drc: try harder to not compile code as 64bit
[pcsx_rearmed.git] / libpcsxcore / new_dynarec / new_dynarec.c
... / ...
CommitLineData
1/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
2 * Mupen64plus - new_dynarec.c *
3 * Copyright (C) 2009-2010 Ari64 *
4 * *
5 * This program is free software; you can redistribute it and/or modify *
6 * it under the terms of the GNU General Public License as published by *
7 * the Free Software Foundation; either version 2 of the License, or *
8 * (at your option) any later version. *
9 * *
10 * This program is distributed in the hope that it will be useful, *
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
13 * GNU General Public License for more details. *
14 * *
15 * You should have received a copy of the GNU General Public License *
16 * along with this program; if not, write to the *
17 * Free Software Foundation, Inc., *
18 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. *
19 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
20
21#include <stdlib.h>
22#include <stdint.h> //include for uint64_t
23#include <assert.h>
24
25#include "emu_if.h" //emulator interface
26
27#include <sys/mman.h>
28
29#ifdef __i386__
30#include "assem_x86.h"
31#endif
32#ifdef __x86_64__
33#include "assem_x64.h"
34#endif
35#ifdef __arm__
36#include "assem_arm.h"
37#endif
38
39#define MAXBLOCK 4096
40#define MAX_OUTPUT_BLOCK_SIZE 262144
41#define CLOCK_DIVIDER 2
42
43struct regstat
44{
45 signed char regmap_entry[HOST_REGS];
46 signed char regmap[HOST_REGS];
47 uint64_t was32;
48 uint64_t is32;
49 uint64_t wasdirty;
50 uint64_t dirty;
51 uint64_t u;
52 uint64_t uu;
53 u_int wasconst;
54 u_int isconst;
55 uint64_t constmap[HOST_REGS];
56};
57
58struct ll_entry
59{
60 u_int vaddr;
61 u_int reg32;
62 void *addr;
63 struct ll_entry *next;
64};
65
66 u_int start;
67 u_int *source;
68 u_int pagelimit;
69 char insn[MAXBLOCK][10];
70 u_char itype[MAXBLOCK];
71 u_char opcode[MAXBLOCK];
72 u_char opcode2[MAXBLOCK];
73 u_char bt[MAXBLOCK];
74 u_char rs1[MAXBLOCK];
75 u_char rs2[MAXBLOCK];
76 u_char rt1[MAXBLOCK];
77 u_char rt2[MAXBLOCK];
78 u_char us1[MAXBLOCK];
79 u_char us2[MAXBLOCK];
80 u_char dep1[MAXBLOCK];
81 u_char dep2[MAXBLOCK];
82 u_char lt1[MAXBLOCK];
83 int imm[MAXBLOCK];
84 u_int ba[MAXBLOCK];
85 char likely[MAXBLOCK];
86 char is_ds[MAXBLOCK];
87 uint64_t unneeded_reg[MAXBLOCK];
88 uint64_t unneeded_reg_upper[MAXBLOCK];
89 uint64_t branch_unneeded_reg[MAXBLOCK];
90 uint64_t branch_unneeded_reg_upper[MAXBLOCK];
91 uint64_t p32[MAXBLOCK];
92 uint64_t pr32[MAXBLOCK];
93 signed char regmap_pre[MAXBLOCK][HOST_REGS];
94 signed char regmap[MAXBLOCK][HOST_REGS];
95 signed char regmap_entry[MAXBLOCK][HOST_REGS];
96 uint64_t constmap[MAXBLOCK][HOST_REGS];
97 uint64_t known_value[HOST_REGS];
98 u_int known_reg;
99 struct regstat regs[MAXBLOCK];
100 struct regstat branch_regs[MAXBLOCK];
101 u_int needed_reg[MAXBLOCK];
102 uint64_t requires_32bit[MAXBLOCK];
103 u_int wont_dirty[MAXBLOCK];
104 u_int will_dirty[MAXBLOCK];
105 int ccadj[MAXBLOCK];
106 int slen;
107 u_int instr_addr[MAXBLOCK];
108 u_int link_addr[MAXBLOCK][3];
109 int linkcount;
110 u_int stubs[MAXBLOCK*3][8];
111 int stubcount;
112 u_int literals[1024][2];
113 int literalcount;
114 int is_delayslot;
115 int cop1_usable;
116 u_char *out;
117 struct ll_entry *jump_in[4096];
118 struct ll_entry *jump_out[4096];
119 struct ll_entry *jump_dirty[4096];
120 u_int hash_table[65536][4] __attribute__((aligned(16)));
121 char shadow[1048576] __attribute__((aligned(16)));
122 void *copy;
123 int expirep;
124 u_int using_tlb;
125 u_int stop_after_jal;
126 extern u_char restore_candidate[512];
127 extern int cycle_count;
128
129 /* registers that may be allocated */
130 /* 1-31 gpr */
131#define HIREG 32 // hi
132#define LOREG 33 // lo
133#define FSREG 34 // FPU status (FCSR)
134#define CSREG 35 // Coprocessor status
135#define CCREG 36 // Cycle count
136#define INVCP 37 // Pointer to invalid_code
137#define TEMPREG 38
138#define FTEMP 38 // FPU/LDL/LDR temporary register
139#define PTEMP 39 // Prefetch temporary register
140#define TLREG 40 // TLB mapping offset
141#define RHASH 41 // Return address hash
142#define RHTBL 42 // Return address hash table address
143#define RTEMP 43 // JR/JALR address register
144#define MAXREG 43
145#define AGEN1 44 // Address generation temporary register
146#define AGEN2 45 // Address generation temporary register
147#define MGEN1 46 // Maptable address generation temporary register
148#define MGEN2 47 // Maptable address generation temporary register
149#define BTREG 48 // Branch target temporary register
150
151 /* instruction types */
152#define NOP 0 // No operation
153#define LOAD 1 // Load
154#define STORE 2 // Store
155#define LOADLR 3 // Unaligned load
156#define STORELR 4 // Unaligned store
157#define MOV 5 // Move
158#define ALU 6 // Arithmetic/logic
159#define MULTDIV 7 // Multiply/divide
160#define SHIFT 8 // Shift by register
161#define SHIFTIMM 9// Shift by immediate
162#define IMM16 10 // 16-bit immediate
163#define RJUMP 11 // Unconditional jump to register
164#define UJUMP 12 // Unconditional jump
165#define CJUMP 13 // Conditional branch (BEQ/BNE/BGTZ/BLEZ)
166#define SJUMP 14 // Conditional branch (regimm format)
167#define COP0 15 // Coprocessor 0
168#define COP1 16 // Coprocessor 1
169#define C1LS 17 // Coprocessor 1 load/store
170#define FJUMP 18 // Conditional branch (floating point)
171#define FLOAT 19 // Floating point unit
172#define FCONV 20 // Convert integer to float
173#define FCOMP 21 // Floating point compare (sets FSREG)
174#define SYSCALL 22// SYSCALL
175#define OTHER 23 // Other
176#define SPAN 24 // Branch/delay slot spans 2 pages
177#define NI 25 // Not implemented
178#define HLECALL 26// PCSX fake opcodes for HLE
179#define COP2 27 // Coprocessor 2 move
180#define C2LS 28 // Coprocessor 2 load/store
181#define C2OP 29 // Coprocessor 2 operation
182#define INTCALL 30// Call interpreter to handle rare corner cases
183
184 /* stubs */
185#define CC_STUB 1
186#define FP_STUB 2
187#define LOADB_STUB 3
188#define LOADH_STUB 4
189#define LOADW_STUB 5
190#define LOADD_STUB 6
191#define LOADBU_STUB 7
192#define LOADHU_STUB 8
193#define STOREB_STUB 9
194#define STOREH_STUB 10
195#define STOREW_STUB 11
196#define STORED_STUB 12
197#define STORELR_STUB 13
198#define INVCODE_STUB 14
199
200 /* branch codes */
201#define TAKEN 1
202#define NOTTAKEN 2
203#define NULLDS 3
204
205// asm linkage
206int new_recompile_block(int addr);
207void *get_addr_ht(u_int vaddr);
208void invalidate_block(u_int block);
209void invalidate_addr(u_int addr);
210void remove_hash(int vaddr);
211void jump_vaddr();
212void dyna_linker();
213void dyna_linker_ds();
214void verify_code();
215void verify_code_vm();
216void verify_code_ds();
217void cc_interrupt();
218void fp_exception();
219void fp_exception_ds();
220void jump_syscall();
221void jump_syscall_hle();
222void jump_eret();
223void jump_hlecall();
224void jump_intcall();
225void new_dyna_leave();
226
227// TLB
228void TLBWI_new();
229void TLBWR_new();
230void read_nomem_new();
231void read_nomemb_new();
232void read_nomemh_new();
233void read_nomemd_new();
234void write_nomem_new();
235void write_nomemb_new();
236void write_nomemh_new();
237void write_nomemd_new();
238void write_rdram_new();
239void write_rdramb_new();
240void write_rdramh_new();
241void write_rdramd_new();
242extern u_int memory_map[1048576];
243
244// Needed by assembler
245void wb_register(signed char r,signed char regmap[],uint64_t dirty,uint64_t is32);
246void wb_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty);
247void wb_needed_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr);
248void load_all_regs(signed char i_regmap[]);
249void load_needed_regs(signed char i_regmap[],signed char next_regmap[]);
250void load_regs_entry(int t);
251void load_all_consts(signed char regmap[],int is32,u_int dirty,int i);
252
253int tracedebug=0;
254
255//#define DEBUG_CYCLE_COUNT 1
256
257void nullf() {}
258//#define assem_debug printf
259//#define inv_debug printf
260#define assem_debug nullf
261#define inv_debug nullf
262
263static void tlb_hacks()
264{
265#ifndef DISABLE_TLB
266 // Goldeneye hack
267 if (strncmp((char *) ROM_HEADER->nom, "GOLDENEYE",9) == 0)
268 {
269 u_int addr;
270 int n;
271 switch (ROM_HEADER->Country_code&0xFF)
272 {
273 case 0x45: // U
274 addr=0x34b30;
275 break;
276 case 0x4A: // J
277 addr=0x34b70;
278 break;
279 case 0x50: // E
280 addr=0x329f0;
281 break;
282 default:
283 // Unknown country code
284 addr=0;
285 break;
286 }
287 u_int rom_addr=(u_int)rom;
288 #ifdef ROM_COPY
289 // Since memory_map is 32-bit, on 64-bit systems the rom needs to be
290 // in the lower 4G of memory to use this hack. Copy it if necessary.
291 if((void *)rom>(void *)0xffffffff) {
292 munmap(ROM_COPY, 67108864);
293 if(mmap(ROM_COPY, 12582912,
294 PROT_READ | PROT_WRITE,
295 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS,
296 -1, 0) <= 0) {printf("mmap() failed\n");}
297 memcpy(ROM_COPY,rom,12582912);
298 rom_addr=(u_int)ROM_COPY;
299 }
300 #endif
301 if(addr) {
302 for(n=0x7F000;n<0x80000;n++) {
303 memory_map[n]=(((u_int)(rom_addr+addr-0x7F000000))>>2)|0x40000000;
304 }
305 }
306 }
307#endif
308}
309
310static u_int get_page(u_int vaddr)
311{
312 u_int page=(vaddr^0x80000000)>>12;
313#ifndef DISABLE_TLB
314 if(page>262143&&tlb_LUT_r[vaddr>>12]) page=(tlb_LUT_r[vaddr>>12]^0x80000000)>>12;
315#endif
316 if(page>2048) page=2048+(page&2047);
317 return page;
318}
319
320static u_int get_vpage(u_int vaddr)
321{
322 u_int vpage=(vaddr^0x80000000)>>12;
323#ifndef DISABLE_TLB
324 if(vpage>262143&&tlb_LUT_r[vaddr>>12]) vpage&=2047; // jump_dirty uses a hash of the virtual address instead
325#endif
326 if(vpage>2048) vpage=2048+(vpage&2047);
327 return vpage;
328}
329
330// Get address from virtual address
331// This is called from the recompiled JR/JALR instructions
332void *get_addr(u_int vaddr)
333{
334 u_int page=get_page(vaddr);
335 u_int vpage=get_vpage(vaddr);
336 struct ll_entry *head;
337 //printf("TRACE: count=%d next=%d (get_addr %x,page %d)\n",Count,next_interupt,vaddr,page);
338 head=jump_in[page];
339 while(head!=NULL) {
340 if(head->vaddr==vaddr&&head->reg32==0) {
341 //printf("TRACE: count=%d next=%d (get_addr match %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
342 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
343 ht_bin[3]=ht_bin[1];
344 ht_bin[2]=ht_bin[0];
345 ht_bin[1]=(int)head->addr;
346 ht_bin[0]=vaddr;
347 return head->addr;
348 }
349 head=head->next;
350 }
351 head=jump_dirty[vpage];
352 while(head!=NULL) {
353 if(head->vaddr==vaddr&&head->reg32==0) {
354 //printf("TRACE: count=%d next=%d (get_addr match dirty %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
355 // Don't restore blocks which are about to expire from the cache
356 if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
357 if(verify_dirty(head->addr)) {
358 //printf("restore candidate: %x (%d) d=%d\n",vaddr,page,invalid_code[vaddr>>12]);
359 invalid_code[vaddr>>12]=0;
360 memory_map[vaddr>>12]|=0x40000000;
361 if(vpage<2048) {
362#ifndef DISABLE_TLB
363 if(tlb_LUT_r[vaddr>>12]) {
364 invalid_code[tlb_LUT_r[vaddr>>12]>>12]=0;
365 memory_map[tlb_LUT_r[vaddr>>12]>>12]|=0x40000000;
366 }
367#endif
368 restore_candidate[vpage>>3]|=1<<(vpage&7);
369 }
370 else restore_candidate[page>>3]|=1<<(page&7);
371 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
372 if(ht_bin[0]==vaddr) {
373 ht_bin[1]=(int)head->addr; // Replace existing entry
374 }
375 else
376 {
377 ht_bin[3]=ht_bin[1];
378 ht_bin[2]=ht_bin[0];
379 ht_bin[1]=(int)head->addr;
380 ht_bin[0]=vaddr;
381 }
382 return head->addr;
383 }
384 }
385 head=head->next;
386 }
387 //printf("TRACE: count=%d next=%d (get_addr no-match %x)\n",Count,next_interupt,vaddr);
388 int r=new_recompile_block(vaddr);
389 if(r==0) return get_addr(vaddr);
390 // Execute in unmapped page, generate pagefault execption
391 Status|=2;
392 Cause=(vaddr<<31)|0x8;
393 EPC=(vaddr&1)?vaddr-5:vaddr;
394 BadVAddr=(vaddr&~1);
395 Context=(Context&0xFF80000F)|((BadVAddr>>9)&0x007FFFF0);
396 EntryHi=BadVAddr&0xFFFFE000;
397 return get_addr_ht(0x80000000);
398}
399// Look up address in hash table first
400void *get_addr_ht(u_int vaddr)
401{
402 //printf("TRACE: count=%d next=%d (get_addr_ht %x)\n",Count,next_interupt,vaddr);
403 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
404 if(ht_bin[0]==vaddr) return (void *)ht_bin[1];
405 if(ht_bin[2]==vaddr) return (void *)ht_bin[3];
406 return get_addr(vaddr);
407}
408
409void *get_addr_32(u_int vaddr,u_int flags)
410{
411#ifdef FORCE32
412 return get_addr(vaddr);
413#else
414 //printf("TRACE: count=%d next=%d (get_addr_32 %x,flags %x)\n",Count,next_interupt,vaddr,flags);
415 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
416 if(ht_bin[0]==vaddr) return (void *)ht_bin[1];
417 if(ht_bin[2]==vaddr) return (void *)ht_bin[3];
418 u_int page=get_page(vaddr);
419 u_int vpage=get_vpage(vaddr);
420 struct ll_entry *head;
421 head=jump_in[page];
422 while(head!=NULL) {
423 if(head->vaddr==vaddr&&(head->reg32&flags)==0) {
424 //printf("TRACE: count=%d next=%d (get_addr_32 match %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
425 if(head->reg32==0) {
426 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
427 if(ht_bin[0]==-1) {
428 ht_bin[1]=(int)head->addr;
429 ht_bin[0]=vaddr;
430 }else if(ht_bin[2]==-1) {
431 ht_bin[3]=(int)head->addr;
432 ht_bin[2]=vaddr;
433 }
434 //ht_bin[3]=ht_bin[1];
435 //ht_bin[2]=ht_bin[0];
436 //ht_bin[1]=(int)head->addr;
437 //ht_bin[0]=vaddr;
438 }
439 return head->addr;
440 }
441 head=head->next;
442 }
443 head=jump_dirty[vpage];
444 while(head!=NULL) {
445 if(head->vaddr==vaddr&&(head->reg32&flags)==0) {
446 //printf("TRACE: count=%d next=%d (get_addr_32 match dirty %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
447 // Don't restore blocks which are about to expire from the cache
448 if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
449 if(verify_dirty(head->addr)) {
450 //printf("restore candidate: %x (%d) d=%d\n",vaddr,page,invalid_code[vaddr>>12]);
451 invalid_code[vaddr>>12]=0;
452 memory_map[vaddr>>12]|=0x40000000;
453 if(vpage<2048) {
454#ifndef DISABLE_TLB
455 if(tlb_LUT_r[vaddr>>12]) {
456 invalid_code[tlb_LUT_r[vaddr>>12]>>12]=0;
457 memory_map[tlb_LUT_r[vaddr>>12]>>12]|=0x40000000;
458 }
459#endif
460 restore_candidate[vpage>>3]|=1<<(vpage&7);
461 }
462 else restore_candidate[page>>3]|=1<<(page&7);
463 if(head->reg32==0) {
464 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
465 if(ht_bin[0]==-1) {
466 ht_bin[1]=(int)head->addr;
467 ht_bin[0]=vaddr;
468 }else if(ht_bin[2]==-1) {
469 ht_bin[3]=(int)head->addr;
470 ht_bin[2]=vaddr;
471 }
472 //ht_bin[3]=ht_bin[1];
473 //ht_bin[2]=ht_bin[0];
474 //ht_bin[1]=(int)head->addr;
475 //ht_bin[0]=vaddr;
476 }
477 return head->addr;
478 }
479 }
480 head=head->next;
481 }
482 //printf("TRACE: count=%d next=%d (get_addr_32 no-match %x,flags %x)\n",Count,next_interupt,vaddr,flags);
483 int r=new_recompile_block(vaddr);
484 if(r==0) return get_addr(vaddr);
485 // Execute in unmapped page, generate pagefault execption
486 Status|=2;
487 Cause=(vaddr<<31)|0x8;
488 EPC=(vaddr&1)?vaddr-5:vaddr;
489 BadVAddr=(vaddr&~1);
490 Context=(Context&0xFF80000F)|((BadVAddr>>9)&0x007FFFF0);
491 EntryHi=BadVAddr&0xFFFFE000;
492 return get_addr_ht(0x80000000);
493#endif
494}
495
496void clear_all_regs(signed char regmap[])
497{
498 int hr;
499 for (hr=0;hr<HOST_REGS;hr++) regmap[hr]=-1;
500}
501
502signed char get_reg(signed char regmap[],int r)
503{
504 int hr;
505 for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap[hr]==r) return hr;
506 return -1;
507}
508
509// Find a register that is available for two consecutive cycles
510signed char get_reg2(signed char regmap1[],signed char regmap2[],int r)
511{
512 int hr;
513 for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap1[hr]==r&&regmap2[hr]==r) return hr;
514 return -1;
515}
516
517int count_free_regs(signed char regmap[])
518{
519 int count=0;
520 int hr;
521 for(hr=0;hr<HOST_REGS;hr++)
522 {
523 if(hr!=EXCLUDE_REG) {
524 if(regmap[hr]<0) count++;
525 }
526 }
527 return count;
528}
529
530void dirty_reg(struct regstat *cur,signed char reg)
531{
532 int hr;
533 if(!reg) return;
534 for (hr=0;hr<HOST_REGS;hr++) {
535 if((cur->regmap[hr]&63)==reg) {
536 cur->dirty|=1<<hr;
537 }
538 }
539}
540
541// If we dirty the lower half of a 64 bit register which is now being
542// sign-extended, we need to dump the upper half.
543// Note: Do this only after completion of the instruction, because
544// some instructions may need to read the full 64-bit value even if
545// overwriting it (eg SLTI, DSRA32).
546static void flush_dirty_uppers(struct regstat *cur)
547{
548 int hr,reg;
549 for (hr=0;hr<HOST_REGS;hr++) {
550 if((cur->dirty>>hr)&1) {
551 reg=cur->regmap[hr];
552 if(reg>=64)
553 if((cur->is32>>(reg&63))&1) cur->regmap[hr]=-1;
554 }
555 }
556}
557
558void set_const(struct regstat *cur,signed char reg,uint64_t value)
559{
560 int hr;
561 if(!reg) return;
562 for (hr=0;hr<HOST_REGS;hr++) {
563 if(cur->regmap[hr]==reg) {
564 cur->isconst|=1<<hr;
565 cur->constmap[hr]=value;
566 }
567 else if((cur->regmap[hr]^64)==reg) {
568 cur->isconst|=1<<hr;
569 cur->constmap[hr]=value>>32;
570 }
571 }
572}
573
574void clear_const(struct regstat *cur,signed char reg)
575{
576 int hr;
577 if(!reg) return;
578 for (hr=0;hr<HOST_REGS;hr++) {
579 if((cur->regmap[hr]&63)==reg) {
580 cur->isconst&=~(1<<hr);
581 }
582 }
583}
584
585int is_const(struct regstat *cur,signed char reg)
586{
587 int hr;
588 if(!reg) return 1;
589 for (hr=0;hr<HOST_REGS;hr++) {
590 if((cur->regmap[hr]&63)==reg) {
591 return (cur->isconst>>hr)&1;
592 }
593 }
594 return 0;
595}
596uint64_t get_const(struct regstat *cur,signed char reg)
597{
598 int hr;
599 if(!reg) return 0;
600 for (hr=0;hr<HOST_REGS;hr++) {
601 if(cur->regmap[hr]==reg) {
602 return cur->constmap[hr];
603 }
604 }
605 printf("Unknown constant in r%d\n",reg);
606 exit(1);
607}
608
609// Least soon needed registers
610// Look at the next ten instructions and see which registers
611// will be used. Try not to reallocate these.
612void lsn(u_char hsn[], int i, int *preferred_reg)
613{
614 int j;
615 int b=-1;
616 for(j=0;j<9;j++)
617 {
618 if(i+j>=slen) {
619 j=slen-i-1;
620 break;
621 }
622 if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
623 {
624 // Don't go past an unconditonal jump
625 j++;
626 break;
627 }
628 }
629 for(;j>=0;j--)
630 {
631 if(rs1[i+j]) hsn[rs1[i+j]]=j;
632 if(rs2[i+j]) hsn[rs2[i+j]]=j;
633 if(rt1[i+j]) hsn[rt1[i+j]]=j;
634 if(rt2[i+j]) hsn[rt2[i+j]]=j;
635 if(itype[i+j]==STORE || itype[i+j]==STORELR) {
636 // Stores can allocate zero
637 hsn[rs1[i+j]]=j;
638 hsn[rs2[i+j]]=j;
639 }
640 // On some architectures stores need invc_ptr
641 #if defined(HOST_IMM8)
642 if(itype[i+j]==STORE || itype[i+j]==STORELR || (opcode[i+j]&0x3b)==0x39 || (opcode[i+j]&0x3b)==0x3a) {
643 hsn[INVCP]=j;
644 }
645 #endif
646 if(i+j>=0&&(itype[i+j]==UJUMP||itype[i+j]==CJUMP||itype[i+j]==SJUMP||itype[i+j]==FJUMP))
647 {
648 hsn[CCREG]=j;
649 b=j;
650 }
651 }
652 if(b>=0)
653 {
654 if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
655 {
656 // Follow first branch
657 int t=(ba[i+b]-start)>>2;
658 j=7-b;if(t+j>=slen) j=slen-t-1;
659 for(;j>=0;j--)
660 {
661 if(rs1[t+j]) if(hsn[rs1[t+j]]>j+b+2) hsn[rs1[t+j]]=j+b+2;
662 if(rs2[t+j]) if(hsn[rs2[t+j]]>j+b+2) hsn[rs2[t+j]]=j+b+2;
663 //if(rt1[t+j]) if(hsn[rt1[t+j]]>j+b+2) hsn[rt1[t+j]]=j+b+2;
664 //if(rt2[t+j]) if(hsn[rt2[t+j]]>j+b+2) hsn[rt2[t+j]]=j+b+2;
665 }
666 }
667 // TODO: preferred register based on backward branch
668 }
669 // Delay slot should preferably not overwrite branch conditions or cycle count
670 if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)) {
671 if(rs1[i-1]) if(hsn[rs1[i-1]]>1) hsn[rs1[i-1]]=1;
672 if(rs2[i-1]) if(hsn[rs2[i-1]]>1) hsn[rs2[i-1]]=1;
673 hsn[CCREG]=1;
674 // ...or hash tables
675 hsn[RHASH]=1;
676 hsn[RHTBL]=1;
677 }
678 // Coprocessor load/store needs FTEMP, even if not declared
679 if(itype[i]==C1LS||itype[i]==C2LS) {
680 hsn[FTEMP]=0;
681 }
682 // Load L/R also uses FTEMP as a temporary register
683 if(itype[i]==LOADLR) {
684 hsn[FTEMP]=0;
685 }
686 // Also SWL/SWR/SDL/SDR
687 if(opcode[i]==0x2a||opcode[i]==0x2e||opcode[i]==0x2c||opcode[i]==0x2d) {
688 hsn[FTEMP]=0;
689 }
690 // Don't remove the TLB registers either
691 if(itype[i]==LOAD || itype[i]==LOADLR || itype[i]==STORE || itype[i]==STORELR || itype[i]==C1LS || itype[i]==C2LS) {
692 hsn[TLREG]=0;
693 }
694 // Don't remove the miniht registers
695 if(itype[i]==UJUMP||itype[i]==RJUMP)
696 {
697 hsn[RHASH]=0;
698 hsn[RHTBL]=0;
699 }
700}
701
702// We only want to allocate registers if we're going to use them again soon
703int needed_again(int r, int i)
704{
705 int j;
706 int b=-1;
707 int rn=10;
708 int hr;
709 u_char hsn[MAXREG+1];
710 int preferred_reg;
711
712 memset(hsn,10,sizeof(hsn));
713 lsn(hsn,i,&preferred_reg);
714
715 if(i>0&&(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000))
716 {
717 if(ba[i-1]<start || ba[i-1]>start+slen*4-4)
718 return 0; // Don't need any registers if exiting the block
719 }
720 for(j=0;j<9;j++)
721 {
722 if(i+j>=slen) {
723 j=slen-i-1;
724 break;
725 }
726 if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
727 {
728 // Don't go past an unconditonal jump
729 j++;
730 break;
731 }
732 if(itype[i+j]==SYSCALL||itype[i+j]==HLECALL||itype[i+j]==INTCALL||((source[i+j]&0xfc00003f)==0x0d))
733 {
734 break;
735 }
736 }
737 for(;j>=1;j--)
738 {
739 if(rs1[i+j]==r) rn=j;
740 if(rs2[i+j]==r) rn=j;
741 if((unneeded_reg[i+j]>>r)&1) rn=10;
742 if(i+j>=0&&(itype[i+j]==UJUMP||itype[i+j]==CJUMP||itype[i+j]==SJUMP||itype[i+j]==FJUMP))
743 {
744 b=j;
745 }
746 }
747 /*
748 if(b>=0)
749 {
750 if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
751 {
752 // Follow first branch
753 int o=rn;
754 int t=(ba[i+b]-start)>>2;
755 j=7-b;if(t+j>=slen) j=slen-t-1;
756 for(;j>=0;j--)
757 {
758 if(!((unneeded_reg[t+j]>>r)&1)) {
759 if(rs1[t+j]==r) if(rn>j+b+2) rn=j+b+2;
760 if(rs2[t+j]==r) if(rn>j+b+2) rn=j+b+2;
761 }
762 else rn=o;
763 }
764 }
765 }*/
766 for(hr=0;hr<HOST_REGS;hr++) {
767 if(hr!=EXCLUDE_REG) {
768 if(rn<hsn[hr]) return 1;
769 }
770 }
771 return 0;
772}
773
774// Try to match register allocations at the end of a loop with those
775// at the beginning
776int loop_reg(int i, int r, int hr)
777{
778 int j,k;
779 for(j=0;j<9;j++)
780 {
781 if(i+j>=slen) {
782 j=slen-i-1;
783 break;
784 }
785 if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
786 {
787 // Don't go past an unconditonal jump
788 j++;
789 break;
790 }
791 }
792 k=0;
793 if(i>0){
794 if(itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)
795 k--;
796 }
797 for(;k<j;k++)
798 {
799 if(r<64&&((unneeded_reg[i+k]>>r)&1)) return hr;
800 if(r>64&&((unneeded_reg_upper[i+k]>>r)&1)) return hr;
801 if(i+k>=0&&(itype[i+k]==UJUMP||itype[i+k]==CJUMP||itype[i+k]==SJUMP||itype[i+k]==FJUMP))
802 {
803 if(ba[i+k]>=start && ba[i+k]<(start+i*4))
804 {
805 int t=(ba[i+k]-start)>>2;
806 int reg=get_reg(regs[t].regmap_entry,r);
807 if(reg>=0) return reg;
808 //reg=get_reg(regs[t+1].regmap_entry,r);
809 //if(reg>=0) return reg;
810 }
811 }
812 }
813 return hr;
814}
815
816
817// Allocate every register, preserving source/target regs
818void alloc_all(struct regstat *cur,int i)
819{
820 int hr;
821
822 for(hr=0;hr<HOST_REGS;hr++) {
823 if(hr!=EXCLUDE_REG) {
824 if(((cur->regmap[hr]&63)!=rs1[i])&&((cur->regmap[hr]&63)!=rs2[i])&&
825 ((cur->regmap[hr]&63)!=rt1[i])&&((cur->regmap[hr]&63)!=rt2[i]))
826 {
827 cur->regmap[hr]=-1;
828 cur->dirty&=~(1<<hr);
829 }
830 // Don't need zeros
831 if((cur->regmap[hr]&63)==0)
832 {
833 cur->regmap[hr]=-1;
834 cur->dirty&=~(1<<hr);
835 }
836 }
837 }
838}
839
840
841void div64(int64_t dividend,int64_t divisor)
842{
843 lo=dividend/divisor;
844 hi=dividend%divisor;
845 //printf("TRACE: ddiv %8x%8x %8x%8x\n" ,(int)reg[HIREG],(int)(reg[HIREG]>>32)
846 // ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
847}
848void divu64(uint64_t dividend,uint64_t divisor)
849{
850 lo=dividend/divisor;
851 hi=dividend%divisor;
852 //printf("TRACE: ddivu %8x%8x %8x%8x\n",(int)reg[HIREG],(int)(reg[HIREG]>>32)
853 // ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
854}
855
856void mult64(uint64_t m1,uint64_t m2)
857{
858 unsigned long long int op1, op2, op3, op4;
859 unsigned long long int result1, result2, result3, result4;
860 unsigned long long int temp1, temp2, temp3, temp4;
861 int sign = 0;
862
863 if (m1 < 0)
864 {
865 op2 = -m1;
866 sign = 1 - sign;
867 }
868 else op2 = m1;
869 if (m2 < 0)
870 {
871 op4 = -m2;
872 sign = 1 - sign;
873 }
874 else op4 = m2;
875
876 op1 = op2 & 0xFFFFFFFF;
877 op2 = (op2 >> 32) & 0xFFFFFFFF;
878 op3 = op4 & 0xFFFFFFFF;
879 op4 = (op4 >> 32) & 0xFFFFFFFF;
880
881 temp1 = op1 * op3;
882 temp2 = (temp1 >> 32) + op1 * op4;
883 temp3 = op2 * op3;
884 temp4 = (temp3 >> 32) + op2 * op4;
885
886 result1 = temp1 & 0xFFFFFFFF;
887 result2 = temp2 + (temp3 & 0xFFFFFFFF);
888 result3 = (result2 >> 32) + temp4;
889 result4 = (result3 >> 32);
890
891 lo = result1 | (result2 << 32);
892 hi = (result3 & 0xFFFFFFFF) | (result4 << 32);
893 if (sign)
894 {
895 hi = ~hi;
896 if (!lo) hi++;
897 else lo = ~lo + 1;
898 }
899}
900
901void multu64(uint64_t m1,uint64_t m2)
902{
903 unsigned long long int op1, op2, op3, op4;
904 unsigned long long int result1, result2, result3, result4;
905 unsigned long long int temp1, temp2, temp3, temp4;
906
907 op1 = m1 & 0xFFFFFFFF;
908 op2 = (m1 >> 32) & 0xFFFFFFFF;
909 op3 = m2 & 0xFFFFFFFF;
910 op4 = (m2 >> 32) & 0xFFFFFFFF;
911
912 temp1 = op1 * op3;
913 temp2 = (temp1 >> 32) + op1 * op4;
914 temp3 = op2 * op3;
915 temp4 = (temp3 >> 32) + op2 * op4;
916
917 result1 = temp1 & 0xFFFFFFFF;
918 result2 = temp2 + (temp3 & 0xFFFFFFFF);
919 result3 = (result2 >> 32) + temp4;
920 result4 = (result3 >> 32);
921
922 lo = result1 | (result2 << 32);
923 hi = (result3 & 0xFFFFFFFF) | (result4 << 32);
924
925 //printf("TRACE: dmultu %8x%8x %8x%8x\n",(int)reg[HIREG],(int)(reg[HIREG]>>32)
926 // ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
927}
928
929uint64_t ldl_merge(uint64_t original,uint64_t loaded,u_int bits)
930{
931 if(bits) {
932 original<<=64-bits;
933 original>>=64-bits;
934 loaded<<=bits;
935 original|=loaded;
936 }
937 else original=loaded;
938 return original;
939}
940uint64_t ldr_merge(uint64_t original,uint64_t loaded,u_int bits)
941{
942 if(bits^56) {
943 original>>=64-(bits^56);
944 original<<=64-(bits^56);
945 loaded>>=bits^56;
946 original|=loaded;
947 }
948 else original=loaded;
949 return original;
950}
951
952#ifdef __i386__
953#include "assem_x86.c"
954#endif
955#ifdef __x86_64__
956#include "assem_x64.c"
957#endif
958#ifdef __arm__
959#include "assem_arm.c"
960#endif
961
962// Add virtual address mapping to linked list
963void ll_add(struct ll_entry **head,int vaddr,void *addr)
964{
965 struct ll_entry *new_entry;
966 new_entry=malloc(sizeof(struct ll_entry));
967 assert(new_entry!=NULL);
968 new_entry->vaddr=vaddr;
969 new_entry->reg32=0;
970 new_entry->addr=addr;
971 new_entry->next=*head;
972 *head=new_entry;
973}
974
975// Add virtual address mapping for 32-bit compiled block
976void ll_add_32(struct ll_entry **head,int vaddr,u_int reg32,void *addr)
977{
978 ll_add(head,vaddr,addr);
979#ifndef FORCE32
980 (*head)->reg32=reg32;
981#endif
982}
983
984// Check if an address is already compiled
985// but don't return addresses which are about to expire from the cache
986void *check_addr(u_int vaddr)
987{
988 u_int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
989 if(ht_bin[0]==vaddr) {
990 if(((ht_bin[1]-MAX_OUTPUT_BLOCK_SIZE-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
991 if(isclean(ht_bin[1])) return (void *)ht_bin[1];
992 }
993 if(ht_bin[2]==vaddr) {
994 if(((ht_bin[3]-MAX_OUTPUT_BLOCK_SIZE-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
995 if(isclean(ht_bin[3])) return (void *)ht_bin[3];
996 }
997 u_int page=get_page(vaddr);
998 struct ll_entry *head;
999 head=jump_in[page];
1000 while(head!=NULL) {
1001 if(head->vaddr==vaddr&&head->reg32==0) {
1002 if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1003 // Update existing entry with current address
1004 if(ht_bin[0]==vaddr) {
1005 ht_bin[1]=(int)head->addr;
1006 return head->addr;
1007 }
1008 if(ht_bin[2]==vaddr) {
1009 ht_bin[3]=(int)head->addr;
1010 return head->addr;
1011 }
1012 // Insert into hash table with low priority.
1013 // Don't evict existing entries, as they are probably
1014 // addresses that are being accessed frequently.
1015 if(ht_bin[0]==-1) {
1016 ht_bin[1]=(int)head->addr;
1017 ht_bin[0]=vaddr;
1018 }else if(ht_bin[2]==-1) {
1019 ht_bin[3]=(int)head->addr;
1020 ht_bin[2]=vaddr;
1021 }
1022 return head->addr;
1023 }
1024 }
1025 head=head->next;
1026 }
1027 return 0;
1028}
1029
1030void remove_hash(int vaddr)
1031{
1032 //printf("remove hash: %x\n",vaddr);
1033 int *ht_bin=hash_table[(((vaddr)>>16)^vaddr)&0xFFFF];
1034 if(ht_bin[2]==vaddr) {
1035 ht_bin[2]=ht_bin[3]=-1;
1036 }
1037 if(ht_bin[0]==vaddr) {
1038 ht_bin[0]=ht_bin[2];
1039 ht_bin[1]=ht_bin[3];
1040 ht_bin[2]=ht_bin[3]=-1;
1041 }
1042}
1043
1044void ll_remove_matching_addrs(struct ll_entry **head,int addr,int shift)
1045{
1046 struct ll_entry *next;
1047 while(*head) {
1048 if(((u_int)((*head)->addr)>>shift)==(addr>>shift) ||
1049 ((u_int)((*head)->addr-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(addr>>shift))
1050 {
1051 inv_debug("EXP: Remove pointer to %x (%x)\n",(int)(*head)->addr,(*head)->vaddr);
1052 remove_hash((*head)->vaddr);
1053 next=(*head)->next;
1054 free(*head);
1055 *head=next;
1056 }
1057 else
1058 {
1059 head=&((*head)->next);
1060 }
1061 }
1062}
1063
1064// Remove all entries from linked list
1065void ll_clear(struct ll_entry **head)
1066{
1067 struct ll_entry *cur;
1068 struct ll_entry *next;
1069 if(cur=*head) {
1070 *head=0;
1071 while(cur) {
1072 next=cur->next;
1073 free(cur);
1074 cur=next;
1075 }
1076 }
1077}
1078
1079// Dereference the pointers and remove if it matches
1080void ll_kill_pointers(struct ll_entry *head,int addr,int shift)
1081{
1082 u_int old_host_addr=0;
1083 while(head) {
1084 int ptr=get_pointer(head->addr);
1085 inv_debug("EXP: Lookup pointer to %x at %x (%x)\n",(int)ptr,(int)head->addr,head->vaddr);
1086 if(((ptr>>shift)==(addr>>shift)) ||
1087 (((ptr-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(addr>>shift)))
1088 {
1089 inv_debug("EXP: Kill pointer at %x (%x)\n",(int)head->addr,head->vaddr);
1090 u_int host_addr=(u_int)kill_pointer(head->addr);
1091
1092 if((host_addr>>12)!=(old_host_addr>>12)) {
1093 #ifdef __arm__
1094 __clear_cache((void *)(old_host_addr&~0xfff),(void *)(old_host_addr|0xfff));
1095 #endif
1096 old_host_addr=host_addr;
1097 }
1098 }
1099 head=head->next;
1100 }
1101 #ifdef __arm__
1102 if (old_host_addr)
1103 __clear_cache((void *)(old_host_addr&~0xfff),(void *)(old_host_addr|0xfff));
1104 #endif
1105}
1106
1107// This is called when we write to a compiled block (see do_invstub)
1108void invalidate_page(u_int page)
1109{
1110 struct ll_entry *head;
1111 struct ll_entry *next;
1112 u_int old_host_addr=0;
1113 head=jump_in[page];
1114 jump_in[page]=0;
1115 while(head!=NULL) {
1116 inv_debug("INVALIDATE: %x\n",head->vaddr);
1117 remove_hash(head->vaddr);
1118 next=head->next;
1119 free(head);
1120 head=next;
1121 }
1122 head=jump_out[page];
1123 jump_out[page]=0;
1124 while(head!=NULL) {
1125 inv_debug("INVALIDATE: kill pointer to %x (%x)\n",head->vaddr,(int)head->addr);
1126 u_int host_addr=(u_int)kill_pointer(head->addr);
1127
1128 if((host_addr>>12)!=(old_host_addr>>12)) {
1129 #ifdef __arm__
1130 __clear_cache((void *)(old_host_addr&~0xfff),(void *)(old_host_addr|0xfff));
1131 #endif
1132 old_host_addr=host_addr;
1133 }
1134 next=head->next;
1135 free(head);
1136 head=next;
1137 }
1138 #ifdef __arm__
1139 if (old_host_addr)
1140 __clear_cache((void *)(old_host_addr&~0xfff),(void *)(old_host_addr|0xfff));
1141 #endif
1142}
1143void invalidate_block(u_int block)
1144{
1145 u_int page=get_page(block<<12);
1146 u_int vpage=get_vpage(block<<12);
1147 inv_debug("INVALIDATE: %x (%d)\n",block<<12,page);
1148 //inv_debug("invalid_code[block]=%d\n",invalid_code[block]);
1149 u_int first,last;
1150 first=last=page;
1151 struct ll_entry *head;
1152 head=jump_dirty[vpage];
1153 //printf("page=%d vpage=%d\n",page,vpage);
1154 while(head!=NULL) {
1155 u_int start,end;
1156 if(vpage>2047||(head->vaddr>>12)==block) { // Ignore vaddr hash collision
1157 get_bounds((int)head->addr,&start,&end);
1158 //printf("start: %x end: %x\n",start,end);
1159 if(page<2048&&start>=0x80000000&&end<0x80000000+RAM_SIZE) {
1160 if(((start-(u_int)rdram)>>12)<=page&&((end-1-(u_int)rdram)>>12)>=page) {
1161 if((((start-(u_int)rdram)>>12)&2047)<first) first=((start-(u_int)rdram)>>12)&2047;
1162 if((((end-1-(u_int)rdram)>>12)&2047)>last) last=((end-1-(u_int)rdram)>>12)&2047;
1163 }
1164 }
1165#ifndef DISABLE_TLB
1166 if(page<2048&&(signed int)start>=(signed int)0xC0000000&&(signed int)end>=(signed int)0xC0000000) {
1167 if(((start+memory_map[start>>12]-(u_int)rdram)>>12)<=page&&((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)>=page) {
1168 if((((start+memory_map[start>>12]-(u_int)rdram)>>12)&2047)<first) first=((start+memory_map[start>>12]-(u_int)rdram)>>12)&2047;
1169 if((((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)&2047)>last) last=((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)&2047;
1170 }
1171 }
1172#endif
1173 }
1174 head=head->next;
1175 }
1176 //printf("first=%d last=%d\n",first,last);
1177 invalidate_page(page);
1178 assert(first+5>page); // NB: this assumes MAXBLOCK<=4096 (4 pages)
1179 assert(last<page+5);
1180 // Invalidate the adjacent pages if a block crosses a 4K boundary
1181 while(first<page) {
1182 invalidate_page(first);
1183 first++;
1184 }
1185 for(first=page+1;first<last;first++) {
1186 invalidate_page(first);
1187 }
1188
1189 // Don't trap writes
1190 invalid_code[block]=1;
1191#ifndef DISABLE_TLB
1192 // If there is a valid TLB entry for this page, remove write protect
1193 if(tlb_LUT_w[block]) {
1194 assert(tlb_LUT_r[block]==tlb_LUT_w[block]);
1195 // CHECK: Is this right?
1196 memory_map[block]=((tlb_LUT_w[block]&0xFFFFF000)-(block<<12)+(unsigned int)rdram-0x80000000)>>2;
1197 u_int real_block=tlb_LUT_w[block]>>12;
1198 invalid_code[real_block]=1;
1199 if(real_block>=0x80000&&real_block<0x80800) memory_map[real_block]=((u_int)rdram-0x80000000)>>2;
1200 }
1201 else if(block>=0x80000&&block<0x80800) memory_map[block]=((u_int)rdram-0x80000000)>>2;
1202#endif
1203
1204 #ifdef USE_MINI_HT
1205 memset(mini_ht,-1,sizeof(mini_ht));
1206 #endif
1207}
1208void invalidate_addr(u_int addr)
1209{
1210 invalidate_block(addr>>12);
1211}
1212void invalidate_all_pages()
1213{
1214 u_int page,n;
1215 for(page=0;page<4096;page++)
1216 invalidate_page(page);
1217 for(page=0;page<1048576;page++)
1218 if(!invalid_code[page]) {
1219 restore_candidate[(page&2047)>>3]|=1<<(page&7);
1220 restore_candidate[((page&2047)>>3)+256]|=1<<(page&7);
1221 }
1222 #ifdef __arm__
1223 __clear_cache((void *)BASE_ADDR,(void *)BASE_ADDR+(1<<TARGET_SIZE_2));
1224 #endif
1225 #ifdef USE_MINI_HT
1226 memset(mini_ht,-1,sizeof(mini_ht));
1227 #endif
1228 #ifndef DISABLE_TLB
1229 // TLB
1230 for(page=0;page<0x100000;page++) {
1231 if(tlb_LUT_r[page]) {
1232 memory_map[page]=((tlb_LUT_r[page]&0xFFFFF000)-(page<<12)+(unsigned int)rdram-0x80000000)>>2;
1233 if(!tlb_LUT_w[page]||!invalid_code[page])
1234 memory_map[page]|=0x40000000; // Write protect
1235 }
1236 else memory_map[page]=-1;
1237 if(page==0x80000) page=0xC0000;
1238 }
1239 tlb_hacks();
1240 #endif
1241}
1242
1243// Add an entry to jump_out after making a link
1244void add_link(u_int vaddr,void *src)
1245{
1246 u_int page=get_page(vaddr);
1247 inv_debug("add_link: %x -> %x (%d)\n",(int)src,vaddr,page);
1248 ll_add(jump_out+page,vaddr,src);
1249 //int ptr=get_pointer(src);
1250 //inv_debug("add_link: Pointer is to %x\n",(int)ptr);
1251}
1252
1253// If a code block was found to be unmodified (bit was set in
1254// restore_candidate) and it remains unmodified (bit is clear
1255// in invalid_code) then move the entries for that 4K page from
1256// the dirty list to the clean list.
1257void clean_blocks(u_int page)
1258{
1259 struct ll_entry *head;
1260 inv_debug("INV: clean_blocks page=%d\n",page);
1261 head=jump_dirty[page];
1262 while(head!=NULL) {
1263 if(!invalid_code[head->vaddr>>12]) {
1264 // Don't restore blocks which are about to expire from the cache
1265 if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1266 u_int start,end;
1267 if(verify_dirty((int)head->addr)) {
1268 //printf("Possibly Restore %x (%x)\n",head->vaddr, (int)head->addr);
1269 u_int i;
1270 u_int inv=0;
1271 get_bounds((int)head->addr,&start,&end);
1272 if(start-(u_int)rdram<RAM_SIZE) {
1273 for(i=(start-(u_int)rdram+0x80000000)>>12;i<=(end-1-(u_int)rdram+0x80000000)>>12;i++) {
1274 inv|=invalid_code[i];
1275 }
1276 }
1277 if((signed int)head->vaddr>=(signed int)0xC0000000) {
1278 u_int addr = (head->vaddr+(memory_map[head->vaddr>>12]<<2));
1279 //printf("addr=%x start=%x end=%x\n",addr,start,end);
1280 if(addr<start||addr>=end) inv=1;
1281 }
1282 else if((signed int)head->vaddr>=(signed int)0x80000000+RAM_SIZE) {
1283 inv=1;
1284 }
1285 if(!inv) {
1286 void * clean_addr=(void *)get_clean_addr((int)head->addr);
1287 if((((u_int)clean_addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1288 u_int ppage=page;
1289#ifndef DISABLE_TLB
1290 if(page<2048&&tlb_LUT_r[head->vaddr>>12]) ppage=(tlb_LUT_r[head->vaddr>>12]^0x80000000)>>12;
1291#endif
1292 inv_debug("INV: Restored %x (%x/%x)\n",head->vaddr, (int)head->addr, (int)clean_addr);
1293 //printf("page=%x, addr=%x\n",page,head->vaddr);
1294 //assert(head->vaddr>>12==(page|0x80000));
1295 ll_add_32(jump_in+ppage,head->vaddr,head->reg32,clean_addr);
1296 int *ht_bin=hash_table[((head->vaddr>>16)^head->vaddr)&0xFFFF];
1297 if(!head->reg32) {
1298 if(ht_bin[0]==head->vaddr) {
1299 ht_bin[1]=(int)clean_addr; // Replace existing entry
1300 }
1301 if(ht_bin[2]==head->vaddr) {
1302 ht_bin[3]=(int)clean_addr; // Replace existing entry
1303 }
1304 }
1305 }
1306 }
1307 }
1308 }
1309 }
1310 head=head->next;
1311 }
1312}
1313
1314
1315void mov_alloc(struct regstat *current,int i)
1316{
1317 // Note: Don't need to actually alloc the source registers
1318 if((~current->is32>>rs1[i])&1) {
1319 //alloc_reg64(current,i,rs1[i]);
1320 alloc_reg64(current,i,rt1[i]);
1321 current->is32&=~(1LL<<rt1[i]);
1322 } else {
1323 //alloc_reg(current,i,rs1[i]);
1324 alloc_reg(current,i,rt1[i]);
1325 current->is32|=(1LL<<rt1[i]);
1326 }
1327 clear_const(current,rs1[i]);
1328 clear_const(current,rt1[i]);
1329 dirty_reg(current,rt1[i]);
1330}
1331
1332void shiftimm_alloc(struct regstat *current,int i)
1333{
1334 clear_const(current,rs1[i]);
1335 clear_const(current,rt1[i]);
1336 if(opcode2[i]<=0x3) // SLL/SRL/SRA
1337 {
1338 if(rt1[i]) {
1339 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1340 else lt1[i]=rs1[i];
1341 alloc_reg(current,i,rt1[i]);
1342 current->is32|=1LL<<rt1[i];
1343 dirty_reg(current,rt1[i]);
1344 }
1345 }
1346 if(opcode2[i]>=0x38&&opcode2[i]<=0x3b) // DSLL/DSRL/DSRA
1347 {
1348 if(rt1[i]) {
1349 if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1350 alloc_reg64(current,i,rt1[i]);
1351 current->is32&=~(1LL<<rt1[i]);
1352 dirty_reg(current,rt1[i]);
1353 }
1354 }
1355 if(opcode2[i]==0x3c) // DSLL32
1356 {
1357 if(rt1[i]) {
1358 if(rs1[i]) alloc_reg(current,i,rs1[i]);
1359 alloc_reg64(current,i,rt1[i]);
1360 current->is32&=~(1LL<<rt1[i]);
1361 dirty_reg(current,rt1[i]);
1362 }
1363 }
1364 if(opcode2[i]==0x3e) // DSRL32
1365 {
1366 if(rt1[i]) {
1367 alloc_reg64(current,i,rs1[i]);
1368 if(imm[i]==32) {
1369 alloc_reg64(current,i,rt1[i]);
1370 current->is32&=~(1LL<<rt1[i]);
1371 } else {
1372 alloc_reg(current,i,rt1[i]);
1373 current->is32|=1LL<<rt1[i];
1374 }
1375 dirty_reg(current,rt1[i]);
1376 }
1377 }
1378 if(opcode2[i]==0x3f) // DSRA32
1379 {
1380 if(rt1[i]) {
1381 alloc_reg64(current,i,rs1[i]);
1382 alloc_reg(current,i,rt1[i]);
1383 current->is32|=1LL<<rt1[i];
1384 dirty_reg(current,rt1[i]);
1385 }
1386 }
1387}
1388
1389void shift_alloc(struct regstat *current,int i)
1390{
1391 if(rt1[i]) {
1392 if(opcode2[i]<=0x07) // SLLV/SRLV/SRAV
1393 {
1394 if(rs1[i]) alloc_reg(current,i,rs1[i]);
1395 if(rs2[i]) alloc_reg(current,i,rs2[i]);
1396 alloc_reg(current,i,rt1[i]);
1397 if(rt1[i]==rs2[i]) alloc_reg_temp(current,i,-1);
1398 current->is32|=1LL<<rt1[i];
1399 } else { // DSLLV/DSRLV/DSRAV
1400 if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1401 if(rs2[i]) alloc_reg(current,i,rs2[i]);
1402 alloc_reg64(current,i,rt1[i]);
1403 current->is32&=~(1LL<<rt1[i]);
1404 if(opcode2[i]==0x16||opcode2[i]==0x17) // DSRLV and DSRAV need a temporary register
1405 alloc_reg_temp(current,i,-1);
1406 }
1407 clear_const(current,rs1[i]);
1408 clear_const(current,rs2[i]);
1409 clear_const(current,rt1[i]);
1410 dirty_reg(current,rt1[i]);
1411 }
1412}
1413
1414void alu_alloc(struct regstat *current,int i)
1415{
1416 if(opcode2[i]>=0x20&&opcode2[i]<=0x23) { // ADD/ADDU/SUB/SUBU
1417 if(rt1[i]) {
1418 if(rs1[i]&&rs2[i]) {
1419 alloc_reg(current,i,rs1[i]);
1420 alloc_reg(current,i,rs2[i]);
1421 }
1422 else {
1423 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1424 if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg(current,i,rs2[i]);
1425 }
1426 alloc_reg(current,i,rt1[i]);
1427 }
1428 current->is32|=1LL<<rt1[i];
1429 }
1430 if(opcode2[i]==0x2a||opcode2[i]==0x2b) { // SLT/SLTU
1431 if(rt1[i]) {
1432 if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1433 {
1434 alloc_reg64(current,i,rs1[i]);
1435 alloc_reg64(current,i,rs2[i]);
1436 alloc_reg(current,i,rt1[i]);
1437 } else {
1438 alloc_reg(current,i,rs1[i]);
1439 alloc_reg(current,i,rs2[i]);
1440 alloc_reg(current,i,rt1[i]);
1441 }
1442 }
1443 current->is32|=1LL<<rt1[i];
1444 }
1445 if(opcode2[i]>=0x24&&opcode2[i]<=0x27) { // AND/OR/XOR/NOR
1446 if(rt1[i]) {
1447 if(rs1[i]&&rs2[i]) {
1448 alloc_reg(current,i,rs1[i]);
1449 alloc_reg(current,i,rs2[i]);
1450 }
1451 else
1452 {
1453 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1454 if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg(current,i,rs2[i]);
1455 }
1456 alloc_reg(current,i,rt1[i]);
1457 if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1458 {
1459 if(!((current->uu>>rt1[i])&1)) {
1460 alloc_reg64(current,i,rt1[i]);
1461 }
1462 if(get_reg(current->regmap,rt1[i]|64)>=0) {
1463 if(rs1[i]&&rs2[i]) {
1464 alloc_reg64(current,i,rs1[i]);
1465 alloc_reg64(current,i,rs2[i]);
1466 }
1467 else
1468 {
1469 // Is is really worth it to keep 64-bit values in registers?
