spu: handle stop better, split main func more
[pcsx_rearmed.git] / plugins / dfsound / spu.c
... / ...
CommitLineData
1/***************************************************************************
2 spu.c - description
3 -------------------
4 begin : Wed May 15 2002
5 copyright : (C) 2002 by Pete Bernert
6 email : BlackDove@addcom.de
7
8 Portions (C) GraÅžvydas "notaz" Ignotas, 2010-2012,2014
9
10 ***************************************************************************/
11/***************************************************************************
12 * *
13 * This program is free software; you can redistribute it and/or modify *
14 * it under the terms of the GNU General Public License as published by *
15 * the Free Software Foundation; either version 2 of the License, or *
16 * (at your option) any later version. See also the license.txt file for *
17 * additional informations. *
18 * *
19 ***************************************************************************/
20
21#ifndef _WIN32
22#include <sys/time.h> // gettimeofday in xa.c
23#endif
24#include "stdafx.h"
25
26#define _IN_SPU
27
28#include "externals.h"
29#include "registers.h"
30#include "out.h"
31#include "arm_features.h"
32#include "spu_config.h"
33
34#ifdef __ARM_ARCH_7A__
35 #define ssat32_to_16(v) \
36 asm("ssat %0,#16,%1" : "=r" (v) : "r" (v))
37#else
38 #define ssat32_to_16(v) do { \
39 if (v < -32768) v = -32768; \
40 else if (v > 32767) v = 32767; \
41 } while (0)
42#endif
43
44#define PSXCLK 33868800 /* 33.8688 MHz */
45
46// intended to be ~1 frame
47#define IRQ_NEAR_BLOCKS 32
48
49/*
50#if defined (USEMACOSX)
51static char * libraryName = N_("Mac OS X Sound");
52#elif defined (USEALSA)
53static char * libraryName = N_("ALSA Sound");
54#elif defined (USEOSS)
55static char * libraryName = N_("OSS Sound");
56#elif defined (USESDL)
57static char * libraryName = N_("SDL Sound");
58#elif defined (USEPULSEAUDIO)
59static char * libraryName = N_("PulseAudio Sound");
60#else
61static char * libraryName = N_("NULL Sound");
62#endif
63
64static char * libraryInfo = N_("P.E.Op.S. Sound Driver V1.7\nCoded by Pete Bernert and the P.E.Op.S. team\n");
65*/
66
67// globals
68
69SPUInfo spu;
70SPUConfig spu_config;
71
72// MAIN infos struct for each channel
73
74SPUCHAN s_chan[MAXCHAN+1]; // channel + 1 infos (1 is security for fmod handling)
75REVERBInfo rvb;
76
77// certain globals (were local before, but with the new timeproc I need em global)
78
79static const int f[8][2] = { { 0, 0 },
80 { 60, 0 },
81 { 115, -52 },
82 { 98, -55 },
83 { 122, -60 } };
84int ChanBuf[NSSIZE];
85int SSumLR[NSSIZE*2];
86int iFMod[NSSIZE];
87
88#define CDDA_BUFFER_SIZE (16384 * sizeof(uint32_t)) // must be power of 2
89
90////////////////////////////////////////////////////////////////////////
91// CODE AREA
92////////////////////////////////////////////////////////////////////////
93
94// dirty inline func includes
95
96#include "reverb.c"
97#include "adsr.c"
98
99////////////////////////////////////////////////////////////////////////
100// helpers for simple interpolation
101
102//
103// easy interpolation on upsampling, no special filter, just "Pete's common sense" tm
104//
105// instead of having n equal sample values in a row like:
106// ____
107// |____
108//
109// we compare the current delta change with the next delta change.
110//
111// if curr_delta is positive,
112//
113// - and next delta is smaller (or changing direction):
114// \.
115// -__
116//
117// - and next delta significant (at least twice) bigger:
118// --_
119// \.
120//
121// - and next delta is nearly same:
122// \.
123// \.
124//
125//
126// if curr_delta is negative,
127//
128// - and next delta is smaller (or changing direction):
129// _--
130// /
131//
132// - and next delta significant (at least twice) bigger:
133// /
134// __-
135//
136// - and next delta is nearly same:
137// /
138// /
139//
140
141
142INLINE void InterpolateUp(int ch)
143{
144 if(s_chan[ch].SB[32]==1) // flag == 1? calc step and set flag... and don't change the value in this pass
145 {
146 const int id1=s_chan[ch].SB[30]-s_chan[ch].SB[29]; // curr delta to next val
147 const int id2=s_chan[ch].SB[31]-s_chan[ch].SB[30]; // and next delta to next-next val :)
148
149 s_chan[ch].SB[32]=0;
150
151 if(id1>0) // curr delta positive
152 {
153 if(id2<id1)
154 {s_chan[ch].SB[28]=id1;s_chan[ch].SB[32]=2;}
155 else
156 if(id2<(id1<<1))
157 s_chan[ch].SB[28]=(id1*s_chan[ch].sinc)/0x10000L;
158 else
159 s_chan[ch].SB[28]=(id1*s_chan[ch].sinc)/0x20000L;
160 }
161 else // curr delta negative
162 {
163 if(id2>id1)
164 {s_chan[ch].SB[28]=id1;s_chan[ch].SB[32]=2;}
165 else
166 if(id2>(id1<<1))
167 s_chan[ch].SB[28]=(id1*s_chan[ch].sinc)/0x10000L;
168 else
169 s_chan[ch].SB[28]=(id1*s_chan[ch].sinc)/0x20000L;
170 }
171 }
172 else
173 if(s_chan[ch].SB[32]==2) // flag 1: calc step and set flag... and don't change the value in this pass
174 {
175 s_chan[ch].SB[32]=0;
176
177 s_chan[ch].SB[28]=(s_chan[ch].SB[28]*s_chan[ch].sinc)/0x20000L;
178 //if(s_chan[ch].sinc<=0x8000)
179 // s_chan[ch].SB[29]=s_chan[ch].SB[30]-(s_chan[ch].SB[28]*((0x10000/s_chan[ch].sinc)-1));
180 //else
181 s_chan[ch].SB[29]+=s_chan[ch].SB[28];
182 }
183 else // no flags? add bigger val (if possible), calc smaller step, set flag1
184 s_chan[ch].SB[29]+=s_chan[ch].SB[28];
185}
186
187//
188// even easier interpolation on downsampling, also no special filter, again just "Pete's common sense" tm
189//
190
191INLINE void InterpolateDown(int ch)
192{
193 if(s_chan[ch].sinc>=0x20000L) // we would skip at least one val?
