spu: threaded implementation
[pcsx_rearmed.git] / plugins / dfsound / reverb.c
CommitLineData
ef79bbde
P
1/***************************************************************************\r
2 reverb.c - description\r
3 -------------------\r
4 begin : Wed May 15 2002\r
5 copyright : (C) 2002 by Pete Bernert\r
6 email : BlackDove@addcom.de\r
1775933a 7\r
8 Portions (C) GraÅžvydas "notaz" Ignotas, 2010-2011\r
9 Portions (C) SPU2-X, gigaherz, Pcsx2 Development Team\r
10\r
ef79bbde
P
11 ***************************************************************************/\r
12/***************************************************************************\r
13 * *\r
14 * This program is free software; you can redistribute it and/or modify *\r
15 * it under the terms of the GNU General Public License as published by *\r
16 * the Free Software Foundation; either version 2 of the License, or *\r
17 * (at your option) any later version. See also the license.txt file for *\r
18 * additional informations. *\r
19 * *\r
20 ***************************************************************************/\r
21\r
22#include "stdafx.h"\r
23\r
24#define _IN_REVERB\r
25\r
26// will be included from spu.c\r
27#ifdef _IN_SPU\r
28\r
ef79bbde
P
29////////////////////////////////////////////////////////////////////////\r
30// START REVERB\r
31////////////////////////////////////////////////////////////////////////\r
32\r
33INLINE void StartREVERB(int ch)\r
34{\r
3154bfab 35 if(s_chan[ch].bReverb && (spu.spuCtrl&0x80)) // reverb possible?\r
ef79bbde 36 {\r
3154bfab 37 s_chan[ch].bRVBActive=!!spu_config.iUseReverb;\r
ef79bbde
P
38 }\r
39 else s_chan[ch].bRVBActive=0; // else -> no reverb\r
40}\r
41\r
42////////////////////////////////////////////////////////////////////////\r
43// HELPER FOR NEILL'S REVERB: re-inits our reverb mixing buf\r
44////////////////////////////////////////////////////////////////////////\r
45\r
650adfd2 46INLINE void InitREVERB(int ns_to)\r
ef79bbde 47{\r
3154bfab 48 memset(spu.sRVBStart,0,ns_to*sizeof(spu.sRVBStart[0])*2);\r
ef79bbde
P
49}\r
50\r
51////////////////////////////////////////////////////////////////////////\r
52\r
1775933a 53INLINE int rvb2ram_offs(int curr, int space, int iOff)\r
ef79bbde 54{\r
1775933a 55 iOff += curr;\r
56 if (iOff >= 0x40000) iOff -= space;\r
57 return iOff;\r
ef79bbde
P
58}\r
59\r
1775933a 60// get_buffer content helper: takes care about wraps\r
61#define g_buffer(var) \\r
3154bfab 62 ((int)(signed short)spu.spuMem[rvb2ram_offs(curr_addr, space, rvb.n##var)])\r
ef79bbde 63\r
1775933a 64// saturate iVal and store it as var\r
65#define s_buffer(var, iVal) \\r
66 ssat32_to_16(iVal); \\r
3154bfab 67 spu.spuMem[rvb2ram_offs(curr_addr, space, rvb.n##var)] = iVal\r
