drc: merge Ari64's patch: 02_xor_zero
[pcsx_rearmed.git] / libpcsxcore / new_dynarec / new_dynarec.c
... / ...
CommitLineData
1/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
2 * Mupen64plus - new_dynarec.c *
3 * Copyright (C) 2009-2010 Ari64 *
4 * *
5 * This program is free software; you can redistribute it and/or modify *
6 * it under the terms of the GNU General Public License as published by *
7 * the Free Software Foundation; either version 2 of the License, or *
8 * (at your option) any later version. *
9 * *
10 * This program is distributed in the hope that it will be useful, *
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
13 * GNU General Public License for more details. *
14 * *
15 * You should have received a copy of the GNU General Public License *
16 * along with this program; if not, write to the *
17 * Free Software Foundation, Inc., *
18 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. *
19 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
20
21#include <stdlib.h>
22#include <stdint.h> //include for uint64_t
23#include <assert.h>
24
25#include "emu_if.h" //emulator interface
26
27#include <sys/mman.h>
28
29#ifdef __i386__
30#include "assem_x86.h"
31#endif
32#ifdef __x86_64__
33#include "assem_x64.h"
34#endif
35#ifdef __arm__
36#include "assem_arm.h"
37#endif
38
39#define MAXBLOCK 4096
40#define MAX_OUTPUT_BLOCK_SIZE 262144
41#define CLOCK_DIVIDER 2
42
43struct regstat
44{
45 signed char regmap_entry[HOST_REGS];
46 signed char regmap[HOST_REGS];
47 uint64_t was32;
48 uint64_t is32;
49 uint64_t wasdirty;
50 uint64_t dirty;
51 uint64_t u;
52 uint64_t uu;
53 u_int wasconst;
54 u_int isconst;
55 uint64_t constmap[HOST_REGS];
56};
57
58struct ll_entry
59{
60 u_int vaddr;
61 u_int reg32;
62 void *addr;
63 struct ll_entry *next;
64};
65
66 u_int start;
67 u_int *source;
68 u_int pagelimit;
69 char insn[MAXBLOCK][10];
70 u_char itype[MAXBLOCK];
71 u_char opcode[MAXBLOCK];
72 u_char opcode2[MAXBLOCK];
73 u_char bt[MAXBLOCK];
74 u_char rs1[MAXBLOCK];
75 u_char rs2[MAXBLOCK];
76 u_char rt1[MAXBLOCK];
77 u_char rt2[MAXBLOCK];
78 u_char us1[MAXBLOCK];
79 u_char us2[MAXBLOCK];
80 u_char dep1[MAXBLOCK];
81 u_char dep2[MAXBLOCK];
82 u_char lt1[MAXBLOCK];
83 int imm[MAXBLOCK];
84 u_int ba[MAXBLOCK];
85 char likely[MAXBLOCK];
86 char is_ds[MAXBLOCK];
87 uint64_t unneeded_reg[MAXBLOCK];
88 uint64_t unneeded_reg_upper[MAXBLOCK];
89 uint64_t branch_unneeded_reg[MAXBLOCK];
90 uint64_t branch_unneeded_reg_upper[MAXBLOCK];
91 uint64_t p32[MAXBLOCK];
92 uint64_t pr32[MAXBLOCK];
93 signed char regmap_pre[MAXBLOCK][HOST_REGS];
94 signed char regmap[MAXBLOCK][HOST_REGS];
95 signed char regmap_entry[MAXBLOCK][HOST_REGS];
96 uint64_t constmap[MAXBLOCK][HOST_REGS];
97 uint64_t known_value[HOST_REGS];
98 u_int known_reg;
99 struct regstat regs[MAXBLOCK];
100 struct regstat branch_regs[MAXBLOCK];
101 u_int needed_reg[MAXBLOCK];
102 uint64_t requires_32bit[MAXBLOCK];
103 u_int wont_dirty[MAXBLOCK];
104 u_int will_dirty[MAXBLOCK];
105 int ccadj[MAXBLOCK];
106 int slen;
107 u_int instr_addr[MAXBLOCK];
108 u_int link_addr[MAXBLOCK][3];
109 int linkcount;
110 u_int stubs[MAXBLOCK*3][8];
111 int stubcount;
112 u_int literals[1024][2];
113 int literalcount;
114 int is_delayslot;
115 int cop1_usable;
116 u_char *out;
117 struct ll_entry *jump_in[4096];
118 struct ll_entry *jump_out[4096];
119 struct ll_entry *jump_dirty[4096];
120 u_int hash_table[65536][4] __attribute__((aligned(16)));
121 char shadow[1048576] __attribute__((aligned(16)));
122 void *copy;
123 int expirep;
124 u_int using_tlb;
125 u_int stop_after_jal;
126 extern u_char restore_candidate[512];
127 extern int cycle_count;
128
129 /* registers that may be allocated */
130 /* 1-31 gpr */
131#define HIREG 32 // hi
132#define LOREG 33 // lo
133#define FSREG 34 // FPU status (FCSR)
134#define CSREG 35 // Coprocessor status
135#define CCREG 36 // Cycle count
136#define INVCP 37 // Pointer to invalid_code
137#define TEMPREG 38
138#define FTEMP 38 // FPU/LDL/LDR temporary register
139#define PTEMP 39 // Prefetch temporary register
140#define TLREG 40 // TLB mapping offset
141#define RHASH 41 // Return address hash
142#define RHTBL 42 // Return address hash table address
143#define RTEMP 43 // JR/JALR address register
144#define MAXREG 43
145#define AGEN1 44 // Address generation temporary register
146#define AGEN2 45 // Address generation temporary register
147#define MGEN1 46 // Maptable address generation temporary register
148#define MGEN2 47 // Maptable address generation temporary register
149#define BTREG 48 // Branch target temporary register
150
151 /* instruction types */
152#define NOP 0 // No operation
153#define LOAD 1 // Load
154#define STORE 2 // Store
155#define LOADLR 3 // Unaligned load
156#define STORELR 4 // Unaligned store
157#define MOV 5 // Move
158#define ALU 6 // Arithmetic/logic
159#define MULTDIV 7 // Multiply/divide
160#define SHIFT 8 // Shift by register
161#define SHIFTIMM 9// Shift by immediate
162#define IMM16 10 // 16-bit immediate
163#define RJUMP 11 // Unconditional jump to register
164#define UJUMP 12 // Unconditional jump
165#define CJUMP 13 // Conditional branch (BEQ/BNE/BGTZ/BLEZ)
166#define SJUMP 14 // Conditional branch (regimm format)
167#define COP0 15 // Coprocessor 0
168#define COP1 16 // Coprocessor 1
169#define C1LS 17 // Coprocessor 1 load/store
170#define FJUMP 18 // Conditional branch (floating point)
171#define FLOAT 19 // Floating point unit
172#define FCONV 20 // Convert integer to float
173#define FCOMP 21 // Floating point compare (sets FSREG)
174#define SYSCALL 22// SYSCALL
175#define OTHER 23 // Other
176#define SPAN 24 // Branch/delay slot spans 2 pages
177#define NI 25 // Not implemented
178#define HLECALL 26// PCSX fake opcodes for HLE
179#define COP2 27 // Coprocessor 2 move
180#define C2LS 28 // Coprocessor 2 load/store
181#define C2OP 29 // Coprocessor 2 operation
182#define INTCALL 30// Call interpreter to handle rare corner cases
183
184 /* stubs */
185#define CC_STUB 1
186#define FP_STUB 2
187#define LOADB_STUB 3
188#define LOADH_STUB 4
189#define LOADW_STUB 5
190#define LOADD_STUB 6
191#define LOADBU_STUB 7
192#define LOADHU_STUB 8
193#define STOREB_STUB 9
194#define STOREH_STUB 10
195#define STOREW_STUB 11
196#define STORED_STUB 12
197#define STORELR_STUB 13
198#define INVCODE_STUB 14
199
200 /* branch codes */
201#define TAKEN 1
202#define NOTTAKEN 2
203#define NULLDS 3
204
205// asm linkage
206int new_recompile_block(int addr);
207void *get_addr_ht(u_int vaddr);
208void invalidate_block(u_int block);
209void invalidate_addr(u_int addr);
210void remove_hash(int vaddr);
211void jump_vaddr();
212void dyna_linker();
213void dyna_linker_ds();
214void verify_code();
215void verify_code_vm();
216void verify_code_ds();
217void cc_interrupt();
218void fp_exception();
219void fp_exception_ds();
220void jump_syscall();
221void jump_syscall_hle();
222void jump_eret();
223void jump_hlecall();
224void jump_intcall();
225void new_dyna_leave();
226
227// TLB
228void TLBWI_new();
229void TLBWR_new();
230void read_nomem_new();
231void read_nomemb_new();
232void read_nomemh_new();
233void read_nomemd_new();
234void write_nomem_new();
235void write_nomemb_new();
236void write_nomemh_new();
237void write_nomemd_new();
238void write_rdram_new();
239void write_rdramb_new();
240void write_rdramh_new();
241void write_rdramd_new();
242extern u_int memory_map[1048576];
243
244// Needed by assembler
245void wb_register(signed char r,signed char regmap[],uint64_t dirty,uint64_t is32);
246void wb_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty);
247void wb_needed_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr);
248void load_all_regs(signed char i_regmap[]);
249void load_needed_regs(signed char i_regmap[],signed char next_regmap[]);
250void load_regs_entry(int t);
251void load_all_consts(signed char regmap[],int is32,u_int dirty,int i);
252
253int tracedebug=0;
254
255//#define DEBUG_CYCLE_COUNT 1
256
257void nullf() {}
258//#define assem_debug printf
259//#define inv_debug printf
260#define assem_debug nullf
261#define inv_debug nullf
262
263static void tlb_hacks()
264{
265#ifndef DISABLE_TLB
266 // Goldeneye hack
267 if (strncmp((char *) ROM_HEADER->nom, "GOLDENEYE",9) == 0)
268 {
269 u_int addr;
270 int n;
271 switch (ROM_HEADER->Country_code&0xFF)
272 {
273 case 0x45: // U
274 addr=0x34b30;
275 break;
276 case 0x4A: // J
277 addr=0x34b70;
278 break;
279 case 0x50: // E
280 addr=0x329f0;
281 break;
282 default:
283 // Unknown country code
284 addr=0;
285 break;
286 }
287 u_int rom_addr=(u_int)rom;
288 #ifdef ROM_COPY
289 // Since memory_map is 32-bit, on 64-bit systems the rom needs to be
290 // in the lower 4G of memory to use this hack. Copy it if necessary.
291 if((void *)rom>(void *)0xffffffff) {
292 munmap(ROM_COPY, 67108864);
293 if(mmap(ROM_COPY, 12582912,
294 PROT_READ | PROT_WRITE,
295 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS,
296 -1, 0) <= 0) {printf("mmap() failed\n");}
297 memcpy(ROM_COPY,rom,12582912);
298 rom_addr=(u_int)ROM_COPY;
299 }
300 #endif
301 if(addr) {
302 for(n=0x7F000;n<0x80000;n++) {
303 memory_map[n]=(((u_int)(rom_addr+addr-0x7F000000))>>2)|0x40000000;
304 }
305 }
306 }
307#endif
308}
309
310static u_int get_page(u_int vaddr)
311{
312#ifndef PCSX
313 u_int page=(vaddr^0x80000000)>>12;
314#else
315 u_int page=vaddr&~0xe0000000;
316 if (page < 0x1000000)
317 page &= ~0x0e00000; // RAM mirrors
318 page>>=12;
319#endif
320#ifndef DISABLE_TLB
321 if(page>262143&&tlb_LUT_r[vaddr>>12]) page=(tlb_LUT_r[vaddr>>12]^0x80000000)>>12;
322#endif
323 if(page>2048) page=2048+(page&2047);
324 return page;
325}
326
327static u_int get_vpage(u_int vaddr)
328{
329 u_int vpage=(vaddr^0x80000000)>>12;
330#ifndef DISABLE_TLB
331 if(vpage>262143&&tlb_LUT_r[vaddr>>12]) vpage&=2047; // jump_dirty uses a hash of the virtual address instead
332#endif
333 if(vpage>2048) vpage=2048+(vpage&2047);
334 return vpage;
335}
336
337// Get address from virtual address
338// This is called from the recompiled JR/JALR instructions
339void *get_addr(u_int vaddr)
340{
341 u_int page=get_page(vaddr);
342 u_int vpage=get_vpage(vaddr);
343 struct ll_entry *head;
344 //printf("TRACE: count=%d next=%d (get_addr %x,page %d)\n",Count,next_interupt,vaddr,page);
345 head=jump_in[page];
346 while(head!=NULL) {
347 if(head->vaddr==vaddr&&head->reg32==0) {
348 //printf("TRACE: count=%d next=%d (get_addr match %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
349 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
350 ht_bin[3]=ht_bin[1];
351 ht_bin[2]=ht_bin[0];
352 ht_bin[1]=(int)head->addr;
353 ht_bin[0]=vaddr;
354 return head->addr;
355 }
356 head=head->next;
357 }
358 head=jump_dirty[vpage];
359 while(head!=NULL) {
360 if(head->vaddr==vaddr&&head->reg32==0) {
361 //printf("TRACE: count=%d next=%d (get_addr match dirty %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
362 // Don't restore blocks which are about to expire from the cache
363 if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
364 if(verify_dirty(head->addr)) {
365 //printf("restore candidate: %x (%d) d=%d\n",vaddr,page,invalid_code[vaddr>>12]);
366 invalid_code[vaddr>>12]=0;
367 memory_map[vaddr>>12]|=0x40000000;
368 if(vpage<2048) {
369#ifndef DISABLE_TLB
370 if(tlb_LUT_r[vaddr>>12]) {
371 invalid_code[tlb_LUT_r[vaddr>>12]>>12]=0;
372 memory_map[tlb_LUT_r[vaddr>>12]>>12]|=0x40000000;
373 }
374#endif
375 restore_candidate[vpage>>3]|=1<<(vpage&7);
376 }
377 else restore_candidate[page>>3]|=1<<(page&7);
378 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
379 if(ht_bin[0]==vaddr) {
380 ht_bin[1]=(int)head->addr; // Replace existing entry
381 }
382 else
383 {
384 ht_bin[3]=ht_bin[1];
385 ht_bin[2]=ht_bin[0];
386 ht_bin[1]=(int)head->addr;
387 ht_bin[0]=vaddr;
388 }
389 return head->addr;
390 }
391 }
392 head=head->next;
393 }
394 //printf("TRACE: count=%d next=%d (get_addr no-match %x)\n",Count,next_interupt,vaddr);
395 int r=new_recompile_block(vaddr);
396 if(r==0) return get_addr(vaddr);
397 // Execute in unmapped page, generate pagefault execption
398 Status|=2;
399 Cause=(vaddr<<31)|0x8;
400 EPC=(vaddr&1)?vaddr-5:vaddr;
401 BadVAddr=(vaddr&~1);
402 Context=(Context&0xFF80000F)|((BadVAddr>>9)&0x007FFFF0);
403 EntryHi=BadVAddr&0xFFFFE000;
404 return get_addr_ht(0x80000000);
405}
406// Look up address in hash table first
407void *get_addr_ht(u_int vaddr)
408{
409 //printf("TRACE: count=%d next=%d (get_addr_ht %x)\n",Count,next_interupt,vaddr);
410 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
411 if(ht_bin[0]==vaddr) return (void *)ht_bin[1];
412 if(ht_bin[2]==vaddr) return (void *)ht_bin[3];
413 return get_addr(vaddr);
414}
415
416void *get_addr_32(u_int vaddr,u_int flags)
417{
418#ifdef FORCE32
419 return get_addr(vaddr);
420#else
421 //printf("TRACE: count=%d next=%d (get_addr_32 %x,flags %x)\n",Count,next_interupt,vaddr,flags);
422 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
423 if(ht_bin[0]==vaddr) return (void *)ht_bin[1];
424 if(ht_bin[2]==vaddr) return (void *)ht_bin[3];
425 u_int page=get_page(vaddr);
426 u_int vpage=get_vpage(vaddr);
427 struct ll_entry *head;
428 head=jump_in[page];
429 while(head!=NULL) {
430 if(head->vaddr==vaddr&&(head->reg32&flags)==0) {
431 //printf("TRACE: count=%d next=%d (get_addr_32 match %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
432 if(head->reg32==0) {
433 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
434 if(ht_bin[0]==-1) {
435 ht_bin[1]=(int)head->addr;
436 ht_bin[0]=vaddr;
437 }else if(ht_bin[2]==-1) {
438 ht_bin[3]=(int)head->addr;
439 ht_bin[2]=vaddr;
440 }
441 //ht_bin[3]=ht_bin[1];
442 //ht_bin[2]=ht_bin[0];
443 //ht_bin[1]=(int)head->addr;
444 //ht_bin[0]=vaddr;
445 }
446 return head->addr;
447 }
448 head=head->next;
449 }
450 head=jump_dirty[vpage];
451 while(head!=NULL) {
452 if(head->vaddr==vaddr&&(head->reg32&flags)==0) {
453 //printf("TRACE: count=%d next=%d (get_addr_32 match dirty %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
454 // Don't restore blocks which are about to expire from the cache
455 if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
456 if(verify_dirty(head->addr)) {
457 //printf("restore candidate: %x (%d) d=%d\n",vaddr,page,invalid_code[vaddr>>12]);
458 invalid_code[vaddr>>12]=0;
459 memory_map[vaddr>>12]|=0x40000000;
460 if(vpage<2048) {
461#ifndef DISABLE_TLB
462 if(tlb_LUT_r[vaddr>>12]) {
463 invalid_code[tlb_LUT_r[vaddr>>12]>>12]=0;
464 memory_map[tlb_LUT_r[vaddr>>12]>>12]|=0x40000000;
465 }
466#endif
467 restore_candidate[vpage>>3]|=1<<(vpage&7);
468 }
469 else restore_candidate[page>>3]|=1<<(page&7);
470 if(head->reg32==0) {
471 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
472 if(ht_bin[0]==-1) {
473 ht_bin[1]=(int)head->addr;
474 ht_bin[0]=vaddr;
475 }else if(ht_bin[2]==-1) {
476 ht_bin[3]=(int)head->addr;
477 ht_bin[2]=vaddr;
478 }
479 //ht_bin[3]=ht_bin[1];
480 //ht_bin[2]=ht_bin[0];
481 //ht_bin[1]=(int)head->addr;
482 //ht_bin[0]=vaddr;
483 }
484 return head->addr;
485 }
486 }
487 head=head->next;
488 }
489 //printf("TRACE: count=%d next=%d (get_addr_32 no-match %x,flags %x)\n",Count,next_interupt,vaddr,flags);
490 int r=new_recompile_block(vaddr);
491 if(r==0) return get_addr(vaddr);
492 // Execute in unmapped page, generate pagefault execption
493 Status|=2;
494 Cause=(vaddr<<31)|0x8;
495 EPC=(vaddr&1)?vaddr-5:vaddr;
496 BadVAddr=(vaddr&~1);
497 Context=(Context&0xFF80000F)|((BadVAddr>>9)&0x007FFFF0);
498 EntryHi=BadVAddr&0xFFFFE000;
499 return get_addr_ht(0x80000000);
500#endif
501}
502
503void clear_all_regs(signed char regmap[])
504{
505 int hr;
506 for (hr=0;hr<HOST_REGS;hr++) regmap[hr]=-1;
507}
508
509signed char get_reg(signed char regmap[],int r)
510{
511 int hr;
512 for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap[hr]==r) return hr;
513 return -1;
514}
515
516// Find a register that is available for two consecutive cycles
517signed char get_reg2(signed char regmap1[],signed char regmap2[],int r)
518{
519 int hr;
520 for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap1[hr]==r&&regmap2[hr]==r) return hr;
521 return -1;
522}
523
524int count_free_regs(signed char regmap[])
525{
526 int count=0;
527 int hr;
528 for(hr=0;hr<HOST_REGS;hr++)
529 {
530 if(hr!=EXCLUDE_REG) {
531 if(regmap[hr]<0) count++;
532 }
533 }
534 return count;
535}
536
537void dirty_reg(struct regstat *cur,signed char reg)
538{
539 int hr;
540 if(!reg) return;
541 for (hr=0;hr<HOST_REGS;hr++) {
542 if((cur->regmap[hr]&63)==reg) {
543 cur->dirty|=1<<hr;
544 }
545 }
546}
547
548// If we dirty the lower half of a 64 bit register which is now being
549// sign-extended, we need to dump the upper half.
550// Note: Do this only after completion of the instruction, because
551// some instructions may need to read the full 64-bit value even if
552// overwriting it (eg SLTI, DSRA32).
553static void flush_dirty_uppers(struct regstat *cur)
554{
555 int hr,reg;
556 for (hr=0;hr<HOST_REGS;hr++) {
557 if((cur->dirty>>hr)&1) {
558 reg=cur->regmap[hr];
559 if(reg>=64)
560 if((cur->is32>>(reg&63))&1) cur->regmap[hr]=-1;
561 }
562 }
563}
564
565void set_const(struct regstat *cur,signed char reg,uint64_t value)
566{
567 int hr;
568 if(!reg) return;
569 for (hr=0;hr<HOST_REGS;hr++) {
570 if(cur->regmap[hr]==reg) {
571 cur->isconst|=1<<hr;
572 cur->constmap[hr]=value;
573 }
574 else if((cur->regmap[hr]^64)==reg) {
575 cur->isconst|=1<<hr;
576 cur->constmap[hr]=value>>32;
577 }
578 }
579}
580
581void clear_const(struct regstat *cur,signed char reg)
582{
583 int hr;
584 if(!reg) return;
585 for (hr=0;hr<HOST_REGS;hr++) {
586 if((cur->regmap[hr]&63)==reg) {
587 cur->isconst&=~(1<<hr);
588 }
589 }
590}
591
592int is_const(struct regstat *cur,signed char reg)
593{
594 int hr;
595 if(!reg) return 1;
596 for (hr=0;hr<HOST_REGS;hr++) {
597 if((cur->regmap[hr]&63)==reg) {
598 return (cur->isconst>>hr)&1;
599 }
600 }
601 return 0;
602}
603uint64_t get_const(struct regstat *cur,signed char reg)
604{
605 int hr;
606 if(!reg) return 0;
607 for (hr=0;hr<HOST_REGS;hr++) {
608 if(cur->regmap[hr]==reg) {
609 return cur->constmap[hr];
610 }
611 }
612 printf("Unknown constant in r%d\n",reg);
613 exit(1);
614}
615
616// Least soon needed registers
617// Look at the next ten instructions and see which registers
618// will be used. Try not to reallocate these.
619void lsn(u_char hsn[], int i, int *preferred_reg)
620{
621 int j;
622 int b=-1;
623 for(j=0;j<9;j++)
624 {
625 if(i+j>=slen) {
626 j=slen-i-1;
627 break;
628 }
629 if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
630 {
631 // Don't go past an unconditonal jump
632 j++;
633 break;
634 }
635 }
636 for(;j>=0;j--)
637 {
638 if(rs1[i+j]) hsn[rs1[i+j]]=j;
639 if(rs2[i+j]) hsn[rs2[i+j]]=j;
640 if(rt1[i+j]) hsn[rt1[i+j]]=j;
641 if(rt2[i+j]) hsn[rt2[i+j]]=j;
642 if(itype[i+j]==STORE || itype[i+j]==STORELR) {
643 // Stores can allocate zero
644 hsn[rs1[i+j]]=j;
645 hsn[rs2[i+j]]=j;
646 }
647 // On some architectures stores need invc_ptr
648 #if defined(HOST_IMM8)
649 if(itype[i+j]==STORE || itype[i+j]==STORELR || (opcode[i+j]&0x3b)==0x39 || (opcode[i+j]&0x3b)==0x3a) {
650 hsn[INVCP]=j;
651 }
652 #endif
653 if(i+j>=0&&(itype[i+j]==UJUMP||itype[i+j]==CJUMP||itype[i+j]==SJUMP||itype[i+j]==FJUMP))
654 {
655 hsn[CCREG]=j;
656 b=j;
657 }
658 }
659 if(b>=0)
660 {
661 if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
662 {
663 // Follow first branch
664 int t=(ba[i+b]-start)>>2;
665 j=7-b;if(t+j>=slen) j=slen-t-1;
666 for(;j>=0;j--)
667 {
668 if(rs1[t+j]) if(hsn[rs1[t+j]]>j+b+2) hsn[rs1[t+j]]=j+b+2;
669 if(rs2[t+j]) if(hsn[rs2[t+j]]>j+b+2) hsn[rs2[t+j]]=j+b+2;
670 //if(rt1[t+j]) if(hsn[rt1[t+j]]>j+b+2) hsn[rt1[t+j]]=j+b+2;
671 //if(rt2[t+j]) if(hsn[rt2[t+j]]>j+b+2) hsn[rt2[t+j]]=j+b+2;
672 }
673 }
674 // TODO: preferred register based on backward branch
675 }
676 // Delay slot should preferably not overwrite branch conditions or cycle count
677 if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)) {
678 if(rs1[i-1]) if(hsn[rs1[i-1]]>1) hsn[rs1[i-1]]=1;
679 if(rs2[i-1]) if(hsn[rs2[i-1]]>1) hsn[rs2[i-1]]=1;
680 hsn[CCREG]=1;
681 // ...or hash tables
682 hsn[RHASH]=1;
683 hsn[RHTBL]=1;
684 }
685 // Coprocessor load/store needs FTEMP, even if not declared
686 if(itype[i]==C1LS||itype[i]==C2LS) {
687 hsn[FTEMP]=0;
688 }
689 // Load L/R also uses FTEMP as a temporary register
690 if(itype[i]==LOADLR) {
691 hsn[FTEMP]=0;
692 }
693 // Also SWL/SWR/SDL/SDR
694 if(opcode[i]==0x2a||opcode[i]==0x2e||opcode[i]==0x2c||opcode[i]==0x2d) {
695 hsn[FTEMP]=0;
696 }
697 // Don't remove the TLB registers either
698 if(itype[i]==LOAD || itype[i]==LOADLR || itype[i]==STORE || itype[i]==STORELR || itype[i]==C1LS || itype[i]==C2LS) {
699 hsn[TLREG]=0;
700 }
701 // Don't remove the miniht registers
702 if(itype[i]==UJUMP||itype[i]==RJUMP)
703 {
704 hsn[RHASH]=0;
705 hsn[RHTBL]=0;
706 }
707}
708
709// We only want to allocate registers if we're going to use them again soon
710int needed_again(int r, int i)
711{
712 int j;
713 int b=-1;
714 int rn=10;
715 int hr;
716 u_char hsn[MAXREG+1];
717 int preferred_reg;
718
719 memset(hsn,10,sizeof(hsn));
720 lsn(hsn,i,&preferred_reg);
721
722 if(i>0&&(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000))
723 {
724 if(ba[i-1]<start || ba[i-1]>start+slen*4-4)
725 return 0; // Don't need any registers if exiting the block
726 }
727 for(j=0;j<9;j++)
728 {
729 if(i+j>=slen) {
730 j=slen-i-1;
731 break;
732 }
733 if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
734 {
735 // Don't go past an unconditonal jump
736 j++;
737 break;
738 }
739 if(itype[i+j]==SYSCALL||itype[i+j]==HLECALL||itype[i+j]==INTCALL||((source[i+j]&0xfc00003f)==0x0d))
740 {
741 break;
742 }
743 }
744 for(;j>=1;j--)
745 {
746 if(rs1[i+j]==r) rn=j;
747 if(rs2[i+j]==r) rn=j;
748 if((unneeded_reg[i+j]>>r)&1) rn=10;
749 if(i+j>=0&&(itype[i+j]==UJUMP||itype[i+j]==CJUMP||itype[i+j]==SJUMP||itype[i+j]==FJUMP))
750 {
751 b=j;
752 }
753 }
754 /*
755 if(b>=0)
756 {
757 if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
758 {
759 // Follow first branch
760 int o=rn;
761 int t=(ba[i+b]-start)>>2;
762 j=7-b;if(t+j>=slen) j=slen-t-1;
763 for(;j>=0;j--)
764 {
765 if(!((unneeded_reg[t+j]>>r)&1)) {
766 if(rs1[t+j]==r) if(rn>j+b+2) rn=j+b+2;
767 if(rs2[t+j]==r) if(rn>j+b+2) rn=j+b+2;
768 }
769 else rn=o;
770 }
771 }
772 }*/
773 for(hr=0;hr<HOST_REGS;hr++) {
774 if(hr!=EXCLUDE_REG) {
775 if(rn<hsn[hr]) return 1;
776 }
777 }
778 return 0;
779}
780
781// Try to match register allocations at the end of a loop with those
782// at the beginning
783int loop_reg(int i, int r, int hr)
784{
785 int j,k;
786 for(j=0;j<9;j++)
787 {
788 if(i+j>=slen) {
789 j=slen-i-1;
790 break;
791 }
792 if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
793 {
794 // Don't go past an unconditonal jump
795 j++;
796 break;
797 }
798 }
799 k=0;
800 if(i>0){
801 if(itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)
802 k--;
803 }
804 for(;k<j;k++)
805 {
806 if(r<64&&((unneeded_reg[i+k]>>r)&1)) return hr;
807 if(r>64&&((unneeded_reg_upper[i+k]>>r)&1)) return hr;
808 if(i+k>=0&&(itype[i+k]==UJUMP||itype[i+k]==CJUMP||itype[i+k]==SJUMP||itype[i+k]==FJUMP))
809 {
810 if(ba[i+k]>=start && ba[i+k]<(start+i*4))
811 {
812 int t=(ba[i+k]-start)>>2;
813 int reg=get_reg(regs[t].regmap_entry,r);
814 if(reg>=0) return reg;
815 //reg=get_reg(regs[t+1].regmap_entry,r);
816 //if(reg>=0) return reg;
817 }
818 }
819 }
820 return hr;
821}
822
823
824// Allocate every register, preserving source/target regs
825void alloc_all(struct regstat *cur,int i)
826{
827 int hr;
828
829 for(hr=0;hr<HOST_REGS;hr++) {
830 if(hr!=EXCLUDE_REG) {
831 if(((cur->regmap[hr]&63)!=rs1[i])&&((cur->regmap[hr]&63)!=rs2[i])&&
832 ((cur->regmap[hr]&63)!=rt1[i])&&((cur->regmap[hr]&63)!=rt2[i]))
833 {
834 cur->regmap[hr]=-1;
835 cur->dirty&=~(1<<hr);
836 }
837 // Don't need zeros
838 if((cur->regmap[hr]&63)==0)
839 {
840 cur->regmap[hr]=-1;
841 cur->dirty&=~(1<<hr);
842 }
843 }
844 }
845}
846
847
848void div64(int64_t dividend,int64_t divisor)
849{
850 lo=dividend/divisor;
851 hi=dividend%divisor;
852 //printf("TRACE: ddiv %8x%8x %8x%8x\n" ,(int)reg[HIREG],(int)(reg[HIREG]>>32)
853 // ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
854}
855void divu64(uint64_t dividend,uint64_t divisor)
856{
857 lo=dividend/divisor;
858 hi=dividend%divisor;
859 //printf("TRACE: ddivu %8x%8x %8x%8x\n",(int)reg[HIREG],(int)(reg[HIREG]>>32)
860 // ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
861}
862
863void mult64(uint64_t m1,uint64_t m2)
864{
865 unsigned long long int op1, op2, op3, op4;
866 unsigned long long int result1, result2, result3, result4;
867 unsigned long long int temp1, temp2, temp3, temp4;
868 int sign = 0;
869
870 if (m1 < 0)
871 {
872 op2 = -m1;
873 sign = 1 - sign;
874 }
875 else op2 = m1;
876 if (m2 < 0)
877 {
878 op4 = -m2;
879 sign = 1 - sign;
880 }
881 else op4 = m2;
882
883 op1 = op2 & 0xFFFFFFFF;
884 op2 = (op2 >> 32) & 0xFFFFFFFF;
885 op3 = op4 & 0xFFFFFFFF;
886 op4 = (op4 >> 32) & 0xFFFFFFFF;
887
888 temp1 = op1 * op3;
889 temp2 = (temp1 >> 32) + op1 * op4;
890 temp3 = op2 * op3;
891 temp4 = (temp3 >> 32) + op2 * op4;
892
893 result1 = temp1 & 0xFFFFFFFF;
894 result2 = temp2 + (temp3 & 0xFFFFFFFF);
895 result3 = (result2 >> 32) + temp4;
896 result4 = (result3 >> 32);
897
898 lo = result1 | (result2 << 32);
899 hi = (result3 & 0xFFFFFFFF) | (result4 << 32);
900 if (sign)
901 {
902 hi = ~hi;
903 if (!lo) hi++;
904 else lo = ~lo + 1;
905 }
906}
907
908void multu64(uint64_t m1,uint64_t m2)
909{
910 unsigned long long int op1, op2, op3, op4;
911 unsigned long long int result1, result2, result3, result4;
912 unsigned long long int temp1, temp2, temp3, temp4;
913
914 op1 = m1 & 0xFFFFFFFF;
915 op2 = (m1 >> 32) & 0xFFFFFFFF;
916 op3 = m2 & 0xFFFFFFFF;
917 op4 = (m2 >> 32) & 0xFFFFFFFF;
918
919 temp1 = op1 * op3;
920 temp2 = (temp1 >> 32) + op1 * op4;
921 temp3 = op2 * op3;
922 temp4 = (temp3 >> 32) + op2 * op4;
923
924 result1 = temp1 & 0xFFFFFFFF;
925 result2 = temp2 + (temp3 & 0xFFFFFFFF);
926 result3 = (result2 >> 32) + temp4;
927 result4 = (result3 >> 32);
928
929 lo = result1 | (result2 << 32);
930 hi = (result3 & 0xFFFFFFFF) | (result4 << 32);
931
932 //printf("TRACE: dmultu %8x%8x %8x%8x\n",(int)reg[HIREG],(int)(reg[HIREG]>>32)
933 // ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
934}
935
936uint64_t ldl_merge(uint64_t original,uint64_t loaded,u_int bits)
937{
938 if(bits) {
939 original<<=64-bits;
940 original>>=64-bits;
941 loaded<<=bits;
942 original|=loaded;
943 }
944 else original=loaded;
945 return original;
946}
947uint64_t ldr_merge(uint64_t original,uint64_t loaded,u_int bits)
948{
949 if(bits^56) {
950 original>>=64-(bits^56);
951 original<<=64-(bits^56);
952 loaded>>=bits^56;
953 original|=loaded;
954 }
955 else original=loaded;
956 return original;
957}
958
959#ifdef __i386__
960#include "assem_x86.c"
961#endif
962#ifdef __x86_64__
963#include "assem_x64.c"
964#endif
965#ifdef __arm__
966#include "assem_arm.c"
967#endif
968
969// Add virtual address mapping to linked list
970void ll_add(struct ll_entry **head,int vaddr,void *addr)
971{
972 struct ll_entry *new_entry;
973 new_entry=malloc(sizeof(struct ll_entry));
974 assert(new_entry!=NULL);
975 new_entry->vaddr=vaddr;
976 new_entry->reg32=0;
977 new_entry->addr=addr;
978 new_entry->next=*head;
979 *head=new_entry;
980}
981
982// Add virtual address mapping for 32-bit compiled block
983void ll_add_32(struct ll_entry **head,int vaddr,u_int reg32,void *addr)
984{
985 ll_add(head,vaddr,addr);
986#ifndef FORCE32
987 (*head)->reg32=reg32;
988#endif
989}
990
991// Check if an address is already compiled
992// but don't return addresses which are about to expire from the cache
993void *check_addr(u_int vaddr)
994{
995 u_int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
996 if(ht_bin[0]==vaddr) {
997 if(((ht_bin[1]-MAX_OUTPUT_BLOCK_SIZE-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
998 if(isclean(ht_bin[1])) return (void *)ht_bin[1];
999 }
1000 if(ht_bin[2]==vaddr) {
1001 if(((ht_bin[3]-MAX_OUTPUT_BLOCK_SIZE-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
1002 if(isclean(ht_bin[3])) return (void *)ht_bin[3];
1003 }
1004 u_int page=get_page(vaddr);
1005 struct ll_entry *head;
1006 head=jump_in[page];
1007 while(head!=NULL) {
1008 if(head->vaddr==vaddr&&head->reg32==0) {
1009 if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1010 // Update existing entry with current address
1011 if(ht_bin[0]==vaddr) {
1012 ht_bin[1]=(int)head->addr;
1013 return head->addr;
1014 }
1015 if(ht_bin[2]==vaddr) {
1016 ht_bin[3]=(int)head->addr;
1017 return head->addr;
1018 }
1019 // Insert into hash table with low priority.
1020 // Don't evict existing entries, as they are probably
1021 // addresses that are being accessed frequently.
1022 if(ht_bin[0]==-1) {
1023 ht_bin[1]=(int)head->addr;
1024 ht_bin[0]=vaddr;
1025 }else if(ht_bin[2]==-1) {
1026 ht_bin[3]=(int)head->addr;
1027 ht_bin[2]=vaddr;
1028 }
1029 return head->addr;
1030 }
1031 }
1032 head=head->next;
1033 }
1034 return 0;
1035}
1036
1037void remove_hash(int vaddr)
1038{
1039 //printf("remove hash: %x\n",vaddr);
1040 int *ht_bin=hash_table[(((vaddr)>>16)^vaddr)&0xFFFF];
1041 if(ht_bin[2]==vaddr) {
1042 ht_bin[2]=ht_bin[3]=-1;
1043 }
1044 if(ht_bin[0]==vaddr) {
1045 ht_bin[0]=ht_bin[2];
1046 ht_bin[1]=ht_bin[3];
1047 ht_bin[2]=ht_bin[3]=-1;
1048 }
1049}
1050
1051void ll_remove_matching_addrs(struct ll_entry **head,int addr,int shift)
1052{
1053 struct ll_entry *next;
1054 while(*head) {
1055 if(((u_int)((*head)->addr)>>shift)==(addr>>shift) ||
1056 ((u_int)((*head)->addr-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(addr>>shift))
1057 {
1058 inv_debug("EXP: Remove pointer to %x (%x)\n",(int)(*head)->addr,(*head)->vaddr);
1059 remove_hash((*head)->vaddr);
1060 next=(*head)->next;
1061 free(*head);
1062 *head=next;
1063 }
1064 else
1065 {
1066 head=&((*head)->next);
1067 }
1068 }
1069}
1070
1071// Remove all entries from linked list
1072void ll_clear(struct ll_entry **head)
1073{
1074 struct ll_entry *cur;
1075 struct ll_entry *next;
1076 if(cur=*head) {
1077 *head=0;
1078 while(cur) {
1079 next=cur->next;
1080 free(cur);
1081 cur=next;
1082 }
1083 }
1084}
1085
1086// Dereference the pointers and remove if it matches
1087void ll_kill_pointers(struct ll_entry *head,int addr,int shift)
1088{
1089 u_int old_host_addr=0;
1090 while(head) {
1091 int ptr=get_pointer(head->addr);
1092 inv_debug("EXP: Lookup pointer to %x at %x (%x)\n",(int)ptr,(int)head->addr,head->vaddr);
1093 if(((ptr>>shift)==(addr>>shift)) ||
1094 (((ptr-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(addr>>shift)))
1095 {
1096 inv_debug("EXP: Kill pointer at %x (%x)\n",(int)head->addr,head->vaddr);
1097 u_int host_addr=(u_int)kill_pointer(head->addr);
1098
1099 if((host_addr>>12)!=(old_host_addr>>12)) {
1100 #ifdef __arm__
1101 __clear_cache((void *)(old_host_addr&~0xfff),(void *)(old_host_addr|0xfff));
1102 #endif
1103 old_host_addr=host_addr;
1104 }
1105 }
1106 head=head->next;
1107 }
1108 #ifdef __arm__
1109 if (old_host_addr)
1110 __clear_cache((void *)(old_host_addr&~0xfff),(void *)(old_host_addr|0xfff));
1111 #endif
1112}
1113
1114// This is called when we write to a compiled block (see do_invstub)
1115void invalidate_page(u_int page)
1116{
1117 struct ll_entry *head;
1118 struct ll_entry *next;
1119 u_int old_host_addr=0;
1120 head=jump_in[page];
1121 jump_in[page]=0;
1122 while(head!=NULL) {
1123 inv_debug("INVALIDATE: %x\n",head->vaddr);
1124 remove_hash(head->vaddr);
1125 next=head->next;
1126 free(head);
1127 head=next;
1128 }
1129 head=jump_out[page];
1130 jump_out[page]=0;
1131 while(head!=NULL) {
1132 inv_debug("INVALIDATE: kill pointer to %x (%x)\n",head->vaddr,(int)head->addr);
1133 u_int host_addr=(u_int)kill_pointer(head->addr);
1134
1135 if((host_addr>>12)!=(old_host_addr>>12)) {
1136 #ifdef __arm__
1137 __clear_cache((void *)(old_host_addr&~0xfff),(void *)(old_host_addr|0xfff));
1138 #endif
1139 old_host_addr=host_addr;
1140 }
1141 next=head->next;
1142 free(head);
1143 head=next;
1144 }
1145 #ifdef __arm__
1146 if (old_host_addr)
1147 __clear_cache((void *)(old_host_addr&~0xfff),(void *)(old_host_addr|0xfff));
1148 #endif
1149}
1150void invalidate_block(u_int block)
1151{
1152 u_int page=get_page(block<<12);
1153 u_int vpage=get_vpage(block<<12);
1154 inv_debug("INVALIDATE: %x (%d)\n",block<<12,page);
1155 //inv_debug("invalid_code[block]=%d\n",invalid_code[block]);
1156 u_int first,last;
1157 first=last=page;
1158 struct ll_entry *head;
1159 head=jump_dirty[vpage];
1160 //printf("page=%d vpage=%d\n",page,vpage);
1161 while(head!=NULL) {
1162 u_int start,end;
1163 if(vpage>2047||(head->vaddr>>12)==block) { // Ignore vaddr hash collision
1164 get_bounds((int)head->addr,&start,&end);
1165 //printf("start: %x end: %x\n",start,end);
1166 if(page<2048&&start>=0x80000000&&end<0x80000000+RAM_SIZE) {
1167 if(((start-(u_int)rdram)>>12)<=page&&((end-1-(u_int)rdram)>>12)>=page) {
1168 if((((start-(u_int)rdram)>>12)&2047)<first) first=((start-(u_int)rdram)>>12)&2047;
1169 if((((end-1-(u_int)rdram)>>12)&2047)>last) last=((end-1-(u_int)rdram)>>12)&2047;
1170 }
1171 }
1172#ifndef DISABLE_TLB
1173 if(page<2048&&(signed int)start>=(signed int)0xC0000000&&(signed int)end>=(signed int)0xC0000000) {
1174 if(((start+memory_map[start>>12]-(u_int)rdram)>>12)<=page&&((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)>=page) {
1175 if((((start+memory_map[start>>12]-(u_int)rdram)>>12)&2047)<first) first=((start+memory_map[start>>12]-(u_int)rdram)>>12)&2047;
1176 if((((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)&2047)>last) last=((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)&2047;
1177 }
1178 }
1179#endif
1180 }
1181 head=head->next;
1182 }
1183 //printf("first=%d last=%d\n",first,last);
1184 invalidate_page(page);
1185 assert(first+5>page); // NB: this assumes MAXBLOCK<=4096 (4 pages)
1186 assert(last<page+5);
1187 // Invalidate the adjacent pages if a block crosses a 4K boundary
1188 while(first<page) {
1189 invalidate_page(first);
1190 first++;
1191 }
1192 for(first=page+1;first<last;first++) {
1193 invalidate_page(first);
1194 }
1195
1196 // Don't trap writes
1197 invalid_code[block]=1;
1198#ifndef DISABLE_TLB
1199 // If there is a valid TLB entry for this page, remove write protect
1200 if(tlb_LUT_w[block]) {
1201 assert(tlb_LUT_r[block]==tlb_LUT_w[block]);
1202 // CHECK: Is this right?
1203 memory_map[block]=((tlb_LUT_w[block]&0xFFFFF000)-(block<<12)+(unsigned int)rdram-0x80000000)>>2;
1204 u_int real_block=tlb_LUT_w[block]>>12;
1205 invalid_code[real_block]=1;
1206 if(real_block>=0x80000&&real_block<0x80800) memory_map[real_block]=((u_int)rdram-0x80000000)>>2;
1207 }
1208 else if(block>=0x80000&&block<0x80800) memory_map[block]=((u_int)rdram-0x80000000)>>2;
1209#endif
1210
1211 #ifdef USE_MINI_HT
1212 memset(mini_ht,-1,sizeof(mini_ht));
1213 #endif
1214}
1215void invalidate_addr(u_int addr)
1216{
1217 invalidate_block(addr>>12);
1218}
1219void invalidate_all_pages()
1220{
1221 u_int page,n;
1222 for(page=0;page<4096;page++)
1223 invalidate_page(page);
1224 for(page=0;page<1048576;page++)
1225 if(!invalid_code[page]) {
1226 restore_candidate[(page&2047)>>3]|=1<<(page&7);
1227 restore_candidate[((page&2047)>>3)+256]|=1<<(page&7);
1228 }
1229 #ifdef __arm__
1230 __clear_cache((void *)BASE_ADDR,(void *)BASE_ADDR+(1<<TARGET_SIZE_2));
1231 #endif
1232 #ifdef USE_MINI_HT
1233 memset(mini_ht,-1,sizeof(mini_ht));
1234 #endif
1235 #ifndef DISABLE_TLB
1236 // TLB
1237 for(page=0;page<0x100000;page++) {
1238 if(tlb_LUT_r[page]) {
1239 memory_map[page]=((tlb_LUT_r[page]&0xFFFFF000)-(page<<12)+(unsigned int)rdram-0x80000000)>>2;
1240 if(!tlb_LUT_w[page]||!invalid_code[page])
1241 memory_map[page]|=0x40000000; // Write protect
1242 }
1243 else memory_map[page]=-1;
1244 if(page==0x80000) page=0xC0000;
1245 }
1246 tlb_hacks();
1247 #endif
1248}
1249
1250// Add an entry to jump_out after making a link
1251void add_link(u_int vaddr,void *src)
1252{
1253 u_int page=get_page(vaddr);
1254 inv_debug("add_link: %x -> %x (%d)\n",(int)src,vaddr,page);
1255 ll_add(jump_out+page,vaddr,src);
1256 //int ptr=get_pointer(src);
1257 //inv_debug("add_link: Pointer is to %x\n",(int)ptr);
1258}
1259
1260// If a code block was found to be unmodified (bit was set in
1261// restore_candidate) and it remains unmodified (bit is clear
1262// in invalid_code) then move the entries for that 4K page from
1263// the dirty list to the clean list.
1264void clean_blocks(u_int page)
1265{
1266 struct ll_entry *head;
1267 inv_debug("INV: clean_blocks page=%d\n",page);
1268 head=jump_dirty[page];
1269 while(head!=NULL) {
1270 if(!invalid_code[head->vaddr>>12]) {
1271 // Don't restore blocks which are about to expire from the cache
1272 if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1273 u_int start,end;
1274 if(verify_dirty((int)head->addr)) {
1275 //printf("Possibly Restore %x (%x)\n",head->vaddr, (int)head->addr);
1276 u_int i;
1277 u_int inv=0;
1278 get_bounds((int)head->addr,&start,&end);
1279 if(start-(u_int)rdram<RAM_SIZE) {
1280 for(i=(start-(u_int)rdram+0x80000000)>>12;i<=(end-1-(u_int)rdram+0x80000000)>>12;i++) {
1281 inv|=invalid_code[i];
1282 }
1283 }
1284 if((signed int)head->vaddr>=(signed int)0xC0000000) {
1285 u_int addr = (head->vaddr+(memory_map[head->vaddr>>12]<<2));
1286 //printf("addr=%x start=%x end=%x\n",addr,start,end);
1287 if(addr<start||addr>=end) inv=1;
1288 }
1289 else if((signed int)head->vaddr>=(signed int)0x80000000+RAM_SIZE) {
1290 inv=1;
1291 }
1292 if(!inv) {
1293 void * clean_addr=(void *)get_clean_addr((int)head->addr);
1294 if((((u_int)clean_addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1295 u_int ppage=page;
1296#ifndef DISABLE_TLB
1297 if(page<2048&&tlb_LUT_r[head->vaddr>>12]) ppage=(tlb_LUT_r[head->vaddr>>12]^0x80000000)>>12;
1298#endif
1299 inv_debug("INV: Restored %x (%x/%x)\n",head->vaddr, (int)head->addr, (int)clean_addr);
1300 //printf("page=%x, addr=%x\n",page,head->vaddr);
1301 //assert(head->vaddr>>12==(page|0x80000));
1302 ll_add_32(jump_in+ppage,head->vaddr,head->reg32,clean_addr);
1303 int *ht_bin=hash_table[((head->vaddr>>16)^head->vaddr)&0xFFFF];
1304 if(!head->reg32) {
1305 if(ht_bin[0]==head->vaddr) {
1306 ht_bin[1]=(int)clean_addr; // Replace existing entry
1307 }
1308 if(ht_bin[2]==head->vaddr) {
1309 ht_bin[3]=(int)clean_addr; // Replace existing entry
1310 }
1311 }
1312 }
1313 }
1314 }
1315 }
1316 }
1317 head=head->next;
1318 }
1319}
1320
1321
1322void mov_alloc(struct regstat *current,int i)
1323{
1324 // Note: Don't need to actually alloc the source registers
1325 if((~current->is32>>rs1[i])&1) {
1326 //alloc_reg64(current,i,rs1[i]);
1327 alloc_reg64(current,i,rt1[i]);
1328 current->is32&=~(1LL<<rt1[i]);
1329 } else {
1330 //alloc_reg(current,i,rs1[i]);
1331 alloc_reg(current,i,rt1[i]);
1332 current->is32|=(1LL<<rt1[i]);
1333 }
1334 clear_const(current,rs1[i]);
1335 clear_const(current,rt1[i]);
1336 dirty_reg(current,rt1[i]);
1337}
1338
1339void shiftimm_alloc(struct regstat *current,int i)
1340{
1341 clear_const(current,rs1[i]);
1342 clear_const(current,rt1[i]);
1343 if(opcode2[i]<=0x3) // SLL/SRL/SRA
1344 {
1345 if(rt1[i]) {
1346 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1347 else lt1[i]=rs1[i];
1348 alloc_reg(current,i,rt1[i]);
1349 current->is32|=1LL<<rt1[i];
1350 dirty_reg(current,rt1[i]);
1351 }
1352 }
1353 if(opcode2[i]>=0x38&&opcode2[i]<=0x3b) // DSLL/DSRL/DSRA
1354 {
1355 if(rt1[i]) {
1356 if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1357 alloc_reg64(current,i,rt1[i]);
1358 current->is32&=~(1LL<<rt1[i]);
1359 dirty_reg(current,rt1[i]);
1360 }
1361 }
1362 if(opcode2[i]==0x3c) // DSLL32
1363 {
1364 if(rt1[i]) {
1365 if(rs1[i]) alloc_reg(current,i,rs1[i]);
1366 alloc_reg64(current,i,rt1[i]);
1367 current->is32&=~(1LL<<rt1[i]);
1368 dirty_reg(current,rt1[i]);
1369 }
1370 }
1371 if(opcode2[i]==0x3e) // DSRL32
1372 {
1373 if(rt1[i]) {
1374 alloc_reg64(current,i,rs1[i]);
1375 if(imm[i]==32) {
1376 alloc_reg64(current,i,rt1[i]);
1377 current->is32&=~(1LL<<rt1[i]);
1378 } else {
1379 alloc_reg(current,i,rt1[i]);
1380 current->is32|=1LL<<rt1[i];
1381 }
1382 dirty_reg(current,rt1[i]);
1383 }
1384 }
1385 if(opcode2[i]==0x3f) // DSRA32
1386 {
1387 if(rt1[i]) {
1388 alloc_reg64(current,i,rs1[i]);
1389 alloc_reg(current,i,rt1[i]);
1390 current->is32|=1LL<<rt1[i];
1391 dirty_reg(current,rt1[i]);
1392 }
1393 }
1394}
1395
1396void shift_alloc(struct regstat *current,int i)
1397{
1398 if(rt1[i]) {
1399 if(opcode2[i]<=0x07) // SLLV/SRLV/SRAV
1400 {
1401 if(rs1[i]) alloc_reg(current,i,rs1[i]);
1402 if(rs2[i]) alloc_reg(current,i,rs2[i]);
1403 alloc_reg(current,i,rt1[i]);
1404 if(rt1[i]==rs2[i]) alloc_reg_temp(current,i,-1);
1405 current->is32|=1LL<<rt1[i];
1406 } else { // DSLLV/DSRLV/DSRAV
1407 if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1408 if(rs2[i]) alloc_reg(current,i,rs2[i]);
1409 alloc_reg64(current,i,rt1[i]);
1410 current->is32&=~(1LL<<rt1[i]);
1411 if(opcode2[i]==0x16||opcode2[i]==0x17) // DSRLV and DSRAV need a temporary register
1412 alloc_reg_temp(current,i,-1);
1413 }
1414 clear_const(current,rs1[i]);
1415 clear_const(current,rs2[i]);
1416 clear_const(current,rt1[i]);
1417 dirty_reg(current,rt1[i]);
1418 }
1419}
1420
1421void alu_alloc(struct regstat *current,int i)
1422{
1423 if(opcode2[i]>=0x20&&opcode2[i]<=0x23) { // ADD/ADDU/SUB/SUBU
1424 if(rt1[i]) {
1425 if(rs1[i]&&rs2[i]) {
1426 alloc_reg(current,i,rs1[i]);
1427 alloc_reg(current,i,rs2[i]);
1428 }
1429 else {
1430 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1431 if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg(current,i,rs2[i]);
1432 }
1433 alloc_reg(current,i,rt1[i]);
1434 }
1435 current->is32|=1LL<<rt1[i];
1436 }
1437 if(opcode2[i]==0x2a||opcode2[i]==0x2b) { // SLT/SLTU
1438 if(rt1[i]) {
1439 if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1440 {
1441 alloc_reg64(current,i,rs1[i]);
1442 alloc_reg64(current,i,rs2[i]);
1443 alloc_reg(current,i,rt1[i]);
1444 } else {
1445 alloc_reg(current,i,rs1[i]);
1446 alloc_reg(current,i,rs2[i]);
1447 alloc_reg(current,i,rt1[i]);
1448 }
1449 }
1450 current->is32|=1LL<<rt1[i];
1451 }
1452 if(opcode2[i]>=0x24&&opcode2[i]<=0x27) { // AND/OR/XOR/NOR
1453 if(rt1[i]) {
1454 if(rs1[i]&&rs2[i]) {
1455 alloc_reg(current,i,rs1[i]);
1456 alloc_reg(current,i,rs2[i]);
1457 }
1458 else
1459 {
1460 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1461 if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg(current,i,rs2[i]);
1462 }
1463 alloc_reg(current,i,rt1[i]);
1464 if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1465 {
1466 if(!((current->uu>>rt1[i])&1)) {
1467 alloc_reg64(current,i,rt1[i]);
1468 }
1469 if(get_reg(current->regmap,rt1[i]|64)>=0) {
1470 if(rs1[i]&&rs2[i]) {
1471 alloc_reg64(current,i,rs1[i]);
1472 alloc_reg64(current,i,rs2[i]);
1473 }
1474 else
1475 {
1476 // Is is really worth it to keep 64-bit values in registers?
