont_dirty_i=0;
7673 }
7674 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
7675 {
7676 // ERET instruction (return from interrupt)
7677 will_dirty_i=0;
7678 wont_dirty_i=0;
7679 }
7680 will_dirty_next=will_dirty_i;
7681 wont_dirty_next=wont_dirty_i;
7682 for(r=0;r<HOST_REGS;r++) {
7683 if(r!=EXCLUDE_REG) {
7684 if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7685 if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7686 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7687 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7688 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7689 if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7690 if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7691 if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7692 if(i>istart) {
7693 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=FJUMP)
7694 {
7695 // Don't store a register immediately after writing it,
7696 // may prevent dual-issue.
7697 if((regs[i].regmap[r]&63)==rt1[i-1]) wont_dirty_i|=1<<r;
7698 if((regs[i].regmap[r]&63)==rt2[i-1]) wont_dirty_i|=1<<r;
7699 }
7700 }
7701 }
7702 }
7703 // Save it
7704 will_dirty[i]=will_dirty_i;
7705 wont_dirty[i]=wont_dirty_i;
7706 // Mark registers that won't be dirtied as not dirty
7707 if(wr) {
7708 /*printf("wr (%d,%d) %x will:",istart,iend,start+i*4);
7709 for(r=0;r<HOST_REGS;r++) {
7710 if((will_dirty_i>>r)&1) {
7711 printf(" r%d",r);
7712 }
7713 }
7714 printf("\n");*/
7715
7716 //if(i==istart||(itype[i-1]!=RJUMP&&itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=FJUMP)) {
7717 regs[i].dirty|=will_dirty_i;
7718 #ifndef DESTRUCTIVE_WRITEBACK
7719 regs[i].dirty&=wont_dirty_i;
7720 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
7721 {
7722 if(i<iend-1&&itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000) {
7723 for(r=0;r<HOST_REGS;r++) {
7724 if(r!=EXCLUDE_REG) {
7725 if(regs[i].regmap[r]==regmap_pre[i+2][r]) {
7726 regs[i+2].wasdirty&=wont_dirty_i|~(1<<r);
7727 }else {/*printf("i: %x (%d) mismatch(+2): %d\n",start+i*4,i,r);/*assert(!((wont_dirty_i>>r)&1));*/}
7728 }
7729 }
7730 }
7731 }
7732 else
7733 {
7734 if(i<iend) {
7735 for(r=0;r<HOST_REGS;r++) {
7736 if(r!=EXCLUDE_REG) {
7737 if(regs[i].regmap[r]==regmap_pre[i+1][r]) {
7738 regs[i+1].wasdirty&=wont_dirty_i|~(1<<r);
7739 }else {/*printf("i: %x (%d) mismatch(+1): %d\n",start+i*4,i,r);/*assert(!((wont_dirty_i>>r)&1));*/}
7740 }
7741 }
7742 }
7743 }
7744 #endif
7745 //}
7746 }
7747 // Deal with changed mappings
7748 temp_will_dirty=will_dirty_i;
7749 temp_wont_dirty=wont_dirty_i;
7750 for(r=0;r<HOST_REGS;r++) {
7751 if(r!=EXCLUDE_REG) {
7752 int nr;
7753 if(regs[i].regmap[r]==regmap_pre[i][r]) {
7754 if(wr) {
7755 #ifndef DESTRUCTIVE_WRITEBACK
7756 regs[i].wasdirty&=wont_dirty_i|~(1<<r);
7757 #endif
7758 regs[i].wasdirty|=will_dirty_i&(1<<r);
7759 }
7760 }
f776eb14 7761 else if(regmap_pre[i][r]>=0&&(nr=get_reg(regs[i].regmap,regmap_pre[i][r]))>=0) {
57871462 7762 // Register moved to a different register
7763 will_dirty_i&=~(1<<r);
7764 wont_dirty_i&=~(1<<r);
7765 will_dirty_i|=((temp_will_dirty>>nr)&1)<<r;
7766 wont_dirty_i|=((temp_wont_dirty>>nr)&1)<<r;
7767 if(wr) {
7768 #ifndef DESTRUCTIVE_WRITEBACK
7769 regs[i].wasdirty&=wont_dirty_i|~(1<<r);
7770 #endif
7771 regs[i].wasdirty|=will_dirty_i&(1<<r);
7772 }
7773 }
7774 else {
7775 will_dirty_i&=~(1<<r);
7776 wont_dirty_i&=~(1<<r);
7777 if((regmap_pre[i][r]&63)>0 && (regmap_pre[i][r]&63)<34) {
7778 will_dirty_i|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7779 wont_dirty_i|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7780 } else {
7781 wont_dirty_i|=1<<r;
7782 /*printf("i: %x (%d) mismatch: %d\n",start+i*4,i,r);/*assert(!((will_dirty>>r)&1));*/
7783 }
7784 }
7785 }
7786 }
7787 }
7788}
7789
4600ba03 7790#ifdef DISASM
57871462 7791 /* disassembly */
7792void disassemble_inst(int i)
7793{
7794 if (bt[i]) printf("*"); else printf(" ");
7795 switch(itype[i]) {
7796 case UJUMP:
7797 printf (" %x: %s %8x\n",start+i*4,insn[i],ba[i]);break;
7798 case CJUMP:
7799 printf (" %x: %s r%d,r%d,%8x\n",start+i*4,insn[i],rs1[i],rs2[i],i?start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14):*ba);break;
7800 case SJUMP:
7801 printf (" %x: %s r%d,%8x\n",start+i*4,insn[i],rs1[i],start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14));break;
7802 case FJUMP:
7803 printf (" %x: %s %8x\n",start+i*4,insn[i],ba[i]);break;
7804 case RJUMP:
74426039 7805 if (opcode[i]==0x9&&rt1[i]!=31)
5067f341 7806 printf (" %x: %s r%d,r%d\n",start+i*4,insn[i],rt1[i],rs1[i]);
7807 else
7808 printf (" %x: %s r%d\n",start+i*4,insn[i],rs1[i]);
7809 break;
57871462 7810 case SPAN:
7811 printf (" %x: %s (pagespan) r%d,r%d,%8x\n",start+i*4,insn[i],rs1[i],rs2[i],ba[i]);break;
7812 case IMM16:
7813 if(opcode[i]==0xf) //LUI
7814 printf (" %x: %s r%d,%4x0000\n",start+i*4,insn[i],rt1[i],imm[i]&0xffff);
7815 else
7816 printf (" %x: %s r%d,r%d,%d\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
7817 break;
7818 case LOAD:
7819 case LOADLR:
7820 printf (" %x: %s r%d,r%d+%x\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
7821 break;
7822 case STORE:
7823 case STORELR:
7824 printf (" %x: %s r%d,r%d+%x\n",start+i*4,insn[i],rs2[i],rs1[i],imm[i]);
7825 break;
7826 case ALU:
7827 case SHIFT:
7828 printf (" %x: %s r%d,r%d,r%d\n",start+i*4,insn[i],rt1[i],rs1[i],rs2[i]);
7829 break;
7830 case MULTDIV:
7831 printf (" %x: %s r%d,r%d\n",start+i*4,insn[i],rs1[i],rs2[i]);
7832 break;
7833 case SHIFTIMM:
7834 printf (" %x: %s r%d,r%d,%d\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
7835 break;
7836 case MOV:
7837 if((opcode2[i]&0x1d)==0x10)
7838 printf (" %x: %s r%d\n",start+i*4,insn[i],rt1[i]);
7839 else if((opcode2[i]&0x1d)==0x11)
7840 printf (" %x: %s r%d\n",start+i*4,insn[i],rs1[i]);
7841 else
7842 printf (" %x: %s\n",start+i*4,insn[i]);
7843 break;
7844 case COP0:
7845 if(opcode2[i]==0)
7846 printf (" %x: %s r%d,cpr0[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC0
7847 else if(opcode2[i]==4)
7848 printf (" %x: %s r%d,cpr0[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC0
7849 else printf (" %x: %s\n",start+i*4,insn[i]);
7850 break;
7851 case COP1:
7852 if(opcode2[i]<3)
7853 printf (" %x: %s r%d,cpr1[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC1
7854 else if(opcode2[i]>3)
7855 printf (" %x: %s r%d,cpr1[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC1
7856 else printf (" %x: %s\n",start+i*4,insn[i]);
7857 break;
b9b61529 7858 case COP2:
7859 if(opcode2[i]<3)
7860 printf (" %x: %s r%d,cpr2[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC2
7861 else if(opcode2[i]>3)
7862 printf (" %x: %s r%d,cpr2[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC2
7863 else printf (" %x: %s\n",start+i*4,insn[i]);
7864 break;
57871462 7865 case C1LS:
7866 printf (" %x: %s cpr1[%d],r%d+%x\n",start+i*4,insn[i],(source[i]>>16)&0x1f,rs1[i],imm[i]);
7867 break;
b9b61529 7868 case C2LS:
7869 printf (" %x: %s cpr2[%d],r%d+%x\n",start+i*4,insn[i],(source[i]>>16)&0x1f,rs1[i],imm[i]);
7870 break;
1e973cb0 7871 case INTCALL:
7872 printf (" %x: %s (INTCALL)\n",start+i*4,insn[i]);
7873 break;
57871462 7874 default:
7875 //printf (" %s %8x\n",insn[i],source[i]);
7876 printf (" %x: %s\n",start+i*4,insn[i]);
7877 }
7878}
4600ba03 7879#else
7880static void disassemble_inst(int i) {}
7881#endif // DISASM
57871462 7882
dc990066 7883// clear the state completely, instead of just marking
7884// things invalid like invalidate_all_pages() does
7885void new_dynarec_clear_full()
57871462 7886{
57871462 7887 int n;
35775df7 7888 out=(u_char *)BASE_ADDR;
7889 memset(invalid_code,1,sizeof(invalid_code));
7890 memset(hash_table,0xff,sizeof(hash_table));
57871462 7891 memset(mini_ht,-1,sizeof(mini_ht));
7892 memset(restore_candidate,0,sizeof(restore_candidate));
dc990066 7893 memset(shadow,0,sizeof(shadow));
57871462 7894 copy=shadow;
7895 expirep=16384; // Expiry pointer, +2 blocks
7896 pending_exception=0;
7897 literalcount=0;
57871462 7898 stop_after_jal=0;
9be4ba64 7899 inv_code_start=inv_code_end=~0;
bedfea38 7900 gte_reads_flags=0;
57871462 7901 // TLB
af4ee1fe 7902#ifndef DISABLE_TLB
57871462 7903 using_tlb=0;
af4ee1fe 7904#endif
dadf55f2 7905 sp_in_mirror=0;
57871462 7906 for(n=0;n<524288;n++) // 0 .. 0x7FFFFFFF
7907 memory_map[n]=-1;
7908 for(n=524288;n<526336;n++) // 0x80000000 .. 0x807FFFFF
7909 memory_map[n]=((u_int)rdram-0x80000000)>>2;
7910 for(n=526336;n<1048576;n++) // 0x80800000 .. 0xFFFFFFFF
7911 memory_map[n]=-1;
dc990066 7912 for(n=0;n<4096;n++) ll_clear(jump_in+n);
7913 for(n=0;n<4096;n++) ll_clear(jump_out+n);
7914 for(n=0;n<4096;n++) ll_clear(jump_dirty+n);
7915}
7916
7917void new_dynarec_init()
7918{
7919 printf("Init new dynarec\n");
7920 out=(u_char *)BASE_ADDR;
7921 if (mmap (out, 1<<TARGET_SIZE_2,
7922 PROT_READ | PROT_WRITE | PROT_EXEC,
7923 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS,
7924 -1, 0) <= 0) {printf("mmap() failed\n");}
7925#ifdef MUPEN64
7926 rdword=&readmem_dword;
7927 fake_pc.f.r.rs=&readmem_dword;
7928 fake_pc.f.r.rt=&readmem_dword;
7929 fake_pc.f.r.rd=&readmem_dword;
7930#endif
7931 int n;
7932 new_dynarec_clear_full();
7933#ifdef HOST_IMM8
7934 // Copy this into local area so we don't have to put it in every literal pool
7935 invc_ptr=invalid_code;
7936#endif
24385cae 7937#ifdef MUPEN64
57871462 7938 for(n=0;n<0x8000;n++) { // 0 .. 0x7FFFFFFF
7939 writemem[n] = write_nomem_new;
7940 writememb[n] = write_nomemb_new;
7941 writememh[n] = write_nomemh_new;
24385cae 7942#ifndef FORCE32
57871462 7943 writememd[n] = write_nomemd_new;
24385cae 7944#endif
57871462 7945 readmem[n] = read_nomem_new;
7946 readmemb[n] = read_nomemb_new;
7947 readmemh[n] = read_nomemh_new;
24385cae 7948#ifndef FORCE32
57871462 7949 readmemd[n] = read_nomemd_new;
24385cae 7950#endif
57871462 7951 }
7952 for(n=0x8000;n<0x8080;n++) { // 0x80000000 .. 0x807FFFFF
7953 writemem[n] = write_rdram_new;
7954 writememb[n] = write_rdramb_new;
7955 writememh[n] = write_rdramh_new;
24385cae 7956#ifndef FORCE32
57871462 7957 writememd[n] = write_rdramd_new;
24385cae 7958#endif
57871462 7959 }
7960 for(n=0xC000;n<0x10000;n++) { // 0xC0000000 .. 0xFFFFFFFF
7961 writemem[n] = write_nomem_new;
7962 writememb[n] = write_nomemb_new;
7963 writememh[n] = write_nomemh_new;
24385cae 7964#ifndef FORCE32
57871462 7965 writememd[n] = write_nomemd_new;
24385cae 7966#endif
57871462 7967 readmem[n] = read_nomem_new;
7968 readmemb[n] = read_nomemb_new;
7969 readmemh[n] = read_nomemh_new;
24385cae 7970#ifndef FORCE32
57871462 7971 readmemd[n] = read_nomemd_new;
24385cae 7972#endif
57871462 7973 }
24385cae 7974#endif
57871462 7975 tlb_hacks();
7976 arch_init();
7977}
7978
7979void new_dynarec_cleanup()
7980{
7981 int n;
7982 if (munmap ((void *)BASE_ADDR, 1<<TARGET_SIZE_2) < 0) {printf("munmap() failed\n");}
7983 for(n=0;n<4096;n++) ll_clear(jump_in+n);
7984 for(n=0;n<4096;n++) ll_clear(jump_out+n);
7985 for(n=0;n<4096;n++) ll_clear(jump_dirty+n);
7986 #ifdef ROM_COPY
7987 if (munmap (ROM_COPY, 67108864) < 0) {printf("munmap() failed\n");}
7988 #endif
7989}
7990
7991int new_recompile_block(int addr)
7992{
7993/*
7994 if(addr==0x800cd050) {
7995 int block;
7996 for(block=0x80000;block<0x80800;block++) invalidate_block(block);
7997 int n;
7998 for(n=0;n<=2048;n++) ll_clear(jump_dirty+n);
7999 }
8000*/
8001 //if(Count==365117028) tracedebug=1;
8002 assem_debug("NOTCOMPILED: addr = %x -> %x\n", (int)addr, (int)out);
8003 //printf("NOTCOMPILED: addr = %x -> %x\n", (int)addr, (int)out);
8004 //printf("TRACE: count=%d next=%d (compile %x)\n",Count,next_interupt,addr);
8005 //if(debug)
8006 //printf("TRACE: count=%d next=%d (checksum %x)\n",Count,next_interupt,mchecksum());
8007 //printf("fpu mapping=%x enabled=%x\n",(Status & 0x04000000)>>26,(Status & 0x20000000)>>29);
8008 /*if(Count>=312978186) {
8009 rlist();
8010 }*/
8011 //rlist();
8012 start = (u_int)addr&~3;
8013 //assert(((u_int)addr&1)==0);
7139f3c8 8014#ifdef PCSX
dadf55f2 8015 if(!sp_in_mirror&&(signed int)(psxRegs.GPR.n.sp&0xffe00000)>0x80200000&&
8016 0x10000<=psxRegs.GPR.n.sp&&(psxRegs.GPR.n.sp&~0xe0e00000)<RAM_SIZE) {
c2e3bd42 8017 printf("SP hack enabled (%08x), @%08x\n", psxRegs.GPR.n.sp, psxRegs.pc);
dadf55f2 8018 sp_in_mirror=1;
8019 }
9ad4d757 8020 if (Config.HLE && start == 0x80001000) // hlecall
560e4a12 8021 {
7139f3c8 8022 // XXX: is this enough? Maybe check hleSoftCall?
bb5285ef 8023 u_int beginning=(u_int)out;
7139f3c8 8024 u_int page=get_page(start);
7139f3c8 8025 invalid_code[start>>12]=0;
8026 emit_movimm(start,0);
8027 emit_writeword(0,(int)&pcaddr);
bb5285ef 8028 emit_jmp((int)new_dyna_leave);
15776b68 8029 literal_pool(0);
bb5285ef 8030#ifdef __arm__
8031 __clear_cache((void *)beginning,out);
8032#endif
9ad4d757 8033 ll_add(jump_in+page,start,(void *)beginning);
7139f3c8 8034 return 0;
8035 }
560e4a12 8036 else if ((u_int)addr < 0x00200000 ||
8037 (0xa0000000 <= addr && addr < 0xa0200000)) {
7139f3c8 8038 // used for BIOS calls mostly?
