drc: remove unnecessary cache flushing
[pcsx_rearmed.git] / libpcsxcore / new_dynarec / new_dynarec.c
... / ...
CommitLineData
1/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
2 * Mupen64plus - new_dynarec.c *
3 * Copyright (C) 2009-2011 Ari64 *
4 * *
5 * This program is free software; you can redistribute it and/or modify *
6 * it under the terms of the GNU General Public License as published by *
7 * the Free Software Foundation; either version 2 of the License, or *
8 * (at your option) any later version. *
9 * *
10 * This program is distributed in the hope that it will be useful, *
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
13 * GNU General Public License for more details. *
14 * *
15 * You should have received a copy of the GNU General Public License *
16 * along with this program; if not, write to the *
17 * Free Software Foundation, Inc., *
18 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. *
19 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
20
21#include <stdlib.h>
22#include <stdint.h> //include for uint64_t
23#include <assert.h>
24#include <errno.h>
25#include <sys/mman.h>
26
27#include "emu_if.h" //emulator interface
28
29//#define DISASM
30//#define assem_debug printf
31//#define inv_debug printf
32#define assem_debug(...)
33#define inv_debug(...)
34
35#ifdef __i386__
36#include "assem_x86.h"
37#endif
38#ifdef __x86_64__
39#include "assem_x64.h"
40#endif
41#ifdef __arm__
42#include "assem_arm.h"
43#endif
44
45#ifdef __BLACKBERRY_QNX__
46#undef __clear_cache
47#define __clear_cache(start,end) msync(start, (size_t)((void*)end - (void*)start), MS_SYNC | MS_CACHE_ONLY | MS_INVALIDATE_ICACHE);
48#elif defined(__MACH__)
49#include <libkern/OSCacheControl.h>
50#define __clear_cache mach_clear_cache
51static void __clear_cache(void *start, void *end) {
52 size_t len = (char *)end - (char *)start;
53 sys_dcache_flush(start, len);
54 sys_icache_invalidate(start, len);
55}
56#endif
57
58#define MAXBLOCK 4096
59#define MAX_OUTPUT_BLOCK_SIZE 262144
60
61struct regstat
62{
63 signed char regmap_entry[HOST_REGS];
64 signed char regmap[HOST_REGS];
65 uint64_t was32;
66 uint64_t is32;
67 uint64_t wasdirty;
68 uint64_t dirty;
69 uint64_t u;
70 uint64_t uu;
71 u_int wasconst;
72 u_int isconst;
73 u_int loadedconst; // host regs that have constants loaded
74 u_int waswritten; // MIPS regs that were used as store base before
75};
76
77// note: asm depends on this layout
78struct ll_entry
79{
80 u_int vaddr;
81 u_int reg_sv_flags;
82 void *addr;
83 struct ll_entry *next;
84};
85
86 // used by asm:
87 u_char *out;
88 u_int hash_table[65536][4] __attribute__((aligned(16)));
89 struct ll_entry *jump_in[4096] __attribute__((aligned(16)));
90 struct ll_entry *jump_dirty[4096];
91
92 static struct ll_entry *jump_out[4096];
93 static u_int start;
94 static u_int *source;
95 static char insn[MAXBLOCK][10];
96 static u_char itype[MAXBLOCK];
97 static u_char opcode[MAXBLOCK];
98 static u_char opcode2[MAXBLOCK];
99 static u_char bt[MAXBLOCK];
100 static u_char rs1[MAXBLOCK];
101 static u_char rs2[MAXBLOCK];
102 static u_char rt1[MAXBLOCK];
103 static u_char rt2[MAXBLOCK];
104 static u_char us1[MAXBLOCK];
105 static u_char us2[MAXBLOCK];
106 static u_char dep1[MAXBLOCK];
107 static u_char dep2[MAXBLOCK];
108 static u_char lt1[MAXBLOCK];
109 static uint64_t gte_rs[MAXBLOCK]; // gte: 32 data and 32 ctl regs
110 static uint64_t gte_rt[MAXBLOCK];
111 static uint64_t gte_unneeded[MAXBLOCK];
112 static u_int smrv[32]; // speculated MIPS register values
113 static u_int smrv_strong; // mask or regs that are likely to have correct values
114 static u_int smrv_weak; // same, but somewhat less likely
115 static u_int smrv_strong_next; // same, but after current insn executes
116 static u_int smrv_weak_next;
117 static int imm[MAXBLOCK];
118 static u_int ba[MAXBLOCK];
119 static char likely[MAXBLOCK];
120 static char is_ds[MAXBLOCK];
121 static char ooo[MAXBLOCK];
122 static uint64_t unneeded_reg[MAXBLOCK];
123 static uint64_t unneeded_reg_upper[MAXBLOCK];
124 static uint64_t branch_unneeded_reg[MAXBLOCK];
125 static uint64_t branch_unneeded_reg_upper[MAXBLOCK];
126 static signed char regmap_pre[MAXBLOCK][HOST_REGS];
127 static uint64_t current_constmap[HOST_REGS];
128 static uint64_t constmap[MAXBLOCK][HOST_REGS];
129 static struct regstat regs[MAXBLOCK];
130 static struct regstat branch_regs[MAXBLOCK];
131 static signed char minimum_free_regs[MAXBLOCK];
132 static u_int needed_reg[MAXBLOCK];
133 static u_int wont_dirty[MAXBLOCK];
134 static u_int will_dirty[MAXBLOCK];
135 static int ccadj[MAXBLOCK];
136 static int slen;
137 static u_int instr_addr[MAXBLOCK];
138 static u_int link_addr[MAXBLOCK][3];
139 static int linkcount;
140 static u_int stubs[MAXBLOCK*3][8];
141 static int stubcount;
142 static u_int literals[1024][2];
143 static int literalcount;
144 static int is_delayslot;
145 static int cop1_usable;
146 static char shadow[1048576] __attribute__((aligned(16)));
147 static void *copy;
148 static int expirep;
149 static u_int stop_after_jal;
150#ifndef RAM_FIXED
151 static u_int ram_offset;
152#else
153 static const u_int ram_offset=0;
154#endif
155
156 int new_dynarec_hacks;
157 int new_dynarec_did_compile;
158 extern u_char restore_candidate[512];
159 extern int cycle_count;
160
161 /* registers that may be allocated */
162 /* 1-31 gpr */
163#define HIREG 32 // hi
164#define LOREG 33 // lo
165#define FSREG 34 // FPU status (FCSR)
166#define CSREG 35 // Coprocessor status
167#define CCREG 36 // Cycle count
168#define INVCP 37 // Pointer to invalid_code
169//#define MMREG 38 // Pointer to memory_map
170#define ROREG 39 // ram offset (if rdram!=0x80000000)
171#define TEMPREG 40
172#define FTEMP 40 // FPU temporary register
173#define PTEMP 41 // Prefetch temporary register
174//#define TLREG 42 // TLB mapping offset
175#define RHASH 43 // Return address hash
176#define RHTBL 44 // Return address hash table address
177#define RTEMP 45 // JR/JALR address register
178#define MAXREG 45
179#define AGEN1 46 // Address generation temporary register
180//#define AGEN2 47 // Address generation temporary register
181//#define MGEN1 48 // Maptable address generation temporary register
182//#define MGEN2 49 // Maptable address generation temporary register
183#define BTREG 50 // Branch target temporary register
184
185 /* instruction types */
186#define NOP 0 // No operation
187#define LOAD 1 // Load
188#define STORE 2 // Store
189#define LOADLR 3 // Unaligned load
190#define STORELR 4 // Unaligned store
191#define MOV 5 // Move
192#define ALU 6 // Arithmetic/logic
193#define MULTDIV 7 // Multiply/divide
194#define SHIFT 8 // Shift by register
195#define SHIFTIMM 9// Shift by immediate
196#define IMM16 10 // 16-bit immediate
197#define RJUMP 11 // Unconditional jump to register
198#define UJUMP 12 // Unconditional jump
199#define CJUMP 13 // Conditional branch (BEQ/BNE/BGTZ/BLEZ)
200#define SJUMP 14 // Conditional branch (regimm format)
201#define COP0 15 // Coprocessor 0
202#define COP1 16 // Coprocessor 1
203#define C1LS 17 // Coprocessor 1 load/store
204#define FJUMP 18 // Conditional branch (floating point)
205#define FLOAT 19 // Floating point unit
206#define FCONV 20 // Convert integer to float
207#define FCOMP 21 // Floating point compare (sets FSREG)
208#define SYSCALL 22// SYSCALL
209#define OTHER 23 // Other
210#define SPAN 24 // Branch/delay slot spans 2 pages
211#define NI 25 // Not implemented
212#define HLECALL 26// PCSX fake opcodes for HLE
213#define COP2 27 // Coprocessor 2 move
214#define C2LS 28 // Coprocessor 2 load/store
215#define C2OP 29 // Coprocessor 2 operation
216#define INTCALL 30// Call interpreter to handle rare corner cases
217
218 /* stubs */
219#define CC_STUB 1
220#define FP_STUB 2
221#define LOADB_STUB 3
222#define LOADH_STUB 4
223#define LOADW_STUB 5
224#define LOADD_STUB 6
225#define LOADBU_STUB 7
226#define LOADHU_STUB 8
227#define STOREB_STUB 9
228#define STOREH_STUB 10
229#define STOREW_STUB 11
230#define STORED_STUB 12
231#define STORELR_STUB 13
232#define INVCODE_STUB 14
233
234 /* branch codes */
235#define TAKEN 1
236#define NOTTAKEN 2
237#define NULLDS 3
238
239// asm linkage
240int new_recompile_block(int addr);
241void *get_addr_ht(u_int vaddr);
242void invalidate_block(u_int block);
243void invalidate_addr(u_int addr);
244void remove_hash(int vaddr);
245void dyna_linker();
246void dyna_linker_ds();
247void verify_code();
248void verify_code_vm();
249void verify_code_ds();
250void cc_interrupt();
251void fp_exception();
252void fp_exception_ds();
253void jump_syscall_hle();
254void jump_hlecall();
255void jump_intcall();
256void new_dyna_leave();
257
258// Needed by assembler
259static void wb_register(signed char r,signed char regmap[],uint64_t dirty,uint64_t is32);
260static void wb_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty);
261static void wb_needed_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr);
262static void load_all_regs(signed char i_regmap[]);
263static void load_needed_regs(signed char i_regmap[],signed char next_regmap[]);
264static void load_regs_entry(int t);
265static void load_all_consts(signed char regmap[],int is32,u_int dirty,int i);
266
267static int verify_dirty(u_int *ptr);
268static int get_final_value(int hr, int i, int *value);
269static void add_stub(int type,int addr,int retaddr,int a,int b,int c,int d,int e);
270static void add_to_linker(int addr,int target,int ext);
271
272static int tracedebug=0;
273
274//#define DEBUG_CYCLE_COUNT 1
275
276#define NO_CYCLE_PENALTY_THR 12
277
278int cycle_multiplier; // 100 for 1.0
279
280static int CLOCK_ADJUST(int x)
281{
282 int s=(x>>31)|1;
283 return (x * cycle_multiplier + s * 50) / 100;
284}
285
286static u_int get_page(u_int vaddr)
287{
288 u_int page=vaddr&~0xe0000000;
289 if (page < 0x1000000)
290 page &= ~0x0e00000; // RAM mirrors
291 page>>=12;
292 if(page>2048) page=2048+(page&2047);
293 return page;
294}
295
296// no virtual mem in PCSX
297static u_int get_vpage(u_int vaddr)
298{
299 return get_page(vaddr);
300}
301
302// Get address from virtual address
303// This is called from the recompiled JR/JALR instructions
304void *get_addr(u_int vaddr)
305{
306 u_int page=get_page(vaddr);
307 u_int vpage=get_vpage(vaddr);
308 struct ll_entry *head;
309 //printf("TRACE: count=%d next=%d (get_addr %x,page %d)\n",Count,next_interupt,vaddr,page);
310 head=jump_in[page];
311 while(head!=NULL) {
312 if(head->vaddr==vaddr) {
313 //printf("TRACE: count=%d next=%d (get_addr match %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
314 u_int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
315 ht_bin[3]=ht_bin[1];
316 ht_bin[2]=ht_bin[0];
317 ht_bin[1]=(u_int)head->addr;
318 ht_bin[0]=vaddr;
319 return head->addr;
320 }
321 head=head->next;
322 }
323 head=jump_dirty[vpage];
324 while(head!=NULL) {
325 if(head->vaddr==vaddr) {
326 //printf("TRACE: count=%d next=%d (get_addr match dirty %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
327 // Don't restore blocks which are about to expire from the cache
328 if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
329 if(verify_dirty(head->addr)) {
330 //printf("restore candidate: %x (%d) d=%d\n",vaddr,page,invalid_code[vaddr>>12]);
331 invalid_code[vaddr>>12]=0;
332 inv_code_start=inv_code_end=~0;
333 if(vpage<2048) {
334 restore_candidate[vpage>>3]|=1<<(vpage&7);
335 }
336 else restore_candidate[page>>3]|=1<<(page&7);
337 u_int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
338 if(ht_bin[0]==vaddr) {
339 ht_bin[1]=(u_int)head->addr; // Replace existing entry
340 }
341 else
342 {
343 ht_bin[3]=ht_bin[1];
344 ht_bin[2]=ht_bin[0];
345 ht_bin[1]=(int)head->addr;
346 ht_bin[0]=vaddr;
347 }
348 return head->addr;
349 }
350 }
351 head=head->next;
352 }
353 //printf("TRACE: count=%d next=%d (get_addr no-match %x)\n",Count,next_interupt,vaddr);
354 int r=new_recompile_block(vaddr);
355 if(r==0) return get_addr(vaddr);
356 // Execute in unmapped page, generate pagefault execption
357 Status|=2;
358 Cause=(vaddr<<31)|0x8;
359 EPC=(vaddr&1)?vaddr-5:vaddr;
360 BadVAddr=(vaddr&~1);
361 Context=(Context&0xFF80000F)|((BadVAddr>>9)&0x007FFFF0);
362 EntryHi=BadVAddr&0xFFFFE000;
363 return get_addr_ht(0x80000000);
364}
365// Look up address in hash table first
366void *get_addr_ht(u_int vaddr)
367{
368 //printf("TRACE: count=%d next=%d (get_addr_ht %x)\n",Count,next_interupt,vaddr);
369 u_int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
370 if(ht_bin[0]==vaddr) return (void *)ht_bin[1];
371 if(ht_bin[2]==vaddr) return (void *)ht_bin[3];
372 return get_addr(vaddr);
373}
374
375void clear_all_regs(signed char regmap[])
376{
377 int hr;
378 for (hr=0;hr<HOST_REGS;hr++) regmap[hr]=-1;
379}
380
381signed char get_reg(signed char regmap[],int r)
382{
383 int hr;
384 for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap[hr]==r) return hr;
385 return -1;
386}
387
388// Find a register that is available for two consecutive cycles
389signed char get_reg2(signed char regmap1[],signed char regmap2[],int r)
390{
391 int hr;
392 for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap1[hr]==r&&regmap2[hr]==r) return hr;
393 return -1;
394}
395
396int count_free_regs(signed char regmap[])
397{
398 int count=0;
399 int hr;
400 for(hr=0;hr<HOST_REGS;hr++)
401 {
402 if(hr!=EXCLUDE_REG) {
403 if(regmap[hr]<0) count++;
404 }
405 }
406 return count;
407}
408
409void dirty_reg(struct regstat *cur,signed char reg)
410{
411 int hr;
412 if(!reg) return;
413 for (hr=0;hr<HOST_REGS;hr++) {
414 if((cur->regmap[hr]&63)==reg) {
415 cur->dirty|=1<<hr;
416 }
417 }
418}
419
420// If we dirty the lower half of a 64 bit register which is now being
421// sign-extended, we need to dump the upper half.
422// Note: Do this only after completion of the instruction, because
423// some instructions may need to read the full 64-bit value even if
424// overwriting it (eg SLTI, DSRA32).
425static void flush_dirty_uppers(struct regstat *cur)
426{
427 int hr,reg;
428 for (hr=0;hr<HOST_REGS;hr++) {
429 if((cur->dirty>>hr)&1) {
430 reg=cur->regmap[hr];
431 if(reg>=64)
432 if((cur->is32>>(reg&63))&1) cur->regmap[hr]=-1;
433 }
434 }
435}
436
437void set_const(struct regstat *cur,signed char reg,uint64_t value)
438{
439 int hr;
440 if(!reg) return;
441 for (hr=0;hr<HOST_REGS;hr++) {
442 if(cur->regmap[hr]==reg) {
443 cur->isconst|=1<<hr;
444 current_constmap[hr]=value;
445 }
446 else if((cur->regmap[hr]^64)==reg) {
447 cur->isconst|=1<<hr;
448 current_constmap[hr]=value>>32;
449 }
450 }
451}
452
453void clear_const(struct regstat *cur,signed char reg)
454{
455 int hr;
456 if(!reg) return;
457 for (hr=0;hr<HOST_REGS;hr++) {
458 if((cur->regmap[hr]&63)==reg) {
459 cur->isconst&=~(1<<hr);
460 }
461 }
462}
463
464int is_const(struct regstat *cur,signed char reg)
465{
466 int hr;
467 if(reg<0) return 0;
468 if(!reg) return 1;
469 for (hr=0;hr<HOST_REGS;hr++) {
470 if((cur->regmap[hr]&63)==reg) {
471 return (cur->isconst>>hr)&1;
472 }
473 }
474 return 0;
475}
476uint64_t get_const(struct regstat *cur,signed char reg)
477{
478 int hr;
479 if(!reg) return 0;
480 for (hr=0;hr<HOST_REGS;hr++) {
481 if(cur->regmap[hr]==reg) {
482 return current_constmap[hr];
483 }
484 }
485 SysPrintf("Unknown constant in r%d\n",reg);
486 exit(1);
487}
488
489// Least soon needed registers
490// Look at the next ten instructions and see which registers
491// will be used. Try not to reallocate these.
492void lsn(u_char hsn[], int i, int *preferred_reg)
493{
494 int j;
495 int b=-1;
496 for(j=0;j<9;j++)
497 {
498 if(i+j>=slen) {
499 j=slen-i-1;
500 break;
501 }
502 if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
503 {
504 // Don't go past an unconditonal jump
505 j++;
506 break;
507 }
508 }
509 for(;j>=0;j--)
510 {
511 if(rs1[i+j]) hsn[rs1[i+j]]=j;
512 if(rs2[i+j]) hsn[rs2[i+j]]=j;
513 if(rt1[i+j]) hsn[rt1[i+j]]=j;
514 if(rt2[i+j]) hsn[rt2[i+j]]=j;
515 if(itype[i+j]==STORE || itype[i+j]==STORELR) {
516 // Stores can allocate zero
517 hsn[rs1[i+j]]=j;
518 hsn[rs2[i+j]]=j;
519 }
520 // On some architectures stores need invc_ptr
521 #if defined(HOST_IMM8)
522 if(itype[i+j]==STORE || itype[i+j]==STORELR || (opcode[i+j]&0x3b)==0x39 || (opcode[i+j]&0x3b)==0x3a) {
523 hsn[INVCP]=j;
524 }
525 #endif
526 if(i+j>=0&&(itype[i+j]==UJUMP||itype[i+j]==CJUMP||itype[i+j]==SJUMP||itype[i+j]==FJUMP))
527 {
528 hsn[CCREG]=j;
529 b=j;
530 }
531 }
532 if(b>=0)
533 {
534 if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
535 {
536 // Follow first branch
537 int t=(ba[i+b]-start)>>2;
538 j=7-b;if(t+j>=slen) j=slen-t-1;
539 for(;j>=0;j--)
540 {
541 if(rs1[t+j]) if(hsn[rs1[t+j]]>j+b+2) hsn[rs1[t+j]]=j+b+2;
542 if(rs2[t+j]) if(hsn[rs2[t+j]]>j+b+2) hsn[rs2[t+j]]=j+b+2;
543 //if(rt1[t+j]) if(hsn[rt1[t+j]]>j+b+2) hsn[rt1[t+j]]=j+b+2;
544 //if(rt2[t+j]) if(hsn[rt2[t+j]]>j+b+2) hsn[rt2[t+j]]=j+b+2;
545 }
546 }
547 // TODO: preferred register based on backward branch
548 }
549 // Delay slot should preferably not overwrite branch conditions or cycle count
550 if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)) {
551 if(rs1[i-1]) if(hsn[rs1[i-1]]>1) hsn[rs1[i-1]]=1;
552 if(rs2[i-1]) if(hsn[rs2[i-1]]>1) hsn[rs2[i-1]]=1;
553 hsn[CCREG]=1;
554 // ...or hash tables
555 hsn[RHASH]=1;
556 hsn[RHTBL]=1;
557 }
558 // Coprocessor load/store needs FTEMP, even if not declared
559 if(itype[i]==C1LS||itype[i]==C2LS) {
560 hsn[FTEMP]=0;
561 }
562 // Load L/R also uses FTEMP as a temporary register
563 if(itype[i]==LOADLR) {
564 hsn[FTEMP]=0;
565 }
566 // Also SWL/SWR/SDL/SDR
567 if(opcode[i]==0x2a||opcode[i]==0x2e||opcode[i]==0x2c||opcode[i]==0x2d) {
568 hsn[FTEMP]=0;
569 }
570 // Don't remove the miniht registers
571 if(itype[i]==UJUMP||itype[i]==RJUMP)
572 {
573 hsn[RHASH]=0;
574 hsn[RHTBL]=0;
575 }
576}
577
578// We only want to allocate registers if we're going to use them again soon
579int needed_again(int r, int i)
580{
581 int j;
582 int b=-1;
583 int rn=10;
584
585 if(i>0&&(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000))
586 {
587 if(ba[i-1]<start || ba[i-1]>start+slen*4-4)
588 return 0; // Don't need any registers if exiting the block
589 }
590 for(j=0;j<9;j++)
591 {
592 if(i+j>=slen) {
593 j=slen-i-1;
594 break;
595 }
596 if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
597 {
598 // Don't go past an unconditonal jump
599 j++;
600 break;
601 }
602 if(itype[i+j]==SYSCALL||itype[i+j]==HLECALL||itype[i+j]==INTCALL||((source[i+j]&0xfc00003f)==0x0d))
603 {
604 break;
605 }
606 }
607 for(;j>=1;j--)
608 {
609 if(rs1[i+j]==r) rn=j;
610 if(rs2[i+j]==r) rn=j;
611 if((unneeded_reg[i+j]>>r)&1) rn=10;
612 if(i+j>=0&&(itype[i+j]==UJUMP||itype[i+j]==CJUMP||itype[i+j]==SJUMP||itype[i+j]==FJUMP))
613 {
614 b=j;
615 }
616 }
617 /*
618 if(b>=0)
619 {
620 if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
621 {
622 // Follow first branch
623 int o=rn;
624 int t=(ba[i+b]-start)>>2;
625 j=7-b;if(t+j>=slen) j=slen-t-1;
626 for(;j>=0;j--)
627 {
628 if(!((unneeded_reg[t+j]>>r)&1)) {
629 if(rs1[t+j]==r) if(rn>j+b+2) rn=j+b+2;
630 if(rs2[t+j]==r) if(rn>j+b+2) rn=j+b+2;
631 }
632 else rn=o;
633 }
634 }
635 }*/
636 if(rn<10) return 1;
637 (void)b;
638 return 0;
639}
640
641// Try to match register allocations at the end of a loop with those
642// at the beginning
643int loop_reg(int i, int r, int hr)
644{
645 int j,k;
646 for(j=0;j<9;j++)
647 {
648 if(i+j>=slen) {
649 j=slen-i-1;
650 break;
651 }
652 if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
653 {
654 // Don't go past an unconditonal jump
655 j++;
656 break;
657 }
658 }
659 k=0;
660 if(i>0){
661 if(itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)
662 k--;
663 }
664 for(;k<j;k++)
665 {
666 if(r<64&&((unneeded_reg[i+k]>>r)&1)) return hr;
667 if(r>64&&((unneeded_reg_upper[i+k]>>r)&1)) return hr;
668 if(i+k>=0&&(itype[i+k]==UJUMP||itype[i+k]==CJUMP||itype[i+k]==SJUMP||itype[i+k]==FJUMP))
669 {
670 if(ba[i+k]>=start && ba[i+k]<(start+i*4))
671 {
672 int t=(ba[i+k]-start)>>2;
673 int reg=get_reg(regs[t].regmap_entry,r);
674 if(reg>=0) return reg;
675 //reg=get_reg(regs[t+1].regmap_entry,r);
676 //if(reg>=0) return reg;
677 }
678 }
679 }
680 return hr;
681}
682
683
684// Allocate every register, preserving source/target regs
685void alloc_all(struct regstat *cur,int i)
686{
687 int hr;
688
689 for(hr=0;hr<HOST_REGS;hr++) {
690 if(hr!=EXCLUDE_REG) {
691 if(((cur->regmap[hr]&63)!=rs1[i])&&((cur->regmap[hr]&63)!=rs2[i])&&
692 ((cur->regmap[hr]&63)!=rt1[i])&&((cur->regmap[hr]&63)!=rt2[i]))
693 {
694 cur->regmap[hr]=-1;
695 cur->dirty&=~(1<<hr);
696 }
697 // Don't need zeros
698 if((cur->regmap[hr]&63)==0)
699 {
700 cur->regmap[hr]=-1;
701 cur->dirty&=~(1<<hr);
702 }
703 }
704 }
705}
706
707#ifdef __i386__
708#include "assem_x86.c"
709#endif
710#ifdef __x86_64__
711#include "assem_x64.c"
712#endif
713#ifdef __arm__
714#include "assem_arm.c"
715#endif
716
717// Add virtual address mapping to linked list
718void ll_add(struct ll_entry **head,int vaddr,void *addr)
719{
720 struct ll_entry *new_entry;
721 new_entry=malloc(sizeof(struct ll_entry));
722 assert(new_entry!=NULL);
723 new_entry->vaddr=vaddr;
724 new_entry->reg_sv_flags=0;
725 new_entry->addr=addr;
726 new_entry->next=*head;
727 *head=new_entry;
728}
729
730void ll_add_flags(struct ll_entry **head,int vaddr,u_int reg_sv_flags,void *addr)
731{
732 ll_add(head,vaddr,addr);
733 (*head)->reg_sv_flags=reg_sv_flags;
734}
735
736// Check if an address is already compiled
737// but don't return addresses which are about to expire from the cache
738void *check_addr(u_int vaddr)
739{
740 u_int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
741 if(ht_bin[0]==vaddr) {
742 if(((ht_bin[1]-MAX_OUTPUT_BLOCK_SIZE-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
743 if(isclean(ht_bin[1])) return (void *)ht_bin[1];
744 }
745 if(ht_bin[2]==vaddr) {
746 if(((ht_bin[3]-MAX_OUTPUT_BLOCK_SIZE-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
747 if(isclean(ht_bin[3])) return (void *)ht_bin[3];
748 }
749 u_int page=get_page(vaddr);
750 struct ll_entry *head;
751 head=jump_in[page];
752 while(head!=NULL) {
753 if(head->vaddr==vaddr) {
754 if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
755 // Update existing entry with current address
756 if(ht_bin[0]==vaddr) {
757 ht_bin[1]=(int)head->addr;
758 return head->addr;
759 }
760 if(ht_bin[2]==vaddr) {
761 ht_bin[3]=(int)head->addr;
762 return head->addr;
763 }
764 // Insert into hash table with low priority.
765 // Don't evict existing entries, as they are probably
766 // addresses that are being accessed frequently.
767 if(ht_bin[0]==-1) {
768 ht_bin[1]=(int)head->addr;
769 ht_bin[0]=vaddr;
770 }else if(ht_bin[2]==-1) {
771 ht_bin[3]=(int)head->addr;
772 ht_bin[2]=vaddr;
773 }
774 return head->addr;
775 }
776 }
777 head=head->next;
778 }
779 return 0;
780}
781
782void remove_hash(int vaddr)
783{
784 //printf("remove hash: %x\n",vaddr);
785 u_int *ht_bin=hash_table[(((vaddr)>>16)^vaddr)&0xFFFF];
786 if(ht_bin[2]==vaddr) {
787 ht_bin[2]=ht_bin[3]=-1;
788 }
789 if(ht_bin[0]==vaddr) {
790 ht_bin[0]=ht_bin[2];
791 ht_bin[1]=ht_bin[3];
792 ht_bin[2]=ht_bin[3]=-1;
793 }
794}
795
796void ll_remove_matching_addrs(struct ll_entry **head,int addr,int shift)
797{
798 struct ll_entry *next;
799 while(*head) {
800 if(((u_int)((*head)->addr)>>shift)==(addr>>shift) ||
801 ((u_int)((*head)->addr-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(addr>>shift))
802 {
803 inv_debug("EXP: Remove pointer to %x (%x)\n",(int)(*head)->addr,(*head)->vaddr);
804 remove_hash((*head)->vaddr);
805 next=(*head)->next;
806 free(*head);
807 *head=next;
808 }
809 else
810 {
811 head=&((*head)->next);
812 }
813 }
814}
815
816// Remove all entries from linked list
817void ll_clear(struct ll_entry **head)
818{
819 struct ll_entry *cur;
820 struct ll_entry *next;
821 if((cur=*head)) {
822 *head=0;
823 while(cur) {
824 next=cur->next;
825 free(cur);
826 cur=next;
827 }
828 }
829}
830
831// Dereference the pointers and remove if it matches
832void ll_kill_pointers(struct ll_entry *head,int addr,int shift)
833{
834 while(head) {
835 int ptr=get_pointer(head->addr);
836 inv_debug("EXP: Lookup pointer to %x at %x (%x)\n",(int)ptr,(int)head->addr,head->vaddr);
837 if(((ptr>>shift)==(addr>>shift)) ||
838 (((ptr-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(addr>>shift)))
839 {
840 inv_debug("EXP: Kill pointer at %x (%x)\n",(int)head->addr,head->vaddr);
841 u_int host_addr=(u_int)kill_pointer(head->addr);
842 #ifdef __arm__
843 needs_clear_cache[(host_addr-(u_int)BASE_ADDR)>>17]|=1<<(((host_addr-(u_int)BASE_ADDR)>>12)&31);
844 #endif
845 }
846 head=head->next;
847 }
848}
849
850// This is called when we write to a compiled block (see do_invstub)
851void invalidate_page(u_int page)
852{
853 struct ll_entry *head;
854 struct ll_entry *next;
855 head=jump_in[page];
856 jump_in[page]=0;
857 while(head!=NULL) {
858 inv_debug("INVALIDATE: %x\n",head->vaddr);
859 remove_hash(head->vaddr);
860 next=head->next;
861 free(head);
862 head=next;
863 }
864 head=jump_out[page];
865 jump_out[page]=0;
866 while(head!=NULL) {
867 inv_debug("INVALIDATE: kill pointer to %x (%x)\n",head->vaddr,(int)head->addr);
868 u_int host_addr=(u_int)kill_pointer(head->addr);
869 #ifdef __arm__
870 needs_clear_cache[(host_addr-(u_int)BASE_ADDR)>>17]|=1<<(((host_addr-(u_int)BASE_ADDR)>>12)&31);
871 #endif
872 next=head->next;
873 free(head);
874 head=next;
875 }
876}
877
878static void invalidate_block_range(u_int block, u_int first, u_int last)
879{
880 u_int page=get_page(block<<12);
881 //printf("first=%d last=%d\n",first,last);
882 invalidate_page(page);
883 assert(first+5>page); // NB: this assumes MAXBLOCK<=4096 (4 pages)
884 assert(last<page+5);
885 // Invalidate the adjacent pages if a block crosses a 4K boundary
886 while(first<page) {
887 invalidate_page(first);
888 first++;
889 }
890 for(first=page+1;first<last;first++) {
891 invalidate_page(first);
892 }
893 #ifdef __arm__
894 do_clear_cache();
895 #endif
896
897 // Don't trap writes
898 invalid_code[block]=1;
899
900 #ifdef USE_MINI_HT
901 memset(mini_ht,-1,sizeof(mini_ht));
902 #endif
903}
904
905void invalidate_block(u_int block)
906{
907 u_int page=get_page(block<<12);
908 u_int vpage=get_vpage(block<<12);
909 inv_debug("INVALIDATE: %x (%d)\n",block<<12,page);
910 //inv_debug("invalid_code[block]=%d\n",invalid_code[block]);
911 u_int first,last;
912 first=last=page;
913 struct ll_entry *head;
914 head=jump_dirty[vpage];
915 //printf("page=%d vpage=%d\n",page,vpage);
916 while(head!=NULL) {
917 u_int start,end;
918 if(vpage>2047||(head->vaddr>>12)==block) { // Ignore vaddr hash collision
919 get_bounds((int)head->addr,&start,&end);
920 //printf("start: %x end: %x\n",start,end);
921 if(page<2048&&start>=(u_int)rdram&&end<(u_int)rdram+RAM_SIZE) {
922 if(((start-(u_int)rdram)>>12)<=page&&((end-1-(u_int)rdram)>>12)>=page) {
923 if((((start-(u_int)rdram)>>12)&2047)<first) first=((start-(u_int)rdram)>>12)&2047;
924 if((((end-1-(u_int)rdram)>>12)&2047)>last) last=((end-1-(u_int)rdram)>>12)&2047;
925 }
926 }
927 }
928 head=head->next;
929 }
930 invalidate_block_range(block,first,last);
931}
932
933void invalidate_addr(u_int addr)
934{
935 //static int rhits;
936 // this check is done by the caller
937 //if (inv_code_start<=addr&&addr<=inv_code_end) { rhits++; return; }
938 u_int page=get_vpage(addr);
939 if(page<2048) { // RAM
940 struct ll_entry *head;
941 u_int addr_min=~0, addr_max=0;
942 u_int mask=RAM_SIZE-1;
943 u_int addr_main=0x80000000|(addr&mask);
944 int pg1;
945 inv_code_start=addr_main&~0xfff;
946 inv_code_end=addr_main|0xfff;
947 pg1=page;
948 if (pg1>0) {
949 // must check previous page too because of spans..
950 pg1--;
951 inv_code_start-=0x1000;
952 }
953 for(;pg1<=page;pg1++) {
954 for(head=jump_dirty[pg1];head!=NULL;head=head->next) {
955 u_int start,end;
956 get_bounds((int)head->addr,&start,&end);
957 if(ram_offset) {
958 start-=ram_offset;
959 end-=ram_offset;
960 }
961 if(start<=addr_main&&addr_main<end) {
962 if(start<addr_min) addr_min=start;
963 if(end>addr_max) addr_max=end;
964 }
965 else if(addr_main<start) {
966 if(start<inv_code_end)
967 inv_code_end=start-1;
968 }
969 else {
970 if(end>inv_code_start)
971 inv_code_start=end;
972 }
973 }
974 }
975 if (addr_min!=~0) {
976 inv_debug("INV ADDR: %08x hit %08x-%08x\n", addr, addr_min, addr_max);
977 inv_code_start=inv_code_end=~0;
978 invalidate_block_range(addr>>12,(addr_min&mask)>>12,(addr_max&mask)>>12);
979 return;
980 }
981 else {
982 inv_code_start=(addr&~mask)|(inv_code_start&mask);
983 inv_code_end=(addr&~mask)|(inv_code_end&mask);
984 inv_debug("INV ADDR: %08x miss, inv %08x-%08x, sk %d\n", addr, inv_code_start, inv_code_end, 0);
985 return;
986 }
987 }
988 invalidate_block(addr>>12);
989}
990
991// This is called when loading a save state.
992// Anything could have changed, so invalidate everything.
993void invalidate_all_pages()
994{
995 u_int page;
996 for(page=0;page<4096;page++)
997 invalidate_page(page);
998 for(page=0;page<1048576;page++)
999 if(!invalid_code[page]) {
1000 restore_candidate[(page&2047)>>3]|=1<<(page&7);
1001 restore_candidate[((page&2047)>>3)+256]|=1<<(page&7);
1002 }
1003 #ifdef USE_MINI_HT
1004 memset(mini_ht,-1,sizeof(mini_ht));
1005 #endif
1006}
1007
1008// Add an entry to jump_out after making a link
1009void add_link(u_int vaddr,void *src)
1010{
1011 u_int page=get_page(vaddr);
1012 inv_debug("add_link: %x -> %x (%d)\n",(int)src,vaddr,page);
1013 int *ptr=(int *)(src+4);
1014 assert((*ptr&0x0fff0000)==0x059f0000);
1015 (void)ptr;
1016 ll_add(jump_out+page,vaddr,src);
1017 //int ptr=get_pointer(src);
1018 //inv_debug("add_link: Pointer is to %x\n",(int)ptr);
1019}
1020
1021// If a code block was found to be unmodified (bit was set in
1022// restore_candidate) and it remains unmodified (bit is clear
1023// in invalid_code) then move the entries for that 4K page from
1024// the dirty list to the clean list.
1025void clean_blocks(u_int page)
1026{
1027 struct ll_entry *head;
1028 inv_debug("INV: clean_blocks page=%d\n",page);
1029 head=jump_dirty[page];
1030 while(head!=NULL) {
1031 if(!invalid_code[head->vaddr>>12]) {
1032 // Don't restore blocks which are about to expire from the cache
1033 if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1034 u_int start,end;
1035 if(verify_dirty(head->addr)) {
1036 //printf("Possibly Restore %x (%x)\n",head->vaddr, (int)head->addr);
1037 u_int i;
1038 u_int inv=0;
1039 get_bounds((int)head->addr,&start,&end);
1040 if(start-(u_int)rdram<RAM_SIZE) {
1041 for(i=(start-(u_int)rdram+0x80000000)>>12;i<=(end-1-(u_int)rdram+0x80000000)>>12;i++) {
1042 inv|=invalid_code[i];
1043 }
1044 }
1045 else if((signed int)head->vaddr>=(signed int)0x80000000+RAM_SIZE) {
1046 inv=1;
1047 }
1048 if(!inv) {
1049 void * clean_addr=(void *)get_clean_addr((int)head->addr);
1050 if((((u_int)clean_addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1051 u_int ppage=page;
1052 inv_debug("INV: Restored %x (%x/%x)\n",head->vaddr, (int)head->addr, (int)clean_addr);
1053 //printf("page=%x, addr=%x\n",page,head->vaddr);
1054 //assert(head->vaddr>>12==(page|0x80000));
1055 ll_add_flags(jump_in+ppage,head->vaddr,head->reg_sv_flags,clean_addr);
1056 u_int *ht_bin=hash_table[((head->vaddr>>16)^head->vaddr)&0xFFFF];
1057 if(ht_bin[0]==head->vaddr) {
1058 ht_bin[1]=(u_int)clean_addr; // Replace existing entry
1059 }
1060 if(ht_bin[2]==head->vaddr) {
1061 ht_bin[3]=(u_int)clean_addr; // Replace existing entry
1062 }
1063 }
1064 }
1065 }
1066 }
1067 }
1068 head=head->next;
1069 }
1070}
1071
1072
1073void mov_alloc(struct regstat *current,int i)
1074{
1075 // Note: Don't need to actually alloc the source registers
1076 if((~current->is32>>rs1[i])&1) {
1077 //alloc_reg64(current,i,rs1[i]);
1078 alloc_reg64(current,i,rt1[i]);
1079 current->is32&=~(1LL<<rt1[i]);
1080 } else {
1081 //alloc_reg(current,i,rs1[i]);
1082 alloc_reg(current,i,rt1[i]);
1083 current->is32|=(1LL<<rt1[i]);
1084 }
1085 clear_const(current,rs1[i]);
1086 clear_const(current,rt1[i]);
1087 dirty_reg(current,rt1[i]);
1088}
1089
1090void shiftimm_alloc(struct regstat *current,int i)
1091{
1092 if(opcode2[i]<=0x3) // SLL/SRL/SRA
1093 {
1094 if(rt1[i]) {
1095 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1096 else lt1[i]=rs1[i];
1097 alloc_reg(current,i,rt1[i]);
1098 current->is32|=1LL<<rt1[i];
1099 dirty_reg(current,rt1[i]);
1100 if(is_const(current,rs1[i])) {
1101 int v=get_const(current,rs1[i]);
1102 if(opcode2[i]==0x00) set_const(current,rt1[i],v<<imm[i]);
1103 if(opcode2[i]==0x02) set_const(current,rt1[i],(u_int)v>>imm[i]);
1104 if(opcode2[i]==0x03) set_const(current,rt1[i],v>>imm[i]);
1105 }
1106 else clear_const(current,rt1[i]);
1107 }
1108 }
1109 else
1110 {
1111 clear_const(current,rs1[i]);
1112 clear_const(current,rt1[i]);
1113 }
1114
1115 if(opcode2[i]>=0x38&&opcode2[i]<=0x3b) // DSLL/DSRL/DSRA
1116 {
1117 if(rt1[i]) {
1118 if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1119 alloc_reg64(current,i,rt1[i]);
1120 current->is32&=~(1LL<<rt1[i]);
1121 dirty_reg(current,rt1[i]);
1122 }
1123 }
1124 if(opcode2[i]==0x3c) // DSLL32
1125 {
1126 if(rt1[i]) {
1127 if(rs1[i]) alloc_reg(current,i,rs1[i]);
1128 alloc_reg64(current,i,rt1[i]);
1129 current->is32&=~(1LL<<rt1[i]);
1130 dirty_reg(current,rt1[i]);
1131 }
1132 }
1133 if(opcode2[i]==0x3e) // DSRL32
1134 {
1135 if(rt1[i]) {
1136 alloc_reg64(current,i,rs1[i]);
1137 if(imm[i]==32) {
1138 alloc_reg64(current,i,rt1[i]);
1139 current->is32&=~(1LL<<rt1[i]);
1140 } else {
1141 alloc_reg(current,i,rt1[i]);
1142 current->is32|=1LL<<rt1[i];
1143 }
1144 dirty_reg(current,rt1[i]);
1145 }
1146 }
1147 if(opcode2[i]==0x3f) // DSRA32
1148 {
1149 if(rt1[i]) {
1150 alloc_reg64(current,i,rs1[i]);
1151 alloc_reg(current,i,rt1[i]);
1152 current->is32|=1LL<<rt1[i];
1153 dirty_reg(current,rt1[i]);
1154 }
1155 }
1156}
1157
1158void shift_alloc(struct regstat *current,int i)
1159{
1160 if(rt1[i]) {
1161 if(opcode2[i]<=0x07) // SLLV/SRLV/SRAV
1162 {
1163 if(rs1[i]) alloc_reg(current,i,rs1[i]);
1164 if(rs2[i]) alloc_reg(current,i,rs2[i]);
1165 alloc_reg(current,i,rt1[i]);
1166 if(rt1[i]==rs2[i]) {
1167 alloc_reg_temp(current,i,-1);
1168 minimum_free_regs[i]=1;
1169 }
1170 current->is32|=1LL<<rt1[i];
1171 } else { // DSLLV/DSRLV/DSRAV
1172 if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1173 if(rs2[i]) alloc_reg(current,i,rs2[i]);
1174 alloc_reg64(current,i,rt1[i]);
1175 current->is32&=~(1LL<<rt1[i]);
1176 if(opcode2[i]==0x16||opcode2[i]==0x17) // DSRLV and DSRAV need a temporary register
1177 {
1178 alloc_reg_temp(current,i,-1);
1179 minimum_free_regs[i]=1;
1180 }
1181 }
1182 clear_const(current,rs1[i]);
1183 clear_const(current,rs2[i]);
1184 clear_const(current,rt1[i]);
1185 dirty_reg(current,rt1[i]);
1186 }
1187}
1188
1189void alu_alloc(struct regstat *current,int i)
1190{
1191 if(opcode2[i]>=0x20&&opcode2[i]<=0x23) { // ADD/ADDU/SUB/SUBU
1192 if(rt1[i]) {
1193 if(rs1[i]&&rs2[i]) {
1194 alloc_reg(current,i,rs1[i]);
1195 alloc_reg(current,i,rs2[i]);
1196 }
1197 else {
1198 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1199 if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg(current,i,rs2[i]);
1200 }
1201 alloc_reg(current,i,rt1[i]);
1202 }
1203 current->is32|=1LL<<rt1[i];
1204 }
1205 if(opcode2[i]==0x2a||opcode2[i]==0x2b) { // SLT/SLTU
1206 if(rt1[i]) {
1207 if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1208 {
1209 alloc_reg64(current,i,rs1[i]);
1210 alloc_reg64(current,i,rs2[i]);
1211 alloc_reg(current,i,rt1[i]);
1212 } else {
1213 alloc_reg(current,i,rs1[i]);
1214 alloc_reg(current,i,rs2[i]);
1215 alloc_reg(current,i,rt1[i]);
1216 }
1217 }
1218 current->is32|=1LL<<rt1[i];
1219 }
1220 if(opcode2[i]>=0x24&&opcode2[i]<=0x27) { // AND/OR/XOR/NOR
1221 if(rt1[i]) {
1222 if(rs1[i]&&rs2[i]) {
1223 alloc_reg(current,i,rs1[i]);
1224 alloc_reg(current,i,rs2[i]);
1225 }
1226 else
1227 {
1228 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1229 if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg(current,i,rs2[i]);
1230 }
1231 alloc_reg(current,i,rt1[i]);
1232 if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1233 {
1234 if(!((current->uu>>rt1[i])&1)) {
1235 alloc_reg64(current,i,rt1[i]);
1236 }
1237 if(get_reg(current->regmap,rt1[i]|64)>=0) {
1238 if(rs1[i]&&rs2[i]) {
1239 alloc_reg64(current,i,rs1[i]);
1240 alloc_reg64(current,i,rs2[i]);
1241 }
1242 else
1243 {
1244 // Is is really worth it to keep 64-bit values in registers?
1245 #ifdef NATIVE_64BIT
1246 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg64(current,i,rs1[i]);
1247 if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg64(current,i,rs2[i]);
1248 #endif
1249 }
1250 }
1251 current->is32&=~(1LL<<rt1[i]);
1252 } else {
1253 current->is32|=1LL<<rt1[i];
1254 }
1255 }
1256 }
1257 if(opcode2[i]>=0x2c&&opcode2[i]<=0x2f) { // DADD/DADDU/DSUB/DSUBU
1258 if(rt1[i]) {
1259 if(rs1[i]&&rs2[i]) {
1260 if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1261 alloc_reg64(current,i,rs1[i]);
1262 alloc_reg64(current,i,rs2[i]);
1263 alloc_reg64(current,i,rt1[i]);
1264 } else {
1265 alloc_reg(current,i,rs1[i]);
1266 alloc_reg(current,i,rs2[i]);
1267 alloc_reg(current,i,rt1[i]);
1268 }
1269 }
1270 else {
1271 alloc_reg(current,i,rt1[i]);
1272 if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1273 // DADD used as move, or zeroing
1274 // If we have a 64-bit source, then make the target 64 bits too
1275 if(rs1[i]&&!((current->is32>>rs1[i])&1)) {
1276 if(get_reg(current->regmap,rs1[i])>=0) alloc_reg64(current,i,rs1[i]);
1277 alloc_reg64(current,i,rt1[i]);
1278 } else if(rs2[i]&&!((current->is32>>rs2[i])&1)) {
1279 if(get_reg(current->regmap,rs2[i])>=0) alloc_reg64(current,i,rs2[i]);
1280 alloc_reg64(current,i,rt1[i]);
1281 }
1282 if(opcode2[i]>=0x2e&&rs2[i]) {
1283 // DSUB used as negation - 64-bit result
1284 // If we have a 32-bit register, extend it to 64 bits
1285 if(get_reg(current->regmap,rs2[i])>=0) alloc_reg64(current,i,rs2[i]);
1286 alloc_reg64(current,i,rt1[i]);
1287 }
1288 }
1289 }
1290 if(rs1[i]&&rs2[i]) {
1291 current->is32&=~(1LL<<rt1[i]);
1292 } else if(rs1[i]) {
1293 current->is32&=~(1LL<<rt1[i]);
1294 if((current->is32>>rs1[i])&1)
1295 current->is32|=1LL<<rt1[i];
1296 } else if(rs2[i]) {
1297 current->is32&=~(1LL<<rt1[i]);
1298 if((current->is32>>rs2[i])&1)
1299 current->is32|=1LL<<rt1[i];
1300 } else {
1301 current->is32|=1LL<<rt1[i];
1302 }
1303 }
1304 }
1305 clear_const(current,rs1[i]);
1306 clear_const(current,rs2[i]);
1307 clear_const(current,rt1[i]);
1308 dirty_reg(current,rt1[i]);
1309}
1310
1311void imm16_alloc(struct regstat *current,int i)
1312{
1313 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1314 else lt1[i]=rs1[i];
1315 if(rt1[i]) alloc_reg(current,i,rt1[i]);
1316 if(opcode[i]==0x18||opcode[i]==0x19) { // DADDI/DADDIU
1317 current->is32&=~(1LL<<rt1[i]);
1318 if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1319 // TODO: Could preserve the 32-bit flag if the immediate is zero
1320 alloc_reg64(current,i,rt1[i]);
1321 alloc_reg64(current,i,rs1[i]);
1322 }
1323 clear_const(current,rs1[i]);
1324 clear_const(current,rt1[i]);
1325 }
1326 else if(opcode[i]==0x0a||opcode[i]==0x0b) { // SLTI/SLTIU
1327 if((~current->is32>>rs1[i])&1) alloc_reg64(current,i,rs1[i]);
1328 current->is32|=1LL<<rt1[i];
1329 clear_const(current,rs1[i]);
1330 clear_const(current,rt1[i]);
1331 }
1332 else if(opcode[i]>=0x0c&&opcode[i]<=0x0e) { // ANDI/ORI/XORI
1333 if(((~current->is32>>rs1[i])&1)&&opcode[i]>0x0c) {
1334 if(rs1[i]!=rt1[i]) {
1335 if(needed_again(rs1[i],i)) alloc_reg64(current,i,rs1[i]);
1336 alloc_reg64(current,i,rt1[i]);
1337 current->is32&=~(1LL<<rt1[i]);
1338 }
1339 }
1340 else current->is32|=1LL<<rt1[i]; // ANDI clears upper bits
1341 if(is_const(current,rs1[i])) {
1342 int v=get_const(current,rs1[i]);
1343 if(opcode[i]==0x0c) set_const(current,rt1[i],v&imm[i]);
1344 if(opcode[i]==0x0d) set_const(current,rt1[i],v|imm[i]);
1345 if(opcode[i]==0x0e) set_const(current,rt1[i],v^imm[i]);
1346 }
1347 else clear_const(current,rt1[i]);
1348 }
1349 else if(opcode[i]==0x08||opcode[i]==0x09) { // ADDI/ADDIU
1350 if(is_const(current,rs1[i])) {
1351 int v=get_const(current,rs1[i]);
1352 set_const(current,rt1[i],v+imm[i]);
1353 }
1354 else clear_const(current,rt1[i]);
1355 current->is32|=1LL<<rt1[i];
1356 }
1357 else {
1358 set_const(current,rt1[i],((long long)((short)imm[i]))<<16); // LUI
1359 current->is32|=1LL<<rt1[i];
1360 }
1361 dirty_reg(current,rt1[i]);
1362}
1363
1364void load_alloc(struct regstat *current,int i)
1365{
1366 clear_const(current,rt1[i]);
1367 //if(rs1[i]!=rt1[i]&&needed_again(rs1[i],i)) clear_const(current,rs1[i]); // Does this help or hurt?