1470 #ifdef NATIVE_64BIT
1471 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg64(current,i,rs1[i]);
1472 if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg64(current,i,rs2[i]);
1473 #endif
1474 }
1475 }
1476 current->is32&=~(1LL<<rt1[i]);
1477 } else {
1478 current->is32|=1LL<<rt1[i];
1479 }
1480 }
1481 }
1482 if(opcode2[i]>=0x2c&&opcode2[i]<=0x2f) { // DADD/DADDU/DSUB/DSUBU
1483 if(rt1[i]) {
1484 if(rs1[i]&&rs2[i]) {
1485 if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1486 alloc_reg64(current,i,rs1[i]);
1487 alloc_reg64(current,i,rs2[i]);
1488 alloc_reg64(current,i,rt1[i]);
1489 } else {
1490 alloc_reg(current,i,rs1[i]);
1491 alloc_reg(current,i,rs2[i]);
1492 alloc_reg(current,i,rt1[i]);
1493 }
1494 }
1495 else {
1496 alloc_reg(current,i,rt1[i]);
1497 if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1498 // DADD used as move, or zeroing
1499 // If we have a 64-bit source, then make the target 64 bits too
1500 if(rs1[i]&&!((current->is32>>rs1[i])&1)) {
1501 if(get_reg(current->regmap,rs1[i])>=0) alloc_reg64(current,i,rs1[i]);
1502 alloc_reg64(current,i,rt1[i]);
1503 } else if(rs2[i]&&!((current->is32>>rs2[i])&1)) {
1504 if(get_reg(current->regmap,rs2[i])>=0) alloc_reg64(current,i,rs2[i]);
1505 alloc_reg64(current,i,rt1[i]);
1506 }
1507 if(opcode2[i]>=0x2e&&rs2[i]) {
1508 // DSUB used as negation - 64-bit result
1509 // If we have a 32-bit register, extend it to 64 bits
1510 if(get_reg(current->regmap,rs2[i])>=0) alloc_reg64(current,i,rs2[i]);
1511 alloc_reg64(current,i,rt1[i]);
1512 }
1513 }
1514 }
1515 if(rs1[i]&&rs2[i]) {
1516 current->is32&=~(1LL<<rt1[i]);
1517 } else if(rs1[i]) {
1518 current->is32&=~(1LL<<rt1[i]);
1519 if((current->is32>>rs1[i])&1)
1520 current->is32|=1LL<<rt1[i];
1521 } else if(rs2[i]) {
1522 current->is32&=~(1LL<<rt1[i]);
1523 if((current->is32>>rs2[i])&1)
1524 current->is32|=1LL<<rt1[i];
1525 } else {
1526 current->is32|=1LL<<rt1[i];
1527 }
1528 }
1529 }
1530 clear_const(current,rs1[i]);
1531 clear_const(current,rs2[i]);
1532 clear_const(current,rt1[i]);
1533 dirty_reg(current,rt1[i]);
1534}
1535
1536void imm16_alloc(struct regstat *current,int i)
1537{
1538 if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1539 else lt1[i]=rs1[i];
1540 if(rt1[i]) alloc_reg(current,i,rt1[i]);
1541 if(opcode[i]==0x18||opcode[i]==0x19) { // DADDI/DADDIU
1542 current->is32&=~(1LL<<rt1[i]);
1543 if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1544 // TODO: Could preserve the 32-bit flag if the immediate is zero
1545 alloc_reg64(current,i,rt1[i]);
1546 alloc_reg64(current,i,rs1[i]);
1547 }
1548 clear_const(current,rs1[i]);
1549 clear_const(current,rt1[i]);
1550 }
1551 else if(opcode[i]==0x0a||opcode[i]==0x0b) { // SLTI/SLTIU
1552 if((~current->is32>>rs1[i])&1) alloc_reg64(current,i,rs1[i]);
1553 current->is32|=1LL<<rt1[i];
1554 clear_const(current,rs1[i]);
1555 clear_const(current,rt1[i]);
1556 }
1557 else if(opcode[i]>=0x0c&&opcode[i]<=0x0e) { // ANDI/ORI/XORI
1558 if(((~current->is32>>rs1[i])&1)&&opcode[i]>0x0c) {
1559 if(rs1[i]!=rt1[i]) {
1560 if(needed_again(rs1[i],i)) alloc_reg64(current,i,rs1[i]);
1561 alloc_reg64(current,i,rt1[i]);
1562 current->is32&=~(1LL<<rt1[i]);
1563 }
1564 }
1565 else current->is32|=1LL<<rt1[i]; // ANDI clears upper bits
1566 if(is_const(current,rs1[i])) {
1567 int v=get_const(current,rs1[i]);
1568 if(opcode[i]==0x0c) set_const(current,rt1[i],v&imm[i]);
1569 if(opcode[i]==0x0d) set_const(current,rt1[i],v|imm[i]);
1570 if(opcode[i]==0x0e) set_const(current,rt1[i],v^imm[i]);
1571 }
1572 else clear_const(current,rt1[i]);
1573 }
1574 else if(opcode[i]==0x08||opcode[i]==0x09) { // ADDI/ADDIU
1575 if(is_const(current,rs1[i])) {
1576 int v=get_const(current,rs1[i]);
1577 set_const(current,rt1[i],v+imm[i]);
1578 }
1579 else clear_const(current,rt1[i]);
1580 current->is32|=1LL<<rt1[i];
1581 }
1582 else {
1583 set_const(current,rt1[i],((long long)((short)imm[i]))<<16); // LUI
1584 current->is32|=1LL<<rt1[i];
1585 }
1586 dirty_reg(current,rt1[i]);
1587}
1588
1589void load_alloc(struct regstat *current,int i)
1590{
1591 clear_const(current,rt1[i]);
1592 //if(rs1[i]!=rt1[i]&&needed_again(rs1[i],i)) clear_const(current,rs1[i]); // Does this help or hurt?
1593 if(!rs1[i]) current->u&=~1LL; // Allow allocating r0 if it's the source register
1594 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1595 if(rt1[i]) {
1596 alloc_reg(current,i,rt1[i]);
1597 if(opcode[i]==0x27||opcode[i]==0x37) // LWU/LD
1598 {
1599 current->is32&=~(1LL<<rt1[i]);
1600 alloc_reg64(current,i,rt1[i]);
1601 }
1602 else if(opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
1603 {
1604 current->is32&=~(1LL<<rt1[i]);
1605 alloc_reg64(current,i,rt1[i]);
1606 alloc_all(current,i);
1607 alloc_reg64(current,i,FTEMP);
1608 }
1609 else current->is32|=1LL<<rt1[i];
1610 dirty_reg(current,rt1[i]);
1611 // If using TLB, need a register for pointer to the mapping table
1612 if(using_tlb) alloc_reg(current,i,TLREG);
1613 // LWL/LWR need a temporary register for the old value
1614 if(opcode[i]==0x22||opcode[i]==0x26)
1615 {
1616 alloc_reg(current,i,FTEMP);
1617 alloc_reg_temp(current,i,-1);
1618 }
1619 }
1620 else
1621 {
1622 // Load to r0 (dummy load)
1623 // but we still need a register to calculate the address
1624 alloc_reg_temp(current,i,-1);
1625 }
1626}
1627
1628void store_alloc(struct regstat *current,int i)
1629{
1630 clear_const(current,rs2[i]);
1631 if(!(rs2[i])) current->u&=~1LL; // Allow allocating r0 if necessary
1632 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1633 alloc_reg(current,i,rs2[i]);
1634 if(opcode[i]==0x2c||opcode[i]==0x2d||opcode[i]==0x3f) { // 64-bit SDL/SDR/SD
1635 alloc_reg64(current,i,rs2[i]);
1636 if(rs2[i]) alloc_reg(current,i,FTEMP);
1637 }
1638 // If using TLB, need a register for pointer to the mapping table
1639 if(using_tlb) alloc_reg(current,i,TLREG);
1640 #if defined(HOST_IMM8)
1641 // On CPUs without 32-bit immediates we need a pointer to invalid_code
1642 else alloc_reg(current,i,INVCP);
1643 #endif
1644 if(opcode[i]==0x2a||opcode[i]==0x2e||opcode[i]==0x2c||opcode[i]==0x2d) { // SWL/SWL/SDL/SDR
1645 alloc_reg(current,i,FTEMP);
1646 }
1647 // We need a temporary register for address generation
1648 alloc_reg_temp(current,i,-1);
1649}
1650
1651void c1ls_alloc(struct regstat *current,int i)
1652{
1653 //clear_const(current,rs1[i]); // FIXME
1654 clear_const(current,rt1[i]);
1655 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1656 alloc_reg(current,i,CSREG); // Status
1657 alloc_reg(current,i,FTEMP);
1658 if(opcode[i]==0x35||opcode[i]==0x3d) { // 64-bit LDC1/SDC1
1659 alloc_reg64(current,i,FTEMP);
1660 }
1661 // If using TLB, need a register for pointer to the mapping table
1662 if(using_tlb) alloc_reg(current,i,TLREG);
1663 #if defined(HOST_IMM8)
1664 // On CPUs without 32-bit immediates we need a pointer to invalid_code
1665 else if((opcode[i]&0x3b)==0x39) // SWC1/SDC1
1666 alloc_reg(current,i,INVCP);
1667 #endif
1668 // We need a temporary register for address generation
1669 alloc_reg_temp(current,i,-1);
1670}
1671
1672void c2ls_alloc(struct regstat *current,int i)
1673{
1674 clear_const(current,rt1[i]);
1675 if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1676 alloc_reg(current,i,FTEMP);
1677 // If using TLB, need a register for pointer to the mapping table
1678 if(using_tlb) alloc_reg(current,i,TLREG);
1679 #if defined(HOST_IMM8)
1680 // On CPUs without 32-bit immediates we need a pointer to invalid_code
1681 else if((opcode[i]&0x3b)==0x3a) // SWC2/SDC2
1682 alloc_reg(current,i,INVCP);
1683 #endif
1684 // We need a temporary register for address generation
1685 alloc_reg_temp(current,i,-1);
1686}
1687
1688#ifndef multdiv_alloc
1689void multdiv_alloc(struct regstat *current,int i)
1690{
1691 // case 0x18: MULT
1692 // case 0x19: MULTU
1693 // case 0x1A: DIV
1694 // case 0x1B: DIVU
1695 // case 0x1C: DMULT
1696 // case 0x1D: DMULTU
1697 // case 0x1E: DDIV
1698 // case 0x1F: DDIVU
1699 clear_const(current,rs1[i]);
1700 clear_const(current,rs2[i]);
1701 if(rs1[i]&&rs2[i])
1702 {
1703 if((opcode2[i]&4)==0) // 32-bit
1704 {
1705 current->u&=~(1LL<<HIREG);
1706 current->u&=~(1LL<<LOREG);
1707 alloc_reg(current,i,HIREG);
1708 alloc_reg(current,i,LOREG);
1709 alloc_reg(current,i,rs1[i]);
1710 alloc_reg(current,i,rs2[i]);
1711 current->is32|=1LL<<HIREG;
1712 current->is32|=1LL<<LOREG;
1713 dirty_reg(current,HIREG);
1714 dirty_reg(current,LOREG);
1715 }
1716 else // 64-bit
1717 {
1718 current->u&=~(1LL<<HIREG);
1719 current->u&=~(1LL<<LOREG);
1720 current->uu&=~(1LL<<HIREG);
1721 current->uu&=~(1LL<<LOREG);
1722 alloc_reg64(current,i,HIREG);
1723 //if(HOST_REGS>10) alloc_reg64(current,i,LOREG);
1724 alloc_reg64(current,i,rs1[i]);
1725 alloc_reg64(current,i,rs2[i]);
1726 alloc_all(current,i);
1727 current->is32&=~(1LL<<HIREG);
1728 current->is32&=~(1LL<<LOREG);
1729 dirty_reg(current,HIREG);
1730 dirty_reg(current,LOREG);
1731 }
1732 }
1733 else
1734 {
1735 // Multiply by zero is zero.
1736 // MIPS does not have a divide by zero exception.
1737 // The result is undefined, we return zero.
1738 alloc_reg(current,i,HIREG);
1739 alloc_reg(current,i,LOREG);
1740 current->is32|=1LL<<HIREG;
1741 current->is32|=1LL<<LOREG;
1742 dirty_reg(current,HIREG);
1743 dirty_reg(current,LOREG);
1744 }
1745}
1746#endif
1747
1748void cop0_alloc(struct regstat *current,int i)
1749{
1750 if(opcode2[i]==0) // MFC0
1751 {
1752 if(rt1[i]) {
1753 clear_const(current,rt1[i]);
1754 alloc_all(current,i);
1755 alloc_reg(current,i,rt1[i]);
1756 current->is32|=1LL<<rt1[i];
1757 dirty_reg(current,rt1[i]);
1758 }
1759 }
1760 else if(opcode2[i]==4) // MTC0
1761 {
1762 if(rs1[i]){
1763 clear_const(current,rs1[i]);
1764 alloc_reg(current,i,rs1[i]);
1765 alloc_all(current,i);
1766 }
1767 else {
1768 alloc_all(current,i); // FIXME: Keep r0
1769 current->u&=~1LL;
1770 alloc_reg(current,i,0);
1771 }
1772 }
1773 else
1774 {
1775 // TLBR/TLBWI/TLBWR/TLBP/ERET
1776 assert(opcode2[i]==0x10);
1777 alloc_all(current,i);
1778 }
1779}
1780
1781void cop1_alloc(struct regstat *current,int i)
1782{
1783 alloc_reg(current,i,CSREG); // Load status
1784 if(opcode2[i]<3) // MFC1/DMFC1/CFC1
1785 {
1786 assert(rt1[i]);
1787 clear_const(current,rt1[i]);
1788 if(opcode2[i]==1) {
1789 alloc_reg64(current,i,rt1[i]); // DMFC1
1790 current->is32&=~(1LL<<rt1[i]);
1791 }else{
1792 alloc_reg(current,i,rt1[i]); // MFC1/CFC1
1793 current->is32|=1LL<<rt1[i];
1794 }
1795 dirty_reg(current,rt1[i]);
1796 alloc_reg_temp(current,i,-1);
1797 }
1798 else if(opcode2[i]>3) // MTC1/DMTC1/CTC1
1799 {
1800 if(rs1[i]){
1801 clear_const(current,rs1[i]);
1802 if(opcode2[i]==5)
1803 alloc_reg64(current,i,rs1[i]); // DMTC1
1804 else
1805 alloc_reg(current,i,rs1[i]); // MTC1/CTC1
1806 alloc_reg_temp(current,i,-1);
1807 }
1808 else {
1809 current->u&=~1LL;
1810 alloc_reg(current,i,0);
1811 alloc_reg_temp(current,i,-1);
1812 }
1813 }
1814}
1815void fconv_alloc(struct regstat *current,int i)
1816{
1817 alloc_reg(current,i,CSREG); // Load status
1818 alloc_reg_temp(current,i,-1);
1819}
1820void float_alloc(struct regstat *current,int i)
1821{
1822 alloc_reg(current,i,CSREG); // Load status
1823 alloc_reg_temp(current,i,-1);
1824}
1825void c2op_alloc(struct regstat *current,int i)
1826{
1827 alloc_reg_temp(current,i,-1);
1828}
1829void fcomp_alloc(struct regstat *current,int i)
1830{
1831 alloc_reg(current,i,CSREG); // Load status
1832 alloc_reg(current,i,FSREG); // Load flags
1833 dirty_reg(current,FSREG); // Flag will be modified
1834 alloc_reg_temp(current,i,-1);
1835}
1836
1837void syscall_alloc(struct regstat *current,int i)
1838{
1839 alloc_cc(current,i);
1840 dirty_reg(current,CCREG);
1841 alloc_all(current,i);
1842 current->isconst=0;
1843}
1844
1845void delayslot_alloc(struct regstat *current,int i)
1846{
1847 switch(itype[i]) {
1848 case UJUMP:
1849 case CJUMP:
1850 case SJUMP:
1851 case RJUMP:
1852 case FJUMP:
1853 case SYSCALL:
1854 case HLECALL:
1855 case SPAN:
1856 assem_debug("jump in the delay slot. this shouldn't happen.\n");//exit(1);
1857 printf("Disabled speculative precompilation\n");
1858 stop_after_jal=1;
1859 break;
1860 case IMM16:
1861 imm16_alloc(current,i);
1862 break;
1863 case LOAD:
1864 case LOADLR:
1865 load_alloc(current,i);
1866 break;
1867 case STORE:
1868 case STORELR:
1869 store_alloc(current,i);
1870 break;
1871 case ALU:
1872 alu_alloc(current,i);
1873 break;
1874 case SHIFT:
1875 shift_alloc(current,i);
1876 break;
1877 case MULTDIV:
1878 multdiv_alloc(current,i);
1879 break;
1880 case SHIFTIMM:
1881 shiftimm_alloc(current,i);
1882 break;
1883 case MOV:
1884 mov_alloc(current,i);
1885 break;
1886 case COP0:
1887 cop0_alloc(current,i);
1888 break;
1889 case COP1:
1890 case COP2:
1891 cop1_alloc(current,i);
1892 break;
1893 case C1LS:
1894 c1ls_alloc(current,i);
1895 break;
1896 case C2LS:
1897 c2ls_alloc(current,i);
1898 break;
1899 case FCONV:
1900 fconv_alloc(current,i);
1901 break;
1902 case FLOAT:
1903 float_alloc(current,i);
1904 break;
1905 case FCOMP:
1906 fcomp_alloc(current,i);
1907 break;
1908 case C2OP:
1909 c2op_alloc(current,i);
1910 break;
1911 }
1912}
1913
1914// Special case where a branch and delay slot span two pages in virtual memory
1915static void pagespan_alloc(struct regstat *current,int i)
1916{
1917 current->isconst=0;
1918 current->wasconst=0;
1919 regs[i].wasconst=0;
1920 alloc_all(current,i);
1921 alloc_cc(current,i);
1922 dirty_reg(current,CCREG);
1923 if(opcode[i]==3) // JAL
1924 {
1925 alloc_reg(current,i,31);
1926 dirty_reg(current,31);
1927 }
1928 if(opcode[i]==0&&(opcode2[i]&0x3E)==8) // JR/JALR
1929 {
1930 alloc_reg(current,i,rs1[i]);
1931 if (rt1[i]!=0) {
1932 alloc_reg(current,i,rt1[i]);
1933 dirty_reg(current,rt1[i]);
1934 }
1935 }
1936 if((opcode[i]&0x2E)==4) // BEQ/BNE/BEQL/BNEL
1937 {
1938 if(rs1[i]) alloc_reg(current,i,rs1[i]);
1939 if(rs2[i]) alloc_reg(current,i,rs2[i]);
1940 if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1941 {
1942 if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1943 if(rs2[i]) alloc_reg64(current,i,rs2[i]);
1944 }
1945 }
1946 else
1947 if((opcode[i]&0x2E)==6) // BLEZ/BGTZ/BLEZL/BGTZL
1948 {
1949 if(rs1[i]) alloc_reg(current,i,rs1[i]);
1950 if(!((current->is32>>rs1[i])&1))
1951 {
1952 if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1953 }
1954 }
1955 else
1956 if(opcode[i]==0x11) // BC1
1957 {
1958 alloc_reg(current,i,FSREG);
1959 alloc_reg(current,i,CSREG);
1960 }
1961 //else ...
1962}
1963
1964add_stub(int type,int addr,int retaddr,int a,int b,int c,int d,int e)
1965{
1966 stubs[stubcount][0]=type;
1967 stubs[stubcount][1]=addr;
1968 stubs[stubcount][2]=retaddr;
1969 stubs[stubcount][3]=a;
1970 stubs[stubcount][4]=b;
1971 stubs[stubcount][5]=c;
1972 stubs[stubcount][6]=d;
1973 stubs[stubcount][7]=e;
1974 stubcount++;
1975}
1976
1977// Write out a single register
1978void wb_register(signed char r,signed char regmap[],uint64_t dirty,uint64_t is32)
1979{
1980 int hr;
1981 for(hr=0;hr<HOST_REGS;hr++) {
1982 if(hr!=EXCLUDE_REG) {
1983 if((regmap[hr]&63)==r) {
1984 if((dirty>>hr)&1) {
1985 if(regmap[hr]<64) {
1986 emit_storereg(r,hr);
1987#ifndef FORCE32
1988 if((is32>>regmap[hr])&1) {
1989 emit_sarimm(hr,31,hr);
1990 emit_storereg(r|64,hr);
1991 }
1992#endif
1993 }else{
1994 emit_storereg(r|64,hr);
1995 }
1996 }
1997 }
1998 }
1999 }
2000}
2001
2002int mchecksum()
2003{
2004 //if(!tracedebug) return 0;
2005 int i;
2006 int sum=0;
2007 for(i=0;i<2097152;i++) {
2008 unsigned int temp=sum;
2009 sum<<=1;
2010 sum|=(~temp)>>31;
2011 sum^=((u_int *)rdram)[i];
2012 }
2013 return sum;
2014}
2015int rchecksum()
2016{
2017 int i;
2018 int sum=0;
2019 for(i=0;i<64;i++)
2020 sum^=((u_int *)reg)[i];
2021 return sum;
2022}
2023void rlist()
2024{
2025 int i;
2026 printf("TRACE: ");
2027 for(i=0;i<32;i++)
2028 printf("r%d:%8x%8x ",i,((int *)(reg+i))[1],((int *)(reg+i))[0]);
2029 printf("\n");
2030#ifndef DISABLE_COP1
2031 printf("TRACE: ");
2032 for(i=0;i<32;i++)
2033 printf("f%d:%8x%8x ",i,((int*)reg_cop1_simple[i])[1],*((int*)reg_cop1_simple[i]));
2034 printf("\n");
2035#endif
2036}
2037
2038void enabletrace()
2039{
2040 tracedebug=1;
2041}
2042
2043void memdebug(int i)
2044{
2045 //printf("TRACE: count=%d next=%d (checksum %x) lo=%8x%8x\n",Count,next_interupt,mchecksum(),(int)(reg[LOREG]>>32),(int)reg[LOREG]);
2046 //printf("TRACE: count=%d next=%d (rchecksum %x)\n",Count,next_interupt,rchecksum());
2047 //rlist();
2048 //if(tracedebug) {
2049 //if(Count>=-2084597794) {
2050 if((signed int)Count>=-2084597794&&(signed int)Count<0) {
2051 //if(0) {
2052 printf("TRACE: count=%d next=%d (checksum %x)\n",Count,next_interupt,mchecksum());
2053 //printf("TRACE: count=%d next=%d (checksum %x) Status=%x\n",Count,next_interupt,mchecksum(),Status);
2054 //printf("TRACE: count=%d next=%d (checksum %x) hi=%8x%8x\n",Count,next_interupt,mchecksum(),(int)(reg[HIREG]>>32),(int)reg[HIREG]);
2055 rlist();
2056 #ifdef __i386__
2057 printf("TRACE: %x\n",(&i)[-1]);
2058 #endif
2059 #ifdef __arm__
2060 int j;
2061 printf("TRACE: %x \n",(&j)[10]);
2062 printf("TRACE: %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x\n",(&j)[1],(&j)[2],(&j)[3],(&j)[4],(&j)[5],(&j)[6],(&j)[7],(&j)[8],(&j)[9],(&j)[10],(&j)[11],(&j)[12],(&j)[13],(&j)[14],(&j)[15],(&j)[16],(&j)[17],(&j)[18],(&j)[19],(&j)[20]);
2063 #endif
2064 //fflush(stdout);
2065 }
2066 //printf("TRACE: %x\n",(&i)[-1]);
2067}
2068
2069void tlb_debug(u_int cause, u_int addr, u_int iaddr)
2070{
2071 printf("TLB Exception: instruction=%x addr=%x cause=%x\n",iaddr, addr, cause);
2072}
2073
2074void alu_assemble(int i,struct regstat *i_regs)
2075{
2076 if(opcode2[i]>=0x20&&opcode2[i]<=0x23) { // ADD/ADDU/SUB/SUBU
2077 if(rt1[i]) {
2078 signed char s1,s2,t;
2079 t=get_reg(i_regs->regmap,rt1[i]);
2080 if(t>=0) {
2081 s1=get_reg(i_regs->regmap,rs1[i]);
2082 s2=get_reg(i_regs->regmap,rs2[i]);
2083 if(rs1[i]&&rs2[i]) {
2084 assert(s1>=0);
2085 assert(s2>=0);
2086 if(opcode2[i]&2) emit_sub(s1,s2,t);
2087 else emit_add(s1,s2,t);
2088 }
2089 else if(rs1[i]) {
2090 if(s1>=0) emit_mov(s1,t);
2091 else emit_loadreg(rs1[i],t);
2092 }
2093 else if(rs2[i]) {
2094 if(s2>=0) {
2095 if(opcode2[i]&2) emit_neg(s2,t);
2096 else emit_mov(s2,t);
2097 }
2098 else {
2099 emit_loadreg(rs2[i],t);
2100 if(opcode2[i]&2) emit_neg(t,t);
2101 }
2102 }
2103 else emit_zeroreg(t);
2104 }
2105 }
2106 }
2107 if(opcode2[i]>=0x2c&&opcode2[i]<=0x2f) { // DADD/DADDU/DSUB/DSUBU
2108 if(rt1[i]) {
2109 signed char s1l,s2l,s1h,s2h,tl,th;
2110 tl=get_reg(i_regs->regmap,rt1[i]);
2111 th=get_reg(i_regs->regmap,rt1[i]|64);
2112 if(tl>=0) {
2113 s1l=get_reg(i_regs->regmap,rs1[i]);
2114 s2l=get_reg(i_regs->regmap,rs2[i]);
2115 s1h=get_reg(i_regs->regmap,rs1[i]|64);
2116 s2h=get_reg(i_regs->regmap,rs2[i]|64);
2117 if(rs1[i]&&rs2[i]) {
2118 assert(s1l>=0);
2119 assert(s2l>=0);
2120 if(opcode2[i]&2) emit_subs(s1l,s2l,tl);
2121 else emit_adds(s1l,s2l,tl);
2122 if(th>=0) {
2123 #ifdef INVERTED_CARRY
2124 if(opcode2[i]&2) {if(s1h!=th) emit_mov(s1h,th);emit_sbb(th,s2h);}
2125 #else
2126 if(opcode2[i]&2) emit_sbc(s1h,s2h,th);
2127 #endif
2128 else emit_add(s1h,s2h,th);
2129 }
2130 }
2131 else if(rs1[i]) {
2132 if(s1l>=0) emit_mov(s1l,tl);
2133 else emit_loadreg(rs1[i],tl);
2134 if(th>=0) {
2135 if(s1h>=0) emit_mov(s1h,th);
2136 else emit_loadreg(rs1[i]|64,th);
2137 }
2138 }
2139 else if(rs2[i]) {
2140 if(s2l>=0) {
2141 if(opcode2[i]&2) emit_negs(s2l,tl);
2142 else emit_mov(s2l,tl);
2143 }
2144 else {
2145 emit_loadreg(rs2[i],tl);
2146 if(opcode2[i]&2) emit_negs(tl,tl);
2147 }
2148 if(th>=0) {
2149 #ifdef INVERTED_CARRY
2150 if(s2h>=0) emit_mov(s2h,th);
2151 else emit_loadreg(rs2[i]|64,th);
2152 if(opcode2[i]&2) {
2153 emit_adcimm(-1,th); // x86 has inverted carry flag
2154 emit_not(th,th);
2155 }
2156 #else
2157 if(opcode2[i]&2) {
2158 if(s2h>=0) emit_rscimm(s2h,0,th);
2159 else {
2160 emit_loadreg(rs2[i]|64,th);
2161 emit_rscimm(th,0,th);
2162 }
2163 }else{
2164 if(s2h>=0) emit_mov(s2h,th);
2165 else emit_loadreg(rs2[i]|64,th);
2166 }
2167 #endif
2168 }
2169 }
2170 else {
2171 emit_zeroreg(tl);
2172 if(th>=0) emit_zeroreg(th);
2173 }
2174 }
2175 }
2176 }
2177 if(opcode2[i]==0x2a||opcode2[i]==0x2b) { // SLT/SLTU
2178 if(rt1[i]) {
2179 signed char s1l,s1h,s2l,s2h,t;
2180 if(!((i_regs->was32>>rs1[i])&(i_regs->was32>>rs2[i])&1))
2181 {
2182 t=get_reg(i_regs->regmap,rt1[i]);
2183 //assert(t>=0);
2184 if(t>=0) {
2185 s1l=get_reg(i_regs->regmap,rs1[i]);
2186 s1h=get_reg(i_regs->regmap,rs1[i]|64);
2187 s2l=get_reg(i_regs->regmap,rs2[i]);
2188 s2h=get_reg(i_regs->regmap,rs2[i]|64);
2189 if(rs2[i]==0) // rx<r0
2190 {
2191 assert(s1h>=0);
2192 if(opcode2[i]==0x2a) // SLT
2193 emit_shrimm(s1h,31,t);
2194 else // SLTU (unsigned can not be less than zero)
2195 emit_zeroreg(t);
2196 }
2197 else if(rs1[i]==0) // r0<rx
2198 {
2199 assert(s2h>=0);
2200 if(opcode2[i]==0x2a) // SLT
2201 emit_set_gz64_32(s2h,s2l,t);
2202 else // SLTU (set if not zero)
2203 emit_set_nz64_32(s2h,s2l,t);
2204 }
2205 else {
2206 assert(s1l>=0);assert(s1h>=0);
2207 assert(s2l>=0);assert(s2h>=0);
2208 if(opcode2[i]==0x2a) // SLT
2209 emit_set_if_less64_32(s1h,s1l,s2h,s2l,t);
2210 else // SLTU
2211 emit_set_if_carry64_32(s1h,s1l,s2h,s2l,t);
2212 }
2213 }
2214 } else {
2215 t=get_reg(i_regs->regmap,rt1[i]);
2216 //assert(t>=0);
2217 if(t>=0) {
2218 s1l=get_reg(i_regs->regmap,rs1[i]);
2219 s2l=get_reg(i_regs->regmap,rs2[i]);
2220 if(rs2[i]==0) // rx<r0
2221 {
2222 assert(s1l>=0);
2223 if(opcode2[i]==0x2a) // SLT
2224 emit_shrimm(s1l,31,t);
2225 else // SLTU (unsigned can not be less than zero)
2226 emit_zeroreg(t);
2227 }
2228 else if(rs1[i]==0) // r0<rx
2229 {
2230 assert(s2l>=0);
2231 if(opcode2[i]==0x2a) // SLT
2232 emit_set_gz32(s2l,t);
2233 else // SLTU (set if not zero)
2234 emit_set_nz32(s2l,t);
2235 }
2236 else{
2237 assert(s1l>=0);assert(s2l>=0);
2238 if(opcode2[i]==0x2a) // SLT
2239 emit_set_if_less32(s1l,s2l,t);
2240 else // SLTU
2241 emit_set_if_carry32(s1l,s2l,t);
2242 }
2243 }
2244 }
2245 }
2246 }
2247 if(opcode2[i]>=0x24&&opcode2[i]<=0x27) { // AND/OR/XOR/NOR
2248 if(rt1[i]) {
2249 signed char s1l,s1h,s2l,s2h,th,tl;
2250 tl=get_reg(i_regs->regmap,rt1[i]);
2251 th=get_reg(i_regs->regmap,rt1[i]|64);
2252 if(!((i_regs->was32>>rs1[i])&(i_regs->was32>>rs2[i])&1)&&th>=0)
2253 {
2254 assert(tl>=0);
2255 if(tl>=0) {
2256 s1l=get_reg(i_regs->regmap,rs1[i]);
2257 s1h=get_reg(i_regs->regmap,rs1[i]|64);
2258 s2l=get_reg(i_regs->regmap,rs2[i]);
2259 s2h=get_reg(i_regs->regmap,rs2[i]|64);
2260 if(rs1[i]&&rs2[i]) {
2261 assert(s1l>=0);assert(s1h>=0);
2262 assert(s2l>=0);assert(s2h>=0);
2263 if(opcode2[i]==0x24) { // AND
2264 emit_and(s1l,s2l,tl);
2265 emit_and(s1h,s2h,th);
2266 } else
2267 if(opcode2[i]==0x25) { // OR
2268 emit_or(s1l,s2l,tl);
2269 emit_or(s1h,s2h,th);
2270 } else
2271 if(opcode2[i]==0x26) { // XOR
2272 emit_xor(s1l,s2l,tl);
2273 emit_xor(s1h,s2h,th);
2274 } else
2275 if(opcode2[i]==0x27) { // NOR
2276 emit_or(s1l,s2l,tl);
2277 emit_or(s1h,s2h,th);
2278 emit_not(tl,tl);
2279 emit_not(th,th);
2280 }
2281 }
2282 else
2283 {
2284 if(opcode2[i]==0x24) { // AND
2285 emit_zeroreg(tl);
2286 emit_zeroreg(th);
2287 } else
2288 if(opcode2[i]==0x25||opcode2[i]==0x26) { // OR/XOR
2289 if(rs1[i]){
2290 if(s1l>=0) emit_mov(s1l,tl);
2291 else emit_loadreg(rs1[i],tl);
2292 if(s1h>=0) emit_mov(s1h,th);
2293 else emit_loadreg(rs1[i]|64,th);
2294 }
2295 else
2296 if(rs2[i]){
2297 if(s2l>=0) emit_mov(s2l,tl);
2298 else emit_loadreg(rs2[i],tl);
2299 if(s2h>=0) emit_mov(s2h,th);
2300 else emit_loadreg(rs2[i]|64,th);
2301 }
2302 else{
2303 emit_zeroreg(tl);
2304 emit_zeroreg(th);
2305 }
2306 } else
2307 if(opcode2[i]==0x27) { // NOR
2308 if(rs1[i]){
2309 if(s1l>=0) emit_not(s1l,tl);
2310 else{
2311 emit_loadreg(rs1[i],tl);
2312 emit_not(tl,tl);
2313 }
2314 if(s1h>=0) emit_not(s1h,th);
2315 else{
2316 emit_loadreg(rs1[i]|64,th);
2317 emit_not(th,th);
2318 }
2319 }
2320 else
2321 if(rs2[i]){
2322 if(s2l>=0) emit_not(s2l,tl);
2323 else{
2324 emit_loadreg(rs2[i],tl);
2325 emit_not(tl,tl);
2326 }
2327 if(s2h>=0) emit_not(s2h,th);
2328 else{
2329 emit_loadreg(rs2[i]|64,th);
2330 emit_not(th,th);
2331 }
2332 }
2333 else {
2334 emit_movimm(-1,tl);
2335 emit_movimm(-1,th);
2336 }
2337 }
2338 }
2339 }
2340 }
2341 else
2342 {
2343 // 32 bit
2344 if(tl>=0) {
2345 s1l=get_reg(i_regs->regmap,rs1[i]);
2346 s2l=get_reg(i_regs->regmap,rs2[i]);
2347 if(rs1[i]&&rs2[i]) {
2348 assert(s1l>=0);
2349 assert(s2l>=0);
2350 if(opcode2[i]==0x24) { // AND
2351 emit_and(s1l,s2l,tl);
2352 } else
2353 if(opcode2[i]==0x25) { // OR
2354 emit_or(s1l,s2l,tl);
2355 } else
2356 if(opcode2[i]==0x26) { // XOR
2357 emit_xor(s1l,s2l,tl);
2358 } else
2359 if(opcode2[i]==0x27) { // NOR
2360 emit_or(s1l,s2l,tl);
2361 emit_not(tl,tl);
2362 }
2363 }
2364 else
2365 {
2366 if(opcode2[i]==0x24) { // AND
2367 emit_zeroreg(tl);
2368 } else
2369 if(opcode2[i]==0x25||opcode2[i]==0x26) { // OR/XOR
2370 if(rs1[i]){
2371 if(s1l>=0) emit_mov(s1l,tl);
2372 else emit_loadreg(rs1[i],tl); // CHECK: regmap_entry?
2373 }
2374 else
2375 if(rs2[i]){
2376 if(s2l>=0) emit_mov(s2l,tl);
2377 else emit_loadreg(rs2[i],tl); // CHECK: regmap_entry?
2378 }
2379 else emit_zeroreg(tl);
2380 } else
2381 if(opcode2[i]==0x27) { // NOR
2382 if(rs1[i]){
2383 if(s1l>=0) emit_not(s1l,tl);
2384 else {
2385 emit_loadreg(rs1[i],tl);
2386 emit_not(tl,tl);
2387 }
2388 }
2389 else
2390 if(rs2[i]){
2391 if(s2l>=0) emit_not(s2l,tl);
2392 else {
2393 emit_loadreg(rs2[i],tl);
2394 emit_not(tl,tl);
2395 }
2396 }
2397 else emit_movimm(-1,tl);
2398 }
2399 }
2400 }
2401 }
2402 }
2403 }
2404}
2405
2406void imm16_assemble(int i,struct regstat *i_regs)
2407{
2408 if (opcode[i]==0x0f) { // LUI
2409 if(rt1[i]) {
2410 signed char t;
2411 t=get_reg(i_regs->regmap,rt1[i]);
2412 //assert(t>=0);
2413 if(t>=0) {
2414 if(!((i_regs->isconst>>t)&1))
2415 emit_movimm(imm[i]<<16,t);
2416 }
2417 }
2418 }
2419 if(opcode[i]==0x08||opcode[i]==0x09) { // ADDI/ADDIU
2420 if(rt1[i]) {
2421 signed char s,t;
2422 t=get_reg(i_regs->regmap,rt1[i]);
2423 s=get_reg(i_regs->regmap,rs1[i]);
2424 if(rs1[i]) {
2425 //assert(t>=0);
2426 //assert(s>=0);
2427 if(t>=0) {
2428 if(!((i_regs->isconst>>t)&1)) {
2429 if(s<0) {
2430 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2431 emit_addimm(t,imm[i],t);
2432 }else{
2433 if(!((i_regs->wasconst>>s)&1))
2434 emit_addimm(s,imm[i],t);
2435 else
2436 emit_movimm(constmap[i][s]+imm[i],t);
2437 }
2438 }
2439 }
2440 } else {
2441 if(t>=0) {
2442 if(!((i_regs->isconst>>t)&1))
2443 emit_movimm(imm[i],t);
2444 }
2445 }
2446 }
2447 }
2448 if(opcode[i]==0x18||opcode[i]==0x19) { // DADDI/DADDIU
2449 if(rt1[i]) {
2450 signed char sh,sl,th,tl;
2451 th=get_reg(i_regs->regmap,rt1[i]|64);
2452 tl=get_reg(i_regs->regmap,rt1[i]);
2453 sh=get_reg(i_regs->regmap,rs1[i]|64);
2454 sl=get_reg(i_regs->regmap,rs1[i]);
2455 if(tl>=0) {
2456 if(rs1[i]) {
2457 assert(sh>=0);
2458 assert(sl>=0);
2459 if(th>=0) {
2460 emit_addimm64_32(sh,sl,imm[i],th,tl);
2461 }
2462 else {
2463 emit_addimm(sl,imm[i],tl);
2464 }
2465 } else {
2466 emit_movimm(imm[i],tl);
2467 if(th>=0) emit_movimm(((signed int)imm[i])>>31,th);
2468 }
2469 }
2470 }
2471 }
2472 else if(opcode[i]==0x0a||opcode[i]==0x0b) { // SLTI/SLTIU
2473 if(rt1[i]) {
2474 //assert(rs1[i]!=0); // r0 might be valid, but it's probably a bug
2475 signed char sh,sl,t;
2476 t=get_reg(i_regs->regmap,rt1[i]);
2477 sh=get_reg(i_regs->regmap,rs1[i]|64);
2478 sl=get_reg(i_regs->regmap,rs1[i]);
2479 //assert(t>=0);
2480 if(t>=0) {
2481 if(rs1[i]>0) {
2482 if(sh<0) assert((i_regs->was32>>rs1[i])&1);
2483 if(sh<0||((i_regs->was32>>rs1[i])&1)) {
2484 if(opcode[i]==0x0a) { // SLTI
2485 if(sl<0) {
2486 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2487 emit_slti32(t,imm[i],t);
2488 }else{
2489 emit_slti32(sl,imm[i],t);
2490 }
2491 }
2492 else { // SLTIU
2493 if(sl<0) {
2494 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2495 emit_sltiu32(t,imm[i],t);
2496 }else{
2497 emit_sltiu32(sl,imm[i],t);
2498 }
2499 }
2500 }else{ // 64-bit
2501 assert(sl>=0);
2502 if(opcode[i]==0x0a) // SLTI
2503 emit_slti64_32(sh,sl,imm[i],t);
2504 else // SLTIU
2505 emit_sltiu64_32(sh,sl,imm[i],t);
2506 }
2507 }else{
2508 // SLTI(U) with r0 is just stupid,
2509 // nonetheless examples can be found
2510 if(opcode[i]==0x0a) // SLTI
2511 if(0<imm[i]) emit_movimm(1,t);
2512 else emit_zeroreg(t);
2513 else // SLTIU
2514 {
2515 if(imm[i]) emit_movimm(1,t);
2516 else emit_zeroreg(t);
2517 }
2518 }
2519 }
2520 }
2521 }
2522 else if(opcode[i]>=0x0c&&opcode[i]<=0x0e) { // ANDI/ORI/XORI
2523 if(rt1[i]) {
2524 signed char sh,sl,th,tl;
2525 th=get_reg(i_regs->regmap,rt1[i]|64);
2526 tl=get_reg(i_regs->regmap,rt1[i]);
2527 sh=get_reg(i_regs->regmap,rs1[i]|64);
2528 sl=get_reg(i_regs->regmap,rs1[i]);
2529 if(tl>=0 && !((i_regs->isconst>>tl)&1)) {
2530 if(opcode[i]==0x0c) //ANDI
2531 {
2532 if(rs1[i]) {
2533 if(sl<0) {
2534 if(i_regs->regmap_entry[tl]!=rs1[i]) emit_loadreg(rs1[i],tl);
2535 emit_andimm(tl,imm[i],tl);
2536 }else{
2537 if(!((i_regs->wasconst>>sl)&1))
2538 emit_andimm(sl,imm[i],tl);
2539 else
2540 emit_movimm(constmap[i][sl]&imm[i],tl);
2541 }
2542 }
2543 else
2544 emit_zeroreg(tl);
2545 if(th>=0) emit_zeroreg(th);
2546 }
2547 else
2548 {
2549 if(rs1[i]) {
2550 if(sl<0) {
2551 if(i_regs->regmap_entry[tl]!=rs1[i]) emit_loadreg(rs1[i],tl);
2552 }
2553 if(th>=0) {
2554 if(sh<0) {
2555 emit_loadreg(rs1[i]|64,th);
2556 }else{
2557 emit_mov(sh,th);
2558 }
2559 }
2560 if(opcode[i]==0x0d) //ORI
2561 if(sl<0) {
2562 emit_orimm(tl,imm[i],tl);
2563 }else{
2564 if(!((i_regs->wasconst>>sl)&1))
2565 emit_orimm(sl,imm[i],tl);
2566 else
2567 emit_movimm(constmap[i][sl]|imm[i],tl);
2568 }
2569 if(opcode[i]==0x0e) //XORI
2570 if(sl<0) {
2571 emit_xorimm(tl,imm[i],tl);
2572 }else{
2573 if(!((i_regs->wasconst>>sl)&1))
2574 emit_xorimm(sl,imm[i],tl);
2575 else
2576 emit_movimm(constmap[i][sl]^imm[i],tl);
2577 }
2578 }
2579 else {
2580 emit_movimm(imm[i],tl);
2581 if(th>=0) emit_zeroreg(th);
2582 }
2583 }
2584 }
2585 }
2586 }
2587}
2588
2589void shiftimm_assemble(int i,struct regstat *i_regs)
2590{
2591 if(opcode2[i]<=0x3) // SLL/SRL/SRA
2592 {
2593 if(rt1[i]) {
2594 signed char s,t;
2595 t=get_reg(i_regs->regmap,rt1[i]);
2596 s=get_reg(i_regs->regmap,rs1[i]);
2597 //assert(t>=0);
2598 if(t>=0){
2599 if(rs1[i]==0)
2600 {
2601 emit_zeroreg(t);
2602 }
2603 else
2604 {
2605 if(s<0&&i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2606 if(imm[i]) {
2607 if(opcode2[i]==0) // SLL
2608 {
2609 emit_shlimm(s<0?t:s,imm[i],t);
2610 }
2611 if(opcode2[i]==2) // SRL
2612 {
2613 emit_shrimm(s<0?t:s,imm[i],t);
2614 }
2615 if(opcode2[i]==3) // SRA
2616 {
2617 emit_sarimm(s<0?t:s,imm[i],t);
2618 }
2619 }else{
2620 // Shift by zero
2621 if(s>=0 && s!=t) emit_mov(s,t);
2622 }
2623 }
2624 }
2625 //emit_storereg(rt1[i],t); //DEBUG
2626 }
2627 }
2628 if(opcode2[i]>=0x38&&opcode2[i]<=0x3b) // DSLL/DSRL/DSRA
2629 {
2630 if(rt1[i]) {
2631 signed char sh,sl,th,tl;
2632 th=get_reg(i_regs->regmap,rt1[i]|64);
2633 tl=get_reg(i_regs->regmap,rt1[i]);
2634 sh=get_reg(i_regs->regmap,rs1[i]|64);
2635 sl=get_reg(i_regs->regmap,rs1[i]);
2636 if(tl>=0) {
2637 if(rs1[i]==0)
2638 {
2639 emit_zeroreg(tl);
2640 if(th>=0) emit_zeroreg(th);
2641 }
2642 else
2643 {
2644 assert(sl>=0);
2645 assert(sh>=0);
2646 if(imm[i]) {
2647 if(opcode2[i]==0x38) // DSLL
2648 {
2649 if(th>=0) emit_shldimm(sh,sl,imm[i],th);
2650 emit_shlimm(sl,imm[i],tl);
2651 }
2652 if(opcode2[i]==0x3a) // DSRL
2653 {
2654 emit_shrdimm(sl,sh,imm[i],tl);
2655 if(th>=0) emit_shrimm(sh,imm[i],th);
2656 }
2657 if(opcode2[i]==0x3b) // DSRA
2658 {
2659 emit_shrdimm(sl,sh,imm[i],tl);
2660 if(th>=0) emit_sarimm(sh,imm[i],th);
2661 }
2662 }else{
2663 // Shift by zero
2664 if(sl!=tl) emit_mov(sl,tl);
2665 if(th>=0&&sh!=th) emit_mov(sh,th);
2666 }
2667 }
2668 }
2669 }
2670 }
2671 if(opcode2[i]==0x3c) // DSLL32
2672 {
2673 if(rt1[i]) {
2674 signed char sl,tl,th;
2675 tl=get_reg(i_regs->regmap,rt1[i]);
2676 th=get_reg(i_regs->regmap,rt1[i]|64);
2677 sl=get_reg(i_regs->regmap,rs1[i]);
2678 if(th>=0||tl>=0){
2679 assert(tl>=0);
2680 assert(th>=0);
2681 assert(sl>=0);
2682 emit_mov(sl,th);
2683 emit_zeroreg(tl);
2684 if(imm[i]>32)
2685 {
2686 emit_shlimm(th,imm[i]&31,th);
2687 }
2688 }
2689 }
2690 }
2691 if(opcode2[i]==0x3e) // DSRL32
2692 {
2693 if(rt1[i]) {
2694 signed char sh,tl,th;
2695 tl=get_reg(i_regs->regmap,rt1[i]);
2696 th=get_reg(i_regs->regmap,rt1[i]|64);
2697 sh=get_reg(i_regs->regmap,rs1[i]|64);
2698 if(tl>=0){
2699 assert(sh>=0);
2700 emit_mov(sh,tl);
2701 if(th>=0) emit_zeroreg(th);
2702 if(imm[i]>32)
2703 {
2704 emit_shrimm(tl,imm[i]&31,tl);
2705 }
2706 }
2707 }
2708 }
2709 if(opcode2[i]==0x3f) // DSRA32
2710 {
2711 if(rt1[i]) {
2712 signed char sh,tl;
2713 tl=get_reg(i_regs->regmap,rt1[i]);
2714 sh=get_reg(i_regs->regmap,rs1[i]|64);
2715 if(tl>=0){
2716 assert(sh>=0);
2717 emit_mov(sh,tl);
2718 if(imm[i]>32)
2719 {
2720 emit_sarimm(tl,imm[i]&31,tl);
2721 }
2722 }
2723 }
2724 }
2725}
2726
2727#ifndef shift_assemble
2728void shift_assemble(int i,struct regstat *i_regs)
2729{
2730 printf("Need shift_assemble for this architecture.\n");
2731 exit(1);
2732}
2733#endif
2734
2735void load_assemble(int i,struct regstat *i_regs)
2736{
2737 int s,th,tl,addr,map=-1;
2738 int offset;
2739 int jaddr=0;
2740 int memtarget=0,c=0;
2741 u_int hr,reglist=0;
2742 th=get_reg(i_regs->regmap,rt1[i]|64);
2743 tl=get_reg(i_regs->regmap,rt1[i]);
2744 s=get_reg(i_regs->regmap,rs1[i]);
2745 offset=imm[i];
2746 for(hr=0;hr<HOST_REGS;hr++) {
2747 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
2748 }
2749 if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
2750 if(s>=0) {
2751 c=(i_regs->wasconst>>s)&1;
2752 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
2753 if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
2754 }
2755 //printf("load_assemble: c=%d\n",c);
2756 //if(c) printf("load_assemble: const=%x\n",(int)constmap[i][s]+offset);
2757 // FIXME: Even if the load is a NOP, we should check for pagefaults...
