drc: implement ra accesses in ujump DS
[pcsx_rearmed.git] / libpcsxcore / new_dynarec / new_dynarec.c
... / ...
CommitLineData
1/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
2 * Mupen64plus - new_dynarec.c *
3 * Copyright (C) 2009-2010 Ari64 *
4 * *
5 * This program is free software; you can redistribute it and/or modify *
6 * it under the terms of the GNU General Public License as published by *
7 * the Free Software Foundation; either version 2 of the License, or *
8 * (at your option) any later version. *
9 * *
10 * This program is distributed in the hope that it will be useful, *
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
13 * GNU General Public License for more details. *
14 * *
15 * You should have received a copy of the GNU General Public License *
16 * along with this program; if not, write to the *
17 * Free Software Foundation, Inc., *
18 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. *
19 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
20
21#include <stdlib.h>
22#include <stdint.h> //include for uint64_t
23#include <assert.h>
24
25#include "emu_if.h" //emulator interface
26
27#include <sys/mman.h>
28
29#ifdef __i386__
30#include "assem_x86.h"
31#endif
32#ifdef __x86_64__
33#include "assem_x64.h"
34#endif
35#ifdef __arm__
36#include "assem_arm.h"
37#endif
38
39#define MAXBLOCK 4096
40#define MAX_OUTPUT_BLOCK_SIZE 262144
41#define CLOCK_DIVIDER 2
42
43struct regstat
44{
45 signed char regmap_entry[HOST_REGS];
46 signed char regmap[HOST_REGS];
47 uint64_t was32;
48 uint64_t is32;
49 uint64_t wasdirty;
50 uint64_t dirty;
51 uint64_t u;
52 uint64_t uu;
53 u_int wasconst;
54 u_int isconst;
55 uint64_t constmap[HOST_REGS];
56};
57
58struct ll_entry
59{
60 u_int vaddr;
61 u_int reg32;
62 void *addr;
63 struct ll_entry *next;
64};
65
66 u_int start;
67 u_int *source;
68 u_int pagelimit;
69 char insn[MAXBLOCK][10];
70 u_char itype[MAXBLOCK];
71 u_char opcode[MAXBLOCK];
72 u_char opcode2[MAXBLOCK];
73 u_char bt[MAXBLOCK];
74 u_char rs1[MAXBLOCK];
75 u_char rs2[MAXBLOCK];
76 u_char rt1[MAXBLOCK];
77 u_char rt2[MAXBLOCK];
78 u_char us1[MAXBLOCK];
79 u_char us2[MAXBLOCK];
80 u_char dep1[MAXBLOCK];
81 u_char dep2[MAXBLOCK];
82 u_char lt1[MAXBLOCK];
83 int imm[MAXBLOCK];
84 u_int ba[MAXBLOCK];
85 char likely[MAXBLOCK];
86 char is_ds[MAXBLOCK];
87 char ooo[MAXBLOCK];
88 uint64_t unneeded_reg[MAXBLOCK];
89 uint64_t unneeded_reg_upper[MAXBLOCK];
90 uint64_t branch_unneeded_reg[MAXBLOCK];
91 uint64_t branch_unneeded_reg_upper[MAXBLOCK];
92 uint64_t p32[MAXBLOCK];
93 uint64_t pr32[MAXBLOCK];
94 signed char regmap_pre[MAXBLOCK][HOST_REGS];
95 signed char regmap[MAXBLOCK][HOST_REGS];
96 signed char regmap_entry[MAXBLOCK][HOST_REGS];
97 uint64_t constmap[MAXBLOCK][HOST_REGS];
98 struct regstat regs[MAXBLOCK];
99 struct regstat branch_regs[MAXBLOCK];
100 signed char minimum_free_regs[MAXBLOCK];
101 u_int needed_reg[MAXBLOCK];
102 uint64_t requires_32bit[MAXBLOCK];
103 u_int wont_dirty[MAXBLOCK];
104 u_int will_dirty[MAXBLOCK];
105 int ccadj[MAXBLOCK];
106 int slen;
107 u_int instr_addr[MAXBLOCK];
108 u_int link_addr[MAXBLOCK][3];
109 int linkcount;
110 u_int stubs[MAXBLOCK*3][8];
111 int stubcount;
112 u_int literals[1024][2];
113 int literalcount;
114 int is_delayslot;
115 int cop1_usable;
116 u_char *out;
117 struct ll_entry *jump_in[4096];
118 struct ll_entry *jump_out[4096];
119 struct ll_entry *jump_dirty[4096];
120 u_int hash_table[65536][4] __attribute__((aligned(16)));
121 char shadow[1048576] __attribute__((aligned(16)));
122 void *copy;
123 int expirep;
124#ifndef PCSX
125 u_int using_tlb;
126#else
127 static const u_int using_tlb=0;
128#endif
129 u_int stop_after_jal;
130 extern u_char restore_candidate[512];
131 extern int cycle_count;
132
133 /* registers that may be allocated */
134 /* 1-31 gpr */
135#define HIREG 32 // hi
136#define LOREG 33 // lo
137#define FSREG 34 // FPU status (FCSR)
138#define CSREG 35 // Coprocessor status
139#define CCREG 36 // Cycle count
140#define INVCP 37 // Pointer to invalid_code
141#define MMREG 38 // Pointer to memory_map
142#define ROREG 39 // ram offset (if rdram!=0x80000000)
143#define TEMPREG 40
144#define FTEMP 40 // FPU temporary register
145#define PTEMP 41 // Prefetch temporary register
146#define TLREG 42 // TLB mapping offset
147#define RHASH 43 // Return address hash
148#define RHTBL 44 // Return address hash table address
149#define RTEMP 45 // JR/JALR address register
150#define MAXREG 45
151#define AGEN1 46 // Address generation temporary register
152#define AGEN2 47 // Address generation temporary register
153#define MGEN1 48 // Maptable address generation temporary register
154#define MGEN2 49 // Maptable address generation temporary register
155#define BTREG 50 // Branch target temporary register
156
157 /* instruction types */
158#define NOP 0 // No operation
159#define LOAD 1 // Load
160#define STORE 2 // Store
161#define LOADLR 3 // Unaligned load
162#define STORELR 4 // Unaligned store
163#define MOV 5 // Move
164#define ALU 6 // Arithmetic/logic
165#define MULTDIV 7 // Multiply/divide
166#define SHIFT 8 // Shift by register
167#define SHIFTIMM 9// Shift by immediate
168#define IMM16 10 // 16-bit immediate
169#define RJUMP 11 // Unconditional jump to register
170#define UJUMP 12 // Unconditional jump
171#define CJUMP 13 // Conditional branch (BEQ/BNE/BGTZ/BLEZ)
172#define SJUMP 14 // Conditional branch (regimm format)
173#define COP0 15 // Coprocessor 0
174#define COP1 16 // Coprocessor 1
175#define C1LS 17 // Coprocessor 1 load/store
176#define FJUMP 18 // Conditional branch (floating point)
177#define FLOAT 19 // Floating point unit
178#define FCONV 20 // Convert integer to float
179#define FCOMP 21 // Floating point compare (sets FSREG)
180#define SYSCALL 22// SYSCALL
181#define OTHER 23 // Other
182#define SPAN 24 // Branch/delay slot spans 2 pages
183#define NI 25 // Not implemented
184#define HLECALL 26// PCSX fake opcodes for HLE
185#define COP2 27 // Coprocessor 2 move
186#define C2LS 28 // Coprocessor 2 load/store
187#define C2OP 29 // Coprocessor 2 operation
188#define INTCALL 30// Call interpreter to handle rare corner cases
189
190 /* stubs */
191#define CC_STUB 1
192#define FP_STUB 2
193#define LOADB_STUB 3
194#define LOADH_STUB 4
195#define LOADW_STUB 5
196#define LOADD_STUB 6
197#define LOADBU_STUB 7
198#define LOADHU_STUB 8
199#define STOREB_STUB 9
200#define STOREH_STUB 10
201#define STOREW_STUB 11
202#define STORED_STUB 12
203#define STORELR_STUB 13
204#define INVCODE_STUB 14
205
206 /* branch codes */
207#define TAKEN 1
208#define NOTTAKEN 2
209#define NULLDS 3
210
211// asm linkage
212int new_recompile_block(int addr);
213void *get_addr_ht(u_int vaddr);
214void invalidate_block(u_int block);
215void invalidate_addr(u_int addr);
216void remove_hash(int vaddr);
217void jump_vaddr();
218void dyna_linker();
219void dyna_linker_ds();
220void verify_code();
221void verify_code_vm();
222void verify_code_ds();
223void cc_interrupt();
224void fp_exception();
225void fp_exception_ds();
226void jump_syscall();
227void jump_syscall_hle();
228void jump_eret();
229void jump_hlecall();
230void jump_intcall();
231void new_dyna_leave();
232
233// TLB
234void TLBWI_new();
235void TLBWR_new();
236void read_nomem_new();
237void read_nomemb_new();
238void read_nomemh_new();
239void read_nomemd_new();
240void write_nomem_new();
241void write_nomemb_new();
242void write_nomemh_new();
243void write_nomemd_new();
244void write_rdram_new();
245void write_rdramb_new();
246void write_rdramh_new();
247void write_rdramd_new();
248extern u_int memory_map[1048576];
249
250// Needed by assembler
251void wb_register(signed char r,signed char regmap[],uint64_t dirty,uint64_t is32);
252void wb_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty);
253void wb_needed_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr);
254void load_all_regs(signed char i_regmap[]);
255void load_needed_regs(signed char i_regmap[],signed char next_regmap[]);
256void load_regs_entry(int t);
257void load_all_consts(signed char regmap[],int is32,u_int dirty,int i);
258
259int tracedebug=0;
260
261//#define DEBUG_CYCLE_COUNT 1
262
263void nullf() {}
264//#define assem_debug printf
265//#define inv_debug printf
266#define assem_debug nullf
267#define inv_debug nullf
268
269static void tlb_hacks()
270{
271#ifndef DISABLE_TLB
272 // Goldeneye hack
273 if (strncmp((char *) ROM_HEADER->nom, "GOLDENEYE",9) == 0)
274 {
275 u_int addr;
276 int n;
277 switch (ROM_HEADER->Country_code&0xFF)
278 {
279 case 0x45: // U
280 addr=0x34b30;
281 break;
282 case 0x4A: // J
283 addr=0x34b70;
284 break;
285 case 0x50: // E
286 addr=0x329f0;
287 break;
288 default:
289 // Unknown country code
290 addr=0;
291 break;
292 }
293 u_int rom_addr=(u_int)rom;
294 #ifdef ROM_COPY
295 // Since memory_map is 32-bit, on 64-bit systems the rom needs to be
296 // in the lower 4G of memory to use this hack. Copy it if necessary.
297 if((void *)rom>(void *)0xffffffff) {
298 munmap(ROM_COPY, 67108864);
299 if(mmap(ROM_COPY, 12582912,
300 PROT_READ | PROT_WRITE,
301 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS,
302 -1, 0) <= 0) {printf("mmap() failed\n");}
303 memcpy(ROM_COPY,rom,12582912);
304 rom_addr=(u_int)ROM_COPY;
305 }
306 #endif
307 if(addr) {
308 for(n=0x7F000;n<0x80000;n++) {
309 memory_map[n]=(((u_int)(rom_addr+addr-0x7F000000))>>2)|0x40000000;
310 }
311 }
312 }
313#endif
314}
315
316static u_int get_page(u_int vaddr)
317{
318#ifndef PCSX
319 u_int page=(vaddr^0x80000000)>>12;
320#else
321 u_int page=vaddr&~0xe0000000;
322 if (page < 0x1000000)
323 page &= ~0x0e00000; // RAM mirrors
324 page>>=12;
325#endif
326#ifndef DISABLE_TLB
327 if(page>262143&&tlb_LUT_r[vaddr>>12]) page=(tlb_LUT_r[vaddr>>12]^0x80000000)>>12;
328#endif
329 if(page>2048) page=2048+(page&2047);
330 return page;
331}
332
333static u_int get_vpage(u_int vaddr)
334{
335 u_int vpage=(vaddr^0x80000000)>>12;
336#ifndef DISABLE_TLB
337 if(vpage>262143&&tlb_LUT_r[vaddr>>12]) vpage&=2047; // jump_dirty uses a hash of the virtual address instead
338#endif
339 if(vpage>2048) vpage=2048+(vpage&2047);
340 return vpage;
341}
342
343// Get address from virtual address
344// This is called from the recompiled JR/JALR instructions
345void *get_addr(u_int vaddr)
346{
347 u_int page=get_page(vaddr);
348 u_int vpage=get_vpage(vaddr);
349 struct ll_entry *head;
350 //printf("TRACE: count=%d next=%d (get_addr %x,page %d)\n",Count,next_interupt,vaddr,page);
351 head=jump_in[page];
352 while(head!=NULL) {
353 if(head->vaddr==vaddr&&head->reg32==0) {
354 //printf("TRACE: count=%d next=%d (get_addr match %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
355 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
356 ht_bin[3]=ht_bin[1];
357 ht_bin[2]=ht_bin[0];
358 ht_bin[1]=(int)head->addr;
359 ht_bin[0]=vaddr;
360 return head->addr;
361 }
362 head=head->next;
363 }
364 head=jump_dirty[vpage];
365 while(head!=NULL) {
366 if(head->vaddr==vaddr&&head->reg32==0) {
367 //printf("TRACE: count=%d next=%d (get_addr match dirty %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
368 // Don't restore blocks which are about to expire from the cache
369 if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
370 if(verify_dirty(head->addr)) {
371 //printf("restore candidate: %x (%d) d=%d\n",vaddr,page,invalid_code[vaddr>>12]);
372 invalid_code[vaddr>>12]=0;
373 memory_map[vaddr>>12]|=0x40000000;
374 if(vpage<2048) {
375#ifndef DISABLE_TLB
376 if(tlb_LUT_r[vaddr>>12]) {
377 invalid_code[tlb_LUT_r[vaddr>>12]>>12]=0;
378 memory_map[tlb_LUT_r[vaddr>>12]>>12]|=0x40000000;
379 }
380#endif
381 restore_candidate[vpage>>3]|=1<<(vpage&7);
382 }
383 else restore_candidate[page>>3]|=1<<(page&7);
384 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
385 if(ht_bin[0]==vaddr) {
386 ht_bin[1]=(int)head->addr; // Replace existing entry
387 }
388 else
389 {
390 ht_bin[3]=ht_bin[1];
391 ht_bin[2]=ht_bin[0];
392 ht_bin[1]=(int)head->addr;
393 ht_bin[0]=vaddr;
394 }
395 return head->addr;
396 }
397 }
398 head=head->next;
399 }
400 //printf("TRACE: count=%d next=%d (get_addr no-match %x)\n",Count,next_interupt,vaddr);
401 int r=new_recompile_block(vaddr);
402 if(r==0) return get_addr(vaddr);
403 // Execute in unmapped page, generate pagefault execption
404 Status|=2;
405 Cause=(vaddr<<31)|0x8;
406 EPC=(vaddr&1)?vaddr-5:vaddr;
407 BadVAddr=(vaddr&~1);
408 Context=(Context&0xFF80000F)|((BadVAddr>>9)&0x007FFFF0);
409 EntryHi=BadVAddr&0xFFFFE000;
410 return get_addr_ht(0x80000000);
411}
412// Look up address in hash table first
413void *get_addr_ht(u_int vaddr)
414{
415 //printf("TRACE: count=%d next=%d (get_addr_ht %x)\n",Count,next_interupt,vaddr);
416 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
417 if(ht_bin[0]==vaddr) return (void *)ht_bin[1];
418 if(ht_bin[2]==vaddr) return (void *)ht_bin[3];
419 return get_addr(vaddr);
420}
421
422void *get_addr_32(u_int vaddr,u_int flags)
423{
424#ifdef FORCE32
425 return get_addr(vaddr);
426#else
427 //printf("TRACE: count=%d next=%d (get_addr_32 %x,flags %x)\n",Count,next_interupt,vaddr,flags);
428 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
429 if(ht_bin[0]==vaddr) return (void *)ht_bin[1];
430 if(ht_bin[2]==vaddr) return (void *)ht_bin[3];
431 u_int page=get_page(vaddr);
432 u_int vpage=get_vpage(vaddr);
433 struct ll_entry *head;
434 head=jump_in[page];
435 while(head!=NULL) {
436 if(head->vaddr==vaddr&&(head->reg32&flags)==0) {
437 //printf("TRACE: count=%d next=%d (get_addr_32 match %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
438 if(head->reg32==0) {
439 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
440 if(ht_bin[0]==-1) {
441 ht_bin[1]=(int)head->addr;
442 ht_bin[0]=vaddr;
443 }else if(ht_bin[2]==-1) {
444 ht_bin[3]=(int)head->addr;
445 ht_bin[2]=vaddr;
446 }
447 //ht_bin[3]=ht_bin[1];
448 //ht_bin[2]=ht_bin[0];
449 //ht_bin[1]=(int)head->addr;
450 //ht_bin[0]=vaddr;
451 }
452 return head->addr;
453 }
454 head=head->next;
455 }
456 head=jump_dirty[vpage];
457 while(head!=NULL) {
458 if(head->vaddr==vaddr&&(head->reg32&flags)==0) {
459 //printf("TRACE: count=%d next=%d (get_addr_32 match dirty %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
460 // Don't restore blocks which are about to expire from the cache
461 if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
462 if(verify_dirty(head->addr)) {
463 //printf("restore candidate: %x (%d) d=%d\n",vaddr,page,invalid_code[vaddr>>12]);
464 invalid_code[vaddr>>12]=0;
465 memory_map[vaddr>>12]|=0x40000000;
466 if(vpage<2048) {
467#ifndef DISABLE_TLB
468 if(tlb_LUT_r[vaddr>>12]) {
469 invalid_code[tlb_LUT_r[vaddr>>12]>>12]=0;
470 memory_map[tlb_LUT_r[vaddr>>12]>>12]|=0x40000000;
471 }
472#endif
473 restore_candidate[vpage>>3]|=1<<(vpage&7);
474 }
475 else restore_candidate[page>>3]|=1<<(page&7);
476 if(head->reg32==0) {
477 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
478 if(ht_bin[0]==-1) {
479 ht_bin[1]=(int)head->addr;
480 ht_bin[0]=vaddr;
481 }else if(ht_bin[2]==-1) {
482 ht_bin[3]=(int)head->addr;
483 ht_bin[2]=vaddr;
484 }
485 //ht_bin[3]=ht_bin[1];
486 //ht_bin[2]=ht_bin[0];
487 //ht_bin[1]=(int)head->addr;
488 //ht_bin[0]=vaddr;
489 }
490 return head->addr;
491 }
492 }
493 head=head->next;
494 }
495 //printf("TRACE: count=%d next=%d (get_addr_32 no-match %x,flags %x)\n",Count,next_interupt,vaddr,flags);
496 int r=new_recompile_block(vaddr);
497 if(r==0) return get_addr(vaddr);
498 // Execute in unmapped page, generate pagefault execption
499 Status|=2;
500 Cause=(vaddr<<31)|0x8;
501 EPC=(vaddr&1)?vaddr-5:vaddr;
502 BadVAddr=(vaddr&~1);
503 Context=(Context&0xFF80000F)|((BadVAddr>>9)&0x007FFFF0);
504 EntryHi=BadVAddr&0xFFFFE000;
505 return get_addr_ht(0x80000000);
506#endif
507}
508
509void clear_all_regs(signed char regmap[])
510{
511 int hr;
512 for (hr=0;hr<HOST_REGS;hr++) regmap[hr]=-1;
513}
514
515signed char get_reg(signed char regmap[],int r)
516{
517 int hr;
518 for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap[hr]==r) return hr;
519 return -1;
520}
521
522// Find a register that is available for two consecutive cycles
523signed char get_reg2(signed char regmap1[],signed char regmap2[],int r)
524{
525 int hr;
526 for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap1[hr]==r&&regmap2[hr]==r) return hr;
527 return -1;
528}
529
530int count_free_regs(signed char regmap[])
531{
532 int count=0;
533 int hr;
534 for(hr=0;hr<HOST_REGS;hr++)
535 {
536 if(hr!=EXCLUDE_REG) {
537 if(regmap[hr]<0) count++;
538 }
539 }
540 return count;
541}
542
543void dirty_reg(struct regstat *cur,signed char reg)
544{
545 int hr;
546 if(!reg) return;
547 for (hr=0;hr<HOST_REGS;hr++) {
548 if((cur->regmap[hr]&63)==reg) {
549 cur->dirty|=1<<hr;
550 }
551 }
552}
553
554// If we dirty the lower half of a 64 bit register which is now being
555// sign-extended, we need to dump the upper half.
556// Note: Do this only after completion of the instruction, because
557// some instructions may need to read the full 64-bit value even if
558// overwriting it (eg SLTI, DSRA32).
559static void flush_dirty_uppers(struct regstat *cur)
560{
561 int hr,reg;
562 for (hr=0;hr<HOST_REGS;hr++) {
563 if((cur->dirty>>hr)&1) {
564 reg=cur->regmap[hr];
565 if(reg>=64)
566 if((cur->is32>>(reg&63))&1) cur->regmap[hr]=-1;
567 }
568 }
569}
570
571void set_const(struct regstat *cur,signed char reg,uint64_t value)
572{
573 int hr;
574 if(!reg) return;
575 for (hr=0;hr<HOST_REGS;hr++) {
576 if(cur->regmap[hr]==reg) {
577 cur->isconst|=1<<hr;
578 cur->constmap[hr]=value;
579 }
580 else if((cur->regmap[hr]^64)==reg) {
581 cur->isconst|=1<<hr;
582 cur->constmap[hr]=value>>32;
583 }
584 }
585}
586
587void clear_const(struct regstat *cur,signed char reg)
588{
589 int hr;
590 if(!reg) return;
591 for (hr=0;hr<HOST_REGS;hr++) {
592 if((cur->regmap[hr]&63)==reg) {
593 cur->isconst&=~(1<<hr);
594 }
595 }
596}
597
598int is_const(struct regstat *cur,signed char reg)
599{
600 int hr;
601 if(!reg) return 1;
602 for (hr=0;hr<HOST_REGS;hr++) {
603 if((cur->regmap[hr]&63)==reg) {
604 return (cur->isconst>>hr)&1;
605 }
606 }
607 return 0;
608}
609uint64_t get_const(struct regstat *cur,signed char reg)
610{
611 int hr;
612 if(!reg) return 0;
613 for (hr=0;hr<HOST_REGS;hr++) {
614 if(cur->regmap[hr]==reg) {
615 return cur->constmap[hr];
616 }
617 }
618 printf("Unknown constant in r%d\n",reg);
619 exit(1);
620}
621
622// Least soon needed registers
623// Look at the next ten instructions and see which registers
624// will be used. Try not to reallocate these.
625void lsn(u_char hsn[], int i, int *preferred_reg)
626{
627 int j;
628 int b=-1;
629 for(j=0;j<9;j++)
630 {
631 if(i+j>=slen) {
632 j=slen-i-1;
633 break;
634 }
635 if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
636 {
637 // Don't go past an unconditonal jump
638 j++;
639 break;
640 }
641 }
642 for(;j>=0;j--)
643 {
644 if(rs1[i+j]) hsn[rs1[i+j]]=j;
645 if(rs2[i+j]) hsn[rs2[i+j]]=j;
646 if(rt1[i+j]) hsn[rt1[i+j]]=j;
647 if(rt2[i+j]) hsn[rt2[i+j]]=j;
648 if(itype[i+j]==STORE || itype[i+j]==STORELR) {
649 // Stores can allocate zero
650 hsn[rs1[i+j]]=j;
651 hsn[rs2[i+j]]=j;
652 }
653 // On some architectures stores need invc_ptr
654 #if defined(HOST_IMM8)
655 if(itype[i+j]==STORE || itype[i+j]==STORELR || (opcode[i+j]&0x3b)==0x39 || (opcode[i+j]&0x3b)==0x3a) {
656 hsn[INVCP]=j;
657 }
658 #endif
659 if(i+j>=0&&(itype[i+j]==UJUMP||itype[i+j]==CJUMP||itype[i+j]==SJUMP||itype[i+j]==FJUMP))
660 {
661 hsn[CCREG]=j;
662 b=j;
663 }
664 }
665 if(b>=0)
666 {
667 if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
668 {
669 // Follow first branch
670 int t=(ba[i+b]-start)>>2;
671 j=7-b;if(t+j>=slen) j=slen-t-1;
672 for(;j>=0;j--)
673 {
674 if(rs1[t+j]) if(hsn[rs1[t+j]]>j+b+2) hsn[rs1[t+j]]=j+b+2;
675 if(rs2[t+j]) if(hsn[rs2[t+j]]>j+b+2) hsn[rs2[t+j]]=j+b+2;
676 //if(rt1[t+j]) if(hsn[rt1[t+j]]>j+b+2) hsn[rt1[t+j]]=j+b+2;
677 //if(rt2[t+j]) if(hsn[rt2[t+j]]>j+b+2) hsn[rt2[t+j]]=j+b+2;
678 }
679 }
680 // TODO: preferred register based on backward branch
681 }
682 // Delay slot should preferably not overwrite branch conditions or cycle count
683 if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)) {
684 if(rs1[i-1]) if(hsn[rs1[i-1]]>1) hsn[rs1[i-1]]=1;
685 if(rs2[i-1]) if(hsn[rs2[i-1]]>1) hsn[rs2[i-1]]=1;
686 hsn[CCREG]=1;
687 // ...or hash tables
688 hsn[RHASH]=1;
689 hsn[RHTBL]=1;
690 }
691 // Coprocessor load/store needs FTEMP, even if not declared
692 if(itype[i]==C1LS||itype[i]==C2LS) {
693 hsn[FTEMP]=0;
694 }
695 // Load L/R also uses FTEMP as a temporary register
696 if(itype[i]==LOADLR) {
697 hsn[FTEMP]=0;
698 }
699 // Also SWL/SWR/SDL/SDR
700 if(opcode[i]==0x2a||opcode[i]==0x2e||opcode[i]==0x2c||opcode[i]==0x2d) {
701 hsn[FTEMP]=0;
702 }
703 // Don't remove the TLB registers either
704 if(itype[i]==LOAD || itype[i]==LOADLR || itype[i]==STORE || itype[i]==STORELR || itype[i]==C1LS || itype[i]==C2LS) {
705 hsn[TLREG]=0;
706 }
707 // Don't remove the miniht registers
708 if(itype[i]==UJUMP||itype[i]==RJUMP)
709 {
710 hsn[RHASH]=0;
711 hsn[RHTBL]=0;
712 }
713}
714
715// We only want to allocate registers if we're going to use them again soon
716int needed_again(int r, int i)
717{
718 int j;
719 int b=-1;
720 int rn=10;
721 int hr;
722 u_char hsn[MAXREG+1];
723 int preferred_reg;
724
725 memset(hsn,10,sizeof(hsn));
726 lsn(hsn,i,&preferred_reg);
727
728 if(i>0&&(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000))
729 {
730 if(ba[i-1]<start || ba[i-1]>start+slen*4-4)
731 return 0; // Don't need any registers if exiting the block
732 }
733 for(j=0;j<9;j++)
734 {
735 if(i+j>=slen) {
736 j=slen-i-1;
737 break;
738 }
739 if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
740 {
741 // Don't go past an unconditonal jump
742 j++;
743 break;
744 }
745 if(itype[i+j]==SYSCALL||itype[i+j]==HLECALL||itype[i+j]==INTCALL||((source[i+j]&0xfc00003f)==0x0d))
746 {
747 break;
748 }
749 }
750 for(;j>=1;j--)
751 {
752 if(rs1[i+j]==r) rn=j;
753 if(rs2[i+j]==r) rn=j;
754 if((unneeded_reg[i+j]>>r)&1) rn=10;
755 if(i+j>=0&&(itype[i+j]==UJUMP||itype[i+j]==CJUMP||itype[i+j]==SJUMP||itype[i+j]==FJUMP))
756 {
757 b=j;
758 }
759 }
760 /*
761 if(b>=0)
762 {
763 if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
764 {
765 // Follow first branch
766 int o=rn;
767 int t=(ba[i+b]-start)>>2;
768 j=7-b;if(t+j>=slen) j=slen-t-1;
769 for(;j>=0;j--)
770 {
771 if(!((unneeded_reg[t+j]>>r)&1)) {
772 if(rs1[t+j]==r) if(rn>j+b+2) rn=j+b+2;
773 if(rs2[t+j]==r) if(rn>j+b+2) rn=j+b+2;
774 }
775 else rn=o;
776 }
777 }
778 }*/
779 for(hr=0;hr<HOST_REGS;hr++) {
780 if(hr!=EXCLUDE_REG) {
781 if(rn<hsn[hr]) return 1;
782 }
783 }
784 return 0;
785}
786
787// Try to match register allocations at the end of a loop with those
788// at the beginning
789int loop_reg(int i, int r, int hr)
790{
791 int j,k;
792 for(j=0;j<9;j++)
793 {
794 if(i+j>=slen) {
795 j=slen-i-1;
796 break;
797 }
798 if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
799 {
800 // Don't go past an unconditonal jump
801 j++;
802 break;
803 }
804 }
805 k=0;
806 if(i>0){
807 if(itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)
808 k--;
809 }
810 for(;k<j;k++)
811 {
812 if(r<64&&((unneeded_reg[i+k]>>r)&1)) return hr;
813 if(r>64&&((unneeded_reg_upper[i+k]>>r)&1)) return hr;
814 if(i+k>=0&&(itype[i+k]==UJUMP||itype[i+k]==CJUMP||itype[i+k]==SJUMP||itype[i+k]==FJUMP))
815 {
816 if(ba[i+k]>=start && ba[i+k]<(start+i*4))
817 {
818 int t=(ba[i+k]-start)>>2;
819 int reg=get_reg(regs[t].regmap_entry,r);
820 if(reg>=0) return reg;
821 //reg=get_reg(regs[t+1].regmap_entry,r);
822 //if(reg>=0) return reg;
823 }
824 }
825 }
826 return hr;
827}
828
829
830// Allocate every register, preserving source/target regs
831void alloc_all(struct regstat *cur,int i)
832{
833 int hr;
834
835 for(hr=0;hr<HOST_REGS;hr++) {
836 if(hr!=EXCLUDE_REG) {
837 if(((cur->regmap[hr]&63)!=rs1[i])&&((cur->regmap[hr]&63)!=rs2[i])&&
838 ((cur->regmap[hr]&63)!=rt1[i])&&((cur->regmap[hr]&63)!=rt2[i]))
839 {
840 cur->regmap[hr]=-1;
841 cur->dirty&=~(1<<hr);
842 }
843 // Don't need zeros
844 if((cur->regmap[hr]&63)==0)
845 {
846 cur->regmap[hr]=-1;
847 cur->dirty&=~(1<<hr);
848 }
849 }
850 }
851}
852
853
854void div64(int64_t dividend,int64_t divisor)
855{
856 lo=dividend/divisor;
857 hi=dividend%divisor;
858 //printf("TRACE: ddiv %8x%8x %8x%8x\n" ,(int)reg[HIREG],(int)(reg[HIREG]>>32)
859 // ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
860}
861void divu64(uint64_t dividend,uint64_t divisor)
862{
863 lo=dividend/divisor;
864 hi=dividend%divisor;
865 //printf("TRACE: ddivu %8x%8x %8x%8x\n",(int)reg[HIREG],(int)(reg[HIREG]>>32)
866 // ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
867}
868
869void mult64(uint64_t m1,uint64_t m2)
870{
871 unsigned long long int op1, op2, op3, op4;
872 unsigned long long int result1, result2, result3, result4;
873 unsigned long long int temp1, temp2, temp3, temp4;
874 int sign = 0;
875
876 if (m1 < 0)
877 {
878 op2 = -m1;
879 sign = 1 - sign;
880 }
881 else op2 = m1;
882 if (m2 < 0)
883 {
884 op4 = -m2;
885 sign = 1 - sign;
886 }
887 else op4 = m2;
888
889 op1 = op2 & 0xFFFFFFFF;
890 op2 = (op2 >> 32) & 0xFFFFFFFF;
891 op3 = op4 & 0xFFFFFFFF;
892 op4 = (op4 >> 32) & 0xFFFFFFFF;
893
894 temp1 = op1 * op3;
895 temp2 = (temp1 >> 32) + op1 * op4;
896 temp3 = op2 * op3;
897 temp4 = (temp3 >> 32) + op2 * op4;
898
899 result1 = temp1 & 0xFFFFFFFF;
900 result2 = temp2 + (temp3 & 0xFFFFFFFF);
901 result3 = (result2 >> 32) + temp4;
902 result4 = (result3 >> 32);
903
904 lo = result1 | (result2 << 32);
905 hi = (result3 & 0xFFFFFFFF) | (result4 << 32);
906 if (sign)
907 {
908 hi = ~hi;
909 if (!lo) hi++;
910 else lo = ~lo + 1;
911 }
912}
913
914void multu64(uint64_t m1,uint64_t m2)
915{
916 unsigned long long int op1, op2, op3, op4;
917 unsigned long long int result1, result2, result3, result4;
918 unsigned long long int temp1, temp2, temp3, temp4;
919
920 op1 = m1 & 0xFFFFFFFF;
921 op2 = (m1 >> 32) & 0xFFFFFFFF;
922 op3 = m2 & 0xFFFFFFFF;
923 op4 = (m2 >> 32) & 0xFFFFFFFF;
924
925 temp1 = op1 * op3;
926 temp2 = (temp1 >> 32) + op1 * op4;
927 temp3 = op2 * op3;
928 temp4 = (temp3 >> 32) + op2 * op4;
929
930 result1 = temp1 & 0xFFFFFFFF;
931 result2 = temp2 + (temp3 & 0xFFFFFFFF);
932 result3 = (result2 >> 32) + temp4;
933 result4 = (result3 >> 32);
934
935 lo = result1 | (result2 << 32);
936 hi = (result3 & 0xFFFFFFFF) | (result4 << 32);
937
938 //printf("TRACE: dmultu %8x%8x %8x%8x\n",(int)reg[HIREG],(int)(reg[HIREG]>>32)
939 // ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
940}
941
942uint64_t ldl_merge(uint64_t original,uint64_t loaded,u_int bits)
943{
944 if(bits) {
945 original<<=64-bits;
946 original>>=64-bits;
947 loaded<<=bits;
948 original|=loaded;
949 }
950 else original=loaded;
951 return original;
952}
953uint64_t ldr_merge(uint64_t original,uint64_t loaded,u_int bits)
954{
955 if(bits^56) {
956 original>>=64-(bits^56);
957 original<<=64-(bits^56);
958 loaded>>=bits^56;
959 original|=loaded;
960 }
961 else original=loaded;
962 return original;
963}
964
965#ifdef __i386__
966#include "assem_x86.c"
967#endif
968#ifdef __x86_64__
969#include "assem_x64.c"
970#endif
971#ifdef __arm__
972#include "assem_arm.c"
973#endif
974
975// Add virtual address mapping to linked list
976void ll_add(struct ll_entry **head,int vaddr,void *addr)
977{
978 struct ll_entry *new_entry;
979 new_entry=malloc(sizeof(struct ll_entry));
980 assert(new_entry!=NULL);
981 new_entry->vaddr=vaddr;
982 new_entry->reg32=0;
983 new_entry->addr=addr;
984 new_entry->next=*head;
985 *head=new_entry;
986}
987
988// Add virtual address mapping for 32-bit compiled block
989void ll_add_32(struct ll_entry **head,int vaddr,u_int reg32,void *addr)
990{
991 ll_add(head,vaddr,addr);
992#ifndef FORCE32
993 (*head)->reg32=reg32;
994#endif
995}
996
997// Check if an address is already compiled
998// but don't return addresses which are about to expire from the cache
999void *check_addr(u_int vaddr)
1000{
1001 u_int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
1002 if(ht_bin[0]==vaddr) {
1003 if(((ht_bin[1]-MAX_OUTPUT_BLOCK_SIZE-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
1004 if(isclean(ht_bin[1])) return (void *)ht_bin[1];
1005 }
1006 if(ht_bin[2]==vaddr) {
1007 if(((ht_bin[3]-MAX_OUTPUT_BLOCK_SIZE-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
1008 if(isclean(ht_bin[3])) return (void *)ht_bin[3];
1009 }
1010 u_int page=get_page(vaddr);
1011 struct ll_entry *head;
1012 head=jump_in[page];
1013 while(head!=NULL) {
1014 if(head->vaddr==vaddr&&head->reg32==0) {
1015 if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1016 // Update existing entry with current address
1017 if(ht_bin[0]==vaddr) {
1018 ht_bin[1]=(int)head->addr;
1019 return head->addr;
1020 }
1021 if(ht_bin[2]==vaddr) {
1022 ht_bin[3]=(int)head->addr;
1023 return head->addr;
1024 }
1025 // Insert into hash table with low priority.
1026 // Don't evict existing entries, as they are probably
1027 // addresses that are being accessed frequently.
1028 if(ht_bin[0]==-1) {
1029 ht_bin[1]=(int)head->addr;
1030 ht_bin[0]=vaddr;
1031 }else if(ht_bin[2]==-1) {
1032 ht_bin[3]=(int)head->addr;
1033 ht_bin[2]=vaddr;
1034 }
1035 return head->addr;
1036 }
1037 }
1038 head=head->next;
1039 }
1040 return 0;
1041}
1042
1043void remove_hash(int vaddr)
1044{
1045 //printf("remove hash: %x\n",vaddr);
1046 int *ht_bin=hash_table[(((vaddr)>>16)^vaddr)&0xFFFF];
1047 if(ht_bin[2]==vaddr) {
1048 ht_bin[2]=ht_bin[3]=-1;
1049 }
1050 if(ht_bin[0]==vaddr) {
1051 ht_bin[0]=ht_bin[2];
1052 ht_bin[1]=ht_bin[3];
1053 ht_bin[2]=ht_bin[3]=-1;
1054 }
1055}
1056
1057void ll_remove_matching_addrs(struct ll_entry **head,int addr,int shift)
1058{
1059 struct ll_entry *next;
1060 while(*head) {
1061 if(((u_int)((*head)->addr)>>shift)==(addr>>shift) ||
1062 ((u_int)((*head)->addr-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(addr>>shift))
1063 {
1064 inv_debug("EXP: Remove pointer to %x (%x)\n",(int)(*head)->addr,(*head)->vaddr);
1065 remove_hash((*head)->vaddr);
1066 next=(*head)->next;
1067 free(*head);
1068 *head=next;
1069 }
1070 else
1071 {
1072 head=&((*head)->next);
1073 }
1074 }
1075}
1076
1077// Remove all entries from linked list
1078void ll_clear(struct ll_entry **head)
1079{
1080 struct ll_entry *cur;
1081 struct ll_entry *next;
1082 if(cur=*head) {
1083 *head=0;
1084 while(cur) {
1085 next=cur->next;
1086 free(cur);
1087 cur=next;
1088 }
1089 }
1090}
1091
1092// Dereference the pointers and remove if it matches
1093void ll_kill_pointers(struct ll_entry *head,int addr,int shift)
1094{
1095 while(head) {
1096 int ptr=get_pointer(head->addr);
1097 inv_debug("EXP: Lookup pointer to %x at %x (%x)\n",(int)ptr,(int)head->addr,head->vaddr);
1098 if(((ptr>>shift)==(addr>>shift)) ||
1099 (((ptr-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(addr>>shift)))
1100 {
1101 inv_debug("EXP: Kill pointer at %x (%x)\n",(int)head->addr,head->vaddr);
1102 u_int host_addr=(u_int)kill_pointer(head->addr);
1103 #ifdef __arm__
1104 needs_clear_cache[(host_addr-(u_int)BASE_ADDR)>>17]|=1<<(((host_addr-(u_int)BASE_ADDR)>>12)&31);
1105 #endif
1106 }
1107 head=head->next;
1108 }
1109}
1110
1111// This is called when we write to a compiled block (see do_invstub)
1112void invalidate_page(u_int page)
1113{
1114 struct ll_entry *head;
1115 struct ll_entry *next;
1116 head=jump_in[page];
1117 jump_in[page]=0;
1118 while(head!=NULL) {
1119 inv_debug("INVALIDATE: %x\n",head->vaddr);
1120 remove_hash(head->vaddr);
1121 next=head->next;
1122 free(head);
1123 head=next;
1124 }
1125 head=jump_out[page];
1126 jump_out[page]=0;
1127 while(head!=NULL) {
1128 inv_debug("INVALIDATE: kill pointer to %x (%x)\n",head->vaddr,(int)head->addr);
1129 u_int host_addr=(u_int)kill_pointer(head->addr);
1130 #ifdef __arm__
1131 needs_clear_cache[(host_addr-(u_int)BASE_ADDR)>>17]|=1<<(((host_addr-(u_int)BASE_ADDR)>>12)&31);
1132 #endif
1133 next=head->next;
1134 free(head);
1135 head=next;
1136 }
1137}
1138void invalidate_block(u_int block)
1139{
1140 u_int page=get_page(block<<12);
1141 u_int vpage=get_vpage(block<<12);
1142 inv_debug("INVALIDATE: %x (%d)\n",block<<12,page);
1143 //inv_debug("invalid_code[block]=%d\n",invalid_code[block]);
1144 u_int first,last;
1145 first=last=page;
1146 struct ll_entry *head;
1147 head=jump_dirty[vpage];
1148 //printf("page=%d vpage=%d\n",page,vpage);
1149 while(head!=NULL) {
1150 u_int start,end;
1151 if(vpage>2047||(head->vaddr>>12)==block) { // Ignore vaddr hash collision
1152 get_bounds((int)head->addr,&start,&end);
1153 //printf("start: %x end: %x\n",start,end);
1154 if(page<2048&&start>=0x80000000&&end<0x80000000+RAM_SIZE) {
1155 if(((start-(u_int)rdram)>>12)<=page&&((end-1-(u_int)rdram)>>12)>=page) {
1156 if((((start-(u_int)rdram)>>12)&2047)<first) first=((start-(u_int)rdram)>>12)&2047;
1157 if((((end-1-(u_int)rdram)>>12)&2047)>last) last=((end-1-(u_int)rdram)>>12)&2047;
1158 }
1159 }
1160#ifndef DISABLE_TLB
1161 if(page<2048&&(signed int)start>=(signed int)0xC0000000&&(signed int)end>=(signed int)0xC0000000) {
1162 if(((start+memory_map[start>>12]-(u_int)rdram)>>12)<=page&&((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)>=page) {
1163 if((((start+memory_map[start>>12]-(u_int)rdram)>>12)&2047)<first) first=((start+memory_map[start>>12]-(u_int)rdram)>>12)&2047;
1164 if((((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)&2047)>last) last=((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)&2047;
1165 }
1166 }
1167#endif
1168 }
1169 head=head->next;
1170 }
1171 //printf("first=%d last=%d\n",first,last);
1172 invalidate_page(page);
1173 assert(first+5>page); // NB: this assumes MAXBLOCK<=4096 (4 pages)
1174 assert(last<page+5);
1175 // Invalidate the adjacent pages if a block crosses a 4K boundary
1176 while(first<page) {
1177 invalidate_page(first);
1178 first++;
1179 }
1180 for(first=page+1;first<last;first++) {
1181 invalidate_page(first);
1182 }
1183 #ifdef __arm__
1184 do_clear_cache();
1185 #endif
1186
1187 // Don't trap writes
1188 invalid_code[block]=1;
1189#ifdef PCSX
1190 invalid_code[((u_int)0x80000000>>12)|page]=1;
1191#endif
1192#ifndef DISABLE_TLB
1193 // If there is a valid TLB entry for this page, remove write protect
1194 if(tlb_LUT_w[block]) {
1195 assert(tlb_LUT_r[block]==tlb_LUT_w[block]);
1196 // CHECK: Is this right?
1197 memory_map[block]=((tlb_LUT_w[block]&0xFFFFF000)-(block<<12)+(unsigned int)rdram-0x80000000)>>2;
1198 u_int real_block=tlb_LUT_w[block]>>12;
1199 invalid_code[real_block]=1;
1200 if(real_block>=0x80000&&real_block<0x80800) memory_map[real_block]=((u_int)rdram-0x80000000)>>2;
1201 }
1202 else if(block>=0x80000&&block<0x80800) memory_map[block]=((u_int)rdram-0x80000000)>>2;
1203#endif
1204
1205 #ifdef USE_MINI_HT
1206 memset(mini_ht,-1,sizeof(mini_ht));
1207 #endif
1208}
1209void invalidate_addr(u_int addr)
1210{
1211 invalidate_block(addr>>12);
1212}
1213// This is called when loading a save state.
1214// Anything could have changed, so invalidate everything.
1215void invalidate_all_pages()
1216{
1217 u_int page,n;
1218 for(page=0;page<4096;page++)
1219 invalidate_page(page);
1220 for(page=0;page<1048576;page++)
1221 if(!invalid_code[page]) {
1222 restore_candidate[(page&2047)>>3]|=1<<(page&7);
1223 restore_candidate[((page&2047)>>3)+256]|=1<<(page&7);
1224 }
1225 #ifdef __arm__
1226 __clear_cache((void *)BASE_ADDR,(void *)BASE_ADDR+(1<<TARGET_SIZE_2));
1227 #endif
1228 #ifdef USE_MINI_HT
1229 memset(mini_ht,-1,sizeof(mini_ht));
1230 #endif
1231 #ifndef DISABLE_TLB
1232 // TLB
1233 for(page=0;page<0x100000;page++) {
1234 if(tlb_LUT_r[page]) {
1235 memory_map[page]=((tlb_LUT_r[page]&0xFFFFF000)-(page<<12)+(unsigned int)rdram-0x80000000)>>2;
1236 if(!tlb_LUT_w[page]||!invalid_code[page])
1237 memory_map[page]|=0x40000000; // Write protect
1238 }
1239 else memory_map[page]=-1;
1240 if(page==0x80000) page=0xC0000;
1241 }
1242 tlb_hacks();
1243 #endif
1244}
1245
1246// Add an entry to jump_out after making a link
1247void add_link(u_int vaddr,void *src)
1248{
1249 u_int page=get_page(vaddr);
1250 inv_debug("add_link: %x -> %x (%d)\n",(int)src,vaddr,page);
1251 ll_add(jump_out+page,vaddr,src);
1252 //int ptr=get_pointer(src);
1253 //inv_debug("add_link: Pointer is to %x\n",(int)ptr);
1254}
1255
1256// If a code block was found to be unmodified (bit was set in
1257// restore_candidate) and it remains unmodified (bit is clear
1258// in invalid_code) then move the entries for that 4K page from
1259// the dirty list to the clean list.
1260void clean_blocks(u_int page)
1261{
1262 struct ll_entry *head;
1263 inv_debug("INV: clean_blocks page=%d\n",page);
1264 head=jump_dirty[page];
1265 while(head!=NULL) {
1266 if(!invalid_code[head->vaddr>>12]) {
1267 // Don't restore blocks which are about to expire from the cache
1268 if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1269 u_int start,end;
1270 if(verify_dirty((int)head->addr)) {
1271 //printf("Possibly Restore %x (%x)\n",head->vaddr, (int)head->addr);
1272 u_int i;
1273 u_int inv=0;
1274 get_bounds((int)head->addr,&start,&end);
1275 if(start-(u_int)rdram<RAM_SIZE) {
1276 for(i=(start-(u_int)rdram+0x80000000)>>12;i<=(end-1-(u_int)rdram+0x80000000)>>12;i++) {
1277 inv|=invalid_code[i];
1278 }
1279 }
1280 if((signed int)head->vaddr>=(signed int)0xC0000000) {
1281 u_int addr = (head->vaddr+(memory_map[head->vaddr>>12]<<2));
1282 //printf("addr=%x start=%x end=%x\n",addr,start,end);
1283 if(addr<start||addr>=end) inv=1;
1284 }
1285 else if((signed int)head->vaddr>=(signed int)0x80000000+RAM_SIZE) {
1286 inv=1;
1287 }
1288 if(!inv) {
1289 void * clean_addr=(void *)get_clean_addr((int)head->addr);
1290 if((((u_int)clean_addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1291 u_int ppage=page;
1292#ifndef DISABLE_TLB
1293 if(page<2048&&tlb_LUT_r[head->vaddr>>12]) ppage=(tlb_LUT_r[head->vaddr>>12]^0x80000000)>>12;
1294#endif
1295 inv_debug("INV: Restored %x (%x/%x)\n",head->vaddr, (int)head->addr, (int)clean_addr);
1296 //printf("page=%x, addr=%x\n",page,head->vaddr);
1297 //assert(head->vaddr>>12==(page|0x80000));
1298 ll_add_32(jump_in+ppage,head->vaddr,head->reg32,clean_addr);
1299 int *ht_bin=hash_table[((head->vaddr>>16)^head->vaddr)&0xFFFF];
1300 if(!head->reg32) {
1301 if(ht_bin[0]==head->vaddr) {
1302 ht_bin[1]=(int)clean_addr; // Replace existing entry
1303 }
1304 if(ht_bin[2]==head->vaddr) {
1305 ht_bin[3]=(int)clean_addr; // Replace existing entry
1306 }
1307 }
1308 }
1309 }
1310 }
1311 }
1312 }
1313 head=head->next;
1314 }
1315}
1316
1317
1318void mov_alloc(struct regstat *current,int i)
1319{
1320 // Note: Don't need to actually alloc the source registers
1321 if((~current->is32>>rs1[i])&1) {
1322 //alloc_reg64(current,i,rs1[i]);
1323 alloc_reg64(current,i,rt1[i]);
1324 current->is32&=~(1LL<<rt1[i]);
1325 } else {
1326 //alloc_reg(current,i,rs1[i]);
1327 alloc_reg(current,i,rt1[i]);
1328 current->is32|=(1LL<<rt1[i]);
1329 }
1330 clear_const(current,rs1[i]);
1331 clear_const(current,rt1[i]);
1332 dirty_reg(current,rt1[i]);
1333}
1334
1335void shiftimm_alloc(struct regstat *current,int i)
1336{
1337 clear_const(current,rs1[i]);
1338 clear_const(current,rt1[i]);
1339 if(opcode2[i]<=0x3) // SLL/SRL/SRA
1340 {
1341 if(rt1[i]) {
1342 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1343 else lt1[i]=rs1[i];
1344 alloc_reg(current,i,rt1[i]);
1345 current->is32|=1LL<<rt1[i];
1346 dirty_reg(current,rt1[i]);
1347 }
1348 }
1349 if(opcode2[i]>=0x38&&opcode2[i]<=0x3b) // DSLL/DSRL/DSRA
1350 {
1351 if(rt1[i]) {
1352 if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1353 alloc_reg64(current,i,rt1[i]);
1354 current->is32&=~(1LL<<rt1[i]);
1355 dirty_reg(current,rt1[i]);
1356 }
1357 }
1358 if(opcode2[i]==0x3c) // DSLL32
1359 {
1360 if(rt1[i]) {
1361 if(rs1[i]) alloc_reg(current,i,rs1[i]);
1362 alloc_reg64(current,i,rt1[i]);
1363 current->is32&=~(1LL<<rt1[i]);
1364 dirty_reg(current,rt1[i]);
1365 }
1366 }
1367 if(opcode2[i]==0x3e) // DSRL32
1368 {
1369 if(rt1[i]) {
1370 alloc_reg64(current,i,rs1[i]);
1371 if(imm[i]==32) {
1372 alloc_reg64(current,i,rt1[i]);
1373 current->is32&=~(1LL<<rt1[i]);
1374 } else {
1375 alloc_reg(current,i,rt1[i]);
1376 current->is32|=1LL<<rt1[i];
1377 }
1378 dirty_reg(current,rt1[i]);
1379 }
1380 }
1381 if(opcode2[i]==0x3f) // DSRA32
1382 {
1383 if(rt1[i]) {
1384 alloc_reg64(current,i,rs1[i]);
1385 alloc_reg(current,i,rt1[i]);
1386 current->is32|=1LL<<rt1[i];
1387 dirty_reg(current,rt1[i]);
1388 }
1389 }
1390}
1391
1392void shift_alloc(struct regstat *current,int i)
1393{
1394 if(rt1[i]) {
1395 if(opcode2[i]<=0x07) // SLLV/SRLV/SRAV
1396 {
1397 if(rs1[i]) alloc_reg(current,i,rs1[i]);
1398 if(rs2[i]) alloc_reg(current,i,rs2[i]);
1399 alloc_reg(current,i,rt1[i]);
1400 if(rt1[i]==rs2[i]) {
1401 alloc_reg_temp(current,i,-1);
1402 minimum_free_regs[i]=1;
1403 }
1404 current->is32|=1LL<<rt1[i];
1405 } else { // DSLLV/DSRLV/DSRAV
1406 if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1407 if(rs2[i]) alloc_reg(current,i,rs2[i]);
1408 alloc_reg64(current,i,rt1[i]);
1409 current->is32&=~(1LL<<rt1[i]);
1410 if(opcode2[i]==0x16||opcode2[i]==0x17) // DSRLV and DSRAV need a temporary register
1411 {
1412 alloc_reg_temp(current,i,-1);
1413 minimum_free_regs[i]=1;
1414 }
1415 }
1416 clear_const(current,rs1[i]);
1417 clear_const(current,rs2[i]);
1418 clear_const(current,rt1[i]);
1419 dirty_reg(current,rt1[i]);
1420 }
1421}
1422
1423void alu_alloc(struct regstat *current,int i)
1424{
1425 if(opcode2[i]>=0x20&&opcode2[i]<=0x23) { // ADD/ADDU/SUB/SUBU
1426 if(rt1[i]) {
1427 if(rs1[i]&&rs2[i]) {
1428 alloc_reg(current,i,rs1[i]);
1429 alloc_reg(current,i,rs2[i]);
1430 }
1431 else {
1432 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1433 if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg(current,i,rs2[i]);
1434 }
1435 alloc_reg(current,i,rt1[i]);
1436 }
1437 current->is32|=1LL<<rt1[i];
1438 }
1439 if(opcode2[i]==0x2a||opcode2[i]==0x2b) { // SLT/SLTU
1440 if(rt1[i]) {
1441 if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1442 {
1443 alloc_reg64(current,i,rs1[i]);
1444 alloc_reg64(current,i,rs2[i]);
1445 alloc_reg(current,i,rt1[i]);
1446 } else {
1447 alloc_reg(current,i,rs1[i]);
1448 alloc_reg(current,i,rs2[i]);
1449 alloc_reg(current,i,rt1[i]);
1450 }
1451 }
1452 current->is32|=1LL<<rt1[i];
1453 }
1454 if(opcode2[i]>=0x24&&opcode2[i]<=0x27) { // AND/OR/XOR/NOR
1455 if(rt1[i]) {
1456 if(rs1[i]&&rs2[i]) {
1457 alloc_reg(current,i,rs1[i]);
1458 alloc_reg(current,i,rs2[i]);
1459 }
1460 else
1461 {
1462 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1463 if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg(current,i,rs2[i]);
1464 }
1465 alloc_reg(current,i,rt1[i]);
1466 if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1467 {
1468 if(!((current->uu>>rt1[i])&1)) {
1469 alloc_reg64(current,i,rt1[i]);
1470 }
1471 if(get_reg(current->regmap,rt1[i]|64)>=0) {
1472 if(rs1[i]&&rs2[i]) {
1473 alloc_reg64(current,i,rs1[i]);
1474 alloc_reg64(current,i,rs2[i]);
1475 }
1476 else
1477 {
1478 // Is is really worth it to keep 64-bit values in registers?