1368 if(!rs1[i]) current->u&=~1LL; // Allow allocating r0 if it's the source register
1369 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1370 if(rt1[i]&&!((current->u>>rt1[i])&1)) {
1371 alloc_reg(current,i,rt1[i]);
1372 assert(get_reg(current->regmap,rt1[i])>=0);
1373 if(opcode[i]==0x27||opcode[i]==0x37) // LWU/LD
1374 {
1375 current->is32&=~(1LL<<rt1[i]);
1376 alloc_reg64(current,i,rt1[i]);
1377 }
1378 else if(opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
1379 {
1380 current->is32&=~(1LL<<rt1[i]);
1381 alloc_reg64(current,i,rt1[i]);
1382 alloc_all(current,i);
1383 alloc_reg64(current,i,FTEMP);
1384 minimum_free_regs[i]=HOST_REGS;
1385 }
1386 else current->is32|=1LL<<rt1[i];
1387 dirty_reg(current,rt1[i]);
1388 // LWL/LWR need a temporary register for the old value
1389 if(opcode[i]==0x22||opcode[i]==0x26)
1390 {
1391 alloc_reg(current,i,FTEMP);
1392 alloc_reg_temp(current,i,-1);
1393 minimum_free_regs[i]=1;
1394 }
1395 }
1396 else
1397 {
1398 // Load to r0 or unneeded register (dummy load)
1399 // but we still need a register to calculate the address
1400 if(opcode[i]==0x22||opcode[i]==0x26)
1401 {
1402 alloc_reg(current,i,FTEMP); // LWL/LWR need another temporary
1403 }
1404 alloc_reg_temp(current,i,-1);
1405 minimum_free_regs[i]=1;
1406 if(opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
1407 {
1408 alloc_all(current,i);
1409 alloc_reg64(current,i,FTEMP);
1410 minimum_free_regs[i]=HOST_REGS;
1411 }
1412 }
1413}
1414
1415void store_alloc(struct regstat *current,int i)
1416{
1417 clear_const(current,rs2[i]);
1418 if(!(rs2[i])) current->u&=~1LL; // Allow allocating r0 if necessary
1419 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1420 alloc_reg(current,i,rs2[i]);
1421 if(opcode[i]==0x2c||opcode[i]==0x2d||opcode[i]==0x3f) { // 64-bit SDL/SDR/SD
1422 alloc_reg64(current,i,rs2[i]);
1423 if(rs2[i]) alloc_reg(current,i,FTEMP);
1424 }
1425 #if defined(HOST_IMM8)
1426 // On CPUs without 32-bit immediates we need a pointer to invalid_code
1427 else alloc_reg(current,i,INVCP);
1428 #endif
1429 if(opcode[i]==0x2a||opcode[i]==0x2e||opcode[i]==0x2c||opcode[i]==0x2d) { // SWL/SWL/SDL/SDR
1430 alloc_reg(current,i,FTEMP);
1431 }
1432 // We need a temporary register for address generation
1433 alloc_reg_temp(current,i,-1);
1434 minimum_free_regs[i]=1;
1435}
1436
1437void c1ls_alloc(struct regstat *current,int i)
1438{
1439 //clear_const(current,rs1[i]); // FIXME
1440 clear_const(current,rt1[i]);
1441 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1442 alloc_reg(current,i,CSREG); // Status
1443 alloc_reg(current,i,FTEMP);
1444 if(opcode[i]==0x35||opcode[i]==0x3d) { // 64-bit LDC1/SDC1
1445 alloc_reg64(current,i,FTEMP);
1446 }
1447 #if defined(HOST_IMM8)
1448 // On CPUs without 32-bit immediates we need a pointer to invalid_code
1449 else if((opcode[i]&0x3b)==0x39) // SWC1/SDC1
1450 alloc_reg(current,i,INVCP);
1451 #endif
1452 // We need a temporary register for address generation
1453 alloc_reg_temp(current,i,-1);
1454}
1455
1456void c2ls_alloc(struct regstat *current,int i)
1457{
1458 clear_const(current,rt1[i]);
1459 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1460 alloc_reg(current,i,FTEMP);
1461 #if defined(HOST_IMM8)
1462 // On CPUs without 32-bit immediates we need a pointer to invalid_code
1463 if((opcode[i]&0x3b)==0x3a) // SWC2/SDC2
1464 alloc_reg(current,i,INVCP);
1465 #endif
1466 // We need a temporary register for address generation
1467 alloc_reg_temp(current,i,-1);
1468 minimum_free_regs[i]=1;
1469}
1470
1471#ifndef multdiv_alloc
1472void multdiv_alloc(struct regstat *current,int i)
1473{
1474 // case 0x18: MULT
1475 // case 0x19: MULTU
1476 // case 0x1A: DIV
1477 // case 0x1B: DIVU
1478 // case 0x1C: DMULT
1479 // case 0x1D: DMULTU
1480 // case 0x1E: DDIV
1481 // case 0x1F: DDIVU
1482 clear_const(current,rs1[i]);
1483 clear_const(current,rs2[i]);
1484 if(rs1[i]&&rs2[i])
1485 {
1486 if((opcode2[i]&4)==0) // 32-bit
1487 {
1488 current->u&=~(1LL<<HIREG);
1489 current->u&=~(1LL<<LOREG);
1490 alloc_reg(current,i,HIREG);
1491 alloc_reg(current,i,LOREG);
1492 alloc_reg(current,i,rs1[i]);
1493 alloc_reg(current,i,rs2[i]);
1494 current->is32|=1LL<<HIREG;
1495 current->is32|=1LL<<LOREG;
1496 dirty_reg(current,HIREG);
1497 dirty_reg(current,LOREG);
1498 }
1499 else // 64-bit
1500 {
1501 current->u&=~(1LL<<HIREG);
1502 current->u&=~(1LL<<LOREG);
1503 current->uu&=~(1LL<<HIREG);
1504 current->uu&=~(1LL<<LOREG);
1505 alloc_reg64(current,i,HIREG);
1506 //if(HOST_REGS>10) alloc_reg64(current,i,LOREG);
1507 alloc_reg64(current,i,rs1[i]);
1508 alloc_reg64(current,i,rs2[i]);
1509 alloc_all(current,i);
1510 current->is32&=~(1LL<<HIREG);
1511 current->is32&=~(1LL<<LOREG);
1512 dirty_reg(current,HIREG);
1513 dirty_reg(current,LOREG);
1514 minimum_free_regs[i]=HOST_REGS;
1515 }
1516 }
1517 else
1518 {
1519 // Multiply by zero is zero.
1520 // MIPS does not have a divide by zero exception.
1521 // The result is undefined, we return zero.
1522 alloc_reg(current,i,HIREG);
1523 alloc_reg(current,i,LOREG);
1524 current->is32|=1LL<<HIREG;
1525 current->is32|=1LL<<LOREG;
1526 dirty_reg(current,HIREG);
1527 dirty_reg(current,LOREG);
1528 }
1529}
1530#endif
1531
1532void cop0_alloc(struct regstat *current,int i)
1533{
1534 if(opcode2[i]==0) // MFC0
1535 {
1536 if(rt1[i]) {
1537 clear_const(current,rt1[i]);
1538 alloc_all(current,i);
1539 alloc_reg(current,i,rt1[i]);
1540 current->is32|=1LL<<rt1[i];
1541 dirty_reg(current,rt1[i]);
1542 }
1543 }
1544 else if(opcode2[i]==4) // MTC0
1545 {
1546 if(rs1[i]){
1547 clear_const(current,rs1[i]);
1548 alloc_reg(current,i,rs1[i]);
1549 alloc_all(current,i);
1550 }
1551 else {
1552 alloc_all(current,i); // FIXME: Keep r0
1553 current->u&=~1LL;
1554 alloc_reg(current,i,0);
1555 }
1556 }
1557 else
1558 {
1559 // TLBR/TLBWI/TLBWR/TLBP/ERET
1560 assert(opcode2[i]==0x10);
1561 alloc_all(current,i);
1562 }
1563 minimum_free_regs[i]=HOST_REGS;
1564}
1565
1566void cop1_alloc(struct regstat *current,int i)
1567{
1568 alloc_reg(current,i,CSREG); // Load status
1569 if(opcode2[i]<3) // MFC1/DMFC1/CFC1
1570 {
1571 if(rt1[i]){
1572 clear_const(current,rt1[i]);
1573 if(opcode2[i]==1) {
1574 alloc_reg64(current,i,rt1[i]); // DMFC1
1575 current->is32&=~(1LL<<rt1[i]);
1576 }else{
1577 alloc_reg(current,i,rt1[i]); // MFC1/CFC1
1578 current->is32|=1LL<<rt1[i];
1579 }
1580 dirty_reg(current,rt1[i]);
1581 }
1582 alloc_reg_temp(current,i,-1);
1583 }
1584 else if(opcode2[i]>3) // MTC1/DMTC1/CTC1
1585 {
1586 if(rs1[i]){
1587 clear_const(current,rs1[i]);
1588 if(opcode2[i]==5)
1589 alloc_reg64(current,i,rs1[i]); // DMTC1
1590 else
1591 alloc_reg(current,i,rs1[i]); // MTC1/CTC1
1592 alloc_reg_temp(current,i,-1);
1593 }
1594 else {
1595 current->u&=~1LL;
1596 alloc_reg(current,i,0);
1597 alloc_reg_temp(current,i,-1);
1598 }
1599 }
1600 minimum_free_regs[i]=1;
1601}
1602void fconv_alloc(struct regstat *current,int i)
1603{
1604 alloc_reg(current,i,CSREG); // Load status
1605 alloc_reg_temp(current,i,-1);
1606 minimum_free_regs[i]=1;
1607}
1608void float_alloc(struct regstat *current,int i)
1609{
1610 alloc_reg(current,i,CSREG); // Load status
1611 alloc_reg_temp(current,i,-1);
1612 minimum_free_regs[i]=1;
1613}
1614void c2op_alloc(struct regstat *current,int i)
1615{
1616 alloc_reg_temp(current,i,-1);
1617}
1618void fcomp_alloc(struct regstat *current,int i)
1619{
1620 alloc_reg(current,i,CSREG); // Load status
1621 alloc_reg(current,i,FSREG); // Load flags
1622 dirty_reg(current,FSREG); // Flag will be modified
1623 alloc_reg_temp(current,i,-1);
1624 minimum_free_regs[i]=1;
1625}
1626
1627void syscall_alloc(struct regstat *current,int i)
1628{
1629 alloc_cc(current,i);
1630 dirty_reg(current,CCREG);
1631 alloc_all(current,i);
1632 minimum_free_regs[i]=HOST_REGS;
1633 current->isconst=0;
1634}
1635
1636void delayslot_alloc(struct regstat *current,int i)
1637{
1638 switch(itype[i]) {
1639 case UJUMP:
1640 case CJUMP:
1641 case SJUMP:
1642 case RJUMP:
1643 case FJUMP:
1644 case SYSCALL:
1645 case HLECALL:
1646 case SPAN:
1647 assem_debug("jump in the delay slot. this shouldn't happen.\n");//exit(1);
1648 SysPrintf("Disabled speculative precompilation\n");
1649 stop_after_jal=1;
1650 break;
1651 case IMM16:
1652 imm16_alloc(current,i);
1653 break;
1654 case LOAD:
1655 case LOADLR:
1656 load_alloc(current,i);
1657 break;
1658 case STORE:
1659 case STORELR:
1660 store_alloc(current,i);
1661 break;
1662 case ALU:
1663 alu_alloc(current,i);
1664 break;
1665 case SHIFT:
1666 shift_alloc(current,i);
1667 break;
1668 case MULTDIV:
1669 multdiv_alloc(current,i);
1670 break;
1671 case SHIFTIMM:
1672 shiftimm_alloc(current,i);
1673 break;
1674 case MOV:
1675 mov_alloc(current,i);
1676 break;
1677 case COP0:
1678 cop0_alloc(current,i);
1679 break;
1680 case COP1:
1681 case COP2:
1682 cop1_alloc(current,i);
1683 break;
1684 case C1LS:
1685 c1ls_alloc(current,i);
1686 break;
1687 case C2LS:
1688 c2ls_alloc(current,i);
1689 break;
1690 case FCONV:
1691 fconv_alloc(current,i);
1692 break;
1693 case FLOAT:
1694 float_alloc(current,i);
1695 break;
1696 case FCOMP:
1697 fcomp_alloc(current,i);
1698 break;
1699 case C2OP:
1700 c2op_alloc(current,i);
1701 break;
1702 }
1703}
1704
1705// Special case where a branch and delay slot span two pages in virtual memory
1706static void pagespan_alloc(struct regstat *current,int i)
1707{
1708 current->isconst=0;
1709 current->wasconst=0;
1710 regs[i].wasconst=0;
1711 minimum_free_regs[i]=HOST_REGS;
1712 alloc_all(current,i);
1713 alloc_cc(current,i);
1714 dirty_reg(current,CCREG);
1715 if(opcode[i]==3) // JAL
1716 {
1717 alloc_reg(current,i,31);
1718 dirty_reg(current,31);
1719 }
1720 if(opcode[i]==0&&(opcode2[i]&0x3E)==8) // JR/JALR
1721 {
1722 alloc_reg(current,i,rs1[i]);
1723 if (rt1[i]!=0) {
1724 alloc_reg(current,i,rt1[i]);
1725 dirty_reg(current,rt1[i]);
1726 }
1727 }
1728 if((opcode[i]&0x2E)==4) // BEQ/BNE/BEQL/BNEL
1729 {
1730 if(rs1[i]) alloc_reg(current,i,rs1[i]);
1731 if(rs2[i]) alloc_reg(current,i,rs2[i]);
1732 if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1733 {
1734 if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1735 if(rs2[i]) alloc_reg64(current,i,rs2[i]);
1736 }
1737 }
1738 else
1739 if((opcode[i]&0x2E)==6) // BLEZ/BGTZ/BLEZL/BGTZL
1740 {
1741 if(rs1[i]) alloc_reg(current,i,rs1[i]);
1742 if(!((current->is32>>rs1[i])&1))
1743 {
1744 if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1745 }
1746 }
1747 else
1748 if(opcode[i]==0x11) // BC1
1749 {
1750 alloc_reg(current,i,FSREG);
1751 alloc_reg(current,i,CSREG);
1752 }
1753 //else ...
1754}
1755
1756static void add_stub(int type,int addr,int retaddr,int a,int b,int c,int d,int e)
1757{
1758 stubs[stubcount][0]=type;
1759 stubs[stubcount][1]=addr;
1760 stubs[stubcount][2]=retaddr;
1761 stubs[stubcount][3]=a;
1762 stubs[stubcount][4]=b;
1763 stubs[stubcount][5]=c;
1764 stubs[stubcount][6]=d;
1765 stubs[stubcount][7]=e;
1766 stubcount++;
1767}
1768
1769// Write out a single register
1770void wb_register(signed char r,signed char regmap[],uint64_t dirty,uint64_t is32)
1771{
1772 int hr;
1773 for(hr=0;hr<HOST_REGS;hr++) {
1774 if(hr!=EXCLUDE_REG) {
1775 if((regmap[hr]&63)==r) {
1776 if((dirty>>hr)&1) {
1777 if(regmap[hr]<64) {
1778 emit_storereg(r,hr);
1779 }else{
1780 emit_storereg(r|64,hr);
1781 }
1782 }
1783 }
1784 }
1785 }
1786}
1787
1788int mchecksum()
1789{
1790 //if(!tracedebug) return 0;
1791 int i;
1792 int sum=0;
1793 for(i=0;i<2097152;i++) {
1794 unsigned int temp=sum;
1795 sum<<=1;
1796 sum|=(~temp)>>31;
1797 sum^=((u_int *)rdram)[i];
1798 }
1799 return sum;
1800}
1801int rchecksum()
1802{
1803 int i;
1804 int sum=0;
1805 for(i=0;i<64;i++)
1806 sum^=((u_int *)reg)[i];
1807 return sum;
1808}
1809void rlist()
1810{
1811 int i;
1812 printf("TRACE: ");
1813 for(i=0;i<32;i++)
1814 printf("r%d:%8x%8x ",i,((int *)(reg+i))[1],((int *)(reg+i))[0]);
1815 printf("\n");
1816}
1817
1818void enabletrace()
1819{
1820 tracedebug=1;
1821}
1822
1823void memdebug(int i)
1824{
1825 //printf("TRACE: count=%d next=%d (checksum %x) lo=%8x%8x\n",Count,next_interupt,mchecksum(),(int)(reg[LOREG]>>32),(int)reg[LOREG]);
1826 //printf("TRACE: count=%d next=%d (rchecksum %x)\n",Count,next_interupt,rchecksum());
1827 //rlist();
1828 //if(tracedebug) {
1829 //if(Count>=-2084597794) {
1830 if((signed int)Count>=-2084597794&&(signed int)Count<0) {
1831 //if(0) {
1832 printf("TRACE: count=%d next=%d (checksum %x)\n",Count,next_interupt,mchecksum());
1833 //printf("TRACE: count=%d next=%d (checksum %x) Status=%x\n",Count,next_interupt,mchecksum(),Status);
1834 //printf("TRACE: count=%d next=%d (checksum %x) hi=%8x%8x\n",Count,next_interupt,mchecksum(),(int)(reg[HIREG]>>32),(int)reg[HIREG]);
1835 rlist();
1836 #ifdef __i386__
1837 printf("TRACE: %x\n",(&i)[-1]);
1838 #endif
1839 #ifdef __arm__
1840 int j;
1841 printf("TRACE: %x \n",(&j)[10]);
1842 printf("TRACE: %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x\n",(&j)[1],(&j)[2],(&j)[3],(&j)[4],(&j)[5],(&j)[6],(&j)[7],(&j)[8],(&j)[9],(&j)[10],(&j)[11],(&j)[12],(&j)[13],(&j)[14],(&j)[15],(&j)[16],(&j)[17],(&j)[18],(&j)[19],(&j)[20]);
1843 #endif
1844 //fflush(stdout);
1845 }
1846 //printf("TRACE: %x\n",(&i)[-1]);
1847}
1848
1849void alu_assemble(int i,struct regstat *i_regs)
1850{
1851 if(opcode2[i]>=0x20&&opcode2[i]<=0x23) { // ADD/ADDU/SUB/SUBU
1852 if(rt1[i]) {
1853 signed char s1,s2,t;
1854 t=get_reg(i_regs->regmap,rt1[i]);
1855 if(t>=0) {
1856 s1=get_reg(i_regs->regmap,rs1[i]);
1857 s2=get_reg(i_regs->regmap,rs2[i]);
1858 if(rs1[i]&&rs2[i]) {
1859 assert(s1>=0);
1860 assert(s2>=0);
1861 if(opcode2[i]&2) emit_sub(s1,s2,t);
1862 else emit_add(s1,s2,t);
1863 }
1864 else if(rs1[i]) {
1865 if(s1>=0) emit_mov(s1,t);
1866 else emit_loadreg(rs1[i],t);
1867 }
1868 else if(rs2[i]) {
1869 if(s2>=0) {
1870 if(opcode2[i]&2) emit_neg(s2,t);
1871 else emit_mov(s2,t);
1872 }
1873 else {
1874 emit_loadreg(rs2[i],t);
1875 if(opcode2[i]&2) emit_neg(t,t);
1876 }
1877 }
1878 else emit_zeroreg(t);
1879 }
1880 }
1881 }
1882 if(opcode2[i]>=0x2c&&opcode2[i]<=0x2f) { // DADD/DADDU/DSUB/DSUBU
1883 if(rt1[i]) {
1884 signed char s1l,s2l,s1h,s2h,tl,th;
1885 tl=get_reg(i_regs->regmap,rt1[i]);
1886 th=get_reg(i_regs->regmap,rt1[i]|64);
1887 if(tl>=0) {
1888 s1l=get_reg(i_regs->regmap,rs1[i]);
1889 s2l=get_reg(i_regs->regmap,rs2[i]);
1890 s1h=get_reg(i_regs->regmap,rs1[i]|64);
1891 s2h=get_reg(i_regs->regmap,rs2[i]|64);
1892 if(rs1[i]&&rs2[i]) {
1893 assert(s1l>=0);
1894 assert(s2l>=0);
1895 if(opcode2[i]&2) emit_subs(s1l,s2l,tl);
1896 else emit_adds(s1l,s2l,tl);
1897 if(th>=0) {
1898 #ifdef INVERTED_CARRY
1899 if(opcode2[i]&2) {if(s1h!=th) emit_mov(s1h,th);emit_sbb(th,s2h);}
1900 #else
1901 if(opcode2[i]&2) emit_sbc(s1h,s2h,th);
1902 #endif
1903 else emit_add(s1h,s2h,th);
1904 }
1905 }
1906 else if(rs1[i]) {
1907 if(s1l>=0) emit_mov(s1l,tl);
1908 else emit_loadreg(rs1[i],tl);
1909 if(th>=0) {
1910 if(s1h>=0) emit_mov(s1h,th);
1911 else emit_loadreg(rs1[i]|64,th);
1912 }
1913 }
1914 else if(rs2[i]) {
1915 if(s2l>=0) {
1916 if(opcode2[i]&2) emit_negs(s2l,tl);
1917 else emit_mov(s2l,tl);
1918 }
1919 else {
1920 emit_loadreg(rs2[i],tl);
1921 if(opcode2[i]&2) emit_negs(tl,tl);
1922 }
1923 if(th>=0) {
1924 #ifdef INVERTED_CARRY
1925 if(s2h>=0) emit_mov(s2h,th);
1926 else emit_loadreg(rs2[i]|64,th);
1927 if(opcode2[i]&2) {
1928 emit_adcimm(-1,th); // x86 has inverted carry flag
1929 emit_not(th,th);
1930 }
1931 #else
1932 if(opcode2[i]&2) {
1933 if(s2h>=0) emit_rscimm(s2h,0,th);
1934 else {
1935 emit_loadreg(rs2[i]|64,th);
1936 emit_rscimm(th,0,th);
1937 }
1938 }else{
1939 if(s2h>=0) emit_mov(s2h,th);
1940 else emit_loadreg(rs2[i]|64,th);
1941 }
1942 #endif
1943 }
1944 }
1945 else {
1946 emit_zeroreg(tl);
1947 if(th>=0) emit_zeroreg(th);
1948 }
1949 }
1950 }
1951 }
1952 if(opcode2[i]==0x2a||opcode2[i]==0x2b) { // SLT/SLTU
1953 if(rt1[i]) {
1954 signed char s1l,s1h,s2l,s2h,t;
1955 if(!((i_regs->was32>>rs1[i])&(i_regs->was32>>rs2[i])&1))
1956 {
1957 t=get_reg(i_regs->regmap,rt1[i]);
1958 //assert(t>=0);
1959 if(t>=0) {
1960 s1l=get_reg(i_regs->regmap,rs1[i]);
1961 s1h=get_reg(i_regs->regmap,rs1[i]|64);
1962 s2l=get_reg(i_regs->regmap,rs2[i]);
1963 s2h=get_reg(i_regs->regmap,rs2[i]|64);
1964 if(rs2[i]==0) // rx<r0
1965 {
1966 assert(s1h>=0);
1967 if(opcode2[i]==0x2a) // SLT
1968 emit_shrimm(s1h,31,t);
1969 else // SLTU (unsigned can not be less than zero)
1970 emit_zeroreg(t);
1971 }
1972 else if(rs1[i]==0) // r0<rx
1973 {
1974 assert(s2h>=0);
1975 if(opcode2[i]==0x2a) // SLT
1976 emit_set_gz64_32(s2h,s2l,t);
1977 else // SLTU (set if not zero)
1978 emit_set_nz64_32(s2h,s2l,t);
1979 }
1980 else {
1981 assert(s1l>=0);assert(s1h>=0);
1982 assert(s2l>=0);assert(s2h>=0);
1983 if(opcode2[i]==0x2a) // SLT
1984 emit_set_if_less64_32(s1h,s1l,s2h,s2l,t);
1985 else // SLTU
1986 emit_set_if_carry64_32(s1h,s1l,s2h,s2l,t);
1987 }
1988 }
1989 } else {
1990 t=get_reg(i_regs->regmap,rt1[i]);
1991 //assert(t>=0);
1992 if(t>=0) {
1993 s1l=get_reg(i_regs->regmap,rs1[i]);
1994 s2l=get_reg(i_regs->regmap,rs2[i]);
1995 if(rs2[i]==0) // rx<r0
1996 {
1997 assert(s1l>=0);
1998 if(opcode2[i]==0x2a) // SLT
1999 emit_shrimm(s1l,31,t);
2000 else // SLTU (unsigned can not be less than zero)
2001 emit_zeroreg(t);
2002 }
2003 else if(rs1[i]==0) // r0<rx
2004 {
2005 assert(s2l>=0);
2006 if(opcode2[i]==0x2a) // SLT
2007 emit_set_gz32(s2l,t);
2008 else // SLTU (set if not zero)
2009 emit_set_nz32(s2l,t);
2010 }
2011 else{
2012 assert(s1l>=0);assert(s2l>=0);
2013 if(opcode2[i]==0x2a) // SLT
2014 emit_set_if_less32(s1l,s2l,t);
2015 else // SLTU
2016 emit_set_if_carry32(s1l,s2l,t);
2017 }
2018 }
2019 }
2020 }
2021 }
2022 if(opcode2[i]>=0x24&&opcode2[i]<=0x27) { // AND/OR/XOR/NOR
2023 if(rt1[i]) {
2024 signed char s1l,s1h,s2l,s2h,th,tl;
2025 tl=get_reg(i_regs->regmap,rt1[i]);
2026 th=get_reg(i_regs->regmap,rt1[i]|64);
2027 if(!((i_regs->was32>>rs1[i])&(i_regs->was32>>rs2[i])&1)&&th>=0)
2028 {
2029 assert(tl>=0);
2030 if(tl>=0) {
2031 s1l=get_reg(i_regs->regmap,rs1[i]);
2032 s1h=get_reg(i_regs->regmap,rs1[i]|64);
2033 s2l=get_reg(i_regs->regmap,rs2[i]);
2034 s2h=get_reg(i_regs->regmap,rs2[i]|64);
2035 if(rs1[i]&&rs2[i]) {
2036 assert(s1l>=0);assert(s1h>=0);
2037 assert(s2l>=0);assert(s2h>=0);
2038 if(opcode2[i]==0x24) { // AND
2039 emit_and(s1l,s2l,tl);
2040 emit_and(s1h,s2h,th);
2041 } else
2042 if(opcode2[i]==0x25) { // OR
2043 emit_or(s1l,s2l,tl);
2044 emit_or(s1h,s2h,th);
2045 } else
2046 if(opcode2[i]==0x26) { // XOR
2047 emit_xor(s1l,s2l,tl);
2048 emit_xor(s1h,s2h,th);
2049 } else
2050 if(opcode2[i]==0x27) { // NOR
2051 emit_or(s1l,s2l,tl);
2052 emit_or(s1h,s2h,th);
2053 emit_not(tl,tl);
2054 emit_not(th,th);
2055 }
2056 }
2057 else
2058 {
2059 if(opcode2[i]==0x24) { // AND
2060 emit_zeroreg(tl);
2061 emit_zeroreg(th);
2062 } else
2063 if(opcode2[i]==0x25||opcode2[i]==0x26) { // OR/XOR
2064 if(rs1[i]){
2065 if(s1l>=0) emit_mov(s1l,tl);
2066 else emit_loadreg(rs1[i],tl);
2067 if(s1h>=0) emit_mov(s1h,th);
2068 else emit_loadreg(rs1[i]|64,th);
2069 }
2070 else
2071 if(rs2[i]){
2072 if(s2l>=0) emit_mov(s2l,tl);
2073 else emit_loadreg(rs2[i],tl);
2074 if(s2h>=0) emit_mov(s2h,th);
2075 else emit_loadreg(rs2[i]|64,th);
2076 }
2077 else{
2078 emit_zeroreg(tl);
2079 emit_zeroreg(th);
2080 }
2081 } else
2082 if(opcode2[i]==0x27) { // NOR
2083 if(rs1[i]){
2084 if(s1l>=0) emit_not(s1l,tl);
2085 else{
2086 emit_loadreg(rs1[i],tl);
2087 emit_not(tl,tl);
2088 }
2089 if(s1h>=0) emit_not(s1h,th);
2090 else{
2091 emit_loadreg(rs1[i]|64,th);
2092 emit_not(th,th);
2093 }
2094 }
2095 else
2096 if(rs2[i]){
2097 if(s2l>=0) emit_not(s2l,tl);
2098 else{
2099 emit_loadreg(rs2[i],tl);
2100 emit_not(tl,tl);
2101 }
2102 if(s2h>=0) emit_not(s2h,th);
2103 else{
2104 emit_loadreg(rs2[i]|64,th);
2105 emit_not(th,th);
2106 }
2107 }
2108 else {
2109 emit_movimm(-1,tl);
2110 emit_movimm(-1,th);
2111 }
2112 }
2113 }
2114 }
2115 }
2116 else
2117 {
2118 // 32 bit
2119 if(tl>=0) {
2120 s1l=get_reg(i_regs->regmap,rs1[i]);
2121 s2l=get_reg(i_regs->regmap,rs2[i]);
2122 if(rs1[i]&&rs2[i]) {
2123 assert(s1l>=0);
2124 assert(s2l>=0);
2125 if(opcode2[i]==0x24) { // AND
2126 emit_and(s1l,s2l,tl);
2127 } else
2128 if(opcode2[i]==0x25) { // OR
2129 emit_or(s1l,s2l,tl);
2130 } else
2131 if(opcode2[i]==0x26) { // XOR
2132 emit_xor(s1l,s2l,tl);
2133 } else
2134 if(opcode2[i]==0x27) { // NOR
2135 emit_or(s1l,s2l,tl);
2136 emit_not(tl,tl);
2137 }
2138 }
2139 else
2140 {
2141 if(opcode2[i]==0x24) { // AND
2142 emit_zeroreg(tl);
2143 } else
2144 if(opcode2[i]==0x25||opcode2[i]==0x26) { // OR/XOR
2145 if(rs1[i]){
2146 if(s1l>=0) emit_mov(s1l,tl);
2147 else emit_loadreg(rs1[i],tl); // CHECK: regmap_entry?
2148 }
2149 else
2150 if(rs2[i]){
2151 if(s2l>=0) emit_mov(s2l,tl);
2152 else emit_loadreg(rs2[i],tl); // CHECK: regmap_entry?
2153 }
2154 else emit_zeroreg(tl);
2155 } else
2156 if(opcode2[i]==0x27) { // NOR
2157 if(rs1[i]){
2158 if(s1l>=0) emit_not(s1l,tl);
2159 else {
2160 emit_loadreg(rs1[i],tl);
2161 emit_not(tl,tl);
2162 }
2163 }
2164 else
2165 if(rs2[i]){
2166 if(s2l>=0) emit_not(s2l,tl);
2167 else {
2168 emit_loadreg(rs2[i],tl);
2169 emit_not(tl,tl);
2170 }
2171 }
2172 else emit_movimm(-1,tl);
2173 }
2174 }
2175 }
2176 }
2177 }
2178 }
2179}
2180
2181void imm16_assemble(int i,struct regstat *i_regs)
2182{
2183 if (opcode[i]==0x0f) { // LUI
2184 if(rt1[i]) {
2185 signed char t;
2186 t=get_reg(i_regs->regmap,rt1[i]);
2187 //assert(t>=0);
2188 if(t>=0) {
2189 if(!((i_regs->isconst>>t)&1))
2190 emit_movimm(imm[i]<<16,t);
2191 }
2192 }
2193 }
2194 if(opcode[i]==0x08||opcode[i]==0x09) { // ADDI/ADDIU
2195 if(rt1[i]) {
2196 signed char s,t;
2197 t=get_reg(i_regs->regmap,rt1[i]);
2198 s=get_reg(i_regs->regmap,rs1[i]);
2199 if(rs1[i]) {
2200 //assert(t>=0);
2201 //assert(s>=0);
2202 if(t>=0) {
2203 if(!((i_regs->isconst>>t)&1)) {
2204 if(s<0) {
2205 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2206 emit_addimm(t,imm[i],t);
2207 }else{
2208 if(!((i_regs->wasconst>>s)&1))
2209 emit_addimm(s,imm[i],t);
2210 else
2211 emit_movimm(constmap[i][s]+imm[i],t);
2212 }
2213 }
2214 }
2215 } else {
2216 if(t>=0) {
2217 if(!((i_regs->isconst>>t)&1))
2218 emit_movimm(imm[i],t);
2219 }
2220 }
2221 }
2222 }
2223 if(opcode[i]==0x18||opcode[i]==0x19) { // DADDI/DADDIU
2224 if(rt1[i]) {
2225 signed char sh,sl,th,tl;
2226 th=get_reg(i_regs->regmap,rt1[i]|64);
2227 tl=get_reg(i_regs->regmap,rt1[i]);
2228 sh=get_reg(i_regs->regmap,rs1[i]|64);
2229 sl=get_reg(i_regs->regmap,rs1[i]);
2230 if(tl>=0) {
2231 if(rs1[i]) {
2232 assert(sh>=0);
2233 assert(sl>=0);
2234 if(th>=0) {
2235 emit_addimm64_32(sh,sl,imm[i],th,tl);
2236 }
2237 else {
2238 emit_addimm(sl,imm[i],tl);
2239 }
2240 } else {
2241 emit_movimm(imm[i],tl);
2242 if(th>=0) emit_movimm(((signed int)imm[i])>>31,th);
2243 }
2244 }
2245 }
2246 }
2247 else if(opcode[i]==0x0a||opcode[i]==0x0b) { // SLTI/SLTIU
2248 if(rt1[i]) {
2249 //assert(rs1[i]!=0); // r0 might be valid, but it's probably a bug
2250 signed char sh,sl,t;
2251 t=get_reg(i_regs->regmap,rt1[i]);
2252 sh=get_reg(i_regs->regmap,rs1[i]|64);
2253 sl=get_reg(i_regs->regmap,rs1[i]);
2254 //assert(t>=0);
2255 if(t>=0) {
2256 if(rs1[i]>0) {
2257 if(sh<0) assert((i_regs->was32>>rs1[i])&1);
2258 if(sh<0||((i_regs->was32>>rs1[i])&1)) {
2259 if(opcode[i]==0x0a) { // SLTI
2260 if(sl<0) {
2261 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2262 emit_slti32(t,imm[i],t);
2263 }else{
2264 emit_slti32(sl,imm[i],t);
2265 }
2266 }
2267 else { // SLTIU
2268 if(sl<0) {
2269 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2270 emit_sltiu32(t,imm[i],t);
2271 }else{
2272 emit_sltiu32(sl,imm[i],t);
2273 }
2274 }
2275 }else{ // 64-bit
2276 assert(sl>=0);
2277 if(opcode[i]==0x0a) // SLTI
2278 emit_slti64_32(sh,sl,imm[i],t);
2279 else // SLTIU
2280 emit_sltiu64_32(sh,sl,imm[i],t);
2281 }
2282 }else{
2283 // SLTI(U) with r0 is just stupid,
2284 // nonetheless examples can be found
2285 if(opcode[i]==0x0a) // SLTI
2286 if(0<imm[i]) emit_movimm(1,t);
2287 else emit_zeroreg(t);
2288 else // SLTIU
2289 {
2290 if(imm[i]) emit_movimm(1,t);
2291 else emit_zeroreg(t);
2292 }
2293 }
2294 }
2295 }
2296 }
2297 else if(opcode[i]>=0x0c&&opcode[i]<=0x0e) { // ANDI/ORI/XORI
2298 if(rt1[i]) {
2299 signed char sh,sl,th,tl;
2300 th=get_reg(i_regs->regmap,rt1[i]|64);
2301 tl=get_reg(i_regs->regmap,rt1[i]);
2302 sh=get_reg(i_regs->regmap,rs1[i]|64);
2303 sl=get_reg(i_regs->regmap,rs1[i]);
2304 if(tl>=0 && !((i_regs->isconst>>tl)&1)) {
2305 if(opcode[i]==0x0c) //ANDI
2306 {
2307 if(rs1[i]) {
2308 if(sl<0) {
2309 if(i_regs->regmap_entry[tl]!=rs1[i]) emit_loadreg(rs1[i],tl);
2310 emit_andimm(tl,imm[i],tl);
2311 }else{
2312 if(!((i_regs->wasconst>>sl)&1))
2313 emit_andimm(sl,imm[i],tl);
2314 else
2315 emit_movimm(constmap[i][sl]&imm[i],tl);
2316 }
2317 }
2318 else
2319 emit_zeroreg(tl);
2320 if(th>=0) emit_zeroreg(th);
2321 }
2322 else
2323 {
2324 if(rs1[i]) {
2325 if(sl<0) {
2326 if(i_regs->regmap_entry[tl]!=rs1[i]) emit_loadreg(rs1[i],tl);
2327 }
2328 if(th>=0) {
2329 if(sh<0) {
2330 emit_loadreg(rs1[i]|64,th);
2331 }else{
2332 emit_mov(sh,th);
2333 }
2334 }
2335 if(opcode[i]==0x0d) { // ORI
2336 if(sl<0) {
2337 emit_orimm(tl,imm[i],tl);
2338 }else{
2339 if(!((i_regs->wasconst>>sl)&1))
2340 emit_orimm(sl,imm[i],tl);
2341 else
2342 emit_movimm(constmap[i][sl]|imm[i],tl);
2343 }
2344 }
2345 if(opcode[i]==0x0e) { // XORI
2346 if(sl<0) {
2347 emit_xorimm(tl,imm[i],tl);
2348 }else{
2349 if(!((i_regs->wasconst>>sl)&1))
2350 emit_xorimm(sl,imm[i],tl);
2351 else
2352 emit_movimm(constmap[i][sl]^imm[i],tl);
2353 }
2354 }
2355 }
2356 else {
2357 emit_movimm(imm[i],tl);
2358 if(th>=0) emit_zeroreg(th);
2359 }
2360 }
2361 }
2362 }
2363 }
2364}
2365
2366void shiftimm_assemble(int i,struct regstat *i_regs)
2367{
2368 if(opcode2[i]<=0x3) // SLL/SRL/SRA
2369 {
2370 if(rt1[i]) {
2371 signed char s,t;
2372 t=get_reg(i_regs->regmap,rt1[i]);
2373 s=get_reg(i_regs->regmap,rs1[i]);
2374 //assert(t>=0);
2375 if(t>=0&&!((i_regs->isconst>>t)&1)){
2376 if(rs1[i]==0)
2377 {
2378 emit_zeroreg(t);
2379 }
2380 else
2381 {
2382 if(s<0&&i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2383 if(imm[i]) {
2384 if(opcode2[i]==0) // SLL
2385 {
2386 emit_shlimm(s<0?t:s,imm[i],t);
2387 }
2388 if(opcode2[i]==2) // SRL
2389 {
2390 emit_shrimm(s<0?t:s,imm[i],t);
2391 }
2392 if(opcode2[i]==3) // SRA
2393 {
2394 emit_sarimm(s<0?t:s,imm[i],t);
2395 }
2396 }else{
2397 // Shift by zero
2398 if(s>=0 && s!=t) emit_mov(s,t);
2399 }
2400 }
2401 }
2402 //emit_storereg(rt1[i],t); //DEBUG
2403 }
2404 }
2405 if(opcode2[i]>=0x38&&opcode2[i]<=0x3b) // DSLL/DSRL/DSRA
2406 {
2407 if(rt1[i]) {
2408 signed char sh,sl,th,tl;
2409 th=get_reg(i_regs->regmap,rt1[i]|64);
2410 tl=get_reg(i_regs->regmap,rt1[i]);
2411 sh=get_reg(i_regs->regmap,rs1[i]|64);
2412 sl=get_reg(i_regs->regmap,rs1[i]);
2413 if(tl>=0) {
2414 if(rs1[i]==0)
2415 {
2416 emit_zeroreg(tl);
2417 if(th>=0) emit_zeroreg(th);
2418 }
2419 else
2420 {
2421 assert(sl>=0);
2422 assert(sh>=0);
2423 if(imm[i]) {
2424 if(opcode2[i]==0x38) // DSLL
2425 {
2426 if(th>=0) emit_shldimm(sh,sl,imm[i],th);
2427 emit_shlimm(sl,imm[i],tl);
2428 }
2429 if(opcode2[i]==0x3a) // DSRL
2430 {
2431 emit_shrdimm(sl,sh,imm[i],tl);
2432 if(th>=0) emit_shrimm(sh,imm[i],th);
2433 }
2434 if(opcode2[i]==0x3b) // DSRA
2435 {
2436 emit_shrdimm(sl,sh,imm[i],tl);
2437 if(th>=0) emit_sarimm(sh,imm[i],th);
2438 }
2439 }else{
2440 // Shift by zero
2441 if(sl!=tl) emit_mov(sl,tl);
2442 if(th>=0&&sh!=th) emit_mov(sh,th);
2443 }
2444 }
2445 }
2446 }
2447 }
2448 if(opcode2[i]==0x3c) // DSLL32
2449 {
2450 if(rt1[i]) {
2451 signed char sl,tl,th;
2452 tl=get_reg(i_regs->regmap,rt1[i]);
2453 th=get_reg(i_regs->regmap,rt1[i]|64);
2454 sl=get_reg(i_regs->regmap,rs1[i]);
2455 if(th>=0||tl>=0){
2456 assert(tl>=0);
2457 assert(th>=0);
2458 assert(sl>=0);
2459 emit_mov(sl,th);
2460 emit_zeroreg(tl);
2461 if(imm[i]>32)
2462 {
2463 emit_shlimm(th,imm[i]&31,th);
2464 }
2465 }
2466 }
2467 }
2468 if(opcode2[i]==0x3e) // DSRL32
2469 {
2470 if(rt1[i]) {
2471 signed char sh,tl,th;
2472 tl=get_reg(i_regs->regmap,rt1[i]);
2473 th=get_reg(i_regs->regmap,rt1[i]|64);
2474 sh=get_reg(i_regs->regmap,rs1[i]|64);
2475 if(tl>=0){
2476 assert(sh>=0);
2477 emit_mov(sh,tl);
2478 if(th>=0) emit_zeroreg(th);
2479 if(imm[i]>32)
2480 {
2481 emit_shrimm(tl,imm[i]&31,tl);
2482 }
2483 }
2484 }
2485 }
2486 if(opcode2[i]==0x3f) // DSRA32
2487 {
2488 if(rt1[i]) {
2489 signed char sh,tl;
2490 tl=get_reg(i_regs->regmap,rt1[i]);
2491 sh=get_reg(i_regs->regmap,rs1[i]|64);
2492 if(tl>=0){
2493 assert(sh>=0);
2494 emit_mov(sh,tl);
2495 if(imm[i]>32)
2496 {
2497 emit_sarimm(tl,imm[i]&31,tl);
2498 }
2499 }
2500 }
2501 }
2502}
2503
2504#ifndef shift_assemble
2505void shift_assemble(int i,struct regstat *i_regs)
2506{
2507 printf("Need shift_assemble for this architecture.\n");
2508 exit(1);
2509}
2510#endif
2511
2512void load_assemble(int i,struct regstat *i_regs)
2513{
2514 int s,th,tl,addr,map=-1;
2515 int offset;
2516 int jaddr=0;
2517 int memtarget=0,c=0;
2518 int fastload_reg_override=0;
2519 u_int hr,reglist=0;
2520 th=get_reg(i_regs->regmap,rt1[i]|64);
2521 tl=get_reg(i_regs->regmap,rt1[i]);
2522 s=get_reg(i_regs->regmap,rs1[i]);
2523 offset=imm[i];
2524 for(hr=0;hr<HOST_REGS;hr++) {
2525 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
2526 }
2527 if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
2528 if(s>=0) {
2529 c=(i_regs->wasconst>>s)&1;
2530 if (c) {
2531 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
2532 }
2533 }
2534 //printf("load_assemble: c=%d\n",c);
2535 //if(c) printf("load_assemble: const=%x\n",(int)constmap[i][s]+offset);
2536 // FIXME: Even if the load is a NOP, we should check for pagefaults...
2537 if((tl<0&&(!c||(((u_int)constmap[i][s]+offset)>>16)==0x1f80))
2538 ||rt1[i]==0) {
2539 // could be FIFO, must perform the read
2540 // ||dummy read
2541 assem_debug("(forced read)\n");
2542 tl=get_reg(i_regs->regmap,-1);
2543 assert(tl>=0);
2544 }
2545 if(offset||s<0||c) addr=tl;
2546 else addr=s;
2547 //if(tl<0) tl=get_reg(i_regs->regmap,-1);
2548 if(tl>=0) {
2549 //printf("load_assemble: c=%d\n",c);
2550 //if(c) printf("load_assemble: const=%x\n",(int)constmap[i][s]+offset);
2551 assert(tl>=0); // Even if the load is a NOP, we must check for pagefaults and I/O
2552 reglist&=~(1<<tl);
2553 if(th>=0) reglist&=~(1<<th);
2554 if(!c) {
2555 #ifdef RAM_OFFSET
2556 map=get_reg(i_regs->regmap,ROREG);
2557 if(map<0) emit_loadreg(ROREG,map=HOST_TEMPREG);
2558 #endif
2559 #ifdef R29_HACK
2560 // Strmnnrmn's speed hack
2561 if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
2562 #endif
2563 {
2564 jaddr=emit_fastpath_cmp_jump(i,addr,&fastload_reg_override);
2565 }
2566 }
2567 else if(ram_offset&&memtarget) {
2568 emit_addimm(addr,ram_offset,HOST_TEMPREG);
2569 fastload_reg_override=HOST_TEMPREG;
2570 }
2571 int dummy=(rt1[i]==0)||(tl!=get_reg(i_regs->regmap,rt1[i])); // ignore loads to r0 and unneeded reg
2572 if (opcode[i]==0x20) { // LB
2573 if(!c||memtarget) {
2574 if(!dummy) {
2575 #ifdef HOST_IMM_ADDR32
2576 if(c)
2577 emit_movsbl_tlb((constmap[i][s]+offset)^3,map,tl);
2578 else
2579 #endif
2580 {
2581 //emit_xorimm(addr,3,tl);
2582 //emit_movsbl_indexed((int)rdram-0x80000000,tl,tl);
2583 int x=0,a=tl;
2584#ifdef BIG_ENDIAN_MIPS
2585 if(!c) emit_xorimm(addr,3,tl);
2586 else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2587#else
2588 if(!c) a=addr;
2589#endif
2590 if(fastload_reg_override) a=fastload_reg_override;
2591
2592 emit_movsbl_indexed_tlb(x,a,map,tl);
2593 }
2594 }
2595 if(jaddr)
2596 add_stub(LOADB_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2597 }
2598 else
2599 inline_readstub(LOADB_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2600 }
2601 if (opcode[i]==0x21) { // LH
2602 if(!c||memtarget) {
2603 if(!dummy) {
2604 #ifdef HOST_IMM_ADDR32
2605 if(c)
2606 emit_movswl_tlb((constmap[i][s]+offset)^2,map,tl);
2607 else
2608 #endif
2609 {
2610 int x=0,a=tl;
2611#ifdef BIG_ENDIAN_MIPS
2612 if(!c) emit_xorimm(addr,2,tl);
2613 else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
2614#else
2615 if(!c) a=addr;
2616#endif
2617 if(fastload_reg_override) a=fastload_reg_override;
2618 //#ifdef
2619 //emit_movswl_indexed_tlb(x,tl,map,tl);
2620 //else
2621 if(map>=0) {
2622 emit_movswl_indexed(x,a,tl);
2623 }else{
2624 #if 1 //def RAM_OFFSET
2625 emit_movswl_indexed(x,a,tl);
2626 #else
2627 emit_movswl_indexed((int)rdram-0x80000000+x,a,tl);
2628 #endif
2629 }
2630 }
2631 }
2632 if(jaddr)
2633 add_stub(LOADH_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2634 }
2635 else
2636 inline_readstub(LOADH_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2637 }
2638 if (opcode[i]==0x23) { // LW
2639 if(!c||memtarget) {
2640 if(!dummy) {
2641 int a=addr;
2642 if(fastload_reg_override) a=fastload_reg_override;
2643 //emit_readword_indexed((int)rdram-0x80000000,addr,tl);
2644 #ifdef HOST_IMM_ADDR32
2645 if(c)
2646 emit_readword_tlb(constmap[i][s]+offset,map,tl);
2647 else
2648 #endif
2649 emit_readword_indexed_tlb(0,a,map,tl);
2650 }
2651 if(jaddr)
2652 add_stub(LOADW_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2653 }
2654 else
2655 inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2656 }
2657 if (opcode[i]==0x24) { // LBU
2658 if(!c||memtarget) {
2659 if(!dummy) {
2660 #ifdef HOST_IMM_ADDR32
2661 if(c)
2662 emit_movzbl_tlb((constmap[i][s]+offset)^3,map,tl);
2663 else
2664 #endif
2665 {
2666 //emit_xorimm(addr,3,tl);
2667 //emit_movzbl_indexed((int)rdram-0x80000000,tl,tl);
2668 int x=0,a=tl;
2669#ifdef BIG_ENDIAN_MIPS
2670 if(!c) emit_xorimm(addr,3,tl);
2671 else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2672#else
2673 if(!c) a=addr;
2674#endif
2675 if(fastload_reg_override) a=fastload_reg_override;
2676
2677 emit_movzbl_indexed_tlb(x,a,map,tl);
2678 }
2679 }
2680 if(jaddr)
2681 add_stub(LOADBU_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2682 }
2683 else
2684 inline_readstub(LOADBU_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2685 }
2686 if (opcode[i]==0x25) { // LHU
2687 if(!c||memtarget) {
2688 if(!dummy) {
2689 #ifdef HOST_IMM_ADDR32
2690 if(c)
2691 emit_movzwl_tlb((constmap[i][s]+offset)^2,map,tl);
2692 else
2693 #endif
2694 {
2695 int x=0,a=tl;
2696#ifdef BIG_ENDIAN_MIPS
2697 if(!c) emit_xorimm(addr,2,tl);
2698 else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
2699#else
2700 if(!c) a=addr;
2701#endif
2702 if(fastload_reg_override) a=fastload_reg_override;
2703 //#ifdef
2704 //emit_movzwl_indexed_tlb(x,tl,map,tl);
2705 //#else
2706 if(map>=0) {
2707 emit_movzwl_indexed(x,a,tl);
2708 }else{
2709 #if 1 //def RAM_OFFSET
2710 emit_movzwl_indexed(x,a,tl);
2711 #else
2712 emit_movzwl_indexed((int)rdram-0x80000000+x,a,tl);
2713 #endif
2714 }
2715 }
2716 }
2717 if(jaddr)
2718 add_stub(LOADHU_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2719 }
2720 else
2721 inline_readstub(LOADHU_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2722 }
2723 if (opcode[i]==0x27) { // LWU
2724 assert(th>=0);
2725 if(!c||memtarget) {
2726 if(!dummy) {
2727 int a=addr;
2728 if(fastload_reg_override) a=fastload_reg_override;
2729 //emit_readword_indexed((int)rdram-0x80000000,addr,tl);
2730 #ifdef HOST_IMM_ADDR32
2731 if(c)
2732 emit_readword_tlb(constmap[i][s]+offset,map,tl);
2733 else
2734 #endif
2735 emit_readword_indexed_tlb(0,a,map,tl);
2736 }
2737 if(jaddr)
2738 add_stub(LOADW_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2739 }
2740 else {
2741 inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2742 }
2743 emit_zeroreg(th);
2744 }
2745 if (opcode[i]==0x37) { // LD
2746 if(!c||memtarget) {
2747 if(!dummy) {
2748 int a=addr;
2749 if(fastload_reg_override) a=fastload_reg_override;
2750 //if(th>=0) emit_readword_indexed((int)rdram-0x80000000,addr,th);
2751 //emit_readword_indexed((int)rdram-0x7FFFFFFC,addr,tl);
2752 #ifdef HOST_IMM_ADDR32
2753 if(c)
2754 emit_readdword_tlb(constmap[i][s]+offset,map,th,tl);
2755 else
2756 #endif
2757 emit_readdword_indexed_tlb(0,a,map,th,tl);
2758 }
2759 if(jaddr)
2760 add_stub(LOADD_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2761 }
2762 else
2763 inline_readstub(LOADD_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2764 }
2765 }
2766 //emit_storereg(rt1[i],tl); // DEBUG
2767 //if(opcode[i]==0x23)
2768 //if(opcode[i]==0x24)
2769 //if(opcode[i]==0x23||opcode[i]==0x24)
2770 /*if(opcode[i]==0x21||opcode[i]==0x23||opcode[i]==0x24)
2771 {
2772 //emit_pusha();
2773 save_regs(0x100f);
2774 emit_readword((int)&last_count,ECX);
2775 #ifdef __i386__
2776 if(get_reg(i_regs->regmap,CCREG)<0)
2777 emit_loadreg(CCREG,HOST_CCREG);
2778 emit_add(HOST_CCREG,ECX,HOST_CCREG);
2779 emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
2780 emit_writeword(HOST_CCREG,(int)&Count);
2781 #endif
2782 #ifdef __arm__
2783 if(get_reg(i_regs->regmap,CCREG)<0)
2784 emit_loadreg(CCREG,0);
2785 else
2786 emit_mov(HOST_CCREG,0);
2787 emit_add(0,ECX,0);
2788 emit_addimm(0,2*ccadj[i],0);
2789 emit_writeword(0,(int)&Count);
2790 #endif
2791 emit_call((int)memdebug);
2792 //emit_popa();
2793 restore_regs(0x100f);
2794 }*/
2795}
2796
2797#ifndef loadlr_assemble
2798void loadlr_assemble(int i,struct regstat *i_regs)
2799{
2800 printf("Need loadlr_assemble for this architecture.\n");
2801 exit(1);
2802}
2803#endif
2804
2805void store_assemble(int i,struct regstat *i_regs)
2806{
2807 int s,th,tl,map=-1;
2808 int addr,temp;
2809 int offset;
2810 int jaddr=0,type;
2811 int memtarget=0,c=0;
2812 int agr=AGEN1+(i&1);
2813 int faststore_reg_override=0;
2814 u_int hr,reglist=0;
2815 th=get_reg(i_regs->regmap,rs2[i]|64);
2816 tl=get_reg(i_regs->regmap,rs2[i]);
2817 s=get_reg(i_regs->regmap,rs1[i]);
2818 temp=get_reg(i_regs->regmap,agr);
2819 if(temp<0) temp=get_reg(i_regs->regmap,-1);
2820 offset=imm[i];
2821 if(s>=0) {
2822 c=(i_regs->wasconst>>s)&1;
2823 if(c) {
2824 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
2825 }
2826 }
2827 assert(tl>=0);
2828 assert(temp>=0);
2829 for(hr=0;hr<HOST_REGS;hr++) {
2830 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
2831 }
2832 if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
2833 if(offset||s<0||c) addr=temp;
2834 else addr=s;
2835 if(!c) {
2836 jaddr=emit_fastpath_cmp_jump(i,addr,&faststore_reg_override);
2837 }
2838 else if(ram_offset&&memtarget) {
2839 emit_addimm(addr,ram_offset,HOST_TEMPREG);
2840 faststore_reg_override=HOST_TEMPREG;
2841 }
2842
2843 if (opcode[i]==0x28) { // SB
2844 if(!c||memtarget) {
2845 int x=0,a=temp;
2846#ifdef BIG_ENDIAN_MIPS
2847 if(!c) emit_xorimm(addr,3,temp);
2848 else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2849#else
2850 if(!c) a=addr;
2851#endif
2852 if(faststore_reg_override) a=faststore_reg_override;
2853 //emit_writebyte_indexed(tl,(int)rdram-0x80000000,temp);
2854 emit_writebyte_indexed_tlb(tl,x,a,map,a);
2855 }
2856 type=STOREB_STUB;
2857 }
2858 if (opcode[i]==0x29) { // SH
2859 if(!c||memtarget) {
2860 int x=0,a=temp;
2861#ifdef BIG_ENDIAN_MIPS
2862 if(!c) emit_xorimm(addr,2,temp);
2863 else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
2864#else
2865 if(!c) a=addr;
2866#endif
2867 if(faststore_reg_override) a=faststore_reg_override;
2868 //#ifdef
2869 //emit_writehword_indexed_tlb(tl,x,temp,map,temp);
2870 //#else
2871 if(map>=0) {
2872 emit_writehword_indexed(tl,x,a);
2873 }else
2874 //emit_writehword_indexed(tl,(int)rdram-0x80000000+x,a);
2875 emit_writehword_indexed(tl,x,a);
2876 }
2877 type=STOREH_STUB;
2878 }
2879 if (opcode[i]==0x2B) { // SW
2880 if(!c||memtarget) {
2881 int a=addr;
2882 if(faststore_reg_override) a=faststore_reg_override;
2883 //emit_writeword_indexed(tl,(int)rdram-0x80000000,addr);
2884 emit_writeword_indexed_tlb(tl,0,a,map,temp);
2885 }
2886 type=STOREW_STUB;
2887 }
2888 if (opcode[i]==0x3F) { // SD
2889 if(!c||memtarget) {
2890 int a=addr;
2891 if(faststore_reg_override) a=faststore_reg_override;
2892 if(rs2[i]) {
2893 assert(th>=0);
2894 //emit_writeword_indexed(th,(int)rdram-0x80000000,addr);
2895 //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,addr);
2896 emit_writedword_indexed_tlb(th,tl,0,a,map,temp);
2897 }else{
2898 // Store zero
2899 //emit_writeword_indexed(tl,(int)rdram-0x80000000,temp);
2900 //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,temp);
2901 emit_writedword_indexed_tlb(tl,tl,0,a,map,temp);
2902 }
2903 }
2904 type=STORED_STUB;
2905 }
2906 if(jaddr) {
2907 // PCSX store handlers don't check invcode again
2908 reglist|=1<<addr;
2909 add_stub(type,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2910 jaddr=0;
2911 }
2912 if(!(i_regs->waswritten&(1<<rs1[i]))&&!(new_dynarec_hacks&NDHACK_NO_SMC_CHECK)) {
2913 if(!c||memtarget) {
2914 #ifdef DESTRUCTIVE_SHIFT
2915 // The x86 shift operation is 'destructive'; it overwrites the
2916 // source register, so we need to make a copy first and use that.
