some random improvements
[pcsx_rearmed.git] / plugins / dfsound / spu.c
... / ...
CommitLineData
1/***************************************************************************
2 spu.c - description
3 -------------------
4 begin : Wed May 15 2002
5 copyright : (C) 2002 by Pete Bernert
6 email : BlackDove@addcom.de
7
8 Portions (C) GraÅžvydas "notaz" Ignotas, 2010-2012,2014,2015
9
10 ***************************************************************************/
11/***************************************************************************
12 * *
13 * This program is free software; you can redistribute it and/or modify *
14 * it under the terms of the GNU General Public License as published by *
15 * the Free Software Foundation; either version 2 of the License, or *
16 * (at your option) any later version. See also the license.txt file for *
17 * additional informations. *
18 * *
19 ***************************************************************************/
20
21#if !defined(_WIN32) && !defined(NO_OS)
22#include <sys/time.h> // gettimeofday in xa.c
23#define THREAD_ENABLED 1
24#endif
25#include "stdafx.h"
26
27#define _IN_SPU
28
29#include "externals.h"
30#include "registers.h"
31#include "out.h"
32#include "spu_config.h"
33
34#ifdef __arm__
35#include "arm_features.h"
36#endif
37
38#ifdef __ARM_ARCH_7A__
39 #define ssat32_to_16(v) \
40 asm("ssat %0,#16,%1" : "=r" (v) : "r" (v))
41#else
42 #define ssat32_to_16(v) do { \
43 if (v < -32768) v = -32768; \
44 else if (v > 32767) v = 32767; \
45 } while (0)
46#endif
47
48#define PSXCLK 33868800 /* 33.8688 MHz */
49
50// intended to be ~1 frame
51#define IRQ_NEAR_BLOCKS 32
52
53/*
54#if defined (USEMACOSX)
55static char * libraryName = N_("Mac OS X Sound");
56#elif defined (USEALSA)
57static char * libraryName = N_("ALSA Sound");
58#elif defined (USEOSS)
59static char * libraryName = N_("OSS Sound");
60#elif defined (USESDL)
61static char * libraryName = N_("SDL Sound");
62#elif defined (USEPULSEAUDIO)
63static char * libraryName = N_("PulseAudio Sound");
64#else
65static char * libraryName = N_("NULL Sound");
66#endif
67
68static char * libraryInfo = N_("P.E.Op.S. Sound Driver V1.7\nCoded by Pete Bernert and the P.E.Op.S. team\n");
69*/
70
71// globals
72
73SPUInfo spu;
74SPUConfig spu_config;
75
76// MAIN infos struct for each channel
77
78REVERBInfo rvb;
79
80static int iFMod[NSSIZE];
81int ChanBuf[NSSIZE];
82
83#define CDDA_BUFFER_SIZE (16384 * sizeof(uint32_t)) // must be power of 2
84
85////////////////////////////////////////////////////////////////////////
86// CODE AREA
87////////////////////////////////////////////////////////////////////////
88
89// dirty inline func includes
90
91#include "reverb.c"
92#include "adsr.c"
93
94////////////////////////////////////////////////////////////////////////
95// helpers for simple interpolation
96
97//
98// easy interpolation on upsampling, no special filter, just "Pete's common sense" tm
99//
100// instead of having n equal sample values in a row like:
101// ____
102// |____
103//
104// we compare the current delta change with the next delta change.
105//
106// if curr_delta is positive,
107//
108// - and next delta is smaller (or changing direction):
109// \.
110// -__
111//
112// - and next delta significant (at least twice) bigger:
113// --_
114// \.
115//
116// - and next delta is nearly same:
117// \.
118// \.
119//
120//
121// if curr_delta is negative,
122//
123// - and next delta is smaller (or changing direction):
124// _--
125// /
126//
127// - and next delta significant (at least twice) bigger:
128// /
129// __-
130//
131// - and next delta is nearly same:
132// /
133// /
134//
135
136static void InterpolateUp(int *SB, int sinc)
137{
138 if(SB[32]==1) // flag == 1? calc step and set flag... and don't change the value in this pass
139 {
140 const int id1=SB[30]-SB[29]; // curr delta to next val
141 const int id2=SB[31]-SB[30]; // and next delta to next-next val :)
142
143 SB[32]=0;
144
145 if(id1>0) // curr delta positive
146 {
147 if(id2<id1)
148 {SB[28]=id1;SB[32]=2;}
149 else
150 if(id2<(id1<<1))
151 SB[28]=(id1*sinc)>>16;
152 else
153 SB[28]=(id1*sinc)>>17;
154 }
155 else // curr delta negative
156 {
157 if(id2>id1)
158 {SB[28]=id1;SB[32]=2;}
159 else
160 if(id2>(id1<<1))
161 SB[28]=(id1*sinc)>>16;
162 else
163 SB[28]=(id1*sinc)>>17;
164 }
165 }
166 else
167 if(SB[32]==2) // flag 1: calc step and set flag... and don't change the value in this pass
168 {
169 SB[32]=0;
170
171 SB[28]=(SB[28]*sinc)>>17;
172 //if(sinc<=0x8000)
173 // SB[29]=SB[30]-(SB[28]*((0x10000/sinc)-1));
174 //else
175 SB[29]+=SB[28];
176 }
177 else // no flags? add bigger val (if possible), calc smaller step, set flag1
178 SB[29]+=SB[28];
179}
180
181//
182// even easier interpolation on downsampling, also no special filter, again just "Pete's common sense" tm
183//
184
185static void InterpolateDown(int *SB, int sinc)
186{
187 if(sinc>=0x20000L) // we would skip at least one val?
