drc: handle $ra access in JALR DS too
[pcsx_rearmed.git] / libpcsxcore / new_dynarec / new_dynarec.c
CommitLineData
57871462 1/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
2 * Mupen64plus - new_dynarec.c *
20d507ba 3 * Copyright (C) 2009-2011 Ari64 *
57871462 4 * *
5 * This program is free software; you can redistribute it and/or modify *
6 * it under the terms of the GNU General Public License as published by *
7 * the Free Software Foundation; either version 2 of the License, or *
8 * (at your option) any later version. *
9 * *
10 * This program is distributed in the hope that it will be useful, *
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
13 * GNU General Public License for more details. *
14 * *
15 * You should have received a copy of the GNU General Public License *
16 * along with this program; if not, write to the *
17 * Free Software Foundation, Inc., *
18 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. *
19 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
20
21#include <stdlib.h>
22#include <stdint.h> //include for uint64_t
23#include <assert.h>
24
3d624f89 25#include "emu_if.h" //emulator interface
57871462 26
27#include <sys/mman.h>
28
29#ifdef __i386__
30#include "assem_x86.h"
31#endif
32#ifdef __x86_64__
33#include "assem_x64.h"
34#endif
35#ifdef __arm__
36#include "assem_arm.h"
37#endif
38
39#define MAXBLOCK 4096
40#define MAX_OUTPUT_BLOCK_SIZE 262144
41#define CLOCK_DIVIDER 2
42
43struct regstat
44{
45 signed char regmap_entry[HOST_REGS];
46 signed char regmap[HOST_REGS];
47 uint64_t was32;
48 uint64_t is32;
49 uint64_t wasdirty;
50 uint64_t dirty;
51 uint64_t u;
52 uint64_t uu;
53 u_int wasconst;
54 u_int isconst;
55 uint64_t constmap[HOST_REGS];
56};
57
58struct ll_entry
59{
60 u_int vaddr;
61 u_int reg32;
62 void *addr;
63 struct ll_entry *next;
64};
65
66 u_int start;
67 u_int *source;
68 u_int pagelimit;
69 char insn[MAXBLOCK][10];
70 u_char itype[MAXBLOCK];
71 u_char opcode[MAXBLOCK];
72 u_char opcode2[MAXBLOCK];
73 u_char bt[MAXBLOCK];
74 u_char rs1[MAXBLOCK];
75 u_char rs2[MAXBLOCK];
76 u_char rt1[MAXBLOCK];
77 u_char rt2[MAXBLOCK];
78 u_char us1[MAXBLOCK];
79 u_char us2[MAXBLOCK];
80 u_char dep1[MAXBLOCK];
81 u_char dep2[MAXBLOCK];
82 u_char lt1[MAXBLOCK];
83 int imm[MAXBLOCK];
84 u_int ba[MAXBLOCK];
85 char likely[MAXBLOCK];
86 char is_ds[MAXBLOCK];
e1190b87 87 char ooo[MAXBLOCK];
57871462 88 uint64_t unneeded_reg[MAXBLOCK];
89 uint64_t unneeded_reg_upper[MAXBLOCK];
90 uint64_t branch_unneeded_reg[MAXBLOCK];
91 uint64_t branch_unneeded_reg_upper[MAXBLOCK];
92 uint64_t p32[MAXBLOCK];
93 uint64_t pr32[MAXBLOCK];
94 signed char regmap_pre[MAXBLOCK][HOST_REGS];
95 signed char regmap[MAXBLOCK][HOST_REGS];
96 signed char regmap_entry[MAXBLOCK][HOST_REGS];
97 uint64_t constmap[MAXBLOCK][HOST_REGS];
57871462 98 struct regstat regs[MAXBLOCK];
99 struct regstat branch_regs[MAXBLOCK];
e1190b87 100 signed char minimum_free_regs[MAXBLOCK];
57871462 101 u_int needed_reg[MAXBLOCK];
102 uint64_t requires_32bit[MAXBLOCK];
103 u_int wont_dirty[MAXBLOCK];
104 u_int will_dirty[MAXBLOCK];
105 int ccadj[MAXBLOCK];
106 int slen;
107 u_int instr_addr[MAXBLOCK];
108 u_int link_addr[MAXBLOCK][3];
109 int linkcount;
110 u_int stubs[MAXBLOCK*3][8];
111 int stubcount;
112 u_int literals[1024][2];
113 int literalcount;
114 int is_delayslot;
115 int cop1_usable;
116 u_char *out;
117 struct ll_entry *jump_in[4096];
118 struct ll_entry *jump_out[4096];
119 struct ll_entry *jump_dirty[4096];
120 u_int hash_table[65536][4] __attribute__((aligned(16)));
121 char shadow[1048576] __attribute__((aligned(16)));
122 void *copy;
123 int expirep;
af4ee1fe 124#ifndef PCSX
57871462 125 u_int using_tlb;
af4ee1fe 126#else
127 static const u_int using_tlb=0;
128#endif
dadf55f2 129 static u_int sp_in_mirror;
57871462 130 u_int stop_after_jal;
131 extern u_char restore_candidate[512];
132 extern int cycle_count;
133
134 /* registers that may be allocated */
135 /* 1-31 gpr */
136#define HIREG 32 // hi
137#define LOREG 33 // lo
138#define FSREG 34 // FPU status (FCSR)
139#define CSREG 35 // Coprocessor status
140#define CCREG 36 // Cycle count
141#define INVCP 37 // Pointer to invalid_code
619e5ded 142#define MMREG 38 // Pointer to memory_map
143#define ROREG 39 // ram offset (if rdram!=0x80000000)
144#define TEMPREG 40
145#define FTEMP 40 // FPU temporary register
146#define PTEMP 41 // Prefetch temporary register
147#define TLREG 42 // TLB mapping offset
148#define RHASH 43 // Return address hash
149#define RHTBL 44 // Return address hash table address
150#define RTEMP 45 // JR/JALR address register
151#define MAXREG 45
152#define AGEN1 46 // Address generation temporary register
153#define AGEN2 47 // Address generation temporary register
154#define MGEN1 48 // Maptable address generation temporary register
155#define MGEN2 49 // Maptable address generation temporary register
156#define BTREG 50 // Branch target temporary register
57871462 157
158 /* instruction types */
159#define NOP 0 // No operation
160#define LOAD 1 // Load
161#define STORE 2 // Store
162#define LOADLR 3 // Unaligned load
163#define STORELR 4 // Unaligned store
164#define MOV 5 // Move
165#define ALU 6 // Arithmetic/logic
166#define MULTDIV 7 // Multiply/divide
167#define SHIFT 8 // Shift by register
168#define SHIFTIMM 9// Shift by immediate
169#define IMM16 10 // 16-bit immediate
170#define RJUMP 11 // Unconditional jump to register
171#define UJUMP 12 // Unconditional jump
172#define CJUMP 13 // Conditional branch (BEQ/BNE/BGTZ/BLEZ)
173#define SJUMP 14 // Conditional branch (regimm format)
174#define COP0 15 // Coprocessor 0
175#define COP1 16 // Coprocessor 1
176#define C1LS 17 // Coprocessor 1 load/store
177#define FJUMP 18 // Conditional branch (floating point)
178#define FLOAT 19 // Floating point unit
179#define FCONV 20 // Convert integer to float
180#define FCOMP 21 // Floating point compare (sets FSREG)
181#define SYSCALL 22// SYSCALL
182#define OTHER 23 // Other
183#define SPAN 24 // Branch/delay slot spans 2 pages
184#define NI 25 // Not implemented
7139f3c8 185#define HLECALL 26// PCSX fake opcodes for HLE
b9b61529 186#define COP2 27 // Coprocessor 2 move
187#define C2LS 28 // Coprocessor 2 load/store
188#define C2OP 29 // Coprocessor 2 operation
1e973cb0 189#define INTCALL 30// Call interpreter to handle rare corner cases
57871462 190
191 /* stubs */
192#define CC_STUB 1
193#define FP_STUB 2
194#define LOADB_STUB 3
195#define LOADH_STUB 4
196#define LOADW_STUB 5
197#define LOADD_STUB 6
198#define LOADBU_STUB 7
199#define LOADHU_STUB 8
200#define STOREB_STUB 9
201#define STOREH_STUB 10
202#define STOREW_STUB 11
203#define STORED_STUB 12
204#define STORELR_STUB 13
205#define INVCODE_STUB 14
206
207 /* branch codes */
208#define TAKEN 1
209#define NOTTAKEN 2
210#define NULLDS 3
211
212// asm linkage
213int new_recompile_block(int addr);
214void *get_addr_ht(u_int vaddr);
215void invalidate_block(u_int block);
216void invalidate_addr(u_int addr);
217void remove_hash(int vaddr);
218void jump_vaddr();
219void dyna_linker();
220void dyna_linker_ds();
221void verify_code();
222void verify_code_vm();
223void verify_code_ds();
224void cc_interrupt();
225void fp_exception();
226void fp_exception_ds();
227void jump_syscall();
7139f3c8 228void jump_syscall_hle();
57871462 229void jump_eret();
7139f3c8 230void jump_hlecall();
1e973cb0 231void jump_intcall();
7139f3c8 232void new_dyna_leave();
57871462 233
234// TLB
235void TLBWI_new();
236void TLBWR_new();
237void read_nomem_new();
238void read_nomemb_new();
239void read_nomemh_new();
240void read_nomemd_new();
241void write_nomem_new();
242void write_nomemb_new();
243void write_nomemh_new();
244void write_nomemd_new();
245void write_rdram_new();
246void write_rdramb_new();
247void write_rdramh_new();
248void write_rdramd_new();
249extern u_int memory_map[1048576];
250
251// Needed by assembler
252void wb_register(signed char r,signed char regmap[],uint64_t dirty,uint64_t is32);
253void wb_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty);
254void wb_needed_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr);
255void load_all_regs(signed char i_regmap[]);
256void load_needed_regs(signed char i_regmap[],signed char next_regmap[]);
257void load_regs_entry(int t);
258void load_all_consts(signed char regmap[],int is32,u_int dirty,int i);
259
260int tracedebug=0;
261
262//#define DEBUG_CYCLE_COUNT 1
263
264void nullf() {}
265//#define assem_debug printf
266//#define inv_debug printf
267#define assem_debug nullf
268#define inv_debug nullf
269
94d23bb9 270static void tlb_hacks()
57871462 271{
94d23bb9 272#ifndef DISABLE_TLB
57871462 273 // Goldeneye hack
274 if (strncmp((char *) ROM_HEADER->nom, "GOLDENEYE",9) == 0)
275 {
276 u_int addr;
277 int n;
278 switch (ROM_HEADER->Country_code&0xFF)
279 {
280 case 0x45: // U
281 addr=0x34b30;
282 break;
283 case 0x4A: // J
284 addr=0x34b70;
285 break;
286 case 0x50: // E
287 addr=0x329f0;
288 break;
289 default:
290 // Unknown country code
291 addr=0;
292 break;
293 }
294 u_int rom_addr=(u_int)rom;
295 #ifdef ROM_COPY
296 // Since memory_map is 32-bit, on 64-bit systems the rom needs to be
297 // in the lower 4G of memory to use this hack. Copy it if necessary.
298 if((void *)rom>(void *)0xffffffff) {
299 munmap(ROM_COPY, 67108864);
300 if(mmap(ROM_COPY, 12582912,
301 PROT_READ | PROT_WRITE,
302 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS,
303 -1, 0) <= 0) {printf("mmap() failed\n");}
304 memcpy(ROM_COPY,rom,12582912);
305 rom_addr=(u_int)ROM_COPY;
306 }
307 #endif
308 if(addr) {
309 for(n=0x7F000;n<0x80000;n++) {
310 memory_map[n]=(((u_int)(rom_addr+addr-0x7F000000))>>2)|0x40000000;
311 }
312 }
313 }
94d23bb9 314#endif
57871462 315}
316
94d23bb9 317static u_int get_page(u_int vaddr)
57871462 318{
0ce47d46 319#ifndef PCSX
57871462 320 u_int page=(vaddr^0x80000000)>>12;
0ce47d46 321#else
322 u_int page=vaddr&~0xe0000000;
323 if (page < 0x1000000)
324 page &= ~0x0e00000; // RAM mirrors
325 page>>=12;
326#endif
94d23bb9 327#ifndef DISABLE_TLB
57871462 328 if(page>262143&&tlb_LUT_r[vaddr>>12]) page=(tlb_LUT_r[vaddr>>12]^0x80000000)>>12;
94d23bb9 329#endif
57871462 330 if(page>2048) page=2048+(page&2047);
94d23bb9 331 return page;
332}
333
334static u_int get_vpage(u_int vaddr)
335{
336 u_int vpage=(vaddr^0x80000000)>>12;
337#ifndef DISABLE_TLB
57871462 338 if(vpage>262143&&tlb_LUT_r[vaddr>>12]) vpage&=2047; // jump_dirty uses a hash of the virtual address instead
94d23bb9 339#endif
57871462 340 if(vpage>2048) vpage=2048+(vpage&2047);
94d23bb9 341 return vpage;
342}
343
344// Get address from virtual address
345// This is called from the recompiled JR/JALR instructions
346void *get_addr(u_int vaddr)
347{
348 u_int page=get_page(vaddr);
349 u_int vpage=get_vpage(vaddr);
57871462 350 struct ll_entry *head;
351 //printf("TRACE: count=%d next=%d (get_addr %x,page %d)\n",Count,next_interupt,vaddr,page);
352 head=jump_in[page];
353 while(head!=NULL) {
354 if(head->vaddr==vaddr&&head->reg32==0) {
355 //printf("TRACE: count=%d next=%d (get_addr match %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
356 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
357 ht_bin[3]=ht_bin[1];
358 ht_bin[2]=ht_bin[0];
359 ht_bin[1]=(int)head->addr;
360 ht_bin[0]=vaddr;
361 return head->addr;
362 }
363 head=head->next;
364 }
365 head=jump_dirty[vpage];
366 while(head!=NULL) {
367 if(head->vaddr==vaddr&&head->reg32==0) {
368 //printf("TRACE: count=%d next=%d (get_addr match dirty %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
369 // Don't restore blocks which are about to expire from the cache
370 if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
371 if(verify_dirty(head->addr)) {
372 //printf("restore candidate: %x (%d) d=%d\n",vaddr,page,invalid_code[vaddr>>12]);
373 invalid_code[vaddr>>12]=0;
374 memory_map[vaddr>>12]|=0x40000000;
375 if(vpage<2048) {
94d23bb9 376#ifndef DISABLE_TLB
57871462 377 if(tlb_LUT_r[vaddr>>12]) {
378 invalid_code[tlb_LUT_r[vaddr>>12]>>12]=0;
379 memory_map[tlb_LUT_r[vaddr>>12]>>12]|=0x40000000;
380 }
94d23bb9 381#endif
57871462 382 restore_candidate[vpage>>3]|=1<<(vpage&7);
383 }
384 else restore_candidate[page>>3]|=1<<(page&7);
385 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
386 if(ht_bin[0]==vaddr) {
387 ht_bin[1]=(int)head->addr; // Replace existing entry
388 }
389 else
390 {
391 ht_bin[3]=ht_bin[1];
392 ht_bin[2]=ht_bin[0];
393 ht_bin[1]=(int)head->addr;
394 ht_bin[0]=vaddr;
395 }
396 return head->addr;
397 }
398 }
399 head=head->next;
400 }
401 //printf("TRACE: count=%d next=%d (get_addr no-match %x)\n",Count,next_interupt,vaddr);
402 int r=new_recompile_block(vaddr);
403 if(r==0) return get_addr(vaddr);
404 // Execute in unmapped page, generate pagefault execption
405 Status|=2;
406 Cause=(vaddr<<31)|0x8;
407 EPC=(vaddr&1)?vaddr-5:vaddr;
408 BadVAddr=(vaddr&~1);
409 Context=(Context&0xFF80000F)|((BadVAddr>>9)&0x007FFFF0);
410 EntryHi=BadVAddr&0xFFFFE000;
411 return get_addr_ht(0x80000000);
412}
413// Look up address in hash table first
414void *get_addr_ht(u_int vaddr)
415{
416 //printf("TRACE: count=%d next=%d (get_addr_ht %x)\n",Count,next_interupt,vaddr);
417 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
418 if(ht_bin[0]==vaddr) return (void *)ht_bin[1];
419 if(ht_bin[2]==vaddr) return (void *)ht_bin[3];
420 return get_addr(vaddr);
421}
422
423void *get_addr_32(u_int vaddr,u_int flags)
424{
7139f3c8 425#ifdef FORCE32
426 return get_addr(vaddr);
560e4a12 427#else
57871462 428 //printf("TRACE: count=%d next=%d (get_addr_32 %x,flags %x)\n",Count,next_interupt,vaddr,flags);
429 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
430 if(ht_bin[0]==vaddr) return (void *)ht_bin[1];
431 if(ht_bin[2]==vaddr) return (void *)ht_bin[3];
94d23bb9 432 u_int page=get_page(vaddr);
433 u_int vpage=get_vpage(vaddr);
57871462 434 struct ll_entry *head;
435 head=jump_in[page];
436 while(head!=NULL) {
437 if(head->vaddr==vaddr&&(head->reg32&flags)==0) {
438 //printf("TRACE: count=%d next=%d (get_addr_32 match %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
439 if(head->reg32==0) {
440 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
441 if(ht_bin[0]==-1) {
442 ht_bin[1]=(int)head->addr;
443 ht_bin[0]=vaddr;
444 }else if(ht_bin[2]==-1) {
445 ht_bin[3]=(int)head->addr;
446 ht_bin[2]=vaddr;
447 }
448 //ht_bin[3]=ht_bin[1];
449 //ht_bin[2]=ht_bin[0];
450 //ht_bin[1]=(int)head->addr;
451 //ht_bin[0]=vaddr;
452 }
453 return head->addr;
454 }
455 head=head->next;
456 }
457 head=jump_dirty[vpage];
458 while(head!=NULL) {
459 if(head->vaddr==vaddr&&(head->reg32&flags)==0) {
460 //printf("TRACE: count=%d next=%d (get_addr_32 match dirty %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
461 // Don't restore blocks which are about to expire from the cache
462 if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
463 if(verify_dirty(head->addr)) {
464 //printf("restore candidate: %x (%d) d=%d\n",vaddr,page,invalid_code[vaddr>>12]);
465 invalid_code[vaddr>>12]=0;
466 memory_map[vaddr>>12]|=0x40000000;
467 if(vpage<2048) {
94d23bb9 468#ifndef DISABLE_TLB
57871462 469 if(tlb_LUT_r[vaddr>>12]) {
470 invalid_code[tlb_LUT_r[vaddr>>12]>>12]=0;
471 memory_map[tlb_LUT_r[vaddr>>12]>>12]|=0x40000000;
472 }
94d23bb9 473#endif
57871462 474 restore_candidate[vpage>>3]|=1<<(vpage&7);
475 }
476 else restore_candidate[page>>3]|=1<<(page&7);
477 if(head->reg32==0) {
478 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
479 if(ht_bin[0]==-1) {
480 ht_bin[1]=(int)head->addr;
481 ht_bin[0]=vaddr;
482 }else if(ht_bin[2]==-1) {
483 ht_bin[3]=(int)head->addr;
484 ht_bin[2]=vaddr;
485 }
486 //ht_bin[3]=ht_bin[1];
487 //ht_bin[2]=ht_bin[0];
488 //ht_bin[1]=(int)head->addr;
489 //ht_bin[0]=vaddr;
490 }
491 return head->addr;
492 }
493 }
494 head=head->next;
495 }
496 //printf("TRACE: count=%d next=%d (get_addr_32 no-match %x,flags %x)\n",Count,next_interupt,vaddr,flags);
497 int r=new_recompile_block(vaddr);
498 if(r==0) return get_addr(vaddr);
499 // Execute in unmapped page, generate pagefault execption
500 Status|=2;
501 Cause=(vaddr<<31)|0x8;
502 EPC=(vaddr&1)?vaddr-5:vaddr;
503 BadVAddr=(vaddr&~1);
504 Context=(Context&0xFF80000F)|((BadVAddr>>9)&0x007FFFF0);
505 EntryHi=BadVAddr&0xFFFFE000;
506 return get_addr_ht(0x80000000);
560e4a12 507#endif
57871462 508}
509
510void clear_all_regs(signed char regmap[])
511{
512 int hr;
513 for (hr=0;hr<HOST_REGS;hr++) regmap[hr]=-1;
514}
515
516signed char get_reg(signed char regmap[],int r)
517{
518 int hr;
519 for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap[hr]==r) return hr;
520 return -1;
521}
522
523// Find a register that is available for two consecutive cycles
524signed char get_reg2(signed char regmap1[],signed char regmap2[],int r)
525{
526 int hr;
527 for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap1[hr]==r&&regmap2[hr]==r) return hr;
528 return -1;
529}
530
531int count_free_regs(signed char regmap[])
532{
533 int count=0;
534 int hr;
535 for(hr=0;hr<HOST_REGS;hr++)
536 {
537 if(hr!=EXCLUDE_REG) {
538 if(regmap[hr]<0) count++;
539 }
540 }
541 return count;
542}
543
544void dirty_reg(struct regstat *cur,signed char reg)
545{
546 int hr;
547 if(!reg) return;
548 for (hr=0;hr<HOST_REGS;hr++) {
549 if((cur->regmap[hr]&63)==reg) {
550 cur->dirty|=1<<hr;
551 }
552 }
553}
554
555// If we dirty the lower half of a 64 bit register which is now being
556// sign-extended, we need to dump the upper half.
557// Note: Do this only after completion of the instruction, because
558// some instructions may need to read the full 64-bit value even if
559// overwriting it (eg SLTI, DSRA32).
560static void flush_dirty_uppers(struct regstat *cur)
561{
562 int hr,reg;
563 for (hr=0;hr<HOST_REGS;hr++) {
564 if((cur->dirty>>hr)&1) {
565 reg=cur->regmap[hr];
566 if(reg>=64)
567 if((cur->is32>>(reg&63))&1) cur->regmap[hr]=-1;
568 }
569 }
570}
571
572void set_const(struct regstat *cur,signed char reg,uint64_t value)
573{
574 int hr;
575 if(!reg) return;
576 for (hr=0;hr<HOST_REGS;hr++) {
577 if(cur->regmap[hr]==reg) {
578 cur->isconst|=1<<hr;
579 cur->constmap[hr]=value;
580 }
581 else if((cur->regmap[hr]^64)==reg) {
582 cur->isconst|=1<<hr;
583 cur->constmap[hr]=value>>32;
584 }
585 }
586}
587
588void clear_const(struct regstat *cur,signed char reg)
589{
590 int hr;
591 if(!reg) return;
592 for (hr=0;hr<HOST_REGS;hr++) {
593 if((cur->regmap[hr]&63)==reg) {
594 cur->isconst&=~(1<<hr);
595 }
596 }
597}
598
599int is_const(struct regstat *cur,signed char reg)
600{
601 int hr;
79c75f1b 602 if(reg<0) return 0;
57871462 603 if(!reg) return 1;
604 for (hr=0;hr<HOST_REGS;hr++) {
605 if((cur->regmap[hr]&63)==reg) {
606 return (cur->isconst>>hr)&1;
607 }
608 }
609 return 0;
610}
611uint64_t get_const(struct regstat *cur,signed char reg)
612{
613 int hr;
614 if(!reg) return 0;
615 for (hr=0;hr<HOST_REGS;hr++) {
616 if(cur->regmap[hr]==reg) {
617 return cur->constmap[hr];
618 }
619 }
620 printf("Unknown constant in r%d\n",reg);
621 exit(1);
622}
623
624// Least soon needed registers
625// Look at the next ten instructions and see which registers
626// will be used. Try not to reallocate these.
627void lsn(u_char hsn[], int i, int *preferred_reg)
628{
629 int j;
630 int b=-1;
631 for(j=0;j<9;j++)
632 {
633 if(i+j>=slen) {
634 j=slen-i-1;
635 break;
636 }
637 if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
638 {
639 // Don't go past an unconditonal jump
640 j++;
641 break;
642 }
643 }
644 for(;j>=0;j--)
645 {
646 if(rs1[i+j]) hsn[rs1[i+j]]=j;
647 if(rs2[i+j]) hsn[rs2[i+j]]=j;
648 if(rt1[i+j]) hsn[rt1[i+j]]=j;
649 if(rt2[i+j]) hsn[rt2[i+j]]=j;
650 if(itype[i+j]==STORE || itype[i+j]==STORELR) {
651 // Stores can allocate zero
652 hsn[rs1[i+j]]=j;
653 hsn[rs2[i+j]]=j;
654 }
655 // On some architectures stores need invc_ptr
656 #if defined(HOST_IMM8)
b9b61529 657 if(itype[i+j]==STORE || itype[i+j]==STORELR || (opcode[i+j]&0x3b)==0x39 || (opcode[i+j]&0x3b)==0x3a) {
57871462 658 hsn[INVCP]=j;
659 }
660 #endif
661 if(i+j>=0&&(itype[i+j]==UJUMP||itype[i+j]==CJUMP||itype[i+j]==SJUMP||itype[i+j]==FJUMP))
662 {
663 hsn[CCREG]=j;
664 b=j;
665 }
666 }
667 if(b>=0)
668 {
669 if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
670 {
671 // Follow first branch
672 int t=(ba[i+b]-start)>>2;
673 j=7-b;if(t+j>=slen) j=slen-t-1;
674 for(;j>=0;j--)
675 {
676 if(rs1[t+j]) if(hsn[rs1[t+j]]>j+b+2) hsn[rs1[t+j]]=j+b+2;
677 if(rs2[t+j]) if(hsn[rs2[t+j]]>j+b+2) hsn[rs2[t+j]]=j+b+2;
678 //if(rt1[t+j]) if(hsn[rt1[t+j]]>j+b+2) hsn[rt1[t+j]]=j+b+2;
679 //if(rt2[t+j]) if(hsn[rt2[t+j]]>j+b+2) hsn[rt2[t+j]]=j+b+2;
680 }
681 }
682 // TODO: preferred register based on backward branch
683 }
684 // Delay slot should preferably not overwrite branch conditions or cycle count
685 if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)) {
686 if(rs1[i-1]) if(hsn[rs1[i-1]]>1) hsn[rs1[i-1]]=1;
687 if(rs2[i-1]) if(hsn[rs2[i-1]]>1) hsn[rs2[i-1]]=1;
688 hsn[CCREG]=1;
689 // ...or hash tables
690 hsn[RHASH]=1;
691 hsn[RHTBL]=1;
692 }
d5910d5d 693 // due to the way JAL(R) is currently done we need DS not to evict $ra
694 if(i>0&&(itype[i-1]==RJUMP||itype[i-1]!=UJUMP)&&rt1[i-1]!=0) {
695 hsn[rt1[i-1]]=0;
748406cf 696 }
57871462 697 // Coprocessor load/store needs FTEMP, even if not declared
b9b61529 698 if(itype[i]==C1LS||itype[i]==C2LS) {
57871462 699 hsn[FTEMP]=0;
700 }
701 // Load L/R also uses FTEMP as a temporary register
702 if(itype[i]==LOADLR) {
703 hsn[FTEMP]=0;
704 }
b7918751 705 // Also SWL/SWR/SDL/SDR
706 if(opcode[i]==0x2a||opcode[i]==0x2e||opcode[i]==0x2c||opcode[i]==0x2d) {
57871462 707 hsn[FTEMP]=0;
708 }
709 // Don't remove the TLB registers either
b9b61529 710 if(itype[i]==LOAD || itype[i]==LOADLR || itype[i]==STORE || itype[i]==STORELR || itype[i]==C1LS || itype[i]==C2LS) {
57871462 711 hsn[TLREG]=0;
712 }
713 // Don't remove the miniht registers
714 if(itype[i]==UJUMP||itype[i]==RJUMP)
715 {
716 hsn[RHASH]=0;
717 hsn[RHTBL]=0;
718 }
719}
720
721// We only want to allocate registers if we're going to use them again soon
722int needed_again(int r, int i)
723{
724 int j;
725 int b=-1;
726 int rn=10;
57871462 727
728 if(i>0&&(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000))
729 {
730 if(ba[i-1]<start || ba[i-1]>start+slen*4-4)
731 return 0; // Don't need any registers if exiting the block
732 }
733 for(j=0;j<9;j++)
734 {
735 if(i+j>=slen) {
736 j=slen-i-1;
737 break;
738 }
739 if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
740 {
741 // Don't go past an unconditonal jump
742 j++;
743 break;
744 }
1e973cb0 745 if(itype[i+j]==SYSCALL||itype[i+j]==HLECALL||itype[i+j]==INTCALL||((source[i+j]&0xfc00003f)==0x0d))
57871462 746 {
747 break;
748 }
749 }
750 for(;j>=1;j--)
751 {
752 if(rs1[i+j]==r) rn=j;
753 if(rs2[i+j]==r) rn=j;
754 if((unneeded_reg[i+j]>>r)&1) rn=10;
755 if(i+j>=0&&(itype[i+j]==UJUMP||itype[i+j]==CJUMP||itype[i+j]==SJUMP||itype[i+j]==FJUMP))
756 {
757 b=j;
758 }
759 }
760 /*
761 if(b>=0)
762 {
763 if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
764 {
765 // Follow first branch
766 int o=rn;
767 int t=(ba[i+b]-start)>>2;
768 j=7-b;if(t+j>=slen) j=slen-t-1;
769 for(;j>=0;j--)
770 {
771 if(!((unneeded_reg[t+j]>>r)&1)) {
772 if(rs1[t+j]==r) if(rn>j+b+2) rn=j+b+2;
773 if(rs2[t+j]==r) if(rn>j+b+2) rn=j+b+2;
774 }
775 else rn=o;
776 }
777 }
778 }*/
b7217e13 779 if(rn<10) return 1;
57871462 780 return 0;
781}
782
783// Try to match register allocations at the end of a loop with those
784// at the beginning
785int loop_reg(int i, int r, int hr)
786{
787 int j,k;
788 for(j=0;j<9;j++)
789 {
790 if(i+j>=slen) {
791 j=slen-i-1;
792 break;
793 }
794 if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
795 {
796 // Don't go past an unconditonal jump
797 j++;
798 break;
799 }
800 }
801 k=0;
802 if(i>0){
803 if(itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)
804 k--;
805 }
806 for(;k<j;k++)
807 {
808 if(r<64&&((unneeded_reg[i+k]>>r)&1)) return hr;
809 if(r>64&&((unneeded_reg_upper[i+k]>>r)&1)) return hr;
810 if(i+k>=0&&(itype[i+k]==UJUMP||itype[i+k]==CJUMP||itype[i+k]==SJUMP||itype[i+k]==FJUMP))
811 {
812 if(ba[i+k]>=start && ba[i+k]<(start+i*4))
813 {
814 int t=(ba[i+k]-start)>>2;
815 int reg=get_reg(regs[t].regmap_entry,r);
816 if(reg>=0) return reg;
817 //reg=get_reg(regs[t+1].regmap_entry,r);
818 //if(reg>=0) return reg;
819 }
820 }
821 }
822 return hr;
823}
824
825
826// Allocate every register, preserving source/target regs
827void alloc_all(struct regstat *cur,int i)
828{
829 int hr;
830
831 for(hr=0;hr<HOST_REGS;hr++) {
832 if(hr!=EXCLUDE_REG) {
833 if(((cur->regmap[hr]&63)!=rs1[i])&&((cur->regmap[hr]&63)!=rs2[i])&&
834 ((cur->regmap[hr]&63)!=rt1[i])&&((cur->regmap[hr]&63)!=rt2[i]))
835 {
836 cur->regmap[hr]=-1;
837 cur->dirty&=~(1<<hr);
838 }
839 // Don't need zeros
840 if((cur->regmap[hr]&63)==0)
841 {
842 cur->regmap[hr]=-1;
843 cur->dirty&=~(1<<hr);
844 }
845 }
846 }
847}
848
849
850void div64(int64_t dividend,int64_t divisor)
851{
852 lo=dividend/divisor;
853 hi=dividend%divisor;
854 //printf("TRACE: ddiv %8x%8x %8x%8x\n" ,(int)reg[HIREG],(int)(reg[HIREG]>>32)
855 // ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
856}
857void divu64(uint64_t dividend,uint64_t divisor)
858{
859 lo=dividend/divisor;
860 hi=dividend%divisor;
861 //printf("TRACE: ddivu %8x%8x %8x%8x\n",(int)reg[HIREG],(int)(reg[HIREG]>>32)
862 // ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
863}
864
865void mult64(uint64_t m1,uint64_t m2)
866{
867 unsigned long long int op1, op2, op3, op4;
868 unsigned long long int result1, result2, result3, result4;
869 unsigned long long int temp1, temp2, temp3, temp4;
870 int sign = 0;
871
872 if (m1 < 0)
873 {
874 op2 = -m1;
875 sign = 1 - sign;
876 }
877 else op2 = m1;
878 if (m2 < 0)
879 {
880 op4 = -m2;
881 sign = 1 - sign;
882 }
883 else op4 = m2;
884
885 op1 = op2 & 0xFFFFFFFF;
886 op2 = (op2 >> 32) & 0xFFFFFFFF;
887 op3 = op4 & 0xFFFFFFFF;
888 op4 = (op4 >> 32) & 0xFFFFFFFF;
889
890 temp1 = op1 * op3;
891 temp2 = (temp1 >> 32) + op1 * op4;
892 temp3 = op2 * op3;
893 temp4 = (temp3 >> 32) + op2 * op4;
894
895 result1 = temp1 & 0xFFFFFFFF;
896 result2 = temp2 + (temp3 & 0xFFFFFFFF);
897 result3 = (result2 >> 32) + temp4;
898 result4 = (result3 >> 32);
899
900 lo = result1 | (result2 << 32);
901 hi = (result3 & 0xFFFFFFFF) | (result4 << 32);
902 if (sign)
903 {
904 hi = ~hi;
905 if (!lo) hi++;
906 else lo = ~lo + 1;
907 }
908}
909
910void multu64(uint64_t m1,uint64_t m2)
911{
912 unsigned long long int op1, op2, op3, op4;
913 unsigned long long int result1, result2, result3, result4;
914 unsigned long long int temp1, temp2, temp3, temp4;
915
916 op1 = m1 & 0xFFFFFFFF;
917 op2 = (m1 >> 32) & 0xFFFFFFFF;
918 op3 = m2 & 0xFFFFFFFF;
919 op4 = (m2 >> 32) & 0xFFFFFFFF;
920
921 temp1 = op1 * op3;
922 temp2 = (temp1 >> 32) + op1 * op4;
923 temp3 = op2 * op3;
924 temp4 = (temp3 >> 32) + op2 * op4;
925
926 result1 = temp1 & 0xFFFFFFFF;
927 result2 = temp2 + (temp3 & 0xFFFFFFFF);
928 result3 = (result2 >> 32) + temp4;
929 result4 = (result3 >> 32);
930
931 lo = result1 | (result2 << 32);
932 hi = (result3 & 0xFFFFFFFF) | (result4 << 32);
933
934 //printf("TRACE: dmultu %8x%8x %8x%8x\n",(int)reg[HIREG],(int)(reg[HIREG]>>32)
935 // ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
936}
937
938uint64_t ldl_merge(uint64_t original,uint64_t loaded,u_int bits)
939{
940 if(bits) {
941 original<<=64-bits;
942 original>>=64-bits;
943 loaded<<=bits;
944 original|=loaded;
945 }
946 else original=loaded;
947 return original;
948}
949uint64_t ldr_merge(uint64_t original,uint64_t loaded,u_int bits)
950{
951 if(bits^56) {
952 original>>=64-(bits^56);
953 original<<=64-(bits^56);
954 loaded>>=bits^56;
955 original|=loaded;
956 }
957 else original=loaded;
958 return original;
959}
960
961#ifdef __i386__
962#include "assem_x86.c"
963#endif
964#ifdef __x86_64__
965#include "assem_x64.c"
966#endif
967#ifdef __arm__
968#include "assem_arm.c"
969#endif
970
971// Add virtual address mapping to linked list
972void ll_add(struct ll_entry **head,int vaddr,void *addr)
973{
974 struct ll_entry *new_entry;
975 new_entry=malloc(sizeof(struct ll_entry));
976 assert(new_entry!=NULL);
977 new_entry->vaddr=vaddr;
978 new_entry->reg32=0;
979 new_entry->addr=addr;
980 new_entry->next=*head;
981 *head=new_entry;
982}
983
984// Add virtual address mapping for 32-bit compiled block
985void ll_add_32(struct ll_entry **head,int vaddr,u_int reg32,void *addr)
986{
7139f3c8 987 ll_add(head,vaddr,addr);
988#ifndef FORCE32
989 (*head)->reg32=reg32;
990#endif
57871462 991}
992
993// Check if an address is already compiled
994// but don't return addresses which are about to expire from the cache
995void *check_addr(u_int vaddr)
996{
997 u_int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
998 if(ht_bin[0]==vaddr) {
999 if(((ht_bin[1]-MAX_OUTPUT_BLOCK_SIZE-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
1000 if(isclean(ht_bin[1])) return (void *)ht_bin[1];
1001 }
1002 if(ht_bin[2]==vaddr) {
1003 if(((ht_bin[3]-MAX_OUTPUT_BLOCK_SIZE-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
1004 if(isclean(ht_bin[3])) return (void *)ht_bin[3];
1005 }
94d23bb9 1006 u_int page=get_page(vaddr);
57871462 1007 struct ll_entry *head;
1008 head=jump_in[page];
1009 while(head!=NULL) {
1010 if(head->vaddr==vaddr&&head->reg32==0) {
1011 if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1012 // Update existing entry with current address
1013 if(ht_bin[0]==vaddr) {
1014 ht_bin[1]=(int)head->addr;
1015 return head->addr;
1016 }
1017 if(ht_bin[2]==vaddr) {
1018 ht_bin[3]=(int)head->addr;
1019 return head->addr;
1020 }
1021 // Insert into hash table with low priority.
1022 // Don't evict existing entries, as they are probably
1023 // addresses that are being accessed frequently.
1024 if(ht_bin[0]==-1) {
1025 ht_bin[1]=(int)head->addr;
1026 ht_bin[0]=vaddr;
1027 }else if(ht_bin[2]==-1) {
1028 ht_bin[3]=(int)head->addr;
1029 ht_bin[2]=vaddr;
1030 }
1031 return head->addr;
1032 }
1033 }
1034 head=head->next;
1035 }
1036 return 0;
1037}
1038
1039void remove_hash(int vaddr)
1040{
1041 //printf("remove hash: %x\n",vaddr);
1042 int *ht_bin=hash_table[(((vaddr)>>16)^vaddr)&0xFFFF];
1043 if(ht_bin[2]==vaddr) {
1044 ht_bin[2]=ht_bin[3]=-1;
1045 }
1046 if(ht_bin[0]==vaddr) {
1047 ht_bin[0]=ht_bin[2];
1048 ht_bin[1]=ht_bin[3];
1049 ht_bin[2]=ht_bin[3]=-1;
1050 }
1051}
1052
1053void ll_remove_matching_addrs(struct ll_entry **head,int addr,int shift)
1054{
1055 struct ll_entry *next;
1056 while(*head) {
1057 if(((u_int)((*head)->addr)>>shift)==(addr>>shift) ||
1058 ((u_int)((*head)->addr-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(addr>>shift))
1059 {
1060 inv_debug("EXP: Remove pointer to %x (%x)\n",(int)(*head)->addr,(*head)->vaddr);
1061 remove_hash((*head)->vaddr);
1062 next=(*head)->next;
1063 free(*head);
1064 *head=next;
1065 }
1066 else
1067 {
1068 head=&((*head)->next);
1069 }
1070 }
1071}
1072
1073// Remove all entries from linked list
1074void ll_clear(struct ll_entry **head)
1075{
1076 struct ll_entry *cur;
1077 struct ll_entry *next;
1078 if(cur=*head) {
1079 *head=0;
1080 while(cur) {
1081 next=cur->next;
1082 free(cur);
1083 cur=next;
1084 }
1085 }
1086}
1087
1088// Dereference the pointers and remove if it matches
1089void ll_kill_pointers(struct ll_entry *head,int addr,int shift)
1090{
1091 while(head) {
1092 int ptr=get_pointer(head->addr);
1093 inv_debug("EXP: Lookup pointer to %x at %x (%x)\n",(int)ptr,(int)head->addr,head->vaddr);
1094 if(((ptr>>shift)==(addr>>shift)) ||
1095 (((ptr-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(addr>>shift)))
1096 {
5088bb70 1097 inv_debug("EXP: Kill pointer at %x (%x)\n",(int)head->addr,head->vaddr);
f76eeef9 1098 u_int host_addr=(u_int)kill_pointer(head->addr);
dd3a91a1 1099 #ifdef __arm__
1100 needs_clear_cache[(host_addr-(u_int)BASE_ADDR)>>17]|=1<<(((host_addr-(u_int)BASE_ADDR)>>12)&31);
1101 #endif
57871462 1102 }
1103 head=head->next;
1104 }
1105}
1106
1107// This is called when we write to a compiled block (see do_invstub)
f76eeef9 1108void invalidate_page(u_int page)
57871462 1109{
57871462 1110 struct ll_entry *head;
1111 struct ll_entry *next;
1112 head=jump_in[page];
1113 jump_in[page]=0;
1114 while(head!=NULL) {
1115 inv_debug("INVALIDATE: %x\n",head->vaddr);
1116 remove_hash(head->vaddr);
1117 next=head->next;
1118 free(head);
1119 head=next;
1120 }
1121 head=jump_out[page];
1122 jump_out[page]=0;
1123 while(head!=NULL) {
1124 inv_debug("INVALIDATE: kill pointer to %x (%x)\n",head->vaddr,(int)head->addr);
f76eeef9 1125 u_int host_addr=(u_int)kill_pointer(head->addr);
dd3a91a1 1126 #ifdef __arm__
1127 needs_clear_cache[(host_addr-(u_int)BASE_ADDR)>>17]|=1<<(((host_addr-(u_int)BASE_ADDR)>>12)&31);
1128 #endif
57871462 1129 next=head->next;
1130 free(head);
1131 head=next;
1132 }
57871462 1133}
1134void invalidate_block(u_int block)
1135{
94d23bb9 1136 u_int page=get_page(block<<12);
1137 u_int vpage=get_vpage(block<<12);
57871462 1138 inv_debug("INVALIDATE: %x (%d)\n",block<<12,page);
1139 //inv_debug("invalid_code[block]=%d\n",invalid_code[block]);
1140 u_int first,last;
1141 first=last=page;
1142 struct ll_entry *head;
1143 head=jump_dirty[vpage];
1144 //printf("page=%d vpage=%d\n",page,vpage);
1145 while(head!=NULL) {
1146 u_int start,end;
1147 if(vpage>2047||(head->vaddr>>12)==block) { // Ignore vaddr hash collision
1148 get_bounds((int)head->addr,&start,&end);
1149 //printf("start: %x end: %x\n",start,end);
4cb76aa4 1150 if(page<2048&&start>=0x80000000&&end<0x80000000+RAM_SIZE) {
57871462 1151 if(((start-(u_int)rdram)>>12)<=page&&((end-1-(u_int)rdram)>>12)>=page) {
1152 if((((start-(u_int)rdram)>>12)&2047)<first) first=((start-(u_int)rdram)>>12)&2047;
1153 if((((end-1-(u_int)rdram)>>12)&2047)>last) last=((end-1-(u_int)rdram)>>12)&2047;
1154 }
1155 }
90ae6d4e 1156#ifndef DISABLE_TLB
57871462 1157 if(page<2048&&(signed int)start>=(signed int)0xC0000000&&(signed int)end>=(signed int)0xC0000000) {
1158 if(((start+memory_map[start>>12]-(u_int)rdram)>>12)<=page&&((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)>=page) {
1159 if((((start+memory_map[start>>12]-(u_int)rdram)>>12)&2047)<first) first=((start+memory_map[start>>12]-(u_int)rdram)>>12)&2047;
1160 if((((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)&2047)>last) last=((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)&2047;
1161 }
1162 }
90ae6d4e 1163#endif
57871462 1164 }
1165 head=head->next;
1166 }
1167 //printf("first=%d last=%d\n",first,last);
f76eeef9 1168 invalidate_page(page);
57871462 1169 assert(first+5>page); // NB: this assumes MAXBLOCK<=4096 (4 pages)
1170 assert(last<page+5);
1171 // Invalidate the adjacent pages if a block crosses a 4K boundary
1172 while(first<page) {
1173 invalidate_page(first);
1174 first++;
1175 }
1176 for(first=page+1;first<last;first++) {
1177 invalidate_page(first);
1178 }
dd3a91a1 1179 #ifdef __arm__
1180 do_clear_cache();
1181 #endif
57871462 1182
1183 // Don't trap writes
1184 invalid_code[block]=1;
b12c9fb8 1185#ifdef PCSX
1186 invalid_code[((u_int)0x80000000>>12)|page]=1;
1187#endif
94d23bb9 1188#ifndef DISABLE_TLB
57871462 1189 // If there is a valid TLB entry for this page, remove write protect
1190 if(tlb_LUT_w[block]) {
1191 assert(tlb_LUT_r[block]==tlb_LUT_w[block]);
1192 // CHECK: Is this right?
1193 memory_map[block]=((tlb_LUT_w[block]&0xFFFFF000)-(block<<12)+(unsigned int)rdram-0x80000000)>>2;
1194 u_int real_block=tlb_LUT_w[block]>>12;
1195 invalid_code[real_block]=1;
1196 if(real_block>=0x80000&&real_block<0x80800) memory_map[real_block]=((u_int)rdram-0x80000000)>>2;
1197 }
1198 else if(block>=0x80000&&block<0x80800) memory_map[block]=((u_int)rdram-0x80000000)>>2;
94d23bb9 1199#endif
f76eeef9 1200
57871462 1201 #ifdef USE_MINI_HT
1202 memset(mini_ht,-1,sizeof(mini_ht));
1203 #endif
1204}
1205void invalidate_addr(u_int addr)
1206{
1207 invalidate_block(addr>>12);
1208}
dd3a91a1 1209// This is called when loading a save state.
1210// Anything could have changed, so invalidate everything.
57871462 1211void invalidate_all_pages()
1212{
1213 u_int page,n;
1214 for(page=0;page<4096;page++)
1215 invalidate_page(page);
1216 for(page=0;page<1048576;page++)
1217 if(!invalid_code[page]) {
1218 restore_candidate[(page&2047)>>3]|=1<<(page&7);
1219 restore_candidate[((page&2047)>>3)+256]|=1<<(page&7);
1220 }
1221 #ifdef __arm__
1222 __clear_cache((void *)BASE_ADDR,(void *)BASE_ADDR+(1<<TARGET_SIZE_2));
1223 #endif
1224 #ifdef USE_MINI_HT
1225 memset(mini_ht,-1,sizeof(mini_ht));
1226 #endif
94d23bb9 1227 #ifndef DISABLE_TLB
57871462 1228 // TLB
1229 for(page=0;page<0x100000;page++) {
1230 if(tlb_LUT_r[page]) {
1231 memory_map[page]=((tlb_LUT_r[page]&0xFFFFF000)-(page<<12)+(unsigned int)rdram-0x80000000)>>2;
1232 if(!tlb_LUT_w[page]||!invalid_code[page])
1233 memory_map[page]|=0x40000000; // Write protect
1234 }
1235 else memory_map[page]=-1;
1236 if(page==0x80000) page=0xC0000;
1237 }
1238 tlb_hacks();
94d23bb9 1239 #endif
57871462 1240}
1241
1242// Add an entry to jump_out after making a link
1243void add_link(u_int vaddr,void *src)
1244{
94d23bb9 1245 u_int page=get_page(vaddr);
57871462 1246 inv_debug("add_link: %x -> %x (%d)\n",(int)src,vaddr,page);
1247 ll_add(jump_out+page,vaddr,src);
1248 //int ptr=get_pointer(src);
1249 //inv_debug("add_link: Pointer is to %x\n",(int)ptr);
1250}
1251
1252// If a code block was found to be unmodified (bit was set in
1253// restore_candidate) and it remains unmodified (bit is clear
1254// in invalid_code) then move the entries for that 4K page from
1255// the dirty list to the clean list.
1256void clean_blocks(u_int page)
1257{
1258 struct ll_entry *head;
1259 inv_debug("INV: clean_blocks page=%d\n",page);
1260 head=jump_dirty[page];
1261 while(head!=NULL) {
1262 if(!invalid_code[head->vaddr>>12]) {
1263 // Don't restore blocks which are about to expire from the cache
1264 if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1265 u_int start,end;
1266 if(verify_dirty((int)head->addr)) {
1267 //printf("Possibly Restore %x (%x)\n",head->vaddr, (int)head->addr);
1268 u_int i;
1269 u_int inv=0;
1270 get_bounds((int)head->addr,&start,&end);
4cb76aa4 1271 if(start-(u_int)rdram<RAM_SIZE) {
57871462 1272 for(i=(start-(u_int)rdram+0x80000000)>>12;i<=(end-1-(u_int)rdram+0x80000000)>>12;i++) {
1273 inv|=invalid_code[i];
1274 }
1275 }
1276 if((signed int)head->vaddr>=(signed int)0xC0000000) {
1277 u_int addr = (head->vaddr+(memory_map[head->vaddr>>12]<<2));
1278 //printf("addr=%x start=%x end=%x\n",addr,start,end);
1279 if(addr<start||addr>=end) inv=1;
1280 }
4cb76aa4 1281 else if((signed int)head->vaddr>=(signed int)0x80000000+RAM_SIZE) {
57871462 1282 inv=1;
1283 }
1284 if(!inv) {
1285 void * clean_addr=(void *)get_clean_addr((int)head->addr);
1286 if((((u_int)clean_addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1287 u_int ppage=page;
94d23bb9 1288#ifndef DISABLE_TLB
57871462 1289 if(page<2048&&tlb_LUT_r[head->vaddr>>12]) ppage=(tlb_LUT_r[head->vaddr>>12]^0x80000000)>>12;
94d23bb9 1290#endif
57871462 1291 inv_debug("INV: Restored %x (%x/%x)\n",head->vaddr, (int)head->addr, (int)clean_addr);
1292 //printf("page=%x, addr=%x\n",page,head->vaddr);
1293 //assert(head->vaddr>>12==(page|0x80000));
1294 ll_add_32(jump_in+ppage,head->vaddr,head->reg32,clean_addr);
1295 int *ht_bin=hash_table[((head->vaddr>>16)^head->vaddr)&0xFFFF];
1296 if(!head->reg32) {
1297 if(ht_bin[0]==head->vaddr) {
1298 ht_bin[1]=(int)clean_addr; // Replace existing entry
1299 }
1300 if(ht_bin[2]==head->vaddr) {
1301 ht_bin[3]=(int)clean_addr; // Replace existing entry
1302 }
1303 }
1304 }
1305 }
1306 }
1307 }
1308 }
1309 head=head->next;
1310 }
1311}
1312
1313
1314void mov_alloc(struct regstat *current,int i)
1315{
1316 // Note: Don't need to actually alloc the source registers
1317 if((~current->is32>>rs1[i])&1) {
1318 //alloc_reg64(current,i,rs1[i]);
1319 alloc_reg64(current,i,rt1[i]);
1320 current->is32&=~(1LL<<rt1[i]);
1321 } else {
1322 //alloc_reg(current,i,rs1[i]);
1323 alloc_reg(current,i,rt1[i]);
1324 current->is32|=(1LL<<rt1[i]);
1325 }
1326 clear_const(current,rs1[i]);
1327 clear_const(current,rt1[i]);
1328 dirty_reg(current,rt1[i]);
1329}
1330
1331void shiftimm_alloc(struct regstat *current,int i)
1332{
1333 clear_const(current,rs1[i]);
1334 clear_const(current,rt1[i]);
1335 if(opcode2[i]<=0x3) // SLL/SRL/SRA
1336 {
1337 if(rt1[i]) {
1338 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1339 else lt1[i]=rs1[i];
1340 alloc_reg(current,i,rt1[i]);
1341 current->is32|=1LL<<rt1[i];
1342 dirty_reg(current,rt1[i]);
1343 }
1344 }
1345 if(opcode2[i]>=0x38&&opcode2[i]<=0x3b) // DSLL/DSRL/DSRA
1346 {
1347 if(rt1[i]) {
1348 if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1349 alloc_reg64(current,i,rt1[i]);
1350 current->is32&=~(1LL<<rt1[i]);
1351 dirty_reg(current,rt1[i]);
1352 }
1353 }
1354 if(opcode2[i]==0x3c) // DSLL32
1355 {
1356 if(rt1[i]) {
1357 if(rs1[i]) alloc_reg(current,i,rs1[i]);
1358 alloc_reg64(current,i,rt1[i]);
1359 current->is32&=~(1LL<<rt1[i]);
1360 dirty_reg(current,rt1[i]);
1361 }
1362 }
1363 if(opcode2[i]==0x3e) // DSRL32
1364 {
1365 if(rt1[i]) {
1366 alloc_reg64(current,i,rs1[i]);
1367 if(imm[i]==32) {
1368 alloc_reg64(current,i,rt1[i]);
1369 current->is32&=~(1LL<<rt1[i]);
1370 } else {
1371 alloc_reg(current,i,rt1[i]);
1372 current->is32|=1LL<<rt1[i];
1373 }
1374 dirty_reg(current,rt1[i]);
1375 }
1376 }
1377 if(opcode2[i]==0x3f) // DSRA32
1378 {
1379 if(rt1[i]) {
1380 alloc_reg64(current,i,rs1[i]);
1381 alloc_reg(current,i,rt1[i]);
1382 current->is32|=1LL<<rt1[i];
1383 dirty_reg(current,rt1[i]);
1384 }
1385 }
1386}
1387
1388void shift_alloc(struct regstat *current,int i)
1389{
1390 if(rt1[i]) {
1391 if(opcode2[i]<=0x07) // SLLV/SRLV/SRAV
1392 {
1393 if(rs1[i]) alloc_reg(current,i,rs1[i]);
1394 if(rs2[i]) alloc_reg(current,i,rs2[i]);
1395 alloc_reg(current,i,rt1[i]);
e1190b87 1396 if(rt1[i]==rs2[i]) {
1397 alloc_reg_temp(current,i,-1);
1398 minimum_free_regs[i]=1;
1399 }
57871462 1400 current->is32|=1LL<<rt1[i];
1401 } else { // DSLLV/DSRLV/DSRAV
1402 if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1403 if(rs2[i]) alloc_reg(current,i,rs2[i]);
1404 alloc_reg64(current,i,rt1[i]);
1405 current->is32&=~(1LL<<rt1[i]);
1406 if(opcode2[i]==0x16||opcode2[i]==0x17) // DSRLV and DSRAV need a temporary register
e1190b87 1407 {
57871462 1408 alloc_reg_temp(current,i,-1);
e1190b87 1409 minimum_free_regs[i]=1;
1410 }
57871462 1411 }
1412 clear_const(current,rs1[i]);
1413 clear_const(current,rs2[i]);
1414 clear_const(current,rt1[i]);
1415 dirty_reg(current,rt1[i]);
1416 }
1417}
1418
1419void alu_alloc(struct regstat *current,int i)
1420{
1421 if(opcode2[i]>=0x20&&opcode2[i]<=0x23) { // ADD/ADDU/SUB/SUBU
1422 if(rt1[i]) {
1423 if(rs1[i]&&rs2[i]) {
1424 alloc_reg(current,i,rs1[i]);
1425 alloc_reg(current,i,rs2[i]);
1426 }
1427 else {
1428 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1429 if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg(current,i,rs2[i]);
1430 }
1431 alloc_reg(current,i,rt1[i]);
1432 }
1433 current->is32|=1LL<<rt1[i];
1434 }
1435 if(opcode2[i]==0x2a||opcode2[i]==0x2b) { // SLT/SLTU
1436 if(rt1[i]) {
1437 if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1438 {
1439 alloc_reg64(current,i,rs1[i]);
1440 alloc_reg64(current,i,rs2[i]);
1441 alloc_reg(current,i,rt1[i]);
1442 } else {
1443 alloc_reg(current,i,rs1[i]);
1444 alloc_reg(current,i,rs2[i]);
1445 alloc_reg(current,i,rt1[i]);
1446 }
1447 }
1448 current->is32|=1LL<<rt1[i];
1449 }
1450 if(opcode2[i]>=0x24&&opcode2[i]<=0x27) { // AND/OR/XOR/NOR
1451 if(rt1[i]) {
1452 if(rs1[i]&&rs2[i]) {
1453 alloc_reg(current,i,rs1[i]);
1454 alloc_reg(current,i,rs2[i]);
1455 }
1456 else
1457 {
1458 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1459 if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg(current,i,rs2[i]);
1460 }
1461 alloc_reg(current,i,rt1[i]);
1462 if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1463 {
1464 if(!((current->uu>>rt1[i])&1)) {
1465 alloc_reg64(current,i,rt1[i]);
1466 }
1467 if(get_reg(current->regmap,rt1[i]|64)>=0) {
1468 if(rs1[i]&&rs2[i]) {
1469 alloc_reg64(current,i,rs1[i]);
1470 alloc_reg64(current,i,rs2[i]);
1471 }
1472 else
1473 {
1474 // Is is really worth it to keep 64-bit values in registers?
