spu: threaded implementation
[pcsx_rearmed.git] / plugins / dfsound / spu.c
... / ...
CommitLineData
1/***************************************************************************
2 spu.c - description
3 -------------------
4 begin : Wed May 15 2002
5 copyright : (C) 2002 by Pete Bernert
6 email : BlackDove@addcom.de
7
8 Portions (C) GraÅžvydas "notaz" Ignotas, 2010-2012,2014,2015
9
10 ***************************************************************************/
11/***************************************************************************
12 * *
13 * This program is free software; you can redistribute it and/or modify *
14 * it under the terms of the GNU General Public License as published by *
15 * the Free Software Foundation; either version 2 of the License, or *
16 * (at your option) any later version. See also the license.txt file for *
17 * additional informations. *
18 * *
19 ***************************************************************************/
20
21#ifndef _WIN32
22#include <sys/time.h> // gettimeofday in xa.c
23#define THREAD_ENABLED 1
24#endif
25#include "stdafx.h"
26
27#define _IN_SPU
28
29#include "externals.h"
30#include "registers.h"
31#include "out.h"
32#include "arm_features.h"
33#include "spu_config.h"
34
35#ifdef __ARM_ARCH_7A__
36 #define ssat32_to_16(v) \
37 asm("ssat %0,#16,%1" : "=r" (v) : "r" (v))
38#else
39 #define ssat32_to_16(v) do { \
40 if (v < -32768) v = -32768; \
41 else if (v > 32767) v = 32767; \
42 } while (0)
43#endif
44
45#define PSXCLK 33868800 /* 33.8688 MHz */
46
47// intended to be ~1 frame
48#define IRQ_NEAR_BLOCKS 32
49
50/*
51#if defined (USEMACOSX)
52static char * libraryName = N_("Mac OS X Sound");
53#elif defined (USEALSA)
54static char * libraryName = N_("ALSA Sound");
55#elif defined (USEOSS)
56static char * libraryName = N_("OSS Sound");
57#elif defined (USESDL)
58static char * libraryName = N_("SDL Sound");
59#elif defined (USEPULSEAUDIO)
60static char * libraryName = N_("PulseAudio Sound");
61#else
62static char * libraryName = N_("NULL Sound");
63#endif
64
65static char * libraryInfo = N_("P.E.Op.S. Sound Driver V1.7\nCoded by Pete Bernert and the P.E.Op.S. team\n");
66*/
67
68// globals
69
70SPUInfo spu;
71SPUConfig spu_config;
72
73// MAIN infos struct for each channel
74
75SPUCHAN s_chan[MAXCHAN+1]; // channel + 1 infos (1 is security for fmod handling)
76REVERBInfo rvb;
77
78#ifdef THREAD_ENABLED
79
80#include <pthread.h>
81#include <semaphore.h>
82#include <unistd.h>
83
84// worker thread state
85static struct {
86 unsigned int pending:1;
87 unsigned int exit_thread:1;
88 int ns_to;
89 int ctrl;
90 int decode_pos;
91 int silentch;
92 int *sRVBStart;
93 unsigned char *ram;
94 unsigned int chmask;
95 unsigned int r_chan_end;
96 unsigned int r_decode_dirty;
97 pthread_t thread;
98 sem_t sem_avail;
99 sem_t sem_done;
100 struct {
101 int spos;
102 int sbpos;
103 int sinc;
104 int start;
105 int loop;
106 int ns_to;
107 ADSRInfoEx adsr;
108 // might want to add vol and fmod flags..
109 } ch[24];
110} *worker;
111
112#else
113static const void * const worker = NULL;
114#endif
115
116// certain globals (were local before, but with the new timeproc I need em global)
117
118static const int f[8][2] = { { 0, 0 },
119 { 60, 0 },
120 { 115, -52 },
121 { 98, -55 },
122 { 122, -60 } };
123int ChanBuf[NSSIZE];
124int SSumLR[NSSIZE*2];
125int iFMod[NSSIZE];
126
127#define CDDA_BUFFER_SIZE (16384 * sizeof(uint32_t)) // must be power of 2
128
129////////////////////////////////////////////////////////////////////////
130// CODE AREA
131////////////////////////////////////////////////////////////////////////
132
133// dirty inline func includes
134
135#include "reverb.c"
136#include "adsr.c"
137
138////////////////////////////////////////////////////////////////////////
139// helpers for simple interpolation
140
141//
142// easy interpolation on upsampling, no special filter, just "Pete's common sense" tm
143//
144// instead of having n equal sample values in a row like:
145// ____
146// |____
147//
148// we compare the current delta change with the next delta change.
149//
150// if curr_delta is positive,
151//
152// - and next delta is smaller (or changing direction):
153// \.
154// -__
155//
156// - and next delta significant (at least twice) bigger:
157// --_
158// \.
159//
160// - and next delta is nearly same:
161// \.
162// \.
163//
164//
165// if curr_delta is negative,
166//
167// - and next delta is smaller (or changing direction):
168// _--
169// /
170//
171// - and next delta significant (at least twice) bigger:
172// /
173// __-
174//
175// - and next delta is nearly same:
176// /
177// /
178//
179
180static void InterpolateUp(int *SB, int sinc)
181{
182 if(SB[32]==1) // flag == 1? calc step and set flag... and don't change the value in this pass
183 {
184 const int id1=SB[30]-SB[29]; // curr delta to next val
185 const int id2=SB[31]-SB[30]; // and next delta to next-next val :)
186
187 SB[32]=0;
188
189 if(id1>0) // curr delta positive
190 {
191 if(id2<id1)
192 {SB[28]=id1;SB[32]=2;}
193 else
194 if(id2<(id1<<1))
195 SB[28]=(id1*sinc)>>16;
196 else
197 SB[28]=(id1*sinc)>>17;
198 }
199 else // curr delta negative
200 {
201 if(id2>id1)
202 {SB[28]=id1;SB[32]=2;}
203 else
204 if(id2>(id1<<1))
205 SB[28]=(id1*sinc)>>16;
206 else
207 SB[28]=(id1*sinc)>>17;
208 }
209 }
210 else
211 if(SB[32]==2) // flag 1: calc step and set flag... and don't change the value in this pass
212 {
213 SB[32]=0;
214
215 SB[28]=(SB[28]*sinc)>>17;
216 //if(sinc<=0x8000)
217 // SB[29]=SB[30]-(SB[28]*((0x10000/sinc)-1));
218 //else
219 SB[29]+=SB[28];
220 }
221 else // no flags? add bigger val (if possible), calc smaller step, set flag1
222 SB[29]+=SB[28];
223}
224
225//
226// even easier interpolation on downsampling, also no special filter, again just "Pete's common sense" tm
227//
228
229static void InterpolateDown(int *SB, int sinc)
230{
231 if(sinc>=0x20000L) // we would skip at least one val?