188 {
189 SB[29]+=(SB[30]-SB[29])/2; // add easy weight
190 if(sinc>=0x30000L) // we would skip even more vals?
191 SB[29]+=(SB[31]-SB[30])/2; // add additional next weight
192 }
193}
194
195////////////////////////////////////////////////////////////////////////
196// helpers for gauss interpolation
197
198#define gval0 (((short*)(&SB[29]))[gpos&3])
199#define gval(x) ((int)((short*)(&SB[29]))[(gpos+x)&3])
200
201#include "gauss_i.h"
202
203////////////////////////////////////////////////////////////////////////
204
205#include "xa.c"
206
207static void do_irq(void)
208{
209 //if(!(spu.spuStat & STAT_IRQ))
210 {
211 spu.spuStat |= STAT_IRQ; // asserted status?
212 if(spu.irqCallback) spu.irqCallback();
213 }
214}
215
216static int check_irq(int ch, unsigned char *pos)
217{
218 if((spu.spuCtrl & CTRL_IRQ) && pos == spu.pSpuIrq)
219 {
220 //printf("ch%d irq %04x\n", ch, pos - spu.spuMemC);
221 do_irq();
222 return 1;
223 }
224 return 0;
225}
226
227////////////////////////////////////////////////////////////////////////
228// START SOUND... called by main thread to setup a new sound on a channel
229////////////////////////////////////////////////////////////////////////
230
231static void StartSoundSB(int *SB)
232{
233 SB[26]=0; // init mixing vars
234 SB[27]=0;
235
236 SB[28]=0;
237 SB[29]=0; // init our interpolation helpers
238 SB[30]=0;
239 SB[31]=0;
240}
241
242static void StartSoundMain(int ch)
243{
244 SPUCHAN *s_chan = &spu.s_chan[ch];
245
246 StartADSR(ch);
247 StartREVERB(ch);
248
249 s_chan->prevflags=2;
250 s_chan->iSBPos=27;
251 s_chan->spos=0;
252
253 spu.dwNewChannel&=~(1<<ch); // clear new channel bit
254 spu.dwChannelOn|=1<<ch;
255 spu.dwChannelDead&=~(1<<ch);
256}
257
258static void StartSound(int ch)
259{
260 StartSoundMain(ch);
261 StartSoundSB(spu.SB + ch * SB_SIZE);
262}
263
264////////////////////////////////////////////////////////////////////////
265// ALL KIND OF HELPERS
266////////////////////////////////////////////////////////////////////////
267
268INLINE int FModChangeFrequency(int *SB, int pitch, int ns)
269{
270 unsigned int NP=pitch;
271 int sinc;
272
273 NP=((32768L+iFMod[ns])*NP)>>15;
274
275 if(NP>0x3fff) NP=0x3fff;
276 if(NP<0x1) NP=0x1;
277
278 sinc=NP<<4; // calc frequency
279 if(spu_config.iUseInterpolation==1) // freq change in simple interpolation mode
280 SB[32]=1;
281 iFMod[ns]=0;
282
283 return sinc;
284}
285
286////////////////////////////////////////////////////////////////////////
287
288INLINE void StoreInterpolationVal(int *SB, int sinc, int fa, int fmod_freq)
289{
290 if(fmod_freq) // fmod freq channel
291 SB[29]=fa;
292 else
293 {
294 ssat32_to_16(fa);
295
296 if(spu_config.iUseInterpolation>=2) // gauss/cubic interpolation
297 {
298 int gpos = SB[28];
299 gval0 = fa;
300 gpos = (gpos+1) & 3;
301 SB[28] = gpos;
302 }
303 else
304 if(spu_config.iUseInterpolation==1) // simple interpolation
305 {
306 SB[28] = 0;
307 SB[29] = SB[30]; // -> helpers for simple linear interpolation: delay real val for two slots, and calc the two deltas, for a 'look at the future behaviour'