1475 #ifdef NATIVE_64BIT
1476 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg64(current,i,rs1[i]);
1477 if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg64(current,i,rs2[i]);
1478 #endif
1479 }
1480 }
1481 current->is32&=~(1LL<<rt1[i]);
1482 } else {
1483 current->is32|=1LL<<rt1[i];
1484 }
1485 }
1486 }
1487 if(opcode2[i]>=0x2c&&opcode2[i]<=0x2f) { // DADD/DADDU/DSUB/DSUBU
1488 if(rt1[i]) {
1489 if(rs1[i]&&rs2[i]) {
1490 if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1491 alloc_reg64(current,i,rs1[i]);
1492 alloc_reg64(current,i,rs2[i]);
1493 alloc_reg64(current,i,rt1[i]);
1494 } else {
1495 alloc_reg(current,i,rs1[i]);
1496 alloc_reg(current,i,rs2[i]);
1497 alloc_reg(current,i,rt1[i]);
1498 }
1499 }
1500 else {
1501 alloc_reg(current,i,rt1[i]);
1502 if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1503 // DADD used as move, or zeroing
1504 // If we have a 64-bit source, then make the target 64 bits too
1505 if(rs1[i]&&!((current->is32>>rs1[i])&1)) {
1506 if(get_reg(current->regmap,rs1[i])>=0) alloc_reg64(current,i,rs1[i]);
1507 alloc_reg64(current,i,rt1[i]);
1508 } else if(rs2[i]&&!((current->is32>>rs2[i])&1)) {
1509 if(get_reg(current->regmap,rs2[i])>=0) alloc_reg64(current,i,rs2[i]);
1510 alloc_reg64(current,i,rt1[i]);
1511 }
1512 if(opcode2[i]>=0x2e&&rs2[i]) {
1513 // DSUB used as negation - 64-bit result
1514 // If we have a 32-bit register, extend it to 64 bits
1515 if(get_reg(current->regmap,rs2[i])>=0) alloc_reg64(current,i,rs2[i]);
1516 alloc_reg64(current,i,rt1[i]);
1517 }
1518 }
1519 }
1520 if(rs1[i]&&rs2[i]) {
1521 current->is32&=~(1LL<<rt1[i]);
1522 } else if(rs1[i]) {
1523 current->is32&=~(1LL<<rt1[i]);
1524 if((current->is32>>rs1[i])&1)
1525 current->is32|=1LL<<rt1[i];
1526 } else if(rs2[i]) {
1527 current->is32&=~(1LL<<rt1[i]);
1528 if((current->is32>>rs2[i])&1)
1529 current->is32|=1LL<<rt1[i];
1530 } else {
1531 current->is32|=1LL<<rt1[i];
1532 }
1533 }
1534 }
1535 clear_const(current,rs1[i]);
1536 clear_const(current,rs2[i]);
1537 clear_const(current,rt1[i]);
1538 dirty_reg(current,rt1[i]);
1539}
1540
1541void imm16_alloc(struct regstat *current,int i)
1542{
1543 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1544 else lt1[i]=rs1[i];
1545 if(rt1[i]) alloc_reg(current,i,rt1[i]);
1546 if(opcode[i]==0x18||opcode[i]==0x19) { // DADDI/DADDIU
1547 current->is32&=~(1LL<<rt1[i]);
1548 if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1549 // TODO: Could preserve the 32-bit flag if the immediate is zero
1550 alloc_reg64(current,i,rt1[i]);
1551 alloc_reg64(current,i,rs1[i]);
1552 }
1553 clear_const(current,rs1[i]);
1554 clear_const(current,rt1[i]);
1555 }
1556 else if(opcode[i]==0x0a||opcode[i]==0x0b) { // SLTI/SLTIU
1557 if((~current->is32>>rs1[i])&1) alloc_reg64(current,i,rs1[i]);
1558 current->is32|=1LL<<rt1[i];
1559 clear_const(current,rs1[i]);
1560 clear_const(current,rt1[i]);
1561 }
1562 else if(opcode[i]>=0x0c&&opcode[i]<=0x0e) { // ANDI/ORI/XORI
1563 if(((~current->is32>>rs1[i])&1)&&opcode[i]>0x0c) {
1564 if(rs1[i]!=rt1[i]) {
1565 if(needed_again(rs1[i],i)) alloc_reg64(current,i,rs1[i]);
1566 alloc_reg64(current,i,rt1[i]);
1567 current->is32&=~(1LL<<rt1[i]);
1568 }
1569 }
1570 else current->is32|=1LL<<rt1[i]; // ANDI clears upper bits
1571 if(is_const(current,rs1[i])) {
1572 int v=get_const(current,rs1[i]);
1573 if(opcode[i]==0x0c) set_const(current,rt1[i],v&imm[i]);
1574 if(opcode[i]==0x0d) set_const(current,rt1[i],v|imm[i]);
1575 if(opcode[i]==0x0e) set_const(current,rt1[i],v^imm[i]);
1576 }
1577 else clear_const(current,rt1[i]);
1578 }
1579 else if(opcode[i]==0x08||opcode[i]==0x09) { // ADDI/ADDIU
1580 if(is_const(current,rs1[i])) {
1581 int v=get_const(current,rs1[i]);
1582 set_const(current,rt1[i],v+imm[i]);
1583 }
1584 else clear_const(current,rt1[i]);
1585 current->is32|=1LL<<rt1[i];
1586 }
1587 else {
1588 set_const(current,rt1[i],((long long)((short)imm[i]))<<16); // LUI
1589 current->is32|=1LL<<rt1[i];
1590 }
1591 dirty_reg(current,rt1[i]);
1592}
1593
1594void load_alloc(struct regstat *current,int i)
1595{
1596 clear_const(current,rt1[i]);
1597 //if(rs1[i]!=rt1[i]&&needed_again(rs1[i],i)) clear_const(current,rs1[i]); // Does this help or hurt?
1598 if(!rs1[i]) current->u&=~1LL; // Allow allocating r0 if it's the source register
1599 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
373d1d07 1600 if(rt1[i]&&!((current->u>>rt1[i])&1)) {
57871462 1601 alloc_reg(current,i,rt1[i]);
373d1d07 1602 assert(get_reg(current->regmap,rt1[i])>=0);
57871462 1603 if(opcode[i]==0x27||opcode[i]==0x37) // LWU/LD
1604 {
1605 current->is32&=~(1LL<<rt1[i]);
1606 alloc_reg64(current,i,rt1[i]);
1607 }
1608 else if(opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
1609 {
1610 current->is32&=~(1LL<<rt1[i]);
1611 alloc_reg64(current,i,rt1[i]);
1612 alloc_all(current,i);
1613 alloc_reg64(current,i,FTEMP);
e1190b87 1614 minimum_free_regs[i]=HOST_REGS;
57871462 1615 }
1616 else current->is32|=1LL<<rt1[i];
1617 dirty_reg(current,rt1[i]);
1618 // If using TLB, need a register for pointer to the mapping table
1619 if(using_tlb) alloc_reg(current,i,TLREG);
1620 // LWL/LWR need a temporary register for the old value
1621 if(opcode[i]==0x22||opcode[i]==0x26)
1622 {
1623 alloc_reg(current,i,FTEMP);
1624 alloc_reg_temp(current,i,-1);
e1190b87 1625 minimum_free_regs[i]=1;
57871462 1626 }
1627 }
1628 else
1629 {
373d1d07 1630 // Load to r0 or unneeded register (dummy load)
57871462 1631 // but we still need a register to calculate the address
535d208a 1632 if(opcode[i]==0x22||opcode[i]==0x26)
1633 {
1634 alloc_reg(current,i,FTEMP); // LWL/LWR need another temporary
1635 }
373d1d07 1636 // If using TLB, need a register for pointer to the mapping table
1637 if(using_tlb) alloc_reg(current,i,TLREG);
57871462 1638 alloc_reg_temp(current,i,-1);
e1190b87 1639 minimum_free_regs[i]=1;
535d208a 1640 if(opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
1641 {
1642 alloc_all(current,i);
1643 alloc_reg64(current,i,FTEMP);
e1190b87 1644 minimum_free_regs[i]=HOST_REGS;
535d208a 1645 }
57871462 1646 }
1647}
1648
1649void store_alloc(struct regstat *current,int i)
1650{
1651 clear_const(current,rs2[i]);
1652 if(!(rs2[i])) current->u&=~1LL; // Allow allocating r0 if necessary
1653 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1654 alloc_reg(current,i,rs2[i]);
1655 if(opcode[i]==0x2c||opcode[i]==0x2d||opcode[i]==0x3f) { // 64-bit SDL/SDR/SD
1656 alloc_reg64(current,i,rs2[i]);
1657 if(rs2[i]) alloc_reg(current,i,FTEMP);
1658 }
1659 // If using TLB, need a register for pointer to the mapping table
1660 if(using_tlb) alloc_reg(current,i,TLREG);
1661 #if defined(HOST_IMM8)
1662 // On CPUs without 32-bit immediates we need a pointer to invalid_code
1663 else alloc_reg(current,i,INVCP);
1664 #endif
b7918751 1665 if(opcode[i]==0x2a||opcode[i]==0x2e||opcode[i]==0x2c||opcode[i]==0x2d) { // SWL/SWL/SDL/SDR
57871462 1666 alloc_reg(current,i,FTEMP);
1667 }
1668 // We need a temporary register for address generation
1669 alloc_reg_temp(current,i,-1);
e1190b87 1670 minimum_free_regs[i]=1;
57871462 1671}
1672
1673void c1ls_alloc(struct regstat *current,int i)
1674{
1675 //clear_const(current,rs1[i]); // FIXME
1676 clear_const(current,rt1[i]);
1677 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1678 alloc_reg(current,i,CSREG); // Status
1679 alloc_reg(current,i,FTEMP);
1680 if(opcode[i]==0x35||opcode[i]==0x3d) { // 64-bit LDC1/SDC1
1681 alloc_reg64(current,i,FTEMP);
1682 }
1683 // If using TLB, need a register for pointer to the mapping table
1684 if(using_tlb) alloc_reg(current,i,TLREG);
1685 #if defined(HOST_IMM8)
1686 // On CPUs without 32-bit immediates we need a pointer to invalid_code
1687 else if((opcode[i]&0x3b)==0x39) // SWC1/SDC1
1688 alloc_reg(current,i,INVCP);
1689 #endif
1690 // We need a temporary register for address generation
1691 alloc_reg_temp(current,i,-1);
1692}
1693
b9b61529 1694void c2ls_alloc(struct regstat *current,int i)
1695{
1696 clear_const(current,rt1[i]);
1697 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1698 alloc_reg(current,i,FTEMP);
1699 // If using TLB, need a register for pointer to the mapping table
1700 if(using_tlb) alloc_reg(current,i,TLREG);
1701 #if defined(HOST_IMM8)
1702 // On CPUs without 32-bit immediates we need a pointer to invalid_code
1703 else if((opcode[i]&0x3b)==0x3a) // SWC2/SDC2
1704 alloc_reg(current,i,INVCP);
1705 #endif
1706 // We need a temporary register for address generation
1707 alloc_reg_temp(current,i,-1);
e1190b87 1708 minimum_free_regs[i]=1;
b9b61529 1709}
1710
57871462 1711#ifndef multdiv_alloc
1712void multdiv_alloc(struct regstat *current,int i)
1713{
1714 // case 0x18: MULT
1715 // case 0x19: MULTU
1716 // case 0x1A: DIV
1717 // case 0x1B: DIVU
1718 // case 0x1C: DMULT
1719 // case 0x1D: DMULTU
1720 // case 0x1E: DDIV
1721 // case 0x1F: DDIVU
1722 clear_const(current,rs1[i]);
1723 clear_const(current,rs2[i]);
1724 if(rs1[i]&&rs2[i])
1725 {
1726 if((opcode2[i]&4)==0) // 32-bit
1727 {
1728 current->u&=~(1LL<<HIREG);
1729 current->u&=~(1LL<<LOREG);
1730 alloc_reg(current,i,HIREG);
1731 alloc_reg(current,i,LOREG);
1732 alloc_reg(current,i,rs1[i]);
1733 alloc_reg(current,i,rs2[i]);
1734 current->is32|=1LL<<HIREG;
1735 current->is32|=1LL<<LOREG;
1736 dirty_reg(current,HIREG);
1737 dirty_reg(current,LOREG);
1738 }
1739 else // 64-bit
1740 {
1741 current->u&=~(1LL<<HIREG);
1742 current->u&=~(1LL<<LOREG);
1743 current->uu&=~(1LL<<HIREG);
1744 current->uu&=~(1LL<<LOREG);
1745 alloc_reg64(current,i,HIREG);
1746 //if(HOST_REGS>10) alloc_reg64(current,i,LOREG);
1747 alloc_reg64(current,i,rs1[i]);
1748 alloc_reg64(current,i,rs2[i]);
1749 alloc_all(current,i);
1750 current->is32&=~(1LL<<HIREG);
1751 current->is32&=~(1LL<<LOREG);
1752 dirty_reg(current,HIREG);
1753 dirty_reg(current,LOREG);
e1190b87 1754 minimum_free_regs[i]=HOST_REGS;
57871462 1755 }
1756 }
1757 else
1758 {
1759 // Multiply by zero is zero.
1760 // MIPS does not have a divide by zero exception.
1761 // The result is undefined, we return zero.
1762 alloc_reg(current,i,HIREG);
1763 alloc_reg(current,i,LOREG);
1764 current->is32|=1LL<<HIREG;
1765 current->is32|=1LL<<LOREG;
1766 dirty_reg(current,HIREG);
1767 dirty_reg(current,LOREG);
1768 }
1769}
1770#endif
1771
1772void cop0_alloc(struct regstat *current,int i)
1773{
1774 if(opcode2[i]==0) // MFC0
1775 {
1776 if(rt1[i]) {
1777 clear_const(current,rt1[i]);
1778 alloc_all(current,i);
1779 alloc_reg(current,i,rt1[i]);
1780 current->is32|=1LL<<rt1[i];
1781 dirty_reg(current,rt1[i]);
1782 }
1783 }
1784 else if(opcode2[i]==4) // MTC0
1785 {
1786 if(rs1[i]){
1787 clear_const(current,rs1[i]);
1788 alloc_reg(current,i,rs1[i]);
1789 alloc_all(current,i);
1790 }
1791 else {
1792 alloc_all(current,i); // FIXME: Keep r0
1793 current->u&=~1LL;
1794 alloc_reg(current,i,0);
1795 }
1796 }
1797 else
1798 {
1799 // TLBR/TLBWI/TLBWR/TLBP/ERET
1800 assert(opcode2[i]==0x10);
1801 alloc_all(current,i);
1802 }
e1190b87 1803 minimum_free_regs[i]=HOST_REGS;
57871462 1804}
1805
1806void cop1_alloc(struct regstat *current,int i)
1807{
1808 alloc_reg(current,i,CSREG); // Load status
1809 if(opcode2[i]<3) // MFC1/DMFC1/CFC1
1810 {
7de557a6 1811 if(rt1[i]){
1812 clear_const(current,rt1[i]);
1813 if(opcode2[i]==1) {
1814 alloc_reg64(current,i,rt1[i]); // DMFC1
1815 current->is32&=~(1LL<<rt1[i]);
1816 }else{
1817 alloc_reg(current,i,rt1[i]); // MFC1/CFC1
1818 current->is32|=1LL<<rt1[i];
1819 }
1820 dirty_reg(current,rt1[i]);
57871462 1821 }
57871462 1822 alloc_reg_temp(current,i,-1);
1823 }
1824 else if(opcode2[i]>3) // MTC1/DMTC1/CTC1
1825 {
1826 if(rs1[i]){
1827 clear_const(current,rs1[i]);
1828 if(opcode2[i]==5)
1829 alloc_reg64(current,i,rs1[i]); // DMTC1
1830 else
1831 alloc_reg(current,i,rs1[i]); // MTC1/CTC1
1832 alloc_reg_temp(current,i,-1);
1833 }
1834 else {
1835 current->u&=~1LL;
1836 alloc_reg(current,i,0);
1837 alloc_reg_temp(current,i,-1);
1838 }
1839 }
e1190b87 1840 minimum_free_regs[i]=1;
57871462 1841}
1842void fconv_alloc(struct regstat *current,int i)
1843{
1844 alloc_reg(current,i,CSREG); // Load status
1845 alloc_reg_temp(current,i,-1);
e1190b87 1846 minimum_free_regs[i]=1;
57871462 1847}
1848void float_alloc(struct regstat *current,int i)
1849{
1850 alloc_reg(current,i,CSREG); // Load status
1851 alloc_reg_temp(current,i,-1);
e1190b87 1852 minimum_free_regs[i]=1;
57871462 1853}
b9b61529 1854void c2op_alloc(struct regstat *current,int i)
1855{
1856 alloc_reg_temp(current,i,-1);
1857}
57871462 1858void fcomp_alloc(struct regstat *current,int i)
1859{
1860 alloc_reg(current,i,CSREG); // Load status
1861 alloc_reg(current,i,FSREG); // Load flags
1862 dirty_reg(current,FSREG); // Flag will be modified
1863 alloc_reg_temp(current,i,-1);
e1190b87 1864 minimum_free_regs[i]=1;
57871462 1865}
1866
1867void syscall_alloc(struct regstat *current,int i)
1868{
1869 alloc_cc(current,i);
1870 dirty_reg(current,CCREG);
1871 alloc_all(current,i);
e1190b87 1872 minimum_free_regs[i]=HOST_REGS;
57871462 1873 current->isconst=0;
1874}
1875
1876void delayslot_alloc(struct regstat *current,int i)
1877{
1878 switch(itype[i]) {
1879 case UJUMP:
1880 case CJUMP:
1881 case SJUMP:
1882 case RJUMP:
1883 case FJUMP:
1884 case SYSCALL:
7139f3c8 1885 case HLECALL:
57871462 1886 case SPAN:
1887 assem_debug("jump in the delay slot. this shouldn't happen.\n");//exit(1);
1888 printf("Disabled speculative precompilation\n");
1889 stop_after_jal=1;
1890 break;
1891 case IMM16:
1892 imm16_alloc(current,i);
1893 break;
1894 case LOAD:
1895 case LOADLR:
1896 load_alloc(current,i);
1897 break;
1898 case STORE:
1899 case STORELR:
1900 store_alloc(current,i);
1901 break;
1902 case ALU:
1903 alu_alloc(current,i);
1904 break;
1905 case SHIFT:
1906 shift_alloc(current,i);
1907 break;
1908 case MULTDIV:
1909 multdiv_alloc(current,i);
1910 break;
1911 case SHIFTIMM:
1912 shiftimm_alloc(current,i);
1913 break;
1914 case MOV:
1915 mov_alloc(current,i);
1916 break;
1917 case COP0:
1918 cop0_alloc(current,i);
1919 break;
1920 case COP1:
b9b61529 1921 case COP2:
57871462 1922 cop1_alloc(current,i);
1923 break;
1924 case C1LS:
1925 c1ls_alloc(current,i);
1926 break;
b9b61529 1927 case C2LS:
1928 c2ls_alloc(current,i);
1929 break;
57871462 1930 case FCONV:
1931 fconv_alloc(current,i);
1932 break;
1933 case FLOAT:
1934 float_alloc(current,i);
1935 break;
1936 case FCOMP:
1937 fcomp_alloc(current,i);
1938 break;
b9b61529 1939 case C2OP:
1940 c2op_alloc(current,i);
1941 break;
57871462 1942 }
1943}
1944
1945// Special case where a branch and delay slot span two pages in virtual memory
1946static void pagespan_alloc(struct regstat *current,int i)
1947{
1948 current->isconst=0;
1949 current->wasconst=0;
1950 regs[i].wasconst=0;
e1190b87 1951 minimum_free_regs[i]=HOST_REGS;
57871462 1952 alloc_all(current,i);
1953 alloc_cc(current,i);
1954 dirty_reg(current,CCREG);
1955 if(opcode[i]==3) // JAL
1956 {
1957 alloc_reg(current,i,31);
1958 dirty_reg(current,31);
1959 }
1960 if(opcode[i]==0&&(opcode2[i]&0x3E)==8) // JR/JALR
1961 {
1962 alloc_reg(current,i,rs1[i]);
5067f341 1963 if (rt1[i]!=0) {
1964 alloc_reg(current,i,rt1[i]);
1965 dirty_reg(current,rt1[i]);
57871462 1966 }
1967 }
1968 if((opcode[i]&0x2E)==4) // BEQ/BNE/BEQL/BNEL
1969 {
1970 if(rs1[i]) alloc_reg(current,i,rs1[i]);
1971 if(rs2[i]) alloc_reg(current,i,rs2[i]);
1972 if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1973 {
1974 if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1975 if(rs2[i]) alloc_reg64(current,i,rs2[i]);
1976 }
1977 }
1978 else
1979 if((opcode[i]&0x2E)==6) // BLEZ/BGTZ/BLEZL/BGTZL
1980 {
1981 if(rs1[i]) alloc_reg(current,i,rs1[i]);
1982 if(!((current->is32>>rs1[i])&1))
1983 {
1984 if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1985 }
1986 }
1987 else
1988 if(opcode[i]==0x11) // BC1
1989 {
1990 alloc_reg(current,i,FSREG);
1991 alloc_reg(current,i,CSREG);
1992 }
1993 //else ...
1994}
1995
1996add_stub(int type,int addr,int retaddr,int a,int b,int c,int d,int e)
1997{
1998 stubs[stubcount][0]=type;
1999 stubs[stubcount][1]=addr;
2000 stubs[stubcount][2]=retaddr;
2001 stubs[stubcount][3]=a;
2002 stubs[stubcount][4]=b;
2003 stubs[stubcount][5]=c;
2004 stubs[stubcount][6]=d;
2005 stubs[stubcount][7]=e;
2006 stubcount++;
2007}
2008
2009// Write out a single register
2010void wb_register(signed char r,signed char regmap[],uint64_t dirty,uint64_t is32)
2011{
2012 int hr;
2013 for(hr=0;hr<HOST_REGS;hr++) {
2014 if(hr!=EXCLUDE_REG) {
2015 if((regmap[hr]&63)==r) {
2016 if((dirty>>hr)&1) {
2017 if(regmap[hr]<64) {
2018 emit_storereg(r,hr);
24385cae 2019#ifndef FORCE32
57871462 2020 if((is32>>regmap[hr])&1) {
2021 emit_sarimm(hr,31,hr);
2022 emit_storereg(r|64,hr);
2023 }
24385cae 2024#endif
57871462 2025 }else{
2026 emit_storereg(r|64,hr);
2027 }
2028 }
2029 }
2030 }
2031 }
2032}
2033
2034int mchecksum()
2035{
2036 //if(!tracedebug) return 0;
2037 int i;
2038 int sum=0;
2039 for(i=0;i<2097152;i++) {
2040 unsigned int temp=sum;
2041 sum<<=1;
2042 sum|=(~temp)>>31;
2043 sum^=((u_int *)rdram)[i];
2044 }
2045 return sum;
2046}
2047int rchecksum()
2048{
2049 int i;
2050 int sum=0;
2051 for(i=0;i<64;i++)
2052 sum^=((u_int *)reg)[i];
2053 return sum;
2054}
57871462 2055void rlist()
2056{
2057 int i;
2058 printf("TRACE: ");
2059 for(i=0;i<32;i++)
2060 printf("r%d:%8x%8x ",i,((int *)(reg+i))[1],((int *)(reg+i))[0]);
2061 printf("\n");
3d624f89 2062#ifndef DISABLE_COP1
57871462 2063 printf("TRACE: ");
2064 for(i=0;i<32;i++)
2065 printf("f%d:%8x%8x ",i,((int*)reg_cop1_simple[i])[1],*((int*)reg_cop1_simple[i]));
2066 printf("\n");
3d624f89 2067#endif
57871462 2068}
2069
2070void enabletrace()
2071{
2072 tracedebug=1;
2073}
2074
2075void memdebug(int i)
2076{
2077 //printf("TRACE: count=%d next=%d (checksum %x) lo=%8x%8x\n",Count,next_interupt,mchecksum(),(int)(reg[LOREG]>>32),(int)reg[LOREG]);
2078 //printf("TRACE: count=%d next=%d (rchecksum %x)\n",Count,next_interupt,rchecksum());
2079 //rlist();
2080 //if(tracedebug) {
2081 //if(Count>=-2084597794) {
2082 if((signed int)Count>=-2084597794&&(signed int)Count<0) {
2083 //if(0) {
2084 printf("TRACE: count=%d next=%d (checksum %x)\n",Count,next_interupt,mchecksum());
2085 //printf("TRACE: count=%d next=%d (checksum %x) Status=%x\n",Count,next_interupt,mchecksum(),Status);
2086 //printf("TRACE: count=%d next=%d (checksum %x) hi=%8x%8x\n",Count,next_interupt,mchecksum(),(int)(reg[HIREG]>>32),(int)reg[HIREG]);
2087 rlist();
2088 #ifdef __i386__
2089 printf("TRACE: %x\n",(&i)[-1]);
2090 #endif
2091 #ifdef __arm__
2092 int j;
2093 printf("TRACE: %x \n",(&j)[10]);
2094 printf("TRACE: %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x\n",(&j)[1],(&j)[2],(&j)[3],(&j)[4],(&j)[5],(&j)[6],(&j)[7],(&j)[8],(&j)[9],(&j)[10],(&j)[11],(&j)[12],(&j)[13],(&j)[14],(&j)[15],(&j)[16],(&j)[17],(&j)[18],(&j)[19],(&j)[20]);
2095 #endif
2096 //fflush(stdout);
2097 }
2098 //printf("TRACE: %x\n",(&i)[-1]);
2099}
2100
2101void tlb_debug(u_int cause, u_int addr, u_int iaddr)
2102{
2103 printf("TLB Exception: instruction=%x addr=%x cause=%x\n",iaddr, addr, cause);
2104}
2105
2106void alu_assemble(int i,struct regstat *i_regs)
2107{
2108 if(opcode2[i]>=0x20&&opcode2[i]<=0x23) { // ADD/ADDU/SUB/SUBU
2109 if(rt1[i]) {
2110 signed char s1,s2,t;
2111 t=get_reg(i_regs->regmap,rt1[i]);
2112 if(t>=0) {
2113 s1=get_reg(i_regs->regmap,rs1[i]);
2114 s2=get_reg(i_regs->regmap,rs2[i]);
2115 if(rs1[i]&&rs2[i]) {
2116 assert(s1>=0);
2117 assert(s2>=0);
2118 if(opcode2[i]&2) emit_sub(s1,s2,t);
2119 else emit_add(s1,s2,t);
2120 }
2121 else if(rs1[i]) {
2122 if(s1>=0) emit_mov(s1,t);
2123 else emit_loadreg(rs1[i],t);
2124 }
2125 else if(rs2[i]) {
2126 if(s2>=0) {
2127 if(opcode2[i]&2) emit_neg(s2,t);
2128 else emit_mov(s2,t);
2129 }
2130 else {
2131 emit_loadreg(rs2[i],t);
2132 if(opcode2[i]&2) emit_neg(t,t);
2133 }
2134 }
2135 else emit_zeroreg(t);
2136 }
2137 }
2138 }
2139 if(opcode2[i]>=0x2c&&opcode2[i]<=0x2f) { // DADD/DADDU/DSUB/DSUBU
2140 if(rt1[i]) {
2141 signed char s1l,s2l,s1h,s2h,tl,th;
2142 tl=get_reg(i_regs->regmap,rt1[i]);
2143 th=get_reg(i_regs->regmap,rt1[i]|64);
2144 if(tl>=0) {
2145 s1l=get_reg(i_regs->regmap,rs1[i]);
2146 s2l=get_reg(i_regs->regmap,rs2[i]);
2147 s1h=get_reg(i_regs->regmap,rs1[i]|64);
2148 s2h=get_reg(i_regs->regmap,rs2[i]|64);
2149 if(rs1[i]&&rs2[i]) {
2150 assert(s1l>=0);
2151 assert(s2l>=0);
2152 if(opcode2[i]&2) emit_subs(s1l,s2l,tl);
2153 else emit_adds(s1l,s2l,tl);
2154 if(th>=0) {
2155 #ifdef INVERTED_CARRY
2156 if(opcode2[i]&2) {if(s1h!=th) emit_mov(s1h,th);emit_sbb(th,s2h);}
2157 #else
2158 if(opcode2[i]&2) emit_sbc(s1h,s2h,th);
2159 #endif
2160 else emit_add(s1h,s2h,th);
2161 }
2162 }
2163 else if(rs1[i]) {
2164 if(s1l>=0) emit_mov(s1l,tl);
2165 else emit_loadreg(rs1[i],tl);
2166 if(th>=0) {
2167 if(s1h>=0) emit_mov(s1h,th);
2168 else emit_loadreg(rs1[i]|64,th);
2169 }
2170 }
2171 else if(rs2[i]) {
2172 if(s2l>=0) {
2173 if(opcode2[i]&2) emit_negs(s2l,tl);
2174 else emit_mov(s2l,tl);
2175 }
2176 else {
2177 emit_loadreg(rs2[i],tl);
2178 if(opcode2[i]&2) emit_negs(tl,tl);
2179 }
2180 if(th>=0) {
2181 #ifdef INVERTED_CARRY
2182 if(s2h>=0) emit_mov(s2h,th);
2183 else emit_loadreg(rs2[i]|64,th);
2184 if(opcode2[i]&2) {
2185 emit_adcimm(-1,th); // x86 has inverted carry flag
2186 emit_not(th,th);
2187 }
2188 #else
2189 if(opcode2[i]&2) {
2190 if(s2h>=0) emit_rscimm(s2h,0,th);
2191 else {
2192 emit_loadreg(rs2[i]|64,th);
2193 emit_rscimm(th,0,th);
2194 }
2195 }else{
2196 if(s2h>=0) emit_mov(s2h,th);
2197 else emit_loadreg(rs2[i]|64,th);
2198 }
2199 #endif
2200 }
2201 }
2202 else {
2203 emit_zeroreg(tl);
2204 if(th>=0) emit_zeroreg(th);
2205 }
2206 }
2207 }
2208 }
2209 if(opcode2[i]==0x2a||opcode2[i]==0x2b) { // SLT/SLTU
2210 if(rt1[i]) {
2211 signed char s1l,s1h,s2l,s2h,t;
2212 if(!((i_regs->was32>>rs1[i])&(i_regs->was32>>rs2[i])&1))
2213 {
2214 t=get_reg(i_regs->regmap,rt1[i]);
2215 //assert(t>=0);
2216 if(t>=0) {
2217 s1l=get_reg(i_regs->regmap,rs1[i]);
2218 s1h=get_reg(i_regs->regmap,rs1[i]|64);
2219 s2l=get_reg(i_regs->regmap,rs2[i]);
2220 s2h=get_reg(i_regs->regmap,rs2[i]|64);
2221 if(rs2[i]==0) // rx<r0
2222 {
2223 assert(s1h>=0);
2224 if(opcode2[i]==0x2a) // SLT
2225 emit_shrimm(s1h,31,t);
2226 else // SLTU (unsigned can not be less than zero)
2227 emit_zeroreg(t);
2228 }
2229 else if(rs1[i]==0) // r0<rx
2230 {
2231 assert(s2h>=0);
2232 if(opcode2[i]==0x2a) // SLT
2233 emit_set_gz64_32(s2h,s2l,t);
2234 else // SLTU (set if not zero)
2235 emit_set_nz64_32(s2h,s2l,t);
2236 }
2237 else {
2238 assert(s1l>=0);assert(s1h>=0);
2239 assert(s2l>=0);assert(s2h>=0);
2240 if(opcode2[i]==0x2a) // SLT
2241 emit_set_if_less64_32(s1h,s1l,s2h,s2l,t);
2242 else // SLTU
2243 emit_set_if_carry64_32(s1h,s1l,s2h,s2l,t);
2244 }
2245 }
2246 } else {
2247 t=get_reg(i_regs->regmap,rt1[i]);
2248 //assert(t>=0);
2249 if(t>=0) {
2250 s1l=get_reg(i_regs->regmap,rs1[i]);
2251 s2l=get_reg(i_regs->regmap,rs2[i]);
2252 if(rs2[i]==0) // rx<r0
2253 {
2254 assert(s1l>=0);
2255 if(opcode2[i]==0x2a) // SLT
2256 emit_shrimm(s1l,31,t);
2257 else // SLTU (unsigned can not be less than zero)
2258 emit_zeroreg(t);
2259 }
2260 else if(rs1[i]==0) // r0<rx
2261 {
2262 assert(s2l>=0);
2263 if(opcode2[i]==0x2a) // SLT
2264 emit_set_gz32(s2l,t);
2265 else // SLTU (set if not zero)
2266 emit_set_nz32(s2l,t);
2267 }
2268 else{
2269 assert(s1l>=0);assert(s2l>=0);
2270 if(opcode2[i]==0x2a) // SLT
2271 emit_set_if_less32(s1l,s2l,t);
2272 else // SLTU
2273 emit_set_if_carry32(s1l,s2l,t);
2274 }
2275 }
2276 }
2277 }
2278 }
2279 if(opcode2[i]>=0x24&&opcode2[i]<=0x27) { // AND/OR/XOR/NOR
2280 if(rt1[i]) {
2281 signed char s1l,s1h,s2l,s2h,th,tl;
2282 tl=get_reg(i_regs->regmap,rt1[i]);
2283 th=get_reg(i_regs->regmap,rt1[i]|64);
2284 if(!((i_regs->was32>>rs1[i])&(i_regs->was32>>rs2[i])&1)&&th>=0)
2285 {
2286 assert(tl>=0);
2287 if(tl>=0) {
2288 s1l=get_reg(i_regs->regmap,rs1[i]);
2289 s1h=get_reg(i_regs->regmap,rs1[i]|64);
2290 s2l=get_reg(i_regs->regmap,rs2[i]);
2291 s2h=get_reg(i_regs->regmap,rs2[i]|64);
2292 if(rs1[i]&&rs2[i]) {
2293 assert(s1l>=0);assert(s1h>=0);
2294 assert(s2l>=0);assert(s2h>=0);
2295 if(opcode2[i]==0x24) { // AND
2296 emit_and(s1l,s2l,tl);
2297 emit_and(s1h,s2h,th);
2298 } else
2299 if(opcode2[i]==0x25) { // OR
2300 emit_or(s1l,s2l,tl);
2301 emit_or(s1h,s2h,th);
2302 } else
2303 if(opcode2[i]==0x26) { // XOR
2304 emit_xor(s1l,s2l,tl);
2305 emit_xor(s1h,s2h,th);
2306 } else
2307 if(opcode2[i]==0x27) { // NOR
2308 emit_or(s1l,s2l,tl);
2309 emit_or(s1h,s2h,th);
2310 emit_not(tl,tl);
2311 emit_not(th,th);
2312 }
2313 }
2314 else
2315 {
2316 if(opcode2[i]==0x24) { // AND
2317 emit_zeroreg(tl);
2318 emit_zeroreg(th);
2319 } else
2320 if(opcode2[i]==0x25||opcode2[i]==0x26) { // OR/XOR
2321 if(rs1[i]){
2322 if(s1l>=0) emit_mov(s1l,tl);
2323 else emit_loadreg(rs1[i],tl);
2324 if(s1h>=0) emit_mov(s1h,th);
2325 else emit_loadreg(rs1[i]|64,th);
2326 }
2327 else
2328 if(rs2[i]){
2329 if(s2l>=0) emit_mov(s2l,tl);
2330 else emit_loadreg(rs2[i],tl);
2331 if(s2h>=0) emit_mov(s2h,th);
2332 else emit_loadreg(rs2[i]|64,th);
2333 }
2334 else{
2335 emit_zeroreg(tl);
2336 emit_zeroreg(th);
2337 }
2338 } else
2339 if(opcode2[i]==0x27) { // NOR
2340 if(rs1[i]){
2341 if(s1l>=0) emit_not(s1l,tl);
2342 else{
2343 emit_loadreg(rs1[i],tl);
2344 emit_not(tl,tl);
2345 }
2346 if(s1h>=0) emit_not(s1h,th);
2347 else{
2348 emit_loadreg(rs1[i]|64,th);
2349 emit_not(th,th);
2350 }
2351 }
2352 else
2353 if(rs2[i]){
2354 if(s2l>=0) emit_not(s2l,tl);
2355 else{
2356 emit_loadreg(rs2[i],tl);
2357 emit_not(tl,tl);
2358 }
2359 if(s2h>=0) emit_not(s2h,th);
2360 else{
2361 emit_loadreg(rs2[i]|64,th);
2362 emit_not(th,th);
2363 }
2364 }
2365 else {
2366 emit_movimm(-1,tl);
2367 emit_movimm(-1,th);
2368 }
2369 }
2370 }
2371 }
2372 }
2373 else
2374 {
2375 // 32 bit
2376 if(tl>=0) {
2377 s1l=get_reg(i_regs->regmap,rs1[i]);
2378 s2l=get_reg(i_regs->regmap,rs2[i]);
2379 if(rs1[i]&&rs2[i]) {
2380 assert(s1l>=0);
2381 assert(s2l>=0);
2382 if(opcode2[i]==0x24) { // AND
2383 emit_and(s1l,s2l,tl);
2384 } else
2385 if(opcode2[i]==0x25) { // OR
2386 emit_or(s1l,s2l,tl);
2387 } else
2388 if(opcode2[i]==0x26) { // XOR
2389 emit_xor(s1l,s2l,tl);
2390 } else
2391 if(opcode2[i]==0x27) { // NOR
2392 emit_or(s1l,s2l,tl);
2393 emit_not(tl,tl);
2394 }
2395 }
2396 else
2397 {
2398 if(opcode2[i]==0x24) { // AND
2399 emit_zeroreg(tl);
2400 } else
2401 if(opcode2[i]==0x25||opcode2[i]==0x26) { // OR/XOR
2402 if(rs1[i]){
2403 if(s1l>=0) emit_mov(s1l,tl);
2404 else emit_loadreg(rs1[i],tl); // CHECK: regmap_entry?
2405 }
2406 else
2407 if(rs2[i]){
2408 if(s2l>=0) emit_mov(s2l,tl);
2409 else emit_loadreg(rs2[i],tl); // CHECK: regmap_entry?
2410 }
2411 else emit_zeroreg(tl);
2412 } else
2413 if(opcode2[i]==0x27) { // NOR
2414 if(rs1[i]){
2415 if(s1l>=0) emit_not(s1l,tl);
2416 else {
2417 emit_loadreg(rs1[i],tl);
2418 emit_not(tl,tl);
2419 }
2420 }
2421 else
2422 if(rs2[i]){
2423 if(s2l>=0) emit_not(s2l,tl);
2424 else {
2425 emit_loadreg(rs2[i],tl);
2426 emit_not(tl,tl);
2427 }
2428 }
2429 else emit_movimm(-1,tl);
2430 }
2431 }
2432 }
2433 }
2434 }
2435 }
2436}
2437
2438void imm16_assemble(int i,struct regstat *i_regs)
2439{
2440 if (opcode[i]==0x0f) { // LUI
2441 if(rt1[i]) {
2442 signed char t;
2443 t=get_reg(i_regs->regmap,rt1[i]);
2444 //assert(t>=0);
2445 if(t>=0) {
2446 if(!((i_regs->isconst>>t)&1))
2447 emit_movimm(imm[i]<<16,t);
2448 }
2449 }
2450 }
2451 if(opcode[i]==0x08||opcode[i]==0x09) { // ADDI/ADDIU
2452 if(rt1[i]) {
2453 signed char s,t;
2454 t=get_reg(i_regs->regmap,rt1[i]);
2455 s=get_reg(i_regs->regmap,rs1[i]);
2456 if(rs1[i]) {
2457 //assert(t>=0);
2458 //assert(s>=0);
2459 if(t>=0) {
2460 if(!((i_regs->isconst>>t)&1)) {
2461 if(s<0) {
2462 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2463 emit_addimm(t,imm[i],t);
2464 }else{
2465 if(!((i_regs->wasconst>>s)&1))
2466 emit_addimm(s,imm[i],t);
2467 else
2468 emit_movimm(constmap[i][s]+imm[i],t);
2469 }
2470 }
2471 }
2472 } else {
2473 if(t>=0) {
2474 if(!((i_regs->isconst>>t)&1))
2475 emit_movimm(imm[i],t);
2476 }
2477 }
2478 }
2479 }
2480 if(opcode[i]==0x18||opcode[i]==0x19) { // DADDI/DADDIU
2481 if(rt1[i]) {
2482 signed char sh,sl,th,tl;
2483 th=get_reg(i_regs->regmap,rt1[i]|64);
2484 tl=get_reg(i_regs->regmap,rt1[i]);
2485 sh=get_reg(i_regs->regmap,rs1[i]|64);
2486 sl=get_reg(i_regs->regmap,rs1[i]);
2487 if(tl>=0) {
2488 if(rs1[i]) {
2489 assert(sh>=0);
2490 assert(sl>=0);
2491 if(th>=0) {
2492 emit_addimm64_32(sh,sl,imm[i],th,tl);
2493 }
2494 else {
2495 emit_addimm(sl,imm[i],tl);
2496 }
2497 } else {
2498 emit_movimm(imm[i],tl);
2499 if(th>=0) emit_movimm(((signed int)imm[i])>>31,th);
2500 }
2501 }
2502 }
2503 }
2504 else if(opcode[i]==0x0a||opcode[i]==0x0b) { // SLTI/SLTIU
2505 if(rt1[i]) {
2506 //assert(rs1[i]!=0); // r0 might be valid, but it's probably a bug
2507 signed char sh,sl,t;
2508 t=get_reg(i_regs->regmap,rt1[i]);
2509 sh=get_reg(i_regs->regmap,rs1[i]|64);
2510 sl=get_reg(i_regs->regmap,rs1[i]);
2511 //assert(t>=0);
2512 if(t>=0) {
2513 if(rs1[i]>0) {
2514 if(sh<0) assert((i_regs->was32>>rs1[i])&1);
2515 if(sh<0||((i_regs->was32>>rs1[i])&1)) {
2516 if(opcode[i]==0x0a) { // SLTI
2517 if(sl<0) {
2518 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2519 emit_slti32(t,imm[i],t);
2520 }else{
2521 emit_slti32(sl,imm[i],t);
2522 }
2523 }
2524 else { // SLTIU
2525 if(sl<0) {
2526 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2527 emit_sltiu32(t,imm[i],t);
2528 }else{
2529 emit_sltiu32(sl,imm[i],t);
2530 }
2531 }
2532 }else{ // 64-bit
2533 assert(sl>=0);
2534 if(opcode[i]==0x0a) // SLTI
2535 emit_slti64_32(sh,sl,imm[i],t);
2536 else // SLTIU
2537 emit_sltiu64_32(sh,sl,imm[i],t);
2538 }
2539 }else{
2540 // SLTI(U) with r0 is just stupid,
2541 // nonetheless examples can be found
2542 if(opcode[i]==0x0a) // SLTI
2543 if(0<imm[i]) emit_movimm(1,t);
2544 else emit_zeroreg(t);
2545 else // SLTIU
2546 {
2547 if(imm[i]) emit_movimm(1,t);
2548 else emit_zeroreg(t);
2549 }
2550 }
2551 }
2552 }
2553 }
2554 else if(opcode[i]>=0x0c&&opcode[i]<=0x0e) { // ANDI/ORI/XORI
2555 if(rt1[i]) {
2556 signed char sh,sl,th,tl;
2557 th=get_reg(i_regs->regmap,rt1[i]|64);
2558 tl=get_reg(i_regs->regmap,rt1[i]);
2559 sh=get_reg(i_regs->regmap,rs1[i]|64);
2560 sl=get_reg(i_regs->regmap,rs1[i]);
2561 if(tl>=0 && !((i_regs->isconst>>tl)&1)) {
2562 if(opcode[i]==0x0c) //ANDI
2563 {
2564 if(rs1[i]) {
2565 if(sl<0) {
2566 if(i_regs->regmap_entry[tl]!=rs1[i]) emit_loadreg(rs1[i],tl);
2567 emit_andimm(tl,imm[i],tl);
2568 }else{
2569 if(!((i_regs->wasconst>>sl)&1))
2570 emit_andimm(sl,imm[i],tl);
2571 else
2572 emit_movimm(constmap[i][sl]&imm[i],tl);
2573 }
2574 }
2575 else
2576 emit_zeroreg(tl);
2577 if(th>=0) emit_zeroreg(th);
2578 }
2579 else
2580 {
2581 if(rs1[i]) {
2582 if(sl<0) {
2583 if(i_regs->regmap_entry[tl]!=rs1[i]) emit_loadreg(rs1[i],tl);
2584 }
2585 if(th>=0) {
2586 if(sh<0) {
2587 emit_loadreg(rs1[i]|64,th);
2588 }else{
2589 emit_mov(sh,th);
2590 }
2591 }
2592 if(opcode[i]==0x0d) //ORI
2593 if(sl<0) {
2594 emit_orimm(tl,imm[i],tl);
2595 }else{
2596 if(!((i_regs->wasconst>>sl)&1))
2597 emit_orimm(sl,imm[i],tl);
2598 else
2599 emit_movimm(constmap[i][sl]|imm[i],tl);
2600 }
2601 if(opcode[i]==0x0e) //XORI
2602 if(sl<0) {
2603 emit_xorimm(tl,imm[i],tl);
2604 }else{
2605 if(!((i_regs->wasconst>>sl)&1))
2606 emit_xorimm(sl,imm[i],tl);
2607 else
2608 emit_movimm(constmap[i][sl]^imm[i],tl);
2609 }
2610 }
2611 else {
2612 emit_movimm(imm[i],tl);
2613 if(th>=0) emit_zeroreg(th);
2614 }
2615 }
2616 }
2617 }
2618 }
2619}
2620
2621void shiftimm_assemble(int i,struct regstat *i_regs)
2622{
2623 if(opcode2[i]<=0x3) // SLL/SRL/SRA
2624 {
2625 if(rt1[i]) {
2626 signed char s,t;
2627 t=get_reg(i_regs->regmap,rt1[i]);
2628 s=get_reg(i_regs->regmap,rs1[i]);
2629 //assert(t>=0);
2630 if(t>=0){
2631 if(rs1[i]==0)
2632 {
2633 emit_zeroreg(t);
2634 }
2635 else
2636 {
2637 if(s<0&&i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2638 if(imm[i]) {
2639 if(opcode2[i]==0) // SLL
2640 {
2641 emit_shlimm(s<0?t:s,imm[i],t);
2642 }
2643 if(opcode2[i]==2) // SRL
2644 {
2645 emit_shrimm(s<0?t:s,imm[i],t);
2646 }
2647 if(opcode2[i]==3) // SRA
2648 {
2649 emit_sarimm(s<0?t:s,imm[i],t);
2650 }
2651 }else{
2652 // Shift by zero
2653 if(s>=0 && s!=t) emit_mov(s,t);
2654 }
2655 }
2656 }
2657 //emit_storereg(rt1[i],t); //DEBUG
2658 }
2659 }
2660 if(opcode2[i]>=0x38&&opcode2[i]<=0x3b) // DSLL/DSRL/DSRA
2661 {
2662 if(rt1[i]) {
2663 signed char sh,sl,th,tl;
2664 th=get_reg(i_regs->regmap,rt1[i]|64);
2665 tl=get_reg(i_regs->regmap,rt1[i]);
2666 sh=get_reg(i_regs->regmap,rs1[i]|64);
2667 sl=get_reg(i_regs->regmap,rs1[i]);
2668 if(tl>=0) {
2669 if(rs1[i]==0)
2670 {
2671 emit_zeroreg(tl);
2672 if(th>=0) emit_zeroreg(th);
2673 }
2674 else
2675 {
2676 assert(sl>=0);
2677 assert(sh>=0);
2678 if(imm[i]) {
2679 if(opcode2[i]==0x38) // DSLL
2680 {
2681 if(th>=0) emit_shldimm(sh,sl,imm[i],th);
2682 emit_shlimm(sl,imm[i],tl);
2683 }
2684 if(opcode2[i]==0x3a) // DSRL
2685 {
2686 emit_shrdimm(sl,sh,imm[i],tl);
2687 if(th>=0) emit_shrimm(sh,imm[i],th);
2688 }
2689 if(opcode2[i]==0x3b) // DSRA
2690 {
2691 emit_shrdimm(sl,sh,imm[i],tl);
2692 if(th>=0) emit_sarimm(sh,imm[i],th);
2693 }
2694 }else{
2695 // Shift by zero
2696 if(sl!=tl) emit_mov(sl,tl);
2697 if(th>=0&&sh!=th) emit_mov(sh,th);
2698 }
2699 }
2700 }
2701 }
2702 }
2703 if(opcode2[i]==0x3c) // DSLL32
2704 {
2705 if(rt1[i]) {
2706 signed char sl,tl,th;
2707 tl=get_reg(i_regs->regmap,rt1[i]);
2708 th=get_reg(i_regs->regmap,rt1[i]|64);
2709 sl=get_reg(i_regs->regmap,rs1[i]);
2710 if(th>=0||tl>=0){
2711 assert(tl>=0);
2712 assert(th>=0);
2713 assert(sl>=0);
2714 emit_mov(sl,th);
2715 emit_zeroreg(tl);
2716 if(imm[i]>32)
2717 {
2718 emit_shlimm(th,imm[i]&31,th);
2719 }
2720 }
2721 }
2722 }
2723 if(opcode2[i]==0x3e) // DSRL32
2724 {
2725 if(rt1[i]) {
2726 signed char sh,tl,th;
2727 tl=get_reg(i_regs->regmap,rt1[i]);
2728 th=get_reg(i_regs->regmap,rt1[i]|64);
2729 sh=get_reg(i_regs->regmap,rs1[i]|64);
2730 if(tl>=0){
2731 assert(sh>=0);
2732 emit_mov(sh,tl);
2733 if(th>=0) emit_zeroreg(th);
2734 if(imm[i]>32)
2735 {
2736 emit_shrimm(tl,imm[i]&31,tl);
2737 }
2738 }
2739 }
2740 }
2741 if(opcode2[i]==0x3f) // DSRA32
2742 {
2743 if(rt1[i]) {
2744 signed char sh,tl;
2745 tl=get_reg(i_regs->regmap,rt1[i]);
2746 sh=get_reg(i_regs->regmap,rs1[i]|64);
2747 if(tl>=0){
2748 assert(sh>=0);
2749 emit_mov(sh,tl);
2750 if(imm[i]>32)
2751 {
2752 emit_sarimm(tl,imm[i]&31,tl);
2753 }
2754 }
2755 }
2756 }
2757}
2758
2759#ifndef shift_assemble
2760void shift_assemble(int i,struct regstat *i_regs)
2761{
2762 printf("Need shift_assemble for this architecture.\n");
2763 exit(1);
2764}
2765#endif
2766
2767void load_assemble(int i,struct regstat *i_regs)
2768{
2769 int s,th,tl,addr,map=-1;
2770 int offset;
2771 int jaddr=0;
5bf843dc 2772 int memtarget=0,c=0;
b1570849 2773 int fastload_reg_override=0;
57871462 2774 u_int hr,reglist=0;
2775 th=get_reg(i_regs->regmap,rt1[i]|64);
2776 tl=get_reg(i_regs->regmap,rt1[i]);
2777 s=get_reg(i_regs->regmap,rs1[i]);
2778 offset=imm[i];
2779 for(hr=0;hr<HOST_REGS;hr++) {
2780 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
2781 }
2782 if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
2783 if(s>=0) {
2784 c=(i_regs->wasconst>>s)&1;
af4ee1fe 2785 if (c) {
2786 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
2787 if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
2788 }
57871462 2789 }
57871462 2790 //printf("load_assemble: c=%d\n",c);
2791 //if(c) printf("load_assemble: const=%x\n",(int)constmap[i][s]+offset);
2792 // FIXME: Even if the load is a NOP, we should check for pagefaults...
5bf843dc 2793#ifdef PCSX
f18c0f46 2794 if(tl<0&&(!c||(((u_int)constmap[i][s]+offset)>>16)==0x1f80)
2795 ||rt1[i]==0) {
5bf843dc 2796 // could be FIFO, must perform the read
f18c0f46 2797 // ||dummy read
5bf843dc 2798 assem_debug("(forced read)\n");
2799 tl=get_reg(i_regs->regmap,-1);
2800 assert(tl>=0);
5bf843dc 2801 }
f18c0f46 2802#endif
5bf843dc 2803 if(offset||s<0||c) addr=tl;
2804 else addr=s;
535d208a 2805 //if(tl<0) tl=get_reg(i_regs->regmap,-1);
2806 if(tl>=0) {
2807 //printf("load_assemble: c=%d\n",c);
2808 //if(c) printf("load_assemble: const=%x\n",(int)constmap[i][s]+offset);
2809 assert(tl>=0); // Even if the load is a NOP, we must check for pagefaults and I/O
2810 reglist&=~(1<<tl);
2811 if(th>=0) reglist&=~(1<<th);
2812 if(!using_tlb) {
2813 if(!c) {
2814 #ifdef RAM_OFFSET
2815 map=get_reg(i_regs->regmap,ROREG);
2816 if(map<0) emit_loadreg(ROREG,map=HOST_TEMPREG);
2817 #endif
57871462 2818//#define R29_HACK 1
535d208a 2819 #ifdef R29_HACK
2820 // Strmnnrmn's speed hack
2821 if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
2822 #endif
2823 {
dadf55f2 2824 #ifdef PCSX
2825 if(sp_in_mirror&&rs1[i]==29) {
2826 emit_andimm(addr,~0x00e00000,HOST_TEMPREG);
2827 emit_cmpimm(HOST_TEMPREG,RAM_SIZE);
b1570849 2828 fastload_reg_override=HOST_TEMPREG;
dadf55f2 2829 }
2830 else
2831 #endif
535d208a 2832 emit_cmpimm(addr,RAM_SIZE);
2833 jaddr=(int)out;
2834 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
2835 // Hint to branch predictor that the branch is unlikely to be taken
2836 if(rs1[i]>=28)
2837 emit_jno_unlikely(0);
2838 else
57871462 2839 #endif
535d208a 2840 emit_jno(0);
57871462 2841 }
535d208a 2842 }
2843 }else{ // using tlb
2844 int x=0;
2845 if (opcode[i]==0x20||opcode[i]==0x24) x=3; // LB/LBU
2846 if (opcode[i]==0x21||opcode[i]==0x25) x=2; // LH/LHU
2847 map=get_reg(i_regs->regmap,TLREG);
2848 assert(map>=0);
ea3d2e6e 2849 reglist&=~(1<<map);
535d208a 2850 map=do_tlb_r(addr,tl,map,x,-1,-1,c,constmap[i][s]+offset);
2851 do_tlb_r_branch(map,c,constmap[i][s]+offset,&jaddr);
2852 }
2853 int dummy=(rt1[i]==0)||(tl!=get_reg(i_regs->regmap,rt1[i])); // ignore loads to r0 and unneeded reg
2854 if (opcode[i]==0x20) { // LB
2855 if(!c||memtarget) {
2856 if(!dummy) {
57871462 2857 #ifdef HOST_IMM_ADDR32
2858 if(c)
2859 emit_movsbl_tlb((constmap[i][s]+offset)^3,map,tl);
2860 else
2861 #endif
2862 {
2863 //emit_xorimm(addr,3,tl);
2864 //gen_tlb_addr_r(tl,map);
2865 //emit_movsbl_indexed((int)rdram-0x80000000,tl,tl);
535d208a 2866 int x=0,a=tl;
2002a1db 2867#ifdef BIG_ENDIAN_MIPS
57871462 2868 if(!c) emit_xorimm(addr,3,tl);
2869 else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2002a1db 2870#else
535d208a 2871 if(!c) a=addr;
dadf55f2 2872#endif
b1570849 2873 if(fastload_reg_override) a=fastload_reg_override;
2874
535d208a 2875 emit_movsbl_indexed_tlb(x,a,map,tl);
57871462 2876 }
57871462 2877 }
535d208a 2878 if(jaddr)
2879 add_stub(LOADB_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
57871462 2880 }
535d208a 2881 else
2882 inline_readstub(LOADB_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2883 }
2884 if (opcode[i]==0x21) { // LH
2885 if(!c||memtarget) {
2886 if(!dummy) {
57871462 2887 #ifdef HOST_IMM_ADDR32
2888 if(c)
2889 emit_movswl_tlb((constmap[i][s]+offset)^2,map,tl);
2890 else
2891 #endif
2892 {
535d208a 2893 int x=0,a=tl;
2002a1db 2894#ifdef BIG_ENDIAN_MIPS
57871462 2895 if(!c) emit_xorimm(addr,2,tl);
2896 else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
2002a1db 2897#else
535d208a 2898 if(!c) a=addr;
dadf55f2 2899#endif
b1570849 2900 if(fastload_reg_override) a=fastload_reg_override;
57871462 2901 //#ifdef
2902 //emit_movswl_indexed_tlb(x,tl,map,tl);
2903 //else
2904 if(map>=0) {
535d208a 2905 gen_tlb_addr_r(a,map);
2906 emit_movswl_indexed(x,a,tl);
2907 }else{
2908 #ifdef RAM_OFFSET
2909 emit_movswl_indexed(x,a,tl);
2910 #else
2911 emit_movswl_indexed((int)rdram-0x80000000+x,a,tl);
2912 #endif
2913 }
57871462 2914 }
57871462 2915 }
535d208a 2916 if(jaddr)
2917 add_stub(LOADH_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
57871462 2918 }
535d208a 2919 else
2920 inline_readstub(LOADH_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2921 }
2922 if (opcode[i]==0x23) { // LW
2923 if(!c||memtarget) {
2924 if(!dummy) {
dadf55f2 2925 int a=addr;
b1570849 2926 if(fastload_reg_override) a=fastload_reg_override;
57871462 2927 //emit_readword_indexed((int)rdram-0x80000000,addr,tl);
2928 #ifdef HOST_IMM_ADDR32
2929 if(c)
2930 emit_readword_tlb(constmap[i][s]+offset,map,tl);
2931 else
2932 #endif
dadf55f2 2933 emit_readword_indexed_tlb(0,a,map,tl);
57871462 2934 }
535d208a 2935 if(jaddr)
2936 add_stub(LOADW_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
57871462 2937 }
535d208a 2938 else
2939 inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2940 }
2941 if (opcode[i]==0x24) { // LBU
2942 if(!c||memtarget) {
2943 if(!dummy) {
57871462 2944 #ifdef HOST_IMM_ADDR32
2945 if(c)
2946 emit_movzbl_tlb((constmap[i][s]+offset)^3,map,tl);
2947 else
2948 #endif
2949 {
2950 //emit_xorimm(addr,3,tl);
2951 //gen_tlb_addr_r(tl,map);
2952 //emit_movzbl_indexed((int)rdram-0x80000000,tl,tl);
535d208a 2953 int x=0,a=tl;
2002a1db 2954#ifdef BIG_ENDIAN_MIPS
57871462 2955 if(!c) emit_xorimm(addr,3,tl);
2956 else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2002a1db 2957#else
535d208a 2958 if(!c) a=addr;
dadf55f2 2959#endif
b1570849 2960 if(fastload_reg_override) a=fastload_reg_override;
2961
535d208a 2962 emit_movzbl_indexed_tlb(x,a,map,tl);
57871462 2963 }
57871462 2964 }
535d208a 2965 if(jaddr)
2966 add_stub(LOADBU_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
57871462 2967 }
535d208a 2968 else
2969 inline_readstub(LOADBU_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2970 }
2971 if (opcode[i]==0x25) { // LHU
2972 if(!c||memtarget) {
2973 if(!dummy) {
57871462 2974 #ifdef HOST_IMM_ADDR32
2975 if(c)
2976 emit_movzwl_tlb((constmap[i][s]+offset)^2,map,tl);
2977 else
2978 #endif
2979 {
535d208a 2980 int x=0,a=tl;
2002a1db 2981#ifdef BIG_ENDIAN_MIPS
57871462 2982 if(!c) emit_xorimm(addr,2,tl);
2983 else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
2002a1db 2984#else
535d208a 2985 if(!c) a=addr;
dadf55f2 2986#endif
b1570849 2987 if(fastload_reg_override) a=fastload_reg_override;
57871462 2988 //#ifdef
2989 //emit_movzwl_indexed_tlb(x,tl,map,tl);
2990 //#else
2991 if(map>=0) {
535d208a 2992 gen_tlb_addr_r(a,map);
2993 emit_movzwl_indexed(x,a,tl);
2994 }else{
2995 #ifdef RAM_OFFSET
2996 emit_movzwl_indexed(x,a,tl);
2997 #else
2998 emit_movzwl_indexed((int)rdram-0x80000000+x,a,tl);
2999 #endif
3000 }
57871462 3001 }
3002 }
535d208a 3003 if(jaddr)
3004 add_stub(LOADHU_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
57871462 3005 }
535d208a 3006 else
3007 inline_readstub(LOADHU_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
3008 }
3009 if (opcode[i]==0x27) { // LWU
3010 assert(th>=0);
3011 if(!c||memtarget) {
3012 if(!dummy) {
dadf55f2 3013 int a=addr;
b1570849 3014 if(fastload_reg_override) a=fastload_reg_override;
57871462 3015 //emit_readword_indexed((int)rdram-0x80000000,addr,tl);
3016 #ifdef HOST_IMM_ADDR32
3017 if(c)
3018 emit_readword_tlb(constmap[i][s]+offset,map,tl);
3019 else
3020 #endif
dadf55f2 3021 emit_readword_indexed_tlb(0,a,map,tl);
57871462 3022 }
535d208a 3023 if(jaddr)
3024 add_stub(LOADW_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3025 }
3026 else {
3027 inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
57871462 3028 }
535d208a 3029 emit_zeroreg(th);
3030 }
3031 if (opcode[i]==0x37) { // LD
3032 if(!c||memtarget) {
3033 if(!dummy) {
dadf55f2 3034 int a=addr;
b1570849 3035 if(fastload_reg_override) a=fastload_reg_override;
57871462 3036 //gen_tlb_addr_r(tl,map);
3037 //if(th>=0) emit_readword_indexed((int)rdram-0x80000000,addr,th);
3038 //emit_readword_indexed((int)rdram-0x7FFFFFFC,addr,tl);
3039 #ifdef HOST_IMM_ADDR32
3040 if(c)
3041 emit_readdword_tlb(constmap[i][s]+offset,map,th,tl);
3042 else
3043 #endif
dadf55f2 3044 emit_readdword_indexed_tlb(0,a,map,th,tl);
57871462 3045 }
535d208a 3046 if(jaddr)
3047 add_stub(LOADD_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
57871462 3048 }
535d208a 3049 else
3050 inline_readstub(LOADD_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
57871462 3051 }
535d208a 3052 }
3053 //emit_storereg(rt1[i],tl); // DEBUG
57871462 3054 //if(opcode[i]==0x23)
3055 //if(opcode[i]==0x24)
3056 //if(opcode[i]==0x23||opcode[i]==0x24)
3057 /*if(opcode[i]==0x21||opcode[i]==0x23||opcode[i]==0x24)
3058 {
3059 //emit_pusha();
3060 save_regs(0x100f);
3061 emit_readword((int)&last_count,ECX);
3062 #ifdef __i386__
3063 if(get_reg(i_regs->regmap,CCREG)<0)
3064 emit_loadreg(CCREG,HOST_CCREG);
3065 emit_add(HOST_CCREG,ECX,HOST_CCREG);
3066 emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3067 emit_writeword(HOST_CCREG,(int)&Count);
3068 #endif
3069 #ifdef __arm__
3070 if(get_reg(i_regs->regmap,CCREG)<0)
3071 emit_loadreg(CCREG,0);
3072 else
3073 emit_mov(HOST_CCREG,0);
3074 emit_add(0,ECX,0);
3075 emit_addimm(0,2*ccadj[i],0);
3076 emit_writeword(0,(int)&Count);
3077 #endif
3078 emit_call((int)memdebug);
3079 //emit_popa();
3080 restore_regs(0x100f);
3081 }/**/
3082}
3083
3084#ifndef loadlr_assemble
3085void loadlr_assemble(int i,struct regstat *i_regs)
3086{
3087 printf("Need loadlr_assemble for this architecture.\n");
3088 exit(1);
3089}
3090#endif
3091
3092void store_assemble(int i,struct regstat *i_regs)
3093{
3094 int s,th,tl,map=-1;
3095 int addr,temp;
3096 int offset;
3097 int jaddr=0,jaddr2,type;
666a299d 3098 int memtarget=0,c=0;
57871462 3099 int agr=AGEN1+(i&1);
b1570849 3100 int faststore_reg_override=0;
57871462 3101 u_int hr,reglist=0;
3102 th=get_reg(i_regs->regmap,rs2[i]|64);
3103 tl=get_reg(i_regs->regmap,rs2[i]);
3104 s=get_reg(i_regs->regmap,rs1[i]);
3105 temp=get_reg(i_regs->regmap,agr);
3106 if(temp<0) temp=get_reg(i_regs->regmap,-1);
3107 offset=imm[i];
3108 if(s>=0) {
3109 c=(i_regs->wasconst>>s)&1;
af4ee1fe 3110 if(c) {
3111 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
3112 if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
3113 }
57871462 3114 }
3115 assert(tl>=0);
3116 assert(temp>=0);
3117 for(hr=0;hr<HOST_REGS;hr++) {
3118 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3119 }
3120 if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
3121 if(offset||s<0||c) addr=temp;
3122 else addr=s;
3123 if(!using_tlb) {
3124 if(!c) {
dadf55f2 3125 #ifdef PCSX
3126 if(sp_in_mirror&&rs1[i]==29) {
3127 emit_andimm(addr,~0x00e00000,HOST_TEMPREG);
3128 emit_cmpimm(HOST_TEMPREG,RAM_SIZE);
b1570849 3129 faststore_reg_override=HOST_TEMPREG;
dadf55f2 3130 }
3131 else
3132 #endif
57871462 3133 #ifdef R29_HACK
3134 // Strmnnrmn's speed hack
4cb76aa4 3135 if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
57871462 3136 #endif
4cb76aa4 3137 emit_cmpimm(addr,RAM_SIZE);
57871462 3138 #ifdef DESTRUCTIVE_SHIFT
3139 if(s==addr) emit_mov(s,temp);
3140 #endif
3141 #ifdef R29_HACK
dadf55f2 3142 memtarget=1;
4cb76aa4 3143 if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
57871462 3144 #endif
3145 {
3146 jaddr=(int)out;
3147 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
3148 // Hint to branch predictor that the branch is unlikely to be taken
3149 if(rs1[i]>=28)
3150 emit_jno_unlikely(0);
3151 else
3152 #endif
3153 emit_jno(0);
3154 }
3155 }
3156 }else{ // using tlb
3157 int x=0;
3158 if (opcode[i]==0x28) x=3; // SB
3159 if (opcode[i]==0x29) x=2; // SH
3160 map=get_reg(i_regs->regmap,TLREG);
3161 assert(map>=0);
ea3d2e6e 3162 reglist&=~(1<<map);
57871462 3163 map=do_tlb_w(addr,temp,map,x,c,constmap[i][s]+offset);
3164 do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr);
3165 }
3166
3167 if (opcode[i]==0x28) { // SB
3168 if(!c||memtarget) {
97a238a6 3169 int x=0,a=temp;
2002a1db 3170#ifdef BIG_ENDIAN_MIPS
57871462 3171 if(!c) emit_xorimm(addr,3,temp);
3172 else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2002a1db 3173#else
97a238a6 3174 if(!c) a=addr;
dadf55f2 3175#endif
b1570849 3176 if(faststore_reg_override) a=faststore_reg_override;
57871462 3177 //gen_tlb_addr_w(temp,map);
3178 //emit_writebyte_indexed(tl,(int)rdram-0x80000000,temp);
97a238a6 3179 emit_writebyte_indexed_tlb(tl,x,a,map,a);
57871462 3180 }
3181 type=STOREB_STUB;
3182 }
3183 if (opcode[i]==0x29) { // SH
3184 if(!c||memtarget) {
97a238a6 3185 int x=0,a=temp;
2002a1db 3186#ifdef BIG_ENDIAN_MIPS
57871462 3187 if(!c) emit_xorimm(addr,2,temp);
3188 else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
2002a1db 3189#else
97a238a6 3190 if(!c) a=addr;
dadf55f2 3191#endif
b1570849 3192 if(faststore_reg_override) a=faststore_reg_override;
57871462 3193 //#ifdef
3194 //emit_writehword_indexed_tlb(tl,x,temp,map,temp);
3195 //#else
3196 if(map>=0) {
97a238a6 3197 gen_tlb_addr_w(a,map);
3198 emit_writehword_indexed(tl,x,a);
57871462 3199 }else
97a238a6 3200 emit_writehword_indexed(tl,(int)rdram-0x80000000+x,a);
57871462 3201 }
3202 type=STOREH_STUB;
3203 }
3204 if (opcode[i]==0x2B) { // SW
dadf55f2 3205 if(!c||memtarget) {
3206 int a=addr;
b1570849 3207 if(faststore_reg_override) a=faststore_reg_override;
57871462 3208 //emit_writeword_indexed(tl,(int)rdram-0x80000000,addr);
dadf55f2 3209 emit_writeword_indexed_tlb(tl,0,a,map,temp);
3210 }
57871462 3211 type=STOREW_STUB;
3212 }
3213 if (opcode[i]==0x3F) { // SD
3214 if(!c||memtarget) {
dadf55f2 3215 int a=addr;
b1570849 3216 if(faststore_reg_override) a=faststore_reg_override;
57871462 3217 if(rs2[i]) {
3218 assert(th>=0);
3219 //emit_writeword_indexed(th,(int)rdram-0x80000000,addr);
3220 //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,addr);
dadf55f2 3221 emit_writedword_indexed_tlb(th,tl,0,a,map,temp);
57871462 3222 }else{
3223 // Store zero
3224 //emit_writeword_indexed(tl,(int)rdram-0x80000000,temp);
3225 //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,temp);
dadf55f2 3226 emit_writedword_indexed_tlb(tl,tl,0,a,map,temp);
57871462 3227 }
3228 }
3229 type=STORED_STUB;
3230 }
57871462 3231 if(!using_tlb) {
3232 if(!c||memtarget) {
3233 #ifdef DESTRUCTIVE_SHIFT
3234 // The x86 shift operation is 'destructive'; it overwrites the
3235 // source register, so we need to make a copy first and use that.