560e4a12 8039 source = (u_int *)((u_int)rdram+(start&0x1fffff));
8040 pagelimit = (addr&0xa0000000)|0x00200000;
8041 }
8042 else if (!Config.HLE && (
8043/* (0x9fc00000 <= addr && addr < 0x9fc80000) ||*/
8044 (0xbfc00000 <= addr && addr < 0xbfc80000))) {
8045 // BIOS
8046 source = (u_int *)((u_int)psxR+(start&0x7ffff));
8047 pagelimit = (addr&0xfff00000)|0x80000;
7139f3c8 8048 }
8049 else
8050#endif
3d624f89 8051#ifdef MUPEN64
57871462 8052 if ((int)addr >= 0xa4000000 && (int)addr < 0xa4001000) {
8053 source = (u_int *)((u_int)SP_DMEM+start-0xa4000000);
8054 pagelimit = 0xa4001000;
8055 }
3d624f89 8056 else
8057#endif
4cb76aa4 8058 if ((int)addr >= 0x80000000 && (int)addr < 0x80000000+RAM_SIZE) {
57871462 8059 source = (u_int *)((u_int)rdram+start-0x80000000);
4cb76aa4 8060 pagelimit = 0x80000000+RAM_SIZE;
57871462 8061 }
90ae6d4e 8062#ifndef DISABLE_TLB
57871462 8063 else if ((signed int)addr >= (signed int)0xC0000000) {
8064 //printf("addr=%x mm=%x\n",(u_int)addr,(memory_map[start>>12]<<2));
8065 //if(tlb_LUT_r[start>>12])
8066 //source = (u_int *)(((int)rdram)+(tlb_LUT_r[start>>12]&0xFFFFF000)+(((int)addr)&0xFFF)-0x80000000);
8067 if((signed int)memory_map[start>>12]>=0) {
8068 source = (u_int *)((u_int)(start+(memory_map[start>>12]<<2)));
8069 pagelimit=(start+4096)&0xFFFFF000;
8070 int map=memory_map[start>>12];
8071 int i;
8072 for(i=0;i<5;i++) {
8073 //printf("start: %x next: %x\n",map,memory_map[pagelimit>>12]);
8074 if((map&0xBFFFFFFF)==(memory_map[pagelimit>>12]&0xBFFFFFFF)) pagelimit+=4096;
8075 }
8076 assem_debug("pagelimit=%x\n",pagelimit);
8077 assem_debug("mapping=%x (%x)\n",memory_map[start>>12],(memory_map[start>>12]<<2)+start);
8078 }
8079 else {
8080 assem_debug("Compile at unmapped memory address: %x \n", (int)addr);
8081 //assem_debug("start: %x next: %x\n",memory_map[start>>12],memory_map[(start+4096)>>12]);
560e4a12 8082 return -1; // Caller will invoke exception handler
57871462 8083 }
8084 //printf("source= %x\n",(int)source);
8085 }
90ae6d4e 8086#endif
57871462 8087 else {
8088 printf("Compile at bogus memory address: %x \n", (int)addr);
8089 exit(1);
8090 }
8091
8092 /* Pass 1: disassemble */
8093 /* Pass 2: register dependencies, branch targets */
8094 /* Pass 3: register allocation */
8095 /* Pass 4: branch dependencies */
8096 /* Pass 5: pre-alloc */
8097 /* Pass 6: optimize clean/dirty state */
8098 /* Pass 7: flag 32-bit registers */
8099 /* Pass 8: assembly */
8100 /* Pass 9: linker */
8101 /* Pass 10: garbage collection / free memory */
8102
8103 int i,j;
8104 int done=0;
8105 unsigned int type,op,op2;
8106
8107 //printf("addr = %x source = %x %x\n", addr,source,source[0]);
8108
8109 /* Pass 1 disassembly */
8110
8111 for(i=0;!done;i++) {
e1190b87 8112 bt[i]=0;likely[i]=0;ooo[i]=0;op2=0;
8113 minimum_free_regs[i]=0;
57871462 8114 opcode[i]=op=source[i]>>26;
8115 switch(op)
8116 {
8117 case 0x00: strcpy(insn[i],"special"); type=NI;
8118 op2=source[i]&0x3f;
8119 switch(op2)
8120 {
8121 case 0x00: strcpy(insn[i],"SLL"); type=SHIFTIMM; break;
8122 case 0x02: strcpy(insn[i],"SRL"); type=SHIFTIMM; break;
8123 case 0x03: strcpy(insn[i],"SRA"); type=SHIFTIMM; break;
8124 case 0x04: strcpy(insn[i],"SLLV"); type=SHIFT; break;
8125 case 0x06: strcpy(insn[i],"SRLV"); type=SHIFT; break;
8126 case 0x07: strcpy(insn[i],"SRAV"); type=SHIFT; break;
8127 case 0x08: strcpy(insn[i],"JR"); type=RJUMP; break;
8128 case 0x09: strcpy(insn[i],"JALR"); type=RJUMP; break;
8129 case 0x0C: strcpy(insn[i],"SYSCALL"); type=SYSCALL; break;
8130 case 0x0D: strcpy(insn[i],"BREAK"); type=OTHER; break;
8131 case 0x0F: strcpy(insn[i],"SYNC"); type=OTHER; break;
8132 case 0x10: strcpy(insn[i],"MFHI"); type=MOV; break;
8133 case 0x11: strcpy(insn[i],"MTHI"); type=MOV; break;
8134 case 0x12: strcpy(insn[i],"MFLO"); type=MOV; break;
8135 case 0x13: strcpy(insn[i],"MTLO"); type=MOV; break;
57871462 8136 case 0x18: strcpy(insn[i],"MULT"); type=MULTDIV; break;
8137 case 0x19: strcpy(insn[i],"MULTU"); type=MULTDIV; break;
8138 case 0x1A: strcpy(insn[i],"DIV"); type=MULTDIV; break;
8139 case 0x1B: strcpy(insn[i],"DIVU"); type=MULTDIV; break;
57871462 8140 case 0x20: strcpy(insn[i],"ADD"); type=ALU; break;
8141 case 0x21: strcpy(insn[i],"ADDU"); type=ALU; break;
8142 case 0x22: strcpy(insn[i],"SUB"); type=ALU; break;
8143 case 0x23: strcpy(insn[i],"SUBU"); type=ALU; break;
8144 case 0x24: strcpy(insn[i],"AND"); type=ALU; break;
8145 case 0x25: strcpy(insn[i],"OR"); type=ALU; break;
8146 case 0x26: strcpy(insn[i],"XOR"); type=ALU; break;
8147 case 0x27: strcpy(insn[i],"NOR"); type=ALU; break;
8148 case 0x2A: strcpy(insn[i],"SLT"); type=ALU; break;
8149 case 0x2B: strcpy(insn[i],"SLTU"); type=ALU; break;
57871462 8150 case 0x30: strcpy(insn[i],"TGE"); type=NI; break;
8151 case 0x31: strcpy(insn[i],"TGEU"); type=NI; break;
8152 case 0x32: strcpy(insn[i],"TLT"); type=NI; break;
8153 case 0x33: strcpy(insn[i],"TLTU"); type=NI; break;
8154 case 0x34: strcpy(insn[i],"TEQ"); type=NI; break;
8155 case 0x36: strcpy(insn[i],"TNE"); type=NI; break;
7f2607ea 8156#ifndef FORCE32
8157 case 0x14: strcpy(insn[i],"DSLLV"); type=SHIFT; break;
8158 case 0x16: strcpy(insn[i],"DSRLV"); type=SHIFT; break;
8159 case 0x17: strcpy(insn[i],"DSRAV"); type=SHIFT; break;
8160 case 0x1C: strcpy(insn[i],"DMULT"); type=MULTDIV; break;
8161 case 0x1D: strcpy(insn[i],"DMULTU"); type=MULTDIV; break;
8162 case 0x1E: strcpy(insn[i],"DDIV"); type=MULTDIV; break;
8163 case 0x1F: strcpy(insn[i],"DDIVU"); type=MULTDIV; break;
8164 case 0x2C: strcpy(insn[i],"DADD"); type=ALU; break;
8165 case 0x2D: strcpy(insn[i],"DADDU"); type=ALU; break;
8166 case 0x2E: strcpy(insn[i],"DSUB"); type=ALU; break;
8167 case 0x2F: strcpy(insn[i],"DSUBU"); type=ALU; break;
57871462 8168 case 0x38: strcpy(insn[i],"DSLL"); type=SHIFTIMM; break;
8169 case 0x3A: strcpy(insn[i],"DSRL"); type=SHIFTIMM; break;
8170 case 0x3B: strcpy(insn[i],"DSRA"); type=SHIFTIMM; break;
8171 case 0x3C: strcpy(insn[i],"DSLL32"); type=SHIFTIMM; break;
8172 case 0x3E: strcpy(insn[i],"DSRL32"); type=SHIFTIMM; break;
8173 case 0x3F: strcpy(insn[i],"DSRA32"); type=SHIFTIMM; break;
7f2607ea 8174#endif
57871462 8175 }
8176 break;
8177 case 0x01: strcpy(insn[i],"regimm"); type=NI;
8178 op2=(source[i]>>16)&0x1f;
8179 switch(op2)
8180 {
8181 case 0x00: strcpy(insn[i],"BLTZ"); type=SJUMP; break;
8182 case 0x01: strcpy(insn[i],"BGEZ"); type=SJUMP; break;
8183 case 0x02: strcpy(insn[i],"BLTZL"); type=SJUMP; break;
8184 case 0x03: strcpy(insn[i],"BGEZL"); type=SJUMP; break;
8185 case 0x08: strcpy(insn[i],"TGEI"); type=NI; break;
8186 case 0x09: strcpy(insn[i],"TGEIU"); type=NI; break;
8187 case 0x0A: strcpy(insn[i],"TLTI"); type=NI; break;
8188 case 0x0B: strcpy(insn[i],"TLTIU"); type=NI; break;
8189 case 0x0C: strcpy(insn[i],"TEQI"); type=NI; break;
8190 case 0x0E: strcpy(insn[i],"TNEI"); type=NI; break;
8191 case 0x10: strcpy(insn[i],"BLTZAL"); type=SJUMP; break;
8192 case 0x11: strcpy(insn[i],"BGEZAL"); type=SJUMP; break;
8193 case 0x12: strcpy(insn[i],"BLTZALL"); type=SJUMP; break;
8194 case 0x13: strcpy(insn[i],"BGEZALL"); type=SJUMP; break;
8195 }
8196 break;
8197 case 0x02: strcpy(insn[i],"J"); type=UJUMP; break;
8198 case 0x03: strcpy(insn[i],"JAL"); type=UJUMP; break;
8199 case 0x04: strcpy(insn[i],"BEQ"); type=CJUMP; break;
8200 case 0x05: strcpy(insn[i],"BNE"); type=CJUMP; break;
8201 case 0x06: strcpy(insn[i],"BLEZ"); type=CJUMP; break;
8202 case 0x07: strcpy(insn[i],"BGTZ"); type=CJUMP; break;
8203 case 0x08: strcpy(insn[i],"ADDI"); type=IMM16; break;
8204 case 0x09: strcpy(insn[i],"ADDIU"); type=IMM16; break;
8205 case 0x0A: strcpy(insn[i],"SLTI"); type=IMM16; break;
8206 case 0x0B: strcpy(insn[i],"SLTIU"); type=IMM16; break;
8207 case 0x0C: strcpy(insn[i],"ANDI"); type=IMM16; break;
8208 case 0x0D: strcpy(insn[i],"ORI"); type=IMM16; break;
8209 case 0x0E: strcpy(insn[i],"XORI"); type=IMM16; break;
8210 case 0x0F: strcpy(insn[i],"LUI"); type=IMM16; break;
8211 case 0x10: strcpy(insn[i],"cop0"); type=NI;
8212 op2=(source[i]>>21)&0x1f;
8213 switch(op2)
8214 {
8215 case 0x00: strcpy(insn[i],"MFC0"); type=COP0; break;
8216 case 0x04: strcpy(insn[i],"MTC0"); type=COP0; break;
8217 case 0x10: strcpy(insn[i],"tlb"); type=NI;
8218 switch(source[i]&0x3f)
8219 {
8220 case 0x01: strcpy(insn[i],"TLBR"); type=COP0; break;
8221 case 0x02: strcpy(insn[i],"TLBWI"); type=COP0; break;
8222 case 0x06: strcpy(insn[i],"TLBWR"); type=COP0; break;
8223 case 0x08: strcpy(insn[i],"TLBP"); type=COP0; break;
576bbd8f 8224#ifdef PCSX
8225 case 0x10: strcpy(insn[i],"RFE"); type=COP0; break;
8226#else
57871462 8227 case 0x18: strcpy(insn[i],"ERET"); type=COP0; break;
576bbd8f 8228#endif
57871462 8229 }
8230 }
8231 break;
8232 case 0x11: strcpy(insn[i],"cop1"); type=NI;
8233 op2=(source[i]>>21)&0x1f;
8234 switch(op2)
8235 {
8236 case 0x00: strcpy(insn[i],"MFC1"); type=COP1; break;
8237 case 0x01: strcpy(insn[i],"DMFC1"); type=COP1; break;
8238 case 0x02: strcpy(insn[i],"CFC1"); type=COP1; break;
8239 case 0x04: strcpy(insn[i],"MTC1"); type=COP1; break;
8240 case 0x05: strcpy(insn[i],"DMTC1"); type=COP1; break;
8241 case 0x06: strcpy(insn[i],"CTC1"); type=COP1; break;
8242 case 0x08: strcpy(insn[i],"BC1"); type=FJUMP;
8243 switch((source[i]>>16)&0x3)
8244 {
8245 case 0x00: strcpy(insn[i],"BC1F"); break;
8246 case 0x01: strcpy(insn[i],"BC1T"); break;
8247 case 0x02: strcpy(insn[i],"BC1FL"); break;
8248 case 0x03: strcpy(insn[i],"BC1TL"); break;
8249 }
8250 break;
8251 case 0x10: strcpy(insn[i],"C1.S"); type=NI;
8252 switch(source[i]&0x3f)
8253 {
8254 case 0x00: strcpy(insn[i],"ADD.S"); type=FLOAT; break;
8255 case 0x01: strcpy(insn[i],"SUB.S"); type=FLOAT; break;
8256 case 0x02: strcpy(insn[i],"MUL.S"); type=FLOAT; break;
8257 case 0x03: strcpy(insn[i],"DIV.S"); type=FLOAT; break;
8258 case 0x04: strcpy(insn[i],"SQRT.S"); type=FLOAT; break;
8259 case 0x05: strcpy(insn[i],"ABS.S"); type=FLOAT; break;
8260 case 0x06: strcpy(insn[i],"MOV.S"); type=FLOAT; break;
8261 case 0x07: strcpy(insn[i],"NEG.S"); type=FLOAT; break;
8262 case 0x08: strcpy(insn[i],"ROUND.L.S"); type=FCONV; break;
8263 case 0x09: strcpy(insn[i],"TRUNC.L.S"); type=FCONV; break;
8264 case 0x0A: strcpy(insn[i],"CEIL.L.S"); type=FCONV; break;
8265 case 0x0B: strcpy(insn[i],"FLOOR.L.S"); type=FCONV; break;
8266 case 0x0C: strcpy(insn[i],"ROUND.W.S"); type=FCONV; break;
8267 case 0x0D: strcpy(insn[i],"TRUNC.W.S"); type=FCONV; break;
8268 case 0x0E: strcpy(insn[i],"CEIL.W.S"); type=FCONV; break;
8269 case 0x0F: strcpy(insn[i],"FLOOR.W.S"); type=FCONV; break;
8270 case 0x21: strcpy(insn[i],"CVT.D.S"); type=FCONV; break;
8271 case 0x24: strcpy(insn[i],"CVT.W.S"); type=FCONV; break;
8272 case 0x25: strcpy(insn[i],"CVT.L.S"); type=FCONV; break;
8273 case 0x30: strcpy(insn[i],"C.F.S"); type=FCOMP; break;
8274 case 0x31: strcpy(insn[i],"C.UN.S"); type=FCOMP; break;
8275 case 0x32: strcpy(insn[i],"C.EQ.S"); type=FCOMP; break;
8276 case 0x33: strcpy(insn[i],"C.UEQ.S"); type=FCOMP; break;
8277 case 0x34: strcpy(insn[i],"C.OLT.S"); type=FCOMP; break;
8278 case 0x35: strcpy(insn[i],"C.ULT.S"); type=FCOMP; break;
8279 case 0x36: strcpy(insn[i],"C.OLE.S"); type=FCOMP; break;
8280 case 0x37: strcpy(insn[i],"C.ULE.S"); type=FCOMP; break;
8281 case 0x38: strcpy(insn[i],"C.SF.S"); type=FCOMP; break;
8282 case 0x39: strcpy(insn[i],"C.NGLE.S"); type=FCOMP; break;
8283 case 0x3A: strcpy(insn[i],"C.SEQ.S"); type=FCOMP; break;
8284 case 0x3B: strcpy(insn[i],"C.NGL.S"); type=FCOMP; break;
8285 case 0x3C: strcpy(insn[i],"C.LT.S"); type=FCOMP; break;
8286 case 0x3D: strcpy(insn[i],"C.NGE.S"); type=FCOMP; break;
8287 case 0x3E: strcpy(insn[i],"C.LE.S"); type=FCOMP; break;
8288 case 0x3F: strcpy(insn[i],"C.NGT.S"); type=FCOMP; break;
8289 }
8290 break;
8291 case 0x11: strcpy(insn[i],"C1.D"); type=NI;
8292 switch(source[i]&0x3f)
8293 {
8294 case 0x00: strcpy(insn[i],"ADD.D"); type=FLOAT; break;
8295 case 0x01: strcpy(insn[i],"SUB.D"); type=FLOAT; break;
8296 case 0x02: strcpy(insn[i],"MUL.D"); type=FLOAT; break;
8297 case 0x03: strcpy(insn[i],"DIV.D"); type=FLOAT; break;
8298 case 0x04: strcpy(insn[i],"SQRT.D"); type=FLOAT; break;
8299 case 0x05: strcpy(insn[i],"ABS.D"); type=FLOAT; break;
8300 case 0x06: strcpy(insn[i],"MOV.D"); type=FLOAT; break;
8301 case 0x07: strcpy(insn[i],"NEG.D"); type=FLOAT; break;
8302 case 0x08: strcpy(insn[i],"ROUND.L.D"); type=FCONV; break;
8303 case 0x09: strcpy(insn[i],"TRUNC.L.D"); type=FCONV; break;
8304 case 0x0A: strcpy(insn[i],"CEIL.L.D"); type=FCONV; break;
8305 case 0x0B: strcpy(insn[i],"FLOOR.L.D"); type=FCONV; break;
8306 case 0x0C: strcpy(insn[i],"ROUND.W.D"); type=FCONV; break;
8307 case 0x0D: strcpy(insn[i],"TRUNC.W.D"); type=FCONV; break;
8308 case 0x0E: strcpy(insn[i],"CEIL.W.D"); type=FCONV; break;
8309 case 0x0F: strcpy(insn[i],"FLOOR.W.D"); type=FCONV; break;
8310 case 0x20: strcpy(insn[i],"CVT.S.D"); type=FCONV; break;
8311 case 0x24: strcpy(insn[i],"CVT.W.D"); type=FCONV; break;
8312 case 0x25: strcpy(insn[i],"CVT.L.D"); type=FCONV; break;
8313 case 0x30: strcpy(insn[i],"C.F.D"); type=FCOMP; break;
8314 case 0x31: strcpy(insn[i],"C.UN.D"); type=FCOMP; break;
8315 case 0x32: strcpy(insn[i],"C.EQ.D"); type=FCOMP; break;
8316 case 0x33: strcpy(insn[i],"C.UEQ.D"); type=FCOMP; break;
8317 case 0x34: strcpy(insn[i],"C.OLT.D"); type=FCOMP; break;
8318 case 0x35: strcpy(insn[i],"C.ULT.D"); type=FCOMP; break;
8319 case 0x36: strcpy(insn[i],"C.OLE.D"); type=FCOMP; break;
8320 case 0x37: strcpy(insn[i],"C.ULE.D"); type=FCOMP; break;
8321 case 0x38: strcpy(insn[i],"C.SF.D"); type=FCOMP; break;
8322 case 0x39: strcpy(insn[i],"C.NGLE.D"); type=FCOMP; break;
8323 case 0x3A: strcpy(insn[i],"C.SEQ.D"); type=FCOMP; break;
8324 case 0x3B: strcpy(insn[i],"C.NGL.D"); type=FCOMP; break;
8325 case 0x3C: strcpy(insn[i],"C.LT.D"); type=FCOMP; break;
8326 case 0x3D: strcpy(insn[i],"C.NGE.D"); type=FCOMP; break;
8327 case 0x3E: strcpy(insn[i],"C.LE.D"); type=FCOMP; break;
8328 case 0x3F: strcpy(insn[i],"C.NGT.D"); type=FCOMP; break;
8329 }
8330 break;
8331 case 0x14: strcpy(insn[i],"C1.W"); type=NI;
8332 switch(source[i]&0x3f)
8333 {
8334 case 0x20: strcpy(insn[i],"CVT.S.W"); type=FCONV; break;
8335 case 0x21: strcpy(insn[i],"CVT.D.W"); type=FCONV; break;
8336 }
8337 break;
8338 case 0x15: strcpy(insn[i],"C1.L"); type=NI;
8339 switch(source[i]&0x3f)
8340 {
8341 case 0x20: strcpy(insn[i],"CVT.S.L"); type=FCONV; break;
8342 case 0x21: strcpy(insn[i],"CVT.D.L"); type=FCONV; break;
8343 }
8344 break;
8345 }
8346 break;
909168d6 8347#ifndef FORCE32
57871462 8348 case 0x14: strcpy(insn[i],"BEQL"); type=CJUMP; break;
8349 case 0x15: strcpy(insn[i],"BNEL"); type=CJUMP; break;
8350 case 0x16: strcpy(insn[i],"BLEZL"); type=CJUMP; break;
8351 case 0x17: strcpy(insn[i],"BGTZL"); type=CJUMP; break;
8352 case 0x18: strcpy(insn[i],"DADDI"); type=IMM16; break;
8353 case 0x19: strcpy(insn[i],"DADDIU"); type=IMM16; break;
8354 case 0x1A: strcpy(insn[i],"LDL"); type=LOADLR; break;
8355 case 0x1B: strcpy(insn[i],"LDR"); type=LOADLR; break;
996cc15d 8356#endif
57871462 8357 case 0x20: strcpy(insn[i],"LB"); type=LOAD; break;
8358 case 0x21: strcpy(insn[i],"LH"); type=LOAD; break;
8359 case 0x22: strcpy(insn[i],"LWL"); type=LOADLR; break;
8360 case 0x23: strcpy(insn[i],"LW"); type=LOAD; break;
8361 case 0x24: strcpy(insn[i],"LBU"); type=LOAD; break;
8362 case 0x25: strcpy(insn[i],"LHU"); type=LOAD; break;
8363 case 0x26: strcpy(insn[i],"LWR"); type=LOADLR; break;
64bd6f82 8364#ifndef FORCE32
57871462 8365 case 0x27: strcpy(insn[i],"LWU"); type=LOAD; break;
64bd6f82 8366#endif
57871462 8367 case 0x28: strcpy(insn[i],"SB"); type=STORE; break;
8368 case 0x29: strcpy(insn[i],"SH"); type=STORE; break;
8369 case 0x2A: strcpy(insn[i],"SWL"); type=STORELR; break;
8370 case 0x2B: strcpy(insn[i],"SW"); type=STORE; break;
996cc15d 8371#ifndef FORCE32
57871462 8372 case 0x2C: strcpy(insn[i],"SDL"); type=STORELR; break;
8373 case 0x2D: strcpy(insn[i],"SDR"); type=STORELR; break;
996cc15d 8374#endif
57871462 8375 case 0x2E: strcpy(insn[i],"SWR"); type=STORELR; break;
8376 case 0x2F: strcpy(insn[i],"CACHE"); type=NOP; break;
8377 case 0x30: strcpy(insn[i],"LL"); type=NI; break;
8378 case 0x31: strcpy(insn[i],"LWC1"); type=C1LS; break;
996cc15d 8379#ifndef FORCE32
57871462 8380 case 0x34: strcpy(insn[i],"LLD"); type=NI; break;
8381 case 0x35: strcpy(insn[i],"LDC1"); type=C1LS; break;
8382 case 0x37: strcpy(insn[i],"LD"); type=LOAD; break;
996cc15d 8383#endif
57871462 8384 case 0x38: strcpy(insn[i],"SC"); type=NI; break;
8385 case 0x39: strcpy(insn[i],"SWC1"); type=C1LS; break;
996cc15d 8386#ifndef FORCE32
57871462 8387 case 0x3C: strcpy(insn[i],"SCD"); type=NI; break;
8388 case 0x3D: strcpy(insn[i],"SDC1"); type=C1LS; break;
8389 case 0x3F: strcpy(insn[i],"SD"); type=STORE; break;
996cc15d 8390#endif
b9b61529 8391#ifdef PCSX
8392 case 0x12: strcpy(insn[i],"COP2"); type=NI;
8393 op2=(source[i]>>21)&0x1f;
bedfea38 8394 //if (op2 & 0x10) {
8395 if (source[i]&0x3f) { // use this hack to support old savestates with patched gte insns
c7abc864 8396 if (gte_handlers[source[i]&0x3f]!=NULL) {
bedfea38 8397 if (gte_regnames[source[i]&0x3f]!=NULL)
8398 strcpy(insn[i],gte_regnames[source[i]&0x3f]);
8399 else
8400 snprintf(insn[i], sizeof(insn[i]), "COP2 %x", source[i]&0x3f);
c7abc864 8401 type=C2OP;
8402 }
8403 }
8404 else switch(op2)
b9b61529 8405 {
8406 case 0x00: strcpy(insn[i],"MFC2"); type=COP2; break;
8407 case 0x02: strcpy(insn[i],"CFC2"); type=COP2; break;
8408 case 0x04: strcpy(insn[i],"MTC2"); type=COP2; break;
8409 case 0x06: strcpy(insn[i],"CTC2"); type=COP2; break;
b9b61529 8410 }
8411 break;
8412 case 0x32: strcpy(insn[i],"LWC2"); type=C2LS; break;
8413 case 0x3A: strcpy(insn[i],"SWC2"); type=C2LS; break;
8414 case 0x3B: strcpy(insn[i],"HLECALL"); type=HLECALL; break;
8415#endif
90ae6d4e 8416 default: strcpy(insn[i],"???"); type=NI;
75dec299 8417 printf("NI %08x @%08x (%08x)\n", source[i], addr + i*4, addr);
90ae6d4e 8418 break;
57871462 8419 }
8420 itype[i]=type;
8421 opcode2[i]=op2;
8422 /* Get registers/immediates */
8423 lt1[i]=0;
8424 us1[i]=0;
8425 us2[i]=0;
8426 dep1[i]=0;
8427 dep2[i]=0;
bedfea38 8428 gte_rs[i]=gte_rt[i]=0;
57871462 8429 switch(type) {
8430 case LOAD:
8431 rs1[i]=(source[i]>>21)&0x1f;
8432 rs2[i]=0;
8433 rt1[i]=(source[i]>>16)&0x1f;
8434 rt2[i]=0;
8435 imm[i]=(short)source[i];
8436 break;
8437 case STORE:
8438 case STORELR:
8439 rs1[i]=(source[i]>>21)&0x1f;
8440 rs2[i]=(source[i]>>16)&0x1f;
8441 rt1[i]=0;
8442 rt2[i]=0;
8443 imm[i]=(short)source[i];
8444 if(op==0x2c||op==0x2d||op==0x3f) us1[i]=rs2[i]; // 64-bit SDL/SDR/SD
8445 break;
8446 case LOADLR:
8447 // LWL/LWR only load part of the register,
8448 // therefore the target register must be treated as a source too
8449 rs1[i]=(source[i]>>21)&0x1f;
8450 rs2[i]=(source[i]>>16)&0x1f;
8451 rt1[i]=(source[i]>>16)&0x1f;
8452 rt2[i]=0;
8453 imm[i]=(short)source[i];
8454 if(op==0x1a||op==0x1b) us1[i]=rs2[i]; // LDR/LDL
8455 if(op==0x26) dep1[i]=rt1[i]; // LWR
8456 break;
8457 case IMM16:
8458 if (op==0x0f) rs1[i]=0; // LUI instruction has no source register
8459 else rs1[i]=(source[i]>>21)&0x1f;
8460 rs2[i]=0;
8461 rt1[i]=(source[i]>>16)&0x1f;
8462 rt2[i]=0;
8463 if(op>=0x0c&&op<=0x0e) { // ANDI/ORI/XORI
8464 imm[i]=(unsigned short)source[i];
8465 }else{
8466 imm[i]=(short)source[i];
8467 }
8468 if(op==0x18||op==0x19) us1[i]=rs1[i]; // DADDI/DADDIU
8469 if(op==0x0a||op==0x0b) us1[i]=rs1[i]; // SLTI/SLTIU
8470 if(op==0x0d||op==0x0e) dep1[i]=rs1[i]; // ORI/XORI
8471 break;
8472 case UJUMP:
8473 rs1[i]=0;
8474 rs2[i]=0;
8475 rt1[i]=0;
8476 rt2[i]=0;
8477 // The JAL instruction writes to r31.