1477 #ifdef NATIVE_64BIT
1478 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg64(current,i,rs1[i]);
1479 if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg64(current,i,rs2[i]);
1480 #endif
1481 }
1482 }
1483 current->is32&=~(1LL<<rt1[i]);
1484 } else {
1485 current->is32|=1LL<<rt1[i];
1486 }
1487 }
1488 }
1489 if(opcode2[i]>=0x2c&&opcode2[i]<=0x2f) { // DADD/DADDU/DSUB/DSUBU
1490 if(rt1[i]) {
1491 if(rs1[i]&&rs2[i]) {
1492 if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1493 alloc_reg64(current,i,rs1[i]);
1494 alloc_reg64(current,i,rs2[i]);
1495 alloc_reg64(current,i,rt1[i]);
1496 } else {
1497 alloc_reg(current,i,rs1[i]);
1498 alloc_reg(current,i,rs2[i]);
1499 alloc_reg(current,i,rt1[i]);
1500 }
1501 }
1502 else {
1503 alloc_reg(current,i,rt1[i]);
1504 if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1505 // DADD used as move, or zeroing
1506 // If we have a 64-bit source, then make the target 64 bits too
1507 if(rs1[i]&&!((current->is32>>rs1[i])&1)) {
1508 if(get_reg(current->regmap,rs1[i])>=0) alloc_reg64(current,i,rs1[i]);
1509 alloc_reg64(current,i,rt1[i]);
1510 } else if(rs2[i]&&!((current->is32>>rs2[i])&1)) {
1511 if(get_reg(current->regmap,rs2[i])>=0) alloc_reg64(current,i,rs2[i]);
1512 alloc_reg64(current,i,rt1[i]);
1513 }
1514 if(opcode2[i]>=0x2e&&rs2[i]) {
1515 // DSUB used as negation - 64-bit result
1516 // If we have a 32-bit register, extend it to 64 bits
1517 if(get_reg(current->regmap,rs2[i])>=0) alloc_reg64(current,i,rs2[i]);
1518 alloc_reg64(current,i,rt1[i]);
1519 }
1520 }
1521 }
1522 if(rs1[i]&&rs2[i]) {
1523 current->is32&=~(1LL<<rt1[i]);
1524 } else if(rs1[i]) {
1525 current->is32&=~(1LL<<rt1[i]);
1526 if((current->is32>>rs1[i])&1)
1527 current->is32|=1LL<<rt1[i];
1528 } else if(rs2[i]) {
1529 current->is32&=~(1LL<<rt1[i]);
1530 if((current->is32>>rs2[i])&1)
1531 current->is32|=1LL<<rt1[i];
1532 } else {
1533 current->is32|=1LL<<rt1[i];
1534 }
1535 }
1536 }
1537 clear_const(current,rs1[i]);
1538 clear_const(current,rs2[i]);
1539 clear_const(current,rt1[i]);
1540 dirty_reg(current,rt1[i]);
1541}
1542
1543void imm16_alloc(struct regstat *current,int i)
1544{
1545 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1546 else lt1[i]=rs1[i];
1547 if(rt1[i]) alloc_reg(current,i,rt1[i]);
1548 if(opcode[i]==0x18||opcode[i]==0x19) { // DADDI/DADDIU
1549 current->is32&=~(1LL<<rt1[i]);
1550 if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1551 // TODO: Could preserve the 32-bit flag if the immediate is zero
1552 alloc_reg64(current,i,rt1[i]);
1553 alloc_reg64(current,i,rs1[i]);
1554 }
1555 clear_const(current,rs1[i]);
1556 clear_const(current,rt1[i]);
1557 }
1558 else if(opcode[i]==0x0a||opcode[i]==0x0b) { // SLTI/SLTIU
1559 if((~current->is32>>rs1[i])&1) alloc_reg64(current,i,rs1[i]);
1560 current->is32|=1LL<<rt1[i];
1561 clear_const(current,rs1[i]);
1562 clear_const(current,rt1[i]);
1563 }
1564 else if(opcode[i]>=0x0c&&opcode[i]<=0x0e) { // ANDI/ORI/XORI
1565 if(((~current->is32>>rs1[i])&1)&&opcode[i]>0x0c) {
1566 if(rs1[i]!=rt1[i]) {
1567 if(needed_again(rs1[i],i)) alloc_reg64(current,i,rs1[i]);
1568 alloc_reg64(current,i,rt1[i]);
1569 current->is32&=~(1LL<<rt1[i]);
1570 }
1571 }
1572 else current->is32|=1LL<<rt1[i]; // ANDI clears upper bits
1573 if(is_const(current,rs1[i])) {
1574 int v=get_const(current,rs1[i]);
1575 if(opcode[i]==0x0c) set_const(current,rt1[i],v&imm[i]);
1576 if(opcode[i]==0x0d) set_const(current,rt1[i],v|imm[i]);
1577 if(opcode[i]==0x0e) set_const(current,rt1[i],v^imm[i]);
1578 }
1579 else clear_const(current,rt1[i]);
1580 }
1581 else if(opcode[i]==0x08||opcode[i]==0x09) { // ADDI/ADDIU
1582 if(is_const(current,rs1[i])) {
1583 int v=get_const(current,rs1[i]);
1584 set_const(current,rt1[i],v+imm[i]);
1585 }
1586 else clear_const(current,rt1[i]);
1587 current->is32|=1LL<<rt1[i];
1588 }
1589 else {
1590 set_const(current,rt1[i],((long long)((short)imm[i]))<<16); // LUI
1591 current->is32|=1LL<<rt1[i];
1592 }
1593 dirty_reg(current,rt1[i]);
1594}
1595
1596void load_alloc(struct regstat *current,int i)
1597{
1598 clear_const(current,rt1[i]);
1599 //if(rs1[i]!=rt1[i]&&needed_again(rs1[i],i)) clear_const(current,rs1[i]); // Does this help or hurt?
1600 if(!rs1[i]) current->u&=~1LL; // Allow allocating r0 if it's the source register
1601 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1602 if(rt1[i]) {
1603 alloc_reg(current,i,rt1[i]);
1604 if(opcode[i]==0x27||opcode[i]==0x37) // LWU/LD
1605 {
1606 current->is32&=~(1LL<<rt1[i]);
1607 alloc_reg64(current,i,rt1[i]);
1608 }
1609 else if(opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
1610 {
1611 current->is32&=~(1LL<<rt1[i]);
1612 alloc_reg64(current,i,rt1[i]);
1613 alloc_all(current,i);
1614 alloc_reg64(current,i,FTEMP);
1615 }
1616 else current->is32|=1LL<<rt1[i];
1617 dirty_reg(current,rt1[i]);
1618 // If using TLB, need a register for pointer to the mapping table
1619 if(using_tlb) alloc_reg(current,i,TLREG);
1620 // LWL/LWR need a temporary register for the old value
1621 if(opcode[i]==0x22||opcode[i]==0x26)
1622 {
1623 alloc_reg(current,i,FTEMP);
1624 alloc_reg_temp(current,i,-1);
1625 }
1626 }
1627 else
1628 {
1629 // Load to r0 (dummy load)
1630 // but we still need a register to calculate the address
1631 alloc_reg_temp(current,i,-1);
1632 }
1633}
1634
1635void store_alloc(struct regstat *current,int i)
1636{
1637 clear_const(current,rs2[i]);
1638 if(!(rs2[i])) current->u&=~1LL; // Allow allocating r0 if necessary
1639 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1640 alloc_reg(current,i,rs2[i]);
1641 if(opcode[i]==0x2c||opcode[i]==0x2d||opcode[i]==0x3f) { // 64-bit SDL/SDR/SD
1642 alloc_reg64(current,i,rs2[i]);
1643 if(rs2[i]) alloc_reg(current,i,FTEMP);
1644 }
1645 // If using TLB, need a register for pointer to the mapping table
1646 if(using_tlb) alloc_reg(current,i,TLREG);
1647 #if defined(HOST_IMM8)
1648 // On CPUs without 32-bit immediates we need a pointer to invalid_code
1649 else alloc_reg(current,i,INVCP);
1650 #endif
1651 if(opcode[i]==0x2a||opcode[i]==0x2e||opcode[i]==0x2c||opcode[i]==0x2d) { // SWL/SWL/SDL/SDR
1652 alloc_reg(current,i,FTEMP);
1653 }
1654 // We need a temporary register for address generation
1655 alloc_reg_temp(current,i,-1);
1656}
1657
1658void c1ls_alloc(struct regstat *current,int i)
1659{
1660 //clear_const(current,rs1[i]); // FIXME
1661 clear_const(current,rt1[i]);
1662 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1663 alloc_reg(current,i,CSREG); // Status
1664 alloc_reg(current,i,FTEMP);
1665 if(opcode[i]==0x35||opcode[i]==0x3d) { // 64-bit LDC1/SDC1
1666 alloc_reg64(current,i,FTEMP);
1667 }
1668 // If using TLB, need a register for pointer to the mapping table
1669 if(using_tlb) alloc_reg(current,i,TLREG);
1670 #if defined(HOST_IMM8)
1671 // On CPUs without 32-bit immediates we need a pointer to invalid_code
1672 else if((opcode[i]&0x3b)==0x39) // SWC1/SDC1
1673 alloc_reg(current,i,INVCP);
1674 #endif
1675 // We need a temporary register for address generation
1676 alloc_reg_temp(current,i,-1);
1677}
1678
1679void c2ls_alloc(struct regstat *current,int i)
1680{
1681 clear_const(current,rt1[i]);
1682 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1683 alloc_reg(current,i,FTEMP);
1684 // If using TLB, need a register for pointer to the mapping table
1685 if(using_tlb) alloc_reg(current,i,TLREG);
1686 #if defined(HOST_IMM8)
1687 // On CPUs without 32-bit immediates we need a pointer to invalid_code
1688 else if((opcode[i]&0x3b)==0x3a) // SWC2/SDC2
1689 alloc_reg(current,i,INVCP);
1690 #endif
1691 // We need a temporary register for address generation
1692 alloc_reg_temp(current,i,-1);
1693}
1694
1695#ifndef multdiv_alloc
1696void multdiv_alloc(struct regstat *current,int i)
1697{
1698 // case 0x18: MULT
1699 // case 0x19: MULTU
1700 // case 0x1A: DIV
1701 // case 0x1B: DIVU
1702 // case 0x1C: DMULT
1703 // case 0x1D: DMULTU
1704 // case 0x1E: DDIV
1705 // case 0x1F: DDIVU
1706 clear_const(current,rs1[i]);
1707 clear_const(current,rs2[i]);
1708 if(rs1[i]&&rs2[i])
1709 {
1710 if((opcode2[i]&4)==0) // 32-bit
1711 {
1712 current->u&=~(1LL<<HIREG);
1713 current->u&=~(1LL<<LOREG);
1714 alloc_reg(current,i,HIREG);
1715 alloc_reg(current,i,LOREG);
1716 alloc_reg(current,i,rs1[i]);
1717 alloc_reg(current,i,rs2[i]);
1718 current->is32|=1LL<<HIREG;
1719 current->is32|=1LL<<LOREG;
1720 dirty_reg(current,HIREG);
1721 dirty_reg(current,LOREG);
1722 }
1723 else // 64-bit
1724 {
1725 current->u&=~(1LL<<HIREG);
1726 current->u&=~(1LL<<LOREG);
1727 current->uu&=~(1LL<<HIREG);
1728 current->uu&=~(1LL<<LOREG);
1729 alloc_reg64(current,i,HIREG);
1730 //if(HOST_REGS>10) alloc_reg64(current,i,LOREG);
1731 alloc_reg64(current,i,rs1[i]);
1732 alloc_reg64(current,i,rs2[i]);
1733 alloc_all(current,i);
1734 current->is32&=~(1LL<<HIREG);
1735 current->is32&=~(1LL<<LOREG);
1736 dirty_reg(current,HIREG);
1737 dirty_reg(current,LOREG);
1738 }
1739 }
1740 else
1741 {
1742 // Multiply by zero is zero.
1743 // MIPS does not have a divide by zero exception.
1744 // The result is undefined, we return zero.
1745 alloc_reg(current,i,HIREG);
1746 alloc_reg(current,i,LOREG);
1747 current->is32|=1LL<<HIREG;
1748 current->is32|=1LL<<LOREG;
1749 dirty_reg(current,HIREG);
1750 dirty_reg(current,LOREG);
1751 }
1752}
1753#endif
1754
1755void cop0_alloc(struct regstat *current,int i)
1756{
1757 if(opcode2[i]==0) // MFC0
1758 {
1759 if(rt1[i]) {
1760 clear_const(current,rt1[i]);
1761 alloc_all(current,i);
1762 alloc_reg(current,i,rt1[i]);
1763 current->is32|=1LL<<rt1[i];
1764 dirty_reg(current,rt1[i]);
1765 }
1766 }
1767 else if(opcode2[i]==4) // MTC0
1768 {
1769 if(rs1[i]){
1770 clear_const(current,rs1[i]);
1771 alloc_reg(current,i,rs1[i]);
1772 alloc_all(current,i);
1773 }
1774 else {
1775 alloc_all(current,i); // FIXME: Keep r0
1776 current->u&=~1LL;
1777 alloc_reg(current,i,0);
1778 }
1779 }
1780 else
1781 {
1782 // TLBR/TLBWI/TLBWR/TLBP/ERET
1783 assert(opcode2[i]==0x10);
1784 alloc_all(current,i);
1785 }
1786}
1787
1788void cop1_alloc(struct regstat *current,int i)
1789{
1790 alloc_reg(current,i,CSREG); // Load status
1791 if(opcode2[i]<3) // MFC1/DMFC1/CFC1
1792 {
1793 if(rt1[i]){
1794 clear_const(current,rt1[i]);
1795 if(opcode2[i]==1) {
1796 alloc_reg64(current,i,rt1[i]); // DMFC1
1797 current->is32&=~(1LL<<rt1[i]);
1798 }else{
1799 alloc_reg(current,i,rt1[i]); // MFC1/CFC1
1800 current->is32|=1LL<<rt1[i];
1801 }
1802 dirty_reg(current,rt1[i]);
1803 }
1804 alloc_reg_temp(current,i,-1);
1805 }
1806 else if(opcode2[i]>3) // MTC1/DMTC1/CTC1
1807 {
1808 if(rs1[i]){
1809 clear_const(current,rs1[i]);
1810 if(opcode2[i]==5)
1811 alloc_reg64(current,i,rs1[i]); // DMTC1
1812 else
1813 alloc_reg(current,i,rs1[i]); // MTC1/CTC1
1814 alloc_reg_temp(current,i,-1);
1815 }
1816 else {
1817 current->u&=~1LL;
1818 alloc_reg(current,i,0);
1819 alloc_reg_temp(current,i,-1);
1820 }
1821 }
1822}
1823void fconv_alloc(struct regstat *current,int i)
1824{
1825 alloc_reg(current,i,CSREG); // Load status
1826 alloc_reg_temp(current,i,-1);
1827}
1828void float_alloc(struct regstat *current,int i)
1829{
1830 alloc_reg(current,i,CSREG); // Load status
1831 alloc_reg_temp(current,i,-1);
1832}
1833void c2op_alloc(struct regstat *current,int i)
1834{
1835 alloc_reg_temp(current,i,-1);
1836}
1837void fcomp_alloc(struct regstat *current,int i)
1838{
1839 alloc_reg(current,i,CSREG); // Load status
1840 alloc_reg(current,i,FSREG); // Load flags
1841 dirty_reg(current,FSREG); // Flag will be modified
1842 alloc_reg_temp(current,i,-1);
1843}
1844
1845void syscall_alloc(struct regstat *current,int i)
1846{
1847 alloc_cc(current,i);
1848 dirty_reg(current,CCREG);
1849 alloc_all(current,i);
1850 current->isconst=0;
1851}
1852
1853void delayslot_alloc(struct regstat *current,int i)
1854{
1855 switch(itype[i]) {
1856 case UJUMP:
1857 case CJUMP:
1858 case SJUMP:
1859 case RJUMP:
1860 case FJUMP:
1861 case SYSCALL:
1862 case HLECALL:
1863 case SPAN:
1864 assem_debug("jump in the delay slot. this shouldn't happen.\n");//exit(1);
1865 printf("Disabled speculative precompilation\n");
1866 stop_after_jal=1;
1867 break;
1868 case IMM16:
1869 imm16_alloc(current,i);
1870 break;
1871 case LOAD:
1872 case LOADLR:
1873 load_alloc(current,i);
1874 break;
1875 case STORE:
1876 case STORELR:
1877 store_alloc(current,i);
1878 break;
1879 case ALU:
1880 alu_alloc(current,i);
1881 break;
1882 case SHIFT:
1883 shift_alloc(current,i);
1884 break;
1885 case MULTDIV:
1886 multdiv_alloc(current,i);
1887 break;
1888 case SHIFTIMM:
1889 shiftimm_alloc(current,i);
1890 break;
1891 case MOV:
1892 mov_alloc(current,i);
1893 break;
1894 case COP0:
1895 cop0_alloc(current,i);
1896 break;
1897 case COP1:
1898 case COP2:
1899 cop1_alloc(current,i);
1900 break;
1901 case C1LS:
1902 c1ls_alloc(current,i);
1903 break;
1904 case C2LS:
1905 c2ls_alloc(current,i);
1906 break;
1907 case FCONV:
1908 fconv_alloc(current,i);
1909 break;
1910 case FLOAT:
1911 float_alloc(current,i);
1912 break;
1913 case FCOMP:
1914 fcomp_alloc(current,i);
1915 break;
1916 case C2OP:
1917 c2op_alloc(current,i);
1918 break;
1919 }
1920}
1921
1922// Special case where a branch and delay slot span two pages in virtual memory
1923static void pagespan_alloc(struct regstat *current,int i)
1924{
1925 current->isconst=0;
1926 current->wasconst=0;
1927 regs[i].wasconst=0;
1928 alloc_all(current,i);
1929 alloc_cc(current,i);
1930 dirty_reg(current,CCREG);
1931 if(opcode[i]==3) // JAL
1932 {
1933 alloc_reg(current,i,31);
1934 dirty_reg(current,31);
1935 }
1936 if(opcode[i]==0&&(opcode2[i]&0x3E)==8) // JR/JALR
1937 {
1938 alloc_reg(current,i,rs1[i]);
1939 if (rt1[i]!=0) {
1940 alloc_reg(current,i,rt1[i]);
1941 dirty_reg(current,rt1[i]);
1942 }
1943 }
1944 if((opcode[i]&0x2E)==4) // BEQ/BNE/BEQL/BNEL
1945 {
1946 if(rs1[i]) alloc_reg(current,i,rs1[i]);
1947 if(rs2[i]) alloc_reg(current,i,rs2[i]);
1948 if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1949 {
1950 if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1951 if(rs2[i]) alloc_reg64(current,i,rs2[i]);
1952 }
1953 }
1954 else
1955 if((opcode[i]&0x2E)==6) // BLEZ/BGTZ/BLEZL/BGTZL
1956 {
1957 if(rs1[i]) alloc_reg(current,i,rs1[i]);
1958 if(!((current->is32>>rs1[i])&1))
1959 {
1960 if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1961 }
1962 }
1963 else
1964 if(opcode[i]==0x11) // BC1
1965 {
1966 alloc_reg(current,i,FSREG);
1967 alloc_reg(current,i,CSREG);
1968 }
1969 //else ...
1970}
1971
1972add_stub(int type,int addr,int retaddr,int a,int b,int c,int d,int e)
1973{
1974 stubs[stubcount][0]=type;
1975 stubs[stubcount][1]=addr;
1976 stubs[stubcount][2]=retaddr;
1977 stubs[stubcount][3]=a;
1978 stubs[stubcount][4]=b;
1979 stubs[stubcount][5]=c;
1980 stubs[stubcount][6]=d;
1981 stubs[stubcount][7]=e;
1982 stubcount++;
1983}
1984
1985// Write out a single register
1986void wb_register(signed char r,signed char regmap[],uint64_t dirty,uint64_t is32)
1987{
1988 int hr;
1989 for(hr=0;hr<HOST_REGS;hr++) {
1990 if(hr!=EXCLUDE_REG) {
1991 if((regmap[hr]&63)==r) {
1992 if((dirty>>hr)&1) {
1993 if(regmap[hr]<64) {
1994 emit_storereg(r,hr);
1995#ifndef FORCE32
1996 if((is32>>regmap[hr])&1) {
1997 emit_sarimm(hr,31,hr);
1998 emit_storereg(r|64,hr);
1999 }
2000#endif
2001 }else{
2002 emit_storereg(r|64,hr);
2003 }
2004 }
2005 }
2006 }
2007 }
2008}
2009
2010int mchecksum()
2011{
2012 //if(!tracedebug) return 0;
2013 int i;
2014 int sum=0;
2015 for(i=0;i<2097152;i++) {
2016 unsigned int temp=sum;
2017 sum<<=1;
2018 sum|=(~temp)>>31;
2019 sum^=((u_int *)rdram)[i];
2020 }
2021 return sum;
2022}
2023int rchecksum()
2024{
2025 int i;
2026 int sum=0;
2027 for(i=0;i<64;i++)
2028 sum^=((u_int *)reg)[i];
2029 return sum;
2030}
2031void rlist()
2032{
2033 int i;
2034 printf("TRACE: ");
2035 for(i=0;i<32;i++)
2036 printf("r%d:%8x%8x ",i,((int *)(reg+i))[1],((int *)(reg+i))[0]);
2037 printf("\n");
2038#ifndef DISABLE_COP1
2039 printf("TRACE: ");
2040 for(i=0;i<32;i++)
2041 printf("f%d:%8x%8x ",i,((int*)reg_cop1_simple[i])[1],*((int*)reg_cop1_simple[i]));
2042 printf("\n");
2043#endif
2044}
2045
2046void enabletrace()
2047{
2048 tracedebug=1;
2049}
2050
2051void memdebug(int i)
2052{
2053 //printf("TRACE: count=%d next=%d (checksum %x) lo=%8x%8x\n",Count,next_interupt,mchecksum(),(int)(reg[LOREG]>>32),(int)reg[LOREG]);
2054 //printf("TRACE: count=%d next=%d (rchecksum %x)\n",Count,next_interupt,rchecksum());
2055 //rlist();
2056 //if(tracedebug) {
2057 //if(Count>=-2084597794) {
2058 if((signed int)Count>=-2084597794&&(signed int)Count<0) {
2059 //if(0) {
2060 printf("TRACE: count=%d next=%d (checksum %x)\n",Count,next_interupt,mchecksum());
2061 //printf("TRACE: count=%d next=%d (checksum %x) Status=%x\n",Count,next_interupt,mchecksum(),Status);
2062 //printf("TRACE: count=%d next=%d (checksum %x) hi=%8x%8x\n",Count,next_interupt,mchecksum(),(int)(reg[HIREG]>>32),(int)reg[HIREG]);
2063 rlist();
2064 #ifdef __i386__
2065 printf("TRACE: %x\n",(&i)[-1]);
2066 #endif
2067 #ifdef __arm__
2068 int j;
2069 printf("TRACE: %x \n",(&j)[10]);
2070 printf("TRACE: %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x\n",(&j)[1],(&j)[2],(&j)[3],(&j)[4],(&j)[5],(&j)[6],(&j)[7],(&j)[8],(&j)[9],(&j)[10],(&j)[11],(&j)[12],(&j)[13],(&j)[14],(&j)[15],(&j)[16],(&j)[17],(&j)[18],(&j)[19],(&j)[20]);
2071 #endif
2072 //fflush(stdout);
2073 }
2074 //printf("TRACE: %x\n",(&i)[-1]);
2075}
2076
2077void tlb_debug(u_int cause, u_int addr, u_int iaddr)
2078{
2079 printf("TLB Exception: instruction=%x addr=%x cause=%x\n",iaddr, addr, cause);
2080}
2081
2082void alu_assemble(int i,struct regstat *i_regs)
2083{
2084 if(opcode2[i]>=0x20&&opcode2[i]<=0x23) { // ADD/ADDU/SUB/SUBU
2085 if(rt1[i]) {
2086 signed char s1,s2,t;
2087 t=get_reg(i_regs->regmap,rt1[i]);
2088 if(t>=0) {
2089 s1=get_reg(i_regs->regmap,rs1[i]);
2090 s2=get_reg(i_regs->regmap,rs2[i]);
2091 if(rs1[i]&&rs2[i]) {
2092 assert(s1>=0);
2093 assert(s2>=0);
2094 if(opcode2[i]&2) emit_sub(s1,s2,t);
2095 else emit_add(s1,s2,t);
2096 }
2097 else if(rs1[i]) {
2098 if(s1>=0) emit_mov(s1,t);
2099 else emit_loadreg(rs1[i],t);
2100 }
2101 else if(rs2[i]) {
2102 if(s2>=0) {
2103 if(opcode2[i]&2) emit_neg(s2,t);
2104 else emit_mov(s2,t);
2105 }
2106 else {
2107 emit_loadreg(rs2[i],t);
2108 if(opcode2[i]&2) emit_neg(t,t);
2109 }
2110 }
2111 else emit_zeroreg(t);
2112 }
2113 }
2114 }
2115 if(opcode2[i]>=0x2c&&opcode2[i]<=0x2f) { // DADD/DADDU/DSUB/DSUBU
2116 if(rt1[i]) {
2117 signed char s1l,s2l,s1h,s2h,tl,th;
2118 tl=get_reg(i_regs->regmap,rt1[i]);
2119 th=get_reg(i_regs->regmap,rt1[i]|64);
2120 if(tl>=0) {
2121 s1l=get_reg(i_regs->regmap,rs1[i]);
2122 s2l=get_reg(i_regs->regmap,rs2[i]);
2123 s1h=get_reg(i_regs->regmap,rs1[i]|64);
2124 s2h=get_reg(i_regs->regmap,rs2[i]|64);
2125 if(rs1[i]&&rs2[i]) {
2126 assert(s1l>=0);
2127 assert(s2l>=0);
2128 if(opcode2[i]&2) emit_subs(s1l,s2l,tl);
2129 else emit_adds(s1l,s2l,tl);
2130 if(th>=0) {
2131 #ifdef INVERTED_CARRY
2132 if(opcode2[i]&2) {if(s1h!=th) emit_mov(s1h,th);emit_sbb(th,s2h);}
2133 #else
2134 if(opcode2[i]&2) emit_sbc(s1h,s2h,th);
2135 #endif
2136 else emit_add(s1h,s2h,th);
2137 }
2138 }
2139 else if(rs1[i]) {
2140 if(s1l>=0) emit_mov(s1l,tl);
2141 else emit_loadreg(rs1[i],tl);
2142 if(th>=0) {
2143 if(s1h>=0) emit_mov(s1h,th);
2144 else emit_loadreg(rs1[i]|64,th);
2145 }
2146 }
2147 else if(rs2[i]) {
2148 if(s2l>=0) {
2149 if(opcode2[i]&2) emit_negs(s2l,tl);
2150 else emit_mov(s2l,tl);
2151 }
2152 else {
2153 emit_loadreg(rs2[i],tl);
2154 if(opcode2[i]&2) emit_negs(tl,tl);
2155 }
2156 if(th>=0) {
2157 #ifdef INVERTED_CARRY
2158 if(s2h>=0) emit_mov(s2h,th);
2159 else emit_loadreg(rs2[i]|64,th);
2160 if(opcode2[i]&2) {
2161 emit_adcimm(-1,th); // x86 has inverted carry flag
2162 emit_not(th,th);
2163 }
2164 #else
2165 if(opcode2[i]&2) {
2166 if(s2h>=0) emit_rscimm(s2h,0,th);
2167 else {
2168 emit_loadreg(rs2[i]|64,th);
2169 emit_rscimm(th,0,th);
2170 }
2171 }else{
2172 if(s2h>=0) emit_mov(s2h,th);
2173 else emit_loadreg(rs2[i]|64,th);
2174 }
2175 #endif
2176 }
2177 }
2178 else {
2179 emit_zeroreg(tl);
2180 if(th>=0) emit_zeroreg(th);
2181 }
2182 }
2183 }
2184 }
2185 if(opcode2[i]==0x2a||opcode2[i]==0x2b) { // SLT/SLTU
2186 if(rt1[i]) {
2187 signed char s1l,s1h,s2l,s2h,t;
2188 if(!((i_regs->was32>>rs1[i])&(i_regs->was32>>rs2[i])&1))
2189 {
2190 t=get_reg(i_regs->regmap,rt1[i]);
2191 //assert(t>=0);
2192 if(t>=0) {
2193 s1l=get_reg(i_regs->regmap,rs1[i]);
2194 s1h=get_reg(i_regs->regmap,rs1[i]|64);
2195 s2l=get_reg(i_regs->regmap,rs2[i]);
2196 s2h=get_reg(i_regs->regmap,rs2[i]|64);
2197 if(rs2[i]==0) // rx<r0
2198 {
2199 assert(s1h>=0);
2200 if(opcode2[i]==0x2a) // SLT
2201 emit_shrimm(s1h,31,t);
2202 else // SLTU (unsigned can not be less than zero)
2203 emit_zeroreg(t);
2204 }
2205 else if(rs1[i]==0) // r0<rx
2206 {
2207 assert(s2h>=0);
2208 if(opcode2[i]==0x2a) // SLT
2209 emit_set_gz64_32(s2h,s2l,t);
2210 else // SLTU (set if not zero)
2211 emit_set_nz64_32(s2h,s2l,t);
2212 }
2213 else {
2214 assert(s1l>=0);assert(s1h>=0);
2215 assert(s2l>=0);assert(s2h>=0);
2216 if(opcode2[i]==0x2a) // SLT
2217 emit_set_if_less64_32(s1h,s1l,s2h,s2l,t);
2218 else // SLTU
2219 emit_set_if_carry64_32(s1h,s1l,s2h,s2l,t);
2220 }
2221 }
2222 } else {
2223 t=get_reg(i_regs->regmap,rt1[i]);
2224 //assert(t>=0);
2225 if(t>=0) {
2226 s1l=get_reg(i_regs->regmap,rs1[i]);
2227 s2l=get_reg(i_regs->regmap,rs2[i]);
2228 if(rs2[i]==0) // rx<r0
2229 {
2230 assert(s1l>=0);
2231 if(opcode2[i]==0x2a) // SLT
2232 emit_shrimm(s1l,31,t);
2233 else // SLTU (unsigned can not be less than zero)
2234 emit_zeroreg(t);
2235 }
2236 else if(rs1[i]==0) // r0<rx
2237 {
2238 assert(s2l>=0);
2239 if(opcode2[i]==0x2a) // SLT
2240 emit_set_gz32(s2l,t);
2241 else // SLTU (set if not zero)
2242 emit_set_nz32(s2l,t);
2243 }
2244 else{
2245 assert(s1l>=0);assert(s2l>=0);
2246 if(opcode2[i]==0x2a) // SLT
2247 emit_set_if_less32(s1l,s2l,t);
2248 else // SLTU
2249 emit_set_if_carry32(s1l,s2l,t);
2250 }
2251 }
2252 }
2253 }
2254 }
2255 if(opcode2[i]>=0x24&&opcode2[i]<=0x27) { // AND/OR/XOR/NOR
2256 if(rt1[i]) {
2257 signed char s1l,s1h,s2l,s2h,th,tl;
2258 tl=get_reg(i_regs->regmap,rt1[i]);
2259 th=get_reg(i_regs->regmap,rt1[i]|64);
2260 if(!((i_regs->was32>>rs1[i])&(i_regs->was32>>rs2[i])&1)&&th>=0)
2261 {
2262 assert(tl>=0);
2263 if(tl>=0) {
2264 s1l=get_reg(i_regs->regmap,rs1[i]);
2265 s1h=get_reg(i_regs->regmap,rs1[i]|64);
2266 s2l=get_reg(i_regs->regmap,rs2[i]);
2267 s2h=get_reg(i_regs->regmap,rs2[i]|64);
2268 if(rs1[i]&&rs2[i]) {
2269 assert(s1l>=0);assert(s1h>=0);
2270 assert(s2l>=0);assert(s2h>=0);
2271 if(opcode2[i]==0x24) { // AND
2272 emit_and(s1l,s2l,tl);
2273 emit_and(s1h,s2h,th);
2274 } else
2275 if(opcode2[i]==0x25) { // OR
2276 emit_or(s1l,s2l,tl);
2277 emit_or(s1h,s2h,th);
2278 } else
2279 if(opcode2[i]==0x26) { // XOR
2280 emit_xor(s1l,s2l,tl);
2281 emit_xor(s1h,s2h,th);
2282 } else
2283 if(opcode2[i]==0x27) { // NOR
2284 emit_or(s1l,s2l,tl);
2285 emit_or(s1h,s2h,th);
2286 emit_not(tl,tl);
2287 emit_not(th,th);
2288 }
2289 }
2290 else
2291 {
2292 if(opcode2[i]==0x24) { // AND
2293 emit_zeroreg(tl);
2294 emit_zeroreg(th);
2295 } else
2296 if(opcode2[i]==0x25||opcode2[i]==0x26) { // OR/XOR
2297 if(rs1[i]){
2298 if(s1l>=0) emit_mov(s1l,tl);
2299 else emit_loadreg(rs1[i],tl);
2300 if(s1h>=0) emit_mov(s1h,th);
2301 else emit_loadreg(rs1[i]|64,th);
2302 }
2303 else
2304 if(rs2[i]){
2305 if(s2l>=0) emit_mov(s2l,tl);
2306 else emit_loadreg(rs2[i],tl);
2307 if(s2h>=0) emit_mov(s2h,th);
2308 else emit_loadreg(rs2[i]|64,th);
2309 }
2310 else{
2311 emit_zeroreg(tl);
2312 emit_zeroreg(th);
2313 }
2314 } else
2315 if(opcode2[i]==0x27) { // NOR
2316 if(rs1[i]){
2317 if(s1l>=0) emit_not(s1l,tl);
2318 else{
2319 emit_loadreg(rs1[i],tl);
2320 emit_not(tl,tl);
2321 }
2322 if(s1h>=0) emit_not(s1h,th);
2323 else{
2324 emit_loadreg(rs1[i]|64,th);
2325 emit_not(th,th);
2326 }
2327 }
2328 else
2329 if(rs2[i]){
2330 if(s2l>=0) emit_not(s2l,tl);
2331 else{
2332 emit_loadreg(rs2[i],tl);
2333 emit_not(tl,tl);
2334 }
2335 if(s2h>=0) emit_not(s2h,th);
2336 else{
2337 emit_loadreg(rs2[i]|64,th);
2338 emit_not(th,th);
2339 }
2340 }
2341 else {
2342 emit_movimm(-1,tl);
2343 emit_movimm(-1,th);
2344 }
2345 }
2346 }
2347 }
2348 }
2349 else
2350 {
2351 // 32 bit
2352 if(tl>=0) {
2353 s1l=get_reg(i_regs->regmap,rs1[i]);
2354 s2l=get_reg(i_regs->regmap,rs2[i]);
2355 if(rs1[i]&&rs2[i]) {
2356 assert(s1l>=0);
2357 assert(s2l>=0);
2358 if(opcode2[i]==0x24) { // AND
2359 emit_and(s1l,s2l,tl);
2360 } else
2361 if(opcode2[i]==0x25) { // OR
2362 emit_or(s1l,s2l,tl);
2363 } else
2364 if(opcode2[i]==0x26) { // XOR
2365 emit_xor(s1l,s2l,tl);
2366 } else
2367 if(opcode2[i]==0x27) { // NOR
2368 emit_or(s1l,s2l,tl);
2369 emit_not(tl,tl);
2370 }
2371 }
2372 else
2373 {
2374 if(opcode2[i]==0x24) { // AND
2375 emit_zeroreg(tl);
2376 } else
2377 if(opcode2[i]==0x25||opcode2[i]==0x26) { // OR/XOR
2378 if(rs1[i]){
2379 if(s1l>=0) emit_mov(s1l,tl);
2380 else emit_loadreg(rs1[i],tl); // CHECK: regmap_entry?
2381 }
2382 else
2383 if(rs2[i]){
2384 if(s2l>=0) emit_mov(s2l,tl);
2385 else emit_loadreg(rs2[i],tl); // CHECK: regmap_entry?
2386 }
2387 else emit_zeroreg(tl);
2388 } else
2389 if(opcode2[i]==0x27) { // NOR
2390 if(rs1[i]){
2391 if(s1l>=0) emit_not(s1l,tl);
2392 else {
2393 emit_loadreg(rs1[i],tl);
2394 emit_not(tl,tl);
2395 }
2396 }
2397 else
2398 if(rs2[i]){
2399 if(s2l>=0) emit_not(s2l,tl);
2400 else {
2401 emit_loadreg(rs2[i],tl);
2402 emit_not(tl,tl);
2403 }
2404 }
2405 else emit_movimm(-1,tl);
2406 }
2407 }
2408 }
2409 }
2410 }
2411 }
2412}
2413
2414void imm16_assemble(int i,struct regstat *i_regs)
2415{
2416 if (opcode[i]==0x0f) { // LUI
2417 if(rt1[i]) {
2418 signed char t;
2419 t=get_reg(i_regs->regmap,rt1[i]);
2420 //assert(t>=0);
2421 if(t>=0) {
2422 if(!((i_regs->isconst>>t)&1))
2423 emit_movimm(imm[i]<<16,t);
2424 }
2425 }
2426 }
2427 if(opcode[i]==0x08||opcode[i]==0x09) { // ADDI/ADDIU
2428 if(rt1[i]) {
2429 signed char s,t;
2430 t=get_reg(i_regs->regmap,rt1[i]);
2431 s=get_reg(i_regs->regmap,rs1[i]);
2432 if(rs1[i]) {
2433 //assert(t>=0);
2434 //assert(s>=0);
2435 if(t>=0) {
2436 if(!((i_regs->isconst>>t)&1)) {
2437 if(s<0) {
2438 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2439 emit_addimm(t,imm[i],t);
2440 }else{
2441 if(!((i_regs->wasconst>>s)&1))
2442 emit_addimm(s,imm[i],t);
2443 else
2444 emit_movimm(constmap[i][s]+imm[i],t);
2445 }
2446 }
2447 }
2448 } else {
2449 if(t>=0) {
2450 if(!((i_regs->isconst>>t)&1))
2451 emit_movimm(imm[i],t);
2452 }
2453 }
2454 }
2455 }
2456 if(opcode[i]==0x18||opcode[i]==0x19) { // DADDI/DADDIU
2457 if(rt1[i]) {
2458 signed char sh,sl,th,tl;
2459 th=get_reg(i_regs->regmap,rt1[i]|64);
2460 tl=get_reg(i_regs->regmap,rt1[i]);
2461 sh=get_reg(i_regs->regmap,rs1[i]|64);
2462 sl=get_reg(i_regs->regmap,rs1[i]);
2463 if(tl>=0) {
2464 if(rs1[i]) {
2465 assert(sh>=0);
2466 assert(sl>=0);
2467 if(th>=0) {
2468 emit_addimm64_32(sh,sl,imm[i],th,tl);
2469 }
2470 else {
2471 emit_addimm(sl,imm[i],tl);
2472 }
2473 } else {
2474 emit_movimm(imm[i],tl);
2475 if(th>=0) emit_movimm(((signed int)imm[i])>>31,th);
2476 }
2477 }
2478 }
2479 }
2480 else if(opcode[i]==0x0a||opcode[i]==0x0b) { // SLTI/SLTIU
2481 if(rt1[i]) {
2482 //assert(rs1[i]!=0); // r0 might be valid, but it's probably a bug
2483 signed char sh,sl,t;
2484 t=get_reg(i_regs->regmap,rt1[i]);
2485 sh=get_reg(i_regs->regmap,rs1[i]|64);
2486 sl=get_reg(i_regs->regmap,rs1[i]);
2487 //assert(t>=0);
2488 if(t>=0) {
2489 if(rs1[i]>0) {
2490 if(sh<0) assert((i_regs->was32>>rs1[i])&1);
2491 if(sh<0||((i_regs->was32>>rs1[i])&1)) {
2492 if(opcode[i]==0x0a) { // SLTI
2493 if(sl<0) {
2494 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2495 emit_slti32(t,imm[i],t);
2496 }else{
2497 emit_slti32(sl,imm[i],t);
2498 }
2499 }
2500 else { // SLTIU
2501 if(sl<0) {
2502 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2503 emit_sltiu32(t,imm[i],t);
2504 }else{
2505 emit_sltiu32(sl,imm[i],t);
2506 }
2507 }
2508 }else{ // 64-bit
2509 assert(sl>=0);
2510 if(opcode[i]==0x0a) // SLTI
2511 emit_slti64_32(sh,sl,imm[i],t);
2512 else // SLTIU
2513 emit_sltiu64_32(sh,sl,imm[i],t);
2514 }
2515 }else{
2516 // SLTI(U) with r0 is just stupid,
2517 // nonetheless examples can be found
2518 if(opcode[i]==0x0a) // SLTI
2519 if(0<imm[i]) emit_movimm(1,t);
2520 else emit_zeroreg(t);
2521 else // SLTIU
2522 {
2523 if(imm[i]) emit_movimm(1,t);
2524 else emit_zeroreg(t);
2525 }
2526 }
2527 }
2528 }
2529 }
2530 else if(opcode[i]>=0x0c&&opcode[i]<=0x0e) { // ANDI/ORI/XORI
2531 if(rt1[i]) {
2532 signed char sh,sl,th,tl;
2533 th=get_reg(i_regs->regmap,rt1[i]|64);
2534 tl=get_reg(i_regs->regmap,rt1[i]);
2535 sh=get_reg(i_regs->regmap,rs1[i]|64);
2536 sl=get_reg(i_regs->regmap,rs1[i]);
2537 if(tl>=0 && !((i_regs->isconst>>tl)&1)) {
2538 if(opcode[i]==0x0c) //ANDI
2539 {
2540 if(rs1[i]) {
2541 if(sl<0) {
2542 if(i_regs->regmap_entry[tl]!=rs1[i]) emit_loadreg(rs1[i],tl);
2543 emit_andimm(tl,imm[i],tl);
2544 }else{
2545 if(!((i_regs->wasconst>>sl)&1))
2546 emit_andimm(sl,imm[i],tl);
2547 else
2548 emit_movimm(constmap[i][sl]&imm[i],tl);
2549 }
2550 }
2551 else
2552 emit_zeroreg(tl);
2553 if(th>=0) emit_zeroreg(th);
2554 }
2555 else
2556 {
2557 if(rs1[i]) {
2558 if(sl<0) {
2559 if(i_regs->regmap_entry[tl]!=rs1[i]) emit_loadreg(rs1[i],tl);
2560 }
2561 if(th>=0) {
2562 if(sh<0) {
2563 emit_loadreg(rs1[i]|64,th);
2564 }else{
2565 emit_mov(sh,th);
2566 }
2567 }
2568 if(opcode[i]==0x0d) //ORI
2569 if(sl<0) {
2570 emit_orimm(tl,imm[i],tl);
2571 }else{
2572 if(!((i_regs->wasconst>>sl)&1))
2573 emit_orimm(sl,imm[i],tl);
2574 else
2575 emit_movimm(constmap[i][sl]|imm[i],tl);
2576 }
2577 if(opcode[i]==0x0e) //XORI
2578 if(sl<0) {
2579 emit_xorimm(tl,imm[i],tl);
2580 }else{
2581 if(!((i_regs->wasconst>>sl)&1))
2582 emit_xorimm(sl,imm[i],tl);
2583 else
2584 emit_movimm(constmap[i][sl]^imm[i],tl);
2585 }
2586 }
2587 else {
2588 emit_movimm(imm[i],tl);
2589 if(th>=0) emit_zeroreg(th);
2590 }
2591 }
2592 }
2593 }
2594 }
2595}
2596
2597void shiftimm_assemble(int i,struct regstat *i_regs)
2598{
2599 if(opcode2[i]<=0x3) // SLL/SRL/SRA
2600 {
2601 if(rt1[i]) {
2602 signed char s,t;
2603 t=get_reg(i_regs->regmap,rt1[i]);
2604 s=get_reg(i_regs->regmap,rs1[i]);
2605 //assert(t>=0);
2606 if(t>=0){
2607 if(rs1[i]==0)
2608 {
2609 emit_zeroreg(t);
2610 }
2611 else
2612 {
2613 if(s<0&&i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2614 if(imm[i]) {
2615 if(opcode2[i]==0) // SLL
2616 {
2617 emit_shlimm(s<0?t:s,imm[i],t);
2618 }
2619 if(opcode2[i]==2) // SRL
2620 {
2621 emit_shrimm(s<0?t:s,imm[i],t);
2622 }
2623 if(opcode2[i]==3) // SRA
2624 {
2625 emit_sarimm(s<0?t:s,imm[i],t);
2626 }
2627 }else{
2628 // Shift by zero
2629 if(s>=0 && s!=t) emit_mov(s,t);
2630 }
2631 }
2632 }
2633 //emit_storereg(rt1[i],t); //DEBUG
2634 }
2635 }
2636 if(opcode2[i]>=0x38&&opcode2[i]<=0x3b) // DSLL/DSRL/DSRA
2637 {
2638 if(rt1[i]) {
2639 signed char sh,sl,th,tl;
2640 th=get_reg(i_regs->regmap,rt1[i]|64);
2641 tl=get_reg(i_regs->regmap,rt1[i]);
2642 sh=get_reg(i_regs->regmap,rs1[i]|64);
2643 sl=get_reg(i_regs->regmap,rs1[i]);
2644 if(tl>=0) {
2645 if(rs1[i]==0)
2646 {
2647 emit_zeroreg(tl);
2648 if(th>=0) emit_zeroreg(th);
2649 }
2650 else
2651 {
2652 assert(sl>=0);
2653 assert(sh>=0);
2654 if(imm[i]) {
2655 if(opcode2[i]==0x38) // DSLL
2656 {
2657 if(th>=0) emit_shldimm(sh,sl,imm[i],th);
2658 emit_shlimm(sl,imm[i],tl);
2659 }
2660 if(opcode2[i]==0x3a) // DSRL
2661 {
2662 emit_shrdimm(sl,sh,imm[i],tl);
2663 if(th>=0) emit_shrimm(sh,imm[i],th);
2664 }
2665 if(opcode2[i]==0x3b) // DSRA
2666 {
2667 emit_shrdimm(sl,sh,imm[i],tl);
2668 if(th>=0) emit_sarimm(sh,imm[i],th);
2669 }
2670 }else{
2671 // Shift by zero
2672 if(sl!=tl) emit_mov(sl,tl);
2673 if(th>=0&&sh!=th) emit_mov(sh,th);
2674 }
2675 }
2676 }
2677 }
2678 }
2679 if(opcode2[i]==0x3c) // DSLL32
2680 {
2681 if(rt1[i]) {
2682 signed char sl,tl,th;
2683 tl=get_reg(i_regs->regmap,rt1[i]);
2684 th=get_reg(i_regs->regmap,rt1[i]|64);
2685 sl=get_reg(i_regs->regmap,rs1[i]);
2686 if(th>=0||tl>=0){
2687 assert(tl>=0);
2688 assert(th>=0);
2689 assert(sl>=0);
2690 emit_mov(sl,th);
2691 emit_zeroreg(tl);
2692 if(imm[i]>32)
2693 {
2694 emit_shlimm(th,imm[i]&31,th);
2695 }
2696 }
2697 }
2698 }
2699 if(opcode2[i]==0x3e) // DSRL32
2700 {
2701 if(rt1[i]) {
2702 signed char sh,tl,th;
2703 tl=get_reg(i_regs->regmap,rt1[i]);
2704 th=get_reg(i_regs->regmap,rt1[i]|64);
2705 sh=get_reg(i_regs->regmap,rs1[i]|64);
2706 if(tl>=0){
2707 assert(sh>=0);
2708 emit_mov(sh,tl);
2709 if(th>=0) emit_zeroreg(th);
2710 if(imm[i]>32)
2711 {
2712 emit_shrimm(tl,imm[i]&31,tl);
2713 }
2714 }
2715 }
2716 }
2717 if(opcode2[i]==0x3f) // DSRA32
2718 {
2719 if(rt1[i]) {
2720 signed char sh,tl;
2721 tl=get_reg(i_regs->regmap,rt1[i]);
2722 sh=get_reg(i_regs->regmap,rs1[i]|64);
2723 if(tl>=0){
2724 assert(sh>=0);
2725 emit_mov(sh,tl);
2726 if(imm[i]>32)
2727 {
2728 emit_sarimm(tl,imm[i]&31,tl);
2729 }
2730 }
2731 }
2732 }
2733}
2734
2735#ifndef shift_assemble
2736void shift_assemble(int i,struct regstat *i_regs)
2737{
2738 printf("Need shift_assemble for this architecture.\n");
2739 exit(1);
2740}
2741#endif
2742
2743void load_assemble(int i,struct regstat *i_regs)
2744{
2745 int s,th,tl,addr,map=-1;
2746 int offset;
2747 int jaddr=0;
2748 int memtarget=0,c=0;
2749 u_int hr,reglist=0;
2750 th=get_reg(i_regs->regmap,rt1[i]|64);
2751 tl=get_reg(i_regs->regmap,rt1[i]);
2752 s=get_reg(i_regs->regmap,rs1[i]);
2753 offset=imm[i];
2754 for(hr=0;hr<HOST_REGS;hr++) {
2755 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
2756 }
2757 if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
2758 if(s>=0) {
2759 c=(i_regs->wasconst>>s)&1;
2760 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
2761 if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
2762 }
2763 //printf("load_assemble: c=%d\n",c);
2764 //if(c) printf("load_assemble: const=%x\n",(int)constmap[i][s]+offset);
2765 // FIXME: Even if the load is a NOP, we should check for pagefaults...