2917 addr=temp;
2918 #endif
2919 #if defined(HOST_IMM8)
2920 int ir=get_reg(i_regs->regmap,INVCP);
2921 assert(ir>=0);
2922 emit_cmpmem_indexedsr12_reg(ir,addr,1);
2923 #else
2924 emit_cmpmem_indexedsr12_imm((int)invalid_code,addr,1);
2925 #endif
2926 #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
2927 emit_callne(invalidate_addr_reg[addr]);
2928 #else
2929 int jaddr2=(int)out;
2930 emit_jne(0);
2931 add_stub(INVCODE_STUB,jaddr2,(int)out,reglist|(1<<HOST_CCREG),addr,0,0,0);
2932 #endif
2933 }
2934 }
2935 u_int addr_val=constmap[i][s]+offset;
2936 if(jaddr) {
2937 add_stub(type,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2938 } else if(c&&!memtarget) {
2939 inline_writestub(type,i,addr_val,i_regs->regmap,rs2[i],ccadj[i],reglist);
2940 }
2941 // basic current block modification detection..
2942 // not looking back as that should be in mips cache already
2943 if(c&&start+i*4<addr_val&&addr_val<start+slen*4) {
2944 SysPrintf("write to %08x hits block %08x, pc=%08x\n",addr_val,start,start+i*4);
2945 assert(i_regs->regmap==regs[i].regmap); // not delay slot
2946 if(i_regs->regmap==regs[i].regmap) {
2947 load_all_consts(regs[i].regmap_entry,regs[i].was32,regs[i].wasdirty,i);
2948 wb_dirtys(regs[i].regmap_entry,regs[i].was32,regs[i].wasdirty);
2949 emit_movimm(start+i*4+4,0);
2950 emit_writeword(0,(int)&pcaddr);
2951 emit_jmp((int)do_interrupt);
2952 }
2953 }
2954 //if(opcode[i]==0x2B || opcode[i]==0x3F)
2955 //if(opcode[i]==0x2B || opcode[i]==0x28)
2956 //if(opcode[i]==0x2B || opcode[i]==0x29)
2957 //if(opcode[i]==0x2B)
2958 /*if(opcode[i]==0x2B || opcode[i]==0x28 || opcode[i]==0x29 || opcode[i]==0x3F)
2959 {
2960 #ifdef __i386__
2961 emit_pusha();
2962 #endif
2963 #ifdef __arm__
2964 save_regs(0x100f);
2965 #endif
2966 emit_readword((int)&last_count,ECX);
2967 #ifdef __i386__
2968 if(get_reg(i_regs->regmap,CCREG)<0)
2969 emit_loadreg(CCREG,HOST_CCREG);
2970 emit_add(HOST_CCREG,ECX,HOST_CCREG);
2971 emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
2972 emit_writeword(HOST_CCREG,(int)&Count);
2973 #endif
2974 #ifdef __arm__
2975 if(get_reg(i_regs->regmap,CCREG)<0)
2976 emit_loadreg(CCREG,0);
2977 else
2978 emit_mov(HOST_CCREG,0);
2979 emit_add(0,ECX,0);
2980 emit_addimm(0,2*ccadj[i],0);
2981 emit_writeword(0,(int)&Count);
2982 #endif
2983 emit_call((int)memdebug);
2984 #ifdef __i386__
2985 emit_popa();
2986 #endif
2987 #ifdef __arm__
2988 restore_regs(0x100f);
2989 #endif
2990 }*/
2991}
2992
2993void storelr_assemble(int i,struct regstat *i_regs)
2994{
2995 int s,th,tl;
2996 int temp;
2997 int temp2=-1;
2998 int offset;
2999 int jaddr=0;
3000 int case1,case2,case3;
3001 int done0,done1,done2;
3002 int memtarget=0,c=0;
3003 int agr=AGEN1+(i&1);
3004 u_int hr,reglist=0;
3005 th=get_reg(i_regs->regmap,rs2[i]|64);
3006 tl=get_reg(i_regs->regmap,rs2[i]);
3007 s=get_reg(i_regs->regmap,rs1[i]);
3008 temp=get_reg(i_regs->regmap,agr);
3009 if(temp<0) temp=get_reg(i_regs->regmap,-1);
3010 offset=imm[i];
3011 if(s>=0) {
3012 c=(i_regs->isconst>>s)&1;
3013 if(c) {
3014 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
3015 }
3016 }
3017 assert(tl>=0);
3018 for(hr=0;hr<HOST_REGS;hr++) {
3019 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3020 }
3021 assert(temp>=0);
3022 if(!c) {
3023 emit_cmpimm(s<0||offset?temp:s,RAM_SIZE);
3024 if(!offset&&s!=temp) emit_mov(s,temp);
3025 jaddr=(int)out;
3026 emit_jno(0);
3027 }
3028 else
3029 {
3030 if(!memtarget||!rs1[i]) {
3031 jaddr=(int)out;
3032 emit_jmp(0);
3033 }
3034 }
3035 #ifdef RAM_OFFSET
3036 int map=get_reg(i_regs->regmap,ROREG);
3037 if(map<0) emit_loadreg(ROREG,map=HOST_TEMPREG);
3038 #else
3039 if((u_int)rdram!=0x80000000)
3040 emit_addimm_no_flags((u_int)rdram-(u_int)0x80000000,temp);
3041 #endif
3042
3043 if (opcode[i]==0x2C||opcode[i]==0x2D) { // SDL/SDR
3044 temp2=get_reg(i_regs->regmap,FTEMP);
3045 if(!rs2[i]) temp2=th=tl;
3046 }
3047
3048#ifndef BIG_ENDIAN_MIPS
3049 emit_xorimm(temp,3,temp);
3050#endif
3051 emit_testimm(temp,2);
3052 case2=(int)out;
3053 emit_jne(0);
3054 emit_testimm(temp,1);
3055 case1=(int)out;
3056 emit_jne(0);
3057 // 0
3058 if (opcode[i]==0x2A) { // SWL
3059 emit_writeword_indexed(tl,0,temp);
3060 }
3061 if (opcode[i]==0x2E) { // SWR
3062 emit_writebyte_indexed(tl,3,temp);
3063 }
3064 if (opcode[i]==0x2C) { // SDL
3065 emit_writeword_indexed(th,0,temp);
3066 if(rs2[i]) emit_mov(tl,temp2);
3067 }
3068 if (opcode[i]==0x2D) { // SDR
3069 emit_writebyte_indexed(tl,3,temp);
3070 if(rs2[i]) emit_shldimm(th,tl,24,temp2);
3071 }
3072 done0=(int)out;
3073 emit_jmp(0);
3074 // 1
3075 set_jump_target(case1,(int)out);
3076 if (opcode[i]==0x2A) { // SWL
3077 // Write 3 msb into three least significant bytes
3078 if(rs2[i]) emit_rorimm(tl,8,tl);
3079 emit_writehword_indexed(tl,-1,temp);
3080 if(rs2[i]) emit_rorimm(tl,16,tl);
3081 emit_writebyte_indexed(tl,1,temp);
3082 if(rs2[i]) emit_rorimm(tl,8,tl);
3083 }
3084 if (opcode[i]==0x2E) { // SWR
3085 // Write two lsb into two most significant bytes
3086 emit_writehword_indexed(tl,1,temp);
3087 }
3088 if (opcode[i]==0x2C) { // SDL
3089 if(rs2[i]) emit_shrdimm(tl,th,8,temp2);
3090 // Write 3 msb into three least significant bytes
3091 if(rs2[i]) emit_rorimm(th,8,th);
3092 emit_writehword_indexed(th,-1,temp);
3093 if(rs2[i]) emit_rorimm(th,16,th);
3094 emit_writebyte_indexed(th,1,temp);
3095 if(rs2[i]) emit_rorimm(th,8,th);
3096 }
3097 if (opcode[i]==0x2D) { // SDR
3098 if(rs2[i]) emit_shldimm(th,tl,16,temp2);
3099 // Write two lsb into two most significant bytes
3100 emit_writehword_indexed(tl,1,temp);
3101 }
3102 done1=(int)out;
3103 emit_jmp(0);
3104 // 2
3105 set_jump_target(case2,(int)out);
3106 emit_testimm(temp,1);
3107 case3=(int)out;
3108 emit_jne(0);
3109 if (opcode[i]==0x2A) { // SWL
3110 // Write two msb into two least significant bytes
3111 if(rs2[i]) emit_rorimm(tl,16,tl);
3112 emit_writehword_indexed(tl,-2,temp);
3113 if(rs2[i]) emit_rorimm(tl,16,tl);
3114 }
3115 if (opcode[i]==0x2E) { // SWR
3116 // Write 3 lsb into three most significant bytes
3117 emit_writebyte_indexed(tl,-1,temp);
3118 if(rs2[i]) emit_rorimm(tl,8,tl);
3119 emit_writehword_indexed(tl,0,temp);
3120 if(rs2[i]) emit_rorimm(tl,24,tl);
3121 }
3122 if (opcode[i]==0x2C) { // SDL
3123 if(rs2[i]) emit_shrdimm(tl,th,16,temp2);
3124 // Write two msb into two least significant bytes
3125 if(rs2[i]) emit_rorimm(th,16,th);
3126 emit_writehword_indexed(th,-2,temp);
3127 if(rs2[i]) emit_rorimm(th,16,th);
3128 }
3129 if (opcode[i]==0x2D) { // SDR
3130 if(rs2[i]) emit_shldimm(th,tl,8,temp2);
3131 // Write 3 lsb into three most significant bytes
3132 emit_writebyte_indexed(tl,-1,temp);
3133 if(rs2[i]) emit_rorimm(tl,8,tl);
3134 emit_writehword_indexed(tl,0,temp);
3135 if(rs2[i]) emit_rorimm(tl,24,tl);
3136 }
3137 done2=(int)out;
3138 emit_jmp(0);
3139 // 3
3140 set_jump_target(case3,(int)out);
3141 if (opcode[i]==0x2A) { // SWL
3142 // Write msb into least significant byte
3143 if(rs2[i]) emit_rorimm(tl,24,tl);
3144 emit_writebyte_indexed(tl,-3,temp);
3145 if(rs2[i]) emit_rorimm(tl,8,tl);
3146 }
3147 if (opcode[i]==0x2E) { // SWR
3148 // Write entire word
3149 emit_writeword_indexed(tl,-3,temp);
3150 }
3151 if (opcode[i]==0x2C) { // SDL
3152 if(rs2[i]) emit_shrdimm(tl,th,24,temp2);
3153 // Write msb into least significant byte
3154 if(rs2[i]) emit_rorimm(th,24,th);
3155 emit_writebyte_indexed(th,-3,temp);
3156 if(rs2[i]) emit_rorimm(th,8,th);
3157 }
3158 if (opcode[i]==0x2D) { // SDR
3159 if(rs2[i]) emit_mov(th,temp2);
3160 // Write entire word
3161 emit_writeword_indexed(tl,-3,temp);
3162 }
3163 set_jump_target(done0,(int)out);
3164 set_jump_target(done1,(int)out);
3165 set_jump_target(done2,(int)out);
3166 if (opcode[i]==0x2C) { // SDL
3167 emit_testimm(temp,4);
3168 done0=(int)out;
3169 emit_jne(0);
3170 emit_andimm(temp,~3,temp);
3171 emit_writeword_indexed(temp2,4,temp);
3172 set_jump_target(done0,(int)out);
3173 }
3174 if (opcode[i]==0x2D) { // SDR
3175 emit_testimm(temp,4);
3176 done0=(int)out;
3177 emit_jeq(0);
3178 emit_andimm(temp,~3,temp);
3179 emit_writeword_indexed(temp2,-4,temp);
3180 set_jump_target(done0,(int)out);
3181 }
3182 if(!c||!memtarget)
3183 add_stub(STORELR_STUB,jaddr,(int)out,i,(int)i_regs,temp,ccadj[i],reglist);
3184 if(!(i_regs->waswritten&(1<<rs1[i]))&&!(new_dynarec_hacks&NDHACK_NO_SMC_CHECK)) {
3185 #ifdef RAM_OFFSET
3186 int map=get_reg(i_regs->regmap,ROREG);
3187 if(map<0) map=HOST_TEMPREG;
3188 gen_orig_addr_w(temp,map);
3189 #else
3190 emit_addimm_no_flags((u_int)0x80000000-(u_int)rdram,temp);
3191 #endif
3192 #if defined(HOST_IMM8)
3193 int ir=get_reg(i_regs->regmap,INVCP);
3194 assert(ir>=0);
3195 emit_cmpmem_indexedsr12_reg(ir,temp,1);
3196 #else
3197 emit_cmpmem_indexedsr12_imm((int)invalid_code,temp,1);
3198 #endif
3199 #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3200 emit_callne(invalidate_addr_reg[temp]);
3201 #else
3202 int jaddr2=(int)out;
3203 emit_jne(0);
3204 add_stub(INVCODE_STUB,jaddr2,(int)out,reglist|(1<<HOST_CCREG),temp,0,0,0);
3205 #endif
3206 }
3207 /*
3208 emit_pusha();
3209 //save_regs(0x100f);
3210 emit_readword((int)&last_count,ECX);
3211 if(get_reg(i_regs->regmap,CCREG)<0)
3212 emit_loadreg(CCREG,HOST_CCREG);
3213 emit_add(HOST_CCREG,ECX,HOST_CCREG);
3214 emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3215 emit_writeword(HOST_CCREG,(int)&Count);
3216 emit_call((int)memdebug);
3217 emit_popa();
3218 //restore_regs(0x100f);
3219 */
3220}
3221
3222void c1ls_assemble(int i,struct regstat *i_regs)
3223{
3224 cop1_unusable(i, i_regs);
3225}
3226
3227void c2ls_assemble(int i,struct regstat *i_regs)
3228{
3229 int s,tl;
3230 int ar;
3231 int offset;
3232 int memtarget=0,c=0;
3233 int jaddr2=0,type;
3234 int agr=AGEN1+(i&1);
3235 int fastio_reg_override=0;
3236 u_int hr,reglist=0;
3237 u_int copr=(source[i]>>16)&0x1f;
3238 s=get_reg(i_regs->regmap,rs1[i]);
3239 tl=get_reg(i_regs->regmap,FTEMP);
3240 offset=imm[i];
3241 assert(rs1[i]>0);
3242 assert(tl>=0);
3243
3244 for(hr=0;hr<HOST_REGS;hr++) {
3245 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3246 }
3247 if(i_regs->regmap[HOST_CCREG]==CCREG)
3248 reglist&=~(1<<HOST_CCREG);
3249
3250 // get the address
3251 if (opcode[i]==0x3a) { // SWC2
3252 ar=get_reg(i_regs->regmap,agr);
3253 if(ar<0) ar=get_reg(i_regs->regmap,-1);
3254 reglist|=1<<ar;
3255 } else { // LWC2
3256 ar=tl;
3257 }
3258 if(s>=0) c=(i_regs->wasconst>>s)&1;
3259 memtarget=c&&(((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE);
3260 if (!offset&&!c&&s>=0) ar=s;
3261 assert(ar>=0);
3262
3263 if (opcode[i]==0x3a) { // SWC2
3264 cop2_get_dreg(copr,tl,HOST_TEMPREG);
3265 type=STOREW_STUB;
3266 }
3267 else
3268 type=LOADW_STUB;
3269
3270 if(c&&!memtarget) {
3271 jaddr2=(int)out;
3272 emit_jmp(0); // inline_readstub/inline_writestub?
3273 }
3274 else {
3275 if(!c) {
3276 jaddr2=emit_fastpath_cmp_jump(i,ar,&fastio_reg_override);
3277 }
3278 else if(ram_offset&&memtarget) {
3279 emit_addimm(ar,ram_offset,HOST_TEMPREG);
3280 fastio_reg_override=HOST_TEMPREG;
3281 }
3282 if (opcode[i]==0x32) { // LWC2
3283 #ifdef HOST_IMM_ADDR32
3284 if(c) emit_readword_tlb(constmap[i][s]+offset,-1,tl);
3285 else
3286 #endif
3287 int a=ar;
3288 if(fastio_reg_override) a=fastio_reg_override;
3289 emit_readword_indexed(0,a,tl);
3290 }
3291 if (opcode[i]==0x3a) { // SWC2
3292 #ifdef DESTRUCTIVE_SHIFT
3293 if(!offset&&!c&&s>=0) emit_mov(s,ar);
3294 #endif
3295 int a=ar;
3296 if(fastio_reg_override) a=fastio_reg_override;
3297 emit_writeword_indexed(tl,0,a);
3298 }
3299 }
3300 if(jaddr2)
3301 add_stub(type,jaddr2,(int)out,i,ar,(int)i_regs,ccadj[i],reglist);
3302 if(opcode[i]==0x3a) // SWC2
3303 if(!(i_regs->waswritten&(1<<rs1[i]))&&!(new_dynarec_hacks&NDHACK_NO_SMC_CHECK)) {
3304#if defined(HOST_IMM8)
3305 int ir=get_reg(i_regs->regmap,INVCP);
3306 assert(ir>=0);
3307 emit_cmpmem_indexedsr12_reg(ir,ar,1);
3308#else
3309 emit_cmpmem_indexedsr12_imm((int)invalid_code,ar,1);
3310#endif
3311 #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3312 emit_callne(invalidate_addr_reg[ar]);
3313 #else
3314 int jaddr3=(int)out;
3315 emit_jne(0);
3316 add_stub(INVCODE_STUB,jaddr3,(int)out,reglist|(1<<HOST_CCREG),ar,0,0,0);
3317 #endif
3318 }
3319 if (opcode[i]==0x32) { // LWC2
3320 cop2_put_dreg(copr,tl,HOST_TEMPREG);
3321 }
3322}
3323
3324#ifndef multdiv_assemble
3325void multdiv_assemble(int i,struct regstat *i_regs)
3326{
3327 printf("Need multdiv_assemble for this architecture.\n");
3328 exit(1);
3329}
3330#endif
3331
3332void mov_assemble(int i,struct regstat *i_regs)
3333{
3334 //if(opcode2[i]==0x10||opcode2[i]==0x12) { // MFHI/MFLO
3335 //if(opcode2[i]==0x11||opcode2[i]==0x13) { // MTHI/MTLO
3336 if(rt1[i]) {
3337 signed char sh,sl,th,tl;
3338 th=get_reg(i_regs->regmap,rt1[i]|64);
3339 tl=get_reg(i_regs->regmap,rt1[i]);
3340 //assert(tl>=0);
3341 if(tl>=0) {
3342 sh=get_reg(i_regs->regmap,rs1[i]|64);
3343 sl=get_reg(i_regs->regmap,rs1[i]);
3344 if(sl>=0) emit_mov(sl,tl);
3345 else emit_loadreg(rs1[i],tl);
3346 if(th>=0) {
3347 if(sh>=0) emit_mov(sh,th);
3348 else emit_loadreg(rs1[i]|64,th);
3349 }
3350 }
3351 }
3352}
3353
3354#ifndef fconv_assemble
3355void fconv_assemble(int i,struct regstat *i_regs)
3356{
3357 printf("Need fconv_assemble for this architecture.\n");
3358 exit(1);
3359}
3360#endif
3361
3362#if 0
3363void float_assemble(int i,struct regstat *i_regs)
3364{
3365 printf("Need float_assemble for this architecture.\n");
3366 exit(1);
3367}
3368#endif
3369
3370void syscall_assemble(int i,struct regstat *i_regs)
3371{
3372 signed char ccreg=get_reg(i_regs->regmap,CCREG);
3373 assert(ccreg==HOST_CCREG);
3374 assert(!is_delayslot);
3375 (void)ccreg;
3376 emit_movimm(start+i*4,EAX); // Get PC
3377 emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i]),HOST_CCREG); // CHECK: is this right? There should probably be an extra cycle...
3378 emit_jmp((int)jump_syscall_hle); // XXX
3379}
3380
3381void hlecall_assemble(int i,struct regstat *i_regs)
3382{
3383 signed char ccreg=get_reg(i_regs->regmap,CCREG);
3384 assert(ccreg==HOST_CCREG);
3385 assert(!is_delayslot);
3386 (void)ccreg;
3387 emit_movimm(start+i*4+4,0); // Get PC
3388 emit_movimm((int)psxHLEt[source[i]&7],1);
3389 emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i]),HOST_CCREG); // XXX
3390 emit_jmp((int)jump_hlecall);
3391}
3392
3393void intcall_assemble(int i,struct regstat *i_regs)
3394{
3395 signed char ccreg=get_reg(i_regs->regmap,CCREG);
3396 assert(ccreg==HOST_CCREG);
3397 assert(!is_delayslot);
3398 (void)ccreg;
3399 emit_movimm(start+i*4,0); // Get PC
3400 emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i]),HOST_CCREG);
3401 emit_jmp((int)jump_intcall);
3402}
3403
3404void ds_assemble(int i,struct regstat *i_regs)
3405{
3406 speculate_register_values(i);
3407 is_delayslot=1;
3408 switch(itype[i]) {
3409 case ALU:
3410 alu_assemble(i,i_regs);break;
3411 case IMM16:
3412 imm16_assemble(i,i_regs);break;
3413 case SHIFT:
3414 shift_assemble(i,i_regs);break;
3415 case SHIFTIMM:
3416 shiftimm_assemble(i,i_regs);break;
3417 case LOAD:
3418 load_assemble(i,i_regs);break;
3419 case LOADLR:
3420 loadlr_assemble(i,i_regs);break;
3421 case STORE:
3422 store_assemble(i,i_regs);break;
3423 case STORELR:
3424 storelr_assemble(i,i_regs);break;
3425 case COP0:
3426 cop0_assemble(i,i_regs);break;
3427 case COP1:
3428 cop1_assemble(i,i_regs);break;
3429 case C1LS:
3430 c1ls_assemble(i,i_regs);break;
3431 case COP2:
3432 cop2_assemble(i,i_regs);break;
3433 case C2LS:
3434 c2ls_assemble(i,i_regs);break;
3435 case C2OP:
3436 c2op_assemble(i,i_regs);break;
3437 case FCONV:
3438 fconv_assemble(i,i_regs);break;
3439 case FLOAT:
3440 float_assemble(i,i_regs);break;
3441 case FCOMP:
3442 fcomp_assemble(i,i_regs);break;
3443 case MULTDIV:
3444 multdiv_assemble(i,i_regs);break;
3445 case MOV:
3446 mov_assemble(i,i_regs);break;
3447 case SYSCALL:
3448 case HLECALL:
3449 case INTCALL:
3450 case SPAN:
3451 case UJUMP:
3452 case RJUMP:
3453 case CJUMP:
3454 case SJUMP:
3455 case FJUMP:
3456 SysPrintf("Jump in the delay slot. This is probably a bug.\n");
3457 }
3458 is_delayslot=0;
3459}
3460
3461// Is the branch target a valid internal jump?
3462int internal_branch(uint64_t i_is32,int addr)
3463{
3464 if(addr&1) return 0; // Indirect (register) jump
3465 if(addr>=start && addr<start+slen*4-4)
3466 {
3467 //int t=(addr-start)>>2;
3468 // Delay slots are not valid branch targets
3469 //if(t>0&&(itype[t-1]==RJUMP||itype[t-1]==UJUMP||itype[t-1]==CJUMP||itype[t-1]==SJUMP||itype[t-1]==FJUMP)) return 0;
3470 // 64 -> 32 bit transition requires a recompile
3471 /*if(is32[t]&~unneeded_reg_upper[t]&~i_is32)
3472 {
3473 if(requires_32bit[t]&~i_is32) printf("optimizable: no\n");
3474 else printf("optimizable: yes\n");
3475 }*/
3476 //if(is32[t]&~unneeded_reg_upper[t]&~i_is32) return 0;
3477 return 1;
3478 }
3479 return 0;
3480}
3481
3482#ifndef wb_invalidate
3483void wb_invalidate(signed char pre[],signed char entry[],uint64_t dirty,uint64_t is32,
3484 uint64_t u,uint64_t uu)
3485{
3486 int hr;
3487 for(hr=0;hr<HOST_REGS;hr++) {
3488 if(hr!=EXCLUDE_REG) {
3489 if(pre[hr]!=entry[hr]) {
3490 if(pre[hr]>=0) {
3491 if((dirty>>hr)&1) {
3492 if(get_reg(entry,pre[hr])<0) {
3493 if(pre[hr]<64) {
3494 if(!((u>>pre[hr])&1)) {
3495 emit_storereg(pre[hr],hr);
3496 if( ((is32>>pre[hr])&1) && !((uu>>pre[hr])&1) ) {
3497 emit_sarimm(hr,31,hr);
3498 emit_storereg(pre[hr]|64,hr);
3499 }
3500 }
3501 }else{
3502 if(!((uu>>(pre[hr]&63))&1) && !((is32>>(pre[hr]&63))&1)) {
3503 emit_storereg(pre[hr],hr);
3504 }
3505 }
3506 }
3507 }
3508 }
3509 }
3510 }
3511 }
3512 // Move from one register to another (no writeback)
3513 for(hr=0;hr<HOST_REGS;hr++) {
3514 if(hr!=EXCLUDE_REG) {
3515 if(pre[hr]!=entry[hr]) {
3516 if(pre[hr]>=0&&(pre[hr]&63)<TEMPREG) {
3517 int nr;
3518 if((nr=get_reg(entry,pre[hr]))>=0) {
3519 emit_mov(hr,nr);
3520 }
3521 }
3522 }
3523 }
3524 }
3525}
3526#endif
3527
3528// Load the specified registers
3529// This only loads the registers given as arguments because
3530// we don't want to load things that will be overwritten
3531void load_regs(signed char entry[],signed char regmap[],int is32,int rs1,int rs2)
3532{
3533 int hr;
3534 // Load 32-bit regs
3535 for(hr=0;hr<HOST_REGS;hr++) {
3536 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
3537 if(entry[hr]!=regmap[hr]) {
3538 if(regmap[hr]==rs1||regmap[hr]==rs2)
3539 {
3540 if(regmap[hr]==0) {
3541 emit_zeroreg(hr);
3542 }
3543 else
3544 {
3545 emit_loadreg(regmap[hr],hr);
3546 }
3547 }
3548 }
3549 }
3550 }
3551 //Load 64-bit regs
3552 for(hr=0;hr<HOST_REGS;hr++) {
3553 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
3554 if(entry[hr]!=regmap[hr]) {
3555 if(regmap[hr]-64==rs1||regmap[hr]-64==rs2)
3556 {
3557 assert(regmap[hr]!=64);
3558 if((is32>>(regmap[hr]&63))&1) {
3559 int lr=get_reg(regmap,regmap[hr]-64);
3560 if(lr>=0)
3561 emit_sarimm(lr,31,hr);
3562 else
3563 emit_loadreg(regmap[hr],hr);
3564 }
3565 else
3566 {
3567 emit_loadreg(regmap[hr],hr);
3568 }
3569 }
3570 }
3571 }
3572 }
3573}
3574
3575// Load registers prior to the start of a loop
3576// so that they are not loaded within the loop
3577static void loop_preload(signed char pre[],signed char entry[])
3578{
3579 int hr;
3580 for(hr=0;hr<HOST_REGS;hr++) {
3581 if(hr!=EXCLUDE_REG) {
3582 if(pre[hr]!=entry[hr]) {
3583 if(entry[hr]>=0) {
3584 if(get_reg(pre,entry[hr])<0) {
3585 assem_debug("loop preload:\n");
3586 //printf("loop preload: %d\n",hr);
3587 if(entry[hr]==0) {
3588 emit_zeroreg(hr);
3589 }
3590 else if(entry[hr]<TEMPREG)
3591 {
3592 emit_loadreg(entry[hr],hr);
3593 }
3594 else if(entry[hr]-64<TEMPREG)
3595 {
3596 emit_loadreg(entry[hr],hr);
3597 }
3598 }
3599 }
3600 }
3601 }
3602 }
3603}
3604
3605// Generate address for load/store instruction
3606// goes to AGEN for writes, FTEMP for LOADLR and cop1/2 loads
3607void address_generation(int i,struct regstat *i_regs,signed char entry[])
3608{
3609 if(itype[i]==LOAD||itype[i]==LOADLR||itype[i]==STORE||itype[i]==STORELR||itype[i]==C1LS||itype[i]==C2LS) {
3610 int ra=-1;
3611 int agr=AGEN1+(i&1);
3612 if(itype[i]==LOAD) {
3613 ra=get_reg(i_regs->regmap,rt1[i]);
3614 if(ra<0) ra=get_reg(i_regs->regmap,-1);
3615 assert(ra>=0);
3616 }
3617 if(itype[i]==LOADLR) {
3618 ra=get_reg(i_regs->regmap,FTEMP);
3619 }
3620 if(itype[i]==STORE||itype[i]==STORELR) {
3621 ra=get_reg(i_regs->regmap,agr);
3622 if(ra<0) ra=get_reg(i_regs->regmap,-1);
3623 }
3624 if(itype[i]==C1LS||itype[i]==C2LS) {
3625 if ((opcode[i]&0x3b)==0x31||(opcode[i]&0x3b)==0x32) // LWC1/LDC1/LWC2/LDC2
3626 ra=get_reg(i_regs->regmap,FTEMP);
3627 else { // SWC1/SDC1/SWC2/SDC2
3628 ra=get_reg(i_regs->regmap,agr);
3629 if(ra<0) ra=get_reg(i_regs->regmap,-1);
3630 }
3631 }
3632 int rs=get_reg(i_regs->regmap,rs1[i]);
3633 if(ra>=0) {
3634 int offset=imm[i];
3635 int c=(i_regs->wasconst>>rs)&1;
3636 if(rs1[i]==0) {
3637 // Using r0 as a base address
3638 if(!entry||entry[ra]!=agr) {
3639 if (opcode[i]==0x22||opcode[i]==0x26) {
3640 emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
3641 }else if (opcode[i]==0x1a||opcode[i]==0x1b) {
3642 emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
3643 }else{
3644 emit_movimm(offset,ra);
3645 }
3646 } // else did it in the previous cycle
3647 }
3648 else if(rs<0) {
3649 if(!entry||entry[ra]!=rs1[i])
3650 emit_loadreg(rs1[i],ra);
3651 //if(!entry||entry[ra]!=rs1[i])
3652 // printf("poor load scheduling!\n");
3653 }
3654 else if(c) {
3655 if(rs1[i]!=rt1[i]||itype[i]!=LOAD) {
3656 if(!entry||entry[ra]!=agr) {
3657 if (opcode[i]==0x22||opcode[i]==0x26) {
3658 emit_movimm((constmap[i][rs]+offset)&0xFFFFFFFC,ra); // LWL/LWR
3659 }else if (opcode[i]==0x1a||opcode[i]==0x1b) {
3660 emit_movimm((constmap[i][rs]+offset)&0xFFFFFFF8,ra); // LDL/LDR
3661 }else{
3662 #ifdef HOST_IMM_ADDR32
3663 if((itype[i]!=LOAD&&(opcode[i]&0x3b)!=0x31&&(opcode[i]&0x3b)!=0x32)) // LWC1/LDC1/LWC2/LDC2
3664 #endif
3665 emit_movimm(constmap[i][rs]+offset,ra);
3666 regs[i].loadedconst|=1<<ra;
3667 }
3668 } // else did it in the previous cycle
3669 } // else load_consts already did it
3670 }
3671 if(offset&&!c&&rs1[i]) {
3672 if(rs>=0) {
3673 emit_addimm(rs,offset,ra);
3674 }else{
3675 emit_addimm(ra,offset,ra);
3676 }
3677 }
3678 }
3679 }
3680 // Preload constants for next instruction
3681 if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS||itype[i+1]==C2LS) {
3682 int agr,ra;
3683 // Actual address
3684 agr=AGEN1+((i+1)&1);
3685 ra=get_reg(i_regs->regmap,agr);
3686 if(ra>=0) {
3687 int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
3688 int offset=imm[i+1];
3689 int c=(regs[i+1].wasconst>>rs)&1;
3690 if(c&&(rs1[i+1]!=rt1[i+1]||itype[i+1]!=LOAD)) {
3691 if (opcode[i+1]==0x22||opcode[i+1]==0x26) {
3692 emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFFC,ra); // LWL/LWR
3693 }else if (opcode[i+1]==0x1a||opcode[i+1]==0x1b) {
3694 emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFF8,ra); // LDL/LDR
3695 }else{
3696 #ifdef HOST_IMM_ADDR32
3697 if((itype[i+1]!=LOAD&&(opcode[i+1]&0x3b)!=0x31&&(opcode[i+1]&0x3b)!=0x32)) // LWC1/LDC1/LWC2/LDC2
3698 #endif
3699 emit_movimm(constmap[i+1][rs]+offset,ra);
3700 regs[i+1].loadedconst|=1<<ra;
3701 }
3702 }
3703 else if(rs1[i+1]==0) {
3704 // Using r0 as a base address
3705 if (opcode[i+1]==0x22||opcode[i+1]==0x26) {
3706 emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
3707 }else if (opcode[i+1]==0x1a||opcode[i+1]==0x1b) {
3708 emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
3709 }else{
3710 emit_movimm(offset,ra);
3711 }
3712 }
3713 }
3714 }
3715}
3716
3717static int get_final_value(int hr, int i, int *value)
3718{
3719 int reg=regs[i].regmap[hr];
3720 while(i<slen-1) {
3721 if(regs[i+1].regmap[hr]!=reg) break;
3722 if(!((regs[i+1].isconst>>hr)&1)) break;
3723 if(bt[i+1]) break;
3724 i++;
3725 }
3726 if(i<slen-1) {
3727 if(itype[i]==UJUMP||itype[i]==RJUMP||itype[i]==CJUMP||itype[i]==SJUMP) {
3728 *value=constmap[i][hr];
3729 return 1;
3730 }
3731 if(!bt[i+1]) {
3732 if(itype[i+1]==UJUMP||itype[i+1]==RJUMP||itype[i+1]==CJUMP||itype[i+1]==SJUMP) {
3733 // Load in delay slot, out-of-order execution
3734 if(itype[i+2]==LOAD&&rs1[i+2]==reg&&rt1[i+2]==reg&&((regs[i+1].wasconst>>hr)&1))
3735 {
3736 // Precompute load address
3737 *value=constmap[i][hr]+imm[i+2];
3738 return 1;
3739 }
3740 }
3741 if(itype[i+1]==LOAD&&rs1[i+1]==reg&&rt1[i+1]==reg)
3742 {
3743 // Precompute load address
3744 *value=constmap[i][hr]+imm[i+1];
3745 //printf("c=%x imm=%x\n",(int)constmap[i][hr],imm[i+1]);
3746 return 1;
3747 }
3748 }
3749 }
3750 *value=constmap[i][hr];
3751 //printf("c=%x\n",(int)constmap[i][hr]);
3752 if(i==slen-1) return 1;
3753 if(reg<64) {
3754 return !((unneeded_reg[i+1]>>reg)&1);
3755 }else{
3756 return !((unneeded_reg_upper[i+1]>>reg)&1);
3757 }
3758}
3759
3760// Load registers with known constants
3761void load_consts(signed char pre[],signed char regmap[],int is32,int i)
3762{
3763 int hr,hr2;
3764 // propagate loaded constant flags
3765 if(i==0||bt[i])
3766 regs[i].loadedconst=0;
3767 else {
3768 for(hr=0;hr<HOST_REGS;hr++) {
3769 if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((regs[i-1].isconst>>hr)&1)&&pre[hr]==regmap[hr]
3770 &&regmap[hr]==regs[i-1].regmap[hr]&&((regs[i-1].loadedconst>>hr)&1))
3771 {
3772 regs[i].loadedconst|=1<<hr;
3773 }
3774 }
3775 }
3776 // Load 32-bit regs
3777 for(hr=0;hr<HOST_REGS;hr++) {
3778 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
3779 //if(entry[hr]!=regmap[hr]) {
3780 if(!((regs[i].loadedconst>>hr)&1)) {
3781 if(((regs[i].isconst>>hr)&1)&&regmap[hr]<64&&regmap[hr]>0) {
3782 int value,similar=0;
3783 if(get_final_value(hr,i,&value)) {
3784 // see if some other register has similar value
3785 for(hr2=0;hr2<HOST_REGS;hr2++) {
3786 if(hr2!=EXCLUDE_REG&&((regs[i].loadedconst>>hr2)&1)) {
3787 if(is_similar_value(value,constmap[i][hr2])) {
3788 similar=1;
3789 break;
3790 }
3791 }
3792 }
3793 if(similar) {
3794 int value2;
3795 if(get_final_value(hr2,i,&value2)) // is this needed?
3796 emit_movimm_from(value2,hr2,value,hr);
3797 else
3798 emit_movimm(value,hr);
3799 }
3800 else if(value==0) {
3801 emit_zeroreg(hr);
3802 }
3803 else {
3804 emit_movimm(value,hr);
3805 }
3806 }
3807 regs[i].loadedconst|=1<<hr;
3808 }
3809 }
3810 }
3811 }
3812 // Load 64-bit regs
3813 for(hr=0;hr<HOST_REGS;hr++) {
3814 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
3815 //if(entry[hr]!=regmap[hr]) {
3816 if(i==0||!((regs[i-1].isconst>>hr)&1)||pre[hr]!=regmap[hr]||bt[i]) {
3817 if(((regs[i].isconst>>hr)&1)&&regmap[hr]>64) {
3818 if((is32>>(regmap[hr]&63))&1) {
3819 int lr=get_reg(regmap,regmap[hr]-64);
3820 assert(lr>=0);
3821 emit_sarimm(lr,31,hr);
3822 }
3823 else
3824 {
3825 int value;
3826 if(get_final_value(hr,i,&value)) {
3827 if(value==0) {
3828 emit_zeroreg(hr);
3829 }
3830 else {
3831 emit_movimm(value,hr);
3832 }
3833 }
3834 }
3835 }
3836 }
3837 }
3838 }
3839}
3840void load_all_consts(signed char regmap[],int is32,u_int dirty,int i)
3841{
3842 int hr;
3843 // Load 32-bit regs
3844 for(hr=0;hr<HOST_REGS;hr++) {
3845 if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((dirty>>hr)&1)) {
3846 if(((regs[i].isconst>>hr)&1)&&regmap[hr]<64&&regmap[hr]>0) {
3847 int value=constmap[i][hr];
3848 if(value==0) {
3849 emit_zeroreg(hr);
3850 }
3851 else {
3852 emit_movimm(value,hr);
3853 }
3854 }
3855 }
3856 }
3857 // Load 64-bit regs
3858 for(hr=0;hr<HOST_REGS;hr++) {
3859 if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((dirty>>hr)&1)) {
3860 if(((regs[i].isconst>>hr)&1)&&regmap[hr]>64) {
3861 if((is32>>(regmap[hr]&63))&1) {
3862 int lr=get_reg(regmap,regmap[hr]-64);
3863 assert(lr>=0);
3864 emit_sarimm(lr,31,hr);
3865 }
3866 else
3867 {
3868 int value=constmap[i][hr];
3869 if(value==0) {
3870 emit_zeroreg(hr);
3871 }
3872 else {
3873 emit_movimm(value,hr);
3874 }
3875 }
3876 }
3877 }
3878 }
3879}
3880
3881// Write out all dirty registers (except cycle count)
3882void wb_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty)
3883{
3884 int hr;
3885 for(hr=0;hr<HOST_REGS;hr++) {
3886 if(hr!=EXCLUDE_REG) {
3887 if(i_regmap[hr]>0) {
3888 if(i_regmap[hr]!=CCREG) {
3889 if((i_dirty>>hr)&1) {
3890 if(i_regmap[hr]<64) {
3891 emit_storereg(i_regmap[hr],hr);
3892 }else{
3893 if( !((i_is32>>(i_regmap[hr]&63))&1) ) {
3894 emit_storereg(i_regmap[hr],hr);
3895 }
3896 }
3897 }
3898 }
3899 }
3900 }
3901 }
3902}
3903// Write out dirty registers that we need to reload (pair with load_needed_regs)
3904// This writes the registers not written by store_regs_bt
3905void wb_needed_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
3906{
3907 int hr;
3908 int t=(addr-start)>>2;
3909 for(hr=0;hr<HOST_REGS;hr++) {
3910 if(hr!=EXCLUDE_REG) {
3911 if(i_regmap[hr]>0) {
3912 if(i_regmap[hr]!=CCREG) {
3913 if(i_regmap[hr]==regs[t].regmap_entry[hr] && ((regs[t].dirty>>hr)&1) && !(((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
3914 if((i_dirty>>hr)&1) {
3915 if(i_regmap[hr]<64) {
3916 emit_storereg(i_regmap[hr],hr);
3917 }else{
3918 if( !((i_is32>>(i_regmap[hr]&63))&1) ) {
3919 emit_storereg(i_regmap[hr],hr);
3920 }
3921 }
3922 }
3923 }
3924 }
3925 }
3926 }
3927 }
3928}
3929
3930// Load all registers (except cycle count)
3931void load_all_regs(signed char i_regmap[])
3932{
3933 int hr;
3934 for(hr=0;hr<HOST_REGS;hr++) {
3935 if(hr!=EXCLUDE_REG) {
3936 if(i_regmap[hr]==0) {
3937 emit_zeroreg(hr);
3938 }
3939 else
3940 if(i_regmap[hr]>0 && (i_regmap[hr]&63)<TEMPREG && i_regmap[hr]!=CCREG)
3941 {
3942 emit_loadreg(i_regmap[hr],hr);
3943 }
3944 }
3945 }
3946}
3947
3948// Load all current registers also needed by next instruction
3949void load_needed_regs(signed char i_regmap[],signed char next_regmap[])
3950{
3951 int hr;
3952 for(hr=0;hr<HOST_REGS;hr++) {
3953 if(hr!=EXCLUDE_REG) {
3954 if(get_reg(next_regmap,i_regmap[hr])>=0) {
3955 if(i_regmap[hr]==0) {
3956 emit_zeroreg(hr);
3957 }
3958 else
3959 if(i_regmap[hr]>0 && (i_regmap[hr]&63)<TEMPREG && i_regmap[hr]!=CCREG)
3960 {
3961 emit_loadreg(i_regmap[hr],hr);
3962 }
3963 }
3964 }
3965 }
3966}
3967
3968// Load all regs, storing cycle count if necessary
3969void load_regs_entry(int t)
3970{
3971 int hr;
3972 if(is_ds[t]) emit_addimm(HOST_CCREG,CLOCK_ADJUST(1),HOST_CCREG);
3973 else if(ccadj[t]) emit_addimm(HOST_CCREG,-CLOCK_ADJUST(ccadj[t]),HOST_CCREG);
3974 if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
3975 emit_storereg(CCREG,HOST_CCREG);
3976 }
3977 // Load 32-bit regs
3978 for(hr=0;hr<HOST_REGS;hr++) {
3979 if(regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<TEMPREG) {
3980 if(regs[t].regmap_entry[hr]==0) {
3981 emit_zeroreg(hr);
3982 }
3983 else if(regs[t].regmap_entry[hr]!=CCREG)
3984 {
3985 emit_loadreg(regs[t].regmap_entry[hr],hr);
3986 }
3987 }
3988 }
3989 // Load 64-bit regs
3990 for(hr=0;hr<HOST_REGS;hr++) {
3991 if(regs[t].regmap_entry[hr]>=64&&regs[t].regmap_entry[hr]<TEMPREG+64) {
3992 assert(regs[t].regmap_entry[hr]!=64);
3993 if((regs[t].was32>>(regs[t].regmap_entry[hr]&63))&1) {
3994 int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
3995 if(lr<0) {
3996 emit_loadreg(regs[t].regmap_entry[hr],hr);
3997 }
3998 else
3999 {
4000 emit_sarimm(lr,31,hr);
4001 }
4002 }
4003 else
4004 {
4005 emit_loadreg(regs[t].regmap_entry[hr],hr);
4006 }
4007 }
4008 }
4009}
4010
4011// Store dirty registers prior to branch
4012void store_regs_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4013{
4014 if(internal_branch(i_is32,addr))
4015 {
4016 int t=(addr-start)>>2;
4017 int hr;
4018 for(hr=0;hr<HOST_REGS;hr++) {
4019 if(hr!=EXCLUDE_REG) {
4020 if(i_regmap[hr]>0 && i_regmap[hr]!=CCREG) {
4021 if(i_regmap[hr]!=regs[t].regmap_entry[hr] || !((regs[t].dirty>>hr)&1) || (((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4022 if((i_dirty>>hr)&1) {
4023 if(i_regmap[hr]<64) {
4024 if(!((unneeded_reg[t]>>i_regmap[hr])&1)) {
4025 emit_storereg(i_regmap[hr],hr);
4026 if( ((i_is32>>i_regmap[hr])&1) && !((unneeded_reg_upper[t]>>i_regmap[hr])&1) ) {
4027 #ifdef DESTRUCTIVE_WRITEBACK
4028 emit_sarimm(hr,31,hr);
4029 emit_storereg(i_regmap[hr]|64,hr);
4030 #else
4031 emit_sarimm(hr,31,HOST_TEMPREG);
4032 emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4033 #endif
4034 }
4035 }
4036 }else{
4037 if( !((i_is32>>(i_regmap[hr]&63))&1) && !((unneeded_reg_upper[t]>>(i_regmap[hr]&63))&1) ) {
4038 emit_storereg(i_regmap[hr],hr);
4039 }
4040 }
4041 }
4042 }
4043 }
4044 }
4045 }
4046 }
4047 else
4048 {
4049 // Branch out of this block, write out all dirty regs
4050 wb_dirtys(i_regmap,i_is32,i_dirty);
4051 }
4052}
4053
4054// Load all needed registers for branch target
4055void load_regs_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4056{
4057 //if(addr>=start && addr<(start+slen*4))
4058 if(internal_branch(i_is32,addr))
4059 {
4060 int t=(addr-start)>>2;
4061 int hr;
4062 // Store the cycle count before loading something else
4063 if(i_regmap[HOST_CCREG]!=CCREG) {
4064 assert(i_regmap[HOST_CCREG]==-1);
4065 }
4066 if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
4067 emit_storereg(CCREG,HOST_CCREG);
4068 }
4069 // Load 32-bit regs
4070 for(hr=0;hr<HOST_REGS;hr++) {
4071 if(hr!=EXCLUDE_REG&&regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<TEMPREG) {
4072 #ifdef DESTRUCTIVE_WRITEBACK
4073 if(i_regmap[hr]!=regs[t].regmap_entry[hr] || ( !((regs[t].dirty>>hr)&1) && ((i_dirty>>hr)&1) && (((i_is32&~unneeded_reg_upper[t])>>i_regmap[hr])&1) ) || (((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4074 #else
4075 if(i_regmap[hr]!=regs[t].regmap_entry[hr] ) {
4076 #endif
4077 if(regs[t].regmap_entry[hr]==0) {
4078 emit_zeroreg(hr);
4079 }
4080 else if(regs[t].regmap_entry[hr]!=CCREG)
4081 {
4082 emit_loadreg(regs[t].regmap_entry[hr],hr);
4083 }
4084 }
4085 }
4086 }
4087 //Load 64-bit regs
4088 for(hr=0;hr<HOST_REGS;hr++) {
4089 if(hr!=EXCLUDE_REG&&regs[t].regmap_entry[hr]>=64&&regs[t].regmap_entry[hr]<TEMPREG+64) {
4090 if(i_regmap[hr]!=regs[t].regmap_entry[hr]) {
4091 assert(regs[t].regmap_entry[hr]!=64);
4092 if((i_is32>>(regs[t].regmap_entry[hr]&63))&1) {
4093 int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4094 if(lr<0) {
4095 emit_loadreg(regs[t].regmap_entry[hr],hr);
4096 }
4097 else
4098 {
4099 emit_sarimm(lr,31,hr);
4100 }
4101 }
4102 else
4103 {
4104 emit_loadreg(regs[t].regmap_entry[hr],hr);
4105 }
4106 }
4107 else if((i_is32>>(regs[t].regmap_entry[hr]&63))&1) {
4108 int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4109 assert(lr>=0);
4110 emit_sarimm(lr,31,hr);
4111 }
4112 }
4113 }
4114 }
4115}
4116
4117int match_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4118{
4119 if(addr>=start && addr<start+slen*4-4)
4120 {
4121 int t=(addr-start)>>2;
4122 int hr;
4123 if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) return 0;
4124 for(hr=0;hr<HOST_REGS;hr++)
4125 {
4126 if(hr!=EXCLUDE_REG)
4127 {
4128 if(i_regmap[hr]!=regs[t].regmap_entry[hr])
4129 {
4130 if(regs[t].regmap_entry[hr]>=0&&(regs[t].regmap_entry[hr]|64)<TEMPREG+64)
4131 {
4132 return 0;
4133 }
4134 else
4135 if((i_dirty>>hr)&1)
4136 {
4137 if(i_regmap[hr]<TEMPREG)
4138 {
4139 if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4140 return 0;
4141 }
4142 else if(i_regmap[hr]>=64&&i_regmap[hr]<TEMPREG+64)
4143 {
4144 if(!((unneeded_reg_upper[t]>>(i_regmap[hr]&63))&1))
4145 return 0;
4146 }
4147 }
4148 }
4149 else // Same register but is it 32-bit or dirty?