194 {
195 s_chan[ch].SB[29]+=(s_chan[ch].SB[30]-s_chan[ch].SB[29])/2; // add easy weight
196 if(s_chan[ch].sinc>=0x30000L) // we would skip even more vals?
197 s_chan[ch].SB[29]+=(s_chan[ch].SB[31]-s_chan[ch].SB[30])/2;// add additional next weight
198 }
199}
200
201////////////////////////////////////////////////////////////////////////
202// helpers for gauss interpolation
203
204#define gval0 (((short*)(&s_chan[ch].SB[29]))[gpos&3])
205#define gval(x) ((int)((short*)(&s_chan[ch].SB[29]))[(gpos+x)&3])
206
207#include "gauss_i.h"
208
209////////////////////////////////////////////////////////////////////////
210
211#include "xa.c"
212
213static void do_irq(void)
214{
215 //if(!(spu.spuStat & STAT_IRQ))
216 {
217 spu.spuStat |= STAT_IRQ; // asserted status?
218 if(spu.irqCallback) spu.irqCallback();
219 }
220}
221
222static int check_irq(int ch, unsigned char *pos)
223{
224 if((spu.spuCtrl & CTRL_IRQ) && pos == spu.pSpuIrq)
225 {
226 //printf("ch%d irq %04x\n", ch, pos - spu.spuMemC);
227 do_irq();
228 return 1;
229 }
230 return 0;
231}
232
233////////////////////////////////////////////////////////////////////////
234// START SOUND... called by main thread to setup a new sound on a channel
235////////////////////////////////////////////////////////////////////////
236
237INLINE void StartSound(int ch)
238{
239 StartADSR(ch);
240 StartREVERB(ch);
241
242 // fussy timing issues - do in VoiceOn
243 //s_chan[ch].pCurr=s_chan[ch].pStart; // set sample start
244 //s_chan[ch].bStop=0;
245 //s_chan[ch].bOn=1;
246
247 s_chan[ch].SB[26]=0; // init mixing vars
248 s_chan[ch].SB[27]=0;
249 s_chan[ch].iSBPos=27;
250
251 s_chan[ch].SB[28]=0;
252 s_chan[ch].SB[29]=0; // init our interpolation helpers
253 s_chan[ch].SB[30]=0;
254 s_chan[ch].SB[31]=0;
255 s_chan[ch].spos=0;
256
257 spu.dwNewChannel&=~(1<<ch); // clear new channel bit
258}
259
260////////////////////////////////////////////////////////////////////////
261// ALL KIND OF HELPERS
262////////////////////////////////////////////////////////////////////////
263
264INLINE int FModChangeFrequency(int ch,int ns)
265{
266 unsigned int NP=s_chan[ch].iRawPitch;
267 int sinc;
268
269 NP=((32768L+iFMod[ns])*NP)/32768L;
270
271 if(NP>0x3fff) NP=0x3fff;
272 if(NP<0x1) NP=0x1;
273
274 sinc=NP<<4; // calc frequency
275 if(spu_config.iUseInterpolation==1) // freq change in simple interpolation mode
276 s_chan[ch].SB[32]=1;
277 iFMod[ns]=0;
278
279 return sinc;
280}
281
282////////////////////////////////////////////////////////////////////////
283
284INLINE void StoreInterpolationVal(int ch,int fa)
285{
286 if(s_chan[ch].bFMod==2) // fmod freq channel
287 s_chan[ch].SB[29]=fa;
288 else
289 {
290 ssat32_to_16(fa);
291
292 if(spu_config.iUseInterpolation>=2) // gauss/cubic interpolation
293 {
294 int gpos = s_chan[ch].SB[28];
295 gval0 = fa;
296 gpos = (gpos+1) & 3;
297 s_chan[ch].SB[28] = gpos;
298 }
299 else
300 if(spu_config.iUseInterpolation==1) // simple interpolation
301 {
302 s_chan[ch].SB[28] = 0;