2766#ifdef PCSX
2767 if(tl<0&&(!c||(((u_int)constmap[i][s]+offset)>>16)==0x1f80)
2768 ||rt1[i]==0) {
2769 // could be FIFO, must perform the read
2770 // ||dummy read
2771 assem_debug("(forced read)\n");
2772 tl=get_reg(i_regs->regmap,-1);
2773 assert(tl>=0);
2774 }
2775#endif
2776 if(offset||s<0||c) addr=tl;
2777 else addr=s;
2778 if(tl>=0) {
2779 //assert(tl>=0);
2780 //assert(rt1[i]);
2781 reglist&=~(1<<tl);
2782 if(th>=0) reglist&=~(1<<th);
2783 if(!using_tlb) {
2784 if(!c) {
2785//#define R29_HACK 1
2786 #ifdef R29_HACK
2787 // Strmnnrmn's speed hack
2788 if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
2789 #endif
2790 {
2791 emit_cmpimm(addr,RAM_SIZE);
2792 jaddr=(int)out;
2793 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
2794 // Hint to branch predictor that the branch is unlikely to be taken
2795 if(rs1[i]>=28)
2796 emit_jno_unlikely(0);
2797 else
2798 #endif
2799 emit_jno(0);
2800 }
2801 }
2802 }else{ // using tlb
2803 int x=0;
2804 if (opcode[i]==0x20||opcode[i]==0x24) x=3; // LB/LBU
2805 if (opcode[i]==0x21||opcode[i]==0x25) x=2; // LH/LHU
2806 map=get_reg(i_regs->regmap,TLREG);
2807 assert(map>=0);
2808 map=do_tlb_r(addr,tl,map,x,-1,-1,c,constmap[i][s]+offset);
2809 do_tlb_r_branch(map,c,constmap[i][s]+offset,&jaddr);
2810 }
2811 if (opcode[i]==0x20) { // LB
2812 if(!c||memtarget) {
2813 #ifdef HOST_IMM_ADDR32
2814 if(c)
2815 emit_movsbl_tlb((constmap[i][s]+offset)^3,map,tl);
2816 else
2817 #endif
2818 {
2819 //emit_xorimm(addr,3,tl);
2820 //gen_tlb_addr_r(tl,map);
2821 //emit_movsbl_indexed((int)rdram-0x80000000,tl,tl);
2822 int x=0;
2823#ifdef BIG_ENDIAN_MIPS
2824 if(!c) emit_xorimm(addr,3,tl);
2825 else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2826#else
2827 if(c) x=(constmap[i][s]+offset)-(constmap[i][s]+offset);
2828 else if (tl!=addr) emit_mov(addr,tl);
2829#endif
2830 emit_movsbl_indexed_tlb(x,tl,map,tl);
2831 }
2832 if(jaddr)
2833 add_stub(LOADB_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2834 }
2835 else
2836 inline_readstub(LOADB_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2837 }
2838 if (opcode[i]==0x21) { // LH
2839 if(!c||memtarget) {
2840 #ifdef HOST_IMM_ADDR32
2841 if(c)
2842 emit_movswl_tlb((constmap[i][s]+offset)^2,map,tl);
2843 else
2844 #endif
2845 {
2846 int x=0;
2847#ifdef BIG_ENDIAN_MIPS
2848 if(!c) emit_xorimm(addr,2,tl);
2849 else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
2850#else
2851 if(c) x=(constmap[i][s]+offset)-(constmap[i][s]+offset);
2852 else if (tl!=addr) emit_mov(addr,tl);
2853#endif
2854 //#ifdef
2855 //emit_movswl_indexed_tlb(x,tl,map,tl);
2856 //else
2857 if(map>=0) {
2858 gen_tlb_addr_r(tl,map);
2859 emit_movswl_indexed(x,tl,tl);
2860 }else
2861 emit_movswl_indexed((int)rdram-0x80000000+x,tl,tl);
2862 }
2863 if(jaddr)
2864 add_stub(LOADH_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2865 }
2866 else
2867 inline_readstub(LOADH_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2868 }
2869 if (opcode[i]==0x23) { // LW
2870 if(!c||memtarget) {
2871 //emit_readword_indexed((int)rdram-0x80000000,addr,tl);
2872 #ifdef HOST_IMM_ADDR32
2873 if(c)
2874 emit_readword_tlb(constmap[i][s]+offset,map,tl);
2875 else
2876 #endif
2877 emit_readword_indexed_tlb(0,addr,map,tl);
2878 if(jaddr)
2879 add_stub(LOADW_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2880 }
2881 else
2882 inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2883 }
2884 if (opcode[i]==0x24) { // LBU
2885 if(!c||memtarget) {
2886 #ifdef HOST_IMM_ADDR32
2887 if(c)
2888 emit_movzbl_tlb((constmap[i][s]+offset)^3,map,tl);
2889 else
2890 #endif
2891 {
2892 //emit_xorimm(addr,3,tl);
2893 //gen_tlb_addr_r(tl,map);
2894 //emit_movzbl_indexed((int)rdram-0x80000000,tl,tl);
2895 int x=0;
2896#ifdef BIG_ENDIAN_MIPS
2897 if(!c) emit_xorimm(addr,3,tl);
2898 else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2899#else
2900 if(c) x=(constmap[i][s]+offset)-(constmap[i][s]+offset);
2901 else if (tl!=addr) emit_mov(addr,tl);
2902#endif
2903 emit_movzbl_indexed_tlb(x,tl,map,tl);
2904 }
2905 if(jaddr)
2906 add_stub(LOADBU_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2907 }
2908 else
2909 inline_readstub(LOADBU_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2910 }
2911 if (opcode[i]==0x25) { // LHU
2912 if(!c||memtarget) {
2913 #ifdef HOST_IMM_ADDR32
2914 if(c)
2915 emit_movzwl_tlb((constmap[i][s]+offset)^2,map,tl);
2916 else
2917 #endif
2918 {
2919 int x=0;
2920#ifdef BIG_ENDIAN_MIPS
2921 if(!c) emit_xorimm(addr,2,tl);
2922 else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
2923#else
2924 if(c) x=(constmap[i][s]+offset)-(constmap[i][s]+offset);
2925 else if (tl!=addr) emit_mov(addr,tl);
2926#endif
2927 //#ifdef
2928 //emit_movzwl_indexed_tlb(x,tl,map,tl);
2929 //#else
2930 if(map>=0) {
2931 gen_tlb_addr_r(tl,map);
2932 emit_movzwl_indexed(x,tl,tl);
2933 }else
2934 emit_movzwl_indexed((int)rdram-0x80000000+x,tl,tl);
2935 if(jaddr)
2936 add_stub(LOADHU_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2937 }
2938 }
2939 else
2940 inline_readstub(LOADHU_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2941 }
2942 if (opcode[i]==0x27) { // LWU
2943 assert(th>=0);
2944 if(!c||memtarget) {
2945 //emit_readword_indexed((int)rdram-0x80000000,addr,tl);
2946 #ifdef HOST_IMM_ADDR32
2947 if(c)
2948 emit_readword_tlb(constmap[i][s]+offset,map,tl);
2949 else
2950 #endif
2951 emit_readword_indexed_tlb(0,addr,map,tl);
2952 if(jaddr)
2953 add_stub(LOADW_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2954 }
2955 else {
2956 inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2957 }
2958 emit_zeroreg(th);
2959 }
2960 if (opcode[i]==0x37) { // LD
2961 if(!c||memtarget) {
2962 //gen_tlb_addr_r(tl,map);
2963 //if(th>=0) emit_readword_indexed((int)rdram-0x80000000,addr,th);
2964 //emit_readword_indexed((int)rdram-0x7FFFFFFC,addr,tl);
2965 #ifdef HOST_IMM_ADDR32
2966 if(c)
2967 emit_readdword_tlb(constmap[i][s]+offset,map,th,tl);
2968 else
2969 #endif
2970 emit_readdword_indexed_tlb(0,addr,map,th,tl);
2971 if(jaddr)
2972 add_stub(LOADD_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2973 }
2974 else
2975 inline_readstub(LOADD_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2976 }
2977 //emit_storereg(rt1[i],tl); // DEBUG
2978 }
2979 //if(opcode[i]==0x23)
2980 //if(opcode[i]==0x24)
2981 //if(opcode[i]==0x23||opcode[i]==0x24)
2982 /*if(opcode[i]==0x21||opcode[i]==0x23||opcode[i]==0x24)
2983 {
2984 //emit_pusha();
2985 save_regs(0x100f);
2986 emit_readword((int)&last_count,ECX);
2987 #ifdef __i386__
2988 if(get_reg(i_regs->regmap,CCREG)<0)
2989 emit_loadreg(CCREG,HOST_CCREG);
2990 emit_add(HOST_CCREG,ECX,HOST_CCREG);
2991 emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
2992 emit_writeword(HOST_CCREG,(int)&Count);
2993 #endif
2994 #ifdef __arm__
2995 if(get_reg(i_regs->regmap,CCREG)<0)
2996 emit_loadreg(CCREG,0);
2997 else
2998 emit_mov(HOST_CCREG,0);
2999 emit_add(0,ECX,0);
3000 emit_addimm(0,2*ccadj[i],0);
3001 emit_writeword(0,(int)&Count);
3002 #endif
3003 emit_call((int)memdebug);
3004 //emit_popa();
3005 restore_regs(0x100f);
3006 }/**/
3007}
3008
3009#ifndef loadlr_assemble
3010void loadlr_assemble(int i,struct regstat *i_regs)
3011{
3012 printf("Need loadlr_assemble for this architecture.\n");
3013 exit(1);
3014}
3015#endif
3016
3017void store_assemble(int i,struct regstat *i_regs)
3018{
3019 int s,th,tl,map=-1;
3020 int addr,temp;
3021 int offset;
3022 int jaddr=0,jaddr2,type;
3023 int memtarget=0,c=0;
3024 int agr=AGEN1+(i&1);
3025 u_int hr,reglist=0;
3026 th=get_reg(i_regs->regmap,rs2[i]|64);
3027 tl=get_reg(i_regs->regmap,rs2[i]);
3028 s=get_reg(i_regs->regmap,rs1[i]);
3029 temp=get_reg(i_regs->regmap,agr);
3030 if(temp<0) temp=get_reg(i_regs->regmap,-1);
3031 offset=imm[i];
3032 if(s>=0) {
3033 c=(i_regs->wasconst>>s)&1;
3034 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
3035 if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
3036 }
3037 assert(tl>=0);
3038 assert(temp>=0);
3039 for(hr=0;hr<HOST_REGS;hr++) {
3040 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3041 }
3042 if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
3043 if(offset||s<0||c) addr=temp;
3044 else addr=s;
3045 if(!using_tlb) {
3046 if(!c) {
3047 #ifdef R29_HACK
3048 // Strmnnrmn's speed hack
3049 memtarget=1;
3050 if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
3051 #endif
3052 emit_cmpimm(addr,RAM_SIZE);
3053 #ifdef DESTRUCTIVE_SHIFT
3054 if(s==addr) emit_mov(s,temp);
3055 #endif
3056 #ifdef R29_HACK
3057 if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
3058 #endif
3059 {
3060 jaddr=(int)out;
3061 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
3062 // Hint to branch predictor that the branch is unlikely to be taken
3063 if(rs1[i]>=28)
3064 emit_jno_unlikely(0);
3065 else
3066 #endif
3067 emit_jno(0);
3068 }
3069 }
3070 }else{ // using tlb
3071 int x=0;
3072 if (opcode[i]==0x28) x=3; // SB
3073 if (opcode[i]==0x29) x=2; // SH
3074 map=get_reg(i_regs->regmap,TLREG);
3075 assert(map>=0);
3076 map=do_tlb_w(addr,temp,map,x,c,constmap[i][s]+offset);
3077 do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr);
3078 }
3079
3080 if (opcode[i]==0x28) { // SB
3081 if(!c||memtarget) {
3082 int x=0;
3083#ifdef BIG_ENDIAN_MIPS
3084 if(!c) emit_xorimm(addr,3,temp);
3085 else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
3086#else
3087 if(c) x=(constmap[i][s]+offset)-(constmap[i][s]+offset);
3088 else if (addr!=temp) emit_mov(addr,temp);
3089#endif
3090 //gen_tlb_addr_w(temp,map);
3091 //emit_writebyte_indexed(tl,(int)rdram-0x80000000,temp);
3092 emit_writebyte_indexed_tlb(tl,x,temp,map,temp);
3093 }
3094 type=STOREB_STUB;
3095 }
3096 if (opcode[i]==0x29) { // SH
3097 if(!c||memtarget) {
3098 int x=0;
3099#ifdef BIG_ENDIAN_MIPS
3100 if(!c) emit_xorimm(addr,2,temp);
3101 else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
3102#else
3103 if(c) x=(constmap[i][s]+offset)-(constmap[i][s]+offset);
3104 else if (addr!=temp) emit_mov(addr,temp);
3105#endif
3106 //#ifdef
3107 //emit_writehword_indexed_tlb(tl,x,temp,map,temp);
3108 //#else
3109 if(map>=0) {
3110 gen_tlb_addr_w(temp,map);
3111 emit_writehword_indexed(tl,x,temp);
3112 }else
3113 emit_writehword_indexed(tl,(int)rdram-0x80000000+x,temp);
3114 }
3115 type=STOREH_STUB;
3116 }
3117 if (opcode[i]==0x2B) { // SW
3118 if(!c||memtarget)
3119 //emit_writeword_indexed(tl,(int)rdram-0x80000000,addr);
3120 emit_writeword_indexed_tlb(tl,0,addr,map,temp);
3121 type=STOREW_STUB;
3122 }
3123 if (opcode[i]==0x3F) { // SD
3124 if(!c||memtarget) {
3125 if(rs2[i]) {
3126 assert(th>=0);
3127 //emit_writeword_indexed(th,(int)rdram-0x80000000,addr);
3128 //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,addr);
3129 emit_writedword_indexed_tlb(th,tl,0,addr,map,temp);
3130 }else{
3131 // Store zero
3132 //emit_writeword_indexed(tl,(int)rdram-0x80000000,temp);
3133 //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,temp);
3134 emit_writedword_indexed_tlb(tl,tl,0,addr,map,temp);
3135 }
3136 }
3137 type=STORED_STUB;
3138 }
3139 if(!using_tlb&&(!c||memtarget))
3140 // addr could be a temp, make sure it survives STORE*_STUB
3141 reglist|=1<<addr;
3142 if(jaddr) {
3143 add_stub(type,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3144 } else if(!memtarget) {
3145 inline_writestub(type,i,constmap[i][s]+offset,i_regs->regmap,rs2[i],ccadj[i],reglist);
3146 }
3147 if(!using_tlb) {
3148 if(!c||memtarget) {
3149 #ifdef DESTRUCTIVE_SHIFT
3150 // The x86 shift operation is 'destructive'; it overwrites the
3151 // source register, so we need to make a copy first and use that.
3152 addr=temp;
3153 #endif
3154 #if defined(HOST_IMM8)
3155 int ir=get_reg(i_regs->regmap,INVCP);
3156 assert(ir>=0);
3157 emit_cmpmem_indexedsr12_reg(ir,addr,1);
3158 #else
3159 emit_cmpmem_indexedsr12_imm((int)invalid_code,addr,1);
3160 #endif
3161 jaddr2=(int)out;
3162 emit_jne(0);
3163 add_stub(INVCODE_STUB,jaddr2,(int)out,reglist|(1<<HOST_CCREG),addr,0,0,0);
3164 }
3165 }
3166 //if(opcode[i]==0x2B || opcode[i]==0x3F)
3167 //if(opcode[i]==0x2B || opcode[i]==0x28)
3168 //if(opcode[i]==0x2B || opcode[i]==0x29)
3169 //if(opcode[i]==0x2B)
3170 /*if(opcode[i]==0x2B || opcode[i]==0x28 || opcode[i]==0x29 || opcode[i]==0x3F)
3171 {
3172 //emit_pusha();
3173 save_regs(0x100f);
3174 emit_readword((int)&last_count,ECX);
3175 #ifdef __i386__
3176 if(get_reg(i_regs->regmap,CCREG)<0)
3177 emit_loadreg(CCREG,HOST_CCREG);
3178 emit_add(HOST_CCREG,ECX,HOST_CCREG);
3179 emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3180 emit_writeword(HOST_CCREG,(int)&Count);
3181 #endif
3182 #ifdef __arm__
3183 if(get_reg(i_regs->regmap,CCREG)<0)
3184 emit_loadreg(CCREG,0);
3185 else
3186 emit_mov(HOST_CCREG,0);
3187 emit_add(0,ECX,0);
3188 emit_addimm(0,2*ccadj[i],0);
3189 emit_writeword(0,(int)&Count);
3190 #endif
3191 emit_call((int)memdebug);
3192 //emit_popa();
3193 restore_regs(0x100f);
3194 }/**/
3195}
3196
3197void storelr_assemble(int i,struct regstat *i_regs)
3198{
3199 int s,th,tl;
3200 int temp;
3201 int temp2;
3202 int offset;
3203 int jaddr=0,jaddr2;
3204 int case1,case2,case3;
3205 int done0,done1,done2;
3206 int memtarget,c=0;
3207 int agr=AGEN1+(i&1);
3208 u_int hr,reglist=0;
3209 th=get_reg(i_regs->regmap,rs2[i]|64);
3210 tl=get_reg(i_regs->regmap,rs2[i]);
3211 s=get_reg(i_regs->regmap,rs1[i]);
3212 temp=get_reg(i_regs->regmap,agr);
3213 if(temp<0) temp=get_reg(i_regs->regmap,-1);
3214 offset=imm[i];
3215 if(s>=0) {
3216 c=(i_regs->isconst>>s)&1;
3217 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
3218 if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
3219 }
3220 assert(tl>=0);
3221 for(hr=0;hr<HOST_REGS;hr++) {
3222 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3223 }
3224 if(tl>=0) {
3225 assert(temp>=0);
3226 if(!using_tlb) {
3227 if(!c) {
3228 emit_cmpimm(s<0||offset?temp:s,RAM_SIZE);
3229 if(!offset&&s!=temp) emit_mov(s,temp);
3230 jaddr=(int)out;
3231 emit_jno(0);
3232 }
3233 else
3234 {
3235 if(!memtarget||!rs1[i]) {
3236 jaddr=(int)out;
3237 emit_jmp(0);
3238 }
3239 }
3240 if((u_int)rdram!=0x80000000)
3241 emit_addimm_no_flags((u_int)rdram-(u_int)0x80000000,temp);
3242 }else{ // using tlb
3243 int map=get_reg(i_regs->regmap,TLREG);
3244 assert(map>=0);
3245 map=do_tlb_w(c||s<0||offset?temp:s,temp,map,0,c,constmap[i][s]+offset);
3246 if(!c&&!offset&&s>=0) emit_mov(s,temp);
3247 do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr);
3248 if(!jaddr&&!memtarget) {
3249 jaddr=(int)out;
3250 emit_jmp(0);
3251 }
3252 gen_tlb_addr_w(temp,map);
3253 }
3254
3255 if (opcode[i]==0x2C||opcode[i]==0x2D) { // SDL/SDR
3256 temp2=get_reg(i_regs->regmap,FTEMP);
3257 if(!rs2[i]) temp2=th=tl;
3258 }
3259
3260#ifndef BIG_ENDIAN_MIPS
3261 emit_xorimm(temp,3,temp);
3262#endif
3263 emit_testimm(temp,2);
3264 case2=(int)out;
3265 emit_jne(0);
3266 emit_testimm(temp,1);
3267 case1=(int)out;
3268 emit_jne(0);
3269 // 0
3270 if (opcode[i]==0x2A) { // SWL
3271 emit_writeword_indexed(tl,0,temp);
3272 }
3273 if (opcode[i]==0x2E) { // SWR
3274 emit_writebyte_indexed(tl,3,temp);
3275 }
3276 if (opcode[i]==0x2C) { // SDL
3277 emit_writeword_indexed(th,0,temp);
3278 if(rs2[i]) emit_mov(tl,temp2);
3279 }
3280 if (opcode[i]==0x2D) { // SDR
3281 emit_writebyte_indexed(tl,3,temp);
3282 if(rs2[i]) emit_shldimm(th,tl,24,temp2);
3283 }
3284 done0=(int)out;
3285 emit_jmp(0);
3286 // 1
3287 set_jump_target(case1,(int)out);
3288 if (opcode[i]==0x2A) { // SWL
3289 // Write 3 msb into three least significant bytes
3290 if(rs2[i]) emit_rorimm(tl,8,tl);
3291 emit_writehword_indexed(tl,-1,temp);
3292 if(rs2[i]) emit_rorimm(tl,16,tl);
3293 emit_writebyte_indexed(tl,1,temp);
3294 if(rs2[i]) emit_rorimm(tl,8,tl);
3295 }
3296 if (opcode[i]==0x2E) { // SWR
3297 // Write two lsb into two most significant bytes
3298 emit_writehword_indexed(tl,1,temp);
3299 }
3300 if (opcode[i]==0x2C) { // SDL
3301 if(rs2[i]) emit_shrdimm(tl,th,8,temp2);
3302 // Write 3 msb into three least significant bytes
3303 if(rs2[i]) emit_rorimm(th,8,th);
3304 emit_writehword_indexed(th,-1,temp);
3305 if(rs2[i]) emit_rorimm(th,16,th);
3306 emit_writebyte_indexed(th,1,temp);
3307 if(rs2[i]) emit_rorimm(th,8,th);
3308 }
3309 if (opcode[i]==0x2D) { // SDR
3310 if(rs2[i]) emit_shldimm(th,tl,16,temp2);
3311 // Write two lsb into two most significant bytes
3312 emit_writehword_indexed(tl,1,temp);
3313 }
3314 done1=(int)out;
3315 emit_jmp(0);
3316 // 2
3317 set_jump_target(case2,(int)out);
3318 emit_testimm(temp,1);
3319 case3=(int)out;
3320 emit_jne(0);
3321 if (opcode[i]==0x2A) { // SWL
3322 // Write two msb into two least significant bytes
3323 if(rs2[i]) emit_rorimm(tl,16,tl);
3324 emit_writehword_indexed(tl,-2,temp);
3325 if(rs2[i]) emit_rorimm(tl,16,tl);
3326 }
3327 if (opcode[i]==0x2E) { // SWR
3328 // Write 3 lsb into three most significant bytes
3329 emit_writebyte_indexed(tl,-1,temp);
3330 if(rs2[i]) emit_rorimm(tl,8,tl);
3331 emit_writehword_indexed(tl,0,temp);
3332 if(rs2[i]) emit_rorimm(tl,24,tl);
3333 }
3334 if (opcode[i]==0x2C) { // SDL
3335 if(rs2[i]) emit_shrdimm(tl,th,16,temp2);
3336 // Write two msb into two least significant bytes
3337 if(rs2[i]) emit_rorimm(th,16,th);
3338 emit_writehword_indexed(th,-2,temp);
3339 if(rs2[i]) emit_rorimm(th,16,th);
3340 }
3341 if (opcode[i]==0x2D) { // SDR
3342 if(rs2[i]) emit_shldimm(th,tl,8,temp2);
3343 // Write 3 lsb into three most significant bytes
3344 emit_writebyte_indexed(tl,-1,temp);
3345 if(rs2[i]) emit_rorimm(tl,8,tl);
3346 emit_writehword_indexed(tl,0,temp);
3347 if(rs2[i]) emit_rorimm(tl,24,tl);
3348 }
3349 done2=(int)out;
3350 emit_jmp(0);
3351 // 3
3352 set_jump_target(case3,(int)out);
3353 if (opcode[i]==0x2A) { // SWL
3354 // Write msb into least significant byte
3355 if(rs2[i]) emit_rorimm(tl,24,tl);
3356 emit_writebyte_indexed(tl,-3,temp);
3357 if(rs2[i]) emit_rorimm(tl,8,tl);
3358 }
3359 if (opcode[i]==0x2E) { // SWR
3360 // Write entire word
3361 emit_writeword_indexed(tl,-3,temp);
3362 }
3363 if (opcode[i]==0x2C) { // SDL
3364 if(rs2[i]) emit_shrdimm(tl,th,24,temp2);
3365 // Write msb into least significant byte
3366 if(rs2[i]) emit_rorimm(th,24,th);
3367 emit_writebyte_indexed(th,-3,temp);
3368 if(rs2[i]) emit_rorimm(th,8,th);
3369 }
3370 if (opcode[i]==0x2D) { // SDR
3371 if(rs2[i]) emit_mov(th,temp2);
3372 // Write entire word
3373 emit_writeword_indexed(tl,-3,temp);
3374 }
3375 set_jump_target(done0,(int)out);
3376 set_jump_target(done1,(int)out);
3377 set_jump_target(done2,(int)out);
3378 if (opcode[i]==0x2C) { // SDL
3379 emit_testimm(temp,4);
3380 done0=(int)out;
3381 emit_jne(0);
3382 emit_andimm(temp,~3,temp);
3383 emit_writeword_indexed(temp2,4,temp);
3384 set_jump_target(done0,(int)out);
3385 }
3386 if (opcode[i]==0x2D) { // SDR
3387 emit_testimm(temp,4);
3388 done0=(int)out;
3389 emit_jeq(0);
3390 emit_andimm(temp,~3,temp);
3391 emit_writeword_indexed(temp2,-4,temp);
3392 set_jump_target(done0,(int)out);
3393 }
3394 if(!c||!memtarget)
3395 add_stub(STORELR_STUB,jaddr,(int)out,i,(int)i_regs,temp,ccadj[i],reglist);
3396 }
3397 if(!using_tlb) {
3398 emit_addimm_no_flags((u_int)0x80000000-(u_int)rdram,temp);
3399 #if defined(HOST_IMM8)
3400 int ir=get_reg(i_regs->regmap,INVCP);
3401 assert(ir>=0);
3402 emit_cmpmem_indexedsr12_reg(ir,temp,1);
3403 #else
3404 emit_cmpmem_indexedsr12_imm((int)invalid_code,temp,1);
3405 #endif
3406 jaddr2=(int)out;
3407 emit_jne(0);
3408 add_stub(INVCODE_STUB,jaddr2,(int)out,reglist|(1<<HOST_CCREG),temp,0,0,0);
3409 }
3410 /*
3411 emit_pusha();
3412 //save_regs(0x100f);
3413 emit_readword((int)&last_count,ECX);
3414 if(get_reg(i_regs->regmap,CCREG)<0)
3415 emit_loadreg(CCREG,HOST_CCREG);
3416 emit_add(HOST_CCREG,ECX,HOST_CCREG);
3417 emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3418 emit_writeword(HOST_CCREG,(int)&Count);
3419 emit_call((int)memdebug);
3420 emit_popa();
3421 //restore_regs(0x100f);
3422 /**/
3423}
3424
3425void c1ls_assemble(int i,struct regstat *i_regs)
3426{
3427#ifndef DISABLE_COP1
3428 int s,th,tl;
3429 int temp,ar;
3430 int map=-1;
3431 int offset;
3432 int c=0;
3433 int jaddr,jaddr2=0,jaddr3,type;
3434 int agr=AGEN1+(i&1);
3435 u_int hr,reglist=0;
3436 th=get_reg(i_regs->regmap,FTEMP|64);
3437 tl=get_reg(i_regs->regmap,FTEMP);
3438 s=get_reg(i_regs->regmap,rs1[i]);
3439 temp=get_reg(i_regs->regmap,agr);
3440 if(temp<0) temp=get_reg(i_regs->regmap,-1);
3441 offset=imm[i];
3442 assert(tl>=0);
3443 assert(rs1[i]>0);
3444 assert(temp>=0);
3445 for(hr=0;hr<HOST_REGS;hr++) {
3446 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3447 }
3448 if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
3449 if (opcode[i]==0x31||opcode[i]==0x35) // LWC1/LDC1
3450 {
3451 // Loads use a temporary register which we need to save
3452 reglist|=1<<temp;
3453 }
3454 if (opcode[i]==0x39||opcode[i]==0x3D) // SWC1/SDC1
3455 ar=temp;
3456 else // LWC1/LDC1
3457 ar=tl;
3458 //if(s<0) emit_loadreg(rs1[i],ar); //address_generation does this now
3459 //else c=(i_regs->wasconst>>s)&1;
3460 if(s>=0) c=(i_regs->wasconst>>s)&1;
3461 // Check cop1 unusable
3462 if(!cop1_usable) {
3463 signed char rs=get_reg(i_regs->regmap,CSREG);
3464 assert(rs>=0);
3465 emit_testimm(rs,0x20000000);
3466 jaddr=(int)out;
3467 emit_jeq(0);
3468 add_stub(FP_STUB,jaddr,(int)out,i,rs,(int)i_regs,is_delayslot,0);
3469 cop1_usable=1;
3470 }
3471 if (opcode[i]==0x39) { // SWC1 (get float address)
3472 emit_readword((int)&reg_cop1_simple[(source[i]>>16)&0x1f],tl);
3473 }
3474 if (opcode[i]==0x3D) { // SDC1 (get double address)
3475 emit_readword((int)&reg_cop1_double[(source[i]>>16)&0x1f],tl);
3476 }
3477 // Generate address + offset
3478 if(!using_tlb) {
3479 if(!c)
3480 emit_cmpimm(offset||c||s<0?ar:s,RAM_SIZE);
3481 }
3482 else
3483 {
3484 map=get_reg(i_regs->regmap,TLREG);
3485 assert(map>=0);
3486 if (opcode[i]==0x31||opcode[i]==0x35) { // LWC1/LDC1
3487 map=do_tlb_r(offset||c||s<0?ar:s,ar,map,0,-1,-1,c,constmap[i][s]+offset);
3488 }
3489 if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3490 map=do_tlb_w(offset||c||s<0?ar:s,ar,map,0,c,constmap[i][s]+offset);
3491 }
3492 }
3493 if (opcode[i]==0x39) { // SWC1 (read float)
3494 emit_readword_indexed(0,tl,tl);
3495 }
3496 if (opcode[i]==0x3D) { // SDC1 (read double)
3497 emit_readword_indexed(4,tl,th);
3498 emit_readword_indexed(0,tl,tl);
3499 }
3500 if (opcode[i]==0x31) { // LWC1 (get target address)
3501 emit_readword((int)&reg_cop1_simple[(source[i]>>16)&0x1f],temp);
3502 }
3503 if (opcode[i]==0x35) { // LDC1 (get target address)
3504 emit_readword((int)&reg_cop1_double[(source[i]>>16)&0x1f],temp);
3505 }
3506 if(!using_tlb) {
3507 if(!c) {
3508 jaddr2=(int)out;
3509 emit_jno(0);
3510 }
3511 else if(((signed int)(constmap[i][s]+offset))>=(signed int)0x80000000+RAM_SIZE) {
3512 jaddr2=(int)out;
3513 emit_jmp(0); // inline_readstub/inline_writestub? Very rare case
3514 }
3515 #ifdef DESTRUCTIVE_SHIFT
3516 if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3517 if(!offset&&!c&&s>=0) emit_mov(s,ar);
3518 }
3519 #endif
3520 }else{
3521 if (opcode[i]==0x31||opcode[i]==0x35) { // LWC1/LDC1
3522 do_tlb_r_branch(map,c,constmap[i][s]+offset,&jaddr2);
3523 }
3524 if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3525 do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr2);
3526 }
3527 }
3528 if (opcode[i]==0x31) { // LWC1
3529 //if(s>=0&&!c&&!offset) emit_mov(s,tl);
3530 //gen_tlb_addr_r(ar,map);
3531 //emit_readword_indexed((int)rdram-0x80000000,tl,tl);
3532 #ifdef HOST_IMM_ADDR32
3533 if(c) emit_readword_tlb(constmap[i][s]+offset,map,tl);
3534 else
3535 #endif
3536 emit_readword_indexed_tlb(0,offset||c||s<0?tl:s,map,tl);
3537 type=LOADW_STUB;
3538 }
3539 if (opcode[i]==0x35) { // LDC1
3540 assert(th>=0);
3541 //if(s>=0&&!c&&!offset) emit_mov(s,tl);
3542 //gen_tlb_addr_r(ar,map);
3543 //emit_readword_indexed((int)rdram-0x80000000,tl,th);
3544 //emit_readword_indexed((int)rdram-0x7FFFFFFC,tl,tl);
3545 #ifdef HOST_IMM_ADDR32
3546 if(c) emit_readdword_tlb(constmap[i][s]+offset,map,th,tl);
3547 else
3548 #endif
3549 emit_readdword_indexed_tlb(0,offset||c||s<0?tl:s,map,th,tl);
3550 type=LOADD_STUB;
3551 }
3552 if (opcode[i]==0x39) { // SWC1
3553 //emit_writeword_indexed(tl,(int)rdram-0x80000000,temp);
3554 emit_writeword_indexed_tlb(tl,0,offset||c||s<0?temp:s,map,temp);
3555 type=STOREW_STUB;
3556 }
3557 if (opcode[i]==0x3D) { // SDC1
3558 assert(th>=0);
3559 //emit_writeword_indexed(th,(int)rdram-0x80000000,temp);
3560 //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,temp);
3561 emit_writedword_indexed_tlb(th,tl,0,offset||c||s<0?temp:s,map,temp);
3562 type=STORED_STUB;
3563 }
3564 if(!using_tlb) {
3565 if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3566 #ifndef DESTRUCTIVE_SHIFT
3567 temp=offset||c||s<0?ar:s;
3568 #endif
3569 #if defined(HOST_IMM8)
3570 int ir=get_reg(i_regs->regmap,INVCP);
3571 assert(ir>=0);
3572 emit_cmpmem_indexedsr12_reg(ir,temp,1);
3573 #else
3574 emit_cmpmem_indexedsr12_imm((int)invalid_code,temp,1);
3575 #endif
3576 jaddr3=(int)out;
3577 emit_jne(0);
3578 add_stub(INVCODE_STUB,jaddr3,(int)out,reglist|(1<<HOST_CCREG),temp,0,0,0);
3579 }
3580 }
3581 if(jaddr2) add_stub(type,jaddr2,(int)out,i,offset||c||s<0?ar:s,(int)i_regs,ccadj[i],reglist);
3582 if (opcode[i]==0x31) { // LWC1 (write float)
3583 emit_writeword_indexed(tl,0,temp);
3584 }
3585 if (opcode[i]==0x35) { // LDC1 (write double)
3586 emit_writeword_indexed(th,4,temp);
3587 emit_writeword_indexed(tl,0,temp);
3588 }
3589 //if(opcode[i]==0x39)
3590 /*if(opcode[i]==0x39||opcode[i]==0x31)
3591 {
3592 emit_pusha();
3593 emit_readword((int)&last_count,ECX);
3594 if(get_reg(i_regs->regmap,CCREG)<0)
3595 emit_loadreg(CCREG,HOST_CCREG);
3596 emit_add(HOST_CCREG,ECX,HOST_CCREG);
3597 emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3598 emit_writeword(HOST_CCREG,(int)&Count);
3599 emit_call((int)memdebug);
3600 emit_popa();
3601 }/**/
3602#else
3603 cop1_unusable(i, i_regs);
3604#endif
3605}
3606
3607void c2ls_assemble(int i,struct regstat *i_regs)
3608{
3609 int s,tl;
3610 int ar;
3611 int offset;
3612 int memtarget=0,c=0;
3613 int jaddr,jaddr2=0,jaddr3,type;
3614 int agr=AGEN1+(i&1);
3615 u_int hr,reglist=0;
3616 u_int copr=(source[i]>>16)&0x1f;
3617 s=get_reg(i_regs->regmap,rs1[i]);
3618 tl=get_reg(i_regs->regmap,FTEMP);
3619 offset=imm[i];
3620 assert(rs1[i]>0);
3621 assert(tl>=0);
3622 assert(!using_tlb);
3623
3624 for(hr=0;hr<HOST_REGS;hr++) {
3625 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3626 }
3627 if(i_regs->regmap[HOST_CCREG]==CCREG)
3628 reglist&=~(1<<HOST_CCREG);
3629
3630 // get the address
3631 if (opcode[i]==0x3a) { // SWC2
3632 ar=get_reg(i_regs->regmap,agr);
3633 if(ar<0) ar=get_reg(i_regs->regmap,-1);
3634 reglist|=1<<ar;
3635 } else { // LWC2
3636 ar=tl;
3637 }
3638 if(s>=0) c=(i_regs->wasconst>>s)&1;
3639 memtarget=c&&(((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE);
3640 if (!offset&&!c&&s>=0) ar=s;
3641 assert(ar>=0);
3642
3643 if (opcode[i]==0x3a) { // SWC2
3644 cop2_get_dreg(copr,tl,HOST_TEMPREG);
3645 type=STOREW_STUB;
3646 }
3647 else
3648 type=LOADW_STUB;
3649
3650 if(c&&!memtarget) {
3651 jaddr2=(int)out;
3652 emit_jmp(0); // inline_readstub/inline_writestub?
3653 }
3654 else {
3655 if(!c) {
3656 emit_cmpimm(offset||c||s<0?ar:s,RAM_SIZE);
3657 jaddr2=(int)out;
3658 emit_jno(0);
3659 }
3660 if (opcode[i]==0x32) { // LWC2
3661 #ifdef HOST_IMM_ADDR32
3662 if(c) emit_readword_tlb(constmap[i][s]+offset,-1,tl);
3663 else
3664 #endif
3665 emit_readword_indexed(0,ar,tl);
3666 }
3667 if (opcode[i]==0x3a) { // SWC2
3668 #ifdef DESTRUCTIVE_SHIFT
3669 if(!offset&&!c&&s>=0) emit_mov(s,ar);
3670 #endif
3671 emit_writeword_indexed(tl,0,ar);
3672 }
3673 }
3674 if(jaddr2)
3675 add_stub(type,jaddr2,(int)out,i,ar,(int)i_regs,ccadj[i],reglist);
3676 if (opcode[i]==0x3a) { // SWC2
3677#if defined(HOST_IMM8)
3678 int ir=get_reg(i_regs->regmap,INVCP);
3679 assert(ir>=0);
3680 emit_cmpmem_indexedsr12_reg(ir,ar,1);
3681#else
3682 emit_cmpmem_indexedsr12_imm((int)invalid_code,ar,1);
3683#endif
3684 jaddr3=(int)out;
3685 emit_jne(0);
3686 add_stub(INVCODE_STUB,jaddr3,(int)out,reglist|(1<<HOST_CCREG),ar,0,0,0);
3687 }
3688 if (opcode[i]==0x32) { // LWC2
3689 cop2_put_dreg(copr,tl,HOST_TEMPREG);
3690 }
3691}
3692
3693#ifndef multdiv_assemble
3694void multdiv_assemble(int i,struct regstat *i_regs)
3695{
3696 printf("Need multdiv_assemble for this architecture.\n");
3697 exit(1);
3698}
3699#endif
3700
3701void mov_assemble(int i,struct regstat *i_regs)
3702{
3703 //if(opcode2[i]==0x10||opcode2[i]==0x12) { // MFHI/MFLO
3704 //if(opcode2[i]==0x11||opcode2[i]==0x13) { // MTHI/MTLO
3705 //assert(rt1[i]>0);
3706 if(rt1[i]) {
3707 signed char sh,sl,th,tl;
3708 th=get_reg(i_regs->regmap,rt1[i]|64);
3709 tl=get_reg(i_regs->regmap,rt1[i]);
3710 //assert(tl>=0);
3711 if(tl>=0) {
3712 sh=get_reg(i_regs->regmap,rs1[i]|64);
3713 sl=get_reg(i_regs->regmap,rs1[i]);
3714 if(sl>=0) emit_mov(sl,tl);
3715 else emit_loadreg(rs1[i],tl);
3716 if(th>=0) {
3717 if(sh>=0) emit_mov(sh,th);
3718 else emit_loadreg(rs1[i]|64,th);
3719 }
3720 }
3721 }
3722}
3723
3724#ifndef fconv_assemble
3725void fconv_assemble(int i,struct regstat *i_regs)
3726{
3727 printf("Need fconv_assemble for this architecture.\n");
3728 exit(1);
3729}
3730#endif
3731
3732#if 0
3733void float_assemble(int i,struct regstat *i_regs)
3734{
3735 printf("Need float_assemble for this architecture.\n");
3736 exit(1);
3737}
3738#endif
3739
3740void syscall_assemble(int i,struct regstat *i_regs)
3741{
3742 signed char ccreg=get_reg(i_regs->regmap,CCREG);
3743 assert(ccreg==HOST_CCREG);
3744 assert(!is_delayslot);
3745 emit_movimm(start+i*4,EAX); // Get PC
3746 emit_addimm(HOST_CCREG,CLOCK_DIVIDER*ccadj[i],HOST_CCREG); // CHECK: is this right? There should probably be an extra cycle...
3747 emit_jmp((int)jump_syscall_hle); // XXX
3748}
3749
3750void hlecall_assemble(int i,struct regstat *i_regs)
3751{
3752 signed char ccreg=get_reg(i_regs->regmap,CCREG);
3753 assert(ccreg==HOST_CCREG);
3754 assert(!is_delayslot);
3755 emit_movimm(start+i*4+4,0); // Get PC
3756 emit_movimm((int)psxHLEt[source[i]&7],1);
3757 emit_addimm(HOST_CCREG,CLOCK_DIVIDER*ccadj[i],HOST_CCREG); // XXX
3758 emit_jmp((int)jump_hlecall);
3759}
3760
3761void intcall_assemble(int i,struct regstat *i_regs)
3762{
3763 signed char ccreg=get_reg(i_regs->regmap,CCREG);
3764 assert(ccreg==HOST_CCREG);
3765 assert(!is_delayslot);
3766 emit_movimm(start+i*4,0); // Get PC
3767 emit_addimm(HOST_CCREG,CLOCK_DIVIDER*ccadj[i],HOST_CCREG);
3768 emit_jmp((int)jump_intcall);
3769}
3770
3771void ds_assemble(int i,struct regstat *i_regs)
3772{
3773 is_delayslot=1;
3774 switch(itype[i]) {
3775 case ALU:
3776 alu_assemble(i,i_regs);break;
3777 case IMM16:
3778 imm16_assemble(i,i_regs);break;
3779 case SHIFT:
3780 shift_assemble(i,i_regs);break;
3781 case SHIFTIMM:
3782 shiftimm_assemble(i,i_regs);break;
3783 case LOAD:
3784 load_assemble(i,i_regs);break;
3785 case LOADLR:
3786 loadlr_assemble(i,i_regs);break;
3787 case STORE:
3788 store_assemble(i,i_regs);break;
3789 case STORELR:
3790 storelr_assemble(i,i_regs);break;
3791 case COP0:
3792 cop0_assemble(i,i_regs);break;
3793 case COP1:
3794 cop1_assemble(i,i_regs);break;
3795 case C1LS:
3796 c1ls_assemble(i,i_regs);break;
3797 case COP2:
3798 cop2_assemble(i,i_regs);break;
3799 case C2LS:
3800 c2ls_assemble(i,i_regs);break;
3801 case C2OP:
3802 c2op_assemble(i,i_regs);break;
3803 case FCONV:
3804 fconv_assemble(i,i_regs);break;
3805 case FLOAT:
3806 float_assemble(i,i_regs);break;
3807 case FCOMP:
3808 fcomp_assemble(i,i_regs);break;
3809 case MULTDIV:
3810 multdiv_assemble(i,i_regs);break;
3811 case MOV:
3812 mov_assemble(i,i_regs);break;
3813 case SYSCALL:
3814 case HLECALL:
3815 case INTCALL:
3816 case SPAN:
3817 case UJUMP:
3818 case RJUMP:
3819 case CJUMP:
3820 case SJUMP:
3821 case FJUMP:
3822 printf("Jump in the delay slot. This is probably a bug.\n");
3823 }
3824 is_delayslot=0;
3825}
3826
3827// Is the branch target a valid internal jump?
3828int internal_branch(uint64_t i_is32,int addr)
3829{
3830 if(addr&1) return 0; // Indirect (register) jump
3831 if(addr>=start && addr<start+slen*4-4)
3832 {
3833 int t=(addr-start)>>2;
3834 // Delay slots are not valid branch targets
3835 //if(t>0&&(itype[t-1]==RJUMP||itype[t-1]==UJUMP||itype[t-1]==CJUMP||itype[t-1]==SJUMP||itype[t-1]==FJUMP)) return 0;
3836 // 64 -> 32 bit transition requires a recompile
3837 /*if(is32[t]&~unneeded_reg_upper[t]&~i_is32)
3838 {
3839 if(requires_32bit[t]&~i_is32) printf("optimizable: no\n");
3840 else printf("optimizable: yes\n");
3841 }*/
3842 //if(is32[t]&~unneeded_reg_upper[t]&~i_is32) return 0;
3843#ifndef FORCE32
3844 if(requires_32bit[t]&~i_is32) return 0;
3845 else
3846#endif
3847 return 1;
3848 }
3849 return 0;
3850}
3851
3852#ifndef wb_invalidate
3853void wb_invalidate(signed char pre[],signed char entry[],uint64_t dirty,uint64_t is32,
3854 uint64_t u,uint64_t uu)
3855{
3856 int hr;
3857 for(hr=0;hr<HOST_REGS;hr++) {
3858 if(hr!=EXCLUDE_REG) {
3859 if(pre[hr]!=entry[hr]) {
3860 if(pre[hr]>=0) {
3861 if((dirty>>hr)&1) {
3862 if(get_reg(entry,pre[hr])<0) {
3863 if(pre[hr]<64) {
3864 if(!((u>>pre[hr])&1)) {
3865 emit_storereg(pre[hr],hr);
3866 if( ((is32>>pre[hr])&1) && !((uu>>pre[hr])&1) ) {
3867 emit_sarimm(hr,31,hr);
3868 emit_storereg(pre[hr]|64,hr);
3869 }
3870 }
3871 }else{
3872 if(!((uu>>(pre[hr]&63))&1) && !((is32>>(pre[hr]&63))&1)) {
3873 emit_storereg(pre[hr],hr);
3874 }
3875 }
3876 }
3877 }
3878 }
3879 }
3880 }
3881 }
3882 // Move from one register to another (no writeback)
3883 for(hr=0;hr<HOST_REGS;hr++) {
3884 if(hr!=EXCLUDE_REG) {
3885 if(pre[hr]!=entry[hr]) {
3886 if(pre[hr]>=0&&(pre[hr]&63)<TEMPREG) {
3887 int nr;
3888 if((nr=get_reg(entry,pre[hr]))>=0) {
3889 emit_mov(hr,nr);
3890 }
3891 }
3892 }
3893 }
3894 }
3895}
3896#endif
3897
3898// Load the specified registers
3899// This only loads the registers given as arguments because
3900// we don't want to load things that will be overwritten
3901void load_regs(signed char entry[],signed char regmap[],int is32,int rs1,int rs2)
3902{
3903 int hr;
3904 // Load 32-bit regs
3905 for(hr=0;hr<HOST_REGS;hr++) {
3906 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
3907 if(entry[hr]!=regmap[hr]) {
3908 if(regmap[hr]==rs1||regmap[hr]==rs2)
3909 {
3910 if(regmap[hr]==0) {
3911 emit_zeroreg(hr);
3912 }
3913 else
3914 {
3915 emit_loadreg(regmap[hr],hr);
3916 }
3917 }
3918 }
3919 }
3920 }
3921 //Load 64-bit regs
3922 for(hr=0;hr<HOST_REGS;hr++) {
3923 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
3924 if(entry[hr]!=regmap[hr]) {
3925 if(regmap[hr]-64==rs1||regmap[hr]-64==rs2)
3926 {
3927 assert(regmap[hr]!=64);
3928 if((is32>>(regmap[hr]&63))&1) {
3929 int lr=get_reg(regmap,regmap[hr]-64);
3930 if(lr>=0)
3931 emit_sarimm(lr,31,hr);
3932 else
3933 emit_loadreg(regmap[hr],hr);
3934 }
3935 else
3936 {
3937 emit_loadreg(regmap[hr],hr);
3938 }
3939 }
3940 }
3941 }
3942 }
3943}
3944
3945// Load registers prior to the start of a loop
3946// so that they are not loaded within the loop
3947static void loop_preload(signed char pre[],signed char entry[])
3948{
3949 int hr;
3950 for(hr=0;hr<HOST_REGS;hr++) {
3951 if(hr!=EXCLUDE_REG) {
3952 if(pre[hr]!=entry[hr]) {
3953 if(entry[hr]>=0) {
3954 if(get_reg(pre,entry[hr])<0) {
3955 assem_debug("loop preload:\n");
3956 //printf("loop preload: %d\n",hr);
3957 if(entry[hr]==0) {
3958 emit_zeroreg(hr);
3959 }
3960 else if(entry[hr]<TEMPREG)
3961 {
3962 emit_loadreg(entry[hr],hr);
3963 }
3964 else if(entry[hr]-64<TEMPREG)
3965 {
3966 emit_loadreg(entry[hr],hr);
3967 }
3968 }
3969 }
3970 }
3971 }
3972 }
3973}
3974
3975// Generate address for load/store instruction
3976// goes to AGEN for writes, FTEMP for LOADLR and cop1/2 loads
3977void address_generation(int i,struct regstat *i_regs,signed char entry[])
3978{
3979 if(itype[i]==LOAD||itype[i]==LOADLR||itype[i]==STORE||itype[i]==STORELR||itype[i]==C1LS||itype[i]==C2LS) {
3980 int ra;
3981 int agr=AGEN1+(i&1);
3982 int mgr=MGEN1+(i&1);
3983 if(itype[i]==LOAD) {
3984 ra=get_reg(i_regs->regmap,rt1[i]);
3985 //if(rt1[i]) assert(ra>=0);
3986 }
3987 if(itype[i]==LOADLR) {
3988 ra=get_reg(i_regs->regmap,FTEMP);
3989 }
3990 if(itype[i]==STORE||itype[i]==STORELR) {
3991 ra=get_reg(i_regs->regmap,agr);
3992 if(ra<0) ra=get_reg(i_regs->regmap,-1);
3993 }
3994 if(itype[i]==C1LS||itype[i]==C2LS) {
3995 if ((opcode[i]&0x3b)==0x31||(opcode[i]&0x3b)==0x32) // LWC1/LDC1/LWC2/LDC2
3996 ra=get_reg(i_regs->regmap,FTEMP);
3997 else { // SWC1/SDC1/SWC2/SDC2
3998 ra=get_reg(i_regs->regmap,agr);
3999 if(ra<0) ra=get_reg(i_regs->regmap,-1);
4000 }
4001 }
4002 int rs=get_reg(i_regs->regmap,rs1[i]);
4003 int rm=get_reg(i_regs->regmap,TLREG);
4004 if(ra>=0) {
4005 int offset=imm[i];
4006 int c=(i_regs->wasconst>>rs)&1;
4007 if(rs1[i]==0) {
4008 // Using r0 as a base address
4009 /*if(rm>=0) {
4010 if(!entry||entry[rm]!=mgr) {
4011 generate_map_const(offset,rm);
4012 } // else did it in the previous cycle
4013 }*/
4014 if(!entry||entry[ra]!=agr) {
4015 if (opcode[i]==0x22||opcode[i]==0x26) {
4016 emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
4017 }else if (opcode[i]==0x1a||opcode[i]==0x1b) {
4018 emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
4019 }else{
4020 emit_movimm(offset,ra);
4021 }
4022 } // else did it in the previous cycle
4023 }
4024 else if(rs<0) {
4025 if(!entry||entry[ra]!=rs1[i])
4026 emit_loadreg(rs1[i],ra);
4027 //if(!entry||entry[ra]!=rs1[i])
4028 // printf("poor load scheduling!\n");
4029 }
4030 else if(c) {
4031 if(rm>=0) {
4032 if(!entry||entry[rm]!=mgr) {
4033 if(itype[i]==STORE||itype[i]==STORELR||(opcode[i]&0x3b)==0x39||(opcode[i]&0x3b)==0x3a) {
4034 // Stores to memory go thru the mapper to detect self-modifying
4035 // code, loads don't.
4036 if((unsigned int)(constmap[i][rs]+offset)>=0xC0000000 ||
4037 (unsigned int)(constmap[i][rs]+offset)<0x80000000+RAM_SIZE )
4038 generate_map_const(constmap[i][rs]+offset,rm);
4039 }else{
4040 if((signed int)(constmap[i][rs]+offset)>=(signed int)0xC0000000)
4041 generate_map_const(constmap[i][rs]+offset,rm);
4042 }
4043 }
4044 }
4045 if(rs1[i]!=rt1[i]||itype[i]!=LOAD) {
4046 if(!entry||entry[ra]!=agr) {
4047 if (opcode[i]==0x22||opcode[i]==0x26) {
4048 emit_movimm((constmap[i][rs]+offset)&0xFFFFFFFC,ra); // LWL/LWR
4049 }else if (opcode[i]==0x1a||opcode[i]==0x1b) {
4050 emit_movimm((constmap[i][rs]+offset)&0xFFFFFFF8,ra); // LDL/LDR
4051 }else{
4052 #ifdef HOST_IMM_ADDR32
4053 if((itype[i]!=LOAD&&(opcode[i]&0x3b)!=0x31&&(opcode[i]&0x3b)!=0x32) || // LWC1/LDC1/LWC2/LDC2
4054 (using_tlb&&((signed int)constmap[i][rs]+offset)>=(signed int)0xC0000000))
4055 #endif
4056 emit_movimm(constmap[i][rs]+offset,ra);
4057 }
4058 } // else did it in the previous cycle
4059 } // else load_consts already did it
4060 }
4061 if(offset&&!c&&rs1[i]) {
4062 if(rs>=0) {
4063 emit_addimm(rs,offset,ra);
4064 }else{
4065 emit_addimm(ra,offset,ra);
4066 }
4067 }
4068 }
4069 }
4070 // Preload constants for next instruction
4071 if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS||itype[i+1]==C2LS) {
4072 int agr,ra;
4073 #ifndef HOST_IMM_ADDR32
4074 // Mapper entry
4075 agr=MGEN1+((i+1)&1);
4076 ra=get_reg(i_regs->regmap,agr);
4077 if(ra>=0) {
4078 int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
4079 int offset=imm[i+1];
4080 int c=(regs[i+1].wasconst>>rs)&1;
4081 if(c) {
4082 if(itype[i+1]==STORE||itype[i+1]==STORELR
4083 ||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1, SWC2/SDC2
4084 // Stores to memory go thru the mapper to detect self-modifying
4085 // code, loads don't.