8478 if (op&1) {
8479 rt1[i]=31;
8480 }
8481 rs2[i]=CCREG;
8482 break;
8483 case RJUMP:
8484 rs1[i]=(source[i]>>21)&0x1f;
8485 rs2[i]=0;
8486 rt1[i]=0;
8487 rt2[i]=0;
5067f341 8488 // The JALR instruction writes to rd.
57871462 8489 if (op2&1) {
5067f341 8490 rt1[i]=(source[i]>>11)&0x1f;
57871462 8491 }
8492 rs2[i]=CCREG;
8493 break;
8494 case CJUMP:
8495 rs1[i]=(source[i]>>21)&0x1f;
8496 rs2[i]=(source[i]>>16)&0x1f;
8497 rt1[i]=0;
8498 rt2[i]=0;
8499 if(op&2) { // BGTZ/BLEZ
8500 rs2[i]=0;
8501 }
8502 us1[i]=rs1[i];
8503 us2[i]=rs2[i];
8504 likely[i]=op>>4;
8505 break;
8506 case SJUMP:
8507 rs1[i]=(source[i]>>21)&0x1f;
8508 rs2[i]=CCREG;
8509 rt1[i]=0;
8510 rt2[i]=0;
8511 us1[i]=rs1[i];
8512 if(op2&0x10) { // BxxAL
8513 rt1[i]=31;
8514 // NOTE: If the branch is not taken, r31 is still overwritten
8515 }
8516 likely[i]=(op2&2)>>1;
8517 break;
8518 case FJUMP:
8519 rs1[i]=FSREG;
8520 rs2[i]=CSREG;
8521 rt1[i]=0;
8522 rt2[i]=0;
8523 likely[i]=((source[i])>>17)&1;
8524 break;
8525 case ALU:
8526 rs1[i]=(source[i]>>21)&0x1f; // source
8527 rs2[i]=(source[i]>>16)&0x1f; // subtract amount
8528 rt1[i]=(source[i]>>11)&0x1f; // destination
8529 rt2[i]=0;
8530 if(op2==0x2a||op2==0x2b) { // SLT/SLTU
8531 us1[i]=rs1[i];us2[i]=rs2[i];
8532 }
8533 else if(op2>=0x24&&op2<=0x27) { // AND/OR/XOR/NOR
8534 dep1[i]=rs1[i];dep2[i]=rs2[i];
8535 }
8536 else if(op2>=0x2c&&op2<=0x2f) { // DADD/DSUB
8537 dep1[i]=rs1[i];dep2[i]=rs2[i];
8538 }
8539 break;
8540 case MULTDIV:
8541 rs1[i]=(source[i]>>21)&0x1f; // source
8542 rs2[i]=(source[i]>>16)&0x1f; // divisor
8543 rt1[i]=HIREG;
8544 rt2[i]=LOREG;
8545 if (op2>=0x1c&&op2<=0x1f) { // DMULT/DMULTU/DDIV/DDIVU
8546 us1[i]=rs1[i];us2[i]=rs2[i];
8547 }
8548 break;
8549 case MOV:
8550 rs1[i]=0;
8551 rs2[i]=0;
8552 rt1[i]=0;
8553 rt2[i]=0;
8554 if(op2==0x10) rs1[i]=HIREG; // MFHI
8555 if(op2==0x11) rt1[i]=HIREG; // MTHI
8556 if(op2==0x12) rs1[i]=LOREG; // MFLO
8557 if(op2==0x13) rt1[i]=LOREG; // MTLO
8558 if((op2&0x1d)==0x10) rt1[i]=(source[i]>>11)&0x1f; // MFxx
8559 if((op2&0x1d)==0x11) rs1[i]=(source[i]>>21)&0x1f; // MTxx
8560 dep1[i]=rs1[i];
8561 break;
8562 case SHIFT:
8563 rs1[i]=(source[i]>>16)&0x1f; // target of shift
8564 rs2[i]=(source[i]>>21)&0x1f; // shift amount
8565 rt1[i]=(source[i]>>11)&0x1f; // destination
8566 rt2[i]=0;
8567 // DSLLV/DSRLV/DSRAV are 64-bit
8568 if(op2>=0x14&&op2<=0x17) us1[i]=rs1[i];
8569 break;
8570 case SHIFTIMM:
8571 rs1[i]=(source[i]>>16)&0x1f;
8572 rs2[i]=0;
8573 rt1[i]=(source[i]>>11)&0x1f;
8574 rt2[i]=0;
8575 imm[i]=(source[i]>>6)&0x1f;
8576 // DSxx32 instructions
8577 if(op2>=0x3c) imm[i]|=0x20;
8578 // DSLL/DSRL/DSRA/DSRA32/DSRL32 but not DSLL32 require 64-bit source
8579 if(op2>=0x38&&op2!=0x3c) us1[i]=rs1[i];
8580 break;
8581 case COP0:
8582 rs1[i]=0;
8583 rs2[i]=0;
8584 rt1[i]=0;
8585 rt2[i]=0;
8586 if(op2==0) rt1[i]=(source[i]>>16)&0x1F; // MFC0
8587 if(op2==4) rs1[i]=(source[i]>>16)&0x1F; // MTC0
8588 if(op2==4&&((source[i]>>11)&0x1f)==12) rt2[i]=CSREG; // Status
8589 if(op2==16) if((source[i]&0x3f)==0x18) rs2[i]=CCREG; // ERET
8590 break;
8591 case COP1:
8592 rs1[i]=0;
8593 rs2[i]=0;
8594 rt1[i]=0;
8595 rt2[i]=0;
8596 if(op2<3) rt1[i]=(source[i]>>16)&0x1F; // MFC1/DMFC1/CFC1
8597 if(op2>3) rs1[i]=(source[i]>>16)&0x1F; // MTC1/DMTC1/CTC1
8598 if(op2==5) us1[i]=rs1[i]; // DMTC1
8599 rs2[i]=CSREG;
8600 break;
bedfea38 8601 case COP2:
8602 rs1[i]=0;
8603 rs2[i]=0;
8604 rt1[i]=0;
8605 rt2[i]=0;
8606 if(op2<3) rt1[i]=(source[i]>>16)&0x1F; // MFC2/CFC2
8607 if(op2>3) rs1[i]=(source[i]>>16)&0x1F; // MTC2/CTC2
8608 rs2[i]=CSREG;
8609 int gr=(source[i]>>11)&0x1F;
8610 switch(op2)
8611 {
8612 case 0x00: gte_rs[i]=1ll<<gr; break; // MFC2
8613 case 0x04: gte_rt[i]=1ll<<gr; break; // MTC2
8614 case 0x02: gte_rs[i]=1ll<<(gr+32); // CFC2
8615 if(gr==31&&!gte_reads_flags) {
d3f3bf09 8616 assem_debug("gte flag read encountered @%08x\n",addr + i*4);
bedfea38 8617 gte_reads_flags=1;
8618 }
8619 break;
8620 case 0x06: gte_rt[i]=1ll<<(gr+32); break; // CTC2
8621 }
8622 break;
57871462 8623 case C1LS:
8624 rs1[i]=(source[i]>>21)&0x1F;
8625 rs2[i]=CSREG;
8626 rt1[i]=0;
8627 rt2[i]=0;
8628 imm[i]=(short)source[i];
8629 break;
b9b61529 8630 case C2LS:
8631 rs1[i]=(source[i]>>21)&0x1F;
8632 rs2[i]=0;
8633 rt1[i]=0;
8634 rt2[i]=0;
8635 imm[i]=(short)source[i];
bedfea38 8636 if(op==0x32) gte_rt[i]=1ll<<((source[i]>>16)&0x1F); // LWC2
8637 else gte_rs[i]=1ll<<((source[i]>>16)&0x1F); // SWC2
8638 break;
8639 case C2OP:
8640 rs1[i]=0;
8641 rs2[i]=0;
8642 rt1[i]=0;
8643 rt2[i]=0;
8644 gte_rt[i]=1ll<<63; // every op changes flags
8645 // TODO: other regs?
b9b61529 8646 break;
57871462 8647 case FLOAT:
8648 case FCONV:
8649 rs1[i]=0;
8650 rs2[i]=CSREG;
8651 rt1[i]=0;
8652 rt2[i]=0;
8653 break;
8654 case FCOMP:
8655 rs1[i]=FSREG;
8656 rs2[i]=CSREG;
8657 rt1[i]=FSREG;
8658 rt2[i]=0;
8659 break;
8660 case SYSCALL:
7139f3c8 8661 case HLECALL:
1e973cb0 8662 case INTCALL:
57871462 8663 rs1[i]=CCREG;
8664 rs2[i]=0;
8665 rt1[i]=0;
8666 rt2[i]=0;
8667 break;
8668 default:
8669 rs1[i]=0;
8670 rs2[i]=0;
8671 rt1[i]=0;
8672 rt2[i]=0;
8673 }
8674 /* Calculate branch target addresses */
8675 if(type==UJUMP)
8676 ba[i]=((start+i*4+4)&0xF0000000)|(((unsigned int)source[i]<<6)>>4);
8677 else if(type==CJUMP&&rs1[i]==rs2[i]&&(op&1))
8678 ba[i]=start+i*4+8; // Ignore never taken branch
8679 else if(type==SJUMP&&rs1[i]==0&&!(op2&1))
8680 ba[i]=start+i*4+8; // Ignore never taken branch
8681 else if(type==CJUMP||type==SJUMP||type==FJUMP)
8682 ba[i]=start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14);
8683 else ba[i]=-1;
26869094 8684#ifdef PCSX
3e535354 8685 if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)) {
8686 int do_in_intrp=0;
8687 // branch in delay slot?
8688 if(type==RJUMP||type==UJUMP||type==CJUMP||type==SJUMP||type==FJUMP) {
8689 // don't handle first branch and call interpreter if it's hit
8690 printf("branch in delay slot @%08x (%08x)\n", addr + i*4, addr);
8691 do_in_intrp=1;
8692 }
8693 // basic load delay detection
8694 else if((type==LOAD||type==LOADLR||type==COP0||type==COP2||type==C2LS)&&rt1[i]!=0) {
8695 int t=(ba[i-1]-start)/4;
8696 if(0 <= t && t < i &&(rt1[i]==rs1[t]||rt1[i]==rs2[t])&&itype[t]!=CJUMP&&itype[t]!=SJUMP) {
8697 // jump target wants DS result - potential load delay effect
8698 printf("load delay @%08x (%08x)\n", addr + i*4, addr);
8699 do_in_intrp=1;
8700 bt[t+1]=1; // expected return from interpreter
8701 }
8702 else if(i>=2&&rt1[i-2]==2&&rt1[i]==2&&rs1[i]!=2&&rs2[i]!=2&&rs1[i-1]!=2&&rs2[i-1]!=2&&
8703 !(i>=3&&(itype[i-3]==RJUMP||itype[i-3]==UJUMP||itype[i-3]==CJUMP||itype[i-3]==SJUMP))) {
8704 // v0 overwrite like this is a sign of trouble, bail out
8705 printf("v0 overwrite @%08x (%08x)\n", addr + i*4, addr);
8706 do_in_intrp=1;
8707 }
8708 }
3e535354 8709 if(do_in_intrp) {
8710 rs1[i-1]=CCREG;
8711 rs2[i-1]=rt1[i-1]=rt2[i-1]=0;
26869094 8712 ba[i-1]=-1;
8713 itype[i-1]=INTCALL;
8714 done=2;
3e535354 8715 i--; // don't compile the DS
26869094 8716 }
3e535354 8717 }
26869094 8718#endif
3e535354 8719 /* Is this the end of the block? */
8720 if(i>0&&(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)) {
5067f341 8721 if(rt1[i-1]==0) { // Continue past subroutine call (JAL)
1e973cb0 8722 done=2;
57871462 8723 }
8724 else {
8725 if(stop_after_jal) done=1;
8726 // Stop on BREAK
8727 if((source[i+1]&0xfc00003f)==0x0d) done=1;
8728 }
8729 // Don't recompile stuff that's already compiled
8730 if(check_addr(start+i*4+4)) done=1;
8731 // Don't get too close to the limit
8732 if(i>MAXBLOCK/2) done=1;
8733 }
75dec299 8734 if(itype[i]==SYSCALL&&stop_after_jal) done=1;
1e973cb0 8735 if(itype[i]==HLECALL||itype[i]==INTCALL) done=2;
8736 if(done==2) {
8737 // Does the block continue due to a branch?
8738 for(j=i-1;j>=0;j--)
8739 {
2a706964 8740 if(ba[j]==start+i*4) done=j=0; // Branch into delay slot
1e973cb0 8741 if(ba[j]==start+i*4+4) done=j=0;
8742 if(ba[j]==start+i*4+8) done=j=0;
8743 }
8744 }
75dec299 8745 //assert(i<MAXBLOCK-1);
57871462 8746 if(start+i*4==pagelimit-4) done=1;
8747 assert(start+i*4<pagelimit);
8748 if (i==MAXBLOCK-1) done=1;
8749 // Stop if we're compiling junk
8750 if(itype[i]==NI&&opcode[i]==0x11) {
8751 done=stop_after_jal=1;
8752 printf("Disabled speculative precompilation\n");
8753 }
8754 }
8755 slen=i;
8756 if(itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==RJUMP||itype[i-1]==FJUMP) {
8757 if(start+i*4==pagelimit) {
8758 itype[i-1]=SPAN;
8759 }
8760 }
8761 assert(slen>0);
8762
8763 /* Pass 2 - Register dependencies and branch targets */
8764
8765 unneeded_registers(0,slen-1,0);
8766
8767 /* Pass 3 - Register allocation */
8768
8769 struct regstat current; // Current register allocations/status
8770 current.is32=1;
8771 current.dirty=0;
8772 current.u=unneeded_reg[0];
8773 current.uu=unneeded_reg_upper[0];
8774 clear_all_regs(current.regmap);
8775 alloc_reg(&current,0,CCREG);
8776 dirty_reg(&current,CCREG);
8777 current.isconst=0;
8778 current.wasconst=0;
8779 int ds=0;
8780 int cc=0;
5194fb95 8781 int hr=-1;
6ebf4adf 8782
8783#ifndef FORCE32
57871462 8784 provisional_32bit();
6ebf4adf 8785#endif
57871462 8786 if((u_int)addr&1) {
8787 // First instruction is delay slot
8788 cc=-1;
8789 bt[1]=1;
8790 ds=1;
8791 unneeded_reg[0]=1;
8792 unneeded_reg_upper[0]=1;
8793 current.regmap[HOST_BTREG]=BTREG;
8794 }
8795
8796 for(i=0;i<slen;i++)
8797 {
8798 if(bt[i])
8799 {
8800 int hr;
8801 for(hr=0;hr<HOST_REGS;hr++)
8802 {
8803 // Is this really necessary?
8804 if(current.regmap[hr]==0) current.regmap[hr]=-1;
8805 }
8806 current.isconst=0;
8807 }
8808 if(i>1)
8809 {
8810 if((opcode[i-2]&0x2f)==0x05) // BNE/BNEL
8811 {
8812 if(rs1[i-2]==0||rs2[i-2]==0)
8813 {
8814 if(rs1[i-2]) {
8815 current.is32|=1LL<<rs1[i-2];
8816 int hr=get_reg(current.regmap,rs1[i-2]|64);
8817 if(hr>=0) current.regmap[hr]=-1;
8818 }
8819 if(rs2[i-2]) {
8820 current.is32|=1LL<<rs2[i-2];
8821 int hr=get_reg(current.regmap,rs2[i-2]|64);
8822 if(hr>=0) current.regmap[hr]=-1;
8823 }
8824 }
8825 }
8826 }
6ebf4adf 8827#ifndef FORCE32
57871462 8828 // If something jumps here with 64-bit values
8829 // then promote those registers to 64 bits
8830 if(bt[i])
8831 {
8832 uint64_t temp_is32=current.is32;
8833 for(j=i-1;j>=0;j--)
8834 {
8835 if(ba[j]==start+i*4)
8836 temp_is32&=branch_regs[j].is32;
8837 }
8838 for(j=i;j<slen;j++)
8839 {
8840 if(ba[j]==start+i*4)
8841 //temp_is32=1;
8842 temp_is32&=p32[j];
8843 }
8844 if(temp_is32!=current.is32) {
8845 //printf("dumping 32-bit regs (%x)\n",start+i*4);
311301dc 8846 #ifndef DESTRUCTIVE_WRITEBACK
8847 if(ds)
8848 #endif
57871462 8849 for(hr=0;hr<HOST_REGS;hr++)
8850 {
8851 int r=current.regmap[hr];
8852 if(r>0&&r<64)
8853 {
8854 if((current.dirty>>hr)&((current.is32&~temp_is32)>>r)&1) {
8855 temp_is32|=1LL<<r;
8856 //printf("restore %d\n",r);
8857 }
8858 }
8859 }
57871462 8860 current.is32=temp_is32;
8861 }
8862 }
6ebf4adf 8863#else
24385cae 8864 current.is32=-1LL;
8865#endif
8866
57871462 8867 memcpy(regmap_pre[i],current.regmap,sizeof(current.regmap));
8868 regs[i].wasconst=current.isconst;
8869 regs[i].was32=current.is32;
8870 regs[i].wasdirty=current.dirty;
6ebf4adf 8871 #if defined(DESTRUCTIVE_WRITEBACK) && !defined(FORCE32)
57871462 8872 // To change a dirty register from 32 to 64 bits, we must write
8873 // it out during the previous cycle (for branches, 2 cycles)
8874 if(i<slen-1&&bt[i+1]&&itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP)
8875 {
8876 uint64_t temp_is32=current.is32;
8877 for(j=i-1;j>=0;j--)
8878 {
8879 if(ba[j]==start+i*4+4)
8880 temp_is32&=branch_regs[j].is32;
8881 }
8882 for(j=i;j<slen;j++)
8883 {
8884 if(ba[j]==start+i*4+4)
8885 //temp_is32=1;
8886 temp_is32&=p32[j];
8887 }
8888 if(temp_is32!=current.is32) {
8889 //printf("pre-dumping 32-bit regs (%x)\n",start+i*4);
8890 for(hr=0;hr<HOST_REGS;hr++)
8891 {
8892 int r=current.regmap[hr];
8893 if(r>0)
8894 {
8895 if((current.dirty>>hr)&((current.is32&~temp_is32)>>(r&63))&1) {
8896 if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP)
8897 {
8898 if(rs1[i]!=(r&63)&&rs2[i]!=(r&63))
8899 {
8900 //printf("dump %d/r%d\n",hr,r);
8901 current.regmap[hr]=-1;
8902 if(get_reg(current.regmap,r|64)>=0)
8903 current.regmap[get_reg(current.regmap,r|64)]=-1;
8904 }
8905 }
8906 }
8907 }
8908 }
8909 }
8910 }
8911 else if(i<slen-2&&bt[i+2]&&(source[i-1]>>16)!=0x1000&&(itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP))
8912 {
8913 uint64_t temp_is32=current.is32;
8914 for(j=i-1;j>=0;j--)
8915 {
8916 if(ba[j]==start+i*4+8)
8917 temp_is32&=branch_regs[j].is32;
8918 }
8919 for(j=i;j<slen;j++)
8920 {
8921 if(ba[j]==start+i*4+8)
8922 //temp_is32=1;
8923 temp_is32&=p32[j];
8924 }
8925 if(temp_is32!=current.is32) {
8926 //printf("pre-dumping 32-bit regs (%x)\n",start+i*4);
8927 for(hr=0;hr<HOST_REGS;hr++)
8928 {
8929 int r=current.regmap[hr];
8930 if(r>0)
8931 {
8932 if((current.dirty>>hr)&((current.is32&~temp_is32)>>(r&63))&1) {
8933 if(rs1[i]!=(r&63)&&rs2[i]!=(r&63)&&rs1[i+1]!=(r&63)&&rs2[i+1]!=(r&63))
8934 {
8935 //printf("dump %d/r%d\n",hr,r);
8936 current.regmap[hr]=-1;
8937 if(get_reg(current.regmap,r|64)>=0)
8938 current.regmap[get_reg(current.regmap,r|64)]=-1;
8939 }
8940 }
8941 }
8942 }
8943 }
8944 }
8945 #endif
8946 if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP) {
8947 if(i+1<slen) {
8948 current.u=unneeded_reg[i+1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
8949 current.uu=unneeded_reg_upper[i+1]&~((1LL<<us1[i])|(1LL<<us2[i]));
8950 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
8951 current.u|=1;
8952 current.uu|=1;
8953 } else {
8954 current.u=1;
8955 current.uu=1;
8956 }
8957 } else {
8958 if(i+1<slen) {
8959 current.u=branch_unneeded_reg[i]&~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
8960 current.uu=branch_unneeded_reg_upper[i]&~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
8961 if((~current.uu>>rt1[i+1])&1) current.uu&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
8962 current.u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
8963 current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
8964 current.u|=1;
8965 current.uu|=1;
8966 } else { printf("oops, branch at end of block with no delay slot\n");exit(1); }
8967 }
8968 is_ds[i]=ds;
8969 if(ds) {
8970 ds=0; // Skip delay slot, already allocated as part of branch
8971 // ...but we need to alloc it in case something jumps here
8972 if(i+1<slen) {
8973 current.u=branch_unneeded_reg[i-1]&unneeded_reg[i+1];
8974 current.uu=branch_unneeded_reg_upper[i-1]&unneeded_reg_upper[i+1];
8975 }else{
8976 current.u=branch_unneeded_reg[i-1];
8977 current.uu=branch_unneeded_reg_upper[i-1];
8978 }
8979 current.u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
8980 current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
8981 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
8982 current.u|=1;
8983 current.uu|=1;
8984 struct regstat temp;
8985 memcpy(&temp,&current,sizeof(current));
8986 temp.wasdirty=temp.dirty;
8987 temp.was32=temp.is32;
8988 // TODO: Take into account unconditional branches, as below
8989 delayslot_alloc(&temp,i);
8990 memcpy(regs[i].regmap,temp.regmap,sizeof(temp.regmap));
8991 regs[i].wasdirty=temp.wasdirty;
8992 regs[i].was32=temp.was32;
8993 regs[i].dirty=temp.dirty;
8994 regs[i].is32=temp.is32;
8995 regs[i].isconst=0;
8996 regs[i].wasconst=0;
8997 current.isconst=0;
8998 // Create entry (branch target) regmap
8999 for(hr=0;hr<HOST_REGS;hr++)
9000 {
9001 int r=temp.regmap[hr];
9002 if(r>=0) {
9003 if(r!=regmap_pre[i][hr]) {
9004 regs[i].regmap_entry[hr]=-1;
9005 }
9006 else
9007 {
9008 if(r<64){
9009 if((current.u>>r)&1) {
9010 regs[i].regmap_entry[hr]=-1;
9011 regs[i].regmap[hr]=-1;
9012 //Don't clear regs in the delay slot as the branch might need them
9013 //current.regmap[hr]=-1;
9014 }else
9015 regs[i].regmap_entry[hr]=r;
9016 }
9017 else {
9018 if((current.uu>>(r&63))&1) {
9019 regs[i].regmap_entry[hr]=-1;
9020 regs[i].regmap[hr]=-1;
9021 //Don't clear regs in the delay slot as the branch might need them
9022 //current.regmap[hr]=-1;
9023 }else
9024 regs[i].regmap_entry[hr]=r;
9025 }
9026 }
9027 } else {
9028 // First instruction expects CCREG to be allocated
9029 if(i==0&&hr==HOST_CCREG)
9030 regs[i].regmap_entry[hr]=CCREG;
9031 else
9032 regs[i].regmap_entry[hr]=-1;
9033 }
9034 }
9035 }
9036 else { // Not delay slot
9037 switch(itype[i]) {
9038 case UJUMP:
9039 //current.isconst=0; // DEBUG
9040 //current.wasconst=0; // DEBUG
9041 //regs[i].wasconst=0; // DEBUG
9042 clear_const(&current,rt1[i]);
9043 alloc_cc(&current,i);
9044 dirty_reg(&current,CCREG);
9045 if (rt1[i]==31) {
9046 alloc_reg(&current,i,31);
9047 dirty_reg(&current,31);
4ef8f67d 9048 //assert(rs1[i+1]!=31&&rs2[i+1]!=31);
9049 //assert(rt1[i+1]!=rt1[i]);
57871462 9050 #ifdef REG_PREFETCH
9051 alloc_reg(&current,i,PTEMP);
9052 #endif
9053 //current.is32|=1LL<<rt1[i];
9054 }
269bb29a 9055 ooo[i]=1;
9056 delayslot_alloc(&current,i+1);
57871462 9057 //current.isconst=0; // DEBUG
9058 ds=1;
9059 //printf("i=%d, isconst=%x\n",i,current.isconst);
9060 break;
9061 case RJUMP:
9062 //current.isconst=0;
9063 //current.wasconst=0;
9064 //regs[i].wasconst=0;
9065 clear_const(&current,rs1[i]);
9066 clear_const(&current,rt1[i]);
9067 alloc_cc(&current,i);
9068 dirty_reg(&current,CCREG);
9069 if(rs1[i]!=rt1[i+1]&&rs1[i]!=rt2[i+1]) {
9070 alloc_reg(&current,i,rs1[i]);
5067f341 9071 if (rt1[i]!=0) {
9072 alloc_reg(&current,i,rt1[i]);
9073 dirty_reg(&current,rt1[i]);
68b3faee 9074 assert(rs1[i+1]!=rt1[i]&&rs2[i+1]!=rt1[i]);
076655d1 9075 assert(rt1[i+1]!=rt1[i]);
57871462 9076 #ifdef REG_PREFETCH
9077 alloc_reg(&current,i,PTEMP);
9078 #endif
9079 }
9080 #ifdef USE_MINI_HT
9081 if(rs1[i]==31) { // JALR
9082 alloc_reg(&current,i,RHASH);
9083 #ifndef HOST_IMM_ADDR32
9084 alloc_reg(&current,i,RHTBL);
9085 #endif
9086 }
9087 #endif
9088 delayslot_alloc(&current,i+1);
9089 } else {
9090 // The delay slot overwrites our source register,
9091 // allocate a temporary register to hold the old value.
