spu: fix a few mixing issues
[pcsx_rearmed.git] / plugins / dfsound / spu.c
... / ...
CommitLineData
1/***************************************************************************
2 spu.c - description
3 -------------------
4 begin : Wed May 15 2002
5 copyright : (C) 2002 by Pete Bernert
6 email : BlackDove@addcom.de
7
8 Portions (C) GraÅžvydas "notaz" Ignotas, 2010-2011
9
10 ***************************************************************************/
11/***************************************************************************
12 * *
13 * This program is free software; you can redistribute it and/or modify *
14 * it under the terms of the GNU General Public License as published by *
15 * the Free Software Foundation; either version 2 of the License, or *
16 * (at your option) any later version. See also the license.txt file for *
17 * additional informations. *
18 * *
19 ***************************************************************************/
20
21#include "stdafx.h"
22
23#define _IN_SPU
24
25#include "externals.h"
26#include "registers.h"
27#include "cfg.h"
28#include "dsoundoss.h"
29#include "regs.h"
30
31#ifdef ENABLE_NLS
32#include <libintl.h>
33#include <locale.h>
34#define _(x) gettext(x)
35#define N_(x) (x)
36#else
37#define _(x) (x)
38#define N_(x) (x)
39#endif
40
41#ifdef __arm__
42 #define ssat32_to_16(v) \
43 asm("ssat %0,#16,%1" : "=r" (v) : "r" (v))
44#else
45 #define ssat32_to_16(v) do { \
46 if (v < -32768) v = -32768; \
47 else if (v > 32767) v = 32767; \
48 } while (0)
49#endif
50
51/*
52#if defined (USEMACOSX)
53static char * libraryName = N_("Mac OS X Sound");
54#elif defined (USEALSA)
55static char * libraryName = N_("ALSA Sound");
56#elif defined (USEOSS)
57static char * libraryName = N_("OSS Sound");
58#elif defined (USESDL)
59static char * libraryName = N_("SDL Sound");
60#elif defined (USEPULSEAUDIO)
61static char * libraryName = N_("PulseAudio Sound");
62#else
63static char * libraryName = N_("NULL Sound");
64#endif
65
66static char * libraryInfo = N_("P.E.Op.S. Sound Driver V1.7\nCoded by Pete Bernert and the P.E.Op.S. team\n");
67*/
68
69// globals
70
71// psx buffer / addresses
72
73unsigned short regArea[10000];
74unsigned short spuMem[256*1024];
75unsigned char * spuMemC;
76unsigned char * pSpuIrq=0;
77unsigned char * pSpuBuffer;
78unsigned char * pMixIrq=0;
79
80// user settings
81
82int iVolume=768; // 1024 is 1.0
83int iXAPitch=1;
84int iUseTimer=2;
85int iSPUIRQWait=1;
86int iDebugMode=0;
87int iRecordMode=0;
88int iUseReverb=2;
89int iUseInterpolation=2;
90
91// MAIN infos struct for each channel
92
93SPUCHAN s_chan[MAXCHAN+1]; // channel + 1 infos (1 is security for fmod handling)
94REVERBInfo rvb;
95
96unsigned int dwNoiseVal; // global noise generator
97unsigned int dwNoiseCount;
98int iSpuAsyncWait=0;
99
100unsigned short spuCtrl=0; // some vars to store psx reg infos
101unsigned short spuStat=0;
102unsigned short spuIrq=0;
103unsigned long spuAddr=0xffffffff; // address into spu mem
104int bEndThread=0; // thread handlers
105int bThreadEnded=0;
106int bSpuInit=0;
107int bSPUIsOpen=0;
108
109static pthread_t thread = (pthread_t)-1; // thread id (linux)
110
111unsigned long dwNewChannel=0; // flags for faster testing, if new channel starts
112unsigned long dwChannelOn=0;
113unsigned long dwPendingChanOff=0;
114
115void (CALLBACK *irqCallback)(void)=0; // func of main emu, called on spu irq
116void (CALLBACK *cddavCallback)(unsigned short,unsigned short)=0;
117
118// certain globals (were local before, but with the new timeproc I need em global)
119
120static const int f[8][2] = { { 0, 0 },
121 { 60, 0 },
122 { 115, -52 },
123 { 98, -55 },
124 { 122, -60 } };
125int ChanBuf[NSSIZE+3];
126int SSumLR[(NSSIZE+3)*2];
127int iFMod[NSSIZE];
128int iCycle = 0;
129short * pS;
130
131int lastch=-1; // last channel processed on spu irq in timer mode
132static int lastns=0; // last ns pos
133static int iSecureStart=0; // secure start counter
134
135////////////////////////////////////////////////////////////////////////
136// CODE AREA
137////////////////////////////////////////////////////////////////////////
138
139// dirty inline func includes
140
141#include "reverb.c"
142#include "adsr.c"
143
144////////////////////////////////////////////////////////////////////////
145// helpers for simple interpolation
146
147//
148// easy interpolation on upsampling, no special filter, just "Pete's common sense" tm
149//
150// instead of having n equal sample values in a row like:
151// ____
152// |____
153//
154// we compare the current delta change with the next delta change.
155//
156// if curr_delta is positive,
157//
158// - and next delta is smaller (or changing direction):
159// \.