303 s_chan[ch].SB[29] = s_chan[ch].SB[30]; // -> helpers for simple linear interpolation: delay real val for two slots, and calc the two deltas, for a 'look at the future behaviour'
304 s_chan[ch].SB[30] = s_chan[ch].SB[31];
305 s_chan[ch].SB[31] = fa;
306 s_chan[ch].SB[32] = 1; // -> flag: calc new interolation
307 }
308 else s_chan[ch].SB[29]=fa; // no interpolation
309 }
310}
311
312////////////////////////////////////////////////////////////////////////
313
314INLINE int iGetInterpolationVal(int ch, int spos)
315{
316 int fa;
317
318 if(s_chan[ch].bFMod==2) return s_chan[ch].SB[29];
319
320 switch(spu_config.iUseInterpolation)
321 {
322 //--------------------------------------------------//
323 case 3: // cubic interpolation
324 {
325 long xd;int gpos;
326 xd = (spos >> 1)+1;
327 gpos = s_chan[ch].SB[28];
328
329 fa = gval(3) - 3*gval(2) + 3*gval(1) - gval0;
330 fa *= (xd - (2<<15)) / 6;
331 fa >>= 15;
332 fa += gval(2) - gval(1) - gval(1) + gval0;
333 fa *= (xd - (1<<15)) >> 1;
334 fa >>= 15;
335 fa += gval(1) - gval0;
336 fa *= xd;
337 fa >>= 15;
338 fa = fa + gval0;
339
340 } break;
341 //--------------------------------------------------//
342 case 2: // gauss interpolation
343 {
344 int vl, vr;int gpos;
345 vl = (spos >> 6) & ~3;
346 gpos = s_chan[ch].SB[28];
347 vr=(gauss[vl]*(int)gval0)&~2047;
348 vr+=(gauss[vl+1]*gval(1))&~2047;
349 vr+=(gauss[vl+2]*gval(2))&~2047;
350 vr+=(gauss[vl+3]*gval(3))&~2047;
351 fa = vr>>11;
352 } break;
353 //--------------------------------------------------//
354 case 1: // simple interpolation
355 {
356 if(s_chan[ch].sinc<0x10000L) // -> upsampling?
357 InterpolateUp(ch); // --> interpolate up
358 else InterpolateDown(ch); // --> else down
359 fa=s_chan[ch].SB[29];
360 } break;
361 //--------------------------------------------------//
362 default: // no interpolation
363 {
364 fa=s_chan[ch].SB[29];
365 } break;
366 //--------------------------------------------------//
367 }
368
369 return fa;
370}
371
372static void decode_block_data(int *dest, const unsigned char *src, int predict_nr, int shift_factor)
373{
374 int nSample;
375 int fa, s_1, s_2, d, s;
376
377 s_1 = dest[27];
378 s_2 = dest[26];
379
380 for (nSample = 0; nSample < 28; src++)
381 {
382 d = (int)*src;
383 s = (int)(signed short)((d & 0x0f) << 12);
384
385 fa = s >> shift_factor;
386 fa += ((s_1 * f[predict_nr][0])>>6) + ((s_2 * f[predict_nr][1])>>6);
387 s_2=s_1;s_1=fa;
388
389 dest[nSample++] = fa;
390
391 s = (int)(signed short)((d & 0xf0) << 8);
392 fa = s >> shift_factor;
393 fa += ((s_1 * f[predict_nr][0])>>6) + ((s_2 * f[predict_nr][1])>>6);
394 s_2=s_1;s_1=fa;
395
396 dest[nSample++] = fa;
397 }
398}
399
400static int decode_block(int ch)
401{
402 unsigned char *start;
403 int predict_nr, shift_factor, flags;
404 int ret = 0;
405
406 start = s_chan[ch].pCurr; // set up the current pos
407 if (start == spu.spuMemC) // ?
408 ret = 1;
409
410 if (s_chan[ch].prevflags & 1) // 1: stop/loop
411 {
412 if (!(s_chan[ch].prevflags & 2))
413 ret = 1;
414
415 start = s_chan[ch].pLoop;
416 }
417 else
418 check_irq(ch, start); // hack, see check_irq below..