1479 #ifdef NATIVE_64BIT
1480 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg64(current,i,rs1[i]);
1481 if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg64(current,i,rs2[i]);
1482 #endif
1483 }
1484 }
1485 current->is32&=~(1LL<<rt1[i]);
1486 } else {
1487 current->is32|=1LL<<rt1[i];
1488 }
1489 }
1490 }
1491 if(opcode2[i]>=0x2c&&opcode2[i]<=0x2f) { // DADD/DADDU/DSUB/DSUBU
1492 if(rt1[i]) {
1493 if(rs1[i]&&rs2[i]) {
1494 if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1495 alloc_reg64(current,i,rs1[i]);
1496 alloc_reg64(current,i,rs2[i]);
1497 alloc_reg64(current,i,rt1[i]);
1498 } else {
1499 alloc_reg(current,i,rs1[i]);
1500 alloc_reg(current,i,rs2[i]);
1501 alloc_reg(current,i,rt1[i]);
1502 }
1503 }
1504 else {
1505 alloc_reg(current,i,rt1[i]);
1506 if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1507 // DADD used as move, or zeroing
1508 // If we have a 64-bit source, then make the target 64 bits too
1509 if(rs1[i]&&!((current->is32>>rs1[i])&1)) {
1510 if(get_reg(current->regmap,rs1[i])>=0) alloc_reg64(current,i,rs1[i]);
1511 alloc_reg64(current,i,rt1[i]);
1512 } else if(rs2[i]&&!((current->is32>>rs2[i])&1)) {
1513 if(get_reg(current->regmap,rs2[i])>=0) alloc_reg64(current,i,rs2[i]);
1514 alloc_reg64(current,i,rt1[i]);
1515 }
1516 if(opcode2[i]>=0x2e&&rs2[i]) {
1517 // DSUB used as negation - 64-bit result
1518 // If we have a 32-bit register, extend it to 64 bits
1519 if(get_reg(current->regmap,rs2[i])>=0) alloc_reg64(current,i,rs2[i]);
1520 alloc_reg64(current,i,rt1[i]);
1521 }
1522 }
1523 }
1524 if(rs1[i]&&rs2[i]) {
1525 current->is32&=~(1LL<<rt1[i]);
1526 } else if(rs1[i]) {
1527 current->is32&=~(1LL<<rt1[i]);
1528 if((current->is32>>rs1[i])&1)
1529 current->is32|=1LL<<rt1[i];
1530 } else if(rs2[i]) {
1531 current->is32&=~(1LL<<rt1[i]);
1532 if((current->is32>>rs2[i])&1)
1533 current->is32|=1LL<<rt1[i];
1534 } else {
1535 current->is32|=1LL<<rt1[i];
1536 }
1537 }
1538 }
1539 clear_const(current,rs1[i]);
1540 clear_const(current,rs2[i]);
1541 clear_const(current,rt1[i]);
1542 dirty_reg(current,rt1[i]);
1543}
1544
1545void imm16_alloc(struct regstat *current,int i)
1546{
1547 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1548 else lt1[i]=rs1[i];
1549 if(rt1[i]) alloc_reg(current,i,rt1[i]);
1550 if(opcode[i]==0x18||opcode[i]==0x19) { // DADDI/DADDIU
1551 current->is32&=~(1LL<<rt1[i]);
1552 if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1553 // TODO: Could preserve the 32-bit flag if the immediate is zero
1554 alloc_reg64(current,i,rt1[i]);
1555 alloc_reg64(current,i,rs1[i]);
1556 }
1557 clear_const(current,rs1[i]);
1558 clear_const(current,rt1[i]);
1559 }
1560 else if(opcode[i]==0x0a||opcode[i]==0x0b) { // SLTI/SLTIU
1561 if((~current->is32>>rs1[i])&1) alloc_reg64(current,i,rs1[i]);
1562 current->is32|=1LL<<rt1[i];
1563 clear_const(current,rs1[i]);
1564 clear_const(current,rt1[i]);
1565 }
1566 else if(opcode[i]>=0x0c&&opcode[i]<=0x0e) { // ANDI/ORI/XORI
1567 if(((~current->is32>>rs1[i])&1)&&opcode[i]>0x0c) {
1568 if(rs1[i]!=rt1[i]) {
1569 if(needed_again(rs1[i],i)) alloc_reg64(current,i,rs1[i]);
1570 alloc_reg64(current,i,rt1[i]);
1571 current->is32&=~(1LL<<rt1[i]);
1572 }
1573 }
1574 else current->is32|=1LL<<rt1[i]; // ANDI clears upper bits
1575 if(is_const(current,rs1[i])) {
1576 int v=get_const(current,rs1[i]);
1577 if(opcode[i]==0x0c) set_const(current,rt1[i],v&imm[i]);
1578 if(opcode[i]==0x0d) set_const(current,rt1[i],v|imm[i]);
1579 if(opcode[i]==0x0e) set_const(current,rt1[i],v^imm[i]);
1580 }
1581 else clear_const(current,rt1[i]);
1582 }
1583 else if(opcode[i]==0x08||opcode[i]==0x09) { // ADDI/ADDIU
1584 if(is_const(current,rs1[i])) {
1585 int v=get_const(current,rs1[i]);
1586 set_const(current,rt1[i],v+imm[i]);
1587 }
1588 else clear_const(current,rt1[i]);
1589 current->is32|=1LL<<rt1[i];
1590 }
1591 else {
1592 set_const(current,rt1[i],((long long)((short)imm[i]))<<16); // LUI
1593 current->is32|=1LL<<rt1[i];
1594 }
1595 dirty_reg(current,rt1[i]);
1596}
1597
1598void load_alloc(struct regstat *current,int i)
1599{
1600 clear_const(current,rt1[i]);
1601 //if(rs1[i]!=rt1[i]&&needed_again(rs1[i],i)) clear_const(current,rs1[i]); // Does this help or hurt?
1602 if(!rs1[i]) current->u&=~1LL; // Allow allocating r0 if it's the source register
1603 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1604 if(rt1[i]) {
1605 alloc_reg(current,i,rt1[i]);
1606 if(get_reg(current->regmap,rt1[i])<0) {
1607 // dummy load, but we still need a register to calculate the address
1608 alloc_reg_temp(current,i,-1);
1609 minimum_free_regs[i]=1;
1610 }
1611 if(opcode[i]==0x27||opcode[i]==0x37) // LWU/LD
1612 {
1613 current->is32&=~(1LL<<rt1[i]);
1614 alloc_reg64(current,i,rt1[i]);
1615 }
1616 else if(opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
1617 {
1618 current->is32&=~(1LL<<rt1[i]);
1619 alloc_reg64(current,i,rt1[i]);
1620 alloc_all(current,i);
1621 alloc_reg64(current,i,FTEMP);
1622 minimum_free_regs[i]=HOST_REGS;
1623 }
1624 else current->is32|=1LL<<rt1[i];
1625 dirty_reg(current,rt1[i]);
1626 // If using TLB, need a register for pointer to the mapping table
1627 if(using_tlb) alloc_reg(current,i,TLREG);
1628 // LWL/LWR need a temporary register for the old value
1629 if(opcode[i]==0x22||opcode[i]==0x26)
1630 {
1631 alloc_reg(current,i,FTEMP);
1632 alloc_reg_temp(current,i,-1);
1633 minimum_free_regs[i]=1;
1634 }
1635 }
1636 else
1637 {
1638 // Load to r0 (dummy load)
1639 // but we still need a register to calculate the address
1640 if(opcode[i]==0x22||opcode[i]==0x26)
1641 {
1642 alloc_reg(current,i,FTEMP); // LWL/LWR need another temporary
1643 }
1644 alloc_reg_temp(current,i,-1);
1645 minimum_free_regs[i]=1;
1646 if(opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
1647 {
1648 alloc_all(current,i);
1649 alloc_reg64(current,i,FTEMP);
1650 minimum_free_regs[i]=HOST_REGS;
1651 }
1652 }
1653}
1654
1655void store_alloc(struct regstat *current,int i)
1656{
1657 clear_const(current,rs2[i]);
1658 if(!(rs2[i])) current->u&=~1LL; // Allow allocating r0 if necessary
1659 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1660 alloc_reg(current,i,rs2[i]);
1661 if(opcode[i]==0x2c||opcode[i]==0x2d||opcode[i]==0x3f) { // 64-bit SDL/SDR/SD
1662 alloc_reg64(current,i,rs2[i]);
1663 if(rs2[i]) alloc_reg(current,i,FTEMP);
1664 }
1665 // If using TLB, need a register for pointer to the mapping table
1666 if(using_tlb) alloc_reg(current,i,TLREG);
1667 #if defined(HOST_IMM8)
1668 // On CPUs without 32-bit immediates we need a pointer to invalid_code
1669 else alloc_reg(current,i,INVCP);
1670 #endif
1671 if(opcode[i]==0x2a||opcode[i]==0x2e||opcode[i]==0x2c||opcode[i]==0x2d) { // SWL/SWL/SDL/SDR
1672 alloc_reg(current,i,FTEMP);
1673 }
1674 // We need a temporary register for address generation
1675 alloc_reg_temp(current,i,-1);
1676 minimum_free_regs[i]=1;
1677}
1678
1679void c1ls_alloc(struct regstat *current,int i)
1680{
1681 //clear_const(current,rs1[i]); // FIXME
1682 clear_const(current,rt1[i]);
1683 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1684 alloc_reg(current,i,CSREG); // Status
1685 alloc_reg(current,i,FTEMP);
1686 if(opcode[i]==0x35||opcode[i]==0x3d) { // 64-bit LDC1/SDC1
1687 alloc_reg64(current,i,FTEMP);
1688 }
1689 // If using TLB, need a register for pointer to the mapping table
1690 if(using_tlb) alloc_reg(current,i,TLREG);
1691 #if defined(HOST_IMM8)
1692 // On CPUs without 32-bit immediates we need a pointer to invalid_code
1693 else if((opcode[i]&0x3b)==0x39) // SWC1/SDC1
1694 alloc_reg(current,i,INVCP);
1695 #endif
1696 // We need a temporary register for address generation
1697 alloc_reg_temp(current,i,-1);
1698}
1699
1700void c2ls_alloc(struct regstat *current,int i)
1701{
1702 clear_const(current,rt1[i]);
1703 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1704 alloc_reg(current,i,FTEMP);
1705 // If using TLB, need a register for pointer to the mapping table
1706 if(using_tlb) alloc_reg(current,i,TLREG);
1707 #if defined(HOST_IMM8)
1708 // On CPUs without 32-bit immediates we need a pointer to invalid_code
1709 else if((opcode[i]&0x3b)==0x3a) // SWC2/SDC2
1710 alloc_reg(current,i,INVCP);
1711 #endif
1712 // We need a temporary register for address generation
1713 alloc_reg_temp(current,i,-1);
1714 minimum_free_regs[i]=1;
1715}
1716
1717#ifndef multdiv_alloc
1718void multdiv_alloc(struct regstat *current,int i)
1719{
1720 // case 0x18: MULT
1721 // case 0x19: MULTU
1722 // case 0x1A: DIV
1723 // case 0x1B: DIVU
1724 // case 0x1C: DMULT
1725 // case 0x1D: DMULTU
1726 // case 0x1E: DDIV
1727 // case 0x1F: DDIVU
1728 clear_const(current,rs1[i]);
1729 clear_const(current,rs2[i]);
1730 if(rs1[i]&&rs2[i])
1731 {
1732 if((opcode2[i]&4)==0) // 32-bit
1733 {
1734 current->u&=~(1LL<<HIREG);
1735 current->u&=~(1LL<<LOREG);
1736 alloc_reg(current,i,HIREG);
1737 alloc_reg(current,i,LOREG);
1738 alloc_reg(current,i,rs1[i]);
1739 alloc_reg(current,i,rs2[i]);
1740 current->is32|=1LL<<HIREG;
1741 current->is32|=1LL<<LOREG;
1742 dirty_reg(current,HIREG);
1743 dirty_reg(current,LOREG);
1744 }
1745 else // 64-bit
1746 {
1747 current->u&=~(1LL<<HIREG);
1748 current->u&=~(1LL<<LOREG);
1749 current->uu&=~(1LL<<HIREG);
1750 current->uu&=~(1LL<<LOREG);
1751 alloc_reg64(current,i,HIREG);
1752 //if(HOST_REGS>10) alloc_reg64(current,i,LOREG);
1753 alloc_reg64(current,i,rs1[i]);
1754 alloc_reg64(current,i,rs2[i]);
1755 alloc_all(current,i);
1756 current->is32&=~(1LL<<HIREG);
1757 current->is32&=~(1LL<<LOREG);
1758 dirty_reg(current,HIREG);
1759 dirty_reg(current,LOREG);
1760 minimum_free_regs[i]=HOST_REGS;
1761 }
1762 }
1763 else
1764 {
1765 // Multiply by zero is zero.
1766 // MIPS does not have a divide by zero exception.
1767 // The result is undefined, we return zero.
1768 alloc_reg(current,i,HIREG);
1769 alloc_reg(current,i,LOREG);
1770 current->is32|=1LL<<HIREG;
1771 current->is32|=1LL<<LOREG;
1772 dirty_reg(current,HIREG);
1773 dirty_reg(current,LOREG);
1774 }
1775}
1776#endif
1777
1778void cop0_alloc(struct regstat *current,int i)
1779{
1780 if(opcode2[i]==0) // MFC0
1781 {
1782 if(rt1[i]) {
1783 clear_const(current,rt1[i]);
1784 alloc_all(current,i);
1785 alloc_reg(current,i,rt1[i]);
1786 current->is32|=1LL<<rt1[i];
1787 dirty_reg(current,rt1[i]);
1788 }
1789 }
1790 else if(opcode2[i]==4) // MTC0
1791 {
1792 if(rs1[i]){
1793 clear_const(current,rs1[i]);
1794 alloc_reg(current,i,rs1[i]);
1795 alloc_all(current,i);
1796 }
1797 else {
1798 alloc_all(current,i); // FIXME: Keep r0
1799 current->u&=~1LL;
1800 alloc_reg(current,i,0);
1801 }
1802 }
1803 else
1804 {
1805 // TLBR/TLBWI/TLBWR/TLBP/ERET
1806 assert(opcode2[i]==0x10);
1807 alloc_all(current,i);
1808 }
1809 minimum_free_regs[i]=HOST_REGS;
1810}
1811
1812void cop1_alloc(struct regstat *current,int i)
1813{
1814 alloc_reg(current,i,CSREG); // Load status
1815 if(opcode2[i]<3) // MFC1/DMFC1/CFC1
1816 {
1817 if(rt1[i]){
1818 clear_const(current,rt1[i]);
1819 if(opcode2[i]==1) {
1820 alloc_reg64(current,i,rt1[i]); // DMFC1
1821 current->is32&=~(1LL<<rt1[i]);
1822 }else{
1823 alloc_reg(current,i,rt1[i]); // MFC1/CFC1
1824 current->is32|=1LL<<rt1[i];
1825 }
1826 dirty_reg(current,rt1[i]);
1827 }
1828 alloc_reg_temp(current,i,-1);
1829 }
1830 else if(opcode2[i]>3) // MTC1/DMTC1/CTC1
1831 {
1832 if(rs1[i]){
1833 clear_const(current,rs1[i]);
1834 if(opcode2[i]==5)
1835 alloc_reg64(current,i,rs1[i]); // DMTC1
1836 else
1837 alloc_reg(current,i,rs1[i]); // MTC1/CTC1
1838 alloc_reg_temp(current,i,-1);
1839 }
1840 else {
1841 current->u&=~1LL;
1842 alloc_reg(current,i,0);
1843 alloc_reg_temp(current,i,-1);
1844 }
1845 }
1846 minimum_free_regs[i]=1;
1847}
1848void fconv_alloc(struct regstat *current,int i)
1849{
1850 alloc_reg(current,i,CSREG); // Load status
1851 alloc_reg_temp(current,i,-1);
1852 minimum_free_regs[i]=1;
1853}
1854void float_alloc(struct regstat *current,int i)
1855{
1856 alloc_reg(current,i,CSREG); // Load status
1857 alloc_reg_temp(current,i,-1);
1858 minimum_free_regs[i]=1;
1859}
1860void c2op_alloc(struct regstat *current,int i)
1861{
1862 alloc_reg_temp(current,i,-1);
1863}
1864void fcomp_alloc(struct regstat *current,int i)
1865{
1866 alloc_reg(current,i,CSREG); // Load status
1867 alloc_reg(current,i,FSREG); // Load flags
1868 dirty_reg(current,FSREG); // Flag will be modified
1869 alloc_reg_temp(current,i,-1);
1870 minimum_free_regs[i]=1;
1871}
1872
1873void syscall_alloc(struct regstat *current,int i)
1874{
1875 alloc_cc(current,i);
1876 dirty_reg(current,CCREG);
1877 alloc_all(current,i);
1878 minimum_free_regs[i]=HOST_REGS;
1879 current->isconst=0;
1880}
1881
1882void delayslot_alloc(struct regstat *current,int i)
1883{
1884 switch(itype[i]) {
1885 case UJUMP:
1886 case CJUMP:
1887 case SJUMP:
1888 case RJUMP:
1889 case FJUMP:
1890 case SYSCALL:
1891 case HLECALL:
1892 case SPAN:
1893 assem_debug("jump in the delay slot. this shouldn't happen.\n");//exit(1);
1894 printf("Disabled speculative precompilation\n");
1895 stop_after_jal=1;
1896 break;
1897 case IMM16:
1898 imm16_alloc(current,i);
1899 break;
1900 case LOAD:
1901 case LOADLR:
1902 load_alloc(current,i);
1903 break;
1904 case STORE:
1905 case STORELR:
1906 store_alloc(current,i);
1907 break;
1908 case ALU:
1909 alu_alloc(current,i);
1910 break;
1911 case SHIFT:
1912 shift_alloc(current,i);
1913 break;
1914 case MULTDIV:
1915 multdiv_alloc(current,i);
1916 break;
1917 case SHIFTIMM:
1918 shiftimm_alloc(current,i);
1919 break;
1920 case MOV:
1921 mov_alloc(current,i);
1922 break;
1923 case COP0:
1924 cop0_alloc(current,i);
1925 break;
1926 case COP1:
1927 case COP2:
1928 cop1_alloc(current,i);
1929 break;
1930 case C1LS:
1931 c1ls_alloc(current,i);
1932 break;
1933 case C2LS:
1934 c2ls_alloc(current,i);
1935 break;
1936 case FCONV:
1937 fconv_alloc(current,i);
1938 break;
1939 case FLOAT:
1940 float_alloc(current,i);
1941 break;
1942 case FCOMP:
1943 fcomp_alloc(current,i);
1944 break;
1945 case C2OP:
1946 c2op_alloc(current,i);
1947 break;
1948 }
1949}
1950
1951// Special case where a branch and delay slot span two pages in virtual memory
1952static void pagespan_alloc(struct regstat *current,int i)
1953{
1954 current->isconst=0;
1955 current->wasconst=0;
1956 regs[i].wasconst=0;
1957 minimum_free_regs[i]=HOST_REGS;
1958 alloc_all(current,i);
1959 alloc_cc(current,i);
1960 dirty_reg(current,CCREG);
1961 if(opcode[i]==3) // JAL
1962 {
1963 alloc_reg(current,i,31);
1964 dirty_reg(current,31);
1965 }
1966 if(opcode[i]==0&&(opcode2[i]&0x3E)==8) // JR/JALR
1967 {
1968 alloc_reg(current,i,rs1[i]);
1969 if (rt1[i]!=0) {
1970 alloc_reg(current,i,rt1[i]);
1971 dirty_reg(current,rt1[i]);
1972 }
1973 }
1974 if((opcode[i]&0x2E)==4) // BEQ/BNE/BEQL/BNEL
1975 {
1976 if(rs1[i]) alloc_reg(current,i,rs1[i]);
1977 if(rs2[i]) alloc_reg(current,i,rs2[i]);
1978 if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1979 {
1980 if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1981 if(rs2[i]) alloc_reg64(current,i,rs2[i]);
1982 }
1983 }
1984 else
1985 if((opcode[i]&0x2E)==6) // BLEZ/BGTZ/BLEZL/BGTZL
1986 {
1987 if(rs1[i]) alloc_reg(current,i,rs1[i]);
1988 if(!((current->is32>>rs1[i])&1))
1989 {
1990 if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1991 }
1992 }
1993 else
1994 if(opcode[i]==0x11) // BC1
1995 {
1996 alloc_reg(current,i,FSREG);
1997 alloc_reg(current,i,CSREG);
1998 }
1999 //else ...
2000}
2001
2002add_stub(int type,int addr,int retaddr,int a,int b,int c,int d,int e)
2003{
2004 stubs[stubcount][0]=type;
2005 stubs[stubcount][1]=addr;
2006 stubs[stubcount][2]=retaddr;
2007 stubs[stubcount][3]=a;
2008 stubs[stubcount][4]=b;
2009 stubs[stubcount][5]=c;
2010 stubs[stubcount][6]=d;
2011 stubs[stubcount][7]=e;
2012 stubcount++;
2013}
2014
2015// Write out a single register
2016void wb_register(signed char r,signed char regmap[],uint64_t dirty,uint64_t is32)
2017{
2018 int hr;
2019 for(hr=0;hr<HOST_REGS;hr++) {
2020 if(hr!=EXCLUDE_REG) {
2021 if((regmap[hr]&63)==r) {
2022 if((dirty>>hr)&1) {
2023 if(regmap[hr]<64) {
2024 emit_storereg(r,hr);
2025#ifndef FORCE32
2026 if((is32>>regmap[hr])&1) {
2027 emit_sarimm(hr,31,hr);
2028 emit_storereg(r|64,hr);
2029 }
2030#endif
2031 }else{
2032 emit_storereg(r|64,hr);
2033 }
2034 }
2035 }
2036 }
2037 }
2038}
2039
2040int mchecksum()
2041{
2042 //if(!tracedebug) return 0;
2043 int i;
2044 int sum=0;
2045 for(i=0;i<2097152;i++) {
2046 unsigned int temp=sum;
2047 sum<<=1;
2048 sum|=(~temp)>>31;
2049 sum^=((u_int *)rdram)[i];
2050 }
2051 return sum;
2052}
2053int rchecksum()
2054{
2055 int i;
2056 int sum=0;
2057 for(i=0;i<64;i++)
2058 sum^=((u_int *)reg)[i];
2059 return sum;
2060}
2061void rlist()
2062{
2063 int i;
2064 printf("TRACE: ");
2065 for(i=0;i<32;i++)
2066 printf("r%d:%8x%8x ",i,((int *)(reg+i))[1],((int *)(reg+i))[0]);
2067 printf("\n");
2068#ifndef DISABLE_COP1
2069 printf("TRACE: ");
2070 for(i=0;i<32;i++)
2071 printf("f%d:%8x%8x ",i,((int*)reg_cop1_simple[i])[1],*((int*)reg_cop1_simple[i]));
2072 printf("\n");
2073#endif
2074}
2075
2076void enabletrace()
2077{
2078 tracedebug=1;
2079}
2080
2081void memdebug(int i)
2082{
2083 //printf("TRACE: count=%d next=%d (checksum %x) lo=%8x%8x\n",Count,next_interupt,mchecksum(),(int)(reg[LOREG]>>32),(int)reg[LOREG]);
2084 //printf("TRACE: count=%d next=%d (rchecksum %x)\n",Count,next_interupt,rchecksum());
2085 //rlist();
2086 //if(tracedebug) {
2087 //if(Count>=-2084597794) {
2088 if((signed int)Count>=-2084597794&&(signed int)Count<0) {
2089 //if(0) {
2090 printf("TRACE: count=%d next=%d (checksum %x)\n",Count,next_interupt,mchecksum());
2091 //printf("TRACE: count=%d next=%d (checksum %x) Status=%x\n",Count,next_interupt,mchecksum(),Status);
2092 //printf("TRACE: count=%d next=%d (checksum %x) hi=%8x%8x\n",Count,next_interupt,mchecksum(),(int)(reg[HIREG]>>32),(int)reg[HIREG]);
2093 rlist();
2094 #ifdef __i386__
2095 printf("TRACE: %x\n",(&i)[-1]);
2096 #endif
2097 #ifdef __arm__
2098 int j;
2099 printf("TRACE: %x \n",(&j)[10]);
2100 printf("TRACE: %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x\n",(&j)[1],(&j)[2],(&j)[3],(&j)[4],(&j)[5],(&j)[6],(&j)[7],(&j)[8],(&j)[9],(&j)[10],(&j)[11],(&j)[12],(&j)[13],(&j)[14],(&j)[15],(&j)[16],(&j)[17],(&j)[18],(&j)[19],(&j)[20]);
2101 #endif
2102 //fflush(stdout);
2103 }
2104 //printf("TRACE: %x\n",(&i)[-1]);
2105}
2106
2107void tlb_debug(u_int cause, u_int addr, u_int iaddr)
2108{
2109 printf("TLB Exception: instruction=%x addr=%x cause=%x\n",iaddr, addr, cause);
2110}
2111
2112void alu_assemble(int i,struct regstat *i_regs)
2113{
2114 if(opcode2[i]>=0x20&&opcode2[i]<=0x23) { // ADD/ADDU/SUB/SUBU
2115 if(rt1[i]) {
2116 signed char s1,s2,t;
2117 t=get_reg(i_regs->regmap,rt1[i]);
2118 if(t>=0) {
2119 s1=get_reg(i_regs->regmap,rs1[i]);
2120 s2=get_reg(i_regs->regmap,rs2[i]);
2121 if(rs1[i]&&rs2[i]) {
2122 assert(s1>=0);
2123 assert(s2>=0);
2124 if(opcode2[i]&2) emit_sub(s1,s2,t);
2125 else emit_add(s1,s2,t);
2126 }
2127 else if(rs1[i]) {
2128 if(s1>=0) emit_mov(s1,t);
2129 else emit_loadreg(rs1[i],t);
2130 }
2131 else if(rs2[i]) {
2132 if(s2>=0) {
2133 if(opcode2[i]&2) emit_neg(s2,t);
2134 else emit_mov(s2,t);
2135 }
2136 else {
2137 emit_loadreg(rs2[i],t);
2138 if(opcode2[i]&2) emit_neg(t,t);
2139 }
2140 }
2141 else emit_zeroreg(t);
2142 }
2143 }
2144 }
2145 if(opcode2[i]>=0x2c&&opcode2[i]<=0x2f) { // DADD/DADDU/DSUB/DSUBU
2146 if(rt1[i]) {
2147 signed char s1l,s2l,s1h,s2h,tl,th;
2148 tl=get_reg(i_regs->regmap,rt1[i]);
2149 th=get_reg(i_regs->regmap,rt1[i]|64);
2150 if(tl>=0) {
2151 s1l=get_reg(i_regs->regmap,rs1[i]);
2152 s2l=get_reg(i_regs->regmap,rs2[i]);
2153 s1h=get_reg(i_regs->regmap,rs1[i]|64);
2154 s2h=get_reg(i_regs->regmap,rs2[i]|64);
2155 if(rs1[i]&&rs2[i]) {
2156 assert(s1l>=0);
2157 assert(s2l>=0);
2158 if(opcode2[i]&2) emit_subs(s1l,s2l,tl);
2159 else emit_adds(s1l,s2l,tl);
2160 if(th>=0) {
2161 #ifdef INVERTED_CARRY
2162 if(opcode2[i]&2) {if(s1h!=th) emit_mov(s1h,th);emit_sbb(th,s2h);}
2163 #else
2164 if(opcode2[i]&2) emit_sbc(s1h,s2h,th);
2165 #endif
2166 else emit_add(s1h,s2h,th);
2167 }
2168 }
2169 else if(rs1[i]) {
2170 if(s1l>=0) emit_mov(s1l,tl);
2171 else emit_loadreg(rs1[i],tl);
2172 if(th>=0) {
2173 if(s1h>=0) emit_mov(s1h,th);
2174 else emit_loadreg(rs1[i]|64,th);
2175 }
2176 }
2177 else if(rs2[i]) {
2178 if(s2l>=0) {
2179 if(opcode2[i]&2) emit_negs(s2l,tl);
2180 else emit_mov(s2l,tl);
2181 }
2182 else {
2183 emit_loadreg(rs2[i],tl);
2184 if(opcode2[i]&2) emit_negs(tl,tl);
2185 }
2186 if(th>=0) {
2187 #ifdef INVERTED_CARRY
2188 if(s2h>=0) emit_mov(s2h,th);
2189 else emit_loadreg(rs2[i]|64,th);
2190 if(opcode2[i]&2) {
2191 emit_adcimm(-1,th); // x86 has inverted carry flag
2192 emit_not(th,th);
2193 }
2194 #else
2195 if(opcode2[i]&2) {
2196 if(s2h>=0) emit_rscimm(s2h,0,th);
2197 else {
2198 emit_loadreg(rs2[i]|64,th);
2199 emit_rscimm(th,0,th);
2200 }
2201 }else{
2202 if(s2h>=0) emit_mov(s2h,th);
2203 else emit_loadreg(rs2[i]|64,th);
2204 }
2205 #endif
2206 }
2207 }
2208 else {
2209 emit_zeroreg(tl);
2210 if(th>=0) emit_zeroreg(th);
2211 }
2212 }
2213 }
2214 }
2215 if(opcode2[i]==0x2a||opcode2[i]==0x2b) { // SLT/SLTU
2216 if(rt1[i]) {
2217 signed char s1l,s1h,s2l,s2h,t;
2218 if(!((i_regs->was32>>rs1[i])&(i_regs->was32>>rs2[i])&1))
2219 {
2220 t=get_reg(i_regs->regmap,rt1[i]);
2221 //assert(t>=0);
2222 if(t>=0) {
2223 s1l=get_reg(i_regs->regmap,rs1[i]);
2224 s1h=get_reg(i_regs->regmap,rs1[i]|64);
2225 s2l=get_reg(i_regs->regmap,rs2[i]);
2226 s2h=get_reg(i_regs->regmap,rs2[i]|64);
2227 if(rs2[i]==0) // rx<r0
2228 {
2229 assert(s1h>=0);
2230 if(opcode2[i]==0x2a) // SLT
2231 emit_shrimm(s1h,31,t);
2232 else // SLTU (unsigned can not be less than zero)
2233 emit_zeroreg(t);
2234 }
2235 else if(rs1[i]==0) // r0<rx
2236 {
2237 assert(s2h>=0);
2238 if(opcode2[i]==0x2a) // SLT
2239 emit_set_gz64_32(s2h,s2l,t);
2240 else // SLTU (set if not zero)
2241 emit_set_nz64_32(s2h,s2l,t);
2242 }
2243 else {
2244 assert(s1l>=0);assert(s1h>=0);
2245 assert(s2l>=0);assert(s2h>=0);
2246 if(opcode2[i]==0x2a) // SLT
2247 emit_set_if_less64_32(s1h,s1l,s2h,s2l,t);
2248 else // SLTU
2249 emit_set_if_carry64_32(s1h,s1l,s2h,s2l,t);
2250 }
2251 }
2252 } else {
2253 t=get_reg(i_regs->regmap,rt1[i]);
2254 //assert(t>=0);
2255 if(t>=0) {
2256 s1l=get_reg(i_regs->regmap,rs1[i]);
2257 s2l=get_reg(i_regs->regmap,rs2[i]);
2258 if(rs2[i]==0) // rx<r0
2259 {
2260 assert(s1l>=0);
2261 if(opcode2[i]==0x2a) // SLT
2262 emit_shrimm(s1l,31,t);
2263 else // SLTU (unsigned can not be less than zero)
2264 emit_zeroreg(t);
2265 }
2266 else if(rs1[i]==0) // r0<rx
2267 {
2268 assert(s2l>=0);
2269 if(opcode2[i]==0x2a) // SLT
2270 emit_set_gz32(s2l,t);
2271 else // SLTU (set if not zero)
2272 emit_set_nz32(s2l,t);
2273 }
2274 else{
2275 assert(s1l>=0);assert(s2l>=0);
2276 if(opcode2[i]==0x2a) // SLT
2277 emit_set_if_less32(s1l,s2l,t);
2278 else // SLTU
2279 emit_set_if_carry32(s1l,s2l,t);
2280 }
2281 }
2282 }
2283 }
2284 }
2285 if(opcode2[i]>=0x24&&opcode2[i]<=0x27) { // AND/OR/XOR/NOR
2286 if(rt1[i]) {
2287 signed char s1l,s1h,s2l,s2h,th,tl;
2288 tl=get_reg(i_regs->regmap,rt1[i]);
2289 th=get_reg(i_regs->regmap,rt1[i]|64);
2290 if(!((i_regs->was32>>rs1[i])&(i_regs->was32>>rs2[i])&1)&&th>=0)
2291 {
2292 assert(tl>=0);
2293 if(tl>=0) {
2294 s1l=get_reg(i_regs->regmap,rs1[i]);
2295 s1h=get_reg(i_regs->regmap,rs1[i]|64);
2296 s2l=get_reg(i_regs->regmap,rs2[i]);
2297 s2h=get_reg(i_regs->regmap,rs2[i]|64);
2298 if(rs1[i]&&rs2[i]) {
2299 assert(s1l>=0);assert(s1h>=0);
2300 assert(s2l>=0);assert(s2h>=0);
2301 if(opcode2[i]==0x24) { // AND
2302 emit_and(s1l,s2l,tl);
2303 emit_and(s1h,s2h,th);
2304 } else
2305 if(opcode2[i]==0x25) { // OR
2306 emit_or(s1l,s2l,tl);
2307 emit_or(s1h,s2h,th);
2308 } else
2309 if(opcode2[i]==0x26) { // XOR
2310 emit_xor(s1l,s2l,tl);
2311 emit_xor(s1h,s2h,th);
2312 } else
2313 if(opcode2[i]==0x27) { // NOR
2314 emit_or(s1l,s2l,tl);
2315 emit_or(s1h,s2h,th);
2316 emit_not(tl,tl);
2317 emit_not(th,th);
2318 }
2319 }
2320 else
2321 {
2322 if(opcode2[i]==0x24) { // AND
2323 emit_zeroreg(tl);
2324 emit_zeroreg(th);
2325 } else
2326 if(opcode2[i]==0x25||opcode2[i]==0x26) { // OR/XOR
2327 if(rs1[i]){
2328 if(s1l>=0) emit_mov(s1l,tl);
2329 else emit_loadreg(rs1[i],tl);
2330 if(s1h>=0) emit_mov(s1h,th);
2331 else emit_loadreg(rs1[i]|64,th);
2332 }
2333 else
2334 if(rs2[i]){
2335 if(s2l>=0) emit_mov(s2l,tl);
2336 else emit_loadreg(rs2[i],tl);
2337 if(s2h>=0) emit_mov(s2h,th);
2338 else emit_loadreg(rs2[i]|64,th);
2339 }
2340 else{
2341 emit_zeroreg(tl);
2342 emit_zeroreg(th);
2343 }
2344 } else
2345 if(opcode2[i]==0x27) { // NOR
2346 if(rs1[i]){
2347 if(s1l>=0) emit_not(s1l,tl);
2348 else{
2349 emit_loadreg(rs1[i],tl);
2350 emit_not(tl,tl);
2351 }
2352 if(s1h>=0) emit_not(s1h,th);
2353 else{
2354 emit_loadreg(rs1[i]|64,th);
2355 emit_not(th,th);
2356 }
2357 }
2358 else
2359 if(rs2[i]){
2360 if(s2l>=0) emit_not(s2l,tl);
2361 else{
2362 emit_loadreg(rs2[i],tl);
2363 emit_not(tl,tl);
2364 }
2365 if(s2h>=0) emit_not(s2h,th);
2366 else{
2367 emit_loadreg(rs2[i]|64,th);
2368 emit_not(th,th);
2369 }
2370 }
2371 else {
2372 emit_movimm(-1,tl);
2373 emit_movimm(-1,th);
2374 }
2375 }
2376 }
2377 }
2378 }
2379 else
2380 {
2381 // 32 bit
2382 if(tl>=0) {
2383 s1l=get_reg(i_regs->regmap,rs1[i]);
2384 s2l=get_reg(i_regs->regmap,rs2[i]);
2385 if(rs1[i]&&rs2[i]) {
2386 assert(s1l>=0);
2387 assert(s2l>=0);
2388 if(opcode2[i]==0x24) { // AND
2389 emit_and(s1l,s2l,tl);
2390 } else
2391 if(opcode2[i]==0x25) { // OR
2392 emit_or(s1l,s2l,tl);
2393 } else
2394 if(opcode2[i]==0x26) { // XOR
2395 emit_xor(s1l,s2l,tl);
2396 } else
2397 if(opcode2[i]==0x27) { // NOR
2398 emit_or(s1l,s2l,tl);
2399 emit_not(tl,tl);
2400 }
2401 }
2402 else
2403 {
2404 if(opcode2[i]==0x24) { // AND
2405 emit_zeroreg(tl);
2406 } else
2407 if(opcode2[i]==0x25||opcode2[i]==0x26) { // OR/XOR
2408 if(rs1[i]){
2409 if(s1l>=0) emit_mov(s1l,tl);
2410 else emit_loadreg(rs1[i],tl); // CHECK: regmap_entry?
2411 }
2412 else
2413 if(rs2[i]){
2414 if(s2l>=0) emit_mov(s2l,tl);
2415 else emit_loadreg(rs2[i],tl); // CHECK: regmap_entry?
2416 }
2417 else emit_zeroreg(tl);
2418 } else
2419 if(opcode2[i]==0x27) { // NOR
2420 if(rs1[i]){
2421 if(s1l>=0) emit_not(s1l,tl);
2422 else {
2423 emit_loadreg(rs1[i],tl);
2424 emit_not(tl,tl);
2425 }
2426 }
2427 else
2428 if(rs2[i]){
2429 if(s2l>=0) emit_not(s2l,tl);
2430 else {
2431 emit_loadreg(rs2[i],tl);
2432 emit_not(tl,tl);
2433 }
2434 }
2435 else emit_movimm(-1,tl);
2436 }
2437 }
2438 }
2439 }
2440 }
2441 }
2442}
2443
2444void imm16_assemble(int i,struct regstat *i_regs)
2445{
2446 if (opcode[i]==0x0f) { // LUI
2447 if(rt1[i]) {
2448 signed char t;
2449 t=get_reg(i_regs->regmap,rt1[i]);
2450 //assert(t>=0);
2451 if(t>=0) {
2452 if(!((i_regs->isconst>>t)&1))
2453 emit_movimm(imm[i]<<16,t);
2454 }
2455 }
2456 }
2457 if(opcode[i]==0x08||opcode[i]==0x09) { // ADDI/ADDIU
2458 if(rt1[i]) {
2459 signed char s,t;
2460 t=get_reg(i_regs->regmap,rt1[i]);
2461 s=get_reg(i_regs->regmap,rs1[i]);
2462 if(rs1[i]) {
2463 //assert(t>=0);
2464 //assert(s>=0);
2465 if(t>=0) {
2466 if(!((i_regs->isconst>>t)&1)) {
2467 if(s<0) {
2468 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2469 emit_addimm(t,imm[i],t);
2470 }else{
2471 if(!((i_regs->wasconst>>s)&1))
2472 emit_addimm(s,imm[i],t);
2473 else
2474 emit_movimm(constmap[i][s]+imm[i],t);
2475 }
2476 }
2477 }
2478 } else {
2479 if(t>=0) {
2480 if(!((i_regs->isconst>>t)&1))
2481 emit_movimm(imm[i],t);
2482 }
2483 }
2484 }
2485 }
2486 if(opcode[i]==0x18||opcode[i]==0x19) { // DADDI/DADDIU
2487 if(rt1[i]) {
2488 signed char sh,sl,th,tl;
2489 th=get_reg(i_regs->regmap,rt1[i]|64);
2490 tl=get_reg(i_regs->regmap,rt1[i]);
2491 sh=get_reg(i_regs->regmap,rs1[i]|64);
2492 sl=get_reg(i_regs->regmap,rs1[i]);
2493 if(tl>=0) {
2494 if(rs1[i]) {
2495 assert(sh>=0);
2496 assert(sl>=0);
2497 if(th>=0) {
2498 emit_addimm64_32(sh,sl,imm[i],th,tl);
2499 }
2500 else {
2501 emit_addimm(sl,imm[i],tl);
2502 }
2503 } else {
2504 emit_movimm(imm[i],tl);
2505 if(th>=0) emit_movimm(((signed int)imm[i])>>31,th);
2506 }
2507 }
2508 }
2509 }
2510 else if(opcode[i]==0x0a||opcode[i]==0x0b) { // SLTI/SLTIU
2511 if(rt1[i]) {
2512 //assert(rs1[i]!=0); // r0 might be valid, but it's probably a bug
2513 signed char sh,sl,t;
2514 t=get_reg(i_regs->regmap,rt1[i]);
2515 sh=get_reg(i_regs->regmap,rs1[i]|64);
2516 sl=get_reg(i_regs->regmap,rs1[i]);
2517 //assert(t>=0);
2518 if(t>=0) {
2519 if(rs1[i]>0) {
2520 if(sh<0) assert((i_regs->was32>>rs1[i])&1);
2521 if(sh<0||((i_regs->was32>>rs1[i])&1)) {
2522 if(opcode[i]==0x0a) { // SLTI
2523 if(sl<0) {
2524 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2525 emit_slti32(t,imm[i],t);
2526 }else{
2527 emit_slti32(sl,imm[i],t);
2528 }
2529 }
2530 else { // SLTIU
2531 if(sl<0) {
2532 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2533 emit_sltiu32(t,imm[i],t);
2534 }else{
2535 emit_sltiu32(sl,imm[i],t);
2536 }
2537 }
2538 }else{ // 64-bit
2539 assert(sl>=0);
2540 if(opcode[i]==0x0a) // SLTI
2541 emit_slti64_32(sh,sl,imm[i],t);
2542 else // SLTIU
2543 emit_sltiu64_32(sh,sl,imm[i],t);
2544 }
2545 }else{
2546 // SLTI(U) with r0 is just stupid,
2547 // nonetheless examples can be found
2548 if(opcode[i]==0x0a) // SLTI
2549 if(0<imm[i]) emit_movimm(1,t);
2550 else emit_zeroreg(t);
2551 else // SLTIU
2552 {
2553 if(imm[i]) emit_movimm(1,t);
2554 else emit_zeroreg(t);
2555 }
2556 }
2557 }
2558 }
2559 }
2560 else if(opcode[i]>=0x0c&&opcode[i]<=0x0e) { // ANDI/ORI/XORI
2561 if(rt1[i]) {
2562 signed char sh,sl,th,tl;
2563 th=get_reg(i_regs->regmap,rt1[i]|64);
2564 tl=get_reg(i_regs->regmap,rt1[i]);
2565 sh=get_reg(i_regs->regmap,rs1[i]|64);
2566 sl=get_reg(i_regs->regmap,rs1[i]);
2567 if(tl>=0 && !((i_regs->isconst>>tl)&1)) {
2568 if(opcode[i]==0x0c) //ANDI
2569 {
2570 if(rs1[i]) {
2571 if(sl<0) {
2572 if(i_regs->regmap_entry[tl]!=rs1[i]) emit_loadreg(rs1[i],tl);
2573 emit_andimm(tl,imm[i],tl);
2574 }else{
2575 if(!((i_regs->wasconst>>sl)&1))
2576 emit_andimm(sl,imm[i],tl);
2577 else
2578 emit_movimm(constmap[i][sl]&imm[i],tl);
2579 }
2580 }
2581 else
2582 emit_zeroreg(tl);
2583 if(th>=0) emit_zeroreg(th);
2584 }
2585 else
2586 {
2587 if(rs1[i]) {
2588 if(sl<0) {
2589 if(i_regs->regmap_entry[tl]!=rs1[i]) emit_loadreg(rs1[i],tl);
2590 }
2591 if(th>=0) {
2592 if(sh<0) {
2593 emit_loadreg(rs1[i]|64,th);
2594 }else{
2595 emit_mov(sh,th);
2596 }
2597 }
2598 if(opcode[i]==0x0d) //ORI
2599 if(sl<0) {
2600 emit_orimm(tl,imm[i],tl);
2601 }else{
2602 if(!((i_regs->wasconst>>sl)&1))
2603 emit_orimm(sl,imm[i],tl);
2604 else
2605 emit_movimm(constmap[i][sl]|imm[i],tl);
2606 }
2607 if(opcode[i]==0x0e) //XORI
2608 if(sl<0) {
2609 emit_xorimm(tl,imm[i],tl);
2610 }else{
2611 if(!((i_regs->wasconst>>sl)&1))
2612 emit_xorimm(sl,imm[i],tl);
2613 else
2614 emit_movimm(constmap[i][sl]^imm[i],tl);
2615 }
2616 }
2617 else {
2618 emit_movimm(imm[i],tl);
2619 if(th>=0) emit_zeroreg(th);
2620 }
2621 }
2622 }
2623 }
2624 }
2625}
2626
2627void shiftimm_assemble(int i,struct regstat *i_regs)
2628{
2629 if(opcode2[i]<=0x3) // SLL/SRL/SRA
2630 {
2631 if(rt1[i]) {
2632 signed char s,t;
2633 t=get_reg(i_regs->regmap,rt1[i]);
2634 s=get_reg(i_regs->regmap,rs1[i]);
2635 //assert(t>=0);
2636 if(t>=0){
2637 if(rs1[i]==0)
2638 {
2639 emit_zeroreg(t);
2640 }
2641 else
2642 {
2643 if(s<0&&i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2644 if(imm[i]) {
2645 if(opcode2[i]==0) // SLL
2646 {
2647 emit_shlimm(s<0?t:s,imm[i],t);
2648 }
2649 if(opcode2[i]==2) // SRL
2650 {
2651 emit_shrimm(s<0?t:s,imm[i],t);
2652 }
2653 if(opcode2[i]==3) // SRA
2654 {
2655 emit_sarimm(s<0?t:s,imm[i],t);
2656 }
2657 }else{
2658 // Shift by zero
2659 if(s>=0 && s!=t) emit_mov(s,t);
2660 }
2661 }
2662 }
2663 //emit_storereg(rt1[i],t); //DEBUG
2664 }
2665 }
2666 if(opcode2[i]>=0x38&&opcode2[i]<=0x3b) // DSLL/DSRL/DSRA
2667 {
2668 if(rt1[i]) {
2669 signed char sh,sl,th,tl;
2670 th=get_reg(i_regs->regmap,rt1[i]|64);
2671 tl=get_reg(i_regs->regmap,rt1[i]);
2672 sh=get_reg(i_regs->regmap,rs1[i]|64);
2673 sl=get_reg(i_regs->regmap,rs1[i]);
2674 if(tl>=0) {
2675 if(rs1[i]==0)
2676 {
2677 emit_zeroreg(tl);
2678 if(th>=0) emit_zeroreg(th);
2679 }
2680 else
2681 {
2682 assert(sl>=0);
2683 assert(sh>=0);
2684 if(imm[i]) {
2685 if(opcode2[i]==0x38) // DSLL
2686 {
2687 if(th>=0) emit_shldimm(sh,sl,imm[i],th);
2688 emit_shlimm(sl,imm[i],tl);
2689 }
2690 if(opcode2[i]==0x3a) // DSRL
2691 {
2692 emit_shrdimm(sl,sh,imm[i],tl);
2693 if(th>=0) emit_shrimm(sh,imm[i],th);
2694 }
2695 if(opcode2[i]==0x3b) // DSRA
2696 {
2697 emit_shrdimm(sl,sh,imm[i],tl);
2698 if(th>=0) emit_sarimm(sh,imm[i],th);
2699 }
2700 }else{
2701 // Shift by zero
2702 if(sl!=tl) emit_mov(sl,tl);
2703 if(th>=0&&sh!=th) emit_mov(sh,th);
2704 }
2705 }
2706 }
2707 }
2708 }
2709 if(opcode2[i]==0x3c) // DSLL32
2710 {
2711 if(rt1[i]) {
2712 signed char sl,tl,th;
2713 tl=get_reg(i_regs->regmap,rt1[i]);
2714 th=get_reg(i_regs->regmap,rt1[i]|64);
2715 sl=get_reg(i_regs->regmap,rs1[i]);
2716 if(th>=0||tl>=0){
2717 assert(tl>=0);
2718 assert(th>=0);
2719 assert(sl>=0);
2720 emit_mov(sl,th);
2721 emit_zeroreg(tl);
2722 if(imm[i]>32)
2723 {
2724 emit_shlimm(th,imm[i]&31,th);
2725 }
2726 }
2727 }
2728 }
2729 if(opcode2[i]==0x3e) // DSRL32
2730 {
2731 if(rt1[i]) {
2732 signed char sh,tl,th;
2733 tl=get_reg(i_regs->regmap,rt1[i]);
2734 th=get_reg(i_regs->regmap,rt1[i]|64);
2735 sh=get_reg(i_regs->regmap,rs1[i]|64);
2736 if(tl>=0){
2737 assert(sh>=0);
2738 emit_mov(sh,tl);
2739 if(th>=0) emit_zeroreg(th);
2740 if(imm[i]>32)
2741 {
2742 emit_shrimm(tl,imm[i]&31,tl);
2743 }
2744 }
2745 }
2746 }
2747 if(opcode2[i]==0x3f) // DSRA32
2748 {
2749 if(rt1[i]) {
2750 signed char sh,tl;
2751 tl=get_reg(i_regs->regmap,rt1[i]);
2752 sh=get_reg(i_regs->regmap,rs1[i]|64);
2753 if(tl>=0){
2754 assert(sh>=0);
2755 emit_mov(sh,tl);
2756 if(imm[i]>32)
2757 {
2758 emit_sarimm(tl,imm[i]&31,tl);
2759 }
2760 }
2761 }
2762 }
2763}
2764
2765#ifndef shift_assemble
2766void shift_assemble(int i,struct regstat *i_regs)
2767{
2768 printf("Need shift_assemble for this architecture.\n");
2769 exit(1);
2770}
2771#endif
2772
2773void load_assemble(int i,struct regstat *i_regs)
2774{
2775 int s,th,tl,addr,map=-1;
2776 int offset;
2777 int jaddr=0;
2778 int memtarget=0,c=0;
2779 u_int hr,reglist=0;
2780 th=get_reg(i_regs->regmap,rt1[i]|64);
2781 tl=get_reg(i_regs->regmap,rt1[i]);
2782 s=get_reg(i_regs->regmap,rs1[i]);
2783 offset=imm[i];
2784 for(hr=0;hr<HOST_REGS;hr++) {
2785 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
2786 }
2787 if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
2788 if(s>=0) {
2789 c=(i_regs->wasconst>>s)&1;
2790 if (c) {
2791 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
2792 if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
2793 }
2794 }
2795 //printf("load_assemble: c=%d\n",c);
2796 //if(c) printf("load_assemble: const=%x\n",(int)constmap[i][s]+offset);
2797 // FIXME: Even if the load is a NOP, we should check for pagefaults...