232 {
233 SB[29]+=(SB[30]-SB[29])/2; // add easy weight
234 if(sinc>=0x30000L) // we would skip even more vals?
235 SB[29]+=(SB[31]-SB[30])/2; // add additional next weight
236 }
237}
238
239////////////////////////////////////////////////////////////////////////
240// helpers for gauss interpolation
241
242#define gval0 (((short*)(&SB[29]))[gpos&3])
243#define gval(x) ((int)((short*)(&SB[29]))[(gpos+x)&3])
244
245#include "gauss_i.h"
246
247////////////////////////////////////////////////////////////////////////
248
249#include "xa.c"
250
251static void do_irq(void)
252{
253 //if(!(spu.spuStat & STAT_IRQ))
254 {
255 spu.spuStat |= STAT_IRQ; // asserted status?
256 if(spu.irqCallback) spu.irqCallback();
257 }
258}
259
260static int check_irq(int ch, unsigned char *pos)
261{
262 if((spu.spuCtrl & CTRL_IRQ) && pos == spu.pSpuIrq)
263 {
264 //printf("ch%d irq %04x\n", ch, pos - spu.spuMemC);
265 do_irq();
266 return 1;
267 }
268 return 0;
269}
270
271////////////////////////////////////////////////////////////////////////
272// START SOUND... called by main thread to setup a new sound on a channel
273////////////////////////////////////////////////////////////////////////
274
275INLINE void StartSound(int ch)
276{
277 StartADSR(ch);
278 StartREVERB(ch);
279
280 s_chan[ch].prevflags=2;
281
282 s_chan[ch].SB[26]=0; // init mixing vars
283 s_chan[ch].SB[27]=0;
284 s_chan[ch].iSBPos=27;
285
286 s_chan[ch].SB[28]=0;
287 s_chan[ch].SB[29]=0; // init our interpolation helpers
288 s_chan[ch].SB[30]=0;
289 s_chan[ch].SB[31]=0;
290 s_chan[ch].spos=0;
291
292 spu.dwNewChannel&=~(1<<ch); // clear new channel bit
293 spu.dwChannelOn|=1<<ch;
294 spu.dwChannelDead&=~(1<<ch);
295}
296
297////////////////////////////////////////////////////////////////////////
298// ALL KIND OF HELPERS
299////////////////////////////////////////////////////////////////////////
300
301INLINE int FModChangeFrequency(int *SB, int pitch, int ns)
302{
303 unsigned int NP=pitch;
304 int sinc;
305
306 NP=((32768L+iFMod[ns])*NP)>>15;
307
308 if(NP>0x3fff) NP=0x3fff;
309 if(NP<0x1) NP=0x1;
310
311 sinc=NP<<4; // calc frequency
312 if(spu_config.iUseInterpolation==1) // freq change in simple interpolation mode
313 SB[32]=1;
314 iFMod[ns]=0;
315
316 return sinc;
317}
318
319////////////////////////////////////////////////////////////////////////
320
321INLINE void StoreInterpolationVal(int *SB, int sinc, int fa, int fmod_freq)
322{
323 if(fmod_freq) // fmod freq channel
324 SB[29]=fa;
325 else
326 {
327 ssat32_to_16(fa);
328
329 if(spu_config.iUseInterpolation>=2) // gauss/cubic interpolation
330 {
331 int gpos = SB[28];
332 gval0 = fa;
333 gpos = (gpos+1) & 3;
334 SB[28] = gpos;
335 }
336 else
337 if(spu_config.iUseInterpolation==1) // simple interpolation
338 {
339 SB[28] = 0;
340 SB[29] = SB[30]; // -> helpers for simple linear interpolation: delay real val for two slots, and calc the two deltas, for a 'look at the future behaviour'
341 SB[30] = SB[31];
342 SB[31] = fa;
343 SB[32] = 1; // -> flag: calc new interolation
344 }
345 else SB[29]=fa; // no interpolation
346 }
347}
348
349////////////////////////////////////////////////////////////////////////
350
351INLINE int iGetInterpolationVal(int *SB, int sinc, int spos, int fmod_freq)
352{
353 int fa;
354
355 if(fmod_freq) return SB[29];
356
357 switch(spu_config.iUseInterpolation)
358 {
359 //--------------------------------------------------//
360 case 3: // cubic interpolation
361 {
362 long xd;int gpos;
363 xd = (spos >> 1)+1;
364 gpos = SB[28];
365
366 fa = gval(3) - 3*gval(2) + 3*gval(1) - gval0;
367 fa *= (xd - (2<<15)) / 6;
368 fa >>= 15;
369 fa += gval(2) - gval(1) - gval(1) + gval0;
370 fa *= (xd - (1<<15)) >> 1;
371 fa >>= 15;
372 fa += gval(1) - gval0;
373 fa *= xd;
374 fa >>= 15;
375 fa = fa + gval0;
376
377 } break;
378 //--------------------------------------------------//
379 case 2: // gauss interpolation
380 {
381 int vl, vr;int gpos;
382 vl = (spos >> 6) & ~3;
383 gpos = SB[28];
384 vr=(gauss[vl]*(int)gval0)&~2047;
385 vr+=(gauss[vl+1]*gval(1))&~2047;
386 vr+=(gauss[vl+2]*gval(2))&~2047;
387 vr+=(gauss[vl+3]*gval(3))&~2047;
388 fa = vr>>11;
389 } break;
390 //--------------------------------------------------//
391 case 1: // simple interpolation
392 {
393 if(sinc<0x10000L) // -> upsampling?