419
420 predict_nr = (int)start[0];
421 shift_factor = predict_nr & 0xf;
422 predict_nr >>= 4;
423
424 decode_block_data(s_chan[ch].SB, start + 2, predict_nr, shift_factor);
425
426 flags = start[1];
427 if (flags & 4)
428 s_chan[ch].pLoop = start; // loop adress
429
430 start += 16;
431
432 if (flags & 1) { // 1: stop/loop
433 start = s_chan[ch].pLoop;
434 check_irq(ch, start); // hack.. :(
435 }
436
437 if (start - spu.spuMemC >= 0x80000)
438 start = spu.spuMemC;
439
440 s_chan[ch].pCurr = start; // store values for next cycle
441 s_chan[ch].prevflags = flags;
442
443 return ret;
444}
445
446// do block, but ignore sample data
447static int skip_block(int ch)
448{
449 unsigned char *start = s_chan[ch].pCurr;
450 int flags;
451 int ret = 0;
452
453 if (s_chan[ch].prevflags & 1) {
454 if (!(s_chan[ch].prevflags & 2))
455 ret = 1;
456
457 start = s_chan[ch].pLoop;
458 }
459 else
460 check_irq(ch, start);
461
462 flags = start[1];
463 if (flags & 4)
464 s_chan[ch].pLoop = start;
465
466 start += 16;
467
468 if (flags & 1) {
469 start = s_chan[ch].pLoop;
470 check_irq(ch, start);
471 }
472
473 s_chan[ch].pCurr = start;
474 s_chan[ch].prevflags = flags;
475
476 return ret;
477}
478
479// if irq is going to trigger sooner than in upd_samples, set upd_samples
480static void scan_for_irq(int ch, unsigned int *upd_samples)
481{
482 int pos, sinc, sinc_inv, end;
483 unsigned char *block;
484 int flags;
485
486 block = s_chan[ch].pCurr;
487 pos = s_chan[ch].spos;
488 sinc = s_chan[ch].sinc;
489 end = pos + *upd_samples * sinc;
490
491 pos += (28 - s_chan[ch].iSBPos) << 16;
492 while (pos < end)
493 {
494 if (block == spu.pSpuIrq)
495 break;
496 flags = block[1];
497 block += 16;
498 if (flags & 1) { // 1: stop/loop
499 block = s_chan[ch].pLoop;
500 if (block == spu.pSpuIrq) // hack.. (see decode_block)
501 break;
502 }
503 pos += 28 << 16;
504 }
505
506 if (pos < end)
507 {
508 sinc_inv = s_chan[ch].sinc_inv;
509 if (sinc_inv == 0)
510 sinc_inv = s_chan[ch].sinc_inv = (0x80000000u / (uint32_t)sinc) << 1;
511
512 pos -= s_chan[ch].spos;
513 *upd_samples = (((uint64_t)pos * sinc_inv) >> 32) + 1;
514 //xprintf("ch%02d: irq sched: %3d %03d\n",
515 // ch, *upd_samples, *upd_samples * 60 * 263 / 44100);
516 }
517}
518
519#define make_do_samples(name, fmod_code, interp_start, interp1_code, interp2_code, interp_end) \
520static noinline int do_samples_##name(int ch, int ns_to) \
521{ \
522 int sinc = s_chan[ch].sinc; \
523 int spos = s_chan[ch].spos; \
524 int sbpos = s_chan[ch].iSBPos; \
525 int *SB = s_chan[ch].SB; \
526 int ns, d, fa; \
527 int ret = ns_to; \
528 interp_start; \
529 \
530 for (ns = 0; ns < ns_to; ns++) \
531 { \
532 fmod_code; \
533 \
534 spos += sinc; \
535 while (spos >= 0x10000) \
536 { \
537 fa = SB[sbpos++]; \
538 if (sbpos >= 28) \
539 { \
540 sbpos = 0; \
541 d = decode_block(ch); \
542 if (d && ns < ret) \
543 ret = ns; \
544 } \
545 \
546 interp1_code; \
547 spos -= 0x10000; \
548 } \
549 \
550 interp2_code; \
551 } \
552 \
553 s_chan[ch].sinc = sinc; \
554 s_chan[ch].spos = spos; \
555 s_chan[ch].iSBPos = sbpos; \
556 interp_end; \
557 \
558 return ret; \
559}
560
561#define fmod_recv_check \
562 if(s_chan[ch].bFMod==1 && iFMod[ns]) \
563 sinc = FModChangeFrequency(ch,ns)
564
565make_do_samples(default, fmod_recv_check, ,
566 StoreInterpolationVal(ch, fa),
567 ChanBuf[ns] = iGetInterpolationVal(ch, spos), )
568make_do_samples(noint, , fa = s_chan[ch].SB[29], , ChanBuf[ns] = fa, s_chan[ch].SB[29] = fa)
569
570#define simple_interp_store \
571 SB[28] = 0; \
572 SB[29] = SB[30]; \
573 SB[30] = SB[31]; \
574 SB[31] = fa; \
575 SB[32] = 1
576
577#define simple_interp_get \
578 if(sinc<0x10000) /* -> upsampling? */ \
579 InterpolateUp(ch); /* --> interpolate up */ \
580 else InterpolateDown(ch); /* --> else down */ \
581 ChanBuf[ns] = s_chan[ch].SB[29]
582
583make_do_samples(simple, , ,
584 simple_interp_store, simple_interp_get, )
585
586static int do_samples_skip(int ch, int ns_to)
587{
588 int ret = ns_to, ns, d;
589
590 s_chan[ch].spos += s_chan[ch].iSBPos << 16;
591
592 for (ns = 0; ns < ns_to; ns++)
593 {
594 s_chan[ch].spos += s_chan[ch].sinc;
595 while (s_chan[ch].spos >= 28*0x10000)
596 {
597 d = skip_block(ch);
598 if (d && ns < ret)
599 ret = ns;
600 s_chan[ch].spos -= 28*0x10000;
601 }
602 }
603
604 s_chan[ch].iSBPos = s_chan[ch].spos >> 16;
605 s_chan[ch].spos &= 0xffff;
606
607 return ret;
608}
609
610static void do_lsfr_samples(int ns_to, int ctrl,
611 unsigned int *dwNoiseCount, unsigned int *dwNoiseVal)