2798#ifdef PCSX
2799 if(tl<0&&(!c||(((u_int)constmap[i][s]+offset)>>16)==0x1f80)
2800 ||rt1[i]==0) {
2801 // could be FIFO, must perform the read
2802 // ||dummy read
2803 assem_debug("(forced read)\n");
2804 tl=get_reg(i_regs->regmap,-1);
2805 assert(tl>=0);
2806 }
2807#endif
2808 if(offset||s<0||c) addr=tl;
2809 else addr=s;
2810 //if(tl<0) tl=get_reg(i_regs->regmap,-1);
2811 if(tl>=0) {
2812 //printf("load_assemble: c=%d\n",c);
2813 //if(c) printf("load_assemble: const=%x\n",(int)constmap[i][s]+offset);
2814 assert(tl>=0); // Even if the load is a NOP, we must check for pagefaults and I/O
2815 reglist&=~(1<<tl);
2816 if(th>=0) reglist&=~(1<<th);
2817 if(!using_tlb) {
2818 if(!c) {
2819 #ifdef RAM_OFFSET
2820 map=get_reg(i_regs->regmap,ROREG);
2821 if(map<0) emit_loadreg(ROREG,map=HOST_TEMPREG);
2822 #endif
2823//#define R29_HACK 1
2824 #ifdef R29_HACK
2825 // Strmnnrmn's speed hack
2826 if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
2827 #endif
2828 {
2829 emit_cmpimm(addr,RAM_SIZE);
2830 jaddr=(int)out;
2831 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
2832 // Hint to branch predictor that the branch is unlikely to be taken
2833 if(rs1[i]>=28)
2834 emit_jno_unlikely(0);
2835 else
2836 #endif
2837 emit_jno(0);
2838 }
2839 }
2840 }else{ // using tlb
2841 int x=0;
2842 if (opcode[i]==0x20||opcode[i]==0x24) x=3; // LB/LBU
2843 if (opcode[i]==0x21||opcode[i]==0x25) x=2; // LH/LHU
2844 map=get_reg(i_regs->regmap,TLREG);
2845 assert(map>=0);
2846 map=do_tlb_r(addr,tl,map,x,-1,-1,c,constmap[i][s]+offset);
2847 do_tlb_r_branch(map,c,constmap[i][s]+offset,&jaddr);
2848 }
2849 int dummy=(rt1[i]==0)||(tl!=get_reg(i_regs->regmap,rt1[i])); // ignore loads to r0 and unneeded reg
2850 if (opcode[i]==0x20) { // LB
2851 if(!c||memtarget) {
2852 if(!dummy) {
2853 #ifdef HOST_IMM_ADDR32
2854 if(c)
2855 emit_movsbl_tlb((constmap[i][s]+offset)^3,map,tl);
2856 else
2857 #endif
2858 {
2859 //emit_xorimm(addr,3,tl);
2860 //gen_tlb_addr_r(tl,map);
2861 //emit_movsbl_indexed((int)rdram-0x80000000,tl,tl);
2862 int x=0,a=tl;
2863#ifdef BIG_ENDIAN_MIPS
2864 if(!c) emit_xorimm(addr,3,tl);
2865 else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2866#else
2867 if(!c) a=addr;
2868#endif
2869 emit_movsbl_indexed_tlb(x,a,map,tl);
2870 }
2871 }
2872 if(jaddr)
2873 add_stub(LOADB_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2874 }
2875 else
2876 inline_readstub(LOADB_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2877 }
2878 if (opcode[i]==0x21) { // LH
2879 if(!c||memtarget) {
2880 if(!dummy) {
2881 #ifdef HOST_IMM_ADDR32
2882 if(c)
2883 emit_movswl_tlb((constmap[i][s]+offset)^2,map,tl);
2884 else
2885 #endif
2886 {
2887 int x=0,a=tl;
2888#ifdef BIG_ENDIAN_MIPS
2889 if(!c) emit_xorimm(addr,2,tl);
2890 else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
2891#else
2892 if(!c) a=addr;
2893#endif
2894 //#ifdef
2895 //emit_movswl_indexed_tlb(x,tl,map,tl);
2896 //else
2897 if(map>=0) {
2898 gen_tlb_addr_r(a,map);
2899 emit_movswl_indexed(x,a,tl);
2900 }else{
2901 #ifdef RAM_OFFSET
2902 emit_movswl_indexed(x,a,tl);
2903 #else
2904 emit_movswl_indexed((int)rdram-0x80000000+x,a,tl);
2905 #endif
2906 }
2907 }
2908 }
2909 if(jaddr)
2910 add_stub(LOADH_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2911 }
2912 else
2913 inline_readstub(LOADH_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2914 }
2915 if (opcode[i]==0x23) { // LW
2916 if(!c||memtarget) {
2917 if(!dummy) {
2918 //emit_readword_indexed((int)rdram-0x80000000,addr,tl);
2919 #ifdef HOST_IMM_ADDR32
2920 if(c)
2921 emit_readword_tlb(constmap[i][s]+offset,map,tl);
2922 else
2923 #endif
2924 emit_readword_indexed_tlb(0,addr,map,tl);
2925 }
2926 if(jaddr)
2927 add_stub(LOADW_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2928 }
2929 else
2930 inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2931 }
2932 if (opcode[i]==0x24) { // LBU
2933 if(!c||memtarget) {
2934 if(!dummy) {
2935 #ifdef HOST_IMM_ADDR32
2936 if(c)
2937 emit_movzbl_tlb((constmap[i][s]+offset)^3,map,tl);
2938 else
2939 #endif
2940 {
2941 //emit_xorimm(addr,3,tl);
2942 //gen_tlb_addr_r(tl,map);
2943 //emit_movzbl_indexed((int)rdram-0x80000000,tl,tl);
2944 int x=0,a=tl;
2945#ifdef BIG_ENDIAN_MIPS
2946 if(!c) emit_xorimm(addr,3,tl);
2947 else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2948#else
2949 if(!c) a=addr;
2950#endif
2951 emit_movzbl_indexed_tlb(x,a,map,tl);
2952 }
2953 }
2954 if(jaddr)
2955 add_stub(LOADBU_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2956 }
2957 else
2958 inline_readstub(LOADBU_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2959 }
2960 if (opcode[i]==0x25) { // LHU
2961 if(!c||memtarget) {
2962 if(!dummy) {
2963 #ifdef HOST_IMM_ADDR32
2964 if(c)
2965 emit_movzwl_tlb((constmap[i][s]+offset)^2,map,tl);
2966 else
2967 #endif
2968 {
2969 int x=0,a=tl;
2970#ifdef BIG_ENDIAN_MIPS
2971 if(!c) emit_xorimm(addr,2,tl);
2972 else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
2973#else
2974 if(!c) a=addr;
2975#endif
2976 //#ifdef
2977 //emit_movzwl_indexed_tlb(x,tl,map,tl);
2978 //#else
2979 if(map>=0) {
2980 gen_tlb_addr_r(a,map);
2981 emit_movzwl_indexed(x,a,tl);
2982 }else{
2983 #ifdef RAM_OFFSET
2984 emit_movzwl_indexed(x,a,tl);
2985 #else
2986 emit_movzwl_indexed((int)rdram-0x80000000+x,a,tl);
2987 #endif
2988 }
2989 }
2990 }
2991 if(jaddr)
2992 add_stub(LOADHU_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2993 }
2994 else
2995 inline_readstub(LOADHU_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2996 }
2997 if (opcode[i]==0x27) { // LWU
2998 assert(th>=0);
2999 if(!c||memtarget) {
3000 if(!dummy) {
3001 //emit_readword_indexed((int)rdram-0x80000000,addr,tl);
3002 #ifdef HOST_IMM_ADDR32
3003 if(c)
3004 emit_readword_tlb(constmap[i][s]+offset,map,tl);
3005 else
3006 #endif
3007 emit_readword_indexed_tlb(0,addr,map,tl);
3008 }
3009 if(jaddr)
3010 add_stub(LOADW_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3011 }
3012 else {
3013 inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
3014 }
3015 emit_zeroreg(th);
3016 }
3017 if (opcode[i]==0x37) { // LD
3018 if(!c||memtarget) {
3019 if(!dummy) {
3020 //gen_tlb_addr_r(tl,map);
3021 //if(th>=0) emit_readword_indexed((int)rdram-0x80000000,addr,th);
3022 //emit_readword_indexed((int)rdram-0x7FFFFFFC,addr,tl);
3023 #ifdef HOST_IMM_ADDR32
3024 if(c)
3025 emit_readdword_tlb(constmap[i][s]+offset,map,th,tl);
3026 else
3027 #endif
3028 emit_readdword_indexed_tlb(0,addr,map,th,tl);
3029 }
3030 if(jaddr)
3031 add_stub(LOADD_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3032 }
3033 else
3034 inline_readstub(LOADD_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
3035 }
3036 }
3037 //emit_storereg(rt1[i],tl); // DEBUG
3038 //if(opcode[i]==0x23)
3039 //if(opcode[i]==0x24)
3040 //if(opcode[i]==0x23||opcode[i]==0x24)
3041 /*if(opcode[i]==0x21||opcode[i]==0x23||opcode[i]==0x24)
3042 {
3043 //emit_pusha();
3044 save_regs(0x100f);
3045 emit_readword((int)&last_count,ECX);
3046 #ifdef __i386__
3047 if(get_reg(i_regs->regmap,CCREG)<0)
3048 emit_loadreg(CCREG,HOST_CCREG);
3049 emit_add(HOST_CCREG,ECX,HOST_CCREG);
3050 emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3051 emit_writeword(HOST_CCREG,(int)&Count);
3052 #endif
3053 #ifdef __arm__
3054 if(get_reg(i_regs->regmap,CCREG)<0)
3055 emit_loadreg(CCREG,0);
3056 else
3057 emit_mov(HOST_CCREG,0);
3058 emit_add(0,ECX,0);
3059 emit_addimm(0,2*ccadj[i],0);
3060 emit_writeword(0,(int)&Count);
3061 #endif
3062 emit_call((int)memdebug);
3063 //emit_popa();
3064 restore_regs(0x100f);
3065 }/**/
3066}
3067
3068#ifndef loadlr_assemble
3069void loadlr_assemble(int i,struct regstat *i_regs)
3070{
3071 printf("Need loadlr_assemble for this architecture.\n");
3072 exit(1);
3073}
3074#endif
3075
3076void store_assemble(int i,struct regstat *i_regs)
3077{
3078 int s,th,tl,map=-1;
3079 int addr,temp;
3080 int offset;
3081 int jaddr=0,jaddr2,type;
3082 int memtarget=0,c=0;
3083 int agr=AGEN1+(i&1);
3084 u_int hr,reglist=0;
3085 th=get_reg(i_regs->regmap,rs2[i]|64);
3086 tl=get_reg(i_regs->regmap,rs2[i]);
3087 s=get_reg(i_regs->regmap,rs1[i]);
3088 temp=get_reg(i_regs->regmap,agr);
3089 if(temp<0) temp=get_reg(i_regs->regmap,-1);
3090 offset=imm[i];
3091 if(s>=0) {
3092 c=(i_regs->wasconst>>s)&1;
3093 if(c) {
3094 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
3095 if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
3096 }
3097 }
3098 assert(tl>=0);
3099 assert(temp>=0);
3100 for(hr=0;hr<HOST_REGS;hr++) {
3101 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3102 }
3103 if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
3104 if(offset||s<0||c) addr=temp;
3105 else addr=s;
3106 if(!using_tlb) {
3107 if(!c) {
3108 #ifdef R29_HACK
3109 // Strmnnrmn's speed hack
3110 memtarget=1;
3111 if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
3112 #endif
3113 emit_cmpimm(addr,RAM_SIZE);
3114 #ifdef DESTRUCTIVE_SHIFT
3115 if(s==addr) emit_mov(s,temp);
3116 #endif
3117 #ifdef R29_HACK
3118 if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
3119 #endif
3120 {
3121 jaddr=(int)out;
3122 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
3123 // Hint to branch predictor that the branch is unlikely to be taken
3124 if(rs1[i]>=28)
3125 emit_jno_unlikely(0);
3126 else
3127 #endif
3128 emit_jno(0);
3129 }
3130 }
3131 }else{ // using tlb
3132 int x=0;
3133 if (opcode[i]==0x28) x=3; // SB
3134 if (opcode[i]==0x29) x=2; // SH
3135 map=get_reg(i_regs->regmap,TLREG);
3136 assert(map>=0);
3137 map=do_tlb_w(addr,temp,map,x,c,constmap[i][s]+offset);
3138 do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr);
3139 }
3140
3141 if (opcode[i]==0x28) { // SB
3142 if(!c||memtarget) {
3143 int x=0,a=temp;
3144#ifdef BIG_ENDIAN_MIPS
3145 if(!c) emit_xorimm(addr,3,temp);
3146 else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
3147#else
3148 if(!c) a=addr;
3149#endif
3150 //gen_tlb_addr_w(temp,map);
3151 //emit_writebyte_indexed(tl,(int)rdram-0x80000000,temp);
3152 emit_writebyte_indexed_tlb(tl,x,a,map,a);
3153 }
3154 type=STOREB_STUB;
3155 }
3156 if (opcode[i]==0x29) { // SH
3157 if(!c||memtarget) {
3158 int x=0,a=temp;
3159#ifdef BIG_ENDIAN_MIPS
3160 if(!c) emit_xorimm(addr,2,temp);
3161 else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
3162#else
3163 if(!c) a=addr;
3164#endif
3165 //#ifdef
3166 //emit_writehword_indexed_tlb(tl,x,temp,map,temp);
3167 //#else
3168 if(map>=0) {
3169 gen_tlb_addr_w(a,map);
3170 emit_writehword_indexed(tl,x,a);
3171 }else
3172 emit_writehword_indexed(tl,(int)rdram-0x80000000+x,a);
3173 }
3174 type=STOREH_STUB;
3175 }
3176 if (opcode[i]==0x2B) { // SW
3177 if(!c||memtarget)
3178 //emit_writeword_indexed(tl,(int)rdram-0x80000000,addr);
3179 emit_writeword_indexed_tlb(tl,0,addr,map,temp);
3180 type=STOREW_STUB;
3181 }
3182 if (opcode[i]==0x3F) { // SD
3183 if(!c||memtarget) {
3184 if(rs2[i]) {
3185 assert(th>=0);
3186 //emit_writeword_indexed(th,(int)rdram-0x80000000,addr);
3187 //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,addr);
3188 emit_writedword_indexed_tlb(th,tl,0,addr,map,temp);
3189 }else{
3190 // Store zero
3191 //emit_writeword_indexed(tl,(int)rdram-0x80000000,temp);
3192 //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,temp);
3193 emit_writedword_indexed_tlb(tl,tl,0,addr,map,temp);
3194 }
3195 }
3196 type=STORED_STUB;
3197 }
3198 if(!using_tlb) {
3199 if(!c||memtarget) {
3200 #ifdef DESTRUCTIVE_SHIFT
3201 // The x86 shift operation is 'destructive'; it overwrites the
3202 // source register, so we need to make a copy first and use that.
3203 addr=temp;
3204 #endif
3205 #if defined(HOST_IMM8)
3206 int ir=get_reg(i_regs->regmap,INVCP);
3207 assert(ir>=0);
3208 emit_cmpmem_indexedsr12_reg(ir,addr,1);
3209 #else
3210 emit_cmpmem_indexedsr12_imm((int)invalid_code,addr,1);
3211 #endif
3212 #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3213 emit_callne(invalidate_addr_reg[addr]);
3214 #else
3215 jaddr2=(int)out;
3216 emit_jne(0);
3217 add_stub(INVCODE_STUB,jaddr2,(int)out,reglist|(1<<HOST_CCREG),addr,0,0,0);
3218 #endif
3219 }
3220 }
3221 if(jaddr) {
3222 add_stub(type,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3223 } else if(c&&!memtarget) {
3224 inline_writestub(type,i,constmap[i][s]+offset,i_regs->regmap,rs2[i],ccadj[i],reglist);
3225 }
3226 //if(opcode[i]==0x2B || opcode[i]==0x3F)
3227 //if(opcode[i]==0x2B || opcode[i]==0x28)
3228 //if(opcode[i]==0x2B || opcode[i]==0x29)
3229 //if(opcode[i]==0x2B)
3230 /*if(opcode[i]==0x2B || opcode[i]==0x28 || opcode[i]==0x29 || opcode[i]==0x3F)
3231 {
3232 //emit_pusha();
3233 save_regs(0x100f);
3234 emit_readword((int)&last_count,ECX);
3235 #ifdef __i386__
3236 if(get_reg(i_regs->regmap,CCREG)<0)
3237 emit_loadreg(CCREG,HOST_CCREG);
3238 emit_add(HOST_CCREG,ECX,HOST_CCREG);
3239 emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3240 emit_writeword(HOST_CCREG,(int)&Count);
3241 #endif
3242 #ifdef __arm__
3243 if(get_reg(i_regs->regmap,CCREG)<0)
3244 emit_loadreg(CCREG,0);
3245 else
3246 emit_mov(HOST_CCREG,0);
3247 emit_add(0,ECX,0);
3248 emit_addimm(0,2*ccadj[i],0);
3249 emit_writeword(0,(int)&Count);
3250 #endif
3251 emit_call((int)memdebug);
3252 //emit_popa();
3253 restore_regs(0x100f);
3254 }/**/
3255}
3256
3257void storelr_assemble(int i,struct regstat *i_regs)
3258{
3259 int s,th,tl;
3260 int temp;
3261 int temp2;
3262 int offset;
3263 int jaddr=0,jaddr2;
3264 int case1,case2,case3;
3265 int done0,done1,done2;
3266 int memtarget=0,c=0;
3267 int agr=AGEN1+(i&1);
3268 u_int hr,reglist=0;
3269 th=get_reg(i_regs->regmap,rs2[i]|64);
3270 tl=get_reg(i_regs->regmap,rs2[i]);
3271 s=get_reg(i_regs->regmap,rs1[i]);
3272 temp=get_reg(i_regs->regmap,agr);
3273 if(temp<0) temp=get_reg(i_regs->regmap,-1);
3274 offset=imm[i];
3275 if(s>=0) {
3276 c=(i_regs->isconst>>s)&1;
3277 if(c) {
3278 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
3279 if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
3280 }
3281 }
3282 assert(tl>=0);
3283 for(hr=0;hr<HOST_REGS;hr++) {
3284 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3285 }
3286 assert(temp>=0);
3287 if(!using_tlb) {
3288 if(!c) {
3289 emit_cmpimm(s<0||offset?temp:s,RAM_SIZE);
3290 if(!offset&&s!=temp) emit_mov(s,temp);
3291 jaddr=(int)out;
3292 emit_jno(0);
3293 }
3294 else
3295 {
3296 if(!memtarget||!rs1[i]) {
3297 jaddr=(int)out;
3298 emit_jmp(0);
3299 }
3300 }
3301 #ifdef RAM_OFFSET
3302 int map=get_reg(i_regs->regmap,ROREG);
3303 if(map<0) emit_loadreg(ROREG,map=HOST_TEMPREG);
3304 gen_tlb_addr_w(temp,map);
3305 #else
3306 if((u_int)rdram!=0x80000000)
3307 emit_addimm_no_flags((u_int)rdram-(u_int)0x80000000,temp);
3308 #endif
3309 }else{ // using tlb
3310 int map=get_reg(i_regs->regmap,TLREG);
3311 assert(map>=0);
3312 map=do_tlb_w(c||s<0||offset?temp:s,temp,map,0,c,constmap[i][s]+offset);
3313 if(!c&&!offset&&s>=0) emit_mov(s,temp);
3314 do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr);
3315 if(!jaddr&&!memtarget) {
3316 jaddr=(int)out;
3317 emit_jmp(0);
3318 }
3319 gen_tlb_addr_w(temp,map);
3320 }
3321
3322 if (opcode[i]==0x2C||opcode[i]==0x2D) { // SDL/SDR
3323 temp2=get_reg(i_regs->regmap,FTEMP);
3324 if(!rs2[i]) temp2=th=tl;
3325 }
3326
3327#ifndef BIG_ENDIAN_MIPS
3328 emit_xorimm(temp,3,temp);
3329#endif
3330 emit_testimm(temp,2);
3331 case2=(int)out;
3332 emit_jne(0);
3333 emit_testimm(temp,1);
3334 case1=(int)out;
3335 emit_jne(0);
3336 // 0
3337 if (opcode[i]==0x2A) { // SWL
3338 emit_writeword_indexed(tl,0,temp);
3339 }
3340 if (opcode[i]==0x2E) { // SWR
3341 emit_writebyte_indexed(tl,3,temp);
3342 }
3343 if (opcode[i]==0x2C) { // SDL
3344 emit_writeword_indexed(th,0,temp);
3345 if(rs2[i]) emit_mov(tl,temp2);
3346 }
3347 if (opcode[i]==0x2D) { // SDR
3348 emit_writebyte_indexed(tl,3,temp);
3349 if(rs2[i]) emit_shldimm(th,tl,24,temp2);
3350 }
3351 done0=(int)out;
3352 emit_jmp(0);
3353 // 1
3354 set_jump_target(case1,(int)out);
3355 if (opcode[i]==0x2A) { // SWL
3356 // Write 3 msb into three least significant bytes
3357 if(rs2[i]) emit_rorimm(tl,8,tl);
3358 emit_writehword_indexed(tl,-1,temp);
3359 if(rs2[i]) emit_rorimm(tl,16,tl);
3360 emit_writebyte_indexed(tl,1,temp);
3361 if(rs2[i]) emit_rorimm(tl,8,tl);
3362 }
3363 if (opcode[i]==0x2E) { // SWR
3364 // Write two lsb into two most significant bytes
3365 emit_writehword_indexed(tl,1,temp);
3366 }
3367 if (opcode[i]==0x2C) { // SDL
3368 if(rs2[i]) emit_shrdimm(tl,th,8,temp2);
3369 // Write 3 msb into three least significant bytes
3370 if(rs2[i]) emit_rorimm(th,8,th);
3371 emit_writehword_indexed(th,-1,temp);
3372 if(rs2[i]) emit_rorimm(th,16,th);
3373 emit_writebyte_indexed(th,1,temp);
3374 if(rs2[i]) emit_rorimm(th,8,th);
3375 }
3376 if (opcode[i]==0x2D) { // SDR
3377 if(rs2[i]) emit_shldimm(th,tl,16,temp2);
3378 // Write two lsb into two most significant bytes
3379 emit_writehword_indexed(tl,1,temp);
3380 }
3381 done1=(int)out;
3382 emit_jmp(0);
3383 // 2
3384 set_jump_target(case2,(int)out);
3385 emit_testimm(temp,1);
3386 case3=(int)out;
3387 emit_jne(0);
3388 if (opcode[i]==0x2A) { // SWL
3389 // Write two msb into two least significant bytes
3390 if(rs2[i]) emit_rorimm(tl,16,tl);
3391 emit_writehword_indexed(tl,-2,temp);
3392 if(rs2[i]) emit_rorimm(tl,16,tl);
3393 }
3394 if (opcode[i]==0x2E) { // SWR
3395 // Write 3 lsb into three most significant bytes
3396 emit_writebyte_indexed(tl,-1,temp);
3397 if(rs2[i]) emit_rorimm(tl,8,tl);
3398 emit_writehword_indexed(tl,0,temp);
3399 if(rs2[i]) emit_rorimm(tl,24,tl);
3400 }
3401 if (opcode[i]==0x2C) { // SDL
3402 if(rs2[i]) emit_shrdimm(tl,th,16,temp2);
3403 // Write two msb into two least significant bytes
3404 if(rs2[i]) emit_rorimm(th,16,th);
3405 emit_writehword_indexed(th,-2,temp);
3406 if(rs2[i]) emit_rorimm(th,16,th);
3407 }
3408 if (opcode[i]==0x2D) { // SDR
3409 if(rs2[i]) emit_shldimm(th,tl,8,temp2);
3410 // Write 3 lsb into three most significant bytes
3411 emit_writebyte_indexed(tl,-1,temp);
3412 if(rs2[i]) emit_rorimm(tl,8,tl);
3413 emit_writehword_indexed(tl,0,temp);
3414 if(rs2[i]) emit_rorimm(tl,24,tl);
3415 }
3416 done2=(int)out;
3417 emit_jmp(0);
3418 // 3
3419 set_jump_target(case3,(int)out);
3420 if (opcode[i]==0x2A) { // SWL
3421 // Write msb into least significant byte
3422 if(rs2[i]) emit_rorimm(tl,24,tl);
3423 emit_writebyte_indexed(tl,-3,temp);
3424 if(rs2[i]) emit_rorimm(tl,8,tl);
3425 }
3426 if (opcode[i]==0x2E) { // SWR
3427 // Write entire word
3428 emit_writeword_indexed(tl,-3,temp);
3429 }
3430 if (opcode[i]==0x2C) { // SDL
3431 if(rs2[i]) emit_shrdimm(tl,th,24,temp2);
3432 // Write msb into least significant byte
3433 if(rs2[i]) emit_rorimm(th,24,th);
3434 emit_writebyte_indexed(th,-3,temp);
3435 if(rs2[i]) emit_rorimm(th,8,th);
3436 }
3437 if (opcode[i]==0x2D) { // SDR
3438 if(rs2[i]) emit_mov(th,temp2);
3439 // Write entire word
3440 emit_writeword_indexed(tl,-3,temp);
3441 }
3442 set_jump_target(done0,(int)out);
3443 set_jump_target(done1,(int)out);
3444 set_jump_target(done2,(int)out);
3445 if (opcode[i]==0x2C) { // SDL
3446 emit_testimm(temp,4);
3447 done0=(int)out;
3448 emit_jne(0);
3449 emit_andimm(temp,~3,temp);
3450 emit_writeword_indexed(temp2,4,temp);
3451 set_jump_target(done0,(int)out);
3452 }
3453 if (opcode[i]==0x2D) { // SDR
3454 emit_testimm(temp,4);
3455 done0=(int)out;
3456 emit_jeq(0);
3457 emit_andimm(temp,~3,temp);
3458 emit_writeword_indexed(temp2,-4,temp);
3459 set_jump_target(done0,(int)out);
3460 }
3461 if(!c||!memtarget)
3462 add_stub(STORELR_STUB,jaddr,(int)out,i,(int)i_regs,temp,ccadj[i],reglist);
3463 if(!using_tlb) {
3464 #ifdef RAM_OFFSET
3465 int map=get_reg(i_regs->regmap,ROREG);
3466 if(map<0) map=HOST_TEMPREG;
3467 gen_orig_addr_w(temp,map);
3468 #else
3469 emit_addimm_no_flags((u_int)0x80000000-(u_int)rdram,temp);
3470 #endif
3471 #if defined(HOST_IMM8)
3472 int ir=get_reg(i_regs->regmap,INVCP);
3473 assert(ir>=0);
3474 emit_cmpmem_indexedsr12_reg(ir,temp,1);
3475 #else
3476 emit_cmpmem_indexedsr12_imm((int)invalid_code,temp,1);
3477 #endif
3478 #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3479 emit_callne(invalidate_addr_reg[temp]);
3480 #else
3481 jaddr2=(int)out;
3482 emit_jne(0);
3483 add_stub(INVCODE_STUB,jaddr2,(int)out,reglist|(1<<HOST_CCREG),temp,0,0,0);
3484 #endif
3485 }
3486 /*
3487 emit_pusha();
3488 //save_regs(0x100f);
3489 emit_readword((int)&last_count,ECX);
3490 if(get_reg(i_regs->regmap,CCREG)<0)
3491 emit_loadreg(CCREG,HOST_CCREG);
3492 emit_add(HOST_CCREG,ECX,HOST_CCREG);
3493 emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3494 emit_writeword(HOST_CCREG,(int)&Count);
3495 emit_call((int)memdebug);
3496 emit_popa();
3497 //restore_regs(0x100f);
3498 /**/
3499}
3500
3501void c1ls_assemble(int i,struct regstat *i_regs)
3502{
3503#ifndef DISABLE_COP1
3504 int s,th,tl;
3505 int temp,ar;
3506 int map=-1;
3507 int offset;
3508 int c=0;
3509 int jaddr,jaddr2=0,jaddr3,type;
3510 int agr=AGEN1+(i&1);
3511 u_int hr,reglist=0;
3512 th=get_reg(i_regs->regmap,FTEMP|64);
3513 tl=get_reg(i_regs->regmap,FTEMP);
3514 s=get_reg(i_regs->regmap,rs1[i]);
3515 temp=get_reg(i_regs->regmap,agr);
3516 if(temp<0) temp=get_reg(i_regs->regmap,-1);
3517 offset=imm[i];
3518 assert(tl>=0);
3519 assert(rs1[i]>0);
3520 assert(temp>=0);
3521 for(hr=0;hr<HOST_REGS;hr++) {
3522 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3523 }
3524 if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
3525 if (opcode[i]==0x31||opcode[i]==0x35) // LWC1/LDC1
3526 {
3527 // Loads use a temporary register which we need to save
3528 reglist|=1<<temp;
3529 }
3530 if (opcode[i]==0x39||opcode[i]==0x3D) // SWC1/SDC1
3531 ar=temp;
3532 else // LWC1/LDC1
3533 ar=tl;
3534 //if(s<0) emit_loadreg(rs1[i],ar); //address_generation does this now
3535 //else c=(i_regs->wasconst>>s)&1;
3536 if(s>=0) c=(i_regs->wasconst>>s)&1;
3537 // Check cop1 unusable
3538 if(!cop1_usable) {
3539 signed char rs=get_reg(i_regs->regmap,CSREG);
3540 assert(rs>=0);
3541 emit_testimm(rs,0x20000000);
3542 jaddr=(int)out;
3543 emit_jeq(0);
3544 add_stub(FP_STUB,jaddr,(int)out,i,rs,(int)i_regs,is_delayslot,0);
3545 cop1_usable=1;
3546 }
3547 if (opcode[i]==0x39) { // SWC1 (get float address)
3548 emit_readword((int)&reg_cop1_simple[(source[i]>>16)&0x1f],tl);
3549 }
3550 if (opcode[i]==0x3D) { // SDC1 (get double address)
3551 emit_readword((int)&reg_cop1_double[(source[i]>>16)&0x1f],tl);
3552 }
3553 // Generate address + offset
3554 if(!using_tlb) {
3555 if(!c)
3556 emit_cmpimm(offset||c||s<0?ar:s,RAM_SIZE);
3557 }
3558 else
3559 {
3560 map=get_reg(i_regs->regmap,TLREG);
3561 assert(map>=0);
3562 if (opcode[i]==0x31||opcode[i]==0x35) { // LWC1/LDC1
3563 map=do_tlb_r(offset||c||s<0?ar:s,ar,map,0,-1,-1,c,constmap[i][s]+offset);
3564 }
3565 if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3566 map=do_tlb_w(offset||c||s<0?ar:s,ar,map,0,c,constmap[i][s]+offset);
3567 }
3568 }
3569 if (opcode[i]==0x39) { // SWC1 (read float)
3570 emit_readword_indexed(0,tl,tl);
3571 }
3572 if (opcode[i]==0x3D) { // SDC1 (read double)
3573 emit_readword_indexed(4,tl,th);
3574 emit_readword_indexed(0,tl,tl);
3575 }
3576 if (opcode[i]==0x31) { // LWC1 (get target address)
3577 emit_readword((int)&reg_cop1_simple[(source[i]>>16)&0x1f],temp);
3578 }
3579 if (opcode[i]==0x35) { // LDC1 (get target address)
3580 emit_readword((int)&reg_cop1_double[(source[i]>>16)&0x1f],temp);
3581 }
3582 if(!using_tlb) {
3583 if(!c) {
3584 jaddr2=(int)out;
3585 emit_jno(0);
3586 }
3587 else if(((signed int)(constmap[i][s]+offset))>=(signed int)0x80000000+RAM_SIZE) {
3588 jaddr2=(int)out;
3589 emit_jmp(0); // inline_readstub/inline_writestub? Very rare case
3590 }
3591 #ifdef DESTRUCTIVE_SHIFT
3592 if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3593 if(!offset&&!c&&s>=0) emit_mov(s,ar);
3594 }
3595 #endif
3596 }else{
3597 if (opcode[i]==0x31||opcode[i]==0x35) { // LWC1/LDC1
3598 do_tlb_r_branch(map,c,constmap[i][s]+offset,&jaddr2);
3599 }
3600 if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3601 do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr2);
3602 }
3603 }
3604 if (opcode[i]==0x31) { // LWC1
3605 //if(s>=0&&!c&&!offset) emit_mov(s,tl);
3606 //gen_tlb_addr_r(ar,map);
3607 //emit_readword_indexed((int)rdram-0x80000000,tl,tl);
3608 #ifdef HOST_IMM_ADDR32
3609 if(c) emit_readword_tlb(constmap[i][s]+offset,map,tl);
3610 else
3611 #endif
3612 emit_readword_indexed_tlb(0,offset||c||s<0?tl:s,map,tl);
3613 type=LOADW_STUB;
3614 }
3615 if (opcode[i]==0x35) { // LDC1
3616 assert(th>=0);
3617 //if(s>=0&&!c&&!offset) emit_mov(s,tl);
3618 //gen_tlb_addr_r(ar,map);
3619 //emit_readword_indexed((int)rdram-0x80000000,tl,th);
3620 //emit_readword_indexed((int)rdram-0x7FFFFFFC,tl,tl);
3621 #ifdef HOST_IMM_ADDR32
3622 if(c) emit_readdword_tlb(constmap[i][s]+offset,map,th,tl);
3623 else
3624 #endif
3625 emit_readdword_indexed_tlb(0,offset||c||s<0?tl:s,map,th,tl);
3626 type=LOADD_STUB;
3627 }
3628 if (opcode[i]==0x39) { // SWC1
3629 //emit_writeword_indexed(tl,(int)rdram-0x80000000,temp);
3630 emit_writeword_indexed_tlb(tl,0,offset||c||s<0?temp:s,map,temp);
3631 type=STOREW_STUB;
3632 }
3633 if (opcode[i]==0x3D) { // SDC1
3634 assert(th>=0);
3635 //emit_writeword_indexed(th,(int)rdram-0x80000000,temp);
3636 //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,temp);
3637 emit_writedword_indexed_tlb(th,tl,0,offset||c||s<0?temp:s,map,temp);
3638 type=STORED_STUB;
3639 }
3640 if(!using_tlb) {
3641 if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3642 #ifndef DESTRUCTIVE_SHIFT
3643 temp=offset||c||s<0?ar:s;
3644 #endif
3645 #if defined(HOST_IMM8)
3646 int ir=get_reg(i_regs->regmap,INVCP);
3647 assert(ir>=0);
3648 emit_cmpmem_indexedsr12_reg(ir,temp,1);
3649 #else
3650 emit_cmpmem_indexedsr12_imm((int)invalid_code,temp,1);
3651 #endif
3652 #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3653 emit_callne(invalidate_addr_reg[temp]);
3654 #else
3655 jaddr3=(int)out;
3656 emit_jne(0);
3657 add_stub(INVCODE_STUB,jaddr3,(int)out,reglist|(1<<HOST_CCREG),temp,0,0,0);
3658 #endif
3659 }
3660 }
3661 if(jaddr2) add_stub(type,jaddr2,(int)out,i,offset||c||s<0?ar:s,(int)i_regs,ccadj[i],reglist);
3662 if (opcode[i]==0x31) { // LWC1 (write float)
3663 emit_writeword_indexed(tl,0,temp);
3664 }
3665 if (opcode[i]==0x35) { // LDC1 (write double)
3666 emit_writeword_indexed(th,4,temp);
3667 emit_writeword_indexed(tl,0,temp);
3668 }
3669 //if(opcode[i]==0x39)
3670 /*if(opcode[i]==0x39||opcode[i]==0x31)
3671 {
3672 emit_pusha();
3673 emit_readword((int)&last_count,ECX);
3674 if(get_reg(i_regs->regmap,CCREG)<0)
3675 emit_loadreg(CCREG,HOST_CCREG);
3676 emit_add(HOST_CCREG,ECX,HOST_CCREG);
3677 emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3678 emit_writeword(HOST_CCREG,(int)&Count);
3679 emit_call((int)memdebug);
3680 emit_popa();
3681 }/**/
3682#else
3683 cop1_unusable(i, i_regs);
3684#endif
3685}
3686
3687void c2ls_assemble(int i,struct regstat *i_regs)
3688{
3689 int s,tl;
3690 int ar;
3691 int offset;
3692 int memtarget=0,c=0;
3693 int jaddr,jaddr2=0,jaddr3,type;
3694 int agr=AGEN1+(i&1);
3695 u_int hr,reglist=0;
3696 u_int copr=(source[i]>>16)&0x1f;
3697 s=get_reg(i_regs->regmap,rs1[i]);
3698 tl=get_reg(i_regs->regmap,FTEMP);
3699 offset=imm[i];
3700 assert(rs1[i]>0);
3701 assert(tl>=0);
3702 assert(!using_tlb);
3703
3704 for(hr=0;hr<HOST_REGS;hr++) {
3705 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3706 }
3707 if(i_regs->regmap[HOST_CCREG]==CCREG)
3708 reglist&=~(1<<HOST_CCREG);
3709
3710 // get the address
3711 if (opcode[i]==0x3a) { // SWC2
3712 ar=get_reg(i_regs->regmap,agr);
3713 if(ar<0) ar=get_reg(i_regs->regmap,-1);
3714 reglist|=1<<ar;
3715 } else { // LWC2
3716 ar=tl;
3717 }
3718 if(s>=0) c=(i_regs->wasconst>>s)&1;
3719 memtarget=c&&(((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE);
3720 if (!offset&&!c&&s>=0) ar=s;
3721 assert(ar>=0);
3722
3723 if (opcode[i]==0x3a) { // SWC2
3724 cop2_get_dreg(copr,tl,HOST_TEMPREG);
3725 type=STOREW_STUB;
3726 }
3727 else
3728 type=LOADW_STUB;
3729
3730 if(c&&!memtarget) {
3731 jaddr2=(int)out;
3732 emit_jmp(0); // inline_readstub/inline_writestub?
3733 }
3734 else {
3735 if(!c) {
3736 emit_cmpimm(offset||c||s<0?ar:s,RAM_SIZE);
3737 jaddr2=(int)out;
3738 emit_jno(0);
3739 }
3740 if (opcode[i]==0x32) { // LWC2
3741 #ifdef HOST_IMM_ADDR32
3742 if(c) emit_readword_tlb(constmap[i][s]+offset,-1,tl);
3743 else
3744 #endif
3745 emit_readword_indexed(0,ar,tl);
3746 }
3747 if (opcode[i]==0x3a) { // SWC2
3748 #ifdef DESTRUCTIVE_SHIFT
3749 if(!offset&&!c&&s>=0) emit_mov(s,ar);
3750 #endif
3751 emit_writeword_indexed(tl,0,ar);
3752 }
3753 }
3754 if(jaddr2)
3755 add_stub(type,jaddr2,(int)out,i,ar,(int)i_regs,ccadj[i],reglist);
3756 if (opcode[i]==0x3a) { // SWC2
3757#if defined(HOST_IMM8)
3758 int ir=get_reg(i_regs->regmap,INVCP);
3759 assert(ir>=0);
3760 emit_cmpmem_indexedsr12_reg(ir,ar,1);
3761#else
3762 emit_cmpmem_indexedsr12_imm((int)invalid_code,ar,1);
3763#endif
3764 #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3765 emit_callne(invalidate_addr_reg[ar]);
3766 #else
3767 jaddr3=(int)out;
3768 emit_jne(0);
3769 add_stub(INVCODE_STUB,jaddr3,(int)out,reglist|(1<<HOST_CCREG),ar,0,0,0);
3770 #endif
3771 }
3772 if (opcode[i]==0x32) { // LWC2
3773 cop2_put_dreg(copr,tl,HOST_TEMPREG);
3774 }
3775}
3776
3777#ifndef multdiv_assemble
3778void multdiv_assemble(int i,struct regstat *i_regs)
3779{
3780 printf("Need multdiv_assemble for this architecture.\n");
3781 exit(1);
3782}
3783#endif
3784
3785void mov_assemble(int i,struct regstat *i_regs)
3786{
3787 //if(opcode2[i]==0x10||opcode2[i]==0x12) { // MFHI/MFLO
3788 //if(opcode2[i]==0x11||opcode2[i]==0x13) { // MTHI/MTLO
3789 if(rt1[i]) {
3790 signed char sh,sl,th,tl;
3791 th=get_reg(i_regs->regmap,rt1[i]|64);
3792 tl=get_reg(i_regs->regmap,rt1[i]);
3793 //assert(tl>=0);
3794 if(tl>=0) {
3795 sh=get_reg(i_regs->regmap,rs1[i]|64);
3796 sl=get_reg(i_regs->regmap,rs1[i]);
3797 if(sl>=0) emit_mov(sl,tl);
3798 else emit_loadreg(rs1[i],tl);
3799 if(th>=0) {
3800 if(sh>=0) emit_mov(sh,th);
3801 else emit_loadreg(rs1[i]|64,th);
3802 }
3803 }
3804 }
3805}
3806
3807#ifndef fconv_assemble
3808void fconv_assemble(int i,struct regstat *i_regs)
3809{
3810 printf("Need fconv_assemble for this architecture.\n");
3811 exit(1);
3812}
3813#endif
3814
3815#if 0
3816void float_assemble(int i,struct regstat *i_regs)
3817{
3818 printf("Need float_assemble for this architecture.\n");
3819 exit(1);
3820}
3821#endif
3822
3823void syscall_assemble(int i,struct regstat *i_regs)
3824{
3825 signed char ccreg=get_reg(i_regs->regmap,CCREG);
3826 assert(ccreg==HOST_CCREG);
3827 assert(!is_delayslot);
3828 emit_movimm(start+i*4,EAX); // Get PC
3829 emit_addimm(HOST_CCREG,CLOCK_DIVIDER*ccadj[i],HOST_CCREG); // CHECK: is this right? There should probably be an extra cycle...
3830 emit_jmp((int)jump_syscall_hle); // XXX
3831}
3832
3833void hlecall_assemble(int i,struct regstat *i_regs)
3834{
3835 signed char ccreg=get_reg(i_regs->regmap,CCREG);
3836 assert(ccreg==HOST_CCREG);
3837 assert(!is_delayslot);
3838 emit_movimm(start+i*4+4,0); // Get PC
3839 emit_movimm((int)psxHLEt[source[i]&7],1);
3840 emit_addimm(HOST_CCREG,CLOCK_DIVIDER*ccadj[i],HOST_CCREG); // XXX
3841 emit_jmp((int)jump_hlecall);
3842}
3843
3844void intcall_assemble(int i,struct regstat *i_regs)
3845{
3846 signed char ccreg=get_reg(i_regs->regmap,CCREG);
3847 assert(ccreg==HOST_CCREG);
3848 assert(!is_delayslot);
3849 emit_movimm(start+i*4,0); // Get PC
3850 emit_addimm(HOST_CCREG,CLOCK_DIVIDER*ccadj[i],HOST_CCREG);
3851 emit_jmp((int)jump_intcall);
3852}
3853
3854void ds_assemble(int i,struct regstat *i_regs)
3855{
3856 is_delayslot=1;
3857 switch(itype[i]) {
3858 case ALU:
3859 alu_assemble(i,i_regs);break;
3860 case IMM16:
3861 imm16_assemble(i,i_regs);break;
3862 case SHIFT:
3863 shift_assemble(i,i_regs);break;
3864 case SHIFTIMM:
3865 shiftimm_assemble(i,i_regs);break;
3866 case LOAD:
3867 load_assemble(i,i_regs);break;
3868 case LOADLR:
3869 loadlr_assemble(i,i_regs);break;
3870 case STORE:
3871 store_assemble(i,i_regs);break;
3872 case STORELR:
3873 storelr_assemble(i,i_regs);break;
3874 case COP0:
3875 cop0_assemble(i,i_regs);break;
3876 case COP1:
3877 cop1_assemble(i,i_regs);break;
3878 case C1LS:
3879 c1ls_assemble(i,i_regs);break;
3880 case COP2:
3881 cop2_assemble(i,i_regs);break;
3882 case C2LS:
3883 c2ls_assemble(i,i_regs);break;
3884 case C2OP:
3885 c2op_assemble(i,i_regs);break;
3886 case FCONV:
3887 fconv_assemble(i,i_regs);break;
3888 case FLOAT:
3889 float_assemble(i,i_regs);break;
3890 case FCOMP:
3891 fcomp_assemble(i,i_regs);break;
3892 case MULTDIV:
3893 multdiv_assemble(i,i_regs);break;
3894 case MOV:
3895 mov_assemble(i,i_regs);break;
3896 case SYSCALL:
3897 case HLECALL:
3898 case INTCALL:
3899 case SPAN:
3900 case UJUMP:
3901 case RJUMP:
3902 case CJUMP:
3903 case SJUMP:
3904 case FJUMP:
3905 printf("Jump in the delay slot. This is probably a bug.\n");
3906 }
3907 is_delayslot=0;
3908}
3909
3910// Is the branch target a valid internal jump?
3911int internal_branch(uint64_t i_is32,int addr)
3912{
3913 if(addr&1) return 0; // Indirect (register) jump
3914 if(addr>=start && addr<start+slen*4-4)
3915 {
3916 int t=(addr-start)>>2;
3917 // Delay slots are not valid branch targets
3918 //if(t>0&&(itype[t-1]==RJUMP||itype[t-1]==UJUMP||itype[t-1]==CJUMP||itype[t-1]==SJUMP||itype[t-1]==FJUMP)) return 0;
3919 // 64 -> 32 bit transition requires a recompile
3920 /*if(is32[t]&~unneeded_reg_upper[t]&~i_is32)
3921 {
3922 if(requires_32bit[t]&~i_is32) printf("optimizable: no\n");
3923 else printf("optimizable: yes\n");
3924 }*/
3925 //if(is32[t]&~unneeded_reg_upper[t]&~i_is32) return 0;
3926#ifndef FORCE32
3927 if(requires_32bit[t]&~i_is32) return 0;
3928 else
3929#endif
3930 return 1;
3931 }
3932 return 0;
3933}
3934
3935#ifndef wb_invalidate
3936void wb_invalidate(signed char pre[],signed char entry[],uint64_t dirty,uint64_t is32,
3937 uint64_t u,uint64_t uu)
3938{
3939 int hr;
3940 for(hr=0;hr<HOST_REGS;hr++) {
3941 if(hr!=EXCLUDE_REG) {
3942 if(pre[hr]!=entry[hr]) {
3943 if(pre[hr]>=0) {
3944 if((dirty>>hr)&1) {
3945 if(get_reg(entry,pre[hr])<0) {
3946 if(pre[hr]<64) {
3947 if(!((u>>pre[hr])&1)) {
3948 emit_storereg(pre[hr],hr);
3949 if( ((is32>>pre[hr])&1) && !((uu>>pre[hr])&1) ) {
3950 emit_sarimm(hr,31,hr);
3951 emit_storereg(pre[hr]|64,hr);
3952 }
3953 }
3954 }else{
3955 if(!((uu>>(pre[hr]&63))&1) && !((is32>>(pre[hr]&63))&1)) {
3956 emit_storereg(pre[hr],hr);
3957 }
3958 }
3959 }
3960 }
3961 }
3962 }
3963 }
3964 }
3965 // Move from one register to another (no writeback)
3966 for(hr=0;hr<HOST_REGS;hr++) {
3967 if(hr!=EXCLUDE_REG) {
3968 if(pre[hr]!=entry[hr]) {
3969 if(pre[hr]>=0&&(pre[hr]&63)<TEMPREG) {
3970 int nr;
3971 if((nr=get_reg(entry,pre[hr]))>=0) {
3972 emit_mov(hr,nr);
3973 }
3974 }
3975 }
3976 }
3977 }
3978}
3979#endif
3980
3981// Load the specified registers
3982// This only loads the registers given as arguments because
3983// we don't want to load things that will be overwritten
3984void load_regs(signed char entry[],signed char regmap[],int is32,int rs1,int rs2)
3985{
3986 int hr;
3987 // Load 32-bit regs
3988 for(hr=0;hr<HOST_REGS;hr++) {
3989 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
3990 if(entry[hr]!=regmap[hr]) {
3991 if(regmap[hr]==rs1||regmap[hr]==rs2)
3992 {
3993 if(regmap[hr]==0) {
3994 emit_zeroreg(hr);
3995 }
3996 else
3997 {
3998 emit_loadreg(regmap[hr],hr);
3999 }
4000 }
4001 }
4002 }
4003 }
4004 //Load 64-bit regs
4005 for(hr=0;hr<HOST_REGS;hr++) {
4006 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4007 if(entry[hr]!=regmap[hr]) {
4008 if(regmap[hr]-64==rs1||regmap[hr]-64==rs2)
4009 {
4010 assert(regmap[hr]!=64);
4011 if((is32>>(regmap[hr]&63))&1) {
4012 int lr=get_reg(regmap,regmap[hr]-64);
4013 if(lr>=0)
4014 emit_sarimm(lr,31,hr);
4015 else
4016 emit_loadreg(regmap[hr],hr);
4017 }
4018 else
4019 {
4020 emit_loadreg(regmap[hr],hr);
4021 }
4022 }
4023 }
4024 }
4025 }
4026}
4027
4028// Load registers prior to the start of a loop
4029// so that they are not loaded within the loop
4030static void loop_preload(signed char pre[],signed char entry[])
4031{
4032 int hr;
4033 for(hr=0;hr<HOST_REGS;hr++) {
4034 if(hr!=EXCLUDE_REG) {
4035 if(pre[hr]!=entry[hr]) {
4036 if(entry[hr]>=0) {
4037 if(get_reg(pre,entry[hr])<0) {
4038 assem_debug("loop preload:\n");
4039 //printf("loop preload: %d\n",hr);
4040 if(entry[hr]==0) {
4041 emit_zeroreg(hr);
4042 }
4043 else if(entry[hr]<TEMPREG)
4044 {
4045 emit_loadreg(entry[hr],hr);
4046 }
4047 else if(entry[hr]-64<TEMPREG)
4048 {
4049 emit_loadreg(entry[hr],hr);
4050 }
4051 }
4052 }
4053 }
4054 }
4055 }
4056}
4057
4058// Generate address for load/store instruction
4059// goes to AGEN for writes, FTEMP for LOADLR and cop1/2 loads
4060void address_generation(int i,struct regstat *i_regs,signed char entry[])
4061{
4062 if(itype[i]==LOAD||itype[i]==LOADLR||itype[i]==STORE||itype[i]==STORELR||itype[i]==C1LS||itype[i]==C2LS) {
4063 int ra;
4064 int agr=AGEN1+(i&1);
4065 int mgr=MGEN1+(i&1);
4066 if(itype[i]==LOAD) {
4067 ra=get_reg(i_regs->regmap,rt1[i]);
4068 if(ra<0) ra=get_reg(i_regs->regmap,-1);
4069 assert(ra>=0);
4070 }
4071 if(itype[i]==LOADLR) {
4072 ra=get_reg(i_regs->regmap,FTEMP);
4073 }
4074 if(itype[i]==STORE||itype[i]==STORELR) {
4075 ra=get_reg(i_regs->regmap,agr);
4076 if(ra<0) ra=get_reg(i_regs->regmap,-1);
4077 }
4078 if(itype[i]==C1LS||itype[i]==C2LS) {
4079 if ((opcode[i]&0x3b)==0x31||(opcode[i]&0x3b)==0x32) // LWC1/LDC1/LWC2/LDC2
4080 ra=get_reg(i_regs->regmap,FTEMP);
4081 else { // SWC1/SDC1/SWC2/SDC2
4082 ra=get_reg(i_regs->regmap,agr);
4083 if(ra<0) ra=get_reg(i_regs->regmap,-1);
4084 }
4085 }
4086 int rs=get_reg(i_regs->regmap,rs1[i]);
4087 int rm=get_reg(i_regs->regmap,TLREG);
4088 if(ra>=0) {
4089 int offset=imm[i];
4090 int c=(i_regs->wasconst>>rs)&1;
4091 if(rs1[i]==0) {
4092 // Using r0 as a base address
4093 /*if(rm>=0) {
4094 if(!entry||entry[rm]!=mgr) {
4095 generate_map_const(offset,rm);
4096 } // else did it in the previous cycle
4097 }*/
4098 if(!entry||entry[ra]!=agr) {
4099 if (opcode[i]==0x22||opcode[i]==0x26) {
4100 emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
4101 }else if (opcode[i]==0x1a||opcode[i]==0x1b) {
4102 emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
4103 }else{
4104 emit_movimm(offset,ra);
4105 }
4106 } // else did it in the previous cycle
4107 }
4108 else if(rs<0) {
4109 if(!entry||entry[ra]!=rs1[i])
4110 emit_loadreg(rs1[i],ra);
4111 //if(!entry||entry[ra]!=rs1[i])
4112 // printf("poor load scheduling!\n");
4113 }
4114 else if(c) {
4115 if(rm>=0) {
4116 if(!entry||entry[rm]!=mgr) {
4117 if(itype[i]==STORE||itype[i]==STORELR||(opcode[i]&0x3b)==0x39||(opcode[i]&0x3b)==0x3a) {
4118 // Stores to memory go thru the mapper to detect self-modifying
4119 // code, loads don't.
4120 if((unsigned int)(constmap[i][rs]+offset)>=0xC0000000 ||
4121 (unsigned int)(constmap[i][rs]+offset)<0x80000000+RAM_SIZE )
4122 generate_map_const(constmap[i][rs]+offset,rm);
4123 }else{
4124 if((signed int)(constmap[i][rs]+offset)>=(signed int)0xC0000000)
4125 generate_map_const(constmap[i][rs]+offset,rm);
4126 }
4127 }
4128 }
4129 if(rs1[i]!=rt1[i]||itype[i]!=LOAD) {
4130 if(!entry||entry[ra]!=agr) {
4131 if (opcode[i]==0x22||opcode[i]==0x26) {
4132 emit_movimm((constmap[i][rs]+offset)&0xFFFFFFFC,ra); // LWL/LWR
4133 }else if (opcode[i]==0x1a||opcode[i]==0x1b) {
4134 emit_movimm((constmap[i][rs]+offset)&0xFFFFFFF8,ra); // LDL/LDR
4135 }else{
4136 #ifdef HOST_IMM_ADDR32
4137 if((itype[i]!=LOAD&&(opcode[i]&0x3b)!=0x31&&(opcode[i]&0x3b)!=0x32) || // LWC1/LDC1/LWC2/LDC2
4138 (using_tlb&&((signed int)constmap[i][rs]+offset)>=(signed int)0xC0000000))
4139 #endif
4140 emit_movimm(constmap[i][rs]+offset,ra);
4141 }
4142 } // else did it in the previous cycle
4143 } // else load_consts already did it
4144 }
4145 if(offset&&!c&&rs1[i]) {
4146 if(rs>=0) {
4147 emit_addimm(rs,offset,ra);
4148 }else{
4149 emit_addimm(ra,offset,ra);
4150 }
4151 }
4152 }
4153 }
4154 // Preload constants for next instruction
4155 if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS||itype[i+1]==C2LS) {
4156 int agr,ra;
4157 #ifndef HOST_IMM_ADDR32
4158 // Mapper entry
4159 agr=MGEN1+((i+1)&1);
4160 ra=get_reg(i_regs->regmap,agr);
4161 if(ra>=0) {
4162 int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
4163 int offset=imm[i+1];
4164 int c=(regs[i+1].wasconst>>rs)&1;
4165 if(c) {
4166 if(itype[i+1]==STORE||itype[i+1]==STORELR
4167 ||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1, SWC2/SDC2
4168 // Stores to memory go thru the mapper to detect self-modifying
4169 // code, loads don't.