394 InterpolateUp(SB, sinc); // --> interpolate up
395 else InterpolateDown(SB, sinc); // --> else down
396 fa=SB[29];
397 } break;
398 //--------------------------------------------------//
399 default: // no interpolation
400 {
401 fa=SB[29];
402 } break;
403 //--------------------------------------------------//
404 }
405
406 return fa;
407}
408
409static void decode_block_data(int *dest, const unsigned char *src, int predict_nr, int shift_factor)
410{
411 int nSample;
412 int fa, s_1, s_2, d, s;
413
414 s_1 = dest[27];
415 s_2 = dest[26];
416
417 for (nSample = 0; nSample < 28; src++)
418 {
419 d = (int)*src;
420 s = (int)(signed short)((d & 0x0f) << 12);
421
422 fa = s >> shift_factor;
423 fa += ((s_1 * f[predict_nr][0])>>6) + ((s_2 * f[predict_nr][1])>>6);
424 s_2=s_1;s_1=fa;
425
426 dest[nSample++] = fa;
427
428 s = (int)(signed short)((d & 0xf0) << 8);
429 fa = s >> shift_factor;
430 fa += ((s_1 * f[predict_nr][0])>>6) + ((s_2 * f[predict_nr][1])>>6);
431 s_2=s_1;s_1=fa;
432
433 dest[nSample++] = fa;
434 }
435}
436
437static int decode_block(int ch, int *SB)
438{
439 unsigned char *start;
440 int predict_nr, shift_factor, flags;
441 int ret = 0;
442
443 start = s_chan[ch].pCurr; // set up the current pos
444 if (start == spu.spuMemC) // ?
445 ret = 1;
446
447 if (s_chan[ch].prevflags & 1) // 1: stop/loop
448 {
449 if (!(s_chan[ch].prevflags & 2))
450 ret = 1;
451
452 start = s_chan[ch].pLoop;
453 }
454 else
455 check_irq(ch, start); // hack, see check_irq below..
456
457 predict_nr = (int)start[0];
458 shift_factor = predict_nr & 0xf;
459 predict_nr >>= 4;
460
461 decode_block_data(SB, start + 2, predict_nr, shift_factor);
462
463 flags = start[1];
464 if (flags & 4)
465 s_chan[ch].pLoop = start; // loop adress
466
467 start += 16;
468
469 if (flags & 1) { // 1: stop/loop
470 start = s_chan[ch].pLoop;
471 check_irq(ch, start); // hack.. :(
472 }
473
474 if (start - spu.spuMemC >= 0x80000)
475 start = spu.spuMemC;
476
477 s_chan[ch].pCurr = start; // store values for next cycle
478 s_chan[ch].prevflags = flags;
479
480 return ret;
481}
482
483// do block, but ignore sample data
484static int skip_block(int ch)
485{
486 unsigned char *start = s_chan[ch].pCurr;
487 int flags;
488 int ret = 0;
489
490 if (s_chan[ch].prevflags & 1) {
491 if (!(s_chan[ch].prevflags & 2))
492 ret = 1;
493
494 start = s_chan[ch].pLoop;
495 }
496 else
497 check_irq(ch, start);
498
499 flags = start[1];
500 if (flags & 4)
501 s_chan[ch].pLoop = start;
502
503 start += 16;
504
505 if (flags & 1) {
506 start = s_chan[ch].pLoop;
507 check_irq(ch, start);
508 }
509
510 s_chan[ch].pCurr = start;
511 s_chan[ch].prevflags = flags;
512
513 return ret;
514}
515
516#ifdef THREAD_ENABLED
517
518static int decode_block_work(int ch, int *SB)
519{
520 int predict_nr, shift_factor, flags;
521 const unsigned char *ram = worker->ram;
522 int start = worker->ch[ch].start;
523 int loop = worker->ch[ch].loop;
524
525 predict_nr = ram[start];
526 shift_factor = predict_nr & 0xf;
527 predict_nr >>= 4;
528
529 decode_block_data(SB, ram + start + 2, predict_nr, shift_factor);
530
531 flags = ram[start + 1];
532 if (flags & 4)
533 loop = start; // loop adress
534
535 start += 16;
536
537 if (flags & 1) // 1: stop/loop
538 start = loop;
539
540 worker->ch[ch].start = start & 0x7ffff;
541 worker->ch[ch].loop = loop;
542
543 return 0;
544}
545
546#endif
547
548// if irq is going to trigger sooner than in upd_samples, set upd_samples
549static void scan_for_irq(int ch, unsigned int *upd_samples)
550{
551 int pos, sinc, sinc_inv, end;
552 unsigned char *block;
553 int flags;
554
555 block = s_chan[ch].pCurr;
556 pos = s_chan[ch].spos;
557 sinc = s_chan[ch].sinc;
558 end = pos + *upd_samples * sinc;
559
560 pos += (28 - s_chan[ch].iSBPos) << 16;
561 while (pos < end)
562 {
563 if (block == spu.pSpuIrq)
564 break;
565 flags = block[1];
566 block += 16;
567 if (flags & 1) { // 1: stop/loop
568 block = s_chan[ch].pLoop;
569 if (block == spu.pSpuIrq) // hack.. (see decode_block)
570 break;
571 }
572 pos += 28 << 16;
573 }
574
575 if (pos < end)
576 {
577 sinc_inv = s_chan[ch].sinc_inv;
578 if (sinc_inv == 0)
579 sinc_inv = s_chan[ch].sinc_inv = (0x80000000u / (uint32_t)sinc) << 1;
580
581 pos -= s_chan[ch].spos;
582 *upd_samples = (((uint64_t)pos * sinc_inv) >> 32) + 1;
583 //xprintf("ch%02d: irq sched: %3d %03d\n",
584 // ch, *upd_samples, *upd_samples * 60 * 263 / 44100);
585 }
586}
587
588#define make_do_samples(name, fmod_code, interp_start, interp1_code, interp2_code, interp_end) \
589static noinline int do_samples_##name(int (*decode_f)(int ch, int *SB), int ch, \
590 int ns_to, int *SB, int sinc, int *spos, int *sbpos) \
591{ \
592 int ns, d, fa; \
593 int ret = ns_to; \
594 interp_start; \
595 \
596 for (ns = 0; ns < ns_to; ns++) \
597 { \
598 fmod_code; \
599 \
600 *spos += sinc; \
601 while (*spos >= 0x10000) \
602 { \
603 fa = SB[(*sbpos)++]; \
604 if (*sbpos >= 28) \
605 { \
606 *sbpos = 0; \
