drc: always use physical block addresses
[pcsx_rearmed.git] / libpcsxcore / new_dynarec / new_dynarec.c
CommitLineData
57871462 1/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
2 * Mupen64plus - new_dynarec.c *
20d507ba 3 * Copyright (C) 2009-2011 Ari64 *
57871462 4 * *
5 * This program is free software; you can redistribute it and/or modify *
6 * it under the terms of the GNU General Public License as published by *
7 * the Free Software Foundation; either version 2 of the License, or *
8 * (at your option) any later version. *
9 * *
10 * This program is distributed in the hope that it will be useful, *
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
13 * GNU General Public License for more details. *
14 * *
15 * You should have received a copy of the GNU General Public License *
16 * along with this program; if not, write to the *
17 * Free Software Foundation, Inc., *
18 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. *
19 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
20
21#include <stdlib.h>
22#include <stdint.h> //include for uint64_t
23#include <assert.h>
4600ba03 24#include <sys/mman.h>
57871462 25
3d624f89 26#include "emu_if.h" //emulator interface
57871462 27
4600ba03 28//#define DISASM
29//#define assem_debug printf
30//#define inv_debug printf
31#define assem_debug(...)
32#define inv_debug(...)
57871462 33
34#ifdef __i386__
35#include "assem_x86.h"
36#endif
37#ifdef __x86_64__
38#include "assem_x64.h"
39#endif
40#ifdef __arm__
41#include "assem_arm.h"
42#endif
43
44#define MAXBLOCK 4096
45#define MAX_OUTPUT_BLOCK_SIZE 262144
2573466a 46
47int cycle_multiplier; // 100 for 1.0
48#define CLOCK_ADJUST(x) (((x) * cycle_multiplier + 50) / 100)
57871462 49
50struct regstat
51{
52 signed char regmap_entry[HOST_REGS];
53 signed char regmap[HOST_REGS];
54 uint64_t was32;
55 uint64_t is32;
56 uint64_t wasdirty;
57 uint64_t dirty;
58 uint64_t u;
59 uint64_t uu;
60 u_int wasconst;
61 u_int isconst;
8575a877 62 u_int loadedconst; // host regs that have constants loaded
63 u_int waswritten; // MIPS regs that were used as store base before
57871462 64 uint64_t constmap[HOST_REGS];
65};
66
67struct ll_entry
68{
69 u_int vaddr;
70 u_int reg32;
71 void *addr;
72 struct ll_entry *next;
73};
74
75 u_int start;
76 u_int *source;
77 u_int pagelimit;
78 char insn[MAXBLOCK][10];
79 u_char itype[MAXBLOCK];
80 u_char opcode[MAXBLOCK];
81 u_char opcode2[MAXBLOCK];
82 u_char bt[MAXBLOCK];
83 u_char rs1[MAXBLOCK];
84 u_char rs2[MAXBLOCK];
85 u_char rt1[MAXBLOCK];
86 u_char rt2[MAXBLOCK];
87 u_char us1[MAXBLOCK];
88 u_char us2[MAXBLOCK];
89 u_char dep1[MAXBLOCK];
90 u_char dep2[MAXBLOCK];
91 u_char lt1[MAXBLOCK];
bedfea38 92 static uint64_t gte_rs[MAXBLOCK]; // gte: 32 data and 32 ctl regs
93 static uint64_t gte_rt[MAXBLOCK];
94 static uint64_t gte_unneeded[MAXBLOCK];
ffb0b9e0 95 static u_int smrv[32]; // speculated MIPS register values
96 static u_int smrv_strong; // mask or regs that are likely to have correct values
97 static u_int smrv_weak; // same, but somewhat less likely
98 static u_int smrv_strong_next; // same, but after current insn executes
99 static u_int smrv_weak_next;
57871462 100 int imm[MAXBLOCK];
101 u_int ba[MAXBLOCK];
102 char likely[MAXBLOCK];
103 char is_ds[MAXBLOCK];
e1190b87 104 char ooo[MAXBLOCK];
57871462 105 uint64_t unneeded_reg[MAXBLOCK];
106 uint64_t unneeded_reg_upper[MAXBLOCK];
107 uint64_t branch_unneeded_reg[MAXBLOCK];
108 uint64_t branch_unneeded_reg_upper[MAXBLOCK];
109 uint64_t p32[MAXBLOCK];
110 uint64_t pr32[MAXBLOCK];
111 signed char regmap_pre[MAXBLOCK][HOST_REGS];
112 signed char regmap[MAXBLOCK][HOST_REGS];
113 signed char regmap_entry[MAXBLOCK][HOST_REGS];
114 uint64_t constmap[MAXBLOCK][HOST_REGS];
57871462 115 struct regstat regs[MAXBLOCK];
116 struct regstat branch_regs[MAXBLOCK];
e1190b87 117 signed char minimum_free_regs[MAXBLOCK];
57871462 118 u_int needed_reg[MAXBLOCK];
119 uint64_t requires_32bit[MAXBLOCK];
120 u_int wont_dirty[MAXBLOCK];
121 u_int will_dirty[MAXBLOCK];
122 int ccadj[MAXBLOCK];
123 int slen;
124 u_int instr_addr[MAXBLOCK];
125 u_int link_addr[MAXBLOCK][3];
126 int linkcount;
127 u_int stubs[MAXBLOCK*3][8];
128 int stubcount;
129 u_int literals[1024][2];
130 int literalcount;
131 int is_delayslot;
132 int cop1_usable;
133 u_char *out;
134 struct ll_entry *jump_in[4096];
135 struct ll_entry *jump_out[4096];
136 struct ll_entry *jump_dirty[4096];
137 u_int hash_table[65536][4] __attribute__((aligned(16)));
138 char shadow[1048576] __attribute__((aligned(16)));
139 void *copy;
140 int expirep;
af4ee1fe 141#ifndef PCSX
57871462 142 u_int using_tlb;
af4ee1fe 143#else
144 static const u_int using_tlb=0;
145#endif
2f546f9a 146 int new_dynarec_did_compile;
0ff8c62c 147 int new_dynarec_hacks;
57871462 148 u_int stop_after_jal;
149 extern u_char restore_candidate[512];
150 extern int cycle_count;
151
152 /* registers that may be allocated */
153 /* 1-31 gpr */
154#define HIREG 32 // hi
155#define LOREG 33 // lo
156#define FSREG 34 // FPU status (FCSR)
157#define CSREG 35 // Coprocessor status
158#define CCREG 36 // Cycle count
159#define INVCP 37 // Pointer to invalid_code
619e5ded 160#define MMREG 38 // Pointer to memory_map
161#define ROREG 39 // ram offset (if rdram!=0x80000000)
162#define TEMPREG 40
163#define FTEMP 40 // FPU temporary register
164#define PTEMP 41 // Prefetch temporary register
165#define TLREG 42 // TLB mapping offset
166#define RHASH 43 // Return address hash
167#define RHTBL 44 // Return address hash table address
168#define RTEMP 45 // JR/JALR address register
169#define MAXREG 45
170#define AGEN1 46 // Address generation temporary register
171#define AGEN2 47 // Address generation temporary register
172#define MGEN1 48 // Maptable address generation temporary register
173#define MGEN2 49 // Maptable address generation temporary register
174#define BTREG 50 // Branch target temporary register
57871462 175
176 /* instruction types */
177#define NOP 0 // No operation
178#define LOAD 1 // Load
179#define STORE 2 // Store
180#define LOADLR 3 // Unaligned load
181#define STORELR 4 // Unaligned store
182#define MOV 5 // Move
183#define ALU 6 // Arithmetic/logic
184#define MULTDIV 7 // Multiply/divide
185#define SHIFT 8 // Shift by register
186#define SHIFTIMM 9// Shift by immediate
187#define IMM16 10 // 16-bit immediate
188#define RJUMP 11 // Unconditional jump to register
189#define UJUMP 12 // Unconditional jump
190#define CJUMP 13 // Conditional branch (BEQ/BNE/BGTZ/BLEZ)
191#define SJUMP 14 // Conditional branch (regimm format)
192#define COP0 15 // Coprocessor 0
193#define COP1 16 // Coprocessor 1
194#define C1LS 17 // Coprocessor 1 load/store
195#define FJUMP 18 // Conditional branch (floating point)
196#define FLOAT 19 // Floating point unit
197#define FCONV 20 // Convert integer to float
198#define FCOMP 21 // Floating point compare (sets FSREG)
199#define SYSCALL 22// SYSCALL
200#define OTHER 23 // Other
201#define SPAN 24 // Branch/delay slot spans 2 pages
202#define NI 25 // Not implemented
7139f3c8 203#define HLECALL 26// PCSX fake opcodes for HLE
b9b61529 204#define COP2 27 // Coprocessor 2 move
205#define C2LS 28 // Coprocessor 2 load/store
206#define C2OP 29 // Coprocessor 2 operation
1e973cb0 207#define INTCALL 30// Call interpreter to handle rare corner cases
57871462 208
209 /* stubs */
210#define CC_STUB 1
211#define FP_STUB 2
212#define LOADB_STUB 3
213#define LOADH_STUB 4
214#define LOADW_STUB 5
215#define LOADD_STUB 6
216#define LOADBU_STUB 7
217#define LOADHU_STUB 8
218#define STOREB_STUB 9
219#define STOREH_STUB 10
220#define STOREW_STUB 11
221#define STORED_STUB 12
222#define STORELR_STUB 13
223#define INVCODE_STUB 14
224
225 /* branch codes */
226#define TAKEN 1
227#define NOTTAKEN 2
228#define NULLDS 3
229
230// asm linkage
231int new_recompile_block(int addr);
232void *get_addr_ht(u_int vaddr);
233void invalidate_block(u_int block);
234void invalidate_addr(u_int addr);
235void remove_hash(int vaddr);
236void jump_vaddr();
237void dyna_linker();
238void dyna_linker_ds();
239void verify_code();
240void verify_code_vm();
241void verify_code_ds();
242void cc_interrupt();
243void fp_exception();
244void fp_exception_ds();
245void jump_syscall();
7139f3c8 246void jump_syscall_hle();
57871462 247void jump_eret();
7139f3c8 248void jump_hlecall();
1e973cb0 249void jump_intcall();
7139f3c8 250void new_dyna_leave();
57871462 251
252// TLB
253void TLBWI_new();
254void TLBWR_new();
255void read_nomem_new();
256void read_nomemb_new();
257void read_nomemh_new();
258void read_nomemd_new();
259void write_nomem_new();
260void write_nomemb_new();
261void write_nomemh_new();
262void write_nomemd_new();
263void write_rdram_new();
264void write_rdramb_new();
265void write_rdramh_new();
266void write_rdramd_new();
267extern u_int memory_map[1048576];
268
269// Needed by assembler
270void wb_register(signed char r,signed char regmap[],uint64_t dirty,uint64_t is32);
271void wb_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty);
272void wb_needed_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr);
273void load_all_regs(signed char i_regmap[]);
274void load_needed_regs(signed char i_regmap[],signed char next_regmap[]);
275void load_regs_entry(int t);
276void load_all_consts(signed char regmap[],int is32,u_int dirty,int i);
277
278int tracedebug=0;
279
280//#define DEBUG_CYCLE_COUNT 1
281
94d23bb9 282static void tlb_hacks()
57871462 283{
94d23bb9 284#ifndef DISABLE_TLB
57871462 285 // Goldeneye hack
286 if (strncmp((char *) ROM_HEADER->nom, "GOLDENEYE",9) == 0)
287 {
288 u_int addr;
289 int n;
290 switch (ROM_HEADER->Country_code&0xFF)
291 {
292 case 0x45: // U
293 addr=0x34b30;
294 break;
295 case 0x4A: // J
296 addr=0x34b70;
297 break;
298 case 0x50: // E
299 addr=0x329f0;
300 break;
301 default:
302 // Unknown country code
303 addr=0;
304 break;
305 }
306 u_int rom_addr=(u_int)rom;
307 #ifdef ROM_COPY
308 // Since memory_map is 32-bit, on 64-bit systems the rom needs to be
309 // in the lower 4G of memory to use this hack. Copy it if necessary.
310 if((void *)rom>(void *)0xffffffff) {
311 munmap(ROM_COPY, 67108864);
312 if(mmap(ROM_COPY, 12582912,
313 PROT_READ | PROT_WRITE,
314 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS,
315 -1, 0) <= 0) {printf("mmap() failed\n");}
316 memcpy(ROM_COPY,rom,12582912);
317 rom_addr=(u_int)ROM_COPY;
318 }
319 #endif
320 if(addr) {
321 for(n=0x7F000;n<0x80000;n++) {
322 memory_map[n]=(((u_int)(rom_addr+addr-0x7F000000))>>2)|0x40000000;
323 }
324 }
325 }
94d23bb9 326#endif
57871462 327}
328
94d23bb9 329static u_int get_page(u_int vaddr)
57871462 330{
0ce47d46 331#ifndef PCSX
57871462 332 u_int page=(vaddr^0x80000000)>>12;
0ce47d46 333#else
334 u_int page=vaddr&~0xe0000000;
335 if (page < 0x1000000)
336 page &= ~0x0e00000; // RAM mirrors
337 page>>=12;
338#endif
94d23bb9 339#ifndef DISABLE_TLB
57871462 340 if(page>262143&&tlb_LUT_r[vaddr>>12]) page=(tlb_LUT_r[vaddr>>12]^0x80000000)>>12;
94d23bb9 341#endif
57871462 342 if(page>2048) page=2048+(page&2047);
94d23bb9 343 return page;
344}
345
d25604ca 346#ifndef PCSX
94d23bb9 347static u_int get_vpage(u_int vaddr)
348{
349 u_int vpage=(vaddr^0x80000000)>>12;
350#ifndef DISABLE_TLB
57871462 351 if(vpage>262143&&tlb_LUT_r[vaddr>>12]) vpage&=2047; // jump_dirty uses a hash of the virtual address instead
94d23bb9 352#endif
57871462 353 if(vpage>2048) vpage=2048+(vpage&2047);
94d23bb9 354 return vpage;
355}
d25604ca 356#else
357// no virtual mem in PCSX
358static u_int get_vpage(u_int vaddr)
359{
360 return get_page(vaddr);
361}
362#endif
94d23bb9 363
364// Get address from virtual address
365// This is called from the recompiled JR/JALR instructions
366void *get_addr(u_int vaddr)
367{
368 u_int page=get_page(vaddr);
369 u_int vpage=get_vpage(vaddr);
57871462 370 struct ll_entry *head;
371 //printf("TRACE: count=%d next=%d (get_addr %x,page %d)\n",Count,next_interupt,vaddr,page);
372 head=jump_in[page];
373 while(head!=NULL) {
374 if(head->vaddr==vaddr&&head->reg32==0) {
375 //printf("TRACE: count=%d next=%d (get_addr match %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
376 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
377 ht_bin[3]=ht_bin[1];
378 ht_bin[2]=ht_bin[0];
379 ht_bin[1]=(int)head->addr;
380 ht_bin[0]=vaddr;
381 return head->addr;
382 }
383 head=head->next;
384 }
385 head=jump_dirty[vpage];
386 while(head!=NULL) {
387 if(head->vaddr==vaddr&&head->reg32==0) {
388 //printf("TRACE: count=%d next=%d (get_addr match dirty %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
389 // Don't restore blocks which are about to expire from the cache
390 if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
391 if(verify_dirty(head->addr)) {
392 //printf("restore candidate: %x (%d) d=%d\n",vaddr,page,invalid_code[vaddr>>12]);
393 invalid_code[vaddr>>12]=0;
9be4ba64 394 inv_code_start=inv_code_end=~0;
63cb0298 395#ifndef DISABLE_TLB
57871462 396 memory_map[vaddr>>12]|=0x40000000;
63cb0298 397#endif
57871462 398 if(vpage<2048) {
94d23bb9 399#ifndef DISABLE_TLB
57871462 400 if(tlb_LUT_r[vaddr>>12]) {
401 invalid_code[tlb_LUT_r[vaddr>>12]>>12]=0;
402 memory_map[tlb_LUT_r[vaddr>>12]>>12]|=0x40000000;
403 }
94d23bb9 404#endif
57871462 405 restore_candidate[vpage>>3]|=1<<(vpage&7);
406 }
407 else restore_candidate[page>>3]|=1<<(page&7);
408 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
409 if(ht_bin[0]==vaddr) {
410 ht_bin[1]=(int)head->addr; // Replace existing entry
411 }
412 else
413 {
414 ht_bin[3]=ht_bin[1];
415 ht_bin[2]=ht_bin[0];
416 ht_bin[1]=(int)head->addr;
417 ht_bin[0]=vaddr;
418 }
419 return head->addr;
420 }
421 }
422 head=head->next;
423 }
424 //printf("TRACE: count=%d next=%d (get_addr no-match %x)\n",Count,next_interupt,vaddr);
425 int r=new_recompile_block(vaddr);
426 if(r==0) return get_addr(vaddr);
427 // Execute in unmapped page, generate pagefault execption
428 Status|=2;
429 Cause=(vaddr<<31)|0x8;
430 EPC=(vaddr&1)?vaddr-5:vaddr;
431 BadVAddr=(vaddr&~1);
432 Context=(Context&0xFF80000F)|((BadVAddr>>9)&0x007FFFF0);
433 EntryHi=BadVAddr&0xFFFFE000;
434 return get_addr_ht(0x80000000);
435}
436// Look up address in hash table first
437void *get_addr_ht(u_int vaddr)
438{
439 //printf("TRACE: count=%d next=%d (get_addr_ht %x)\n",Count,next_interupt,vaddr);
440 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
441 if(ht_bin[0]==vaddr) return (void *)ht_bin[1];
442 if(ht_bin[2]==vaddr) return (void *)ht_bin[3];
443 return get_addr(vaddr);
444}
445
446void *get_addr_32(u_int vaddr,u_int flags)
447{
7139f3c8 448#ifdef FORCE32
449 return get_addr(vaddr);
560e4a12 450#else
57871462 451 //printf("TRACE: count=%d next=%d (get_addr_32 %x,flags %x)\n",Count,next_interupt,vaddr,flags);
452 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
453 if(ht_bin[0]==vaddr) return (void *)ht_bin[1];
454 if(ht_bin[2]==vaddr) return (void *)ht_bin[3];
94d23bb9 455 u_int page=get_page(vaddr);
456 u_int vpage=get_vpage(vaddr);
57871462 457 struct ll_entry *head;
458 head=jump_in[page];
459 while(head!=NULL) {
460 if(head->vaddr==vaddr&&(head->reg32&flags)==0) {
461 //printf("TRACE: count=%d next=%d (get_addr_32 match %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
462 if(head->reg32==0) {
463 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
464 if(ht_bin[0]==-1) {
465 ht_bin[1]=(int)head->addr;
466 ht_bin[0]=vaddr;
467 }else if(ht_bin[2]==-1) {
468 ht_bin[3]=(int)head->addr;
469 ht_bin[2]=vaddr;
470 }
471 //ht_bin[3]=ht_bin[1];
472 //ht_bin[2]=ht_bin[0];
473 //ht_bin[1]=(int)head->addr;
474 //ht_bin[0]=vaddr;
475 }
476 return head->addr;
477 }
478 head=head->next;
479 }
480 head=jump_dirty[vpage];
481 while(head!=NULL) {
482 if(head->vaddr==vaddr&&(head->reg32&flags)==0) {
483 //printf("TRACE: count=%d next=%d (get_addr_32 match dirty %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
484 // Don't restore blocks which are about to expire from the cache
485 if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
486 if(verify_dirty(head->addr)) {
487 //printf("restore candidate: %x (%d) d=%d\n",vaddr,page,invalid_code[vaddr>>12]);
488 invalid_code[vaddr>>12]=0;
9be4ba64 489 inv_code_start=inv_code_end=~0;
57871462 490 memory_map[vaddr>>12]|=0x40000000;
491 if(vpage<2048) {
94d23bb9 492#ifndef DISABLE_TLB
57871462 493 if(tlb_LUT_r[vaddr>>12]) {
494 invalid_code[tlb_LUT_r[vaddr>>12]>>12]=0;
495 memory_map[tlb_LUT_r[vaddr>>12]>>12]|=0x40000000;
496 }
94d23bb9 497#endif
57871462 498 restore_candidate[vpage>>3]|=1<<(vpage&7);
499 }
500 else restore_candidate[page>>3]|=1<<(page&7);
501 if(head->reg32==0) {
502 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
503 if(ht_bin[0]==-1) {
504 ht_bin[1]=(int)head->addr;
505 ht_bin[0]=vaddr;
506 }else if(ht_bin[2]==-1) {
507 ht_bin[3]=(int)head->addr;
508 ht_bin[2]=vaddr;
509 }
510 //ht_bin[3]=ht_bin[1];
511 //ht_bin[2]=ht_bin[0];
512 //ht_bin[1]=(int)head->addr;
513 //ht_bin[0]=vaddr;
514 }
515 return head->addr;
516 }
517 }
518 head=head->next;
519 }
520 //printf("TRACE: count=%d next=%d (get_addr_32 no-match %x,flags %x)\n",Count,next_interupt,vaddr,flags);
521 int r=new_recompile_block(vaddr);
522 if(r==0) return get_addr(vaddr);
523 // Execute in unmapped page, generate pagefault execption
524 Status|=2;
525 Cause=(vaddr<<31)|0x8;
526 EPC=(vaddr&1)?vaddr-5:vaddr;
527 BadVAddr=(vaddr&~1);
528 Context=(Context&0xFF80000F)|((BadVAddr>>9)&0x007FFFF0);
529 EntryHi=BadVAddr&0xFFFFE000;
530 return get_addr_ht(0x80000000);
560e4a12 531#endif
57871462 532}
533
534void clear_all_regs(signed char regmap[])
535{
536 int hr;
537 for (hr=0;hr<HOST_REGS;hr++) regmap[hr]=-1;
538}
539
540signed char get_reg(signed char regmap[],int r)
541{
542 int hr;
543 for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap[hr]==r) return hr;
544 return -1;
545}
546
547// Find a register that is available for two consecutive cycles
548signed char get_reg2(signed char regmap1[],signed char regmap2[],int r)
549{
550 int hr;
551 for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap1[hr]==r&&regmap2[hr]==r) return hr;
552 return -1;
553}
554
555int count_free_regs(signed char regmap[])
556{
557 int count=0;
558 int hr;
559 for(hr=0;hr<HOST_REGS;hr++)
560 {
561 if(hr!=EXCLUDE_REG) {
562 if(regmap[hr]<0) count++;
563 }
564 }
565 return count;
566}
567
568void dirty_reg(struct regstat *cur,signed char reg)
569{
570 int hr;
571 if(!reg) return;
572 for (hr=0;hr<HOST_REGS;hr++) {
573 if((cur->regmap[hr]&63)==reg) {
574 cur->dirty|=1<<hr;
575 }
576 }
577}
578
579// If we dirty the lower half of a 64 bit register which is now being
580// sign-extended, we need to dump the upper half.
581// Note: Do this only after completion of the instruction, because
582// some instructions may need to read the full 64-bit value even if
583// overwriting it (eg SLTI, DSRA32).
584static void flush_dirty_uppers(struct regstat *cur)
585{
586 int hr,reg;
587 for (hr=0;hr<HOST_REGS;hr++) {
588 if((cur->dirty>>hr)&1) {
589 reg=cur->regmap[hr];
590 if(reg>=64)
591 if((cur->is32>>(reg&63))&1) cur->regmap[hr]=-1;
592 }
593 }
594}
595
596void set_const(struct regstat *cur,signed char reg,uint64_t value)
597{
598 int hr;
599 if(!reg) return;
600 for (hr=0;hr<HOST_REGS;hr++) {
601 if(cur->regmap[hr]==reg) {
602 cur->isconst|=1<<hr;
603 cur->constmap[hr]=value;
604 }
605 else if((cur->regmap[hr]^64)==reg) {
606 cur->isconst|=1<<hr;
607 cur->constmap[hr]=value>>32;
608 }
609 }
610}
611
612void clear_const(struct regstat *cur,signed char reg)
613{
614 int hr;
615 if(!reg) return;
616 for (hr=0;hr<HOST_REGS;hr++) {
617 if((cur->regmap[hr]&63)==reg) {
618 cur->isconst&=~(1<<hr);
619 }
620 }
621}
622
623int is_const(struct regstat *cur,signed char reg)
624{
625 int hr;
79c75f1b 626 if(reg<0) return 0;
57871462 627 if(!reg) return 1;
628 for (hr=0;hr<HOST_REGS;hr++) {
629 if((cur->regmap[hr]&63)==reg) {
630 return (cur->isconst>>hr)&1;
631 }
632 }
633 return 0;
634}
635uint64_t get_const(struct regstat *cur,signed char reg)
636{
637 int hr;
638 if(!reg) return 0;
639 for (hr=0;hr<HOST_REGS;hr++) {
640 if(cur->regmap[hr]==reg) {
641 return cur->constmap[hr];
642 }
643 }
644 printf("Unknown constant in r%d\n",reg);
645 exit(1);
646}
647
648// Least soon needed registers
649// Look at the next ten instructions and see which registers
650// will be used. Try not to reallocate these.
651void lsn(u_char hsn[], int i, int *preferred_reg)
652{
653 int j;
654 int b=-1;
655 for(j=0;j<9;j++)
656 {
657 if(i+j>=slen) {
658 j=slen-i-1;
659 break;
660 }
661 if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
662 {
663 // Don't go past an unconditonal jump
664 j++;
665 break;
666 }
667 }
668 for(;j>=0;j--)
669 {
670 if(rs1[i+j]) hsn[rs1[i+j]]=j;
671 if(rs2[i+j]) hsn[rs2[i+j]]=j;
672 if(rt1[i+j]) hsn[rt1[i+j]]=j;
673 if(rt2[i+j]) hsn[rt2[i+j]]=j;
674 if(itype[i+j]==STORE || itype[i+j]==STORELR) {
675 // Stores can allocate zero
676 hsn[rs1[i+j]]=j;
677 hsn[rs2[i+j]]=j;
678 }
679 // On some architectures stores need invc_ptr
680 #if defined(HOST_IMM8)
b9b61529 681 if(itype[i+j]==STORE || itype[i+j]==STORELR || (opcode[i+j]&0x3b)==0x39 || (opcode[i+j]&0x3b)==0x3a) {
57871462 682 hsn[INVCP]=j;
683 }
684 #endif
685 if(i+j>=0&&(itype[i+j]==UJUMP||itype[i+j]==CJUMP||itype[i+j]==SJUMP||itype[i+j]==FJUMP))
686 {
687 hsn[CCREG]=j;
688 b=j;
689 }
690 }
691 if(b>=0)
692 {
693 if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
694 {
695 // Follow first branch
696 int t=(ba[i+b]-start)>>2;
697 j=7-b;if(t+j>=slen) j=slen-t-1;
698 for(;j>=0;j--)
699 {
700 if(rs1[t+j]) if(hsn[rs1[t+j]]>j+b+2) hsn[rs1[t+j]]=j+b+2;
701 if(rs2[t+j]) if(hsn[rs2[t+j]]>j+b+2) hsn[rs2[t+j]]=j+b+2;
702 //if(rt1[t+j]) if(hsn[rt1[t+j]]>j+b+2) hsn[rt1[t+j]]=j+b+2;
703 //if(rt2[t+j]) if(hsn[rt2[t+j]]>j+b+2) hsn[rt2[t+j]]=j+b+2;
704 }
705 }
706 // TODO: preferred register based on backward branch
707 }
708 // Delay slot should preferably not overwrite branch conditions or cycle count
709 if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)) {
710 if(rs1[i-1]) if(hsn[rs1[i-1]]>1) hsn[rs1[i-1]]=1;
711 if(rs2[i-1]) if(hsn[rs2[i-1]]>1) hsn[rs2[i-1]]=1;
712 hsn[CCREG]=1;
713 // ...or hash tables
714 hsn[RHASH]=1;
715 hsn[RHTBL]=1;
716 }
717 // Coprocessor load/store needs FTEMP, even if not declared
b9b61529 718 if(itype[i]==C1LS||itype[i]==C2LS) {
57871462 719 hsn[FTEMP]=0;
720 }
721 // Load L/R also uses FTEMP as a temporary register
722 if(itype[i]==LOADLR) {
723 hsn[FTEMP]=0;
724 }
b7918751 725 // Also SWL/SWR/SDL/SDR
726 if(opcode[i]==0x2a||opcode[i]==0x2e||opcode[i]==0x2c||opcode[i]==0x2d) {
57871462 727 hsn[FTEMP]=0;
728 }
729 // Don't remove the TLB registers either
b9b61529 730 if(itype[i]==LOAD || itype[i]==LOADLR || itype[i]==STORE || itype[i]==STORELR || itype[i]==C1LS || itype[i]==C2LS) {
57871462 731 hsn[TLREG]=0;
732 }
733 // Don't remove the miniht registers
734 if(itype[i]==UJUMP||itype[i]==RJUMP)
735 {
736 hsn[RHASH]=0;
737 hsn[RHTBL]=0;
738 }
739}
740
741// We only want to allocate registers if we're going to use them again soon
742int needed_again(int r, int i)
743{
744 int j;
745 int b=-1;
746 int rn=10;
57871462 747
748 if(i>0&&(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000))
749 {
750 if(ba[i-1]<start || ba[i-1]>start+slen*4-4)
751 return 0; // Don't need any registers if exiting the block
752 }
753 for(j=0;j<9;j++)
754 {
755 if(i+j>=slen) {
756 j=slen-i-1;
757 break;
758 }
759 if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
760 {
761 // Don't go past an unconditonal jump
762 j++;
763 break;
764 }
1e973cb0 765 if(itype[i+j]==SYSCALL||itype[i+j]==HLECALL||itype[i+j]==INTCALL||((source[i+j]&0xfc00003f)==0x0d))
57871462 766 {
767 break;
768 }
769 }
770 for(;j>=1;j--)
771 {
772 if(rs1[i+j]==r) rn=j;
773 if(rs2[i+j]==r) rn=j;
774 if((unneeded_reg[i+j]>>r)&1) rn=10;
775 if(i+j>=0&&(itype[i+j]==UJUMP||itype[i+j]==CJUMP||itype[i+j]==SJUMP||itype[i+j]==FJUMP))
776 {
777 b=j;
778 }
779 }
780 /*
781 if(b>=0)
782 {
783 if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
784 {
785 // Follow first branch
786 int o=rn;
787 int t=(ba[i+b]-start)>>2;
788 j=7-b;if(t+j>=slen) j=slen-t-1;
789 for(;j>=0;j--)
790 {
791 if(!((unneeded_reg[t+j]>>r)&1)) {
792 if(rs1[t+j]==r) if(rn>j+b+2) rn=j+b+2;
793 if(rs2[t+j]==r) if(rn>j+b+2) rn=j+b+2;
794 }
795 else rn=o;
796 }
797 }
798 }*/
b7217e13 799 if(rn<10) return 1;
57871462 800 return 0;
801}
802
803// Try to match register allocations at the end of a loop with those
804// at the beginning
805int loop_reg(int i, int r, int hr)
806{
807 int j,k;
808 for(j=0;j<9;j++)
809 {
810 if(i+j>=slen) {
811 j=slen-i-1;
812 break;
813 }
814 if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
815 {
816 // Don't go past an unconditonal jump
817 j++;
818 break;
819 }
820 }
821 k=0;
822 if(i>0){
823 if(itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)
824 k--;
825 }
826 for(;k<j;k++)
827 {
828 if(r<64&&((unneeded_reg[i+k]>>r)&1)) return hr;
829 if(r>64&&((unneeded_reg_upper[i+k]>>r)&1)) return hr;
830 if(i+k>=0&&(itype[i+k]==UJUMP||itype[i+k]==CJUMP||itype[i+k]==SJUMP||itype[i+k]==FJUMP))
831 {
832 if(ba[i+k]>=start && ba[i+k]<(start+i*4))
833 {
834 int t=(ba[i+k]-start)>>2;
835 int reg=get_reg(regs[t].regmap_entry,r);
836 if(reg>=0) return reg;
837 //reg=get_reg(regs[t+1].regmap_entry,r);
838 //if(reg>=0) return reg;
839 }
840 }
841 }
842 return hr;
843}
844
845
846// Allocate every register, preserving source/target regs
847void alloc_all(struct regstat *cur,int i)
848{
849 int hr;
850
851 for(hr=0;hr<HOST_REGS;hr++) {
852 if(hr!=EXCLUDE_REG) {
853 if(((cur->regmap[hr]&63)!=rs1[i])&&((cur->regmap[hr]&63)!=rs2[i])&&
854 ((cur->regmap[hr]&63)!=rt1[i])&&((cur->regmap[hr]&63)!=rt2[i]))
855 {
856 cur->regmap[hr]=-1;
857 cur->dirty&=~(1<<hr);
858 }
859 // Don't need zeros
860 if((cur->regmap[hr]&63)==0)
861 {
862 cur->regmap[hr]=-1;
863 cur->dirty&=~(1<<hr);
864 }
865 }
866 }
867}
868
4600ba03 869#ifndef FORCE32
57871462 870void div64(int64_t dividend,int64_t divisor)
871{
872 lo=dividend/divisor;
873 hi=dividend%divisor;
874 //printf("TRACE: ddiv %8x%8x %8x%8x\n" ,(int)reg[HIREG],(int)(reg[HIREG]>>32)
875 // ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
876}
877void divu64(uint64_t dividend,uint64_t divisor)
878{
879 lo=dividend/divisor;
880 hi=dividend%divisor;
881 //printf("TRACE: ddivu %8x%8x %8x%8x\n",(int)reg[HIREG],(int)(reg[HIREG]>>32)
882 // ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
883}
884
885void mult64(uint64_t m1,uint64_t m2)
886{
887 unsigned long long int op1, op2, op3, op4;
888 unsigned long long int result1, result2, result3, result4;
889 unsigned long long int temp1, temp2, temp3, temp4;
890 int sign = 0;
891
892 if (m1 < 0)
893 {
894 op2 = -m1;
895 sign = 1 - sign;
896 }
897 else op2 = m1;
898 if (m2 < 0)
899 {
900 op4 = -m2;
901 sign = 1 - sign;
902 }
903 else op4 = m2;
904
905 op1 = op2 & 0xFFFFFFFF;
906 op2 = (op2 >> 32) & 0xFFFFFFFF;
907 op3 = op4 & 0xFFFFFFFF;
908 op4 = (op4 >> 32) & 0xFFFFFFFF;
909
910 temp1 = op1 * op3;
911 temp2 = (temp1 >> 32) + op1 * op4;
912 temp3 = op2 * op3;
913 temp4 = (temp3 >> 32) + op2 * op4;
914
915 result1 = temp1 & 0xFFFFFFFF;
916 result2 = temp2 + (temp3 & 0xFFFFFFFF);
917 result3 = (result2 >> 32) + temp4;
918 result4 = (result3 >> 32);
919
920 lo = result1 | (result2 << 32);
921 hi = (result3 & 0xFFFFFFFF) | (result4 << 32);
922 if (sign)
923 {
924 hi = ~hi;
925 if (!lo) hi++;
926 else lo = ~lo + 1;
927 }
928}
929
930void multu64(uint64_t m1,uint64_t m2)
931{
932 unsigned long long int op1, op2, op3, op4;
933 unsigned long long int result1, result2, result3, result4;
934 unsigned long long int temp1, temp2, temp3, temp4;
935
936 op1 = m1 & 0xFFFFFFFF;
937 op2 = (m1 >> 32) & 0xFFFFFFFF;
938 op3 = m2 & 0xFFFFFFFF;
939 op4 = (m2 >> 32) & 0xFFFFFFFF;
940
941 temp1 = op1 * op3;
942 temp2 = (temp1 >> 32) + op1 * op4;
943 temp3 = op2 * op3;
944 temp4 = (temp3 >> 32) + op2 * op4;
945
946 result1 = temp1 & 0xFFFFFFFF;
947 result2 = temp2 + (temp3 & 0xFFFFFFFF);
948 result3 = (result2 >> 32) + temp4;
949 result4 = (result3 >> 32);
950
951 lo = result1 | (result2 << 32);
952 hi = (result3 & 0xFFFFFFFF) | (result4 << 32);
953
954 //printf("TRACE: dmultu %8x%8x %8x%8x\n",(int)reg[HIREG],(int)(reg[HIREG]>>32)
955 // ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
956}
957
958uint64_t ldl_merge(uint64_t original,uint64_t loaded,u_int bits)
959{
960 if(bits) {
961 original<<=64-bits;
962 original>>=64-bits;
963 loaded<<=bits;
964 original|=loaded;
965 }
966 else original=loaded;
967 return original;
968}
969uint64_t ldr_merge(uint64_t original,uint64_t loaded,u_int bits)
970{
971 if(bits^56) {
972 original>>=64-(bits^56);
973 original<<=64-(bits^56);
974 loaded>>=bits^56;
975 original|=loaded;
976 }
977 else original=loaded;
978 return original;
979}
4600ba03 980#endif
57871462 981
982#ifdef __i386__
983#include "assem_x86.c"
984#endif
985#ifdef __x86_64__
986#include "assem_x64.c"
987#endif
988#ifdef __arm__
989#include "assem_arm.c"
990#endif
991
992// Add virtual address mapping to linked list
993void ll_add(struct ll_entry **head,int vaddr,void *addr)
994{
995 struct ll_entry *new_entry;
996 new_entry=malloc(sizeof(struct ll_entry));
997 assert(new_entry!=NULL);
998 new_entry->vaddr=vaddr;
999 new_entry->reg32=0;
1000 new_entry->addr=addr;
1001 new_entry->next=*head;
1002 *head=new_entry;
1003}
1004
1005// Add virtual address mapping for 32-bit compiled block
1006void ll_add_32(struct ll_entry **head,int vaddr,u_int reg32,void *addr)
1007{
7139f3c8 1008 ll_add(head,vaddr,addr);
1009#ifndef FORCE32
1010 (*head)->reg32=reg32;
1011#endif
57871462 1012}
1013
1014// Check if an address is already compiled
1015// but don't return addresses which are about to expire from the cache
1016void *check_addr(u_int vaddr)
1017{
1018 u_int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
1019 if(ht_bin[0]==vaddr) {
1020 if(((ht_bin[1]-MAX_OUTPUT_BLOCK_SIZE-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
1021 if(isclean(ht_bin[1])) return (void *)ht_bin[1];
1022 }
1023 if(ht_bin[2]==vaddr) {
1024 if(((ht_bin[3]-MAX_OUTPUT_BLOCK_SIZE-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
1025 if(isclean(ht_bin[3])) return (void *)ht_bin[3];
1026 }
94d23bb9 1027 u_int page=get_page(vaddr);
57871462 1028 struct ll_entry *head;
1029 head=jump_in[page];
1030 while(head!=NULL) {
1031 if(head->vaddr==vaddr&&head->reg32==0) {
1032 if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1033 // Update existing entry with current address
1034 if(ht_bin[0]==vaddr) {
1035 ht_bin[1]=(int)head->addr;
1036 return head->addr;
1037 }
1038 if(ht_bin[2]==vaddr) {
1039 ht_bin[3]=(int)head->addr;
1040 return head->addr;
1041 }
1042 // Insert into hash table with low priority.
1043 // Don't evict existing entries, as they are probably
1044 // addresses that are being accessed frequently.
1045 if(ht_bin[0]==-1) {
1046 ht_bin[1]=(int)head->addr;
1047 ht_bin[0]=vaddr;
1048 }else if(ht_bin[2]==-1) {
1049 ht_bin[3]=(int)head->addr;
1050 ht_bin[2]=vaddr;
1051 }
1052 return head->addr;
1053 }
1054 }
1055 head=head->next;
1056 }
1057 return 0;
1058}
1059
1060void remove_hash(int vaddr)
1061{
1062 //printf("remove hash: %x\n",vaddr);
1063 int *ht_bin=hash_table[(((vaddr)>>16)^vaddr)&0xFFFF];
1064 if(ht_bin[2]==vaddr) {
1065 ht_bin[2]=ht_bin[3]=-1;
1066 }
1067 if(ht_bin[0]==vaddr) {
1068 ht_bin[0]=ht_bin[2];
1069 ht_bin[1]=ht_bin[3];
1070 ht_bin[2]=ht_bin[3]=-1;
1071 }
1072}
1073
1074void ll_remove_matching_addrs(struct ll_entry **head,int addr,int shift)
1075{
1076 struct ll_entry *next;
1077 while(*head) {
1078 if(((u_int)((*head)->addr)>>shift)==(addr>>shift) ||
1079 ((u_int)((*head)->addr-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(addr>>shift))
1080 {
1081 inv_debug("EXP: Remove pointer to %x (%x)\n",(int)(*head)->addr,(*head)->vaddr);
1082 remove_hash((*head)->vaddr);
1083 next=(*head)->next;
1084 free(*head);
1085 *head=next;
1086 }
1087 else
1088 {
1089 head=&((*head)->next);
1090 }
1091 }
1092}
1093
1094// Remove all entries from linked list
1095void ll_clear(struct ll_entry **head)
1096{
1097 struct ll_entry *cur;
1098 struct ll_entry *next;
1099 if(cur=*head) {
1100 *head=0;
1101 while(cur) {
1102 next=cur->next;
1103 free(cur);
1104 cur=next;
1105 }
1106 }
1107}
1108
1109// Dereference the pointers and remove if it matches
1110void ll_kill_pointers(struct ll_entry *head,int addr,int shift)
1111{
1112 while(head) {
1113 int ptr=get_pointer(head->addr);
1114 inv_debug("EXP: Lookup pointer to %x at %x (%x)\n",(int)ptr,(int)head->addr,head->vaddr);
1115 if(((ptr>>shift)==(addr>>shift)) ||
1116 (((ptr-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(addr>>shift)))
1117 {
5088bb70 1118 inv_debug("EXP: Kill pointer at %x (%x)\n",(int)head->addr,head->vaddr);
f76eeef9 1119 u_int host_addr=(u_int)kill_pointer(head->addr);
dd3a91a1 1120 #ifdef __arm__
1121 needs_clear_cache[(host_addr-(u_int)BASE_ADDR)>>17]|=1<<(((host_addr-(u_int)BASE_ADDR)>>12)&31);
1122 #endif
57871462 1123 }
1124 head=head->next;
1125 }
1126}
1127
1128// This is called when we write to a compiled block (see do_invstub)
f76eeef9 1129void invalidate_page(u_int page)
57871462 1130{
57871462 1131 struct ll_entry *head;
1132 struct ll_entry *next;
1133 head=jump_in[page];
1134 jump_in[page]=0;
1135 while(head!=NULL) {
1136 inv_debug("INVALIDATE: %x\n",head->vaddr);
1137 remove_hash(head->vaddr);
1138 next=head->next;
1139 free(head);
1140 head=next;
1141 }
1142 head=jump_out[page];
1143 jump_out[page]=0;
1144 while(head!=NULL) {
1145 inv_debug("INVALIDATE: kill pointer to %x (%x)\n",head->vaddr,(int)head->addr);
f76eeef9 1146 u_int host_addr=(u_int)kill_pointer(head->addr);
dd3a91a1 1147 #ifdef __arm__
1148 needs_clear_cache[(host_addr-(u_int)BASE_ADDR)>>17]|=1<<(((host_addr-(u_int)BASE_ADDR)>>12)&31);
1149 #endif
57871462 1150 next=head->next;
1151 free(head);
1152 head=next;
1153 }
57871462 1154}
9be4ba64 1155
1156static void invalidate_block_range(u_int block, u_int first, u_int last)
57871462 1157{
94d23bb9 1158 u_int page=get_page(block<<12);
57871462 1159 //printf("first=%d last=%d\n",first,last);
f76eeef9 1160 invalidate_page(page);
57871462 1161 assert(first+5>page); // NB: this assumes MAXBLOCK<=4096 (4 pages)
1162 assert(last<page+5);
1163 // Invalidate the adjacent pages if a block crosses a 4K boundary
1164 while(first<page) {
1165 invalidate_page(first);
1166 first++;
1167 }
1168 for(first=page+1;first<last;first++) {
1169 invalidate_page(first);
1170 }
dd3a91a1 1171 #ifdef __arm__
1172 do_clear_cache();
1173 #endif
57871462 1174
1175 // Don't trap writes
1176 invalid_code[block]=1;
94d23bb9 1177#ifndef DISABLE_TLB
57871462 1178 // If there is a valid TLB entry for this page, remove write protect
1179 if(tlb_LUT_w[block]) {
1180 assert(tlb_LUT_r[block]==tlb_LUT_w[block]);
1181 // CHECK: Is this right?
1182 memory_map[block]=((tlb_LUT_w[block]&0xFFFFF000)-(block<<12)+(unsigned int)rdram-0x80000000)>>2;
1183 u_int real_block=tlb_LUT_w[block]>>12;
1184 invalid_code[real_block]=1;
1185 if(real_block>=0x80000&&real_block<0x80800) memory_map[real_block]=((u_int)rdram-0x80000000)>>2;
1186 }
1187 else if(block>=0x80000&&block<0x80800) memory_map[block]=((u_int)rdram-0x80000000)>>2;
94d23bb9 1188#endif
f76eeef9 1189
57871462 1190 #ifdef USE_MINI_HT
1191 memset(mini_ht,-1,sizeof(mini_ht));
1192 #endif
1193}
9be4ba64 1194
1195void invalidate_block(u_int block)
1196{
1197 u_int page=get_page(block<<12);
1198 u_int vpage=get_vpage(block<<12);
1199 inv_debug("INVALIDATE: %x (%d)\n",block<<12,page);
1200 //inv_debug("invalid_code[block]=%d\n",invalid_code[block]);
1201 u_int first,last;
1202 first=last=page;
1203 struct ll_entry *head;
1204 head=jump_dirty[vpage];
1205 //printf("page=%d vpage=%d\n",page,vpage);
1206 while(head!=NULL) {
1207 u_int start,end;
1208 if(vpage>2047||(head->vaddr>>12)==block) { // Ignore vaddr hash collision
1209 get_bounds((int)head->addr,&start,&end);
1210 //printf("start: %x end: %x\n",start,end);
1211 if(page<2048&&start>=0x80000000&&end<0x80000000+RAM_SIZE) {
1212 if(((start-(u_int)rdram)>>12)<=page&&((end-1-(u_int)rdram)>>12)>=page) {
1213 if((((start-(u_int)rdram)>>12)&2047)<first) first=((start-(u_int)rdram)>>12)&2047;
1214 if((((end-1-(u_int)rdram)>>12)&2047)>last) last=((end-1-(u_int)rdram)>>12)&2047;
1215 }
1216 }
1217#ifndef DISABLE_TLB
1218 if(page<2048&&(signed int)start>=(signed int)0xC0000000&&(signed int)end>=(signed int)0xC0000000) {
1219 if(((start+memory_map[start>>12]-(u_int)rdram)>>12)<=page&&((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)>=page) {
1220 if((((start+memory_map[start>>12]-(u_int)rdram)>>12)&2047)<first) first=((start+memory_map[start>>12]-(u_int)rdram)>>12)&2047;
1221 if((((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)&2047)>last) last=((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)&2047;
1222 }
1223 }
1224#endif
1225 }
1226 head=head->next;
1227 }
1228 invalidate_block_range(block,first,last);
1229}
1230
57871462 1231void invalidate_addr(u_int addr)
1232{
9be4ba64 1233#ifdef PCSX
1234 //static int rhits;
1235 // this check is done by the caller
1236 //if (inv_code_start<=addr&&addr<=inv_code_end) { rhits++; return; }
d25604ca 1237 u_int page=get_vpage(addr);
9be4ba64 1238 if(page<2048) { // RAM
1239 struct ll_entry *head;
1240 u_int addr_min=~0, addr_max=0;
1241 int mask=RAM_SIZE-1;
1242 int pg1;
1243 inv_code_start=addr&~0xfff;
1244 inv_code_end=addr|0xfff;
1245 pg1=page;
1246 if (pg1>0) {
1247 // must check previous page too because of spans..
1248 pg1--;
1249 inv_code_start-=0x1000;
1250 }
1251 for(;pg1<=page;pg1++) {
1252 for(head=jump_dirty[pg1];head!=NULL;head=head->next) {
1253 u_int start,end;
1254 get_bounds((int)head->addr,&start,&end);
1255 if((start&mask)<=(addr&mask)&&(addr&mask)<(end&mask)) {
1256 if(start<addr_min) addr_min=start;
1257 if(end>addr_max) addr_max=end;
1258 }
1259 else if(addr<start) {
1260 if(start<inv_code_end)
1261 inv_code_end=start-1;
1262 }
1263 else {
1264 if(end>inv_code_start)
1265 inv_code_start=end;
1266 }
1267 }
1268 }
1269 if (addr_min!=~0) {
1270 inv_debug("INV ADDR: %08x hit %08x-%08x\n", addr, addr_min, addr_max);
1271 inv_code_start=inv_code_end=~0;
1272 invalidate_block_range(addr>>12,(addr_min&mask)>>12,(addr_max&mask)>>12);
1273 return;
1274 }
1275 else {
d25604ca 1276 inv_debug("INV ADDR: %08x miss, inv %08x-%08x, sk %d\n", addr, inv_code_start, inv_code_end, 0);
9be4ba64 1277 return;
d25604ca 1278 }
9be4ba64 1279 }
1280#endif
57871462 1281 invalidate_block(addr>>12);
1282}
9be4ba64 1283
dd3a91a1 1284// This is called when loading a save state.
1285// Anything could have changed, so invalidate everything.
57871462 1286void invalidate_all_pages()
1287{
1288 u_int page,n;
1289 for(page=0;page<4096;page++)
1290 invalidate_page(page);
1291 for(page=0;page<1048576;page++)
1292 if(!invalid_code[page]) {
1293 restore_candidate[(page&2047)>>3]|=1<<(page&7);
1294 restore_candidate[((page&2047)>>3)+256]|=1<<(page&7);
1295 }
1296 #ifdef __arm__
1297 __clear_cache((void *)BASE_ADDR,(void *)BASE_ADDR+(1<<TARGET_SIZE_2));
1298 #endif
1299 #ifdef USE_MINI_HT
1300 memset(mini_ht,-1,sizeof(mini_ht));
1301 #endif
94d23bb9 1302 #ifndef DISABLE_TLB
57871462 1303 // TLB
1304 for(page=0;page<0x100000;page++) {
1305 if(tlb_LUT_r[page]) {
1306 memory_map[page]=((tlb_LUT_r[page]&0xFFFFF000)-(page<<12)+(unsigned int)rdram-0x80000000)>>2;
1307 if(!tlb_LUT_w[page]||!invalid_code[page])
1308 memory_map[page]|=0x40000000; // Write protect
1309 }
1310 else memory_map[page]=-1;
1311 if(page==0x80000) page=0xC0000;
1312 }
1313 tlb_hacks();
94d23bb9 1314 #endif
57871462 1315}
1316
1317// Add an entry to jump_out after making a link
1318void add_link(u_int vaddr,void *src)
1319{
94d23bb9 1320 u_int page=get_page(vaddr);
57871462 1321 inv_debug("add_link: %x -> %x (%d)\n",(int)src,vaddr,page);
76f71c27 1322 int *ptr=(int *)(src+4);
1323 assert((*ptr&0x0fff0000)==0x059f0000);
57871462 1324 ll_add(jump_out+page,vaddr,src);
1325 //int ptr=get_pointer(src);
1326 //inv_debug("add_link: Pointer is to %x\n",(int)ptr);
1327}
1328
1329// If a code block was found to be unmodified (bit was set in
1330// restore_candidate) and it remains unmodified (bit is clear
1331// in invalid_code) then move the entries for that 4K page from
1332// the dirty list to the clean list.
1333void clean_blocks(u_int page)
1334{
1335 struct ll_entry *head;
1336 inv_debug("INV: clean_blocks page=%d\n",page);
1337 head=jump_dirty[page];
1338 while(head!=NULL) {
1339 if(!invalid_code[head->vaddr>>12]) {
1340 // Don't restore blocks which are about to expire from the cache
1341 if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1342 u_int start,end;
1343 if(verify_dirty((int)head->addr)) {
1344 //printf("Possibly Restore %x (%x)\n",head->vaddr, (int)head->addr);
1345 u_int i;
1346 u_int inv=0;
1347 get_bounds((int)head->addr,&start,&end);
4cb76aa4 1348 if(start-(u_int)rdram<RAM_SIZE) {
57871462 1349 for(i=(start-(u_int)rdram+0x80000000)>>12;i<=(end-1-(u_int)rdram+0x80000000)>>12;i++) {
1350 inv|=invalid_code[i];
1351 }
1352 }
63cb0298 1353#ifndef DISABLE_TLB
57871462 1354 if((signed int)head->vaddr>=(signed int)0xC0000000) {
1355 u_int addr = (head->vaddr+(memory_map[head->vaddr>>12]<<2));
1356 //printf("addr=%x start=%x end=%x\n",addr,start,end);
1357 if(addr<start||addr>=end) inv=1;
1358 }
63cb0298 1359#endif
4cb76aa4 1360 else if((signed int)head->vaddr>=(signed int)0x80000000+RAM_SIZE) {
57871462 1361 inv=1;
1362 }
1363 if(!inv) {
1364 void * clean_addr=(void *)get_clean_addr((int)head->addr);
1365 if((((u_int)clean_addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1366 u_int ppage=page;
94d23bb9 1367#ifndef DISABLE_TLB
57871462 1368 if(page<2048&&tlb_LUT_r[head->vaddr>>12]) ppage=(tlb_LUT_r[head->vaddr>>12]^0x80000000)>>12;
94d23bb9 1369#endif
57871462 1370 inv_debug("INV: Restored %x (%x/%x)\n",head->vaddr, (int)head->addr, (int)clean_addr);
1371 //printf("page=%x, addr=%x\n",page,head->vaddr);
1372 //assert(head->vaddr>>12==(page|0x80000));
1373 ll_add_32(jump_in+ppage,head->vaddr,head->reg32,clean_addr);
1374 int *ht_bin=hash_table[((head->vaddr>>16)^head->vaddr)&0xFFFF];
1375 if(!head->reg32) {
1376 if(ht_bin[0]==head->vaddr) {
1377 ht_bin[1]=(int)clean_addr; // Replace existing entry
1378 }
1379 if(ht_bin[2]==head->vaddr) {
1380 ht_bin[3]=(int)clean_addr; // Replace existing entry
1381 }
1382 }
1383 }
1384 }
1385 }
1386 }
1387 }
1388 head=head->next;
1389 }
1390}
1391
1392
1393void mov_alloc(struct regstat *current,int i)
1394{
1395 // Note: Don't need to actually alloc the source registers
1396 if((~current->is32>>rs1[i])&1) {
1397 //alloc_reg64(current,i,rs1[i]);
1398 alloc_reg64(current,i,rt1[i]);
1399 current->is32&=~(1LL<<rt1[i]);
1400 } else {
1401 //alloc_reg(current,i,rs1[i]);
1402 alloc_reg(current,i,rt1[i]);
1403 current->is32|=(1LL<<rt1[i]);
1404 }
1405 clear_const(current,rs1[i]);
1406 clear_const(current,rt1[i]);
1407 dirty_reg(current,rt1[i]);
1408}
1409
1410void shiftimm_alloc(struct regstat *current,int i)
1411{
57871462 1412 if(opcode2[i]<=0x3) // SLL/SRL/SRA
1413 {
1414 if(rt1[i]) {
1415 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1416 else lt1[i]=rs1[i];
1417 alloc_reg(current,i,rt1[i]);
1418 current->is32|=1LL<<rt1[i];
1419 dirty_reg(current,rt1[i]);
dc49e339 1420 if(is_const(current,rs1[i])) {
1421 int v=get_const(current,rs1[i]);
1422 if(opcode2[i]==0x00) set_const(current,rt1[i],v<<imm[i]);
1423 if(opcode2[i]==0x02) set_const(current,rt1[i],(u_int)v>>imm[i]);
1424 if(opcode2[i]==0x03) set_const(current,rt1[i],v>>imm[i]);
1425 }
1426 else clear_const(current,rt1[i]);
57871462 1427 }
1428 }
dc49e339 1429 else
1430 {
1431 clear_const(current,rs1[i]);
1432 clear_const(current,rt1[i]);
1433 }
1434
57871462 1435 if(opcode2[i]>=0x38&&opcode2[i]<=0x3b) // DSLL/DSRL/DSRA
1436 {
1437 if(rt1[i]) {
1438 if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1439 alloc_reg64(current,i,rt1[i]);
1440 current->is32&=~(1LL<<rt1[i]);
1441 dirty_reg(current,rt1[i]);
1442 }
1443 }
1444 if(opcode2[i]==0x3c) // DSLL32
1445 {
1446 if(rt1[i]) {
1447 if(rs1[i]) alloc_reg(current,i,rs1[i]);
1448 alloc_reg64(current,i,rt1[i]);
1449 current->is32&=~(1LL<<rt1[i]);
1450 dirty_reg(current,rt1[i]);
1451 }
1452 }
1453 if(opcode2[i]==0x3e) // DSRL32
1454 {
1455 if(rt1[i]) {
1456 alloc_reg64(current,i,rs1[i]);
1457 if(imm[i]==32) {
1458 alloc_reg64(current,i,rt1[i]);
1459 current->is32&=~(1LL<<rt1[i]);
1460 } else {
1461 alloc_reg(current,i,rt1[i]);
1462 current->is32|=1LL<<rt1[i];
1463 }
1464 dirty_reg(current,rt1[i]);
1465 }
1466 }
1467 if(opcode2[i]==0x3f) // DSRA32
1468 {
1469 if(rt1[i]) {
1470 alloc_reg64(current,i,rs1[i]);
1471 alloc_reg(current,i,rt1[i]);
1472 current->is32|=1LL<<rt1[i];
1473 dirty_reg(current,rt1[i]);
1474 }
1475 }
1476}
1477
1478void shift_alloc(struct regstat *current,int i)
1479{
1480 if(rt1[i]) {
1481 if(opcode2[i]<=0x07) // SLLV/SRLV/SRAV
1482 {
1483 if(rs1[i]) alloc_reg(current,i,rs1[i]);
1484 if(rs2[i]) alloc_reg(current,i,rs2[i]);
1485 alloc_reg(current,i,rt1[i]);
e1190b87 1486 if(rt1[i]==rs2[i]) {
1487 alloc_reg_temp(current,i,-1);
1488 minimum_free_regs[i]=1;
1489 }
57871462 1490 current->is32|=1LL<<rt1[i];
1491 } else { // DSLLV/DSRLV/DSRAV
1492 if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1493 if(rs2[i]) alloc_reg(current,i,rs2[i]);
1494 alloc_reg64(current,i,rt1[i]);
1495 current->is32&=~(1LL<<rt1[i]);
1496 if(opcode2[i]==0x16||opcode2[i]==0x17) // DSRLV and DSRAV need a temporary register
e1190b87 1497 {
57871462 1498 alloc_reg_temp(current,i,-1);
e1190b87 1499 minimum_free_regs[i]=1;
1500 }
57871462 1501 }
1502 clear_const(current,rs1[i]);
1503 clear_const(current,rs2[i]);
1504 clear_const(current,rt1[i]);
1505 dirty_reg(current,rt1[i]);
1506 }
1507}
1508
1509void alu_alloc(struct regstat *current,int i)
1510{
1511 if(opcode2[i]>=0x20&&opcode2[i]<=0x23) { // ADD/ADDU/SUB/SUBU
1512 if(rt1[i]) {
1513 if(rs1[i]&&rs2[i]) {
1514 alloc_reg(current,i,rs1[i]);
1515 alloc_reg(current,i,rs2[i]);
1516 }
1517 else {
1518 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1519 if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg(current,i,rs2[i]);
1520 }
1521 alloc_reg(current,i,rt1[i]);
1522 }
1523 current->is32|=1LL<<rt1[i];
1524 }
1525 if(opcode2[i]==0x2a||opcode2[i]==0x2b) { // SLT/SLTU
1526 if(rt1[i]) {
1527 if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1528 {
1529 alloc_reg64(current,i,rs1[i]);
1530 alloc_reg64(current,i,rs2[i]);
1531 alloc_reg(current,i,rt1[i]);
1532 } else {
1533 alloc_reg(current,i,rs1[i]);
1534 alloc_reg(current,i,rs2[i]);
1535 alloc_reg(current,i,rt1[i]);
1536 }
1537 }
1538 current->is32|=1LL<<rt1[i];
1539 }
1540 if(opcode2[i]>=0x24&&opcode2[i]<=0x27) { // AND/OR/XOR/NOR
1541 if(rt1[i]) {
1542 if(rs1[i]&&rs2[i]) {
1543 alloc_reg(current,i,rs1[i]);
1544 alloc_reg(current,i,rs2[i]);
1545 }
1546 else
1547 {
1548 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1549 if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg(current,i,rs2[i]);
1550 }
1551 alloc_reg(current,i,rt1[i]);
1552 if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1553 {
1554 if(!((current->uu>>rt1[i])&1)) {
1555 alloc_reg64(current,i,rt1[i]);
1556 }
1557 if(get_reg(current->regmap,rt1[i]|64)>=0) {
1558 if(rs1[i]&&rs2[i]) {
1559 alloc_reg64(current,i,rs1[i]);
1560 alloc_reg64(current,i,rs2[i]);
1561 }
1562 else
1563 {
1564 // Is is really worth it to keep 64-bit values in registers?