ef79bbde 68\r
1775933a 69#define s_buffer1(var, iVal) \\r
70 ssat32_to_16(iVal); \\r
3154bfab 71 spu.spuMem[rvb2ram_offs(curr_addr, space, rvb.n##var + 1)] = iVal\r
ef79bbde
P
72\r
73////////////////////////////////////////////////////////////////////////\r
74\r
1775933a 75// portions based on spu2-x from PCSX2\r
650adfd2 76static void MixREVERB(int ns_to)\r
ef79bbde 77{\r
1775933a 78 int l_old = rvb.iRVBLeft;\r
79 int r_old = rvb.iRVBRight;\r
80 int curr_addr = rvb.CurrAddr;\r
81 int space = 0x40000 - rvb.StartAddr;\r
650adfd2 82 int l = 0, r = 0, ns;\r
1775933a 83\r
650adfd2 84 for (ns = 0; ns < ns_to * 2; )\r
ef79bbde 85 {\r
1775933a 86 int IIR_ALPHA = rvb.IIR_ALPHA;\r
87 int ACC0, ACC1, FB_A0, FB_A1, FB_B0, FB_B1;\r
88 int mix_dest_a0, mix_dest_a1, mix_dest_b0, mix_dest_b1;\r
89\r
3154bfab 90 int input_L = spu.sRVBStart[ns] * rvb.IN_COEF_L;\r
91 int input_R = spu.sRVBStart[ns+1] * rvb.IN_COEF_R;\r
1775933a 92\r
93 int IIR_INPUT_A0 = ((g_buffer(IIR_SRC_A0) * rvb.IIR_COEF) + input_L) >> 15;\r
94 int IIR_INPUT_A1 = ((g_buffer(IIR_SRC_A1) * rvb.IIR_COEF) + input_R) >> 15;\r
95 int IIR_INPUT_B0 = ((g_buffer(IIR_SRC_B0) * rvb.IIR_COEF) + input_L) >> 15;\r
96 int IIR_INPUT_B1 = ((g_buffer(IIR_SRC_B1) * rvb.IIR_COEF) + input_R) >> 15;\r
97\r
98 int iir_dest_a0 = g_buffer(IIR_DEST_A0);\r
99 int iir_dest_a1 = g_buffer(IIR_DEST_A1);\r
100 int iir_dest_b0 = g_buffer(IIR_DEST_B0);\r
101 int iir_dest_b1 = g_buffer(IIR_DEST_B1);\r
102\r
103 int IIR_A0 = iir_dest_a0 + ((IIR_INPUT_A0 - iir_dest_a0) * IIR_ALPHA >> 15);\r
104 int IIR_A1 = iir_dest_a1 + ((IIR_INPUT_A1 - iir_dest_a1) * IIR_ALPHA >> 15);\r
105 int IIR_B0 = iir_dest_b0 + ((IIR_INPUT_B0 - iir_dest_b0) * IIR_ALPHA >> 15);\r
106 int IIR_B1 = iir_dest_b1 + ((IIR_INPUT_B1 - iir_dest_b1) * IIR_ALPHA >> 15);\r
107\r
108 s_buffer1(IIR_DEST_A0, IIR_A0);\r
109 s_buffer1(IIR_DEST_A1, IIR_A1);\r
110 s_buffer1(IIR_DEST_B0, IIR_B0);\r
111 s_buffer1(IIR_DEST_B1, IIR_B1);\r
112\r
113 ACC0 = (g_buffer(ACC_SRC_A0) * rvb.ACC_COEF_A +\r
114 g_buffer(ACC_SRC_B0) * rvb.ACC_COEF_B +\r
115 g_buffer(ACC_SRC_C0) * rvb.ACC_COEF_C +\r
116 g_buffer(ACC_SRC_D0) * rvb.ACC_COEF_D) >> 15;\r
117 ACC1 = (g_buffer(ACC_SRC_A1) * rvb.ACC_COEF_A +\r
118 g_buffer(ACC_SRC_B1) * rvb.ACC_COEF_B +\r
119 g_buffer(ACC_SRC_C1) * rvb.ACC_COEF_C +\r
120 g_buffer(ACC_SRC_D1) * rvb.ACC_COEF_D) >> 15;\r
121\r
122 FB_A0 = g_buffer(FB_SRC_A0);\r
123 FB_A1 = g_buffer(FB_SRC_A1);\r
124 FB_B0 = g_buffer(FB_SRC_B0);\r
125 FB_B1 = g_buffer(FB_SRC_B1);\r
126\r
127 mix_dest_a0 = ACC0 - ((FB_A0 * rvb.FB_ALPHA) >> 15);\r
128 mix_dest_a1 = ACC1 - ((FB_A1 * rvb.FB_ALPHA) >> 15);\r
129\r
130 mix_dest_b0 = FB_A0 + (((ACC0 - FB_A0) * rvb.FB_ALPHA - FB_B0 * rvb.FB_X) >> 15);\r