160// -__
161//
162// - and next delta significant (at least twice) bigger:
163// --_
164// \.
165//
166// - and next delta is nearly same:
167// \.
168// \.
169//
170//
171// if curr_delta is negative,
172//
173// - and next delta is smaller (or changing direction):
174// _--
175// /
176//
177// - and next delta significant (at least twice) bigger:
178// /
179// __-
180//
181// - and next delta is nearly same:
182// /
183// /
184//
185
186
187INLINE void InterpolateUp(int ch)
188{
189 if(s_chan[ch].SB[32]==1) // flag == 1? calc step and set flag... and don't change the value in this pass
190 {
191 const int id1=s_chan[ch].SB[30]-s_chan[ch].SB[29]; // curr delta to next val
192 const int id2=s_chan[ch].SB[31]-s_chan[ch].SB[30]; // and next delta to next-next val :)
193
194 s_chan[ch].SB[32]=0;
195
196 if(id1>0) // curr delta positive
197 {
198 if(id2<id1)
199 {s_chan[ch].SB[28]=id1;s_chan[ch].SB[32]=2;}
200 else
201 if(id2<(id1<<1))
202 s_chan[ch].SB[28]=(id1*s_chan[ch].sinc)/0x10000L;
203 else
204 s_chan[ch].SB[28]=(id1*s_chan[ch].sinc)/0x20000L;
205 }
206 else // curr delta negative
207 {
208 if(id2>id1)
209 {s_chan[ch].SB[28]=id1;s_chan[ch].SB[32]=2;}
210 else
211 if(id2>(id1<<1))
212 s_chan[ch].SB[28]=(id1*s_chan[ch].sinc)/0x10000L;
213 else
214 s_chan[ch].SB[28]=(id1*s_chan[ch].sinc)/0x20000L;
215 }
216 }
217 else
218 if(s_chan[ch].SB[32]==2) // flag 1: calc step and set flag... and don't change the value in this pass
219 {
220 s_chan[ch].SB[32]=0;
221
222 s_chan[ch].SB[28]=(s_chan[ch].SB[28]*s_chan[ch].sinc)/0x20000L;
223 if(s_chan[ch].sinc<=0x8000)
224 s_chan[ch].SB[29]=s_chan[ch].SB[30]-(s_chan[ch].SB[28]*((0x10000/s_chan[ch].sinc)-1));
225 else s_chan[ch].SB[29]+=s_chan[ch].SB[28];
226 }
227 else // no flags? add bigger val (if possible), calc smaller step, set flag1
228 s_chan[ch].SB[29]+=s_chan[ch].SB[28];
229}
230
231//
232// even easier interpolation on downsampling, also no special filter, again just "Pete's common sense" tm
233//
234
235INLINE void InterpolateDown(int ch)
236{
237 if(s_chan[ch].sinc>=0x20000L) // we would skip at least one val?
238 {
239 s_chan[ch].SB[29]+=(s_chan[ch].SB[30]-s_chan[ch].SB[29])/2; // add easy weight
240 if(s_chan[ch].sinc>=0x30000L) // we would skip even more vals?
241 s_chan[ch].SB[29]+=(s_chan[ch].SB[31]-s_chan[ch].SB[30])/2;// add additional next weight
242 }
243}
244
245////////////////////////////////////////////////////////////////////////
246// helpers for gauss interpolation
247
248#define gval0 (((short*)(&s_chan[ch].SB[29]))[gpos])
249#define gval(x) (((short*)(&s_chan[ch].SB[29]))[(gpos+x)&3])
250
251#include "gauss_i.h"
252
253////////////////////////////////////////////////////////////////////////
254
255#include "xa.c"
256
257////////////////////////////////////////////////////////////////////////
258// START SOUND... called by main thread to setup a new sound on a channel
259////////////////////////////////////////////////////////////////////////
260
261INLINE void StartSound(int ch)
262{
263 StartADSR(ch);
264 StartREVERB(ch);
265
266 // fussy timing issues - do in VoiceOn
267 //s_chan[ch].pCurr=s_chan[ch].pStart; // set sample start
268 //s_chan[ch].bStop=0;
269 //s_chan[ch].bOn=1;
270
271 s_chan[ch].SB[26]=0; // init mixing vars
272 s_chan[ch].SB[27]=0;
273 s_chan[ch].iSBPos=28;
274
275 s_chan[ch].SB[29]=0; // init our interpolation helpers
276 s_chan[ch].SB[30]=0;
277
278 if(iUseInterpolation>=2) // gauss interpolation?