1565 #ifdef NATIVE_64BIT
1566 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg64(current,i,rs1[i]);
1567 if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg64(current,i,rs2[i]);
1568 #endif
1569 }
1570 }
1571 current->is32&=~(1LL<<rt1[i]);
1572 } else {
1573 current->is32|=1LL<<rt1[i];
1574 }
1575 }
1576 }
1577 if(opcode2[i]>=0x2c&&opcode2[i]<=0x2f) { // DADD/DADDU/DSUB/DSUBU
1578 if(rt1[i]) {
1579 if(rs1[i]&&rs2[i]) {
1580 if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1581 alloc_reg64(current,i,rs1[i]);
1582 alloc_reg64(current,i,rs2[i]);
1583 alloc_reg64(current,i,rt1[i]);
1584 } else {
1585 alloc_reg(current,i,rs1[i]);
1586 alloc_reg(current,i,rs2[i]);
1587 alloc_reg(current,i,rt1[i]);
1588 }
1589 }
1590 else {
1591 alloc_reg(current,i,rt1[i]);
1592 if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1593 // DADD used as move, or zeroing
1594 // If we have a 64-bit source, then make the target 64 bits too
1595 if(rs1[i]&&!((current->is32>>rs1[i])&1)) {
1596 if(get_reg(current->regmap,rs1[i])>=0) alloc_reg64(current,i,rs1[i]);
1597 alloc_reg64(current,i,rt1[i]);
1598 } else if(rs2[i]&&!((current->is32>>rs2[i])&1)) {
1599 if(get_reg(current->regmap,rs2[i])>=0) alloc_reg64(current,i,rs2[i]);
1600 alloc_reg64(current,i,rt1[i]);
1601 }
1602 if(opcode2[i]>=0x2e&&rs2[i]) {
1603 // DSUB used as negation - 64-bit result
1604 // If we have a 32-bit register, extend it to 64 bits
1605 if(get_reg(current->regmap,rs2[i])>=0) alloc_reg64(current,i,rs2[i]);
1606 alloc_reg64(current,i,rt1[i]);
1607 }
1608 }
1609 }
1610 if(rs1[i]&&rs2[i]) {
1611 current->is32&=~(1LL<<rt1[i]);
1612 } else if(rs1[i]) {
1613 current->is32&=~(1LL<<rt1[i]);
1614 if((current->is32>>rs1[i])&1)
1615 current->is32|=1LL<<rt1[i];
1616 } else if(rs2[i]) {
1617 current->is32&=~(1LL<<rt1[i]);
1618 if((current->is32>>rs2[i])&1)
1619 current->is32|=1LL<<rt1[i];
1620 } else {
1621 current->is32|=1LL<<rt1[i];
1622 }
1623 }
1624 }
1625 clear_const(current,rs1[i]);
1626 clear_const(current,rs2[i]);
1627 clear_const(current,rt1[i]);
1628 dirty_reg(current,rt1[i]);
1629}
1630
1631void imm16_alloc(struct regstat *current,int i)
1632{
1633 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1634 else lt1[i]=rs1[i];
1635 if(rt1[i]) alloc_reg(current,i,rt1[i]);
1636 if(opcode[i]==0x18||opcode[i]==0x19) { // DADDI/DADDIU
1637 current->is32&=~(1LL<<rt1[i]);
1638 if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1639 // TODO: Could preserve the 32-bit flag if the immediate is zero
1640 alloc_reg64(current,i,rt1[i]);
1641 alloc_reg64(current,i,rs1[i]);
1642 }
1643 clear_const(current,rs1[i]);
1644 clear_const(current,rt1[i]);
1645 }
1646 else if(opcode[i]==0x0a||opcode[i]==0x0b) { // SLTI/SLTIU
1647 if((~current->is32>>rs1[i])&1) alloc_reg64(current,i,rs1[i]);
1648 current->is32|=1LL<<rt1[i];
1649 clear_const(current,rs1[i]);
1650 clear_const(current,rt1[i]);
1651 }
1652 else if(opcode[i]>=0x0c&&opcode[i]<=0x0e) { // ANDI/ORI/XORI
1653 if(((~current->is32>>rs1[i])&1)&&opcode[i]>0x0c) {
1654 if(rs1[i]!=rt1[i]) {
1655 if(needed_again(rs1[i],i)) alloc_reg64(current,i,rs1[i]);
1656 alloc_reg64(current,i,rt1[i]);
1657 current->is32&=~(1LL<<rt1[i]);
1658 }
1659 }
1660 else current->is32|=1LL<<rt1[i]; // ANDI clears upper bits
1661 if(is_const(current,rs1[i])) {
1662 int v=get_const(current,rs1[i]);
1663 if(opcode[i]==0x0c) set_const(current,rt1[i],v&imm[i]);
1664 if(opcode[i]==0x0d) set_const(current,rt1[i],v|imm[i]);
1665 if(opcode[i]==0x0e) set_const(current,rt1[i],v^imm[i]);
1666 }
1667 else clear_const(current,rt1[i]);
1668 }
1669 else if(opcode[i]==0x08||opcode[i]==0x09) { // ADDI/ADDIU
1670 if(is_const(current,rs1[i])) {
1671 int v=get_const(current,rs1[i]);
1672 set_const(current,rt1[i],v+imm[i]);
1673 }
1674 else clear_const(current,rt1[i]);
1675 current->is32|=1LL<<rt1[i];
1676 }
1677 else {
1678 set_const(current,rt1[i],((long long)((short)imm[i]))<<16); // LUI
1679 current->is32|=1LL<<rt1[i];
1680 }
1681 dirty_reg(current,rt1[i]);
1682}
1683
1684void load_alloc(struct regstat *current,int i)
1685{
1686 clear_const(current,rt1[i]);
1687 //if(rs1[i]!=rt1[i]&&needed_again(rs1[i],i)) clear_const(current,rs1[i]); // Does this help or hurt?
1688 if(!rs1[i]) current->u&=~1LL; // Allow allocating r0 if it's the source register
1689 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
373d1d07 1690 if(rt1[i]&&!((current->u>>rt1[i])&1)) {
57871462 1691 alloc_reg(current,i,rt1[i]);
373d1d07 1692 assert(get_reg(current->regmap,rt1[i])>=0);
57871462 1693 if(opcode[i]==0x27||opcode[i]==0x37) // LWU/LD
1694 {
1695 current->is32&=~(1LL<<rt1[i]);
1696 alloc_reg64(current,i,rt1[i]);
1697 }
1698 else if(opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
1699 {
1700 current->is32&=~(1LL<<rt1[i]);
1701 alloc_reg64(current,i,rt1[i]);
1702 alloc_all(current,i);
1703 alloc_reg64(current,i,FTEMP);
e1190b87 1704 minimum_free_regs[i]=HOST_REGS;
57871462 1705 }
1706 else current->is32|=1LL<<rt1[i];
1707 dirty_reg(current,rt1[i]);
1708 // If using TLB, need a register for pointer to the mapping table
1709 if(using_tlb) alloc_reg(current,i,TLREG);
1710 // LWL/LWR need a temporary register for the old value
1711 if(opcode[i]==0x22||opcode[i]==0x26)
1712 {
1713 alloc_reg(current,i,FTEMP);
1714 alloc_reg_temp(current,i,-1);
e1190b87 1715 minimum_free_regs[i]=1;
57871462 1716 }
1717 }
1718 else
1719 {
373d1d07 1720 // Load to r0 or unneeded register (dummy load)
57871462 1721 // but we still need a register to calculate the address
535d208a 1722 if(opcode[i]==0x22||opcode[i]==0x26)
1723 {
1724 alloc_reg(current,i,FTEMP); // LWL/LWR need another temporary
1725 }
373d1d07 1726 // If using TLB, need a register for pointer to the mapping table
1727 if(using_tlb) alloc_reg(current,i,TLREG);
57871462 1728 alloc_reg_temp(current,i,-1);
e1190b87 1729 minimum_free_regs[i]=1;
535d208a 1730 if(opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
1731 {
1732 alloc_all(current,i);
1733 alloc_reg64(current,i,FTEMP);
e1190b87 1734 minimum_free_regs[i]=HOST_REGS;
535d208a 1735 }
57871462 1736 }
1737}
1738
1739void store_alloc(struct regstat *current,int i)
1740{
1741 clear_const(current,rs2[i]);
1742 if(!(rs2[i])) current->u&=~1LL; // Allow allocating r0 if necessary
1743 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1744 alloc_reg(current,i,rs2[i]);
1745 if(opcode[i]==0x2c||opcode[i]==0x2d||opcode[i]==0x3f) { // 64-bit SDL/SDR/SD
1746 alloc_reg64(current,i,rs2[i]);
1747 if(rs2[i]) alloc_reg(current,i,FTEMP);
1748 }
1749 // If using TLB, need a register for pointer to the mapping table
1750 if(using_tlb) alloc_reg(current,i,TLREG);
1751 #if defined(HOST_IMM8)
1752 // On CPUs without 32-bit immediates we need a pointer to invalid_code
1753 else alloc_reg(current,i,INVCP);
1754 #endif
b7918751 1755 if(opcode[i]==0x2a||opcode[i]==0x2e||opcode[i]==0x2c||opcode[i]==0x2d) { // SWL/SWL/SDL/SDR
57871462 1756 alloc_reg(current,i,FTEMP);
1757 }
1758 // We need a temporary register for address generation
1759 alloc_reg_temp(current,i,-1);
e1190b87 1760 minimum_free_regs[i]=1;
57871462 1761}
1762
1763void c1ls_alloc(struct regstat *current,int i)
1764{
1765 //clear_const(current,rs1[i]); // FIXME
1766 clear_const(current,rt1[i]);
1767 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1768 alloc_reg(current,i,CSREG); // Status
1769 alloc_reg(current,i,FTEMP);
1770 if(opcode[i]==0x35||opcode[i]==0x3d) { // 64-bit LDC1/SDC1
1771 alloc_reg64(current,i,FTEMP);
1772 }
1773 // If using TLB, need a register for pointer to the mapping table
1774 if(using_tlb) alloc_reg(current,i,TLREG);
1775 #if defined(HOST_IMM8)
1776 // On CPUs without 32-bit immediates we need a pointer to invalid_code
1777 else if((opcode[i]&0x3b)==0x39) // SWC1/SDC1
1778 alloc_reg(current,i,INVCP);
1779 #endif
1780 // We need a temporary register for address generation
1781 alloc_reg_temp(current,i,-1);
1782}
1783
b9b61529 1784void c2ls_alloc(struct regstat *current,int i)
1785{
1786 clear_const(current,rt1[i]);
1787 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1788 alloc_reg(current,i,FTEMP);
1789 // If using TLB, need a register for pointer to the mapping table
1790 if(using_tlb) alloc_reg(current,i,TLREG);
1791 #if defined(HOST_IMM8)
1792 // On CPUs without 32-bit immediates we need a pointer to invalid_code
1793 else if((opcode[i]&0x3b)==0x3a) // SWC2/SDC2
1794 alloc_reg(current,i,INVCP);
1795 #endif
1796 // We need a temporary register for address generation
1797 alloc_reg_temp(current,i,-1);
e1190b87 1798 minimum_free_regs[i]=1;
b9b61529 1799}
1800
57871462 1801#ifndef multdiv_alloc
1802void multdiv_alloc(struct regstat *current,int i)
1803{
1804 // case 0x18: MULT
1805 // case 0x19: MULTU
1806 // case 0x1A: DIV
1807 // case 0x1B: DIVU
1808 // case 0x1C: DMULT
1809 // case 0x1D: DMULTU
1810 // case 0x1E: DDIV
1811 // case 0x1F: DDIVU
1812 clear_const(current,rs1[i]);
1813 clear_const(current,rs2[i]);
1814 if(rs1[i]&&rs2[i])
1815 {
1816 if((opcode2[i]&4)==0) // 32-bit
1817 {
1818 current->u&=~(1LL<<HIREG);
1819 current->u&=~(1LL<<LOREG);
1820 alloc_reg(current,i,HIREG);
1821 alloc_reg(current,i,LOREG);
1822 alloc_reg(current,i,rs1[i]);
1823 alloc_reg(current,i,rs2[i]);
1824 current->is32|=1LL<<HIREG;
1825 current->is32|=1LL<<LOREG;
1826 dirty_reg(current,HIREG);
1827 dirty_reg(current,LOREG);
1828 }
1829 else // 64-bit
1830 {
1831 current->u&=~(1LL<<HIREG);
1832 current->u&=~(1LL<<LOREG);
1833 current->uu&=~(1LL<<HIREG);
1834 current->uu&=~(1LL<<LOREG);
1835 alloc_reg64(current,i,HIREG);
1836 //if(HOST_REGS>10) alloc_reg64(current,i,LOREG);
1837 alloc_reg64(current,i,rs1[i]);
1838 alloc_reg64(current,i,rs2[i]);
1839 alloc_all(current,i);
1840 current->is32&=~(1LL<<HIREG);
1841 current->is32&=~(1LL<<LOREG);
1842 dirty_reg(current,HIREG);
1843 dirty_reg(current,LOREG);
e1190b87 1844 minimum_free_regs[i]=HOST_REGS;
57871462 1845 }
1846 }
1847 else
1848 {
1849 // Multiply by zero is zero.
1850 // MIPS does not have a divide by zero exception.
1851 // The result is undefined, we return zero.
1852 alloc_reg(current,i,HIREG);
1853 alloc_reg(current,i,LOREG);
1854 current->is32|=1LL<<HIREG;
1855 current->is32|=1LL<<LOREG;
1856 dirty_reg(current,HIREG);
1857 dirty_reg(current,LOREG);
1858 }
1859}
1860#endif
1861
1862void cop0_alloc(struct regstat *current,int i)
1863{
1864 if(opcode2[i]==0) // MFC0
1865 {
1866 if(rt1[i]) {
1867 clear_const(current,rt1[i]);
1868 alloc_all(current,i);
1869 alloc_reg(current,i,rt1[i]);
1870 current->is32|=1LL<<rt1[i];
1871 dirty_reg(current,rt1[i]);
1872 }
1873 }
1874 else if(opcode2[i]==4) // MTC0
1875 {
1876 if(rs1[i]){
1877 clear_const(current,rs1[i]);
1878 alloc_reg(current,i,rs1[i]);
1879 alloc_all(current,i);
1880 }
1881 else {
1882 alloc_all(current,i); // FIXME: Keep r0
1883 current->u&=~1LL;
1884 alloc_reg(current,i,0);
1885 }
1886 }
1887 else
1888 {
1889 // TLBR/TLBWI/TLBWR/TLBP/ERET
1890 assert(opcode2[i]==0x10);
1891 alloc_all(current,i);
1892 }
e1190b87 1893 minimum_free_regs[i]=HOST_REGS;
57871462 1894}
1895
1896void cop1_alloc(struct regstat *current,int i)
1897{
1898 alloc_reg(current,i,CSREG); // Load status
1899 if(opcode2[i]<3) // MFC1/DMFC1/CFC1
1900 {
7de557a6 1901 if(rt1[i]){
1902 clear_const(current,rt1[i]);
1903 if(opcode2[i]==1) {
1904 alloc_reg64(current,i,rt1[i]); // DMFC1
1905 current->is32&=~(1LL<<rt1[i]);
1906 }else{
1907 alloc_reg(current,i,rt1[i]); // MFC1/CFC1
1908 current->is32|=1LL<<rt1[i];
1909 }
1910 dirty_reg(current,rt1[i]);
57871462 1911 }
57871462 1912 alloc_reg_temp(current,i,-1);
1913 }
1914 else if(opcode2[i]>3) // MTC1/DMTC1/CTC1
1915 {
1916 if(rs1[i]){
1917 clear_const(current,rs1[i]);
1918 if(opcode2[i]==5)
1919 alloc_reg64(current,i,rs1[i]); // DMTC1
1920 else
1921 alloc_reg(current,i,rs1[i]); // MTC1/CTC1
1922 alloc_reg_temp(current,i,-1);
1923 }
1924 else {
1925 current->u&=~1LL;
1926 alloc_reg(current,i,0);
1927 alloc_reg_temp(current,i,-1);
1928 }
1929 }
e1190b87 1930 minimum_free_regs[i]=1;
57871462 1931}
1932void fconv_alloc(struct regstat *current,int i)
1933{
1934 alloc_reg(current,i,CSREG); // Load status
1935 alloc_reg_temp(current,i,-1);
e1190b87 1936 minimum_free_regs[i]=1;
57871462 1937}
1938void float_alloc(struct regstat *current,int i)
1939{
1940 alloc_reg(current,i,CSREG); // Load status
1941 alloc_reg_temp(current,i,-1);
e1190b87 1942 minimum_free_regs[i]=1;
57871462 1943}
b9b61529 1944void c2op_alloc(struct regstat *current,int i)
1945{
1946 alloc_reg_temp(current,i,-1);
1947}
57871462 1948void fcomp_alloc(struct regstat *current,int i)
1949{
1950 alloc_reg(current,i,CSREG); // Load status
1951 alloc_reg(current,i,FSREG); // Load flags
1952 dirty_reg(current,FSREG); // Flag will be modified
1953 alloc_reg_temp(current,i,-1);
e1190b87 1954 minimum_free_regs[i]=1;
57871462 1955}
1956
1957void syscall_alloc(struct regstat *current,int i)
1958{
1959 alloc_cc(current,i);
1960 dirty_reg(current,CCREG);
1961 alloc_all(current,i);
e1190b87 1962 minimum_free_regs[i]=HOST_REGS;
57871462 1963 current->isconst=0;
1964}
1965
1966void delayslot_alloc(struct regstat *current,int i)
1967{
1968 switch(itype[i]) {
1969 case UJUMP:
1970 case CJUMP:
1971 case SJUMP:
1972 case RJUMP:
1973 case FJUMP:
1974 case SYSCALL:
7139f3c8 1975 case HLECALL:
57871462 1976 case SPAN:
1977 assem_debug("jump in the delay slot. this shouldn't happen.\n");//exit(1);
1978 printf("Disabled speculative precompilation\n");
1979 stop_after_jal=1;
1980 break;
1981 case IMM16:
1982 imm16_alloc(current,i);
1983 break;
1984 case LOAD:
1985 case LOADLR:
1986 load_alloc(current,i);
1987 break;
1988 case STORE:
1989 case STORELR:
1990 store_alloc(current,i);
1991 break;
1992 case ALU:
1993 alu_alloc(current,i);
1994 break;
1995 case SHIFT:
1996 shift_alloc(current,i);
1997 break;
1998 case MULTDIV:
1999 multdiv_alloc(current,i);
2000 break;
2001 case SHIFTIMM:
2002 shiftimm_alloc(current,i);
2003 break;
2004 case MOV:
2005 mov_alloc(current,i);
2006 break;
2007 case COP0:
2008 cop0_alloc(current,i);
2009 break;
2010 case COP1:
b9b61529 2011 case COP2:
57871462 2012 cop1_alloc(current,i);
2013 break;
2014 case C1LS:
2015 c1ls_alloc(current,i);
2016 break;
b9b61529 2017 case C2LS:
2018 c2ls_alloc(current,i);
2019 break;
57871462 2020 case FCONV:
2021 fconv_alloc(current,i);
2022 break;
2023 case FLOAT:
2024 float_alloc(current,i);
2025 break;
2026 case FCOMP:
2027 fcomp_alloc(current,i);
2028 break;
b9b61529 2029 case C2OP:
2030 c2op_alloc(current,i);
2031 break;
57871462 2032 }
2033}
2034
2035// Special case where a branch and delay slot span two pages in virtual memory
2036static void pagespan_alloc(struct regstat *current,int i)
2037{
2038 current->isconst=0;
2039 current->wasconst=0;
2040 regs[i].wasconst=0;
e1190b87 2041 minimum_free_regs[i]=HOST_REGS;
57871462 2042 alloc_all(current,i);
2043 alloc_cc(current,i);
2044 dirty_reg(current,CCREG);
2045 if(opcode[i]==3) // JAL
2046 {
2047 alloc_reg(current,i,31);
2048 dirty_reg(current,31);
2049 }
2050 if(opcode[i]==0&&(opcode2[i]&0x3E)==8) // JR/JALR
2051 {
2052 alloc_reg(current,i,rs1[i]);
5067f341 2053 if (rt1[i]!=0) {
2054 alloc_reg(current,i,rt1[i]);
2055 dirty_reg(current,rt1[i]);
57871462 2056 }
2057 }
2058 if((opcode[i]&0x2E)==4) // BEQ/BNE/BEQL/BNEL
2059 {
2060 if(rs1[i]) alloc_reg(current,i,rs1[i]);
2061 if(rs2[i]) alloc_reg(current,i,rs2[i]);
2062 if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
2063 {
2064 if(rs1[i]) alloc_reg64(current,i,rs1[i]);
2065 if(rs2[i]) alloc_reg64(current,i,rs2[i]);
2066 }
2067 }
2068 else
2069 if((opcode[i]&0x2E)==6) // BLEZ/BGTZ/BLEZL/BGTZL
2070 {
2071 if(rs1[i]) alloc_reg(current,i,rs1[i]);
2072 if(!((current->is32>>rs1[i])&1))
2073 {
2074 if(rs1[i]) alloc_reg64(current,i,rs1[i]);
2075 }
2076 }
2077 else
2078 if(opcode[i]==0x11) // BC1
2079 {
2080 alloc_reg(current,i,FSREG);
2081 alloc_reg(current,i,CSREG);
2082 }
2083 //else ...
2084}
2085
2086add_stub(int type,int addr,int retaddr,int a,int b,int c,int d,int e)
2087{
2088 stubs[stubcount][0]=type;
2089 stubs[stubcount][1]=addr;
2090 stubs[stubcount][2]=retaddr;
2091 stubs[stubcount][3]=a;
2092 stubs[stubcount][4]=b;
2093 stubs[stubcount][5]=c;
2094 stubs[stubcount][6]=d;
2095 stubs[stubcount][7]=e;
2096 stubcount++;
2097}
2098
2099// Write out a single register
2100void wb_register(signed char r,signed char regmap[],uint64_t dirty,uint64_t is32)
2101{
2102 int hr;
2103 for(hr=0;hr<HOST_REGS;hr++) {
2104 if(hr!=EXCLUDE_REG) {
2105 if((regmap[hr]&63)==r) {
2106 if((dirty>>hr)&1) {
2107 if(regmap[hr]<64) {
2108 emit_storereg(r,hr);
24385cae 2109#ifndef FORCE32
57871462 2110 if((is32>>regmap[hr])&1) {
2111 emit_sarimm(hr,31,hr);
2112 emit_storereg(r|64,hr);
2113 }
24385cae 2114#endif
57871462 2115 }else{
2116 emit_storereg(r|64,hr);
2117 }
2118 }
2119 }
2120 }
2121 }
2122}
2123
2124int mchecksum()
2125{
2126 //if(!tracedebug) return 0;
2127 int i;
2128 int sum=0;
2129 for(i=0;i<2097152;i++) {
2130 unsigned int temp=sum;
2131 sum<<=1;
2132 sum|=(~temp)>>31;
2133 sum^=((u_int *)rdram)[i];
2134 }
2135 return sum;
2136}
2137int rchecksum()
2138{
2139 int i;
2140 int sum=0;
2141 for(i=0;i<64;i++)
2142 sum^=((u_int *)reg)[i];
2143 return sum;
2144}
57871462 2145void rlist()
2146{
2147 int i;
2148 printf("TRACE: ");
2149 for(i=0;i<32;i++)
2150 printf("r%d:%8x%8x ",i,((int *)(reg+i))[1],((int *)(reg+i))[0]);
2151 printf("\n");
3d624f89 2152#ifndef DISABLE_COP1
57871462 2153 printf("TRACE: ");
2154 for(i=0;i<32;i++)
2155 printf("f%d:%8x%8x ",i,((int*)reg_cop1_simple[i])[1],*((int*)reg_cop1_simple[i]));
2156 printf("\n");
3d624f89 2157#endif
57871462 2158}
2159
2160void enabletrace()
2161{
2162 tracedebug=1;
2163}
2164
2165void memdebug(int i)
2166{
2167 //printf("TRACE: count=%d next=%d (checksum %x) lo=%8x%8x\n",Count,next_interupt,mchecksum(),(int)(reg[LOREG]>>32),(int)reg[LOREG]);
2168 //printf("TRACE: count=%d next=%d (rchecksum %x)\n",Count,next_interupt,rchecksum());
2169 //rlist();
2170 //if(tracedebug) {
2171 //if(Count>=-2084597794) {
2172 if((signed int)Count>=-2084597794&&(signed int)Count<0) {
2173 //if(0) {
2174 printf("TRACE: count=%d next=%d (checksum %x)\n",Count,next_interupt,mchecksum());
2175 //printf("TRACE: count=%d next=%d (checksum %x) Status=%x\n",Count,next_interupt,mchecksum(),Status);
2176 //printf("TRACE: count=%d next=%d (checksum %x) hi=%8x%8x\n",Count,next_interupt,mchecksum(),(int)(reg[HIREG]>>32),(int)reg[HIREG]);
2177 rlist();
2178 #ifdef __i386__
2179 printf("TRACE: %x\n",(&i)[-1]);
2180 #endif
2181 #ifdef __arm__
2182 int j;
2183 printf("TRACE: %x \n",(&j)[10]);
2184 printf("TRACE: %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x\n",(&j)[1],(&j)[2],(&j)[3],(&j)[4],(&j)[5],(&j)[6],(&j)[7],(&j)[8],(&j)[9],(&j)[10],(&j)[11],(&j)[12],(&j)[13],(&j)[14],(&j)[15],(&j)[16],(&j)[17],(&j)[18],(&j)[19],(&j)[20]);
2185 #endif
2186 //fflush(stdout);
2187 }
2188 //printf("TRACE: %x\n",(&i)[-1]);
2189}
2190
2191void tlb_debug(u_int cause, u_int addr, u_int iaddr)
2192{
2193 printf("TLB Exception: instruction=%x addr=%x cause=%x\n",iaddr, addr, cause);
2194}
2195
2196void alu_assemble(int i,struct regstat *i_regs)
2197{
2198 if(opcode2[i]>=0x20&&opcode2[i]<=0x23) { // ADD/ADDU/SUB/SUBU
2199 if(rt1[i]) {
2200 signed char s1,s2,t;
2201 t=get_reg(i_regs->regmap,rt1[i]);
2202 if(t>=0) {
2203 s1=get_reg(i_regs->regmap,rs1[i]);
2204 s2=get_reg(i_regs->regmap,rs2[i]);
2205 if(rs1[i]&&rs2[i]) {
2206 assert(s1>=0);
2207 assert(s2>=0);
2208 if(opcode2[i]&2) emit_sub(s1,s2,t);
2209 else emit_add(s1,s2,t);
2210 }
2211 else if(rs1[i]) {
2212 if(s1>=0) emit_mov(s1,t);
2213 else emit_loadreg(rs1[i],t);
2214 }
2215 else if(rs2[i]) {
2216 if(s2>=0) {
2217 if(opcode2[i]&2) emit_neg(s2,t);
2218 else emit_mov(s2,t);
2219 }
2220 else {
2221 emit_loadreg(rs2[i],t);
2222 if(opcode2[i]&2) emit_neg(t,t);
2223 }
2224 }
2225 else emit_zeroreg(t);
2226 }
2227 }
2228 }
2229 if(opcode2[i]>=0x2c&&opcode2[i]<=0x2f) { // DADD/DADDU/DSUB/DSUBU
2230 if(rt1[i]) {
2231 signed char s1l,s2l,s1h,s2h,tl,th;
2232 tl=get_reg(i_regs->regmap,rt1[i]);
2233 th=get_reg(i_regs->regmap,rt1[i]|64);
2234 if(tl>=0) {
2235 s1l=get_reg(i_regs->regmap,rs1[i]);
2236 s2l=get_reg(i_regs->regmap,rs2[i]);
2237 s1h=get_reg(i_regs->regmap,rs1[i]|64);
2238 s2h=get_reg(i_regs->regmap,rs2[i]|64);
2239 if(rs1[i]&&rs2[i]) {
2240 assert(s1l>=0);
2241 assert(s2l>=0);
2242 if(opcode2[i]&2) emit_subs(s1l,s2l,tl);
2243 else emit_adds(s1l,s2l,tl);
2244 if(th>=0) {
2245 #ifdef INVERTED_CARRY
2246 if(opcode2[i]&2) {if(s1h!=th) emit_mov(s1h,th);emit_sbb(th,s2h);}
2247 #else
2248 if(opcode2[i]&2) emit_sbc(s1h,s2h,th);
2249 #endif
2250 else emit_add(s1h,s2h,th);
2251 }
2252 }
2253 else if(rs1[i]) {
2254 if(s1l>=0) emit_mov(s1l,tl);
2255 else emit_loadreg(rs1[i],tl);
2256 if(th>=0) {
2257 if(s1h>=0) emit_mov(s1h,th);
2258 else emit_loadreg(rs1[i]|64,th);
2259 }
2260 }
2261 else if(rs2[i]) {
2262 if(s2l>=0) {
2263 if(opcode2[i]&2) emit_negs(s2l,tl);
2264 else emit_mov(s2l,tl);
2265 }
2266 else {
2267 emit_loadreg(rs2[i],tl);
2268 if(opcode2[i]&2) emit_negs(tl,tl);
2269 }
2270 if(th>=0) {
2271 #ifdef INVERTED_CARRY
2272 if(s2h>=0) emit_mov(s2h,th);
2273 else emit_loadreg(rs2[i]|64,th);
2274 if(opcode2[i]&2) {
2275 emit_adcimm(-1,th); // x86 has inverted carry flag
2276 emit_not(th,th);
2277 }
2278 #else
2279 if(opcode2[i]&2) {
2280 if(s2h>=0) emit_rscimm(s2h,0,th);
2281 else {
2282 emit_loadreg(rs2[i]|64,th);
2283 emit_rscimm(th,0,th);
2284 }
2285 }else{
2286 if(s2h>=0) emit_mov(s2h,th);
2287 else emit_loadreg(rs2[i]|64,th);
2288 }
2289 #endif
2290 }
2291 }
2292 else {
2293 emit_zeroreg(tl);
2294 if(th>=0) emit_zeroreg(th);
2295 }
2296 }
2297 }
2298 }
2299 if(opcode2[i]==0x2a||opcode2[i]==0x2b) { // SLT/SLTU
2300 if(rt1[i]) {
2301 signed char s1l,s1h,s2l,s2h,t;
2302 if(!((i_regs->was32>>rs1[i])&(i_regs->was32>>rs2[i])&1))
2303 {
2304 t=get_reg(i_regs->regmap,rt1[i]);
2305 //assert(t>=0);
2306 if(t>=0) {
2307 s1l=get_reg(i_regs->regmap,rs1[i]);
2308 s1h=get_reg(i_regs->regmap,rs1[i]|64);
2309 s2l=get_reg(i_regs->regmap,rs2[i]);
2310 s2h=get_reg(i_regs->regmap,rs2[i]|64);
2311 if(rs2[i]==0) // rx<r0
2312 {
2313 assert(s1h>=0);
2314 if(opcode2[i]==0x2a) // SLT
2315 emit_shrimm(s1h,31,t);
2316 else // SLTU (unsigned can not be less than zero)
2317 emit_zeroreg(t);
2318 }
2319 else if(rs1[i]==0) // r0<rx
2320 {
2321 assert(s2h>=0);
2322 if(opcode2[i]==0x2a) // SLT
2323 emit_set_gz64_32(s2h,s2l,t);
2324 else // SLTU (set if not zero)
2325 emit_set_nz64_32(s2h,s2l,t);
2326 }
2327 else {
2328 assert(s1l>=0);assert(s1h>=0);
2329 assert(s2l>=0);assert(s2h>=0);
2330 if(opcode2[i]==0x2a) // SLT
2331 emit_set_if_less64_32(s1h,s1l,s2h,s2l,t);
2332 else // SLTU
2333 emit_set_if_carry64_32(s1h,s1l,s2h,s2l,t);
2334 }
2335 }
2336 } else {
2337 t=get_reg(i_regs->regmap,rt1[i]);
2338 //assert(t>=0);
2339 if(t>=0) {
2340 s1l=get_reg(i_regs->regmap,rs1[i]);
2341 s2l=get_reg(i_regs->regmap,rs2[i]);
2342 if(rs2[i]==0) // rx<r0
2343 {
2344 assert(s1l>=0);
2345 if(opcode2[i]==0x2a) // SLT
2346 emit_shrimm(s1l,31,t);
2347 else // SLTU (unsigned can not be less than zero)
2348 emit_zeroreg(t);
2349 }
2350 else if(rs1[i]==0) // r0<rx
2351 {
2352 assert(s2l>=0);
2353 if(opcode2[i]==0x2a) // SLT
2354 emit_set_gz32(s2l,t);
2355 else // SLTU (set if not zero)
2356 emit_set_nz32(s2l,t);
2357 }
2358 else{
2359 assert(s1l>=0);assert(s2l>=0);
2360 if(opcode2[i]==0x2a) // SLT
2361 emit_set_if_less32(s1l,s2l,t);
2362 else // SLTU
2363 emit_set_if_carry32(s1l,s2l,t);
2364 }
2365 }
2366 }
2367 }
2368 }
2369 if(opcode2[i]>=0x24&&opcode2[i]<=0x27) { // AND/OR/XOR/NOR
2370 if(rt1[i]) {
2371 signed char s1l,s1h,s2l,s2h,th,tl;
2372 tl=get_reg(i_regs->regmap,rt1[i]);
2373 th=get_reg(i_regs->regmap,rt1[i]|64);
2374 if(!((i_regs->was32>>rs1[i])&(i_regs->was32>>rs2[i])&1)&&th>=0)
2375 {
2376 assert(tl>=0);
2377 if(tl>=0) {
2378 s1l=get_reg(i_regs->regmap,rs1[i]);
2379 s1h=get_reg(i_regs->regmap,rs1[i]|64);
2380 s2l=get_reg(i_regs->regmap,rs2[i]);
2381 s2h=get_reg(i_regs->regmap,rs2[i]|64);
2382 if(rs1[i]&&rs2[i]) {
2383 assert(s1l>=0);assert(s1h>=0);
2384 assert(s2l>=0);assert(s2h>=0);
2385 if(opcode2[i]==0x24) { // AND
2386 emit_and(s1l,s2l,tl);
2387 emit_and(s1h,s2h,th);
2388 } else
2389 if(opcode2[i]==0x25) { // OR
2390 emit_or(s1l,s2l,tl);
2391 emit_or(s1h,s2h,th);
2392 } else
2393 if(opcode2[i]==0x26) { // XOR
2394 emit_xor(s1l,s2l,tl);
2395 emit_xor(s1h,s2h,th);
2396 } else
2397 if(opcode2[i]==0x27) { // NOR
2398 emit_or(s1l,s2l,tl);
2399 emit_or(s1h,s2h,th);
2400 emit_not(tl,tl);
2401 emit_not(th,th);
2402 }
2403 }
2404 else
2405 {
2406 if(opcode2[i]==0x24) { // AND
2407 emit_zeroreg(tl);
2408 emit_zeroreg(th);
2409 } else
2410 if(opcode2[i]==0x25||opcode2[i]==0x26) { // OR/XOR
2411 if(rs1[i]){
2412 if(s1l>=0) emit_mov(s1l,tl);
2413 else emit_loadreg(rs1[i],tl);
2414 if(s1h>=0) emit_mov(s1h,th);
2415 else emit_loadreg(rs1[i]|64,th);
2416 }
2417 else
2418 if(rs2[i]){
2419 if(s2l>=0) emit_mov(s2l,tl);
2420 else emit_loadreg(rs2[i],tl);
2421 if(s2h>=0) emit_mov(s2h,th);
2422 else emit_loadreg(rs2[i]|64,th);
2423 }
2424 else{
2425 emit_zeroreg(tl);
2426 emit_zeroreg(th);
2427 }
2428 } else
2429 if(opcode2[i]==0x27) { // NOR
2430 if(rs1[i]){
2431 if(s1l>=0) emit_not(s1l,tl);
2432 else{
2433 emit_loadreg(rs1[i],tl);
2434 emit_not(tl,tl);
2435 }
2436 if(s1h>=0) emit_not(s1h,th);
2437 else{
2438 emit_loadreg(rs1[i]|64,th);
2439 emit_not(th,th);
2440 }
2441 }
2442 else
2443 if(rs2[i]){
2444 if(s2l>=0) emit_not(s2l,tl);
2445 else{
2446 emit_loadreg(rs2[i],tl);
2447 emit_not(tl,tl);
2448 }
2449 if(s2h>=0) emit_not(s2h,th);
2450 else{
2451 emit_loadreg(rs2[i]|64,th);
2452 emit_not(th,th);
2453 }
2454 }
2455 else {
2456 emit_movimm(-1,tl);
2457 emit_movimm(-1,th);
2458 }
2459 }
2460 }
2461 }
2462 }
2463 else
2464 {
2465 // 32 bit
2466 if(tl>=0) {
2467 s1l=get_reg(i_regs->regmap,rs1[i]);
2468 s2l=get_reg(i_regs->regmap,rs2[i]);
2469 if(rs1[i]&&rs2[i]) {
2470 assert(s1l>=0);
2471 assert(s2l>=0);
2472 if(opcode2[i]==0x24) { // AND
2473 emit_and(s1l,s2l,tl);
2474 } else
2475 if(opcode2[i]==0x25) { // OR
2476 emit_or(s1l,s2l,tl);
2477 } else
2478 if(opcode2[i]==0x26) { // XOR
2479 emit_xor(s1l,s2l,tl);
2480 } else
2481 if(opcode2[i]==0x27) { // NOR
2482 emit_or(s1l,s2l,tl);
2483 emit_not(tl,tl);
2484 }
2485 }
2486 else
2487 {
2488 if(opcode2[i]==0x24) { // AND
2489 emit_zeroreg(tl);
2490 } else
2491 if(opcode2[i]==0x25||opcode2[i]==0x26) { // OR/XOR
2492 if(rs1[i]){
2493 if(s1l>=0) emit_mov(s1l,tl);
2494 else emit_loadreg(rs1[i],tl); // CHECK: regmap_entry?
2495 }
2496 else
2497 if(rs2[i]){
2498 if(s2l>=0) emit_mov(s2l,tl);
2499 else emit_loadreg(rs2[i],tl); // CHECK: regmap_entry?
2500 }
2501 else emit_zeroreg(tl);
2502 } else
2503 if(opcode2[i]==0x27) { // NOR
2504 if(rs1[i]){
2505 if(s1l>=0) emit_not(s1l,tl);
2506 else {
2507 emit_loadreg(rs1[i],tl);
2508 emit_not(tl,tl);
2509 }
2510 }
2511 else
2512 if(rs2[i]){
2513 if(s2l>=0) emit_not(s2l,tl);
2514 else {
2515 emit_loadreg(rs2[i],tl);
2516 emit_not(tl,tl);
2517 }
2518 }
2519 else emit_movimm(-1,tl);
2520 }
2521 }
2522 }
2523 }
2524 }
2525 }
2526}
2527
2528void imm16_assemble(int i,struct regstat *i_regs)
2529{
2530 if (opcode[i]==0x0f) { // LUI
2531 if(rt1[i]) {
2532 signed char t;
2533 t=get_reg(i_regs->regmap,rt1[i]);
2534 //assert(t>=0);
2535 if(t>=0) {
2536 if(!((i_regs->isconst>>t)&1))
2537 emit_movimm(imm[i]<<16,t);
2538 }
2539 }
2540 }
2541 if(opcode[i]==0x08||opcode[i]==0x09) { // ADDI/ADDIU
2542 if(rt1[i]) {
2543 signed char s,t;
2544 t=get_reg(i_regs->regmap,rt1[i]);
2545 s=get_reg(i_regs->regmap,rs1[i]);
2546 if(rs1[i]) {
2547 //assert(t>=0);
2548 //assert(s>=0);
2549 if(t>=0) {
2550 if(!((i_regs->isconst>>t)&1)) {
2551 if(s<0) {
2552 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2553 emit_addimm(t,imm[i],t);
2554 }else{
2555 if(!((i_regs->wasconst>>s)&1))
2556 emit_addimm(s,imm[i],t);
2557 else
2558 emit_movimm(constmap[i][s]+imm[i],t);
2559 }
2560 }
2561 }
2562 } else {
2563 if(t>=0) {
2564 if(!((i_regs->isconst>>t)&1))
2565 emit_movimm(imm[i],t);
2566 }
2567 }
2568 }
2569 }
2570 if(opcode[i]==0x18||opcode[i]==0x19) { // DADDI/DADDIU
2571 if(rt1[i]) {
2572 signed char sh,sl,th,tl;
2573 th=get_reg(i_regs->regmap,rt1[i]|64);
2574 tl=get_reg(i_regs->regmap,rt1[i]);
2575 sh=get_reg(i_regs->regmap,rs1[i]|64);
2576 sl=get_reg(i_regs->regmap,rs1[i]);
2577 if(tl>=0) {
2578 if(rs1[i]) {
2579 assert(sh>=0);
2580 assert(sl>=0);
2581 if(th>=0) {
2582 emit_addimm64_32(sh,sl,imm[i],th,tl);
2583 }
2584 else {
2585 emit_addimm(sl,imm[i],tl);
2586 }
2587 } else {
2588 emit_movimm(imm[i],tl);
2589 if(th>=0) emit_movimm(((signed int)imm[i])>>31,th);
2590 }
2591 }
2592 }
2593 }
2594 else if(opcode[i]==0x0a||opcode[i]==0x0b) { // SLTI/SLTIU
2595 if(rt1[i]) {
2596 //assert(rs1[i]!=0); // r0 might be valid, but it's probably a bug
2597 signed char sh,sl,t;
2598 t=get_reg(i_regs->regmap,rt1[i]);
2599 sh=get_reg(i_regs->regmap,rs1[i]|64);
2600 sl=get_reg(i_regs->regmap,rs1[i]);
2601 //assert(t>=0);
2602 if(t>=0) {
2603 if(rs1[i]>0) {
2604 if(sh<0) assert((i_regs->was32>>rs1[i])&1);
2605 if(sh<0||((i_regs->was32>>rs1[i])&1)) {
2606 if(opcode[i]==0x0a) { // SLTI
2607 if(sl<0) {
2608 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2609 emit_slti32(t,imm[i],t);
2610 }else{
2611 emit_slti32(sl,imm[i],t);
2612 }
2613 }
2614 else { // SLTIU
2615 if(sl<0) {
2616 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2617 emit_sltiu32(t,imm[i],t);
2618 }else{
2619 emit_sltiu32(sl,imm[i],t);
2620 }
2621 }
2622 }else{ // 64-bit
2623 assert(sl>=0);
2624 if(opcode[i]==0x0a) // SLTI
2625 emit_slti64_32(sh,sl,imm[i],t);
2626 else // SLTIU
2627 emit_sltiu64_32(sh,sl,imm[i],t);
2628 }
2629 }else{
2630 // SLTI(U) with r0 is just stupid,
2631 // nonetheless examples can be found
2632 if(opcode[i]==0x0a) // SLTI
2633 if(0<imm[i]) emit_movimm(1,t);
2634 else emit_zeroreg(t);
2635 else // SLTIU
2636 {
2637 if(imm[i]) emit_movimm(1,t);
2638 else emit_zeroreg(t);
2639 }
2640 }
2641 }
2642 }
2643 }
2644 else if(opcode[i]>=0x0c&&opcode[i]<=0x0e) { // ANDI/ORI/XORI
2645 if(rt1[i]) {
2646 signed char sh,sl,th,tl;
2647 th=get_reg(i_regs->regmap,rt1[i]|64);
2648 tl=get_reg(i_regs->regmap,rt1[i]);
2649 sh=get_reg(i_regs->regmap,rs1[i]|64);
2650 sl=get_reg(i_regs->regmap,rs1[i]);
2651 if(tl>=0 && !((i_regs->isconst>>tl)&1)) {
2652 if(opcode[i]==0x0c) //ANDI
2653 {
2654 if(rs1[i]) {
2655 if(sl<0) {
2656 if(i_regs->regmap_entry[tl]!=rs1[i]) emit_loadreg(rs1[i],tl);
2657 emit_andimm(tl,imm[i],tl);
2658 }else{
2659 if(!((i_regs->wasconst>>sl)&1))
2660 emit_andimm(sl,imm[i],tl);
2661 else
2662 emit_movimm(constmap[i][sl]&imm[i],tl);
2663 }
2664 }
2665 else
2666 emit_zeroreg(tl);
2667 if(th>=0) emit_zeroreg(th);
2668 }
2669 else
2670 {
2671 if(rs1[i]) {
2672 if(sl<0) {
2673 if(i_regs->regmap_entry[tl]!=rs1[i]) emit_loadreg(rs1[i],tl);
2674 }
2675 if(th>=0) {
2676 if(sh<0) {
2677 emit_loadreg(rs1[i]|64,th);
2678 }else{
2679 emit_mov(sh,th);
2680 }
2681 }
2682 if(opcode[i]==0x0d) //ORI
2683 if(sl<0) {
2684 emit_orimm(tl,imm[i],tl);
2685 }else{
2686 if(!((i_regs->wasconst>>sl)&1))
2687 emit_orimm(sl,imm[i],tl);
2688 else
2689 emit_movimm(constmap[i][sl]|imm[i],tl);
2690 }
2691 if(opcode[i]==0x0e) //XORI
2692 if(sl<0) {
2693 emit_xorimm(tl,imm[i],tl);
2694 }else{
2695 if(!((i_regs->wasconst>>sl)&1))
2696 emit_xorimm(sl,imm[i],tl);
2697 else
2698 emit_movimm(constmap[i][sl]^imm[i],tl);
2699 }
2700 }
2701 else {
2702 emit_movimm(imm[i],tl);
2703 if(th>=0) emit_zeroreg(th);
2704 }
2705 }
2706 }
2707 }
2708 }
2709}
2710
2711void shiftimm_assemble(int i,struct regstat *i_regs)
2712{
2713 if(opcode2[i]<=0x3) // SLL/SRL/SRA
2714 {
2715 if(rt1[i]) {
2716 signed char s,t;
2717 t=get_reg(i_regs->regmap,rt1[i]);
2718 s=get_reg(i_regs->regmap,rs1[i]);
2719 //assert(t>=0);
dc49e339 2720 if(t>=0&&!((i_regs->isconst>>t)&1)){
57871462 2721 if(rs1[i]==0)
2722 {
2723 emit_zeroreg(t);
2724 }
2725 else
2726 {
2727 if(s<0&&i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2728 if(imm[i]) {
2729 if(opcode2[i]==0) // SLL
2730 {
2731 emit_shlimm(s<0?t:s,imm[i],t);
2732 }
2733 if(opcode2[i]==2) // SRL
2734 {
2735 emit_shrimm(s<0?t:s,imm[i],t);
2736 }
2737 if(opcode2[i]==3) // SRA
2738 {
2739 emit_sarimm(s<0?t:s,imm[i],t);
2740 }
2741 }else{
2742 // Shift by zero
2743 if(s>=0 && s!=t) emit_mov(s,t);
2744 }
2745 }
2746 }
2747 //emit_storereg(rt1[i],t); //DEBUG
2748 }
2749 }
2750 if(opcode2[i]>=0x38&&opcode2[i]<=0x3b) // DSLL/DSRL/DSRA
2751 {
2752 if(rt1[i]) {
2753 signed char sh,sl,th,tl;
2754 th=get_reg(i_regs->regmap,rt1[i]|64);
2755 tl=get_reg(i_regs->regmap,rt1[i]);
2756 sh=get_reg(i_regs->regmap,rs1[i]|64);
2757 sl=get_reg(i_regs->regmap,rs1[i]);
2758 if(tl>=0) {
2759 if(rs1[i]==0)
2760 {
2761 emit_zeroreg(tl);
2762 if(th>=0) emit_zeroreg(th);
2763 }
2764 else
2765 {
2766 assert(sl>=0);
2767 assert(sh>=0);
2768 if(imm[i]) {
2769 if(opcode2[i]==0x38) // DSLL
2770 {
2771 if(th>=0) emit_shldimm(sh,sl,imm[i],th);
2772 emit_shlimm(sl,imm[i],tl);
2773 }
2774 if(opcode2[i]==0x3a) // DSRL
2775 {
2776 emit_shrdimm(sl,sh,imm[i],tl);
2777 if(th>=0) emit_shrimm(sh,imm[i],th);
2778 }
2779 if(opcode2[i]==0x3b) // DSRA
2780 {
2781 emit_shrdimm(sl,sh,imm[i],tl);
2782 if(th>=0) emit_sarimm(sh,imm[i],th);
2783 }
2784 }else{
2785 // Shift by zero
2786 if(sl!=tl) emit_mov(sl,tl);
2787 if(th>=0&&sh!=th) emit_mov(sh,th);
2788 }
2789 }
2790 }
2791 }
2792 }
2793 if(opcode2[i]==0x3c) // DSLL32
2794 {
2795 if(rt1[i]) {
2796 signed char sl,tl,th;
2797 tl=get_reg(i_regs->regmap,rt1[i]);
2798 th=get_reg(i_regs->regmap,rt1[i]|64);
2799 sl=get_reg(i_regs->regmap,rs1[i]);
2800 if(th>=0||tl>=0){
2801 assert(tl>=0);
2802 assert(th>=0);
2803 assert(sl>=0);
2804 emit_mov(sl,th);
2805 emit_zeroreg(tl);
2806 if(imm[i]>32)
2807 {
2808 emit_shlimm(th,imm[i]&31,th);
2809 }
2810 }
2811 }
2812 }
2813 if(opcode2[i]==0x3e) // DSRL32
2814 {
2815 if(rt1[i]) {
2816 signed char sh,tl,th;
2817 tl=get_reg(i_regs->regmap,rt1[i]);
2818 th=get_reg(i_regs->regmap,rt1[i]|64);
2819 sh=get_reg(i_regs->regmap,rs1[i]|64);
2820 if(tl>=0){
2821 assert(sh>=0);
2822 emit_mov(sh,tl);
2823 if(th>=0) emit_zeroreg(th);
2824 if(imm[i]>32)
2825 {
2826 emit_shrimm(tl,imm[i]&31,tl);
2827 }
2828 }
2829 }
2830 }
2831 if(opcode2[i]==0x3f) // DSRA32
2832 {
2833 if(rt1[i]) {
2834 signed char sh,tl;
2835 tl=get_reg(i_regs->regmap,rt1[i]);
2836 sh=get_reg(i_regs->regmap,rs1[i]|64);
2837 if(tl>=0){
2838 assert(sh>=0);
2839 emit_mov(sh,tl);
2840 if(imm[i]>32)
2841 {
2842 emit_sarimm(tl,imm[i]&31,tl);
2843 }
2844 }
2845 }
2846 }
2847}
2848
2849#ifndef shift_assemble
2850void shift_assemble(int i,struct regstat *i_regs)
2851{
2852 printf("Need shift_assemble for this architecture.\n");
2853 exit(1);
2854}
2855#endif
2856
2857void load_assemble(int i,struct regstat *i_regs)
2858{
2859 int s,th,tl,addr,map=-1;
2860 int offset;
2861 int jaddr=0;
5bf843dc 2862 int memtarget=0,c=0;
b1570849 2863 int fastload_reg_override=0;
57871462 2864 u_int hr,reglist=0;
2865 th=get_reg(i_regs->regmap,rt1[i]|64);
2866 tl=get_reg(i_regs->regmap,rt1[i]);
2867 s=get_reg(i_regs->regmap,rs1[i]);
2868 offset=imm[i];
2869 for(hr=0;hr<HOST_REGS;hr++) {
2870 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
2871 }
2872 if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
2873 if(s>=0) {
2874 c=(i_regs->wasconst>>s)&1;
af4ee1fe 2875 if (c) {
2876 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
2877 if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
2878 }
57871462 2879 }
57871462 2880 //printf("load_assemble: c=%d\n",c);
2881 //if(c) printf("load_assemble: const=%x\n",(int)constmap[i][s]+offset);
2882 // FIXME: Even if the load is a NOP, we should check for pagefaults...
