pcsxr-1.9.92
[pcsx_rearmed.git] / win32 / zlib / inftrees.c
CommitLineData
ef79bbde
P
1/* inftrees.c -- generate Huffman trees for efficient decoding
2 * Copyright (C) 1995-2002 Mark Adler
3 * For conditions of distribution and use, see copyright notice in zlib.h
4 */
5
6#include "zutil.h"
7#include "inftrees.h"
8
9#if !defined(BUILDFIXED) && !defined(STDC)
10# define BUILDFIXED /* non ANSI compilers may not accept inffixed.h */
11#endif
12
13const char inflate_copyright[] =
14 " inflate 1.1.4 Copyright 1995-2002 Mark Adler ";
15/*
16 If you use the zlib library in a product, an acknowledgment is welcome
17 in the documentation of your product. If for some reason you cannot
18 include such an acknowledgment, I would appreciate that you keep this
19 copyright string in the executable of your product.
20 */
21struct internal_state {int dummy;}; /* for buggy compilers */
22
23/* simplify the use of the inflate_huft type with some defines */
24#define exop word.what.Exop
25#define bits word.what.Bits
26
27
28local int huft_build OF((
29 uIntf *, /* code lengths in bits */
30 uInt, /* number of codes */
31 uInt, /* number of "simple" codes */
32 const uIntf *, /* list of base values for non-simple codes */
33 const uIntf *, /* list of extra bits for non-simple codes */
34 inflate_huft * FAR*,/* result: starting table */
35 uIntf *, /* maximum lookup bits (returns actual) */
36 inflate_huft *, /* space for trees */
37 uInt *, /* hufts used in space */
38 uIntf * )); /* space for values */
39
40/* Tables for deflate from PKZIP's appnote.txt. */
41local const uInt cplens[31] = { /* Copy lengths for literal codes 257..285 */
42 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
43 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
44 /* see note #13 above about 258 */
45local const uInt cplext[31] = { /* Extra bits for literal codes 257..285 */
46 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
47 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 112, 112}; /* 112==invalid */
48local const uInt cpdist[30] = { /* Copy offsets for distance codes 0..29 */
49 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
50 257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
51 8193, 12289, 16385, 24577};
52local const uInt cpdext[30] = { /* Extra bits for distance codes */
53 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
54 7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
55 12, 12, 13, 13};
56
57/*
58 Huffman code decoding is performed using a multi-level table lookup.
59 The fastest way to decode is to simply build a lookup table whose
60 size is determined by the longest code. However, the time it takes
61 to build this table can also be a factor if the data being decoded
62 is not very long. The most common codes are necessarily the
63 shortest codes, so those codes dominate the decoding time, and hence
64 the speed. The idea is you can have a shorter table that decodes the
65 shorter, more probable codes, and then point to subsidiary tables for
66 the longer codes. The time it costs to decode the longer codes is
67 then traded against the time it takes to make longer tables.
68
69 This results of this trade are in the variables lbits and dbits
70 below. lbits is the number of bits the first level table for literal/
71 length codes can decode in one step, and dbits is the same thing for
72 the distance codes. Subsequent tables are also less than or equal to
73 those sizes. These values may be adjusted either when all of the
74 codes are shorter than that, in which case the longest code length in
75 bits is used, or when the shortest code is *longer* than the requested
76 table size, in which case the length of the shortest code in bits is
77 used.
78
79 There are two different values for the two tables, since they code a
80 different number of possibilities each. The literal/length table
81 codes 286 possible values, or in a flat code, a little over eight
82 bits. The distance table codes 30 possible values, or a little less
83 than five bits, flat. The optimum values for speed end up being
84 about one bit more than those, so lbits is 8+1 and dbits is 5+1.
85 The optimum values may differ though from machine to machine, and
86 possibly even between compilers. Your mileage may vary.