9092 current.isconst=0;
9093 current.wasconst=0;
9094 regs[i].wasconst=0;
9095 delayslot_alloc(&current,i+1);
9096 current.isconst=0;
9097 alloc_reg(&current,i,RTEMP);
9098 }
9099 //current.isconst=0; // DEBUG
e1190b87 9100 ooo[i]=1;
57871462 9101 ds=1;
9102 break;
9103 case CJUMP:
9104 //current.isconst=0;
9105 //current.wasconst=0;
9106 //regs[i].wasconst=0;
9107 clear_const(&current,rs1[i]);
9108 clear_const(&current,rs2[i]);
9109 if((opcode[i]&0x3E)==4) // BEQ/BNE
9110 {
9111 alloc_cc(&current,i);
9112 dirty_reg(&current,CCREG);
9113 if(rs1[i]) alloc_reg(&current,i,rs1[i]);
9114 if(rs2[i]) alloc_reg(&current,i,rs2[i]);
9115 if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
9116 {
9117 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
9118 if(rs2[i]) alloc_reg64(&current,i,rs2[i]);
9119 }
9120 if((rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]))||
9121 (rs2[i]&&(rs2[i]==rt1[i+1]||rs2[i]==rt2[i+1]))) {
9122 // The delay slot overwrites one of our conditions.
9123 // Allocate the branch condition registers instead.
57871462 9124 current.isconst=0;
9125 current.wasconst=0;
9126 regs[i].wasconst=0;
9127 if(rs1[i]) alloc_reg(&current,i,rs1[i]);
9128 if(rs2[i]) alloc_reg(&current,i,rs2[i]);
9129 if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
9130 {
9131 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
9132 if(rs2[i]) alloc_reg64(&current,i,rs2[i]);
9133 }
9134 }
e1190b87 9135 else
9136 {
9137 ooo[i]=1;
9138 delayslot_alloc(&current,i+1);
9139 }
57871462 9140 }
9141 else
9142 if((opcode[i]&0x3E)==6) // BLEZ/BGTZ
9143 {
9144 alloc_cc(&current,i);
9145 dirty_reg(&current,CCREG);
9146 alloc_reg(&current,i,rs1[i]);
9147 if(!(current.is32>>rs1[i]&1))
9148 {
9149 alloc_reg64(&current,i,rs1[i]);
9150 }
9151 if(rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1])) {
9152 // The delay slot overwrites one of our conditions.
9153 // Allocate the branch condition registers instead.
57871462 9154 current.isconst=0;
9155 current.wasconst=0;
9156 regs[i].wasconst=0;
9157 if(rs1[i]) alloc_reg(&current,i,rs1[i]);
9158 if(!((current.is32>>rs1[i])&1))
9159 {
9160 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
9161 }
9162 }
e1190b87 9163 else
9164 {
9165 ooo[i]=1;
9166 delayslot_alloc(&current,i+1);
9167 }
57871462 9168 }
9169 else
9170 // Don't alloc the delay slot yet because we might not execute it
9171 if((opcode[i]&0x3E)==0x14) // BEQL/BNEL
9172 {
9173 current.isconst=0;
9174 current.wasconst=0;
9175 regs[i].wasconst=0;
9176 alloc_cc(&current,i);
9177 dirty_reg(&current,CCREG);
9178 alloc_reg(&current,i,rs1[i]);
9179 alloc_reg(&current,i,rs2[i]);
9180 if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
9181 {
9182 alloc_reg64(&current,i,rs1[i]);
9183 alloc_reg64(&current,i,rs2[i]);
9184 }
9185 }
9186 else
9187 if((opcode[i]&0x3E)==0x16) // BLEZL/BGTZL
9188 {
9189 current.isconst=0;
9190 current.wasconst=0;
9191 regs[i].wasconst=0;
9192 alloc_cc(&current,i);
9193 dirty_reg(&current,CCREG);
9194 alloc_reg(&current,i,rs1[i]);
9195 if(!(current.is32>>rs1[i]&1))
9196 {
9197 alloc_reg64(&current,i,rs1[i]);
9198 }
9199 }
9200 ds=1;
9201 //current.isconst=0;
9202 break;
9203 case SJUMP:
9204 //current.isconst=0;
9205 //current.wasconst=0;
9206 //regs[i].wasconst=0;
9207 clear_const(&current,rs1[i]);
9208 clear_const(&current,rt1[i]);
9209 //if((opcode2[i]&0x1E)==0x0) // BLTZ/BGEZ
9210 if((opcode2[i]&0x0E)==0x0) // BLTZ/BGEZ
9211 {
9212 alloc_cc(&current,i);
9213 dirty_reg(&current,CCREG);
9214 alloc_reg(&current,i,rs1[i]);
9215 if(!(current.is32>>rs1[i]&1))
9216 {
9217 alloc_reg64(&current,i,rs1[i]);
9218 }
9219 if (rt1[i]==31) { // BLTZAL/BGEZAL
9220 alloc_reg(&current,i,31);
9221 dirty_reg(&current,31);
57871462 9222 //#ifdef REG_PREFETCH
9223 //alloc_reg(&current,i,PTEMP);
9224 //#endif
9225 //current.is32|=1LL<<rt1[i];
9226 }
e1190b87 9227 if((rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1])) // The delay slot overwrites the branch condition.
9228 ||(rt1[i]==31&&(rs1[i+1]==31||rs2[i+1]==31||rt1[i+1]==31||rt2[i+1]==31))) { // DS touches $ra
57871462 9229 // Allocate the branch condition registers instead.
57871462 9230 current.isconst=0;
9231 current.wasconst=0;
9232 regs[i].wasconst=0;
9233 if(rs1[i]) alloc_reg(&current,i,rs1[i]);
9234 if(!((current.is32>>rs1[i])&1))
9235 {
9236 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
9237 }
9238 }
e1190b87 9239 else
9240 {
9241 ooo[i]=1;
9242 delayslot_alloc(&current,i+1);
9243 }
57871462 9244 }
9245 else
9246 // Don't alloc the delay slot yet because we might not execute it
9247 if((opcode2[i]&0x1E)==0x2) // BLTZL/BGEZL
9248 {
9249 current.isconst=0;
9250 current.wasconst=0;
9251 regs[i].wasconst=0;
9252 alloc_cc(&current,i);
9253 dirty_reg(&current,CCREG);
9254 alloc_reg(&current,i,rs1[i]);
9255 if(!(current.is32>>rs1[i]&1))
9256 {
9257 alloc_reg64(&current,i,rs1[i]);
9258 }
9259 }
9260 ds=1;
9261 //current.isconst=0;
9262 break;
9263 case FJUMP:
9264 current.isconst=0;
9265 current.wasconst=0;
9266 regs[i].wasconst=0;
9267 if(likely[i]==0) // BC1F/BC1T
9268 {
9269 // TODO: Theoretically we can run out of registers here on x86.
9270 // The delay slot can allocate up to six, and we need to check
9271 // CSREG before executing the delay slot. Possibly we can drop
9272 // the cycle count and then reload it after checking that the
9273 // FPU is in a usable state, or don't do out-of-order execution.
9274 alloc_cc(&current,i);
9275 dirty_reg(&current,CCREG);
9276 alloc_reg(&current,i,FSREG);
9277 alloc_reg(&current,i,CSREG);
9278 if(itype[i+1]==FCOMP) {
9279 // The delay slot overwrites the branch condition.
9280 // Allocate the branch condition registers instead.
57871462 9281 alloc_cc(&current,i);
9282 dirty_reg(&current,CCREG);
9283 alloc_reg(&current,i,CSREG);
9284 alloc_reg(&current,i,FSREG);
9285 }
9286 else {
e1190b87 9287 ooo[i]=1;
57871462 9288 delayslot_alloc(&current,i+1);
9289 alloc_reg(&current,i+1,CSREG);
9290 }
9291 }
9292 else
9293 // Don't alloc the delay slot yet because we might not execute it
9294 if(likely[i]) // BC1FL/BC1TL
9295 {
9296 alloc_cc(&current,i);
9297 dirty_reg(&current,CCREG);
9298 alloc_reg(&current,i,CSREG);
9299 alloc_reg(&current,i,FSREG);
9300 }
9301 ds=1;
9302 current.isconst=0;
9303 break;
9304 case IMM16:
9305 imm16_alloc(&current,i);
9306 break;
9307 case LOAD:
9308 case LOADLR:
9309 load_alloc(&current,i);
9310 break;
9311 case STORE:
9312 case STORELR:
9313 store_alloc(&current,i);
9314 break;
9315 case ALU:
9316 alu_alloc(&current,i);
9317 break;
9318 case SHIFT:
9319 shift_alloc(&current,i);
9320 break;
9321 case MULTDIV:
9322 multdiv_alloc(&current,i);
9323 break;
9324 case SHIFTIMM:
9325 shiftimm_alloc(&current,i);
9326 break;
9327 case MOV:
9328 mov_alloc(&current,i);
9329 break;
9330 case COP0:
9331 cop0_alloc(&current,i);
9332 break;
9333 case COP1:
b9b61529 9334 case COP2:
57871462 9335 cop1_alloc(&current,i);
9336 break;
9337 case C1LS:
9338 c1ls_alloc(&current,i);
9339 break;
b9b61529 9340 case C2LS:
9341 c2ls_alloc(&current,i);
9342 break;
9343 case C2OP:
9344 c2op_alloc(&current,i);
9345 break;
57871462 9346 case FCONV:
9347 fconv_alloc(&current,i);
9348 break;
9349 case FLOAT:
9350 float_alloc(&current,i);
9351 break;
9352 case FCOMP:
9353 fcomp_alloc(&current,i);
9354 break;
9355 case SYSCALL:
7139f3c8 9356 case HLECALL:
1e973cb0 9357 case INTCALL:
57871462 9358 syscall_alloc(&current,i);
9359 break;
9360 case SPAN:
9361 pagespan_alloc(&current,i);
9362 break;
9363 }
9364
9365 // Drop the upper half of registers that have become 32-bit
9366 current.uu|=current.is32&((1LL<<rt1[i])|(1LL<<rt2[i]));
9367 if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP) {
9368 current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
9369 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9370 current.uu|=1;
9371 } else {
9372 current.uu|=current.is32&((1LL<<rt1[i+1])|(1LL<<rt2[i+1]));
9373 current.uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
9374 if((~current.uu>>rt1[i+1])&1) current.uu&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
9375 current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
9376 current.uu|=1;
9377 }
9378
9379 // Create entry (branch target) regmap
9380 for(hr=0;hr<HOST_REGS;hr++)
9381 {
9382 int r,or,er;
9383 r=current.regmap[hr];
9384 if(r>=0) {
9385 if(r!=regmap_pre[i][hr]) {
9386 // TODO: delay slot (?)
9387 or=get_reg(regmap_pre[i],r); // Get old mapping for this register
9388 if(or<0||(r&63)>=TEMPREG){
9389 regs[i].regmap_entry[hr]=-1;
9390 }
9391 else
9392 {
9393 // Just move it to a different register
9394 regs[i].regmap_entry[hr]=r;
9395 // If it was dirty before, it's still dirty
9396 if((regs[i].wasdirty>>or)&1) dirty_reg(&current,r&63);
9397 }
9398 }
9399 else
9400 {
9401 // Unneeded
9402 if(r==0){
9403 regs[i].regmap_entry[hr]=0;
9404 }
9405 else
9406 if(r<64){
9407 if((current.u>>r)&1) {
9408 regs[i].regmap_entry[hr]=-1;
9409 //regs[i].regmap[hr]=-1;
9410 current.regmap[hr]=-1;
9411 }else
9412 regs[i].regmap_entry[hr]=r;
9413 }
9414 else {
9415 if((current.uu>>(r&63))&1) {
9416 regs[i].regmap_entry[hr]=-1;
9417 //regs[i].regmap[hr]=-1;
9418 current.regmap[hr]=-1;
9419 }else
9420 regs[i].regmap_entry[hr]=r;
9421 }
9422 }
9423 } else {
9424 // Branches expect CCREG to be allocated at the target
9425 if(regmap_pre[i][hr]==CCREG)
9426 regs[i].regmap_entry[hr]=CCREG;
9427 else
9428 regs[i].regmap_entry[hr]=-1;
9429 }
9430 }
9431 memcpy(regs[i].regmap,current.regmap,sizeof(current.regmap));
9432 }
9433 /* Branch post-alloc */
9434 if(i>0)
9435 {
9436 current.was32=current.is32;
9437 current.wasdirty=current.dirty;
9438 switch(itype[i-1]) {
9439 case UJUMP:
9440 memcpy(&branch_regs[i-1],&current,sizeof(current));
9441 branch_regs[i-1].isconst=0;
9442 branch_regs[i-1].wasconst=0;
9443 branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
9444 branch_regs[i-1].uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
9445 alloc_cc(&branch_regs[i-1],i-1);
9446 dirty_reg(&branch_regs[i-1],CCREG);
9447 if(rt1[i-1]==31) { // JAL
9448 alloc_reg(&branch_regs[i-1],i-1,31);
9449 dirty_reg(&branch_regs[i-1],31);
9450 branch_regs[i-1].is32|=1LL<<31;
9451 }
9452 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9453 memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9454 break;
9455 case RJUMP:
9456 memcpy(&branch_regs[i-1],&current,sizeof(current));
9457 branch_regs[i-1].isconst=0;
9458 branch_regs[i-1].wasconst=0;
9459 branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
9460 branch_regs[i-1].uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
9461 alloc_cc(&branch_regs[i-1],i-1);
9462 dirty_reg(&branch_regs[i-1],CCREG);
9463 alloc_reg(&branch_regs[i-1],i-1,rs1[i-1]);
5067f341 9464 if(rt1[i-1]!=0) { // JALR
9465 alloc_reg(&branch_regs[i-1],i-1,rt1[i-1]);
9466 dirty_reg(&branch_regs[i-1],rt1[i-1]);
9467 branch_regs[i-1].is32|=1LL<<rt1[i-1];
57871462 9468 }
9469 #ifdef USE_MINI_HT
9470 if(rs1[i-1]==31) { // JALR
9471 alloc_reg(&branch_regs[i-1],i-1,RHASH);
9472 #ifndef HOST_IMM_ADDR32
9473 alloc_reg(&branch_regs[i-1],i-1,RHTBL);
9474 #endif
9475 }
9476 #endif
9477 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9478 memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9479 break;
9480 case CJUMP:
9481 if((opcode[i-1]&0x3E)==4) // BEQ/BNE
9482 {
9483 alloc_cc(&current,i-1);
9484 dirty_reg(&current,CCREG);
9485 if((rs1[i-1]&&(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]))||
9486 (rs2[i-1]&&(rs2[i-1]==rt1[i]||rs2[i-1]==rt2[i]))) {
9487 // The delay slot overwrote one of our conditions
9488 // Delay slot goes after the test (in order)
9489 current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
9490 current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
9491 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9492 current.u|=1;
9493 current.uu|=1;
9494 delayslot_alloc(&current,i);
9495 current.isconst=0;
9496 }
9497 else
9498 {
9499 current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
9500 current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
9501 // Alloc the branch condition registers
9502 if(rs1[i-1]) alloc_reg(&current,i-1,rs1[i-1]);
9503 if(rs2[i-1]) alloc_reg(&current,i-1,rs2[i-1]);
9504 if(!((current.is32>>rs1[i-1])&(current.is32>>rs2[i-1])&1))
9505 {
9506 if(rs1[i-1]) alloc_reg64(&current,i-1,rs1[i-1]);
9507 if(rs2[i-1]) alloc_reg64(&current,i-1,rs2[i-1]);
9508 }
9509 }
9510 memcpy(&branch_regs[i-1],&current,sizeof(current));
9511 branch_regs[i-1].isconst=0;
9512 branch_regs[i-1].wasconst=0;
9513 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9514 memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9515 }
9516 else
9517 if((opcode[i-1]&0x3E)==6) // BLEZ/BGTZ
9518 {
9519 alloc_cc(&current,i-1);
9520 dirty_reg(&current,CCREG);
9521 if(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]) {
9522 // The delay slot overwrote the branch condition
9523 // Delay slot goes after the test (in order)
9524 current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
9525 current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
9526 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9527 current.u|=1;
9528 current.uu|=1;
9529 delayslot_alloc(&current,i);
9530 current.isconst=0;
9531 }
9532 else
9533 {
9534 current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
9535 current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
9536 // Alloc the branch condition register
9537 alloc_reg(&current,i-1,rs1[i-1]);
9538 if(!(current.is32>>rs1[i-1]&1))
9539 {
9540 alloc_reg64(&current,i-1,rs1[i-1]);
9541 }
9542 }
9543 memcpy(&branch_regs[i-1],&current,sizeof(current));
9544 branch_regs[i-1].isconst=0;
9545 branch_regs[i-1].wasconst=0;
9546 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9547 memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9548 }
9549 else
9550 // Alloc the delay slot in case the branch is taken
9551 if((opcode[i-1]&0x3E)==0x14) // BEQL/BNEL
9552 {
9553 memcpy(&branch_regs[i-1],&current,sizeof(current));
9554 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9555 branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9556 if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9557 alloc_cc(&branch_regs[i-1],i);
9558 dirty_reg(&branch_regs[i-1],CCREG);
9559 delayslot_alloc(&branch_regs[i-1],i);
9560 branch_regs[i-1].isconst=0;
9561 alloc_reg(&current,i,CCREG); // Not taken path
9562 dirty_reg(&current,CCREG);
9563 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9564 }
9565 else
9566 if((opcode[i-1]&0x3E)==0x16) // BLEZL/BGTZL
9567 {
9568 memcpy(&branch_regs[i-1],&current,sizeof(current));
9569 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9570 branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9571 if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9572 alloc_cc(&branch_regs[i-1],i);
9573 dirty_reg(&branch_regs[i-1],CCREG);
9574 delayslot_alloc(&branch_regs[i-1],i);
9575 branch_regs[i-1].isconst=0;
9576 alloc_reg(&current,i,CCREG); // Not taken path
9577 dirty_reg(&current,CCREG);
9578 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9579 }
9580 break;
9581 case SJUMP:
9582 //if((opcode2[i-1]&0x1E)==0) // BLTZ/BGEZ
9583 if((opcode2[i-1]&0x0E)==0) // BLTZ/BGEZ
9584 {
9585 alloc_cc(&current,i-1);
9586 dirty_reg(&current,CCREG);
9587 if(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]) {
9588 // The delay slot overwrote the branch condition
9589 // Delay slot goes after the test (in order)
9590 current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
9591 current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
9592 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9593 current.u|=1;
9594 current.uu|=1;
9595 delayslot_alloc(&current,i);
9596 current.isconst=0;
9597 }
9598 else
9599 {
9600 current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
9601 current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
9602 // Alloc the branch condition register
9603 alloc_reg(&current,i-1,rs1[i-1]);
9604 if(!(current.is32>>rs1[i-1]&1))
9605 {
9606 alloc_reg64(&current,i-1,rs1[i-1]);
9607 }
9608 }
9609 memcpy(&branch_regs[i-1],&current,sizeof(current));
9610 branch_regs[i-1].isconst=0;
9611 branch_regs[i-1].wasconst=0;
9612 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9613 memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9614 }
9615 else
9616 // Alloc the delay slot in case the branch is taken
9617 if((opcode2[i-1]&0x1E)==2) // BLTZL/BGEZL
9618 {
9619 memcpy(&branch_regs[i-1],&current,sizeof(current));
9620 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9621 branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9622 if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9623 alloc_cc(&branch_regs[i-1],i);
9624 dirty_reg(&branch_regs[i-1],CCREG);
9625 delayslot_alloc(&branch_regs[i-1],i);
9626 branch_regs[i-1].isconst=0;
9627 alloc_reg(&current,i,CCREG); // Not taken path
9628 dirty_reg(&current,CCREG);
9629 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9630 }
9631 // FIXME: BLTZAL/BGEZAL
9632 if(opcode2[i-1]&0x10) { // BxxZAL
9633 alloc_reg(&branch_regs[i-1],i-1,31);
9634 dirty_reg(&branch_regs[i-1],31);
9635 branch_regs[i-1].is32|=1LL<<31;
9636 }
9637 break;
9638 case FJUMP:
9639 if(likely[i-1]==0) // BC1F/BC1T
9640 {
9641 alloc_cc(&current,i-1);
9642 dirty_reg(&current,CCREG);
9643 if(itype[i]==FCOMP) {
9644 // The delay slot overwrote the branch condition
9645 // Delay slot goes after the test (in order)
9646 delayslot_alloc(&current,i);
9647 current.isconst=0;
9648 }
9649 else
9650 {
9651 current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
9652 current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