5bf843dc 2883#ifdef PCSX
f18c0f46 2884 if(tl<0&&(!c||(((u_int)constmap[i][s]+offset)>>16)==0x1f80)
2885 ||rt1[i]==0) {
5bf843dc 2886 // could be FIFO, must perform the read
f18c0f46 2887 // ||dummy read
5bf843dc 2888 assem_debug("(forced read)\n");
2889 tl=get_reg(i_regs->regmap,-1);
2890 assert(tl>=0);
5bf843dc 2891 }
f18c0f46 2892#endif
5bf843dc 2893 if(offset||s<0||c) addr=tl;
2894 else addr=s;
535d208a 2895 //if(tl<0) tl=get_reg(i_regs->regmap,-1);
2896 if(tl>=0) {
2897 //printf("load_assemble: c=%d\n",c);
2898 //if(c) printf("load_assemble: const=%x\n",(int)constmap[i][s]+offset);
2899 assert(tl>=0); // Even if the load is a NOP, we must check for pagefaults and I/O
2900 reglist&=~(1<<tl);
2901 if(th>=0) reglist&=~(1<<th);
2902 if(!using_tlb) {
2903 if(!c) {
2904 #ifdef RAM_OFFSET
2905 map=get_reg(i_regs->regmap,ROREG);
2906 if(map<0) emit_loadreg(ROREG,map=HOST_TEMPREG);
2907 #endif
57871462 2908//#define R29_HACK 1
535d208a 2909 #ifdef R29_HACK
2910 // Strmnnrmn's speed hack
2911 if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
2912 #endif
2913 {
ffb0b9e0 2914 jaddr=emit_fastpath_cmp_jump(i,addr,&fastload_reg_override);
57871462 2915 }
535d208a 2916 }
2917 }else{ // using tlb
2918 int x=0;
2919 if (opcode[i]==0x20||opcode[i]==0x24) x=3; // LB/LBU
2920 if (opcode[i]==0x21||opcode[i]==0x25) x=2; // LH/LHU
2921 map=get_reg(i_regs->regmap,TLREG);
2922 assert(map>=0);
ea3d2e6e 2923 reglist&=~(1<<map);
535d208a 2924 map=do_tlb_r(addr,tl,map,x,-1,-1,c,constmap[i][s]+offset);
2925 do_tlb_r_branch(map,c,constmap[i][s]+offset,&jaddr);
2926 }
2927 int dummy=(rt1[i]==0)||(tl!=get_reg(i_regs->regmap,rt1[i])); // ignore loads to r0 and unneeded reg
2928 if (opcode[i]==0x20) { // LB
2929 if(!c||memtarget) {
2930 if(!dummy) {
57871462 2931 #ifdef HOST_IMM_ADDR32
2932 if(c)
2933 emit_movsbl_tlb((constmap[i][s]+offset)^3,map,tl);
2934 else
2935 #endif
2936 {
2937 //emit_xorimm(addr,3,tl);
2938 //gen_tlb_addr_r(tl,map);
2939 //emit_movsbl_indexed((int)rdram-0x80000000,tl,tl);
535d208a 2940 int x=0,a=tl;
2002a1db 2941#ifdef BIG_ENDIAN_MIPS
57871462 2942 if(!c) emit_xorimm(addr,3,tl);
2943 else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2002a1db 2944#else
535d208a 2945 if(!c) a=addr;
dadf55f2 2946#endif
b1570849 2947 if(fastload_reg_override) a=fastload_reg_override;
2948
535d208a 2949 emit_movsbl_indexed_tlb(x,a,map,tl);
57871462 2950 }
57871462 2951 }
535d208a 2952 if(jaddr)
2953 add_stub(LOADB_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
57871462 2954 }
535d208a 2955 else
2956 inline_readstub(LOADB_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2957 }
2958 if (opcode[i]==0x21) { // LH
2959 if(!c||memtarget) {
2960 if(!dummy) {
57871462 2961 #ifdef HOST_IMM_ADDR32
2962 if(c)
2963 emit_movswl_tlb((constmap[i][s]+offset)^2,map,tl);
2964 else
2965 #endif
2966 {
535d208a 2967 int x=0,a=tl;
2002a1db 2968#ifdef BIG_ENDIAN_MIPS
57871462 2969 if(!c) emit_xorimm(addr,2,tl);
2970 else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
2002a1db 2971#else
535d208a 2972 if(!c) a=addr;
dadf55f2 2973#endif
b1570849 2974 if(fastload_reg_override) a=fastload_reg_override;
57871462 2975 //#ifdef
2976 //emit_movswl_indexed_tlb(x,tl,map,tl);
2977 //else
2978 if(map>=0) {
535d208a 2979 gen_tlb_addr_r(a,map);
2980 emit_movswl_indexed(x,a,tl);
2981 }else{
2982 #ifdef RAM_OFFSET
2983 emit_movswl_indexed(x,a,tl);
2984 #else
2985 emit_movswl_indexed((int)rdram-0x80000000+x,a,tl);
2986 #endif
2987 }
57871462 2988 }
57871462 2989 }
535d208a 2990 if(jaddr)
2991 add_stub(LOADH_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
57871462 2992 }
535d208a 2993 else
2994 inline_readstub(LOADH_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2995 }
2996 if (opcode[i]==0x23) { // LW
2997 if(!c||memtarget) {
2998 if(!dummy) {
dadf55f2 2999 int a=addr;
b1570849 3000 if(fastload_reg_override) a=fastload_reg_override;
57871462 3001 //emit_readword_indexed((int)rdram-0x80000000,addr,tl);
3002 #ifdef HOST_IMM_ADDR32
3003 if(c)
3004 emit_readword_tlb(constmap[i][s]+offset,map,tl);
3005 else
3006 #endif
dadf55f2 3007 emit_readword_indexed_tlb(0,a,map,tl);
57871462 3008 }
535d208a 3009 if(jaddr)
3010 add_stub(LOADW_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
57871462 3011 }
535d208a 3012 else
3013 inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
3014 }
3015 if (opcode[i]==0x24) { // LBU
3016 if(!c||memtarget) {
3017 if(!dummy) {
57871462 3018 #ifdef HOST_IMM_ADDR32
3019 if(c)
3020 emit_movzbl_tlb((constmap[i][s]+offset)^3,map,tl);
3021 else
3022 #endif
3023 {
3024 //emit_xorimm(addr,3,tl);
3025 //gen_tlb_addr_r(tl,map);
3026 //emit_movzbl_indexed((int)rdram-0x80000000,tl,tl);
535d208a 3027 int x=0,a=tl;
2002a1db 3028#ifdef BIG_ENDIAN_MIPS
57871462 3029 if(!c) emit_xorimm(addr,3,tl);
3030 else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2002a1db 3031#else
535d208a 3032 if(!c) a=addr;
dadf55f2 3033#endif
b1570849 3034 if(fastload_reg_override) a=fastload_reg_override;
3035
535d208a 3036 emit_movzbl_indexed_tlb(x,a,map,tl);
57871462 3037 }
57871462 3038 }
535d208a 3039 if(jaddr)
3040 add_stub(LOADBU_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
57871462 3041 }
535d208a 3042 else
3043 inline_readstub(LOADBU_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
3044 }
3045 if (opcode[i]==0x25) { // LHU
3046 if(!c||memtarget) {
3047 if(!dummy) {
57871462 3048 #ifdef HOST_IMM_ADDR32
3049 if(c)
3050 emit_movzwl_tlb((constmap[i][s]+offset)^2,map,tl);
3051 else
3052 #endif
3053 {
535d208a 3054 int x=0,a=tl;
2002a1db 3055#ifdef BIG_ENDIAN_MIPS
57871462 3056 if(!c) emit_xorimm(addr,2,tl);
3057 else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
2002a1db 3058#else
535d208a 3059 if(!c) a=addr;
dadf55f2 3060#endif
b1570849 3061 if(fastload_reg_override) a=fastload_reg_override;
57871462 3062 //#ifdef
3063 //emit_movzwl_indexed_tlb(x,tl,map,tl);
3064 //#else
3065 if(map>=0) {
535d208a 3066 gen_tlb_addr_r(a,map);
3067 emit_movzwl_indexed(x,a,tl);
3068 }else{
3069 #ifdef RAM_OFFSET
3070 emit_movzwl_indexed(x,a,tl);
3071 #else
3072 emit_movzwl_indexed((int)rdram-0x80000000+x,a,tl);
3073 #endif
3074 }
57871462 3075 }
3076 }
535d208a 3077 if(jaddr)
3078 add_stub(LOADHU_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
57871462 3079 }
535d208a 3080 else
3081 inline_readstub(LOADHU_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
3082 }
3083 if (opcode[i]==0x27) { // LWU
3084 assert(th>=0);
3085 if(!c||memtarget) {
3086 if(!dummy) {
dadf55f2 3087 int a=addr;
b1570849 3088 if(fastload_reg_override) a=fastload_reg_override;
57871462 3089 //emit_readword_indexed((int)rdram-0x80000000,addr,tl);
3090 #ifdef HOST_IMM_ADDR32
3091 if(c)
3092 emit_readword_tlb(constmap[i][s]+offset,map,tl);
3093 else
3094 #endif
dadf55f2 3095 emit_readword_indexed_tlb(0,a,map,tl);
57871462 3096 }
535d208a 3097 if(jaddr)
3098 add_stub(LOADW_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3099 }
3100 else {
3101 inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
57871462 3102 }
535d208a 3103 emit_zeroreg(th);
3104 }
3105 if (opcode[i]==0x37) { // LD
3106 if(!c||memtarget) {
3107 if(!dummy) {
dadf55f2 3108 int a=addr;
b1570849 3109 if(fastload_reg_override) a=fastload_reg_override;
57871462 3110 //gen_tlb_addr_r(tl,map);
3111 //if(th>=0) emit_readword_indexed((int)rdram-0x80000000,addr,th);
3112 //emit_readword_indexed((int)rdram-0x7FFFFFFC,addr,tl);
3113 #ifdef HOST_IMM_ADDR32
3114 if(c)
3115 emit_readdword_tlb(constmap[i][s]+offset,map,th,tl);
3116 else
3117 #endif
dadf55f2 3118 emit_readdword_indexed_tlb(0,a,map,th,tl);
57871462 3119 }
535d208a 3120 if(jaddr)
3121 add_stub(LOADD_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
57871462 3122 }
535d208a 3123 else
3124 inline_readstub(LOADD_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
57871462 3125 }
535d208a 3126 }
3127 //emit_storereg(rt1[i],tl); // DEBUG
57871462 3128 //if(opcode[i]==0x23)
3129 //if(opcode[i]==0x24)
3130 //if(opcode[i]==0x23||opcode[i]==0x24)
3131 /*if(opcode[i]==0x21||opcode[i]==0x23||opcode[i]==0x24)
3132 {
3133 //emit_pusha();
3134 save_regs(0x100f);
3135 emit_readword((int)&last_count,ECX);
3136 #ifdef __i386__
3137 if(get_reg(i_regs->regmap,CCREG)<0)
3138 emit_loadreg(CCREG,HOST_CCREG);
3139 emit_add(HOST_CCREG,ECX,HOST_CCREG);
3140 emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3141 emit_writeword(HOST_CCREG,(int)&Count);
3142 #endif
3143 #ifdef __arm__
3144 if(get_reg(i_regs->regmap,CCREG)<0)
3145 emit_loadreg(CCREG,0);
3146 else
3147 emit_mov(HOST_CCREG,0);
3148 emit_add(0,ECX,0);
3149 emit_addimm(0,2*ccadj[i],0);
3150 emit_writeword(0,(int)&Count);
3151 #endif
3152 emit_call((int)memdebug);
3153 //emit_popa();
3154 restore_regs(0x100f);
3155 }/**/
3156}
3157
3158#ifndef loadlr_assemble
3159void loadlr_assemble(int i,struct regstat *i_regs)
3160{
3161 printf("Need loadlr_assemble for this architecture.\n");
3162 exit(1);
3163}
3164#endif
3165
3166void store_assemble(int i,struct regstat *i_regs)
3167{
3168 int s,th,tl,map=-1;
3169 int addr,temp;
3170 int offset;
3171 int jaddr=0,jaddr2,type;
666a299d 3172 int memtarget=0,c=0;
57871462 3173 int agr=AGEN1+(i&1);
b1570849 3174 int faststore_reg_override=0;
57871462 3175 u_int hr,reglist=0;
3176 th=get_reg(i_regs->regmap,rs2[i]|64);
3177 tl=get_reg(i_regs->regmap,rs2[i]);
3178 s=get_reg(i_regs->regmap,rs1[i]);
3179 temp=get_reg(i_regs->regmap,agr);
3180 if(temp<0) temp=get_reg(i_regs->regmap,-1);
3181 offset=imm[i];
3182 if(s>=0) {
3183 c=(i_regs->wasconst>>s)&1;
af4ee1fe 3184 if(c) {
3185 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
3186 if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
3187 }
57871462 3188 }
3189 assert(tl>=0);
3190 assert(temp>=0);
3191 for(hr=0;hr<HOST_REGS;hr++) {
3192 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3193 }
3194 if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
3195 if(offset||s<0||c) addr=temp;
3196 else addr=s;
3197 if(!using_tlb) {
3198 if(!c) {
ffb0b9e0 3199 #ifndef PCSX
57871462 3200 #ifdef R29_HACK
3201 // Strmnnrmn's speed hack
4cb76aa4 3202 if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
57871462 3203 #endif
4cb76aa4 3204 emit_cmpimm(addr,RAM_SIZE);
57871462 3205 #ifdef DESTRUCTIVE_SHIFT
3206 if(s==addr) emit_mov(s,temp);
3207 #endif
3208 #ifdef R29_HACK
dadf55f2 3209 memtarget=1;
4cb76aa4 3210 if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
57871462 3211 #endif
3212 {
3213 jaddr=(int)out;
3214 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
3215 // Hint to branch predictor that the branch is unlikely to be taken
3216 if(rs1[i]>=28)
3217 emit_jno_unlikely(0);
3218 else
3219 #endif
3220 emit_jno(0);
3221 }
ffb0b9e0 3222 #else
3223 jaddr=emit_fastpath_cmp_jump(i,addr,&faststore_reg_override);
3224 #endif
57871462 3225 }
3226 }else{ // using tlb
3227 int x=0;
3228 if (opcode[i]==0x28) x=3; // SB
3229 if (opcode[i]==0x29) x=2; // SH
3230 map=get_reg(i_regs->regmap,TLREG);
3231 assert(map>=0);
ea3d2e6e 3232 reglist&=~(1<<map);
57871462 3233 map=do_tlb_w(addr,temp,map,x,c,constmap[i][s]+offset);
3234 do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr);
3235 }
3236
3237 if (opcode[i]==0x28) { // SB
3238 if(!c||memtarget) {
97a238a6 3239 int x=0,a=temp;
2002a1db 3240#ifdef BIG_ENDIAN_MIPS
57871462 3241 if(!c) emit_xorimm(addr,3,temp);
3242 else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2002a1db 3243#else
97a238a6 3244 if(!c) a=addr;
dadf55f2 3245#endif
b1570849 3246 if(faststore_reg_override) a=faststore_reg_override;
57871462 3247 //gen_tlb_addr_w(temp,map);
3248 //emit_writebyte_indexed(tl,(int)rdram-0x80000000,temp);
97a238a6 3249 emit_writebyte_indexed_tlb(tl,x,a,map,a);
57871462 3250 }
3251 type=STOREB_STUB;
3252 }
3253 if (opcode[i]==0x29) { // SH
3254 if(!c||memtarget) {
97a238a6 3255 int x=0,a=temp;
2002a1db 3256#ifdef BIG_ENDIAN_MIPS
57871462 3257 if(!c) emit_xorimm(addr,2,temp);
3258 else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
2002a1db 3259#else
97a238a6 3260 if(!c) a=addr;
dadf55f2 3261#endif
b1570849 3262 if(faststore_reg_override) a=faststore_reg_override;
57871462 3263 //#ifdef
3264 //emit_writehword_indexed_tlb(tl,x,temp,map,temp);
3265 //#else
3266 if(map>=0) {
97a238a6 3267 gen_tlb_addr_w(a,map);
3268 emit_writehword_indexed(tl,x,a);
57871462 3269 }else
97a238a6 3270 emit_writehword_indexed(tl,(int)rdram-0x80000000+x,a);
57871462 3271 }
3272 type=STOREH_STUB;
3273 }
3274 if (opcode[i]==0x2B) { // SW
dadf55f2 3275 if(!c||memtarget) {
3276 int a=addr;
b1570849 3277 if(faststore_reg_override) a=faststore_reg_override;
57871462 3278 //emit_writeword_indexed(tl,(int)rdram-0x80000000,addr);
dadf55f2 3279 emit_writeword_indexed_tlb(tl,0,a,map,temp);
3280 }
57871462 3281 type=STOREW_STUB;
3282 }
3283 if (opcode[i]==0x3F) { // SD
3284 if(!c||memtarget) {
dadf55f2 3285 int a=addr;
b1570849 3286 if(faststore_reg_override) a=faststore_reg_override;
57871462 3287 if(rs2[i]) {
3288 assert(th>=0);
3289 //emit_writeword_indexed(th,(int)rdram-0x80000000,addr);
3290 //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,addr);
dadf55f2 3291 emit_writedword_indexed_tlb(th,tl,0,a,map,temp);
57871462 3292 }else{
3293 // Store zero
3294 //emit_writeword_indexed(tl,(int)rdram-0x80000000,temp);
3295 //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,temp);
dadf55f2 3296 emit_writedword_indexed_tlb(tl,tl,0,a,map,temp);
57871462 3297 }
3298 }
3299 type=STORED_STUB;
3300 }
b96d3df7 3301#ifdef PCSX
3302 if(jaddr) {
3303 // PCSX store handlers don't check invcode again
3304 reglist|=1<<addr;
3305 add_stub(type,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3306 jaddr=0;
3307 }
3308#endif
0ff8c62c 3309 if(!using_tlb&&!(i_regs->waswritten&(1<<rs1[i]))&&!(new_dynarec_hacks&NDHACK_NO_SMC_CHECK)) {
57871462 3310 if(!c||memtarget) {
3311 #ifdef DESTRUCTIVE_SHIFT
3312 // The x86 shift operation is 'destructive'; it overwrites the
3313 // source register, so we need to make a copy first and use that.
3314 addr=temp;
3315 #endif
3316 #if defined(HOST_IMM8)
3317 int ir=get_reg(i_regs->regmap,INVCP);
3318 assert(ir>=0);
3319 emit_cmpmem_indexedsr12_reg(ir,addr,1);
3320 #else
3321 emit_cmpmem_indexedsr12_imm((int)invalid_code,addr,1);
3322 #endif
0bbd1454 3323 #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3324 emit_callne(invalidate_addr_reg[addr]);
3325 #else
57871462 3326 jaddr2=(int)out;
3327 emit_jne(0);
3328 add_stub(INVCODE_STUB,jaddr2,(int)out,reglist|(1<<HOST_CCREG),addr,0,0,0);
0bbd1454 3329 #endif
57871462 3330 }
3331 }
3eaa7048 3332 if(jaddr) {
3333 add_stub(type,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3334 } else if(c&&!memtarget) {
3335 inline_writestub(type,i,constmap[i][s]+offset,i_regs->regmap,rs2[i],ccadj[i],reglist);
3336 }
57871462 3337 //if(opcode[i]==0x2B || opcode[i]==0x3F)
3338 //if(opcode[i]==0x2B || opcode[i]==0x28)
3339 //if(opcode[i]==0x2B || opcode[i]==0x29)
3340 //if(opcode[i]==0x2B)
3341 /*if(opcode[i]==0x2B || opcode[i]==0x28 || opcode[i]==0x29 || opcode[i]==0x3F)
3342 {
28d74ee8 3343 #ifdef __i386__
3344 emit_pusha();
3345 #endif
3346 #ifdef __arm__
57871462 3347 save_regs(0x100f);
28d74ee8 3348 #endif
57871462 3349 emit_readword((int)&last_count,ECX);
3350 #ifdef __i386__
3351 if(get_reg(i_regs->regmap,CCREG)<0)
3352 emit_loadreg(CCREG,HOST_CCREG);
3353 emit_add(HOST_CCREG,ECX,HOST_CCREG);
3354 emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3355 emit_writeword(HOST_CCREG,(int)&Count);
3356 #endif
3357 #ifdef __arm__
3358 if(get_reg(i_regs->regmap,CCREG)<0)
3359 emit_loadreg(CCREG,0);
3360 else
3361 emit_mov(HOST_CCREG,0);
3362 emit_add(0,ECX,0);
3363 emit_addimm(0,2*ccadj[i],0);
3364 emit_writeword(0,(int)&Count);
3365 #endif
3366 emit_call((int)memdebug);
28d74ee8 3367 #ifdef __i386__
3368 emit_popa();
3369 #endif
3370 #ifdef __arm__
57871462 3371 restore_regs(0x100f);
28d74ee8 3372 #endif
57871462 3373 }/**/
3374}
3375
3376void storelr_assemble(int i,struct regstat *i_regs)
3377{
3378 int s,th,tl;
3379 int temp;
3380 int temp2;
3381 int offset;
3382 int jaddr=0,jaddr2;
3383 int case1,case2,case3;
3384 int done0,done1,done2;
af4ee1fe 3385 int memtarget=0,c=0;
fab5d06d 3386 int agr=AGEN1+(i&1);
57871462 3387 u_int hr,reglist=0;
3388 th=get_reg(i_regs->regmap,rs2[i]|64);
3389 tl=get_reg(i_regs->regmap,rs2[i]);
3390 s=get_reg(i_regs->regmap,rs1[i]);
fab5d06d 3391 temp=get_reg(i_regs->regmap,agr);
3392 if(temp<0) temp=get_reg(i_regs->regmap,-1);
57871462 3393 offset=imm[i];
3394 if(s>=0) {
3395 c=(i_regs->isconst>>s)&1;
af4ee1fe 3396 if(c) {
3397 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
3398 if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
3399 }
57871462 3400 }
3401 assert(tl>=0);
3402 for(hr=0;hr<HOST_REGS;hr++) {
3403 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3404 }
535d208a 3405 assert(temp>=0);
3406 if(!using_tlb) {
3407 if(!c) {
3408 emit_cmpimm(s<0||offset?temp:s,RAM_SIZE);
3409 if(!offset&&s!=temp) emit_mov(s,temp);
3410 jaddr=(int)out;
3411 emit_jno(0);
3412 }
3413 else
3414 {
3415 if(!memtarget||!rs1[i]) {
57871462 3416 jaddr=(int)out;
3417 emit_jmp(0);
3418 }
57871462 3419 }
535d208a 3420 #ifdef RAM_OFFSET
3421 int map=get_reg(i_regs->regmap,ROREG);
3422 if(map<0) emit_loadreg(ROREG,map=HOST_TEMPREG);
3423 gen_tlb_addr_w(temp,map);
3424 #else
3425 if((u_int)rdram!=0x80000000)
3426 emit_addimm_no_flags((u_int)rdram-(u_int)0x80000000,temp);
3427 #endif
3428 }else{ // using tlb
3429 int map=get_reg(i_regs->regmap,TLREG);
3430 assert(map>=0);
ea3d2e6e 3431 reglist&=~(1<<map);
535d208a 3432 map=do_tlb_w(c||s<0||offset?temp:s,temp,map,0,c,constmap[i][s]+offset);
3433 if(!c&&!offset&&s>=0) emit_mov(s,temp);
3434 do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr);
3435 if(!jaddr&&!memtarget) {
3436 jaddr=(int)out;
3437 emit_jmp(0);
57871462 3438 }
535d208a 3439 gen_tlb_addr_w(temp,map);
3440 }
3441
3442 if (opcode[i]==0x2C||opcode[i]==0x2D) { // SDL/SDR
3443 temp2=get_reg(i_regs->regmap,FTEMP);
3444 if(!rs2[i]) temp2=th=tl;
3445 }
57871462 3446
2002a1db 3447#ifndef BIG_ENDIAN_MIPS
3448 emit_xorimm(temp,3,temp);
3449#endif
535d208a 3450 emit_testimm(temp,2);
3451 case2=(int)out;
3452 emit_jne(0);
3453 emit_testimm(temp,1);
3454 case1=(int)out;
3455 emit_jne(0);
3456 // 0
3457 if (opcode[i]==0x2A) { // SWL
3458 emit_writeword_indexed(tl,0,temp);
3459 }
3460 if (opcode[i]==0x2E) { // SWR
3461 emit_writebyte_indexed(tl,3,temp);
3462 }
3463 if (opcode[i]==0x2C) { // SDL
3464 emit_writeword_indexed(th,0,temp);
3465 if(rs2[i]) emit_mov(tl,temp2);
3466 }
3467 if (opcode[i]==0x2D) { // SDR
3468 emit_writebyte_indexed(tl,3,temp);
3469 if(rs2[i]) emit_shldimm(th,tl,24,temp2);
3470 }
3471 done0=(int)out;
3472 emit_jmp(0);
3473 // 1
3474 set_jump_target(case1,(int)out);
3475 if (opcode[i]==0x2A) { // SWL
3476 // Write 3 msb into three least significant bytes
3477 if(rs2[i]) emit_rorimm(tl,8,tl);
3478 emit_writehword_indexed(tl,-1,temp);
3479 if(rs2[i]) emit_rorimm(tl,16,tl);
3480 emit_writebyte_indexed(tl,1,temp);
3481 if(rs2[i]) emit_rorimm(tl,8,tl);
3482 }
3483 if (opcode[i]==0x2E) { // SWR
3484 // Write two lsb into two most significant bytes
3485 emit_writehword_indexed(tl,1,temp);
3486 }
3487 if (opcode[i]==0x2C) { // SDL
3488 if(rs2[i]) emit_shrdimm(tl,th,8,temp2);
3489 // Write 3 msb into three least significant bytes
3490 if(rs2[i]) emit_rorimm(th,8,th);
3491 emit_writehword_indexed(th,-1,temp);
3492 if(rs2[i]) emit_rorimm(th,16,th);
3493 emit_writebyte_indexed(th,1,temp);
3494 if(rs2[i]) emit_rorimm(th,8,th);
3495 }
3496 if (opcode[i]==0x2D) { // SDR
3497 if(rs2[i]) emit_shldimm(th,tl,16,temp2);
3498 // Write two lsb into two most significant bytes
3499 emit_writehword_indexed(tl,1,temp);
3500 }
3501 done1=(int)out;
3502 emit_jmp(0);
3503 // 2
3504 set_jump_target(case2,(int)out);
3505 emit_testimm(temp,1);
3506 case3=(int)out;
3507 emit_jne(0);
3508 if (opcode[i]==0x2A) { // SWL
3509 // Write two msb into two least significant bytes
3510 if(rs2[i]) emit_rorimm(tl,16,tl);
3511 emit_writehword_indexed(tl,-2,temp);
3512 if(rs2[i]) emit_rorimm(tl,16,tl);
3513 }
3514 if (opcode[i]==0x2E) { // SWR
3515 // Write 3 lsb into three most significant bytes
3516 emit_writebyte_indexed(tl,-1,temp);
3517 if(rs2[i]) emit_rorimm(tl,8,tl);
3518 emit_writehword_indexed(tl,0,temp);
3519 if(rs2[i]) emit_rorimm(tl,24,tl);
3520 }
3521 if (opcode[i]==0x2C) { // SDL
3522 if(rs2[i]) emit_shrdimm(tl,th,16,temp2);
3523 // Write two msb into two least significant bytes
3524 if(rs2[i]) emit_rorimm(th,16,th);
3525 emit_writehword_indexed(th,-2,temp);
3526 if(rs2[i]) emit_rorimm(th,16,th);
3527 }
3528 if (opcode[i]==0x2D) { // SDR
3529 if(rs2[i]) emit_shldimm(th,tl,8,temp2);
3530 // Write 3 lsb into three most significant bytes
3531 emit_writebyte_indexed(tl,-1,temp);
3532 if(rs2[i]) emit_rorimm(tl,8,tl);
3533 emit_writehword_indexed(tl,0,temp);
3534 if(rs2[i]) emit_rorimm(tl,24,tl);
3535 }
3536 done2=(int)out;
3537 emit_jmp(0);
3538 // 3
3539 set_jump_target(case3,(int)out);
3540 if (opcode[i]==0x2A) { // SWL
3541 // Write msb into least significant byte
3542 if(rs2[i]) emit_rorimm(tl,24,tl);
3543 emit_writebyte_indexed(tl,-3,temp);
3544 if(rs2[i]) emit_rorimm(tl,8,tl);
3545 }
3546 if (opcode[i]==0x2E) { // SWR
3547 // Write entire word
3548 emit_writeword_indexed(tl,-3,temp);
3549 }
3550 if (opcode[i]==0x2C) { // SDL
3551 if(rs2[i]) emit_shrdimm(tl,th,24,temp2);
3552 // Write msb into least significant byte
3553 if(rs2[i]) emit_rorimm(th,24,th);
3554 emit_writebyte_indexed(th,-3,temp);
3555 if(rs2[i]) emit_rorimm(th,8,th);
3556 }
3557 if (opcode[i]==0x2D) { // SDR
3558 if(rs2[i]) emit_mov(th,temp2);
3559 // Write entire word
3560 emit_writeword_indexed(tl,-3,temp);
3561 }
3562 set_jump_target(done0,(int)out);
3563 set_jump_target(done1,(int)out);
3564 set_jump_target(done2,(int)out);
3565 if (opcode[i]==0x2C) { // SDL
3566 emit_testimm(temp,4);
57871462 3567 done0=(int)out;
57871462 3568 emit_jne(0);
535d208a 3569 emit_andimm(temp,~3,temp);
3570 emit_writeword_indexed(temp2,4,temp);
3571 set_jump_target(done0,(int)out);
3572 }
3573 if (opcode[i]==0x2D) { // SDR
3574 emit_testimm(temp,4);
3575 done0=(int)out;
3576 emit_jeq(0);
3577 emit_andimm(temp,~3,temp);
3578 emit_writeword_indexed(temp2,-4,temp);
57871462 3579 set_jump_target(done0,(int)out);
57871462 3580 }
535d208a 3581 if(!c||!memtarget)
3582 add_stub(STORELR_STUB,jaddr,(int)out,i,(int)i_regs,temp,ccadj[i],reglist);
0ff8c62c 3583 if(!using_tlb&&!(i_regs->waswritten&(1<<rs1[i]))&&!(new_dynarec_hacks&NDHACK_NO_SMC_CHECK)) {
535d208a 3584 #ifdef RAM_OFFSET
3585 int map=get_reg(i_regs->regmap,ROREG);
3586 if(map<0) map=HOST_TEMPREG;
3587 gen_orig_addr_w(temp,map);
3588 #else
57871462 3589 emit_addimm_no_flags((u_int)0x80000000-(u_int)rdram,temp);
535d208a 3590 #endif
57871462 3591 #if defined(HOST_IMM8)
3592 int ir=get_reg(i_regs->regmap,INVCP);
3593 assert(ir>=0);
3594 emit_cmpmem_indexedsr12_reg(ir,temp,1);
3595 #else
3596 emit_cmpmem_indexedsr12_imm((int)invalid_code,temp,1);
3597 #endif
535d208a 3598 #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3599 emit_callne(invalidate_addr_reg[temp]);
3600 #else
57871462 3601 jaddr2=(int)out;
3602 emit_jne(0);
3603 add_stub(INVCODE_STUB,jaddr2,(int)out,reglist|(1<<HOST_CCREG),temp,0,0,0);
535d208a 3604 #endif
57871462 3605 }
3606 /*
3607 emit_pusha();
3608 //save_regs(0x100f);
3609 emit_readword((int)&last_count,ECX);
3610 if(get_reg(i_regs->regmap,CCREG)<0)
3611 emit_loadreg(CCREG,HOST_CCREG);
3612 emit_add(HOST_CCREG,ECX,HOST_CCREG);
3613 emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3614 emit_writeword(HOST_CCREG,(int)&Count);
3615 emit_call((int)memdebug);
3616 emit_popa();
3617 //restore_regs(0x100f);
3618 /**/
3619}
3620
3621void c1ls_assemble(int i,struct regstat *i_regs)
3622{
3d624f89 3623#ifndef DISABLE_COP1
57871462 3624 int s,th,tl;
3625 int temp,ar;
3626 int map=-1;
3627 int offset;
3628 int c=0;
3629 int jaddr,jaddr2=0,jaddr3,type;
3630 int agr=AGEN1+(i&1);
3631 u_int hr,reglist=0;
3632 th=get_reg(i_regs->regmap,FTEMP|64);
3633 tl=get_reg(i_regs->regmap,FTEMP);
3634 s=get_reg(i_regs->regmap,rs1[i]);
3635 temp=get_reg(i_regs->regmap,agr);
3636 if(temp<0) temp=get_reg(i_regs->regmap,-1);
3637 offset=imm[i];
3638 assert(tl>=0);
3639 assert(rs1[i]>0);
3640 assert(temp>=0);
3641 for(hr=0;hr<HOST_REGS;hr++) {
3642 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3643 }
3644 if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
3645 if (opcode[i]==0x31||opcode[i]==0x35) // LWC1/LDC1
3646 {
3647 // Loads use a temporary register which we need to save
3648 reglist|=1<<temp;
3649 }
3650 if (opcode[i]==0x39||opcode[i]==0x3D) // SWC1/SDC1
3651 ar=temp;
3652 else // LWC1/LDC1
3653 ar=tl;
3654 //if(s<0) emit_loadreg(rs1[i],ar); //address_generation does this now
3655 //else c=(i_regs->wasconst>>s)&1;
3656 if(s>=0) c=(i_regs->wasconst>>s)&1;
3657 // Check cop1 unusable
3658 if(!cop1_usable) {
3659 signed char rs=get_reg(i_regs->regmap,CSREG);
3660 assert(rs>=0);
3661 emit_testimm(rs,0x20000000);
3662 jaddr=(int)out;
3663 emit_jeq(0);
3664 add_stub(FP_STUB,jaddr,(int)out,i,rs,(int)i_regs,is_delayslot,0);
3665 cop1_usable=1;
3666 }
3667 if (opcode[i]==0x39) { // SWC1 (get float address)
3668 emit_readword((int)&reg_cop1_simple[(source[i]>>16)&0x1f],tl);
3669 }
3670 if (opcode[i]==0x3D) { // SDC1 (get double address)
3671 emit_readword((int)&reg_cop1_double[(source[i]>>16)&0x1f],tl);
3672 }
3673 // Generate address + offset
3674 if(!using_tlb) {
3675 if(!c)
4cb76aa4 3676 emit_cmpimm(offset||c||s<0?ar:s,RAM_SIZE);
57871462 3677 }
3678 else
3679 {
3680 map=get_reg(i_regs->regmap,TLREG);
3681 assert(map>=0);
ea3d2e6e 3682 reglist&=~(1<<map);
57871462 3683 if (opcode[i]==0x31||opcode[i]==0x35) { // LWC1/LDC1
3684 map=do_tlb_r(offset||c||s<0?ar:s,ar,map,0,-1,-1,c,constmap[i][s]+offset);
3685 }
3686 if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3687 map=do_tlb_w(offset||c||s<0?ar:s,ar,map,0,c,constmap[i][s]+offset);
3688 }
3689 }
3690 if (opcode[i]==0x39) { // SWC1 (read float)
3691 emit_readword_indexed(0,tl,tl);
3692 }
3693 if (opcode[i]==0x3D) { // SDC1 (read double)
3694 emit_readword_indexed(4,tl,th);
3695 emit_readword_indexed(0,tl,tl);
3696 }
3697 if (opcode[i]==0x31) { // LWC1 (get target address)
3698 emit_readword((int)&reg_cop1_simple[(source[i]>>16)&0x1f],temp);
3699 }
3700 if (opcode[i]==0x35) { // LDC1 (get target address)
3701 emit_readword((int)&reg_cop1_double[(source[i]>>16)&0x1f],temp);
3702 }
3703 if(!using_tlb) {
3704 if(!c) {
3705 jaddr2=(int)out;
3706 emit_jno(0);
3707 }
4cb76aa4 3708 else if(((signed int)(constmap[i][s]+offset))>=(signed int)0x80000000+RAM_SIZE) {
57871462 3709 jaddr2=(int)out;
3710 emit_jmp(0); // inline_readstub/inline_writestub? Very rare case
3711 }
3712 #ifdef DESTRUCTIVE_SHIFT
3713 if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3714 if(!offset&&!c&&s>=0) emit_mov(s,ar);
3715 }
3716 #endif
3717 }else{
3718 if (opcode[i]==0x31||opcode[i]==0x35) { // LWC1/LDC1
3719 do_tlb_r_branch(map,c,constmap[i][s]+offset,&jaddr2);
3720 }
3721 if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3722 do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr2);
3723 }
3724 }
3725 if (opcode[i]==0x31) { // LWC1
3726 //if(s>=0&&!c&&!offset) emit_mov(s,tl);
3727 //gen_tlb_addr_r(ar,map);
3728 //emit_readword_indexed((int)rdram-0x80000000,tl,tl);
3729 #ifdef HOST_IMM_ADDR32
3730 if(c) emit_readword_tlb(constmap[i][s]+offset,map,tl);
3731 else
3732 #endif
3733 emit_readword_indexed_tlb(0,offset||c||s<0?tl:s,map,tl);
3734 type=LOADW_STUB;
3735 }
3736 if (opcode[i]==0x35) { // LDC1
3737 assert(th>=0);
3738 //if(s>=0&&!c&&!offset) emit_mov(s,tl);
3739 //gen_tlb_addr_r(ar,map);
3740 //emit_readword_indexed((int)rdram-0x80000000,tl,th);
3741 //emit_readword_indexed((int)rdram-0x7FFFFFFC,tl,tl);
3742 #ifdef HOST_IMM_ADDR32
3743 if(c) emit_readdword_tlb(constmap[i][s]+offset,map,th,tl);
3744 else
3745 #endif
3746 emit_readdword_indexed_tlb(0,offset||c||s<0?tl:s,map,th,tl);
3747 type=LOADD_STUB;
3748 }
3749 if (opcode[i]==0x39) { // SWC1
3750 //emit_writeword_indexed(tl,(int)rdram-0x80000000,temp);
3751 emit_writeword_indexed_tlb(tl,0,offset||c||s<0?temp:s,map,temp);
3752 type=STOREW_STUB;
3753 }
3754 if (opcode[i]==0x3D) { // SDC1
3755 assert(th>=0);
3756 //emit_writeword_indexed(th,(int)rdram-0x80000000,temp);
3757 //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,temp);
3758 emit_writedword_indexed_tlb(th,tl,0,offset||c||s<0?temp:s,map,temp);
3759 type=STORED_STUB;
3760 }
0ff8c62c 3761 if(!using_tlb&&!(i_regs->waswritten&(1<<rs1[i]))&&!(new_dynarec_hacks&NDHACK_NO_SMC_CHECK)) {
57871462 3762 if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3763 #ifndef DESTRUCTIVE_SHIFT
3764 temp=offset||c||s<0?ar:s;
3765 #endif
3766 #if defined(HOST_IMM8)
3767 int ir=get_reg(i_regs->regmap,INVCP);
3768 assert(ir>=0);
3769 emit_cmpmem_indexedsr12_reg(ir,temp,1);
3770 #else
3771 emit_cmpmem_indexedsr12_imm((int)invalid_code,temp,1);
3772 #endif
0bbd1454 3773 #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3774 emit_callne(invalidate_addr_reg[temp]);
3775 #else
57871462 3776 jaddr3=(int)out;
3777 emit_jne(0);
3778 add_stub(INVCODE_STUB,jaddr3,(int)out,reglist|(1<<HOST_CCREG),temp,0,0,0);
0bbd1454 3779 #endif
57871462 3780 }
3781 }
3782 if(jaddr2) add_stub(type,jaddr2,(int)out,i,offset||c||s<0?ar:s,(int)i_regs,ccadj[i],reglist);
3783 if (opcode[i]==0x31) { // LWC1 (write float)
3784 emit_writeword_indexed(tl,0,temp);
3785 }
3786 if (opcode[i]==0x35) { // LDC1 (write double)
3787 emit_writeword_indexed(th,4,temp);
3788 emit_writeword_indexed(tl,0,temp);
3789 }
3790 //if(opcode[i]==0x39)
3791 /*if(opcode[i]==0x39||opcode[i]==0x31)
3792 {
3793 emit_pusha();
3794 emit_readword((int)&last_count,ECX);
3795 if(get_reg(i_regs->regmap,CCREG)<0)
3796 emit_loadreg(CCREG,HOST_CCREG);
3797 emit_add(HOST_CCREG,ECX,HOST_CCREG);
3798 emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3799 emit_writeword(HOST_CCREG,(int)&Count);
3800 emit_call((int)memdebug);
3801 emit_popa();
3802 }/**/
3d624f89 3803#else
3804 cop1_unusable(i, i_regs);
3805#endif
57871462 3806}
3807
b9b61529 3808void c2ls_assemble(int i,struct regstat *i_regs)
3809{
3810 int s,tl;
3811 int ar;
3812 int offset;
1fd1aceb 3813 int memtarget=0,c=0;
c2e3bd42 3814 int jaddr2=0,jaddr3,type;
b9b61529 3815 int agr=AGEN1+(i&1);
ffb0b9e0 3816 int fastio_reg_override=0;
b9b61529 3817 u_int hr,reglist=0;
3818 u_int copr=(source[i]>>16)&0x1f;
3819 s=get_reg(i_regs->regmap,rs1[i]);
3820 tl=get_reg(i_regs->regmap,FTEMP);
3821 offset=imm[i];
3822 assert(rs1[i]>0);
3823 assert(tl>=0);
3824 assert(!using_tlb);
3825
3826 for(hr=0;hr<HOST_REGS;hr++) {
3827 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3828 }
3829 if(i_regs->regmap[HOST_CCREG]==CCREG)
3830 reglist&=~(1<<HOST_CCREG);
3831
3832 // get the address
3833 if (opcode[i]==0x3a) { // SWC2
3834 ar=get_reg(i_regs->regmap,agr);
3835 if(ar<0) ar=get_reg(i_regs->regmap,-1);
3836 reglist|=1<<ar;
3837 } else { // LWC2
3838 ar=tl;
3839 }
1fd1aceb 3840 if(s>=0) c=(i_regs->wasconst>>s)&1;
3841 memtarget=c&&(((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE);
b9b61529 3842 if (!offset&&!c&&s>=0) ar=s;
3843 assert(ar>=0);
3844
3845 if (opcode[i]==0x3a) { // SWC2
3846 cop2_get_dreg(copr,tl,HOST_TEMPREG);
1fd1aceb 3847 type=STOREW_STUB;
b9b61529 3848 }
1fd1aceb 3849 else
b9b61529 3850 type=LOADW_STUB;
1fd1aceb 3851
3852 if(c&&!memtarget) {
3853 jaddr2=(int)out;
3854 emit_jmp(0); // inline_readstub/inline_writestub?
b9b61529 3855 }
1fd1aceb 3856 else {
3857 if(!c) {
ffb0b9e0 3858 jaddr2=emit_fastpath_cmp_jump(i,ar,&fastio_reg_override);
1fd1aceb 3859 }
3860 if (opcode[i]==0x32) { // LWC2
3861 #ifdef HOST_IMM_ADDR32
3862 if(c) emit_readword_tlb(constmap[i][s]+offset,-1,tl);
3863 else
3864 #endif
ffb0b9e0 3865 int a=ar;
3866 if(fastio_reg_override) a=fastio_reg_override;
3867 emit_readword_indexed(0,a,tl);
1fd1aceb 3868 }
3869 if (opcode[i]==0x3a) { // SWC2
3870 #ifdef DESTRUCTIVE_SHIFT
3871 if(!offset&&!c&&s>=0) emit_mov(s,ar);
3872 #endif
ffb0b9e0 3873 int a=ar;
3874 if(fastio_reg_override) a=fastio_reg_override;
3875 emit_writeword_indexed(tl,0,a);
1fd1aceb 3876 }
b9b61529 3877 }
3878 if(jaddr2)
3879 add_stub(type,jaddr2,(int)out,i,ar,(int)i_regs,ccadj[i],reglist);
0ff8c62c 3880 if(opcode[i]==0x3a) // SWC2
3881 if(!(i_regs->waswritten&(1<<rs1[i]))&&!(new_dynarec_hacks&NDHACK_NO_SMC_CHECK)) {
b9b61529 3882#if defined(HOST_IMM8)
3883 int ir=get_reg(i_regs->regmap,INVCP);
3884 assert(ir>=0);
3885 emit_cmpmem_indexedsr12_reg(ir,ar,1);
3886#else
3887 emit_cmpmem_indexedsr12_imm((int)invalid_code,ar,1);
3888#endif
0bbd1454 3889 #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3890 emit_callne(invalidate_addr_reg[ar]);
3891 #else
b9b61529 3892 jaddr3=(int)out;
3893 emit_jne(0);
3894 add_stub(INVCODE_STUB,jaddr3,(int)out,reglist|(1<<HOST_CCREG),ar,0,0,0);
0bbd1454 3895 #endif
b9b61529 3896 }
3897 if (opcode[i]==0x32) { // LWC2
3898 cop2_put_dreg(copr,tl,HOST_TEMPREG);
3899 }
3900}
3901
57871462 3902#ifndef multdiv_assemble
3903void multdiv_assemble(int i,struct regstat *i_regs)
3904{
3905 printf("Need multdiv_assemble for this architecture.\n");
3906 exit(1);
3907}
3908#endif
3909
3910void mov_assemble(int i,struct regstat *i_regs)
3911{
3912 //if(opcode2[i]==0x10||opcode2[i]==0x12) { // MFHI/MFLO
3913 //if(opcode2[i]==0x11||opcode2[i]==0x13) { // MTHI/MTLO
57871462 3914 if(rt1[i]) {
3915 signed char sh,sl,th,tl;
3916 th=get_reg(i_regs->regmap,rt1[i]|64);
3917 tl=get_reg(i_regs->regmap,rt1[i]);
3918 //assert(tl>=0);
3919 if(tl>=0) {
3920 sh=get_reg(i_regs->regmap,rs1[i]|64);
3921 sl=get_reg(i_regs->regmap,rs1[i]);
3922 if(sl>=0) emit_mov(sl,tl);
3923 else emit_loadreg(rs1[i],tl);
3924 if(th>=0) {
3925 if(sh>=0) emit_mov(sh,th);
3926 else emit_loadreg(rs1[i]|64,th);
3927 }
3928 }
3929 }
3930}
3931
3932#ifndef fconv_assemble
3933void fconv_assemble(int i,struct regstat *i_regs)
3934{
3935 printf("Need fconv_assemble for this architecture.\n");
3936 exit(1);
3937}
3938#endif
3939
3940#if 0
3941void float_assemble(int i,struct regstat *i_regs)
3942{
3943 printf("Need float_assemble for this architecture.\n");
3944 exit(1);
3945}
3946#endif
3947
3948void syscall_assemble(int i,struct regstat *i_regs)
3949{
3950 signed char ccreg=get_reg(i_regs->regmap,CCREG);
3951 assert(ccreg==HOST_CCREG);
3952 assert(!is_delayslot);
3953 emit_movimm(start+i*4,EAX); // Get PC
2573466a 3954 emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i]),HOST_CCREG); // CHECK: is this right? There should probably be an extra cycle...
7139f3c8 3955 emit_jmp((int)jump_syscall_hle); // XXX
3956}
3957
3958void hlecall_assemble(int i,struct regstat *i_regs)
3959{
3960 signed char ccreg=get_reg(i_regs->regmap,CCREG);
3961 assert(ccreg==HOST_CCREG);
3962 assert(!is_delayslot);
3963 emit_movimm(start+i*4+4,0); // Get PC
67ba0fb4 3964 emit_movimm((int)psxHLEt[source[i]&7],1);
2573466a 3965 emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i]),HOST_CCREG); // XXX
67ba0fb4 3966 emit_jmp((int)jump_hlecall);
57871462 3967}
3968
1e973cb0 3969void intcall_assemble(int i,struct regstat *i_regs)
3970{
3971 signed char ccreg=get_reg(i_regs->regmap,CCREG);
3972 assert(ccreg==HOST_CCREG);
3973 assert(!is_delayslot);
3974 emit_movimm(start+i*4,0); // Get PC
2573466a 3975 emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i]),HOST_CCREG);
1e973cb0 3976 emit_jmp((int)jump_intcall);
3977}
3978
57871462 3979void ds_assemble(int i,struct regstat *i_regs)
3980{
ffb0b9e0 3981 speculate_register_values(i);
57871462 3982 is_delayslot=1;
3983 switch(itype[i]) {
3984 case ALU:
3985 alu_assemble(i,i_regs);break;
3986 case IMM16:
3987 imm16_assemble(i,i_regs);break;
3988 case SHIFT:
3989 shift_assemble(i,i_regs);break;
3990 case SHIFTIMM:
3991 shiftimm_assemble(i,i_regs);break;
3992 case LOAD:
3993 load_assemble(i,i_regs);break;
3994 case LOADLR:
3995 loadlr_assemble(i,i_regs);break;
3996 case STORE:
3997 store_assemble(i,i_regs);break;
3998 case STORELR:
3999 storelr_assemble(i,i_regs);break;
4000 case COP0:
4001 cop0_assemble(i,i_regs);break;
4002 case COP1:
4003 cop1_assemble(i,i_regs);break;
4004 case C1LS:
4005 c1ls_assemble(i,i_regs);break;
b9b61529 4006 case COP2:
4007 cop2_assemble(i,i_regs);break;
4008 case C2LS:
4009 c2ls_assemble(i,i_regs);break;
4010 case C2OP:
4011 c2op_assemble(i,i_regs);break;
57871462 4012 case FCONV:
4013 fconv_assemble(i,i_regs);break;
4014 case FLOAT:
4015 float_assemble(i,i_regs);break;
4016 case FCOMP:
4017 fcomp_assemble(i,i_regs);break;
4018 case MULTDIV:
4019 multdiv_assemble(i,i_regs);break;
4020 case MOV:
4021 mov_assemble(i,i_regs);break;
4022 case SYSCALL:
7139f3c8 4023 case HLECALL:
1e973cb0 4024 case INTCALL:
57871462 4025 case SPAN:
4026 case UJUMP:
4027 case RJUMP:
4028 case CJUMP:
4029 case SJUMP:
4030 case FJUMP:
4031 printf("Jump in the delay slot. This is probably a bug.\n");
4032 }
4033 is_delayslot=0;
4034}
4035
4036// Is the branch target a valid internal jump?
4037int internal_branch(uint64_t i_is32,int addr)
4038{
4039 if(addr&1) return 0; // Indirect (register) jump
4040 if(addr>=start && addr<start+slen*4-4)
4041 {
4042 int t=(addr-start)>>2;
4043 // Delay slots are not valid branch targets
4044 //if(t>0&&(itype[t-1]==RJUMP||itype[t-1]==UJUMP||itype[t-1]==CJUMP||itype[t-1]==SJUMP||itype[t-1]==FJUMP)) return 0;
4045 // 64 -> 32 bit transition requires a recompile
4046 /*if(is32[t]&~unneeded_reg_upper[t]&~i_is32)
4047 {
4048 if(requires_32bit[t]&~i_is32) printf("optimizable: no\n");
4049 else printf("optimizable: yes\n");
4050 }*/
4051 //if(is32[t]&~unneeded_reg_upper[t]&~i_is32) return 0;
a28c6ce8 4052#ifndef FORCE32
57871462 4053 if(requires_32bit[t]&~i_is32) return 0;
a28c6ce8 4054 else
4055#endif
4056 return 1;
57871462 4057 }
4058 return 0;
4059}
4060
4061#ifndef wb_invalidate
4062void wb_invalidate(signed char pre[],signed char entry[],uint64_t dirty,uint64_t is32,
4063 uint64_t u,uint64_t uu)
4064{
4065 int hr;
4066 for(hr=0;hr<HOST_REGS;hr++) {
4067 if(hr!=EXCLUDE_REG) {
4068 if(pre[hr]!=entry[hr]) {
4069 if(pre[hr]>=0) {
4070 if((dirty>>hr)&1) {
4071 if(get_reg(entry,pre[hr])<0) {
4072 if(pre[hr]<64) {
4073 if(!((u>>pre[hr])&1)) {
4074 emit_storereg(pre[hr],hr);
4075 if( ((is32>>pre[hr])&1) && !((uu>>pre[hr])&1) ) {
4076 emit_sarimm(hr,31,hr);
4077 emit_storereg(pre[hr]|64,hr);
4078 }
4079 }
4080 }else{
4081 if(!((uu>>(pre[hr]&63))&1) && !((is32>>(pre[hr]&63))&1)) {
4082 emit_storereg(pre[hr],hr);
4083 }
4084 }
4085 }
4086 }
4087 }
4088 }
4089 }
4090 }
4091 // Move from one register to another (no writeback)
4092 for(hr=0;hr<HOST_REGS;hr++) {
4093 if(hr!=EXCLUDE_REG) {
4094 if(pre[hr]!=entry[hr]) {
4095 if(pre[hr]>=0&&(pre[hr]&63)<TEMPREG) {
4096 int nr;
4097 if((nr=get_reg(entry,pre[hr]))>=0) {
4098 emit_mov(hr,nr);
4099 }
4100 }
4101 }
4102 }
4103 }
4104}
4105#endif
4106
4107// Load the specified registers
4108// This only loads the registers given as arguments because
4109// we don't want to load things that will be overwritten
4110void load_regs(signed char entry[],signed char regmap[],int is32,int rs1,int rs2)
4111{
4112 int hr;
4113 // Load 32-bit regs
4114 for(hr=0;hr<HOST_REGS;hr++) {
4115 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4116 if(entry[hr]!=regmap[hr]) {
4117 if(regmap[hr]==rs1||regmap[hr]==rs2)
4118 {
4119 if(regmap[hr]==0) {
4120 emit_zeroreg(hr);
4121 }
4122 else
4123 {
4124 emit_loadreg(regmap[hr],hr);
4125 }
4126 }
4127 }
4128 }
4129 }
4130 //Load 64-bit regs
4131 for(hr=0;hr<HOST_REGS;hr++) {
4132 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4133 if(entry[hr]!=regmap[hr]) {
4134 if(regmap[hr]-64==rs1||regmap[hr]-64==rs2)
4135 {
4136 assert(regmap[hr]!=64);
4137 if((is32>>(regmap[hr]&63))&1) {
4138 int lr=get_reg(regmap,regmap[hr]-64);
4139 if(lr>=0)
4140 emit_sarimm(lr,31,hr);
4141 else
4142 emit_loadreg(regmap[hr],hr);
4143 }
4144 else
4145 {
4146 emit_loadreg(regmap[hr],hr);
4147 }
4148 }
4149 }
4150 }
4151 }
4152}
4153
4154// Load registers prior to the start of a loop
4155// so that they are not loaded within the loop
4156static void loop_preload(signed char pre[],signed char entry[])
4157{
4158 int hr;
4159 for(hr=0;hr<HOST_REGS;hr++) {
4160 if(hr!=EXCLUDE_REG) {
4161 if(pre[hr]!=entry[hr]) {
4162 if(entry[hr]>=0) {
4163 if(get_reg(pre,entry[hr])<0) {
4164 assem_debug("loop preload:\n");
4165 //printf("loop preload: %d\n",hr);
4166 if(entry[hr]==0) {
4167 emit_zeroreg(hr);
4168 }
4169 else if(entry[hr]<TEMPREG)
4170 {
4171 emit_loadreg(entry[hr],hr);
4172 }
4173 else if(entry[hr]-64<TEMPREG)
4174 {
4175 emit_loadreg(entry[hr],hr);
4176 }
4177 }
4178 }
4179 }
4180 }
4181 }
4182}
4183
4184// Generate address for load/store instruction
b9b61529 4185// goes to AGEN for writes, FTEMP for LOADLR and cop1/2 loads
57871462 4186void address_generation(int i,struct regstat *i_regs,signed char entry[])
4187{
b9b61529 4188 if(itype[i]==LOAD||itype[i]==LOADLR||itype[i]==STORE||itype[i]==STORELR||itype[i]==C1LS||itype[i]==C2LS) {
5194fb95 4189 int ra=-1;
57871462 4190 int agr=AGEN1+(i&1);
4191 int mgr=MGEN1+(i&1);
4192 if(itype[i]==LOAD) {
4193 ra=get_reg(i_regs->regmap,rt1[i]);
535d208a 4194 if(ra<0) ra=get_reg(i_regs->regmap,-1);
4195 assert(ra>=0);
57871462 4196 }
4197 if(itype[i]==LOADLR) {
4198 ra=get_reg(i_regs->regmap,FTEMP);
4199 }
4200 if(itype[i]==STORE||itype[i]==STORELR) {
4201 ra=get_reg(i_regs->regmap,agr);
4202 if(ra<0) ra=get_reg(i_regs->regmap,-1);
4203 }
b9b61529 4204 if(itype[i]==C1LS||itype[i]==C2LS) {
4205 if ((opcode[i]&0x3b)==0x31||(opcode[i]&0x3b)==0x32) // LWC1/LDC1/LWC2/LDC2
57871462 4206 ra=get_reg(i_regs->regmap,FTEMP);
1fd1aceb 4207 else { // SWC1/SDC1/SWC2/SDC2
57871462 4208 ra=get_reg(i_regs->regmap,agr);
4209 if(ra<0) ra=get_reg(i_regs->regmap,-1);
4210 }
4211 }
4212 int rs=get_reg(i_regs->regmap,rs1[i]);
4213 int rm=get_reg(i_regs->regmap,TLREG);
4214 if(ra>=0) {
4215 int offset=imm[i];
4216 int c=(i_regs->wasconst>>rs)&1;
4217 if(rs1[i]==0) {
4218 // Using r0 as a base address
4219 /*if(rm>=0) {
4220 if(!entry||entry[rm]!=mgr) {
4221 generate_map_const(offset,rm);
4222 } // else did it in the previous cycle
4223 }*/
4224 if(!entry||entry[ra]!=agr) {
4225 if (opcode[i]==0x22||opcode[i]==0x26) {
4226 emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
4227 }else if (opcode[i]==0x1a||opcode[i]==0x1b) {
4228 emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
4229 }else{
4230 emit_movimm(offset,ra);
4231 }
4232 } // else did it in the previous cycle
4233 }
4234 else if(rs<0) {
4235 if(!entry||entry[ra]!=rs1[i])
4236 emit_loadreg(rs1[i],ra);
4237 //if(!entry||entry[ra]!=rs1[i])
4238 // printf("poor load scheduling!\n");
4239 }
4240 else if(c) {
63cb0298 4241#ifndef DISABLE_TLB
57871462 4242 if(rm>=0) {
4243 if(!entry||entry[rm]!=mgr) {
b9b61529 4244 if(itype[i]==STORE||itype[i]==STORELR||(opcode[i]&0x3b)==0x39||(opcode[i]&0x3b)==0x3a) {
57871462 4245 // Stores to memory go thru the mapper to detect self-modifying
4246 // code, loads don't.
4247 if((unsigned int)(constmap[i][rs]+offset)>=0xC0000000 ||
4cb76aa4 4248 (unsigned int)(constmap[i][rs]+offset)<0x80000000+RAM_SIZE )
57871462 4249 generate_map_const(constmap[i][rs]+offset,rm);
4250 }else{
4251 if((signed int)(constmap[i][rs]+offset)>=(signed int)0xC0000000)
4252 generate_map_const(constmap[i][rs]+offset,rm);
4253 }
4254 }
4255 }
63cb0298 4256#endif
57871462 4257 if(rs1[i]!=rt1[i]||itype[i]!=LOAD) {
4258 if(!entry||entry[ra]!=agr) {
4259 if (opcode[i]==0x22||opcode[i]==0x26) {
4260 emit_movimm((constmap[i][rs]+offset)&0xFFFFFFFC,ra); // LWL/LWR
4261 }else if (opcode[i]==0x1a||opcode[i]==0x1b) {
4262 emit_movimm((constmap[i][rs]+offset)&0xFFFFFFF8,ra); // LDL/LDR
4263 }else{
4264 #ifdef HOST_IMM_ADDR32
b9b61529 4265 if((itype[i]!=LOAD&&(opcode[i]&0x3b)!=0x31&&(opcode[i]&0x3b)!=0x32) || // LWC1/LDC1/LWC2/LDC2
57871462 4266 (using_tlb&&((signed int)constmap[i][rs]+offset)>=(signed int)0xC0000000))
4267 #endif
4268 emit_movimm(constmap[i][rs]+offset,ra);
8575a877 4269 regs[i].loadedconst|=1<<ra;
57871462 4270 }
4271 } // else did it in the previous cycle
4272 } // else load_consts already did it
4273 }
4274 if(offset&&!c&&rs1[i]) {
4275 if(rs>=0) {
4276 emit_addimm(rs,offset,ra);
4277 }else{
4278 emit_addimm(ra,offset,ra);
4279 }
4280 }
4281 }
4282 }
4283 // Preload constants for next instruction
b9b61529 4284 if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS||itype[i+1]==C2LS) {
57871462 4285 int agr,ra;
63cb0298 4286 #if !defined(HOST_IMM_ADDR32) && !defined(DISABLE_TLB)
57871462 4287 // Mapper entry
4288 agr=MGEN1+((i+1)&1);
4289 ra=get_reg(i_regs->regmap,agr);
4290 if(ra>=0) {
4291 int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
4292 int offset=imm[i+1];
4293 int c=(regs[i+1].wasconst>>rs)&1;
4294 if(c) {
b9b61529 4295 if(itype[i+1]==STORE||itype[i+1]==STORELR
4296 ||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1, SWC2/SDC2
57871462 4297 // Stores to memory go thru the mapper to detect self-modifying
4298 // code, loads don't.
4299 if((unsigned int)(constmap[i+1][rs]+offset)>=0xC0000000 ||
4cb76aa4 4300 (unsigned int)(constmap[i+1][rs]+offset)<0x80000000+RAM_SIZE )
57871462 4301 generate_map_const(constmap[i+1][rs]+offset,ra);
4302 }else{
4303 if((signed int)(constmap[i+1][rs]+offset)>=(signed int)0xC0000000)
4304 generate_map_const(constmap[i+1][rs]+offset,ra);
4305 }
4306 }
4307 /*else if(rs1[i]==0) {
4308 generate_map_const(offset,ra);
4309 }*/
4310 }
4311 #endif
4312 // Actual address
4313 agr=AGEN1+((i+1)&1);
4314 ra=get_reg(i_regs->regmap,agr);
4315 if(ra>=0) {
4316 int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
4317 int offset=imm[i+1];
4318 int c=(regs[i+1].wasconst>>rs)&1;
4319 if(c&&(rs1[i+1]!=rt1[i+1]||itype[i+1]!=LOAD)) {
4320 if (opcode[i+1]==0x22||opcode[i+1]==0x26) {
4321 emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFFC,ra); // LWL/LWR
4322 }else if (opcode[i+1]==0x1a||opcode[i+1]==0x1b) {
4323 emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFF8,ra); // LDL/LDR
4324 }else{
4325 #ifdef HOST_IMM_ADDR32
b9b61529 4326 if((itype[i+1]!=LOAD&&(opcode[i+1]&0x3b)!=0x31&&(opcode[i+1]&0x3b)!=0x32) || // LWC1/LDC1/LWC2/LDC2
57871462 4327 (using_tlb&&((signed int)constmap[i+1][rs]+offset)>=(signed int)0xC0000000))
4328 #endif
4329 emit_movimm(constmap[i+1][rs]+offset,ra);
8575a877 4330 regs[i+1].loadedconst|=1<<ra;
57871462 4331 }
4332 }
4333 else if(rs1[i+1]==0) {
4334 // Using r0 as a base address
4335 if (opcode[i+1]==0x22||opcode[i+1]==0x26) {
4336 emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
4337 }else if (opcode[i+1]==0x1a||opcode[i+1]==0x1b) {
4338 emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
4339 }else{
4340 emit_movimm(offset,ra);
4341 }
4342 }
4343 }
4344 }
4345}
4346
4347int get_final_value(int hr, int i, int *value)
4348{
4349 int reg=regs[i].regmap[hr];
4350 while(i<slen-1) {
4351 if(regs[i+1].regmap[hr]!=reg) break;
4352 if(!((regs[i+1].isconst>>hr)&1)) break;
4353 if(bt[i+1]) break;
4354 i++;
4355 }
4356 if(i<slen-1) {
4357 if(itype[i]==UJUMP||itype[i]==RJUMP||itype[i]==CJUMP||itype[i]==SJUMP) {
4358 *value=constmap[i][hr];
4359 return 1;
4360 }
4361 if(!bt[i+1]) {
4362 if(itype[i+1]==UJUMP||itype[i+1]==RJUMP||itype[i+1]==CJUMP||itype[i+1]==SJUMP) {
4363 // Load in delay slot, out-of-order execution
4364 if(itype[i+2]==LOAD&&rs1[i+2]==reg&&rt1[i+2]==reg&&((regs[i+1].wasconst>>hr)&1))
4365 {
4366 #ifdef HOST_IMM_ADDR32
4367 if(!using_tlb||((signed int)constmap[i][hr]+imm[i+2])<(signed int)0xC0000000) return 0;
4368 #endif
4369 // Precompute load address
4370 *value=constmap[i][hr]+imm[i+2];
4371 return 1;
4372 }
4373 }
4374 if(itype[i+1]==LOAD&&rs1[i+1]==reg&&rt1[i+1]==reg)
4375 {
4376 #ifdef HOST_IMM_ADDR32
4377 if(!using_tlb||((signed int)constmap[i][hr]+imm[i+1])<(signed int)0xC0000000) return 0;
4378 #endif
4379 // Precompute load address
4380 *value=constmap[i][hr]+imm[i+1];
4381 //printf("c=%x imm=%x\n",(int)constmap[i][hr],imm[i+1]);
4382 return 1;
4383 }
4384 }
4385 }
4386 *value=constmap[i][hr];
4387 //printf("c=%x\n",(int)constmap[i][hr]);
4388 if(i==slen-1) return 1;
4389 if(reg<64) {
4390 return !((unneeded_reg[i+1]>>reg)&1);
4391 }else{
4392 return !((unneeded_reg_upper[i+1]>>reg)&1);
4393 }
4394}
4395
4396// Load registers with known constants
4397void load_consts(signed char pre[],signed char regmap[],int is32,int i)
4398{
8575a877 4399 int hr,hr2;
4400 // propagate loaded constant flags
4401 if(i==0||bt[i])
4402 regs[i].loadedconst=0;
4403 else {
4404 for(hr=0;hr<HOST_REGS;hr++) {
4405 if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((regs[i-1].isconst>>hr)&1)&&pre[hr]==regmap[hr]
4406 &&regmap[hr]==regs[i-1].regmap[hr]&&((regs[i-1].loadedconst>>hr)&1))
4407 {
4408 regs[i].loadedconst|=1<<hr;
4409 }
4410 }
4411 }
57871462 4412 // Load 32-bit regs
4413 for(hr=0;hr<HOST_REGS;hr++) {
4414 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4415 //if(entry[hr]!=regmap[hr]) {
8575a877 4416 if(!((regs[i].loadedconst>>hr)&1)) {
57871462 4417 if(((regs[i].isconst>>hr)&1)&&regmap[hr]<64&&regmap[hr]>0) {
8575a877 4418 int value,similar=0;
57871462 4419 if(get_final_value(hr,i,&value)) {
8575a877 4420 // see if some other register has similar value
4421 for(hr2=0;hr2<HOST_REGS;hr2++) {
4422 if(hr2!=EXCLUDE_REG&&((regs[i].loadedconst>>hr2)&1)) {
4423 if(is_similar_value(value,constmap[i][hr2])) {
4424 similar=1;
4425 break;
4426 }
4427 }
4428 }
4429 if(similar) {
4430 int value2;
4431 if(get_final_value(hr2,i,&value2)) // is this needed?