2758#ifdef PCSX
2759 if(tl<0&&(!c||(((u_int)constmap[i][s]+offset)>>16)==0x1f80)
2760 ||rt1[i]==0) {
2761 // could be FIFO, must perform the read
2762 // ||dummy read
2763 assem_debug("(forced read)\n");
2764 tl=get_reg(i_regs->regmap,-1);
2765 assert(tl>=0);
2766 }
2767#endif
2768 if(offset||s<0||c) addr=tl;
2769 else addr=s;
2770 if(tl>=0) {
2771 //assert(tl>=0);
2772 //assert(rt1[i]);
2773 reglist&=~(1<<tl);
2774 if(th>=0) reglist&=~(1<<th);
2775 if(!using_tlb) {
2776 if(!c) {
2777//#define R29_HACK 1
2778 #ifdef R29_HACK
2779 // Strmnnrmn's speed hack
2780 if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
2781 #endif
2782 {
2783 emit_cmpimm(addr,RAM_SIZE);
2784 jaddr=(int)out;
2785 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
2786 // Hint to branch predictor that the branch is unlikely to be taken
2787 if(rs1[i]>=28)
2788 emit_jno_unlikely(0);
2789 else
2790 #endif
2791 emit_jno(0);
2792 }
2793 }
2794 }else{ // using tlb
2795 int x=0;
2796 if (opcode[i]==0x20||opcode[i]==0x24) x=3; // LB/LBU
2797 if (opcode[i]==0x21||opcode[i]==0x25) x=2; // LH/LHU
2798 map=get_reg(i_regs->regmap,TLREG);
2799 assert(map>=0);
2800 map=do_tlb_r(addr,tl,map,x,-1,-1,c,constmap[i][s]+offset);
2801 do_tlb_r_branch(map,c,constmap[i][s]+offset,&jaddr);
2802 }
2803 if (opcode[i]==0x20) { // LB
2804 if(!c||memtarget) {
2805 #ifdef HOST_IMM_ADDR32
2806 if(c)
2807 emit_movsbl_tlb((constmap[i][s]+offset)^3,map,tl);
2808 else
2809 #endif
2810 {
2811 //emit_xorimm(addr,3,tl);
2812 //gen_tlb_addr_r(tl,map);
2813 //emit_movsbl_indexed((int)rdram-0x80000000,tl,tl);
2814 int x=0;
2815#ifdef BIG_ENDIAN_MIPS
2816 if(!c) emit_xorimm(addr,3,tl);
2817 else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2818#else
2819 if(c) x=(constmap[i][s]+offset)-(constmap[i][s]+offset);
2820 else if (tl!=addr) emit_mov(addr,tl);
2821#endif
2822 emit_movsbl_indexed_tlb(x,tl,map,tl);
2823 }
2824 if(jaddr)
2825 add_stub(LOADB_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2826 }
2827 else
2828 inline_readstub(LOADB_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2829 }
2830 if (opcode[i]==0x21) { // LH
2831 if(!c||memtarget) {
2832 #ifdef HOST_IMM_ADDR32
2833 if(c)
2834 emit_movswl_tlb((constmap[i][s]+offset)^2,map,tl);
2835 else
2836 #endif
2837 {
2838 int x=0;
2839#ifdef BIG_ENDIAN_MIPS
2840 if(!c) emit_xorimm(addr,2,tl);
2841 else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
2842#else
2843 if(c) x=(constmap[i][s]+offset)-(constmap[i][s]+offset);
2844 else if (tl!=addr) emit_mov(addr,tl);
2845#endif
2846 //#ifdef
2847 //emit_movswl_indexed_tlb(x,tl,map,tl);
2848 //else
2849 if(map>=0) {
2850 gen_tlb_addr_r(tl,map);
2851 emit_movswl_indexed(x,tl,tl);
2852 }else
2853 emit_movswl_indexed((int)rdram-0x80000000+x,tl,tl);
2854 }
2855 if(jaddr)
2856 add_stub(LOADH_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2857 }
2858 else
2859 inline_readstub(LOADH_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2860 }
2861 if (opcode[i]==0x23) { // LW
2862 if(!c||memtarget) {
2863 //emit_readword_indexed((int)rdram-0x80000000,addr,tl);
2864 #ifdef HOST_IMM_ADDR32
2865 if(c)
2866 emit_readword_tlb(constmap[i][s]+offset,map,tl);
2867 else
2868 #endif
2869 emit_readword_indexed_tlb(0,addr,map,tl);
2870 if(jaddr)
2871 add_stub(LOADW_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2872 }
2873 else
2874 inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2875 }
2876 if (opcode[i]==0x24) { // LBU
2877 if(!c||memtarget) {
2878 #ifdef HOST_IMM_ADDR32
2879 if(c)
2880 emit_movzbl_tlb((constmap[i][s]+offset)^3,map,tl);
2881 else
2882 #endif
2883 {
2884 //emit_xorimm(addr,3,tl);
2885 //gen_tlb_addr_r(tl,map);
2886 //emit_movzbl_indexed((int)rdram-0x80000000,tl,tl);
2887 int x=0;
2888#ifdef BIG_ENDIAN_MIPS
2889 if(!c) emit_xorimm(addr,3,tl);
2890 else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2891#else
2892 if(c) x=(constmap[i][s]+offset)-(constmap[i][s]+offset);
2893 else if (tl!=addr) emit_mov(addr,tl);
2894#endif
2895 emit_movzbl_indexed_tlb(x,tl,map,tl);
2896 }
2897 if(jaddr)
2898 add_stub(LOADBU_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2899 }
2900 else
2901 inline_readstub(LOADBU_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2902 }
2903 if (opcode[i]==0x25) { // LHU
2904 if(!c||memtarget) {
2905 #ifdef HOST_IMM_ADDR32
2906 if(c)
2907 emit_movzwl_tlb((constmap[i][s]+offset)^2,map,tl);
2908 else
2909 #endif
2910 {
2911 int x=0;
2912#ifdef BIG_ENDIAN_MIPS
2913 if(!c) emit_xorimm(addr,2,tl);
2914 else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
2915#else
2916 if(c) x=(constmap[i][s]+offset)-(constmap[i][s]+offset);
2917 else if (tl!=addr) emit_mov(addr,tl);
2918#endif
2919 //#ifdef
2920 //emit_movzwl_indexed_tlb(x,tl,map,tl);
2921 //#else
2922 if(map>=0) {
2923 gen_tlb_addr_r(tl,map);
2924 emit_movzwl_indexed(x,tl,tl);
2925 }else
2926 emit_movzwl_indexed((int)rdram-0x80000000+x,tl,tl);
2927 if(jaddr)
2928 add_stub(LOADHU_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2929 }
2930 }
2931 else
2932 inline_readstub(LOADHU_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2933 }
2934 if (opcode[i]==0x27) { // LWU
2935 assert(th>=0);
2936 if(!c||memtarget) {
2937 //emit_readword_indexed((int)rdram-0x80000000,addr,tl);
2938 #ifdef HOST_IMM_ADDR32
2939 if(c)
2940 emit_readword_tlb(constmap[i][s]+offset,map,tl);
2941 else
2942 #endif
2943 emit_readword_indexed_tlb(0,addr,map,tl);
2944 if(jaddr)
2945 add_stub(LOADW_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2946 }
2947 else {
2948 inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2949 }
2950 emit_zeroreg(th);
2951 }
2952 if (opcode[i]==0x37) { // LD
2953 if(!c||memtarget) {
2954 //gen_tlb_addr_r(tl,map);
2955 //if(th>=0) emit_readword_indexed((int)rdram-0x80000000,addr,th);
2956 //emit_readword_indexed((int)rdram-0x7FFFFFFC,addr,tl);
2957 #ifdef HOST_IMM_ADDR32
2958 if(c)
2959 emit_readdword_tlb(constmap[i][s]+offset,map,th,tl);
2960 else
2961 #endif
2962 emit_readdword_indexed_tlb(0,addr,map,th,tl);
2963 if(jaddr)
2964 add_stub(LOADD_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2965 }
2966 else
2967 inline_readstub(LOADD_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2968 }
2969 //emit_storereg(rt1[i],tl); // DEBUG
2970 }
2971 //if(opcode[i]==0x23)
2972 //if(opcode[i]==0x24)
2973 //if(opcode[i]==0x23||opcode[i]==0x24)
2974 /*if(opcode[i]==0x21||opcode[i]==0x23||opcode[i]==0x24)
2975 {
2976 //emit_pusha();
2977 save_regs(0x100f);
2978 emit_readword((int)&last_count,ECX);
2979 #ifdef __i386__
2980 if(get_reg(i_regs->regmap,CCREG)<0)
2981 emit_loadreg(CCREG,HOST_CCREG);
2982 emit_add(HOST_CCREG,ECX,HOST_CCREG);
2983 emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
2984 emit_writeword(HOST_CCREG,(int)&Count);
2985 #endif
2986 #ifdef __arm__
2987 if(get_reg(i_regs->regmap,CCREG)<0)
2988 emit_loadreg(CCREG,0);
2989 else
2990 emit_mov(HOST_CCREG,0);
2991 emit_add(0,ECX,0);
2992 emit_addimm(0,2*ccadj[i],0);
2993 emit_writeword(0,(int)&Count);
2994 #endif
2995 emit_call((int)memdebug);
2996 //emit_popa();
2997 restore_regs(0x100f);
2998 }/**/
2999}
3000
3001#ifndef loadlr_assemble
3002void loadlr_assemble(int i,struct regstat *i_regs)
3003{
3004 printf("Need loadlr_assemble for this architecture.\n");
3005 exit(1);
3006}
3007#endif
3008
3009void store_assemble(int i,struct regstat *i_regs)
3010{
3011 int s,th,tl,map=-1;
3012 int addr,temp;
3013 int offset;
3014 int jaddr=0,jaddr2,type;
3015 int memtarget=0,c=0;
3016 int agr=AGEN1+(i&1);
3017 u_int hr,reglist=0;
3018 th=get_reg(i_regs->regmap,rs2[i]|64);
3019 tl=get_reg(i_regs->regmap,rs2[i]);
3020 s=get_reg(i_regs->regmap,rs1[i]);
3021 temp=get_reg(i_regs->regmap,agr);
3022 if(temp<0) temp=get_reg(i_regs->regmap,-1);
3023 offset=imm[i];
3024 if(s>=0) {
3025 c=(i_regs->wasconst>>s)&1;
3026 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
3027 if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
3028 }
3029 assert(tl>=0);
3030 assert(temp>=0);
3031 for(hr=0;hr<HOST_REGS;hr++) {
3032 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3033 }
3034 if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
3035 if(offset||s<0||c) addr=temp;
3036 else addr=s;
3037 if(!using_tlb) {
3038 if(!c) {
3039 #ifdef R29_HACK
3040 // Strmnnrmn's speed hack
3041 memtarget=1;
3042 if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
3043 #endif
3044 emit_cmpimm(addr,RAM_SIZE);
3045 #ifdef DESTRUCTIVE_SHIFT
3046 if(s==addr) emit_mov(s,temp);
3047 #endif
3048 #ifdef R29_HACK
3049 if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
3050 #endif
3051 {
3052 jaddr=(int)out;
3053 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
3054 // Hint to branch predictor that the branch is unlikely to be taken
3055 if(rs1[i]>=28)
3056 emit_jno_unlikely(0);
3057 else
3058 #endif
3059 emit_jno(0);
3060 }
3061 }
3062 }else{ // using tlb
3063 int x=0;
3064 if (opcode[i]==0x28) x=3; // SB
3065 if (opcode[i]==0x29) x=2; // SH
3066 map=get_reg(i_regs->regmap,TLREG);
3067 assert(map>=0);
3068 map=do_tlb_w(addr,temp,map,x,c,constmap[i][s]+offset);
3069 do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr);
3070 }
3071
3072 if (opcode[i]==0x28) { // SB
3073 if(!c||memtarget) {
3074 int x=0;
3075#ifdef BIG_ENDIAN_MIPS
3076 if(!c) emit_xorimm(addr,3,temp);
3077 else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
3078#else
3079 if(c) x=(constmap[i][s]+offset)-(constmap[i][s]+offset);
3080 else if (addr!=temp) emit_mov(addr,temp);
3081#endif
3082 //gen_tlb_addr_w(temp,map);
3083 //emit_writebyte_indexed(tl,(int)rdram-0x80000000,temp);
3084 emit_writebyte_indexed_tlb(tl,x,temp,map,temp);
3085 }
3086 type=STOREB_STUB;
3087 }
3088 if (opcode[i]==0x29) { // SH
3089 if(!c||memtarget) {
3090 int x=0;
3091#ifdef BIG_ENDIAN_MIPS
3092 if(!c) emit_xorimm(addr,2,temp);
3093 else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
3094#else
3095 if(c) x=(constmap[i][s]+offset)-(constmap[i][s]+offset);
3096 else if (addr!=temp) emit_mov(addr,temp);
3097#endif
3098 //#ifdef
3099 //emit_writehword_indexed_tlb(tl,x,temp,map,temp);
3100 //#else
3101 if(map>=0) {
3102 gen_tlb_addr_w(temp,map);
3103 emit_writehword_indexed(tl,x,temp);
3104 }else
3105 emit_writehword_indexed(tl,(int)rdram-0x80000000+x,temp);
3106 }
3107 type=STOREH_STUB;
3108 }
3109 if (opcode[i]==0x2B) { // SW
3110 if(!c||memtarget)
3111 //emit_writeword_indexed(tl,(int)rdram-0x80000000,addr);
3112 emit_writeword_indexed_tlb(tl,0,addr,map,temp);
3113 type=STOREW_STUB;
3114 }
3115 if (opcode[i]==0x3F) { // SD
3116 if(!c||memtarget) {
3117 if(rs2[i]) {
3118 assert(th>=0);
3119 //emit_writeword_indexed(th,(int)rdram-0x80000000,addr);
3120 //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,addr);
3121 emit_writedword_indexed_tlb(th,tl,0,addr,map,temp);
3122 }else{
3123 // Store zero
3124 //emit_writeword_indexed(tl,(int)rdram-0x80000000,temp);
3125 //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,temp);
3126 emit_writedword_indexed_tlb(tl,tl,0,addr,map,temp);
3127 }
3128 }
3129 type=STORED_STUB;
3130 }
3131 if(!using_tlb&&(!c||memtarget))
3132 // addr could be a temp, make sure it survives STORE*_STUB
3133 reglist|=1<<addr;
3134 if(jaddr) {
3135 add_stub(type,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3136 } else if(!memtarget) {
3137 inline_writestub(type,i,constmap[i][s]+offset,i_regs->regmap,rs2[i],ccadj[i],reglist);
3138 }
3139 if(!using_tlb) {
3140 if(!c||memtarget) {
3141 #ifdef DESTRUCTIVE_SHIFT
3142 // The x86 shift operation is 'destructive'; it overwrites the
3143 // source register, so we need to make a copy first and use that.
3144 addr=temp;
3145 #endif
3146 #if defined(HOST_IMM8)
3147 int ir=get_reg(i_regs->regmap,INVCP);
3148 assert(ir>=0);
3149 emit_cmpmem_indexedsr12_reg(ir,addr,1);
3150 #else
3151 emit_cmpmem_indexedsr12_imm((int)invalid_code,addr,1);
3152 #endif
3153 jaddr2=(int)out;
3154 emit_jne(0);
3155 add_stub(INVCODE_STUB,jaddr2,(int)out,reglist|(1<<HOST_CCREG),addr,0,0,0);
3156 }
3157 }
3158 //if(opcode[i]==0x2B || opcode[i]==0x3F)
3159 //if(opcode[i]==0x2B || opcode[i]==0x28)
3160 //if(opcode[i]==0x2B || opcode[i]==0x29)
3161 //if(opcode[i]==0x2B)
3162 /*if(opcode[i]==0x2B || opcode[i]==0x28 || opcode[i]==0x29 || opcode[i]==0x3F)
3163 {
3164 //emit_pusha();
3165 save_regs(0x100f);
3166 emit_readword((int)&last_count,ECX);
3167 #ifdef __i386__
3168 if(get_reg(i_regs->regmap,CCREG)<0)
3169 emit_loadreg(CCREG,HOST_CCREG);
3170 emit_add(HOST_CCREG,ECX,HOST_CCREG);
3171 emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3172 emit_writeword(HOST_CCREG,(int)&Count);
3173 #endif
3174 #ifdef __arm__
3175 if(get_reg(i_regs->regmap,CCREG)<0)
3176 emit_loadreg(CCREG,0);
3177 else
3178 emit_mov(HOST_CCREG,0);
3179 emit_add(0,ECX,0);
3180 emit_addimm(0,2*ccadj[i],0);
3181 emit_writeword(0,(int)&Count);
3182 #endif
3183 emit_call((int)memdebug);
3184 //emit_popa();
3185 restore_regs(0x100f);
3186 }/**/
3187}
3188
3189void storelr_assemble(int i,struct regstat *i_regs)
3190{
3191 int s,th,tl;
3192 int temp;
3193 int temp2;
3194 int offset;
3195 int jaddr=0,jaddr2;
3196 int case1,case2,case3;
3197 int done0,done1,done2;
3198 int memtarget,c=0;
3199 int agr=AGEN1+(i&1);
3200 u_int hr,reglist=0;
3201 th=get_reg(i_regs->regmap,rs2[i]|64);
3202 tl=get_reg(i_regs->regmap,rs2[i]);
3203 s=get_reg(i_regs->regmap,rs1[i]);
3204 temp=get_reg(i_regs->regmap,agr);
3205 if(temp<0) temp=get_reg(i_regs->regmap,-1);
3206 offset=imm[i];
3207 if(s>=0) {
3208 c=(i_regs->isconst>>s)&1;
3209 memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
3210 if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
3211 }
3212 assert(tl>=0);
3213 for(hr=0;hr<HOST_REGS;hr++) {
3214 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3215 }
3216 if(tl>=0) {
3217 assert(temp>=0);
3218 if(!using_tlb) {
3219 if(!c) {
3220 emit_cmpimm(s<0||offset?temp:s,RAM_SIZE);
3221 if(!offset&&s!=temp) emit_mov(s,temp);
3222 jaddr=(int)out;
3223 emit_jno(0);
3224 }
3225 else
3226 {
3227 if(!memtarget||!rs1[i]) {
3228 jaddr=(int)out;
3229 emit_jmp(0);
3230 }
3231 }
3232 if((u_int)rdram!=0x80000000)
3233 emit_addimm_no_flags((u_int)rdram-(u_int)0x80000000,temp);
3234 }else{ // using tlb
3235 int map=get_reg(i_regs->regmap,TLREG);
3236 assert(map>=0);
3237 map=do_tlb_w(c||s<0||offset?temp:s,temp,map,0,c,constmap[i][s]+offset);
3238 if(!c&&!offset&&s>=0) emit_mov(s,temp);
3239 do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr);
3240 if(!jaddr&&!memtarget) {
3241 jaddr=(int)out;
3242 emit_jmp(0);
3243 }
3244 gen_tlb_addr_w(temp,map);
3245 }
3246
3247 if (opcode[i]==0x2C||opcode[i]==0x2D) { // SDL/SDR
3248 temp2=get_reg(i_regs->regmap,FTEMP);
3249 if(!rs2[i]) temp2=th=tl;
3250 }
3251
3252#ifndef BIG_ENDIAN_MIPS
3253 emit_xorimm(temp,3,temp);
3254#endif
3255 emit_testimm(temp,2);
3256 case2=(int)out;
3257 emit_jne(0);
3258 emit_testimm(temp,1);
3259 case1=(int)out;
3260 emit_jne(0);
3261 // 0
3262 if (opcode[i]==0x2A) { // SWL
3263 emit_writeword_indexed(tl,0,temp);
3264 }
3265 if (opcode[i]==0x2E) { // SWR
3266 emit_writebyte_indexed(tl,3,temp);
3267 }
3268 if (opcode[i]==0x2C) { // SDL
3269 emit_writeword_indexed(th,0,temp);
3270 if(rs2[i]) emit_mov(tl,temp2);
3271 }
3272 if (opcode[i]==0x2D) { // SDR
3273 emit_writebyte_indexed(tl,3,temp);
3274 if(rs2[i]) emit_shldimm(th,tl,24,temp2);
3275 }
3276 done0=(int)out;
3277 emit_jmp(0);
3278 // 1
3279 set_jump_target(case1,(int)out);
3280 if (opcode[i]==0x2A) { // SWL
3281 // Write 3 msb into three least significant bytes
3282 if(rs2[i]) emit_rorimm(tl,8,tl);
3283 emit_writehword_indexed(tl,-1,temp);
3284 if(rs2[i]) emit_rorimm(tl,16,tl);
3285 emit_writebyte_indexed(tl,1,temp);
3286 if(rs2[i]) emit_rorimm(tl,8,tl);
3287 }
3288 if (opcode[i]==0x2E) { // SWR
3289 // Write two lsb into two most significant bytes
3290 emit_writehword_indexed(tl,1,temp);
3291 }
3292 if (opcode[i]==0x2C) { // SDL
3293 if(rs2[i]) emit_shrdimm(tl,th,8,temp2);
3294 // Write 3 msb into three least significant bytes
3295 if(rs2[i]) emit_rorimm(th,8,th);
3296 emit_writehword_indexed(th,-1,temp);
3297 if(rs2[i]) emit_rorimm(th,16,th);
3298 emit_writebyte_indexed(th,1,temp);
3299 if(rs2[i]) emit_rorimm(th,8,th);
3300 }
3301 if (opcode[i]==0x2D) { // SDR
3302 if(rs2[i]) emit_shldimm(th,tl,16,temp2);
3303 // Write two lsb into two most significant bytes
3304 emit_writehword_indexed(tl,1,temp);
3305 }
3306 done1=(int)out;
3307 emit_jmp(0);
3308 // 2
3309 set_jump_target(case2,(int)out);
3310 emit_testimm(temp,1);
3311 case3=(int)out;
3312 emit_jne(0);
3313 if (opcode[i]==0x2A) { // SWL
3314 // Write two msb into two least significant bytes
3315 if(rs2[i]) emit_rorimm(tl,16,tl);
3316 emit_writehword_indexed(tl,-2,temp);
3317 if(rs2[i]) emit_rorimm(tl,16,tl);
3318 }
3319 if (opcode[i]==0x2E) { // SWR
3320 // Write 3 lsb into three most significant bytes
3321 emit_writebyte_indexed(tl,-1,temp);
3322 if(rs2[i]) emit_rorimm(tl,8,tl);
3323 emit_writehword_indexed(tl,0,temp);
3324 if(rs2[i]) emit_rorimm(tl,24,tl);
3325 }
3326 if (opcode[i]==0x2C) { // SDL
3327 if(rs2[i]) emit_shrdimm(tl,th,16,temp2);
3328 // Write two msb into two least significant bytes
3329 if(rs2[i]) emit_rorimm(th,16,th);
3330 emit_writehword_indexed(th,-2,temp);
3331 if(rs2[i]) emit_rorimm(th,16,th);
3332 }
3333 if (opcode[i]==0x2D) { // SDR
3334 if(rs2[i]) emit_shldimm(th,tl,8,temp2);
3335 // Write 3 lsb into three most significant bytes
3336 emit_writebyte_indexed(tl,-1,temp);
3337 if(rs2[i]) emit_rorimm(tl,8,tl);
3338 emit_writehword_indexed(tl,0,temp);
3339 if(rs2[i]) emit_rorimm(tl,24,tl);
3340 }
3341 done2=(int)out;
3342 emit_jmp(0);
3343 // 3
3344 set_jump_target(case3,(int)out);
3345 if (opcode[i]==0x2A) { // SWL
3346 // Write msb into least significant byte
3347 if(rs2[i]) emit_rorimm(tl,24,tl);
3348 emit_writebyte_indexed(tl,-3,temp);
3349 if(rs2[i]) emit_rorimm(tl,8,tl);
3350 }
3351 if (opcode[i]==0x2E) { // SWR
3352 // Write entire word
3353 emit_writeword_indexed(tl,-3,temp);
3354 }
3355 if (opcode[i]==0x2C) { // SDL
3356 if(rs2[i]) emit_shrdimm(tl,th,24,temp2);
3357 // Write msb into least significant byte
3358 if(rs2[i]) emit_rorimm(th,24,th);
3359 emit_writebyte_indexed(th,-3,temp);
3360 if(rs2[i]) emit_rorimm(th,8,th);
3361 }
3362 if (opcode[i]==0x2D) { // SDR
3363 if(rs2[i]) emit_mov(th,temp2);
3364 // Write entire word
3365 emit_writeword_indexed(tl,-3,temp);
3366 }
3367 set_jump_target(done0,(int)out);
3368 set_jump_target(done1,(int)out);
3369 set_jump_target(done2,(int)out);
3370 if (opcode[i]==0x2C) { // SDL
3371 emit_testimm(temp,4);
3372 done0=(int)out;
3373 emit_jne(0);
3374 emit_andimm(temp,~3,temp);
3375 emit_writeword_indexed(temp2,4,temp);
3376 set_jump_target(done0,(int)out);
3377 }
3378 if (opcode[i]==0x2D) { // SDR
3379 emit_testimm(temp,4);
3380 done0=(int)out;
3381 emit_jeq(0);
3382 emit_andimm(temp,~3,temp);
3383 emit_writeword_indexed(temp2,-4,temp);
3384 set_jump_target(done0,(int)out);
3385 }
3386 if(!c||!memtarget)
3387 add_stub(STORELR_STUB,jaddr,(int)out,i,(int)i_regs,temp,ccadj[i],reglist);
3388 }
3389 if(!using_tlb) {
3390 emit_addimm_no_flags((u_int)0x80000000-(u_int)rdram,temp);
3391 #if defined(HOST_IMM8)
3392 int ir=get_reg(i_regs->regmap,INVCP);
3393 assert(ir>=0);
3394 emit_cmpmem_indexedsr12_reg(ir,temp,1);
3395 #else
3396 emit_cmpmem_indexedsr12_imm((int)invalid_code,temp,1);
3397 #endif
3398 jaddr2=(int)out;
3399 emit_jne(0);
3400 add_stub(INVCODE_STUB,jaddr2,(int)out,reglist|(1<<HOST_CCREG),temp,0,0,0);
3401 }
3402 /*
3403 emit_pusha();
3404 //save_regs(0x100f);
3405 emit_readword((int)&last_count,ECX);
3406 if(get_reg(i_regs->regmap,CCREG)<0)
3407 emit_loadreg(CCREG,HOST_CCREG);
3408 emit_add(HOST_CCREG,ECX,HOST_CCREG);
3409 emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3410 emit_writeword(HOST_CCREG,(int)&Count);
3411 emit_call((int)memdebug);
3412 emit_popa();
3413 //restore_regs(0x100f);
3414 /**/
3415}
3416
3417void c1ls_assemble(int i,struct regstat *i_regs)
3418{
3419#ifndef DISABLE_COP1
3420 int s,th,tl;
3421 int temp,ar;
3422 int map=-1;
3423 int offset;
3424 int c=0;
3425 int jaddr,jaddr2=0,jaddr3,type;
3426 int agr=AGEN1+(i&1);
3427 u_int hr,reglist=0;
3428 th=get_reg(i_regs->regmap,FTEMP|64);
3429 tl=get_reg(i_regs->regmap,FTEMP);
3430 s=get_reg(i_regs->regmap,rs1[i]);
3431 temp=get_reg(i_regs->regmap,agr);
3432 if(temp<0) temp=get_reg(i_regs->regmap,-1);
3433 offset=imm[i];
3434 assert(tl>=0);
3435 assert(rs1[i]>0);
3436 assert(temp>=0);
3437 for(hr=0;hr<HOST_REGS;hr++) {
3438 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3439 }
3440 if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
3441 if (opcode[i]==0x31||opcode[i]==0x35) // LWC1/LDC1
3442 {
3443 // Loads use a temporary register which we need to save
3444 reglist|=1<<temp;
3445 }
3446 if (opcode[i]==0x39||opcode[i]==0x3D) // SWC1/SDC1
3447 ar=temp;
3448 else // LWC1/LDC1
3449 ar=tl;
3450 //if(s<0) emit_loadreg(rs1[i],ar); //address_generation does this now
3451 //else c=(i_regs->wasconst>>s)&1;
3452 if(s>=0) c=(i_regs->wasconst>>s)&1;
3453 // Check cop1 unusable
3454 if(!cop1_usable) {
3455 signed char rs=get_reg(i_regs->regmap,CSREG);
3456 assert(rs>=0);
3457 emit_testimm(rs,0x20000000);
3458 jaddr=(int)out;
3459 emit_jeq(0);
3460 add_stub(FP_STUB,jaddr,(int)out,i,rs,(int)i_regs,is_delayslot,0);
3461 cop1_usable=1;
3462 }
3463 if (opcode[i]==0x39) { // SWC1 (get float address)
3464 emit_readword((int)&reg_cop1_simple[(source[i]>>16)&0x1f],tl);
3465 }
3466 if (opcode[i]==0x3D) { // SDC1 (get double address)
3467 emit_readword((int)&reg_cop1_double[(source[i]>>16)&0x1f],tl);
3468 }
3469 // Generate address + offset
3470 if(!using_tlb) {
3471 if(!c)
3472 emit_cmpimm(offset||c||s<0?ar:s,RAM_SIZE);
3473 }
3474 else
3475 {
3476 map=get_reg(i_regs->regmap,TLREG);
3477 assert(map>=0);
3478 if (opcode[i]==0x31||opcode[i]==0x35) { // LWC1/LDC1
3479 map=do_tlb_r(offset||c||s<0?ar:s,ar,map,0,-1,-1,c,constmap[i][s]+offset);
3480 }
3481 if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3482 map=do_tlb_w(offset||c||s<0?ar:s,ar,map,0,c,constmap[i][s]+offset);
3483 }
3484 }
3485 if (opcode[i]==0x39) { // SWC1 (read float)
3486 emit_readword_indexed(0,tl,tl);
3487 }
3488 if (opcode[i]==0x3D) { // SDC1 (read double)
3489 emit_readword_indexed(4,tl,th);
3490 emit_readword_indexed(0,tl,tl);
3491 }
3492 if (opcode[i]==0x31) { // LWC1 (get target address)
3493 emit_readword((int)&reg_cop1_simple[(source[i]>>16)&0x1f],temp);
3494 }
3495 if (opcode[i]==0x35) { // LDC1 (get target address)
3496 emit_readword((int)&reg_cop1_double[(source[i]>>16)&0x1f],temp);
3497 }
3498 if(!using_tlb) {
3499 if(!c) {
3500 jaddr2=(int)out;
3501 emit_jno(0);
3502 }
3503 else if(((signed int)(constmap[i][s]+offset))>=(signed int)0x80000000+RAM_SIZE) {
3504 jaddr2=(int)out;
3505 emit_jmp(0); // inline_readstub/inline_writestub? Very rare case
3506 }
3507 #ifdef DESTRUCTIVE_SHIFT
3508 if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3509 if(!offset&&!c&&s>=0) emit_mov(s,ar);
3510 }
3511 #endif
3512 }else{
3513 if (opcode[i]==0x31||opcode[i]==0x35) { // LWC1/LDC1
3514 do_tlb_r_branch(map,c,constmap[i][s]+offset,&jaddr2);
3515 }
3516 if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3517 do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr2);
3518 }
3519 }
3520 if (opcode[i]==0x31) { // LWC1
3521 //if(s>=0&&!c&&!offset) emit_mov(s,tl);
3522 //gen_tlb_addr_r(ar,map);
3523 //emit_readword_indexed((int)rdram-0x80000000,tl,tl);
3524 #ifdef HOST_IMM_ADDR32
3525 if(c) emit_readword_tlb(constmap[i][s]+offset,map,tl);
3526 else
3527 #endif
3528 emit_readword_indexed_tlb(0,offset||c||s<0?tl:s,map,tl);
3529 type=LOADW_STUB;
3530 }
3531 if (opcode[i]==0x35) { // LDC1
3532 assert(th>=0);
3533 //if(s>=0&&!c&&!offset) emit_mov(s,tl);
3534 //gen_tlb_addr_r(ar,map);
3535 //emit_readword_indexed((int)rdram-0x80000000,tl,th);
3536 //emit_readword_indexed((int)rdram-0x7FFFFFFC,tl,tl);
3537 #ifdef HOST_IMM_ADDR32
3538 if(c) emit_readdword_tlb(constmap[i][s]+offset,map,th,tl);
3539 else
3540 #endif
3541 emit_readdword_indexed_tlb(0,offset||c||s<0?tl:s,map,th,tl);
3542 type=LOADD_STUB;
3543 }
3544 if (opcode[i]==0x39) { // SWC1
3545 //emit_writeword_indexed(tl,(int)rdram-0x80000000,temp);
3546 emit_writeword_indexed_tlb(tl,0,offset||c||s<0?temp:s,map,temp);
3547 type=STOREW_STUB;
3548 }
3549 if (opcode[i]==0x3D) { // SDC1
3550 assert(th>=0);
3551 //emit_writeword_indexed(th,(int)rdram-0x80000000,temp);
3552 //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,temp);
3553 emit_writedword_indexed_tlb(th,tl,0,offset||c||s<0?temp:s,map,temp);
3554 type=STORED_STUB;
3555 }
3556 if(!using_tlb) {
3557 if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3558 #ifndef DESTRUCTIVE_SHIFT
3559 temp=offset||c||s<0?ar:s;
3560 #endif
3561 #if defined(HOST_IMM8)
3562 int ir=get_reg(i_regs->regmap,INVCP);
3563 assert(ir>=0);
3564 emit_cmpmem_indexedsr12_reg(ir,temp,1);
3565 #else
3566 emit_cmpmem_indexedsr12_imm((int)invalid_code,temp,1);
3567 #endif
3568 jaddr3=(int)out;
3569 emit_jne(0);
3570 add_stub(INVCODE_STUB,jaddr3,(int)out,reglist|(1<<HOST_CCREG),temp,0,0,0);
3571 }
3572 }
3573 if(jaddr2) add_stub(type,jaddr2,(int)out,i,offset||c||s<0?ar:s,(int)i_regs,ccadj[i],reglist);
3574 if (opcode[i]==0x31) { // LWC1 (write float)
3575 emit_writeword_indexed(tl,0,temp);
3576 }
3577 if (opcode[i]==0x35) { // LDC1 (write double)
3578 emit_writeword_indexed(th,4,temp);
3579 emit_writeword_indexed(tl,0,temp);
3580 }
3581 //if(opcode[i]==0x39)
3582 /*if(opcode[i]==0x39||opcode[i]==0x31)
3583 {
3584 emit_pusha();
3585 emit_readword((int)&last_count,ECX);
3586 if(get_reg(i_regs->regmap,CCREG)<0)
3587 emit_loadreg(CCREG,HOST_CCREG);
3588 emit_add(HOST_CCREG,ECX,HOST_CCREG);
3589 emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3590 emit_writeword(HOST_CCREG,(int)&Count);
3591 emit_call((int)memdebug);
3592 emit_popa();
3593 }/**/
3594#else
3595 cop1_unusable(i, i_regs);
3596#endif
3597}
3598
3599void c2ls_assemble(int i,struct regstat *i_regs)
3600{
3601 int s,tl;
3602 int ar;
3603 int offset;
3604 int memtarget=0,c=0;
3605 int jaddr,jaddr2=0,jaddr3,type;
3606 int agr=AGEN1+(i&1);
3607 u_int hr,reglist=0;
3608 u_int copr=(source[i]>>16)&0x1f;
3609 s=get_reg(i_regs->regmap,rs1[i]);
3610 tl=get_reg(i_regs->regmap,FTEMP);
3611 offset=imm[i];
3612 assert(rs1[i]>0);
3613 assert(tl>=0);
3614 assert(!using_tlb);
3615
3616 for(hr=0;hr<HOST_REGS;hr++) {
3617 if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3618 }
3619 if(i_regs->regmap[HOST_CCREG]==CCREG)
3620 reglist&=~(1<<HOST_CCREG);
3621
3622 // get the address
3623 if (opcode[i]==0x3a) { // SWC2
3624 ar=get_reg(i_regs->regmap,agr);
3625 if(ar<0) ar=get_reg(i_regs->regmap,-1);
3626 reglist|=1<<ar;
3627 } else { // LWC2
3628 ar=tl;
3629 }
3630 if(s>=0) c=(i_regs->wasconst>>s)&1;
3631 memtarget=c&&(((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE);
3632 if (!offset&&!c&&s>=0) ar=s;
3633 assert(ar>=0);
3634
3635 if (opcode[i]==0x3a) { // SWC2
3636 cop2_get_dreg(copr,tl,HOST_TEMPREG);
3637 type=STOREW_STUB;
3638 }
3639 else
3640 type=LOADW_STUB;
3641
3642 if(c&&!memtarget) {
3643 jaddr2=(int)out;
3644 emit_jmp(0); // inline_readstub/inline_writestub?
3645 }
3646 else {
3647 if(!c) {
3648 emit_cmpimm(offset||c||s<0?ar:s,RAM_SIZE);
3649 jaddr2=(int)out;
3650 emit_jno(0);
3651 }
3652 if (opcode[i]==0x32) { // LWC2
3653 #ifdef HOST_IMM_ADDR32
3654 if(c) emit_readword_tlb(constmap[i][s]+offset,-1,tl);
3655 else
3656 #endif
3657 emit_readword_indexed(0,ar,tl);
3658 }
3659 if (opcode[i]==0x3a) { // SWC2
3660 #ifdef DESTRUCTIVE_SHIFT
3661 if(!offset&&!c&&s>=0) emit_mov(s,ar);
3662 #endif
3663 emit_writeword_indexed(tl,0,ar);
3664 }
3665 }
3666 if(jaddr2)
3667 add_stub(type,jaddr2,(int)out,i,ar,(int)i_regs,ccadj[i],reglist);
3668 if (opcode[i]==0x3a) { // SWC2
3669#if defined(HOST_IMM8)
3670 int ir=get_reg(i_regs->regmap,INVCP);
3671 assert(ir>=0);
3672 emit_cmpmem_indexedsr12_reg(ir,ar,1);
3673#else
3674 emit_cmpmem_indexedsr12_imm((int)invalid_code,ar,1);
3675#endif
3676 jaddr3=(int)out;
3677 emit_jne(0);
3678 add_stub(INVCODE_STUB,jaddr3,(int)out,reglist|(1<<HOST_CCREG),ar,0,0,0);
3679 }
3680 if (opcode[i]==0x32) { // LWC2
3681 cop2_put_dreg(copr,tl,HOST_TEMPREG);
3682 }
3683}
3684
3685#ifndef multdiv_assemble
3686void multdiv_assemble(int i,struct regstat *i_regs)
3687{
3688 printf("Need multdiv_assemble for this architecture.\n");
3689 exit(1);
3690}
3691#endif
3692
3693void mov_assemble(int i,struct regstat *i_regs)
3694{
3695 //if(opcode2[i]==0x10||opcode2[i]==0x12) { // MFHI/MFLO
3696 //if(opcode2[i]==0x11||opcode2[i]==0x13) { // MTHI/MTLO
3697 //assert(rt1[i]>0);
3698 if(rt1[i]) {
3699 signed char sh,sl,th,tl;
3700 th=get_reg(i_regs->regmap,rt1[i]|64);
3701 tl=get_reg(i_regs->regmap,rt1[i]);
3702 //assert(tl>=0);
3703 if(tl>=0) {
3704 sh=get_reg(i_regs->regmap,rs1[i]|64);
3705 sl=get_reg(i_regs->regmap,rs1[i]);
3706 if(sl>=0) emit_mov(sl,tl);
3707 else emit_loadreg(rs1[i],tl);
3708 if(th>=0) {
3709 if(sh>=0) emit_mov(sh,th);
3710 else emit_loadreg(rs1[i]|64,th);
3711 }
3712 }
3713 }
3714}
3715
3716#ifndef fconv_assemble
3717void fconv_assemble(int i,struct regstat *i_regs)
3718{
3719 printf("Need fconv_assemble for this architecture.\n");
3720 exit(1);
3721}
3722#endif
3723
3724#if 0
3725void float_assemble(int i,struct regstat *i_regs)
3726{
3727 printf("Need float_assemble for this architecture.\n");
3728 exit(1);
3729}
3730#endif
3731
3732void syscall_assemble(int i,struct regstat *i_regs)
3733{
3734 signed char ccreg=get_reg(i_regs->regmap,CCREG);
3735 assert(ccreg==HOST_CCREG);
3736 assert(!is_delayslot);
3737 emit_movimm(start+i*4,EAX); // Get PC
3738 emit_addimm(HOST_CCREG,CLOCK_DIVIDER*ccadj[i],HOST_CCREG); // CHECK: is this right? There should probably be an extra cycle...
3739 emit_jmp((int)jump_syscall_hle); // XXX
3740}
3741
3742void hlecall_assemble(int i,struct regstat *i_regs)
3743{
3744 signed char ccreg=get_reg(i_regs->regmap,CCREG);
3745 assert(ccreg==HOST_CCREG);
3746 assert(!is_delayslot);
3747 emit_movimm(start+i*4+4,0); // Get PC
3748 emit_movimm((int)psxHLEt[source[i]&7],1);
3749 emit_addimm(HOST_CCREG,CLOCK_DIVIDER*ccadj[i],HOST_CCREG); // XXX
3750 emit_jmp((int)jump_hlecall);
3751}
3752
3753void intcall_assemble(int i,struct regstat *i_regs)
3754{
3755 signed char ccreg=get_reg(i_regs->regmap,CCREG);
3756 assert(ccreg==HOST_CCREG);
3757 assert(!is_delayslot);
3758 emit_movimm(start+i*4,0); // Get PC
3759 emit_addimm(HOST_CCREG,CLOCK_DIVIDER*ccadj[i],HOST_CCREG);
3760 emit_jmp((int)jump_intcall);
3761}
3762
3763void ds_assemble(int i,struct regstat *i_regs)
3764{
3765 is_delayslot=1;
3766 switch(itype[i]) {
3767 case ALU:
3768 alu_assemble(i,i_regs);break;
3769 case IMM16:
3770 imm16_assemble(i,i_regs);break;
3771 case SHIFT:
3772 shift_assemble(i,i_regs);break;
3773 case SHIFTIMM:
3774 shiftimm_assemble(i,i_regs);break;
3775 case LOAD:
3776 load_assemble(i,i_regs);break;
3777 case LOADLR:
3778 loadlr_assemble(i,i_regs);break;
3779 case STORE:
3780 store_assemble(i,i_regs);break;
3781 case STORELR:
3782 storelr_assemble(i,i_regs);break;
3783 case COP0:
3784 cop0_assemble(i,i_regs);break;
3785 case COP1:
3786 cop1_assemble(i,i_regs);break;
3787 case C1LS:
3788 c1ls_assemble(i,i_regs);break;
3789 case COP2:
3790 cop2_assemble(i,i_regs);break;
3791 case C2LS:
3792 c2ls_assemble(i,i_regs);break;
3793 case C2OP:
3794 c2op_assemble(i,i_regs);break;
3795 case FCONV:
3796 fconv_assemble(i,i_regs);break;
3797 case FLOAT:
3798 float_assemble(i,i_regs);break;
3799 case FCOMP:
3800 fcomp_assemble(i,i_regs);break;
3801 case MULTDIV:
3802 multdiv_assemble(i,i_regs);break;
3803 case MOV:
3804 mov_assemble(i,i_regs);break;
3805 case SYSCALL:
3806 case HLECALL:
3807 case INTCALL:
3808 case SPAN:
3809 case UJUMP:
3810 case RJUMP:
3811 case CJUMP:
3812 case SJUMP:
3813 case FJUMP:
3814 printf("Jump in the delay slot. This is probably a bug.\n");
3815 }
3816 is_delayslot=0;
3817}
3818
3819// Is the branch target a valid internal jump?
3820int internal_branch(uint64_t i_is32,int addr)
3821{
3822 if(addr&1) return 0; // Indirect (register) jump
3823 if(addr>=start && addr<start+slen*4-4)
3824 {
3825 int t=(addr-start)>>2;
3826 // Delay slots are not valid branch targets
3827 //if(t>0&&(itype[t-1]==RJUMP||itype[t-1]==UJUMP||itype[t-1]==CJUMP||itype[t-1]==SJUMP||itype[t-1]==FJUMP)) return 0;
3828 // 64 -> 32 bit transition requires a recompile
3829 /*if(is32[t]&~unneeded_reg_upper[t]&~i_is32)
3830 {
3831 if(requires_32bit[t]&~i_is32) printf("optimizable: no\n");
3832 else printf("optimizable: yes\n");
3833 }*/
3834 //if(is32[t]&~unneeded_reg_upper[t]&~i_is32) return 0;
3835 if(requires_32bit[t]&~i_is32) return 0;
3836 else return 1;
3837 }
3838 return 0;
3839}
3840
3841#ifndef wb_invalidate
3842void wb_invalidate(signed char pre[],signed char entry[],uint64_t dirty,uint64_t is32,
3843 uint64_t u,uint64_t uu)
3844{
3845 int hr;
3846 for(hr=0;hr<HOST_REGS;hr++) {
3847 if(hr!=EXCLUDE_REG) {
3848 if(pre[hr]!=entry[hr]) {
3849 if(pre[hr]>=0) {
3850 if((dirty>>hr)&1) {
3851 if(get_reg(entry,pre[hr])<0) {
3852 if(pre[hr]<64) {
3853 if(!((u>>pre[hr])&1)) {
3854 emit_storereg(pre[hr],hr);
3855 if( ((is32>>pre[hr])&1) && !((uu>>pre[hr])&1) ) {
3856 emit_sarimm(hr,31,hr);
3857 emit_storereg(pre[hr]|64,hr);
3858 }
3859 }
3860 }else{
3861 if(!((uu>>(pre[hr]&63))&1) && !((is32>>(pre[hr]&63))&1)) {
3862 emit_storereg(pre[hr],hr);
3863 }
3864 }
3865 }
3866 }
3867 }
3868 }
3869 }
3870 }
3871 // Move from one register to another (no writeback)
3872 for(hr=0;hr<HOST_REGS;hr++) {
3873 if(hr!=EXCLUDE_REG) {
3874 if(pre[hr]!=entry[hr]) {
3875 if(pre[hr]>=0&&(pre[hr]&63)<TEMPREG) {
3876 int nr;
3877 if((nr=get_reg(entry,pre[hr]))>=0) {
3878 emit_mov(hr,nr);
3879 }
3880 }
3881 }
3882 }
3883 }
3884}
3885#endif
3886
3887// Load the specified registers
3888// This only loads the registers given as arguments because
3889// we don't want to load things that will be overwritten
3890void load_regs(signed char entry[],signed char regmap[],int is32,int rs1,int rs2)
3891{
3892 int hr;
3893 // Load 32-bit regs
3894 for(hr=0;hr<HOST_REGS;hr++) {
3895 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
3896 if(entry[hr]!=regmap[hr]) {
3897 if(regmap[hr]==rs1||regmap[hr]==rs2)
3898 {
3899 if(regmap[hr]==0) {
3900 emit_zeroreg(hr);
3901 }
3902 else
3903 {
3904 emit_loadreg(regmap[hr],hr);
3905 }
3906 }
3907 }
3908 }
3909 }
3910 //Load 64-bit regs
3911 for(hr=0;hr<HOST_REGS;hr++) {
3912 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
3913 if(entry[hr]!=regmap[hr]) {
3914 if(regmap[hr]-64==rs1||regmap[hr]-64==rs2)
3915 {
3916 assert(regmap[hr]!=64);
3917 if((is32>>(regmap[hr]&63))&1) {
3918 int lr=get_reg(regmap,regmap[hr]-64);
3919 if(lr>=0)
3920 emit_sarimm(lr,31,hr);
3921 else
3922 emit_loadreg(regmap[hr],hr);
3923 }
3924 else
3925 {
3926 emit_loadreg(regmap[hr],hr);
3927 }
3928 }
3929 }
3930 }
3931 }
3932}
3933
3934// Load registers prior to the start of a loop
3935// so that they are not loaded within the loop
3936static void loop_preload(signed char pre[],signed char entry[])
3937{
3938 int hr;
3939 for(hr=0;hr<HOST_REGS;hr++) {
3940 if(hr!=EXCLUDE_REG) {
3941 if(pre[hr]!=entry[hr]) {
3942 if(entry[hr]>=0) {
3943 if(get_reg(pre,entry[hr])<0) {
3944 assem_debug("loop preload:\n");
3945 //printf("loop preload: %d\n",hr);
3946 if(entry[hr]==0) {
3947 emit_zeroreg(hr);
3948 }
3949 else if(entry[hr]<TEMPREG)
3950 {
3951 emit_loadreg(entry[hr],hr);
3952 }
3953 else if(entry[hr]-64<TEMPREG)
3954 {
3955 emit_loadreg(entry[hr],hr);
3956 }
3957 }
3958 }
3959 }
3960 }
3961 }
3962}
3963
3964// Generate address for load/store instruction
3965// goes to AGEN for writes, FTEMP for LOADLR and cop1/2 loads
3966void address_generation(int i,struct regstat *i_regs,signed char entry[])
3967{
3968 if(itype[i]==LOAD||itype[i]==LOADLR||itype[i]==STORE||itype[i]==STORELR||itype[i]==C1LS||itype[i]==C2LS) {
3969 int ra;
3970 int agr=AGEN1+(i&1);
3971 int mgr=MGEN1+(i&1);
3972 if(itype[i]==LOAD) {
3973 ra=get_reg(i_regs->regmap,rt1[i]);
3974 //if(rt1[i]) assert(ra>=0);
3975 }
3976 if(itype[i]==LOADLR) {
3977 ra=get_reg(i_regs->regmap,FTEMP);
3978 }
3979 if(itype[i]==STORE||itype[i]==STORELR) {
3980 ra=get_reg(i_regs->regmap,agr);
3981 if(ra<0) ra=get_reg(i_regs->regmap,-1);
3982 }
3983 if(itype[i]==C1LS||itype[i]==C2LS) {
3984 if ((opcode[i]&0x3b)==0x31||(opcode[i]&0x3b)==0x32) // LWC1/LDC1/LWC2/LDC2
3985 ra=get_reg(i_regs->regmap,FTEMP);
3986 else { // SWC1/SDC1/SWC2/SDC2
3987 ra=get_reg(i_regs->regmap,agr);
3988 if(ra<0) ra=get_reg(i_regs->regmap,-1);
3989 }
3990 }
3991 int rs=get_reg(i_regs->regmap,rs1[i]);
3992 int rm=get_reg(i_regs->regmap,TLREG);
3993 if(ra>=0) {
3994 int offset=imm[i];
3995 int c=(i_regs->wasconst>>rs)&1;
3996 if(rs1[i]==0) {
3997 // Using r0 as a base address
3998 /*if(rm>=0) {
3999 if(!entry||entry[rm]!=mgr) {
4000 generate_map_const(offset,rm);
4001 } // else did it in the previous cycle
4002 }*/
4003 if(!entry||entry[ra]!=agr) {
4004 if (opcode[i]==0x22||opcode[i]==0x26) {
4005 emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
4006 }else if (opcode[i]==0x1a||opcode[i]==0x1b) {
4007 emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
4008 }else{
4009 emit_movimm(offset,ra);
4010 }
4011 } // else did it in the previous cycle
4012 }
4013 else if(rs<0) {
4014 if(!entry||entry[ra]!=rs1[i])
4015 emit_loadreg(rs1[i],ra);
4016 //if(!entry||entry[ra]!=rs1[i])
4017 // printf("poor load scheduling!\n");
4018 }
4019 else if(c) {
4020 if(rm>=0) {
4021 if(!entry||entry[rm]!=mgr) {
4022 if(itype[i]==STORE||itype[i]==STORELR||(opcode[i]&0x3b)==0x39||(opcode[i]&0x3b)==0x3a) {
4023 // Stores to memory go thru the mapper to detect self-modifying
4024 // code, loads don't.
4025 if((unsigned int)(constmap[i][rs]+offset)>=0xC0000000 ||
4026 (unsigned int)(constmap[i][rs]+offset)<0x80000000+RAM_SIZE )
4027 generate_map_const(constmap[i][rs]+offset,rm);
4028 }else{
4029 if((signed int)(constmap[i][rs]+offset)>=(signed int)0xC0000000)
4030 generate_map_const(constmap[i][rs]+offset,rm);
4031 }
4032 }
4033 }
4034 if(rs1[i]!=rt1[i]||itype[i]!=LOAD) {
4035 if(!entry||entry[ra]!=agr) {
4036 if (opcode[i]==0x22||opcode[i]==0x26) {
4037 emit_movimm((constmap[i][rs]+offset)&0xFFFFFFFC,ra); // LWL/LWR
4038 }else if (opcode[i]==0x1a||opcode[i]==0x1b) {
4039 emit_movimm((constmap[i][rs]+offset)&0xFFFFFFF8,ra); // LDL/LDR
4040 }else{
4041 #ifdef HOST_IMM_ADDR32
4042 if((itype[i]!=LOAD&&(opcode[i]&0x3b)!=0x31&&(opcode[i]&0x3b)!=0x32) || // LWC1/LDC1/LWC2/LDC2
4043 (using_tlb&&((signed int)constmap[i][rs]+offset)>=(signed int)0xC0000000))
4044 #endif
4045 emit_movimm(constmap[i][rs]+offset,ra);
4046 }
4047 } // else did it in the previous cycle
4048 } // else load_consts already did it
4049 }
4050 if(offset&&!c&&rs1[i]) {
4051 if(rs>=0) {
4052 emit_addimm(rs,offset,ra);
4053 }else{
4054 emit_addimm(ra,offset,ra);
4055 }
4056 }
4057 }
4058 }
4059 // Preload constants for next instruction
4060 if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS||itype[i+1]==C2LS) {
4061 int agr,ra;
4062 #ifndef HOST_IMM_ADDR32
4063 // Mapper entry
4064 agr=MGEN1+((i+1)&1);
4065 ra=get_reg(i_regs->regmap,agr);
4066 if(ra>=0) {
4067 int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
4068 int offset=imm[i+1];
4069 int c=(regs[i+1].wasconst>>rs)&1;
4070 if(c) {
4071 if(itype[i+1]==STORE||itype[i+1]==STORELR
4072 ||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1, SWC2/SDC2
4073 // Stores to memory go thru the mapper to detect self-modifying
4074 // code, loads don't.