607 d = decode_f(ch, SB); \
608 if (d && ns < ret) \
609 ret = ns; \
610 } \
611 \
612 interp1_code; \
613 *spos -= 0x10000; \
614 } \
615 \
616 interp2_code; \
617 } \
618 \
619 interp_end; \
620 \
621 return ret; \
622}
623
624#define fmod_recv_check \
625 if(s_chan[ch].bFMod==1 && iFMod[ns]) \
626 sinc = FModChangeFrequency(SB, s_chan[ch].iRawPitch, ns)
627
628make_do_samples(default, fmod_recv_check, ,
629 StoreInterpolationVal(SB, sinc, fa, s_chan[ch].bFMod==2),
630 ChanBuf[ns] = iGetInterpolationVal(SB, sinc, *spos, s_chan[ch].bFMod==2), )
631make_do_samples(noint, , fa = SB[29], , ChanBuf[ns] = fa, SB[29] = fa)
632
633#define simple_interp_store \
634 SB[28] = 0; \
635 SB[29] = SB[30]; \
636 SB[30] = SB[31]; \
637 SB[31] = fa; \
638 SB[32] = 1
639
640#define simple_interp_get \
641 if(sinc<0x10000) /* -> upsampling? */ \
642 InterpolateUp(SB, sinc); /* --> interpolate up */ \
643 else InterpolateDown(SB, sinc); /* --> else down */ \
644 ChanBuf[ns] = SB[29]
645
646make_do_samples(simple, , ,
647 simple_interp_store, simple_interp_get, )
648
649static int do_samples_skip(int ch, int ns_to)
650{
651 int ret = ns_to, ns, d;
652
653 s_chan[ch].spos += s_chan[ch].iSBPos << 16;
654
655 for (ns = 0; ns < ns_to; ns++)
656 {
657 s_chan[ch].spos += s_chan[ch].sinc;
658 while (s_chan[ch].spos >= 28*0x10000)
659 {
660 d = skip_block(ch);
661 if (d && ns < ret)
662 ret = ns;
663 s_chan[ch].spos -= 28*0x10000;
664 }
665 }
666
667 s_chan[ch].iSBPos = s_chan[ch].spos >> 16;
668 s_chan[ch].spos &= 0xffff;
669
670 return ret;
671}
672
673static void do_lsfr_samples(int ns_to, int ctrl,
674 unsigned int *dwNoiseCount, unsigned int *dwNoiseVal)
675{
676 unsigned int counter = *dwNoiseCount;
677 unsigned int val = *dwNoiseVal;
678 unsigned int level, shift, bit;
679 int ns;
680
681 // modified from DrHell/shalma, no fraction
682 level = (ctrl >> 10) & 0x0f;
683 level = 0x8000 >> level;
684
685 for (ns = 0; ns < ns_to; ns++)
686 {
687 counter += 2;
688 if (counter >= level)
689 {
690 counter -= level;
691 shift = (val >> 10) & 0x1f;
692 bit = (0x69696969 >> shift) & 1;
693 bit ^= (val >> 15) & 1;
694 val = (val << 1) | bit;
695 }
696
697 ChanBuf[ns] = (signed short)val;
698 }
699
700 *dwNoiseCount = counter;
701 *dwNoiseVal = val;
702}
703
704static int do_samples_noise(int ch, int ns_to)
705{
706 int ret;
707
708 ret = do_samples_skip(ch, ns_to);
709
710 do_lsfr_samples(ns_to, spu.spuCtrl, &spu.dwNoiseCount, &spu.dwNoiseVal);
711
712 return ret;
713}
714
715#ifdef HAVE_ARMV5
716// asm code; lv and rv must be 0-3fff
717extern void mix_chan(int start, int count, int lv, int rv);
718extern void mix_chan_rvb(int start, int count, int lv, int rv, int *rvb);
719#else
720static void mix_chan(int start, int count, int lv, int rv)
721{
722 int *dst = SSumLR + start * 2;
723 const int *src = ChanBuf + start;
724 int l, r;
725
726 while (count--)
727 {
728 int sval = *src++;
729
730 l = (sval * lv) >> 14;
731 r = (sval * rv) >> 14;
732 *dst++ += l;
733 *dst++ += r;
734 }
735}
736
737static void mix_chan_rvb(int start, int count, int lv, int rv, int *rvb)
738{
739 int *dst = SSumLR + start * 2;
740 int *drvb = rvb + start * 2;
741 const int *src = ChanBuf + start;
742 int l, r;
743
744 while (count--)
745 {
746 int sval = *src++;
747
748 l = (sval * lv) >> 14;
749 r = (sval * rv) >> 14;
750 *dst++ += l;
751 *dst++ += r;
752 *drvb++ += l;
753 *drvb++ += r;
754 }
755}
756#endif
757
758// 0x0800-0x0bff Voice 1
759// 0x0c00-0x0fff Voice 3
760static noinline void do_decode_bufs(unsigned short *mem, int which,
761 int count, int decode_pos)
762{
763 unsigned short *dst = &mem[0x800/2 + which*0x400/2];
764 const int *src = ChanBuf;
765 int cursor = decode_pos;
766
767 while (count-- > 0)
768 {
769 cursor &= 0x1ff;
770 dst[cursor] = *src++;
771 cursor++;
772 }
773
774 // decode_pos is updated and irqs are checked later, after voice loop
775}
776
777static void do_silent_chans(int ns_to, int silentch)
778{
779 int ch;
780
781 for (ch = 0; ch < MAXCHAN; ch++)
782 {
783 if (!(silentch & (1<<ch))) continue; // already handled
784 if (spu.dwChannelDead & (1<<ch)) continue;
785 if (s_chan[ch].pCurr > spu.pSpuIrq && s_chan[ch].pLoop > spu.pSpuIrq)
786 continue;
787
788 s_chan[ch].spos += s_chan[ch].iSBPos << 16;
789 s_chan[ch].iSBPos = 0;
790
791 s_chan[ch].spos += s_chan[ch].sinc * ns_to;
792 while (s_chan[ch].spos >= 28 * 0x10000)
793 {
794 unsigned char *start = s_chan[ch].pCurr;
795
796 skip_block(ch);
797 if (start == s_chan[ch].pCurr || start - spu.spuMemC < 0x1000)
798 {
799 // looping on self or stopped(?)
800 spu.dwChannelDead |= 1<<ch;
801 s_chan[ch].spos = 0;
802 break;
803 }
804
805 s_chan[ch].spos -= 28 * 0x10000;
806 }
807 }
808}
809
810static void do_channels(int ns_to)
811{
812 unsigned int mask;
813 int *SB, sinc;
814 int ch, d;
815
816 InitREVERB(ns_to);
817
818 mask = spu.dwChannelOn & 0xffffff;
819 for (ch = 0; mask != 0; ch++, mask >>= 1) // loop em all...