279 {s_chan[ch].spos=0x30000L;s_chan[ch].SB[28]=0;} // -> start with more decoding
280 else {s_chan[ch].spos=0x10000L;s_chan[ch].SB[31]=0;} // -> no/simple interpolation starts with one 44100 decoding
281
282 dwNewChannel&=~(1<<ch); // clear new channel bit
283}
284
285////////////////////////////////////////////////////////////////////////
286// ALL KIND OF HELPERS
287////////////////////////////////////////////////////////////////////////
288
289INLINE void VoiceChangeFrequency(int ch)
290{
291 s_chan[ch].iUsedFreq=s_chan[ch].iActFreq; // -> take it and calc steps
292 s_chan[ch].sinc=s_chan[ch].iRawPitch<<4;
293 if(!s_chan[ch].sinc) s_chan[ch].sinc=1;
294 if(iUseInterpolation==1) s_chan[ch].SB[32]=1; // -> freq change in simle imterpolation mode: set flag
295}
296
297////////////////////////////////////////////////////////////////////////
298
299INLINE int FModChangeFrequency(int ch,int ns)
300{
301 int NP=s_chan[ch].iRawPitch;
302 int sinc;
303
304 NP=((32768L+iFMod[ns])*NP)/32768L;
305
306 if(NP>0x3fff) NP=0x3fff;
307 if(NP<0x1) NP=0x1;
308
309 NP=(44100L*NP)/(4096L); // calc frequency
310
311 s_chan[ch].iActFreq=NP;
312 s_chan[ch].iUsedFreq=NP;
313 sinc=(((NP/10)<<16)/4410);
314 if(!sinc) sinc=1;
315 if(iUseInterpolation==1) // freq change in simple interpolation mode
316 s_chan[ch].SB[32]=1;
317 iFMod[ns]=0;
318
319 return sinc;
320}
321
322////////////////////////////////////////////////////////////////////////
323
324INLINE void StoreInterpolationVal(int ch,int fa)
325{
326 if(s_chan[ch].bFMod==2) // fmod freq channel
327 s_chan[ch].SB[29]=fa;
328 else
329 {
330 ssat32_to_16(fa);
331
332 if(iUseInterpolation>=2) // gauss/cubic interpolation
333 {
334 int gpos = s_chan[ch].SB[28];
335 gval0 = fa;
336 gpos = (gpos+1) & 3;
337 s_chan[ch].SB[28] = gpos;
338 }
339 else
340 if(iUseInterpolation==1) // simple interpolation
341 {
342 s_chan[ch].SB[28] = 0;
343 s_chan[ch].SB[29] = s_chan[ch].SB[30]; // -> helpers for simple linear interpolation: delay real val for two slots, and calc the two deltas, for a 'look at the future behaviour'
344 s_chan[ch].SB[30] = s_chan[ch].SB[31];
345 s_chan[ch].SB[31] = fa;
346 s_chan[ch].SB[32] = 1; // -> flag: calc new interolation
347 }
348 else s_chan[ch].SB[29]=fa; // no interpolation
349 }
350}
351
352////////////////////////////////////////////////////////////////////////
353
354INLINE int iGetInterpolationVal(int ch)
355{
356 int fa;
357
358 if(s_chan[ch].bFMod==2) return s_chan[ch].SB[29];
359
360 switch(iUseInterpolation)
361 {
362 //--------------------------------------------------//
363 case 3: // cubic interpolation
364 {
365 long xd;int gpos;
366 xd = ((s_chan[ch].spos) >> 1)+1;
367 gpos = s_chan[ch].SB[28];
368
369 fa = gval(3) - 3*gval(2) + 3*gval(1) - gval0;
370 fa *= (xd - (2<<15)) / 6;
371 fa >>= 15;
372 fa += gval(2) - gval(1) - gval(1) + gval0;
373 fa *= (xd - (1<<15)) >> 1;
374 fa >>= 15;
375 fa += gval(1) - gval0;
376 fa *= xd;
377 fa >>= 15;
378 fa = fa + gval0;
379
380 } break;
381 //--------------------------------------------------//
382 case 2: // gauss interpolation
383 {
384 int vl, vr;int gpos;
385 vl = (s_chan[ch].spos >> 6) & ~3;
386 gpos = s_chan[ch].SB[28];
387 vr=(gauss[vl]*gval0)&~2047;
388 vr+=(gauss[vl+1]*gval(1))&~2047;
389 vr+=(gauss[vl+2]*gval(2))&~2047;
390 vr+=(gauss[vl+3]*gval(3))&~2047;
391 fa = vr>>11;
392 } break;
393 //--------------------------------------------------//
394 case 1: // simple interpolation
395 {
396 if(s_chan[ch].sinc<0x10000L) // -> upsampling?
397 InterpolateUp(ch); // --> interpolate up
398 else InterpolateDown(ch); // --> else down
399 fa=s_chan[ch].SB[29];
400 } break;
401 //--------------------------------------------------//
402 default: // no interpolation
403 {
404 fa=s_chan[ch].SB[29];
405 } break;
406 //--------------------------------------------------//
407 }
408
409 return fa;
410}
411
412static void do_irq(void)
413{
414 if(!(spuStat & STAT_IRQ))
415 {
416 spuStat |= STAT_IRQ;
417 if(irqCallback) irqCallback();
418 }
419}
420
421static void decode_block_data(int *dest, const unsigned char *src, int predict_nr, int shift_factor)
422{
423 int nSample;
424 int fa, s_1, s_2, d, s;
425
426 s_1 = dest[27];
427 s_2 = dest[26];
428
429 for (nSample = 0; nSample < 28; src++)
430 {
431 d = (int)*src;
432 s = (int)(signed short)((d & 0x0f) << 12);
433
434 fa = s >> shift_factor;
435 fa += ((s_1 * f[predict_nr][0])>>6) + ((s_2 * f[predict_nr][1])>>6);
436 s_2=s_1;s_1=fa;
437
438 dest[nSample++] = fa;
439
440 s = (int)(signed short)((d & 0xf0) << 8);
441 fa = s >> shift_factor;
442 fa += ((s_1 * f[predict_nr][0])>>6) + ((s_2 * f[predict_nr][1])>>6);
443 s_2=s_1;s_1=fa;
444
445 dest[nSample++] = fa;
446 }
447}
448
449static int decode_block(int ch)
450{
451 unsigned char *start;
452 int predict_nr,shift_factor,flags;
453 int ret = 0;
454
455 start=s_chan[ch].pCurr; // set up the current pos
456 if(start == (unsigned char*)-1 || // special "stop" sign
457 (dwPendingChanOff&(1<<ch)))
458 {
459 dwChannelOn&=~(1<<ch); // -> turn everything off
460 dwPendingChanOff&=~(1<<ch);
461 s_chan[ch].bStop=1;
462 s_chan[ch].ADSRX.EnvelopeVol=0;
463 return 0; // -> and done for this channel
464 }
465
466 //////////////////////////////////////////// irq check
467
468 if(spuCtrl&CTRL_IRQ)
469 {
470 if(pSpuIrq == start) // irq address reached?