4075 if((unsigned int)(constmap[i+1][rs]+offset)>=0xC0000000 ||
4076 (unsigned int)(constmap[i+1][rs]+offset)<0x80000000+RAM_SIZE )
4077 generate_map_const(constmap[i+1][rs]+offset,ra);
4078 }else{
4079 if((signed int)(constmap[i+1][rs]+offset)>=(signed int)0xC0000000)
4080 generate_map_const(constmap[i+1][rs]+offset,ra);
4081 }
4082 }
4083 /*else if(rs1[i]==0) {
4084 generate_map_const(offset,ra);
4085 }*/
4086 }
4087 #endif
4088 // Actual address
4089 agr=AGEN1+((i+1)&1);
4090 ra=get_reg(i_regs->regmap,agr);
4091 if(ra>=0) {
4092 int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
4093 int offset=imm[i+1];
4094 int c=(regs[i+1].wasconst>>rs)&1;
4095 if(c&&(rs1[i+1]!=rt1[i+1]||itype[i+1]!=LOAD)) {
4096 if (opcode[i+1]==0x22||opcode[i+1]==0x26) {
4097 emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFFC,ra); // LWL/LWR
4098 }else if (opcode[i+1]==0x1a||opcode[i+1]==0x1b) {
4099 emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFF8,ra); // LDL/LDR
4100 }else{
4101 #ifdef HOST_IMM_ADDR32
4102 if((itype[i+1]!=LOAD&&(opcode[i+1]&0x3b)!=0x31&&(opcode[i+1]&0x3b)!=0x32) || // LWC1/LDC1/LWC2/LDC2
4103 (using_tlb&&((signed int)constmap[i+1][rs]+offset)>=(signed int)0xC0000000))
4104 #endif
4105 emit_movimm(constmap[i+1][rs]+offset,ra);
4106 }
4107 }
4108 else if(rs1[i+1]==0) {
4109 // Using r0 as a base address
4110 if (opcode[i+1]==0x22||opcode[i+1]==0x26) {
4111 emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
4112 }else if (opcode[i+1]==0x1a||opcode[i+1]==0x1b) {
4113 emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
4114 }else{
4115 emit_movimm(offset,ra);
4116 }
4117 }
4118 }
4119 }
4120}
4121
4122int get_final_value(int hr, int i, int *value)
4123{
4124 int reg=regs[i].regmap[hr];
4125 while(i<slen-1) {
4126 if(regs[i+1].regmap[hr]!=reg) break;
4127 if(!((regs[i+1].isconst>>hr)&1)) break;
4128 if(bt[i+1]) break;
4129 i++;
4130 }
4131 if(i<slen-1) {
4132 if(itype[i]==UJUMP||itype[i]==RJUMP||itype[i]==CJUMP||itype[i]==SJUMP) {
4133 *value=constmap[i][hr];
4134 return 1;
4135 }
4136 if(!bt[i+1]) {
4137 if(itype[i+1]==UJUMP||itype[i+1]==RJUMP||itype[i+1]==CJUMP||itype[i+1]==SJUMP) {
4138 // Load in delay slot, out-of-order execution
4139 if(itype[i+2]==LOAD&&rs1[i+2]==reg&&rt1[i+2]==reg&&((regs[i+1].wasconst>>hr)&1))
4140 {
4141 #ifdef HOST_IMM_ADDR32
4142 if(!using_tlb||((signed int)constmap[i][hr]+imm[i+2])<(signed int)0xC0000000) return 0;
4143 #endif
4144 // Precompute load address
4145 *value=constmap[i][hr]+imm[i+2];
4146 return 1;
4147 }
4148 }
4149 if(itype[i+1]==LOAD&&rs1[i+1]==reg&&rt1[i+1]==reg)
4150 {
4151 #ifdef HOST_IMM_ADDR32
4152 if(!using_tlb||((signed int)constmap[i][hr]+imm[i+1])<(signed int)0xC0000000) return 0;
4153 #endif
4154 // Precompute load address
4155 *value=constmap[i][hr]+imm[i+1];
4156 //printf("c=%x imm=%x\n",(int)constmap[i][hr],imm[i+1]);
4157 return 1;
4158 }
4159 }
4160 }
4161 *value=constmap[i][hr];
4162 //printf("c=%x\n",(int)constmap[i][hr]);
4163 if(i==slen-1) return 1;
4164 if(reg<64) {
4165 return !((unneeded_reg[i+1]>>reg)&1);
4166 }else{
4167 return !((unneeded_reg_upper[i+1]>>reg)&1);
4168 }
4169}
4170
4171// Load registers with known constants
4172void load_consts(signed char pre[],signed char regmap[],int is32,int i)
4173{
4174 int hr;
4175 // Load 32-bit regs
4176 for(hr=0;hr<HOST_REGS;hr++) {
4177 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4178 //if(entry[hr]!=regmap[hr]) {
4179 if(i==0||!((regs[i-1].isconst>>hr)&1)||pre[hr]!=regmap[hr]||bt[i]) {
4180 if(((regs[i].isconst>>hr)&1)&&regmap[hr]<64&&regmap[hr]>0) {
4181 int value;
4182 if(get_final_value(hr,i,&value)) {
4183 if(value==0) {
4184 emit_zeroreg(hr);
4185 }
4186 else {
4187 emit_movimm(value,hr);
4188 }
4189 }
4190 }
4191 }
4192 }
4193 }
4194 // Load 64-bit regs
4195 for(hr=0;hr<HOST_REGS;hr++) {
4196 if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4197 //if(entry[hr]!=regmap[hr]) {
4198 if(i==0||!((regs[i-1].isconst>>hr)&1)||pre[hr]!=regmap[hr]||bt[i]) {
4199 if(((regs[i].isconst>>hr)&1)&&regmap[hr]>64) {
4200 if((is32>>(regmap[hr]&63))&1) {
4201 int lr=get_reg(regmap,regmap[hr]-64);
4202 assert(lr>=0);
4203 emit_sarimm(lr,31,hr);
4204 }
4205 else
4206 {
4207 int value;
4208 if(get_final_value(hr,i,&value)) {
4209 if(value==0) {
4210 emit_zeroreg(hr);
4211 }
4212 else {
4213 emit_movimm(value,hr);
4214 }
4215 }
4216 }
4217 }
4218 }
4219 }
4220 }
4221}
4222void load_all_consts(signed char regmap[],int is32,u_int dirty,int i)
4223{
4224 int hr;
4225 // Load 32-bit regs
4226 for(hr=0;hr<HOST_REGS;hr++) {
4227 if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((dirty>>hr)&1)) {
4228 if(((regs[i].isconst>>hr)&1)&&regmap[hr]<64&&regmap[hr]>0) {
4229 int value=constmap[i][hr];
4230 if(value==0) {
4231 emit_zeroreg(hr);
4232 }
4233 else {
4234 emit_movimm(value,hr);
4235 }
4236 }
4237 }
4238 }
4239 // Load 64-bit regs
4240 for(hr=0;hr<HOST_REGS;hr++) {
4241 if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((dirty>>hr)&1)) {
4242 if(((regs[i].isconst>>hr)&1)&&regmap[hr]>64) {
4243 if((is32>>(regmap[hr]&63))&1) {
4244 int lr=get_reg(regmap,regmap[hr]-64);
4245 assert(lr>=0);
4246 emit_sarimm(lr,31,hr);
4247 }
4248 else
4249 {
4250 int value=constmap[i][hr];
4251 if(value==0) {
4252 emit_zeroreg(hr);
4253 }
4254 else {
4255 emit_movimm(value,hr);
4256 }
4257 }
4258 }
4259 }
4260 }
4261}
4262
4263// Write out all dirty registers (except cycle count)
4264void wb_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty)
4265{
4266 int hr;
4267 for(hr=0;hr<HOST_REGS;hr++) {
4268 if(hr!=EXCLUDE_REG) {
4269 if(i_regmap[hr]>0) {
4270 if(i_regmap[hr]!=CCREG) {
4271 if((i_dirty>>hr)&1) {
4272 if(i_regmap[hr]<64) {
4273 emit_storereg(i_regmap[hr],hr);
4274#ifndef FORCE32
4275 if( ((i_is32>>i_regmap[hr])&1) ) {
4276 #ifdef DESTRUCTIVE_WRITEBACK
4277 emit_sarimm(hr,31,hr);
4278 emit_storereg(i_regmap[hr]|64,hr);
4279 #else
4280 emit_sarimm(hr,31,HOST_TEMPREG);
4281 emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4282 #endif
4283 }
4284#endif
4285 }else{
4286 if( !((i_is32>>(i_regmap[hr]&63))&1) ) {
4287 emit_storereg(i_regmap[hr],hr);
4288 }
4289 }
4290 }
4291 }
4292 }
4293 }
4294 }
4295}
4296// Write out dirty registers that we need to reload (pair with load_needed_regs)
4297// This writes the registers not written by store_regs_bt
4298void wb_needed_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4299{
4300 int hr;
4301 int t=(addr-start)>>2;
4302 for(hr=0;hr<HOST_REGS;hr++) {
4303 if(hr!=EXCLUDE_REG) {
4304 if(i_regmap[hr]>0) {
4305 if(i_regmap[hr]!=CCREG) {
4306 if(i_regmap[hr]==regs[t].regmap_entry[hr] && ((regs[t].dirty>>hr)&1) && !(((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4307 if((i_dirty>>hr)&1) {
4308 if(i_regmap[hr]<64) {
4309 emit_storereg(i_regmap[hr],hr);
4310#ifndef FORCE32
4311 if( ((i_is32>>i_regmap[hr])&1) ) {
4312 #ifdef DESTRUCTIVE_WRITEBACK
4313 emit_sarimm(hr,31,hr);
4314 emit_storereg(i_regmap[hr]|64,hr);
4315 #else
4316 emit_sarimm(hr,31,HOST_TEMPREG);
4317 emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4318 #endif
4319 }
4320#endif
4321 }else{
4322 if( !((i_is32>>(i_regmap[hr]&63))&1) ) {
4323 emit_storereg(i_regmap[hr],hr);
4324 }
4325 }
4326 }
4327 }
4328 }
4329 }
4330 }
4331 }
4332}
4333
4334// Load all registers (except cycle count)
4335void load_all_regs(signed char i_regmap[])
4336{
4337 int hr;
4338 for(hr=0;hr<HOST_REGS;hr++) {
4339 if(hr!=EXCLUDE_REG) {
4340 if(i_regmap[hr]==0) {
4341 emit_zeroreg(hr);
4342 }
4343 else
4344 if(i_regmap[hr]>0 && i_regmap[hr]!=CCREG)
4345 {
4346 emit_loadreg(i_regmap[hr],hr);
4347 }
4348 }
4349 }
4350}
4351
4352// Load all current registers also needed by next instruction
4353void load_needed_regs(signed char i_regmap[],signed char next_regmap[])
4354{
4355 int hr;
4356 for(hr=0;hr<HOST_REGS;hr++) {
4357 if(hr!=EXCLUDE_REG) {
4358 if(get_reg(next_regmap,i_regmap[hr])>=0) {
4359 if(i_regmap[hr]==0) {
4360 emit_zeroreg(hr);
4361 }
4362 else
4363 if(i_regmap[hr]>0 && i_regmap[hr]!=CCREG)
4364 {
4365 emit_loadreg(i_regmap[hr],hr);
4366 }
4367 }
4368 }
4369 }
4370}
4371
4372// Load all regs, storing cycle count if necessary
4373void load_regs_entry(int t)
4374{
4375 int hr;
4376 if(is_ds[t]) emit_addimm(HOST_CCREG,CLOCK_DIVIDER,HOST_CCREG);
4377 else if(ccadj[t]) emit_addimm(HOST_CCREG,-ccadj[t]*CLOCK_DIVIDER,HOST_CCREG);
4378 if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
4379 emit_storereg(CCREG,HOST_CCREG);
4380 }
4381 // Load 32-bit regs
4382 for(hr=0;hr<HOST_REGS;hr++) {
4383 if(regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<64) {
4384 if(regs[t].regmap_entry[hr]==0) {
4385 emit_zeroreg(hr);
4386 }
4387 else if(regs[t].regmap_entry[hr]!=CCREG)
4388 {
4389 emit_loadreg(regs[t].regmap_entry[hr],hr);
4390 }
4391 }
4392 }
4393 // Load 64-bit regs
4394 for(hr=0;hr<HOST_REGS;hr++) {
4395 if(regs[t].regmap_entry[hr]>=64) {
4396 assert(regs[t].regmap_entry[hr]!=64);
4397 if((regs[t].was32>>(regs[t].regmap_entry[hr]&63))&1) {
4398 int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4399 if(lr<0) {
4400 emit_loadreg(regs[t].regmap_entry[hr],hr);
4401 }
4402 else
4403 {
4404 emit_sarimm(lr,31,hr);
4405 }
4406 }
4407 else
4408 {
4409 emit_loadreg(regs[t].regmap_entry[hr],hr);
4410 }
4411 }
4412 }
4413}
4414
4415// Store dirty registers prior to branch
4416void store_regs_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4417{
4418 if(internal_branch(i_is32,addr))
4419 {
4420 int t=(addr-start)>>2;
4421 int hr;
4422 for(hr=0;hr<HOST_REGS;hr++) {
4423 if(hr!=EXCLUDE_REG) {
4424 if(i_regmap[hr]>0 && i_regmap[hr]!=CCREG) {
4425 if(i_regmap[hr]!=regs[t].regmap_entry[hr] || !((regs[t].dirty>>hr)&1) || (((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4426 if((i_dirty>>hr)&1) {
4427 if(i_regmap[hr]<64) {
4428 if(!((unneeded_reg[t]>>i_regmap[hr])&1)) {
4429 emit_storereg(i_regmap[hr],hr);
4430 if( ((i_is32>>i_regmap[hr])&1) && !((unneeded_reg_upper[t]>>i_regmap[hr])&1) ) {
4431 #ifdef DESTRUCTIVE_WRITEBACK
4432 emit_sarimm(hr,31,hr);
4433 emit_storereg(i_regmap[hr]|64,hr);
4434 #else
4435 emit_sarimm(hr,31,HOST_TEMPREG);
4436 emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4437 #endif
4438 }
4439 }
4440 }else{
4441 if( !((i_is32>>(i_regmap[hr]&63))&1) && !((unneeded_reg_upper[t]>>(i_regmap[hr]&63))&1) ) {
4442 emit_storereg(i_regmap[hr],hr);
4443 }
4444 }
4445 }
4446 }
4447 }
4448 }
4449 }
4450 }
4451 else
4452 {
4453 // Branch out of this block, write out all dirty regs
4454 wb_dirtys(i_regmap,i_is32,i_dirty);
4455 }
4456}
4457
4458// Load all needed registers for branch target
4459void load_regs_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4460{
4461 //if(addr>=start && addr<(start+slen*4))
4462 if(internal_branch(i_is32,addr))
4463 {
4464 int t=(addr-start)>>2;
4465 int hr;
4466 // Store the cycle count before loading something else
4467 if(i_regmap[HOST_CCREG]!=CCREG) {
4468 assert(i_regmap[HOST_CCREG]==-1);
4469 }
4470 if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
4471 emit_storereg(CCREG,HOST_CCREG);
4472 }
4473 // Load 32-bit regs
4474 for(hr=0;hr<HOST_REGS;hr++) {
4475 if(hr!=EXCLUDE_REG&&regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<64) {
4476 #ifdef DESTRUCTIVE_WRITEBACK
4477 if(i_regmap[hr]!=regs[t].regmap_entry[hr] || ( !((regs[t].dirty>>hr)&1) && ((i_dirty>>hr)&1) && (((i_is32&~unneeded_reg_upper[t])>>i_regmap[hr])&1) ) || (((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4478 #else
4479 if(i_regmap[hr]!=regs[t].regmap_entry[hr] ) {
4480 #endif
4481 if(regs[t].regmap_entry[hr]==0) {
4482 emit_zeroreg(hr);
4483 }
4484 else if(regs[t].regmap_entry[hr]!=CCREG)
4485 {
4486 emit_loadreg(regs[t].regmap_entry[hr],hr);
4487 }
4488 }
4489 }
4490 }
4491 //Load 64-bit regs
4492 for(hr=0;hr<HOST_REGS;hr++) {
4493 if(hr!=EXCLUDE_REG&&regs[t].regmap_entry[hr]>=64) {
4494 if(i_regmap[hr]!=regs[t].regmap_entry[hr]) {
4495 assert(regs[t].regmap_entry[hr]!=64);
4496 if((i_is32>>(regs[t].regmap_entry[hr]&63))&1) {
4497 int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4498 if(lr<0) {
4499 emit_loadreg(regs[t].regmap_entry[hr],hr);
4500 }
4501 else
4502 {
4503 emit_sarimm(lr,31,hr);
4504 }
4505 }
4506 else
4507 {
4508 emit_loadreg(regs[t].regmap_entry[hr],hr);
4509 }
4510 }
4511 else if((i_is32>>(regs[t].regmap_entry[hr]&63))&1) {
4512 int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4513 assert(lr>=0);
4514 emit_sarimm(lr,31,hr);
4515 }
4516 }
4517 }
4518 }
4519}
4520
4521int match_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4522{
4523 if(addr>=start && addr<start+slen*4-4)
4524 {
4525 int t=(addr-start)>>2;
4526 int hr;
4527 if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) return 0;
4528 for(hr=0;hr<HOST_REGS;hr++)
4529 {
4530 if(hr!=EXCLUDE_REG)
4531 {
4532 if(i_regmap[hr]!=regs[t].regmap_entry[hr])
4533 {
4534 if(regs[t].regmap_entry[hr]!=-1)
4535 {
4536 return 0;
4537 }
4538 else
4539 if((i_dirty>>hr)&1)
4540 {
4541 if(i_regmap[hr]<64)
4542 {
4543 if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4544 return 0;
4545 }
4546 else
4547 {
4548 if(!((unneeded_reg_upper[t]>>(i_regmap[hr]&63))&1))
4549 return 0;
4550 }
4551 }
4552 }
4553 else // Same register but is it 32-bit or dirty?
4554 if(i_regmap[hr]>=0)
4555 {
4556 if(!((regs[t].dirty>>hr)&1))
4557 {
4558 if((i_dirty>>hr)&1)
4559 {
4560 if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4561 {
4562 //printf("%x: dirty no match\n",addr);
4563 return 0;
4564 }
4565 }
4566 }
4567 if((((regs[t].was32^i_is32)&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)
4568 {
4569 //printf("%x: is32 no match\n",addr);
4570 return 0;
4571 }
4572 }
4573 }
4574 }
4575 //if(is32[t]&~unneeded_reg_upper[t]&~i_is32) return 0;
4576 if(requires_32bit[t]&~i_is32) return 0;
4577 // Delay slots are not valid branch targets
4578 //if(t>0&&(itype[t-1]==RJUMP||itype[t-1]==UJUMP||itype[t-1]==CJUMP||itype[t-1]==SJUMP||itype[t-1]==FJUMP)) return 0;
4579 // Delay slots require additional processing, so do not match
4580 if(is_ds[t]) return 0;
4581 }
4582 else
4583 {
4584 int hr;
4585 for(hr=0;hr<HOST_REGS;hr++)
4586 {
4587 if(hr!=EXCLUDE_REG)
4588 {
4589 if(i_regmap[hr]>=0)
4590 {
4591 if(hr!=HOST_CCREG||i_regmap[hr]!=CCREG)
4592 {
4593 if((i_dirty>>hr)&1)
4594 {
4595 return 0;
4596 }
4597 }
4598 }
4599 }
4600 }
4601 }
4602 return 1;
4603}
4604
4605// Used when a branch jumps into the delay slot of another branch
4606void ds_assemble_entry(int i)
4607{
4608 int t=(ba[i]-start)>>2;
4609 if(!instr_addr[t]) instr_addr[t]=(u_int)out;
4610 assem_debug("Assemble delay slot at %x\n",ba[i]);
4611 assem_debug("<->\n");
4612 if(regs[t].regmap_entry[HOST_CCREG]==CCREG&&regs[t].regmap[HOST_CCREG]!=CCREG)
4613 wb_register(CCREG,regs[t].regmap_entry,regs[t].wasdirty,regs[t].was32);
4614 load_regs(regs[t].regmap_entry,regs[t].regmap,regs[t].was32,rs1[t],rs2[t]);
4615 address_generation(t,&regs[t],regs[t].regmap_entry);
4616 if(itype[t]==STORE||itype[t]==STORELR||(opcode[t]&0x3b)==0x39||(opcode[t]&0x3b)==0x3a)
4617 load_regs(regs[t].regmap_entry,regs[t].regmap,regs[t].was32,INVCP,INVCP);
4618 cop1_usable=0;
4619 is_delayslot=0;
4620 switch(itype[t]) {
4621 case ALU:
4622 alu_assemble(t,&regs[t]);break;
4623 case IMM16:
4624 imm16_assemble(t,&regs[t]);break;
4625 case SHIFT:
4626 shift_assemble(t,&regs[t]);break;
4627 case SHIFTIMM:
4628 shiftimm_assemble(t,&regs[t]);break;
4629 case LOAD:
4630 load_assemble(t,&regs[t]);break;
4631 case LOADLR:
4632 loadlr_assemble(t,&regs[t]);break;
4633 case STORE:
4634 store_assemble(t,&regs[t]);break;
4635 case STORELR:
4636 storelr_assemble(t,&regs[t]);break;
4637 case COP0:
4638 cop0_assemble(t,&regs[t]);break;
4639 case COP1:
4640 cop1_assemble(t,&regs[t]);break;
4641 case C1LS:
4642 c1ls_assemble(t,&regs[t]);break;
4643 case COP2:
4644 cop2_assemble(t,&regs[t]);break;
4645 case C2LS:
4646 c2ls_assemble(t,&regs[t]);break;
4647 case C2OP:
4648 c2op_assemble(t,&regs[t]);break;
4649 case FCONV:
4650 fconv_assemble(t,&regs[t]);break;
4651 case FLOAT:
4652 float_assemble(t,&regs[t]);break;
4653 case FCOMP:
4654 fcomp_assemble(t,&regs[t]);break;
4655 case MULTDIV:
4656 multdiv_assemble(t,&regs[t]);break;
4657 case MOV:
4658 mov_assemble(t,&regs[t]);break;
4659 case SYSCALL:
4660 case HLECALL:
4661 case INTCALL:
4662 case SPAN:
4663 case UJUMP:
4664 case RJUMP:
4665 case CJUMP:
4666 case SJUMP:
4667 case FJUMP:
4668 printf("Jump in the delay slot. This is probably a bug.\n");
4669 }
4670 store_regs_bt(regs[t].regmap,regs[t].is32,regs[t].dirty,ba[i]+4);
4671 load_regs_bt(regs[t].regmap,regs[t].is32,regs[t].dirty,ba[i]+4);
4672 if(internal_branch(regs[t].is32,ba[i]+4))
4673 assem_debug("branch: internal\n");
4674 else
4675 assem_debug("branch: external\n");
4676 assert(internal_branch(regs[t].is32,ba[i]+4));
4677 add_to_linker((int)out,ba[i]+4,internal_branch(regs[t].is32,ba[i]+4));
4678 emit_jmp(0);
4679}
4680
4681void do_cc(int i,signed char i_regmap[],int *adj,int addr,int taken,int invert)
4682{
4683 int count;
4684 int jaddr;
4685 int idle=0;
4686 if(itype[i]==RJUMP)
4687 {
4688 *adj=0;
4689 }
4690 //if(ba[i]>=start && ba[i]<(start+slen*4))
4691 if(internal_branch(branch_regs[i].is32,ba[i]))
4692 {
4693 int t=(ba[i]-start)>>2;
4694 if(is_ds[t]) *adj=-1; // Branch into delay slot adds an extra cycle
4695 else *adj=ccadj[t];
4696 }
4697 else
4698 {
4699 *adj=0;
4700 }
4701 count=ccadj[i];
4702 if(taken==TAKEN && i==(ba[i]-start)>>2 && source[i+1]==0) {
4703 // Idle loop
4704 if(count&1) emit_addimm_and_set_flags(2*(count+2),HOST_CCREG);
4705 idle=(int)out;
4706 //emit_subfrommem(&idlecount,HOST_CCREG); // Count idle cycles
4707 emit_andimm(HOST_CCREG,3,HOST_CCREG);
4708 jaddr=(int)out;
4709 emit_jmp(0);
4710 }
4711 else if(*adj==0||invert) {
4712 emit_addimm_and_set_flags(CLOCK_DIVIDER*(count+2),HOST_CCREG);
4713 jaddr=(int)out;
4714 emit_jns(0);
4715 }
4716 else
4717 {
4718 emit_cmpimm(HOST_CCREG,-2*(count+2));
4719 jaddr=(int)out;
4720 emit_jns(0);
4721 }
4722 add_stub(CC_STUB,jaddr,idle?idle:(int)out,(*adj==0||invert||idle)?0:(count+2),i,addr,taken,0);
4723}
4724
4725void do_ccstub(int n)
4726{
4727 literal_pool(256);
4728 assem_debug("do_ccstub %x\n",start+stubs[n][4]*4);
4729 set_jump_target(stubs[n][1],(int)out);
4730 int i=stubs[n][4];
4731 if(stubs[n][6]==NULLDS) {
4732 // Delay slot instruction is nullified ("likely" branch)
4733 wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
4734 }
4735 else if(stubs[n][6]!=TAKEN) {
4736 wb_dirtys(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty);
4737 }
4738 else {
4739 if(internal_branch(branch_regs[i].is32,ba[i]))
4740 wb_needed_dirtys(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
4741 }
4742 if(stubs[n][5]!=-1)
4743 {
4744 // Save PC as return address
4745 emit_movimm(stubs[n][5],EAX);
4746 emit_writeword(EAX,(int)&pcaddr);
4747 }
4748 else
4749 {
4750 // Return address depends on which way the branch goes
4751 if(itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
4752 {
4753 int s1l=get_reg(branch_regs[i].regmap,rs1[i]);
4754 int s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
4755 int s2l=get_reg(branch_regs[i].regmap,rs2[i]);
4756 int s2h=get_reg(branch_regs[i].regmap,rs2[i]|64);
4757 if(rs1[i]==0)
4758 {
4759 s1l=s2l;s1h=s2h;
4760 s2l=s2h=-1;
4761 }
4762 else if(rs2[i]==0)
4763 {
4764 s2l=s2h=-1;
4765 }
4766 if((branch_regs[i].is32>>rs1[i])&(branch_regs[i].is32>>rs2[i])&1) {
4767 s1h=s2h=-1;
4768 }
4769 assert(s1l>=0);
4770 #ifdef DESTRUCTIVE_WRITEBACK
4771 if(rs1[i]) {
4772 if((branch_regs[i].dirty>>s1l)&(branch_regs[i].is32>>rs1[i])&1)
4773 emit_loadreg(rs1[i],s1l);
4774 }
4775 else {
4776 if((branch_regs[i].dirty>>s1l)&(branch_regs[i].is32>>rs2[i])&1)
4777 emit_loadreg(rs2[i],s1l);
4778 }
4779 if(s2l>=0)
4780 if((branch_regs[i].dirty>>s2l)&(branch_regs[i].is32>>rs2[i])&1)
4781 emit_loadreg(rs2[i],s2l);
4782 #endif
4783 int hr=0;
4784 int addr,alt,ntaddr;
4785 while(hr<HOST_REGS)
4786 {
4787 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4788 (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
4789 (branch_regs[i].regmap[hr]&63)!=rs2[i] )
4790 {
4791 addr=hr++;break;
4792 }
4793 hr++;
4794 }
4795 while(hr<HOST_REGS)
4796 {
4797 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4798 (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
4799 (branch_regs[i].regmap[hr]&63)!=rs2[i] )
4800 {
4801 alt=hr++;break;
4802 }
4803 hr++;
4804 }
4805 if((opcode[i]&0x2E)==6) // BLEZ/BGTZ needs another register
4806 {
4807 while(hr<HOST_REGS)
4808 {
4809 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4810 (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
4811 (branch_regs[i].regmap[hr]&63)!=rs2[i] )
4812 {
4813 ntaddr=hr;break;
4814 }
4815 hr++;
4816 }
4817 assert(hr<HOST_REGS);
4818 }
4819 if((opcode[i]&0x2f)==4) // BEQ
4820 {
4821 #ifdef HAVE_CMOV_IMM
4822 if(s1h<0) {
4823 if(s2l>=0) emit_cmp(s1l,s2l);
4824 else emit_test(s1l,s1l);
4825 emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
4826 }
4827 else
4828 #endif
4829 {
4830 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
4831 if(s1h>=0) {
4832 if(s2h>=0) emit_cmp(s1h,s2h);
4833 else emit_test(s1h,s1h);
4834 emit_cmovne_reg(alt,addr);
4835 }
4836 if(s2l>=0) emit_cmp(s1l,s2l);
4837 else emit_test(s1l,s1l);
4838 emit_cmovne_reg(alt,addr);
4839 }
4840 }
4841 if((opcode[i]&0x2f)==5) // BNE
4842 {
4843 #ifdef HAVE_CMOV_IMM
4844 if(s1h<0) {
4845 if(s2l>=0) emit_cmp(s1l,s2l);
4846 else emit_test(s1l,s1l);
4847 emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
4848 }
4849 else
4850 #endif
4851 {
4852 emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
4853 if(s1h>=0) {
4854 if(s2h>=0) emit_cmp(s1h,s2h);
4855 else emit_test(s1h,s1h);
4856 emit_cmovne_reg(alt,addr);
4857 }
4858 if(s2l>=0) emit_cmp(s1l,s2l);
4859 else emit_test(s1l,s1l);
4860 emit_cmovne_reg(alt,addr);
4861 }
4862 }
4863 if((opcode[i]&0x2f)==6) // BLEZ
4864 {
4865 //emit_movimm(ba[i],alt);
4866 //emit_movimm(start+i*4+8,addr);
4867 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
4868 emit_cmpimm(s1l,1);
4869 if(s1h>=0) emit_mov(addr,ntaddr);
4870 emit_cmovl_reg(alt,addr);
4871 if(s1h>=0) {
4872 emit_test(s1h,s1h);
4873 emit_cmovne_reg(ntaddr,addr);
4874 emit_cmovs_reg(alt,addr);
4875 }
4876 }
4877 if((opcode[i]&0x2f)==7) // BGTZ
4878 {
4879 //emit_movimm(ba[i],addr);
4880 //emit_movimm(start+i*4+8,ntaddr);
4881 emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
4882 emit_cmpimm(s1l,1);
4883 if(s1h>=0) emit_mov(addr,alt);
4884 emit_cmovl_reg(ntaddr,addr);
4885 if(s1h>=0) {
4886 emit_test(s1h,s1h);
4887 emit_cmovne_reg(alt,addr);
4888 emit_cmovs_reg(ntaddr,addr);
4889 }
4890 }
4891 if((opcode[i]==1)&&(opcode2[i]&0x2D)==0) // BLTZ
4892 {
4893 //emit_movimm(ba[i],alt);
4894 //emit_movimm(start+i*4+8,addr);
4895 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
4896 if(s1h>=0) emit_test(s1h,s1h);
4897 else emit_test(s1l,s1l);
4898 emit_cmovs_reg(alt,addr);
4899 }
4900 if((opcode[i]==1)&&(opcode2[i]&0x2D)==1) // BGEZ
4901 {
4902 //emit_movimm(ba[i],addr);
4903 //emit_movimm(start+i*4+8,alt);
4904 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
4905 if(s1h>=0) emit_test(s1h,s1h);
4906 else emit_test(s1l,s1l);
4907 emit_cmovs_reg(alt,addr);
4908 }
4909 if(opcode[i]==0x11 && opcode2[i]==0x08 ) {
4910 if(source[i]&0x10000) // BC1T
4911 {
4912 //emit_movimm(ba[i],alt);
4913 //emit_movimm(start+i*4+8,addr);
4914 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
4915 emit_testimm(s1l,0x800000);
4916 emit_cmovne_reg(alt,addr);
4917 }
4918 else // BC1F
4919 {
4920 //emit_movimm(ba[i],addr);
4921 //emit_movimm(start+i*4+8,alt);
4922 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
4923 emit_testimm(s1l,0x800000);
4924 emit_cmovne_reg(alt,addr);
4925 }
4926 }
4927 emit_writeword(addr,(int)&pcaddr);
4928 }
4929 else
4930 if(itype[i]==RJUMP)
4931 {
4932 int r=get_reg(branch_regs[i].regmap,rs1[i]);
4933 if(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]) {
4934 r=get_reg(branch_regs[i].regmap,RTEMP);
4935 }
4936 emit_writeword(r,(int)&pcaddr);
4937 }
4938 else {printf("Unknown branch type in do_ccstub\n");exit(1);}
4939 }
4940 // Update cycle count
4941 assert(branch_regs[i].regmap[HOST_CCREG]==CCREG||branch_regs[i].regmap[HOST_CCREG]==-1);
4942 if(stubs[n][3]) emit_addimm(HOST_CCREG,CLOCK_DIVIDER*stubs[n][3],HOST_CCREG);
4943 emit_call((int)cc_interrupt);
4944 if(stubs[n][3]) emit_addimm(HOST_CCREG,-CLOCK_DIVIDER*stubs[n][3],HOST_CCREG);
4945 if(stubs[n][6]==TAKEN) {
4946 if(internal_branch(branch_regs[i].is32,ba[i]))
4947 load_needed_regs(branch_regs[i].regmap,regs[(ba[i]-start)>>2].regmap_entry);
4948 else if(itype[i]==RJUMP) {
4949 if(get_reg(branch_regs[i].regmap,RTEMP)>=0)
4950 emit_readword((int)&pcaddr,get_reg(branch_regs[i].regmap,RTEMP));
4951 else
4952 emit_loadreg(rs1[i],get_reg(branch_regs[i].regmap,rs1[i]));
4953 }
4954 }else if(stubs[n][6]==NOTTAKEN) {
4955 if(i<slen-2) load_needed_regs(branch_regs[i].regmap,regmap_pre[i+2]);
4956 else load_all_regs(branch_regs[i].regmap);
4957 }else if(stubs[n][6]==NULLDS) {
4958 // Delay slot instruction is nullified ("likely" branch)
4959 if(i<slen-2) load_needed_regs(regs[i].regmap,regmap_pre[i+2]);
4960 else load_all_regs(regs[i].regmap);
4961 }else{
4962 load_all_regs(branch_regs[i].regmap);
4963 }
4964 emit_jmp(stubs[n][2]); // return address
4965
4966 /* This works but uses a lot of memory...
4967 emit_readword((int)&last_count,ECX);
4968 emit_add(HOST_CCREG,ECX,EAX);
4969 emit_writeword(EAX,(int)&Count);
4970 emit_call((int)gen_interupt);
4971 emit_readword((int)&Count,HOST_CCREG);
4972 emit_readword((int)&next_interupt,EAX);
4973 emit_readword((int)&pending_exception,EBX);
4974 emit_writeword(EAX,(int)&last_count);
4975 emit_sub(HOST_CCREG,EAX,HOST_CCREG);
4976 emit_test(EBX,EBX);
4977 int jne_instr=(int)out;
4978 emit_jne(0);
4979 if(stubs[n][3]) emit_addimm(HOST_CCREG,-2*stubs[n][3],HOST_CCREG);
4980 load_all_regs(branch_regs[i].regmap);
4981 emit_jmp(stubs[n][2]); // return address
4982 set_jump_target(jne_instr,(int)out);
4983 emit_readword((int)&pcaddr,EAX);
4984 // Call get_addr_ht instead of doing the hash table here.
4985 // This code is executed infrequently and takes up a lot of space
4986 // so smaller is better.
4987 emit_storereg(CCREG,HOST_CCREG);
4988 emit_pushreg(EAX);
4989 emit_call((int)get_addr_ht);
4990 emit_loadreg(CCREG,HOST_CCREG);
4991 emit_addimm(ESP,4,ESP);
4992 emit_jmpreg(EAX);*/
4993}
4994
4995add_to_linker(int addr,int target,int ext)
4996{
4997 link_addr[linkcount][0]=addr;
4998 link_addr[linkcount][1]=target;
4999 link_addr[linkcount][2]=ext;
5000 linkcount++;
5001}
5002
5003void ujump_assemble(int i,struct regstat *i_regs)
5004{
5005 signed char *i_regmap=i_regs->regmap;
5006 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5007 address_generation(i+1,i_regs,regs[i].regmap_entry);
5008 #ifdef REG_PREFETCH
5009 int temp=get_reg(branch_regs[i].regmap,PTEMP);
5010 if(rt1[i]==31&&temp>=0)
5011 {
5012 int return_address=start+i*4+8;
5013 if(get_reg(branch_regs[i].regmap,31)>0)
5014 if(i_regmap[temp]==PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5015 }
5016 #endif
5017 ds_assemble(i+1,i_regs);
5018 uint64_t bc_unneeded=branch_regs[i].u;
5019 uint64_t bc_unneeded_upper=branch_regs[i].uu;
5020 bc_unneeded|=1|(1LL<<rt1[i]);
5021 bc_unneeded_upper|=1|(1LL<<rt1[i]);
5022 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5023 bc_unneeded,bc_unneeded_upper);
5024 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5025 if(rt1[i]==31) {
5026 int rt;
5027 unsigned int return_address;
5028 assert(rt1[i+1]!=31);
5029 assert(rt2[i+1]!=31);
5030 rt=get_reg(branch_regs[i].regmap,31);
5031 assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5032 //assert(rt>=0);
5033 return_address=start+i*4+8;
5034 if(rt>=0) {
5035 #ifdef USE_MINI_HT
5036 if(internal_branch(branch_regs[i].is32,return_address)) {
5037 int temp=rt+1;
5038 if(temp==EXCLUDE_REG||temp>=HOST_REGS||
5039 branch_regs[i].regmap[temp]>=0)
5040 {
5041 temp=get_reg(branch_regs[i].regmap,-1);
5042 }
5043 #ifdef HOST_TEMPREG
5044 if(temp<0) temp=HOST_TEMPREG;
5045 #endif
5046 if(temp>=0) do_miniht_insert(return_address,rt,temp);
5047 else emit_movimm(return_address,rt);
5048 }
5049 else
5050 #endif
5051 {
5052 #ifdef REG_PREFETCH
5053 if(temp>=0)
5054 {
5055 if(i_regmap[temp]!=PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5056 }
5057 #endif
5058 emit_movimm(return_address,rt); // PC into link register
5059 #ifdef IMM_PREFETCH
5060 emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5061 #endif
5062 }
5063 }
5064 }
5065 int cc,adj;
5066 cc=get_reg(branch_regs[i].regmap,CCREG);
5067 assert(cc==HOST_CCREG);
5068 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5069 #ifdef REG_PREFETCH
5070 if(rt1[i]==31&&temp>=0) emit_prefetchreg(temp);
5071 #endif
5072 do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5073 if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5074 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5075 if(internal_branch(branch_regs[i].is32,ba[i]))
5076 assem_debug("branch: internal\n");
5077 else
5078 assem_debug("branch: external\n");
5079 if(internal_branch(branch_regs[i].is32,ba[i])&&is_ds[(ba[i]-start)>>2]) {
5080 ds_assemble_entry(i);
5081 }
5082 else {
5083 add_to_linker((int)out,ba[i],internal_branch(branch_regs[i].is32,ba[i]));
5084 emit_jmp(0);
5085 }
5086}
5087
5088void rjump_assemble(int i,struct regstat *i_regs)
5089{
5090 signed char *i_regmap=i_regs->regmap;
5091 int temp;
5092 int rs,cc,adj;
5093 rs=get_reg(branch_regs[i].regmap,rs1[i]);
5094 assert(rs>=0);
5095 if(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]) {
5096 // Delay slot abuse, make a copy of the branch address register
5097 temp=get_reg(branch_regs[i].regmap,RTEMP);
5098 assert(temp>=0);
5099 assert(regs[i].regmap[temp]==RTEMP);
5100 emit_mov(rs,temp);
5101 rs=temp;
5102 }
5103 address_generation(i+1,i_regs,regs[i].regmap_entry);
5104 #ifdef REG_PREFETCH
5105 if(rt1[i]==31)
5106 {
5107 if((temp=get_reg(branch_regs[i].regmap,PTEMP))>=0) {
5108 int return_address=start+i*4+8;
5109 if(i_regmap[temp]==PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5110 }
5111 }
5112 #endif
5113 #ifdef USE_MINI_HT
5114 if(rs1[i]==31) {
5115 int rh=get_reg(regs[i].regmap,RHASH);
5116 if(rh>=0) do_preload_rhash(rh);
5117 }
5118 #endif
5119 ds_assemble(i+1,i_regs);
5120 uint64_t bc_unneeded=branch_regs[i].u;
5121 uint64_t bc_unneeded_upper=branch_regs[i].uu;
5122 bc_unneeded|=1|(1LL<<rt1[i]);
5123 bc_unneeded_upper|=1|(1LL<<rt1[i]);
5124 bc_unneeded&=~(1LL<<rs1[i]);
5125 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5126 bc_unneeded,bc_unneeded_upper);
5127 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],CCREG);
5128 if(rt1[i]!=0) {
5129 int rt,return_address;
5130 assert(rt1[i+1]!=rt1[i]);
5131 assert(rt2[i+1]!=rt1[i]);
5132 rt=get_reg(branch_regs[i].regmap,rt1[i]);
5133 assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5134 assert(rt>=0);
5135 return_address=start+i*4+8;
5136 #ifdef REG_PREFETCH
5137 if(temp>=0)
5138 {
5139 if(i_regmap[temp]!=PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5140 }
5141 #endif
5142 emit_movimm(return_address,rt); // PC into link register
5143 #ifdef IMM_PREFETCH
5144 emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5145 #endif
5146 }
5147 cc=get_reg(branch_regs[i].regmap,CCREG);
5148 assert(cc==HOST_CCREG);
5149 #ifdef USE_MINI_HT
5150 int rh=get_reg(branch_regs[i].regmap,RHASH);
5151 int ht=get_reg(branch_regs[i].regmap,RHTBL);
5152 if(rs1[i]==31) {
5153 if(regs[i].regmap[rh]!=RHASH) do_preload_rhash(rh);
5154 do_preload_rhtbl(ht);
5155 do_rhash(rs,rh);
5156 }
5157 #endif
5158 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,-1);
5159 #ifdef DESTRUCTIVE_WRITEBACK
5160 if((branch_regs[i].dirty>>rs)&(branch_regs[i].is32>>rs1[i])&1) {
5161 if(rs1[i]!=rt1[i+1]&&rs1[i]!=rt2[i+1]) {
5162 emit_loadreg(rs1[i],rs);
5163 }
5164 }
5165 #endif
5166 #ifdef REG_PREFETCH
5167 if(rt1[i]==31&&temp>=0) emit_prefetchreg(temp);
5168 #endif
5169 #ifdef USE_MINI_HT
5170 if(rs1[i]==31) {
5171 do_miniht_load(ht,rh);
5172 }
5173 #endif
5174 //do_cc(i,branch_regs[i].regmap,&adj,-1,TAKEN);
5175 //if(adj) emit_addimm(cc,2*(ccadj[i]+2-adj),cc); // ??? - Shouldn't happen
5176 //assert(adj==0);
5177 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
5178 add_stub(CC_STUB,(int)out,jump_vaddr_reg[rs],0,i,-1,TAKEN,0);
5179 emit_jns(0);
5180 //load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,-1);
5181 #ifdef USE_MINI_HT
5182 if(rs1[i]==31) {
5183 do_miniht_jump(rs,rh,ht);
5184 }
5185 else
5186 #endif
5187 {
5188 //if(rs!=EAX) emit_mov(rs,EAX);
5189 //emit_jmp((int)jump_vaddr_eax);
5190 emit_jmp(jump_vaddr_reg[rs]);
5191 }
5192 /* Check hash table
5193 temp=!rs;
5194 emit_mov(rs,temp);
5195 emit_shrimm(rs,16,rs);
5196 emit_xor(temp,rs,rs);
5197 emit_movzwl_reg(rs,rs);
5198 emit_shlimm(rs,4,rs);
5199 emit_cmpmem_indexed((int)hash_table,rs,temp);
5200 emit_jne((int)out+14);
5201 emit_readword_indexed((int)hash_table+4,rs,rs);
5202 emit_jmpreg(rs);
5203 emit_cmpmem_indexed((int)hash_table+8,rs,temp);
5204 emit_addimm_no_flags(8,rs);
5205 emit_jeq((int)out-17);
5206 // No hit on hash table, call compiler
5207 emit_pushreg(temp);
5208//DEBUG >
5209#ifdef DEBUG_CYCLE_COUNT
5210 emit_readword((int)&last_count,ECX);
5211 emit_add(HOST_CCREG,ECX,HOST_CCREG);
5212 emit_readword((int)&next_interupt,ECX);
5213 emit_writeword(HOST_CCREG,(int)&Count);
5214 emit_sub(HOST_CCREG,ECX,HOST_CCREG);
5215 emit_writeword(ECX,(int)&last_count);
5216#endif
5217//DEBUG <
5218 emit_storereg(CCREG,HOST_CCREG);
5219 emit_call((int)get_addr);
5220 emit_loadreg(CCREG,HOST_CCREG);
5221 emit_addimm(ESP,4,ESP);
5222 emit_jmpreg(EAX);*/
5223 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5224 if(rt1[i]!=31&&i<slen-2&&(((u_int)out)&7)) emit_mov(13,13);
5225 #endif
5226}
5227
5228void cjump_assemble(int i,struct regstat *i_regs)
5229{
5230 signed char *i_regmap=i_regs->regmap;
5231 int cc;
5232 int match;
5233 match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5234 assem_debug("match=%d\n",match);
5235 int s1h,s1l,s2h,s2l;
5236 int prev_cop1_usable=cop1_usable;
5237 int unconditional=0,nop=0;
5238 int only32=0;
5239 int ooo=1;
5240 int invert=0;
5241 int internal=internal_branch(branch_regs[i].is32,ba[i]);
5242 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5243 if(likely[i]) ooo=0;
5244 if(!match) invert=1;
5245 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5246 if(i>(ba[i]-start)>>2) invert=1;
5247 #endif
5248
5249 if(ooo)
5250 if((rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]))||
5251 (rs2[i]&&(rs2[i]==rt1[i+1]||rs2[i]==rt2[i+1])))
5252 {
5253 // Write-after-read dependency prevents out of order execution
5254 // First test branch condition, then execute delay slot, then branch
5255 ooo=0;
5256 }
5257
5258 if(ooo) {
5259 s1l=get_reg(branch_regs[i].regmap,rs1[i]);
5260 s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
5261 s2l=get_reg(branch_regs[i].regmap,rs2[i]);
5262 s2h=get_reg(branch_regs[i].regmap,rs2[i]|64);
5263 }
5264 else {
5265 s1l=get_reg(i_regmap,rs1[i]);
5266 s1h=get_reg(i_regmap,rs1[i]|64);
5267 s2l=get_reg(i_regmap,rs2[i]);
5268 s2h=get_reg(i_regmap,rs2[i]|64);
5269 }
5270 if(rs1[i]==0&&rs2[i]==0)
5271 {
5272 if(opcode[i]&1) nop=1;
5273 else unconditional=1;
5274 //assert(opcode[i]!=5);
5275 //assert(opcode[i]!=7);
5276 //assert(opcode[i]!=0x15);
5277 //assert(opcode[i]!=0x17);
5278 }
5279 else if(rs1[i]==0)
5280 {
5281 s1l=s2l;s1h=s2h;
5282 s2l=s2h=-1;
5283 only32=(regs[i].was32>>rs2[i])&1;
5284 }
5285 else if(rs2[i]==0)
5286 {
5287 s2l=s2h=-1;
5288 only32=(regs[i].was32>>rs1[i])&1;
5289 }
5290 else {
5291 only32=(regs[i].was32>>rs1[i])&(regs[i].was32>>rs2[i])&1;
5292 }
5293
5294 if(ooo) {
5295 // Out of order execution (delay slot first)
5296 //printf("OOOE\n");
5297 address_generation(i+1,i_regs,regs[i].regmap_entry);
5298 ds_assemble(i+1,i_regs);
5299 int adj;
5300 uint64_t bc_unneeded=branch_regs[i].u;
5301 uint64_t bc_unneeded_upper=branch_regs[i].uu;
5302 bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
5303 bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
5304 bc_unneeded|=1;
5305 bc_unneeded_upper|=1;
5306 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5307 bc_unneeded,bc_unneeded_upper);
5308 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs2[i]);
5309 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5310 cc=get_reg(branch_regs[i].regmap,CCREG);
5311 assert(cc==HOST_CCREG);
5312 if(unconditional)
5313 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5314 //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
5315 //assem_debug("cycle count (adj)\n");
5316 if(unconditional) {
5317 do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5318 if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
5319 if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5320 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5321 if(internal)
5322 assem_debug("branch: internal\n");
5323 else
5324 assem_debug("branch: external\n");
5325 if(internal&&is_ds[(ba[i]-start)>>2]) {
5326 ds_assemble_entry(i);
5327 }
5328 else {
5329 add_to_linker((int)out,ba[i],internal);
5330 emit_jmp(0);
5331 }
5332 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5333 if(((u_int)out)&7) emit_addnop(0);
5334 #endif
5335 }
5336 }
5337 else if(nop) {
5338 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
5339 int jaddr=(int)out;
5340 emit_jns(0);
5341 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5342 }
5343 else {
5344 int taken=0,nottaken=0,nottaken1=0;
5345 do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
5346 if(adj&&!invert) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5347 if(!only32)
5348 {
5349 assert(s1h>=0);
5350 if(opcode[i]==4) // BEQ
5351 {
5352 if(s2h>=0) emit_cmp(s1h,s2h);
5353 else emit_test(s1h,s1h);
5354 nottaken1=(int)out;
5355 emit_jne(1);
5356 }
5357 if(opcode[i]==5) // BNE
5358 {
5359 if(s2h>=0) emit_cmp(s1h,s2h);
5360 else emit_test(s1h,s1h);
5361 if(invert) taken=(int)out;
5362 else add_to_linker((int)out,ba[i],internal);
5363 emit_jne(0);
5364 }
5365 if(opcode[i]==6) // BLEZ
5366 {
5367 emit_test(s1h,s1h);
5368 if(invert) taken=(int)out;
5369 else add_to_linker((int)out,ba[i],internal);
5370 emit_js(0);
5371 nottaken1=(int)out;
5372 emit_jne(1);
5373 }
5374 if(opcode[i]==7) // BGTZ
5375 {
5376 emit_test(s1h,s1h);
5377 nottaken1=(int)out;
5378 emit_js(1);
5379 if(invert) taken=(int)out;
5380 else add_to_linker((int)out,ba[i],internal);
5381 emit_jne(0);
5382 }
5383 } // if(!only32)
5384
5385 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5386 assert(s1l>=0);
5387 if(opcode[i]==4) // BEQ
5388 {
5389 if(s2l>=0) emit_cmp(s1l,s2l);
5390 else emit_test(s1l,s1l);
5391 if(invert){
5392 nottaken=(int)out;
5393 emit_jne(1);
5394 }else{
5395 add_to_linker((int)out,ba[i],internal);
5396 emit_jeq(0);
5397 }
5398 }
5399 if(opcode[i]==5) // BNE
5400 {
5401 if(s2l>=0) emit_cmp(s1l,s2l);
5402 else emit_test(s1l,s1l);
5403 if(invert){
5404 nottaken=(int)out;
5405 emit_jeq(1);
5406 }else{
5407 add_to_linker((int)out,ba[i],internal);
5408 emit_jne(0);
5409 }
5410 }
5411 if(opcode[i]==6) // BLEZ
5412 {
5413 emit_cmpimm(s1l,1);
5414 if(invert){
5415 nottaken=(int)out;
5416 emit_jge(1);
5417 }else{
5418 add_to_linker((int)out,ba[i],internal);
5419 emit_jl(0);
5420 }
5421 }
5422 if(opcode[i]==7) // BGTZ
5423 {
5424 emit_cmpimm(s1l,1);
5425 if(invert){
5426 nottaken=(int)out;
5427 emit_jl(1);
5428 }else{
5429 add_to_linker((int)out,ba[i],internal);
5430 emit_jge(0);
5431 }
5432 }
5433 if(invert) {
5434 if(taken) set_jump_target(taken,(int)out);
5435 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5436 if(match&&(!internal||!is_ds[(ba[i]-start)>>2])) {
5437 if(adj) {
5438 emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5439 add_to_linker((int)out,ba[i],internal);
5440 }else{
5441 emit_addnop(13);
5442 add_to_linker((int)out,ba[i],internal*2);
5443 }
5444 emit_jmp(0);
5445 }else
5446 #endif
5447 {
5448 if(adj) emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5449 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5450 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5451 if(internal)
5452 assem_debug("branch: internal\n");
5453 else
5454 assem_debug("branch: external\n");
5455 if(internal&&is_ds[(ba[i]-start)>>2]) {
5456 ds_assemble_entry(i);
5457 }
5458 else {
5459 add_to_linker((int)out,ba[i],internal);
5460 emit_jmp(0);
5461 }
5462 }
5463 set_jump_target(nottaken,(int)out);
5464 }
5465
5466 if(nottaken1) set_jump_target(nottaken1,(int)out);
5467 if(adj) {
5468 if(!invert) emit_addimm(cc,CLOCK_DIVIDER*adj,cc);
5469 }
5470 } // (!unconditional)
5471 } // if(ooo)
5472 else
5473 {
5474 // In-order execution (branch first)
5475 //if(likely[i]) printf("IOL\n");
5476 //else
5477 //printf("IOE\n");
5478 int taken=0,nottaken=0,nottaken1=0;
5479 if(!unconditional&&!nop) {
5480 if(!only32)
5481 {
5482 assert(s1h>=0);
5483 if((opcode[i]&0x2f)==4) // BEQ
5484 {
5485 if(s2h>=0) emit_cmp(s1h,s2h);
5486 else emit_test(s1h,s1h);
5487 nottaken1=(int)out;
5488 emit_jne(2);
5489 }
5490 if((opcode[i]&0x2f)==5) // BNE
5491 {
5492 if(s2h>=0) emit_cmp(s1h,s2h);
5493 else emit_test(s1h,s1h);
5494 taken=(int)out;
5495 emit_jne(1);
5496 }
5497 if((opcode[i]&0x2f)==6) // BLEZ
5498 {
5499 emit_test(s1h,s1h);
5500 taken=(int)out;
5501 emit_js(1);
5502 nottaken1=(int)out;
5503 emit_jne(2);
5504 }
5505 if((opcode[i]&0x2f)==7) // BGTZ
5506 {
5507 emit_test(s1h,s1h);
5508 nottaken1=(int)out;
5509 emit_js(2);
5510 taken=(int)out;
5511 emit_jne(1);
5512 }
5513 } // if(!only32)
5514
5515 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5516 assert(s1l>=0);
5517 if((opcode[i]&0x2f)==4) // BEQ
5518 {
5519 if(s2l>=0) emit_cmp(s1l,s2l);
5520 else emit_test(s1l,s1l);
5521 nottaken=(int)out;
5522 emit_jne(2);
5523 }
5524 if((opcode[i]&0x2f)==5) // BNE
5525 {
5526 if(s2l>=0) emit_cmp(s1l,s2l);
5527 else emit_test(s1l,s1l);
5528 nottaken=(int)out;
5529 emit_jeq(2);
5530 }
5531 if((opcode[i]&0x2f)==6) // BLEZ
5532 {
5533 emit_cmpimm(s1l,1);
5534 nottaken=(int)out;
5535 emit_jge(2);
5536 }
5537 if((opcode[i]&0x2f)==7) // BGTZ
5538 {
5539 emit_cmpimm(s1l,1);
5540 nottaken=(int)out;
5541 emit_jl(2);
5542 }
5543 } // if(!unconditional)
5544 int adj;
5545 uint64_t ds_unneeded=branch_regs[i].u;
5546 uint64_t ds_unneeded_upper=branch_regs[i].uu;
5547 ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
5548 ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
5549 if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
5550 ds_unneeded|=1;
5551 ds_unneeded_upper|=1;
5552 // branch taken
5553 if(!nop) {
5554 if(taken) set_jump_target(taken,(int)out);
5555 assem_debug("1:\n");
5556 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5557 ds_unneeded,ds_unneeded_upper);
5558 // load regs
5559 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5560 address_generation(i+1,&branch_regs[i],0);
5561 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
5562 ds_assemble(i+1,&branch_regs[i]);
5563 cc=get_reg(branch_regs[i].regmap,CCREG);
5564 if(cc==-1) {
5565 emit_loadreg(CCREG,cc=HOST_CCREG);
5566 // CHECK: Is the following instruction (fall thru) allocated ok?
5567 }
5568 assert(cc==HOST_CCREG);
5569 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5570 do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
5571 assem_debug("cycle count (adj)\n");
5572 if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5573 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5574 if(internal)
5575 assem_debug("branch: internal\n");
5576 else
5577 assem_debug("branch: external\n");
5578 if(internal&&is_ds[(ba[i]-start)>>2]) {
5579 ds_assemble_entry(i);
5580 }
5581 else {
5582 add_to_linker((int)out,ba[i],internal);
5583 emit_jmp(0);
5584 }
5585 }
5586 // branch not taken
5587 cop1_usable=prev_cop1_usable;
5588 if(!unconditional) {
5589 if(nottaken1) set_jump_target(nottaken1,(int)out);
5590 set_jump_target(nottaken,(int)out);
5591 assem_debug("2:\n");
5592 if(!likely[i]) {
5593 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5594 ds_unneeded,ds_unneeded_upper);
5595 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5596 address_generation(i+1,&branch_regs[i],0);
5597 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5598 ds_assemble(i+1,&branch_regs[i]);
5599 }
5600 cc=get_reg(branch_regs[i].regmap,CCREG);
5601 if(cc==-1&&!likely[i]) {
5602 // Cycle count isn't in a register, temporarily load it then write it out
5603 emit_loadreg(CCREG,HOST_CCREG);
5604 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
5605 int jaddr=(int)out;
5606 emit_jns(0);
5607 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5608 emit_storereg(CCREG,HOST_CCREG);
5609 }
5610 else{
5611 cc=get_reg(i_regmap,CCREG);
5612 assert(cc==HOST_CCREG);
5613 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
5614 int jaddr=(int)out;
5615 emit_jns(0);
5616 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
5617 }
5618 }
5619 }
5620}
5621
5622void sjump_assemble(int i,struct regstat *i_regs)
5623{
5624 signed char *i_regmap=i_regs->regmap;
5625 int cc;
5626 int match;
5627 match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5628 assem_debug("smatch=%d\n",match);
5629 int s1h,s1l;
5630 int prev_cop1_usable=cop1_usable;
5631 int unconditional=0,nevertaken=0;
5632 int only32=0;
5633 int ooo=1;
5634 int invert=0;
5635 int internal=internal_branch(branch_regs[i].is32,ba[i]);
5636 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5637 if(likely[i]) ooo=0;
5638 if(!match) invert=1;
5639 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5640 if(i>(ba[i]-start)>>2) invert=1;
5641 #endif
5642
5643 //if(opcode2[i]>=0x10) return; // FIXME (BxxZAL)
5644 //assert(opcode2[i]<0x10||rs1[i]==0); // FIXME (BxxZAL)
5645
5646 if(ooo)
5647 if(rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]))
5648 {
5649 // Write-after-read dependency prevents out of order execution
5650 // First test branch condition, then execute delay slot, then branch
5651 ooo=0;
5652 }
5653 assert(opcode2[i]<0x10||ooo); // FIXME (BxxZALL)
5654
5655 if(ooo) {
5656 s1l=get_reg(branch_regs[i].regmap,rs1[i]);
5657 s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
5658 }
5659 else {
5660 s1l=get_reg(i_regmap,rs1[i]);
5661 s1h=get_reg(i_regmap,rs1[i]|64);
5662 }
5663 if(rs1[i]==0)
5664 {
5665 if(opcode2[i]&1) unconditional=1;
5666 else nevertaken=1;
5667 // These are never taken (r0 is never less than zero)
5668 //assert(opcode2[i]!=0);
5669 //assert(opcode2[i]!=2);
5670 //assert(opcode2[i]!=0x10);
5671 //assert(opcode2[i]!=0x12);
5672 }
5673 else {
5674 only32=(regs[i].was32>>rs1[i])&1;
5675 }
5676
5677 if(ooo) {
5678 // Out of order execution (delay slot first)
5679 //printf("OOOE\n");
5680 address_generation(i+1,i_regs,regs[i].regmap_entry);
5681 ds_assemble(i+1,i_regs);
5682 int adj;
5683 uint64_t bc_unneeded=branch_regs[i].u;
5684 uint64_t bc_unneeded_upper=branch_regs[i].uu;
5685 bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
5686 bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
5687 bc_unneeded|=1;
5688 bc_unneeded_upper|=1;
5689 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5690 bc_unneeded,bc_unneeded_upper);
5691 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs1[i]);
5692 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5693 if(rt1[i]==31) {
5694 int rt,return_address;
5695 assert(rt1[i+1]!=31);
5696 assert(rt2[i+1]!=31);
5697 rt=get_reg(branch_regs[i].regmap,31);
5698 assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5699 if(rt>=0) {
5700 // Save the PC even if the branch is not taken
5701 return_address=start+i*4+8;
5702 emit_movimm(return_address,rt); // PC into link register
5703 #ifdef IMM_PREFETCH
5704 if(!nevertaken) emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5705 #endif
5706 }
5707 }
5708 cc=get_reg(branch_regs[i].regmap,CCREG);
5709 assert(cc==HOST_CCREG);
5710 if(unconditional)
5711 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5712 //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
5713 assem_debug("cycle count (adj)\n");
5714 if(unconditional) {
5715 do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5716 if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
5717 if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5718 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5719 if(internal)
5720 assem_debug("branch: internal\n");
5721 else
5722 assem_debug("branch: external\n");
5723 if(internal&&is_ds[(ba[i]-start)>>2]) {
5724 ds_assemble_entry(i);
5725 }
5726 else {
5727 add_to_linker((int)out,ba[i],internal);
5728 emit_jmp(0);
5729 }
5730 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5731 if(((u_int)out)&7) emit_addnop(0);
5732 #endif
5733 }
5734 }
5735 else if(nevertaken) {
5736 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
5737 int jaddr=(int)out;
5738 emit_jns(0);
5739 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5740 }
5741 else {
5742 int nottaken=0;
5743 do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
5744 if(adj&&!invert) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5745 if(!only32)
5746 {
5747 assert(s1h>=0);
5748 if((opcode2[i]&0xf)==0) // BLTZ/BLTZAL
5749 {
5750 emit_test(s1h,s1h);
5751 if(invert){
5752 nottaken=(int)out;
5753 emit_jns(1);
5754 }else{
5755 add_to_linker((int)out,ba[i],internal);
5756 emit_js(0);
5757 }
5758 }
5759 if((opcode2[i]&0xf)==1) // BGEZ/BLTZAL
5760 {
5761 emit_test(s1h,s1h);
5762 if(invert){
5763 nottaken=(int)out;
5764 emit_js(1);
5765 }else{
5766 add_to_linker((int)out,ba[i],internal);
5767 emit_jns(0);
5768 }
5769 }
5770 } // if(!only32)
5771 else
5772 {
5773 assert(s1l>=0);
5774 if((opcode2[i]&0xf)==0) // BLTZ/BLTZAL
5775 {
5776 emit_test(s1l,s1l);
5777 if(invert){
5778 nottaken=(int)out;
5779 emit_jns(1);
5780 }else{
5781 add_to_linker((int)out,ba[i],internal);
5782 emit_js(0);
5783 }
5784 }
5785 if((opcode2[i]&0xf)==1) // BGEZ/BLTZAL
5786 {
5787 emit_test(s1l,s1l);
5788 if(invert){
5789 nottaken=(int)out;
5790 emit_js(1);
5791 }else{
5792 add_to_linker((int)out,ba[i],internal);
5793 emit_jns(0);
5794 }
5795 }
5796 } // if(!only32)
5797
5798 if(invert) {
5799 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5800 if(match&&(!internal||!is_ds[(ba[i]-start)>>2])) {
5801 if(adj) {
5802 emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5803 add_to_linker((int)out,ba[i],internal);
5804 }else{
5805 emit_addnop(13);
5806 add_to_linker((int)out,ba[i],internal*2);
5807 }
5808 emit_jmp(0);
5809 }else
5810 #endif
5811 {
5812 if(adj) emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5813 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5814 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5815 if(internal)
5816 assem_debug("branch: internal\n");
5817 else
5818 assem_debug("branch: external\n");
5819 if(internal&&is_ds[(ba[i]-start)>>2]) {
5820 ds_assemble_entry(i);
5821 }
5822 else {
5823 add_to_linker((int)out,ba[i],internal);
5824 emit_jmp(0);
5825 }
5826 }
5827 set_jump_target(nottaken,(int)out);
5828 }
5829
5830 if(adj) {
5831 if(!invert) emit_addimm(cc,CLOCK_DIVIDER*adj,cc);
5832 }
5833 } // (!unconditional)
5834 } // if(ooo)
5835 else
5836 {
5837 // In-order execution (branch first)
5838 //printf("IOE\n");
5839 int nottaken=0;
5840 if(!unconditional) {
5841 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5842 if(!only32)
5843 {
5844 assert(s1h>=0);
5845 if((opcode2[i]&0x1d)==0) // BLTZ/BLTZL
5846 {
5847 emit_test(s1h,s1h);
5848 nottaken=(int)out;
5849 emit_jns(1);
5850 }
5851 if((opcode2[i]&0x1d)==1) // BGEZ/BGEZL
5852 {
5853 emit_test(s1h,s1h);
5854 nottaken=(int)out;
5855 emit_js(1);
5856 }
5857 } // if(!only32)
5858 else
5859 {
5860 assert(s1l>=0);
5861 if((opcode2[i]&0x1d)==0) // BLTZ/BLTZL
5862 {
5863 emit_test(s1l,s1l);
5864 nottaken=(int)out;
5865 emit_jns(1);
5866 }
5867 if((opcode2[i]&0x1d)==1) // BGEZ/BGEZL
5868 {
5869 emit_test(s1l,s1l);
5870 nottaken=(int)out;
5871 emit_js(1);
5872 }
5873 }
5874 } // if(!unconditional)
5875 int adj;
5876 uint64_t ds_unneeded=branch_regs[i].u;
5877 uint64_t ds_unneeded_upper=branch_regs[i].uu;
5878 ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
5879 ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
5880 if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
5881 ds_unneeded|=1;
5882 ds_unneeded_upper|=1;
5883 // branch taken
5884 if(!nevertaken) {
5885 //assem_debug("1:\n");
5886 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5887 ds_unneeded,ds_unneeded_upper);
5888 // load regs
5889 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5890 address_generation(i+1,&branch_regs[i],0);
5891 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
5892 ds_assemble(i+1,&branch_regs[i]);
5893 cc=get_reg(branch_regs[i].regmap,CCREG);
5894 if(cc==-1) {
5895 emit_loadreg(CCREG,cc=HOST_CCREG);
5896 // CHECK: Is the following instruction (fall thru) allocated ok?