308 SB[30] = SB[31];
309 SB[31] = fa;
310 SB[32] = 1; // -> flag: calc new interolation
311 }
312 else SB[29]=fa; // no interpolation
313 }
314}
315
316////////////////////////////////////////////////////////////////////////
317
318INLINE int iGetInterpolationVal(int *SB, int sinc, int spos, int fmod_freq)
319{
320 int fa;
321
322 if(fmod_freq) return SB[29];
323
324 switch(spu_config.iUseInterpolation)
325 {
326 //--------------------------------------------------//
327 case 3: // cubic interpolation
328 {
329 long xd;int gpos;
330 xd = (spos >> 1)+1;
331 gpos = SB[28];
332
333 fa = gval(3) - 3*gval(2) + 3*gval(1) - gval0;
334 fa *= (xd - (2<<15)) / 6;
335 fa >>= 15;
336 fa += gval(2) - gval(1) - gval(1) + gval0;
337 fa *= (xd - (1<<15)) >> 1;
338 fa >>= 15;
339 fa += gval(1) - gval0;
340 fa *= xd;
341 fa >>= 15;
342 fa = fa + gval0;
343
344 } break;
345 //--------------------------------------------------//
346 case 2: // gauss interpolation
347 {
348 int vl, vr;int gpos;
349 vl = (spos >> 6) & ~3;
350 gpos = SB[28];
351 vr=(gauss[vl]*(int)gval0)&~2047;
352 vr+=(gauss[vl+1]*gval(1))&~2047;
353 vr+=(gauss[vl+2]*gval(2))&~2047;
354 vr+=(gauss[vl+3]*gval(3))&~2047;
355 fa = vr>>11;
356 } break;
357 //--------------------------------------------------//
358 case 1: // simple interpolation
359 {
360 if(sinc<0x10000L) // -> upsampling?
361 InterpolateUp(SB, sinc); // --> interpolate up
362 else InterpolateDown(SB, sinc); // --> else down
363 fa=SB[29];
364 } break;
365 //--------------------------------------------------//
366 default: // no interpolation
367 {
368 fa=SB[29];
369 } break;
370 //--------------------------------------------------//
371 }
372
373 return fa;
374}
375
376static void decode_block_data(int *dest, const unsigned char *src, int predict_nr, int shift_factor)
377{
378 static const int f[16][2] = {
379 { 0, 0 },
380 { 60, 0 },
381 { 115, -52 },
382 { 98, -55 },
383 { 122, -60 }
384 };
385 int nSample;
386 int fa, s_1, s_2, d, s;
387
388 s_1 = dest[27];
389 s_2 = dest[26];
390
391 for (nSample = 0; nSample < 28; src++)
392 {
393 d = (int)*src;
394 s = (int)(signed short)((d & 0x0f) << 12);
395
396 fa = s >> shift_factor;
397 fa += ((s_1 * f[predict_nr][0])>>6) + ((s_2 * f[predict_nr][1])>>6);
398 s_2=s_1;s_1=fa;
399
400 dest[nSample++] = fa;
401
402 s = (int)(signed short)((d & 0xf0) << 8);
403 fa = s >> shift_factor;
404 fa += ((s_1 * f[predict_nr][0])>>6) + ((s_2 * f[predict_nr][1])>>6);
405 s_2=s_1;s_1=fa;
406
407 dest[nSample++] = fa;
408 }
409}
410
411static int decode_block(void *unused, int ch, int *SB)
412{
413 SPUCHAN *s_chan = &spu.s_chan[ch];
414 unsigned char *start;
415 int predict_nr, shift_factor, flags;
416 int ret = 0;
417
418 start = s_chan->pCurr; // set up the current pos
419 if (start == spu.spuMemC) // ?
420 ret = 1;
421
422 if (s_chan->prevflags & 1) // 1: stop/loop
423 {
424 if (!(s_chan->prevflags & 2))
425 ret = 1;
426
427 start = s_chan->pLoop;
428 }
429 else
430 check_irq(ch, start); // hack, see check_irq below..