4150 if(i_regmap[hr]>=0)
4151 {
4152 if(!((regs[t].dirty>>hr)&1))
4153 {
4154 if((i_dirty>>hr)&1)
4155 {
4156 if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4157 {
4158 //printf("%x: dirty no match\n",addr);
4159 return 0;
4160 }
4161 }
4162 }
4163 if((((regs[t].was32^i_is32)&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)
4164 {
4165 //printf("%x: is32 no match\n",addr);
4166 return 0;
4167 }
4168 }
4169 }
4170 }
4171 //if(is32[t]&~unneeded_reg_upper[t]&~i_is32) return 0;
4172 // Delay slots are not valid branch targets
4173 //if(t>0&&(itype[t-1]==RJUMP||itype[t-1]==UJUMP||itype[t-1]==CJUMP||itype[t-1]==SJUMP||itype[t-1]==FJUMP)) return 0;
4174 // Delay slots require additional processing, so do not match
4175 if(is_ds[t]) return 0;
4176 }
4177 else
4178 {
4179 int hr;
4180 for(hr=0;hr<HOST_REGS;hr++)
4181 {
4182 if(hr!=EXCLUDE_REG)
4183 {
4184 if(i_regmap[hr]>=0)
4185 {
4186 if(hr!=HOST_CCREG||i_regmap[hr]!=CCREG)
4187 {
4188 if((i_dirty>>hr)&1)
4189 {
4190 return 0;
4191 }
4192 }
4193 }
4194 }
4195 }
4196 }
4197 return 1;
4198}
4199
4200// Used when a branch jumps into the delay slot of another branch
4201void ds_assemble_entry(int i)
4202{
4203 int t=(ba[i]-start)>>2;
4204 if(!instr_addr[t]) instr_addr[t]=(u_int)out;
4205 assem_debug("Assemble delay slot at %x\n",ba[i]);
4206 assem_debug("<->\n");
4207 if(regs[t].regmap_entry[HOST_CCREG]==CCREG&&regs[t].regmap[HOST_CCREG]!=CCREG)
4208 wb_register(CCREG,regs[t].regmap_entry,regs[t].wasdirty,regs[t].was32);
4209 load_regs(regs[t].regmap_entry,regs[t].regmap,regs[t].was32,rs1[t],rs2[t]);
4210 address_generation(t,&regs[t],regs[t].regmap_entry);
4211 if(itype[t]==STORE||itype[t]==STORELR||(opcode[t]&0x3b)==0x39||(opcode[t]&0x3b)==0x3a)
4212 load_regs(regs[t].regmap_entry,regs[t].regmap,regs[t].was32,INVCP,INVCP);
4213 cop1_usable=0;
4214 is_delayslot=0;
4215 switch(itype[t]) {
4216 case ALU:
4217 alu_assemble(t,&regs[t]);break;
4218 case IMM16:
4219 imm16_assemble(t,&regs[t]);break;
4220 case SHIFT:
4221 shift_assemble(t,&regs[t]);break;
4222 case SHIFTIMM:
4223 shiftimm_assemble(t,&regs[t]);break;
4224 case LOAD:
4225 load_assemble(t,&regs[t]);break;
4226 case LOADLR:
4227 loadlr_assemble(t,&regs[t]);break;
4228 case STORE:
4229 store_assemble(t,&regs[t]);break;
4230 case STORELR:
4231 storelr_assemble(t,&regs[t]);break;
4232 case COP0:
4233 cop0_assemble(t,&regs[t]);break;
4234 case COP1:
4235 cop1_assemble(t,&regs[t]);break;
4236 case C1LS:
4237 c1ls_assemble(t,&regs[t]);break;
4238 case COP2:
4239 cop2_assemble(t,&regs[t]);break;
4240 case C2LS:
4241 c2ls_assemble(t,&regs[t]);break;
4242 case C2OP:
4243 c2op_assemble(t,&regs[t]);break;
4244 case FCONV:
4245 fconv_assemble(t,&regs[t]);break;
4246 case FLOAT:
4247 float_assemble(t,&regs[t]);break;
4248 case FCOMP:
4249 fcomp_assemble(t,&regs[t]);break;
4250 case MULTDIV:
4251 multdiv_assemble(t,&regs[t]);break;
4252 case MOV:
4253 mov_assemble(t,&regs[t]);break;
4254 case SYSCALL:
4255 case HLECALL:
4256 case INTCALL:
4257 case SPAN:
4258 case UJUMP:
4259 case RJUMP:
4260 case CJUMP:
4261 case SJUMP:
4262 case FJUMP:
4263 SysPrintf("Jump in the delay slot. This is probably a bug.\n");
4264 }
4265 store_regs_bt(regs[t].regmap,regs[t].is32,regs[t].dirty,ba[i]+4);
4266 load_regs_bt(regs[t].regmap,regs[t].is32,regs[t].dirty,ba[i]+4);
4267 if(internal_branch(regs[t].is32,ba[i]+4))
4268 assem_debug("branch: internal\n");
4269 else
4270 assem_debug("branch: external\n");
4271 assert(internal_branch(regs[t].is32,ba[i]+4));
4272 add_to_linker((int)out,ba[i]+4,internal_branch(regs[t].is32,ba[i]+4));
4273 emit_jmp(0);
4274}
4275
4276void do_cc(int i,signed char i_regmap[],int *adj,int addr,int taken,int invert)
4277{
4278 int count;
4279 int jaddr;
4280 int idle=0;
4281 int t=0;
4282 if(itype[i]==RJUMP)
4283 {
4284 *adj=0;
4285 }
4286 //if(ba[i]>=start && ba[i]<(start+slen*4))
4287 if(internal_branch(branch_regs[i].is32,ba[i]))
4288 {
4289 t=(ba[i]-start)>>2;
4290 if(is_ds[t]) *adj=-1; // Branch into delay slot adds an extra cycle
4291 else *adj=ccadj[t];
4292 }
4293 else
4294 {
4295 *adj=0;
4296 }
4297 count=ccadj[i];
4298 if(taken==TAKEN && i==(ba[i]-start)>>2 && source[i+1]==0) {
4299 // Idle loop
4300 if(count&1) emit_addimm_and_set_flags(2*(count+2),HOST_CCREG);
4301 idle=(int)out;
4302 //emit_subfrommem(&idlecount,HOST_CCREG); // Count idle cycles
4303 emit_andimm(HOST_CCREG,3,HOST_CCREG);
4304 jaddr=(int)out;
4305 emit_jmp(0);
4306 }
4307 else if(*adj==0||invert) {
4308 int cycles=CLOCK_ADJUST(count+2);
4309 // faster loop HACK
4310 if (t&&*adj) {
4311 int rel=t-i;
4312 if(-NO_CYCLE_PENALTY_THR<rel&&rel<0)
4313 cycles=CLOCK_ADJUST(*adj)+count+2-*adj;
4314 }
4315 emit_addimm_and_set_flags(cycles,HOST_CCREG);
4316 jaddr=(int)out;
4317 emit_jns(0);
4318 }
4319 else
4320 {
4321 emit_cmpimm(HOST_CCREG,-CLOCK_ADJUST(count+2));
4322 jaddr=(int)out;
4323 emit_jns(0);
4324 }
4325 add_stub(CC_STUB,jaddr,idle?idle:(int)out,(*adj==0||invert||idle)?0:(count+2),i,addr,taken,0);
4326}
4327
4328void do_ccstub(int n)
4329{
4330 literal_pool(256);
4331 assem_debug("do_ccstub %x\n",start+stubs[n][4]*4);
4332 set_jump_target(stubs[n][1],(int)out);
4333 int i=stubs[n][4];
4334 if(stubs[n][6]==NULLDS) {
4335 // Delay slot instruction is nullified ("likely" branch)
4336 wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
4337 }
4338 else if(stubs[n][6]!=TAKEN) {
4339 wb_dirtys(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty);
4340 }
4341 else {
4342 if(internal_branch(branch_regs[i].is32,ba[i]))
4343 wb_needed_dirtys(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
4344 }
4345 if(stubs[n][5]!=-1)
4346 {
4347 // Save PC as return address
4348 emit_movimm(stubs[n][5],EAX);
4349 emit_writeword(EAX,(int)&pcaddr);
4350 }
4351 else
4352 {
4353 // Return address depends on which way the branch goes
4354 if(itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
4355 {
4356 int s1l=get_reg(branch_regs[i].regmap,rs1[i]);
4357 int s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
4358 int s2l=get_reg(branch_regs[i].regmap,rs2[i]);
4359 int s2h=get_reg(branch_regs[i].regmap,rs2[i]|64);
4360 if(rs1[i]==0)
4361 {
4362 s1l=s2l;s1h=s2h;
4363 s2l=s2h=-1;
4364 }
4365 else if(rs2[i]==0)
4366 {
4367 s2l=s2h=-1;
4368 }
4369 if((branch_regs[i].is32>>rs1[i])&(branch_regs[i].is32>>rs2[i])&1) {
4370 s1h=s2h=-1;
4371 }
4372 assert(s1l>=0);
4373 #ifdef DESTRUCTIVE_WRITEBACK
4374 if(rs1[i]) {
4375 if((branch_regs[i].dirty>>s1l)&(branch_regs[i].is32>>rs1[i])&1)
4376 emit_loadreg(rs1[i],s1l);
4377 }
4378 else {
4379 if((branch_regs[i].dirty>>s1l)&(branch_regs[i].is32>>rs2[i])&1)
4380 emit_loadreg(rs2[i],s1l);
4381 }
4382 if(s2l>=0)
4383 if((branch_regs[i].dirty>>s2l)&(branch_regs[i].is32>>rs2[i])&1)
4384 emit_loadreg(rs2[i],s2l);
4385 #endif
4386 int hr=0;
4387 int addr=-1,alt=-1,ntaddr=-1;
4388 while(hr<HOST_REGS)
4389 {
4390 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4391 (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
4392 (branch_regs[i].regmap[hr]&63)!=rs2[i] )
4393 {
4394 addr=hr++;break;
4395 }
4396 hr++;
4397 }
4398 while(hr<HOST_REGS)
4399 {
4400 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4401 (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
4402 (branch_regs[i].regmap[hr]&63)!=rs2[i] )
4403 {
4404 alt=hr++;break;
4405 }
4406 hr++;
4407 }
4408 if((opcode[i]&0x2E)==6) // BLEZ/BGTZ needs another register
4409 {
4410 while(hr<HOST_REGS)
4411 {
4412 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4413 (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
4414 (branch_regs[i].regmap[hr]&63)!=rs2[i] )
4415 {
4416 ntaddr=hr;break;
4417 }
4418 hr++;
4419 }
4420 assert(hr<HOST_REGS);
4421 }
4422 if((opcode[i]&0x2f)==4) // BEQ
4423 {
4424 #ifdef HAVE_CMOV_IMM
4425 if(s1h<0) {
4426 if(s2l>=0) emit_cmp(s1l,s2l);
4427 else emit_test(s1l,s1l);
4428 emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
4429 }
4430 else
4431 #endif
4432 {
4433 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
4434 if(s1h>=0) {
4435 if(s2h>=0) emit_cmp(s1h,s2h);
4436 else emit_test(s1h,s1h);
4437 emit_cmovne_reg(alt,addr);
4438 }
4439 if(s2l>=0) emit_cmp(s1l,s2l);
4440 else emit_test(s1l,s1l);
4441 emit_cmovne_reg(alt,addr);
4442 }
4443 }
4444 if((opcode[i]&0x2f)==5) // BNE
4445 {
4446 #ifdef HAVE_CMOV_IMM
4447 if(s1h<0) {
4448 if(s2l>=0) emit_cmp(s1l,s2l);
4449 else emit_test(s1l,s1l);
4450 emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
4451 }
4452 else
4453 #endif
4454 {
4455 emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
4456 if(s1h>=0) {
4457 if(s2h>=0) emit_cmp(s1h,s2h);
4458 else emit_test(s1h,s1h);
4459 emit_cmovne_reg(alt,addr);
4460 }
4461 if(s2l>=0) emit_cmp(s1l,s2l);
4462 else emit_test(s1l,s1l);
4463 emit_cmovne_reg(alt,addr);
4464 }
4465 }
4466 if((opcode[i]&0x2f)==6) // BLEZ
4467 {
4468 //emit_movimm(ba[i],alt);
4469 //emit_movimm(start+i*4+8,addr);
4470 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
4471 emit_cmpimm(s1l,1);
4472 if(s1h>=0) emit_mov(addr,ntaddr);
4473 emit_cmovl_reg(alt,addr);
4474 if(s1h>=0) {
4475 emit_test(s1h,s1h);
4476 emit_cmovne_reg(ntaddr,addr);
4477 emit_cmovs_reg(alt,addr);
4478 }
4479 }
4480 if((opcode[i]&0x2f)==7) // BGTZ
4481 {
4482 //emit_movimm(ba[i],addr);
4483 //emit_movimm(start+i*4+8,ntaddr);
4484 emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
4485 emit_cmpimm(s1l,1);
4486 if(s1h>=0) emit_mov(addr,alt);
4487 emit_cmovl_reg(ntaddr,addr);
4488 if(s1h>=0) {
4489 emit_test(s1h,s1h);
4490 emit_cmovne_reg(alt,addr);
4491 emit_cmovs_reg(ntaddr,addr);
4492 }
4493 }
4494 if((opcode[i]==1)&&(opcode2[i]&0x2D)==0) // BLTZ
4495 {
4496 //emit_movimm(ba[i],alt);
4497 //emit_movimm(start+i*4+8,addr);
4498 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
4499 if(s1h>=0) emit_test(s1h,s1h);
4500 else emit_test(s1l,s1l);
4501 emit_cmovs_reg(alt,addr);
4502 }
4503 if((opcode[i]==1)&&(opcode2[i]&0x2D)==1) // BGEZ
4504 {
4505 //emit_movimm(ba[i],addr);
4506 //emit_movimm(start+i*4+8,alt);
4507 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
4508 if(s1h>=0) emit_test(s1h,s1h);
4509 else emit_test(s1l,s1l);
4510 emit_cmovs_reg(alt,addr);
4511 }
4512 if(opcode[i]==0x11 && opcode2[i]==0x08 ) {
4513 if(source[i]&0x10000) // BC1T
4514 {
4515 //emit_movimm(ba[i],alt);
4516 //emit_movimm(start+i*4+8,addr);
4517 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
4518 emit_testimm(s1l,0x800000);
4519 emit_cmovne_reg(alt,addr);
4520 }
4521 else // BC1F
4522 {
4523 //emit_movimm(ba[i],addr);
4524 //emit_movimm(start+i*4+8,alt);
4525 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
4526 emit_testimm(s1l,0x800000);
4527 emit_cmovne_reg(alt,addr);
4528 }
4529 }
4530 emit_writeword(addr,(int)&pcaddr);
4531 }
4532 else
4533 if(itype[i]==RJUMP)
4534 {
4535 int r=get_reg(branch_regs[i].regmap,rs1[i]);
4536 if(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]) {
4537 r=get_reg(branch_regs[i].regmap,RTEMP);
4538 }
4539 emit_writeword(r,(int)&pcaddr);
4540 }
4541 else {SysPrintf("Unknown branch type in do_ccstub\n");exit(1);}
4542 }
4543 // Update cycle count
4544 assert(branch_regs[i].regmap[HOST_CCREG]==CCREG||branch_regs[i].regmap[HOST_CCREG]==-1);
4545 if(stubs[n][3]) emit_addimm(HOST_CCREG,CLOCK_ADJUST((int)stubs[n][3]),HOST_CCREG);
4546 emit_call((int)cc_interrupt);
4547 if(stubs[n][3]) emit_addimm(HOST_CCREG,-CLOCK_ADJUST((int)stubs[n][3]),HOST_CCREG);
4548 if(stubs[n][6]==TAKEN) {
4549 if(internal_branch(branch_regs[i].is32,ba[i]))
4550 load_needed_regs(branch_regs[i].regmap,regs[(ba[i]-start)>>2].regmap_entry);
4551 else if(itype[i]==RJUMP) {
4552 if(get_reg(branch_regs[i].regmap,RTEMP)>=0)
4553 emit_readword((int)&pcaddr,get_reg(branch_regs[i].regmap,RTEMP));
4554 else
4555 emit_loadreg(rs1[i],get_reg(branch_regs[i].regmap,rs1[i]));
4556 }
4557 }else if(stubs[n][6]==NOTTAKEN) {
4558 if(i<slen-2) load_needed_regs(branch_regs[i].regmap,regmap_pre[i+2]);
4559 else load_all_regs(branch_regs[i].regmap);
4560 }else if(stubs[n][6]==NULLDS) {
4561 // Delay slot instruction is nullified ("likely" branch)
4562 if(i<slen-2) load_needed_regs(regs[i].regmap,regmap_pre[i+2]);
4563 else load_all_regs(regs[i].regmap);
4564 }else{
4565 load_all_regs(branch_regs[i].regmap);
4566 }
4567 emit_jmp(stubs[n][2]); // return address
4568
4569 /* This works but uses a lot of memory...
4570 emit_readword((int)&last_count,ECX);
4571 emit_add(HOST_CCREG,ECX,EAX);
4572 emit_writeword(EAX,(int)&Count);
4573 emit_call((int)gen_interupt);
4574 emit_readword((int)&Count,HOST_CCREG);
4575 emit_readword((int)&next_interupt,EAX);
4576 emit_readword((int)&pending_exception,EBX);
4577 emit_writeword(EAX,(int)&last_count);
4578 emit_sub(HOST_CCREG,EAX,HOST_CCREG);
4579 emit_test(EBX,EBX);
4580 int jne_instr=(int)out;
4581 emit_jne(0);
4582 if(stubs[n][3]) emit_addimm(HOST_CCREG,-2*stubs[n][3],HOST_CCREG);
4583 load_all_regs(branch_regs[i].regmap);
4584 emit_jmp(stubs[n][2]); // return address
4585 set_jump_target(jne_instr,(int)out);
4586 emit_readword((int)&pcaddr,EAX);
4587 // Call get_addr_ht instead of doing the hash table here.
4588 // This code is executed infrequently and takes up a lot of space
4589 // so smaller is better.
4590 emit_storereg(CCREG,HOST_CCREG);
4591 emit_pushreg(EAX);
4592 emit_call((int)get_addr_ht);
4593 emit_loadreg(CCREG,HOST_CCREG);
4594 emit_addimm(ESP,4,ESP);
4595 emit_jmpreg(EAX);*/
4596}
4597
4598static void add_to_linker(int addr,int target,int ext)
4599{
4600 link_addr[linkcount][0]=addr;
4601 link_addr[linkcount][1]=target;
4602 link_addr[linkcount][2]=ext;
4603 linkcount++;
4604}
4605
4606static void ujump_assemble_write_ra(int i)
4607{
4608 int rt;
4609 unsigned int return_address;
4610 rt=get_reg(branch_regs[i].regmap,31);
4611 assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
4612 //assert(rt>=0);
4613 return_address=start+i*4+8;
4614 if(rt>=0) {
4615 #ifdef USE_MINI_HT
4616 if(internal_branch(branch_regs[i].is32,return_address)&&rt1[i+1]!=31) {
4617 int temp=-1; // note: must be ds-safe
4618 #ifdef HOST_TEMPREG
4619 temp=HOST_TEMPREG;
4620 #endif
4621 if(temp>=0) do_miniht_insert(return_address,rt,temp);
4622 else emit_movimm(return_address,rt);
4623 }
4624 else
4625 #endif
4626 {
4627 #ifdef REG_PREFETCH
4628 if(temp>=0)
4629 {
4630 if(i_regmap[temp]!=PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
4631 }
4632 #endif
4633 emit_movimm(return_address,rt); // PC into link register
4634 #ifdef IMM_PREFETCH
4635 emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
4636 #endif
4637 }
4638 }
4639}
4640
4641void ujump_assemble(int i,struct regstat *i_regs)
4642{
4643 int ra_done=0;
4644 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
4645 address_generation(i+1,i_regs,regs[i].regmap_entry);
4646 #ifdef REG_PREFETCH
4647 int temp=get_reg(branch_regs[i].regmap,PTEMP);
4648 if(rt1[i]==31&&temp>=0)
4649 {
4650 signed char *i_regmap=i_regs->regmap;
4651 int return_address=start+i*4+8;
4652 if(get_reg(branch_regs[i].regmap,31)>0)
4653 if(i_regmap[temp]==PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
4654 }
4655 #endif
4656 if(rt1[i]==31&&(rt1[i]==rs1[i+1]||rt1[i]==rs2[i+1])) {
4657 ujump_assemble_write_ra(i); // writeback ra for DS
4658 ra_done=1;
4659 }
4660 ds_assemble(i+1,i_regs);
4661 uint64_t bc_unneeded=branch_regs[i].u;
4662 uint64_t bc_unneeded_upper=branch_regs[i].uu;
4663 bc_unneeded|=1|(1LL<<rt1[i]);
4664 bc_unneeded_upper|=1|(1LL<<rt1[i]);
4665 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
4666 bc_unneeded,bc_unneeded_upper);
4667 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
4668 if(!ra_done&&rt1[i]==31)
4669 ujump_assemble_write_ra(i);
4670 int cc,adj;
4671 cc=get_reg(branch_regs[i].regmap,CCREG);
4672 assert(cc==HOST_CCREG);
4673 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
4674 #ifdef REG_PREFETCH
4675 if(rt1[i]==31&&temp>=0) emit_prefetchreg(temp);
4676 #endif
4677 do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
4678 if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
4679 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
4680 if(internal_branch(branch_regs[i].is32,ba[i]))
4681 assem_debug("branch: internal\n");
4682 else
4683 assem_debug("branch: external\n");
4684 if(internal_branch(branch_regs[i].is32,ba[i])&&is_ds[(ba[i]-start)>>2]) {
4685 ds_assemble_entry(i);
4686 }
4687 else {
4688 add_to_linker((int)out,ba[i],internal_branch(branch_regs[i].is32,ba[i]));
4689 emit_jmp(0);
4690 }
4691}
4692
4693static void rjump_assemble_write_ra(int i)
4694{
4695 int rt,return_address;
4696 assert(rt1[i+1]!=rt1[i]);
4697 assert(rt2[i+1]!=rt1[i]);
4698 rt=get_reg(branch_regs[i].regmap,rt1[i]);
4699 assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
4700 assert(rt>=0);
4701 return_address=start+i*4+8;
4702 #ifdef REG_PREFETCH
4703 if(temp>=0)
4704 {
4705 if(i_regmap[temp]!=PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
4706 }
4707 #endif
4708 emit_movimm(return_address,rt); // PC into link register
4709 #ifdef IMM_PREFETCH
4710 emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
4711 #endif
4712}
4713
4714void rjump_assemble(int i,struct regstat *i_regs)
4715{
4716 int temp;
4717 int rs,cc;
4718 int ra_done=0;
4719 rs=get_reg(branch_regs[i].regmap,rs1[i]);
4720 assert(rs>=0);
4721 if(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]) {
4722 // Delay slot abuse, make a copy of the branch address register
4723 temp=get_reg(branch_regs[i].regmap,RTEMP);
4724 assert(temp>=0);
4725 assert(regs[i].regmap[temp]==RTEMP);
4726 emit_mov(rs,temp);
4727 rs=temp;
4728 }
4729 address_generation(i+1,i_regs,regs[i].regmap_entry);
4730 #ifdef REG_PREFETCH
4731 if(rt1[i]==31)
4732 {
4733 if((temp=get_reg(branch_regs[i].regmap,PTEMP))>=0) {
4734 signed char *i_regmap=i_regs->regmap;
4735 int return_address=start+i*4+8;
4736 if(i_regmap[temp]==PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
4737 }
4738 }
4739 #endif
4740 #ifdef USE_MINI_HT
4741 if(rs1[i]==31) {
4742 int rh=get_reg(regs[i].regmap,RHASH);
4743 if(rh>=0) do_preload_rhash(rh);
4744 }
4745 #endif
4746 if(rt1[i]!=0&&(rt1[i]==rs1[i+1]||rt1[i]==rs2[i+1])) {
4747 rjump_assemble_write_ra(i);
4748 ra_done=1;
4749 }
4750 ds_assemble(i+1,i_regs);
4751 uint64_t bc_unneeded=branch_regs[i].u;
4752 uint64_t bc_unneeded_upper=branch_regs[i].uu;
4753 bc_unneeded|=1|(1LL<<rt1[i]);
4754 bc_unneeded_upper|=1|(1LL<<rt1[i]);
4755 bc_unneeded&=~(1LL<<rs1[i]);
4756 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
4757 bc_unneeded,bc_unneeded_upper);
4758 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],CCREG);
4759 if(!ra_done&&rt1[i]!=0)
4760 rjump_assemble_write_ra(i);
4761 cc=get_reg(branch_regs[i].regmap,CCREG);
4762 assert(cc==HOST_CCREG);
4763 (void)cc;
4764 #ifdef USE_MINI_HT
4765 int rh=get_reg(branch_regs[i].regmap,RHASH);
4766 int ht=get_reg(branch_regs[i].regmap,RHTBL);
4767 if(rs1[i]==31) {
4768 if(regs[i].regmap[rh]!=RHASH) do_preload_rhash(rh);
4769 do_preload_rhtbl(ht);
4770 do_rhash(rs,rh);
4771 }
4772 #endif
4773 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,-1);
4774 #ifdef DESTRUCTIVE_WRITEBACK
4775 if((branch_regs[i].dirty>>rs)&(branch_regs[i].is32>>rs1[i])&1) {
4776 if(rs1[i]!=rt1[i+1]&&rs1[i]!=rt2[i+1]) {
4777 emit_loadreg(rs1[i],rs);
4778 }
4779 }
4780 #endif
4781 #ifdef REG_PREFETCH
4782 if(rt1[i]==31&&temp>=0) emit_prefetchreg(temp);
4783 #endif
4784 #ifdef USE_MINI_HT
4785 if(rs1[i]==31) {
4786 do_miniht_load(ht,rh);
4787 }
4788 #endif
4789 //do_cc(i,branch_regs[i].regmap,&adj,-1,TAKEN);
4790 //if(adj) emit_addimm(cc,2*(ccadj[i]+2-adj),cc); // ??? - Shouldn't happen
4791 //assert(adj==0);
4792 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),HOST_CCREG);
4793 add_stub(CC_STUB,(int)out,jump_vaddr_reg[rs],0,i,-1,TAKEN,0);
4794 if(itype[i+1]==COP0&&(source[i+1]&0x3f)==0x10)
4795 // special case for RFE
4796 emit_jmp(0);
4797 else
4798 emit_jns(0);
4799 //load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,-1);
4800 #ifdef USE_MINI_HT
4801 if(rs1[i]==31) {
4802 do_miniht_jump(rs,rh,ht);
4803 }
4804 else
4805 #endif
4806 {
4807 //if(rs!=EAX) emit_mov(rs,EAX);
4808 //emit_jmp((int)jump_vaddr_eax);
4809 emit_jmp(jump_vaddr_reg[rs]);
4810 }
4811 /* Check hash table
4812 temp=!rs;
4813 emit_mov(rs,temp);
4814 emit_shrimm(rs,16,rs);
4815 emit_xor(temp,rs,rs);
4816 emit_movzwl_reg(rs,rs);
4817 emit_shlimm(rs,4,rs);
4818 emit_cmpmem_indexed((int)hash_table,rs,temp);
4819 emit_jne((int)out+14);
4820 emit_readword_indexed((int)hash_table+4,rs,rs);
4821 emit_jmpreg(rs);
4822 emit_cmpmem_indexed((int)hash_table+8,rs,temp);
4823 emit_addimm_no_flags(8,rs);
4824 emit_jeq((int)out-17);
4825 // No hit on hash table, call compiler
4826 emit_pushreg(temp);
4827//DEBUG >
4828#ifdef DEBUG_CYCLE_COUNT
4829 emit_readword((int)&last_count,ECX);
4830 emit_add(HOST_CCREG,ECX,HOST_CCREG);
4831 emit_readword((int)&next_interupt,ECX);
4832 emit_writeword(HOST_CCREG,(int)&Count);
4833 emit_sub(HOST_CCREG,ECX,HOST_CCREG);
4834 emit_writeword(ECX,(int)&last_count);
4835#endif
4836//DEBUG <
4837 emit_storereg(CCREG,HOST_CCREG);
4838 emit_call((int)get_addr);
4839 emit_loadreg(CCREG,HOST_CCREG);
4840 emit_addimm(ESP,4,ESP);
4841 emit_jmpreg(EAX);*/
4842 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
4843 if(rt1[i]!=31&&i<slen-2&&(((u_int)out)&7)) emit_mov(13,13);
4844 #endif
4845}
4846
4847void cjump_assemble(int i,struct regstat *i_regs)
4848{
4849 signed char *i_regmap=i_regs->regmap;
4850 int cc;
4851 int match;
4852 match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
4853 assem_debug("match=%d\n",match);
4854 int s1h,s1l,s2h,s2l;
4855 int prev_cop1_usable=cop1_usable;
4856 int unconditional=0,nop=0;
4857 int only32=0;
4858 int invert=0;
4859 int internal=internal_branch(branch_regs[i].is32,ba[i]);
4860 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
4861 if(!match) invert=1;
4862 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
4863 if(i>(ba[i]-start)>>2) invert=1;
4864 #endif
4865
4866 if(ooo[i]) {
4867 s1l=get_reg(branch_regs[i].regmap,rs1[i]);
4868 s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
4869 s2l=get_reg(branch_regs[i].regmap,rs2[i]);
4870 s2h=get_reg(branch_regs[i].regmap,rs2[i]|64);
4871 }
4872 else {
4873 s1l=get_reg(i_regmap,rs1[i]);
4874 s1h=get_reg(i_regmap,rs1[i]|64);
4875 s2l=get_reg(i_regmap,rs2[i]);
4876 s2h=get_reg(i_regmap,rs2[i]|64);
4877 }
4878 if(rs1[i]==0&&rs2[i]==0)
4879 {
4880 if(opcode[i]&1) nop=1;
4881 else unconditional=1;
4882 //assert(opcode[i]!=5);
4883 //assert(opcode[i]!=7);
4884 //assert(opcode[i]!=0x15);
4885 //assert(opcode[i]!=0x17);
4886 }
4887 else if(rs1[i]==0)
4888 {
4889 s1l=s2l;s1h=s2h;
4890 s2l=s2h=-1;
4891 only32=(regs[i].was32>>rs2[i])&1;
4892 }
4893 else if(rs2[i]==0)
4894 {
4895 s2l=s2h=-1;
4896 only32=(regs[i].was32>>rs1[i])&1;
4897 }
4898 else {
4899 only32=(regs[i].was32>>rs1[i])&(regs[i].was32>>rs2[i])&1;
4900 }
4901
4902 if(ooo[i]) {
4903 // Out of order execution (delay slot first)
4904 //printf("OOOE\n");
4905 address_generation(i+1,i_regs,regs[i].regmap_entry);
4906 ds_assemble(i+1,i_regs);
4907 int adj;
4908 uint64_t bc_unneeded=branch_regs[i].u;
4909 uint64_t bc_unneeded_upper=branch_regs[i].uu;
4910 bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
4911 bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
4912 bc_unneeded|=1;
4913 bc_unneeded_upper|=1;
4914 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
4915 bc_unneeded,bc_unneeded_upper);
4916 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs2[i]);
4917 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
4918 cc=get_reg(branch_regs[i].regmap,CCREG);
4919 assert(cc==HOST_CCREG);
4920 if(unconditional)
4921 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
4922 //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
4923 //assem_debug("cycle count (adj)\n");
4924 if(unconditional) {
4925 do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
4926 if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
4927 if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
4928 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
4929 if(internal)
4930 assem_debug("branch: internal\n");
4931 else
4932 assem_debug("branch: external\n");
4933 if(internal&&is_ds[(ba[i]-start)>>2]) {
4934 ds_assemble_entry(i);
4935 }
4936 else {
4937 add_to_linker((int)out,ba[i],internal);
4938 emit_jmp(0);
4939 }
4940 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
4941 if(((u_int)out)&7) emit_addnop(0);
4942 #endif
4943 }
4944 }
4945 else if(nop) {
4946 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),cc);
4947 int jaddr=(int)out;
4948 emit_jns(0);
4949 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
4950 }
4951 else {
4952 int taken=0,nottaken=0,nottaken1=0;
4953 do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
4954 if(adj&&!invert) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
4955 if(!only32)
4956 {
4957 assert(s1h>=0);
4958 if(opcode[i]==4) // BEQ
4959 {
4960 if(s2h>=0) emit_cmp(s1h,s2h);
4961 else emit_test(s1h,s1h);
4962 nottaken1=(int)out;
4963 emit_jne(1);
4964 }
4965 if(opcode[i]==5) // BNE
4966 {
4967 if(s2h>=0) emit_cmp(s1h,s2h);
4968 else emit_test(s1h,s1h);
4969 if(invert) taken=(int)out;
4970 else add_to_linker((int)out,ba[i],internal);
4971 emit_jne(0);
4972 }
4973 if(opcode[i]==6) // BLEZ
4974 {
4975 emit_test(s1h,s1h);
4976 if(invert) taken=(int)out;
4977 else add_to_linker((int)out,ba[i],internal);
4978 emit_js(0);
4979 nottaken1=(int)out;
4980 emit_jne(1);
4981 }
4982 if(opcode[i]==7) // BGTZ
4983 {
4984 emit_test(s1h,s1h);
4985 nottaken1=(int)out;
4986 emit_js(1);
4987 if(invert) taken=(int)out;
4988 else add_to_linker((int)out,ba[i],internal);
4989 emit_jne(0);
4990 }
4991 } // if(!only32)
4992
4993 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
4994 assert(s1l>=0);
4995 if(opcode[i]==4) // BEQ
4996 {
4997 if(s2l>=0) emit_cmp(s1l,s2l);
4998 else emit_test(s1l,s1l);
4999 if(invert){
5000 nottaken=(int)out;
5001 emit_jne(1);
5002 }else{
5003 add_to_linker((int)out,ba[i],internal);
5004 emit_jeq(0);
5005 }
5006 }
5007 if(opcode[i]==5) // BNE
5008 {
5009 if(s2l>=0) emit_cmp(s1l,s2l);
5010 else emit_test(s1l,s1l);
5011 if(invert){
5012 nottaken=(int)out;
5013 emit_jeq(1);
5014 }else{
5015 add_to_linker((int)out,ba[i],internal);
5016 emit_jne(0);
5017 }
5018 }
5019 if(opcode[i]==6) // BLEZ
5020 {
5021 emit_cmpimm(s1l,1);
5022 if(invert){
5023 nottaken=(int)out;
5024 emit_jge(1);
5025 }else{
5026 add_to_linker((int)out,ba[i],internal);
5027 emit_jl(0);
5028 }
5029 }
5030 if(opcode[i]==7) // BGTZ
5031 {
5032 emit_cmpimm(s1l,1);
5033 if(invert){
5034 nottaken=(int)out;
5035 emit_jl(1);
5036 }else{
5037 add_to_linker((int)out,ba[i],internal);
5038 emit_jge(0);
5039 }
5040 }
5041 if(invert) {
5042 if(taken) set_jump_target(taken,(int)out);
5043 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5044 if(match&&(!internal||!is_ds[(ba[i]-start)>>2])) {
5045 if(adj) {
5046 emit_addimm(cc,-CLOCK_ADJUST(adj),cc);
5047 add_to_linker((int)out,ba[i],internal);
5048 }else{
5049 emit_addnop(13);
5050 add_to_linker((int)out,ba[i],internal*2);
5051 }
5052 emit_jmp(0);
5053 }else
5054 #endif
5055 {
5056 if(adj) emit_addimm(cc,-CLOCK_ADJUST(adj),cc);
5057 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5058 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5059 if(internal)
5060 assem_debug("branch: internal\n");
5061 else
5062 assem_debug("branch: external\n");
5063 if(internal&&is_ds[(ba[i]-start)>>2]) {
5064 ds_assemble_entry(i);
5065 }
5066 else {
5067 add_to_linker((int)out,ba[i],internal);
5068 emit_jmp(0);
5069 }
5070 }
5071 set_jump_target(nottaken,(int)out);
5072 }
5073
5074 if(nottaken1) set_jump_target(nottaken1,(int)out);
5075 if(adj) {
5076 if(!invert) emit_addimm(cc,CLOCK_ADJUST(adj),cc);
5077 }
5078 } // (!unconditional)
5079 } // if(ooo)
5080 else
5081 {
5082 // In-order execution (branch first)
5083 //if(likely[i]) printf("IOL\n");
5084 //else
5085 //printf("IOE\n");
5086 int taken=0,nottaken=0,nottaken1=0;
5087 if(!unconditional&&!nop) {
5088 if(!only32)
5089 {
5090 assert(s1h>=0);
5091 if((opcode[i]&0x2f)==4) // BEQ
5092 {
5093 if(s2h>=0) emit_cmp(s1h,s2h);
5094 else emit_test(s1h,s1h);
5095 nottaken1=(int)out;
5096 emit_jne(2);
5097 }
5098 if((opcode[i]&0x2f)==5) // BNE
5099 {
5100 if(s2h>=0) emit_cmp(s1h,s2h);
5101 else emit_test(s1h,s1h);
5102 taken=(int)out;
5103 emit_jne(1);
5104 }
5105 if((opcode[i]&0x2f)==6) // BLEZ
5106 {
5107 emit_test(s1h,s1h);
5108 taken=(int)out;
5109 emit_js(1);
5110 nottaken1=(int)out;
5111 emit_jne(2);
5112 }
5113 if((opcode[i]&0x2f)==7) // BGTZ
5114 {
5115 emit_test(s1h,s1h);
5116 nottaken1=(int)out;
5117 emit_js(2);
5118 taken=(int)out;
5119 emit_jne(1);
5120 }
5121 } // if(!only32)
5122
5123 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5124 assert(s1l>=0);
5125 if((opcode[i]&0x2f)==4) // BEQ
5126 {
5127 if(s2l>=0) emit_cmp(s1l,s2l);
5128 else emit_test(s1l,s1l);
5129 nottaken=(int)out;
5130 emit_jne(2);
5131 }
5132 if((opcode[i]&0x2f)==5) // BNE
5133 {
5134 if(s2l>=0) emit_cmp(s1l,s2l);
5135 else emit_test(s1l,s1l);
5136 nottaken=(int)out;
5137 emit_jeq(2);
5138 }
5139 if((opcode[i]&0x2f)==6) // BLEZ
5140 {
5141 emit_cmpimm(s1l,1);
5142 nottaken=(int)out;
5143 emit_jge(2);
5144 }
5145 if((opcode[i]&0x2f)==7) // BGTZ
5146 {
5147 emit_cmpimm(s1l,1);
5148 nottaken=(int)out;
5149 emit_jl(2);
5150 }
5151 } // if(!unconditional)
5152 int adj;
5153 uint64_t ds_unneeded=branch_regs[i].u;
5154 uint64_t ds_unneeded_upper=branch_regs[i].uu;
5155 ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
5156 ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
5157 if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
5158 ds_unneeded|=1;
5159 ds_unneeded_upper|=1;
5160 // branch taken
5161 if(!nop) {
5162 if(taken) set_jump_target(taken,(int)out);
5163 assem_debug("1:\n");
5164 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5165 ds_unneeded,ds_unneeded_upper);
5166 // load regs
5167 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5168 address_generation(i+1,&branch_regs[i],0);
5169 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
5170 ds_assemble(i+1,&branch_regs[i]);
5171 cc=get_reg(branch_regs[i].regmap,CCREG);
5172 if(cc==-1) {
5173 emit_loadreg(CCREG,cc=HOST_CCREG);
5174 // CHECK: Is the following instruction (fall thru) allocated ok?
5175 }
5176 assert(cc==HOST_CCREG);
5177 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5178 do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
5179 assem_debug("cycle count (adj)\n");
5180 if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
5181 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5182 if(internal)
5183 assem_debug("branch: internal\n");
5184 else
5185 assem_debug("branch: external\n");
5186 if(internal&&is_ds[(ba[i]-start)>>2]) {
5187 ds_assemble_entry(i);
5188 }
5189 else {
5190 add_to_linker((int)out,ba[i],internal);
5191 emit_jmp(0);
5192 }
5193 }
5194 // branch not taken
5195 cop1_usable=prev_cop1_usable;
5196 if(!unconditional) {
5197 if(nottaken1) set_jump_target(nottaken1,(int)out);
5198 set_jump_target(nottaken,(int)out);
5199 assem_debug("2:\n");
5200 if(!likely[i]) {
5201 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5202 ds_unneeded,ds_unneeded_upper);
5203 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5204 address_generation(i+1,&branch_regs[i],0);
5205 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5206 ds_assemble(i+1,&branch_regs[i]);
5207 }
5208 cc=get_reg(branch_regs[i].regmap,CCREG);
5209 if(cc==-1&&!likely[i]) {
5210 // Cycle count isn't in a register, temporarily load it then write it out
5211 emit_loadreg(CCREG,HOST_CCREG);
5212 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),HOST_CCREG);
5213 int jaddr=(int)out;
5214 emit_jns(0);
5215 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5216 emit_storereg(CCREG,HOST_CCREG);
5217 }
5218 else{
5219 cc=get_reg(i_regmap,CCREG);
5220 assert(cc==HOST_CCREG);
5221 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),cc);
5222 int jaddr=(int)out;
5223 emit_jns(0);
5224 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
5225 }
5226 }
5227 }
5228}
5229
5230void sjump_assemble(int i,struct regstat *i_regs)
5231{
5232 signed char *i_regmap=i_regs->regmap;
5233 int cc;
5234 int match;
5235 match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5236 assem_debug("smatch=%d\n",match);
5237 int s1h,s1l;
5238 int prev_cop1_usable=cop1_usable;
5239 int unconditional=0,nevertaken=0;
5240 int only32=0;
5241 int invert=0;
5242 int internal=internal_branch(branch_regs[i].is32,ba[i]);
5243 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5244 if(!match) invert=1;
5245 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5246 if(i>(ba[i]-start)>>2) invert=1;
5247 #endif
5248
5249 //if(opcode2[i]>=0x10) return; // FIXME (BxxZAL)
5250 //assert(opcode2[i]<0x10||rs1[i]==0); // FIXME (BxxZAL)
5251
5252 if(ooo[i]) {
5253 s1l=get_reg(branch_regs[i].regmap,rs1[i]);
5254 s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
5255 }
5256 else {
5257 s1l=get_reg(i_regmap,rs1[i]);
5258 s1h=get_reg(i_regmap,rs1[i]|64);
5259 }
5260 if(rs1[i]==0)
5261 {
5262 if(opcode2[i]&1) unconditional=1;
5263 else nevertaken=1;
5264 // These are never taken (r0 is never less than zero)
5265 //assert(opcode2[i]!=0);
5266 //assert(opcode2[i]!=2);
5267 //assert(opcode2[i]!=0x10);
5268 //assert(opcode2[i]!=0x12);
5269 }
5270 else {
5271 only32=(regs[i].was32>>rs1[i])&1;
5272 }
5273
5274 if(ooo[i]) {
5275 // Out of order execution (delay slot first)
5276 //printf("OOOE\n");
5277 address_generation(i+1,i_regs,regs[i].regmap_entry);
5278 ds_assemble(i+1,i_regs);
5279 int adj;
5280 uint64_t bc_unneeded=branch_regs[i].u;
5281 uint64_t bc_unneeded_upper=branch_regs[i].uu;
5282 bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
5283 bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
5284 bc_unneeded|=1;
5285 bc_unneeded_upper|=1;
5286 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5287 bc_unneeded,bc_unneeded_upper);
5288 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs1[i]);
5289 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5290 if(rt1[i]==31) {
5291 int rt,return_address;
5292 rt=get_reg(branch_regs[i].regmap,31);
5293 assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5294 if(rt>=0) {
5295 // Save the PC even if the branch is not taken
5296 return_address=start+i*4+8;
5297 emit_movimm(return_address,rt); // PC into link register
5298 #ifdef IMM_PREFETCH
5299 if(!nevertaken) emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5300 #endif
5301 }
5302 }
5303 cc=get_reg(branch_regs[i].regmap,CCREG);
5304 assert(cc==HOST_CCREG);
5305 if(unconditional)
5306 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5307 //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
5308 assem_debug("cycle count (adj)\n");
5309 if(unconditional) {
5310 do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5311 if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
5312 if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
5313 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5314 if(internal)
5315 assem_debug("branch: internal\n");
5316 else
5317 assem_debug("branch: external\n");
5318 if(internal&&is_ds[(ba[i]-start)>>2]) {
5319 ds_assemble_entry(i);
5320 }
5321 else {
5322 add_to_linker((int)out,ba[i],internal);
5323 emit_jmp(0);
5324 }
5325 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5326 if(((u_int)out)&7) emit_addnop(0);
5327 #endif
5328 }
5329 }
5330 else if(nevertaken) {
5331 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),cc);
5332 int jaddr=(int)out;
5333 emit_jns(0);
5334 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5335 }
5336 else {
5337 int nottaken=0;
5338 do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
5339 if(adj&&!invert) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
5340 if(!only32)
5341 {
5342 assert(s1h>=0);
5343 if((opcode2[i]&0xf)==0) // BLTZ/BLTZAL
5344 {
5345 emit_test(s1h,s1h);
5346 if(invert){
5347 nottaken=(int)out;
5348 emit_jns(1);
5349 }else{
5350 add_to_linker((int)out,ba[i],internal);
5351 emit_js(0);
5352 }
5353 }
5354 if((opcode2[i]&0xf)==1) // BGEZ/BLTZAL
5355 {
5356 emit_test(s1h,s1h);
5357 if(invert){
5358 nottaken=(int)out;
5359 emit_js(1);
5360 }else{
5361 add_to_linker((int)out,ba[i],internal);
5362 emit_jns(0);
5363 }
5364 }
5365 } // if(!only32)
5366 else
5367 {
5368 assert(s1l>=0);
5369 if((opcode2[i]&0xf)==0) // BLTZ/BLTZAL
5370 {
5371 emit_test(s1l,s1l);
5372 if(invert){
5373 nottaken=(int)out;
5374 emit_jns(1);
5375 }else{
5376 add_to_linker((int)out,ba[i],internal);
5377 emit_js(0);
5378 }
5379 }
5380 if((opcode2[i]&0xf)==1) // BGEZ/BLTZAL
5381 {
5382 emit_test(s1l,s1l);
5383 if(invert){
5384 nottaken=(int)out;
5385 emit_js(1);
5386 }else{
5387 add_to_linker((int)out,ba[i],internal);
5388 emit_jns(0);
5389 }
5390 }
5391 } // if(!only32)
5392
5393 if(invert) {
5394 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5395 if(match&&(!internal||!is_ds[(ba[i]-start)>>2])) {
5396 if(adj) {
5397 emit_addimm(cc,-CLOCK_ADJUST(adj),cc);
5398 add_to_linker((int)out,ba[i],internal);
5399 }else{
5400 emit_addnop(13);
5401 add_to_linker((int)out,ba[i],internal*2);
5402 }
5403 emit_jmp(0);
5404 }else
5405 #endif
5406 {
5407 if(adj) emit_addimm(cc,-CLOCK_ADJUST(adj),cc);
5408 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5409 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5410 if(internal)
5411 assem_debug("branch: internal\n");
5412 else
5413 assem_debug("branch: external\n");
5414 if(internal&&is_ds[(ba[i]-start)>>2]) {
5415 ds_assemble_entry(i);
5416 }
5417 else {
5418 add_to_linker((int)out,ba[i],internal);
5419 emit_jmp(0);
5420 }
5421 }
5422 set_jump_target(nottaken,(int)out);
5423 }
5424
5425 if(adj) {
5426 if(!invert) emit_addimm(cc,CLOCK_ADJUST(adj),cc);
5427 }
5428 } // (!unconditional)
5429 } // if(ooo)
5430 else
5431 {
5432 // In-order execution (branch first)
5433 //printf("IOE\n");
5434 int nottaken=0;
5435 if(rt1[i]==31) {
5436 int rt,return_address;
5437 rt=get_reg(branch_regs[i].regmap,31);
5438 if(rt>=0) {
5439 // Save the PC even if the branch is not taken
5440 return_address=start+i*4+8;
5441 emit_movimm(return_address,rt); // PC into link register
5442 #ifdef IMM_PREFETCH
5443 emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5444 #endif
5445 }
5446 }
5447 if(!unconditional) {
5448 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5449 if(!only32)
5450 {
5451 assert(s1h>=0);
5452 if((opcode2[i]&0x0d)==0) // BLTZ/BLTZL/BLTZAL/BLTZALL
5453 {
5454 emit_test(s1h,s1h);
5455 nottaken=(int)out;
5456 emit_jns(1);
5457 }
5458 if((opcode2[i]&0x0d)==1) // BGEZ/BGEZL/BGEZAL/BGEZALL
5459 {
5460 emit_test(s1h,s1h);
5461 nottaken=(int)out;
5462 emit_js(1);
5463 }
5464 } // if(!only32)
5465 else
5466 {
5467 assert(s1l>=0);
5468 if((opcode2[i]&0x0d)==0) // BLTZ/BLTZL/BLTZAL/BLTZALL
5469 {
5470 emit_test(s1l,s1l);
5471 nottaken=(int)out;
5472 emit_jns(1);
5473 }
5474 if((opcode2[i]&0x0d)==1) // BGEZ/BGEZL/BGEZAL/BGEZALL
5475 {
5476 emit_test(s1l,s1l);
5477 nottaken=(int)out;
5478 emit_js(1);
5479 }
5480 }
5481 } // if(!unconditional)
5482 int adj;
5483 uint64_t ds_unneeded=branch_regs[i].u;
5484 uint64_t ds_unneeded_upper=branch_regs[i].uu;
5485 ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
5486 ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
5487 if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
5488 ds_unneeded|=1;
5489 ds_unneeded_upper|=1;
5490 // branch taken
5491 if(!nevertaken) {
5492 //assem_debug("1:\n");
5493 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5494 ds_unneeded,ds_unneeded_upper);
5495 // load regs
5496 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5497 address_generation(i+1,&branch_regs[i],0);
5498 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
5499 ds_assemble(i+1,&branch_regs[i]);
5500 cc=get_reg(branch_regs[i].regmap,CCREG);
5501 if(cc==-1) {
5502 emit_loadreg(CCREG,cc=HOST_CCREG);
5503 // CHECK: Is the following instruction (fall thru) allocated ok?