4170 if((unsigned int)(constmap[i+1][rs]+offset)>=0xC0000000 ||
4171 (unsigned int)(constmap[i+1][rs]+offset)<0x80000000+RAM_SIZE )
4172 generate_map_const(constmap[i+1][rs]+offset,ra);
4173 }else{
4174 if((signed int)(constmap[i+1][rs]+offset)>=(signed int)0xC0000000)
4175 generate_map_const(constmap[i+1][rs]+offset,ra);
4176 }
4177 }
4178 /*else if(rs1[i]==0) {
4179 generate_map_const(offset,ra);
4180 }*/
4181 }
4182 #endif
4183 // Actual address
4184 agr=AGEN1+((i+1)&1);
4185 ra=get_reg(i_regs->regmap,agr);
4186 if(ra>=0) {
4187 int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
4188 int offset=imm[i+1];
4189 int c=(regs[i+1].wasconst>>rs)&1;
4190 if(c&&(rs1[i+1]!=rt1[i+1]||itype[i+1]!=LOAD)) {
4191 if (opcode[i+1]==0x22||opcode[i+1]==0x26) {
4192 emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFFC,ra); // LWL/LWR
4193 }else if (opcode[i+1]==0x1a||opcode[i+1]==0x1b) {
4194 emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFF8,ra); // LDL/LDR
4195 }else{
4196 #ifdef HOST_IMM_ADDR32
4197 if((itype[i+1]!=LOAD&&(opcode[i+1]&0x3b)!=0x31&&(opcode[i+1]&0x3b)!=0x32) || // LWC1/LDC1/LWC2/LDC2
4198 (using_tlb&&((signed int)constmap[i+1][rs]+offset)>=(signed int)0xC0000000))
4199 #endif
4200 emit_movimm(constmap[i+1][rs]+offset,ra);
4201 }
4202 }
4203 else if(rs1[i+1]==0) {
4204 // Using r0 as a base address
4205 if (opcode[i+1]==0x22||opcode[i+1]==0x26) {
4206 emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
4207 }else if (opcode[i+1]==0x1a||opcode[i+1]==0x1b) {
4208 emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
4209 }else{
4210 emit_movimm(offset,ra);
4211 }
4212 }
4213 }
4214 }
4215}
4216
4217int get_final_value(int hr, int i, int *value)
4218{
4219 int reg=regs[i].regmap[hr];
4220 while(i<slen-1) {
4221 if(regs[i+1].regmap[hr]!=reg) break;
4222 if(!((regs[i+1].isconst>>hr)&1)) break;
4223 if(bt[i+1]) break;
4224 i++;
4225 }
4226 if(i<slen-1) {
4227 if(itype[i]==UJUMP||itype[i]==RJUMP||itype[i]==CJUMP||itype[i]==SJUMP) {
4228 *value=constmap[i][hr];
4229 return 1;
4230 }
4231 if(!bt[i+1]) {
4232 if(itype[i+1]==UJUMP||itype[i+1]==RJUMP||itype[i+1]==CJUMP||itype[i+1]==SJUMP) {
4233 // Load in delay slot, out-of-order execution
4234 if(itype[i+2]==LOAD&&rs1[i+2]==reg&&rt1[i+2]==reg&&((regs[i+1].wasconst>>hr)&1))
4235 {
4236 #ifdef HOST_IMM_ADDR32
4237 if(!using_tlb||((signed int)constmap[i][hr]+imm[i+2])<(signed int)0xC0000000) return 0;
4238 #endif
4239 // Precompute load address
4240 *value=constmap[i][hr]+imm[i+2];
4241 return 1;
4242 }
4243 }
4244 if(itype[i+1]==LOAD&&rs1[i+1]==reg&&rt1[i+1]==reg)
4245 {
4246 #ifdef HOST_IMM_ADDR32
4247 if(!using_tlb||((signed int)constmap[i][hr]+imm[i+1])<(signed int)0xC0000000) return 0;
4248 #endif
4249 // Precompute load address
4250 *value=constmap[i][hr]+imm[i+1];
4251 //printf("c=%x imm=%x\n",(int)constmap[i][hr],imm[i+1]);
4252 return 1;
4253 }
4254 }
4255 }
4256 *value=constmap[i][hr];
4257 //printf("c=%x\n",(int)constmap[i][hr]);
4258 if(i==slen-1) return 1;
4259 if(reg<64) {
4260 return !((unneeded_reg[i+1]>>reg)&1);
4261 }else{
4262 return !((unneeded_reg_upper[i+1]>>reg)&1);
4263 }
4264}
4265
4266// Load registers with known constants
4267void load_consts(signed char pre[],signed char regmap[],int is32,int i)
4268{
4269 int hr;
4270 // Load 32-bit regs
4271 for(hr=0;hr<HOST_REGS;hr++) {
4272 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4273 //if(entry[hr]!=regmap[hr]) {
4274 if(i==0||!((regs[i-1].isconst>>hr)&1)||pre[hr]!=regmap[hr]||bt[i]) {
4275 if(((regs[i].isconst>>hr)&1)&&regmap[hr]<64&&regmap[hr]>0) {
4276 int value;
4277 if(get_final_value(hr,i,&value)) {
4278 if(value==0) {
4279 emit_zeroreg(hr);
4280 }
4281 else {
4282 emit_movimm(value,hr);
4283 }
4284 }
4285 }
4286 }
4287 }
4288 }
4289 // Load 64-bit regs
4290 for(hr=0;hr<HOST_REGS;hr++) {
4291 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4292 //if(entry[hr]!=regmap[hr]) {
4293 if(i==0||!((regs[i-1].isconst>>hr)&1)||pre[hr]!=regmap[hr]||bt[i]) {
4294 if(((regs[i].isconst>>hr)&1)&&regmap[hr]>64) {
4295 if((is32>>(regmap[hr]&63))&1) {
4296 int lr=get_reg(regmap,regmap[hr]-64);
4297 assert(lr>=0);
4298 emit_sarimm(lr,31,hr);
4299 }
4300 else
4301 {
4302 int value;
4303 if(get_final_value(hr,i,&value)) {
4304 if(value==0) {
4305 emit_zeroreg(hr);
4306 }
4307 else {
4308 emit_movimm(value,hr);
4309 }
4310 }
4311 }
4312 }
4313 }
4314 }
4315 }
4316}
4317void load_all_consts(signed char regmap[],int is32,u_int dirty,int i)
4318{
4319 int hr;
4320 // Load 32-bit regs
4321 for(hr=0;hr<HOST_REGS;hr++) {
4322 if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((dirty>>hr)&1)) {
4323 if(((regs[i].isconst>>hr)&1)&&regmap[hr]<64&&regmap[hr]>0) {
4324 int value=constmap[i][hr];
4325 if(value==0) {
4326 emit_zeroreg(hr);
4327 }
4328 else {
4329 emit_movimm(value,hr);
4330 }
4331 }
4332 }
4333 }
4334 // Load 64-bit regs
4335 for(hr=0;hr<HOST_REGS;hr++) {
4336 if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((dirty>>hr)&1)) {
4337 if(((regs[i].isconst>>hr)&1)&&regmap[hr]>64) {
4338 if((is32>>(regmap[hr]&63))&1) {
4339 int lr=get_reg(regmap,regmap[hr]-64);
4340 assert(lr>=0);
4341 emit_sarimm(lr,31,hr);
4342 }
4343 else
4344 {
4345 int value=constmap[i][hr];
4346 if(value==0) {
4347 emit_zeroreg(hr);
4348 }
4349 else {
4350 emit_movimm(value,hr);
4351 }
4352 }
4353 }
4354 }
4355 }
4356}
4357
4358// Write out all dirty registers (except cycle count)
4359void wb_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty)
4360{
4361 int hr;
4362 for(hr=0;hr<HOST_REGS;hr++) {
4363 if(hr!=EXCLUDE_REG) {
4364 if(i_regmap[hr]>0) {
4365 if(i_regmap[hr]!=CCREG) {
4366 if((i_dirty>>hr)&1) {
4367 if(i_regmap[hr]<64) {
4368 emit_storereg(i_regmap[hr],hr);
4369#ifndef FORCE32
4370 if( ((i_is32>>i_regmap[hr])&1) ) {
4371 #ifdef DESTRUCTIVE_WRITEBACK
4372 emit_sarimm(hr,31,hr);
4373 emit_storereg(i_regmap[hr]|64,hr);
4374 #else
4375 emit_sarimm(hr,31,HOST_TEMPREG);
4376 emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4377 #endif
4378 }
4379#endif
4380 }else{
4381 if( !((i_is32>>(i_regmap[hr]&63))&1) ) {
4382 emit_storereg(i_regmap[hr],hr);
4383 }
4384 }
4385 }
4386 }
4387 }
4388 }
4389 }
4390}
4391// Write out dirty registers that we need to reload (pair with load_needed_regs)
4392// This writes the registers not written by store_regs_bt
4393void wb_needed_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4394{
4395 int hr;
4396 int t=(addr-start)>>2;
4397 for(hr=0;hr<HOST_REGS;hr++) {
4398 if(hr!=EXCLUDE_REG) {
4399 if(i_regmap[hr]>0) {
4400 if(i_regmap[hr]!=CCREG) {
4401 if(i_regmap[hr]==regs[t].regmap_entry[hr] && ((regs[t].dirty>>hr)&1) && !(((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4402 if((i_dirty>>hr)&1) {
4403 if(i_regmap[hr]<64) {
4404 emit_storereg(i_regmap[hr],hr);
4405#ifndef FORCE32
4406 if( ((i_is32>>i_regmap[hr])&1) ) {
4407 #ifdef DESTRUCTIVE_WRITEBACK
4408 emit_sarimm(hr,31,hr);
4409 emit_storereg(i_regmap[hr]|64,hr);
4410 #else
4411 emit_sarimm(hr,31,HOST_TEMPREG);
4412 emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4413 #endif
4414 }
4415#endif
4416 }else{
4417 if( !((i_is32>>(i_regmap[hr]&63))&1) ) {
4418 emit_storereg(i_regmap[hr],hr);
4419 }
4420 }
4421 }
4422 }
4423 }
4424 }
4425 }
4426 }
4427}
4428
4429// Load all registers (except cycle count)
4430void load_all_regs(signed char i_regmap[])
4431{
4432 int hr;
4433 for(hr=0;hr<HOST_REGS;hr++) {
4434 if(hr!=EXCLUDE_REG) {
4435 if(i_regmap[hr]==0) {
4436 emit_zeroreg(hr);
4437 }
4438 else
4439 if(i_regmap[hr]>0 && i_regmap[hr]!=CCREG)
4440 {
4441 emit_loadreg(i_regmap[hr],hr);
4442 }
4443 }
4444 }
4445}
4446
4447// Load all current registers also needed by next instruction
4448void load_needed_regs(signed char i_regmap[],signed char next_regmap[])
4449{
4450 int hr;
4451 for(hr=0;hr<HOST_REGS;hr++) {
4452 if(hr!=EXCLUDE_REG) {
4453 if(get_reg(next_regmap,i_regmap[hr])>=0) {
4454 if(i_regmap[hr]==0) {
4455 emit_zeroreg(hr);
4456 }
4457 else
4458 if(i_regmap[hr]>0 && i_regmap[hr]!=CCREG)
4459 {
4460 emit_loadreg(i_regmap[hr],hr);
4461 }
4462 }
4463 }
4464 }
4465}
4466
4467// Load all regs, storing cycle count if necessary
4468void load_regs_entry(int t)
4469{
4470 int hr;
4471 if(is_ds[t]) emit_addimm(HOST_CCREG,CLOCK_DIVIDER,HOST_CCREG);
4472 else if(ccadj[t]) emit_addimm(HOST_CCREG,-ccadj[t]*CLOCK_DIVIDER,HOST_CCREG);
4473 if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
4474 emit_storereg(CCREG,HOST_CCREG);
4475 }
4476 // Load 32-bit regs
4477 for(hr=0;hr<HOST_REGS;hr++) {
4478 if(regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<64) {
4479 if(regs[t].regmap_entry[hr]==0) {
4480 emit_zeroreg(hr);
4481 }
4482 else if(regs[t].regmap_entry[hr]!=CCREG)
4483 {
4484 emit_loadreg(regs[t].regmap_entry[hr],hr);
4485 }
4486 }
4487 }
4488 // Load 64-bit regs
4489 for(hr=0;hr<HOST_REGS;hr++) {
4490 if(regs[t].regmap_entry[hr]>=64) {
4491 assert(regs[t].regmap_entry[hr]!=64);
4492 if((regs[t].was32>>(regs[t].regmap_entry[hr]&63))&1) {
4493 int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4494 if(lr<0) {
4495 emit_loadreg(regs[t].regmap_entry[hr],hr);
4496 }
4497 else
4498 {
4499 emit_sarimm(lr,31,hr);
4500 }
4501 }
4502 else
4503 {
4504 emit_loadreg(regs[t].regmap_entry[hr],hr);
4505 }
4506 }
4507 }
4508}
4509
4510// Store dirty registers prior to branch
4511void store_regs_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4512{
4513 if(internal_branch(i_is32,addr))
4514 {
4515 int t=(addr-start)>>2;
4516 int hr;
4517 for(hr=0;hr<HOST_REGS;hr++) {
4518 if(hr!=EXCLUDE_REG) {
4519 if(i_regmap[hr]>0 && i_regmap[hr]!=CCREG) {
4520 if(i_regmap[hr]!=regs[t].regmap_entry[hr] || !((regs[t].dirty>>hr)&1) || (((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4521 if((i_dirty>>hr)&1) {
4522 if(i_regmap[hr]<64) {
4523 if(!((unneeded_reg[t]>>i_regmap[hr])&1)) {
4524 emit_storereg(i_regmap[hr],hr);
4525 if( ((i_is32>>i_regmap[hr])&1) && !((unneeded_reg_upper[t]>>i_regmap[hr])&1) ) {
4526 #ifdef DESTRUCTIVE_WRITEBACK
4527 emit_sarimm(hr,31,hr);
4528 emit_storereg(i_regmap[hr]|64,hr);
4529 #else
4530 emit_sarimm(hr,31,HOST_TEMPREG);
4531 emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4532 #endif
4533 }
4534 }
4535 }else{
4536 if( !((i_is32>>(i_regmap[hr]&63))&1) && !((unneeded_reg_upper[t]>>(i_regmap[hr]&63))&1) ) {
4537 emit_storereg(i_regmap[hr],hr);
4538 }
4539 }
4540 }
4541 }
4542 }
4543 }
4544 }
4545 }
4546 else
4547 {
4548 // Branch out of this block, write out all dirty regs
4549 wb_dirtys(i_regmap,i_is32,i_dirty);
4550 }
4551}
4552
4553// Load all needed registers for branch target
4554void load_regs_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4555{
4556 //if(addr>=start && addr<(start+slen*4))
4557 if(internal_branch(i_is32,addr))
4558 {
4559 int t=(addr-start)>>2;
4560 int hr;
4561 // Store the cycle count before loading something else
4562 if(i_regmap[HOST_CCREG]!=CCREG) {
4563 assert(i_regmap[HOST_CCREG]==-1);
4564 }
4565 if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
4566 emit_storereg(CCREG,HOST_CCREG);
4567 }
4568 // Load 32-bit regs
4569 for(hr=0;hr<HOST_REGS;hr++) {
4570 if(hr!=EXCLUDE_REG&&regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<64) {
4571 #ifdef DESTRUCTIVE_WRITEBACK
4572 if(i_regmap[hr]!=regs[t].regmap_entry[hr] || ( !((regs[t].dirty>>hr)&1) && ((i_dirty>>hr)&1) && (((i_is32&~unneeded_reg_upper[t])>>i_regmap[hr])&1) ) || (((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4573 #else
4574 if(i_regmap[hr]!=regs[t].regmap_entry[hr] ) {
4575 #endif
4576 if(regs[t].regmap_entry[hr]==0) {
4577 emit_zeroreg(hr);
4578 }
4579 else if(regs[t].regmap_entry[hr]!=CCREG)
4580 {
4581 emit_loadreg(regs[t].regmap_entry[hr],hr);
4582 }
4583 }
4584 }
4585 }
4586 //Load 64-bit regs
4587 for(hr=0;hr<HOST_REGS;hr++) {
4588 if(hr!=EXCLUDE_REG&&regs[t].regmap_entry[hr]>=64) {
4589 if(i_regmap[hr]!=regs[t].regmap_entry[hr]) {
4590 assert(regs[t].regmap_entry[hr]!=64);
4591 if((i_is32>>(regs[t].regmap_entry[hr]&63))&1) {
4592 int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4593 if(lr<0) {
4594 emit_loadreg(regs[t].regmap_entry[hr],hr);
4595 }
4596 else
4597 {
4598 emit_sarimm(lr,31,hr);
4599 }
4600 }
4601 else
4602 {
4603 emit_loadreg(regs[t].regmap_entry[hr],hr);
4604 }
4605 }
4606 else if((i_is32>>(regs[t].regmap_entry[hr]&63))&1) {
4607 int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4608 assert(lr>=0);
4609 emit_sarimm(lr,31,hr);
4610 }
4611 }
4612 }
4613 }
4614}
4615
4616int match_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4617{
4618 if(addr>=start && addr<start+slen*4-4)
4619 {
4620 int t=(addr-start)>>2;
4621 int hr;
4622 if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) return 0;
4623 for(hr=0;hr<HOST_REGS;hr++)
4624 {
4625 if(hr!=EXCLUDE_REG)
4626 {
4627 if(i_regmap[hr]!=regs[t].regmap_entry[hr])
4628 {
4629 if(regs[t].regmap_entry[hr]!=-1)
4630 {
4631 return 0;
4632 }
4633 else
4634 if((i_dirty>>hr)&1)
4635 {
4636 if(i_regmap[hr]<64)
4637 {
4638 if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4639 return 0;
4640 }
4641 else
4642 {
4643 if(!((unneeded_reg_upper[t]>>(i_regmap[hr]&63))&1))
4644 return 0;
4645 }
4646 }
4647 }
4648 else // Same register but is it 32-bit or dirty?
4649 if(i_regmap[hr]>=0)
4650 {
4651 if(!((regs[t].dirty>>hr)&1))
4652 {
4653 if((i_dirty>>hr)&1)
4654 {
4655 if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4656 {
4657 //printf("%x: dirty no match\n",addr);
4658 return 0;
4659 }
4660 }
4661 }
4662 if((((regs[t].was32^i_is32)&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)
4663 {
4664 //printf("%x: is32 no match\n",addr);
4665 return 0;
4666 }
4667 }
4668 }
4669 }
4670 //if(is32[t]&~unneeded_reg_upper[t]&~i_is32) return 0;
4671#ifndef FORCE32
4672 if(requires_32bit[t]&~i_is32) return 0;
4673#endif
4674 // Delay slots are not valid branch targets
4675 //if(t>0&&(itype[t-1]==RJUMP||itype[t-1]==UJUMP||itype[t-1]==CJUMP||itype[t-1]==SJUMP||itype[t-1]==FJUMP)) return 0;
4676 // Delay slots require additional processing, so do not match
4677 if(is_ds[t]) return 0;
4678 }
4679 else
4680 {
4681 int hr;
4682 for(hr=0;hr<HOST_REGS;hr++)
4683 {
4684 if(hr!=EXCLUDE_REG)
4685 {
4686 if(i_regmap[hr]>=0)
4687 {
4688 if(hr!=HOST_CCREG||i_regmap[hr]!=CCREG)
4689 {
4690 if((i_dirty>>hr)&1)
4691 {
4692 return 0;
4693 }
4694 }
4695 }
4696 }
4697 }
4698 }
4699 return 1;
4700}
4701
4702// Used when a branch jumps into the delay slot of another branch
4703void ds_assemble_entry(int i)
4704{
4705 int t=(ba[i]-start)>>2;
4706 if(!instr_addr[t]) instr_addr[t]=(u_int)out;
4707 assem_debug("Assemble delay slot at %x\n",ba[i]);
4708 assem_debug("<->\n");
4709 if(regs[t].regmap_entry[HOST_CCREG]==CCREG&&regs[t].regmap[HOST_CCREG]!=CCREG)
4710 wb_register(CCREG,regs[t].regmap_entry,regs[t].wasdirty,regs[t].was32);
4711 load_regs(regs[t].regmap_entry,regs[t].regmap,regs[t].was32,rs1[t],rs2[t]);
4712 address_generation(t,&regs[t],regs[t].regmap_entry);
4713 if(itype[t]==STORE||itype[t]==STORELR||(opcode[t]&0x3b)==0x39||(opcode[t]&0x3b)==0x3a)
4714 load_regs(regs[t].regmap_entry,regs[t].regmap,regs[t].was32,INVCP,INVCP);
4715 cop1_usable=0;
4716 is_delayslot=0;
4717 switch(itype[t]) {
4718 case ALU:
4719 alu_assemble(t,&regs[t]);break;
4720 case IMM16:
4721 imm16_assemble(t,&regs[t]);break;
4722 case SHIFT:
4723 shift_assemble(t,&regs[t]);break;
4724 case SHIFTIMM:
4725 shiftimm_assemble(t,&regs[t]);break;
4726 case LOAD:
4727 load_assemble(t,&regs[t]);break;
4728 case LOADLR:
4729 loadlr_assemble(t,&regs[t]);break;
4730 case STORE:
4731 store_assemble(t,&regs[t]);break;
4732 case STORELR:
4733 storelr_assemble(t,&regs[t]);break;
4734 case COP0:
4735 cop0_assemble(t,&regs[t]);break;
4736 case COP1:
4737 cop1_assemble(t,&regs[t]);break;
4738 case C1LS:
4739 c1ls_assemble(t,&regs[t]);break;
4740 case COP2:
4741 cop2_assemble(t,&regs[t]);break;
4742 case C2LS:
4743 c2ls_assemble(t,&regs[t]);break;
4744 case C2OP:
4745 c2op_assemble(t,&regs[t]);break;
4746 case FCONV:
4747 fconv_assemble(t,&regs[t]);break;
4748 case FLOAT:
4749 float_assemble(t,&regs[t]);break;
4750 case FCOMP:
4751 fcomp_assemble(t,&regs[t]);break;
4752 case MULTDIV:
4753 multdiv_assemble(t,&regs[t]);break;
4754 case MOV:
4755 mov_assemble(t,&regs[t]);break;
4756 case SYSCALL:
4757 case HLECALL:
4758 case INTCALL:
4759 case SPAN:
4760 case UJUMP:
4761 case RJUMP:
4762 case CJUMP:
4763 case SJUMP:
4764 case FJUMP:
4765 printf("Jump in the delay slot. This is probably a bug.\n");
4766 }
4767 store_regs_bt(regs[t].regmap,regs[t].is32,regs[t].dirty,ba[i]+4);
4768 load_regs_bt(regs[t].regmap,regs[t].is32,regs[t].dirty,ba[i]+4);
4769 if(internal_branch(regs[t].is32,ba[i]+4))
4770 assem_debug("branch: internal\n");
4771 else
4772 assem_debug("branch: external\n");
4773 assert(internal_branch(regs[t].is32,ba[i]+4));
4774 add_to_linker((int)out,ba[i]+4,internal_branch(regs[t].is32,ba[i]+4));
4775 emit_jmp(0);
4776}
4777
4778void do_cc(int i,signed char i_regmap[],int *adj,int addr,int taken,int invert)
4779{
4780 int count;
4781 int jaddr;
4782 int idle=0;
4783 if(itype[i]==RJUMP)
4784 {
4785 *adj=0;
4786 }
4787 //if(ba[i]>=start && ba[i]<(start+slen*4))
4788 if(internal_branch(branch_regs[i].is32,ba[i]))
4789 {
4790 int t=(ba[i]-start)>>2;
4791 if(is_ds[t]) *adj=-1; // Branch into delay slot adds an extra cycle
4792 else *adj=ccadj[t];
4793 }
4794 else
4795 {
4796 *adj=0;
4797 }
4798 count=ccadj[i];
4799 if(taken==TAKEN && i==(ba[i]-start)>>2 && source[i+1]==0) {
4800 // Idle loop
4801 if(count&1) emit_addimm_and_set_flags(2*(count+2),HOST_CCREG);
4802 idle=(int)out;
4803 //emit_subfrommem(&idlecount,HOST_CCREG); // Count idle cycles
4804 emit_andimm(HOST_CCREG,3,HOST_CCREG);
4805 jaddr=(int)out;
4806 emit_jmp(0);
4807 }
4808 else if(*adj==0||invert) {
4809 emit_addimm_and_set_flags(CLOCK_DIVIDER*(count+2),HOST_CCREG);
4810 jaddr=(int)out;
4811 emit_jns(0);
4812 }
4813 else
4814 {
4815 emit_cmpimm(HOST_CCREG,-2*(count+2));
4816 jaddr=(int)out;
4817 emit_jns(0);
4818 }
4819 add_stub(CC_STUB,jaddr,idle?idle:(int)out,(*adj==0||invert||idle)?0:(count+2),i,addr,taken,0);
4820}
4821
4822void do_ccstub(int n)
4823{
4824 literal_pool(256);
4825 assem_debug("do_ccstub %x\n",start+stubs[n][4]*4);
4826 set_jump_target(stubs[n][1],(int)out);
4827 int i=stubs[n][4];
4828 if(stubs[n][6]==NULLDS) {
4829 // Delay slot instruction is nullified ("likely" branch)
4830 wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
4831 }
4832 else if(stubs[n][6]!=TAKEN) {
4833 wb_dirtys(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty);
4834 }
4835 else {
4836 if(internal_branch(branch_regs[i].is32,ba[i]))
4837 wb_needed_dirtys(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
4838 }
4839 if(stubs[n][5]!=-1)
4840 {
4841 // Save PC as return address
4842 emit_movimm(stubs[n][5],EAX);
4843 emit_writeword(EAX,(int)&pcaddr);
4844 }
4845 else
4846 {
4847 // Return address depends on which way the branch goes
4848 if(itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
4849 {
4850 int s1l=get_reg(branch_regs[i].regmap,rs1[i]);
4851 int s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
4852 int s2l=get_reg(branch_regs[i].regmap,rs2[i]);
4853 int s2h=get_reg(branch_regs[i].regmap,rs2[i]|64);
4854 if(rs1[i]==0)
4855 {
4856 s1l=s2l;s1h=s2h;
4857 s2l=s2h=-1;
4858 }
4859 else if(rs2[i]==0)
4860 {
4861 s2l=s2h=-1;
4862 }
4863 if((branch_regs[i].is32>>rs1[i])&(branch_regs[i].is32>>rs2[i])&1) {
4864 s1h=s2h=-1;
4865 }
4866 assert(s1l>=0);
4867 #ifdef DESTRUCTIVE_WRITEBACK
4868 if(rs1[i]) {
4869 if((branch_regs[i].dirty>>s1l)&(branch_regs[i].is32>>rs1[i])&1)
4870 emit_loadreg(rs1[i],s1l);
4871 }
4872 else {
4873 if((branch_regs[i].dirty>>s1l)&(branch_regs[i].is32>>rs2[i])&1)
4874 emit_loadreg(rs2[i],s1l);
4875 }
4876 if(s2l>=0)
4877 if((branch_regs[i].dirty>>s2l)&(branch_regs[i].is32>>rs2[i])&1)
4878 emit_loadreg(rs2[i],s2l);
4879 #endif
4880 int hr=0;
4881 int addr,alt,ntaddr;
4882 while(hr<HOST_REGS)
4883 {
4884 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4885 (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
4886 (branch_regs[i].regmap[hr]&63)!=rs2[i] )
4887 {
4888 addr=hr++;break;
4889 }
4890 hr++;
4891 }
4892 while(hr<HOST_REGS)
4893 {
4894 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4895 (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
4896 (branch_regs[i].regmap[hr]&63)!=rs2[i] )
4897 {
4898 alt=hr++;break;
4899 }
4900 hr++;
4901 }
4902 if((opcode[i]&0x2E)==6) // BLEZ/BGTZ needs another register
4903 {
4904 while(hr<HOST_REGS)
4905 {
4906 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4907 (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
4908 (branch_regs[i].regmap[hr]&63)!=rs2[i] )
4909 {
4910 ntaddr=hr;break;
4911 }
4912 hr++;
4913 }
4914 assert(hr<HOST_REGS);
4915 }
4916 if((opcode[i]&0x2f)==4) // BEQ
4917 {
4918 #ifdef HAVE_CMOV_IMM
4919 if(s1h<0) {
4920 if(s2l>=0) emit_cmp(s1l,s2l);
4921 else emit_test(s1l,s1l);
4922 emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
4923 }
4924 else
4925 #endif
4926 {
4927 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
4928 if(s1h>=0) {
4929 if(s2h>=0) emit_cmp(s1h,s2h);
4930 else emit_test(s1h,s1h);
4931 emit_cmovne_reg(alt,addr);
4932 }
4933 if(s2l>=0) emit_cmp(s1l,s2l);
4934 else emit_test(s1l,s1l);
4935 emit_cmovne_reg(alt,addr);
4936 }
4937 }
4938 if((opcode[i]&0x2f)==5) // BNE
4939 {
4940 #ifdef HAVE_CMOV_IMM
4941 if(s1h<0) {
4942 if(s2l>=0) emit_cmp(s1l,s2l);
4943 else emit_test(s1l,s1l);
4944 emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
4945 }
4946 else
4947 #endif
4948 {
4949 emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
4950 if(s1h>=0) {
4951 if(s2h>=0) emit_cmp(s1h,s2h);
4952 else emit_test(s1h,s1h);
4953 emit_cmovne_reg(alt,addr);
4954 }
4955 if(s2l>=0) emit_cmp(s1l,s2l);
4956 else emit_test(s1l,s1l);
4957 emit_cmovne_reg(alt,addr);
4958 }
4959 }
4960 if((opcode[i]&0x2f)==6) // BLEZ
4961 {
4962 //emit_movimm(ba[i],alt);
4963 //emit_movimm(start+i*4+8,addr);
4964 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
4965 emit_cmpimm(s1l,1);
4966 if(s1h>=0) emit_mov(addr,ntaddr);
4967 emit_cmovl_reg(alt,addr);
4968 if(s1h>=0) {
4969 emit_test(s1h,s1h);
4970 emit_cmovne_reg(ntaddr,addr);
4971 emit_cmovs_reg(alt,addr);
4972 }
4973 }
4974 if((opcode[i]&0x2f)==7) // BGTZ
4975 {
4976 //emit_movimm(ba[i],addr);
4977 //emit_movimm(start+i*4+8,ntaddr);
4978 emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
4979 emit_cmpimm(s1l,1);
4980 if(s1h>=0) emit_mov(addr,alt);
4981 emit_cmovl_reg(ntaddr,addr);
4982 if(s1h>=0) {
4983 emit_test(s1h,s1h);
4984 emit_cmovne_reg(alt,addr);
4985 emit_cmovs_reg(ntaddr,addr);
4986 }
4987 }
4988 if((opcode[i]==1)&&(opcode2[i]&0x2D)==0) // BLTZ
4989 {
4990 //emit_movimm(ba[i],alt);
4991 //emit_movimm(start+i*4+8,addr);
4992 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
4993 if(s1h>=0) emit_test(s1h,s1h);
4994 else emit_test(s1l,s1l);
4995 emit_cmovs_reg(alt,addr);
4996 }
4997 if((opcode[i]==1)&&(opcode2[i]&0x2D)==1) // BGEZ
4998 {
4999 //emit_movimm(ba[i],addr);
5000 //emit_movimm(start+i*4+8,alt);
5001 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
5002 if(s1h>=0) emit_test(s1h,s1h);
5003 else emit_test(s1l,s1l);
5004 emit_cmovs_reg(alt,addr);
5005 }
5006 if(opcode[i]==0x11 && opcode2[i]==0x08 ) {
5007 if(source[i]&0x10000) // BC1T
5008 {
5009 //emit_movimm(ba[i],alt);
5010 //emit_movimm(start+i*4+8,addr);
5011 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
5012 emit_testimm(s1l,0x800000);
5013 emit_cmovne_reg(alt,addr);
5014 }
5015 else // BC1F
5016 {
5017 //emit_movimm(ba[i],addr);
5018 //emit_movimm(start+i*4+8,alt);
5019 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
5020 emit_testimm(s1l,0x800000);
5021 emit_cmovne_reg(alt,addr);
5022 }
5023 }
5024 emit_writeword(addr,(int)&pcaddr);
5025 }
5026 else
5027 if(itype[i]==RJUMP)
5028 {
5029 int r=get_reg(branch_regs[i].regmap,rs1[i]);
5030 if(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]) {
5031 r=get_reg(branch_regs[i].regmap,RTEMP);
5032 }
5033 emit_writeword(r,(int)&pcaddr);
5034 }
5035 else {printf("Unknown branch type in do_ccstub\n");exit(1);}
5036 }
5037 // Update cycle count
5038 assert(branch_regs[i].regmap[HOST_CCREG]==CCREG||branch_regs[i].regmap[HOST_CCREG]==-1);
5039 if(stubs[n][3]) emit_addimm(HOST_CCREG,CLOCK_DIVIDER*stubs[n][3],HOST_CCREG);
5040 emit_call((int)cc_interrupt);
5041 if(stubs[n][3]) emit_addimm(HOST_CCREG,-CLOCK_DIVIDER*stubs[n][3],HOST_CCREG);
5042 if(stubs[n][6]==TAKEN) {
5043 if(internal_branch(branch_regs[i].is32,ba[i]))
5044 load_needed_regs(branch_regs[i].regmap,regs[(ba[i]-start)>>2].regmap_entry);
5045 else if(itype[i]==RJUMP) {
5046 if(get_reg(branch_regs[i].regmap,RTEMP)>=0)
5047 emit_readword((int)&pcaddr,get_reg(branch_regs[i].regmap,RTEMP));
5048 else
5049 emit_loadreg(rs1[i],get_reg(branch_regs[i].regmap,rs1[i]));
5050 }
5051 }else if(stubs[n][6]==NOTTAKEN) {
5052 if(i<slen-2) load_needed_regs(branch_regs[i].regmap,regmap_pre[i+2]);
5053 else load_all_regs(branch_regs[i].regmap);
5054 }else if(stubs[n][6]==NULLDS) {
5055 // Delay slot instruction is nullified ("likely" branch)
5056 if(i<slen-2) load_needed_regs(regs[i].regmap,regmap_pre[i+2]);
5057 else load_all_regs(regs[i].regmap);
5058 }else{
5059 load_all_regs(branch_regs[i].regmap);
5060 }
5061 emit_jmp(stubs[n][2]); // return address
5062
5063 /* This works but uses a lot of memory...
5064 emit_readword((int)&last_count,ECX);
5065 emit_add(HOST_CCREG,ECX,EAX);
5066 emit_writeword(EAX,(int)&Count);
5067 emit_call((int)gen_interupt);
5068 emit_readword((int)&Count,HOST_CCREG);
5069 emit_readword((int)&next_interupt,EAX);
5070 emit_readword((int)&pending_exception,EBX);
5071 emit_writeword(EAX,(int)&last_count);
5072 emit_sub(HOST_CCREG,EAX,HOST_CCREG);
5073 emit_test(EBX,EBX);
5074 int jne_instr=(int)out;
5075 emit_jne(0);
5076 if(stubs[n][3]) emit_addimm(HOST_CCREG,-2*stubs[n][3],HOST_CCREG);
5077 load_all_regs(branch_regs[i].regmap);
5078 emit_jmp(stubs[n][2]); // return address
5079 set_jump_target(jne_instr,(int)out);
5080 emit_readword((int)&pcaddr,EAX);
5081 // Call get_addr_ht instead of doing the hash table here.
5082 // This code is executed infrequently and takes up a lot of space
5083 // so smaller is better.
5084 emit_storereg(CCREG,HOST_CCREG);
5085 emit_pushreg(EAX);
5086 emit_call((int)get_addr_ht);
5087 emit_loadreg(CCREG,HOST_CCREG);
5088 emit_addimm(ESP,4,ESP);
5089 emit_jmpreg(EAX);*/
5090}
5091
5092add_to_linker(int addr,int target,int ext)
5093{
5094 link_addr[linkcount][0]=addr;
5095 link_addr[linkcount][1]=target;
5096 link_addr[linkcount][2]=ext;
5097 linkcount++;
5098}
5099
5100void ujump_assemble(int i,struct regstat *i_regs)
5101{
5102 signed char *i_regmap=i_regs->regmap;
5103 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5104 address_generation(i+1,i_regs,regs[i].regmap_entry);
5105 #ifdef REG_PREFETCH
5106 int temp=get_reg(branch_regs[i].regmap,PTEMP);
5107 if(rt1[i]==31&&temp>=0)
5108 {
5109 int return_address=start+i*4+8;
5110 if(get_reg(branch_regs[i].regmap,31)>0)
5111 if(i_regmap[temp]==PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5112 }
5113 #endif
5114 if(rt1[i]==31) {
5115 int rt;
5116 unsigned int return_address;
5117 rt=get_reg(branch_regs[i].regmap,31);
5118 assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5119 //assert(rt>=0);
5120 return_address=start+i*4+8;
5121 if(rt>=0) {
5122 #ifdef USE_MINI_HT
5123 if(internal_branch(branch_regs[i].is32,return_address)&&rt1[i+1]!=31) {
5124 int temp=-1; // note: must be ds-safe
5125 #ifdef HOST_TEMPREG
5126 temp=HOST_TEMPREG;
5127 #endif
5128 if(temp>=0) do_miniht_insert(return_address,rt,temp);
5129 else emit_movimm(return_address,rt);
5130 }
5131 else
5132 #endif
5133 {
5134 #ifdef REG_PREFETCH
5135 if(temp>=0)
5136 {
5137 if(i_regmap[temp]!=PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5138 }
5139 #endif
5140 emit_movimm(return_address,rt); // PC into link register
5141 #ifdef IMM_PREFETCH
5142 emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5143 #endif
5144 }
5145 }
5146 }
5147 ds_assemble(i+1,i_regs);
5148 uint64_t bc_unneeded=branch_regs[i].u;
5149 uint64_t bc_unneeded_upper=branch_regs[i].uu;
5150 bc_unneeded|=1|(1LL<<rt1[i]);
5151 bc_unneeded_upper|=1|(1LL<<rt1[i]);
5152 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5153 bc_unneeded,bc_unneeded_upper);
5154 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5155 int cc,adj;
5156 cc=get_reg(branch_regs[i].regmap,CCREG);
5157 assert(cc==HOST_CCREG);
5158 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5159 #ifdef REG_PREFETCH
5160 if(rt1[i]==31&&temp>=0) emit_prefetchreg(temp);
5161 #endif
5162 do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5163 if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5164 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5165 if(internal_branch(branch_regs[i].is32,ba[i]))
5166 assem_debug("branch: internal\n");
5167 else
5168 assem_debug("branch: external\n");
5169 if(internal_branch(branch_regs[i].is32,ba[i])&&is_ds[(ba[i]-start)>>2]) {
5170 ds_assemble_entry(i);
5171 }
5172 else {
5173 add_to_linker((int)out,ba[i],internal_branch(branch_regs[i].is32,ba[i]));
5174 emit_jmp(0);
5175 }
5176}
5177
5178void rjump_assemble(int i,struct regstat *i_regs)
5179{
5180 signed char *i_regmap=i_regs->regmap;
5181 int temp;
5182 int rs,cc,adj;
5183 rs=get_reg(branch_regs[i].regmap,rs1[i]);
5184 assert(rs>=0);
5185 if(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]) {
5186 // Delay slot abuse, make a copy of the branch address register
5187 temp=get_reg(branch_regs[i].regmap,RTEMP);
5188 assert(temp>=0);
5189 assert(regs[i].regmap[temp]==RTEMP);
5190 emit_mov(rs,temp);
5191 rs=temp;
5192 }
5193 address_generation(i+1,i_regs,regs[i].regmap_entry);
5194 #ifdef REG_PREFETCH
5195 if(rt1[i]==31)
5196 {
5197 if((temp=get_reg(branch_regs[i].regmap,PTEMP))>=0) {
5198 int return_address=start+i*4+8;
5199 if(i_regmap[temp]==PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5200 }
5201 }
5202 #endif
5203 #ifdef USE_MINI_HT
5204 if(rs1[i]==31) {
5205 int rh=get_reg(regs[i].regmap,RHASH);
5206 if(rh>=0) do_preload_rhash(rh);
5207 }
5208 #endif
5209 ds_assemble(i+1,i_regs);
5210 uint64_t bc_unneeded=branch_regs[i].u;
5211 uint64_t bc_unneeded_upper=branch_regs[i].uu;
5212 bc_unneeded|=1|(1LL<<rt1[i]);
5213 bc_unneeded_upper|=1|(1LL<<rt1[i]);
5214 bc_unneeded&=~(1LL<<rs1[i]);
5215 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5216 bc_unneeded,bc_unneeded_upper);
5217 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],CCREG);
5218 if(rt1[i]!=0) {
5219 int rt,return_address;
5220 assert(rt1[i+1]!=rt1[i]);
5221 assert(rt2[i+1]!=rt1[i]);
5222 rt=get_reg(branch_regs[i].regmap,rt1[i]);
5223 assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5224 assert(rt>=0);
5225 return_address=start+i*4+8;
5226 #ifdef REG_PREFETCH
5227 if(temp>=0)
5228 {
5229 if(i_regmap[temp]!=PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5230 }
5231 #endif
5232 emit_movimm(return_address,rt); // PC into link register
5233 #ifdef IMM_PREFETCH
5234 emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5235 #endif
5236 }
5237 cc=get_reg(branch_regs[i].regmap,CCREG);
5238 assert(cc==HOST_CCREG);
5239 #ifdef USE_MINI_HT
5240 int rh=get_reg(branch_regs[i].regmap,RHASH);
5241 int ht=get_reg(branch_regs[i].regmap,RHTBL);
5242 if(rs1[i]==31) {
5243 if(regs[i].regmap[rh]!=RHASH) do_preload_rhash(rh);
5244 do_preload_rhtbl(ht);
5245 do_rhash(rs,rh);
5246 }
5247 #endif
5248 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,-1);
5249 #ifdef DESTRUCTIVE_WRITEBACK
5250 if((branch_regs[i].dirty>>rs)&(branch_regs[i].is32>>rs1[i])&1) {
5251 if(rs1[i]!=rt1[i+1]&&rs1[i]!=rt2[i+1]) {
5252 emit_loadreg(rs1[i],rs);
5253 }
5254 }
5255 #endif
5256 #ifdef REG_PREFETCH
5257 if(rt1[i]==31&&temp>=0) emit_prefetchreg(temp);
5258 #endif
5259 #ifdef USE_MINI_HT
5260 if(rs1[i]==31) {
5261 do_miniht_load(ht,rh);
5262 }
5263 #endif
5264 //do_cc(i,branch_regs[i].regmap,&adj,-1,TAKEN);
5265 //if(adj) emit_addimm(cc,2*(ccadj[i]+2-adj),cc); // ??? - Shouldn't happen
5266 //assert(adj==0);
5267 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
5268 add_stub(CC_STUB,(int)out,jump_vaddr_reg[rs],0,i,-1,TAKEN,0);
5269 emit_jns(0);
5270 //load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,-1);
5271 #ifdef USE_MINI_HT
5272 if(rs1[i]==31) {
5273 do_miniht_jump(rs,rh,ht);
5274 }
5275 else
5276 #endif
5277 {
5278 //if(rs!=EAX) emit_mov(rs,EAX);
5279 //emit_jmp((int)jump_vaddr_eax);
5280 emit_jmp(jump_vaddr_reg[rs]);
5281 }
5282 /* Check hash table
5283 temp=!rs;
5284 emit_mov(rs,temp);
5285 emit_shrimm(rs,16,rs);
5286 emit_xor(temp,rs,rs);
5287 emit_movzwl_reg(rs,rs);
5288 emit_shlimm(rs,4,rs);
5289 emit_cmpmem_indexed((int)hash_table,rs,temp);
5290 emit_jne((int)out+14);
5291 emit_readword_indexed((int)hash_table+4,rs,rs);
5292 emit_jmpreg(rs);
5293 emit_cmpmem_indexed((int)hash_table+8,rs,temp);
5294 emit_addimm_no_flags(8,rs);
5295 emit_jeq((int)out-17);
5296 // No hit on hash table, call compiler
5297 emit_pushreg(temp);
5298//DEBUG >
5299#ifdef DEBUG_CYCLE_COUNT
5300 emit_readword((int)&last_count,ECX);
5301 emit_add(HOST_CCREG,ECX,HOST_CCREG);
5302 emit_readword((int)&next_interupt,ECX);
5303 emit_writeword(HOST_CCREG,(int)&Count);
5304 emit_sub(HOST_CCREG,ECX,HOST_CCREG);
5305 emit_writeword(ECX,(int)&last_count);
5306#endif
5307//DEBUG <
5308 emit_storereg(CCREG,HOST_CCREG);
5309 emit_call((int)get_addr);
5310 emit_loadreg(CCREG,HOST_CCREG);
5311 emit_addimm(ESP,4,ESP);
5312 emit_jmpreg(EAX);*/
5313 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5314 if(rt1[i]!=31&&i<slen-2&&(((u_int)out)&7)) emit_mov(13,13);
5315 #endif
5316}
5317
5318void cjump_assemble(int i,struct regstat *i_regs)
5319{
5320 signed char *i_regmap=i_regs->regmap;
5321 int cc;
5322 int match;
5323 match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5324 assem_debug("match=%d\n",match);
5325 int s1h,s1l,s2h,s2l;
5326 int prev_cop1_usable=cop1_usable;
5327 int unconditional=0,nop=0;
5328 int only32=0;
5329 int invert=0;
5330 int internal=internal_branch(branch_regs[i].is32,ba[i]);
5331 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5332 if(!match) invert=1;
5333 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5334 if(i>(ba[i]-start)>>2) invert=1;
5335 #endif
5336
5337 if(ooo[i]) {
5338 s1l=get_reg(branch_regs[i].regmap,rs1[i]);
5339 s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
5340 s2l=get_reg(branch_regs[i].regmap,rs2[i]);
5341 s2h=get_reg(branch_regs[i].regmap,rs2[i]|64);
5342 }
5343 else {
5344 s1l=get_reg(i_regmap,rs1[i]);
5345 s1h=get_reg(i_regmap,rs1[i]|64);
5346 s2l=get_reg(i_regmap,rs2[i]);
5347 s2h=get_reg(i_regmap,rs2[i]|64);
5348 }
5349 if(rs1[i]==0&&rs2[i]==0)
5350 {
5351 if(opcode[i]&1) nop=1;
5352 else unconditional=1;
5353 //assert(opcode[i]!=5);
5354 //assert(opcode[i]!=7);
5355 //assert(opcode[i]!=0x15);
5356 //assert(opcode[i]!=0x17);
5357 }
5358 else if(rs1[i]==0)
5359 {
5360 s1l=s2l;s1h=s2h;
5361 s2l=s2h=-1;
5362 only32=(regs[i].was32>>rs2[i])&1;
5363 }
5364 else if(rs2[i]==0)
5365 {
5366 s2l=s2h=-1;
5367 only32=(regs[i].was32>>rs1[i])&1;
5368 }
5369 else {
5370 only32=(regs[i].was32>>rs1[i])&(regs[i].was32>>rs2[i])&1;
5371 }
5372
5373 if(ooo[i]) {
5374 // Out of order execution (delay slot first)
5375 //printf("OOOE\n");
5376 address_generation(i+1,i_regs,regs[i].regmap_entry);
5377 ds_assemble(i+1,i_regs);
5378 int adj;
5379 uint64_t bc_unneeded=branch_regs[i].u;
5380 uint64_t bc_unneeded_upper=branch_regs[i].uu;
5381 bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
5382 bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
5383 bc_unneeded|=1;
5384 bc_unneeded_upper|=1;
5385 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5386 bc_unneeded,bc_unneeded_upper);
5387 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs2[i]);
5388 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5389 cc=get_reg(branch_regs[i].regmap,CCREG);
5390 assert(cc==HOST_CCREG);
5391 if(unconditional)
5392 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5393 //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
5394 //assem_debug("cycle count (adj)\n");
5395 if(unconditional) {
5396 do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5397 if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
5398 if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5399 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5400 if(internal)
5401 assem_debug("branch: internal\n");
5402 else
5403 assem_debug("branch: external\n");
5404 if(internal&&is_ds[(ba[i]-start)>>2]) {
5405 ds_assemble_entry(i);
5406 }
5407 else {
5408 add_to_linker((int)out,ba[i],internal);
5409 emit_jmp(0);
5410 }
5411 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5412 if(((u_int)out)&7) emit_addnop(0);
5413 #endif
5414 }
5415 }
5416 else if(nop) {
5417 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
5418 int jaddr=(int)out;
5419 emit_jns(0);
5420 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5421 }
5422 else {
5423 int taken=0,nottaken=0,nottaken1=0;
5424 do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
5425 if(adj&&!invert) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5426 if(!only32)
5427 {
5428 assert(s1h>=0);
5429 if(opcode[i]==4) // BEQ
5430 {
5431 if(s2h>=0) emit_cmp(s1h,s2h);
5432 else emit_test(s1h,s1h);
5433 nottaken1=(int)out;
5434 emit_jne(1);
5435 }
5436 if(opcode[i]==5) // BNE
5437 {
5438 if(s2h>=0) emit_cmp(s1h,s2h);
5439 else emit_test(s1h,s1h);
5440 if(invert) taken=(int)out;
5441 else add_to_linker((int)out,ba[i],internal);
5442 emit_jne(0);
5443 }
5444 if(opcode[i]==6) // BLEZ
5445 {
5446 emit_test(s1h,s1h);
5447 if(invert) taken=(int)out;
5448 else add_to_linker((int)out,ba[i],internal);
5449 emit_js(0);
5450 nottaken1=(int)out;
5451 emit_jne(1);
5452 }
5453 if(opcode[i]==7) // BGTZ
5454 {
5455 emit_test(s1h,s1h);
5456 nottaken1=(int)out;
5457 emit_js(1);
5458 if(invert) taken=(int)out;
5459 else add_to_linker((int)out,ba[i],internal);
5460 emit_jne(0);
5461 }
5462 } // if(!only32)
5463
5464 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5465 assert(s1l>=0);
5466 if(opcode[i]==4) // BEQ
5467 {
5468 if(s2l>=0) emit_cmp(s1l,s2l);
5469 else emit_test(s1l,s1l);
5470 if(invert){
5471 nottaken=(int)out;
5472 emit_jne(1);
5473 }else{
5474 add_to_linker((int)out,ba[i],internal);
5475 emit_jeq(0);
5476 }
5477 }
5478 if(opcode[i]==5) // BNE
5479 {
5480 if(s2l>=0) emit_cmp(s1l,s2l);
5481 else emit_test(s1l,s1l);
5482 if(invert){
5483 nottaken=(int)out;
5484 emit_jeq(1);
5485 }else{
5486 add_to_linker((int)out,ba[i],internal);
5487 emit_jne(0);
5488 }
5489 }
5490 if(opcode[i]==6) // BLEZ
5491 {
5492 emit_cmpimm(s1l,1);
5493 if(invert){
5494 nottaken=(int)out;
5495 emit_jge(1);
5496 }else{
5497 add_to_linker((int)out,ba[i],internal);
5498 emit_jl(0);
5499 }
5500 }
5501 if(opcode[i]==7) // BGTZ
5502 {
5503 emit_cmpimm(s1l,1);
5504 if(invert){
5505 nottaken=(int)out;
5506 emit_jl(1);
5507 }else{
5508 add_to_linker((int)out,ba[i],internal);
5509 emit_jge(0);
5510 }
5511 }
5512 if(invert) {
5513 if(taken) set_jump_target(taken,(int)out);
5514 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5515 if(match&&(!internal||!is_ds[(ba[i]-start)>>2])) {
5516 if(adj) {
5517 emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5518 add_to_linker((int)out,ba[i],internal);
5519 }else{
5520 emit_addnop(13);
5521 add_to_linker((int)out,ba[i],internal*2);
5522 }
5523 emit_jmp(0);
5524 }else
5525 #endif
5526 {
5527 if(adj) emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5528 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5529 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5530 if(internal)
5531 assem_debug("branch: internal\n");
5532 else
5533 assem_debug("branch: external\n");
5534 if(internal&&is_ds[(ba[i]-start)>>2]) {
5535 ds_assemble_entry(i);
5536 }
5537 else {
5538 add_to_linker((int)out,ba[i],internal);
5539 emit_jmp(0);
5540 }
5541 }
5542 set_jump_target(nottaken,(int)out);
5543 }
5544
5545 if(nottaken1) set_jump_target(nottaken1,(int)out);
5546 if(adj) {
5547 if(!invert) emit_addimm(cc,CLOCK_DIVIDER*adj,cc);
5548 }
5549 } // (!unconditional)
5550 } // if(ooo)
5551 else
5552 {
5553 // In-order execution (branch first)
5554 //if(likely[i]) printf("IOL\n");
5555 //else
5556 //printf("IOE\n");
5557 int taken=0,nottaken=0,nottaken1=0;
5558 if(!unconditional&&!nop) {
5559 if(!only32)
5560 {
5561 assert(s1h>=0);
5562 if((opcode[i]&0x2f)==4) // BEQ
5563 {
5564 if(s2h>=0) emit_cmp(s1h,s2h);
5565 else emit_test(s1h,s1h);
5566 nottaken1=(int)out;
5567 emit_jne(2);
5568 }
5569 if((opcode[i]&0x2f)==5) // BNE
5570 {
5571 if(s2h>=0) emit_cmp(s1h,s2h);
5572 else emit_test(s1h,s1h);
5573 taken=(int)out;
5574 emit_jne(1);
5575 }
5576 if((opcode[i]&0x2f)==6) // BLEZ
5577 {
5578 emit_test(s1h,s1h);
5579 taken=(int)out;
5580 emit_js(1);
5581 nottaken1=(int)out;
5582 emit_jne(2);
5583 }
5584 if((opcode[i]&0x2f)==7) // BGTZ
5585 {
5586 emit_test(s1h,s1h);
5587 nottaken1=(int)out;
5588 emit_js(2);
5589 taken=(int)out;
5590 emit_jne(1);
5591 }
5592 } // if(!only32)
5593
5594 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5595 assert(s1l>=0);
5596 if((opcode[i]&0x2f)==4) // BEQ
5597 {
5598 if(s2l>=0) emit_cmp(s1l,s2l);
5599 else emit_test(s1l,s1l);
5600 nottaken=(int)out;
5601 emit_jne(2);
5602 }
5603 if((opcode[i]&0x2f)==5) // BNE
5604 {
5605 if(s2l>=0) emit_cmp(s1l,s2l);
5606 else emit_test(s1l,s1l);
5607 nottaken=(int)out;
5608 emit_jeq(2);
5609 }
5610 if((opcode[i]&0x2f)==6) // BLEZ
5611 {
5612 emit_cmpimm(s1l,1);
5613 nottaken=(int)out;
5614 emit_jge(2);
5615 }
5616 if((opcode[i]&0x2f)==7) // BGTZ
5617 {
5618 emit_cmpimm(s1l,1);
5619 nottaken=(int)out;
5620 emit_jl(2);
5621 }
5622 } // if(!unconditional)
5623 int adj;
5624 uint64_t ds_unneeded=branch_regs[i].u;
5625 uint64_t ds_unneeded_upper=branch_regs[i].uu;
5626 ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
5627 ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
5628 if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
5629 ds_unneeded|=1;
5630 ds_unneeded_upper|=1;
5631 // branch taken
5632 if(!nop) {
5633 if(taken) set_jump_target(taken,(int)out);
5634 assem_debug("1:\n");
5635 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5636 ds_unneeded,ds_unneeded_upper);
5637 // load regs
5638 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5639 address_generation(i+1,&branch_regs[i],0);
5640 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
5641 ds_assemble(i+1,&branch_regs[i]);
5642 cc=get_reg(branch_regs[i].regmap,CCREG);
5643 if(cc==-1) {
5644 emit_loadreg(CCREG,cc=HOST_CCREG);
5645 // CHECK: Is the following instruction (fall thru) allocated ok?
5646 }
5647 assert(cc==HOST_CCREG);
5648 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5649 do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
5650 assem_debug("cycle count (adj)\n");
5651 if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5652 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5653 if(internal)
5654 assem_debug("branch: internal\n");
5655 else
5656 assem_debug("branch: external\n");
5657 if(internal&&is_ds[(ba[i]-start)>>2]) {
5658 ds_assemble_entry(i);
5659 }
5660 else {
5661 add_to_linker((int)out,ba[i],internal);
5662 emit_jmp(0);
5663 }
5664 }
5665 // branch not taken
5666 cop1_usable=prev_cop1_usable;
5667 if(!unconditional) {
5668 if(nottaken1) set_jump_target(nottaken1,(int)out);
5669 set_jump_target(nottaken,(int)out);
5670 assem_debug("2:\n");
5671 if(!likely[i]) {
5672 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5673 ds_unneeded,ds_unneeded_upper);
5674 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5675 address_generation(i+1,&branch_regs[i],0);
5676 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5677 ds_assemble(i+1,&branch_regs[i]);
5678 }
5679 cc=get_reg(branch_regs[i].regmap,CCREG);
5680 if(cc==-1&&!likely[i]) {
5681 // Cycle count isn't in a register, temporarily load it then write it out
5682 emit_loadreg(CCREG,HOST_CCREG);
5683 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
5684 int jaddr=(int)out;
5685 emit_jns(0);
5686 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5687 emit_storereg(CCREG,HOST_CCREG);
5688 }
5689 else{
5690 cc=get_reg(i_regmap,CCREG);
5691 assert(cc==HOST_CCREG);
5692 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
5693 int jaddr=(int)out;
5694 emit_jns(0);
5695 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
5696 }
5697 }
5698 }
5699}
5700
5701void sjump_assemble(int i,struct regstat *i_regs)
5702{
5703 signed char *i_regmap=i_regs->regmap;
5704 int cc;
5705 int match;
5706 match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5707 assem_debug("smatch=%d\n",match);
5708 int s1h,s1l;
5709 int prev_cop1_usable=cop1_usable;
5710 int unconditional=0,nevertaken=0;
5711 int only32=0;
5712 int invert=0;
5713 int internal=internal_branch(branch_regs[i].is32,ba[i]);
5714 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5715 if(!match) invert=1;
5716 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5717 if(i>(ba[i]-start)>>2) invert=1;
5718 #endif
5719
5720 //if(opcode2[i]>=0x10) return; // FIXME (BxxZAL)
5721 //assert(opcode2[i]<0x10||rs1[i]==0); // FIXME (BxxZAL)
5722
5723 if(ooo[i]) {
5724 s1l=get_reg(branch_regs[i].regmap,rs1[i]);
5725 s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
5726 }
5727 else {
5728 s1l=get_reg(i_regmap,rs1[i]);
5729 s1h=get_reg(i_regmap,rs1[i]|64);
5730 }
5731 if(rs1[i]==0)
5732 {
5733 if(opcode2[i]&1) unconditional=1;
5734 else nevertaken=1;
5735 // These are never taken (r0 is never less than zero)
5736 //assert(opcode2[i]!=0);
5737 //assert(opcode2[i]!=2);
5738 //assert(opcode2[i]!=0x10);
5739 //assert(opcode2[i]!=0x12);
5740 }
5741 else {
5742 only32=(regs[i].was32>>rs1[i])&1;
5743 }
5744
5745 if(ooo[i]) {
5746 // Out of order execution (delay slot first)
5747 //printf("OOOE\n");
5748 address_generation(i+1,i_regs,regs[i].regmap_entry);
5749 ds_assemble(i+1,i_regs);
5750 int adj;
5751 uint64_t bc_unneeded=branch_regs[i].u;
5752 uint64_t bc_unneeded_upper=branch_regs[i].uu;
5753 bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
5754 bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
5755 bc_unneeded|=1;
5756 bc_unneeded_upper|=1;
5757 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5758 bc_unneeded,bc_unneeded_upper);
5759 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs1[i]);
5760 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5761 if(rt1[i]==31) {
5762 int rt,return_address;
5763 rt=get_reg(branch_regs[i].regmap,31);
5764 assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5765 if(rt>=0) {
5766 // Save the PC even if the branch is not taken
5767 return_address=start+i*4+8;
5768 emit_movimm(return_address,rt); // PC into link register
5769 #ifdef IMM_PREFETCH
5770 if(!nevertaken) emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5771 #endif
5772 }
5773 }
5774 cc=get_reg(branch_regs[i].regmap,CCREG);
5775 assert(cc==HOST_CCREG);
5776 if(unconditional)
5777 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5778 //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
5779 assem_debug("cycle count (adj)\n");
5780 if(unconditional) {
5781 do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5782 if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
5783 if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5784 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5785 if(internal)
5786 assem_debug("branch: internal\n");
5787 else
5788 assem_debug("branch: external\n");
5789 if(internal&&is_ds[(ba[i]-start)>>2]) {
5790 ds_assemble_entry(i);
5791 }
5792 else {
5793 add_to_linker((int)out,ba[i],internal);
5794 emit_jmp(0);
5795 }
5796 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5797 if(((u_int)out)&7) emit_addnop(0);
5798 #endif
5799 }
5800 }
5801 else if(nevertaken) {
5802 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
5803 int jaddr=(int)out;
5804 emit_jns(0);
5805 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5806 }
5807 else {
5808 int nottaken=0;
5809 do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
5810 if(adj&&!invert) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5811 if(!only32)
5812 {
5813 assert(s1h>=0);
5814 if((opcode2[i]&0xf)==0) // BLTZ/BLTZAL
5815 {
5816 emit_test(s1h,s1h);
5817 if(invert){
5818 nottaken=(int)out;
5819 emit_jns(1);
5820 }else{
5821 add_to_linker((int)out,ba[i],internal);
5822 emit_js(0);
5823 }
5824 }
5825 if((opcode2[i]&0xf)==1) // BGEZ/BLTZAL
5826 {
5827 emit_test(s1h,s1h);
5828 if(invert){
5829 nottaken=(int)out;
5830 emit_js(1);
5831 }else{
5832 add_to_linker((int)out,ba[i],internal);
5833 emit_jns(0);
5834 }
5835 }
5836 } // if(!only32)
5837 else
5838 {
5839 assert(s1l>=0);
5840 if((opcode2[i]&0xf)==0) // BLTZ/BLTZAL
5841 {
5842 emit_test(s1l,s1l);
5843 if(invert){
5844 nottaken=(int)out;
5845 emit_jns(1);
5846 }else{
5847 add_to_linker((int)out,ba[i],internal);
5848 emit_js(0);
5849 }
5850 }
5851 if((opcode2[i]&0xf)==1) // BGEZ/BLTZAL
5852 {
5853 emit_test(s1l,s1l);
5854 if(invert){
5855 nottaken=(int)out;
5856 emit_js(1);
5857 }else{
5858 add_to_linker((int)out,ba[i],internal);
5859 emit_jns(0);
5860 }
5861 }
5862 } // if(!only32)
5863
5864 if(invert) {
5865 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5866 if(match&&(!internal||!is_ds[(ba[i]-start)>>2])) {
5867 if(adj) {
5868 emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5869 add_to_linker((int)out,ba[i],internal);
5870 }else{
5871 emit_addnop(13);
5872 add_to_linker((int)out,ba[i],internal*2);
5873 }
5874 emit_jmp(0);
5875 }else
5876 #endif
5877 {
5878 if(adj) emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5879 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5880 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5881 if(internal)
5882 assem_debug("branch: internal\n");
5883 else
5884 assem_debug("branch: external\n");
5885 if(internal&&is_ds[(ba[i]-start)>>2]) {
5886 ds_assemble_entry(i);
5887 }
5888 else {
5889 add_to_linker((int)out,ba[i],internal);
5890 emit_jmp(0);
5891 }
5892 }
5893 set_jump_target(nottaken,(int)out);
5894 }
5895
5896 if(adj) {
5897 if(!invert) emit_addimm(cc,CLOCK_DIVIDER*adj,cc);
5898 }
5899 } // (!unconditional)
5900 } // if(ooo)
5901 else
5902 {
5903 // In-order execution (branch first)
5904 //printf("IOE\n");
5905 int nottaken=0;
5906 if(rt1[i]==31) {
5907 int rt,return_address;
5908 rt=get_reg(branch_regs[i].regmap,31);
5909 if(rt>=0) {
5910 // Save the PC even if the branch is not taken
5911 return_address=start+i*4+8;
5912 emit_movimm(return_address,rt); // PC into link register
5913 #ifdef IMM_PREFETCH
5914 emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5915 #endif
5916 }
5917 }
5918 if(!unconditional) {
5919 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5920 if(!only32)
5921 {
5922 assert(s1h>=0);
5923 if((opcode2[i]&0x0d)==0) // BLTZ/BLTZL/BLTZAL/BLTZALL
5924 {
5925 emit_test(s1h,s1h);
5926 nottaken=(int)out;
5927 emit_jns(1);
5928 }
5929 if((opcode2[i]&0x0d)==1) // BGEZ/BGEZL/BGEZAL/BGEZALL
5930 {
5931 emit_test(s1h,s1h);
5932 nottaken=(int)out;
5933 emit_js(1);
5934 }
5935 } // if(!only32)
5936 else
5937 {
5938 assert(s1l>=0);
5939 if((opcode2[i]&0x0d)==0) // BLTZ/BLTZL/BLTZAL/BLTZALL
5940 {
5941 emit_test(s1l,s1l);
5942 nottaken=(int)out;
5943 emit_jns(1);
5944 }
5945 if((opcode2[i]&0x0d)==1) // BGEZ/BGEZL/BGEZAL/BGEZALL
5946 {
5947 emit_test(s1l,s1l);
5948 nottaken=(int)out;
5949 emit_js(1);
5950 }
5951 }
5952 } // if(!unconditional)
5953 int adj;
5954 uint64_t ds_unneeded=branch_regs[i].u;
5955 uint64_t ds_unneeded_upper=branch_regs[i].uu;
5956 ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
5957 ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
5958 if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
5959 ds_unneeded|=1;
5960 ds_unneeded_upper|=1;
5961 // branch taken
5962 if(!nevertaken) {
5963 //assem_debug("1:\n");
5964 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5965 ds_unneeded,ds_unneeded_upper);
5966 // load regs
5967 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5968 address_generation(i+1,&branch_regs[i],0);
5969 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
5970 ds_assemble(i+1,&branch_regs[i]);
5971 cc=get_reg(branch_regs[i].regmap,CCREG);
5972 if(cc==-1) {
5973 emit_loadreg(CCREG,cc=HOST_CCREG);
5974 // CHECK: Is the following instruction (fall thru) allocated ok?