87 */
88
89
90/* If BMAX needs to be larger than 16, then h and x[] should be uLong. */
91#define BMAX 15 /* maximum bit length of any code */
92
93local int huft_build(b, n, s, d, e, t, m, hp, hn, v)
94uIntf *b; /* code lengths in bits (all assumed <= BMAX) */
95uInt n; /* number of codes (assumed <= 288) */
96uInt s; /* number of simple-valued codes (0..s-1) */
97const uIntf *d; /* list of base values for non-simple codes */
98const uIntf *e; /* list of extra bits for non-simple codes */
99inflate_huft * FAR *t; /* result: starting table */
100uIntf *m; /* maximum lookup bits, returns actual */
101inflate_huft *hp; /* space for trees */
102uInt *hn; /* hufts used in space */
103uIntf *v; /* working area: values in order of bit length */
104/* Given a list of code lengths and a maximum table size, make a set of
105 tables to decode that set of codes. Return Z_OK on success, Z_BUF_ERROR
106 if the given code set is incomplete (the tables are still built in this
107 case), or Z_DATA_ERROR if the input is invalid. */
108{
109
110 uInt a; /* counter for codes of length k */
111 uInt c[BMAX+1]; /* bit length count table */
112 uInt f; /* i repeats in table every f entries */
113 int g; /* maximum code length */
114 int h; /* table level */
115 register uInt i; /* counter, current code */
116 register uInt j; /* counter */
117 register int k; /* number of bits in current code */
118 int l; /* bits per table (returned in m) */
119 uInt mask; /* (1 << w) - 1, to avoid cc -O bug on HP */
120 register uIntf *p; /* pointer into c[], b[], or v[] */
121 inflate_huft *q; /* points to current table */
122 struct inflate_huft_s r; /* table entry for structure assignment */
123 inflate_huft *u[BMAX]; /* table stack */
124 register int w; /* bits before this table == (l * h) */
125 uInt x[BMAX+1]; /* bit offsets, then code stack */
126 uIntf *xp; /* pointer into x */
127 int y; /* number of dummy codes added */
128 uInt z; /* number of entries in current table */
129
130
131 /* Generate counts for each bit length */
132 p = c;
133#define C0 *p++ = 0;
134#define C2 C0 C0 C0 C0
135#define C4 C2 C2 C2 C2
136 C4 /* clear c[]--assume BMAX+1 is 16 */
137 p = b; i = n;
138 do {
139 c[*p++]++; /* assume all entries <= BMAX */
140 } while (--i);
141 if (c[0] == n) /* null input--all zero length codes */
142 {
143 *t = (inflate_huft *)Z_NULL;
144 *m = 0;
145 return Z_OK;
146 }
147
148
149 /* Find minimum and maximum length, bound *m by those */
150 l = *m;
151 for (j = 1; j <= BMAX; j++)
152 if (c[j])
153 break;
154 k = j; /* minimum code length */
155 if ((uInt)l < j)
156 l = j;
157 for (i = BMAX; i; i--)
158 if (c[i])
159 break;
160 g = i; /* maximum code length */
161 if ((uInt)l > i)
162 l = i;
163 *m = l;
164
165
166 /* Adjust last length count to fill out codes, if needed */
167 for (y = 1 << j; j < i; j++, y <<= 1)
168 if ((y -= c[j]) < 0)
169 return Z_DATA_ERROR;
170 if ((y -= c[i]) < 0)
171 return Z_DATA_ERROR;
172 c[i] += y;
173
174
175 /* Generate starting offsets into the value table for each length */
176 x[1] = j = 0;
177 p = c + 1; xp = x + 2;
178 while (--i) { /* note that i == g from above */
179 *xp++ = (j += *p++);
180 }
181
182
183 /* Make a table of values in order of bit lengths */
184 p = b; i = 0;
185 do {
186 if ((j = *p++) != 0)
187 v[x[j]++] = i;
188 } while (++i < n);
189 n = x[g]; /* set n to length of v */
190
191
192 /* Generate the Huffman codes and for each, make the table entries */
193 x[0] = i = 0; /* first Huffman code is zero */
194 p = v; /* grab values in bit order */
195 h = -1; /* no tables yet--level -1 */