820 {
821 if (!(mask & 1)) continue; // channel not playing? next
822
823 SB = s_chan[ch].SB;
824 sinc = s_chan[ch].sinc;
825
826 if (s_chan[ch].bNoise)
827 d = do_samples_noise(ch, ns_to);
828 else if (s_chan[ch].bFMod == 2
829 || (s_chan[ch].bFMod == 0 && spu_config.iUseInterpolation == 0))
830 d = do_samples_noint(decode_block, ch, ns_to,
831 SB, sinc, &s_chan[ch].spos, &s_chan[ch].iSBPos);
832 else if (s_chan[ch].bFMod == 0 && spu_config.iUseInterpolation == 1)
833 d = do_samples_simple(decode_block, ch, ns_to,
834 SB, sinc, &s_chan[ch].spos, &s_chan[ch].iSBPos);
835 else
836 d = do_samples_default(decode_block, ch, ns_to,
837 SB, sinc, &s_chan[ch].spos, &s_chan[ch].iSBPos);
838
839 d = MixADSR(&s_chan[ch].ADSRX, d);
840 if (d < ns_to) {
841 spu.dwChannelOn &= ~(1 << ch);
842 s_chan[ch].ADSRX.EnvelopeVol = 0;
843 memset(&ChanBuf[d], 0, (ns_to - d) * sizeof(ChanBuf[0]));
844 }
845
846 if (ch == 1 || ch == 3)
847 {
848 do_decode_bufs(spu.spuMem, ch/2, ns_to, spu.decode_pos);
849 spu.decode_dirty_ch |= 1 << ch;
850 }
851
852 if (s_chan[ch].bFMod == 2) // fmod freq channel
853 memcpy(iFMod, &ChanBuf, ns_to * sizeof(iFMod[0]));
854 if (s_chan[ch].bRVBActive)
855 mix_chan_rvb(0, ns_to, s_chan[ch].iLeftVolume, s_chan[ch].iRightVolume, spu.sRVBStart);
856 else
857 mix_chan(0, ns_to, s_chan[ch].iLeftVolume, s_chan[ch].iRightVolume);
858 }
859}
860
861static void do_samples_finish(int ns_to, int silentch, int decode_pos);
862
863// optional worker thread handling
864
865#ifdef THREAD_ENABLED
866
867static void queue_channel_work(int ns_to, int silentch)
868{
869 unsigned int mask;
870 int ch;
871
872 worker->ns_to = ns_to;
873 worker->ctrl = spu.spuCtrl;
874 worker->decode_pos = spu.decode_pos;
875 worker->silentch = silentch;
876 worker->sRVBStart = spu.sRVBStart;
877 worker->ram = spu.spuMemC;
878
879 mask = worker->chmask = spu.dwChannelOn & 0xffffff;
880 for (ch = 0; mask != 0; ch++, mask >>= 1)
881 {
882 if (!(mask & 1)) continue;
883
884 worker->ch[ch].spos = s_chan[ch].spos;
885 worker->ch[ch].sbpos = s_chan[ch].iSBPos;
886 worker->ch[ch].sinc = s_chan[ch].sinc;
887 worker->ch[ch].adsr = s_chan[ch].ADSRX;
888 worker->ch[ch].start = s_chan[ch].pCurr - spu.spuMemC;
889 worker->ch[ch].loop = s_chan[ch].pLoop - spu.spuMemC;
890 if (s_chan[ch].prevflags & 1)
891 worker->ch[ch].start = worker->ch[ch].loop;
892
893 worker->ch[ch].ns_to = do_samples_skip(ch, ns_to);
894 }
895
896 worker->pending = 1;
897 sem_post(&worker->sem_avail);
898}
899
900static void do_channel_work(void)
901{
902 unsigned int mask, endmask = 0;
903 unsigned int decode_dirty_ch = 0;
904 int *SB, sinc, spos, sbpos;
905 int d, ch, ns_to;
906
907 ns_to = worker->ns_to;
908 memset(worker->sRVBStart, 0, ns_to * sizeof(worker->sRVBStart[0]) * 2);
909
910 mask = worker->chmask;
911 for (ch = 0; mask != 0; ch++, mask >>= 1)
912 {
913 if (!(mask & 1)) continue;
914
915 d = worker->ch[ch].ns_to;
916 spos = worker->ch[ch].spos;
917 sbpos = worker->ch[ch].sbpos;
918 sinc = worker->ch[ch].sinc;
919 SB = s_chan[ch].SB;
920
921 if (s_chan[ch].bNoise)
922 do_lsfr_samples(d, worker->ctrl, &spu.dwNoiseCount, &spu.dwNoiseVal);
923 else if (s_chan[ch].bFMod == 2
924 || (s_chan[ch].bFMod == 0 && spu_config.iUseInterpolation == 0))
925 do_samples_noint(decode_block_work, ch, d, SB, sinc, &spos, &sbpos);
926 else if (s_chan[ch].bFMod == 0 && spu_config.iUseInterpolation == 1)
927 do_samples_simple(decode_block_work, ch, d, SB, sinc, &spos, &sbpos);
928 else
929 do_samples_default(decode_block_work, ch, d, SB, sinc, &spos, &sbpos);
930
931 d = MixADSR(&worker->ch[ch].adsr, d);
932 if (d < ns_to) {
933 endmask |= 1 << ch;
934 worker->ch[ch].adsr.EnvelopeVol = 0;
935 memset(&ChanBuf[d], 0, (ns_to - d) * sizeof(ChanBuf[0]));
936 }
937
938 if (ch == 1 || ch == 3)
939 {
940 do_decode_bufs((void *)worker->ram, ch/2, ns_to, worker->decode_pos);
941 decode_dirty_ch |= 1 << ch;
942 }
943
944 if (s_chan[ch].bFMod == 2) // fmod freq channel
945 memcpy(iFMod, &ChanBuf, ns_to * sizeof(iFMod[0]));
946 if (s_chan[ch].bRVBActive)
947 mix_chan_rvb(0, ns_to, s_chan[ch].iLeftVolume, s_chan[ch].iRightVolume, worker->sRVBStart);
948 else
949 mix_chan(0, ns_to, s_chan[ch].iLeftVolume, s_chan[ch].iRightVolume);
950 }
951
952 worker->r_chan_end = endmask;
953 worker->r_decode_dirty = decode_dirty_ch;
954}
955
956static void sync_worker_thread(void)
957{
958 unsigned int mask;
959 int ch;
960
961 if (!worker->pending)
962 return;
963
964 sem_wait(&worker->sem_done);
965 worker->pending = 0;
966
967 mask = worker->chmask;
968 for (ch = 0; mask != 0; ch++, mask >>= 1) {
969 if (!(mask & 1)) continue;
970
971 // be sure there was no keyoff while thread was working
972 if (s_chan[ch].ADSRX.State != ADSR_RELEASE)
973 s_chan[ch].ADSRX.State = worker->ch[ch].adsr.State;
974 s_chan[ch].ADSRX.EnvelopeVol = worker->ch[ch].adsr.EnvelopeVol;
975 }
976
977 spu.dwChannelOn &= ~worker->r_chan_end;
978 spu.decode_dirty_ch |= worker->r_decode_dirty;
979
980 do_samples_finish(worker->ns_to, worker->silentch,
981 worker->decode_pos);
982}
983
984#else
985
986static void queue_channel_work(int ns_to, int silentch) {}
987static void sync_worker_thread(void) {}
988
989#endif // THREAD_ENABLED
990
991////////////////////////////////////////////////////////////////////////
992// MAIN SPU FUNCTION
993// here is the main job handler...