471 {
472 do_irq(); // -> call main emu
473 ret = 1;
474 }
475 }
476
477 predict_nr=(int)start[0];
478 shift_factor=predict_nr&0xf;
479 predict_nr >>= 4;
480
481 decode_block_data(s_chan[ch].SB, start + 2, predict_nr, shift_factor);
482
483 //////////////////////////////////////////// flag handler
484
485 flags=(int)start[1];
486 if(flags&4)
487 s_chan[ch].pLoop=start; // loop adress
488
489 start+=16;
490 if(flags&1) // 1: stop/loop
491 {
492 if(!(flags&2))
493 dwPendingChanOff|=1<<ch;
494
495 start = s_chan[ch].pLoop;
496 }
497
498 if (start - spuMemC >= 0x80000)
499 start = (unsigned char*)-1;
500
501 s_chan[ch].pCurr = start; // store values for next cycle
502
503 return ret;
504}
505
506// do block, but ignore sample data
507static int skip_block(int ch)
508{
509 unsigned char *start = s_chan[ch].pCurr;
510 int flags = start[1];
511 int ret = 0;
512
513 // Tron Bonne hack, probably wrong (could be wrong memory contents..)
514 if(flags & ~7) flags = 0;
515
516 if(start == pSpuIrq)
517 {
518 do_irq();
519 ret = 1;
520 }
521
522 if(flags & 4)
523 s_chan[ch].pLoop=start;
524
525 s_chan[ch].pCurr += 16;
526
527 if(flags & 1)
528 s_chan[ch].pCurr = s_chan[ch].pLoop;
529
530 return ret;
531}
532
533#define make_do_samples(name, fmod_code, interp_start, interp1_code, interp2_code, interp_end) \
534static int do_samples_##name(int ch, int ns, int ns_to) \
535{ \
536 int sinc = s_chan[ch].sinc; \
537 int spos = s_chan[ch].spos; \
538 int sbpos = s_chan[ch].iSBPos; \
539 int *SB = s_chan[ch].SB; \
540 int ret = -1; \
541 int d, fa; \
542 interp_start; \
543 \
544 for (; ns < ns_to; ns++) \
545 { \
546 fmod_code; \
547 \
548 while (spos >= 0x10000) \
549 { \
550 if(sbpos == 28) \
551 { \
552 sbpos = 0; \
553 d = decode_block(ch); \
554 if(d && iSPUIRQWait) \
555 { \
556 ret = ns; \
557 goto out; \
558 } \
559 } \
560 \
561 fa = SB[sbpos++]; \
562 interp1_code; \
563 spos -= 0x10000; \
564 } \
565 \
566 interp2_code; \
567 spos += sinc; \
568 } \
569 \
570out: \
571 s_chan[ch].sinc = sinc; \
572 s_chan[ch].spos = spos; \
573 s_chan[ch].iSBPos = sbpos; \
574 interp_end; \
575 \
576 return ret; \
577}
578
579#define fmod_recv_check \
580 if(s_chan[ch].bFMod==1 && iFMod[ns]) \
581 sinc = FModChangeFrequency(ch,ns)
582
583make_do_samples(default, fmod_recv_check, ,
584 StoreInterpolationVal(ch, fa),
585 ChanBuf[ns] = iGetInterpolationVal(ch), )
586make_do_samples(noint, , fa = s_chan[ch].SB[29], , ChanBuf[ns] = fa, s_chan[ch].SB[29] = fa)
587
588#define simple_interp_store \
589 s_chan[ch].SB[28] = 0; \
590 s_chan[ch].SB[29] = s_chan[ch].SB[30]; \
591 s_chan[ch].SB[30] = s_chan[ch].SB[31]; \
592 s_chan[ch].SB[31] = fa; \
593 s_chan[ch].SB[32] = 1
594
595#define simple_interp_get \
596 if(sinc<0x10000) /* -> upsampling? */ \
597 InterpolateUp(ch); /* --> interpolate up */ \
598 else InterpolateDown(ch); /* --> else down */ \
599 ChanBuf[ns] = s_chan[ch].SB[29]
600
601make_do_samples(simple, , ,
602 simple_interp_store, simple_interp_get, )
603
604static int do_samples_noise(int ch, int ns, int ns_to)
605{
606 int level, shift, bit;
607
608 s_chan[ch].spos += s_chan[ch].sinc * (ns_to - ns);
609 while (s_chan[ch].spos >= 28*0x10000)
610 {
611 skip_block(ch);
612 s_chan[ch].spos -= 28*0x10000;
613 }
614
615 // modified from DrHell/shalma, no fraction
616 level = (spuCtrl >> 10) & 0x0f;
617 level = 0x8000 >> level;
618
619 for (; ns < ns_to; ns++)
620 {
621 dwNoiseCount += 2;
622 if (dwNoiseCount >= level)
623 {
624 dwNoiseCount -= level;
625 shift = (dwNoiseVal >> 10) & 0x1f;
626 bit = (0x69696969 >> shift) & 1;
627 if (dwNoiseVal & 0x8000)
628 bit ^= 1;
629 dwNoiseVal = (dwNoiseVal << 1) | bit;
630 }
631
632 ChanBuf[ns] = (signed short)dwNoiseVal;