9653 // Alloc the branch condition register
9654 alloc_reg(&current,i-1,FSREG);
9655 }
9656 memcpy(&branch_regs[i-1],&current,sizeof(current));
9657 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9658 }
9659 else // BC1FL/BC1TL
9660 {
9661 // Alloc the delay slot in case the branch is taken
9662 memcpy(&branch_regs[i-1],&current,sizeof(current));
9663 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9664 branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9665 if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9666 alloc_cc(&branch_regs[i-1],i);
9667 dirty_reg(&branch_regs[i-1],CCREG);
9668 delayslot_alloc(&branch_regs[i-1],i);
9669 branch_regs[i-1].isconst=0;
9670 alloc_reg(&current,i,CCREG); // Not taken path
9671 dirty_reg(&current,CCREG);
9672 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9673 }
9674 break;
9675 }
9676
9677 if(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)
9678 {
9679 if(rt1[i-1]==31) // JAL/JALR
9680 {
9681 // Subroutine call will return here, don't alloc any registers
9682 current.is32=1;
9683 current.dirty=0;
9684 clear_all_regs(current.regmap);
9685 alloc_reg(&current,i,CCREG);
9686 dirty_reg(&current,CCREG);
9687 }
9688 else if(i+1<slen)
9689 {
9690 // Internal branch will jump here, match registers to caller
9691 current.is32=0x3FFFFFFFFLL;
9692 current.dirty=0;
9693 clear_all_regs(current.regmap);
9694 alloc_reg(&current,i,CCREG);
9695 dirty_reg(&current,CCREG);
9696 for(j=i-1;j>=0;j--)
9697 {
9698 if(ba[j]==start+i*4+4) {
9699 memcpy(current.regmap,branch_regs[j].regmap,sizeof(current.regmap));
9700 current.is32=branch_regs[j].is32;
9701 current.dirty=branch_regs[j].dirty;
9702 break;
9703 }
9704 }
9705 while(j>=0) {
9706 if(ba[j]==start+i*4+4) {
9707 for(hr=0;hr<HOST_REGS;hr++) {
9708 if(current.regmap[hr]!=branch_regs[j].regmap[hr]) {
9709 current.regmap[hr]=-1;
9710 }
9711 current.is32&=branch_regs[j].is32;
9712 current.dirty&=branch_regs[j].dirty;
9713 }
9714 }
9715 j--;
9716 }
9717 }
9718 }
9719 }
9720
9721 // Count cycles in between branches
9722 ccadj[i]=cc;
7139f3c8 9723 if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP||itype[i]==SYSCALL||itype[i]==HLECALL))
57871462 9724 {
9725 cc=0;
9726 }
fb407447 9727#ifdef PCSX
9728 else if(/*itype[i]==LOAD||*/itype[i]==STORE||itype[i]==C1LS) // load causes weird timing issues
9729 {
9730 cc+=2; // 2 cycle penalty (after CLOCK_DIVIDER)
9731 }
9732 else if(itype[i]==C2LS)
9733 {
9734 cc+=4;
9735 }
9736#endif
57871462 9737 else
9738 {
9739 cc++;
9740 }
9741
9742 flush_dirty_uppers(&current);
9743 if(!is_ds[i]) {
9744 regs[i].is32=current.is32;
9745 regs[i].dirty=current.dirty;
9746 regs[i].isconst=current.isconst;
9747 memcpy(constmap[i],current.constmap,sizeof(current.constmap));
9748 }
9749 for(hr=0;hr<HOST_REGS;hr++) {
9750 if(hr!=EXCLUDE_REG&&regs[i].regmap[hr]>=0) {
9751 if(regmap_pre[i][hr]!=regs[i].regmap[hr]) {
9752 regs[i].wasconst&=~(1<<hr);
9753 }
9754 }
9755 }
9756 if(current.regmap[HOST_BTREG]==BTREG) current.regmap[HOST_BTREG]=-1;
9757 }
9758
9759 /* Pass 4 - Cull unused host registers */
9760
9761 uint64_t nr=0;
9762
9763 for (i=slen-1;i>=0;i--)
9764 {
9765 int hr;
9766 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
9767 {
9768 if(ba[i]<start || ba[i]>=(start+slen*4))
9769 {
9770 // Branch out of this block, don't need anything
9771 nr=0;
9772 }
9773 else
9774 {
9775 // Internal branch
9776 // Need whatever matches the target
9777 nr=0;
9778 int t=(ba[i]-start)>>2;
9779 for(hr=0;hr<HOST_REGS;hr++)
9780 {
9781 if(regs[i].regmap_entry[hr]>=0) {
9782 if(regs[i].regmap_entry[hr]==regs[t].regmap_entry[hr]) nr|=1<<hr;
9783 }
9784 }
9785 }
9786 // Conditional branch may need registers for following instructions
9787 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
9788 {
9789 if(i<slen-2) {
9790 nr|=needed_reg[i+2];
9791 for(hr=0;hr<HOST_REGS;hr++)
9792 {
9793 if(regmap_pre[i+2][hr]>=0&&get_reg(regs[i+2].regmap_entry,regmap_pre[i+2][hr])<0) nr&=~(1<<hr);
9794 //if((regmap_entry[i+2][hr])>=0) if(!((nr>>hr)&1)) printf("%x-bogus(%d=%d)\n",start+i*4,hr,regmap_entry[i+2][hr]);
9795 }
9796 }
9797 }
9798 // Don't need stuff which is overwritten
f5955059 9799 //if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
9800 //if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
57871462 9801 // Merge in delay slot
9802 for(hr=0;hr<HOST_REGS;hr++)
9803 {
9804 if(!likely[i]) {
9805 // These are overwritten unless the branch is "likely"
9806 // and the delay slot is nullified if not taken
9807 if(rt1[i+1]&&rt1[i+1]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9808 if(rt2[i+1]&&rt2[i+1]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9809 }
9810 if(us1[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9811 if(us2[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9812 if(rs1[i+1]==regmap_pre[i][hr]) nr|=1<<hr;
9813 if(rs2[i+1]==regmap_pre[i][hr]) nr|=1<<hr;
9814 if(us1[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9815 if(us2[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9816 if(rs1[i+1]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9817 if(rs2[i+1]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9818 if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1)) {
9819 if(dep1[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9820 if(dep2[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9821 }
9822 if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1)) {
9823 if(dep1[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9824 if(dep2[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9825 }
b9b61529 9826 if(itype[i+1]==STORE || itype[i+1]==STORELR || (opcode[i+1]&0x3b)==0x39 || (opcode[i+1]&0x3b)==0x3a) {
57871462 9827 if(regmap_pre[i][hr]==INVCP) nr|=1<<hr;
9828 if(regs[i].regmap_entry[hr]==INVCP) nr|=1<<hr;
9829 }
9830 }
9831 }
1e973cb0 9832 else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
57871462 9833 {
9834 // SYSCALL instruction (software interrupt)
9835 nr=0;
9836 }
9837 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
9838 {
9839 // ERET instruction (return from interrupt)
9840 nr=0;
9841 }
9842 else // Non-branch
9843 {
9844 if(i<slen-1) {
9845 for(hr=0;hr<HOST_REGS;hr++) {
9846 if(regmap_pre[i+1][hr]>=0&&get_reg(regs[i+1].regmap_entry,regmap_pre[i+1][hr])<0) nr&=~(1<<hr);
9847 if(regs[i].regmap[hr]!=regmap_pre[i+1][hr]) nr&=~(1<<hr);
9848 if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
9849 if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
9850 }
9851 }
9852 }
9853 for(hr=0;hr<HOST_REGS;hr++)
9854 {
9855 // Overwritten registers are not needed
9856 if(rt1[i]&&rt1[i]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9857 if(rt2[i]&&rt2[i]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9858 if(FTEMP==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9859 // Source registers are needed
9860 if(us1[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9861 if(us2[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9862 if(rs1[i]==regmap_pre[i][hr]) nr|=1<<hr;
9863 if(rs2[i]==regmap_pre[i][hr]) nr|=1<<hr;
9864 if(us1[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9865 if(us2[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9866 if(rs1[i]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9867 if(rs2[i]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9868 if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1)) {
9869 if(dep1[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9870 if(dep1[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9871 }
9872 if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1)) {
9873 if(dep2[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9874 if(dep2[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9875 }
b9b61529 9876 if(itype[i]==STORE || itype[i]==STORELR || (opcode[i]&0x3b)==0x39 || (opcode[i]&0x3b)==0x3a) {
57871462 9877 if(regmap_pre[i][hr]==INVCP) nr|=1<<hr;
9878 if(regs[i].regmap_entry[hr]==INVCP) nr|=1<<hr;
9879 }
9880 // Don't store a register immediately after writing it,
9881 // may prevent dual-issue.
9882 // But do so if this is a branch target, otherwise we
9883 // might have to load the register before the branch.
9884 if(i>0&&!bt[i]&&((regs[i].wasdirty>>hr)&1)) {
9885 if((regmap_pre[i][hr]>0&&regmap_pre[i][hr]<64&&!((unneeded_reg[i]>>regmap_pre[i][hr])&1)) ||
9886 (regmap_pre[i][hr]>64&&!((unneeded_reg_upper[i]>>(regmap_pre[i][hr]&63))&1)) ) {
9887 if(rt1[i-1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9888 if(rt2[i-1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9889 }
9890 if((regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64&&!((unneeded_reg[i]>>regs[i].regmap_entry[hr])&1)) ||
9891 (regs[i].regmap_entry[hr]>64&&!((unneeded_reg_upper[i]>>(regs[i].regmap_entry[hr]&63))&1)) ) {
9892 if(rt1[i-1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9893 if(rt2[i-1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9894 }
9895 }
9896 }
9897 // Cycle count is needed at branches. Assume it is needed at the target too.
9898 if(i==0||bt[i]||itype[i]==CJUMP||itype[i]==FJUMP||itype[i]==SPAN) {
9899 if(regmap_pre[i][HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
9900 if(regs[i].regmap_entry[HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
9901 }
9902 // Save it
9903 needed_reg[i]=nr;
9904
9905 // Deallocate unneeded registers
9906 for(hr=0;hr<HOST_REGS;hr++)
9907 {
9908 if(!((nr>>hr)&1)) {
9909 if(regs[i].regmap_entry[hr]!=CCREG) regs[i].regmap_entry[hr]=-1;
9910 if((regs[i].regmap[hr]&63)!=rs1[i] && (regs[i].regmap[hr]&63)!=rs2[i] &&
9911 (regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
9912 (regs[i].regmap[hr]&63)!=PTEMP && (regs[i].regmap[hr]&63)!=CCREG)
9913 {
9914 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
9915 {
9916 if(likely[i]) {
9917 regs[i].regmap[hr]=-1;
9918 regs[i].isconst&=~(1<<hr);
79c75f1b 9919 if(i<slen-2) {
9920 regmap_pre[i+2][hr]=-1;
9921 regs[i+2].wasconst&=~(1<<hr);
9922 }
57871462 9923 }
9924 }
9925 }
9926 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
9927 {
9928 int d1=0,d2=0,map=0,temp=0;
9929 if(get_reg(regs[i].regmap,rt1[i+1]|64)>=0||get_reg(branch_regs[i].regmap,rt1[i+1]|64)>=0)
9930 {
9931 d1=dep1[i+1];
9932 d2=dep2[i+1];
9933 }
9934 if(using_tlb) {
9935 if(itype[i+1]==LOAD || itype[i+1]==LOADLR ||
9936 itype[i+1]==STORE || itype[i+1]==STORELR ||
b9b61529 9937 itype[i+1]==C1LS || itype[i+1]==C2LS)
57871462 9938 map=TLREG;
9939 } else
b9b61529 9940 if(itype[i+1]==STORE || itype[i+1]==STORELR ||
9941 (opcode[i+1]&0x3b)==0x39 || (opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1 || SWC2/SDC2
57871462 9942 map=INVCP;
9943 }
9944 if(itype[i+1]==LOADLR || itype[i+1]==STORELR ||
b9b61529 9945 itype[i+1]==C1LS || itype[i+1]==C2LS)
57871462 9946 temp=FTEMP;
9947 if((regs[i].regmap[hr]&63)!=rs1[i] && (regs[i].regmap[hr]&63)!=rs2[i] &&
9948 (regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
9949 (regs[i].regmap[hr]&63)!=rt1[i+1] && (regs[i].regmap[hr]&63)!=rt2[i+1] &&
9950 (regs[i].regmap[hr]^64)!=us1[i+1] && (regs[i].regmap[hr]^64)!=us2[i+1] &&
9951 (regs[i].regmap[hr]^64)!=d1 && (regs[i].regmap[hr]^64)!=d2 &&
9952 regs[i].regmap[hr]!=rs1[i+1] && regs[i].regmap[hr]!=rs2[i+1] &&
9953 (regs[i].regmap[hr]&63)!=temp && regs[i].regmap[hr]!=PTEMP &&
9954 regs[i].regmap[hr]!=RHASH && regs[i].regmap[hr]!=RHTBL &&
9955 regs[i].regmap[hr]!=RTEMP && regs[i].regmap[hr]!=CCREG &&
9956 regs[i].regmap[hr]!=map )
9957 {
9958 regs[i].regmap[hr]=-1;
9959 regs[i].isconst&=~(1<<hr);
9960 if((branch_regs[i].regmap[hr]&63)!=rs1[i] && (branch_regs[i].regmap[hr]&63)!=rs2[i] &&
9961 (branch_regs[i].regmap[hr]&63)!=rt1[i] && (branch_regs[i].regmap[hr]&63)!=rt2[i] &&
9962 (branch_regs[i].regmap[hr]&63)!=rt1[i+1] && (branch_regs[i].regmap[hr]&63)!=rt2[i+1] &&
9963 (branch_regs[i].regmap[hr]^64)!=us1[i+1] && (branch_regs[i].regmap[hr]^64)!=us2[i+1] &&
9964 (branch_regs[i].regmap[hr]^64)!=d1 && (branch_regs[i].regmap[hr]^64)!=d2 &&
9965 branch_regs[i].regmap[hr]!=rs1[i+1] && branch_regs[i].regmap[hr]!=rs2[i+1] &&
9966 (branch_regs[i].regmap[hr]&63)!=temp && branch_regs[i].regmap[hr]!=PTEMP &&
9967 branch_regs[i].regmap[hr]!=RHASH && branch_regs[i].regmap[hr]!=RHTBL &&
9968 branch_regs[i].regmap[hr]!=RTEMP && branch_regs[i].regmap[hr]!=CCREG &&
9969 branch_regs[i].regmap[hr]!=map)
9970 {
9971 branch_regs[i].regmap[hr]=-1;
9972 branch_regs[i].regmap_entry[hr]=-1;
9973 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
9974 {
9975 if(!likely[i]&&i<slen-2) {
9976 regmap_pre[i+2][hr]=-1;
79c75f1b 9977 regs[i+2].wasconst&=~(1<<hr);
57871462 9978 }
9979 }
9980 }
9981 }
9982 }
9983 else
9984 {
9985 // Non-branch
9986 if(i>0)
9987 {
9988 int d1=0,d2=0,map=-1,temp=-1;
9989 if(get_reg(regs[i].regmap,rt1[i]|64)>=0)
9990 {
9991 d1=dep1[i];
9992 d2=dep2[i];
9993 }
9994 if(using_tlb) {
9995 if(itype[i]==LOAD || itype[i]==LOADLR ||
9996 itype[i]==STORE || itype[i]==STORELR ||
b9b61529 9997 itype[i]==C1LS || itype[i]==C2LS)
57871462 9998 map=TLREG;
b9b61529 9999 } else if(itype[i]==STORE || itype[i]==STORELR ||
10000 (opcode[i]&0x3b)==0x39 || (opcode[i]&0x3b)==0x3a) { // SWC1/SDC1 || SWC2/SDC2
57871462 10001 map=INVCP;
10002 }
10003 if(itype[i]==LOADLR || itype[i]==STORELR ||
b9b61529 10004 itype[i]==C1LS || itype[i]==C2LS)
57871462 10005 temp=FTEMP;
10006 if((regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
10007 (regs[i].regmap[hr]^64)!=us1[i] && (regs[i].regmap[hr]^64)!=us2[i] &&
10008 (regs[i].regmap[hr]^64)!=d1 && (regs[i].regmap[hr]^64)!=d2 &&
10009 regs[i].regmap[hr]!=rs1[i] && regs[i].regmap[hr]!=rs2[i] &&
10010 (regs[i].regmap[hr]&63)!=temp && regs[i].regmap[hr]!=map &&
10011 (itype[i]!=SPAN||regs[i].regmap[hr]!=CCREG))
10012 {
10013 if(i<slen-1&&!is_ds[i]) {
10014 if(regmap_pre[i+1][hr]!=-1 || regs[i].regmap[hr]!=-1)
10015 if(regmap_pre[i+1][hr]!=regs[i].regmap[hr])
10016 if(regs[i].regmap[hr]<64||!((regs[i].was32>>(regs[i].regmap[hr]&63))&1))
10017 {
10018 printf("fail: %x (%d %d!=%d)\n",start+i*4,hr,regmap_pre[i+1][hr],regs[i].regmap[hr]);
10019 assert(regmap_pre[i+1][hr]==regs[i].regmap[hr]);
10020 }
10021 regmap_pre[i+1][hr]=-1;
10022 if(regs[i+1].regmap_entry[hr]==CCREG) regs[i+1].regmap_entry[hr]=-1;
79c75f1b 10023 regs[i+1].wasconst&=~(1<<hr);
57871462 10024 }
10025 regs[i].regmap[hr]=-1;
10026 regs[i].isconst&=~(1<<hr);
10027 }
10028 }
10029 }
10030 }
10031 }
10032 }
10033
10034 /* Pass 5 - Pre-allocate registers */
10035
10036 // If a register is allocated during a loop, try to allocate it for the
10037 // entire loop, if possible. This avoids loading/storing registers
10038 // inside of the loop.
198df76f 10039
57871462 10040 signed char f_regmap[HOST_REGS];
10041 clear_all_regs(f_regmap);
10042 for(i=0;i<slen-1;i++)
10043 {
10044 if(itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
10045 {
10046 if(ba[i]>=start && ba[i]<(start+i*4))
10047 if(itype[i+1]==NOP||itype[i+1]==MOV||itype[i+1]==ALU
10048 ||itype[i+1]==SHIFTIMM||itype[i+1]==IMM16||itype[i+1]==LOAD
10049 ||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS
10050 ||itype[i+1]==SHIFT||itype[i+1]==COP1||itype[i+1]==FLOAT
b9b61529 10051 ||itype[i+1]==FCOMP||itype[i+1]==FCONV
10052 ||itype[i+1]==COP2||itype[i+1]==C2LS||itype[i+1]==C2OP)
57871462 10053 {
10054 int t=(ba[i]-start)>>2;
10055 if(t>0&&(itype[t-1]!=UJUMP&&itype[t-1]!=RJUMP&&itype[t-1]!=CJUMP&&itype[t-1]!=SJUMP&&itype[t-1]!=FJUMP)) // loop_preload can't handle jumps into delay slots
198df76f 10056 if(t<2||(itype[t-2]!=UJUMP&&itype[t-2]!=RJUMP)||rt1[t-2]!=31) // call/ret assumes no registers allocated
57871462 10057 for(hr=0;hr<HOST_REGS;hr++)
10058 {
10059 if(regs[i].regmap[hr]>64) {
10060 if(!((regs[i].dirty>>hr)&1))
10061 f_regmap[hr]=regs[i].regmap[hr];
10062 else f_regmap[hr]=-1;
10063 }
b372a952 10064 else if(regs[i].regmap[hr]>=0) {
10065 if(f_regmap[hr]!=regs[i].regmap[hr]) {
10066 // dealloc old register
10067 int n;
10068 for(n=0;n<HOST_REGS;n++)
10069 {
10070 if(f_regmap[n]==regs[i].regmap[hr]) {f_regmap[n]=-1;}
10071 }
10072 // and alloc new one
10073 f_regmap[hr]=regs[i].regmap[hr];
10074 }
10075 }
57871462 10076 if(branch_regs[i].regmap[hr]>64) {
10077 if(!((branch_regs[i].dirty>>hr)&1))
10078 f_regmap[hr]=branch_regs[i].regmap[hr];
10079 else f_regmap[hr]=-1;
10080 }
b372a952 10081 else if(branch_regs[i].regmap[hr]>=0) {
10082 if(f_regmap[hr]!=branch_regs[i].regmap[hr]) {
10083 // dealloc old register
10084 int n;
10085 for(n=0;n<HOST_REGS;n++)
10086 {
10087 if(f_regmap[n]==branch_regs[i].regmap[hr]) {f_regmap[n]=-1;}
10088 }
10089 // and alloc new one
10090 f_regmap[hr]=branch_regs[i].regmap[hr];
10091 }
10092 }
e1190b87 10093 if(ooo[i]) {
10094 if(count_free_regs(regs[i].regmap)<=minimum_free_regs[i+1])
10095 f_regmap[hr]=branch_regs[i].regmap[hr];
10096 }else{
10097 if(count_free_regs(branch_regs[i].regmap)<=minimum_free_regs[i+1])
57871462 10098 f_regmap[hr]=branch_regs[i].regmap[hr];
10099 }
10100 // Avoid dirty->clean transition
e1190b87 10101 #ifdef DESTRUCTIVE_WRITEBACK
57871462 10102 if(t>0) if(get_reg(regmap_pre[t],f_regmap[hr])>=0) if((regs[t].wasdirty>>get_reg(regmap_pre[t],f_regmap[hr]))&1) f_regmap[hr]=-1;
e1190b87 10103 #endif
10104 // This check is only strictly required in the DESTRUCTIVE_WRITEBACK
10105 // case above, however it's always a good idea. We can't hoist the
10106 // load if the register was already allocated, so there's no point
10107 // wasting time analyzing most of these cases. It only "succeeds"
10108 // when the mapping was different and the load can be replaced with
10109 // a mov, which is of negligible benefit. So such cases are
10110 // skipped below.