5975 }
5976 assert(cc==HOST_CCREG);
5977 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5978 do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
5979 assem_debug("cycle count (adj)\n");
5980 if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5981 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5982 if(internal)
5983 assem_debug("branch: internal\n");
5984 else
5985 assem_debug("branch: external\n");
5986 if(internal&&is_ds[(ba[i]-start)>>2]) {
5987 ds_assemble_entry(i);
5988 }
5989 else {
5990 add_to_linker((int)out,ba[i],internal);
5991 emit_jmp(0);
5992 }
5993 }
5994 // branch not taken
5995 cop1_usable=prev_cop1_usable;
5996 if(!unconditional) {
5997 set_jump_target(nottaken,(int)out);
5998 assem_debug("1:\n");
5999 if(!likely[i]) {
6000 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6001 ds_unneeded,ds_unneeded_upper);
6002 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
6003 address_generation(i+1,&branch_regs[i],0);
6004 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
6005 ds_assemble(i+1,&branch_regs[i]);
6006 }
6007 cc=get_reg(branch_regs[i].regmap,CCREG);
6008 if(cc==-1&&!likely[i]) {
6009 // Cycle count isn't in a register, temporarily load it then write it out
6010 emit_loadreg(CCREG,HOST_CCREG);
6011 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
6012 int jaddr=(int)out;
6013 emit_jns(0);
6014 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
6015 emit_storereg(CCREG,HOST_CCREG);
6016 }
6017 else{
6018 cc=get_reg(i_regmap,CCREG);
6019 assert(cc==HOST_CCREG);
6020 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
6021 int jaddr=(int)out;
6022 emit_jns(0);
6023 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
6024 }
6025 }
6026 }
6027}
6028
6029void fjump_assemble(int i,struct regstat *i_regs)
6030{
6031 signed char *i_regmap=i_regs->regmap;
6032 int cc;
6033 int match;
6034 match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6035 assem_debug("fmatch=%d\n",match);
6036 int fs,cs;
6037 int eaddr;
6038 int invert=0;
6039 int internal=internal_branch(branch_regs[i].is32,ba[i]);
6040 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
6041 if(!match) invert=1;
6042 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
6043 if(i>(ba[i]-start)>>2) invert=1;
6044 #endif
6045
6046 if(ooo[i]) {
6047 fs=get_reg(branch_regs[i].regmap,FSREG);
6048 address_generation(i+1,i_regs,regs[i].regmap_entry); // Is this okay?
6049 }
6050 else {
6051 fs=get_reg(i_regmap,FSREG);
6052 }
6053
6054 // Check cop1 unusable
6055 if(!cop1_usable) {
6056 cs=get_reg(i_regmap,CSREG);
6057 assert(cs>=0);
6058 emit_testimm(cs,0x20000000);
6059 eaddr=(int)out;
6060 emit_jeq(0);
6061 add_stub(FP_STUB,eaddr,(int)out,i,cs,(int)i_regs,0,0);
6062 cop1_usable=1;
6063 }
6064
6065 if(ooo[i]) {
6066 // Out of order execution (delay slot first)
6067 //printf("OOOE\n");
6068 ds_assemble(i+1,i_regs);
6069 int adj;
6070 uint64_t bc_unneeded=branch_regs[i].u;
6071 uint64_t bc_unneeded_upper=branch_regs[i].uu;
6072 bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
6073 bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
6074 bc_unneeded|=1;
6075 bc_unneeded_upper|=1;
6076 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6077 bc_unneeded,bc_unneeded_upper);
6078 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs1[i]);
6079 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
6080 cc=get_reg(branch_regs[i].regmap,CCREG);
6081 assert(cc==HOST_CCREG);
6082 do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
6083 assem_debug("cycle count (adj)\n");
6084 if(1) {
6085 int nottaken=0;
6086 if(adj&&!invert) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
6087 if(1) {
6088 assert(fs>=0);
6089 emit_testimm(fs,0x800000);
6090 if(source[i]&0x10000) // BC1T
6091 {
6092 if(invert){
6093 nottaken=(int)out;
6094 emit_jeq(1);
6095 }else{
6096 add_to_linker((int)out,ba[i],internal);
6097 emit_jne(0);
6098 }
6099 }
6100 else // BC1F
6101 if(invert){
6102 nottaken=(int)out;
6103 emit_jne(1);
6104 }else{
6105 add_to_linker((int)out,ba[i],internal);
6106 emit_jeq(0);
6107 }
6108 {
6109 }
6110 } // if(!only32)
6111
6112 if(invert) {
6113 if(adj) emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
6114 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
6115 else if(match) emit_addnop(13);
6116 #endif
6117 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6118 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6119 if(internal)
6120 assem_debug("branch: internal\n");
6121 else
6122 assem_debug("branch: external\n");
6123 if(internal&&is_ds[(ba[i]-start)>>2]) {
6124 ds_assemble_entry(i);
6125 }
6126 else {
6127 add_to_linker((int)out,ba[i],internal);
6128 emit_jmp(0);
6129 }
6130 set_jump_target(nottaken,(int)out);
6131 }
6132
6133 if(adj) {
6134 if(!invert) emit_addimm(cc,CLOCK_DIVIDER*adj,cc);
6135 }
6136 } // (!unconditional)
6137 } // if(ooo)
6138 else
6139 {
6140 // In-order execution (branch first)
6141 //printf("IOE\n");
6142 int nottaken=0;
6143 if(1) {
6144 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
6145 if(1) {
6146 assert(fs>=0);
6147 emit_testimm(fs,0x800000);
6148 if(source[i]&0x10000) // BC1T
6149 {
6150 nottaken=(int)out;
6151 emit_jeq(1);
6152 }
6153 else // BC1F
6154 {
6155 nottaken=(int)out;
6156 emit_jne(1);
6157 }
6158 }
6159 } // if(!unconditional)
6160 int adj;
6161 uint64_t ds_unneeded=branch_regs[i].u;
6162 uint64_t ds_unneeded_upper=branch_regs[i].uu;
6163 ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6164 ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6165 if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
6166 ds_unneeded|=1;
6167 ds_unneeded_upper|=1;
6168 // branch taken
6169 //assem_debug("1:\n");
6170 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6171 ds_unneeded,ds_unneeded_upper);
6172 // load regs
6173 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
6174 address_generation(i+1,&branch_regs[i],0);
6175 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
6176 ds_assemble(i+1,&branch_regs[i]);
6177 cc=get_reg(branch_regs[i].regmap,CCREG);
6178 if(cc==-1) {
6179 emit_loadreg(CCREG,cc=HOST_CCREG);
6180 // CHECK: Is the following instruction (fall thru) allocated ok?
6181 }
6182 assert(cc==HOST_CCREG);
6183 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6184 do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
6185 assem_debug("cycle count (adj)\n");
6186 if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
6187 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6188 if(internal)
6189 assem_debug("branch: internal\n");
6190 else
6191 assem_debug("branch: external\n");
6192 if(internal&&is_ds[(ba[i]-start)>>2]) {
6193 ds_assemble_entry(i);
6194 }
6195 else {
6196 add_to_linker((int)out,ba[i],internal);
6197 emit_jmp(0);
6198 }
6199
6200 // branch not taken
6201 if(1) { // <- FIXME (don't need this)
6202 set_jump_target(nottaken,(int)out);
6203 assem_debug("1:\n");
6204 if(!likely[i]) {
6205 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6206 ds_unneeded,ds_unneeded_upper);
6207 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
6208 address_generation(i+1,&branch_regs[i],0);
6209 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
6210 ds_assemble(i+1,&branch_regs[i]);
6211 }
6212 cc=get_reg(branch_regs[i].regmap,CCREG);
6213 if(cc==-1&&!likely[i]) {
6214 // Cycle count isn't in a register, temporarily load it then write it out
6215 emit_loadreg(CCREG,HOST_CCREG);
6216 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
6217 int jaddr=(int)out;
6218 emit_jns(0);
6219 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
6220 emit_storereg(CCREG,HOST_CCREG);
6221 }
6222 else{
6223 cc=get_reg(i_regmap,CCREG);
6224 assert(cc==HOST_CCREG);
6225 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
6226 int jaddr=(int)out;
6227 emit_jns(0);
6228 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
6229 }
6230 }
6231 }
6232}
6233
6234static void pagespan_assemble(int i,struct regstat *i_regs)
6235{
6236 int s1l=get_reg(i_regs->regmap,rs1[i]);
6237 int s1h=get_reg(i_regs->regmap,rs1[i]|64);
6238 int s2l=get_reg(i_regs->regmap,rs2[i]);
6239 int s2h=get_reg(i_regs->regmap,rs2[i]|64);
6240 void *nt_branch=NULL;
6241 int taken=0;
6242 int nottaken=0;
6243 int unconditional=0;
6244 if(rs1[i]==0)
6245 {
6246 s1l=s2l;s1h=s2h;
6247 s2l=s2h=-1;
6248 }
6249 else if(rs2[i]==0)
6250 {
6251 s2l=s2h=-1;
6252 }
6253 if((i_regs->is32>>rs1[i])&(i_regs->is32>>rs2[i])&1) {
6254 s1h=s2h=-1;
6255 }
6256 int hr=0;
6257 int addr,alt,ntaddr;
6258 if(i_regs->regmap[HOST_BTREG]<0) {addr=HOST_BTREG;}
6259 else {
6260 while(hr<HOST_REGS)
6261 {
6262 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
6263 (i_regs->regmap[hr]&63)!=rs1[i] &&
6264 (i_regs->regmap[hr]&63)!=rs2[i] )
6265 {
6266 addr=hr++;break;
6267 }
6268 hr++;
6269 }
6270 }
6271 while(hr<HOST_REGS)
6272 {
6273 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG && hr!=HOST_BTREG &&
6274 (i_regs->regmap[hr]&63)!=rs1[i] &&
6275 (i_regs->regmap[hr]&63)!=rs2[i] )
6276 {
6277 alt=hr++;break;
6278 }
6279 hr++;
6280 }
6281 if((opcode[i]&0x2E)==6) // BLEZ/BGTZ needs another register
6282 {
6283 while(hr<HOST_REGS)
6284 {
6285 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG && hr!=HOST_BTREG &&
6286 (i_regs->regmap[hr]&63)!=rs1[i] &&
6287 (i_regs->regmap[hr]&63)!=rs2[i] )
6288 {
6289 ntaddr=hr;break;
6290 }
6291 hr++;
6292 }
6293 }
6294 assert(hr<HOST_REGS);
6295 if((opcode[i]&0x2e)==4||opcode[i]==0x11) { // BEQ/BNE/BEQL/BNEL/BC1
6296 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,CCREG,CCREG);
6297 }
6298 emit_addimm(HOST_CCREG,CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
6299 if(opcode[i]==2) // J
6300 {
6301 unconditional=1;
6302 }
6303 if(opcode[i]==3) // JAL
6304 {
6305 // TODO: mini_ht
6306 int rt=get_reg(i_regs->regmap,31);
6307 emit_movimm(start+i*4+8,rt);
6308 unconditional=1;
6309 }
6310 if(opcode[i]==0&&(opcode2[i]&0x3E)==8) // JR/JALR
6311 {
6312 emit_mov(s1l,addr);
6313 if(opcode2[i]==9) // JALR
6314 {
6315 int rt=get_reg(i_regs->regmap,rt1[i]);
6316 emit_movimm(start+i*4+8,rt);
6317 }
6318 }
6319 if((opcode[i]&0x3f)==4) // BEQ
6320 {
6321 if(rs1[i]==rs2[i])
6322 {
6323 unconditional=1;
6324 }
6325 else
6326 #ifdef HAVE_CMOV_IMM
6327 if(s1h<0) {
6328 if(s2l>=0) emit_cmp(s1l,s2l);
6329 else emit_test(s1l,s1l);
6330 emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
6331 }
6332 else
6333 #endif
6334 {
6335 assert(s1l>=0);
6336 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
6337 if(s1h>=0) {
6338 if(s2h>=0) emit_cmp(s1h,s2h);
6339 else emit_test(s1h,s1h);
6340 emit_cmovne_reg(alt,addr);
6341 }
6342 if(s2l>=0) emit_cmp(s1l,s2l);
6343 else emit_test(s1l,s1l);
6344 emit_cmovne_reg(alt,addr);
6345 }
6346 }
6347 if((opcode[i]&0x3f)==5) // BNE
6348 {
6349 #ifdef HAVE_CMOV_IMM
6350 if(s1h<0) {
6351 if(s2l>=0) emit_cmp(s1l,s2l);
6352 else emit_test(s1l,s1l);
6353 emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
6354 }
6355 else
6356 #endif
6357 {
6358 assert(s1l>=0);
6359 emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
6360 if(s1h>=0) {
6361 if(s2h>=0) emit_cmp(s1h,s2h);
6362 else emit_test(s1h,s1h);
6363 emit_cmovne_reg(alt,addr);
6364 }
6365 if(s2l>=0) emit_cmp(s1l,s2l);
6366 else emit_test(s1l,s1l);
6367 emit_cmovne_reg(alt,addr);
6368 }
6369 }
6370 if((opcode[i]&0x3f)==0x14) // BEQL
6371 {
6372 if(s1h>=0) {
6373 if(s2h>=0) emit_cmp(s1h,s2h);
6374 else emit_test(s1h,s1h);
6375 nottaken=(int)out;
6376 emit_jne(0);
6377 }
6378 if(s2l>=0) emit_cmp(s1l,s2l);
6379 else emit_test(s1l,s1l);
6380 if(nottaken) set_jump_target(nottaken,(int)out);
6381 nottaken=(int)out;
6382 emit_jne(0);
6383 }
6384 if((opcode[i]&0x3f)==0x15) // BNEL
6385 {
6386 if(s1h>=0) {
6387 if(s2h>=0) emit_cmp(s1h,s2h);
6388 else emit_test(s1h,s1h);
6389 taken=(int)out;
6390 emit_jne(0);
6391 }
6392 if(s2l>=0) emit_cmp(s1l,s2l);
6393 else emit_test(s1l,s1l);
6394 nottaken=(int)out;
6395 emit_jeq(0);
6396 if(taken) set_jump_target(taken,(int)out);
6397 }
6398 if((opcode[i]&0x3f)==6) // BLEZ
6399 {
6400 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
6401 emit_cmpimm(s1l,1);
6402 if(s1h>=0) emit_mov(addr,ntaddr);
6403 emit_cmovl_reg(alt,addr);
6404 if(s1h>=0) {
6405 emit_test(s1h,s1h);
6406 emit_cmovne_reg(ntaddr,addr);
6407 emit_cmovs_reg(alt,addr);
6408 }
6409 }
6410 if((opcode[i]&0x3f)==7) // BGTZ
6411 {
6412 emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
6413 emit_cmpimm(s1l,1);
6414 if(s1h>=0) emit_mov(addr,alt);
6415 emit_cmovl_reg(ntaddr,addr);
6416 if(s1h>=0) {
6417 emit_test(s1h,s1h);
6418 emit_cmovne_reg(alt,addr);
6419 emit_cmovs_reg(ntaddr,addr);
6420 }
6421 }
6422 if((opcode[i]&0x3f)==0x16) // BLEZL
6423 {
6424 assert((opcode[i]&0x3f)!=0x16);
6425 }
6426 if((opcode[i]&0x3f)==0x17) // BGTZL
6427 {
6428 assert((opcode[i]&0x3f)!=0x17);
6429 }
6430 assert(opcode[i]!=1); // BLTZ/BGEZ
6431
6432 //FIXME: Check CSREG
6433 if(opcode[i]==0x11 && opcode2[i]==0x08 ) {
6434 if((source[i]&0x30000)==0) // BC1F
6435 {
6436 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
6437 emit_testimm(s1l,0x800000);
6438 emit_cmovne_reg(alt,addr);
6439 }
6440 if((source[i]&0x30000)==0x10000) // BC1T
6441 {
6442 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
6443 emit_testimm(s1l,0x800000);
6444 emit_cmovne_reg(alt,addr);
6445 }
6446 if((source[i]&0x30000)==0x20000) // BC1FL
6447 {
6448 emit_testimm(s1l,0x800000);
6449 nottaken=(int)out;
6450 emit_jne(0);
6451 }
6452 if((source[i]&0x30000)==0x30000) // BC1TL
6453 {
6454 emit_testimm(s1l,0x800000);
6455 nottaken=(int)out;
6456 emit_jeq(0);
6457 }
6458 }
6459
6460 assert(i_regs->regmap[HOST_CCREG]==CCREG);
6461 wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
6462 if(likely[i]||unconditional)
6463 {
6464 emit_movimm(ba[i],HOST_BTREG);
6465 }
6466 else if(addr!=HOST_BTREG)
6467 {
6468 emit_mov(addr,HOST_BTREG);
6469 }
6470 void *branch_addr=out;
6471 emit_jmp(0);
6472 int target_addr=start+i*4+5;
6473 void *stub=out;
6474 void *compiled_target_addr=check_addr(target_addr);
6475 emit_extjump_ds((int)branch_addr,target_addr);
6476 if(compiled_target_addr) {
6477 set_jump_target((int)branch_addr,(int)compiled_target_addr);
6478 add_link(target_addr,stub);
6479 }
6480 else set_jump_target((int)branch_addr,(int)stub);
6481 if(likely[i]) {
6482 // Not-taken path
6483 set_jump_target((int)nottaken,(int)out);
6484 wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
6485 void *branch_addr=out;
6486 emit_jmp(0);
6487 int target_addr=start+i*4+8;
6488 void *stub=out;
6489 void *compiled_target_addr=check_addr(target_addr);
6490 emit_extjump_ds((int)branch_addr,target_addr);
6491 if(compiled_target_addr) {
6492 set_jump_target((int)branch_addr,(int)compiled_target_addr);
6493 add_link(target_addr,stub);
6494 }
6495 else set_jump_target((int)branch_addr,(int)stub);
6496 }
6497}
6498
6499// Assemble the delay slot for the above
6500static void pagespan_ds()
6501{
6502 assem_debug("initial delay slot:\n");
6503 u_int vaddr=start+1;
6504 u_int page=get_page(vaddr);
6505 u_int vpage=get_vpage(vaddr);
6506 ll_add(jump_dirty+vpage,vaddr,(void *)out);
6507 do_dirty_stub_ds();
6508 ll_add(jump_in+page,vaddr,(void *)out);
6509 assert(regs[0].regmap_entry[HOST_CCREG]==CCREG);
6510 if(regs[0].regmap[HOST_CCREG]!=CCREG)
6511 wb_register(CCREG,regs[0].regmap_entry,regs[0].wasdirty,regs[0].was32);
6512 if(regs[0].regmap[HOST_BTREG]!=BTREG)
6513 emit_writeword(HOST_BTREG,(int)&branch_target);
6514 load_regs(regs[0].regmap_entry,regs[0].regmap,regs[0].was32,rs1[0],rs2[0]);
6515 address_generation(0,&regs[0],regs[0].regmap_entry);
6516 if(itype[0]==STORE||itype[0]==STORELR||(opcode[0]&0x3b)==0x39||(opcode[0]&0x3b)==0x3a)
6517 load_regs(regs[0].regmap_entry,regs[0].regmap,regs[0].was32,INVCP,INVCP);
6518 cop1_usable=0;
6519 is_delayslot=0;
6520 switch(itype[0]) {
6521 case ALU:
6522 alu_assemble(0,&regs[0]);break;
6523 case IMM16:
6524 imm16_assemble(0,&regs[0]);break;
6525 case SHIFT:
6526 shift_assemble(0,&regs[0]);break;
6527 case SHIFTIMM:
6528 shiftimm_assemble(0,&regs[0]);break;
6529 case LOAD:
6530 load_assemble(0,&regs[0]);break;
6531 case LOADLR:
6532 loadlr_assemble(0,&regs[0]);break;
6533 case STORE:
6534 store_assemble(0,&regs[0]);break;
6535 case STORELR:
6536 storelr_assemble(0,&regs[0]);break;
6537 case COP0:
6538 cop0_assemble(0,&regs[0]);break;
6539 case COP1:
6540 cop1_assemble(0,&regs[0]);break;
6541 case C1LS:
6542 c1ls_assemble(0,&regs[0]);break;
6543 case COP2:
6544 cop2_assemble(0,&regs[0]);break;
6545 case C2LS:
6546 c2ls_assemble(0,&regs[0]);break;
6547 case C2OP:
6548 c2op_assemble(0,&regs[0]);break;
6549 case FCONV:
6550 fconv_assemble(0,&regs[0]);break;
6551 case FLOAT:
6552 float_assemble(0,&regs[0]);break;
6553 case FCOMP:
6554 fcomp_assemble(0,&regs[0]);break;
6555 case MULTDIV:
6556 multdiv_assemble(0,&regs[0]);break;
6557 case MOV:
6558 mov_assemble(0,&regs[0]);break;
6559 case SYSCALL:
6560 case HLECALL:
6561 case INTCALL:
6562 case SPAN:
6563 case UJUMP:
6564 case RJUMP:
6565 case CJUMP:
6566 case SJUMP:
6567 case FJUMP:
6568 printf("Jump in the delay slot. This is probably a bug.\n");
6569 }
6570 int btaddr=get_reg(regs[0].regmap,BTREG);
6571 if(btaddr<0) {
6572 btaddr=get_reg(regs[0].regmap,-1);
6573 emit_readword((int)&branch_target,btaddr);
6574 }
6575 assert(btaddr!=HOST_CCREG);
6576 if(regs[0].regmap[HOST_CCREG]!=CCREG) emit_loadreg(CCREG,HOST_CCREG);
6577#ifdef HOST_IMM8
6578 emit_movimm(start+4,HOST_TEMPREG);
6579 emit_cmp(btaddr,HOST_TEMPREG);
6580#else
6581 emit_cmpimm(btaddr,start+4);
6582#endif
6583 int branch=(int)out;
6584 emit_jeq(0);
6585 store_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,-1);
6586 emit_jmp(jump_vaddr_reg[btaddr]);
6587 set_jump_target(branch,(int)out);
6588 store_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,start+4);
6589 load_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,start+4);
6590}
6591
6592// Basic liveness analysis for MIPS registers
6593void unneeded_registers(int istart,int iend,int r)
6594{
6595 int i;
6596 uint64_t u,uu,b,bu;
6597 uint64_t temp_u,temp_uu;
6598 uint64_t tdep;
6599 if(iend==slen-1) {
6600 u=1;uu=1;
6601 }else{
6602 u=unneeded_reg[iend+1];
6603 uu=unneeded_reg_upper[iend+1];
6604 u=1;uu=1;
6605 }
6606 for (i=iend;i>=istart;i--)
6607 {
6608 //printf("unneeded registers i=%d (%d,%d) r=%d\n",i,istart,iend,r);
6609 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
6610 {
6611 // If subroutine call, flag return address as a possible branch target
6612 if(rt1[i]==31 && i<slen-2) bt[i+2]=1;
6613
6614 if(ba[i]<start || ba[i]>=(start+slen*4))
6615 {
6616 // Branch out of this block, flush all regs
6617 u=1;
6618 uu=1;
6619 /* Hexagon hack
6620 if(itype[i]==UJUMP&&rt1[i]==31)
6621 {
6622 uu=u=0x300C00F; // Discard at, v0-v1, t6-t9
6623 }
6624 if(itype[i]==RJUMP&&rs1[i]==31)
6625 {
6626 uu=u=0x300C0F3; // Discard at, a0-a3, t6-t9
6627 }
6628 if(start>0x80000400&&start<0x80000000+RAM_SIZE) {
6629 if(itype[i]==UJUMP&&rt1[i]==31)
6630 {
6631 //uu=u=0x30300FF0FLL; // Discard at, v0-v1, t0-t9, lo, hi
6632 uu=u=0x300FF0F; // Discard at, v0-v1, t0-t9
6633 }
6634 if(itype[i]==RJUMP&&rs1[i]==31)
6635 {
6636 //uu=u=0x30300FFF3LL; // Discard at, a0-a3, t0-t9, lo, hi
6637 uu=u=0x300FFF3; // Discard at, a0-a3, t0-t9
6638 }
6639 }*/
6640 branch_unneeded_reg[i]=u;
6641 branch_unneeded_reg_upper[i]=uu;
6642 // Merge in delay slot
6643 tdep=(~uu>>rt1[i+1])&1;
6644 u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6645 uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6646 u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6647 uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6648 uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6649 u|=1;uu|=1;
6650 // If branch is "likely" (and conditional)
6651 // then we skip the delay slot on the fall-thru path
6652 if(likely[i]) {
6653 if(i<slen-1) {
6654 u&=unneeded_reg[i+2];
6655 uu&=unneeded_reg_upper[i+2];
6656 }
6657 else
6658 {
6659 u=1;
6660 uu=1;
6661 }
6662 }
6663 }
6664 else
6665 {
6666 // Internal branch, flag target
6667 bt[(ba[i]-start)>>2]=1;
6668 if(ba[i]<=start+i*4) {
6669 // Backward branch
6670 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
6671 {
6672 // Unconditional branch
6673 temp_u=1;temp_uu=1;
6674 } else {
6675 // Conditional branch (not taken case)
6676 temp_u=unneeded_reg[i+2];
6677 temp_uu=unneeded_reg_upper[i+2];
6678 }
6679 // Merge in delay slot
6680 tdep=(~temp_uu>>rt1[i+1])&1;
6681 temp_u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6682 temp_uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6683 temp_u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6684 temp_uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6685 temp_uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6686 temp_u|=1;temp_uu|=1;
6687 // If branch is "likely" (and conditional)
6688 // then we skip the delay slot on the fall-thru path
6689 if(likely[i]) {
6690 if(i<slen-1) {
6691 temp_u&=unneeded_reg[i+2];
6692 temp_uu&=unneeded_reg_upper[i+2];
6693 }
6694 else
6695 {
6696 temp_u=1;
6697 temp_uu=1;
6698 }
6699 }
6700 tdep=(~temp_uu>>rt1[i])&1;
6701 temp_u|=(1LL<<rt1[i])|(1LL<<rt2[i]);
6702 temp_uu|=(1LL<<rt1[i])|(1LL<<rt2[i]);
6703 temp_u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
6704 temp_uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
6705 temp_uu&=~((tdep<<dep1[i])|(tdep<<dep2[i]));
6706 temp_u|=1;temp_uu|=1;
6707 unneeded_reg[i]=temp_u;
6708 unneeded_reg_upper[i]=temp_uu;
6709 // Only go three levels deep. This recursion can take an
6710 // excessive amount of time if there are a lot of nested loops.
6711 if(r<2) {
6712 unneeded_registers((ba[i]-start)>>2,i-1,r+1);
6713 }else{
6714 unneeded_reg[(ba[i]-start)>>2]=1;
6715 unneeded_reg_upper[(ba[i]-start)>>2]=1;
6716 }
6717 } /*else*/ if(1) {
6718 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
6719 {
6720 // Unconditional branch
6721 u=unneeded_reg[(ba[i]-start)>>2];
6722 uu=unneeded_reg_upper[(ba[i]-start)>>2];
6723 branch_unneeded_reg[i]=u;
6724 branch_unneeded_reg_upper[i]=uu;
6725 //u=1;
6726 //uu=1;
6727 //branch_unneeded_reg[i]=u;
6728 //branch_unneeded_reg_upper[i]=uu;
6729 // Merge in delay slot
6730 tdep=(~uu>>rt1[i+1])&1;
6731 u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6732 uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6733 u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6734 uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6735 uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6736 u|=1;uu|=1;
6737 } else {
6738 // Conditional branch
6739 b=unneeded_reg[(ba[i]-start)>>2];
6740 bu=unneeded_reg_upper[(ba[i]-start)>>2];
6741 branch_unneeded_reg[i]=b;
6742 branch_unneeded_reg_upper[i]=bu;
6743 //b=1;
6744 //bu=1;
6745 //branch_unneeded_reg[i]=b;
6746 //branch_unneeded_reg_upper[i]=bu;
6747 // Branch delay slot
6748 tdep=(~uu>>rt1[i+1])&1;
6749 b|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6750 bu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6751 b&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6752 bu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6753 bu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6754 b|=1;bu|=1;
6755 // If branch is "likely" then we skip the
6756 // delay slot on the fall-thru path
6757 if(likely[i]) {
6758 u=b;
6759 uu=bu;
6760 if(i<slen-1) {
6761 u&=unneeded_reg[i+2];
6762 uu&=unneeded_reg_upper[i+2];
6763 //u=1;
6764 //uu=1;
6765 }
6766 } else {
6767 u&=b;
6768 uu&=bu;
6769 //u=1;
6770 //uu=1;
6771 }
6772 if(i<slen-1) {
6773 branch_unneeded_reg[i]&=unneeded_reg[i+2];
6774 branch_unneeded_reg_upper[i]&=unneeded_reg_upper[i+2];
6775 //branch_unneeded_reg[i]=1;
6776 //branch_unneeded_reg_upper[i]=1;
6777 } else {
6778 branch_unneeded_reg[i]=1;
6779 branch_unneeded_reg_upper[i]=1;
6780 }
6781 }
6782 }
6783 }
6784 }
6785 else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
6786 {
6787 // SYSCALL instruction (software interrupt)
6788 u=1;
6789 uu=1;
6790 }
6791 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
6792 {
6793 // ERET instruction (return from interrupt)
6794 u=1;
6795 uu=1;
6796 }
6797 //u=uu=1; // DEBUG
6798 tdep=(~uu>>rt1[i])&1;
6799 // Written registers are unneeded
6800 u|=1LL<<rt1[i];
6801 u|=1LL<<rt2[i];
6802 uu|=1LL<<rt1[i];
6803 uu|=1LL<<rt2[i];
6804 // Accessed registers are needed
6805 u&=~(1LL<<rs1[i]);
6806 u&=~(1LL<<rs2[i]);
6807 uu&=~(1LL<<us1[i]);
6808 uu&=~(1LL<<us2[i]);
6809 // Source-target dependencies
6810 uu&=~(tdep<<dep1[i]);
6811 uu&=~(tdep<<dep2[i]);
6812 // R0 is always unneeded
6813 u|=1;uu|=1;
6814 // Save it
6815 unneeded_reg[i]=u;
6816 unneeded_reg_upper[i]=uu;
6817 /*
6818 printf("ur (%d,%d) %x: ",istart,iend,start+i*4);
6819 printf("U:");
6820 int r;
6821 for(r=1;r<=CCREG;r++) {
6822 if((unneeded_reg[i]>>r)&1) {
6823 if(r==HIREG) printf(" HI");
6824 else if(r==LOREG) printf(" LO");
6825 else printf(" r%d",r);
6826 }
6827 }
6828 printf(" UU:");
6829 for(r=1;r<=CCREG;r++) {
6830 if(((unneeded_reg_upper[i]&~unneeded_reg[i])>>r)&1) {
6831 if(r==HIREG) printf(" HI");
6832 else if(r==LOREG) printf(" LO");
6833 else printf(" r%d",r);
6834 }
6835 }
6836 printf("\n");*/
6837 }
6838#ifdef FORCE32
6839 for (i=iend;i>=istart;i--)
6840 {
6841 unneeded_reg_upper[i]=branch_unneeded_reg_upper[i]=-1LL;
6842 }
6843#endif
6844}
6845
6846// Identify registers which are likely to contain 32-bit values
6847// This is used to predict whether any branches will jump to a
6848// location with 64-bit values in registers.
6849static void provisional_32bit()
6850{
6851 int i,j;
6852 uint64_t is32=1;
6853 uint64_t lastbranch=1;
6854
6855 for(i=0;i<slen;i++)
6856 {
6857 if(i>0) {
6858 if(itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP) {
6859 if(i>1) is32=lastbranch;
6860 else is32=1;
6861 }
6862 }
6863 if(i>1)
6864 {
6865 if(itype[i-2]==CJUMP||itype[i-2]==SJUMP||itype[i-2]==FJUMP) {
6866 if(likely[i-2]) {
6867 if(i>2) is32=lastbranch;
6868 else is32=1;
6869 }
6870 }
6871 if((opcode[i-2]&0x2f)==0x05) // BNE/BNEL
6872 {
6873 if(rs1[i-2]==0||rs2[i-2]==0)
6874 {
6875 if(rs1[i-2]) {
6876 is32|=1LL<<rs1[i-2];
6877 }
6878 if(rs2[i-2]) {
6879 is32|=1LL<<rs2[i-2];
6880 }
6881 }
6882 }
6883 }
6884 // If something jumps here with 64-bit values
6885 // then promote those registers to 64 bits
6886 if(bt[i])
6887 {
6888 uint64_t temp_is32=is32;
6889 for(j=i-1;j>=0;j--)
6890 {
6891 if(ba[j]==start+i*4)
6892 //temp_is32&=branch_regs[j].is32;
6893 temp_is32&=p32[j];
6894 }
6895 for(j=i;j<slen;j++)
6896 {
6897 if(ba[j]==start+i*4)
6898 temp_is32=1;
6899 }
6900 is32=temp_is32;
6901 }
6902 int type=itype[i];
6903 int op=opcode[i];
6904 int op2=opcode2[i];
6905 int rt=rt1[i];
6906 int s1=rs1[i];
6907 int s2=rs2[i];
6908 if(type==UJUMP||type==RJUMP||type==CJUMP||type==SJUMP||type==FJUMP) {
6909 // Branches don't write registers, consider the delay slot instead.
6910 type=itype[i+1];
6911 op=opcode[i+1];
6912 op2=opcode2[i+1];
6913 rt=rt1[i+1];
6914 s1=rs1[i+1];
6915 s2=rs2[i+1];
6916 lastbranch=is32;
6917 }
6918 switch(type) {
6919 case LOAD:
6920 if(opcode[i]==0x27||opcode[i]==0x37|| // LWU/LD
6921 opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
6922 is32&=~(1LL<<rt);
6923 else
6924 is32|=1LL<<rt;
6925 break;
6926 case STORE:
6927 case STORELR:
6928 break;
6929 case LOADLR:
6930 if(op==0x1a||op==0x1b) is32&=~(1LL<<rt); // LDR/LDL
6931 if(op==0x22) is32|=1LL<<rt; // LWL
6932 break;
6933 case IMM16:
6934 if (op==0x08||op==0x09|| // ADDI/ADDIU
6935 op==0x0a||op==0x0b|| // SLTI/SLTIU
6936 op==0x0c|| // ANDI
6937 op==0x0f) // LUI
6938 {
6939 is32|=1LL<<rt;
6940 }
6941 if(op==0x18||op==0x19) { // DADDI/DADDIU
6942 is32&=~(1LL<<rt);
6943 //if(imm[i]==0)
6944 // is32|=((is32>>s1)&1LL)<<rt;
6945 }
6946 if(op==0x0d||op==0x0e) { // ORI/XORI
6947 uint64_t sr=((is32>>s1)&1LL);
6948 is32&=~(1LL<<rt);
6949 is32|=sr<<rt;
6950 }
6951 break;
6952 case UJUMP:
6953 break;
6954 case RJUMP:
6955 break;
6956 case CJUMP:
6957 break;
6958 case SJUMP:
6959 break;
6960 case FJUMP:
6961 break;
6962 case ALU:
6963 if(op2>=0x20&&op2<=0x23) { // ADD/ADDU/SUB/SUBU
6964 is32|=1LL<<rt;
6965 }
6966 if(op2==0x2a||op2==0x2b) { // SLT/SLTU
6967 is32|=1LL<<rt;
6968 }
6969 else if(op2>=0x24&&op2<=0x27) { // AND/OR/XOR/NOR
6970 uint64_t sr=((is32>>s1)&(is32>>s2)&1LL);
6971 is32&=~(1LL<<rt);
6972 is32|=sr<<rt;
6973 }
6974 else if(op2>=0x2c&&op2<=0x2d) { // DADD/DADDU
6975 if(s1==0&&s2==0) {
6976 is32|=1LL<<rt;
6977 }
6978 else if(s2==0) {
6979 uint64_t sr=((is32>>s1)&1LL);
6980 is32&=~(1LL<<rt);
6981 is32|=sr<<rt;
6982 }
6983 else if(s1==0) {
6984 uint64_t sr=((is32>>s2)&1LL);
6985 is32&=~(1LL<<rt);
6986 is32|=sr<<rt;
6987 }
6988 else {
6989 is32&=~(1LL<<rt);
6990 }
6991 }
6992 else if(op2>=0x2e&&op2<=0x2f) { // DSUB/DSUBU
6993 if(s1==0&&s2==0) {
6994 is32|=1LL<<rt;
6995 }
6996 else if(s2==0) {
6997 uint64_t sr=((is32>>s1)&1LL);
6998 is32&=~(1LL<<rt);
6999 is32|=sr<<rt;
7000 }
7001 else {
7002 is32&=~(1LL<<rt);
7003 }
7004 }
7005 break;
7006 case MULTDIV:
7007 if (op2>=0x1c&&op2<=0x1f) { // DMULT/DMULTU/DDIV/DDIVU
7008 is32&=~((1LL<<HIREG)|(1LL<<LOREG));
7009 }
7010 else {
7011 is32|=(1LL<<HIREG)|(1LL<<LOREG);
7012 }
7013 break;
7014 case MOV:
7015 {
7016 uint64_t sr=((is32>>s1)&1LL);
7017 is32&=~(1LL<<rt);
7018 is32|=sr<<rt;
7019 }
7020 break;
7021 case SHIFT:
7022 if(op2>=0x14&&op2<=0x17) is32&=~(1LL<<rt); // DSLLV/DSRLV/DSRAV
7023 else is32|=1LL<<rt; // SLLV/SRLV/SRAV
7024 break;
7025 case SHIFTIMM:
7026 is32|=1LL<<rt;
7027 // DSLL/DSRL/DSRA/DSLL32/DSRL32 but not DSRA32 have 64-bit result
7028 if(op2>=0x38&&op2<0x3f) is32&=~(1LL<<rt);
7029 break;
7030 case COP0:
7031 if(op2==0) is32|=1LL<<rt; // MFC0
7032 break;
7033 case COP1:
7034 case COP2:
7035 if(op2==0) is32|=1LL<<rt; // MFC1
7036 if(op2==1) is32&=~(1LL<<rt); // DMFC1
7037 if(op2==2) is32|=1LL<<rt; // CFC1
7038 break;
7039 case C1LS:
7040 case C2LS:
7041 break;
7042 case FLOAT:
7043 case FCONV:
7044 break;
7045 case FCOMP:
7046 break;
7047 case C2OP:
7048 case SYSCALL:
7049 case HLECALL:
7050 break;
7051 default:
7052 break;
7053 }
7054 is32|=1;
7055 p32[i]=is32;
7056
7057 if(i>0)
7058 {
7059 if(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)
7060 {
7061 if(rt1[i-1]==31) // JAL/JALR
7062 {
7063 // Subroutine call will return here, don't alloc any registers
7064 is32=1;
7065 }
7066 else if(i+1<slen)
7067 {
7068 // Internal branch will jump here, match registers to caller
7069 is32=0x3FFFFFFFFLL;
7070 }
7071 }
7072 }
7073 }
7074}
7075
7076// Identify registers which may be assumed to contain 32-bit values
7077// and where optimizations will rely on this.
7078// This is used to determine whether backward branches can safely
7079// jump to a location with 64-bit values in registers.
7080static void provisional_r32()
7081{
7082 u_int r32=0;
7083 int i;
7084
7085 for (i=slen-1;i>=0;i--)
7086 {
7087 int hr;
7088 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
7089 {
7090 if(ba[i]<start || ba[i]>=(start+slen*4))
7091 {
7092 // Branch out of this block, don't need anything
7093 r32=0;
7094 }
7095 else
7096 {
7097 // Internal branch
7098 // Need whatever matches the target
7099 // (and doesn't get overwritten by the delay slot instruction)
7100 r32=0;
7101 int t=(ba[i]-start)>>2;
7102 if(ba[i]>start+i*4) {
7103 // Forward branch
7104 //if(!(requires_32bit[t]&~regs[i].was32))
7105 // r32|=requires_32bit[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
7106 if(!(pr32[t]&~regs[i].was32))
7107 r32|=pr32[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
7108 }else{
7109 // Backward branch
7110 if(!(regs[t].was32&~unneeded_reg_upper[t]&~regs[i].was32))
7111 r32|=regs[t].was32&~unneeded_reg_upper[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
7112 }
7113 }
7114 // Conditional branch may need registers for following instructions
7115 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
7116 {
7117 if(i<slen-2) {
7118 //r32|=requires_32bit[i+2];
7119 r32|=pr32[i+2];
7120 r32&=regs[i].was32;
7121 // Mark this address as a branch target since it may be called
7122 // upon return from interrupt
7123 //bt[i+2]=1;
7124 }
7125 }
7126 // Merge in delay slot
7127 if(!likely[i]) {
7128 // These are overwritten unless the branch is "likely"
7129 // and the delay slot is nullified if not taken
7130 r32&=~(1LL<<rt1[i+1]);
7131 r32&=~(1LL<<rt2[i+1]);
7132 }
7133 // Assume these are needed (delay slot)
7134 if(us1[i+1]>0)
7135 {
7136 if((regs[i].was32>>us1[i+1])&1) r32|=1LL<<us1[i+1];
7137 }
7138 if(us2[i+1]>0)
7139 {
7140 if((regs[i].was32>>us2[i+1])&1) r32|=1LL<<us2[i+1];
7141 }
7142 if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1))
7143 {
7144 if((regs[i].was32>>dep1[i+1])&1) r32|=1LL<<dep1[i+1];
7145 }
7146 if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1))
7147 {
7148 if((regs[i].was32>>dep2[i+1])&1) r32|=1LL<<dep2[i+1];
7149 }
7150 }
7151 else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
7152 {
7153 // SYSCALL instruction (software interrupt)
7154 r32=0;
7155 }
7156 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
7157 {
7158 // ERET instruction (return from interrupt)
7159 r32=0;
7160 }
7161 // Check 32 bits
7162 r32&=~(1LL<<rt1[i]);
7163 r32&=~(1LL<<rt2[i]);
7164 if(us1[i]>0)
7165 {
7166 if((regs[i].was32>>us1[i])&1) r32|=1LL<<us1[i];
7167 }
7168 if(us2[i]>0)
7169 {
7170 if((regs[i].was32>>us2[i])&1) r32|=1LL<<us2[i];
7171 }
7172 if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1))
7173 {
7174 if((regs[i].was32>>dep1[i])&1) r32|=1LL<<dep1[i];
7175 }
7176 if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1))
7177 {
7178 if((regs[i].was32>>dep2[i])&1) r32|=1LL<<dep2[i];
7179 }
7180 //requires_32bit[i]=r32;
7181 pr32[i]=r32;
7182
7183 // Dirty registers which are 32-bit, require 32-bit input
7184 // as they will be written as 32-bit values
7185 for(hr=0;hr<HOST_REGS;hr++)
7186 {
7187 if(regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64) {
7188 if((regs[i].was32>>regs[i].regmap_entry[hr])&(regs[i].wasdirty>>hr)&1) {
7189 if(!((unneeded_reg_upper[i]>>regs[i].regmap_entry[hr])&1))
7190 pr32[i]|=1LL<<regs[i].regmap_entry[hr];
7191 //requires_32bit[i]|=1LL<<regs[i].regmap_entry[hr];
7192 }
7193 }
7194 }
7195 }
7196}
7197
7198// Write back dirty registers as soon as we will no longer modify them,
7199// so that we don't end up with lots of writes at the branches.
7200void clean_registers(int istart,int iend,int wr)
7201{
7202 int i;
7203 int r;
7204 u_int will_dirty_i,will_dirty_next,temp_will_dirty;
7205 u_int wont_dirty_i,wont_dirty_next,temp_wont_dirty;
7206 if(iend==slen-1) {
7207 will_dirty_i=will_dirty_next=0;
7208 wont_dirty_i=wont_dirty_next=0;
7209 }else{
7210 will_dirty_i=will_dirty_next=will_dirty[iend+1];
7211 wont_dirty_i=wont_dirty_next=wont_dirty[iend+1];
7212 }
7213 for (i=iend;i>=istart;i--)
7214 {
7215 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
7216 {
7217 if(ba[i]<start || ba[i]>=(start+slen*4))
7218 {
7219 // Branch out of this block, flush all regs
7220 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
7221 {
7222 // Unconditional branch
7223 will_dirty_i=0;
7224 wont_dirty_i=0;
7225 // Merge in delay slot (will dirty)
7226 for(r=0;r<HOST_REGS;r++) {
7227 if(r!=EXCLUDE_REG) {
7228 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7229 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7230 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7231 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7232 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7233 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7234 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7235 if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7236 if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7237 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7238 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7239 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7240 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7241 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7242 }
7243 }
7244 }
7245 else
7246 {
7247 // Conditional branch
7248 will_dirty_i=0;
7249 wont_dirty_i=wont_dirty_next;
7250 // Merge in delay slot (will dirty)
7251 for(r=0;r<HOST_REGS;r++) {
7252 if(r!=EXCLUDE_REG) {
7253 if(!likely[i]) {
7254 // Might not dirty if likely branch is not taken
7255 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7256 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7257 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7258 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7259 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7260 if(branch_regs[i].regmap[r]==0) will_dirty_i&=~(1<<r);
7261 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7262 //if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7263 //if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7264 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7265 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7266 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7267 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7268 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7269 }
7270 }
7271 }
7272 }
7273 // Merge in delay slot (wont dirty)
7274 for(r=0;r<HOST_REGS;r++) {
7275 if(r!=EXCLUDE_REG) {
7276 if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7277 if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7278 if((regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7279 if((regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7280 if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7281 if((branch_regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7282 if((branch_regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7283 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7284 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7285 if(branch_regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7286 }
7287 }
7288 if(wr) {
7289 #ifndef DESTRUCTIVE_WRITEBACK
7290 branch_regs[i].dirty&=wont_dirty_i;
7291 #endif
7292 branch_regs[i].dirty|=will_dirty_i;
7293 }
7294 }
7295 else
7296 {
7297 // Internal branch
7298 if(ba[i]<=start+i*4) {
7299 // Backward branch
7300 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
7301 {
7302 // Unconditional branch
7303 temp_will_dirty=0;
7304 temp_wont_dirty=0;
7305 // Merge in delay slot (will dirty)
7306 for(r=0;r<HOST_REGS;r++) {
7307 if(r!=EXCLUDE_REG) {
7308 if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7309 if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7310 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7311 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7312 if((branch_regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7313 if(branch_regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
7314 if(branch_regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7315 if((regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7316 if((regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7317 if((regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7318 if((regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7319 if((regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7320 if(regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
7321 if(regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7322 }
7323 }
7324 } else {
7325 // Conditional branch (not taken case)
7326 temp_will_dirty=will_dirty_next;
7327 temp_wont_dirty=wont_dirty_next;
7328 // Merge in delay slot (will dirty)
7329 for(r=0;r<HOST_REGS;r++) {
7330 if(r!=EXCLUDE_REG) {
7331 if(!likely[i]) {
7332 // Will not dirty if likely branch is not taken
7333 if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7334 if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7335 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7336 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7337 if((branch_regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7338 if(branch_regs[i].regmap[r]==0) temp_will_dirty&=~(1<<r);
7339 if(branch_regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7340 //if((regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7341 //if((regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7342 if((regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7343 if((regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7344 if((regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7345 if(regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
7346 if(regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7347 }
7348 }
7349 }
7350 }
7351 // Merge in delay slot (wont dirty)
7352 for(r=0;r<HOST_REGS;r++) {
7353 if(r!=EXCLUDE_REG) {
7354 if((regs[i].regmap[r]&63)==rt1[i]) temp_wont_dirty|=1<<r;
7355 if((regs[i].regmap[r]&63)==rt2[i]) temp_wont_dirty|=1<<r;
7356 if((regs[i].regmap[r]&63)==rt1[i+1]) temp_wont_dirty|=1<<r;
7357 if((regs[i].regmap[r]&63)==rt2[i+1]) temp_wont_dirty|=1<<r;
7358 if(regs[i].regmap[r]==CCREG) temp_wont_dirty|=1<<r;
7359 if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_wont_dirty|=1<<r;
7360 if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_wont_dirty|=1<<r;
7361 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_wont_dirty|=1<<r;
7362 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_wont_dirty|=1<<r;
7363 if(branch_regs[i].regmap[r]==CCREG) temp_wont_dirty|=1<<r;
7364 }
7365 }
7366 // Deal with changed mappings
7367 if(i<iend) {
7368 for(r=0;r<HOST_REGS;r++) {
7369 if(r!=EXCLUDE_REG) {
7370 if(regs[i].regmap[r]!=regmap_pre[i][r]) {
7371 temp_will_dirty&=~(1<<r);
7372 temp_wont_dirty&=~(1<<r);
7373 if((regmap_pre[i][r]&63)>0 && (regmap_pre[i][r]&63)<34) {
7374 temp_will_dirty|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7375 temp_wont_dirty|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7376 } else {
7377 temp_will_dirty|=1<<r;
7378 temp_wont_dirty|=1<<r;
7379 }
7380 }
7381 }
7382 }
7383 }
7384 if(wr) {
7385 will_dirty[i]=temp_will_dirty;
7386 wont_dirty[i]=temp_wont_dirty;
7387 clean_registers((ba[i]-start)>>2,i-1,0);
7388 }else{
7389 // Limit recursion. It can take an excessive amount
7390 // of time if there are a lot of nested loops.