994////////////////////////////////////////////////////////////////////////
995
996void do_samples(unsigned int cycles_to, int do_sync)
997{
998 unsigned int mask;
999 int ch, ns_to;
1000 int silentch;
1001 int cycle_diff;
1002
1003 cycle_diff = cycles_to - spu.cycles_played;
1004 if (cycle_diff < -2*1048576 || cycle_diff > 2*1048576)
1005 {
1006 //xprintf("desync %u %d\n", cycles_to, cycle_diff);
1007 spu.cycles_played = cycles_to;
1008 return;
1009 }
1010
1011 if (cycle_diff < 2 * 768)
1012 return;
1013
1014 ns_to = (cycle_diff / 768 + 1) & ~1;
1015 if (ns_to > NSSIZE) {
1016 // should never happen
1017 //xprintf("ns_to oflow %d %d\n", ns_to, NSSIZE);
1018 ns_to = NSSIZE;
1019 }
1020
1021 //////////////////////////////////////////////////////
1022 // special irq handling in the decode buffers (0x0000-0x1000)
1023 // we know:
1024 // the decode buffers are located in spu memory in the following way:
1025 // 0x0000-0x03ff CD audio left
1026 // 0x0400-0x07ff CD audio right
1027 // 0x0800-0x0bff Voice 1
1028 // 0x0c00-0x0fff Voice 3
1029 // and decoded data is 16 bit for one sample
1030 // we assume:
1031 // even if voices 1/3 are off or no cd audio is playing, the internal
1032 // play positions will move on and wrap after 0x400 bytes.
1033 // Therefore: we just need a pointer from spumem+0 to spumem+3ff, and
1034 // increase this pointer on each sample by 2 bytes. If this pointer
1035 // (or 0x400 offsets of this pointer) hits the spuirq address, we generate
1036 // an IRQ.
1037
1038 if (unlikely((spu.spuCtrl & CTRL_IRQ)
1039 && spu.pSpuIrq < spu.spuMemC+0x1000))
1040 {
1041 int irq_pos = (spu.pSpuIrq - spu.spuMemC) / 2 & 0x1ff;
1042 int left = (irq_pos - spu.decode_pos) & 0x1ff;
1043 if (0 < left && left <= ns_to)
1044 {
1045 //xprintf("decoder irq %x\n", spu.decode_pos);
1046 do_irq();
1047 }
1048 }
1049
1050 if (worker != NULL)
1051 sync_worker_thread();
1052
1053 mask = spu.dwNewChannel & 0xffffff;
1054 for (ch = 0; mask != 0; ch++, mask >>= 1) {
1055 if (mask & 1)
1056 StartSound(ch);
1057 }
1058
1059 silentch = ~spu.dwChannelOn & 0xffffff;
1060
1061 if (spu.dwChannelOn == 0) {
1062 InitREVERB(ns_to);
1063 do_samples_finish(ns_to, silentch, spu.decode_pos);
1064 }
1065 else {
1066 if (do_sync || worker == NULL || !spu_config.iUseThread) {
1067 do_channels(ns_to);
1068 do_samples_finish(ns_to, silentch, spu.decode_pos);
1069 }
1070 else {
1071 queue_channel_work(ns_to, silentch);
1072 }
1073 }
1074
1075 // advance "stopped" channels that can cause irqs
1076 // (all chans are always playing on the real thing..)
1077 if (spu.spuCtrl & CTRL_IRQ)
1078 do_silent_chans(ns_to, silentch);
1079
1080 spu.cycles_played += ns_to * 768;
1081 spu.decode_pos = (spu.decode_pos + ns_to) & 0x1ff;
1082}
1083
1084static void do_samples_finish(int ns_to, int silentch, int decode_pos)
1085{
1086 int volmult = spu_config.iVolume;
1087 int ns;
1088 int d;
1089
1090 if(unlikely(silentch & spu.decode_dirty_ch & (1<<1))) // must clear silent channel decode buffers
1091 {
1092 memset(&spu.spuMem[0x800/2], 0, 0x400);
1093 spu.decode_dirty_ch &= ~(1<<1);
1094 }
1095 if(unlikely(silentch & spu.decode_dirty_ch & (1<<3)))
1096 {
1097 memset(&spu.spuMem[0xc00/2], 0, 0x400);
1098 spu.decode_dirty_ch &= ~(1<<3);
1099 }
1100
1101 //---------------------------------------------------//
1102 // mix XA infos (if any)
1103
1104 MixXA(ns_to, decode_pos);
1105
1106 ///////////////////////////////////////////////////////
1107 // mix all channels (including reverb) into one buffer
1108
1109 if(spu_config.iUseReverb)
1110 REVERBDo(ns_to);
1111
1112 if((spu.spuCtrl&0x4000)==0) // muted? (rare, don't optimize for this)
1113 {
1114 memset(spu.pS, 0, ns_to * 2 * sizeof(spu.pS[0]));
1115 spu.pS += ns_to * 2;
1116 }
1117 else
1118 for (ns = 0; ns < ns_to * 2; )
1119 {
1120 d = SSumLR[ns]; SSumLR[ns] = 0;
1121 d = d * volmult >> 10;
1122 ssat32_to_16(d);
1123 *spu.pS++ = d;
1124 ns++;
1125
1126 d = SSumLR[ns]; SSumLR[ns] = 0;
1127 d = d * volmult >> 10;
1128 ssat32_to_16(d);
1129 *spu.pS++ = d;
1130 ns++;
1131 }
1132}
1133
1134void schedule_next_irq(void)
1135{
1136 unsigned int upd_samples;
1137 int ch;
1138
1139 if (spu.scheduleCallback == NULL)
1140 return;
1141
1142 upd_samples = 44100 / 50;
1143
1144 for (ch = 0; ch < MAXCHAN; ch++)
1145 {
1146 if (spu.dwChannelDead & (1 << ch))
1147 continue;
1148 if ((unsigned long)(spu.pSpuIrq - s_chan[ch].pCurr) > IRQ_NEAR_BLOCKS * 16