3236 addr=temp;
3237 #endif
3238 #if defined(HOST_IMM8)
3239 int ir=get_reg(i_regs->regmap,INVCP);
3240 assert(ir>=0);
3241 emit_cmpmem_indexedsr12_reg(ir,addr,1);
3242 #else
3243 emit_cmpmem_indexedsr12_imm((int)invalid_code,addr,1);
3244 #endif
0bbd1454 3245 #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3246 emit_callne(invalidate_addr_reg[addr]);
3247 #else
57871462 3248 jaddr2=(int)out;
3249 emit_jne(0);
3250 add_stub(INVCODE_STUB,jaddr2,(int)out,reglist|(1<<HOST_CCREG),addr,0,0,0);
0bbd1454 3251 #endif
57871462 3252 }
3253 }
3eaa7048 3254 if(jaddr) {
3255 add_stub(type,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3256 } else if(c&&!memtarget) {
3257 inline_writestub(type,i,constmap[i][s]+offset,i_regs->regmap,rs2[i],ccadj[i],reglist);
3258 }
57871462 3259 //if(opcode[i]==0x2B || opcode[i]==0x3F)
3260 //if(opcode[i]==0x2B || opcode[i]==0x28)
3261 //if(opcode[i]==0x2B || opcode[i]==0x29)
3262 //if(opcode[i]==0x2B)
3263 /*if(opcode[i]==0x2B || opcode[i]==0x28 || opcode[i]==0x29 || opcode[i]==0x3F)
3264 {
28d74ee8 3265 #ifdef __i386__
3266 emit_pusha();
3267 #endif
3268 #ifdef __arm__
57871462 3269 save_regs(0x100f);
28d74ee8 3270 #endif
57871462 3271 emit_readword((int)&last_count,ECX);
3272 #ifdef __i386__
3273 if(get_reg(i_regs->regmap,CCREG)<0)
3274 emit_loadreg(CCREG,HOST_CCREG);
3275 emit_add(HOST_CCREG,ECX,HOST_CCREG);
3276 emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3277 emit_writeword(HOST_CCREG,(int)&Count);
3278 #endif
3279 #ifdef __arm__
3280 if(get_reg(i_regs->regmap,CCREG)<0)
3281 emit_loadreg(CCREG,0);
3282 else
3283 emit_mov(HOST_CCREG,0);
3284 emit_add(0,ECX,0);
3285 emit_addimm(0,2*ccadj[i],0);
3286 emit_writeword(0,(int)&Count);
3287 #endif
3288 emit_call((int)memdebug);
28d74ee8 3289 #ifdef __i386__
3290 emit_popa();
3291 #endif
3292 #ifdef __arm__
57871462 3293 restore_regs(0x100f);
28d74ee8 3294 #endif
57871462 3295 }/**/
3296}
3297
3298void storelr_assemble(int i,struct regstat *i_regs)
3299{
3300 int s,th,tl;
3301 int temp;
3302 int temp2;
3303 int offset;
3304 int jaddr=0,jaddr2;
3305 int case1,case2,case3;
3306 int done0,done1,done2;
af4ee1fe 3307 int memtarget=0,c=0;
fab5d06d 3308 int agr=AGEN1+(i&1);
57871462 3309 u_int hr,reglist=0;
3310 th=get_reg(i_regs->regmap,rs2[i]|64);
3311 tl=get_reg(i_regs->regmap,rs2[i]);
3312 s=get_reg(i_regs->regmap,rs1[i]);
fab5d06d 3313 temp=get_reg(i_regs->regmap,agr);
3314 if(temp<0) temp=get_reg(i_regs->regmap,-1);
57871462 3315 offset=imm[i];
3316 if(s>=0) {
3317 c=(i_regs->isconst>>s)&1;
af4ee1fe 3318 if(c) {
3319 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
3320 if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
3321 }
57871462 3322 }
3323 assert(tl>=0);
3324 for(hr=0;hr<HOST_REGS;hr++) {
3325 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3326 }
535d208a 3327 assert(temp>=0);
3328 if(!using_tlb) {
3329 if(!c) {
3330 emit_cmpimm(s<0||offset?temp:s,RAM_SIZE);
3331 if(!offset&&s!=temp) emit_mov(s,temp);
3332 jaddr=(int)out;
3333 emit_jno(0);
3334 }
3335 else
3336 {
3337 if(!memtarget||!rs1[i]) {
57871462 3338 jaddr=(int)out;
3339 emit_jmp(0);
3340 }
57871462 3341 }
535d208a 3342 #ifdef RAM_OFFSET
3343 int map=get_reg(i_regs->regmap,ROREG);
3344 if(map<0) emit_loadreg(ROREG,map=HOST_TEMPREG);
3345 gen_tlb_addr_w(temp,map);
3346 #else
3347 if((u_int)rdram!=0x80000000)
3348 emit_addimm_no_flags((u_int)rdram-(u_int)0x80000000,temp);
3349 #endif
3350 }else{ // using tlb
3351 int map=get_reg(i_regs->regmap,TLREG);
3352 assert(map>=0);
ea3d2e6e 3353 reglist&=~(1<<map);
535d208a 3354 map=do_tlb_w(c||s<0||offset?temp:s,temp,map,0,c,constmap[i][s]+offset);
3355 if(!c&&!offset&&s>=0) emit_mov(s,temp);
3356 do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr);
3357 if(!jaddr&&!memtarget) {
3358 jaddr=(int)out;
3359 emit_jmp(0);
57871462 3360 }
535d208a 3361 gen_tlb_addr_w(temp,map);
3362 }
3363
3364 if (opcode[i]==0x2C||opcode[i]==0x2D) { // SDL/SDR
3365 temp2=get_reg(i_regs->regmap,FTEMP);
3366 if(!rs2[i]) temp2=th=tl;
3367 }
57871462 3368
2002a1db 3369#ifndef BIG_ENDIAN_MIPS
3370 emit_xorimm(temp,3,temp);
3371#endif
535d208a 3372 emit_testimm(temp,2);
3373 case2=(int)out;
3374 emit_jne(0);
3375 emit_testimm(temp,1);
3376 case1=(int)out;
3377 emit_jne(0);
3378 // 0
3379 if (opcode[i]==0x2A) { // SWL
3380 emit_writeword_indexed(tl,0,temp);
3381 }
3382 if (opcode[i]==0x2E) { // SWR
3383 emit_writebyte_indexed(tl,3,temp);
3384 }
3385 if (opcode[i]==0x2C) { // SDL
3386 emit_writeword_indexed(th,0,temp);
3387 if(rs2[i]) emit_mov(tl,temp2);
3388 }
3389 if (opcode[i]==0x2D) { // SDR
3390 emit_writebyte_indexed(tl,3,temp);
3391 if(rs2[i]) emit_shldimm(th,tl,24,temp2);
3392 }
3393 done0=(int)out;
3394 emit_jmp(0);
3395 // 1
3396 set_jump_target(case1,(int)out);
3397 if (opcode[i]==0x2A) { // SWL
3398 // Write 3 msb into three least significant bytes
3399 if(rs2[i]) emit_rorimm(tl,8,tl);
3400 emit_writehword_indexed(tl,-1,temp);
3401 if(rs2[i]) emit_rorimm(tl,16,tl);
3402 emit_writebyte_indexed(tl,1,temp);
3403 if(rs2[i]) emit_rorimm(tl,8,tl);
3404 }
3405 if (opcode[i]==0x2E) { // SWR
3406 // Write two lsb into two most significant bytes
3407 emit_writehword_indexed(tl,1,temp);
3408 }
3409 if (opcode[i]==0x2C) { // SDL
3410 if(rs2[i]) emit_shrdimm(tl,th,8,temp2);
3411 // Write 3 msb into three least significant bytes
3412 if(rs2[i]) emit_rorimm(th,8,th);
3413 emit_writehword_indexed(th,-1,temp);
3414 if(rs2[i]) emit_rorimm(th,16,th);
3415 emit_writebyte_indexed(th,1,temp);
3416 if(rs2[i]) emit_rorimm(th,8,th);
3417 }
3418 if (opcode[i]==0x2D) { // SDR
3419 if(rs2[i]) emit_shldimm(th,tl,16,temp2);
3420 // Write two lsb into two most significant bytes
3421 emit_writehword_indexed(tl,1,temp);
3422 }
3423 done1=(int)out;
3424 emit_jmp(0);
3425 // 2
3426 set_jump_target(case2,(int)out);
3427 emit_testimm(temp,1);
3428 case3=(int)out;
3429 emit_jne(0);
3430 if (opcode[i]==0x2A) { // SWL
3431 // Write two msb into two least significant bytes
3432 if(rs2[i]) emit_rorimm(tl,16,tl);
3433 emit_writehword_indexed(tl,-2,temp);
3434 if(rs2[i]) emit_rorimm(tl,16,tl);
3435 }
3436 if (opcode[i]==0x2E) { // SWR
3437 // Write 3 lsb into three most significant bytes
3438 emit_writebyte_indexed(tl,-1,temp);
3439 if(rs2[i]) emit_rorimm(tl,8,tl);
3440 emit_writehword_indexed(tl,0,temp);
3441 if(rs2[i]) emit_rorimm(tl,24,tl);
3442 }
3443 if (opcode[i]==0x2C) { // SDL
3444 if(rs2[i]) emit_shrdimm(tl,th,16,temp2);
3445 // Write two msb into two least significant bytes
3446 if(rs2[i]) emit_rorimm(th,16,th);
3447 emit_writehword_indexed(th,-2,temp);
3448 if(rs2[i]) emit_rorimm(th,16,th);
3449 }
3450 if (opcode[i]==0x2D) { // SDR
3451 if(rs2[i]) emit_shldimm(th,tl,8,temp2);
3452 // Write 3 lsb into three most significant bytes
3453 emit_writebyte_indexed(tl,-1,temp);
3454 if(rs2[i]) emit_rorimm(tl,8,tl);
3455 emit_writehword_indexed(tl,0,temp);
3456 if(rs2[i]) emit_rorimm(tl,24,tl);
3457 }
3458 done2=(int)out;
3459 emit_jmp(0);
3460 // 3
3461 set_jump_target(case3,(int)out);
3462 if (opcode[i]==0x2A) { // SWL
3463 // Write msb into least significant byte
3464 if(rs2[i]) emit_rorimm(tl,24,tl);
3465 emit_writebyte_indexed(tl,-3,temp);
3466 if(rs2[i]) emit_rorimm(tl,8,tl);
3467 }
3468 if (opcode[i]==0x2E) { // SWR
3469 // Write entire word
3470 emit_writeword_indexed(tl,-3,temp);
3471 }
3472 if (opcode[i]==0x2C) { // SDL
3473 if(rs2[i]) emit_shrdimm(tl,th,24,temp2);
3474 // Write msb into least significant byte
3475 if(rs2[i]) emit_rorimm(th,24,th);
3476 emit_writebyte_indexed(th,-3,temp);
3477 if(rs2[i]) emit_rorimm(th,8,th);
3478 }
3479 if (opcode[i]==0x2D) { // SDR
3480 if(rs2[i]) emit_mov(th,temp2);
3481 // Write entire word
3482 emit_writeword_indexed(tl,-3,temp);
3483 }
3484 set_jump_target(done0,(int)out);
3485 set_jump_target(done1,(int)out);
3486 set_jump_target(done2,(int)out);
3487 if (opcode[i]==0x2C) { // SDL
3488 emit_testimm(temp,4);
57871462 3489 done0=(int)out;
57871462 3490 emit_jne(0);
535d208a 3491 emit_andimm(temp,~3,temp);
3492 emit_writeword_indexed(temp2,4,temp);
3493 set_jump_target(done0,(int)out);
3494 }
3495 if (opcode[i]==0x2D) { // SDR
3496 emit_testimm(temp,4);
3497 done0=(int)out;
3498 emit_jeq(0);
3499 emit_andimm(temp,~3,temp);
3500 emit_writeword_indexed(temp2,-4,temp);
57871462 3501 set_jump_target(done0,(int)out);
57871462 3502 }
535d208a 3503 if(!c||!memtarget)
3504 add_stub(STORELR_STUB,jaddr,(int)out,i,(int)i_regs,temp,ccadj[i],reglist);
57871462 3505 if(!using_tlb) {
535d208a 3506 #ifdef RAM_OFFSET
3507 int map=get_reg(i_regs->regmap,ROREG);
3508 if(map<0) map=HOST_TEMPREG;
3509 gen_orig_addr_w(temp,map);
3510 #else
57871462 3511 emit_addimm_no_flags((u_int)0x80000000-(u_int)rdram,temp);
535d208a 3512 #endif
57871462 3513 #if defined(HOST_IMM8)
3514 int ir=get_reg(i_regs->regmap,INVCP);
3515 assert(ir>=0);
3516 emit_cmpmem_indexedsr12_reg(ir,temp,1);
3517 #else
3518 emit_cmpmem_indexedsr12_imm((int)invalid_code,temp,1);
3519 #endif
535d208a 3520 #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3521 emit_callne(invalidate_addr_reg[temp]);
3522 #else
57871462 3523 jaddr2=(int)out;
3524 emit_jne(0);
3525 add_stub(INVCODE_STUB,jaddr2,(int)out,reglist|(1<<HOST_CCREG),temp,0,0,0);
535d208a 3526 #endif
57871462 3527 }
3528 /*
3529 emit_pusha();
3530 //save_regs(0x100f);
3531 emit_readword((int)&last_count,ECX);
3532 if(get_reg(i_regs->regmap,CCREG)<0)
3533 emit_loadreg(CCREG,HOST_CCREG);
3534 emit_add(HOST_CCREG,ECX,HOST_CCREG);
3535 emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3536 emit_writeword(HOST_CCREG,(int)&Count);
3537 emit_call((int)memdebug);
3538 emit_popa();
3539 //restore_regs(0x100f);
3540 /**/
3541}
3542
3543void c1ls_assemble(int i,struct regstat *i_regs)
3544{
3d624f89 3545#ifndef DISABLE_COP1
57871462 3546 int s,th,tl;
3547 int temp,ar;
3548 int map=-1;
3549 int offset;
3550 int c=0;
3551 int jaddr,jaddr2=0,jaddr3,type;
3552 int agr=AGEN1+(i&1);
3553 u_int hr,reglist=0;
3554 th=get_reg(i_regs->regmap,FTEMP|64);
3555 tl=get_reg(i_regs->regmap,FTEMP);
3556 s=get_reg(i_regs->regmap,rs1[i]);
3557 temp=get_reg(i_regs->regmap,agr);
3558 if(temp<0) temp=get_reg(i_regs->regmap,-1);
3559 offset=imm[i];
3560 assert(tl>=0);
3561 assert(rs1[i]>0);
3562 assert(temp>=0);
3563 for(hr=0;hr<HOST_REGS;hr++) {
3564 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3565 }
3566 if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
3567 if (opcode[i]==0x31||opcode[i]==0x35) // LWC1/LDC1
3568 {
3569 // Loads use a temporary register which we need to save
3570 reglist|=1<<temp;
3571 }
3572 if (opcode[i]==0x39||opcode[i]==0x3D) // SWC1/SDC1
3573 ar=temp;
3574 else // LWC1/LDC1
3575 ar=tl;
3576 //if(s<0) emit_loadreg(rs1[i],ar); //address_generation does this now
3577 //else c=(i_regs->wasconst>>s)&1;
3578 if(s>=0) c=(i_regs->wasconst>>s)&1;
3579 // Check cop1 unusable
3580 if(!cop1_usable) {
3581 signed char rs=get_reg(i_regs->regmap,CSREG);
3582 assert(rs>=0);
3583 emit_testimm(rs,0x20000000);
3584 jaddr=(int)out;
3585 emit_jeq(0);
3586 add_stub(FP_STUB,jaddr,(int)out,i,rs,(int)i_regs,is_delayslot,0);
3587 cop1_usable=1;
3588 }
3589 if (opcode[i]==0x39) { // SWC1 (get float address)
3590 emit_readword((int)&reg_cop1_simple[(source[i]>>16)&0x1f],tl);
3591 }
3592 if (opcode[i]==0x3D) { // SDC1 (get double address)
3593 emit_readword((int)&reg_cop1_double[(source[i]>>16)&0x1f],tl);
3594 }
3595 // Generate address + offset
3596 if(!using_tlb) {
3597 if(!c)
4cb76aa4 3598 emit_cmpimm(offset||c||s<0?ar:s,RAM_SIZE);
57871462 3599 }
3600 else
3601 {
3602 map=get_reg(i_regs->regmap,TLREG);
3603 assert(map>=0);
ea3d2e6e 3604 reglist&=~(1<<map);
57871462 3605 if (opcode[i]==0x31||opcode[i]==0x35) { // LWC1/LDC1
3606 map=do_tlb_r(offset||c||s<0?ar:s,ar,map,0,-1,-1,c,constmap[i][s]+offset);
3607 }
3608 if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3609 map=do_tlb_w(offset||c||s<0?ar:s,ar,map,0,c,constmap[i][s]+offset);
3610 }
3611 }
3612 if (opcode[i]==0x39) { // SWC1 (read float)
3613 emit_readword_indexed(0,tl,tl);
3614 }
3615 if (opcode[i]==0x3D) { // SDC1 (read double)
3616 emit_readword_indexed(4,tl,th);
3617 emit_readword_indexed(0,tl,tl);
3618 }
3619 if (opcode[i]==0x31) { // LWC1 (get target address)
3620 emit_readword((int)&reg_cop1_simple[(source[i]>>16)&0x1f],temp);
3621 }
3622 if (opcode[i]==0x35) { // LDC1 (get target address)
3623 emit_readword((int)&reg_cop1_double[(source[i]>>16)&0x1f],temp);
3624 }
3625 if(!using_tlb) {
3626 if(!c) {
3627 jaddr2=(int)out;
3628 emit_jno(0);
3629 }
4cb76aa4 3630 else if(((signed int)(constmap[i][s]+offset))>=(signed int)0x80000000+RAM_SIZE) {
57871462 3631 jaddr2=(int)out;
3632 emit_jmp(0); // inline_readstub/inline_writestub? Very rare case
3633 }
3634 #ifdef DESTRUCTIVE_SHIFT
3635 if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3636 if(!offset&&!c&&s>=0) emit_mov(s,ar);
3637 }
3638 #endif
3639 }else{
3640 if (opcode[i]==0x31||opcode[i]==0x35) { // LWC1/LDC1
3641 do_tlb_r_branch(map,c,constmap[i][s]+offset,&jaddr2);
3642 }
3643 if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3644 do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr2);
3645 }
3646 }
3647 if (opcode[i]==0x31) { // LWC1
3648 //if(s>=0&&!c&&!offset) emit_mov(s,tl);
3649 //gen_tlb_addr_r(ar,map);
3650 //emit_readword_indexed((int)rdram-0x80000000,tl,tl);
3651 #ifdef HOST_IMM_ADDR32
3652 if(c) emit_readword_tlb(constmap[i][s]+offset,map,tl);
3653 else
3654 #endif
3655 emit_readword_indexed_tlb(0,offset||c||s<0?tl:s,map,tl);
3656 type=LOADW_STUB;
3657 }
3658 if (opcode[i]==0x35) { // LDC1
3659 assert(th>=0);
3660 //if(s>=0&&!c&&!offset) emit_mov(s,tl);
3661 //gen_tlb_addr_r(ar,map);
3662 //emit_readword_indexed((int)rdram-0x80000000,tl,th);
3663 //emit_readword_indexed((int)rdram-0x7FFFFFFC,tl,tl);
3664 #ifdef HOST_IMM_ADDR32
3665 if(c) emit_readdword_tlb(constmap[i][s]+offset,map,th,tl);
3666 else
3667 #endif
3668 emit_readdword_indexed_tlb(0,offset||c||s<0?tl:s,map,th,tl);
3669 type=LOADD_STUB;
3670 }
3671 if (opcode[i]==0x39) { // SWC1
3672 //emit_writeword_indexed(tl,(int)rdram-0x80000000,temp);
3673 emit_writeword_indexed_tlb(tl,0,offset||c||s<0?temp:s,map,temp);
3674 type=STOREW_STUB;
3675 }
3676 if (opcode[i]==0x3D) { // SDC1
3677 assert(th>=0);
3678 //emit_writeword_indexed(th,(int)rdram-0x80000000,temp);
3679 //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,temp);
3680 emit_writedword_indexed_tlb(th,tl,0,offset||c||s<0?temp:s,map,temp);
3681 type=STORED_STUB;
3682 }
3683 if(!using_tlb) {
3684 if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3685 #ifndef DESTRUCTIVE_SHIFT
3686 temp=offset||c||s<0?ar:s;
3687 #endif
3688 #if defined(HOST_IMM8)
3689 int ir=get_reg(i_regs->regmap,INVCP);
3690 assert(ir>=0);
3691 emit_cmpmem_indexedsr12_reg(ir,temp,1);
3692 #else
3693 emit_cmpmem_indexedsr12_imm((int)invalid_code,temp,1);
3694 #endif
0bbd1454 3695 #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3696 emit_callne(invalidate_addr_reg[temp]);
3697 #else
57871462 3698 jaddr3=(int)out;
3699 emit_jne(0);
3700 add_stub(INVCODE_STUB,jaddr3,(int)out,reglist|(1<<HOST_CCREG),temp,0,0,0);
0bbd1454 3701 #endif
57871462 3702 }
3703 }
3704 if(jaddr2) add_stub(type,jaddr2,(int)out,i,offset||c||s<0?ar:s,(int)i_regs,ccadj[i],reglist);
3705 if (opcode[i]==0x31) { // LWC1 (write float)
3706 emit_writeword_indexed(tl,0,temp);
3707 }
3708 if (opcode[i]==0x35) { // LDC1 (write double)
3709 emit_writeword_indexed(th,4,temp);
3710 emit_writeword_indexed(tl,0,temp);
3711 }
3712 //if(opcode[i]==0x39)
3713 /*if(opcode[i]==0x39||opcode[i]==0x31)
3714 {
3715 emit_pusha();
3716 emit_readword((int)&last_count,ECX);
3717 if(get_reg(i_regs->regmap,CCREG)<0)
3718 emit_loadreg(CCREG,HOST_CCREG);
3719 emit_add(HOST_CCREG,ECX,HOST_CCREG);
3720 emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3721 emit_writeword(HOST_CCREG,(int)&Count);
3722 emit_call((int)memdebug);
3723 emit_popa();
3724 }/**/
3d624f89 3725#else
3726 cop1_unusable(i, i_regs);
3727#endif
57871462 3728}
3729
b9b61529 3730void c2ls_assemble(int i,struct regstat *i_regs)
3731{
3732 int s,tl;
3733 int ar;
3734 int offset;
1fd1aceb 3735 int memtarget=0,c=0;
c2e3bd42 3736 int jaddr2=0,jaddr3,type;
b9b61529 3737 int agr=AGEN1+(i&1);
3738 u_int hr,reglist=0;
3739 u_int copr=(source[i]>>16)&0x1f;
3740 s=get_reg(i_regs->regmap,rs1[i]);
3741 tl=get_reg(i_regs->regmap,FTEMP);
3742 offset=imm[i];
3743 assert(rs1[i]>0);
3744 assert(tl>=0);
3745 assert(!using_tlb);
3746
3747 for(hr=0;hr<HOST_REGS;hr++) {
3748 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3749 }
3750 if(i_regs->regmap[HOST_CCREG]==CCREG)
3751 reglist&=~(1<<HOST_CCREG);
3752
3753 // get the address
3754 if (opcode[i]==0x3a) { // SWC2
3755 ar=get_reg(i_regs->regmap,agr);
3756 if(ar<0) ar=get_reg(i_regs->regmap,-1);
3757 reglist|=1<<ar;
3758 } else { // LWC2
3759 ar=tl;
3760 }
1fd1aceb 3761 if(s>=0) c=(i_regs->wasconst>>s)&1;
3762 memtarget=c&&(((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE);
b9b61529 3763 if (!offset&&!c&&s>=0) ar=s;
3764 assert(ar>=0);
3765
3766 if (opcode[i]==0x3a) { // SWC2
3767 cop2_get_dreg(copr,tl,HOST_TEMPREG);
1fd1aceb 3768 type=STOREW_STUB;
b9b61529 3769 }
1fd1aceb 3770 else
b9b61529 3771 type=LOADW_STUB;
1fd1aceb 3772
3773 if(c&&!memtarget) {
3774 jaddr2=(int)out;
3775 emit_jmp(0); // inline_readstub/inline_writestub?
b9b61529 3776 }
1fd1aceb 3777 else {
3778 if(!c) {
3779 emit_cmpimm(offset||c||s<0?ar:s,RAM_SIZE);
3780 jaddr2=(int)out;
3781 emit_jno(0);
3782 }
3783 if (opcode[i]==0x32) { // LWC2
3784 #ifdef HOST_IMM_ADDR32
3785 if(c) emit_readword_tlb(constmap[i][s]+offset,-1,tl);
3786 else
3787 #endif
3788 emit_readword_indexed(0,ar,tl);
3789 }
3790 if (opcode[i]==0x3a) { // SWC2
3791 #ifdef DESTRUCTIVE_SHIFT
3792 if(!offset&&!c&&s>=0) emit_mov(s,ar);
3793 #endif
3794 emit_writeword_indexed(tl,0,ar);
3795 }
b9b61529 3796 }
3797 if(jaddr2)
3798 add_stub(type,jaddr2,(int)out,i,ar,(int)i_regs,ccadj[i],reglist);
3799 if (opcode[i]==0x3a) { // SWC2
3800#if defined(HOST_IMM8)
3801 int ir=get_reg(i_regs->regmap,INVCP);
3802 assert(ir>=0);
3803 emit_cmpmem_indexedsr12_reg(ir,ar,1);
3804#else
3805 emit_cmpmem_indexedsr12_imm((int)invalid_code,ar,1);
3806#endif
0bbd1454 3807 #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3808 emit_callne(invalidate_addr_reg[ar]);
3809 #else
b9b61529 3810 jaddr3=(int)out;
3811 emit_jne(0);
3812 add_stub(INVCODE_STUB,jaddr3,(int)out,reglist|(1<<HOST_CCREG),ar,0,0,0);
0bbd1454 3813 #endif
b9b61529 3814 }
3815 if (opcode[i]==0x32) { // LWC2
3816 cop2_put_dreg(copr,tl,HOST_TEMPREG);
3817 }
3818}
3819
57871462 3820#ifndef multdiv_assemble
3821void multdiv_assemble(int i,struct regstat *i_regs)
3822{
3823 printf("Need multdiv_assemble for this architecture.\n");
3824 exit(1);
3825}
3826#endif
3827
3828void mov_assemble(int i,struct regstat *i_regs)
3829{
3830 //if(opcode2[i]==0x10||opcode2[i]==0x12) { // MFHI/MFLO
3831 //if(opcode2[i]==0x11||opcode2[i]==0x13) { // MTHI/MTLO
57871462 3832 if(rt1[i]) {
3833 signed char sh,sl,th,tl;
3834 th=get_reg(i_regs->regmap,rt1[i]|64);
3835 tl=get_reg(i_regs->regmap,rt1[i]);
3836 //assert(tl>=0);
3837 if(tl>=0) {
3838 sh=get_reg(i_regs->regmap,rs1[i]|64);
3839 sl=get_reg(i_regs->regmap,rs1[i]);
3840 if(sl>=0) emit_mov(sl,tl);
3841 else emit_loadreg(rs1[i],tl);
3842 if(th>=0) {
3843 if(sh>=0) emit_mov(sh,th);
3844 else emit_loadreg(rs1[i]|64,th);
3845 }
3846 }
3847 }
3848}
3849
3850#ifndef fconv_assemble
3851void fconv_assemble(int i,struct regstat *i_regs)
3852{
3853 printf("Need fconv_assemble for this architecture.\n");
3854 exit(1);
3855}
3856#endif
3857
3858#if 0
3859void float_assemble(int i,struct regstat *i_regs)
3860{
3861 printf("Need float_assemble for this architecture.\n");
3862 exit(1);
3863}
3864#endif
3865
3866void syscall_assemble(int i,struct regstat *i_regs)
3867{
3868 signed char ccreg=get_reg(i_regs->regmap,CCREG);
3869 assert(ccreg==HOST_CCREG);
3870 assert(!is_delayslot);
3871 emit_movimm(start+i*4,EAX); // Get PC
3872 emit_addimm(HOST_CCREG,CLOCK_DIVIDER*ccadj[i],HOST_CCREG); // CHECK: is this right? There should probably be an extra cycle...
7139f3c8 3873 emit_jmp((int)jump_syscall_hle); // XXX
3874}
3875
3876void hlecall_assemble(int i,struct regstat *i_regs)
3877{
3878 signed char ccreg=get_reg(i_regs->regmap,CCREG);
3879 assert(ccreg==HOST_CCREG);
3880 assert(!is_delayslot);
3881 emit_movimm(start+i*4+4,0); // Get PC
67ba0fb4 3882 emit_movimm((int)psxHLEt[source[i]&7],1);
7139f3c8 3883 emit_addimm(HOST_CCREG,CLOCK_DIVIDER*ccadj[i],HOST_CCREG); // XXX
67ba0fb4 3884 emit_jmp((int)jump_hlecall);
57871462 3885}
3886
1e973cb0 3887void intcall_assemble(int i,struct regstat *i_regs)
3888{
3889 signed char ccreg=get_reg(i_regs->regmap,CCREG);
3890 assert(ccreg==HOST_CCREG);
3891 assert(!is_delayslot);
3892 emit_movimm(start+i*4,0); // Get PC
3893 emit_addimm(HOST_CCREG,CLOCK_DIVIDER*ccadj[i],HOST_CCREG);
3894 emit_jmp((int)jump_intcall);
3895}
3896
57871462 3897void ds_assemble(int i,struct regstat *i_regs)
3898{
3899 is_delayslot=1;
3900 switch(itype[i]) {
3901 case ALU:
3902 alu_assemble(i,i_regs);break;
3903 case IMM16:
3904 imm16_assemble(i,i_regs);break;
3905 case SHIFT:
3906 shift_assemble(i,i_regs);break;
3907 case SHIFTIMM:
3908 shiftimm_assemble(i,i_regs);break;
3909 case LOAD:
3910 load_assemble(i,i_regs);break;
3911 case LOADLR:
3912 loadlr_assemble(i,i_regs);break;
3913 case STORE:
3914 store_assemble(i,i_regs);break;
3915 case STORELR:
3916 storelr_assemble(i,i_regs);break;
3917 case COP0:
3918 cop0_assemble(i,i_regs);break;
3919 case COP1:
3920 cop1_assemble(i,i_regs);break;
3921 case C1LS:
3922 c1ls_assemble(i,i_regs);break;
b9b61529 3923 case COP2:
3924 cop2_assemble(i,i_regs);break;
3925 case C2LS:
3926 c2ls_assemble(i,i_regs);break;
3927 case C2OP:
3928 c2op_assemble(i,i_regs);break;
57871462 3929 case FCONV:
3930 fconv_assemble(i,i_regs);break;
3931 case FLOAT:
3932 float_assemble(i,i_regs);break;
3933 case FCOMP:
3934 fcomp_assemble(i,i_regs);break;
3935 case MULTDIV:
3936 multdiv_assemble(i,i_regs);break;
3937 case MOV:
3938 mov_assemble(i,i_regs);break;
3939 case SYSCALL:
7139f3c8 3940 case HLECALL:
1e973cb0 3941 case INTCALL:
57871462 3942 case SPAN:
3943 case UJUMP:
3944 case RJUMP:
3945 case CJUMP:
3946 case SJUMP:
3947 case FJUMP:
3948 printf("Jump in the delay slot. This is probably a bug.\n");
3949 }
3950 is_delayslot=0;
3951}
3952
3953// Is the branch target a valid internal jump?
3954int internal_branch(uint64_t i_is32,int addr)
3955{
3956 if(addr&1) return 0; // Indirect (register) jump
3957 if(addr>=start && addr<start+slen*4-4)
3958 {
3959 int t=(addr-start)>>2;
3960 // Delay slots are not valid branch targets
3961 //if(t>0&&(itype[t-1]==RJUMP||itype[t-1]==UJUMP||itype[t-1]==CJUMP||itype[t-1]==SJUMP||itype[t-1]==FJUMP)) return 0;
3962 // 64 -> 32 bit transition requires a recompile
3963 /*if(is32[t]&~unneeded_reg_upper[t]&~i_is32)
3964 {
3965 if(requires_32bit[t]&~i_is32) printf("optimizable: no\n");
3966 else printf("optimizable: yes\n");
3967 }*/
3968 //if(is32[t]&~unneeded_reg_upper[t]&~i_is32) return 0;
a28c6ce8 3969#ifndef FORCE32
57871462 3970 if(requires_32bit[t]&~i_is32) return 0;
a28c6ce8 3971 else
3972#endif
3973 return 1;
57871462 3974 }
3975 return 0;
3976}
3977
3978#ifndef wb_invalidate
3979void wb_invalidate(signed char pre[],signed char entry[],uint64_t dirty,uint64_t is32,
3980 uint64_t u,uint64_t uu)
3981{
3982 int hr;
3983 for(hr=0;hr<HOST_REGS;hr++) {
3984 if(hr!=EXCLUDE_REG) {
3985 if(pre[hr]!=entry[hr]) {
3986 if(pre[hr]>=0) {
3987 if((dirty>>hr)&1) {
3988 if(get_reg(entry,pre[hr])<0) {
3989 if(pre[hr]<64) {
3990 if(!((u>>pre[hr])&1)) {
3991 emit_storereg(pre[hr],hr);
3992 if( ((is32>>pre[hr])&1) && !((uu>>pre[hr])&1) ) {
3993 emit_sarimm(hr,31,hr);
3994 emit_storereg(pre[hr]|64,hr);
3995 }
3996 }
3997 }else{
3998 if(!((uu>>(pre[hr]&63))&1) && !((is32>>(pre[hr]&63))&1)) {
3999 emit_storereg(pre[hr],hr);
4000 }
4001 }
4002 }
4003 }
4004 }
4005 }
4006 }
4007 }
4008 // Move from one register to another (no writeback)
4009 for(hr=0;hr<HOST_REGS;hr++) {
4010 if(hr!=EXCLUDE_REG) {
4011 if(pre[hr]!=entry[hr]) {
4012 if(pre[hr]>=0&&(pre[hr]&63)<TEMPREG) {
4013 int nr;
4014 if((nr=get_reg(entry,pre[hr]))>=0) {
4015 emit_mov(hr,nr);
4016 }
4017 }
4018 }
4019 }
4020 }
4021}
4022#endif
4023
4024// Load the specified registers
4025// This only loads the registers given as arguments because
4026// we don't want to load things that will be overwritten
4027void load_regs(signed char entry[],signed char regmap[],int is32,int rs1,int rs2)
4028{
4029 int hr;
4030 // Load 32-bit regs
4031 for(hr=0;hr<HOST_REGS;hr++) {
4032 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4033 if(entry[hr]!=regmap[hr]) {
4034 if(regmap[hr]==rs1||regmap[hr]==rs2)
4035 {
4036 if(regmap[hr]==0) {
4037 emit_zeroreg(hr);
4038 }
4039 else
4040 {
4041 emit_loadreg(regmap[hr],hr);
4042 }
4043 }
4044 }
4045 }
4046 }
4047 //Load 64-bit regs
4048 for(hr=0;hr<HOST_REGS;hr++) {
4049 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4050 if(entry[hr]!=regmap[hr]) {
4051 if(regmap[hr]-64==rs1||regmap[hr]-64==rs2)
4052 {
4053 assert(regmap[hr]!=64);
4054 if((is32>>(regmap[hr]&63))&1) {
4055 int lr=get_reg(regmap,regmap[hr]-64);
4056 if(lr>=0)
4057 emit_sarimm(lr,31,hr);
4058 else
4059 emit_loadreg(regmap[hr],hr);
4060 }
4061 else
4062 {
4063 emit_loadreg(regmap[hr],hr);
4064 }
4065 }
4066 }
4067 }
4068 }
4069}
4070
4071// Load registers prior to the start of a loop
4072// so that they are not loaded within the loop
4073static void loop_preload(signed char pre[],signed char entry[])
4074{
4075 int hr;
4076 for(hr=0;hr<HOST_REGS;hr++) {
4077 if(hr!=EXCLUDE_REG) {
4078 if(pre[hr]!=entry[hr]) {
4079 if(entry[hr]>=0) {
4080 if(get_reg(pre,entry[hr])<0) {
4081 assem_debug("loop preload:\n");
4082 //printf("loop preload: %d\n",hr);
4083 if(entry[hr]==0) {
4084 emit_zeroreg(hr);
4085 }
4086 else if(entry[hr]<TEMPREG)
4087 {
4088 emit_loadreg(entry[hr],hr);
4089 }
4090 else if(entry[hr]-64<TEMPREG)
4091 {
4092 emit_loadreg(entry[hr],hr);
4093 }
4094 }
4095 }
4096 }
4097 }
4098 }
4099}
4100
4101// Generate address for load/store instruction
b9b61529 4102// goes to AGEN for writes, FTEMP for LOADLR and cop1/2 loads
57871462 4103void address_generation(int i,struct regstat *i_regs,signed char entry[])
4104{
b9b61529 4105 if(itype[i]==LOAD||itype[i]==LOADLR||itype[i]==STORE||itype[i]==STORELR||itype[i]==C1LS||itype[i]==C2LS) {
5194fb95 4106 int ra=-1;
57871462 4107 int agr=AGEN1+(i&1);
4108 int mgr=MGEN1+(i&1);
4109 if(itype[i]==LOAD) {
4110 ra=get_reg(i_regs->regmap,rt1[i]);
535d208a 4111 if(ra<0) ra=get_reg(i_regs->regmap,-1);
4112 assert(ra>=0);
57871462 4113 }
4114 if(itype[i]==LOADLR) {
4115 ra=get_reg(i_regs->regmap,FTEMP);
4116 }
4117 if(itype[i]==STORE||itype[i]==STORELR) {
4118 ra=get_reg(i_regs->regmap,agr);
4119 if(ra<0) ra=get_reg(i_regs->regmap,-1);
4120 }
b9b61529 4121 if(itype[i]==C1LS||itype[i]==C2LS) {
4122 if ((opcode[i]&0x3b)==0x31||(opcode[i]&0x3b)==0x32) // LWC1/LDC1/LWC2/LDC2
57871462 4123 ra=get_reg(i_regs->regmap,FTEMP);
1fd1aceb 4124 else { // SWC1/SDC1/SWC2/SDC2
57871462 4125 ra=get_reg(i_regs->regmap,agr);
4126 if(ra<0) ra=get_reg(i_regs->regmap,-1);
4127 }
4128 }
4129 int rs=get_reg(i_regs->regmap,rs1[i]);
4130 int rm=get_reg(i_regs->regmap,TLREG);
4131 if(ra>=0) {
4132 int offset=imm[i];
4133 int c=(i_regs->wasconst>>rs)&1;
4134 if(rs1[i]==0) {
4135 // Using r0 as a base address
4136 /*if(rm>=0) {
4137 if(!entry||entry[rm]!=mgr) {
4138 generate_map_const(offset,rm);
4139 } // else did it in the previous cycle
4140 }*/
4141 if(!entry||entry[ra]!=agr) {
4142 if (opcode[i]==0x22||opcode[i]==0x26) {
4143 emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
4144 }else if (opcode[i]==0x1a||opcode[i]==0x1b) {
4145 emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
4146 }else{
4147 emit_movimm(offset,ra);
4148 }
4149 } // else did it in the previous cycle
4150 }
4151 else if(rs<0) {
4152 if(!entry||entry[ra]!=rs1[i])
4153 emit_loadreg(rs1[i],ra);
4154 //if(!entry||entry[ra]!=rs1[i])
4155 // printf("poor load scheduling!\n");
4156 }
4157 else if(c) {
4158 if(rm>=0) {
4159 if(!entry||entry[rm]!=mgr) {
b9b61529 4160 if(itype[i]==STORE||itype[i]==STORELR||(opcode[i]&0x3b)==0x39||(opcode[i]&0x3b)==0x3a) {
57871462 4161 // Stores to memory go thru the mapper to detect self-modifying
4162 // code, loads don't.
4163 if((unsigned int)(constmap[i][rs]+offset)>=0xC0000000 ||
4cb76aa4 4164 (unsigned int)(constmap[i][rs]+offset)<0x80000000+RAM_SIZE )
57871462 4165 generate_map_const(constmap[i][rs]+offset,rm);
4166 }else{
4167 if((signed int)(constmap[i][rs]+offset)>=(signed int)0xC0000000)
4168 generate_map_const(constmap[i][rs]+offset,rm);
4169 }
4170 }
4171 }
4172 if(rs1[i]!=rt1[i]||itype[i]!=LOAD) {
4173 if(!entry||entry[ra]!=agr) {
4174 if (opcode[i]==0x22||opcode[i]==0x26) {
4175 emit_movimm((constmap[i][rs]+offset)&0xFFFFFFFC,ra); // LWL/LWR
4176 }else if (opcode[i]==0x1a||opcode[i]==0x1b) {
4177 emit_movimm((constmap[i][rs]+offset)&0xFFFFFFF8,ra); // LDL/LDR
4178 }else{
4179 #ifdef HOST_IMM_ADDR32
b9b61529 4180 if((itype[i]!=LOAD&&(opcode[i]&0x3b)!=0x31&&(opcode[i]&0x3b)!=0x32) || // LWC1/LDC1/LWC2/LDC2
57871462 4181 (using_tlb&&((signed int)constmap[i][rs]+offset)>=(signed int)0xC0000000))
4182 #endif
4183 emit_movimm(constmap[i][rs]+offset,ra);
4184 }
4185 } // else did it in the previous cycle
4186 } // else load_consts already did it
4187 }
4188 if(offset&&!c&&rs1[i]) {
4189 if(rs>=0) {
4190 emit_addimm(rs,offset,ra);
4191 }else{
4192 emit_addimm(ra,offset,ra);
4193 }
4194 }
4195 }
4196 }
4197 // Preload constants for next instruction
b9b61529 4198 if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS||itype[i+1]==C2LS) {
57871462 4199 int agr,ra;
4200 #ifndef HOST_IMM_ADDR32
4201 // Mapper entry
4202 agr=MGEN1+((i+1)&1);
4203 ra=get_reg(i_regs->regmap,agr);
4204 if(ra>=0) {
4205 int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
4206 int offset=imm[i+1];
4207 int c=(regs[i+1].wasconst>>rs)&1;
4208 if(c) {
b9b61529 4209 if(itype[i+1]==STORE||itype[i+1]==STORELR
4210 ||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1, SWC2/SDC2
57871462 4211 // Stores to memory go thru the mapper to detect self-modifying
4212 // code, loads don't.