5897 }
5898 assert(cc==HOST_CCREG);
5899 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5900 do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
5901 assem_debug("cycle count (adj)\n");
5902 if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5903 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5904 if(internal)
5905 assem_debug("branch: internal\n");
5906 else
5907 assem_debug("branch: external\n");
5908 if(internal&&is_ds[(ba[i]-start)>>2]) {
5909 ds_assemble_entry(i);
5910 }
5911 else {
5912 add_to_linker((int)out,ba[i],internal);
5913 emit_jmp(0);
5914 }
5915 }
5916 // branch not taken
5917 cop1_usable=prev_cop1_usable;
5918 if(!unconditional) {
5919 set_jump_target(nottaken,(int)out);
5920 assem_debug("1:\n");
5921 if(!likely[i]) {
5922 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5923 ds_unneeded,ds_unneeded_upper);
5924 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5925 address_generation(i+1,&branch_regs[i],0);
5926 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5927 ds_assemble(i+1,&branch_regs[i]);
5928 }
5929 cc=get_reg(branch_regs[i].regmap,CCREG);
5930 if(cc==-1&&!likely[i]) {
5931 // Cycle count isn't in a register, temporarily load it then write it out
5932 emit_loadreg(CCREG,HOST_CCREG);
5933 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
5934 int jaddr=(int)out;
5935 emit_jns(0);
5936 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5937 emit_storereg(CCREG,HOST_CCREG);
5938 }
5939 else{
5940 cc=get_reg(i_regmap,CCREG);
5941 assert(cc==HOST_CCREG);
5942 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
5943 int jaddr=(int)out;
5944 emit_jns(0);
5945 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
5946 }
5947 }
5948 }
5949}
5950
5951void fjump_assemble(int i,struct regstat *i_regs)
5952{
5953 signed char *i_regmap=i_regs->regmap;
5954 int cc;
5955 int match;
5956 match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5957 assem_debug("fmatch=%d\n",match);
5958 int fs,cs;
5959 int eaddr;
5960 int ooo=1;
5961 int invert=0;
5962 int internal=internal_branch(branch_regs[i].is32,ba[i]);
5963 if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5964 if(likely[i]) ooo=0;
5965 if(!match) invert=1;
5966 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5967 if(i>(ba[i]-start)>>2) invert=1;
5968 #endif
5969
5970 if(ooo)
5971 if(itype[i+1]==FCOMP)
5972 {
5973 // Write-after-read dependency prevents out of order execution
5974 // First test branch condition, then execute delay slot, then branch
5975 ooo=0;
5976 }
5977
5978 if(ooo) {
5979 fs=get_reg(branch_regs[i].regmap,FSREG);
5980 address_generation(i+1,i_regs,regs[i].regmap_entry); // Is this okay?
5981 }
5982 else {
5983 fs=get_reg(i_regmap,FSREG);
5984 }
5985
5986 // Check cop1 unusable
5987 if(!cop1_usable) {
5988 cs=get_reg(i_regmap,CSREG);
5989 assert(cs>=0);
5990 emit_testimm(cs,0x20000000);
5991 eaddr=(int)out;
5992 emit_jeq(0);
5993 add_stub(FP_STUB,eaddr,(int)out,i,cs,(int)i_regs,0,0);
5994 cop1_usable=1;
5995 }
5996
5997 if(ooo) {
5998 // Out of order execution (delay slot first)
5999 //printf("OOOE\n");
6000 ds_assemble(i+1,i_regs);
6001 int adj;
6002 uint64_t bc_unneeded=branch_regs[i].u;
6003 uint64_t bc_unneeded_upper=branch_regs[i].uu;
6004 bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
6005 bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
6006 bc_unneeded|=1;
6007 bc_unneeded_upper|=1;
6008 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6009 bc_unneeded,bc_unneeded_upper);
6010 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs1[i]);
6011 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
6012 cc=get_reg(branch_regs[i].regmap,CCREG);
6013 assert(cc==HOST_CCREG);
6014 do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
6015 assem_debug("cycle count (adj)\n");
6016 if(1) {
6017 int nottaken=0;
6018 if(adj&&!invert) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
6019 if(1) {
6020 assert(fs>=0);
6021 emit_testimm(fs,0x800000);
6022 if(source[i]&0x10000) // BC1T
6023 {
6024 if(invert){
6025 nottaken=(int)out;
6026 emit_jeq(1);
6027 }else{
6028 add_to_linker((int)out,ba[i],internal);
6029 emit_jne(0);
6030 }
6031 }
6032 else // BC1F
6033 if(invert){
6034 nottaken=(int)out;
6035 emit_jne(1);
6036 }else{
6037 add_to_linker((int)out,ba[i],internal);
6038 emit_jeq(0);
6039 }
6040 {
6041 }
6042 } // if(!only32)
6043
6044 if(invert) {
6045 if(adj) emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
6046 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
6047 else if(match) emit_addnop(13);
6048 #endif
6049 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6050 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6051 if(internal)
6052 assem_debug("branch: internal\n");
6053 else
6054 assem_debug("branch: external\n");
6055 if(internal&&is_ds[(ba[i]-start)>>2]) {
6056 ds_assemble_entry(i);
6057 }
6058 else {
6059 add_to_linker((int)out,ba[i],internal);
6060 emit_jmp(0);
6061 }
6062 set_jump_target(nottaken,(int)out);
6063 }
6064
6065 if(adj) {
6066 if(!invert) emit_addimm(cc,CLOCK_DIVIDER*adj,cc);
6067 }
6068 } // (!unconditional)
6069 } // if(ooo)
6070 else
6071 {
6072 // In-order execution (branch first)
6073 //printf("IOE\n");
6074 int nottaken=0;
6075 if(1) {
6076 //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
6077 if(1) {
6078 assert(fs>=0);
6079 emit_testimm(fs,0x800000);
6080 if(source[i]&0x10000) // BC1T
6081 {
6082 nottaken=(int)out;
6083 emit_jeq(1);
6084 }
6085 else // BC1F
6086 {
6087 nottaken=(int)out;
6088 emit_jne(1);
6089 }
6090 }
6091 } // if(!unconditional)
6092 int adj;
6093 uint64_t ds_unneeded=branch_regs[i].u;
6094 uint64_t ds_unneeded_upper=branch_regs[i].uu;
6095 ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6096 ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6097 if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
6098 ds_unneeded|=1;
6099 ds_unneeded_upper|=1;
6100 // branch taken
6101 //assem_debug("1:\n");
6102 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6103 ds_unneeded,ds_unneeded_upper);
6104 // load regs
6105 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
6106 address_generation(i+1,&branch_regs[i],0);
6107 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
6108 ds_assemble(i+1,&branch_regs[i]);
6109 cc=get_reg(branch_regs[i].regmap,CCREG);
6110 if(cc==-1) {
6111 emit_loadreg(CCREG,cc=HOST_CCREG);
6112 // CHECK: Is the following instruction (fall thru) allocated ok?
6113 }
6114 assert(cc==HOST_CCREG);
6115 store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6116 do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
6117 assem_debug("cycle count (adj)\n");
6118 if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
6119 load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6120 if(internal)
6121 assem_debug("branch: internal\n");
6122 else
6123 assem_debug("branch: external\n");
6124 if(internal&&is_ds[(ba[i]-start)>>2]) {
6125 ds_assemble_entry(i);
6126 }
6127 else {
6128 add_to_linker((int)out,ba[i],internal);
6129 emit_jmp(0);
6130 }
6131
6132 // branch not taken
6133 if(1) { // <- FIXME (don't need this)
6134 set_jump_target(nottaken,(int)out);
6135 assem_debug("1:\n");
6136 if(!likely[i]) {
6137 wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6138 ds_unneeded,ds_unneeded_upper);
6139 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
6140 address_generation(i+1,&branch_regs[i],0);
6141 load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
6142 ds_assemble(i+1,&branch_regs[i]);
6143 }
6144 cc=get_reg(branch_regs[i].regmap,CCREG);
6145 if(cc==-1&&!likely[i]) {
6146 // Cycle count isn't in a register, temporarily load it then write it out
6147 emit_loadreg(CCREG,HOST_CCREG);
6148 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
6149 int jaddr=(int)out;
6150 emit_jns(0);
6151 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
6152 emit_storereg(CCREG,HOST_CCREG);
6153 }
6154 else{
6155 cc=get_reg(i_regmap,CCREG);
6156 assert(cc==HOST_CCREG);
6157 emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
6158 int jaddr=(int)out;
6159 emit_jns(0);
6160 add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
6161 }
6162 }
6163 }
6164}
6165
6166static void pagespan_assemble(int i,struct regstat *i_regs)
6167{
6168 int s1l=get_reg(i_regs->regmap,rs1[i]);
6169 int s1h=get_reg(i_regs->regmap,rs1[i]|64);
6170 int s2l=get_reg(i_regs->regmap,rs2[i]);
6171 int s2h=get_reg(i_regs->regmap,rs2[i]|64);
6172 void *nt_branch=NULL;
6173 int taken=0;
6174 int nottaken=0;
6175 int unconditional=0;
6176 if(rs1[i]==0)
6177 {
6178 s1l=s2l;s1h=s2h;
6179 s2l=s2h=-1;
6180 }
6181 else if(rs2[i]==0)
6182 {
6183 s2l=s2h=-1;
6184 }
6185 if((i_regs->is32>>rs1[i])&(i_regs->is32>>rs2[i])&1) {
6186 s1h=s2h=-1;
6187 }
6188 int hr=0;
6189 int addr,alt,ntaddr;
6190 if(i_regs->regmap[HOST_BTREG]<0) {addr=HOST_BTREG;}
6191 else {
6192 while(hr<HOST_REGS)
6193 {
6194 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
6195 (i_regs->regmap[hr]&63)!=rs1[i] &&
6196 (i_regs->regmap[hr]&63)!=rs2[i] )
6197 {
6198 addr=hr++;break;
6199 }
6200 hr++;
6201 }
6202 }
6203 while(hr<HOST_REGS)
6204 {
6205 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG && hr!=HOST_BTREG &&
6206 (i_regs->regmap[hr]&63)!=rs1[i] &&
6207 (i_regs->regmap[hr]&63)!=rs2[i] )
6208 {
6209 alt=hr++;break;
6210 }
6211 hr++;
6212 }
6213 if((opcode[i]&0x2E)==6) // BLEZ/BGTZ needs another register
6214 {
6215 while(hr<HOST_REGS)
6216 {
6217 if(hr!=EXCLUDE_REG && hr!=HOST_CCREG && hr!=HOST_BTREG &&
6218 (i_regs->regmap[hr]&63)!=rs1[i] &&
6219 (i_regs->regmap[hr]&63)!=rs2[i] )
6220 {
6221 ntaddr=hr;break;
6222 }
6223 hr++;
6224 }
6225 }
6226 assert(hr<HOST_REGS);
6227 if((opcode[i]&0x2e)==4||opcode[i]==0x11) { // BEQ/BNE/BEQL/BNEL/BC1
6228 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,CCREG,CCREG);
6229 }
6230 emit_addimm(HOST_CCREG,CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
6231 if(opcode[i]==2) // J
6232 {
6233 unconditional=1;
6234 }
6235 if(opcode[i]==3) // JAL
6236 {
6237 // TODO: mini_ht
6238 int rt=get_reg(i_regs->regmap,31);
6239 emit_movimm(start+i*4+8,rt);
6240 unconditional=1;
6241 }
6242 if(opcode[i]==0&&(opcode2[i]&0x3E)==8) // JR/JALR
6243 {
6244 emit_mov(s1l,addr);
6245 if(opcode2[i]==9) // JALR
6246 {
6247 int rt=get_reg(i_regs->regmap,rt1[i]);
6248 emit_movimm(start+i*4+8,rt);
6249 }
6250 }
6251 if((opcode[i]&0x3f)==4) // BEQ
6252 {
6253 if(rs1[i]==rs2[i])
6254 {
6255 unconditional=1;
6256 }
6257 else
6258 #ifdef HAVE_CMOV_IMM
6259 if(s1h<0) {
6260 if(s2l>=0) emit_cmp(s1l,s2l);
6261 else emit_test(s1l,s1l);
6262 emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
6263 }
6264 else
6265 #endif
6266 {
6267 assert(s1l>=0);
6268 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
6269 if(s1h>=0) {
6270 if(s2h>=0) emit_cmp(s1h,s2h);
6271 else emit_test(s1h,s1h);
6272 emit_cmovne_reg(alt,addr);
6273 }
6274 if(s2l>=0) emit_cmp(s1l,s2l);
6275 else emit_test(s1l,s1l);
6276 emit_cmovne_reg(alt,addr);
6277 }
6278 }
6279 if((opcode[i]&0x3f)==5) // BNE
6280 {
6281 #ifdef HAVE_CMOV_IMM
6282 if(s1h<0) {
6283 if(s2l>=0) emit_cmp(s1l,s2l);
6284 else emit_test(s1l,s1l);
6285 emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
6286 }
6287 else
6288 #endif
6289 {
6290 assert(s1l>=0);
6291 emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
6292 if(s1h>=0) {
6293 if(s2h>=0) emit_cmp(s1h,s2h);
6294 else emit_test(s1h,s1h);
6295 emit_cmovne_reg(alt,addr);
6296 }
6297 if(s2l>=0) emit_cmp(s1l,s2l);
6298 else emit_test(s1l,s1l);
6299 emit_cmovne_reg(alt,addr);
6300 }
6301 }
6302 if((opcode[i]&0x3f)==0x14) // BEQL
6303 {
6304 if(s1h>=0) {
6305 if(s2h>=0) emit_cmp(s1h,s2h);
6306 else emit_test(s1h,s1h);
6307 nottaken=(int)out;
6308 emit_jne(0);
6309 }
6310 if(s2l>=0) emit_cmp(s1l,s2l);
6311 else emit_test(s1l,s1l);
6312 if(nottaken) set_jump_target(nottaken,(int)out);
6313 nottaken=(int)out;
6314 emit_jne(0);
6315 }
6316 if((opcode[i]&0x3f)==0x15) // BNEL
6317 {
6318 if(s1h>=0) {
6319 if(s2h>=0) emit_cmp(s1h,s2h);
6320 else emit_test(s1h,s1h);
6321 taken=(int)out;
6322 emit_jne(0);
6323 }
6324 if(s2l>=0) emit_cmp(s1l,s2l);
6325 else emit_test(s1l,s1l);
6326 nottaken=(int)out;
6327 emit_jeq(0);
6328 if(taken) set_jump_target(taken,(int)out);
6329 }
6330 if((opcode[i]&0x3f)==6) // BLEZ
6331 {
6332 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
6333 emit_cmpimm(s1l,1);
6334 if(s1h>=0) emit_mov(addr,ntaddr);
6335 emit_cmovl_reg(alt,addr);
6336 if(s1h>=0) {
6337 emit_test(s1h,s1h);
6338 emit_cmovne_reg(ntaddr,addr);
6339 emit_cmovs_reg(alt,addr);
6340 }
6341 }
6342 if((opcode[i]&0x3f)==7) // BGTZ
6343 {
6344 emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
6345 emit_cmpimm(s1l,1);
6346 if(s1h>=0) emit_mov(addr,alt);
6347 emit_cmovl_reg(ntaddr,addr);
6348 if(s1h>=0) {
6349 emit_test(s1h,s1h);
6350 emit_cmovne_reg(alt,addr);
6351 emit_cmovs_reg(ntaddr,addr);
6352 }
6353 }
6354 if((opcode[i]&0x3f)==0x16) // BLEZL
6355 {
6356 assert((opcode[i]&0x3f)!=0x16);
6357 }
6358 if((opcode[i]&0x3f)==0x17) // BGTZL
6359 {
6360 assert((opcode[i]&0x3f)!=0x17);
6361 }
6362 assert(opcode[i]!=1); // BLTZ/BGEZ
6363
6364 //FIXME: Check CSREG
6365 if(opcode[i]==0x11 && opcode2[i]==0x08 ) {
6366 if((source[i]&0x30000)==0) // BC1F
6367 {
6368 emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
6369 emit_testimm(s1l,0x800000);
6370 emit_cmovne_reg(alt,addr);
6371 }
6372 if((source[i]&0x30000)==0x10000) // BC1T
6373 {
6374 emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
6375 emit_testimm(s1l,0x800000);
6376 emit_cmovne_reg(alt,addr);
6377 }
6378 if((source[i]&0x30000)==0x20000) // BC1FL
6379 {
6380 emit_testimm(s1l,0x800000);
6381 nottaken=(int)out;
6382 emit_jne(0);
6383 }
6384 if((source[i]&0x30000)==0x30000) // BC1TL
6385 {
6386 emit_testimm(s1l,0x800000);
6387 nottaken=(int)out;
6388 emit_jeq(0);
6389 }
6390 }
6391
6392 assert(i_regs->regmap[HOST_CCREG]==CCREG);
6393 wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
6394 if(likely[i]||unconditional)
6395 {
6396 emit_movimm(ba[i],HOST_BTREG);
6397 }
6398 else if(addr!=HOST_BTREG)
6399 {
6400 emit_mov(addr,HOST_BTREG);
6401 }
6402 void *branch_addr=out;
6403 emit_jmp(0);
6404 int target_addr=start+i*4+5;
6405 void *stub=out;
6406 void *compiled_target_addr=check_addr(target_addr);
6407 emit_extjump_ds((int)branch_addr,target_addr);
6408 if(compiled_target_addr) {
6409 set_jump_target((int)branch_addr,(int)compiled_target_addr);
6410 add_link(target_addr,stub);
6411 }
6412 else set_jump_target((int)branch_addr,(int)stub);
6413 if(likely[i]) {
6414 // Not-taken path
6415 set_jump_target((int)nottaken,(int)out);
6416 wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
6417 void *branch_addr=out;
6418 emit_jmp(0);
6419 int target_addr=start+i*4+8;
6420 void *stub=out;
6421 void *compiled_target_addr=check_addr(target_addr);
6422 emit_extjump_ds((int)branch_addr,target_addr);
6423 if(compiled_target_addr) {
6424 set_jump_target((int)branch_addr,(int)compiled_target_addr);
6425 add_link(target_addr,stub);
6426 }
6427 else set_jump_target((int)branch_addr,(int)stub);
6428 }
6429}
6430
6431// Assemble the delay slot for the above
6432static void pagespan_ds()
6433{
6434 assem_debug("initial delay slot:\n");
6435 u_int vaddr=start+1;
6436 u_int page=get_page(vaddr);
6437 u_int vpage=get_vpage(vaddr);
6438 ll_add(jump_dirty+vpage,vaddr,(void *)out);
6439 do_dirty_stub_ds();
6440 ll_add(jump_in+page,vaddr,(void *)out);
6441 assert(regs[0].regmap_entry[HOST_CCREG]==CCREG);
6442 if(regs[0].regmap[HOST_CCREG]!=CCREG)
6443 wb_register(CCREG,regs[0].regmap_entry,regs[0].wasdirty,regs[0].was32);
6444 if(regs[0].regmap[HOST_BTREG]!=BTREG)
6445 emit_writeword(HOST_BTREG,(int)&branch_target);
6446 load_regs(regs[0].regmap_entry,regs[0].regmap,regs[0].was32,rs1[0],rs2[0]);
6447 address_generation(0,&regs[0],regs[0].regmap_entry);
6448 if(itype[0]==STORE||itype[0]==STORELR||(opcode[0]&0x3b)==0x39||(opcode[0]&0x3b)==0x3a)
6449 load_regs(regs[0].regmap_entry,regs[0].regmap,regs[0].was32,INVCP,INVCP);
6450 cop1_usable=0;
6451 is_delayslot=0;
6452 switch(itype[0]) {
6453 case ALU:
6454 alu_assemble(0,&regs[0]);break;
6455 case IMM16:
6456 imm16_assemble(0,&regs[0]);break;
6457 case SHIFT:
6458 shift_assemble(0,&regs[0]);break;
6459 case SHIFTIMM:
6460 shiftimm_assemble(0,&regs[0]);break;
6461 case LOAD:
6462 load_assemble(0,&regs[0]);break;
6463 case LOADLR:
6464 loadlr_assemble(0,&regs[0]);break;
6465 case STORE:
6466 store_assemble(0,&regs[0]);break;
6467 case STORELR:
6468 storelr_assemble(0,&regs[0]);break;
6469 case COP0:
6470 cop0_assemble(0,&regs[0]);break;
6471 case COP1:
6472 cop1_assemble(0,&regs[0]);break;
6473 case C1LS:
6474 c1ls_assemble(0,&regs[0]);break;
6475 case COP2:
6476 cop2_assemble(0,&regs[0]);break;
6477 case C2LS:
6478 c2ls_assemble(0,&regs[0]);break;
6479 case C2OP:
6480 c2op_assemble(0,&regs[0]);break;
6481 case FCONV:
6482 fconv_assemble(0,&regs[0]);break;
6483 case FLOAT:
6484 float_assemble(0,&regs[0]);break;
6485 case FCOMP:
6486 fcomp_assemble(0,&regs[0]);break;
6487 case MULTDIV:
6488 multdiv_assemble(0,&regs[0]);break;
6489 case MOV:
6490 mov_assemble(0,&regs[0]);break;
6491 case SYSCALL:
6492 case HLECALL:
6493 case INTCALL:
6494 case SPAN:
6495 case UJUMP:
6496 case RJUMP:
6497 case CJUMP:
6498 case SJUMP:
6499 case FJUMP:
6500 printf("Jump in the delay slot. This is probably a bug.\n");
6501 }
6502 int btaddr=get_reg(regs[0].regmap,BTREG);
6503 if(btaddr<0) {
6504 btaddr=get_reg(regs[0].regmap,-1);
6505 emit_readword((int)&branch_target,btaddr);
6506 }
6507 assert(btaddr!=HOST_CCREG);
6508 if(regs[0].regmap[HOST_CCREG]!=CCREG) emit_loadreg(CCREG,HOST_CCREG);
6509#ifdef HOST_IMM8
6510 emit_movimm(start+4,HOST_TEMPREG);
6511 emit_cmp(btaddr,HOST_TEMPREG);
6512#else
6513 emit_cmpimm(btaddr,start+4);
6514#endif
6515 int branch=(int)out;
6516 emit_jeq(0);
6517 store_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,-1);
6518 emit_jmp(jump_vaddr_reg[btaddr]);
6519 set_jump_target(branch,(int)out);
6520 store_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,start+4);
6521 load_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,start+4);
6522}
6523
6524// Basic liveness analysis for MIPS registers
6525void unneeded_registers(int istart,int iend,int r)
6526{
6527 int i;
6528 uint64_t u,uu,b,bu;
6529 uint64_t temp_u,temp_uu;
6530 uint64_t tdep;
6531 if(iend==slen-1) {
6532 u=1;uu=1;
6533 }else{
6534 u=unneeded_reg[iend+1];
6535 uu=unneeded_reg_upper[iend+1];
6536 u=1;uu=1;
6537 }
6538 for (i=iend;i>=istart;i--)
6539 {
6540 //printf("unneeded registers i=%d (%d,%d) r=%d\n",i,istart,iend,r);
6541 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
6542 {
6543 // If subroutine call, flag return address as a possible branch target
6544 if(rt1[i]==31 && i<slen-2) bt[i+2]=1;
6545
6546 if(ba[i]<start || ba[i]>=(start+slen*4))
6547 {
6548 // Branch out of this block, flush all regs
6549 u=1;
6550 uu=1;
6551 /* Hexagon hack
6552 if(itype[i]==UJUMP&&rt1[i]==31)
6553 {
6554 uu=u=0x300C00F; // Discard at, v0-v1, t6-t9
6555 }
6556 if(itype[i]==RJUMP&&rs1[i]==31)
6557 {
6558 uu=u=0x300C0F3; // Discard at, a0-a3, t6-t9
6559 }
6560 if(start>0x80000400&&start<0x80000000+RAM_SIZE) {
6561 if(itype[i]==UJUMP&&rt1[i]==31)
6562 {
6563 //uu=u=0x30300FF0FLL; // Discard at, v0-v1, t0-t9, lo, hi
6564 uu=u=0x300FF0F; // Discard at, v0-v1, t0-t9
6565 }
6566 if(itype[i]==RJUMP&&rs1[i]==31)
6567 {
6568 //uu=u=0x30300FFF3LL; // Discard at, a0-a3, t0-t9, lo, hi
6569 uu=u=0x300FFF3; // Discard at, a0-a3, t0-t9
6570 }
6571 }*/
6572 branch_unneeded_reg[i]=u;
6573 branch_unneeded_reg_upper[i]=uu;
6574 // Merge in delay slot
6575 tdep=(~uu>>rt1[i+1])&1;
6576 u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6577 uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6578 u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6579 uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6580 uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6581 u|=1;uu|=1;
6582 // If branch is "likely" (and conditional)
6583 // then we skip the delay slot on the fall-thru path
6584 if(likely[i]) {
6585 if(i<slen-1) {
6586 u&=unneeded_reg[i+2];
6587 uu&=unneeded_reg_upper[i+2];
6588 }
6589 else
6590 {
6591 u=1;
6592 uu=1;
6593 }
6594 }
6595 }
6596 else
6597 {
6598 // Internal branch, flag target
6599 bt[(ba[i]-start)>>2]=1;
6600 if(ba[i]<=start+i*4) {
6601 // Backward branch
6602 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
6603 {
6604 // Unconditional branch
6605 temp_u=1;temp_uu=1;
6606 } else {
6607 // Conditional branch (not taken case)
6608 temp_u=unneeded_reg[i+2];
6609 temp_uu=unneeded_reg_upper[i+2];
6610 }
6611 // Merge in delay slot
6612 tdep=(~temp_uu>>rt1[i+1])&1;
6613 temp_u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6614 temp_uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6615 temp_u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6616 temp_uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6617 temp_uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6618 temp_u|=1;temp_uu|=1;
6619 // If branch is "likely" (and conditional)
6620 // then we skip the delay slot on the fall-thru path
6621 if(likely[i]) {
6622 if(i<slen-1) {
6623 temp_u&=unneeded_reg[i+2];
6624 temp_uu&=unneeded_reg_upper[i+2];
6625 }
6626 else
6627 {
6628 temp_u=1;
6629 temp_uu=1;
6630 }
6631 }
6632 tdep=(~temp_uu>>rt1[i])&1;
6633 temp_u|=(1LL<<rt1[i])|(1LL<<rt2[i]);
6634 temp_uu|=(1LL<<rt1[i])|(1LL<<rt2[i]);
6635 temp_u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
6636 temp_uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
6637 temp_uu&=~((tdep<<dep1[i])|(tdep<<dep2[i]));
6638 temp_u|=1;temp_uu|=1;
6639 unneeded_reg[i]=temp_u;
6640 unneeded_reg_upper[i]=temp_uu;
6641 // Only go three levels deep. This recursion can take an
6642 // excessive amount of time if there are a lot of nested loops.
6643 if(r<2) {
6644 unneeded_registers((ba[i]-start)>>2,i-1,r+1);
6645 }else{
6646 unneeded_reg[(ba[i]-start)>>2]=1;
6647 unneeded_reg_upper[(ba[i]-start)>>2]=1;
6648 }
6649 } /*else*/ if(1) {
6650 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
6651 {
6652 // Unconditional branch
6653 u=unneeded_reg[(ba[i]-start)>>2];
6654 uu=unneeded_reg_upper[(ba[i]-start)>>2];
6655 branch_unneeded_reg[i]=u;
6656 branch_unneeded_reg_upper[i]=uu;
6657 //u=1;
6658 //uu=1;
6659 //branch_unneeded_reg[i]=u;
6660 //branch_unneeded_reg_upper[i]=uu;
6661 // Merge in delay slot
6662 tdep=(~uu>>rt1[i+1])&1;
6663 u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6664 uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6665 u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6666 uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6667 uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6668 u|=1;uu|=1;
6669 } else {
6670 // Conditional branch
6671 b=unneeded_reg[(ba[i]-start)>>2];
6672 bu=unneeded_reg_upper[(ba[i]-start)>>2];
6673 branch_unneeded_reg[i]=b;
6674 branch_unneeded_reg_upper[i]=bu;
6675 //b=1;
6676 //bu=1;
6677 //branch_unneeded_reg[i]=b;
6678 //branch_unneeded_reg_upper[i]=bu;
6679 // Branch delay slot
6680 tdep=(~uu>>rt1[i+1])&1;
6681 b|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6682 bu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6683 b&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6684 bu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6685 bu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6686 b|=1;bu|=1;
6687 // If branch is "likely" then we skip the
6688 // delay slot on the fall-thru path
6689 if(likely[i]) {
6690 u=b;
6691 uu=bu;
6692 if(i<slen-1) {
6693 u&=unneeded_reg[i+2];
6694 uu&=unneeded_reg_upper[i+2];
6695 //u=1;
6696 //uu=1;
6697 }
6698 } else {
6699 u&=b;
6700 uu&=bu;
6701 //u=1;
6702 //uu=1;
6703 }
6704 if(i<slen-1) {
6705 branch_unneeded_reg[i]&=unneeded_reg[i+2];
6706 branch_unneeded_reg_upper[i]&=unneeded_reg_upper[i+2];
6707 //branch_unneeded_reg[i]=1;
6708 //branch_unneeded_reg_upper[i]=1;
6709 } else {
6710 branch_unneeded_reg[i]=1;
6711 branch_unneeded_reg_upper[i]=1;
6712 }
6713 }
6714 }
6715 }
6716 }
6717 else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
6718 {
6719 // SYSCALL instruction (software interrupt)
6720 u=1;
6721 uu=1;
6722 }
6723 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
6724 {
6725 // ERET instruction (return from interrupt)
6726 u=1;
6727 uu=1;
6728 }
6729 //u=uu=1; // DEBUG
6730 tdep=(~uu>>rt1[i])&1;
6731 // Written registers are unneeded
6732 u|=1LL<<rt1[i];
6733 u|=1LL<<rt2[i];
6734 uu|=1LL<<rt1[i];
6735 uu|=1LL<<rt2[i];
6736 // Accessed registers are needed
6737 u&=~(1LL<<rs1[i]);
6738 u&=~(1LL<<rs2[i]);
6739 uu&=~(1LL<<us1[i]);
6740 uu&=~(1LL<<us2[i]);
6741 // Source-target dependencies
6742 uu&=~(tdep<<dep1[i]);
6743 uu&=~(tdep<<dep2[i]);
6744 // R0 is always unneeded
6745 u|=1;uu|=1;
6746 // Save it
6747 unneeded_reg[i]=u;
6748 unneeded_reg_upper[i]=uu;
6749 /*
6750 printf("ur (%d,%d) %x: ",istart,iend,start+i*4);
6751 printf("U:");
6752 int r;
6753 for(r=1;r<=CCREG;r++) {
6754 if((unneeded_reg[i]>>r)&1) {
6755 if(r==HIREG) printf(" HI");
6756 else if(r==LOREG) printf(" LO");
6757 else printf(" r%d",r);
6758 }
6759 }
6760 printf(" UU:");
6761 for(r=1;r<=CCREG;r++) {
6762 if(((unneeded_reg_upper[i]&~unneeded_reg[i])>>r)&1) {
6763 if(r==HIREG) printf(" HI");
6764 else if(r==LOREG) printf(" LO");
6765 else printf(" r%d",r);
6766 }
6767 }
6768 printf("\n");*/
6769 }
6770#ifdef FORCE32
6771 for (i=iend;i>=istart;i--)
6772 {
6773 unneeded_reg_upper[i]=branch_unneeded_reg_upper[i]=-1LL;
6774 }
6775#endif
6776}
6777
6778// Identify registers which are likely to contain 32-bit values
6779// This is used to predict whether any branches will jump to a
6780// location with 64-bit values in registers.
6781static void provisional_32bit()
6782{
6783 int i,j;
6784 uint64_t is32=1;
6785 uint64_t lastbranch=1;
6786
6787 for(i=0;i<slen;i++)
6788 {
6789 if(i>0) {
6790 if(itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP) {
6791 if(i>1) is32=lastbranch;
6792 else is32=1;
6793 }
6794 }
6795 if(i>1)
6796 {
6797 if(itype[i-2]==CJUMP||itype[i-2]==SJUMP||itype[i-2]==FJUMP) {
6798 if(likely[i-2]) {
6799 if(i>2) is32=lastbranch;
6800 else is32=1;
6801 }
6802 }
6803 if((opcode[i-2]&0x2f)==0x05) // BNE/BNEL
6804 {
6805 if(rs1[i-2]==0||rs2[i-2]==0)
6806 {
6807 if(rs1[i-2]) {
6808 is32|=1LL<<rs1[i-2];
6809 }
6810 if(rs2[i-2]) {
6811 is32|=1LL<<rs2[i-2];
6812 }
6813 }
6814 }
6815 }
6816 // If something jumps here with 64-bit values
6817 // then promote those registers to 64 bits
6818 if(bt[i])
6819 {
6820 uint64_t temp_is32=is32;
6821 for(j=i-1;j>=0;j--)
6822 {
6823 if(ba[j]==start+i*4)
6824 //temp_is32&=branch_regs[j].is32;
6825 temp_is32&=p32[j];
6826 }
6827 for(j=i;j<slen;j++)
6828 {
6829 if(ba[j]==start+i*4)
6830 temp_is32=1;
6831 }
6832 is32=temp_is32;
6833 }
6834 int type=itype[i];
6835 int op=opcode[i];
6836 int op2=opcode2[i];
6837 int rt=rt1[i];
6838 int s1=rs1[i];
6839 int s2=rs2[i];
6840 if(type==UJUMP||type==RJUMP||type==CJUMP||type==SJUMP||type==FJUMP) {
6841 // Branches don't write registers, consider the delay slot instead.
6842 type=itype[i+1];
6843 op=opcode[i+1];
6844 op2=opcode2[i+1];
6845 rt=rt1[i+1];
6846 s1=rs1[i+1];
6847 s2=rs2[i+1];
6848 lastbranch=is32;
6849 }
6850 switch(type) {
6851 case LOAD:
6852 if(opcode[i]==0x27||opcode[i]==0x37|| // LWU/LD
6853 opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
6854 is32&=~(1LL<<rt);
6855 else
6856 is32|=1LL<<rt;
6857 break;
6858 case STORE:
6859 case STORELR:
6860 break;
6861 case LOADLR:
6862 if(op==0x1a||op==0x1b) is32&=~(1LL<<rt); // LDR/LDL
6863 if(op==0x22) is32|=1LL<<rt; // LWL
6864 break;
6865 case IMM16:
6866 if (op==0x08||op==0x09|| // ADDI/ADDIU
6867 op==0x0a||op==0x0b|| // SLTI/SLTIU
6868 op==0x0c|| // ANDI
6869 op==0x0f) // LUI
6870 {
6871 is32|=1LL<<rt;
6872 }
6873 if(op==0x18||op==0x19) { // DADDI/DADDIU
6874 is32&=~(1LL<<rt);
6875 //if(imm[i]==0)
6876 // is32|=((is32>>s1)&1LL)<<rt;
6877 }
6878 if(op==0x0d||op==0x0e) { // ORI/XORI
6879 uint64_t sr=((is32>>s1)&1LL);
6880 is32&=~(1LL<<rt);
6881 is32|=sr<<rt;
6882 }
6883 break;
6884 case UJUMP:
6885 break;
6886 case RJUMP:
6887 break;
6888 case CJUMP:
6889 break;
6890 case SJUMP:
6891 break;
6892 case FJUMP:
6893 break;
6894 case ALU:
6895 if(op2>=0x20&&op2<=0x23) { // ADD/ADDU/SUB/SUBU
6896 is32|=1LL<<rt;
6897 }
6898 if(op2==0x2a||op2==0x2b) { // SLT/SLTU
6899 is32|=1LL<<rt;
6900 }
6901 else if(op2>=0x24&&op2<=0x27) { // AND/OR/XOR/NOR
6902 uint64_t sr=((is32>>s1)&(is32>>s2)&1LL);
6903 is32&=~(1LL<<rt);
6904 is32|=sr<<rt;
6905 }
6906 else if(op2>=0x2c&&op2<=0x2d) { // DADD/DADDU
6907 if(s1==0&&s2==0) {
6908 is32|=1LL<<rt;
6909 }
6910 else if(s2==0) {
6911 uint64_t sr=((is32>>s1)&1LL);
6912 is32&=~(1LL<<rt);
6913 is32|=sr<<rt;
6914 }
6915 else if(s1==0) {
6916 uint64_t sr=((is32>>s2)&1LL);
6917 is32&=~(1LL<<rt);
6918 is32|=sr<<rt;
6919 }
6920 else {
6921 is32&=~(1LL<<rt);
6922 }
6923 }
6924 else if(op2>=0x2e&&op2<=0x2f) { // DSUB/DSUBU
6925 if(s1==0&&s2==0) {
6926 is32|=1LL<<rt;
6927 }
6928 else if(s2==0) {
6929 uint64_t sr=((is32>>s1)&1LL);
6930 is32&=~(1LL<<rt);
6931 is32|=sr<<rt;
6932 }
6933 else {
6934 is32&=~(1LL<<rt);
6935 }
6936 }
6937 break;
6938 case MULTDIV:
6939 if (op2>=0x1c&&op2<=0x1f) { // DMULT/DMULTU/DDIV/DDIVU
6940 is32&=~((1LL<<HIREG)|(1LL<<LOREG));
6941 }
6942 else {
6943 is32|=(1LL<<HIREG)|(1LL<<LOREG);
6944 }
6945 break;
6946 case MOV:
6947 {
6948 uint64_t sr=((is32>>s1)&1LL);
6949 is32&=~(1LL<<rt);
6950 is32|=sr<<rt;
6951 }
6952 break;
6953 case SHIFT:
6954 if(op2>=0x14&&op2<=0x17) is32&=~(1LL<<rt); // DSLLV/DSRLV/DSRAV
6955 else is32|=1LL<<rt; // SLLV/SRLV/SRAV
6956 break;
6957 case SHIFTIMM:
6958 is32|=1LL<<rt;
6959 // DSLL/DSRL/DSRA/DSLL32/DSRL32 but not DSRA32 have 64-bit result
6960 if(op2>=0x38&&op2<0x3f) is32&=~(1LL<<rt);
6961 break;
6962 case COP0:
6963 if(op2==0) is32|=1LL<<rt; // MFC0
6964 break;
6965 case COP1:
6966 case COP2:
6967 if(op2==0) is32|=1LL<<rt; // MFC1
6968 if(op2==1) is32&=~(1LL<<rt); // DMFC1
6969 if(op2==2) is32|=1LL<<rt; // CFC1
6970 break;
6971 case C1LS:
6972 case C2LS:
6973 break;
6974 case FLOAT:
6975 case FCONV:
6976 break;
6977 case FCOMP:
6978 break;
6979 case C2OP:
6980 case SYSCALL:
6981 case HLECALL:
6982 break;
6983 default:
6984 break;
6985 }
6986 is32|=1;
6987 p32[i]=is32;
6988
6989 if(i>0)
6990 {
6991 if(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)
6992 {
6993 if(rt1[i-1]==31) // JAL/JALR
6994 {
6995 // Subroutine call will return here, don't alloc any registers
6996 is32=1;
6997 }
6998 else if(i+1<slen)
6999 {
7000 // Internal branch will jump here, match registers to caller
7001 is32=0x3FFFFFFFFLL;
7002 }
7003 }
7004 }
7005 }
7006}
7007
7008// Identify registers which may be assumed to contain 32-bit values
7009// and where optimizations will rely on this.
7010// This is used to determine whether backward branches can safely
7011// jump to a location with 64-bit values in registers.
7012static void provisional_r32()
7013{
7014 u_int r32=0;
7015 int i;
7016
7017 for (i=slen-1;i>=0;i--)
7018 {
7019 int hr;
7020 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
7021 {
7022 if(ba[i]<start || ba[i]>=(start+slen*4))
7023 {
7024 // Branch out of this block, don't need anything
7025 r32=0;
7026 }
7027 else
7028 {
7029 // Internal branch
7030 // Need whatever matches the target
7031 // (and doesn't get overwritten by the delay slot instruction)
7032 r32=0;
7033 int t=(ba[i]-start)>>2;
7034 if(ba[i]>start+i*4) {
7035 // Forward branch
7036 //if(!(requires_32bit[t]&~regs[i].was32))
7037 // r32|=requires_32bit[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
7038 if(!(pr32[t]&~regs[i].was32))
7039 r32|=pr32[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
7040 }else{
7041 // Backward branch
7042 if(!(regs[t].was32&~unneeded_reg_upper[t]&~regs[i].was32))
7043 r32|=regs[t].was32&~unneeded_reg_upper[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
7044 }
7045 }
7046 // Conditional branch may need registers for following instructions
7047 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
7048 {
7049 if(i<slen-2) {
7050 //r32|=requires_32bit[i+2];
7051 r32|=pr32[i+2];
7052 r32&=regs[i].was32;
7053 // Mark this address as a branch target since it may be called
7054 // upon return from interrupt
7055 //bt[i+2]=1;
7056 }
7057 }
7058 // Merge in delay slot
7059 if(!likely[i]) {
7060 // These are overwritten unless the branch is "likely"
7061 // and the delay slot is nullified if not taken
7062 r32&=~(1LL<<rt1[i+1]);
7063 r32&=~(1LL<<rt2[i+1]);
7064 }
7065 // Assume these are needed (delay slot)
7066 if(us1[i+1]>0)
7067 {
7068 if((regs[i].was32>>us1[i+1])&1) r32|=1LL<<us1[i+1];
7069 }
7070 if(us2[i+1]>0)
7071 {
7072 if((regs[i].was32>>us2[i+1])&1) r32|=1LL<<us2[i+1];
7073 }
7074 if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1))
7075 {
7076 if((regs[i].was32>>dep1[i+1])&1) r32|=1LL<<dep1[i+1];
7077 }
7078 if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1))
7079 {
7080 if((regs[i].was32>>dep2[i+1])&1) r32|=1LL<<dep2[i+1];
7081 }
7082 }
7083 else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
7084 {
7085 // SYSCALL instruction (software interrupt)
7086 r32=0;
7087 }
7088 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
7089 {
7090 // ERET instruction (return from interrupt)
7091 r32=0;
7092 }
7093 // Check 32 bits
7094 r32&=~(1LL<<rt1[i]);
7095 r32&=~(1LL<<rt2[i]);
7096 if(us1[i]>0)
7097 {
7098 if((regs[i].was32>>us1[i])&1) r32|=1LL<<us1[i];
7099 }
7100 if(us2[i]>0)
7101 {
7102 if((regs[i].was32>>us2[i])&1) r32|=1LL<<us2[i];
7103 }
7104 if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1))
7105 {
7106 if((regs[i].was32>>dep1[i])&1) r32|=1LL<<dep1[i];
7107 }
7108 if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1))
7109 {
7110 if((regs[i].was32>>dep2[i])&1) r32|=1LL<<dep2[i];
7111 }
7112 //requires_32bit[i]=r32;
7113 pr32[i]=r32;
7114
7115 // Dirty registers which are 32-bit, require 32-bit input
7116 // as they will be written as 32-bit values
7117 for(hr=0;hr<HOST_REGS;hr++)
7118 {
7119 if(regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64) {
7120 if((regs[i].was32>>regs[i].regmap_entry[hr])&(regs[i].wasdirty>>hr)&1) {
7121 if(!((unneeded_reg_upper[i]>>regs[i].regmap_entry[hr])&1))
7122 pr32[i]|=1LL<<regs[i].regmap_entry[hr];
7123 //requires_32bit[i]|=1LL<<regs[i].regmap_entry[hr];
7124 }
7125 }
7126 }
7127 }
7128}
7129
7130// Write back dirty registers as soon as we will no longer modify them,
7131// so that we don't end up with lots of writes at the branches.
7132void clean_registers(int istart,int iend,int wr)
7133{
7134 int i;
7135 int r;
7136 u_int will_dirty_i,will_dirty_next,temp_will_dirty;
7137 u_int wont_dirty_i,wont_dirty_next,temp_wont_dirty;
7138 if(iend==slen-1) {
7139 will_dirty_i=will_dirty_next=0;
7140 wont_dirty_i=wont_dirty_next=0;
7141 }else{
7142 will_dirty_i=will_dirty_next=will_dirty[iend+1];
7143 wont_dirty_i=wont_dirty_next=wont_dirty[iend+1];
7144 }
7145 for (i=iend;i>=istart;i--)
7146 {
7147 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
7148 {
7149 if(ba[i]<start || ba[i]>=(start+slen*4))
7150 {
7151 // Branch out of this block, flush all regs
7152 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
7153 {
7154 // Unconditional branch
7155 will_dirty_i=0;
7156 wont_dirty_i=0;
7157 // Merge in delay slot (will dirty)
7158 for(r=0;r<HOST_REGS;r++) {
7159 if(r!=EXCLUDE_REG) {
7160 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7161 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7162 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7163 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7164 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7165 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7166 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7167 if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7168 if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7169 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7170 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7171 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7172 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7173 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7174 }
7175 }
7176 }
7177 else
7178 {
7179 // Conditional branch
7180 will_dirty_i=0;
7181 wont_dirty_i=wont_dirty_next;
7182 // Merge in delay slot (will dirty)
7183 for(r=0;r<HOST_REGS;r++) {
7184 if(r!=EXCLUDE_REG) {
7185 if(!likely[i]) {
7186 // Might not dirty if likely branch is not taken
7187 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7188 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7189 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7190 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7191 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7192 if(branch_regs[i].regmap[r]==0) will_dirty_i&=~(1<<r);
7193 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7194 //if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7195 //if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7196 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7197 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7198 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7199 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7200 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7201 }
7202 }
7203 }
7204 }
7205 // Merge in delay slot (wont dirty)
7206 for(r=0;r<HOST_REGS;r++) {
7207 if(r!=EXCLUDE_REG) {
7208 if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7209 if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7210 if((regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7211 if((regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7212 if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7213 if((branch_regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7214 if((branch_regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7215 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7216 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7217 if(branch_regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7218 }
7219 }
7220 if(wr) {
7221 #ifndef DESTRUCTIVE_WRITEBACK
7222 branch_regs[i].dirty&=wont_dirty_i;
7223 #endif
7224 branch_regs[i].dirty|=will_dirty_i;
7225 }
7226 }
7227 else
7228 {
7229 // Internal branch
7230 if(ba[i]<=start+i*4) {
7231 // Backward branch
7232 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
7233 {
7234 // Unconditional branch
7235 temp_will_dirty=0;
7236 temp_wont_dirty=0;
7237 // Merge in delay slot (will dirty)
7238 for(r=0;r<HOST_REGS;r++) {
7239 if(r!=EXCLUDE_REG) {
7240 if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7241 if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7242 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7243 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7244 if((branch_regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7245 if(branch_regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
7246 if(branch_regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7247 if((regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7248 if((regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7249 if((regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7250 if((regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7251 if((regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7252 if(regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
7253 if(regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7254 }
7255 }
7256 } else {
7257 // Conditional branch (not taken case)
7258 temp_will_dirty=will_dirty_next;
7259 temp_wont_dirty=wont_dirty_next;
7260 // Merge in delay slot (will dirty)
7261 for(r=0;r<HOST_REGS;r++) {
7262 if(r!=EXCLUDE_REG) {
7263 if(!likely[i]) {
7264 // Will not dirty if likely branch is not taken
7265 if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7266 if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7267 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7268 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7269 if((branch_regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7270 if(branch_regs[i].regmap[r]==0) temp_will_dirty&=~(1<<r);
7271 if(branch_regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7272 //if((regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7273 //if((regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7274 if((regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7275 if((regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7276 if((regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7277 if(regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
7278 if(regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7279 }
7280 }
7281 }
7282 }
7283 // Merge in delay slot (wont dirty)
7284 for(r=0;r<HOST_REGS;r++) {
7285 if(r!=EXCLUDE_REG) {
7286 if((regs[i].regmap[r]&63)==rt1[i]) temp_wont_dirty|=1<<r;
7287 if((regs[i].regmap[r]&63)==rt2[i]) temp_wont_dirty|=1<<r;
7288 if((regs[i].regmap[r]&63)==rt1[i+1]) temp_wont_dirty|=1<<r;
7289 if((regs[i].regmap[r]&63)==rt2[i+1]) temp_wont_dirty|=1<<r;
7290 if(regs[i].regmap[r]==CCREG) temp_wont_dirty|=1<<r;
7291 if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_wont_dirty|=1<<r;
7292 if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_wont_dirty|=1<<r;
7293 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_wont_dirty|=1<<r;
7294 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_wont_dirty|=1<<r;
7295 if(branch_regs[i].regmap[r]==CCREG) temp_wont_dirty|=1<<r;
7296 }
7297 }
7298 // Deal with changed mappings
7299 if(i<iend) {
7300 for(r=0;r<HOST_REGS;r++) {
7301 if(r!=EXCLUDE_REG) {
7302 if(regs[i].regmap[r]!=regmap_pre[i][r]) {
7303 temp_will_dirty&=~(1<<r);
7304 temp_wont_dirty&=~(1<<r);
7305 if((regmap_pre[i][r]&63)>0 && (regmap_pre[i][r]&63)<34) {
7306 temp_will_dirty|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7307 temp_wont_dirty|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7308 } else {
7309 temp_will_dirty|=1<<r;
7310 temp_wont_dirty|=1<<r;
7311 }
7312 }
7313 }
7314 }
7315 }
7316 if(wr) {
7317 will_dirty[i]=temp_will_dirty;
7318 wont_dirty[i]=temp_wont_dirty;
7319 clean_registers((ba[i]-start)>>2,i-1,0);
7320 }else{
7321 // Limit recursion. It can take an excessive amount
7322 // of time if there are a lot of nested loops.