612{
613 unsigned int counter = *dwNoiseCount;
614 unsigned int val = *dwNoiseVal;
615 unsigned int level, shift, bit;
616 int ns;
617
618 // modified from DrHell/shalma, no fraction
619 level = (ctrl >> 10) & 0x0f;
620 level = 0x8000 >> level;
621
622 for (ns = 0; ns < ns_to; ns++)
623 {
624 counter += 2;
625 if (counter >= level)
626 {
627 counter -= level;
628 shift = (val >> 10) & 0x1f;
629 bit = (0x69696969 >> shift) & 1;
630 bit ^= (val >> 15) & 1;
631 val = (val << 1) | bit;
632 }
633
634 ChanBuf[ns] = (signed short)val;
635 }
636
637 *dwNoiseCount = counter;
638 *dwNoiseVal = val;
639}
640
641static int do_samples_noise(int ch, int ns_to)
642{
643 int ret;
644
645 ret = do_samples_skip(ch, ns_to);
646
647 do_lsfr_samples(ns_to, spu.spuCtrl, &spu.dwNoiseCount, &spu.dwNoiseVal);
648
649 return ret;
650}
651
652#ifdef HAVE_ARMV5
653// asm code; lv and rv must be 0-3fff
654extern void mix_chan(int start, int count, int lv, int rv);
655extern void mix_chan_rvb(int start, int count, int lv, int rv, int *rvb);
656#else
657static void mix_chan(int start, int count, int lv, int rv)
658{
659 int *dst = SSumLR + start * 2;
660 const int *src = ChanBuf + start;
661 int l, r;
662
663 while (count--)
664 {
665 int sval = *src++;
666
667 l = (sval * lv) >> 14;
668 r = (sval * rv) >> 14;
669 *dst++ += l;
670 *dst++ += r;
671 }
672}
673
674static void mix_chan_rvb(int start, int count, int lv, int rv, int *rvb)
675{
676 int *dst = SSumLR + start * 2;
677 int *drvb = rvb + start * 2;
678 const int *src = ChanBuf + start;
679 int l, r;
680
681 while (count--)
682 {
683 int sval = *src++;
684
685 l = (sval * lv) >> 14;
686 r = (sval * rv) >> 14;
687 *dst++ += l;
688 *dst++ += r;
689 *drvb++ += l;
690 *drvb++ += r;
691 }
692}
693#endif
694
695// 0x0800-0x0bff Voice 1
696// 0x0c00-0x0fff Voice 3
697static noinline void do_decode_bufs(unsigned short *mem, int which,
698 int count, int decode_pos)
699{
700 unsigned short *dst = &mem[0x800/2 + which*0x400/2];
701 const int *src = ChanBuf;
702 int cursor = decode_pos;
703
704 while (count-- > 0)
705 {
706 cursor &= 0x1ff;
707 dst[cursor] = *src++;
708 cursor++;
709 }
710
711 // decode_pos is updated and irqs are checked later, after voice loop
712}
713
714static void do_silent_chans(int ns_to, int silentch)
715{
716 int ch;
717
718 for (ch = 0; ch < MAXCHAN; ch++)
719 {
720 if (!(silentch & (1<<ch))) continue; // already handled
721 if (spu.dwChannelDead & (1<<ch)) continue;
722 if (s_chan[ch].pCurr > spu.pSpuIrq && s_chan[ch].pLoop > spu.pSpuIrq)
723 continue;
724
725 s_chan[ch].spos += s_chan[ch].iSBPos << 16;
726 s_chan[ch].iSBPos = 0;
727
728 s_chan[ch].spos += s_chan[ch].sinc * ns_to;
729 while (s_chan[ch].spos >= 28 * 0x10000)
730 {
731 unsigned char *start = s_chan[ch].pCurr;
732
733 skip_block(ch);
734 if (start == s_chan[ch].pCurr || start - spu.spuMemC < 0x1000)
735 {
736 // looping on self or stopped(?)
737 spu.dwChannelDead |= 1<<ch;
738 s_chan[ch].spos = 0;
739 break;
740 }
741
742 s_chan[ch].spos -= 28 * 0x10000;
743 }
744 }
745}
746
747static void do_channels(int ns_to)
748{
749 unsigned int mask;
750 int ch, d;
751
752 InitREVERB(ns_to);
753
754 mask = spu.dwChannelOn & 0xffffff;
755 for (ch = 0; mask != 0; ch++, mask >>= 1) // loop em all...
756 {
757 if (!(mask & 1)) continue; // channel not playing? next
758
759 if (s_chan[ch].bNoise)
760 d = do_samples_noise(ch, ns_to);
761 else if (s_chan[ch].bFMod == 2
762 || (s_chan[ch].bFMod == 0 && spu_config.iUseInterpolation == 0))
763 d = do_samples_noint(ch, ns_to);
764 else if (s_chan[ch].bFMod == 0 && spu_config.iUseInterpolation == 1)
765 d = do_samples_simple(ch, ns_to);
766 else
767 d = do_samples_default(ch, ns_to);
768
769 d = MixADSR(ch, d);
770 if (d < ns_to) {
771 spu.dwChannelOn &= ~(1 << ch);
772 s_chan[ch].bStop = 1;
773 s_chan[ch].ADSRX.EnvelopeVol = 0;
774 memset(&ChanBuf[d], 0, (ns_to - d) * sizeof(ChanBuf[0]));
775 }
776
777 if (ch == 1 || ch == 3)
778 {
779 do_decode_bufs(spu.spuMem, ch/2, ns_to, spu.decode_pos);
780 spu.decode_dirty_ch |= 1 << ch;
781 }
782
783 if (s_chan[ch].bFMod == 2) // fmod freq channel
784 memcpy(iFMod, &ChanBuf, ns_to * sizeof(iFMod[0]));
785 if (s_chan[ch].bRVBActive)
786 mix_chan_rvb(0, ns_to, s_chan[ch].iLeftVolume, s_chan[ch].iRightVolume, spu.sRVBStart);
787 else
788 mix_chan(0, ns_to, s_chan[ch].iLeftVolume, s_chan[ch].iRightVolume);
789 }
790}
791
792////////////////////////////////////////////////////////////////////////
793// MAIN SPU FUNCTION
794// here is the main job handler...