4086 if((unsigned int)(constmap[i+1][rs]+offset)>=0xC0000000 ||
4087 (unsigned int)(constmap[i+1][rs]+offset)<0x80000000+RAM_SIZE )
4088 generate_map_const(constmap[i+1][rs]+offset,ra);
4089 }else{
4090 if((signed int)(constmap[i+1][rs]+offset)>=(signed int)0xC0000000)
4091 generate_map_const(constmap[i+1][rs]+offset,ra);
4092 }
4093 }
4094 /*else if(rs1[i]==0) {
4095 generate_map_const(offset,ra);
4096 }*/
4097 }
4098 #endif
4099 // Actual address
4100 agr=AGEN1+((i+1)&1);
4101 ra=get_reg(i_regs->regmap,agr);
4102 if(ra>=0) {
4103 int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
4104 int offset=imm[i+1];
4105 int c=(regs[i+1].wasconst>>rs)&1;
4106 if(c&&(rs1[i+1]!=rt1[i+1]||itype[i+1]!=LOAD)) {
4107 if (opcode[i+1]==0x22||opcode[i+1]==0x26) {
4108 emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFFC,ra); // LWL/LWR
4109 }else if (opcode[i+1]==0x1a||opcode[i+1]==0x1b) {
4110 emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFF8,ra); // LDL/LDR
4111 }else{
4112 #ifdef HOST_IMM_ADDR32
4113 if((itype[i+1]!=LOAD&&(opcode[i+1]&0x3b)!=0x31&&(opcode[i+1]&0x3b)!=0x32) || // LWC1/LDC1/LWC2/LDC2
4114 (using_tlb&&((signed int)constmap[i+1][rs]+offset)>=(signed int)0xC0000000))
4115 #endif
4116 emit_movimm(constmap[i+1][rs]+offset,ra);
4117 }
4118 }
4119 else if(rs1[i+1]==0) {
4120 // Using r0 as a base address
4121 if (opcode[i+1]==0x22||opcode[i+1]==0x26) {
4122 emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
4123 }else if (opcode[i+1]==0x1a||opcode[i+1]==0x1b) {
4124 emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
4125 }else{
4126 emit_movimm(offset,ra);
4127 }
4128 }
4129 }
4130 }
4131}
4132
4133int get_final_value(int hr, int i, int *value)
4134{
4135 int reg=regs[i].regmap[hr];
4136 while(i<slen-1) {
4137 if(regs[i+1].regmap[hr]!=reg) break;
4138 if(!((regs[i+1].isconst>>hr)&1)) break;
4139 if(bt[i+1]) break;
4140 i++;
4141 }
4142 if(i<slen-1) {
4143 if(itype[i]==UJUMP||itype[i]==RJUMP||itype[i]==CJUMP||itype[i]==SJUMP) {
4144 *value=constmap[i][hr];
4145 return 1;
4146 }
4147 if(!bt[i+1]) {
4148 if(itype[i+1]==UJUMP||itype[i+1]==RJUMP||itype[i+1]==CJUMP||itype[i+1]==SJUMP) {
4149 // Load in delay slot, out-of-order execution
4150 if(itype[i+2]==LOAD&&rs1[i+2]==reg&&rt1[i+2]==reg&&((regs[i+1].wasconst>>hr)&1))
4151 {
4152 #ifdef HOST_IMM_ADDR32
4153 if(!using_tlb||((signed int)constmap[i][hr]+imm[i+2])<(signed int)0xC0000000) return 0;
4154 #endif
4155 // Precompute load address
4156 *value=constmap[i][hr]+imm[i+2];
4157 return 1;
4158 }
4159 }
4160 if(itype[i+1]==LOAD&&rs1[i+1]==reg&&rt1[i+1]==reg)
4161 {
4162 #ifdef HOST_IMM_ADDR32
4163 if(!using_tlb||((signed int)constmap[i][hr]+imm[i+1])<(signed int)0xC0000000) return 0;
4164 #endif
4165 // Precompute load address
4166 *value=constmap[i][hr]+imm[i+1];
4167 //printf("c=%x imm=%x\n",(int)constmap[i][hr],imm[i+1]);
4168 return 1;
4169 }
4170 }
4171 }
4172 *value=constmap[i][hr];
4173 //printf("c=%x\n",(int)constmap[i][hr]);
4174 if(i==slen-1) return 1;
4175 if(reg<64) {
4176 return !((unneeded_reg[i+1]>>reg)&1);
4177 }else{
4178 return !((unneeded_reg_upper[i+1]>>reg)&1);
4179 }
4180}
4181
4182// Load registers with known constants
4183void load_consts(signed char pre[],signed char regmap[],int is32,int i)
4184{
4185 int hr;
4186 // Load 32-bit regs
4187 for(hr=0;hr<HOST_REGS;hr++) {
4188 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4189 //if(entry[hr]!=regmap[hr]) {
4190 if(i==0||!((regs[i-1].isconst>>hr)&1)||pre[hr]!=regmap[hr]||bt[i]) {
4191 if(((regs[i].isconst>>hr)&1)&&regmap[hr]<64&&regmap[hr]>0) {
4192 int value;
4193 if(get_final_value(hr,i,&value)) {
4194 if(value==0) {
4195 emit_zeroreg(hr);
4196 }
4197 else {
4198 emit_movimm(value,hr);
4199 }
4200 }
4201 }
4202 }
4203 }
4204 }
4205 // Load 64-bit regs
4206 for(hr=0;hr<HOST_REGS;hr++) {
4207 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4208 //if(entry[hr]!=regmap[hr]) {
4209 if(i==0||!((regs[i-1].isconst>>hr)&1)||pre[hr]!=regmap[hr]||bt[i]) {
4210 if(((regs[i].isconst>>hr)&1)&&regmap[hr]>64) {
4211 if((is32>>(regmap[hr]&63))&1) {
4212 int lr=get_reg(regmap,regmap[hr]-64);
4213 assert(lr>=0);
4214 emit_sarimm(lr,31,hr);
4215 }
4216 else
4217 {
4218 int value;
4219 if(get_final_value(hr,i,&value)) {
4220 if(value==0) {
4221 emit_zeroreg(hr);
4222 }
4223 else {
4224 emit_movimm(value,hr);
4225 }
4226 }
4227 }
4228 }
4229 }
4230 }
4231 }
4232}
4233void load_all_consts(signed char regmap[],int is32,u_int dirty,int i)
4234{
4235 int hr;
4236 // Load 32-bit regs
4237 for(hr=0;hr<HOST_REGS;hr++) {
4238 if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((dirty>>hr)&1)) {
4239 if(((regs[i].isconst>>hr)&1)&&regmap[hr]<64&&regmap[hr]>0) {
4240 int value=constmap[i][hr];
4241 if(value==0) {
4242 emit_zeroreg(hr);
4243 }
4244 else {
4245 emit_movimm(value,hr);
4246 }
4247 }
4248 }
4249 }
4250 // Load 64-bit regs
4251 for(hr=0;hr<HOST_REGS;hr++) {
4252 if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((dirty>>hr)&1)) {
4253 if(((regs[i].isconst>>hr)&1)&&regmap[hr]>64) {
4254 if((is32>>(regmap[hr]&63))&1) {
4255 int lr=get_reg(regmap,regmap[hr]-64);
4256 assert(lr>=0);
4257 emit_sarimm(lr,31,hr);
4258 }
4259 else
4260 {
4261 int value=constmap[i][hr];
4262 if(value==0) {
4263 emit_zeroreg(hr);
4264 }
4265 else {
4266 emit_movimm(value,hr);
4267 }
4268 }
4269 }
4270 }
4271 }
4272}
4273
4274// Write out all dirty registers (except cycle count)
4275void wb_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty)
4276{
4277 int hr;
4278 for(hr=0;hr<HOST_REGS;hr++) {
4279 if(hr!=EXCLUDE_REG) {
4280 if(i_regmap[hr]>0) {
4281 if(i_regmap[hr]!=CCREG) {
4282 if((i_dirty>>hr)&1) {
4283 if(i_regmap[hr]<64) {
4284 emit_storereg(i_regmap[hr],hr);
4285#ifndef FORCE32
4286 if( ((i_is32>>i_regmap[hr])&1) ) {
4287 #ifdef DESTRUCTIVE_WRITEBACK
4288 emit_sarimm(hr,31,hr);
4289 emit_storereg(i_regmap[hr]|64,hr);
4290 #else
4291 emit_sarimm(hr,31,HOST_TEMPREG);
4292 emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4293 #endif
4294 }
4295#endif
4296 }else{
4297 if( !((i_is32>>(i_regmap[hr]&63))&1) ) {
4298 emit_storereg(i_regmap[hr],hr);
4299 }
4300 }
4301 }
4302 }
4303 }
4304 }
4305 }
4306}
4307// Write out dirty registers that we need to reload (pair with load_needed_regs)
4308// This writes the registers not written by store_regs_bt
4309void wb_needed_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4310{
4311 int hr;
4312 int t=(addr-start)>>2;
4313 for(hr=0;hr<HOST_REGS;hr++) {
4314 if(hr!=EXCLUDE_REG) {
4315 if(i_regmap[hr]>0) {
4316 if(i_regmap[hr]!=CCREG) {
4317 if(i_regmap[hr]==regs[t].regmap_entry[hr] && ((regs[t].dirty>>hr)&1) && !(((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4318 if((i_dirty>>hr)&1) {
4319 if(i_regmap[hr]<64) {
4320 emit_storereg(i_regmap[hr],hr);
4321#ifndef FORCE32
4322 if( ((i_is32>>i_regmap[hr])&1) ) {
4323 #ifdef DESTRUCTIVE_WRITEBACK
4324 emit_sarimm(hr,31,hr);
4325 emit_storereg(i_regmap[hr]|64,hr);
4326 #else
4327 emit_sarimm(hr,31,HOST_TEMPREG);
4328 emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4329 #endif
4330 }
4331#endif
4332 }else{
4333 if( !((i_is32>>(i_regmap[hr]&63))&1) ) {
4334 emit_storereg(i_regmap[hr],hr);
4335 }
4336 }
4337 }
4338 }
4339 }
4340 }
4341 }
4342 }
4343}
4344
4345// Load all registers (except cycle count)
4346void load_all_regs(signed char i_regmap[])
4347{
4348 int hr;
4349 for(hr=0;hr<HOST_REGS;hr++) {
4350 if(hr!=EXCLUDE_REG) {
4351 if(i_regmap[hr]==0) {
4352 emit_zeroreg(hr);
4353 }
4354 else
4355 if(i_regmap[hr]>0 && i_regmap[hr]!=CCREG)
4356 {
4357 emit_loadreg(i_regmap[hr],hr);
4358 }
4359 }
4360 }
4361}
4362
4363// Load all current registers also needed by next instruction
4364void load_needed_regs(signed char i_regmap[],signed char next_regmap[])
4365{
4366 int hr;
4367 for(hr=0;hr<HOST_REGS;hr++) {
4368 if(hr!=EXCLUDE_REG) {
4369 if(get_reg(next_regmap,i_regmap[hr])>=0) {
4370 if(i_regmap[hr]==0) {
4371 emit_zeroreg(hr);
4372 }
4373 else
4374 if(i_regmap[hr]>0 && i_regmap[hr]!=CCREG)
4375 {
4376 emit_loadreg(i_regmap[hr],hr);
4377 }
4378 }
4379 }
4380 }
4381}
4382
4383// Load all regs, storing cycle count if necessary
4384void load_regs_entry(int t)
4385{
4386 int hr;
4387 if(is_ds[t]) emit_addimm(HOST_CCREG,CLOCK_DIVIDER,HOST_CCREG);
4388 else if(ccadj[t]) emit_addimm(HOST_CCREG,-ccadj[t]*CLOCK_DIVIDER,HOST_CCREG);
4389 if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
4390 emit_storereg(CCREG,HOST_CCREG);
4391 }
4392 // Load 32-bit regs
4393 for(hr=0;hr<HOST_REGS;hr++) {
4394 if(regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<64) {
4395 if(regs[t].regmap_entry[hr]==0) {
4396 emit_zeroreg(hr);
4397 }
4398 else if(regs[t].regmap_entry[hr]!=CCREG)
4399 {
4400 emit_loadreg(regs[t].regmap_entry[hr],hr);
4401 }
4402 }
4403 }
4404 // Load 64-bit regs
4405 for(hr=0;hr<HOST_REGS;hr++) {
4406 if(regs[t].regmap_entry[hr]>=64) {
4407 assert(regs[t].regmap_entry[hr]!=64);
4408 if((regs[t].was32>>(regs[t].regmap_entry[hr]&63))&1) {
4409 int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4410 if(lr<0) {
4411 emit_loadreg(regs[t].regmap_entry[hr],hr);
4412 }
4413 else
4414 {
4415 emit_sarimm(lr,31,hr);
4416 }
4417 }
4418 else
4419 {
4420 emit_loadreg(regs[t].regmap_entry[hr],hr);
4421 }
4422 }
4423 }
4424}
4425
4426// Store dirty registers prior to branch
4427void store_regs_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4428{
4429 if(internal_branch(i_is32,addr))
4430 {
4431 int t=(addr-start)>>2;
4432 int hr;
4433 for(hr=0;hr<HOST_REGS;hr++) {
4434 if(hr!=EXCLUDE_REG) {
4435 if(i_regmap[hr]>0 && i_regmap[hr]!=CCREG) {
4436 if(i_regmap[hr]!=regs[t].regmap_entry[hr] || !((regs[t].dirty>>hr)&1) || (((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4437 if((i_dirty>>hr)&1) {
4438 if(i_regmap[hr]<64) {
4439 if(!((unneeded_reg[t]>>i_regmap[hr])&1)) {
4440 emit_storereg(i_regmap[hr],hr);
4441 if( ((i_is32>>i_regmap[hr])&1) && !((unneeded_reg_upper[t]>>i_regmap[hr])&1) ) {
4442 #ifdef DESTRUCTIVE_WRITEBACK
4443 emit_sarimm(hr,31,hr);
4444 emit_storereg(i_regmap[hr]|64,hr);
4445 #else
4446 emit_sarimm(hr,31,HOST_TEMPREG);
4447 emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4448 #endif
4449 }
4450 }
4451 }else{
4452 if( !((i_is32>>(i_regmap[hr]&63))&1) && !((unneeded_reg_upper[t]>>(i_regmap[hr]&63))&1) ) {
4453 emit_storereg(i_regmap[hr],hr);
4454 }
4455 }
4456 }
4457 }
4458 }
4459 }
4460 }
4461 }
4462 else
4463 {
4464 // Branch out of this block, write out all dirty regs
4465 wb_dirtys(i_regmap,i_is32,i_dirty);
4466 }
4467}
4468
4469// Load all needed registers for branch target
4470void load_regs_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4471{
4472 //if(addr>=start && addr<(start+slen*4))
4473 if(internal_branch(i_is32,addr))
4474 {
4475 int t=(addr-start)>>2;
4476 int hr;
4477 // Store the cycle count before loading something else
4478 if(i_regmap[HOST_CCREG]!=CCREG) {
4479 assert(i_regmap[HOST_CCREG]==-1);
4480 }
4481 if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
4482 emit_storereg(CCREG,HOST_CCREG);
4483 }
4484 // Load 32-bit regs
4485 for(hr=0;hr<HOST_REGS;hr++) {
4486 if(hr!=EXCLUDE_REG&&regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<64) {
4487 #ifdef DESTRUCTIVE_WRITEBACK
4488 if(i_regmap[hr]!=regs[t].regmap_entry[hr] || ( !((regs[t].dirty>>hr)&1) && ((i_dirty>>hr)&1) && (((i_is32&~unneeded_reg_upper[t])>>i_regmap[hr])&1) ) || (((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4489 #else
4490 if(i_regmap[hr]!=regs[t].regmap_entry[hr] ) {
4491 #endif
4492 if(regs[t].regmap_entry[hr]==0) {
4493 emit_zeroreg(hr);
4494 }
4495 else if(regs[t].regmap_entry[hr]!=CCREG)
4496 {
4497 emit_loadreg(regs[t].regmap_entry[hr],hr);
4498 }
4499 }
4500 }
4501 }
4502 //Load 64-bit regs
4503 for(hr=0;hr<HOST_REGS;hr++) {
4504 if(hr!=EXCLUDE_REG&&regs[t].regmap_entry[hr]>=64) {
4505 if(i_regmap[hr]!=regs[t].regmap_entry[hr]) {
4506 assert(regs[t].regmap_entry[hr]!=64);
4507 if((i_is32>>(regs[t].regmap_entry[hr]&63))&1) {
4508 int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4509 if(lr<0) {
4510 emit_loadreg(regs[t].regmap_entry[hr],hr);
4511 }
4512 else
4513 {
4514 emit_sarimm(lr,31,hr);
4515 }
4516 }
4517 else
4518 {
4519 emit_loadreg(regs[t].regmap_entry[hr],hr);
4520 }
4521 }
4522 else if((i_is32>>(regs[t].regmap_entry[hr]&63))&1) {
4523 int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4524 assert(lr>=0);
4525 emit_sarimm(lr,31,hr);
4526 }
4527 }
4528 }
4529 }
4530}
4531
4532int match_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4533{
4534 if(addr>=start && addr<start+slen*4-4)
4535 {
4536 int t=(addr-start)>>2;
4537 int hr;
4538 if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) return 0;
4539 for(hr=0;hr<HOST_REGS;hr++)
4540 {
4541 if(hr!=EXCLUDE_REG)
4542 {
4543 if(i_regmap[hr]!=regs[t].regmap_entry[hr])
4544 {
4545 if(regs[t].regmap_entry[hr]!=-1)
4546 {
4547 return 0;
4548 }
4549 else
4550 if((i_dirty>>hr)&1)
4551 {
4552 if(i_regmap[hr]<64)
4553 {
4554 if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4555 return 0;
4556 }
4557 else
4558 {
4559 if(!((unneeded_reg_upper[t]>>(i_regmap[hr]&63))&1))
4560 return 0;
4561 }
4562 }
4563 }
4564 else // Same register but is it 32-bit or dirty?
4565 if(i_regmap[hr]>=0)
4566 {
4567 if(!((regs[t].dirty>>hr)&1))
4568 {
4569 if((i_dirty>>hr)&1)
4570 {
4571 if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4572 {
4573 //printf("%x: dirty no match\n",addr);
4574 return 0;
4575 }
4576 }
4577 }
4578 if((((regs[t].was32^i_is32)&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)
4579 {
4580 //printf("%x: is32 no match\n",addr);
4581 return 0;
4582 }
4583 }
4584 }
4585 }
4586 //if(is32[t]&~unneeded_reg_upper[t]&~i_is32) return 0;
4587#ifndef FORCE32
4588 if(requires_32bit[t]&~i_is32) return 0;
4589#endif
4590 // Delay slots are not valid branch targets
4591 //if(t>0&&(itype[t-1]==RJUMP||itype[t-1]==UJUMP||itype[t-1]==CJUMP||itype[t-1]==SJUMP||itype[t-1]==FJUMP)) return 0;
4592 // Delay slots require additional processing, so do not match
4593 if(is_ds[t]) return 0;
4594 }
4595 else
4596 {
4597 int hr;
4598 for(hr=0;hr<HOST_REGS;hr++)
4599 {
4600 if(hr!=EXCLUDE_REG)
4601 {
4602 if(i_regmap[hr]>=0)
4603 {
4604 if(hr!=HOST_CCREG||i_regmap[hr]!=CCREG)
4605 {
4606 if((i_dirty>>hr)&1)
4607 {
4608 return 0;
4609 }
4610 }
4611 }
4612 }
4613 }
4614 }
4615 return 1;
4616}
4617
4618// Used when a branch jumps into the delay slot of another branch
4619void ds_assemble_entry(int i)
4620{
4621 int t=(ba[i]-start)>>2;
4622 if(!instr_addr[t]) instr_addr[t]=(u_int)out;
4623 assem_debug("Assemble delay slot at %x\n",ba[i]);
4624 assem_debug("<->\n");
4625 if(regs[t].regmap_entry[HOST_CCREG]==CCREG&&regs[t].regmap[HOST_CCREG]!=CCREG)
4626 wb_register(CCREG,regs[t].regmap_entry,regs[t].wasdirty,regs[t].was32);
4627 load_regs(regs[t].regmap_entry,regs[t].regmap,regs[t].was32,rs1[t],rs2[t]);
4628 address_generation(t,&regs[t],regs[t].regmap_entry);
4629 if(itype[t]==STORE||itype[t]==STORELR||(opcode[t]&0x3b)==0x39||(opcode[t]&0x3b)==0x3a)
4630 load_regs(regs[t].regmap_entry,regs[t].regmap,regs[t].was32,INVCP,INVCP);
4631 cop1_usable=0;
4632 is_delayslot=0;
4633 switch(itype[t]) {
4634 case ALU:
4635 alu_assemble(t,&regs[t]);break;
4636 case IMM16:
4637 imm16_assemble(t,&regs[t]);break;
4638 case SHIFT:
4639 shift_assemble(t,&regs[t]);break;
4640 case SHIFTIMM:
4641 shiftimm_assemble(t,&regs[t]);break;
4642 case LOAD:
4643 load_assemble(t,&regs[t]);break;
4644 case LOADLR:
4645 loadlr_assemble(t,&regs[t]);break;
4646 case STORE:
4647 store_assemble(t,&regs[t]);break;
4648 case STORELR:
4649 storelr_assemble(t,&regs[t]);break;
4650 case COP0:
4651 cop0_assemble(t,&regs[t]);break;
4652 case COP1:
4653 cop1_assemble(t,&regs[t]);break;
4654 case C1LS:
4655 c1ls_assemble(t,&regs[t]);break;
4656 case COP2:
4657 cop2_assemble(t,&regs[t]);break;
4658 case C2LS:
4659 c2ls_assemble(t,&regs[t]);break;
4660 case C2OP:
4661 c2op_assemble(t,&regs[t]);break;
4662 case FCONV:
4663 fconv_assemble(t,&regs[t]);break;
4664 case FLOAT:
4665 float_assemble(t,&regs[t]);break;
4666 case FCOMP:
4667 fcomp_assemble(t,&regs[t]);break;
4668 case MULTDIV:
4669 multdiv_assemble(t,&regs[t]);break;
4670 case MOV:
4671 mov_assemble(t,&regs[t]);break;
4672 case SYSCALL:
4673 case HLECALL:
4674 case INTCALL:
4675 case SPAN:
4676 case UJUMP:
4677 case RJUMP:
4678 case CJUMP:
4679 case SJUMP:
4680 case FJUMP:
4681 printf("Jump in the delay slot. This is probably a bug.\n");
4682 }
4683 store_regs_bt(regs[t].regmap,regs[t].is32,regs[t].dirty,ba[i]+4);
4684 load_regs_bt(regs[t].regmap,regs[t].is32,regs[t].dirty,ba[i]+4);
4685 if(internal_branch(regs[t].is32,ba[i]+4))
4686 assem_debug("branch: internal\n");
4687 else
4688 assem_debug("branch: external\n");
4689 assert(internal_branch(regs[t].is32,ba[i]+4));
4690 add_to_linker((int)out,ba[i]+4,internal_branch(regs[t].is32,ba[i]+4));
4691 emit_jmp(0);
4692}
4693
4694void do_cc(int i,signed char i_regmap[],int *adj,int addr,int taken,int invert)
4695{
4696 int count;
4697 int jaddr;
4698 int idle=0;
4699 if(itype[i]==RJUMP)
4700 {
4701 *adj=0;
4702 }
4703 //if(ba[i]>=start && ba[i]<(start+slen*4))
4704 if(internal_branch(branch_regs[i].is32,ba[i]))
4705 {
4706 int t=(ba[i]-start)>>2;
4707 if(is_ds[t]) *adj=-1; // Branch into delay slot adds an extra cycle
4708 else *adj=ccadj[t];
4709 }
4710 else
4711 {
4712 *adj=0;
4713 }
4714 count=ccadj[i];
4715 if(taken==TAKEN && i==(ba[i]-start)>>2 && source[i+1]==0) {
4716 // Idle loop
4717 if(count&1) emit_addimm_and_set_flags(2*(count+2),HOST_CCREG);
4718 idle=(int)out;
4719 //emit_subfrommem(&idlecount,HOST_CCREG); // Count idle cycles
4720 emit_andimm(HOST_CCREG,3,HOST_CCREG);
4721 jaddr=(int)out;
4722 emit_jmp(0);
4723 }
4724 else if(*adj==0||invert) {
4725 emit_addimm_and_set_flags(CLOCK_DIVIDER*(count+2),HOST_CCREG);
4726 jaddr=(int)out;
4727 emit_jns(0);
4728 }
4729 else
4730 {
4731 emit_cmpimm(HOST_CCREG,-2*(count+2));
4732 jaddr=(int)out;
4733 emit_jns(0);
4734 }
4735 add_stub(CC_STUB,jaddr,idle?idle:(int)out,(*adj==0||invert||idle)?0:(count+2),i,addr,taken,0);
4736}
4737
4738void do_ccstub(int n)
4739{
4740 literal_pool(256);
4741 assem_debug("do_ccstub %x\n",start+stubs[n][4]*4);
4742 set_jump_target(stubs[n][1],(int)out);
4743 int i=stubs[n][4];
4744 if(stubs[n][6]==NULLDS) {
4745 // Delay slot instruction is nullified ("likely" branch)
4746 wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
4747 }
4748 else if(stubs[n][6]!=TAKEN) {
4749 wb_dirtys(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty);
4750 }
4751 else {
4752 if(internal_branch(branch_regs[i].is32,ba[i]))
4753 wb_needed_dirtys(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
4754 }
4755 if(stubs[n][5]!=-1)
4756 {
4757 // Save PC as return address
4758 emit_movimm(stubs[n][5],EAX);
4759 emit_writeword(EAX,(int)&pcaddr);
4760 }
4761 else
4762 {
4763 // Return address depends on which way the branch goes
4764 if(itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
4765 {
4766 int s1l=get_reg(branch_regs[i].regmap,rs1[i]);
4767 int s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
4768 int s2l=get_reg(branch_regs[i].regmap,rs2[i]);
4769 int s2h=get_reg(branch_regs[i].regmap,rs2[i]|64);
4770 if(rs1[i]==0)
4771 {
4772 s1l=s2l;s1h=s2h;
4773 s2l=s2h=-1;
4774 }
4775 else if(rs2[i]==0)
4776 {
4777 s2l=s2h=-1;
4778 }
4779 if((branch_regs[i].is32>>rs1[i])&(branch_regs[i].is32>>rs2[i])&1) {
4780 s1h=s2h=-1;
4781 }
4782 assert(s1l>=0);
4783 #ifdef DESTRUCTIVE_WRITEBACK
4784 if(rs1[i]) {
4785 if((branch_regs[i].dirty>>s1l)&(branch_regs[i].is32>>rs1[i])&1)
4786 emit_loadreg(rs1[i],s1l);
4787 }
4788 else {
4789 if((branch_regs[i].dirty>>s1l)&(branch_regs[i].is32>>rs2[i])&1)
4790 emit_loadreg(rs2[i],s1l);
4791 }
4792 if(s2l>=0)
4793 if((branch_regs[i].dirty>>s2l)&(branch_regs[i].is32>>rs2[i])&1)
4794 emit_loadreg(rs2[i],s2l);
4795 #endif
4796 int hr=0;
4797 int addr,alt,ntaddr;
4798 while(hr<HOST_REGS)
4799 {
4800 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4801 (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
4802 (branch_regs[i].regmap[hr]&63)!=rs2[i] )
4803 {
4804 addr=hr++;break;
4805 }
4806 hr++;
4807 }
4808 while(hr<HOST_REGS)
4809 {
4810 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4811 (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
4812 (branch_regs[i].regmap[hr]&63)!=rs2[i] )
4813 {
4814 alt=hr++;break;
4815 }
4816 hr++;
4817 }
4818 if((opcode[i]&0x2E)==6) // BLEZ/BGTZ needs another register
4819 {
4820 while(hr<HOST_REGS)
4821 {
4822 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4823 (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
4824 (branch_regs[i].regmap[hr]&63)!=rs2[i] )
4825 {
4826 ntaddr=hr;break;
4827 }
4828 hr++;
4829 }
4830 assert(hr<HOST_REGS);
4831 }
4832 if((opcode[i]&0x2f)==4) // BEQ
4833 {
4834 #ifdef HAVE_CMOV_IMM
4835 if(s1h<0) {
4836 if(s2l>=0) emit_cmp(s1l,s2l);
4837 else emit_test(s1l,s1l);
4838 emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
4839 }
4840 else
4841 #endif
4842 {
4843 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
4844 if(s1h>=0) {
4845 if(s2h>=0) emit_cmp(s1h,s2h);
4846 else emit_test(s1h,s1h);
4847 emit_cmovne_reg(alt,addr);
4848 }
4849 if(s2l>=0) emit_cmp(s1l,s2l);
4850 else emit_test(s1l,s1l);
4851 emit_cmovne_reg(alt,addr);
4852 }
4853 }
4854 if((opcode[i]&0x2f)==5) // BNE
4855 {
4856 #ifdef HAVE_CMOV_IMM
4857 if(s1h<0) {
4858 if(s2l>=0) emit_cmp(s1l,s2l);
4859 else emit_test(s1l,s1l);
4860 emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
4861 }
4862 else
4863 #endif
4864 {
4865 emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
4866 if(s1h>=0) {
4867 if(s2h>=0) emit_cmp(s1h,s2h);
4868 else emit_test(s1h,s1h);
4869 emit_cmovne_reg(alt,addr);
4870 }
4871 if(s2l>=0) emit_cmp(s1l,s2l);
4872 else emit_test(s1l,s1l);
4873 emit_cmovne_reg(alt,addr);
4874 }
4875 }
4876 if((opcode[i]&0x2f)==6) // BLEZ
4877 {
4878 //emit_movimm(ba[i],alt);
4879 //emit_movimm(start+i*4+8,addr);
4880 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
4881 emit_cmpimm(s1l,1);
4882 if(s1h>=0) emit_mov(addr,ntaddr);
4883 emit_cmovl_reg(alt,addr);
4884 if(s1h>=0) {
4885 emit_test(s1h,s1h);
4886 emit_cmovne_reg(ntaddr,addr);
4887 emit_cmovs_reg(alt,addr);
4888 }
4889 }
4890 if((opcode[i]&0x2f)==7) // BGTZ
4891 {
4892 //emit_movimm(ba[i],addr);
4893 //emit_movimm(start+i*4+8,ntaddr);
4894 emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
4895 emit_cmpimm(s1l,1);
4896 if(s1h>=0) emit_mov(addr,alt);
4897 emit_cmovl_reg(ntaddr,addr);
4898 if(s1h>=0) {
4899 emit_test(s1h,s1h);
4900 emit_cmovne_reg(alt,addr);
4901 emit_cmovs_reg(ntaddr,addr);
4902 }
4903 }
4904 if((opcode[i]==1)&&(opcode2[i]&0x2D)==0) // BLTZ
4905 {
4906 //emit_movimm(ba[i],alt);
4907 //emit_movimm(start+i*4+8,addr);
4908 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
4909 if(s1h>=0) emit_test(s1h,s1h);
4910 else emit_test(s1l,s1l);
4911 emit_cmovs_reg(alt,addr);
4912 }
4913 if((opcode[i]==1)&&(opcode2[i]&0x2D)==1) // BGEZ
4914 {
4915 //emit_movimm(ba[i],addr);
4916 //emit_movimm(start+i*4+8,alt);
4917 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
4918 if(s1h>=0) emit_test(s1h,s1h);
4919 else emit_test(s1l,s1l);
4920 emit_cmovs_reg(alt,addr);
4921 }
4922 if(opcode[i]==0x11 && opcode2[i]==0x08 ) {
4923 if(source[i]&0x10000) // BC1T
4924 {
4925 //emit_movimm(ba[i],alt);
4926 //emit_movimm(start+i*4+8,addr);
4927 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
4928 emit_testimm(s1l,0x800000);
4929 emit_cmovne_reg(alt,addr);
4930 }
4931 else // BC1F
4932 {
4933 //emit_movimm(ba[i],addr);
4934 //emit_movimm(start+i*4+8,alt);
4935 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
4936 emit_testimm(s1l,0x800000);
4937 emit_cmovne_reg(alt,addr);
4938 }
4939 }
4940 emit_writeword(addr,(int)&pcaddr);
4941 }
4942 else
4943 if(itype[i]==RJUMP)
4944 {
4945 int r=get_reg(branch_regs[i].regmap,rs1[i]);
4946 if(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]) {
4947 r=get_reg(branch_regs[i].regmap,RTEMP);
4948 }
4949 emit_writeword(r,(int)&pcaddr);
4950 }
4951 else {printf("Unknown branch type in do_ccstub\n");exit(1);}
4952 }
4953 // Update cycle count
4954 assert(branch_regs[i].regmap[HOST_CCREG]==CCREG||branch_regs[i].regmap[HOST_CCREG]==-1);
4955 if(stubs[n][3]) emit_addimm(HOST_CCREG,CLOCK_DIVIDER*stubs[n][3],HOST_CCREG);
4956 emit_call((int)cc_interrupt);
4957 if(stubs[n][3]) emit_addimm(HOST_CCREG,-CLOCK_DIVIDER*stubs[n][3],HOST_CCREG);
4958 if(stubs[n][6]==TAKEN) {
4959 if(internal_branch(branch_regs[i].is32,ba[i]))
4960 load_needed_regs(branch_regs[i].regmap,regs[(ba[i]-start)>>2].regmap_entry);
4961 else if(itype[i]==RJUMP) {
4962 if(get_reg(branch_regs[i].regmap,RTEMP)>=0)
4963 emit_readword((int)&pcaddr,get_reg(branch_regs[i].regmap,RTEMP));
4964 else
4965 emit_loadreg(rs1[i],get_reg(branch_regs[i].regmap,rs1[i]));
4966 }
4967 }else if(stubs[n][6]==NOTTAKEN) {
4968 if(i<slen-2) load_needed_regs(branch_regs[i].regmap,regmap_pre[i+2]);
4969 else load_all_regs(branch_regs[i].regmap);
4970 }else if(stubs[n][6]==NULLDS) {
4971 // Delay slot instruction is nullified ("likely" branch)
4972 if(i<slen-2) load_needed_regs(regs[i].regmap,regmap_pre[i+2]);
4973 else load_all_regs(regs[i].regmap);
4974 }else{
4975 load_all_regs(branch_regs[i].regmap);
4976 }
4977 emit_jmp(stubs[n][2]); // return address
4978
4979 /* This works but uses a lot of memory...
4980 emit_readword((int)&last_count,ECX);
4981 emit_add(HOST_CCREG,ECX,EAX);
4982 emit_writeword(EAX,(int)&Count);
4983 emit_call((int)gen_interupt);
4984 emit_readword((int)&Count,HOST_CCREG);
4985 emit_readword((int)&next_interupt,EAX);
4986 emit_readword((int)&pending_exception,EBX);
4987 emit_writeword(EAX,(int)&last_count);
4988 emit_sub(HOST_CCREG,EAX,HOST_CCREG);
4989 emit_test(EBX,EBX);
4990 int jne_instr=(int)out;
4991 emit_jne(0);
4992 if(stubs[n][3]) emit_addimm(HOST_CCREG,-2*stubs[n][3],HOST_CCREG);
4993 load_all_regs(branch_regs[i].regmap);
4994 emit_jmp(stubs[n][2]); // return address
4995 set_jump_target(jne_instr,(int)out);
4996 emit_readword((int)&pcaddr,EAX);
4997 // Call get_addr_ht instead of doing the hash table here.
4998 // This code is executed infrequently and takes up a lot of space
4999 // so smaller is better.
5000 emit_storereg(CCREG,HOST_CCREG);
5001 emit_pushreg(EAX);
5002 emit_call((int)get_addr_ht);
5003 emit_loadreg(CCREG,HOST_CCREG);
5004 emit_addimm(ESP,4,ESP);
5005 emit_jmpreg(EAX);*/
5006}
5007
5008add_to_linker(int addr,int target,int ext)
5009{
5010 link_addr[linkcount][0]=addr;
5011 link_addr[linkcount][1]=target;
5012 link_addr[linkcount][2]=ext;
5013 linkcount++;
5014}
5015
5016void ujump_assemble(int i,struct regstat *i_regs)
5017{
5018 signed char *i_regmap=i_regs->regmap;
5019 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5020 address_generation(i+1,i_regs,regs[i].regmap_entry);
5021 #ifdef REG_PREFETCH
5022 int temp=get_reg(branch_regs[i].regmap,PTEMP);
5023 if(rt1[i]==31&&temp>=0)
5024 {
5025 int return_address=start+i*4+8;
5026 if(get_reg(branch_regs[i].regmap,31)>0)
5027 if(i_regmap[temp]==PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5028 }
5029 #endif
5030 ds_assemble(i+1,i_regs);
5031 uint64_t bc_unneeded=branch_regs[i].u;
5032 uint64_t bc_unneeded_upper=branch_regs[i].uu;
5033 bc_unneeded|=1|(1LL<<rt1[i]);
5034 bc_unneeded_upper|=1|(1LL<<rt1[i]);
5035 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5036 bc_unneeded,bc_unneeded_upper);
5037 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5038 if(rt1[i]==31) {
5039 int rt;
5040 unsigned int return_address;
5041 assert(rt1[i+1]!=31);
5042 assert(rt2[i+1]!=31);
5043 rt=get_reg(branch_regs[i].regmap,31);
5044 assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5045 //assert(rt>=0);
5046 return_address=start+i*4+8;
5047 if(rt>=0) {
5048 #ifdef USE_MINI_HT
5049 if(internal_branch(branch_regs[i].is32,return_address)) {
5050 int temp=rt+1;
5051 if(temp==EXCLUDE_REG||temp>=HOST_REGS||
5052 branch_regs[i].regmap[temp]>=0)
5053 {
5054 temp=get_reg(branch_regs[i].regmap,-1);
5055 }
5056 #ifdef HOST_TEMPREG
5057 if(temp<0) temp=HOST_TEMPREG;
5058 #endif
5059 if(temp>=0) do_miniht_insert(return_address,rt,temp);
5060 else emit_movimm(return_address,rt);
5061 }
5062 else
5063 #endif
5064 {
5065 #ifdef REG_PREFETCH
5066 if(temp>=0)
5067 {
5068 if(i_regmap[temp]!=PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5069 }
5070 #endif
5071 emit_movimm(return_address,rt); // PC into link register
5072 #ifdef IMM_PREFETCH
5073 emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5074 #endif
5075 }
5076 }
5077 }
5078 int cc,adj;
5079 cc=get_reg(branch_regs[i].regmap,CCREG);
5080 assert(cc==HOST_CCREG);
5081 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5082 #ifdef REG_PREFETCH
5083 if(rt1[i]==31&&temp>=0) emit_prefetchreg(temp);
5084 #endif
5085 do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5086 if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5087 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5088 if(internal_branch(branch_regs[i].is32,ba[i]))
5089 assem_debug("branch: internal\n");
5090 else
5091 assem_debug("branch: external\n");
5092 if(internal_branch(branch_regs[i].is32,ba[i])&&is_ds[(ba[i]-start)>>2]) {
5093 ds_assemble_entry(i);
5094 }
5095 else {
5096 add_to_linker((int)out,ba[i],internal_branch(branch_regs[i].is32,ba[i]));
5097 emit_jmp(0);
5098 }
5099}
5100
5101void rjump_assemble(int i,struct regstat *i_regs)
5102{
5103 signed char *i_regmap=i_regs->regmap;
5104 int temp;
5105 int rs,cc,adj;
5106 rs=get_reg(branch_regs[i].regmap,rs1[i]);
5107 assert(rs>=0);
5108 if(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]) {
5109 // Delay slot abuse, make a copy of the branch address register
5110 temp=get_reg(branch_regs[i].regmap,RTEMP);
5111 assert(temp>=0);
5112 assert(regs[i].regmap[temp]==RTEMP);
5113 emit_mov(rs,temp);
5114 rs=temp;
5115 }
5116 address_generation(i+1,i_regs,regs[i].regmap_entry);
5117 #ifdef REG_PREFETCH
5118 if(rt1[i]==31)
5119 {
5120 if((temp=get_reg(branch_regs[i].regmap,PTEMP))>=0) {
5121 int return_address=start+i*4+8;
5122 if(i_regmap[temp]==PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5123 }
5124 }
5125 #endif
5126 #ifdef USE_MINI_HT
5127 if(rs1[i]==31) {
5128 int rh=get_reg(regs[i].regmap,RHASH);
5129 if(rh>=0) do_preload_rhash(rh);
5130 }
5131 #endif
5132 ds_assemble(i+1,i_regs);
5133 uint64_t bc_unneeded=branch_regs[i].u;
5134 uint64_t bc_unneeded_upper=branch_regs[i].uu;
5135 bc_unneeded|=1|(1LL<<rt1[i]);
5136 bc_unneeded_upper|=1|(1LL<<rt1[i]);
5137 bc_unneeded&=~(1LL<<rs1[i]);
5138 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5139 bc_unneeded,bc_unneeded_upper);
5140 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],CCREG);
5141 if(rt1[i]!=0) {
5142 int rt,return_address;
5143 assert(rt1[i+1]!=rt1[i]);
5144 assert(rt2[i+1]!=rt1[i]);
5145 rt=get_reg(branch_regs[i].regmap,rt1[i]);
5146 assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5147 assert(rt>=0);
5148 return_address=start+i*4+8;
5149 #ifdef REG_PREFETCH
5150 if(temp>=0)
5151 {
5152 if(i_regmap[temp]!=PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5153 }
5154 #endif
5155 emit_movimm(return_address,rt); // PC into link register
5156 #ifdef IMM_PREFETCH
5157 emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5158 #endif
5159 }
5160 cc=get_reg(branch_regs[i].regmap,CCREG);
5161 assert(cc==HOST_CCREG);
5162 #ifdef USE_MINI_HT
5163 int rh=get_reg(branch_regs[i].regmap,RHASH);
5164 int ht=get_reg(branch_regs[i].regmap,RHTBL);
5165 if(rs1[i]==31) {
5166 if(regs[i].regmap[rh]!=RHASH) do_preload_rhash(rh);
5167 do_preload_rhtbl(ht);
5168 do_rhash(rs,rh);
5169 }
5170 #endif
5171 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,-1);
5172 #ifdef DESTRUCTIVE_WRITEBACK
5173 if((branch_regs[i].dirty>>rs)&(branch_regs[i].is32>>rs1[i])&1) {
5174 if(rs1[i]!=rt1[i+1]&&rs1[i]!=rt2[i+1]) {
5175 emit_loadreg(rs1[i],rs);
5176 }
5177 }
5178 #endif
5179 #ifdef REG_PREFETCH
5180 if(rt1[i]==31&&temp>=0) emit_prefetchreg(temp);
5181 #endif
5182 #ifdef USE_MINI_HT
5183 if(rs1[i]==31) {
5184 do_miniht_load(ht,rh);
5185 }
5186 #endif
5187 //do_cc(i,branch_regs[i].regmap,&adj,-1,TAKEN);
5188 //if(adj) emit_addimm(cc,2*(ccadj[i]+2-adj),cc); // ??? - Shouldn't happen
5189 //assert(adj==0);
5190 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
5191 add_stub(CC_STUB,(int)out,jump_vaddr_reg[rs],0,i,-1,TAKEN,0);
5192 emit_jns(0);
5193 //load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,-1);
5194 #ifdef USE_MINI_HT
5195 if(rs1[i]==31) {
5196 do_miniht_jump(rs,rh,ht);
5197 }
5198 else
5199 #endif
5200 {
5201 //if(rs!=EAX) emit_mov(rs,EAX);
5202 //emit_jmp((int)jump_vaddr_eax);
5203 emit_jmp(jump_vaddr_reg[rs]);
5204 }
5205 /* Check hash table
5206 temp=!rs;
5207 emit_mov(rs,temp);
5208 emit_shrimm(rs,16,rs);
5209 emit_xor(temp,rs,rs);
5210 emit_movzwl_reg(rs,rs);
5211 emit_shlimm(rs,4,rs);
5212 emit_cmpmem_indexed((int)hash_table,rs,temp);
5213 emit_jne((int)out+14);
5214 emit_readword_indexed((int)hash_table+4,rs,rs);
5215 emit_jmpreg(rs);
5216 emit_cmpmem_indexed((int)hash_table+8,rs,temp);
5217 emit_addimm_no_flags(8,rs);
5218 emit_jeq((int)out-17);
5219 // No hit on hash table, call compiler
5220 emit_pushreg(temp);
5221//DEBUG >
5222#ifdef DEBUG_CYCLE_COUNT
5223 emit_readword((int)&last_count,ECX);
5224 emit_add(HOST_CCREG,ECX,HOST_CCREG);
5225 emit_readword((int)&next_interupt,ECX);
5226 emit_writeword(HOST_CCREG,(int)&Count);
5227 emit_sub(HOST_CCREG,ECX,HOST_CCREG);
5228 emit_writeword(ECX,(int)&last_count);
5229#endif
5230//DEBUG <
5231 emit_storereg(CCREG,HOST_CCREG);
5232 emit_call((int)get_addr);
5233 emit_loadreg(CCREG,HOST_CCREG);
5234 emit_addimm(ESP,4,ESP);
5235 emit_jmpreg(EAX);*/
5236 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5237 if(rt1[i]!=31&&i<slen-2&&(((u_int)out)&7)) emit_mov(13,13);
5238 #endif
5239}
5240
5241void cjump_assemble(int i,struct regstat *i_regs)
5242{
5243 signed char *i_regmap=i_regs->regmap;
5244 int cc;
5245 int match;
5246 match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5247 assem_debug("match=%d\n",match);
5248 int s1h,s1l,s2h,s2l;
5249 int prev_cop1_usable=cop1_usable;
5250 int unconditional=0,nop=0;
5251 int only32=0;
5252 int ooo=1;
5253 int invert=0;
5254 int internal=internal_branch(branch_regs[i].is32,ba[i]);
5255 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5256 if(likely[i]) ooo=0;
5257 if(!match) invert=1;
5258 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5259 if(i>(ba[i]-start)>>2) invert=1;
5260 #endif
5261
5262 if(ooo)
5263 if((rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]))||
5264 (rs2[i]&&(rs2[i]==rt1[i+1]||rs2[i]==rt2[i+1])))
5265 {
5266 // Write-after-read dependency prevents out of order execution
5267 // First test branch condition, then execute delay slot, then branch
5268 ooo=0;
5269 }
5270
5271 if(ooo) {
5272 s1l=get_reg(branch_regs[i].regmap,rs1[i]);
5273 s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
5274 s2l=get_reg(branch_regs[i].regmap,rs2[i]);
5275 s2h=get_reg(branch_regs[i].regmap,rs2[i]|64);
5276 }
5277 else {
5278 s1l=get_reg(i_regmap,rs1[i]);
5279 s1h=get_reg(i_regmap,rs1[i]|64);
5280 s2l=get_reg(i_regmap,rs2[i]);
5281 s2h=get_reg(i_regmap,rs2[i]|64);
5282 }
5283 if(rs1[i]==0&&rs2[i]==0)
5284 {
5285 if(opcode[i]&1) nop=1;
5286 else unconditional=1;
5287 //assert(opcode[i]!=5);
5288 //assert(opcode[i]!=7);
5289 //assert(opcode[i]!=0x15);
5290 //assert(opcode[i]!=0x17);
5291 }
5292 else if(rs1[i]==0)
5293 {
5294 s1l=s2l;s1h=s2h;
5295 s2l=s2h=-1;
5296 only32=(regs[i].was32>>rs2[i])&1;
5297 }
5298 else if(rs2[i]==0)
5299 {
5300 s2l=s2h=-1;
5301 only32=(regs[i].was32>>rs1[i])&1;
5302 }
5303 else {
5304 only32=(regs[i].was32>>rs1[i])&(regs[i].was32>>rs2[i])&1;
5305 }
5306
5307 if(ooo) {
5308 // Out of order execution (delay slot first)
5309 //printf("OOOE\n");
5310 address_generation(i+1,i_regs,regs[i].regmap_entry);
5311 ds_assemble(i+1,i_regs);
5312 int adj;
5313 uint64_t bc_unneeded=branch_regs[i].u;
5314 uint64_t bc_unneeded_upper=branch_regs[i].uu;
5315 bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
5316 bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
5317 bc_unneeded|=1;
5318 bc_unneeded_upper|=1;
5319 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5320 bc_unneeded,bc_unneeded_upper);
5321 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs2[i]);
5322 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5323 cc=get_reg(branch_regs[i].regmap,CCREG);
5324 assert(cc==HOST_CCREG);
5325 if(unconditional)
5326 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5327 //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
5328 //assem_debug("cycle count (adj)\n");
5329 if(unconditional) {
5330 do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5331 if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
5332 if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5333 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5334 if(internal)
5335 assem_debug("branch: internal\n");
5336 else
5337 assem_debug("branch: external\n");
5338 if(internal&&is_ds[(ba[i]-start)>>2]) {
5339 ds_assemble_entry(i);
5340 }
5341 else {
5342 add_to_linker((int)out,ba[i],internal);
5343 emit_jmp(0);
5344 }
5345 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5346 if(((u_int)out)&7) emit_addnop(0);
5347 #endif
5348 }
5349 }
5350 else if(nop) {
5351 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
5352 int jaddr=(int)out;
5353 emit_jns(0);
5354 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5355 }
5356 else {
5357 int taken=0,nottaken=0,nottaken1=0;
5358 do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
5359 if(adj&&!invert) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5360 if(!only32)
5361 {
5362 assert(s1h>=0);
5363 if(opcode[i]==4) // BEQ
5364 {
5365 if(s2h>=0) emit_cmp(s1h,s2h);
5366 else emit_test(s1h,s1h);
5367 nottaken1=(int)out;
5368 emit_jne(1);
5369 }
5370 if(opcode[i]==5) // BNE
5371 {
5372 if(s2h>=0) emit_cmp(s1h,s2h);
5373 else emit_test(s1h,s1h);
5374 if(invert) taken=(int)out;
5375 else add_to_linker((int)out,ba[i],internal);
5376 emit_jne(0);
5377 }
5378 if(opcode[i]==6) // BLEZ
5379 {
5380 emit_test(s1h,s1h);
5381 if(invert) taken=(int)out;
5382 else add_to_linker((int)out,ba[i],internal);
5383 emit_js(0);
5384 nottaken1=(int)out;
5385 emit_jne(1);
5386 }
5387 if(opcode[i]==7) // BGTZ
5388 {
5389 emit_test(s1h,s1h);
5390 nottaken1=(int)out;
5391 emit_js(1);
5392 if(invert) taken=(int)out;
5393 else add_to_linker((int)out,ba[i],internal);
5394 emit_jne(0);
5395 }
5396 } // if(!only32)
5397
5398 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5399 assert(s1l>=0);
5400 if(opcode[i]==4) // BEQ
5401 {
5402 if(s2l>=0) emit_cmp(s1l,s2l);
5403 else emit_test(s1l,s1l);
5404 if(invert){
5405 nottaken=(int)out;
5406 emit_jne(1);
5407 }else{
5408 add_to_linker((int)out,ba[i],internal);
5409 emit_jeq(0);
5410 }
5411 }
5412 if(opcode[i]==5) // BNE
5413 {
5414 if(s2l>=0) emit_cmp(s1l,s2l);
5415 else emit_test(s1l,s1l);
5416 if(invert){
5417 nottaken=(int)out;
5418 emit_jeq(1);
5419 }else{
5420 add_to_linker((int)out,ba[i],internal);
5421 emit_jne(0);
5422 }
5423 }
5424 if(opcode[i]==6) // BLEZ
5425 {
5426 emit_cmpimm(s1l,1);
5427 if(invert){
5428 nottaken=(int)out;
5429 emit_jge(1);
5430 }else{
5431 add_to_linker((int)out,ba[i],internal);
5432 emit_jl(0);
5433 }
5434 }
5435 if(opcode[i]==7) // BGTZ
5436 {
5437 emit_cmpimm(s1l,1);
5438 if(invert){
5439 nottaken=(int)out;
5440 emit_jl(1);
5441 }else{
5442 add_to_linker((int)out,ba[i],internal);
5443 emit_jge(0);
5444 }
5445 }
5446 if(invert) {
5447 if(taken) set_jump_target(taken,(int)out);
5448 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5449 if(match&&(!internal||!is_ds[(ba[i]-start)>>2])) {
5450 if(adj) {
5451 emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5452 add_to_linker((int)out,ba[i],internal);
5453 }else{
5454 emit_addnop(13);
5455 add_to_linker((int)out,ba[i],internal*2);
5456 }
5457 emit_jmp(0);
5458 }else
5459 #endif
5460 {
5461 if(adj) emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5462 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5463 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5464 if(internal)
5465 assem_debug("branch: internal\n");
5466 else
5467 assem_debug("branch: external\n");
5468 if(internal&&is_ds[(ba[i]-start)>>2]) {
5469 ds_assemble_entry(i);
5470 }
5471 else {
5472 add_to_linker((int)out,ba[i],internal);
5473 emit_jmp(0);
5474 }
5475 }
5476 set_jump_target(nottaken,(int)out);
5477 }
5478
5479 if(nottaken1) set_jump_target(nottaken1,(int)out);
5480 if(adj) {
5481 if(!invert) emit_addimm(cc,CLOCK_DIVIDER*adj,cc);
5482 }
5483 } // (!unconditional)
5484 } // if(ooo)
5485 else
5486 {
5487 // In-order execution (branch first)
5488 //if(likely[i]) printf("IOL\n");
5489 //else
5490 //printf("IOE\n");
5491 int taken=0,nottaken=0,nottaken1=0;
5492 if(!unconditional&&!nop) {
5493 if(!only32)
5494 {
5495 assert(s1h>=0);
5496 if((opcode[i]&0x2f)==4) // BEQ
5497 {
5498 if(s2h>=0) emit_cmp(s1h,s2h);
5499 else emit_test(s1h,s1h);
5500 nottaken1=(int)out;
5501 emit_jne(2);
5502 }
5503 if((opcode[i]&0x2f)==5) // BNE
5504 {
5505 if(s2h>=0) emit_cmp(s1h,s2h);
5506 else emit_test(s1h,s1h);
5507 taken=(int)out;
5508 emit_jne(1);
5509 }
5510 if((opcode[i]&0x2f)==6) // BLEZ
5511 {
5512 emit_test(s1h,s1h);
5513 taken=(int)out;
5514 emit_js(1);
5515 nottaken1=(int)out;
5516 emit_jne(2);
5517 }
5518 if((opcode[i]&0x2f)==7) // BGTZ
5519 {
5520 emit_test(s1h,s1h);
5521 nottaken1=(int)out;
5522 emit_js(2);
5523 taken=(int)out;
5524 emit_jne(1);
5525 }
5526 } // if(!only32)
5527
5528 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5529 assert(s1l>=0);
5530 if((opcode[i]&0x2f)==4) // BEQ
5531 {
5532 if(s2l>=0) emit_cmp(s1l,s2l);
5533 else emit_test(s1l,s1l);
5534 nottaken=(int)out;
5535 emit_jne(2);
5536 }
5537 if((opcode[i]&0x2f)==5) // BNE
5538 {
5539 if(s2l>=0) emit_cmp(s1l,s2l);
5540 else emit_test(s1l,s1l);
5541 nottaken=(int)out;
5542 emit_jeq(2);
5543 }
5544 if((opcode[i]&0x2f)==6) // BLEZ
5545 {
5546 emit_cmpimm(s1l,1);
5547 nottaken=(int)out;
5548 emit_jge(2);
5549 }
5550 if((opcode[i]&0x2f)==7) // BGTZ
5551 {
5552 emit_cmpimm(s1l,1);
5553 nottaken=(int)out;
5554 emit_jl(2);
5555 }
5556 } // if(!unconditional)
5557 int adj;
5558 uint64_t ds_unneeded=branch_regs[i].u;
5559 uint64_t ds_unneeded_upper=branch_regs[i].uu;
5560 ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
5561 ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
5562 if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
5563 ds_unneeded|=1;
5564 ds_unneeded_upper|=1;
5565 // branch taken
5566 if(!nop) {
5567 if(taken) set_jump_target(taken,(int)out);
5568 assem_debug("1:\n");
5569 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5570 ds_unneeded,ds_unneeded_upper);
5571 // load regs
5572 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5573 address_generation(i+1,&branch_regs[i],0);
5574 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
5575 ds_assemble(i+1,&branch_regs[i]);
5576 cc=get_reg(branch_regs[i].regmap,CCREG);
5577 if(cc==-1) {
5578 emit_loadreg(CCREG,cc=HOST_CCREG);
5579 // CHECK: Is the following instruction (fall thru) allocated ok?
5580 }
5581 assert(cc==HOST_CCREG);
5582 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5583 do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
5584 assem_debug("cycle count (adj)\n");
5585 if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5586 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5587 if(internal)
5588 assem_debug("branch: internal\n");
5589 else
5590 assem_debug("branch: external\n");
5591 if(internal&&is_ds[(ba[i]-start)>>2]) {
5592 ds_assemble_entry(i);
5593 }
5594 else {
5595 add_to_linker((int)out,ba[i],internal);
5596 emit_jmp(0);
5597 }
5598 }
5599 // branch not taken
5600 cop1_usable=prev_cop1_usable;
5601 if(!unconditional) {
5602 if(nottaken1) set_jump_target(nottaken1,(int)out);
5603 set_jump_target(nottaken,(int)out);
5604 assem_debug("2:\n");
5605 if(!likely[i]) {
5606 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5607 ds_unneeded,ds_unneeded_upper);
5608 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5609 address_generation(i+1,&branch_regs[i],0);
5610 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5611 ds_assemble(i+1,&branch_regs[i]);
5612 }
5613 cc=get_reg(branch_regs[i].regmap,CCREG);
5614 if(cc==-1&&!likely[i]) {
5615 // Cycle count isn't in a register, temporarily load it then write it out
5616 emit_loadreg(CCREG,HOST_CCREG);
5617 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
5618 int jaddr=(int)out;
5619 emit_jns(0);
5620 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5621 emit_storereg(CCREG,HOST_CCREG);
5622 }
5623 else{
5624 cc=get_reg(i_regmap,CCREG);
5625 assert(cc==HOST_CCREG);
5626 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
5627 int jaddr=(int)out;
5628 emit_jns(0);
5629 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
5630 }
5631 }
5632 }
5633}
5634
5635void sjump_assemble(int i,struct regstat *i_regs)
5636{
5637 signed char *i_regmap=i_regs->regmap;
5638 int cc;
5639 int match;
5640 match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5641 assem_debug("smatch=%d\n",match);
5642 int s1h,s1l;
5643 int prev_cop1_usable=cop1_usable;
5644 int unconditional=0,nevertaken=0;
5645 int only32=0;
5646 int ooo=1;
5647 int invert=0;
5648 int internal=internal_branch(branch_regs[i].is32,ba[i]);
5649 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5650 if(likely[i]) ooo=0;
5651 if(!match) invert=1;
5652 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5653 if(i>(ba[i]-start)>>2) invert=1;
5654 #endif
5655
5656 //if(opcode2[i]>=0x10) return; // FIXME (BxxZAL)
5657 //assert(opcode2[i]<0x10||rs1[i]==0); // FIXME (BxxZAL)
5658
5659 if(ooo) {
5660 if(rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]))
5661 {
5662 // Write-after-read dependency prevents out of order execution
5663 // First test branch condition, then execute delay slot, then branch
5664 ooo=0;
5665 }
5666 if(rt1[i]==31&&(rs1[i+1]==31||rs2[i+1]==31||rt1[i+1]==31||rt2[i+1]==31))
5667 // BxxZAL $ra is available to delay insn, so do it in order
5668 ooo=0;
5669 }
5670
5671 if(ooo) {
5672 s1l=get_reg(branch_regs[i].regmap,rs1[i]);
5673 s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
5674 }
5675 else {
5676 s1l=get_reg(i_regmap,rs1[i]);
5677 s1h=get_reg(i_regmap,rs1[i]|64);
5678 }
5679 if(rs1[i]==0)
5680 {
5681 if(opcode2[i]&1) unconditional=1;
5682 else nevertaken=1;
5683 // These are never taken (r0 is never less than zero)
5684 //assert(opcode2[i]!=0);
5685 //assert(opcode2[i]!=2);
5686 //assert(opcode2[i]!=0x10);
5687 //assert(opcode2[i]!=0x12);
5688 }
5689 else {
5690 only32=(regs[i].was32>>rs1[i])&1;
5691 }
5692
5693 if(ooo) {
5694 // Out of order execution (delay slot first)
5695 //printf("OOOE\n");
5696 address_generation(i+1,i_regs,regs[i].regmap_entry);
5697 ds_assemble(i+1,i_regs);
5698 int adj;
5699 uint64_t bc_unneeded=branch_regs[i].u;
5700 uint64_t bc_unneeded_upper=branch_regs[i].uu;
5701 bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
5702 bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
5703 bc_unneeded|=1;
5704 bc_unneeded_upper|=1;
5705 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5706 bc_unneeded,bc_unneeded_upper);
5707 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs1[i]);
5708 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5709 if(rt1[i]==31) {
5710 int rt,return_address;
5711 rt=get_reg(branch_regs[i].regmap,31);
5712 assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5713 if(rt>=0) {
5714 // Save the PC even if the branch is not taken
5715 return_address=start+i*4+8;
5716 emit_movimm(return_address,rt); // PC into link register
5717 #ifdef IMM_PREFETCH
5718 if(!nevertaken) emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5719 #endif
5720 }
5721 }
5722 cc=get_reg(branch_regs[i].regmap,CCREG);
5723 assert(cc==HOST_CCREG);
5724 if(unconditional)
5725 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5726 //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
5727 assem_debug("cycle count (adj)\n");
5728 if(unconditional) {
5729 do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5730 if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
5731 if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5732 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5733 if(internal)
5734 assem_debug("branch: internal\n");
5735 else
5736 assem_debug("branch: external\n");
5737 if(internal&&is_ds[(ba[i]-start)>>2]) {
5738 ds_assemble_entry(i);
5739 }
5740 else {
5741 add_to_linker((int)out,ba[i],internal);
5742 emit_jmp(0);
5743 }
5744 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5745 if(((u_int)out)&7) emit_addnop(0);
5746 #endif
5747 }
5748 }
5749 else if(nevertaken) {
5750 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
5751 int jaddr=(int)out;
5752 emit_jns(0);
5753 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5754 }
5755 else {
5756 int nottaken=0;
5757 do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
5758 if(adj&&!invert) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5759 if(!only32)
5760 {
5761 assert(s1h>=0);
5762 if((opcode2[i]&0xf)==0) // BLTZ/BLTZAL
5763 {
5764 emit_test(s1h,s1h);
5765 if(invert){
5766 nottaken=(int)out;
5767 emit_jns(1);
5768 }else{
5769 add_to_linker((int)out,ba[i],internal);
5770 emit_js(0);
5771 }
5772 }
5773 if((opcode2[i]&0xf)==1) // BGEZ/BLTZAL
5774 {
5775 emit_test(s1h,s1h);
5776 if(invert){
5777 nottaken=(int)out;
5778 emit_js(1);
5779 }else{
5780 add_to_linker((int)out,ba[i],internal);
5781 emit_jns(0);
5782 }
5783 }
5784 } // if(!only32)
5785 else
5786 {
5787 assert(s1l>=0);
5788 if((opcode2[i]&0xf)==0) // BLTZ/BLTZAL
5789 {
5790 emit_test(s1l,s1l);
5791 if(invert){
5792 nottaken=(int)out;
5793 emit_jns(1);
5794 }else{
5795 add_to_linker((int)out,ba[i],internal);
5796 emit_js(0);
5797 }
5798 }
5799 if((opcode2[i]&0xf)==1) // BGEZ/BLTZAL
5800 {
5801 emit_test(s1l,s1l);
5802 if(invert){
5803 nottaken=(int)out;
5804 emit_js(1);
5805 }else{
5806 add_to_linker((int)out,ba[i],internal);
5807 emit_jns(0);
5808 }
5809 }
5810 } // if(!only32)
5811
5812 if(invert) {
5813 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5814 if(match&&(!internal||!is_ds[(ba[i]-start)>>2])) {
5815 if(adj) {
5816 emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5817 add_to_linker((int)out,ba[i],internal);
5818 }else{
5819 emit_addnop(13);
5820 add_to_linker((int)out,ba[i],internal*2);
5821 }
5822 emit_jmp(0);
5823 }else
5824 #endif
5825 {
5826 if(adj) emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5827 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5828 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5829 if(internal)
5830 assem_debug("branch: internal\n");
5831 else
5832 assem_debug("branch: external\n");
5833 if(internal&&is_ds[(ba[i]-start)>>2]) {
5834 ds_assemble_entry(i);
5835 }
5836 else {
5837 add_to_linker((int)out,ba[i],internal);
5838 emit_jmp(0);
5839 }
5840 }
5841 set_jump_target(nottaken,(int)out);
5842 }
5843
5844 if(adj) {
5845 if(!invert) emit_addimm(cc,CLOCK_DIVIDER*adj,cc);
5846 }
5847 } // (!unconditional)
5848 } // if(ooo)
5849 else
5850 {
5851 // In-order execution (branch first)
5852 //printf("IOE\n");
5853 int nottaken=0;
5854 if(rt1[i]==31) {
5855 int rt,return_address;
5856 rt=get_reg(branch_regs[i].regmap,31);
5857 if(rt>=0) {
5858 // Save the PC even if the branch is not taken
5859 return_address=start+i*4+8;
5860 emit_movimm(return_address,rt); // PC into link register
5861 #ifdef IMM_PREFETCH
5862 emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5863 #endif
5864 }
5865 }
5866 if(!unconditional) {
5867 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5868 if(!only32)
5869 {
5870 assert(s1h>=0);
5871 if((opcode2[i]&0x0d)==0) // BLTZ/BLTZL/BLTZAL/BLTZALL
5872 {
5873 emit_test(s1h,s1h);
5874 nottaken=(int)out;
5875 emit_jns(1);
5876 }
5877 if((opcode2[i]&0x0d)==1) // BGEZ/BGEZL/BGEZAL/BGEZALL
5878 {
5879 emit_test(s1h,s1h);
5880 nottaken=(int)out;
5881 emit_js(1);
5882 }
5883 } // if(!only32)
5884 else
5885 {
5886 assert(s1l>=0);
5887 if((opcode2[i]&0x0d)==0) // BLTZ/BLTZL/BLTZAL/BLTZALL
5888 {
5889 emit_test(s1l,s1l);
5890 nottaken=(int)out;
5891 emit_jns(1);
5892 }
5893 if((opcode2[i]&0x0d)==1) // BGEZ/BGEZL/BGEZAL/BGEZALL
5894 {
5895 emit_test(s1l,s1l);
5896 nottaken=(int)out;
5897 emit_js(1);
5898 }
5899 }
5900 } // if(!unconditional)
5901 int adj;
5902 uint64_t ds_unneeded=branch_regs[i].u;
5903 uint64_t ds_unneeded_upper=branch_regs[i].uu;
5904 ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
5905 ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
5906 if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
5907 ds_unneeded|=1;
5908 ds_unneeded_upper|=1;
5909 // branch taken
5910 if(!nevertaken) {
5911 //assem_debug("1:\n");
5912 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5913 ds_unneeded,ds_unneeded_upper);
5914 // load regs
5915 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5916 address_generation(i+1,&branch_regs[i],0);
5917 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
5918 ds_assemble(i+1,&branch_regs[i]);
5919 cc=get_reg(branch_regs[i].regmap,CCREG);
5920 if(cc==-1) {
5921 emit_loadreg(CCREG,cc=HOST_CCREG);
5922 // CHECK: Is the following instruction (fall thru) allocated ok?