131 mix_dest_b1 = FB_A1 + (((ACC1 - FB_A1) * rvb.FB_ALPHA - FB_B1 * rvb.FB_X) >> 15);\r
132\r
133 s_buffer(MIX_DEST_A0, mix_dest_a0);\r
134 s_buffer(MIX_DEST_A1, mix_dest_a1);\r
135 s_buffer(MIX_DEST_B0, mix_dest_b0);\r
136 s_buffer(MIX_DEST_B1, mix_dest_b1);\r
137\r
b72f17a1 138 l = (mix_dest_a0 + mix_dest_b0) / 2;\r
139 r = (mix_dest_a1 + mix_dest_b1) / 2;\r
1775933a 140\r
b72f17a1 141 l = (l * rvb.VolLeft) >> 15; // 15?\r
142 r = (r * rvb.VolRight) >> 15;\r
143\r
144 SSumLR[ns++] += (l + l_old) / 2;\r
145 SSumLR[ns++] += (r + r_old) / 2;\r
146 SSumLR[ns++] += l;\r
147 SSumLR[ns++] += r;\r
148\r
149 l_old = l;\r
150 r_old = r;\r
151\r
152 curr_addr++;\r
153 if (curr_addr >= 0x40000) curr_addr = rvb.StartAddr;\r
154 }\r
155\r
156 rvb.iRVBLeft = l;\r
157 rvb.iRVBRight = r;\r
158 rvb.CurrAddr = curr_addr;\r
159}\r
160\r
650adfd2 161static void MixREVERB_off(int ns_to)\r
b72f17a1 162{\r
163 int l_old = rvb.iRVBLeft;\r
164 int r_old = rvb.iRVBRight;\r
165 int curr_addr = rvb.CurrAddr;\r
166 int space = 0x40000 - rvb.StartAddr;\r
650adfd2 167 int l = 0, r = 0, ns;\r
b72f17a1 168\r
650adfd2 169 for (ns = 0; ns < ns_to * 2; )\r
b72f17a1 170 {\r
171 l = (g_buffer(MIX_DEST_A0) + g_buffer(MIX_DEST_B0)) / 2;\r
172 r = (g_buffer(MIX_DEST_A1) + g_buffer(MIX_DEST_B1)) / 2;\r
173\r
174 l = (l * rvb.VolLeft) >> 15;\r
175 r = (r * rvb.VolRight) >> 15;\r
1775933a 176\r
177 SSumLR[ns++] += (l + l_old) / 2;\r
178 SSumLR[ns++] += (r + r_old) / 2;\r
179 SSumLR[ns++] += l;\r
180 SSumLR[ns++] += r;\r
181\r
182 l_old = l;\r
183 r_old = r;\r
184\r
185 curr_addr++;\r
186 if (curr_addr >= 0x40000) curr_addr = rvb.StartAddr;\r
ef79bbde 187 }\r
1775933a 188\r
189 rvb.iRVBLeft = l;\r
190 rvb.iRVBRight = r;\r
191 rvb.CurrAddr = curr_addr;\r
ef79bbde
P
192}\r
193\r
1775933a 194static void prepare_offsets(void)\r
195{\r
196 int space = 0x40000 - rvb.StartAddr;\r
197 int t;\r
198 #define prep_offs(v) \\r
199 t = rvb.v; \\r
200 while (t >= space) \\r
201 t -= space; \\r
202 rvb.n##v = t\r
203 #define prep_offs2(d, v1, v2) \\r
204 t = rvb.v1 - rvb.v2; \\r
205 while (t >= space) \\r
206 t -= space; \\r
207 rvb.n##d = t\r
208\r
209 prep_offs(IIR_SRC_A0);\r
210 prep_offs(IIR_SRC_A1);\r
211 prep_offs(IIR_SRC_B0);\r
212 prep_offs(IIR_SRC_B1);\r
213 prep_offs(IIR_DEST_A0);\r
214 prep_offs(IIR_DEST_A1);\r
215 prep_offs(IIR_DEST_B0);\r
216 prep_offs(IIR_DEST_B1);\r
217 prep_offs(ACC_SRC_A0);\r
218 prep_offs(ACC_SRC_A1);\r
219 prep_offs(ACC_SRC_B0);\r
220 prep_offs(ACC_SRC_B1);\r
221 prep_offs(ACC_SRC_C0);\r
222 prep_offs(ACC_SRC_C1);\r
223 prep_offs(ACC_SRC_D0);\r
224 prep_offs(ACC_SRC_D1);\r
225 prep_offs(MIX_DEST_A0);\r
226 prep_offs(MIX_DEST_A1);\r
227 prep_offs(MIX_DEST_B0);\r
228 prep_offs(MIX_DEST_B1);\r