4432 emit_movimm_from(value2,hr2,value,hr);
4433 else
4434 emit_movimm(value,hr);
4435 }
4436 else if(value==0) {
57871462 4437 emit_zeroreg(hr);
4438 }
4439 else {
4440 emit_movimm(value,hr);
4441 }
4442 }
8575a877 4443 regs[i].loadedconst|=1<<hr;
57871462 4444 }
4445 }
4446 }
4447 }
4448 // Load 64-bit regs
4449 for(hr=0;hr<HOST_REGS;hr++) {
4450 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4451 //if(entry[hr]!=regmap[hr]) {
4452 if(i==0||!((regs[i-1].isconst>>hr)&1)||pre[hr]!=regmap[hr]||bt[i]) {
4453 if(((regs[i].isconst>>hr)&1)&&regmap[hr]>64) {
4454 if((is32>>(regmap[hr]&63))&1) {
4455 int lr=get_reg(regmap,regmap[hr]-64);
4456 assert(lr>=0);
4457 emit_sarimm(lr,31,hr);
4458 }
4459 else
4460 {
4461 int value;
4462 if(get_final_value(hr,i,&value)) {
4463 if(value==0) {
4464 emit_zeroreg(hr);
4465 }
4466 else {
4467 emit_movimm(value,hr);
4468 }
4469 }
4470 }
4471 }
4472 }
4473 }
4474 }
4475}
4476void load_all_consts(signed char regmap[],int is32,u_int dirty,int i)
4477{
4478 int hr;
4479 // Load 32-bit regs
4480 for(hr=0;hr<HOST_REGS;hr++) {
4481 if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((dirty>>hr)&1)) {
4482 if(((regs[i].isconst>>hr)&1)&&regmap[hr]<64&&regmap[hr]>0) {
4483 int value=constmap[i][hr];
4484 if(value==0) {
4485 emit_zeroreg(hr);
4486 }
4487 else {
4488 emit_movimm(value,hr);
4489 }
4490 }
4491 }
4492 }
4493 // Load 64-bit regs
4494 for(hr=0;hr<HOST_REGS;hr++) {
4495 if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((dirty>>hr)&1)) {
4496 if(((regs[i].isconst>>hr)&1)&&regmap[hr]>64) {
4497 if((is32>>(regmap[hr]&63))&1) {
4498 int lr=get_reg(regmap,regmap[hr]-64);
4499 assert(lr>=0);
4500 emit_sarimm(lr,31,hr);
4501 }
4502 else
4503 {
4504 int value=constmap[i][hr];
4505 if(value==0) {
4506 emit_zeroreg(hr);
4507 }
4508 else {
4509 emit_movimm(value,hr);
4510 }
4511 }
4512 }
4513 }
4514 }
4515}
4516
4517// Write out all dirty registers (except cycle count)
4518void wb_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty)
4519{
4520 int hr;
4521 for(hr=0;hr<HOST_REGS;hr++) {
4522 if(hr!=EXCLUDE_REG) {
4523 if(i_regmap[hr]>0) {
4524 if(i_regmap[hr]!=CCREG) {
4525 if((i_dirty>>hr)&1) {
4526 if(i_regmap[hr]<64) {
4527 emit_storereg(i_regmap[hr],hr);
24385cae 4528#ifndef FORCE32
57871462 4529 if( ((i_is32>>i_regmap[hr])&1) ) {
4530 #ifdef DESTRUCTIVE_WRITEBACK
4531 emit_sarimm(hr,31,hr);
4532 emit_storereg(i_regmap[hr]|64,hr);
4533 #else
4534 emit_sarimm(hr,31,HOST_TEMPREG);
4535 emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4536 #endif
4537 }
24385cae 4538#endif
57871462 4539 }else{
4540 if( !((i_is32>>(i_regmap[hr]&63))&1) ) {
4541 emit_storereg(i_regmap[hr],hr);
4542 }
4543 }
4544 }
4545 }
4546 }
4547 }
4548 }
4549}
4550// Write out dirty registers that we need to reload (pair with load_needed_regs)
4551// This writes the registers not written by store_regs_bt
4552void wb_needed_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4553{
4554 int hr;
4555 int t=(addr-start)>>2;
4556 for(hr=0;hr<HOST_REGS;hr++) {
4557 if(hr!=EXCLUDE_REG) {
4558 if(i_regmap[hr]>0) {
4559 if(i_regmap[hr]!=CCREG) {
4560 if(i_regmap[hr]==regs[t].regmap_entry[hr] && ((regs[t].dirty>>hr)&1) && !(((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4561 if((i_dirty>>hr)&1) {
4562 if(i_regmap[hr]<64) {
4563 emit_storereg(i_regmap[hr],hr);
24385cae 4564#ifndef FORCE32
57871462 4565 if( ((i_is32>>i_regmap[hr])&1) ) {
4566 #ifdef DESTRUCTIVE_WRITEBACK
4567 emit_sarimm(hr,31,hr);
4568 emit_storereg(i_regmap[hr]|64,hr);
4569 #else
4570 emit_sarimm(hr,31,HOST_TEMPREG);
4571 emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4572 #endif
4573 }
24385cae 4574#endif
57871462 4575 }else{
4576 if( !((i_is32>>(i_regmap[hr]&63))&1) ) {
4577 emit_storereg(i_regmap[hr],hr);
4578 }
4579 }
4580 }
4581 }
4582 }
4583 }
4584 }
4585 }
4586}
4587
4588// Load all registers (except cycle count)
4589void load_all_regs(signed char i_regmap[])
4590{
4591 int hr;
4592 for(hr=0;hr<HOST_REGS;hr++) {
4593 if(hr!=EXCLUDE_REG) {
4594 if(i_regmap[hr]==0) {
4595 emit_zeroreg(hr);
4596 }
4597 else
ea3d2e6e 4598 if(i_regmap[hr]>0 && (i_regmap[hr]&63)<TEMPREG && i_regmap[hr]!=CCREG)
57871462 4599 {
4600 emit_loadreg(i_regmap[hr],hr);
4601 }
4602 }
4603 }
4604}
4605
4606// Load all current registers also needed by next instruction
4607void load_needed_regs(signed char i_regmap[],signed char next_regmap[])
4608{
4609 int hr;
4610 for(hr=0;hr<HOST_REGS;hr++) {
4611 if(hr!=EXCLUDE_REG) {
4612 if(get_reg(next_regmap,i_regmap[hr])>=0) {
4613 if(i_regmap[hr]==0) {
4614 emit_zeroreg(hr);
4615 }
4616 else
ea3d2e6e 4617 if(i_regmap[hr]>0 && (i_regmap[hr]&63)<TEMPREG && i_regmap[hr]!=CCREG)
57871462 4618 {
4619 emit_loadreg(i_regmap[hr],hr);
4620 }
4621 }
4622 }
4623 }
4624}
4625
4626// Load all regs, storing cycle count if necessary
4627void load_regs_entry(int t)
4628{
4629 int hr;
2573466a 4630 if(is_ds[t]) emit_addimm(HOST_CCREG,CLOCK_ADJUST(1),HOST_CCREG);
4631 else if(ccadj[t]) emit_addimm(HOST_CCREG,-CLOCK_ADJUST(ccadj[t]),HOST_CCREG);
57871462 4632 if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
4633 emit_storereg(CCREG,HOST_CCREG);
4634 }
4635 // Load 32-bit regs
4636 for(hr=0;hr<HOST_REGS;hr++) {
ea3d2e6e 4637 if(regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<TEMPREG) {
57871462 4638 if(regs[t].regmap_entry[hr]==0) {
4639 emit_zeroreg(hr);
4640 }
4641 else if(regs[t].regmap_entry[hr]!=CCREG)
4642 {
4643 emit_loadreg(regs[t].regmap_entry[hr],hr);
4644 }
4645 }
4646 }
4647 // Load 64-bit regs
4648 for(hr=0;hr<HOST_REGS;hr++) {
ea3d2e6e 4649 if(regs[t].regmap_entry[hr]>=64&&regs[t].regmap_entry[hr]<TEMPREG+64) {
57871462 4650 assert(regs[t].regmap_entry[hr]!=64);
4651 if((regs[t].was32>>(regs[t].regmap_entry[hr]&63))&1) {
4652 int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4653 if(lr<0) {
4654 emit_loadreg(regs[t].regmap_entry[hr],hr);
4655 }
4656 else
4657 {
4658 emit_sarimm(lr,31,hr);
4659 }
4660 }
4661 else
4662 {
4663 emit_loadreg(regs[t].regmap_entry[hr],hr);
4664 }
4665 }
4666 }
4667}
4668
4669// Store dirty registers prior to branch
4670void store_regs_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4671{
4672 if(internal_branch(i_is32,addr))
4673 {
4674 int t=(addr-start)>>2;
4675 int hr;
4676 for(hr=0;hr<HOST_REGS;hr++) {
4677 if(hr!=EXCLUDE_REG) {
4678 if(i_regmap[hr]>0 && i_regmap[hr]!=CCREG) {
4679 if(i_regmap[hr]!=regs[t].regmap_entry[hr] || !((regs[t].dirty>>hr)&1) || (((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4680 if((i_dirty>>hr)&1) {
4681 if(i_regmap[hr]<64) {
4682 if(!((unneeded_reg[t]>>i_regmap[hr])&1)) {
4683 emit_storereg(i_regmap[hr],hr);
4684 if( ((i_is32>>i_regmap[hr])&1) && !((unneeded_reg_upper[t]>>i_regmap[hr])&1) ) {
4685 #ifdef DESTRUCTIVE_WRITEBACK
4686 emit_sarimm(hr,31,hr);
4687 emit_storereg(i_regmap[hr]|64,hr);
4688 #else
4689 emit_sarimm(hr,31,HOST_TEMPREG);
4690 emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4691 #endif
4692 }
4693 }
4694 }else{
4695 if( !((i_is32>>(i_regmap[hr]&63))&1) && !((unneeded_reg_upper[t]>>(i_regmap[hr]&63))&1) ) {
4696 emit_storereg(i_regmap[hr],hr);
4697 }
4698 }
4699 }
4700 }
4701 }
4702 }
4703 }
4704 }
4705 else
4706 {
4707 // Branch out of this block, write out all dirty regs
4708 wb_dirtys(i_regmap,i_is32,i_dirty);
4709 }
4710}
4711
4712// Load all needed registers for branch target
4713void load_regs_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4714{
4715 //if(addr>=start && addr<(start+slen*4))
4716 if(internal_branch(i_is32,addr))
4717 {
4718 int t=(addr-start)>>2;
4719 int hr;
4720 // Store the cycle count before loading something else
4721 if(i_regmap[HOST_CCREG]!=CCREG) {
4722 assert(i_regmap[HOST_CCREG]==-1);
4723 }
4724 if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
4725 emit_storereg(CCREG,HOST_CCREG);
4726 }
4727 // Load 32-bit regs
4728 for(hr=0;hr<HOST_REGS;hr++) {
ea3d2e6e 4729 if(hr!=EXCLUDE_REG&&regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<TEMPREG) {
57871462 4730 #ifdef DESTRUCTIVE_WRITEBACK
4731 if(i_regmap[hr]!=regs[t].regmap_entry[hr] || ( !((regs[t].dirty>>hr)&1) && ((i_dirty>>hr)&1) && (((i_is32&~unneeded_reg_upper[t])>>i_regmap[hr])&1) ) || (((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4732 #else
4733 if(i_regmap[hr]!=regs[t].regmap_entry[hr] ) {
4734 #endif
4735 if(regs[t].regmap_entry[hr]==0) {
4736 emit_zeroreg(hr);
4737 }
4738 else if(regs[t].regmap_entry[hr]!=CCREG)
4739 {
4740 emit_loadreg(regs[t].regmap_entry[hr],hr);
4741 }
4742 }
4743 }
4744 }
4745 //Load 64-bit regs
4746 for(hr=0;hr<HOST_REGS;hr++) {
ea3d2e6e 4747 if(hr!=EXCLUDE_REG&&regs[t].regmap_entry[hr]>=64&&regs[t].regmap_entry[hr]<TEMPREG+64) {
57871462 4748 if(i_regmap[hr]!=regs[t].regmap_entry[hr]) {
4749 assert(regs[t].regmap_entry[hr]!=64);
4750 if((i_is32>>(regs[t].regmap_entry[hr]&63))&1) {
4751 int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4752 if(lr<0) {
4753 emit_loadreg(regs[t].regmap_entry[hr],hr);
4754 }
4755 else
4756 {
4757 emit_sarimm(lr,31,hr);
4758 }
4759 }
4760 else
4761 {
4762 emit_loadreg(regs[t].regmap_entry[hr],hr);
4763 }
4764 }
4765 else if((i_is32>>(regs[t].regmap_entry[hr]&63))&1) {
4766 int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4767 assert(lr>=0);
4768 emit_sarimm(lr,31,hr);
4769 }
4770 }
4771 }
4772 }
4773}
4774
4775int match_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4776{
4777 if(addr>=start && addr<start+slen*4-4)
4778 {
4779 int t=(addr-start)>>2;
4780 int hr;
4781 if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) return 0;
4782 for(hr=0;hr<HOST_REGS;hr++)
4783 {
4784 if(hr!=EXCLUDE_REG)
4785 {
4786 if(i_regmap[hr]!=regs[t].regmap_entry[hr])
4787 {
ea3d2e6e 4788 if(regs[t].regmap_entry[hr]>=0&&(regs[t].regmap_entry[hr]|64)<TEMPREG+64)
57871462 4789 {
4790 return 0;
4791 }
4792 else
4793 if((i_dirty>>hr)&1)
4794 {
ea3d2e6e 4795 if(i_regmap[hr]<TEMPREG)
57871462 4796 {
4797 if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4798 return 0;
4799 }
ea3d2e6e 4800 else if(i_regmap[hr]>=64&&i_regmap[hr]<TEMPREG+64)
57871462 4801 {
4802 if(!((unneeded_reg_upper[t]>>(i_regmap[hr]&63))&1))
4803 return 0;
4804 }
4805 }
4806 }
4807 else // Same register but is it 32-bit or dirty?
4808 if(i_regmap[hr]>=0)
4809 {
4810 if(!((regs[t].dirty>>hr)&1))
4811 {
4812 if((i_dirty>>hr)&1)
4813 {
4814 if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4815 {
4816 //printf("%x: dirty no match\n",addr);
4817 return 0;
4818 }
4819 }
4820 }
4821 if((((regs[t].was32^i_is32)&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)
4822 {
4823 //printf("%x: is32 no match\n",addr);
4824 return 0;
4825 }
4826 }
4827 }
4828 }
4829 //if(is32[t]&~unneeded_reg_upper[t]&~i_is32) return 0;
a28c6ce8 4830#ifndef FORCE32
57871462 4831 if(requires_32bit[t]&~i_is32) return 0;
a28c6ce8 4832#endif
57871462 4833 // Delay slots are not valid branch targets
4834 //if(t>0&&(itype[t-1]==RJUMP||itype[t-1]==UJUMP||itype[t-1]==CJUMP||itype[t-1]==SJUMP||itype[t-1]==FJUMP)) return 0;
4835 // Delay slots require additional processing, so do not match
4836 if(is_ds[t]) return 0;
4837 }
4838 else
4839 {
4840 int hr;
4841 for(hr=0;hr<HOST_REGS;hr++)
4842 {
4843 if(hr!=EXCLUDE_REG)
4844 {
4845 if(i_regmap[hr]>=0)
4846 {
4847 if(hr!=HOST_CCREG||i_regmap[hr]!=CCREG)
4848 {
4849 if((i_dirty>>hr)&1)
4850 {
4851 return 0;
4852 }
4853 }
4854 }
4855 }
4856 }
4857 }
4858 return 1;
4859}
4860
4861// Used when a branch jumps into the delay slot of another branch
4862void ds_assemble_entry(int i)
4863{
4864 int t=(ba[i]-start)>>2;
4865 if(!instr_addr[t]) instr_addr[t]=(u_int)out;
4866 assem_debug("Assemble delay slot at %x\n",ba[i]);
4867 assem_debug("<->\n");
4868 if(regs[t].regmap_entry[HOST_CCREG]==CCREG&&regs[t].regmap[HOST_CCREG]!=CCREG)
4869 wb_register(CCREG,regs[t].regmap_entry,regs[t].wasdirty,regs[t].was32);
4870 load_regs(regs[t].regmap_entry,regs[t].regmap,regs[t].was32,rs1[t],rs2[t]);
4871 address_generation(t,&regs[t],regs[t].regmap_entry);
b9b61529 4872 if(itype[t]==STORE||itype[t]==STORELR||(opcode[t]&0x3b)==0x39||(opcode[t]&0x3b)==0x3a)
57871462 4873 load_regs(regs[t].regmap_entry,regs[t].regmap,regs[t].was32,INVCP,INVCP);
4874 cop1_usable=0;
4875 is_delayslot=0;
4876 switch(itype[t]) {
4877 case ALU:
4878 alu_assemble(t,&regs[t]);break;
4879 case IMM16:
4880 imm16_assemble(t,&regs[t]);break;
4881 case SHIFT:
4882 shift_assemble(t,&regs[t]);break;
4883 case SHIFTIMM:
4884 shiftimm_assemble(t,&regs[t]);break;
4885 case LOAD:
4886 load_assemble(t,&regs[t]);break;
4887 case LOADLR:
4888 loadlr_assemble(t,&regs[t]);break;
4889 case STORE:
4890 store_assemble(t,&regs[t]);break;
4891 case STORELR:
4892 storelr_assemble(t,&regs[t]);break;
4893 case COP0:
4894 cop0_assemble(t,&regs[t]);break;
4895 case COP1:
4896 cop1_assemble(t,&regs[t]);break;
4897 case C1LS:
4898 c1ls_assemble(t,&regs[t]);break;
b9b61529 4899 case COP2:
4900 cop2_assemble(t,&regs[t]);break;
4901 case C2LS:
4902 c2ls_assemble(t,&regs[t]);break;
4903 case C2OP:
4904 c2op_assemble(t,&regs[t]);break;
57871462 4905 case FCONV:
4906 fconv_assemble(t,&regs[t]);break;
4907 case FLOAT:
4908 float_assemble(t,&regs[t]);break;
4909 case FCOMP:
4910 fcomp_assemble(t,&regs[t]);break;
4911 case MULTDIV:
4912 multdiv_assemble(t,&regs[t]);break;
4913 case MOV:
4914 mov_assemble(t,&regs[t]);break;
4915 case SYSCALL:
7139f3c8 4916 case HLECALL:
1e973cb0 4917 case INTCALL:
57871462 4918 case SPAN:
4919 case UJUMP:
4920 case RJUMP:
4921 case CJUMP:
4922 case SJUMP:
4923 case FJUMP:
4924 printf("Jump in the delay slot. This is probably a bug.\n");
4925 }
4926 store_regs_bt(regs[t].regmap,regs[t].is32,regs[t].dirty,ba[i]+4);
4927 load_regs_bt(regs[t].regmap,regs[t].is32,regs[t].dirty,ba[i]+4);
4928 if(internal_branch(regs[t].is32,ba[i]+4))
4929 assem_debug("branch: internal\n");
4930 else
4931 assem_debug("branch: external\n");
4932 assert(internal_branch(regs[t].is32,ba[i]+4));
4933 add_to_linker((int)out,ba[i]+4,internal_branch(regs[t].is32,ba[i]+4));
4934 emit_jmp(0);
4935}
4936
4937void do_cc(int i,signed char i_regmap[],int *adj,int addr,int taken,int invert)
4938{
4939 int count;
4940 int jaddr;
4941 int idle=0;
4942 if(itype[i]==RJUMP)
4943 {
4944 *adj=0;
4945 }
4946 //if(ba[i]>=start && ba[i]<(start+slen*4))
4947 if(internal_branch(branch_regs[i].is32,ba[i]))
4948 {
4949 int t=(ba[i]-start)>>2;
4950 if(is_ds[t]) *adj=-1; // Branch into delay slot adds an extra cycle
4951 else *adj=ccadj[t];
4952 }
4953 else
4954 {
4955 *adj=0;
4956 }
4957 count=ccadj[i];
4958 if(taken==TAKEN && i==(ba[i]-start)>>2 && source[i+1]==0) {
4959 // Idle loop
4960 if(count&1) emit_addimm_and_set_flags(2*(count+2),HOST_CCREG);
4961 idle=(int)out;
4962 //emit_subfrommem(&idlecount,HOST_CCREG); // Count idle cycles
4963 emit_andimm(HOST_CCREG,3,HOST_CCREG);
4964 jaddr=(int)out;
4965 emit_jmp(0);
4966 }
4967 else if(*adj==0||invert) {
2573466a 4968 emit_addimm_and_set_flags(CLOCK_ADJUST(count+2),HOST_CCREG);
57871462 4969 jaddr=(int)out;
4970 emit_jns(0);
4971 }
4972 else
4973 {
2573466a 4974 emit_cmpimm(HOST_CCREG,-CLOCK_ADJUST(count+2));
57871462 4975 jaddr=(int)out;
4976 emit_jns(0);
4977 }
4978 add_stub(CC_STUB,jaddr,idle?idle:(int)out,(*adj==0||invert||idle)?0:(count+2),i,addr,taken,0);
4979}
4980
4981void do_ccstub(int n)
4982{
4983 literal_pool(256);
4984 assem_debug("do_ccstub %x\n",start+stubs[n][4]*4);
4985 set_jump_target(stubs[n][1],(int)out);
4986 int i=stubs[n][4];
4987 if(stubs[n][6]==NULLDS) {
4988 // Delay slot instruction is nullified ("likely" branch)
4989 wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
4990 }
4991 else if(stubs[n][6]!=TAKEN) {
4992 wb_dirtys(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty);
4993 }
4994 else {
4995 if(internal_branch(branch_regs[i].is32,ba[i]))
4996 wb_needed_dirtys(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
4997 }
4998 if(stubs[n][5]!=-1)
4999 {
5000 // Save PC as return address
5001 emit_movimm(stubs[n][5],EAX);
5002 emit_writeword(EAX,(int)&pcaddr);
5003 }
5004 else
5005 {
5006 // Return address depends on which way the branch goes
5007 if(itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
5008 {
5009 int s1l=get_reg(branch_regs[i].regmap,rs1[i]);
5010 int s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
5011 int s2l=get_reg(branch_regs[i].regmap,rs2[i]);
5012 int s2h=get_reg(branch_regs[i].regmap,rs2[i]|64);
5013 if(rs1[i]==0)
5014 {
5015 s1l=s2l;s1h=s2h;
5016 s2l=s2h=-1;
5017 }
5018 else if(rs2[i]==0)
5019 {
5020 s2l=s2h=-1;
5021 }
5022 if((branch_regs[i].is32>>rs1[i])&(branch_regs[i].is32>>rs2[i])&1) {
5023 s1h=s2h=-1;
5024 }
5025 assert(s1l>=0);
5026 #ifdef DESTRUCTIVE_WRITEBACK
5027 if(rs1[i]) {
5028 if((branch_regs[i].dirty>>s1l)&(branch_regs[i].is32>>rs1[i])&1)
5029 emit_loadreg(rs1[i],s1l);
5030 }
5031 else {
5032 if((branch_regs[i].dirty>>s1l)&(branch_regs[i].is32>>rs2[i])&1)
5033 emit_loadreg(rs2[i],s1l);
5034 }
5035 if(s2l>=0)
5036 if((branch_regs[i].dirty>>s2l)&(branch_regs[i].is32>>rs2[i])&1)
5037 emit_loadreg(rs2[i],s2l);
5038 #endif
5039 int hr=0;
5194fb95 5040 int addr=-1,alt=-1,ntaddr=-1;
57871462 5041 while(hr<HOST_REGS)
5042 {
5043 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
5044 (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
5045 (branch_regs[i].regmap[hr]&63)!=rs2[i] )
5046 {
5047 addr=hr++;break;
5048 }
5049 hr++;
5050 }
5051 while(hr<HOST_REGS)
5052 {
5053 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
5054 (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
5055 (branch_regs[i].regmap[hr]&63)!=rs2[i] )
5056 {
5057 alt=hr++;break;
5058 }
5059 hr++;
5060 }
5061 if((opcode[i]&0x2E)==6) // BLEZ/BGTZ needs another register
5062 {
5063 while(hr<HOST_REGS)
5064 {
5065 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
5066 (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
5067 (branch_regs[i].regmap[hr]&63)!=rs2[i] )
5068 {
5069 ntaddr=hr;break;
5070 }
5071 hr++;
5072 }
5073 assert(hr<HOST_REGS);
5074 }
5075 if((opcode[i]&0x2f)==4) // BEQ
5076 {
5077 #ifdef HAVE_CMOV_IMM
5078 if(s1h<0) {
5079 if(s2l>=0) emit_cmp(s1l,s2l);
5080 else emit_test(s1l,s1l);
5081 emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
5082 }
5083 else
5084 #endif
5085 {
5086 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
5087 if(s1h>=0) {
5088 if(s2h>=0) emit_cmp(s1h,s2h);
5089 else emit_test(s1h,s1h);
5090 emit_cmovne_reg(alt,addr);
5091 }
5092 if(s2l>=0) emit_cmp(s1l,s2l);
5093 else emit_test(s1l,s1l);
5094 emit_cmovne_reg(alt,addr);
5095 }
5096 }
5097 if((opcode[i]&0x2f)==5) // BNE
5098 {
5099 #ifdef HAVE_CMOV_IMM
5100 if(s1h<0) {
5101 if(s2l>=0) emit_cmp(s1l,s2l);
5102 else emit_test(s1l,s1l);
5103 emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
5104 }
5105 else
5106 #endif
5107 {
5108 emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
5109 if(s1h>=0) {
5110 if(s2h>=0) emit_cmp(s1h,s2h);
5111 else emit_test(s1h,s1h);
5112 emit_cmovne_reg(alt,addr);
5113 }
5114 if(s2l>=0) emit_cmp(s1l,s2l);
5115 else emit_test(s1l,s1l);
5116 emit_cmovne_reg(alt,addr);
5117 }
5118 }
5119 if((opcode[i]&0x2f)==6) // BLEZ
5120 {
5121 //emit_movimm(ba[i],alt);
5122 //emit_movimm(start+i*4+8,addr);
5123 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
5124 emit_cmpimm(s1l,1);
5125 if(s1h>=0) emit_mov(addr,ntaddr);
5126 emit_cmovl_reg(alt,addr);
5127 if(s1h>=0) {
5128 emit_test(s1h,s1h);
5129 emit_cmovne_reg(ntaddr,addr);
5130 emit_cmovs_reg(alt,addr);
5131 }
5132 }
5133 if((opcode[i]&0x2f)==7) // BGTZ
5134 {
5135 //emit_movimm(ba[i],addr);
5136 //emit_movimm(start+i*4+8,ntaddr);
5137 emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
5138 emit_cmpimm(s1l,1);
5139 if(s1h>=0) emit_mov(addr,alt);
5140 emit_cmovl_reg(ntaddr,addr);
5141 if(s1h>=0) {
5142 emit_test(s1h,s1h);
5143 emit_cmovne_reg(alt,addr);
5144 emit_cmovs_reg(ntaddr,addr);
5145 }
5146 }
5147 if((opcode[i]==1)&&(opcode2[i]&0x2D)==0) // BLTZ
5148 {
5149 //emit_movimm(ba[i],alt);
5150 //emit_movimm(start+i*4+8,addr);
5151 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
5152 if(s1h>=0) emit_test(s1h,s1h);
5153 else emit_test(s1l,s1l);
5154 emit_cmovs_reg(alt,addr);
5155 }
5156 if((opcode[i]==1)&&(opcode2[i]&0x2D)==1) // BGEZ
5157 {
5158 //emit_movimm(ba[i],addr);
5159 //emit_movimm(start+i*4+8,alt);
5160 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
5161 if(s1h>=0) emit_test(s1h,s1h);
5162 else emit_test(s1l,s1l);
5163 emit_cmovs_reg(alt,addr);
5164 }
5165 if(opcode[i]==0x11 && opcode2[i]==0x08 ) {
5166 if(source[i]&0x10000) // BC1T
5167 {
5168 //emit_movimm(ba[i],alt);
5169 //emit_movimm(start+i*4+8,addr);
5170 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
5171 emit_testimm(s1l,0x800000);
5172 emit_cmovne_reg(alt,addr);
5173 }
5174 else // BC1F
5175 {
5176 //emit_movimm(ba[i],addr);
5177 //emit_movimm(start+i*4+8,alt);
5178 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
5179 emit_testimm(s1l,0x800000);
5180 emit_cmovne_reg(alt,addr);
5181 }
5182 }
5183 emit_writeword(addr,(int)&pcaddr);
5184 }
5185 else
5186 if(itype[i]==RJUMP)
5187 {
5188 int r=get_reg(branch_regs[i].regmap,rs1[i]);
5189 if(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]) {
5190 r=get_reg(branch_regs[i].regmap,RTEMP);
5191 }
5192 emit_writeword(r,(int)&pcaddr);
5193 }
5194 else {printf("Unknown branch type in do_ccstub\n");exit(1);}
5195 }
5196 // Update cycle count
5197 assert(branch_regs[i].regmap[HOST_CCREG]==CCREG||branch_regs[i].regmap[HOST_CCREG]==-1);
2573466a 5198 if(stubs[n][3]) emit_addimm(HOST_CCREG,CLOCK_ADJUST((int)stubs[n][3]),HOST_CCREG);
57871462 5199 emit_call((int)cc_interrupt);
2573466a 5200 if(stubs[n][3]) emit_addimm(HOST_CCREG,-CLOCK_ADJUST((int)stubs[n][3]),HOST_CCREG);
57871462 5201 if(stubs[n][6]==TAKEN) {
5202 if(internal_branch(branch_regs[i].is32,ba[i]))
5203 load_needed_regs(branch_regs[i].regmap,regs[(ba[i]-start)>>2].regmap_entry);
5204 else if(itype[i]==RJUMP) {
5205 if(get_reg(branch_regs[i].regmap,RTEMP)>=0)
5206 emit_readword((int)&pcaddr,get_reg(branch_regs[i].regmap,RTEMP));
5207 else
5208 emit_loadreg(rs1[i],get_reg(branch_regs[i].regmap,rs1[i]));
5209 }
5210 }else if(stubs[n][6]==NOTTAKEN) {
5211 if(i<slen-2) load_needed_regs(branch_regs[i].regmap,regmap_pre[i+2]);
5212 else load_all_regs(branch_regs[i].regmap);
5213 }else if(stubs[n][6]==NULLDS) {
5214 // Delay slot instruction is nullified ("likely" branch)
5215 if(i<slen-2) load_needed_regs(regs[i].regmap,regmap_pre[i+2]);
5216 else load_all_regs(regs[i].regmap);
5217 }else{
5218 load_all_regs(branch_regs[i].regmap);
5219 }
5220 emit_jmp(stubs[n][2]); // return address
5221
5222 /* This works but uses a lot of memory...
5223 emit_readword((int)&last_count,ECX);
5224 emit_add(HOST_CCREG,ECX,EAX);
5225 emit_writeword(EAX,(int)&Count);
5226 emit_call((int)gen_interupt);
5227 emit_readword((int)&Count,HOST_CCREG);
5228 emit_readword((int)&next_interupt,EAX);
5229 emit_readword((int)&pending_exception,EBX);
5230 emit_writeword(EAX,(int)&last_count);
5231 emit_sub(HOST_CCREG,EAX,HOST_CCREG);
5232 emit_test(EBX,EBX);
5233 int jne_instr=(int)out;
5234 emit_jne(0);
5235 if(stubs[n][3]) emit_addimm(HOST_CCREG,-2*stubs[n][3],HOST_CCREG);
5236 load_all_regs(branch_regs[i].regmap);
5237 emit_jmp(stubs[n][2]); // return address
5238 set_jump_target(jne_instr,(int)out);
5239 emit_readword((int)&pcaddr,EAX);
5240 // Call get_addr_ht instead of doing the hash table here.
5241 // This code is executed infrequently and takes up a lot of space
5242 // so smaller is better.
5243 emit_storereg(CCREG,HOST_CCREG);
5244 emit_pushreg(EAX);
5245 emit_call((int)get_addr_ht);
5246 emit_loadreg(CCREG,HOST_CCREG);
5247 emit_addimm(ESP,4,ESP);
5248 emit_jmpreg(EAX);*/
5249}
5250
5251add_to_linker(int addr,int target,int ext)
5252{
5253 link_addr[linkcount][0]=addr;
5254 link_addr[linkcount][1]=target;
5255 link_addr[linkcount][2]=ext;
5256 linkcount++;
5257}
5258
eba830cd 5259static void ujump_assemble_write_ra(int i)
5260{
5261 int rt;
5262 unsigned int return_address;
5263 rt=get_reg(branch_regs[i].regmap,31);
5264 assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5265 //assert(rt>=0);
5266 return_address=start+i*4+8;
5267 if(rt>=0) {
5268 #ifdef USE_MINI_HT
5269 if(internal_branch(branch_regs[i].is32,return_address)&&rt1[i+1]!=31) {
5270 int temp=-1; // note: must be ds-safe
5271 #ifdef HOST_TEMPREG
5272 temp=HOST_TEMPREG;
5273 #endif
5274 if(temp>=0) do_miniht_insert(return_address,rt,temp);
5275 else emit_movimm(return_address,rt);
5276 }
5277 else
5278 #endif
5279 {
5280 #ifdef REG_PREFETCH
5281 if(temp>=0)
5282 {
5283 if(i_regmap[temp]!=PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5284 }
5285 #endif
5286 emit_movimm(return_address,rt); // PC into link register
5287 #ifdef IMM_PREFETCH
5288 emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5289 #endif
5290 }
5291 }
5292}
5293
57871462 5294void ujump_assemble(int i,struct regstat *i_regs)
5295{
5296 signed char *i_regmap=i_regs->regmap;
eba830cd 5297 int ra_done=0;
57871462 5298 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5299 address_generation(i+1,i_regs,regs[i].regmap_entry);
5300 #ifdef REG_PREFETCH
5301 int temp=get_reg(branch_regs[i].regmap,PTEMP);
5302 if(rt1[i]==31&&temp>=0)
5303 {
5304 int return_address=start+i*4+8;
5305 if(get_reg(branch_regs[i].regmap,31)>0)
5306 if(i_regmap[temp]==PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5307 }
5308 #endif
eba830cd 5309 if(rt1[i]==31&&(rt1[i]==rs1[i+1]||rt1[i]==rs2[i+1])) {
5310 ujump_assemble_write_ra(i); // writeback ra for DS
5311 ra_done=1;
57871462 5312 }
4ef8f67d 5313 ds_assemble(i+1,i_regs);
5314 uint64_t bc_unneeded=branch_regs[i].u;
5315 uint64_t bc_unneeded_upper=branch_regs[i].uu;
5316 bc_unneeded|=1|(1LL<<rt1[i]);
5317 bc_unneeded_upper|=1|(1LL<<rt1[i]);
5318 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5319 bc_unneeded,bc_unneeded_upper);
5320 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
eba830cd 5321 if(!ra_done&&rt1[i]==31)
5322 ujump_assemble_write_ra(i);
57871462 5323 int cc,adj;
5324 cc=get_reg(branch_regs[i].regmap,CCREG);
5325 assert(cc==HOST_CCREG);
5326 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5327 #ifdef REG_PREFETCH
5328 if(rt1[i]==31&&temp>=0) emit_prefetchreg(temp);
5329 #endif
5330 do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
2573466a 5331 if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
57871462 5332 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5333 if(internal_branch(branch_regs[i].is32,ba[i]))
5334 assem_debug("branch: internal\n");
5335 else
5336 assem_debug("branch: external\n");
5337 if(internal_branch(branch_regs[i].is32,ba[i])&&is_ds[(ba[i]-start)>>2]) {
5338 ds_assemble_entry(i);
5339 }
5340 else {
5341 add_to_linker((int)out,ba[i],internal_branch(branch_regs[i].is32,ba[i]));
5342 emit_jmp(0);
5343 }
5344}
5345
eba830cd 5346static void rjump_assemble_write_ra(int i)
5347{
5348 int rt,return_address;
5349 assert(rt1[i+1]!=rt1[i]);
5350 assert(rt2[i+1]!=rt1[i]);
5351 rt=get_reg(branch_regs[i].regmap,rt1[i]);
5352 assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5353 assert(rt>=0);
5354 return_address=start+i*4+8;
5355 #ifdef REG_PREFETCH
5356 if(temp>=0)
5357 {
5358 if(i_regmap[temp]!=PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5359 }
5360 #endif
5361 emit_movimm(return_address,rt); // PC into link register
5362 #ifdef IMM_PREFETCH
5363 emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5364 #endif
5365}
5366
57871462 5367void rjump_assemble(int i,struct regstat *i_regs)
5368{
5369 signed char *i_regmap=i_regs->regmap;
5370 int temp;
5371 int rs,cc,adj;
eba830cd 5372 int ra_done=0;
57871462 5373 rs=get_reg(branch_regs[i].regmap,rs1[i]);
5374 assert(rs>=0);
5375 if(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]) {
5376 // Delay slot abuse, make a copy of the branch address register
5377 temp=get_reg(branch_regs[i].regmap,RTEMP);
5378 assert(temp>=0);
5379 assert(regs[i].regmap[temp]==RTEMP);
5380 emit_mov(rs,temp);
5381 rs=temp;
5382 }
5383 address_generation(i+1,i_regs,regs[i].regmap_entry);
5384 #ifdef REG_PREFETCH
5385 if(rt1[i]==31)
5386 {
5387 if((temp=get_reg(branch_regs[i].regmap,PTEMP))>=0) {
5388 int return_address=start+i*4+8;
5389 if(i_regmap[temp]==PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5390 }
5391 }
5392 #endif
5393 #ifdef USE_MINI_HT
5394 if(rs1[i]==31) {
5395 int rh=get_reg(regs[i].regmap,RHASH);
5396 if(rh>=0) do_preload_rhash(rh);
5397 }
5398 #endif
eba830cd 5399 if(rt1[i]!=0&&(rt1[i]==rs1[i+1]||rt1[i]==rs2[i+1])) {
5400 rjump_assemble_write_ra(i);
5401 ra_done=1;
57871462 5402 }
d5910d5d 5403 ds_assemble(i+1,i_regs);
5404 uint64_t bc_unneeded=branch_regs[i].u;
5405 uint64_t bc_unneeded_upper=branch_regs[i].uu;
5406 bc_unneeded|=1|(1LL<<rt1[i]);
5407 bc_unneeded_upper|=1|(1LL<<rt1[i]);
5408 bc_unneeded&=~(1LL<<rs1[i]);
5409 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5410 bc_unneeded,bc_unneeded_upper);
5411 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],CCREG);
eba830cd 5412 if(!ra_done&&rt1[i]!=0)
5413 rjump_assemble_write_ra(i);
57871462 5414 cc=get_reg(branch_regs[i].regmap,CCREG);
5415 assert(cc==HOST_CCREG);
5416 #ifdef USE_MINI_HT
5417 int rh=get_reg(branch_regs[i].regmap,RHASH);
5418 int ht=get_reg(branch_regs[i].regmap,RHTBL);
5419 if(rs1[i]==31) {
5420 if(regs[i].regmap[rh]!=RHASH) do_preload_rhash(rh);
5421 do_preload_rhtbl(ht);
5422 do_rhash(rs,rh);
5423 }
5424 #endif
5425 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,-1);
5426 #ifdef DESTRUCTIVE_WRITEBACK
5427 if((branch_regs[i].dirty>>rs)&(branch_regs[i].is32>>rs1[i])&1) {
5428 if(rs1[i]!=rt1[i+1]&&rs1[i]!=rt2[i+1]) {
5429 emit_loadreg(rs1[i],rs);
5430 }
5431 }
5432 #endif
5433 #ifdef REG_PREFETCH
5434 if(rt1[i]==31&&temp>=0) emit_prefetchreg(temp);
5435 #endif
5436 #ifdef USE_MINI_HT
5437 if(rs1[i]==31) {
5438 do_miniht_load(ht,rh);
5439 }
5440 #endif
5441 //do_cc(i,branch_regs[i].regmap,&adj,-1,TAKEN);
5442 //if(adj) emit_addimm(cc,2*(ccadj[i]+2-adj),cc); // ??? - Shouldn't happen
5443 //assert(adj==0);
2573466a 5444 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),HOST_CCREG);
57871462 5445 add_stub(CC_STUB,(int)out,jump_vaddr_reg[rs],0,i,-1,TAKEN,0);
911f2d55 5446#ifdef PCSX
5447 if(itype[i+1]==COP0&&(source[i+1]&0x3f)==0x10)
5448 // special case for RFE
5449 emit_jmp(0);
5450 else
5451#endif
57871462 5452 emit_jns(0);
5453 //load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,-1);
5454 #ifdef USE_MINI_HT
5455 if(rs1[i]==31) {
5456 do_miniht_jump(rs,rh,ht);
5457 }
5458 else
5459 #endif
5460 {
5461 //if(rs!=EAX) emit_mov(rs,EAX);
5462 //emit_jmp((int)jump_vaddr_eax);
5463 emit_jmp(jump_vaddr_reg[rs]);
5464 }
5465 /* Check hash table
5466 temp=!rs;
5467 emit_mov(rs,temp);
5468 emit_shrimm(rs,16,rs);
5469 emit_xor(temp,rs,rs);
5470 emit_movzwl_reg(rs,rs);
5471 emit_shlimm(rs,4,rs);
5472 emit_cmpmem_indexed((int)hash_table,rs,temp);
5473 emit_jne((int)out+14);
5474 emit_readword_indexed((int)hash_table+4,rs,rs);
5475 emit_jmpreg(rs);
5476 emit_cmpmem_indexed((int)hash_table+8,rs,temp);
5477 emit_addimm_no_flags(8,rs);
5478 emit_jeq((int)out-17);
5479 // No hit on hash table, call compiler
5480 emit_pushreg(temp);
5481//DEBUG >
5482#ifdef DEBUG_CYCLE_COUNT
5483 emit_readword((int)&last_count,ECX);
5484 emit_add(HOST_CCREG,ECX,HOST_CCREG);
5485 emit_readword((int)&next_interupt,ECX);
5486 emit_writeword(HOST_CCREG,(int)&Count);
5487 emit_sub(HOST_CCREG,ECX,HOST_CCREG);
5488 emit_writeword(ECX,(int)&last_count);
5489#endif
5490//DEBUG <
5491 emit_storereg(CCREG,HOST_CCREG);
5492 emit_call((int)get_addr);
5493 emit_loadreg(CCREG,HOST_CCREG);
5494 emit_addimm(ESP,4,ESP);
5495 emit_jmpreg(EAX);*/
5496 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5497 if(rt1[i]!=31&&i<slen-2&&(((u_int)out)&7)) emit_mov(13,13);
5498 #endif
5499}
5500
5501void cjump_assemble(int i,struct regstat *i_regs)
5502{
5503 signed char *i_regmap=i_regs->regmap;
5504 int cc;
5505 int match;
5506 match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5507 assem_debug("match=%d\n",match);
5508 int s1h,s1l,s2h,s2l;
5509 int prev_cop1_usable=cop1_usable;
5510 int unconditional=0,nop=0;
5511 int only32=0;
57871462 5512 int invert=0;
5513 int internal=internal_branch(branch_regs[i].is32,ba[i]);
5514 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
57871462 5515 if(!match) invert=1;
5516 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5517 if(i>(ba[i]-start)>>2) invert=1;
5518 #endif
e1190b87 5519
5520 if(ooo[i]) {
57871462 5521 s1l=get_reg(branch_regs[i].regmap,rs1[i]);
5522 s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
5523 s2l=get_reg(branch_regs[i].regmap,rs2[i]);
5524 s2h=get_reg(branch_regs[i].regmap,rs2[i]|64);
5525 }
5526 else {
5527 s1l=get_reg(i_regmap,rs1[i]);
5528 s1h=get_reg(i_regmap,rs1[i]|64);
5529 s2l=get_reg(i_regmap,rs2[i]);
5530 s2h=get_reg(i_regmap,rs2[i]|64);
5531 }
5532 if(rs1[i]==0&&rs2[i]==0)
5533 {
5534 if(opcode[i]&1) nop=1;
5535 else unconditional=1;
5536 //assert(opcode[i]!=5);
5537 //assert(opcode[i]!=7);
5538 //assert(opcode[i]!=0x15);
5539 //assert(opcode[i]!=0x17);
5540 }
5541 else if(rs1[i]==0)
5542 {
5543 s1l=s2l;s1h=s2h;
5544 s2l=s2h=-1;
5545 only32=(regs[i].was32>>rs2[i])&1;
5546 }
5547 else if(rs2[i]==0)
5548 {
5549 s2l=s2h=-1;
5550 only32=(regs[i].was32>>rs1[i])&1;
5551 }
5552 else {
5553 only32=(regs[i].was32>>rs1[i])&(regs[i].was32>>rs2[i])&1;
5554 }
5555
e1190b87 5556 if(ooo[i]) {
57871462 5557 // Out of order execution (delay slot first)
5558 //printf("OOOE\n");
5559 address_generation(i+1,i_regs,regs[i].regmap_entry);
5560 ds_assemble(i+1,i_regs);
5561 int adj;
5562 uint64_t bc_unneeded=branch_regs[i].u;
5563 uint64_t bc_unneeded_upper=branch_regs[i].uu;
5564 bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
5565 bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
5566 bc_unneeded|=1;
5567 bc_unneeded_upper|=1;
5568 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5569 bc_unneeded,bc_unneeded_upper);
5570 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs2[i]);
5571 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5572 cc=get_reg(branch_regs[i].regmap,CCREG);
5573 assert(cc==HOST_CCREG);
5574 if(unconditional)
5575 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5576 //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
5577 //assem_debug("cycle count (adj)\n");
5578 if(unconditional) {
5579 do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5580 if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
2573466a 5581 if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
57871462 5582 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5583 if(internal)
5584 assem_debug("branch: internal\n");
5585 else
5586 assem_debug("branch: external\n");
5587 if(internal&&is_ds[(ba[i]-start)>>2]) {
5588 ds_assemble_entry(i);
5589 }
5590 else {
5591 add_to_linker((int)out,ba[i],internal);
5592 emit_jmp(0);
5593 }
5594 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5595 if(((u_int)out)&7) emit_addnop(0);
5596 #endif
5597 }
5598 }
5599 else if(nop) {
2573466a 5600 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),cc);
57871462 5601 int jaddr=(int)out;
5602 emit_jns(0);
5603 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5604 }
5605 else {
5606 int taken=0,nottaken=0,nottaken1=0;
5607 do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
2573466a 5608 if(adj&&!invert) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
57871462 5609 if(!only32)
5610 {
5611 assert(s1h>=0);
5612 if(opcode[i]==4) // BEQ
5613 {
5614 if(s2h>=0) emit_cmp(s1h,s2h);
5615 else emit_test(s1h,s1h);
5616 nottaken1=(int)out;
5617 emit_jne(1);
5618 }
5619 if(opcode[i]==5) // BNE
5620 {
5621 if(s2h>=0) emit_cmp(s1h,s2h);
5622 else emit_test(s1h,s1h);
5623 if(invert) taken=(int)out;
5624 else add_to_linker((int)out,ba[i],internal);
5625 emit_jne(0);
5626 }
5627 if(opcode[i]==6) // BLEZ
5628 {
5629 emit_test(s1h,s1h);
5630 if(invert) taken=(int)out;
5631 else add_to_linker((int)out,ba[i],internal);
5632 emit_js(0);
5633 nottaken1=(int)out;
5634 emit_jne(1);
5635 }
5636 if(opcode[i]==7) // BGTZ
5637 {
5638 emit_test(s1h,s1h);
5639 nottaken1=(int)out;
5640 emit_js(1);
5641 if(invert) taken=(int)out;
5642 else add_to_linker((int)out,ba[i],internal);
5643 emit_jne(0);
5644 }
5645 } // if(!only32)
5646
5647 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5648 assert(s1l>=0);
5649 if(opcode[i]==4) // BEQ
5650 {
5651 if(s2l>=0) emit_cmp(s1l,s2l);
5652 else emit_test(s1l,s1l);
5653 if(invert){
5654 nottaken=(int)out;
5655 emit_jne(1);
5656 }else{
5657 add_to_linker((int)out,ba[i],internal);
5658 emit_jeq(0);
5659 }
5660 }
5661 if(opcode[i]==5) // BNE
5662 {
5663 if(s2l>=0) emit_cmp(s1l,s2l);
5664 else emit_test(s1l,s1l);
5665 if(invert){
5666 nottaken=(int)out;
5667 emit_jeq(1);
5668 }else{
5669 add_to_linker((int)out,ba[i],internal);
5670 emit_jne(0);
5671 }
5672 }
5673 if(opcode[i]==6) // BLEZ
5674 {
5675 emit_cmpimm(s1l,1);
5676 if(invert){
5677 nottaken=(int)out;
5678 emit_jge(1);
5679 }else{
5680 add_to_linker((int)out,ba[i],internal);
5681 emit_jl(0);
5682 }
5683 }
5684 if(opcode[i]==7) // BGTZ
5685 {
5686 emit_cmpimm(s1l,1);
5687 if(invert){
5688 nottaken=(int)out;
5689 emit_jl(1);
5690 }else{
5691 add_to_linker((int)out,ba[i],internal);
5692 emit_jge(0);
5693 }
5694 }
5695 if(invert) {
5696 if(taken) set_jump_target(taken,(int)out);
5697 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5698 if(match&&(!internal||!is_ds[(ba[i]-start)>>2])) {
5699 if(adj) {
2573466a 5700 emit_addimm(cc,-CLOCK_ADJUST(adj),cc);
57871462 5701 add_to_linker((int)out,ba[i],internal);
5702 }else{
5703 emit_addnop(13);
5704 add_to_linker((int)out,ba[i],internal*2);
5705 }
5706 emit_jmp(0);
5707 }else
5708 #endif
5709 {
2573466a 5710 if(adj) emit_addimm(cc,-CLOCK_ADJUST(adj),cc);
57871462 5711 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5712 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5713 if(internal)
5714 assem_debug("branch: internal\n");
5715 else
5716 assem_debug("branch: external\n");
5717 if(internal&&is_ds[(ba[i]-start)>>2]) {
5718 ds_assemble_entry(i);
5719 }
5720 else {
5721 add_to_linker((int)out,ba[i],internal);
5722 emit_jmp(0);
5723 }
5724 }
5725 set_jump_target(nottaken,(int)out);
5726 }
5727
5728 if(nottaken1) set_jump_target(nottaken1,(int)out);
5729 if(adj) {
2573466a 5730 if(!invert) emit_addimm(cc,CLOCK_ADJUST(adj),cc);
57871462 5731 }
5732 } // (!unconditional)
5733 } // if(ooo)
5734 else
5735 {
5736 // In-order execution (branch first)
5737 //if(likely[i]) printf("IOL\n");
5738 //else
5739 //printf("IOE\n");
5740 int taken=0,nottaken=0,nottaken1=0;
5741 if(!unconditional&&!nop) {
5742 if(!only32)
5743 {
5744 assert(s1h>=0);
5745 if((opcode[i]&0x2f)==4) // BEQ
5746 {
5747 if(s2h>=0) emit_cmp(s1h,s2h);
5748 else emit_test(s1h,s1h);
5749 nottaken1=(int)out;
5750 emit_jne(2);
5751 }
5752 if((opcode[i]&0x2f)==5) // BNE
5753 {
5754 if(s2h>=0) emit_cmp(s1h,s2h);
5755 else emit_test(s1h,s1h);
5756 taken=(int)out;
5757 emit_jne(1);
5758 }
5759 if((opcode[i]&0x2f)==6) // BLEZ
5760 {
5761 emit_test(s1h,s1h);
5762 taken=(int)out;
5763 emit_js(1);
5764 nottaken1=(int)out;
5765 emit_jne(2);
5766 }
5767 if((opcode[i]&0x2f)==7) // BGTZ
5768 {
5769 emit_test(s1h,s1h);
5770 nottaken1=(int)out;
5771 emit_js(2);
5772 taken=(int)out;
5773 emit_jne(1);
5774 }
5775 } // if(!only32)
5776
5777 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5778 assert(s1l>=0);
5779 if((opcode[i]&0x2f)==4) // BEQ
5780 {
5781 if(s2l>=0) emit_cmp(s1l,s2l);
5782 else emit_test(s1l,s1l);
5783 nottaken=(int)out;
5784 emit_jne(2);
5785 }
5786 if((opcode[i]&0x2f)==5) // BNE
5787 {
5788 if(s2l>=0) emit_cmp(s1l,s2l);
5789 else emit_test(s1l,s1l);
5790 nottaken=(int)out;
5791 emit_jeq(2);
5792 }
5793 if((opcode[i]&0x2f)==6) // BLEZ
5794 {
5795 emit_cmpimm(s1l,1);
5796 nottaken=(int)out;
5797 emit_jge(2);
5798 }
5799 if((opcode[i]&0x2f)==7) // BGTZ
5800 {
5801 emit_cmpimm(s1l,1);
5802 nottaken=(int)out;
5803 emit_jl(2);
5804 }
5805 } // if(!unconditional)
5806 int adj;
5807 uint64_t ds_unneeded=branch_regs[i].u;
5808 uint64_t ds_unneeded_upper=branch_regs[i].uu;
5809 ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
5810 ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
5811 if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
5812 ds_unneeded|=1;
5813 ds_unneeded_upper|=1;
5814 // branch taken
5815 if(!nop) {
5816 if(taken) set_jump_target(taken,(int)out);
5817 assem_debug("1:\n");
5818 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5819 ds_unneeded,ds_unneeded_upper);
5820 // load regs
5821 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5822 address_generation(i+1,&branch_regs[i],0);
5823 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
5824 ds_assemble(i+1,&branch_regs[i]);
5825 cc=get_reg(branch_regs[i].regmap,CCREG);
5826 if(cc==-1) {
5827 emit_loadreg(CCREG,cc=HOST_CCREG);
5828 // CHECK: Is the following instruction (fall thru) allocated ok?
5829 }
5830 assert(cc==HOST_CCREG);
5831 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5832 do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
5833 assem_debug("cycle count (adj)\n");
2573466a 5834 if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
57871462 5835 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5836 if(internal)
5837 assem_debug("branch: internal\n");
5838 else
5839 assem_debug("branch: external\n");
5840 if(internal&&is_ds[(ba[i]-start)>>2]) {
5841 ds_assemble_entry(i);
5842 }
5843 else {
5844 add_to_linker((int)out,ba[i],internal);
5845 emit_jmp(0);
5846 }
5847 }
5848 // branch not taken
5849 cop1_usable=prev_cop1_usable;
5850 if(!unconditional) {
5851 if(nottaken1) set_jump_target(nottaken1,(int)out);
5852 set_jump_target(nottaken,(int)out);
5853 assem_debug("2:\n");
5854 if(!likely[i]) {
5855 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5856 ds_unneeded,ds_unneeded_upper);
5857 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5858 address_generation(i+1,&branch_regs[i],0);
5859 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5860 ds_assemble(i+1,&branch_regs[i]);
5861 }
5862 cc=get_reg(branch_regs[i].regmap,CCREG);
5863 if(cc==-1&&!likely[i]) {
5864 // Cycle count isn't in a register, temporarily load it then write it out
5865 emit_loadreg(CCREG,HOST_CCREG);
2573466a 5866 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),HOST_CCREG);
57871462 5867 int jaddr=(int)out;
5868 emit_jns(0);
5869 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5870 emit_storereg(CCREG,HOST_CCREG);
5871 }
5872 else{
5873 cc=get_reg(i_regmap,CCREG);
5874 assert(cc==HOST_CCREG);
2573466a 5875 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),cc);
57871462 5876 int jaddr=(int)out;
5877 emit_jns(0);
5878 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
5879 }
5880 }
5881 }
5882}
5883
5884void sjump_assemble(int i,struct regstat *i_regs)
5885{
5886 signed char *i_regmap=i_regs->regmap;
5887 int cc;
5888 int match;
5889 match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5890 assem_debug("smatch=%d\n",match);
5891 int s1h,s1l;
5892 int prev_cop1_usable=cop1_usable;
5893 int unconditional=0,nevertaken=0;
5894 int only32=0;
57871462 5895 int invert=0;
5896 int internal=internal_branch(branch_regs[i].is32,ba[i]);
5897 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
57871462 5898 if(!match) invert=1;
5899 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5900 if(i>(ba[i]-start)>>2) invert=1;
5901 #endif
5902
5903 //if(opcode2[i]>=0x10) return; // FIXME (BxxZAL)
df894a3a 5904 //assert(opcode2[i]<0x10||rs1[i]==0); // FIXME (BxxZAL)
57871462 5905
e1190b87 5906 if(ooo[i]) {
57871462 5907 s1l=get_reg(branch_regs[i].regmap,rs1[i]);
5908 s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
5909 }
5910 else {
5911 s1l=get_reg(i_regmap,rs1[i]);
5912 s1h=get_reg(i_regmap,rs1[i]|64);
5913 }
5914 if(rs1[i]==0)
5915 {
5916 if(opcode2[i]&1) unconditional=1;
5917 else nevertaken=1;
5918 // These are never taken (r0 is never less than zero)
5919 //assert(opcode2[i]!=0);
5920 //assert(opcode2[i]!=2);
5921 //assert(opcode2[i]!=0x10);
5922 //assert(opcode2[i]!=0x12);
5923 }
5924 else {
5925 only32=(regs[i].was32>>rs1[i])&1;
5926 }
5927
e1190b87 5928 if(ooo[i]) {
57871462 5929 // Out of order execution (delay slot first)
5930 //printf("OOOE\n");
5931 address_generation(i+1,i_regs,regs[i].regmap_entry);
5932 ds_assemble(i+1,i_regs);
5933 int adj;
5934 uint64_t bc_unneeded=branch_regs[i].u;
5935 uint64_t bc_unneeded_upper=branch_regs[i].uu;
5936 bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
5937 bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
5938 bc_unneeded|=1;
5939 bc_unneeded_upper|=1;
5940 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5941 bc_unneeded,bc_unneeded_upper);
5942 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs1[i]);
5943 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5944 if(rt1[i]==31) {
5945 int rt,return_address;
57871462 5946 rt=get_reg(branch_regs[i].regmap,31);
5947 assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5948 if(rt>=0) {
5949 // Save the PC even if the branch is not taken
5950 return_address=start+i*4+8;
5951 emit_movimm(return_address,rt); // PC into link register
5952 #ifdef IMM_PREFETCH
5953 if(!nevertaken) emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5954 #endif
5955 }
5956 }
5957 cc=get_reg(branch_regs[i].regmap,CCREG);
5958 assert(cc==HOST_CCREG);
5959 if(unconditional)
5960 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5961 //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
5962 assem_debug("cycle count (adj)\n");
5963 if(unconditional) {
5964 do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5965 if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
2573466a 5966 if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
57871462 5967 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5968 if(internal)
5969 assem_debug("branch: internal\n");
5970 else
5971 assem_debug("branch: external\n");
5972 if(internal&&is_ds[(ba[i]-start)>>2]) {
5973 ds_assemble_entry(i);
5974 }
5975 else {
5976 add_to_linker((int)out,ba[i],internal);
5977 emit_jmp(0);
5978 }
5979 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5980 if(((u_int)out)&7) emit_addnop(0);
5981 #endif
5982 }
5983 }
5984 else if(nevertaken) {
2573466a 5985 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),cc);
57871462 5986 int jaddr=(int)out;
5987 emit_jns(0);
5988 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5989 }
5990 else {
5991 int nottaken=0;
5992 do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
2573466a 5993 if(adj&&!invert) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
57871462 5994 if(!only32)
5995 {
5996 assert(s1h>=0);
df894a3a 5997 if((opcode2[i]&0xf)==0) // BLTZ/BLTZAL
57871462 5998 {
5999 emit_test(s1h,s1h);
6000 if(invert){
6001 nottaken=(int)out;
6002 emit_jns(1);
6003 }else{
6004 add_to_linker((int)out,ba[i],internal);
6005 emit_js(0);
6006 }
6007 }
df894a3a 6008 if((opcode2[i]&0xf)==1) // BGEZ/BLTZAL
57871462 6009 {
6010 emit_test(s1h,s1h);
6011 if(invert){
6012 nottaken=(int)out;
6013 emit_js(1);
6014 }else{
6015 add_to_linker((int)out,ba[i],internal);
6016 emit_jns(0);
6017 }
6018 }
6019 } // if(!only32)
6020 else
6021 {
6022 assert(s1l>=0);
df894a3a 6023 if((opcode2[i]&0xf)==0) // BLTZ/BLTZAL
57871462 6024 {
6025 emit_test(s1l,s1l);
6026 if(invert){
6027 nottaken=(int)out;
6028 emit_jns(1);
6029 }else{
6030 add_to_linker((int)out,ba[i],internal);
6031 emit_js(0);
6032 }
6033 }
df894a3a 6034 if((opcode2[i]&0xf)==1) // BGEZ/BLTZAL
57871462 6035 {
6036 emit_test(s1l,s1l);
6037 if(invert){
6038 nottaken=(int)out;
6039 emit_js(1);
6040 }else{
6041 add_to_linker((int)out,ba[i],internal);
6042 emit_jns(0);
6043 }
6044 }
6045 } // if(!only32)
6046
6047 if(invert) {
6048 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
6049 if(match&&(!internal||!is_ds[(ba[i]-start)>>2])) {
6050 if(adj) {
2573466a 6051 emit_addimm(cc,-CLOCK_ADJUST(adj),cc);
57871462 6052 add_to_linker((int)out,ba[i],internal);
6053 }else{
6054 emit_addnop(13);
6055 add_to_linker((int)out,ba[i],internal*2);
6056 }
6057 emit_jmp(0);
6058 }else
6059 #endif
6060 {
2573466a 6061 if(adj) emit_addimm(cc,-CLOCK_ADJUST(adj),cc);
57871462 6062 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6063 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6064 if(internal)
6065 assem_debug("branch: internal\n");
6066 else
6067 assem_debug("branch: external\n");
6068 if(internal&&is_ds[(ba[i]-start)>>2]) {
6069 ds_assemble_entry(i);
6070 }
6071 else {
6072 add_to_linker((int)out,ba[i],internal);
6073 emit_jmp(0);
6074 }
6075 }
6076 set_jump_target(nottaken,(int)out);
6077 }
6078
6079 if(adj) {
2573466a 6080 if(!invert) emit_addimm(cc,CLOCK_ADJUST(adj),cc);
57871462 6081 }
6082 } // (!unconditional)
6083 } // if(ooo)
6084 else
6085 {
6086 // In-order execution (branch first)
6087 //printf("IOE\n");
6088 int nottaken=0;
a6491170 6089 if(rt1[i]==31) {
6090 int rt,return_address;
a6491170 6091 rt=get_reg(branch_regs[i].regmap,31);
6092 if(rt>=0) {
6093 // Save the PC even if the branch is not taken
6094 return_address=start+i*4+8;
6095 emit_movimm(return_address,rt); // PC into link register
6096 #ifdef IMM_PREFETCH
6097 emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
6098 #endif
6099 }
6100 }
57871462 6101 if(!unconditional) {
6102 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
6103 if(!only32)
6104 {
6105 assert(s1h>=0);
a6491170 6106 if((opcode2[i]&0x0d)==0) // BLTZ/BLTZL/BLTZAL/BLTZALL
57871462 6107 {
6108 emit_test(s1h,s1h);
6109 nottaken=(int)out;
6110 emit_jns(1);
6111 }
a6491170 6112 if((opcode2[i]&0x0d)==1) // BGEZ/BGEZL/BGEZAL/BGEZALL
57871462 6113 {
6114 emit_test(s1h,s1h);
6115 nottaken=(int)out;
6116 emit_js(1);
6117 }
6118 } // if(!only32)
6119 else
6120 {
6121 assert(s1l>=0);
a6491170 6122 if((opcode2[i]&0x0d)==0) // BLTZ/BLTZL/BLTZAL/BLTZALL
57871462 6123 {
6124 emit_test(s1l,s1l);
6125 nottaken=(int)out;
6126 emit_jns(1);
6127 }
a6491170 6128 if((opcode2[i]&0x0d)==1) // BGEZ/BGEZL/BGEZAL/BGEZALL
57871462 6129 {
6130 emit_test(s1l,s1l);
6131 nottaken=(int)out;
6132 emit_js(1);
6133 }
6134 }
6135 } // if(!unconditional)
6136 int adj;
6137 uint64_t ds_unneeded=branch_regs[i].u;
6138 uint64_t ds_unneeded_upper=branch_regs[i].uu;
6139 ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6140 ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6141 if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
6142 ds_unneeded|=1;
6143 ds_unneeded_upper|=1;
6144 // branch taken
6145 if(!nevertaken) {
6146 //assem_debug("1:\n");
6147 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6148 ds_unneeded,ds_unneeded_upper);
6149 // load regs
6150 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
6151 address_generation(i+1,&branch_regs[i],0);
6152 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
6153 ds_assemble(i+1,&branch_regs[i]);
6154 cc=get_reg(branch_regs[i].regmap,CCREG);
6155 if(cc==-1) {
6156 emit_loadreg(CCREG,cc=HOST_CCREG);
6157 // CHECK: Is the following instruction (fall thru) allocated ok?