7391 will_dirty[(ba[i]-start)>>2]=0;
7392 wont_dirty[(ba[i]-start)>>2]=-1;
7393 }
7394 }
7395 /*else*/ if(1)
7396 {
7397 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
7398 {
7399 // Unconditional branch
7400 will_dirty_i=0;
7401 wont_dirty_i=0;
7402 //if(ba[i]>start+i*4) { // Disable recursion (for debugging)
7403 for(r=0;r<HOST_REGS;r++) {
7404 if(r!=EXCLUDE_REG) {
7405 if(branch_regs[i].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
7406 will_dirty_i|=will_dirty[(ba[i]-start)>>2]&(1<<r);
7407 wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
7408 }
7409 }
7410 }
7411 //}
7412 // Merge in delay slot
7413 for(r=0;r<HOST_REGS;r++) {
7414 if(r!=EXCLUDE_REG) {
7415 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7416 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7417 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7418 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7419 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7420 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7421 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7422 if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7423 if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7424 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7425 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7426 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7427 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7428 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7429 }
7430 }
7431 } else {
7432 // Conditional branch
7433 will_dirty_i=will_dirty_next;
7434 wont_dirty_i=wont_dirty_next;
7435 //if(ba[i]>start+i*4) { // Disable recursion (for debugging)
7436 for(r=0;r<HOST_REGS;r++) {
7437 if(r!=EXCLUDE_REG) {
7438 if(branch_regs[i].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
7439 will_dirty_i&=will_dirty[(ba[i]-start)>>2]&(1<<r);
7440 wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
7441 }
7442 else
7443 {
7444 will_dirty_i&=~(1<<r);
7445 }
7446 // Treat delay slot as part of branch too
7447 /*if(regs[i+1].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
7448 will_dirty[i+1]&=will_dirty[(ba[i]-start)>>2]&(1<<r);
7449 wont_dirty[i+1]|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
7450 }
7451 else
7452 {
7453 will_dirty[i+1]&=~(1<<r);
7454 }*/
7455 }
7456 }
7457 //}
7458 // Merge in delay slot
7459 for(r=0;r<HOST_REGS;r++) {
7460 if(r!=EXCLUDE_REG) {
7461 if(!likely[i]) {
7462 // Might not dirty if likely branch is not taken
7463 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7464 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7465 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7466 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7467 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7468 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7469 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7470 //if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7471 //if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7472 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7473 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7474 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7475 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7476 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7477 }
7478 }
7479 }
7480 }
7481 // Merge in delay slot
7482 for(r=0;r<HOST_REGS;r++) {
7483 if(r!=EXCLUDE_REG) {
7484 if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7485 if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7486 if((regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7487 if((regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7488 if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7489 if((branch_regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7490 if((branch_regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7491 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7492 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7493 if(branch_regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7494 }
7495 }
7496 if(wr) {
7497 #ifndef DESTRUCTIVE_WRITEBACK
7498 branch_regs[i].dirty&=wont_dirty_i;
7499 #endif
7500 branch_regs[i].dirty|=will_dirty_i;
7501 }
7502 }
7503 }
7504 }
7505 else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
7506 {
7507 // SYSCALL instruction (software interrupt)
7508 will_dirty_i=0;
7509 wont_dirty_i=0;
7510 }
7511 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
7512 {
7513 // ERET instruction (return from interrupt)
7514 will_dirty_i=0;
7515 wont_dirty_i=0;
7516 }
7517 will_dirty_next=will_dirty_i;
7518 wont_dirty_next=wont_dirty_i;
7519 for(r=0;r<HOST_REGS;r++) {
7520 if(r!=EXCLUDE_REG) {
7521 if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7522 if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7523 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7524 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7525 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7526 if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7527 if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7528 if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7529 if(i>istart) {
7530 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=FJUMP)
7531 {
7532 // Don't store a register immediately after writing it,
7533 // may prevent dual-issue.
7534 if((regs[i].regmap[r]&63)==rt1[i-1]) wont_dirty_i|=1<<r;
7535 if((regs[i].regmap[r]&63)==rt2[i-1]) wont_dirty_i|=1<<r;
7536 }
7537 }
7538 }
7539 }
7540 // Save it
7541 will_dirty[i]=will_dirty_i;
7542 wont_dirty[i]=wont_dirty_i;
7543 // Mark registers that won't be dirtied as not dirty
7544 if(wr) {
7545 /*printf("wr (%d,%d) %x will:",istart,iend,start+i*4);
7546 for(r=0;r<HOST_REGS;r++) {
7547 if((will_dirty_i>>r)&1) {
7548 printf(" r%d",r);
7549 }
7550 }
7551 printf("\n");*/
7552
7553 //if(i==istart||(itype[i-1]!=RJUMP&&itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=FJUMP)) {
7554 regs[i].dirty|=will_dirty_i;
7555 #ifndef DESTRUCTIVE_WRITEBACK
7556 regs[i].dirty&=wont_dirty_i;
7557 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
7558 {
7559 if(i<iend-1&&itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000) {
7560 for(r=0;r<HOST_REGS;r++) {
7561 if(r!=EXCLUDE_REG) {
7562 if(regs[i].regmap[r]==regmap_pre[i+2][r]) {
7563 regs[i+2].wasdirty&=wont_dirty_i|~(1<<r);
7564 }else {/*printf("i: %x (%d) mismatch(+2): %d\n",start+i*4,i,r);/*assert(!((wont_dirty_i>>r)&1));*/}
7565 }
7566 }
7567 }
7568 }
7569 else
7570 {
7571 if(i<iend) {
7572 for(r=0;r<HOST_REGS;r++) {
7573 if(r!=EXCLUDE_REG) {
7574 if(regs[i].regmap[r]==regmap_pre[i+1][r]) {
7575 regs[i+1].wasdirty&=wont_dirty_i|~(1<<r);
7576 }else {/*printf("i: %x (%d) mismatch(+1): %d\n",start+i*4,i,r);/*assert(!((wont_dirty_i>>r)&1));*/}
7577 }
7578 }
7579 }
7580 }
7581 #endif
7582 //}
7583 }
7584 // Deal with changed mappings
7585 temp_will_dirty=will_dirty_i;
7586 temp_wont_dirty=wont_dirty_i;
7587 for(r=0;r<HOST_REGS;r++) {
7588 if(r!=EXCLUDE_REG) {
7589 int nr;
7590 if(regs[i].regmap[r]==regmap_pre[i][r]) {
7591 if(wr) {
7592 #ifndef DESTRUCTIVE_WRITEBACK
7593 regs[i].wasdirty&=wont_dirty_i|~(1<<r);
7594 #endif
7595 regs[i].wasdirty|=will_dirty_i&(1<<r);
7596 }
7597 }
7598 else if((nr=get_reg(regs[i].regmap,regmap_pre[i][r]))>=0) {
7599 // Register moved to a different register
7600 will_dirty_i&=~(1<<r);
7601 wont_dirty_i&=~(1<<r);
7602 will_dirty_i|=((temp_will_dirty>>nr)&1)<<r;
7603 wont_dirty_i|=((temp_wont_dirty>>nr)&1)<<r;
7604 if(wr) {
7605 #ifndef DESTRUCTIVE_WRITEBACK
7606 regs[i].wasdirty&=wont_dirty_i|~(1<<r);
7607 #endif
7608 regs[i].wasdirty|=will_dirty_i&(1<<r);
7609 }
7610 }
7611 else {
7612 will_dirty_i&=~(1<<r);
7613 wont_dirty_i&=~(1<<r);
7614 if((regmap_pre[i][r]&63)>0 && (regmap_pre[i][r]&63)<34) {
7615 will_dirty_i|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7616 wont_dirty_i|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7617 } else {
7618 wont_dirty_i|=1<<r;
7619 /*printf("i: %x (%d) mismatch: %d\n",start+i*4,i,r);/*assert(!((will_dirty>>r)&1));*/
7620 }
7621 }
7622 }
7623 }
7624 }
7625}
7626
7627 /* disassembly */
7628void disassemble_inst(int i)
7629{
7630 if (bt[i]) printf("*"); else printf(" ");
7631 switch(itype[i]) {
7632 case UJUMP:
7633 printf (" %x: %s %8x\n",start+i*4,insn[i],ba[i]);break;
7634 case CJUMP:
7635 printf (" %x: %s r%d,r%d,%8x\n",start+i*4,insn[i],rs1[i],rs2[i],i?start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14):*ba);break;
7636 case SJUMP:
7637 printf (" %x: %s r%d,%8x\n",start+i*4,insn[i],rs1[i],start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14));break;
7638 case FJUMP:
7639 printf (" %x: %s %8x\n",start+i*4,insn[i],ba[i]);break;
7640 case RJUMP:
7641 if (opcode[i]==0x9&&rt1[i]!=31)
7642 printf (" %x: %s r%d,r%d\n",start+i*4,insn[i],rt1[i],rs1[i]);
7643 else
7644 printf (" %x: %s r%d\n",start+i*4,insn[i],rs1[i]);
7645 break;
7646 case SPAN:
7647 printf (" %x: %s (pagespan) r%d,r%d,%8x\n",start+i*4,insn[i],rs1[i],rs2[i],ba[i]);break;
7648 case IMM16:
7649 if(opcode[i]==0xf) //LUI
7650 printf (" %x: %s r%d,%4x0000\n",start+i*4,insn[i],rt1[i],imm[i]&0xffff);
7651 else
7652 printf (" %x: %s r%d,r%d,%d\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
7653 break;
7654 case LOAD:
7655 case LOADLR:
7656 printf (" %x: %s r%d,r%d+%x\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
7657 break;
7658 case STORE:
7659 case STORELR:
7660 printf (" %x: %s r%d,r%d+%x\n",start+i*4,insn[i],rs2[i],rs1[i],imm[i]);
7661 break;
7662 case ALU:
7663 case SHIFT:
7664 printf (" %x: %s r%d,r%d,r%d\n",start+i*4,insn[i],rt1[i],rs1[i],rs2[i]);
7665 break;
7666 case MULTDIV:
7667 printf (" %x: %s r%d,r%d\n",start+i*4,insn[i],rs1[i],rs2[i]);
7668 break;
7669 case SHIFTIMM:
7670 printf (" %x: %s r%d,r%d,%d\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
7671 break;
7672 case MOV:
7673 if((opcode2[i]&0x1d)==0x10)
7674 printf (" %x: %s r%d\n",start+i*4,insn[i],rt1[i]);
7675 else if((opcode2[i]&0x1d)==0x11)
7676 printf (" %x: %s r%d\n",start+i*4,insn[i],rs1[i]);
7677 else
7678 printf (" %x: %s\n",start+i*4,insn[i]);
7679 break;
7680 case COP0:
7681 if(opcode2[i]==0)
7682 printf (" %x: %s r%d,cpr0[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC0
7683 else if(opcode2[i]==4)
7684 printf (" %x: %s r%d,cpr0[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC0
7685 else printf (" %x: %s\n",start+i*4,insn[i]);
7686 break;
7687 case COP1:
7688 if(opcode2[i]<3)
7689 printf (" %x: %s r%d,cpr1[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC1
7690 else if(opcode2[i]>3)
7691 printf (" %x: %s r%d,cpr1[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC1
7692 else printf (" %x: %s\n",start+i*4,insn[i]);
7693 break;
7694 case COP2:
7695 if(opcode2[i]<3)
7696 printf (" %x: %s r%d,cpr2[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC2
7697 else if(opcode2[i]>3)
7698 printf (" %x: %s r%d,cpr2[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC2
7699 else printf (" %x: %s\n",start+i*4,insn[i]);
7700 break;
7701 case C1LS:
7702 printf (" %x: %s cpr1[%d],r%d+%x\n",start+i*4,insn[i],(source[i]>>16)&0x1f,rs1[i],imm[i]);
7703 break;
7704 case C2LS:
7705 printf (" %x: %s cpr2[%d],r%d+%x\n",start+i*4,insn[i],(source[i]>>16)&0x1f,rs1[i],imm[i]);
7706 break;
7707 case INTCALL:
7708 printf (" %x: %s (INTCALL)\n",start+i*4,insn[i]);
7709 break;
7710 default:
7711 //printf (" %s %8x\n",insn[i],source[i]);
7712 printf (" %x: %s\n",start+i*4,insn[i]);
7713 }
7714}
7715
7716// clear the state completely, instead of just marking
7717// things invalid like invalidate_all_pages() does
7718void new_dynarec_clear_full()
7719{
7720 int n;
7721 for(n=0x80000;n<0x80800;n++)
7722 invalid_code[n]=1;
7723 for(n=0;n<65536;n++)
7724 hash_table[n][0]=hash_table[n][2]=-1;
7725 memset(mini_ht,-1,sizeof(mini_ht));
7726 memset(restore_candidate,0,sizeof(restore_candidate));
7727 memset(shadow,0,sizeof(shadow));
7728 copy=shadow;
7729 expirep=16384; // Expiry pointer, +2 blocks
7730 pending_exception=0;
7731 literalcount=0;
7732 stop_after_jal=0;
7733 // TLB
7734#ifndef DISABLE_TLB
7735 using_tlb=0;
7736#endif
7737 for(n=0;n<524288;n++) // 0 .. 0x7FFFFFFF
7738 memory_map[n]=-1;
7739 for(n=524288;n<526336;n++) // 0x80000000 .. 0x807FFFFF
7740 memory_map[n]=((u_int)rdram-0x80000000)>>2;
7741 for(n=526336;n<1048576;n++) // 0x80800000 .. 0xFFFFFFFF
7742 memory_map[n]=-1;
7743 for(n=0;n<4096;n++) ll_clear(jump_in+n);
7744 for(n=0;n<4096;n++) ll_clear(jump_out+n);
7745 for(n=0;n<4096;n++) ll_clear(jump_dirty+n);
7746}
7747
7748void new_dynarec_init()
7749{
7750 printf("Init new dynarec\n");
7751 out=(u_char *)BASE_ADDR;
7752 if (mmap (out, 1<<TARGET_SIZE_2,
7753 PROT_READ | PROT_WRITE | PROT_EXEC,
7754 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS,
7755 -1, 0) <= 0) {printf("mmap() failed\n");}
7756#ifdef MUPEN64
7757 rdword=&readmem_dword;
7758 fake_pc.f.r.rs=&readmem_dword;
7759 fake_pc.f.r.rt=&readmem_dword;
7760 fake_pc.f.r.rd=&readmem_dword;
7761#endif
7762 int n;
7763 new_dynarec_clear_full();
7764#ifdef HOST_IMM8
7765 // Copy this into local area so we don't have to put it in every literal pool
7766 invc_ptr=invalid_code;
7767#endif
7768#ifdef MUPEN64
7769 for(n=0;n<0x8000;n++) { // 0 .. 0x7FFFFFFF
7770 writemem[n] = write_nomem_new;
7771 writememb[n] = write_nomemb_new;
7772 writememh[n] = write_nomemh_new;
7773#ifndef FORCE32
7774 writememd[n] = write_nomemd_new;
7775#endif
7776 readmem[n] = read_nomem_new;
7777 readmemb[n] = read_nomemb_new;
7778 readmemh[n] = read_nomemh_new;
7779#ifndef FORCE32
7780 readmemd[n] = read_nomemd_new;
7781#endif
7782 }
7783 for(n=0x8000;n<0x8080;n++) { // 0x80000000 .. 0x807FFFFF
7784 writemem[n] = write_rdram_new;
7785 writememb[n] = write_rdramb_new;
7786 writememh[n] = write_rdramh_new;
7787#ifndef FORCE32
7788 writememd[n] = write_rdramd_new;
7789#endif
7790 }
7791 for(n=0xC000;n<0x10000;n++) { // 0xC0000000 .. 0xFFFFFFFF
7792 writemem[n] = write_nomem_new;
7793 writememb[n] = write_nomemb_new;
7794 writememh[n] = write_nomemh_new;
7795#ifndef FORCE32
7796 writememd[n] = write_nomemd_new;
7797#endif
7798 readmem[n] = read_nomem_new;
7799 readmemb[n] = read_nomemb_new;
7800 readmemh[n] = read_nomemh_new;
7801#ifndef FORCE32
7802 readmemd[n] = read_nomemd_new;
7803#endif
7804 }
7805#endif
7806 tlb_hacks();
7807 arch_init();
7808}
7809
7810void new_dynarec_cleanup()
7811{
7812 int n;
7813 if (munmap ((void *)BASE_ADDR, 1<<TARGET_SIZE_2) < 0) {printf("munmap() failed\n");}
7814 for(n=0;n<4096;n++) ll_clear(jump_in+n);
7815 for(n=0;n<4096;n++) ll_clear(jump_out+n);
7816 for(n=0;n<4096;n++) ll_clear(jump_dirty+n);
7817 #ifdef ROM_COPY
7818 if (munmap (ROM_COPY, 67108864) < 0) {printf("munmap() failed\n");}
7819 #endif
7820}
7821
7822int new_recompile_block(int addr)
7823{
7824/*
7825 if(addr==0x800cd050) {
7826 int block;
7827 for(block=0x80000;block<0x80800;block++) invalidate_block(block);
7828 int n;
7829 for(n=0;n<=2048;n++) ll_clear(jump_dirty+n);
7830 }
7831*/
7832 //if(Count==365117028) tracedebug=1;
7833 assem_debug("NOTCOMPILED: addr = %x -> %x\n", (int)addr, (int)out);
7834 //printf("NOTCOMPILED: addr = %x -> %x\n", (int)addr, (int)out);
7835 //printf("TRACE: count=%d next=%d (compile %x)\n",Count,next_interupt,addr);
7836 //if(debug)
7837 //printf("TRACE: count=%d next=%d (checksum %x)\n",Count,next_interupt,mchecksum());
7838 //printf("fpu mapping=%x enabled=%x\n",(Status & 0x04000000)>>26,(Status & 0x20000000)>>29);
7839 /*if(Count>=312978186) {
7840 rlist();
7841 }*/
7842 //rlist();
7843 start = (u_int)addr&~3;
7844 //assert(((u_int)addr&1)==0);
7845#ifdef PCSX
7846 if (Config.HLE && start == 0x80001000) // hlecall
7847 {
7848 // XXX: is this enough? Maybe check hleSoftCall?
7849 u_int beginning=(u_int)out;
7850 u_int page=get_page(start);
7851 invalid_code[start>>12]=0;
7852 emit_movimm(start,0);
7853 emit_writeword(0,(int)&pcaddr);
7854 emit_jmp((int)new_dyna_leave);
7855#ifdef __arm__
7856 __clear_cache((void *)beginning,out);
7857#endif
7858 ll_add(jump_in+page,start,(void *)beginning);
7859 return 0;
7860 }
7861 else if ((u_int)addr < 0x00200000 ||
7862 (0xa0000000 <= addr && addr < 0xa0200000)) {
7863 // used for BIOS calls mostly?
7864 source = (u_int *)((u_int)rdram+(start&0x1fffff));
7865 pagelimit = (addr&0xa0000000)|0x00200000;
7866 }
7867 else if (!Config.HLE && (
7868/* (0x9fc00000 <= addr && addr < 0x9fc80000) ||*/
7869 (0xbfc00000 <= addr && addr < 0xbfc80000))) {
7870 // BIOS
7871 source = (u_int *)((u_int)psxR+(start&0x7ffff));
7872 pagelimit = (addr&0xfff00000)|0x80000;
7873 }
7874 else
7875#endif
7876#ifdef MUPEN64
7877 if ((int)addr >= 0xa4000000 && (int)addr < 0xa4001000) {
7878 source = (u_int *)((u_int)SP_DMEM+start-0xa4000000);
7879 pagelimit = 0xa4001000;
7880 }
7881 else
7882#endif
7883 if ((int)addr >= 0x80000000 && (int)addr < 0x80000000+RAM_SIZE) {
7884 source = (u_int *)((u_int)rdram+start-0x80000000);
7885 pagelimit = 0x80000000+RAM_SIZE;
7886 }
7887#ifndef DISABLE_TLB
7888 else if ((signed int)addr >= (signed int)0xC0000000) {
7889 //printf("addr=%x mm=%x\n",(u_int)addr,(memory_map[start>>12]<<2));
7890 //if(tlb_LUT_r[start>>12])
7891 //source = (u_int *)(((int)rdram)+(tlb_LUT_r[start>>12]&0xFFFFF000)+(((int)addr)&0xFFF)-0x80000000);
7892 if((signed int)memory_map[start>>12]>=0) {
7893 source = (u_int *)((u_int)(start+(memory_map[start>>12]<<2)));
7894 pagelimit=(start+4096)&0xFFFFF000;
7895 int map=memory_map[start>>12];
7896 int i;
7897 for(i=0;i<5;i++) {
7898 //printf("start: %x next: %x\n",map,memory_map[pagelimit>>12]);
7899 if((map&0xBFFFFFFF)==(memory_map[pagelimit>>12]&0xBFFFFFFF)) pagelimit+=4096;
7900 }
7901 assem_debug("pagelimit=%x\n",pagelimit);
7902 assem_debug("mapping=%x (%x)\n",memory_map[start>>12],(memory_map[start>>12]<<2)+start);
7903 }
7904 else {
7905 assem_debug("Compile at unmapped memory address: %x \n", (int)addr);
7906 //assem_debug("start: %x next: %x\n",memory_map[start>>12],memory_map[(start+4096)>>12]);
7907 return -1; // Caller will invoke exception handler
7908 }
7909 //printf("source= %x\n",(int)source);
7910 }
7911#endif
7912 else {
7913 printf("Compile at bogus memory address: %x \n", (int)addr);
7914 exit(1);
7915 }
7916
7917 /* Pass 1: disassemble */
7918 /* Pass 2: register dependencies, branch targets */
7919 /* Pass 3: register allocation */
7920 /* Pass 4: branch dependencies */
7921 /* Pass 5: pre-alloc */
7922 /* Pass 6: optimize clean/dirty state */
7923 /* Pass 7: flag 32-bit registers */
7924 /* Pass 8: assembly */
7925 /* Pass 9: linker */
7926 /* Pass 10: garbage collection / free memory */
7927
7928 int i,j;
7929 int done=0;
7930 unsigned int type,op,op2;
7931
7932 //printf("addr = %x source = %x %x\n", addr,source,source[0]);
7933
7934 /* Pass 1 disassembly */
7935
7936 for(i=0;!done;i++) {
7937 bt[i]=0;likely[i]=0;ooo[i]=0;op2=0;
7938 minimum_free_regs[i]=0;
7939 opcode[i]=op=source[i]>>26;
7940 switch(op)
7941 {
7942 case 0x00: strcpy(insn[i],"special"); type=NI;
7943 op2=source[i]&0x3f;
7944 switch(op2)
7945 {
7946 case 0x00: strcpy(insn[i],"SLL"); type=SHIFTIMM; break;
7947 case 0x02: strcpy(insn[i],"SRL"); type=SHIFTIMM; break;
7948 case 0x03: strcpy(insn[i],"SRA"); type=SHIFTIMM; break;
7949 case 0x04: strcpy(insn[i],"SLLV"); type=SHIFT; break;
7950 case 0x06: strcpy(insn[i],"SRLV"); type=SHIFT; break;
7951 case 0x07: strcpy(insn[i],"SRAV"); type=SHIFT; break;
7952 case 0x08: strcpy(insn[i],"JR"); type=RJUMP; break;
7953 case 0x09: strcpy(insn[i],"JALR"); type=RJUMP; break;
7954 case 0x0C: strcpy(insn[i],"SYSCALL"); type=SYSCALL; break;
7955 case 0x0D: strcpy(insn[i],"BREAK"); type=OTHER; break;
7956 case 0x0F: strcpy(insn[i],"SYNC"); type=OTHER; break;
7957 case 0x10: strcpy(insn[i],"MFHI"); type=MOV; break;
7958 case 0x11: strcpy(insn[i],"MTHI"); type=MOV; break;
7959 case 0x12: strcpy(insn[i],"MFLO"); type=MOV; break;
7960 case 0x13: strcpy(insn[i],"MTLO"); type=MOV; break;
7961 case 0x14: strcpy(insn[i],"DSLLV"); type=SHIFT; break;
7962 case 0x16: strcpy(insn[i],"DSRLV"); type=SHIFT; break;
7963 case 0x17: strcpy(insn[i],"DSRAV"); type=SHIFT; break;
7964 case 0x18: strcpy(insn[i],"MULT"); type=MULTDIV; break;
7965 case 0x19: strcpy(insn[i],"MULTU"); type=MULTDIV; break;
7966 case 0x1A: strcpy(insn[i],"DIV"); type=MULTDIV; break;
7967 case 0x1B: strcpy(insn[i],"DIVU"); type=MULTDIV; break;
7968 case 0x1C: strcpy(insn[i],"DMULT"); type=MULTDIV; break;
7969 case 0x1D: strcpy(insn[i],"DMULTU"); type=MULTDIV; break;
7970 case 0x1E: strcpy(insn[i],"DDIV"); type=MULTDIV; break;
7971 case 0x1F: strcpy(insn[i],"DDIVU"); type=MULTDIV; break;
7972 case 0x20: strcpy(insn[i],"ADD"); type=ALU; break;
7973 case 0x21: strcpy(insn[i],"ADDU"); type=ALU; break;
7974 case 0x22: strcpy(insn[i],"SUB"); type=ALU; break;
7975 case 0x23: strcpy(insn[i],"SUBU"); type=ALU; break;
7976 case 0x24: strcpy(insn[i],"AND"); type=ALU; break;
7977 case 0x25: strcpy(insn[i],"OR"); type=ALU; break;
7978 case 0x26: strcpy(insn[i],"XOR"); type=ALU; break;
7979 case 0x27: strcpy(insn[i],"NOR"); type=ALU; break;
7980 case 0x2A: strcpy(insn[i],"SLT"); type=ALU; break;
7981 case 0x2B: strcpy(insn[i],"SLTU"); type=ALU; break;
7982 case 0x2C: strcpy(insn[i],"DADD"); type=ALU; break;
7983 case 0x2D: strcpy(insn[i],"DADDU"); type=ALU; break;
7984 case 0x2E: strcpy(insn[i],"DSUB"); type=ALU; break;
7985 case 0x2F: strcpy(insn[i],"DSUBU"); type=ALU; break;
7986 case 0x30: strcpy(insn[i],"TGE"); type=NI; break;
7987 case 0x31: strcpy(insn[i],"TGEU"); type=NI; break;
7988 case 0x32: strcpy(insn[i],"TLT"); type=NI; break;
7989 case 0x33: strcpy(insn[i],"TLTU"); type=NI; break;
7990 case 0x34: strcpy(insn[i],"TEQ"); type=NI; break;
7991 case 0x36: strcpy(insn[i],"TNE"); type=NI; break;
7992 case 0x38: strcpy(insn[i],"DSLL"); type=SHIFTIMM; break;
7993 case 0x3A: strcpy(insn[i],"DSRL"); type=SHIFTIMM; break;
7994 case 0x3B: strcpy(insn[i],"DSRA"); type=SHIFTIMM; break;
7995 case 0x3C: strcpy(insn[i],"DSLL32"); type=SHIFTIMM; break;
7996 case 0x3E: strcpy(insn[i],"DSRL32"); type=SHIFTIMM; break;
7997 case 0x3F: strcpy(insn[i],"DSRA32"); type=SHIFTIMM; break;
7998 }
7999 break;
8000 case 0x01: strcpy(insn[i],"regimm"); type=NI;
8001 op2=(source[i]>>16)&0x1f;
8002 switch(op2)
8003 {
8004 case 0x00: strcpy(insn[i],"BLTZ"); type=SJUMP; break;
8005 case 0x01: strcpy(insn[i],"BGEZ"); type=SJUMP; break;
8006 case 0x02: strcpy(insn[i],"BLTZL"); type=SJUMP; break;
8007 case 0x03: strcpy(insn[i],"BGEZL"); type=SJUMP; break;
8008 case 0x08: strcpy(insn[i],"TGEI"); type=NI; break;
8009 case 0x09: strcpy(insn[i],"TGEIU"); type=NI; break;
8010 case 0x0A: strcpy(insn[i],"TLTI"); type=NI; break;
8011 case 0x0B: strcpy(insn[i],"TLTIU"); type=NI; break;
8012 case 0x0C: strcpy(insn[i],"TEQI"); type=NI; break;
8013 case 0x0E: strcpy(insn[i],"TNEI"); type=NI; break;
8014 case 0x10: strcpy(insn[i],"BLTZAL"); type=SJUMP; break;
8015 case 0x11: strcpy(insn[i],"BGEZAL"); type=SJUMP; break;
8016 case 0x12: strcpy(insn[i],"BLTZALL"); type=SJUMP; break;
8017 case 0x13: strcpy(insn[i],"BGEZALL"); type=SJUMP; break;
8018 }
8019 break;
8020 case 0x02: strcpy(insn[i],"J"); type=UJUMP; break;
8021 case 0x03: strcpy(insn[i],"JAL"); type=UJUMP; break;
8022 case 0x04: strcpy(insn[i],"BEQ"); type=CJUMP; break;
8023 case 0x05: strcpy(insn[i],"BNE"); type=CJUMP; break;
8024 case 0x06: strcpy(insn[i],"BLEZ"); type=CJUMP; break;
8025 case 0x07: strcpy(insn[i],"BGTZ"); type=CJUMP; break;
8026 case 0x08: strcpy(insn[i],"ADDI"); type=IMM16; break;
8027 case 0x09: strcpy(insn[i],"ADDIU"); type=IMM16; break;
8028 case 0x0A: strcpy(insn[i],"SLTI"); type=IMM16; break;
8029 case 0x0B: strcpy(insn[i],"SLTIU"); type=IMM16; break;
8030 case 0x0C: strcpy(insn[i],"ANDI"); type=IMM16; break;
8031 case 0x0D: strcpy(insn[i],"ORI"); type=IMM16; break;
8032 case 0x0E: strcpy(insn[i],"XORI"); type=IMM16; break;
8033 case 0x0F: strcpy(insn[i],"LUI"); type=IMM16; break;
8034 case 0x10: strcpy(insn[i],"cop0"); type=NI;
8035 op2=(source[i]>>21)&0x1f;
8036 switch(op2)
8037 {
8038 case 0x00: strcpy(insn[i],"MFC0"); type=COP0; break;
8039 case 0x04: strcpy(insn[i],"MTC0"); type=COP0; break;
8040 case 0x10: strcpy(insn[i],"tlb"); type=NI;
8041 switch(source[i]&0x3f)
8042 {
8043 case 0x01: strcpy(insn[i],"TLBR"); type=COP0; break;
8044 case 0x02: strcpy(insn[i],"TLBWI"); type=COP0; break;
8045 case 0x06: strcpy(insn[i],"TLBWR"); type=COP0; break;
8046 case 0x08: strcpy(insn[i],"TLBP"); type=COP0; break;
8047#ifdef PCSX
8048 case 0x10: strcpy(insn[i],"RFE"); type=COP0; break;
8049#else
8050 case 0x18: strcpy(insn[i],"ERET"); type=COP0; break;
8051#endif
8052 }
8053 }
8054 break;
8055 case 0x11: strcpy(insn[i],"cop1"); type=NI;
8056 op2=(source[i]>>21)&0x1f;
8057 switch(op2)
8058 {
8059 case 0x00: strcpy(insn[i],"MFC1"); type=COP1; break;
8060 case 0x01: strcpy(insn[i],"DMFC1"); type=COP1; break;
8061 case 0x02: strcpy(insn[i],"CFC1"); type=COP1; break;
8062 case 0x04: strcpy(insn[i],"MTC1"); type=COP1; break;
8063 case 0x05: strcpy(insn[i],"DMTC1"); type=COP1; break;
8064 case 0x06: strcpy(insn[i],"CTC1"); type=COP1; break;
8065 case 0x08: strcpy(insn[i],"BC1"); type=FJUMP;
8066 switch((source[i]>>16)&0x3)
8067 {
8068 case 0x00: strcpy(insn[i],"BC1F"); break;
8069 case 0x01: strcpy(insn[i],"BC1T"); break;
8070 case 0x02: strcpy(insn[i],"BC1FL"); break;
8071 case 0x03: strcpy(insn[i],"BC1TL"); break;
8072 }
8073 break;
8074 case 0x10: strcpy(insn[i],"C1.S"); type=NI;
8075 switch(source[i]&0x3f)
8076 {
8077 case 0x00: strcpy(insn[i],"ADD.S"); type=FLOAT; break;
8078 case 0x01: strcpy(insn[i],"SUB.S"); type=FLOAT; break;
8079 case 0x02: strcpy(insn[i],"MUL.S"); type=FLOAT; break;
8080 case 0x03: strcpy(insn[i],"DIV.S"); type=FLOAT; break;
8081 case 0x04: strcpy(insn[i],"SQRT.S"); type=FLOAT; break;
8082 case 0x05: strcpy(insn[i],"ABS.S"); type=FLOAT; break;
8083 case 0x06: strcpy(insn[i],"MOV.S"); type=FLOAT; break;
8084 case 0x07: strcpy(insn[i],"NEG.S"); type=FLOAT; break;
8085 case 0x08: strcpy(insn[i],"ROUND.L.S"); type=FCONV; break;
8086 case 0x09: strcpy(insn[i],"TRUNC.L.S"); type=FCONV; break;
8087 case 0x0A: strcpy(insn[i],"CEIL.L.S"); type=FCONV; break;
8088 case 0x0B: strcpy(insn[i],"FLOOR.L.S"); type=FCONV; break;
8089 case 0x0C: strcpy(insn[i],"ROUND.W.S"); type=FCONV; break;
8090 case 0x0D: strcpy(insn[i],"TRUNC.W.S"); type=FCONV; break;
8091 case 0x0E: strcpy(insn[i],"CEIL.W.S"); type=FCONV; break;
8092 case 0x0F: strcpy(insn[i],"FLOOR.W.S"); type=FCONV; break;
8093 case 0x21: strcpy(insn[i],"CVT.D.S"); type=FCONV; break;
8094 case 0x24: strcpy(insn[i],"CVT.W.S"); type=FCONV; break;
8095 case 0x25: strcpy(insn[i],"CVT.L.S"); type=FCONV; break;
8096 case 0x30: strcpy(insn[i],"C.F.S"); type=FCOMP; break;
8097 case 0x31: strcpy(insn[i],"C.UN.S"); type=FCOMP; break;
8098 case 0x32: strcpy(insn[i],"C.EQ.S"); type=FCOMP; break;
8099 case 0x33: strcpy(insn[i],"C.UEQ.S"); type=FCOMP; break;
8100 case 0x34: strcpy(insn[i],"C.OLT.S"); type=FCOMP; break;
8101 case 0x35: strcpy(insn[i],"C.ULT.S"); type=FCOMP; break;
8102 case 0x36: strcpy(insn[i],"C.OLE.S"); type=FCOMP; break;
8103 case 0x37: strcpy(insn[i],"C.ULE.S"); type=FCOMP; break;
8104 case 0x38: strcpy(insn[i],"C.SF.S"); type=FCOMP; break;
8105 case 0x39: strcpy(insn[i],"C.NGLE.S"); type=FCOMP; break;
8106 case 0x3A: strcpy(insn[i],"C.SEQ.S"); type=FCOMP; break;
8107 case 0x3B: strcpy(insn[i],"C.NGL.S"); type=FCOMP; break;
8108 case 0x3C: strcpy(insn[i],"C.LT.S"); type=FCOMP; break;
8109 case 0x3D: strcpy(insn[i],"C.NGE.S"); type=FCOMP; break;
8110 case 0x3E: strcpy(insn[i],"C.LE.S"); type=FCOMP; break;
8111 case 0x3F: strcpy(insn[i],"C.NGT.S"); type=FCOMP; break;
8112 }
8113 break;
8114 case 0x11: strcpy(insn[i],"C1.D"); type=NI;
8115 switch(source[i]&0x3f)
8116 {
8117 case 0x00: strcpy(insn[i],"ADD.D"); type=FLOAT; break;
8118 case 0x01: strcpy(insn[i],"SUB.D"); type=FLOAT; break;
8119 case 0x02: strcpy(insn[i],"MUL.D"); type=FLOAT; break;
8120 case 0x03: strcpy(insn[i],"DIV.D"); type=FLOAT; break;
8121 case 0x04: strcpy(insn[i],"SQRT.D"); type=FLOAT; break;
8122 case 0x05: strcpy(insn[i],"ABS.D"); type=FLOAT; break;
8123 case 0x06: strcpy(insn[i],"MOV.D"); type=FLOAT; break;
8124 case 0x07: strcpy(insn[i],"NEG.D"); type=FLOAT; break;
8125 case 0x08: strcpy(insn[i],"ROUND.L.D"); type=FCONV; break;
8126 case 0x09: strcpy(insn[i],"TRUNC.L.D"); type=FCONV; break;
8127 case 0x0A: strcpy(insn[i],"CEIL.L.D"); type=FCONV; break;
8128 case 0x0B: strcpy(insn[i],"FLOOR.L.D"); type=FCONV; break;
8129 case 0x0C: strcpy(insn[i],"ROUND.W.D"); type=FCONV; break;
8130 case 0x0D: strcpy(insn[i],"TRUNC.W.D"); type=FCONV; break;
8131 case 0x0E: strcpy(insn[i],"CEIL.W.D"); type=FCONV; break;
8132 case 0x0F: strcpy(insn[i],"FLOOR.W.D"); type=FCONV; break;
8133 case 0x20: strcpy(insn[i],"CVT.S.D"); type=FCONV; break;
8134 case 0x24: strcpy(insn[i],"CVT.W.D"); type=FCONV; break;
8135 case 0x25: strcpy(insn[i],"CVT.L.D"); type=FCONV; break;
8136 case 0x30: strcpy(insn[i],"C.F.D"); type=FCOMP; break;
8137 case 0x31: strcpy(insn[i],"C.UN.D"); type=FCOMP; break;
8138 case 0x32: strcpy(insn[i],"C.EQ.D"); type=FCOMP; break;
8139 case 0x33: strcpy(insn[i],"C.UEQ.D"); type=FCOMP; break;
8140 case 0x34: strcpy(insn[i],"C.OLT.D"); type=FCOMP; break;
8141 case 0x35: strcpy(insn[i],"C.ULT.D"); type=FCOMP; break;
8142 case 0x36: strcpy(insn[i],"C.OLE.D"); type=FCOMP; break;
8143 case 0x37: strcpy(insn[i],"C.ULE.D"); type=FCOMP; break;
8144 case 0x38: strcpy(insn[i],"C.SF.D"); type=FCOMP; break;
8145 case 0x39: strcpy(insn[i],"C.NGLE.D"); type=FCOMP; break;
8146 case 0x3A: strcpy(insn[i],"C.SEQ.D"); type=FCOMP; break;
8147 case 0x3B: strcpy(insn[i],"C.NGL.D"); type=FCOMP; break;
8148 case 0x3C: strcpy(insn[i],"C.LT.D"); type=FCOMP; break;
8149 case 0x3D: strcpy(insn[i],"C.NGE.D"); type=FCOMP; break;
8150 case 0x3E: strcpy(insn[i],"C.LE.D"); type=FCOMP; break;
8151 case 0x3F: strcpy(insn[i],"C.NGT.D"); type=FCOMP; break;
8152 }
8153 break;
8154 case 0x14: strcpy(insn[i],"C1.W"); type=NI;
8155 switch(source[i]&0x3f)
8156 {
8157 case 0x20: strcpy(insn[i],"CVT.S.W"); type=FCONV; break;
8158 case 0x21: strcpy(insn[i],"CVT.D.W"); type=FCONV; break;
8159 }
8160 break;
8161 case 0x15: strcpy(insn[i],"C1.L"); type=NI;
8162 switch(source[i]&0x3f)
8163 {
8164 case 0x20: strcpy(insn[i],"CVT.S.L"); type=FCONV; break;
8165 case 0x21: strcpy(insn[i],"CVT.D.L"); type=FCONV; break;
8166 }
8167 break;
8168 }
8169 break;
8170#ifndef FORCE32
8171 case 0x14: strcpy(insn[i],"BEQL"); type=CJUMP; break;
8172 case 0x15: strcpy(insn[i],"BNEL"); type=CJUMP; break;
8173 case 0x16: strcpy(insn[i],"BLEZL"); type=CJUMP; break;
8174 case 0x17: strcpy(insn[i],"BGTZL"); type=CJUMP; break;
8175 case 0x18: strcpy(insn[i],"DADDI"); type=IMM16; break;
8176 case 0x19: strcpy(insn[i],"DADDIU"); type=IMM16; break;
8177 case 0x1A: strcpy(insn[i],"LDL"); type=LOADLR; break;
8178 case 0x1B: strcpy(insn[i],"LDR"); type=LOADLR; break;
8179#endif
8180 case 0x20: strcpy(insn[i],"LB"); type=LOAD; break;
8181 case 0x21: strcpy(insn[i],"LH"); type=LOAD; break;
8182 case 0x22: strcpy(insn[i],"LWL"); type=LOADLR; break;
8183 case 0x23: strcpy(insn[i],"LW"); type=LOAD; break;
8184 case 0x24: strcpy(insn[i],"LBU"); type=LOAD; break;
8185 case 0x25: strcpy(insn[i],"LHU"); type=LOAD; break;
8186 case 0x26: strcpy(insn[i],"LWR"); type=LOADLR; break;
8187 case 0x27: strcpy(insn[i],"LWU"); type=LOAD; break;
8188 case 0x28: strcpy(insn[i],"SB"); type=STORE; break;
8189 case 0x29: strcpy(insn[i],"SH"); type=STORE; break;
8190 case 0x2A: strcpy(insn[i],"SWL"); type=STORELR; break;
8191 case 0x2B: strcpy(insn[i],"SW"); type=STORE; break;
8192#ifndef FORCE32
8193 case 0x2C: strcpy(insn[i],"SDL"); type=STORELR; break;
8194 case 0x2D: strcpy(insn[i],"SDR"); type=STORELR; break;
8195#endif
8196 case 0x2E: strcpy(insn[i],"SWR"); type=STORELR; break;
8197 case 0x2F: strcpy(insn[i],"CACHE"); type=NOP; break;
8198 case 0x30: strcpy(insn[i],"LL"); type=NI; break;
8199 case 0x31: strcpy(insn[i],"LWC1"); type=C1LS; break;
8200#ifndef FORCE32
8201 case 0x34: strcpy(insn[i],"LLD"); type=NI; break;
8202 case 0x35: strcpy(insn[i],"LDC1"); type=C1LS; break;
8203 case 0x37: strcpy(insn[i],"LD"); type=LOAD; break;
8204#endif
8205 case 0x38: strcpy(insn[i],"SC"); type=NI; break;
8206 case 0x39: strcpy(insn[i],"SWC1"); type=C1LS; break;
8207#ifndef FORCE32
8208 case 0x3C: strcpy(insn[i],"SCD"); type=NI; break;
8209 case 0x3D: strcpy(insn[i],"SDC1"); type=C1LS; break;
8210 case 0x3F: strcpy(insn[i],"SD"); type=STORE; break;
8211#endif
8212#ifdef PCSX
8213 case 0x12: strcpy(insn[i],"COP2"); type=NI;
8214 // note: COP MIPS-1 encoding differs from MIPS32
8215 op2=(source[i]>>21)&0x1f;
8216 if (source[i]&0x3f) {
8217 if (gte_handlers[source[i]&0x3f]!=NULL) {
8218 snprintf(insn[i], sizeof(insn[i]), "COP2 %x", source[i]&0x3f);
8219 type=C2OP;
8220 }
8221 }
8222 else switch(op2)
8223 {
8224 case 0x00: strcpy(insn[i],"MFC2"); type=COP2; break;
8225 case 0x02: strcpy(insn[i],"CFC2"); type=COP2; break;
8226 case 0x04: strcpy(insn[i],"MTC2"); type=COP2; break;
8227 case 0x06: strcpy(insn[i],"CTC2"); type=COP2; break;
8228 }
8229 break;
8230 case 0x32: strcpy(insn[i],"LWC2"); type=C2LS; break;
8231 case 0x3A: strcpy(insn[i],"SWC2"); type=C2LS; break;
8232 case 0x3B: strcpy(insn[i],"HLECALL"); type=HLECALL; break;
8233#endif
8234 default: strcpy(insn[i],"???"); type=NI;
8235 printf("NI %08x @%08x (%08x)\n", source[i], addr + i*4, addr);
8236 break;
8237 }
8238 itype[i]=type;
8239 opcode2[i]=op2;
8240 /* Get registers/immediates */
8241 lt1[i]=0;
8242 us1[i]=0;
8243 us2[i]=0;
8244 dep1[i]=0;
8245 dep2[i]=0;
8246 switch(type) {
8247 case LOAD:
8248 rs1[i]=(source[i]>>21)&0x1f;
8249 rs2[i]=0;
8250 rt1[i]=(source[i]>>16)&0x1f;
8251 rt2[i]=0;
8252 imm[i]=(short)source[i];
8253 break;
8254 case STORE:
8255 case STORELR:
8256 rs1[i]=(source[i]>>21)&0x1f;
8257 rs2[i]=(source[i]>>16)&0x1f;
8258 rt1[i]=0;
8259 rt2[i]=0;
8260 imm[i]=(short)source[i];
8261 if(op==0x2c||op==0x2d||op==0x3f) us1[i]=rs2[i]; // 64-bit SDL/SDR/SD
8262 break;
8263 case LOADLR:
8264 // LWL/LWR only load part of the register,
8265 // therefore the target register must be treated as a source too
8266 rs1[i]=(source[i]>>21)&0x1f;
8267 rs2[i]=(source[i]>>16)&0x1f;
8268 rt1[i]=(source[i]>>16)&0x1f;
8269 rt2[i]=0;
8270 imm[i]=(short)source[i];
8271 if(op==0x1a||op==0x1b) us1[i]=rs2[i]; // LDR/LDL
8272 if(op==0x26) dep1[i]=rt1[i]; // LWR
8273 break;
8274 case IMM16:
8275 if (op==0x0f) rs1[i]=0; // LUI instruction has no source register
8276 else rs1[i]=(source[i]>>21)&0x1f;
8277 rs2[i]=0;
8278 rt1[i]=(source[i]>>16)&0x1f;
8279 rt2[i]=0;
8280 if(op>=0x0c&&op<=0x0e) { // ANDI/ORI/XORI
8281 imm[i]=(unsigned short)source[i];
8282 }else{
8283 imm[i]=(short)source[i];
8284 }
8285 if(op==0x18||op==0x19) us1[i]=rs1[i]; // DADDI/DADDIU
8286 if(op==0x0a||op==0x0b) us1[i]=rs1[i]; // SLTI/SLTIU
8287 if(op==0x0d||op==0x0e) dep1[i]=rs1[i]; // ORI/XORI
8288 break;
8289 case UJUMP:
8290 rs1[i]=0;
8291 rs2[i]=0;
8292 rt1[i]=0;
8293 rt2[i]=0;
8294 // The JAL instruction writes to r31.
8295 if (op&1) {
8296 rt1[i]=31;
8297 }
8298 rs2[i]=CCREG;
8299 break;
8300 case RJUMP:
8301 rs1[i]=(source[i]>>21)&0x1f;
8302 rs2[i]=0;
8303 rt1[i]=0;
8304 rt2[i]=0;
8305 // The JALR instruction writes to rd.
8306 if (op2&1) {
8307 rt1[i]=(source[i]>>11)&0x1f;
8308 }
8309 rs2[i]=CCREG;
8310 break;
8311 case CJUMP:
8312 rs1[i]=(source[i]>>21)&0x1f;
8313 rs2[i]=(source[i]>>16)&0x1f;
8314 rt1[i]=0;
8315 rt2[i]=0;
8316 if(op&2) { // BGTZ/BLEZ
8317 rs2[i]=0;
8318 }
8319 us1[i]=rs1[i];
8320 us2[i]=rs2[i];
8321 likely[i]=op>>4;
8322 break;
8323 case SJUMP:
8324 rs1[i]=(source[i]>>21)&0x1f;
8325 rs2[i]=CCREG;
8326 rt1[i]=0;
8327 rt2[i]=0;
8328 us1[i]=rs1[i];
8329 if(op2&0x10) { // BxxAL
8330 rt1[i]=31;
8331 // NOTE: If the branch is not taken, r31 is still overwritten
8332 }
8333 likely[i]=(op2&2)>>1;
8334 break;
8335 case FJUMP:
8336 rs1[i]=FSREG;
8337 rs2[i]=CSREG;
8338 rt1[i]=0;
8339 rt2[i]=0;
8340 likely[i]=((source[i])>>17)&1;
8341 break;
8342 case ALU:
8343 rs1[i]=(source[i]>>21)&0x1f; // source
8344 rs2[i]=(source[i]>>16)&0x1f; // subtract amount
8345 rt1[i]=(source[i]>>11)&0x1f; // destination
8346 rt2[i]=0;
8347 if(op2==0x2a||op2==0x2b) { // SLT/SLTU
8348 us1[i]=rs1[i];us2[i]=rs2[i];
8349 }
8350 else if(op2>=0x24&&op2<=0x27) { // AND/OR/XOR/NOR
8351 dep1[i]=rs1[i];dep2[i]=rs2[i];
8352 }
8353 else if(op2>=0x2c&&op2<=0x2f) { // DADD/DSUB
8354 dep1[i]=rs1[i];dep2[i]=rs2[i];
8355 }
8356 break;
8357 case MULTDIV:
8358 rs1[i]=(source[i]>>21)&0x1f; // source
8359 rs2[i]=(source[i]>>16)&0x1f; // divisor
8360 rt1[i]=HIREG;
8361 rt2[i]=LOREG;
8362 if (op2>=0x1c&&op2<=0x1f) { // DMULT/DMULTU/DDIV/DDIVU
8363 us1[i]=rs1[i];us2[i]=rs2[i];
8364 }
8365 break;
8366 case MOV:
8367 rs1[i]=0;
8368 rs2[i]=0;
8369 rt1[i]=0;
8370 rt2[i]=0;
8371 if(op2==0x10) rs1[i]=HIREG; // MFHI
8372 if(op2==0x11) rt1[i]=HIREG; // MTHI
8373 if(op2==0x12) rs1[i]=LOREG; // MFLO
8374 if(op2==0x13) rt1[i]=LOREG; // MTLO
8375 if((op2&0x1d)==0x10) rt1[i]=(source[i]>>11)&0x1f; // MFxx
8376 if((op2&0x1d)==0x11) rs1[i]=(source[i]>>21)&0x1f; // MTxx
8377 dep1[i]=rs1[i];
8378 break;
8379 case SHIFT:
8380 rs1[i]=(source[i]>>16)&0x1f; // target of shift
8381 rs2[i]=(source[i]>>21)&0x1f; // shift amount
8382 rt1[i]=(source[i]>>11)&0x1f; // destination
8383 rt2[i]=0;
8384 // DSLLV/DSRLV/DSRAV are 64-bit
8385 if(op2>=0x14&&op2<=0x17) us1[i]=rs1[i];
8386 break;
8387 case SHIFTIMM:
8388 rs1[i]=(source[i]>>16)&0x1f;
8389 rs2[i]=0;
8390 rt1[i]=(source[i]>>11)&0x1f;
8391 rt2[i]=0;
8392 imm[i]=(source[i]>>6)&0x1f;
8393 // DSxx32 instructions
8394 if(op2>=0x3c) imm[i]|=0x20;
8395 // DSLL/DSRL/DSRA/DSRA32/DSRL32 but not DSLL32 require 64-bit source
8396 if(op2>=0x38&&op2!=0x3c) us1[i]=rs1[i];
8397 break;
8398 case COP0:
8399 rs1[i]=0;
8400 rs2[i]=0;
8401 rt1[i]=0;
8402 rt2[i]=0;
8403 if(op2==0) rt1[i]=(source[i]>>16)&0x1F; // MFC0
8404 if(op2==4) rs1[i]=(source[i]>>16)&0x1F; // MTC0
8405 if(op2==4&&((source[i]>>11)&0x1f)==12) rt2[i]=CSREG; // Status
8406 if(op2==16) if((source[i]&0x3f)==0x18) rs2[i]=CCREG; // ERET
8407 break;
8408 case COP1:
8409 case COP2:
8410 rs1[i]=0;
8411 rs2[i]=0;
8412 rt1[i]=0;
8413 rt2[i]=0;
8414 if(op2<3) rt1[i]=(source[i]>>16)&0x1F; // MFC1/DMFC1/CFC1
8415 if(op2>3) rs1[i]=(source[i]>>16)&0x1F; // MTC1/DMTC1/CTC1
8416 if(op2==5) us1[i]=rs1[i]; // DMTC1
8417 rs2[i]=CSREG;
8418 break;
8419 case C1LS:
8420 rs1[i]=(source[i]>>21)&0x1F;
8421 rs2[i]=CSREG;
8422 rt1[i]=0;
8423 rt2[i]=0;
8424 imm[i]=(short)source[i];
8425 break;
8426 case C2LS:
8427 rs1[i]=(source[i]>>21)&0x1F;
8428 rs2[i]=0;
8429 rt1[i]=0;
8430 rt2[i]=0;
8431 imm[i]=(short)source[i];
8432 break;
8433 case FLOAT:
8434 case FCONV:
8435 rs1[i]=0;
8436 rs2[i]=CSREG;
8437 rt1[i]=0;
8438 rt2[i]=0;
8439 break;
8440 case FCOMP:
8441 rs1[i]=FSREG;
8442 rs2[i]=CSREG;
8443 rt1[i]=FSREG;
8444 rt2[i]=0;
8445 break;
8446 case SYSCALL:
8447 case HLECALL:
8448 case INTCALL:
8449 rs1[i]=CCREG;
8450 rs2[i]=0;
8451 rt1[i]=0;
8452 rt2[i]=0;
8453 break;
8454 default:
8455 rs1[i]=0;
8456 rs2[i]=0;
8457 rt1[i]=0;
8458 rt2[i]=0;
8459 }
8460 /* Calculate branch target addresses */
8461 if(type==UJUMP)
8462 ba[i]=((start+i*4+4)&0xF0000000)|(((unsigned int)source[i]<<6)>>4);
8463 else if(type==CJUMP&&rs1[i]==rs2[i]&&(op&1))
8464 ba[i]=start+i*4+8; // Ignore never taken branch
8465 else if(type==SJUMP&&rs1[i]==0&&!(op2&1))
8466 ba[i]=start+i*4+8; // Ignore never taken branch
8467 else if(type==CJUMP||type==SJUMP||type==FJUMP)
8468 ba[i]=start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14);
8469 else ba[i]=-1;
8470#ifdef PCSX
8471 if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)) {
8472 int do_in_intrp=0;
8473 // branch in delay slot?
8474 if(type==RJUMP||type==UJUMP||type==CJUMP||type==SJUMP||type==FJUMP) {
8475 // don't handle first branch and call interpreter if it's hit
8476 printf("branch in delay slot @%08x (%08x)\n", addr + i*4, addr);
8477 do_in_intrp=1;
8478 }
8479 // basic load delay detection
8480 else if((type==LOAD||type==LOADLR||type==COP0||type==COP2||type==C2LS)&&rt1[i]!=0) {
8481 int t=(ba[i-1]-start)/4;
8482 if(0 <= t && t < i &&(rt1[i]==rs1[t]||rt1[i]==rs2[t])&&itype[t]!=CJUMP&&itype[t]!=SJUMP) {
8483 // jump target wants DS result - potential load delay effect
8484 printf("load delay @%08x (%08x)\n", addr + i*4, addr);
8485 do_in_intrp=1;
8486 bt[t+1]=1; // expected return from interpreter
8487 }
8488 else if(i>=2&&rt1[i-2]==2&&rt1[i]==2&&rs1[i]!=2&&rs2[i]!=2&&rs1[i-1]!=2&&rs2[i-1]!=2&&
8489 !(i>=3&&(itype[i-3]==RJUMP||itype[i-3]==UJUMP||itype[i-3]==CJUMP||itype[i-3]==SJUMP))) {
8490 // v0 overwrite like this is a sign of trouble, bail out
8491 printf("v0 overwrite @%08x (%08x)\n", addr + i*4, addr);
8492 do_in_intrp=1;
8493 }
8494 }
8495 if(do_in_intrp) {
8496 rs1[i-1]=CCREG;
8497 rs2[i-1]=rt1[i-1]=rt2[i-1]=0;
8498 ba[i-1]=-1;
8499 itype[i-1]=INTCALL;
8500 done=2;
8501 i--; // don't compile the DS
8502 }
8503 }
8504#endif
8505 /* Is this the end of the block? */
8506 if(i>0&&(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)) {
8507 if(rt1[i-1]==0) { // Continue past subroutine call (JAL)
8508 done=2;
8509 }
8510 else {
8511 if(stop_after_jal) done=1;
8512 // Stop on BREAK
8513 if((source[i+1]&0xfc00003f)==0x0d) done=1;
8514 }
8515 // Don't recompile stuff that's already compiled
8516 if(check_addr(start+i*4+4)) done=1;
8517 // Don't get too close to the limit
8518 if(i>MAXBLOCK/2) done=1;
8519 }
8520 if(itype[i]==SYSCALL&&stop_after_jal) done=1;
8521 if(itype[i]==HLECALL||itype[i]==INTCALL) done=2;
8522 if(done==2) {
8523 // Does the block continue due to a branch?