5923 }
5924 assert(cc==HOST_CCREG);
5925 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5926 do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
5927 assem_debug("cycle count (adj)\n");
5928 if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5929 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5930 if(internal)
5931 assem_debug("branch: internal\n");
5932 else
5933 assem_debug("branch: external\n");
5934 if(internal&&is_ds[(ba[i]-start)>>2]) {
5935 ds_assemble_entry(i);
5936 }
5937 else {
5938 add_to_linker((int)out,ba[i],internal);
5939 emit_jmp(0);
5940 }
5941 }
5942 // branch not taken
5943 cop1_usable=prev_cop1_usable;
5944 if(!unconditional) {
5945 set_jump_target(nottaken,(int)out);
5946 assem_debug("1:\n");
5947 if(!likely[i]) {
5948 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5949 ds_unneeded,ds_unneeded_upper);
5950 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5951 address_generation(i+1,&branch_regs[i],0);
5952 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5953 ds_assemble(i+1,&branch_regs[i]);
5954 }
5955 cc=get_reg(branch_regs[i].regmap,CCREG);
5956 if(cc==-1&&!likely[i]) {
5957 // Cycle count isn't in a register, temporarily load it then write it out
5958 emit_loadreg(CCREG,HOST_CCREG);
5959 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
5960 int jaddr=(int)out;
5961 emit_jns(0);
5962 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5963 emit_storereg(CCREG,HOST_CCREG);
5964 }
5965 else{
5966 cc=get_reg(i_regmap,CCREG);
5967 assert(cc==HOST_CCREG);
5968 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
5969 int jaddr=(int)out;
5970 emit_jns(0);
5971 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
5972 }
5973 }
5974 }
5975}
5976
5977void fjump_assemble(int i,struct regstat *i_regs)
5978{
5979 signed char *i_regmap=i_regs->regmap;
5980 int cc;
5981 int match;
5982 match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5983 assem_debug("fmatch=%d\n",match);
5984 int fs,cs;
5985 int eaddr;
5986 int ooo=1;
5987 int invert=0;
5988 int internal=internal_branch(branch_regs[i].is32,ba[i]);
5989 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5990 if(likely[i]) ooo=0;
5991 if(!match) invert=1;
5992 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5993 if(i>(ba[i]-start)>>2) invert=1;
5994 #endif
5995
5996 if(ooo)
5997 if(itype[i+1]==FCOMP)
5998 {
5999 // Write-after-read dependency prevents out of order execution
6000 // First test branch condition, then execute delay slot, then branch
6001 ooo=0;
6002 }
6003
6004 if(ooo) {
6005 fs=get_reg(branch_regs[i].regmap,FSREG);
6006 address_generation(i+1,i_regs,regs[i].regmap_entry); // Is this okay?
6007 }
6008 else {
6009 fs=get_reg(i_regmap,FSREG);
6010 }
6011
6012 // Check cop1 unusable
6013 if(!cop1_usable) {
6014 cs=get_reg(i_regmap,CSREG);
6015 assert(cs>=0);
6016 emit_testimm(cs,0x20000000);
6017 eaddr=(int)out;
6018 emit_jeq(0);
6019 add_stub(FP_STUB,eaddr,(int)out,i,cs,(int)i_regs,0,0);
6020 cop1_usable=1;
6021 }
6022
6023 if(ooo) {
6024 // Out of order execution (delay slot first)
6025 //printf("OOOE\n");
6026 ds_assemble(i+1,i_regs);
6027 int adj;
6028 uint64_t bc_unneeded=branch_regs[i].u;
6029 uint64_t bc_unneeded_upper=branch_regs[i].uu;
6030 bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
6031 bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
6032 bc_unneeded|=1;
6033 bc_unneeded_upper|=1;
6034 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6035 bc_unneeded,bc_unneeded_upper);
6036 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs1[i]);
6037 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
6038 cc=get_reg(branch_regs[i].regmap,CCREG);
6039 assert(cc==HOST_CCREG);
6040 do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
6041 assem_debug("cycle count (adj)\n");
6042 if(1) {
6043 int nottaken=0;
6044 if(adj&&!invert) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
6045 if(1) {
6046 assert(fs>=0);
6047 emit_testimm(fs,0x800000);
6048 if(source[i]&0x10000) // BC1T
6049 {
6050 if(invert){
6051 nottaken=(int)out;
6052 emit_jeq(1);
6053 }else{
6054 add_to_linker((int)out,ba[i],internal);
6055 emit_jne(0);
6056 }
6057 }
6058 else // BC1F
6059 if(invert){
6060 nottaken=(int)out;
6061 emit_jne(1);
6062 }else{
6063 add_to_linker((int)out,ba[i],internal);
6064 emit_jeq(0);
6065 }
6066 {
6067 }
6068 } // if(!only32)
6069
6070 if(invert) {
6071 if(adj) emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
6072 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
6073 else if(match) emit_addnop(13);
6074 #endif
6075 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6076 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6077 if(internal)
6078 assem_debug("branch: internal\n");
6079 else
6080 assem_debug("branch: external\n");
6081 if(internal&&is_ds[(ba[i]-start)>>2]) {
6082 ds_assemble_entry(i);
6083 }
6084 else {
6085 add_to_linker((int)out,ba[i],internal);
6086 emit_jmp(0);
6087 }
6088 set_jump_target(nottaken,(int)out);
6089 }
6090
6091 if(adj) {
6092 if(!invert) emit_addimm(cc,CLOCK_DIVIDER*adj,cc);
6093 }
6094 } // (!unconditional)
6095 } // if(ooo)
6096 else
6097 {
6098 // In-order execution (branch first)
6099 //printf("IOE\n");
6100 int nottaken=0;
6101 if(1) {
6102 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
6103 if(1) {
6104 assert(fs>=0);
6105 emit_testimm(fs,0x800000);
6106 if(source[i]&0x10000) // BC1T
6107 {
6108 nottaken=(int)out;
6109 emit_jeq(1);
6110 }
6111 else // BC1F
6112 {
6113 nottaken=(int)out;
6114 emit_jne(1);
6115 }
6116 }
6117 } // if(!unconditional)
6118 int adj;
6119 uint64_t ds_unneeded=branch_regs[i].u;
6120 uint64_t ds_unneeded_upper=branch_regs[i].uu;
6121 ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6122 ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6123 if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
6124 ds_unneeded|=1;
6125 ds_unneeded_upper|=1;
6126 // branch taken
6127 //assem_debug("1:\n");
6128 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6129 ds_unneeded,ds_unneeded_upper);
6130 // load regs
6131 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
6132 address_generation(i+1,&branch_regs[i],0);
6133 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
6134 ds_assemble(i+1,&branch_regs[i]);
6135 cc=get_reg(branch_regs[i].regmap,CCREG);
6136 if(cc==-1) {
6137 emit_loadreg(CCREG,cc=HOST_CCREG);
6138 // CHECK: Is the following instruction (fall thru) allocated ok?
6139 }
6140 assert(cc==HOST_CCREG);
6141 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6142 do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
6143 assem_debug("cycle count (adj)\n");
6144 if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
6145 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6146 if(internal)
6147 assem_debug("branch: internal\n");
6148 else
6149 assem_debug("branch: external\n");
6150 if(internal&&is_ds[(ba[i]-start)>>2]) {
6151 ds_assemble_entry(i);
6152 }
6153 else {
6154 add_to_linker((int)out,ba[i],internal);
6155 emit_jmp(0);
6156 }
6157
6158 // branch not taken
6159 if(1) { // <- FIXME (don't need this)
6160 set_jump_target(nottaken,(int)out);
6161 assem_debug("1:\n");
6162 if(!likely[i]) {
6163 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6164 ds_unneeded,ds_unneeded_upper);
6165 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
6166 address_generation(i+1,&branch_regs[i],0);
6167 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
6168 ds_assemble(i+1,&branch_regs[i]);
6169 }
6170 cc=get_reg(branch_regs[i].regmap,CCREG);
6171 if(cc==-1&&!likely[i]) {
6172 // Cycle count isn't in a register, temporarily load it then write it out
6173 emit_loadreg(CCREG,HOST_CCREG);
6174 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
6175 int jaddr=(int)out;
6176 emit_jns(0);
6177 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
6178 emit_storereg(CCREG,HOST_CCREG);
6179 }
6180 else{
6181 cc=get_reg(i_regmap,CCREG);
6182 assert(cc==HOST_CCREG);
6183 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
6184 int jaddr=(int)out;
6185 emit_jns(0);
6186 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
6187 }
6188 }
6189 }
6190}
6191
6192static void pagespan_assemble(int i,struct regstat *i_regs)
6193{
6194 int s1l=get_reg(i_regs->regmap,rs1[i]);
6195 int s1h=get_reg(i_regs->regmap,rs1[i]|64);
6196 int s2l=get_reg(i_regs->regmap,rs2[i]);
6197 int s2h=get_reg(i_regs->regmap,rs2[i]|64);
6198 void *nt_branch=NULL;
6199 int taken=0;
6200 int nottaken=0;
6201 int unconditional=0;
6202 if(rs1[i]==0)
6203 {
6204 s1l=s2l;s1h=s2h;
6205 s2l=s2h=-1;
6206 }
6207 else if(rs2[i]==0)
6208 {
6209 s2l=s2h=-1;
6210 }
6211 if((i_regs->is32>>rs1[i])&(i_regs->is32>>rs2[i])&1) {
6212 s1h=s2h=-1;
6213 }
6214 int hr=0;
6215 int addr,alt,ntaddr;
6216 if(i_regs->regmap[HOST_BTREG]<0) {addr=HOST_BTREG;}
6217 else {
6218 while(hr<HOST_REGS)
6219 {
6220 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
6221 (i_regs->regmap[hr]&63)!=rs1[i] &&
6222 (i_regs->regmap[hr]&63)!=rs2[i] )
6223 {
6224 addr=hr++;break;
6225 }
6226 hr++;
6227 }
6228 }
6229 while(hr<HOST_REGS)
6230 {
6231 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG && hr!=HOST_BTREG &&
6232 (i_regs->regmap[hr]&63)!=rs1[i] &&
6233 (i_regs->regmap[hr]&63)!=rs2[i] )
6234 {
6235 alt=hr++;break;
6236 }
6237 hr++;
6238 }
6239 if((opcode[i]&0x2E)==6) // BLEZ/BGTZ needs another register
6240 {
6241 while(hr<HOST_REGS)
6242 {
6243 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG && hr!=HOST_BTREG &&
6244 (i_regs->regmap[hr]&63)!=rs1[i] &&
6245 (i_regs->regmap[hr]&63)!=rs2[i] )
6246 {
6247 ntaddr=hr;break;
6248 }
6249 hr++;
6250 }
6251 }
6252 assert(hr<HOST_REGS);
6253 if((opcode[i]&0x2e)==4||opcode[i]==0x11) { // BEQ/BNE/BEQL/BNEL/BC1
6254 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,CCREG,CCREG);
6255 }
6256 emit_addimm(HOST_CCREG,CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
6257 if(opcode[i]==2) // J
6258 {
6259 unconditional=1;
6260 }
6261 if(opcode[i]==3) // JAL
6262 {
6263 // TODO: mini_ht
6264 int rt=get_reg(i_regs->regmap,31);
6265 emit_movimm(start+i*4+8,rt);
6266 unconditional=1;
6267 }
6268 if(opcode[i]==0&&(opcode2[i]&0x3E)==8) // JR/JALR
6269 {
6270 emit_mov(s1l,addr);
6271 if(opcode2[i]==9) // JALR
6272 {
6273 int rt=get_reg(i_regs->regmap,rt1[i]);
6274 emit_movimm(start+i*4+8,rt);
6275 }
6276 }
6277 if((opcode[i]&0x3f)==4) // BEQ
6278 {
6279 if(rs1[i]==rs2[i])
6280 {
6281 unconditional=1;
6282 }
6283 else
6284 #ifdef HAVE_CMOV_IMM
6285 if(s1h<0) {
6286 if(s2l>=0) emit_cmp(s1l,s2l);
6287 else emit_test(s1l,s1l);
6288 emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
6289 }
6290 else
6291 #endif
6292 {
6293 assert(s1l>=0);
6294 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
6295 if(s1h>=0) {
6296 if(s2h>=0) emit_cmp(s1h,s2h);
6297 else emit_test(s1h,s1h);
6298 emit_cmovne_reg(alt,addr);
6299 }
6300 if(s2l>=0) emit_cmp(s1l,s2l);
6301 else emit_test(s1l,s1l);
6302 emit_cmovne_reg(alt,addr);
6303 }
6304 }
6305 if((opcode[i]&0x3f)==5) // BNE
6306 {
6307 #ifdef HAVE_CMOV_IMM
6308 if(s1h<0) {
6309 if(s2l>=0) emit_cmp(s1l,s2l);
6310 else emit_test(s1l,s1l);
6311 emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
6312 }
6313 else
6314 #endif
6315 {
6316 assert(s1l>=0);
6317 emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
6318 if(s1h>=0) {
6319 if(s2h>=0) emit_cmp(s1h,s2h);
6320 else emit_test(s1h,s1h);
6321 emit_cmovne_reg(alt,addr);
6322 }
6323 if(s2l>=0) emit_cmp(s1l,s2l);
6324 else emit_test(s1l,s1l);
6325 emit_cmovne_reg(alt,addr);
6326 }
6327 }
6328 if((opcode[i]&0x3f)==0x14) // BEQL
6329 {
6330 if(s1h>=0) {
6331 if(s2h>=0) emit_cmp(s1h,s2h);
6332 else emit_test(s1h,s1h);
6333 nottaken=(int)out;
6334 emit_jne(0);
6335 }
6336 if(s2l>=0) emit_cmp(s1l,s2l);
6337 else emit_test(s1l,s1l);
6338 if(nottaken) set_jump_target(nottaken,(int)out);
6339 nottaken=(int)out;
6340 emit_jne(0);
6341 }
6342 if((opcode[i]&0x3f)==0x15) // BNEL
6343 {
6344 if(s1h>=0) {
6345 if(s2h>=0) emit_cmp(s1h,s2h);
6346 else emit_test(s1h,s1h);
6347 taken=(int)out;
6348 emit_jne(0);
6349 }
6350 if(s2l>=0) emit_cmp(s1l,s2l);
6351 else emit_test(s1l,s1l);
6352 nottaken=(int)out;
6353 emit_jeq(0);
6354 if(taken) set_jump_target(taken,(int)out);
6355 }
6356 if((opcode[i]&0x3f)==6) // BLEZ
6357 {
6358 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
6359 emit_cmpimm(s1l,1);
6360 if(s1h>=0) emit_mov(addr,ntaddr);
6361 emit_cmovl_reg(alt,addr);
6362 if(s1h>=0) {
6363 emit_test(s1h,s1h);
6364 emit_cmovne_reg(ntaddr,addr);
6365 emit_cmovs_reg(alt,addr);
6366 }
6367 }
6368 if((opcode[i]&0x3f)==7) // BGTZ
6369 {
6370 emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
6371 emit_cmpimm(s1l,1);
6372 if(s1h>=0) emit_mov(addr,alt);
6373 emit_cmovl_reg(ntaddr,addr);
6374 if(s1h>=0) {
6375 emit_test(s1h,s1h);
6376 emit_cmovne_reg(alt,addr);
6377 emit_cmovs_reg(ntaddr,addr);
6378 }
6379 }
6380 if((opcode[i]&0x3f)==0x16) // BLEZL
6381 {
6382 assert((opcode[i]&0x3f)!=0x16);
6383 }
6384 if((opcode[i]&0x3f)==0x17) // BGTZL
6385 {
6386 assert((opcode[i]&0x3f)!=0x17);
6387 }
6388 assert(opcode[i]!=1); // BLTZ/BGEZ
6389
6390 //FIXME: Check CSREG
6391 if(opcode[i]==0x11 && opcode2[i]==0x08 ) {
6392 if((source[i]&0x30000)==0) // BC1F
6393 {
6394 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
6395 emit_testimm(s1l,0x800000);
6396 emit_cmovne_reg(alt,addr);
6397 }
6398 if((source[i]&0x30000)==0x10000) // BC1T
6399 {
6400 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
6401 emit_testimm(s1l,0x800000);
6402 emit_cmovne_reg(alt,addr);
6403 }
6404 if((source[i]&0x30000)==0x20000) // BC1FL
6405 {
6406 emit_testimm(s1l,0x800000);
6407 nottaken=(int)out;
6408 emit_jne(0);
6409 }
6410 if((source[i]&0x30000)==0x30000) // BC1TL
6411 {
6412 emit_testimm(s1l,0x800000);
6413 nottaken=(int)out;
6414 emit_jeq(0);
6415 }
6416 }
6417
6418 assert(i_regs->regmap[HOST_CCREG]==CCREG);
6419 wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
6420 if(likely[i]||unconditional)
6421 {
6422 emit_movimm(ba[i],HOST_BTREG);
6423 }
6424 else if(addr!=HOST_BTREG)
6425 {
6426 emit_mov(addr,HOST_BTREG);
6427 }
6428 void *branch_addr=out;
6429 emit_jmp(0);
6430 int target_addr=start+i*4+5;
6431 void *stub=out;
6432 void *compiled_target_addr=check_addr(target_addr);
6433 emit_extjump_ds((int)branch_addr,target_addr);
6434 if(compiled_target_addr) {
6435 set_jump_target((int)branch_addr,(int)compiled_target_addr);
6436 add_link(target_addr,stub);
6437 }
6438 else set_jump_target((int)branch_addr,(int)stub);
6439 if(likely[i]) {
6440 // Not-taken path
6441 set_jump_target((int)nottaken,(int)out);
6442 wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
6443 void *branch_addr=out;
6444 emit_jmp(0);
6445 int target_addr=start+i*4+8;
6446 void *stub=out;
6447 void *compiled_target_addr=check_addr(target_addr);
6448 emit_extjump_ds((int)branch_addr,target_addr);
6449 if(compiled_target_addr) {
6450 set_jump_target((int)branch_addr,(int)compiled_target_addr);
6451 add_link(target_addr,stub);
6452 }
6453 else set_jump_target((int)branch_addr,(int)stub);
6454 }
6455}
6456
6457// Assemble the delay slot for the above
6458static void pagespan_ds()
6459{
6460 assem_debug("initial delay slot:\n");
6461 u_int vaddr=start+1;
6462 u_int page=get_page(vaddr);
6463 u_int vpage=get_vpage(vaddr);
6464 ll_add(jump_dirty+vpage,vaddr,(void *)out);
6465 do_dirty_stub_ds();
6466 ll_add(jump_in+page,vaddr,(void *)out);
6467 assert(regs[0].regmap_entry[HOST_CCREG]==CCREG);
6468 if(regs[0].regmap[HOST_CCREG]!=CCREG)
6469 wb_register(CCREG,regs[0].regmap_entry,regs[0].wasdirty,regs[0].was32);
6470 if(regs[0].regmap[HOST_BTREG]!=BTREG)
6471 emit_writeword(HOST_BTREG,(int)&branch_target);
6472 load_regs(regs[0].regmap_entry,regs[0].regmap,regs[0].was32,rs1[0],rs2[0]);
6473 address_generation(0,&regs[0],regs[0].regmap_entry);
6474 if(itype[0]==STORE||itype[0]==STORELR||(opcode[0]&0x3b)==0x39||(opcode[0]&0x3b)==0x3a)
6475 load_regs(regs[0].regmap_entry,regs[0].regmap,regs[0].was32,INVCP,INVCP);
6476 cop1_usable=0;
6477 is_delayslot=0;
6478 switch(itype[0]) {
6479 case ALU:
6480 alu_assemble(0,&regs[0]);break;
6481 case IMM16:
6482 imm16_assemble(0,&regs[0]);break;
6483 case SHIFT:
6484 shift_assemble(0,&regs[0]);break;
6485 case SHIFTIMM:
6486 shiftimm_assemble(0,&regs[0]);break;
6487 case LOAD:
6488 load_assemble(0,&regs[0]);break;
6489 case LOADLR:
6490 loadlr_assemble(0,&regs[0]);break;
6491 case STORE:
6492 store_assemble(0,&regs[0]);break;
6493 case STORELR:
6494 storelr_assemble(0,&regs[0]);break;
6495 case COP0:
6496 cop0_assemble(0,&regs[0]);break;
6497 case COP1:
6498 cop1_assemble(0,&regs[0]);break;
6499 case C1LS:
6500 c1ls_assemble(0,&regs[0]);break;
6501 case COP2:
6502 cop2_assemble(0,&regs[0]);break;
6503 case C2LS:
6504 c2ls_assemble(0,&regs[0]);break;
6505 case C2OP:
6506 c2op_assemble(0,&regs[0]);break;
6507 case FCONV:
6508 fconv_assemble(0,&regs[0]);break;
6509 case FLOAT:
6510 float_assemble(0,&regs[0]);break;
6511 case FCOMP:
6512 fcomp_assemble(0,&regs[0]);break;
6513 case MULTDIV:
6514 multdiv_assemble(0,&regs[0]);break;
6515 case MOV:
6516 mov_assemble(0,&regs[0]);break;
6517 case SYSCALL:
6518 case HLECALL:
6519 case INTCALL:
6520 case SPAN:
6521 case UJUMP:
6522 case RJUMP:
6523 case CJUMP:
6524 case SJUMP:
6525 case FJUMP:
6526 printf("Jump in the delay slot. This is probably a bug.\n");
6527 }
6528 int btaddr=get_reg(regs[0].regmap,BTREG);
6529 if(btaddr<0) {
6530 btaddr=get_reg(regs[0].regmap,-1);
6531 emit_readword((int)&branch_target,btaddr);
6532 }
6533 assert(btaddr!=HOST_CCREG);
6534 if(regs[0].regmap[HOST_CCREG]!=CCREG) emit_loadreg(CCREG,HOST_CCREG);
6535#ifdef HOST_IMM8
6536 emit_movimm(start+4,HOST_TEMPREG);
6537 emit_cmp(btaddr,HOST_TEMPREG);
6538#else
6539 emit_cmpimm(btaddr,start+4);
6540#endif
6541 int branch=(int)out;
6542 emit_jeq(0);
6543 store_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,-1);
6544 emit_jmp(jump_vaddr_reg[btaddr]);
6545 set_jump_target(branch,(int)out);
6546 store_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,start+4);
6547 load_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,start+4);
6548}
6549
6550// Basic liveness analysis for MIPS registers
6551void unneeded_registers(int istart,int iend,int r)
6552{
6553 int i;
6554 uint64_t u,uu,b,bu;
6555 uint64_t temp_u,temp_uu;
6556 uint64_t tdep;
6557 if(iend==slen-1) {
6558 u=1;uu=1;
6559 }else{
6560 u=unneeded_reg[iend+1];
6561 uu=unneeded_reg_upper[iend+1];
6562 u=1;uu=1;
6563 }
6564 for (i=iend;i>=istart;i--)
6565 {
6566 //printf("unneeded registers i=%d (%d,%d) r=%d\n",i,istart,iend,r);
6567 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
6568 {
6569 // If subroutine call, flag return address as a possible branch target
6570 if(rt1[i]==31 && i<slen-2) bt[i+2]=1;
6571
6572 if(ba[i]<start || ba[i]>=(start+slen*4))
6573 {
6574 // Branch out of this block, flush all regs
6575 u=1;
6576 uu=1;
6577 /* Hexagon hack
6578 if(itype[i]==UJUMP&&rt1[i]==31)
6579 {
6580 uu=u=0x300C00F; // Discard at, v0-v1, t6-t9
6581 }
6582 if(itype[i]==RJUMP&&rs1[i]==31)
6583 {
6584 uu=u=0x300C0F3; // Discard at, a0-a3, t6-t9
6585 }
6586 if(start>0x80000400&&start<0x80000000+RAM_SIZE) {
6587 if(itype[i]==UJUMP&&rt1[i]==31)
6588 {
6589 //uu=u=0x30300FF0FLL; // Discard at, v0-v1, t0-t9, lo, hi
6590 uu=u=0x300FF0F; // Discard at, v0-v1, t0-t9
6591 }
6592 if(itype[i]==RJUMP&&rs1[i]==31)
6593 {
6594 //uu=u=0x30300FFF3LL; // Discard at, a0-a3, t0-t9, lo, hi
6595 uu=u=0x300FFF3; // Discard at, a0-a3, t0-t9
6596 }
6597 }*/
6598 branch_unneeded_reg[i]=u;
6599 branch_unneeded_reg_upper[i]=uu;
6600 // Merge in delay slot
6601 tdep=(~uu>>rt1[i+1])&1;
6602 u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6603 uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6604 u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6605 uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6606 uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6607 u|=1;uu|=1;
6608 // If branch is "likely" (and conditional)
6609 // then we skip the delay slot on the fall-thru path
6610 if(likely[i]) {
6611 if(i<slen-1) {
6612 u&=unneeded_reg[i+2];
6613 uu&=unneeded_reg_upper[i+2];
6614 }
6615 else
6616 {
6617 u=1;
6618 uu=1;
6619 }
6620 }
6621 }
6622 else
6623 {
6624 // Internal branch, flag target
6625 bt[(ba[i]-start)>>2]=1;
6626 if(ba[i]<=start+i*4) {
6627 // Backward branch
6628 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
6629 {
6630 // Unconditional branch
6631 temp_u=1;temp_uu=1;
6632 } else {
6633 // Conditional branch (not taken case)
6634 temp_u=unneeded_reg[i+2];
6635 temp_uu=unneeded_reg_upper[i+2];
6636 }
6637 // Merge in delay slot
6638 tdep=(~temp_uu>>rt1[i+1])&1;
6639 temp_u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6640 temp_uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6641 temp_u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6642 temp_uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6643 temp_uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6644 temp_u|=1;temp_uu|=1;
6645 // If branch is "likely" (and conditional)
6646 // then we skip the delay slot on the fall-thru path
6647 if(likely[i]) {
6648 if(i<slen-1) {
6649 temp_u&=unneeded_reg[i+2];
6650 temp_uu&=unneeded_reg_upper[i+2];
6651 }
6652 else
6653 {
6654 temp_u=1;
6655 temp_uu=1;
6656 }
6657 }
6658 tdep=(~temp_uu>>rt1[i])&1;
6659 temp_u|=(1LL<<rt1[i])|(1LL<<rt2[i]);
6660 temp_uu|=(1LL<<rt1[i])|(1LL<<rt2[i]);
6661 temp_u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
6662 temp_uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
6663 temp_uu&=~((tdep<<dep1[i])|(tdep<<dep2[i]));
6664 temp_u|=1;temp_uu|=1;
6665 unneeded_reg[i]=temp_u;
6666 unneeded_reg_upper[i]=temp_uu;
6667 // Only go three levels deep. This recursion can take an
6668 // excessive amount of time if there are a lot of nested loops.
6669 if(r<2) {
6670 unneeded_registers((ba[i]-start)>>2,i-1,r+1);
6671 }else{
6672 unneeded_reg[(ba[i]-start)>>2]=1;
6673 unneeded_reg_upper[(ba[i]-start)>>2]=1;
6674 }
6675 } /*else*/ if(1) {
6676 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
6677 {
6678 // Unconditional branch
6679 u=unneeded_reg[(ba[i]-start)>>2];
6680 uu=unneeded_reg_upper[(ba[i]-start)>>2];
6681 branch_unneeded_reg[i]=u;
6682 branch_unneeded_reg_upper[i]=uu;
6683 //u=1;
6684 //uu=1;
6685 //branch_unneeded_reg[i]=u;
6686 //branch_unneeded_reg_upper[i]=uu;
6687 // Merge in delay slot
6688 tdep=(~uu>>rt1[i+1])&1;
6689 u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6690 uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6691 u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6692 uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6693 uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6694 u|=1;uu|=1;
6695 } else {
6696 // Conditional branch
6697 b=unneeded_reg[(ba[i]-start)>>2];
6698 bu=unneeded_reg_upper[(ba[i]-start)>>2];
6699 branch_unneeded_reg[i]=b;
6700 branch_unneeded_reg_upper[i]=bu;
6701 //b=1;
6702 //bu=1;
6703 //branch_unneeded_reg[i]=b;
6704 //branch_unneeded_reg_upper[i]=bu;
6705 // Branch delay slot
6706 tdep=(~uu>>rt1[i+1])&1;
6707 b|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6708 bu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6709 b&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6710 bu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6711 bu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6712 b|=1;bu|=1;
6713 // If branch is "likely" then we skip the
6714 // delay slot on the fall-thru path
6715 if(likely[i]) {
6716 u=b;
6717 uu=bu;
6718 if(i<slen-1) {
6719 u&=unneeded_reg[i+2];
6720 uu&=unneeded_reg_upper[i+2];
6721 //u=1;
6722 //uu=1;
6723 }
6724 } else {
6725 u&=b;
6726 uu&=bu;
6727 //u=1;
6728 //uu=1;
6729 }
6730 if(i<slen-1) {
6731 branch_unneeded_reg[i]&=unneeded_reg[i+2];
6732 branch_unneeded_reg_upper[i]&=unneeded_reg_upper[i+2];
6733 //branch_unneeded_reg[i]=1;
6734 //branch_unneeded_reg_upper[i]=1;
6735 } else {
6736 branch_unneeded_reg[i]=1;
6737 branch_unneeded_reg_upper[i]=1;
6738 }
6739 }
6740 }
6741 }
6742 }
6743 else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
6744 {
6745 // SYSCALL instruction (software interrupt)
6746 u=1;
6747 uu=1;
6748 }
6749 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
6750 {
6751 // ERET instruction (return from interrupt)
6752 u=1;
6753 uu=1;
6754 }
6755 //u=uu=1; // DEBUG
6756 tdep=(~uu>>rt1[i])&1;
6757 // Written registers are unneeded
6758 u|=1LL<<rt1[i];
6759 u|=1LL<<rt2[i];
6760 uu|=1LL<<rt1[i];
6761 uu|=1LL<<rt2[i];
6762 // Accessed registers are needed
6763 u&=~(1LL<<rs1[i]);
6764 u&=~(1LL<<rs2[i]);
6765 uu&=~(1LL<<us1[i]);
6766 uu&=~(1LL<<us2[i]);
6767 // Source-target dependencies
6768 uu&=~(tdep<<dep1[i]);
6769 uu&=~(tdep<<dep2[i]);
6770 // R0 is always unneeded
6771 u|=1;uu|=1;
6772 // Save it
6773 unneeded_reg[i]=u;
6774 unneeded_reg_upper[i]=uu;
6775 /*
6776 printf("ur (%d,%d) %x: ",istart,iend,start+i*4);
6777 printf("U:");
6778 int r;
6779 for(r=1;r<=CCREG;r++) {
6780 if((unneeded_reg[i]>>r)&1) {
6781 if(r==HIREG) printf(" HI");
6782 else if(r==LOREG) printf(" LO");
6783 else printf(" r%d",r);
6784 }
6785 }
6786 printf(" UU:");
6787 for(r=1;r<=CCREG;r++) {
6788 if(((unneeded_reg_upper[i]&~unneeded_reg[i])>>r)&1) {
6789 if(r==HIREG) printf(" HI");
6790 else if(r==LOREG) printf(" LO");
6791 else printf(" r%d",r);
6792 }
6793 }
6794 printf("\n");*/
6795 }
6796#ifdef FORCE32
6797 for (i=iend;i>=istart;i--)
6798 {
6799 unneeded_reg_upper[i]=branch_unneeded_reg_upper[i]=-1LL;
6800 }
6801#endif
6802}
6803
6804// Identify registers which are likely to contain 32-bit values
6805// This is used to predict whether any branches will jump to a
6806// location with 64-bit values in registers.
6807static void provisional_32bit()
6808{
6809 int i,j;
6810 uint64_t is32=1;
6811 uint64_t lastbranch=1;
6812
6813 for(i=0;i<slen;i++)
6814 {
6815 if(i>0) {
6816 if(itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP) {
6817 if(i>1) is32=lastbranch;
6818 else is32=1;
6819 }
6820 }
6821 if(i>1)
6822 {
6823 if(itype[i-2]==CJUMP||itype[i-2]==SJUMP||itype[i-2]==FJUMP) {
6824 if(likely[i-2]) {
6825 if(i>2) is32=lastbranch;
6826 else is32=1;
6827 }
6828 }
6829 if((opcode[i-2]&0x2f)==0x05) // BNE/BNEL
6830 {
6831 if(rs1[i-2]==0||rs2[i-2]==0)
6832 {
6833 if(rs1[i-2]) {
6834 is32|=1LL<<rs1[i-2];
6835 }
6836 if(rs2[i-2]) {
6837 is32|=1LL<<rs2[i-2];
6838 }
6839 }
6840 }
6841 }
6842 // If something jumps here with 64-bit values
6843 // then promote those registers to 64 bits
6844 if(bt[i])
6845 {
6846 uint64_t temp_is32=is32;
6847 for(j=i-1;j>=0;j--)
6848 {
6849 if(ba[j]==start+i*4)
6850 //temp_is32&=branch_regs[j].is32;
6851 temp_is32&=p32[j];
6852 }
6853 for(j=i;j<slen;j++)
6854 {
6855 if(ba[j]==start+i*4)
6856 temp_is32=1;
6857 }
6858 is32=temp_is32;
6859 }
6860 int type=itype[i];
6861 int op=opcode[i];
6862 int op2=opcode2[i];
6863 int rt=rt1[i];
6864 int s1=rs1[i];
6865 int s2=rs2[i];
6866 if(type==UJUMP||type==RJUMP||type==CJUMP||type==SJUMP||type==FJUMP) {
6867 // Branches don't write registers, consider the delay slot instead.
6868 type=itype[i+1];
6869 op=opcode[i+1];
6870 op2=opcode2[i+1];
6871 rt=rt1[i+1];
6872 s1=rs1[i+1];
6873 s2=rs2[i+1];
6874 lastbranch=is32;
6875 }
6876 switch(type) {
6877 case LOAD:
6878 if(opcode[i]==0x27||opcode[i]==0x37|| // LWU/LD
6879 opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
6880 is32&=~(1LL<<rt);
6881 else
6882 is32|=1LL<<rt;
6883 break;
6884 case STORE:
6885 case STORELR:
6886 break;
6887 case LOADLR:
6888 if(op==0x1a||op==0x1b) is32&=~(1LL<<rt); // LDR/LDL
6889 if(op==0x22) is32|=1LL<<rt; // LWL
6890 break;
6891 case IMM16:
6892 if (op==0x08||op==0x09|| // ADDI/ADDIU
6893 op==0x0a||op==0x0b|| // SLTI/SLTIU
6894 op==0x0c|| // ANDI
6895 op==0x0f) // LUI
6896 {
6897 is32|=1LL<<rt;
6898 }
6899 if(op==0x18||op==0x19) { // DADDI/DADDIU
6900 is32&=~(1LL<<rt);
6901 //if(imm[i]==0)
6902 // is32|=((is32>>s1)&1LL)<<rt;
6903 }
6904 if(op==0x0d||op==0x0e) { // ORI/XORI
6905 uint64_t sr=((is32>>s1)&1LL);
6906 is32&=~(1LL<<rt);
6907 is32|=sr<<rt;
6908 }
6909 break;
6910 case UJUMP:
6911 break;
6912 case RJUMP:
6913 break;
6914 case CJUMP:
6915 break;
6916 case SJUMP:
6917 break;
6918 case FJUMP:
6919 break;
6920 case ALU:
6921 if(op2>=0x20&&op2<=0x23) { // ADD/ADDU/SUB/SUBU
6922 is32|=1LL<<rt;
6923 }
6924 if(op2==0x2a||op2==0x2b) { // SLT/SLTU
6925 is32|=1LL<<rt;
6926 }
6927 else if(op2>=0x24&&op2<=0x27) { // AND/OR/XOR/NOR
6928 uint64_t sr=((is32>>s1)&(is32>>s2)&1LL);
6929 is32&=~(1LL<<rt);
6930 is32|=sr<<rt;
6931 }
6932 else if(op2>=0x2c&&op2<=0x2d) { // DADD/DADDU
6933 if(s1==0&&s2==0) {
6934 is32|=1LL<<rt;
6935 }
6936 else if(s2==0) {
6937 uint64_t sr=((is32>>s1)&1LL);
6938 is32&=~(1LL<<rt);
6939 is32|=sr<<rt;
6940 }
6941 else if(s1==0) {
6942 uint64_t sr=((is32>>s2)&1LL);
6943 is32&=~(1LL<<rt);
6944 is32|=sr<<rt;
6945 }
6946 else {
6947 is32&=~(1LL<<rt);
6948 }
6949 }
6950 else if(op2>=0x2e&&op2<=0x2f) { // DSUB/DSUBU
6951 if(s1==0&&s2==0) {
6952 is32|=1LL<<rt;
6953 }
6954 else if(s2==0) {
6955 uint64_t sr=((is32>>s1)&1LL);
6956 is32&=~(1LL<<rt);
6957 is32|=sr<<rt;
6958 }
6959 else {
6960 is32&=~(1LL<<rt);
6961 }
6962 }
6963 break;
6964 case MULTDIV:
6965 if (op2>=0x1c&&op2<=0x1f) { // DMULT/DMULTU/DDIV/DDIVU
6966 is32&=~((1LL<<HIREG)|(1LL<<LOREG));
6967 }
6968 else {
6969 is32|=(1LL<<HIREG)|(1LL<<LOREG);
6970 }
6971 break;
6972 case MOV:
6973 {
6974 uint64_t sr=((is32>>s1)&1LL);
6975 is32&=~(1LL<<rt);
6976 is32|=sr<<rt;
6977 }
6978 break;
6979 case SHIFT:
6980 if(op2>=0x14&&op2<=0x17) is32&=~(1LL<<rt); // DSLLV/DSRLV/DSRAV
6981 else is32|=1LL<<rt; // SLLV/SRLV/SRAV
6982 break;
6983 case SHIFTIMM:
6984 is32|=1LL<<rt;
6985 // DSLL/DSRL/DSRA/DSLL32/DSRL32 but not DSRA32 have 64-bit result
6986 if(op2>=0x38&&op2<0x3f) is32&=~(1LL<<rt);
6987 break;
6988 case COP0:
6989 if(op2==0) is32|=1LL<<rt; // MFC0
6990 break;
6991 case COP1:
6992 case COP2:
6993 if(op2==0) is32|=1LL<<rt; // MFC1
6994 if(op2==1) is32&=~(1LL<<rt); // DMFC1
6995 if(op2==2) is32|=1LL<<rt; // CFC1
6996 break;
6997 case C1LS:
6998 case C2LS:
6999 break;
7000 case FLOAT:
7001 case FCONV:
7002 break;
7003 case FCOMP:
7004 break;
7005 case C2OP:
7006 case SYSCALL:
7007 case HLECALL:
7008 break;
7009 default:
7010 break;
7011 }
7012 is32|=1;
7013 p32[i]=is32;
7014
7015 if(i>0)
7016 {
7017 if(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)
7018 {
7019 if(rt1[i-1]==31) // JAL/JALR
7020 {
7021 // Subroutine call will return here, don't alloc any registers
7022 is32=1;
7023 }
7024 else if(i+1<slen)
7025 {
7026 // Internal branch will jump here, match registers to caller
7027 is32=0x3FFFFFFFFLL;
7028 }
7029 }
7030 }
7031 }
7032}
7033
7034// Identify registers which may be assumed to contain 32-bit values
7035// and where optimizations will rely on this.
7036// This is used to determine whether backward branches can safely
7037// jump to a location with 64-bit values in registers.
7038static void provisional_r32()
7039{
7040 u_int r32=0;
7041 int i;
7042
7043 for (i=slen-1;i>=0;i--)
7044 {
7045 int hr;
7046 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
7047 {
7048 if(ba[i]<start || ba[i]>=(start+slen*4))
7049 {
7050 // Branch out of this block, don't need anything
7051 r32=0;
7052 }
7053 else
7054 {
7055 // Internal branch
7056 // Need whatever matches the target
7057 // (and doesn't get overwritten by the delay slot instruction)
7058 r32=0;
7059 int t=(ba[i]-start)>>2;
7060 if(ba[i]>start+i*4) {
7061 // Forward branch
7062 //if(!(requires_32bit[t]&~regs[i].was32))
7063 // r32|=requires_32bit[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
7064 if(!(pr32[t]&~regs[i].was32))
7065 r32|=pr32[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
7066 }else{
7067 // Backward branch
7068 if(!(regs[t].was32&~unneeded_reg_upper[t]&~regs[i].was32))
7069 r32|=regs[t].was32&~unneeded_reg_upper[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
7070 }
7071 }
7072 // Conditional branch may need registers for following instructions
7073 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
7074 {
7075 if(i<slen-2) {
7076 //r32|=requires_32bit[i+2];
7077 r32|=pr32[i+2];
7078 r32&=regs[i].was32;
7079 // Mark this address as a branch target since it may be called
7080 // upon return from interrupt
7081 //bt[i+2]=1;
7082 }
7083 }
7084 // Merge in delay slot
7085 if(!likely[i]) {
7086 // These are overwritten unless the branch is "likely"
7087 // and the delay slot is nullified if not taken
7088 r32&=~(1LL<<rt1[i+1]);
7089 r32&=~(1LL<<rt2[i+1]);
7090 }
7091 // Assume these are needed (delay slot)
7092 if(us1[i+1]>0)
7093 {
7094 if((regs[i].was32>>us1[i+1])&1) r32|=1LL<<us1[i+1];
7095 }
7096 if(us2[i+1]>0)
7097 {
7098 if((regs[i].was32>>us2[i+1])&1) r32|=1LL<<us2[i+1];
7099 }
7100 if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1))
7101 {
7102 if((regs[i].was32>>dep1[i+1])&1) r32|=1LL<<dep1[i+1];
7103 }
7104 if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1))
7105 {
7106 if((regs[i].was32>>dep2[i+1])&1) r32|=1LL<<dep2[i+1];
7107 }
7108 }
7109 else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
7110 {
7111 // SYSCALL instruction (software interrupt)
7112 r32=0;
7113 }
7114 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
7115 {
7116 // ERET instruction (return from interrupt)
7117 r32=0;
7118 }
7119 // Check 32 bits
7120 r32&=~(1LL<<rt1[i]);
7121 r32&=~(1LL<<rt2[i]);
7122 if(us1[i]>0)
7123 {
7124 if((regs[i].was32>>us1[i])&1) r32|=1LL<<us1[i];
7125 }
7126 if(us2[i]>0)
7127 {
7128 if((regs[i].was32>>us2[i])&1) r32|=1LL<<us2[i];
7129 }
7130 if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1))
7131 {
7132 if((regs[i].was32>>dep1[i])&1) r32|=1LL<<dep1[i];
7133 }
7134 if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1))
7135 {
7136 if((regs[i].was32>>dep2[i])&1) r32|=1LL<<dep2[i];
7137 }
7138 //requires_32bit[i]=r32;
7139 pr32[i]=r32;
7140
7141 // Dirty registers which are 32-bit, require 32-bit input
7142 // as they will be written as 32-bit values
7143 for(hr=0;hr<HOST_REGS;hr++)
7144 {
7145 if(regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64) {
7146 if((regs[i].was32>>regs[i].regmap_entry[hr])&(regs[i].wasdirty>>hr)&1) {
7147 if(!((unneeded_reg_upper[i]>>regs[i].regmap_entry[hr])&1))
7148 pr32[i]|=1LL<<regs[i].regmap_entry[hr];
7149 //requires_32bit[i]|=1LL<<regs[i].regmap_entry[hr];
7150 }
7151 }
7152 }
7153 }
7154}
7155
7156// Write back dirty registers as soon as we will no longer modify them,
7157// so that we don't end up with lots of writes at the branches.
7158void clean_registers(int istart,int iend,int wr)
7159{
7160 int i;
7161 int r;
7162 u_int will_dirty_i,will_dirty_next,temp_will_dirty;
7163 u_int wont_dirty_i,wont_dirty_next,temp_wont_dirty;
7164 if(iend==slen-1) {
7165 will_dirty_i=will_dirty_next=0;
7166 wont_dirty_i=wont_dirty_next=0;
7167 }else{
7168 will_dirty_i=will_dirty_next=will_dirty[iend+1];
7169 wont_dirty_i=wont_dirty_next=wont_dirty[iend+1];
7170 }
7171 for (i=iend;i>=istart;i--)
7172 {
7173 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
7174 {
7175 if(ba[i]<start || ba[i]>=(start+slen*4))
7176 {
7177 // Branch out of this block, flush all regs
7178 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
7179 {
7180 // Unconditional branch
7181 will_dirty_i=0;
7182 wont_dirty_i=0;
7183 // Merge in delay slot (will dirty)
7184 for(r=0;r<HOST_REGS;r++) {
7185 if(r!=EXCLUDE_REG) {
7186 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7187 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7188 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7189 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7190 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7191 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7192 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7193 if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7194 if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7195 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7196 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7197 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7198 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7199 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7200 }
7201 }
7202 }
7203 else
7204 {
7205 // Conditional branch
7206 will_dirty_i=0;
7207 wont_dirty_i=wont_dirty_next;
7208 // Merge in delay slot (will dirty)
7209 for(r=0;r<HOST_REGS;r++) {
7210 if(r!=EXCLUDE_REG) {
7211 if(!likely[i]) {
7212 // Might not dirty if likely branch is not taken
7213 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7214 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7215 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7216 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7217 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7218 if(branch_regs[i].regmap[r]==0) will_dirty_i&=~(1<<r);
7219 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7220 //if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7221 //if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7222 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7223 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7224 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7225 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7226 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7227 }
7228 }
7229 }
7230 }
7231 // Merge in delay slot (wont dirty)
7232 for(r=0;r<HOST_REGS;r++) {
7233 if(r!=EXCLUDE_REG) {
7234 if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7235 if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7236 if((regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7237 if((regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7238 if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7239 if((branch_regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7240 if((branch_regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7241 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7242 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7243 if(branch_regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7244 }
7245 }
7246 if(wr) {
7247 #ifndef DESTRUCTIVE_WRITEBACK
7248 branch_regs[i].dirty&=wont_dirty_i;
7249 #endif
7250 branch_regs[i].dirty|=will_dirty_i;
7251 }
7252 }
7253 else
7254 {
7255 // Internal branch
7256 if(ba[i]<=start+i*4) {
7257 // Backward branch
7258 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
7259 {
7260 // Unconditional branch
7261 temp_will_dirty=0;
7262 temp_wont_dirty=0;
7263 // Merge in delay slot (will dirty)
7264 for(r=0;r<HOST_REGS;r++) {
7265 if(r!=EXCLUDE_REG) {
7266 if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7267 if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7268 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7269 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7270 if((branch_regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7271 if(branch_regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
7272 if(branch_regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7273 if((regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7274 if((regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7275 if((regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7276 if((regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7277 if((regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7278 if(regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
7279 if(regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7280 }
7281 }
7282 } else {
7283 // Conditional branch (not taken case)
7284 temp_will_dirty=will_dirty_next;
7285 temp_wont_dirty=wont_dirty_next;
7286 // Merge in delay slot (will dirty)
7287 for(r=0;r<HOST_REGS;r++) {
7288 if(r!=EXCLUDE_REG) {
7289 if(!likely[i]) {
7290 // Will not dirty if likely branch is not taken
7291 if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7292 if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7293 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7294 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7295 if((branch_regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7296 if(branch_regs[i].regmap[r]==0) temp_will_dirty&=~(1<<r);
7297 if(branch_regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7298 //if((regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7299 //if((regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7300 if((regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7301 if((regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7302 if((regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7303 if(regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
7304 if(regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7305 }
7306 }
7307 }
7308 }
7309 // Merge in delay slot (wont dirty)
7310 for(r=0;r<HOST_REGS;r++) {
7311 if(r!=EXCLUDE_REG) {
7312 if((regs[i].regmap[r]&63)==rt1[i]) temp_wont_dirty|=1<<r;
7313 if((regs[i].regmap[r]&63)==rt2[i]) temp_wont_dirty|=1<<r;
7314 if((regs[i].regmap[r]&63)==rt1[i+1]) temp_wont_dirty|=1<<r;
7315 if((regs[i].regmap[r]&63)==rt2[i+1]) temp_wont_dirty|=1<<r;
7316 if(regs[i].regmap[r]==CCREG) temp_wont_dirty|=1<<r;
7317 if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_wont_dirty|=1<<r;
7318 if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_wont_dirty|=1<<r;
7319 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_wont_dirty|=1<<r;
7320 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_wont_dirty|=1<<r;
7321 if(branch_regs[i].regmap[r]==CCREG) temp_wont_dirty|=1<<r;
7322 }
7323 }
7324 // Deal with changed mappings
7325 if(i<iend) {
7326 for(r=0;r<HOST_REGS;r++) {
7327 if(r!=EXCLUDE_REG) {
7328 if(regs[i].regmap[r]!=regmap_pre[i][r]) {
7329 temp_will_dirty&=~(1<<r);
7330 temp_wont_dirty&=~(1<<r);
7331 if((regmap_pre[i][r]&63)>0 && (regmap_pre[i][r]&63)<34) {
7332 temp_will_dirty|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7333 temp_wont_dirty|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7334 } else {
7335 temp_will_dirty|=1<<r;
7336 temp_wont_dirty|=1<<r;
7337 }
7338 }
7339 }
7340 }
7341 }
7342 if(wr) {
7343 will_dirty[i]=temp_will_dirty;
7344 wont_dirty[i]=temp_wont_dirty;
7345 clean_registers((ba[i]-start)>>2,i-1,0);
7346 }else{
7347 // Limit recursion. It can take an excessive amount
7348 // of time if there are a lot of nested loops.