7323 will_dirty[(ba[i]-start)>>2]=0;
7324 wont_dirty[(ba[i]-start)>>2]=-1;
7325 }
7326 }
7327 /*else*/ if(1)
7328 {
7329 if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
7330 {
7331 // Unconditional branch
7332 will_dirty_i=0;
7333 wont_dirty_i=0;
7334 //if(ba[i]>start+i*4) { // Disable recursion (for debugging)
7335 for(r=0;r<HOST_REGS;r++) {
7336 if(r!=EXCLUDE_REG) {
7337 if(branch_regs[i].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
7338 will_dirty_i|=will_dirty[(ba[i]-start)>>2]&(1<<r);
7339 wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
7340 }
7341 }
7342 }
7343 //}
7344 // Merge in delay slot
7345 for(r=0;r<HOST_REGS;r++) {
7346 if(r!=EXCLUDE_REG) {
7347 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7348 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7349 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7350 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7351 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7352 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7353 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7354 if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7355 if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7356 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7357 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7358 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7359 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7360 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7361 }
7362 }
7363 } else {
7364 // Conditional branch
7365 will_dirty_i=will_dirty_next;
7366 wont_dirty_i=wont_dirty_next;
7367 //if(ba[i]>start+i*4) { // Disable recursion (for debugging)
7368 for(r=0;r<HOST_REGS;r++) {
7369 if(r!=EXCLUDE_REG) {
7370 if(branch_regs[i].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
7371 will_dirty_i&=will_dirty[(ba[i]-start)>>2]&(1<<r);
7372 wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
7373 }
7374 else
7375 {
7376 will_dirty_i&=~(1<<r);
7377 }
7378 // Treat delay slot as part of branch too
7379 /*if(regs[i+1].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
7380 will_dirty[i+1]&=will_dirty[(ba[i]-start)>>2]&(1<<r);
7381 wont_dirty[i+1]|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
7382 }
7383 else
7384 {
7385 will_dirty[i+1]&=~(1<<r);
7386 }*/
7387 }
7388 }
7389 //}
7390 // Merge in delay slot
7391 for(r=0;r<HOST_REGS;r++) {
7392 if(r!=EXCLUDE_REG) {
7393 if(!likely[i]) {
7394 // Might not dirty if likely branch is not taken
7395 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7396 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7397 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7398 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7399 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7400 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7401 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7402 //if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7403 //if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7404 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7405 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7406 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7407 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7408 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7409 }
7410 }
7411 }
7412 }
7413 // Merge in delay slot
7414 for(r=0;r<HOST_REGS;r++) {
7415 if(r!=EXCLUDE_REG) {
7416 if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7417 if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7418 if((regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7419 if((regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7420 if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7421 if((branch_regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7422 if((branch_regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7423 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7424 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7425 if(branch_regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7426 }
7427 }
7428 if(wr) {
7429 #ifndef DESTRUCTIVE_WRITEBACK
7430 branch_regs[i].dirty&=wont_dirty_i;
7431 #endif
7432 branch_regs[i].dirty|=will_dirty_i;
7433 }
7434 }
7435 }
7436 }
7437 else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
7438 {
7439 // SYSCALL instruction (software interrupt)
7440 will_dirty_i=0;
7441 wont_dirty_i=0;
7442 }
7443 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
7444 {
7445 // ERET instruction (return from interrupt)
7446 will_dirty_i=0;
7447 wont_dirty_i=0;
7448 }
7449 will_dirty_next=will_dirty_i;
7450 wont_dirty_next=wont_dirty_i;
7451 for(r=0;r<HOST_REGS;r++) {
7452 if(r!=EXCLUDE_REG) {
7453 if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7454 if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7455 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7456 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7457 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7458 if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7459 if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7460 if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7461 if(i>istart) {
7462 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=FJUMP)
7463 {
7464 // Don't store a register immediately after writing it,
7465 // may prevent dual-issue.
7466 if((regs[i].regmap[r]&63)==rt1[i-1]) wont_dirty_i|=1<<r;
7467 if((regs[i].regmap[r]&63)==rt2[i-1]) wont_dirty_i|=1<<r;
7468 }
7469 }
7470 }
7471 }
7472 // Save it
7473 will_dirty[i]=will_dirty_i;
7474 wont_dirty[i]=wont_dirty_i;
7475 // Mark registers that won't be dirtied as not dirty
7476 if(wr) {
7477 /*printf("wr (%d,%d) %x will:",istart,iend,start+i*4);
7478 for(r=0;r<HOST_REGS;r++) {
7479 if((will_dirty_i>>r)&1) {
7480 printf(" r%d",r);
7481 }
7482 }
7483 printf("\n");*/
7484
7485 //if(i==istart||(itype[i-1]!=RJUMP&&itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=FJUMP)) {
7486 regs[i].dirty|=will_dirty_i;
7487 #ifndef DESTRUCTIVE_WRITEBACK
7488 regs[i].dirty&=wont_dirty_i;
7489 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
7490 {
7491 if(i<iend-1&&itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000) {
7492 for(r=0;r<HOST_REGS;r++) {
7493 if(r!=EXCLUDE_REG) {
7494 if(regs[i].regmap[r]==regmap_pre[i+2][r]) {
7495 regs[i+2].wasdirty&=wont_dirty_i|~(1<<r);
7496 }else {/*printf("i: %x (%d) mismatch(+2): %d\n",start+i*4,i,r);/*assert(!((wont_dirty_i>>r)&1));*/}
7497 }
7498 }
7499 }
7500 }
7501 else
7502 {
7503 if(i<iend) {
7504 for(r=0;r<HOST_REGS;r++) {
7505 if(r!=EXCLUDE_REG) {
7506 if(regs[i].regmap[r]==regmap_pre[i+1][r]) {
7507 regs[i+1].wasdirty&=wont_dirty_i|~(1<<r);
7508 }else {/*printf("i: %x (%d) mismatch(+1): %d\n",start+i*4,i,r);/*assert(!((wont_dirty_i>>r)&1));*/}
7509 }
7510 }
7511 }
7512 }
7513 #endif
7514 //}
7515 }
7516 // Deal with changed mappings
7517 temp_will_dirty=will_dirty_i;
7518 temp_wont_dirty=wont_dirty_i;
7519 for(r=0;r<HOST_REGS;r++) {
7520 if(r!=EXCLUDE_REG) {
7521 int nr;
7522 if(regs[i].regmap[r]==regmap_pre[i][r]) {
7523 if(wr) {
7524 #ifndef DESTRUCTIVE_WRITEBACK
7525 regs[i].wasdirty&=wont_dirty_i|~(1<<r);
7526 #endif
7527 regs[i].wasdirty|=will_dirty_i&(1<<r);
7528 }
7529 }
7530 else if((nr=get_reg(regs[i].regmap,regmap_pre[i][r]))>=0) {
7531 // Register moved to a different register
7532 will_dirty_i&=~(1<<r);
7533 wont_dirty_i&=~(1<<r);
7534 will_dirty_i|=((temp_will_dirty>>nr)&1)<<r;
7535 wont_dirty_i|=((temp_wont_dirty>>nr)&1)<<r;
7536 if(wr) {
7537 #ifndef DESTRUCTIVE_WRITEBACK
7538 regs[i].wasdirty&=wont_dirty_i|~(1<<r);
7539 #endif
7540 regs[i].wasdirty|=will_dirty_i&(1<<r);
7541 }
7542 }
7543 else {
7544 will_dirty_i&=~(1<<r);
7545 wont_dirty_i&=~(1<<r);
7546 if((regmap_pre[i][r]&63)>0 && (regmap_pre[i][r]&63)<34) {
7547 will_dirty_i|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7548 wont_dirty_i|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7549 } else {
7550 wont_dirty_i|=1<<r;
7551 /*printf("i: %x (%d) mismatch: %d\n",start+i*4,i,r);/*assert(!((will_dirty>>r)&1));*/
7552 }
7553 }
7554 }
7555 }
7556 }
7557}
7558
7559 /* disassembly */
7560void disassemble_inst(int i)
7561{
7562 if (bt[i]) printf("*"); else printf(" ");
7563 switch(itype[i]) {
7564 case UJUMP:
7565 printf (" %x: %s %8x\n",start+i*4,insn[i],ba[i]);break;
7566 case CJUMP:
7567 printf (" %x: %s r%d,r%d,%8x\n",start+i*4,insn[i],rs1[i],rs2[i],i?start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14):*ba);break;
7568 case SJUMP:
7569 printf (" %x: %s r%d,%8x\n",start+i*4,insn[i],rs1[i],start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14));break;
7570 case FJUMP:
7571 printf (" %x: %s %8x\n",start+i*4,insn[i],ba[i]);break;
7572 case RJUMP:
7573 if (opcode[i]==0x9&&rt1[i]!=31)
7574 printf (" %x: %s r%d,r%d\n",start+i*4,insn[i],rt1[i],rs1[i]);
7575 else
7576 printf (" %x: %s r%d\n",start+i*4,insn[i],rs1[i]);
7577 break;
7578 case SPAN:
7579 printf (" %x: %s (pagespan) r%d,r%d,%8x\n",start+i*4,insn[i],rs1[i],rs2[i],ba[i]);break;
7580 case IMM16:
7581 if(opcode[i]==0xf) //LUI
7582 printf (" %x: %s r%d,%4x0000\n",start+i*4,insn[i],rt1[i],imm[i]&0xffff);
7583 else
7584 printf (" %x: %s r%d,r%d,%d\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
7585 break;
7586 case LOAD:
7587 case LOADLR:
7588 printf (" %x: %s r%d,r%d+%x\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
7589 break;
7590 case STORE:
7591 case STORELR:
7592 printf (" %x: %s r%d,r%d+%x\n",start+i*4,insn[i],rs2[i],rs1[i],imm[i]);
7593 break;
7594 case ALU:
7595 case SHIFT:
7596 printf (" %x: %s r%d,r%d,r%d\n",start+i*4,insn[i],rt1[i],rs1[i],rs2[i]);
7597 break;
7598 case MULTDIV:
7599 printf (" %x: %s r%d,r%d\n",start+i*4,insn[i],rs1[i],rs2[i]);
7600 break;
7601 case SHIFTIMM:
7602 printf (" %x: %s r%d,r%d,%d\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
7603 break;
7604 case MOV:
7605 if((opcode2[i]&0x1d)==0x10)
7606 printf (" %x: %s r%d\n",start+i*4,insn[i],rt1[i]);
7607 else if((opcode2[i]&0x1d)==0x11)
7608 printf (" %x: %s r%d\n",start+i*4,insn[i],rs1[i]);
7609 else
7610 printf (" %x: %s\n",start+i*4,insn[i]);
7611 break;
7612 case COP0:
7613 if(opcode2[i]==0)
7614 printf (" %x: %s r%d,cpr0[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC0
7615 else if(opcode2[i]==4)
7616 printf (" %x: %s r%d,cpr0[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC0
7617 else printf (" %x: %s\n",start+i*4,insn[i]);
7618 break;
7619 case COP1:
7620 if(opcode2[i]<3)
7621 printf (" %x: %s r%d,cpr1[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC1
7622 else if(opcode2[i]>3)
7623 printf (" %x: %s r%d,cpr1[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC1
7624 else printf (" %x: %s\n",start+i*4,insn[i]);
7625 break;
7626 case COP2:
7627 if(opcode2[i]<3)
7628 printf (" %x: %s r%d,cpr2[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC2
7629 else if(opcode2[i]>3)
7630 printf (" %x: %s r%d,cpr2[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC2
7631 else printf (" %x: %s\n",start+i*4,insn[i]);
7632 break;
7633 case C1LS:
7634 printf (" %x: %s cpr1[%d],r%d+%x\n",start+i*4,insn[i],(source[i]>>16)&0x1f,rs1[i],imm[i]);
7635 break;
7636 case C2LS:
7637 printf (" %x: %s cpr2[%d],r%d+%x\n",start+i*4,insn[i],(source[i]>>16)&0x1f,rs1[i],imm[i]);
7638 break;
7639 case INTCALL:
7640 printf (" %x: %s (INTCALL)\n",start+i*4,insn[i]);
7641 break;
7642 default:
7643 //printf (" %s %8x\n",insn[i],source[i]);
7644 printf (" %x: %s\n",start+i*4,insn[i]);
7645 }
7646}
7647
7648void new_dynarec_init()
7649{
7650 printf("Init new dynarec\n");
7651 out=(u_char *)BASE_ADDR;
7652 if (mmap (out, 1<<TARGET_SIZE_2,
7653 PROT_READ | PROT_WRITE | PROT_EXEC,
7654 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS,
7655 -1, 0) <= 0) {printf("mmap() failed\n");}
7656#ifdef MUPEN64
7657 rdword=&readmem_dword;
7658 fake_pc.f.r.rs=&readmem_dword;
7659 fake_pc.f.r.rt=&readmem_dword;
7660 fake_pc.f.r.rd=&readmem_dword;
7661#endif
7662 int n;
7663 for(n=0x80000;n<0x80800;n++)
7664 invalid_code[n]=1;
7665 for(n=0;n<65536;n++)
7666 hash_table[n][0]=hash_table[n][2]=-1;
7667 memset(mini_ht,-1,sizeof(mini_ht));
7668 memset(restore_candidate,0,sizeof(restore_candidate));
7669 copy=shadow;
7670 expirep=16384; // Expiry pointer, +2 blocks
7671 pending_exception=0;
7672 literalcount=0;
7673#ifdef HOST_IMM8
7674 // Copy this into local area so we don't have to put it in every literal pool
7675 invc_ptr=invalid_code;
7676#endif
7677 stop_after_jal=0;
7678 // TLB
7679 using_tlb=0;
7680 for(n=0;n<524288;n++) // 0 .. 0x7FFFFFFF
7681 memory_map[n]=-1;
7682 for(n=524288;n<526336;n++) // 0x80000000 .. 0x807FFFFF
7683 memory_map[n]=((u_int)rdram-0x80000000)>>2;
7684 for(n=526336;n<1048576;n++) // 0x80800000 .. 0xFFFFFFFF
7685 memory_map[n]=-1;
7686#ifdef MUPEN64
7687 for(n=0;n<0x8000;n++) { // 0 .. 0x7FFFFFFF
7688 writemem[n] = write_nomem_new;
7689 writememb[n] = write_nomemb_new;
7690 writememh[n] = write_nomemh_new;
7691#ifndef FORCE32
7692 writememd[n] = write_nomemd_new;
7693#endif
7694 readmem[n] = read_nomem_new;
7695 readmemb[n] = read_nomemb_new;
7696 readmemh[n] = read_nomemh_new;
7697#ifndef FORCE32
7698 readmemd[n] = read_nomemd_new;
7699#endif
7700 }
7701 for(n=0x8000;n<0x8080;n++) { // 0x80000000 .. 0x807FFFFF
7702 writemem[n] = write_rdram_new;
7703 writememb[n] = write_rdramb_new;
7704 writememh[n] = write_rdramh_new;
7705#ifndef FORCE32
7706 writememd[n] = write_rdramd_new;
7707#endif
7708 }
7709 for(n=0xC000;n<0x10000;n++) { // 0xC0000000 .. 0xFFFFFFFF
7710 writemem[n] = write_nomem_new;
7711 writememb[n] = write_nomemb_new;
7712 writememh[n] = write_nomemh_new;
7713#ifndef FORCE32
7714 writememd[n] = write_nomemd_new;
7715#endif
7716 readmem[n] = read_nomem_new;
7717 readmemb[n] = read_nomemb_new;
7718 readmemh[n] = read_nomemh_new;
7719#ifndef FORCE32
7720 readmemd[n] = read_nomemd_new;
7721#endif
7722 }
7723#endif
7724 tlb_hacks();
7725 arch_init();
7726}
7727
7728void new_dynarec_cleanup()
7729{
7730 int n;
7731 if (munmap ((void *)BASE_ADDR, 1<<TARGET_SIZE_2) < 0) {printf("munmap() failed\n");}
7732 for(n=0;n<4096;n++) ll_clear(jump_in+n);
7733 for(n=0;n<4096;n++) ll_clear(jump_out+n);
7734 for(n=0;n<4096;n++) ll_clear(jump_dirty+n);
7735 #ifdef ROM_COPY
7736 if (munmap (ROM_COPY, 67108864) < 0) {printf("munmap() failed\n");}
7737 #endif
7738}
7739
7740int new_recompile_block(int addr)
7741{
7742/*
7743 if(addr==0x800cd050) {
7744 int block;
7745 for(block=0x80000;block<0x80800;block++) invalidate_block(block);
7746 int n;
7747 for(n=0;n<=2048;n++) ll_clear(jump_dirty+n);
7748 }
7749*/
7750 //if(Count==365117028) tracedebug=1;
7751 assem_debug("NOTCOMPILED: addr = %x -> %x\n", (int)addr, (int)out);
7752 //printf("NOTCOMPILED: addr = %x -> %x\n", (int)addr, (int)out);
7753 //printf("TRACE: count=%d next=%d (compile %x)\n",Count,next_interupt,addr);
7754 //if(debug)
7755 //printf("TRACE: count=%d next=%d (checksum %x)\n",Count,next_interupt,mchecksum());
7756 //printf("fpu mapping=%x enabled=%x\n",(Status & 0x04000000)>>26,(Status & 0x20000000)>>29);
7757 /*if(Count>=312978186) {
7758 rlist();
7759 }*/
7760 //rlist();
7761 start = (u_int)addr&~3;
7762 //assert(((u_int)addr&1)==0);
7763#ifdef PCSX
7764 if (Config.HLE && start == 0x80001000) // hlecall
7765 {
7766 // XXX: is this enough? Maybe check hleSoftCall?
7767 u_int beginning=(u_int)out;
7768 u_int page=get_page(start);
7769 invalid_code[start>>12]=0;
7770 emit_movimm(start,0);
7771 emit_writeword(0,(int)&pcaddr);
7772 emit_jmp((int)new_dyna_leave);
7773#ifdef __arm__
7774 __clear_cache((void *)beginning,out);
7775#endif
7776 ll_add(jump_in+page,start,(void *)beginning);
7777 return 0;
7778 }
7779 else if ((u_int)addr < 0x00200000 ||
7780 (0xa0000000 <= addr && addr < 0xa0200000)) {
7781 // used for BIOS calls mostly?
7782 source = (u_int *)((u_int)rdram+(start&0x1fffff));
7783 pagelimit = (addr&0xa0000000)|0x00200000;
7784 }
7785 else if (!Config.HLE && (
7786/* (0x9fc00000 <= addr && addr < 0x9fc80000) ||*/
7787 (0xbfc00000 <= addr && addr < 0xbfc80000))) {
7788 // BIOS
7789 source = (u_int *)((u_int)psxR+(start&0x7ffff));
7790 pagelimit = (addr&0xfff00000)|0x80000;
7791 }
7792 else
7793#endif
7794#ifdef MUPEN64
7795 if ((int)addr >= 0xa4000000 && (int)addr < 0xa4001000) {
7796 source = (u_int *)((u_int)SP_DMEM+start-0xa4000000);
7797 pagelimit = 0xa4001000;
7798 }
7799 else
7800#endif
7801 if ((int)addr >= 0x80000000 && (int)addr < 0x80000000+RAM_SIZE) {
7802 source = (u_int *)((u_int)rdram+start-0x80000000);
7803 pagelimit = 0x80000000+RAM_SIZE;
7804 }
7805#ifndef DISABLE_TLB
7806 else if ((signed int)addr >= (signed int)0xC0000000) {
7807 //printf("addr=%x mm=%x\n",(u_int)addr,(memory_map[start>>12]<<2));
7808 //if(tlb_LUT_r[start>>12])
7809 //source = (u_int *)(((int)rdram)+(tlb_LUT_r[start>>12]&0xFFFFF000)+(((int)addr)&0xFFF)-0x80000000);
7810 if((signed int)memory_map[start>>12]>=0) {
7811 source = (u_int *)((u_int)(start+(memory_map[start>>12]<<2)));
7812 pagelimit=(start+4096)&0xFFFFF000;
7813 int map=memory_map[start>>12];
7814 int i;
7815 for(i=0;i<5;i++) {
7816 //printf("start: %x next: %x\n",map,memory_map[pagelimit>>12]);
7817 if((map&0xBFFFFFFF)==(memory_map[pagelimit>>12]&0xBFFFFFFF)) pagelimit+=4096;
7818 }
7819 assem_debug("pagelimit=%x\n",pagelimit);
7820 assem_debug("mapping=%x (%x)\n",memory_map[start>>12],(memory_map[start>>12]<<2)+start);
7821 }
7822 else {
7823 assem_debug("Compile at unmapped memory address: %x \n", (int)addr);
7824 //assem_debug("start: %x next: %x\n",memory_map[start>>12],memory_map[(start+4096)>>12]);
7825 return -1; // Caller will invoke exception handler
7826 }
7827 //printf("source= %x\n",(int)source);
7828 }
7829#endif
7830 else {
7831 printf("Compile at bogus memory address: %x \n", (int)addr);
7832 exit(1);
7833 }
7834
7835 /* Pass 1: disassemble */
7836 /* Pass 2: register dependencies, branch targets */
7837 /* Pass 3: register allocation */
7838 /* Pass 4: branch dependencies */
7839 /* Pass 5: pre-alloc */
7840 /* Pass 6: optimize clean/dirty state */
7841 /* Pass 7: flag 32-bit registers */
7842 /* Pass 8: assembly */
7843 /* Pass 9: linker */
7844 /* Pass 10: garbage collection / free memory */
7845
7846 int i,j;
7847 int done=0;
7848 unsigned int type,op,op2;
7849
7850 //printf("addr = %x source = %x %x\n", addr,source,source[0]);
7851
7852 /* Pass 1 disassembly */
7853
7854 for(i=0;!done;i++) {
7855 bt[i]=0;likely[i]=0;op2=0;
7856 opcode[i]=op=source[i]>>26;
7857 switch(op)
7858 {
7859 case 0x00: strcpy(insn[i],"special"); type=NI;
7860 op2=source[i]&0x3f;
7861 switch(op2)
7862 {
7863 case 0x00: strcpy(insn[i],"SLL"); type=SHIFTIMM; break;
7864 case 0x02: strcpy(insn[i],"SRL"); type=SHIFTIMM; break;
7865 case 0x03: strcpy(insn[i],"SRA"); type=SHIFTIMM; break;
7866 case 0x04: strcpy(insn[i],"SLLV"); type=SHIFT; break;
7867 case 0x06: strcpy(insn[i],"SRLV"); type=SHIFT; break;
7868 case 0x07: strcpy(insn[i],"SRAV"); type=SHIFT; break;
7869 case 0x08: strcpy(insn[i],"JR"); type=RJUMP; break;
7870 case 0x09: strcpy(insn[i],"JALR"); type=RJUMP; break;
7871 case 0x0C: strcpy(insn[i],"SYSCALL"); type=SYSCALL; break;
7872 case 0x0D: strcpy(insn[i],"BREAK"); type=OTHER; break;
7873 case 0x0F: strcpy(insn[i],"SYNC"); type=OTHER; break;
7874 case 0x10: strcpy(insn[i],"MFHI"); type=MOV; break;
7875 case 0x11: strcpy(insn[i],"MTHI"); type=MOV; break;
7876 case 0x12: strcpy(insn[i],"MFLO"); type=MOV; break;
7877 case 0x13: strcpy(insn[i],"MTLO"); type=MOV; break;
7878 case 0x14: strcpy(insn[i],"DSLLV"); type=SHIFT; break;
7879 case 0x16: strcpy(insn[i],"DSRLV"); type=SHIFT; break;
7880 case 0x17: strcpy(insn[i],"DSRAV"); type=SHIFT; break;
7881 case 0x18: strcpy(insn[i],"MULT"); type=MULTDIV; break;
7882 case 0x19: strcpy(insn[i],"MULTU"); type=MULTDIV; break;
7883 case 0x1A: strcpy(insn[i],"DIV"); type=MULTDIV; break;
7884 case 0x1B: strcpy(insn[i],"DIVU"); type=MULTDIV; break;
7885 case 0x1C: strcpy(insn[i],"DMULT"); type=MULTDIV; break;
7886 case 0x1D: strcpy(insn[i],"DMULTU"); type=MULTDIV; break;
7887 case 0x1E: strcpy(insn[i],"DDIV"); type=MULTDIV; break;
7888 case 0x1F: strcpy(insn[i],"DDIVU"); type=MULTDIV; break;
7889 case 0x20: strcpy(insn[i],"ADD"); type=ALU; break;
7890 case 0x21: strcpy(insn[i],"ADDU"); type=ALU; break;
7891 case 0x22: strcpy(insn[i],"SUB"); type=ALU; break;
7892 case 0x23: strcpy(insn[i],"SUBU"); type=ALU; break;
7893 case 0x24: strcpy(insn[i],"AND"); type=ALU; break;
7894 case 0x25: strcpy(insn[i],"OR"); type=ALU; break;
7895 case 0x26: strcpy(insn[i],"XOR"); type=ALU; break;
7896 case 0x27: strcpy(insn[i],"NOR"); type=ALU; break;
7897 case 0x2A: strcpy(insn[i],"SLT"); type=ALU; break;
7898 case 0x2B: strcpy(insn[i],"SLTU"); type=ALU; break;
7899 case 0x2C: strcpy(insn[i],"DADD"); type=ALU; break;
7900 case 0x2D: strcpy(insn[i],"DADDU"); type=ALU; break;
7901 case 0x2E: strcpy(insn[i],"DSUB"); type=ALU; break;
7902 case 0x2F: strcpy(insn[i],"DSUBU"); type=ALU; break;
7903 case 0x30: strcpy(insn[i],"TGE"); type=NI; break;
7904 case 0x31: strcpy(insn[i],"TGEU"); type=NI; break;
7905 case 0x32: strcpy(insn[i],"TLT"); type=NI; break;
7906 case 0x33: strcpy(insn[i],"TLTU"); type=NI; break;
7907 case 0x34: strcpy(insn[i],"TEQ"); type=NI; break;
7908 case 0x36: strcpy(insn[i],"TNE"); type=NI; break;
7909 case 0x38: strcpy(insn[i],"DSLL"); type=SHIFTIMM; break;
7910 case 0x3A: strcpy(insn[i],"DSRL"); type=SHIFTIMM; break;
7911 case 0x3B: strcpy(insn[i],"DSRA"); type=SHIFTIMM; break;
7912 case 0x3C: strcpy(insn[i],"DSLL32"); type=SHIFTIMM; break;
7913 case 0x3E: strcpy(insn[i],"DSRL32"); type=SHIFTIMM; break;
7914 case 0x3F: strcpy(insn[i],"DSRA32"); type=SHIFTIMM; break;
7915 }
7916 break;
7917 case 0x01: strcpy(insn[i],"regimm"); type=NI;
7918 op2=(source[i]>>16)&0x1f;
7919 switch(op2)
7920 {
7921 case 0x00: strcpy(insn[i],"BLTZ"); type=SJUMP; break;
7922 case 0x01: strcpy(insn[i],"BGEZ"); type=SJUMP; break;
7923 case 0x02: strcpy(insn[i],"BLTZL"); type=SJUMP; break;
7924 case 0x03: strcpy(insn[i],"BGEZL"); type=SJUMP; break;
7925 case 0x08: strcpy(insn[i],"TGEI"); type=NI; break;
7926 case 0x09: strcpy(insn[i],"TGEIU"); type=NI; break;
7927 case 0x0A: strcpy(insn[i],"TLTI"); type=NI; break;
7928 case 0x0B: strcpy(insn[i],"TLTIU"); type=NI; break;
7929 case 0x0C: strcpy(insn[i],"TEQI"); type=NI; break;
7930 case 0x0E: strcpy(insn[i],"TNEI"); type=NI; break;
7931 case 0x10: strcpy(insn[i],"BLTZAL"); type=SJUMP; break;
7932 case 0x11: strcpy(insn[i],"BGEZAL"); type=SJUMP; break;
7933 case 0x12: strcpy(insn[i],"BLTZALL"); type=SJUMP; break;
7934 case 0x13: strcpy(insn[i],"BGEZALL"); type=SJUMP; break;
7935 }
7936 break;
7937 case 0x02: strcpy(insn[i],"J"); type=UJUMP; break;
7938 case 0x03: strcpy(insn[i],"JAL"); type=UJUMP; break;
7939 case 0x04: strcpy(insn[i],"BEQ"); type=CJUMP; break;
7940 case 0x05: strcpy(insn[i],"BNE"); type=CJUMP; break;
7941 case 0x06: strcpy(insn[i],"BLEZ"); type=CJUMP; break;
7942 case 0x07: strcpy(insn[i],"BGTZ"); type=CJUMP; break;
7943 case 0x08: strcpy(insn[i],"ADDI"); type=IMM16; break;
7944 case 0x09: strcpy(insn[i],"ADDIU"); type=IMM16; break;
7945 case 0x0A: strcpy(insn[i],"SLTI"); type=IMM16; break;
7946 case 0x0B: strcpy(insn[i],"SLTIU"); type=IMM16; break;
7947 case 0x0C: strcpy(insn[i],"ANDI"); type=IMM16; break;
7948 case 0x0D: strcpy(insn[i],"ORI"); type=IMM16; break;
7949 case 0x0E: strcpy(insn[i],"XORI"); type=IMM16; break;
7950 case 0x0F: strcpy(insn[i],"LUI"); type=IMM16; break;
7951 case 0x10: strcpy(insn[i],"cop0"); type=NI;
7952 op2=(source[i]>>21)&0x1f;
7953 switch(op2)
7954 {
7955 case 0x00: strcpy(insn[i],"MFC0"); type=COP0; break;
7956 case 0x04: strcpy(insn[i],"MTC0"); type=COP0; break;
7957 case 0x10: strcpy(insn[i],"tlb"); type=NI;
7958 switch(source[i]&0x3f)
7959 {
7960 case 0x01: strcpy(insn[i],"TLBR"); type=COP0; break;
7961 case 0x02: strcpy(insn[i],"TLBWI"); type=COP0; break;
7962 case 0x06: strcpy(insn[i],"TLBWR"); type=COP0; break;
7963 case 0x08: strcpy(insn[i],"TLBP"); type=COP0; break;
7964#ifdef PCSX
7965 case 0x10: strcpy(insn[i],"RFE"); type=COP0; break;
7966#else
7967 case 0x18: strcpy(insn[i],"ERET"); type=COP0; break;
7968#endif
7969 }
7970 }
7971 break;
7972 case 0x11: strcpy(insn[i],"cop1"); type=NI;
7973 op2=(source[i]>>21)&0x1f;
7974 switch(op2)
7975 {
7976 case 0x00: strcpy(insn[i],"MFC1"); type=COP1; break;
7977 case 0x01: strcpy(insn[i],"DMFC1"); type=COP1; break;
7978 case 0x02: strcpy(insn[i],"CFC1"); type=COP1; break;
7979 case 0x04: strcpy(insn[i],"MTC1"); type=COP1; break;
7980 case 0x05: strcpy(insn[i],"DMTC1"); type=COP1; break;
7981 case 0x06: strcpy(insn[i],"CTC1"); type=COP1; break;
7982 case 0x08: strcpy(insn[i],"BC1"); type=FJUMP;
7983 switch((source[i]>>16)&0x3)
7984 {
7985 case 0x00: strcpy(insn[i],"BC1F"); break;
7986 case 0x01: strcpy(insn[i],"BC1T"); break;
7987 case 0x02: strcpy(insn[i],"BC1FL"); break;
7988 case 0x03: strcpy(insn[i],"BC1TL"); break;
7989 }
7990 break;
7991 case 0x10: strcpy(insn[i],"C1.S"); type=NI;
7992 switch(source[i]&0x3f)
7993 {
7994 case 0x00: strcpy(insn[i],"ADD.S"); type=FLOAT; break;
7995 case 0x01: strcpy(insn[i],"SUB.S"); type=FLOAT; break;
7996 case 0x02: strcpy(insn[i],"MUL.S"); type=FLOAT; break;
7997 case 0x03: strcpy(insn[i],"DIV.S"); type=FLOAT; break;
7998 case 0x04: strcpy(insn[i],"SQRT.S"); type=FLOAT; break;
7999 case 0x05: strcpy(insn[i],"ABS.S"); type=FLOAT; break;
8000 case 0x06: strcpy(insn[i],"MOV.S"); type=FLOAT; break;
8001 case 0x07: strcpy(insn[i],"NEG.S"); type=FLOAT; break;
8002 case 0x08: strcpy(insn[i],"ROUND.L.S"); type=FCONV; break;
8003 case 0x09: strcpy(insn[i],"TRUNC.L.S"); type=FCONV; break;
8004 case 0x0A: strcpy(insn[i],"CEIL.L.S"); type=FCONV; break;
8005 case 0x0B: strcpy(insn[i],"FLOOR.L.S"); type=FCONV; break;
8006 case 0x0C: strcpy(insn[i],"ROUND.W.S"); type=FCONV; break;
8007 case 0x0D: strcpy(insn[i],"TRUNC.W.S"); type=FCONV; break;
8008 case 0x0E: strcpy(insn[i],"CEIL.W.S"); type=FCONV; break;
8009 case 0x0F: strcpy(insn[i],"FLOOR.W.S"); type=FCONV; break;
8010 case 0x21: strcpy(insn[i],"CVT.D.S"); type=FCONV; break;
8011 case 0x24: strcpy(insn[i],"CVT.W.S"); type=FCONV; break;
8012 case 0x25: strcpy(insn[i],"CVT.L.S"); type=FCONV; break;
8013 case 0x30: strcpy(insn[i],"C.F.S"); type=FCOMP; break;
8014 case 0x31: strcpy(insn[i],"C.UN.S"); type=FCOMP; break;
8015 case 0x32: strcpy(insn[i],"C.EQ.S"); type=FCOMP; break;
8016 case 0x33: strcpy(insn[i],"C.UEQ.S"); type=FCOMP; break;
8017 case 0x34: strcpy(insn[i],"C.OLT.S"); type=FCOMP; break;
8018 case 0x35: strcpy(insn[i],"C.ULT.S"); type=FCOMP; break;
8019 case 0x36: strcpy(insn[i],"C.OLE.S"); type=FCOMP; break;
8020 case 0x37: strcpy(insn[i],"C.ULE.S"); type=FCOMP; break;
8021 case 0x38: strcpy(insn[i],"C.SF.S"); type=FCOMP; break;
8022 case 0x39: strcpy(insn[i],"C.NGLE.S"); type=FCOMP; break;
8023 case 0x3A: strcpy(insn[i],"C.SEQ.S"); type=FCOMP; break;
8024 case 0x3B: strcpy(insn[i],"C.NGL.S"); type=FCOMP; break;
8025 case 0x3C: strcpy(insn[i],"C.LT.S"); type=FCOMP; break;
8026 case 0x3D: strcpy(insn[i],"C.NGE.S"); type=FCOMP; break;
8027 case 0x3E: strcpy(insn[i],"C.LE.S"); type=FCOMP; break;
8028 case 0x3F: strcpy(insn[i],"C.NGT.S"); type=FCOMP; break;
8029 }
8030 break;
8031 case 0x11: strcpy(insn[i],"C1.D"); type=NI;
8032 switch(source[i]&0x3f)
8033 {
8034 case 0x00: strcpy(insn[i],"ADD.D"); type=FLOAT; break;
8035 case 0x01: strcpy(insn[i],"SUB.D"); type=FLOAT; break;
8036 case 0x02: strcpy(insn[i],"MUL.D"); type=FLOAT; break;
8037 case 0x03: strcpy(insn[i],"DIV.D"); type=FLOAT; break;
8038 case 0x04: strcpy(insn[i],"SQRT.D"); type=FLOAT; break;
8039 case 0x05: strcpy(insn[i],"ABS.D"); type=FLOAT; break;
8040 case 0x06: strcpy(insn[i],"MOV.D"); type=FLOAT; break;
8041 case 0x07: strcpy(insn[i],"NEG.D"); type=FLOAT; break;
8042 case 0x08: strcpy(insn[i],"ROUND.L.D"); type=FCONV; break;
8043 case 0x09: strcpy(insn[i],"TRUNC.L.D"); type=FCONV; break;
8044 case 0x0A: strcpy(insn[i],"CEIL.L.D"); type=FCONV; break;
8045 case 0x0B: strcpy(insn[i],"FLOOR.L.D"); type=FCONV; break;
8046 case 0x0C: strcpy(insn[i],"ROUND.W.D"); type=FCONV; break;
8047 case 0x0D: strcpy(insn[i],"TRUNC.W.D"); type=FCONV; break;
8048 case 0x0E: strcpy(insn[i],"CEIL.W.D"); type=FCONV; break;
8049 case 0x0F: strcpy(insn[i],"FLOOR.W.D"); type=FCONV; break;
8050 case 0x20: strcpy(insn[i],"CVT.S.D"); type=FCONV; break;
8051 case 0x24: strcpy(insn[i],"CVT.W.D"); type=FCONV; break;
8052 case 0x25: strcpy(insn[i],"CVT.L.D"); type=FCONV; break;
8053 case 0x30: strcpy(insn[i],"C.F.D"); type=FCOMP; break;
8054 case 0x31: strcpy(insn[i],"C.UN.D"); type=FCOMP; break;
8055 case 0x32: strcpy(insn[i],"C.EQ.D"); type=FCOMP; break;
8056 case 0x33: strcpy(insn[i],"C.UEQ.D"); type=FCOMP; break;
8057 case 0x34: strcpy(insn[i],"C.OLT.D"); type=FCOMP; break;
8058 case 0x35: strcpy(insn[i],"C.ULT.D"); type=FCOMP; break;
8059 case 0x36: strcpy(insn[i],"C.OLE.D"); type=FCOMP; break;
8060 case 0x37: strcpy(insn[i],"C.ULE.D"); type=FCOMP; break;
8061 case 0x38: strcpy(insn[i],"C.SF.D"); type=FCOMP; break;
8062 case 0x39: strcpy(insn[i],"C.NGLE.D"); type=FCOMP; break;
8063 case 0x3A: strcpy(insn[i],"C.SEQ.D"); type=FCOMP; break;
8064 case 0x3B: strcpy(insn[i],"C.NGL.D"); type=FCOMP; break;
8065 case 0x3C: strcpy(insn[i],"C.LT.D"); type=FCOMP; break;
8066 case 0x3D: strcpy(insn[i],"C.NGE.D"); type=FCOMP; break;
8067 case 0x3E: strcpy(insn[i],"C.LE.D"); type=FCOMP; break;
8068 case 0x3F: strcpy(insn[i],"C.NGT.D"); type=FCOMP; break;
8069 }
8070 break;
8071 case 0x14: strcpy(insn[i],"C1.W"); type=NI;
8072 switch(source[i]&0x3f)
8073 {
8074 case 0x20: strcpy(insn[i],"CVT.S.W"); type=FCONV; break;
8075 case 0x21: strcpy(insn[i],"CVT.D.W"); type=FCONV; break;
8076 }
8077 break;
8078 case 0x15: strcpy(insn[i],"C1.L"); type=NI;
8079 switch(source[i]&0x3f)
8080 {
8081 case 0x20: strcpy(insn[i],"CVT.S.L"); type=FCONV; break;
8082 case 0x21: strcpy(insn[i],"CVT.D.L"); type=FCONV; break;
8083 }
8084 break;
8085 }
8086 break;
8087#ifndef FORCE32
8088 case 0x14: strcpy(insn[i],"BEQL"); type=CJUMP; break;
8089 case 0x15: strcpy(insn[i],"BNEL"); type=CJUMP; break;
8090 case 0x16: strcpy(insn[i],"BLEZL"); type=CJUMP; break;
8091 case 0x17: strcpy(insn[i],"BGTZL"); type=CJUMP; break;
8092 case 0x18: strcpy(insn[i],"DADDI"); type=IMM16; break;
8093 case 0x19: strcpy(insn[i],"DADDIU"); type=IMM16; break;
8094 case 0x1A: strcpy(insn[i],"LDL"); type=LOADLR; break;
8095 case 0x1B: strcpy(insn[i],"LDR"); type=LOADLR; break;
8096#endif
8097 case 0x20: strcpy(insn[i],"LB"); type=LOAD; break;
8098 case 0x21: strcpy(insn[i],"LH"); type=LOAD; break;
8099 case 0x22: strcpy(insn[i],"LWL"); type=LOADLR; break;
8100 case 0x23: strcpy(insn[i],"LW"); type=LOAD; break;
8101 case 0x24: strcpy(insn[i],"LBU"); type=LOAD; break;
8102 case 0x25: strcpy(insn[i],"LHU"); type=LOAD; break;
8103 case 0x26: strcpy(insn[i],"LWR"); type=LOADLR; break;
8104 case 0x27: strcpy(insn[i],"LWU"); type=LOAD; break;
8105 case 0x28: strcpy(insn[i],"SB"); type=STORE; break;
8106 case 0x29: strcpy(insn[i],"SH"); type=STORE; break;
8107 case 0x2A: strcpy(insn[i],"SWL"); type=STORELR; break;
8108 case 0x2B: strcpy(insn[i],"SW"); type=STORE; break;
8109#ifndef FORCE32
8110 case 0x2C: strcpy(insn[i],"SDL"); type=STORELR; break;
8111 case 0x2D: strcpy(insn[i],"SDR"); type=STORELR; break;
8112#endif
8113 case 0x2E: strcpy(insn[i],"SWR"); type=STORELR; break;
8114 case 0x2F: strcpy(insn[i],"CACHE"); type=NOP; break;
8115 case 0x30: strcpy(insn[i],"LL"); type=NI; break;
8116 case 0x31: strcpy(insn[i],"LWC1"); type=C1LS; break;
8117#ifndef FORCE32
8118 case 0x34: strcpy(insn[i],"LLD"); type=NI; break;
8119 case 0x35: strcpy(insn[i],"LDC1"); type=C1LS; break;
8120 case 0x37: strcpy(insn[i],"LD"); type=LOAD; break;
8121#endif
8122 case 0x38: strcpy(insn[i],"SC"); type=NI; break;
8123 case 0x39: strcpy(insn[i],"SWC1"); type=C1LS; break;
8124#ifndef FORCE32
8125 case 0x3C: strcpy(insn[i],"SCD"); type=NI; break;
8126 case 0x3D: strcpy(insn[i],"SDC1"); type=C1LS; break;
8127 case 0x3F: strcpy(insn[i],"SD"); type=STORE; break;
8128#endif
8129#ifdef PCSX
8130 case 0x12: strcpy(insn[i],"COP2"); type=NI;
8131 // note: COP MIPS-1 encoding differs from MIPS32
8132 op2=(source[i]>>21)&0x1f;
8133 if (source[i]&0x3f) {
8134 if (gte_handlers[source[i]&0x3f]!=NULL) {
8135 snprintf(insn[i], sizeof(insn[i]), "COP2 %x", source[i]&0x3f);
8136 type=C2OP;
8137 }
8138 }
8139 else switch(op2)
8140 {
8141 case 0x00: strcpy(insn[i],"MFC2"); type=COP2; break;
8142 case 0x02: strcpy(insn[i],"CFC2"); type=COP2; break;
8143 case 0x04: strcpy(insn[i],"MTC2"); type=COP2; break;
8144 case 0x06: strcpy(insn[i],"CTC2"); type=COP2; break;
8145 }
8146 break;
8147 case 0x32: strcpy(insn[i],"LWC2"); type=C2LS; break;
8148 case 0x3A: strcpy(insn[i],"SWC2"); type=C2LS; break;
8149 case 0x3B: strcpy(insn[i],"HLECALL"); type=HLECALL; break;
8150#endif
8151 default: strcpy(insn[i],"???"); type=NI;
8152 printf("NI %08x @%08x (%08x)\n", source[i], addr + i*4, addr);
8153 break;
8154 }
8155#ifdef PCSX
8156 /* detect branch in delay slot early */
8157 if(type==RJUMP||type==UJUMP||type==CJUMP||type==SJUMP||type==FJUMP) {
8158 opcode[i+1]=source[i+1]>>26;
8159 opcode2[i+1]=source[i+1]&0x3f;
8160 if((0<opcode[i+1]&&opcode[i+1]<8)||(opcode[i+1]==0&&(opcode2[i+1]==8||opcode2[i+1]==9))) {
8161 printf("branch in delay slot @%08x (%08x)\n", addr + i*4+4, addr);
8162 // don't handle first branch and call interpreter if it's hit
8163 type=INTCALL;
8164 }
8165 }
8166#endif
8167 itype[i]=type;
8168 opcode2[i]=op2;
8169 /* Get registers/immediates */
8170 lt1[i]=0;
8171 us1[i]=0;
8172 us2[i]=0;
8173 dep1[i]=0;
8174 dep2[i]=0;
8175 switch(type) {
8176 case LOAD:
8177 rs1[i]=(source[i]>>21)&0x1f;
8178 rs2[i]=0;
8179 rt1[i]=(source[i]>>16)&0x1f;
8180 rt2[i]=0;
8181 imm[i]=(short)source[i];
8182 break;
8183 case STORE:
8184 case STORELR:
8185 rs1[i]=(source[i]>>21)&0x1f;
8186 rs2[i]=(source[i]>>16)&0x1f;
8187 rt1[i]=0;
8188 rt2[i]=0;
8189 imm[i]=(short)source[i];
8190 if(op==0x2c||op==0x2d||op==0x3f) us1[i]=rs2[i]; // 64-bit SDL/SDR/SD
8191 break;
8192 case LOADLR:
8193 // LWL/LWR only load part of the register,
8194 // therefore the target register must be treated as a source too
8195 rs1[i]=(source[i]>>21)&0x1f;
8196 rs2[i]=(source[i]>>16)&0x1f;
8197 rt1[i]=(source[i]>>16)&0x1f;
8198 rt2[i]=0;
8199 imm[i]=(short)source[i];
8200 if(op==0x1a||op==0x1b) us1[i]=rs2[i]; // LDR/LDL
8201 if(op==0x26) dep1[i]=rt1[i]; // LWR
8202 break;
8203 case IMM16:
8204 if (op==0x0f) rs1[i]=0; // LUI instruction has no source register
8205 else rs1[i]=(source[i]>>21)&0x1f;
8206 rs2[i]=0;
8207 rt1[i]=(source[i]>>16)&0x1f;
8208 rt2[i]=0;
8209 if(op>=0x0c&&op<=0x0e) { // ANDI/ORI/XORI
8210 imm[i]=(unsigned short)source[i];
8211 }else{
8212 imm[i]=(short)source[i];
8213 }
8214 if(op==0x18||op==0x19) us1[i]=rs1[i]; // DADDI/DADDIU
8215 if(op==0x0a||op==0x0b) us1[i]=rs1[i]; // SLTI/SLTIU
8216 if(op==0x0d||op==0x0e) dep1[i]=rs1[i]; // ORI/XORI
8217 break;
8218 case UJUMP:
8219 rs1[i]=0;
8220 rs2[i]=0;
8221 rt1[i]=0;
8222 rt2[i]=0;
8223 // The JAL instruction writes to r31.
8224 if (op&1) {
8225 rt1[i]=31;
8226 }
8227 rs2[i]=CCREG;
8228 break;
8229 case RJUMP:
8230 rs1[i]=(source[i]>>21)&0x1f;
8231 rs2[i]=0;
8232 rt1[i]=0;
8233 rt2[i]=0;
8234 // The JALR instruction writes to rd.
8235 if (op2&1) {
8236 rt1[i]=(source[i]>>11)&0x1f;
8237 }
8238 rs2[i]=CCREG;
8239 break;
8240 case CJUMP:
8241 rs1[i]=(source[i]>>21)&0x1f;
8242 rs2[i]=(source[i]>>16)&0x1f;
8243 rt1[i]=0;
8244 rt2[i]=0;
8245 if(op&2) { // BGTZ/BLEZ
8246 rs2[i]=0;
8247 }
8248 us1[i]=rs1[i];
8249 us2[i]=rs2[i];
8250 likely[i]=op>>4;
8251 break;
8252 case SJUMP:
8253 rs1[i]=(source[i]>>21)&0x1f;
8254 rs2[i]=CCREG;
8255 rt1[i]=0;
8256 rt2[i]=0;
8257 us1[i]=rs1[i];
8258 if(op2&0x10) { // BxxAL
8259 rt1[i]=31;
8260 // NOTE: If the branch is not taken, r31 is still overwritten
8261 }
8262 likely[i]=(op2&2)>>1;
8263 break;
8264 case FJUMP:
8265 rs1[i]=FSREG;
8266 rs2[i]=CSREG;
8267 rt1[i]=0;
8268 rt2[i]=0;
8269 likely[i]=((source[i])>>17)&1;
8270 break;
8271 case ALU:
8272 rs1[i]=(source[i]>>21)&0x1f; // source
8273 rs2[i]=(source[i]>>16)&0x1f; // subtract amount
8274 rt1[i]=(source[i]>>11)&0x1f; // destination
8275 rt2[i]=0;
8276 if(op2==0x2a||op2==0x2b) { // SLT/SLTU
8277 us1[i]=rs1[i];us2[i]=rs2[i];
8278 }
8279 else if(op2>=0x24&&op2<=0x27) { // AND/OR/XOR/NOR
8280 dep1[i]=rs1[i];dep2[i]=rs2[i];
8281 }
8282 else if(op2>=0x2c&&op2<=0x2f) { // DADD/DSUB
8283 dep1[i]=rs1[i];dep2[i]=rs2[i];
8284 }
8285 break;
8286 case MULTDIV:
8287 rs1[i]=(source[i]>>21)&0x1f; // source
8288 rs2[i]=(source[i]>>16)&0x1f; // divisor
8289 rt1[i]=HIREG;
8290 rt2[i]=LOREG;
8291 if (op2>=0x1c&&op2<=0x1f) { // DMULT/DMULTU/DDIV/DDIVU
8292 us1[i]=rs1[i];us2[i]=rs2[i];
8293 }
8294 break;
8295 case MOV:
8296 rs1[i]=0;
8297 rs2[i]=0;
8298 rt1[i]=0;
8299 rt2[i]=0;
8300 if(op2==0x10) rs1[i]=HIREG; // MFHI
8301 if(op2==0x11) rt1[i]=HIREG; // MTHI
8302 if(op2==0x12) rs1[i]=LOREG; // MFLO
8303 if(op2==0x13) rt1[i]=LOREG; // MTLO
8304 if((op2&0x1d)==0x10) rt1[i]=(source[i]>>11)&0x1f; // MFxx
8305 if((op2&0x1d)==0x11) rs1[i]=(source[i]>>21)&0x1f; // MTxx
8306 dep1[i]=rs1[i];
8307 break;
8308 case SHIFT:
8309 rs1[i]=(source[i]>>16)&0x1f; // target of shift
8310 rs2[i]=(source[i]>>21)&0x1f; // shift amount
8311 rt1[i]=(source[i]>>11)&0x1f; // destination
8312 rt2[i]=0;
8313 // DSLLV/DSRLV/DSRAV are 64-bit
8314 if(op2>=0x14&&op2<=0x17) us1[i]=rs1[i];
8315 break;
8316 case SHIFTIMM:
8317 rs1[i]=(source[i]>>16)&0x1f;
8318 rs2[i]=0;
8319 rt1[i]=(source[i]>>11)&0x1f;
8320 rt2[i]=0;
8321 imm[i]=(source[i]>>6)&0x1f;
8322 // DSxx32 instructions
8323 if(op2>=0x3c) imm[i]|=0x20;
8324 // DSLL/DSRL/DSRA/DSRA32/DSRL32 but not DSLL32 require 64-bit source
8325 if(op2>=0x38&&op2!=0x3c) us1[i]=rs1[i];
8326 break;
8327 case COP0:
8328 rs1[i]=0;
8329 rs2[i]=0;
8330 rt1[i]=0;
8331 rt2[i]=0;
8332 if(op2==0) rt1[i]=(source[i]>>16)&0x1F; // MFC0
8333 if(op2==4) rs1[i]=(source[i]>>16)&0x1F; // MTC0
8334 if(op2==4&&((source[i]>>11)&0x1f)==12) rt2[i]=CSREG; // Status
8335 if(op2==16) if((source[i]&0x3f)==0x18) rs2[i]=CCREG; // ERET
8336 break;
8337 case COP1:
8338 case COP2:
8339 rs1[i]=0;
8340 rs2[i]=0;
8341 rt1[i]=0;
8342 rt2[i]=0;
8343 if(op2<3) rt1[i]=(source[i]>>16)&0x1F; // MFC1/DMFC1/CFC1
8344 if(op2>3) rs1[i]=(source[i]>>16)&0x1F; // MTC1/DMTC1/CTC1
8345 if(op2==5) us1[i]=rs1[i]; // DMTC1
8346 rs2[i]=CSREG;
8347 break;
8348 case C1LS:
8349 rs1[i]=(source[i]>>21)&0x1F;
8350 rs2[i]=CSREG;
8351 rt1[i]=0;
8352 rt2[i]=0;
8353 imm[i]=(short)source[i];
8354 break;
8355 case C2LS:
8356 rs1[i]=(source[i]>>21)&0x1F;
8357 rs2[i]=0;
8358 rt1[i]=0;
8359 rt2[i]=0;
8360 imm[i]=(short)source[i];
8361 break;
8362 case FLOAT:
8363 case FCONV:
8364 rs1[i]=0;
8365 rs2[i]=CSREG;
8366 rt1[i]=0;
8367 rt2[i]=0;
8368 break;
8369 case FCOMP:
8370 rs1[i]=FSREG;
8371 rs2[i]=CSREG;
8372 rt1[i]=FSREG;
8373 rt2[i]=0;
8374 break;
8375 case SYSCALL:
8376 case HLECALL:
8377 case INTCALL:
8378 rs1[i]=CCREG;
8379 rs2[i]=0;
8380 rt1[i]=0;
8381 rt2[i]=0;
8382 break;
8383 default:
8384 rs1[i]=0;
8385 rs2[i]=0;
8386 rt1[i]=0;
8387 rt2[i]=0;
8388 }
8389 /* Calculate branch target addresses */
8390 if(type==UJUMP)
8391 ba[i]=((start+i*4+4)&0xF0000000)|(((unsigned int)source[i]<<6)>>4);
8392 else if(type==CJUMP&&rs1[i]==rs2[i]&&(op&1))
8393 ba[i]=start+i*4+8; // Ignore never taken branch
8394 else if(type==SJUMP&&rs1[i]==0&&!(op2&1))
8395 ba[i]=start+i*4+8; // Ignore never taken branch
8396 else if(type==CJUMP||type==SJUMP||type==FJUMP)
8397 ba[i]=start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14);
8398 else ba[i]=-1;
8399 /* Is this the end of the block? */
8400 if(i>0&&(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)) {
8401 if(rt1[i-1]==0) { // Continue past subroutine call (JAL)
8402 done=2;
8403 }
8404 else {
8405 if(stop_after_jal) done=1;
8406 // Stop on BREAK
8407 if((source[i+1]&0xfc00003f)==0x0d) done=1;
8408 }
8409 // Don't recompile stuff that's already compiled
8410 if(check_addr(start+i*4+4)) done=1;
8411 // Don't get too close to the limit
8412 if(i>MAXBLOCK/2) done=1;
8413 }
8414 if(itype[i]==SYSCALL&&stop_after_jal) done=1;
8415 if(itype[i]==HLECALL||itype[i]==INTCALL) done=2;
8416 if(done==2) {
8417 // Does the block continue due to a branch?
8418 for(j=i-1;j>=0;j--)
8419 {
8420 if(ba[j]==start+i*4+4) done=j=0;
8421 if(ba[j]==start+i*4+8) done=j=0;
8422 }
8423 }
8424 //assert(i<MAXBLOCK-1);
8425 if(start+i*4==pagelimit-4) done=1;
8426 assert(start+i*4<pagelimit);
8427 if (i==MAXBLOCK-1) done=1;
8428 // Stop if we're compiling junk
8429 if(itype[i]==NI&&opcode[i]==0x11) {
8430 done=stop_after_jal=1;
8431 printf("Disabled speculative precompilation\n");
8432 }
8433 }
8434 slen=i;
8435 if(itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==RJUMP||itype[i-1]==FJUMP) {
8436 if(start+i*4==pagelimit) {
8437 itype[i-1]=SPAN;
8438 }
8439 }
8440 assert(slen>0);
8441
8442 /* Pass 2 - Register dependencies and branch targets */
8443
8444 unneeded_registers(0,slen-1,0);
8445
8446 /* Pass 3 - Register allocation */
8447
8448 struct regstat current; // Current register allocations/status
8449 current.is32=1;
8450 current.dirty=0;
8451 current.u=unneeded_reg[0];
8452 current.uu=unneeded_reg_upper[0];
8453 clear_all_regs(current.regmap);
8454 alloc_reg(&current,0,CCREG);
8455 dirty_reg(&current,CCREG);
8456 current.isconst=0;
8457 current.wasconst=0;
8458 int ds=0;
8459 int cc=0;
8460 int hr;
8461
8462 provisional_32bit();
8463
8464 if((u_int)addr&1) {
8465 // First instruction is delay slot
8466 cc=-1;
8467 bt[1]=1;
8468 ds=1;
8469 unneeded_reg[0]=1;
8470 unneeded_reg_upper[0]=1;
8471 current.regmap[HOST_BTREG]=BTREG;
8472 }
8473
8474 for(i=0;i<slen;i++)
8475 {
8476 if(bt[i])
8477 {
8478 int hr;
8479 for(hr=0;hr<HOST_REGS;hr++)
8480 {
8481 // Is this really necessary?