6158 }
6159 assert(cc==HOST_CCREG);
6160 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6161 do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
6162 assem_debug("cycle count (adj)\n");
2573466a 6163 if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
57871462 6164 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6165 if(internal)
6166 assem_debug("branch: internal\n");
6167 else
6168 assem_debug("branch: external\n");
6169 if(internal&&is_ds[(ba[i]-start)>>2]) {
6170 ds_assemble_entry(i);
6171 }
6172 else {
6173 add_to_linker((int)out,ba[i],internal);
6174 emit_jmp(0);
6175 }
6176 }
6177 // branch not taken
6178 cop1_usable=prev_cop1_usable;
6179 if(!unconditional) {
6180 set_jump_target(nottaken,(int)out);
6181 assem_debug("1:\n");
6182 if(!likely[i]) {
6183 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6184 ds_unneeded,ds_unneeded_upper);
6185 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
6186 address_generation(i+1,&branch_regs[i],0);
6187 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
6188 ds_assemble(i+1,&branch_regs[i]);
6189 }
6190 cc=get_reg(branch_regs[i].regmap,CCREG);
6191 if(cc==-1&&!likely[i]) {
6192 // Cycle count isn't in a register, temporarily load it then write it out
6193 emit_loadreg(CCREG,HOST_CCREG);
2573466a 6194 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),HOST_CCREG);
57871462 6195 int jaddr=(int)out;
6196 emit_jns(0);
6197 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
6198 emit_storereg(CCREG,HOST_CCREG);
6199 }
6200 else{
6201 cc=get_reg(i_regmap,CCREG);
6202 assert(cc==HOST_CCREG);
2573466a 6203 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),cc);
57871462 6204 int jaddr=(int)out;
6205 emit_jns(0);
6206 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
6207 }
6208 }
6209 }
6210}
6211
6212void fjump_assemble(int i,struct regstat *i_regs)
6213{
6214 signed char *i_regmap=i_regs->regmap;
6215 int cc;
6216 int match;
6217 match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6218 assem_debug("fmatch=%d\n",match);
6219 int fs,cs;
6220 int eaddr;
57871462 6221 int invert=0;
6222 int internal=internal_branch(branch_regs[i].is32,ba[i]);
6223 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
57871462 6224 if(!match) invert=1;
6225 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
6226 if(i>(ba[i]-start)>>2) invert=1;
6227 #endif
6228
e1190b87 6229 if(ooo[i]) {
57871462 6230 fs=get_reg(branch_regs[i].regmap,FSREG);
6231 address_generation(i+1,i_regs,regs[i].regmap_entry); // Is this okay?
6232 }
6233 else {
6234 fs=get_reg(i_regmap,FSREG);
6235 }
6236
6237 // Check cop1 unusable
6238 if(!cop1_usable) {
6239 cs=get_reg(i_regmap,CSREG);
6240 assert(cs>=0);
6241 emit_testimm(cs,0x20000000);
6242 eaddr=(int)out;
6243 emit_jeq(0);
6244 add_stub(FP_STUB,eaddr,(int)out,i,cs,(int)i_regs,0,0);
6245 cop1_usable=1;
6246 }
6247
e1190b87 6248 if(ooo[i]) {
57871462 6249 // Out of order execution (delay slot first)
6250 //printf("OOOE\n");
6251 ds_assemble(i+1,i_regs);
6252 int adj;
6253 uint64_t bc_unneeded=branch_regs[i].u;
6254 uint64_t bc_unneeded_upper=branch_regs[i].uu;
6255 bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
6256 bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
6257 bc_unneeded|=1;
6258 bc_unneeded_upper|=1;
6259 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6260 bc_unneeded,bc_unneeded_upper);
6261 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs1[i]);
6262 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
6263 cc=get_reg(branch_regs[i].regmap,CCREG);
6264 assert(cc==HOST_CCREG);
6265 do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
6266 assem_debug("cycle count (adj)\n");
6267 if(1) {
6268 int nottaken=0;
2573466a 6269 if(adj&&!invert) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
57871462 6270 if(1) {
6271 assert(fs>=0);
6272 emit_testimm(fs,0x800000);
6273 if(source[i]&0x10000) // BC1T
6274 {
6275 if(invert){
6276 nottaken=(int)out;
6277 emit_jeq(1);
6278 }else{
6279 add_to_linker((int)out,ba[i],internal);
6280 emit_jne(0);
6281 }
6282 }
6283 else // BC1F
6284 if(invert){
6285 nottaken=(int)out;
6286 emit_jne(1);
6287 }else{
6288 add_to_linker((int)out,ba[i],internal);
6289 emit_jeq(0);
6290 }
6291 {
6292 }
6293 } // if(!only32)
6294
6295 if(invert) {
2573466a 6296 if(adj) emit_addimm(cc,-CLOCK_ADJUST(adj),cc);
57871462 6297 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
6298 else if(match) emit_addnop(13);
6299 #endif
6300 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6301 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6302 if(internal)
6303 assem_debug("branch: internal\n");
6304 else
6305 assem_debug("branch: external\n");
6306 if(internal&&is_ds[(ba[i]-start)>>2]) {
6307 ds_assemble_entry(i);
6308 }
6309 else {
6310 add_to_linker((int)out,ba[i],internal);
6311 emit_jmp(0);
6312 }
6313 set_jump_target(nottaken,(int)out);
6314 }
6315
6316 if(adj) {
2573466a 6317 if(!invert) emit_addimm(cc,CLOCK_ADJUST(adj),cc);
57871462 6318 }
6319 } // (!unconditional)
6320 } // if(ooo)
6321 else
6322 {
6323 // In-order execution (branch first)
6324 //printf("IOE\n");
6325 int nottaken=0;
6326 if(1) {
6327 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
6328 if(1) {
6329 assert(fs>=0);
6330 emit_testimm(fs,0x800000);
6331 if(source[i]&0x10000) // BC1T
6332 {
6333 nottaken=(int)out;
6334 emit_jeq(1);
6335 }
6336 else // BC1F
6337 {
6338 nottaken=(int)out;
6339 emit_jne(1);
6340 }
6341 }
6342 } // if(!unconditional)
6343 int adj;
6344 uint64_t ds_unneeded=branch_regs[i].u;
6345 uint64_t ds_unneeded_upper=branch_regs[i].uu;
6346 ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6347 ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6348 if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
6349 ds_unneeded|=1;
6350 ds_unneeded_upper|=1;
6351 // branch taken
6352 //assem_debug("1:\n");
6353 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6354 ds_unneeded,ds_unneeded_upper);
6355 // load regs
6356 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
6357 address_generation(i+1,&branch_regs[i],0);
6358 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
6359 ds_assemble(i+1,&branch_regs[i]);
6360 cc=get_reg(branch_regs[i].regmap,CCREG);
6361 if(cc==-1) {
6362 emit_loadreg(CCREG,cc=HOST_CCREG);
6363 // CHECK: Is the following instruction (fall thru) allocated ok?
6364 }
6365 assert(cc==HOST_CCREG);
6366 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6367 do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
6368 assem_debug("cycle count (adj)\n");
2573466a 6369 if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
57871462 6370 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6371 if(internal)
6372 assem_debug("branch: internal\n");
6373 else
6374 assem_debug("branch: external\n");
6375 if(internal&&is_ds[(ba[i]-start)>>2]) {
6376 ds_assemble_entry(i);
6377 }
6378 else {
6379 add_to_linker((int)out,ba[i],internal);
6380 emit_jmp(0);
6381 }
6382
6383 // branch not taken
6384 if(1) { // <- FIXME (don't need this)
6385 set_jump_target(nottaken,(int)out);
6386 assem_debug("1:\n");
6387 if(!likely[i]) {
6388 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6389 ds_unneeded,ds_unneeded_upper);
6390 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
6391 address_generation(i+1,&branch_regs[i],0);
6392 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
6393 ds_assemble(i+1,&branch_regs[i]);
6394 }
6395 cc=get_reg(branch_regs[i].regmap,CCREG);
6396 if(cc==-1&&!likely[i]) {
6397 // Cycle count isn't in a register, temporarily load it then write it out
6398 emit_loadreg(CCREG,HOST_CCREG);
2573466a 6399 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),HOST_CCREG);
57871462 6400 int jaddr=(int)out;
6401 emit_jns(0);
6402 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
6403 emit_storereg(CCREG,HOST_CCREG);
6404 }
6405 else{
6406 cc=get_reg(i_regmap,CCREG);
6407 assert(cc==HOST_CCREG);
2573466a 6408 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),cc);
57871462 6409 int jaddr=(int)out;
6410 emit_jns(0);
6411 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
6412 }
6413 }
6414 }
6415}
6416
6417static void pagespan_assemble(int i,struct regstat *i_regs)
6418{
6419 int s1l=get_reg(i_regs->regmap,rs1[i]);
6420 int s1h=get_reg(i_regs->regmap,rs1[i]|64);
6421 int s2l=get_reg(i_regs->regmap,rs2[i]);
6422 int s2h=get_reg(i_regs->regmap,rs2[i]|64);
6423 void *nt_branch=NULL;
6424 int taken=0;
6425 int nottaken=0;
6426 int unconditional=0;
6427 if(rs1[i]==0)
6428 {
6429 s1l=s2l;s1h=s2h;
6430 s2l=s2h=-1;
6431 }
6432 else if(rs2[i]==0)
6433 {
6434 s2l=s2h=-1;
6435 }
6436 if((i_regs->is32>>rs1[i])&(i_regs->is32>>rs2[i])&1) {
6437 s1h=s2h=-1;
6438 }
6439 int hr=0;
6440 int addr,alt,ntaddr;
6441 if(i_regs->regmap[HOST_BTREG]<0) {addr=HOST_BTREG;}
6442 else {
6443 while(hr<HOST_REGS)
6444 {
6445 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
6446 (i_regs->regmap[hr]&63)!=rs1[i] &&
6447 (i_regs->regmap[hr]&63)!=rs2[i] )
6448 {
6449 addr=hr++;break;
6450 }
6451 hr++;
6452 }
6453 }
6454 while(hr<HOST_REGS)
6455 {
6456 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG && hr!=HOST_BTREG &&
6457 (i_regs->regmap[hr]&63)!=rs1[i] &&
6458 (i_regs->regmap[hr]&63)!=rs2[i] )
6459 {
6460 alt=hr++;break;
6461 }
6462 hr++;
6463 }
6464 if((opcode[i]&0x2E)==6) // BLEZ/BGTZ needs another register
6465 {
6466 while(hr<HOST_REGS)
6467 {
6468 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG && hr!=HOST_BTREG &&
6469 (i_regs->regmap[hr]&63)!=rs1[i] &&
6470 (i_regs->regmap[hr]&63)!=rs2[i] )
6471 {
6472 ntaddr=hr;break;
6473 }
6474 hr++;
6475 }
6476 }
6477 assert(hr<HOST_REGS);
6478 if((opcode[i]&0x2e)==4||opcode[i]==0x11) { // BEQ/BNE/BEQL/BNEL/BC1
6479 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,CCREG,CCREG);
6480 }
2573466a 6481 emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i]+2),HOST_CCREG);
57871462 6482 if(opcode[i]==2) // J
6483 {
6484 unconditional=1;
6485 }
6486 if(opcode[i]==3) // JAL
6487 {
6488 // TODO: mini_ht
6489 int rt=get_reg(i_regs->regmap,31);
6490 emit_movimm(start+i*4+8,rt);
6491 unconditional=1;
6492 }
6493 if(opcode[i]==0&&(opcode2[i]&0x3E)==8) // JR/JALR
6494 {
6495 emit_mov(s1l,addr);
6496 if(opcode2[i]==9) // JALR
6497 {
5067f341 6498 int rt=get_reg(i_regs->regmap,rt1[i]);
57871462 6499 emit_movimm(start+i*4+8,rt);
6500 }
6501 }
6502 if((opcode[i]&0x3f)==4) // BEQ
6503 {
6504 if(rs1[i]==rs2[i])
6505 {
6506 unconditional=1;
6507 }
6508 else
6509 #ifdef HAVE_CMOV_IMM
6510 if(s1h<0) {
6511 if(s2l>=0) emit_cmp(s1l,s2l);
6512 else emit_test(s1l,s1l);
6513 emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
6514 }
6515 else
6516 #endif
6517 {
6518 assert(s1l>=0);
6519 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
6520 if(s1h>=0) {
6521 if(s2h>=0) emit_cmp(s1h,s2h);
6522 else emit_test(s1h,s1h);
6523 emit_cmovne_reg(alt,addr);
6524 }
6525 if(s2l>=0) emit_cmp(s1l,s2l);
6526 else emit_test(s1l,s1l);
6527 emit_cmovne_reg(alt,addr);
6528 }
6529 }
6530 if((opcode[i]&0x3f)==5) // BNE
6531 {
6532 #ifdef HAVE_CMOV_IMM
6533 if(s1h<0) {
6534 if(s2l>=0) emit_cmp(s1l,s2l);
6535 else emit_test(s1l,s1l);
6536 emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
6537 }
6538 else
6539 #endif
6540 {
6541 assert(s1l>=0);
6542 emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
6543 if(s1h>=0) {
6544 if(s2h>=0) emit_cmp(s1h,s2h);
6545 else emit_test(s1h,s1h);
6546 emit_cmovne_reg(alt,addr);
6547 }
6548 if(s2l>=0) emit_cmp(s1l,s2l);
6549 else emit_test(s1l,s1l);
6550 emit_cmovne_reg(alt,addr);
6551 }
6552 }
6553 if((opcode[i]&0x3f)==0x14) // BEQL
6554 {
6555 if(s1h>=0) {
6556 if(s2h>=0) emit_cmp(s1h,s2h);
6557 else emit_test(s1h,s1h);
6558 nottaken=(int)out;
6559 emit_jne(0);
6560 }
6561 if(s2l>=0) emit_cmp(s1l,s2l);
6562 else emit_test(s1l,s1l);
6563 if(nottaken) set_jump_target(nottaken,(int)out);
6564 nottaken=(int)out;
6565 emit_jne(0);
6566 }
6567 if((opcode[i]&0x3f)==0x15) // BNEL
6568 {
6569 if(s1h>=0) {
6570 if(s2h>=0) emit_cmp(s1h,s2h);
6571 else emit_test(s1h,s1h);
6572 taken=(int)out;
6573 emit_jne(0);
6574 }
6575 if(s2l>=0) emit_cmp(s1l,s2l);
6576 else emit_test(s1l,s1l);
6577 nottaken=(int)out;
6578 emit_jeq(0);
6579 if(taken) set_jump_target(taken,(int)out);
6580 }
6581 if((opcode[i]&0x3f)==6) // BLEZ
6582 {
6583 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
6584 emit_cmpimm(s1l,1);
6585 if(s1h>=0) emit_mov(addr,ntaddr);
6586 emit_cmovl_reg(alt,addr);
6587 if(s1h>=0) {
6588 emit_test(s1h,s1h);
6589 emit_cmovne_reg(ntaddr,addr);
6590 emit_cmovs_reg(alt,addr);
6591 }
6592 }
6593 if((opcode[i]&0x3f)==7) // BGTZ
6594 {
6595 emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
6596 emit_cmpimm(s1l,1);
6597 if(s1h>=0) emit_mov(addr,alt);
6598 emit_cmovl_reg(ntaddr,addr);
6599 if(s1h>=0) {
6600 emit_test(s1h,s1h);
6601 emit_cmovne_reg(alt,addr);
6602 emit_cmovs_reg(ntaddr,addr);
6603 }
6604 }
6605 if((opcode[i]&0x3f)==0x16) // BLEZL
6606 {
6607 assert((opcode[i]&0x3f)!=0x16);
6608 }
6609 if((opcode[i]&0x3f)==0x17) // BGTZL
6610 {
6611 assert((opcode[i]&0x3f)!=0x17);
6612 }
6613 assert(opcode[i]!=1); // BLTZ/BGEZ
6614
6615 //FIXME: Check CSREG
6616 if(opcode[i]==0x11 && opcode2[i]==0x08 ) {
6617 if((source[i]&0x30000)==0) // BC1F
6618 {
6619 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
6620 emit_testimm(s1l,0x800000);
6621 emit_cmovne_reg(alt,addr);
6622 }
6623 if((source[i]&0x30000)==0x10000) // BC1T
6624 {
6625 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
6626 emit_testimm(s1l,0x800000);
6627 emit_cmovne_reg(alt,addr);
6628 }
6629 if((source[i]&0x30000)==0x20000) // BC1FL
6630 {
6631 emit_testimm(s1l,0x800000);
6632 nottaken=(int)out;
6633 emit_jne(0);
6634 }
6635 if((source[i]&0x30000)==0x30000) // BC1TL
6636 {
6637 emit_testimm(s1l,0x800000);
6638 nottaken=(int)out;
6639 emit_jeq(0);
6640 }
6641 }
6642
6643 assert(i_regs->regmap[HOST_CCREG]==CCREG);
6644 wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
6645 if(likely[i]||unconditional)
6646 {
6647 emit_movimm(ba[i],HOST_BTREG);
6648 }
6649 else if(addr!=HOST_BTREG)
6650 {
6651 emit_mov(addr,HOST_BTREG);
6652 }
6653 void *branch_addr=out;
6654 emit_jmp(0);
6655 int target_addr=start+i*4+5;
6656 void *stub=out;
6657 void *compiled_target_addr=check_addr(target_addr);
6658 emit_extjump_ds((int)branch_addr,target_addr);
6659 if(compiled_target_addr) {
6660 set_jump_target((int)branch_addr,(int)compiled_target_addr);
6661 add_link(target_addr,stub);
6662 }
6663 else set_jump_target((int)branch_addr,(int)stub);
6664 if(likely[i]) {
6665 // Not-taken path
6666 set_jump_target((int)nottaken,(int)out);
6667 wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
6668 void *branch_addr=out;
6669 emit_jmp(0);
6670 int target_addr=start+i*4+8;
6671 void *stub=out;
6672 void *compiled_target_addr=check_addr(target_addr);
6673 emit_extjump_ds((int)branch_addr,target_addr);
6674 if(compiled_target_addr) {
6675 set_jump_target((int)branch_addr,(int)compiled_target_addr);
6676 add_link(target_addr,stub);
6677 }
6678 else set_jump_target((int)branch_addr,(int)stub);
6679 }
6680}
6681
6682// Assemble the delay slot for the above
6683static void pagespan_ds()
6684{
6685 assem_debug("initial delay slot:\n");
6686 u_int vaddr=start+1;
94d23bb9 6687 u_int page=get_page(vaddr);
6688 u_int vpage=get_vpage(vaddr);
57871462 6689 ll_add(jump_dirty+vpage,vaddr,(void *)out);
6690 do_dirty_stub_ds();
6691 ll_add(jump_in+page,vaddr,(void *)out);
6692 assert(regs[0].regmap_entry[HOST_CCREG]==CCREG);
6693 if(regs[0].regmap[HOST_CCREG]!=CCREG)
6694 wb_register(CCREG,regs[0].regmap_entry,regs[0].wasdirty,regs[0].was32);
6695 if(regs[0].regmap[HOST_BTREG]!=BTREG)
6696 emit_writeword(HOST_BTREG,(int)&branch_target);
6697 load_regs(regs[0].regmap_entry,regs[0].regmap,regs[0].was32,rs1[0],rs2[0]);
6698 address_generation(0,&regs[0],regs[0].regmap_entry);
b9b61529 6699 if(itype[0]==STORE||itype[0]==STORELR||(opcode[0]&0x3b)==0x39||(opcode[0]&0x3b)==0x3a)
57871462 6700 load_regs(regs[0].regmap_entry,regs[0].regmap,regs[0].was32,INVCP,INVCP);
6701 cop1_usable=0;
6702 is_delayslot=0;
6703 switch(itype[0]) {
6704 case ALU:
6705 alu_assemble(0,&regs[0]);break;
6706 case IMM16:
6707 imm16_assemble(0,&regs[0]);break;
6708 case SHIFT:
6709 shift_assemble(0,&regs[0]);break;
6710 case SHIFTIMM:
6711 shiftimm_assemble(0,&regs[0]);break;
6712 case LOAD:
6713 load_assemble(0,&regs[0]);break;
6714 case LOADLR:
6715 loadlr_assemble(0,&regs[0]);break;
6716 case STORE:
6717 store_assemble(0,&regs[0]);break;
6718 case STORELR:
6719 storelr_assemble(0,&regs[0]);break;
6720 case COP0:
6721 cop0_assemble(0,&regs[0]);break;
6722 case COP1:
6723 cop1_assemble(0,&regs[0]);break;
6724 case C1LS:
6725 c1ls_assemble(0,&regs[0]);break;
b9b61529 6726 case COP2:
6727 cop2_assemble(0,&regs[0]);break;
6728 case C2LS:
6729 c2ls_assemble(0,&regs[0]);break;
6730 case C2OP:
6731 c2op_assemble(0,&regs[0]);break;
57871462 6732 case FCONV:
6733 fconv_assemble(0,&regs[0]);break;
6734 case FLOAT:
6735 float_assemble(0,&regs[0]);break;
6736 case FCOMP:
6737 fcomp_assemble(0,&regs[0]);break;
6738 case MULTDIV:
6739 multdiv_assemble(0,&regs[0]);break;
6740 case MOV:
6741 mov_assemble(0,&regs[0]);break;
6742 case SYSCALL:
7139f3c8 6743 case HLECALL:
1e973cb0 6744 case INTCALL:
57871462 6745 case SPAN:
6746 case UJUMP:
6747 case RJUMP:
6748 case CJUMP:
6749 case SJUMP:
6750 case FJUMP:
6751 printf("Jump in the delay slot. This is probably a bug.\n");
6752 }
6753 int btaddr=get_reg(regs[0].regmap,BTREG);
6754 if(btaddr<0) {
6755 btaddr=get_reg(regs[0].regmap,-1);
6756 emit_readword((int)&branch_target,btaddr);
6757 }
6758 assert(btaddr!=HOST_CCREG);
6759 if(regs[0].regmap[HOST_CCREG]!=CCREG) emit_loadreg(CCREG,HOST_CCREG);
6760#ifdef HOST_IMM8
6761 emit_movimm(start+4,HOST_TEMPREG);
6762 emit_cmp(btaddr,HOST_TEMPREG);
6763#else
6764 emit_cmpimm(btaddr,start+4);
6765#endif
6766 int branch=(int)out;
6767 emit_jeq(0);
6768 store_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,-1);
6769 emit_jmp(jump_vaddr_reg[btaddr]);
6770 set_jump_target(branch,(int)out);
6771 store_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,start+4);
6772 load_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,start+4);
6773}
6774
6775// Basic liveness analysis for MIPS registers
6776void unneeded_registers(int istart,int iend,int r)
6777{
6778 int i;
bedfea38 6779 uint64_t u,uu,gte_u,b,bu,gte_bu;
0ff8c62c 6780 uint64_t temp_u,temp_uu,temp_gte_u=0;
57871462 6781 uint64_t tdep;
0ff8c62c 6782 uint64_t gte_u_unknown=0;
6783 if(new_dynarec_hacks&NDHACK_GTE_UNNEEDED)
6784 gte_u_unknown=~0ll;
57871462 6785 if(iend==slen-1) {
6786 u=1;uu=1;
0ff8c62c 6787 gte_u=gte_u_unknown;
57871462 6788 }else{
6789 u=unneeded_reg[iend+1];
6790 uu=unneeded_reg_upper[iend+1];
6791 u=1;uu=1;
0ff8c62c 6792 gte_u=gte_unneeded[iend+1];
57871462 6793 }
bedfea38 6794
57871462 6795 for (i=iend;i>=istart;i--)
6796 {
6797 //printf("unneeded registers i=%d (%d,%d) r=%d\n",i,istart,iend,r);
6798 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
6799 {
6800 // If subroutine call, flag return address as a possible branch target
6801 if(rt1[i]==31 && i<slen-2) bt[i+2]=1;
6802
6803 if(ba[i]<start || ba[i]>=(start+slen*4))
6804 {
6805 // Branch out of this block, flush all regs
6806 u=1;
6807 uu=1;
0ff8c62c 6808 gte_u=gte_u_unknown;
57871462 6809 /* Hexagon hack
6810 if(itype[i]==UJUMP&&rt1[i]==31)
6811 {
6812 uu=u=0x300C00F; // Discard at, v0-v1, t6-t9
6813 }
6814 if(itype[i]==RJUMP&&rs1[i]==31)
6815 {
6816 uu=u=0x300C0F3; // Discard at, a0-a3, t6-t9
6817 }
4cb76aa4 6818 if(start>0x80000400&&start<0x80000000+RAM_SIZE) {
57871462 6819 if(itype[i]==UJUMP&&rt1[i]==31)
6820 {
6821 //uu=u=0x30300FF0FLL; // Discard at, v0-v1, t0-t9, lo, hi
6822 uu=u=0x300FF0F; // Discard at, v0-v1, t0-t9
6823 }
6824 if(itype[i]==RJUMP&&rs1[i]==31)
6825 {
6826 //uu=u=0x30300FFF3LL; // Discard at, a0-a3, t0-t9, lo, hi
6827 uu=u=0x300FFF3; // Discard at, a0-a3, t0-t9
6828 }
6829 }*/
6830 branch_unneeded_reg[i]=u;
6831 branch_unneeded_reg_upper[i]=uu;
6832 // Merge in delay slot
6833 tdep=(~uu>>rt1[i+1])&1;
6834 u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6835 uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6836 u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6837 uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6838 uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6839 u|=1;uu|=1;
bedfea38 6840 gte_u|=gte_rt[i+1];
6841 gte_u&=~gte_rs[i+1];
57871462 6842 // If branch is "likely" (and conditional)
6843 // then we skip the delay slot on the fall-thru path
6844 if(likely[i]) {
6845 if(i<slen-1) {
6846 u&=unneeded_reg[i+2];
6847 uu&=unneeded_reg_upper[i+2];
bedfea38 6848 gte_u&=gte_unneeded[i+2];
57871462 6849 }
6850 else
6851 {
6852 u=1;
6853 uu=1;
0ff8c62c 6854 gte_u=gte_u_unknown;
57871462 6855 }
6856 }
6857 }
6858 else
6859 {
6860 // Internal branch, flag target
6861 bt[(ba[i]-start)>>2]=1;
6862 if(ba[i]<=start+i*4) {
6863 // Backward branch
6864 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
6865 {
6866 // Unconditional branch
6867 temp_u=1;temp_uu=1;
bedfea38 6868 temp_gte_u=0;
57871462 6869 } else {
6870 // Conditional branch (not taken case)
6871 temp_u=unneeded_reg[i+2];
6872 temp_uu=unneeded_reg_upper[i+2];
bedfea38 6873 temp_gte_u&=gte_unneeded[i+2];
57871462 6874 }
6875 // Merge in delay slot
6876 tdep=(~temp_uu>>rt1[i+1])&1;
6877 temp_u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6878 temp_uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6879 temp_u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6880 temp_uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6881 temp_uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6882 temp_u|=1;temp_uu|=1;
bedfea38 6883 temp_gte_u|=gte_rt[i+1];
6884 temp_gte_u&=~gte_rs[i+1];
57871462 6885 // If branch is "likely" (and conditional)
6886 // then we skip the delay slot on the fall-thru path
6887 if(likely[i]) {
6888 if(i<slen-1) {
6889 temp_u&=unneeded_reg[i+2];
6890 temp_uu&=unneeded_reg_upper[i+2];
bedfea38 6891 temp_gte_u&=gte_unneeded[i+2];
57871462 6892 }
6893 else
6894 {
6895 temp_u=1;
6896 temp_uu=1;
0ff8c62c 6897 temp_gte_u=gte_u_unknown;
57871462 6898 }
6899 }
6900 tdep=(~temp_uu>>rt1[i])&1;
6901 temp_u|=(1LL<<rt1[i])|(1LL<<rt2[i]);
6902 temp_uu|=(1LL<<rt1[i])|(1LL<<rt2[i]);
6903 temp_u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
6904 temp_uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
6905 temp_uu&=~((tdep<<dep1[i])|(tdep<<dep2[i]));
6906 temp_u|=1;temp_uu|=1;
bedfea38 6907 temp_gte_u|=gte_rt[i];
6908 temp_gte_u&=~gte_rs[i];
57871462 6909 unneeded_reg[i]=temp_u;
6910 unneeded_reg_upper[i]=temp_uu;
bedfea38 6911 gte_unneeded[i]=temp_gte_u;
57871462 6912 // Only go three levels deep. This recursion can take an
6913 // excessive amount of time if there are a lot of nested loops.
6914 if(r<2) {
6915 unneeded_registers((ba[i]-start)>>2,i-1,r+1);
6916 }else{
6917 unneeded_reg[(ba[i]-start)>>2]=1;
6918 unneeded_reg_upper[(ba[i]-start)>>2]=1;
0ff8c62c 6919 gte_unneeded[(ba[i]-start)>>2]=gte_u_unknown;
57871462 6920 }
6921 } /*else*/ if(1) {
6922 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
6923 {
6924 // Unconditional branch
6925 u=unneeded_reg[(ba[i]-start)>>2];
6926 uu=unneeded_reg_upper[(ba[i]-start)>>2];
bedfea38 6927 gte_u=gte_unneeded[(ba[i]-start)>>2];
57871462 6928 branch_unneeded_reg[i]=u;
6929 branch_unneeded_reg_upper[i]=uu;
6930 //u=1;
6931 //uu=1;
6932 //branch_unneeded_reg[i]=u;
6933 //branch_unneeded_reg_upper[i]=uu;
6934 // Merge in delay slot
6935 tdep=(~uu>>rt1[i+1])&1;
6936 u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6937 uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6938 u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6939 uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6940 uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6941 u|=1;uu|=1;
bedfea38 6942 gte_u|=gte_rt[i+1];
6943 gte_u&=~gte_rs[i+1];
57871462 6944 } else {
6945 // Conditional branch
6946 b=unneeded_reg[(ba[i]-start)>>2];
6947 bu=unneeded_reg_upper[(ba[i]-start)>>2];
bedfea38 6948 gte_bu=gte_unneeded[(ba[i]-start)>>2];
57871462 6949 branch_unneeded_reg[i]=b;
6950 branch_unneeded_reg_upper[i]=bu;
6951 //b=1;
6952 //bu=1;
6953 //branch_unneeded_reg[i]=b;
6954 //branch_unneeded_reg_upper[i]=bu;
6955 // Branch delay slot
6956 tdep=(~uu>>rt1[i+1])&1;
6957 b|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6958 bu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6959 b&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6960 bu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6961 bu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6962 b|=1;bu|=1;
bedfea38 6963 gte_bu|=gte_rt[i+1];
6964 gte_bu&=~gte_rs[i+1];
57871462 6965 // If branch is "likely" then we skip the
6966 // delay slot on the fall-thru path
6967 if(likely[i]) {
6968 u=b;
6969 uu=bu;
bedfea38 6970 gte_u=gte_bu;
57871462 6971 if(i<slen-1) {
6972 u&=unneeded_reg[i+2];
6973 uu&=unneeded_reg_upper[i+2];
bedfea38 6974 gte_u&=gte_unneeded[i+2];
57871462 6975 //u=1;
6976 //uu=1;
6977 }
6978 } else {
6979 u&=b;
6980 uu&=bu;
bedfea38 6981 gte_u&=gte_bu;
57871462 6982 //u=1;
6983 //uu=1;
6984 }
6985 if(i<slen-1) {
6986 branch_unneeded_reg[i]&=unneeded_reg[i+2];
6987 branch_unneeded_reg_upper[i]&=unneeded_reg_upper[i+2];
6988 //branch_unneeded_reg[i]=1;
6989 //branch_unneeded_reg_upper[i]=1;
6990 } else {
6991 branch_unneeded_reg[i]=1;
6992 branch_unneeded_reg_upper[i]=1;
6993 }
6994 }
6995 }
6996 }
6997 }
1e973cb0 6998 else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
57871462 6999 {
7000 // SYSCALL instruction (software interrupt)
7001 u=1;
7002 uu=1;
7003 }
7004 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
7005 {
7006 // ERET instruction (return from interrupt)
7007 u=1;
7008 uu=1;
7009 }
7010 //u=uu=1; // DEBUG
7011 tdep=(~uu>>rt1[i])&1;
7012 // Written registers are unneeded
7013 u|=1LL<<rt1[i];
7014 u|=1LL<<rt2[i];
7015 uu|=1LL<<rt1[i];
7016 uu|=1LL<<rt2[i];
bedfea38 7017 gte_u|=gte_rt[i];
57871462 7018 // Accessed registers are needed
7019 u&=~(1LL<<rs1[i]);
7020 u&=~(1LL<<rs2[i]);
7021 uu&=~(1LL<<us1[i]);
7022 uu&=~(1LL<<us2[i]);
bedfea38 7023 gte_u&=~gte_rs[i];
eaa11918 7024 if(gte_rs[i]&&rt1[i]&&(unneeded_reg[i+1]&(1ll<<rt1[i])))
7025 gte_u|=gte_rs[i]; // MFC2/CFC2 to dead register, unneeded
57871462 7026 // Source-target dependencies
7027 uu&=~(tdep<<dep1[i]);
7028 uu&=~(tdep<<dep2[i]);
7029 // R0 is always unneeded
7030 u|=1;uu|=1;
7031 // Save it
7032 unneeded_reg[i]=u;
7033 unneeded_reg_upper[i]=uu;
bedfea38 7034 gte_unneeded[i]=gte_u;
57871462 7035 /*
7036 printf("ur (%d,%d) %x: ",istart,iend,start+i*4);
7037 printf("U:");
7038 int r;
7039 for(r=1;r<=CCREG;r++) {
7040 if((unneeded_reg[i]>>r)&1) {
7041 if(r==HIREG) printf(" HI");
7042 else if(r==LOREG) printf(" LO");
7043 else printf(" r%d",r);
7044 }
7045 }
7046 printf(" UU:");
7047 for(r=1;r<=CCREG;r++) {
7048 if(((unneeded_reg_upper[i]&~unneeded_reg[i])>>r)&1) {
7049 if(r==HIREG) printf(" HI");
7050 else if(r==LOREG) printf(" LO");
7051 else printf(" r%d",r);
7052 }
7053 }
7054 printf("\n");*/
7055 }
252c20fc 7056#ifdef FORCE32
7057 for (i=iend;i>=istart;i--)
7058 {
7059 unneeded_reg_upper[i]=branch_unneeded_reg_upper[i]=-1LL;
7060 }
7061#endif
57871462 7062}
7063
7064// Identify registers which are likely to contain 32-bit values
7065// This is used to predict whether any branches will jump to a
7066// location with 64-bit values in registers.
7067static void provisional_32bit()
7068{
7069 int i,j;
7070 uint64_t is32=1;
7071 uint64_t lastbranch=1;
7072
7073 for(i=0;i<slen;i++)
7074 {
7075 if(i>0) {
7076 if(itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP) {
7077 if(i>1) is32=lastbranch;
7078 else is32=1;
7079 }
7080 }
7081 if(i>1)
7082 {
7083 if(itype[i-2]==CJUMP||itype[i-2]==SJUMP||itype[i-2]==FJUMP) {
7084 if(likely[i-2]) {
7085 if(i>2) is32=lastbranch;
7086 else is32=1;
7087 }
7088 }
7089 if((opcode[i-2]&0x2f)==0x05) // BNE/BNEL
7090 {
7091 if(rs1[i-2]==0||rs2[i-2]==0)
7092 {
7093 if(rs1[i-2]) {
7094 is32|=1LL<<rs1[i-2];
7095 }
7096 if(rs2[i-2]) {
7097 is32|=1LL<<rs2[i-2];
7098 }
7099 }
7100 }
7101 }
7102 // If something jumps here with 64-bit values
7103 // then promote those registers to 64 bits
7104 if(bt[i])
7105 {
7106 uint64_t temp_is32=is32;
7107 for(j=i-1;j>=0;j--)
7108 {
7109 if(ba[j]==start+i*4)
7110 //temp_is32&=branch_regs[j].is32;
7111 temp_is32&=p32[j];
7112 }
7113 for(j=i;j<slen;j++)
7114 {
7115 if(ba[j]==start+i*4)
7116 temp_is32=1;
7117 }
7118 is32=temp_is32;
7119 }
7120 int type=itype[i];
7121 int op=opcode[i];
7122 int op2=opcode2[i];
7123 int rt=rt1[i];
7124 int s1=rs1[i];
7125 int s2=rs2[i];
7126 if(type==UJUMP||type==RJUMP||type==CJUMP||type==SJUMP||type==FJUMP) {
7127 // Branches don't write registers, consider the delay slot instead.
7128 type=itype[i+1];
7129 op=opcode[i+1];
7130 op2=opcode2[i+1];
7131 rt=rt1[i+1];
7132 s1=rs1[i+1];
7133 s2=rs2[i+1];
7134 lastbranch=is32;
7135 }
7136 switch(type) {
7137 case LOAD:
7138 if(opcode[i]==0x27||opcode[i]==0x37|| // LWU/LD
7139 opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
7140 is32&=~(1LL<<rt);
7141 else
7142 is32|=1LL<<rt;
7143 break;
7144 case STORE:
7145 case STORELR:
7146 break;
7147 case LOADLR:
7148 if(op==0x1a||op==0x1b) is32&=~(1LL<<rt); // LDR/LDL
7149 if(op==0x22) is32|=1LL<<rt; // LWL
7150 break;
7151 case IMM16:
7152 if (op==0x08||op==0x09|| // ADDI/ADDIU
7153 op==0x0a||op==0x0b|| // SLTI/SLTIU
7154 op==0x0c|| // ANDI
7155 op==0x0f) // LUI
7156 {
7157 is32|=1LL<<rt;
7158 }
7159 if(op==0x18||op==0x19) { // DADDI/DADDIU
7160 is32&=~(1LL<<rt);
7161 //if(imm[i]==0)
7162 // is32|=((is32>>s1)&1LL)<<rt;
7163 }
7164 if(op==0x0d||op==0x0e) { // ORI/XORI
7165 uint64_t sr=((is32>>s1)&1LL);
7166 is32&=~(1LL<<rt);
7167 is32|=sr<<rt;
7168 }
7169 break;
7170 case UJUMP:
7171 break;
7172 case RJUMP:
7173 break;
7174 case CJUMP:
7175 break;
7176 case SJUMP:
7177 break;
7178 case FJUMP:
7179 break;
7180 case ALU:
7181 if(op2>=0x20&&op2<=0x23) { // ADD/ADDU/SUB/SUBU
7182 is32|=1LL<<rt;
7183 }
7184 if(op2==0x2a||op2==0x2b) { // SLT/SLTU
7185 is32|=1LL<<rt;
7186 }
7187 else if(op2>=0x24&&op2<=0x27) { // AND/OR/XOR/NOR
7188 uint64_t sr=((is32>>s1)&(is32>>s2)&1LL);
7189 is32&=~(1LL<<rt);
7190 is32|=sr<<rt;
7191 }
7192 else if(op2>=0x2c&&op2<=0x2d) { // DADD/DADDU
7193 if(s1==0&&s2==0) {
7194 is32|=1LL<<rt;
7195 }
7196 else if(s2==0) {
7197 uint64_t sr=((is32>>s1)&1LL);
7198 is32&=~(1LL<<rt);
7199 is32|=sr<<rt;
7200 }
7201 else if(s1==0) {
7202 uint64_t sr=((is32>>s2)&1LL);
7203 is32&=~(1LL<<rt);
7204 is32|=sr<<rt;
7205 }
7206 else {
7207 is32&=~(1LL<<rt);
7208 }
7209 }
7210 else if(op2>=0x2e&&op2<=0x2f) { // DSUB/DSUBU
7211 if(s1==0&&s2==0) {
7212 is32|=1LL<<rt;
7213 }
7214 else if(s2==0) {
7215 uint64_t sr=((is32>>s1)&1LL);
7216 is32&=~(1LL<<rt);
7217 is32|=sr<<rt;
7218 }
7219 else {
7220 is32&=~(1LL<<rt);
7221 }
7222 }
7223 break;
7224 case MULTDIV:
7225 if (op2>=0x1c&&op2<=0x1f) { // DMULT/DMULTU/DDIV/DDIVU
7226 is32&=~((1LL<<HIREG)|(1LL<<LOREG));
7227 }
7228 else {
7229 is32|=(1LL<<HIREG)|(1LL<<LOREG);
7230 }
7231 break;
7232 case MOV:
7233 {
7234 uint64_t sr=((is32>>s1)&1LL);
7235 is32&=~(1LL<<rt);
7236 is32|=sr<<rt;
7237 }
7238 break;
7239 case SHIFT:
7240 if(op2>=0x14&&op2<=0x17) is32&=~(1LL<<rt); // DSLLV/DSRLV/DSRAV
7241 else is32|=1LL<<rt; // SLLV/SRLV/SRAV
7242 break;
7243 case SHIFTIMM:
7244 is32|=1LL<<rt;
7245 // DSLL/DSRL/DSRA/DSLL32/DSRL32 but not DSRA32 have 64-bit result
7246 if(op2>=0x38&&op2<0x3f) is32&=~(1LL<<rt);
7247 break;
7248 case COP0:
7249 if(op2==0) is32|=1LL<<rt; // MFC0
7250 break;
7251 case COP1:
b9b61529 7252 case COP2:
57871462 7253 if(op2==0) is32|=1LL<<rt; // MFC1
7254 if(op2==1) is32&=~(1LL<<rt); // DMFC1
7255 if(op2==2) is32|=1LL<<rt; // CFC1
7256 break;
7257 case C1LS:
b9b61529 7258 case C2LS:
57871462 7259 break;
7260 case FLOAT:
7261 case FCONV:
7262 break;
7263 case FCOMP:
7264 break;
b9b61529 7265 case C2OP:
57871462 7266 case SYSCALL:
7139f3c8 7267 case HLECALL:
57871462 7268 break;
7269 default:
7270 break;
7271 }
7272 is32|=1;
7273 p32[i]=is32;
7274
7275 if(i>0)
7276 {
7277 if(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)
7278 {
7279 if(rt1[i-1]==31) // JAL/JALR
7280 {
7281 // Subroutine call will return here, don't alloc any registers
7282 is32=1;
7283 }
7284 else if(i+1<slen)
7285 {
7286 // Internal branch will jump here, match registers to caller
7287 is32=0x3FFFFFFFFLL;
7288 }
7289 }
7290 }
7291 }
7292}
7293
7294// Identify registers which may be assumed to contain 32-bit values
7295// and where optimizations will rely on this.
7296// This is used to determine whether backward branches can safely
7297// jump to a location with 64-bit values in registers.
7298static void provisional_r32()
7299{
7300 u_int r32=0;
7301 int i;
7302
7303 for (i=slen-1;i>=0;i--)
7304 {
7305 int hr;
7306 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
7307 {
7308 if(ba[i]<start || ba[i]>=(start+slen*4))
7309 {
7310 // Branch out of this block, don't need anything
7311 r32=0;
7312 }
7313 else
7314 {
7315 // Internal branch
7316 // Need whatever matches the target
7317 // (and doesn't get overwritten by the delay slot instruction)
7318 r32=0;
7319 int t=(ba[i]-start)>>2;
7320 if(ba[i]>start+i*4) {
7321 // Forward branch
7322 //if(!(requires_32bit[t]&~regs[i].was32))
7323 // r32|=requires_32bit[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
7324 if(!(pr32[t]&~regs[i].was32))
7325 r32|=pr32[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
7326 }else{
7327 // Backward branch
7328 if(!(regs[t].was32&~unneeded_reg_upper[t]&~regs[i].was32))
7329 r32|=regs[t].was32&~unneeded_reg_upper[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
7330 }
7331 }
7332 // Conditional branch may need registers for following instructions
7333 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
7334 {
7335 if(i<slen-2) {
7336 //r32|=requires_32bit[i+2];
7337 r32|=pr32[i+2];
7338 r32&=regs[i].was32;
7339 // Mark this address as a branch target since it may be called
7340 // upon return from interrupt
7341 //bt[i+2]=1;
7342 }
7343 }
7344 // Merge in delay slot
7345 if(!likely[i]) {
7346 // These are overwritten unless the branch is "likely"
7347 // and the delay slot is nullified if not taken
7348 r32&=~(1LL<<rt1[i+1]);
7349 r32&=~(1LL<<rt2[i+1]);
7350 }
7351 // Assume these are needed (delay slot)
7352 if(us1[i+1]>0)
7353 {
7354 if((regs[i].was32>>us1[i+1])&1) r32|=1LL<<us1[i+1];
7355 }
7356 if(us2[i+1]>0)
7357 {
7358 if((regs[i].was32>>us2[i+1])&1) r32|=1LL<<us2[i+1];
7359 }
7360 if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1))
7361 {
7362 if((regs[i].was32>>dep1[i+1])&1) r32|=1LL<<dep1[i+1];
7363 }
7364 if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1))
7365 {
7366 if((regs[i].was32>>dep2[i+1])&1) r32|=1LL<<dep2[i+1];
7367 }
7368 }
1e973cb0 7369 else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
57871462 7370 {
7371 // SYSCALL instruction (software interrupt)
7372 r32=0;
7373 }
7374 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
7375 {
7376 // ERET instruction (return from interrupt)
7377 r32=0;
7378 }
7379 // Check 32 bits
7380 r32&=~(1LL<<rt1[i]);
7381 r32&=~(1LL<<rt2[i]);
7382 if(us1[i]>0)
7383 {
7384 if((regs[i].was32>>us1[i])&1) r32|=1LL<<us1[i];
7385 }
7386 if(us2[i]>0)
7387 {
7388 if((regs[i].was32>>us2[i])&1) r32|=1LL<<us2[i];
7389 }
7390 if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1))
7391 {
7392 if((regs[i].was32>>dep1[i])&1) r32|=1LL<<dep1[i];
7393 }
7394 if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1))
7395 {
7396 if((regs[i].was32>>dep2[i])&1) r32|=1LL<<dep2[i];
7397 }
7398 //requires_32bit[i]=r32;
7399 pr32[i]=r32;
7400
7401 // Dirty registers which are 32-bit, require 32-bit input
7402 // as they will be written as 32-bit values
7403 for(hr=0;hr<HOST_REGS;hr++)
7404 {
7405 if(regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64) {
7406 if((regs[i].was32>>regs[i].regmap_entry[hr])&(regs[i].wasdirty>>hr)&1) {
7407 if(!((unneeded_reg_upper[i]>>regs[i].regmap_entry[hr])&1))
7408 pr32[i]|=1LL<<regs[i].regmap_entry[hr];
7409 //requires_32bit[i]|=1LL<<regs[i].regmap_entry[hr];
7410 }
7411 }
7412 }
7413 }
7414}
7415
7416// Write back dirty registers as soon as we will no longer modify them,
7417// so that we don't end up with lots of writes at the branches.
7418void clean_registers(int istart,int iend,int wr)
7419{
7420 int i;
7421 int r;
7422 u_int will_dirty_i,will_dirty_next,temp_will_dirty;
7423 u_int wont_dirty_i,wont_dirty_next,temp_wont_dirty;
7424 if(iend==slen-1) {
7425 will_dirty_i=will_dirty_next=0;
7426 wont_dirty_i=wont_dirty_next=0;
7427 }else{
7428 will_dirty_i=will_dirty_next=will_dirty[iend+1];
7429 wont_dirty_i=wont_dirty_next=wont_dirty[iend+1];
7430 }
7431 for (i=iend;i>=istart;i--)
7432 {
7433 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
7434 {
7435 if(ba[i]<start || ba[i]>=(start+slen*4))
7436 {
7437 // Branch out of this block, flush all regs
7438 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
7439 {
7440 // Unconditional branch
7441 will_dirty_i=0;
7442 wont_dirty_i=0;
7443 // Merge in delay slot (will dirty)
7444 for(r=0;r<HOST_REGS;r++) {
7445 if(r!=EXCLUDE_REG) {
7446 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7447 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7448 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7449 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7450 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7451 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7452 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7453 if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7454 if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7455 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7456 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7457 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7458 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7459 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7460 }
7461 }
7462 }
7463 else
7464 {
7465 // Conditional branch
7466 will_dirty_i=0;
7467 wont_dirty_i=wont_dirty_next;
7468 // Merge in delay slot (will dirty)
7469 for(r=0;r<HOST_REGS;r++) {
7470 if(r!=EXCLUDE_REG) {
7471 if(!likely[i]) {
7472 // Might not dirty if likely branch is not taken
7473 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7474 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7475 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7476 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7477 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7478 if(branch_regs[i].regmap[r]==0) will_dirty_i&=~(1<<r);
7479 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7480 //if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7481 //if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7482 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7483 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7484 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7485 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7486 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7487 }
7488 }
7489 }
7490 }
7491 // Merge in delay slot (wont dirty)
7492 for(r=0;r<HOST_REGS;r++) {
7493 if(r!=EXCLUDE_REG) {
7494 if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7495 if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7496 if((regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7497 if((regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7498 if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7499 if((branch_regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7500 if((branch_regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7501 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7502 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7503 if(branch_regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7504 }
7505 }
7506 if(wr) {
7507 #ifndef DESTRUCTIVE_WRITEBACK
7508 branch_regs[i].dirty&=wont_dirty_i;
7509 #endif
7510 branch_regs[i].dirty|=will_dirty_i;
7511 }
7512 }
7513 else
7514 {
7515 // Internal branch
7516 if(ba[i]<=start+i*4) {
7517 // Backward branch
7518 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
7519 {
7520 // Unconditional branch
7521 temp_will_dirty=0;
7522 temp_wont_dirty=0;
7523 // Merge in delay slot (will dirty)
7524 for(r=0;r<HOST_REGS;r++) {
7525 if(r!=EXCLUDE_REG) {
7526 if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7527 if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7528 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7529 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7530 if((branch_regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7531 if(branch_regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
7532 if(branch_regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7533 if((regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7534 if((regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7535 if((regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7536 if((regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7537 if((regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7538 if(regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
7539 if(regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7540 }
7541 }
7542 } else {
7543 // Conditional branch (not taken case)
7544 temp_will_dirty=will_dirty_next;
7545 temp_wont_dirty=wont_dirty_next;
7546 // Merge in delay slot (will dirty)
7547 for(r=0;r<HOST_REGS;r++) {
7548 if(r!=EXCLUDE_REG) {
7549 if(!likely[i]) {
7550 // Will not dirty if likely branch is not taken
7551 if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7552 if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7553 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7554 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7555 if((branch_regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7556 if(branch_regs[i].regmap[r]==0) temp_will_dirty&=~(1<<r);
7557 if(branch_regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7558 //if((regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7559 //if((regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7560 if((regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7561 if((regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7562 if((regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7563 if(regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
7564 if(regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7565 }
7566 }
7567 }
7568 }
7569 // Merge in delay slot (wont dirty)
7570 for(r=0;r<HOST_REGS;r++) {
7571 if(r!=EXCLUDE_REG) {
7572 if((regs[i].regmap[r]&63)==rt1[i]) temp_wont_dirty|=1<<r;
7573 if((regs[i].regmap[r]&63)==rt2[i]) temp_wont_dirty|=1<<r;
7574 if((regs[i].regmap[r]&63)==rt1[i+1]) temp_wont_dirty|=1<<r;
7575 if((regs[i].regmap[r]&63)==rt2[i+1]) temp_wont_dirty|=1<<r;
7576 if(regs[i].regmap[r]==CCREG) temp_wont_dirty|=1<<r;
7577 if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_wont_dirty|=1<<r;
7578 if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_wont_dirty|=1<<r;
7579 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_wont_dirty|=1<<r;
7580 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_wont_dirty|=1<<r;
7581 if(branch_regs[i].regmap[r]==CCREG) temp_wont_dirty|=1<<r;
7582 }
7583 }
7584 // Deal with changed mappings
7585 if(i<iend) {
7586 for(r=0;r<HOST_REGS;r++) {
7587 if(r!=EXCLUDE_REG) {
7588 if(regs[i].regmap[r]!=regmap_pre[i][r]) {
7589 temp_will_dirty&=~(1<<r);
7590 temp_wont_dirty&=~(1<<r);
7591 if((regmap_pre[i][r]&63)>0 && (regmap_pre[i][r]&63)<34) {
7592 temp_will_dirty|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7593 temp_wont_dirty|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7594 } else {
7595 temp_will_dirty|=1<<r;
7596 temp_wont_dirty|=1<<r;
7597 }
7598 }
7599 }
7600 }
7601 }
7602 if(wr) {
7603 will_dirty[i]=temp_will_dirty;
7604 wont_dirty[i]=temp_wont_dirty;
7605 clean_registers((ba[i]-start)>>2,i-1,0);
7606 }else{
7607 // Limit recursion. It can take an excessive amount
7608 // of time if there are a lot of nested loops.
7609 will_dirty[(ba[i]-start)>>2]=0;
7610 wont_dirty[(ba[i]-start)>>2]=-1;
7611 }
7612 }
7613 /*else*/ if(1)
7614 {
7615 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
7616 {
7617 // Unconditional branch
7618 will_dirty_i=0;
7619 wont_dirty_i=0;
7620 //if(ba[i]>start+i*4) { // Disable recursion (for debugging)
7621 for(r=0;r<HOST_REGS;r++) {
7622 if(r!=EXCLUDE_REG) {
7623 if(branch_regs[i].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
7624 will_dirty_i|=will_dirty[(ba[i]-start)>>2]&(1<<r);
7625 wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
7626 }
e3234ecf 7627 if(branch_regs[i].regmap[r]>=0) {
7628 will_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>(branch_regs[i].regmap[r]&63))&1)<<r;
7629 wont_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>(branch_regs[i].regmap[r]&63))&1)<<r;
7630 }
57871462 7631 }
7632 }
7633 //}
7634 // Merge in delay slot
7635 for(r=0;r<HOST_REGS;r++) {
7636 if(r!=EXCLUDE_REG) {
7637 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7638 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7639 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7640 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7641 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7642 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7643 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7644 if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7645 if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7646 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7647 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7648 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7649 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7650 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7651 }
7652 }
7653 } else {
7654 // Conditional branch
7655 will_dirty_i=will_dirty_next;
7656 wont_dirty_i=wont_dirty_next;
7657 //if(ba[i]>start+i*4) { // Disable recursion (for debugging)
7658 for(r=0;r<HOST_REGS;r++) {
7659 if(r!=EXCLUDE_REG) {
e3234ecf 7660 signed char target_reg=branch_regs[i].regmap[r];
7661 if(target_reg==regs[(ba[i]-start)>>2].regmap_entry[r]) {
57871462 7662 will_dirty_i&=will_dirty[(ba[i]-start)>>2]&(1<<r);
7663 wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
7664 }
e3234ecf 7665 else if(target_reg>=0) {
7666 will_dirty_i&=((unneeded_reg[(ba[i]-start)>>2]>>(target_reg&63))&1)<<r;
7667 wont_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>(target_reg&63))&1)<<r;
57871462 7668 }
7669 // Treat delay slot as part of branch too
7670 /*if(regs[i+1].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
7671 will_dirty[i+1]&=will_dirty[(ba[i]-start)>>2]&(1<<r);
7672 wont_dirty[i+1]|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
7673 }
7674 else
7675 {
7676 will_dirty[i+1]&=~(1<<r);
7677 }*/
7678 }
7679 }
7680 //}
7681 // Merge in delay slot
7682 for(r=0;r<HOST_REGS;r++) {
7683 if(r!=EXCLUDE_REG) {
7684 if(!likely[i]) {
7685 // Might not dirty if likely branch is not taken
7686 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7687 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7688 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7689 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7690 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7691 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7692 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7693 //if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7694 //if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7695 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7696 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7697 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7698 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7699 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7700 }
7701 }
7702 }
7703 }
e3234ecf 7704 // Merge in delay slot (won't dirty)
57871462 7705 for(r=0;r<HOST_REGS;r++) {
7706 if(r!=EXCLUDE_REG) {
7707 if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7708 if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7709 if((regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7710 if((regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7711 if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7712 if((branch_regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7713 if((branch_regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7714 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7715 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7716 if(branch_regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7717 }
7718 }
7719 if(wr) {
7720 #ifndef DESTRUCTIVE_WRITEBACK
7721 branch_regs[i].dirty&=wont_dirty_i;
7722 #endif
7723 branch_regs[i].dirty|=will_dirty_i;
7724 }
7725 }
7726 }
7727 }
1e973cb0 7728 else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
57871462 7729 {
7730 // SYSCALL instruction (software interrupt)
7731 will_dirty_i=0;
7732 wont_dirty_i=0;
7733 }
7734 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
7735 {
7736 // ERET instruction (return from interrupt)
7737 will_dirty_i=0;
7738 wont_dirty_i=0;
7739 }
7740 will_dirty_next=will_dirty_i;
7741 wont_dirty_next=wont_dirty_i;
7742 for(r=0;r<HOST_REGS;r++) {
7743 if(r!=EXCLUDE_REG) {
7744 if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7745 if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7746 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7747 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7748 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7749 if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7750 if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7751 if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7752 if(i>istart) {
7753 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=FJUMP)
7754 {
7755 // Don't store a register immediately after writing it,
7756 // may prevent dual-issue.