7349 will_dirty[(ba[i]-start)>>2]=0;
7350 wont_dirty[(ba[i]-start)>>2]=-1;
7351 }
7352 }
7353 /*else*/ if(1)
7354 {
7355 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
7356 {
7357 // Unconditional branch
7358 will_dirty_i=0;
7359 wont_dirty_i=0;
7360 //if(ba[i]>start+i*4) { // Disable recursion (for debugging)
7361 for(r=0;r<HOST_REGS;r++) {
7362 if(r!=EXCLUDE_REG) {
7363 if(branch_regs[i].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
7364 will_dirty_i|=will_dirty[(ba[i]-start)>>2]&(1<<r);
7365 wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
7366 }
7367 }
7368 }
7369 //}
7370 // Merge in delay slot
7371 for(r=0;r<HOST_REGS;r++) {
7372 if(r!=EXCLUDE_REG) {
7373 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7374 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7375 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7376 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7377 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7378 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7379 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7380 if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7381 if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7382 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7383 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7384 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7385 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7386 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7387 }
7388 }
7389 } else {
7390 // Conditional branch
7391 will_dirty_i=will_dirty_next;
7392 wont_dirty_i=wont_dirty_next;
7393 //if(ba[i]>start+i*4) { // Disable recursion (for debugging)
7394 for(r=0;r<HOST_REGS;r++) {
7395 if(r!=EXCLUDE_REG) {
7396 if(branch_regs[i].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
7397 will_dirty_i&=will_dirty[(ba[i]-start)>>2]&(1<<r);
7398 wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
7399 }
7400 else
7401 {
7402 will_dirty_i&=~(1<<r);
7403 }
7404 // Treat delay slot as part of branch too
7405 /*if(regs[i+1].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
7406 will_dirty[i+1]&=will_dirty[(ba[i]-start)>>2]&(1<<r);
7407 wont_dirty[i+1]|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
7408 }
7409 else
7410 {
7411 will_dirty[i+1]&=~(1<<r);
7412 }*/
7413 }
7414 }
7415 //}
7416 // Merge in delay slot
7417 for(r=0;r<HOST_REGS;r++) {
7418 if(r!=EXCLUDE_REG) {
7419 if(!likely[i]) {
7420 // Might not dirty if likely branch is not taken
7421 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7422 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7423 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7424 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7425 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7426 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7427 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7428 //if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7429 //if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7430 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7431 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7432 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7433 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7434 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7435 }
7436 }
7437 }
7438 }
7439 // Merge in delay slot
7440 for(r=0;r<HOST_REGS;r++) {
7441 if(r!=EXCLUDE_REG) {
7442 if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7443 if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7444 if((regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7445 if((regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7446 if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7447 if((branch_regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7448 if((branch_regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7449 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7450 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7451 if(branch_regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7452 }
7453 }
7454 if(wr) {
7455 #ifndef DESTRUCTIVE_WRITEBACK
7456 branch_regs[i].dirty&=wont_dirty_i;
7457 #endif
7458 branch_regs[i].dirty|=will_dirty_i;
7459 }
7460 }
7461 }
7462 }
7463 else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
7464 {
7465 // SYSCALL instruction (software interrupt)
7466 will_dirty_i=0;
7467 wont_dirty_i=0;
7468 }
7469 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
7470 {
7471 // ERET instruction (return from interrupt)
7472 will_dirty_i=0;
7473 wont_dirty_i=0;
7474 }
7475 will_dirty_next=will_dirty_i;
7476 wont_dirty_next=wont_dirty_i;
7477 for(r=0;r<HOST_REGS;r++) {
7478 if(r!=EXCLUDE_REG) {
7479 if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7480 if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7481 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7482 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7483 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7484 if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7485 if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7486 if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7487 if(i>istart) {
7488 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=FJUMP)
7489 {
7490 // Don't store a register immediately after writing it,
7491 // may prevent dual-issue.
7492 if((regs[i].regmap[r]&63)==rt1[i-1]) wont_dirty_i|=1<<r;
7493 if((regs[i].regmap[r]&63)==rt2[i-1]) wont_dirty_i|=1<<r;
7494 }
7495 }
7496 }
7497 }
7498 // Save it
7499 will_dirty[i]=will_dirty_i;
7500 wont_dirty[i]=wont_dirty_i;
7501 // Mark registers that won't be dirtied as not dirty
7502 if(wr) {
7503 /*printf("wr (%d,%d) %x will:",istart,iend,start+i*4);
7504 for(r=0;r<HOST_REGS;r++) {
7505 if((will_dirty_i>>r)&1) {
7506 printf(" r%d",r);
7507 }
7508 }
7509 printf("\n");*/
7510
7511 //if(i==istart||(itype[i-1]!=RJUMP&&itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=FJUMP)) {
7512 regs[i].dirty|=will_dirty_i;
7513 #ifndef DESTRUCTIVE_WRITEBACK
7514 regs[i].dirty&=wont_dirty_i;
7515 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
7516 {
7517 if(i<iend-1&&itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000) {
7518 for(r=0;r<HOST_REGS;r++) {
7519 if(r!=EXCLUDE_REG) {
7520 if(regs[i].regmap[r]==regmap_pre[i+2][r]) {
7521 regs[i+2].wasdirty&=wont_dirty_i|~(1<<r);
7522 }else {/*printf("i: %x (%d) mismatch(+2): %d\n",start+i*4,i,r);/*assert(!((wont_dirty_i>>r)&1));*/}
7523 }
7524 }
7525 }
7526 }
7527 else
7528 {
7529 if(i<iend) {
7530 for(r=0;r<HOST_REGS;r++) {
7531 if(r!=EXCLUDE_REG) {
7532 if(regs[i].regmap[r]==regmap_pre[i+1][r]) {
7533 regs[i+1].wasdirty&=wont_dirty_i|~(1<<r);
7534 }else {/*printf("i: %x (%d) mismatch(+1): %d\n",start+i*4,i,r);/*assert(!((wont_dirty_i>>r)&1));*/}
7535 }
7536 }
7537 }
7538 }
7539 #endif
7540 //}
7541 }
7542 // Deal with changed mappings
7543 temp_will_dirty=will_dirty_i;
7544 temp_wont_dirty=wont_dirty_i;
7545 for(r=0;r<HOST_REGS;r++) {
7546 if(r!=EXCLUDE_REG) {
7547 int nr;
7548 if(regs[i].regmap[r]==regmap_pre[i][r]) {
7549 if(wr) {
7550 #ifndef DESTRUCTIVE_WRITEBACK
7551 regs[i].wasdirty&=wont_dirty_i|~(1<<r);
7552 #endif
7553 regs[i].wasdirty|=will_dirty_i&(1<<r);
7554 }
7555 }
7556 else if((nr=get_reg(regs[i].regmap,regmap_pre[i][r]))>=0) {
7557 // Register moved to a different register
7558 will_dirty_i&=~(1<<r);
7559 wont_dirty_i&=~(1<<r);
7560 will_dirty_i|=((temp_will_dirty>>nr)&1)<<r;
7561 wont_dirty_i|=((temp_wont_dirty>>nr)&1)<<r;
7562 if(wr) {
7563 #ifndef DESTRUCTIVE_WRITEBACK
7564 regs[i].wasdirty&=wont_dirty_i|~(1<<r);
7565 #endif
7566 regs[i].wasdirty|=will_dirty_i&(1<<r);
7567 }
7568 }
7569 else {
7570 will_dirty_i&=~(1<<r);
7571 wont_dirty_i&=~(1<<r);
7572 if((regmap_pre[i][r]&63)>0 && (regmap_pre[i][r]&63)<34) {
7573 will_dirty_i|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7574 wont_dirty_i|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7575 } else {
7576 wont_dirty_i|=1<<r;
7577 /*printf("i: %x (%d) mismatch: %d\n",start+i*4,i,r);/*assert(!((will_dirty>>r)&1));*/
7578 }
7579 }
7580 }
7581 }
7582 }
7583}
7584
7585 /* disassembly */
7586void disassemble_inst(int i)
7587{
7588 if (bt[i]) printf("*"); else printf(" ");
7589 switch(itype[i]) {
7590 case UJUMP:
7591 printf (" %x: %s %8x\n",start+i*4,insn[i],ba[i]);break;
7592 case CJUMP:
7593 printf (" %x: %s r%d,r%d,%8x\n",start+i*4,insn[i],rs1[i],rs2[i],i?start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14):*ba);break;
7594 case SJUMP:
7595 printf (" %x: %s r%d,%8x\n",start+i*4,insn[i],rs1[i],start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14));break;
7596 case FJUMP:
7597 printf (" %x: %s %8x\n",start+i*4,insn[i],ba[i]);break;
7598 case RJUMP:
7599 if (opcode[i]==0x9&&rt1[i]!=31)
7600 printf (" %x: %s r%d,r%d\n",start+i*4,insn[i],rt1[i],rs1[i]);
7601 else
7602 printf (" %x: %s r%d\n",start+i*4,insn[i],rs1[i]);
7603 break;
7604 case SPAN:
7605 printf (" %x: %s (pagespan) r%d,r%d,%8x\n",start+i*4,insn[i],rs1[i],rs2[i],ba[i]);break;
7606 case IMM16:
7607 if(opcode[i]==0xf) //LUI
7608 printf (" %x: %s r%d,%4x0000\n",start+i*4,insn[i],rt1[i],imm[i]&0xffff);
7609 else
7610 printf (" %x: %s r%d,r%d,%d\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
7611 break;
7612 case LOAD:
7613 case LOADLR:
7614 printf (" %x: %s r%d,r%d+%x\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
7615 break;
7616 case STORE:
7617 case STORELR:
7618 printf (" %x: %s r%d,r%d+%x\n",start+i*4,insn[i],rs2[i],rs1[i],imm[i]);
7619 break;
7620 case ALU:
7621 case SHIFT:
7622 printf (" %x: %s r%d,r%d,r%d\n",start+i*4,insn[i],rt1[i],rs1[i],rs2[i]);
7623 break;
7624 case MULTDIV:
7625 printf (" %x: %s r%d,r%d\n",start+i*4,insn[i],rs1[i],rs2[i]);
7626 break;
7627 case SHIFTIMM:
7628 printf (" %x: %s r%d,r%d,%d\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
7629 break;
7630 case MOV:
7631 if((opcode2[i]&0x1d)==0x10)
7632 printf (" %x: %s r%d\n",start+i*4,insn[i],rt1[i]);
7633 else if((opcode2[i]&0x1d)==0x11)
7634 printf (" %x: %s r%d\n",start+i*4,insn[i],rs1[i]);
7635 else
7636 printf (" %x: %s\n",start+i*4,insn[i]);
7637 break;
7638 case COP0:
7639 if(opcode2[i]==0)
7640 printf (" %x: %s r%d,cpr0[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC0
7641 else if(opcode2[i]==4)
7642 printf (" %x: %s r%d,cpr0[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC0
7643 else printf (" %x: %s\n",start+i*4,insn[i]);
7644 break;
7645 case COP1:
7646 if(opcode2[i]<3)
7647 printf (" %x: %s r%d,cpr1[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC1
7648 else if(opcode2[i]>3)
7649 printf (" %x: %s r%d,cpr1[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC1
7650 else printf (" %x: %s\n",start+i*4,insn[i]);
7651 break;
7652 case COP2:
7653 if(opcode2[i]<3)
7654 printf (" %x: %s r%d,cpr2[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC2
7655 else if(opcode2[i]>3)
7656 printf (" %x: %s r%d,cpr2[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC2
7657 else printf (" %x: %s\n",start+i*4,insn[i]);
7658 break;
7659 case C1LS:
7660 printf (" %x: %s cpr1[%d],r%d+%x\n",start+i*4,insn[i],(source[i]>>16)&0x1f,rs1[i],imm[i]);
7661 break;
7662 case C2LS:
7663 printf (" %x: %s cpr2[%d],r%d+%x\n",start+i*4,insn[i],(source[i]>>16)&0x1f,rs1[i],imm[i]);
7664 break;
7665 case INTCALL:
7666 printf (" %x: %s (INTCALL)\n",start+i*4,insn[i]);
7667 break;
7668 default:
7669 //printf (" %s %8x\n",insn[i],source[i]);
7670 printf (" %x: %s\n",start+i*4,insn[i]);
7671 }
7672}
7673
7674void new_dynarec_init()
7675{
7676 printf("Init new dynarec\n");
7677 out=(u_char *)BASE_ADDR;
7678 if (mmap (out, 1<<TARGET_SIZE_2,
7679 PROT_READ | PROT_WRITE | PROT_EXEC,
7680 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS,
7681 -1, 0) <= 0) {printf("mmap() failed\n");}
7682#ifdef MUPEN64
7683 rdword=&readmem_dword;
7684 fake_pc.f.r.rs=&readmem_dword;
7685 fake_pc.f.r.rt=&readmem_dword;
7686 fake_pc.f.r.rd=&readmem_dword;
7687#endif
7688 int n;
7689 for(n=0x80000;n<0x80800;n++)
7690 invalid_code[n]=1;
7691 for(n=0;n<65536;n++)
7692 hash_table[n][0]=hash_table[n][2]=-1;
7693 memset(mini_ht,-1,sizeof(mini_ht));
7694 memset(restore_candidate,0,sizeof(restore_candidate));
7695 copy=shadow;
7696 expirep=16384; // Expiry pointer, +2 blocks
7697 pending_exception=0;
7698 literalcount=0;
7699#ifdef HOST_IMM8
7700 // Copy this into local area so we don't have to put it in every literal pool
7701 invc_ptr=invalid_code;
7702#endif
7703 stop_after_jal=0;
7704 // TLB
7705 using_tlb=0;
7706 for(n=0;n<524288;n++) // 0 .. 0x7FFFFFFF
7707 memory_map[n]=-1;
7708 for(n=524288;n<526336;n++) // 0x80000000 .. 0x807FFFFF
7709 memory_map[n]=((u_int)rdram-0x80000000)>>2;
7710 for(n=526336;n<1048576;n++) // 0x80800000 .. 0xFFFFFFFF
7711 memory_map[n]=-1;
7712#ifdef MUPEN64
7713 for(n=0;n<0x8000;n++) { // 0 .. 0x7FFFFFFF
7714 writemem[n] = write_nomem_new;
7715 writememb[n] = write_nomemb_new;
7716 writememh[n] = write_nomemh_new;
7717#ifndef FORCE32
7718 writememd[n] = write_nomemd_new;
7719#endif
7720 readmem[n] = read_nomem_new;
7721 readmemb[n] = read_nomemb_new;
7722 readmemh[n] = read_nomemh_new;
7723#ifndef FORCE32
7724 readmemd[n] = read_nomemd_new;
7725#endif
7726 }
7727 for(n=0x8000;n<0x8080;n++) { // 0x80000000 .. 0x807FFFFF
7728 writemem[n] = write_rdram_new;
7729 writememb[n] = write_rdramb_new;
7730 writememh[n] = write_rdramh_new;
7731#ifndef FORCE32
7732 writememd[n] = write_rdramd_new;
7733#endif
7734 }
7735 for(n=0xC000;n<0x10000;n++) { // 0xC0000000 .. 0xFFFFFFFF
7736 writemem[n] = write_nomem_new;
7737 writememb[n] = write_nomemb_new;
7738 writememh[n] = write_nomemh_new;
7739#ifndef FORCE32
7740 writememd[n] = write_nomemd_new;
7741#endif
7742 readmem[n] = read_nomem_new;
7743 readmemb[n] = read_nomemb_new;
7744 readmemh[n] = read_nomemh_new;
7745#ifndef FORCE32
7746 readmemd[n] = read_nomemd_new;
7747#endif
7748 }
7749#endif
7750 tlb_hacks();
7751 arch_init();
7752}
7753
7754void new_dynarec_cleanup()
7755{
7756 int n;
7757 if (munmap ((void *)BASE_ADDR, 1<<TARGET_SIZE_2) < 0) {printf("munmap() failed\n");}
7758 for(n=0;n<4096;n++) ll_clear(jump_in+n);
7759 for(n=0;n<4096;n++) ll_clear(jump_out+n);
7760 for(n=0;n<4096;n++) ll_clear(jump_dirty+n);
7761 #ifdef ROM_COPY
7762 if (munmap (ROM_COPY, 67108864) < 0) {printf("munmap() failed\n");}
7763 #endif
7764}
7765
7766int new_recompile_block(int addr)
7767{
7768/*
7769 if(addr==0x800cd050) {
7770 int block;
7771 for(block=0x80000;block<0x80800;block++) invalidate_block(block);
7772 int n;
7773 for(n=0;n<=2048;n++) ll_clear(jump_dirty+n);
7774 }
7775*/
7776 //if(Count==365117028) tracedebug=1;
7777 assem_debug("NOTCOMPILED: addr = %x -> %x\n", (int)addr, (int)out);
7778 //printf("NOTCOMPILED: addr = %x -> %x\n", (int)addr, (int)out);
7779 //printf("TRACE: count=%d next=%d (compile %x)\n",Count,next_interupt,addr);
7780 //if(debug)
7781 //printf("TRACE: count=%d next=%d (checksum %x)\n",Count,next_interupt,mchecksum());
7782 //printf("fpu mapping=%x enabled=%x\n",(Status & 0x04000000)>>26,(Status & 0x20000000)>>29);
7783 /*if(Count>=312978186) {
7784 rlist();
7785 }*/
7786 //rlist();
7787 start = (u_int)addr&~3;
7788 //assert(((u_int)addr&1)==0);
7789#ifdef PCSX
7790 if (Config.HLE && start == 0x80001000) // hlecall
7791 {
7792 // XXX: is this enough? Maybe check hleSoftCall?
7793 u_int beginning=(u_int)out;
7794 u_int page=get_page(start);
7795 invalid_code[start>>12]=0;
7796 emit_movimm(start,0);
7797 emit_writeword(0,(int)&pcaddr);
7798 emit_jmp((int)new_dyna_leave);
7799#ifdef __arm__
7800 __clear_cache((void *)beginning,out);
7801#endif
7802 ll_add(jump_in+page,start,(void *)beginning);
7803 return 0;
7804 }
7805 else if ((u_int)addr < 0x00200000 ||
7806 (0xa0000000 <= addr && addr < 0xa0200000)) {
7807 // used for BIOS calls mostly?
7808 source = (u_int *)((u_int)rdram+(start&0x1fffff));
7809 pagelimit = (addr&0xa0000000)|0x00200000;
7810 }
7811 else if (!Config.HLE && (
7812/* (0x9fc00000 <= addr && addr < 0x9fc80000) ||*/
7813 (0xbfc00000 <= addr && addr < 0xbfc80000))) {
7814 // BIOS
7815 source = (u_int *)((u_int)psxR+(start&0x7ffff));
7816 pagelimit = (addr&0xfff00000)|0x80000;
7817 }
7818 else
7819#endif
7820#ifdef MUPEN64
7821 if ((int)addr >= 0xa4000000 && (int)addr < 0xa4001000) {
7822 source = (u_int *)((u_int)SP_DMEM+start-0xa4000000);
7823 pagelimit = 0xa4001000;
7824 }
7825 else
7826#endif
7827 if ((int)addr >= 0x80000000 && (int)addr < 0x80000000+RAM_SIZE) {
7828 source = (u_int *)((u_int)rdram+start-0x80000000);
7829 pagelimit = 0x80000000+RAM_SIZE;
7830 }
7831#ifndef DISABLE_TLB
7832 else if ((signed int)addr >= (signed int)0xC0000000) {
7833 //printf("addr=%x mm=%x\n",(u_int)addr,(memory_map[start>>12]<<2));
7834 //if(tlb_LUT_r[start>>12])
7835 //source = (u_int *)(((int)rdram)+(tlb_LUT_r[start>>12]&0xFFFFF000)+(((int)addr)&0xFFF)-0x80000000);
7836 if((signed int)memory_map[start>>12]>=0) {
7837 source = (u_int *)((u_int)(start+(memory_map[start>>12]<<2)));
7838 pagelimit=(start+4096)&0xFFFFF000;
7839 int map=memory_map[start>>12];
7840 int i;
7841 for(i=0;i<5;i++) {
7842 //printf("start: %x next: %x\n",map,memory_map[pagelimit>>12]);
7843 if((map&0xBFFFFFFF)==(memory_map[pagelimit>>12]&0xBFFFFFFF)) pagelimit+=4096;
7844 }
7845 assem_debug("pagelimit=%x\n",pagelimit);
7846 assem_debug("mapping=%x (%x)\n",memory_map[start>>12],(memory_map[start>>12]<<2)+start);
7847 }
7848 else {
7849 assem_debug("Compile at unmapped memory address: %x \n", (int)addr);
7850 //assem_debug("start: %x next: %x\n",memory_map[start>>12],memory_map[(start+4096)>>12]);
7851 return -1; // Caller will invoke exception handler
7852 }
7853 //printf("source= %x\n",(int)source);
7854 }
7855#endif
7856 else {
7857 printf("Compile at bogus memory address: %x \n", (int)addr);
7858 exit(1);
7859 }
7860
7861 /* Pass 1: disassemble */
7862 /* Pass 2: register dependencies, branch targets */
7863 /* Pass 3: register allocation */
7864 /* Pass 4: branch dependencies */
7865 /* Pass 5: pre-alloc */
7866 /* Pass 6: optimize clean/dirty state */
7867 /* Pass 7: flag 32-bit registers */
7868 /* Pass 8: assembly */
7869 /* Pass 9: linker */
7870 /* Pass 10: garbage collection / free memory */
7871
7872 int i,j;
7873 int done=0;
7874 unsigned int type,op,op2;
7875
7876 //printf("addr = %x source = %x %x\n", addr,source,source[0]);
7877
7878 /* Pass 1 disassembly */
7879
7880 for(i=0;!done;i++) {
7881 bt[i]=0;likely[i]=0;op2=0;
7882 opcode[i]=op=source[i]>>26;
7883 switch(op)
7884 {
7885 case 0x00: strcpy(insn[i],"special"); type=NI;
7886 op2=source[i]&0x3f;
7887 switch(op2)
7888 {
7889 case 0x00: strcpy(insn[i],"SLL"); type=SHIFTIMM; break;
7890 case 0x02: strcpy(insn[i],"SRL"); type=SHIFTIMM; break;
7891 case 0x03: strcpy(insn[i],"SRA"); type=SHIFTIMM; break;
7892 case 0x04: strcpy(insn[i],"SLLV"); type=SHIFT; break;
7893 case 0x06: strcpy(insn[i],"SRLV"); type=SHIFT; break;
7894 case 0x07: strcpy(insn[i],"SRAV"); type=SHIFT; break;
7895 case 0x08: strcpy(insn[i],"JR"); type=RJUMP; break;
7896 case 0x09: strcpy(insn[i],"JALR"); type=RJUMP; break;
7897 case 0x0C: strcpy(insn[i],"SYSCALL"); type=SYSCALL; break;
7898 case 0x0D: strcpy(insn[i],"BREAK"); type=OTHER; break;
7899 case 0x0F: strcpy(insn[i],"SYNC"); type=OTHER; break;
7900 case 0x10: strcpy(insn[i],"MFHI"); type=MOV; break;
7901 case 0x11: strcpy(insn[i],"MTHI"); type=MOV; break;
7902 case 0x12: strcpy(insn[i],"MFLO"); type=MOV; break;
7903 case 0x13: strcpy(insn[i],"MTLO"); type=MOV; break;
7904 case 0x14: strcpy(insn[i],"DSLLV"); type=SHIFT; break;
7905 case 0x16: strcpy(insn[i],"DSRLV"); type=SHIFT; break;
7906 case 0x17: strcpy(insn[i],"DSRAV"); type=SHIFT; break;
7907 case 0x18: strcpy(insn[i],"MULT"); type=MULTDIV; break;
7908 case 0x19: strcpy(insn[i],"MULTU"); type=MULTDIV; break;
7909 case 0x1A: strcpy(insn[i],"DIV"); type=MULTDIV; break;
7910 case 0x1B: strcpy(insn[i],"DIVU"); type=MULTDIV; break;
7911 case 0x1C: strcpy(insn[i],"DMULT"); type=MULTDIV; break;
7912 case 0x1D: strcpy(insn[i],"DMULTU"); type=MULTDIV; break;
7913 case 0x1E: strcpy(insn[i],"DDIV"); type=MULTDIV; break;
7914 case 0x1F: strcpy(insn[i],"DDIVU"); type=MULTDIV; break;
7915 case 0x20: strcpy(insn[i],"ADD"); type=ALU; break;
7916 case 0x21: strcpy(insn[i],"ADDU"); type=ALU; break;
7917 case 0x22: strcpy(insn[i],"SUB"); type=ALU; break;
7918 case 0x23: strcpy(insn[i],"SUBU"); type=ALU; break;
7919 case 0x24: strcpy(insn[i],"AND"); type=ALU; break;
7920 case 0x25: strcpy(insn[i],"OR"); type=ALU; break;
7921 case 0x26: strcpy(insn[i],"XOR"); type=ALU; break;
7922 case 0x27: strcpy(insn[i],"NOR"); type=ALU; break;
7923 case 0x2A: strcpy(insn[i],"SLT"); type=ALU; break;
7924 case 0x2B: strcpy(insn[i],"SLTU"); type=ALU; break;
7925 case 0x2C: strcpy(insn[i],"DADD"); type=ALU; break;
7926 case 0x2D: strcpy(insn[i],"DADDU"); type=ALU; break;
7927 case 0x2E: strcpy(insn[i],"DSUB"); type=ALU; break;
7928 case 0x2F: strcpy(insn[i],"DSUBU"); type=ALU; break;
7929 case 0x30: strcpy(insn[i],"TGE"); type=NI; break;
7930 case 0x31: strcpy(insn[i],"TGEU"); type=NI; break;
7931 case 0x32: strcpy(insn[i],"TLT"); type=NI; break;
7932 case 0x33: strcpy(insn[i],"TLTU"); type=NI; break;
7933 case 0x34: strcpy(insn[i],"TEQ"); type=NI; break;
7934 case 0x36: strcpy(insn[i],"TNE"); type=NI; break;
7935 case 0x38: strcpy(insn[i],"DSLL"); type=SHIFTIMM; break;
7936 case 0x3A: strcpy(insn[i],"DSRL"); type=SHIFTIMM; break;
7937 case 0x3B: strcpy(insn[i],"DSRA"); type=SHIFTIMM; break;
7938 case 0x3C: strcpy(insn[i],"DSLL32"); type=SHIFTIMM; break;
7939 case 0x3E: strcpy(insn[i],"DSRL32"); type=SHIFTIMM; break;
7940 case 0x3F: strcpy(insn[i],"DSRA32"); type=SHIFTIMM; break;
7941 }
7942 break;
7943 case 0x01: strcpy(insn[i],"regimm"); type=NI;
7944 op2=(source[i]>>16)&0x1f;
7945 switch(op2)
7946 {
7947 case 0x00: strcpy(insn[i],"BLTZ"); type=SJUMP; break;
7948 case 0x01: strcpy(insn[i],"BGEZ"); type=SJUMP; break;
7949 case 0x02: strcpy(insn[i],"BLTZL"); type=SJUMP; break;
7950 case 0x03: strcpy(insn[i],"BGEZL"); type=SJUMP; break;
7951 case 0x08: strcpy(insn[i],"TGEI"); type=NI; break;
7952 case 0x09: strcpy(insn[i],"TGEIU"); type=NI; break;
7953 case 0x0A: strcpy(insn[i],"TLTI"); type=NI; break;
7954 case 0x0B: strcpy(insn[i],"TLTIU"); type=NI; break;
7955 case 0x0C: strcpy(insn[i],"TEQI"); type=NI; break;
7956 case 0x0E: strcpy(insn[i],"TNEI"); type=NI; break;
7957 case 0x10: strcpy(insn[i],"BLTZAL"); type=SJUMP; break;
7958 case 0x11: strcpy(insn[i],"BGEZAL"); type=SJUMP; break;
7959 case 0x12: strcpy(insn[i],"BLTZALL"); type=SJUMP; break;
7960 case 0x13: strcpy(insn[i],"BGEZALL"); type=SJUMP; break;
7961 }
7962 break;
7963 case 0x02: strcpy(insn[i],"J"); type=UJUMP; break;
7964 case 0x03: strcpy(insn[i],"JAL"); type=UJUMP; break;
7965 case 0x04: strcpy(insn[i],"BEQ"); type=CJUMP; break;
7966 case 0x05: strcpy(insn[i],"BNE"); type=CJUMP; break;
7967 case 0x06: strcpy(insn[i],"BLEZ"); type=CJUMP; break;
7968 case 0x07: strcpy(insn[i],"BGTZ"); type=CJUMP; break;
7969 case 0x08: strcpy(insn[i],"ADDI"); type=IMM16; break;
7970 case 0x09: strcpy(insn[i],"ADDIU"); type=IMM16; break;
7971 case 0x0A: strcpy(insn[i],"SLTI"); type=IMM16; break;
7972 case 0x0B: strcpy(insn[i],"SLTIU"); type=IMM16; break;
7973 case 0x0C: strcpy(insn[i],"ANDI"); type=IMM16; break;
7974 case 0x0D: strcpy(insn[i],"ORI"); type=IMM16; break;
7975 case 0x0E: strcpy(insn[i],"XORI"); type=IMM16; break;
7976 case 0x0F: strcpy(insn[i],"LUI"); type=IMM16; break;
7977 case 0x10: strcpy(insn[i],"cop0"); type=NI;
7978 op2=(source[i]>>21)&0x1f;
7979 switch(op2)
7980 {
7981 case 0x00: strcpy(insn[i],"MFC0"); type=COP0; break;
7982 case 0x04: strcpy(insn[i],"MTC0"); type=COP0; break;
7983 case 0x10: strcpy(insn[i],"tlb"); type=NI;
7984 switch(source[i]&0x3f)
7985 {
7986 case 0x01: strcpy(insn[i],"TLBR"); type=COP0; break;
7987 case 0x02: strcpy(insn[i],"TLBWI"); type=COP0; break;
7988 case 0x06: strcpy(insn[i],"TLBWR"); type=COP0; break;
7989 case 0x08: strcpy(insn[i],"TLBP"); type=COP0; break;
7990#ifdef PCSX
7991 case 0x10: strcpy(insn[i],"RFE"); type=COP0; break;
7992#else
7993 case 0x18: strcpy(insn[i],"ERET"); type=COP0; break;
7994#endif
7995 }
7996 }
7997 break;
7998 case 0x11: strcpy(insn[i],"cop1"); type=NI;
7999 op2=(source[i]>>21)&0x1f;
8000 switch(op2)
8001 {
8002 case 0x00: strcpy(insn[i],"MFC1"); type=COP1; break;
8003 case 0x01: strcpy(insn[i],"DMFC1"); type=COP1; break;
8004 case 0x02: strcpy(insn[i],"CFC1"); type=COP1; break;
8005 case 0x04: strcpy(insn[i],"MTC1"); type=COP1; break;
8006 case 0x05: strcpy(insn[i],"DMTC1"); type=COP1; break;
8007 case 0x06: strcpy(insn[i],"CTC1"); type=COP1; break;
8008 case 0x08: strcpy(insn[i],"BC1"); type=FJUMP;
8009 switch((source[i]>>16)&0x3)
8010 {
8011 case 0x00: strcpy(insn[i],"BC1F"); break;
8012 case 0x01: strcpy(insn[i],"BC1T"); break;
8013 case 0x02: strcpy(insn[i],"BC1FL"); break;
8014 case 0x03: strcpy(insn[i],"BC1TL"); break;
8015 }
8016 break;
8017 case 0x10: strcpy(insn[i],"C1.S"); type=NI;
8018 switch(source[i]&0x3f)
8019 {
8020 case 0x00: strcpy(insn[i],"ADD.S"); type=FLOAT; break;
8021 case 0x01: strcpy(insn[i],"SUB.S"); type=FLOAT; break;
8022 case 0x02: strcpy(insn[i],"MUL.S"); type=FLOAT; break;
8023 case 0x03: strcpy(insn[i],"DIV.S"); type=FLOAT; break;
8024 case 0x04: strcpy(insn[i],"SQRT.S"); type=FLOAT; break;
8025 case 0x05: strcpy(insn[i],"ABS.S"); type=FLOAT; break;
8026 case 0x06: strcpy(insn[i],"MOV.S"); type=FLOAT; break;
8027 case 0x07: strcpy(insn[i],"NEG.S"); type=FLOAT; break;
8028 case 0x08: strcpy(insn[i],"ROUND.L.S"); type=FCONV; break;
8029 case 0x09: strcpy(insn[i],"TRUNC.L.S"); type=FCONV; break;
8030 case 0x0A: strcpy(insn[i],"CEIL.L.S"); type=FCONV; break;
8031 case 0x0B: strcpy(insn[i],"FLOOR.L.S"); type=FCONV; break;
8032 case 0x0C: strcpy(insn[i],"ROUND.W.S"); type=FCONV; break;
8033 case 0x0D: strcpy(insn[i],"TRUNC.W.S"); type=FCONV; break;
8034 case 0x0E: strcpy(insn[i],"CEIL.W.S"); type=FCONV; break;
8035 case 0x0F: strcpy(insn[i],"FLOOR.W.S"); type=FCONV; break;
8036 case 0x21: strcpy(insn[i],"CVT.D.S"); type=FCONV; break;
8037 case 0x24: strcpy(insn[i],"CVT.W.S"); type=FCONV; break;
8038 case 0x25: strcpy(insn[i],"CVT.L.S"); type=FCONV; break;
8039 case 0x30: strcpy(insn[i],"C.F.S"); type=FCOMP; break;
8040 case 0x31: strcpy(insn[i],"C.UN.S"); type=FCOMP; break;
8041 case 0x32: strcpy(insn[i],"C.EQ.S"); type=FCOMP; break;
8042 case 0x33: strcpy(insn[i],"C.UEQ.S"); type=FCOMP; break;
8043 case 0x34: strcpy(insn[i],"C.OLT.S"); type=FCOMP; break;
8044 case 0x35: strcpy(insn[i],"C.ULT.S"); type=FCOMP; break;
8045 case 0x36: strcpy(insn[i],"C.OLE.S"); type=FCOMP; break;
8046 case 0x37: strcpy(insn[i],"C.ULE.S"); type=FCOMP; break;
8047 case 0x38: strcpy(insn[i],"C.SF.S"); type=FCOMP; break;
8048 case 0x39: strcpy(insn[i],"C.NGLE.S"); type=FCOMP; break;
8049 case 0x3A: strcpy(insn[i],"C.SEQ.S"); type=FCOMP; break;
8050 case 0x3B: strcpy(insn[i],"C.NGL.S"); type=FCOMP; break;
8051 case 0x3C: strcpy(insn[i],"C.LT.S"); type=FCOMP; break;
8052 case 0x3D: strcpy(insn[i],"C.NGE.S"); type=FCOMP; break;
8053 case 0x3E: strcpy(insn[i],"C.LE.S"); type=FCOMP; break;
8054 case 0x3F: strcpy(insn[i],"C.NGT.S"); type=FCOMP; break;
8055 }
8056 break;
8057 case 0x11: strcpy(insn[i],"C1.D"); type=NI;
8058 switch(source[i]&0x3f)
8059 {
8060 case 0x00: strcpy(insn[i],"ADD.D"); type=FLOAT; break;
8061 case 0x01: strcpy(insn[i],"SUB.D"); type=FLOAT; break;
8062 case 0x02: strcpy(insn[i],"MUL.D"); type=FLOAT; break;
8063 case 0x03: strcpy(insn[i],"DIV.D"); type=FLOAT; break;
8064 case 0x04: strcpy(insn[i],"SQRT.D"); type=FLOAT; break;
8065 case 0x05: strcpy(insn[i],"ABS.D"); type=FLOAT; break;
8066 case 0x06: strcpy(insn[i],"MOV.D"); type=FLOAT; break;
8067 case 0x07: strcpy(insn[i],"NEG.D"); type=FLOAT; break;
8068 case 0x08: strcpy(insn[i],"ROUND.L.D"); type=FCONV; break;
8069 case 0x09: strcpy(insn[i],"TRUNC.L.D"); type=FCONV; break;
8070 case 0x0A: strcpy(insn[i],"CEIL.L.D"); type=FCONV; break;
8071 case 0x0B: strcpy(insn[i],"FLOOR.L.D"); type=FCONV; break;
8072 case 0x0C: strcpy(insn[i],"ROUND.W.D"); type=FCONV; break;
8073 case 0x0D: strcpy(insn[i],"TRUNC.W.D"); type=FCONV; break;
8074 case 0x0E: strcpy(insn[i],"CEIL.W.D"); type=FCONV; break;
8075 case 0x0F: strcpy(insn[i],"FLOOR.W.D"); type=FCONV; break;
8076 case 0x20: strcpy(insn[i],"CVT.S.D"); type=FCONV; break;
8077 case 0x24: strcpy(insn[i],"CVT.W.D"); type=FCONV; break;
8078 case 0x25: strcpy(insn[i],"CVT.L.D"); type=FCONV; break;
8079 case 0x30: strcpy(insn[i],"C.F.D"); type=FCOMP; break;
8080 case 0x31: strcpy(insn[i],"C.UN.D"); type=FCOMP; break;
8081 case 0x32: strcpy(insn[i],"C.EQ.D"); type=FCOMP; break;
8082 case 0x33: strcpy(insn[i],"C.UEQ.D"); type=FCOMP; break;
8083 case 0x34: strcpy(insn[i],"C.OLT.D"); type=FCOMP; break;
8084 case 0x35: strcpy(insn[i],"C.ULT.D"); type=FCOMP; break;
8085 case 0x36: strcpy(insn[i],"C.OLE.D"); type=FCOMP; break;
8086 case 0x37: strcpy(insn[i],"C.ULE.D"); type=FCOMP; break;
8087 case 0x38: strcpy(insn[i],"C.SF.D"); type=FCOMP; break;
8088 case 0x39: strcpy(insn[i],"C.NGLE.D"); type=FCOMP; break;
8089 case 0x3A: strcpy(insn[i],"C.SEQ.D"); type=FCOMP; break;
8090 case 0x3B: strcpy(insn[i],"C.NGL.D"); type=FCOMP; break;
8091 case 0x3C: strcpy(insn[i],"C.LT.D"); type=FCOMP; break;
8092 case 0x3D: strcpy(insn[i],"C.NGE.D"); type=FCOMP; break;
8093 case 0x3E: strcpy(insn[i],"C.LE.D"); type=FCOMP; break;
8094 case 0x3F: strcpy(insn[i],"C.NGT.D"); type=FCOMP; break;
8095 }
8096 break;
8097 case 0x14: strcpy(insn[i],"C1.W"); type=NI;
8098 switch(source[i]&0x3f)
8099 {
8100 case 0x20: strcpy(insn[i],"CVT.S.W"); type=FCONV; break;
8101 case 0x21: strcpy(insn[i],"CVT.D.W"); type=FCONV; break;
8102 }
8103 break;
8104 case 0x15: strcpy(insn[i],"C1.L"); type=NI;
8105 switch(source[i]&0x3f)
8106 {
8107 case 0x20: strcpy(insn[i],"CVT.S.L"); type=FCONV; break;
8108 case 0x21: strcpy(insn[i],"CVT.D.L"); type=FCONV; break;
8109 }
8110 break;
8111 }
8112 break;
8113#ifndef FORCE32
8114 case 0x14: strcpy(insn[i],"BEQL"); type=CJUMP; break;
8115 case 0x15: strcpy(insn[i],"BNEL"); type=CJUMP; break;
8116 case 0x16: strcpy(insn[i],"BLEZL"); type=CJUMP; break;
8117 case 0x17: strcpy(insn[i],"BGTZL"); type=CJUMP; break;
8118 case 0x18: strcpy(insn[i],"DADDI"); type=IMM16; break;
8119 case 0x19: strcpy(insn[i],"DADDIU"); type=IMM16; break;
8120 case 0x1A: strcpy(insn[i],"LDL"); type=LOADLR; break;
8121 case 0x1B: strcpy(insn[i],"LDR"); type=LOADLR; break;
8122#endif
8123 case 0x20: strcpy(insn[i],"LB"); type=LOAD; break;
8124 case 0x21: strcpy(insn[i],"LH"); type=LOAD; break;
8125 case 0x22: strcpy(insn[i],"LWL"); type=LOADLR; break;
8126 case 0x23: strcpy(insn[i],"LW"); type=LOAD; break;
8127 case 0x24: strcpy(insn[i],"LBU"); type=LOAD; break;
8128 case 0x25: strcpy(insn[i],"LHU"); type=LOAD; break;
8129 case 0x26: strcpy(insn[i],"LWR"); type=LOADLR; break;
8130 case 0x27: strcpy(insn[i],"LWU"); type=LOAD; break;
8131 case 0x28: strcpy(insn[i],"SB"); type=STORE; break;
8132 case 0x29: strcpy(insn[i],"SH"); type=STORE; break;
8133 case 0x2A: strcpy(insn[i],"SWL"); type=STORELR; break;
8134 case 0x2B: strcpy(insn[i],"SW"); type=STORE; break;
8135#ifndef FORCE32
8136 case 0x2C: strcpy(insn[i],"SDL"); type=STORELR; break;
8137 case 0x2D: strcpy(insn[i],"SDR"); type=STORELR; break;
8138#endif
8139 case 0x2E: strcpy(insn[i],"SWR"); type=STORELR; break;
8140 case 0x2F: strcpy(insn[i],"CACHE"); type=NOP; break;
8141 case 0x30: strcpy(insn[i],"LL"); type=NI; break;
8142 case 0x31: strcpy(insn[i],"LWC1"); type=C1LS; break;
8143#ifndef FORCE32
8144 case 0x34: strcpy(insn[i],"LLD"); type=NI; break;
8145 case 0x35: strcpy(insn[i],"LDC1"); type=C1LS; break;
8146 case 0x37: strcpy(insn[i],"LD"); type=LOAD; break;
8147#endif
8148 case 0x38: strcpy(insn[i],"SC"); type=NI; break;
8149 case 0x39: strcpy(insn[i],"SWC1"); type=C1LS; break;
8150#ifndef FORCE32
8151 case 0x3C: strcpy(insn[i],"SCD"); type=NI; break;
8152 case 0x3D: strcpy(insn[i],"SDC1"); type=C1LS; break;
8153 case 0x3F: strcpy(insn[i],"SD"); type=STORE; break;
8154#endif
8155#ifdef PCSX
8156 case 0x12: strcpy(insn[i],"COP2"); type=NI;
8157 // note: COP MIPS-1 encoding differs from MIPS32
8158 op2=(source[i]>>21)&0x1f;
8159 if (source[i]&0x3f) {
8160 if (gte_handlers[source[i]&0x3f]!=NULL) {
8161 snprintf(insn[i], sizeof(insn[i]), "COP2 %x", source[i]&0x3f);
8162 type=C2OP;
8163 }
8164 }
8165 else switch(op2)
8166 {
8167 case 0x00: strcpy(insn[i],"MFC2"); type=COP2; break;
8168 case 0x02: strcpy(insn[i],"CFC2"); type=COP2; break;
8169 case 0x04: strcpy(insn[i],"MTC2"); type=COP2; break;
8170 case 0x06: strcpy(insn[i],"CTC2"); type=COP2; break;
8171 }
8172 break;
8173 case 0x32: strcpy(insn[i],"LWC2"); type=C2LS; break;
8174 case 0x3A: strcpy(insn[i],"SWC2"); type=C2LS; break;
8175 case 0x3B: strcpy(insn[i],"HLECALL"); type=HLECALL; break;
8176#endif
8177 default: strcpy(insn[i],"???"); type=NI;
8178 printf("NI %08x @%08x (%08x)\n", source[i], addr + i*4, addr);
8179 break;
8180 }
8181#ifdef PCSX
8182 /* detect branch in delay slot early */
8183 if(type==RJUMP||type==UJUMP||type==CJUMP||type==SJUMP||type==FJUMP) {
8184 opcode[i+1]=source[i+1]>>26;
8185 opcode2[i+1]=source[i+1]&0x3f;
8186 if((0<opcode[i+1]&&opcode[i+1]<8)||(opcode[i+1]==0&&(opcode2[i+1]==8||opcode2[i+1]==9))) {
8187 printf("branch in delay slot @%08x (%08x)\n", addr + i*4+4, addr);
8188 // don't handle first branch and call interpreter if it's hit
8189 type=INTCALL;
8190 }
8191 }
8192#endif
8193 itype[i]=type;
8194 opcode2[i]=op2;
8195 /* Get registers/immediates */
8196 lt1[i]=0;
8197 us1[i]=0;
8198 us2[i]=0;
8199 dep1[i]=0;
8200 dep2[i]=0;
8201 switch(type) {
8202 case LOAD:
8203 rs1[i]=(source[i]>>21)&0x1f;
8204 rs2[i]=0;
8205 rt1[i]=(source[i]>>16)&0x1f;
8206 rt2[i]=0;
8207 imm[i]=(short)source[i];
8208 break;
8209 case STORE:
8210 case STORELR:
8211 rs1[i]=(source[i]>>21)&0x1f;
8212 rs2[i]=(source[i]>>16)&0x1f;
8213 rt1[i]=0;
8214 rt2[i]=0;
8215 imm[i]=(short)source[i];
8216 if(op==0x2c||op==0x2d||op==0x3f) us1[i]=rs2[i]; // 64-bit SDL/SDR/SD
8217 break;
8218 case LOADLR:
8219 // LWL/LWR only load part of the register,
8220 // therefore the target register must be treated as a source too
8221 rs1[i]=(source[i]>>21)&0x1f;
8222 rs2[i]=(source[i]>>16)&0x1f;
8223 rt1[i]=(source[i]>>16)&0x1f;
8224 rt2[i]=0;
8225 imm[i]=(short)source[i];
8226 if(op==0x1a||op==0x1b) us1[i]=rs2[i]; // LDR/LDL
8227 if(op==0x26) dep1[i]=rt1[i]; // LWR
8228 break;
8229 case IMM16:
8230 if (op==0x0f) rs1[i]=0; // LUI instruction has no source register
8231 else rs1[i]=(source[i]>>21)&0x1f;
8232 rs2[i]=0;
8233 rt1[i]=(source[i]>>16)&0x1f;
8234 rt2[i]=0;
8235 if(op>=0x0c&&op<=0x0e) { // ANDI/ORI/XORI
8236 imm[i]=(unsigned short)source[i];
8237 }else{
8238 imm[i]=(short)source[i];
8239 }
8240 if(op==0x18||op==0x19) us1[i]=rs1[i]; // DADDI/DADDIU
8241 if(op==0x0a||op==0x0b) us1[i]=rs1[i]; // SLTI/SLTIU
8242 if(op==0x0d||op==0x0e) dep1[i]=rs1[i]; // ORI/XORI
8243 break;
8244 case UJUMP:
8245 rs1[i]=0;
8246 rs2[i]=0;
8247 rt1[i]=0;
8248 rt2[i]=0;
8249 // The JAL instruction writes to r31.
8250 if (op&1) {
8251 rt1[i]=31;
8252 }
8253 rs2[i]=CCREG;
8254 break;
8255 case RJUMP:
8256 rs1[i]=(source[i]>>21)&0x1f;
8257 rs2[i]=0;
8258 rt1[i]=0;
8259 rt2[i]=0;
8260 // The JALR instruction writes to rd.
8261 if (op2&1) {
8262 rt1[i]=(source[i]>>11)&0x1f;
8263 }
8264 rs2[i]=CCREG;
8265 break;
8266 case CJUMP:
8267 rs1[i]=(source[i]>>21)&0x1f;
8268 rs2[i]=(source[i]>>16)&0x1f;
8269 rt1[i]=0;
8270 rt2[i]=0;
8271 if(op&2) { // BGTZ/BLEZ
8272 rs2[i]=0;
8273 }
8274 us1[i]=rs1[i];
8275 us2[i]=rs2[i];
8276 likely[i]=op>>4;
8277 break;
8278 case SJUMP:
8279 rs1[i]=(source[i]>>21)&0x1f;
8280 rs2[i]=CCREG;
8281 rt1[i]=0;
8282 rt2[i]=0;
8283 us1[i]=rs1[i];
8284 if(op2&0x10) { // BxxAL
8285 rt1[i]=31;
8286 // NOTE: If the branch is not taken, r31 is still overwritten
8287 }
8288 likely[i]=(op2&2)>>1;
8289 break;
8290 case FJUMP:
8291 rs1[i]=FSREG;
8292 rs2[i]=CSREG;
8293 rt1[i]=0;
8294 rt2[i]=0;
8295 likely[i]=((source[i])>>17)&1;
8296 break;
8297 case ALU:
8298 rs1[i]=(source[i]>>21)&0x1f; // source
8299 rs2[i]=(source[i]>>16)&0x1f; // subtract amount
8300 rt1[i]=(source[i]>>11)&0x1f; // destination
8301 rt2[i]=0;
8302 if(op2==0x2a||op2==0x2b) { // SLT/SLTU
8303 us1[i]=rs1[i];us2[i]=rs2[i];
8304 }
8305 else if(op2>=0x24&&op2<=0x27) { // AND/OR/XOR/NOR
8306 dep1[i]=rs1[i];dep2[i]=rs2[i];
8307 }
8308 else if(op2>=0x2c&&op2<=0x2f) { // DADD/DSUB
8309 dep1[i]=rs1[i];dep2[i]=rs2[i];
8310 }
8311 break;
8312 case MULTDIV:
8313 rs1[i]=(source[i]>>21)&0x1f; // source
8314 rs2[i]=(source[i]>>16)&0x1f; // divisor
8315 rt1[i]=HIREG;
8316 rt2[i]=LOREG;
8317 if (op2>=0x1c&&op2<=0x1f) { // DMULT/DMULTU/DDIV/DDIVU
8318 us1[i]=rs1[i];us2[i]=rs2[i];
8319 }
8320 break;
8321 case MOV:
8322 rs1[i]=0;
8323 rs2[i]=0;
8324 rt1[i]=0;
8325 rt2[i]=0;
8326 if(op2==0x10) rs1[i]=HIREG; // MFHI
8327 if(op2==0x11) rt1[i]=HIREG; // MTHI
8328 if(op2==0x12) rs1[i]=LOREG; // MFLO
8329 if(op2==0x13) rt1[i]=LOREG; // MTLO
8330 if((op2&0x1d)==0x10) rt1[i]=(source[i]>>11)&0x1f; // MFxx
8331 if((op2&0x1d)==0x11) rs1[i]=(source[i]>>21)&0x1f; // MTxx
8332 dep1[i]=rs1[i];
8333 break;
8334 case SHIFT:
8335 rs1[i]=(source[i]>>16)&0x1f; // target of shift
8336 rs2[i]=(source[i]>>21)&0x1f; // shift amount
8337 rt1[i]=(source[i]>>11)&0x1f; // destination
8338 rt2[i]=0;
8339 // DSLLV/DSRLV/DSRAV are 64-bit
8340 if(op2>=0x14&&op2<=0x17) us1[i]=rs1[i];
8341 break;
8342 case SHIFTIMM:
8343 rs1[i]=(source[i]>>16)&0x1f;
8344 rs2[i]=0;
8345 rt1[i]=(source[i]>>11)&0x1f;
8346 rt2[i]=0;
8347 imm[i]=(source[i]>>6)&0x1f;
8348 // DSxx32 instructions
8349 if(op2>=0x3c) imm[i]|=0x20;
8350 // DSLL/DSRL/DSRA/DSRA32/DSRL32 but not DSLL32 require 64-bit source
8351 if(op2>=0x38&&op2!=0x3c) us1[i]=rs1[i];
8352 break;
8353 case COP0:
8354 rs1[i]=0;
8355 rs2[i]=0;
8356 rt1[i]=0;
8357 rt2[i]=0;
8358 if(op2==0) rt1[i]=(source[i]>>16)&0x1F; // MFC0
8359 if(op2==4) rs1[i]=(source[i]>>16)&0x1F; // MTC0
8360 if(op2==4&&((source[i]>>11)&0x1f)==12) rt2[i]=CSREG; // Status
8361 if(op2==16) if((source[i]&0x3f)==0x18) rs2[i]=CCREG; // ERET
8362 break;
8363 case COP1:
8364 case COP2:
8365 rs1[i]=0;
8366 rs2[i]=0;
8367 rt1[i]=0;
8368 rt2[i]=0;
8369 if(op2<3) rt1[i]=(source[i]>>16)&0x1F; // MFC1/DMFC1/CFC1
8370 if(op2>3) rs1[i]=(source[i]>>16)&0x1F; // MTC1/DMTC1/CTC1
8371 if(op2==5) us1[i]=rs1[i]; // DMTC1
8372 rs2[i]=CSREG;
8373 break;
8374 case C1LS:
8375 rs1[i]=(source[i]>>21)&0x1F;
8376 rs2[i]=CSREG;
8377 rt1[i]=0;
8378 rt2[i]=0;
8379 imm[i]=(short)source[i];
8380 break;
8381 case C2LS:
8382 rs1[i]=(source[i]>>21)&0x1F;
8383 rs2[i]=0;
8384 rt1[i]=0;
8385 rt2[i]=0;
8386 imm[i]=(short)source[i];
8387 break;
8388 case FLOAT:
8389 case FCONV:
8390 rs1[i]=0;
8391 rs2[i]=CSREG;
8392 rt1[i]=0;
8393 rt2[i]=0;
8394 break;
8395 case FCOMP:
8396 rs1[i]=FSREG;
8397 rs2[i]=CSREG;
8398 rt1[i]=FSREG;
8399 rt2[i]=0;
8400 break;
8401 case SYSCALL:
8402 case HLECALL:
8403 case INTCALL:
8404 rs1[i]=CCREG;
8405 rs2[i]=0;
8406 rt1[i]=0;
8407 rt2[i]=0;
8408 break;
8409 default:
8410 rs1[i]=0;
8411 rs2[i]=0;
8412 rt1[i]=0;
8413 rt2[i]=0;
8414 }
8415 /* Calculate branch target addresses */
8416 if(type==UJUMP)
8417 ba[i]=((start+i*4+4)&0xF0000000)|(((unsigned int)source[i]<<6)>>4);
8418 else if(type==CJUMP&&rs1[i]==rs2[i]&&(op&1))
8419 ba[i]=start+i*4+8; // Ignore never taken branch
8420 else if(type==SJUMP&&rs1[i]==0&&!(op2&1))
8421 ba[i]=start+i*4+8; // Ignore never taken branch
8422 else if(type==CJUMP||type==SJUMP||type==FJUMP)
8423 ba[i]=start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14);
8424 else ba[i]=-1;
8425 /* Is this the end of the block? */
8426 if(i>0&&(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)) {
8427#ifdef PCSX
8428 // check for link register access in delay slot
8429 int rt1_=rt1[i-1];
8430 if(rt1_!=0&&(rs1[i]==rt1_||rs2[i]==rt1_||rt1[i]==rt1_||rt2[i]==rt1_)) {
8431 printf("link access in delay slot @%08x (%08x)\n", addr + i*4, addr);
8432 ba[i-1]=-1;
8433 itype[i-1]=INTCALL;
8434 done=2;
8435 }
8436 else
8437#endif
8438 if(rt1[i-1]==0) { // Continue past subroutine call (JAL)
8439 done=2;
8440 }
8441 else {
8442 if(stop_after_jal) done=1;
8443 // Stop on BREAK
8444 if((source[i+1]&0xfc00003f)==0x0d) done=1;
8445 }
8446 // Don't recompile stuff that's already compiled
8447 if(check_addr(start+i*4+4)) done=1;
8448 // Don't get too close to the limit
8449 if(i>MAXBLOCK/2) done=1;
8450 }
8451 if(itype[i]==SYSCALL&&stop_after_jal) done=1;
8452 if(itype[i]==HLECALL||itype[i]==INTCALL) done=2;
8453 if(done==2) {
8454 // Does the block continue due to a branch?