8482 if(current.regmap[hr]==0) current.regmap[hr]=-1;
8483 }
8484 current.isconst=0;
8485 }
8486 if(i>1)
8487 {
8488 if((opcode[i-2]&0x2f)==0x05) // BNE/BNEL
8489 {
8490 if(rs1[i-2]==0||rs2[i-2]==0)
8491 {
8492 if(rs1[i-2]) {
8493 current.is32|=1LL<<rs1[i-2];
8494 int hr=get_reg(current.regmap,rs1[i-2]|64);
8495 if(hr>=0) current.regmap[hr]=-1;
8496 }
8497 if(rs2[i-2]) {
8498 current.is32|=1LL<<rs2[i-2];
8499 int hr=get_reg(current.regmap,rs2[i-2]|64);
8500 if(hr>=0) current.regmap[hr]=-1;
8501 }
8502 }
8503 }
8504 }
8505 // If something jumps here with 64-bit values
8506 // then promote those registers to 64 bits
8507 if(bt[i])
8508 {
8509 uint64_t temp_is32=current.is32;
8510 for(j=i-1;j>=0;j--)
8511 {
8512 if(ba[j]==start+i*4)
8513 temp_is32&=branch_regs[j].is32;
8514 }
8515 for(j=i;j<slen;j++)
8516 {
8517 if(ba[j]==start+i*4)
8518 //temp_is32=1;
8519 temp_is32&=p32[j];
8520 }
8521 if(temp_is32!=current.is32) {
8522 //printf("dumping 32-bit regs (%x)\n",start+i*4);
8523 #ifdef DESTRUCTIVE_WRITEBACK
8524 for(hr=0;hr<HOST_REGS;hr++)
8525 {
8526 int r=current.regmap[hr];
8527 if(r>0&&r<64)
8528 {
8529 if((current.dirty>>hr)&((current.is32&~temp_is32)>>r)&1) {
8530 temp_is32|=1LL<<r;
8531 //printf("restore %d\n",r);
8532 }
8533 }
8534 }
8535 #endif
8536 current.is32=temp_is32;
8537 }
8538 }
8539#ifdef FORCE32
8540 memset(p32, 0xff, sizeof(p32));
8541 current.is32=-1LL;
8542#endif
8543
8544 memcpy(regmap_pre[i],current.regmap,sizeof(current.regmap));
8545 regs[i].wasconst=current.isconst;
8546 regs[i].was32=current.is32;
8547 regs[i].wasdirty=current.dirty;
8548 #ifdef DESTRUCTIVE_WRITEBACK
8549 // To change a dirty register from 32 to 64 bits, we must write
8550 // it out during the previous cycle (for branches, 2 cycles)
8551 if(i<slen-1&&bt[i+1]&&itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP)
8552 {
8553 uint64_t temp_is32=current.is32;
8554 for(j=i-1;j>=0;j--)
8555 {
8556 if(ba[j]==start+i*4+4)
8557 temp_is32&=branch_regs[j].is32;
8558 }
8559 for(j=i;j<slen;j++)
8560 {
8561 if(ba[j]==start+i*4+4)
8562 //temp_is32=1;
8563 temp_is32&=p32[j];
8564 }
8565 if(temp_is32!=current.is32) {
8566 //printf("pre-dumping 32-bit regs (%x)\n",start+i*4);
8567 for(hr=0;hr<HOST_REGS;hr++)
8568 {
8569 int r=current.regmap[hr];
8570 if(r>0)
8571 {
8572 if((current.dirty>>hr)&((current.is32&~temp_is32)>>(r&63))&1) {
8573 if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP)
8574 {
8575 if(rs1[i]!=(r&63)&&rs2[i]!=(r&63))
8576 {
8577 //printf("dump %d/r%d\n",hr,r);
8578 current.regmap[hr]=-1;
8579 if(get_reg(current.regmap,r|64)>=0)
8580 current.regmap[get_reg(current.regmap,r|64)]=-1;
8581 }
8582 }
8583 }
8584 }
8585 }
8586 }
8587 }
8588 else if(i<slen-2&&bt[i+2]&&(source[i-1]>>16)!=0x1000&&(itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP))
8589 {
8590 uint64_t temp_is32=current.is32;
8591 for(j=i-1;j>=0;j--)
8592 {
8593 if(ba[j]==start+i*4+8)
8594 temp_is32&=branch_regs[j].is32;
8595 }
8596 for(j=i;j<slen;j++)
8597 {
8598 if(ba[j]==start+i*4+8)
8599 //temp_is32=1;
8600 temp_is32&=p32[j];
8601 }
8602 if(temp_is32!=current.is32) {
8603 //printf("pre-dumping 32-bit regs (%x)\n",start+i*4);
8604 for(hr=0;hr<HOST_REGS;hr++)
8605 {
8606 int r=current.regmap[hr];
8607 if(r>0)
8608 {
8609 if((current.dirty>>hr)&((current.is32&~temp_is32)>>(r&63))&1) {
8610 if(rs1[i]!=(r&63)&&rs2[i]!=(r&63)&&rs1[i+1]!=(r&63)&&rs2[i+1]!=(r&63))
8611 {
8612 //printf("dump %d/r%d\n",hr,r);
8613 current.regmap[hr]=-1;
8614 if(get_reg(current.regmap,r|64)>=0)
8615 current.regmap[get_reg(current.regmap,r|64)]=-1;
8616 }
8617 }
8618 }
8619 }
8620 }
8621 }
8622 #endif
8623 if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP) {
8624 if(i+1<slen) {
8625 current.u=unneeded_reg[i+1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
8626 current.uu=unneeded_reg_upper[i+1]&~((1LL<<us1[i])|(1LL<<us2[i]));
8627 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
8628 current.u|=1;
8629 current.uu|=1;
8630 } else {
8631 current.u=1;
8632 current.uu=1;
8633 }
8634 } else {
8635 if(i+1<slen) {
8636 current.u=branch_unneeded_reg[i]&~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
8637 current.uu=branch_unneeded_reg_upper[i]&~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
8638 if((~current.uu>>rt1[i+1])&1) current.uu&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
8639 current.u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
8640 current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
8641 current.u|=1;
8642 current.uu|=1;
8643 } else { printf("oops, branch at end of block with no delay slot\n");exit(1); }
8644 }
8645 is_ds[i]=ds;
8646 if(ds) {
8647 ds=0; // Skip delay slot, already allocated as part of branch
8648 // ...but we need to alloc it in case something jumps here
8649 if(i+1<slen) {
8650 current.u=branch_unneeded_reg[i-1]&unneeded_reg[i+1];
8651 current.uu=branch_unneeded_reg_upper[i-1]&unneeded_reg_upper[i+1];
8652 }else{
8653 current.u=branch_unneeded_reg[i-1];
8654 current.uu=branch_unneeded_reg_upper[i-1];
8655 }
8656 current.u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
8657 current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
8658 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
8659 current.u|=1;
8660 current.uu|=1;
8661 struct regstat temp;
8662 memcpy(&temp,&current,sizeof(current));
8663 temp.wasdirty=temp.dirty;
8664 temp.was32=temp.is32;
8665 // TODO: Take into account unconditional branches, as below
8666 delayslot_alloc(&temp,i);
8667 memcpy(regs[i].regmap,temp.regmap,sizeof(temp.regmap));
8668 regs[i].wasdirty=temp.wasdirty;
8669 regs[i].was32=temp.was32;
8670 regs[i].dirty=temp.dirty;
8671 regs[i].is32=temp.is32;
8672 regs[i].isconst=0;
8673 regs[i].wasconst=0;
8674 current.isconst=0;
8675 // Create entry (branch target) regmap
8676 for(hr=0;hr<HOST_REGS;hr++)
8677 {
8678 int r=temp.regmap[hr];
8679 if(r>=0) {
8680 if(r!=regmap_pre[i][hr]) {
8681 regs[i].regmap_entry[hr]=-1;
8682 }
8683 else
8684 {
8685 if(r<64){
8686 if((current.u>>r)&1) {
8687 regs[i].regmap_entry[hr]=-1;
8688 regs[i].regmap[hr]=-1;
8689 //Don't clear regs in the delay slot as the branch might need them
8690 //current.regmap[hr]=-1;
8691 }else
8692 regs[i].regmap_entry[hr]=r;
8693 }
8694 else {
8695 if((current.uu>>(r&63))&1) {
8696 regs[i].regmap_entry[hr]=-1;
8697 regs[i].regmap[hr]=-1;
8698 //Don't clear regs in the delay slot as the branch might need them
8699 //current.regmap[hr]=-1;
8700 }else
8701 regs[i].regmap_entry[hr]=r;
8702 }
8703 }
8704 } else {
8705 // First instruction expects CCREG to be allocated
8706 if(i==0&&hr==HOST_CCREG)
8707 regs[i].regmap_entry[hr]=CCREG;
8708 else
8709 regs[i].regmap_entry[hr]=-1;
8710 }
8711 }
8712 }
8713 else { // Not delay slot
8714 switch(itype[i]) {
8715 case UJUMP:
8716 //current.isconst=0; // DEBUG
8717 //current.wasconst=0; // DEBUG
8718 //regs[i].wasconst=0; // DEBUG
8719 clear_const(&current,rt1[i]);
8720 alloc_cc(&current,i);
8721 dirty_reg(&current,CCREG);
8722 if (rt1[i]==31) {
8723 alloc_reg(&current,i,31);
8724 dirty_reg(&current,31);
8725 //assert(rs1[i+1]!=31&&rs2[i+1]!=31);
8726 assert(rt1[i+1]!=rt1[i]);
8727 #ifdef REG_PREFETCH
8728 alloc_reg(&current,i,PTEMP);
8729 #endif
8730 //current.is32|=1LL<<rt1[i];
8731 }
8732 delayslot_alloc(&current,i+1);
8733 //current.isconst=0; // DEBUG
8734 ds=1;
8735 //printf("i=%d, isconst=%x\n",i,current.isconst);
8736 break;
8737 case RJUMP:
8738 //current.isconst=0;
8739 //current.wasconst=0;
8740 //regs[i].wasconst=0;
8741 clear_const(&current,rs1[i]);
8742 clear_const(&current,rt1[i]);
8743 alloc_cc(&current,i);
8744 dirty_reg(&current,CCREG);
8745 if(rs1[i]!=rt1[i+1]&&rs1[i]!=rt2[i+1]) {
8746 alloc_reg(&current,i,rs1[i]);
8747 if (rt1[i]!=0) {
8748 alloc_reg(&current,i,rt1[i]);
8749 dirty_reg(&current,rt1[i]);
8750 //assert(rs1[i+1]!=31&&rs2[i+1]!=31);
8751 assert(rt1[i+1]!=rt1[i]);
8752 #ifdef REG_PREFETCH
8753 alloc_reg(&current,i,PTEMP);
8754 #endif
8755 }
8756 #ifdef USE_MINI_HT
8757 if(rs1[i]==31) { // JALR
8758 alloc_reg(&current,i,RHASH);
8759 #ifndef HOST_IMM_ADDR32
8760 alloc_reg(&current,i,RHTBL);
8761 #endif
8762 }
8763 #endif
8764 delayslot_alloc(&current,i+1);
8765 } else {
8766 // The delay slot overwrites our source register,
8767 // allocate a temporary register to hold the old value.
8768 current.isconst=0;
8769 current.wasconst=0;
8770 regs[i].wasconst=0;
8771 delayslot_alloc(&current,i+1);
8772 current.isconst=0;
8773 alloc_reg(&current,i,RTEMP);
8774 }
8775 //current.isconst=0; // DEBUG
8776 ds=1;
8777 break;
8778 case CJUMP:
8779 //current.isconst=0;
8780 //current.wasconst=0;
8781 //regs[i].wasconst=0;
8782 clear_const(&current,rs1[i]);
8783 clear_const(&current,rs2[i]);
8784 if((opcode[i]&0x3E)==4) // BEQ/BNE
8785 {
8786 alloc_cc(&current,i);
8787 dirty_reg(&current,CCREG);
8788 if(rs1[i]) alloc_reg(&current,i,rs1[i]);
8789 if(rs2[i]) alloc_reg(&current,i,rs2[i]);
8790 if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
8791 {
8792 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
8793 if(rs2[i]) alloc_reg64(&current,i,rs2[i]);
8794 }
8795 if((rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]))||
8796 (rs2[i]&&(rs2[i]==rt1[i+1]||rs2[i]==rt2[i+1]))) {
8797 // The delay slot overwrites one of our conditions.
8798 // Allocate the branch condition registers instead.
8799 // Note that such a sequence of instructions could
8800 // be considered a bug since the branch can not be
8801 // re-executed if an exception occurs.
8802 current.isconst=0;
8803 current.wasconst=0;
8804 regs[i].wasconst=0;
8805 if(rs1[i]) alloc_reg(&current,i,rs1[i]);
8806 if(rs2[i]) alloc_reg(&current,i,rs2[i]);
8807 if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
8808 {
8809 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
8810 if(rs2[i]) alloc_reg64(&current,i,rs2[i]);
8811 }
8812 }
8813 else delayslot_alloc(&current,i+1);
8814 }
8815 else
8816 if((opcode[i]&0x3E)==6) // BLEZ/BGTZ
8817 {
8818 alloc_cc(&current,i);
8819 dirty_reg(&current,CCREG);
8820 alloc_reg(&current,i,rs1[i]);
8821 if(!(current.is32>>rs1[i]&1))
8822 {
8823 alloc_reg64(&current,i,rs1[i]);
8824 }
8825 if(rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1])) {
8826 // The delay slot overwrites one of our conditions.
8827 // Allocate the branch condition registers instead.
8828 // Note that such a sequence of instructions could
8829 // be considered a bug since the branch can not be
8830 // re-executed if an exception occurs.
8831 current.isconst=0;
8832 current.wasconst=0;
8833 regs[i].wasconst=0;
8834 if(rs1[i]) alloc_reg(&current,i,rs1[i]);
8835 if(!((current.is32>>rs1[i])&1))
8836 {
8837 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
8838 }
8839 }
8840 else delayslot_alloc(&current,i+1);
8841 }
8842 else
8843 // Don't alloc the delay slot yet because we might not execute it
8844 if((opcode[i]&0x3E)==0x14) // BEQL/BNEL
8845 {
8846 current.isconst=0;
8847 current.wasconst=0;
8848 regs[i].wasconst=0;
8849 alloc_cc(&current,i);
8850 dirty_reg(&current,CCREG);
8851 alloc_reg(&current,i,rs1[i]);
8852 alloc_reg(&current,i,rs2[i]);
8853 if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
8854 {
8855 alloc_reg64(&current,i,rs1[i]);
8856 alloc_reg64(&current,i,rs2[i]);
8857 }
8858 }
8859 else
8860 if((opcode[i]&0x3E)==0x16) // BLEZL/BGTZL
8861 {
8862 current.isconst=0;
8863 current.wasconst=0;
8864 regs[i].wasconst=0;
8865 alloc_cc(&current,i);
8866 dirty_reg(&current,CCREG);
8867 alloc_reg(&current,i,rs1[i]);
8868 if(!(current.is32>>rs1[i]&1))
8869 {
8870 alloc_reg64(&current,i,rs1[i]);
8871 }
8872 }
8873 ds=1;
8874 //current.isconst=0;
8875 break;
8876 case SJUMP:
8877 //current.isconst=0;
8878 //current.wasconst=0;
8879 //regs[i].wasconst=0;
8880 clear_const(&current,rs1[i]);
8881 clear_const(&current,rt1[i]);
8882 //if((opcode2[i]&0x1E)==0x0) // BLTZ/BGEZ
8883 if((opcode2[i]&0x0E)==0x0) // BLTZ/BGEZ
8884 {
8885 alloc_cc(&current,i);
8886 dirty_reg(&current,CCREG);
8887 alloc_reg(&current,i,rs1[i]);
8888 if(!(current.is32>>rs1[i]&1))
8889 {
8890 alloc_reg64(&current,i,rs1[i]);
8891 }
8892 if (rt1[i]==31) { // BLTZAL/BGEZAL
8893 alloc_reg(&current,i,31);
8894 dirty_reg(&current,31);
8895 assert(rs1[i+1]!=31&&rs2[i+1]!=31);
8896 //#ifdef REG_PREFETCH
8897 //alloc_reg(&current,i,PTEMP);
8898 //#endif
8899 //current.is32|=1LL<<rt1[i];
8900 }
8901 if(rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1])) {
8902 // The delay slot overwrites the branch condition.
8903 // Allocate the branch condition registers instead.
8904 // Note that such a sequence of instructions could
8905 // be considered a bug since the branch can not be
8906 // re-executed if an exception occurs.
8907 current.isconst=0;
8908 current.wasconst=0;
8909 regs[i].wasconst=0;
8910 if(rs1[i]) alloc_reg(&current,i,rs1[i]);
8911 if(!((current.is32>>rs1[i])&1))
8912 {
8913 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
8914 }
8915 }
8916 else delayslot_alloc(&current,i+1);
8917 }
8918 else
8919 // Don't alloc the delay slot yet because we might not execute it
8920 if((opcode2[i]&0x1E)==0x2) // BLTZL/BGEZL
8921 {
8922 current.isconst=0;
8923 current.wasconst=0;
8924 regs[i].wasconst=0;
8925 alloc_cc(&current,i);
8926 dirty_reg(&current,CCREG);
8927 alloc_reg(&current,i,rs1[i]);
8928 if(!(current.is32>>rs1[i]&1))
8929 {
8930 alloc_reg64(&current,i,rs1[i]);
8931 }
8932 }
8933 ds=1;
8934 //current.isconst=0;
8935 break;
8936 case FJUMP:
8937 current.isconst=0;
8938 current.wasconst=0;
8939 regs[i].wasconst=0;
8940 if(likely[i]==0) // BC1F/BC1T
8941 {
8942 // TODO: Theoretically we can run out of registers here on x86.
8943 // The delay slot can allocate up to six, and we need to check
8944 // CSREG before executing the delay slot. Possibly we can drop
8945 // the cycle count and then reload it after checking that the
8946 // FPU is in a usable state, or don't do out-of-order execution.
8947 alloc_cc(&current,i);
8948 dirty_reg(&current,CCREG);
8949 alloc_reg(&current,i,FSREG);
8950 alloc_reg(&current,i,CSREG);
8951 if(itype[i+1]==FCOMP) {
8952 // The delay slot overwrites the branch condition.
8953 // Allocate the branch condition registers instead.
8954 // Note that such a sequence of instructions could
8955 // be considered a bug since the branch can not be
8956 // re-executed if an exception occurs.
8957 alloc_cc(&current,i);
8958 dirty_reg(&current,CCREG);
8959 alloc_reg(&current,i,CSREG);
8960 alloc_reg(&current,i,FSREG);
8961 }
8962 else {
8963 delayslot_alloc(&current,i+1);
8964 alloc_reg(&current,i+1,CSREG);
8965 }
8966 }
8967 else
8968 // Don't alloc the delay slot yet because we might not execute it
8969 if(likely[i]) // BC1FL/BC1TL
8970 {
8971 alloc_cc(&current,i);
8972 dirty_reg(&current,CCREG);
8973 alloc_reg(&current,i,CSREG);
8974 alloc_reg(&current,i,FSREG);
8975 }
8976 ds=1;
8977 current.isconst=0;
8978 break;
8979 case IMM16:
8980 imm16_alloc(&current,i);
8981 break;
8982 case LOAD:
8983 case LOADLR:
8984 load_alloc(&current,i);
8985 break;
8986 case STORE:
8987 case STORELR:
8988 store_alloc(&current,i);
8989 break;
8990 case ALU:
8991 alu_alloc(&current,i);
8992 break;
8993 case SHIFT:
8994 shift_alloc(&current,i);
8995 break;
8996 case MULTDIV:
8997 multdiv_alloc(&current,i);
8998 break;
8999 case SHIFTIMM:
9000 shiftimm_alloc(&current,i);
9001 break;
9002 case MOV:
9003 mov_alloc(&current,i);
9004 break;
9005 case COP0:
9006 cop0_alloc(&current,i);
9007 break;
9008 case COP1:
9009 case COP2:
9010 cop1_alloc(&current,i);
9011 break;
9012 case C1LS:
9013 c1ls_alloc(&current,i);
9014 break;
9015 case C2LS:
9016 c2ls_alloc(&current,i);
9017 break;
9018 case C2OP:
9019 c2op_alloc(&current,i);
9020 break;
9021 case FCONV:
9022 fconv_alloc(&current,i);
9023 break;
9024 case FLOAT:
9025 float_alloc(&current,i);
9026 break;
9027 case FCOMP:
9028 fcomp_alloc(&current,i);
9029 break;
9030 case SYSCALL:
9031 case HLECALL:
9032 case INTCALL:
9033 syscall_alloc(&current,i);
9034 break;
9035 case SPAN:
9036 pagespan_alloc(&current,i);
9037 break;
9038 }
9039
9040 // Drop the upper half of registers that have become 32-bit
9041 current.uu|=current.is32&((1LL<<rt1[i])|(1LL<<rt2[i]));
9042 if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP) {
9043 current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
9044 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9045 current.uu|=1;
9046 } else {
9047 current.uu|=current.is32&((1LL<<rt1[i+1])|(1LL<<rt2[i+1]));
9048 current.uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
9049 if((~current.uu>>rt1[i+1])&1) current.uu&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
9050 current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
9051 current.uu|=1;
9052 }
9053
9054 // Create entry (branch target) regmap
9055 for(hr=0;hr<HOST_REGS;hr++)
9056 {
9057 int r,or,er;
9058 r=current.regmap[hr];
9059 if(r>=0) {
9060 if(r!=regmap_pre[i][hr]) {
9061 // TODO: delay slot (?)
9062 or=get_reg(regmap_pre[i],r); // Get old mapping for this register
9063 if(or<0||(r&63)>=TEMPREG){
9064 regs[i].regmap_entry[hr]=-1;
9065 }
9066 else
9067 {
9068 // Just move it to a different register
9069 regs[i].regmap_entry[hr]=r;
9070 // If it was dirty before, it's still dirty
9071 if((regs[i].wasdirty>>or)&1) dirty_reg(&current,r&63);
9072 }
9073 }
9074 else
9075 {
9076 // Unneeded
9077 if(r==0){
9078 regs[i].regmap_entry[hr]=0;
9079 }
9080 else
9081 if(r<64){
9082 if((current.u>>r)&1) {
9083 regs[i].regmap_entry[hr]=-1;
9084 //regs[i].regmap[hr]=-1;
9085 current.regmap[hr]=-1;
9086 }else
9087 regs[i].regmap_entry[hr]=r;
9088 }
9089 else {
9090 if((current.uu>>(r&63))&1) {
9091 regs[i].regmap_entry[hr]=-1;
9092 //regs[i].regmap[hr]=-1;
9093 current.regmap[hr]=-1;
9094 }else
9095 regs[i].regmap_entry[hr]=r;
9096 }
9097 }
9098 } else {
9099 // Branches expect CCREG to be allocated at the target
9100 if(regmap_pre[i][hr]==CCREG)
9101 regs[i].regmap_entry[hr]=CCREG;
9102 else
9103 regs[i].regmap_entry[hr]=-1;
9104 }
9105 }
9106 memcpy(regs[i].regmap,current.regmap,sizeof(current.regmap));
9107 }
9108 /* Branch post-alloc */
9109 if(i>0)
9110 {
9111 current.was32=current.is32;
9112 current.wasdirty=current.dirty;
9113 switch(itype[i-1]) {
9114 case UJUMP:
9115 memcpy(&branch_regs[i-1],&current,sizeof(current));
9116 branch_regs[i-1].isconst=0;
9117 branch_regs[i-1].wasconst=0;
9118 branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
9119 branch_regs[i-1].uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
9120 alloc_cc(&branch_regs[i-1],i-1);
9121 dirty_reg(&branch_regs[i-1],CCREG);
9122 if(rt1[i-1]==31) { // JAL
9123 alloc_reg(&branch_regs[i-1],i-1,31);
9124 dirty_reg(&branch_regs[i-1],31);
9125 branch_regs[i-1].is32|=1LL<<31;
9126 }
9127 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9128 memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9129 break;
9130 case RJUMP:
9131 memcpy(&branch_regs[i-1],&current,sizeof(current));
9132 branch_regs[i-1].isconst=0;
9133 branch_regs[i-1].wasconst=0;
9134 branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
9135 branch_regs[i-1].uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
9136 alloc_cc(&branch_regs[i-1],i-1);
9137 dirty_reg(&branch_regs[i-1],CCREG);
9138 alloc_reg(&branch_regs[i-1],i-1,rs1[i-1]);
9139 if(rt1[i-1]!=0) { // JALR
9140 alloc_reg(&branch_regs[i-1],i-1,rt1[i-1]);
9141 dirty_reg(&branch_regs[i-1],rt1[i-1]);
9142 branch_regs[i-1].is32|=1LL<<rt1[i-1];
9143 }
9144 #ifdef USE_MINI_HT
9145 if(rs1[i-1]==31) { // JALR
9146 alloc_reg(&branch_regs[i-1],i-1,RHASH);
9147 #ifndef HOST_IMM_ADDR32
9148 alloc_reg(&branch_regs[i-1],i-1,RHTBL);
9149 #endif
9150 }
9151 #endif
9152 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9153 memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9154 break;
9155 case CJUMP:
9156 if((opcode[i-1]&0x3E)==4) // BEQ/BNE
9157 {
9158 alloc_cc(&current,i-1);
9159 dirty_reg(&current,CCREG);
9160 if((rs1[i-1]&&(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]))||
9161 (rs2[i-1]&&(rs2[i-1]==rt1[i]||rs2[i-1]==rt2[i]))) {
9162 // The delay slot overwrote one of our conditions
9163 // Delay slot goes after the test (in order)
9164 current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
9165 current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
9166 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9167 current.u|=1;
9168 current.uu|=1;
9169 delayslot_alloc(&current,i);
9170 current.isconst=0;
9171 }
9172 else
9173 {
9174 current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
9175 current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
9176 // Alloc the branch condition registers
9177 if(rs1[i-1]) alloc_reg(&current,i-1,rs1[i-1]);
9178 if(rs2[i-1]) alloc_reg(&current,i-1,rs2[i-1]);
9179 if(!((current.is32>>rs1[i-1])&(current.is32>>rs2[i-1])&1))
9180 {
9181 if(rs1[i-1]) alloc_reg64(&current,i-1,rs1[i-1]);
9182 if(rs2[i-1]) alloc_reg64(&current,i-1,rs2[i-1]);
9183 }
9184 }
9185 memcpy(&branch_regs[i-1],&current,sizeof(current));
9186 branch_regs[i-1].isconst=0;
9187 branch_regs[i-1].wasconst=0;
9188 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9189 memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9190 }
9191 else
9192 if((opcode[i-1]&0x3E)==6) // BLEZ/BGTZ
9193 {
9194 alloc_cc(&current,i-1);
9195 dirty_reg(&current,CCREG);
9196 if(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]) {
9197 // The delay slot overwrote the branch condition
9198 // Delay slot goes after the test (in order)
9199 current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
9200 current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
9201 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9202 current.u|=1;
9203 current.uu|=1;
9204 delayslot_alloc(&current,i);
9205 current.isconst=0;
9206 }
9207 else
9208 {
9209 current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
9210 current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
9211 // Alloc the branch condition register
9212 alloc_reg(&current,i-1,rs1[i-1]);
9213 if(!(current.is32>>rs1[i-1]&1))
9214 {
9215 alloc_reg64(&current,i-1,rs1[i-1]);
9216 }
9217 }
9218 memcpy(&branch_regs[i-1],&current,sizeof(current));
9219 branch_regs[i-1].isconst=0;
9220 branch_regs[i-1].wasconst=0;
9221 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9222 memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9223 }
9224 else
9225 // Alloc the delay slot in case the branch is taken
9226 if((opcode[i-1]&0x3E)==0x14) // BEQL/BNEL
9227 {
9228 memcpy(&branch_regs[i-1],&current,sizeof(current));
9229 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9230 branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9231 if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9232 alloc_cc(&branch_regs[i-1],i);
9233 dirty_reg(&branch_regs[i-1],CCREG);
9234 delayslot_alloc(&branch_regs[i-1],i);
9235 branch_regs[i-1].isconst=0;
9236 alloc_reg(&current,i,CCREG); // Not taken path
9237 dirty_reg(&current,CCREG);
9238 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9239 }
9240 else
9241 if((opcode[i-1]&0x3E)==0x16) // BLEZL/BGTZL
9242 {
9243 memcpy(&branch_regs[i-1],&current,sizeof(current));
9244 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9245 branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9246 if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9247 alloc_cc(&branch_regs[i-1],i);
9248 dirty_reg(&branch_regs[i-1],CCREG);
9249 delayslot_alloc(&branch_regs[i-1],i);
9250 branch_regs[i-1].isconst=0;
9251 alloc_reg(&current,i,CCREG); // Not taken path
9252 dirty_reg(&current,CCREG);
9253 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9254 }
9255 break;
9256 case SJUMP:
9257 //if((opcode2[i-1]&0x1E)==0) // BLTZ/BGEZ
9258 if((opcode2[i-1]&0x0E)==0) // BLTZ/BGEZ
9259 {
9260 alloc_cc(&current,i-1);
9261 dirty_reg(&current,CCREG);
9262 if(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]) {
9263 // The delay slot overwrote the branch condition
9264 // Delay slot goes after the test (in order)
9265 current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
9266 current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
9267 if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9268 current.u|=1;
9269 current.uu|=1;
9270 delayslot_alloc(&current,i);
9271 current.isconst=0;
9272 }
9273 else
9274 {
9275 current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
9276 current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
9277 // Alloc the branch condition register
9278 alloc_reg(&current,i-1,rs1[i-1]);
9279 if(!(current.is32>>rs1[i-1]&1))
9280 {
9281 alloc_reg64(&current,i-1,rs1[i-1]);
9282 }
9283 }
9284 memcpy(&branch_regs[i-1],&current,sizeof(current));
9285 branch_regs[i-1].isconst=0;
9286 branch_regs[i-1].wasconst=0;
9287 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9288 memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9289 }
9290 else
9291 // Alloc the delay slot in case the branch is taken
9292 if((opcode2[i-1]&0x1E)==2) // BLTZL/BGEZL
9293 {
9294 memcpy(&branch_regs[i-1],&current,sizeof(current));
9295 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9296 branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9297 if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9298 alloc_cc(&branch_regs[i-1],i);
9299 dirty_reg(&branch_regs[i-1],CCREG);
9300 delayslot_alloc(&branch_regs[i-1],i);
9301 branch_regs[i-1].isconst=0;
9302 alloc_reg(&current,i,CCREG); // Not taken path
9303 dirty_reg(&current,CCREG);
9304 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9305 }
9306 // FIXME: BLTZAL/BGEZAL
9307 if(opcode2[i-1]&0x10) { // BxxZAL
9308 alloc_reg(&branch_regs[i-1],i-1,31);
9309 dirty_reg(&branch_regs[i-1],31);
9310 branch_regs[i-1].is32|=1LL<<31;
9311 }
9312 break;
9313 case FJUMP:
9314 if(likely[i-1]==0) // BC1F/BC1T
9315 {
9316 alloc_cc(&current,i-1);
9317 dirty_reg(&current,CCREG);
9318 if(itype[i]==FCOMP) {
9319 // The delay slot overwrote the branch condition
9320 // Delay slot goes after the test (in order)
9321 delayslot_alloc(&current,i);
9322 current.isconst=0;
9323 }
9324 else
9325 {
9326 current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
9327 current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
9328 // Alloc the branch condition register
9329 alloc_reg(&current,i-1,FSREG);
9330 }
9331 memcpy(&branch_regs[i-1],&current,sizeof(current));
9332 memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9333 }
9334 else // BC1FL/BC1TL
9335 {
9336 // Alloc the delay slot in case the branch is taken
9337 memcpy(&branch_regs[i-1],&current,sizeof(current));
9338 branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9339 branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9340 if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9341 alloc_cc(&branch_regs[i-1],i);
9342 dirty_reg(&branch_regs[i-1],CCREG);
9343 delayslot_alloc(&branch_regs[i-1],i);
9344 branch_regs[i-1].isconst=0;
9345 alloc_reg(&current,i,CCREG); // Not taken path
9346 dirty_reg(&current,CCREG);
9347 memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9348 }
9349 break;
9350 }
9351
9352 if(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)
9353 {
9354 if(rt1[i-1]==31) // JAL/JALR
9355 {
9356 // Subroutine call will return here, don't alloc any registers
9357 current.is32=1;
9358 current.dirty=0;
9359 clear_all_regs(current.regmap);
9360 alloc_reg(&current,i,CCREG);
9361 dirty_reg(&current,CCREG);
9362 }
9363 else if(i+1<slen)
9364 {
9365 // Internal branch will jump here, match registers to caller
9366 current.is32=0x3FFFFFFFFLL;
9367 current.dirty=0;
9368 clear_all_regs(current.regmap);
9369 alloc_reg(&current,i,CCREG);
9370 dirty_reg(&current,CCREG);
9371 for(j=i-1;j>=0;j--)
9372 {
9373 if(ba[j]==start+i*4+4) {
9374 memcpy(current.regmap,branch_regs[j].regmap,sizeof(current.regmap));
9375 current.is32=branch_regs[j].is32;
9376 current.dirty=branch_regs[j].dirty;
9377 break;
9378 }
9379 }
9380 while(j>=0) {
9381 if(ba[j]==start+i*4+4) {
9382 for(hr=0;hr<HOST_REGS;hr++) {
9383 if(current.regmap[hr]!=branch_regs[j].regmap[hr]) {
9384 current.regmap[hr]=-1;
9385 }
9386 current.is32&=branch_regs[j].is32;
9387 current.dirty&=branch_regs[j].dirty;
9388 }
9389 }
9390 j--;
9391 }
9392 }
9393 }
9394 }
9395
9396 // Count cycles in between branches
9397 ccadj[i]=cc;
9398 if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP||itype[i]==SYSCALL||itype[i]==HLECALL))
9399 {
9400 cc=0;
9401 }
9402 else
9403 {
9404 cc++;
9405 }
9406
9407 flush_dirty_uppers(&current);
9408 if(!is_ds[i]) {
9409 regs[i].is32=current.is32;
9410 regs[i].dirty=current.dirty;
9411 regs[i].isconst=current.isconst;
9412 memcpy(constmap[i],current.constmap,sizeof(current.constmap));
9413 }
9414 for(hr=0;hr<HOST_REGS;hr++) {
9415 if(hr!=EXCLUDE_REG&&regs[i].regmap[hr]>=0) {
9416 if(regmap_pre[i][hr]!=regs[i].regmap[hr]) {
9417 regs[i].wasconst&=~(1<<hr);
9418 }
9419 }
9420 }
9421 if(current.regmap[HOST_BTREG]==BTREG) current.regmap[HOST_BTREG]=-1;
9422 }
9423
9424 /* Pass 4 - Cull unused host registers */
9425
9426 uint64_t nr=0;
9427
9428 for (i=slen-1;i>=0;i--)
9429 {
9430 int hr;
9431 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
9432 {
9433 if(ba[i]<start || ba[i]>=(start+slen*4))
9434 {
9435 // Branch out of this block, don't need anything
9436 nr=0;
9437 }
9438 else
9439 {
9440 // Internal branch
9441 // Need whatever matches the target
9442 nr=0;
9443 int t=(ba[i]-start)>>2;
9444 for(hr=0;hr<HOST_REGS;hr++)
9445 {
9446 if(regs[i].regmap_entry[hr]>=0) {
9447 if(regs[i].regmap_entry[hr]==regs[t].regmap_entry[hr]) nr|=1<<hr;
9448 }
9449 }
9450 }
9451 // Conditional branch may need registers for following instructions
9452 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
9453 {
9454 if(i<slen-2) {
9455 nr|=needed_reg[i+2];
9456 for(hr=0;hr<HOST_REGS;hr++)
9457 {
9458 if(regmap_pre[i+2][hr]>=0&&get_reg(regs[i+2].regmap_entry,regmap_pre[i+2][hr])<0) nr&=~(1<<hr);
9459 //if((regmap_entry[i+2][hr])>=0) if(!((nr>>hr)&1)) printf("%x-bogus(%d=%d)\n",start+i*4,hr,regmap_entry[i+2][hr]);
9460 }
9461 }
9462 }
9463 // Don't need stuff which is overwritten
9464 if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
9465 if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
9466 // Merge in delay slot
9467 for(hr=0;hr<HOST_REGS;hr++)
9468 {
9469 if(!likely[i]) {
9470 // These are overwritten unless the branch is "likely"
9471 // and the delay slot is nullified if not taken
9472 if(rt1[i+1]&&rt1[i+1]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9473 if(rt2[i+1]&&rt2[i+1]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9474 }
9475 if(us1[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9476 if(us2[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9477 if(rs1[i+1]==regmap_pre[i][hr]) nr|=1<<hr;
9478 if(rs2[i+1]==regmap_pre[i][hr]) nr|=1<<hr;
9479 if(us1[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9480 if(us2[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9481 if(rs1[i+1]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9482 if(rs2[i+1]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9483 if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1)) {
9484 if(dep1[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9485 if(dep2[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9486 }
9487 if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1)) {
9488 if(dep1[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9489 if(dep2[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9490 }
9491 if(itype[i+1]==STORE || itype[i+1]==STORELR || (opcode[i+1]&0x3b)==0x39 || (opcode[i+1]&0x3b)==0x3a) {
9492 if(regmap_pre[i][hr]==INVCP) nr|=1<<hr;
9493 if(regs[i].regmap_entry[hr]==INVCP) nr|=1<<hr;
9494 }
9495 }
9496 }
9497 else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
9498 {
9499 // SYSCALL instruction (software interrupt)
9500 nr=0;
9501 }
9502 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
9503 {
9504 // ERET instruction (return from interrupt)
9505 nr=0;
9506 }
9507 else // Non-branch
9508 {
9509 if(i<slen-1) {
9510 for(hr=0;hr<HOST_REGS;hr++) {
9511 if(regmap_pre[i+1][hr]>=0&&get_reg(regs[i+1].regmap_entry,regmap_pre[i+1][hr])<0) nr&=~(1<<hr);
9512 if(regs[i].regmap[hr]!=regmap_pre[i+1][hr]) nr&=~(1<<hr);
9513 if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
9514 if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
9515 }
9516 }
9517 }
9518 for(hr=0;hr<HOST_REGS;hr++)
9519 {
9520 // Overwritten registers are not needed
9521 if(rt1[i]&&rt1[i]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9522 if(rt2[i]&&rt2[i]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9523 if(FTEMP==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9524 // Source registers are needed
9525 if(us1[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9526 if(us2[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9527 if(rs1[i]==regmap_pre[i][hr]) nr|=1<<hr;
9528 if(rs2[i]==regmap_pre[i][hr]) nr|=1<<hr;
9529 if(us1[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9530 if(us2[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9531 if(rs1[i]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9532 if(rs2[i]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9533 if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1)) {
9534 if(dep1[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9535 if(dep1[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9536 }
9537 if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1)) {
9538 if(dep2[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9539 if(dep2[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9540 }
9541 if(itype[i]==STORE || itype[i]==STORELR || (opcode[i]&0x3b)==0x39 || (opcode[i]&0x3b)==0x3a) {
9542 if(regmap_pre[i][hr]==INVCP) nr|=1<<hr;
9543 if(regs[i].regmap_entry[hr]==INVCP) nr|=1<<hr;
9544 }
9545 // Don't store a register immediately after writing it,
9546 // may prevent dual-issue.
9547 // But do so if this is a branch target, otherwise we
9548 // might have to load the register before the branch.
9549 if(i>0&&!bt[i]&&((regs[i].wasdirty>>hr)&1)) {
9550 if((regmap_pre[i][hr]>0&&regmap_pre[i][hr]<64&&!((unneeded_reg[i]>>regmap_pre[i][hr])&1)) ||
9551 (regmap_pre[i][hr]>64&&!((unneeded_reg_upper[i]>>(regmap_pre[i][hr]&63))&1)) ) {
9552 if(rt1[i-1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9553 if(rt2[i-1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9554 }
9555 if((regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64&&!((unneeded_reg[i]>>regs[i].regmap_entry[hr])&1)) ||
9556 (regs[i].regmap_entry[hr]>64&&!((unneeded_reg_upper[i]>>(regs[i].regmap_entry[hr]&63))&1)) ) {
9557 if(rt1[i-1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9558 if(rt2[i-1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9559 }
9560 }
9561 }
9562 // Cycle count is needed at branches. Assume it is needed at the target too.
9563 if(i==0||bt[i]||itype[i]==CJUMP||itype[i]==FJUMP||itype[i]==SPAN) {
9564 if(regmap_pre[i][HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
9565 if(regs[i].regmap_entry[HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
9566 }
9567 // Save it
9568 needed_reg[i]=nr;
9569
9570 // Deallocate unneeded registers
9571 for(hr=0;hr<HOST_REGS;hr++)
9572 {
9573 if(!((nr>>hr)&1)) {
9574 if(regs[i].regmap_entry[hr]!=CCREG) regs[i].regmap_entry[hr]=-1;
9575 if((regs[i].regmap[hr]&63)!=rs1[i] && (regs[i].regmap[hr]&63)!=rs2[i] &&
9576 (regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
9577 (regs[i].regmap[hr]&63)!=PTEMP && (regs[i].regmap[hr]&63)!=CCREG)
9578 {
9579 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
9580 {
9581 if(likely[i]) {
9582 regs[i].regmap[hr]=-1;
9583 regs[i].isconst&=~(1<<hr);
9584 if(i<slen-2) regmap_pre[i+2][hr]=-1;
9585 }
9586 }
9587 }
9588 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
9589 {
9590 int d1=0,d2=0,map=0,temp=0;
9591 if(get_reg(regs[i].regmap,rt1[i+1]|64)>=0||get_reg(branch_regs[i].regmap,rt1[i+1]|64)>=0)
9592 {
9593 d1=dep1[i+1];
9594 d2=dep2[i+1];
9595 }
9596 if(using_tlb) {
9597 if(itype[i+1]==LOAD || itype[i+1]==LOADLR ||
9598 itype[i+1]==STORE || itype[i+1]==STORELR ||
9599 itype[i+1]==C1LS || itype[i+1]==C2LS)
9600 map=TLREG;
9601 } else
9602 if(itype[i+1]==STORE || itype[i+1]==STORELR ||
9603 (opcode[i+1]&0x3b)==0x39 || (opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1 || SWC2/SDC2
9604 map=INVCP;
9605 }
9606 if(itype[i+1]==LOADLR || itype[i+1]==STORELR ||
9607 itype[i+1]==C1LS || itype[i+1]==C2LS)
9608 temp=FTEMP;
9609 if((regs[i].regmap[hr]&63)!=rs1[i] && (regs[i].regmap[hr]&63)!=rs2[i] &&
9610 (regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
9611 (regs[i].regmap[hr]&63)!=rt1[i+1] && (regs[i].regmap[hr]&63)!=rt2[i+1] &&
9612 (regs[i].regmap[hr]^64)!=us1[i+1] && (regs[i].regmap[hr]^64)!=us2[i+1] &&
9613 (regs[i].regmap[hr]^64)!=d1 && (regs[i].regmap[hr]^64)!=d2 &&
9614 regs[i].regmap[hr]!=rs1[i+1] && regs[i].regmap[hr]!=rs2[i+1] &&
9615 (regs[i].regmap[hr]&63)!=temp && regs[i].regmap[hr]!=PTEMP &&
9616 regs[i].regmap[hr]!=RHASH && regs[i].regmap[hr]!=RHTBL &&
9617 regs[i].regmap[hr]!=RTEMP && regs[i].regmap[hr]!=CCREG &&
9618 regs[i].regmap[hr]!=map )
9619 {
9620 regs[i].regmap[hr]=-1;
9621 regs[i].isconst&=~(1<<hr);
9622 if((branch_regs[i].regmap[hr]&63)!=rs1[i] && (branch_regs[i].regmap[hr]&63)!=rs2[i] &&
9623 (branch_regs[i].regmap[hr]&63)!=rt1[i] && (branch_regs[i].regmap[hr]&63)!=rt2[i] &&
9624 (branch_regs[i].regmap[hr]&63)!=rt1[i+1] && (branch_regs[i].regmap[hr]&63)!=rt2[i+1] &&
9625 (branch_regs[i].regmap[hr]^64)!=us1[i+1] && (branch_regs[i].regmap[hr]^64)!=us2[i+1] &&
9626 (branch_regs[i].regmap[hr]^64)!=d1 && (branch_regs[i].regmap[hr]^64)!=d2 &&
9627 branch_regs[i].regmap[hr]!=rs1[i+1] && branch_regs[i].regmap[hr]!=rs2[i+1] &&
9628 (branch_regs[i].regmap[hr]&63)!=temp && branch_regs[i].regmap[hr]!=PTEMP &&
9629 branch_regs[i].regmap[hr]!=RHASH && branch_regs[i].regmap[hr]!=RHTBL &&
9630 branch_regs[i].regmap[hr]!=RTEMP && branch_regs[i].regmap[hr]!=CCREG &&
9631 branch_regs[i].regmap[hr]!=map)
9632 {
9633 branch_regs[i].regmap[hr]=-1;
9634 branch_regs[i].regmap_entry[hr]=-1;
9635 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
9636 {
9637 if(!likely[i]&&i<slen-2) {
9638 regmap_pre[i+2][hr]=-1;
9639 }
9640 }
9641 }
9642 }
9643 }
9644 else
9645 {
9646 // Non-branch
9647 if(i>0)
9648 {
9649 int d1=0,d2=0,map=-1,temp=-1;
9650 if(get_reg(regs[i].regmap,rt1[i]|64)>=0)
9651 {
9652 d1=dep1[i];
9653 d2=dep2[i];
9654 }
9655 if(using_tlb) {
9656 if(itype[i]==LOAD || itype[i]==LOADLR ||
9657 itype[i]==STORE || itype[i]==STORELR ||
9658 itype[i]==C1LS || itype[i]==C2LS)
9659 map=TLREG;
9660 } else if(itype[i]==STORE || itype[i]==STORELR ||
9661 (opcode[i]&0x3b)==0x39 || (opcode[i]&0x3b)==0x3a) { // SWC1/SDC1 || SWC2/SDC2
9662 map=INVCP;
9663 }
9664 if(itype[i]==LOADLR || itype[i]==STORELR ||
9665 itype[i]==C1LS || itype[i]==C2LS)
9666 temp=FTEMP;
9667 if((regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
9668 (regs[i].regmap[hr]^64)!=us1[i] && (regs[i].regmap[hr]^64)!=us2[i] &&
9669 (regs[i].regmap[hr]^64)!=d1 && (regs[i].regmap[hr]^64)!=d2 &&
9670 regs[i].regmap[hr]!=rs1[i] && regs[i].regmap[hr]!=rs2[i] &&
9671 (regs[i].regmap[hr]&63)!=temp && regs[i].regmap[hr]!=map &&
9672 (itype[i]!=SPAN||regs[i].regmap[hr]!=CCREG))
9673 {
9674 if(i<slen-1&&!is_ds[i]) {
9675 if(regmap_pre[i+1][hr]!=-1 || regs[i].regmap[hr]!=-1)
9676 if(regmap_pre[i+1][hr]!=regs[i].regmap[hr])
9677 if(regs[i].regmap[hr]<64||!((regs[i].was32>>(regs[i].regmap[hr]&63))&1))
9678 {
9679 printf("fail: %x (%d %d!=%d)\n",start+i*4,hr,regmap_pre[i+1][hr],regs[i].regmap[hr]);
9680 assert(regmap_pre[i+1][hr]==regs[i].regmap[hr]);
9681 }
9682 regmap_pre[i+1][hr]=-1;
9683 if(regs[i+1].regmap_entry[hr]==CCREG) regs[i+1].regmap_entry[hr]=-1;
9684 }
9685 regs[i].regmap[hr]=-1;
9686 regs[i].isconst&=~(1<<hr);
9687 }
9688 }
9689 }
9690 }
9691 }
9692 }
9693
9694 /* Pass 5 - Pre-allocate registers */
9695
9696 // If a register is allocated during a loop, try to allocate it for the
9697 // entire loop, if possible. This avoids loading/storing registers
9698 // inside of the loop.
9699
9700 signed char f_regmap[HOST_REGS];
9701 clear_all_regs(f_regmap);
9702 for(i=0;i<slen-1;i++)
9703 {
9704 if(itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
9705 {
9706 if(ba[i]>=start && ba[i]<(start+i*4))
9707 if(itype[i+1]==NOP||itype[i+1]==MOV||itype[i+1]==ALU
9708 ||itype[i+1]==SHIFTIMM||itype[i+1]==IMM16||itype[i+1]==LOAD
9709 ||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS
9710 ||itype[i+1]==SHIFT||itype[i+1]==COP1||itype[i+1]==FLOAT
9711 ||itype[i+1]==FCOMP||itype[i+1]==FCONV
9712 ||itype[i+1]==COP2||itype[i+1]==C2LS||itype[i+1]==C2OP)
9713 {
9714 int t=(ba[i]-start)>>2;
9715 if(t>0&&(itype[t-1]!=UJUMP&&itype[t-1]!=RJUMP&&itype[t-1]!=CJUMP&&itype[t-1]!=SJUMP&&itype[t-1]!=FJUMP)) // loop_preload can't handle jumps into delay slots
9716 if(t<2||(itype[t-2]!=UJUMP)) // call/ret assumes no registers allocated
9717 for(hr=0;hr<HOST_REGS;hr++)
9718 {
9719 if(regs[i].regmap[hr]>64) {
9720 if(!((regs[i].dirty>>hr)&1))
9721 f_regmap[hr]=regs[i].regmap[hr];
9722 else f_regmap[hr]=-1;
9723 }
9724 else if(regs[i].regmap[hr]>=0) {
9725 if(f_regmap[hr]!=regs[i].regmap[hr]) {
9726 // dealloc old register
9727 int n;
9728 for(n=0;n<HOST_REGS;n++)
9729 {
9730 if(f_regmap[n]==regs[i].regmap[hr]) {f_regmap[n]=-1;}
9731 }
9732 // and alloc new one
9733 f_regmap[hr]=regs[i].regmap[hr];
9734 }
9735 }
9736 if(branch_regs[i].regmap[hr]>64) {
9737 if(!((branch_regs[i].dirty>>hr)&1))
9738 f_regmap[hr]=branch_regs[i].regmap[hr];
9739 else f_regmap[hr]=-1;
9740 }
9741 else if(branch_regs[i].regmap[hr]>=0) {
9742 if(f_regmap[hr]!=branch_regs[i].regmap[hr]) {
9743 // dealloc old register
9744 int n;
9745 for(n=0;n<HOST_REGS;n++)
9746 {
9747 if(f_regmap[n]==branch_regs[i].regmap[hr]) {f_regmap[n]=-1;}
9748 }
9749 // and alloc new one
9750 f_regmap[hr]=branch_regs[i].regmap[hr];
9751 }
9752 }
9753 if(itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS
9754 ||itype[i+1]==SHIFT||itype[i+1]==COP1||itype[i+1]==FLOAT
9755 ||itype[i+1]==FCOMP||itype[i+1]==FCONV
9756 ||itype[i+1]==COP2||itype[i+1]==C2LS||itype[i+1]==C2OP)
9757 {
9758 // Test both in case the delay slot is ooo,
9759 // could be done better...
9760 if(count_free_regs(branch_regs[i].regmap)<2
9761 ||count_free_regs(regs[i].regmap)<2)
9762 f_regmap[hr]=branch_regs[i].regmap[hr];
9763 }
9764 // Avoid dirty->clean transition
9765 // #ifdef DESTRUCTIVE_WRITEBACK here?
9766 if(t>0) if(get_reg(regmap_pre[t],f_regmap[hr])>=0) if((regs[t].wasdirty>>get_reg(regmap_pre[t],f_regmap[hr]))&1) f_regmap[hr]=-1;
9767 if(f_regmap[hr]>0) {
9768 if(regs[t].regmap_entry[hr]<0) {
9769 int r=f_regmap[hr];
9770 for(j=t;j<=i;j++)
9771 {
9772 //printf("Test %x -> %x, %x %d/%d\n",start+i*4,ba[i],start+j*4,hr,r);
9773 if(r<34&&((unneeded_reg[j]>>r)&1)) break;
9774 if(r>63&&((unneeded_reg_upper[j]>>(r&63))&1)) break;
9775 if(r>63) {
9776 // NB This can exclude the case where the upper-half
9777 // register is lower numbered than the lower-half
9778 // register. Not sure if it's worth fixing...
9779 if(get_reg(regs[j].regmap,r&63)<0) break;
9780 if(regs[j].is32&(1LL<<(r&63))) break;
9781 }
9782 if(regs[j].regmap[hr]==f_regmap[hr]&&(f_regmap[hr]&63)<TEMPREG) {
9783 //printf("Hit %x -> %x, %x %d/%d\n",start+i*4,ba[i],start+j*4,hr,r);
9784 int k;
9785 if(regs[i].regmap[hr]==-1&&branch_regs[i].regmap[hr]==-1) {
9786 if(get_reg(regs[i+2].regmap,f_regmap[hr])>=0) break;
9787 if(r>63) {
9788 if(get_reg(regs[i].regmap,r&63)<0) break;
9789 if(get_reg(branch_regs[i].regmap,r&63)<0) break;
9790 }
9791 k=i;
9792 while(k>1&&regs[k-1].regmap[hr]==-1) {
9793 if(itype[k-1]==STORE||itype[k-1]==STORELR
9794 ||itype[k-1]==C1LS||itype[k-1]==SHIFT||itype[k-1]==COP1
9795 ||itype[k-1]==FLOAT||itype[k-1]==FCONV||itype[k-1]==FCOMP
9796 ||itype[k-1]==COP2||itype[k-1]==C2LS||itype[k-1]==C2OP) {
9797 if(count_free_regs(regs[k-1].regmap)<2) {
9798 //printf("no free regs for store %x\n",start+(k-1)*4);
9799 break;
9800 }
9801 }
9802 else
9803 if(itype[k-1]!=NOP&&itype[k-1]!=MOV&&itype[k-1]!=ALU&&itype[k-1]!=SHIFTIMM&&itype[k-1]!=IMM16&&itype[k-1]!=LOAD) break;
9804 if(get_reg(regs[k-1].regmap,f_regmap[hr])>=0) {
9805 //printf("no-match due to different register\n");
9806 break;
9807 }
9808 if(itype[k-2]==UJUMP||itype[k-2]==RJUMP||itype[k-2]==CJUMP||itype[k-2]==SJUMP||itype[k-2]==FJUMP) {
9809 //printf("no-match due to branch\n");
9810 break;
9811 }
9812 // call/ret fast path assumes no registers allocated
9813 if(k>2&&(itype[k-3]==UJUMP||itype[k-3]==RJUMP)) {
9814 break;
9815 }
9816 if(r>63) {
9817 // NB This can exclude the case where the upper-half
9818 // register is lower numbered than the lower-half
9819 // register. Not sure if it's worth fixing...