633 }
634
635 return -1;
636}
637
638#ifdef __arm__
639// asm code
640extern void mix_chan(int start, int count, int lv, int rv);
641extern void mix_chan_rvb(int start, int count, int lv, int rv);
642#else
643static void mix_chan(int start, int count, int lv, int rv)
644{
645 int *dst = SSumLR + start * 2;
646 const int *src = ChanBuf + start;
647 int l, r;
648
649 while (count--)
650 {
651 int sval = *src++;
652
653 l = (sval * lv) >> 14;
654 r = (sval * rv) >> 14;
655 *dst++ += l;
656 *dst++ += r;
657 }
658}
659
660static void mix_chan_rvb(int start, int count, int lv, int rv)
661{
662 int *dst = SSumLR + start * 2;
663 int *drvb = sRVBStart + start * 2;
664 const int *src = ChanBuf + start;
665 int l, r;
666
667 while (count--)
668 {
669 int sval = *src++;
670
671 l = (sval * lv) >> 14;
672 r = (sval * rv) >> 14;
673 *dst++ += l;
674 *dst++ += r;
675 *drvb++ += l;
676 *drvb++ += r;
677 }
678}
679#endif
680
681////////////////////////////////////////////////////////////////////////
682// MAIN SPU FUNCTION
683// here is the main job handler... thread, timer or direct func call
684// basically the whole sound processing is done in this fat func!
685////////////////////////////////////////////////////////////////////////
686
687// 5 ms waiting phase, if buffer is full and no new sound has to get started
688// .. can be made smaller (smallest val: 1 ms), but bigger waits give
689// better performance
690
691#define PAUSE_W 5
692#define PAUSE_L 5000
693
694////////////////////////////////////////////////////////////////////////
695
696static void *MAINThread(void *arg)
697{
698 int volmult = iVolume;
699 int ns,ns_from,ns_to;
700 int ch,d;
701 int bIRQReturn=0;
702
703 while(!bEndThread) // until we are shutting down
704 {
705 // ok, at the beginning we are looking if there is
706 // enuff free place in the dsound/oss buffer to
707 // fill in new data, or if there is a new channel to start.
708 // if not, we wait (thread) or return (timer/spuasync)
709 // until enuff free place is available/a new channel gets
710 // started
711
712 if(dwNewChannel) // new channel should start immedately?
713 { // (at least one bit 0 ... MAXCHANNEL is set?)
714 iSecureStart++; // -> set iSecure
715 if(iSecureStart>5) iSecureStart=0; // (if it is set 5 times - that means on 5 tries a new samples has been started - in a row, we will reset it, to give the sound update a chance)
716 }
717 else iSecureStart=0; // 0: no new channel should start
718
719 while(!iSecureStart && !bEndThread && // no new start? no thread end?
720 (SoundGetBytesBuffered()>TESTSIZE)) // and still enuff data in sound buffer?
721 {
722 iSecureStart=0; // reset secure
723
724 if(iUseTimer) return 0; // linux no-thread mode? bye
725 usleep(PAUSE_L); // else sleep for x ms (linux)
726
727 if(dwNewChannel) iSecureStart=1; // if a new channel kicks in (or, of course, sound buffer runs low), we will leave the loop
728 }
729
730 //--------------------------------------------------// continue from irq handling in timer mode?
731
732 ns_from=0;
733 ns_to=NSSIZE;
734 ch=0;
735 if(lastch>=0) // will be -1 if no continue is pending
736 {
737 ch=lastch; ns_from=lastns; lastch=-1; // -> setup all kind of vars to continue
738 }
739
740 //--------------------------------------------------//
741 //- main channel loop -//
742 //--------------------------------------------------//
743 {
744 for(;ch<MAXCHAN;ch++) // loop em all... we will collect 1 ms of sound of each playing channel
745 {
746 if(dwNewChannel&(1<<ch)) StartSound(ch); // start new sound
747 if(!(dwChannelOn&(1<<ch))) continue; // channel not playing? next
748
749 if(s_chan[ch].iActFreq!=s_chan[ch].iUsedFreq) // new psx frequency?