431
432 predict_nr = start[0];
433 shift_factor = predict_nr & 0xf;
434 predict_nr >>= 4;
435
436 decode_block_data(SB, start + 2, predict_nr, shift_factor);
437
438 flags = start[1];
439 if (flags & 4)
440 s_chan->pLoop = start; // loop adress
441
442 start += 16;
443
444 if (flags & 1) { // 1: stop/loop
445 start = s_chan->pLoop;
446 check_irq(ch, start); // hack.. :(
447 }
448
449 if (start - spu.spuMemC >= 0x80000)
450 start = spu.spuMemC;
451
452 s_chan->pCurr = start; // store values for next cycle
453 s_chan->prevflags = flags;
454
455 return ret;
456}
457
458// do block, but ignore sample data
459static int skip_block(int ch)
460{
461 SPUCHAN *s_chan = &spu.s_chan[ch];
462 unsigned char *start = s_chan->pCurr;
463 int flags;
464 int ret = 0;
465
466 if (s_chan->prevflags & 1) {
467 if (!(s_chan->prevflags & 2))
468 ret = 1;
469
470 start = s_chan->pLoop;
471 }
472 else
473 check_irq(ch, start);
474
475 flags = start[1];
476 if (flags & 4)
477 s_chan->pLoop = start;
478
479 start += 16;
480
481 if (flags & 1) {
482 start = s_chan->pLoop;
483 check_irq(ch, start);
484 }
485
486 s_chan->pCurr = start;
487 s_chan->prevflags = flags;
488
489 return ret;
490}
491
492// if irq is going to trigger sooner than in upd_samples, set upd_samples
493static void scan_for_irq(int ch, unsigned int *upd_samples)
494{
495 SPUCHAN *s_chan = &spu.s_chan[ch];
496 int pos, sinc, sinc_inv, end;
497 unsigned char *block;
498 int flags;
499
500 block = s_chan->pCurr;
501 pos = s_chan->spos;
502 sinc = s_chan->sinc;
503 end = pos + *upd_samples * sinc;
504
505 pos += (28 - s_chan->iSBPos) << 16;
506 while (pos < end)
507 {
508 if (block == spu.pSpuIrq)
509 break;
510 flags = block[1];
511 block += 16;
512 if (flags & 1) { // 1: stop/loop
513 block = s_chan->pLoop;
514 if (block == spu.pSpuIrq) // hack.. (see decode_block)
515 break;
516 }
517 pos += 28 << 16;
518 }
519
520 if (pos < end)
521 {
522 sinc_inv = s_chan->sinc_inv;
523 if (sinc_inv == 0)
524 sinc_inv = s_chan->sinc_inv = (0x80000000u / (uint32_t)sinc) << 1;
525
526 pos -= s_chan->spos;
527 *upd_samples = (((uint64_t)pos * sinc_inv) >> 32) + 1;
528 //xprintf("ch%02d: irq sched: %3d %03d\n",
529 // ch, *upd_samples, *upd_samples * 60 * 263 / 44100);
530 }
531}
532
533#define make_do_samples(name, fmod_code, interp_start, interp1_code, interp2_code, interp_end) \
534static noinline int do_samples_##name( \
535 int (*decode_f)(void *context, int ch, int *SB), void *ctx, \
536 int ch, int ns_to, int *SB, int sinc, int *spos, int *sbpos) \
537{ \
538 int ns, d, fa; \
539 int ret = ns_to; \
540 interp_start; \
541 \
542 for (ns = 0; ns < ns_to; ns++) \
543 { \
544 fmod_code; \
545 \
546 *spos += sinc; \
547 while (*spos >= 0x10000) \
548 { \
549 fa = SB[(*sbpos)++]; \
550 if (*sbpos >= 28) \
551 { \
552 *sbpos = 0; \
553 d = decode_f(ctx, ch, SB); \
554 if (d && ns < ret) \
555 ret = ns; \
556 } \
557 \
558 interp1_code; \
559 *spos -= 0x10000; \
560 } \
561 \
562 interp2_code; \
563 } \
564 \
565 interp_end; \
566 \
567 return ret; \
568}
569
570#define fmod_recv_check \
571 if(spu.s_chan[ch].bFMod==1 && iFMod[ns]) \
572 sinc = FModChangeFrequency(SB, spu.s_chan[ch].iRawPitch, ns)
573
574make_do_samples(default, fmod_recv_check, ,
575 StoreInterpolationVal(SB, sinc, fa, spu.s_chan[ch].bFMod==2),
576 ChanBuf[ns] = iGetInterpolationVal(SB, sinc, *spos, spu.s_chan[ch].bFMod==2), )
577make_do_samples(noint, , fa = SB[29], , ChanBuf[ns] = fa, SB[29] = fa)
578
579#define simple_interp_store \
580 SB[28] = 0; \
581 SB[29] = SB[30]; \
582 SB[30] = SB[31]; \
583 SB[31] = fa; \
584 SB[32] = 1
585
586#define simple_interp_get \
587 if(sinc<0x10000) /* -> upsampling? */ \
588 InterpolateUp(SB, sinc); /* --> interpolate up */ \