8524 for(j=i-1;j>=0;j--)
8525 {
8526 if(ba[j]==start+i*4+4) done=j=0;
8527 if(ba[j]==start+i*4+8) done=j=0;
8528 }
8529 }
8530 //assert(i<MAXBLOCK-1);
8531 if(start+i*4==pagelimit-4) done=1;
8532 assert(start+i*4<pagelimit);
8533 if (i==MAXBLOCK-1) done=1;
8534 // Stop if we're compiling junk
8535 if(itype[i]==NI&&opcode[i]==0x11) {
8536 done=stop_after_jal=1;
8537 printf("Disabled speculative precompilation\n");
8538 }
8539 }
8540 slen=i;
8541 if(itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==RJUMP||itype[i-1]==FJUMP) {
8542 if(start+i*4==pagelimit) {
8543 itype[i-1]=SPAN;
8544 }
8545 }
8546 assert(slen>0);
8547
8548 /* Pass 2 - Register dependencies and branch targets */
8549
8550 unneeded_registers(0,slen-1,0);
8551
8552 /* Pass 3 - Register allocation */
8553
8554 struct regstat current; // Current register allocations/status
8555 current.is32=1;
8556 current.dirty=0;
8557 current.u=unneeded_reg[0];
8558 current.uu=unneeded_reg_upper[0];
8559 clear_all_regs(current.regmap);
8560 alloc_reg(&current,0,CCREG);
8561 dirty_reg(&current,CCREG);
8562 current.isconst=0;
8563 current.wasconst=0;
8564 int ds=0;
8565 int cc=0;
8566 int hr;
8567
8568#ifndef FORCE32
8569 provisional_32bit();
8570#endif
8571 if((u_int)addr&1) {
8572 // First instruction is delay slot
8573 cc=-1;
8574 bt[1]=1;
8575 ds=1;
8576 unneeded_reg[0]=1;
8577 unneeded_reg_upper[0]=1;
8578 current.regmap[HOST_BTREG]=BTREG;
8579 }
8580
8581 for(i=0;i<slen;i++)
8582 {
8583 if(bt[i])
8584 {
8585 int hr;
8586 for(hr=0;hr<HOST_REGS;hr++)
8587 {
8588 // Is this really necessary?
8589 if(current.regmap[hr]==0) current.regmap[hr]=-1;
8590 }
8591 current.isconst=0;
8592 }
8593 if(i>1)
8594 {
8595 if((opcode[i-2]&0x2f)==0x05) // BNE/BNEL
8596 {
8597 if(rs1[i-2]==0||rs2[i-2]==0)
8598 {
8599 if(rs1[i-2]) {
8600 current.is32|=1LL<<rs1[i-2];
8601 int hr=get_reg(current.regmap,rs1[i-2]|64);
8602 if(hr>=0) current.regmap[hr]=-1;
8603 }
8604 if(rs2[i-2]) {
8605 current.is32|=1LL<<rs2[i-2];
8606 int hr=get_reg(current.regmap,rs2[i-2]|64);
8607 if(hr>=0) current.regmap[hr]=-1;
8608 }
8609 }
8610 }
8611 }
8612#ifndef FORCE32
8613 // If something jumps here with 64-bit values
8614 // then promote those registers to 64 bits
8615 if(bt[i])
8616 {
8617 uint64_t temp_is32=current.is32;
8618 for(j=i-1;j>=0;j--)
8619 {
8620 if(ba[j]==start+i*4)
8621 temp_is32&=branch_regs[j].is32;
8622 }
8623 for(j=i;j<slen;j++)
8624 {
8625 if(ba[j]==start+i*4)
8626 //temp_is32=1;
8627 temp_is32&=p32[j];
8628 }
8629 if(temp_is32!=current.is32) {
8630 //printf("dumping 32-bit regs (%x)\n",start+i*4);
8631 #ifdef DESTRUCTIVE_WRITEBACK
8632 for(hr=0;hr<HOST_REGS;hr++)
8633 {
8634 int r=current.regmap[hr];
8635 if(r>0&&r<64)
8636 {
8637 if((current.dirty>>hr)&((current.is32&~temp_is32)>>r)&1) {
8638 temp_is32|=1LL<<r;
8639 //printf("restore %d\n",r);
8640 }
8641 }
8642 }
8643 #endif
8644 current.is32=temp_is32;
8645 }
8646 }
8647#else
8648 current.is32=-1LL;
8649#endif
8650
8651 memcpy(regmap_pre[i],current.regmap,sizeof(current.regmap));
8652 regs[i].wasconst=current.isconst;
8653 regs[i].was32=current.is32;
8654 regs[i].wasdirty=current.dirty;
8655 #if defined(DESTRUCTIVE_WRITEBACK) && !defined(FORCE32)
8656 // To change a dirty register from 32 to 64 bits, we must write
8657 // it out during the previous cycle (for branches, 2 cycles)
8658 if(i<slen-1&&bt[i+1]&&itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP)
8659 {
8660 uint64_t temp_is32=current.is32;
8661 for(j=i-1;j>=0;j--)
8662 {
8663 if(ba[j]==start+i*4+4)
8664 temp_is32&=branch_regs[j].is32;
8665 }
8666 for(j=i;j<slen;j++)
8667 {
8668 if(ba[j]==start+i*4+4)
8669 //temp_is32=1;
8670 temp_is32&=p32[j];
8671 }
8672 if(temp_is32!=current.is32) {
8673 //printf("pre-dumping 32-bit regs (%x)\n",start+i*4);
8674 for(hr=0;hr<HOST_REGS;hr++)
8675 {
8676 int r=current.regmap[hr];
8677 if(r>0)
8678 {
8679 if((current.dirty>>hr)&((current.is32&~temp_is32)>>(r&63))&1) {
8680 if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP)
8681 {
8682 if(rs1[i]!=(r&63)&&rs2[i]!=(r&63))
8683 {
8684 //printf("dump %d/r%d\n",hr,r);
8685 current.regmap[hr]=-1;
8686 if(get_reg(current.regmap,r|64)>=0)
8687 current.regmap[get_reg(current.regmap,r|64)]=-1;
8688 }
8689 }
8690 }
8691 }
8692 }
8693 }
8694 }
8695 else if(i<slen-2&&bt[i+2]&&(source[i-1]>>16)!=0x1000&&(itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP))
8696 {
8697 uint64_t temp_is32=current.is32;
8698 for(j=i-1;j>=0;j--)
8699 {
8700 if(ba[j]==start+i*4+8)
8701 temp_is32&=branch_regs[j].is32;
8702 }
8703 for(j=i;j<slen;j++)
8704 {
8705 if(ba[j]==start+i*4+8)
8706 //temp_is32=1;
8707 temp_is32&=p32[j];
8708 }
8709 if(temp_is32!=current.is32) {
8710 //printf("pre-dumping 32-bit regs (%x)\n",start+i*4);
8711 for(hr=0;hr<HOST_REGS;hr++)
8712 {
8713 int r=current.regmap[hr];
8714 if(r>0)
8715 {
8716 if((current.dirty>>hr)&((current.is32&~temp_is32)>>(r&63))&1) {
8717 if(rs1[i]!=(r&63)&&rs2[i]!=(r&63)&&rs1[i+1]!=(r&63)&&rs2[i+1]!=(r&63))
8718 {
8719 //printf("dump %d/r%d\n",hr,r);
8720 current.regmap[hr]=-1;
8721 if(get_reg(current.regmap,r|64)>=0)
8722 current.regmap[get_reg(current.regmap,r|64)]=-1;
8723 }
8724 }
8725 }
8726 }
8727 }
8728 }
8729 #endif
8730 if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP) {
8731 if(i+1<slen) {
8732 current.u=unneeded_reg[i+1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
8733 current.uu=unneeded_reg_upper[i+1]&~((1LL<<us1[i])|(1LL<<us2[i]));
8734 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
8735 current.u|=1;
8736 current.uu|=1;
8737 } else {
8738 current.u=1;
8739 current.uu=1;
8740 }
8741 } else {
8742 if(i+1<slen) {
8743 current.u=branch_unneeded_reg[i]&~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
8744 current.uu=branch_unneeded_reg_upper[i]&~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
8745 if((~current.uu>>rt1[i+1])&1) current.uu&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
8746 current.u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
8747 current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
8748 current.u|=1;
8749 current.uu|=1;
8750 } else { printf("oops, branch at end of block with no delay slot\n");exit(1); }
8751 }
8752 is_ds[i]=ds;
8753 if(ds) {
8754 ds=0; // Skip delay slot, already allocated as part of branch
8755 // ...but we need to alloc it in case something jumps here
8756 if(i+1<slen) {
8757 current.u=branch_unneeded_reg[i-1]&unneeded_reg[i+1];
8758 current.uu=branch_unneeded_reg_upper[i-1]&unneeded_reg_upper[i+1];
8759 }else{
8760 current.u=branch_unneeded_reg[i-1];
8761 current.uu=branch_unneeded_reg_upper[i-1];
8762 }
8763 current.u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
8764 current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
8765 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
8766 current.u|=1;
8767 current.uu|=1;
8768 struct regstat temp;
8769 memcpy(&temp,&current,sizeof(current));
8770 temp.wasdirty=temp.dirty;
8771 temp.was32=temp.is32;
8772 // TODO: Take into account unconditional branches, as below
8773 delayslot_alloc(&temp,i);
8774 memcpy(regs[i].regmap,temp.regmap,sizeof(temp.regmap));
8775 regs[i].wasdirty=temp.wasdirty;
8776 regs[i].was32=temp.was32;
8777 regs[i].dirty=temp.dirty;
8778 regs[i].is32=temp.is32;
8779 regs[i].isconst=0;
8780 regs[i].wasconst=0;
8781 current.isconst=0;
8782 // Create entry (branch target) regmap
8783 for(hr=0;hr<HOST_REGS;hr++)
8784 {
8785 int r=temp.regmap[hr];
8786 if(r>=0) {
8787 if(r!=regmap_pre[i][hr]) {
8788 regs[i].regmap_entry[hr]=-1;
8789 }
8790 else
8791 {
8792 if(r<64){
8793 if((current.u>>r)&1) {
8794 regs[i].regmap_entry[hr]=-1;
8795 regs[i].regmap[hr]=-1;
8796 //Don't clear regs in the delay slot as the branch might need them
8797 //current.regmap[hr]=-1;
8798 }else
8799 regs[i].regmap_entry[hr]=r;
8800 }
8801 else {
8802 if((current.uu>>(r&63))&1) {
8803 regs[i].regmap_entry[hr]=-1;
8804 regs[i].regmap[hr]=-1;
8805 //Don't clear regs in the delay slot as the branch might need them
8806 //current.regmap[hr]=-1;
8807 }else
8808 regs[i].regmap_entry[hr]=r;
8809 }
8810 }
8811 } else {
8812 // First instruction expects CCREG to be allocated
8813 if(i==0&&hr==HOST_CCREG)
8814 regs[i].regmap_entry[hr]=CCREG;
8815 else
8816 regs[i].regmap_entry[hr]=-1;
8817 }
8818 }
8819 }
8820 else { // Not delay slot
8821 switch(itype[i]) {
8822 case UJUMP:
8823 //current.isconst=0; // DEBUG
8824 //current.wasconst=0; // DEBUG
8825 //regs[i].wasconst=0; // DEBUG
8826 clear_const(&current,rt1[i]);
8827 alloc_cc(&current,i);
8828 dirty_reg(&current,CCREG);
8829 if (rt1[i]==31) {
8830 alloc_reg(&current,i,31);
8831 dirty_reg(&current,31);
8832 //assert(rs1[i+1]!=31&&rs2[i+1]!=31);
8833 //assert(rt1[i+1]!=rt1[i]);
8834 #ifdef REG_PREFETCH
8835 alloc_reg(&current,i,PTEMP);
8836 #endif
8837 //current.is32|=1LL<<rt1[i];
8838 }
8839 ooo[i]=1;
8840 delayslot_alloc(&current,i+1);
8841 //current.isconst=0; // DEBUG
8842 ds=1;
8843 //printf("i=%d, isconst=%x\n",i,current.isconst);
8844 break;
8845 case RJUMP:
8846 //current.isconst=0;
8847 //current.wasconst=0;
8848 //regs[i].wasconst=0;
8849 clear_const(&current,rs1[i]);
8850 clear_const(&current,rt1[i]);
8851 alloc_cc(&current,i);
8852 dirty_reg(&current,CCREG);
8853 if(rs1[i]!=rt1[i+1]&&rs1[i]!=rt2[i+1]) {
8854 alloc_reg(&current,i,rs1[i]);
8855 if (rt1[i]!=0) {
8856 alloc_reg(&current,i,rt1[i]);
8857 dirty_reg(&current,rt1[i]);
8858 assert(rs1[i+1]!=rt1[i]&&rs2[i+1]!=rt1[i]);
8859 assert(rt1[i+1]!=rt1[i]);
8860 #ifdef REG_PREFETCH
8861 alloc_reg(&current,i,PTEMP);
8862 #endif
8863 }
8864 #ifdef USE_MINI_HT
8865 if(rs1[i]==31) { // JALR
8866 alloc_reg(&current,i,RHASH);
8867 #ifndef HOST_IMM_ADDR32
8868 alloc_reg(&current,i,RHTBL);
8869 #endif
8870 }
8871 #endif
8872 delayslot_alloc(&current,i+1);
8873 } else {
8874 // The delay slot overwrites our source register,
8875 // allocate a temporary register to hold the old value.
8876 current.isconst=0;
8877 current.wasconst=0;
8878 regs[i].wasconst=0;
8879 delayslot_alloc(&current,i+1);
8880 current.isconst=0;
8881 alloc_reg(&current,i,RTEMP);
8882 }
8883 //current.isconst=0; // DEBUG
8884 ooo[i]=1;
8885 ds=1;
8886 break;
8887 case CJUMP:
8888 //current.isconst=0;
8889 //current.wasconst=0;
8890 //regs[i].wasconst=0;
8891 clear_const(&current,rs1[i]);
8892 clear_const(&current,rs2[i]);
8893 if((opcode[i]&0x3E)==4) // BEQ/BNE
8894 {
8895 alloc_cc(&current,i);
8896 dirty_reg(&current,CCREG);
8897 if(rs1[i]) alloc_reg(&current,i,rs1[i]);
8898 if(rs2[i]) alloc_reg(&current,i,rs2[i]);
8899 if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
8900 {
8901 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
8902 if(rs2[i]) alloc_reg64(&current,i,rs2[i]);
8903 }
8904 if((rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]))||
8905 (rs2[i]&&(rs2[i]==rt1[i+1]||rs2[i]==rt2[i+1]))) {
8906 // The delay slot overwrites one of our conditions.
8907 // Allocate the branch condition registers instead.
8908 current.isconst=0;
8909 current.wasconst=0;
8910 regs[i].wasconst=0;
8911 if(rs1[i]) alloc_reg(&current,i,rs1[i]);
8912 if(rs2[i]) alloc_reg(&current,i,rs2[i]);
8913 if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
8914 {
8915 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
8916 if(rs2[i]) alloc_reg64(&current,i,rs2[i]);
8917 }
8918 }
8919 else
8920 {
8921 ooo[i]=1;
8922 delayslot_alloc(&current,i+1);
8923 }
8924 }
8925 else
8926 if((opcode[i]&0x3E)==6) // BLEZ/BGTZ
8927 {
8928 alloc_cc(&current,i);
8929 dirty_reg(&current,CCREG);
8930 alloc_reg(&current,i,rs1[i]);
8931 if(!(current.is32>>rs1[i]&1))
8932 {
8933 alloc_reg64(&current,i,rs1[i]);
8934 }
8935 if(rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1])) {
8936 // The delay slot overwrites one of our conditions.
8937 // Allocate the branch condition registers instead.
8938 current.isconst=0;
8939 current.wasconst=0;
8940 regs[i].wasconst=0;
8941 if(rs1[i]) alloc_reg(&current,i,rs1[i]);
8942 if(!((current.is32>>rs1[i])&1))
8943 {
8944 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
8945 }
8946 }
8947 else
8948 {
8949 ooo[i]=1;
8950 delayslot_alloc(&current,i+1);
8951 }
8952 }
8953 else
8954 // Don't alloc the delay slot yet because we might not execute it
8955 if((opcode[i]&0x3E)==0x14) // BEQL/BNEL
8956 {
8957 current.isconst=0;
8958 current.wasconst=0;
8959 regs[i].wasconst=0;
8960 alloc_cc(&current,i);
8961 dirty_reg(&current,CCREG);
8962 alloc_reg(&current,i,rs1[i]);
8963 alloc_reg(&current,i,rs2[i]);
8964 if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
8965 {
8966 alloc_reg64(&current,i,rs1[i]);
8967 alloc_reg64(&current,i,rs2[i]);
8968 }
8969 }
8970 else
8971 if((opcode[i]&0x3E)==0x16) // BLEZL/BGTZL
8972 {
8973 current.isconst=0;
8974 current.wasconst=0;
8975 regs[i].wasconst=0;
8976 alloc_cc(&current,i);
8977 dirty_reg(&current,CCREG);
8978 alloc_reg(&current,i,rs1[i]);
8979 if(!(current.is32>>rs1[i]&1))
8980 {
8981 alloc_reg64(&current,i,rs1[i]);
8982 }
8983 }
8984 ds=1;
8985 //current.isconst=0;
8986 break;
8987 case SJUMP:
8988 //current.isconst=0;
8989 //current.wasconst=0;
8990 //regs[i].wasconst=0;
8991 clear_const(&current,rs1[i]);
8992 clear_const(&current,rt1[i]);
8993 //if((opcode2[i]&0x1E)==0x0) // BLTZ/BGEZ
8994 if((opcode2[i]&0x0E)==0x0) // BLTZ/BGEZ
8995 {
8996 alloc_cc(&current,i);
8997 dirty_reg(&current,CCREG);
8998 alloc_reg(&current,i,rs1[i]);
8999 if(!(current.is32>>rs1[i]&1))
9000 {
9001 alloc_reg64(&current,i,rs1[i]);
9002 }
9003 if (rt1[i]==31) { // BLTZAL/BGEZAL
9004 alloc_reg(&current,i,31);
9005 dirty_reg(&current,31);
9006 //#ifdef REG_PREFETCH
9007 //alloc_reg(&current,i,PTEMP);
9008 //#endif
9009 //current.is32|=1LL<<rt1[i];
9010 }
9011 if((rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1])) // The delay slot overwrites the branch condition.
9012 ||(rt1[i]==31&&(rs1[i+1]==31||rs2[i+1]==31||rt1[i+1]==31||rt2[i+1]==31))) { // DS touches $ra
9013 // Allocate the branch condition registers instead.
9014 current.isconst=0;
9015 current.wasconst=0;
9016 regs[i].wasconst=0;
9017 if(rs1[i]) alloc_reg(&current,i,rs1[i]);
9018 if(!((current.is32>>rs1[i])&1))
9019 {
9020 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
9021 }
9022 }
9023 else
9024 {
9025 ooo[i]=1;
9026 delayslot_alloc(&current,i+1);
9027 }
9028 }
9029 else
9030 // Don't alloc the delay slot yet because we might not execute it
9031 if((opcode2[i]&0x1E)==0x2) // BLTZL/BGEZL
9032 {
9033 current.isconst=0;
9034 current.wasconst=0;
9035 regs[i].wasconst=0;
9036 alloc_cc(&current,i);
9037 dirty_reg(&current,CCREG);
9038 alloc_reg(&current,i,rs1[i]);
9039 if(!(current.is32>>rs1[i]&1))
9040 {
9041 alloc_reg64(&current,i,rs1[i]);
9042 }
9043 }
9044 ds=1;
9045 //current.isconst=0;
9046 break;
9047 case FJUMP:
9048 current.isconst=0;
9049 current.wasconst=0;
9050 regs[i].wasconst=0;
9051 if(likely[i]==0) // BC1F/BC1T
9052 {
9053 // TODO: Theoretically we can run out of registers here on x86.
9054 // The delay slot can allocate up to six, and we need to check
9055 // CSREG before executing the delay slot. Possibly we can drop
9056 // the cycle count and then reload it after checking that the
9057 // FPU is in a usable state, or don't do out-of-order execution.
9058 alloc_cc(&current,i);
9059 dirty_reg(&current,CCREG);
9060 alloc_reg(&current,i,FSREG);
9061 alloc_reg(&current,i,CSREG);
9062 if(itype[i+1]==FCOMP) {
9063 // The delay slot overwrites the branch condition.
9064 // Allocate the branch condition registers instead.
9065 alloc_cc(&current,i);
9066 dirty_reg(&current,CCREG);
9067 alloc_reg(&current,i,CSREG);
9068 alloc_reg(&current,i,FSREG);
9069 }
9070 else {
9071 ooo[i]=1;
9072 delayslot_alloc(&current,i+1);
9073 alloc_reg(&current,i+1,CSREG);
9074 }
9075 }
9076 else
9077 // Don't alloc the delay slot yet because we might not execute it
9078 if(likely[i]) // BC1FL/BC1TL
9079 {
9080 alloc_cc(&current,i);
9081 dirty_reg(&current,CCREG);
9082 alloc_reg(&current,i,CSREG);
9083 alloc_reg(&current,i,FSREG);
9084 }
9085 ds=1;
9086 current.isconst=0;
9087 break;
9088 case IMM16:
9089 imm16_alloc(&current,i);
9090 break;
9091 case LOAD:
9092 case LOADLR:
9093 load_alloc(&current,i);
9094 break;
9095 case STORE:
9096 case STORELR:
9097 store_alloc(&current,i);
9098 break;
9099 case ALU:
9100 alu_alloc(&current,i);
9101 break;
9102 case SHIFT:
9103 shift_alloc(&current,i);
9104 break;
9105 case MULTDIV:
9106 multdiv_alloc(&current,i);
9107 break;
9108 case SHIFTIMM:
9109 shiftimm_alloc(&current,i);
9110 break;
9111 case MOV:
9112 mov_alloc(&current,i);
9113 break;
9114 case COP0:
9115 cop0_alloc(&current,i);
9116 break;
9117 case COP1:
9118 case COP2:
9119 cop1_alloc(&current,i);
9120 break;
9121 case C1LS:
9122 c1ls_alloc(&current,i);
9123 break;
9124 case C2LS:
9125 c2ls_alloc(&current,i);
9126 break;
9127 case C2OP:
9128 c2op_alloc(&current,i);
9129 break;
9130 case FCONV:
9131 fconv_alloc(&current,i);
9132 break;
9133 case FLOAT:
9134 float_alloc(&current,i);
9135 break;
9136 case FCOMP:
9137 fcomp_alloc(&current,i);
9138 break;
9139 case SYSCALL:
9140 case HLECALL:
9141 case INTCALL:
9142 syscall_alloc(&current,i);
9143 break;
9144 case SPAN:
9145 pagespan_alloc(&current,i);
9146 break;
9147 }
9148
9149 // Drop the upper half of registers that have become 32-bit
9150 current.uu|=current.is32&((1LL<<rt1[i])|(1LL<<rt2[i]));
9151 if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP) {
9152 current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
9153 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9154 current.uu|=1;
9155 } else {
9156 current.uu|=current.is32&((1LL<<rt1[i+1])|(1LL<<rt2[i+1]));
9157 current.uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
9158 if((~current.uu>>rt1[i+1])&1) current.uu&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
9159 current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
9160 current.uu|=1;
9161 }
9162
9163 // Create entry (branch target) regmap
9164 for(hr=0;hr<HOST_REGS;hr++)
9165 {
9166 int r,or,er;
9167 r=current.regmap[hr];
9168 if(r>=0) {
9169 if(r!=regmap_pre[i][hr]) {
9170 // TODO: delay slot (?)
9171 or=get_reg(regmap_pre[i],r); // Get old mapping for this register
9172 if(or<0||(r&63)>=TEMPREG){
9173 regs[i].regmap_entry[hr]=-1;
9174 }
9175 else
9176 {
9177 // Just move it to a different register
9178 regs[i].regmap_entry[hr]=r;
9179 // If it was dirty before, it's still dirty
9180 if((regs[i].wasdirty>>or)&1) dirty_reg(&current,r&63);
9181 }
9182 }
9183 else
9184 {
9185 // Unneeded
9186 if(r==0){
9187 regs[i].regmap_entry[hr]=0;
9188 }
9189 else
9190 if(r<64){
9191 if((current.u>>r)&1) {
9192 regs[i].regmap_entry[hr]=-1;
9193 //regs[i].regmap[hr]=-1;
9194 current.regmap[hr]=-1;
9195 }else
9196 regs[i].regmap_entry[hr]=r;
9197 }
9198 else {
9199 if((current.uu>>(r&63))&1) {
9200 regs[i].regmap_entry[hr]=-1;
9201 //regs[i].regmap[hr]=-1;
9202 current.regmap[hr]=-1;
9203 }else
9204 regs[i].regmap_entry[hr]=r;
9205 }
9206 }
9207 } else {
9208 // Branches expect CCREG to be allocated at the target
9209 if(regmap_pre[i][hr]==CCREG)
9210 regs[i].regmap_entry[hr]=CCREG;
9211 else
9212 regs[i].regmap_entry[hr]=-1;
9213 }
9214 }
9215 memcpy(regs[i].regmap,current.regmap,sizeof(current.regmap));
9216 }
9217 /* Branch post-alloc */
9218 if(i>0)
9219 {
9220 current.was32=current.is32;
9221 current.wasdirty=current.dirty;
9222 switch(itype[i-1]) {
9223 case UJUMP:
9224 memcpy(&branch_regs[i-1],&current,sizeof(current));
9225 branch_regs[i-1].isconst=0;
9226 branch_regs[i-1].wasconst=0;
9227 branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
9228 branch_regs[i-1].uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
9229 alloc_cc(&branch_regs[i-1],i-1);
9230 dirty_reg(&branch_regs[i-1],CCREG);
9231 if(rt1[i-1]==31) { // JAL
9232 alloc_reg(&branch_regs[i-1],i-1,31);
9233 dirty_reg(&branch_regs[i-1],31);
9234 branch_regs[i-1].is32|=1LL<<31;
9235 }
9236 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9237 memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9238 break;
9239 case RJUMP:
9240 memcpy(&branch_regs[i-1],&current,sizeof(current));
9241 branch_regs[i-1].isconst=0;
9242 branch_regs[i-1].wasconst=0;
9243 branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
9244 branch_regs[i-1].uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
9245 alloc_cc(&branch_regs[i-1],i-1);
9246 dirty_reg(&branch_regs[i-1],CCREG);
9247 alloc_reg(&branch_regs[i-1],i-1,rs1[i-1]);
9248 if(rt1[i-1]!=0) { // JALR
9249 alloc_reg(&branch_regs[i-1],i-1,rt1[i-1]);
9250 dirty_reg(&branch_regs[i-1],rt1[i-1]);
9251 branch_regs[i-1].is32|=1LL<<rt1[i-1];
9252 }
9253 #ifdef USE_MINI_HT
9254 if(rs1[i-1]==31) { // JALR
9255 alloc_reg(&branch_regs[i-1],i-1,RHASH);
9256 #ifndef HOST_IMM_ADDR32
9257 alloc_reg(&branch_regs[i-1],i-1,RHTBL);
9258 #endif
9259 }
9260 #endif
9261 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9262 memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9263 break;
9264 case CJUMP:
9265 if((opcode[i-1]&0x3E)==4) // BEQ/BNE
9266 {
9267 alloc_cc(&current,i-1);
9268 dirty_reg(&current,CCREG);
9269 if((rs1[i-1]&&(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]))||
9270 (rs2[i-1]&&(rs2[i-1]==rt1[i]||rs2[i-1]==rt2[i]))) {
9271 // The delay slot overwrote one of our conditions
9272 // Delay slot goes after the test (in order)
9273 current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
9274 current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
9275 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9276 current.u|=1;
9277 current.uu|=1;
9278 delayslot_alloc(&current,i);
9279 current.isconst=0;
9280 }
9281 else
9282 {
9283 current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
9284 current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
9285 // Alloc the branch condition registers
9286 if(rs1[i-1]) alloc_reg(&current,i-1,rs1[i-1]);
9287 if(rs2[i-1]) alloc_reg(&current,i-1,rs2[i-1]);
9288 if(!((current.is32>>rs1[i-1])&(current.is32>>rs2[i-1])&1))
9289 {
9290 if(rs1[i-1]) alloc_reg64(&current,i-1,rs1[i-1]);
9291 if(rs2[i-1]) alloc_reg64(&current,i-1,rs2[i-1]);
9292 }
9293 }
9294 memcpy(&branch_regs[i-1],&current,sizeof(current));
9295 branch_regs[i-1].isconst=0;
9296 branch_regs[i-1].wasconst=0;
9297 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9298 memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9299 }
9300 else
9301 if((opcode[i-1]&0x3E)==6) // BLEZ/BGTZ
9302 {
9303 alloc_cc(&current,i-1);
9304 dirty_reg(&current,CCREG);
9305 if(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]) {
9306 // The delay slot overwrote the branch condition
9307 // Delay slot goes after the test (in order)
9308 current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
9309 current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
9310 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9311 current.u|=1;
9312 current.uu|=1;
9313 delayslot_alloc(&current,i);
9314 current.isconst=0;
9315 }
9316 else
9317 {
9318 current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
9319 current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
9320 // Alloc the branch condition register
9321 alloc_reg(&current,i-1,rs1[i-1]);
9322 if(!(current.is32>>rs1[i-1]&1))
9323 {
9324 alloc_reg64(&current,i-1,rs1[i-1]);
9325 }
9326 }
9327 memcpy(&branch_regs[i-1],&current,sizeof(current));
9328 branch_regs[i-1].isconst=0;
9329 branch_regs[i-1].wasconst=0;
9330 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9331 memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9332 }
9333 else
9334 // Alloc the delay slot in case the branch is taken
9335 if((opcode[i-1]&0x3E)==0x14) // BEQL/BNEL
9336 {
9337 memcpy(&branch_regs[i-1],&current,sizeof(current));
9338 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9339 branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9340 if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9341 alloc_cc(&branch_regs[i-1],i);
9342 dirty_reg(&branch_regs[i-1],CCREG);
9343 delayslot_alloc(&branch_regs[i-1],i);
9344 branch_regs[i-1].isconst=0;
9345 alloc_reg(&current,i,CCREG); // Not taken path
9346 dirty_reg(&current,CCREG);
9347 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9348 }
9349 else
9350 if((opcode[i-1]&0x3E)==0x16) // BLEZL/BGTZL
9351 {
9352 memcpy(&branch_regs[i-1],&current,sizeof(current));
9353 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9354 branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9355 if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9356 alloc_cc(&branch_regs[i-1],i);
9357 dirty_reg(&branch_regs[i-1],CCREG);
9358 delayslot_alloc(&branch_regs[i-1],i);
9359 branch_regs[i-1].isconst=0;
9360 alloc_reg(&current,i,CCREG); // Not taken path
9361 dirty_reg(&current,CCREG);
9362 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9363 }
9364 break;
9365 case SJUMP:
9366 //if((opcode2[i-1]&0x1E)==0) // BLTZ/BGEZ
9367 if((opcode2[i-1]&0x0E)==0) // BLTZ/BGEZ
9368 {
9369 alloc_cc(&current,i-1);
9370 dirty_reg(&current,CCREG);
9371 if(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]) {
9372 // The delay slot overwrote the branch condition
9373 // Delay slot goes after the test (in order)
9374 current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
9375 current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
9376 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9377 current.u|=1;
9378 current.uu|=1;
9379 delayslot_alloc(&current,i);
9380 current.isconst=0;
9381 }
9382 else
9383 {
9384 current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
9385 current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
9386 // Alloc the branch condition register
9387 alloc_reg(&current,i-1,rs1[i-1]);
9388 if(!(current.is32>>rs1[i-1]&1))
9389 {
9390 alloc_reg64(&current,i-1,rs1[i-1]);
9391 }
9392 }
9393 memcpy(&branch_regs[i-1],&current,sizeof(current));
9394 branch_regs[i-1].isconst=0;
9395 branch_regs[i-1].wasconst=0;
9396 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9397 memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9398 }
9399 else
9400 // Alloc the delay slot in case the branch is taken
9401 if((opcode2[i-1]&0x1E)==2) // BLTZL/BGEZL
9402 {
9403 memcpy(&branch_regs[i-1],&current,sizeof(current));
9404 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9405 branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9406 if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9407 alloc_cc(&branch_regs[i-1],i);
9408 dirty_reg(&branch_regs[i-1],CCREG);
9409 delayslot_alloc(&branch_regs[i-1],i);
9410 branch_regs[i-1].isconst=0;
9411 alloc_reg(&current,i,CCREG); // Not taken path
9412 dirty_reg(&current,CCREG);
9413 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9414 }
9415 // FIXME: BLTZAL/BGEZAL
9416 if(opcode2[i-1]&0x10) { // BxxZAL
9417 alloc_reg(&branch_regs[i-1],i-1,31);
9418 dirty_reg(&branch_regs[i-1],31);
9419 branch_regs[i-1].is32|=1LL<<31;
9420 }
9421 break;
9422 case FJUMP:
9423 if(likely[i-1]==0) // BC1F/BC1T
9424 {
9425 alloc_cc(&current,i-1);
9426 dirty_reg(&current,CCREG);
9427 if(itype[i]==FCOMP) {
9428 // The delay slot overwrote the branch condition
9429 // Delay slot goes after the test (in order)
9430 delayslot_alloc(&current,i);
9431 current.isconst=0;
9432 }
9433 else
9434 {
9435 current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
9436 current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
9437 // Alloc the branch condition register
9438 alloc_reg(&current,i-1,FSREG);
9439 }
9440 memcpy(&branch_regs[i-1],&current,sizeof(current));
9441 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9442 }
9443 else // BC1FL/BC1TL
9444 {
9445 // Alloc the delay slot in case the branch is taken
9446 memcpy(&branch_regs[i-1],&current,sizeof(current));
9447 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9448 branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9449 if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9450 alloc_cc(&branch_regs[i-1],i);
9451 dirty_reg(&branch_regs[i-1],CCREG);
9452 delayslot_alloc(&branch_regs[i-1],i);
9453 branch_regs[i-1].isconst=0;
9454 alloc_reg(&current,i,CCREG); // Not taken path
9455 dirty_reg(&current,CCREG);
9456 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9457 }
9458 break;
9459 }
9460
9461 if(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)
9462 {
9463 if(rt1[i-1]==31) // JAL/JALR
9464 {
9465 // Subroutine call will return here, don't alloc any registers
9466 current.is32=1;
9467 current.dirty=0;
9468 clear_all_regs(current.regmap);
9469 alloc_reg(&current,i,CCREG);
9470 dirty_reg(&current,CCREG);
9471 }
9472 else if(i+1<slen)
9473 {
9474 // Internal branch will jump here, match registers to caller
9475 current.is32=0x3FFFFFFFFLL;
9476 current.dirty=0;
9477 clear_all_regs(current.regmap);
9478 alloc_reg(&current,i,CCREG);
9479 dirty_reg(&current,CCREG);
9480 for(j=i-1;j>=0;j--)
9481 {
9482 if(ba[j]==start+i*4+4) {
9483 memcpy(current.regmap,branch_regs[j].regmap,sizeof(current.regmap));
9484 current.is32=branch_regs[j].is32;
9485 current.dirty=branch_regs[j].dirty;
9486 break;
9487 }
9488 }
9489 while(j>=0) {
9490 if(ba[j]==start+i*4+4) {
9491 for(hr=0;hr<HOST_REGS;hr++) {
9492 if(current.regmap[hr]!=branch_regs[j].regmap[hr]) {
9493 current.regmap[hr]=-1;
9494 }
9495 current.is32&=branch_regs[j].is32;
9496 current.dirty&=branch_regs[j].dirty;
9497 }
9498 }
9499 j--;
9500 }
9501 }
9502 }
9503 }
9504
9505 // Count cycles in between branches
9506 ccadj[i]=cc;
9507 if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP||itype[i]==SYSCALL||itype[i]==HLECALL))
9508 {
9509 cc=0;
9510 }
9511#ifdef PCSX
9512 else if(/*itype[i]==LOAD||*/itype[i]==STORE||itype[i]==C1LS) // load causes weird timing issues
9513 {
9514 cc+=2; // 2 cycle penalty (after CLOCK_DIVIDER)
9515 }
9516 else if(itype[i]==C2LS)
9517 {
9518 cc+=4;
9519 }
9520#endif
9521 else
9522 {
9523 cc++;
9524 }
9525
9526 flush_dirty_uppers(&current);
9527 if(!is_ds[i]) {
9528 regs[i].is32=current.is32;
9529 regs[i].dirty=current.dirty;
9530 regs[i].isconst=current.isconst;
9531 memcpy(constmap[i],current.constmap,sizeof(current.constmap));
9532 }
9533 for(hr=0;hr<HOST_REGS;hr++) {
9534 if(hr!=EXCLUDE_REG&&regs[i].regmap[hr]>=0) {
9535 if(regmap_pre[i][hr]!=regs[i].regmap[hr]) {
9536 regs[i].wasconst&=~(1<<hr);
9537 }
9538 }
9539 }
9540 if(current.regmap[HOST_BTREG]==BTREG) current.regmap[HOST_BTREG]=-1;
9541 }
9542
9543 /* Pass 4 - Cull unused host registers */
9544
9545 uint64_t nr=0;
9546
9547 for (i=slen-1;i>=0;i--)
9548 {
9549 int hr;
9550 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
9551 {
9552 if(ba[i]<start || ba[i]>=(start+slen*4))
9553 {
9554 // Branch out of this block, don't need anything
9555 nr=0;
9556 }
9557 else
9558 {
9559 // Internal branch
9560 // Need whatever matches the target
9561 nr=0;
9562 int t=(ba[i]-start)>>2;
9563 for(hr=0;hr<HOST_REGS;hr++)
9564 {
9565 if(regs[i].regmap_entry[hr]>=0) {
9566 if(regs[i].regmap_entry[hr]==regs[t].regmap_entry[hr]) nr|=1<<hr;
9567 }
9568 }
9569 }
9570 // Conditional branch may need registers for following instructions
9571 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
9572 {
9573 if(i<slen-2) {
9574 nr|=needed_reg[i+2];
9575 for(hr=0;hr<HOST_REGS;hr++)
9576 {
9577 if(regmap_pre[i+2][hr]>=0&&get_reg(regs[i+2].regmap_entry,regmap_pre[i+2][hr])<0) nr&=~(1<<hr);
9578 //if((regmap_entry[i+2][hr])>=0) if(!((nr>>hr)&1)) printf("%x-bogus(%d=%d)\n",start+i*4,hr,regmap_entry[i+2][hr]);
9579 }
9580 }
9581 }
9582 // Don't need stuff which is overwritten
9583 if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
9584 if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
9585 // Merge in delay slot
9586 for(hr=0;hr<HOST_REGS;hr++)
9587 {
9588 if(!likely[i]) {
9589 // These are overwritten unless the branch is "likely"
9590 // and the delay slot is nullified if not taken
9591 if(rt1[i+1]&&rt1[i+1]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9592 if(rt2[i+1]&&rt2[i+1]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9593 }
9594 if(us1[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9595 if(us2[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9596 if(rs1[i+1]==regmap_pre[i][hr]) nr|=1<<hr;
9597 if(rs2[i+1]==regmap_pre[i][hr]) nr|=1<<hr;
9598 if(us1[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9599 if(us2[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9600 if(rs1[i+1]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9601 if(rs2[i+1]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9602 if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1)) {
9603 if(dep1[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9604 if(dep2[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9605 }
9606 if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1)) {
9607 if(dep1[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9608 if(dep2[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9609 }
9610 if(itype[i+1]==STORE || itype[i+1]==STORELR || (opcode[i+1]&0x3b)==0x39 || (opcode[i+1]&0x3b)==0x3a) {
9611 if(regmap_pre[i][hr]==INVCP) nr|=1<<hr;
9612 if(regs[i].regmap_entry[hr]==INVCP) nr|=1<<hr;
9613 }
9614 }
9615 }
9616 else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
9617 {
9618 // SYSCALL instruction (software interrupt)
9619 nr=0;
9620 }
9621 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
9622 {
9623 // ERET instruction (return from interrupt)
9624 nr=0;
9625 }
9626 else // Non-branch
9627 {
9628 if(i<slen-1) {
9629 for(hr=0;hr<HOST_REGS;hr++) {
9630 if(regmap_pre[i+1][hr]>=0&&get_reg(regs[i+1].regmap_entry,regmap_pre[i+1][hr])<0) nr&=~(1<<hr);
9631 if(regs[i].regmap[hr]!=regmap_pre[i+1][hr]) nr&=~(1<<hr);
9632 if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
9633 if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
9634 }
9635 }
9636 }
9637 for(hr=0;hr<HOST_REGS;hr++)
9638 {
9639 // Overwritten registers are not needed
9640 if(rt1[i]&&rt1[i]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9641 if(rt2[i]&&rt2[i]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9642 if(FTEMP==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9643 // Source registers are needed
9644 if(us1[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9645 if(us2[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9646 if(rs1[i]==regmap_pre[i][hr]) nr|=1<<hr;
9647 if(rs2[i]==regmap_pre[i][hr]) nr|=1<<hr;
9648 if(us1[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9649 if(us2[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9650 if(rs1[i]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9651 if(rs2[i]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9652 if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1)) {
9653 if(dep1[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9654 if(dep1[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9655 }
9656 if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1)) {
9657 if(dep2[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9658 if(dep2[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9659 }
9660 if(itype[i]==STORE || itype[i]==STORELR || (opcode[i]&0x3b)==0x39 || (opcode[i]&0x3b)==0x3a) {
9661 if(regmap_pre[i][hr]==INVCP) nr|=1<<hr;
9662 if(regs[i].regmap_entry[hr]==INVCP) nr|=1<<hr;
9663 }
9664 // Don't store a register immediately after writing it,
9665 // may prevent dual-issue.
9666 // But do so if this is a branch target, otherwise we
9667 // might have to load the register before the branch.
9668 if(i>0&&!bt[i]&&((regs[i].wasdirty>>hr)&1)) {
9669 if((regmap_pre[i][hr]>0&&regmap_pre[i][hr]<64&&!((unneeded_reg[i]>>regmap_pre[i][hr])&1)) ||
9670 (regmap_pre[i][hr]>64&&!((unneeded_reg_upper[i]>>(regmap_pre[i][hr]&63))&1)) ) {
9671 if(rt1[i-1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9672 if(rt2[i-1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9673 }
9674 if((regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64&&!((unneeded_reg[i]>>regs[i].regmap_entry[hr])&1)) ||
9675 (regs[i].regmap_entry[hr]>64&&!((unneeded_reg_upper[i]>>(regs[i].regmap_entry[hr]&63))&1)) ) {
9676 if(rt1[i-1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9677 if(rt2[i-1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9678 }
9679 }
9680 }
9681 // Cycle count is needed at branches. Assume it is needed at the target too.
9682 if(i==0||bt[i]||itype[i]==CJUMP||itype[i]==FJUMP||itype[i]==SPAN) {
9683 if(regmap_pre[i][HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
9684 if(regs[i].regmap_entry[HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
9685 }
9686 // Save it
9687 needed_reg[i]=nr;
9688
9689 // Deallocate unneeded registers
9690 for(hr=0;hr<HOST_REGS;hr++)
9691 {
9692 if(!((nr>>hr)&1)) {
9693 if(regs[i].regmap_entry[hr]!=CCREG) regs[i].regmap_entry[hr]=-1;
9694 if((regs[i].regmap[hr]&63)!=rs1[i] && (regs[i].regmap[hr]&63)!=rs2[i] &&
9695 (regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
9696 (regs[i].regmap[hr]&63)!=PTEMP && (regs[i].regmap[hr]&63)!=CCREG)
9697 {
9698 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
9699 {
9700 if(likely[i]) {
9701 regs[i].regmap[hr]=-1;
9702 regs[i].isconst&=~(1<<hr);
9703 if(i<slen-2) regmap_pre[i+2][hr]=-1;
9704 }
9705 }
9706 }
9707 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
9708 {
9709 int d1=0,d2=0,map=0,temp=0;
9710 if(get_reg(regs[i].regmap,rt1[i+1]|64)>=0||get_reg(branch_regs[i].regmap,rt1[i+1]|64)>=0)
9711 {
9712 d1=dep1[i+1];
9713 d2=dep2[i+1];
9714 }
9715 if(using_tlb) {
9716 if(itype[i+1]==LOAD || itype[i+1]==LOADLR ||
9717 itype[i+1]==STORE || itype[i+1]==STORELR ||
9718 itype[i+1]==C1LS || itype[i+1]==C2LS)
9719 map=TLREG;
9720 } else
9721 if(itype[i+1]==STORE || itype[i+1]==STORELR ||
9722 (opcode[i+1]&0x3b)==0x39 || (opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1 || SWC2/SDC2
9723 map=INVCP;
9724 }
9725 if(itype[i+1]==LOADLR || itype[i+1]==STORELR ||
9726 itype[i+1]==C1LS || itype[i+1]==C2LS)
9727 temp=FTEMP;
9728 if((regs[i].regmap[hr]&63)!=rs1[i] && (regs[i].regmap[hr]&63)!=rs2[i] &&
9729 (regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
9730 (regs[i].regmap[hr]&63)!=rt1[i+1] && (regs[i].regmap[hr]&63)!=rt2[i+1] &&
9731 (regs[i].regmap[hr]^64)!=us1[i+1] && (regs[i].regmap[hr]^64)!=us2[i+1] &&
9732 (regs[i].regmap[hr]^64)!=d1 && (regs[i].regmap[hr]^64)!=d2 &&
9733 regs[i].regmap[hr]!=rs1[i+1] && regs[i].regmap[hr]!=rs2[i+1] &&
9734 (regs[i].regmap[hr]&63)!=temp && regs[i].regmap[hr]!=PTEMP &&
9735 regs[i].regmap[hr]!=RHASH && regs[i].regmap[hr]!=RHTBL &&
9736 regs[i].regmap[hr]!=RTEMP && regs[i].regmap[hr]!=CCREG &&
9737 regs[i].regmap[hr]!=map )
9738 {
9739 regs[i].regmap[hr]=-1;
9740 regs[i].isconst&=~(1<<hr);
9741 if((branch_regs[i].regmap[hr]&63)!=rs1[i] && (branch_regs[i].regmap[hr]&63)!=rs2[i] &&
9742 (branch_regs[i].regmap[hr]&63)!=rt1[i] && (branch_regs[i].regmap[hr]&63)!=rt2[i] &&
9743 (branch_regs[i].regmap[hr]&63)!=rt1[i+1] && (branch_regs[i].regmap[hr]&63)!=rt2[i+1] &&
9744 (branch_regs[i].regmap[hr]^64)!=us1[i+1] && (branch_regs[i].regmap[hr]^64)!=us2[i+1] &&
9745 (branch_regs[i].regmap[hr]^64)!=d1 && (branch_regs[i].regmap[hr]^64)!=d2 &&
9746 branch_regs[i].regmap[hr]!=rs1[i+1] && branch_regs[i].regmap[hr]!=rs2[i+1] &&
9747 (branch_regs[i].regmap[hr]&63)!=temp && branch_regs[i].regmap[hr]!=PTEMP &&
9748 branch_regs[i].regmap[hr]!=RHASH && branch_regs[i].regmap[hr]!=RHTBL &&
9749 branch_regs[i].regmap[hr]!=RTEMP && branch_regs[i].regmap[hr]!=CCREG &&
9750 branch_regs[i].regmap[hr]!=map)
9751 {
9752 branch_regs[i].regmap[hr]=-1;
9753 branch_regs[i].regmap_entry[hr]=-1;
9754 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
9755 {
9756 if(!likely[i]&&i<slen-2) {
9757 regmap_pre[i+2][hr]=-1;
9758 }
9759 }
9760 }
9761 }
9762 }
9763 else
9764 {
9765 // Non-branch
9766 if(i>0)
9767 {
9768 int d1=0,d2=0,map=-1,temp=-1;
9769 if(get_reg(regs[i].regmap,rt1[i]|64)>=0)
9770 {
9771 d1=dep1[i];
9772 d2=dep2[i];
9773 }
9774 if(using_tlb) {
9775 if(itype[i]==LOAD || itype[i]==LOADLR ||
9776 itype[i]==STORE || itype[i]==STORELR ||
9777 itype[i]==C1LS || itype[i]==C2LS)
9778 map=TLREG;
9779 } else if(itype[i]==STORE || itype[i]==STORELR ||
9780 (opcode[i]&0x3b)==0x39 || (opcode[i]&0x3b)==0x3a) { // SWC1/SDC1 || SWC2/SDC2
9781 map=INVCP;
9782 }
9783 if(itype[i]==LOADLR || itype[i]==STORELR ||
9784 itype[i]==C1LS || itype[i]==C2LS)
9785 temp=FTEMP;
9786 if((regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
9787 (regs[i].regmap[hr]^64)!=us1[i] && (regs[i].regmap[hr]^64)!=us2[i] &&
9788 (regs[i].regmap[hr]^64)!=d1 && (regs[i].regmap[hr]^64)!=d2 &&
9789 regs[i].regmap[hr]!=rs1[i] && regs[i].regmap[hr]!=rs2[i] &&
9790 (regs[i].regmap[hr]&63)!=temp && regs[i].regmap[hr]!=map &&
9791 (itype[i]!=SPAN||regs[i].regmap[hr]!=CCREG))
9792 {
9793 if(i<slen-1&&!is_ds[i]) {
9794 if(regmap_pre[i+1][hr]!=-1 || regs[i].regmap[hr]!=-1)
9795 if(regmap_pre[i+1][hr]!=regs[i].regmap[hr])
9796 if(regs[i].regmap[hr]<64||!((regs[i].was32>>(regs[i].regmap[hr]&63))&1))
9797 {
9798 printf("fail: %x (%d %d!=%d)\n",start+i*4,hr,regmap_pre[i+1][hr],regs[i].regmap[hr]);
9799 assert(regmap_pre[i+1][hr]==regs[i].regmap[hr]);
9800 }
9801 regmap_pre[i+1][hr]=-1;
9802 if(regs[i+1].regmap_entry[hr]==CCREG) regs[i+1].regmap_entry[hr]=-1;
9803 }
9804 regs[i].regmap[hr]=-1;
9805 regs[i].isconst&=~(1<<hr);
9806 }
9807 }
9808 }
9809 }
9810 }
9811 }
9812
9813 /* Pass 5 - Pre-allocate registers */
9814
9815 // If a register is allocated during a loop, try to allocate it for the
9816 // entire loop, if possible. This avoids loading/storing registers
9817 // inside of the loop.
9818
9819 signed char f_regmap[HOST_REGS];
9820 clear_all_regs(f_regmap);
9821 for(i=0;i<slen-1;i++)
9822 {
9823 if(itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
9824 {
9825 if(ba[i]>=start && ba[i]<(start+i*4))
9826 if(itype[i+1]==NOP||itype[i+1]==MOV||itype[i+1]==ALU
9827 ||itype[i+1]==SHIFTIMM||itype[i+1]==IMM16||itype[i+1]==LOAD
9828 ||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS
9829 ||itype[i+1]==SHIFT||itype[i+1]==COP1||itype[i+1]==FLOAT
9830 ||itype[i+1]==FCOMP||itype[i+1]==FCONV
9831 ||itype[i+1]==COP2||itype[i+1]==C2LS||itype[i+1]==C2OP)
9832 {
9833 int t=(ba[i]-start)>>2;
9834 if(t>0&&(itype[t-1]!=UJUMP&&itype[t-1]!=RJUMP&&itype[t-1]!=CJUMP&&itype[t-1]!=SJUMP&&itype[t-1]!=FJUMP)) // loop_preload can't handle jumps into delay slots
9835 if(t<2||(itype[t-2]!=UJUMP)) // call/ret assumes no registers allocated
9836 for(hr=0;hr<HOST_REGS;hr++)
9837 {
9838 if(regs[i].regmap[hr]>64) {
9839 if(!((regs[i].dirty>>hr)&1))
9840 f_regmap[hr]=regs[i].regmap[hr];
9841 else f_regmap[hr]=-1;
9842 }
9843 else if(regs[i].regmap[hr]>=0) {
9844 if(f_regmap[hr]!=regs[i].regmap[hr]) {
9845 // dealloc old register
9846 int n;
9847 for(n=0;n<HOST_REGS;n++)
9848 {
9849 if(f_regmap[n]==regs[i].regmap[hr]) {f_regmap[n]=-1;}
9850 }
9851 // and alloc new one
9852 f_regmap[hr]=regs[i].regmap[hr];
9853 }
9854 }
9855 if(branch_regs[i].regmap[hr]>64) {
9856 if(!((branch_regs[i].dirty>>hr)&1))
9857 f_regmap[hr]=branch_regs[i].regmap[hr];
9858 else f_regmap[hr]=-1;
9859 }
9860 else if(branch_regs[i].regmap[hr]>=0) {
9861 if(f_regmap[hr]!=branch_regs[i].regmap[hr]) {
9862 // dealloc old register
9863 int n;
9864 for(n=0;n<HOST_REGS;n++)
9865 {
9866 if(f_regmap[n]==branch_regs[i].regmap[hr]) {f_regmap[n]=-1;}
9867 }
9868 // and alloc new one
9869 f_regmap[hr]=branch_regs[i].regmap[hr];
9870 }
9871 }
9872 if(ooo[i]) {
9873 if(count_free_regs(regs[i].regmap)<=minimum_free_regs[i+1])
9874 f_regmap[hr]=branch_regs[i].regmap[hr];
9875 }else{
9876 if(count_free_regs(branch_regs[i].regmap)<=minimum_free_regs[i+1])
9877 f_regmap[hr]=branch_regs[i].regmap[hr];
9878 }
9879 // Avoid dirty->clean transition
9880 #ifdef DESTRUCTIVE_WRITEBACK
9881 if(t>0) if(get_reg(regmap_pre[t],f_regmap[hr])>=0) if((regs[t].wasdirty>>get_reg(regmap_pre[t],f_regmap[hr]))&1) f_regmap[hr]=-1;
9882 #endif
9883 // This check is only strictly required in the DESTRUCTIVE_WRITEBACK
9884 // case above, however it's always a good idea. We can't hoist the
9885 // load if the register was already allocated, so there's no point
9886 // wasting time analyzing most of these cases. It only "succeeds"
9887 // when the mapping was different and the load can be replaced with
9888 // a mov, which is of negligible benefit. So such cases are
9889 // skipped below.
9890 if(f_regmap[hr]>0) {
9891 if(regs[t].regmap_entry[hr]<0&&get_reg(regmap_pre[t],f_regmap[hr])<0) {
9892 int r=f_regmap[hr];
9893 for(j=t;j<=i;j++)
9894 {
9895 //printf("Test %x -> %x, %x %d/%d\n",start+i*4,ba[i],start+j*4,hr,r);
9896 if(r<34&&((unneeded_reg[j]>>r)&1)) break;
9897 if(r>63&&((unneeded_reg_upper[j]>>(r&63))&1)) break;
9898 if(r>63) {
9899 // NB This can exclude the case where the upper-half
9900 // register is lower numbered than the lower-half
9901 // register. Not sure if it's worth fixing...
9902 if(get_reg(regs[j].regmap,r&63)<0) break;
9903 if(get_reg(regs[j].regmap_entry,r&63)<0) break;
9904 if(regs[j].is32&(1LL<<(r&63))) break;
9905 }
9906 if(regs[j].regmap[hr]==f_regmap[hr]&&(f_regmap[hr]&63)<TEMPREG) {
9907 //printf("Hit %x -> %x, %x %d/%d\n",start+i*4,ba[i],start+j*4,hr,r);
9908 int k;
9909 if(regs[i].regmap[hr]==-1&&branch_regs[i].regmap[hr]==-1) {
9910 if(get_reg(regs[i+2].regmap,f_regmap[hr])>=0) break;
9911 if(r>63) {
9912 if(get_reg(regs[i].regmap,r&63)<0) break;
9913 if(get_reg(branch_regs[i].regmap,r&63)<0) break;
9914 }
9915 k=i;
9916 while(k>1&&regs[k-1].regmap[hr]==-1) {
9917 if(count_free_regs(regs[k-1].regmap)<=minimum_free_regs[k-1]) {
9918 //printf("no free regs for store %x\n",start+(k-1)*4);
9919 break;
9920 }
9921 if(get_reg(regs[k-1].regmap,f_regmap[hr])>=0) {
9922 //printf("no-match due to different register\n");
9923 break;
9924 }
9925 if(itype[k-2]==UJUMP||itype[k-2]==RJUMP||itype[k-2]==CJUMP||itype[k-2]==SJUMP||itype[k-2]==FJUMP) {
9926 //printf("no-match due to branch\n");
9927 break;
9928 }
9929 // call/ret fast path assumes no registers allocated
9930 if(k>2&&(itype[k-3]==UJUMP||itype[k-3]==RJUMP)) {
9931 break;
9932 }
9933 if(r>63) {
9934 // NB This can exclude the case where the upper-half
9935 // register is lower numbered than the lower-half
9936 // register. Not sure if it's worth fixing...