4213 if((unsigned int)(constmap[i+1][rs]+offset)>=0xC0000000 ||
4cb76aa4 4214 (unsigned int)(constmap[i+1][rs]+offset)<0x80000000+RAM_SIZE )
57871462 4215 generate_map_const(constmap[i+1][rs]+offset,ra);
4216 }else{
4217 if((signed int)(constmap[i+1][rs]+offset)>=(signed int)0xC0000000)
4218 generate_map_const(constmap[i+1][rs]+offset,ra);
4219 }
4220 }
4221 /*else if(rs1[i]==0) {
4222 generate_map_const(offset,ra);
4223 }*/
4224 }
4225 #endif
4226 // Actual address
4227 agr=AGEN1+((i+1)&1);
4228 ra=get_reg(i_regs->regmap,agr);
4229 if(ra>=0) {
4230 int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
4231 int offset=imm[i+1];
4232 int c=(regs[i+1].wasconst>>rs)&1;
4233 if(c&&(rs1[i+1]!=rt1[i+1]||itype[i+1]!=LOAD)) {
4234 if (opcode[i+1]==0x22||opcode[i+1]==0x26) {
4235 emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFFC,ra); // LWL/LWR
4236 }else if (opcode[i+1]==0x1a||opcode[i+1]==0x1b) {
4237 emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFF8,ra); // LDL/LDR
4238 }else{
4239 #ifdef HOST_IMM_ADDR32
b9b61529 4240 if((itype[i+1]!=LOAD&&(opcode[i+1]&0x3b)!=0x31&&(opcode[i+1]&0x3b)!=0x32) || // LWC1/LDC1/LWC2/LDC2
57871462 4241 (using_tlb&&((signed int)constmap[i+1][rs]+offset)>=(signed int)0xC0000000))
4242 #endif
4243 emit_movimm(constmap[i+1][rs]+offset,ra);
4244 }
4245 }
4246 else if(rs1[i+1]==0) {
4247 // Using r0 as a base address
4248 if (opcode[i+1]==0x22||opcode[i+1]==0x26) {
4249 emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
4250 }else if (opcode[i+1]==0x1a||opcode[i+1]==0x1b) {
4251 emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
4252 }else{
4253 emit_movimm(offset,ra);
4254 }
4255 }
4256 }
4257 }
4258}
4259
4260int get_final_value(int hr, int i, int *value)
4261{
4262 int reg=regs[i].regmap[hr];
4263 while(i<slen-1) {
4264 if(regs[i+1].regmap[hr]!=reg) break;
4265 if(!((regs[i+1].isconst>>hr)&1)) break;
4266 if(bt[i+1]) break;
4267 i++;
4268 }
4269 if(i<slen-1) {
4270 if(itype[i]==UJUMP||itype[i]==RJUMP||itype[i]==CJUMP||itype[i]==SJUMP) {
4271 *value=constmap[i][hr];
4272 return 1;
4273 }
4274 if(!bt[i+1]) {
4275 if(itype[i+1]==UJUMP||itype[i+1]==RJUMP||itype[i+1]==CJUMP||itype[i+1]==SJUMP) {
4276 // Load in delay slot, out-of-order execution
4277 if(itype[i+2]==LOAD&&rs1[i+2]==reg&&rt1[i+2]==reg&&((regs[i+1].wasconst>>hr)&1))
4278 {
4279 #ifdef HOST_IMM_ADDR32
4280 if(!using_tlb||((signed int)constmap[i][hr]+imm[i+2])<(signed int)0xC0000000) return 0;
4281 #endif
4282 // Precompute load address
4283 *value=constmap[i][hr]+imm[i+2];
4284 return 1;
4285 }
4286 }
4287 if(itype[i+1]==LOAD&&rs1[i+1]==reg&&rt1[i+1]==reg)
4288 {
4289 #ifdef HOST_IMM_ADDR32
4290 if(!using_tlb||((signed int)constmap[i][hr]+imm[i+1])<(signed int)0xC0000000) return 0;
4291 #endif
4292 // Precompute load address
4293 *value=constmap[i][hr]+imm[i+1];
4294 //printf("c=%x imm=%x\n",(int)constmap[i][hr],imm[i+1]);
4295 return 1;
4296 }
4297 }
4298 }
4299 *value=constmap[i][hr];
4300 //printf("c=%x\n",(int)constmap[i][hr]);
4301 if(i==slen-1) return 1;
4302 if(reg<64) {
4303 return !((unneeded_reg[i+1]>>reg)&1);
4304 }else{
4305 return !((unneeded_reg_upper[i+1]>>reg)&1);
4306 }
4307}
4308
4309// Load registers with known constants
4310void load_consts(signed char pre[],signed char regmap[],int is32,int i)
4311{
4312 int hr;
4313 // Load 32-bit regs
4314 for(hr=0;hr<HOST_REGS;hr++) {
4315 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4316 //if(entry[hr]!=regmap[hr]) {
4317 if(i==0||!((regs[i-1].isconst>>hr)&1)||pre[hr]!=regmap[hr]||bt[i]) {
4318 if(((regs[i].isconst>>hr)&1)&&regmap[hr]<64&&regmap[hr]>0) {
4319 int value;
4320 if(get_final_value(hr,i,&value)) {
4321 if(value==0) {
4322 emit_zeroreg(hr);
4323 }
4324 else {
4325 emit_movimm(value,hr);
4326 }
4327 }
4328 }
4329 }
4330 }
4331 }
4332 // Load 64-bit regs
4333 for(hr=0;hr<HOST_REGS;hr++) {
4334 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4335 //if(entry[hr]!=regmap[hr]) {
4336 if(i==0||!((regs[i-1].isconst>>hr)&1)||pre[hr]!=regmap[hr]||bt[i]) {
4337 if(((regs[i].isconst>>hr)&1)&&regmap[hr]>64) {
4338 if((is32>>(regmap[hr]&63))&1) {
4339 int lr=get_reg(regmap,regmap[hr]-64);
4340 assert(lr>=0);
4341 emit_sarimm(lr,31,hr);
4342 }
4343 else
4344 {
4345 int value;
4346 if(get_final_value(hr,i,&value)) {
4347 if(value==0) {
4348 emit_zeroreg(hr);
4349 }
4350 else {
4351 emit_movimm(value,hr);
4352 }
4353 }
4354 }
4355 }
4356 }
4357 }
4358 }
4359}
4360void load_all_consts(signed char regmap[],int is32,u_int dirty,int i)
4361{
4362 int hr;
4363 // Load 32-bit regs
4364 for(hr=0;hr<HOST_REGS;hr++) {
4365 if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((dirty>>hr)&1)) {
4366 if(((regs[i].isconst>>hr)&1)&&regmap[hr]<64&&regmap[hr]>0) {
4367 int value=constmap[i][hr];
4368 if(value==0) {
4369 emit_zeroreg(hr);
4370 }
4371 else {
4372 emit_movimm(value,hr);
4373 }
4374 }
4375 }
4376 }
4377 // Load 64-bit regs
4378 for(hr=0;hr<HOST_REGS;hr++) {
4379 if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((dirty>>hr)&1)) {
4380 if(((regs[i].isconst>>hr)&1)&&regmap[hr]>64) {
4381 if((is32>>(regmap[hr]&63))&1) {
4382 int lr=get_reg(regmap,regmap[hr]-64);
4383 assert(lr>=0);
4384 emit_sarimm(lr,31,hr);
4385 }
4386 else
4387 {
4388 int value=constmap[i][hr];
4389 if(value==0) {
4390 emit_zeroreg(hr);
4391 }
4392 else {
4393 emit_movimm(value,hr);
4394 }
4395 }
4396 }
4397 }
4398 }
4399}
4400
4401// Write out all dirty registers (except cycle count)
4402void wb_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty)
4403{
4404 int hr;
4405 for(hr=0;hr<HOST_REGS;hr++) {
4406 if(hr!=EXCLUDE_REG) {
4407 if(i_regmap[hr]>0) {
4408 if(i_regmap[hr]!=CCREG) {
4409 if((i_dirty>>hr)&1) {
4410 if(i_regmap[hr]<64) {
4411 emit_storereg(i_regmap[hr],hr);
24385cae 4412#ifndef FORCE32
57871462 4413 if( ((i_is32>>i_regmap[hr])&1) ) {
4414 #ifdef DESTRUCTIVE_WRITEBACK
4415 emit_sarimm(hr,31,hr);
4416 emit_storereg(i_regmap[hr]|64,hr);
4417 #else
4418 emit_sarimm(hr,31,HOST_TEMPREG);
4419 emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4420 #endif
4421 }
24385cae 4422#endif
57871462 4423 }else{
4424 if( !((i_is32>>(i_regmap[hr]&63))&1) ) {
4425 emit_storereg(i_regmap[hr],hr);
4426 }
4427 }
4428 }
4429 }
4430 }
4431 }
4432 }
4433}
4434// Write out dirty registers that we need to reload (pair with load_needed_regs)
4435// This writes the registers not written by store_regs_bt
4436void wb_needed_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4437{
4438 int hr;
4439 int t=(addr-start)>>2;
4440 for(hr=0;hr<HOST_REGS;hr++) {
4441 if(hr!=EXCLUDE_REG) {
4442 if(i_regmap[hr]>0) {
4443 if(i_regmap[hr]!=CCREG) {
4444 if(i_regmap[hr]==regs[t].regmap_entry[hr] && ((regs[t].dirty>>hr)&1) && !(((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4445 if((i_dirty>>hr)&1) {
4446 if(i_regmap[hr]<64) {
4447 emit_storereg(i_regmap[hr],hr);
24385cae 4448#ifndef FORCE32
57871462 4449 if( ((i_is32>>i_regmap[hr])&1) ) {
4450 #ifdef DESTRUCTIVE_WRITEBACK
4451 emit_sarimm(hr,31,hr);
4452 emit_storereg(i_regmap[hr]|64,hr);
4453 #else
4454 emit_sarimm(hr,31,HOST_TEMPREG);
4455 emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4456 #endif
4457 }
24385cae 4458#endif
57871462 4459 }else{
4460 if( !((i_is32>>(i_regmap[hr]&63))&1) ) {
4461 emit_storereg(i_regmap[hr],hr);
4462 }
4463 }
4464 }
4465 }
4466 }
4467 }
4468 }
4469 }
4470}
4471
4472// Load all registers (except cycle count)
4473void load_all_regs(signed char i_regmap[])
4474{
4475 int hr;
4476 for(hr=0;hr<HOST_REGS;hr++) {
4477 if(hr!=EXCLUDE_REG) {
4478 if(i_regmap[hr]==0) {
4479 emit_zeroreg(hr);
4480 }
4481 else
ea3d2e6e 4482 if(i_regmap[hr]>0 && (i_regmap[hr]&63)<TEMPREG && i_regmap[hr]!=CCREG)
57871462 4483 {
4484 emit_loadreg(i_regmap[hr],hr);
4485 }
4486 }
4487 }
4488}
4489
4490// Load all current registers also needed by next instruction
4491void load_needed_regs(signed char i_regmap[],signed char next_regmap[])
4492{
4493 int hr;
4494 for(hr=0;hr<HOST_REGS;hr++) {
4495 if(hr!=EXCLUDE_REG) {
4496 if(get_reg(next_regmap,i_regmap[hr])>=0) {
4497 if(i_regmap[hr]==0) {
4498 emit_zeroreg(hr);
4499 }
4500 else
ea3d2e6e 4501 if(i_regmap[hr]>0 && (i_regmap[hr]&63)<TEMPREG && i_regmap[hr]!=CCREG)
57871462 4502 {
4503 emit_loadreg(i_regmap[hr],hr);
4504 }
4505 }
4506 }
4507 }
4508}
4509
4510// Load all regs, storing cycle count if necessary
4511void load_regs_entry(int t)
4512{
4513 int hr;
4514 if(is_ds[t]) emit_addimm(HOST_CCREG,CLOCK_DIVIDER,HOST_CCREG);
4515 else if(ccadj[t]) emit_addimm(HOST_CCREG,-ccadj[t]*CLOCK_DIVIDER,HOST_CCREG);
4516 if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
4517 emit_storereg(CCREG,HOST_CCREG);
4518 }
4519 // Load 32-bit regs
4520 for(hr=0;hr<HOST_REGS;hr++) {
ea3d2e6e 4521 if(regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<TEMPREG) {
57871462 4522 if(regs[t].regmap_entry[hr]==0) {
4523 emit_zeroreg(hr);
4524 }
4525 else if(regs[t].regmap_entry[hr]!=CCREG)
4526 {
4527 emit_loadreg(regs[t].regmap_entry[hr],hr);
4528 }
4529 }
4530 }
4531 // Load 64-bit regs
4532 for(hr=0;hr<HOST_REGS;hr++) {
ea3d2e6e 4533 if(regs[t].regmap_entry[hr]>=64&&regs[t].regmap_entry[hr]<TEMPREG+64) {
57871462 4534 assert(regs[t].regmap_entry[hr]!=64);
4535 if((regs[t].was32>>(regs[t].regmap_entry[hr]&63))&1) {
4536 int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4537 if(lr<0) {
4538 emit_loadreg(regs[t].regmap_entry[hr],hr);
4539 }
4540 else
4541 {
4542 emit_sarimm(lr,31,hr);
4543 }
4544 }
4545 else
4546 {
4547 emit_loadreg(regs[t].regmap_entry[hr],hr);
4548 }
4549 }
4550 }
4551}
4552
4553// Store dirty registers prior to branch
4554void store_regs_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4555{
4556 if(internal_branch(i_is32,addr))
4557 {
4558 int t=(addr-start)>>2;
4559 int hr;
4560 for(hr=0;hr<HOST_REGS;hr++) {
4561 if(hr!=EXCLUDE_REG) {
4562 if(i_regmap[hr]>0 && i_regmap[hr]!=CCREG) {
4563 if(i_regmap[hr]!=regs[t].regmap_entry[hr] || !((regs[t].dirty>>hr)&1) || (((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4564 if((i_dirty>>hr)&1) {
4565 if(i_regmap[hr]<64) {
4566 if(!((unneeded_reg[t]>>i_regmap[hr])&1)) {
4567 emit_storereg(i_regmap[hr],hr);
4568 if( ((i_is32>>i_regmap[hr])&1) && !((unneeded_reg_upper[t]>>i_regmap[hr])&1) ) {
4569 #ifdef DESTRUCTIVE_WRITEBACK
4570 emit_sarimm(hr,31,hr);
4571 emit_storereg(i_regmap[hr]|64,hr);
4572 #else
4573 emit_sarimm(hr,31,HOST_TEMPREG);
4574 emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4575 #endif
4576 }
4577 }
4578 }else{
4579 if( !((i_is32>>(i_regmap[hr]&63))&1) && !((unneeded_reg_upper[t]>>(i_regmap[hr]&63))&1) ) {
4580 emit_storereg(i_regmap[hr],hr);
4581 }
4582 }
4583 }
4584 }
4585 }
4586 }
4587 }
4588 }
4589 else
4590 {
4591 // Branch out of this block, write out all dirty regs
4592 wb_dirtys(i_regmap,i_is32,i_dirty);
4593 }
4594}
4595
4596// Load all needed registers for branch target
4597void load_regs_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4598{
4599 //if(addr>=start && addr<(start+slen*4))
4600 if(internal_branch(i_is32,addr))
4601 {
4602 int t=(addr-start)>>2;
4603 int hr;
4604 // Store the cycle count before loading something else
4605 if(i_regmap[HOST_CCREG]!=CCREG) {
4606 assert(i_regmap[HOST_CCREG]==-1);
4607 }
4608 if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
4609 emit_storereg(CCREG,HOST_CCREG);
4610 }
4611 // Load 32-bit regs
4612 for(hr=0;hr<HOST_REGS;hr++) {
ea3d2e6e 4613 if(hr!=EXCLUDE_REG&&regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<TEMPREG) {
57871462 4614 #ifdef DESTRUCTIVE_WRITEBACK
4615 if(i_regmap[hr]!=regs[t].regmap_entry[hr] || ( !((regs[t].dirty>>hr)&1) && ((i_dirty>>hr)&1) && (((i_is32&~unneeded_reg_upper[t])>>i_regmap[hr])&1) ) || (((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4616 #else
4617 if(i_regmap[hr]!=regs[t].regmap_entry[hr] ) {
4618 #endif
4619 if(regs[t].regmap_entry[hr]==0) {
4620 emit_zeroreg(hr);
4621 }
4622 else if(regs[t].regmap_entry[hr]!=CCREG)
4623 {
4624 emit_loadreg(regs[t].regmap_entry[hr],hr);
4625 }
4626 }
4627 }
4628 }
4629 //Load 64-bit regs
4630 for(hr=0;hr<HOST_REGS;hr++) {
ea3d2e6e 4631 if(hr!=EXCLUDE_REG&&regs[t].regmap_entry[hr]>=64&&regs[t].regmap_entry[hr]<TEMPREG+64) {
57871462 4632 if(i_regmap[hr]!=regs[t].regmap_entry[hr]) {
4633 assert(regs[t].regmap_entry[hr]!=64);
4634 if((i_is32>>(regs[t].regmap_entry[hr]&63))&1) {
4635 int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4636 if(lr<0) {
4637 emit_loadreg(regs[t].regmap_entry[hr],hr);
4638 }
4639 else
4640 {
4641 emit_sarimm(lr,31,hr);
4642 }
4643 }
4644 else
4645 {
4646 emit_loadreg(regs[t].regmap_entry[hr],hr);
4647 }
4648 }
4649 else if((i_is32>>(regs[t].regmap_entry[hr]&63))&1) {
4650 int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4651 assert(lr>=0);
4652 emit_sarimm(lr,31,hr);
4653 }
4654 }
4655 }
4656 }
4657}
4658
4659int match_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4660{
4661 if(addr>=start && addr<start+slen*4-4)
4662 {
4663 int t=(addr-start)>>2;
4664 int hr;
4665 if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) return 0;
4666 for(hr=0;hr<HOST_REGS;hr++)
4667 {
4668 if(hr!=EXCLUDE_REG)
4669 {
4670 if(i_regmap[hr]!=regs[t].regmap_entry[hr])
4671 {
ea3d2e6e 4672 if(regs[t].regmap_entry[hr]>=0&&(regs[t].regmap_entry[hr]|64)<TEMPREG+64)
57871462 4673 {
4674 return 0;
4675 }
4676 else
4677 if((i_dirty>>hr)&1)
4678 {
ea3d2e6e 4679 if(i_regmap[hr]<TEMPREG)
57871462 4680 {
4681 if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4682 return 0;
4683 }
ea3d2e6e 4684 else if(i_regmap[hr]>=64&&i_regmap[hr]<TEMPREG+64)
57871462 4685 {
4686 if(!((unneeded_reg_upper[t]>>(i_regmap[hr]&63))&1))
4687 return 0;
4688 }
4689 }
4690 }
4691 else // Same register but is it 32-bit or dirty?
4692 if(i_regmap[hr]>=0)
4693 {
4694 if(!((regs[t].dirty>>hr)&1))
4695 {
4696 if((i_dirty>>hr)&1)
4697 {
4698 if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4699 {
4700 //printf("%x: dirty no match\n",addr);
4701 return 0;
4702 }
4703 }
4704 }
4705 if((((regs[t].was32^i_is32)&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)
4706 {
4707 //printf("%x: is32 no match\n",addr);
4708 return 0;
4709 }
4710 }
4711 }
4712 }
4713 //if(is32[t]&~unneeded_reg_upper[t]&~i_is32) return 0;
a28c6ce8 4714#ifndef FORCE32
57871462 4715 if(requires_32bit[t]&~i_is32) return 0;
a28c6ce8 4716#endif
57871462 4717 // Delay slots are not valid branch targets
4718 //if(t>0&&(itype[t-1]==RJUMP||itype[t-1]==UJUMP||itype[t-1]==CJUMP||itype[t-1]==SJUMP||itype[t-1]==FJUMP)) return 0;
4719 // Delay slots require additional processing, so do not match
4720 if(is_ds[t]) return 0;
4721 }
4722 else
4723 {
4724 int hr;
4725 for(hr=0;hr<HOST_REGS;hr++)
4726 {
4727 if(hr!=EXCLUDE_REG)
4728 {
4729 if(i_regmap[hr]>=0)
4730 {
4731 if(hr!=HOST_CCREG||i_regmap[hr]!=CCREG)
4732 {
4733 if((i_dirty>>hr)&1)
4734 {
4735 return 0;
4736 }
4737 }
4738 }
4739 }
4740 }
4741 }
4742 return 1;
4743}
4744
4745// Used when a branch jumps into the delay slot of another branch
4746void ds_assemble_entry(int i)
4747{
4748 int t=(ba[i]-start)>>2;
4749 if(!instr_addr[t]) instr_addr[t]=(u_int)out;
4750 assem_debug("Assemble delay slot at %x\n",ba[i]);
4751 assem_debug("<->\n");
4752 if(regs[t].regmap_entry[HOST_CCREG]==CCREG&&regs[t].regmap[HOST_CCREG]!=CCREG)
4753 wb_register(CCREG,regs[t].regmap_entry,regs[t].wasdirty,regs[t].was32);
4754 load_regs(regs[t].regmap_entry,regs[t].regmap,regs[t].was32,rs1[t],rs2[t]);
4755 address_generation(t,&regs[t],regs[t].regmap_entry);
b9b61529 4756 if(itype[t]==STORE||itype[t]==STORELR||(opcode[t]&0x3b)==0x39||(opcode[t]&0x3b)==0x3a)
57871462 4757 load_regs(regs[t].regmap_entry,regs[t].regmap,regs[t].was32,INVCP,INVCP);
4758 cop1_usable=0;
4759 is_delayslot=0;
4760 switch(itype[t]) {
4761 case ALU:
4762 alu_assemble(t,&regs[t]);break;
4763 case IMM16:
4764 imm16_assemble(t,&regs[t]);break;
4765 case SHIFT:
4766 shift_assemble(t,&regs[t]);break;
4767 case SHIFTIMM:
4768 shiftimm_assemble(t,&regs[t]);break;
4769 case LOAD:
4770 load_assemble(t,&regs[t]);break;
4771 case LOADLR:
4772 loadlr_assemble(t,&regs[t]);break;
4773 case STORE:
4774 store_assemble(t,&regs[t]);break;
4775 case STORELR:
4776 storelr_assemble(t,&regs[t]);break;
4777 case COP0:
4778 cop0_assemble(t,&regs[t]);break;
4779 case COP1:
4780 cop1_assemble(t,&regs[t]);break;
4781 case C1LS:
4782 c1ls_assemble(t,&regs[t]);break;
b9b61529 4783 case COP2:
4784 cop2_assemble(t,&regs[t]);break;
4785 case C2LS:
4786 c2ls_assemble(t,&regs[t]);break;
4787 case C2OP:
4788 c2op_assemble(t,&regs[t]);break;
57871462 4789 case FCONV:
4790 fconv_assemble(t,&regs[t]);break;
4791 case FLOAT:
4792 float_assemble(t,&regs[t]);break;
4793 case FCOMP:
4794 fcomp_assemble(t,&regs[t]);break;
4795 case MULTDIV:
4796 multdiv_assemble(t,&regs[t]);break;
4797 case MOV:
4798 mov_assemble(t,&regs[t]);break;
4799 case SYSCALL:
7139f3c8 4800 case HLECALL:
1e973cb0 4801 case INTCALL:
57871462 4802 case SPAN:
4803 case UJUMP:
4804 case RJUMP:
4805 case CJUMP:
4806 case SJUMP:
4807 case FJUMP:
4808 printf("Jump in the delay slot. This is probably a bug.\n");
4809 }
4810 store_regs_bt(regs[t].regmap,regs[t].is32,regs[t].dirty,ba[i]+4);
4811 load_regs_bt(regs[t].regmap,regs[t].is32,regs[t].dirty,ba[i]+4);
4812 if(internal_branch(regs[t].is32,ba[i]+4))
4813 assem_debug("branch: internal\n");
4814 else
4815 assem_debug("branch: external\n");
4816 assert(internal_branch(regs[t].is32,ba[i]+4));
4817 add_to_linker((int)out,ba[i]+4,internal_branch(regs[t].is32,ba[i]+4));
4818 emit_jmp(0);
4819}
4820
4821void do_cc(int i,signed char i_regmap[],int *adj,int addr,int taken,int invert)
4822{
4823 int count;
4824 int jaddr;
4825 int idle=0;
4826 if(itype[i]==RJUMP)
4827 {
4828 *adj=0;
4829 }
4830 //if(ba[i]>=start && ba[i]<(start+slen*4))
4831 if(internal_branch(branch_regs[i].is32,ba[i]))
4832 {
4833 int t=(ba[i]-start)>>2;
4834 if(is_ds[t]) *adj=-1; // Branch into delay slot adds an extra cycle
4835 else *adj=ccadj[t];
4836 }
4837 else
4838 {
4839 *adj=0;
4840 }
4841 count=ccadj[i];
4842 if(taken==TAKEN && i==(ba[i]-start)>>2 && source[i+1]==0) {
4843 // Idle loop
4844 if(count&1) emit_addimm_and_set_flags(2*(count+2),HOST_CCREG);
4845 idle=(int)out;
4846 //emit_subfrommem(&idlecount,HOST_CCREG); // Count idle cycles
4847 emit_andimm(HOST_CCREG,3,HOST_CCREG);
4848 jaddr=(int)out;
4849 emit_jmp(0);
4850 }
4851 else if(*adj==0||invert) {
4852 emit_addimm_and_set_flags(CLOCK_DIVIDER*(count+2),HOST_CCREG);
4853 jaddr=(int)out;
4854 emit_jns(0);
4855 }
4856 else
4857 {
eeb1feeb 4858 emit_cmpimm(HOST_CCREG,-CLOCK_DIVIDER*(count+2));
57871462 4859 jaddr=(int)out;
4860 emit_jns(0);
4861 }
4862 add_stub(CC_STUB,jaddr,idle?idle:(int)out,(*adj==0||invert||idle)?0:(count+2),i,addr,taken,0);
4863}
4864
4865void do_ccstub(int n)
4866{
4867 literal_pool(256);
4868 assem_debug("do_ccstub %x\n",start+stubs[n][4]*4);
4869 set_jump_target(stubs[n][1],(int)out);
4870 int i=stubs[n][4];
4871 if(stubs[n][6]==NULLDS) {
4872 // Delay slot instruction is nullified ("likely" branch)
4873 wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
4874 }
4875 else if(stubs[n][6]!=TAKEN) {
4876 wb_dirtys(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty);
4877 }
4878 else {
4879 if(internal_branch(branch_regs[i].is32,ba[i]))
4880 wb_needed_dirtys(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
4881 }
4882 if(stubs[n][5]!=-1)
4883 {
4884 // Save PC as return address
4885 emit_movimm(stubs[n][5],EAX);
4886 emit_writeword(EAX,(int)&pcaddr);
4887 }
4888 else
4889 {
4890 // Return address depends on which way the branch goes
4891 if(itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
4892 {
4893 int s1l=get_reg(branch_regs[i].regmap,rs1[i]);
4894 int s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
4895 int s2l=get_reg(branch_regs[i].regmap,rs2[i]);
4896 int s2h=get_reg(branch_regs[i].regmap,rs2[i]|64);
4897 if(rs1[i]==0)
4898 {
4899 s1l=s2l;s1h=s2h;
4900 s2l=s2h=-1;
4901 }
4902 else if(rs2[i]==0)
4903 {
4904 s2l=s2h=-1;
4905 }
4906 if((branch_regs[i].is32>>rs1[i])&(branch_regs[i].is32>>rs2[i])&1) {
4907 s1h=s2h=-1;
4908 }
4909 assert(s1l>=0);
4910 #ifdef DESTRUCTIVE_WRITEBACK
4911 if(rs1[i]) {
4912 if((branch_regs[i].dirty>>s1l)&(branch_regs[i].is32>>rs1[i])&1)
4913 emit_loadreg(rs1[i],s1l);
4914 }
4915 else {
4916 if((branch_regs[i].dirty>>s1l)&(branch_regs[i].is32>>rs2[i])&1)
4917 emit_loadreg(rs2[i],s1l);
4918 }
4919 if(s2l>=0)
4920 if((branch_regs[i].dirty>>s2l)&(branch_regs[i].is32>>rs2[i])&1)
4921 emit_loadreg(rs2[i],s2l);
4922 #endif
4923 int hr=0;
5194fb95 4924 int addr=-1,alt=-1,ntaddr=-1;
57871462 4925 while(hr<HOST_REGS)
4926 {
4927 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4928 (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
4929 (branch_regs[i].regmap[hr]&63)!=rs2[i] )
4930 {
4931 addr=hr++;break;
4932 }
4933 hr++;
4934 }
4935 while(hr<HOST_REGS)
4936 {
4937 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4938 (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
4939 (branch_regs[i].regmap[hr]&63)!=rs2[i] )
4940 {
4941 alt=hr++;break;
4942 }
4943 hr++;
4944 }
4945 if((opcode[i]&0x2E)==6) // BLEZ/BGTZ needs another register
4946 {
4947 while(hr<HOST_REGS)
4948 {
4949 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4950 (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
4951 (branch_regs[i].regmap[hr]&63)!=rs2[i] )
4952 {
4953 ntaddr=hr;break;
4954 }
4955 hr++;
4956 }
4957 assert(hr<HOST_REGS);
4958 }
4959 if((opcode[i]&0x2f)==4) // BEQ
4960 {
4961 #ifdef HAVE_CMOV_IMM
4962 if(s1h<0) {
4963 if(s2l>=0) emit_cmp(s1l,s2l);
4964 else emit_test(s1l,s1l);
4965 emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
4966 }
4967 else
4968 #endif
4969 {
4970 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
4971 if(s1h>=0) {
4972 if(s2h>=0) emit_cmp(s1h,s2h);
4973 else emit_test(s1h,s1h);
4974 emit_cmovne_reg(alt,addr);
4975 }
4976 if(s2l>=0) emit_cmp(s1l,s2l);
4977 else emit_test(s1l,s1l);
4978 emit_cmovne_reg(alt,addr);
4979 }
4980 }
4981 if((opcode[i]&0x2f)==5) // BNE
4982 {
4983 #ifdef HAVE_CMOV_IMM
4984 if(s1h<0) {
4985 if(s2l>=0) emit_cmp(s1l,s2l);
4986 else emit_test(s1l,s1l);
4987 emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
4988 }
4989 else
4990 #endif
4991 {
4992 emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
4993 if(s1h>=0) {
4994 if(s2h>=0) emit_cmp(s1h,s2h);
4995 else emit_test(s1h,s1h);
4996 emit_cmovne_reg(alt,addr);
4997 }
4998 if(s2l>=0) emit_cmp(s1l,s2l);
4999 else emit_test(s1l,s1l);
5000 emit_cmovne_reg(alt,addr);
5001 }
5002 }
5003 if((opcode[i]&0x2f)==6) // BLEZ
5004 {
5005 //emit_movimm(ba[i],alt);
5006 //emit_movimm(start+i*4+8,addr);
5007 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
5008 emit_cmpimm(s1l,1);
5009 if(s1h>=0) emit_mov(addr,ntaddr);
5010 emit_cmovl_reg(alt,addr);
5011 if(s1h>=0) {
5012 emit_test(s1h,s1h);
5013 emit_cmovne_reg(ntaddr,addr);
5014 emit_cmovs_reg(alt,addr);
5015 }
5016 }
5017 if((opcode[i]&0x2f)==7) // BGTZ
5018 {
5019 //emit_movimm(ba[i],addr);
5020 //emit_movimm(start+i*4+8,ntaddr);
5021 emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
5022 emit_cmpimm(s1l,1);
5023 if(s1h>=0) emit_mov(addr,alt);
5024 emit_cmovl_reg(ntaddr,addr);
5025 if(s1h>=0) {
5026 emit_test(s1h,s1h);
5027 emit_cmovne_reg(alt,addr);
5028 emit_cmovs_reg(ntaddr,addr);
5029 }
5030 }
5031 if((opcode[i]==1)&&(opcode2[i]&0x2D)==0) // BLTZ
5032 {
5033 //emit_movimm(ba[i],alt);
5034 //emit_movimm(start+i*4+8,addr);
5035 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
5036 if(s1h>=0) emit_test(s1h,s1h);
5037 else emit_test(s1l,s1l);
5038 emit_cmovs_reg(alt,addr);
5039 }
5040 if((opcode[i]==1)&&(opcode2[i]&0x2D)==1) // BGEZ
5041 {
5042 //emit_movimm(ba[i],addr);
5043 //emit_movimm(start+i*4+8,alt);
5044 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
5045 if(s1h>=0) emit_test(s1h,s1h);
5046 else emit_test(s1l,s1l);
5047 emit_cmovs_reg(alt,addr);
5048 }
5049 if(opcode[i]==0x11 && opcode2[i]==0x08 ) {
5050 if(source[i]&0x10000) // BC1T
5051 {
5052 //emit_movimm(ba[i],alt);
5053 //emit_movimm(start+i*4+8,addr);
5054 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
5055 emit_testimm(s1l,0x800000);
5056 emit_cmovne_reg(alt,addr);
5057 }
5058 else // BC1F
5059 {
5060 //emit_movimm(ba[i],addr);
5061 //emit_movimm(start+i*4+8,alt);
5062 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
5063 emit_testimm(s1l,0x800000);
5064 emit_cmovne_reg(alt,addr);
5065 }
5066 }
5067 emit_writeword(addr,(int)&pcaddr);
5068 }
5069 else
5070 if(itype[i]==RJUMP)
5071 {
5072 int r=get_reg(branch_regs[i].regmap,rs1[i]);
5073 if(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]) {
5074 r=get_reg(branch_regs[i].regmap,RTEMP);
5075 }
5076 emit_writeword(r,(int)&pcaddr);
5077 }
5078 else {printf("Unknown branch type in do_ccstub\n");exit(1);}
5079 }
5080 // Update cycle count
5081 assert(branch_regs[i].regmap[HOST_CCREG]==CCREG||branch_regs[i].regmap[HOST_CCREG]==-1);
5082 if(stubs[n][3]) emit_addimm(HOST_CCREG,CLOCK_DIVIDER*stubs[n][3],HOST_CCREG);
5083 emit_call((int)cc_interrupt);
5084 if(stubs[n][3]) emit_addimm(HOST_CCREG,-CLOCK_DIVIDER*stubs[n][3],HOST_CCREG);
5085 if(stubs[n][6]==TAKEN) {
5086 if(internal_branch(branch_regs[i].is32,ba[i]))
5087 load_needed_regs(branch_regs[i].regmap,regs[(ba[i]-start)>>2].regmap_entry);
5088 else if(itype[i]==RJUMP) {
5089 if(get_reg(branch_regs[i].regmap,RTEMP)>=0)
5090 emit_readword((int)&pcaddr,get_reg(branch_regs[i].regmap,RTEMP));
5091 else
5092 emit_loadreg(rs1[i],get_reg(branch_regs[i].regmap,rs1[i]));
5093 }
5094 }else if(stubs[n][6]==NOTTAKEN) {
5095 if(i<slen-2) load_needed_regs(branch_regs[i].regmap,regmap_pre[i+2]);
5096 else load_all_regs(branch_regs[i].regmap);
5097 }else if(stubs[n][6]==NULLDS) {
5098 // Delay slot instruction is nullified ("likely" branch)
5099 if(i<slen-2) load_needed_regs(regs[i].regmap,regmap_pre[i+2]);
5100 else load_all_regs(regs[i].regmap);
5101 }else{
5102 load_all_regs(branch_regs[i].regmap);
5103 }
5104 emit_jmp(stubs[n][2]); // return address
5105
5106 /* This works but uses a lot of memory...
5107 emit_readword((int)&last_count,ECX);
5108 emit_add(HOST_CCREG,ECX,EAX);
5109 emit_writeword(EAX,(int)&Count);
5110 emit_call((int)gen_interupt);
5111 emit_readword((int)&Count,HOST_CCREG);
5112 emit_readword((int)&next_interupt,EAX);
5113 emit_readword((int)&pending_exception,EBX);
5114 emit_writeword(EAX,(int)&last_count);
5115 emit_sub(HOST_CCREG,EAX,HOST_CCREG);
5116 emit_test(EBX,EBX);
5117 int jne_instr=(int)out;
5118 emit_jne(0);
5119 if(stubs[n][3]) emit_addimm(HOST_CCREG,-2*stubs[n][3],HOST_CCREG);
5120 load_all_regs(branch_regs[i].regmap);
5121 emit_jmp(stubs[n][2]); // return address
5122 set_jump_target(jne_instr,(int)out);
5123 emit_readword((int)&pcaddr,EAX);
5124 // Call get_addr_ht instead of doing the hash table here.
5125 // This code is executed infrequently and takes up a lot of space
5126 // so smaller is better.
5127 emit_storereg(CCREG,HOST_CCREG);
5128 emit_pushreg(EAX);
5129 emit_call((int)get_addr_ht);
5130 emit_loadreg(CCREG,HOST_CCREG);
5131 emit_addimm(ESP,4,ESP);
5132 emit_jmpreg(EAX);*/
5133}
5134
5135add_to_linker(int addr,int target,int ext)
5136{
5137 link_addr[linkcount][0]=addr;
5138 link_addr[linkcount][1]=target;
5139 link_addr[linkcount][2]=ext;
5140 linkcount++;
5141}
5142
5143void ujump_assemble(int i,struct regstat *i_regs)
5144{
5145 signed char *i_regmap=i_regs->regmap;
5146 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5147 address_generation(i+1,i_regs,regs[i].regmap_entry);
5148 #ifdef REG_PREFETCH
5149 int temp=get_reg(branch_regs[i].regmap,PTEMP);
5150 if(rt1[i]==31&&temp>=0)
5151 {
5152 int return_address=start+i*4+8;
5153 if(get_reg(branch_regs[i].regmap,31)>0)
5154 if(i_regmap[temp]==PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5155 }
5156 #endif
57871462 5157 if(rt1[i]==31) {
5158 int rt;
5159 unsigned int return_address;
57871462 5160 rt=get_reg(branch_regs[i].regmap,31);
5161 assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5162 //assert(rt>=0);
5163 return_address=start+i*4+8;
5164 if(rt>=0) {
5165 #ifdef USE_MINI_HT
4ef8f67d 5166 if(internal_branch(branch_regs[i].is32,return_address)&&rt1[i+1]!=31) {
5167 int temp=-1; // note: must be ds-safe
57871462 5168 #ifdef HOST_TEMPREG
4ef8f67d 5169 temp=HOST_TEMPREG;
57871462 5170 #endif
5171 if(temp>=0) do_miniht_insert(return_address,rt,temp);
5172 else emit_movimm(return_address,rt);
5173 }
5174 else
5175 #endif
5176 {
5177 #ifdef REG_PREFETCH
5178 if(temp>=0)
5179 {
5180 if(i_regmap[temp]!=PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5181 }
5182 #endif
5183 emit_movimm(return_address,rt); // PC into link register
5184 #ifdef IMM_PREFETCH
5185 emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5186 #endif
5187 }
5188 }
5189 }
4ef8f67d 5190 ds_assemble(i+1,i_regs);
5191 uint64_t bc_unneeded=branch_regs[i].u;
5192 uint64_t bc_unneeded_upper=branch_regs[i].uu;
5193 bc_unneeded|=1|(1LL<<rt1[i]);
5194 bc_unneeded_upper|=1|(1LL<<rt1[i]);
5195 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5196 bc_unneeded,bc_unneeded_upper);
5197 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
57871462 5198 int cc,adj;
5199 cc=get_reg(branch_regs[i].regmap,CCREG);
5200 assert(cc==HOST_CCREG);
5201 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5202 #ifdef REG_PREFETCH
5203 if(rt1[i]==31&&temp>=0) emit_prefetchreg(temp);
5204 #endif
5205 do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5206 if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5207 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5208 if(internal_branch(branch_regs[i].is32,ba[i]))
5209 assem_debug("branch: internal\n");
5210 else
5211 assem_debug("branch: external\n");
5212 if(internal_branch(branch_regs[i].is32,ba[i])&&is_ds[(ba[i]-start)>>2]) {
5213 ds_assemble_entry(i);
5214 }
5215 else {
5216 add_to_linker((int)out,ba[i],internal_branch(branch_regs[i].is32,ba[i]));
5217 emit_jmp(0);
5218 }
5219}
5220
5221void rjump_assemble(int i,struct regstat *i_regs)
5222{
5223 signed char *i_regmap=i_regs->regmap;
5224 int temp;
5225 int rs,cc,adj;
5226 rs=get_reg(branch_regs[i].regmap,rs1[i]);
5227 assert(rs>=0);
5228 if(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]) {
5229 // Delay slot abuse, make a copy of the branch address register
5230 temp=get_reg(branch_regs[i].regmap,RTEMP);
5231 assert(temp>=0);
5232 assert(regs[i].regmap[temp]==RTEMP);
5233 emit_mov(rs,temp);
5234 rs=temp;
5235 }
5236 address_generation(i+1,i_regs,regs[i].regmap_entry);
5237 #ifdef REG_PREFETCH
5238 if(rt1[i]==31)
5239 {
5240 if((temp=get_reg(branch_regs[i].regmap,PTEMP))>=0) {
5241 int return_address=start+i*4+8;
5242 if(i_regmap[temp]==PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5243 }
5244 }
5245 #endif
5246 #ifdef USE_MINI_HT
5247 if(rs1[i]==31) {
5248 int rh=get_reg(regs[i].regmap,RHASH);
5249 if(rh>=0) do_preload_rhash(rh);
5250 }
5251 #endif
5067f341 5252 if(rt1[i]!=0) {
57871462 5253 int rt,return_address;
5067f341 5254 assert(rt1[i+1]!=rt1[i]);
5255 assert(rt2[i+1]!=rt1[i]);
5256 rt=get_reg(branch_regs[i].regmap,rt1[i]);
57871462 5257 assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5258 assert(rt>=0);
5259 return_address=start+i*4+8;
5260 #ifdef REG_PREFETCH
5261 if(temp>=0)
5262 {
5263 if(i_regmap[temp]!=PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5264 }
5265 #endif
5266 emit_movimm(return_address,rt); // PC into link register
5267 #ifdef IMM_PREFETCH
5268 emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5269 #endif
5270 }
d5910d5d 5271 ds_assemble(i+1,i_regs);
5272 uint64_t bc_unneeded=branch_regs[i].u;
5273 uint64_t bc_unneeded_upper=branch_regs[i].uu;
5274 bc_unneeded|=1|(1LL<<rt1[i]);
5275 bc_unneeded_upper|=1|(1LL<<rt1[i]);
5276 bc_unneeded&=~(1LL<<rs1[i]);
5277 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5278 bc_unneeded,bc_unneeded_upper);
5279 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],CCREG);
57871462 5280 cc=get_reg(branch_regs[i].regmap,CCREG);
5281 assert(cc==HOST_CCREG);
5282 #ifdef USE_MINI_HT
5283 int rh=get_reg(branch_regs[i].regmap,RHASH);
5284 int ht=get_reg(branch_regs[i].regmap,RHTBL);
5285 if(rs1[i]==31) {
5286 if(regs[i].regmap[rh]!=RHASH) do_preload_rhash(rh);
5287 do_preload_rhtbl(ht);
5288 do_rhash(rs,rh);
5289 }
5290 #endif
5291 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,-1);
5292 #ifdef DESTRUCTIVE_WRITEBACK
5293 if((branch_regs[i].dirty>>rs)&(branch_regs[i].is32>>rs1[i])&1) {
5294 if(rs1[i]!=rt1[i+1]&&rs1[i]!=rt2[i+1]) {
5295 emit_loadreg(rs1[i],rs);
5296 }
5297 }
5298 #endif
5299 #ifdef REG_PREFETCH
5300 if(rt1[i]==31&&temp>=0) emit_prefetchreg(temp);
5301 #endif
5302 #ifdef USE_MINI_HT
5303 if(rs1[i]==31) {
5304 do_miniht_load(ht,rh);
5305 }
5306 #endif
5307 //do_cc(i,branch_regs[i].regmap,&adj,-1,TAKEN);
5308 //if(adj) emit_addimm(cc,2*(ccadj[i]+2-adj),cc); // ??? - Shouldn't happen
5309 //assert(adj==0);
5310 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
5311 add_stub(CC_STUB,(int)out,jump_vaddr_reg[rs],0,i,-1,TAKEN,0);
5312 emit_jns(0);
5313 //load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,-1);
5314 #ifdef USE_MINI_HT
5315 if(rs1[i]==31) {
5316 do_miniht_jump(rs,rh,ht);
5317 }
5318 else
5319 #endif
5320 {
5321 //if(rs!=EAX) emit_mov(rs,EAX);
5322 //emit_jmp((int)jump_vaddr_eax);
5323 emit_jmp(jump_vaddr_reg[rs]);
5324 }
5325 /* Check hash table
5326 temp=!rs;
5327 emit_mov(rs,temp);
5328 emit_shrimm(rs,16,rs);
5329 emit_xor(temp,rs,rs);
5330 emit_movzwl_reg(rs,rs);
5331 emit_shlimm(rs,4,rs);
5332 emit_cmpmem_indexed((int)hash_table,rs,temp);
5333 emit_jne((int)out+14);
5334 emit_readword_indexed((int)hash_table+4,rs,rs);
5335 emit_jmpreg(rs);
5336 emit_cmpmem_indexed((int)hash_table+8,rs,temp);
5337 emit_addimm_no_flags(8,rs);
5338 emit_jeq((int)out-17);
5339 // No hit on hash table, call compiler
5340 emit_pushreg(temp);
5341//DEBUG >
5342#ifdef DEBUG_CYCLE_COUNT
5343 emit_readword((int)&last_count,ECX);
5344 emit_add(HOST_CCREG,ECX,HOST_CCREG);
5345 emit_readword((int)&next_interupt,ECX);
5346 emit_writeword(HOST_CCREG,(int)&Count);
5347 emit_sub(HOST_CCREG,ECX,HOST_CCREG);
5348 emit_writeword(ECX,(int)&last_count);
5349#endif
5350//DEBUG <
5351 emit_storereg(CCREG,HOST_CCREG);
5352 emit_call((int)get_addr);
5353 emit_loadreg(CCREG,HOST_CCREG);
5354 emit_addimm(ESP,4,ESP);
5355 emit_jmpreg(EAX);*/
5356 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5357 if(rt1[i]!=31&&i<slen-2&&(((u_int)out)&7)) emit_mov(13,13);
5358 #endif
5359}
5360
5361void cjump_assemble(int i,struct regstat *i_regs)
5362{
5363 signed char *i_regmap=i_regs->regmap;
5364 int cc;
5365 int match;
5366 match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5367 assem_debug("match=%d\n",match);
5368 int s1h,s1l,s2h,s2l;
5369 int prev_cop1_usable=cop1_usable;
5370 int unconditional=0,nop=0;
5371 int only32=0;
57871462 5372 int invert=0;
5373 int internal=internal_branch(branch_regs[i].is32,ba[i]);
5374 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
57871462 5375 if(!match) invert=1;
5376 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5377 if(i>(ba[i]-start)>>2) invert=1;
5378 #endif
e1190b87 5379
5380 if(ooo[i]) {
57871462 5381 s1l=get_reg(branch_regs[i].regmap,rs1[i]);
5382 s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
5383 s2l=get_reg(branch_regs[i].regmap,rs2[i]);
5384 s2h=get_reg(branch_regs[i].regmap,rs2[i]|64);
5385 }
5386 else {
5387 s1l=get_reg(i_regmap,rs1[i]);
5388 s1h=get_reg(i_regmap,rs1[i]|64);
5389 s2l=get_reg(i_regmap,rs2[i]);
5390 s2h=get_reg(i_regmap,rs2[i]|64);
5391 }
5392 if(rs1[i]==0&&rs2[i]==0)
5393 {
5394 if(opcode[i]&1) nop=1;
5395 else unconditional=1;
5396 //assert(opcode[i]!=5);
5397 //assert(opcode[i]!=7);
5398 //assert(opcode[i]!=0x15);
5399 //assert(opcode[i]!=0x17);
5400 }
5401 else if(rs1[i]==0)
5402 {
5403 s1l=s2l;s1h=s2h;
5404 s2l=s2h=-1;
5405 only32=(regs[i].was32>>rs2[i])&1;
5406 }
5407 else if(rs2[i]==0)
5408 {
5409 s2l=s2h=-1;
5410 only32=(regs[i].was32>>rs1[i])&1;
5411 }
5412 else {
5413 only32=(regs[i].was32>>rs1[i])&(regs[i].was32>>rs2[i])&1;
5414 }
5415
e1190b87 5416 if(ooo[i]) {
57871462 5417 // Out of order execution (delay slot first)
5418 //printf("OOOE\n");
5419 address_generation(i+1,i_regs,regs[i].regmap_entry);
5420 ds_assemble(i+1,i_regs);
5421 int adj;
5422 uint64_t bc_unneeded=branch_regs[i].u;
5423 uint64_t bc_unneeded_upper=branch_regs[i].uu;
5424 bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
5425 bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
5426 bc_unneeded|=1;
5427 bc_unneeded_upper|=1;
5428 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5429 bc_unneeded,bc_unneeded_upper);
5430 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs2[i]);
5431 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5432 cc=get_reg(branch_regs[i].regmap,CCREG);
5433 assert(cc==HOST_CCREG);
5434 if(unconditional)
5435 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5436 //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
5437 //assem_debug("cycle count (adj)\n");
5438 if(unconditional) {
5439 do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5440 if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
5441 if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5442 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5443 if(internal)
5444 assem_debug("branch: internal\n");
5445 else
5446 assem_debug("branch: external\n");
5447 if(internal&&is_ds[(ba[i]-start)>>2]) {
5448 ds_assemble_entry(i);
5449 }
5450 else {
5451 add_to_linker((int)out,ba[i],internal);
5452 emit_jmp(0);
5453 }
5454 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5455 if(((u_int)out)&7) emit_addnop(0);
5456 #endif
5457 }
5458 }
5459 else if(nop) {
5460 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
5461 int jaddr=(int)out;
5462 emit_jns(0);
5463 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5464 }
5465 else {
5466 int taken=0,nottaken=0,nottaken1=0;
5467 do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
5468 if(adj&&!invert) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5469 if(!only32)
5470 {
5471 assert(s1h>=0);
5472 if(opcode[i]==4) // BEQ
5473 {
5474 if(s2h>=0) emit_cmp(s1h,s2h);
5475 else emit_test(s1h,s1h);
5476 nottaken1=(int)out;
5477 emit_jne(1);
5478 }
5479 if(opcode[i]==5) // BNE
5480 {
5481 if(s2h>=0) emit_cmp(s1h,s2h);
5482 else emit_test(s1h,s1h);
5483 if(invert) taken=(int)out;
5484 else add_to_linker((int)out,ba[i],internal);
5485 emit_jne(0);
5486 }
5487 if(opcode[i]==6) // BLEZ
5488 {
5489 emit_test(s1h,s1h);
5490 if(invert) taken=(int)out;
5491 else add_to_linker((int)out,ba[i],internal);
5492 emit_js(0);
5493 nottaken1=(int)out;
5494 emit_jne(1);
5495 }
5496 if(opcode[i]==7) // BGTZ
5497 {
5498 emit_test(s1h,s1h);
5499 nottaken1=(int)out;
5500 emit_js(1);
5501 if(invert) taken=(int)out;
5502 else add_to_linker((int)out,ba[i],internal);
5503 emit_jne(0);
5504 }
5505 } // if(!only32)
5506
5507 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5508 assert(s1l>=0);
5509 if(opcode[i]==4) // BEQ
5510 {
5511 if(s2l>=0) emit_cmp(s1l,s2l);
5512 else emit_test(s1l,s1l);
5513 if(invert){
5514 nottaken=(int)out;
5515 emit_jne(1);
5516 }else{
5517 add_to_linker((int)out,ba[i],internal);
5518 emit_jeq(0);
5519 }
5520 }
5521 if(opcode[i]==5) // BNE
5522 {
5523 if(s2l>=0) emit_cmp(s1l,s2l);
5524 else emit_test(s1l,s1l);
5525 if(invert){
5526 nottaken=(int)out;
5527 emit_jeq(1);
5528 }else{
5529 add_to_linker((int)out,ba[i],internal);
5530 emit_jne(0);
5531 }
5532 }
5533 if(opcode[i]==6) // BLEZ
5534 {
5535 emit_cmpimm(s1l,1);
5536 if(invert){
5537 nottaken=(int)out;
5538 emit_jge(1);
5539 }else{
5540 add_to_linker((int)out,ba[i],internal);
5541 emit_jl(0);
5542 }
5543 }
5544 if(opcode[i]==7) // BGTZ
5545 {
5546 emit_cmpimm(s1l,1);
5547 if(invert){
5548 nottaken=(int)out;
5549 emit_jl(1);
5550 }else{
5551 add_to_linker((int)out,ba[i],internal);
5552 emit_jge(0);
5553 }
5554 }
5555 if(invert) {
5556 if(taken) set_jump_target(taken,(int)out);
5557 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5558 if(match&&(!internal||!is_ds[(ba[i]-start)>>2])) {
5559 if(adj) {
5560 emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5561 add_to_linker((int)out,ba[i],internal);
5562 }else{
5563 emit_addnop(13);
5564 add_to_linker((int)out,ba[i],internal*2);
5565 }
5566 emit_jmp(0);
5567 }else
5568 #endif
5569 {
5570 if(adj) emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5571 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5572 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5573 if(internal)
5574 assem_debug("branch: internal\n");
5575 else
5576 assem_debug("branch: external\n");
5577 if(internal&&is_ds[(ba[i]-start)>>2]) {
5578 ds_assemble_entry(i);
5579 }
5580 else {
5581 add_to_linker((int)out,ba[i],internal);
5582 emit_jmp(0);
5583 }
5584 }
5585 set_jump_target(nottaken,(int)out);
5586 }
5587
5588 if(nottaken1) set_jump_target(nottaken1,(int)out);
5589 if(adj) {
5590 if(!invert) emit_addimm(cc,CLOCK_DIVIDER*adj,cc);
5591 }
5592 } // (!unconditional)
5593 } // if(ooo)
5594 else
5595 {
5596 // In-order execution (branch first)
5597 //if(likely[i]) printf("IOL\n");
5598 //else
5599 //printf("IOE\n");
5600 int taken=0,nottaken=0,nottaken1=0;
5601 if(!unconditional&&!nop) {
5602 if(!only32)
5603 {
5604 assert(s1h>=0);
5605 if((opcode[i]&0x2f)==4) // BEQ
5606 {
5607 if(s2h>=0) emit_cmp(s1h,s2h);
5608 else emit_test(s1h,s1h);
5609 nottaken1=(int)out;
5610 emit_jne(2);
5611 }
5612 if((opcode[i]&0x2f)==5) // BNE
5613 {
5614 if(s2h>=0) emit_cmp(s1h,s2h);
5615 else emit_test(s1h,s1h);
5616 taken=(int)out;
5617 emit_jne(1);
5618 }
5619 if((opcode[i]&0x2f)==6) // BLEZ
5620 {
5621 emit_test(s1h,s1h);
5622 taken=(int)out;
5623 emit_js(1);
5624 nottaken1=(int)out;
5625 emit_jne(2);
5626 }
5627 if((opcode[i]&0x2f)==7) // BGTZ
5628 {
5629 emit_test(s1h,s1h);
5630 nottaken1=(int)out;
5631 emit_js(2);
5632 taken=(int)out;
5633 emit_jne(1);
5634 }
5635 } // if(!only32)
5636
5637 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5638 assert(s1l>=0);
5639 if((opcode[i]&0x2f)==4) // BEQ
5640 {
5641 if(s2l>=0) emit_cmp(s1l,s2l);
5642 else emit_test(s1l,s1l);
5643 nottaken=(int)out;
5644 emit_jne(2);
5645 }
5646 if((opcode[i]&0x2f)==5) // BNE
5647 {
5648 if(s2l>=0) emit_cmp(s1l,s2l);
5649 else emit_test(s1l,s1l);
5650 nottaken=(int)out;
5651 emit_jeq(2);
5652 }
5653 if((opcode[i]&0x2f)==6) // BLEZ
5654 {
5655 emit_cmpimm(s1l,1);
5656 nottaken=(int)out;
5657 emit_jge(2);
5658 }
5659 if((opcode[i]&0x2f)==7) // BGTZ
5660 {
5661 emit_cmpimm(s1l,1);
5662 nottaken=(int)out;
5663 emit_jl(2);
5664 }
5665 } // if(!unconditional)
5666 int adj;
5667 uint64_t ds_unneeded=branch_regs[i].u;
5668 uint64_t ds_unneeded_upper=branch_regs[i].uu;
5669 ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
5670 ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
5671 if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
5672 ds_unneeded|=1;
5673 ds_unneeded_upper|=1;
5674 // branch taken
5675 if(!nop) {
5676 if(taken) set_jump_target(taken,(int)out);
5677 assem_debug("1:\n");
5678 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5679 ds_unneeded,ds_unneeded_upper);
5680 // load regs
5681 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5682 address_generation(i+1,&branch_regs[i],0);
5683 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
5684 ds_assemble(i+1,&branch_regs[i]);
5685 cc=get_reg(branch_regs[i].regmap,CCREG);
5686 if(cc==-1) {
5687 emit_loadreg(CCREG,cc=HOST_CCREG);
5688 // CHECK: Is the following instruction (fall thru) allocated ok?
5689 }
5690 assert(cc==HOST_CCREG);
5691 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5692 do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
5693 assem_debug("cycle count (adj)\n");
5694 if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5695 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5696 if(internal)
5697 assem_debug("branch: internal\n");
5698 else
5699 assem_debug("branch: external\n");
5700 if(internal&&is_ds[(ba[i]-start)>>2]) {
5701 ds_assemble_entry(i);
5702 }
5703 else {
5704 add_to_linker((int)out,ba[i],internal);
5705 emit_jmp(0);
5706 }
5707 }
5708 // branch not taken
5709 cop1_usable=prev_cop1_usable;
5710 if(!unconditional) {
5711 if(nottaken1) set_jump_target(nottaken1,(int)out);
5712 set_jump_target(nottaken,(int)out);
5713 assem_debug("2:\n");
5714 if(!likely[i]) {
5715 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5716 ds_unneeded,ds_unneeded_upper);
5717 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5718 address_generation(i+1,&branch_regs[i],0);
5719 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5720 ds_assemble(i+1,&branch_regs[i]);
5721 }
5722 cc=get_reg(branch_regs[i].regmap,CCREG);
5723 if(cc==-1&&!likely[i]) {
5724 // Cycle count isn't in a register, temporarily load it then write it out
5725 emit_loadreg(CCREG,HOST_CCREG);
5726 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
5727 int jaddr=(int)out;
5728 emit_jns(0);
5729 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5730 emit_storereg(CCREG,HOST_CCREG);
5731 }
5732 else{
5733 cc=get_reg(i_regmap,CCREG);
5734 assert(cc==HOST_CCREG);
5735 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
5736 int jaddr=(int)out;
5737 emit_jns(0);
5738 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
5739 }
5740 }
5741 }
5742}
5743
5744void sjump_assemble(int i,struct regstat *i_regs)
5745{
5746 signed char *i_regmap=i_regs->regmap;
5747 int cc;
5748 int match;
5749 match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5750 assem_debug("smatch=%d\n",match);
5751 int s1h,s1l;
5752 int prev_cop1_usable=cop1_usable;
5753 int unconditional=0,nevertaken=0;
5754 int only32=0;
57871462 5755 int invert=0;
5756 int internal=internal_branch(branch_regs[i].is32,ba[i]);
5757 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
57871462 5758 if(!match) invert=1;
5759 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5760 if(i>(ba[i]-start)>>2) invert=1;
5761 #endif
5762
5763 //if(opcode2[i]>=0x10) return; // FIXME (BxxZAL)
df894a3a 5764 //assert(opcode2[i]<0x10||rs1[i]==0); // FIXME (BxxZAL)
57871462 5765
e1190b87 5766 if(ooo[i]) {
57871462 5767 s1l=get_reg(branch_regs[i].regmap,rs1[i]);
5768 s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
5769 }
5770 else {
5771 s1l=get_reg(i_regmap,rs1[i]);
5772 s1h=get_reg(i_regmap,rs1[i]|64);
5773 }
5774 if(rs1[i]==0)
5775 {
5776 if(opcode2[i]&1) unconditional=1;
5777 else nevertaken=1;
5778 // These are never taken (r0 is never less than zero)
5779 //assert(opcode2[i]!=0);
5780 //assert(opcode2[i]!=2);
5781 //assert(opcode2[i]!=0x10);
5782 //assert(opcode2[i]!=0x12);
5783 }
5784 else {
5785 only32=(regs[i].was32>>rs1[i])&1;
5786 }
5787
e1190b87 5788 if(ooo[i]) {
57871462 5789 // Out of order execution (delay slot first)
5790 //printf("OOOE\n");
5791 address_generation(i+1,i_regs,regs[i].regmap_entry);
5792 ds_assemble(i+1,i_regs);
5793 int adj;
5794 uint64_t bc_unneeded=branch_regs[i].u;
5795 uint64_t bc_unneeded_upper=branch_regs[i].uu;
5796 bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
5797 bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
5798 bc_unneeded|=1;
5799 bc_unneeded_upper|=1;
5800 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5801 bc_unneeded,bc_unneeded_upper);
5802 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs1[i]);
5803 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5804 if(rt1[i]==31) {
5805 int rt,return_address;
57871462 5806 rt=get_reg(branch_regs[i].regmap,31);
5807 assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5808 if(rt>=0) {
5809 // Save the PC even if the branch is not taken
5810 return_address=start+i*4+8;
5811 emit_movimm(return_address,rt); // PC into link register
5812 #ifdef IMM_PREFETCH
5813 if(!nevertaken) emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5814 #endif
5815 }
5816 }
5817 cc=get_reg(branch_regs[i].regmap,CCREG);
5818 assert(cc==HOST_CCREG);
5819 if(unconditional)
5820 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5821 //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
5822 assem_debug("cycle count (adj)\n");
5823 if(unconditional) {
5824 do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5825 if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
5826 if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5827 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5828 if(internal)
5829 assem_debug("branch: internal\n");
5830 else
5831 assem_debug("branch: external\n");
5832 if(internal&&is_ds[(ba[i]-start)>>2]) {
5833 ds_assemble_entry(i);
5834 }
5835 else {
5836 add_to_linker((int)out,ba[i],internal);
5837 emit_jmp(0);
5838 }
5839 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5840 if(((u_int)out)&7) emit_addnop(0);
5841 #endif
5842 }
5843 }
5844 else if(nevertaken) {
5845 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
5846 int jaddr=(int)out;
5847 emit_jns(0);
5848 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5849 }
5850 else {
5851 int nottaken=0;
5852 do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
5853 if(adj&&!invert) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5854 if(!only32)
5855 {
5856 assert(s1h>=0);
df894a3a 5857 if((opcode2[i]&0xf)==0) // BLTZ/BLTZAL
57871462 5858 {
5859 emit_test(s1h,s1h);
5860 if(invert){
5861 nottaken=(int)out;
5862 emit_jns(1);
5863 }else{
5864 add_to_linker((int)out,ba[i],internal);
5865 emit_js(0);
5866 }
5867 }
df894a3a 5868 if((opcode2[i]&0xf)==1) // BGEZ/BLTZAL
57871462 5869 {
5870 emit_test(s1h,s1h);
5871 if(invert){
5872 nottaken=(int)out;
5873 emit_js(1);
5874 }else{
5875 add_to_linker((int)out,ba[i],internal);
5876 emit_jns(0);
5877 }
5878 }
5879 } // if(!only32)
5880 else
5881 {
5882 assert(s1l>=0);
df894a3a 5883 if((opcode2[i]&0xf)==0) // BLTZ/BLTZAL
57871462 5884 {
5885 emit_test(s1l,s1l);
5886 if(invert){
5887 nottaken=(int)out;
5888 emit_jns(1);
5889 }else{
5890 add_to_linker((int)out,ba[i],internal);
5891 emit_js(0);
5892 }
5893 }
df894a3a 5894 if((opcode2[i]&0xf)==1) // BGEZ/BLTZAL
57871462 5895 {
5896 emit_test(s1l,s1l);
5897 if(invert){
5898 nottaken=(int)out;
5899 emit_js(1);
5900 }else{
5901 add_to_linker((int)out,ba[i],internal);
5902 emit_jns(0);
5903 }
5904 }
5905 } // if(!only32)
5906
5907 if(invert) {
5908 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5909 if(match&&(!internal||!is_ds[(ba[i]-start)>>2])) {
5910 if(adj) {
5911 emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5912 add_to_linker((int)out,ba[i],internal);
5913 }else{
5914 emit_addnop(13);
5915 add_to_linker((int)out,ba[i],internal*2);
5916 }
5917 emit_jmp(0);
5918 }else
5919 #endif
5920 {
5921 if(adj) emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5922 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5923 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5924 if(internal)
5925 assem_debug("branch: internal\n");
5926 else
5927 assem_debug("branch: external\n");
5928 if(internal&&is_ds[(ba[i]-start)>>2]) {
5929 ds_assemble_entry(i);
5930 }
5931 else {
5932 add_to_linker((int)out,ba[i],internal);
5933 emit_jmp(0);
5934 }
5935 }
5936 set_jump_target(nottaken,(int)out);
5937 }
5938
5939 if(adj) {
5940 if(!invert) emit_addimm(cc,CLOCK_DIVIDER*adj,cc);
5941 }
5942 } // (!unconditional)
5943 } // if(ooo)
5944 else
5945 {
5946 // In-order execution (branch first)
5947 //printf("IOE\n");
5948 int nottaken=0;
a6491170 5949 if(rt1[i]==31) {
5950 int rt,return_address;
a6491170 5951 rt=get_reg(branch_regs[i].regmap,31);
5952 if(rt>=0) {
5953 // Save the PC even if the branch is not taken
5954 return_address=start+i*4+8;
5955 emit_movimm(return_address,rt); // PC into link register
5956 #ifdef IMM_PREFETCH
5957 emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5958 #endif
5959 }
5960 }
57871462 5961 if(!unconditional) {
5962 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5963 if(!only32)
5964 {
5965 assert(s1h>=0);
a6491170 5966 if((opcode2[i]&0x0d)==0) // BLTZ/BLTZL/BLTZAL/BLTZALL
57871462 5967 {
5968 emit_test(s1h,s1h);
5969 nottaken=(int)out;
5970 emit_jns(1);
5971 }
a6491170 5972 if((opcode2[i]&0x0d)==1) // BGEZ/BGEZL/BGEZAL/BGEZALL
57871462 5973 {
5974 emit_test(s1h,s1h);
5975 nottaken=(int)out;
5976 emit_js(1);
5977 }
5978 } // if(!only32)
5979 else
5980 {
5981 assert(s1l>=0);
a6491170 5982 if((opcode2[i]&0x0d)==0) // BLTZ/BLTZL/BLTZAL/BLTZALL
57871462 5983 {
5984 emit_test(s1l,s1l);
5985 nottaken=(int)out;
5986 emit_jns(1);
5987 }
a6491170 5988 if((opcode2[i]&0x0d)==1) // BGEZ/BGEZL/BGEZAL/BGEZALL
57871462 5989 {
5990 emit_test(s1l,s1l);
5991 nottaken=(int)out;
5992 emit_js(1);
5993 }
5994 }
5995 } // if(!unconditional)
5996 int adj;
5997 uint64_t ds_unneeded=branch_regs[i].u;
5998 uint64_t ds_unneeded_upper=branch_regs[i].uu;
5999 ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6000 ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6001 if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
6002 ds_unneeded|=1;
6003 ds_unneeded_upper|=1;
6004 // branch taken
6005 if(!nevertaken) {
6006 //assem_debug("1:\n");
6007 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6008 ds_unneeded,ds_unneeded_upper);
6009 // load regs
6010 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
6011 address_generation(i+1,&branch_regs[i],0);
6012 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
6013 ds_assemble(i+1,&branch_regs[i]);
6014 cc=get_reg(branch_regs[i].regmap,CCREG);
6015 if(cc==-1) {
6016 emit_loadreg(CCREG,cc=HOST_CCREG);
6017 // CHECK: Is the following instruction (fall thru) allocated ok?