589 else InterpolateDown(SB, sinc); /* --> else down */ \
590 ChanBuf[ns] = SB[29]
591
592make_do_samples(simple, , ,
593 simple_interp_store, simple_interp_get, )
594
595static int do_samples_skip(int ch, int ns_to)
596{
597 SPUCHAN *s_chan = &spu.s_chan[ch];
598 int spos = s_chan->spos;
599 int sinc = s_chan->sinc;
600 int ret = ns_to, ns, d;
601
602 spos += s_chan->iSBPos << 16;
603
604 for (ns = 0; ns < ns_to; ns++)
605 {
606 spos += sinc;
607 while (spos >= 28*0x10000)
608 {
609 d = skip_block(ch);
610 if (d && ns < ret)
611 ret = ns;
612 spos -= 28*0x10000;
613 }
614 }
615
616 s_chan->iSBPos = spos >> 16;
617 s_chan->spos = spos & 0xffff;
618
619 return ret;
620}
621
622static void do_lsfr_samples(int ns_to, int ctrl,
623 unsigned int *dwNoiseCount, unsigned int *dwNoiseVal)
624{
625 unsigned int counter = *dwNoiseCount;
626 unsigned int val = *dwNoiseVal;
627 unsigned int level, shift, bit;
628 int ns;
629
630 // modified from DrHell/shalma, no fraction
631 level = (ctrl >> 10) & 0x0f;
632 level = 0x8000 >> level;
633
634 for (ns = 0; ns < ns_to; ns++)
635 {
636 counter += 2;
637 if (counter >= level)
638 {
639 counter -= level;
640 shift = (val >> 10) & 0x1f;
641 bit = (0x69696969 >> shift) & 1;
642 bit ^= (val >> 15) & 1;
643 val = (val << 1) | bit;
644 }
645
646 ChanBuf[ns] = (signed short)val;
647 }
648
649 *dwNoiseCount = counter;
650 *dwNoiseVal = val;
651}
652
653static int do_samples_noise(int ch, int ns_to)
654{
655 int ret;
656
657 ret = do_samples_skip(ch, ns_to);
658
659 do_lsfr_samples(ns_to, spu.spuCtrl, &spu.dwNoiseCount, &spu.dwNoiseVal);
660
661 return ret;
662}
663
664#ifdef HAVE_ARMV5
665// asm code; lv and rv must be 0-3fff
666extern void mix_chan(int *SSumLR, int count, int lv, int rv);
667extern void mix_chan_rvb(int *SSumLR, int count, int lv, int rv, int *rvb);
668#else
669static void mix_chan(int *SSumLR, int count, int lv, int rv)
670{
671 const int *src = ChanBuf;
672 int l, r;
673
674 while (count--)
675 {
676 int sval = *src++;
677
678 l = (sval * lv) >> 14;
679 r = (sval * rv) >> 14;
680 *SSumLR++ += l;
681 *SSumLR++ += r;
682 }
683}
684
685static void mix_chan_rvb(int *SSumLR, int count, int lv, int rv, int *rvb)
686{
687 const int *src = ChanBuf;
688 int *dst = SSumLR;
689 int *drvb = rvb;
690 int l, r;
691
692 while (count--)
693 {
694 int sval = *src++;
695
696 l = (sval * lv) >> 14;
697 r = (sval * rv) >> 14;
698 *dst++ += l;
699 *dst++ += r;
700 *drvb++ += l;
701 *drvb++ += r;
702 }
703}
704#endif
705
706// 0x0800-0x0bff Voice 1
707// 0x0c00-0x0fff Voice 3
708static noinline void do_decode_bufs(unsigned short *mem, int which,
709 int count, int decode_pos)
710{
711 unsigned short *dst = &mem[0x800/2 + which*0x400/2];
712 const int *src = ChanBuf;
713 int cursor = decode_pos;
714
715 while (count-- > 0)
716 {
717 cursor &= 0x1ff;
718 dst[cursor] = *src++;
719 cursor++;
720 }
721
722 // decode_pos is updated and irqs are checked later, after voice loop
723}
724
725static void do_silent_chans(int ns_to, int silentch)
726{
727 unsigned int mask;
728 SPUCHAN *s_chan;
729 int ch;
730
731 mask = silentch & 0xffffff;
732 for (ch = 0; mask != 0; ch++, mask >>= 1)
733 {
734 if (!(mask & 1)) continue;
735 if (spu.dwChannelDead & (1<<ch)) continue;
736
737 s_chan = &spu.s_chan[ch];
738 if (s_chan->pCurr > spu.pSpuIrq && s_chan->pLoop > spu.pSpuIrq)
739 continue;
740
741 s_chan->spos += s_chan->iSBPos << 16;
742 s_chan->iSBPos = 0;
743
744 s_chan->spos += s_chan->sinc * ns_to;
745 while (s_chan->spos >= 28 * 0x10000)
746 {
747 unsigned char *start = s_chan->pCurr;
748
749 skip_block(ch);
750 if (start == s_chan->pCurr || start - spu.spuMemC < 0x1000)
751 {
752 // looping on self or stopped(?)