57871462 10111 if(f_regmap[hr]>0) {
198df76f 10112 if(regs[t].regmap[hr]==f_regmap[hr]||(regs[t].regmap_entry[hr]<0&&get_reg(regmap_pre[t],f_regmap[hr])<0)) {
57871462 10113 int r=f_regmap[hr];
10114 for(j=t;j<=i;j++)
10115 {
10116 //printf("Test %x -> %x, %x %d/%d\n",start+i*4,ba[i],start+j*4,hr,r);
10117 if(r<34&&((unneeded_reg[j]>>r)&1)) break;
10118 if(r>63&&((unneeded_reg_upper[j]>>(r&63))&1)) break;
10119 if(r>63) {
10120 // NB This can exclude the case where the upper-half
10121 // register is lower numbered than the lower-half
10122 // register. Not sure if it's worth fixing...
10123 if(get_reg(regs[j].regmap,r&63)<0) break;
e1190b87 10124 if(get_reg(regs[j].regmap_entry,r&63)<0) break;
57871462 10125 if(regs[j].is32&(1LL<<(r&63))) break;
10126 }
10127 if(regs[j].regmap[hr]==f_regmap[hr]&&(f_regmap[hr]&63)<TEMPREG) {
10128 //printf("Hit %x -> %x, %x %d/%d\n",start+i*4,ba[i],start+j*4,hr,r);
10129 int k;
10130 if(regs[i].regmap[hr]==-1&&branch_regs[i].regmap[hr]==-1) {
10131 if(get_reg(regs[i+2].regmap,f_regmap[hr])>=0) break;
10132 if(r>63) {
10133 if(get_reg(regs[i].regmap,r&63)<0) break;
10134 if(get_reg(branch_regs[i].regmap,r&63)<0) break;
10135 }
10136 k=i;
10137 while(k>1&&regs[k-1].regmap[hr]==-1) {
e1190b87 10138 if(count_free_regs(regs[k-1].regmap)<=minimum_free_regs[k-1]) {
10139 //printf("no free regs for store %x\n",start+(k-1)*4);
10140 break;
57871462 10141 }
57871462 10142 if(get_reg(regs[k-1].regmap,f_regmap[hr])>=0) {
10143 //printf("no-match due to different register\n");
10144 break;
10145 }
10146 if(itype[k-2]==UJUMP||itype[k-2]==RJUMP||itype[k-2]==CJUMP||itype[k-2]==SJUMP||itype[k-2]==FJUMP) {
10147 //printf("no-match due to branch\n");
10148 break;
10149 }
10150 // call/ret fast path assumes no registers allocated
198df76f 10151 if(k>2&&(itype[k-3]==UJUMP||itype[k-3]==RJUMP)&&rt1[k-3]==31) {
57871462 10152 break;
10153 }
10154 if(r>63) {
10155 // NB This can exclude the case where the upper-half
10156 // register is lower numbered than the lower-half
10157 // register. Not sure if it's worth fixing...
10158 if(get_reg(regs[k-1].regmap,r&63)<0) break;
10159 if(regs[k-1].is32&(1LL<<(r&63))) break;
10160 }
10161 k--;
10162 }
10163 if(i<slen-1) {
10164 if((regs[k].is32&(1LL<<f_regmap[hr]))!=
10165 (regs[i+2].was32&(1LL<<f_regmap[hr]))) {
10166 //printf("bad match after branch\n");
10167 break;
10168 }
10169 }
10170 if(regs[k-1].regmap[hr]==f_regmap[hr]&&regmap_pre[k][hr]==f_regmap[hr]) {
10171 //printf("Extend r%d, %x ->\n",hr,start+k*4);
10172 while(k<i) {
10173 regs[k].regmap_entry[hr]=f_regmap[hr];
10174 regs[k].regmap[hr]=f_regmap[hr];
10175 regmap_pre[k+1][hr]=f_regmap[hr];
10176 regs[k].wasdirty&=~(1<<hr);
10177 regs[k].dirty&=~(1<<hr);
10178 regs[k].wasdirty|=(1<<hr)&regs[k-1].dirty;
10179 regs[k].dirty|=(1<<hr)&regs[k].wasdirty;
10180 regs[k].wasconst&=~(1<<hr);
10181 regs[k].isconst&=~(1<<hr);
10182 k++;
10183 }
10184 }
10185 else {
10186 //printf("Fail Extend r%d, %x ->\n",hr,start+k*4);
10187 break;
10188 }
10189 assert(regs[i-1].regmap[hr]==f_regmap[hr]);
10190 if(regs[i-1].regmap[hr]==f_regmap[hr]&&regmap_pre[i][hr]==f_regmap[hr]) {
10191 //printf("OK fill %x (r%d)\n",start+i*4,hr);
10192 regs[i].regmap_entry[hr]=f_regmap[hr];
10193 regs[i].regmap[hr]=f_regmap[hr];
10194 regs[i].wasdirty&=~(1<<hr);
10195 regs[i].dirty&=~(1<<hr);
10196 regs[i].wasdirty|=(1<<hr)&regs[i-1].dirty;
10197 regs[i].dirty|=(1<<hr)&regs[i-1].dirty;
10198 regs[i].wasconst&=~(1<<hr);
10199 regs[i].isconst&=~(1<<hr);
10200 branch_regs[i].regmap_entry[hr]=f_regmap[hr];
10201 branch_regs[i].wasdirty&=~(1<<hr);
10202 branch_regs[i].wasdirty|=(1<<hr)&regs[i].dirty;
10203 branch_regs[i].regmap[hr]=f_regmap[hr];
10204 branch_regs[i].dirty&=~(1<<hr);
10205 branch_regs[i].dirty|=(1<<hr)&regs[i].dirty;
10206 branch_regs[i].wasconst&=~(1<<hr);
10207 branch_regs[i].isconst&=~(1<<hr);
10208 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000) {
10209 regmap_pre[i+2][hr]=f_regmap[hr];
10210 regs[i+2].wasdirty&=~(1<<hr);
10211 regs[i+2].wasdirty|=(1<<hr)&regs[i].dirty;
10212 assert((branch_regs[i].is32&(1LL<<f_regmap[hr]))==
10213 (regs[i+2].was32&(1LL<<f_regmap[hr])));
10214 }
10215 }
10216 }
10217 for(k=t;k<j;k++) {
e1190b87 10218 // Alloc register clean at beginning of loop,
10219 // but may dirty it in pass 6
57871462 10220 regs[k].regmap_entry[hr]=f_regmap[hr];
10221 regs[k].regmap[hr]=f_regmap[hr];
57871462 10222 regs[k].dirty&=~(1<<hr);
10223 regs[k].wasconst&=~(1<<hr);
10224 regs[k].isconst&=~(1<<hr);
e1190b87 10225 if(itype[k]==UJUMP||itype[k]==RJUMP||itype[k]==CJUMP||itype[k]==SJUMP||itype[k]==FJUMP) {
10226 branch_regs[k].regmap_entry[hr]=f_regmap[hr];
10227 branch_regs[k].regmap[hr]=f_regmap[hr];
10228 branch_regs[k].dirty&=~(1<<hr);
10229 branch_regs[k].wasconst&=~(1<<hr);
10230 branch_regs[k].isconst&=~(1<<hr);
10231 if(itype[k]!=RJUMP&&itype[k]!=UJUMP&&(source[k]>>16)!=0x1000) {
10232 regmap_pre[k+2][hr]=f_regmap[hr];
10233 regs[k+2].wasdirty&=~(1<<hr);
10234 assert((branch_regs[k].is32&(1LL<<f_regmap[hr]))==
10235 (regs[k+2].was32&(1LL<<f_regmap[hr])));
10236 }
10237 }
10238 else
10239 {
10240 regmap_pre[k+1][hr]=f_regmap[hr];
10241 regs[k+1].wasdirty&=~(1<<hr);
10242 }
57871462 10243 }
10244 if(regs[j].regmap[hr]==f_regmap[hr])
10245 regs[j].regmap_entry[hr]=f_regmap[hr];
10246 break;
10247 }
10248 if(j==i) break;
10249 if(regs[j].regmap[hr]>=0)
10250 break;
10251 if(get_reg(regs[j].regmap,f_regmap[hr])>=0) {
10252 //printf("no-match due to different register\n");
10253 break;
10254 }
10255 if((regs[j+1].is32&(1LL<<f_regmap[hr]))!=(regs[j].is32&(1LL<<f_regmap[hr]))) {
10256 //printf("32/64 mismatch %x %d\n",start+j*4,hr);
10257 break;
10258 }
e1190b87 10259 if(itype[j]==UJUMP||itype[j]==RJUMP||(source[j]>>16)==0x1000)
10260 {
10261 // Stop on unconditional branch
10262 break;
10263 }
10264 if(itype[j]==CJUMP||itype[j]==SJUMP||itype[j]==FJUMP)
10265 {
10266 if(ooo[j]) {
10267 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j+1])
10268 break;
10269 }else{
10270 if(count_free_regs(branch_regs[j].regmap)<=minimum_free_regs[j+1])
10271 break;
10272 }
10273 if(get_reg(branch_regs[j].regmap,f_regmap[hr])>=0) {
10274 //printf("no-match due to different register (branch)\n");
57871462 10275 break;
10276 }
10277 }
e1190b87 10278 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) {
10279 //printf("No free regs for store %x\n",start+j*4);
10280 break;
10281 }
57871462 10282 if(f_regmap[hr]>=64) {
10283 if(regs[j].is32&(1LL<<(f_regmap[hr]&63))) {
10284 break;
10285 }
10286 else
10287 {
10288 if(get_reg(regs[j].regmap,f_regmap[hr]&63)<0) {
10289 break;
10290 }
10291 }
10292 }
10293 }
10294 }
10295 }
10296 }
10297 }
10298 }else{
198df76f 10299 // Non branch or undetermined branch target
57871462 10300 for(hr=0;hr<HOST_REGS;hr++)
10301 {
10302 if(hr!=EXCLUDE_REG) {
10303 if(regs[i].regmap[hr]>64) {
10304 if(!((regs[i].dirty>>hr)&1))
10305 f_regmap[hr]=regs[i].regmap[hr];
10306 }
b372a952 10307 else if(regs[i].regmap[hr]>=0) {
10308 if(f_regmap[hr]!=regs[i].regmap[hr]) {
10309 // dealloc old register
10310 int n;
10311 for(n=0;n<HOST_REGS;n++)
10312 {
10313 if(f_regmap[n]==regs[i].regmap[hr]) {f_regmap[n]=-1;}
10314 }
10315 // and alloc new one
10316 f_regmap[hr]=regs[i].regmap[hr];
10317 }
10318 }
57871462 10319 }
10320 }
10321 // Try to restore cycle count at branch targets
10322 if(bt[i]) {
10323 for(j=i;j<slen-1;j++) {
10324 if(regs[j].regmap[HOST_CCREG]!=-1) break;
e1190b87 10325 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) {
10326 //printf("no free regs for store %x\n",start+j*4);
10327 break;
57871462 10328 }
57871462 10329 }
10330 if(regs[j].regmap[HOST_CCREG]==CCREG) {
10331 int k=i;
10332 //printf("Extend CC, %x -> %x\n",start+k*4,start+j*4);
10333 while(k<j) {
10334 regs[k].regmap_entry[HOST_CCREG]=CCREG;
10335 regs[k].regmap[HOST_CCREG]=CCREG;
10336 regmap_pre[k+1][HOST_CCREG]=CCREG;
10337 regs[k+1].wasdirty|=1<<HOST_CCREG;
10338 regs[k].dirty|=1<<HOST_CCREG;
10339 regs[k].wasconst&=~(1<<HOST_CCREG);
10340 regs[k].isconst&=~(1<<HOST_CCREG);
10341 k++;
10342 }
10343 regs[j].regmap_entry[HOST_CCREG]=CCREG;
10344 }
10345 // Work backwards from the branch target
10346 if(j>i&&f_regmap[HOST_CCREG]==CCREG)
10347 {
10348 //printf("Extend backwards\n");
10349 int k;
10350 k=i;
10351 while(regs[k-1].regmap[HOST_CCREG]==-1) {
e1190b87 10352 if(count_free_regs(regs[k-1].regmap)<=minimum_free_regs[k-1]) {
10353 //printf("no free regs for store %x\n",start+(k-1)*4);
10354 break;
57871462 10355 }
57871462 10356 k--;
10357 }
10358 if(regs[k-1].regmap[HOST_CCREG]==CCREG) {
10359 //printf("Extend CC, %x ->\n",start+k*4);
10360 while(k<=i) {
10361 regs[k].regmap_entry[HOST_CCREG]=CCREG;
10362 regs[k].regmap[HOST_CCREG]=CCREG;
10363 regmap_pre[k+1][HOST_CCREG]=CCREG;
10364 regs[k+1].wasdirty|=1<<HOST_CCREG;
10365 regs[k].dirty|=1<<HOST_CCREG;
10366 regs[k].wasconst&=~(1<<HOST_CCREG);
10367 regs[k].isconst&=~(1<<HOST_CCREG);
10368 k++;
10369 }
10370 }
10371 else {
10372 //printf("Fail Extend CC, %x ->\n",start+k*4);
10373 }
10374 }
10375 }
10376 if(itype[i]!=STORE&&itype[i]!=STORELR&&itype[i]!=C1LS&&itype[i]!=SHIFT&&
10377 itype[i]!=NOP&&itype[i]!=MOV&&itype[i]!=ALU&&itype[i]!=SHIFTIMM&&
10378 itype[i]!=IMM16&&itype[i]!=LOAD&&itype[i]!=COP1&&itype[i]!=FLOAT&&
e1190b87 10379 itype[i]!=FCONV&&itype[i]!=FCOMP)
57871462 10380 {
10381 memcpy(f_regmap,regs[i].regmap,sizeof(f_regmap));
10382 }
10383 }
10384 }
10385
d61de97e 10386 // Cache memory offset or tlb map pointer if a register is available
10387 #ifndef HOST_IMM_ADDR32
10388 #ifndef RAM_OFFSET
10389 if(using_tlb)
10390 #endif
10391 {
10392 int earliest_available[HOST_REGS];
10393 int loop_start[HOST_REGS];
10394 int score[HOST_REGS];
10395 int end[HOST_REGS];
10396 int reg=using_tlb?MMREG:ROREG;
10397
10398 // Init
10399 for(hr=0;hr<HOST_REGS;hr++) {
10400 score[hr]=0;earliest_available[hr]=0;
10401 loop_start[hr]=MAXBLOCK;
10402 }
10403 for(i=0;i<slen-1;i++)
10404 {
10405 // Can't do anything if no registers are available
10406 if(count_free_regs(regs[i].regmap)<=minimum_free_regs[i]) {
10407 for(hr=0;hr<HOST_REGS;hr++) {
10408 score[hr]=0;earliest_available[hr]=i+1;
10409 loop_start[hr]=MAXBLOCK;
10410 }
10411 }
10412 if(itype[i]==UJUMP||itype[i]==RJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP) {
10413 if(!ooo[i]) {
10414 if(count_free_regs(branch_regs[i].regmap)<=minimum_free_regs[i+1]) {
10415 for(hr=0;hr<HOST_REGS;hr++) {
10416 score[hr]=0;earliest_available[hr]=i+1;
10417 loop_start[hr]=MAXBLOCK;
10418 }
10419 }
198df76f 10420 }else{
10421 if(count_free_regs(regs[i].regmap)<=minimum_free_regs[i+1]) {
10422 for(hr=0;hr<HOST_REGS;hr++) {
10423 score[hr]=0;earliest_available[hr]=i+1;
10424 loop_start[hr]=MAXBLOCK;
10425 }
10426 }
d61de97e 10427 }
10428 }
10429 // Mark unavailable registers
10430 for(hr=0;hr<HOST_REGS;hr++) {
10431 if(regs[i].regmap[hr]>=0) {
10432 score[hr]=0;earliest_available[hr]=i+1;
10433 loop_start[hr]=MAXBLOCK;
10434 }
10435 if(itype[i]==UJUMP||itype[i]==RJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP) {
10436 if(branch_regs[i].regmap[hr]>=0) {
10437 score[hr]=0;earliest_available[hr]=i+2;
10438 loop_start[hr]=MAXBLOCK;
10439 }
10440 }
10441 }
10442 // No register allocations after unconditional jumps
10443 if(itype[i]==UJUMP||itype[i]==RJUMP||(source[i]>>16)==0x1000)
10444 {
10445 for(hr=0;hr<HOST_REGS;hr++) {
10446 score[hr]=0;earliest_available[hr]=i+2;
10447 loop_start[hr]=MAXBLOCK;
10448 }
10449 i++; // Skip delay slot too
10450 //printf("skip delay slot: %x\n",start+i*4);
10451 }
10452 else
10453 // Possible match
10454 if(itype[i]==LOAD||itype[i]==LOADLR||
10455 itype[i]==STORE||itype[i]==STORELR||itype[i]==C1LS) {
10456 for(hr=0;hr<HOST_REGS;hr++) {
10457 if(hr!=EXCLUDE_REG) {
10458 end[hr]=i-1;
10459 for(j=i;j<slen-1;j++) {
10460 if(regs[j].regmap[hr]>=0) break;
10461 if(itype[j]==UJUMP||itype[j]==RJUMP||itype[j]==CJUMP||itype[j]==SJUMP||itype[j]==FJUMP) {
10462 if(branch_regs[j].regmap[hr]>=0) break;
10463 if(ooo[j]) {
10464 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j+1]) break;
10465 }else{
10466 if(count_free_regs(branch_regs[j].regmap)<=minimum_free_regs[j+1]) break;
10467 }
10468 }
10469 else if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) break;
10470 if(itype[j]==UJUMP||itype[j]==RJUMP||itype[j]==CJUMP||itype[j]==SJUMP||itype[j]==FJUMP) {
10471 int t=(ba[j]-start)>>2;
10472 if(t<j&&t>=earliest_available[hr]) {
198df76f 10473 if(t==1||(t>1&&itype[t-2]!=UJUMP&&itype[t-2]!=RJUMP)||(t>1&&rt1[t-2]!=31)) { // call/ret assumes no registers allocated
10474 // Score a point for hoisting loop invariant
10475 if(t<loop_start[hr]) loop_start[hr]=t;
10476 //printf("set loop_start: i=%x j=%x (%x)\n",start+i*4,start+j*4,start+t*4);
10477 score[hr]++;
10478 end[hr]=j;
10479 }
d61de97e 10480 }
10481 else if(t<j) {
10482 if(regs[t].regmap[hr]==reg) {
10483 // Score a point if the branch target matches this register
10484 score[hr]++;
10485 end[hr]=j;
10486 }
10487 }
10488 if(itype[j+1]==LOAD||itype[j+1]==LOADLR||
10489 itype[j+1]==STORE||itype[j+1]==STORELR||itype[j+1]==C1LS) {
10490 score[hr]++;
10491 end[hr]=j;
10492 }
10493 }
10494 if(itype[j]==UJUMP||itype[j]==RJUMP||(source[j]>>16)==0x1000)
10495 {
10496 // Stop on unconditional branch
10497 break;
10498 }
10499 else
10500 if(itype[j]==LOAD||itype[j]==LOADLR||
10501 itype[j]==STORE||itype[j]==STORELR||itype[j]==C1LS) {
10502 score[hr]++;
10503 end[hr]=j;
10504 }
10505 }
10506 }
10507 }
10508 // Find highest score and allocate that register
10509 int maxscore=0;
10510 for(hr=0;hr<HOST_REGS;hr++) {
10511 if(hr!=EXCLUDE_REG) {
10512 if(score[hr]>score[maxscore]) {
10513 maxscore=hr;
10514 //printf("highest score: %d %d (%x->%x)\n",score[hr],hr,start+i*4,start+end[hr]*4);
10515 }
10516 }
10517 }
10518 if(score[maxscore]>1)
10519 {
10520 if(i<loop_start[maxscore]) loop_start[maxscore]=i;
10521 for(j=loop_start[maxscore];j<slen&&j<=end[maxscore];j++) {
10522 //if(regs[j].regmap[maxscore]>=0) {printf("oops: %x %x was %d=%d\n",loop_start[maxscore]*4+start,j*4+start,maxscore,regs[j].regmap[maxscore]);}
10523 assert(regs[j].regmap[maxscore]<0);
10524 if(j>loop_start[maxscore]) regs[j].regmap_entry[maxscore]=reg;
10525 regs[j].regmap[maxscore]=reg;
10526 regs[j].dirty&=~(1<<maxscore);
10527 regs[j].wasconst&=~(1<<maxscore);
10528 regs[j].isconst&=~(1<<maxscore);
10529 if(itype[j]==UJUMP||itype[j]==RJUMP||itype[j]==CJUMP||itype[j]==SJUMP||itype[j]==FJUMP) {
10530 branch_regs[j].regmap[maxscore]=reg;
10531 branch_regs[j].wasdirty&=~(1<<maxscore);
10532 branch_regs[j].dirty&=~(1<<maxscore);
10533 branch_regs[j].wasconst&=~(1<<maxscore);
10534 branch_regs[j].isconst&=~(1<<maxscore);
10535 if(itype[j]!=RJUMP&&itype[j]!=UJUMP&&(source[j]>>16)!=0x1000) {
10536 regmap_pre[j+2][maxscore]=reg;
10537 regs[j+2].wasdirty&=~(1<<maxscore);
10538 }
10539 // loop optimization (loop_preload)
10540 int t=(ba[j]-start)>>2;
198df76f 10541 if(t==loop_start[maxscore]) {
10542 if(t==1||(t>1&&itype[t-2]!=UJUMP&&itype[t-2]!=RJUMP)||(t>1&&rt1[t-2]!=31)) // call/ret assumes no registers allocated
10543 regs[t].regmap_entry[maxscore]=reg;
10544 }
d61de97e 10545 }
10546 else
10547 {
10548 if(j<1||(itype[j-1]!=RJUMP&&itype[j-1]!=UJUMP&&itype[j-1]!=CJUMP&&itype[j-1]!=SJUMP&&itype[j-1]!=FJUMP)) {
10549 regmap_pre[j+1][maxscore]=reg;
10550 regs[j+1].wasdirty&=~(1<<maxscore);
10551 }
10552 }
10553 }
10554 i=j-1;
10555 if(itype[j-1]==RJUMP||itype[j-1]==UJUMP||itype[j-1]==CJUMP||itype[j-1]==SJUMP||itype[j-1]==FJUMP) i++; // skip delay slot
10556 for(hr=0;hr<HOST_REGS;hr++) {
10557 score[hr]=0;earliest_available[hr]=i+i;
10558 loop_start[hr]=MAXBLOCK;
10559 }
10560 }
10561 }
10562 }
10563 }
10564 #endif
10565
57871462 10566 // This allocates registers (if possible) one instruction prior
10567 // to use, which can avoid a load-use penalty on certain CPUs.