6018 }
6019 assert(cc==HOST_CCREG);
6020 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6021 do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
6022 assem_debug("cycle count (adj)\n");
6023 if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
6024 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6025 if(internal)
6026 assem_debug("branch: internal\n");
6027 else
6028 assem_debug("branch: external\n");
6029 if(internal&&is_ds[(ba[i]-start)>>2]) {
6030 ds_assemble_entry(i);
6031 }
6032 else {
6033 add_to_linker((int)out,ba[i],internal);
6034 emit_jmp(0);
6035 }
6036 }
6037 // branch not taken
6038 cop1_usable=prev_cop1_usable;
6039 if(!unconditional) {
6040 set_jump_target(nottaken,(int)out);
6041 assem_debug("1:\n");
6042 if(!likely[i]) {
6043 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6044 ds_unneeded,ds_unneeded_upper);
6045 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
6046 address_generation(i+1,&branch_regs[i],0);
6047 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
6048 ds_assemble(i+1,&branch_regs[i]);
6049 }
6050 cc=get_reg(branch_regs[i].regmap,CCREG);
6051 if(cc==-1&&!likely[i]) {
6052 // Cycle count isn't in a register, temporarily load it then write it out
6053 emit_loadreg(CCREG,HOST_CCREG);
6054 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
6055 int jaddr=(int)out;
6056 emit_jns(0);
6057 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
6058 emit_storereg(CCREG,HOST_CCREG);
6059 }
6060 else{
6061 cc=get_reg(i_regmap,CCREG);
6062 assert(cc==HOST_CCREG);
6063 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
6064 int jaddr=(int)out;
6065 emit_jns(0);
6066 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
6067 }
6068 }
6069 }
6070}
6071
6072void fjump_assemble(int i,struct regstat *i_regs)
6073{
6074 signed char *i_regmap=i_regs->regmap;
6075 int cc;
6076 int match;
6077 match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6078 assem_debug("fmatch=%d\n",match);
6079 int fs,cs;
6080 int eaddr;
57871462 6081 int invert=0;
6082 int internal=internal_branch(branch_regs[i].is32,ba[i]);
6083 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
57871462 6084 if(!match) invert=1;
6085 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
6086 if(i>(ba[i]-start)>>2) invert=1;
6087 #endif
6088
e1190b87 6089 if(ooo[i]) {
57871462 6090 fs=get_reg(branch_regs[i].regmap,FSREG);
6091 address_generation(i+1,i_regs,regs[i].regmap_entry); // Is this okay?
6092 }
6093 else {
6094 fs=get_reg(i_regmap,FSREG);
6095 }
6096
6097 // Check cop1 unusable
6098 if(!cop1_usable) {
6099 cs=get_reg(i_regmap,CSREG);
6100 assert(cs>=0);
6101 emit_testimm(cs,0x20000000);
6102 eaddr=(int)out;
6103 emit_jeq(0);
6104 add_stub(FP_STUB,eaddr,(int)out,i,cs,(int)i_regs,0,0);
6105 cop1_usable=1;
6106 }
6107
e1190b87 6108 if(ooo[i]) {
57871462 6109 // Out of order execution (delay slot first)
6110 //printf("OOOE\n");
6111 ds_assemble(i+1,i_regs);
6112 int adj;
6113 uint64_t bc_unneeded=branch_regs[i].u;
6114 uint64_t bc_unneeded_upper=branch_regs[i].uu;
6115 bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
6116 bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
6117 bc_unneeded|=1;
6118 bc_unneeded_upper|=1;
6119 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6120 bc_unneeded,bc_unneeded_upper);
6121 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs1[i]);
6122 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
6123 cc=get_reg(branch_regs[i].regmap,CCREG);
6124 assert(cc==HOST_CCREG);
6125 do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
6126 assem_debug("cycle count (adj)\n");
6127 if(1) {
6128 int nottaken=0;
6129 if(adj&&!invert) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
6130 if(1) {
6131 assert(fs>=0);
6132 emit_testimm(fs,0x800000);
6133 if(source[i]&0x10000) // BC1T
6134 {
6135 if(invert){
6136 nottaken=(int)out;
6137 emit_jeq(1);
6138 }else{
6139 add_to_linker((int)out,ba[i],internal);
6140 emit_jne(0);
6141 }
6142 }
6143 else // BC1F
6144 if(invert){
6145 nottaken=(int)out;
6146 emit_jne(1);
6147 }else{
6148 add_to_linker((int)out,ba[i],internal);
6149 emit_jeq(0);
6150 }
6151 {
6152 }
6153 } // if(!only32)
6154
6155 if(invert) {
6156 if(adj) emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
6157 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
6158 else if(match) emit_addnop(13);
6159 #endif
6160 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6161 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6162 if(internal)
6163 assem_debug("branch: internal\n");
6164 else
6165 assem_debug("branch: external\n");
6166 if(internal&&is_ds[(ba[i]-start)>>2]) {
6167 ds_assemble_entry(i);
6168 }
6169 else {
6170 add_to_linker((int)out,ba[i],internal);
6171 emit_jmp(0);
6172 }
6173 set_jump_target(nottaken,(int)out);
6174 }
6175
6176 if(adj) {
6177 if(!invert) emit_addimm(cc,CLOCK_DIVIDER*adj,cc);
6178 }
6179 } // (!unconditional)
6180 } // if(ooo)
6181 else
6182 {
6183 // In-order execution (branch first)
6184 //printf("IOE\n");
6185 int nottaken=0;
6186 if(1) {
6187 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
6188 if(1) {
6189 assert(fs>=0);
6190 emit_testimm(fs,0x800000);
6191 if(source[i]&0x10000) // BC1T
6192 {
6193 nottaken=(int)out;
6194 emit_jeq(1);
6195 }
6196 else // BC1F
6197 {
6198 nottaken=(int)out;
6199 emit_jne(1);
6200 }
6201 }
6202 } // if(!unconditional)
6203 int adj;
6204 uint64_t ds_unneeded=branch_regs[i].u;
6205 uint64_t ds_unneeded_upper=branch_regs[i].uu;
6206 ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6207 ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6208 if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
6209 ds_unneeded|=1;
6210 ds_unneeded_upper|=1;
6211 // branch taken
6212 //assem_debug("1:\n");
6213 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6214 ds_unneeded,ds_unneeded_upper);
6215 // load regs
6216 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
6217 address_generation(i+1,&branch_regs[i],0);
6218 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
6219 ds_assemble(i+1,&branch_regs[i]);
6220 cc=get_reg(branch_regs[i].regmap,CCREG);
6221 if(cc==-1) {
6222 emit_loadreg(CCREG,cc=HOST_CCREG);
6223 // CHECK: Is the following instruction (fall thru) allocated ok?
6224 }
6225 assert(cc==HOST_CCREG);
6226 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6227 do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
6228 assem_debug("cycle count (adj)\n");
6229 if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
6230 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6231 if(internal)
6232 assem_debug("branch: internal\n");
6233 else
6234 assem_debug("branch: external\n");
6235 if(internal&&is_ds[(ba[i]-start)>>2]) {
6236 ds_assemble_entry(i);
6237 }
6238 else {
6239 add_to_linker((int)out,ba[i],internal);
6240 emit_jmp(0);
6241 }
6242
6243 // branch not taken
6244 if(1) { // <- FIXME (don't need this)
6245 set_jump_target(nottaken,(int)out);
6246 assem_debug("1:\n");
6247 if(!likely[i]) {
6248 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6249 ds_unneeded,ds_unneeded_upper);
6250 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
6251 address_generation(i+1,&branch_regs[i],0);
6252 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
6253 ds_assemble(i+1,&branch_regs[i]);
6254 }
6255 cc=get_reg(branch_regs[i].regmap,CCREG);
6256 if(cc==-1&&!likely[i]) {
6257 // Cycle count isn't in a register, temporarily load it then write it out
6258 emit_loadreg(CCREG,HOST_CCREG);
6259 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
6260 int jaddr=(int)out;
6261 emit_jns(0);
6262 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
6263 emit_storereg(CCREG,HOST_CCREG);
6264 }
6265 else{
6266 cc=get_reg(i_regmap,CCREG);
6267 assert(cc==HOST_CCREG);
6268 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
6269 int jaddr=(int)out;
6270 emit_jns(0);
6271 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
6272 }
6273 }
6274 }
6275}
6276
6277static void pagespan_assemble(int i,struct regstat *i_regs)
6278{
6279 int s1l=get_reg(i_regs->regmap,rs1[i]);
6280 int s1h=get_reg(i_regs->regmap,rs1[i]|64);
6281 int s2l=get_reg(i_regs->regmap,rs2[i]);
6282 int s2h=get_reg(i_regs->regmap,rs2[i]|64);
6283 void *nt_branch=NULL;
6284 int taken=0;
6285 int nottaken=0;
6286 int unconditional=0;
6287 if(rs1[i]==0)
6288 {
6289 s1l=s2l;s1h=s2h;
6290 s2l=s2h=-1;
6291 }
6292 else if(rs2[i]==0)
6293 {
6294 s2l=s2h=-1;
6295 }
6296 if((i_regs->is32>>rs1[i])&(i_regs->is32>>rs2[i])&1) {
6297 s1h=s2h=-1;
6298 }
6299 int hr=0;
6300 int addr,alt,ntaddr;
6301 if(i_regs->regmap[HOST_BTREG]<0) {addr=HOST_BTREG;}
6302 else {
6303 while(hr<HOST_REGS)
6304 {
6305 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
6306 (i_regs->regmap[hr]&63)!=rs1[i] &&
6307 (i_regs->regmap[hr]&63)!=rs2[i] )
6308 {
6309 addr=hr++;break;
6310 }
6311 hr++;
6312 }
6313 }
6314 while(hr<HOST_REGS)
6315 {
6316 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG && hr!=HOST_BTREG &&
6317 (i_regs->regmap[hr]&63)!=rs1[i] &&
6318 (i_regs->regmap[hr]&63)!=rs2[i] )
6319 {
6320 alt=hr++;break;
6321 }
6322 hr++;
6323 }
6324 if((opcode[i]&0x2E)==6) // BLEZ/BGTZ needs another register
6325 {
6326 while(hr<HOST_REGS)
6327 {
6328 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG && hr!=HOST_BTREG &&
6329 (i_regs->regmap[hr]&63)!=rs1[i] &&
6330 (i_regs->regmap[hr]&63)!=rs2[i] )
6331 {
6332 ntaddr=hr;break;
6333 }
6334 hr++;
6335 }
6336 }
6337 assert(hr<HOST_REGS);
6338 if((opcode[i]&0x2e)==4||opcode[i]==0x11) { // BEQ/BNE/BEQL/BNEL/BC1
6339 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,CCREG,CCREG);
6340 }
6341 emit_addimm(HOST_CCREG,CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
6342 if(opcode[i]==2) // J
6343 {
6344 unconditional=1;
6345 }
6346 if(opcode[i]==3) // JAL
6347 {
6348 // TODO: mini_ht
6349 int rt=get_reg(i_regs->regmap,31);
6350 emit_movimm(start+i*4+8,rt);
6351 unconditional=1;
6352 }
6353 if(opcode[i]==0&&(opcode2[i]&0x3E)==8) // JR/JALR
6354 {
6355 emit_mov(s1l,addr);
6356 if(opcode2[i]==9) // JALR
6357 {
5067f341 6358 int rt=get_reg(i_regs->regmap,rt1[i]);
57871462 6359 emit_movimm(start+i*4+8,rt);
6360 }
6361 }
6362 if((opcode[i]&0x3f)==4) // BEQ
6363 {
6364 if(rs1[i]==rs2[i])
6365 {
6366 unconditional=1;
6367 }
6368 else
6369 #ifdef HAVE_CMOV_IMM
6370 if(s1h<0) {
6371 if(s2l>=0) emit_cmp(s1l,s2l);
6372 else emit_test(s1l,s1l);
6373 emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
6374 }
6375 else
6376 #endif
6377 {
6378 assert(s1l>=0);
6379 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
6380 if(s1h>=0) {
6381 if(s2h>=0) emit_cmp(s1h,s2h);
6382 else emit_test(s1h,s1h);
6383 emit_cmovne_reg(alt,addr);
6384 }
6385 if(s2l>=0) emit_cmp(s1l,s2l);
6386 else emit_test(s1l,s1l);
6387 emit_cmovne_reg(alt,addr);
6388 }
6389 }
6390 if((opcode[i]&0x3f)==5) // BNE
6391 {
6392 #ifdef HAVE_CMOV_IMM
6393 if(s1h<0) {
6394 if(s2l>=0) emit_cmp(s1l,s2l);
6395 else emit_test(s1l,s1l);
6396 emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
6397 }
6398 else
6399 #endif
6400 {
6401 assert(s1l>=0);
6402 emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
6403 if(s1h>=0) {
6404 if(s2h>=0) emit_cmp(s1h,s2h);
6405 else emit_test(s1h,s1h);
6406 emit_cmovne_reg(alt,addr);
6407 }
6408 if(s2l>=0) emit_cmp(s1l,s2l);
6409 else emit_test(s1l,s1l);
6410 emit_cmovne_reg(alt,addr);
6411 }
6412 }
6413 if((opcode[i]&0x3f)==0x14) // BEQL
6414 {
6415 if(s1h>=0) {
6416 if(s2h>=0) emit_cmp(s1h,s2h);
6417 else emit_test(s1h,s1h);
6418 nottaken=(int)out;
6419 emit_jne(0);
6420 }
6421 if(s2l>=0) emit_cmp(s1l,s2l);
6422 else emit_test(s1l,s1l);
6423 if(nottaken) set_jump_target(nottaken,(int)out);
6424 nottaken=(int)out;
6425 emit_jne(0);
6426 }
6427 if((opcode[i]&0x3f)==0x15) // BNEL
6428 {
6429 if(s1h>=0) {
6430 if(s2h>=0) emit_cmp(s1h,s2h);
6431 else emit_test(s1h,s1h);
6432 taken=(int)out;
6433 emit_jne(0);
6434 }
6435 if(s2l>=0) emit_cmp(s1l,s2l);
6436 else emit_test(s1l,s1l);
6437 nottaken=(int)out;
6438 emit_jeq(0);
6439 if(taken) set_jump_target(taken,(int)out);
6440 }
6441 if((opcode[i]&0x3f)==6) // BLEZ
6442 {
6443 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
6444 emit_cmpimm(s1l,1);
6445 if(s1h>=0) emit_mov(addr,ntaddr);
6446 emit_cmovl_reg(alt,addr);
6447 if(s1h>=0) {
6448 emit_test(s1h,s1h);
6449 emit_cmovne_reg(ntaddr,addr);
6450 emit_cmovs_reg(alt,addr);
6451 }
6452 }
6453 if((opcode[i]&0x3f)==7) // BGTZ
6454 {
6455 emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
6456 emit_cmpimm(s1l,1);
6457 if(s1h>=0) emit_mov(addr,alt);
6458 emit_cmovl_reg(ntaddr,addr);
6459 if(s1h>=0) {
6460 emit_test(s1h,s1h);
6461 emit_cmovne_reg(alt,addr);
6462 emit_cmovs_reg(ntaddr,addr);
6463 }
6464 }
6465 if((opcode[i]&0x3f)==0x16) // BLEZL
6466 {
6467 assert((opcode[i]&0x3f)!=0x16);
6468 }
6469 if((opcode[i]&0x3f)==0x17) // BGTZL
6470 {
6471 assert((opcode[i]&0x3f)!=0x17);
6472 }
6473 assert(opcode[i]!=1); // BLTZ/BGEZ
6474
6475 //FIXME: Check CSREG
6476 if(opcode[i]==0x11 && opcode2[i]==0x08 ) {
6477 if((source[i]&0x30000)==0) // BC1F
6478 {
6479 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
6480 emit_testimm(s1l,0x800000);
6481 emit_cmovne_reg(alt,addr);
6482 }
6483 if((source[i]&0x30000)==0x10000) // BC1T
6484 {
6485 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
6486 emit_testimm(s1l,0x800000);
6487 emit_cmovne_reg(alt,addr);
6488 }
6489 if((source[i]&0x30000)==0x20000) // BC1FL
6490 {
6491 emit_testimm(s1l,0x800000);
6492 nottaken=(int)out;
6493 emit_jne(0);
6494 }
6495 if((source[i]&0x30000)==0x30000) // BC1TL
6496 {
6497 emit_testimm(s1l,0x800000);
6498 nottaken=(int)out;
6499 emit_jeq(0);
6500 }
6501 }
6502
6503 assert(i_regs->regmap[HOST_CCREG]==CCREG);
6504 wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
6505 if(likely[i]||unconditional)
6506 {
6507 emit_movimm(ba[i],HOST_BTREG);
6508 }
6509 else if(addr!=HOST_BTREG)
6510 {
6511 emit_mov(addr,HOST_BTREG);
6512 }
6513 void *branch_addr=out;
6514 emit_jmp(0);
6515 int target_addr=start+i*4+5;
6516 void *stub=out;
6517 void *compiled_target_addr=check_addr(target_addr);
6518 emit_extjump_ds((int)branch_addr,target_addr);
6519 if(compiled_target_addr) {
6520 set_jump_target((int)branch_addr,(int)compiled_target_addr);
6521 add_link(target_addr,stub);
6522 }
6523 else set_jump_target((int)branch_addr,(int)stub);
6524 if(likely[i]) {
6525 // Not-taken path
6526 set_jump_target((int)nottaken,(int)out);
6527 wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
6528 void *branch_addr=out;
6529 emit_jmp(0);
6530 int target_addr=start+i*4+8;
6531 void *stub=out;
6532 void *compiled_target_addr=check_addr(target_addr);
6533 emit_extjump_ds((int)branch_addr,target_addr);
6534 if(compiled_target_addr) {
6535 set_jump_target((int)branch_addr,(int)compiled_target_addr);
6536 add_link(target_addr,stub);
6537 }
6538 else set_jump_target((int)branch_addr,(int)stub);
6539 }
6540}
6541
6542// Assemble the delay slot for the above
6543static void pagespan_ds()
6544{
6545 assem_debug("initial delay slot:\n");
6546 u_int vaddr=start+1;
94d23bb9 6547 u_int page=get_page(vaddr);
6548 u_int vpage=get_vpage(vaddr);
57871462 6549 ll_add(jump_dirty+vpage,vaddr,(void *)out);
6550 do_dirty_stub_ds();
6551 ll_add(jump_in+page,vaddr,(void *)out);
6552 assert(regs[0].regmap_entry[HOST_CCREG]==CCREG);
6553 if(regs[0].regmap[HOST_CCREG]!=CCREG)
6554 wb_register(CCREG,regs[0].regmap_entry,regs[0].wasdirty,regs[0].was32);
6555 if(regs[0].regmap[HOST_BTREG]!=BTREG)
6556 emit_writeword(HOST_BTREG,(int)&branch_target);
6557 load_regs(regs[0].regmap_entry,regs[0].regmap,regs[0].was32,rs1[0],rs2[0]);
6558 address_generation(0,&regs[0],regs[0].regmap_entry);
b9b61529 6559 if(itype[0]==STORE||itype[0]==STORELR||(opcode[0]&0x3b)==0x39||(opcode[0]&0x3b)==0x3a)
57871462 6560 load_regs(regs[0].regmap_entry,regs[0].regmap,regs[0].was32,INVCP,INVCP);
6561 cop1_usable=0;
6562 is_delayslot=0;
6563 switch(itype[0]) {
6564 case ALU:
6565 alu_assemble(0,&regs[0]);break;
6566 case IMM16:
6567 imm16_assemble(0,&regs[0]);break;
6568 case SHIFT:
6569 shift_assemble(0,&regs[0]);break;
6570 case SHIFTIMM:
6571 shiftimm_assemble(0,&regs[0]);break;
6572 case LOAD:
6573 load_assemble(0,&regs[0]);break;
6574 case LOADLR:
6575 loadlr_assemble(0,&regs[0]);break;
6576 case STORE:
6577 store_assemble(0,&regs[0]);break;
6578 case STORELR:
6579 storelr_assemble(0,&regs[0]);break;
6580 case COP0:
6581 cop0_assemble(0,&regs[0]);break;
6582 case COP1:
6583 cop1_assemble(0,&regs[0]);break;
6584 case C1LS:
6585 c1ls_assemble(0,&regs[0]);break;
b9b61529 6586 case COP2:
6587 cop2_assemble(0,&regs[0]);break;
6588 case C2LS:
6589 c2ls_assemble(0,&regs[0]);break;
6590 case C2OP:
6591 c2op_assemble(0,&regs[0]);break;
57871462 6592 case FCONV:
6593 fconv_assemble(0,&regs[0]);break;
6594 case FLOAT:
6595 float_assemble(0,&regs[0]);break;
6596 case FCOMP:
6597 fcomp_assemble(0,&regs[0]);break;
6598 case MULTDIV:
6599 multdiv_assemble(0,&regs[0]);break;
6600 case MOV:
6601 mov_assemble(0,&regs[0]);break;
6602 case SYSCALL:
7139f3c8 6603 case HLECALL:
1e973cb0 6604 case INTCALL:
57871462 6605 case SPAN:
6606 case UJUMP:
6607 case RJUMP:
6608 case CJUMP:
6609 case SJUMP:
6610 case FJUMP:
6611 printf("Jump in the delay slot. This is probably a bug.\n");
6612 }
6613 int btaddr=get_reg(regs[0].regmap,BTREG);
6614 if(btaddr<0) {
6615 btaddr=get_reg(regs[0].regmap,-1);
6616 emit_readword((int)&branch_target,btaddr);
6617 }
6618 assert(btaddr!=HOST_CCREG);
6619 if(regs[0].regmap[HOST_CCREG]!=CCREG) emit_loadreg(CCREG,HOST_CCREG);
6620#ifdef HOST_IMM8
6621 emit_movimm(start+4,HOST_TEMPREG);
6622 emit_cmp(btaddr,HOST_TEMPREG);
6623#else
6624 emit_cmpimm(btaddr,start+4);
6625#endif
6626 int branch=(int)out;
6627 emit_jeq(0);
6628 store_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,-1);
6629 emit_jmp(jump_vaddr_reg[btaddr]);
6630 set_jump_target(branch,(int)out);
6631 store_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,start+4);
6632 load_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,start+4);
6633}
6634
6635// Basic liveness analysis for MIPS registers
6636void unneeded_registers(int istart,int iend,int r)
6637{
6638 int i;
6639 uint64_t u,uu,b,bu;
6640 uint64_t temp_u,temp_uu;
6641 uint64_t tdep;
6642 if(iend==slen-1) {
6643 u=1;uu=1;
6644 }else{
6645 u=unneeded_reg[iend+1];
6646 uu=unneeded_reg_upper[iend+1];
6647 u=1;uu=1;
6648 }
6649 for (i=iend;i>=istart;i--)
6650 {
6651 //printf("unneeded registers i=%d (%d,%d) r=%d\n",i,istart,iend,r);
6652 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
6653 {
6654 // If subroutine call, flag return address as a possible branch target
6655 if(rt1[i]==31 && i<slen-2) bt[i+2]=1;
6656
6657 if(ba[i]<start || ba[i]>=(start+slen*4))
6658 {
6659 // Branch out of this block, flush all regs
6660 u=1;
6661 uu=1;
6662 /* Hexagon hack
6663 if(itype[i]==UJUMP&&rt1[i]==31)
6664 {
6665 uu=u=0x300C00F; // Discard at, v0-v1, t6-t9
6666 }
6667 if(itype[i]==RJUMP&&rs1[i]==31)
6668 {
6669 uu=u=0x300C0F3; // Discard at, a0-a3, t6-t9
6670 }
4cb76aa4 6671 if(start>0x80000400&&start<0x80000000+RAM_SIZE) {
57871462 6672 if(itype[i]==UJUMP&&rt1[i]==31)
6673 {
6674 //uu=u=0x30300FF0FLL; // Discard at, v0-v1, t0-t9, lo, hi
6675 uu=u=0x300FF0F; // Discard at, v0-v1, t0-t9
6676 }
6677 if(itype[i]==RJUMP&&rs1[i]==31)
6678 {
6679 //uu=u=0x30300FFF3LL; // Discard at, a0-a3, t0-t9, lo, hi
6680 uu=u=0x300FFF3; // Discard at, a0-a3, t0-t9
6681 }
6682 }*/
6683 branch_unneeded_reg[i]=u;
6684 branch_unneeded_reg_upper[i]=uu;
6685 // Merge in delay slot
6686 tdep=(~uu>>rt1[i+1])&1;
6687 u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6688 uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6689 u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6690 uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6691 uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6692 u|=1;uu|=1;
6693 // If branch is "likely" (and conditional)
6694 // then we skip the delay slot on the fall-thru path
6695 if(likely[i]) {
6696 if(i<slen-1) {
6697 u&=unneeded_reg[i+2];
6698 uu&=unneeded_reg_upper[i+2];
6699 }
6700 else
6701 {
6702 u=1;
6703 uu=1;
6704 }
6705 }
6706 }
6707 else
6708 {
6709 // Internal branch, flag target
6710 bt[(ba[i]-start)>>2]=1;
6711 if(ba[i]<=start+i*4) {
6712 // Backward branch
6713 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
6714 {
6715 // Unconditional branch
6716 temp_u=1;temp_uu=1;
6717 } else {
6718 // Conditional branch (not taken case)
6719 temp_u=unneeded_reg[i+2];
6720 temp_uu=unneeded_reg_upper[i+2];
6721 }
6722 // Merge in delay slot
6723 tdep=(~temp_uu>>rt1[i+1])&1;
6724 temp_u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6725 temp_uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6726 temp_u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6727 temp_uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6728 temp_uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6729 temp_u|=1;temp_uu|=1;
6730 // If branch is "likely" (and conditional)
6731 // then we skip the delay slot on the fall-thru path
6732 if(likely[i]) {
6733 if(i<slen-1) {
6734 temp_u&=unneeded_reg[i+2];
6735 temp_uu&=unneeded_reg_upper[i+2];
6736 }
6737 else
6738 {
6739 temp_u=1;
6740 temp_uu=1;
6741 }
6742 }
6743 tdep=(~temp_uu>>rt1[i])&1;
6744 temp_u|=(1LL<<rt1[i])|(1LL<<rt2[i]);
6745 temp_uu|=(1LL<<rt1[i])|(1LL<<rt2[i]);
6746 temp_u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
6747 temp_uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
6748 temp_uu&=~((tdep<<dep1[i])|(tdep<<dep2[i]));
6749 temp_u|=1;temp_uu|=1;
6750 unneeded_reg[i]=temp_u;
6751 unneeded_reg_upper[i]=temp_uu;
6752 // Only go three levels deep. This recursion can take an
6753 // excessive amount of time if there are a lot of nested loops.
6754 if(r<2) {
6755 unneeded_registers((ba[i]-start)>>2,i-1,r+1);
6756 }else{
6757 unneeded_reg[(ba[i]-start)>>2]=1;
6758 unneeded_reg_upper[(ba[i]-start)>>2]=1;
6759 }
6760 } /*else*/ if(1) {
6761 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
6762 {
6763 // Unconditional branch
6764 u=unneeded_reg[(ba[i]-start)>>2];
6765 uu=unneeded_reg_upper[(ba[i]-start)>>2];
6766 branch_unneeded_reg[i]=u;
6767 branch_unneeded_reg_upper[i]=uu;
6768 //u=1;
6769 //uu=1;
6770 //branch_unneeded_reg[i]=u;
6771 //branch_unneeded_reg_upper[i]=uu;
6772 // Merge in delay slot
6773 tdep=(~uu>>rt1[i+1])&1;
6774 u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6775 uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6776 u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6777 uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6778 uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6779 u|=1;uu|=1;
6780 } else {
6781 // Conditional branch
6782 b=unneeded_reg[(ba[i]-start)>>2];
6783 bu=unneeded_reg_upper[(ba[i]-start)>>2];
6784 branch_unneeded_reg[i]=b;
6785 branch_unneeded_reg_upper[i]=bu;
6786 //b=1;
6787 //bu=1;
6788 //branch_unneeded_reg[i]=b;
6789 //branch_unneeded_reg_upper[i]=bu;
6790 // Branch delay slot
6791 tdep=(~uu>>rt1[i+1])&1;
6792 b|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6793 bu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6794 b&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6795 bu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6796 bu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6797 b|=1;bu|=1;
6798 // If branch is "likely" then we skip the
6799 // delay slot on the fall-thru path
6800 if(likely[i]) {
6801 u=b;
6802 uu=bu;
6803 if(i<slen-1) {
6804 u&=unneeded_reg[i+2];
6805 uu&=unneeded_reg_upper[i+2];
6806 //u=1;
6807 //uu=1;
6808 }
6809 } else {
6810 u&=b;
6811 uu&=bu;
6812 //u=1;
6813 //uu=1;
6814 }
6815 if(i<slen-1) {
6816 branch_unneeded_reg[i]&=unneeded_reg[i+2];
6817 branch_unneeded_reg_upper[i]&=unneeded_reg_upper[i+2];
6818 //branch_unneeded_reg[i]=1;
6819 //branch_unneeded_reg_upper[i]=1;
6820 } else {
6821 branch_unneeded_reg[i]=1;
6822 branch_unneeded_reg_upper[i]=1;
6823 }
6824 }
6825 }
6826 }
6827 }
1e973cb0 6828 else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
57871462 6829 {
6830 // SYSCALL instruction (software interrupt)
6831 u=1;
6832 uu=1;
6833 }
6834 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
6835 {
6836 // ERET instruction (return from interrupt)
6837 u=1;
6838 uu=1;
6839 }
6840 //u=uu=1; // DEBUG
6841 tdep=(~uu>>rt1[i])&1;
6842 // Written registers are unneeded
6843 u|=1LL<<rt1[i];
6844 u|=1LL<<rt2[i];
6845 uu|=1LL<<rt1[i];
6846 uu|=1LL<<rt2[i];
6847 // Accessed registers are needed
6848 u&=~(1LL<<rs1[i]);
6849 u&=~(1LL<<rs2[i]);
6850 uu&=~(1LL<<us1[i]);
6851 uu&=~(1LL<<us2[i]);
6852 // Source-target dependencies
6853 uu&=~(tdep<<dep1[i]);
6854 uu&=~(tdep<<dep2[i]);
6855 // R0 is always unneeded
6856 u|=1;uu|=1;
6857 // Save it
6858 unneeded_reg[i]=u;
6859 unneeded_reg_upper[i]=uu;
6860 /*
6861 printf("ur (%d,%d) %x: ",istart,iend,start+i*4);
6862 printf("U:");
6863 int r;
6864 for(r=1;r<=CCREG;r++) {
6865 if((unneeded_reg[i]>>r)&1) {
6866 if(r==HIREG) printf(" HI");
6867 else if(r==LOREG) printf(" LO");
6868 else printf(" r%d",r);
6869 }
6870 }
6871 printf(" UU:");
6872 for(r=1;r<=CCREG;r++) {
6873 if(((unneeded_reg_upper[i]&~unneeded_reg[i])>>r)&1) {
6874 if(r==HIREG) printf(" HI");
6875 else if(r==LOREG) printf(" LO");
6876 else printf(" r%d",r);
6877 }
6878 }
6879 printf("\n");*/
6880 }
252c20fc 6881#ifdef FORCE32
6882 for (i=iend;i>=istart;i--)
6883 {
6884 unneeded_reg_upper[i]=branch_unneeded_reg_upper[i]=-1LL;
6885 }
6886#endif
57871462 6887}
6888
6889// Identify registers which are likely to contain 32-bit values
6890// This is used to predict whether any branches will jump to a
6891// location with 64-bit values in registers.
6892static void provisional_32bit()
6893{
6894 int i,j;
6895 uint64_t is32=1;
6896 uint64_t lastbranch=1;
6897
6898 for(i=0;i<slen;i++)
6899 {
6900 if(i>0) {
6901 if(itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP) {
6902 if(i>1) is32=lastbranch;
6903 else is32=1;
6904 }
6905 }
6906 if(i>1)
6907 {
6908 if(itype[i-2]==CJUMP||itype[i-2]==SJUMP||itype[i-2]==FJUMP) {
6909 if(likely[i-2]) {
6910 if(i>2) is32=lastbranch;
6911 else is32=1;
6912 }
6913 }
6914 if((opcode[i-2]&0x2f)==0x05) // BNE/BNEL
6915 {
6916 if(rs1[i-2]==0||rs2[i-2]==0)
6917 {
6918 if(rs1[i-2]) {
6919 is32|=1LL<<rs1[i-2];
6920 }
6921 if(rs2[i-2]) {
6922 is32|=1LL<<rs2[i-2];
6923 }
6924 }
6925 }
6926 }
6927 // If something jumps here with 64-bit values
6928 // then promote those registers to 64 bits
6929 if(bt[i])
6930 {
6931 uint64_t temp_is32=is32;
6932 for(j=i-1;j>=0;j--)
6933 {
6934 if(ba[j]==start+i*4)
6935 //temp_is32&=branch_regs[j].is32;
6936 temp_is32&=p32[j];
6937 }
6938 for(j=i;j<slen;j++)
6939 {
6940 if(ba[j]==start+i*4)
6941 temp_is32=1;
6942 }
6943 is32=temp_is32;
6944 }
6945 int type=itype[i];
6946 int op=opcode[i];
6947 int op2=opcode2[i];
6948 int rt=rt1[i];
6949 int s1=rs1[i];
6950 int s2=rs2[i];
6951 if(type==UJUMP||type==RJUMP||type==CJUMP||type==SJUMP||type==FJUMP) {
6952 // Branches don't write registers, consider the delay slot instead.
6953 type=itype[i+1];
6954 op=opcode[i+1];
6955 op2=opcode2[i+1];
6956 rt=rt1[i+1];
6957 s1=rs1[i+1];
6958 s2=rs2[i+1];
6959 lastbranch=is32;
6960 }
6961 switch(type) {
6962 case LOAD:
6963 if(opcode[i]==0x27||opcode[i]==0x37|| // LWU/LD
6964 opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
6965 is32&=~(1LL<<rt);
6966 else
6967 is32|=1LL<<rt;
6968 break;
6969 case STORE:
6970 case STORELR:
6971 break;
6972 case LOADLR:
6973 if(op==0x1a||op==0x1b) is32&=~(1LL<<rt); // LDR/LDL
6974 if(op==0x22) is32|=1LL<<rt; // LWL
6975 break;
6976 case IMM16:
6977 if (op==0x08||op==0x09|| // ADDI/ADDIU
6978 op==0x0a||op==0x0b|| // SLTI/SLTIU
6979 op==0x0c|| // ANDI
6980 op==0x0f) // LUI
6981 {
6982 is32|=1LL<<rt;
6983 }
6984 if(op==0x18||op==0x19) { // DADDI/DADDIU
6985 is32&=~(1LL<<rt);
6986 //if(imm[i]==0)
6987 // is32|=((is32>>s1)&1LL)<<rt;
6988 }
6989 if(op==0x0d||op==0x0e) { // ORI/XORI
6990 uint64_t sr=((is32>>s1)&1LL);
6991 is32&=~(1LL<<rt);
6992 is32|=sr<<rt;
6993 }
6994 break;
6995 case UJUMP:
6996 break;
6997 case RJUMP:
6998 break;
6999 case CJUMP:
7000 break;
7001 case SJUMP:
7002 break;
7003 case FJUMP:
7004 break;
7005 case ALU:
7006 if(op2>=0x20&&op2<=0x23) { // ADD/ADDU/SUB/SUBU
7007 is32|=1LL<<rt;
7008 }
7009 if(op2==0x2a||op2==0x2b) { // SLT/SLTU
7010 is32|=1LL<<rt;
7011 }
7012 else if(op2>=0x24&&op2<=0x27) { // AND/OR/XOR/NOR
7013 uint64_t sr=((is32>>s1)&(is32>>s2)&1LL);
7014 is32&=~(1LL<<rt);
7015 is32|=sr<<rt;
7016 }
7017 else if(op2>=0x2c&&op2<=0x2d) { // DADD/DADDU
7018 if(s1==0&&s2==0) {
7019 is32|=1LL<<rt;
7020 }
7021 else if(s2==0) {
7022 uint64_t sr=((is32>>s1)&1LL);
7023 is32&=~(1LL<<rt);
7024 is32|=sr<<rt;
7025 }
7026 else if(s1==0) {
7027 uint64_t sr=((is32>>s2)&1LL);
7028 is32&=~(1LL<<rt);
7029 is32|=sr<<rt;
7030 }
7031 else {
7032 is32&=~(1LL<<rt);
7033 }
7034 }
7035 else if(op2>=0x2e&&op2<=0x2f) { // DSUB/DSUBU
7036 if(s1==0&&s2==0) {
7037 is32|=1LL<<rt;
7038 }
7039 else if(s2==0) {
7040 uint64_t sr=((is32>>s1)&1LL);
7041 is32&=~(1LL<<rt);
7042 is32|=sr<<rt;
7043 }
7044 else {
7045 is32&=~(1LL<<rt);
7046 }
7047 }
7048 break;
7049 case MULTDIV:
7050 if (op2>=0x1c&&op2<=0x1f) { // DMULT/DMULTU/DDIV/DDIVU
7051 is32&=~((1LL<<HIREG)|(1LL<<LOREG));
7052 }
7053 else {
7054 is32|=(1LL<<HIREG)|(1LL<<LOREG);
7055 }
7056 break;
7057 case MOV:
7058 {
7059 uint64_t sr=((is32>>s1)&1LL);
7060 is32&=~(1LL<<rt);
7061 is32|=sr<<rt;
7062 }
7063 break;
7064 case SHIFT:
7065 if(op2>=0x14&&op2<=0x17) is32&=~(1LL<<rt); // DSLLV/DSRLV/DSRAV
7066 else is32|=1LL<<rt; // SLLV/SRLV/SRAV
7067 break;
7068 case SHIFTIMM:
7069 is32|=1LL<<rt;
7070 // DSLL/DSRL/DSRA/DSLL32/DSRL32 but not DSRA32 have 64-bit result
7071 if(op2>=0x38&&op2<0x3f) is32&=~(1LL<<rt);
7072 break;
7073 case COP0:
7074 if(op2==0) is32|=1LL<<rt; // MFC0
7075 break;
7076 case COP1:
b9b61529 7077 case COP2:
57871462 7078 if(op2==0) is32|=1LL<<rt; // MFC1
7079 if(op2==1) is32&=~(1LL<<rt); // DMFC1
7080 if(op2==2) is32|=1LL<<rt; // CFC1
7081 break;
7082 case C1LS:
b9b61529 7083 case C2LS:
57871462 7084 break;
7085 case FLOAT:
7086 case FCONV:
7087 break;
7088 case FCOMP:
7089 break;
b9b61529 7090 case C2OP:
57871462 7091 case SYSCALL:
7139f3c8 7092 case HLECALL:
57871462 7093 break;
7094 default:
7095 break;
7096 }
7097 is32|=1;
7098 p32[i]=is32;
7099
7100 if(i>0)
7101 {
7102 if(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)
7103 {
7104 if(rt1[i-1]==31) // JAL/JALR
7105 {
7106 // Subroutine call will return here, don't alloc any registers
7107 is32=1;
7108 }
7109 else if(i+1<slen)
7110 {
7111 // Internal branch will jump here, match registers to caller
7112 is32=0x3FFFFFFFFLL;
7113 }
7114 }
7115 }
7116 }
7117}
7118
7119// Identify registers which may be assumed to contain 32-bit values
7120// and where optimizations will rely on this.
7121// This is used to determine whether backward branches can safely
7122// jump to a location with 64-bit values in registers.
7123static void provisional_r32()
7124{
7125 u_int r32=0;
7126 int i;
7127
7128 for (i=slen-1;i>=0;i--)
7129 {
7130 int hr;
7131 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
7132 {
7133 if(ba[i]<start || ba[i]>=(start+slen*4))
7134 {
7135 // Branch out of this block, don't need anything
7136 r32=0;
7137 }
7138 else
7139 {
7140 // Internal branch
7141 // Need whatever matches the target
7142 // (and doesn't get overwritten by the delay slot instruction)
7143 r32=0;
7144 int t=(ba[i]-start)>>2;
7145 if(ba[i]>start+i*4) {
7146 // Forward branch
7147 //if(!(requires_32bit[t]&~regs[i].was32))
7148 // r32|=requires_32bit[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
7149 if(!(pr32[t]&~regs[i].was32))
7150 r32|=pr32[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
7151 }else{
7152 // Backward branch
7153 if(!(regs[t].was32&~unneeded_reg_upper[t]&~regs[i].was32))
7154 r32|=regs[t].was32&~unneeded_reg_upper[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
7155 }
7156 }
7157 // Conditional branch may need registers for following instructions
7158 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
7159 {
7160 if(i<slen-2) {
7161 //r32|=requires_32bit[i+2];
7162 r32|=pr32[i+2];
7163 r32&=regs[i].was32;
7164 // Mark this address as a branch target since it may be called
7165 // upon return from interrupt
7166 //bt[i+2]=1;
7167 }
7168 }
7169 // Merge in delay slot
7170 if(!likely[i]) {
7171 // These are overwritten unless the branch is "likely"
7172 // and the delay slot is nullified if not taken
7173 r32&=~(1LL<<rt1[i+1]);
7174 r32&=~(1LL<<rt2[i+1]);
7175 }
7176 // Assume these are needed (delay slot)
7177 if(us1[i+1]>0)
7178 {
7179 if((regs[i].was32>>us1[i+1])&1) r32|=1LL<<us1[i+1];
7180 }
7181 if(us2[i+1]>0)
7182 {
7183 if((regs[i].was32>>us2[i+1])&1) r32|=1LL<<us2[i+1];
7184 }
7185 if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1))
7186 {
7187 if((regs[i].was32>>dep1[i+1])&1) r32|=1LL<<dep1[i+1];
7188 }
7189 if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1))
7190 {
7191 if((regs[i].was32>>dep2[i+1])&1) r32|=1LL<<dep2[i+1];
7192 }
7193 }
1e973cb0 7194 else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
57871462 7195 {
7196 // SYSCALL instruction (software interrupt)
7197 r32=0;
7198 }
7199 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
7200 {
7201 // ERET instruction (return from interrupt)
7202 r32=0;
7203 }
7204 // Check 32 bits
7205 r32&=~(1LL<<rt1[i]);
7206 r32&=~(1LL<<rt2[i]);
7207 if(us1[i]>0)
7208 {
7209 if((regs[i].was32>>us1[i])&1) r32|=1LL<<us1[i];
7210 }
7211 if(us2[i]>0)
7212 {
7213 if((regs[i].was32>>us2[i])&1) r32|=1LL<<us2[i];
7214 }
7215 if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1))
7216 {
7217 if((regs[i].was32>>dep1[i])&1) r32|=1LL<<dep1[i];
7218 }
7219 if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1))
7220 {
7221 if((regs[i].was32>>dep2[i])&1) r32|=1LL<<dep2[i];
7222 }
7223 //requires_32bit[i]=r32;
7224 pr32[i]=r32;
7225
7226 // Dirty registers which are 32-bit, require 32-bit input
7227 // as they will be written as 32-bit values
7228 for(hr=0;hr<HOST_REGS;hr++)
7229 {
7230 if(regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64) {
7231 if((regs[i].was32>>regs[i].regmap_entry[hr])&(regs[i].wasdirty>>hr)&1) {
7232 if(!((unneeded_reg_upper[i]>>regs[i].regmap_entry[hr])&1))
7233 pr32[i]|=1LL<<regs[i].regmap_entry[hr];
7234 //requires_32bit[i]|=1LL<<regs[i].regmap_entry[hr];
7235 }
7236 }
7237 }
7238 }
7239}
7240
7241// Write back dirty registers as soon as we will no longer modify them,
7242// so that we don't end up with lots of writes at the branches.
7243void clean_registers(int istart,int iend,int wr)
7244{
7245 int i;
7246 int r;
7247 u_int will_dirty_i,will_dirty_next,temp_will_dirty;
7248 u_int wont_dirty_i,wont_dirty_next,temp_wont_dirty;
7249 if(iend==slen-1) {
7250 will_dirty_i=will_dirty_next=0;
7251 wont_dirty_i=wont_dirty_next=0;
7252 }else{
7253 will_dirty_i=will_dirty_next=will_dirty[iend+1];
7254 wont_dirty_i=wont_dirty_next=wont_dirty[iend+1];
7255 }
7256 for (i=iend;i>=istart;i--)
7257 {
7258 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
7259 {
7260 if(ba[i]<start || ba[i]>=(start+slen*4))
7261 {
7262 // Branch out of this block, flush all regs
7263 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
7264 {
7265 // Unconditional branch
7266 will_dirty_i=0;
7267 wont_dirty_i=0;
7268 // Merge in delay slot (will dirty)
7269 for(r=0;r<HOST_REGS;r++) {
7270 if(r!=EXCLUDE_REG) {
7271 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7272 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7273 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7274 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7275 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7276 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7277 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7278 if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7279 if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7280 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7281 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7282 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7283 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7284 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7285 }
7286 }
7287 }
7288 else
7289 {
7290 // Conditional branch
7291 will_dirty_i=0;
7292 wont_dirty_i=wont_dirty_next;
7293 // Merge in delay slot (will dirty)
7294 for(r=0;r<HOST_REGS;r++) {
7295 if(r!=EXCLUDE_REG) {
7296 if(!likely[i]) {
7297 // Might not dirty if likely branch is not taken
7298 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7299 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7300 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7301 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7302 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7303 if(branch_regs[i].regmap[r]==0) will_dirty_i&=~(1<<r);
7304 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7305 //if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7306 //if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7307 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7308 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7309 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7310 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7311 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7312 }
7313 }
7314 }
7315 }
7316 // Merge in delay slot (wont dirty)
7317 for(r=0;r<HOST_REGS;r++) {
7318 if(r!=EXCLUDE_REG) {
7319 if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7320 if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7321 if((regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7322 if((regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7323 if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7324 if((branch_regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7325 if((branch_regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7326 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7327 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7328 if(branch_regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7329 }
7330 }
7331 if(wr) {
7332 #ifndef DESTRUCTIVE_WRITEBACK
7333 branch_regs[i].dirty&=wont_dirty_i;
7334 #endif
7335 branch_regs[i].dirty|=will_dirty_i;
7336 }
7337 }
7338 else
7339 {
7340 // Internal branch
7341 if(ba[i]<=start+i*4) {
7342 // Backward branch
7343 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
7344 {
7345 // Unconditional branch
7346 temp_will_dirty=0;
7347 temp_wont_dirty=0;
7348 // Merge in delay slot (will dirty)
7349 for(r=0;r<HOST_REGS;r++) {
7350 if(r!=EXCLUDE_REG) {
7351 if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7352 if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7353 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7354 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7355 if((branch_regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7356 if(branch_regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
7357 if(branch_regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7358 if((regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7359 if((regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7360 if((regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7361 if((regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7362 if((regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7363 if(regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
7364 if(regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7365 }
7366 }
7367 } else {
7368 // Conditional branch (not taken case)
7369 temp_will_dirty=will_dirty_next;
7370 temp_wont_dirty=wont_dirty_next;
7371 // Merge in delay slot (will dirty)
7372 for(r=0;r<HOST_REGS;r++) {
7373 if(r!=EXCLUDE_REG) {
7374 if(!likely[i]) {
7375 // Will not dirty if likely branch is not taken
7376 if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7377 if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7378 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7379 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7380 if((branch_regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7381 if(branch_regs[i].regmap[r]==0) temp_will_dirty&=~(1<<r);
7382 if(branch_regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7383 //if((regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7384 //if((regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7385 if((regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7386 if((regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7387 if((regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7388 if(regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
7389 if(regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7390 }
7391 }
7392 }
7393 }
7394 // Merge in delay slot (wont dirty)
7395 for(r=0;r<HOST_REGS;r++) {
7396 if(r!=EXCLUDE_REG) {
7397 if((regs[i].regmap[r]&63)==rt1[i]) temp_wont_dirty|=1<<r;
7398 if((regs[i].regmap[r]&63)==rt2[i]) temp_wont_dirty|=1<<r;
7399 if((regs[i].regmap[r]&63)==rt1[i+1]) temp_wont_dirty|=1<<r;
7400 if((regs[i].regmap[r]&63)==rt2[i+1]) temp_wont_dirty|=1<<r;
7401 if(regs[i].regmap[r]==CCREG) temp_wont_dirty|=1<<r;
7402 if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_wont_dirty|=1<<r;
7403 if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_wont_dirty|=1<<r;
7404 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_wont_dirty|=1<<r;
7405 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_wont_dirty|=1<<r;
7406 if(branch_regs[i].regmap[r]==CCREG) temp_wont_dirty|=1<<r;
7407 }
7408 }
7409 // Deal with changed mappings
7410 if(i<iend) {
7411 for(r=0;r<HOST_REGS;r++) {
7412 if(r!=EXCLUDE_REG) {
7413 if(regs[i].regmap[r]!=regmap_pre[i][r]) {
7414 temp_will_dirty&=~(1<<r);
7415 temp_wont_dirty&=~(1<<r);
7416 if((regmap_pre[i][r]&63)>0 && (regmap_pre[i][r]&63)<34) {
7417 temp_will_dirty|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7418 temp_wont_dirty|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7419 } else {
7420 temp_will_dirty|=1<<r;
7421 temp_wont_dirty|=1<<r;
7422 }
7423 }
7424 }
7425 }
7426 }
7427 if(wr) {
7428 will_dirty[i]=temp_will_dirty;
7429 wont_dirty[i]=temp_wont_dirty;
7430 clean_registers((ba[i]-start)>>2,i-1,0);
7431 }else{
7432 // Limit recursion. It can take an excessive amount
7433 // of time if there are a lot of nested loops.
7434 will_dirty[(ba[i]-start)>>2]=0;
7435 wont_dirty[(ba[i]-start)>>2]=-1;
7436 }
7437 }
7438 /*else*/ if(1)
7439 {
7440 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
7441 {
7442 // Unconditional branch
7443 will_dirty_i=0;
7444 wont_dirty_i=0;
7445 //if(ba[i]>start+i*4) { // Disable recursion (for debugging)
7446 for(r=0;r<HOST_REGS;r++) {
7447 if(r!=EXCLUDE_REG) {
7448 if(branch_regs[i].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
7449 will_dirty_i|=will_dirty[(ba[i]-start)>>2]&(1<<r);
7450 wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
7451 }
e3234ecf 7452 if(branch_regs[i].regmap[r]>=0) {
7453 will_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>(branch_regs[i].regmap[r]&63))&1)<<r;
7454 wont_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>(branch_regs[i].regmap[r]&63))&1)<<r;
7455 }
57871462 7456 }
7457 }
7458 //}
7459 // Merge in delay slot
7460 for(r=0;r<HOST_REGS;r++) {
7461 if(r!=EXCLUDE_REG) {
7462 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7463 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7464 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7465 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7466 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7467 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7468 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7469 if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7470 if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7471 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7472 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7473 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7474 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7475 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7476 }
7477 }
7478 } else {
7479 // Conditional branch
7480 will_dirty_i=will_dirty_next;
7481 wont_dirty_i=wont_dirty_next;
7482 //if(ba[i]>start+i*4) { // Disable recursion (for debugging)
7483 for(r=0;r<HOST_REGS;r++) {
7484 if(r!=EXCLUDE_REG) {
e3234ecf 7485 signed char target_reg=branch_regs[i].regmap[r];
7486 if(target_reg==regs[(ba[i]-start)>>2].regmap_entry[r]) {
57871462 7487 will_dirty_i&=will_dirty[(ba[i]-start)>>2]&(1<<r);
7488 wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
7489 }
e3234ecf 7490 else if(target_reg>=0) {
7491 will_dirty_i&=((unneeded_reg[(ba[i]-start)>>2]>>(target_reg&63))&1)<<r;
7492 wont_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>(target_reg&63))&1)<<r;
57871462 7493 }
7494 // Treat delay slot as part of branch too
7495 /*if(regs[i+1].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
7496 will_dirty[i+1]&=will_dirty[(ba[i]-start)>>2]&(1<<r);
7497 wont_dirty[i+1]|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
7498 }
7499 else
7500 {
7501 will_dirty[i+1]&=~(1<<r);
7502 }*/
7503 }
7504 }
7505 //}
7506 // Merge in delay slot
7507 for(r=0;r<HOST_REGS;r++) {
7508 if(r!=EXCLUDE_REG) {
7509 if(!likely[i]) {
7510 // Might not dirty if likely branch is not taken
7511 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7512 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7513 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7514 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7515 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7516 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7517 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7518 //if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7519 //if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7520 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7521 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7522 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7523 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7524 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7525 }
7526 }
7527 }
7528 }
e3234ecf 7529 // Merge in delay slot (won't dirty)
57871462 7530 for(r=0;r<HOST_REGS;r++) {
7531 if(r!=EXCLUDE_REG) {
7532 if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7533 if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7534 if((regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7535 if((regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7536 if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7537 if((branch_regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7538 if((branch_regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7539 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7540 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7541 if(branch_regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7542 }
7543 }
7544 if(wr) {
7545 #ifndef DESTRUCTIVE_WRITEBACK
7546 branch_regs[i].dirty&=wont_dirty_i;
7547 #endif
7548 branch_regs[i].dirty|=will_dirty_i;
7549 }
7550 }
7551 }
7552 }
1e973cb0 7553 else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
57871462 7554 {
7555 // SYSCALL instruction (software interrupt)
7556 will_dirty_i=0;
7557 wont_dirty_i=0;
7558 }
7559 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
7560 {
7561 // ERET instruction (return from interrupt)
7562 will_dirty_i=0;
7563 wont_dirty_i=0;
7564 }
7565 will_dirty_next=will_dirty_i;
7566 wont_dirty_next=wont_dirty_i;
7567 for(r=0;r<HOST_REGS;r++) {
7568 if(r!=EXCLUDE_REG) {
7569 if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7570 if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7571 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7572 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7573 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7574 if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7575 if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7576 if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7577 if(i>istart) {
7578 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=FJUMP)
7579 {
7580 // Don't store a register immediately after writing it,
7581 // may prevent dual-issue.