753 spu.dwChannelDead |= 1<<ch;
754 s_chan->spos = 0;
755 break;
756 }
757
758 s_chan->spos -= 28 * 0x10000;
759 }
760 }
761}
762
763static void do_channels(int ns_to)
764{
765 unsigned int mask;
766 SPUCHAN *s_chan;
767 int *SB, sinc;
768 int ch, d;
769
770 memset(spu.RVB, 0, ns_to * sizeof(spu.RVB[0]) * 2);
771
772 mask = spu.dwNewChannel & 0xffffff;
773 for (ch = 0; mask != 0; ch++, mask >>= 1) {
774 if (mask & 1)
775 StartSound(ch);
776 }
777
778 mask = spu.dwChannelOn & 0xffffff;
779 for (ch = 0; mask != 0; ch++, mask >>= 1) // loop em all...
780 {
781 if (!(mask & 1)) continue; // channel not playing? next
782
783 s_chan = &spu.s_chan[ch];
784 SB = spu.SB + ch * SB_SIZE;
785 sinc = s_chan->sinc;
786
787 if (s_chan->bNoise)
788 d = do_samples_noise(ch, ns_to);
789 else if (s_chan->bFMod == 2
790 || (s_chan->bFMod == 0 && spu_config.iUseInterpolation == 0))
791 d = do_samples_noint(decode_block, NULL, ch, ns_to,
792 SB, sinc, &s_chan->spos, &s_chan->iSBPos);
793 else if (s_chan->bFMod == 0 && spu_config.iUseInterpolation == 1)
794 d = do_samples_simple(decode_block, NULL, ch, ns_to,
795 SB, sinc, &s_chan->spos, &s_chan->iSBPos);
796 else
797 d = do_samples_default(decode_block, NULL, ch, ns_to,
798 SB, sinc, &s_chan->spos, &s_chan->iSBPos);
799
800 d = MixADSR(&s_chan->ADSRX, d);
801 if (d < ns_to) {
802 spu.dwChannelOn &= ~(1 << ch);
803 s_chan->ADSRX.EnvelopeVol = 0;
804 memset(&ChanBuf[d], 0, (ns_to - d) * sizeof(ChanBuf[0]));
805 }
806
807 if (ch == 1 || ch == 3)
808 {
809 do_decode_bufs(spu.spuMem, ch/2, ns_to, spu.decode_pos);
810 spu.decode_dirty_ch |= 1 << ch;
811 }
812
813 if (s_chan->bFMod == 2) // fmod freq channel
814 memcpy(iFMod, &ChanBuf, ns_to * sizeof(iFMod[0]));
815 if (s_chan->bRVBActive)
816 mix_chan_rvb(spu.SSumLR, ns_to, s_chan->iLeftVolume, s_chan->iRightVolume, spu.RVB);
817 else
818 mix_chan(spu.SSumLR, ns_to, s_chan->iLeftVolume, s_chan->iRightVolume);
819 }
820}
821
822static void do_samples_finish(int *SSumLR, int *RVB, int ns_to,
823 int silentch, int decode_pos);
824
825// optional worker thread handling
826
827#if defined(THREAD_ENABLED) || defined(WANT_THREAD_CODE)
828
829// worker thread state
830static struct spu_worker {
831 union {
832 struct {
833 unsigned int exit_thread;
834 unsigned int i_ready;
835 unsigned int i_reaped;
836 unsigned int req_sent; // dsp
837 unsigned int last_boot_cnt;
838 };
839 // aligning for C64X_DSP
840 unsigned int _pad0[128/4];
841 };
842 union {
843 struct {
844 unsigned int i_done;
845 unsigned int active; // dsp
846 unsigned int boot_cnt;
847 };
848 unsigned int _pad1[128/4];
849 };
850 struct work_item {
851 int ns_to;
852 int ctrl;
853 int decode_pos;
854 unsigned int channels_new;
855 unsigned int channels_on;
856 unsigned int channels_silent;
857 struct {
858 int spos;
859 int sbpos;
860 int sinc;
861 int start;
862 int loop;
863 int ns_to;
864 ADSRInfoEx adsr;
865 // might want to add vol and fmod flags..