1149 && (unsigned long)(spu.pSpuIrq - s_chan[ch].pLoop) > IRQ_NEAR_BLOCKS * 16)
1150 continue;
1151
1152 scan_for_irq(ch, &upd_samples);
1153 }
1154
1155 if (unlikely(spu.pSpuIrq < spu.spuMemC + 0x1000))
1156 {
1157 int irq_pos = (spu.pSpuIrq - spu.spuMemC) / 2 & 0x1ff;
1158 int left = (irq_pos - spu.decode_pos) & 0x1ff;
1159 if (0 < left && left < upd_samples) {
1160 //xprintf("decode: %3d (%3d/%3d)\n", left, spu.decode_pos, irq_pos);
1161 upd_samples = left;
1162 }
1163 }
1164
1165 if (upd_samples < 44100 / 50)
1166 spu.scheduleCallback(upd_samples * 768);
1167}
1168
1169// SPU ASYNC... even newer epsxe func
1170// 1 time every 'cycle' cycles... harhar
1171
1172// rearmed: called dynamically now
1173
1174void CALLBACK SPUasync(unsigned int cycle, unsigned int flags)
1175{
1176 do_samples(cycle, 0);
1177
1178 if (spu.spuCtrl & CTRL_IRQ)
1179 schedule_next_irq();
1180
1181 if (flags & 1) {
1182 out_current->feed(spu.pSpuBuffer, (unsigned char *)spu.pS - spu.pSpuBuffer);
1183 spu.pS = (short *)spu.pSpuBuffer;
1184
1185 if (spu_config.iTempo) {
1186 if (!out_current->busy())
1187 // cause more samples to be generated
1188 // (and break some games because of bad sync)
1189 spu.cycles_played -= 44100 / 60 / 2 * 768;
1190 }
1191 }
1192}
1193
1194// SPU UPDATE... new epsxe func
1195// 1 time every 32 hsync lines
1196// (312/32)x50 in pal
1197// (262/32)x60 in ntsc
1198
1199// since epsxe 1.5.2 (linux) uses SPUupdate, not SPUasync, I will
1200// leave that func in the linux port, until epsxe linux is using
1201// the async function as well
1202
1203void CALLBACK SPUupdate(void)
1204{
1205}
1206
1207// XA AUDIO
1208
1209void CALLBACK SPUplayADPCMchannel(xa_decode_t *xap)
1210{
1211 if(!xap) return;
1212 if(!xap->freq) return; // no xa freq ? bye
1213
1214 FeedXA(xap); // call main XA feeder
1215}
1216
1217// CDDA AUDIO
1218int CALLBACK SPUplayCDDAchannel(short *pcm, int nbytes)
1219{
1220 if (!pcm) return -1;
1221 if (nbytes<=0) return -1;
1222
1223 return FeedCDDA((unsigned char *)pcm, nbytes);
1224}
1225
1226// to be called after state load
1227void ClearWorkingState(void)
1228{
1229 memset(SSumLR,0,sizeof(SSumLR)); // init some mixing buffers
1230 memset(iFMod,0,sizeof(iFMod));
1231 spu.pS=(short *)spu.pSpuBuffer; // setup soundbuffer pointer
1232}
1233
1234// SETUPSTREAMS: init most of the spu buffers
1235void SetupStreams(void)
1236{
1237 int i;
1238
1239 spu.pSpuBuffer = (unsigned char *)malloc(32768); // alloc mixing buffer
1240 spu.sRVBStart = (int *)malloc(NSSIZE*2*4); // alloc reverb buffer
1241 memset(spu.sRVBStart,0,NSSIZE*2*4);
1242
1243 spu.XAStart = // alloc xa buffer
1244 (uint32_t *)malloc(44100 * sizeof(uint32_t));
1245 spu.XAEnd = spu.XAStart + 44100;
1246 spu.XAPlay = spu.XAStart;
1247 spu.XAFeed = spu.XAStart;
1248
1249 spu.CDDAStart = // alloc cdda buffer
1250 (uint32_t *)malloc(CDDA_BUFFER_SIZE);
1251 spu.CDDAEnd = spu.CDDAStart + 16384;
1252 spu.CDDAPlay = spu.CDDAStart;
1253 spu.CDDAFeed = spu.CDDAStart;
1254
1255 for(i=0;i<MAXCHAN;i++) // loop sound channels
1256 {
1257 s_chan[i].ADSRX.SustainLevel = 0xf; // -> init sustain
1258 s_chan[i].ADSRX.SustainIncrease = 1;
1259 s_chan[i].pLoop=spu.spuMemC;
1260 s_chan[i].pCurr=spu.spuMemC;
1261 }
1262
1263 ClearWorkingState();
1264
1265 spu.bSpuInit=1; // flag: we are inited
1266}
1267
1268// REMOVESTREAMS: free most buffer
1269void RemoveStreams(void)
1270{
1271 free(spu.pSpuBuffer); // free mixing buffer
1272 spu.pSpuBuffer = NULL;
1273 free(spu.sRVBStart); // free reverb buffer
1274 spu.sRVBStart = NULL;
1275 free(spu.XAStart); // free XA buffer
1276 spu.XAStart = NULL;
1277 free(spu.CDDAStart); // free CDDA buffer
1278 spu.CDDAStart = NULL;
1279}
1280
1281#ifdef THREAD_ENABLED
1282
1283static void *spu_worker_thread(void *unused)
1284{
1285 while (1) {
1286 sem_wait(&worker->sem_avail);
1287 if (worker->exit_thread)
1288 break;
1289
1290 do_channel_work();
1291
1292 sem_post(&worker->sem_done);
1293 }
1294
1295 return NULL;
1296}
1297
1298static void init_spu_thread(void)
1299{
1300 int ret;
1301
1302 if (sysconf(_SC_NPROCESSORS_ONLN) <= 1)
1303 return;
1304
1305 worker = calloc(1, sizeof(*worker));
1306 if (worker == NULL)
1307 return;
1308 ret = sem_init(&worker->sem_avail, 0, 0);
1309 if (ret != 0)
1310 goto fail_sem_avail;
1311 ret = sem_init(&worker->sem_done, 0, 0);
1312 if (ret != 0)
1313 goto fail_sem_done;