7757 if((regs[i].regmap[r]&63)==rt1[i-1]) wont_dirty_i|=1<<r;
7758 if((regs[i].regmap[r]&63)==rt2[i-1]) wont_dirty_i|=1<<r;
7759 }
7760 }
7761 }
7762 }
7763 // Save it
7764 will_dirty[i]=will_dirty_i;
7765 wont_dirty[i]=wont_dirty_i;
7766 // Mark registers that won't be dirtied as not dirty
7767 if(wr) {
7768 /*printf("wr (%d,%d) %x will:",istart,iend,start+i*4);
7769 for(r=0;r<HOST_REGS;r++) {
7770 if((will_dirty_i>>r)&1) {
7771 printf(" r%d",r);
7772 }
7773 }
7774 printf("\n");*/
7775
7776 //if(i==istart||(itype[i-1]!=RJUMP&&itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=FJUMP)) {
7777 regs[i].dirty|=will_dirty_i;
7778 #ifndef DESTRUCTIVE_WRITEBACK
7779 regs[i].dirty&=wont_dirty_i;
7780 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
7781 {
7782 if(i<iend-1&&itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000) {
7783 for(r=0;r<HOST_REGS;r++) {
7784 if(r!=EXCLUDE_REG) {
7785 if(regs[i].regmap[r]==regmap_pre[i+2][r]) {
7786 regs[i+2].wasdirty&=wont_dirty_i|~(1<<r);
7787 }else {/*printf("i: %x (%d) mismatch(+2): %d\n",start+i*4,i,r);/*assert(!((wont_dirty_i>>r)&1));*/}
7788 }
7789 }
7790 }
7791 }
7792 else
7793 {
7794 if(i<iend) {
7795 for(r=0;r<HOST_REGS;r++) {
7796 if(r!=EXCLUDE_REG) {
7797 if(regs[i].regmap[r]==regmap_pre[i+1][r]) {
7798 regs[i+1].wasdirty&=wont_dirty_i|~(1<<r);
7799 }else {/*printf("i: %x (%d) mismatch(+1): %d\n",start+i*4,i,r);/*assert(!((wont_dirty_i>>r)&1));*/}
7800 }
7801 }
7802 }
7803 }
7804 #endif
7805 //}
7806 }
7807 // Deal with changed mappings
7808 temp_will_dirty=will_dirty_i;
7809 temp_wont_dirty=wont_dirty_i;
7810 for(r=0;r<HOST_REGS;r++) {
7811 if(r!=EXCLUDE_REG) {
7812 int nr;
7813 if(regs[i].regmap[r]==regmap_pre[i][r]) {
7814 if(wr) {
7815 #ifndef DESTRUCTIVE_WRITEBACK
7816 regs[i].wasdirty&=wont_dirty_i|~(1<<r);
7817 #endif
7818 regs[i].wasdirty|=will_dirty_i&(1<<r);
7819 }
7820 }
f776eb14 7821 else if(regmap_pre[i][r]>=0&&(nr=get_reg(regs[i].regmap,regmap_pre[i][r]))>=0) {
57871462 7822 // Register moved to a different register
7823 will_dirty_i&=~(1<<r);
7824 wont_dirty_i&=~(1<<r);
7825 will_dirty_i|=((temp_will_dirty>>nr)&1)<<r;
7826 wont_dirty_i|=((temp_wont_dirty>>nr)&1)<<r;
7827 if(wr) {
7828 #ifndef DESTRUCTIVE_WRITEBACK
7829 regs[i].wasdirty&=wont_dirty_i|~(1<<r);
7830 #endif
7831 regs[i].wasdirty|=will_dirty_i&(1<<r);
7832 }
7833 }
7834 else {
7835 will_dirty_i&=~(1<<r);
7836 wont_dirty_i&=~(1<<r);
7837 if((regmap_pre[i][r]&63)>0 && (regmap_pre[i][r]&63)<34) {
7838 will_dirty_i|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7839 wont_dirty_i|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7840 } else {
7841 wont_dirty_i|=1<<r;
7842 /*printf("i: %x (%d) mismatch: %d\n",start+i*4,i,r);/*assert(!((will_dirty>>r)&1));*/
7843 }
7844 }
7845 }
7846 }
7847 }
7848}
7849
4600ba03 7850#ifdef DISASM
57871462 7851 /* disassembly */
7852void disassemble_inst(int i)
7853{
7854 if (bt[i]) printf("*"); else printf(" ");
7855 switch(itype[i]) {
7856 case UJUMP:
7857 printf (" %x: %s %8x\n",start+i*4,insn[i],ba[i]);break;
7858 case CJUMP:
7859 printf (" %x: %s r%d,r%d,%8x\n",start+i*4,insn[i],rs1[i],rs2[i],i?start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14):*ba);break;
7860 case SJUMP:
7861 printf (" %x: %s r%d,%8x\n",start+i*4,insn[i],rs1[i],start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14));break;
7862 case FJUMP:
7863 printf (" %x: %s %8x\n",start+i*4,insn[i],ba[i]);break;
7864 case RJUMP:
74426039 7865 if (opcode[i]==0x9&&rt1[i]!=31)
5067f341 7866 printf (" %x: %s r%d,r%d\n",start+i*4,insn[i],rt1[i],rs1[i]);
7867 else
7868 printf (" %x: %s r%d\n",start+i*4,insn[i],rs1[i]);
7869 break;
57871462 7870 case SPAN:
7871 printf (" %x: %s (pagespan) r%d,r%d,%8x\n",start+i*4,insn[i],rs1[i],rs2[i],ba[i]);break;
7872 case IMM16:
7873 if(opcode[i]==0xf) //LUI
7874 printf (" %x: %s r%d,%4x0000\n",start+i*4,insn[i],rt1[i],imm[i]&0xffff);
7875 else
7876 printf (" %x: %s r%d,r%d,%d\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
7877 break;
7878 case LOAD:
7879 case LOADLR:
7880 printf (" %x: %s r%d,r%d+%x\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
7881 break;
7882 case STORE:
7883 case STORELR:
7884 printf (" %x: %s r%d,r%d+%x\n",start+i*4,insn[i],rs2[i],rs1[i],imm[i]);
7885 break;
7886 case ALU:
7887 case SHIFT:
7888 printf (" %x: %s r%d,r%d,r%d\n",start+i*4,insn[i],rt1[i],rs1[i],rs2[i]);
7889 break;
7890 case MULTDIV:
7891 printf (" %x: %s r%d,r%d\n",start+i*4,insn[i],rs1[i],rs2[i]);
7892 break;
7893 case SHIFTIMM:
7894 printf (" %x: %s r%d,r%d,%d\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
7895 break;
7896 case MOV:
7897 if((opcode2[i]&0x1d)==0x10)
7898 printf (" %x: %s r%d\n",start+i*4,insn[i],rt1[i]);
7899 else if((opcode2[i]&0x1d)==0x11)
7900 printf (" %x: %s r%d\n",start+i*4,insn[i],rs1[i]);
7901 else
7902 printf (" %x: %s\n",start+i*4,insn[i]);
7903 break;
7904 case COP0:
7905 if(opcode2[i]==0)
7906 printf (" %x: %s r%d,cpr0[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC0
7907 else if(opcode2[i]==4)
7908 printf (" %x: %s r%d,cpr0[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC0
7909 else printf (" %x: %s\n",start+i*4,insn[i]);
7910 break;
7911 case COP1:
7912 if(opcode2[i]<3)
7913 printf (" %x: %s r%d,cpr1[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC1
7914 else if(opcode2[i]>3)
7915 printf (" %x: %s r%d,cpr1[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC1
7916 else printf (" %x: %s\n",start+i*4,insn[i]);
7917 break;
b9b61529 7918 case COP2:
7919 if(opcode2[i]<3)
7920 printf (" %x: %s r%d,cpr2[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC2
7921 else if(opcode2[i]>3)
7922 printf (" %x: %s r%d,cpr2[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC2
7923 else printf (" %x: %s\n",start+i*4,insn[i]);
7924 break;
57871462 7925 case C1LS:
7926 printf (" %x: %s cpr1[%d],r%d+%x\n",start+i*4,insn[i],(source[i]>>16)&0x1f,rs1[i],imm[i]);
7927 break;
b9b61529 7928 case C2LS:
7929 printf (" %x: %s cpr2[%d],r%d+%x\n",start+i*4,insn[i],(source[i]>>16)&0x1f,rs1[i],imm[i]);
7930 break;
1e973cb0 7931 case INTCALL:
7932 printf (" %x: %s (INTCALL)\n",start+i*4,insn[i]);
7933 break;
57871462 7934 default:
7935 //printf (" %s %8x\n",insn[i],source[i]);
7936 printf (" %x: %s\n",start+i*4,insn[i]);
7937 }
7938}
4600ba03 7939#else
7940static void disassemble_inst(int i) {}
7941#endif // DISASM
57871462 7942
dc990066 7943// clear the state completely, instead of just marking
7944// things invalid like invalidate_all_pages() does
7945void new_dynarec_clear_full()
57871462 7946{
57871462 7947 int n;
35775df7 7948 out=(u_char *)BASE_ADDR;
7949 memset(invalid_code,1,sizeof(invalid_code));
7950 memset(hash_table,0xff,sizeof(hash_table));
57871462 7951 memset(mini_ht,-1,sizeof(mini_ht));
7952 memset(restore_candidate,0,sizeof(restore_candidate));
dc990066 7953 memset(shadow,0,sizeof(shadow));
57871462 7954 copy=shadow;
7955 expirep=16384; // Expiry pointer, +2 blocks
7956 pending_exception=0;
7957 literalcount=0;
57871462 7958 stop_after_jal=0;
9be4ba64 7959 inv_code_start=inv_code_end=~0;
57871462 7960 // TLB
af4ee1fe 7961#ifndef DISABLE_TLB
57871462 7962 using_tlb=0;
7963 for(n=0;n<524288;n++) // 0 .. 0x7FFFFFFF
7964 memory_map[n]=-1;
7965 for(n=524288;n<526336;n++) // 0x80000000 .. 0x807FFFFF
7966 memory_map[n]=((u_int)rdram-0x80000000)>>2;
7967 for(n=526336;n<1048576;n++) // 0x80800000 .. 0xFFFFFFFF
7968 memory_map[n]=-1;
63cb0298 7969#endif
dc990066 7970 for(n=0;n<4096;n++) ll_clear(jump_in+n);
7971 for(n=0;n<4096;n++) ll_clear(jump_out+n);
7972 for(n=0;n<4096;n++) ll_clear(jump_dirty+n);
7973}
7974
7975void new_dynarec_init()
7976{
7977 printf("Init new dynarec\n");
7978 out=(u_char *)BASE_ADDR;
7979 if (mmap (out, 1<<TARGET_SIZE_2,
7980 PROT_READ | PROT_WRITE | PROT_EXEC,
7981 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS,
7982 -1, 0) <= 0) {printf("mmap() failed\n");}
7983#ifdef MUPEN64
7984 rdword=&readmem_dword;
7985 fake_pc.f.r.rs=&readmem_dword;
7986 fake_pc.f.r.rt=&readmem_dword;
7987 fake_pc.f.r.rd=&readmem_dword;
7988#endif
7989 int n;
2573466a 7990 cycle_multiplier=200;
dc990066 7991 new_dynarec_clear_full();
7992#ifdef HOST_IMM8
7993 // Copy this into local area so we don't have to put it in every literal pool
7994 invc_ptr=invalid_code;
7995#endif
24385cae 7996#ifdef MUPEN64
57871462 7997 for(n=0;n<0x8000;n++) { // 0 .. 0x7FFFFFFF
7998 writemem[n] = write_nomem_new;
7999 writememb[n] = write_nomemb_new;
8000 writememh[n] = write_nomemh_new;
24385cae 8001#ifndef FORCE32
57871462 8002 writememd[n] = write_nomemd_new;
24385cae 8003#endif
57871462 8004 readmem[n] = read_nomem_new;
8005 readmemb[n] = read_nomemb_new;
8006 readmemh[n] = read_nomemh_new;
24385cae 8007#ifndef FORCE32
57871462 8008 readmemd[n] = read_nomemd_new;
24385cae 8009#endif
57871462 8010 }
8011 for(n=0x8000;n<0x8080;n++) { // 0x80000000 .. 0x807FFFFF
8012 writemem[n] = write_rdram_new;
8013 writememb[n] = write_rdramb_new;
8014 writememh[n] = write_rdramh_new;
24385cae 8015#ifndef FORCE32
57871462 8016 writememd[n] = write_rdramd_new;
24385cae 8017#endif
57871462 8018 }
8019 for(n=0xC000;n<0x10000;n++) { // 0xC0000000 .. 0xFFFFFFFF
8020 writemem[n] = write_nomem_new;
8021 writememb[n] = write_nomemb_new;
8022 writememh[n] = write_nomemh_new;
24385cae 8023#ifndef FORCE32
57871462 8024 writememd[n] = write_nomemd_new;
24385cae 8025#endif
57871462 8026 readmem[n] = read_nomem_new;
8027 readmemb[n] = read_nomemb_new;
8028 readmemh[n] = read_nomemh_new;
24385cae 8029#ifndef FORCE32
57871462 8030 readmemd[n] = read_nomemd_new;
24385cae 8031#endif
57871462 8032 }
24385cae 8033#endif
57871462 8034 tlb_hacks();
8035 arch_init();
8036}
8037
8038void new_dynarec_cleanup()
8039{
8040 int n;
8041 if (munmap ((void *)BASE_ADDR, 1<<TARGET_SIZE_2) < 0) {printf("munmap() failed\n");}
8042 for(n=0;n<4096;n++) ll_clear(jump_in+n);
8043 for(n=0;n<4096;n++) ll_clear(jump_out+n);
8044 for(n=0;n<4096;n++) ll_clear(jump_dirty+n);
8045 #ifdef ROM_COPY
8046 if (munmap (ROM_COPY, 67108864) < 0) {printf("munmap() failed\n");}
8047 #endif
8048}
8049
8050int new_recompile_block(int addr)
8051{
8052/*
8053 if(addr==0x800cd050) {
8054 int block;
8055 for(block=0x80000;block<0x80800;block++) invalidate_block(block);
8056 int n;
8057 for(n=0;n<=2048;n++) ll_clear(jump_dirty+n);
8058 }
8059*/
8060 //if(Count==365117028) tracedebug=1;
8061 assem_debug("NOTCOMPILED: addr = %x -> %x\n", (int)addr, (int)out);
8062 //printf("NOTCOMPILED: addr = %x -> %x\n", (int)addr, (int)out);
8063 //printf("TRACE: count=%d next=%d (compile %x)\n",Count,next_interupt,addr);
8064 //if(debug)
8065 //printf("TRACE: count=%d next=%d (checksum %x)\n",Count,next_interupt,mchecksum());
8066 //printf("fpu mapping=%x enabled=%x\n",(Status & 0x04000000)>>26,(Status & 0x20000000)>>29);
8067 /*if(Count>=312978186) {
8068 rlist();
8069 }*/
8070 //rlist();
8071 start = (u_int)addr&~3;
8072 //assert(((u_int)addr&1)==0);
2f546f9a 8073 new_dynarec_did_compile=1;
7139f3c8 8074#ifdef PCSX
9ad4d757 8075 if (Config.HLE && start == 0x80001000) // hlecall
560e4a12 8076 {
7139f3c8 8077 // XXX: is this enough? Maybe check hleSoftCall?
bb5285ef 8078 u_int beginning=(u_int)out;
7139f3c8 8079 u_int page=get_page(start);
7139f3c8 8080 invalid_code[start>>12]=0;
8081 emit_movimm(start,0);
8082 emit_writeword(0,(int)&pcaddr);
bb5285ef 8083 emit_jmp((int)new_dyna_leave);
15776b68 8084 literal_pool(0);
bb5285ef 8085#ifdef __arm__
8086 __clear_cache((void *)beginning,out);
8087#endif
9ad4d757 8088 ll_add(jump_in+page,start,(void *)beginning);
7139f3c8 8089 return 0;
8090 }
560e4a12 8091 else if ((u_int)addr < 0x00200000 ||
8092 (0xa0000000 <= addr && addr < 0xa0200000)) {
7139f3c8 8093 // used for BIOS calls mostly?
560e4a12 8094 source = (u_int *)((u_int)rdram+(start&0x1fffff));
8095 pagelimit = (addr&0xa0000000)|0x00200000;
8096 }
8097 else if (!Config.HLE && (
8098/* (0x9fc00000 <= addr && addr < 0x9fc80000) ||*/
8099 (0xbfc00000 <= addr && addr < 0xbfc80000))) {
8100 // BIOS
8101 source = (u_int *)((u_int)psxR+(start&0x7ffff));
8102 pagelimit = (addr&0xfff00000)|0x80000;
7139f3c8 8103 }
8104 else
8105#endif
3d624f89 8106#ifdef MUPEN64
57871462 8107 if ((int)addr >= 0xa4000000 && (int)addr < 0xa4001000) {
8108 source = (u_int *)((u_int)SP_DMEM+start-0xa4000000);
8109 pagelimit = 0xa4001000;
8110 }
3d624f89 8111 else
8112#endif
4cb76aa4 8113 if ((int)addr >= 0x80000000 && (int)addr < 0x80000000+RAM_SIZE) {
57871462 8114 source = (u_int *)((u_int)rdram+start-0x80000000);
4cb76aa4 8115 pagelimit = 0x80000000+RAM_SIZE;
57871462 8116 }
90ae6d4e 8117#ifndef DISABLE_TLB
57871462 8118 else if ((signed int)addr >= (signed int)0xC0000000) {
8119 //printf("addr=%x mm=%x\n",(u_int)addr,(memory_map[start>>12]<<2));
8120 //if(tlb_LUT_r[start>>12])
8121 //source = (u_int *)(((int)rdram)+(tlb_LUT_r[start>>12]&0xFFFFF000)+(((int)addr)&0xFFF)-0x80000000);
8122 if((signed int)memory_map[start>>12]>=0) {
8123 source = (u_int *)((u_int)(start+(memory_map[start>>12]<<2)));
8124 pagelimit=(start+4096)&0xFFFFF000;
8125 int map=memory_map[start>>12];
8126 int i;
8127 for(i=0;i<5;i++) {
8128 //printf("start: %x next: %x\n",map,memory_map[pagelimit>>12]);
8129 if((map&0xBFFFFFFF)==(memory_map[pagelimit>>12]&0xBFFFFFFF)) pagelimit+=4096;
8130 }
8131 assem_debug("pagelimit=%x\n",pagelimit);
8132 assem_debug("mapping=%x (%x)\n",memory_map[start>>12],(memory_map[start>>12]<<2)+start);
8133 }
8134 else {
8135 assem_debug("Compile at unmapped memory address: %x \n", (int)addr);
8136 //assem_debug("start: %x next: %x\n",memory_map[start>>12],memory_map[(start+4096)>>12]);
560e4a12 8137 return -1; // Caller will invoke exception handler
57871462 8138 }
8139 //printf("source= %x\n",(int)source);
8140 }
90ae6d4e 8141#endif
57871462 8142 else {
8143 printf("Compile at bogus memory address: %x \n", (int)addr);
8144 exit(1);
8145 }
8146
8147 /* Pass 1: disassemble */
8148 /* Pass 2: register dependencies, branch targets */
8149 /* Pass 3: register allocation */
8150 /* Pass 4: branch dependencies */
8151 /* Pass 5: pre-alloc */
8152 /* Pass 6: optimize clean/dirty state */
8153 /* Pass 7: flag 32-bit registers */
8154 /* Pass 8: assembly */
8155 /* Pass 9: linker */
8156 /* Pass 10: garbage collection / free memory */
8157
8158 int i,j;
8159 int done=0;
8160 unsigned int type,op,op2;
8161
8162 //printf("addr = %x source = %x %x\n", addr,source,source[0]);
8163
8164 /* Pass 1 disassembly */
8165
8166 for(i=0;!done;i++) {
e1190b87 8167 bt[i]=0;likely[i]=0;ooo[i]=0;op2=0;
8168 minimum_free_regs[i]=0;
57871462 8169 opcode[i]=op=source[i]>>26;
8170 switch(op)
8171 {
8172 case 0x00: strcpy(insn[i],"special"); type=NI;
8173 op2=source[i]&0x3f;
8174 switch(op2)
8175 {
8176 case 0x00: strcpy(insn[i],"SLL"); type=SHIFTIMM; break;
8177 case 0x02: strcpy(insn[i],"SRL"); type=SHIFTIMM; break;
8178 case 0x03: strcpy(insn[i],"SRA"); type=SHIFTIMM; break;
8179 case 0x04: strcpy(insn[i],"SLLV"); type=SHIFT; break;
8180 case 0x06: strcpy(insn[i],"SRLV"); type=SHIFT; break;
8181 case 0x07: strcpy(insn[i],"SRAV"); type=SHIFT; break;
8182 case 0x08: strcpy(insn[i],"JR"); type=RJUMP; break;
8183 case 0x09: strcpy(insn[i],"JALR"); type=RJUMP; break;
8184 case 0x0C: strcpy(insn[i],"SYSCALL"); type=SYSCALL; break;
8185 case 0x0D: strcpy(insn[i],"BREAK"); type=OTHER; break;
8186 case 0x0F: strcpy(insn[i],"SYNC"); type=OTHER; break;
8187 case 0x10: strcpy(insn[i],"MFHI"); type=MOV; break;
8188 case 0x11: strcpy(insn[i],"MTHI"); type=MOV; break;
8189 case 0x12: strcpy(insn[i],"MFLO"); type=MOV; break;
8190 case 0x13: strcpy(insn[i],"MTLO"); type=MOV; break;
57871462 8191 case 0x18: strcpy(insn[i],"MULT"); type=MULTDIV; break;
8192 case 0x19: strcpy(insn[i],"MULTU"); type=MULTDIV; break;
8193 case 0x1A: strcpy(insn[i],"DIV"); type=MULTDIV; break;
8194 case 0x1B: strcpy(insn[i],"DIVU"); type=MULTDIV; break;
57871462 8195 case 0x20: strcpy(insn[i],"ADD"); type=ALU; break;
8196 case 0x21: strcpy(insn[i],"ADDU"); type=ALU; break;
8197 case 0x22: strcpy(insn[i],"SUB"); type=ALU; break;
8198 case 0x23: strcpy(insn[i],"SUBU"); type=ALU; break;
8199 case 0x24: strcpy(insn[i],"AND"); type=ALU; break;
8200 case 0x25: strcpy(insn[i],"OR"); type=ALU; break;
8201 case 0x26: strcpy(insn[i],"XOR"); type=ALU; break;
8202 case 0x27: strcpy(insn[i],"NOR"); type=ALU; break;
8203 case 0x2A: strcpy(insn[i],"SLT"); type=ALU; break;
8204 case 0x2B: strcpy(insn[i],"SLTU"); type=ALU; break;
57871462 8205 case 0x30: strcpy(insn[i],"TGE"); type=NI; break;
8206 case 0x31: strcpy(insn[i],"TGEU"); type=NI; break;
8207 case 0x32: strcpy(insn[i],"TLT"); type=NI; break;
8208 case 0x33: strcpy(insn[i],"TLTU"); type=NI; break;
8209 case 0x34: strcpy(insn[i],"TEQ"); type=NI; break;
8210 case 0x36: strcpy(insn[i],"TNE"); type=NI; break;
7f2607ea 8211#ifndef FORCE32
8212 case 0x14: strcpy(insn[i],"DSLLV"); type=SHIFT; break;
8213 case 0x16: strcpy(insn[i],"DSRLV"); type=SHIFT; break;
8214 case 0x17: strcpy(insn[i],"DSRAV"); type=SHIFT; break;
8215 case 0x1C: strcpy(insn[i],"DMULT"); type=MULTDIV; break;
8216 case 0x1D: strcpy(insn[i],"DMULTU"); type=MULTDIV; break;
8217 case 0x1E: strcpy(insn[i],"DDIV"); type=MULTDIV; break;
8218 case 0x1F: strcpy(insn[i],"DDIVU"); type=MULTDIV; break;
8219 case 0x2C: strcpy(insn[i],"DADD"); type=ALU; break;
8220 case 0x2D: strcpy(insn[i],"DADDU"); type=ALU; break;
8221 case 0x2E: strcpy(insn[i],"DSUB"); type=ALU; break;
8222 case 0x2F: strcpy(insn[i],"DSUBU"); type=ALU; break;
57871462 8223 case 0x38: strcpy(insn[i],"DSLL"); type=SHIFTIMM; break;
8224 case 0x3A: strcpy(insn[i],"DSRL"); type=SHIFTIMM; break;
8225 case 0x3B: strcpy(insn[i],"DSRA"); type=SHIFTIMM; break;
8226 case 0x3C: strcpy(insn[i],"DSLL32"); type=SHIFTIMM; break;
8227 case 0x3E: strcpy(insn[i],"DSRL32"); type=SHIFTIMM; break;
8228 case 0x3F: strcpy(insn[i],"DSRA32"); type=SHIFTIMM; break;
7f2607ea 8229#endif
57871462 8230 }
8231 break;
8232 case 0x01: strcpy(insn[i],"regimm"); type=NI;
8233 op2=(source[i]>>16)&0x1f;
8234 switch(op2)
8235 {
8236 case 0x00: strcpy(insn[i],"BLTZ"); type=SJUMP; break;
8237 case 0x01: strcpy(insn[i],"BGEZ"); type=SJUMP; break;
8238 case 0x02: strcpy(insn[i],"BLTZL"); type=SJUMP; break;
8239 case 0x03: strcpy(insn[i],"BGEZL"); type=SJUMP; break;
8240 case 0x08: strcpy(insn[i],"TGEI"); type=NI; break;
8241 case 0x09: strcpy(insn[i],"TGEIU"); type=NI; break;
8242 case 0x0A: strcpy(insn[i],"TLTI"); type=NI; break;
8243 case 0x0B: strcpy(insn[i],"TLTIU"); type=NI; break;
8244 case 0x0C: strcpy(insn[i],"TEQI"); type=NI; break;
8245 case 0x0E: strcpy(insn[i],"TNEI"); type=NI; break;
8246 case 0x10: strcpy(insn[i],"BLTZAL"); type=SJUMP; break;
8247 case 0x11: strcpy(insn[i],"BGEZAL"); type=SJUMP; break;
8248 case 0x12: strcpy(insn[i],"BLTZALL"); type=SJUMP; break;
8249 case 0x13: strcpy(insn[i],"BGEZALL"); type=SJUMP; break;
8250 }
8251 break;
8252 case 0x02: strcpy(insn[i],"J"); type=UJUMP; break;
8253 case 0x03: strcpy(insn[i],"JAL"); type=UJUMP; break;
8254 case 0x04: strcpy(insn[i],"BEQ"); type=CJUMP; break;
8255 case 0x05: strcpy(insn[i],"BNE"); type=CJUMP; break;
8256 case 0x06: strcpy(insn[i],"BLEZ"); type=CJUMP; break;
8257 case 0x07: strcpy(insn[i],"BGTZ"); type=CJUMP; break;
8258 case 0x08: strcpy(insn[i],"ADDI"); type=IMM16; break;
8259 case 0x09: strcpy(insn[i],"ADDIU"); type=IMM16; break;
8260 case 0x0A: strcpy(insn[i],"SLTI"); type=IMM16; break;
8261 case 0x0B: strcpy(insn[i],"SLTIU"); type=IMM16; break;
8262 case 0x0C: strcpy(insn[i],"ANDI"); type=IMM16; break;
8263 case 0x0D: strcpy(insn[i],"ORI"); type=IMM16; break;
8264 case 0x0E: strcpy(insn[i],"XORI"); type=IMM16; break;
8265 case 0x0F: strcpy(insn[i],"LUI"); type=IMM16; break;
8266 case 0x10: strcpy(insn[i],"cop0"); type=NI;
8267 op2=(source[i]>>21)&0x1f;
8268 switch(op2)
8269 {
8270 case 0x00: strcpy(insn[i],"MFC0"); type=COP0; break;
8271 case 0x04: strcpy(insn[i],"MTC0"); type=COP0; break;
8272 case 0x10: strcpy(insn[i],"tlb"); type=NI;
8273 switch(source[i]&0x3f)
8274 {
8275 case 0x01: strcpy(insn[i],"TLBR"); type=COP0; break;
8276 case 0x02: strcpy(insn[i],"TLBWI"); type=COP0; break;
8277 case 0x06: strcpy(insn[i],"TLBWR"); type=COP0; break;
8278 case 0x08: strcpy(insn[i],"TLBP"); type=COP0; break;
576bbd8f 8279#ifdef PCSX
8280 case 0x10: strcpy(insn[i],"RFE"); type=COP0; break;
8281#else
57871462 8282 case 0x18: strcpy(insn[i],"ERET"); type=COP0; break;
576bbd8f 8283#endif
57871462 8284 }
8285 }
8286 break;
8287 case 0x11: strcpy(insn[i],"cop1"); type=NI;
8288 op2=(source[i]>>21)&0x1f;
8289 switch(op2)
8290 {
8291 case 0x00: strcpy(insn[i],"MFC1"); type=COP1; break;
8292 case 0x01: strcpy(insn[i],"DMFC1"); type=COP1; break;
8293 case 0x02: strcpy(insn[i],"CFC1"); type=COP1; break;
8294 case 0x04: strcpy(insn[i],"MTC1"); type=COP1; break;
8295 case 0x05: strcpy(insn[i],"DMTC1"); type=COP1; break;
8296 case 0x06: strcpy(insn[i],"CTC1"); type=COP1; break;
8297 case 0x08: strcpy(insn[i],"BC1"); type=FJUMP;
8298 switch((source[i]>>16)&0x3)
8299 {
8300 case 0x00: strcpy(insn[i],"BC1F"); break;
8301 case 0x01: strcpy(insn[i],"BC1T"); break;
8302 case 0x02: strcpy(insn[i],"BC1FL"); break;
8303 case 0x03: strcpy(insn[i],"BC1TL"); break;
8304 }
8305 break;
8306 case 0x10: strcpy(insn[i],"C1.S"); type=NI;
8307 switch(source[i]&0x3f)
8308 {
8309 case 0x00: strcpy(insn[i],"ADD.S"); type=FLOAT; break;
8310 case 0x01: strcpy(insn[i],"SUB.S"); type=FLOAT; break;
8311 case 0x02: strcpy(insn[i],"MUL.S"); type=FLOAT; break;
8312 case 0x03: strcpy(insn[i],"DIV.S"); type=FLOAT; break;
8313 case 0x04: strcpy(insn[i],"SQRT.S"); type=FLOAT; break;
8314 case 0x05: strcpy(insn[i],"ABS.S"); type=FLOAT; break;
8315 case 0x06: strcpy(insn[i],"MOV.S"); type=FLOAT; break;
8316 case 0x07: strcpy(insn[i],"NEG.S"); type=FLOAT; break;
8317 case 0x08: strcpy(insn[i],"ROUND.L.S"); type=FCONV; break;
8318 case 0x09: strcpy(insn[i],"TRUNC.L.S"); type=FCONV; break;
8319 case 0x0A: strcpy(insn[i],"CEIL.L.S"); type=FCONV; break;
8320 case 0x0B: strcpy(insn[i],"FLOOR.L.S"); type=FCONV; break;
8321 case 0x0C: strcpy(insn[i],"ROUND.W.S"); type=FCONV; break;
8322 case 0x0D: strcpy(insn[i],"TRUNC.W.S"); type=FCONV; break;
8323 case 0x0E: strcpy(insn[i],"CEIL.W.S"); type=FCONV; break;
8324 case 0x0F: strcpy(insn[i],"FLOOR.W.S"); type=FCONV; break;
8325 case 0x21: strcpy(insn[i],"CVT.D.S"); type=FCONV; break;
8326 case 0x24: strcpy(insn[i],"CVT.W.S"); type=FCONV; break;
8327 case 0x25: strcpy(insn[i],"CVT.L.S"); type=FCONV; break;
8328 case 0x30: strcpy(insn[i],"C.F.S"); type=FCOMP; break;
8329 case 0x31: strcpy(insn[i],"C.UN.S"); type=FCOMP; break;
8330 case 0x32: strcpy(insn[i],"C.EQ.S"); type=FCOMP; break;
8331 case 0x33: strcpy(insn[i],"C.UEQ.S"); type=FCOMP; break;
8332 case 0x34: strcpy(insn[i],"C.OLT.S"); type=FCOMP; break;
8333 case 0x35: strcpy(insn[i],"C.ULT.S"); type=FCOMP; break;
8334 case 0x36: strcpy(insn[i],"C.OLE.S"); type=FCOMP; break;
8335 case 0x37: strcpy(insn[i],"C.ULE.S"); type=FCOMP; break;
8336 case 0x38: strcpy(insn[i],"C.SF.S"); type=FCOMP; break;
8337 case 0x39: strcpy(insn[i],"C.NGLE.S"); type=FCOMP; break;
8338 case 0x3A: strcpy(insn[i],"C.SEQ.S"); type=FCOMP; break;
8339 case 0x3B: strcpy(insn[i],"C.NGL.S"); type=FCOMP; break;
8340 case 0x3C: strcpy(insn[i],"C.LT.S"); type=FCOMP; break;
8341 case 0x3D: strcpy(insn[i],"C.NGE.S"); type=FCOMP; break;
8342 case 0x3E: strcpy(insn[i],"C.LE.S"); type=FCOMP; break;
8343 case 0x3F: strcpy(insn[i],"C.NGT.S"); type=FCOMP; break;
8344 }
8345 break;
8346 case 0x11: strcpy(insn[i],"C1.D"); type=NI;
8347 switch(source[i]&0x3f)
8348 {
8349 case 0x00: strcpy(insn[i],"ADD.D"); type=FLOAT; break;
8350 case 0x01: strcpy(insn[i],"SUB.D"); type=FLOAT; break;
8351 case 0x02: strcpy(insn[i],"MUL.D"); type=FLOAT; break;
8352 case 0x03: strcpy(insn[i],"DIV.D"); type=FLOAT; break;
8353 case 0x04: strcpy(insn[i],"SQRT.D"); type=FLOAT; break;
8354 case 0x05: strcpy(insn[i],"ABS.D"); type=FLOAT; break;
8355 case 0x06: strcpy(insn[i],"MOV.D"); type=FLOAT; break;
8356 case 0x07: strcpy(insn[i],"NEG.D"); type=FLOAT; break;
8357 case 0x08: strcpy(insn[i],"ROUND.L.D"); type=FCONV; break;
8358 case 0x09: strcpy(insn[i],"TRUNC.L.D"); type=FCONV; break;
8359 case 0x0A: strcpy(insn[i],"CEIL.L.D"); type=FCONV; break;
8360 case 0x0B: strcpy(insn[i],"FLOOR.L.D"); type=FCONV; break;
8361 case 0x0C: strcpy(insn[i],"ROUND.W.D"); type=FCONV; break;
8362 case 0x0D: strcpy(insn[i],"TRUNC.W.D"); type=FCONV; break;
8363 case 0x0E: strcpy(insn[i],"CEIL.W.D"); type=FCONV; break;
8364 case 0x0F: strcpy(insn[i],"FLOOR.W.D"); type=FCONV; break;
8365 case 0x20: strcpy(insn[i],"CVT.S.D"); type=FCONV; break;
8366 case 0x24: strcpy(insn[i],"CVT.W.D"); type=FCONV; break;
8367 case 0x25: strcpy(insn[i],"CVT.L.D"); type=FCONV; break;
8368 case 0x30: strcpy(insn[i],"C.F.D"); type=FCOMP; break;
8369 case 0x31: strcpy(insn[i],"C.UN.D"); type=FCOMP; break;
8370 case 0x32: strcpy(insn[i],"C.EQ.D"); type=FCOMP; break;
8371 case 0x33: strcpy(insn[i],"C.UEQ.D"); type=FCOMP; break;
8372 case 0x34: strcpy(insn[i],"C.OLT.D"); type=FCOMP; break;
8373 case 0x35: strcpy(insn[i],"C.ULT.D"); type=FCOMP; break;
8374 case 0x36: strcpy(insn[i],"C.OLE.D"); type=FCOMP; break;
8375 case 0x37: strcpy(insn[i],"C.ULE.D"); type=FCOMP; break;
8376 case 0x38: strcpy(insn[i],"C.SF.D"); type=FCOMP; break;
8377 case 0x39: strcpy(insn[i],"C.NGLE.D"); type=FCOMP; break;
8378 case 0x3A: strcpy(insn[i],"C.SEQ.D"); type=FCOMP; break;
8379 case 0x3B: strcpy(insn[i],"C.NGL.D"); type=FCOMP; break;
8380 case 0x3C: strcpy(insn[i],"C.LT.D"); type=FCOMP; break;
8381 case 0x3D: strcpy(insn[i],"C.NGE.D"); type=FCOMP; break;
8382 case 0x3E: strcpy(insn[i],"C.LE.D"); type=FCOMP; break;
8383 case 0x3F: strcpy(insn[i],"C.NGT.D"); type=FCOMP; break;
8384 }
8385 break;
8386 case 0x14: strcpy(insn[i],"C1.W"); type=NI;
8387 switch(source[i]&0x3f)
8388 {
8389 case 0x20: strcpy(insn[i],"CVT.S.W"); type=FCONV; break;
8390 case 0x21: strcpy(insn[i],"CVT.D.W"); type=FCONV; break;
8391 }
8392 break;
8393 case 0x15: strcpy(insn[i],"C1.L"); type=NI;
8394 switch(source[i]&0x3f)
8395 {
8396 case 0x20: strcpy(insn[i],"CVT.S.L"); type=FCONV; break;
8397 case 0x21: strcpy(insn[i],"CVT.D.L"); type=FCONV; break;
8398 }
8399 break;
8400 }
8401 break;
909168d6 8402#ifndef FORCE32
57871462 8403 case 0x14: strcpy(insn[i],"BEQL"); type=CJUMP; break;
8404 case 0x15: strcpy(insn[i],"BNEL"); type=CJUMP; break;
8405 case 0x16: strcpy(insn[i],"BLEZL"); type=CJUMP; break;
8406 case 0x17: strcpy(insn[i],"BGTZL"); type=CJUMP; break;
8407 case 0x18: strcpy(insn[i],"DADDI"); type=IMM16; break;
8408 case 0x19: strcpy(insn[i],"DADDIU"); type=IMM16; break;
8409 case 0x1A: strcpy(insn[i],"LDL"); type=LOADLR; break;
8410 case 0x1B: strcpy(insn[i],"LDR"); type=LOADLR; break;
996cc15d 8411#endif
57871462 8412 case 0x20: strcpy(insn[i],"LB"); type=LOAD; break;
8413 case 0x21: strcpy(insn[i],"LH"); type=LOAD; break;
8414 case 0x22: strcpy(insn[i],"LWL"); type=LOADLR; break;
8415 case 0x23: strcpy(insn[i],"LW"); type=LOAD; break;
8416 case 0x24: strcpy(insn[i],"LBU"); type=LOAD; break;
8417 case 0x25: strcpy(insn[i],"LHU"); type=LOAD; break;
8418 case 0x26: strcpy(insn[i],"LWR"); type=LOADLR; break;
64bd6f82 8419#ifndef FORCE32
57871462 8420 case 0x27: strcpy(insn[i],"LWU"); type=LOAD; break;
64bd6f82 8421#endif
57871462 8422 case 0x28: strcpy(insn[i],"SB"); type=STORE; break;
8423 case 0x29: strcpy(insn[i],"SH"); type=STORE; break;
8424 case 0x2A: strcpy(insn[i],"SWL"); type=STORELR; break;
8425 case 0x2B: strcpy(insn[i],"SW"); type=STORE; break;
996cc15d 8426#ifndef FORCE32
57871462 8427 case 0x2C: strcpy(insn[i],"SDL"); type=STORELR; break;
8428 case 0x2D: strcpy(insn[i],"SDR"); type=STORELR; break;
996cc15d 8429#endif
57871462 8430 case 0x2E: strcpy(insn[i],"SWR"); type=STORELR; break;
8431 case 0x2F: strcpy(insn[i],"CACHE"); type=NOP; break;
8432 case 0x30: strcpy(insn[i],"LL"); type=NI; break;
8433 case 0x31: strcpy(insn[i],"LWC1"); type=C1LS; break;
996cc15d 8434#ifndef FORCE32
57871462 8435 case 0x34: strcpy(insn[i],"LLD"); type=NI; break;
8436 case 0x35: strcpy(insn[i],"LDC1"); type=C1LS; break;
8437 case 0x37: strcpy(insn[i],"LD"); type=LOAD; break;
996cc15d 8438#endif
57871462 8439 case 0x38: strcpy(insn[i],"SC"); type=NI; break;
8440 case 0x39: strcpy(insn[i],"SWC1"); type=C1LS; break;
996cc15d 8441#ifndef FORCE32
57871462 8442 case 0x3C: strcpy(insn[i],"SCD"); type=NI; break;
8443 case 0x3D: strcpy(insn[i],"SDC1"); type=C1LS; break;
8444 case 0x3F: strcpy(insn[i],"SD"); type=STORE; break;
996cc15d 8445#endif
b9b61529 8446#ifdef PCSX
8447 case 0x12: strcpy(insn[i],"COP2"); type=NI;
8448 op2=(source[i]>>21)&0x1f;
bedfea38 8449 //if (op2 & 0x10) {
8450 if (source[i]&0x3f) { // use this hack to support old savestates with patched gte insns
c7abc864 8451 if (gte_handlers[source[i]&0x3f]!=NULL) {
bedfea38 8452 if (gte_regnames[source[i]&0x3f]!=NULL)
8453 strcpy(insn[i],gte_regnames[source[i]&0x3f]);
8454 else
8455 snprintf(insn[i], sizeof(insn[i]), "COP2 %x", source[i]&0x3f);
c7abc864 8456 type=C2OP;
8457 }
8458 }
8459 else switch(op2)
b9b61529 8460 {
8461 case 0x00: strcpy(insn[i],"MFC2"); type=COP2; break;
8462 case 0x02: strcpy(insn[i],"CFC2"); type=COP2; break;
8463 case 0x04: strcpy(insn[i],"MTC2"); type=COP2; break;
8464 case 0x06: strcpy(insn[i],"CTC2"); type=COP2; break;
b9b61529 8465 }
8466 break;
8467 case 0x32: strcpy(insn[i],"LWC2"); type=C2LS; break;
8468 case 0x3A: strcpy(insn[i],"SWC2"); type=C2LS; break;
8469 case 0x3B: strcpy(insn[i],"HLECALL"); type=HLECALL; break;
8470#endif
90ae6d4e 8471 default: strcpy(insn[i],"???"); type=NI;
75dec299 8472 printf("NI %08x @%08x (%08x)\n", source[i], addr + i*4, addr);
90ae6d4e 8473 break;
57871462 8474 }
8475 itype[i]=type;
8476 opcode2[i]=op2;
8477 /* Get registers/immediates */
8478 lt1[i]=0;
8479 us1[i]=0;
8480 us2[i]=0;
8481 dep1[i]=0;
8482 dep2[i]=0;
bedfea38 8483 gte_rs[i]=gte_rt[i]=0;
57871462 8484 switch(type) {
8485 case LOAD:
8486 rs1[i]=(source[i]>>21)&0x1f;
8487 rs2[i]=0;
8488 rt1[i]=(source[i]>>16)&0x1f;
8489 rt2[i]=0;
8490 imm[i]=(short)source[i];
8491 break;
8492 case STORE:
8493 case STORELR:
8494 rs1[i]=(source[i]>>21)&0x1f;
8495 rs2[i]=(source[i]>>16)&0x1f;
8496 rt1[i]=0;
8497 rt2[i]=0;
8498 imm[i]=(short)source[i];
8499 if(op==0x2c||op==0x2d||op==0x3f) us1[i]=rs2[i]; // 64-bit SDL/SDR/SD
8500 break;
8501 case LOADLR:
8502 // LWL/LWR only load part of the register,
8503 // therefore the target register must be treated as a source too
8504 rs1[i]=(source[i]>>21)&0x1f;
8505 rs2[i]=(source[i]>>16)&0x1f;
8506 rt1[i]=(source[i]>>16)&0x1f;
8507 rt2[i]=0;
8508 imm[i]=(short)source[i];
8509 if(op==0x1a||op==0x1b) us1[i]=rs2[i]; // LDR/LDL
8510 if(op==0x26) dep1[i]=rt1[i]; // LWR
8511 break;
8512 case IMM16:
8513 if (op==0x0f) rs1[i]=0; // LUI instruction has no source register
8514 else rs1[i]=(source[i]>>21)&0x1f;
8515 rs2[i]=0;
8516 rt1[i]=(source[i]>>16)&0x1f;
8517 rt2[i]=0;
8518 if(op>=0x0c&&op<=0x0e) { // ANDI/ORI/XORI
8519 imm[i]=(unsigned short)source[i];
8520 }else{
8521 imm[i]=(short)source[i];
8522 }
8523 if(op==0x18||op==0x19) us1[i]=rs1[i]; // DADDI/DADDIU
8524 if(op==0x0a||op==0x0b) us1[i]=rs1[i]; // SLTI/SLTIU
8525 if(op==0x0d||op==0x0e) dep1[i]=rs1[i]; // ORI/XORI
8526 break;
8527 case UJUMP:
8528 rs1[i]=0;
8529 rs2[i]=0;
8530 rt1[i]=0;
8531 rt2[i]=0;
8532 // The JAL instruction writes to r31.
8533 if (op&1) {
8534 rt1[i]=31;
8535 }
8536 rs2[i]=CCREG;
8537 break;
8538 case RJUMP:
8539 rs1[i]=(source[i]>>21)&0x1f;
8540 rs2[i]=0;
8541 rt1[i]=0;
8542 rt2[i]=0;
5067f341 8543 // The JALR instruction writes to rd.
57871462 8544 if (op2&1) {
5067f341 8545 rt1[i]=(source[i]>>11)&0x1f;
57871462 8546 }
8547 rs2[i]=CCREG;
8548 break;
8549 case CJUMP:
8550 rs1[i]=(source[i]>>21)&0x1f;
8551 rs2[i]=(source[i]>>16)&0x1f;
8552 rt1[i]=0;
8553 rt2[i]=0;
8554 if(op&2) { // BGTZ/BLEZ
8555 rs2[i]=0;
8556 }
8557 us1[i]=rs1[i];
8558 us2[i]=rs2[i];
8559 likely[i]=op>>4;
8560 break;
8561 case SJUMP:
8562 rs1[i]=(source[i]>>21)&0x1f;
8563 rs2[i]=CCREG;
8564 rt1[i]=0;
8565 rt2[i]=0;
8566 us1[i]=rs1[i];
8567 if(op2&0x10) { // BxxAL
8568 rt1[i]=31;
8569 // NOTE: If the branch is not taken, r31 is still overwritten
8570 }
8571 likely[i]=(op2&2)>>1;
8572 break;
8573 case FJUMP:
8574 rs1[i]=FSREG;
8575 rs2[i]=CSREG;
8576 rt1[i]=0;
8577 rt2[i]=0;
8578 likely[i]=((source[i])>>17)&1;
8579 break;
8580 case ALU:
8581 rs1[i]=(source[i]>>21)&0x1f; // source
8582 rs2[i]=(source[i]>>16)&0x1f; // subtract amount
8583 rt1[i]=(source[i]>>11)&0x1f; // destination
8584 rt2[i]=0;
8585 if(op2==0x2a||op2==0x2b) { // SLT/SLTU
8586 us1[i]=rs1[i];us2[i]=rs2[i];
8587 }
8588 else if(op2>=0x24&&op2<=0x27) { // AND/OR/XOR/NOR
8589 dep1[i]=rs1[i];dep2[i]=rs2[i];
8590 }
8591 else if(op2>=0x2c&&op2<=0x2f) { // DADD/DSUB
8592 dep1[i]=rs1[i];dep2[i]=rs2[i];
8593 }
8594 break;
8595 case MULTDIV:
8596 rs1[i]=(source[i]>>21)&0x1f; // source
8597 rs2[i]=(source[i]>>16)&0x1f; // divisor
8598 rt1[i]=HIREG;
8599 rt2[i]=LOREG;
8600 if (op2>=0x1c&&op2<=0x1f) { // DMULT/DMULTU/DDIV/DDIVU
8601 us1[i]=rs1[i];us2[i]=rs2[i];
8602 }
8603 break;
8604 case MOV:
8605 rs1[i]=0;
8606 rs2[i]=0;
8607 rt1[i]=0;
8608 rt2[i]=0;
8609 if(op2==0x10) rs1[i]=HIREG; // MFHI
8610 if(op2==0x11) rt1[i]=HIREG; // MTHI
8611 if(op2==0x12) rs1[i]=LOREG; // MFLO
8612 if(op2==0x13) rt1[i]=LOREG; // MTLO
8613 if((op2&0x1d)==0x10) rt1[i]=(source[i]>>11)&0x1f; // MFxx
8614 if((op2&0x1d)==0x11) rs1[i]=(source[i]>>21)&0x1f; // MTxx
8615 dep1[i]=rs1[i];
8616 break;
8617 case SHIFT:
8618 rs1[i]=(source[i]>>16)&0x1f; // target of shift
8619 rs2[i]=(source[i]>>21)&0x1f; // shift amount
8620 rt1[i]=(source[i]>>11)&0x1f; // destination
8621 rt2[i]=0;
8622 // DSLLV/DSRLV/DSRAV are 64-bit
8623 if(op2>=0x14&&op2<=0x17) us1[i]=rs1[i];
8624 break;
8625 case SHIFTIMM:
8626 rs1[i]=(source[i]>>16)&0x1f;
8627 rs2[i]=0;
8628 rt1[i]=(source[i]>>11)&0x1f;
8629 rt2[i]=0;
8630 imm[i]=(source[i]>>6)&0x1f;
8631 // DSxx32 instructions
8632 if(op2>=0x3c) imm[i]|=0x20;
8633 // DSLL/DSRL/DSRA/DSRA32/DSRL32 but not DSLL32 require 64-bit source
8634 if(op2>=0x38&&op2!=0x3c) us1[i]=rs1[i];
8635 break;
8636 case COP0:
8637 rs1[i]=0;
8638 rs2[i]=0;
8639 rt1[i]=0;
8640 rt2[i]=0;
8641 if(op2==0) rt1[i]=(source[i]>>16)&0x1F; // MFC0
8642 if(op2==4) rs1[i]=(source[i]>>16)&0x1F; // MTC0
8643 if(op2==4&&((source[i]>>11)&0x1f)==12) rt2[i]=CSREG; // Status
8644 if(op2==16) if((source[i]&0x3f)==0x18) rs2[i]=CCREG; // ERET
8645 break;
8646 case COP1:
8647 rs1[i]=0;
8648 rs2[i]=0;
8649 rt1[i]=0;
8650 rt2[i]=0;
8651 if(op2<3) rt1[i]=(source[i]>>16)&0x1F; // MFC1/DMFC1/CFC1
8652 if(op2>3) rs1[i]=(source[i]>>16)&0x1F; // MTC1/DMTC1/CTC1
8653 if(op2==5) us1[i]=rs1[i]; // DMTC1
8654 rs2[i]=CSREG;
8655 break;
bedfea38 8656 case COP2:
8657 rs1[i]=0;
8658 rs2[i]=0;
8659 rt1[i]=0;
8660 rt2[i]=0;
8661 if(op2<3) rt1[i]=(source[i]>>16)&0x1F; // MFC2/CFC2
8662 if(op2>3) rs1[i]=(source[i]>>16)&0x1F; // MTC2/CTC2
8663 rs2[i]=CSREG;
8664 int gr=(source[i]>>11)&0x1F;
8665 switch(op2)
8666 {
8667 case 0x00: gte_rs[i]=1ll<<gr; break; // MFC2
8668 case 0x04: gte_rt[i]=1ll<<gr; break; // MTC2
0ff8c62c 8669 case 0x02: gte_rs[i]=1ll<<(gr+32); break; // CFC2
bedfea38 8670 case 0x06: gte_rt[i]=1ll<<(gr+32); break; // CTC2
8671 }
8672 break;
57871462 8673 case C1LS:
8674 rs1[i]=(source[i]>>21)&0x1F;
8675 rs2[i]=CSREG;
8676 rt1[i]=0;
8677 rt2[i]=0;
8678 imm[i]=(short)source[i];
8679 break;
b9b61529 8680 case C2LS:
8681 rs1[i]=(source[i]>>21)&0x1F;
8682 rs2[i]=0;
8683 rt1[i]=0;
8684 rt2[i]=0;
8685 imm[i]=(short)source[i];
bedfea38 8686 if(op==0x32) gte_rt[i]=1ll<<((source[i]>>16)&0x1F); // LWC2
8687 else gte_rs[i]=1ll<<((source[i]>>16)&0x1F); // SWC2
8688 break;
8689 case C2OP:
8690 rs1[i]=0;
8691 rs2[i]=0;
8692 rt1[i]=0;
8693 rt2[i]=0;
2167bef6 8694 gte_rs[i]=gte_reg_reads[source[i]&0x3f];
8695 gte_rt[i]=gte_reg_writes[source[i]&0x3f];
8696 gte_rt[i]|=1ll<<63; // every op changes flags
b9b61529 8697 break;
57871462 8698 case FLOAT:
8699 case FCONV:
8700 rs1[i]=0;
8701 rs2[i]=CSREG;
8702 rt1[i]=0;
8703 rt2[i]=0;
8704 break;
8705 case FCOMP:
8706 rs1[i]=FSREG;
8707 rs2[i]=CSREG;
8708 rt1[i]=FSREG;
8709 rt2[i]=0;
8710 break;
8711 case SYSCALL:
7139f3c8 8712 case HLECALL:
1e973cb0 8713 case INTCALL:
57871462 8714 rs1[i]=CCREG;
8715 rs2[i]=0;
8716 rt1[i]=0;
8717 rt2[i]=0;
8718 break;
8719 default:
8720 rs1[i]=0;
8721 rs2[i]=0;
8722 rt1[i]=0;
8723 rt2[i]=0;
8724 }
8725 /* Calculate branch target addresses */
8726 if(type==UJUMP)
8727 ba[i]=((start+i*4+4)&0xF0000000)|(((unsigned int)source[i]<<6)>>4);
8728 else if(type==CJUMP&&rs1[i]==rs2[i]&&(op&1))
8729 ba[i]=start+i*4+8; // Ignore never taken branch
8730 else if(type==SJUMP&&rs1[i]==0&&!(op2&1))
8731 ba[i]=start+i*4+8; // Ignore never taken branch
8732 else if(type==CJUMP||type==SJUMP||type==FJUMP)
8733 ba[i]=start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14);
8734 else ba[i]=-1;
26869094 8735#ifdef PCSX
3e535354 8736 if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)) {
8737 int do_in_intrp=0;
8738 // branch in delay slot?
8739 if(type==RJUMP||type==UJUMP||type==CJUMP||type==SJUMP||type==FJUMP) {
8740 // don't handle first branch and call interpreter if it's hit
8741 printf("branch in delay slot @%08x (%08x)\n", addr + i*4, addr);
8742 do_in_intrp=1;
8743 }
8744 // basic load delay detection
8745 else if((type==LOAD||type==LOADLR||type==COP0||type==COP2||type==C2LS)&&rt1[i]!=0) {
8746 int t=(ba[i-1]-start)/4;
8747 if(0 <= t && t < i &&(rt1[i]==rs1[t]||rt1[i]==rs2[t])&&itype[t]!=CJUMP&&itype[t]!=SJUMP) {
8748 // jump target wants DS result - potential load delay effect
8749 printf("load delay @%08x (%08x)\n", addr + i*4, addr);
8750 do_in_intrp=1;
8751 bt[t+1]=1; // expected return from interpreter
8752 }
8753 else if(i>=2&&rt1[i-2]==2&&rt1[i]==2&&rs1[i]!=2&&rs2[i]!=2&&rs1[i-1]!=2&&rs2[i-1]!=2&&
8754 !(i>=3&&(itype[i-3]==RJUMP||itype[i-3]==UJUMP||itype[i-3]==CJUMP||itype[i-3]==SJUMP))) {
8755 // v0 overwrite like this is a sign of trouble, bail out
8756 printf("v0 overwrite @%08x (%08x)\n", addr + i*4, addr);
8757 do_in_intrp=1;
8758 }
8759 }
3e535354 8760 if(do_in_intrp) {
8761 rs1[i-1]=CCREG;
8762 rs2[i-1]=rt1[i-1]=rt2[i-1]=0;
26869094 8763 ba[i-1]=-1;
8764 itype[i-1]=INTCALL;
8765 done=2;
3e535354 8766 i--; // don't compile the DS
26869094 8767 }
3e535354 8768 }
26869094 8769#endif
3e535354 8770 /* Is this the end of the block? */
8771 if(i>0&&(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)) {
5067f341 8772 if(rt1[i-1]==0) { // Continue past subroutine call (JAL)
1e973cb0 8773 done=2;
57871462 8774 }
8775 else {
8776 if(stop_after_jal) done=1;
8777 // Stop on BREAK
8778 if((source[i+1]&0xfc00003f)==0x0d) done=1;
8779 }
8780 // Don't recompile stuff that's already compiled
8781 if(check_addr(start+i*4+4)) done=1;
8782 // Don't get too close to the limit
8783 if(i>MAXBLOCK/2) done=1;
8784 }
75dec299 8785 if(itype[i]==SYSCALL&&stop_after_jal) done=1;
1e973cb0 8786 if(itype[i]==HLECALL||itype[i]==INTCALL) done=2;
8787 if(done==2) {
8788 // Does the block continue due to a branch?
8789 for(j=i-1;j>=0;j--)
8790 {
2a706964 8791 if(ba[j]==start+i*4) done=j=0; // Branch into delay slot
1e973cb0 8792 if(ba[j]==start+i*4+4) done=j=0;
8793 if(ba[j]==start+i*4+8) done=j=0;
8794 }
8795 }
75dec299 8796 //assert(i<MAXBLOCK-1);
57871462 8797 if(start+i*4==pagelimit-4) done=1;
8798 assert(start+i*4<pagelimit);
8799 if (i==MAXBLOCK-1) done=1;
8800 // Stop if we're compiling junk
8801 if(itype[i]==NI&&opcode[i]==0x11) {
8802 done=stop_after_jal=1;
8803 printf("Disabled speculative precompilation\n");
8804 }
8805 }
8806 slen=i;
8807 if(itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==RJUMP||itype[i-1]==FJUMP) {
8808 if(start+i*4==pagelimit) {
8809 itype[i-1]=SPAN;
8810 }
8811 }
8812 assert(slen>0);
8813
8814 /* Pass 2 - Register dependencies and branch targets */
8815
8816 unneeded_registers(0,slen-1,0);
8817
8818 /* Pass 3 - Register allocation */
8819
8820 struct regstat current; // Current register allocations/status
8821 current.is32=1;
8822 current.dirty=0;
8823 current.u=unneeded_reg[0];
8824 current.uu=unneeded_reg_upper[0];
8825 clear_all_regs(current.regmap);
8826 alloc_reg(&current,0,CCREG);
8827 dirty_reg(&current,CCREG);
8828 current.isconst=0;
8829 current.wasconst=0;
27727b63 8830 current.waswritten=0;
57871462 8831 int ds=0;
8832 int cc=0;
5194fb95 8833 int hr=-1;
6ebf4adf 8834
8835#ifndef FORCE32
57871462 8836 provisional_32bit();
6ebf4adf 8837#endif
57871462 8838 if((u_int)addr&1) {
8839 // First instruction is delay slot
8840 cc=-1;
8841 bt[1]=1;
8842 ds=1;
8843 unneeded_reg[0]=1;
8844 unneeded_reg_upper[0]=1;
8845 current.regmap[HOST_BTREG]=BTREG;
8846 }
8847
8848 for(i=0;i<slen;i++)
8849 {
8850 if(bt[i])
8851 {
8852 int hr;
8853 for(hr=0;hr<HOST_REGS;hr++)
8854 {
8855 // Is this really necessary?