866 } ch[24];
867 int RVB[NSSIZE * 2];
868 int SSumLR[NSSIZE * 2];
869 } i[4];
870} *worker;
871
872#define WORK_MAXCNT (sizeof(worker->i) / sizeof(worker->i[0]))
873#define WORK_I_MASK (WORK_MAXCNT - 1)
874
875static void thread_work_start(void);
876static void thread_work_wait_sync(struct work_item *work, int force);
877static int thread_get_i_done(void);
878
879static int decode_block_work(void *context, int ch, int *SB)
880{
881 const unsigned char *ram = spu.spuMemC;
882 int predict_nr, shift_factor, flags;
883 struct work_item *work = context;
884 int start = work->ch[ch].start;
885 int loop = work->ch[ch].loop;
886
887 predict_nr = ram[start];
888 shift_factor = predict_nr & 0xf;
889 predict_nr >>= 4;
890
891 decode_block_data(SB, ram + start + 2, predict_nr, shift_factor);
892
893 flags = ram[start + 1];
894 if (flags & 4)
895 loop = start; // loop adress
896
897 start += 16;
898
899 if (flags & 1) // 1: stop/loop
900 start = loop;
901
902 work->ch[ch].start = start & 0x7ffff;
903 work->ch[ch].loop = loop;
904
905 return 0;
906}
907
908static void queue_channel_work(int ns_to, unsigned int silentch)
909{
910 struct work_item *work;
911 SPUCHAN *s_chan;
912 unsigned int mask;
913 int ch, d;
914
915 work = &worker->i[worker->i_ready & WORK_I_MASK];
916 work->ns_to = ns_to;
917 work->ctrl = spu.spuCtrl;
918 work->decode_pos = spu.decode_pos;
919 work->channels_silent = silentch;
920
921 mask = work->channels_new = spu.dwNewChannel & 0xffffff;
922 for (ch = 0; mask != 0; ch++, mask >>= 1) {
923 if (mask & 1)
924 StartSoundMain(ch);
925 }
926
927 mask = work->channels_on = spu.dwChannelOn & 0xffffff;
928 spu.decode_dirty_ch |= mask & 0x0a;
929
930 for (ch = 0; mask != 0; ch++, mask >>= 1)
931 {
932 if (!(mask & 1)) continue;
933
934 s_chan = &spu.s_chan[ch];
935 work->ch[ch].spos = s_chan->spos;
936 work->ch[ch].sbpos = s_chan->iSBPos;
937 work->ch[ch].sinc = s_chan->sinc;
938 work->ch[ch].adsr = s_chan->ADSRX;
939 work->ch[ch].start = s_chan->pCurr - spu.spuMemC;
940 work->ch[ch].loop = s_chan->pLoop - spu.spuMemC;
941 if (s_chan->prevflags & 1)
942 work->ch[ch].start = work->ch[ch].loop;
943
944 d = do_samples_skip(ch, ns_to);
945 work->ch[ch].ns_to = d;
946
947 // note: d is not accurate on skip
948 d = SkipADSR(&s_chan->ADSRX, d);
949 if (d < ns_to) {
950 spu.dwChannelOn &= ~(1 << ch);
951 s_chan->ADSRX.EnvelopeVol = 0;
952 }
953 }
954
955 worker->i_ready++;
956 thread_work_start();
957}
958
959static void do_channel_work(struct work_item *work)
960{
961 unsigned int mask;
962 unsigned int decode_dirty_ch = 0;
963 int *SB, sinc, spos, sbpos;
964 int d, ch, ns_to;
965 SPUCHAN *s_chan;
966
967 ns_to = work->ns_to;
968 memset(work->RVB, 0, ns_to * sizeof(work->RVB[0]) * 2);
969
970 mask = work->channels_new;
971 for (ch = 0; mask != 0; ch++, mask >>= 1) {
972 if (mask & 1)
973 StartSoundSB(spu.SB + ch * SB_SIZE);
974 }
975
976 mask = work->channels_on;
977 for (ch = 0; mask != 0; ch++, mask >>= 1)
978 {
979 if (!(mask & 1)) continue;
980
981 d = work->ch[ch].ns_to;
982 spos = work->ch[ch].spos;
983 sbpos = work->ch[ch].sbpos;
984 sinc = work->ch[ch].sinc;
985
986 s_chan = &spu.s_chan[ch];
987 SB = spu.SB + ch * SB_SIZE;
988
989 if (s_chan->bNoise)
990 do_lsfr_samples(d, work->ctrl, &spu.dwNoiseCount, &spu.dwNoiseVal);
991 else if (s_chan->bFMod == 2
992 || (s_chan->bFMod == 0 && spu_config.iUseInterpolation == 0))
993 do_samples_noint(decode_block_work, work, ch, d, SB, sinc, &spos, &sbpos);
994 else if (s_chan->bFMod == 0 && spu_config.iUseInterpolation == 1)
995 do_samples_simple(decode_block_work, work, ch, d, SB, sinc, &spos, &sbpos);