8455 for(j=i-1;j>=0;j--)
8456 {
8457 if(ba[j]==start+i*4+4) done=j=0;
8458 if(ba[j]==start+i*4+8) done=j=0;
8459 }
8460 }
8461 //assert(i<MAXBLOCK-1);
8462 if(start+i*4==pagelimit-4) done=1;
8463 assert(start+i*4<pagelimit);
8464 if (i==MAXBLOCK-1) done=1;
8465 // Stop if we're compiling junk
8466 if(itype[i]==NI&&opcode[i]==0x11) {
8467 done=stop_after_jal=1;
8468 printf("Disabled speculative precompilation\n");
8469 }
8470 }
8471 slen=i;
8472 if(itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==RJUMP||itype[i-1]==FJUMP) {
8473 if(start+i*4==pagelimit) {
8474 itype[i-1]=SPAN;
8475 }
8476 }
8477 assert(slen>0);
8478
8479 /* Pass 2 - Register dependencies and branch targets */
8480
8481 unneeded_registers(0,slen-1,0);
8482
8483 /* Pass 3 - Register allocation */
8484
8485 struct regstat current; // Current register allocations/status
8486 current.is32=1;
8487 current.dirty=0;
8488 current.u=unneeded_reg[0];
8489 current.uu=unneeded_reg_upper[0];
8490 clear_all_regs(current.regmap);
8491 alloc_reg(&current,0,CCREG);
8492 dirty_reg(&current,CCREG);
8493 current.isconst=0;
8494 current.wasconst=0;
8495 int ds=0;
8496 int cc=0;
8497 int hr;
8498
8499#ifndef FORCE32
8500 provisional_32bit();
8501#endif
8502 if((u_int)addr&1) {
8503 // First instruction is delay slot
8504 cc=-1;
8505 bt[1]=1;
8506 ds=1;
8507 unneeded_reg[0]=1;
8508 unneeded_reg_upper[0]=1;
8509 current.regmap[HOST_BTREG]=BTREG;
8510 }
8511
8512 for(i=0;i<slen;i++)
8513 {
8514 if(bt[i])
8515 {
8516 int hr;
8517 for(hr=0;hr<HOST_REGS;hr++)
8518 {
8519 // Is this really necessary?
8520 if(current.regmap[hr]==0) current.regmap[hr]=-1;
8521 }
8522 current.isconst=0;
8523 }
8524 if(i>1)
8525 {
8526 if((opcode[i-2]&0x2f)==0x05) // BNE/BNEL
8527 {
8528 if(rs1[i-2]==0||rs2[i-2]==0)
8529 {
8530 if(rs1[i-2]) {
8531 current.is32|=1LL<<rs1[i-2];
8532 int hr=get_reg(current.regmap,rs1[i-2]|64);
8533 if(hr>=0) current.regmap[hr]=-1;
8534 }
8535 if(rs2[i-2]) {
8536 current.is32|=1LL<<rs2[i-2];
8537 int hr=get_reg(current.regmap,rs2[i-2]|64);
8538 if(hr>=0) current.regmap[hr]=-1;
8539 }
8540 }
8541 }
8542 }
8543#ifndef FORCE32
8544 // If something jumps here with 64-bit values
8545 // then promote those registers to 64 bits
8546 if(bt[i])
8547 {
8548 uint64_t temp_is32=current.is32;
8549 for(j=i-1;j>=0;j--)
8550 {
8551 if(ba[j]==start+i*4)
8552 temp_is32&=branch_regs[j].is32;
8553 }
8554 for(j=i;j<slen;j++)
8555 {
8556 if(ba[j]==start+i*4)
8557 //temp_is32=1;
8558 temp_is32&=p32[j];
8559 }
8560 if(temp_is32!=current.is32) {
8561 //printf("dumping 32-bit regs (%x)\n",start+i*4);
8562 #ifdef DESTRUCTIVE_WRITEBACK
8563 for(hr=0;hr<HOST_REGS;hr++)
8564 {
8565 int r=current.regmap[hr];
8566 if(r>0&&r<64)
8567 {
8568 if((current.dirty>>hr)&((current.is32&~temp_is32)>>r)&1) {
8569 temp_is32|=1LL<<r;
8570 //printf("restore %d\n",r);
8571 }
8572 }
8573 }
8574 #endif
8575 current.is32=temp_is32;
8576 }
8577 }
8578#else
8579 current.is32=-1LL;
8580#endif
8581
8582 memcpy(regmap_pre[i],current.regmap,sizeof(current.regmap));
8583 regs[i].wasconst=current.isconst;
8584 regs[i].was32=current.is32;
8585 regs[i].wasdirty=current.dirty;
8586 #if defined(DESTRUCTIVE_WRITEBACK) && !defined(FORCE32)
8587 // To change a dirty register from 32 to 64 bits, we must write
8588 // it out during the previous cycle (for branches, 2 cycles)
8589 if(i<slen-1&&bt[i+1]&&itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP)
8590 {
8591 uint64_t temp_is32=current.is32;
8592 for(j=i-1;j>=0;j--)
8593 {
8594 if(ba[j]==start+i*4+4)
8595 temp_is32&=branch_regs[j].is32;
8596 }
8597 for(j=i;j<slen;j++)
8598 {
8599 if(ba[j]==start+i*4+4)
8600 //temp_is32=1;
8601 temp_is32&=p32[j];
8602 }
8603 if(temp_is32!=current.is32) {
8604 //printf("pre-dumping 32-bit regs (%x)\n",start+i*4);
8605 for(hr=0;hr<HOST_REGS;hr++)
8606 {
8607 int r=current.regmap[hr];
8608 if(r>0)
8609 {
8610 if((current.dirty>>hr)&((current.is32&~temp_is32)>>(r&63))&1) {
8611 if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP)
8612 {
8613 if(rs1[i]!=(r&63)&&rs2[i]!=(r&63))
8614 {
8615 //printf("dump %d/r%d\n",hr,r);
8616 current.regmap[hr]=-1;
8617 if(get_reg(current.regmap,r|64)>=0)
8618 current.regmap[get_reg(current.regmap,r|64)]=-1;
8619 }
8620 }
8621 }
8622 }
8623 }
8624 }
8625 }
8626 else if(i<slen-2&&bt[i+2]&&(source[i-1]>>16)!=0x1000&&(itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP))
8627 {
8628 uint64_t temp_is32=current.is32;
8629 for(j=i-1;j>=0;j--)
8630 {
8631 if(ba[j]==start+i*4+8)
8632 temp_is32&=branch_regs[j].is32;
8633 }
8634 for(j=i;j<slen;j++)
8635 {
8636 if(ba[j]==start+i*4+8)
8637 //temp_is32=1;
8638 temp_is32&=p32[j];
8639 }
8640 if(temp_is32!=current.is32) {
8641 //printf("pre-dumping 32-bit regs (%x)\n",start+i*4);
8642 for(hr=0;hr<HOST_REGS;hr++)
8643 {
8644 int r=current.regmap[hr];
8645 if(r>0)
8646 {
8647 if((current.dirty>>hr)&((current.is32&~temp_is32)>>(r&63))&1) {
8648 if(rs1[i]!=(r&63)&&rs2[i]!=(r&63)&&rs1[i+1]!=(r&63)&&rs2[i+1]!=(r&63))
8649 {
8650 //printf("dump %d/r%d\n",hr,r);
8651 current.regmap[hr]=-1;
8652 if(get_reg(current.regmap,r|64)>=0)
8653 current.regmap[get_reg(current.regmap,r|64)]=-1;
8654 }
8655 }
8656 }
8657 }
8658 }
8659 }
8660 #endif
8661 if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP) {
8662 if(i+1<slen) {
8663 current.u=unneeded_reg[i+1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
8664 current.uu=unneeded_reg_upper[i+1]&~((1LL<<us1[i])|(1LL<<us2[i]));
8665 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
8666 current.u|=1;
8667 current.uu|=1;
8668 } else {
8669 current.u=1;
8670 current.uu=1;
8671 }
8672 } else {
8673 if(i+1<slen) {
8674 current.u=branch_unneeded_reg[i]&~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
8675 current.uu=branch_unneeded_reg_upper[i]&~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
8676 if((~current.uu>>rt1[i+1])&1) current.uu&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
8677 current.u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
8678 current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
8679 current.u|=1;
8680 current.uu|=1;
8681 } else { printf("oops, branch at end of block with no delay slot\n");exit(1); }
8682 }
8683 is_ds[i]=ds;
8684 if(ds) {
8685 ds=0; // Skip delay slot, already allocated as part of branch
8686 // ...but we need to alloc it in case something jumps here
8687 if(i+1<slen) {
8688 current.u=branch_unneeded_reg[i-1]&unneeded_reg[i+1];
8689 current.uu=branch_unneeded_reg_upper[i-1]&unneeded_reg_upper[i+1];
8690 }else{
8691 current.u=branch_unneeded_reg[i-1];
8692 current.uu=branch_unneeded_reg_upper[i-1];
8693 }
8694 current.u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
8695 current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
8696 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
8697 current.u|=1;
8698 current.uu|=1;
8699 struct regstat temp;
8700 memcpy(&temp,&current,sizeof(current));
8701 temp.wasdirty=temp.dirty;
8702 temp.was32=temp.is32;
8703 // TODO: Take into account unconditional branches, as below
8704 delayslot_alloc(&temp,i);
8705 memcpy(regs[i].regmap,temp.regmap,sizeof(temp.regmap));
8706 regs[i].wasdirty=temp.wasdirty;
8707 regs[i].was32=temp.was32;
8708 regs[i].dirty=temp.dirty;
8709 regs[i].is32=temp.is32;
8710 regs[i].isconst=0;
8711 regs[i].wasconst=0;
8712 current.isconst=0;
8713 // Create entry (branch target) regmap
8714 for(hr=0;hr<HOST_REGS;hr++)
8715 {
8716 int r=temp.regmap[hr];
8717 if(r>=0) {
8718 if(r!=regmap_pre[i][hr]) {
8719 regs[i].regmap_entry[hr]=-1;
8720 }
8721 else
8722 {
8723 if(r<64){
8724 if((current.u>>r)&1) {
8725 regs[i].regmap_entry[hr]=-1;
8726 regs[i].regmap[hr]=-1;
8727 //Don't clear regs in the delay slot as the branch might need them
8728 //current.regmap[hr]=-1;
8729 }else
8730 regs[i].regmap_entry[hr]=r;
8731 }
8732 else {
8733 if((current.uu>>(r&63))&1) {
8734 regs[i].regmap_entry[hr]=-1;
8735 regs[i].regmap[hr]=-1;
8736 //Don't clear regs in the delay slot as the branch might need them
8737 //current.regmap[hr]=-1;
8738 }else
8739 regs[i].regmap_entry[hr]=r;
8740 }
8741 }
8742 } else {
8743 // First instruction expects CCREG to be allocated
8744 if(i==0&&hr==HOST_CCREG)
8745 regs[i].regmap_entry[hr]=CCREG;
8746 else
8747 regs[i].regmap_entry[hr]=-1;
8748 }
8749 }
8750 }
8751 else { // Not delay slot
8752 switch(itype[i]) {
8753 case UJUMP:
8754 //current.isconst=0; // DEBUG
8755 //current.wasconst=0; // DEBUG
8756 //regs[i].wasconst=0; // DEBUG
8757 clear_const(&current,rt1[i]);
8758 alloc_cc(&current,i);
8759 dirty_reg(&current,CCREG);
8760 if (rt1[i]==31) {
8761 alloc_reg(&current,i,31);
8762 dirty_reg(&current,31);
8763 assert(rs1[i+1]!=31&&rs2[i+1]!=31);
8764 assert(rt1[i+1]!=rt1[i]);
8765 #ifdef REG_PREFETCH
8766 alloc_reg(&current,i,PTEMP);
8767 #endif
8768 //current.is32|=1LL<<rt1[i];
8769 }
8770 delayslot_alloc(&current,i+1);
8771 //current.isconst=0; // DEBUG
8772 ds=1;
8773 //printf("i=%d, isconst=%x\n",i,current.isconst);
8774 break;
8775 case RJUMP:
8776 //current.isconst=0;
8777 //current.wasconst=0;
8778 //regs[i].wasconst=0;
8779 clear_const(&current,rs1[i]);
8780 clear_const(&current,rt1[i]);
8781 alloc_cc(&current,i);
8782 dirty_reg(&current,CCREG);
8783 if(rs1[i]!=rt1[i+1]&&rs1[i]!=rt2[i+1]) {
8784 alloc_reg(&current,i,rs1[i]);
8785 if (rt1[i]!=0) {
8786 alloc_reg(&current,i,rt1[i]);
8787 dirty_reg(&current,rt1[i]);
8788 assert(rs1[i+1]!=rt1[i]&&rs2[i+1]!=rt1[i]);
8789 assert(rt1[i+1]!=rt1[i]);
8790 #ifdef REG_PREFETCH
8791 alloc_reg(&current,i,PTEMP);
8792 #endif
8793 }
8794 #ifdef USE_MINI_HT
8795 if(rs1[i]==31) { // JALR
8796 alloc_reg(&current,i,RHASH);
8797 #ifndef HOST_IMM_ADDR32
8798 alloc_reg(&current,i,RHTBL);
8799 #endif
8800 }
8801 #endif
8802 delayslot_alloc(&current,i+1);
8803 } else {
8804 // The delay slot overwrites our source register,
8805 // allocate a temporary register to hold the old value.
8806 current.isconst=0;
8807 current.wasconst=0;
8808 regs[i].wasconst=0;
8809 delayslot_alloc(&current,i+1);
8810 current.isconst=0;
8811 alloc_reg(&current,i,RTEMP);
8812 }
8813 //current.isconst=0; // DEBUG
8814 ds=1;
8815 break;
8816 case CJUMP:
8817 //current.isconst=0;
8818 //current.wasconst=0;
8819 //regs[i].wasconst=0;
8820 clear_const(&current,rs1[i]);
8821 clear_const(&current,rs2[i]);
8822 if((opcode[i]&0x3E)==4) // BEQ/BNE
8823 {
8824 alloc_cc(&current,i);
8825 dirty_reg(&current,CCREG);
8826 if(rs1[i]) alloc_reg(&current,i,rs1[i]);
8827 if(rs2[i]) alloc_reg(&current,i,rs2[i]);
8828 if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
8829 {
8830 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
8831 if(rs2[i]) alloc_reg64(&current,i,rs2[i]);
8832 }
8833 if((rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]))||
8834 (rs2[i]&&(rs2[i]==rt1[i+1]||rs2[i]==rt2[i+1]))) {
8835 // The delay slot overwrites one of our conditions.
8836 // Allocate the branch condition registers instead.
8837 // Note that such a sequence of instructions could
8838 // be considered a bug since the branch can not be
8839 // re-executed if an exception occurs.
8840 current.isconst=0;
8841 current.wasconst=0;
8842 regs[i].wasconst=0;
8843 if(rs1[i]) alloc_reg(&current,i,rs1[i]);
8844 if(rs2[i]) alloc_reg(&current,i,rs2[i]);
8845 if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
8846 {
8847 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
8848 if(rs2[i]) alloc_reg64(&current,i,rs2[i]);
8849 }
8850 }
8851 else delayslot_alloc(&current,i+1);
8852 }
8853 else
8854 if((opcode[i]&0x3E)==6) // BLEZ/BGTZ
8855 {
8856 alloc_cc(&current,i);
8857 dirty_reg(&current,CCREG);
8858 alloc_reg(&current,i,rs1[i]);
8859 if(!(current.is32>>rs1[i]&1))
8860 {
8861 alloc_reg64(&current,i,rs1[i]);
8862 }
8863 if(rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1])) {
8864 // The delay slot overwrites one of our conditions.
8865 // Allocate the branch condition registers instead.
8866 // Note that such a sequence of instructions could
8867 // be considered a bug since the branch can not be
8868 // re-executed if an exception occurs.
8869 current.isconst=0;
8870 current.wasconst=0;
8871 regs[i].wasconst=0;
8872 if(rs1[i]) alloc_reg(&current,i,rs1[i]);
8873 if(!((current.is32>>rs1[i])&1))
8874 {
8875 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
8876 }
8877 }
8878 else delayslot_alloc(&current,i+1);
8879 }
8880 else
8881 // Don't alloc the delay slot yet because we might not execute it
8882 if((opcode[i]&0x3E)==0x14) // BEQL/BNEL
8883 {
8884 current.isconst=0;
8885 current.wasconst=0;
8886 regs[i].wasconst=0;
8887 alloc_cc(&current,i);
8888 dirty_reg(&current,CCREG);
8889 alloc_reg(&current,i,rs1[i]);
8890 alloc_reg(&current,i,rs2[i]);
8891 if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
8892 {
8893 alloc_reg64(&current,i,rs1[i]);
8894 alloc_reg64(&current,i,rs2[i]);
8895 }
8896 }
8897 else
8898 if((opcode[i]&0x3E)==0x16) // BLEZL/BGTZL
8899 {
8900 current.isconst=0;
8901 current.wasconst=0;
8902 regs[i].wasconst=0;
8903 alloc_cc(&current,i);
8904 dirty_reg(&current,CCREG);
8905 alloc_reg(&current,i,rs1[i]);
8906 if(!(current.is32>>rs1[i]&1))
8907 {
8908 alloc_reg64(&current,i,rs1[i]);
8909 }
8910 }
8911 ds=1;
8912 //current.isconst=0;
8913 break;
8914 case SJUMP:
8915 //current.isconst=0;
8916 //current.wasconst=0;
8917 //regs[i].wasconst=0;
8918 clear_const(&current,rs1[i]);
8919 clear_const(&current,rt1[i]);
8920 //if((opcode2[i]&0x1E)==0x0) // BLTZ/BGEZ
8921 if((opcode2[i]&0x0E)==0x0) // BLTZ/BGEZ
8922 {
8923 alloc_cc(&current,i);
8924 dirty_reg(&current,CCREG);
8925 alloc_reg(&current,i,rs1[i]);
8926 if(!(current.is32>>rs1[i]&1))
8927 {
8928 alloc_reg64(&current,i,rs1[i]);
8929 }
8930 if (rt1[i]==31) { // BLTZAL/BGEZAL
8931 alloc_reg(&current,i,31);
8932 dirty_reg(&current,31);
8933 //#ifdef REG_PREFETCH
8934 //alloc_reg(&current,i,PTEMP);
8935 //#endif
8936 //current.is32|=1LL<<rt1[i];
8937 }
8938 if(rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1])) {
8939 // The delay slot overwrites the branch condition.
8940 // Allocate the branch condition registers instead.
8941 // Note that such a sequence of instructions could
8942 // be considered a bug since the branch can not be
8943 // re-executed if an exception occurs.
8944 current.isconst=0;
8945 current.wasconst=0;
8946 regs[i].wasconst=0;
8947 if(rs1[i]) alloc_reg(&current,i,rs1[i]);
8948 if(!((current.is32>>rs1[i])&1))
8949 {
8950 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
8951 }
8952 }
8953 else delayslot_alloc(&current,i+1);
8954 }
8955 else
8956 // Don't alloc the delay slot yet because we might not execute it
8957 if((opcode2[i]&0x1E)==0x2) // BLTZL/BGEZL
8958 {
8959 current.isconst=0;
8960 current.wasconst=0;
8961 regs[i].wasconst=0;
8962 alloc_cc(&current,i);
8963 dirty_reg(&current,CCREG);
8964 alloc_reg(&current,i,rs1[i]);
8965 if(!(current.is32>>rs1[i]&1))
8966 {
8967 alloc_reg64(&current,i,rs1[i]);
8968 }
8969 }
8970 ds=1;
8971 //current.isconst=0;
8972 break;
8973 case FJUMP:
8974 current.isconst=0;
8975 current.wasconst=0;
8976 regs[i].wasconst=0;
8977 if(likely[i]==0) // BC1F/BC1T
8978 {
8979 // TODO: Theoretically we can run out of registers here on x86.
8980 // The delay slot can allocate up to six, and we need to check
8981 // CSREG before executing the delay slot. Possibly we can drop
8982 // the cycle count and then reload it after checking that the
8983 // FPU is in a usable state, or don't do out-of-order execution.
8984 alloc_cc(&current,i);
8985 dirty_reg(&current,CCREG);
8986 alloc_reg(&current,i,FSREG);
8987 alloc_reg(&current,i,CSREG);
8988 if(itype[i+1]==FCOMP) {
8989 // The delay slot overwrites the branch condition.
8990 // Allocate the branch condition registers instead.
8991 // Note that such a sequence of instructions could
8992 // be considered a bug since the branch can not be
8993 // re-executed if an exception occurs.
8994 alloc_cc(&current,i);
8995 dirty_reg(&current,CCREG);
8996 alloc_reg(&current,i,CSREG);
8997 alloc_reg(&current,i,FSREG);
8998 }
8999 else {
9000 delayslot_alloc(&current,i+1);
9001 alloc_reg(&current,i+1,CSREG);
9002 }
9003 }
9004 else
9005 // Don't alloc the delay slot yet because we might not execute it
9006 if(likely[i]) // BC1FL/BC1TL
9007 {
9008 alloc_cc(&current,i);
9009 dirty_reg(&current,CCREG);
9010 alloc_reg(&current,i,CSREG);
9011 alloc_reg(&current,i,FSREG);
9012 }
9013 ds=1;
9014 current.isconst=0;
9015 break;
9016 case IMM16:
9017 imm16_alloc(&current,i);
9018 break;
9019 case LOAD:
9020 case LOADLR:
9021 load_alloc(&current,i);
9022 break;
9023 case STORE:
9024 case STORELR:
9025 store_alloc(&current,i);
9026 break;
9027 case ALU:
9028 alu_alloc(&current,i);
9029 break;
9030 case SHIFT:
9031 shift_alloc(&current,i);
9032 break;
9033 case MULTDIV:
9034 multdiv_alloc(&current,i);
9035 break;
9036 case SHIFTIMM:
9037 shiftimm_alloc(&current,i);
9038 break;
9039 case MOV:
9040 mov_alloc(&current,i);
9041 break;
9042 case COP0:
9043 cop0_alloc(&current,i);
9044 break;
9045 case COP1:
9046 case COP2:
9047 cop1_alloc(&current,i);
9048 break;
9049 case C1LS:
9050 c1ls_alloc(&current,i);
9051 break;
9052 case C2LS:
9053 c2ls_alloc(&current,i);
9054 break;
9055 case C2OP:
9056 c2op_alloc(&current,i);
9057 break;
9058 case FCONV:
9059 fconv_alloc(&current,i);
9060 break;
9061 case FLOAT:
9062 float_alloc(&current,i);
9063 break;
9064 case FCOMP:
9065 fcomp_alloc(&current,i);
9066 break;
9067 case SYSCALL:
9068 case HLECALL:
9069 case INTCALL:
9070 syscall_alloc(&current,i);
9071 break;
9072 case SPAN:
9073 pagespan_alloc(&current,i);
9074 break;
9075 }
9076
9077 // Drop the upper half of registers that have become 32-bit
9078 current.uu|=current.is32&((1LL<<rt1[i])|(1LL<<rt2[i]));
9079 if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP) {
9080 current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
9081 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9082 current.uu|=1;
9083 } else {
9084 current.uu|=current.is32&((1LL<<rt1[i+1])|(1LL<<rt2[i+1]));
9085 current.uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
9086 if((~current.uu>>rt1[i+1])&1) current.uu&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
9087 current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
9088 current.uu|=1;
9089 }
9090
9091 // Create entry (branch target) regmap
9092 for(hr=0;hr<HOST_REGS;hr++)
9093 {
9094 int r,or,er;
9095 r=current.regmap[hr];
9096 if(r>=0) {
9097 if(r!=regmap_pre[i][hr]) {
9098 // TODO: delay slot (?)
9099 or=get_reg(regmap_pre[i],r); // Get old mapping for this register
9100 if(or<0||(r&63)>=TEMPREG){
9101 regs[i].regmap_entry[hr]=-1;
9102 }
9103 else
9104 {
9105 // Just move it to a different register
9106 regs[i].regmap_entry[hr]=r;
9107 // If it was dirty before, it's still dirty
9108 if((regs[i].wasdirty>>or)&1) dirty_reg(&current,r&63);
9109 }
9110 }
9111 else
9112 {
9113 // Unneeded
9114 if(r==0){
9115 regs[i].regmap_entry[hr]=0;
9116 }
9117 else
9118 if(r<64){
9119 if((current.u>>r)&1) {
9120 regs[i].regmap_entry[hr]=-1;
9121 //regs[i].regmap[hr]=-1;
9122 current.regmap[hr]=-1;
9123 }else
9124 regs[i].regmap_entry[hr]=r;
9125 }
9126 else {
9127 if((current.uu>>(r&63))&1) {
9128 regs[i].regmap_entry[hr]=-1;
9129 //regs[i].regmap[hr]=-1;
9130 current.regmap[hr]=-1;
9131 }else
9132 regs[i].regmap_entry[hr]=r;
9133 }
9134 }
9135 } else {
9136 // Branches expect CCREG to be allocated at the target
9137 if(regmap_pre[i][hr]==CCREG)
9138 regs[i].regmap_entry[hr]=CCREG;
9139 else
9140 regs[i].regmap_entry[hr]=-1;
9141 }
9142 }
9143 memcpy(regs[i].regmap,current.regmap,sizeof(current.regmap));
9144 }
9145 /* Branch post-alloc */
9146 if(i>0)
9147 {
9148 current.was32=current.is32;
9149 current.wasdirty=current.dirty;
9150 switch(itype[i-1]) {
9151 case UJUMP:
9152 memcpy(&branch_regs[i-1],&current,sizeof(current));
9153 branch_regs[i-1].isconst=0;
9154 branch_regs[i-1].wasconst=0;
9155 branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
9156 branch_regs[i-1].uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
9157 alloc_cc(&branch_regs[i-1],i-1);
9158 dirty_reg(&branch_regs[i-1],CCREG);
9159 if(rt1[i-1]==31) { // JAL
9160 alloc_reg(&branch_regs[i-1],i-1,31);
9161 dirty_reg(&branch_regs[i-1],31);
9162 branch_regs[i-1].is32|=1LL<<31;
9163 }
9164 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9165 memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9166 break;
9167 case RJUMP:
9168 memcpy(&branch_regs[i-1],&current,sizeof(current));
9169 branch_regs[i-1].isconst=0;
9170 branch_regs[i-1].wasconst=0;
9171 branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
9172 branch_regs[i-1].uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
9173 alloc_cc(&branch_regs[i-1],i-1);
9174 dirty_reg(&branch_regs[i-1],CCREG);
9175 alloc_reg(&branch_regs[i-1],i-1,rs1[i-1]);
9176 if(rt1[i-1]!=0) { // JALR
9177 alloc_reg(&branch_regs[i-1],i-1,rt1[i-1]);
9178 dirty_reg(&branch_regs[i-1],rt1[i-1]);
9179 branch_regs[i-1].is32|=1LL<<rt1[i-1];
9180 }
9181 #ifdef USE_MINI_HT
9182 if(rs1[i-1]==31) { // JALR
9183 alloc_reg(&branch_regs[i-1],i-1,RHASH);
9184 #ifndef HOST_IMM_ADDR32
9185 alloc_reg(&branch_regs[i-1],i-1,RHTBL);
9186 #endif
9187 }
9188 #endif
9189 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9190 memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9191 break;
9192 case CJUMP:
9193 if((opcode[i-1]&0x3E)==4) // BEQ/BNE
9194 {
9195 alloc_cc(&current,i-1);
9196 dirty_reg(&current,CCREG);
9197 if((rs1[i-1]&&(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]))||
9198 (rs2[i-1]&&(rs2[i-1]==rt1[i]||rs2[i-1]==rt2[i]))) {
9199 // The delay slot overwrote one of our conditions
9200 // Delay slot goes after the test (in order)
9201 current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
9202 current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
9203 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9204 current.u|=1;
9205 current.uu|=1;
9206 delayslot_alloc(&current,i);
9207 current.isconst=0;
9208 }
9209 else
9210 {
9211 current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
9212 current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
9213 // Alloc the branch condition registers
9214 if(rs1[i-1]) alloc_reg(&current,i-1,rs1[i-1]);
9215 if(rs2[i-1]) alloc_reg(&current,i-1,rs2[i-1]);
9216 if(!((current.is32>>rs1[i-1])&(current.is32>>rs2[i-1])&1))
9217 {
9218 if(rs1[i-1]) alloc_reg64(&current,i-1,rs1[i-1]);
9219 if(rs2[i-1]) alloc_reg64(&current,i-1,rs2[i-1]);
9220 }
9221 }
9222 memcpy(&branch_regs[i-1],&current,sizeof(current));
9223 branch_regs[i-1].isconst=0;
9224 branch_regs[i-1].wasconst=0;
9225 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9226 memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9227 }
9228 else
9229 if((opcode[i-1]&0x3E)==6) // BLEZ/BGTZ
9230 {
9231 alloc_cc(&current,i-1);
9232 dirty_reg(&current,CCREG);
9233 if(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]) {
9234 // The delay slot overwrote the branch condition
9235 // Delay slot goes after the test (in order)
9236 current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
9237 current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
9238 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9239 current.u|=1;
9240 current.uu|=1;
9241 delayslot_alloc(&current,i);
9242 current.isconst=0;
9243 }
9244 else
9245 {
9246 current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
9247 current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
9248 // Alloc the branch condition register
9249 alloc_reg(&current,i-1,rs1[i-1]);
9250 if(!(current.is32>>rs1[i-1]&1))
9251 {
9252 alloc_reg64(&current,i-1,rs1[i-1]);
9253 }
9254 }
9255 memcpy(&branch_regs[i-1],&current,sizeof(current));
9256 branch_regs[i-1].isconst=0;
9257 branch_regs[i-1].wasconst=0;
9258 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9259 memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9260 }
9261 else
9262 // Alloc the delay slot in case the branch is taken
9263 if((opcode[i-1]&0x3E)==0x14) // BEQL/BNEL
9264 {
9265 memcpy(&branch_regs[i-1],&current,sizeof(current));
9266 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9267 branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9268 if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9269 alloc_cc(&branch_regs[i-1],i);
9270 dirty_reg(&branch_regs[i-1],CCREG);
9271 delayslot_alloc(&branch_regs[i-1],i);
9272 branch_regs[i-1].isconst=0;
9273 alloc_reg(&current,i,CCREG); // Not taken path
9274 dirty_reg(&current,CCREG);
9275 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9276 }
9277 else
9278 if((opcode[i-1]&0x3E)==0x16) // BLEZL/BGTZL
9279 {
9280 memcpy(&branch_regs[i-1],&current,sizeof(current));
9281 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9282 branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9283 if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9284 alloc_cc(&branch_regs[i-1],i);
9285 dirty_reg(&branch_regs[i-1],CCREG);
9286 delayslot_alloc(&branch_regs[i-1],i);
9287 branch_regs[i-1].isconst=0;
9288 alloc_reg(&current,i,CCREG); // Not taken path
9289 dirty_reg(&current,CCREG);
9290 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9291 }
9292 break;
9293 case SJUMP:
9294 //if((opcode2[i-1]&0x1E)==0) // BLTZ/BGEZ
9295 if((opcode2[i-1]&0x0E)==0) // BLTZ/BGEZ
9296 {
9297 alloc_cc(&current,i-1);
9298 dirty_reg(&current,CCREG);
9299 if(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]) {
9300 // The delay slot overwrote the branch condition
9301 // Delay slot goes after the test (in order)
9302 current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
9303 current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
9304 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9305 current.u|=1;
9306 current.uu|=1;
9307 delayslot_alloc(&current,i);
9308 current.isconst=0;
9309 }
9310 else
9311 {
9312 current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
9313 current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
9314 // Alloc the branch condition register
9315 alloc_reg(&current,i-1,rs1[i-1]);
9316 if(!(current.is32>>rs1[i-1]&1))
9317 {
9318 alloc_reg64(&current,i-1,rs1[i-1]);
9319 }
9320 }
9321 memcpy(&branch_regs[i-1],&current,sizeof(current));
9322 branch_regs[i-1].isconst=0;
9323 branch_regs[i-1].wasconst=0;
9324 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9325 memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9326 }
9327 else
9328 // Alloc the delay slot in case the branch is taken
9329 if((opcode2[i-1]&0x1E)==2) // BLTZL/BGEZL
9330 {
9331 memcpy(&branch_regs[i-1],&current,sizeof(current));
9332 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9333 branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9334 if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9335 alloc_cc(&branch_regs[i-1],i);
9336 dirty_reg(&branch_regs[i-1],CCREG);
9337 delayslot_alloc(&branch_regs[i-1],i);
9338 branch_regs[i-1].isconst=0;
9339 alloc_reg(&current,i,CCREG); // Not taken path
9340 dirty_reg(&current,CCREG);
9341 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9342 }
9343 // FIXME: BLTZAL/BGEZAL
9344 if(opcode2[i-1]&0x10) { // BxxZAL
9345 alloc_reg(&branch_regs[i-1],i-1,31);
9346 dirty_reg(&branch_regs[i-1],31);
9347 branch_regs[i-1].is32|=1LL<<31;
9348 }
9349 break;
9350 case FJUMP:
9351 if(likely[i-1]==0) // BC1F/BC1T
9352 {
9353 alloc_cc(&current,i-1);
9354 dirty_reg(&current,CCREG);
9355 if(itype[i]==FCOMP) {
9356 // The delay slot overwrote the branch condition
9357 // Delay slot goes after the test (in order)
9358 delayslot_alloc(&current,i);
9359 current.isconst=0;
9360 }
9361 else
9362 {
9363 current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
9364 current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
9365 // Alloc the branch condition register
9366 alloc_reg(&current,i-1,FSREG);
9367 }
9368 memcpy(&branch_regs[i-1],&current,sizeof(current));
9369 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9370 }
9371 else // BC1FL/BC1TL
9372 {
9373 // Alloc the delay slot in case the branch is taken
9374 memcpy(&branch_regs[i-1],&current,sizeof(current));
9375 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9376 branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9377 if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9378 alloc_cc(&branch_regs[i-1],i);
9379 dirty_reg(&branch_regs[i-1],CCREG);
9380 delayslot_alloc(&branch_regs[i-1],i);
9381 branch_regs[i-1].isconst=0;
9382 alloc_reg(&current,i,CCREG); // Not taken path
9383 dirty_reg(&current,CCREG);
9384 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9385 }
9386 break;
9387 }
9388
9389 if(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)
9390 {
9391 if(rt1[i-1]==31) // JAL/JALR
9392 {
9393 // Subroutine call will return here, don't alloc any registers
9394 current.is32=1;
9395 current.dirty=0;
9396 clear_all_regs(current.regmap);
9397 alloc_reg(&current,i,CCREG);
9398 dirty_reg(&current,CCREG);
9399 }
9400 else if(i+1<slen)
9401 {
9402 // Internal branch will jump here, match registers to caller
9403 current.is32=0x3FFFFFFFFLL;
9404 current.dirty=0;
9405 clear_all_regs(current.regmap);
9406 alloc_reg(&current,i,CCREG);
9407 dirty_reg(&current,CCREG);
9408 for(j=i-1;j>=0;j--)
9409 {
9410 if(ba[j]==start+i*4+4) {
9411 memcpy(current.regmap,branch_regs[j].regmap,sizeof(current.regmap));
9412 current.is32=branch_regs[j].is32;
9413 current.dirty=branch_regs[j].dirty;
9414 break;
9415 }
9416 }
9417 while(j>=0) {
9418 if(ba[j]==start+i*4+4) {
9419 for(hr=0;hr<HOST_REGS;hr++) {
9420 if(current.regmap[hr]!=branch_regs[j].regmap[hr]) {
9421 current.regmap[hr]=-1;
9422 }
9423 current.is32&=branch_regs[j].is32;
9424 current.dirty&=branch_regs[j].dirty;
9425 }
9426 }
9427 j--;
9428 }
9429 }
9430 }
9431 }
9432
9433 // Count cycles in between branches
9434 ccadj[i]=cc;
9435 if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP||itype[i]==SYSCALL||itype[i]==HLECALL))
9436 {
9437 cc=0;
9438 }
9439 else
9440 {
9441 cc++;
9442 }
9443
9444 flush_dirty_uppers(&current);
9445 if(!is_ds[i]) {
9446 regs[i].is32=current.is32;
9447 regs[i].dirty=current.dirty;
9448 regs[i].isconst=current.isconst;
9449 memcpy(constmap[i],current.constmap,sizeof(current.constmap));
9450 }
9451 for(hr=0;hr<HOST_REGS;hr++) {
9452 if(hr!=EXCLUDE_REG&&regs[i].regmap[hr]>=0) {
9453 if(regmap_pre[i][hr]!=regs[i].regmap[hr]) {
9454 regs[i].wasconst&=~(1<<hr);
9455 }
9456 }
9457 }
9458 if(current.regmap[HOST_BTREG]==BTREG) current.regmap[HOST_BTREG]=-1;
9459 }
9460
9461 /* Pass 4 - Cull unused host registers */
9462
9463 uint64_t nr=0;
9464
9465 for (i=slen-1;i>=0;i--)
9466 {
9467 int hr;
9468 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
9469 {
9470 if(ba[i]<start || ba[i]>=(start+slen*4))
9471 {
9472 // Branch out of this block, don't need anything
9473 nr=0;
9474 }
9475 else
9476 {
9477 // Internal branch
9478 // Need whatever matches the target
9479 nr=0;
9480 int t=(ba[i]-start)>>2;
9481 for(hr=0;hr<HOST_REGS;hr++)
9482 {
9483 if(regs[i].regmap_entry[hr]>=0) {
9484 if(regs[i].regmap_entry[hr]==regs[t].regmap_entry[hr]) nr|=1<<hr;
9485 }
9486 }
9487 }
9488 // Conditional branch may need registers for following instructions
9489 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
9490 {
9491 if(i<slen-2) {
9492 nr|=needed_reg[i+2];
9493 for(hr=0;hr<HOST_REGS;hr++)
9494 {
9495 if(regmap_pre[i+2][hr]>=0&&get_reg(regs[i+2].regmap_entry,regmap_pre[i+2][hr])<0) nr&=~(1<<hr);
9496 //if((regmap_entry[i+2][hr])>=0) if(!((nr>>hr)&1)) printf("%x-bogus(%d=%d)\n",start+i*4,hr,regmap_entry[i+2][hr]);
9497 }
9498 }
9499 }
9500 // Don't need stuff which is overwritten
9501 if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
9502 if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
9503 // Merge in delay slot
9504 for(hr=0;hr<HOST_REGS;hr++)
9505 {
9506 if(!likely[i]) {
9507 // These are overwritten unless the branch is "likely"
9508 // and the delay slot is nullified if not taken
9509 if(rt1[i+1]&&rt1[i+1]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9510 if(rt2[i+1]&&rt2[i+1]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9511 }
9512 if(us1[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9513 if(us2[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9514 if(rs1[i+1]==regmap_pre[i][hr]) nr|=1<<hr;
9515 if(rs2[i+1]==regmap_pre[i][hr]) nr|=1<<hr;
9516 if(us1[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9517 if(us2[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9518 if(rs1[i+1]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9519 if(rs2[i+1]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9520 if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1)) {
9521 if(dep1[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9522 if(dep2[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9523 }
9524 if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1)) {
9525 if(dep1[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9526 if(dep2[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9527 }
9528 if(itype[i+1]==STORE || itype[i+1]==STORELR || (opcode[i+1]&0x3b)==0x39 || (opcode[i+1]&0x3b)==0x3a) {
9529 if(regmap_pre[i][hr]==INVCP) nr|=1<<hr;
9530 if(regs[i].regmap_entry[hr]==INVCP) nr|=1<<hr;
9531 }
9532 }
9533 }
9534 else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
9535 {
9536 // SYSCALL instruction (software interrupt)
9537 nr=0;
9538 }
9539 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
9540 {
9541 // ERET instruction (return from interrupt)
9542 nr=0;
9543 }
9544 else // Non-branch
9545 {
9546 if(i<slen-1) {
9547 for(hr=0;hr<HOST_REGS;hr++) {
9548 if(regmap_pre[i+1][hr]>=0&&get_reg(regs[i+1].regmap_entry,regmap_pre[i+1][hr])<0) nr&=~(1<<hr);
9549 if(regs[i].regmap[hr]!=regmap_pre[i+1][hr]) nr&=~(1<<hr);
9550 if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
9551 if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
9552 }
9553 }
9554 }
9555 for(hr=0;hr<HOST_REGS;hr++)
9556 {
9557 // Overwritten registers are not needed
9558 if(rt1[i]&&rt1[i]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9559 if(rt2[i]&&rt2[i]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9560 if(FTEMP==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9561 // Source registers are needed
9562 if(us1[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9563 if(us2[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9564 if(rs1[i]==regmap_pre[i][hr]) nr|=1<<hr;
9565 if(rs2[i]==regmap_pre[i][hr]) nr|=1<<hr;
9566 if(us1[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9567 if(us2[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9568 if(rs1[i]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9569 if(rs2[i]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9570 if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1)) {
9571 if(dep1[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9572 if(dep1[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9573 }
9574 if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1)) {
9575 if(dep2[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9576 if(dep2[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9577 }
9578 if(itype[i]==STORE || itype[i]==STORELR || (opcode[i]&0x3b)==0x39 || (opcode[i]&0x3b)==0x3a) {
9579 if(regmap_pre[i][hr]==INVCP) nr|=1<<hr;
9580 if(regs[i].regmap_entry[hr]==INVCP) nr|=1<<hr;
9581 }
9582 // Don't store a register immediately after writing it,
9583 // may prevent dual-issue.
9584 // But do so if this is a branch target, otherwise we
9585 // might have to load the register before the branch.
9586 if(i>0&&!bt[i]&&((regs[i].wasdirty>>hr)&1)) {
9587 if((regmap_pre[i][hr]>0&&regmap_pre[i][hr]<64&&!((unneeded_reg[i]>>regmap_pre[i][hr])&1)) ||
9588 (regmap_pre[i][hr]>64&&!((unneeded_reg_upper[i]>>(regmap_pre[i][hr]&63))&1)) ) {
9589 if(rt1[i-1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9590 if(rt2[i-1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9591 }
9592 if((regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64&&!((unneeded_reg[i]>>regs[i].regmap_entry[hr])&1)) ||
9593 (regs[i].regmap_entry[hr]>64&&!((unneeded_reg_upper[i]>>(regs[i].regmap_entry[hr]&63))&1)) ) {
9594 if(rt1[i-1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9595 if(rt2[i-1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9596 }
9597 }
9598 }
9599 // Cycle count is needed at branches. Assume it is needed at the target too.
9600 if(i==0||bt[i]||itype[i]==CJUMP||itype[i]==FJUMP||itype[i]==SPAN) {
9601 if(regmap_pre[i][HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
9602 if(regs[i].regmap_entry[HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
9603 }
9604 // Save it
9605 needed_reg[i]=nr;
9606
9607 // Deallocate unneeded registers
9608 for(hr=0;hr<HOST_REGS;hr++)
9609 {
9610 if(!((nr>>hr)&1)) {
9611 if(regs[i].regmap_entry[hr]!=CCREG) regs[i].regmap_entry[hr]=-1;
9612 if((regs[i].regmap[hr]&63)!=rs1[i] && (regs[i].regmap[hr]&63)!=rs2[i] &&
9613 (regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
9614 (regs[i].regmap[hr]&63)!=PTEMP && (regs[i].regmap[hr]&63)!=CCREG)
9615 {
9616 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
9617 {
9618 if(likely[i]) {
9619 regs[i].regmap[hr]=-1;
9620 regs[i].isconst&=~(1<<hr);
9621 if(i<slen-2) regmap_pre[i+2][hr]=-1;
9622 }
9623 }
9624 }
9625 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
9626 {
9627 int d1=0,d2=0,map=0,temp=0;
9628 if(get_reg(regs[i].regmap,rt1[i+1]|64)>=0||get_reg(branch_regs[i].regmap,rt1[i+1]|64)>=0)
9629 {
9630 d1=dep1[i+1];
9631 d2=dep2[i+1];
9632 }
9633 if(using_tlb) {
9634 if(itype[i+1]==LOAD || itype[i+1]==LOADLR ||
9635 itype[i+1]==STORE || itype[i+1]==STORELR ||
9636 itype[i+1]==C1LS || itype[i+1]==C2LS)
9637 map=TLREG;
9638 } else
9639 if(itype[i+1]==STORE || itype[i+1]==STORELR ||
9640 (opcode[i+1]&0x3b)==0x39 || (opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1 || SWC2/SDC2
9641 map=INVCP;
9642 }
9643 if(itype[i+1]==LOADLR || itype[i+1]==STORELR ||
9644 itype[i+1]==C1LS || itype[i+1]==C2LS)
9645 temp=FTEMP;
9646 if((regs[i].regmap[hr]&63)!=rs1[i] && (regs[i].regmap[hr]&63)!=rs2[i] &&
9647 (regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
9648 (regs[i].regmap[hr]&63)!=rt1[i+1] && (regs[i].regmap[hr]&63)!=rt2[i+1] &&
9649 (regs[i].regmap[hr]^64)!=us1[i+1] && (regs[i].regmap[hr]^64)!=us2[i+1] &&
9650 (regs[i].regmap[hr]^64)!=d1 && (regs[i].regmap[hr]^64)!=d2 &&
9651 regs[i].regmap[hr]!=rs1[i+1] && regs[i].regmap[hr]!=rs2[i+1] &&
9652 (regs[i].regmap[hr]&63)!=temp && regs[i].regmap[hr]!=PTEMP &&
9653 regs[i].regmap[hr]!=RHASH && regs[i].regmap[hr]!=RHTBL &&
9654 regs[i].regmap[hr]!=RTEMP && regs[i].regmap[hr]!=CCREG &&
9655 regs[i].regmap[hr]!=map )
9656 {
9657 regs[i].regmap[hr]=-1;
9658 regs[i].isconst&=~(1<<hr);
9659 if((branch_regs[i].regmap[hr]&63)!=rs1[i] && (branch_regs[i].regmap[hr]&63)!=rs2[i] &&
9660 (branch_regs[i].regmap[hr]&63)!=rt1[i] && (branch_regs[i].regmap[hr]&63)!=rt2[i] &&
9661 (branch_regs[i].regmap[hr]&63)!=rt1[i+1] && (branch_regs[i].regmap[hr]&63)!=rt2[i+1] &&
9662 (branch_regs[i].regmap[hr]^64)!=us1[i+1] && (branch_regs[i].regmap[hr]^64)!=us2[i+1] &&
9663 (branch_regs[i].regmap[hr]^64)!=d1 && (branch_regs[i].regmap[hr]^64)!=d2 &&
9664 branch_regs[i].regmap[hr]!=rs1[i+1] && branch_regs[i].regmap[hr]!=rs2[i+1] &&
9665 (branch_regs[i].regmap[hr]&63)!=temp && branch_regs[i].regmap[hr]!=PTEMP &&
9666 branch_regs[i].regmap[hr]!=RHASH && branch_regs[i].regmap[hr]!=RHTBL &&
9667 branch_regs[i].regmap[hr]!=RTEMP && branch_regs[i].regmap[hr]!=CCREG &&
9668 branch_regs[i].regmap[hr]!=map)
9669 {
9670 branch_regs[i].regmap[hr]=-1;
9671 branch_regs[i].regmap_entry[hr]=-1;
9672 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
9673 {
9674 if(!likely[i]&&i<slen-2) {
9675 regmap_pre[i+2][hr]=-1;
9676 }
9677 }
9678 }
9679 }
9680 }
9681 else
9682 {
9683 // Non-branch
9684 if(i>0)
9685 {
9686 int d1=0,d2=0,map=-1,temp=-1;
9687 if(get_reg(regs[i].regmap,rt1[i]|64)>=0)
9688 {
9689 d1=dep1[i];
9690 d2=dep2[i];
9691 }
9692 if(using_tlb) {
9693 if(itype[i]==LOAD || itype[i]==LOADLR ||
9694 itype[i]==STORE || itype[i]==STORELR ||
9695 itype[i]==C1LS || itype[i]==C2LS)
9696 map=TLREG;
9697 } else if(itype[i]==STORE || itype[i]==STORELR ||
9698 (opcode[i]&0x3b)==0x39 || (opcode[i]&0x3b)==0x3a) { // SWC1/SDC1 || SWC2/SDC2
9699 map=INVCP;
9700 }
9701 if(itype[i]==LOADLR || itype[i]==STORELR ||
9702 itype[i]==C1LS || itype[i]==C2LS)
9703 temp=FTEMP;
9704 if((regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
9705 (regs[i].regmap[hr]^64)!=us1[i] && (regs[i].regmap[hr]^64)!=us2[i] &&
9706 (regs[i].regmap[hr]^64)!=d1 && (regs[i].regmap[hr]^64)!=d2 &&
9707 regs[i].regmap[hr]!=rs1[i] && regs[i].regmap[hr]!=rs2[i] &&
9708 (regs[i].regmap[hr]&63)!=temp && regs[i].regmap[hr]!=map &&
9709 (itype[i]!=SPAN||regs[i].regmap[hr]!=CCREG))
9710 {
9711 if(i<slen-1&&!is_ds[i]) {
9712 if(regmap_pre[i+1][hr]!=-1 || regs[i].regmap[hr]!=-1)
9713 if(regmap_pre[i+1][hr]!=regs[i].regmap[hr])
9714 if(regs[i].regmap[hr]<64||!((regs[i].was32>>(regs[i].regmap[hr]&63))&1))
9715 {
9716 printf("fail: %x (%d %d!=%d)\n",start+i*4,hr,regmap_pre[i+1][hr],regs[i].regmap[hr]);
9717 assert(regmap_pre[i+1][hr]==regs[i].regmap[hr]);
9718 }
9719 regmap_pre[i+1][hr]=-1;
9720 if(regs[i+1].regmap_entry[hr]==CCREG) regs[i+1].regmap_entry[hr]=-1;
9721 }
9722 regs[i].regmap[hr]=-1;
9723 regs[i].isconst&=~(1<<hr);
9724 }
9725 }
9726 }
9727 }
9728 }
9729 }
9730
9731 /* Pass 5 - Pre-allocate registers */
9732
9733 // If a register is allocated during a loop, try to allocate it for the
9734 // entire loop, if possible. This avoids loading/storing registers
9735 // inside of the loop.
9736
9737 signed char f_regmap[HOST_REGS];
9738 clear_all_regs(f_regmap);
9739 for(i=0;i<slen-1;i++)
9740 {
9741 if(itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
9742 {
9743 if(ba[i]>=start && ba[i]<(start+i*4))
9744 if(itype[i+1]==NOP||itype[i+1]==MOV||itype[i+1]==ALU
9745 ||itype[i+1]==SHIFTIMM||itype[i+1]==IMM16||itype[i+1]==LOAD
9746 ||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS
9747 ||itype[i+1]==SHIFT||itype[i+1]==COP1||itype[i+1]==FLOAT
9748 ||itype[i+1]==FCOMP||itype[i+1]==FCONV
9749 ||itype[i+1]==COP2||itype[i+1]==C2LS||itype[i+1]==C2OP)
9750 {
9751 int t=(ba[i]-start)>>2;
9752 if(t>0&&(itype[t-1]!=UJUMP&&itype[t-1]!=RJUMP&&itype[t-1]!=CJUMP&&itype[t-1]!=SJUMP&&itype[t-1]!=FJUMP)) // loop_preload can't handle jumps into delay slots
9753 if(t<2||(itype[t-2]!=UJUMP)) // call/ret assumes no registers allocated
9754 for(hr=0;hr<HOST_REGS;hr++)
9755 {
9756 if(regs[i].regmap[hr]>64) {
9757 if(!((regs[i].dirty>>hr)&1))
9758 f_regmap[hr]=regs[i].regmap[hr];
9759 else f_regmap[hr]=-1;
9760 }
9761 else if(regs[i].regmap[hr]>=0) {
9762 if(f_regmap[hr]!=regs[i].regmap[hr]) {
9763 // dealloc old register
9764 int n;
9765 for(n=0;n<HOST_REGS;n++)
9766 {
9767 if(f_regmap[n]==regs[i].regmap[hr]) {f_regmap[n]=-1;}
9768 }
9769 // and alloc new one
9770 f_regmap[hr]=regs[i].regmap[hr];
9771 }
9772 }
9773 if(branch_regs[i].regmap[hr]>64) {
9774 if(!((branch_regs[i].dirty>>hr)&1))
9775 f_regmap[hr]=branch_regs[i].regmap[hr];
9776 else f_regmap[hr]=-1;
9777 }
9778 else if(branch_regs[i].regmap[hr]>=0) {
9779 if(f_regmap[hr]!=branch_regs[i].regmap[hr]) {
9780 // dealloc old register
9781 int n;
9782 for(n=0;n<HOST_REGS;n++)
9783 {
9784 if(f_regmap[n]==branch_regs[i].regmap[hr]) {f_regmap[n]=-1;}
9785 }
9786 // and alloc new one
9787 f_regmap[hr]=branch_regs[i].regmap[hr];
9788 }
9789 }
9790 if(itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS
9791 ||itype[i+1]==SHIFT||itype[i+1]==COP1||itype[i+1]==FLOAT
9792 ||itype[i+1]==FCOMP||itype[i+1]==FCONV
9793 ||itype[i+1]==COP2||itype[i+1]==C2LS||itype[i+1]==C2OP)
9794 {
9795 // Test both in case the delay slot is ooo,
9796 // could be done better...
9797 if(count_free_regs(branch_regs[i].regmap)<2
9798 ||count_free_regs(regs[i].regmap)<2)
9799 f_regmap[hr]=branch_regs[i].regmap[hr];
9800 }
9801 // Avoid dirty->clean transition
9802 // #ifdef DESTRUCTIVE_WRITEBACK here?
9803 if(t>0) if(get_reg(regmap_pre[t],f_regmap[hr])>=0) if((regs[t].wasdirty>>get_reg(regmap_pre[t],f_regmap[hr]))&1) f_regmap[hr]=-1;
9804 if(f_regmap[hr]>0) {
9805 if(regs[t].regmap_entry[hr]<0) {
9806 int r=f_regmap[hr];
9807 for(j=t;j<=i;j++)
9808 {
9809 //printf("Test %x -> %x, %x %d/%d\n",start+i*4,ba[i],start+j*4,hr,r);
9810 if(r<34&&((unneeded_reg[j]>>r)&1)) break;
9811 if(r>63&&((unneeded_reg_upper[j]>>(r&63))&1)) break;
9812 if(r>63) {
9813 // NB This can exclude the case where the upper-half
9814 // register is lower numbered than the lower-half
9815 // register. Not sure if it's worth fixing...
9816 if(get_reg(regs[j].regmap,r&63)<0) break;
9817 if(regs[j].is32&(1LL<<(r&63))) break;
9818 }
9819 if(regs[j].regmap[hr]==f_regmap[hr]&&(f_regmap[hr]&63)<TEMPREG) {
9820 //printf("Hit %x -> %x, %x %d/%d\n",start+i*4,ba[i],start+j*4,hr,r);
9821 int k;
9822 if(regs[i].regmap[hr]==-1&&branch_regs[i].regmap[hr]==-1) {
9823 if(get_reg(regs[i+2].regmap,f_regmap[hr])>=0) break;
9824 if(r>63) {
9825 if(get_reg(regs[i].regmap,r&63)<0) break;
9826 if(get_reg(branch_regs[i].regmap,r&63)<0) break;
9827 }
9828 k=i;
9829 while(k>1&&regs[k-1].regmap[hr]==-1) {
9830 if(itype[k-1]==STORE||itype[k-1]==STORELR
9831 ||itype[k-1]==C1LS||itype[k-1]==SHIFT||itype[k-1]==COP1
9832 ||itype[k-1]==FLOAT||itype[k-1]==FCONV||itype[k-1]==FCOMP
9833 ||itype[k-1]==COP2||itype[k-1]==C2LS||itype[k-1]==C2OP) {
9834 if(count_free_regs(regs[k-1].regmap)<2) {
9835 //printf("no free regs for store %x\n",start+(k-1)*4);
9836 break;
9837 }
9838 }
9839 else
9840 if(itype[k-1]!=NOP&&itype[k-1]!=MOV&&itype[k-1]!=ALU&&itype[k-1]!=SHIFTIMM&&itype[k-1]!=IMM16&&itype[k-1]!=LOAD) break;
9841 if(get_reg(regs[k-1].regmap,f_regmap[hr])>=0) {
9842 //printf("no-match due to different register\n");
9843 break;
9844 }
9845 if(itype[k-2]==UJUMP||itype[k-2]==RJUMP||itype[k-2]==CJUMP||itype[k-2]==SJUMP||itype[k-2]==FJUMP) {
9846 //printf("no-match due to branch\n");
9847 break;
9848 }
9849 // call/ret fast path assumes no registers allocated
9850 if(k>2&&(itype[k-3]==UJUMP||itype[k-3]==RJUMP)) {
9851 break;
9852 }
9853 if(r>63) {
9854 // NB This can exclude the case where the upper-half
9855 // register is lower numbered than the lower-half
9856 // register. Not sure if it's worth fixing...