229 prep_offs2(FB_SRC_A0, MIX_DEST_A0, FB_SRC_A);\r
230 prep_offs2(FB_SRC_A1, MIX_DEST_A1, FB_SRC_A);\r
231 prep_offs2(FB_SRC_B0, MIX_DEST_B0, FB_SRC_B);\r
232 prep_offs2(FB_SRC_B1, MIX_DEST_B1, FB_SRC_B);\r
233\r
234#undef prep_offs\r
235#undef prep_offs2\r
236 rvb.dirty = 0;\r
237}\r
ef79bbde 238\r
650adfd2 239INLINE void REVERBDo(int ns_to)\r
ef79bbde 240{\r
1775933a 241 if (!rvb.StartAddr) // reverb is off\r
242 {\r
243 rvb.iRVBLeft = rvb.iRVBRight = 0;\r
244 return;\r
245 }\r
246\r
3154bfab 247 if (spu.spuCtrl & 0x80) // -> reverb on? oki\r
1775933a 248 {\r
b72f17a1 249 if (unlikely(rvb.dirty))\r
1775933a 250 prepare_offsets();\r
251\r
650adfd2 252 MixREVERB(ns_to);\r
1775933a 253 }\r
b72f17a1 254 else if (rvb.VolLeft || rvb.VolRight)\r
255 {\r
256 if (unlikely(rvb.dirty))\r
257 prepare_offsets();\r
258\r
650adfd2 259 MixREVERB_off(ns_to);\r
b72f17a1 260 }\r
1775933a 261 else // -> reverb off\r
262 {\r
b72f17a1 263 // reverb runs anyway\r
650adfd2 264 rvb.CurrAddr += ns_to / 2;\r
1775933a 265 while (rvb.CurrAddr >= 0x40000)\r
266 rvb.CurrAddr -= 0x40000 - rvb.StartAddr;\r
267 }\r
ef79bbde
P
268}\r
269\r
270////////////////////////////////////////////////////////////////////////\r
271\r
272#endif\r
273\r
274/*\r
275-----------------------------------------------------------------------------\r
276PSX reverb hardware notes\r
277by Neill Corlett\r
278-----------------------------------------------------------------------------\r
279\r
280Yadda yadda disclaimer yadda probably not perfect yadda well it's okay anyway\r
281yadda yadda.\r
282\r
283-----------------------------------------------------------------------------\r
284\r
285Basics\r
286------\r
287\r
288- The reverb buffer is 22khz 16-bit mono PCM.\r
289- It starts at the reverb address given by 1DA2, extends to\r
290 the end of sound RAM, and wraps back to the 1DA2 address.\r
291\r
292Setting the address at 1DA2 resets the current reverb work address.\r
293\r
294This work address ALWAYS increments every 1/22050 sec., regardless of\r
295whether reverb is enabled (bit 7 of 1DAA set).\r
296\r
297And the contents of the reverb buffer ALWAYS play, scaled by the\r
298"reverberation depth left/right" volumes (1D84/1D86).\r
299(which, by the way, appear to be scaled so 3FFF=approx. 1.0, 4000=-1.0)\r
300\r
301-----------------------------------------------------------------------------\r
302\r
303Register names\r
304--------------\r
305\r
306These are probably not their real names.\r
307These are probably not even correct names.\r
308We will use them anyway, because we can.\r
309\r
3101DC0: FB_SRC_A (offset)\r
3111DC2: FB_SRC_B (offset)\r
3121DC4: IIR_ALPHA (coef.)\r
3131DC6: ACC_COEF_A (coef.)\r
3141DC8: ACC_COEF_B (coef.)\r