196 w = -l; /* bits decoded == (l * h) */
197 u[0] = (inflate_huft *)Z_NULL; /* just to keep compilers happy */
198 q = (inflate_huft *)Z_NULL; /* ditto */
199 z = 0; /* ditto */
200
201 /* go through the bit lengths (k already is bits in shortest code) */
202 for (; k <= g; k++)
203 {
204 a = c[k];
205 while (a--)
206 {
207 /* here i is the Huffman code of length k bits for value *p */
208 /* make tables up to required level */
209 while (k > w + l)
210 {
211 h++;
212 w += l; /* previous table always l bits */
213
214 /* compute minimum size table less than or equal to l bits */
215 z = g - w;
216 z = z > (uInt)l ? l : z; /* table size upper limit */
217 if ((f = 1 << (j = k - w)) > a + 1) /* try a k-w bit table */
218 { /* too few codes for k-w bit table */
219 f -= a + 1; /* deduct codes from patterns left */
220 xp = c + k;
221 if (j < z)
222 while (++j < z) /* try smaller tables up to z bits */
223 {
224 if ((f <<= 1) <= *++xp)
225 break; /* enough codes to use up j bits */
226 f -= *xp; /* else deduct codes from patterns */
227 }
228 }
229 z = 1 << j; /* table entries for j-bit table */
230
231 /* allocate new table */
232 if (*hn + z > MANY) /* (note: doesn't matter for fixed) */
233 return Z_DATA_ERROR; /* overflow of MANY */
234 u[h] = q = hp + *hn;
235 *hn += z;
236
237 /* connect to last table, if there is one */
238 if (h)
239 {
240 x[h] = i; /* save pattern for backing up */
241 r.bits = (Byte)l; /* bits to dump before this table */
242 r.exop = (Byte)j; /* bits in this table */
243 j = i >> (w - l);
244 r.base = (uInt)(q - u[h-1] - j); /* offset to this table */
245 u[h-1][j] = r; /* connect to last table */
246 }
247 else
248 *t = q; /* first table is returned result */
249 }
250
251 /* set up table entry in r */
252 r.bits = (Byte)(k - w);
253 if (p >= v + n)
254 r.exop = 128 + 64; /* out of values--invalid code */
255 else if (*p < s)
256 {
257 r.exop = (Byte)(*p < 256 ? 0 : 32 + 64); /* 256 is end-of-block */
258 r.base = *p++; /* simple code is just the value */
259 }
260 else
261 {
262 r.exop = (Byte)(e[*p - s] + 16 + 64);/* non-simple--look up in lists */
263 r.base = d[*p++ - s];
264 }
265
266 /* fill code-like entries with r */
267 f = 1 << (k - w);
268 for (j = i >> w; j < z; j += f)
269 q[j] = r;
270
271 /* backwards increment the k-bit code i */
272 for (j = 1 << (k - 1); i & j; j >>= 1)
273 i ^= j;
274 i ^= j;
275
276 /* backup over finished tables */
277 mask = (1 << w) - 1; /* needed on HP, cc -O bug */
278 while ((i & mask) != x[h])
279 {
280 h--; /* don't need to update q */
281 w -= l;
282 mask = (1 << w) - 1;
283 }
284 }
285 }
286
287
288 /* Return Z_BUF_ERROR if we were given an incomplete table */
289 return y != 0 && g != 1 ? Z_BUF_ERROR : Z_OK;
290}
291
292
293int inflate_trees_bits(c, bb, tb, hp, z)
294uIntf *c; /* 19 code lengths */
295uIntf *bb; /* bits tree desired/actual depth */
296inflate_huft * FAR *tb; /* bits tree result */
297inflate_huft *hp; /* space for trees */
298z_streamp z; /* for messages */
299{
300 int r;
301 uInt hn = 0; /* hufts used in space */
302 uIntf *v; /* work area for huft_build */
303
304 if ((v = (uIntf*)ZALLOC(z, 19, sizeof(uInt))) == Z_NULL)
305 return Z_MEM_ERROR;
306 r = huft_build(c, 19, 19, (uIntf*)Z_NULL, (uIntf*)Z_NULL,
307 tb, bb, hp, &hn, v);
308 if (r == Z_DATA_ERROR)
309 z->msg = (char*)"oversubscribed dynamic bit lengths tree";
310 else if (r == Z_BUF_ERROR || *bb == 0)
311 {
312 z->msg = (char*)"incomplete dynamic bit lengths tree";
313 r = Z_DATA_ERROR;
314 }
315 ZFREE(z, v);
316 return r;
317}
318
319