1314
1315 ret = pthread_create(&worker->thread, NULL, spu_worker_thread, NULL);
1316 if (ret != 0)
1317 goto fail_thread;
1318
1319 return;
1320
1321fail_thread:
1322 sem_destroy(&worker->sem_done);
1323fail_sem_done:
1324 sem_destroy(&worker->sem_avail);
1325fail_sem_avail:
1326 free(worker);
1327 worker = NULL;
1328}
1329
1330static void exit_spu_thread(void)
1331{
1332 if (worker == NULL)
1333 return;
1334 worker->exit_thread = 1;
1335 sem_post(&worker->sem_avail);
1336 pthread_join(worker->thread, NULL);
1337 sem_destroy(&worker->sem_done);
1338 sem_destroy(&worker->sem_avail);
1339 free(worker);
1340 worker = NULL;
1341}
1342
1343#else // if !THREAD_ENABLED
1344
1345static void init_spu_thread(void)
1346{
1347}
1348
1349static void exit_spu_thread(void)
1350{
1351}
1352
1353#endif
1354
1355// SPUINIT: this func will be called first by the main emu
1356long CALLBACK SPUinit(void)
1357{
1358 spu.spuMemC = (unsigned char *)spu.spuMem; // just small setup
1359 memset((void *)&rvb, 0, sizeof(REVERBInfo));
1360 InitADSR();
1361
1362 spu.spuAddr = 0xffffffff;
1363 spu.decode_pos = 0;
1364 memset((void *)s_chan, 0, sizeof(s_chan));
1365 spu.pSpuIrq = spu.spuMemC;
1366
1367 SetupStreams(); // prepare streaming
1368
1369 if (spu_config.iVolume == 0)
1370 spu_config.iVolume = 768; // 1024 is 1.0
1371
1372 init_spu_thread();
1373
1374 return 0;
1375}
1376
1377// SPUOPEN: called by main emu after init
1378long CALLBACK SPUopen(void)
1379{
1380 if (spu.bSPUIsOpen) return 0; // security for some stupid main emus
1381
1382 SetupSound(); // setup sound (before init!)
1383
1384 spu.bSPUIsOpen = 1;
1385
1386 return PSE_SPU_ERR_SUCCESS;
1387}
1388
1389// SPUCLOSE: called before shutdown
1390long CALLBACK SPUclose(void)
1391{
1392 if (!spu.bSPUIsOpen) return 0; // some security
1393
1394 spu.bSPUIsOpen = 0; // no more open
1395
1396 out_current->finish(); // no more sound handling
1397
1398 return 0;
1399}
1400
1401// SPUSHUTDOWN: called by main emu on final exit
1402long CALLBACK SPUshutdown(void)
1403{
1404 SPUclose();
1405 RemoveStreams(); // no more streaming
1406 spu.bSpuInit=0;
1407
1408 exit_spu_thread();
1409
1410 return 0;
1411}
1412
1413// SPUTEST: we don't test, we are always fine ;)
1414long CALLBACK SPUtest(void)
1415{
1416 return 0;
1417}
1418
1419// SPUCONFIGURE: call config dialog
1420long CALLBACK SPUconfigure(void)
1421{
1422#ifdef _MACOSX
1423 DoConfiguration();
1424#else
1425// StartCfgTool("CFG");
1426#endif
1427 return 0;
1428}
1429
1430// SPUABOUT: show about window
1431void CALLBACK SPUabout(void)
1432{
1433#ifdef _MACOSX
1434 DoAbout();
1435#else
1436// StartCfgTool("ABOUT");
1437#endif
1438}
1439
1440// SETUP CALLBACKS
1441// this functions will be called once,
1442// passes a callback that should be called on SPU-IRQ/cdda volume change
1443void CALLBACK SPUregisterCallback(void (CALLBACK *callback)(void))
1444{
1445 spu.irqCallback = callback;
1446}
1447
1448void CALLBACK SPUregisterCDDAVolume(void (CALLBACK *CDDAVcallback)(unsigned short,unsigned short))
1449{
1450 spu.cddavCallback = CDDAVcallback;
1451}
1452
1453void CALLBACK SPUregisterScheduleCb(void (CALLBACK *callback)(unsigned int))
1454{
1455 spu.scheduleCallback = callback;
1456}
1457
1458// COMMON PLUGIN INFO FUNCS
1459/*
1460char * CALLBACK PSEgetLibName(void)
1461{
1462 return _(libraryName);
1463}
1464
1465unsigned long CALLBACK PSEgetLibType(void)
1466{
1467 return PSE_LT_SPU;
1468}
1469
1470unsigned long CALLBACK PSEgetLibVersion(void)
1471{
1472 return (1 << 16) | (6 << 8);
1473}
1474
1475char * SPUgetLibInfos(void)
1476{
1477 return _(libraryInfo);
1478}
1479*/
1480
1481// debug
1482void spu_get_debug_info(int *chans_out, int *run_chans, int *fmod_chans_out, int *noise_chans_out)
1483{
1484 int ch = 0, fmod_chans = 0, noise_chans = 0, irq_chans = 0;
1485
1486 for(;ch<MAXCHAN;ch++)
1487 {
1488 if (!(spu.dwChannelOn & (1<<ch)))
1489 continue;
1490 if (s_chan[ch].bFMod == 2)
1491 fmod_chans |= 1 << ch;
1492 if (s_chan[ch].bNoise)
1493 noise_chans |= 1 << ch;
1494 if((spu.spuCtrl&CTRL_IRQ) && s_chan[ch].pCurr <= spu.pSpuIrq && s_chan[ch].pLoop <= spu.pSpuIrq)
1495 irq_chans |= 1 << ch;
1496 }
1497
1498 *chans_out = spu.dwChannelOn;
1499 *run_chans = ~spu.dwChannelOn & ~spu.dwChannelDead & irq_chans;
1500 *fmod_chans_out = fmod_chans;
1501 *noise_chans_out = noise_chans;
1502}
1503
1504// vim:shiftwidth=1:expandtab