7582 if((regs[i].regmap[r]&63)==rt1[i-1]) wont_dirty_i|=1<<r;
7583 if((regs[i].regmap[r]&63)==rt2[i-1]) wont_dirty_i|=1<<r;
7584 }
7585 }
7586 }
7587 }
7588 // Save it
7589 will_dirty[i]=will_dirty_i;
7590 wont_dirty[i]=wont_dirty_i;
7591 // Mark registers that won't be dirtied as not dirty
7592 if(wr) {
7593 /*printf("wr (%d,%d) %x will:",istart,iend,start+i*4);
7594 for(r=0;r<HOST_REGS;r++) {
7595 if((will_dirty_i>>r)&1) {
7596 printf(" r%d",r);
7597 }
7598 }
7599 printf("\n");*/
7600
7601 //if(i==istart||(itype[i-1]!=RJUMP&&itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=FJUMP)) {
7602 regs[i].dirty|=will_dirty_i;
7603 #ifndef DESTRUCTIVE_WRITEBACK
7604 regs[i].dirty&=wont_dirty_i;
7605 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
7606 {
7607 if(i<iend-1&&itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000) {
7608 for(r=0;r<HOST_REGS;r++) {
7609 if(r!=EXCLUDE_REG) {
7610 if(regs[i].regmap[r]==regmap_pre[i+2][r]) {
7611 regs[i+2].wasdirty&=wont_dirty_i|~(1<<r);
7612 }else {/*printf("i: %x (%d) mismatch(+2): %d\n",start+i*4,i,r);/*assert(!((wont_dirty_i>>r)&1));*/}
7613 }
7614 }
7615 }
7616 }
7617 else
7618 {
7619 if(i<iend) {
7620 for(r=0;r<HOST_REGS;r++) {
7621 if(r!=EXCLUDE_REG) {
7622 if(regs[i].regmap[r]==regmap_pre[i+1][r]) {
7623 regs[i+1].wasdirty&=wont_dirty_i|~(1<<r);
7624 }else {/*printf("i: %x (%d) mismatch(+1): %d\n",start+i*4,i,r);/*assert(!((wont_dirty_i>>r)&1));*/}
7625 }
7626 }
7627 }
7628 }
7629 #endif
7630 //}
7631 }
7632 // Deal with changed mappings
7633 temp_will_dirty=will_dirty_i;
7634 temp_wont_dirty=wont_dirty_i;
7635 for(r=0;r<HOST_REGS;r++) {
7636 if(r!=EXCLUDE_REG) {
7637 int nr;
7638 if(regs[i].regmap[r]==regmap_pre[i][r]) {
7639 if(wr) {
7640 #ifndef DESTRUCTIVE_WRITEBACK
7641 regs[i].wasdirty&=wont_dirty_i|~(1<<r);
7642 #endif
7643 regs[i].wasdirty|=will_dirty_i&(1<<r);
7644 }
7645 }
f776eb14 7646 else if(regmap_pre[i][r]>=0&&(nr=get_reg(regs[i].regmap,regmap_pre[i][r]))>=0) {
57871462 7647 // Register moved to a different register
7648 will_dirty_i&=~(1<<r);
7649 wont_dirty_i&=~(1<<r);
7650 will_dirty_i|=((temp_will_dirty>>nr)&1)<<r;
7651 wont_dirty_i|=((temp_wont_dirty>>nr)&1)<<r;
7652 if(wr) {
7653 #ifndef DESTRUCTIVE_WRITEBACK
7654 regs[i].wasdirty&=wont_dirty_i|~(1<<r);
7655 #endif
7656 regs[i].wasdirty|=will_dirty_i&(1<<r);
7657 }
7658 }
7659 else {
7660 will_dirty_i&=~(1<<r);
7661 wont_dirty_i&=~(1<<r);
7662 if((regmap_pre[i][r]&63)>0 && (regmap_pre[i][r]&63)<34) {
7663 will_dirty_i|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7664 wont_dirty_i|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7665 } else {
7666 wont_dirty_i|=1<<r;
7667 /*printf("i: %x (%d) mismatch: %d\n",start+i*4,i,r);/*assert(!((will_dirty>>r)&1));*/
7668 }
7669 }
7670 }
7671 }
7672 }
7673}
7674
7675 /* disassembly */
7676void disassemble_inst(int i)
7677{
7678 if (bt[i]) printf("*"); else printf(" ");
7679 switch(itype[i]) {
7680 case UJUMP:
7681 printf (" %x: %s %8x\n",start+i*4,insn[i],ba[i]);break;
7682 case CJUMP:
7683 printf (" %x: %s r%d,r%d,%8x\n",start+i*4,insn[i],rs1[i],rs2[i],i?start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14):*ba);break;
7684 case SJUMP:
7685 printf (" %x: %s r%d,%8x\n",start+i*4,insn[i],rs1[i],start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14));break;
7686 case FJUMP:
7687 printf (" %x: %s %8x\n",start+i*4,insn[i],ba[i]);break;
7688 case RJUMP:
74426039 7689 if (opcode[i]==0x9&&rt1[i]!=31)
5067f341 7690 printf (" %x: %s r%d,r%d\n",start+i*4,insn[i],rt1[i],rs1[i]);
7691 else
7692 printf (" %x: %s r%d\n",start+i*4,insn[i],rs1[i]);
7693 break;
57871462 7694 case SPAN:
7695 printf (" %x: %s (pagespan) r%d,r%d,%8x\n",start+i*4,insn[i],rs1[i],rs2[i],ba[i]);break;
7696 case IMM16:
7697 if(opcode[i]==0xf) //LUI
7698 printf (" %x: %s r%d,%4x0000\n",start+i*4,insn[i],rt1[i],imm[i]&0xffff);
7699 else
7700 printf (" %x: %s r%d,r%d,%d\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
7701 break;
7702 case LOAD:
7703 case LOADLR:
7704 printf (" %x: %s r%d,r%d+%x\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
7705 break;
7706 case STORE:
7707 case STORELR:
7708 printf (" %x: %s r%d,r%d+%x\n",start+i*4,insn[i],rs2[i],rs1[i],imm[i]);
7709 break;
7710 case ALU:
7711 case SHIFT:
7712 printf (" %x: %s r%d,r%d,r%d\n",start+i*4,insn[i],rt1[i],rs1[i],rs2[i]);
7713 break;
7714 case MULTDIV:
7715 printf (" %x: %s r%d,r%d\n",start+i*4,insn[i],rs1[i],rs2[i]);
7716 break;
7717 case SHIFTIMM:
7718 printf (" %x: %s r%d,r%d,%d\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
7719 break;
7720 case MOV:
7721 if((opcode2[i]&0x1d)==0x10)
7722 printf (" %x: %s r%d\n",start+i*4,insn[i],rt1[i]);
7723 else if((opcode2[i]&0x1d)==0x11)
7724 printf (" %x: %s r%d\n",start+i*4,insn[i],rs1[i]);
7725 else
7726 printf (" %x: %s\n",start+i*4,insn[i]);
7727 break;
7728 case COP0:
7729 if(opcode2[i]==0)
7730 printf (" %x: %s r%d,cpr0[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC0
7731 else if(opcode2[i]==4)
7732 printf (" %x: %s r%d,cpr0[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC0
7733 else printf (" %x: %s\n",start+i*4,insn[i]);
7734 break;
7735 case COP1:
7736 if(opcode2[i]<3)
7737 printf (" %x: %s r%d,cpr1[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC1
7738 else if(opcode2[i]>3)
7739 printf (" %x: %s r%d,cpr1[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC1
7740 else printf (" %x: %s\n",start+i*4,insn[i]);
7741 break;
b9b61529 7742 case COP2:
7743 if(opcode2[i]<3)
7744 printf (" %x: %s r%d,cpr2[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC2
7745 else if(opcode2[i]>3)
7746 printf (" %x: %s r%d,cpr2[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC2
7747 else printf (" %x: %s\n",start+i*4,insn[i]);
7748 break;
57871462 7749 case C1LS:
7750 printf (" %x: %s cpr1[%d],r%d+%x\n",start+i*4,insn[i],(source[i]>>16)&0x1f,rs1[i],imm[i]);
7751 break;
b9b61529 7752 case C2LS:
7753 printf (" %x: %s cpr2[%d],r%d+%x\n",start+i*4,insn[i],(source[i]>>16)&0x1f,rs1[i],imm[i]);
7754 break;
1e973cb0 7755 case INTCALL:
7756 printf (" %x: %s (INTCALL)\n",start+i*4,insn[i]);
7757 break;
57871462 7758 default:
7759 //printf (" %s %8x\n",insn[i],source[i]);
7760 printf (" %x: %s\n",start+i*4,insn[i]);
7761 }
7762}
7763
dc990066 7764// clear the state completely, instead of just marking
7765// things invalid like invalidate_all_pages() does
7766void new_dynarec_clear_full()
57871462 7767{
57871462 7768 int n;
35775df7 7769 out=(u_char *)BASE_ADDR;
7770 memset(invalid_code,1,sizeof(invalid_code));
7771 memset(hash_table,0xff,sizeof(hash_table));
57871462 7772 memset(mini_ht,-1,sizeof(mini_ht));
7773 memset(restore_candidate,0,sizeof(restore_candidate));
dc990066 7774 memset(shadow,0,sizeof(shadow));
57871462 7775 copy=shadow;
7776 expirep=16384; // Expiry pointer, +2 blocks
7777 pending_exception=0;
7778 literalcount=0;
57871462 7779 stop_after_jal=0;
7780 // TLB
af4ee1fe 7781#ifndef DISABLE_TLB
57871462 7782 using_tlb=0;
af4ee1fe 7783#endif
dadf55f2 7784 sp_in_mirror=0;
57871462 7785 for(n=0;n<524288;n++) // 0 .. 0x7FFFFFFF
7786 memory_map[n]=-1;
7787 for(n=524288;n<526336;n++) // 0x80000000 .. 0x807FFFFF
7788 memory_map[n]=((u_int)rdram-0x80000000)>>2;
7789 for(n=526336;n<1048576;n++) // 0x80800000 .. 0xFFFFFFFF
7790 memory_map[n]=-1;
dc990066 7791 for(n=0;n<4096;n++) ll_clear(jump_in+n);
7792 for(n=0;n<4096;n++) ll_clear(jump_out+n);
7793 for(n=0;n<4096;n++) ll_clear(jump_dirty+n);
7794}
7795
7796void new_dynarec_init()
7797{
7798 printf("Init new dynarec\n");
7799 out=(u_char *)BASE_ADDR;
7800 if (mmap (out, 1<<TARGET_SIZE_2,
7801 PROT_READ | PROT_WRITE | PROT_EXEC,
7802 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS,
7803 -1, 0) <= 0) {printf("mmap() failed\n");}
7804#ifdef MUPEN64
7805 rdword=&readmem_dword;
7806 fake_pc.f.r.rs=&readmem_dword;
7807 fake_pc.f.r.rt=&readmem_dword;
7808 fake_pc.f.r.rd=&readmem_dword;
7809#endif
7810 int n;
7811 new_dynarec_clear_full();
7812#ifdef HOST_IMM8
7813 // Copy this into local area so we don't have to put it in every literal pool
7814 invc_ptr=invalid_code;
7815#endif
24385cae 7816#ifdef MUPEN64
57871462 7817 for(n=0;n<0x8000;n++) { // 0 .. 0x7FFFFFFF
7818 writemem[n] = write_nomem_new;
7819 writememb[n] = write_nomemb_new;
7820 writememh[n] = write_nomemh_new;
24385cae 7821#ifndef FORCE32
57871462 7822 writememd[n] = write_nomemd_new;
24385cae 7823#endif
57871462 7824 readmem[n] = read_nomem_new;
7825 readmemb[n] = read_nomemb_new;
7826 readmemh[n] = read_nomemh_new;
24385cae 7827#ifndef FORCE32
57871462 7828 readmemd[n] = read_nomemd_new;
24385cae 7829#endif
57871462 7830 }
7831 for(n=0x8000;n<0x8080;n++) { // 0x80000000 .. 0x807FFFFF
7832 writemem[n] = write_rdram_new;
7833 writememb[n] = write_rdramb_new;
7834 writememh[n] = write_rdramh_new;
24385cae 7835#ifndef FORCE32
57871462 7836 writememd[n] = write_rdramd_new;
24385cae 7837#endif
57871462 7838 }
7839 for(n=0xC000;n<0x10000;n++) { // 0xC0000000 .. 0xFFFFFFFF
7840 writemem[n] = write_nomem_new;
7841 writememb[n] = write_nomemb_new;
7842 writememh[n] = write_nomemh_new;
24385cae 7843#ifndef FORCE32
57871462 7844 writememd[n] = write_nomemd_new;
24385cae 7845#endif
57871462 7846 readmem[n] = read_nomem_new;
7847 readmemb[n] = read_nomemb_new;
7848 readmemh[n] = read_nomemh_new;
24385cae 7849#ifndef FORCE32
57871462 7850 readmemd[n] = read_nomemd_new;
24385cae 7851#endif
57871462 7852 }
24385cae 7853#endif
57871462 7854 tlb_hacks();
7855 arch_init();
7856}
7857
7858void new_dynarec_cleanup()
7859{
7860 int n;
7861 if (munmap ((void *)BASE_ADDR, 1<<TARGET_SIZE_2) < 0) {printf("munmap() failed\n");}
7862 for(n=0;n<4096;n++) ll_clear(jump_in+n);
7863 for(n=0;n<4096;n++) ll_clear(jump_out+n);
7864 for(n=0;n<4096;n++) ll_clear(jump_dirty+n);
7865 #ifdef ROM_COPY
7866 if (munmap (ROM_COPY, 67108864) < 0) {printf("munmap() failed\n");}
7867 #endif
7868}
7869
7870int new_recompile_block(int addr)
7871{
7872/*
7873 if(addr==0x800cd050) {
7874 int block;
7875 for(block=0x80000;block<0x80800;block++) invalidate_block(block);
7876 int n;
7877 for(n=0;n<=2048;n++) ll_clear(jump_dirty+n);
7878 }
7879*/
7880 //if(Count==365117028) tracedebug=1;
7881 assem_debug("NOTCOMPILED: addr = %x -> %x\n", (int)addr, (int)out);
7882 //printf("NOTCOMPILED: addr = %x -> %x\n", (int)addr, (int)out);
7883 //printf("TRACE: count=%d next=%d (compile %x)\n",Count,next_interupt,addr);
7884 //if(debug)
7885 //printf("TRACE: count=%d next=%d (checksum %x)\n",Count,next_interupt,mchecksum());
7886 //printf("fpu mapping=%x enabled=%x\n",(Status & 0x04000000)>>26,(Status & 0x20000000)>>29);
7887 /*if(Count>=312978186) {
7888 rlist();
7889 }*/
7890 //rlist();
7891 start = (u_int)addr&~3;
7892 //assert(((u_int)addr&1)==0);
7139f3c8 7893#ifdef PCSX
dadf55f2 7894 if(!sp_in_mirror&&(signed int)(psxRegs.GPR.n.sp&0xffe00000)>0x80200000&&
7895 0x10000<=psxRegs.GPR.n.sp&&(psxRegs.GPR.n.sp&~0xe0e00000)<RAM_SIZE) {
c2e3bd42 7896 printf("SP hack enabled (%08x), @%08x\n", psxRegs.GPR.n.sp, psxRegs.pc);
dadf55f2 7897 sp_in_mirror=1;
7898 }
9ad4d757 7899 if (Config.HLE && start == 0x80001000) // hlecall
560e4a12 7900 {
7139f3c8 7901 // XXX: is this enough? Maybe check hleSoftCall?
bb5285ef 7902 u_int beginning=(u_int)out;
7139f3c8 7903 u_int page=get_page(start);
7139f3c8 7904 invalid_code[start>>12]=0;
7905 emit_movimm(start,0);
7906 emit_writeword(0,(int)&pcaddr);
bb5285ef 7907 emit_jmp((int)new_dyna_leave);
7908#ifdef __arm__
7909 __clear_cache((void *)beginning,out);
7910#endif
9ad4d757 7911 ll_add(jump_in+page,start,(void *)beginning);
7139f3c8 7912 return 0;
7913 }
560e4a12 7914 else if ((u_int)addr < 0x00200000 ||
7915 (0xa0000000 <= addr && addr < 0xa0200000)) {
7139f3c8 7916 // used for BIOS calls mostly?
560e4a12 7917 source = (u_int *)((u_int)rdram+(start&0x1fffff));
7918 pagelimit = (addr&0xa0000000)|0x00200000;
7919 }
7920 else if (!Config.HLE && (
7921/* (0x9fc00000 <= addr && addr < 0x9fc80000) ||*/
7922 (0xbfc00000 <= addr && addr < 0xbfc80000))) {
7923 // BIOS
7924 source = (u_int *)((u_int)psxR+(start&0x7ffff));
7925 pagelimit = (addr&0xfff00000)|0x80000;
7139f3c8 7926 }
7927 else
7928#endif
3d624f89 7929#ifdef MUPEN64
57871462 7930 if ((int)addr >= 0xa4000000 && (int)addr < 0xa4001000) {
7931 source = (u_int *)((u_int)SP_DMEM+start-0xa4000000);
7932 pagelimit = 0xa4001000;
7933 }
3d624f89 7934 else
7935#endif
4cb76aa4 7936 if ((int)addr >= 0x80000000 && (int)addr < 0x80000000+RAM_SIZE) {
57871462 7937 source = (u_int *)((u_int)rdram+start-0x80000000);
4cb76aa4 7938 pagelimit = 0x80000000+RAM_SIZE;
57871462 7939 }
90ae6d4e 7940#ifndef DISABLE_TLB
57871462 7941 else if ((signed int)addr >= (signed int)0xC0000000) {
7942 //printf("addr=%x mm=%x\n",(u_int)addr,(memory_map[start>>12]<<2));
7943 //if(tlb_LUT_r[start>>12])
7944 //source = (u_int *)(((int)rdram)+(tlb_LUT_r[start>>12]&0xFFFFF000)+(((int)addr)&0xFFF)-0x80000000);
7945 if((signed int)memory_map[start>>12]>=0) {
7946 source = (u_int *)((u_int)(start+(memory_map[start>>12]<<2)));
7947 pagelimit=(start+4096)&0xFFFFF000;
7948 int map=memory_map[start>>12];
7949 int i;
7950 for(i=0;i<5;i++) {
7951 //printf("start: %x next: %x\n",map,memory_map[pagelimit>>12]);
7952 if((map&0xBFFFFFFF)==(memory_map[pagelimit>>12]&0xBFFFFFFF)) pagelimit+=4096;
7953 }
7954 assem_debug("pagelimit=%x\n",pagelimit);
7955 assem_debug("mapping=%x (%x)\n",memory_map[start>>12],(memory_map[start>>12]<<2)+start);
7956 }
7957 else {
7958 assem_debug("Compile at unmapped memory address: %x \n", (int)addr);
7959 //assem_debug("start: %x next: %x\n",memory_map[start>>12],memory_map[(start+4096)>>12]);
560e4a12 7960 return -1; // Caller will invoke exception handler
57871462 7961 }
7962 //printf("source= %x\n",(int)source);
7963 }
90ae6d4e 7964#endif
57871462 7965 else {
7966 printf("Compile at bogus memory address: %x \n", (int)addr);
7967 exit(1);
7968 }
7969
7970 /* Pass 1: disassemble */
7971 /* Pass 2: register dependencies, branch targets */
7972 /* Pass 3: register allocation */
7973 /* Pass 4: branch dependencies */
7974 /* Pass 5: pre-alloc */
7975 /* Pass 6: optimize clean/dirty state */
7976 /* Pass 7: flag 32-bit registers */
7977 /* Pass 8: assembly */
7978 /* Pass 9: linker */
7979 /* Pass 10: garbage collection / free memory */
7980
7981 int i,j;
7982 int done=0;
7983 unsigned int type,op,op2;
7984
7985 //printf("addr = %x source = %x %x\n", addr,source,source[0]);
7986
7987 /* Pass 1 disassembly */
7988
7989 for(i=0;!done;i++) {
e1190b87 7990 bt[i]=0;likely[i]=0;ooo[i]=0;op2=0;
7991 minimum_free_regs[i]=0;
57871462 7992 opcode[i]=op=source[i]>>26;
7993 switch(op)
7994 {
7995 case 0x00: strcpy(insn[i],"special"); type=NI;
7996 op2=source[i]&0x3f;
7997 switch(op2)
7998 {
7999 case 0x00: strcpy(insn[i],"SLL"); type=SHIFTIMM; break;
8000 case 0x02: strcpy(insn[i],"SRL"); type=SHIFTIMM; break;
8001 case 0x03: strcpy(insn[i],"SRA"); type=SHIFTIMM; break;
8002 case 0x04: strcpy(insn[i],"SLLV"); type=SHIFT; break;
8003 case 0x06: strcpy(insn[i],"SRLV"); type=SHIFT; break;
8004 case 0x07: strcpy(insn[i],"SRAV"); type=SHIFT; break;
8005 case 0x08: strcpy(insn[i],"JR"); type=RJUMP; break;
8006 case 0x09: strcpy(insn[i],"JALR"); type=RJUMP; break;
8007 case 0x0C: strcpy(insn[i],"SYSCALL"); type=SYSCALL; break;
8008 case 0x0D: strcpy(insn[i],"BREAK"); type=OTHER; break;
8009 case 0x0F: strcpy(insn[i],"SYNC"); type=OTHER; break;
8010 case 0x10: strcpy(insn[i],"MFHI"); type=MOV; break;
8011 case 0x11: strcpy(insn[i],"MTHI"); type=MOV; break;
8012 case 0x12: strcpy(insn[i],"MFLO"); type=MOV; break;
8013 case 0x13: strcpy(insn[i],"MTLO"); type=MOV; break;
57871462 8014 case 0x18: strcpy(insn[i],"MULT"); type=MULTDIV; break;
8015 case 0x19: strcpy(insn[i],"MULTU"); type=MULTDIV; break;
8016 case 0x1A: strcpy(insn[i],"DIV"); type=MULTDIV; break;
8017 case 0x1B: strcpy(insn[i],"DIVU"); type=MULTDIV; break;
57871462 8018 case 0x20: strcpy(insn[i],"ADD"); type=ALU; break;
8019 case 0x21: strcpy(insn[i],"ADDU"); type=ALU; break;
8020 case 0x22: strcpy(insn[i],"SUB"); type=ALU; break;
8021 case 0x23: strcpy(insn[i],"SUBU"); type=ALU; break;
8022 case 0x24: strcpy(insn[i],"AND"); type=ALU; break;
8023 case 0x25: strcpy(insn[i],"OR"); type=ALU; break;
8024 case 0x26: strcpy(insn[i],"XOR"); type=ALU; break;
8025 case 0x27: strcpy(insn[i],"NOR"); type=ALU; break;
8026 case 0x2A: strcpy(insn[i],"SLT"); type=ALU; break;
8027 case 0x2B: strcpy(insn[i],"SLTU"); type=ALU; break;
57871462 8028 case 0x30: strcpy(insn[i],"TGE"); type=NI; break;
8029 case 0x31: strcpy(insn[i],"TGEU"); type=NI; break;
8030 case 0x32: strcpy(insn[i],"TLT"); type=NI; break;
8031 case 0x33: strcpy(insn[i],"TLTU"); type=NI; break;
8032 case 0x34: strcpy(insn[i],"TEQ"); type=NI; break;
8033 case 0x36: strcpy(insn[i],"TNE"); type=NI; break;
7f2607ea 8034#ifndef FORCE32
8035 case 0x14: strcpy(insn[i],"DSLLV"); type=SHIFT; break;
8036 case 0x16: strcpy(insn[i],"DSRLV"); type=SHIFT; break;
8037 case 0x17: strcpy(insn[i],"DSRAV"); type=SHIFT; break;
8038 case 0x1C: strcpy(insn[i],"DMULT"); type=MULTDIV; break;
8039 case 0x1D: strcpy(insn[i],"DMULTU"); type=MULTDIV; break;
8040 case 0x1E: strcpy(insn[i],"DDIV"); type=MULTDIV; break;
8041 case 0x1F: strcpy(insn[i],"DDIVU"); type=MULTDIV; break;
8042 case 0x2C: strcpy(insn[i],"DADD"); type=ALU; break;
8043 case 0x2D: strcpy(insn[i],"DADDU"); type=ALU; break;
8044 case 0x2E: strcpy(insn[i],"DSUB"); type=ALU; break;
8045 case 0x2F: strcpy(insn[i],"DSUBU"); type=ALU; break;
57871462 8046 case 0x38: strcpy(insn[i],"DSLL"); type=SHIFTIMM; break;
8047 case 0x3A: strcpy(insn[i],"DSRL"); type=SHIFTIMM; break;
8048 case 0x3B: strcpy(insn[i],"DSRA"); type=SHIFTIMM; break;
8049 case 0x3C: strcpy(insn[i],"DSLL32"); type=SHIFTIMM; break;
8050 case 0x3E: strcpy(insn[i],"DSRL32"); type=SHIFTIMM; break;
8051 case 0x3F: strcpy(insn[i],"DSRA32"); type=SHIFTIMM; break;
7f2607ea 8052#endif
57871462 8053 }
8054 break;
8055 case 0x01: strcpy(insn[i],"regimm"); type=NI;
8056 op2=(source[i]>>16)&0x1f;
8057 switch(op2)
8058 {
8059 case 0x00: strcpy(insn[i],"BLTZ"); type=SJUMP; break;
8060 case 0x01: strcpy(insn[i],"BGEZ"); type=SJUMP; break;
8061 case 0x02: strcpy(insn[i],"BLTZL"); type=SJUMP; break;
8062 case 0x03: strcpy(insn[i],"BGEZL"); type=SJUMP; break;
8063 case 0x08: strcpy(insn[i],"TGEI"); type=NI; break;
8064 case 0x09: strcpy(insn[i],"TGEIU"); type=NI; break;
8065 case 0x0A: strcpy(insn[i],"TLTI"); type=NI; break;
8066 case 0x0B: strcpy(insn[i],"TLTIU"); type=NI; break;
8067 case 0x0C: strcpy(insn[i],"TEQI"); type=NI; break;
8068 case 0x0E: strcpy(insn[i],"TNEI"); type=NI; break;
8069 case 0x10: strcpy(insn[i],"BLTZAL"); type=SJUMP; break;
8070 case 0x11: strcpy(insn[i],"BGEZAL"); type=SJUMP; break;
8071 case 0x12: strcpy(insn[i],"BLTZALL"); type=SJUMP; break;
8072 case 0x13: strcpy(insn[i],"BGEZALL"); type=SJUMP; break;
8073 }
8074 break;
8075 case 0x02: strcpy(insn[i],"J"); type=UJUMP; break;
8076 case 0x03: strcpy(insn[i],"JAL"); type=UJUMP; break;
8077 case 0x04: strcpy(insn[i],"BEQ"); type=CJUMP; break;
8078 case 0x05: strcpy(insn[i],"BNE"); type=CJUMP; break;
8079 case 0x06: strcpy(insn[i],"BLEZ"); type=CJUMP; break;
8080 case 0x07: strcpy(insn[i],"BGTZ"); type=CJUMP; break;
8081 case 0x08: strcpy(insn[i],"ADDI"); type=IMM16; break;
8082 case 0x09: strcpy(insn[i],"ADDIU"); type=IMM16; break;
8083 case 0x0A: strcpy(insn[i],"SLTI"); type=IMM16; break;
8084 case 0x0B: strcpy(insn[i],"SLTIU"); type=IMM16; break;
8085 case 0x0C: strcpy(insn[i],"ANDI"); type=IMM16; break;
8086 case 0x0D: strcpy(insn[i],"ORI"); type=IMM16; break;
8087 case 0x0E: strcpy(insn[i],"XORI"); type=IMM16; break;
8088 case 0x0F: strcpy(insn[i],"LUI"); type=IMM16; break;
8089 case 0x10: strcpy(insn[i],"cop0"); type=NI;
8090 op2=(source[i]>>21)&0x1f;
8091 switch(op2)
8092 {
8093 case 0x00: strcpy(insn[i],"MFC0"); type=COP0; break;
8094 case 0x04: strcpy(insn[i],"MTC0"); type=COP0; break;
8095 case 0x10: strcpy(insn[i],"tlb"); type=NI;
8096 switch(source[i]&0x3f)
8097 {
8098 case 0x01: strcpy(insn[i],"TLBR"); type=COP0; break;
8099 case 0x02: strcpy(insn[i],"TLBWI"); type=COP0; break;
8100 case 0x06: strcpy(insn[i],"TLBWR"); type=COP0; break;
8101 case 0x08: strcpy(insn[i],"TLBP"); type=COP0; break;
576bbd8f 8102#ifdef PCSX
8103 case 0x10: strcpy(insn[i],"RFE"); type=COP0; break;
8104#else
57871462 8105 case 0x18: strcpy(insn[i],"ERET"); type=COP0; break;
576bbd8f 8106#endif
57871462 8107 }
8108 }
8109 break;
8110 case 0x11: strcpy(insn[i],"cop1"); type=NI;
8111 op2=(source[i]>>21)&0x1f;
8112 switch(op2)
8113 {
8114 case 0x00: strcpy(insn[i],"MFC1"); type=COP1; break;
8115 case 0x01: strcpy(insn[i],"DMFC1"); type=COP1; break;
8116 case 0x02: strcpy(insn[i],"CFC1"); type=COP1; break;
8117 case 0x04: strcpy(insn[i],"MTC1"); type=COP1; break;
8118 case 0x05: strcpy(insn[i],"DMTC1"); type=COP1; break;
8119 case 0x06: strcpy(insn[i],"CTC1"); type=COP1; break;
8120 case 0x08: strcpy(insn[i],"BC1"); type=FJUMP;
8121 switch((source[i]>>16)&0x3)
8122 {
8123 case 0x00: strcpy(insn[i],"BC1F"); break;
8124 case 0x01: strcpy(insn[i],"BC1T"); break;
8125 case 0x02: strcpy(insn[i],"BC1FL"); break;
8126 case 0x03: strcpy(insn[i],"BC1TL"); break;
8127 }
8128 break;
8129 case 0x10: strcpy(insn[i],"C1.S"); type=NI;
8130 switch(source[i]&0x3f)
8131 {
8132 case 0x00: strcpy(insn[i],"ADD.S"); type=FLOAT; break;
8133 case 0x01: strcpy(insn[i],"SUB.S"); type=FLOAT; break;
8134 case 0x02: strcpy(insn[i],"MUL.S"); type=FLOAT; break;
8135 case 0x03: strcpy(insn[i],"DIV.S"); type=FLOAT; break;
8136 case 0x04: strcpy(insn[i],"SQRT.S"); type=FLOAT; break;
8137 case 0x05: strcpy(insn[i],"ABS.S"); type=FLOAT; break;
8138 case 0x06: strcpy(insn[i],"MOV.S"); type=FLOAT; break;
8139 case 0x07: strcpy(insn[i],"NEG.S"); type=FLOAT; break;
8140 case 0x08: strcpy(insn[i],"ROUND.L.S"); type=FCONV; break;
8141 case 0x09: strcpy(insn[i],"TRUNC.L.S"); type=FCONV; break;
8142 case 0x0A: strcpy(insn[i],"CEIL.L.S"); type=FCONV; break;
8143 case 0x0B: strcpy(insn[i],"FLOOR.L.S"); type=FCONV; break;
8144 case 0x0C: strcpy(insn[i],"ROUND.W.S"); type=FCONV; break;
8145 case 0x0D: strcpy(insn[i],"TRUNC.W.S"); type=FCONV; break;
8146 case 0x0E: strcpy(insn[i],"CEIL.W.S"); type=FCONV; break;
8147 case 0x0F: strcpy(insn[i],"FLOOR.W.S"); type=FCONV; break;
8148 case 0x21: strcpy(insn[i],"CVT.D.S"); type=FCONV; break;
8149 case 0x24: strcpy(insn[i],"CVT.W.S"); type=FCONV; break;
8150 case 0x25: strcpy(insn[i],"CVT.L.S"); type=FCONV; break;
8151 case 0x30: strcpy(insn[i],"C.F.S"); type=FCOMP; break;
8152 case 0x31: strcpy(insn[i],"C.UN.S"); type=FCOMP; break;
8153 case 0x32: strcpy(insn[i],"C.EQ.S"); type=FCOMP; break;
8154 case 0x33: strcpy(insn[i],"C.UEQ.S"); type=FCOMP; break;
8155 case 0x34: strcpy(insn[i],"C.OLT.S"); type=FCOMP; break;
8156 case 0x35: strcpy(insn[i],"C.ULT.S"); type=FCOMP; break;
8157 case 0x36: strcpy(insn[i],"C.OLE.S"); type=FCOMP; break;
8158 case 0x37: strcpy(insn[i],"C.ULE.S"); type=FCOMP; break;
8159 case 0x38: strcpy(insn[i],"C.SF.S"); type=FCOMP; break;
8160 case 0x39: strcpy(insn[i],"C.NGLE.S"); type=FCOMP; break;
8161 case 0x3A: strcpy(insn[i],"C.SEQ.S"); type=FCOMP; break;
8162 case 0x3B: strcpy(insn[i],"C.NGL.S"); type=FCOMP; break;
8163 case 0x3C: strcpy(insn[i],"C.LT.S"); type=FCOMP; break;
8164 case 0x3D: strcpy(insn[i],"C.NGE.S"); type=FCOMP; break;
8165 case 0x3E: strcpy(insn[i],"C.LE.S"); type=FCOMP; break;
8166 case 0x3F: strcpy(insn[i],"C.NGT.S"); type=FCOMP; break;
8167 }
8168 break;
8169 case 0x11: strcpy(insn[i],"C1.D"); type=NI;
8170 switch(source[i]&0x3f)
8171 {
8172 case 0x00: strcpy(insn[i],"ADD.D"); type=FLOAT; break;
8173 case 0x01: strcpy(insn[i],"SUB.D"); type=FLOAT; break;
8174 case 0x02: strcpy(insn[i],"MUL.D"); type=FLOAT; break;
8175 case 0x03: strcpy(insn[i],"DIV.D"); type=FLOAT; break;
8176 case 0x04: strcpy(insn[i],"SQRT.D"); type=FLOAT; break;
8177 case 0x05: strcpy(insn[i],"ABS.D"); type=FLOAT; break;
8178 case 0x06: strcpy(insn[i],"MOV.D"); type=FLOAT; break;
8179 case 0x07: strcpy(insn[i],"NEG.D"); type=FLOAT; break;
8180 case 0x08: strcpy(insn[i],"ROUND.L.D"); type=FCONV; break;
8181 case 0x09: strcpy(insn[i],"TRUNC.L.D"); type=FCONV; break;
8182 case 0x0A: strcpy(insn[i],"CEIL.L.D"); type=FCONV; break;
8183 case 0x0B: strcpy(insn[i],"FLOOR.L.D"); type=FCONV; break;
8184 case 0x0C: strcpy(insn[i],"ROUND.W.D"); type=FCONV; break;
8185 case 0x0D: strcpy(insn[i],"TRUNC.W.D"); type=FCONV; break;
8186 case 0x0E: strcpy(insn[i],"CEIL.W.D"); type=FCONV; break;
8187 case 0x0F: strcpy(insn[i],"FLOOR.W.D"); type=FCONV; break;
8188 case 0x20: strcpy(insn[i],"CVT.S.D"); type=FCONV; break;
8189 case 0x24: strcpy(insn[i],"CVT.W.D"); type=FCONV; break;
8190 case 0x25: strcpy(insn[i],"CVT.L.D"); type=FCONV; break;
8191 case 0x30: strcpy(insn[i],"C.F.D"); type=FCOMP; break;
8192 case 0x31: strcpy(insn[i],"C.UN.D"); type=FCOMP; break;
8193 case 0x32: strcpy(insn[i],"C.EQ.D"); type=FCOMP; break;
8194 case 0x33: strcpy(insn[i],"C.UEQ.D"); type=FCOMP; break;
8195 case 0x34: strcpy(insn[i],"C.OLT.D"); type=FCOMP; break;
8196 case 0x35: strcpy(insn[i],"C.ULT.D"); type=FCOMP; break;
8197 case 0x36: strcpy(insn[i],"C.OLE.D"); type=FCOMP; break;
8198 case 0x37: strcpy(insn[i],"C.ULE.D"); type=FCOMP; break;
8199 case 0x38: strcpy(insn[i],"C.SF.D"); type=FCOMP; break;
8200 case 0x39: strcpy(insn[i],"C.NGLE.D"); type=FCOMP; break;
8201 case 0x3A: strcpy(insn[i],"C.SEQ.D"); type=FCOMP; break;
8202 case 0x3B: strcpy(insn[i],"C.NGL.D"); type=FCOMP; break;
8203 case 0x3C: strcpy(insn[i],"C.LT.D"); type=FCOMP; break;
8204 case 0x3D: strcpy(insn[i],"C.NGE.D"); type=FCOMP; break;
8205 case 0x3E: strcpy(insn[i],"C.LE.D"); type=FCOMP; break;
8206 case 0x3F: strcpy(insn[i],"C.NGT.D"); type=FCOMP; break;
8207 }
8208 break;
8209 case 0x14: strcpy(insn[i],"C1.W"); type=NI;
8210 switch(source[i]&0x3f)
8211 {
8212 case 0x20: strcpy(insn[i],"CVT.S.W"); type=FCONV; break;
8213 case 0x21: strcpy(insn[i],"CVT.D.W"); type=FCONV; break;
8214 }
8215 break;
8216 case 0x15: strcpy(insn[i],"C1.L"); type=NI;
8217 switch(source[i]&0x3f)
8218 {
8219 case 0x20: strcpy(insn[i],"CVT.S.L"); type=FCONV; break;
8220 case 0x21: strcpy(insn[i],"CVT.D.L"); type=FCONV; break;
8221 }
8222 break;
8223 }
8224 break;
909168d6 8225#ifndef FORCE32
57871462 8226 case 0x14: strcpy(insn[i],"BEQL"); type=CJUMP; break;
8227 case 0x15: strcpy(insn[i],"BNEL"); type=CJUMP; break;
8228 case 0x16: strcpy(insn[i],"BLEZL"); type=CJUMP; break;
8229 case 0x17: strcpy(insn[i],"BGTZL"); type=CJUMP; break;
8230 case 0x18: strcpy(insn[i],"DADDI"); type=IMM16; break;
8231 case 0x19: strcpy(insn[i],"DADDIU"); type=IMM16; break;
8232 case 0x1A: strcpy(insn[i],"LDL"); type=LOADLR; break;
8233 case 0x1B: strcpy(insn[i],"LDR"); type=LOADLR; break;
996cc15d 8234#endif
57871462 8235 case 0x20: strcpy(insn[i],"LB"); type=LOAD; break;
8236 case 0x21: strcpy(insn[i],"LH"); type=LOAD; break;
8237 case 0x22: strcpy(insn[i],"LWL"); type=LOADLR; break;
8238 case 0x23: strcpy(insn[i],"LW"); type=LOAD; break;
8239 case 0x24: strcpy(insn[i],"LBU"); type=LOAD; break;
8240 case 0x25: strcpy(insn[i],"LHU"); type=LOAD; break;
8241 case 0x26: strcpy(insn[i],"LWR"); type=LOADLR; break;
64bd6f82 8242#ifndef FORCE32
57871462 8243 case 0x27: strcpy(insn[i],"LWU"); type=LOAD; break;
64bd6f82 8244#endif
57871462 8245 case 0x28: strcpy(insn[i],"SB"); type=STORE; break;
8246 case 0x29: strcpy(insn[i],"SH"); type=STORE; break;
8247 case 0x2A: strcpy(insn[i],"SWL"); type=STORELR; break;
8248 case 0x2B: strcpy(insn[i],"SW"); type=STORE; break;
996cc15d 8249#ifndef FORCE32
57871462 8250 case 0x2C: strcpy(insn[i],"SDL"); type=STORELR; break;
8251 case 0x2D: strcpy(insn[i],"SDR"); type=STORELR; break;
996cc15d 8252#endif
57871462 8253 case 0x2E: strcpy(insn[i],"SWR"); type=STORELR; break;
8254 case 0x2F: strcpy(insn[i],"CACHE"); type=NOP; break;
8255 case 0x30: strcpy(insn[i],"LL"); type=NI; break;
8256 case 0x31: strcpy(insn[i],"LWC1"); type=C1LS; break;
996cc15d 8257#ifndef FORCE32
57871462 8258 case 0x34: strcpy(insn[i],"LLD"); type=NI; break;
8259 case 0x35: strcpy(insn[i],"LDC1"); type=C1LS; break;
8260 case 0x37: strcpy(insn[i],"LD"); type=LOAD; break;
996cc15d 8261#endif
57871462 8262 case 0x38: strcpy(insn[i],"SC"); type=NI; break;
8263 case 0x39: strcpy(insn[i],"SWC1"); type=C1LS; break;
996cc15d 8264#ifndef FORCE32
57871462 8265 case 0x3C: strcpy(insn[i],"SCD"); type=NI; break;
8266 case 0x3D: strcpy(insn[i],"SDC1"); type=C1LS; break;
8267 case 0x3F: strcpy(insn[i],"SD"); type=STORE; break;
996cc15d 8268#endif
b9b61529 8269#ifdef PCSX
8270 case 0x12: strcpy(insn[i],"COP2"); type=NI;
c7abc864 8271 // note: COP MIPS-1 encoding differs from MIPS32
b9b61529 8272 op2=(source[i]>>21)&0x1f;
c7abc864 8273 if (source[i]&0x3f) {
8274 if (gte_handlers[source[i]&0x3f]!=NULL) {
8275 snprintf(insn[i], sizeof(insn[i]), "COP2 %x", source[i]&0x3f);
8276 type=C2OP;
8277 }
8278 }
8279 else switch(op2)
b9b61529 8280 {
8281 case 0x00: strcpy(insn[i],"MFC2"); type=COP2; break;
8282 case 0x02: strcpy(insn[i],"CFC2"); type=COP2; break;
8283 case 0x04: strcpy(insn[i],"MTC2"); type=COP2; break;
8284 case 0x06: strcpy(insn[i],"CTC2"); type=COP2; break;
b9b61529 8285 }
8286 break;
8287 case 0x32: strcpy(insn[i],"LWC2"); type=C2LS; break;
8288 case 0x3A: strcpy(insn[i],"SWC2"); type=C2LS; break;
8289 case 0x3B: strcpy(insn[i],"HLECALL"); type=HLECALL; break;
8290#endif
90ae6d4e 8291 default: strcpy(insn[i],"???"); type=NI;
75dec299 8292 printf("NI %08x @%08x (%08x)\n", source[i], addr + i*4, addr);
90ae6d4e 8293 break;
57871462 8294 }
8295 itype[i]=type;
8296 opcode2[i]=op2;
8297 /* Get registers/immediates */
8298 lt1[i]=0;
8299 us1[i]=0;
8300 us2[i]=0;
8301 dep1[i]=0;
8302 dep2[i]=0;
8303 switch(type) {
8304 case LOAD:
8305 rs1[i]=(source[i]>>21)&0x1f;
8306 rs2[i]=0;
8307 rt1[i]=(source[i]>>16)&0x1f;
8308 rt2[i]=0;
8309 imm[i]=(short)source[i];
8310 break;
8311 case STORE:
8312 case STORELR:
8313 rs1[i]=(source[i]>>21)&0x1f;
8314 rs2[i]=(source[i]>>16)&0x1f;
8315 rt1[i]=0;
8316 rt2[i]=0;
8317 imm[i]=(short)source[i];
8318 if(op==0x2c||op==0x2d||op==0x3f) us1[i]=rs2[i]; // 64-bit SDL/SDR/SD
8319 break;
8320 case LOADLR:
8321 // LWL/LWR only load part of the register,
8322 // therefore the target register must be treated as a source too
8323 rs1[i]=(source[i]>>21)&0x1f;
8324 rs2[i]=(source[i]>>16)&0x1f;
8325 rt1[i]=(source[i]>>16)&0x1f;
8326 rt2[i]=0;
8327 imm[i]=(short)source[i];
8328 if(op==0x1a||op==0x1b) us1[i]=rs2[i]; // LDR/LDL
8329 if(op==0x26) dep1[i]=rt1[i]; // LWR
8330 break;
8331 case IMM16:
8332 if (op==0x0f) rs1[i]=0; // LUI instruction has no source register
8333 else rs1[i]=(source[i]>>21)&0x1f;
8334 rs2[i]=0;
8335 rt1[i]=(source[i]>>16)&0x1f;
8336 rt2[i]=0;
8337 if(op>=0x0c&&op<=0x0e) { // ANDI/ORI/XORI
8338 imm[i]=(unsigned short)source[i];
8339 }else{
8340 imm[i]=(short)source[i];
8341 }
8342 if(op==0x18||op==0x19) us1[i]=rs1[i]; // DADDI/DADDIU
8343 if(op==0x0a||op==0x0b) us1[i]=rs1[i]; // SLTI/SLTIU
8344 if(op==0x0d||op==0x0e) dep1[i]=rs1[i]; // ORI/XORI
8345 break;
8346 case UJUMP:
8347 rs1[i]=0;
8348 rs2[i]=0;
8349 rt1[i]=0;
8350 rt2[i]=0;
8351 // The JAL instruction writes to r31.
8352 if (op&1) {
8353 rt1[i]=31;
8354 }
8355 rs2[i]=CCREG;
8356 break;
8357 case RJUMP:
8358 rs1[i]=(source[i]>>21)&0x1f;
8359 rs2[i]=0;
8360 rt1[i]=0;
8361 rt2[i]=0;
5067f341 8362 // The JALR instruction writes to rd.
57871462 8363 if (op2&1) {
5067f341 8364 rt1[i]=(source[i]>>11)&0x1f;
57871462 8365 }
8366 rs2[i]=CCREG;
8367 break;
8368 case CJUMP:
8369 rs1[i]=(source[i]>>21)&0x1f;
8370 rs2[i]=(source[i]>>16)&0x1f;
8371 rt1[i]=0;
8372 rt2[i]=0;
8373 if(op&2) { // BGTZ/BLEZ
8374 rs2[i]=0;
8375 }
8376 us1[i]=rs1[i];
8377 us2[i]=rs2[i];
8378 likely[i]=op>>4;
8379 break;
8380 case SJUMP:
8381 rs1[i]=(source[i]>>21)&0x1f;
8382 rs2[i]=CCREG;
8383 rt1[i]=0;
8384 rt2[i]=0;
8385 us1[i]=rs1[i];
8386 if(op2&0x10) { // BxxAL
8387 rt1[i]=31;
8388 // NOTE: If the branch is not taken, r31 is still overwritten
8389 }
8390 likely[i]=(op2&2)>>1;
8391 break;
8392 case FJUMP:
8393 rs1[i]=FSREG;
8394 rs2[i]=CSREG;
8395 rt1[i]=0;
8396 rt2[i]=0;
8397 likely[i]=((source[i])>>17)&1;
8398 break;
8399 case ALU:
8400 rs1[i]=(source[i]>>21)&0x1f; // source
8401 rs2[i]=(source[i]>>16)&0x1f; // subtract amount
8402 rt1[i]=(source[i]>>11)&0x1f; // destination
8403 rt2[i]=0;
8404 if(op2==0x2a||op2==0x2b) { // SLT/SLTU
8405 us1[i]=rs1[i];us2[i]=rs2[i];
8406 }
8407 else if(op2>=0x24&&op2<=0x27) { // AND/OR/XOR/NOR
8408 dep1[i]=rs1[i];dep2[i]=rs2[i];
8409 }
8410 else if(op2>=0x2c&&op2<=0x2f) { // DADD/DSUB
8411 dep1[i]=rs1[i];dep2[i]=rs2[i];
8412 }
8413 break;
8414 case MULTDIV:
8415 rs1[i]=(source[i]>>21)&0x1f; // source
8416 rs2[i]=(source[i]>>16)&0x1f; // divisor
8417 rt1[i]=HIREG;
8418 rt2[i]=LOREG;
8419 if (op2>=0x1c&&op2<=0x1f) { // DMULT/DMULTU/DDIV/DDIVU
8420 us1[i]=rs1[i];us2[i]=rs2[i];
8421 }
8422 break;
8423 case MOV:
8424 rs1[i]=0;
8425 rs2[i]=0;
8426 rt1[i]=0;
8427 rt2[i]=0;
8428 if(op2==0x10) rs1[i]=HIREG; // MFHI
8429 if(op2==0x11) rt1[i]=HIREG; // MTHI
8430 if(op2==0x12) rs1[i]=LOREG; // MFLO
8431 if(op2==0x13) rt1[i]=LOREG; // MTLO
8432 if((op2&0x1d)==0x10) rt1[i]=(source[i]>>11)&0x1f; // MFxx
8433 if((op2&0x1d)==0x11) rs1[i]=(source[i]>>21)&0x1f; // MTxx
8434 dep1[i]=rs1[i];
8435 break;
8436 case SHIFT:
8437 rs1[i]=(source[i]>>16)&0x1f; // target of shift
8438 rs2[i]=(source[i]>>21)&0x1f; // shift amount
8439 rt1[i]=(source[i]>>11)&0x1f; // destination
8440 rt2[i]=0;
8441 // DSLLV/DSRLV/DSRAV are 64-bit
8442 if(op2>=0x14&&op2<=0x17) us1[i]=rs1[i];
8443 break;
8444 case SHIFTIMM:
8445 rs1[i]=(source[i]>>16)&0x1f;
8446 rs2[i]=0;
8447 rt1[i]=(source[i]>>11)&0x1f;
8448 rt2[i]=0;
8449 imm[i]=(source[i]>>6)&0x1f;
8450 // DSxx32 instructions
8451 if(op2>=0x3c) imm[i]|=0x20;
8452 // DSLL/DSRL/DSRA/DSRA32/DSRL32 but not DSLL32 require 64-bit source
8453 if(op2>=0x38&&op2!=0x3c) us1[i]=rs1[i];
8454 break;
8455 case COP0:
8456 rs1[i]=0;
8457 rs2[i]=0;
8458 rt1[i]=0;
8459 rt2[i]=0;
8460 if(op2==0) rt1[i]=(source[i]>>16)&0x1F; // MFC0
8461 if(op2==4) rs1[i]=(source[i]>>16)&0x1F; // MTC0
8462 if(op2==4&&((source[i]>>11)&0x1f)==12) rt2[i]=CSREG; // Status
8463 if(op2==16) if((source[i]&0x3f)==0x18) rs2[i]=CCREG; // ERET
8464 break;
8465 case COP1:
b9b61529 8466 case COP2:
57871462 8467 rs1[i]=0;
8468 rs2[i]=0;
8469 rt1[i]=0;
8470 rt2[i]=0;
8471 if(op2<3) rt1[i]=(source[i]>>16)&0x1F; // MFC1/DMFC1/CFC1
8472 if(op2>3) rs1[i]=(source[i]>>16)&0x1F; // MTC1/DMTC1/CTC1
8473 if(op2==5) us1[i]=rs1[i]; // DMTC1
8474 rs2[i]=CSREG;
8475 break;
8476 case C1LS:
8477 rs1[i]=(source[i]>>21)&0x1F;
8478 rs2[i]=CSREG;
8479 rt1[i]=0;
8480 rt2[i]=0;
8481 imm[i]=(short)source[i];
8482 break;
b9b61529 8483 case C2LS:
8484 rs1[i]=(source[i]>>21)&0x1F;
8485 rs2[i]=0;
8486 rt1[i]=0;
8487 rt2[i]=0;
8488 imm[i]=(short)source[i];
8489 break;
57871462 8490 case FLOAT:
8491 case FCONV:
8492 rs1[i]=0;
8493 rs2[i]=CSREG;
8494 rt1[i]=0;
8495 rt2[i]=0;
8496 break;
8497 case FCOMP:
8498 rs1[i]=FSREG;
8499 rs2[i]=CSREG;
8500 rt1[i]=FSREG;
8501 rt2[i]=0;
8502 break;
8503 case SYSCALL:
7139f3c8 8504 case HLECALL:
1e973cb0 8505 case INTCALL:
57871462 8506 rs1[i]=CCREG;
8507 rs2[i]=0;
8508 rt1[i]=0;
8509 rt2[i]=0;
8510 break;
8511 default:
8512 rs1[i]=0;
8513 rs2[i]=0;
8514 rt1[i]=0;
8515 rt2[i]=0;
8516 }
8517 /* Calculate branch target addresses */
8518 if(type==UJUMP)
8519 ba[i]=((start+i*4+4)&0xF0000000)|(((unsigned int)source[i]<<6)>>4);
8520 else if(type==CJUMP&&rs1[i]==rs2[i]&&(op&1))
8521 ba[i]=start+i*4+8; // Ignore never taken branch
8522 else if(type==SJUMP&&rs1[i]==0&&!(op2&1))
8523 ba[i]=start+i*4+8; // Ignore never taken branch
8524 else if(type==CJUMP||type==SJUMP||type==FJUMP)
8525 ba[i]=start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14);
8526 else ba[i]=-1;
26869094 8527#ifdef PCSX
3e535354 8528 if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)) {
8529 int do_in_intrp=0;
8530 // branch in delay slot?
8531 if(type==RJUMP||type==UJUMP||type==CJUMP||type==SJUMP||type==FJUMP) {
8532 // don't handle first branch and call interpreter if it's hit
8533 printf("branch in delay slot @%08x (%08x)\n", addr + i*4, addr);
8534 do_in_intrp=1;
8535 }
8536 // basic load delay detection
8537 else if((type==LOAD||type==LOADLR||type==COP0||type==COP2||type==C2LS)&&rt1[i]!=0) {
8538 int t=(ba[i-1]-start)/4;
8539 if(0 <= t && t < i &&(rt1[i]==rs1[t]||rt1[i]==rs2[t])&&itype[t]!=CJUMP&&itype[t]!=SJUMP) {
8540 // jump target wants DS result - potential load delay effect
8541 printf("load delay @%08x (%08x)\n", addr + i*4, addr);
8542 do_in_intrp=1;
8543 bt[t+1]=1; // expected return from interpreter
8544 }
8545 else if(i>=2&&rt1[i-2]==2&&rt1[i]==2&&rs1[i]!=2&&rs2[i]!=2&&rs1[i-1]!=2&&rs2[i-1]!=2&&
8546 !(i>=3&&(itype[i-3]==RJUMP||itype[i-3]==UJUMP||itype[i-3]==CJUMP||itype[i-3]==SJUMP))) {
8547 // v0 overwrite like this is a sign of trouble, bail out
8548 printf("v0 overwrite @%08x (%08x)\n", addr + i*4, addr);
8549 do_in_intrp=1;
8550 }
8551 }
3e535354 8552 if(do_in_intrp) {
8553 rs1[i-1]=CCREG;
8554 rs2[i-1]=rt1[i-1]=rt2[i-1]=0;
26869094 8555 ba[i-1]=-1;
8556 itype[i-1]=INTCALL;
8557 done=2;
3e535354 8558 i--; // don't compile the DS
26869094 8559 }
3e535354 8560 }
26869094 8561#endif
3e535354 8562 /* Is this the end of the block? */
8563 if(i>0&&(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)) {
5067f341 8564 if(rt1[i-1]==0) { // Continue past subroutine call (JAL)
1e973cb0 8565 done=2;
57871462 8566 }
8567 else {
8568 if(stop_after_jal) done=1;
8569 // Stop on BREAK
8570 if((source[i+1]&0xfc00003f)==0x0d) done=1;
8571 }
8572 // Don't recompile stuff that's already compiled
8573 if(check_addr(start+i*4+4)) done=1;
8574 // Don't get too close to the limit
8575 if(i>MAXBLOCK/2) done=1;
8576 }
75dec299 8577 if(itype[i]==SYSCALL&&stop_after_jal) done=1;
1e973cb0 8578 if(itype[i]==HLECALL||itype[i]==INTCALL) done=2;
8579 if(done==2) {
8580 // Does the block continue due to a branch?
8581 for(j=i-1;j>=0;j--)
8582 {
2a706964 8583 if(ba[j]==start+i*4) done=j=0; // Branch into delay slot
1e973cb0 8584 if(ba[j]==start+i*4+4) done=j=0;
8585 if(ba[j]==start+i*4+8) done=j=0;
8586 }
8587 }
75dec299 8588 //assert(i<MAXBLOCK-1);
57871462 8589 if(start+i*4==pagelimit-4) done=1;
8590 assert(start+i*4<pagelimit);
8591 if (i==MAXBLOCK-1) done=1;
8592 // Stop if we're compiling junk
8593 if(itype[i]==NI&&opcode[i]==0x11) {
8594 done=stop_after_jal=1;
8595 printf("Disabled speculative precompilation\n");
8596 }
8597 }
8598 slen=i;
8599 if(itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==RJUMP||itype[i-1]==FJUMP) {
8600 if(start+i*4==pagelimit) {
8601 itype[i-1]=SPAN;
8602 }
8603 }
8604 assert(slen>0);
8605
8606 /* Pass 2 - Register dependencies and branch targets */
8607
8608 unneeded_registers(0,slen-1,0);
8609
8610 /* Pass 3 - Register allocation */
8611
8612 struct regstat current; // Current register allocations/status
8613 current.is32=1;
8614 current.dirty=0;
8615 current.u=unneeded_reg[0];
8616 current.uu=unneeded_reg_upper[0];
8617 clear_all_regs(current.regmap);
8618 alloc_reg(&current,0,CCREG);
8619 dirty_reg(&current,CCREG);
8620 current.isconst=0;
8621 current.wasconst=0;
8622 int ds=0;
8623 int cc=0;
5194fb95 8624 int hr=-1;
6ebf4adf 8625
8626#ifndef FORCE32
57871462 8627 provisional_32bit();
6ebf4adf 8628#endif
57871462 8629 if((u_int)addr&1) {
8630 // First instruction is delay slot
8631 cc=-1;
8632 bt[1]=1;
8633 ds=1;
8634 unneeded_reg[0]=1;
8635 unneeded_reg_upper[0]=1;
8636 current.regmap[HOST_BTREG]=BTREG;
8637 }
8638
8639 for(i=0;i<slen;i++)
8640 {
8641 if(bt[i])
8642 {
8643 int hr;
8644 for(hr=0;hr<HOST_REGS;hr++)
8645 {
8646 // Is this really necessary?