795////////////////////////////////////////////////////////////////////////
796
797void do_samples_finish(int ns_to, int silentch);
798
799void do_samples(unsigned int cycles_to)
800{
801 unsigned int mask;
802 int ch, ns_to;
803 int silentch;
804 int cycle_diff;
805
806 cycle_diff = cycles_to - spu.cycles_played;
807 if (cycle_diff < -2*1048576 || cycle_diff > 2*1048576)
808 {
809 //xprintf("desync %u %d\n", cycles_to, cycle_diff);
810 spu.cycles_played = cycles_to;
811 return;
812 }
813
814 if (cycle_diff < 2 * 768)
815 return;
816
817 ns_to = (cycle_diff / 768 + 1) & ~1;
818 if (ns_to > NSSIZE) {
819 // should never happen
820 //xprintf("ns_to oflow %d %d\n", ns_to, NSSIZE);
821 ns_to = NSSIZE;
822 }
823
824 //////////////////////////////////////////////////////
825 // special irq handling in the decode buffers (0x0000-0x1000)
826 // we know:
827 // the decode buffers are located in spu memory in the following way:
828 // 0x0000-0x03ff CD audio left
829 // 0x0400-0x07ff CD audio right
830 // 0x0800-0x0bff Voice 1
831 // 0x0c00-0x0fff Voice 3
832 // and decoded data is 16 bit for one sample
833 // we assume:
834 // even if voices 1/3 are off or no cd audio is playing, the internal
835 // play positions will move on and wrap after 0x400 bytes.
836 // Therefore: we just need a pointer from spumem+0 to spumem+3ff, and
837 // increase this pointer on each sample by 2 bytes. If this pointer
838 // (or 0x400 offsets of this pointer) hits the spuirq address, we generate
839 // an IRQ.
840
841 if (unlikely((spu.spuCtrl & CTRL_IRQ)
842 && spu.pSpuIrq < spu.spuMemC+0x1000))
843 {
844 int irq_pos = (spu.pSpuIrq - spu.spuMemC) / 2 & 0x1ff;
845 int left = (irq_pos - spu.decode_pos) & 0x1ff;
846 if (0 < left && left <= ns_to)
847 {
848 //xprintf("decoder irq %x\n", spu.decode_pos);
849 do_irq();
850 }
851 }
852
853 silentch = ~(spu.dwChannelOn|spu.dwNewChannel);
854
855 mask = spu.dwNewChannel & 0xffffff;
856 for (ch = 0; mask != 0; ch++, mask >>= 1) {
857 if (mask & 1)
858 StartSound(ch);
859 }
860
861 if (spu.dwChannelOn == 0)
862 InitREVERB(ns_to);
863 else {
864 do_channels(ns_to);
865 }
866
867 do_samples_finish(ns_to, silentch);
868
869 // advance "stopped" channels that can cause irqs
870 // (all chans are always playing on the real thing..)
871 if (spu.spuCtrl & CTRL_IRQ)
872 do_silent_chans(ns_to, silentch);
873
874 spu.cycles_played += ns_to * 768;
875 spu.decode_pos = (spu.decode_pos + ns_to) & 0x1ff;
876}
877
878void do_samples_finish(int ns_to, int silentch)
879{
880 int volmult = spu_config.iVolume;
881 int ns;
882 int d;
883
884 if(unlikely(silentch & spu.decode_dirty_ch & (1<<1))) // must clear silent channel decode buffers
885 {
886 memset(&spu.spuMem[0x800/2], 0, 0x400);
887 spu.decode_dirty_ch &= ~(1<<1);
888 }
889 if(unlikely(silentch & spu.decode_dirty_ch & (1<<3)))
890 {
891 memset(&spu.spuMem[0xc00/2], 0, 0x400);
892 spu.decode_dirty_ch &= ~(1<<3);
893 }
894
895 //---------------------------------------------------//
896 // mix XA infos (if any)
897
898 MixXA(ns_to, spu.decode_pos);
899
900 ///////////////////////////////////////////////////////
901 // mix all channels (including reverb) into one buffer
902
903 if(spu_config.iUseReverb)
904 REVERBDo(ns_to);
905
906 if((spu.spuCtrl&0x4000)==0) // muted? (rare, don't optimize for this)
907 {
908 memset(spu.pS, 0, ns_to * 2 * sizeof(spu.pS[0]));
909 spu.pS += ns_to * 2;
910 }
911 else
912 for (ns = 0; ns < ns_to * 2; )
913 {
914 d = SSumLR[ns]; SSumLR[ns] = 0;
915 d = d * volmult >> 10;
916 ssat32_to_16(d);
917 *spu.pS++ = d;
918 ns++;
919
920 d = SSumLR[ns]; SSumLR[ns] = 0;
921 d = d * volmult >> 10;
922 ssat32_to_16(d);
923 *spu.pS++ = d;
924 ns++;
925 }
926}
927
928void schedule_next_irq(void)
929{
930 unsigned int upd_samples;
931 int ch;
932
933 if (spu.scheduleCallback == NULL)
934 return;
935
936 upd_samples = 44100 / 50;
937
938 for (ch = 0; ch < MAXCHAN; ch++)
939 {
940 if (spu.dwChannelDead & (1 << ch))
941 continue;
942 if ((unsigned long)(spu.pSpuIrq - s_chan[ch].pCurr) > IRQ_NEAR_BLOCKS * 16
943 && (unsigned long)(spu.pSpuIrq - s_chan[ch].pLoop) > IRQ_NEAR_BLOCKS * 16)
944 continue;
945
946 scan_for_irq(ch, &upd_samples);