10568 for(i=0;i<slen-1;i++)
10569 {
10570 if(!i||(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP))
10571 {
10572 if(!bt[i+1])
10573 {
b9b61529 10574 if(itype[i]==ALU||itype[i]==MOV||itype[i]==LOAD||itype[i]==SHIFTIMM||itype[i]==IMM16
10575 ||((itype[i]==COP1||itype[i]==COP2)&&opcode2[i]<3))
57871462 10576 {
10577 if(rs1[i+1]) {
10578 if((hr=get_reg(regs[i+1].regmap,rs1[i+1]))>=0)
10579 {
10580 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10581 {
10582 regs[i].regmap[hr]=regs[i+1].regmap[hr];
10583 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
10584 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
10585 regs[i].isconst&=~(1<<hr);
10586 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10587 constmap[i][hr]=constmap[i+1][hr];
10588 regs[i+1].wasdirty&=~(1<<hr);
10589 regs[i].dirty&=~(1<<hr);
10590 }
10591 }
10592 }
10593 if(rs2[i+1]) {
10594 if((hr=get_reg(regs[i+1].regmap,rs2[i+1]))>=0)
10595 {
10596 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10597 {
10598 regs[i].regmap[hr]=regs[i+1].regmap[hr];
10599 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
10600 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
10601 regs[i].isconst&=~(1<<hr);
10602 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10603 constmap[i][hr]=constmap[i+1][hr];
10604 regs[i+1].wasdirty&=~(1<<hr);
10605 regs[i].dirty&=~(1<<hr);
10606 }
10607 }
10608 }
198df76f 10609 // Preload target address for load instruction (non-constant)
57871462 10610 if(itype[i+1]==LOAD&&rs1[i+1]&&get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10611 if((hr=get_reg(regs[i+1].regmap,rt1[i+1]))>=0)
10612 {
10613 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10614 {
10615 regs[i].regmap[hr]=rs1[i+1];
10616 regmap_pre[i+1][hr]=rs1[i+1];
10617 regs[i+1].regmap_entry[hr]=rs1[i+1];
10618 regs[i].isconst&=~(1<<hr);
10619 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10620 constmap[i][hr]=constmap[i+1][hr];
10621 regs[i+1].wasdirty&=~(1<<hr);
10622 regs[i].dirty&=~(1<<hr);
10623 }
10624 }
10625 }
198df76f 10626 // Load source into target register
57871462 10627 if(lt1[i+1]&&get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10628 if((hr=get_reg(regs[i+1].regmap,rt1[i+1]))>=0)
10629 {
10630 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10631 {
10632 regs[i].regmap[hr]=rs1[i+1];
10633 regmap_pre[i+1][hr]=rs1[i+1];
10634 regs[i+1].regmap_entry[hr]=rs1[i+1];
10635 regs[i].isconst&=~(1<<hr);
10636 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10637 constmap[i][hr]=constmap[i+1][hr];
10638 regs[i+1].wasdirty&=~(1<<hr);
10639 regs[i].dirty&=~(1<<hr);
10640 }
10641 }
10642 }
198df76f 10643 // Preload map address
57871462 10644 #ifndef HOST_IMM_ADDR32
b9b61529 10645 if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS||itype[i+1]==C2LS) {
57871462 10646 hr=get_reg(regs[i+1].regmap,TLREG);
10647 if(hr>=0) {
10648 int sr=get_reg(regs[i+1].regmap,rs1[i+1]);
10649 if(sr>=0&&((regs[i+1].wasconst>>sr)&1)) {
10650 int nr;
10651 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10652 {
10653 regs[i].regmap[hr]=MGEN1+((i+1)&1);
10654 regmap_pre[i+1][hr]=MGEN1+((i+1)&1);
10655 regs[i+1].regmap_entry[hr]=MGEN1+((i+1)&1);
10656 regs[i].isconst&=~(1<<hr);
10657 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10658 constmap[i][hr]=constmap[i+1][hr];
10659 regs[i+1].wasdirty&=~(1<<hr);
10660 regs[i].dirty&=~(1<<hr);
10661 }
10662 else if((nr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1))>=0)
10663 {
10664 // move it to another register
10665 regs[i+1].regmap[hr]=-1;
10666 regmap_pre[i+2][hr]=-1;
10667 regs[i+1].regmap[nr]=TLREG;
10668 regmap_pre[i+2][nr]=TLREG;
10669 regs[i].regmap[nr]=MGEN1+((i+1)&1);
10670 regmap_pre[i+1][nr]=MGEN1+((i+1)&1);
10671 regs[i+1].regmap_entry[nr]=MGEN1+((i+1)&1);
10672 regs[i].isconst&=~(1<<nr);
10673 regs[i+1].isconst&=~(1<<nr);
10674 regs[i].dirty&=~(1<<nr);
10675 regs[i+1].wasdirty&=~(1<<nr);
10676 regs[i+1].dirty&=~(1<<nr);
10677 regs[i+2].wasdirty&=~(1<<nr);
10678 }
10679 }
10680 }
10681 }
10682 #endif
198df76f 10683 // Address for store instruction (non-constant)
b9b61529 10684 if(itype[i+1]==STORE||itype[i+1]==STORELR
10685 ||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SB/SH/SW/SD/SWC1/SDC1/SWC2/SDC2
57871462 10686 if(get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10687 hr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1);
10688 if(hr<0) hr=get_reg(regs[i+1].regmap,-1);
10689 else {regs[i+1].regmap[hr]=AGEN1+((i+1)&1);regs[i+1].isconst&=~(1<<hr);}
10690 assert(hr>=0);
10691 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10692 {
10693 regs[i].regmap[hr]=rs1[i+1];
10694 regmap_pre[i+1][hr]=rs1[i+1];
10695 regs[i+1].regmap_entry[hr]=rs1[i+1];
10696 regs[i].isconst&=~(1<<hr);
10697 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10698 constmap[i][hr]=constmap[i+1][hr];
10699 regs[i+1].wasdirty&=~(1<<hr);
10700 regs[i].dirty&=~(1<<hr);
10701 }
10702 }
10703 }
b9b61529 10704 if(itype[i+1]==LOADLR||(opcode[i+1]&0x3b)==0x31||(opcode[i+1]&0x3b)==0x32) { // LWC1/LDC1, LWC2/LDC2
57871462 10705 if(get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10706 int nr;
10707 hr=get_reg(regs[i+1].regmap,FTEMP);
10708 assert(hr>=0);
10709 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10710 {
10711 regs[i].regmap[hr]=rs1[i+1];
10712 regmap_pre[i+1][hr]=rs1[i+1];
10713 regs[i+1].regmap_entry[hr]=rs1[i+1];
10714 regs[i].isconst&=~(1<<hr);
10715 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10716 constmap[i][hr]=constmap[i+1][hr];
10717 regs[i+1].wasdirty&=~(1<<hr);
10718 regs[i].dirty&=~(1<<hr);
10719 }
10720 else if((nr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1))>=0)
10721 {
10722 // move it to another register
10723 regs[i+1].regmap[hr]=-1;
10724 regmap_pre[i+2][hr]=-1;
10725 regs[i+1].regmap[nr]=FTEMP;
10726 regmap_pre[i+2][nr]=FTEMP;
10727 regs[i].regmap[nr]=rs1[i+1];
10728 regmap_pre[i+1][nr]=rs1[i+1];
10729 regs[i+1].regmap_entry[nr]=rs1[i+1];
10730 regs[i].isconst&=~(1<<nr);
10731 regs[i+1].isconst&=~(1<<nr);
10732 regs[i].dirty&=~(1<<nr);
10733 regs[i+1].wasdirty&=~(1<<nr);
10734 regs[i+1].dirty&=~(1<<nr);
10735 regs[i+2].wasdirty&=~(1<<nr);
10736 }
10737 }
10738 }
b9b61529 10739 if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR/*||itype[i+1]==C1LS||||itype[i+1]==C2LS*/) {
57871462 10740 if(itype[i+1]==LOAD)
10741 hr=get_reg(regs[i+1].regmap,rt1[i+1]);
b9b61529 10742 if(itype[i+1]==LOADLR||(opcode[i+1]&0x3b)==0x31||(opcode[i+1]&0x3b)==0x32) // LWC1/LDC1, LWC2/LDC2
57871462 10743 hr=get_reg(regs[i+1].regmap,FTEMP);
b9b61529 10744 if(itype[i+1]==STORE||itype[i+1]==STORELR||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1/SWC2/SDC2
57871462 10745 hr=get_reg(regs[i+1].regmap,AGEN1+((i+1)&1));
10746 if(hr<0) hr=get_reg(regs[i+1].regmap,-1);
10747 }
10748 if(hr>=0&&regs[i].regmap[hr]<0) {
10749 int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
10750 if(rs>=0&&((regs[i+1].wasconst>>rs)&1)) {
10751 regs[i].regmap[hr]=AGEN1+((i+1)&1);
10752 regmap_pre[i+1][hr]=AGEN1+((i+1)&1);
10753 regs[i+1].regmap_entry[hr]=AGEN1+((i+1)&1);
10754 regs[i].isconst&=~(1<<hr);
10755 regs[i+1].wasdirty&=~(1<<hr);
10756 regs[i].dirty&=~(1<<hr);
10757 }
10758 }
10759 }
10760 }
10761 }
10762 }
10763 }
10764
10765 /* Pass 6 - Optimize clean/dirty state */
10766 clean_registers(0,slen-1,1);
10767
10768 /* Pass 7 - Identify 32-bit registers */
a28c6ce8 10769#ifndef FORCE32
57871462 10770 provisional_r32();
10771
10772 u_int r32=0;
10773
10774 for (i=slen-1;i>=0;i--)
10775 {
10776 int hr;
10777 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
10778 {
10779 if(ba[i]<start || ba[i]>=(start+slen*4))
10780 {
10781 // Branch out of this block, don't need anything
10782 r32=0;
10783 }
10784 else
10785 {
10786 // Internal branch
10787 // Need whatever matches the target
10788 // (and doesn't get overwritten by the delay slot instruction)
10789 r32=0;
10790 int t=(ba[i]-start)>>2;
10791 if(ba[i]>start+i*4) {
10792 // Forward branch
10793 if(!(requires_32bit[t]&~regs[i].was32))
10794 r32|=requires_32bit[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
10795 }else{
10796 // Backward branch
10797 //if(!(regs[t].was32&~unneeded_reg_upper[t]&~regs[i].was32))
10798 // r32|=regs[t].was32&~unneeded_reg_upper[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
10799 if(!(pr32[t]&~regs[i].was32))
10800 r32|=pr32[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
10801 }
10802 }
10803 // Conditional branch may need registers for following instructions
10804 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
10805 {
10806 if(i<slen-2) {
10807 r32|=requires_32bit[i+2];
10808 r32&=regs[i].was32;
10809 // Mark this address as a branch target since it may be called
10810 // upon return from interrupt
10811 bt[i+2]=1;
10812 }
10813 }
10814 // Merge in delay slot
10815 if(!likely[i]) {
10816 // These are overwritten unless the branch is "likely"
10817 // and the delay slot is nullified if not taken
10818 r32&=~(1LL<<rt1[i+1]);
10819 r32&=~(1LL<<rt2[i+1]);
10820 }
10821 // Assume these are needed (delay slot)
10822 if(us1[i+1]>0)
10823 {
10824 if((regs[i].was32>>us1[i+1])&1) r32|=1LL<<us1[i+1];
10825 }
10826 if(us2[i+1]>0)
10827 {
10828 if((regs[i].was32>>us2[i+1])&1) r32|=1LL<<us2[i+1];
10829 }
10830 if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1))
10831 {
10832 if((regs[i].was32>>dep1[i+1])&1) r32|=1LL<<dep1[i+1];
10833 }
10834 if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1))
10835 {
10836 if((regs[i].was32>>dep2[i+1])&1) r32|=1LL<<dep2[i+1];
10837 }
10838 }
1e973cb0 10839 else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
57871462 10840 {
10841 // SYSCALL instruction (software interrupt)
10842 r32=0;
10843 }
10844 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
10845 {
10846 // ERET instruction (return from interrupt)
10847 r32=0;
10848 }
10849 // Check 32 bits
10850 r32&=~(1LL<<rt1[i]);
10851 r32&=~(1LL<<rt2[i]);
10852 if(us1[i]>0)
10853 {
10854 if((regs[i].was32>>us1[i])&1) r32|=1LL<<us1[i];
10855 }
10856 if(us2[i]>0)
10857 {
10858 if((regs[i].was32>>us2[i])&1) r32|=1LL<<us2[i];
10859 }
10860 if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1))
10861 {
10862 if((regs[i].was32>>dep1[i])&1) r32|=1LL<<dep1[i];
10863 }
10864 if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1))
10865 {
10866 if((regs[i].was32>>dep2[i])&1) r32|=1LL<<dep2[i];
10867 }
10868 requires_32bit[i]=r32;
10869
10870 // Dirty registers which are 32-bit, require 32-bit input
10871 // as they will be written as 32-bit values
10872 for(hr=0;hr<HOST_REGS;hr++)
10873 {
10874 if(regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64) {
10875 if((regs[i].was32>>regs[i].regmap_entry[hr])&(regs[i].wasdirty>>hr)&1) {
10876 if(!((unneeded_reg_upper[i]>>regs[i].regmap_entry[hr])&1))
10877 requires_32bit[i]|=1LL<<regs[i].regmap_entry[hr];
10878 }
10879 }
10880 }
10881 //requires_32bit[i]=is32[i]&~unneeded_reg_upper[i]; // DEBUG
10882 }
04fd948a 10883#else
10884 for (i=slen-1;i>=0;i--)
10885 {
10886 if(itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
10887 {
10888 // Conditional branch
10889 if((source[i]>>16)!=0x1000&&i<slen-2) {
10890 // Mark this address as a branch target since it may be called
10891 // upon return from interrupt
10892 bt[i+2]=1;
10893 }
10894 }
10895 }
a28c6ce8 10896#endif
57871462 10897
10898 if(itype[slen-1]==SPAN) {
10899 bt[slen-1]=1; // Mark as a branch target so instruction can restart after exception
10900 }
4600ba03 10901
10902#ifdef DISASM
57871462 10903 /* Debug/disassembly */
57871462 10904 for(i=0;i<slen;i++)
10905 {
10906 printf("U:");
10907 int r;
10908 for(r=1;r<=CCREG;r++) {
10909 if((unneeded_reg[i]>>r)&1) {
10910 if(r==HIREG) printf(" HI");
10911 else if(r==LOREG) printf(" LO");
10912 else printf(" r%d",r);
10913 }
10914 }
90ae6d4e 10915#ifndef FORCE32
57871462 10916 printf(" UU:");
10917 for(r=1;r<=CCREG;r++) {
10918 if(((unneeded_reg_upper[i]&~unneeded_reg[i])>>r)&1) {
10919 if(r==HIREG) printf(" HI");
10920 else if(r==LOREG) printf(" LO");
10921 else printf(" r%d",r);
10922 }
10923 }
10924 printf(" 32:");
10925 for(r=0;r<=CCREG;r++) {
10926 //if(((is32[i]>>r)&(~unneeded_reg[i]>>r))&1) {
10927 if((regs[i].was32>>r)&1) {
10928 if(r==CCREG) printf(" CC");
10929 else if(r==HIREG) printf(" HI");
10930 else if(r==LOREG) printf(" LO");
10931 else printf(" r%d",r);
10932 }
10933 }
90ae6d4e 10934#endif
57871462 10935 printf("\n");
10936 #if defined(__i386__) || defined(__x86_64__)
10937 printf("pre: eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",regmap_pre[i][0],regmap_pre[i][1],regmap_pre[i][2],regmap_pre[i][3],regmap_pre[i][5],regmap_pre[i][6],regmap_pre[i][7]);
10938 #endif
10939 #ifdef __arm__
10940 printf("pre: r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d\n",regmap_pre[i][0],regmap_pre[i][1],regmap_pre[i][2],regmap_pre[i][3],regmap_pre[i][4],regmap_pre[i][5],regmap_pre[i][6],regmap_pre[i][7],regmap_pre[i][8],regmap_pre[i][9],regmap_pre[i][10],regmap_pre[i][12]);
10941 #endif
10942 printf("needs: ");
10943 if(needed_reg[i]&1) printf("eax ");
10944 if((needed_reg[i]>>1)&1) printf("ecx ");
10945 if((needed_reg[i]>>2)&1) printf("edx ");
10946 if((needed_reg[i]>>3)&1) printf("ebx ");
10947 if((needed_reg[i]>>5)&1) printf("ebp ");
10948 if((needed_reg[i]>>6)&1) printf("esi ");
10949 if((needed_reg[i]>>7)&1) printf("edi ");
10950 printf("r:");
10951 for(r=0;r<=CCREG;r++) {
10952 //if(((requires_32bit[i]>>r)&(~unneeded_reg[i]>>r))&1) {
10953 if((requires_32bit[i]>>r)&1) {
10954 if(r==CCREG) printf(" CC");
10955 else if(r==HIREG) printf(" HI");
10956 else if(r==LOREG) printf(" LO");
10957 else printf(" r%d",r);
10958 }
10959 }
10960 printf("\n");
10961 /*printf("pr:");
10962 for(r=0;r<=CCREG;r++) {
10963 //if(((requires_32bit[i]>>r)&(~unneeded_reg[i]>>r))&1) {
10964 if((pr32[i]>>r)&1) {
10965 if(r==CCREG) printf(" CC");
10966 else if(r==HIREG) printf(" HI");
10967 else if(r==LOREG) printf(" LO");
10968 else printf(" r%d",r);
10969 }
10970 }
10971 if(pr32[i]!=requires_32bit[i]) printf(" OOPS");
10972 printf("\n");*/
10973 #if defined(__i386__) || defined(__x86_64__)
10974 printf("entry: eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",regs[i].regmap_entry[0],regs[i].regmap_entry[1],regs[i].regmap_entry[2],regs[i].regmap_entry[3],regs[i].regmap_entry[5],regs[i].regmap_entry[6],regs[i].regmap_entry[7]);
10975 printf("dirty: ");
10976 if(regs[i].wasdirty&1) printf("eax ");
10977 if((regs[i].wasdirty>>1)&1) printf("ecx ");
10978 if((regs[i].wasdirty>>2)&1) printf("edx ");
10979 if((regs[i].wasdirty>>3)&1) printf("ebx ");
10980 if((regs[i].wasdirty>>5)&1) printf("ebp ");
10981 if((regs[i].wasdirty>>6)&1) printf("esi ");
10982 if((regs[i].wasdirty>>7)&1) printf("edi ");
10983 #endif
10984 #ifdef __arm__
10985 printf("entry: r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d\n",regs[i].regmap_entry[0],regs[i].regmap_entry[1],regs[i].regmap_entry[2],regs[i].regmap_entry[3],regs[i].regmap_entry[4],regs[i].regmap_entry[5],regs[i].regmap_entry[6],regs[i].regmap_entry[7],regs[i].regmap_entry[8],regs[i].regmap_entry[9],regs[i].regmap_entry[10],regs[i].regmap_entry[12]);
10986 printf("dirty: ");
10987 if(regs[i].wasdirty&1) printf("r0 ");
10988 if((regs[i].wasdirty>>1)&1) printf("r1 ");
10989 if((regs[i].wasdirty>>2)&1) printf("r2 ");
10990 if((regs[i].wasdirty>>3)&1) printf("r3 ");
10991 if((regs[i].wasdirty>>4)&1) printf("r4 ");
10992 if((regs[i].wasdirty>>5)&1) printf("r5 ");
10993 if((regs[i].wasdirty>>6)&1) printf("r6 ");
10994 if((regs[i].wasdirty>>7)&1) printf("r7 ");
10995 if((regs[i].wasdirty>>8)&1) printf("r8 ");
10996 if((regs[i].wasdirty>>9)&1) printf("r9 ");
10997 if((regs[i].wasdirty>>10)&1) printf("r10 ");
10998 if((regs[i].wasdirty>>12)&1) printf("r12 ");
10999 #endif
11000 printf("\n");
11001 disassemble_inst(i);
11002 //printf ("ccadj[%d] = %d\n",i,ccadj[i]);
11003 #if defined(__i386__) || defined(__x86_64__)
11004 printf("eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d dirty: ",regs[i].regmap[0],regs[i].regmap[1],regs[i].regmap[2],regs[i].regmap[3],regs[i].regmap[5],regs[i].regmap[6],regs[i].regmap[7]);
11005 if(regs[i].dirty&1) printf("eax ");
11006 if((regs[i].dirty>>1)&1) printf("ecx ");
11007 if((regs[i].dirty>>2)&1) printf("edx ");
11008 if((regs[i].dirty>>3)&1) printf("ebx ");
11009 if((regs[i].dirty>>5)&1) printf("ebp ");
11010 if((regs[i].dirty>>6)&1) printf("esi ");
11011 if((regs[i].dirty>>7)&1) printf("edi ");
11012 #endif
11013 #ifdef __arm__
11014 printf("r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d dirty: ",regs[i].regmap[0],regs[i].regmap[1],regs[i].regmap[2],regs[i].regmap[3],regs[i].regmap[4],regs[i].regmap[5],regs[i].regmap[6],regs[i].regmap[7],regs[i].regmap[8],regs[i].regmap[9],regs[i].regmap[10],regs[i].regmap[12]);
11015 if(regs[i].dirty&1) printf("r0 ");
11016 if((regs[i].dirty>>1)&1) printf("r1 ");
11017 if((regs[i].dirty>>2)&1) printf("r2 ");
11018 if((regs[i].dirty>>3)&1) printf("r3 ");
11019 if((regs[i].dirty>>4)&1) printf("r4 ");
11020 if((regs[i].dirty>>5)&1) printf("r5 ");
11021 if((regs[i].dirty>>6)&1) printf("r6 ");
11022 if((regs[i].dirty>>7)&1) printf("r7 ");
11023 if((regs[i].dirty>>8)&1) printf("r8 ");
11024 if((regs[i].dirty>>9)&1) printf("r9 ");
11025 if((regs[i].dirty>>10)&1) printf("r10 ");
11026 if((regs[i].dirty>>12)&1) printf("r12 ");
11027 #endif
11028 printf("\n");
11029 if(regs[i].isconst) {
11030 printf("constants: ");
11031 #if defined(__i386__) || defined(__x86_64__)
11032 if(regs[i].isconst&1) printf("eax=%x ",(int)constmap[i][0]);
11033 if((regs[i].isconst>>1)&1) printf("ecx=%x ",(int)constmap[i][1]);
11034 if((regs[i].isconst>>2)&1) printf("edx=%x ",(int)constmap[i][2]);
11035 if((regs[i].isconst>>3)&1) printf("ebx=%x ",(int)constmap[i][3]);
11036 if((regs[i].isconst>>5)&1) printf("ebp=%x ",(int)constmap[i][5]);
11037 if((regs[i].isconst>>6)&1) printf("esi=%x ",(int)constmap[i][6]);
11038 if((regs[i].isconst>>7)&1) printf("edi=%x ",(int)constmap[i][7]);
11039 #endif
11040 #ifdef __arm__
11041 if(regs[i].isconst&1) printf("r0=%x ",(int)constmap[i][0]);
11042 if((regs[i].isconst>>1)&1) printf("r1=%x ",(int)constmap[i][1]);
11043 if((regs[i].isconst>>2)&1) printf("r2=%x ",(int)constmap[i][2]);