3151DCA: ACC_COEF_C (coef.)\r
3161DCC: ACC_COEF_D (coef.)\r
3171DCE: IIR_COEF (coef.)\r
3181DD0: FB_ALPHA (coef.)\r
3191DD2: FB_X (coef.)\r
3201DD4: IIR_DEST_A0 (offset)\r
3211DD6: IIR_DEST_A1 (offset)\r
3221DD8: ACC_SRC_A0 (offset)\r
3231DDA: ACC_SRC_A1 (offset)\r
3241DDC: ACC_SRC_B0 (offset)\r
3251DDE: ACC_SRC_B1 (offset)\r
3261DE0: IIR_SRC_A0 (offset)\r
3271DE2: IIR_SRC_A1 (offset)\r
3281DE4: IIR_DEST_B0 (offset)\r
3291DE6: IIR_DEST_B1 (offset)\r
3301DE8: ACC_SRC_C0 (offset)\r
3311DEA: ACC_SRC_C1 (offset)\r
3321DEC: ACC_SRC_D0 (offset)\r
3331DEE: ACC_SRC_D1 (offset)\r
3341DF0: IIR_SRC_B1 (offset)\r
3351DF2: IIR_SRC_B0 (offset)\r
3361DF4: MIX_DEST_A0 (offset)\r
3371DF6: MIX_DEST_A1 (offset)\r
3381DF8: MIX_DEST_B0 (offset)\r
3391DFA: MIX_DEST_B1 (offset)\r
3401DFC: IN_COEF_L (coef.)\r
3411DFE: IN_COEF_R (coef.)\r
342\r
343The coefficients are signed fractional values.\r
344-32768 would be -1.0\r
345 32768 would be 1.0 (if it were possible... the highest is of course 32767)\r
346\r
347The offsets are (byte/8) offsets into the reverb buffer.\r
348i.e. you multiply them by 8, you get byte offsets.\r
349You can also think of them as (samples/4) offsets.\r
350They appear to be signed. They can be negative.\r
351None of the documented presets make them negative, though.\r
352\r
353Yes, 1DF0 and 1DF2 appear to be backwards. Not a typo.\r
354\r
355-----------------------------------------------------------------------------\r
356\r
357What it does\r
358------------\r
359\r
360We take all reverb sources:\r
361- regular channels that have the reverb bit on\r
362- cd and external sources, if their reverb bits are on\r
363and mix them into one stereo 44100hz signal.\r
364\r
365Lowpass/downsample that to 22050hz. The PSX uses a proper bandlimiting\r
366algorithm here, but I haven't figured out the hysterically exact specifics.\r
367I use an 8-tap filter with these coefficients, which are nice but probably\r
368not the real ones:\r
369\r
3700.037828187894\r
3710.157538631280\r
3720.321159685278\r
3730.449322115345\r
3740.449322115345\r
3750.321159685278\r
3760.157538631280\r
3770.037828187894\r
378\r
379So we have two input samples (INPUT_SAMPLE_L, INPUT_SAMPLE_R) every 22050hz.\r
380\r
381* IN MY EMULATION, I divide these by 2 to make it clip less.\r
382 (and of course the L/R output coefficients are adjusted to compensate)\r
383 The real thing appears to not do this.\r
384\r
385At every 22050hz tick:\r
386- If the reverb bit is enabled (bit 7 of 1DAA), execute the reverb\r
387 steady-state algorithm described below\r
388- AFTERWARDS, retrieve the "wet out" L and R samples from the reverb buffer\r
389 (This part may not be exactly right and I guessed at the coefs. TODO: check later.)\r