9820 if(get_reg(regs[k-1].regmap,r&63)<0) break;
9821 if(regs[k-1].is32&(1LL<<(r&63))) break;
9822 }
9823 k--;
9824 }
9825 if(i<slen-1) {
9826 if((regs[k].is32&(1LL<<f_regmap[hr]))!=
9827 (regs[i+2].was32&(1LL<<f_regmap[hr]))) {
9828 //printf("bad match after branch\n");
9829 break;
9830 }
9831 }
9832 if(regs[k-1].regmap[hr]==f_regmap[hr]&&regmap_pre[k][hr]==f_regmap[hr]) {
9833 //printf("Extend r%d, %x ->\n",hr,start+k*4);
9834 while(k<i) {
9835 regs[k].regmap_entry[hr]=f_regmap[hr];
9836 regs[k].regmap[hr]=f_regmap[hr];
9837 regmap_pre[k+1][hr]=f_regmap[hr];
9838 regs[k].wasdirty&=~(1<<hr);
9839 regs[k].dirty&=~(1<<hr);
9840 regs[k].wasdirty|=(1<<hr)&regs[k-1].dirty;
9841 regs[k].dirty|=(1<<hr)&regs[k].wasdirty;
9842 regs[k].wasconst&=~(1<<hr);
9843 regs[k].isconst&=~(1<<hr);
9844 k++;
9845 }
9846 }
9847 else {
9848 //printf("Fail Extend r%d, %x ->\n",hr,start+k*4);
9849 break;
9850 }
9851 assert(regs[i-1].regmap[hr]==f_regmap[hr]);
9852 if(regs[i-1].regmap[hr]==f_regmap[hr]&&regmap_pre[i][hr]==f_regmap[hr]) {
9853 //printf("OK fill %x (r%d)\n",start+i*4,hr);
9854 regs[i].regmap_entry[hr]=f_regmap[hr];
9855 regs[i].regmap[hr]=f_regmap[hr];
9856 regs[i].wasdirty&=~(1<<hr);
9857 regs[i].dirty&=~(1<<hr);
9858 regs[i].wasdirty|=(1<<hr)&regs[i-1].dirty;
9859 regs[i].dirty|=(1<<hr)&regs[i-1].dirty;
9860 regs[i].wasconst&=~(1<<hr);
9861 regs[i].isconst&=~(1<<hr);
9862 branch_regs[i].regmap_entry[hr]=f_regmap[hr];
9863 branch_regs[i].wasdirty&=~(1<<hr);
9864 branch_regs[i].wasdirty|=(1<<hr)&regs[i].dirty;
9865 branch_regs[i].regmap[hr]=f_regmap[hr];
9866 branch_regs[i].dirty&=~(1<<hr);
9867 branch_regs[i].dirty|=(1<<hr)&regs[i].dirty;
9868 branch_regs[i].wasconst&=~(1<<hr);
9869 branch_regs[i].isconst&=~(1<<hr);
9870 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000) {
9871 regmap_pre[i+2][hr]=f_regmap[hr];
9872 regs[i+2].wasdirty&=~(1<<hr);
9873 regs[i+2].wasdirty|=(1<<hr)&regs[i].dirty;
9874 assert((branch_regs[i].is32&(1LL<<f_regmap[hr]))==
9875 (regs[i+2].was32&(1LL<<f_regmap[hr])));
9876 }
9877 }
9878 }
9879 for(k=t;k<j;k++) {
9880 regs[k].regmap_entry[hr]=f_regmap[hr];
9881 regs[k].regmap[hr]=f_regmap[hr];
9882 regmap_pre[k+1][hr]=f_regmap[hr];
9883 regs[k+1].wasdirty&=~(1<<hr);
9884 regs[k].dirty&=~(1<<hr);
9885 regs[k].wasconst&=~(1<<hr);
9886 regs[k].isconst&=~(1<<hr);
9887 }
9888 if(regs[j].regmap[hr]==f_regmap[hr])
9889 regs[j].regmap_entry[hr]=f_regmap[hr];
9890 break;
9891 }
9892 if(j==i) break;
9893 if(regs[j].regmap[hr]>=0)
9894 break;
9895 if(get_reg(regs[j].regmap,f_regmap[hr])>=0) {
9896 //printf("no-match due to different register\n");
9897 break;
9898 }
9899 if((regs[j+1].is32&(1LL<<f_regmap[hr]))!=(regs[j].is32&(1LL<<f_regmap[hr]))) {
9900 //printf("32/64 mismatch %x %d\n",start+j*4,hr);
9901 break;
9902 }
9903 if(itype[j]==STORE||itype[j]==STORELR||itype[j]==C1LS
9904 ||itype[j]==SHIFT||itype[j]==COP1||itype[j]==FLOAT
9905 ||itype[j]==FCOMP||itype[j]==FCONV
9906 ||itype[j]==COP2||itype[j]==C2LS||itype[j]==C2OP) {
9907 if(count_free_regs(regs[j].regmap)<2) {
9908 //printf("No free regs for store %x\n",start+j*4);
9909 break;
9910 }
9911 }
9912 else if(itype[j]!=NOP&&itype[j]!=MOV&&itype[j]!=ALU&&itype[j]!=SHIFTIMM&&itype[j]!=IMM16&&itype[j]!=LOAD) break;
9913 if(f_regmap[hr]>=64) {
9914 if(regs[j].is32&(1LL<<(f_regmap[hr]&63))) {
9915 break;
9916 }
9917 else
9918 {
9919 if(get_reg(regs[j].regmap,f_regmap[hr]&63)<0) {
9920 break;
9921 }
9922 }
9923 }
9924 }
9925 }
9926 }
9927 }
9928 }
9929 }else{
9930 int count=0;
9931 for(hr=0;hr<HOST_REGS;hr++)
9932 {
9933 if(hr!=EXCLUDE_REG) {
9934 if(regs[i].regmap[hr]>64) {
9935 if(!((regs[i].dirty>>hr)&1))
9936 f_regmap[hr]=regs[i].regmap[hr];
9937 }
9938 else if(regs[i].regmap[hr]>=0) {
9939 if(f_regmap[hr]!=regs[i].regmap[hr]) {
9940 // dealloc old register
9941 int n;
9942 for(n=0;n<HOST_REGS;n++)
9943 {
9944 if(f_regmap[n]==regs[i].regmap[hr]) {f_regmap[n]=-1;}
9945 }
9946 // and alloc new one
9947 f_regmap[hr]=regs[i].regmap[hr];
9948 }
9949 }
9950 else if(regs[i].regmap[hr]<0) count++;
9951 }
9952 }
9953 // Try to restore cycle count at branch targets
9954 if(bt[i]) {
9955 for(j=i;j<slen-1;j++) {
9956 if(regs[j].regmap[HOST_CCREG]!=-1) break;
9957 if(itype[j]==STORE||itype[j]==STORELR||itype[j]==C1LS
9958 ||itype[j]==SHIFT||itype[j]==COP1||itype[j]==FLOAT
9959 ||itype[j]==FCOMP||itype[j]==FCONV
9960 ||itype[j]==COP2||itype[j]==C2LS||itype[j]==C2OP) {
9961 if(count_free_regs(regs[j].regmap)<2) {
9962 //printf("no free regs for store %x\n",start+j*4);
9963 break;
9964 }
9965 }
9966 else
9967 if(itype[j]!=NOP&&itype[j]!=MOV&&itype[j]!=ALU&&itype[j]!=SHIFTIMM&&itype[j]!=IMM16&&itype[j]!=LOAD) break;
9968 }
9969 if(regs[j].regmap[HOST_CCREG]==CCREG) {
9970 int k=i;
9971 //printf("Extend CC, %x -> %x\n",start+k*4,start+j*4);
9972 while(k<j) {
9973 regs[k].regmap_entry[HOST_CCREG]=CCREG;
9974 regs[k].regmap[HOST_CCREG]=CCREG;
9975 regmap_pre[k+1][HOST_CCREG]=CCREG;
9976 regs[k+1].wasdirty|=1<<HOST_CCREG;
9977 regs[k].dirty|=1<<HOST_CCREG;
9978 regs[k].wasconst&=~(1<<HOST_CCREG);
9979 regs[k].isconst&=~(1<<HOST_CCREG);
9980 k++;
9981 }
9982 regs[j].regmap_entry[HOST_CCREG]=CCREG;
9983 }
9984 // Work backwards from the branch target
9985 if(j>i&&f_regmap[HOST_CCREG]==CCREG)
9986 {
9987 //printf("Extend backwards\n");
9988 int k;
9989 k=i;
9990 while(regs[k-1].regmap[HOST_CCREG]==-1) {
9991 if(itype[k-1]==STORE||itype[k-1]==STORELR||itype[k-1]==C1LS
9992 ||itype[k-1]==SHIFT||itype[k-1]==COP1||itype[k-1]==FLOAT
9993 ||itype[k-1]==FCONV||itype[k-1]==FCOMP
9994 ||itype[k-1]==COP2||itype[k-1]==C2LS||itype[k-1]==C2OP) {
9995 if(count_free_regs(regs[k-1].regmap)<2) {
9996 //printf("no free regs for store %x\n",start+(k-1)*4);
9997 break;
9998 }
9999 }
10000 else
10001 if(itype[k-1]!=NOP&&itype[k-1]!=MOV&&itype[k-1]!=ALU&&itype[k-1]!=SHIFTIMM&&itype[k-1]!=IMM16&&itype[k-1]!=LOAD) break;
10002 k--;
10003 }
10004 if(regs[k-1].regmap[HOST_CCREG]==CCREG) {
10005 //printf("Extend CC, %x ->\n",start+k*4);
10006 while(k<=i) {
10007 regs[k].regmap_entry[HOST_CCREG]=CCREG;
10008 regs[k].regmap[HOST_CCREG]=CCREG;
10009 regmap_pre[k+1][HOST_CCREG]=CCREG;
10010 regs[k+1].wasdirty|=1<<HOST_CCREG;
10011 regs[k].dirty|=1<<HOST_CCREG;
10012 regs[k].wasconst&=~(1<<HOST_CCREG);
10013 regs[k].isconst&=~(1<<HOST_CCREG);
10014 k++;
10015 }
10016 }
10017 else {
10018 //printf("Fail Extend CC, %x ->\n",start+k*4);
10019 }
10020 }
10021 }
10022 if(itype[i]!=STORE&&itype[i]!=STORELR&&itype[i]!=C1LS&&itype[i]!=SHIFT&&
10023 itype[i]!=NOP&&itype[i]!=MOV&&itype[i]!=ALU&&itype[i]!=SHIFTIMM&&
10024 itype[i]!=IMM16&&itype[i]!=LOAD&&itype[i]!=COP1&&itype[i]!=FLOAT&&
10025 itype[i]!=FCONV&&itype[i]!=FCOMP&&
10026 itype[i]!=COP2&&itype[i]!=C2LS&&itype[i]!=C2OP)
10027 {
10028 memcpy(f_regmap,regs[i].regmap,sizeof(f_regmap));
10029 }
10030 }
10031 }
10032
10033 // This allocates registers (if possible) one instruction prior
10034 // to use, which can avoid a load-use penalty on certain CPUs.
10035 for(i=0;i<slen-1;i++)
10036 {
10037 if(!i||(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP))
10038 {
10039 if(!bt[i+1])
10040 {
10041 if(itype[i]==ALU||itype[i]==MOV||itype[i]==LOAD||itype[i]==SHIFTIMM||itype[i]==IMM16
10042 ||((itype[i]==COP1||itype[i]==COP2)&&opcode2[i]<3))
10043 {
10044 if(rs1[i+1]) {
10045 if((hr=get_reg(regs[i+1].regmap,rs1[i+1]))>=0)
10046 {
10047 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10048 {
10049 regs[i].regmap[hr]=regs[i+1].regmap[hr];
10050 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
10051 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
10052 regs[i].isconst&=~(1<<hr);
10053 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10054 constmap[i][hr]=constmap[i+1][hr];
10055 regs[i+1].wasdirty&=~(1<<hr);
10056 regs[i].dirty&=~(1<<hr);
10057 }
10058 }
10059 }
10060 if(rs2[i+1]) {
10061 if((hr=get_reg(regs[i+1].regmap,rs2[i+1]))>=0)
10062 {
10063 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10064 {
10065 regs[i].regmap[hr]=regs[i+1].regmap[hr];
10066 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
10067 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
10068 regs[i].isconst&=~(1<<hr);
10069 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10070 constmap[i][hr]=constmap[i+1][hr];
10071 regs[i+1].wasdirty&=~(1<<hr);
10072 regs[i].dirty&=~(1<<hr);
10073 }
10074 }
10075 }
10076 if(itype[i+1]==LOAD&&rs1[i+1]&&get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10077 if((hr=get_reg(regs[i+1].regmap,rt1[i+1]))>=0)
10078 {
10079 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10080 {
10081 regs[i].regmap[hr]=rs1[i+1];
10082 regmap_pre[i+1][hr]=rs1[i+1];
10083 regs[i+1].regmap_entry[hr]=rs1[i+1];
10084 regs[i].isconst&=~(1<<hr);
10085 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10086 constmap[i][hr]=constmap[i+1][hr];
10087 regs[i+1].wasdirty&=~(1<<hr);
10088 regs[i].dirty&=~(1<<hr);
10089 }
10090 }
10091 }
10092 if(lt1[i+1]&&get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10093 if((hr=get_reg(regs[i+1].regmap,rt1[i+1]))>=0)
10094 {
10095 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10096 {
10097 regs[i].regmap[hr]=rs1[i+1];
10098 regmap_pre[i+1][hr]=rs1[i+1];
10099 regs[i+1].regmap_entry[hr]=rs1[i+1];
10100 regs[i].isconst&=~(1<<hr);
10101 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10102 constmap[i][hr]=constmap[i+1][hr];
10103 regs[i+1].wasdirty&=~(1<<hr);
10104 regs[i].dirty&=~(1<<hr);
10105 }
10106 }
10107 }
10108 #ifndef HOST_IMM_ADDR32
10109 if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS||itype[i+1]==C2LS) {
10110 hr=get_reg(regs[i+1].regmap,TLREG);
10111 if(hr>=0) {
10112 int sr=get_reg(regs[i+1].regmap,rs1[i+1]);
10113 if(sr>=0&&((regs[i+1].wasconst>>sr)&1)) {
10114 int nr;
10115 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10116 {
10117 regs[i].regmap[hr]=MGEN1+((i+1)&1);
10118 regmap_pre[i+1][hr]=MGEN1+((i+1)&1);
10119 regs[i+1].regmap_entry[hr]=MGEN1+((i+1)&1);
10120 regs[i].isconst&=~(1<<hr);
10121 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10122 constmap[i][hr]=constmap[i+1][hr];
10123 regs[i+1].wasdirty&=~(1<<hr);
10124 regs[i].dirty&=~(1<<hr);
10125 }
10126 else if((nr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1))>=0)
10127 {
10128 // move it to another register
10129 regs[i+1].regmap[hr]=-1;
10130 regmap_pre[i+2][hr]=-1;
10131 regs[i+1].regmap[nr]=TLREG;
10132 regmap_pre[i+2][nr]=TLREG;
10133 regs[i].regmap[nr]=MGEN1+((i+1)&1);
10134 regmap_pre[i+1][nr]=MGEN1+((i+1)&1);
10135 regs[i+1].regmap_entry[nr]=MGEN1+((i+1)&1);
10136 regs[i].isconst&=~(1<<nr);
10137 regs[i+1].isconst&=~(1<<nr);
10138 regs[i].dirty&=~(1<<nr);
10139 regs[i+1].wasdirty&=~(1<<nr);
10140 regs[i+1].dirty&=~(1<<nr);
10141 regs[i+2].wasdirty&=~(1<<nr);
10142 }
10143 }
10144 }
10145 }
10146 #endif
10147 if(itype[i+1]==STORE||itype[i+1]==STORELR
10148 ||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SB/SH/SW/SD/SWC1/SDC1/SWC2/SDC2
10149 if(get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10150 hr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1);
10151 if(hr<0) hr=get_reg(regs[i+1].regmap,-1);
10152 else {regs[i+1].regmap[hr]=AGEN1+((i+1)&1);regs[i+1].isconst&=~(1<<hr);}
10153 assert(hr>=0);
10154 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10155 {
10156 regs[i].regmap[hr]=rs1[i+1];
10157 regmap_pre[i+1][hr]=rs1[i+1];
10158 regs[i+1].regmap_entry[hr]=rs1[i+1];
10159 regs[i].isconst&=~(1<<hr);
10160 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10161 constmap[i][hr]=constmap[i+1][hr];
10162 regs[i+1].wasdirty&=~(1<<hr);
10163 regs[i].dirty&=~(1<<hr);
10164 }
10165 }
10166 }
10167 if(itype[i+1]==LOADLR||(opcode[i+1]&0x3b)==0x31||(opcode[i+1]&0x3b)==0x32) { // LWC1/LDC1, LWC2/LDC2
10168 if(get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10169 int nr;
10170 hr=get_reg(regs[i+1].regmap,FTEMP);
10171 assert(hr>=0);
10172 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10173 {
10174 regs[i].regmap[hr]=rs1[i+1];
10175 regmap_pre[i+1][hr]=rs1[i+1];
10176 regs[i+1].regmap_entry[hr]=rs1[i+1];
10177 regs[i].isconst&=~(1<<hr);
10178 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10179 constmap[i][hr]=constmap[i+1][hr];
10180 regs[i+1].wasdirty&=~(1<<hr);
10181 regs[i].dirty&=~(1<<hr);
10182 }
10183 else if((nr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1))>=0)
10184 {
10185 // move it to another register
10186 regs[i+1].regmap[hr]=-1;
10187 regmap_pre[i+2][hr]=-1;
10188 regs[i+1].regmap[nr]=FTEMP;
10189 regmap_pre[i+2][nr]=FTEMP;
10190 regs[i].regmap[nr]=rs1[i+1];
10191 regmap_pre[i+1][nr]=rs1[i+1];
10192 regs[i+1].regmap_entry[nr]=rs1[i+1];
10193 regs[i].isconst&=~(1<<nr);
10194 regs[i+1].isconst&=~(1<<nr);
10195 regs[i].dirty&=~(1<<nr);
10196 regs[i+1].wasdirty&=~(1<<nr);
10197 regs[i+1].dirty&=~(1<<nr);
10198 regs[i+2].wasdirty&=~(1<<nr);
10199 }
10200 }
10201 }
10202 if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR/*||itype[i+1]==C1LS||||itype[i+1]==C2LS*/) {
10203 if(itype[i+1]==LOAD)
10204 hr=get_reg(regs[i+1].regmap,rt1[i+1]);
10205 if(itype[i+1]==LOADLR||(opcode[i+1]&0x3b)==0x31||(opcode[i+1]&0x3b)==0x32) // LWC1/LDC1, LWC2/LDC2
10206 hr=get_reg(regs[i+1].regmap,FTEMP);
10207 if(itype[i+1]==STORE||itype[i+1]==STORELR||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1/SWC2/SDC2
10208 hr=get_reg(regs[i+1].regmap,AGEN1+((i+1)&1));
10209 if(hr<0) hr=get_reg(regs[i+1].regmap,-1);
10210 }
10211 if(hr>=0&&regs[i].regmap[hr]<0) {
10212 int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
10213 if(rs>=0&&((regs[i+1].wasconst>>rs)&1)) {
10214 regs[i].regmap[hr]=AGEN1+((i+1)&1);
10215 regmap_pre[i+1][hr]=AGEN1+((i+1)&1);
10216 regs[i+1].regmap_entry[hr]=AGEN1+((i+1)&1);
10217 regs[i].isconst&=~(1<<hr);
10218 regs[i+1].wasdirty&=~(1<<hr);
10219 regs[i].dirty&=~(1<<hr);
10220 }
10221 }
10222 }
10223 }
10224 }
10225 }
10226 }
10227
10228 /* Pass 6 - Optimize clean/dirty state */
10229 clean_registers(0,slen-1,1);
10230
10231 /* Pass 7 - Identify 32-bit registers */
10232
10233 provisional_r32();
10234
10235 u_int r32=0;
10236
10237 for (i=slen-1;i>=0;i--)
10238 {
10239 int hr;
10240 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
10241 {
10242 if(ba[i]<start || ba[i]>=(start+slen*4))
10243 {
10244 // Branch out of this block, don't need anything
10245 r32=0;
10246 }
10247 else
10248 {
10249 // Internal branch
10250 // Need whatever matches the target
10251 // (and doesn't get overwritten by the delay slot instruction)
10252 r32=0;
10253 int t=(ba[i]-start)>>2;
10254 if(ba[i]>start+i*4) {
10255 // Forward branch
10256 if(!(requires_32bit[t]&~regs[i].was32))
10257 r32|=requires_32bit[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
10258 }else{
10259 // Backward branch
10260 //if(!(regs[t].was32&~unneeded_reg_upper[t]&~regs[i].was32))
10261 // r32|=regs[t].was32&~unneeded_reg_upper[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
10262 if(!(pr32[t]&~regs[i].was32))
10263 r32|=pr32[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
10264 }
10265 }
10266 // Conditional branch may need registers for following instructions
10267 if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
10268 {
10269 if(i<slen-2) {
10270 r32|=requires_32bit[i+2];
10271 r32&=regs[i].was32;
10272 // Mark this address as a branch target since it may be called
10273 // upon return from interrupt
10274 bt[i+2]=1;
10275 }
10276 }
10277 // Merge in delay slot
10278 if(!likely[i]) {
10279 // These are overwritten unless the branch is "likely"
10280 // and the delay slot is nullified if not taken
10281 r32&=~(1LL<<rt1[i+1]);
10282 r32&=~(1LL<<rt2[i+1]);
10283 }
10284 // Assume these are needed (delay slot)
10285 if(us1[i+1]>0)
10286 {
10287 if((regs[i].was32>>us1[i+1])&1) r32|=1LL<<us1[i+1];
10288 }
10289 if(us2[i+1]>0)
10290 {
10291 if((regs[i].was32>>us2[i+1])&1) r32|=1LL<<us2[i+1];
10292 }
10293 if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1))
10294 {
10295 if((regs[i].was32>>dep1[i+1])&1) r32|=1LL<<dep1[i+1];
10296 }
10297 if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1))
10298 {
10299 if((regs[i].was32>>dep2[i+1])&1) r32|=1LL<<dep2[i+1];
10300 }
10301 }
10302 else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
10303 {
10304 // SYSCALL instruction (software interrupt)
10305 r32=0;
10306 }
10307 else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
10308 {
10309 // ERET instruction (return from interrupt)
10310 r32=0;
10311 }
10312 // Check 32 bits
10313 r32&=~(1LL<<rt1[i]);
10314 r32&=~(1LL<<rt2[i]);
10315 if(us1[i]>0)
10316 {
10317 if((regs[i].was32>>us1[i])&1) r32|=1LL<<us1[i];
10318 }
10319 if(us2[i]>0)
10320 {
10321 if((regs[i].was32>>us2[i])&1) r32|=1LL<<us2[i];
10322 }
10323 if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1))
10324 {
10325 if((regs[i].was32>>dep1[i])&1) r32|=1LL<<dep1[i];
10326 }
10327 if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1))
10328 {
10329 if((regs[i].was32>>dep2[i])&1) r32|=1LL<<dep2[i];
10330 }
10331 requires_32bit[i]=r32;
10332
10333 // Dirty registers which are 32-bit, require 32-bit input
10334 // as they will be written as 32-bit values
10335 for(hr=0;hr<HOST_REGS;hr++)
10336 {
10337 if(regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64) {
10338 if((regs[i].was32>>regs[i].regmap_entry[hr])&(regs[i].wasdirty>>hr)&1) {
10339 if(!((unneeded_reg_upper[i]>>regs[i].regmap_entry[hr])&1))
10340 requires_32bit[i]|=1LL<<regs[i].regmap_entry[hr];
10341 }
10342 }
10343 }
10344 //requires_32bit[i]=is32[i]&~unneeded_reg_upper[i]; // DEBUG
10345 }
10346
10347 if(itype[slen-1]==SPAN) {
10348 bt[slen-1]=1; // Mark as a branch target so instruction can restart after exception
10349 }
10350
10351 /* Debug/disassembly */
10352 if((void*)assem_debug==(void*)printf)
10353 for(i=0;i<slen;i++)
10354 {
10355 printf("U:");
10356 int r;
10357 for(r=1;r<=CCREG;r++) {
10358 if((unneeded_reg[i]>>r)&1) {
10359 if(r==HIREG) printf(" HI");
10360 else if(r==LOREG) printf(" LO");
10361 else printf(" r%d",r);
10362 }
10363 }
10364#ifndef FORCE32
10365 printf(" UU:");
10366 for(r=1;r<=CCREG;r++) {
10367 if(((unneeded_reg_upper[i]&~unneeded_reg[i])>>r)&1) {
10368 if(r==HIREG) printf(" HI");
10369 else if(r==LOREG) printf(" LO");
10370 else printf(" r%d",r);
10371 }
10372 }
10373 printf(" 32:");
10374 for(r=0;r<=CCREG;r++) {
10375 //if(((is32[i]>>r)&(~unneeded_reg[i]>>r))&1) {
10376 if((regs[i].was32>>r)&1) {
10377 if(r==CCREG) printf(" CC");
10378 else if(r==HIREG) printf(" HI");
10379 else if(r==LOREG) printf(" LO");
10380 else printf(" r%d",r);
10381 }
10382 }
10383#endif
10384 printf("\n");
10385 #if defined(__i386__) || defined(__x86_64__)
10386 printf("pre: eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",regmap_pre[i][0],regmap_pre[i][1],regmap_pre[i][2],regmap_pre[i][3],regmap_pre[i][5],regmap_pre[i][6],regmap_pre[i][7]);
10387 #endif
10388 #ifdef __arm__
10389 printf("pre: r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d\n",regmap_pre[i][0],regmap_pre[i][1],regmap_pre[i][2],regmap_pre[i][3],regmap_pre[i][4],regmap_pre[i][5],regmap_pre[i][6],regmap_pre[i][7],regmap_pre[i][8],regmap_pre[i][9],regmap_pre[i][10],regmap_pre[i][12]);
10390 #endif
10391 printf("needs: ");
10392 if(needed_reg[i]&1) printf("eax ");
10393 if((needed_reg[i]>>1)&1) printf("ecx ");
10394 if((needed_reg[i]>>2)&1) printf("edx ");
10395 if((needed_reg[i]>>3)&1) printf("ebx ");
10396 if((needed_reg[i]>>5)&1) printf("ebp ");
10397 if((needed_reg[i]>>6)&1) printf("esi ");
10398 if((needed_reg[i]>>7)&1) printf("edi ");
10399 printf("r:");
10400 for(r=0;r<=CCREG;r++) {
10401 //if(((requires_32bit[i]>>r)&(~unneeded_reg[i]>>r))&1) {
10402 if((requires_32bit[i]>>r)&1) {
10403 if(r==CCREG) printf(" CC");
10404 else if(r==HIREG) printf(" HI");
10405 else if(r==LOREG) printf(" LO");
10406 else printf(" r%d",r);
10407 }
10408 }
10409 printf("\n");
10410 /*printf("pr:");
10411 for(r=0;r<=CCREG;r++) {
10412 //if(((requires_32bit[i]>>r)&(~unneeded_reg[i]>>r))&1) {
10413 if((pr32[i]>>r)&1) {
10414 if(r==CCREG) printf(" CC");
10415 else if(r==HIREG) printf(" HI");
10416 else if(r==LOREG) printf(" LO");
10417 else printf(" r%d",r);
10418 }
10419 }
10420 if(pr32[i]!=requires_32bit[i]) printf(" OOPS");
10421 printf("\n");*/
10422 #if defined(__i386__) || defined(__x86_64__)
10423 printf("entry: eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",regs[i].regmap_entry[0],regs[i].regmap_entry[1],regs[i].regmap_entry[2],regs[i].regmap_entry[3],regs[i].regmap_entry[5],regs[i].regmap_entry[6],regs[i].regmap_entry[7]);
10424 printf("dirty: ");
10425 if(regs[i].wasdirty&1) printf("eax ");
10426 if((regs[i].wasdirty>>1)&1) printf("ecx ");
10427 if((regs[i].wasdirty>>2)&1) printf("edx ");
10428 if((regs[i].wasdirty>>3)&1) printf("ebx ");
10429 if((regs[i].wasdirty>>5)&1) printf("ebp ");
10430 if((regs[i].wasdirty>>6)&1) printf("esi ");
10431 if((regs[i].wasdirty>>7)&1) printf("edi ");
10432 #endif
10433 #ifdef __arm__
10434 printf("entry: r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d\n",regs[i].regmap_entry[0],regs[i].regmap_entry[1],regs[i].regmap_entry[2],regs[i].regmap_entry[3],regs[i].regmap_entry[4],regs[i].regmap_entry[5],regs[i].regmap_entry[6],regs[i].regmap_entry[7],regs[i].regmap_entry[8],regs[i].regmap_entry[9],regs[i].regmap_entry[10],regs[i].regmap_entry[12]);
10435 printf("dirty: ");
10436 if(regs[i].wasdirty&1) printf("r0 ");
10437 if((regs[i].wasdirty>>1)&1) printf("r1 ");
10438 if((regs[i].wasdirty>>2)&1) printf("r2 ");
10439 if((regs[i].wasdirty>>3)&1) printf("r3 ");
10440 if((regs[i].wasdirty>>4)&1) printf("r4 ");
10441 if((regs[i].wasdirty>>5)&1) printf("r5 ");
10442 if((regs[i].wasdirty>>6)&1) printf("r6 ");
10443 if((regs[i].wasdirty>>7)&1) printf("r7 ");
10444 if((regs[i].wasdirty>>8)&1) printf("r8 ");
10445 if((regs[i].wasdirty>>9)&1) printf("r9 ");
10446 if((regs[i].wasdirty>>10)&1) printf("r10 ");
10447 if((regs[i].wasdirty>>12)&1) printf("r12 ");
10448 #endif
10449 printf("\n");
10450 disassemble_inst(i);
10451 //printf ("ccadj[%d] = %d\n",i,ccadj[i]);
10452 #if defined(__i386__) || defined(__x86_64__)
10453 printf("eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d dirty: ",regs[i].regmap[0],regs[i].regmap[1],regs[i].regmap[2],regs[i].regmap[3],regs[i].regmap[5],regs[i].regmap[6],regs[i].regmap[7]);
10454 if(regs[i].dirty&1) printf("eax ");
10455 if((regs[i].dirty>>1)&1) printf("ecx ");
10456 if((regs[i].dirty>>2)&1) printf("edx ");
10457 if((regs[i].dirty>>3)&1) printf("ebx ");
10458 if((regs[i].dirty>>5)&1) printf("ebp ");
10459 if((regs[i].dirty>>6)&1) printf("esi ");
10460 if((regs[i].dirty>>7)&1) printf("edi ");
10461 #endif
10462 #ifdef __arm__
10463 printf("r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d dirty: ",regs[i].regmap[0],regs[i].regmap[1],regs[i].regmap[2],regs[i].regmap[3],regs[i].regmap[4],regs[i].regmap[5],regs[i].regmap[6],regs[i].regmap[7],regs[i].regmap[8],regs[i].regmap[9],regs[i].regmap[10],regs[i].regmap[12]);
10464 if(regs[i].dirty&1) printf("r0 ");
10465 if((regs[i].dirty>>1)&1) printf("r1 ");
10466 if((regs[i].dirty>>2)&1) printf("r2 ");
10467 if((regs[i].dirty>>3)&1) printf("r3 ");
10468 if((regs[i].dirty>>4)&1) printf("r4 ");
10469 if((regs[i].dirty>>5)&1) printf("r5 ");
10470 if((regs[i].dirty>>6)&1) printf("r6 ");
10471 if((regs[i].dirty>>7)&1) printf("r7 ");
10472 if((regs[i].dirty>>8)&1) printf("r8 ");
10473 if((regs[i].dirty>>9)&1) printf("r9 ");
10474 if((regs[i].dirty>>10)&1) printf("r10 ");
10475 if((regs[i].dirty>>12)&1) printf("r12 ");
10476 #endif
10477 printf("\n");
10478 if(regs[i].isconst) {
10479 printf("constants: ");
10480 #if defined(__i386__) || defined(__x86_64__)
10481 if(regs[i].isconst&1) printf("eax=%x ",(int)constmap[i][0]);
10482 if((regs[i].isconst>>1)&1) printf("ecx=%x ",(int)constmap[i][1]);
10483 if((regs[i].isconst>>2)&1) printf("edx=%x ",(int)constmap[i][2]);
10484 if((regs[i].isconst>>3)&1) printf("ebx=%x ",(int)constmap[i][3]);
10485 if((regs[i].isconst>>5)&1) printf("ebp=%x ",(int)constmap[i][5]);
10486 if((regs[i].isconst>>6)&1) printf("esi=%x ",(int)constmap[i][6]);
10487 if((regs[i].isconst>>7)&1) printf("edi=%x ",(int)constmap[i][7]);
10488 #endif
10489 #ifdef __arm__
10490 if(regs[i].isconst&1) printf("r0=%x ",(int)constmap[i][0]);
10491 if((regs[i].isconst>>1)&1) printf("r1=%x ",(int)constmap[i][1]);
10492 if((regs[i].isconst>>2)&1) printf("r2=%x ",(int)constmap[i][2]);
10493 if((regs[i].isconst>>3)&1) printf("r3=%x ",(int)constmap[i][3]);
10494 if((regs[i].isconst>>4)&1) printf("r4=%x ",(int)constmap[i][4]);
10495 if((regs[i].isconst>>5)&1) printf("r5=%x ",(int)constmap[i][5]);
10496 if((regs[i].isconst>>6)&1) printf("r6=%x ",(int)constmap[i][6]);
10497 if((regs[i].isconst>>7)&1) printf("r7=%x ",(int)constmap[i][7]);
10498 if((regs[i].isconst>>8)&1) printf("r8=%x ",(int)constmap[i][8]);
10499 if((regs[i].isconst>>9)&1) printf("r9=%x ",(int)constmap[i][9]);
10500 if((regs[i].isconst>>10)&1) printf("r10=%x ",(int)constmap[i][10]);
10501 if((regs[i].isconst>>12)&1) printf("r12=%x ",(int)constmap[i][12]);
10502 #endif
10503 printf("\n");
10504 }
10505#ifndef FORCE32
10506 printf(" 32:");
10507 for(r=0;r<=CCREG;r++) {
10508 if((regs[i].is32>>r)&1) {
10509 if(r==CCREG) printf(" CC");
10510 else if(r==HIREG) printf(" HI");
10511 else if(r==LOREG) printf(" LO");
10512 else printf(" r%d",r);
10513 }
10514 }
10515 printf("\n");
10516#endif
10517 /*printf(" p32:");
10518 for(r=0;r<=CCREG;r++) {
10519 if((p32[i]>>r)&1) {
10520 if(r==CCREG) printf(" CC");
10521 else if(r==HIREG) printf(" HI");
10522 else if(r==LOREG) printf(" LO");
10523 else printf(" r%d",r);
10524 }
10525 }
10526 if(p32[i]!=regs[i].is32) printf(" NO MATCH\n");
10527 else printf("\n");*/
10528 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP) {
10529 #if defined(__i386__) || defined(__x86_64__)
10530 printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d dirty: ",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
10531 if(branch_regs[i].dirty&1) printf("eax ");
10532 if((branch_regs[i].dirty>>1)&1) printf("ecx ");
10533 if((branch_regs[i].dirty>>2)&1) printf("edx ");
10534 if((branch_regs[i].dirty>>3)&1) printf("ebx ");
10535 if((branch_regs[i].dirty>>5)&1) printf("ebp ");
10536 if((branch_regs[i].dirty>>6)&1) printf("esi ");
10537 if((branch_regs[i].dirty>>7)&1) printf("edi ");
10538 #endif
10539 #ifdef __arm__
10540 printf("branch(%d): r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d dirty: ",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[4],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7],branch_regs[i].regmap[8],branch_regs[i].regmap[9],branch_regs[i].regmap[10],branch_regs[i].regmap[12]);
10541 if(branch_regs[i].dirty&1) printf("r0 ");
10542 if((branch_regs[i].dirty>>1)&1) printf("r1 ");
10543 if((branch_regs[i].dirty>>2)&1) printf("r2 ");
10544 if((branch_regs[i].dirty>>3)&1) printf("r3 ");
10545 if((branch_regs[i].dirty>>4)&1) printf("r4 ");
10546 if((branch_regs[i].dirty>>5)&1) printf("r5 ");
10547 if((branch_regs[i].dirty>>6)&1) printf("r6 ");
10548 if((branch_regs[i].dirty>>7)&1) printf("r7 ");
10549 if((branch_regs[i].dirty>>8)&1) printf("r8 ");
10550 if((branch_regs[i].dirty>>9)&1) printf("r9 ");
10551 if((branch_regs[i].dirty>>10)&1) printf("r10 ");
10552 if((branch_regs[i].dirty>>12)&1) printf("r12 ");
10553 #endif
10554#ifndef FORCE32
10555 printf(" 32:");
10556 for(r=0;r<=CCREG;r++) {
10557 if((branch_regs[i].is32>>r)&1) {
10558 if(r==CCREG) printf(" CC");
10559 else if(r==HIREG) printf(" HI");
10560 else if(r==LOREG) printf(" LO");
10561 else printf(" r%d",r);
10562 }
10563 }
10564 printf("\n");
10565#endif
10566 }
10567 }
10568
10569 /* Pass 8 - Assembly */
10570 linkcount=0;stubcount=0;
10571 ds=0;is_delayslot=0;
10572 cop1_usable=0;
10573 uint64_t is32_pre=0;
10574 u_int dirty_pre=0;
10575 u_int beginning=(u_int)out;
10576 if((u_int)addr&1) {
10577 ds=1;
10578 pagespan_ds();
10579 }
10580 u_int instr_addr0_override=0;
10581
10582#ifdef PCSX
10583 if (start == 0x80030000) {
10584 // nasty hack for fastbios thing
10585 instr_addr0_override=(u_int)out;
10586 emit_movimm(start,0);
10587 emit_readword((int)&pcaddr,1);
10588 emit_writeword(0,(int)&pcaddr);
10589 emit_cmp(0,1);
10590 emit_jne((int)new_dyna_leave);
10591 }
10592#endif
10593 for(i=0;i<slen;i++)
10594 {
10595 //if(ds) printf("ds: ");
10596 if((void*)assem_debug==(void*)printf) disassemble_inst(i);
10597 if(ds) {
10598 ds=0; // Skip delay slot
10599 if(bt[i]) assem_debug("OOPS - branch into delay slot\n");
10600 instr_addr[i]=0;
10601 } else {
10602 #ifndef DESTRUCTIVE_WRITEBACK
10603 if(i<2||(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000))
10604 {
10605 wb_sx(regmap_pre[i],regs[i].regmap_entry,regs[i].wasdirty,is32_pre,regs[i].was32,
10606 unneeded_reg[i],unneeded_reg_upper[i]);
10607 wb_valid(regmap_pre[i],regs[i].regmap_entry,dirty_pre,regs[i].wasdirty,is32_pre,
10608 unneeded_reg[i],unneeded_reg_upper[i]);
10609 }
10610 is32_pre=regs[i].is32;
10611 dirty_pre=regs[i].dirty;
10612 #endif
10613 // write back
10614 if(i<2||(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000))
10615 {
10616 wb_invalidate(regmap_pre[i],regs[i].regmap_entry,regs[i].wasdirty,regs[i].was32,
10617 unneeded_reg[i],unneeded_reg_upper[i]);
10618 loop_preload(regmap_pre[i],regs[i].regmap_entry);
10619 }
10620 // branch target entry point
10621 instr_addr[i]=(u_int)out;
10622 assem_debug("<->\n");
10623 // load regs
10624 if(regs[i].regmap_entry[HOST_CCREG]==CCREG&&regs[i].regmap[HOST_CCREG]!=CCREG)
10625 wb_register(CCREG,regs[i].regmap_entry,regs[i].wasdirty,regs[i].was32);
10626 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i],rs2[i]);
10627 address_generation(i,&regs[i],regs[i].regmap_entry);
10628 load_consts(regmap_pre[i],regs[i].regmap,regs[i].was32,i);
10629 if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
10630 {
10631 // Load the delay slot registers if necessary
10632 if(rs1[i+1]!=rs1[i]&&rs1[i+1]!=rs2[i])
10633 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i+1],rs1[i+1]);
10634 if(rs2[i+1]!=rs1[i+1]&&rs2[i+1]!=rs1[i]&&rs2[i+1]!=rs2[i])
10635 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs2[i+1],rs2[i+1]);
10636 if(itype[i+1]==STORE||itype[i+1]==STORELR||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a)
10637 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,INVCP,INVCP);
10638 }
10639 else if(i+1<slen)
10640 {
10641 // Preload registers for following instruction
10642 if(rs1[i+1]!=rs1[i]&&rs1[i+1]!=rs2[i])
10643 if(rs1[i+1]!=rt1[i]&&rs1[i+1]!=rt2[i])
10644 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i+1],rs1[i+1]);
10645 if(rs2[i+1]!=rs1[i+1]&&rs2[i+1]!=rs1[i]&&rs2[i+1]!=rs2[i])
10646 if(rs2[i+1]!=rt1[i]&&rs2[i+1]!=rt2[i])
10647 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs2[i+1],rs2[i+1]);
10648 }
10649 // TODO: if(is_ooo(i)) address_generation(i+1);
10650 if(itype[i]==CJUMP||itype[i]==FJUMP)
10651 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,CCREG,CCREG);
10652 if(itype[i]==STORE||itype[i]==STORELR||(opcode[i]&0x3b)==0x39||(opcode[i]&0x3b)==0x3a)
10653 load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,INVCP,INVCP);
10654 if(bt[i]) cop1_usable=0;
10655 // assemble
10656 switch(itype[i]) {
10657 case ALU:
10658 alu_assemble(i,&regs[i]);break;
10659 case IMM16:
10660 imm16_assemble(i,&regs[i]);break;
10661 case SHIFT:
10662 shift_assemble(i,&regs[i]);break;
10663 case SHIFTIMM:
10664 shiftimm_assemble(i,&regs[i]);break;
10665 case LOAD:
10666 load_assemble(i,&regs[i]);break;
10667 case LOADLR:
10668 loadlr_assemble(i,&regs[i]);break;
10669 case STORE:
10670 store_assemble(i,&regs[i]);break;
10671 case STORELR:
10672 storelr_assemble(i,&regs[i]);break;
10673 case COP0:
10674 cop0_assemble(i,&regs[i]);break;
10675 case COP1:
10676 cop1_assemble(i,&regs[i]);break;
10677 case C1LS:
10678 c1ls_assemble(i,&regs[i]);break;
10679 case COP2:
10680 cop2_assemble(i,&regs[i]);break;
10681 case C2LS:
10682 c2ls_assemble(i,&regs[i]);break;
10683 case C2OP:
10684 c2op_assemble(i,&regs[i]);break;
10685 case FCONV:
10686 fconv_assemble(i,&regs[i]);break;
10687 case FLOAT:
10688 float_assemble(i,&regs[i]);break;
10689 case FCOMP:
10690 fcomp_assemble(i,&regs[i]);break;
10691 case MULTDIV:
10692 multdiv_assemble(i,&regs[i]);break;
10693 case MOV:
10694 mov_assemble(i,&regs[i]);break;
10695 case SYSCALL:
10696 syscall_assemble(i,&regs[i]);break;
10697 case HLECALL:
10698 hlecall_assemble(i,&regs[i]);break;
10699 case INTCALL:
10700 intcall_assemble(i,&regs[i]);break;
10701 case UJUMP:
10702 ujump_assemble(i,&regs[i]);ds=1;break;
10703 case RJUMP:
10704 rjump_assemble(i,&regs[i]);ds=1;break;
10705 case CJUMP:
10706 cjump_assemble(i,&regs[i]);ds=1;break;
10707 case SJUMP:
10708 sjump_assemble(i,&regs[i]);ds=1;break;
10709 case FJUMP:
10710 fjump_assemble(i,&regs[i]);ds=1;break;
10711 case SPAN:
10712 pagespan_assemble(i,&regs[i]);break;
10713 }
10714 if(itype[i]==UJUMP||itype[i]==RJUMP||(source[i]>>16)==0x1000)
10715 literal_pool(1024);
10716 else
10717 literal_pool_jumpover(256);
10718 }
10719 }
10720 //assert(itype[i-2]==UJUMP||itype[i-2]==RJUMP||(source[i-2]>>16)==0x1000);
10721 // If the block did not end with an unconditional branch,
10722 // add a jump to the next instruction.
10723 if(i>1) {
10724 if(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000&&itype[i-1]!=SPAN) {
10725 assert(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP);
10726 assert(i==slen);
10727 if(itype[i-2]!=CJUMP&&itype[i-2]!=SJUMP&&itype[i-2]!=FJUMP) {
10728 store_regs_bt(regs[i-1].regmap,regs[i-1].is32,regs[i-1].dirty,start+i*4);
10729 if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
10730 emit_loadreg(CCREG,HOST_CCREG);
10731 emit_addimm(HOST_CCREG,CLOCK_DIVIDER*(ccadj[i-1]+1),HOST_CCREG);
10732 }
10733 else if(!likely[i-2])
10734 {
10735 store_regs_bt(branch_regs[i-2].regmap,branch_regs[i-2].is32,branch_regs[i-2].dirty,start+i*4);
10736 assert(branch_regs[i-2].regmap[HOST_CCREG]==CCREG);
10737 }
10738 else
10739 {
10740 store_regs_bt(regs[i-2].regmap,regs[i-2].is32,regs[i-2].dirty,start+i*4);
10741 assert(regs[i-2].regmap[HOST_CCREG]==CCREG);
10742 }
10743 add_to_linker((int)out,start+i*4,0);
10744 emit_jmp(0);
10745 }
10746 }
10747 else
10748 {
10749 assert(i>0);
10750 assert(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP);
10751 store_regs_bt(regs[i-1].regmap,regs[i-1].is32,regs[i-1].dirty,start+i*4);
10752 if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
10753 emit_loadreg(CCREG,HOST_CCREG);
10754 emit_addimm(HOST_CCREG,CLOCK_DIVIDER*(ccadj[i-1]+1),HOST_CCREG);
10755 add_to_linker((int)out,start+i*4,0);
10756 emit_jmp(0);
10757 }
10758
10759 // TODO: delay slot stubs?
10760 // Stubs
10761 for(i=0;i<stubcount;i++)
10762 {
10763 switch(stubs[i][0])
10764 {
10765 case LOADB_STUB:
10766 case LOADH_STUB:
10767 case LOADW_STUB:
10768 case LOADD_STUB:
10769 case LOADBU_STUB:
10770 case LOADHU_STUB:
10771 do_readstub(i);break;
10772 case STOREB_STUB:
10773 case STOREH_STUB:
10774 case STOREW_STUB:
10775 case STORED_STUB:
10776 do_writestub(i);break;
10777 case CC_STUB:
10778 do_ccstub(i);break;
10779 case INVCODE_STUB:
10780 do_invstub(i);break;
10781 case FP_STUB:
10782 do_cop1stub(i);break;
10783 case STORELR_STUB:
10784 do_unalignedwritestub(i);break;
10785 }
10786 }
10787
10788 if (instr_addr0_override)
10789 instr_addr[0] = instr_addr0_override;
10790
10791 /* Pass 9 - Linker */
10792 for(i=0;i<linkcount;i++)
10793 {
10794 assem_debug("%8x -> %8x\n",link_addr[i][0],link_addr[i][1]);
10795 literal_pool(64);
10796 if(!link_addr[i][2])
10797 {
10798 void *stub=out;
10799 void *addr=check_addr(link_addr[i][1]);
10800 emit_extjump(link_addr[i][0],link_addr[i][1]);
10801 if(addr) {
10802 set_jump_target(link_addr[i][0],(int)addr);
10803 add_link(link_addr[i][1],stub);
10804 }
10805 else set_jump_target(link_addr[i][0],(int)stub);
10806 }
10807 else
10808 {
10809 // Internal branch
10810 int target=(link_addr[i][1]-start)>>2;
10811 assert(target>=0&&target<slen);
10812 assert(instr_addr[target]);
10813 //#ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
10814 //set_jump_target_fillslot(link_addr[i][0],instr_addr[target],link_addr[i][2]>>1);
10815 //#else
10816 set_jump_target(link_addr[i][0],instr_addr[target]);
10817 //#endif
10818 }
10819 }
10820 // External Branch Targets (jump_in)
10821 if(copy+slen*4>(void *)shadow+sizeof(shadow)) copy=shadow;
10822 for(i=0;i<slen;i++)
10823 {
10824 if(bt[i]||i==0)
10825 {
10826 if(instr_addr[i]) // TODO - delay slots (=null)
10827 {
10828 u_int vaddr=start+i*4;
10829 u_int page=get_page(vaddr);
10830 u_int vpage=get_vpage(vaddr);
10831 literal_pool(256);
10832 //if(!(is32[i]&(~unneeded_reg_upper[i])&~(1LL<<CCREG)))
10833 if(!requires_32bit[i])
10834 {
10835 assem_debug("%8x (%d) <- %8x\n",instr_addr[i],i,start+i*4);
10836 assem_debug("jump_in: %x\n",start+i*4);
10837 ll_add(jump_dirty+vpage,vaddr,(void *)out);
10838 int entry_point=do_dirty_stub(i);
10839 ll_add(jump_in+page,vaddr,(void *)entry_point);
10840 // If there was an existing entry in the hash table,
10841 // replace it with the new address.
10842 // Don't add new entries. We'll insert the
10843 // ones that actually get used in check_addr().
10844 int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
10845 if(ht_bin[0]==vaddr) {
10846 ht_bin[1]=entry_point;
10847 }
10848 if(ht_bin[2]==vaddr) {
10849 ht_bin[3]=entry_point;
10850 }
10851 }
10852 else
10853 {
10854 u_int r=requires_32bit[i]|!!(requires_32bit[i]>>32);
10855 assem_debug("%8x (%d) <- %8x\n",instr_addr[i],i,start+i*4);
10856 assem_debug("jump_in: %x (restricted - %x)\n",start+i*4,r);
10857 //int entry_point=(int)out;
10858 ////assem_debug("entry_point: %x\n",entry_point);
10859 //load_regs_entry(i);
10860 //if(entry_point==(int)out)
10861 // entry_point=instr_addr[i];
10862 //else
10863 // emit_jmp(instr_addr[i]);
10864 //ll_add_32(jump_in+page,vaddr,r,(void *)entry_point);
10865 ll_add_32(jump_dirty+vpage,vaddr,r,(void *)out);
10866 int entry_point=do_dirty_stub(i);
10867 ll_add_32(jump_in+page,vaddr,r,(void *)entry_point);
10868 }
10869 }
10870 }
10871 }
10872 // Write out the literal pool if necessary
10873 literal_pool(0);
10874 #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
10875 // Align code
10876 if(((u_int)out)&7) emit_addnop(13);
10877 #endif
10878 assert((u_int)out-beginning<MAX_OUTPUT_BLOCK_SIZE);
10879 //printf("shadow buffer: %x-%x\n",(int)copy,(int)copy+slen*4);
10880 memcpy(copy,source,slen*4);
10881 copy+=slen*4;
10882
10883 #ifdef __arm__
10884 __clear_cache((void *)beginning,out);
10885 #endif
10886
10887 // If we're within 256K of the end of the buffer,
10888 // start over from the beginning. (Is 256K enough?)
10889 if((int)out>BASE_ADDR+(1<<TARGET_SIZE_2)-MAX_OUTPUT_BLOCK_SIZE) out=(u_char *)BASE_ADDR;
10890
10891 // Trap writes to any of the pages we compiled
10892 for(i=start>>12;i<=(start+slen*4)>>12;i++) {
10893 invalid_code[i]=0;
10894#ifndef DISABLE_TLB
10895 memory_map[i]|=0x40000000;
10896 if((signed int)start>=(signed int)0xC0000000) {
10897 assert(using_tlb);
10898 j=(((u_int)i<<12)+(memory_map[i]<<2)-(u_int)rdram+(u_int)0x80000000)>>12;
10899 invalid_code[j]=0;
10900 memory_map[j]|=0x40000000;
10901 //printf("write protect physical page: %x (virtual %x)\n",j<<12,start);
10902 }
10903#endif
10904 }
10905
10906 /* Pass 10 - Free memory by expiring oldest blocks */
10907
10908 int end=((((int)out-BASE_ADDR)>>(TARGET_SIZE_2-16))+16384)&65535;
10909 while(expirep!=end)
10910 {
10911 int shift=TARGET_SIZE_2-3; // Divide into 8 blocks
10912 int base=BASE_ADDR+((expirep>>13)<<shift); // Base address of this block
10913 inv_debug("EXP: Phase %d\n",expirep);
10914 switch((expirep>>11)&3)
10915 {
10916 case 0:
10917 // Clear jump_in and jump_dirty
10918 ll_remove_matching_addrs(jump_in+(expirep&2047),base,shift);
10919 ll_remove_matching_addrs(jump_dirty+(expirep&2047),base,shift);
10920 ll_remove_matching_addrs(jump_in+2048+(expirep&2047),base,shift);
10921 ll_remove_matching_addrs(jump_dirty+2048+(expirep&2047),base,shift);
10922 break;
10923 case 1:
10924 // Clear pointers
10925 ll_kill_pointers(jump_out[expirep&2047],base,shift);
10926 ll_kill_pointers(jump_out[(expirep&2047)+2048],base,shift);
10927 break;
10928 case 2:
10929 // Clear hash table
10930 for(i=0;i<32;i++) {
10931 int *ht_bin=hash_table[((expirep&2047)<<5)+i];
10932 if((ht_bin[3]>>shift)==(base>>shift) ||
10933 ((ht_bin[3]-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(base>>shift)) {
10934 inv_debug("EXP: Remove hash %x -> %x\n",ht_bin[2],ht_bin[3]);
10935 ht_bin[2]=ht_bin[3]=-1;
10936 }
10937 if((ht_bin[1]>>shift)==(base>>shift) ||
10938 ((ht_bin[1]-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(base>>shift)) {
10939 inv_debug("EXP: Remove hash %x -> %x\n",ht_bin[0],ht_bin[1]);
10940 ht_bin[0]=ht_bin[2];
10941 ht_bin[1]=ht_bin[3];
10942 ht_bin[2]=ht_bin[3]=-1;
10943 }
10944 }
10945 break;
10946 case 3:
10947 // Clear jump_out
10948 ll_remove_matching_addrs(jump_out+(expirep&2047),base,shift);
10949 ll_remove_matching_addrs(jump_out+2048+(expirep&2047),base,shift);
10950 break;
10951 }
10952 expirep=(expirep+1)&65535;
10953 }
10954 return 0;
10955}
10956
10957// vim:shiftwidth=2:expandtab