947 }
948
949 if (unlikely(spu.pSpuIrq < spu.spuMemC + 0x1000))
950 {
951 int irq_pos = (spu.pSpuIrq - spu.spuMemC) / 2 & 0x1ff;
952 int left = (irq_pos - spu.decode_pos) & 0x1ff;
953 if (0 < left && left < upd_samples) {
954 //xprintf("decode: %3d (%3d/%3d)\n", left, spu.decode_pos, irq_pos);
955 upd_samples = left;
956 }
957 }
958
959 if (upd_samples < 44100 / 50)
960 spu.scheduleCallback(upd_samples * 768);
961}
962
963// SPU ASYNC... even newer epsxe func
964// 1 time every 'cycle' cycles... harhar
965
966// rearmed: called dynamically now
967
968void CALLBACK SPUasync(unsigned int cycle, unsigned int flags)
969{
970 do_samples(cycle);
971
972 if (spu.spuCtrl & CTRL_IRQ)
973 schedule_next_irq();
974
975 if (flags & 1) {
976 out_current->feed(spu.pSpuBuffer, (unsigned char *)spu.pS - spu.pSpuBuffer);
977 spu.pS = (short *)spu.pSpuBuffer;
978
979 if (spu_config.iTempo) {
980 if (!out_current->busy())
981 // cause more samples to be generated
982 // (and break some games because of bad sync)
983 spu.cycles_played -= 44100 / 60 / 2 * 768;
984 }
985 }
986}
987
988// SPU UPDATE... new epsxe func
989// 1 time every 32 hsync lines
990// (312/32)x50 in pal
991// (262/32)x60 in ntsc
992
993// since epsxe 1.5.2 (linux) uses SPUupdate, not SPUasync, I will
994// leave that func in the linux port, until epsxe linux is using
995// the async function as well
996
997void CALLBACK SPUupdate(void)
998{
999}
1000
1001// XA AUDIO
1002
1003void CALLBACK SPUplayADPCMchannel(xa_decode_t *xap)
1004{
1005 if(!xap) return;
1006 if(!xap->freq) return; // no xa freq ? bye
1007
1008 FeedXA(xap); // call main XA feeder
1009}
1010
1011// CDDA AUDIO
1012int CALLBACK SPUplayCDDAchannel(short *pcm, int nbytes)
1013{
1014 if (!pcm) return -1;
1015 if (nbytes<=0) return -1;
1016
1017 return FeedCDDA((unsigned char *)pcm, nbytes);
1018}
1019
1020// to be called after state load
1021void ClearWorkingState(void)
1022{
1023 memset(SSumLR,0,sizeof(SSumLR)); // init some mixing buffers
1024 memset(iFMod,0,sizeof(iFMod));
1025 spu.pS=(short *)spu.pSpuBuffer; // setup soundbuffer pointer
1026}
1027
1028// SETUPSTREAMS: init most of the spu buffers
1029void SetupStreams(void)
1030{
1031 int i;
1032
1033 spu.pSpuBuffer = (unsigned char *)malloc(32768); // alloc mixing buffer
1034 spu.sRVBStart = (int *)malloc(NSSIZE*2*4); // alloc reverb buffer
1035 memset(spu.sRVBStart,0,NSSIZE*2*4);
1036
1037 spu.XAStart = // alloc xa buffer
1038 (uint32_t *)malloc(44100 * sizeof(uint32_t));
1039 spu.XAEnd = spu.XAStart + 44100;
1040 spu.XAPlay = spu.XAStart;
1041 spu.XAFeed = spu.XAStart;
1042
1043 spu.CDDAStart = // alloc cdda buffer
1044 (uint32_t *)malloc(CDDA_BUFFER_SIZE);
1045 spu.CDDAEnd = spu.CDDAStart + 16384;
1046 spu.CDDAPlay = spu.CDDAStart;
1047 spu.CDDAFeed = spu.CDDAStart;
1048
1049 for(i=0;i<MAXCHAN;i++) // loop sound channels
1050 {
1051 s_chan[i].ADSRX.SustainLevel = 0xf; // -> init sustain
1052 s_chan[i].ADSRX.SustainIncrease = 1;
1053 s_chan[i].pLoop=spu.spuMemC;
1054 s_chan[i].pCurr=spu.spuMemC;
1055 }
1056
1057 ClearWorkingState();
1058
1059 spu.bSpuInit=1; // flag: we are inited
1060}
1061
1062// REMOVESTREAMS: free most buffer
1063void RemoveStreams(void)
1064{
1065 free(spu.pSpuBuffer); // free mixing buffer
1066 spu.pSpuBuffer = NULL;
1067 free(spu.sRVBStart); // free reverb buffer
1068 spu.sRVBStart = NULL;
1069 free(spu.XAStart); // free XA buffer
1070 spu.XAStart = NULL;
1071 free(spu.CDDAStart); // free CDDA buffer
1072 spu.CDDAStart = NULL;
1073}
1074
1075// INIT/EXIT STUFF
1076
1077// SPUINIT: this func will be called first by the main emu
1078long CALLBACK SPUinit(void)
1079{
1080 spu.spuMemC = (unsigned char *)spu.spuMem; // just small setup
1081 memset((void *)&rvb, 0, sizeof(REVERBInfo));
1082 InitADSR();
1083
1084 spu.spuAddr = 0xffffffff;
1085 spu.decode_pos = 0;
1086 memset((void *)s_chan, 0, sizeof(s_chan));
1087 spu.pSpuIrq = spu.spuMemC;
1088
1089 SetupStreams(); // prepare streaming
1090
1091 if (spu_config.iVolume == 0)
1092 spu_config.iVolume = 768; // 1024 is 1.0
1093
1094 return 0;
1095}
1096
1097// SPUOPEN: called by main emu after init
1098long CALLBACK SPUopen(void)