750 VoiceChangeFrequency(ch);
751
752 if(s_chan[ch].bNoise)
753 d=do_samples_noise(ch, ns_from, ns_to);
754 else if(s_chan[ch].bFMod==2 || (s_chan[ch].bFMod==0 && iUseInterpolation==0))
755 d=do_samples_noint(ch, ns_from, ns_to);
756 else if(s_chan[ch].bFMod==0 && iUseInterpolation==1)
757 d=do_samples_simple(ch, ns_from, ns_to);
758 else
759 d=do_samples_default(ch, ns_from, ns_to);
760 if(d>=0)
761 {
762 bIRQReturn=1;
763 lastch=ch;
764 lastns=ns_to=d;
765 if(d==0)
766 break;
767 }
768
769 MixADSR(ch, ns_from, ns_to);
770
771 if(s_chan[ch].bFMod==2) // fmod freq channel
772 memcpy(iFMod, ChanBuf, sizeof(iFMod));
773 else if(s_chan[ch].bRVBActive)
774 mix_chan_rvb(ns_from,ns_to-ns_from,s_chan[ch].iLeftVolume,s_chan[ch].iRightVolume);
775 else
776 mix_chan(ns_from,ns_to-ns_from,s_chan[ch].iLeftVolume,s_chan[ch].iRightVolume);
777 }
778 }
779
780 // advance "stopped" channels that can cause irqs
781 // (all chans are always playing on the real thing..)
782 if(!bIRQReturn && (spuCtrl&CTRL_IRQ))
783 for(ch=0;ch<MAXCHAN;ch++)
784 {
785 if(dwChannelOn&(1<<ch)) continue; // already handled
786 if(s_chan[ch].pCurr == (unsigned char *)-1)
787 continue;
788 if(s_chan[ch].pCurr > pSpuIrq && s_chan[ch].pLoop > pSpuIrq)
789 continue;
790
791 if(s_chan[ch].iActFreq!=s_chan[ch].iUsedFreq) // new psx frequency?
792 VoiceChangeFrequency(ch);
793
794 s_chan[ch].spos += s_chan[ch].sinc * NSSIZE;
795 while(s_chan[ch].spos >= 28 * 0x10000)
796 {
797 unsigned char *start=s_chan[ch].pCurr;
798
799 // no need for bIRQReturn since the channel is silent
800 iSpuAsyncWait |= skip_block(ch);
801 if(start == s_chan[ch].pCurr)
802 {
803 // looping on self
804 s_chan[ch].pCurr=(unsigned char *)-1;
805 break;
806 }
807
808 s_chan[ch].spos -= 28 * 0x10000;
809 }
810 }
811
812 if(bIRQReturn && iSPUIRQWait) // special return for "spu irq - wait for cpu action"
813 {
814 iSpuAsyncWait=1;
815 bIRQReturn=0;
816 if(iUseTimer!=2)
817 {
818 DWORD dwWatchTime=timeGetTime_spu()+2500;
819
820 while(iSpuAsyncWait && !bEndThread &&
821 timeGetTime_spu()<dwWatchTime)
822 usleep(1000L);
823 continue;
824 }
825 else
826 {
827 return 0;
828 }
829 }
830
831
832 //---------------------------------------------------//
833 //- here we have another 1 ms of sound data
834 //---------------------------------------------------//
835 // mix XA infos (if any)
836
837 MixXA();
838
839 ///////////////////////////////////////////////////////
840 // mix all channels (including reverb) into one buffer
841
842 if(iUseReverb)
843 REVERBDo();
844
845 if((spuCtrl&0x4000)==0) // muted? (rare, don't optimize for this)
846 {
847 memset(pS, 0, NSSIZE * 2 * sizeof(pS[0]));
848 pS += NSSIZE*2;
849 }
850 else
851 for (ns = 0; ns < NSSIZE*2; )
852 {
853 d = SSumLR[ns]; SSumLR[ns] = 0;
854 d = d * volmult >> 10;
855 ssat32_to_16(d);
856 *pS++ = d;
857 ns++;
858
859 d = SSumLR[ns]; SSumLR[ns] = 0;
860 d = d * volmult >> 10;
861 ssat32_to_16(d);
862 *pS++ = d;
863 ns++;
864 }
865
866 //////////////////////////////////////////////////////
867 // special irq handling in the decode buffers (0x0000-0x1000)
868 // we know:
869 // the decode buffers are located in spu memory in the following way:
870 // 0x0000-0x03ff CD audio left
871 // 0x0400-0x07ff CD audio right
872 // 0x0800-0x0bff Voice 1
873 // 0x0c00-0x0fff Voice 3
874 // and decoded data is 16 bit for one sample
875 // we assume:
876 // even if voices 1/3 are off or no cd audio is playing, the internal
877 // play positions will move on and wrap after 0x400 bytes.
878 // Therefore: we just need a pointer from spumem+0 to spumem+3ff, and
879 // increase this pointer on each sample by 2 bytes. If this pointer
880 // (or 0x400 offsets of this pointer) hits the spuirq address, we generate
881 // an IRQ. Only problem: the "wait for cpu" option is kinda hard to do here
882 // in some of Peops timer modes. So: we ignore this option here (for now).