8647 if(current.regmap[hr]==0) current.regmap[hr]=-1;
8648 }
8649 current.isconst=0;
8650 }
8651 if(i>1)
8652 {
8653 if((opcode[i-2]&0x2f)==0x05) // BNE/BNEL
8654 {
8655 if(rs1[i-2]==0||rs2[i-2]==0)
8656 {
8657 if(rs1[i-2]) {
8658 current.is32|=1LL<<rs1[i-2];
8659 int hr=get_reg(current.regmap,rs1[i-2]|64);
8660 if(hr>=0) current.regmap[hr]=-1;
8661 }
8662 if(rs2[i-2]) {
8663 current.is32|=1LL<<rs2[i-2];
8664 int hr=get_reg(current.regmap,rs2[i-2]|64);
8665 if(hr>=0) current.regmap[hr]=-1;
8666 }
8667 }
8668 }
8669 }
6ebf4adf 8670#ifndef FORCE32
57871462 8671 // If something jumps here with 64-bit values
8672 // then promote those registers to 64 bits
8673 if(bt[i])
8674 {
8675 uint64_t temp_is32=current.is32;
8676 for(j=i-1;j>=0;j--)
8677 {
8678 if(ba[j]==start+i*4)
8679 temp_is32&=branch_regs[j].is32;
8680 }
8681 for(j=i;j<slen;j++)
8682 {
8683 if(ba[j]==start+i*4)
8684 //temp_is32=1;
8685 temp_is32&=p32[j];
8686 }
8687 if(temp_is32!=current.is32) {
8688 //printf("dumping 32-bit regs (%x)\n",start+i*4);
311301dc 8689 #ifndef DESTRUCTIVE_WRITEBACK
8690 if(ds)
8691 #endif
57871462 8692 for(hr=0;hr<HOST_REGS;hr++)
8693 {
8694 int r=current.regmap[hr];
8695 if(r>0&&r<64)
8696 {
8697 if((current.dirty>>hr)&((current.is32&~temp_is32)>>r)&1) {
8698 temp_is32|=1LL<<r;
8699 //printf("restore %d\n",r);
8700 }
8701 }
8702 }
57871462 8703 current.is32=temp_is32;
8704 }
8705 }
6ebf4adf 8706#else
24385cae 8707 current.is32=-1LL;
8708#endif
8709
57871462 8710 memcpy(regmap_pre[i],current.regmap,sizeof(current.regmap));
8711 regs[i].wasconst=current.isconst;
8712 regs[i].was32=current.is32;
8713 regs[i].wasdirty=current.dirty;
6ebf4adf 8714 #if defined(DESTRUCTIVE_WRITEBACK) && !defined(FORCE32)
57871462 8715 // To change a dirty register from 32 to 64 bits, we must write
8716 // it out during the previous cycle (for branches, 2 cycles)
8717 if(i<slen-1&&bt[i+1]&&itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP)
8718 {
8719 uint64_t temp_is32=current.is32;
8720 for(j=i-1;j>=0;j--)
8721 {
8722 if(ba[j]==start+i*4+4)
8723 temp_is32&=branch_regs[j].is32;
8724 }
8725 for(j=i;j<slen;j++)
8726 {
8727 if(ba[j]==start+i*4+4)
8728 //temp_is32=1;
8729 temp_is32&=p32[j];
8730 }
8731 if(temp_is32!=current.is32) {
8732 //printf("pre-dumping 32-bit regs (%x)\n",start+i*4);
8733 for(hr=0;hr<HOST_REGS;hr++)
8734 {
8735 int r=current.regmap[hr];
8736 if(r>0)
8737 {
8738 if((current.dirty>>hr)&((current.is32&~temp_is32)>>(r&63))&1) {
8739 if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP)
8740 {
8741 if(rs1[i]!=(r&63)&&rs2[i]!=(r&63))
8742 {
8743 //printf("dump %d/r%d\n",hr,r);
8744 current.regmap[hr]=-1;
8745 if(get_reg(current.regmap,r|64)>=0)
8746 current.regmap[get_reg(current.regmap,r|64)]=-1;
8747 }
8748 }
8749 }
8750 }
8751 }
8752 }
8753 }
8754 else if(i<slen-2&&bt[i+2]&&(source[i-1]>>16)!=0x1000&&(itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP))
8755 {
8756 uint64_t temp_is32=current.is32;
8757 for(j=i-1;j>=0;j--)
8758 {
8759 if(ba[j]==start+i*4+8)
8760 temp_is32&=branch_regs[j].is32;
8761 }
8762 for(j=i;j<slen;j++)
8763 {
8764 if(ba[j]==start+i*4+8)
8765 //temp_is32=1;
8766 temp_is32&=p32[j];
8767 }
8768 if(temp_is32!=current.is32) {
8769 //printf("pre-dumping 32-bit regs (%x)\n",start+i*4);
8770 for(hr=0;hr<HOST_REGS;hr++)
8771 {
8772 int r=current.regmap[hr];
8773 if(r>0)
8774 {
8775 if((current.dirty>>hr)&((current.is32&~temp_is32)>>(r&63))&1) {
8776 if(rs1[i]!=(r&63)&&rs2[i]!=(r&63)&&rs1[i+1]!=(r&63)&&rs2[i+1]!=(r&63))
8777 {
8778 //printf("dump %d/r%d\n",hr,r);
8779 current.regmap[hr]=-1;
8780 if(get_reg(current.regmap,r|64)>=0)
8781 current.regmap[get_reg(current.regmap,r|64)]=-1;
8782 }
8783 }
8784 }
8785 }
8786 }
8787 }
8788 #endif
8789 if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP) {
8790 if(i+1<slen) {
8791 current.u=unneeded_reg[i+1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
8792 current.uu=unneeded_reg_upper[i+1]&~((1LL<<us1[i])|(1LL<<us2[i]));
8793 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
8794 current.u|=1;
8795 current.uu|=1;
8796 } else {
8797 current.u=1;
8798 current.uu=1;
8799 }
8800 } else {
8801 if(i+1<slen) {
8802 current.u=branch_unneeded_reg[i]&~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
8803 current.uu=branch_unneeded_reg_upper[i]&~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
8804 if((~current.uu>>rt1[i+1])&1) current.uu&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
8805 current.u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
8806 current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
8807 current.u|=1;
8808 current.uu|=1;
8809 } else { printf("oops, branch at end of block with no delay slot\n");exit(1); }
8810 }
8811 is_ds[i]=ds;
8812 if(ds) {
8813 ds=0; // Skip delay slot, already allocated as part of branch
8814 // ...but we need to alloc it in case something jumps here
8815 if(i+1<slen) {
8816 current.u=branch_unneeded_reg[i-1]&unneeded_reg[i+1];
8817 current.uu=branch_unneeded_reg_upper[i-1]&unneeded_reg_upper[i+1];
8818 }else{
8819 current.u=branch_unneeded_reg[i-1];
8820 current.uu=branch_unneeded_reg_upper[i-1];
8821 }
8822 current.u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
8823 current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
8824 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
8825 current.u|=1;
8826 current.uu|=1;
8827 struct regstat temp;
8828 memcpy(&temp,&current,sizeof(current));
8829 temp.wasdirty=temp.dirty;
8830 temp.was32=temp.is32;
8831 // TODO: Take into account unconditional branches, as below
8832 delayslot_alloc(&temp,i);
8833 memcpy(regs[i].regmap,temp.regmap,sizeof(temp.regmap));
8834 regs[i].wasdirty=temp.wasdirty;
8835 regs[i].was32=temp.was32;
8836 regs[i].dirty=temp.dirty;
8837 regs[i].is32=temp.is32;
8838 regs[i].isconst=0;
8839 regs[i].wasconst=0;
8840 current.isconst=0;
8841 // Create entry (branch target) regmap
8842 for(hr=0;hr<HOST_REGS;hr++)
8843 {
8844 int r=temp.regmap[hr];
8845 if(r>=0) {
8846 if(r!=regmap_pre[i][hr]) {
8847 regs[i].regmap_entry[hr]=-1;
8848 }
8849 else
8850 {
8851 if(r<64){
8852 if((current.u>>r)&1) {
8853 regs[i].regmap_entry[hr]=-1;
8854 regs[i].regmap[hr]=-1;
8855 //Don't clear regs in the delay slot as the branch might need them
8856 //current.regmap[hr]=-1;
8857 }else
8858 regs[i].regmap_entry[hr]=r;
8859 }
8860 else {
8861 if((current.uu>>(r&63))&1) {
8862 regs[i].regmap_entry[hr]=-1;
8863 regs[i].regmap[hr]=-1;
8864 //Don't clear regs in the delay slot as the branch might need them
8865 //current.regmap[hr]=-1;
8866 }else
8867 regs[i].regmap_entry[hr]=r;
8868 }
8869 }
8870 } else {
8871 // First instruction expects CCREG to be allocated
8872 if(i==0&&hr==HOST_CCREG)
8873 regs[i].regmap_entry[hr]=CCREG;
8874 else
8875 regs[i].regmap_entry[hr]=-1;
8876 }
8877 }
8878 }
8879 else { // Not delay slot
8880 switch(itype[i]) {
8881 case UJUMP:
8882 //current.isconst=0; // DEBUG
8883 //current.wasconst=0; // DEBUG
8884 //regs[i].wasconst=0; // DEBUG
8885 clear_const(&current,rt1[i]);
8886 alloc_cc(&current,i);
8887 dirty_reg(&current,CCREG);
8888 if (rt1[i]==31) {
8889 alloc_reg(&current,i,31);
8890 dirty_reg(&current,31);
4ef8f67d 8891 //assert(rs1[i+1]!=31&&rs2[i+1]!=31);
8892 //assert(rt1[i+1]!=rt1[i]);
57871462 8893 #ifdef REG_PREFETCH
8894 alloc_reg(&current,i,PTEMP);
8895 #endif
8896 //current.is32|=1LL<<rt1[i];
8897 }
269bb29a 8898 ooo[i]=1;
8899 delayslot_alloc(&current,i+1);
57871462 8900 //current.isconst=0; // DEBUG
8901 ds=1;
8902 //printf("i=%d, isconst=%x\n",i,current.isconst);
8903 break;
8904 case RJUMP:
8905 //current.isconst=0;
8906 //current.wasconst=0;
8907 //regs[i].wasconst=0;
8908 clear_const(&current,rs1[i]);
8909 clear_const(&current,rt1[i]);
8910 alloc_cc(&current,i);
8911 dirty_reg(&current,CCREG);
8912 if(rs1[i]!=rt1[i+1]&&rs1[i]!=rt2[i+1]) {
8913 alloc_reg(&current,i,rs1[i]);
5067f341 8914 if (rt1[i]!=0) {
8915 alloc_reg(&current,i,rt1[i]);
8916 dirty_reg(&current,rt1[i]);
68b3faee 8917 assert(rs1[i+1]!=rt1[i]&&rs2[i+1]!=rt1[i]);
076655d1 8918 assert(rt1[i+1]!=rt1[i]);
57871462 8919 #ifdef REG_PREFETCH
8920 alloc_reg(&current,i,PTEMP);
8921 #endif
8922 }
8923 #ifdef USE_MINI_HT
8924 if(rs1[i]==31) { // JALR
8925 alloc_reg(&current,i,RHASH);
8926 #ifndef HOST_IMM_ADDR32
8927 alloc_reg(&current,i,RHTBL);
8928 #endif
8929 }
8930 #endif
8931 delayslot_alloc(&current,i+1);
8932 } else {
8933 // The delay slot overwrites our source register,
8934 // allocate a temporary register to hold the old value.
8935 current.isconst=0;
8936 current.wasconst=0;
8937 regs[i].wasconst=0;
8938 delayslot_alloc(&current,i+1);
8939 current.isconst=0;
8940 alloc_reg(&current,i,RTEMP);
8941 }
8942 //current.isconst=0; // DEBUG
e1190b87 8943 ooo[i]=1;
57871462 8944 ds=1;
8945 break;
8946 case CJUMP:
8947 //current.isconst=0;
8948 //current.wasconst=0;
8949 //regs[i].wasconst=0;
8950 clear_const(&current,rs1[i]);
8951 clear_const(&current,rs2[i]);
8952 if((opcode[i]&0x3E)==4) // BEQ/BNE
8953 {
8954 alloc_cc(&current,i);
8955 dirty_reg(&current,CCREG);
8956 if(rs1[i]) alloc_reg(&current,i,rs1[i]);
8957 if(rs2[i]) alloc_reg(&current,i,rs2[i]);
8958 if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
8959 {
8960 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
8961 if(rs2[i]) alloc_reg64(&current,i,rs2[i]);
8962 }
8963 if((rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]))||
8964 (rs2[i]&&(rs2[i]==rt1[i+1]||rs2[i]==rt2[i+1]))) {
8965 // The delay slot overwrites one of our conditions.
8966 // Allocate the branch condition registers instead.
57871462 8967 current.isconst=0;
8968 current.wasconst=0;
8969 regs[i].wasconst=0;
8970 if(rs1[i]) alloc_reg(&current,i,rs1[i]);
8971 if(rs2[i]) alloc_reg(&current,i,rs2[i]);
8972 if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
8973 {
8974 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
8975 if(rs2[i]) alloc_reg64(&current,i,rs2[i]);
8976 }
8977 }
e1190b87 8978 else
8979 {
8980 ooo[i]=1;
8981 delayslot_alloc(&current,i+1);
8982 }
57871462 8983 }
8984 else
8985 if((opcode[i]&0x3E)==6) // BLEZ/BGTZ
8986 {
8987 alloc_cc(&current,i);
8988 dirty_reg(&current,CCREG);
8989 alloc_reg(&current,i,rs1[i]);
8990 if(!(current.is32>>rs1[i]&1))
8991 {
8992 alloc_reg64(&current,i,rs1[i]);
8993 }
8994 if(rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1])) {
8995 // The delay slot overwrites one of our conditions.
8996 // Allocate the branch condition registers instead.
57871462 8997 current.isconst=0;
8998 current.wasconst=0;
8999 regs[i].wasconst=0;
9000 if(rs1[i]) alloc_reg(&current,i,rs1[i]);
9001 if(!((current.is32>>rs1[i])&1))
9002 {
9003 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
9004 }
9005 }
e1190b87 9006 else
9007 {
9008 ooo[i]=1;
9009 delayslot_alloc(&current,i+1);
9010 }
57871462 9011 }
9012 else
9013 // Don't alloc the delay slot yet because we might not execute it
9014 if((opcode[i]&0x3E)==0x14) // BEQL/BNEL
9015 {
9016 current.isconst=0;
9017 current.wasconst=0;
9018 regs[i].wasconst=0;
9019 alloc_cc(&current,i);
9020 dirty_reg(&current,CCREG);
9021 alloc_reg(&current,i,rs1[i]);
9022 alloc_reg(&current,i,rs2[i]);
9023 if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
9024 {
9025 alloc_reg64(&current,i,rs1[i]);
9026 alloc_reg64(&current,i,rs2[i]);
9027 }
9028 }
9029 else
9030 if((opcode[i]&0x3E)==0x16) // BLEZL/BGTZL
9031 {
9032 current.isconst=0;
9033 current.wasconst=0;
9034 regs[i].wasconst=0;
9035 alloc_cc(&current,i);
9036 dirty_reg(&current,CCREG);
9037 alloc_reg(&current,i,rs1[i]);
9038 if(!(current.is32>>rs1[i]&1))
9039 {
9040 alloc_reg64(&current,i,rs1[i]);
9041 }
9042 }
9043 ds=1;
9044 //current.isconst=0;
9045 break;
9046 case SJUMP:
9047 //current.isconst=0;
9048 //current.wasconst=0;
9049 //regs[i].wasconst=0;
9050 clear_const(&current,rs1[i]);
9051 clear_const(&current,rt1[i]);
9052 //if((opcode2[i]&0x1E)==0x0) // BLTZ/BGEZ
9053 if((opcode2[i]&0x0E)==0x0) // BLTZ/BGEZ
9054 {
9055 alloc_cc(&current,i);
9056 dirty_reg(&current,CCREG);
9057 alloc_reg(&current,i,rs1[i]);
9058 if(!(current.is32>>rs1[i]&1))
9059 {
9060 alloc_reg64(&current,i,rs1[i]);
9061 }
9062 if (rt1[i]==31) { // BLTZAL/BGEZAL
9063 alloc_reg(&current,i,31);
9064 dirty_reg(&current,31);
57871462 9065 //#ifdef REG_PREFETCH
9066 //alloc_reg(&current,i,PTEMP);
9067 //#endif
9068 //current.is32|=1LL<<rt1[i];
9069 }
e1190b87 9070 if((rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1])) // The delay slot overwrites the branch condition.
9071 ||(rt1[i]==31&&(rs1[i+1]==31||rs2[i+1]==31||rt1[i+1]==31||rt2[i+1]==31))) { // DS touches $ra
57871462 9072 // Allocate the branch condition registers instead.
57871462 9073 current.isconst=0;
9074 current.wasconst=0;
9075 regs[i].wasconst=0;
9076 if(rs1[i]) alloc_reg(&current,i,rs1[i]);
9077 if(!((current.is32>>rs1[i])&1))
9078 {
9079 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
9080 }
9081 }
e1190b87 9082 else
9083 {
9084 ooo[i]=1;
9085 delayslot_alloc(&current,i+1);
9086 }
57871462 9087 }
9088 else
9089 // Don't alloc the delay slot yet because we might not execute it
9090 if((opcode2[i]&0x1E)==0x2) // BLTZL/BGEZL
9091 {
9092 current.isconst=0;
9093 current.wasconst=0;
9094 regs[i].wasconst=0;
9095 alloc_cc(&current,i);
9096 dirty_reg(&current,CCREG);
9097 alloc_reg(&current,i,rs1[i]);
9098 if(!(current.is32>>rs1[i]&1))
9099 {
9100 alloc_reg64(&current,i,rs1[i]);
9101 }
9102 }
9103 ds=1;
9104 //current.isconst=0;
9105 break;
9106 case FJUMP:
9107 current.isconst=0;
9108 current.wasconst=0;
9109 regs[i].wasconst=0;
9110 if(likely[i]==0) // BC1F/BC1T
9111 {
9112 // TODO: Theoretically we can run out of registers here on x86.
9113 // The delay slot can allocate up to six, and we need to check
9114 // CSREG before executing the delay slot. Possibly we can drop
9115 // the cycle count and then reload it after checking that the
9116 // FPU is in a usable state, or don't do out-of-order execution.
9117 alloc_cc(&current,i);
9118 dirty_reg(&current,CCREG);
9119 alloc_reg(&current,i,FSREG);
9120 alloc_reg(&current,i,CSREG);
9121 if(itype[i+1]==FCOMP) {
9122 // The delay slot overwrites the branch condition.
9123 // Allocate the branch condition registers instead.
57871462 9124 alloc_cc(&current,i);
9125 dirty_reg(&current,CCREG);
9126 alloc_reg(&current,i,CSREG);
9127 alloc_reg(&current,i,FSREG);
9128 }
9129 else {
e1190b87 9130 ooo[i]=1;
57871462 9131 delayslot_alloc(&current,i+1);
9132 alloc_reg(&current,i+1,CSREG);
9133 }
9134 }
9135 else
9136 // Don't alloc the delay slot yet because we might not execute it
9137 if(likely[i]) // BC1FL/BC1TL
9138 {
9139 alloc_cc(&current,i);
9140 dirty_reg(&current,CCREG);
9141 alloc_reg(&current,i,CSREG);
9142 alloc_reg(&current,i,FSREG);
9143 }
9144 ds=1;
9145 current.isconst=0;
9146 break;
9147 case IMM16:
9148 imm16_alloc(&current,i);
9149 break;
9150 case LOAD:
9151 case LOADLR:
9152 load_alloc(&current,i);
9153 break;
9154 case STORE:
9155 case STORELR:
9156 store_alloc(&current,i);
9157 break;
9158 case ALU:
9159 alu_alloc(&current,i);
9160 break;
9161 case SHIFT:
9162 shift_alloc(&current,i);
9163 break;
9164 case MULTDIV:
9165 multdiv_alloc(&current,i);
9166 break;
9167 case SHIFTIMM:
9168 shiftimm_alloc(&current,i);
9169 break;
9170 case MOV:
9171 mov_alloc(&current,i);
9172 break;
9173 case COP0:
9174 cop0_alloc(&current,i);
9175 break;
9176 case COP1:
b9b61529 9177 case COP2:
57871462 9178 cop1_alloc(&current,i);
9179 break;
9180 case C1LS:
9181 c1ls_alloc(&current,i);
9182 break;
b9b61529 9183 case C2LS:
9184 c2ls_alloc(&current,i);
9185 break;
9186 case C2OP:
9187 c2op_alloc(&current,i);
9188 break;
57871462 9189 case FCONV:
9190 fconv_alloc(&current,i);
9191 break;
9192 case FLOAT:
9193 float_alloc(&current,i);
9194 break;
9195 case FCOMP:
9196 fcomp_alloc(&current,i);
9197 break;
9198 case SYSCALL:
7139f3c8 9199 case HLECALL:
1e973cb0 9200 case INTCALL:
57871462 9201 syscall_alloc(&current,i);
9202 break;
9203 case SPAN:
9204 pagespan_alloc(&current,i);
9205 break;
9206 }
9207
9208 // Drop the upper half of registers that have become 32-bit
9209 current.uu|=current.is32&((1LL<<rt1[i])|(1LL<<rt2[i]));
9210 if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP) {
9211 current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
9212 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9213 current.uu|=1;
9214 } else {
9215 current.uu|=current.is32&((1LL<<rt1[i+1])|(1LL<<rt2[i+1]));
9216 current.uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
9217 if((~current.uu>>rt1[i+1])&1) current.uu&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
9218 current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
9219 current.uu|=1;
9220 }
9221
9222 // Create entry (branch target) regmap
9223 for(hr=0;hr<HOST_REGS;hr++)
9224 {
9225 int r,or,er;
9226 r=current.regmap[hr];
9227 if(r>=0) {
9228 if(r!=regmap_pre[i][hr]) {
9229 // TODO: delay slot (?)
9230 or=get_reg(regmap_pre[i],r); // Get old mapping for this register
9231 if(or<0||(r&63)>=TEMPREG){
9232 regs[i].regmap_entry[hr]=-1;
9233 }
9234 else
9235 {
9236 // Just move it to a different register
9237 regs[i].regmap_entry[hr]=r;
9238 // If it was dirty before, it's still dirty
9239 if((regs[i].wasdirty>>or)&1) dirty_reg(&current,r&63);
9240 }
9241 }
9242 else
9243 {
9244 // Unneeded
9245 if(r==0){
9246 regs[i].regmap_entry[hr]=0;
9247 }
9248 else
9249 if(r<64){
9250 if((current.u>>r)&1) {
9251 regs[i].regmap_entry[hr]=-1;
9252 //regs[i].regmap[hr]=-1;
9253 current.regmap[hr]=-1;
9254 }else
9255 regs[i].regmap_entry[hr]=r;
9256 }
9257 else {
9258 if((current.uu>>(r&63))&1) {
9259 regs[i].regmap_entry[hr]=-1;
9260 //regs[i].regmap[hr]=-1;
9261 current.regmap[hr]=-1;
9262 }else
9263 regs[i].regmap_entry[hr]=r;
9264 }
9265 }
9266 } else {
9267 // Branches expect CCREG to be allocated at the target
9268 if(regmap_pre[i][hr]==CCREG)
9269 regs[i].regmap_entry[hr]=CCREG;
9270 else
9271 regs[i].regmap_entry[hr]=-1;
9272 }
9273 }
9274 memcpy(regs[i].regmap,current.regmap,sizeof(current.regmap));
9275 }
9276 /* Branch post-alloc */
9277 if(i>0)
9278 {
9279 current.was32=current.is32;
9280 current.wasdirty=current.dirty;
9281 switch(itype[i-1]) {
9282 case UJUMP:
9283 memcpy(&branch_regs[i-1],&current,sizeof(current));
9284 branch_regs[i-1].isconst=0;
9285 branch_regs[i-1].wasconst=0;
9286 branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
9287 branch_regs[i-1].uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
9288 alloc_cc(&branch_regs[i-1],i-1);
9289 dirty_reg(&branch_regs[i-1],CCREG);
9290 if(rt1[i-1]==31) { // JAL
9291 alloc_reg(&branch_regs[i-1],i-1,31);
9292 dirty_reg(&branch_regs[i-1],31);
9293 branch_regs[i-1].is32|=1LL<<31;
9294 }
9295 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9296 memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9297 break;
9298 case RJUMP:
9299 memcpy(&branch_regs[i-1],&current,sizeof(current));
9300 branch_regs[i-1].isconst=0;
9301 branch_regs[i-1].wasconst=0;
9302 branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
9303 branch_regs[i-1].uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
9304 alloc_cc(&branch_regs[i-1],i-1);
9305 dirty_reg(&branch_regs[i-1],CCREG);
9306 alloc_reg(&branch_regs[i-1],i-1,rs1[i-1]);
5067f341 9307 if(rt1[i-1]!=0) { // JALR
9308 alloc_reg(&branch_regs[i-1],i-1,rt1[i-1]);
9309 dirty_reg(&branch_regs[i-1],rt1[i-1]);
9310 branch_regs[i-1].is32|=1LL<<rt1[i-1];
57871462 9311 }
9312 #ifdef USE_MINI_HT
9313 if(rs1[i-1]==31) { // JALR
9314 alloc_reg(&branch_regs[i-1],i-1,RHASH);
9315 #ifndef HOST_IMM_ADDR32
9316 alloc_reg(&branch_regs[i-1],i-1,RHTBL);
9317 #endif
9318 }
9319 #endif
9320 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9321 memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9322 break;
9323 case CJUMP:
9324 if((opcode[i-1]&0x3E)==4) // BEQ/BNE
9325 {
9326 alloc_cc(&current,i-1);
9327 dirty_reg(&current,CCREG);
9328 if((rs1[i-1]&&(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]))||
9329 (rs2[i-1]&&(rs2[i-1]==rt1[i]||rs2[i-1]==rt2[i]))) {
9330 // The delay slot overwrote one of our conditions
9331 // Delay slot goes after the test (in order)
9332 current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
9333 current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
9334 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9335 current.u|=1;
9336 current.uu|=1;
9337 delayslot_alloc(&current,i);
9338 current.isconst=0;
9339 }
9340 else
9341 {
9342 current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
9343 current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
9344 // Alloc the branch condition registers
9345 if(rs1[i-1]) alloc_reg(&current,i-1,rs1[i-1]);
9346 if(rs2[i-1]) alloc_reg(&current,i-1,rs2[i-1]);
9347 if(!((current.is32>>rs1[i-1])&(current.is32>>rs2[i-1])&1))
9348 {
9349 if(rs1[i-1]) alloc_reg64(&current,i-1,rs1[i-1]);
9350 if(rs2[i-1]) alloc_reg64(&current,i-1,rs2[i-1]);
9351 }
9352 }
9353 memcpy(&branch_regs[i-1],&current,sizeof(current));
9354 branch_regs[i-1].isconst=0;
9355 branch_regs[i-1].wasconst=0;
9356 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9357 memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9358 }
9359 else
9360 if((opcode[i-1]&0x3E)==6) // BLEZ/BGTZ
9361 {
9362 alloc_cc(&current,i-1);
9363 dirty_reg(&current,CCREG);
9364 if(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]) {
9365 // The delay slot overwrote the branch condition
9366 // Delay slot goes after the test (in order)
9367 current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
9368 current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
9369 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9370 current.u|=1;
9371 current.uu|=1;
9372 delayslot_alloc(&current,i);
9373 current.isconst=0;
9374 }
9375 else
9376 {
9377 current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
9378 current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
9379 // Alloc the branch condition register
9380 alloc_reg(&current,i-1,rs1[i-1]);
9381 if(!(current.is32>>rs1[i-1]&1))
9382 {
9383 alloc_reg64(&current,i-1,rs1[i-1]);
9384 }
9385 }
9386 memcpy(&branch_regs[i-1],&current,sizeof(current));
9387 branch_regs[i-1].isconst=0;
9388 branch_regs[i-1].wasconst=0;
9389 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9390 memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9391 }
9392 else
9393 // Alloc the delay slot in case the branch is taken
9394 if((opcode[i-1]&0x3E)==0x14) // BEQL/BNEL
9395 {
9396 memcpy(&branch_regs[i-1],&current,sizeof(current));
9397 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9398 branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9399 if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9400 alloc_cc(&branch_regs[i-1],i);
9401 dirty_reg(&branch_regs[i-1],CCREG);
9402 delayslot_alloc(&branch_regs[i-1],i);
9403 branch_regs[i-1].isconst=0;
9404 alloc_reg(&current,i,CCREG); // Not taken path
9405 dirty_reg(&current,CCREG);
9406 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9407 }
9408 else
9409 if((opcode[i-1]&0x3E)==0x16) // BLEZL/BGTZL
9410 {
9411 memcpy(&branch_regs[i-1],&current,sizeof(current));
9412 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9413 branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9414 if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9415 alloc_cc(&branch_regs[i-1],i);
9416 dirty_reg(&branch_regs[i-1],CCREG);
9417 delayslot_alloc(&branch_regs[i-1],i);
9418 branch_regs[i-1].isconst=0;
9419 alloc_reg(&current,i,CCREG); // Not taken path
9420 dirty_reg(&current,CCREG);
9421 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9422 }
9423 break;
9424 case SJUMP:
9425 //if((opcode2[i-1]&0x1E)==0) // BLTZ/BGEZ
9426 if((opcode2[i-1]&0x0E)==0) // BLTZ/BGEZ
9427 {
9428 alloc_cc(&current,i-1);
9429 dirty_reg(&current,CCREG);
9430 if(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]) {
9431 // The delay slot overwrote the branch condition
9432 // Delay slot goes after the test (in order)
9433 current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
9434 current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
9435 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9436 current.u|=1;
9437 current.uu|=1;
9438 delayslot_alloc(&current,i);
9439 current.isconst=0;
9440 }
9441 else
9442 {
9443 current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
9444 current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
9445 // Alloc the branch condition register
9446 alloc_reg(&current,i-1,rs1[i-1]);
9447 if(!(current.is32>>rs1[i-1]&1))
9448 {
9449 alloc_reg64(&current,i-1,rs1[i-1]);
9450 }
9451 }
9452 memcpy(&branch_regs[i-1],&current,sizeof(current));
9453 branch_regs[i-1].isconst=0;
9454 branch_regs[i-1].wasconst=0;
9455 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9456 memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9457 }
9458 else
9459 // Alloc the delay slot in case the branch is taken
9460 if((opcode2[i-1]&0x1E)==2) // BLTZL/BGEZL
9461 {
9462 memcpy(&branch_regs[i-1],&current,sizeof(current));
9463 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9464 branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9465 if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9466 alloc_cc(&branch_regs[i-1],i);
9467 dirty_reg(&branch_regs[i-1],CCREG);
9468 delayslot_alloc(&branch_regs[i-1],i);
9469 branch_regs[i-1].isconst=0;
9470 alloc_reg(&current,i,CCREG); // Not taken path
9471 dirty_reg(&current,CCREG);
9472 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9473 }
9474 // FIXME: BLTZAL/BGEZAL
9475 if(opcode2[i-1]&0x10) { // BxxZAL
9476 alloc_reg(&branch_regs[i-1],i-1,31);
9477 dirty_reg(&branch_regs[i-1],31);
9478 branch_regs[i-1].is32|=1LL<<31;
9479 }
9480 break;
9481 case FJUMP:
9482 if(likely[i-1]==0) // BC1F/BC1T
9483 {
9484 alloc_cc(&current,i-1);
9485 dirty_reg(&current,CCREG);
9486 if(itype[i]==FCOMP) {
9487 // The delay slot overwrote the branch condition
9488 // Delay slot goes after the test (in order)
9489 delayslot_alloc(&current,i);
9490 current.isconst=0;
9491 }
9492 else
9493 {
9494 current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
9495 current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
9496 // Alloc the branch condition register
9497 alloc_reg(&current,i-1,FSREG);
9498 }
9499 memcpy(&branch_regs[i-1],&current,sizeof(current));
9500 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9501 }
9502 else // BC1FL/BC1TL
9503 {
9504 // Alloc the delay slot in case the branch is taken
9505 memcpy(&branch_regs[i-1],&current,sizeof(current));
9506 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9507 branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9508 if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9509 alloc_cc(&branch_regs[i-1],i);
9510 dirty_reg(&branch_regs[i-1],CCREG);
9511 delayslot_alloc(&branch_regs[i-1],i);
9512 branch_regs[i-1].isconst=0;
9513 alloc_reg(&current,i,CCREG); // Not taken path
9514 dirty_reg(&current,CCREG);
9515 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9516 }
9517 break;
9518 }
9519
9520 if(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)
9521 {
9522 if(rt1[i-1]==31) // JAL/JALR
9523 {
9524 // Subroutine call will return here, don't alloc any registers
9525 current.is32=1;
9526 current.dirty=0;
9527 clear_all_regs(current.regmap);
9528 alloc_reg(&current,i,CCREG);
9529 dirty_reg(&current,CCREG);
9530 }
9531 else if(i+1<slen)
9532 {
9533 // Internal branch will jump here, match registers to caller
9534 current.is32=0x3FFFFFFFFLL;
9535 current.dirty=0;
9536 clear_all_regs(current.regmap);
9537 alloc_reg(&current,i,CCREG);
9538 dirty_reg(&current,CCREG);
9539 for(j=i-1;j>=0;j--)
9540 {
9541 if(ba[j]==start+i*4+4) {
9542 memcpy(current.regmap,branch_regs[j].regmap,sizeof(current.regmap));
9543 current.is32=branch_regs[j].is32;
9544 current.dirty=branch_regs[j].dirty;
9545 break;
9546 }
9547 }
9548 while(j>=0) {
9549 if(ba[j]==start+i*4+4) {
9550 for(hr=0;hr<HOST_REGS;hr++) {
9551 if(current.regmap[hr]!=branch_regs[j].regmap[hr]) {
9552 current.regmap[hr]=-1;
9553 }
9554 current.is32&=branch_regs[j].is32;
9555 current.dirty&=branch_regs[j].dirty;
9556 }
9557 }
9558 j--;
9559 }
9560 }
9561 }
9562 }
9563
9564 // Count cycles in between branches
9565 ccadj[i]=cc;
7139f3c8 9566 if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP||itype[i]==SYSCALL||itype[i]==HLECALL))
57871462 9567 {
9568 cc=0;
9569 }
fb407447 9570#ifdef PCSX
9571 else if(/*itype[i]==LOAD||*/itype[i]==STORE||itype[i]==C1LS) // load causes weird timing issues
9572 {
9573 cc+=2; // 2 cycle penalty (after CLOCK_DIVIDER)
9574 }
9575 else if(itype[i]==C2LS)
9576 {
9577 cc+=4;
9578 }
9579#endif
57871462 9580 else
9581 {
9582 cc++;
9583 }
9584
9585 flush_dirty_uppers(&current);
9586 if(!is_ds[i]) {
9587 regs[i].is32=current.is32;
9588 regs[i].dirty=current.dirty;
9589 regs[i].isconst=current.isconst;
9590 memcpy(constmap[i],current.constmap,sizeof(current.constmap));
9591 }
9592 for(hr=0;hr<HOST_REGS;hr++) {
9593 if(hr!=EXCLUDE_REG&&regs[i].regmap[hr]>=0) {
9594 if(regmap_pre[i][hr]!=regs[i].regmap[hr]) {
9595 regs[i].wasconst&=~(1<<hr);
9596 }
9597 }
9598 }
9599 if(current.regmap[HOST_BTREG]==BTREG) current.regmap[HOST_BTREG]=-1;
9600 }
9601
9602 /* Pass 4 - Cull unused host registers */
9603
9604 uint64_t nr=0;
9605
9606 for (i=slen-1;i>=0;i--)
9607 {
9608 int hr;
9609 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
9610 {
9611 if(ba[i]<start || ba[i]>=(start+slen*4))
9612 {
9613 // Branch out of this block, don't need anything
9614 nr=0;
9615 }
9616 else
9617 {
9618 // Internal branch
9619 // Need whatever matches the target
9620 nr=0;
9621 int t=(ba[i]-start)>>2;
9622 for(hr=0;hr<HOST_REGS;hr++)
9623 {
9624 if(regs[i].regmap_entry[hr]>=0) {
9625 if(regs[i].regmap_entry[hr]==regs[t].regmap_entry[hr]) nr|=1<<hr;
9626 }
9627 }
9628 }
9629 // Conditional branch may need registers for following instructions
9630 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
9631 {
9632 if(i<slen-2) {
9633 nr|=needed_reg[i+2];
9634 for(hr=0;hr<HOST_REGS;hr++)
9635 {
9636 if(regmap_pre[i+2][hr]>=0&&get_reg(regs[i+2].regmap_entry,regmap_pre[i+2][hr])<0) nr&=~(1<<hr);
9637 //if((regmap_entry[i+2][hr])>=0) if(!((nr>>hr)&1)) printf("%x-bogus(%d=%d)\n",start+i*4,hr,regmap_entry[i+2][hr]);
9638 }
9639 }
9640 }
9641 // Don't need stuff which is overwritten
f5955059 9642 //if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
9643 //if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
57871462 9644 // Merge in delay slot
9645 for(hr=0;hr<HOST_REGS;hr++)
9646 {
9647 if(!likely[i]) {
9648 // These are overwritten unless the branch is "likely"
9649 // and the delay slot is nullified if not taken
9650 if(rt1[i+1]&&rt1[i+1]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9651 if(rt2[i+1]&&rt2[i+1]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9652 }
9653 if(us1[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9654 if(us2[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9655 if(rs1[i+1]==regmap_pre[i][hr]) nr|=1<<hr;
9656 if(rs2[i+1]==regmap_pre[i][hr]) nr|=1<<hr;
9657 if(us1[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9658 if(us2[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9659 if(rs1[i+1]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9660 if(rs2[i+1]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9661 if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1)) {
9662 if(dep1[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9663 if(dep2[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9664 }
9665 if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1)) {
9666 if(dep1[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9667 if(dep2[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9668 }
b9b61529 9669 if(itype[i+1]==STORE || itype[i+1]==STORELR || (opcode[i+1]&0x3b)==0x39 || (opcode[i+1]&0x3b)==0x3a) {
57871462 9670 if(regmap_pre[i][hr]==INVCP) nr|=1<<hr;
9671 if(regs[i].regmap_entry[hr]==INVCP) nr|=1<<hr;
9672 }
9673 }
9674 }
1e973cb0 9675 else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
57871462 9676 {
9677 // SYSCALL instruction (software interrupt)
9678 nr=0;
9679 }
9680 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
9681 {
9682 // ERET instruction (return from interrupt)
9683 nr=0;
9684 }
9685 else // Non-branch
9686 {
9687 if(i<slen-1) {
9688 for(hr=0;hr<HOST_REGS;hr++) {
9689 if(regmap_pre[i+1][hr]>=0&&get_reg(regs[i+1].regmap_entry,regmap_pre[i+1][hr])<0) nr&=~(1<<hr);
9690 if(regs[i].regmap[hr]!=regmap_pre[i+1][hr]) nr&=~(1<<hr);
9691 if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
9692 if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
9693 }
9694 }
9695 }
9696 for(hr=0;hr<HOST_REGS;hr++)
9697 {
9698 // Overwritten registers are not needed
9699 if(rt1[i]&&rt1[i]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9700 if(rt2[i]&&rt2[i]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9701 if(FTEMP==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9702 // Source registers are needed
9703 if(us1[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9704 if(us2[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9705 if(rs1[i]==regmap_pre[i][hr]) nr|=1<<hr;
9706 if(rs2[i]==regmap_pre[i][hr]) nr|=1<<hr;
9707 if(us1[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9708 if(us2[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9709 if(rs1[i]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9710 if(rs2[i]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9711 if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1)) {
9712 if(dep1[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9713 if(dep1[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9714 }
9715 if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1)) {
9716 if(dep2[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9717 if(dep2[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9718 }
b9b61529 9719 if(itype[i]==STORE || itype[i]==STORELR || (opcode[i]&0x3b)==0x39 || (opcode[i]&0x3b)==0x3a) {
57871462 9720 if(regmap_pre[i][hr]==INVCP) nr|=1<<hr;
9721 if(regs[i].regmap_entry[hr]==INVCP) nr|=1<<hr;
9722 }
9723 // Don't store a register immediately after writing it,
9724 // may prevent dual-issue.
9725 // But do so if this is a branch target, otherwise we
9726 // might have to load the register before the branch.
9727 if(i>0&&!bt[i]&&((regs[i].wasdirty>>hr)&1)) {
9728 if((regmap_pre[i][hr]>0&&regmap_pre[i][hr]<64&&!((unneeded_reg[i]>>regmap_pre[i][hr])&1)) ||
9729 (regmap_pre[i][hr]>64&&!((unneeded_reg_upper[i]>>(regmap_pre[i][hr]&63))&1)) ) {
9730 if(rt1[i-1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9731 if(rt2[i-1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9732 }
9733 if((regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64&&!((unneeded_reg[i]>>regs[i].regmap_entry[hr])&1)) ||
9734 (regs[i].regmap_entry[hr]>64&&!((unneeded_reg_upper[i]>>(regs[i].regmap_entry[hr]&63))&1)) ) {
9735 if(rt1[i-1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9736 if(rt2[i-1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9737 }
9738 }
9739 }
9740 // Cycle count is needed at branches. Assume it is needed at the target too.
9741 if(i==0||bt[i]||itype[i]==CJUMP||itype[i]==FJUMP||itype[i]==SPAN) {
9742 if(regmap_pre[i][HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
9743 if(regs[i].regmap_entry[HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
9744 }
9745 // Save it
9746 needed_reg[i]=nr;
9747
9748 // Deallocate unneeded registers
9749 for(hr=0;hr<HOST_REGS;hr++)
9750 {
9751 if(!((nr>>hr)&1)) {
9752 if(regs[i].regmap_entry[hr]!=CCREG) regs[i].regmap_entry[hr]=-1;
9753 if((regs[i].regmap[hr]&63)!=rs1[i] && (regs[i].regmap[hr]&63)!=rs2[i] &&
9754 (regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
9755 (regs[i].regmap[hr]&63)!=PTEMP && (regs[i].regmap[hr]&63)!=CCREG)
9756 {
9757 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
9758 {
9759 if(likely[i]) {
9760 regs[i].regmap[hr]=-1;
9761 regs[i].isconst&=~(1<<hr);
79c75f1b 9762 if(i<slen-2) {
9763 regmap_pre[i+2][hr]=-1;
9764 regs[i+2].wasconst&=~(1<<hr);
9765 }
57871462 9766 }
9767 }
9768 }
9769 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
9770 {
9771 int d1=0,d2=0,map=0,temp=0;
9772 if(get_reg(regs[i].regmap,rt1[i+1]|64)>=0||get_reg(branch_regs[i].regmap,rt1[i+1]|64)>=0)
9773 {
9774 d1=dep1[i+1];
9775 d2=dep2[i+1];
9776 }
9777 if(using_tlb) {
9778 if(itype[i+1]==LOAD || itype[i+1]==LOADLR ||
9779 itype[i+1]==STORE || itype[i+1]==STORELR ||
b9b61529 9780 itype[i+1]==C1LS || itype[i+1]==C2LS)
57871462 9781 map=TLREG;
9782 } else
b9b61529 9783 if(itype[i+1]==STORE || itype[i+1]==STORELR ||
9784 (opcode[i+1]&0x3b)==0x39 || (opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1 || SWC2/SDC2
57871462 9785 map=INVCP;
9786 }
9787 if(itype[i+1]==LOADLR || itype[i+1]==STORELR ||
b9b61529 9788 itype[i+1]==C1LS || itype[i+1]==C2LS)
57871462 9789 temp=FTEMP;
9790 if((regs[i].regmap[hr]&63)!=rs1[i] && (regs[i].regmap[hr]&63)!=rs2[i] &&
9791 (regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
9792 (regs[i].regmap[hr]&63)!=rt1[i+1] && (regs[i].regmap[hr]&63)!=rt2[i+1] &&
9793 (regs[i].regmap[hr]^64)!=us1[i+1] && (regs[i].regmap[hr]^64)!=us2[i+1] &&
9794 (regs[i].regmap[hr]^64)!=d1 && (regs[i].regmap[hr]^64)!=d2 &&
9795 regs[i].regmap[hr]!=rs1[i+1] && regs[i].regmap[hr]!=rs2[i+1] &&
9796 (regs[i].regmap[hr]&63)!=temp && regs[i].regmap[hr]!=PTEMP &&
9797 regs[i].regmap[hr]!=RHASH && regs[i].regmap[hr]!=RHTBL &&
9798 regs[i].regmap[hr]!=RTEMP && regs[i].regmap[hr]!=CCREG &&
9799 regs[i].regmap[hr]!=map )
9800 {
9801 regs[i].regmap[hr]=-1;
9802 regs[i].isconst&=~(1<<hr);
9803 if((branch_regs[i].regmap[hr]&63)!=rs1[i] && (branch_regs[i].regmap[hr]&63)!=rs2[i] &&
9804 (branch_regs[i].regmap[hr]&63)!=rt1[i] && (branch_regs[i].regmap[hr]&63)!=rt2[i] &&
9805 (branch_regs[i].regmap[hr]&63)!=rt1[i+1] && (branch_regs[i].regmap[hr]&63)!=rt2[i+1] &&
9806 (branch_regs[i].regmap[hr]^64)!=us1[i+1] && (branch_regs[i].regmap[hr]^64)!=us2[i+1] &&
9807 (branch_regs[i].regmap[hr]^64)!=d1 && (branch_regs[i].regmap[hr]^64)!=d2 &&
9808 branch_regs[i].regmap[hr]!=rs1[i+1] && branch_regs[i].regmap[hr]!=rs2[i+1] &&
9809 (branch_regs[i].regmap[hr]&63)!=temp && branch_regs[i].regmap[hr]!=PTEMP &&
9810 branch_regs[i].regmap[hr]!=RHASH && branch_regs[i].regmap[hr]!=RHTBL &&
9811 branch_regs[i].regmap[hr]!=RTEMP && branch_regs[i].regmap[hr]!=CCREG &&
9812 branch_regs[i].regmap[hr]!=map)
9813 {
9814 branch_regs[i].regmap[hr]=-1;
9815 branch_regs[i].regmap_entry[hr]=-1;
9816 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
9817 {
9818 if(!likely[i]&&i<slen-2) {
9819 regmap_pre[i+2][hr]=-1;
79c75f1b 9820 regs[i+2].wasconst&=~(1<<hr);
57871462 9821 }
9822 }
9823 }
9824 }
9825 }
9826 else
9827 {
9828 // Non-branch
9829 if(i>0)
9830 {
9831 int d1=0,d2=0,map=-1,temp=-1;
9832 if(get_reg(regs[i].regmap,rt1[i]|64)>=0)
9833 {
9834 d1=dep1[i];
9835 d2=dep2[i];
9836 }
9837 if(using_tlb) {
9838 if(itype[i]==LOAD || itype[i]==LOADLR ||
9839 itype[i]==STORE || itype[i]==STORELR ||
b9b61529 9840 itype[i]==C1LS || itype[i]==C2LS)
57871462 9841 map=TLREG;
b9b61529 9842 } else if(itype[i]==STORE || itype[i]==STORELR ||
9843 (opcode[i]&0x3b)==0x39 || (opcode[i]&0x3b)==0x3a) { // SWC1/SDC1 || SWC2/SDC2
57871462 9844 map=INVCP;
9845 }
9846 if(itype[i]==LOADLR || itype[i]==STORELR ||
b9b61529 9847 itype[i]==C1LS || itype[i]==C2LS)
57871462 9848 temp=FTEMP;
9849 if((regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
9850 (regs[i].regmap[hr]^64)!=us1[i] && (regs[i].regmap[hr]^64)!=us2[i] &&
9851 (regs[i].regmap[hr]^64)!=d1 && (regs[i].regmap[hr]^64)!=d2 &&
9852 regs[i].regmap[hr]!=rs1[i] && regs[i].regmap[hr]!=rs2[i] &&
9853 (regs[i].regmap[hr]&63)!=temp && regs[i].regmap[hr]!=map &&
9854 (itype[i]!=SPAN||regs[i].regmap[hr]!=CCREG))
9855 {
9856 if(i<slen-1&&!is_ds[i]) {
9857 if(regmap_pre[i+1][hr]!=-1 || regs[i].regmap[hr]!=-1)
9858 if(regmap_pre[i+1][hr]!=regs[i].regmap[hr])
9859 if(regs[i].regmap[hr]<64||!((regs[i].was32>>(regs[i].regmap[hr]&63))&1))
9860 {
9861 printf("fail: %x (%d %d!=%d)\n",start+i*4,hr,regmap_pre[i+1][hr],regs[i].regmap[hr]);
9862 assert(regmap_pre[i+1][hr]==regs[i].regmap[hr]);
9863 }
9864 regmap_pre[i+1][hr]=-1;
9865 if(regs[i+1].regmap_entry[hr]==CCREG) regs[i+1].regmap_entry[hr]=-1;
79c75f1b 9866 regs[i+1].wasconst&=~(1<<hr);
57871462 9867 }
9868 regs[i].regmap[hr]=-1;
9869 regs[i].isconst&=~(1<<hr);
9870 }
9871 }
9872 }
9873 }
9874 }
9875 }
9876
9877 /* Pass 5 - Pre-allocate registers */
9878
9879 // If a register is allocated during a loop, try to allocate it for the
9880 // entire loop, if possible. This avoids loading/storing registers
9881 // inside of the loop.
198df76f 9882
57871462 9883 signed char f_regmap[HOST_REGS];
9884 clear_all_regs(f_regmap);
9885 for(i=0;i<slen-1;i++)
9886 {
9887 if(itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
9888 {
9889 if(ba[i]>=start && ba[i]<(start+i*4))
9890 if(itype[i+1]==NOP||itype[i+1]==MOV||itype[i+1]==ALU
9891 ||itype[i+1]==SHIFTIMM||itype[i+1]==IMM16||itype[i+1]==LOAD
9892 ||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS
9893 ||itype[i+1]==SHIFT||itype[i+1]==COP1||itype[i+1]==FLOAT
b9b61529 9894 ||itype[i+1]==FCOMP||itype[i+1]==FCONV
9895 ||itype[i+1]==COP2||itype[i+1]==C2LS||itype[i+1]==C2OP)
57871462 9896 {
9897 int t=(ba[i]-start)>>2;
9898 if(t>0&&(itype[t-1]!=UJUMP&&itype[t-1]!=RJUMP&&itype[t-1]!=CJUMP&&itype[t-1]!=SJUMP&&itype[t-1]!=FJUMP)) // loop_preload can't handle jumps into delay slots
198df76f 9899 if(t<2||(itype[t-2]!=UJUMP&&itype[t-2]!=RJUMP)||rt1[t-2]!=31) // call/ret assumes no registers allocated
57871462 9900 for(hr=0;hr<HOST_REGS;hr++)
9901 {
9902 if(regs[i].regmap[hr]>64) {
9903 if(!((regs[i].dirty>>hr)&1))
9904 f_regmap[hr]=regs[i].regmap[hr];
9905 else f_regmap[hr]=-1;
9906 }
b372a952 9907 else if(regs[i].regmap[hr]>=0) {
9908 if(f_regmap[hr]!=regs[i].regmap[hr]) {
9909 // dealloc old register
9910 int n;
9911 for(n=0;n<HOST_REGS;n++)
9912 {
9913 if(f_regmap[n]==regs[i].regmap[hr]) {f_regmap[n]=-1;}
9914 }
9915 // and alloc new one
9916 f_regmap[hr]=regs[i].regmap[hr];
9917 }
9918 }
57871462 9919 if(branch_regs[i].regmap[hr]>64) {
9920 if(!((branch_regs[i].dirty>>hr)&1))
9921 f_regmap[hr]=branch_regs[i].regmap[hr];
9922 else f_regmap[hr]=-1;
9923 }
b372a952 9924 else if(branch_regs[i].regmap[hr]>=0) {
9925 if(f_regmap[hr]!=branch_regs[i].regmap[hr]) {
9926 // dealloc old register
9927 int n;
9928 for(n=0;n<HOST_REGS;n++)
9929 {
9930 if(f_regmap[n]==branch_regs[i].regmap[hr]) {f_regmap[n]=-1;}
9931 }
9932 // and alloc new one
9933 f_regmap[hr]=branch_regs[i].regmap[hr];
9934 }
9935 }
e1190b87 9936 if(ooo[i]) {
9937 if(count_free_regs(regs[i].regmap)<=minimum_free_regs[i+1])
9938 f_regmap[hr]=branch_regs[i].regmap[hr];
9939 }else{
9940 if(count_free_regs(branch_regs[i].regmap)<=minimum_free_regs[i+1])
57871462 9941 f_regmap[hr]=branch_regs[i].regmap[hr];
9942 }
9943 // Avoid dirty->clean transition
e1190b87 9944 #ifdef DESTRUCTIVE_WRITEBACK
57871462 9945 if(t>0) if(get_reg(regmap_pre[t],f_regmap[hr])>=0) if((regs[t].wasdirty>>get_reg(regmap_pre[t],f_regmap[hr]))&1) f_regmap[hr]=-1;
e1190b87 9946 #endif
9947 // This check is only strictly required in the DESTRUCTIVE_WRITEBACK
9948 // case above, however it's always a good idea. We can't hoist the
9949 // load if the register was already allocated, so there's no point
9950 // wasting time analyzing most of these cases. It only "succeeds"
9951 // when the mapping was different and the load can be replaced with
9952 // a mov, which is of negligible benefit. So such cases are
9953 // skipped below.
57871462 9954 if(f_regmap[hr]>0) {
198df76f 9955 if(regs[t].regmap[hr]==f_regmap[hr]||(regs[t].regmap_entry[hr]<0&&get_reg(regmap_pre[t],f_regmap[hr])<0)) {
57871462 9956 int r=f_regmap[hr];
9957 for(j=t;j<=i;j++)
9958 {
9959 //printf("Test %x -> %x, %x %d/%d\n",start+i*4,ba[i],start+j*4,hr,r);
9960 if(r<34&&((unneeded_reg[j]>>r)&1)) break;
9961 if(r>63&&((unneeded_reg_upper[j]>>(r&63))&1)) break;
9962 if(r>63) {
9963 // NB This can exclude the case where the upper-half
9964 // register is lower numbered than the lower-half
9965 // register. Not sure if it's worth fixing...
9966 if(get_reg(regs[j].regmap,r&63)<0) break;
e1190b87 9967 if(get_reg(regs[j].regmap_entry,r&63)<0) break;
57871462 9968 if(regs[j].is32&(1LL<<(r&63))) break;
9969 }
9970 if(regs[j].regmap[hr]==f_regmap[hr]&&(f_regmap[hr]&63)<TEMPREG) {
9971 //printf("Hit %x -> %x, %x %d/%d\n",start+i*4,ba[i],start+j*4,hr,r);
9972 int k;
9973 if(regs[i].regmap[hr]==-1&&branch_regs[i].regmap[hr]==-1) {
9974 if(get_reg(regs[i+2].regmap,f_regmap[hr])>=0) break;
9975 if(r>63) {
9976 if(get_reg(regs[i].regmap,r&63)<0) break;
9977 if(get_reg(branch_regs[i].regmap,r&63)<0) break;
9978 }
9979 k=i;
9980 while(k>1&&regs[k-1].regmap[hr]==-1) {
e1190b87 9981 if(count_free_regs(regs[k-1].regmap)<=minimum_free_regs[k-1]) {
9982 //printf("no free regs for store %x\n",start+(k-1)*4);
9983 break;
57871462 9984 }
57871462 9985 if(get_reg(regs[k-1].regmap,f_regmap[hr])>=0) {
9986 //printf("no-match due to different register\n");
9987 break;
9988 }
9989 if(itype[k-2]==UJUMP||itype[k-2]==RJUMP||itype[k-2]==CJUMP||itype[k-2]==SJUMP||itype[k-2]==FJUMP) {
9990 //printf("no-match due to branch\n");
9991 break;
9992 }
9993 // call/ret fast path assumes no registers allocated
198df76f 9994 if(k>2&&(itype[k-3]==UJUMP||itype[k-3]==RJUMP)&&rt1[k-3]==31) {
57871462 9995 break;
9996 }
9997 if(r>63) {
9998 // NB This can exclude the case where the upper-half
9999 // register is lower numbered than the lower-half
10000 // register. Not sure if it's worth fixing...