1099{
1100 if (spu.bSPUIsOpen) return 0; // security for some stupid main emus
1101
1102 SetupSound(); // setup sound (before init!)
1103
1104 spu.bSPUIsOpen = 1;
1105
1106 return PSE_SPU_ERR_SUCCESS;
1107}
1108
1109// SPUCLOSE: called before shutdown
1110long CALLBACK SPUclose(void)
1111{
1112 if (!spu.bSPUIsOpen) return 0; // some security
1113
1114 spu.bSPUIsOpen = 0; // no more open
1115
1116 out_current->finish(); // no more sound handling
1117
1118 return 0;
1119}
1120
1121// SPUSHUTDOWN: called by main emu on final exit
1122long CALLBACK SPUshutdown(void)
1123{
1124 SPUclose();
1125 RemoveStreams(); // no more streaming
1126 spu.bSpuInit=0;
1127
1128 return 0;
1129}
1130
1131// SPUTEST: we don't test, we are always fine ;)
1132long CALLBACK SPUtest(void)
1133{
1134 return 0;
1135}
1136
1137// SPUCONFIGURE: call config dialog
1138long CALLBACK SPUconfigure(void)
1139{
1140#ifdef _MACOSX
1141 DoConfiguration();
1142#else
1143// StartCfgTool("CFG");
1144#endif
1145 return 0;
1146}
1147
1148// SPUABOUT: show about window
1149void CALLBACK SPUabout(void)
1150{
1151#ifdef _MACOSX
1152 DoAbout();
1153#else
1154// StartCfgTool("ABOUT");
1155#endif
1156}
1157
1158// SETUP CALLBACKS
1159// this functions will be called once,
1160// passes a callback that should be called on SPU-IRQ/cdda volume change
1161void CALLBACK SPUregisterCallback(void (CALLBACK *callback)(void))
1162{
1163 spu.irqCallback = callback;
1164}
1165
1166void CALLBACK SPUregisterCDDAVolume(void (CALLBACK *CDDAVcallback)(unsigned short,unsigned short))
1167{
1168 spu.cddavCallback = CDDAVcallback;
1169}
1170
1171void CALLBACK SPUregisterScheduleCb(void (CALLBACK *callback)(unsigned int))
1172{
1173 spu.scheduleCallback = callback;
1174}
1175
1176// COMMON PLUGIN INFO FUNCS
1177/*
1178char * CALLBACK PSEgetLibName(void)
1179{
1180 return _(libraryName);
1181}
1182
1183unsigned long CALLBACK PSEgetLibType(void)
1184{
1185 return PSE_LT_SPU;
1186}
1187
1188unsigned long CALLBACK PSEgetLibVersion(void)
1189{
1190 return (1 << 16) | (6 << 8);
1191}
1192
1193char * SPUgetLibInfos(void)
1194{
1195 return _(libraryInfo);
1196}
1197*/
1198
1199// debug
1200void spu_get_debug_info(int *chans_out, int *run_chans, int *fmod_chans_out, int *noise_chans_out)
1201{
1202 int ch = 0, fmod_chans = 0, noise_chans = 0, irq_chans = 0;
1203
1204 for(;ch<MAXCHAN;ch++)
1205 {
1206 if (!(spu.dwChannelOn & (1<<ch)))
1207 continue;
1208 if (s_chan[ch].bFMod == 2)
1209 fmod_chans |= 1 << ch;
1210 if (s_chan[ch].bNoise)
1211 noise_chans |= 1 << ch;
1212 if((spu.spuCtrl&CTRL_IRQ) && s_chan[ch].pCurr <= spu.pSpuIrq && s_chan[ch].pLoop <= spu.pSpuIrq)
1213 irq_chans |= 1 << ch;
1214 }
1215
1216 *chans_out = spu.dwChannelOn;
1217 *run_chans = ~spu.dwChannelOn & ~spu.dwChannelDead & irq_chans;
1218 *fmod_chans_out = fmod_chans;
1219 *noise_chans_out = noise_chans;
1220}
1221
1222// vim:shiftwidth=1:expandtab