883
884 if(pMixIrq)
885 {
886 for(ns=0;ns<NSSIZE;ns++)
887 {
888 if((spuCtrl&0x40) && pSpuIrq && pSpuIrq<spuMemC+0x1000)
889 {
890 for(ch=0;ch<4;ch++)
891 {
892 if(pSpuIrq>=pMixIrq+(ch*0x400) && pSpuIrq<pMixIrq+(ch*0x400)+2)
893 do_irq();
894 }
895 }
896 pMixIrq+=2;if(pMixIrq>spuMemC+0x3ff) pMixIrq=spuMemC;
897 }
898 }
899
900 InitREVERB();
901
902 // feed the sound
903 // wanna have around 1/60 sec (16.666 ms) updates
904 if (iCycle++ > 16/FRAG_MSECS)
905 {
906 SoundFeedStreamData((unsigned char *)pSpuBuffer,
907 ((unsigned char *)pS) - ((unsigned char *)pSpuBuffer));
908 pS = (short *)pSpuBuffer;
909 iCycle = 0;
910 }
911 }
912
913 // end of big main loop...
914
915 bThreadEnded = 1;
916
917 return 0;
918}
919
920// SPU ASYNC... even newer epsxe func
921// 1 time every 'cycle' cycles... harhar
922
923void CALLBACK SPUasync(unsigned long cycle)
924{
925 if(iSpuAsyncWait)
926 {
927 iSpuAsyncWait++;
928 if(iSpuAsyncWait<=16/FRAG_MSECS) return;
929 iSpuAsyncWait=0;
930 }
931
932 if(iUseTimer==2) // special mode, only used in Linux by this spu (or if you enable the experimental Windows mode)
933 {
934 if(!bSpuInit) return; // -> no init, no call
935
936 MAINThread(0); // -> linux high-compat mode
937
938 // abuse iSpuAsyncWait mechanism to reduce calls to above function
939 // to make it do larger chunks
940 // note: doing it less often than once per frame causes skips
941 iSpuAsyncWait=1;
942 }
943}
944
945// SPU UPDATE... new epsxe func
946// 1 time every 32 hsync lines
947// (312/32)x50 in pal
948// (262/32)x60 in ntsc
949
950// since epsxe 1.5.2 (linux) uses SPUupdate, not SPUasync, I will
951// leave that func in the linux port, until epsxe linux is using
952// the async function as well
953
954void CALLBACK SPUupdate(void)
955{
956 SPUasync(0);
957}
958
959// XA AUDIO
960
961void CALLBACK SPUplayADPCMchannel(xa_decode_t *xap)
962{
963 if(!xap) return;
964 if(!xap->freq) return; // no xa freq ? bye
965
966 FeedXA(xap); // call main XA feeder
967}
968
969// CDDA AUDIO
970void CALLBACK SPUplayCDDAchannel(short *pcm, int nbytes)
971{
972 if (!pcm) return;
973 if (nbytes<=0) return;
974
975 FeedCDDA((unsigned char *)pcm, nbytes);
976}
977
978// SETUPTIMER: init of certain buffers and threads/timers
979void SetupTimer(void)
980{
981 memset(SSumLR,0,sizeof(SSumLR)); // init some mixing buffers
982 memset(iFMod,0,NSSIZE*sizeof(int));
983 pS=(short *)pSpuBuffer; // setup soundbuffer pointer
984
985 bEndThread=0; // init thread vars
986 bThreadEnded=0;
987 bSpuInit=1; // flag: we are inited
988
989 if(!iUseTimer) // linux: use thread
990 {
991 pthread_create(&thread, NULL, MAINThread, NULL);
992 }
993}
994
995// REMOVETIMER: kill threads/timers
996void RemoveTimer(void)
997{
998 bEndThread=1; // raise flag to end thread
999
1000 if(!iUseTimer) // linux tread?
1001 {
1002 int i=0;
1003 while(!bThreadEnded && i<2000) {usleep(1000L);i++;} // -> wait until thread has ended
1004 if(thread!=(pthread_t)-1) {pthread_cancel(thread);thread=(pthread_t)-1;} // -> cancel thread anyway
1005 }
1006
1007 bThreadEnded=0; // no more spu is running
1008 bSpuInit=0;
1009}
1010
1011// SETUPSTREAMS: init most of the spu buffers
1012void SetupStreams(void)
1013{
1014 int i;
1015
1016 pSpuBuffer=(unsigned char *)malloc(32768); // alloc mixing buffer
1017
1018 if(iUseReverb==1) i=88200*2;
1019 else i=NSSIZE*2;
1020
1021 sRVBStart = (int *)malloc(i*4); // alloc reverb buffer
1022 memset(sRVBStart,0,i*4);
1023 sRVBEnd = sRVBStart + i;
1024 sRVBPlay = sRVBStart;
1025
1026 XAStart = // alloc xa buffer
1027 (uint32_t *)malloc(44100 * sizeof(uint32_t));
1028 XAEnd = XAStart + 44100;
1029 XAPlay = XAStart;
1030 XAFeed = XAStart;
1031
1032 CDDAStart = // alloc cdda buffer
1033 (uint32_t *)malloc(16384 * sizeof(uint32_t));
1034 CDDAEnd = CDDAStart + 16384;
1035 CDDAPlay = CDDAStart;
1036 CDDAFeed = CDDAStart;
1037
1038 for(i=0;i<MAXCHAN;i++) // loop sound channels
1039 {
1040// we don't use mutex sync... not needed, would only