5504 }
5505 assert(cc==HOST_CCREG);
5506 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5507 do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
5508 assem_debug("cycle count (adj)\n");
5509 if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
5510 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5511 if(internal)
5512 assem_debug("branch: internal\n");
5513 else
5514 assem_debug("branch: external\n");
5515 if(internal&&is_ds[(ba[i]-start)>>2]) {
5516 ds_assemble_entry(i);
5517 }
5518 else {
5519 add_to_linker((int)out,ba[i],internal);
5520 emit_jmp(0);
5521 }
5522 }
5523 // branch not taken
5524 cop1_usable=prev_cop1_usable;
5525 if(!unconditional) {
5526 set_jump_target(nottaken,(int)out);
5527 assem_debug("1:\n");
5528 if(!likely[i]) {
5529 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5530 ds_unneeded,ds_unneeded_upper);
5531 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5532 address_generation(i+1,&branch_regs[i],0);
5533 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5534 ds_assemble(i+1,&branch_regs[i]);
5535 }
5536 cc=get_reg(branch_regs[i].regmap,CCREG);
5537 if(cc==-1&&!likely[i]) {
5538 // Cycle count isn't in a register, temporarily load it then write it out
5539 emit_loadreg(CCREG,HOST_CCREG);
5540 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),HOST_CCREG);
5541 int jaddr=(int)out;
5542 emit_jns(0);
5543 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5544 emit_storereg(CCREG,HOST_CCREG);
5545 }
5546 else{
5547 cc=get_reg(i_regmap,CCREG);
5548 assert(cc==HOST_CCREG);
5549 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),cc);
5550 int jaddr=(int)out;
5551 emit_jns(0);
5552 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
5553 }
5554 }
5555 }
5556}
5557
5558void fjump_assemble(int i,struct regstat *i_regs)
5559{
5560 signed char *i_regmap=i_regs->regmap;
5561 int cc;
5562 int match;
5563 match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5564 assem_debug("fmatch=%d\n",match);
5565 int fs,cs;
5566 int eaddr;
5567 int invert=0;
5568 int internal=internal_branch(branch_regs[i].is32,ba[i]);
5569 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5570 if(!match) invert=1;
5571 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5572 if(i>(ba[i]-start)>>2) invert=1;
5573 #endif
5574
5575 if(ooo[i]) {
5576 fs=get_reg(branch_regs[i].regmap,FSREG);
5577 address_generation(i+1,i_regs,regs[i].regmap_entry); // Is this okay?
5578 }
5579 else {
5580 fs=get_reg(i_regmap,FSREG);
5581 }
5582
5583 // Check cop1 unusable
5584 if(!cop1_usable) {
5585 cs=get_reg(i_regmap,CSREG);
5586 assert(cs>=0);
5587 emit_testimm(cs,0x20000000);
5588 eaddr=(int)out;
5589 emit_jeq(0);
5590 add_stub(FP_STUB,eaddr,(int)out,i,cs,(int)i_regs,0,0);
5591 cop1_usable=1;
5592 }
5593
5594 if(ooo[i]) {
5595 // Out of order execution (delay slot first)
5596 //printf("OOOE\n");
5597 ds_assemble(i+1,i_regs);
5598 int adj;
5599 uint64_t bc_unneeded=branch_regs[i].u;
5600 uint64_t bc_unneeded_upper=branch_regs[i].uu;
5601 bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
5602 bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
5603 bc_unneeded|=1;
5604 bc_unneeded_upper|=1;
5605 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5606 bc_unneeded,bc_unneeded_upper);
5607 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs1[i]);
5608 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5609 cc=get_reg(branch_regs[i].regmap,CCREG);
5610 assert(cc==HOST_CCREG);
5611 do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
5612 assem_debug("cycle count (adj)\n");
5613 if(1) {
5614 int nottaken=0;
5615 if(adj&&!invert) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
5616 if(1) {
5617 assert(fs>=0);
5618 emit_testimm(fs,0x800000);
5619 if(source[i]&0x10000) // BC1T
5620 {
5621 if(invert){
5622 nottaken=(int)out;
5623 emit_jeq(1);
5624 }else{
5625 add_to_linker((int)out,ba[i],internal);
5626 emit_jne(0);
5627 }
5628 }
5629 else // BC1F
5630 if(invert){
5631 nottaken=(int)out;
5632 emit_jne(1);
5633 }else{
5634 add_to_linker((int)out,ba[i],internal);
5635 emit_jeq(0);
5636 }
5637 {
5638 }
5639 } // if(!only32)
5640
5641 if(invert) {
5642 if(adj) emit_addimm(cc,-CLOCK_ADJUST(adj),cc);
5643 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5644 else if(match) emit_addnop(13);
5645 #endif
5646 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5647 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5648 if(internal)
5649 assem_debug("branch: internal\n");
5650 else
5651 assem_debug("branch: external\n");
5652 if(internal&&is_ds[(ba[i]-start)>>2]) {
5653 ds_assemble_entry(i);
5654 }
5655 else {
5656 add_to_linker((int)out,ba[i],internal);
5657 emit_jmp(0);
5658 }
5659 set_jump_target(nottaken,(int)out);
5660 }
5661
5662 if(adj) {
5663 if(!invert) emit_addimm(cc,CLOCK_ADJUST(adj),cc);
5664 }
5665 } // (!unconditional)
5666 } // if(ooo)
5667 else
5668 {
5669 // In-order execution (branch first)
5670 //printf("IOE\n");
5671 int nottaken=0;
5672 if(1) {
5673 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5674 if(1) {
5675 assert(fs>=0);
5676 emit_testimm(fs,0x800000);
5677 if(source[i]&0x10000) // BC1T
5678 {
5679 nottaken=(int)out;
5680 emit_jeq(1);
5681 }
5682 else // BC1F
5683 {
5684 nottaken=(int)out;
5685 emit_jne(1);
5686 }
5687 }
5688 } // if(!unconditional)
5689 int adj;
5690 uint64_t ds_unneeded=branch_regs[i].u;
5691 uint64_t ds_unneeded_upper=branch_regs[i].uu;
5692 ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
5693 ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
5694 if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
5695 ds_unneeded|=1;
5696 ds_unneeded_upper|=1;
5697 // branch taken
5698 //assem_debug("1:\n");
5699 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5700 ds_unneeded,ds_unneeded_upper);
5701 // load regs
5702 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5703 address_generation(i+1,&branch_regs[i],0);
5704 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
5705 ds_assemble(i+1,&branch_regs[i]);
5706 cc=get_reg(branch_regs[i].regmap,CCREG);
5707 if(cc==-1) {
5708 emit_loadreg(CCREG,cc=HOST_CCREG);
5709 // CHECK: Is the following instruction (fall thru) allocated ok?
5710 }
5711 assert(cc==HOST_CCREG);
5712 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5713 do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
5714 assem_debug("cycle count (adj)\n");
5715 if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
5716 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5717 if(internal)
5718 assem_debug("branch: internal\n");
5719 else
5720 assem_debug("branch: external\n");
5721 if(internal&&is_ds[(ba[i]-start)>>2]) {
5722 ds_assemble_entry(i);
5723 }
5724 else {
5725 add_to_linker((int)out,ba[i],internal);
5726 emit_jmp(0);
5727 }
5728
5729 // branch not taken
5730 if(1) { // <- FIXME (don't need this)
5731 set_jump_target(nottaken,(int)out);
5732 assem_debug("1:\n");
5733 if(!likely[i]) {
5734 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5735 ds_unneeded,ds_unneeded_upper);
5736 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5737 address_generation(i+1,&branch_regs[i],0);
5738 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5739 ds_assemble(i+1,&branch_regs[i]);
5740 }
5741 cc=get_reg(branch_regs[i].regmap,CCREG);
5742 if(cc==-1&&!likely[i]) {
5743 // Cycle count isn't in a register, temporarily load it then write it out
5744 emit_loadreg(CCREG,HOST_CCREG);
5745 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),HOST_CCREG);
5746 int jaddr=(int)out;
5747 emit_jns(0);
5748 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5749 emit_storereg(CCREG,HOST_CCREG);
5750 }
5751 else{
5752 cc=get_reg(i_regmap,CCREG);
5753 assert(cc==HOST_CCREG);
5754 emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),cc);
5755 int jaddr=(int)out;
5756 emit_jns(0);
5757 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
5758 }
5759 }
5760 }
5761}
5762
5763static void pagespan_assemble(int i,struct regstat *i_regs)
5764{
5765 int s1l=get_reg(i_regs->regmap,rs1[i]);
5766 int s1h=get_reg(i_regs->regmap,rs1[i]|64);
5767 int s2l=get_reg(i_regs->regmap,rs2[i]);
5768 int s2h=get_reg(i_regs->regmap,rs2[i]|64);
5769 int taken=0;
5770 int nottaken=0;
5771 int unconditional=0;
5772 if(rs1[i]==0)
5773 {
5774 s1l=s2l;s1h=s2h;
5775 s2l=s2h=-1;
5776 }
5777 else if(rs2[i]==0)
5778 {
5779 s2l=s2h=-1;
5780 }
5781 if((i_regs->is32>>rs1[i])&(i_regs->is32>>rs2[i])&1) {
5782 s1h=s2h=-1;
5783 }
5784 int hr=0;
5785 int addr=-1,alt=-1,ntaddr=-1;
5786 if(i_regs->regmap[HOST_BTREG]<0) {addr=HOST_BTREG;}
5787 else {
5788 while(hr<HOST_REGS)
5789 {
5790 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
5791 (i_regs->regmap[hr]&63)!=rs1[i] &&
5792 (i_regs->regmap[hr]&63)!=rs2[i] )
5793 {
5794 addr=hr++;break;
5795 }
5796 hr++;
5797 }
5798 }
5799 while(hr<HOST_REGS)
5800 {
5801 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG && hr!=HOST_BTREG &&
5802 (i_regs->regmap[hr]&63)!=rs1[i] &&
5803 (i_regs->regmap[hr]&63)!=rs2[i] )
5804 {
5805 alt=hr++;break;
5806 }
5807 hr++;
5808 }
5809 if((opcode[i]&0x2E)==6) // BLEZ/BGTZ needs another register
5810 {
5811 while(hr<HOST_REGS)
5812 {
5813 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG && hr!=HOST_BTREG &&
5814 (i_regs->regmap[hr]&63)!=rs1[i] &&
5815 (i_regs->regmap[hr]&63)!=rs2[i] )
5816 {
5817 ntaddr=hr;break;
5818 }
5819 hr++;
5820 }
5821 }
5822 assert(hr<HOST_REGS);
5823 if((opcode[i]&0x2e)==4||opcode[i]==0x11) { // BEQ/BNE/BEQL/BNEL/BC1
5824 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,CCREG,CCREG);
5825 }
5826 emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i]+2),HOST_CCREG);
5827 if(opcode[i]==2) // J
5828 {
5829 unconditional=1;
5830 }
5831 if(opcode[i]==3) // JAL
5832 {
5833 // TODO: mini_ht
5834 int rt=get_reg(i_regs->regmap,31);
5835 emit_movimm(start+i*4+8,rt);
5836 unconditional=1;
5837 }
5838 if(opcode[i]==0&&(opcode2[i]&0x3E)==8) // JR/JALR
5839 {
5840 emit_mov(s1l,addr);
5841 if(opcode2[i]==9) // JALR
5842 {
5843 int rt=get_reg(i_regs->regmap,rt1[i]);
5844 emit_movimm(start+i*4+8,rt);
5845 }
5846 }
5847 if((opcode[i]&0x3f)==4) // BEQ
5848 {
5849 if(rs1[i]==rs2[i])
5850 {
5851 unconditional=1;
5852 }
5853 else
5854 #ifdef HAVE_CMOV_IMM
5855 if(s1h<0) {
5856 if(s2l>=0) emit_cmp(s1l,s2l);
5857 else emit_test(s1l,s1l);
5858 emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
5859 }
5860 else
5861 #endif
5862 {
5863 assert(s1l>=0);
5864 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
5865 if(s1h>=0) {
5866 if(s2h>=0) emit_cmp(s1h,s2h);
5867 else emit_test(s1h,s1h);
5868 emit_cmovne_reg(alt,addr);
5869 }
5870 if(s2l>=0) emit_cmp(s1l,s2l);
5871 else emit_test(s1l,s1l);
5872 emit_cmovne_reg(alt,addr);
5873 }
5874 }
5875 if((opcode[i]&0x3f)==5) // BNE
5876 {
5877 #ifdef HAVE_CMOV_IMM
5878 if(s1h<0) {
5879 if(s2l>=0) emit_cmp(s1l,s2l);
5880 else emit_test(s1l,s1l);
5881 emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
5882 }
5883 else
5884 #endif
5885 {
5886 assert(s1l>=0);
5887 emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
5888 if(s1h>=0) {
5889 if(s2h>=0) emit_cmp(s1h,s2h);
5890 else emit_test(s1h,s1h);
5891 emit_cmovne_reg(alt,addr);
5892 }
5893 if(s2l>=0) emit_cmp(s1l,s2l);
5894 else emit_test(s1l,s1l);
5895 emit_cmovne_reg(alt,addr);
5896 }
5897 }
5898 if((opcode[i]&0x3f)==0x14) // BEQL
5899 {
5900 if(s1h>=0) {
5901 if(s2h>=0) emit_cmp(s1h,s2h);
5902 else emit_test(s1h,s1h);
5903 nottaken=(int)out;
5904 emit_jne(0);
5905 }
5906 if(s2l>=0) emit_cmp(s1l,s2l);
5907 else emit_test(s1l,s1l);
5908 if(nottaken) set_jump_target(nottaken,(int)out);
5909 nottaken=(int)out;
5910 emit_jne(0);
5911 }
5912 if((opcode[i]&0x3f)==0x15) // BNEL
5913 {
5914 if(s1h>=0) {
5915 if(s2h>=0) emit_cmp(s1h,s2h);
5916 else emit_test(s1h,s1h);
5917 taken=(int)out;
5918 emit_jne(0);
5919 }
5920 if(s2l>=0) emit_cmp(s1l,s2l);
5921 else emit_test(s1l,s1l);
5922 nottaken=(int)out;
5923 emit_jeq(0);
5924 if(taken) set_jump_target(taken,(int)out);
5925 }
5926 if((opcode[i]&0x3f)==6) // BLEZ
5927 {
5928 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
5929 emit_cmpimm(s1l,1);
5930 if(s1h>=0) emit_mov(addr,ntaddr);
5931 emit_cmovl_reg(alt,addr);
5932 if(s1h>=0) {
5933 emit_test(s1h,s1h);
5934 emit_cmovne_reg(ntaddr,addr);
5935 emit_cmovs_reg(alt,addr);
5936 }
5937 }
5938 if((opcode[i]&0x3f)==7) // BGTZ
5939 {
5940 emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
5941 emit_cmpimm(s1l,1);
5942 if(s1h>=0) emit_mov(addr,alt);
5943 emit_cmovl_reg(ntaddr,addr);
5944 if(s1h>=0) {
5945 emit_test(s1h,s1h);
5946 emit_cmovne_reg(alt,addr);
5947 emit_cmovs_reg(ntaddr,addr);
5948 }
5949 }
5950 if((opcode[i]&0x3f)==0x16) // BLEZL
5951 {
5952 assert((opcode[i]&0x3f)!=0x16);
5953 }
5954 if((opcode[i]&0x3f)==0x17) // BGTZL
5955 {
5956 assert((opcode[i]&0x3f)!=0x17);
5957 }
5958 assert(opcode[i]!=1); // BLTZ/BGEZ
5959
5960 //FIXME: Check CSREG
5961 if(opcode[i]==0x11 && opcode2[i]==0x08 ) {
5962 if((source[i]&0x30000)==0) // BC1F
5963 {
5964 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
5965 emit_testimm(s1l,0x800000);
5966 emit_cmovne_reg(alt,addr);
5967 }
5968 if((source[i]&0x30000)==0x10000) // BC1T
5969 {
5970 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
5971 emit_testimm(s1l,0x800000);
5972 emit_cmovne_reg(alt,addr);
5973 }
5974 if((source[i]&0x30000)==0x20000) // BC1FL
5975 {
5976 emit_testimm(s1l,0x800000);
5977 nottaken=(int)out;
5978 emit_jne(0);
5979 }
5980 if((source[i]&0x30000)==0x30000) // BC1TL
5981 {
5982 emit_testimm(s1l,0x800000);
5983 nottaken=(int)out;
5984 emit_jeq(0);
5985 }
5986 }
5987
5988 assert(i_regs->regmap[HOST_CCREG]==CCREG);
5989 wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
5990 if(likely[i]||unconditional)
5991 {
5992 emit_movimm(ba[i],HOST_BTREG);
5993 }
5994 else if(addr!=HOST_BTREG)
5995 {
5996 emit_mov(addr,HOST_BTREG);
5997 }
5998 void *branch_addr=out;
5999 emit_jmp(0);
6000 int target_addr=start+i*4+5;
6001 void *stub=out;
6002 void *compiled_target_addr=check_addr(target_addr);
6003 emit_extjump_ds((int)branch_addr,target_addr);
6004 if(compiled_target_addr) {
6005 set_jump_target((int)branch_addr,(int)compiled_target_addr);
6006 add_link(target_addr,stub);
6007 }
6008 else set_jump_target((int)branch_addr,(int)stub);
6009 if(likely[i]) {
6010 // Not-taken path
6011 set_jump_target((int)nottaken,(int)out);
6012 wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
6013 void *branch_addr=out;
6014 emit_jmp(0);
6015 int target_addr=start+i*4+8;
6016 void *stub=out;
6017 void *compiled_target_addr=check_addr(target_addr);
6018 emit_extjump_ds((int)branch_addr,target_addr);
6019 if(compiled_target_addr) {
6020 set_jump_target((int)branch_addr,(int)compiled_target_addr);
6021 add_link(target_addr,stub);
6022 }
6023 else set_jump_target((int)branch_addr,(int)stub);
6024 }
6025}
6026
6027// Assemble the delay slot for the above
6028static void pagespan_ds()
6029{
6030 assem_debug("initial delay slot:\n");
6031 u_int vaddr=start+1;
6032 u_int page=get_page(vaddr);
6033 u_int vpage=get_vpage(vaddr);
6034 ll_add(jump_dirty+vpage,vaddr,(void *)out);
6035 do_dirty_stub_ds();
6036 ll_add(jump_in+page,vaddr,(void *)out);
6037 assert(regs[0].regmap_entry[HOST_CCREG]==CCREG);
6038 if(regs[0].regmap[HOST_CCREG]!=CCREG)
6039 wb_register(CCREG,regs[0].regmap_entry,regs[0].wasdirty,regs[0].was32);
6040 if(regs[0].regmap[HOST_BTREG]!=BTREG)
6041 emit_writeword(HOST_BTREG,(int)&branch_target);
6042 load_regs(regs[0].regmap_entry,regs[0].regmap,regs[0].was32,rs1[0],rs2[0]);
6043 address_generation(0,&regs[0],regs[0].regmap_entry);
6044 if(itype[0]==STORE||itype[0]==STORELR||(opcode[0]&0x3b)==0x39||(opcode[0]&0x3b)==0x3a)
6045 load_regs(regs[0].regmap_entry,regs[0].regmap,regs[0].was32,INVCP,INVCP);
6046 cop1_usable=0;
6047 is_delayslot=0;
6048 switch(itype[0]) {
6049 case ALU:
6050 alu_assemble(0,&regs[0]);break;
6051 case IMM16:
6052 imm16_assemble(0,&regs[0]);break;
6053 case SHIFT:
6054 shift_assemble(0,&regs[0]);break;
6055 case SHIFTIMM:
6056 shiftimm_assemble(0,&regs[0]);break;
6057 case LOAD:
6058 load_assemble(0,&regs[0]);break;
6059 case LOADLR:
6060 loadlr_assemble(0,&regs[0]);break;
6061 case STORE:
6062 store_assemble(0,&regs[0]);break;
6063 case STORELR:
6064 storelr_assemble(0,&regs[0]);break;
6065 case COP0:
6066 cop0_assemble(0,&regs[0]);break;
6067 case COP1:
6068 cop1_assemble(0,&regs[0]);break;
6069 case C1LS:
6070 c1ls_assemble(0,&regs[0]);break;
6071 case COP2:
6072 cop2_assemble(0,&regs[0]);break;
6073 case C2LS:
6074 c2ls_assemble(0,&regs[0]);break;
6075 case C2OP:
6076 c2op_assemble(0,&regs[0]);break;
6077 case FCONV:
6078 fconv_assemble(0,&regs[0]);break;
6079 case FLOAT:
6080 float_assemble(0,&regs[0]);break;
6081 case FCOMP:
6082 fcomp_assemble(0,&regs[0]);break;
6083 case MULTDIV:
6084 multdiv_assemble(0,&regs[0]);break;
6085 case MOV:
6086 mov_assemble(0,&regs[0]);break;
6087 case SYSCALL:
6088 case HLECALL:
6089 case INTCALL:
6090 case SPAN:
6091 case UJUMP:
6092 case RJUMP:
6093 case CJUMP:
6094 case SJUMP:
6095 case FJUMP:
6096 SysPrintf("Jump in the delay slot. This is probably a bug.\n");
6097 }
6098 int btaddr=get_reg(regs[0].regmap,BTREG);
6099 if(btaddr<0) {
6100 btaddr=get_reg(regs[0].regmap,-1);
6101 emit_readword((int)&branch_target,btaddr);
6102 }
6103 assert(btaddr!=HOST_CCREG);
6104 if(regs[0].regmap[HOST_CCREG]!=CCREG) emit_loadreg(CCREG,HOST_CCREG);
6105#ifdef HOST_IMM8
6106 emit_movimm(start+4,HOST_TEMPREG);
6107 emit_cmp(btaddr,HOST_TEMPREG);
6108#else
6109 emit_cmpimm(btaddr,start+4);
6110#endif
6111 int branch=(int)out;
6112 emit_jeq(0);
6113 store_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,-1);
6114 emit_jmp(jump_vaddr_reg[btaddr]);
6115 set_jump_target(branch,(int)out);
6116 store_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,start+4);
6117 load_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,start+4);
6118}
6119
6120// Basic liveness analysis for MIPS registers
6121void unneeded_registers(int istart,int iend,int r)
6122{
6123 int i;
6124 uint64_t u,uu,gte_u,b,bu,gte_bu;
6125 uint64_t temp_u,temp_uu,temp_gte_u=0;
6126 uint64_t tdep;
6127 uint64_t gte_u_unknown=0;
6128 if(new_dynarec_hacks&NDHACK_GTE_UNNEEDED)
6129 gte_u_unknown=~0ll;
6130 if(iend==slen-1) {
6131 u=1;uu=1;
6132 gte_u=gte_u_unknown;
6133 }else{
6134 u=unneeded_reg[iend+1];
6135 uu=unneeded_reg_upper[iend+1];
6136 u=1;uu=1;
6137 gte_u=gte_unneeded[iend+1];
6138 }
6139
6140 for (i=iend;i>=istart;i--)
6141 {
6142 //printf("unneeded registers i=%d (%d,%d) r=%d\n",i,istart,iend,r);
6143 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
6144 {
6145 // If subroutine call, flag return address as a possible branch target
6146 if(rt1[i]==31 && i<slen-2) bt[i+2]=1;
6147
6148 if(ba[i]<start || ba[i]>=(start+slen*4))
6149 {
6150 // Branch out of this block, flush all regs
6151 u=1;
6152 uu=1;
6153 gte_u=gte_u_unknown;
6154 /* Hexagon hack
6155 if(itype[i]==UJUMP&&rt1[i]==31)
6156 {
6157 uu=u=0x300C00F; // Discard at, v0-v1, t6-t9
6158 }
6159 if(itype[i]==RJUMP&&rs1[i]==31)
6160 {
6161 uu=u=0x300C0F3; // Discard at, a0-a3, t6-t9
6162 }
6163 if(start>0x80000400&&start<0x80000000+RAM_SIZE) {
6164 if(itype[i]==UJUMP&&rt1[i]==31)
6165 {
6166 //uu=u=0x30300FF0FLL; // Discard at, v0-v1, t0-t9, lo, hi
6167 uu=u=0x300FF0F; // Discard at, v0-v1, t0-t9
6168 }
6169 if(itype[i]==RJUMP&&rs1[i]==31)
6170 {
6171 //uu=u=0x30300FFF3LL; // Discard at, a0-a3, t0-t9, lo, hi
6172 uu=u=0x300FFF3; // Discard at, a0-a3, t0-t9
6173 }
6174 }*/
6175 branch_unneeded_reg[i]=u;
6176 branch_unneeded_reg_upper[i]=uu;
6177 // Merge in delay slot
6178 tdep=(~uu>>rt1[i+1])&1;
6179 u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6180 uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6181 u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6182 uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6183 uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6184 u|=1;uu|=1;
6185 gte_u|=gte_rt[i+1];
6186 gte_u&=~gte_rs[i+1];
6187 // If branch is "likely" (and conditional)
6188 // then we skip the delay slot on the fall-thru path
6189 if(likely[i]) {
6190 if(i<slen-1) {
6191 u&=unneeded_reg[i+2];
6192 uu&=unneeded_reg_upper[i+2];
6193 gte_u&=gte_unneeded[i+2];
6194 }
6195 else
6196 {
6197 u=1;
6198 uu=1;
6199 gte_u=gte_u_unknown;
6200 }
6201 }
6202 }
6203 else
6204 {
6205 // Internal branch, flag target
6206 bt[(ba[i]-start)>>2]=1;
6207 if(ba[i]<=start+i*4) {
6208 // Backward branch
6209 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
6210 {
6211 // Unconditional branch
6212 temp_u=1;temp_uu=1;
6213 temp_gte_u=0;
6214 } else {
6215 // Conditional branch (not taken case)
6216 temp_u=unneeded_reg[i+2];
6217 temp_uu=unneeded_reg_upper[i+2];
6218 temp_gte_u&=gte_unneeded[i+2];
6219 }
6220 // Merge in delay slot
6221 tdep=(~temp_uu>>rt1[i+1])&1;
6222 temp_u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6223 temp_uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6224 temp_u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6225 temp_uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6226 temp_uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6227 temp_u|=1;temp_uu|=1;
6228 temp_gte_u|=gte_rt[i+1];
6229 temp_gte_u&=~gte_rs[i+1];
6230 // If branch is "likely" (and conditional)
6231 // then we skip the delay slot on the fall-thru path
6232 if(likely[i]) {
6233 if(i<slen-1) {
6234 temp_u&=unneeded_reg[i+2];
6235 temp_uu&=unneeded_reg_upper[i+2];
6236 temp_gte_u&=gte_unneeded[i+2];
6237 }
6238 else
6239 {
6240 temp_u=1;
6241 temp_uu=1;
6242 temp_gte_u=gte_u_unknown;
6243 }
6244 }
6245 tdep=(~temp_uu>>rt1[i])&1;
6246 temp_u|=(1LL<<rt1[i])|(1LL<<rt2[i]);
6247 temp_uu|=(1LL<<rt1[i])|(1LL<<rt2[i]);
6248 temp_u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
6249 temp_uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
6250 temp_uu&=~((tdep<<dep1[i])|(tdep<<dep2[i]));
6251 temp_u|=1;temp_uu|=1;
6252 temp_gte_u|=gte_rt[i];
6253 temp_gte_u&=~gte_rs[i];
6254 unneeded_reg[i]=temp_u;
6255 unneeded_reg_upper[i]=temp_uu;
6256 gte_unneeded[i]=temp_gte_u;
6257 // Only go three levels deep. This recursion can take an
6258 // excessive amount of time if there are a lot of nested loops.
6259 if(r<2) {
6260 unneeded_registers((ba[i]-start)>>2,i-1,r+1);
6261 }else{
6262 unneeded_reg[(ba[i]-start)>>2]=1;
6263 unneeded_reg_upper[(ba[i]-start)>>2]=1;
6264 gte_unneeded[(ba[i]-start)>>2]=gte_u_unknown;
6265 }
6266 } /*else*/ if(1) {
6267 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
6268 {
6269 // Unconditional branch
6270 u=unneeded_reg[(ba[i]-start)>>2];
6271 uu=unneeded_reg_upper[(ba[i]-start)>>2];
6272 gte_u=gte_unneeded[(ba[i]-start)>>2];
6273 branch_unneeded_reg[i]=u;
6274 branch_unneeded_reg_upper[i]=uu;
6275 //u=1;
6276 //uu=1;
6277 //branch_unneeded_reg[i]=u;
6278 //branch_unneeded_reg_upper[i]=uu;
6279 // Merge in delay slot
6280 tdep=(~uu>>rt1[i+1])&1;
6281 u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6282 uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6283 u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6284 uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6285 uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6286 u|=1;uu|=1;
6287 gte_u|=gte_rt[i+1];
6288 gte_u&=~gte_rs[i+1];
6289 } else {
6290 // Conditional branch
6291 b=unneeded_reg[(ba[i]-start)>>2];
6292 bu=unneeded_reg_upper[(ba[i]-start)>>2];
6293 gte_bu=gte_unneeded[(ba[i]-start)>>2];
6294 branch_unneeded_reg[i]=b;
6295 branch_unneeded_reg_upper[i]=bu;
6296 //b=1;
6297 //bu=1;
6298 //branch_unneeded_reg[i]=b;
6299 //branch_unneeded_reg_upper[i]=bu;
6300 // Branch delay slot
6301 tdep=(~uu>>rt1[i+1])&1;
6302 b|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6303 bu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6304 b&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6305 bu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6306 bu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6307 b|=1;bu|=1;
6308 gte_bu|=gte_rt[i+1];
6309 gte_bu&=~gte_rs[i+1];
6310 // If branch is "likely" then we skip the
6311 // delay slot on the fall-thru path
6312 if(likely[i]) {
6313 u=b;
6314 uu=bu;
6315 gte_u=gte_bu;
6316 if(i<slen-1) {
6317 u&=unneeded_reg[i+2];
6318 uu&=unneeded_reg_upper[i+2];
6319 gte_u&=gte_unneeded[i+2];
6320 //u=1;
6321 //uu=1;
6322 }
6323 } else {
6324 u&=b;
6325 uu&=bu;
6326 gte_u&=gte_bu;
6327 //u=1;
6328 //uu=1;
6329 }
6330 if(i<slen-1) {
6331 branch_unneeded_reg[i]&=unneeded_reg[i+2];
6332 branch_unneeded_reg_upper[i]&=unneeded_reg_upper[i+2];
6333 //branch_unneeded_reg[i]=1;
6334 //branch_unneeded_reg_upper[i]=1;
6335 } else {
6336 branch_unneeded_reg[i]=1;
6337 branch_unneeded_reg_upper[i]=1;
6338 }
6339 }
6340 }
6341 }
6342 }
6343 else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
6344 {
6345 // SYSCALL instruction (software interrupt)
6346 u=1;
6347 uu=1;
6348 }
6349 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
6350 {
6351 // ERET instruction (return from interrupt)
6352 u=1;
6353 uu=1;
6354 }
6355 //u=uu=1; // DEBUG
6356 tdep=(~uu>>rt1[i])&1;
6357 // Written registers are unneeded
6358 u|=1LL<<rt1[i];
6359 u|=1LL<<rt2[i];
6360 uu|=1LL<<rt1[i];
6361 uu|=1LL<<rt2[i];
6362 gte_u|=gte_rt[i];
6363 // Accessed registers are needed
6364 u&=~(1LL<<rs1[i]);
6365 u&=~(1LL<<rs2[i]);
6366 uu&=~(1LL<<us1[i]);
6367 uu&=~(1LL<<us2[i]);
6368 gte_u&=~gte_rs[i];
6369 if(gte_rs[i]&&rt1[i]&&(unneeded_reg[i+1]&(1ll<<rt1[i])))
6370 gte_u|=gte_rs[i]&gte_unneeded[i+1]; // MFC2/CFC2 to dead register, unneeded
6371 // Source-target dependencies
6372 uu&=~(tdep<<dep1[i]);
6373 uu&=~(tdep<<dep2[i]);
6374 // R0 is always unneeded
6375 u|=1;uu|=1;
6376 // Save it
6377 unneeded_reg[i]=u;
6378 unneeded_reg_upper[i]=uu;
6379 gte_unneeded[i]=gte_u;
6380 /*
6381 printf("ur (%d,%d) %x: ",istart,iend,start+i*4);
6382 printf("U:");
6383 int r;
6384 for(r=1;r<=CCREG;r++) {
6385 if((unneeded_reg[i]>>r)&1) {
6386 if(r==HIREG) printf(" HI");
6387 else if(r==LOREG) printf(" LO");
6388 else printf(" r%d",r);
6389 }
6390 }
6391 printf(" UU:");
6392 for(r=1;r<=CCREG;r++) {
6393 if(((unneeded_reg_upper[i]&~unneeded_reg[i])>>r)&1) {
6394 if(r==HIREG) printf(" HI");
6395 else if(r==LOREG) printf(" LO");
6396 else printf(" r%d",r);
6397 }
6398 }
6399 printf("\n");*/
6400 }
6401 for (i=iend;i>=istart;i--)
6402 {
6403 unneeded_reg_upper[i]=branch_unneeded_reg_upper[i]=-1LL;
6404 }
6405}
6406
6407// Write back dirty registers as soon as we will no longer modify them,
6408// so that we don't end up with lots of writes at the branches.
6409void clean_registers(int istart,int iend,int wr)
6410{
6411 int i;
6412 int r;
6413 u_int will_dirty_i,will_dirty_next,temp_will_dirty;
6414 u_int wont_dirty_i,wont_dirty_next,temp_wont_dirty;
6415 if(iend==slen-1) {
6416 will_dirty_i=will_dirty_next=0;
6417 wont_dirty_i=wont_dirty_next=0;
6418 }else{
6419 will_dirty_i=will_dirty_next=will_dirty[iend+1];
6420 wont_dirty_i=wont_dirty_next=wont_dirty[iend+1];
6421 }
6422 for (i=iend;i>=istart;i--)
6423 {
6424 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
6425 {
6426 if(ba[i]<start || ba[i]>=(start+slen*4))
6427 {
6428 // Branch out of this block, flush all regs
6429 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
6430 {
6431 // Unconditional branch
6432 will_dirty_i=0;
6433 wont_dirty_i=0;
6434 // Merge in delay slot (will dirty)
6435 for(r=0;r<HOST_REGS;r++) {
6436 if(r!=EXCLUDE_REG) {
6437 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
6438 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
6439 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
6440 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
6441 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6442 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6443 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6444 if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
6445 if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
6446 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
6447 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
6448 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6449 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6450 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6451 }
6452 }
6453 }
6454 else
6455 {
6456 // Conditional branch
6457 will_dirty_i=0;
6458 wont_dirty_i=wont_dirty_next;
6459 // Merge in delay slot (will dirty)
6460 for(r=0;r<HOST_REGS;r++) {
6461 if(r!=EXCLUDE_REG) {
6462 if(!likely[i]) {
6463 // Might not dirty if likely branch is not taken
6464 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
6465 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
6466 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
6467 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
6468 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6469 if(branch_regs[i].regmap[r]==0) will_dirty_i&=~(1<<r);
6470 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6471 //if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
6472 //if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
6473 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
6474 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
6475 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6476 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6477 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6478 }
6479 }
6480 }
6481 }
6482 // Merge in delay slot (wont dirty)
6483 for(r=0;r<HOST_REGS;r++) {
6484 if(r!=EXCLUDE_REG) {
6485 if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
6486 if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
6487 if((regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
6488 if((regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
6489 if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
6490 if((branch_regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
6491 if((branch_regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
6492 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
6493 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
6494 if(branch_regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
6495 }
6496 }
6497 if(wr) {
6498 #ifndef DESTRUCTIVE_WRITEBACK
6499 branch_regs[i].dirty&=wont_dirty_i;
6500 #endif
6501 branch_regs[i].dirty|=will_dirty_i;
6502 }
6503 }
6504 else
6505 {
6506 // Internal branch
6507 if(ba[i]<=start+i*4) {
6508 // Backward branch
6509 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
6510 {
6511 // Unconditional branch
6512 temp_will_dirty=0;
6513 temp_wont_dirty=0;
6514 // Merge in delay slot (will dirty)
6515 for(r=0;r<HOST_REGS;r++) {
6516 if(r!=EXCLUDE_REG) {
6517 if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
6518 if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
6519 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
6520 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
6521 if((branch_regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
6522 if(branch_regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
6523 if(branch_regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
6524 if((regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
6525 if((regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
6526 if((regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
6527 if((regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
6528 if((regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
6529 if(regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
6530 if(regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
6531 }
6532 }
6533 } else {
6534 // Conditional branch (not taken case)
6535 temp_will_dirty=will_dirty_next;
6536 temp_wont_dirty=wont_dirty_next;
6537 // Merge in delay slot (will dirty)
6538 for(r=0;r<HOST_REGS;r++) {
6539 if(r!=EXCLUDE_REG) {
6540 if(!likely[i]) {
6541 // Will not dirty if likely branch is not taken
6542 if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
6543 if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
6544 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
6545 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
6546 if((branch_regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
6547 if(branch_regs[i].regmap[r]==0) temp_will_dirty&=~(1<<r);
6548 if(branch_regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
6549 //if((regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
6550 //if((regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
6551 if((regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
6552 if((regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
6553 if((regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
6554 if(regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
6555 if(regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
6556 }
6557 }
6558 }
6559 }
6560 // Merge in delay slot (wont dirty)
6561 for(r=0;r<HOST_REGS;r++) {
6562 if(r!=EXCLUDE_REG) {
6563 if((regs[i].regmap[r]&63)==rt1[i]) temp_wont_dirty|=1<<r;
6564 if((regs[i].regmap[r]&63)==rt2[i]) temp_wont_dirty|=1<<r;
6565 if((regs[i].regmap[r]&63)==rt1[i+1]) temp_wont_dirty|=1<<r;
6566 if((regs[i].regmap[r]&63)==rt2[i+1]) temp_wont_dirty|=1<<r;
6567 if(regs[i].regmap[r]==CCREG) temp_wont_dirty|=1<<r;
6568 if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_wont_dirty|=1<<r;
6569 if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_wont_dirty|=1<<r;
6570 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_wont_dirty|=1<<r;
6571 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_wont_dirty|=1<<r;
6572 if(branch_regs[i].regmap[r]==CCREG) temp_wont_dirty|=1<<r;
6573 }
6574 }
6575 // Deal with changed mappings
6576 if(i<iend) {
6577 for(r=0;r<HOST_REGS;r++) {
6578 if(r!=EXCLUDE_REG) {
6579 if(regs[i].regmap[r]!=regmap_pre[i][r]) {
6580 temp_will_dirty&=~(1<<r);
6581 temp_wont_dirty&=~(1<<r);
6582 if((regmap_pre[i][r]&63)>0 && (regmap_pre[i][r]&63)<34) {
6583 temp_will_dirty|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
6584 temp_wont_dirty|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
6585 } else {
6586 temp_will_dirty|=1<<r;
6587 temp_wont_dirty|=1<<r;
6588 }
6589 }
6590 }
6591 }
6592 }
6593 if(wr) {
6594 will_dirty[i]=temp_will_dirty;
6595 wont_dirty[i]=temp_wont_dirty;
6596 clean_registers((ba[i]-start)>>2,i-1,0);
6597 }else{
6598 // Limit recursion. It can take an excessive amount
6599 // of time if there are a lot of nested loops.
6600 will_dirty[(ba[i]-start)>>2]=0;
6601 wont_dirty[(ba[i]-start)>>2]=-1;
6602 }
6603 }
6604 /*else*/ if(1)
6605 {
6606 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
6607 {
6608 // Unconditional branch
6609 will_dirty_i=0;
6610 wont_dirty_i=0;
6611 //if(ba[i]>start+i*4) { // Disable recursion (for debugging)
6612 for(r=0;r<HOST_REGS;r++) {
6613 if(r!=EXCLUDE_REG) {
6614 if(branch_regs[i].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
6615 will_dirty_i|=will_dirty[(ba[i]-start)>>2]&(1<<r);
6616 wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
6617 }
6618 if(branch_regs[i].regmap[r]>=0) {
6619 will_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>(branch_regs[i].regmap[r]&63))&1)<<r;
6620 wont_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>(branch_regs[i].regmap[r]&63))&1)<<r;
6621 }
6622 }
6623 }
6624 //}
6625 // Merge in delay slot
6626 for(r=0;r<HOST_REGS;r++) {
6627 if(r!=EXCLUDE_REG) {
6628 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
6629 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
6630 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
6631 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
6632 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6633 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6634 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6635 if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
6636 if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
6637 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
6638 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
6639 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6640 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6641 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6642 }
6643 }
6644 } else {
6645 // Conditional branch
6646 will_dirty_i=will_dirty_next;
6647 wont_dirty_i=wont_dirty_next;
6648 //if(ba[i]>start+i*4) { // Disable recursion (for debugging)
6649 for(r=0;r<HOST_REGS;r++) {
6650 if(r!=EXCLUDE_REG) {
6651 signed char target_reg=branch_regs[i].regmap[r];
6652 if(target_reg==regs[(ba[i]-start)>>2].regmap_entry[r]) {
6653 will_dirty_i&=will_dirty[(ba[i]-start)>>2]&(1<<r);
6654 wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
6655 }
6656 else if(target_reg>=0) {
6657 will_dirty_i&=((unneeded_reg[(ba[i]-start)>>2]>>(target_reg&63))&1)<<r;
6658 wont_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>(target_reg&63))&1)<<r;
6659 }
6660 // Treat delay slot as part of branch too
6661 /*if(regs[i+1].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
6662 will_dirty[i+1]&=will_dirty[(ba[i]-start)>>2]&(1<<r);
6663 wont_dirty[i+1]|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
6664 }
6665 else
6666 {
6667 will_dirty[i+1]&=~(1<<r);
6668 }*/
6669 }
6670 }
6671 //}
6672 // Merge in delay slot
6673 for(r=0;r<HOST_REGS;r++) {
6674 if(r!=EXCLUDE_REG) {
6675 if(!likely[i]) {
6676 // Might not dirty if likely branch is not taken
6677 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
6678 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
6679 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
6680 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
6681 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6682 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6683 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6684 //if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
6685 //if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
6686 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
6687 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
6688 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6689 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6690 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6691 }
6692 }
6693 }
6694 }
6695 // Merge in delay slot (won't dirty)
6696 for(r=0;r<HOST_REGS;r++) {
6697 if(r!=EXCLUDE_REG) {
6698 if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
6699 if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
6700 if((regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
6701 if((regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
6702 if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
6703 if((branch_regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
6704 if((branch_regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
6705 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
6706 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
6707 if(branch_regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
6708 }
6709 }
6710 if(wr) {
6711 #ifndef DESTRUCTIVE_WRITEBACK
6712 branch_regs[i].dirty&=wont_dirty_i;
6713 #endif
6714 branch_regs[i].dirty|=will_dirty_i;
6715 }
6716 }
6717 }
6718 }
6719 else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
6720 {
6721 // SYSCALL instruction (software interrupt)
6722 will_dirty_i=0;
6723 wont_dirty_i=0;
6724 }
6725 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
6726 {
6727 // ERET instruction (return from interrupt)
6728 will_dirty_i=0;
6729 wont_dirty_i=0;
6730 }
6731 will_dirty_next=will_dirty_i;
6732 wont_dirty_next=wont_dirty_i;
6733 for(r=0;r<HOST_REGS;r++) {
6734 if(r!=EXCLUDE_REG) {
6735 if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
6736 if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
6737 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6738 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6739 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6740 if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
6741 if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
6742 if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
6743 if(i>istart) {
6744 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=FJUMP)
6745 {
6746 // Don't store a register immediately after writing it,
6747 // may prevent dual-issue.
6748 if((regs[i].regmap[r]&63)==rt1[i-1]) wont_dirty_i|=1<<r;
6749 if((regs[i].regmap[r]&63)==rt2[i-1]) wont_dirty_i|=1<<r;
6750 }
6751 }
6752 }
6753 }
6754 // Save it
6755 will_dirty[i]=will_dirty_i;
6756 wont_dirty[i]=wont_dirty_i;
6757 // Mark registers that won't be dirtied as not dirty
6758 if(wr) {
6759 /*printf("wr (%d,%d) %x will:",istart,iend,start+i*4);
6760 for(r=0;r<HOST_REGS;r++) {
6761 if((will_dirty_i>>r)&1) {
6762 printf(" r%d",r);
6763 }
6764 }
6765 printf("\n");*/
6766
6767 //if(i==istart||(itype[i-1]!=RJUMP&&itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=FJUMP)) {
6768 regs[i].dirty|=will_dirty_i;
6769 #ifndef DESTRUCTIVE_WRITEBACK
6770 regs[i].dirty&=wont_dirty_i;
6771 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
6772 {
6773 if(i<iend-1&&itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000) {
6774 for(r=0;r<HOST_REGS;r++) {
6775 if(r!=EXCLUDE_REG) {
6776 if(regs[i].regmap[r]==regmap_pre[i+2][r]) {
6777 regs[i+2].wasdirty&=wont_dirty_i|~(1<<r);
6778 }else {/*printf("i: %x (%d) mismatch(+2): %d\n",start+i*4,i,r);assert(!((wont_dirty_i>>r)&1));*/}
6779 }
6780 }
6781 }
6782 }
6783 else
6784 {
6785 if(i<iend) {
6786 for(r=0;r<HOST_REGS;r++) {
6787 if(r!=EXCLUDE_REG) {
6788 if(regs[i].regmap[r]==regmap_pre[i+1][r]) {
6789 regs[i+1].wasdirty&=wont_dirty_i|~(1<<r);
6790 }else {/*printf("i: %x (%d) mismatch(+1): %d\n",start+i*4,i,r);assert(!((wont_dirty_i>>r)&1));*/}
6791 }
6792 }
6793 }
6794 }
6795 #endif
6796 //}
6797 }
6798 // Deal with changed mappings
6799 temp_will_dirty=will_dirty_i;
6800 temp_wont_dirty=wont_dirty_i;
6801 for(r=0;r<HOST_REGS;r++) {
6802 if(r!=EXCLUDE_REG) {
6803 int nr;
6804 if(regs[i].regmap[r]==regmap_pre[i][r]) {
6805 if(wr) {
6806 #ifndef DESTRUCTIVE_WRITEBACK
6807 regs[i].wasdirty&=wont_dirty_i|~(1<<r);
6808 #endif
6809 regs[i].wasdirty|=will_dirty_i&(1<<r);
6810 }
6811 }
6812 else if(regmap_pre[i][r]>=0&&(nr=get_reg(regs[i].regmap,regmap_pre[i][r]))>=0) {
6813 // Register moved to a different register
6814 will_dirty_i&=~(1<<r);
6815 wont_dirty_i&=~(1<<r);
6816 will_dirty_i|=((temp_will_dirty>>nr)&1)<<r;
6817 wont_dirty_i|=((temp_wont_dirty>>nr)&1)<<r;
6818 if(wr) {
6819 #ifndef DESTRUCTIVE_WRITEBACK
6820 regs[i].wasdirty&=wont_dirty_i|~(1<<r);
6821 #endif
6822 regs[i].wasdirty|=will_dirty_i&(1<<r);
6823 }
6824 }
6825 else {
6826 will_dirty_i&=~(1<<r);
6827 wont_dirty_i&=~(1<<r);
6828 if((regmap_pre[i][r]&63)>0 && (regmap_pre[i][r]&63)<34) {
6829 will_dirty_i|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
6830 wont_dirty_i|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
6831 } else {
6832 wont_dirty_i|=1<<r;
6833 /*printf("i: %x (%d) mismatch: %d\n",start+i*4,i,r);assert(!((will_dirty>>r)&1));*/
6834 }
6835 }
6836 }
6837 }
6838 }
6839}
6840
6841#ifdef DISASM
6842 /* disassembly */
6843void disassemble_inst(int i)
6844{
6845 if (bt[i]) printf("*"); else printf(" ");
6846 switch(itype[i]) {
6847 case UJUMP:
6848 printf (" %x: %s %8x\n",start+i*4,insn[i],ba[i]);break;
6849 case CJUMP:
6850 printf (" %x: %s r%d,r%d,%8x\n",start+i*4,insn[i],rs1[i],rs2[i],i?start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14):*ba);break;
6851 case SJUMP:
6852 printf (" %x: %s r%d,%8x\n",start+i*4,insn[i],rs1[i],start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14));break;
6853 case FJUMP:
6854 printf (" %x: %s %8x\n",start+i*4,insn[i],ba[i]);break;
6855 case RJUMP:
6856 if (opcode[i]==0x9&&rt1[i]!=31)
6857 printf (" %x: %s r%d,r%d\n",start+i*4,insn[i],rt1[i],rs1[i]);
6858 else
6859 printf (" %x: %s r%d\n",start+i*4,insn[i],rs1[i]);
6860 break;
6861 case SPAN:
6862 printf (" %x: %s (pagespan) r%d,r%d,%8x\n",start+i*4,insn[i],rs1[i],rs2[i],ba[i]);break;
6863 case IMM16:
6864 if(opcode[i]==0xf) //LUI
6865 printf (" %x: %s r%d,%4x0000\n",start+i*4,insn[i],rt1[i],imm[i]&0xffff);
6866 else
6867 printf (" %x: %s r%d,r%d,%d\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
6868 break;
6869 case LOAD:
6870 case LOADLR:
6871 printf (" %x: %s r%d,r%d+%x\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
6872 break;
6873 case STORE:
6874 case STORELR:
6875 printf (" %x: %s r%d,r%d+%x\n",start+i*4,insn[i],rs2[i],rs1[i],imm[i]);
6876 break;
6877 case ALU:
6878 case SHIFT:
6879 printf (" %x: %s r%d,r%d,r%d\n",start+i*4,insn[i],rt1[i],rs1[i],rs2[i]);
6880 break;
6881 case MULTDIV:
6882 printf (" %x: %s r%d,r%d\n",start+i*4,insn[i],rs1[i],rs2[i]);
6883 break;
6884 case SHIFTIMM:
6885 printf (" %x: %s r%d,r%d,%d\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
6886 break;
6887 case MOV:
6888 if((opcode2[i]&0x1d)==0x10)
6889 printf (" %x: %s r%d\n",start+i*4,insn[i],rt1[i]);
6890 else if((opcode2[i]&0x1d)==0x11)
6891 printf (" %x: %s r%d\n",start+i*4,insn[i],rs1[i]);
6892 else
6893 printf (" %x: %s\n",start+i*4,insn[i]);
6894 break;
6895 case COP0:
6896 if(opcode2[i]==0)
6897 printf (" %x: %s r%d,cpr0[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC0
6898 else if(opcode2[i]==4)
6899 printf (" %x: %s r%d,cpr0[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC0
6900 else printf (" %x: %s\n",start+i*4,insn[i]);
6901 break;
6902 case COP1:
6903 if(opcode2[i]<3)
6904 printf (" %x: %s r%d,cpr1[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC1
6905 else if(opcode2[i]>3)
6906 printf (" %x: %s r%d,cpr1[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC1
6907 else printf (" %x: %s\n",start+i*4,insn[i]);
6908 break;
6909 case COP2:
6910 if(opcode2[i]<3)
6911 printf (" %x: %s r%d,cpr2[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC2
6912 else if(opcode2[i]>3)
6913 printf (" %x: %s r%d,cpr2[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC2
6914 else printf (" %x: %s\n",start+i*4,insn[i]);
6915 break;
6916 case C1LS:
6917 printf (" %x: %s cpr1[%d],r%d+%x\n",start+i*4,insn[i],(source[i]>>16)&0x1f,rs1[i],imm[i]);
6918 break;
6919 case C2LS:
6920 printf (" %x: %s cpr2[%d],r%d+%x\n",start+i*4,insn[i],(source[i]>>16)&0x1f,rs1[i],imm[i]);
6921 break;
6922 case INTCALL:
6923 printf (" %x: %s (INTCALL)\n",start+i*4,insn[i]);
6924 break;
6925 default:
6926 //printf (" %s %8x\n",insn[i],source[i]);
6927 printf (" %x: %s\n",start+i*4,insn[i]);
6928 }
6929}
6930#else
6931static void disassemble_inst(int i) {}
6932#endif // DISASM
6933
6934#define DRC_TEST_VAL 0x74657374
6935
6936static int new_dynarec_test(void)
6937{
6938 int (*testfunc)(void) = (void *)out;
6939 int ret;
6940 emit_movimm(DRC_TEST_VAL,0); // test
6941 emit_jmpreg(14);
6942 literal_pool(0);
6943#ifdef __arm__
6944 __clear_cache((void *)testfunc, out);
6945#endif
6946 SysPrintf("testing if we can run recompiled code..\n");
6947 ret = testfunc();
6948 if (ret == DRC_TEST_VAL)
6949 SysPrintf("test passed.\n");
6950 else
6951 SysPrintf("test failed: %08x\n", ret);
6952 out=(u_char *)BASE_ADDR;
6953 return ret == DRC_TEST_VAL;
6954}
6955
6956// clear the state completely, instead of just marking
6957// things invalid like invalidate_all_pages() does
6958void new_dynarec_clear_full()
6959{
6960 int n;
6961 out=(u_char *)BASE_ADDR;
6962 memset(invalid_code,1,sizeof(invalid_code));
6963 memset(hash_table,0xff,sizeof(hash_table));
6964 memset(mini_ht,-1,sizeof(mini_ht));
6965 memset(restore_candidate,0,sizeof(restore_candidate));
6966 memset(shadow,0,sizeof(shadow));
6967 copy=shadow;
6968 expirep=16384; // Expiry pointer, +2 blocks
6969 pending_exception=0;
6970 literalcount=0;
6971 stop_after_jal=0;
6972 inv_code_start=inv_code_end=~0;
6973 // TLB
6974 for(n=0;n<4096;n++) ll_clear(jump_in+n);
6975 for(n=0;n<4096;n++) ll_clear(jump_out+n);
6976 for(n=0;n<4096;n++) ll_clear(jump_dirty+n);
6977}
6978
6979void new_dynarec_init()
6980{
6981 SysPrintf("Init new dynarec\n");
6982 out=(u_char *)BASE_ADDR;
6983#if BASE_ADDR_FIXED
6984 if (mmap (out, 1<<TARGET_SIZE_2,
6985 PROT_READ | PROT_WRITE | PROT_EXEC,
6986 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS,
6987 -1, 0) <= 0) {
6988 SysPrintf("mmap() failed: %s\n", strerror(errno));
6989 }
6990#else
6991 // not all systems allow execute in data segment by default
6992 if (mprotect(out, 1<<TARGET_SIZE_2, PROT_READ | PROT_WRITE | PROT_EXEC) != 0)
6993 SysPrintf("mprotect() failed: %s\n", strerror(errno));
6994#endif
6995 cycle_multiplier=200;
6996 new_dynarec_clear_full();
6997#ifdef HOST_IMM8
6998 // Copy this into local area so we don't have to put it in every literal pool
6999 invc_ptr=invalid_code;
7000#endif
7001 arch_init();
7002 new_dynarec_test();
7003#ifndef RAM_FIXED
7004 ram_offset=(u_int)rdram-0x80000000;
7005#endif
7006 if (ram_offset!=0)
7007 SysPrintf("warning: RAM is not directly mapped, performance will suffer\n");
7008}
7009
7010void new_dynarec_cleanup()
7011{
7012 int n;
7013 #if BASE_ADDR_FIXED
7014 if (munmap ((void *)BASE_ADDR, 1<<TARGET_SIZE_2) < 0) {SysPrintf("munmap() failed\n");}
7015 #endif
7016 for(n=0;n<4096;n++) ll_clear(jump_in+n);
7017 for(n=0;n<4096;n++) ll_clear(jump_out+n);
7018 for(n=0;n<4096;n++) ll_clear(jump_dirty+n);
7019 #ifdef ROM_COPY
7020 if (munmap (ROM_COPY, 67108864) < 0) {SysPrintf("munmap() failed\n");}
7021 #endif
7022}
7023
7024static u_int *get_source_start(u_int addr, u_int *limit)
7025{
7026 if (addr < 0x00200000 ||
7027 (0xa0000000 <= addr && addr < 0xa0200000)) {
7028 // used for BIOS calls mostly?