320int inflate_trees_dynamic(nl, nd, c, bl, bd, tl, td, hp, z)
321uInt nl; /* number of literal/length codes */
322uInt nd; /* number of distance codes */
323uIntf *c; /* that many (total) code lengths */
324uIntf *bl; /* literal desired/actual bit depth */
325uIntf *bd; /* distance desired/actual bit depth */
326inflate_huft * FAR *tl; /* literal/length tree result */
327inflate_huft * FAR *td; /* distance tree result */
328inflate_huft *hp; /* space for trees */
329z_streamp z; /* for messages */
330{
331 int r;
332 uInt hn = 0; /* hufts used in space */
333 uIntf *v; /* work area for huft_build */
334
335 /* allocate work area */
336 if ((v = (uIntf*)ZALLOC(z, 288, sizeof(uInt))) == Z_NULL)
337 return Z_MEM_ERROR;
338
339 /* build literal/length tree */
340 r = huft_build(c, nl, 257, cplens, cplext, tl, bl, hp, &hn, v);
341 if (r != Z_OK || *bl == 0)
342 {
343 if (r == Z_DATA_ERROR)
344 z->msg = (char*)"oversubscribed literal/length tree";
345 else if (r != Z_MEM_ERROR)
346 {
347 z->msg = (char*)"incomplete literal/length tree";
348 r = Z_DATA_ERROR;
349 }
350 ZFREE(z, v);
351 return r;
352 }
353
354 /* build distance tree */
355 r = huft_build(c + nl, nd, 0, cpdist, cpdext, td, bd, hp, &hn, v);
356 if (r != Z_OK || (*bd == 0 && nl > 257))
357 {
358 if (r == Z_DATA_ERROR)
359 z->msg = (char*)"oversubscribed distance tree";
360 else if (r == Z_BUF_ERROR) {
361#ifdef PKZIP_BUG_WORKAROUND
362 r = Z_OK;
363 }
364#else
365 z->msg = (char*)"incomplete distance tree";
366 r = Z_DATA_ERROR;
367 }
368 else if (r != Z_MEM_ERROR)
369 {
370 z->msg = (char*)"empty distance tree with lengths";
371 r = Z_DATA_ERROR;
372 }
373 ZFREE(z, v);
374 return r;
375#endif
376 }
377
378 /* done */
379 ZFREE(z, v);
380 return Z_OK;
381}
382
383
384/* build fixed tables only once--keep them here */
385#ifdef BUILDFIXED
386local int fixed_built = 0;
387#define FIXEDH 544 /* number of hufts used by fixed tables */
388local inflate_huft fixed_mem[FIXEDH];
389local uInt fixed_bl;
390local uInt fixed_bd;
391local inflate_huft *fixed_tl;
392local inflate_huft *fixed_td;
393#else
394#include "inffixed.h"
395#endif
396
397
398int inflate_trees_fixed(bl, bd, tl, td, z)
399uIntf *bl; /* literal desired/actual bit depth */
400uIntf *bd; /* distance desired/actual bit depth */
401inflate_huft * FAR *tl; /* literal/length tree result */
402inflate_huft * FAR *td; /* distance tree result */
403z_streamp z; /* for memory allocation */
404{
405#ifdef BUILDFIXED
406 /* build fixed tables if not already */
407 if (!fixed_built)
408 {
409 int k; /* temporary variable */
410 uInt f = 0; /* number of hufts used in fixed_mem */
411 uIntf *c; /* length list for huft_build */
412 uIntf *v; /* work area for huft_build */
413
414 /* allocate memory */
415 if ((c = (uIntf*)ZALLOC(z, 288, sizeof(uInt))) == Z_NULL)
416 return Z_MEM_ERROR;
417 if ((v = (uIntf*)ZALLOC(z, 288, sizeof(uInt))) == Z_NULL)
418 {
419 ZFREE(z, c);
420 return Z_MEM_ERROR;
421 }
422
423 /* literal table */
424 for (k = 0; k < 144; k++)
425 c[k] = 8;
426 for (; k < 256; k++)
427 c[k] = 9;
428 for (; k < 280; k++)
429 c[k] = 7;
430 for (; k < 288; k++)
431 c[k] = 8;
432 fixed_bl = 9;
433 huft_build(c, 288, 257, cplens, cplext, &fixed_tl, &fixed_bl,
434 fixed_mem, &f, v);
435
436 /* distance table */
437 for (k = 0; k < 30; k++)
438 c[k] = 5;
439 fixed_bd = 5;
440 huft_build(c, 30, 0, cpdist, cpdext, &fixed_td, &fixed_bd,
441 fixed_mem, &f, v);
442
443 /* done */
444 ZFREE(z, v);
445 ZFREE(z, c);
446 fixed_built = 1;
447 }
448#endif
449 *bl = fixed_bl;
450 *bd = fixed_bd;
451 *tl = fixed_tl;
452 *td = fixed_td;
453 return Z_OK;
454}