1041// slow us down:
1042// s_chan[i].hMutex=CreateMutex(NULL,FALSE,NULL);
1043 s_chan[i].ADSRX.SustainLevel = 0xf; // -> init sustain
1044 s_chan[i].pLoop=spuMemC;
1045 s_chan[i].pStart=spuMemC;
1046 s_chan[i].pCurr=spuMemC;
1047 }
1048
1049 pMixIrq=spuMemC; // enable decoded buffer irqs by setting the address
1050}
1051
1052// REMOVESTREAMS: free most buffer
1053void RemoveStreams(void)
1054{
1055 free(pSpuBuffer); // free mixing buffer
1056 pSpuBuffer = NULL;
1057 free(sRVBStart); // free reverb buffer
1058 sRVBStart = NULL;
1059 free(XAStart); // free XA buffer
1060 XAStart = NULL;
1061 free(CDDAStart); // free CDDA buffer
1062 CDDAStart = NULL;
1063}
1064
1065// INIT/EXIT STUFF
1066
1067// SPUINIT: this func will be called first by the main emu
1068long CALLBACK SPUinit(void)
1069{
1070 spuMemC = (unsigned char *)spuMem; // just small setup
1071 memset((void *)&rvb, 0, sizeof(REVERBInfo));
1072 InitADSR();
1073
1074 spuIrq = 0;
1075 spuAddr = 0xffffffff;
1076 bEndThread = 0;
1077 bThreadEnded = 0;
1078 spuMemC = (unsigned char *)spuMem;
1079 pMixIrq = 0;
1080 memset((void *)s_chan, 0, (MAXCHAN + 1) * sizeof(SPUCHAN));
1081 pSpuIrq = 0;
1082 //iSPUIRQWait = 0;
1083 lastch = -1;
1084
1085 //ReadConfigSPU(); // read user stuff
1086 SetupStreams(); // prepare streaming
1087
1088 return 0;
1089}
1090
1091// SPUOPEN: called by main emu after init
1092long CALLBACK SPUopen(void)
1093{
1094 if (bSPUIsOpen) return 0; // security for some stupid main emus
1095
1096 SetupSound(); // setup sound (before init!)
1097 SetupTimer(); // timer for feeding data
1098
1099 bSPUIsOpen = 1;
1100
1101 return PSE_SPU_ERR_SUCCESS;
1102}
1103
1104// SPUCLOSE: called before shutdown
1105long CALLBACK SPUclose(void)
1106{
1107 if (!bSPUIsOpen) return 0; // some security
1108
1109 bSPUIsOpen = 0; // no more open
1110
1111 RemoveTimer(); // no more feeding
1112 RemoveSound(); // no more sound handling
1113
1114 return 0;
1115}
1116
1117// SPUSHUTDOWN: called by main emu on final exit
1118long CALLBACK SPUshutdown(void)
1119{
1120 SPUclose();
1121 RemoveStreams(); // no more streaming
1122
1123 return 0;
1124}
1125
1126// SPUTEST: we don't test, we are always fine ;)
1127long CALLBACK SPUtest(void)
1128{
1129 return 0;
1130}
1131
1132// SPUCONFIGURE: call config dialog
1133long CALLBACK SPUconfigure(void)
1134{
1135#ifdef _MACOSX
1136 DoConfiguration();
1137#else
1138// StartCfgTool("CFG");
1139#endif
1140 return 0;
1141}
1142
1143// SPUABOUT: show about window
1144void CALLBACK SPUabout(void)
1145{
1146#ifdef _MACOSX
1147 DoAbout();
1148#else
1149// StartCfgTool("ABOUT");
1150#endif
1151}
1152
1153// SETUP CALLBACKS
1154// this functions will be called once,
1155// passes a callback that should be called on SPU-IRQ/cdda volume change
1156void CALLBACK SPUregisterCallback(void (CALLBACK *callback)(void))
1157{
1158 irqCallback = callback;
1159}
1160
1161void CALLBACK SPUregisterCDDAVolume(void (CALLBACK *CDDAVcallback)(unsigned short,unsigned short))
1162{
1163 cddavCallback = CDDAVcallback;
1164}
1165
1166// COMMON PLUGIN INFO FUNCS
1167/*
1168char * CALLBACK PSEgetLibName(void)
1169{
1170 return _(libraryName);
1171}
1172
1173unsigned long CALLBACK PSEgetLibType(void)
1174{
1175 return PSE_LT_SPU;
1176}
1177
1178unsigned long CALLBACK PSEgetLibVersion(void)
1179{
1180 return (1 << 16) | (6 << 8);
1181}
1182
1183char * SPUgetLibInfos(void)
1184{
1185 return _(libraryInfo);
1186}
1187*/
1188
1189// debug
1190void spu_get_debug_info(int *chans_out, int *fmod_chans_out, int *noise_chans_out)
1191{
1192 int ch = 0, fmod_chans = 0, noise_chans = 0;
1193
1194 for(;ch<MAXCHAN;ch++)
1195 {
1196 if (!(dwChannelOn & (1<<ch)))
1197 continue;
1198 if (s_chan[ch].bFMod == 2)
1199 fmod_chans |= 1 << ch;
1200 if (s_chan[ch].bNoise)
1201 noise_chans |= 1 << ch;
1202 }
1203
1204 *chans_out = dwChannelOn;
1205 *fmod_chans_out = fmod_chans;
1206 *noise_chans_out = noise_chans;
1207}
1208
1209// vim:shiftwidth=1:expandtab