7029 *limit = (addr&0xa0000000)|0x00200000;
7030 return (u_int *)((u_int)rdram + (addr&0x1fffff));
7031 }
7032 else if (!Config.HLE && (
7033 /* (0x9fc00000 <= addr && addr < 0x9fc80000) ||*/
7034 (0xbfc00000 <= addr && addr < 0xbfc80000))) {
7035 // BIOS
7036 *limit = (addr & 0xfff00000) | 0x80000;
7037 return (u_int *)((u_int)psxR + (addr&0x7ffff));
7038 }
7039 else if (addr >= 0x80000000 && addr < 0x80000000+RAM_SIZE) {
7040 *limit = (addr & 0x80600000) + 0x00200000;
7041 return (u_int *)((u_int)rdram + (addr&0x1fffff));
7042 }
7043 return NULL;
7044}
7045
7046static u_int scan_for_ret(u_int addr)
7047{
7048 u_int limit = 0;
7049 u_int *mem;
7050
7051 mem = get_source_start(addr, &limit);
7052 if (mem == NULL)
7053 return addr;
7054
7055 if (limit > addr + 0x1000)
7056 limit = addr + 0x1000;
7057 for (; addr < limit; addr += 4, mem++) {
7058 if (*mem == 0x03e00008) // jr $ra
7059 return addr + 8;
7060 }
7061 return addr;
7062}
7063
7064struct savestate_block {
7065 uint32_t addr;
7066 uint32_t regflags;
7067};
7068
7069static int addr_cmp(const void *p1_, const void *p2_)
7070{
7071 const struct savestate_block *p1 = p1_, *p2 = p2_;
7072 return p1->addr - p2->addr;
7073}
7074
7075int new_dynarec_save_blocks(void *save, int size)
7076{
7077 struct savestate_block *blocks = save;
7078 int maxcount = size / sizeof(blocks[0]);
7079 struct savestate_block tmp_blocks[1024];
7080 struct ll_entry *head;
7081 int p, s, d, o, bcnt;
7082 u_int addr;
7083
7084 o = 0;
7085 for (p = 0; p < sizeof(jump_in) / sizeof(jump_in[0]); p++) {
7086 bcnt = 0;
7087 for (head = jump_in[p]; head != NULL; head = head->next) {
7088 tmp_blocks[bcnt].addr = head->vaddr;
7089 tmp_blocks[bcnt].regflags = head->reg_sv_flags;
7090 bcnt++;
7091 }
7092 if (bcnt < 1)
7093 continue;
7094 qsort(tmp_blocks, bcnt, sizeof(tmp_blocks[0]), addr_cmp);
7095
7096 addr = tmp_blocks[0].addr;
7097 for (s = d = 0; s < bcnt; s++) {
7098 if (tmp_blocks[s].addr < addr)
7099 continue;
7100 if (d == 0 || tmp_blocks[d-1].addr != tmp_blocks[s].addr)
7101 tmp_blocks[d++] = tmp_blocks[s];
7102 addr = scan_for_ret(tmp_blocks[s].addr);
7103 }
7104
7105 if (o + d > maxcount)
7106 d = maxcount - o;
7107 memcpy(&blocks[o], tmp_blocks, d * sizeof(blocks[0]));
7108 o += d;
7109 }
7110
7111 return o * sizeof(blocks[0]);
7112}
7113
7114void new_dynarec_load_blocks(const void *save, int size)
7115{
7116 const struct savestate_block *blocks = save;
7117 int count = size / sizeof(blocks[0]);
7118 u_int regs_save[32];
7119 uint32_t f;
7120 int i, b;
7121
7122 get_addr(psxRegs.pc);
7123
7124 // change GPRs for speculation to at least partially work..
7125 memcpy(regs_save, &psxRegs.GPR, sizeof(regs_save));
7126 for (i = 1; i < 32; i++)
7127 psxRegs.GPR.r[i] = 0x80000000;
7128
7129 for (b = 0; b < count; b++) {
7130 for (f = blocks[b].regflags, i = 0; f; f >>= 1, i++) {
7131 if (f & 1)
7132 psxRegs.GPR.r[i] = 0x1f800000;
7133 }
7134
7135 get_addr(blocks[b].addr);
7136
7137 for (f = blocks[b].regflags, i = 0; f; f >>= 1, i++) {
7138 if (f & 1)
7139 psxRegs.GPR.r[i] = 0x80000000;
7140 }
7141 }
7142
7143 memcpy(&psxRegs.GPR, regs_save, sizeof(regs_save));
7144}
7145
7146int new_recompile_block(int addr)
7147{
7148 u_int pagelimit = 0;
7149 u_int state_rflags = 0;
7150 int i;
7151
7152 assem_debug("NOTCOMPILED: addr = %x -> %x\n", (int)addr, (int)out);
7153 //printf("NOTCOMPILED: addr = %x -> %x\n", (int)addr, (int)out);
7154 //printf("TRACE: count=%d next=%d (compile %x)\n",Count,next_interupt,addr);
7155 //if(debug)
7156 //printf("TRACE: count=%d next=%d (checksum %x)\n",Count,next_interupt,mchecksum());
7157 //printf("fpu mapping=%x enabled=%x\n",(Status & 0x04000000)>>26,(Status & 0x20000000)>>29);
7158 /*if(Count>=312978186) {
7159 rlist();
7160 }*/
7161 //rlist();
7162
7163 // this is just for speculation
7164 for (i = 1; i < 32; i++) {
7165 if ((psxRegs.GPR.r[i] & 0xffff0000) == 0x1f800000)
7166 state_rflags |= 1 << i;
7167 }
7168
7169 start = (u_int)addr&~3;
7170 //assert(((u_int)addr&1)==0);
7171 new_dynarec_did_compile=1;
7172 if (Config.HLE && start == 0x80001000) // hlecall
7173 {
7174 // XXX: is this enough? Maybe check hleSoftCall?
7175 u_int beginning=(u_int)out;
7176 u_int page=get_page(start);
7177 invalid_code[start>>12]=0;
7178 emit_movimm(start,0);
7179 emit_writeword(0,(int)&pcaddr);
7180 emit_jmp((int)new_dyna_leave);
7181 literal_pool(0);
7182#ifdef __arm__
7183 __clear_cache((void *)beginning,out);
7184#endif
7185 ll_add_flags(jump_in+page,start,state_rflags,(void *)beginning);
7186 return 0;
7187 }
7188
7189 source = get_source_start(start, &pagelimit);
7190 if (source == NULL) {
7191 SysPrintf("Compile at bogus memory address: %08x\n", addr);
7192 exit(1);
7193 }
7194
7195 /* Pass 1: disassemble */
7196 /* Pass 2: register dependencies, branch targets */
7197 /* Pass 3: register allocation */
7198 /* Pass 4: branch dependencies */
7199 /* Pass 5: pre-alloc */
7200 /* Pass 6: optimize clean/dirty state */
7201 /* Pass 7: flag 32-bit registers */
7202 /* Pass 8: assembly */
7203 /* Pass 9: linker */
7204 /* Pass 10: garbage collection / free memory */
7205
7206 int j;
7207 int done=0;
7208 unsigned int type,op,op2;
7209
7210 //printf("addr = %x source = %x %x\n", addr,source,source[0]);
7211
7212 /* Pass 1 disassembly */
7213
7214 for(i=0;!done;i++) {
7215 bt[i]=0;likely[i]=0;ooo[i]=0;op2=0;
7216 minimum_free_regs[i]=0;
7217 opcode[i]=op=source[i]>>26;
7218 switch(op)
7219 {
7220 case 0x00: strcpy(insn[i],"special"); type=NI;
7221 op2=source[i]&0x3f;
7222 switch(op2)
7223 {
7224 case 0x00: strcpy(insn[i],"SLL"); type=SHIFTIMM; break;
7225 case 0x02: strcpy(insn[i],"SRL"); type=SHIFTIMM; break;
7226 case 0x03: strcpy(insn[i],"SRA"); type=SHIFTIMM; break;
7227 case 0x04: strcpy(insn[i],"SLLV"); type=SHIFT; break;
7228 case 0x06: strcpy(insn[i],"SRLV"); type=SHIFT; break;
7229 case 0x07: strcpy(insn[i],"SRAV"); type=SHIFT; break;
7230 case 0x08: strcpy(insn[i],"JR"); type=RJUMP; break;
7231 case 0x09: strcpy(insn[i],"JALR"); type=RJUMP; break;
7232 case 0x0C: strcpy(insn[i],"SYSCALL"); type=SYSCALL; break;
7233 case 0x0D: strcpy(insn[i],"BREAK"); type=OTHER; break;
7234 case 0x0F: strcpy(insn[i],"SYNC"); type=OTHER; break;
7235 case 0x10: strcpy(insn[i],"MFHI"); type=MOV; break;
7236 case 0x11: strcpy(insn[i],"MTHI"); type=MOV; break;
7237 case 0x12: strcpy(insn[i],"MFLO"); type=MOV; break;
7238 case 0x13: strcpy(insn[i],"MTLO"); type=MOV; break;
7239 case 0x18: strcpy(insn[i],"MULT"); type=MULTDIV; break;
7240 case 0x19: strcpy(insn[i],"MULTU"); type=MULTDIV; break;
7241 case 0x1A: strcpy(insn[i],"DIV"); type=MULTDIV; break;
7242 case 0x1B: strcpy(insn[i],"DIVU"); type=MULTDIV; break;
7243 case 0x20: strcpy(insn[i],"ADD"); type=ALU; break;
7244 case 0x21: strcpy(insn[i],"ADDU"); type=ALU; break;
7245 case 0x22: strcpy(insn[i],"SUB"); type=ALU; break;
7246 case 0x23: strcpy(insn[i],"SUBU"); type=ALU; break;
7247 case 0x24: strcpy(insn[i],"AND"); type=ALU; break;
7248 case 0x25: strcpy(insn[i],"OR"); type=ALU; break;
7249 case 0x26: strcpy(insn[i],"XOR"); type=ALU; break;
7250 case 0x27: strcpy(insn[i],"NOR"); type=ALU; break;
7251 case 0x2A: strcpy(insn[i],"SLT"); type=ALU; break;
7252 case 0x2B: strcpy(insn[i],"SLTU"); type=ALU; break;
7253 case 0x30: strcpy(insn[i],"TGE"); type=NI; break;
7254 case 0x31: strcpy(insn[i],"TGEU"); type=NI; break;
7255 case 0x32: strcpy(insn[i],"TLT"); type=NI; break;
7256 case 0x33: strcpy(insn[i],"TLTU"); type=NI; break;
7257 case 0x34: strcpy(insn[i],"TEQ"); type=NI; break;
7258 case 0x36: strcpy(insn[i],"TNE"); type=NI; break;
7259#if 0
7260 case 0x14: strcpy(insn[i],"DSLLV"); type=SHIFT; break;
7261 case 0x16: strcpy(insn[i],"DSRLV"); type=SHIFT; break;
7262 case 0x17: strcpy(insn[i],"DSRAV"); type=SHIFT; break;
7263 case 0x1C: strcpy(insn[i],"DMULT"); type=MULTDIV; break;
7264 case 0x1D: strcpy(insn[i],"DMULTU"); type=MULTDIV; break;
7265 case 0x1E: strcpy(insn[i],"DDIV"); type=MULTDIV; break;
7266 case 0x1F: strcpy(insn[i],"DDIVU"); type=MULTDIV; break;
7267 case 0x2C: strcpy(insn[i],"DADD"); type=ALU; break;
7268 case 0x2D: strcpy(insn[i],"DADDU"); type=ALU; break;
7269 case 0x2E: strcpy(insn[i],"DSUB"); type=ALU; break;
7270 case 0x2F: strcpy(insn[i],"DSUBU"); type=ALU; break;
7271 case 0x38: strcpy(insn[i],"DSLL"); type=SHIFTIMM; break;
7272 case 0x3A: strcpy(insn[i],"DSRL"); type=SHIFTIMM; break;
7273 case 0x3B: strcpy(insn[i],"DSRA"); type=SHIFTIMM; break;
7274 case 0x3C: strcpy(insn[i],"DSLL32"); type=SHIFTIMM; break;
7275 case 0x3E: strcpy(insn[i],"DSRL32"); type=SHIFTIMM; break;
7276 case 0x3F: strcpy(insn[i],"DSRA32"); type=SHIFTIMM; break;
7277#endif
7278 }
7279 break;
7280 case 0x01: strcpy(insn[i],"regimm"); type=NI;
7281 op2=(source[i]>>16)&0x1f;
7282 switch(op2)
7283 {
7284 case 0x00: strcpy(insn[i],"BLTZ"); type=SJUMP; break;
7285 case 0x01: strcpy(insn[i],"BGEZ"); type=SJUMP; break;
7286 case 0x02: strcpy(insn[i],"BLTZL"); type=SJUMP; break;
7287 case 0x03: strcpy(insn[i],"BGEZL"); type=SJUMP; break;
7288 case 0x08: strcpy(insn[i],"TGEI"); type=NI; break;
7289 case 0x09: strcpy(insn[i],"TGEIU"); type=NI; break;
7290 case 0x0A: strcpy(insn[i],"TLTI"); type=NI; break;
7291 case 0x0B: strcpy(insn[i],"TLTIU"); type=NI; break;
7292 case 0x0C: strcpy(insn[i],"TEQI"); type=NI; break;
7293 case 0x0E: strcpy(insn[i],"TNEI"); type=NI; break;
7294 case 0x10: strcpy(insn[i],"BLTZAL"); type=SJUMP; break;
7295 case 0x11: strcpy(insn[i],"BGEZAL"); type=SJUMP; break;
7296 case 0x12: strcpy(insn[i],"BLTZALL"); type=SJUMP; break;
7297 case 0x13: strcpy(insn[i],"BGEZALL"); type=SJUMP; break;
7298 }
7299 break;
7300 case 0x02: strcpy(insn[i],"J"); type=UJUMP; break;
7301 case 0x03: strcpy(insn[i],"JAL"); type=UJUMP; break;
7302 case 0x04: strcpy(insn[i],"BEQ"); type=CJUMP; break;
7303 case 0x05: strcpy(insn[i],"BNE"); type=CJUMP; break;
7304 case 0x06: strcpy(insn[i],"BLEZ"); type=CJUMP; break;
7305 case 0x07: strcpy(insn[i],"BGTZ"); type=CJUMP; break;
7306 case 0x08: strcpy(insn[i],"ADDI"); type=IMM16; break;
7307 case 0x09: strcpy(insn[i],"ADDIU"); type=IMM16; break;
7308 case 0x0A: strcpy(insn[i],"SLTI"); type=IMM16; break;
7309 case 0x0B: strcpy(insn[i],"SLTIU"); type=IMM16; break;
7310 case 0x0C: strcpy(insn[i],"ANDI"); type=IMM16; break;
7311 case 0x0D: strcpy(insn[i],"ORI"); type=IMM16; break;
7312 case 0x0E: strcpy(insn[i],"XORI"); type=IMM16; break;
7313 case 0x0F: strcpy(insn[i],"LUI"); type=IMM16; break;
7314 case 0x10: strcpy(insn[i],"cop0"); type=NI;
7315 op2=(source[i]>>21)&0x1f;
7316 switch(op2)
7317 {
7318 case 0x00: strcpy(insn[i],"MFC0"); type=COP0; break;
7319 case 0x04: strcpy(insn[i],"MTC0"); type=COP0; break;
7320 case 0x10: strcpy(insn[i],"tlb"); type=NI;
7321 switch(source[i]&0x3f)
7322 {
7323 case 0x01: strcpy(insn[i],"TLBR"); type=COP0; break;
7324 case 0x02: strcpy(insn[i],"TLBWI"); type=COP0; break;
7325 case 0x06: strcpy(insn[i],"TLBWR"); type=COP0; break;
7326 case 0x08: strcpy(insn[i],"TLBP"); type=COP0; break;
7327 case 0x10: strcpy(insn[i],"RFE"); type=COP0; break;
7328 //case 0x18: strcpy(insn[i],"ERET"); type=COP0; break;
7329 }
7330 }
7331 break;
7332 case 0x11: strcpy(insn[i],"cop1"); type=NI;
7333 op2=(source[i]>>21)&0x1f;
7334 switch(op2)
7335 {
7336 case 0x00: strcpy(insn[i],"MFC1"); type=COP1; break;
7337 case 0x01: strcpy(insn[i],"DMFC1"); type=COP1; break;
7338 case 0x02: strcpy(insn[i],"CFC1"); type=COP1; break;
7339 case 0x04: strcpy(insn[i],"MTC1"); type=COP1; break;
7340 case 0x05: strcpy(insn[i],"DMTC1"); type=COP1; break;
7341 case 0x06: strcpy(insn[i],"CTC1"); type=COP1; break;
7342 case 0x08: strcpy(insn[i],"BC1"); type=FJUMP;
7343 switch((source[i]>>16)&0x3)
7344 {
7345 case 0x00: strcpy(insn[i],"BC1F"); break;
7346 case 0x01: strcpy(insn[i],"BC1T"); break;
7347 case 0x02: strcpy(insn[i],"BC1FL"); break;
7348 case 0x03: strcpy(insn[i],"BC1TL"); break;
7349 }
7350 break;
7351 case 0x10: strcpy(insn[i],"C1.S"); type=NI;
7352 switch(source[i]&0x3f)
7353 {
7354 case 0x00: strcpy(insn[i],"ADD.S"); type=FLOAT; break;
7355 case 0x01: strcpy(insn[i],"SUB.S"); type=FLOAT; break;
7356 case 0x02: strcpy(insn[i],"MUL.S"); type=FLOAT; break;
7357 case 0x03: strcpy(insn[i],"DIV.S"); type=FLOAT; break;
7358 case 0x04: strcpy(insn[i],"SQRT.S"); type=FLOAT; break;
7359 case 0x05: strcpy(insn[i],"ABS.S"); type=FLOAT; break;
7360 case 0x06: strcpy(insn[i],"MOV.S"); type=FLOAT; break;
7361 case 0x07: strcpy(insn[i],"NEG.S"); type=FLOAT; break;
7362 case 0x08: strcpy(insn[i],"ROUND.L.S"); type=FCONV; break;
7363 case 0x09: strcpy(insn[i],"TRUNC.L.S"); type=FCONV; break;
7364 case 0x0A: strcpy(insn[i],"CEIL.L.S"); type=FCONV; break;
7365 case 0x0B: strcpy(insn[i],"FLOOR.L.S"); type=FCONV; break;
7366 case 0x0C: strcpy(insn[i],"ROUND.W.S"); type=FCONV; break;
7367 case 0x0D: strcpy(insn[i],"TRUNC.W.S"); type=FCONV; break;
7368 case 0x0E: strcpy(insn[i],"CEIL.W.S"); type=FCONV; break;
7369 case 0x0F: strcpy(insn[i],"FLOOR.W.S"); type=FCONV; break;
7370 case 0x21: strcpy(insn[i],"CVT.D.S"); type=FCONV; break;
7371 case 0x24: strcpy(insn[i],"CVT.W.S"); type=FCONV; break;
7372 case 0x25: strcpy(insn[i],"CVT.L.S"); type=FCONV; break;
7373 case 0x30: strcpy(insn[i],"C.F.S"); type=FCOMP; break;
7374 case 0x31: strcpy(insn[i],"C.UN.S"); type=FCOMP; break;
7375 case 0x32: strcpy(insn[i],"C.EQ.S"); type=FCOMP; break;
7376 case 0x33: strcpy(insn[i],"C.UEQ.S"); type=FCOMP; break;
7377 case 0x34: strcpy(insn[i],"C.OLT.S"); type=FCOMP; break;
7378 case 0x35: strcpy(insn[i],"C.ULT.S"); type=FCOMP; break;
7379 case 0x36: strcpy(insn[i],"C.OLE.S"); type=FCOMP; break;
7380 case 0x37: strcpy(insn[i],"C.ULE.S"); type=FCOMP; break;
7381 case 0x38: strcpy(insn[i],"C.SF.S"); type=FCOMP; break;
7382 case 0x39: strcpy(insn[i],"C.NGLE.S"); type=FCOMP; break;
7383 case 0x3A: strcpy(insn[i],"C.SEQ.S"); type=FCOMP; break;
7384 case 0x3B: strcpy(insn[i],"C.NGL.S"); type=FCOMP; break;
7385 case 0x3C: strcpy(insn[i],"C.LT.S"); type=FCOMP; break;
7386 case 0x3D: strcpy(insn[i],"C.NGE.S"); type=FCOMP; break;
7387 case 0x3E: strcpy(insn[i],"C.LE.S"); type=FCOMP; break;
7388 case 0x3F: strcpy(insn[i],"C.NGT.S"); type=FCOMP; break;
7389 }
7390 break;
7391 case 0x11: strcpy(insn[i],"C1.D"); type=NI;
7392 switch(source[i]&0x3f)
7393 {
7394 case 0x00: strcpy(insn[i],"ADD.D"); type=FLOAT; break;
7395 case 0x01: strcpy(insn[i],"SUB.D"); type=FLOAT; break;
7396 case 0x02: strcpy(insn[i],"MUL.D"); type=FLOAT; break;
7397 case 0x03: strcpy(insn[i],"DIV.D"); type=FLOAT; break;
7398 case 0x04: strcpy(insn[i],"SQRT.D"); type=FLOAT; break;
7399 case 0x05: strcpy(insn[i],"ABS.D"); type=FLOAT; break;
7400 case 0x06: strcpy(insn[i],"MOV.D"); type=FLOAT; break;
7401 case 0x07: strcpy(insn[i],"NEG.D"); type=FLOAT; break;
7402 case 0x08: strcpy(insn[i],"ROUND.L.D"); type=FCONV; break;
7403 case 0x09: strcpy(insn[i],"TRUNC.L.D"); type=FCONV; break;
7404 case 0x0A: strcpy(insn[i],"CEIL.L.D"); type=FCONV; break;
7405 case 0x0B: strcpy(insn[i],"FLOOR.L.D"); type=FCONV; break;
7406 case 0x0C: strcpy(insn[i],"ROUND.W.D"); type=FCONV; break;
7407 case 0x0D: strcpy(insn[i],"TRUNC.W.D"); type=FCONV; break;
7408 case 0x0E: strcpy(insn[i],"CEIL.W.D"); type=FCONV; break;
7409 case 0x0F: strcpy(insn[i],"FLOOR.W.D"); type=FCONV; break;
7410 case 0x20: strcpy(insn[i],"CVT.S.D"); type=FCONV; break;
7411 case 0x24: strcpy(insn[i],"CVT.W.D"); type=FCONV; break;
7412 case 0x25: strcpy(insn[i],"CVT.L.D"); type=FCONV; break;
7413 case 0x30: strcpy(insn[i],"C.F.D"); type=FCOMP; break;
7414 case 0x31: strcpy(insn[i],"C.UN.D"); type=FCOMP; break;
7415 case 0x32: strcpy(insn[i],"C.EQ.D"); type=FCOMP; break;
7416 case 0x33: strcpy(insn[i],"C.UEQ.D"); type=FCOMP; break;
7417 case 0x34: strcpy(insn[i],"C.OLT.D"); type=FCOMP; break;
7418 case 0x35: strcpy(insn[i],"C.ULT.D"); type=FCOMP; break;
7419 case 0x36: strcpy(insn[i],"C.OLE.D"); type=FCOMP; break;
7420 case 0x37: strcpy(insn[i],"C.ULE.D"); type=FCOMP; break;
7421 case 0x38: strcpy(insn[i],"C.SF.D"); type=FCOMP; break;
7422 case 0x39: strcpy(insn[i],"C.NGLE.D"); type=FCOMP; break;
7423 case 0x3A: strcpy(insn[i],"C.SEQ.D"); type=FCOMP; break;
7424 case 0x3B: strcpy(insn[i],"C.NGL.D"); type=FCOMP; break;
7425 case 0x3C: strcpy(insn[i],"C.LT.D"); type=FCOMP; break;
7426 case 0x3D: strcpy(insn[i],"C.NGE.D"); type=FCOMP; break;
7427 case 0x3E: strcpy(insn[i],"C.LE.D"); type=FCOMP; break;
7428 case 0x3F: strcpy(insn[i],"C.NGT.D"); type=FCOMP; break;
7429 }
7430 break;
7431 case 0x14: strcpy(insn[i],"C1.W"); type=NI;
7432 switch(source[i]&0x3f)
7433 {
7434 case 0x20: strcpy(insn[i],"CVT.S.W"); type=FCONV; break;
7435 case 0x21: strcpy(insn[i],"CVT.D.W"); type=FCONV; break;
7436 }
7437 break;
7438 case 0x15: strcpy(insn[i],"C1.L"); type=NI;
7439 switch(source[i]&0x3f)
7440 {
7441 case 0x20: strcpy(insn[i],"CVT.S.L"); type=FCONV; break;
7442 case 0x21: strcpy(insn[i],"CVT.D.L"); type=FCONV; break;
7443 }
7444 break;
7445 }
7446 break;
7447#if 0
7448 case 0x14: strcpy(insn[i],"BEQL"); type=CJUMP; break;
7449 case 0x15: strcpy(insn[i],"BNEL"); type=CJUMP; break;
7450 case 0x16: strcpy(insn[i],"BLEZL"); type=CJUMP; break;
7451 case 0x17: strcpy(insn[i],"BGTZL"); type=CJUMP; break;
7452 case 0x18: strcpy(insn[i],"DADDI"); type=IMM16; break;
7453 case 0x19: strcpy(insn[i],"DADDIU"); type=IMM16; break;
7454 case 0x1A: strcpy(insn[i],"LDL"); type=LOADLR; break;
7455 case 0x1B: strcpy(insn[i],"LDR"); type=LOADLR; break;
7456#endif
7457 case 0x20: strcpy(insn[i],"LB"); type=LOAD; break;
7458 case 0x21: strcpy(insn[i],"LH"); type=LOAD; break;
7459 case 0x22: strcpy(insn[i],"LWL"); type=LOADLR; break;
7460 case 0x23: strcpy(insn[i],"LW"); type=LOAD; break;
7461 case 0x24: strcpy(insn[i],"LBU"); type=LOAD; break;
7462 case 0x25: strcpy(insn[i],"LHU"); type=LOAD; break;
7463 case 0x26: strcpy(insn[i],"LWR"); type=LOADLR; break;
7464#if 0
7465 case 0x27: strcpy(insn[i],"LWU"); type=LOAD; break;
7466#endif
7467 case 0x28: strcpy(insn[i],"SB"); type=STORE; break;
7468 case 0x29: strcpy(insn[i],"SH"); type=STORE; break;
7469 case 0x2A: strcpy(insn[i],"SWL"); type=STORELR; break;
7470 case 0x2B: strcpy(insn[i],"SW"); type=STORE; break;
7471#if 0
7472 case 0x2C: strcpy(insn[i],"SDL"); type=STORELR; break;
7473 case 0x2D: strcpy(insn[i],"SDR"); type=STORELR; break;
7474#endif
7475 case 0x2E: strcpy(insn[i],"SWR"); type=STORELR; break;
7476 case 0x2F: strcpy(insn[i],"CACHE"); type=NOP; break;
7477 case 0x30: strcpy(insn[i],"LL"); type=NI; break;
7478 case 0x31: strcpy(insn[i],"LWC1"); type=C1LS; break;
7479#if 0
7480 case 0x34: strcpy(insn[i],"LLD"); type=NI; break;
7481 case 0x35: strcpy(insn[i],"LDC1"); type=C1LS; break;
7482 case 0x37: strcpy(insn[i],"LD"); type=LOAD; break;
7483#endif
7484 case 0x38: strcpy(insn[i],"SC"); type=NI; break;
7485 case 0x39: strcpy(insn[i],"SWC1"); type=C1LS; break;
7486#if 0
7487 case 0x3C: strcpy(insn[i],"SCD"); type=NI; break;
7488 case 0x3D: strcpy(insn[i],"SDC1"); type=C1LS; break;
7489 case 0x3F: strcpy(insn[i],"SD"); type=STORE; break;
7490#endif
7491 case 0x12: strcpy(insn[i],"COP2"); type=NI;
7492 op2=(source[i]>>21)&0x1f;
7493 //if (op2 & 0x10) {
7494 if (source[i]&0x3f) { // use this hack to support old savestates with patched gte insns
7495 if (gte_handlers[source[i]&0x3f]!=NULL) {
7496 if (gte_regnames[source[i]&0x3f]!=NULL)
7497 strcpy(insn[i],gte_regnames[source[i]&0x3f]);
7498 else
7499 snprintf(insn[i], sizeof(insn[i]), "COP2 %x", source[i]&0x3f);
7500 type=C2OP;
7501 }
7502 }
7503 else switch(op2)
7504 {
7505 case 0x00: strcpy(insn[i],"MFC2"); type=COP2; break;
7506 case 0x02: strcpy(insn[i],"CFC2"); type=COP2; break;
7507 case 0x04: strcpy(insn[i],"MTC2"); type=COP2; break;
7508 case 0x06: strcpy(insn[i],"CTC2"); type=COP2; break;
7509 }
7510 break;
7511 case 0x32: strcpy(insn[i],"LWC2"); type=C2LS; break;
7512 case 0x3A: strcpy(insn[i],"SWC2"); type=C2LS; break;
7513 case 0x3B: strcpy(insn[i],"HLECALL"); type=HLECALL; break;
7514 default: strcpy(insn[i],"???"); type=NI;
7515 SysPrintf("NI %08x @%08x (%08x)\n", source[i], addr + i*4, addr);
7516 break;
7517 }
7518 itype[i]=type;
7519 opcode2[i]=op2;
7520 /* Get registers/immediates */
7521 lt1[i]=0;
7522 us1[i]=0;
7523 us2[i]=0;
7524 dep1[i]=0;
7525 dep2[i]=0;
7526 gte_rs[i]=gte_rt[i]=0;
7527 switch(type) {
7528 case LOAD:
7529 rs1[i]=(source[i]>>21)&0x1f;
7530 rs2[i]=0;
7531 rt1[i]=(source[i]>>16)&0x1f;
7532 rt2[i]=0;
7533 imm[i]=(short)source[i];
7534 break;
7535 case STORE:
7536 case STORELR:
7537 rs1[i]=(source[i]>>21)&0x1f;
7538 rs2[i]=(source[i]>>16)&0x1f;
7539 rt1[i]=0;
7540 rt2[i]=0;
7541 imm[i]=(short)source[i];
7542 if(op==0x2c||op==0x2d||op==0x3f) us1[i]=rs2[i]; // 64-bit SDL/SDR/SD
7543 break;
7544 case LOADLR:
7545 // LWL/LWR only load part of the register,
7546 // therefore the target register must be treated as a source too
7547 rs1[i]=(source[i]>>21)&0x1f;
7548 rs2[i]=(source[i]>>16)&0x1f;
7549 rt1[i]=(source[i]>>16)&0x1f;
7550 rt2[i]=0;
7551 imm[i]=(short)source[i];
7552 if(op==0x1a||op==0x1b) us1[i]=rs2[i]; // LDR/LDL
7553 if(op==0x26) dep1[i]=rt1[i]; // LWR
7554 break;
7555 case IMM16:
7556 if (op==0x0f) rs1[i]=0; // LUI instruction has no source register
7557 else rs1[i]=(source[i]>>21)&0x1f;
7558 rs2[i]=0;
7559 rt1[i]=(source[i]>>16)&0x1f;
7560 rt2[i]=0;
7561 if(op>=0x0c&&op<=0x0e) { // ANDI/ORI/XORI
7562 imm[i]=(unsigned short)source[i];
7563 }else{
7564 imm[i]=(short)source[i];
7565 }
7566 if(op==0x18||op==0x19) us1[i]=rs1[i]; // DADDI/DADDIU
7567 if(op==0x0a||op==0x0b) us1[i]=rs1[i]; // SLTI/SLTIU
7568 if(op==0x0d||op==0x0e) dep1[i]=rs1[i]; // ORI/XORI
7569 break;
7570 case UJUMP:
7571 rs1[i]=0;
7572 rs2[i]=0;
7573 rt1[i]=0;
7574 rt2[i]=0;
7575 // The JAL instruction writes to r31.
7576 if (op&1) {
7577 rt1[i]=31;
7578 }
7579 rs2[i]=CCREG;
7580 break;
7581 case RJUMP:
7582 rs1[i]=(source[i]>>21)&0x1f;
7583 rs2[i]=0;
7584 rt1[i]=0;
7585 rt2[i]=0;
7586 // The JALR instruction writes to rd.
7587 if (op2&1) {
7588 rt1[i]=(source[i]>>11)&0x1f;
7589 }
7590 rs2[i]=CCREG;
7591 break;
7592 case CJUMP:
7593 rs1[i]=(source[i]>>21)&0x1f;
7594 rs2[i]=(source[i]>>16)&0x1f;
7595 rt1[i]=0;
7596 rt2[i]=0;
7597 if(op&2) { // BGTZ/BLEZ
7598 rs2[i]=0;
7599 }
7600 us1[i]=rs1[i];
7601 us2[i]=rs2[i];
7602 likely[i]=op>>4;
7603 break;
7604 case SJUMP:
7605 rs1[i]=(source[i]>>21)&0x1f;
7606 rs2[i]=CCREG;
7607 rt1[i]=0;
7608 rt2[i]=0;
7609 us1[i]=rs1[i];
7610 if(op2&0x10) { // BxxAL
7611 rt1[i]=31;
7612 // NOTE: If the branch is not taken, r31 is still overwritten
7613 }
7614 likely[i]=(op2&2)>>1;
7615 break;
7616 case FJUMP:
7617 rs1[i]=FSREG;
7618 rs2[i]=CSREG;
7619 rt1[i]=0;
7620 rt2[i]=0;
7621 likely[i]=((source[i])>>17)&1;
7622 break;
7623 case ALU:
7624 rs1[i]=(source[i]>>21)&0x1f; // source
7625 rs2[i]=(source[i]>>16)&0x1f; // subtract amount
7626 rt1[i]=(source[i]>>11)&0x1f; // destination
7627 rt2[i]=0;
7628 if(op2==0x2a||op2==0x2b) { // SLT/SLTU
7629 us1[i]=rs1[i];us2[i]=rs2[i];
7630 }
7631 else if(op2>=0x24&&op2<=0x27) { // AND/OR/XOR/NOR
7632 dep1[i]=rs1[i];dep2[i]=rs2[i];
7633 }
7634 else if(op2>=0x2c&&op2<=0x2f) { // DADD/DSUB
7635 dep1[i]=rs1[i];dep2[i]=rs2[i];
7636 }
7637 break;
7638 case MULTDIV:
7639 rs1[i]=(source[i]>>21)&0x1f; // source
7640 rs2[i]=(source[i]>>16)&0x1f; // divisor
7641 rt1[i]=HIREG;
7642 rt2[i]=LOREG;
7643 if (op2>=0x1c&&op2<=0x1f) { // DMULT/DMULTU/DDIV/DDIVU
7644 us1[i]=rs1[i];us2[i]=rs2[i];
7645 }
7646 break;
7647 case MOV:
7648 rs1[i]=0;
7649 rs2[i]=0;
7650 rt1[i]=0;
7651 rt2[i]=0;
7652 if(op2==0x10) rs1[i]=HIREG; // MFHI
7653 if(op2==0x11) rt1[i]=HIREG; // MTHI
7654 if(op2==0x12) rs1[i]=LOREG; // MFLO
7655 if(op2==0x13) rt1[i]=LOREG; // MTLO
7656 if((op2&0x1d)==0x10) rt1[i]=(source[i]>>11)&0x1f; // MFxx
7657 if((op2&0x1d)==0x11) rs1[i]=(source[i]>>21)&0x1f; // MTxx
7658 dep1[i]=rs1[i];
7659 break;
7660 case SHIFT:
7661 rs1[i]=(source[i]>>16)&0x1f; // target of shift
7662 rs2[i]=(source[i]>>21)&0x1f; // shift amount
7663 rt1[i]=(source[i]>>11)&0x1f; // destination
7664 rt2[i]=0;
7665 // DSLLV/DSRLV/DSRAV are 64-bit
7666 if(op2>=0x14&&op2<=0x17) us1[i]=rs1[i];
7667 break;
7668 case SHIFTIMM:
7669 rs1[i]=(source[i]>>16)&0x1f;
7670 rs2[i]=0;
7671 rt1[i]=(source[i]>>11)&0x1f;
7672 rt2[i]=0;
7673 imm[i]=(source[i]>>6)&0x1f;
7674 // DSxx32 instructions
7675 if(op2>=0x3c) imm[i]|=0x20;
7676 // DSLL/DSRL/DSRA/DSRA32/DSRL32 but not DSLL32 require 64-bit source
7677 if(op2>=0x38&&op2!=0x3c) us1[i]=rs1[i];
7678 break;
7679 case COP0:
7680 rs1[i]=0;
7681 rs2[i]=0;
7682 rt1[i]=0;
7683 rt2[i]=0;
7684 if(op2==0) rt1[i]=(source[i]>>16)&0x1F; // MFC0
7685 if(op2==4) rs1[i]=(source[i]>>16)&0x1F; // MTC0
7686 if(op2==4&&((source[i]>>11)&0x1f)==12) rt2[i]=CSREG; // Status
7687 if(op2==16) if((source[i]&0x3f)==0x18) rs2[i]=CCREG; // ERET
7688 break;
7689 case COP1:
7690 rs1[i]=0;
7691 rs2[i]=0;
7692 rt1[i]=0;
7693 rt2[i]=0;
7694 if(op2<3) rt1[i]=(source[i]>>16)&0x1F; // MFC1/DMFC1/CFC1
7695 if(op2>3) rs1[i]=(source[i]>>16)&0x1F; // MTC1/DMTC1/CTC1
7696 if(op2==5) us1[i]=rs1[i]; // DMTC1
7697 rs2[i]=CSREG;
7698 break;
7699 case COP2:
7700 rs1[i]=0;
7701 rs2[i]=0;
7702 rt1[i]=0;
7703 rt2[i]=0;
7704 if(op2<3) rt1[i]=(source[i]>>16)&0x1F; // MFC2/CFC2
7705 if(op2>3) rs1[i]=(source[i]>>16)&0x1F; // MTC2/CTC2
7706 rs2[i]=CSREG;
7707 int gr=(source[i]>>11)&0x1F;
7708 switch(op2)
7709 {
7710 case 0x00: gte_rs[i]=1ll<<gr; break; // MFC2
7711 case 0x04: gte_rt[i]=1ll<<gr; break; // MTC2
7712 case 0x02: gte_rs[i]=1ll<<(gr+32); break; // CFC2
7713 case 0x06: gte_rt[i]=1ll<<(gr+32); break; // CTC2
7714 }
7715 break;
7716 case C1LS:
7717 rs1[i]=(source[i]>>21)&0x1F;
7718 rs2[i]=CSREG;
7719 rt1[i]=0;
7720 rt2[i]=0;
7721 imm[i]=(short)source[i];
7722 break;
7723 case C2LS:
7724 rs1[i]=(source[i]>>21)&0x1F;
7725 rs2[i]=0;
7726 rt1[i]=0;
7727 rt2[i]=0;
7728 imm[i]=(short)source[i];
7729 if(op==0x32) gte_rt[i]=1ll<<((source[i]>>16)&0x1F); // LWC2
7730 else gte_rs[i]=1ll<<((source[i]>>16)&0x1F); // SWC2
7731 break;
7732 case C2OP:
7733 rs1[i]=0;
7734 rs2[i]=0;
7735 rt1[i]=0;
7736 rt2[i]=0;
7737 gte_rs[i]=gte_reg_reads[source[i]&0x3f];
7738 gte_rt[i]=gte_reg_writes[source[i]&0x3f];
7739 gte_rt[i]|=1ll<<63; // every op changes flags
7740 if((source[i]&0x3f)==GTE_MVMVA) {
7741 int v = (source[i] >> 15) & 3;
7742 gte_rs[i]&=~0xe3fll;
7743 if(v==3) gte_rs[i]|=0xe00ll;
7744 else gte_rs[i]|=3ll<<(v*2);
7745 }
7746 break;
7747 case FLOAT:
7748 case FCONV:
7749 rs1[i]=0;
7750 rs2[i]=CSREG;
7751 rt1[i]=0;
7752 rt2[i]=0;
7753 break;
7754 case FCOMP:
7755 rs1[i]=FSREG;
7756 rs2[i]=CSREG;
7757 rt1[i]=FSREG;
7758 rt2[i]=0;
7759 break;
7760 case SYSCALL:
7761 case HLECALL:
7762 case INTCALL:
7763 rs1[i]=CCREG;
7764 rs2[i]=0;
7765 rt1[i]=0;
7766 rt2[i]=0;
7767 break;
7768 default:
7769 rs1[i]=0;
7770 rs2[i]=0;
7771 rt1[i]=0;
7772 rt2[i]=0;
7773 }
7774 /* Calculate branch target addresses */
7775 if(type==UJUMP)
7776 ba[i]=((start+i*4+4)&0xF0000000)|(((unsigned int)source[i]<<6)>>4);
7777 else if(type==CJUMP&&rs1[i]==rs2[i]&&(op&1))
7778 ba[i]=start+i*4+8; // Ignore never taken branch
7779 else if(type==SJUMP&&rs1[i]==0&&!(op2&1))
7780 ba[i]=start+i*4+8; // Ignore never taken branch
7781 else if(type==CJUMP||type==SJUMP||type==FJUMP)
7782 ba[i]=start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14);
7783 else ba[i]=-1;
7784 if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)) {
7785 int do_in_intrp=0;
7786 // branch in delay slot?
7787 if(type==RJUMP||type==UJUMP||type==CJUMP||type==SJUMP||type==FJUMP) {
7788 // don't handle first branch and call interpreter if it's hit
7789 SysPrintf("branch in delay slot @%08x (%08x)\n", addr + i*4, addr);
7790 do_in_intrp=1;
7791 }
7792 // basic load delay detection
7793 else if((type==LOAD||type==LOADLR||type==COP0||type==COP2||type==C2LS)&&rt1[i]!=0) {
7794 int t=(ba[i-1]-start)/4;
7795 if(0 <= t && t < i &&(rt1[i]==rs1[t]||rt1[i]==rs2[t])&&itype[t]!=CJUMP&&itype[t]!=SJUMP) {
7796 // jump target wants DS result - potential load delay effect
7797 SysPrintf("load delay @%08x (%08x)\n", addr + i*4, addr);
7798 do_in_intrp=1;
7799 bt[t+1]=1; // expected return from interpreter
7800 }
7801 else if(i>=2&&rt1[i-2]==2&&rt1[i]==2&&rs1[i]!=2&&rs2[i]!=2&&rs1[i-1]!=2&&rs2[i-1]!=2&&
7802 !(i>=3&&(itype[i-3]==RJUMP||itype[i-3]==UJUMP||itype[i-3]==CJUMP||itype[i-3]==SJUMP))) {
7803 // v0 overwrite like this is a sign of trouble, bail out
7804 SysPrintf("v0 overwrite @%08x (%08x)\n", addr + i*4, addr);
7805 do_in_intrp=1;
7806 }
7807 }
7808 if(do_in_intrp) {
7809 rs1[i-1]=CCREG;
7810 rs2[i-1]=rt1[i-1]=rt2[i-1]=0;
7811 ba[i-1]=-1;
7812 itype[i-1]=INTCALL;
7813 done=2;
7814 i--; // don't compile the DS
7815 }
7816 }
7817 /* Is this the end of the block? */
7818 if(i>0&&(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)) {
7819 if(rt1[i-1]==0) { // Continue past subroutine call (JAL)
7820 done=2;
7821 }
7822 else {
7823 if(stop_after_jal) done=1;
7824 // Stop on BREAK
7825 if((source[i+1]&0xfc00003f)==0x0d) done=1;
7826 }
7827 // Don't recompile stuff that's already compiled
7828 if(check_addr(start+i*4+4)) done=1;
7829 // Don't get too close to the limit
7830 if(i>MAXBLOCK/2) done=1;
7831 }
7832 if(itype[i]==SYSCALL&&stop_after_jal) done=1;
7833 if(itype[i]==HLECALL||itype[i]==INTCALL) done=2;
7834 if(done==2) {
7835 // Does the block continue due to a branch?
7836 for(j=i-1;j>=0;j--)
7837 {
7838 if(ba[j]==start+i*4) done=j=0; // Branch into delay slot
7839 if(ba[j]==start+i*4+4) done=j=0;
7840 if(ba[j]==start+i*4+8) done=j=0;
7841 }
7842 }
7843 //assert(i<MAXBLOCK-1);
7844 if(start+i*4==pagelimit-4) done=1;
7845 assert(start+i*4<pagelimit);
7846 if (i==MAXBLOCK-1) done=1;
7847 // Stop if we're compiling junk
7848 if(itype[i]==NI&&opcode[i]==0x11) {
7849 done=stop_after_jal=1;
7850 SysPrintf("Disabled speculative precompilation\n");
7851 }
7852 }
7853 slen=i;
7854 if(itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==RJUMP||itype[i-1]==FJUMP) {
7855 if(start+i*4==pagelimit) {
7856 itype[i-1]=SPAN;
7857 }
7858 }
7859 assert(slen>0);
7860
7861 /* Pass 2 - Register dependencies and branch targets */
7862
7863 unneeded_registers(0,slen-1,0);
7864
7865 /* Pass 3 - Register allocation */
7866
7867 struct regstat current; // Current register allocations/status
7868 current.is32=1;
7869 current.dirty=0;
7870 current.u=unneeded_reg[0];
7871 current.uu=unneeded_reg_upper[0];
7872 clear_all_regs(current.regmap);
7873 alloc_reg(&current,0,CCREG);
7874 dirty_reg(&current,CCREG);
7875 current.isconst=0;
7876 current.wasconst=0;
7877 current.waswritten=0;
7878 int ds=0;
7879 int cc=0;
7880 int hr=-1;
7881
7882 if((u_int)addr&1) {
7883 // First instruction is delay slot
7884 cc=-1;
7885 bt[1]=1;
7886 ds=1;
7887 unneeded_reg[0]=1;
7888 unneeded_reg_upper[0]=1;
7889 current.regmap[HOST_BTREG]=BTREG;
7890 }
7891
7892 for(i=0;i<slen;i++)
7893 {
7894 if(bt[i])
7895 {
7896 int hr;
7897 for(hr=0;hr<HOST_REGS;hr++)
7898 {
7899 // Is this really necessary?