9857 if(get_reg(regs[k-1].regmap,r&63)<0) break;
9858 if(regs[k-1].is32&(1LL<<(r&63))) break;
9859 }
9860 k--;
9861 }
9862 if(i<slen-1) {
9863 if((regs[k].is32&(1LL<<f_regmap[hr]))!=
9864 (regs[i+2].was32&(1LL<<f_regmap[hr]))) {
9865 //printf("bad match after branch\n");
9866 break;
9867 }
9868 }
9869 if(regs[k-1].regmap[hr]==f_regmap[hr]&&regmap_pre[k][hr]==f_regmap[hr]) {
9870 //printf("Extend r%d, %x ->\n",hr,start+k*4);
9871 while(k<i) {
9872 regs[k].regmap_entry[hr]=f_regmap[hr];
9873 regs[k].regmap[hr]=f_regmap[hr];
9874 regmap_pre[k+1][hr]=f_regmap[hr];
9875 regs[k].wasdirty&=~(1<<hr);
9876 regs[k].dirty&=~(1<<hr);
9877 regs[k].wasdirty|=(1<<hr)&regs[k-1].dirty;
9878 regs[k].dirty|=(1<<hr)&regs[k].wasdirty;
9879 regs[k].wasconst&=~(1<<hr);
9880 regs[k].isconst&=~(1<<hr);
9881 k++;
9882 }
9883 }
9884 else {
9885 //printf("Fail Extend r%d, %x ->\n",hr,start+k*4);
9886 break;
9887 }
9888 assert(regs[i-1].regmap[hr]==f_regmap[hr]);
9889 if(regs[i-1].regmap[hr]==f_regmap[hr]&&regmap_pre[i][hr]==f_regmap[hr]) {
9890 //printf("OK fill %x (r%d)\n",start+i*4,hr);
9891 regs[i].regmap_entry[hr]=f_regmap[hr];
9892 regs[i].regmap[hr]=f_regmap[hr];
9893 regs[i].wasdirty&=~(1<<hr);
9894 regs[i].dirty&=~(1<<hr);
9895 regs[i].wasdirty|=(1<<hr)&regs[i-1].dirty;
9896 regs[i].dirty|=(1<<hr)&regs[i-1].dirty;
9897 regs[i].wasconst&=~(1<<hr);
9898 regs[i].isconst&=~(1<<hr);
9899 branch_regs[i].regmap_entry[hr]=f_regmap[hr];
9900 branch_regs[i].wasdirty&=~(1<<hr);
9901 branch_regs[i].wasdirty|=(1<<hr)&regs[i].dirty;
9902 branch_regs[i].regmap[hr]=f_regmap[hr];
9903 branch_regs[i].dirty&=~(1<<hr);
9904 branch_regs[i].dirty|=(1<<hr)&regs[i].dirty;
9905 branch_regs[i].wasconst&=~(1<<hr);
9906 branch_regs[i].isconst&=~(1<<hr);
9907 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000) {
9908 regmap_pre[i+2][hr]=f_regmap[hr];
9909 regs[i+2].wasdirty&=~(1<<hr);
9910 regs[i+2].wasdirty|=(1<<hr)&regs[i].dirty;
9911 assert((branch_regs[i].is32&(1LL<<f_regmap[hr]))==
9912 (regs[i+2].was32&(1LL<<f_regmap[hr])));
9913 }
9914 }
9915 }
9916 for(k=t;k<j;k++) {
9917 regs[k].regmap_entry[hr]=f_regmap[hr];
9918 regs[k].regmap[hr]=f_regmap[hr];
9919 regmap_pre[k+1][hr]=f_regmap[hr];
9920 regs[k+1].wasdirty&=~(1<<hr);
9921 regs[k].dirty&=~(1<<hr);
9922 regs[k].wasconst&=~(1<<hr);
9923 regs[k].isconst&=~(1<<hr);
9924 }
9925 if(regs[j].regmap[hr]==f_regmap[hr])
9926 regs[j].regmap_entry[hr]=f_regmap[hr];
9927 break;
9928 }
9929 if(j==i) break;
9930 if(regs[j].regmap[hr]>=0)
9931 break;
9932 if(get_reg(regs[j].regmap,f_regmap[hr])>=0) {
9933 //printf("no-match due to different register\n");
9934 break;
9935 }
9936 if((regs[j+1].is32&(1LL<<f_regmap[hr]))!=(regs[j].is32&(1LL<<f_regmap[hr]))) {
9937 //printf("32/64 mismatch %x %d\n",start+j*4,hr);
9938 break;
9939 }
9940 if(itype[j]==STORE||itype[j]==STORELR||itype[j]==C1LS
9941 ||itype[j]==SHIFT||itype[j]==COP1||itype[j]==FLOAT
9942 ||itype[j]==FCOMP||itype[j]==FCONV
9943 ||itype[j]==COP2||itype[j]==C2LS||itype[j]==C2OP) {
9944 if(count_free_regs(regs[j].regmap)<2) {
9945 //printf("No free regs for store %x\n",start+j*4);
9946 break;
9947 }
9948 }
9949 else if(itype[j]!=NOP&&itype[j]!=MOV&&itype[j]!=ALU&&itype[j]!=SHIFTIMM&&itype[j]!=IMM16&&itype[j]!=LOAD) break;
9950 if(f_regmap[hr]>=64) {
9951 if(regs[j].is32&(1LL<<(f_regmap[hr]&63))) {
9952 break;
9953 }
9954 else
9955 {
9956 if(get_reg(regs[j].regmap,f_regmap[hr]&63)<0) {
9957 break;
9958 }
9959 }
9960 }
9961 }
9962 }
9963 }
9964 }
9965 }
9966 }else{
9967 int count=0;
9968 for(hr=0;hr<HOST_REGS;hr++)
9969 {
9970 if(hr!=EXCLUDE_REG) {
9971 if(regs[i].regmap[hr]>64) {
9972 if(!((regs[i].dirty>>hr)&1))
9973 f_regmap[hr]=regs[i].regmap[hr];
9974 }
9975 else if(regs[i].regmap[hr]>=0) {
9976 if(f_regmap[hr]!=regs[i].regmap[hr]) {
9977 // dealloc old register
9978 int n;
9979 for(n=0;n<HOST_REGS;n++)
9980 {
9981 if(f_regmap[n]==regs[i].regmap[hr]) {f_regmap[n]=-1;}
9982 }
9983 // and alloc new one
9984 f_regmap[hr]=regs[i].regmap[hr];
9985 }
9986 }
9987 else if(regs[i].regmap[hr]<0) count++;
9988 }
9989 }
9990 // Try to restore cycle count at branch targets
9991 if(bt[i]) {
9992 for(j=i;j<slen-1;j++) {
9993 if(regs[j].regmap[HOST_CCREG]!=-1) break;
9994 if(itype[j]==STORE||itype[j]==STORELR||itype[j]==C1LS
9995 ||itype[j]==SHIFT||itype[j]==COP1||itype[j]==FLOAT
9996 ||itype[j]==FCOMP||itype[j]==FCONV
9997 ||itype[j]==COP2||itype[j]==C2LS||itype[j]==C2OP) {
9998 if(count_free_regs(regs[j].regmap)<2) {
9999 //printf("no free regs for store %x\n",start+j*4);
10000 break;
10001 }
10002 }
10003 else
10004 if(itype[j]!=NOP&&itype[j]!=MOV&&itype[j]!=ALU&&itype[j]!=SHIFTIMM&&itype[j]!=IMM16&&itype[j]!=LOAD) break;
10005 }
10006 if(regs[j].regmap[HOST_CCREG]==CCREG) {
10007 int k=i;
10008 //printf("Extend CC, %x -> %x\n",start+k*4,start+j*4);
10009 while(k<j) {
10010 regs[k].regmap_entry[HOST_CCREG]=CCREG;
10011 regs[k].regmap[HOST_CCREG]=CCREG;
10012 regmap_pre[k+1][HOST_CCREG]=CCREG;
10013 regs[k+1].wasdirty|=1<<HOST_CCREG;
10014 regs[k].dirty|=1<<HOST_CCREG;
10015 regs[k].wasconst&=~(1<<HOST_CCREG);
10016 regs[k].isconst&=~(1<<HOST_CCREG);
10017 k++;
10018 }
10019 regs[j].regmap_entry[HOST_CCREG]=CCREG;
10020 }
10021 // Work backwards from the branch target
10022 if(j>i&&f_regmap[HOST_CCREG]==CCREG)
10023 {
10024 //printf("Extend backwards\n");
10025 int k;
10026 k=i;
10027 while(regs[k-1].regmap[HOST_CCREG]==-1) {
10028 if(itype[k-1]==STORE||itype[k-1]==STORELR||itype[k-1]==C1LS
10029 ||itype[k-1]==SHIFT||itype[k-1]==COP1||itype[k-1]==FLOAT
10030 ||itype[k-1]==FCONV||itype[k-1]==FCOMP
10031 ||itype[k-1]==COP2||itype[k-1]==C2LS||itype[k-1]==C2OP) {
10032 if(count_free_regs(regs[k-1].regmap)<2) {
10033 //printf("no free regs for store %x\n",start+(k-1)*4);
10034 break;
10035 }
10036 }
10037 else
10038 if(itype[k-1]!=NOP&&itype[k-1]!=MOV&&itype[k-1]!=ALU&&itype[k-1]!=SHIFTIMM&&itype[k-1]!=IMM16&&itype[k-1]!=LOAD) break;
10039 k--;
10040 }
10041 if(regs[k-1].regmap[HOST_CCREG]==CCREG) {
10042 //printf("Extend CC, %x ->\n",start+k*4);
10043 while(k<=i) {
10044 regs[k].regmap_entry[HOST_CCREG]=CCREG;
10045 regs[k].regmap[HOST_CCREG]=CCREG;
10046 regmap_pre[k+1][HOST_CCREG]=CCREG;
10047 regs[k+1].wasdirty|=1<<HOST_CCREG;
10048 regs[k].dirty|=1<<HOST_CCREG;
10049 regs[k].wasconst&=~(1<<HOST_CCREG);
10050 regs[k].isconst&=~(1<<HOST_CCREG);
10051 k++;
10052 }
10053 }
10054 else {
10055 //printf("Fail Extend CC, %x ->\n",start+k*4);
10056 }
10057 }
10058 }
10059 if(itype[i]!=STORE&&itype[i]!=STORELR&&itype[i]!=C1LS&&itype[i]!=SHIFT&&
10060 itype[i]!=NOP&&itype[i]!=MOV&&itype[i]!=ALU&&itype[i]!=SHIFTIMM&&
10061 itype[i]!=IMM16&&itype[i]!=LOAD&&itype[i]!=COP1&&itype[i]!=FLOAT&&
10062 itype[i]!=FCONV&&itype[i]!=FCOMP&&
10063 itype[i]!=COP2&&itype[i]!=C2LS&&itype[i]!=C2OP)
10064 {
10065 memcpy(f_regmap,regs[i].regmap,sizeof(f_regmap));
10066 }
10067 }
10068 }
10069
10070 // This allocates registers (if possible) one instruction prior
10071 // to use, which can avoid a load-use penalty on certain CPUs.
10072 for(i=0;i<slen-1;i++)
10073 {
10074 if(!i||(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP))
10075 {
10076 if(!bt[i+1])
10077 {
10078 if(itype[i]==ALU||itype[i]==MOV||itype[i]==LOAD||itype[i]==SHIFTIMM||itype[i]==IMM16
10079 ||((itype[i]==COP1||itype[i]==COP2)&&opcode2[i]<3))
10080 {
10081 if(rs1[i+1]) {
10082 if((hr=get_reg(regs[i+1].regmap,rs1[i+1]))>=0)
10083 {
10084 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10085 {
10086 regs[i].regmap[hr]=regs[i+1].regmap[hr];
10087 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
10088 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
10089 regs[i].isconst&=~(1<<hr);
10090 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10091 constmap[i][hr]=constmap[i+1][hr];
10092 regs[i+1].wasdirty&=~(1<<hr);
10093 regs[i].dirty&=~(1<<hr);
10094 }
10095 }
10096 }
10097 if(rs2[i+1]) {
10098 if((hr=get_reg(regs[i+1].regmap,rs2[i+1]))>=0)
10099 {
10100 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10101 {
10102 regs[i].regmap[hr]=regs[i+1].regmap[hr];
10103 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
10104 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
10105 regs[i].isconst&=~(1<<hr);
10106 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10107 constmap[i][hr]=constmap[i+1][hr];
10108 regs[i+1].wasdirty&=~(1<<hr);
10109 regs[i].dirty&=~(1<<hr);
10110 }
10111 }
10112 }
10113 if(itype[i+1]==LOAD&&rs1[i+1]&&get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10114 if((hr=get_reg(regs[i+1].regmap,rt1[i+1]))>=0)
10115 {
10116 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10117 {
10118 regs[i].regmap[hr]=rs1[i+1];
10119 regmap_pre[i+1][hr]=rs1[i+1];
10120 regs[i+1].regmap_entry[hr]=rs1[i+1];
10121 regs[i].isconst&=~(1<<hr);
10122 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10123 constmap[i][hr]=constmap[i+1][hr];
10124 regs[i+1].wasdirty&=~(1<<hr);
10125 regs[i].dirty&=~(1<<hr);
10126 }
10127 }
10128 }
10129 if(lt1[i+1]&&get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10130 if((hr=get_reg(regs[i+1].regmap,rt1[i+1]))>=0)
10131 {
10132 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10133 {
10134 regs[i].regmap[hr]=rs1[i+1];
10135 regmap_pre[i+1][hr]=rs1[i+1];
10136 regs[i+1].regmap_entry[hr]=rs1[i+1];
10137 regs[i].isconst&=~(1<<hr);
10138 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10139 constmap[i][hr]=constmap[i+1][hr];
10140 regs[i+1].wasdirty&=~(1<<hr);
10141 regs[i].dirty&=~(1<<hr);
10142 }
10143 }
10144 }
10145 #ifndef HOST_IMM_ADDR32
10146 if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS||itype[i+1]==C2LS) {
10147 hr=get_reg(regs[i+1].regmap,TLREG);
10148 if(hr>=0) {
10149 int sr=get_reg(regs[i+1].regmap,rs1[i+1]);
10150 if(sr>=0&&((regs[i+1].wasconst>>sr)&1)) {
10151 int nr;
10152 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10153 {
10154 regs[i].regmap[hr]=MGEN1+((i+1)&1);
10155 regmap_pre[i+1][hr]=MGEN1+((i+1)&1);
10156 regs[i+1].regmap_entry[hr]=MGEN1+((i+1)&1);
10157 regs[i].isconst&=~(1<<hr);
10158 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10159 constmap[i][hr]=constmap[i+1][hr];
10160 regs[i+1].wasdirty&=~(1<<hr);
10161 regs[i].dirty&=~(1<<hr);
10162 }
10163 else if((nr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1))>=0)
10164 {
10165 // move it to another register
10166 regs[i+1].regmap[hr]=-1;
10167 regmap_pre[i+2][hr]=-1;
10168 regs[i+1].regmap[nr]=TLREG;
10169 regmap_pre[i+2][nr]=TLREG;
10170 regs[i].regmap[nr]=MGEN1+((i+1)&1);
10171 regmap_pre[i+1][nr]=MGEN1+((i+1)&1);
10172 regs[i+1].regmap_entry[nr]=MGEN1+((i+1)&1);
10173 regs[i].isconst&=~(1<<nr);
10174 regs[i+1].isconst&=~(1<<nr);
10175 regs[i].dirty&=~(1<<nr);
10176 regs[i+1].wasdirty&=~(1<<nr);
10177 regs[i+1].dirty&=~(1<<nr);
10178 regs[i+2].wasdirty&=~(1<<nr);
10179 }
10180 }
10181 }
10182 }
10183 #endif
10184 if(itype[i+1]==STORE||itype[i+1]==STORELR
10185 ||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SB/SH/SW/SD/SWC1/SDC1/SWC2/SDC2
10186 if(get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10187 hr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1);
10188 if(hr<0) hr=get_reg(regs[i+1].regmap,-1);
10189 else {regs[i+1].regmap[hr]=AGEN1+((i+1)&1);regs[i+1].isconst&=~(1<<hr);}
10190 assert(hr>=0);
10191 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10192 {
10193 regs[i].regmap[hr]=rs1[i+1];
10194 regmap_pre[i+1][hr]=rs1[i+1];
10195 regs[i+1].regmap_entry[hr]=rs1[i+1];
10196 regs[i].isconst&=~(1<<hr);
10197 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10198 constmap[i][hr]=constmap[i+1][hr];
10199 regs[i+1].wasdirty&=~(1<<hr);
10200 regs[i].dirty&=~(1<<hr);
10201 }
10202 }
10203 }
10204 if(itype[i+1]==LOADLR||(opcode[i+1]&0x3b)==0x31||(opcode[i+1]&0x3b)==0x32) { // LWC1/LDC1, LWC2/LDC2
10205 if(get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10206 int nr;
10207 hr=get_reg(regs[i+1].regmap,FTEMP);
10208 assert(hr>=0);
10209 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10210 {
10211 regs[i].regmap[hr]=rs1[i+1];
10212 regmap_pre[i+1][hr]=rs1[i+1];
10213 regs[i+1].regmap_entry[hr]=rs1[i+1];
10214 regs[i].isconst&=~(1<<hr);
10215 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10216 constmap[i][hr]=constmap[i+1][hr];
10217 regs[i+1].wasdirty&=~(1<<hr);
10218 regs[i].dirty&=~(1<<hr);
10219 }
10220 else if((nr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1))>=0)
10221 {
10222 // move it to another register
10223 regs[i+1].regmap[hr]=-1;
10224 regmap_pre[i+2][hr]=-1;
10225 regs[i+1].regmap[nr]=FTEMP;
10226 regmap_pre[i+2][nr]=FTEMP;
10227 regs[i].regmap[nr]=rs1[i+1];
10228 regmap_pre[i+1][nr]=rs1[i+1];
10229 regs[i+1].regmap_entry[nr]=rs1[i+1];
10230 regs[i].isconst&=~(1<<nr);
10231 regs[i+1].isconst&=~(1<<nr);
10232 regs[i].dirty&=~(1<<nr);
10233 regs[i+1].wasdirty&=~(1<<nr);
10234 regs[i+1].dirty&=~(1<<nr);
10235 regs[i+2].wasdirty&=~(1<<nr);
10236 }
10237 }
10238 }
10239 if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR/*||itype[i+1]==C1LS||||itype[i+1]==C2LS*/) {
10240 if(itype[i+1]==LOAD)
10241 hr=get_reg(regs[i+1].regmap,rt1[i+1]);
10242 if(itype[i+1]==LOADLR||(opcode[i+1]&0x3b)==0x31||(opcode[i+1]&0x3b)==0x32) // LWC1/LDC1, LWC2/LDC2
10243 hr=get_reg(regs[i+1].regmap,FTEMP);
10244 if(itype[i+1]==STORE||itype[i+1]==STORELR||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1/SWC2/SDC2
10245 hr=get_reg(regs[i+1].regmap,AGEN1+((i+1)&1));
10246 if(hr<0) hr=get_reg(regs[i+1].regmap,-1);
10247 }
10248 if(hr>=0&&regs[i].regmap[hr]<0) {
10249 int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
10250 if(rs>=0&&((regs[i+1].wasconst>>rs)&1)) {
10251 regs[i].regmap[hr]=AGEN1+((i+1)&1);
10252 regmap_pre[i+1][hr]=AGEN1+((i+1)&1);
10253 regs[i+1].regmap_entry[hr]=AGEN1+((i+1)&1);
10254 regs[i].isconst&=~(1<<hr);
10255 regs[i+1].wasdirty&=~(1<<hr);
10256 regs[i].dirty&=~(1<<hr);
10257 }
10258 }
10259 }
10260 }
10261 }
10262 }
10263 }
10264
10265 /* Pass 6 - Optimize clean/dirty state */
10266 clean_registers(0,slen-1,1);
10267
10268 /* Pass 7 - Identify 32-bit registers */
10269#ifndef FORCE32
10270 provisional_r32();
10271
10272 u_int r32=0;
10273
10274 for (i=slen-1;i>=0;i--)
10275 {
10276 int hr;
10277 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
10278 {
10279 if(ba[i]<start || ba[i]>=(start+slen*4))
10280 {
10281 // Branch out of this block, don't need anything
10282 r32=0;
10283 }
10284 else
10285 {
10286 // Internal branch
10287 // Need whatever matches the target
10288 // (and doesn't get overwritten by the delay slot instruction)
10289 r32=0;
10290 int t=(ba[i]-start)>>2;
10291 if(ba[i]>start+i*4) {
10292 // Forward branch
10293 if(!(requires_32bit[t]&~regs[i].was32))
10294 r32|=requires_32bit[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
10295 }else{
10296 // Backward branch
10297 //if(!(regs[t].was32&~unneeded_reg_upper[t]&~regs[i].was32))
10298 // r32|=regs[t].was32&~unneeded_reg_upper[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
10299 if(!(pr32[t]&~regs[i].was32))
10300 r32|=pr32[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
10301 }
10302 }
10303 // Conditional branch may need registers for following instructions
10304 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
10305 {
10306 if(i<slen-2) {
10307 r32|=requires_32bit[i+2];
10308 r32&=regs[i].was32;
10309 // Mark this address as a branch target since it may be called
10310 // upon return from interrupt
10311 bt[i+2]=1;
10312 }
10313 }
10314 // Merge in delay slot
10315 if(!likely[i]) {
10316 // These are overwritten unless the branch is "likely"
10317 // and the delay slot is nullified if not taken
10318 r32&=~(1LL<<rt1[i+1]);
10319 r32&=~(1LL<<rt2[i+1]);
10320 }
10321 // Assume these are needed (delay slot)
10322 if(us1[i+1]>0)
10323 {
10324 if((regs[i].was32>>us1[i+1])&1) r32|=1LL<<us1[i+1];
10325 }
10326 if(us2[i+1]>0)
10327 {
10328 if((regs[i].was32>>us2[i+1])&1) r32|=1LL<<us2[i+1];
10329 }
10330 if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1))
10331 {
10332 if((regs[i].was32>>dep1[i+1])&1) r32|=1LL<<dep1[i+1];
10333 }
10334 if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1))
10335 {
10336 if((regs[i].was32>>dep2[i+1])&1) r32|=1LL<<dep2[i+1];
10337 }
10338 }
10339 else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
10340 {
10341 // SYSCALL instruction (software interrupt)
10342 r32=0;
10343 }
10344 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
10345 {
10346 // ERET instruction (return from interrupt)
10347 r32=0;
10348 }
10349 // Check 32 bits
10350 r32&=~(1LL<<rt1[i]);
10351 r32&=~(1LL<<rt2[i]);
10352 if(us1[i]>0)
10353 {
10354 if((regs[i].was32>>us1[i])&1) r32|=1LL<<us1[i];
10355 }
10356 if(us2[i]>0)
10357 {
10358 if((regs[i].was32>>us2[i])&1) r32|=1LL<<us2[i];
10359 }
10360 if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1))
10361 {
10362 if((regs[i].was32>>dep1[i])&1) r32|=1LL<<dep1[i];
10363 }
10364 if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1))
10365 {
10366 if((regs[i].was32>>dep2[i])&1) r32|=1LL<<dep2[i];
10367 }
10368 requires_32bit[i]=r32;
10369
10370 // Dirty registers which are 32-bit, require 32-bit input
10371 // as they will be written as 32-bit values
10372 for(hr=0;hr<HOST_REGS;hr++)
10373 {
10374 if(regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64) {
10375 if((regs[i].was32>>regs[i].regmap_entry[hr])&(regs[i].wasdirty>>hr)&1) {
10376 if(!((unneeded_reg_upper[i]>>regs[i].regmap_entry[hr])&1))
10377 requires_32bit[i]|=1LL<<regs[i].regmap_entry[hr];
10378 }
10379 }
10380 }
10381 //requires_32bit[i]=is32[i]&~unneeded_reg_upper[i]; // DEBUG
10382 }
10383#endif
10384
10385 if(itype[slen-1]==SPAN) {
10386 bt[slen-1]=1; // Mark as a branch target so instruction can restart after exception
10387 }
10388
10389 /* Debug/disassembly */
10390 if((void*)assem_debug==(void*)printf)
10391 for(i=0;i<slen;i++)
10392 {
10393 printf("U:");
10394 int r;
10395 for(r=1;r<=CCREG;r++) {
10396 if((unneeded_reg[i]>>r)&1) {
10397 if(r==HIREG) printf(" HI");
10398 else if(r==LOREG) printf(" LO");
10399 else printf(" r%d",r);
10400 }
10401 }
10402#ifndef FORCE32
10403 printf(" UU:");
10404 for(r=1;r<=CCREG;r++) {
10405 if(((unneeded_reg_upper[i]&~unneeded_reg[i])>>r)&1) {
10406 if(r==HIREG) printf(" HI");
10407 else if(r==LOREG) printf(" LO");
10408 else printf(" r%d",r);
10409 }
10410 }
10411 printf(" 32:");
10412 for(r=0;r<=CCREG;r++) {
10413 //if(((is32[i]>>r)&(~unneeded_reg[i]>>r))&1) {
10414 if((regs[i].was32>>r)&1) {
10415 if(r==CCREG) printf(" CC");
10416 else if(r==HIREG) printf(" HI");
10417 else if(r==LOREG) printf(" LO");
10418 else printf(" r%d",r);
10419 }
10420 }
10421#endif
10422 printf("\n");
10423 #if defined(__i386__) || defined(__x86_64__)
10424 printf("pre: eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",regmap_pre[i][0],regmap_pre[i][1],regmap_pre[i][2],regmap_pre[i][3],regmap_pre[i][5],regmap_pre[i][6],regmap_pre[i][7]);
10425 #endif
10426 #ifdef __arm__
10427 printf("pre: r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d\n",regmap_pre[i][0],regmap_pre[i][1],regmap_pre[i][2],regmap_pre[i][3],regmap_pre[i][4],regmap_pre[i][5],regmap_pre[i][6],regmap_pre[i][7],regmap_pre[i][8],regmap_pre[i][9],regmap_pre[i][10],regmap_pre[i][12]);
10428 #endif
10429 printf("needs: ");
10430 if(needed_reg[i]&1) printf("eax ");
10431 if((needed_reg[i]>>1)&1) printf("ecx ");
10432 if((needed_reg[i]>>2)&1) printf("edx ");
10433 if((needed_reg[i]>>3)&1) printf("ebx ");
10434 if((needed_reg[i]>>5)&1) printf("ebp ");
10435 if((needed_reg[i]>>6)&1) printf("esi ");
10436 if((needed_reg[i]>>7)&1) printf("edi ");
10437 printf("r:");
10438 for(r=0;r<=CCREG;r++) {
10439 //if(((requires_32bit[i]>>r)&(~unneeded_reg[i]>>r))&1) {
10440 if((requires_32bit[i]>>r)&1) {
10441 if(r==CCREG) printf(" CC");
10442 else if(r==HIREG) printf(" HI");
10443 else if(r==LOREG) printf(" LO");
10444 else printf(" r%d",r);
10445 }
10446 }
10447 printf("\n");
10448 /*printf("pr:");
10449 for(r=0;r<=CCREG;r++) {
10450 //if(((requires_32bit[i]>>r)&(~unneeded_reg[i]>>r))&1) {
10451 if((pr32[i]>>r)&1) {
10452 if(r==CCREG) printf(" CC");
10453 else if(r==HIREG) printf(" HI");
10454 else if(r==LOREG) printf(" LO");
10455 else printf(" r%d",r);
10456 }
10457 }
10458 if(pr32[i]!=requires_32bit[i]) printf(" OOPS");
10459 printf("\n");*/
10460 #if defined(__i386__) || defined(__x86_64__)
10461 printf("entry: eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",regs[i].regmap_entry[0],regs[i].regmap_entry[1],regs[i].regmap_entry[2],regs[i].regmap_entry[3],regs[i].regmap_entry[5],regs[i].regmap_entry[6],regs[i].regmap_entry[7]);
10462 printf("dirty: ");
10463 if(regs[i].wasdirty&1) printf("eax ");
10464 if((regs[i].wasdirty>>1)&1) printf("ecx ");
10465 if((regs[i].wasdirty>>2)&1) printf("edx ");
10466 if((regs[i].wasdirty>>3)&1) printf("ebx ");
10467 if((regs[i].wasdirty>>5)&1) printf("ebp ");
10468 if((regs[i].wasdirty>>6)&1) printf("esi ");
10469 if((regs[i].wasdirty>>7)&1) printf("edi ");
10470 #endif
10471 #ifdef __arm__
10472 printf("entry: r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d\n",regs[i].regmap_entry[0],regs[i].regmap_entry[1],regs[i].regmap_entry[2],regs[i].regmap_entry[3],regs[i].regmap_entry[4],regs[i].regmap_entry[5],regs[i].regmap_entry[6],regs[i].regmap_entry[7],regs[i].regmap_entry[8],regs[i].regmap_entry[9],regs[i].regmap_entry[10],regs[i].regmap_entry[12]);
10473 printf("dirty: ");
10474 if(regs[i].wasdirty&1) printf("r0 ");
10475 if((regs[i].wasdirty>>1)&1) printf("r1 ");
10476 if((regs[i].wasdirty>>2)&1) printf("r2 ");
10477 if((regs[i].wasdirty>>3)&1) printf("r3 ");
10478 if((regs[i].wasdirty>>4)&1) printf("r4 ");
10479 if((regs[i].wasdirty>>5)&1) printf("r5 ");
10480 if((regs[i].wasdirty>>6)&1) printf("r6 ");
10481 if((regs[i].wasdirty>>7)&1) printf("r7 ");
10482 if((regs[i].wasdirty>>8)&1) printf("r8 ");
10483 if((regs[i].wasdirty>>9)&1) printf("r9 ");
10484 if((regs[i].wasdirty>>10)&1) printf("r10 ");
10485 if((regs[i].wasdirty>>12)&1) printf("r12 ");
10486 #endif
10487 printf("\n");
10488 disassemble_inst(i);
10489 //printf ("ccadj[%d] = %d\n",i,ccadj[i]);
10490 #if defined(__i386__) || defined(__x86_64__)
10491 printf("eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d dirty: ",regs[i].regmap[0],regs[i].regmap[1],regs[i].regmap[2],regs[i].regmap[3],regs[i].regmap[5],regs[i].regmap[6],regs[i].regmap[7]);
10492 if(regs[i].dirty&1) printf("eax ");
10493 if((regs[i].dirty>>1)&1) printf("ecx ");
10494 if((regs[i].dirty>>2)&1) printf("edx ");
10495 if((regs[i].dirty>>3)&1) printf("ebx ");
10496 if((regs[i].dirty>>5)&1) printf("ebp ");
10497 if((regs[i].dirty>>6)&1) printf("esi ");
10498 if((regs[i].dirty>>7)&1) printf("edi ");
10499 #endif
10500 #ifdef __arm__
10501 printf("r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d dirty: ",regs[i].regmap[0],regs[i].regmap[1],regs[i].regmap[2],regs[i].regmap[3],regs[i].regmap[4],regs[i].regmap[5],regs[i].regmap[6],regs[i].regmap[7],regs[i].regmap[8],regs[i].regmap[9],regs[i].regmap[10],regs[i].regmap[12]);
10502 if(regs[i].dirty&1) printf("r0 ");
10503 if((regs[i].dirty>>1)&1) printf("r1 ");
10504 if((regs[i].dirty>>2)&1) printf("r2 ");
10505 if((regs[i].dirty>>3)&1) printf("r3 ");
10506 if((regs[i].dirty>>4)&1) printf("r4 ");
10507 if((regs[i].dirty>>5)&1) printf("r5 ");
10508 if((regs[i].dirty>>6)&1) printf("r6 ");
10509 if((regs[i].dirty>>7)&1) printf("r7 ");
10510 if((regs[i].dirty>>8)&1) printf("r8 ");
10511 if((regs[i].dirty>>9)&1) printf("r9 ");
10512 if((regs[i].dirty>>10)&1) printf("r10 ");
10513 if((regs[i].dirty>>12)&1) printf("r12 ");
10514 #endif
10515 printf("\n");
10516 if(regs[i].isconst) {
10517 printf("constants: ");
10518 #if defined(__i386__) || defined(__x86_64__)
10519 if(regs[i].isconst&1) printf("eax=%x ",(int)constmap[i][0]);
10520 if((regs[i].isconst>>1)&1) printf("ecx=%x ",(int)constmap[i][1]);
10521 if((regs[i].isconst>>2)&1) printf("edx=%x ",(int)constmap[i][2]);
10522 if((regs[i].isconst>>3)&1) printf("ebx=%x ",(int)constmap[i][3]);
10523 if((regs[i].isconst>>5)&1) printf("ebp=%x ",(int)constmap[i][5]);
10524 if((regs[i].isconst>>6)&1) printf("esi=%x ",(int)constmap[i][6]);
10525 if((regs[i].isconst>>7)&1) printf("edi=%x ",(int)constmap[i][7]);
10526 #endif
10527 #ifdef __arm__
10528 if(regs[i].isconst&1) printf("r0=%x ",(int)constmap[i][0]);
10529 if((regs[i].isconst>>1)&1) printf("r1=%x ",(int)constmap[i][1]);
10530 if((regs[i].isconst>>2)&1) printf("r2=%x ",(int)constmap[i][2]);
10531 if((regs[i].isconst>>3)&1) printf("r3=%x ",(int)constmap[i][3]);
10532 if((regs[i].isconst>>4)&1) printf("r4=%x ",(int)constmap[i][4]);
10533 if((regs[i].isconst>>5)&1) printf("r5=%x ",(int)constmap[i][5]);
10534 if((regs[i].isconst>>6)&1) printf("r6=%x ",(int)constmap[i][6]);
10535 if((regs[i].isconst>>7)&1) printf("r7=%x ",(int)constmap[i][7]);
10536 if((regs[i].isconst>>8)&1) printf("r8=%x ",(int)constmap[i][8]);
10537 if((regs[i].isconst>>9)&1) printf("r9=%x ",(int)constmap[i][9]);
10538 if((regs[i].isconst>>10)&1) printf("r10=%x ",(int)constmap[i][10]);
10539 if((regs[i].isconst>>12)&1) printf("r12=%x ",(int)constmap[i][12]);
10540 #endif
10541 printf("\n");
10542 }
10543#ifndef FORCE32
10544 printf(" 32:");
10545 for(r=0;r<=CCREG;r++) {
10546 if((regs[i].is32>>r)&1) {
10547 if(r==CCREG) printf(" CC");
10548 else if(r==HIREG) printf(" HI");
10549 else if(r==LOREG) printf(" LO");
10550 else printf(" r%d",r);
10551 }
10552 }
10553 printf("\n");
10554#endif
10555 /*printf(" p32:");
10556 for(r=0;r<=CCREG;r++) {
10557 if((p32[i]>>r)&1) {
10558 if(r==CCREG) printf(" CC");
10559 else if(r==HIREG) printf(" HI");
10560 else if(r==LOREG) printf(" LO");
10561 else printf(" r%d",r);
10562 }
10563 }
10564 if(p32[i]!=regs[i].is32) printf(" NO MATCH\n");
10565 else printf("\n");*/
10566 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP) {
10567 #if defined(__i386__) || defined(__x86_64__)
10568 printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d dirty: ",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
10569 if(branch_regs[i].dirty&1) printf("eax ");
10570 if((branch_regs[i].dirty>>1)&1) printf("ecx ");
10571 if((branch_regs[i].dirty>>2)&1) printf("edx ");
10572 if((branch_regs[i].dirty>>3)&1) printf("ebx ");
10573 if((branch_regs[i].dirty>>5)&1) printf("ebp ");
10574 if((branch_regs[i].dirty>>6)&1) printf("esi ");
10575 if((branch_regs[i].dirty>>7)&1) printf("edi ");
10576 #endif
10577 #ifdef __arm__
10578 printf("branch(%d): r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d dirty: ",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[4],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7],branch_regs[i].regmap[8],branch_regs[i].regmap[9],branch_regs[i].regmap[10],branch_regs[i].regmap[12]);
10579 if(branch_regs[i].dirty&1) printf("r0 ");
10580 if((branch_regs[i].dirty>>1)&1) printf("r1 ");
10581 if((branch_regs[i].dirty>>2)&1) printf("r2 ");
10582 if((branch_regs[i].dirty>>3)&1) printf("r3 ");
10583 if((branch_regs[i].dirty>>4)&1) printf("r4 ");
10584 if((branch_regs[i].dirty>>5)&1) printf("r5 ");
10585 if((branch_regs[i].dirty>>6)&1) printf("r6 ");
10586 if((branch_regs[i].dirty>>7)&1) printf("r7 ");
10587 if((branch_regs[i].dirty>>8)&1) printf("r8 ");
10588 if((branch_regs[i].dirty>>9)&1) printf("r9 ");
10589 if((branch_regs[i].dirty>>10)&1) printf("r10 ");
10590 if((branch_regs[i].dirty>>12)&1) printf("r12 ");
10591 #endif
10592#ifndef FORCE32
10593 printf(" 32:");
10594 for(r=0;r<=CCREG;r++) {
10595 if((branch_regs[i].is32>>r)&1) {
10596 if(r==CCREG) printf(" CC");
10597 else if(r==HIREG) printf(" HI");
10598 else if(r==LOREG) printf(" LO");
10599 else printf(" r%d",r);
10600 }
10601 }
10602 printf("\n");
10603#endif
10604 }
10605 }
10606
10607 /* Pass 8 - Assembly */
10608 linkcount=0;stubcount=0;
10609 ds=0;is_delayslot=0;
10610 cop1_usable=0;
10611 uint64_t is32_pre=0;
10612 u_int dirty_pre=0;
10613 u_int beginning=(u_int)out;
10614 if((u_int)addr&1) {
10615 ds=1;
10616 pagespan_ds();
10617 }
10618 u_int instr_addr0_override=0;
10619
10620#ifdef PCSX
10621 if (start == 0x80030000) {
10622 // nasty hack for fastbios thing
10623 instr_addr0_override=(u_int)out;
10624 emit_movimm(start,0);
10625 emit_readword((int)&pcaddr,1);
10626 emit_writeword(0,(int)&pcaddr);
10627 emit_cmp(0,1);
10628 emit_jne((int)new_dyna_leave);
10629 }
10630#endif
10631 for(i=0;i<slen;i++)
10632 {
10633 //if(ds) printf("ds: ");
10634 if((void*)assem_debug==(void*)printf) disassemble_inst(i);
10635 if(ds) {
10636 ds=0; // Skip delay slot
10637 if(bt[i]) assem_debug("OOPS - branch into delay slot\n");
10638 instr_addr[i]=0;
10639 } else {
10640 #ifndef DESTRUCTIVE_WRITEBACK
10641 if(i<2||(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000))
10642 {
10643 wb_sx(regmap_pre[i],regs[i].regmap_entry,regs[i].wasdirty,is32_pre,regs[i].was32,
10644 unneeded_reg[i],unneeded_reg_upper[i]);
10645 wb_valid(regmap_pre[i],regs[i].regmap_entry,dirty_pre,regs[i].wasdirty,is32_pre,
10646 unneeded_reg[i],unneeded_reg_upper[i]);
10647 }
10648 is32_pre=regs[i].is32;
10649 dirty_pre=regs[i].dirty;
10650 #endif
10651 // write back
10652 if(i<2||(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000))
10653 {
10654 wb_invalidate(regmap_pre[i],regs[i].regmap_entry,regs[i].wasdirty,regs[i].was32,
10655 unneeded_reg[i],unneeded_reg_upper[i]);
10656 loop_preload(regmap_pre[i],regs[i].regmap_entry);
10657 }
10658 // branch target entry point
10659 instr_addr[i]=(u_int)out;
10660 assem_debug("<->\n");
10661 // load regs
10662 if(regs[i].regmap_entry[HOST_CCREG]==CCREG&&regs[i].regmap[HOST_CCREG]!=CCREG)
10663 wb_register(CCREG,regs[i].regmap_entry,regs[i].wasdirty,regs[i].was32);
10664 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i],rs2[i]);
10665 address_generation(i,&regs[i],regs[i].regmap_entry);
10666 load_consts(regmap_pre[i],regs[i].regmap,regs[i].was32,i);
10667 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
10668 {
10669 // Load the delay slot registers if necessary
10670 if(rs1[i+1]!=rs1[i]&&rs1[i+1]!=rs2[i])
10671 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i+1],rs1[i+1]);
10672 if(rs2[i+1]!=rs1[i+1]&&rs2[i+1]!=rs1[i]&&rs2[i+1]!=rs2[i])
10673 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs2[i+1],rs2[i+1]);
10674 if(itype[i+1]==STORE||itype[i+1]==STORELR||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a)
10675 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,INVCP,INVCP);
10676 }
10677 else if(i+1<slen)
10678 {
10679 // Preload registers for following instruction
10680 if(rs1[i+1]!=rs1[i]&&rs1[i+1]!=rs2[i])
10681 if(rs1[i+1]!=rt1[i]&&rs1[i+1]!=rt2[i])
10682 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i+1],rs1[i+1]);
10683 if(rs2[i+1]!=rs1[i+1]&&rs2[i+1]!=rs1[i]&&rs2[i+1]!=rs2[i])
10684 if(rs2[i+1]!=rt1[i]&&rs2[i+1]!=rt2[i])
10685 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs2[i+1],rs2[i+1]);
10686 }
10687 // TODO: if(is_ooo(i)) address_generation(i+1);
10688 if(itype[i]==CJUMP||itype[i]==FJUMP)
10689 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,CCREG,CCREG);
10690 if(itype[i]==STORE||itype[i]==STORELR||(opcode[i]&0x3b)==0x39||(opcode[i]&0x3b)==0x3a)
10691 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,INVCP,INVCP);
10692 if(bt[i]) cop1_usable=0;
10693 // assemble
10694 switch(itype[i]) {
10695 case ALU:
10696 alu_assemble(i,&regs[i]);break;
10697 case IMM16:
10698 imm16_assemble(i,&regs[i]);break;
10699 case SHIFT:
10700 shift_assemble(i,&regs[i]);break;
10701 case SHIFTIMM:
10702 shiftimm_assemble(i,&regs[i]);break;
10703 case LOAD:
10704 load_assemble(i,&regs[i]);break;
10705 case LOADLR:
10706 loadlr_assemble(i,&regs[i]);break;
10707 case STORE:
10708 store_assemble(i,&regs[i]);break;
10709 case STORELR:
10710 storelr_assemble(i,&regs[i]);break;
10711 case COP0:
10712 cop0_assemble(i,&regs[i]);break;
10713 case COP1:
10714 cop1_assemble(i,&regs[i]);break;
10715 case C1LS:
10716 c1ls_assemble(i,&regs[i]);break;
10717 case COP2:
10718 cop2_assemble(i,&regs[i]);break;
10719 case C2LS:
10720 c2ls_assemble(i,&regs[i]);break;
10721 case C2OP:
10722 c2op_assemble(i,&regs[i]);break;
10723 case FCONV:
10724 fconv_assemble(i,&regs[i]);break;
10725 case FLOAT:
10726 float_assemble(i,&regs[i]);break;
10727 case FCOMP:
10728 fcomp_assemble(i,&regs[i]);break;
10729 case MULTDIV:
10730 multdiv_assemble(i,&regs[i]);break;
10731 case MOV:
10732 mov_assemble(i,&regs[i]);break;
10733 case SYSCALL:
10734 syscall_assemble(i,&regs[i]);break;
10735 case HLECALL:
10736 hlecall_assemble(i,&regs[i]);break;
10737 case INTCALL:
10738 intcall_assemble(i,&regs[i]);break;
10739 case UJUMP:
10740 ujump_assemble(i,&regs[i]);ds=1;break;
10741 case RJUMP:
10742 rjump_assemble(i,&regs[i]);ds=1;break;
10743 case CJUMP:
10744 cjump_assemble(i,&regs[i]);ds=1;break;
10745 case SJUMP:
10746 sjump_assemble(i,&regs[i]);ds=1;break;
10747 case FJUMP:
10748 fjump_assemble(i,&regs[i]);ds=1;break;
10749 case SPAN:
10750 pagespan_assemble(i,&regs[i]);break;
10751 }
10752 if(itype[i]==UJUMP||itype[i]==RJUMP||(source[i]>>16)==0x1000)
10753 literal_pool(1024);
10754 else
10755 literal_pool_jumpover(256);
10756 }
10757 }
10758 //assert(itype[i-2]==UJUMP||itype[i-2]==RJUMP||(source[i-2]>>16)==0x1000);
10759 // If the block did not end with an unconditional branch,
10760 // add a jump to the next instruction.
10761 if(i>1) {
10762 if(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000&&itype[i-1]!=SPAN) {
10763 assert(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP);
10764 assert(i==slen);
10765 if(itype[i-2]!=CJUMP&&itype[i-2]!=SJUMP&&itype[i-2]!=FJUMP) {
10766 store_regs_bt(regs[i-1].regmap,regs[i-1].is32,regs[i-1].dirty,start+i*4);
10767 if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
10768 emit_loadreg(CCREG,HOST_CCREG);
10769 emit_addimm(HOST_CCREG,CLOCK_DIVIDER*(ccadj[i-1]+1),HOST_CCREG);
10770 }
10771 else if(!likely[i-2])
10772 {
10773 store_regs_bt(branch_regs[i-2].regmap,branch_regs[i-2].is32,branch_regs[i-2].dirty,start+i*4);
10774 assert(branch_regs[i-2].regmap[HOST_CCREG]==CCREG);
10775 }
10776 else
10777 {
10778 store_regs_bt(regs[i-2].regmap,regs[i-2].is32,regs[i-2].dirty,start+i*4);
10779 assert(regs[i-2].regmap[HOST_CCREG]==CCREG);
10780 }
10781 add_to_linker((int)out,start+i*4,0);
10782 emit_jmp(0);
10783 }
10784 }
10785 else
10786 {
10787 assert(i>0);
10788 assert(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP);
10789 store_regs_bt(regs[i-1].regmap,regs[i-1].is32,regs[i-1].dirty,start+i*4);
10790 if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
10791 emit_loadreg(CCREG,HOST_CCREG);
10792 emit_addimm(HOST_CCREG,CLOCK_DIVIDER*(ccadj[i-1]+1),HOST_CCREG);
10793 add_to_linker((int)out,start+i*4,0);
10794 emit_jmp(0);
10795 }
10796
10797 // TODO: delay slot stubs?
10798 // Stubs
10799 for(i=0;i<stubcount;i++)
10800 {
10801 switch(stubs[i][0])
10802 {
10803 case LOADB_STUB:
10804 case LOADH_STUB:
10805 case LOADW_STUB:
10806 case LOADD_STUB:
10807 case LOADBU_STUB:
10808 case LOADHU_STUB:
10809 do_readstub(i);break;
10810 case STOREB_STUB:
10811 case STOREH_STUB:
10812 case STOREW_STUB:
10813 case STORED_STUB:
10814 do_writestub(i);break;
10815 case CC_STUB:
10816 do_ccstub(i);break;
10817 case INVCODE_STUB:
10818 do_invstub(i);break;
10819 case FP_STUB:
10820 do_cop1stub(i);break;
10821 case STORELR_STUB:
10822 do_unalignedwritestub(i);break;
10823 }
10824 }
10825
10826 if (instr_addr0_override)
10827 instr_addr[0] = instr_addr0_override;
10828
10829 /* Pass 9 - Linker */
10830 for(i=0;i<linkcount;i++)
10831 {
10832 assem_debug("%8x -> %8x\n",link_addr[i][0],link_addr[i][1]);
10833 literal_pool(64);
10834 if(!link_addr[i][2])
10835 {
10836 void *stub=out;
10837 void *addr=check_addr(link_addr[i][1]);
10838 emit_extjump(link_addr[i][0],link_addr[i][1]);
10839 if(addr) {
10840 set_jump_target(link_addr[i][0],(int)addr);
10841 add_link(link_addr[i][1],stub);
10842 }
10843 else set_jump_target(link_addr[i][0],(int)stub);
10844 }
10845 else
10846 {
10847 // Internal branch
10848 int target=(link_addr[i][1]-start)>>2;
10849 assert(target>=0&&target<slen);
10850 assert(instr_addr[target]);
10851 //#ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
10852 //set_jump_target_fillslot(link_addr[i][0],instr_addr[target],link_addr[i][2]>>1);
10853 //#else
10854 set_jump_target(link_addr[i][0],instr_addr[target]);
10855 //#endif
10856 }
10857 }
10858 // External Branch Targets (jump_in)
10859 if(copy+slen*4>(void *)shadow+sizeof(shadow)) copy=shadow;
10860 for(i=0;i<slen;i++)
10861 {
10862 if(bt[i]||i==0)
10863 {
10864 if(instr_addr[i]) // TODO - delay slots (=null)
10865 {
10866 u_int vaddr=start+i*4;
10867 u_int page=get_page(vaddr);
10868 u_int vpage=get_vpage(vaddr);
10869 literal_pool(256);
10870 //if(!(is32[i]&(~unneeded_reg_upper[i])&~(1LL<<CCREG)))
10871#ifndef FORCE32
10872 if(!requires_32bit[i])
10873#else
10874 if(1)
10875#endif
10876 {
10877 assem_debug("%8x (%d) <- %8x\n",instr_addr[i],i,start+i*4);
10878 assem_debug("jump_in: %x\n",start+i*4);
10879 ll_add(jump_dirty+vpage,vaddr,(void *)out);
10880 int entry_point=do_dirty_stub(i);
10881 ll_add(jump_in+page,vaddr,(void *)entry_point);
10882 // If there was an existing entry in the hash table,
10883 // replace it with the new address.
10884 // Don't add new entries. We'll insert the
10885 // ones that actually get used in check_addr().
10886 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
10887 if(ht_bin[0]==vaddr) {
10888 ht_bin[1]=entry_point;
10889 }
10890 if(ht_bin[2]==vaddr) {
10891 ht_bin[3]=entry_point;
10892 }
10893 }
10894 else
10895 {
10896 u_int r=requires_32bit[i]|!!(requires_32bit[i]>>32);
10897 assem_debug("%8x (%d) <- %8x\n",instr_addr[i],i,start+i*4);
10898 assem_debug("jump_in: %x (restricted - %x)\n",start+i*4,r);
10899 //int entry_point=(int)out;
10900 ////assem_debug("entry_point: %x\n",entry_point);
10901 //load_regs_entry(i);
10902 //if(entry_point==(int)out)
10903 // entry_point=instr_addr[i];
10904 //else
10905 // emit_jmp(instr_addr[i]);
10906 //ll_add_32(jump_in+page,vaddr,r,(void *)entry_point);
10907 ll_add_32(jump_dirty+vpage,vaddr,r,(void *)out);
10908 int entry_point=do_dirty_stub(i);
10909 ll_add_32(jump_in+page,vaddr,r,(void *)entry_point);
10910 }
10911 }
10912 }
10913 }
10914 // Write out the literal pool if necessary
10915 literal_pool(0);
10916 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
10917 // Align code
10918 if(((u_int)out)&7) emit_addnop(13);
10919 #endif
10920 assert((u_int)out-beginning<MAX_OUTPUT_BLOCK_SIZE);
10921 //printf("shadow buffer: %x-%x\n",(int)copy,(int)copy+slen*4);
10922 memcpy(copy,source,slen*4);
10923 copy+=slen*4;
10924
10925 #ifdef __arm__
10926 __clear_cache((void *)beginning,out);
10927 #endif
10928
10929 // If we're within 256K of the end of the buffer,
10930 // start over from the beginning. (Is 256K enough?)
10931 if((int)out>BASE_ADDR+(1<<TARGET_SIZE_2)-MAX_OUTPUT_BLOCK_SIZE) out=(u_char *)BASE_ADDR;
10932
10933 // Trap writes to any of the pages we compiled
10934 for(i=start>>12;i<=(start+slen*4)>>12;i++) {
10935 invalid_code[i]=0;
10936#ifndef DISABLE_TLB
10937 memory_map[i]|=0x40000000;
10938 if((signed int)start>=(signed int)0xC0000000) {
10939 assert(using_tlb);
10940 j=(((u_int)i<<12)+(memory_map[i]<<2)-(u_int)rdram+(u_int)0x80000000)>>12;
10941 invalid_code[j]=0;
10942 memory_map[j]|=0x40000000;
10943 //printf("write protect physical page: %x (virtual %x)\n",j<<12,start);
10944 }
10945#endif
10946 }
10947
10948 /* Pass 10 - Free memory by expiring oldest blocks */
10949
10950 int end=((((int)out-BASE_ADDR)>>(TARGET_SIZE_2-16))+16384)&65535;
10951 while(expirep!=end)
10952 {
10953 int shift=TARGET_SIZE_2-3; // Divide into 8 blocks
10954 int base=BASE_ADDR+((expirep>>13)<<shift); // Base address of this block
10955 inv_debug("EXP: Phase %d\n",expirep);
10956 switch((expirep>>11)&3)
10957 {
10958 case 0:
10959 // Clear jump_in and jump_dirty
10960 ll_remove_matching_addrs(jump_in+(expirep&2047),base,shift);
10961 ll_remove_matching_addrs(jump_dirty+(expirep&2047),base,shift);
10962 ll_remove_matching_addrs(jump_in+2048+(expirep&2047),base,shift);
10963 ll_remove_matching_addrs(jump_dirty+2048+(expirep&2047),base,shift);
10964 break;
10965 case 1:
10966 // Clear pointers
10967 ll_kill_pointers(jump_out[expirep&2047],base,shift);
10968 ll_kill_pointers(jump_out[(expirep&2047)+2048],base,shift);
10969 break;
10970 case 2:
10971 // Clear hash table
10972 for(i=0;i<32;i++) {
10973 int *ht_bin=hash_table[((expirep&2047)<<5)+i];
10974 if((ht_bin[3]>>shift)==(base>>shift) ||
10975 ((ht_bin[3]-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(base>>shift)) {
10976 inv_debug("EXP: Remove hash %x -> %x\n",ht_bin[2],ht_bin[3]);
10977 ht_bin[2]=ht_bin[3]=-1;
10978 }
10979 if((ht_bin[1]>>shift)==(base>>shift) ||
10980 ((ht_bin[1]-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(base>>shift)) {
10981 inv_debug("EXP: Remove hash %x -> %x\n",ht_bin[0],ht_bin[1]);
10982 ht_bin[0]=ht_bin[2];
10983 ht_bin[1]=ht_bin[3];
10984 ht_bin[2]=ht_bin[3]=-1;
10985 }
10986 }
10987 break;
10988 case 3:
10989 // Clear jump_out
10990 ll_remove_matching_addrs(jump_out+(expirep&2047),base,shift);
10991 ll_remove_matching_addrs(jump_out+2048+(expirep&2047),base,shift);
10992 break;
10993 }
10994 expirep=(expirep+1)&65535;
10995 }
10996 return 0;
10997}
10998
10999// vim:shiftwidth=2:expandtab