8856 if(current.regmap[hr]==0) current.regmap[hr]=-1;
8857 }
8858 current.isconst=0;
27727b63 8859 current.waswritten=0;
57871462 8860 }
8861 if(i>1)
8862 {
8863 if((opcode[i-2]&0x2f)==0x05) // BNE/BNEL
8864 {
8865 if(rs1[i-2]==0||rs2[i-2]==0)
8866 {
8867 if(rs1[i-2]) {
8868 current.is32|=1LL<<rs1[i-2];
8869 int hr=get_reg(current.regmap,rs1[i-2]|64);
8870 if(hr>=0) current.regmap[hr]=-1;
8871 }
8872 if(rs2[i-2]) {
8873 current.is32|=1LL<<rs2[i-2];
8874 int hr=get_reg(current.regmap,rs2[i-2]|64);
8875 if(hr>=0) current.regmap[hr]=-1;
8876 }
8877 }
8878 }
8879 }
6ebf4adf 8880#ifndef FORCE32
57871462 8881 // If something jumps here with 64-bit values
8882 // then promote those registers to 64 bits
8883 if(bt[i])
8884 {
8885 uint64_t temp_is32=current.is32;
8886 for(j=i-1;j>=0;j--)
8887 {
8888 if(ba[j]==start+i*4)
8889 temp_is32&=branch_regs[j].is32;
8890 }
8891 for(j=i;j<slen;j++)
8892 {
8893 if(ba[j]==start+i*4)
8894 //temp_is32=1;
8895 temp_is32&=p32[j];
8896 }
8897 if(temp_is32!=current.is32) {
8898 //printf("dumping 32-bit regs (%x)\n",start+i*4);
311301dc 8899 #ifndef DESTRUCTIVE_WRITEBACK
8900 if(ds)
8901 #endif
57871462 8902 for(hr=0;hr<HOST_REGS;hr++)
8903 {
8904 int r=current.regmap[hr];
8905 if(r>0&&r<64)
8906 {
8907 if((current.dirty>>hr)&((current.is32&~temp_is32)>>r)&1) {
8908 temp_is32|=1LL<<r;
8909 //printf("restore %d\n",r);
8910 }
8911 }
8912 }
57871462 8913 current.is32=temp_is32;
8914 }
8915 }
6ebf4adf 8916#else
24385cae 8917 current.is32=-1LL;
8918#endif
8919
57871462 8920 memcpy(regmap_pre[i],current.regmap,sizeof(current.regmap));
8921 regs[i].wasconst=current.isconst;
8922 regs[i].was32=current.is32;
8923 regs[i].wasdirty=current.dirty;
8575a877 8924 regs[i].loadedconst=0;
6ebf4adf 8925 #if defined(DESTRUCTIVE_WRITEBACK) && !defined(FORCE32)
57871462 8926 // To change a dirty register from 32 to 64 bits, we must write
8927 // it out during the previous cycle (for branches, 2 cycles)
8928 if(i<slen-1&&bt[i+1]&&itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP)
8929 {
8930 uint64_t temp_is32=current.is32;
8931 for(j=i-1;j>=0;j--)
8932 {
8933 if(ba[j]==start+i*4+4)
8934 temp_is32&=branch_regs[j].is32;
8935 }
8936 for(j=i;j<slen;j++)
8937 {
8938 if(ba[j]==start+i*4+4)
8939 //temp_is32=1;
8940 temp_is32&=p32[j];
8941 }
8942 if(temp_is32!=current.is32) {
8943 //printf("pre-dumping 32-bit regs (%x)\n",start+i*4);
8944 for(hr=0;hr<HOST_REGS;hr++)
8945 {
8946 int r=current.regmap[hr];
8947 if(r>0)
8948 {
8949 if((current.dirty>>hr)&((current.is32&~temp_is32)>>(r&63))&1) {
8950 if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP)
8951 {
8952 if(rs1[i]!=(r&63)&&rs2[i]!=(r&63))
8953 {
8954 //printf("dump %d/r%d\n",hr,r);
8955 current.regmap[hr]=-1;
8956 if(get_reg(current.regmap,r|64)>=0)
8957 current.regmap[get_reg(current.regmap,r|64)]=-1;
8958 }
8959 }
8960 }
8961 }
8962 }
8963 }
8964 }
8965 else if(i<slen-2&&bt[i+2]&&(source[i-1]>>16)!=0x1000&&(itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP))
8966 {
8967 uint64_t temp_is32=current.is32;
8968 for(j=i-1;j>=0;j--)
8969 {
8970 if(ba[j]==start+i*4+8)
8971 temp_is32&=branch_regs[j].is32;
8972 }
8973 for(j=i;j<slen;j++)
8974 {
8975 if(ba[j]==start+i*4+8)
8976 //temp_is32=1;
8977 temp_is32&=p32[j];
8978 }
8979 if(temp_is32!=current.is32) {
8980 //printf("pre-dumping 32-bit regs (%x)\n",start+i*4);
8981 for(hr=0;hr<HOST_REGS;hr++)
8982 {
8983 int r=current.regmap[hr];
8984 if(r>0)
8985 {
8986 if((current.dirty>>hr)&((current.is32&~temp_is32)>>(r&63))&1) {
8987 if(rs1[i]!=(r&63)&&rs2[i]!=(r&63)&&rs1[i+1]!=(r&63)&&rs2[i+1]!=(r&63))
8988 {
8989 //printf("dump %d/r%d\n",hr,r);
8990 current.regmap[hr]=-1;
8991 if(get_reg(current.regmap,r|64)>=0)
8992 current.regmap[get_reg(current.regmap,r|64)]=-1;
8993 }
8994 }
8995 }
8996 }
8997 }
8998 }
8999 #endif
9000 if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP) {
9001 if(i+1<slen) {
9002 current.u=unneeded_reg[i+1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
9003 current.uu=unneeded_reg_upper[i+1]&~((1LL<<us1[i])|(1LL<<us2[i]));
9004 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9005 current.u|=1;
9006 current.uu|=1;
9007 } else {
9008 current.u=1;
9009 current.uu=1;
9010 }
9011 } else {
9012 if(i+1<slen) {
9013 current.u=branch_unneeded_reg[i]&~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
9014 current.uu=branch_unneeded_reg_upper[i]&~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
9015 if((~current.uu>>rt1[i+1])&1) current.uu&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
9016 current.u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
9017 current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
9018 current.u|=1;
9019 current.uu|=1;
9020 } else { printf("oops, branch at end of block with no delay slot\n");exit(1); }
9021 }
9022 is_ds[i]=ds;
9023 if(ds) {
9024 ds=0; // Skip delay slot, already allocated as part of branch
9025 // ...but we need to alloc it in case something jumps here
9026 if(i+1<slen) {
9027 current.u=branch_unneeded_reg[i-1]&unneeded_reg[i+1];
9028 current.uu=branch_unneeded_reg_upper[i-1]&unneeded_reg_upper[i+1];
9029 }else{
9030 current.u=branch_unneeded_reg[i-1];
9031 current.uu=branch_unneeded_reg_upper[i-1];
9032 }
9033 current.u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
9034 current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
9035 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9036 current.u|=1;
9037 current.uu|=1;
9038 struct regstat temp;
9039 memcpy(&temp,&current,sizeof(current));
9040 temp.wasdirty=temp.dirty;
9041 temp.was32=temp.is32;
9042 // TODO: Take into account unconditional branches, as below
9043 delayslot_alloc(&temp,i);
9044 memcpy(regs[i].regmap,temp.regmap,sizeof(temp.regmap));
9045 regs[i].wasdirty=temp.wasdirty;
9046 regs[i].was32=temp.was32;
9047 regs[i].dirty=temp.dirty;
9048 regs[i].is32=temp.is32;
9049 regs[i].isconst=0;
9050 regs[i].wasconst=0;
9051 current.isconst=0;
9052 // Create entry (branch target) regmap
9053 for(hr=0;hr<HOST_REGS;hr++)
9054 {
9055 int r=temp.regmap[hr];
9056 if(r>=0) {
9057 if(r!=regmap_pre[i][hr]) {
9058 regs[i].regmap_entry[hr]=-1;
9059 }
9060 else
9061 {
9062 if(r<64){
9063 if((current.u>>r)&1) {
9064 regs[i].regmap_entry[hr]=-1;
9065 regs[i].regmap[hr]=-1;
9066 //Don't clear regs in the delay slot as the branch might need them
9067 //current.regmap[hr]=-1;
9068 }else
9069 regs[i].regmap_entry[hr]=r;
9070 }
9071 else {
9072 if((current.uu>>(r&63))&1) {
9073 regs[i].regmap_entry[hr]=-1;
9074 regs[i].regmap[hr]=-1;
9075 //Don't clear regs in the delay slot as the branch might need them
9076 //current.regmap[hr]=-1;
9077 }else
9078 regs[i].regmap_entry[hr]=r;
9079 }
9080 }
9081 } else {
9082 // First instruction expects CCREG to be allocated
9083 if(i==0&&hr==HOST_CCREG)
9084 regs[i].regmap_entry[hr]=CCREG;
9085 else
9086 regs[i].regmap_entry[hr]=-1;
9087 }
9088 }
9089 }
9090 else { // Not delay slot
9091 switch(itype[i]) {
9092 case UJUMP:
9093 //current.isconst=0; // DEBUG
9094 //current.wasconst=0; // DEBUG
9095 //regs[i].wasconst=0; // DEBUG
9096 clear_const(&current,rt1[i]);
9097 alloc_cc(&current,i);
9098 dirty_reg(&current,CCREG);
9099 if (rt1[i]==31) {
9100 alloc_reg(&current,i,31);
9101 dirty_reg(&current,31);
4ef8f67d 9102 //assert(rs1[i+1]!=31&&rs2[i+1]!=31);
9103 //assert(rt1[i+1]!=rt1[i]);
57871462 9104 #ifdef REG_PREFETCH
9105 alloc_reg(&current,i,PTEMP);
9106 #endif
9107 //current.is32|=1LL<<rt1[i];
9108 }
269bb29a 9109 ooo[i]=1;
9110 delayslot_alloc(&current,i+1);
57871462 9111 //current.isconst=0; // DEBUG
9112 ds=1;
9113 //printf("i=%d, isconst=%x\n",i,current.isconst);
9114 break;
9115 case RJUMP:
9116 //current.isconst=0;
9117 //current.wasconst=0;
9118 //regs[i].wasconst=0;
9119 clear_const(&current,rs1[i]);
9120 clear_const(&current,rt1[i]);
9121 alloc_cc(&current,i);
9122 dirty_reg(&current,CCREG);
9123 if(rs1[i]!=rt1[i+1]&&rs1[i]!=rt2[i+1]) {
9124 alloc_reg(&current,i,rs1[i]);
5067f341 9125 if (rt1[i]!=0) {
9126 alloc_reg(&current,i,rt1[i]);
9127 dirty_reg(&current,rt1[i]);
68b3faee 9128 assert(rs1[i+1]!=rt1[i]&&rs2[i+1]!=rt1[i]);
076655d1 9129 assert(rt1[i+1]!=rt1[i]);
57871462 9130 #ifdef REG_PREFETCH
9131 alloc_reg(&current,i,PTEMP);
9132 #endif
9133 }
9134 #ifdef USE_MINI_HT
9135 if(rs1[i]==31) { // JALR
9136 alloc_reg(&current,i,RHASH);
9137 #ifndef HOST_IMM_ADDR32
9138 alloc_reg(&current,i,RHTBL);
9139 #endif
9140 }
9141 #endif
9142 delayslot_alloc(&current,i+1);
9143 } else {
9144 // The delay slot overwrites our source register,
9145 // allocate a temporary register to hold the old value.
9146 current.isconst=0;
9147 current.wasconst=0;
9148 regs[i].wasconst=0;
9149 delayslot_alloc(&current,i+1);
9150 current.isconst=0;
9151 alloc_reg(&current,i,RTEMP);
9152 }
9153 //current.isconst=0; // DEBUG
e1190b87 9154 ooo[i]=1;
57871462 9155 ds=1;
9156 break;
9157 case CJUMP:
9158 //current.isconst=0;
9159 //current.wasconst=0;
9160 //regs[i].wasconst=0;
9161 clear_const(&current,rs1[i]);
9162 clear_const(&current,rs2[i]);
9163 if((opcode[i]&0x3E)==4) // BEQ/BNE
9164 {
9165 alloc_cc(&current,i);
9166 dirty_reg(&current,CCREG);
9167 if(rs1[i]) alloc_reg(&current,i,rs1[i]);
9168 if(rs2[i]) alloc_reg(&current,i,rs2[i]);
9169 if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
9170 {
9171 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
9172 if(rs2[i]) alloc_reg64(&current,i,rs2[i]);
9173 }
9174 if((rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]))||
9175 (rs2[i]&&(rs2[i]==rt1[i+1]||rs2[i]==rt2[i+1]))) {
9176 // The delay slot overwrites one of our conditions.
9177 // Allocate the branch condition registers instead.
57871462 9178 current.isconst=0;
9179 current.wasconst=0;
9180 regs[i].wasconst=0;
9181 if(rs1[i]) alloc_reg(&current,i,rs1[i]);
9182 if(rs2[i]) alloc_reg(&current,i,rs2[i]);
9183 if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
9184 {
9185 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
9186 if(rs2[i]) alloc_reg64(&current,i,rs2[i]);
9187 }
9188 }
e1190b87 9189 else
9190 {
9191 ooo[i]=1;
9192 delayslot_alloc(&current,i+1);
9193 }
57871462 9194 }
9195 else
9196 if((opcode[i]&0x3E)==6) // BLEZ/BGTZ
9197 {
9198 alloc_cc(&current,i);
9199 dirty_reg(&current,CCREG);
9200 alloc_reg(&current,i,rs1[i]);
9201 if(!(current.is32>>rs1[i]&1))
9202 {
9203 alloc_reg64(&current,i,rs1[i]);
9204 }
9205 if(rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1])) {
9206 // The delay slot overwrites one of our conditions.
9207 // Allocate the branch condition registers instead.
57871462 9208 current.isconst=0;
9209 current.wasconst=0;
9210 regs[i].wasconst=0;
9211 if(rs1[i]) alloc_reg(&current,i,rs1[i]);
9212 if(!((current.is32>>rs1[i])&1))
9213 {
9214 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
9215 }
9216 }
e1190b87 9217 else
9218 {
9219 ooo[i]=1;
9220 delayslot_alloc(&current,i+1);
9221 }
57871462 9222 }
9223 else
9224 // Don't alloc the delay slot yet because we might not execute it
9225 if((opcode[i]&0x3E)==0x14) // BEQL/BNEL
9226 {
9227 current.isconst=0;
9228 current.wasconst=0;
9229 regs[i].wasconst=0;
9230 alloc_cc(&current,i);
9231 dirty_reg(&current,CCREG);
9232 alloc_reg(&current,i,rs1[i]);
9233 alloc_reg(&current,i,rs2[i]);
9234 if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
9235 {
9236 alloc_reg64(&current,i,rs1[i]);
9237 alloc_reg64(&current,i,rs2[i]);
9238 }
9239 }
9240 else
9241 if((opcode[i]&0x3E)==0x16) // BLEZL/BGTZL
9242 {
9243 current.isconst=0;
9244 current.wasconst=0;
9245 regs[i].wasconst=0;
9246 alloc_cc(&current,i);
9247 dirty_reg(&current,CCREG);
9248 alloc_reg(&current,i,rs1[i]);
9249 if(!(current.is32>>rs1[i]&1))
9250 {
9251 alloc_reg64(&current,i,rs1[i]);
9252 }
9253 }
9254 ds=1;
9255 //current.isconst=0;
9256 break;
9257 case SJUMP:
9258 //current.isconst=0;
9259 //current.wasconst=0;
9260 //regs[i].wasconst=0;
9261 clear_const(&current,rs1[i]);
9262 clear_const(&current,rt1[i]);
9263 //if((opcode2[i]&0x1E)==0x0) // BLTZ/BGEZ
9264 if((opcode2[i]&0x0E)==0x0) // BLTZ/BGEZ
9265 {
9266 alloc_cc(&current,i);
9267 dirty_reg(&current,CCREG);
9268 alloc_reg(&current,i,rs1[i]);
9269 if(!(current.is32>>rs1[i]&1))
9270 {
9271 alloc_reg64(&current,i,rs1[i]);
9272 }
9273 if (rt1[i]==31) { // BLTZAL/BGEZAL
9274 alloc_reg(&current,i,31);
9275 dirty_reg(&current,31);
57871462 9276 //#ifdef REG_PREFETCH
9277 //alloc_reg(&current,i,PTEMP);
9278 //#endif
9279 //current.is32|=1LL<<rt1[i];
9280 }
e1190b87 9281 if((rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1])) // The delay slot overwrites the branch condition.
9282 ||(rt1[i]==31&&(rs1[i+1]==31||rs2[i+1]==31||rt1[i+1]==31||rt2[i+1]==31))) { // DS touches $ra
57871462 9283 // Allocate the branch condition registers instead.
57871462 9284 current.isconst=0;
9285 current.wasconst=0;
9286 regs[i].wasconst=0;
9287 if(rs1[i]) alloc_reg(&current,i,rs1[i]);
9288 if(!((current.is32>>rs1[i])&1))
9289 {
9290 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
9291 }
9292 }
e1190b87 9293 else
9294 {
9295 ooo[i]=1;
9296 delayslot_alloc(&current,i+1);
9297 }
57871462 9298 }
9299 else
9300 // Don't alloc the delay slot yet because we might not execute it
9301 if((opcode2[i]&0x1E)==0x2) // BLTZL/BGEZL
9302 {
9303 current.isconst=0;
9304 current.wasconst=0;
9305 regs[i].wasconst=0;
9306 alloc_cc(&current,i);
9307 dirty_reg(&current,CCREG);
9308 alloc_reg(&current,i,rs1[i]);
9309 if(!(current.is32>>rs1[i]&1))
9310 {
9311 alloc_reg64(&current,i,rs1[i]);
9312 }
9313 }
9314 ds=1;
9315 //current.isconst=0;
9316 break;
9317 case FJUMP:
9318 current.isconst=0;
9319 current.wasconst=0;
9320 regs[i].wasconst=0;
9321 if(likely[i]==0) // BC1F/BC1T
9322 {
9323 // TODO: Theoretically we can run out of registers here on x86.
9324 // The delay slot can allocate up to six, and we need to check
9325 // CSREG before executing the delay slot. Possibly we can drop
9326 // the cycle count and then reload it after checking that the
9327 // FPU is in a usable state, or don't do out-of-order execution.
9328 alloc_cc(&current,i);
9329 dirty_reg(&current,CCREG);
9330 alloc_reg(&current,i,FSREG);
9331 alloc_reg(&current,i,CSREG);
9332 if(itype[i+1]==FCOMP) {
9333 // The delay slot overwrites the branch condition.
9334 // Allocate the branch condition registers instead.
57871462 9335 alloc_cc(&current,i);
9336 dirty_reg(&current,CCREG);
9337 alloc_reg(&current,i,CSREG);
9338 alloc_reg(&current,i,FSREG);
9339 }
9340 else {
e1190b87 9341 ooo[i]=1;
57871462 9342 delayslot_alloc(&current,i+1);
9343 alloc_reg(&current,i+1,CSREG);
9344 }
9345 }
9346 else
9347 // Don't alloc the delay slot yet because we might not execute it
9348 if(likely[i]) // BC1FL/BC1TL
9349 {
9350 alloc_cc(&current,i);
9351 dirty_reg(&current,CCREG);
9352 alloc_reg(&current,i,CSREG);
9353 alloc_reg(&current,i,FSREG);
9354 }
9355 ds=1;
9356 current.isconst=0;
9357 break;
9358 case IMM16:
9359 imm16_alloc(&current,i);
9360 break;
9361 case LOAD:
9362 case LOADLR:
9363 load_alloc(&current,i);
9364 break;
9365 case STORE:
9366 case STORELR:
9367 store_alloc(&current,i);
9368 break;
9369 case ALU:
9370 alu_alloc(&current,i);
9371 break;
9372 case SHIFT:
9373 shift_alloc(&current,i);
9374 break;
9375 case MULTDIV:
9376 multdiv_alloc(&current,i);
9377 break;
9378 case SHIFTIMM:
9379 shiftimm_alloc(&current,i);
9380 break;
9381 case MOV:
9382 mov_alloc(&current,i);
9383 break;
9384 case COP0:
9385 cop0_alloc(&current,i);
9386 break;
9387 case COP1:
b9b61529 9388 case COP2:
57871462 9389 cop1_alloc(&current,i);
9390 break;
9391 case C1LS:
9392 c1ls_alloc(&current,i);
9393 break;
b9b61529 9394 case C2LS:
9395 c2ls_alloc(&current,i);
9396 break;
9397 case C2OP:
9398 c2op_alloc(&current,i);
9399 break;
57871462 9400 case FCONV:
9401 fconv_alloc(&current,i);
9402 break;
9403 case FLOAT:
9404 float_alloc(&current,i);
9405 break;
9406 case FCOMP:
9407 fcomp_alloc(&current,i);
9408 break;
9409 case SYSCALL:
7139f3c8 9410 case HLECALL:
1e973cb0 9411 case INTCALL:
57871462 9412 syscall_alloc(&current,i);
9413 break;
9414 case SPAN:
9415 pagespan_alloc(&current,i);
9416 break;
9417 }
9418
9419 // Drop the upper half of registers that have become 32-bit
9420 current.uu|=current.is32&((1LL<<rt1[i])|(1LL<<rt2[i]));
9421 if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP) {
9422 current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
9423 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9424 current.uu|=1;
9425 } else {
9426 current.uu|=current.is32&((1LL<<rt1[i+1])|(1LL<<rt2[i+1]));
9427 current.uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
9428 if((~current.uu>>rt1[i+1])&1) current.uu&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
9429 current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
9430 current.uu|=1;
9431 }
9432
9433 // Create entry (branch target) regmap
9434 for(hr=0;hr<HOST_REGS;hr++)
9435 {
9436 int r,or,er;
9437 r=current.regmap[hr];
9438 if(r>=0) {
9439 if(r!=regmap_pre[i][hr]) {
9440 // TODO: delay slot (?)
9441 or=get_reg(regmap_pre[i],r); // Get old mapping for this register
9442 if(or<0||(r&63)>=TEMPREG){
9443 regs[i].regmap_entry[hr]=-1;
9444 }
9445 else
9446 {
9447 // Just move it to a different register
9448 regs[i].regmap_entry[hr]=r;
9449 // If it was dirty before, it's still dirty
9450 if((regs[i].wasdirty>>or)&1) dirty_reg(&current,r&63);
9451 }
9452 }
9453 else
9454 {
9455 // Unneeded
9456 if(r==0){
9457 regs[i].regmap_entry[hr]=0;
9458 }
9459 else
9460 if(r<64){
9461 if((current.u>>r)&1) {
9462 regs[i].regmap_entry[hr]=-1;
9463 //regs[i].regmap[hr]=-1;
9464 current.regmap[hr]=-1;
9465 }else
9466 regs[i].regmap_entry[hr]=r;
9467 }
9468 else {
9469 if((current.uu>>(r&63))&1) {
9470 regs[i].regmap_entry[hr]=-1;
9471 //regs[i].regmap[hr]=-1;
9472 current.regmap[hr]=-1;
9473 }else
9474 regs[i].regmap_entry[hr]=r;
9475 }
9476 }
9477 } else {
9478 // Branches expect CCREG to be allocated at the target
9479 if(regmap_pre[i][hr]==CCREG)
9480 regs[i].regmap_entry[hr]=CCREG;
9481 else
9482 regs[i].regmap_entry[hr]=-1;
9483 }
9484 }
9485 memcpy(regs[i].regmap,current.regmap,sizeof(current.regmap));
9486 }
27727b63 9487
9488 if(i>0&&(itype[i-1]==STORE||itype[i-1]==STORELR||(itype[i-1]==C2LS&&opcode[i-1]==0x3a))&&(u_int)imm[i-1]<0x800)
9489 current.waswritten|=1<<rs1[i-1];
9490 current.waswritten&=~(1<<rt1[i]);
9491 current.waswritten&=~(1<<rt2[i]);
9492 if((itype[i]==STORE||itype[i]==STORELR||(itype[i]==C2LS&&opcode[i]==0x3a))&&(u_int)imm[i]>=0x800)
9493 current.waswritten&=~(1<<rs1[i]);
9494
57871462 9495 /* Branch post-alloc */
9496 if(i>0)
9497 {
9498 current.was32=current.is32;
9499 current.wasdirty=current.dirty;
9500 switch(itype[i-1]) {
9501 case UJUMP:
9502 memcpy(&branch_regs[i-1],&current,sizeof(current));
9503 branch_regs[i-1].isconst=0;
9504 branch_regs[i-1].wasconst=0;
9505 branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
9506 branch_regs[i-1].uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
9507 alloc_cc(&branch_regs[i-1],i-1);
9508 dirty_reg(&branch_regs[i-1],CCREG);
9509 if(rt1[i-1]==31) { // JAL
9510 alloc_reg(&branch_regs[i-1],i-1,31);
9511 dirty_reg(&branch_regs[i-1],31);
9512 branch_regs[i-1].is32|=1LL<<31;
9513 }
9514 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9515 memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9516 break;
9517 case RJUMP:
9518 memcpy(&branch_regs[i-1],&current,sizeof(current));
9519 branch_regs[i-1].isconst=0;
9520 branch_regs[i-1].wasconst=0;
9521 branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
9522 branch_regs[i-1].uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
9523 alloc_cc(&branch_regs[i-1],i-1);
9524 dirty_reg(&branch_regs[i-1],CCREG);
9525 alloc_reg(&branch_regs[i-1],i-1,rs1[i-1]);
5067f341 9526 if(rt1[i-1]!=0) { // JALR
9527 alloc_reg(&branch_regs[i-1],i-1,rt1[i-1]);
9528 dirty_reg(&branch_regs[i-1],rt1[i-1]);
9529 branch_regs[i-1].is32|=1LL<<rt1[i-1];
57871462 9530 }
9531 #ifdef USE_MINI_HT
9532 if(rs1[i-1]==31) { // JALR
9533 alloc_reg(&branch_regs[i-1],i-1,RHASH);
9534 #ifndef HOST_IMM_ADDR32
9535 alloc_reg(&branch_regs[i-1],i-1,RHTBL);
9536 #endif
9537 }
9538 #endif
9539 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9540 memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9541 break;
9542 case CJUMP:
9543 if((opcode[i-1]&0x3E)==4) // BEQ/BNE
9544 {
9545 alloc_cc(&current,i-1);
9546 dirty_reg(&current,CCREG);
9547 if((rs1[i-1]&&(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]))||
9548 (rs2[i-1]&&(rs2[i-1]==rt1[i]||rs2[i-1]==rt2[i]))) {
9549 // The delay slot overwrote one of our conditions
9550 // Delay slot goes after the test (in order)
9551 current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
9552 current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
9553 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9554 current.u|=1;
9555 current.uu|=1;
9556 delayslot_alloc(&current,i);
9557 current.isconst=0;
9558 }
9559 else
9560 {
9561 current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
9562 current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
9563 // Alloc the branch condition registers
9564 if(rs1[i-1]) alloc_reg(&current,i-1,rs1[i-1]);
9565 if(rs2[i-1]) alloc_reg(&current,i-1,rs2[i-1]);
9566 if(!((current.is32>>rs1[i-1])&(current.is32>>rs2[i-1])&1))
9567 {
9568 if(rs1[i-1]) alloc_reg64(&current,i-1,rs1[i-1]);
9569 if(rs2[i-1]) alloc_reg64(&current,i-1,rs2[i-1]);
9570 }
9571 }
9572 memcpy(&branch_regs[i-1],&current,sizeof(current));
9573 branch_regs[i-1].isconst=0;
9574 branch_regs[i-1].wasconst=0;
9575 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9576 memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9577 }
9578 else
9579 if((opcode[i-1]&0x3E)==6) // BLEZ/BGTZ
9580 {
9581 alloc_cc(&current,i-1);
9582 dirty_reg(&current,CCREG);
9583 if(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]) {
9584 // The delay slot overwrote the branch condition
9585 // Delay slot goes after the test (in order)
9586 current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
9587 current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
9588 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9589 current.u|=1;
9590 current.uu|=1;
9591 delayslot_alloc(&current,i);
9592 current.isconst=0;
9593 }
9594 else
9595 {
9596 current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
9597 current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
9598 // Alloc the branch condition register
9599 alloc_reg(&current,i-1,rs1[i-1]);
9600 if(!(current.is32>>rs1[i-1]&1))
9601 {
9602 alloc_reg64(&current,i-1,rs1[i-1]);
9603 }
9604 }
9605 memcpy(&branch_regs[i-1],&current,sizeof(current));
9606 branch_regs[i-1].isconst=0;
9607 branch_regs[i-1].wasconst=0;
9608 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9609 memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9610 }
9611 else
9612 // Alloc the delay slot in case the branch is taken
9613 if((opcode[i-1]&0x3E)==0x14) // BEQL/BNEL
9614 {
9615 memcpy(&branch_regs[i-1],&current,sizeof(current));
9616 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9617 branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9618 if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9619 alloc_cc(&branch_regs[i-1],i);
9620 dirty_reg(&branch_regs[i-1],CCREG);
9621 delayslot_alloc(&branch_regs[i-1],i);
9622 branch_regs[i-1].isconst=0;
9623 alloc_reg(&current,i,CCREG); // Not taken path
9624 dirty_reg(&current,CCREG);
9625 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9626 }
9627 else
9628 if((opcode[i-1]&0x3E)==0x16) // BLEZL/BGTZL
9629 {
9630 memcpy(&branch_regs[i-1],&current,sizeof(current));
9631 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9632 branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9633 if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9634 alloc_cc(&branch_regs[i-1],i);
9635 dirty_reg(&branch_regs[i-1],CCREG);
9636 delayslot_alloc(&branch_regs[i-1],i);
9637 branch_regs[i-1].isconst=0;
9638 alloc_reg(&current,i,CCREG); // Not taken path
9639 dirty_reg(&current,CCREG);
9640 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9641 }
9642 break;
9643 case SJUMP:
9644 //if((opcode2[i-1]&0x1E)==0) // BLTZ/BGEZ
9645 if((opcode2[i-1]&0x0E)==0) // BLTZ/BGEZ
9646 {
9647 alloc_cc(&current,i-1);
9648 dirty_reg(&current,CCREG);
9649 if(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]) {
9650 // The delay slot overwrote the branch condition
9651 // Delay slot goes after the test (in order)
9652 current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
9653 current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
9654 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9655 current.u|=1;
9656 current.uu|=1;
9657 delayslot_alloc(&current,i);
9658 current.isconst=0;
9659 }
9660 else
9661 {
9662 current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
9663 current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
9664 // Alloc the branch condition register
9665 alloc_reg(&current,i-1,rs1[i-1]);
9666 if(!(current.is32>>rs1[i-1]&1))
9667 {
9668 alloc_reg64(&current,i-1,rs1[i-1]);
9669 }
9670 }
9671 memcpy(&branch_regs[i-1],&current,sizeof(current));
9672 branch_regs[i-1].isconst=0;
9673 branch_regs[i-1].wasconst=0;
9674 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9675 memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9676 }
9677 else
9678 // Alloc the delay slot in case the branch is taken
9679 if((opcode2[i-1]&0x1E)==2) // BLTZL/BGEZL
9680 {
9681 memcpy(&branch_regs[i-1],&current,sizeof(current));
9682 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9683 branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9684 if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9685 alloc_cc(&branch_regs[i-1],i);
9686 dirty_reg(&branch_regs[i-1],CCREG);
9687 delayslot_alloc(&branch_regs[i-1],i);
9688 branch_regs[i-1].isconst=0;
9689 alloc_reg(&current,i,CCREG); // Not taken path
9690 dirty_reg(&current,CCREG);
9691 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9692 }
9693 // FIXME: BLTZAL/BGEZAL
9694 if(opcode2[i-1]&0x10) { // BxxZAL
9695 alloc_reg(&branch_regs[i-1],i-1,31);
9696 dirty_reg(&branch_regs[i-1],31);
9697 branch_regs[i-1].is32|=1LL<<31;
9698 }
9699 break;
9700 case FJUMP:
9701 if(likely[i-1]==0) // BC1F/BC1T
9702 {
9703 alloc_cc(&current,i-1);
9704 dirty_reg(&current,CCREG);
9705 if(itype[i]==FCOMP) {
9706 // The delay slot overwrote the branch condition
9707 // Delay slot goes after the test (in order)
9708 delayslot_alloc(&current,i);
9709 current.isconst=0;
9710 }
9711 else
9712 {
9713 current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
9714 current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
9715 // Alloc the branch condition register
9716 alloc_reg(&current,i-1,FSREG);
9717 }
9718 memcpy(&branch_regs[i-1],&current,sizeof(current));
9719 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9720 }
9721 else // BC1FL/BC1TL
9722 {
9723 // Alloc the delay slot in case the branch is taken
9724 memcpy(&branch_regs[i-1],&current,sizeof(current));
9725 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9726 branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9727 if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9728 alloc_cc(&branch_regs[i-1],i);
9729 dirty_reg(&branch_regs[i-1],CCREG);
9730 delayslot_alloc(&branch_regs[i-1],i);
9731 branch_regs[i-1].isconst=0;
9732 alloc_reg(&current,i,CCREG); // Not taken path
9733 dirty_reg(&current,CCREG);
9734 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9735 }
9736 break;
9737 }
9738
9739 if(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)
9740 {
9741 if(rt1[i-1]==31) // JAL/JALR
9742 {
9743 // Subroutine call will return here, don't alloc any registers
9744 current.is32=1;
9745 current.dirty=0;
9746 clear_all_regs(current.regmap);
9747 alloc_reg(&current,i,CCREG);
9748 dirty_reg(&current,CCREG);
9749 }
9750 else if(i+1<slen)
9751 {
9752 // Internal branch will jump here, match registers to caller
9753 current.is32=0x3FFFFFFFFLL;
9754 current.dirty=0;
9755 clear_all_regs(current.regmap);
9756 alloc_reg(&current,i,CCREG);
9757 dirty_reg(&current,CCREG);
9758 for(j=i-1;j>=0;j--)
9759 {
9760 if(ba[j]==start+i*4+4) {
9761 memcpy(current.regmap,branch_regs[j].regmap,sizeof(current.regmap));
9762 current.is32=branch_regs[j].is32;
9763 current.dirty=branch_regs[j].dirty;
9764 break;
9765 }
9766 }
9767 while(j>=0) {
9768 if(ba[j]==start+i*4+4) {
9769 for(hr=0;hr<HOST_REGS;hr++) {
9770 if(current.regmap[hr]!=branch_regs[j].regmap[hr]) {
9771 current.regmap[hr]=-1;
9772 }
9773 current.is32&=branch_regs[j].is32;
9774 current.dirty&=branch_regs[j].dirty;
9775 }
9776 }
9777 j--;
9778 }
9779 }
9780 }
9781 }
9782
9783 // Count cycles in between branches
9784 ccadj[i]=cc;
7139f3c8 9785 if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP||itype[i]==SYSCALL||itype[i]==HLECALL))
57871462 9786 {
9787 cc=0;
9788 }
fb407447 9789#ifdef PCSX
054175e9 9790 else if(itype[i]==C2OP&&gte_cycletab[source[i]&0x3f]>2)
9791 {
9792 // GTE runs in parallel until accessed, divide by 2 for a rough guess
9793 cc+=gte_cycletab[source[i]&0x3f]/2;
9794 }
fb407447 9795 else if(/*itype[i]==LOAD||*/itype[i]==STORE||itype[i]==C1LS) // load causes weird timing issues
9796 {
9797 cc+=2; // 2 cycle penalty (after CLOCK_DIVIDER)
9798 }
9799 else if(itype[i]==C2LS)
9800 {
9801 cc+=4;
9802 }
9803#endif
57871462 9804 else
9805 {
9806 cc++;
9807 }
9808
9809 flush_dirty_uppers(&current);
9810 if(!is_ds[i]) {
9811 regs[i].is32=current.is32;
9812 regs[i].dirty=current.dirty;
9813 regs[i].isconst=current.isconst;
9814 memcpy(constmap[i],current.constmap,sizeof(current.constmap));
9815 }
9816 for(hr=0;hr<HOST_REGS;hr++) {
9817 if(hr!=EXCLUDE_REG&&regs[i].regmap[hr]>=0) {
9818 if(regmap_pre[i][hr]!=regs[i].regmap[hr]) {
9819 regs[i].wasconst&=~(1<<hr);
9820 }
9821 }
9822 }
9823 if(current.regmap[HOST_BTREG]==BTREG) current.regmap[HOST_BTREG]=-1;
27727b63 9824 regs[i].waswritten=current.waswritten;
57871462 9825 }
9826
9827 /* Pass 4 - Cull unused host registers */
9828
9829 uint64_t nr=0;
9830
9831 for (i=slen-1;i>=0;i--)
9832 {
9833 int hr;
9834 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
9835 {
9836 if(ba[i]<start || ba[i]>=(start+slen*4))
9837 {
9838 // Branch out of this block, don't need anything
9839 nr=0;
9840 }
9841 else
9842 {
9843 // Internal branch
9844 // Need whatever matches the target
9845 nr=0;
9846 int t=(ba[i]-start)>>2;
9847 for(hr=0;hr<HOST_REGS;hr++)
9848 {
9849 if(regs[i].regmap_entry[hr]>=0) {
9850 if(regs[i].regmap_entry[hr]==regs[t].regmap_entry[hr]) nr|=1<<hr;
9851 }
9852 }
9853 }
9854 // Conditional branch may need registers for following instructions
9855 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
9856 {
9857 if(i<slen-2) {
9858 nr|=needed_reg[i+2];
9859 for(hr=0;hr<HOST_REGS;hr++)
9860 {
9861 if(regmap_pre[i+2][hr]>=0&&get_reg(regs[i+2].regmap_entry,regmap_pre[i+2][hr])<0) nr&=~(1<<hr);
9862 //if((regmap_entry[i+2][hr])>=0) if(!((nr>>hr)&1)) printf("%x-bogus(%d=%d)\n",start+i*4,hr,regmap_entry[i+2][hr]);
9863 }
9864 }
9865 }
9866 // Don't need stuff which is overwritten
f5955059 9867 //if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
9868 //if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
57871462 9869 // Merge in delay slot
9870 for(hr=0;hr<HOST_REGS;hr++)
9871 {
9872 if(!likely[i]) {
9873 // These are overwritten unless the branch is "likely"
9874 // and the delay slot is nullified if not taken
9875 if(rt1[i+1]&&rt1[i+1]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9876 if(rt2[i+1]&&rt2[i+1]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9877 }
9878 if(us1[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9879 if(us2[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9880 if(rs1[i+1]==regmap_pre[i][hr]) nr|=1<<hr;
9881 if(rs2[i+1]==regmap_pre[i][hr]) nr|=1<<hr;
9882 if(us1[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9883 if(us2[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9884 if(rs1[i+1]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9885 if(rs2[i+1]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9886 if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1)) {
9887 if(dep1[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9888 if(dep2[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9889 }
9890 if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1)) {
9891 if(dep1[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9892 if(dep2[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9893 }
b9b61529 9894 if(itype[i+1]==STORE || itype[i+1]==STORELR || (opcode[i+1]&0x3b)==0x39 || (opcode[i+1]&0x3b)==0x3a) {
57871462 9895 if(regmap_pre[i][hr]==INVCP) nr|=1<<hr;
9896 if(regs[i].regmap_entry[hr]==INVCP) nr|=1<<hr;
9897 }
9898 }
9899 }
1e973cb0 9900 else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
57871462 9901 {
9902 // SYSCALL instruction (software interrupt)
9903 nr=0;
9904 }
9905 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
9906 {
9907 // ERET instruction (return from interrupt)
9908 nr=0;
9909 }
9910 else // Non-branch
9911 {
9912 if(i<slen-1) {
9913 for(hr=0;hr<HOST_REGS;hr++) {
9914 if(regmap_pre[i+1][hr]>=0&&get_reg(regs[i+1].regmap_entry,regmap_pre[i+1][hr])<0) nr&=~(1<<hr);
9915 if(regs[i].regmap[hr]!=regmap_pre[i+1][hr]) nr&=~(1<<hr);
9916 if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
9917 if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
9918 }
9919 }
9920 }
9921 for(hr=0;hr<HOST_REGS;hr++)
9922 {
9923 // Overwritten registers are not needed
9924 if(rt1[i]&&rt1[i]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9925 if(rt2[i]&&rt2[i]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9926 if(FTEMP==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9927 // Source registers are needed
9928 if(us1[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9929 if(us2[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9930 if(rs1[i]==regmap_pre[i][hr]) nr|=1<<hr;
9931 if(rs2[i]==regmap_pre[i][hr]) nr|=1<<hr;
9932 if(us1[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9933 if(us2[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9934 if(rs1[i]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9935 if(rs2[i]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9936 if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1)) {
9937 if(dep1[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9938 if(dep1[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9939 }
9940 if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1)) {
9941 if(dep2[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9942 if(dep2[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9943 }
b9b61529 9944 if(itype[i]==STORE || itype[i]==STORELR || (opcode[i]&0x3b)==0x39 || (opcode[i]&0x3b)==0x3a) {
57871462 9945 if(regmap_pre[i][hr]==INVCP) nr|=1<<hr;
9946 if(regs[i].regmap_entry[hr]==INVCP) nr|=1<<hr;
9947 }
9948 // Don't store a register immediately after writing it,
9949 // may prevent dual-issue.
9950 // But do so if this is a branch target, otherwise we
9951 // might have to load the register before the branch.
9952 if(i>0&&!bt[i]&&((regs[i].wasdirty>>hr)&1)) {
9953 if((regmap_pre[i][hr]>0&&regmap_pre[i][hr]<64&&!((unneeded_reg[i]>>regmap_pre[i][hr])&1)) ||
9954 (regmap_pre[i][hr]>64&&!((unneeded_reg_upper[i]>>(regmap_pre[i][hr]&63))&1)) ) {
9955 if(rt1[i-1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9956 if(rt2[i-1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9957 }
9958 if((regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64&&!((unneeded_reg[i]>>regs[i].regmap_entry[hr])&1)) ||
9959 (regs[i].regmap_entry[hr]>64&&!((unneeded_reg_upper[i]>>(regs[i].regmap_entry[hr]&63))&1)) ) {
9960 if(rt1[i-1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9961 if(rt2[i-1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9962 }
9963 }
9964 }
9965 // Cycle count is needed at branches. Assume it is needed at the target too.
9966 if(i==0||bt[i]||itype[i]==CJUMP||itype[i]==FJUMP||itype[i]==SPAN) {
9967 if(regmap_pre[i][HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
9968 if(regs[i].regmap_entry[HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
9969 }
9970 // Save it
9971 needed_reg[i]=nr;
9972
9973 // Deallocate unneeded registers
9974 for(hr=0;hr<HOST_REGS;hr++)
9975 {
9976 if(!((nr>>hr)&1)) {
9977 if(regs[i].regmap_entry[hr]!=CCREG) regs[i].regmap_entry[hr]=-1;
9978 if((regs[i].regmap[hr]&63)!=rs1[i] && (regs[i].regmap[hr]&63)!=rs2[i] &&
9979 (regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
9980 (regs[i].regmap[hr]&63)!=PTEMP && (regs[i].regmap[hr]&63)!=CCREG)
9981 {
9982 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
9983 {
9984 if(likely[i]) {
9985 regs[i].regmap[hr]=-1;
9986 regs[i].isconst&=~(1<<hr);
79c75f1b 9987 if(i<slen-2) {
9988 regmap_pre[i+2][hr]=-1;
9989 regs[i+2].wasconst&=~(1<<hr);
9990 }
57871462 9991 }
9992 }
9993 }
9994 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
9995 {
9996 int d1=0,d2=0,map=0,temp=0;
9997 if(get_reg(regs[i].regmap,rt1[i+1]|64)>=0||get_reg(branch_regs[i].regmap,rt1[i+1]|64)>=0)
9998 {
9999 d1=dep1[i+1];
10000 d2=dep2[i+1];
10001 }
10002 if(using_tlb) {
10003 if(itype[i+1]==LOAD || itype[i+1]==LOADLR ||
10004 itype[i+1]==STORE || itype[i+1]==STORELR ||
b9b61529 10005 itype[i+1]==C1LS || itype[i+1]==C2LS)
57871462 10006 map=TLREG;
10007 } else
b9b61529 10008 if(itype[i+1]==STORE || itype[i+1]==STORELR ||
10009 (opcode[i+1]&0x3b)==0x39 || (opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1 || SWC2/SDC2
57871462 10010 map=INVCP;
10011 }
10012 if(itype[i+1]==LOADLR || itype[i+1]==STORELR ||
b9b61529 10013 itype[i+1]==C1LS || itype[i+1]==C2LS)
57871462 10014 temp=FTEMP;
10015 if((regs[i].regmap[hr]&63)!=rs1[i] && (regs[i].regmap[hr]&63)!=rs2[i] &&
10016 (regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
10017 (regs[i].regmap[hr]&63)!=rt1[i+1] && (regs[i].regmap[hr]&63)!=rt2[i+1] &&
10018 (regs[i].regmap[hr]^64)!=us1[i+1] && (regs[i].regmap[hr]^64)!=us2[i+1] &&
10019 (regs[i].regmap[hr]^64)!=d1 && (regs[i].regmap[hr]^64)!=d2 &&
10020 regs[i].regmap[hr]!=rs1[i+1] && regs[i].regmap[hr]!=rs2[i+1] &&
10021 (regs[i].regmap[hr]&63)!=temp && regs[i].regmap[hr]!=PTEMP &&
10022 regs[i].regmap[hr]!=RHASH && regs[i].regmap[hr]!=RHTBL &&
10023 regs[i].regmap[hr]!=RTEMP && regs[i].regmap[hr]!=CCREG &&
10024 regs[i].regmap[hr]!=map )
10025 {
10026 regs[i].regmap[hr]=-1;
10027 regs[i].isconst&=~(1<<hr);
10028 if((branch_regs[i].regmap[hr]&63)!=rs1[i] && (branch_regs[i].regmap[hr]&63)!=rs2[i] &&
10029 (branch_regs[i].regmap[hr]&63)!=rt1[i] && (branch_regs[i].regmap[hr]&63)!=rt2[i] &&
10030 (branch_regs[i].regmap[hr]&63)!=rt1[i+1] && (branch_regs[i].regmap[hr]&63)!=rt2[i+1] &&
10031 (branch_regs[i].regmap[hr]^64)!=us1[i+1] && (branch_regs[i].regmap[hr]^64)!=us2[i+1] &&
10032 (branch_regs[i].regmap[hr]^64)!=d1 && (branch_regs[i].regmap[hr]^64)!=d2 &&
10033 branch_regs[i].regmap[hr]!=rs1[i+1] && branch_regs[i].regmap[hr]!=rs2[i+1] &&
10034 (branch_regs[i].regmap[hr]&63)!=temp && branch_regs[i].regmap[hr]!=PTEMP &&
10035 branch_regs[i].regmap[hr]!=RHASH && branch_regs[i].regmap[hr]!=RHTBL &&
10036 branch_regs[i].regmap[hr]!=RTEMP && branch_regs[i].regmap[hr]!=CCREG &&
10037 branch_regs[i].regmap[hr]!=map)
10038 {
10039 branch_regs[i].regmap[hr]=-1;
10040 branch_regs[i].regmap_entry[hr]=-1;
10041 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
10042 {
10043 if(!likely[i]&&i<slen-2) {
10044 regmap_pre[i+2][hr]=-1;
79c75f1b 10045 regs[i+2].wasconst&=~(1<<hr);
57871462 10046 }
10047 }
10048 }
10049 }
10050 }
10051 else
10052 {
10053 // Non-branch
10054 if(i>0)
10055 {
10056 int d1=0,d2=0,map=-1,temp=-1;
10057 if(get_reg(regs[i].regmap,rt1[i]|64)>=0)
10058 {
10059 d1=dep1[i];
10060 d2=dep2[i];
10061 }
10062 if(using_tlb) {
10063 if(itype[i]==LOAD || itype[i]==LOADLR ||
10064 itype[i]==STORE || itype[i]==STORELR ||
b9b61529 10065 itype[i]==C1LS || itype[i]==C2LS)
57871462 10066 map=TLREG;
b9b61529 10067 } else if(itype[i]==STORE || itype[i]==STORELR ||
10068 (opcode[i]&0x3b)==0x39 || (opcode[i]&0x3b)==0x3a) { // SWC1/SDC1 || SWC2/SDC2
57871462 10069 map=INVCP;
10070 }
10071 if(itype[i]==LOADLR || itype[i]==STORELR ||
b9b61529 10072 itype[i]==C1LS || itype[i]==C2LS)
57871462 10073 temp=FTEMP;
10074 if((regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
10075 (regs[i].regmap[hr]^64)!=us1[i] && (regs[i].regmap[hr]^64)!=us2[i] &&
10076 (regs[i].regmap[hr]^64)!=d1 && (regs[i].regmap[hr]^64)!=d2 &&
10077 regs[i].regmap[hr]!=rs1[i] && regs[i].regmap[hr]!=rs2[i] &&
10078 (regs[i].regmap[hr]&63)!=temp && regs[i].regmap[hr]!=map &&
10079 (itype[i]!=SPAN||regs[i].regmap[hr]!=CCREG))
10080 {
10081 if(i<slen-1&&!is_ds[i]) {
10082 if(regmap_pre[i+1][hr]!=-1 || regs[i].regmap[hr]!=-1)
10083 if(regmap_pre[i+1][hr]!=regs[i].regmap[hr])
10084 if(regs[i].regmap[hr]<64||!((regs[i].was32>>(regs[i].regmap[hr]&63))&1))
10085 {
10086 printf("fail: %x (%d %d!=%d)\n",start+i*4,hr,regmap_pre[i+1][hr],regs[i].regmap[hr]);
10087 assert(regmap_pre[i+1][hr]==regs[i].regmap[hr]);
10088 }
10089 regmap_pre[i+1][hr]=-1;
10090 if(regs[i+1].regmap_entry[hr]==CCREG) regs[i+1].regmap_entry[hr]=-1;
79c75f1b 10091 regs[i+1].wasconst&=~(1<<hr);
57871462 10092 }
10093 regs[i].regmap[hr]=-1;
10094 regs[i].isconst&=~(1<<hr);
10095 }
10096 }
10097 }
10098 }
10099 }
10100 }
10101
10102 /* Pass 5 - Pre-allocate registers */
10103
10104 // If a register is allocated during a loop, try to allocate it for the
10105 // entire loop, if possible. This avoids loading/storing registers
10106 // inside of the loop.
198df76f 10107
57871462 10108 signed char f_regmap[HOST_REGS];
10109 clear_all_regs(f_regmap);
10110 for(i=0;i<slen-1;i++)
10111 {
10112 if(itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
10113 {
10114 if(ba[i]>=start && ba[i]<(start+i*4))
10115 if(itype[i+1]==NOP||itype[i+1]==MOV||itype[i+1]==ALU
10116 ||itype[i+1]==SHIFTIMM||itype[i+1]==IMM16||itype[i+1]==LOAD
10117 ||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS
10118 ||itype[i+1]==SHIFT||itype[i+1]==COP1||itype[i+1]==FLOAT
b9b61529 10119 ||itype[i+1]==FCOMP||itype[i+1]==FCONV
10120 ||itype[i+1]==COP2||itype[i+1]==C2LS||itype[i+1]==C2OP)
57871462 10121 {
10122 int t=(ba[i]-start)>>2;
10123 if(t>0&&(itype[t-1]!=UJUMP&&itype[t-1]!=RJUMP&&itype[t-1]!=CJUMP&&itype[t-1]!=SJUMP&&itype[t-1]!=FJUMP)) // loop_preload can't handle jumps into delay slots
198df76f 10124 if(t<2||(itype[t-2]!=UJUMP&&itype[t-2]!=RJUMP)||rt1[t-2]!=31) // call/ret assumes no registers allocated
57871462 10125 for(hr=0;hr<HOST_REGS;hr++)
10126 {
10127 if(regs[i].regmap[hr]>64) {
10128 if(!((regs[i].dirty>>hr)&1))
10129 f_regmap[hr]=regs[i].regmap[hr];
10130 else f_regmap[hr]=-1;
10131 }
b372a952 10132 else if(regs[i].regmap[hr]>=0) {
10133 if(f_regmap[hr]!=regs[i].regmap[hr]) {
10134 // dealloc old register
10135 int n;
10136 for(n=0;n<HOST_REGS;n++)
10137 {
10138 if(f_regmap[n]==regs[i].regmap[hr]) {f_regmap[n]=-1;}
10139 }
10140 // and alloc new one
10141 f_regmap[hr]=regs[i].regmap[hr];
10142 }
10143 }
57871462 10144 if(branch_regs[i].regmap[hr]>64) {
10145 if(!((branch_regs[i].dirty>>hr)&1))
10146 f_regmap[hr]=branch_regs[i].regmap[hr];
10147 else f_regmap[hr]=-1;
10148 }
b372a952 10149 else if(branch_regs[i].regmap[hr]>=0) {
10150 if(f_regmap[hr]!=branch_regs[i].regmap[hr]) {
10151 // dealloc old register
10152 int n;
10153 for(n=0;n<HOST_REGS;n++)
10154 {
10155 if(f_regmap[n]==branch_regs[i].regmap[hr]) {f_regmap[n]=-1;}
10156 }
10157 // and alloc new one
10158 f_regmap[hr]=branch_regs[i].regmap[hr];
10159 }
10160 }
e1190b87 10161 if(ooo[i]) {
10162 if(count_free_regs(regs[i].regmap)<=minimum_free_regs[i+1])
10163 f_regmap[hr]=branch_regs[i].regmap[hr];
10164 }else{
10165 if(count_free_regs(branch_regs[i].regmap)<=minimum_free_regs[i+1])
57871462 10166 f_regmap[hr]=branch_regs[i].regmap[hr];
10167 }
10168 // Avoid dirty->clean transition
e1190b87 10169 #ifdef DESTRUCTIVE_WRITEBACK
57871462 10170 if(t>0) if(get_reg(regmap_pre[t],f_regmap[hr])>=0) if((regs[t].wasdirty>>get_reg(regmap_pre[t],f_regmap[hr]))&1) f_regmap[hr]=-1;
e1190b87 10171 #endif
10172 // This check is only strictly required in the DESTRUCTIVE_WRITEBACK
10173 // case above, however it's always a good idea. We can't hoist the
10174 // load if the register was already allocated, so there's no point
10175 // wasting time analyzing most of these cases. It only "succeeds"
10176 // when the mapping was different and the load can be replaced with
10177 // a mov, which is of negligible benefit. So such cases are
10178 // skipped below.
57871462 10179 if(f_regmap[hr]>0) {
198df76f 10180 if(regs[t].regmap[hr]==f_regmap[hr]||(regs[t].regmap_entry[hr]<0&&get_reg(regmap_pre[t],f_regmap[hr])<0)) {
57871462 10181 int r=f_regmap[hr];
10182 for(j=t;j<=i;j++)
10183 {
10184 //printf("Test %x -> %x, %x %d/%d\n",start+i*4,ba[i],start+j*4,hr,r);
10185 if(r<34&&((unneeded_reg[j]>>r)&1)) break;
10186 if(r>63&&((unneeded_reg_upper[j]>>(r&63))&1)) break;
10187 if(r>63) {
10188 // NB This can exclude the case where the upper-half
10189 // register is lower numbered than the lower-half
10190 // register. Not sure if it's worth fixing...
10191 if(get_reg(regs[j].regmap,r&63)<0) break;
e1190b87 10192 if(get_reg(regs[j].regmap_entry,r&63)<0) break;
57871462 10193 if(regs[j].is32&(1LL<<(r&63))) break;
10194 }
10195 if(regs[j].regmap[hr]==f_regmap[hr]&&(f_regmap[hr]&63)<TEMPREG) {
10196 //printf("Hit %x -> %x, %x %d/%d\n",start+i*4,ba[i],start+j*4,hr,r);
10197 int k;
10198 if(regs[i].regmap[hr]==-1&&branch_regs[i].regmap[hr]==-1) {
10199 if(get_reg(regs[i+2].regmap,f_regmap[hr])>=0) break;
10200 if(r>63) {
10201 if(get_reg(regs[i].regmap,r&63)<0) break;
10202 if(get_reg(branch_regs[i].regmap,r&63)<0) break;
10203 }
10204 k=i;
10205 while(k>1&&regs[k-1].regmap[hr]==-1) {
e1190b87 10206 if(count_free_regs(regs[k-1].regmap)<=minimum_free_regs[k-1]) {
10207 //printf("no free regs for store %x\n",start+(k-1)*4);
10208 break;
57871462 10209 }
57871462 10210 if(get_reg(regs[k-1].regmap,f_regmap[hr])>=0) {
10211 //printf("no-match due to different register\n");
10212 break;
10213 }
10214 if(itype[k-2]==UJUMP||itype[k-2]==RJUMP||itype[k-2]==CJUMP||itype[k-2]==SJUMP||itype[k-2]==FJUMP) {
10215 //printf("no-match due to branch\n");
10216 break;
10217 }
10218 // call/ret fast path assumes no registers allocated
198df76f 10219 if(k>2&&(itype[k-3]==UJUMP||itype[k-3]==RJUMP)&&rt1[k-3]==31) {
57871462 10220 break;
10221 }
10222 if(r>63) {
10223 // NB This can exclude the case where the upper-half
10224 // register is lower numbered than the lower-half
10225 // register. Not sure if it's worth fixing...