7900 if(current.regmap[hr]==0) current.regmap[hr]=-1;
7901 }
7902 current.isconst=0;
7903 current.waswritten=0;
7904 }
7905 if(i>1)
7906 {
7907 if((opcode[i-2]&0x2f)==0x05) // BNE/BNEL
7908 {
7909 if(rs1[i-2]==0||rs2[i-2]==0)
7910 {
7911 if(rs1[i-2]) {
7912 current.is32|=1LL<<rs1[i-2];
7913 int hr=get_reg(current.regmap,rs1[i-2]|64);
7914 if(hr>=0) current.regmap[hr]=-1;
7915 }
7916 if(rs2[i-2]) {
7917 current.is32|=1LL<<rs2[i-2];
7918 int hr=get_reg(current.regmap,rs2[i-2]|64);
7919 if(hr>=0) current.regmap[hr]=-1;
7920 }
7921 }
7922 }
7923 }
7924 current.is32=-1LL;
7925
7926 memcpy(regmap_pre[i],current.regmap,sizeof(current.regmap));
7927 regs[i].wasconst=current.isconst;
7928 regs[i].was32=current.is32;
7929 regs[i].wasdirty=current.dirty;
7930 regs[i].loadedconst=0;
7931 if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP) {
7932 if(i+1<slen) {
7933 current.u=unneeded_reg[i+1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
7934 current.uu=unneeded_reg_upper[i+1]&~((1LL<<us1[i])|(1LL<<us2[i]));
7935 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
7936 current.u|=1;
7937 current.uu|=1;
7938 } else {
7939 current.u=1;
7940 current.uu=1;
7941 }
7942 } else {
7943 if(i+1<slen) {
7944 current.u=branch_unneeded_reg[i]&~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
7945 current.uu=branch_unneeded_reg_upper[i]&~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
7946 if((~current.uu>>rt1[i+1])&1) current.uu&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
7947 current.u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
7948 current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
7949 current.u|=1;
7950 current.uu|=1;
7951 } else { SysPrintf("oops, branch at end of block with no delay slot\n");exit(1); }
7952 }
7953 is_ds[i]=ds;
7954 if(ds) {
7955 ds=0; // Skip delay slot, already allocated as part of branch
7956 // ...but we need to alloc it in case something jumps here
7957 if(i+1<slen) {
7958 current.u=branch_unneeded_reg[i-1]&unneeded_reg[i+1];
7959 current.uu=branch_unneeded_reg_upper[i-1]&unneeded_reg_upper[i+1];
7960 }else{
7961 current.u=branch_unneeded_reg[i-1];
7962 current.uu=branch_unneeded_reg_upper[i-1];
7963 }
7964 current.u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
7965 current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
7966 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
7967 current.u|=1;
7968 current.uu|=1;
7969 struct regstat temp;
7970 memcpy(&temp,&current,sizeof(current));
7971 temp.wasdirty=temp.dirty;
7972 temp.was32=temp.is32;
7973 // TODO: Take into account unconditional branches, as below
7974 delayslot_alloc(&temp,i);
7975 memcpy(regs[i].regmap,temp.regmap,sizeof(temp.regmap));
7976 regs[i].wasdirty=temp.wasdirty;
7977 regs[i].was32=temp.was32;
7978 regs[i].dirty=temp.dirty;
7979 regs[i].is32=temp.is32;
7980 regs[i].isconst=0;
7981 regs[i].wasconst=0;
7982 current.isconst=0;
7983 // Create entry (branch target) regmap
7984 for(hr=0;hr<HOST_REGS;hr++)
7985 {
7986 int r=temp.regmap[hr];
7987 if(r>=0) {
7988 if(r!=regmap_pre[i][hr]) {
7989 regs[i].regmap_entry[hr]=-1;
7990 }
7991 else
7992 {
7993 if(r<64){
7994 if((current.u>>r)&1) {
7995 regs[i].regmap_entry[hr]=-1;
7996 regs[i].regmap[hr]=-1;
7997 //Don't clear regs in the delay slot as the branch might need them
7998 //current.regmap[hr]=-1;
7999 }else
8000 regs[i].regmap_entry[hr]=r;
8001 }
8002 else {
8003 if((current.uu>>(r&63))&1) {
8004 regs[i].regmap_entry[hr]=-1;
8005 regs[i].regmap[hr]=-1;
8006 //Don't clear regs in the delay slot as the branch might need them
8007 //current.regmap[hr]=-1;
8008 }else
8009 regs[i].regmap_entry[hr]=r;
8010 }
8011 }
8012 } else {
8013 // First instruction expects CCREG to be allocated
8014 if(i==0&&hr==HOST_CCREG)
8015 regs[i].regmap_entry[hr]=CCREG;
8016 else
8017 regs[i].regmap_entry[hr]=-1;
8018 }
8019 }
8020 }
8021 else { // Not delay slot
8022 switch(itype[i]) {
8023 case UJUMP:
8024 //current.isconst=0; // DEBUG
8025 //current.wasconst=0; // DEBUG
8026 //regs[i].wasconst=0; // DEBUG
8027 clear_const(&current,rt1[i]);
8028 alloc_cc(&current,i);
8029 dirty_reg(&current,CCREG);
8030 if (rt1[i]==31) {
8031 alloc_reg(&current,i,31);
8032 dirty_reg(&current,31);
8033 //assert(rs1[i+1]!=31&&rs2[i+1]!=31);
8034 //assert(rt1[i+1]!=rt1[i]);
8035 #ifdef REG_PREFETCH
8036 alloc_reg(&current,i,PTEMP);
8037 #endif
8038 //current.is32|=1LL<<rt1[i];
8039 }
8040 ooo[i]=1;
8041 delayslot_alloc(&current,i+1);
8042 //current.isconst=0; // DEBUG
8043 ds=1;
8044 //printf("i=%d, isconst=%x\n",i,current.isconst);
8045 break;
8046 case RJUMP:
8047 //current.isconst=0;
8048 //current.wasconst=0;
8049 //regs[i].wasconst=0;
8050 clear_const(&current,rs1[i]);
8051 clear_const(&current,rt1[i]);
8052 alloc_cc(&current,i);
8053 dirty_reg(&current,CCREG);
8054 if(rs1[i]!=rt1[i+1]&&rs1[i]!=rt2[i+1]) {
8055 alloc_reg(&current,i,rs1[i]);
8056 if (rt1[i]!=0) {
8057 alloc_reg(&current,i,rt1[i]);
8058 dirty_reg(&current,rt1[i]);
8059 assert(rs1[i+1]!=rt1[i]&&rs2[i+1]!=rt1[i]);
8060 assert(rt1[i+1]!=rt1[i]);
8061 #ifdef REG_PREFETCH
8062 alloc_reg(&current,i,PTEMP);
8063 #endif
8064 }
8065 #ifdef USE_MINI_HT
8066 if(rs1[i]==31) { // JALR
8067 alloc_reg(&current,i,RHASH);
8068 #ifndef HOST_IMM_ADDR32
8069 alloc_reg(&current,i,RHTBL);
8070 #endif
8071 }
8072 #endif
8073 delayslot_alloc(&current,i+1);
8074 } else {
8075 // The delay slot overwrites our source register,
8076 // allocate a temporary register to hold the old value.
8077 current.isconst=0;
8078 current.wasconst=0;
8079 regs[i].wasconst=0;
8080 delayslot_alloc(&current,i+1);
8081 current.isconst=0;
8082 alloc_reg(&current,i,RTEMP);
8083 }
8084 //current.isconst=0; // DEBUG
8085 ooo[i]=1;
8086 ds=1;
8087 break;
8088 case CJUMP:
8089 //current.isconst=0;
8090 //current.wasconst=0;
8091 //regs[i].wasconst=0;
8092 clear_const(&current,rs1[i]);
8093 clear_const(&current,rs2[i]);
8094 if((opcode[i]&0x3E)==4) // BEQ/BNE
8095 {
8096 alloc_cc(&current,i);
8097 dirty_reg(&current,CCREG);
8098 if(rs1[i]) alloc_reg(&current,i,rs1[i]);
8099 if(rs2[i]) alloc_reg(&current,i,rs2[i]);
8100 if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
8101 {
8102 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
8103 if(rs2[i]) alloc_reg64(&current,i,rs2[i]);
8104 }
8105 if((rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]))||
8106 (rs2[i]&&(rs2[i]==rt1[i+1]||rs2[i]==rt2[i+1]))) {
8107 // The delay slot overwrites one of our conditions.
8108 // Allocate the branch condition registers instead.
8109 current.isconst=0;
8110 current.wasconst=0;
8111 regs[i].wasconst=0;
8112 if(rs1[i]) alloc_reg(&current,i,rs1[i]);
8113 if(rs2[i]) alloc_reg(&current,i,rs2[i]);
8114 if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
8115 {
8116 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
8117 if(rs2[i]) alloc_reg64(&current,i,rs2[i]);
8118 }
8119 }
8120 else
8121 {
8122 ooo[i]=1;
8123 delayslot_alloc(&current,i+1);
8124 }
8125 }
8126 else
8127 if((opcode[i]&0x3E)==6) // BLEZ/BGTZ
8128 {
8129 alloc_cc(&current,i);
8130 dirty_reg(&current,CCREG);
8131 alloc_reg(&current,i,rs1[i]);
8132 if(!(current.is32>>rs1[i]&1))
8133 {
8134 alloc_reg64(&current,i,rs1[i]);
8135 }
8136 if(rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1])) {
8137 // The delay slot overwrites one of our conditions.
8138 // Allocate the branch condition registers instead.
8139 current.isconst=0;
8140 current.wasconst=0;
8141 regs[i].wasconst=0;
8142 if(rs1[i]) alloc_reg(&current,i,rs1[i]);
8143 if(!((current.is32>>rs1[i])&1))
8144 {
8145 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
8146 }
8147 }
8148 else
8149 {
8150 ooo[i]=1;
8151 delayslot_alloc(&current,i+1);
8152 }
8153 }
8154 else
8155 // Don't alloc the delay slot yet because we might not execute it
8156 if((opcode[i]&0x3E)==0x14) // BEQL/BNEL
8157 {
8158 current.isconst=0;
8159 current.wasconst=0;
8160 regs[i].wasconst=0;
8161 alloc_cc(&current,i);
8162 dirty_reg(&current,CCREG);
8163 alloc_reg(&current,i,rs1[i]);
8164 alloc_reg(&current,i,rs2[i]);
8165 if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
8166 {
8167 alloc_reg64(&current,i,rs1[i]);
8168 alloc_reg64(&current,i,rs2[i]);
8169 }
8170 }
8171 else
8172 if((opcode[i]&0x3E)==0x16) // BLEZL/BGTZL
8173 {
8174 current.isconst=0;
8175 current.wasconst=0;
8176 regs[i].wasconst=0;
8177 alloc_cc(&current,i);
8178 dirty_reg(&current,CCREG);
8179 alloc_reg(&current,i,rs1[i]);
8180 if(!(current.is32>>rs1[i]&1))
8181 {
8182 alloc_reg64(&current,i,rs1[i]);
8183 }
8184 }
8185 ds=1;
8186 //current.isconst=0;
8187 break;
8188 case SJUMP:
8189 //current.isconst=0;
8190 //current.wasconst=0;
8191 //regs[i].wasconst=0;
8192 clear_const(&current,rs1[i]);
8193 clear_const(&current,rt1[i]);
8194 //if((opcode2[i]&0x1E)==0x0) // BLTZ/BGEZ
8195 if((opcode2[i]&0x0E)==0x0) // BLTZ/BGEZ
8196 {
8197 alloc_cc(&current,i);
8198 dirty_reg(&current,CCREG);
8199 alloc_reg(&current,i,rs1[i]);
8200 if(!(current.is32>>rs1[i]&1))
8201 {
8202 alloc_reg64(&current,i,rs1[i]);
8203 }
8204 if (rt1[i]==31) { // BLTZAL/BGEZAL
8205 alloc_reg(&current,i,31);
8206 dirty_reg(&current,31);
8207 //#ifdef REG_PREFETCH
8208 //alloc_reg(&current,i,PTEMP);
8209 //#endif
8210 //current.is32|=1LL<<rt1[i];
8211 }
8212 if((rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1])) // The delay slot overwrites the branch condition.
8213 ||(rt1[i]==31&&(rs1[i+1]==31||rs2[i+1]==31||rt1[i+1]==31||rt2[i+1]==31))) { // DS touches $ra
8214 // Allocate the branch condition registers instead.
8215 current.isconst=0;
8216 current.wasconst=0;
8217 regs[i].wasconst=0;
8218 if(rs1[i]) alloc_reg(&current,i,rs1[i]);
8219 if(!((current.is32>>rs1[i])&1))
8220 {
8221 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
8222 }
8223 }
8224 else
8225 {
8226 ooo[i]=1;
8227 delayslot_alloc(&current,i+1);
8228 }
8229 }
8230 else
8231 // Don't alloc the delay slot yet because we might not execute it
8232 if((opcode2[i]&0x1E)==0x2) // BLTZL/BGEZL
8233 {
8234 current.isconst=0;
8235 current.wasconst=0;
8236 regs[i].wasconst=0;
8237 alloc_cc(&current,i);
8238 dirty_reg(&current,CCREG);
8239 alloc_reg(&current,i,rs1[i]);
8240 if(!(current.is32>>rs1[i]&1))
8241 {
8242 alloc_reg64(&current,i,rs1[i]);
8243 }
8244 }
8245 ds=1;
8246 //current.isconst=0;
8247 break;
8248 case FJUMP:
8249 current.isconst=0;
8250 current.wasconst=0;
8251 regs[i].wasconst=0;
8252 if(likely[i]==0) // BC1F/BC1T
8253 {
8254 // TODO: Theoretically we can run out of registers here on x86.
8255 // The delay slot can allocate up to six, and we need to check
8256 // CSREG before executing the delay slot. Possibly we can drop
8257 // the cycle count and then reload it after checking that the
8258 // FPU is in a usable state, or don't do out-of-order execution.
8259 alloc_cc(&current,i);
8260 dirty_reg(&current,CCREG);
8261 alloc_reg(&current,i,FSREG);
8262 alloc_reg(&current,i,CSREG);
8263 if(itype[i+1]==FCOMP) {
8264 // The delay slot overwrites the branch condition.
8265 // Allocate the branch condition registers instead.
8266 alloc_cc(&current,i);
8267 dirty_reg(&current,CCREG);
8268 alloc_reg(&current,i,CSREG);
8269 alloc_reg(&current,i,FSREG);
8270 }
8271 else {
8272 ooo[i]=1;
8273 delayslot_alloc(&current,i+1);
8274 alloc_reg(&current,i+1,CSREG);
8275 }
8276 }
8277 else
8278 // Don't alloc the delay slot yet because we might not execute it
8279 if(likely[i]) // BC1FL/BC1TL
8280 {
8281 alloc_cc(&current,i);
8282 dirty_reg(&current,CCREG);
8283 alloc_reg(&current,i,CSREG);
8284 alloc_reg(&current,i,FSREG);
8285 }
8286 ds=1;
8287 current.isconst=0;
8288 break;
8289 case IMM16:
8290 imm16_alloc(&current,i);
8291 break;
8292 case LOAD:
8293 case LOADLR:
8294 load_alloc(&current,i);
8295 break;
8296 case STORE:
8297 case STORELR:
8298 store_alloc(&current,i);
8299 break;
8300 case ALU:
8301 alu_alloc(&current,i);
8302 break;
8303 case SHIFT:
8304 shift_alloc(&current,i);
8305 break;
8306 case MULTDIV:
8307 multdiv_alloc(&current,i);
8308 break;
8309 case SHIFTIMM:
8310 shiftimm_alloc(&current,i);
8311 break;
8312 case MOV:
8313 mov_alloc(&current,i);
8314 break;
8315 case COP0:
8316 cop0_alloc(&current,i);
8317 break;
8318 case COP1:
8319 case COP2:
8320 cop1_alloc(&current,i);
8321 break;
8322 case C1LS:
8323 c1ls_alloc(&current,i);
8324 break;
8325 case C2LS:
8326 c2ls_alloc(&current,i);
8327 break;
8328 case C2OP:
8329 c2op_alloc(&current,i);
8330 break;
8331 case FCONV:
8332 fconv_alloc(&current,i);
8333 break;
8334 case FLOAT:
8335 float_alloc(&current,i);
8336 break;
8337 case FCOMP:
8338 fcomp_alloc(&current,i);
8339 break;
8340 case SYSCALL:
8341 case HLECALL:
8342 case INTCALL:
8343 syscall_alloc(&current,i);
8344 break;
8345 case SPAN:
8346 pagespan_alloc(&current,i);
8347 break;
8348 }
8349
8350 // Drop the upper half of registers that have become 32-bit
8351 current.uu|=current.is32&((1LL<<rt1[i])|(1LL<<rt2[i]));
8352 if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP) {
8353 current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
8354 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
8355 current.uu|=1;
8356 } else {
8357 current.uu|=current.is32&((1LL<<rt1[i+1])|(1LL<<rt2[i+1]));
8358 current.uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
8359 if((~current.uu>>rt1[i+1])&1) current.uu&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
8360 current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
8361 current.uu|=1;
8362 }
8363
8364 // Create entry (branch target) regmap
8365 for(hr=0;hr<HOST_REGS;hr++)
8366 {
8367 int r,or;
8368 r=current.regmap[hr];
8369 if(r>=0) {
8370 if(r!=regmap_pre[i][hr]) {
8371 // TODO: delay slot (?)
8372 or=get_reg(regmap_pre[i],r); // Get old mapping for this register
8373 if(or<0||(r&63)>=TEMPREG){
8374 regs[i].regmap_entry[hr]=-1;
8375 }
8376 else
8377 {
8378 // Just move it to a different register
8379 regs[i].regmap_entry[hr]=r;
8380 // If it was dirty before, it's still dirty
8381 if((regs[i].wasdirty>>or)&1) dirty_reg(&current,r&63);
8382 }
8383 }
8384 else
8385 {
8386 // Unneeded
8387 if(r==0){
8388 regs[i].regmap_entry[hr]=0;
8389 }
8390 else
8391 if(r<64){
8392 if((current.u>>r)&1) {
8393 regs[i].regmap_entry[hr]=-1;
8394 //regs[i].regmap[hr]=-1;
8395 current.regmap[hr]=-1;
8396 }else
8397 regs[i].regmap_entry[hr]=r;
8398 }
8399 else {
8400 if((current.uu>>(r&63))&1) {
8401 regs[i].regmap_entry[hr]=-1;
8402 //regs[i].regmap[hr]=-1;
8403 current.regmap[hr]=-1;
8404 }else
8405 regs[i].regmap_entry[hr]=r;
8406 }
8407 }
8408 } else {
8409 // Branches expect CCREG to be allocated at the target
8410 if(regmap_pre[i][hr]==CCREG)
8411 regs[i].regmap_entry[hr]=CCREG;
8412 else
8413 regs[i].regmap_entry[hr]=-1;
8414 }
8415 }
8416 memcpy(regs[i].regmap,current.regmap,sizeof(current.regmap));
8417 }
8418
8419 if(i>0&&(itype[i-1]==STORE||itype[i-1]==STORELR||(itype[i-1]==C2LS&&opcode[i-1]==0x3a))&&(u_int)imm[i-1]<0x800)
8420 current.waswritten|=1<<rs1[i-1];
8421 current.waswritten&=~(1<<rt1[i]);
8422 current.waswritten&=~(1<<rt2[i]);
8423 if((itype[i]==STORE||itype[i]==STORELR||(itype[i]==C2LS&&opcode[i]==0x3a))&&(u_int)imm[i]>=0x800)
8424 current.waswritten&=~(1<<rs1[i]);
8425
8426 /* Branch post-alloc */
8427 if(i>0)
8428 {
8429 current.was32=current.is32;
8430 current.wasdirty=current.dirty;
8431 switch(itype[i-1]) {
8432 case UJUMP:
8433 memcpy(&branch_regs[i-1],&current,sizeof(current));
8434 branch_regs[i-1].isconst=0;
8435 branch_regs[i-1].wasconst=0;
8436 branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
8437 branch_regs[i-1].uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
8438 alloc_cc(&branch_regs[i-1],i-1);
8439 dirty_reg(&branch_regs[i-1],CCREG);
8440 if(rt1[i-1]==31) { // JAL
8441 alloc_reg(&branch_regs[i-1],i-1,31);
8442 dirty_reg(&branch_regs[i-1],31);
8443 branch_regs[i-1].is32|=1LL<<31;
8444 }
8445 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
8446 memcpy(constmap[i],constmap[i-1],sizeof(current_constmap));
8447 break;
8448 case RJUMP:
8449 memcpy(&branch_regs[i-1],&current,sizeof(current));
8450 branch_regs[i-1].isconst=0;
8451 branch_regs[i-1].wasconst=0;
8452 branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
8453 branch_regs[i-1].uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
8454 alloc_cc(&branch_regs[i-1],i-1);
8455 dirty_reg(&branch_regs[i-1],CCREG);
8456 alloc_reg(&branch_regs[i-1],i-1,rs1[i-1]);
8457 if(rt1[i-1]!=0) { // JALR
8458 alloc_reg(&branch_regs[i-1],i-1,rt1[i-1]);
8459 dirty_reg(&branch_regs[i-1],rt1[i-1]);
8460 branch_regs[i-1].is32|=1LL<<rt1[i-1];
8461 }
8462 #ifdef USE_MINI_HT
8463 if(rs1[i-1]==31) { // JALR
8464 alloc_reg(&branch_regs[i-1],i-1,RHASH);
8465 #ifndef HOST_IMM_ADDR32
8466 alloc_reg(&branch_regs[i-1],i-1,RHTBL);
8467 #endif
8468 }
8469 #endif
8470 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
8471 memcpy(constmap[i],constmap[i-1],sizeof(current_constmap));
8472 break;
8473 case CJUMP:
8474 if((opcode[i-1]&0x3E)==4) // BEQ/BNE
8475 {
8476 alloc_cc(&current,i-1);
8477 dirty_reg(&current,CCREG);
8478 if((rs1[i-1]&&(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]))||
8479 (rs2[i-1]&&(rs2[i-1]==rt1[i]||rs2[i-1]==rt2[i]))) {
8480 // The delay slot overwrote one of our conditions
8481 // Delay slot goes after the test (in order)
8482 current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
8483 current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
8484 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
8485 current.u|=1;
8486 current.uu|=1;
8487 delayslot_alloc(&current,i);
8488 current.isconst=0;
8489 }
8490 else
8491 {
8492 current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
8493 current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
8494 // Alloc the branch condition registers
8495 if(rs1[i-1]) alloc_reg(&current,i-1,rs1[i-1]);
8496 if(rs2[i-1]) alloc_reg(&current,i-1,rs2[i-1]);
8497 if(!((current.is32>>rs1[i-1])&(current.is32>>rs2[i-1])&1))
8498 {
8499 if(rs1[i-1]) alloc_reg64(&current,i-1,rs1[i-1]);
8500 if(rs2[i-1]) alloc_reg64(&current,i-1,rs2[i-1]);
8501 }
8502 }
8503 memcpy(&branch_regs[i-1],&current,sizeof(current));
8504 branch_regs[i-1].isconst=0;
8505 branch_regs[i-1].wasconst=0;
8506 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
8507 memcpy(constmap[i],constmap[i-1],sizeof(current_constmap));
8508 }
8509 else
8510 if((opcode[i-1]&0x3E)==6) // BLEZ/BGTZ
8511 {
8512 alloc_cc(&current,i-1);
8513 dirty_reg(&current,CCREG);
8514 if(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]) {
8515 // The delay slot overwrote the branch condition
8516 // Delay slot goes after the test (in order)
8517 current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
8518 current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
8519 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
8520 current.u|=1;
8521 current.uu|=1;
8522 delayslot_alloc(&current,i);
8523 current.isconst=0;
8524 }
8525 else
8526 {
8527 current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
8528 current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
8529 // Alloc the branch condition register
8530 alloc_reg(&current,i-1,rs1[i-1]);
8531 if(!(current.is32>>rs1[i-1]&1))
8532 {
8533 alloc_reg64(&current,i-1,rs1[i-1]);
8534 }
8535 }
8536 memcpy(&branch_regs[i-1],&current,sizeof(current));
8537 branch_regs[i-1].isconst=0;
8538 branch_regs[i-1].wasconst=0;
8539 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
8540 memcpy(constmap[i],constmap[i-1],sizeof(current_constmap));
8541 }
8542 else
8543 // Alloc the delay slot in case the branch is taken
8544 if((opcode[i-1]&0x3E)==0x14) // BEQL/BNEL
8545 {
8546 memcpy(&branch_regs[i-1],&current,sizeof(current));
8547 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
8548 branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
8549 if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
8550 alloc_cc(&branch_regs[i-1],i);
8551 dirty_reg(&branch_regs[i-1],CCREG);
8552 delayslot_alloc(&branch_regs[i-1],i);
8553 branch_regs[i-1].isconst=0;
8554 alloc_reg(&current,i,CCREG); // Not taken path
8555 dirty_reg(&current,CCREG);
8556 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
8557 }
8558 else
8559 if((opcode[i-1]&0x3E)==0x16) // BLEZL/BGTZL
8560 {
8561 memcpy(&branch_regs[i-1],&current,sizeof(current));
8562 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
8563 branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
8564 if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
8565 alloc_cc(&branch_regs[i-1],i);
8566 dirty_reg(&branch_regs[i-1],CCREG);
8567 delayslot_alloc(&branch_regs[i-1],i);
8568 branch_regs[i-1].isconst=0;
8569 alloc_reg(&current,i,CCREG); // Not taken path
8570 dirty_reg(&current,CCREG);
8571 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
8572 }
8573 break;
8574 case SJUMP:
8575 //if((opcode2[i-1]&0x1E)==0) // BLTZ/BGEZ
8576 if((opcode2[i-1]&0x0E)==0) // BLTZ/BGEZ
8577 {
8578 alloc_cc(&current,i-1);
8579 dirty_reg(&current,CCREG);
8580 if(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]) {
8581 // The delay slot overwrote the branch condition
8582 // Delay slot goes after the test (in order)
8583 current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
8584 current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
8585 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
8586 current.u|=1;
8587 current.uu|=1;
8588 delayslot_alloc(&current,i);
8589 current.isconst=0;
8590 }
8591 else
8592 {
8593 current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
8594 current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
8595 // Alloc the branch condition register
8596 alloc_reg(&current,i-1,rs1[i-1]);
8597 if(!(current.is32>>rs1[i-1]&1))
8598 {
8599 alloc_reg64(&current,i-1,rs1[i-1]);
8600 }
8601 }
8602 memcpy(&branch_regs[i-1],&current,sizeof(current));
8603 branch_regs[i-1].isconst=0;
8604 branch_regs[i-1].wasconst=0;
8605 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
8606 memcpy(constmap[i],constmap[i-1],sizeof(current_constmap));
8607 }
8608 else
8609 // Alloc the delay slot in case the branch is taken
8610 if((opcode2[i-1]&0x1E)==2) // BLTZL/BGEZL
8611 {
8612 memcpy(&branch_regs[i-1],&current,sizeof(current));
8613 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
8614 branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
8615 if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
8616 alloc_cc(&branch_regs[i-1],i);
8617 dirty_reg(&branch_regs[i-1],CCREG);
8618 delayslot_alloc(&branch_regs[i-1],i);
8619 branch_regs[i-1].isconst=0;
8620 alloc_reg(&current,i,CCREG); // Not taken path
8621 dirty_reg(&current,CCREG);
8622 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
8623 }
8624 // FIXME: BLTZAL/BGEZAL
8625 if(opcode2[i-1]&0x10) { // BxxZAL
8626 alloc_reg(&branch_regs[i-1],i-1,31);
8627 dirty_reg(&branch_regs[i-1],31);
8628 branch_regs[i-1].is32|=1LL<<31;
8629 }
8630 break;
8631 case FJUMP:
8632 if(likely[i-1]==0) // BC1F/BC1T
8633 {
8634 alloc_cc(&current,i-1);
8635 dirty_reg(&current,CCREG);
8636 if(itype[i]==FCOMP) {
8637 // The delay slot overwrote the branch condition
8638 // Delay slot goes after the test (in order)
8639 delayslot_alloc(&current,i);
8640 current.isconst=0;
8641 }
8642 else
8643 {
8644 current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
8645 current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
8646 // Alloc the branch condition register
8647 alloc_reg(&current,i-1,FSREG);
8648 }
8649 memcpy(&branch_regs[i-1],&current,sizeof(current));
8650 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
8651 }
8652 else // BC1FL/BC1TL
8653 {
8654 // Alloc the delay slot in case the branch is taken
8655 memcpy(&branch_regs[i-1],&current,sizeof(current));
8656 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
8657 branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
8658 if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
8659 alloc_cc(&branch_regs[i-1],i);
8660 dirty_reg(&branch_regs[i-1],CCREG);
8661 delayslot_alloc(&branch_regs[i-1],i);
8662 branch_regs[i-1].isconst=0;
8663 alloc_reg(&current,i,CCREG); // Not taken path
8664 dirty_reg(&current,CCREG);
8665 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
8666 }
8667 break;
8668 }
8669
8670 if(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)
8671 {
8672 if(rt1[i-1]==31) // JAL/JALR
8673 {
8674 // Subroutine call will return here, don't alloc any registers
8675 current.is32=1;
8676 current.dirty=0;
8677 clear_all_regs(current.regmap);
8678 alloc_reg(&current,i,CCREG);
8679 dirty_reg(&current,CCREG);
8680 }
8681 else if(i+1<slen)
8682 {
8683 // Internal branch will jump here, match registers to caller
8684 current.is32=0x3FFFFFFFFLL;
8685 current.dirty=0;
8686 clear_all_regs(current.regmap);
8687 alloc_reg(&current,i,CCREG);
8688 dirty_reg(&current,CCREG);
8689 for(j=i-1;j>=0;j--)
8690 {
8691 if(ba[j]==start+i*4+4) {
8692 memcpy(current.regmap,branch_regs[j].regmap,sizeof(current.regmap));
8693 current.is32=branch_regs[j].is32;
8694 current.dirty=branch_regs[j].dirty;
8695 break;
8696 }
8697 }
8698 while(j>=0) {
8699 if(ba[j]==start+i*4+4) {
8700 for(hr=0;hr<HOST_REGS;hr++) {
8701 if(current.regmap[hr]!=branch_regs[j].regmap[hr]) {
8702 current.regmap[hr]=-1;
8703 }
8704 current.is32&=branch_regs[j].is32;
8705 current.dirty&=branch_regs[j].dirty;
8706 }
8707 }
8708 j--;
8709 }
8710 }
8711 }
8712 }
8713
8714 // Count cycles in between branches
8715 ccadj[i]=cc;
8716 if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP||itype[i]==SYSCALL||itype[i]==HLECALL))
8717 {
8718 cc=0;
8719 }
8720#if !defined(DRC_DBG)
8721 else if(itype[i]==C2OP&&gte_cycletab[source[i]&0x3f]>2)
8722 {
8723 // GTE runs in parallel until accessed, divide by 2 for a rough guess
8724 cc+=gte_cycletab[source[i]&0x3f]/2;
8725 }
8726 else if(/*itype[i]==LOAD||itype[i]==STORE||*/itype[i]==C1LS) // load,store causes weird timing issues
8727 {
8728 cc+=2; // 2 cycle penalty (after CLOCK_DIVIDER)
8729 }
8730 else if(i>1&&itype[i]==STORE&&itype[i-1]==STORE&&itype[i-2]==STORE&&!bt[i])
8731 {
8732 cc+=4;
8733 }
8734 else if(itype[i]==C2LS)
8735 {
8736 cc+=4;
8737 }
8738#endif
8739 else
8740 {
8741 cc++;
8742 }
8743
8744 flush_dirty_uppers(&current);
8745 if(!is_ds[i]) {
8746 regs[i].is32=current.is32;
8747 regs[i].dirty=current.dirty;
8748 regs[i].isconst=current.isconst;
8749 memcpy(constmap[i],current_constmap,sizeof(current_constmap));
8750 }
8751 for(hr=0;hr<HOST_REGS;hr++) {
8752 if(hr!=EXCLUDE_REG&&regs[i].regmap[hr]>=0) {
8753 if(regmap_pre[i][hr]!=regs[i].regmap[hr]) {
8754 regs[i].wasconst&=~(1<<hr);
8755 }
8756 }
8757 }
8758 if(current.regmap[HOST_BTREG]==BTREG) current.regmap[HOST_BTREG]=-1;
8759 regs[i].waswritten=current.waswritten;
8760 }
8761
8762 /* Pass 4 - Cull unused host registers */
8763
8764 uint64_t nr=0;
8765
8766 for (i=slen-1;i>=0;i--)
8767 {
8768 int hr;
8769 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
8770 {
8771 if(ba[i]<start || ba[i]>=(start+slen*4))
8772 {
8773 // Branch out of this block, don't need anything
8774 nr=0;
8775 }
8776 else
8777 {
8778 // Internal branch
8779 // Need whatever matches the target
8780 nr=0;
8781 int t=(ba[i]-start)>>2;
8782 for(hr=0;hr<HOST_REGS;hr++)
8783 {
8784 if(regs[i].regmap_entry[hr]>=0) {
8785 if(regs[i].regmap_entry[hr]==regs[t].regmap_entry[hr]) nr|=1<<hr;
8786 }
8787 }
8788 }
8789 // Conditional branch may need registers for following instructions
8790 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
8791 {
8792 if(i<slen-2) {
8793 nr|=needed_reg[i+2];
8794 for(hr=0;hr<HOST_REGS;hr++)
8795 {
8796 if(regmap_pre[i+2][hr]>=0&&get_reg(regs[i+2].regmap_entry,regmap_pre[i+2][hr])<0) nr&=~(1<<hr);
8797 //if((regmap_entry[i+2][hr])>=0) if(!((nr>>hr)&1)) printf("%x-bogus(%d=%d)\n",start+i*4,hr,regmap_entry[i+2][hr]);
8798 }
8799 }
8800 }
8801 // Don't need stuff which is overwritten
8802 //if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
8803 //if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
8804 // Merge in delay slot
8805 for(hr=0;hr<HOST_REGS;hr++)
8806 {
8807 if(!likely[i]) {
8808 // These are overwritten unless the branch is "likely"
8809 // and the delay slot is nullified if not taken
8810 if(rt1[i+1]&&rt1[i+1]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
8811 if(rt2[i+1]&&rt2[i+1]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
8812 }
8813 if(us1[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
8814 if(us2[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
8815 if(rs1[i+1]==regmap_pre[i][hr]) nr|=1<<hr;
8816 if(rs2[i+1]==regmap_pre[i][hr]) nr|=1<<hr;
8817 if(us1[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
8818 if(us2[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
8819 if(rs1[i+1]==regs[i].regmap_entry[hr]) nr|=1<<hr;
8820 if(rs2[i+1]==regs[i].regmap_entry[hr]) nr|=1<<hr;
8821 if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1)) {
8822 if(dep1[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
8823 if(dep2[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
8824 }
8825 if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1)) {
8826 if(dep1[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
8827 if(dep2[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
8828 }
8829 if(itype[i+1]==STORE || itype[i+1]==STORELR || (opcode[i+1]&0x3b)==0x39 || (opcode[i+1]&0x3b)==0x3a) {
8830 if(regmap_pre[i][hr]==INVCP) nr|=1<<hr;
8831 if(regs[i].regmap_entry[hr]==INVCP) nr|=1<<hr;
8832 }
8833 }
8834 }
8835 else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
8836 {
8837 // SYSCALL instruction (software interrupt)
8838 nr=0;
8839 }
8840 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
8841 {
8842 // ERET instruction (return from interrupt)
8843 nr=0;
8844 }
8845 else // Non-branch
8846 {
8847 if(i<slen-1) {
8848 for(hr=0;hr<HOST_REGS;hr++) {
8849 if(regmap_pre[i+1][hr]>=0&&get_reg(regs[i+1].regmap_entry,regmap_pre[i+1][hr])<0) nr&=~(1<<hr);
8850 if(regs[i].regmap[hr]!=regmap_pre[i+1][hr]) nr&=~(1<<hr);
8851 if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
8852 if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
8853 }
8854 }
8855 }
8856 for(hr=0;hr<HOST_REGS;hr++)
8857 {
8858 // Overwritten registers are not needed
8859 if(rt1[i]&&rt1[i]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
8860 if(rt2[i]&&rt2[i]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
8861 if(FTEMP==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
8862 // Source registers are needed
8863 if(us1[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
8864 if(us2[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
8865 if(rs1[i]==regmap_pre[i][hr]) nr|=1<<hr;
8866 if(rs2[i]==regmap_pre[i][hr]) nr|=1<<hr;
8867 if(us1[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
8868 if(us2[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
8869 if(rs1[i]==regs[i].regmap_entry[hr]) nr|=1<<hr;
8870 if(rs2[i]==regs[i].regmap_entry[hr]) nr|=1<<hr;
8871 if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1)) {
8872 if(dep1[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
8873 if(dep1[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
8874 }
8875 if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1)) {
8876 if(dep2[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
8877 if(dep2[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
8878 }
8879 if(itype[i]==STORE || itype[i]==STORELR || (opcode[i]&0x3b)==0x39 || (opcode[i]&0x3b)==0x3a) {
8880 if(regmap_pre[i][hr]==INVCP) nr|=1<<hr;
8881 if(regs[i].regmap_entry[hr]==INVCP) nr|=1<<hr;
8882 }
8883 // Don't store a register immediately after writing it,
8884 // may prevent dual-issue.
8885 // But do so if this is a branch target, otherwise we
8886 // might have to load the register before the branch.
8887 if(i>0&&!bt[i]&&((regs[i].wasdirty>>hr)&1)) {
8888 if((regmap_pre[i][hr]>0&&regmap_pre[i][hr]<64&&!((unneeded_reg[i]>>regmap_pre[i][hr])&1)) ||
8889 (regmap_pre[i][hr]>64&&!((unneeded_reg_upper[i]>>(regmap_pre[i][hr]&63))&1)) ) {
8890 if(rt1[i-1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
8891 if(rt2[i-1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
8892 }
8893 if((regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64&&!((unneeded_reg[i]>>regs[i].regmap_entry[hr])&1)) ||
8894 (regs[i].regmap_entry[hr]>64&&!((unneeded_reg_upper[i]>>(regs[i].regmap_entry[hr]&63))&1)) ) {
8895 if(rt1[i-1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
8896 if(rt2[i-1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
8897 }
8898 }
8899 }
8900 // Cycle count is needed at branches. Assume it is needed at the target too.
8901 if(i==0||bt[i]||itype[i]==CJUMP||itype[i]==FJUMP||itype[i]==SPAN) {
8902 if(regmap_pre[i][HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
8903 if(regs[i].regmap_entry[HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
8904 }
8905 // Save it
8906 needed_reg[i]=nr;
8907
8908 // Deallocate unneeded registers
8909 for(hr=0;hr<HOST_REGS;hr++)
8910 {
8911 if(!((nr>>hr)&1)) {
8912 if(regs[i].regmap_entry[hr]!=CCREG) regs[i].regmap_entry[hr]=-1;
8913 if((regs[i].regmap[hr]&63)!=rs1[i] && (regs[i].regmap[hr]&63)!=rs2[i] &&
8914 (regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
8915 (regs[i].regmap[hr]&63)!=PTEMP && (regs[i].regmap[hr]&63)!=CCREG)
8916 {
8917 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
8918 {
8919 if(likely[i]) {
8920 regs[i].regmap[hr]=-1;
8921 regs[i].isconst&=~(1<<hr);
8922 if(i<slen-2) {
8923 regmap_pre[i+2][hr]=-1;
8924 regs[i+2].wasconst&=~(1<<hr);
8925 }
8926 }
8927 }
8928 }
8929 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
8930 {
8931 int d1=0,d2=0,map=0,temp=0;
8932 if(get_reg(regs[i].regmap,rt1[i+1]|64)>=0||get_reg(branch_regs[i].regmap,rt1[i+1]|64)>=0)
8933 {
8934 d1=dep1[i+1];
8935 d2=dep2[i+1];
8936 }
8937 if(itype[i+1]==STORE || itype[i+1]==STORELR ||
8938 (opcode[i+1]&0x3b)==0x39 || (opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1 || SWC2/SDC2
8939 map=INVCP;
8940 }
8941 if(itype[i+1]==LOADLR || itype[i+1]==STORELR ||
8942 itype[i+1]==C1LS || itype[i+1]==C2LS)
8943 temp=FTEMP;
8944 if((regs[i].regmap[hr]&63)!=rs1[i] && (regs[i].regmap[hr]&63)!=rs2[i] &&
8945 (regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
8946 (regs[i].regmap[hr]&63)!=rt1[i+1] && (regs[i].regmap[hr]&63)!=rt2[i+1] &&
8947 (regs[i].regmap[hr]^64)!=us1[i+1] && (regs[i].regmap[hr]^64)!=us2[i+1] &&
8948 (regs[i].regmap[hr]^64)!=d1 && (regs[i].regmap[hr]^64)!=d2 &&
8949 regs[i].regmap[hr]!=rs1[i+1] && regs[i].regmap[hr]!=rs2[i+1] &&
8950 (regs[i].regmap[hr]&63)!=temp && regs[i].regmap[hr]!=PTEMP &&
8951 regs[i].regmap[hr]!=RHASH && regs[i].regmap[hr]!=RHTBL &&
8952 regs[i].regmap[hr]!=RTEMP && regs[i].regmap[hr]!=CCREG &&
8953 regs[i].regmap[hr]!=map )
8954 {
8955 regs[i].regmap[hr]=-1;
8956 regs[i].isconst&=~(1<<hr);
8957 if((branch_regs[i].regmap[hr]&63)!=rs1[i] && (branch_regs[i].regmap[hr]&63)!=rs2[i] &&
8958 (branch_regs[i].regmap[hr]&63)!=rt1[i] && (branch_regs[i].regmap[hr]&63)!=rt2[i] &&
8959 (branch_regs[i].regmap[hr]&63)!=rt1[i+1] && (branch_regs[i].regmap[hr]&63)!=rt2[i+1] &&
8960 (branch_regs[i].regmap[hr]^64)!=us1[i+1] && (branch_regs[i].regmap[hr]^64)!=us2[i+1] &&
8961 (branch_regs[i].regmap[hr]^64)!=d1 && (branch_regs[i].regmap[hr]^64)!=d2 &&
8962 branch_regs[i].regmap[hr]!=rs1[i+1] && branch_regs[i].regmap[hr]!=rs2[i+1] &&
8963 (branch_regs[i].regmap[hr]&63)!=temp && branch_regs[i].regmap[hr]!=PTEMP &&
8964 branch_regs[i].regmap[hr]!=RHASH && branch_regs[i].regmap[hr]!=RHTBL &&
8965 branch_regs[i].regmap[hr]!=RTEMP && branch_regs[i].regmap[hr]!=CCREG &&
8966 branch_regs[i].regmap[hr]!=map)
8967 {
8968 branch_regs[i].regmap[hr]=-1;
8969 branch_regs[i].regmap_entry[hr]=-1;
8970 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
8971 {
8972 if(!likely[i]&&i<slen-2) {
8973 regmap_pre[i+2][hr]=-1;
8974 regs[i+2].wasconst&=~(1<<hr);
8975 }
8976 }
8977 }
8978 }
8979 }
8980 else
8981 {
8982 // Non-branch
8983 if(i>0)
8984 {
8985 int d1=0,d2=0,map=-1,temp=-1;
8986 if(get_reg(regs[i].regmap,rt1[i]|64)>=0)
8987 {
8988 d1=dep1[i];
8989 d2=dep2[i];
8990 }
8991 if(itype[i]==STORE || itype[i]==STORELR ||
8992 (opcode[i]&0x3b)==0x39 || (opcode[i]&0x3b)==0x3a) { // SWC1/SDC1 || SWC2/SDC2
8993 map=INVCP;
8994 }
8995 if(itype[i]==LOADLR || itype[i]==STORELR ||
8996 itype[i]==C1LS || itype[i]==C2LS)
8997 temp=FTEMP;
8998 if((regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
8999 (regs[i].regmap[hr]^64)!=us1[i] && (regs[i].regmap[hr]^64)!=us2[i] &&
9000 (regs[i].regmap[hr]^64)!=d1 && (regs[i].regmap[hr]^64)!=d2 &&
9001 regs[i].regmap[hr]!=rs1[i] && regs[i].regmap[hr]!=rs2[i] &&
9002 (regs[i].regmap[hr]&63)!=temp && regs[i].regmap[hr]!=map &&
9003 (itype[i]!=SPAN||regs[i].regmap[hr]!=CCREG))
9004 {
9005 if(i<slen-1&&!is_ds[i]) {
9006 if(regmap_pre[i+1][hr]!=-1 || regs[i].regmap[hr]!=-1)
9007 if(regmap_pre[i+1][hr]!=regs[i].regmap[hr])
9008 if(regs[i].regmap[hr]<64||!((regs[i].was32>>(regs[i].regmap[hr]&63))&1))
9009 {
9010 SysPrintf("fail: %x (%d %d!=%d)\n",start+i*4,hr,regmap_pre[i+1][hr],regs[i].regmap[hr]);
9011 assert(regmap_pre[i+1][hr]==regs[i].regmap[hr]);
9012 }
9013 regmap_pre[i+1][hr]=-1;
9014 if(regs[i+1].regmap_entry[hr]==CCREG) regs[i+1].regmap_entry[hr]=-1;
9015 regs[i+1].wasconst&=~(1<<hr);
9016 }
9017 regs[i].regmap[hr]=-1;
9018 regs[i].isconst&=~(1<<hr);
9019 }
9020 }
9021 }
9022 }
9023 }
9024 }
9025
9026 /* Pass 5 - Pre-allocate registers */
9027
9028 // If a register is allocated during a loop, try to allocate it for the
9029 // entire loop, if possible. This avoids loading/storing registers
9030 // inside of the loop.
9031
9032 signed char f_regmap[HOST_REGS];
9033 clear_all_regs(f_regmap);
9034 for(i=0;i<slen-1;i++)
9035 {
9036 if(itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
9037 {
9038 if(ba[i]>=start && ba[i]<(start+i*4))
9039 if(itype[i+1]==NOP||itype[i+1]==MOV||itype[i+1]==ALU
9040 ||itype[i+1]==SHIFTIMM||itype[i+1]==IMM16||itype[i+1]==LOAD
9041 ||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS
9042 ||itype[i+1]==SHIFT||itype[i+1]==COP1||itype[i+1]==FLOAT
9043 ||itype[i+1]==FCOMP||itype[i+1]==FCONV
9044 ||itype[i+1]==COP2||itype[i+1]==C2LS||itype[i+1]==C2OP)
9045 {
9046 int t=(ba[i]-start)>>2;
9047 if(t>0&&(itype[t-1]!=UJUMP&&itype[t-1]!=RJUMP&&itype[t-1]!=CJUMP&&itype[t-1]!=SJUMP&&itype[t-1]!=FJUMP)) // loop_preload can't handle jumps into delay slots
9048 if(t<2||(itype[t-2]!=UJUMP&&itype[t-2]!=RJUMP)||rt1[t-2]!=31) // call/ret assumes no registers allocated
9049 for(hr=0;hr<HOST_REGS;hr++)
9050 {
9051 if(regs[i].regmap[hr]>64) {
9052 if(!((regs[i].dirty>>hr)&1))
9053 f_regmap[hr]=regs[i].regmap[hr];
9054 else f_regmap[hr]=-1;
9055 }
9056 else if(regs[i].regmap[hr]>=0) {
9057 if(f_regmap[hr]!=regs[i].regmap[hr]) {
9058 // dealloc old register
9059 int n;
9060 for(n=0;n<HOST_REGS;n++)
9061 {
9062 if(f_regmap[n]==regs[i].regmap[hr]) {f_regmap[n]=-1;}
9063 }
9064 // and alloc new one
9065 f_regmap[hr]=regs[i].regmap[hr];
9066 }
9067 }
9068 if(branch_regs[i].regmap[hr]>64) {
9069 if(!((branch_regs[i].dirty>>hr)&1))
9070 f_regmap[hr]=branch_regs[i].regmap[hr];
9071 else f_regmap[hr]=-1;
9072 }
9073 else if(branch_regs[i].regmap[hr]>=0) {
9074 if(f_regmap[hr]!=branch_regs[i].regmap[hr]) {
9075 // dealloc old register
9076 int n;
9077 for(n=0;n<HOST_REGS;n++)
9078 {
9079 if(f_regmap[n]==branch_regs[i].regmap[hr]) {f_regmap[n]=-1;}
9080 }
9081 // and alloc new one
9082 f_regmap[hr]=branch_regs[i].regmap[hr];
9083 }
9084 }
9085 if(ooo[i]) {
9086 if(count_free_regs(regs[i].regmap)<=minimum_free_regs[i+1])
9087 f_regmap[hr]=branch_regs[i].regmap[hr];
9088 }else{
9089 if(count_free_regs(branch_regs[i].regmap)<=minimum_free_regs[i+1])
9090 f_regmap[hr]=branch_regs[i].regmap[hr];
9091 }
9092 // Avoid dirty->clean transition
9093 #ifdef DESTRUCTIVE_WRITEBACK
9094 if(t>0) if(get_reg(regmap_pre[t],f_regmap[hr])>=0) if((regs[t].wasdirty>>get_reg(regmap_pre[t],f_regmap[hr]))&1) f_regmap[hr]=-1;
9095 #endif
9096 // This check is only strictly required in the DESTRUCTIVE_WRITEBACK
9097 // case above, however it's always a good idea. We can't hoist the
9098 // load if the register was already allocated, so there's no point
9099 // wasting time analyzing most of these cases. It only "succeeds"
9100 // when the mapping was different and the load can be replaced with
9101 // a mov, which is of negligible benefit. So such cases are
9102 // skipped below.
9103 if(f_regmap[hr]>0) {
9104 if(regs[t].regmap[hr]==f_regmap[hr]||(regs[t].regmap_entry[hr]<0&&get_reg(regmap_pre[t],f_regmap[hr])<0)) {
9105 int r=f_regmap[hr];
9106 for(j=t;j<=i;j++)
9107 {
9108 //printf("Test %x -> %x, %x %d/%d\n",start+i*4,ba[i],start+j*4,hr,r);
9109 if(r<34&&((unneeded_reg[j]>>r)&1)) break;
9110 if(r>63&&((unneeded_reg_upper[j]>>(r&63))&1)) break;
9111 if(r>63) {
9112 // NB This can exclude the case where the upper-half
9113 // register is lower numbered than the lower-half
9114 // register. Not sure if it's worth fixing...
9115 if(get_reg(regs[j].regmap,r&63)<0) break;
9116 if(get_reg(regs[j].regmap_entry,r&63)<0) break;
9117 if(regs[j].is32&(1LL<<(r&63))) break;
9118 }
9119 if(regs[j].regmap[hr]==f_regmap[hr]&&(f_regmap[hr]&63)<TEMPREG) {
9120 //printf("Hit %x -> %x, %x %d/%d\n",start+i*4,ba[i],start+j*4,hr,r);
9121 int k;
9122 if(regs[i].regmap[hr]==-1&&branch_regs[i].regmap[hr]==-1) {
9123 if(get_reg(regs[i+2].regmap,f_regmap[hr])>=0) break;
9124 if(r>63) {
9125 if(get_reg(regs[i].regmap,r&63)<0) break;
9126 if(get_reg(branch_regs[i].regmap,r&63)<0) break;
9127 }
9128 k=i;
9129 while(k>1&&regs[k-1].regmap[hr]==-1) {
9130 if(count_free_regs(regs[k-1].regmap)<=minimum_free_regs[k-1]) {
9131 //printf("no free regs for store %x\n",start+(k-1)*4);
9132 break;
9133 }
9134 if(get_reg(regs[k-1].regmap,f_regmap[hr])>=0) {
9135 //printf("no-match due to different register\n");
9136 break;
9137 }
9138 if(itype[k-2]==UJUMP||itype[k-2]==RJUMP||itype[k-2]==CJUMP||itype[k-2]==SJUMP||itype[k-2]==FJUMP) {
9139 //printf("no-match due to branch\n");
9140 break;
9141 }
9142 // call/ret fast path assumes no registers allocated
9143 if(k>2&&(itype[k-3]==UJUMP||itype[k-3]==RJUMP)&&rt1[k-3]==31) {
9144 break;
9145 }
9146 if(r>63) {
9147 // NB This can exclude the case where the upper-half
9148 // register is lower numbered than the lower-half
9149 // register. Not sure if it's worth fixing...