9937 if(get_reg(regs[k-1].regmap,r&63)<0) break;
9938 if(regs[k-1].is32&(1LL<<(r&63))) break;
9939 }
9940 k--;
9941 }
9942 if(i<slen-1) {
9943 if((regs[k].is32&(1LL<<f_regmap[hr]))!=
9944 (regs[i+2].was32&(1LL<<f_regmap[hr]))) {
9945 //printf("bad match after branch\n");
9946 break;
9947 }
9948 }
9949 if(regs[k-1].regmap[hr]==f_regmap[hr]&&regmap_pre[k][hr]==f_regmap[hr]) {
9950 //printf("Extend r%d, %x ->\n",hr,start+k*4);
9951 while(k<i) {
9952 regs[k].regmap_entry[hr]=f_regmap[hr];
9953 regs[k].regmap[hr]=f_regmap[hr];
9954 regmap_pre[k+1][hr]=f_regmap[hr];
9955 regs[k].wasdirty&=~(1<<hr);
9956 regs[k].dirty&=~(1<<hr);
9957 regs[k].wasdirty|=(1<<hr)&regs[k-1].dirty;
9958 regs[k].dirty|=(1<<hr)&regs[k].wasdirty;
9959 regs[k].wasconst&=~(1<<hr);
9960 regs[k].isconst&=~(1<<hr);
9961 k++;
9962 }
9963 }
9964 else {
9965 //printf("Fail Extend r%d, %x ->\n",hr,start+k*4);
9966 break;
9967 }
9968 assert(regs[i-1].regmap[hr]==f_regmap[hr]);
9969 if(regs[i-1].regmap[hr]==f_regmap[hr]&&regmap_pre[i][hr]==f_regmap[hr]) {
9970 //printf("OK fill %x (r%d)\n",start+i*4,hr);
9971 regs[i].regmap_entry[hr]=f_regmap[hr];
9972 regs[i].regmap[hr]=f_regmap[hr];
9973 regs[i].wasdirty&=~(1<<hr);
9974 regs[i].dirty&=~(1<<hr);
9975 regs[i].wasdirty|=(1<<hr)&regs[i-1].dirty;
9976 regs[i].dirty|=(1<<hr)&regs[i-1].dirty;
9977 regs[i].wasconst&=~(1<<hr);
9978 regs[i].isconst&=~(1<<hr);
9979 branch_regs[i].regmap_entry[hr]=f_regmap[hr];
9980 branch_regs[i].wasdirty&=~(1<<hr);
9981 branch_regs[i].wasdirty|=(1<<hr)&regs[i].dirty;
9982 branch_regs[i].regmap[hr]=f_regmap[hr];
9983 branch_regs[i].dirty&=~(1<<hr);
9984 branch_regs[i].dirty|=(1<<hr)&regs[i].dirty;
9985 branch_regs[i].wasconst&=~(1<<hr);
9986 branch_regs[i].isconst&=~(1<<hr);
9987 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000) {
9988 regmap_pre[i+2][hr]=f_regmap[hr];
9989 regs[i+2].wasdirty&=~(1<<hr);
9990 regs[i+2].wasdirty|=(1<<hr)&regs[i].dirty;
9991 assert((branch_regs[i].is32&(1LL<<f_regmap[hr]))==
9992 (regs[i+2].was32&(1LL<<f_regmap[hr])));
9993 }
9994 }
9995 }
9996 for(k=t;k<j;k++) {
9997 // Alloc register clean at beginning of loop,
9998 // but may dirty it in pass 6
9999 regs[k].regmap_entry[hr]=f_regmap[hr];
10000 regs[k].regmap[hr]=f_regmap[hr];
10001 regs[k].dirty&=~(1<<hr);
10002 regs[k].wasconst&=~(1<<hr);
10003 regs[k].isconst&=~(1<<hr);
10004 if(itype[k]==UJUMP||itype[k]==RJUMP||itype[k]==CJUMP||itype[k]==SJUMP||itype[k]==FJUMP) {
10005 branch_regs[k].regmap_entry[hr]=f_regmap[hr];
10006 branch_regs[k].regmap[hr]=f_regmap[hr];
10007 branch_regs[k].dirty&=~(1<<hr);
10008 branch_regs[k].wasconst&=~(1<<hr);
10009 branch_regs[k].isconst&=~(1<<hr);
10010 if(itype[k]!=RJUMP&&itype[k]!=UJUMP&&(source[k]>>16)!=0x1000) {
10011 regmap_pre[k+2][hr]=f_regmap[hr];
10012 regs[k+2].wasdirty&=~(1<<hr);
10013 assert((branch_regs[k].is32&(1LL<<f_regmap[hr]))==
10014 (regs[k+2].was32&(1LL<<f_regmap[hr])));
10015 }
10016 }
10017 else
10018 {
10019 regmap_pre[k+1][hr]=f_regmap[hr];
10020 regs[k+1].wasdirty&=~(1<<hr);
10021 }
10022 }
10023 if(regs[j].regmap[hr]==f_regmap[hr])
10024 regs[j].regmap_entry[hr]=f_regmap[hr];
10025 break;
10026 }
10027 if(j==i) break;
10028 if(regs[j].regmap[hr]>=0)
10029 break;
10030 if(get_reg(regs[j].regmap,f_regmap[hr])>=0) {
10031 //printf("no-match due to different register\n");
10032 break;
10033 }
10034 if((regs[j+1].is32&(1LL<<f_regmap[hr]))!=(regs[j].is32&(1LL<<f_regmap[hr]))) {
10035 //printf("32/64 mismatch %x %d\n",start+j*4,hr);
10036 break;
10037 }
10038 if(itype[j]==UJUMP||itype[j]==RJUMP||(source[j]>>16)==0x1000)
10039 {
10040 // Stop on unconditional branch
10041 break;
10042 }
10043 if(itype[j]==CJUMP||itype[j]==SJUMP||itype[j]==FJUMP)
10044 {
10045 if(ooo[j]) {
10046 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j+1])
10047 break;
10048 }else{
10049 if(count_free_regs(branch_regs[j].regmap)<=minimum_free_regs[j+1])
10050 break;
10051 }
10052 if(get_reg(branch_regs[j].regmap,f_regmap[hr])>=0) {
10053 //printf("no-match due to different register (branch)\n");
10054 break;
10055 }
10056 }
10057 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) {
10058 //printf("No free regs for store %x\n",start+j*4);
10059 break;
10060 }
10061 if(f_regmap[hr]>=64) {
10062 if(regs[j].is32&(1LL<<(f_regmap[hr]&63))) {
10063 break;
10064 }
10065 else
10066 {
10067 if(get_reg(regs[j].regmap,f_regmap[hr]&63)<0) {
10068 break;
10069 }
10070 }
10071 }
10072 }
10073 }
10074 }
10075 }
10076 }
10077 }else{
10078 int count=0;
10079 for(hr=0;hr<HOST_REGS;hr++)
10080 {
10081 if(hr!=EXCLUDE_REG) {
10082 if(regs[i].regmap[hr]>64) {
10083 if(!((regs[i].dirty>>hr)&1))
10084 f_regmap[hr]=regs[i].regmap[hr];
10085 }
10086 else if(regs[i].regmap[hr]>=0) {
10087 if(f_regmap[hr]!=regs[i].regmap[hr]) {
10088 // dealloc old register
10089 int n;
10090 for(n=0;n<HOST_REGS;n++)
10091 {
10092 if(f_regmap[n]==regs[i].regmap[hr]) {f_regmap[n]=-1;}
10093 }
10094 // and alloc new one
10095 f_regmap[hr]=regs[i].regmap[hr];
10096 }
10097 }
10098 else if(regs[i].regmap[hr]<0) count++;
10099 }
10100 }
10101 // Try to restore cycle count at branch targets
10102 if(bt[i]) {
10103 for(j=i;j<slen-1;j++) {
10104 if(regs[j].regmap[HOST_CCREG]!=-1) break;
10105 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) {
10106 //printf("no free regs for store %x\n",start+j*4);
10107 break;
10108 }
10109 }
10110 if(regs[j].regmap[HOST_CCREG]==CCREG) {
10111 int k=i;
10112 //printf("Extend CC, %x -> %x\n",start+k*4,start+j*4);
10113 while(k<j) {
10114 regs[k].regmap_entry[HOST_CCREG]=CCREG;
10115 regs[k].regmap[HOST_CCREG]=CCREG;
10116 regmap_pre[k+1][HOST_CCREG]=CCREG;
10117 regs[k+1].wasdirty|=1<<HOST_CCREG;
10118 regs[k].dirty|=1<<HOST_CCREG;
10119 regs[k].wasconst&=~(1<<HOST_CCREG);
10120 regs[k].isconst&=~(1<<HOST_CCREG);
10121 k++;
10122 }
10123 regs[j].regmap_entry[HOST_CCREG]=CCREG;
10124 }
10125 // Work backwards from the branch target
10126 if(j>i&&f_regmap[HOST_CCREG]==CCREG)
10127 {
10128 //printf("Extend backwards\n");
10129 int k;
10130 k=i;
10131 while(regs[k-1].regmap[HOST_CCREG]==-1) {
10132 if(count_free_regs(regs[k-1].regmap)<=minimum_free_regs[k-1]) {
10133 //printf("no free regs for store %x\n",start+(k-1)*4);
10134 break;
10135 }
10136 k--;
10137 }
10138 if(regs[k-1].regmap[HOST_CCREG]==CCREG) {
10139 //printf("Extend CC, %x ->\n",start+k*4);
10140 while(k<=i) {
10141 regs[k].regmap_entry[HOST_CCREG]=CCREG;
10142 regs[k].regmap[HOST_CCREG]=CCREG;
10143 regmap_pre[k+1][HOST_CCREG]=CCREG;
10144 regs[k+1].wasdirty|=1<<HOST_CCREG;
10145 regs[k].dirty|=1<<HOST_CCREG;
10146 regs[k].wasconst&=~(1<<HOST_CCREG);
10147 regs[k].isconst&=~(1<<HOST_CCREG);
10148 k++;
10149 }
10150 }
10151 else {
10152 //printf("Fail Extend CC, %x ->\n",start+k*4);
10153 }
10154 }
10155 }
10156 if(itype[i]!=STORE&&itype[i]!=STORELR&&itype[i]!=C1LS&&itype[i]!=SHIFT&&
10157 itype[i]!=NOP&&itype[i]!=MOV&&itype[i]!=ALU&&itype[i]!=SHIFTIMM&&
10158 itype[i]!=IMM16&&itype[i]!=LOAD&&itype[i]!=COP1&&itype[i]!=FLOAT&&
10159 itype[i]!=FCONV&&itype[i]!=FCOMP)
10160 {
10161 memcpy(f_regmap,regs[i].regmap,sizeof(f_regmap));
10162 }
10163 }
10164 }
10165
10166 // This allocates registers (if possible) one instruction prior
10167 // to use, which can avoid a load-use penalty on certain CPUs.
10168 for(i=0;i<slen-1;i++)
10169 {
10170 if(!i||(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP))
10171 {
10172 if(!bt[i+1])
10173 {
10174 if(itype[i]==ALU||itype[i]==MOV||itype[i]==LOAD||itype[i]==SHIFTIMM||itype[i]==IMM16
10175 ||((itype[i]==COP1||itype[i]==COP2)&&opcode2[i]<3))
10176 {
10177 if(rs1[i+1]) {
10178 if((hr=get_reg(regs[i+1].regmap,rs1[i+1]))>=0)
10179 {
10180 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10181 {
10182 regs[i].regmap[hr]=regs[i+1].regmap[hr];
10183 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
10184 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
10185 regs[i].isconst&=~(1<<hr);
10186 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10187 constmap[i][hr]=constmap[i+1][hr];
10188 regs[i+1].wasdirty&=~(1<<hr);
10189 regs[i].dirty&=~(1<<hr);
10190 }
10191 }
10192 }
10193 if(rs2[i+1]) {
10194 if((hr=get_reg(regs[i+1].regmap,rs2[i+1]))>=0)
10195 {
10196 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10197 {
10198 regs[i].regmap[hr]=regs[i+1].regmap[hr];
10199 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
10200 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
10201 regs[i].isconst&=~(1<<hr);
10202 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10203 constmap[i][hr]=constmap[i+1][hr];
10204 regs[i+1].wasdirty&=~(1<<hr);
10205 regs[i].dirty&=~(1<<hr);
10206 }
10207 }
10208 }
10209 if(itype[i+1]==LOAD&&rs1[i+1]&&get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10210 if((hr=get_reg(regs[i+1].regmap,rt1[i+1]))>=0)
10211 {
10212 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10213 {
10214 regs[i].regmap[hr]=rs1[i+1];
10215 regmap_pre[i+1][hr]=rs1[i+1];
10216 regs[i+1].regmap_entry[hr]=rs1[i+1];
10217 regs[i].isconst&=~(1<<hr);
10218 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10219 constmap[i][hr]=constmap[i+1][hr];
10220 regs[i+1].wasdirty&=~(1<<hr);
10221 regs[i].dirty&=~(1<<hr);
10222 }
10223 }
10224 }
10225 if(lt1[i+1]&&get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10226 if((hr=get_reg(regs[i+1].regmap,rt1[i+1]))>=0)
10227 {
10228 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10229 {
10230 regs[i].regmap[hr]=rs1[i+1];
10231 regmap_pre[i+1][hr]=rs1[i+1];
10232 regs[i+1].regmap_entry[hr]=rs1[i+1];
10233 regs[i].isconst&=~(1<<hr);
10234 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10235 constmap[i][hr]=constmap[i+1][hr];
10236 regs[i+1].wasdirty&=~(1<<hr);
10237 regs[i].dirty&=~(1<<hr);
10238 }
10239 }
10240 }
10241 #ifndef HOST_IMM_ADDR32
10242 if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS||itype[i+1]==C2LS) {
10243 hr=get_reg(regs[i+1].regmap,TLREG);
10244 if(hr>=0) {
10245 int sr=get_reg(regs[i+1].regmap,rs1[i+1]);
10246 if(sr>=0&&((regs[i+1].wasconst>>sr)&1)) {
10247 int nr;
10248 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10249 {
10250 regs[i].regmap[hr]=MGEN1+((i+1)&1);
10251 regmap_pre[i+1][hr]=MGEN1+((i+1)&1);
10252 regs[i+1].regmap_entry[hr]=MGEN1+((i+1)&1);
10253 regs[i].isconst&=~(1<<hr);
10254 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10255 constmap[i][hr]=constmap[i+1][hr];
10256 regs[i+1].wasdirty&=~(1<<hr);
10257 regs[i].dirty&=~(1<<hr);
10258 }
10259 else if((nr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1))>=0)
10260 {
10261 // move it to another register
10262 regs[i+1].regmap[hr]=-1;
10263 regmap_pre[i+2][hr]=-1;
10264 regs[i+1].regmap[nr]=TLREG;
10265 regmap_pre[i+2][nr]=TLREG;
10266 regs[i].regmap[nr]=MGEN1+((i+1)&1);
10267 regmap_pre[i+1][nr]=MGEN1+((i+1)&1);
10268 regs[i+1].regmap_entry[nr]=MGEN1+((i+1)&1);
10269 regs[i].isconst&=~(1<<nr);
10270 regs[i+1].isconst&=~(1<<nr);
10271 regs[i].dirty&=~(1<<nr);
10272 regs[i+1].wasdirty&=~(1<<nr);
10273 regs[i+1].dirty&=~(1<<nr);
10274 regs[i+2].wasdirty&=~(1<<nr);
10275 }
10276 }
10277 }
10278 }
10279 #endif
10280 if(itype[i+1]==STORE||itype[i+1]==STORELR
10281 ||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SB/SH/SW/SD/SWC1/SDC1/SWC2/SDC2
10282 if(get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10283 hr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1);
10284 if(hr<0) hr=get_reg(regs[i+1].regmap,-1);
10285 else {regs[i+1].regmap[hr]=AGEN1+((i+1)&1);regs[i+1].isconst&=~(1<<hr);}
10286 assert(hr>=0);
10287 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10288 {
10289 regs[i].regmap[hr]=rs1[i+1];
10290 regmap_pre[i+1][hr]=rs1[i+1];
10291 regs[i+1].regmap_entry[hr]=rs1[i+1];
10292 regs[i].isconst&=~(1<<hr);
10293 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10294 constmap[i][hr]=constmap[i+1][hr];
10295 regs[i+1].wasdirty&=~(1<<hr);
10296 regs[i].dirty&=~(1<<hr);
10297 }
10298 }
10299 }
10300 if(itype[i+1]==LOADLR||(opcode[i+1]&0x3b)==0x31||(opcode[i+1]&0x3b)==0x32) { // LWC1/LDC1, LWC2/LDC2
10301 if(get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10302 int nr;
10303 hr=get_reg(regs[i+1].regmap,FTEMP);
10304 assert(hr>=0);
10305 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10306 {
10307 regs[i].regmap[hr]=rs1[i+1];
10308 regmap_pre[i+1][hr]=rs1[i+1];
10309 regs[i+1].regmap_entry[hr]=rs1[i+1];
10310 regs[i].isconst&=~(1<<hr);
10311 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10312 constmap[i][hr]=constmap[i+1][hr];
10313 regs[i+1].wasdirty&=~(1<<hr);
10314 regs[i].dirty&=~(1<<hr);
10315 }
10316 else if((nr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1))>=0)
10317 {
10318 // move it to another register
10319 regs[i+1].regmap[hr]=-1;
10320 regmap_pre[i+2][hr]=-1;
10321 regs[i+1].regmap[nr]=FTEMP;
10322 regmap_pre[i+2][nr]=FTEMP;
10323 regs[i].regmap[nr]=rs1[i+1];
10324 regmap_pre[i+1][nr]=rs1[i+1];
10325 regs[i+1].regmap_entry[nr]=rs1[i+1];
10326 regs[i].isconst&=~(1<<nr);
10327 regs[i+1].isconst&=~(1<<nr);
10328 regs[i].dirty&=~(1<<nr);
10329 regs[i+1].wasdirty&=~(1<<nr);
10330 regs[i+1].dirty&=~(1<<nr);
10331 regs[i+2].wasdirty&=~(1<<nr);
10332 }
10333 }
10334 }
10335 if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR/*||itype[i+1]==C1LS||||itype[i+1]==C2LS*/) {
10336 if(itype[i+1]==LOAD)
10337 hr=get_reg(regs[i+1].regmap,rt1[i+1]);
10338 if(itype[i+1]==LOADLR||(opcode[i+1]&0x3b)==0x31||(opcode[i+1]&0x3b)==0x32) // LWC1/LDC1, LWC2/LDC2
10339 hr=get_reg(regs[i+1].regmap,FTEMP);
10340 if(itype[i+1]==STORE||itype[i+1]==STORELR||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1/SWC2/SDC2
10341 hr=get_reg(regs[i+1].regmap,AGEN1+((i+1)&1));
10342 if(hr<0) hr=get_reg(regs[i+1].regmap,-1);
10343 }
10344 if(hr>=0&&regs[i].regmap[hr]<0) {
10345 int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
10346 if(rs>=0&&((regs[i+1].wasconst>>rs)&1)) {
10347 regs[i].regmap[hr]=AGEN1+((i+1)&1);
10348 regmap_pre[i+1][hr]=AGEN1+((i+1)&1);
10349 regs[i+1].regmap_entry[hr]=AGEN1+((i+1)&1);
10350 regs[i].isconst&=~(1<<hr);
10351 regs[i+1].wasdirty&=~(1<<hr);
10352 regs[i].dirty&=~(1<<hr);
10353 }
10354 }
10355 }
10356 }
10357 }
10358 }
10359 }
10360
10361 /* Pass 6 - Optimize clean/dirty state */
10362 clean_registers(0,slen-1,1);
10363
10364 /* Pass 7 - Identify 32-bit registers */
10365#ifndef FORCE32
10366 provisional_r32();
10367
10368 u_int r32=0;
10369
10370 for (i=slen-1;i>=0;i--)
10371 {
10372 int hr;
10373 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
10374 {
10375 if(ba[i]<start || ba[i]>=(start+slen*4))
10376 {
10377 // Branch out of this block, don't need anything
10378 r32=0;
10379 }
10380 else
10381 {
10382 // Internal branch
10383 // Need whatever matches the target
10384 // (and doesn't get overwritten by the delay slot instruction)
10385 r32=0;
10386 int t=(ba[i]-start)>>2;
10387 if(ba[i]>start+i*4) {
10388 // Forward branch
10389 if(!(requires_32bit[t]&~regs[i].was32))
10390 r32|=requires_32bit[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
10391 }else{
10392 // Backward branch
10393 //if(!(regs[t].was32&~unneeded_reg_upper[t]&~regs[i].was32))
10394 // r32|=regs[t].was32&~unneeded_reg_upper[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
10395 if(!(pr32[t]&~regs[i].was32))
10396 r32|=pr32[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
10397 }
10398 }
10399 // Conditional branch may need registers for following instructions
10400 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
10401 {
10402 if(i<slen-2) {
10403 r32|=requires_32bit[i+2];
10404 r32&=regs[i].was32;
10405 // Mark this address as a branch target since it may be called
10406 // upon return from interrupt
10407 bt[i+2]=1;
10408 }
10409 }
10410 // Merge in delay slot
10411 if(!likely[i]) {
10412 // These are overwritten unless the branch is "likely"
10413 // and the delay slot is nullified if not taken
10414 r32&=~(1LL<<rt1[i+1]);
10415 r32&=~(1LL<<rt2[i+1]);
10416 }
10417 // Assume these are needed (delay slot)
10418 if(us1[i+1]>0)
10419 {
10420 if((regs[i].was32>>us1[i+1])&1) r32|=1LL<<us1[i+1];
10421 }
10422 if(us2[i+1]>0)
10423 {
10424 if((regs[i].was32>>us2[i+1])&1) r32|=1LL<<us2[i+1];
10425 }
10426 if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1))
10427 {
10428 if((regs[i].was32>>dep1[i+1])&1) r32|=1LL<<dep1[i+1];
10429 }
10430 if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1))
10431 {
10432 if((regs[i].was32>>dep2[i+1])&1) r32|=1LL<<dep2[i+1];
10433 }
10434 }
10435 else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
10436 {
10437 // SYSCALL instruction (software interrupt)
10438 r32=0;
10439 }
10440 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
10441 {
10442 // ERET instruction (return from interrupt)
10443 r32=0;
10444 }
10445 // Check 32 bits
10446 r32&=~(1LL<<rt1[i]);
10447 r32&=~(1LL<<rt2[i]);
10448 if(us1[i]>0)
10449 {
10450 if((regs[i].was32>>us1[i])&1) r32|=1LL<<us1[i];
10451 }
10452 if(us2[i]>0)
10453 {
10454 if((regs[i].was32>>us2[i])&1) r32|=1LL<<us2[i];
10455 }
10456 if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1))
10457 {
10458 if((regs[i].was32>>dep1[i])&1) r32|=1LL<<dep1[i];
10459 }
10460 if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1))
10461 {
10462 if((regs[i].was32>>dep2[i])&1) r32|=1LL<<dep2[i];
10463 }
10464 requires_32bit[i]=r32;
10465
10466 // Dirty registers which are 32-bit, require 32-bit input
10467 // as they will be written as 32-bit values
10468 for(hr=0;hr<HOST_REGS;hr++)
10469 {
10470 if(regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64) {
10471 if((regs[i].was32>>regs[i].regmap_entry[hr])&(regs[i].wasdirty>>hr)&1) {
10472 if(!((unneeded_reg_upper[i]>>regs[i].regmap_entry[hr])&1))
10473 requires_32bit[i]|=1LL<<regs[i].regmap_entry[hr];
10474 }
10475 }
10476 }
10477 //requires_32bit[i]=is32[i]&~unneeded_reg_upper[i]; // DEBUG
10478 }
10479#endif
10480
10481 if(itype[slen-1]==SPAN) {
10482 bt[slen-1]=1; // Mark as a branch target so instruction can restart after exception
10483 }
10484
10485 /* Debug/disassembly */
10486 if((void*)assem_debug==(void*)printf)
10487 for(i=0;i<slen;i++)
10488 {
10489 printf("U:");
10490 int r;
10491 for(r=1;r<=CCREG;r++) {
10492 if((unneeded_reg[i]>>r)&1) {
10493 if(r==HIREG) printf(" HI");
10494 else if(r==LOREG) printf(" LO");
10495 else printf(" r%d",r);
10496 }
10497 }
10498#ifndef FORCE32
10499 printf(" UU:");
10500 for(r=1;r<=CCREG;r++) {
10501 if(((unneeded_reg_upper[i]&~unneeded_reg[i])>>r)&1) {
10502 if(r==HIREG) printf(" HI");
10503 else if(r==LOREG) printf(" LO");
10504 else printf(" r%d",r);
10505 }
10506 }
10507 printf(" 32:");
10508 for(r=0;r<=CCREG;r++) {
10509 //if(((is32[i]>>r)&(~unneeded_reg[i]>>r))&1) {
10510 if((regs[i].was32>>r)&1) {
10511 if(r==CCREG) printf(" CC");
10512 else if(r==HIREG) printf(" HI");
10513 else if(r==LOREG) printf(" LO");
10514 else printf(" r%d",r);
10515 }
10516 }
10517#endif
10518 printf("\n");
10519 #if defined(__i386__) || defined(__x86_64__)
10520 printf("pre: eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",regmap_pre[i][0],regmap_pre[i][1],regmap_pre[i][2],regmap_pre[i][3],regmap_pre[i][5],regmap_pre[i][6],regmap_pre[i][7]);
10521 #endif
10522 #ifdef __arm__
10523 printf("pre: r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d\n",regmap_pre[i][0],regmap_pre[i][1],regmap_pre[i][2],regmap_pre[i][3],regmap_pre[i][4],regmap_pre[i][5],regmap_pre[i][6],regmap_pre[i][7],regmap_pre[i][8],regmap_pre[i][9],regmap_pre[i][10],regmap_pre[i][12]);
10524 #endif
10525 printf("needs: ");
10526 if(needed_reg[i]&1) printf("eax ");
10527 if((needed_reg[i]>>1)&1) printf("ecx ");
10528 if((needed_reg[i]>>2)&1) printf("edx ");
10529 if((needed_reg[i]>>3)&1) printf("ebx ");
10530 if((needed_reg[i]>>5)&1) printf("ebp ");
10531 if((needed_reg[i]>>6)&1) printf("esi ");
10532 if((needed_reg[i]>>7)&1) printf("edi ");
10533 printf("r:");
10534 for(r=0;r<=CCREG;r++) {
10535 //if(((requires_32bit[i]>>r)&(~unneeded_reg[i]>>r))&1) {
10536 if((requires_32bit[i]>>r)&1) {
10537 if(r==CCREG) printf(" CC");
10538 else if(r==HIREG) printf(" HI");
10539 else if(r==LOREG) printf(" LO");
10540 else printf(" r%d",r);
10541 }
10542 }
10543 printf("\n");
10544 /*printf("pr:");
10545 for(r=0;r<=CCREG;r++) {
10546 //if(((requires_32bit[i]>>r)&(~unneeded_reg[i]>>r))&1) {
10547 if((pr32[i]>>r)&1) {
10548 if(r==CCREG) printf(" CC");
10549 else if(r==HIREG) printf(" HI");
10550 else if(r==LOREG) printf(" LO");
10551 else printf(" r%d",r);
10552 }
10553 }
10554 if(pr32[i]!=requires_32bit[i]) printf(" OOPS");
10555 printf("\n");*/
10556 #if defined(__i386__) || defined(__x86_64__)
10557 printf("entry: eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",regs[i].regmap_entry[0],regs[i].regmap_entry[1],regs[i].regmap_entry[2],regs[i].regmap_entry[3],regs[i].regmap_entry[5],regs[i].regmap_entry[6],regs[i].regmap_entry[7]);
10558 printf("dirty: ");
10559 if(regs[i].wasdirty&1) printf("eax ");
10560 if((regs[i].wasdirty>>1)&1) printf("ecx ");
10561 if((regs[i].wasdirty>>2)&1) printf("edx ");
10562 if((regs[i].wasdirty>>3)&1) printf("ebx ");
10563 if((regs[i].wasdirty>>5)&1) printf("ebp ");
10564 if((regs[i].wasdirty>>6)&1) printf("esi ");
10565 if((regs[i].wasdirty>>7)&1) printf("edi ");
10566 #endif
10567 #ifdef __arm__
10568 printf("entry: r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d\n",regs[i].regmap_entry[0],regs[i].regmap_entry[1],regs[i].regmap_entry[2],regs[i].regmap_entry[3],regs[i].regmap_entry[4],regs[i].regmap_entry[5],regs[i].regmap_entry[6],regs[i].regmap_entry[7],regs[i].regmap_entry[8],regs[i].regmap_entry[9],regs[i].regmap_entry[10],regs[i].regmap_entry[12]);
10569 printf("dirty: ");
10570 if(regs[i].wasdirty&1) printf("r0 ");
10571 if((regs[i].wasdirty>>1)&1) printf("r1 ");
10572 if((regs[i].wasdirty>>2)&1) printf("r2 ");
10573 if((regs[i].wasdirty>>3)&1) printf("r3 ");
10574 if((regs[i].wasdirty>>4)&1) printf("r4 ");
10575 if((regs[i].wasdirty>>5)&1) printf("r5 ");
10576 if((regs[i].wasdirty>>6)&1) printf("r6 ");
10577 if((regs[i].wasdirty>>7)&1) printf("r7 ");
10578 if((regs[i].wasdirty>>8)&1) printf("r8 ");
10579 if((regs[i].wasdirty>>9)&1) printf("r9 ");
10580 if((regs[i].wasdirty>>10)&1) printf("r10 ");
10581 if((regs[i].wasdirty>>12)&1) printf("r12 ");
10582 #endif
10583 printf("\n");
10584 disassemble_inst(i);
10585 //printf ("ccadj[%d] = %d\n",i,ccadj[i]);
10586 #if defined(__i386__) || defined(__x86_64__)
10587 printf("eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d dirty: ",regs[i].regmap[0],regs[i].regmap[1],regs[i].regmap[2],regs[i].regmap[3],regs[i].regmap[5],regs[i].regmap[6],regs[i].regmap[7]);
10588 if(regs[i].dirty&1) printf("eax ");
10589 if((regs[i].dirty>>1)&1) printf("ecx ");
10590 if((regs[i].dirty>>2)&1) printf("edx ");
10591 if((regs[i].dirty>>3)&1) printf("ebx ");
10592 if((regs[i].dirty>>5)&1) printf("ebp ");
10593 if((regs[i].dirty>>6)&1) printf("esi ");
10594 if((regs[i].dirty>>7)&1) printf("edi ");
10595 #endif
10596 #ifdef __arm__
10597 printf("r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d dirty: ",regs[i].regmap[0],regs[i].regmap[1],regs[i].regmap[2],regs[i].regmap[3],regs[i].regmap[4],regs[i].regmap[5],regs[i].regmap[6],regs[i].regmap[7],regs[i].regmap[8],regs[i].regmap[9],regs[i].regmap[10],regs[i].regmap[12]);
10598 if(regs[i].dirty&1) printf("r0 ");
10599 if((regs[i].dirty>>1)&1) printf("r1 ");
10600 if((regs[i].dirty>>2)&1) printf("r2 ");
10601 if((regs[i].dirty>>3)&1) printf("r3 ");
10602 if((regs[i].dirty>>4)&1) printf("r4 ");
10603 if((regs[i].dirty>>5)&1) printf("r5 ");
10604 if((regs[i].dirty>>6)&1) printf("r6 ");
10605 if((regs[i].dirty>>7)&1) printf("r7 ");
10606 if((regs[i].dirty>>8)&1) printf("r8 ");
10607 if((regs[i].dirty>>9)&1) printf("r9 ");
10608 if((regs[i].dirty>>10)&1) printf("r10 ");
10609 if((regs[i].dirty>>12)&1) printf("r12 ");
10610 #endif
10611 printf("\n");
10612 if(regs[i].isconst) {
10613 printf("constants: ");
10614 #if defined(__i386__) || defined(__x86_64__)
10615 if(regs[i].isconst&1) printf("eax=%x ",(int)constmap[i][0]);
10616 if((regs[i].isconst>>1)&1) printf("ecx=%x ",(int)constmap[i][1]);
10617 if((regs[i].isconst>>2)&1) printf("edx=%x ",(int)constmap[i][2]);
10618 if((regs[i].isconst>>3)&1) printf("ebx=%x ",(int)constmap[i][3]);
10619 if((regs[i].isconst>>5)&1) printf("ebp=%x ",(int)constmap[i][5]);
10620 if((regs[i].isconst>>6)&1) printf("esi=%x ",(int)constmap[i][6]);
10621 if((regs[i].isconst>>7)&1) printf("edi=%x ",(int)constmap[i][7]);
10622 #endif
10623 #ifdef __arm__
10624 if(regs[i].isconst&1) printf("r0=%x ",(int)constmap[i][0]);
10625 if((regs[i].isconst>>1)&1) printf("r1=%x ",(int)constmap[i][1]);
10626 if((regs[i].isconst>>2)&1) printf("r2=%x ",(int)constmap[i][2]);
10627 if((regs[i].isconst>>3)&1) printf("r3=%x ",(int)constmap[i][3]);
10628 if((regs[i].isconst>>4)&1) printf("r4=%x ",(int)constmap[i][4]);
10629 if((regs[i].isconst>>5)&1) printf("r5=%x ",(int)constmap[i][5]);
10630 if((regs[i].isconst>>6)&1) printf("r6=%x ",(int)constmap[i][6]);
10631 if((regs[i].isconst>>7)&1) printf("r7=%x ",(int)constmap[i][7]);
10632 if((regs[i].isconst>>8)&1) printf("r8=%x ",(int)constmap[i][8]);
10633 if((regs[i].isconst>>9)&1) printf("r9=%x ",(int)constmap[i][9]);
10634 if((regs[i].isconst>>10)&1) printf("r10=%x ",(int)constmap[i][10]);
10635 if((regs[i].isconst>>12)&1) printf("r12=%x ",(int)constmap[i][12]);
10636 #endif
10637 printf("\n");
10638 }
10639#ifndef FORCE32
10640 printf(" 32:");
10641 for(r=0;r<=CCREG;r++) {
10642 if((regs[i].is32>>r)&1) {
10643 if(r==CCREG) printf(" CC");
10644 else if(r==HIREG) printf(" HI");
10645 else if(r==LOREG) printf(" LO");
10646 else printf(" r%d",r);
10647 }
10648 }
10649 printf("\n");
10650#endif
10651 /*printf(" p32:");
10652 for(r=0;r<=CCREG;r++) {
10653 if((p32[i]>>r)&1) {
10654 if(r==CCREG) printf(" CC");
10655 else if(r==HIREG) printf(" HI");
10656 else if(r==LOREG) printf(" LO");
10657 else printf(" r%d",r);
10658 }
10659 }
10660 if(p32[i]!=regs[i].is32) printf(" NO MATCH\n");
10661 else printf("\n");*/
10662 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP) {
10663 #if defined(__i386__) || defined(__x86_64__)
10664 printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d dirty: ",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
10665 if(branch_regs[i].dirty&1) printf("eax ");
10666 if((branch_regs[i].dirty>>1)&1) printf("ecx ");
10667 if((branch_regs[i].dirty>>2)&1) printf("edx ");
10668 if((branch_regs[i].dirty>>3)&1) printf("ebx ");
10669 if((branch_regs[i].dirty>>5)&1) printf("ebp ");
10670 if((branch_regs[i].dirty>>6)&1) printf("esi ");
10671 if((branch_regs[i].dirty>>7)&1) printf("edi ");
10672 #endif
10673 #ifdef __arm__
10674 printf("branch(%d): r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d dirty: ",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[4],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7],branch_regs[i].regmap[8],branch_regs[i].regmap[9],branch_regs[i].regmap[10],branch_regs[i].regmap[12]);
10675 if(branch_regs[i].dirty&1) printf("r0 ");
10676 if((branch_regs[i].dirty>>1)&1) printf("r1 ");
10677 if((branch_regs[i].dirty>>2)&1) printf("r2 ");
10678 if((branch_regs[i].dirty>>3)&1) printf("r3 ");
10679 if((branch_regs[i].dirty>>4)&1) printf("r4 ");
10680 if((branch_regs[i].dirty>>5)&1) printf("r5 ");
10681 if((branch_regs[i].dirty>>6)&1) printf("r6 ");
10682 if((branch_regs[i].dirty>>7)&1) printf("r7 ");
10683 if((branch_regs[i].dirty>>8)&1) printf("r8 ");
10684 if((branch_regs[i].dirty>>9)&1) printf("r9 ");
10685 if((branch_regs[i].dirty>>10)&1) printf("r10 ");
10686 if((branch_regs[i].dirty>>12)&1) printf("r12 ");
10687 #endif
10688#ifndef FORCE32
10689 printf(" 32:");
10690 for(r=0;r<=CCREG;r++) {
10691 if((branch_regs[i].is32>>r)&1) {
10692 if(r==CCREG) printf(" CC");
10693 else if(r==HIREG) printf(" HI");
10694 else if(r==LOREG) printf(" LO");
10695 else printf(" r%d",r);
10696 }
10697 }
10698 printf("\n");
10699#endif
10700 }
10701 }
10702
10703 /* Pass 8 - Assembly */
10704 linkcount=0;stubcount=0;
10705 ds=0;is_delayslot=0;
10706 cop1_usable=0;
10707 uint64_t is32_pre=0;
10708 u_int dirty_pre=0;
10709 u_int beginning=(u_int)out;
10710 if((u_int)addr&1) {
10711 ds=1;
10712 pagespan_ds();
10713 }
10714 u_int instr_addr0_override=0;
10715
10716#ifdef PCSX
10717 if (start == 0x80030000) {
10718 // nasty hack for fastbios thing
10719 instr_addr0_override=(u_int)out;
10720 emit_movimm(start,0);
10721 emit_readword((int)&pcaddr,1);
10722 emit_writeword(0,(int)&pcaddr);
10723 emit_cmp(0,1);
10724 emit_jne((int)new_dyna_leave);
10725 }
10726#endif
10727 for(i=0;i<slen;i++)
10728 {
10729 //if(ds) printf("ds: ");
10730 if((void*)assem_debug==(void*)printf) disassemble_inst(i);
10731 if(ds) {
10732 ds=0; // Skip delay slot
10733 if(bt[i]) assem_debug("OOPS - branch into delay slot\n");
10734 instr_addr[i]=0;
10735 } else {
10736 #ifndef DESTRUCTIVE_WRITEBACK
10737 if(i<2||(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000))
10738 {
10739 wb_sx(regmap_pre[i],regs[i].regmap_entry,regs[i].wasdirty,is32_pre,regs[i].was32,
10740 unneeded_reg[i],unneeded_reg_upper[i]);
10741 wb_valid(regmap_pre[i],regs[i].regmap_entry,dirty_pre,regs[i].wasdirty,is32_pre,
10742 unneeded_reg[i],unneeded_reg_upper[i]);
10743 }
10744 is32_pre=regs[i].is32;
10745 dirty_pre=regs[i].dirty;
10746 #endif
10747 // write back
10748 if(i<2||(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000))
10749 {
10750 wb_invalidate(regmap_pre[i],regs[i].regmap_entry,regs[i].wasdirty,regs[i].was32,
10751 unneeded_reg[i],unneeded_reg_upper[i]);
10752 loop_preload(regmap_pre[i],regs[i].regmap_entry);
10753 }
10754 // branch target entry point
10755 instr_addr[i]=(u_int)out;
10756 assem_debug("<->\n");
10757 // load regs
10758 if(regs[i].regmap_entry[HOST_CCREG]==CCREG&&regs[i].regmap[HOST_CCREG]!=CCREG)
10759 wb_register(CCREG,regs[i].regmap_entry,regs[i].wasdirty,regs[i].was32);
10760 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i],rs2[i]);
10761 address_generation(i,&regs[i],regs[i].regmap_entry);
10762 load_consts(regmap_pre[i],regs[i].regmap,regs[i].was32,i);
10763 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
10764 {
10765 // Load the delay slot registers if necessary
10766 if(rs1[i+1]!=rs1[i]&&rs1[i+1]!=rs2[i]&&(rs1[i+1]!=rt1[i]||rt1[i]==0))
10767 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i+1],rs1[i+1]);
10768 if(rs2[i+1]!=rs1[i+1]&&rs2[i+1]!=rs1[i]&&rs2[i+1]!=rs2[i]&&(rs2[i+1]!=rt1[i]||rt1[i]==0))
10769 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs2[i+1],rs2[i+1]);
10770 if(itype[i+1]==STORE||itype[i+1]==STORELR||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a)
10771 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,INVCP,INVCP);
10772 }
10773 else if(i+1<slen)
10774 {
10775 // Preload registers for following instruction
10776 if(rs1[i+1]!=rs1[i]&&rs1[i+1]!=rs2[i])
10777 if(rs1[i+1]!=rt1[i]&&rs1[i+1]!=rt2[i])
10778 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i+1],rs1[i+1]);
10779 if(rs2[i+1]!=rs1[i+1]&&rs2[i+1]!=rs1[i]&&rs2[i+1]!=rs2[i])
10780 if(rs2[i+1]!=rt1[i]&&rs2[i+1]!=rt2[i])
10781 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs2[i+1],rs2[i+1]);
10782 }
10783 // TODO: if(is_ooo(i)) address_generation(i+1);
10784 if(itype[i]==CJUMP||itype[i]==FJUMP)
10785 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,CCREG,CCREG);
10786 if(itype[i]==STORE||itype[i]==STORELR||(opcode[i]&0x3b)==0x39||(opcode[i]&0x3b)==0x3a)
10787 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,INVCP,INVCP);
10788 if(bt[i]) cop1_usable=0;
10789 // assemble
10790 switch(itype[i]) {
10791 case ALU:
10792 alu_assemble(i,&regs[i]);break;
10793 case IMM16:
10794 imm16_assemble(i,&regs[i]);break;
10795 case SHIFT:
10796 shift_assemble(i,&regs[i]);break;
10797 case SHIFTIMM:
10798 shiftimm_assemble(i,&regs[i]);break;
10799 case LOAD:
10800 load_assemble(i,&regs[i]);break;
10801 case LOADLR:
10802 loadlr_assemble(i,&regs[i]);break;
10803 case STORE:
10804 store_assemble(i,&regs[i]);break;
10805 case STORELR:
10806 storelr_assemble(i,&regs[i]);break;
10807 case COP0:
10808 cop0_assemble(i,&regs[i]);break;
10809 case COP1:
10810 cop1_assemble(i,&regs[i]);break;
10811 case C1LS:
10812 c1ls_assemble(i,&regs[i]);break;
10813 case COP2:
10814 cop2_assemble(i,&regs[i]);break;
10815 case C2LS:
10816 c2ls_assemble(i,&regs[i]);break;
10817 case C2OP:
10818 c2op_assemble(i,&regs[i]);break;
10819 case FCONV:
10820 fconv_assemble(i,&regs[i]);break;
10821 case FLOAT:
10822 float_assemble(i,&regs[i]);break;
10823 case FCOMP:
10824 fcomp_assemble(i,&regs[i]);break;
10825 case MULTDIV:
10826 multdiv_assemble(i,&regs[i]);break;
10827 case MOV:
10828 mov_assemble(i,&regs[i]);break;
10829 case SYSCALL:
10830 syscall_assemble(i,&regs[i]);break;
10831 case HLECALL:
10832 hlecall_assemble(i,&regs[i]);break;
10833 case INTCALL:
10834 intcall_assemble(i,&regs[i]);break;
10835 case UJUMP:
10836 ujump_assemble(i,&regs[i]);ds=1;break;
10837 case RJUMP:
10838 rjump_assemble(i,&regs[i]);ds=1;break;
10839 case CJUMP:
10840 cjump_assemble(i,&regs[i]);ds=1;break;
10841 case SJUMP:
10842 sjump_assemble(i,&regs[i]);ds=1;break;
10843 case FJUMP:
10844 fjump_assemble(i,&regs[i]);ds=1;break;
10845 case SPAN:
10846 pagespan_assemble(i,&regs[i]);break;
10847 }
10848 if(itype[i]==UJUMP||itype[i]==RJUMP||(source[i]>>16)==0x1000)
10849 literal_pool(1024);
10850 else
10851 literal_pool_jumpover(256);
10852 }
10853 }
10854 //assert(itype[i-2]==UJUMP||itype[i-2]==RJUMP||(source[i-2]>>16)==0x1000);
10855 // If the block did not end with an unconditional branch,
10856 // add a jump to the next instruction.
10857 if(i>1) {
10858 if(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000&&itype[i-1]!=SPAN) {
10859 assert(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP);
10860 assert(i==slen);
10861 if(itype[i-2]!=CJUMP&&itype[i-2]!=SJUMP&&itype[i-2]!=FJUMP) {
10862 store_regs_bt(regs[i-1].regmap,regs[i-1].is32,regs[i-1].dirty,start+i*4);
10863 if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
10864 emit_loadreg(CCREG,HOST_CCREG);
10865 emit_addimm(HOST_CCREG,CLOCK_DIVIDER*(ccadj[i-1]+1),HOST_CCREG);
10866 }
10867 else if(!likely[i-2])
10868 {
10869 store_regs_bt(branch_regs[i-2].regmap,branch_regs[i-2].is32,branch_regs[i-2].dirty,start+i*4);
10870 assert(branch_regs[i-2].regmap[HOST_CCREG]==CCREG);
10871 }
10872 else
10873 {
10874 store_regs_bt(regs[i-2].regmap,regs[i-2].is32,regs[i-2].dirty,start+i*4);
10875 assert(regs[i-2].regmap[HOST_CCREG]==CCREG);
10876 }
10877 add_to_linker((int)out,start+i*4,0);
10878 emit_jmp(0);
10879 }
10880 }
10881 else
10882 {
10883 assert(i>0);
10884 assert(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP);
10885 store_regs_bt(regs[i-1].regmap,regs[i-1].is32,regs[i-1].dirty,start+i*4);
10886 if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
10887 emit_loadreg(CCREG,HOST_CCREG);
10888 emit_addimm(HOST_CCREG,CLOCK_DIVIDER*(ccadj[i-1]+1),HOST_CCREG);
10889 add_to_linker((int)out,start+i*4,0);
10890 emit_jmp(0);
10891 }
10892
10893 // TODO: delay slot stubs?
10894 // Stubs
10895 for(i=0;i<stubcount;i++)
10896 {
10897 switch(stubs[i][0])
10898 {
10899 case LOADB_STUB:
10900 case LOADH_STUB:
10901 case LOADW_STUB:
10902 case LOADD_STUB:
10903 case LOADBU_STUB:
10904 case LOADHU_STUB:
10905 do_readstub(i);break;
10906 case STOREB_STUB:
10907 case STOREH_STUB:
10908 case STOREW_STUB:
10909 case STORED_STUB:
10910 do_writestub(i);break;
10911 case CC_STUB:
10912 do_ccstub(i);break;
10913 case INVCODE_STUB:
10914 do_invstub(i);break;
10915 case FP_STUB:
10916 do_cop1stub(i);break;
10917 case STORELR_STUB:
10918 do_unalignedwritestub(i);break;
10919 }
10920 }
10921
10922 if (instr_addr0_override)
10923 instr_addr[0] = instr_addr0_override;
10924
10925 /* Pass 9 - Linker */
10926 for(i=0;i<linkcount;i++)
10927 {
10928 assem_debug("%8x -> %8x\n",link_addr[i][0],link_addr[i][1]);
10929 literal_pool(64);
10930 if(!link_addr[i][2])
10931 {
10932 void *stub=out;
10933 void *addr=check_addr(link_addr[i][1]);
10934 emit_extjump(link_addr[i][0],link_addr[i][1]);
10935 if(addr) {
10936 set_jump_target(link_addr[i][0],(int)addr);
10937 add_link(link_addr[i][1],stub);
10938 }
10939 else set_jump_target(link_addr[i][0],(int)stub);
10940 }
10941 else
10942 {
10943 // Internal branch
10944 int target=(link_addr[i][1]-start)>>2;
10945 assert(target>=0&&target<slen);
10946 assert(instr_addr[target]);
10947 //#ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
10948 //set_jump_target_fillslot(link_addr[i][0],instr_addr[target],link_addr[i][2]>>1);
10949 //#else
10950 set_jump_target(link_addr[i][0],instr_addr[target]);
10951 //#endif
10952 }
10953 }
10954 // External Branch Targets (jump_in)
10955 if(copy+slen*4>(void *)shadow+sizeof(shadow)) copy=shadow;
10956 for(i=0;i<slen;i++)
10957 {
10958 if(bt[i]||i==0)
10959 {
10960 if(instr_addr[i]) // TODO - delay slots (=null)
10961 {
10962 u_int vaddr=start+i*4;
10963 u_int page=get_page(vaddr);
10964 u_int vpage=get_vpage(vaddr);
10965 literal_pool(256);
10966 //if(!(is32[i]&(~unneeded_reg_upper[i])&~(1LL<<CCREG)))
10967#ifndef FORCE32
10968 if(!requires_32bit[i])
10969#else
10970 if(1)
10971#endif
10972 {
10973 assem_debug("%8x (%d) <- %8x\n",instr_addr[i],i,start+i*4);
10974 assem_debug("jump_in: %x\n",start+i*4);
10975 ll_add(jump_dirty+vpage,vaddr,(void *)out);
10976 int entry_point=do_dirty_stub(i);
10977 ll_add(jump_in+page,vaddr,(void *)entry_point);
10978 // If there was an existing entry in the hash table,
10979 // replace it with the new address.
10980 // Don't add new entries. We'll insert the
10981 // ones that actually get used in check_addr().
10982 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
10983 if(ht_bin[0]==vaddr) {
10984 ht_bin[1]=entry_point;
10985 }
10986 if(ht_bin[2]==vaddr) {
10987 ht_bin[3]=entry_point;
10988 }
10989 }
10990 else
10991 {
10992 u_int r=requires_32bit[i]|!!(requires_32bit[i]>>32);
10993 assem_debug("%8x (%d) <- %8x\n",instr_addr[i],i,start+i*4);
10994 assem_debug("jump_in: %x (restricted - %x)\n",start+i*4,r);
10995 //int entry_point=(int)out;
10996 ////assem_debug("entry_point: %x\n",entry_point);
10997 //load_regs_entry(i);
10998 //if(entry_point==(int)out)
10999 // entry_point=instr_addr[i];
11000 //else
11001 // emit_jmp(instr_addr[i]);
11002 //ll_add_32(jump_in+page,vaddr,r,(void *)entry_point);
11003 ll_add_32(jump_dirty+vpage,vaddr,r,(void *)out);
11004 int entry_point=do_dirty_stub(i);
11005 ll_add_32(jump_in+page,vaddr,r,(void *)entry_point);
11006 }
11007 }
11008 }
11009 }
11010 // Write out the literal pool if necessary
11011 literal_pool(0);
11012 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
11013 // Align code
11014 if(((u_int)out)&7) emit_addnop(13);
11015 #endif
11016 assert((u_int)out-beginning<MAX_OUTPUT_BLOCK_SIZE);
11017 //printf("shadow buffer: %x-%x\n",(int)copy,(int)copy+slen*4);
11018 memcpy(copy,source,slen*4);
11019 copy+=slen*4;
11020
11021 #ifdef __arm__
11022 __clear_cache((void *)beginning,out);
11023 #endif
11024
11025 // If we're within 256K of the end of the buffer,
11026 // start over from the beginning. (Is 256K enough?)
11027 if((int)out>BASE_ADDR+(1<<TARGET_SIZE_2)-MAX_OUTPUT_BLOCK_SIZE) out=(u_char *)BASE_ADDR;
11028
11029 // Trap writes to any of the pages we compiled
11030 for(i=start>>12;i<=(start+slen*4)>>12;i++) {
11031 invalid_code[i]=0;
11032#ifndef DISABLE_TLB
11033 memory_map[i]|=0x40000000;
11034 if((signed int)start>=(signed int)0xC0000000) {
11035 assert(using_tlb);
11036 j=(((u_int)i<<12)+(memory_map[i]<<2)-(u_int)rdram+(u_int)0x80000000)>>12;
11037 invalid_code[j]=0;
11038 memory_map[j]|=0x40000000;
11039 //printf("write protect physical page: %x (virtual %x)\n",j<<12,start);
11040 }
11041#endif
11042 }
11043#ifdef PCSX
11044 // PCSX maps all RAM mirror invalid_code tests to 0x80000000..0x80000000+RAM_SIZE
11045 if(get_page(start)<(RAM_SIZE>>12))
11046 for(i=start>>12;i<=(start+slen*4)>>12;i++)
11047 invalid_code[((u_int)0x80000000>>12)|i]=0;
11048#endif
11049
11050 /* Pass 10 - Free memory by expiring oldest blocks */
11051
11052 int end=((((int)out-BASE_ADDR)>>(TARGET_SIZE_2-16))+16384)&65535;
11053 while(expirep!=end)
11054 {
11055 int shift=TARGET_SIZE_2-3; // Divide into 8 blocks
11056 int base=BASE_ADDR+((expirep>>13)<<shift); // Base address of this block
11057 inv_debug("EXP: Phase %d\n",expirep);
11058 switch((expirep>>11)&3)
11059 {
11060 case 0:
11061 // Clear jump_in and jump_dirty
11062 ll_remove_matching_addrs(jump_in+(expirep&2047),base,shift);
11063 ll_remove_matching_addrs(jump_dirty+(expirep&2047),base,shift);
11064 ll_remove_matching_addrs(jump_in+2048+(expirep&2047),base,shift);
11065 ll_remove_matching_addrs(jump_dirty+2048+(expirep&2047),base,shift);
11066 break;
11067 case 1:
11068 // Clear pointers
11069 ll_kill_pointers(jump_out[expirep&2047],base,shift);
11070 ll_kill_pointers(jump_out[(expirep&2047)+2048],base,shift);
11071 break;
11072 case 2:
11073 // Clear hash table
11074 for(i=0;i<32;i++) {
11075 int *ht_bin=hash_table[((expirep&2047)<<5)+i];
11076 if((ht_bin[3]>>shift)==(base>>shift) ||
11077 ((ht_bin[3]-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(base>>shift)) {
11078 inv_debug("EXP: Remove hash %x -> %x\n",ht_bin[2],ht_bin[3]);
11079 ht_bin[2]=ht_bin[3]=-1;
11080 }
11081 if((ht_bin[1]>>shift)==(base>>shift) ||
11082 ((ht_bin[1]-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(base>>shift)) {
11083 inv_debug("EXP: Remove hash %x -> %x\n",ht_bin[0],ht_bin[1]);
11084 ht_bin[0]=ht_bin[2];
11085 ht_bin[1]=ht_bin[3];
11086 ht_bin[2]=ht_bin[3]=-1;
11087 }
11088 }
11089 break;
11090 case 3:
11091 // Clear jump_out
11092 #ifdef __arm__
11093 if((expirep&2047)==0)
11094 do_clear_cache();
11095 #endif
11096 ll_remove_matching_addrs(jump_out+(expirep&2047),base,shift);
11097 ll_remove_matching_addrs(jump_out+2048+(expirep&2047),base,shift);
11098 break;
11099 }
11100 expirep=(expirep+1)&65535;
11101 }
11102 return 0;
11103}
11104
11105// vim:shiftwidth=2:expandtab