11044 if((regs[i].isconst>>3)&1) printf("r3=%x ",(int)constmap[i][3]);
11045 if((regs[i].isconst>>4)&1) printf("r4=%x ",(int)constmap[i][4]);
11046 if((regs[i].isconst>>5)&1) printf("r5=%x ",(int)constmap[i][5]);
11047 if((regs[i].isconst>>6)&1) printf("r6=%x ",(int)constmap[i][6]);
11048 if((regs[i].isconst>>7)&1) printf("r7=%x ",(int)constmap[i][7]);
11049 if((regs[i].isconst>>8)&1) printf("r8=%x ",(int)constmap[i][8]);
11050 if((regs[i].isconst>>9)&1) printf("r9=%x ",(int)constmap[i][9]);
11051 if((regs[i].isconst>>10)&1) printf("r10=%x ",(int)constmap[i][10]);
11052 if((regs[i].isconst>>12)&1) printf("r12=%x ",(int)constmap[i][12]);
11053 #endif
11054 printf("\n");
11055 }
90ae6d4e 11056#ifndef FORCE32
57871462 11057 printf(" 32:");
11058 for(r=0;r<=CCREG;r++) {
11059 if((regs[i].is32>>r)&1) {
11060 if(r==CCREG) printf(" CC");
11061 else if(r==HIREG) printf(" HI");
11062 else if(r==LOREG) printf(" LO");
11063 else printf(" r%d",r);
11064 }
11065 }
11066 printf("\n");
90ae6d4e 11067#endif
57871462 11068 /*printf(" p32:");
11069 for(r=0;r<=CCREG;r++) {
11070 if((p32[i]>>r)&1) {
11071 if(r==CCREG) printf(" CC");
11072 else if(r==HIREG) printf(" HI");
11073 else if(r==LOREG) printf(" LO");
11074 else printf(" r%d",r);
11075 }
11076 }
11077 if(p32[i]!=regs[i].is32) printf(" NO MATCH\n");
11078 else printf("\n");*/
11079 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP) {
11080 #if defined(__i386__) || defined(__x86_64__)
11081 printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d dirty: ",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
11082 if(branch_regs[i].dirty&1) printf("eax ");
11083 if((branch_regs[i].dirty>>1)&1) printf("ecx ");
11084 if((branch_regs[i].dirty>>2)&1) printf("edx ");
11085 if((branch_regs[i].dirty>>3)&1) printf("ebx ");
11086 if((branch_regs[i].dirty>>5)&1) printf("ebp ");
11087 if((branch_regs[i].dirty>>6)&1) printf("esi ");
11088 if((branch_regs[i].dirty>>7)&1) printf("edi ");
11089 #endif
11090 #ifdef __arm__
11091 printf("branch(%d): r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d dirty: ",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[4],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7],branch_regs[i].regmap[8],branch_regs[i].regmap[9],branch_regs[i].regmap[10],branch_regs[i].regmap[12]);
11092 if(branch_regs[i].dirty&1) printf("r0 ");
11093 if((branch_regs[i].dirty>>1)&1) printf("r1 ");
11094 if((branch_regs[i].dirty>>2)&1) printf("r2 ");
11095 if((branch_regs[i].dirty>>3)&1) printf("r3 ");
11096 if((branch_regs[i].dirty>>4)&1) printf("r4 ");
11097 if((branch_regs[i].dirty>>5)&1) printf("r5 ");
11098 if((branch_regs[i].dirty>>6)&1) printf("r6 ");
11099 if((branch_regs[i].dirty>>7)&1) printf("r7 ");
11100 if((branch_regs[i].dirty>>8)&1) printf("r8 ");
11101 if((branch_regs[i].dirty>>9)&1) printf("r9 ");
11102 if((branch_regs[i].dirty>>10)&1) printf("r10 ");
11103 if((branch_regs[i].dirty>>12)&1) printf("r12 ");
11104 #endif
90ae6d4e 11105#ifndef FORCE32
57871462 11106 printf(" 32:");
11107 for(r=0;r<=CCREG;r++) {
11108 if((branch_regs[i].is32>>r)&1) {
11109 if(r==CCREG) printf(" CC");
11110 else if(r==HIREG) printf(" HI");
11111 else if(r==LOREG) printf(" LO");
11112 else printf(" r%d",r);
11113 }
11114 }
11115 printf("\n");
90ae6d4e 11116#endif
57871462 11117 }
11118 }
4600ba03 11119#endif // DISASM
57871462 11120
11121 /* Pass 8 - Assembly */
11122 linkcount=0;stubcount=0;
11123 ds=0;is_delayslot=0;
11124 cop1_usable=0;
11125 uint64_t is32_pre=0;
11126 u_int dirty_pre=0;
11127 u_int beginning=(u_int)out;
11128 if((u_int)addr&1) {
11129 ds=1;
11130 pagespan_ds();
11131 }
9ad4d757 11132 u_int instr_addr0_override=0;
11133
11134#ifdef PCSX
11135 if (start == 0x80030000) {
11136 // nasty hack for fastbios thing
96186eba 11137 // override block entry to this code
9ad4d757 11138 instr_addr0_override=(u_int)out;
11139 emit_movimm(start,0);
96186eba 11140 // abuse io address var as a flag that we
11141 // have already returned here once
11142 emit_readword((int)&address,1);
9ad4d757 11143 emit_writeword(0,(int)&pcaddr);
96186eba 11144 emit_writeword(0,(int)&address);
9ad4d757 11145 emit_cmp(0,1);
11146 emit_jne((int)new_dyna_leave);
11147 }
11148#endif
57871462 11149 for(i=0;i<slen;i++)
11150 {
11151 //if(ds) printf("ds: ");
4600ba03 11152 disassemble_inst(i);
57871462 11153 if(ds) {
11154 ds=0; // Skip delay slot
11155 if(bt[i]) assem_debug("OOPS - branch into delay slot\n");
11156 instr_addr[i]=0;
11157 } else {
11158 #ifndef DESTRUCTIVE_WRITEBACK
11159 if(i<2||(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000))
11160 {
11161 wb_sx(regmap_pre[i],regs[i].regmap_entry,regs[i].wasdirty,is32_pre,regs[i].was32,
11162 unneeded_reg[i],unneeded_reg_upper[i]);
11163 wb_valid(regmap_pre[i],regs[i].regmap_entry,dirty_pre,regs[i].wasdirty,is32_pre,
11164 unneeded_reg[i],unneeded_reg_upper[i]);
11165 }
f776eb14 11166 if((itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)&&!likely[i]) {
11167 is32_pre=branch_regs[i].is32;
11168 dirty_pre=branch_regs[i].dirty;
11169 }else{
11170 is32_pre=regs[i].is32;
11171 dirty_pre=regs[i].dirty;
11172 }
57871462 11173 #endif
11174 // write back
11175 if(i<2||(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000))
11176 {
11177 wb_invalidate(regmap_pre[i],regs[i].regmap_entry,regs[i].wasdirty,regs[i].was32,
11178 unneeded_reg[i],unneeded_reg_upper[i]);
11179 loop_preload(regmap_pre[i],regs[i].regmap_entry);
11180 }
11181 // branch target entry point
11182 instr_addr[i]=(u_int)out;
11183 assem_debug("<->\n");
11184 // load regs
11185 if(regs[i].regmap_entry[HOST_CCREG]==CCREG&&regs[i].regmap[HOST_CCREG]!=CCREG)
11186 wb_register(CCREG,regs[i].regmap_entry,regs[i].wasdirty,regs[i].was32);
11187 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i],rs2[i]);
11188 address_generation(i,&regs[i],regs[i].regmap_entry);
11189 load_consts(regmap_pre[i],regs[i].regmap,regs[i].was32,i);
11190 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
11191 {
11192 // Load the delay slot registers if necessary
4ef8f67d 11193 if(rs1[i+1]!=rs1[i]&&rs1[i+1]!=rs2[i]&&(rs1[i+1]!=rt1[i]||rt1[i]==0))
57871462 11194 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i+1],rs1[i+1]);
4ef8f67d 11195 if(rs2[i+1]!=rs1[i+1]&&rs2[i+1]!=rs1[i]&&rs2[i+1]!=rs2[i]&&(rs2[i+1]!=rt1[i]||rt1[i]==0))
57871462 11196 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs2[i+1],rs2[i+1]);
b9b61529 11197 if(itype[i+1]==STORE||itype[i+1]==STORELR||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a)
57871462 11198 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,INVCP,INVCP);
11199 }
11200 else if(i+1<slen)
11201 {
11202 // Preload registers for following instruction
11203 if(rs1[i+1]!=rs1[i]&&rs1[i+1]!=rs2[i])
11204 if(rs1[i+1]!=rt1[i]&&rs1[i+1]!=rt2[i])
11205 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i+1],rs1[i+1]);
11206 if(rs2[i+1]!=rs1[i+1]&&rs2[i+1]!=rs1[i]&&rs2[i+1]!=rs2[i])
11207 if(rs2[i+1]!=rt1[i]&&rs2[i+1]!=rt2[i])
11208 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs2[i+1],rs2[i+1]);
11209 }
11210 // TODO: if(is_ooo(i)) address_generation(i+1);
11211 if(itype[i]==CJUMP||itype[i]==FJUMP)
11212 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,CCREG,CCREG);
b9b61529 11213 if(itype[i]==STORE||itype[i]==STORELR||(opcode[i]&0x3b)==0x39||(opcode[i]&0x3b)==0x3a)
57871462 11214 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,INVCP,INVCP);
11215 if(bt[i]) cop1_usable=0;
11216 // assemble
11217 switch(itype[i]) {
11218 case ALU:
11219 alu_assemble(i,&regs[i]);break;
11220 case IMM16:
11221 imm16_assemble(i,&regs[i]);break;
11222 case SHIFT:
11223 shift_assemble(i,&regs[i]);break;
11224 case SHIFTIMM:
11225 shiftimm_assemble(i,&regs[i]);break;
11226 case LOAD:
11227 load_assemble(i,&regs[i]);break;
11228 case LOADLR:
11229 loadlr_assemble(i,&regs[i]);break;
11230 case STORE:
11231 store_assemble(i,&regs[i]);break;
11232 case STORELR:
11233 storelr_assemble(i,&regs[i]);break;
11234 case COP0:
11235 cop0_assemble(i,&regs[i]);break;
11236 case COP1:
11237 cop1_assemble(i,&regs[i]);break;
11238 case C1LS:
11239 c1ls_assemble(i,&regs[i]);break;
b9b61529 11240 case COP2:
11241 cop2_assemble(i,&regs[i]);break;
11242 case C2LS:
11243 c2ls_assemble(i,&regs[i]);break;
11244 case C2OP:
11245 c2op_assemble(i,&regs[i]);break;
57871462 11246 case FCONV:
11247 fconv_assemble(i,&regs[i]);break;
11248 case FLOAT:
11249 float_assemble(i,&regs[i]);break;
11250 case FCOMP:
11251 fcomp_assemble(i,&regs[i]);break;
11252 case MULTDIV:
11253 multdiv_assemble(i,&regs[i]);break;
11254 case MOV:
11255 mov_assemble(i,&regs[i]);break;
11256 case SYSCALL:
11257 syscall_assemble(i,&regs[i]);break;
7139f3c8 11258 case HLECALL:
11259 hlecall_assemble(i,&regs[i]);break;
1e973cb0 11260 case INTCALL:
11261 intcall_assemble(i,&regs[i]);break;
57871462 11262 case UJUMP:
11263 ujump_assemble(i,&regs[i]);ds=1;break;
11264 case RJUMP:
11265 rjump_assemble(i,&regs[i]);ds=1;break;
11266 case CJUMP:
11267 cjump_assemble(i,&regs[i]);ds=1;break;
11268 case SJUMP:
11269 sjump_assemble(i,&regs[i]);ds=1;break;
11270 case FJUMP:
11271 fjump_assemble(i,&regs[i]);ds=1;break;
11272 case SPAN:
11273 pagespan_assemble(i,&regs[i]);break;
11274 }
11275 if(itype[i]==UJUMP||itype[i]==RJUMP||(source[i]>>16)==0x1000)
11276 literal_pool(1024);
11277 else
11278 literal_pool_jumpover(256);
11279 }
11280 }
11281 //assert(itype[i-2]==UJUMP||itype[i-2]==RJUMP||(source[i-2]>>16)==0x1000);
11282 // If the block did not end with an unconditional branch,
11283 // add a jump to the next instruction.
11284 if(i>1) {
11285 if(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000&&itype[i-1]!=SPAN) {
11286 assert(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP);
11287 assert(i==slen);
11288 if(itype[i-2]!=CJUMP&&itype[i-2]!=SJUMP&&itype[i-2]!=FJUMP) {
11289 store_regs_bt(regs[i-1].regmap,regs[i-1].is32,regs[i-1].dirty,start+i*4);
11290 if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
11291 emit_loadreg(CCREG,HOST_CCREG);
11292 emit_addimm(HOST_CCREG,CLOCK_DIVIDER*(ccadj[i-1]+1),HOST_CCREG);
11293 }
11294 else if(!likely[i-2])
11295 {
11296 store_regs_bt(branch_regs[i-2].regmap,branch_regs[i-2].is32,branch_regs[i-2].dirty,start+i*4);
11297 assert(branch_regs[i-2].regmap[HOST_CCREG]==CCREG);
11298 }
11299 else
11300 {
11301 store_regs_bt(regs[i-2].regmap,regs[i-2].is32,regs[i-2].dirty,start+i*4);
11302 assert(regs[i-2].regmap[HOST_CCREG]==CCREG);
11303 }
11304 add_to_linker((int)out,start+i*4,0);
11305 emit_jmp(0);
11306 }
11307 }
11308 else
11309 {
11310 assert(i>0);
11311 assert(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP);
11312 store_regs_bt(regs[i-1].regmap,regs[i-1].is32,regs[i-1].dirty,start+i*4);
11313 if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
11314 emit_loadreg(CCREG,HOST_CCREG);
11315 emit_addimm(HOST_CCREG,CLOCK_DIVIDER*(ccadj[i-1]+1),HOST_CCREG);
11316 add_to_linker((int)out,start+i*4,0);
11317 emit_jmp(0);
11318 }
11319
11320 // TODO: delay slot stubs?
11321 // Stubs
11322 for(i=0;i<stubcount;i++)
11323 {
11324 switch(stubs[i][0])
11325 {
11326 case LOADB_STUB:
11327 case LOADH_STUB:
11328 case LOADW_STUB:
11329 case LOADD_STUB:
11330 case LOADBU_STUB:
11331 case LOADHU_STUB:
11332 do_readstub(i);break;
11333 case STOREB_STUB:
11334 case STOREH_STUB:
11335 case STOREW_STUB:
11336 case STORED_STUB:
11337 do_writestub(i);break;
11338 case CC_STUB:
11339 do_ccstub(i);break;
11340 case INVCODE_STUB:
11341 do_invstub(i);break;
11342 case FP_STUB:
11343 do_cop1stub(i);break;
11344 case STORELR_STUB:
11345 do_unalignedwritestub(i);break;
11346 }
11347 }
11348
9ad4d757 11349 if (instr_addr0_override)
11350 instr_addr[0] = instr_addr0_override;
11351
57871462 11352 /* Pass 9 - Linker */
11353 for(i=0;i<linkcount;i++)
11354 {
11355 assem_debug("%8x -> %8x\n",link_addr[i][0],link_addr[i][1]);
11356 literal_pool(64);
11357 if(!link_addr[i][2])
11358 {
11359 void *stub=out;
11360 void *addr=check_addr(link_addr[i][1]);
11361 emit_extjump(link_addr[i][0],link_addr[i][1]);
11362 if(addr) {
11363 set_jump_target(link_addr[i][0],(int)addr);
11364 add_link(link_addr[i][1],stub);
11365 }
11366 else set_jump_target(link_addr[i][0],(int)stub);
11367 }
11368 else
11369 {
11370 // Internal branch
11371 int target=(link_addr[i][1]-start)>>2;
11372 assert(target>=0&&target<slen);
11373 assert(instr_addr[target]);
11374 //#ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
11375 //set_jump_target_fillslot(link_addr[i][0],instr_addr[target],link_addr[i][2]>>1);
11376 //#else
11377 set_jump_target(link_addr[i][0],instr_addr[target]);
11378 //#endif
11379 }
11380 }
11381 // External Branch Targets (jump_in)
11382 if(copy+slen*4>(void *)shadow+sizeof(shadow)) copy=shadow;
11383 for(i=0;i<slen;i++)
11384 {
11385 if(bt[i]||i==0)
11386 {
11387 if(instr_addr[i]) // TODO - delay slots (=null)
11388 {
11389 u_int vaddr=start+i*4;
94d23bb9 11390 u_int page=get_page(vaddr);
11391 u_int vpage=get_vpage(vaddr);
57871462 11392 literal_pool(256);
11393 //if(!(is32[i]&(~unneeded_reg_upper[i])&~(1LL<<CCREG)))
a28c6ce8 11394#ifndef FORCE32
57871462 11395 if(!requires_32bit[i])
a28c6ce8 11396#else
11397 if(1)
11398#endif
57871462 11399 {
11400 assem_debug("%8x (%d) <- %8x\n",instr_addr[i],i,start+i*4);
11401 assem_debug("jump_in: %x\n",start+i*4);
11402 ll_add(jump_dirty+vpage,vaddr,(void *)out);
11403 int entry_point=do_dirty_stub(i);
11404 ll_add(jump_in+page,vaddr,(void *)entry_point);
11405 // If there was an existing entry in the hash table,
11406 // replace it with the new address.
11407 // Don't add new entries. We'll insert the
11408 // ones that actually get used in check_addr().
11409 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
11410 if(ht_bin[0]==vaddr) {
11411 ht_bin[1]=entry_point;
11412 }
11413 if(ht_bin[2]==vaddr) {
11414 ht_bin[3]=entry_point;
11415 }
11416 }
11417 else
11418 {
11419 u_int r=requires_32bit[i]|!!(requires_32bit[i]>>32);
11420 assem_debug("%8x (%d) <- %8x\n",instr_addr[i],i,start+i*4);
11421 assem_debug("jump_in: %x (restricted - %x)\n",start+i*4,r);
11422 //int entry_point=(int)out;
11423 ////assem_debug("entry_point: %x\n",entry_point);
11424 //load_regs_entry(i);
11425 //if(entry_point==(int)out)
11426 // entry_point=instr_addr[i];
11427 //else
11428 // emit_jmp(instr_addr[i]);
11429 //ll_add_32(jump_in+page,vaddr,r,(void *)entry_point);
11430 ll_add_32(jump_dirty+vpage,vaddr,r,(void *)out);
11431 int entry_point=do_dirty_stub(i);
11432 ll_add_32(jump_in+page,vaddr,r,(void *)entry_point);
11433 }
11434 }
11435 }
11436 }
11437 // Write out the literal pool if necessary
11438 literal_pool(0);
11439 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
11440 // Align code
11441 if(((u_int)out)&7) emit_addnop(13);
11442 #endif
11443 assert((u_int)out-beginning<MAX_OUTPUT_BLOCK_SIZE);
11444 //printf("shadow buffer: %x-%x\n",(int)copy,(int)copy+slen*4);
11445 memcpy(copy,source,slen*4);
11446 copy+=slen*4;
11447
11448 #ifdef __arm__
11449 __clear_cache((void *)beginning,out);
11450 #endif
11451
11452 // If we're within 256K of the end of the buffer,
11453 // start over from the beginning. (Is 256K enough?)
11454 if((int)out>BASE_ADDR+(1<<TARGET_SIZE_2)-MAX_OUTPUT_BLOCK_SIZE) out=(u_char *)BASE_ADDR;
11455
11456 // Trap writes to any of the pages we compiled
11457 for(i=start>>12;i<=(start+slen*4)>>12;i++) {
11458 invalid_code[i]=0;
90ae6d4e 11459#ifndef DISABLE_TLB
57871462 11460 memory_map[i]|=0x40000000;
11461 if((signed int)start>=(signed int)0xC0000000) {
11462 assert(using_tlb);
11463 j=(((u_int)i<<12)+(memory_map[i]<<2)-(u_int)rdram+(u_int)0x80000000)>>12;
11464 invalid_code[j]=0;
11465 memory_map[j]|=0x40000000;
11466 //printf("write protect physical page: %x (virtual %x)\n",j<<12,start);
11467 }
90ae6d4e 11468#endif
57871462 11469 }
9be4ba64 11470 inv_code_start=inv_code_end=~0;
b12c9fb8 11471#ifdef PCSX
b96d3df7 11472 // for PCSX we need to mark all mirrors too
b12c9fb8 11473 if(get_page(start)<(RAM_SIZE>>12))
11474 for(i=start>>12;i<=(start+slen*4)>>12;i++)
b96d3df7 11475 invalid_code[((u_int)0x00000000>>12)|(i&0x1ff)]=
11476 invalid_code[((u_int)0x80000000>>12)|(i&0x1ff)]=
11477 invalid_code[((u_int)0xa0000000>>12)|(i&0x1ff)]=0;
b12c9fb8 11478#endif
57871462 11479
11480 /* Pass 10 - Free memory by expiring oldest blocks */
11481
11482 int end=((((int)out-BASE_ADDR)>>(TARGET_SIZE_2-16))+16384)&65535;
11483 while(expirep!=end)
11484 {
11485 int shift=TARGET_SIZE_2-3; // Divide into 8 blocks
11486 int base=BASE_ADDR+((expirep>>13)<<shift); // Base address of this block
11487 inv_debug("EXP: Phase %d\n",expirep);
11488 switch((expirep>>11)&3)
11489 {
11490 case 0:
11491 // Clear jump_in and jump_dirty
11492 ll_remove_matching_addrs(jump_in+(expirep&2047),base,shift);
11493 ll_remove_matching_addrs(jump_dirty+(expirep&2047),base,shift);
11494 ll_remove_matching_addrs(jump_in+2048+(expirep&2047),base,shift);
11495 ll_remove_matching_addrs(jump_dirty+2048+(expirep&2047),base,shift);
11496 break;
11497 case 1:
11498 // Clear pointers
11499 ll_kill_pointers(jump_out[expirep&2047],base,shift);
11500 ll_kill_pointers(jump_out[(expirep&2047)+2048],base,shift);
11501 break;
11502 case 2:
11503 // Clear hash table
11504 for(i=0;i<32;i++) {
11505 int *ht_bin=hash_table[((expirep&2047)<<5)+i];
11506 if((ht_bin[3]>>shift)==(base>>shift) ||
11507 ((ht_bin[3]-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(base>>shift)) {
11508 inv_debug("EXP: Remove hash %x -> %x\n",ht_bin[2],ht_bin[3]);
11509 ht_bin[2]=ht_bin[3]=-1;
11510 }
11511 if((ht_bin[1]>>shift)==(base>>shift) ||
11512 ((ht_bin[1]-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(base>>shift)) {
11513 inv_debug("EXP: Remove hash %x -> %x\n",ht_bin[0],ht_bin[1]);
11514 ht_bin[0]=ht_bin[2];
11515 ht_bin[1]=ht_bin[3];
11516 ht_bin[2]=ht_bin[3]=-1;
11517 }
11518 }
11519 break;
11520 case 3:
11521 // Clear jump_out
dd3a91a1 11522 #ifdef __arm__
11523 if((expirep&2047)==0)
11524 do_clear_cache();
11525 #endif
57871462 11526 ll_remove_matching_addrs(jump_out+(expirep&2047),base,shift);
11527 ll_remove_matching_addrs(jump_out+2048+(expirep&2047),base,shift);
11528 break;
11529 }
11530 expirep=(expirep+1)&65535;
11531 }
11532 return 0;
11533}
b9b61529 11534
11535// vim:shiftwidth=2:expandtab