9150 if(get_reg(regs[k-1].regmap,r&63)<0) break;
9151 if(regs[k-1].is32&(1LL<<(r&63))) break;
9152 }
9153 k--;
9154 }
9155 if(i<slen-1) {
9156 if((regs[k].is32&(1LL<<f_regmap[hr]))!=
9157 (regs[i+2].was32&(1LL<<f_regmap[hr]))) {
9158 //printf("bad match after branch\n");
9159 break;
9160 }
9161 }
9162 if(regs[k-1].regmap[hr]==f_regmap[hr]&&regmap_pre[k][hr]==f_regmap[hr]) {
9163 //printf("Extend r%d, %x ->\n",hr,start+k*4);
9164 while(k<i) {
9165 regs[k].regmap_entry[hr]=f_regmap[hr];
9166 regs[k].regmap[hr]=f_regmap[hr];
9167 regmap_pre[k+1][hr]=f_regmap[hr];
9168 regs[k].wasdirty&=~(1<<hr);
9169 regs[k].dirty&=~(1<<hr);
9170 regs[k].wasdirty|=(1<<hr)&regs[k-1].dirty;
9171 regs[k].dirty|=(1<<hr)&regs[k].wasdirty;
9172 regs[k].wasconst&=~(1<<hr);
9173 regs[k].isconst&=~(1<<hr);
9174 k++;
9175 }
9176 }
9177 else {
9178 //printf("Fail Extend r%d, %x ->\n",hr,start+k*4);
9179 break;
9180 }
9181 assert(regs[i-1].regmap[hr]==f_regmap[hr]);
9182 if(regs[i-1].regmap[hr]==f_regmap[hr]&&regmap_pre[i][hr]==f_regmap[hr]) {
9183 //printf("OK fill %x (r%d)\n",start+i*4,hr);
9184 regs[i].regmap_entry[hr]=f_regmap[hr];
9185 regs[i].regmap[hr]=f_regmap[hr];
9186 regs[i].wasdirty&=~(1<<hr);
9187 regs[i].dirty&=~(1<<hr);
9188 regs[i].wasdirty|=(1<<hr)&regs[i-1].dirty;
9189 regs[i].dirty|=(1<<hr)&regs[i-1].dirty;
9190 regs[i].wasconst&=~(1<<hr);
9191 regs[i].isconst&=~(1<<hr);
9192 branch_regs[i].regmap_entry[hr]=f_regmap[hr];
9193 branch_regs[i].wasdirty&=~(1<<hr);
9194 branch_regs[i].wasdirty|=(1<<hr)&regs[i].dirty;
9195 branch_regs[i].regmap[hr]=f_regmap[hr];
9196 branch_regs[i].dirty&=~(1<<hr);
9197 branch_regs[i].dirty|=(1<<hr)&regs[i].dirty;
9198 branch_regs[i].wasconst&=~(1<<hr);
9199 branch_regs[i].isconst&=~(1<<hr);
9200 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000) {
9201 regmap_pre[i+2][hr]=f_regmap[hr];
9202 regs[i+2].wasdirty&=~(1<<hr);
9203 regs[i+2].wasdirty|=(1<<hr)&regs[i].dirty;
9204 assert((branch_regs[i].is32&(1LL<<f_regmap[hr]))==
9205 (regs[i+2].was32&(1LL<<f_regmap[hr])));
9206 }
9207 }
9208 }
9209 for(k=t;k<j;k++) {
9210 // Alloc register clean at beginning of loop,
9211 // but may dirty it in pass 6
9212 regs[k].regmap_entry[hr]=f_regmap[hr];
9213 regs[k].regmap[hr]=f_regmap[hr];
9214 regs[k].dirty&=~(1<<hr);
9215 regs[k].wasconst&=~(1<<hr);
9216 regs[k].isconst&=~(1<<hr);
9217 if(itype[k]==UJUMP||itype[k]==RJUMP||itype[k]==CJUMP||itype[k]==SJUMP||itype[k]==FJUMP) {
9218 branch_regs[k].regmap_entry[hr]=f_regmap[hr];
9219 branch_regs[k].regmap[hr]=f_regmap[hr];
9220 branch_regs[k].dirty&=~(1<<hr);
9221 branch_regs[k].wasconst&=~(1<<hr);
9222 branch_regs[k].isconst&=~(1<<hr);
9223 if(itype[k]!=RJUMP&&itype[k]!=UJUMP&&(source[k]>>16)!=0x1000) {
9224 regmap_pre[k+2][hr]=f_regmap[hr];
9225 regs[k+2].wasdirty&=~(1<<hr);
9226 assert((branch_regs[k].is32&(1LL<<f_regmap[hr]))==
9227 (regs[k+2].was32&(1LL<<f_regmap[hr])));
9228 }
9229 }
9230 else
9231 {
9232 regmap_pre[k+1][hr]=f_regmap[hr];
9233 regs[k+1].wasdirty&=~(1<<hr);
9234 }
9235 }
9236 if(regs[j].regmap[hr]==f_regmap[hr])
9237 regs[j].regmap_entry[hr]=f_regmap[hr];
9238 break;
9239 }
9240 if(j==i) break;
9241 if(regs[j].regmap[hr]>=0)
9242 break;
9243 if(get_reg(regs[j].regmap,f_regmap[hr])>=0) {
9244 //printf("no-match due to different register\n");
9245 break;
9246 }
9247 if((regs[j+1].is32&(1LL<<f_regmap[hr]))!=(regs[j].is32&(1LL<<f_regmap[hr]))) {
9248 //printf("32/64 mismatch %x %d\n",start+j*4,hr);
9249 break;
9250 }
9251 if(itype[j]==UJUMP||itype[j]==RJUMP||(source[j]>>16)==0x1000)
9252 {
9253 // Stop on unconditional branch
9254 break;
9255 }
9256 if(itype[j]==CJUMP||itype[j]==SJUMP||itype[j]==FJUMP)
9257 {
9258 if(ooo[j]) {
9259 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j+1])
9260 break;
9261 }else{
9262 if(count_free_regs(branch_regs[j].regmap)<=minimum_free_regs[j+1])
9263 break;
9264 }
9265 if(get_reg(branch_regs[j].regmap,f_regmap[hr])>=0) {
9266 //printf("no-match due to different register (branch)\n");
9267 break;
9268 }
9269 }
9270 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) {
9271 //printf("No free regs for store %x\n",start+j*4);
9272 break;
9273 }
9274 if(f_regmap[hr]>=64) {
9275 if(regs[j].is32&(1LL<<(f_regmap[hr]&63))) {
9276 break;
9277 }
9278 else
9279 {
9280 if(get_reg(regs[j].regmap,f_regmap[hr]&63)<0) {
9281 break;
9282 }
9283 }
9284 }
9285 }
9286 }
9287 }
9288 }
9289 }
9290 }else{
9291 // Non branch or undetermined branch target
9292 for(hr=0;hr<HOST_REGS;hr++)
9293 {
9294 if(hr!=EXCLUDE_REG) {
9295 if(regs[i].regmap[hr]>64) {
9296 if(!((regs[i].dirty>>hr)&1))
9297 f_regmap[hr]=regs[i].regmap[hr];
9298 }
9299 else if(regs[i].regmap[hr]>=0) {
9300 if(f_regmap[hr]!=regs[i].regmap[hr]) {
9301 // dealloc old register
9302 int n;
9303 for(n=0;n<HOST_REGS;n++)
9304 {
9305 if(f_regmap[n]==regs[i].regmap[hr]) {f_regmap[n]=-1;}
9306 }
9307 // and alloc new one
9308 f_regmap[hr]=regs[i].regmap[hr];
9309 }
9310 }
9311 }
9312 }
9313 // Try to restore cycle count at branch targets
9314 if(bt[i]) {
9315 for(j=i;j<slen-1;j++) {
9316 if(regs[j].regmap[HOST_CCREG]!=-1) break;
9317 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) {
9318 //printf("no free regs for store %x\n",start+j*4);
9319 break;
9320 }
9321 }
9322 if(regs[j].regmap[HOST_CCREG]==CCREG) {
9323 int k=i;
9324 //printf("Extend CC, %x -> %x\n",start+k*4,start+j*4);
9325 while(k<j) {
9326 regs[k].regmap_entry[HOST_CCREG]=CCREG;
9327 regs[k].regmap[HOST_CCREG]=CCREG;
9328 regmap_pre[k+1][HOST_CCREG]=CCREG;
9329 regs[k+1].wasdirty|=1<<HOST_CCREG;
9330 regs[k].dirty|=1<<HOST_CCREG;
9331 regs[k].wasconst&=~(1<<HOST_CCREG);
9332 regs[k].isconst&=~(1<<HOST_CCREG);
9333 k++;
9334 }
9335 regs[j].regmap_entry[HOST_CCREG]=CCREG;
9336 }
9337 // Work backwards from the branch target
9338 if(j>i&&f_regmap[HOST_CCREG]==CCREG)
9339 {
9340 //printf("Extend backwards\n");
9341 int k;
9342 k=i;
9343 while(regs[k-1].regmap[HOST_CCREG]==-1) {
9344 if(count_free_regs(regs[k-1].regmap)<=minimum_free_regs[k-1]) {
9345 //printf("no free regs for store %x\n",start+(k-1)*4);
9346 break;
9347 }
9348 k--;
9349 }
9350 if(regs[k-1].regmap[HOST_CCREG]==CCREG) {
9351 //printf("Extend CC, %x ->\n",start+k*4);
9352 while(k<=i) {
9353 regs[k].regmap_entry[HOST_CCREG]=CCREG;
9354 regs[k].regmap[HOST_CCREG]=CCREG;
9355 regmap_pre[k+1][HOST_CCREG]=CCREG;
9356 regs[k+1].wasdirty|=1<<HOST_CCREG;
9357 regs[k].dirty|=1<<HOST_CCREG;
9358 regs[k].wasconst&=~(1<<HOST_CCREG);
9359 regs[k].isconst&=~(1<<HOST_CCREG);
9360 k++;
9361 }
9362 }
9363 else {
9364 //printf("Fail Extend CC, %x ->\n",start+k*4);
9365 }
9366 }
9367 }
9368 if(itype[i]!=STORE&&itype[i]!=STORELR&&itype[i]!=C1LS&&itype[i]!=SHIFT&&
9369 itype[i]!=NOP&&itype[i]!=MOV&&itype[i]!=ALU&&itype[i]!=SHIFTIMM&&
9370 itype[i]!=IMM16&&itype[i]!=LOAD&&itype[i]!=COP1&&itype[i]!=FLOAT&&
9371 itype[i]!=FCONV&&itype[i]!=FCOMP)
9372 {
9373 memcpy(f_regmap,regs[i].regmap,sizeof(f_regmap));
9374 }
9375 }
9376 }
9377
9378 // Cache memory offset or tlb map pointer if a register is available
9379 #ifndef HOST_IMM_ADDR32
9380 #ifndef RAM_OFFSET
9381 if(0)
9382 #endif
9383 {
9384 int earliest_available[HOST_REGS];
9385 int loop_start[HOST_REGS];
9386 int score[HOST_REGS];
9387 int end[HOST_REGS];
9388 int reg=ROREG;
9389
9390 // Init
9391 for(hr=0;hr<HOST_REGS;hr++) {
9392 score[hr]=0;earliest_available[hr]=0;
9393 loop_start[hr]=MAXBLOCK;
9394 }
9395 for(i=0;i<slen-1;i++)
9396 {
9397 // Can't do anything if no registers are available
9398 if(count_free_regs(regs[i].regmap)<=minimum_free_regs[i]) {
9399 for(hr=0;hr<HOST_REGS;hr++) {
9400 score[hr]=0;earliest_available[hr]=i+1;
9401 loop_start[hr]=MAXBLOCK;
9402 }
9403 }
9404 if(itype[i]==UJUMP||itype[i]==RJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP) {
9405 if(!ooo[i]) {
9406 if(count_free_regs(branch_regs[i].regmap)<=minimum_free_regs[i+1]) {
9407 for(hr=0;hr<HOST_REGS;hr++) {
9408 score[hr]=0;earliest_available[hr]=i+1;
9409 loop_start[hr]=MAXBLOCK;
9410 }
9411 }
9412 }else{
9413 if(count_free_regs(regs[i].regmap)<=minimum_free_regs[i+1]) {
9414 for(hr=0;hr<HOST_REGS;hr++) {
9415 score[hr]=0;earliest_available[hr]=i+1;
9416 loop_start[hr]=MAXBLOCK;
9417 }
9418 }
9419 }
9420 }
9421 // Mark unavailable registers
9422 for(hr=0;hr<HOST_REGS;hr++) {
9423 if(regs[i].regmap[hr]>=0) {
9424 score[hr]=0;earliest_available[hr]=i+1;
9425 loop_start[hr]=MAXBLOCK;
9426 }
9427 if(itype[i]==UJUMP||itype[i]==RJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP) {
9428 if(branch_regs[i].regmap[hr]>=0) {
9429 score[hr]=0;earliest_available[hr]=i+2;
9430 loop_start[hr]=MAXBLOCK;
9431 }
9432 }
9433 }
9434 // No register allocations after unconditional jumps
9435 if(itype[i]==UJUMP||itype[i]==RJUMP||(source[i]>>16)==0x1000)
9436 {
9437 for(hr=0;hr<HOST_REGS;hr++) {
9438 score[hr]=0;earliest_available[hr]=i+2;
9439 loop_start[hr]=MAXBLOCK;
9440 }
9441 i++; // Skip delay slot too
9442 //printf("skip delay slot: %x\n",start+i*4);
9443 }
9444 else
9445 // Possible match
9446 if(itype[i]==LOAD||itype[i]==LOADLR||
9447 itype[i]==STORE||itype[i]==STORELR||itype[i]==C1LS) {
9448 for(hr=0;hr<HOST_REGS;hr++) {
9449 if(hr!=EXCLUDE_REG) {
9450 end[hr]=i-1;
9451 for(j=i;j<slen-1;j++) {
9452 if(regs[j].regmap[hr]>=0) break;
9453 if(itype[j]==UJUMP||itype[j]==RJUMP||itype[j]==CJUMP||itype[j]==SJUMP||itype[j]==FJUMP) {
9454 if(branch_regs[j].regmap[hr]>=0) break;
9455 if(ooo[j]) {
9456 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j+1]) break;
9457 }else{
9458 if(count_free_regs(branch_regs[j].regmap)<=minimum_free_regs[j+1]) break;
9459 }
9460 }
9461 else if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) break;
9462 if(itype[j]==UJUMP||itype[j]==RJUMP||itype[j]==CJUMP||itype[j]==SJUMP||itype[j]==FJUMP) {
9463 int t=(ba[j]-start)>>2;
9464 if(t<j&&t>=earliest_available[hr]) {
9465 if(t==1||(t>1&&itype[t-2]!=UJUMP&&itype[t-2]!=RJUMP)||(t>1&&rt1[t-2]!=31)) { // call/ret assumes no registers allocated
9466 // Score a point for hoisting loop invariant
9467 if(t<loop_start[hr]) loop_start[hr]=t;
9468 //printf("set loop_start: i=%x j=%x (%x)\n",start+i*4,start+j*4,start+t*4);
9469 score[hr]++;
9470 end[hr]=j;
9471 }
9472 }
9473 else if(t<j) {
9474 if(regs[t].regmap[hr]==reg) {
9475 // Score a point if the branch target matches this register
9476 score[hr]++;
9477 end[hr]=j;
9478 }
9479 }
9480 if(itype[j+1]==LOAD||itype[j+1]==LOADLR||
9481 itype[j+1]==STORE||itype[j+1]==STORELR||itype[j+1]==C1LS) {
9482 score[hr]++;
9483 end[hr]=j;
9484 }
9485 }
9486 if(itype[j]==UJUMP||itype[j]==RJUMP||(source[j]>>16)==0x1000)
9487 {
9488 // Stop on unconditional branch
9489 break;
9490 }
9491 else
9492 if(itype[j]==LOAD||itype[j]==LOADLR||
9493 itype[j]==STORE||itype[j]==STORELR||itype[j]==C1LS) {
9494 score[hr]++;
9495 end[hr]=j;
9496 }
9497 }
9498 }
9499 }
9500 // Find highest score and allocate that register
9501 int maxscore=0;
9502 for(hr=0;hr<HOST_REGS;hr++) {
9503 if(hr!=EXCLUDE_REG) {
9504 if(score[hr]>score[maxscore]) {
9505 maxscore=hr;
9506 //printf("highest score: %d %d (%x->%x)\n",score[hr],hr,start+i*4,start+end[hr]*4);
9507 }
9508 }
9509 }
9510 if(score[maxscore]>1)
9511 {
9512 if(i<loop_start[maxscore]) loop_start[maxscore]=i;
9513 for(j=loop_start[maxscore];j<slen&&j<=end[maxscore];j++) {
9514 //if(regs[j].regmap[maxscore]>=0) {printf("oops: %x %x was %d=%d\n",loop_start[maxscore]*4+start,j*4+start,maxscore,regs[j].regmap[maxscore]);}
9515 assert(regs[j].regmap[maxscore]<0);
9516 if(j>loop_start[maxscore]) regs[j].regmap_entry[maxscore]=reg;
9517 regs[j].regmap[maxscore]=reg;
9518 regs[j].dirty&=~(1<<maxscore);
9519 regs[j].wasconst&=~(1<<maxscore);
9520 regs[j].isconst&=~(1<<maxscore);
9521 if(itype[j]==UJUMP||itype[j]==RJUMP||itype[j]==CJUMP||itype[j]==SJUMP||itype[j]==FJUMP) {
9522 branch_regs[j].regmap[maxscore]=reg;
9523 branch_regs[j].wasdirty&=~(1<<maxscore);
9524 branch_regs[j].dirty&=~(1<<maxscore);
9525 branch_regs[j].wasconst&=~(1<<maxscore);
9526 branch_regs[j].isconst&=~(1<<maxscore);
9527 if(itype[j]!=RJUMP&&itype[j]!=UJUMP&&(source[j]>>16)!=0x1000) {
9528 regmap_pre[j+2][maxscore]=reg;
9529 regs[j+2].wasdirty&=~(1<<maxscore);
9530 }
9531 // loop optimization (loop_preload)
9532 int t=(ba[j]-start)>>2;
9533 if(t==loop_start[maxscore]) {
9534 if(t==1||(t>1&&itype[t-2]!=UJUMP&&itype[t-2]!=RJUMP)||(t>1&&rt1[t-2]!=31)) // call/ret assumes no registers allocated
9535 regs[t].regmap_entry[maxscore]=reg;
9536 }
9537 }
9538 else
9539 {
9540 if(j<1||(itype[j-1]!=RJUMP&&itype[j-1]!=UJUMP&&itype[j-1]!=CJUMP&&itype[j-1]!=SJUMP&&itype[j-1]!=FJUMP)) {
9541 regmap_pre[j+1][maxscore]=reg;
9542 regs[j+1].wasdirty&=~(1<<maxscore);
9543 }
9544 }
9545 }
9546 i=j-1;
9547 if(itype[j-1]==RJUMP||itype[j-1]==UJUMP||itype[j-1]==CJUMP||itype[j-1]==SJUMP||itype[j-1]==FJUMP) i++; // skip delay slot
9548 for(hr=0;hr<HOST_REGS;hr++) {
9549 score[hr]=0;earliest_available[hr]=i+i;
9550 loop_start[hr]=MAXBLOCK;
9551 }
9552 }
9553 }
9554 }
9555 }
9556 #endif
9557
9558 // This allocates registers (if possible) one instruction prior
9559 // to use, which can avoid a load-use penalty on certain CPUs.
9560 for(i=0;i<slen-1;i++)
9561 {
9562 if(!i||(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP))
9563 {
9564 if(!bt[i+1])
9565 {
9566 if(itype[i]==ALU||itype[i]==MOV||itype[i]==LOAD||itype[i]==SHIFTIMM||itype[i]==IMM16
9567 ||((itype[i]==COP1||itype[i]==COP2)&&opcode2[i]<3))
9568 {
9569 if(rs1[i+1]) {
9570 if((hr=get_reg(regs[i+1].regmap,rs1[i+1]))>=0)
9571 {
9572 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
9573 {
9574 regs[i].regmap[hr]=regs[i+1].regmap[hr];
9575 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
9576 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
9577 regs[i].isconst&=~(1<<hr);
9578 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
9579 constmap[i][hr]=constmap[i+1][hr];
9580 regs[i+1].wasdirty&=~(1<<hr);
9581 regs[i].dirty&=~(1<<hr);
9582 }
9583 }
9584 }
9585 if(rs2[i+1]) {
9586 if((hr=get_reg(regs[i+1].regmap,rs2[i+1]))>=0)
9587 {
9588 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
9589 {
9590 regs[i].regmap[hr]=regs[i+1].regmap[hr];
9591 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
9592 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
9593 regs[i].isconst&=~(1<<hr);
9594 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
9595 constmap[i][hr]=constmap[i+1][hr];
9596 regs[i+1].wasdirty&=~(1<<hr);
9597 regs[i].dirty&=~(1<<hr);
9598 }
9599 }
9600 }
9601 // Preload target address for load instruction (non-constant)
9602 if(itype[i+1]==LOAD&&rs1[i+1]&&get_reg(regs[i+1].regmap,rs1[i+1])<0) {
9603 if((hr=get_reg(regs[i+1].regmap,rt1[i+1]))>=0)
9604 {
9605 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
9606 {
9607 regs[i].regmap[hr]=rs1[i+1];
9608 regmap_pre[i+1][hr]=rs1[i+1];
9609 regs[i+1].regmap_entry[hr]=rs1[i+1];
9610 regs[i].isconst&=~(1<<hr);
9611 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
9612 constmap[i][hr]=constmap[i+1][hr];
9613 regs[i+1].wasdirty&=~(1<<hr);
9614 regs[i].dirty&=~(1<<hr);
9615 }
9616 }
9617 }
9618 // Load source into target register
9619 if(lt1[i+1]&&get_reg(regs[i+1].regmap,rs1[i+1])<0) {
9620 if((hr=get_reg(regs[i+1].regmap,rt1[i+1]))>=0)
9621 {
9622 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
9623 {
9624 regs[i].regmap[hr]=rs1[i+1];
9625 regmap_pre[i+1][hr]=rs1[i+1];
9626 regs[i+1].regmap_entry[hr]=rs1[i+1];
9627 regs[i].isconst&=~(1<<hr);
9628 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
9629 constmap[i][hr]=constmap[i+1][hr];
9630 regs[i+1].wasdirty&=~(1<<hr);
9631 regs[i].dirty&=~(1<<hr);
9632 }
9633 }
9634 }
9635 // Address for store instruction (non-constant)
9636 if(itype[i+1]==STORE||itype[i+1]==STORELR
9637 ||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SB/SH/SW/SD/SWC1/SDC1/SWC2/SDC2
9638 if(get_reg(regs[i+1].regmap,rs1[i+1])<0) {
9639 hr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1);
9640 if(hr<0) hr=get_reg(regs[i+1].regmap,-1);
9641 else {regs[i+1].regmap[hr]=AGEN1+((i+1)&1);regs[i+1].isconst&=~(1<<hr);}
9642 assert(hr>=0);
9643 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
9644 {
9645 regs[i].regmap[hr]=rs1[i+1];
9646 regmap_pre[i+1][hr]=rs1[i+1];
9647 regs[i+1].regmap_entry[hr]=rs1[i+1];
9648 regs[i].isconst&=~(1<<hr);
9649 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
9650 constmap[i][hr]=constmap[i+1][hr];
9651 regs[i+1].wasdirty&=~(1<<hr);
9652 regs[i].dirty&=~(1<<hr);
9653 }
9654 }
9655 }
9656 if(itype[i+1]==LOADLR||(opcode[i+1]&0x3b)==0x31||(opcode[i+1]&0x3b)==0x32) { // LWC1/LDC1, LWC2/LDC2
9657 if(get_reg(regs[i+1].regmap,rs1[i+1])<0) {
9658 int nr;
9659 hr=get_reg(regs[i+1].regmap,FTEMP);
9660 assert(hr>=0);
9661 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
9662 {
9663 regs[i].regmap[hr]=rs1[i+1];
9664 regmap_pre[i+1][hr]=rs1[i+1];
9665 regs[i+1].regmap_entry[hr]=rs1[i+1];
9666 regs[i].isconst&=~(1<<hr);
9667 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
9668 constmap[i][hr]=constmap[i+1][hr];
9669 regs[i+1].wasdirty&=~(1<<hr);
9670 regs[i].dirty&=~(1<<hr);
9671 }
9672 else if((nr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1))>=0)
9673 {
9674 // move it to another register
9675 regs[i+1].regmap[hr]=-1;
9676 regmap_pre[i+2][hr]=-1;
9677 regs[i+1].regmap[nr]=FTEMP;
9678 regmap_pre[i+2][nr]=FTEMP;
9679 regs[i].regmap[nr]=rs1[i+1];
9680 regmap_pre[i+1][nr]=rs1[i+1];
9681 regs[i+1].regmap_entry[nr]=rs1[i+1];
9682 regs[i].isconst&=~(1<<nr);
9683 regs[i+1].isconst&=~(1<<nr);
9684 regs[i].dirty&=~(1<<nr);
9685 regs[i+1].wasdirty&=~(1<<nr);
9686 regs[i+1].dirty&=~(1<<nr);
9687 regs[i+2].wasdirty&=~(1<<nr);
9688 }
9689 }
9690 }
9691 if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR/*||itype[i+1]==C1LS||||itype[i+1]==C2LS*/) {
9692 if(itype[i+1]==LOAD)
9693 hr=get_reg(regs[i+1].regmap,rt1[i+1]);
9694 if(itype[i+1]==LOADLR||(opcode[i+1]&0x3b)==0x31||(opcode[i+1]&0x3b)==0x32) // LWC1/LDC1, LWC2/LDC2
9695 hr=get_reg(regs[i+1].regmap,FTEMP);
9696 if(itype[i+1]==STORE||itype[i+1]==STORELR||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1/SWC2/SDC2
9697 hr=get_reg(regs[i+1].regmap,AGEN1+((i+1)&1));
9698 if(hr<0) hr=get_reg(regs[i+1].regmap,-1);
9699 }
9700 if(hr>=0&&regs[i].regmap[hr]<0) {
9701 int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
9702 if(rs>=0&&((regs[i+1].wasconst>>rs)&1)) {
9703 regs[i].regmap[hr]=AGEN1+((i+1)&1);
9704 regmap_pre[i+1][hr]=AGEN1+((i+1)&1);
9705 regs[i+1].regmap_entry[hr]=AGEN1+((i+1)&1);
9706 regs[i].isconst&=~(1<<hr);
9707 regs[i+1].wasdirty&=~(1<<hr);
9708 regs[i].dirty&=~(1<<hr);
9709 }
9710 }
9711 }
9712 }
9713 }
9714 }
9715 }
9716
9717 /* Pass 6 - Optimize clean/dirty state */
9718 clean_registers(0,slen-1,1);
9719
9720 /* Pass 7 - Identify 32-bit registers */
9721 for (i=slen-1;i>=0;i--)
9722 {
9723 if(itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
9724 {
9725 // Conditional branch
9726 if((source[i]>>16)!=0x1000&&i<slen-2) {
9727 // Mark this address as a branch target since it may be called
9728 // upon return from interrupt
9729 bt[i+2]=1;
9730 }
9731 }
9732 }
9733
9734 if(itype[slen-1]==SPAN) {
9735 bt[slen-1]=1; // Mark as a branch target so instruction can restart after exception
9736 }
9737
9738#ifdef DISASM
9739 /* Debug/disassembly */
9740 for(i=0;i<slen;i++)
9741 {
9742 printf("U:");
9743 int r;
9744 for(r=1;r<=CCREG;r++) {
9745 if((unneeded_reg[i]>>r)&1) {
9746 if(r==HIREG) printf(" HI");
9747 else if(r==LOREG) printf(" LO");
9748 else printf(" r%d",r);
9749 }
9750 }
9751 printf("\n");
9752 #if defined(__i386__) || defined(__x86_64__)
9753 printf("pre: eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",regmap_pre[i][0],regmap_pre[i][1],regmap_pre[i][2],regmap_pre[i][3],regmap_pre[i][5],regmap_pre[i][6],regmap_pre[i][7]);
9754 #endif
9755 #ifdef __arm__
9756 printf("pre: r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d\n",regmap_pre[i][0],regmap_pre[i][1],regmap_pre[i][2],regmap_pre[i][3],regmap_pre[i][4],regmap_pre[i][5],regmap_pre[i][6],regmap_pre[i][7],regmap_pre[i][8],regmap_pre[i][9],regmap_pre[i][10],regmap_pre[i][12]);
9757 #endif
9758 printf("needs: ");
9759 if(needed_reg[i]&1) printf("eax ");
9760 if((needed_reg[i]>>1)&1) printf("ecx ");
9761 if((needed_reg[i]>>2)&1) printf("edx ");
9762 if((needed_reg[i]>>3)&1) printf("ebx ");
9763 if((needed_reg[i]>>5)&1) printf("ebp ");
9764 if((needed_reg[i]>>6)&1) printf("esi ");
9765 if((needed_reg[i]>>7)&1) printf("edi ");
9766 printf("\n");
9767 #if defined(__i386__) || defined(__x86_64__)
9768 printf("entry: eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",regs[i].regmap_entry[0],regs[i].regmap_entry[1],regs[i].regmap_entry[2],regs[i].regmap_entry[3],regs[i].regmap_entry[5],regs[i].regmap_entry[6],regs[i].regmap_entry[7]);
9769 printf("dirty: ");
9770 if(regs[i].wasdirty&1) printf("eax ");
9771 if((regs[i].wasdirty>>1)&1) printf("ecx ");
9772 if((regs[i].wasdirty>>2)&1) printf("edx ");
9773 if((regs[i].wasdirty>>3)&1) printf("ebx ");
9774 if((regs[i].wasdirty>>5)&1) printf("ebp ");
9775 if((regs[i].wasdirty>>6)&1) printf("esi ");
9776 if((regs[i].wasdirty>>7)&1) printf("edi ");
9777 #endif
9778 #ifdef __arm__
9779 printf("entry: r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d\n",regs[i].regmap_entry[0],regs[i].regmap_entry[1],regs[i].regmap_entry[2],regs[i].regmap_entry[3],regs[i].regmap_entry[4],regs[i].regmap_entry[5],regs[i].regmap_entry[6],regs[i].regmap_entry[7],regs[i].regmap_entry[8],regs[i].regmap_entry[9],regs[i].regmap_entry[10],regs[i].regmap_entry[12]);
9780 printf("dirty: ");
9781 if(regs[i].wasdirty&1) printf("r0 ");
9782 if((regs[i].wasdirty>>1)&1) printf("r1 ");
9783 if((regs[i].wasdirty>>2)&1) printf("r2 ");
9784 if((regs[i].wasdirty>>3)&1) printf("r3 ");
9785 if((regs[i].wasdirty>>4)&1) printf("r4 ");
9786 if((regs[i].wasdirty>>5)&1) printf("r5 ");
9787 if((regs[i].wasdirty>>6)&1) printf("r6 ");
9788 if((regs[i].wasdirty>>7)&1) printf("r7 ");
9789 if((regs[i].wasdirty>>8)&1) printf("r8 ");
9790 if((regs[i].wasdirty>>9)&1) printf("r9 ");
9791 if((regs[i].wasdirty>>10)&1) printf("r10 ");
9792 if((regs[i].wasdirty>>12)&1) printf("r12 ");
9793 #endif
9794 printf("\n");
9795 disassemble_inst(i);
9796 //printf ("ccadj[%d] = %d\n",i,ccadj[i]);
9797 #if defined(__i386__) || defined(__x86_64__)
9798 printf("eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d dirty: ",regs[i].regmap[0],regs[i].regmap[1],regs[i].regmap[2],regs[i].regmap[3],regs[i].regmap[5],regs[i].regmap[6],regs[i].regmap[7]);
9799 if(regs[i].dirty&1) printf("eax ");
9800 if((regs[i].dirty>>1)&1) printf("ecx ");
9801 if((regs[i].dirty>>2)&1) printf("edx ");
9802 if((regs[i].dirty>>3)&1) printf("ebx ");
9803 if((regs[i].dirty>>5)&1) printf("ebp ");
9804 if((regs[i].dirty>>6)&1) printf("esi ");
9805 if((regs[i].dirty>>7)&1) printf("edi ");
9806 #endif
9807 #ifdef __arm__
9808 printf("r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d dirty: ",regs[i].regmap[0],regs[i].regmap[1],regs[i].regmap[2],regs[i].regmap[3],regs[i].regmap[4],regs[i].regmap[5],regs[i].regmap[6],regs[i].regmap[7],regs[i].regmap[8],regs[i].regmap[9],regs[i].regmap[10],regs[i].regmap[12]);
9809 if(regs[i].dirty&1) printf("r0 ");
9810 if((regs[i].dirty>>1)&1) printf("r1 ");
9811 if((regs[i].dirty>>2)&1) printf("r2 ");
9812 if((regs[i].dirty>>3)&1) printf("r3 ");
9813 if((regs[i].dirty>>4)&1) printf("r4 ");
9814 if((regs[i].dirty>>5)&1) printf("r5 ");
9815 if((regs[i].dirty>>6)&1) printf("r6 ");
9816 if((regs[i].dirty>>7)&1) printf("r7 ");
9817 if((regs[i].dirty>>8)&1) printf("r8 ");
9818 if((regs[i].dirty>>9)&1) printf("r9 ");
9819 if((regs[i].dirty>>10)&1) printf("r10 ");
9820 if((regs[i].dirty>>12)&1) printf("r12 ");
9821 #endif
9822 printf("\n");
9823 if(regs[i].isconst) {
9824 printf("constants: ");
9825 #if defined(__i386__) || defined(__x86_64__)
9826 if(regs[i].isconst&1) printf("eax=%x ",(int)constmap[i][0]);
9827 if((regs[i].isconst>>1)&1) printf("ecx=%x ",(int)constmap[i][1]);
9828 if((regs[i].isconst>>2)&1) printf("edx=%x ",(int)constmap[i][2]);
9829 if((regs[i].isconst>>3)&1) printf("ebx=%x ",(int)constmap[i][3]);
9830 if((regs[i].isconst>>5)&1) printf("ebp=%x ",(int)constmap[i][5]);
9831 if((regs[i].isconst>>6)&1) printf("esi=%x ",(int)constmap[i][6]);
9832 if((regs[i].isconst>>7)&1) printf("edi=%x ",(int)constmap[i][7]);
9833 #endif
9834 #ifdef __arm__
9835 if(regs[i].isconst&1) printf("r0=%x ",(int)constmap[i][0]);
9836 if((regs[i].isconst>>1)&1) printf("r1=%x ",(int)constmap[i][1]);
9837 if((regs[i].isconst>>2)&1) printf("r2=%x ",(int)constmap[i][2]);
9838 if((regs[i].isconst>>3)&1) printf("r3=%x ",(int)constmap[i][3]);
9839 if((regs[i].isconst>>4)&1) printf("r4=%x ",(int)constmap[i][4]);
9840 if((regs[i].isconst>>5)&1) printf("r5=%x ",(int)constmap[i][5]);
9841 if((regs[i].isconst>>6)&1) printf("r6=%x ",(int)constmap[i][6]);
9842 if((regs[i].isconst>>7)&1) printf("r7=%x ",(int)constmap[i][7]);
9843 if((regs[i].isconst>>8)&1) printf("r8=%x ",(int)constmap[i][8]);
9844 if((regs[i].isconst>>9)&1) printf("r9=%x ",(int)constmap[i][9]);
9845 if((regs[i].isconst>>10)&1) printf("r10=%x ",(int)constmap[i][10]);
9846 if((regs[i].isconst>>12)&1) printf("r12=%x ",(int)constmap[i][12]);
9847 #endif
9848 printf("\n");
9849 }
9850 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP) {
9851 #if defined(__i386__) || defined(__x86_64__)
9852 printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d dirty: ",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
9853 if(branch_regs[i].dirty&1) printf("eax ");
9854 if((branch_regs[i].dirty>>1)&1) printf("ecx ");
9855 if((branch_regs[i].dirty>>2)&1) printf("edx ");
9856 if((branch_regs[i].dirty>>3)&1) printf("ebx ");
9857 if((branch_regs[i].dirty>>5)&1) printf("ebp ");
9858 if((branch_regs[i].dirty>>6)&1) printf("esi ");
9859 if((branch_regs[i].dirty>>7)&1) printf("edi ");
9860 #endif
9861 #ifdef __arm__
9862 printf("branch(%d): r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d dirty: ",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[4],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7],branch_regs[i].regmap[8],branch_regs[i].regmap[9],branch_regs[i].regmap[10],branch_regs[i].regmap[12]);
9863 if(branch_regs[i].dirty&1) printf("r0 ");
9864 if((branch_regs[i].dirty>>1)&1) printf("r1 ");
9865 if((branch_regs[i].dirty>>2)&1) printf("r2 ");
9866 if((branch_regs[i].dirty>>3)&1) printf("r3 ");
9867 if((branch_regs[i].dirty>>4)&1) printf("r4 ");
9868 if((branch_regs[i].dirty>>5)&1) printf("r5 ");
9869 if((branch_regs[i].dirty>>6)&1) printf("r6 ");
9870 if((branch_regs[i].dirty>>7)&1) printf("r7 ");
9871 if((branch_regs[i].dirty>>8)&1) printf("r8 ");
9872 if((branch_regs[i].dirty>>9)&1) printf("r9 ");
9873 if((branch_regs[i].dirty>>10)&1) printf("r10 ");
9874 if((branch_regs[i].dirty>>12)&1) printf("r12 ");
9875 #endif
9876 }
9877 }
9878#endif // DISASM
9879
9880 /* Pass 8 - Assembly */
9881 linkcount=0;stubcount=0;
9882 ds=0;is_delayslot=0;
9883 cop1_usable=0;
9884 uint64_t is32_pre=0;
9885 u_int dirty_pre=0;
9886 u_int beginning=(u_int)out;
9887 if((u_int)addr&1) {
9888 ds=1;
9889 pagespan_ds();
9890 }
9891 u_int instr_addr0_override=0;
9892
9893 if (start == 0x80030000) {
9894 // nasty hack for fastbios thing
9895 // override block entry to this code
9896 instr_addr0_override=(u_int)out;
9897 emit_movimm(start,0);
9898 // abuse io address var as a flag that we
9899 // have already returned here once
9900 emit_readword((int)&address,1);
9901 emit_writeword(0,(int)&pcaddr);
9902 emit_writeword(0,(int)&address);
9903 emit_cmp(0,1);
9904 emit_jne((int)new_dyna_leave);
9905 }
9906 for(i=0;i<slen;i++)
9907 {
9908 //if(ds) printf("ds: ");
9909 disassemble_inst(i);
9910 if(ds) {
9911 ds=0; // Skip delay slot
9912 if(bt[i]) assem_debug("OOPS - branch into delay slot\n");
9913 instr_addr[i]=0;
9914 } else {
9915 speculate_register_values(i);
9916 #ifndef DESTRUCTIVE_WRITEBACK
9917 if(i<2||(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000))
9918 {
9919 wb_valid(regmap_pre[i],regs[i].regmap_entry,dirty_pre,regs[i].wasdirty,is32_pre,
9920 unneeded_reg[i],unneeded_reg_upper[i]);
9921 }
9922 if((itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)&&!likely[i]) {
9923 is32_pre=branch_regs[i].is32;
9924 dirty_pre=branch_regs[i].dirty;
9925 }else{
9926 is32_pre=regs[i].is32;
9927 dirty_pre=regs[i].dirty;
9928 }
9929 #endif
9930 // write back
9931 if(i<2||(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000))
9932 {
9933 wb_invalidate(regmap_pre[i],regs[i].regmap_entry,regs[i].wasdirty,regs[i].was32,
9934 unneeded_reg[i],unneeded_reg_upper[i]);
9935 loop_preload(regmap_pre[i],regs[i].regmap_entry);
9936 }
9937 // branch target entry point
9938 instr_addr[i]=(u_int)out;
9939 assem_debug("<->\n");
9940 // load regs
9941 if(regs[i].regmap_entry[HOST_CCREG]==CCREG&&regs[i].regmap[HOST_CCREG]!=CCREG)
9942 wb_register(CCREG,regs[i].regmap_entry,regs[i].wasdirty,regs[i].was32);
9943 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i],rs2[i]);
9944 address_generation(i,&regs[i],regs[i].regmap_entry);
9945 load_consts(regmap_pre[i],regs[i].regmap,regs[i].was32,i);
9946 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
9947 {
9948 // Load the delay slot registers if necessary
9949 if(rs1[i+1]!=rs1[i]&&rs1[i+1]!=rs2[i]&&(rs1[i+1]!=rt1[i]||rt1[i]==0))
9950 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i+1],rs1[i+1]);
9951 if(rs2[i+1]!=rs1[i+1]&&rs2[i+1]!=rs1[i]&&rs2[i+1]!=rs2[i]&&(rs2[i+1]!=rt1[i]||rt1[i]==0))
9952 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs2[i+1],rs2[i+1]);
9953 if(itype[i+1]==STORE||itype[i+1]==STORELR||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a)
9954 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,INVCP,INVCP);
9955 }
9956 else if(i+1<slen)
9957 {
9958 // Preload registers for following instruction
9959 if(rs1[i+1]!=rs1[i]&&rs1[i+1]!=rs2[i])
9960 if(rs1[i+1]!=rt1[i]&&rs1[i+1]!=rt2[i])
9961 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i+1],rs1[i+1]);
9962 if(rs2[i+1]!=rs1[i+1]&&rs2[i+1]!=rs1[i]&&rs2[i+1]!=rs2[i])
9963 if(rs2[i+1]!=rt1[i]&&rs2[i+1]!=rt2[i])
9964 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs2[i+1],rs2[i+1]);
9965 }
9966 // TODO: if(is_ooo(i)) address_generation(i+1);
9967 if(itype[i]==CJUMP||itype[i]==FJUMP)
9968 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,CCREG,CCREG);
9969 if(itype[i]==STORE||itype[i]==STORELR||(opcode[i]&0x3b)==0x39||(opcode[i]&0x3b)==0x3a)
9970 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,INVCP,INVCP);
9971 if(bt[i]) cop1_usable=0;
9972 // assemble
9973 switch(itype[i]) {
9974 case ALU:
9975 alu_assemble(i,&regs[i]);break;
9976 case IMM16:
9977 imm16_assemble(i,&regs[i]);break;
9978 case SHIFT:
9979 shift_assemble(i,&regs[i]);break;
9980 case SHIFTIMM:
9981 shiftimm_assemble(i,&regs[i]);break;
9982 case LOAD:
9983 load_assemble(i,&regs[i]);break;
9984 case LOADLR:
9985 loadlr_assemble(i,&regs[i]);break;
9986 case STORE:
9987 store_assemble(i,&regs[i]);break;
9988 case STORELR:
9989 storelr_assemble(i,&regs[i]);break;
9990 case COP0:
9991 cop0_assemble(i,&regs[i]);break;
9992 case COP1:
9993 cop1_assemble(i,&regs[i]);break;
9994 case C1LS:
9995 c1ls_assemble(i,&regs[i]);break;
9996 case COP2:
9997 cop2_assemble(i,&regs[i]);break;
9998 case C2LS:
9999 c2ls_assemble(i,&regs[i]);break;
10000 case C2OP:
10001 c2op_assemble(i,&regs[i]);break;
10002 case FCONV:
10003 fconv_assemble(i,&regs[i]);break;
10004 case FLOAT:
10005 float_assemble(i,&regs[i]);break;
10006 case FCOMP:
10007 fcomp_assemble(i,&regs[i]);break;
10008 case MULTDIV:
10009 multdiv_assemble(i,&regs[i]);break;
10010 case MOV:
10011 mov_assemble(i,&regs[i]);break;
10012 case SYSCALL:
10013 syscall_assemble(i,&regs[i]);break;
10014 case HLECALL:
10015 hlecall_assemble(i,&regs[i]);break;
10016 case INTCALL:
10017 intcall_assemble(i,&regs[i]);break;
10018 case UJUMP:
10019 ujump_assemble(i,&regs[i]);ds=1;break;
10020 case RJUMP:
10021 rjump_assemble(i,&regs[i]);ds=1;break;
10022 case CJUMP:
10023 cjump_assemble(i,&regs[i]);ds=1;break;
10024 case SJUMP:
10025 sjump_assemble(i,&regs[i]);ds=1;break;
10026 case FJUMP:
10027 fjump_assemble(i,&regs[i]);ds=1;break;
10028 case SPAN:
10029 pagespan_assemble(i,&regs[i]);break;
10030 }
10031 if(itype[i]==UJUMP||itype[i]==RJUMP||(source[i]>>16)==0x1000)
10032 literal_pool(1024);
10033 else
10034 literal_pool_jumpover(256);
10035 }
10036 }
10037 //assert(itype[i-2]==UJUMP||itype[i-2]==RJUMP||(source[i-2]>>16)==0x1000);
10038 // If the block did not end with an unconditional branch,
10039 // add a jump to the next instruction.
10040 if(i>1) {
10041 if(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000&&itype[i-1]!=SPAN) {
10042 assert(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP);
10043 assert(i==slen);
10044 if(itype[i-2]!=CJUMP&&itype[i-2]!=SJUMP&&itype[i-2]!=FJUMP) {
10045 store_regs_bt(regs[i-1].regmap,regs[i-1].is32,regs[i-1].dirty,start+i*4);
10046 if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
10047 emit_loadreg(CCREG,HOST_CCREG);
10048 emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i-1]+1),HOST_CCREG);
10049 }
10050 else if(!likely[i-2])
10051 {
10052 store_regs_bt(branch_regs[i-2].regmap,branch_regs[i-2].is32,branch_regs[i-2].dirty,start+i*4);
10053 assert(branch_regs[i-2].regmap[HOST_CCREG]==CCREG);
10054 }
10055 else
10056 {
10057 store_regs_bt(regs[i-2].regmap,regs[i-2].is32,regs[i-2].dirty,start+i*4);
10058 assert(regs[i-2].regmap[HOST_CCREG]==CCREG);
10059 }
10060 add_to_linker((int)out,start+i*4,0);
10061 emit_jmp(0);
10062 }
10063 }
10064 else
10065 {
10066 assert(i>0);
10067 assert(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP);
10068 store_regs_bt(regs[i-1].regmap,regs[i-1].is32,regs[i-1].dirty,start+i*4);
10069 if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
10070 emit_loadreg(CCREG,HOST_CCREG);
10071 emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i-1]+1),HOST_CCREG);
10072 add_to_linker((int)out,start+i*4,0);
10073 emit_jmp(0);
10074 }
10075
10076 // TODO: delay slot stubs?
10077 // Stubs
10078 for(i=0;i<stubcount;i++)
10079 {
10080 switch(stubs[i][0])
10081 {
10082 case LOADB_STUB:
10083 case LOADH_STUB:
10084 case LOADW_STUB:
10085 case LOADD_STUB:
10086 case LOADBU_STUB:
10087 case LOADHU_STUB:
10088 do_readstub(i);break;
10089 case STOREB_STUB:
10090 case STOREH_STUB:
10091 case STOREW_STUB:
10092 case STORED_STUB:
10093 do_writestub(i);break;
10094 case CC_STUB:
10095 do_ccstub(i);break;
10096 case INVCODE_STUB:
10097 do_invstub(i);break;
10098 case FP_STUB:
10099 do_cop1stub(i);break;
10100 case STORELR_STUB:
10101 do_unalignedwritestub(i);break;
10102 }
10103 }
10104
10105 if (instr_addr0_override)
10106 instr_addr[0] = instr_addr0_override;
10107
10108 /* Pass 9 - Linker */
10109 for(i=0;i<linkcount;i++)
10110 {
10111 assem_debug("%8x -> %8x\n",link_addr[i][0],link_addr[i][1]);
10112 literal_pool(64);
10113 if(!link_addr[i][2])
10114 {
10115 void *stub=out;
10116 void *addr=check_addr(link_addr[i][1]);
10117 emit_extjump(link_addr[i][0],link_addr[i][1]);
10118 if(addr) {
10119 set_jump_target(link_addr[i][0],(int)addr);
10120 add_link(link_addr[i][1],stub);
10121 }
10122 else set_jump_target(link_addr[i][0],(int)stub);
10123 }
10124 else
10125 {
10126 // Internal branch
10127 int target=(link_addr[i][1]-start)>>2;
10128 assert(target>=0&&target<slen);
10129 assert(instr_addr[target]);
10130 //#ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
10131 //set_jump_target_fillslot(link_addr[i][0],instr_addr[target],link_addr[i][2]>>1);
10132 //#else
10133 set_jump_target(link_addr[i][0],instr_addr[target]);
10134 //#endif
10135 }
10136 }
10137 // External Branch Targets (jump_in)
10138 if(copy+slen*4>(void *)shadow+sizeof(shadow)) copy=shadow;
10139 for(i=0;i<slen;i++)
10140 {
10141 if(bt[i]||i==0)
10142 {
10143 if(instr_addr[i]) // TODO - delay slots (=null)
10144 {
10145 u_int vaddr=start+i*4;
10146 u_int page=get_page(vaddr);
10147 u_int vpage=get_vpage(vaddr);
10148 literal_pool(256);
10149 {
10150 assem_debug("%8x (%d) <- %8x\n",instr_addr[i],i,start+i*4);
10151 assem_debug("jump_in: %x\n",start+i*4);
10152 ll_add(jump_dirty+vpage,vaddr,(void *)out);
10153 int entry_point=do_dirty_stub(i);
10154 ll_add_flags(jump_in+page,vaddr,state_rflags,(void *)entry_point);
10155 // If there was an existing entry in the hash table,
10156 // replace it with the new address.
10157 // Don't add new entries. We'll insert the
10158 // ones that actually get used in check_addr().
10159 u_int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
10160 if(ht_bin[0]==vaddr) {
10161 ht_bin[1]=entry_point;
10162 }
10163 if(ht_bin[2]==vaddr) {
10164 ht_bin[3]=entry_point;
10165 }
10166 }
10167 }
10168 }
10169 }
10170 // Write out the literal pool if necessary
10171 literal_pool(0);
10172 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
10173 // Align code
10174 if(((u_int)out)&7) emit_addnop(13);
10175 #endif
10176 assert((u_int)out-beginning<MAX_OUTPUT_BLOCK_SIZE);
10177 //printf("shadow buffer: %x-%x\n",(int)copy,(int)copy+slen*4);
10178 memcpy(copy,source,slen*4);
10179 copy+=slen*4;
10180
10181 #ifdef __arm__
10182 __clear_cache((void *)beginning,out);
10183 #endif
10184
10185 // If we're within 256K of the end of the buffer,
10186 // start over from the beginning. (Is 256K enough?)
10187 if((u_int)out>(u_int)BASE_ADDR+(1<<TARGET_SIZE_2)-MAX_OUTPUT_BLOCK_SIZE) out=(u_char *)BASE_ADDR;
10188
10189 // Trap writes to any of the pages we compiled
10190 for(i=start>>12;i<=(start+slen*4)>>12;i++) {
10191 invalid_code[i]=0;
10192 }
10193 inv_code_start=inv_code_end=~0;
10194
10195 // for PCSX we need to mark all mirrors too
10196 if(get_page(start)<(RAM_SIZE>>12))
10197 for(i=start>>12;i<=(start+slen*4)>>12;i++)
10198 invalid_code[((u_int)0x00000000>>12)|(i&0x1ff)]=
10199 invalid_code[((u_int)0x80000000>>12)|(i&0x1ff)]=
10200 invalid_code[((u_int)0xa0000000>>12)|(i&0x1ff)]=0;
10201
10202 /* Pass 10 - Free memory by expiring oldest blocks */
10203
10204 int end=((((int)out-(int)BASE_ADDR)>>(TARGET_SIZE_2-16))+16384)&65535;
10205 while(expirep!=end)
10206 {
10207 int shift=TARGET_SIZE_2-3; // Divide into 8 blocks
10208 int base=(int)BASE_ADDR+((expirep>>13)<<shift); // Base address of this block
10209 inv_debug("EXP: Phase %d\n",expirep);
10210 switch((expirep>>11)&3)
10211 {
10212 case 0:
10213 // Clear jump_in and jump_dirty
10214 ll_remove_matching_addrs(jump_in+(expirep&2047),base,shift);
10215 ll_remove_matching_addrs(jump_dirty+(expirep&2047),base,shift);
10216 ll_remove_matching_addrs(jump_in+2048+(expirep&2047),base,shift);
10217 ll_remove_matching_addrs(jump_dirty+2048+(expirep&2047),base,shift);
10218 break;
10219 case 1:
10220 // Clear pointers
10221 ll_kill_pointers(jump_out[expirep&2047],base,shift);
10222 ll_kill_pointers(jump_out[(expirep&2047)+2048],base,shift);
10223 break;
10224 case 2:
10225 // Clear hash table
10226 for(i=0;i<32;i++) {
10227 u_int *ht_bin=hash_table[((expirep&2047)<<5)+i];
10228 if((ht_bin[3]>>shift)==(base>>shift) ||
10229 ((ht_bin[3]-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(base>>shift)) {
10230 inv_debug("EXP: Remove hash %x -> %x\n",ht_bin[2],ht_bin[3]);
10231 ht_bin[2]=ht_bin[3]=-1;
10232 }
10233 if((ht_bin[1]>>shift)==(base>>shift) ||
10234 ((ht_bin[1]-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(base>>shift)) {
10235 inv_debug("EXP: Remove hash %x -> %x\n",ht_bin[0],ht_bin[1]);
10236 ht_bin[0]=ht_bin[2];
10237 ht_bin[1]=ht_bin[3];
10238 ht_bin[2]=ht_bin[3]=-1;
10239 }
10240 }
10241 break;
10242 case 3:
10243 // Clear jump_out
10244 #ifdef __arm__
10245 if((expirep&2047)==0)
10246 do_clear_cache();
10247 #endif
10248 ll_remove_matching_addrs(jump_out+(expirep&2047),base,shift);
10249 ll_remove_matching_addrs(jump_out+2048+(expirep&2047),base,shift);
10250 break;
10251 }
10252 expirep=(expirep+1)&65535;
10253 }
10254 return 0;
10255}
10256
10257// vim:shiftwidth=2:expandtab