390 L is: 0.333 * (buffer[MIX_DEST_A0] + buffer[MIX_DEST_B0])\r
391 R is: 0.333 * (buffer[MIX_DEST_A1] + buffer[MIX_DEST_B1])\r
392- Advance the current buffer position by 1 sample\r
393\r
394The wet out L and R are then upsampled to 44100hz and played at the\r
395"reverberation depth left/right" (1D84/1D86) volume, independent of the main\r
396volume.\r
397\r
398-----------------------------------------------------------------------------\r
399\r
400Reverb steady-state\r
401-------------------\r
402\r
403The reverb steady-state algorithm is fairly clever, and of course by\r
404"clever" I mean "batshit insane".\r
405\r
406buffer[x] is relative to the current buffer position, not the beginning of\r
407the buffer. Note that all buffer offsets must wrap around so they're\r
408contained within the reverb work area.\r
409\r
410Clipping is performed at the end... maybe also sooner, but definitely at\r
411the end.\r
412\r
413IIR_INPUT_A0 = buffer[IIR_SRC_A0] * IIR_COEF + INPUT_SAMPLE_L * IN_COEF_L;\r
414IIR_INPUT_A1 = buffer[IIR_SRC_A1] * IIR_COEF + INPUT_SAMPLE_R * IN_COEF_R;\r
415IIR_INPUT_B0 = buffer[IIR_SRC_B0] * IIR_COEF + INPUT_SAMPLE_L * IN_COEF_L;\r
416IIR_INPUT_B1 = buffer[IIR_SRC_B1] * IIR_COEF + INPUT_SAMPLE_R * IN_COEF_R;\r
417\r
418IIR_A0 = IIR_INPUT_A0 * IIR_ALPHA + buffer[IIR_DEST_A0] * (1.0 - IIR_ALPHA);\r
419IIR_A1 = IIR_INPUT_A1 * IIR_ALPHA + buffer[IIR_DEST_A1] * (1.0 - IIR_ALPHA);\r
420IIR_B0 = IIR_INPUT_B0 * IIR_ALPHA + buffer[IIR_DEST_B0] * (1.0 - IIR_ALPHA);\r
421IIR_B1 = IIR_INPUT_B1 * IIR_ALPHA + buffer[IIR_DEST_B1] * (1.0 - IIR_ALPHA);\r
422\r
423buffer[IIR_DEST_A0 + 1sample] = IIR_A0;\r
424buffer[IIR_DEST_A1 + 1sample] = IIR_A1;\r
425buffer[IIR_DEST_B0 + 1sample] = IIR_B0;\r
426buffer[IIR_DEST_B1 + 1sample] = IIR_B1;\r
427\r
428ACC0 = buffer[ACC_SRC_A0] * ACC_COEF_A +\r
429 buffer[ACC_SRC_B0] * ACC_COEF_B +\r
430 buffer[ACC_SRC_C0] * ACC_COEF_C +\r
431 buffer[ACC_SRC_D0] * ACC_COEF_D;\r
432ACC1 = buffer[ACC_SRC_A1] * ACC_COEF_A +\r
433 buffer[ACC_SRC_B1] * ACC_COEF_B +\r
434 buffer[ACC_SRC_C1] * ACC_COEF_C +\r
435 buffer[ACC_SRC_D1] * ACC_COEF_D;\r
436\r
437FB_A0 = buffer[MIX_DEST_A0 - FB_SRC_A];\r
438FB_A1 = buffer[MIX_DEST_A1 - FB_SRC_A];\r
439FB_B0 = buffer[MIX_DEST_B0 - FB_SRC_B];\r
440FB_B1 = buffer[MIX_DEST_B1 - FB_SRC_B];\r
441\r
442buffer[MIX_DEST_A0] = ACC0 - FB_A0 * FB_ALPHA;\r
443buffer[MIX_DEST_A1] = ACC1 - FB_A1 * FB_ALPHA;\r
444buffer[MIX_DEST_B0] = (FB_ALPHA * ACC0) - FB_A0 * (FB_ALPHA^0x8000) - FB_B0 * FB_X;\r
445buffer[MIX_DEST_B1] = (FB_ALPHA * ACC1) - FB_A1 * (FB_ALPHA^0x8000) - FB_B1 * FB_X;\r
446\r
447-----------------------------------------------------------------------------\r
448*/\r
449\r
1775933a 450// vim:shiftwidth=1:expandtab\r