10001 if(get_reg(regs[k-1].regmap,r&63)<0) break;
10002 if(regs[k-1].is32&(1LL<<(r&63))) break;
10003 }
10004 k--;
10005 }
10006 if(i<slen-1) {
10007 if((regs[k].is32&(1LL<<f_regmap[hr]))!=
10008 (regs[i+2].was32&(1LL<<f_regmap[hr]))) {
10009 //printf("bad match after branch\n");
10010 break;
10011 }
10012 }
10013 if(regs[k-1].regmap[hr]==f_regmap[hr]&&regmap_pre[k][hr]==f_regmap[hr]) {
10014 //printf("Extend r%d, %x ->\n",hr,start+k*4);
10015 while(k<i) {
10016 regs[k].regmap_entry[hr]=f_regmap[hr];
10017 regs[k].regmap[hr]=f_regmap[hr];
10018 regmap_pre[k+1][hr]=f_regmap[hr];
10019 regs[k].wasdirty&=~(1<<hr);
10020 regs[k].dirty&=~(1<<hr);
10021 regs[k].wasdirty|=(1<<hr)&regs[k-1].dirty;
10022 regs[k].dirty|=(1<<hr)&regs[k].wasdirty;
10023 regs[k].wasconst&=~(1<<hr);
10024 regs[k].isconst&=~(1<<hr);
10025 k++;
10026 }
10027 }
10028 else {
10029 //printf("Fail Extend r%d, %x ->\n",hr,start+k*4);
10030 break;
10031 }
10032 assert(regs[i-1].regmap[hr]==f_regmap[hr]);
10033 if(regs[i-1].regmap[hr]==f_regmap[hr]&&regmap_pre[i][hr]==f_regmap[hr]) {
10034 //printf("OK fill %x (r%d)\n",start+i*4,hr);
10035 regs[i].regmap_entry[hr]=f_regmap[hr];
10036 regs[i].regmap[hr]=f_regmap[hr];
10037 regs[i].wasdirty&=~(1<<hr);
10038 regs[i].dirty&=~(1<<hr);
10039 regs[i].wasdirty|=(1<<hr)&regs[i-1].dirty;
10040 regs[i].dirty|=(1<<hr)&regs[i-1].dirty;
10041 regs[i].wasconst&=~(1<<hr);
10042 regs[i].isconst&=~(1<<hr);
10043 branch_regs[i].regmap_entry[hr]=f_regmap[hr];
10044 branch_regs[i].wasdirty&=~(1<<hr);
10045 branch_regs[i].wasdirty|=(1<<hr)&regs[i].dirty;
10046 branch_regs[i].regmap[hr]=f_regmap[hr];
10047 branch_regs[i].dirty&=~(1<<hr);
10048 branch_regs[i].dirty|=(1<<hr)&regs[i].dirty;
10049 branch_regs[i].wasconst&=~(1<<hr);
10050 branch_regs[i].isconst&=~(1<<hr);
10051 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000) {
10052 regmap_pre[i+2][hr]=f_regmap[hr];
10053 regs[i+2].wasdirty&=~(1<<hr);
10054 regs[i+2].wasdirty|=(1<<hr)&regs[i].dirty;
10055 assert((branch_regs[i].is32&(1LL<<f_regmap[hr]))==
10056 (regs[i+2].was32&(1LL<<f_regmap[hr])));
10057 }
10058 }
10059 }
10060 for(k=t;k<j;k++) {
e1190b87 10061 // Alloc register clean at beginning of loop,
10062 // but may dirty it in pass 6
57871462 10063 regs[k].regmap_entry[hr]=f_regmap[hr];
10064 regs[k].regmap[hr]=f_regmap[hr];
57871462 10065 regs[k].dirty&=~(1<<hr);
10066 regs[k].wasconst&=~(1<<hr);
10067 regs[k].isconst&=~(1<<hr);
e1190b87 10068 if(itype[k]==UJUMP||itype[k]==RJUMP||itype[k]==CJUMP||itype[k]==SJUMP||itype[k]==FJUMP) {
10069 branch_regs[k].regmap_entry[hr]=f_regmap[hr];
10070 branch_regs[k].regmap[hr]=f_regmap[hr];
10071 branch_regs[k].dirty&=~(1<<hr);
10072 branch_regs[k].wasconst&=~(1<<hr);
10073 branch_regs[k].isconst&=~(1<<hr);
10074 if(itype[k]!=RJUMP&&itype[k]!=UJUMP&&(source[k]>>16)!=0x1000) {
10075 regmap_pre[k+2][hr]=f_regmap[hr];
10076 regs[k+2].wasdirty&=~(1<<hr);
10077 assert((branch_regs[k].is32&(1LL<<f_regmap[hr]))==
10078 (regs[k+2].was32&(1LL<<f_regmap[hr])));
10079 }
10080 }
10081 else
10082 {
10083 regmap_pre[k+1][hr]=f_regmap[hr];
10084 regs[k+1].wasdirty&=~(1<<hr);
10085 }
57871462 10086 }
10087 if(regs[j].regmap[hr]==f_regmap[hr])
10088 regs[j].regmap_entry[hr]=f_regmap[hr];
10089 break;
10090 }
10091 if(j==i) break;
10092 if(regs[j].regmap[hr]>=0)
10093 break;
10094 if(get_reg(regs[j].regmap,f_regmap[hr])>=0) {
10095 //printf("no-match due to different register\n");
10096 break;
10097 }
10098 if((regs[j+1].is32&(1LL<<f_regmap[hr]))!=(regs[j].is32&(1LL<<f_regmap[hr]))) {
10099 //printf("32/64 mismatch %x %d\n",start+j*4,hr);
10100 break;
10101 }
e1190b87 10102 if(itype[j]==UJUMP||itype[j]==RJUMP||(source[j]>>16)==0x1000)
10103 {
10104 // Stop on unconditional branch
10105 break;
10106 }
10107 if(itype[j]==CJUMP||itype[j]==SJUMP||itype[j]==FJUMP)
10108 {
10109 if(ooo[j]) {
10110 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j+1])
10111 break;
10112 }else{
10113 if(count_free_regs(branch_regs[j].regmap)<=minimum_free_regs[j+1])
10114 break;
10115 }
10116 if(get_reg(branch_regs[j].regmap,f_regmap[hr])>=0) {
10117 //printf("no-match due to different register (branch)\n");
57871462 10118 break;
10119 }
10120 }
e1190b87 10121 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) {
10122 //printf("No free regs for store %x\n",start+j*4);
10123 break;
10124 }
57871462 10125 if(f_regmap[hr]>=64) {
10126 if(regs[j].is32&(1LL<<(f_regmap[hr]&63))) {
10127 break;
10128 }
10129 else
10130 {
10131 if(get_reg(regs[j].regmap,f_regmap[hr]&63)<0) {
10132 break;
10133 }
10134 }
10135 }
10136 }
10137 }
10138 }
10139 }
10140 }
10141 }else{
198df76f 10142 // Non branch or undetermined branch target
57871462 10143 for(hr=0;hr<HOST_REGS;hr++)
10144 {
10145 if(hr!=EXCLUDE_REG) {
10146 if(regs[i].regmap[hr]>64) {
10147 if(!((regs[i].dirty>>hr)&1))
10148 f_regmap[hr]=regs[i].regmap[hr];
10149 }
b372a952 10150 else if(regs[i].regmap[hr]>=0) {
10151 if(f_regmap[hr]!=regs[i].regmap[hr]) {
10152 // dealloc old register
10153 int n;
10154 for(n=0;n<HOST_REGS;n++)
10155 {
10156 if(f_regmap[n]==regs[i].regmap[hr]) {f_regmap[n]=-1;}
10157 }
10158 // and alloc new one
10159 f_regmap[hr]=regs[i].regmap[hr];
10160 }
10161 }
57871462 10162 }
10163 }
10164 // Try to restore cycle count at branch targets
10165 if(bt[i]) {
10166 for(j=i;j<slen-1;j++) {
10167 if(regs[j].regmap[HOST_CCREG]!=-1) break;
e1190b87 10168 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) {
10169 //printf("no free regs for store %x\n",start+j*4);
10170 break;
57871462 10171 }
57871462 10172 }
10173 if(regs[j].regmap[HOST_CCREG]==CCREG) {
10174 int k=i;
10175 //printf("Extend CC, %x -> %x\n",start+k*4,start+j*4);
10176 while(k<j) {
10177 regs[k].regmap_entry[HOST_CCREG]=CCREG;
10178 regs[k].regmap[HOST_CCREG]=CCREG;
10179 regmap_pre[k+1][HOST_CCREG]=CCREG;
10180 regs[k+1].wasdirty|=1<<HOST_CCREG;
10181 regs[k].dirty|=1<<HOST_CCREG;
10182 regs[k].wasconst&=~(1<<HOST_CCREG);
10183 regs[k].isconst&=~(1<<HOST_CCREG);
10184 k++;
10185 }
10186 regs[j].regmap_entry[HOST_CCREG]=CCREG;
10187 }
10188 // Work backwards from the branch target
10189 if(j>i&&f_regmap[HOST_CCREG]==CCREG)
10190 {
10191 //printf("Extend backwards\n");
10192 int k;
10193 k=i;
10194 while(regs[k-1].regmap[HOST_CCREG]==-1) {
e1190b87 10195 if(count_free_regs(regs[k-1].regmap)<=minimum_free_regs[k-1]) {
10196 //printf("no free regs for store %x\n",start+(k-1)*4);
10197 break;
57871462 10198 }
57871462 10199 k--;
10200 }
10201 if(regs[k-1].regmap[HOST_CCREG]==CCREG) {
10202 //printf("Extend CC, %x ->\n",start+k*4);
10203 while(k<=i) {
10204 regs[k].regmap_entry[HOST_CCREG]=CCREG;
10205 regs[k].regmap[HOST_CCREG]=CCREG;
10206 regmap_pre[k+1][HOST_CCREG]=CCREG;
10207 regs[k+1].wasdirty|=1<<HOST_CCREG;
10208 regs[k].dirty|=1<<HOST_CCREG;
10209 regs[k].wasconst&=~(1<<HOST_CCREG);
10210 regs[k].isconst&=~(1<<HOST_CCREG);
10211 k++;
10212 }
10213 }
10214 else {
10215 //printf("Fail Extend CC, %x ->\n",start+k*4);
10216 }
10217 }
10218 }
10219 if(itype[i]!=STORE&&itype[i]!=STORELR&&itype[i]!=C1LS&&itype[i]!=SHIFT&&
10220 itype[i]!=NOP&&itype[i]!=MOV&&itype[i]!=ALU&&itype[i]!=SHIFTIMM&&
10221 itype[i]!=IMM16&&itype[i]!=LOAD&&itype[i]!=COP1&&itype[i]!=FLOAT&&
e1190b87 10222 itype[i]!=FCONV&&itype[i]!=FCOMP)
57871462 10223 {
10224 memcpy(f_regmap,regs[i].regmap,sizeof(f_regmap));
10225 }
10226 }
10227 }
10228
d61de97e 10229 // Cache memory offset or tlb map pointer if a register is available
10230 #ifndef HOST_IMM_ADDR32
10231 #ifndef RAM_OFFSET
10232 if(using_tlb)
10233 #endif
10234 {
10235 int earliest_available[HOST_REGS];
10236 int loop_start[HOST_REGS];
10237 int score[HOST_REGS];
10238 int end[HOST_REGS];
10239 int reg=using_tlb?MMREG:ROREG;
10240
10241 // Init
10242 for(hr=0;hr<HOST_REGS;hr++) {
10243 score[hr]=0;earliest_available[hr]=0;
10244 loop_start[hr]=MAXBLOCK;
10245 }
10246 for(i=0;i<slen-1;i++)
10247 {
10248 // Can't do anything if no registers are available
10249 if(count_free_regs(regs[i].regmap)<=minimum_free_regs[i]) {
10250 for(hr=0;hr<HOST_REGS;hr++) {
10251 score[hr]=0;earliest_available[hr]=i+1;
10252 loop_start[hr]=MAXBLOCK;
10253 }
10254 }
10255 if(itype[i]==UJUMP||itype[i]==RJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP) {
10256 if(!ooo[i]) {
10257 if(count_free_regs(branch_regs[i].regmap)<=minimum_free_regs[i+1]) {
10258 for(hr=0;hr<HOST_REGS;hr++) {
10259 score[hr]=0;earliest_available[hr]=i+1;
10260 loop_start[hr]=MAXBLOCK;
10261 }
10262 }
198df76f 10263 }else{
10264 if(count_free_regs(regs[i].regmap)<=minimum_free_regs[i+1]) {
10265 for(hr=0;hr<HOST_REGS;hr++) {
10266 score[hr]=0;earliest_available[hr]=i+1;
10267 loop_start[hr]=MAXBLOCK;
10268 }
10269 }
d61de97e 10270 }
10271 }
10272 // Mark unavailable registers
10273 for(hr=0;hr<HOST_REGS;hr++) {
10274 if(regs[i].regmap[hr]>=0) {
10275 score[hr]=0;earliest_available[hr]=i+1;
10276 loop_start[hr]=MAXBLOCK;
10277 }
10278 if(itype[i]==UJUMP||itype[i]==RJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP) {
10279 if(branch_regs[i].regmap[hr]>=0) {
10280 score[hr]=0;earliest_available[hr]=i+2;
10281 loop_start[hr]=MAXBLOCK;
10282 }
10283 }
10284 }
10285 // No register allocations after unconditional jumps
10286 if(itype[i]==UJUMP||itype[i]==RJUMP||(source[i]>>16)==0x1000)
10287 {
10288 for(hr=0;hr<HOST_REGS;hr++) {
10289 score[hr]=0;earliest_available[hr]=i+2;
10290 loop_start[hr]=MAXBLOCK;
10291 }
10292 i++; // Skip delay slot too
10293 //printf("skip delay slot: %x\n",start+i*4);
10294 }
10295 else
10296 // Possible match
10297 if(itype[i]==LOAD||itype[i]==LOADLR||
10298 itype[i]==STORE||itype[i]==STORELR||itype[i]==C1LS) {
10299 for(hr=0;hr<HOST_REGS;hr++) {
10300 if(hr!=EXCLUDE_REG) {
10301 end[hr]=i-1;
10302 for(j=i;j<slen-1;j++) {
10303 if(regs[j].regmap[hr]>=0) break;
10304 if(itype[j]==UJUMP||itype[j]==RJUMP||itype[j]==CJUMP||itype[j]==SJUMP||itype[j]==FJUMP) {
10305 if(branch_regs[j].regmap[hr]>=0) break;
10306 if(ooo[j]) {
10307 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j+1]) break;
10308 }else{
10309 if(count_free_regs(branch_regs[j].regmap)<=minimum_free_regs[j+1]) break;
10310 }
10311 }
10312 else if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) break;
10313 if(itype[j]==UJUMP||itype[j]==RJUMP||itype[j]==CJUMP||itype[j]==SJUMP||itype[j]==FJUMP) {
10314 int t=(ba[j]-start)>>2;
10315 if(t<j&&t>=earliest_available[hr]) {
198df76f 10316 if(t==1||(t>1&&itype[t-2]!=UJUMP&&itype[t-2]!=RJUMP)||(t>1&&rt1[t-2]!=31)) { // call/ret assumes no registers allocated
10317 // Score a point for hoisting loop invariant
10318 if(t<loop_start[hr]) loop_start[hr]=t;
10319 //printf("set loop_start: i=%x j=%x (%x)\n",start+i*4,start+j*4,start+t*4);
10320 score[hr]++;
10321 end[hr]=j;
10322 }
d61de97e 10323 }
10324 else if(t<j) {
10325 if(regs[t].regmap[hr]==reg) {
10326 // Score a point if the branch target matches this register
10327 score[hr]++;
10328 end[hr]=j;
10329 }
10330 }
10331 if(itype[j+1]==LOAD||itype[j+1]==LOADLR||
10332 itype[j+1]==STORE||itype[j+1]==STORELR||itype[j+1]==C1LS) {
10333 score[hr]++;
10334 end[hr]=j;
10335 }
10336 }
10337 if(itype[j]==UJUMP||itype[j]==RJUMP||(source[j]>>16)==0x1000)
10338 {
10339 // Stop on unconditional branch
10340 break;
10341 }
10342 else
10343 if(itype[j]==LOAD||itype[j]==LOADLR||
10344 itype[j]==STORE||itype[j]==STORELR||itype[j]==C1LS) {
10345 score[hr]++;
10346 end[hr]=j;
10347 }
10348 }
10349 }
10350 }
10351 // Find highest score and allocate that register
10352 int maxscore=0;
10353 for(hr=0;hr<HOST_REGS;hr++) {
10354 if(hr!=EXCLUDE_REG) {
10355 if(score[hr]>score[maxscore]) {
10356 maxscore=hr;
10357 //printf("highest score: %d %d (%x->%x)\n",score[hr],hr,start+i*4,start+end[hr]*4);
10358 }
10359 }
10360 }
10361 if(score[maxscore]>1)
10362 {
10363 if(i<loop_start[maxscore]) loop_start[maxscore]=i;
10364 for(j=loop_start[maxscore];j<slen&&j<=end[maxscore];j++) {
10365 //if(regs[j].regmap[maxscore]>=0) {printf("oops: %x %x was %d=%d\n",loop_start[maxscore]*4+start,j*4+start,maxscore,regs[j].regmap[maxscore]);}
10366 assert(regs[j].regmap[maxscore]<0);
10367 if(j>loop_start[maxscore]) regs[j].regmap_entry[maxscore]=reg;
10368 regs[j].regmap[maxscore]=reg;
10369 regs[j].dirty&=~(1<<maxscore);
10370 regs[j].wasconst&=~(1<<maxscore);
10371 regs[j].isconst&=~(1<<maxscore);
10372 if(itype[j]==UJUMP||itype[j]==RJUMP||itype[j]==CJUMP||itype[j]==SJUMP||itype[j]==FJUMP) {
10373 branch_regs[j].regmap[maxscore]=reg;
10374 branch_regs[j].wasdirty&=~(1<<maxscore);
10375 branch_regs[j].dirty&=~(1<<maxscore);
10376 branch_regs[j].wasconst&=~(1<<maxscore);
10377 branch_regs[j].isconst&=~(1<<maxscore);
10378 if(itype[j]!=RJUMP&&itype[j]!=UJUMP&&(source[j]>>16)!=0x1000) {
10379 regmap_pre[j+2][maxscore]=reg;
10380 regs[j+2].wasdirty&=~(1<<maxscore);
10381 }
10382 // loop optimization (loop_preload)
10383 int t=(ba[j]-start)>>2;
198df76f 10384 if(t==loop_start[maxscore]) {
10385 if(t==1||(t>1&&itype[t-2]!=UJUMP&&itype[t-2]!=RJUMP)||(t>1&&rt1[t-2]!=31)) // call/ret assumes no registers allocated
10386 regs[t].regmap_entry[maxscore]=reg;
10387 }
d61de97e 10388 }
10389 else
10390 {
10391 if(j<1||(itype[j-1]!=RJUMP&&itype[j-1]!=UJUMP&&itype[j-1]!=CJUMP&&itype[j-1]!=SJUMP&&itype[j-1]!=FJUMP)) {
10392 regmap_pre[j+1][maxscore]=reg;
10393 regs[j+1].wasdirty&=~(1<<maxscore);
10394 }
10395 }
10396 }
10397 i=j-1;
10398 if(itype[j-1]==RJUMP||itype[j-1]==UJUMP||itype[j-1]==CJUMP||itype[j-1]==SJUMP||itype[j-1]==FJUMP) i++; // skip delay slot
10399 for(hr=0;hr<HOST_REGS;hr++) {
10400 score[hr]=0;earliest_available[hr]=i+i;
10401 loop_start[hr]=MAXBLOCK;
10402 }
10403 }
10404 }
10405 }
10406 }
10407 #endif
10408
57871462 10409 // This allocates registers (if possible) one instruction prior
10410 // to use, which can avoid a load-use penalty on certain CPUs.
10411 for(i=0;i<slen-1;i++)
10412 {
10413 if(!i||(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP))
10414 {
10415 if(!bt[i+1])
10416 {
b9b61529 10417 if(itype[i]==ALU||itype[i]==MOV||itype[i]==LOAD||itype[i]==SHIFTIMM||itype[i]==IMM16
10418 ||((itype[i]==COP1||itype[i]==COP2)&&opcode2[i]<3))
57871462 10419 {
10420 if(rs1[i+1]) {
10421 if((hr=get_reg(regs[i+1].regmap,rs1[i+1]))>=0)
10422 {
10423 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10424 {
10425 regs[i].regmap[hr]=regs[i+1].regmap[hr];
10426 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
10427 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
10428 regs[i].isconst&=~(1<<hr);
10429 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10430 constmap[i][hr]=constmap[i+1][hr];
10431 regs[i+1].wasdirty&=~(1<<hr);
10432 regs[i].dirty&=~(1<<hr);
10433 }
10434 }
10435 }
10436 if(rs2[i+1]) {
10437 if((hr=get_reg(regs[i+1].regmap,rs2[i+1]))>=0)
10438 {
10439 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10440 {
10441 regs[i].regmap[hr]=regs[i+1].regmap[hr];
10442 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
10443 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
10444 regs[i].isconst&=~(1<<hr);
10445 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10446 constmap[i][hr]=constmap[i+1][hr];
10447 regs[i+1].wasdirty&=~(1<<hr);
10448 regs[i].dirty&=~(1<<hr);
10449 }
10450 }
10451 }
198df76f 10452 // Preload target address for load instruction (non-constant)
57871462 10453 if(itype[i+1]==LOAD&&rs1[i+1]&&get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10454 if((hr=get_reg(regs[i+1].regmap,rt1[i+1]))>=0)
10455 {
10456 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10457 {
10458 regs[i].regmap[hr]=rs1[i+1];
10459 regmap_pre[i+1][hr]=rs1[i+1];
10460 regs[i+1].regmap_entry[hr]=rs1[i+1];
10461 regs[i].isconst&=~(1<<hr);
10462 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10463 constmap[i][hr]=constmap[i+1][hr];
10464 regs[i+1].wasdirty&=~(1<<hr);
10465 regs[i].dirty&=~(1<<hr);
10466 }
10467 }
10468 }
198df76f 10469 // Load source into target register
57871462 10470 if(lt1[i+1]&&get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10471 if((hr=get_reg(regs[i+1].regmap,rt1[i+1]))>=0)
10472 {
10473 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10474 {
10475 regs[i].regmap[hr]=rs1[i+1];
10476 regmap_pre[i+1][hr]=rs1[i+1];
10477 regs[i+1].regmap_entry[hr]=rs1[i+1];
10478 regs[i].isconst&=~(1<<hr);
10479 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10480 constmap[i][hr]=constmap[i+1][hr];
10481 regs[i+1].wasdirty&=~(1<<hr);
10482 regs[i].dirty&=~(1<<hr);
10483 }
10484 }
10485 }
198df76f 10486 // Preload map address
57871462 10487 #ifndef HOST_IMM_ADDR32
b9b61529 10488 if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS||itype[i+1]==C2LS) {
57871462 10489 hr=get_reg(regs[i+1].regmap,TLREG);
10490 if(hr>=0) {
10491 int sr=get_reg(regs[i+1].regmap,rs1[i+1]);
10492 if(sr>=0&&((regs[i+1].wasconst>>sr)&1)) {
10493 int nr;
10494 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10495 {
10496 regs[i].regmap[hr]=MGEN1+((i+1)&1);
10497 regmap_pre[i+1][hr]=MGEN1+((i+1)&1);
10498 regs[i+1].regmap_entry[hr]=MGEN1+((i+1)&1);
10499 regs[i].isconst&=~(1<<hr);
10500 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10501 constmap[i][hr]=constmap[i+1][hr];
10502 regs[i+1].wasdirty&=~(1<<hr);
10503 regs[i].dirty&=~(1<<hr);
10504 }
10505 else if((nr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1))>=0)
10506 {
10507 // move it to another register
10508 regs[i+1].regmap[hr]=-1;
10509 regmap_pre[i+2][hr]=-1;
10510 regs[i+1].regmap[nr]=TLREG;
10511 regmap_pre[i+2][nr]=TLREG;
10512 regs[i].regmap[nr]=MGEN1+((i+1)&1);
10513 regmap_pre[i+1][nr]=MGEN1+((i+1)&1);
10514 regs[i+1].regmap_entry[nr]=MGEN1+((i+1)&1);
10515 regs[i].isconst&=~(1<<nr);
10516 regs[i+1].isconst&=~(1<<nr);
10517 regs[i].dirty&=~(1<<nr);
10518 regs[i+1].wasdirty&=~(1<<nr);
10519 regs[i+1].dirty&=~(1<<nr);
10520 regs[i+2].wasdirty&=~(1<<nr);
10521 }
10522 }
10523 }
10524 }
10525 #endif
198df76f 10526 // Address for store instruction (non-constant)
b9b61529 10527 if(itype[i+1]==STORE||itype[i+1]==STORELR
10528 ||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SB/SH/SW/SD/SWC1/SDC1/SWC2/SDC2
57871462 10529 if(get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10530 hr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1);
10531 if(hr<0) hr=get_reg(regs[i+1].regmap,-1);
10532 else {regs[i+1].regmap[hr]=AGEN1+((i+1)&1);regs[i+1].isconst&=~(1<<hr);}
10533 assert(hr>=0);
10534 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10535 {
10536 regs[i].regmap[hr]=rs1[i+1];
10537 regmap_pre[i+1][hr]=rs1[i+1];
10538 regs[i+1].regmap_entry[hr]=rs1[i+1];
10539 regs[i].isconst&=~(1<<hr);
10540 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10541 constmap[i][hr]=constmap[i+1][hr];
10542 regs[i+1].wasdirty&=~(1<<hr);
10543 regs[i].dirty&=~(1<<hr);
10544 }
10545 }
10546 }
b9b61529 10547 if(itype[i+1]==LOADLR||(opcode[i+1]&0x3b)==0x31||(opcode[i+1]&0x3b)==0x32) { // LWC1/LDC1, LWC2/LDC2
57871462 10548 if(get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10549 int nr;
10550 hr=get_reg(regs[i+1].regmap,FTEMP);
10551 assert(hr>=0);
10552 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10553 {
10554 regs[i].regmap[hr]=rs1[i+1];
10555 regmap_pre[i+1][hr]=rs1[i+1];
10556 regs[i+1].regmap_entry[hr]=rs1[i+1];
10557 regs[i].isconst&=~(1<<hr);
10558 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10559 constmap[i][hr]=constmap[i+1][hr];
10560 regs[i+1].wasdirty&=~(1<<hr);
10561 regs[i].dirty&=~(1<<hr);
10562 }
10563 else if((nr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1))>=0)
10564 {
10565 // move it to another register
10566 regs[i+1].regmap[hr]=-1;
10567 regmap_pre[i+2][hr]=-1;
10568 regs[i+1].regmap[nr]=FTEMP;
10569 regmap_pre[i+2][nr]=FTEMP;
10570 regs[i].regmap[nr]=rs1[i+1];
10571 regmap_pre[i+1][nr]=rs1[i+1];
10572 regs[i+1].regmap_entry[nr]=rs1[i+1];
10573 regs[i].isconst&=~(1<<nr);
10574 regs[i+1].isconst&=~(1<<nr);
10575 regs[i].dirty&=~(1<<nr);
10576 regs[i+1].wasdirty&=~(1<<nr);
10577 regs[i+1].dirty&=~(1<<nr);
10578 regs[i+2].wasdirty&=~(1<<nr);
10579 }
10580 }
10581 }
b9b61529 10582 if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR/*||itype[i+1]==C1LS||||itype[i+1]==C2LS*/) {
57871462 10583 if(itype[i+1]==LOAD)
10584 hr=get_reg(regs[i+1].regmap,rt1[i+1]);
b9b61529 10585 if(itype[i+1]==LOADLR||(opcode[i+1]&0x3b)==0x31||(opcode[i+1]&0x3b)==0x32) // LWC1/LDC1, LWC2/LDC2
57871462 10586 hr=get_reg(regs[i+1].regmap,FTEMP);
b9b61529 10587 if(itype[i+1]==STORE||itype[i+1]==STORELR||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1/SWC2/SDC2
57871462 10588 hr=get_reg(regs[i+1].regmap,AGEN1+((i+1)&1));
10589 if(hr<0) hr=get_reg(regs[i+1].regmap,-1);
10590 }
10591 if(hr>=0&&regs[i].regmap[hr]<0) {
10592 int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
10593 if(rs>=0&&((regs[i+1].wasconst>>rs)&1)) {
10594 regs[i].regmap[hr]=AGEN1+((i+1)&1);
10595 regmap_pre[i+1][hr]=AGEN1+((i+1)&1);
10596 regs[i+1].regmap_entry[hr]=AGEN1+((i+1)&1);
10597 regs[i].isconst&=~(1<<hr);
10598 regs[i+1].wasdirty&=~(1<<hr);
10599 regs[i].dirty&=~(1<<hr);
10600 }
10601 }
10602 }
10603 }
10604 }
10605 }
10606 }
10607
10608 /* Pass 6 - Optimize clean/dirty state */
10609 clean_registers(0,slen-1,1);
10610
10611 /* Pass 7 - Identify 32-bit registers */
a28c6ce8 10612#ifndef FORCE32
57871462 10613 provisional_r32();
10614
10615 u_int r32=0;
10616
10617 for (i=slen-1;i>=0;i--)
10618 {
10619 int hr;
10620 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
10621 {
10622 if(ba[i]<start || ba[i]>=(start+slen*4))
10623 {
10624 // Branch out of this block, don't need anything
10625 r32=0;
10626 }
10627 else
10628 {
10629 // Internal branch
10630 // Need whatever matches the target
10631 // (and doesn't get overwritten by the delay slot instruction)
10632 r32=0;
10633 int t=(ba[i]-start)>>2;
10634 if(ba[i]>start+i*4) {
10635 // Forward branch
10636 if(!(requires_32bit[t]&~regs[i].was32))
10637 r32|=requires_32bit[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
10638 }else{
10639 // Backward branch
10640 //if(!(regs[t].was32&~unneeded_reg_upper[t]&~regs[i].was32))
10641 // r32|=regs[t].was32&~unneeded_reg_upper[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
10642 if(!(pr32[t]&~regs[i].was32))
10643 r32|=pr32[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
10644 }
10645 }
10646 // Conditional branch may need registers for following instructions
10647 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
10648 {
10649 if(i<slen-2) {
10650 r32|=requires_32bit[i+2];
10651 r32&=regs[i].was32;
10652 // Mark this address as a branch target since it may be called
10653 // upon return from interrupt
10654 bt[i+2]=1;
10655 }
10656 }
10657 // Merge in delay slot
10658 if(!likely[i]) {
10659 // These are overwritten unless the branch is "likely"
10660 // and the delay slot is nullified if not taken
10661 r32&=~(1LL<<rt1[i+1]);
10662 r32&=~(1LL<<rt2[i+1]);
10663 }
10664 // Assume these are needed (delay slot)
10665 if(us1[i+1]>0)
10666 {
10667 if((regs[i].was32>>us1[i+1])&1) r32|=1LL<<us1[i+1];
10668 }
10669 if(us2[i+1]>0)
10670 {
10671 if((regs[i].was32>>us2[i+1])&1) r32|=1LL<<us2[i+1];
10672 }
10673 if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1))
10674 {
10675 if((regs[i].was32>>dep1[i+1])&1) r32|=1LL<<dep1[i+1];
10676 }
10677 if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1))
10678 {
10679 if((regs[i].was32>>dep2[i+1])&1) r32|=1LL<<dep2[i+1];
10680 }
10681 }
1e973cb0 10682 else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
57871462 10683 {
10684 // SYSCALL instruction (software interrupt)
10685 r32=0;
10686 }
10687 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
10688 {
10689 // ERET instruction (return from interrupt)
10690 r32=0;
10691 }
10692 // Check 32 bits
10693 r32&=~(1LL<<rt1[i]);
10694 r32&=~(1LL<<rt2[i]);
10695 if(us1[i]>0)
10696 {
10697 if((regs[i].was32>>us1[i])&1) r32|=1LL<<us1[i];
10698 }
10699 if(us2[i]>0)
10700 {
10701 if((regs[i].was32>>us2[i])&1) r32|=1LL<<us2[i];
10702 }
10703 if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1))
10704 {
10705 if((regs[i].was32>>dep1[i])&1) r32|=1LL<<dep1[i];
10706 }
10707 if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1))
10708 {
10709 if((regs[i].was32>>dep2[i])&1) r32|=1LL<<dep2[i];
10710 }
10711 requires_32bit[i]=r32;
10712
10713 // Dirty registers which are 32-bit, require 32-bit input
10714 // as they will be written as 32-bit values
10715 for(hr=0;hr<HOST_REGS;hr++)
10716 {
10717 if(regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64) {
10718 if((regs[i].was32>>regs[i].regmap_entry[hr])&(regs[i].wasdirty>>hr)&1) {
10719 if(!((unneeded_reg_upper[i]>>regs[i].regmap_entry[hr])&1))
10720 requires_32bit[i]|=1LL<<regs[i].regmap_entry[hr];
10721 }
10722 }
10723 }
10724 //requires_32bit[i]=is32[i]&~unneeded_reg_upper[i]; // DEBUG
10725 }
04fd948a 10726#else
10727 for (i=slen-1;i>=0;i--)
10728 {
10729 if(itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
10730 {
10731 // Conditional branch
10732 if((source[i]>>16)!=0x1000&&i<slen-2) {
10733 // Mark this address as a branch target since it may be called
10734 // upon return from interrupt
10735 bt[i+2]=1;
10736 }
10737 }
10738 }
a28c6ce8 10739#endif
57871462 10740
10741 if(itype[slen-1]==SPAN) {
10742 bt[slen-1]=1; // Mark as a branch target so instruction can restart after exception
10743 }
10744
10745 /* Debug/disassembly */
10746 if((void*)assem_debug==(void*)printf)
10747 for(i=0;i<slen;i++)
10748 {
10749 printf("U:");
10750 int r;
10751 for(r=1;r<=CCREG;r++) {
10752 if((unneeded_reg[i]>>r)&1) {
10753 if(r==HIREG) printf(" HI");
10754 else if(r==LOREG) printf(" LO");
10755 else printf(" r%d",r);
10756 }
10757 }
90ae6d4e 10758#ifndef FORCE32
57871462 10759 printf(" UU:");
10760 for(r=1;r<=CCREG;r++) {
10761 if(((unneeded_reg_upper[i]&~unneeded_reg[i])>>r)&1) {
10762 if(r==HIREG) printf(" HI");
10763 else if(r==LOREG) printf(" LO");
10764 else printf(" r%d",r);
10765 }
10766 }
10767 printf(" 32:");
10768 for(r=0;r<=CCREG;r++) {
10769 //if(((is32[i]>>r)&(~unneeded_reg[i]>>r))&1) {
10770 if((regs[i].was32>>r)&1) {
10771 if(r==CCREG) printf(" CC");
10772 else if(r==HIREG) printf(" HI");
10773 else if(r==LOREG) printf(" LO");
10774 else printf(" r%d",r);
10775 }
10776 }
90ae6d4e 10777#endif
57871462 10778 printf("\n");
10779 #if defined(__i386__) || defined(__x86_64__)
10780 printf("pre: eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",regmap_pre[i][0],regmap_pre[i][1],regmap_pre[i][2],regmap_pre[i][3],regmap_pre[i][5],regmap_pre[i][6],regmap_pre[i][7]);
10781 #endif
10782 #ifdef __arm__
10783 printf("pre: r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d\n",regmap_pre[i][0],regmap_pre[i][1],regmap_pre[i][2],regmap_pre[i][3],regmap_pre[i][4],regmap_pre[i][5],regmap_pre[i][6],regmap_pre[i][7],regmap_pre[i][8],regmap_pre[i][9],regmap_pre[i][10],regmap_pre[i][12]);
10784 #endif
10785 printf("needs: ");
10786 if(needed_reg[i]&1) printf("eax ");
10787 if((needed_reg[i]>>1)&1) printf("ecx ");
10788 if((needed_reg[i]>>2)&1) printf("edx ");
10789 if((needed_reg[i]>>3)&1) printf("ebx ");
10790 if((needed_reg[i]>>5)&1) printf("ebp ");
10791 if((needed_reg[i]>>6)&1) printf("esi ");
10792 if((needed_reg[i]>>7)&1) printf("edi ");
10793 printf("r:");
10794 for(r=0;r<=CCREG;r++) {
10795 //if(((requires_32bit[i]>>r)&(~unneeded_reg[i]>>r))&1) {
10796 if((requires_32bit[i]>>r)&1) {
10797 if(r==CCREG) printf(" CC");
10798 else if(r==HIREG) printf(" HI");
10799 else if(r==LOREG) printf(" LO");
10800 else printf(" r%d",r);
10801 }
10802 }
10803 printf("\n");
10804 /*printf("pr:");
10805 for(r=0;r<=CCREG;r++) {
10806 //if(((requires_32bit[i]>>r)&(~unneeded_reg[i]>>r))&1) {
10807 if((pr32[i]>>r)&1) {
10808 if(r==CCREG) printf(" CC");
10809 else if(r==HIREG) printf(" HI");
10810 else if(r==LOREG) printf(" LO");
10811 else printf(" r%d",r);
10812 }
10813 }
10814 if(pr32[i]!=requires_32bit[i]) printf(" OOPS");
10815 printf("\n");*/
10816 #if defined(__i386__) || defined(__x86_64__)
10817 printf("entry: eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",regs[i].regmap_entry[0],regs[i].regmap_entry[1],regs[i].regmap_entry[2],regs[i].regmap_entry[3],regs[i].regmap_entry[5],regs[i].regmap_entry[6],regs[i].regmap_entry[7]);
10818 printf("dirty: ");
10819 if(regs[i].wasdirty&1) printf("eax ");
10820 if((regs[i].wasdirty>>1)&1) printf("ecx ");
10821 if((regs[i].wasdirty>>2)&1) printf("edx ");
10822 if((regs[i].wasdirty>>3)&1) printf("ebx ");
10823 if((regs[i].wasdirty>>5)&1) printf("ebp ");
10824 if((regs[i].wasdirty>>6)&1) printf("esi ");
10825 if((regs[i].wasdirty>>7)&1) printf("edi ");
10826 #endif
10827 #ifdef __arm__
10828 printf("entry: r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d\n",regs[i].regmap_entry[0],regs[i].regmap_entry[1],regs[i].regmap_entry[2],regs[i].regmap_entry[3],regs[i].regmap_entry[4],regs[i].regmap_entry[5],regs[i].regmap_entry[6],regs[i].regmap_entry[7],regs[i].regmap_entry[8],regs[i].regmap_entry[9],regs[i].regmap_entry[10],regs[i].regmap_entry[12]);
10829 printf("dirty: ");
10830 if(regs[i].wasdirty&1) printf("r0 ");
10831 if((regs[i].wasdirty>>1)&1) printf("r1 ");
10832 if((regs[i].wasdirty>>2)&1) printf("r2 ");
10833 if((regs[i].wasdirty>>3)&1) printf("r3 ");
10834 if((regs[i].wasdirty>>4)&1) printf("r4 ");
10835 if((regs[i].wasdirty>>5)&1) printf("r5 ");
10836 if((regs[i].wasdirty>>6)&1) printf("r6 ");
10837 if((regs[i].wasdirty>>7)&1) printf("r7 ");
10838 if((regs[i].wasdirty>>8)&1) printf("r8 ");
10839 if((regs[i].wasdirty>>9)&1) printf("r9 ");
10840 if((regs[i].wasdirty>>10)&1) printf("r10 ");
10841 if((regs[i].wasdirty>>12)&1) printf("r12 ");
10842 #endif
10843 printf("\n");
10844 disassemble_inst(i);
10845 //printf ("ccadj[%d] = %d\n",i,ccadj[i]);
10846 #if defined(__i386__) || defined(__x86_64__)
10847 printf("eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d dirty: ",regs[i].regmap[0],regs[i].regmap[1],regs[i].regmap[2],regs[i].regmap[3],regs[i].regmap[5],regs[i].regmap[6],regs[i].regmap[7]);
10848 if(regs[i].dirty&1) printf("eax ");
10849 if((regs[i].dirty>>1)&1) printf("ecx ");
10850 if((regs[i].dirty>>2)&1) printf("edx ");
10851 if((regs[i].dirty>>3)&1) printf("ebx ");
10852 if((regs[i].dirty>>5)&1) printf("ebp ");
10853 if((regs[i].dirty>>6)&1) printf("esi ");
10854 if((regs[i].dirty>>7)&1) printf("edi ");
10855 #endif
10856 #ifdef __arm__
10857 printf("r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d dirty: ",regs[i].regmap[0],regs[i].regmap[1],regs[i].regmap[2],regs[i].regmap[3],regs[i].regmap[4],regs[i].regmap[5],regs[i].regmap[6],regs[i].regmap[7],regs[i].regmap[8],regs[i].regmap[9],regs[i].regmap[10],regs[i].regmap[12]);
10858 if(regs[i].dirty&1) printf("r0 ");
10859 if((regs[i].dirty>>1)&1) printf("r1 ");
10860 if((regs[i].dirty>>2)&1) printf("r2 ");
10861 if((regs[i].dirty>>3)&1) printf("r3 ");
10862 if((regs[i].dirty>>4)&1) printf("r4 ");
10863 if((regs[i].dirty>>5)&1) printf("r5 ");
10864 if((regs[i].dirty>>6)&1) printf("r6 ");
10865 if((regs[i].dirty>>7)&1) printf("r7 ");
10866 if((regs[i].dirty>>8)&1) printf("r8 ");
10867 if((regs[i].dirty>>9)&1) printf("r9 ");
10868 if((regs[i].dirty>>10)&1) printf("r10 ");
10869 if((regs[i].dirty>>12)&1) printf("r12 ");
10870 #endif
10871 printf("\n");
10872 if(regs[i].isconst) {
10873 printf("constants: ");
10874 #if defined(__i386__) || defined(__x86_64__)
10875 if(regs[i].isconst&1) printf("eax=%x ",(int)constmap[i][0]);
10876 if((regs[i].isconst>>1)&1) printf("ecx=%x ",(int)constmap[i][1]);
10877 if((regs[i].isconst>>2)&1) printf("edx=%x ",(int)constmap[i][2]);
10878 if((regs[i].isconst>>3)&1) printf("ebx=%x ",(int)constmap[i][3]);
10879 if((regs[i].isconst>>5)&1) printf("ebp=%x ",(int)constmap[i][5]);
10880 if((regs[i].isconst>>6)&1) printf("esi=%x ",(int)constmap[i][6]);
10881 if((regs[i].isconst>>7)&1) printf("edi=%x ",(int)constmap[i][7]);
10882 #endif
10883 #ifdef __arm__
10884 if(regs[i].isconst&1) printf("r0=%x ",(int)constmap[i][0]);
10885 if((regs[i].isconst>>1)&1) printf("r1=%x ",(int)constmap[i][1]);
10886 if((regs[i].isconst>>2)&1) printf("r2=%x ",(int)constmap[i][2]);
10887 if((regs[i].isconst>>3)&1) printf("r3=%x ",(int)constmap[i][3]);
10888 if((regs[i].isconst>>4)&1) printf("r4=%x ",(int)constmap[i][4]);
10889 if((regs[i].isconst>>5)&1) printf("r5=%x ",(int)constmap[i][5]);
10890 if((regs[i].isconst>>6)&1) printf("r6=%x ",(int)constmap[i][6]);
10891 if((regs[i].isconst>>7)&1) printf("r7=%x ",(int)constmap[i][7]);
10892 if((regs[i].isconst>>8)&1) printf("r8=%x ",(int)constmap[i][8]);
10893 if((regs[i].isconst>>9)&1) printf("r9=%x ",(int)constmap[i][9]);
10894 if((regs[i].isconst>>10)&1) printf("r10=%x ",(int)constmap[i][10]);
10895 if((regs[i].isconst>>12)&1) printf("r12=%x ",(int)constmap[i][12]);
10896 #endif
10897 printf("\n");
10898 }
90ae6d4e 10899#ifndef FORCE32
57871462 10900 printf(" 32:");
10901 for(r=0;r<=CCREG;r++) {
10902 if((regs[i].is32>>r)&1) {
10903 if(r==CCREG) printf(" CC");
10904 else if(r==HIREG) printf(" HI");
10905 else if(r==LOREG) printf(" LO");
10906 else printf(" r%d",r);
10907 }
10908 }
10909 printf("\n");
90ae6d4e 10910#endif
57871462 10911 /*printf(" p32:");
10912 for(r=0;r<=CCREG;r++) {
10913 if((p32[i]>>r)&1) {
10914 if(r==CCREG) printf(" CC");
10915 else if(r==HIREG) printf(" HI");
10916 else if(r==LOREG) printf(" LO");
10917 else printf(" r%d",r);
10918 }
10919 }
10920 if(p32[i]!=regs[i].is32) printf(" NO MATCH\n");
10921 else printf("\n");*/
10922 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP) {
10923 #if defined(__i386__) || defined(__x86_64__)
10924 printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d dirty: ",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
10925 if(branch_regs[i].dirty&1) printf("eax ");
10926 if((branch_regs[i].dirty>>1)&1) printf("ecx ");
10927 if((branch_regs[i].dirty>>2)&1) printf("edx ");
10928 if((branch_regs[i].dirty>>3)&1) printf("ebx ");
10929 if((branch_regs[i].dirty>>5)&1) printf("ebp ");
10930 if((branch_regs[i].dirty>>6)&1) printf("esi ");
10931 if((branch_regs[i].dirty>>7)&1) printf("edi ");
10932 #endif
10933 #ifdef __arm__
10934 printf("branch(%d): r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d dirty: ",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[4],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7],branch_regs[i].regmap[8],branch_regs[i].regmap[9],branch_regs[i].regmap[10],branch_regs[i].regmap[12]);
10935 if(branch_regs[i].dirty&1) printf("r0 ");
10936 if((branch_regs[i].dirty>>1)&1) printf("r1 ");
10937 if((branch_regs[i].dirty>>2)&1) printf("r2 ");
10938 if((branch_regs[i].dirty>>3)&1) printf("r3 ");
10939 if((branch_regs[i].dirty>>4)&1) printf("r4 ");
10940 if((branch_regs[i].dirty>>5)&1) printf("r5 ");
10941 if((branch_regs[i].dirty>>6)&1) printf("r6 ");
10942 if((branch_regs[i].dirty>>7)&1) printf("r7 ");
10943 if((branch_regs[i].dirty>>8)&1) printf("r8 ");
10944 if((branch_regs[i].dirty>>9)&1) printf("r9 ");
10945 if((branch_regs[i].dirty>>10)&1) printf("r10 ");
10946 if((branch_regs[i].dirty>>12)&1) printf("r12 ");
10947 #endif
90ae6d4e 10948#ifndef FORCE32
57871462 10949 printf(" 32:");
10950 for(r=0;r<=CCREG;r++) {
10951 if((branch_regs[i].is32>>r)&1) {
10952 if(r==CCREG) printf(" CC");
10953 else if(r==HIREG) printf(" HI");
10954 else if(r==LOREG) printf(" LO");
10955 else printf(" r%d",r);
10956 }
10957 }
10958 printf("\n");
90ae6d4e 10959#endif
57871462 10960 }
10961 }
10962
10963 /* Pass 8 - Assembly */
10964 linkcount=0;stubcount=0;
10965 ds=0;is_delayslot=0;
10966 cop1_usable=0;
10967 uint64_t is32_pre=0;
10968 u_int dirty_pre=0;
10969 u_int beginning=(u_int)out;
10970 if((u_int)addr&1) {
10971 ds=1;
10972 pagespan_ds();
10973 }
9ad4d757 10974 u_int instr_addr0_override=0;
10975
10976#ifdef PCSX
10977 if (start == 0x80030000) {
10978 // nasty hack for fastbios thing
96186eba 10979 // override block entry to this code
9ad4d757 10980 instr_addr0_override=(u_int)out;
10981 emit_movimm(start,0);
96186eba 10982 // abuse io address var as a flag that we
10983 // have already returned here once
10984 emit_readword((int)&address,1);
9ad4d757 10985 emit_writeword(0,(int)&pcaddr);
96186eba 10986 emit_writeword(0,(int)&address);
9ad4d757 10987 emit_cmp(0,1);
10988 emit_jne((int)new_dyna_leave);
10989 }
10990#endif
57871462 10991 for(i=0;i<slen;i++)
10992 {
10993 //if(ds) printf("ds: ");
10994 if((void*)assem_debug==(void*)printf) disassemble_inst(i);
10995 if(ds) {
10996 ds=0; // Skip delay slot
10997 if(bt[i]) assem_debug("OOPS - branch into delay slot\n");
10998 instr_addr[i]=0;
10999 } else {
11000 #ifndef DESTRUCTIVE_WRITEBACK
11001 if(i<2||(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000))
11002 {
11003 wb_sx(regmap_pre[i],regs[i].regmap_entry,regs[i].wasdirty,is32_pre,regs[i].was32,
11004 unneeded_reg[i],unneeded_reg_upper[i]);
11005 wb_valid(regmap_pre[i],regs[i].regmap_entry,dirty_pre,regs[i].wasdirty,is32_pre,
11006 unneeded_reg[i],unneeded_reg_upper[i]);
11007 }
f776eb14 11008 if((itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)&&!likely[i]) {
11009 is32_pre=branch_regs[i].is32;
11010 dirty_pre=branch_regs[i].dirty;
11011 }else{
11012 is32_pre=regs[i].is32;
11013 dirty_pre=regs[i].dirty;
11014 }
57871462 11015 #endif
11016 // write back
11017 if(i<2||(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000))
11018 {
11019 wb_invalidate(regmap_pre[i],regs[i].regmap_entry,regs[i].wasdirty,regs[i].was32,
11020 unneeded_reg[i],unneeded_reg_upper[i]);
11021 loop_preload(regmap_pre[i],regs[i].regmap_entry);
11022 }
11023 // branch target entry point
11024 instr_addr[i]=(u_int)out;
11025 assem_debug("<->\n");
11026 // load regs
11027 if(regs[i].regmap_entry[HOST_CCREG]==CCREG&&regs[i].regmap[HOST_CCREG]!=CCREG)
11028 wb_register(CCREG,regs[i].regmap_entry,regs[i].wasdirty,regs[i].was32);
11029 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i],rs2[i]);
11030 address_generation(i,&regs[i],regs[i].regmap_entry);
11031 load_consts(regmap_pre[i],regs[i].regmap,regs[i].was32,i);
11032 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
11033 {
11034 // Load the delay slot registers if necessary
4ef8f67d 11035 if(rs1[i+1]!=rs1[i]&&rs1[i+1]!=rs2[i]&&(rs1[i+1]!=rt1[i]||rt1[i]==0))
57871462 11036 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i+1],rs1[i+1]);
4ef8f67d 11037 if(rs2[i+1]!=rs1[i+1]&&rs2[i+1]!=rs1[i]&&rs2[i+1]!=rs2[i]&&(rs2[i+1]!=rt1[i]||rt1[i]==0))
57871462 11038 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs2[i+1],rs2[i+1]);
b9b61529 11039 if(itype[i+1]==STORE||itype[i+1]==STORELR||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a)
57871462 11040 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,INVCP,INVCP);
11041 }
11042 else if(i+1<slen)
11043 {
11044 // Preload registers for following instruction
11045 if(rs1[i+1]!=rs1[i]&&rs1[i+1]!=rs2[i])
11046 if(rs1[i+1]!=rt1[i]&&rs1[i+1]!=rt2[i])
11047 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i+1],rs1[i+1]);
11048 if(rs2[i+1]!=rs1[i+1]&&rs2[i+1]!=rs1[i]&&rs2[i+1]!=rs2[i])
11049 if(rs2[i+1]!=rt1[i]&&rs2[i+1]!=rt2[i])
11050 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs2[i+1],rs2[i+1]);
11051 }
11052 // TODO: if(is_ooo(i)) address_generation(i+1);
11053 if(itype[i]==CJUMP||itype[i]==FJUMP)
11054 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,CCREG,CCREG);
b9b61529 11055 if(itype[i]==STORE||itype[i]==STORELR||(opcode[i]&0x3b)==0x39||(opcode[i]&0x3b)==0x3a)
57871462 11056 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,INVCP,INVCP);
11057 if(bt[i]) cop1_usable=0;
11058 // assemble
11059 switch(itype[i]) {
11060 case ALU:
11061 alu_assemble(i,&regs[i]);break;
11062 case IMM16:
11063 imm16_assemble(i,&regs[i]);break;
11064 case SHIFT:
11065 shift_assemble(i,&regs[i]);break;
11066 case SHIFTIMM:
11067 shiftimm_assemble(i,&regs[i]);break;
11068 case LOAD:
11069 load_assemble(i,&regs[i]);break;
11070 case LOADLR:
11071 loadlr_assemble(i,&regs[i]);break;
11072 case STORE:
11073 store_assemble(i,&regs[i]);break;
11074 case STORELR:
11075 storelr_assemble(i,&regs[i]);break;
11076 case COP0:
11077 cop0_assemble(i,&regs[i]);break;
11078 case COP1:
11079 cop1_assemble(i,&regs[i]);break;
11080 case C1LS:
11081 c1ls_assemble(i,&regs[i]);break;
b9b61529 11082 case COP2:
11083 cop2_assemble(i,&regs[i]);break;
11084 case C2LS:
11085 c2ls_assemble(i,&regs[i]);break;
11086 case C2OP:
11087 c2op_assemble(i,&regs[i]);break;
57871462 11088 case FCONV:
11089 fconv_assemble(i,&regs[i]);break;
11090 case FLOAT:
11091 float_assemble(i,&regs[i]);break;
11092 case FCOMP:
11093 fcomp_assemble(i,&regs[i]);break;
11094 case MULTDIV:
11095 multdiv_assemble(i,&regs[i]);break;
11096 case MOV:
11097 mov_assemble(i,&regs[i]);break;
11098 case SYSCALL:
11099 syscall_assemble(i,&regs[i]);break;
7139f3c8 11100 case HLECALL:
11101 hlecall_assemble(i,&regs[i]);break;
1e973cb0 11102 case INTCALL:
11103 intcall_assemble(i,&regs[i]);break;
57871462 11104 case UJUMP:
11105 ujump_assemble(i,&regs[i]);ds=1;break;
11106 case RJUMP:
11107 rjump_assemble(i,&regs[i]);ds=1;break;
11108 case CJUMP:
11109 cjump_assemble(i,&regs[i]);ds=1;break;
11110 case SJUMP:
11111 sjump_assemble(i,&regs[i]);ds=1;break;
11112 case FJUMP:
11113 fjump_assemble(i,&regs[i]);ds=1;break;
11114 case SPAN:
11115 pagespan_assemble(i,&regs[i]);break;
11116 }
11117 if(itype[i]==UJUMP||itype[i]==RJUMP||(source[i]>>16)==0x1000)
11118 literal_pool(1024);
11119 else
11120 literal_pool_jumpover(256);
11121 }
11122 }
11123 //assert(itype[i-2]==UJUMP||itype[i-2]==RJUMP||(source[i-2]>>16)==0x1000);
11124 // If the block did not end with an unconditional branch,
11125 // add a jump to the next instruction.
11126 if(i>1) {
11127 if(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000&&itype[i-1]!=SPAN) {
11128 assert(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP);
11129 assert(i==slen);
11130 if(itype[i-2]!=CJUMP&&itype[i-2]!=SJUMP&&itype[i-2]!=FJUMP) {
11131 store_regs_bt(regs[i-1].regmap,regs[i-1].is32,regs[i-1].dirty,start+i*4);
11132 if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
11133 emit_loadreg(CCREG,HOST_CCREG);
11134 emit_addimm(HOST_CCREG,CLOCK_DIVIDER*(ccadj[i-1]+1),HOST_CCREG);
11135 }
11136 else if(!likely[i-2])
11137 {
11138 store_regs_bt(branch_regs[i-2].regmap,branch_regs[i-2].is32,branch_regs[i-2].dirty,start+i*4);
11139 assert(branch_regs[i-2].regmap[HOST_CCREG]==CCREG);
11140 }
11141 else
11142 {
11143 store_regs_bt(regs[i-2].regmap,regs[i-2].is32,regs[i-2].dirty,start+i*4);
11144 assert(regs[i-2].regmap[HOST_CCREG]==CCREG);
11145 }
11146 add_to_linker((int)out,start+i*4,0);
11147 emit_jmp(0);
11148 }
11149 }
11150 else
11151 {
11152 assert(i>0);
11153 assert(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP);
11154 store_regs_bt(regs[i-1].regmap,regs[i-1].is32,regs[i-1].dirty,start+i*4);
11155 if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
11156 emit_loadreg(CCREG,HOST_CCREG);
11157 emit_addimm(HOST_CCREG,CLOCK_DIVIDER*(ccadj[i-1]+1),HOST_CCREG);
11158 add_to_linker((int)out,start+i*4,0);
11159 emit_jmp(0);
11160 }
11161
11162 // TODO: delay slot stubs?
11163 // Stubs
11164 for(i=0;i<stubcount;i++)
11165 {
11166 switch(stubs[i][0])
11167 {
11168 case LOADB_STUB:
11169 case LOADH_STUB:
11170 case LOADW_STUB:
11171 case LOADD_STUB:
11172 case LOADBU_STUB:
11173 case LOADHU_STUB:
11174 do_readstub(i);break;
11175 case STOREB_STUB:
11176 case STOREH_STUB:
11177 case STOREW_STUB:
11178 case STORED_STUB:
11179 do_writestub(i);break;
11180 case CC_STUB:
11181 do_ccstub(i);break;
11182 case INVCODE_STUB:
11183 do_invstub(i);break;
11184 case FP_STUB:
11185 do_cop1stub(i);break;
11186 case STORELR_STUB:
11187 do_unalignedwritestub(i);break;
11188 }
11189 }
11190
9ad4d757 11191 if (instr_addr0_override)
11192 instr_addr[0] = instr_addr0_override;
11193
57871462 11194 /* Pass 9 - Linker */
11195 for(i=0;i<linkcount;i++)
11196 {
11197 assem_debug("%8x -> %8x\n",link_addr[i][0],link_addr[i][1]);
11198 literal_pool(64);
11199 if(!link_addr[i][2])
11200 {
11201 void *stub=out;
11202 void *addr=check_addr(link_addr[i][1]);
11203 emit_extjump(link_addr[i][0],link_addr[i][1]);
11204 if(addr) {
11205 set_jump_target(link_addr[i][0],(int)addr);
11206 add_link(link_addr[i][1],stub);
11207 }
11208 else set_jump_target(link_addr[i][0],(int)stub);
11209 }
11210 else
11211 {
11212 // Internal branch
11213 int target=(link_addr[i][1]-start)>>2;
11214 assert(target>=0&&target<slen);
11215 assert(instr_addr[target]);
11216 //#ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
11217 //set_jump_target_fillslot(link_addr[i][0],instr_addr[target],link_addr[i][2]>>1);
11218 //#else
11219 set_jump_target(link_addr[i][0],instr_addr[target]);
11220 //#endif
11221 }
11222 }
11223 // External Branch Targets (jump_in)
11224 if(copy+slen*4>(void *)shadow+sizeof(shadow)) copy=shadow;
11225 for(i=0;i<slen;i++)
11226 {
11227 if(bt[i]||i==0)
11228 {
11229 if(instr_addr[i]) // TODO - delay slots (=null)
11230 {
11231 u_int vaddr=start+i*4;
94d23bb9 11232 u_int page=get_page(vaddr);
11233 u_int vpage=get_vpage(vaddr);
57871462 11234 literal_pool(256);
11235 //if(!(is32[i]&(~unneeded_reg_upper[i])&~(1LL<<CCREG)))
a28c6ce8 11236#ifndef FORCE32
57871462 11237 if(!requires_32bit[i])
a28c6ce8 11238#else
11239 if(1)
11240#endif
57871462 11241 {
11242 assem_debug("%8x (%d) <- %8x\n",instr_addr[i],i,start+i*4);
11243 assem_debug("jump_in: %x\n",start+i*4);
11244 ll_add(jump_dirty+vpage,vaddr,(void *)out);
11245 int entry_point=do_dirty_stub(i);
11246 ll_add(jump_in+page,vaddr,(void *)entry_point);
11247 // If there was an existing entry in the hash table,
11248 // replace it with the new address.
11249 // Don't add new entries. We'll insert the
11250 // ones that actually get used in check_addr().
11251 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
11252 if(ht_bin[0]==vaddr) {
11253 ht_bin[1]=entry_point;
11254 }
11255 if(ht_bin[2]==vaddr) {
11256 ht_bin[3]=entry_point;
11257 }
11258 }
11259 else
11260 {
11261 u_int r=requires_32bit[i]|!!(requires_32bit[i]>>32);
11262 assem_debug("%8x (%d) <- %8x\n",instr_addr[i],i,start+i*4);
11263 assem_debug("jump_in: %x (restricted - %x)\n",start+i*4,r);
11264 //int entry_point=(int)out;
11265 ////assem_debug("entry_point: %x\n",entry_point);
11266 //load_regs_entry(i);
11267 //if(entry_point==(int)out)
11268 // entry_point=instr_addr[i];
11269 //else
11270 // emit_jmp(instr_addr[i]);
11271 //ll_add_32(jump_in+page,vaddr,r,(void *)entry_point);
11272 ll_add_32(jump_dirty+vpage,vaddr,r,(void *)out);
11273 int entry_point=do_dirty_stub(i);
11274 ll_add_32(jump_in+page,vaddr,r,(void *)entry_point);
11275 }
11276 }
11277 }
11278 }
11279 // Write out the literal pool if necessary
11280 literal_pool(0);
11281 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
11282 // Align code
11283 if(((u_int)out)&7) emit_addnop(13);
11284 #endif
11285 assert((u_int)out-beginning<MAX_OUTPUT_BLOCK_SIZE);
11286 //printf("shadow buffer: %x-%x\n",(int)copy,(int)copy+slen*4);
11287 memcpy(copy,source,slen*4);
11288 copy+=slen*4;
11289
11290 #ifdef __arm__
11291 __clear_cache((void *)beginning,out);
11292 #endif
11293
11294 // If we're within 256K of the end of the buffer,
11295 // start over from the beginning. (Is 256K enough?)
11296 if((int)out>BASE_ADDR+(1<<TARGET_SIZE_2)-MAX_OUTPUT_BLOCK_SIZE) out=(u_char *)BASE_ADDR;
11297
11298 // Trap writes to any of the pages we compiled
11299 for(i=start>>12;i<=(start+slen*4)>>12;i++) {
11300 invalid_code[i]=0;
90ae6d4e 11301#ifndef DISABLE_TLB
57871462 11302 memory_map[i]|=0x40000000;
11303 if((signed int)start>=(signed int)0xC0000000) {
11304 assert(using_tlb);
11305 j=(((u_int)i<<12)+(memory_map[i]<<2)-(u_int)rdram+(u_int)0x80000000)>>12;
11306 invalid_code[j]=0;
11307 memory_map[j]|=0x40000000;
11308 //printf("write protect physical page: %x (virtual %x)\n",j<<12,start);
11309 }
90ae6d4e 11310#endif
57871462 11311 }
b12c9fb8 11312#ifdef PCSX
11313 // PCSX maps all RAM mirror invalid_code tests to 0x80000000..0x80000000+RAM_SIZE
11314 if(get_page(start)<(RAM_SIZE>>12))
11315 for(i=start>>12;i<=(start+slen*4)>>12;i++)
11316 invalid_code[((u_int)0x80000000>>12)|i]=0;
11317#endif
57871462 11318
11319 /* Pass 10 - Free memory by expiring oldest blocks */
11320
11321 int end=((((int)out-BASE_ADDR)>>(TARGET_SIZE_2-16))+16384)&65535;
11322 while(expirep!=end)
11323 {
11324 int shift=TARGET_SIZE_2-3; // Divide into 8 blocks
11325 int base=BASE_ADDR+((expirep>>13)<<shift); // Base address of this block
11326 inv_debug("EXP: Phase %d\n",expirep);
11327 switch((expirep>>11)&3)
11328 {
11329 case 0:
11330 // Clear jump_in and jump_dirty
11331 ll_remove_matching_addrs(jump_in+(expirep&2047),base,shift);
11332 ll_remove_matching_addrs(jump_dirty+(expirep&2047),base,shift);
11333 ll_remove_matching_addrs(jump_in+2048+(expirep&2047),base,shift);
11334 ll_remove_matching_addrs(jump_dirty+2048+(expirep&2047),base,shift);
11335 break;
11336 case 1:
11337 // Clear pointers
11338 ll_kill_pointers(jump_out[expirep&2047],base,shift);
11339 ll_kill_pointers(jump_out[(expirep&2047)+2048],base,shift);
11340 break;
11341 case 2:
11342 // Clear hash table
11343 for(i=0;i<32;i++) {
11344 int *ht_bin=hash_table[((expirep&2047)<<5)+i];
11345 if((ht_bin[3]>>shift)==(base>>shift) ||
11346 ((ht_bin[3]-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(base>>shift)) {
11347 inv_debug("EXP: Remove hash %x -> %x\n",ht_bin[2],ht_bin[3]);
11348 ht_bin[2]=ht_bin[3]=-1;
11349 }
11350 if((ht_bin[1]>>shift)==(base>>shift) ||
11351 ((ht_bin[1]-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(base>>shift)) {
11352 inv_debug("EXP: Remove hash %x -> %x\n",ht_bin[0],ht_bin[1]);
11353 ht_bin[0]=ht_bin[2];
11354 ht_bin[1]=ht_bin[3];
11355 ht_bin[2]=ht_bin[3]=-1;
11356 }
11357 }
11358 break;
11359 case 3:
11360 // Clear jump_out
dd3a91a1 11361 #ifdef __arm__
11362 if((expirep&2047)==0)
11363 do_clear_cache();
11364 #endif
57871462 11365 ll_remove_matching_addrs(jump_out+(expirep&2047),base,shift);
11366 ll_remove_matching_addrs(jump_out+2048+(expirep&2047),base,shift);
11367 break;
11368 }
11369 expirep=(expirep+1)&65535;
11370 }
11371 return 0;
11372}
b9b61529 11373
11374// vim:shiftwidth=2:expandtab