10226 if(get_reg(regs[k-1].regmap,r&63)<0) break;
10227 if(regs[k-1].is32&(1LL<<(r&63))) break;
10228 }
10229 k--;
10230 }
10231 if(i<slen-1) {
10232 if((regs[k].is32&(1LL<<f_regmap[hr]))!=
10233 (regs[i+2].was32&(1LL<<f_regmap[hr]))) {
10234 //printf("bad match after branch\n");
10235 break;
10236 }
10237 }
10238 if(regs[k-1].regmap[hr]==f_regmap[hr]&&regmap_pre[k][hr]==f_regmap[hr]) {
10239 //printf("Extend r%d, %x ->\n",hr,start+k*4);
10240 while(k<i) {
10241 regs[k].regmap_entry[hr]=f_regmap[hr];
10242 regs[k].regmap[hr]=f_regmap[hr];
10243 regmap_pre[k+1][hr]=f_regmap[hr];
10244 regs[k].wasdirty&=~(1<<hr);
10245 regs[k].dirty&=~(1<<hr);
10246 regs[k].wasdirty|=(1<<hr)&regs[k-1].dirty;
10247 regs[k].dirty|=(1<<hr)&regs[k].wasdirty;
10248 regs[k].wasconst&=~(1<<hr);
10249 regs[k].isconst&=~(1<<hr);
10250 k++;
10251 }
10252 }
10253 else {
10254 //printf("Fail Extend r%d, %x ->\n",hr,start+k*4);
10255 break;
10256 }
10257 assert(regs[i-1].regmap[hr]==f_regmap[hr]);
10258 if(regs[i-1].regmap[hr]==f_regmap[hr]&&regmap_pre[i][hr]==f_regmap[hr]) {
10259 //printf("OK fill %x (r%d)\n",start+i*4,hr);
10260 regs[i].regmap_entry[hr]=f_regmap[hr];
10261 regs[i].regmap[hr]=f_regmap[hr];
10262 regs[i].wasdirty&=~(1<<hr);
10263 regs[i].dirty&=~(1<<hr);
10264 regs[i].wasdirty|=(1<<hr)&regs[i-1].dirty;
10265 regs[i].dirty|=(1<<hr)&regs[i-1].dirty;
10266 regs[i].wasconst&=~(1<<hr);
10267 regs[i].isconst&=~(1<<hr);
10268 branch_regs[i].regmap_entry[hr]=f_regmap[hr];
10269 branch_regs[i].wasdirty&=~(1<<hr);
10270 branch_regs[i].wasdirty|=(1<<hr)&regs[i].dirty;
10271 branch_regs[i].regmap[hr]=f_regmap[hr];
10272 branch_regs[i].dirty&=~(1<<hr);
10273 branch_regs[i].dirty|=(1<<hr)&regs[i].dirty;
10274 branch_regs[i].wasconst&=~(1<<hr);
10275 branch_regs[i].isconst&=~(1<<hr);
10276 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000) {
10277 regmap_pre[i+2][hr]=f_regmap[hr];
10278 regs[i+2].wasdirty&=~(1<<hr);
10279 regs[i+2].wasdirty|=(1<<hr)&regs[i].dirty;
10280 assert((branch_regs[i].is32&(1LL<<f_regmap[hr]))==
10281 (regs[i+2].was32&(1LL<<f_regmap[hr])));
10282 }
10283 }
10284 }
10285 for(k=t;k<j;k++) {
e1190b87 10286 // Alloc register clean at beginning of loop,
10287 // but may dirty it in pass 6
57871462 10288 regs[k].regmap_entry[hr]=f_regmap[hr];
10289 regs[k].regmap[hr]=f_regmap[hr];
57871462 10290 regs[k].dirty&=~(1<<hr);
10291 regs[k].wasconst&=~(1<<hr);
10292 regs[k].isconst&=~(1<<hr);
e1190b87 10293 if(itype[k]==UJUMP||itype[k]==RJUMP||itype[k]==CJUMP||itype[k]==SJUMP||itype[k]==FJUMP) {
10294 branch_regs[k].regmap_entry[hr]=f_regmap[hr];
10295 branch_regs[k].regmap[hr]=f_regmap[hr];
10296 branch_regs[k].dirty&=~(1<<hr);
10297 branch_regs[k].wasconst&=~(1<<hr);
10298 branch_regs[k].isconst&=~(1<<hr);
10299 if(itype[k]!=RJUMP&&itype[k]!=UJUMP&&(source[k]>>16)!=0x1000) {
10300 regmap_pre[k+2][hr]=f_regmap[hr];
10301 regs[k+2].wasdirty&=~(1<<hr);
10302 assert((branch_regs[k].is32&(1LL<<f_regmap[hr]))==
10303 (regs[k+2].was32&(1LL<<f_regmap[hr])));
10304 }
10305 }
10306 else
10307 {
10308 regmap_pre[k+1][hr]=f_regmap[hr];
10309 regs[k+1].wasdirty&=~(1<<hr);
10310 }
57871462 10311 }
10312 if(regs[j].regmap[hr]==f_regmap[hr])
10313 regs[j].regmap_entry[hr]=f_regmap[hr];
10314 break;
10315 }
10316 if(j==i) break;
10317 if(regs[j].regmap[hr]>=0)
10318 break;
10319 if(get_reg(regs[j].regmap,f_regmap[hr])>=0) {
10320 //printf("no-match due to different register\n");
10321 break;
10322 }
10323 if((regs[j+1].is32&(1LL<<f_regmap[hr]))!=(regs[j].is32&(1LL<<f_regmap[hr]))) {
10324 //printf("32/64 mismatch %x %d\n",start+j*4,hr);
10325 break;
10326 }
e1190b87 10327 if(itype[j]==UJUMP||itype[j]==RJUMP||(source[j]>>16)==0x1000)
10328 {
10329 // Stop on unconditional branch
10330 break;
10331 }
10332 if(itype[j]==CJUMP||itype[j]==SJUMP||itype[j]==FJUMP)
10333 {
10334 if(ooo[j]) {
10335 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j+1])
10336 break;
10337 }else{
10338 if(count_free_regs(branch_regs[j].regmap)<=minimum_free_regs[j+1])
10339 break;
10340 }
10341 if(get_reg(branch_regs[j].regmap,f_regmap[hr])>=0) {
10342 //printf("no-match due to different register (branch)\n");
57871462 10343 break;
10344 }
10345 }
e1190b87 10346 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) {
10347 //printf("No free regs for store %x\n",start+j*4);
10348 break;
10349 }
57871462 10350 if(f_regmap[hr]>=64) {
10351 if(regs[j].is32&(1LL<<(f_regmap[hr]&63))) {
10352 break;
10353 }
10354 else
10355 {
10356 if(get_reg(regs[j].regmap,f_regmap[hr]&63)<0) {
10357 break;
10358 }
10359 }
10360 }
10361 }
10362 }
10363 }
10364 }
10365 }
10366 }else{
198df76f 10367 // Non branch or undetermined branch target
57871462 10368 for(hr=0;hr<HOST_REGS;hr++)
10369 {
10370 if(hr!=EXCLUDE_REG) {
10371 if(regs[i].regmap[hr]>64) {
10372 if(!((regs[i].dirty>>hr)&1))
10373 f_regmap[hr]=regs[i].regmap[hr];
10374 }
b372a952 10375 else if(regs[i].regmap[hr]>=0) {
10376 if(f_regmap[hr]!=regs[i].regmap[hr]) {
10377 // dealloc old register
10378 int n;
10379 for(n=0;n<HOST_REGS;n++)
10380 {
10381 if(f_regmap[n]==regs[i].regmap[hr]) {f_regmap[n]=-1;}
10382 }
10383 // and alloc new one
10384 f_regmap[hr]=regs[i].regmap[hr];
10385 }
10386 }
57871462 10387 }
10388 }
10389 // Try to restore cycle count at branch targets
10390 if(bt[i]) {
10391 for(j=i;j<slen-1;j++) {
10392 if(regs[j].regmap[HOST_CCREG]!=-1) break;
e1190b87 10393 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) {
10394 //printf("no free regs for store %x\n",start+j*4);
10395 break;
57871462 10396 }
57871462 10397 }
10398 if(regs[j].regmap[HOST_CCREG]==CCREG) {
10399 int k=i;
10400 //printf("Extend CC, %x -> %x\n",start+k*4,start+j*4);
10401 while(k<j) {
10402 regs[k].regmap_entry[HOST_CCREG]=CCREG;
10403 regs[k].regmap[HOST_CCREG]=CCREG;
10404 regmap_pre[k+1][HOST_CCREG]=CCREG;
10405 regs[k+1].wasdirty|=1<<HOST_CCREG;
10406 regs[k].dirty|=1<<HOST_CCREG;
10407 regs[k].wasconst&=~(1<<HOST_CCREG);
10408 regs[k].isconst&=~(1<<HOST_CCREG);
10409 k++;
10410 }
10411 regs[j].regmap_entry[HOST_CCREG]=CCREG;
10412 }
10413 // Work backwards from the branch target
10414 if(j>i&&f_regmap[HOST_CCREG]==CCREG)
10415 {
10416 //printf("Extend backwards\n");
10417 int k;
10418 k=i;
10419 while(regs[k-1].regmap[HOST_CCREG]==-1) {
e1190b87 10420 if(count_free_regs(regs[k-1].regmap)<=minimum_free_regs[k-1]) {
10421 //printf("no free regs for store %x\n",start+(k-1)*4);
10422 break;
57871462 10423 }
57871462 10424 k--;
10425 }
10426 if(regs[k-1].regmap[HOST_CCREG]==CCREG) {
10427 //printf("Extend CC, %x ->\n",start+k*4);
10428 while(k<=i) {
10429 regs[k].regmap_entry[HOST_CCREG]=CCREG;
10430 regs[k].regmap[HOST_CCREG]=CCREG;
10431 regmap_pre[k+1][HOST_CCREG]=CCREG;
10432 regs[k+1].wasdirty|=1<<HOST_CCREG;
10433 regs[k].dirty|=1<<HOST_CCREG;
10434 regs[k].wasconst&=~(1<<HOST_CCREG);
10435 regs[k].isconst&=~(1<<HOST_CCREG);
10436 k++;
10437 }
10438 }
10439 else {
10440 //printf("Fail Extend CC, %x ->\n",start+k*4);
10441 }
10442 }
10443 }
10444 if(itype[i]!=STORE&&itype[i]!=STORELR&&itype[i]!=C1LS&&itype[i]!=SHIFT&&
10445 itype[i]!=NOP&&itype[i]!=MOV&&itype[i]!=ALU&&itype[i]!=SHIFTIMM&&
10446 itype[i]!=IMM16&&itype[i]!=LOAD&&itype[i]!=COP1&&itype[i]!=FLOAT&&
e1190b87 10447 itype[i]!=FCONV&&itype[i]!=FCOMP)
57871462 10448 {
10449 memcpy(f_regmap,regs[i].regmap,sizeof(f_regmap));
10450 }
10451 }
10452 }
10453
d61de97e 10454 // Cache memory offset or tlb map pointer if a register is available
10455 #ifndef HOST_IMM_ADDR32
10456 #ifndef RAM_OFFSET
10457 if(using_tlb)
10458 #endif
10459 {
10460 int earliest_available[HOST_REGS];
10461 int loop_start[HOST_REGS];
10462 int score[HOST_REGS];
10463 int end[HOST_REGS];
10464 int reg=using_tlb?MMREG:ROREG;
10465
10466 // Init
10467 for(hr=0;hr<HOST_REGS;hr++) {
10468 score[hr]=0;earliest_available[hr]=0;
10469 loop_start[hr]=MAXBLOCK;
10470 }
10471 for(i=0;i<slen-1;i++)
10472 {
10473 // Can't do anything if no registers are available
10474 if(count_free_regs(regs[i].regmap)<=minimum_free_regs[i]) {
10475 for(hr=0;hr<HOST_REGS;hr++) {
10476 score[hr]=0;earliest_available[hr]=i+1;
10477 loop_start[hr]=MAXBLOCK;
10478 }
10479 }
10480 if(itype[i]==UJUMP||itype[i]==RJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP) {
10481 if(!ooo[i]) {
10482 if(count_free_regs(branch_regs[i].regmap)<=minimum_free_regs[i+1]) {
10483 for(hr=0;hr<HOST_REGS;hr++) {
10484 score[hr]=0;earliest_available[hr]=i+1;
10485 loop_start[hr]=MAXBLOCK;
10486 }
10487 }
198df76f 10488 }else{
10489 if(count_free_regs(regs[i].regmap)<=minimum_free_regs[i+1]) {
10490 for(hr=0;hr<HOST_REGS;hr++) {
10491 score[hr]=0;earliest_available[hr]=i+1;
10492 loop_start[hr]=MAXBLOCK;
10493 }
10494 }
d61de97e 10495 }
10496 }
10497 // Mark unavailable registers
10498 for(hr=0;hr<HOST_REGS;hr++) {
10499 if(regs[i].regmap[hr]>=0) {
10500 score[hr]=0;earliest_available[hr]=i+1;
10501 loop_start[hr]=MAXBLOCK;
10502 }
10503 if(itype[i]==UJUMP||itype[i]==RJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP) {
10504 if(branch_regs[i].regmap[hr]>=0) {
10505 score[hr]=0;earliest_available[hr]=i+2;
10506 loop_start[hr]=MAXBLOCK;
10507 }
10508 }
10509 }
10510 // No register allocations after unconditional jumps
10511 if(itype[i]==UJUMP||itype[i]==RJUMP||(source[i]>>16)==0x1000)
10512 {
10513 for(hr=0;hr<HOST_REGS;hr++) {
10514 score[hr]=0;earliest_available[hr]=i+2;
10515 loop_start[hr]=MAXBLOCK;
10516 }
10517 i++; // Skip delay slot too
10518 //printf("skip delay slot: %x\n",start+i*4);
10519 }
10520 else
10521 // Possible match
10522 if(itype[i]==LOAD||itype[i]==LOADLR||
10523 itype[i]==STORE||itype[i]==STORELR||itype[i]==C1LS) {
10524 for(hr=0;hr<HOST_REGS;hr++) {
10525 if(hr!=EXCLUDE_REG) {
10526 end[hr]=i-1;
10527 for(j=i;j<slen-1;j++) {
10528 if(regs[j].regmap[hr]>=0) break;
10529 if(itype[j]==UJUMP||itype[j]==RJUMP||itype[j]==CJUMP||itype[j]==SJUMP||itype[j]==FJUMP) {
10530 if(branch_regs[j].regmap[hr]>=0) break;
10531 if(ooo[j]) {
10532 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j+1]) break;
10533 }else{
10534 if(count_free_regs(branch_regs[j].regmap)<=minimum_free_regs[j+1]) break;
10535 }
10536 }
10537 else if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) break;
10538 if(itype[j]==UJUMP||itype[j]==RJUMP||itype[j]==CJUMP||itype[j]==SJUMP||itype[j]==FJUMP) {
10539 int t=(ba[j]-start)>>2;
10540 if(t<j&&t>=earliest_available[hr]) {
198df76f 10541 if(t==1||(t>1&&itype[t-2]!=UJUMP&&itype[t-2]!=RJUMP)||(t>1&&rt1[t-2]!=31)) { // call/ret assumes no registers allocated
10542 // Score a point for hoisting loop invariant
10543 if(t<loop_start[hr]) loop_start[hr]=t;
10544 //printf("set loop_start: i=%x j=%x (%x)\n",start+i*4,start+j*4,start+t*4);
10545 score[hr]++;
10546 end[hr]=j;
10547 }
d61de97e 10548 }
10549 else if(t<j) {
10550 if(regs[t].regmap[hr]==reg) {
10551 // Score a point if the branch target matches this register
10552 score[hr]++;
10553 end[hr]=j;
10554 }
10555 }
10556 if(itype[j+1]==LOAD||itype[j+1]==LOADLR||
10557 itype[j+1]==STORE||itype[j+1]==STORELR||itype[j+1]==C1LS) {
10558 score[hr]++;
10559 end[hr]=j;
10560 }
10561 }
10562 if(itype[j]==UJUMP||itype[j]==RJUMP||(source[j]>>16)==0x1000)
10563 {
10564 // Stop on unconditional branch
10565 break;
10566 }
10567 else
10568 if(itype[j]==LOAD||itype[j]==LOADLR||
10569 itype[j]==STORE||itype[j]==STORELR||itype[j]==C1LS) {
10570 score[hr]++;
10571 end[hr]=j;
10572 }
10573 }
10574 }
10575 }
10576 // Find highest score and allocate that register
10577 int maxscore=0;
10578 for(hr=0;hr<HOST_REGS;hr++) {
10579 if(hr!=EXCLUDE_REG) {
10580 if(score[hr]>score[maxscore]) {
10581 maxscore=hr;
10582 //printf("highest score: %d %d (%x->%x)\n",score[hr],hr,start+i*4,start+end[hr]*4);
10583 }
10584 }
10585 }
10586 if(score[maxscore]>1)
10587 {
10588 if(i<loop_start[maxscore]) loop_start[maxscore]=i;
10589 for(j=loop_start[maxscore];j<slen&&j<=end[maxscore];j++) {
10590 //if(regs[j].regmap[maxscore]>=0) {printf("oops: %x %x was %d=%d\n",loop_start[maxscore]*4+start,j*4+start,maxscore,regs[j].regmap[maxscore]);}
10591 assert(regs[j].regmap[maxscore]<0);
10592 if(j>loop_start[maxscore]) regs[j].regmap_entry[maxscore]=reg;
10593 regs[j].regmap[maxscore]=reg;
10594 regs[j].dirty&=~(1<<maxscore);
10595 regs[j].wasconst&=~(1<<maxscore);
10596 regs[j].isconst&=~(1<<maxscore);
10597 if(itype[j]==UJUMP||itype[j]==RJUMP||itype[j]==CJUMP||itype[j]==SJUMP||itype[j]==FJUMP) {
10598 branch_regs[j].regmap[maxscore]=reg;
10599 branch_regs[j].wasdirty&=~(1<<maxscore);
10600 branch_regs[j].dirty&=~(1<<maxscore);
10601 branch_regs[j].wasconst&=~(1<<maxscore);
10602 branch_regs[j].isconst&=~(1<<maxscore);
10603 if(itype[j]!=RJUMP&&itype[j]!=UJUMP&&(source[j]>>16)!=0x1000) {
10604 regmap_pre[j+2][maxscore]=reg;
10605 regs[j+2].wasdirty&=~(1<<maxscore);
10606 }
10607 // loop optimization (loop_preload)
10608 int t=(ba[j]-start)>>2;
198df76f 10609 if(t==loop_start[maxscore]) {
10610 if(t==1||(t>1&&itype[t-2]!=UJUMP&&itype[t-2]!=RJUMP)||(t>1&&rt1[t-2]!=31)) // call/ret assumes no registers allocated
10611 regs[t].regmap_entry[maxscore]=reg;
10612 }
d61de97e 10613 }
10614 else
10615 {
10616 if(j<1||(itype[j-1]!=RJUMP&&itype[j-1]!=UJUMP&&itype[j-1]!=CJUMP&&itype[j-1]!=SJUMP&&itype[j-1]!=FJUMP)) {
10617 regmap_pre[j+1][maxscore]=reg;
10618 regs[j+1].wasdirty&=~(1<<maxscore);
10619 }
10620 }
10621 }
10622 i=j-1;
10623 if(itype[j-1]==RJUMP||itype[j-1]==UJUMP||itype[j-1]==CJUMP||itype[j-1]==SJUMP||itype[j-1]==FJUMP) i++; // skip delay slot
10624 for(hr=0;hr<HOST_REGS;hr++) {
10625 score[hr]=0;earliest_available[hr]=i+i;
10626 loop_start[hr]=MAXBLOCK;
10627 }
10628 }
10629 }
10630 }
10631 }
10632 #endif
10633
57871462 10634 // This allocates registers (if possible) one instruction prior
10635 // to use, which can avoid a load-use penalty on certain CPUs.
10636 for(i=0;i<slen-1;i++)
10637 {
10638 if(!i||(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP))
10639 {
10640 if(!bt[i+1])
10641 {
b9b61529 10642 if(itype[i]==ALU||itype[i]==MOV||itype[i]==LOAD||itype[i]==SHIFTIMM||itype[i]==IMM16
10643 ||((itype[i]==COP1||itype[i]==COP2)&&opcode2[i]<3))
57871462 10644 {
10645 if(rs1[i+1]) {
10646 if((hr=get_reg(regs[i+1].regmap,rs1[i+1]))>=0)
10647 {
10648 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10649 {
10650 regs[i].regmap[hr]=regs[i+1].regmap[hr];
10651 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
10652 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
10653 regs[i].isconst&=~(1<<hr);
10654 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10655 constmap[i][hr]=constmap[i+1][hr];
10656 regs[i+1].wasdirty&=~(1<<hr);
10657 regs[i].dirty&=~(1<<hr);
10658 }
10659 }
10660 }
10661 if(rs2[i+1]) {
10662 if((hr=get_reg(regs[i+1].regmap,rs2[i+1]))>=0)
10663 {
10664 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10665 {
10666 regs[i].regmap[hr]=regs[i+1].regmap[hr];
10667 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
10668 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
10669 regs[i].isconst&=~(1<<hr);
10670 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10671 constmap[i][hr]=constmap[i+1][hr];
10672 regs[i+1].wasdirty&=~(1<<hr);
10673 regs[i].dirty&=~(1<<hr);
10674 }
10675 }
10676 }
198df76f 10677 // Preload target address for load instruction (non-constant)
57871462 10678 if(itype[i+1]==LOAD&&rs1[i+1]&&get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10679 if((hr=get_reg(regs[i+1].regmap,rt1[i+1]))>=0)
10680 {
10681 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10682 {
10683 regs[i].regmap[hr]=rs1[i+1];
10684 regmap_pre[i+1][hr]=rs1[i+1];
10685 regs[i+1].regmap_entry[hr]=rs1[i+1];
10686 regs[i].isconst&=~(1<<hr);
10687 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10688 constmap[i][hr]=constmap[i+1][hr];
10689 regs[i+1].wasdirty&=~(1<<hr);
10690 regs[i].dirty&=~(1<<hr);
10691 }
10692 }
10693 }
198df76f 10694 // Load source into target register
57871462 10695 if(lt1[i+1]&&get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10696 if((hr=get_reg(regs[i+1].regmap,rt1[i+1]))>=0)
10697 {
10698 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10699 {
10700 regs[i].regmap[hr]=rs1[i+1];
10701 regmap_pre[i+1][hr]=rs1[i+1];
10702 regs[i+1].regmap_entry[hr]=rs1[i+1];
10703 regs[i].isconst&=~(1<<hr);
10704 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10705 constmap[i][hr]=constmap[i+1][hr];
10706 regs[i+1].wasdirty&=~(1<<hr);
10707 regs[i].dirty&=~(1<<hr);
10708 }
10709 }
10710 }
198df76f 10711 // Preload map address
57871462 10712 #ifndef HOST_IMM_ADDR32
b9b61529 10713 if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS||itype[i+1]==C2LS) {
57871462 10714 hr=get_reg(regs[i+1].regmap,TLREG);
10715 if(hr>=0) {
10716 int sr=get_reg(regs[i+1].regmap,rs1[i+1]);
10717 if(sr>=0&&((regs[i+1].wasconst>>sr)&1)) {
10718 int nr;
10719 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10720 {
10721 regs[i].regmap[hr]=MGEN1+((i+1)&1);
10722 regmap_pre[i+1][hr]=MGEN1+((i+1)&1);
10723 regs[i+1].regmap_entry[hr]=MGEN1+((i+1)&1);
10724 regs[i].isconst&=~(1<<hr);
10725 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10726 constmap[i][hr]=constmap[i+1][hr];
10727 regs[i+1].wasdirty&=~(1<<hr);
10728 regs[i].dirty&=~(1<<hr);
10729 }
10730 else if((nr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1))>=0)
10731 {
10732 // move it to another register
10733 regs[i+1].regmap[hr]=-1;
10734 regmap_pre[i+2][hr]=-1;
10735 regs[i+1].regmap[nr]=TLREG;
10736 regmap_pre[i+2][nr]=TLREG;
10737 regs[i].regmap[nr]=MGEN1+((i+1)&1);
10738 regmap_pre[i+1][nr]=MGEN1+((i+1)&1);
10739 regs[i+1].regmap_entry[nr]=MGEN1+((i+1)&1);
10740 regs[i].isconst&=~(1<<nr);
10741 regs[i+1].isconst&=~(1<<nr);
10742 regs[i].dirty&=~(1<<nr);
10743 regs[i+1].wasdirty&=~(1<<nr);
10744 regs[i+1].dirty&=~(1<<nr);
10745 regs[i+2].wasdirty&=~(1<<nr);
10746 }
10747 }
10748 }
10749 }
10750 #endif
198df76f 10751 // Address for store instruction (non-constant)
b9b61529 10752 if(itype[i+1]==STORE||itype[i+1]==STORELR
10753 ||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SB/SH/SW/SD/SWC1/SDC1/SWC2/SDC2
57871462 10754 if(get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10755 hr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1);
10756 if(hr<0) hr=get_reg(regs[i+1].regmap,-1);
10757 else {regs[i+1].regmap[hr]=AGEN1+((i+1)&1);regs[i+1].isconst&=~(1<<hr);}
10758 assert(hr>=0);
10759 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10760 {
10761 regs[i].regmap[hr]=rs1[i+1];
10762 regmap_pre[i+1][hr]=rs1[i+1];
10763 regs[i+1].regmap_entry[hr]=rs1[i+1];
10764 regs[i].isconst&=~(1<<hr);
10765 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10766 constmap[i][hr]=constmap[i+1][hr];
10767 regs[i+1].wasdirty&=~(1<<hr);
10768 regs[i].dirty&=~(1<<hr);
10769 }
10770 }
10771 }
b9b61529 10772 if(itype[i+1]==LOADLR||(opcode[i+1]&0x3b)==0x31||(opcode[i+1]&0x3b)==0x32) { // LWC1/LDC1, LWC2/LDC2
57871462 10773 if(get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10774 int nr;
10775 hr=get_reg(regs[i+1].regmap,FTEMP);
10776 assert(hr>=0);
10777 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10778 {
10779 regs[i].regmap[hr]=rs1[i+1];
10780 regmap_pre[i+1][hr]=rs1[i+1];
10781 regs[i+1].regmap_entry[hr]=rs1[i+1];
10782 regs[i].isconst&=~(1<<hr);
10783 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10784 constmap[i][hr]=constmap[i+1][hr];
10785 regs[i+1].wasdirty&=~(1<<hr);
10786 regs[i].dirty&=~(1<<hr);
10787 }
10788 else if((nr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1))>=0)
10789 {
10790 // move it to another register
10791 regs[i+1].regmap[hr]=-1;
10792 regmap_pre[i+2][hr]=-1;
10793 regs[i+1].regmap[nr]=FTEMP;
10794 regmap_pre[i+2][nr]=FTEMP;
10795 regs[i].regmap[nr]=rs1[i+1];
10796 regmap_pre[i+1][nr]=rs1[i+1];
10797 regs[i+1].regmap_entry[nr]=rs1[i+1];
10798 regs[i].isconst&=~(1<<nr);
10799 regs[i+1].isconst&=~(1<<nr);
10800 regs[i].dirty&=~(1<<nr);
10801 regs[i+1].wasdirty&=~(1<<nr);
10802 regs[i+1].dirty&=~(1<<nr);
10803 regs[i+2].wasdirty&=~(1<<nr);
10804 }
10805 }
10806 }
b9b61529 10807 if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR/*||itype[i+1]==C1LS||||itype[i+1]==C2LS*/) {
57871462 10808 if(itype[i+1]==LOAD)
10809 hr=get_reg(regs[i+1].regmap,rt1[i+1]);
b9b61529 10810 if(itype[i+1]==LOADLR||(opcode[i+1]&0x3b)==0x31||(opcode[i+1]&0x3b)==0x32) // LWC1/LDC1, LWC2/LDC2
57871462 10811 hr=get_reg(regs[i+1].regmap,FTEMP);
b9b61529 10812 if(itype[i+1]==STORE||itype[i+1]==STORELR||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1/SWC2/SDC2
57871462 10813 hr=get_reg(regs[i+1].regmap,AGEN1+((i+1)&1));
10814 if(hr<0) hr=get_reg(regs[i+1].regmap,-1);
10815 }
10816 if(hr>=0&&regs[i].regmap[hr]<0) {
10817 int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
10818 if(rs>=0&&((regs[i+1].wasconst>>rs)&1)) {
10819 regs[i].regmap[hr]=AGEN1+((i+1)&1);
10820 regmap_pre[i+1][hr]=AGEN1+((i+1)&1);
10821 regs[i+1].regmap_entry[hr]=AGEN1+((i+1)&1);
10822 regs[i].isconst&=~(1<<hr);
10823 regs[i+1].wasdirty&=~(1<<hr);
10824 regs[i].dirty&=~(1<<hr);
10825 }
10826 }
10827 }
10828 }
10829 }
10830 }
10831 }
10832
10833 /* Pass 6 - Optimize clean/dirty state */
10834 clean_registers(0,slen-1,1);
10835
10836 /* Pass 7 - Identify 32-bit registers */
a28c6ce8 10837#ifndef FORCE32
57871462 10838 provisional_r32();
10839
10840 u_int r32=0;
10841
10842 for (i=slen-1;i>=0;i--)
10843 {
10844 int hr;
10845 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
10846 {
10847 if(ba[i]<start || ba[i]>=(start+slen*4))
10848 {
10849 // Branch out of this block, don't need anything
10850 r32=0;
10851 }
10852 else
10853 {
10854 // Internal branch
10855 // Need whatever matches the target
10856 // (and doesn't get overwritten by the delay slot instruction)
10857 r32=0;
10858 int t=(ba[i]-start)>>2;
10859 if(ba[i]>start+i*4) {
10860 // Forward branch
10861 if(!(requires_32bit[t]&~regs[i].was32))
10862 r32|=requires_32bit[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
10863 }else{
10864 // Backward branch
10865 //if(!(regs[t].was32&~unneeded_reg_upper[t]&~regs[i].was32))
10866 // r32|=regs[t].was32&~unneeded_reg_upper[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
10867 if(!(pr32[t]&~regs[i].was32))
10868 r32|=pr32[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
10869 }
10870 }
10871 // Conditional branch may need registers for following instructions
10872 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
10873 {
10874 if(i<slen-2) {
10875 r32|=requires_32bit[i+2];
10876 r32&=regs[i].was32;
10877 // Mark this address as a branch target since it may be called
10878 // upon return from interrupt
10879 bt[i+2]=1;
10880 }
10881 }
10882 // Merge in delay slot
10883 if(!likely[i]) {
10884 // These are overwritten unless the branch is "likely"
10885 // and the delay slot is nullified if not taken
10886 r32&=~(1LL<<rt1[i+1]);
10887 r32&=~(1LL<<rt2[i+1]);
10888 }
10889 // Assume these are needed (delay slot)
10890 if(us1[i+1]>0)
10891 {
10892 if((regs[i].was32>>us1[i+1])&1) r32|=1LL<<us1[i+1];
10893 }
10894 if(us2[i+1]>0)
10895 {
10896 if((regs[i].was32>>us2[i+1])&1) r32|=1LL<<us2[i+1];
10897 }
10898 if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1))
10899 {
10900 if((regs[i].was32>>dep1[i+1])&1) r32|=1LL<<dep1[i+1];
10901 }
10902 if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1))
10903 {
10904 if((regs[i].was32>>dep2[i+1])&1) r32|=1LL<<dep2[i+1];
10905 }
10906 }
1e973cb0 10907 else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
57871462 10908 {
10909 // SYSCALL instruction (software interrupt)
10910 r32=0;
10911 }
10912 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
10913 {
10914 // ERET instruction (return from interrupt)
10915 r32=0;
10916 }
10917 // Check 32 bits
10918 r32&=~(1LL<<rt1[i]);
10919 r32&=~(1LL<<rt2[i]);
10920 if(us1[i]>0)
10921 {
10922 if((regs[i].was32>>us1[i])&1) r32|=1LL<<us1[i];
10923 }
10924 if(us2[i]>0)
10925 {
10926 if((regs[i].was32>>us2[i])&1) r32|=1LL<<us2[i];
10927 }
10928 if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1))
10929 {
10930 if((regs[i].was32>>dep1[i])&1) r32|=1LL<<dep1[i];
10931 }
10932 if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1))
10933 {
10934 if((regs[i].was32>>dep2[i])&1) r32|=1LL<<dep2[i];
10935 }
10936 requires_32bit[i]=r32;
10937
10938 // Dirty registers which are 32-bit, require 32-bit input
10939 // as they will be written as 32-bit values
10940 for(hr=0;hr<HOST_REGS;hr++)
10941 {
10942 if(regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64) {
10943 if((regs[i].was32>>regs[i].regmap_entry[hr])&(regs[i].wasdirty>>hr)&1) {
10944 if(!((unneeded_reg_upper[i]>>regs[i].regmap_entry[hr])&1))
10945 requires_32bit[i]|=1LL<<regs[i].regmap_entry[hr];
10946 }
10947 }
10948 }
10949 //requires_32bit[i]=is32[i]&~unneeded_reg_upper[i]; // DEBUG
10950 }
04fd948a 10951#else
10952 for (i=slen-1;i>=0;i--)
10953 {
10954 if(itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
10955 {
10956 // Conditional branch
10957 if((source[i]>>16)!=0x1000&&i<slen-2) {
10958 // Mark this address as a branch target since it may be called
10959 // upon return from interrupt
10960 bt[i+2]=1;
10961 }
10962 }
10963 }
a28c6ce8 10964#endif
57871462 10965
10966 if(itype[slen-1]==SPAN) {
10967 bt[slen-1]=1; // Mark as a branch target so instruction can restart after exception
10968 }
4600ba03 10969
10970#ifdef DISASM
57871462 10971 /* Debug/disassembly */
57871462 10972 for(i=0;i<slen;i++)
10973 {
10974 printf("U:");
10975 int r;
10976 for(r=1;r<=CCREG;r++) {
10977 if((unneeded_reg[i]>>r)&1) {
10978 if(r==HIREG) printf(" HI");
10979 else if(r==LOREG) printf(" LO");
10980 else printf(" r%d",r);
10981 }
10982 }
90ae6d4e 10983#ifndef FORCE32
57871462 10984 printf(" UU:");
10985 for(r=1;r<=CCREG;r++) {
10986 if(((unneeded_reg_upper[i]&~unneeded_reg[i])>>r)&1) {
10987 if(r==HIREG) printf(" HI");
10988 else if(r==LOREG) printf(" LO");
10989 else printf(" r%d",r);
10990 }
10991 }
10992 printf(" 32:");
10993 for(r=0;r<=CCREG;r++) {
10994 //if(((is32[i]>>r)&(~unneeded_reg[i]>>r))&1) {
10995 if((regs[i].was32>>r)&1) {
10996 if(r==CCREG) printf(" CC");
10997 else if(r==HIREG) printf(" HI");
10998 else if(r==LOREG) printf(" LO");
10999 else printf(" r%d",r);
11000 }
11001 }
90ae6d4e 11002#endif
57871462 11003 printf("\n");
11004 #if defined(__i386__) || defined(__x86_64__)
11005 printf("pre: eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",regmap_pre[i][0],regmap_pre[i][1],regmap_pre[i][2],regmap_pre[i][3],regmap_pre[i][5],regmap_pre[i][6],regmap_pre[i][7]);
11006 #endif
11007 #ifdef __arm__
11008 printf("pre: r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d\n",regmap_pre[i][0],regmap_pre[i][1],regmap_pre[i][2],regmap_pre[i][3],regmap_pre[i][4],regmap_pre[i][5],regmap_pre[i][6],regmap_pre[i][7],regmap_pre[i][8],regmap_pre[i][9],regmap_pre[i][10],regmap_pre[i][12]);
11009 #endif
11010 printf("needs: ");
11011 if(needed_reg[i]&1) printf("eax ");
11012 if((needed_reg[i]>>1)&1) printf("ecx ");
11013 if((needed_reg[i]>>2)&1) printf("edx ");
11014 if((needed_reg[i]>>3)&1) printf("ebx ");
11015 if((needed_reg[i]>>5)&1) printf("ebp ");
11016 if((needed_reg[i]>>6)&1) printf("esi ");
11017 if((needed_reg[i]>>7)&1) printf("edi ");
11018 printf("r:");
11019 for(r=0;r<=CCREG;r++) {
11020 //if(((requires_32bit[i]>>r)&(~unneeded_reg[i]>>r))&1) {
11021 if((requires_32bit[i]>>r)&1) {
11022 if(r==CCREG) printf(" CC");
11023 else if(r==HIREG) printf(" HI");
11024 else if(r==LOREG) printf(" LO");
11025 else printf(" r%d",r);
11026 }
11027 }
11028 printf("\n");
11029 /*printf("pr:");
11030 for(r=0;r<=CCREG;r++) {
11031 //if(((requires_32bit[i]>>r)&(~unneeded_reg[i]>>r))&1) {
11032 if((pr32[i]>>r)&1) {
11033 if(r==CCREG) printf(" CC");
11034 else if(r==HIREG) printf(" HI");
11035 else if(r==LOREG) printf(" LO");
11036 else printf(" r%d",r);
11037 }
11038 }
11039 if(pr32[i]!=requires_32bit[i]) printf(" OOPS");
11040 printf("\n");*/
11041 #if defined(__i386__) || defined(__x86_64__)
11042 printf("entry: eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",regs[i].regmap_entry[0],regs[i].regmap_entry[1],regs[i].regmap_entry[2],regs[i].regmap_entry[3],regs[i].regmap_entry[5],regs[i].regmap_entry[6],regs[i].regmap_entry[7]);
11043 printf("dirty: ");
11044 if(regs[i].wasdirty&1) printf("eax ");
11045 if((regs[i].wasdirty>>1)&1) printf("ecx ");
11046 if((regs[i].wasdirty>>2)&1) printf("edx ");
11047 if((regs[i].wasdirty>>3)&1) printf("ebx ");
11048 if((regs[i].wasdirty>>5)&1) printf("ebp ");
11049 if((regs[i].wasdirty>>6)&1) printf("esi ");
11050 if((regs[i].wasdirty>>7)&1) printf("edi ");
11051 #endif
11052 #ifdef __arm__
11053 printf("entry: r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d\n",regs[i].regmap_entry[0],regs[i].regmap_entry[1],regs[i].regmap_entry[2],regs[i].regmap_entry[3],regs[i].regmap_entry[4],regs[i].regmap_entry[5],regs[i].regmap_entry[6],regs[i].regmap_entry[7],regs[i].regmap_entry[8],regs[i].regmap_entry[9],regs[i].regmap_entry[10],regs[i].regmap_entry[12]);
11054 printf("dirty: ");
11055 if(regs[i].wasdirty&1) printf("r0 ");
11056 if((regs[i].wasdirty>>1)&1) printf("r1 ");
11057 if((regs[i].wasdirty>>2)&1) printf("r2 ");
11058 if((regs[i].wasdirty>>3)&1) printf("r3 ");
11059 if((regs[i].wasdirty>>4)&1) printf("r4 ");
11060 if((regs[i].wasdirty>>5)&1) printf("r5 ");
11061 if((regs[i].wasdirty>>6)&1) printf("r6 ");
11062 if((regs[i].wasdirty>>7)&1) printf("r7 ");
11063 if((regs[i].wasdirty>>8)&1) printf("r8 ");
11064 if((regs[i].wasdirty>>9)&1) printf("r9 ");
11065 if((regs[i].wasdirty>>10)&1) printf("r10 ");
11066 if((regs[i].wasdirty>>12)&1) printf("r12 ");
11067 #endif
11068 printf("\n");
11069 disassemble_inst(i);
11070 //printf ("ccadj[%d] = %d\n",i,ccadj[i]);
11071 #if defined(__i386__) || defined(__x86_64__)
11072 printf("eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d dirty: ",regs[i].regmap[0],regs[i].regmap[1],regs[i].regmap[2],regs[i].regmap[3],regs[i].regmap[5],regs[i].regmap[6],regs[i].regmap[7]);
11073 if(regs[i].dirty&1) printf("eax ");
11074 if((regs[i].dirty>>1)&1) printf("ecx ");
11075 if((regs[i].dirty>>2)&1) printf("edx ");
11076 if((regs[i].dirty>>3)&1) printf("ebx ");
11077 if((regs[i].dirty>>5)&1) printf("ebp ");
11078 if((regs[i].dirty>>6)&1) printf("esi ");
11079 if((regs[i].dirty>>7)&1) printf("edi ");
11080 #endif
11081 #ifdef __arm__
11082 printf("r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d dirty: ",regs[i].regmap[0],regs[i].regmap[1],regs[i].regmap[2],regs[i].regmap[3],regs[i].regmap[4],regs[i].regmap[5],regs[i].regmap[6],regs[i].regmap[7],regs[i].regmap[8],regs[i].regmap[9],regs[i].regmap[10],regs[i].regmap[12]);
11083 if(regs[i].dirty&1) printf("r0 ");
11084 if((regs[i].dirty>>1)&1) printf("r1 ");
11085 if((regs[i].dirty>>2)&1) printf("r2 ");
11086 if((regs[i].dirty>>3)&1) printf("r3 ");
11087 if((regs[i].dirty>>4)&1) printf("r4 ");
11088 if((regs[i].dirty>>5)&1) printf("r5 ");
11089 if((regs[i].dirty>>6)&1) printf("r6 ");
11090 if((regs[i].dirty>>7)&1) printf("r7 ");
11091 if((regs[i].dirty>>8)&1) printf("r8 ");
11092 if((regs[i].dirty>>9)&1) printf("r9 ");
11093 if((regs[i].dirty>>10)&1) printf("r10 ");
11094 if((regs[i].dirty>>12)&1) printf("r12 ");
11095 #endif
11096 printf("\n");
11097 if(regs[i].isconst) {
11098 printf("constants: ");
11099 #if defined(__i386__) || defined(__x86_64__)
11100 if(regs[i].isconst&1) printf("eax=%x ",(int)constmap[i][0]);
11101 if((regs[i].isconst>>1)&1) printf("ecx=%x ",(int)constmap[i][1]);
11102 if((regs[i].isconst>>2)&1) printf("edx=%x ",(int)constmap[i][2]);
11103 if((regs[i].isconst>>3)&1) printf("ebx=%x ",(int)constmap[i][3]);
11104 if((regs[i].isconst>>5)&1) printf("ebp=%x ",(int)constmap[i][5]);
11105 if((regs[i].isconst>>6)&1) printf("esi=%x ",(int)constmap[i][6]);
11106 if((regs[i].isconst>>7)&1) printf("edi=%x ",(int)constmap[i][7]);
11107 #endif
11108 #ifdef __arm__
11109 if(regs[i].isconst&1) printf("r0=%x ",(int)constmap[i][0]);
11110 if((regs[i].isconst>>1)&1) printf("r1=%x ",(int)constmap[i][1]);
11111 if((regs[i].isconst>>2)&1) printf("r2=%x ",(int)constmap[i][2]);
11112 if((regs[i].isconst>>3)&1) printf("r3=%x ",(int)constmap[i][3]);
11113 if((regs[i].isconst>>4)&1) printf("r4=%x ",(int)constmap[i][4]);
11114 if((regs[i].isconst>>5)&1) printf("r5=%x ",(int)constmap[i][5]);
11115 if((regs[i].isconst>>6)&1) printf("r6=%x ",(int)constmap[i][6]);
11116 if((regs[i].isconst>>7)&1) printf("r7=%x ",(int)constmap[i][7]);
11117 if((regs[i].isconst>>8)&1) printf("r8=%x ",(int)constmap[i][8]);
11118 if((regs[i].isconst>>9)&1) printf("r9=%x ",(int)constmap[i][9]);
11119 if((regs[i].isconst>>10)&1) printf("r10=%x ",(int)constmap[i][10]);
11120 if((regs[i].isconst>>12)&1) printf("r12=%x ",(int)constmap[i][12]);
11121 #endif
11122 printf("\n");
11123 }
90ae6d4e 11124#ifndef FORCE32
57871462 11125 printf(" 32:");
11126 for(r=0;r<=CCREG;r++) {
11127 if((regs[i].is32>>r)&1) {
11128 if(r==CCREG) printf(" CC");
11129 else if(r==HIREG) printf(" HI");
11130 else if(r==LOREG) printf(" LO");
11131 else printf(" r%d",r);
11132 }
11133 }
11134 printf("\n");
90ae6d4e 11135#endif
57871462 11136 /*printf(" p32:");
11137 for(r=0;r<=CCREG;r++) {
11138 if((p32[i]>>r)&1) {
11139 if(r==CCREG) printf(" CC");
11140 else if(r==HIREG) printf(" HI");
11141 else if(r==LOREG) printf(" LO");
11142 else printf(" r%d",r);
11143 }
11144 }
11145 if(p32[i]!=regs[i].is32) printf(" NO MATCH\n");
11146 else printf("\n");*/
11147 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP) {
11148 #if defined(__i386__) || defined(__x86_64__)
11149 printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d dirty: ",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
11150 if(branch_regs[i].dirty&1) printf("eax ");
11151 if((branch_regs[i].dirty>>1)&1) printf("ecx ");
11152 if((branch_regs[i].dirty>>2)&1) printf("edx ");
11153 if((branch_regs[i].dirty>>3)&1) printf("ebx ");
11154 if((branch_regs[i].dirty>>5)&1) printf("ebp ");
11155 if((branch_regs[i].dirty>>6)&1) printf("esi ");
11156 if((branch_regs[i].dirty>>7)&1) printf("edi ");
11157 #endif
11158 #ifdef __arm__
11159 printf("branch(%d): r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d dirty: ",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[4],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7],branch_regs[i].regmap[8],branch_regs[i].regmap[9],branch_regs[i].regmap[10],branch_regs[i].regmap[12]);
11160 if(branch_regs[i].dirty&1) printf("r0 ");
11161 if((branch_regs[i].dirty>>1)&1) printf("r1 ");
11162 if((branch_regs[i].dirty>>2)&1) printf("r2 ");
11163 if((branch_regs[i].dirty>>3)&1) printf("r3 ");
11164 if((branch_regs[i].dirty>>4)&1) printf("r4 ");
11165 if((branch_regs[i].dirty>>5)&1) printf("r5 ");
11166 if((branch_regs[i].dirty>>6)&1) printf("r6 ");
11167 if((branch_regs[i].dirty>>7)&1) printf("r7 ");
11168 if((branch_regs[i].dirty>>8)&1) printf("r8 ");
11169 if((branch_regs[i].dirty>>9)&1) printf("r9 ");
11170 if((branch_regs[i].dirty>>10)&1) printf("r10 ");
11171 if((branch_regs[i].dirty>>12)&1) printf("r12 ");
11172 #endif
90ae6d4e 11173#ifndef FORCE32
57871462 11174 printf(" 32:");
11175 for(r=0;r<=CCREG;r++) {
11176 if((branch_regs[i].is32>>r)&1) {
11177 if(r==CCREG) printf(" CC");
11178 else if(r==HIREG) printf(" HI");
11179 else if(r==LOREG) printf(" LO");
11180 else printf(" r%d",r);
11181 }
11182 }
11183 printf("\n");
90ae6d4e 11184#endif
57871462 11185 }
11186 }
4600ba03 11187#endif // DISASM
57871462 11188
11189 /* Pass 8 - Assembly */
11190 linkcount=0;stubcount=0;
11191 ds=0;is_delayslot=0;
11192 cop1_usable=0;
11193 uint64_t is32_pre=0;
11194 u_int dirty_pre=0;
11195 u_int beginning=(u_int)out;
11196 if((u_int)addr&1) {
11197 ds=1;
11198 pagespan_ds();
11199 }
9ad4d757 11200 u_int instr_addr0_override=0;
11201
11202#ifdef PCSX
11203 if (start == 0x80030000) {
11204 // nasty hack for fastbios thing
96186eba 11205 // override block entry to this code
9ad4d757 11206 instr_addr0_override=(u_int)out;
11207 emit_movimm(start,0);
96186eba 11208 // abuse io address var as a flag that we
11209 // have already returned here once
11210 emit_readword((int)&address,1);
9ad4d757 11211 emit_writeword(0,(int)&pcaddr);
96186eba 11212 emit_writeword(0,(int)&address);
9ad4d757 11213 emit_cmp(0,1);
11214 emit_jne((int)new_dyna_leave);
11215 }
11216#endif
57871462 11217 for(i=0;i<slen;i++)
11218 {
11219 //if(ds) printf("ds: ");
4600ba03 11220 disassemble_inst(i);
57871462 11221 if(ds) {
11222 ds=0; // Skip delay slot
11223 if(bt[i]) assem_debug("OOPS - branch into delay slot\n");
11224 instr_addr[i]=0;
11225 } else {
ffb0b9e0 11226 speculate_register_values(i);
57871462 11227 #ifndef DESTRUCTIVE_WRITEBACK
11228 if(i<2||(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000))
11229 {
11230 wb_sx(regmap_pre[i],regs[i].regmap_entry,regs[i].wasdirty,is32_pre,regs[i].was32,
11231 unneeded_reg[i],unneeded_reg_upper[i]);
11232 wb_valid(regmap_pre[i],regs[i].regmap_entry,dirty_pre,regs[i].wasdirty,is32_pre,
11233 unneeded_reg[i],unneeded_reg_upper[i]);
11234 }
f776eb14 11235 if((itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)&&!likely[i]) {
11236 is32_pre=branch_regs[i].is32;
11237 dirty_pre=branch_regs[i].dirty;
11238 }else{
11239 is32_pre=regs[i].is32;
11240 dirty_pre=regs[i].dirty;
11241 }
57871462 11242 #endif
11243 // write back
11244 if(i<2||(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000))
11245 {
11246 wb_invalidate(regmap_pre[i],regs[i].regmap_entry,regs[i].wasdirty,regs[i].was32,
11247 unneeded_reg[i],unneeded_reg_upper[i]);
11248 loop_preload(regmap_pre[i],regs[i].regmap_entry);
11249 }
11250 // branch target entry point
11251 instr_addr[i]=(u_int)out;
11252 assem_debug("<->\n");
11253 // load regs
11254 if(regs[i].regmap_entry[HOST_CCREG]==CCREG&&regs[i].regmap[HOST_CCREG]!=CCREG)
11255 wb_register(CCREG,regs[i].regmap_entry,regs[i].wasdirty,regs[i].was32);
11256 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i],rs2[i]);
11257 address_generation(i,&regs[i],regs[i].regmap_entry);
11258 load_consts(regmap_pre[i],regs[i].regmap,regs[i].was32,i);
11259 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
11260 {
11261 // Load the delay slot registers if necessary
4ef8f67d 11262 if(rs1[i+1]!=rs1[i]&&rs1[i+1]!=rs2[i]&&(rs1[i+1]!=rt1[i]||rt1[i]==0))
57871462 11263 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i+1],rs1[i+1]);
4ef8f67d 11264 if(rs2[i+1]!=rs1[i+1]&&rs2[i+1]!=rs1[i]&&rs2[i+1]!=rs2[i]&&(rs2[i+1]!=rt1[i]||rt1[i]==0))
57871462 11265 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs2[i+1],rs2[i+1]);
b9b61529 11266 if(itype[i+1]==STORE||itype[i+1]==STORELR||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a)
57871462 11267 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,INVCP,INVCP);
11268 }
11269 else if(i+1<slen)
11270 {
11271 // Preload registers for following instruction
11272 if(rs1[i+1]!=rs1[i]&&rs1[i+1]!=rs2[i])
11273 if(rs1[i+1]!=rt1[i]&&rs1[i+1]!=rt2[i])
11274 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i+1],rs1[i+1]);
11275 if(rs2[i+1]!=rs1[i+1]&&rs2[i+1]!=rs1[i]&&rs2[i+1]!=rs2[i])
11276 if(rs2[i+1]!=rt1[i]&&rs2[i+1]!=rt2[i])
11277 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs2[i+1],rs2[i+1]);
11278 }
11279 // TODO: if(is_ooo(i)) address_generation(i+1);
11280 if(itype[i]==CJUMP||itype[i]==FJUMP)
11281 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,CCREG,CCREG);
b9b61529 11282 if(itype[i]==STORE||itype[i]==STORELR||(opcode[i]&0x3b)==0x39||(opcode[i]&0x3b)==0x3a)
57871462 11283 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,INVCP,INVCP);
11284 if(bt[i]) cop1_usable=0;
11285 // assemble
11286 switch(itype[i]) {
11287 case ALU:
11288 alu_assemble(i,&regs[i]);break;
11289 case IMM16:
11290 imm16_assemble(i,&regs[i]);break;
11291 case SHIFT:
11292 shift_assemble(i,&regs[i]);break;
11293 case SHIFTIMM:
11294 shiftimm_assemble(i,&regs[i]);break;
11295 case LOAD:
11296 load_assemble(i,&regs[i]);break;
11297 case LOADLR:
11298 loadlr_assemble(i,&regs[i]);break;
11299 case STORE:
11300 store_assemble(i,&regs[i]);break;
11301 case STORELR:
11302 storelr_assemble(i,&regs[i]);break;
11303 case COP0:
11304 cop0_assemble(i,&regs[i]);break;
11305 case COP1:
11306 cop1_assemble(i,&regs[i]);break;
11307 case C1LS:
11308 c1ls_assemble(i,&regs[i]);break;
b9b61529 11309 case COP2:
11310 cop2_assemble(i,&regs[i]);break;
11311 case C2LS:
11312 c2ls_assemble(i,&regs[i]);break;
11313 case C2OP:
11314 c2op_assemble(i,&regs[i]);break;
57871462 11315 case FCONV:
11316 fconv_assemble(i,&regs[i]);break;
11317 case FLOAT:
11318 float_assemble(i,&regs[i]);break;
11319 case FCOMP:
11320 fcomp_assemble(i,&regs[i]);break;
11321 case MULTDIV:
11322 multdiv_assemble(i,&regs[i]);break;
11323 case MOV:
11324 mov_assemble(i,&regs[i]);break;
11325 case SYSCALL:
11326 syscall_assemble(i,&regs[i]);break;
7139f3c8 11327 case HLECALL:
11328 hlecall_assemble(i,&regs[i]);break;
1e973cb0 11329 case INTCALL:
11330 intcall_assemble(i,&regs[i]);break;
57871462 11331 case UJUMP:
11332 ujump_assemble(i,&regs[i]);ds=1;break;
11333 case RJUMP:
11334 rjump_assemble(i,&regs[i]);ds=1;break;
11335 case CJUMP:
11336 cjump_assemble(i,&regs[i]);ds=1;break;
11337 case SJUMP:
11338 sjump_assemble(i,&regs[i]);ds=1;break;
11339 case FJUMP:
11340 fjump_assemble(i,&regs[i]);ds=1;break;
11341 case SPAN:
11342 pagespan_assemble(i,&regs[i]);break;
11343 }
11344 if(itype[i]==UJUMP||itype[i]==RJUMP||(source[i]>>16)==0x1000)
11345 literal_pool(1024);
11346 else
11347 literal_pool_jumpover(256);
11348 }
11349 }
11350 //assert(itype[i-2]==UJUMP||itype[i-2]==RJUMP||(source[i-2]>>16)==0x1000);
11351 // If the block did not end with an unconditional branch,
11352 // add a jump to the next instruction.
11353 if(i>1) {
11354 if(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000&&itype[i-1]!=SPAN) {
11355 assert(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP);
11356 assert(i==slen);
11357 if(itype[i-2]!=CJUMP&&itype[i-2]!=SJUMP&&itype[i-2]!=FJUMP) {
11358 store_regs_bt(regs[i-1].regmap,regs[i-1].is32,regs[i-1].dirty,start+i*4);
11359 if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
11360 emit_loadreg(CCREG,HOST_CCREG);
2573466a 11361 emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i-1]+1),HOST_CCREG);
57871462 11362 }
11363 else if(!likely[i-2])
11364 {
11365 store_regs_bt(branch_regs[i-2].regmap,branch_regs[i-2].is32,branch_regs[i-2].dirty,start+i*4);
11366 assert(branch_regs[i-2].regmap[HOST_CCREG]==CCREG);
11367 }
11368 else
11369 {
11370 store_regs_bt(regs[i-2].regmap,regs[i-2].is32,regs[i-2].dirty,start+i*4);
11371 assert(regs[i-2].regmap[HOST_CCREG]==CCREG);
11372 }
11373 add_to_linker((int)out,start+i*4,0);
11374 emit_jmp(0);
11375 }
11376 }
11377 else
11378 {
11379 assert(i>0);
11380 assert(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP);
11381 store_regs_bt(regs[i-1].regmap,regs[i-1].is32,regs[i-1].dirty,start+i*4);
11382 if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
11383 emit_loadreg(CCREG,HOST_CCREG);
2573466a 11384 emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i-1]+1),HOST_CCREG);
57871462 11385 add_to_linker((int)out,start+i*4,0);
11386 emit_jmp(0);
11387 }
11388
11389 // TODO: delay slot stubs?
11390 // Stubs
11391 for(i=0;i<stubcount;i++)
11392 {
11393 switch(stubs[i][0])
11394 {
11395 case LOADB_STUB:
11396 case LOADH_STUB:
11397 case LOADW_STUB:
11398 case LOADD_STUB:
11399 case LOADBU_STUB:
11400 case LOADHU_STUB:
11401 do_readstub(i);break;
11402 case STOREB_STUB:
11403 case STOREH_STUB:
11404 case STOREW_STUB:
11405 case STORED_STUB:
11406 do_writestub(i);break;
11407 case CC_STUB:
11408 do_ccstub(i);break;
11409 case INVCODE_STUB:
11410 do_invstub(i);break;
11411 case FP_STUB:
11412 do_cop1stub(i);break;
11413 case STORELR_STUB:
11414 do_unalignedwritestub(i);break;
11415 }
11416 }
11417
9ad4d757 11418 if (instr_addr0_override)
11419 instr_addr[0] = instr_addr0_override;
11420
57871462 11421 /* Pass 9 - Linker */
11422 for(i=0;i<linkcount;i++)
11423 {
11424 assem_debug("%8x -> %8x\n",link_addr[i][0],link_addr[i][1]);
11425 literal_pool(64);
11426 if(!link_addr[i][2])
11427 {
11428 void *stub=out;
11429 void *addr=check_addr(link_addr[i][1]);
11430 emit_extjump(link_addr[i][0],link_addr[i][1]);
11431 if(addr) {
11432 set_jump_target(link_addr[i][0],(int)addr);
11433 add_link(link_addr[i][1],stub);
11434 }
11435 else set_jump_target(link_addr[i][0],(int)stub);
11436 }
11437 else
11438 {
11439 // Internal branch
11440 int target=(link_addr[i][1]-start)>>2;
11441 assert(target>=0&&target<slen);
11442 assert(instr_addr[target]);
11443 //#ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
11444 //set_jump_target_fillslot(link_addr[i][0],instr_addr[target],link_addr[i][2]>>1);
11445 //#else
11446 set_jump_target(link_addr[i][0],instr_addr[target]);
11447 //#endif
11448 }
11449 }
11450 // External Branch Targets (jump_in)
11451 if(copy+slen*4>(void *)shadow+sizeof(shadow)) copy=shadow;
11452 for(i=0;i<slen;i++)
11453 {
11454 if(bt[i]||i==0)
11455 {
11456 if(instr_addr[i]) // TODO - delay slots (=null)
11457 {
11458 u_int vaddr=start+i*4;
94d23bb9 11459 u_int page=get_page(vaddr);
11460 u_int vpage=get_vpage(vaddr);
57871462 11461 literal_pool(256);
11462 //if(!(is32[i]&(~unneeded_reg_upper[i])&~(1LL<<CCREG)))
a28c6ce8 11463#ifndef FORCE32
57871462 11464 if(!requires_32bit[i])
a28c6ce8 11465#else
11466 if(1)
11467#endif
57871462 11468 {
11469 assem_debug("%8x (%d) <- %8x\n",instr_addr[i],i,start+i*4);
11470 assem_debug("jump_in: %x\n",start+i*4);
11471 ll_add(jump_dirty+vpage,vaddr,(void *)out);
11472 int entry_point=do_dirty_stub(i);
11473 ll_add(jump_in+page,vaddr,(void *)entry_point);
11474 // If there was an existing entry in the hash table,
11475 // replace it with the new address.
11476 // Don't add new entries. We'll insert the
11477 // ones that actually get used in check_addr().
11478 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
11479 if(ht_bin[0]==vaddr) {
11480 ht_bin[1]=entry_point;
11481 }
11482 if(ht_bin[2]==vaddr) {
11483 ht_bin[3]=entry_point;
11484 }
11485 }
11486 else
11487 {
11488 u_int r=requires_32bit[i]|!!(requires_32bit[i]>>32);
11489 assem_debug("%8x (%d) <- %8x\n",instr_addr[i],i,start+i*4);
11490 assem_debug("jump_in: %x (restricted - %x)\n",start+i*4,r);
11491 //int entry_point=(int)out;
11492 ////assem_debug("entry_point: %x\n",entry_point);
11493 //load_regs_entry(i);
11494 //if(entry_point==(int)out)
11495 // entry_point=instr_addr[i];
11496 //else
11497 // emit_jmp(instr_addr[i]);
11498 //ll_add_32(jump_in+page,vaddr,r,(void *)entry_point);
11499 ll_add_32(jump_dirty+vpage,vaddr,r,(void *)out);
11500 int entry_point=do_dirty_stub(i);
11501 ll_add_32(jump_in+page,vaddr,r,(void *)entry_point);
11502 }
11503 }
11504 }
11505 }
11506 // Write out the literal pool if necessary
11507 literal_pool(0);
11508 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
11509 // Align code
11510 if(((u_int)out)&7) emit_addnop(13);
11511 #endif
11512 assert((u_int)out-beginning<MAX_OUTPUT_BLOCK_SIZE);
11513 //printf("shadow buffer: %x-%x\n",(int)copy,(int)copy+slen*4);
11514 memcpy(copy,source,slen*4);
11515 copy+=slen*4;
11516
11517 #ifdef __arm__
11518 __clear_cache((void *)beginning,out);
11519 #endif
11520
11521 // If we're within 256K of the end of the buffer,
11522 // start over from the beginning. (Is 256K enough?)
11523 if((int)out>BASE_ADDR+(1<<TARGET_SIZE_2)-MAX_OUTPUT_BLOCK_SIZE) out=(u_char *)BASE_ADDR;
11524
11525 // Trap writes to any of the pages we compiled
11526 for(i=start>>12;i<=(start+slen*4)>>12;i++) {
11527 invalid_code[i]=0;
90ae6d4e 11528#ifndef DISABLE_TLB
57871462 11529 memory_map[i]|=0x40000000;
11530 if((signed int)start>=(signed int)0xC0000000) {
11531 assert(using_tlb);
11532 j=(((u_int)i<<12)+(memory_map[i]<<2)-(u_int)rdram+(u_int)0x80000000)>>12;
11533 invalid_code[j]=0;
11534 memory_map[j]|=0x40000000;
11535 //printf("write protect physical page: %x (virtual %x)\n",j<<12,start);
11536 }
90ae6d4e 11537#endif
57871462 11538 }
9be4ba64 11539 inv_code_start=inv_code_end=~0;
b12c9fb8 11540#ifdef PCSX
b96d3df7 11541 // for PCSX we need to mark all mirrors too
b12c9fb8 11542 if(get_page(start)<(RAM_SIZE>>12))
11543 for(i=start>>12;i<=(start+slen*4)>>12;i++)
b96d3df7 11544 invalid_code[((u_int)0x00000000>>12)|(i&0x1ff)]=
11545 invalid_code[((u_int)0x80000000>>12)|(i&0x1ff)]=
11546 invalid_code[((u_int)0xa0000000>>12)|(i&0x1ff)]=0;
b12c9fb8 11547#endif
57871462 11548
11549 /* Pass 10 - Free memory by expiring oldest blocks */
11550
11551 int end=((((int)out-BASE_ADDR)>>(TARGET_SIZE_2-16))+16384)&65535;
11552 while(expirep!=end)
11553 {
11554 int shift=TARGET_SIZE_2-3; // Divide into 8 blocks
11555 int base=BASE_ADDR+((expirep>>13)<<shift); // Base address of this block
11556 inv_debug("EXP: Phase %d\n",expirep);
11557 switch((expirep>>11)&3)
11558 {
11559 case 0:
11560 // Clear jump_in and jump_dirty
11561 ll_remove_matching_addrs(jump_in+(expirep&2047),base,shift);
11562 ll_remove_matching_addrs(jump_dirty+(expirep&2047),base,shift);
11563 ll_remove_matching_addrs(jump_in+2048+(expirep&2047),base,shift);
11564 ll_remove_matching_addrs(jump_dirty+2048+(expirep&2047),base,shift);
11565 break;
11566 case 1:
11567 // Clear pointers
11568 ll_kill_pointers(jump_out[expirep&2047],base,shift);
11569 ll_kill_pointers(jump_out[(expirep&2047)+2048],base,shift);
11570 break;
11571 case 2:
11572 // Clear hash table
11573 for(i=0;i<32;i++) {
11574 int *ht_bin=hash_table[((expirep&2047)<<5)+i];
11575 if((ht_bin[3]>>shift)==(base>>shift) ||
11576 ((ht_bin[3]-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(base>>shift)) {
11577 inv_debug("EXP: Remove hash %x -> %x\n",ht_bin[2],ht_bin[3]);
11578 ht_bin[2]=ht_bin[3]=-1;
11579 }
11580 if((ht_bin[1]>>shift)==(base>>shift) ||
11581 ((ht_bin[1]-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(base>>shift)) {
11582 inv_debug("EXP: Remove hash %x -> %x\n",ht_bin[0],ht_bin[1]);
11583 ht_bin[0]=ht_bin[2];
11584 ht_bin[1]=ht_bin[3];
11585 ht_bin[2]=ht_bin[3]=-1;
11586 }
11587 }
11588 break;
11589 case 3:
11590 // Clear jump_out
dd3a91a1 11591 #ifdef __arm__
11592 if((expirep&2047)==0)
11593 do_clear_cache();
11594 #endif
57871462 11595 ll_remove_matching_addrs(jump_out+(expirep&2047),base,shift);
11596 ll_remove_matching_addrs(jump_out+2048+(expirep&2047),base,shift);
11597 break;
11598 }
11599 expirep=(expirep+1)&65535;
11600 }
11601 return 0;
11602}
b9b61529 11603
11604// vim:shiftwidth=2:expandtab