996 else
997 do_samples_default(decode_block_work, work, ch, d, SB, sinc, &spos, &sbpos);
998
999 d = MixADSR(&work->ch[ch].adsr, d);
1000 if (d < ns_to) {
1001 work->ch[ch].adsr.EnvelopeVol = 0;
1002 memset(&ChanBuf[d], 0, (ns_to - d) * sizeof(ChanBuf[0]));
1003 }
1004
1005 if (ch == 1 || ch == 3)
1006 {
1007 do_decode_bufs(spu.spuMem, ch/2, ns_to, work->decode_pos);
1008 decode_dirty_ch |= 1 << ch;
1009 }
1010
1011 if (s_chan->bFMod == 2) // fmod freq channel
1012 memcpy(iFMod, &ChanBuf, ns_to * sizeof(iFMod[0]));
1013 if (s_chan->bRVBActive)
1014 mix_chan_rvb(work->SSumLR, ns_to,
1015 s_chan->iLeftVolume, s_chan->iRightVolume, work->RVB);
1016 else
1017 mix_chan(work->SSumLR, ns_to, s_chan->iLeftVolume, s_chan->iRightVolume);
1018 }
1019}
1020
1021static void sync_worker_thread(int force)
1022{
1023 struct work_item *work;
1024 int done, used_space;
1025
1026 done = thread_get_i_done() - worker->i_reaped;
1027 used_space = worker->i_ready - worker->i_reaped;
1028 //printf("done: %d use: %d dsp: %u/%u\n", done, used_space,
1029 // worker->boot_cnt, worker->i_done);
1030
1031 while ((force && used_space > 0) || used_space >= WORK_MAXCNT || done > 0) {
1032 work = &worker->i[worker->i_reaped & WORK_I_MASK];
1033 thread_work_wait_sync(work, force);
1034
1035 do_samples_finish(work->SSumLR, work->RVB, work->ns_to,
1036 work->channels_silent, work->decode_pos);
1037
1038 worker->i_reaped++;
1039 done = thread_get_i_done() - worker->i_reaped;
1040 used_space = worker->i_ready - worker->i_reaped;
1041 }
1042}
1043
1044#else
1045
1046static void queue_channel_work(int ns_to, int silentch) {}
1047static void sync_worker_thread(int force) {}
1048
1049static const void * const worker = NULL;
1050
1051#endif // THREAD_ENABLED
1052
1053////////////////////////////////////////////////////////////////////////
1054// MAIN SPU FUNCTION
1055// here is the main job handler...
1056////////////////////////////////////////////////////////////////////////
1057
1058void do_samples(unsigned int cycles_to, int do_direct)
1059{
1060 unsigned int silentch;
1061 int cycle_diff;
1062 int ns_to;
1063
1064 cycle_diff = cycles_to - spu.cycles_played;
1065 if (cycle_diff < -2*1048576 || cycle_diff > 2*1048576)
1066 {
1067 //xprintf("desync %u %d\n", cycles_to, cycle_diff);
1068 spu.cycles_played = cycles_to;
1069 return;
1070 }
1071
1072 silentch = ~(spu.dwChannelOn | spu.dwNewChannel) & 0xffffff;
1073
1074 do_direct |= (silentch == 0xffffff);
1075 if (worker != NULL)
1076 sync_worker_thread(do_direct);
1077
1078 if (cycle_diff < 2 * 768)
1079 return;
1080
1081 ns_to = (cycle_diff / 768 + 1) & ~1;
1082 if (ns_to > NSSIZE) {
1083 // should never happen
1084 //xprintf("ns_to oflow %d %d\n", ns_to, NSSIZE);
1085 ns_to = NSSIZE;
1086 }
1087
1088 //////////////////////////////////////////////////////
1089 // special irq handling in the decode buffers (0x0000-0x1000)
1090 // we know:
1091 // the decode buffers are located in spu memory in the following way:
1092 // 0x0000-0x03ff CD audio left
1093 // 0x0400-0x07ff CD audio right
1094 // 0x0800-0x0bff Voice 1
1095 // 0x0c00-0x0fff Voice 3
1096 // and decoded data is 16 bit for one sample
1097 // we assume:
1098 // even if voices 1/3 are off or no cd audio is playing, the internal
1099 // play positions will move on and wrap after 0x400 bytes.
1100 // Therefore: we just need a pointer from spumem+0 to spumem+3ff, and
1101 // increase this pointer on each sample by 2 bytes. If this pointer
1102 // (or 0x400 offsets of this pointer) hits the spuirq address, we generate
1103 // an IRQ.
1104
1105 if (unlikely((spu.spuCtrl & CTRL_IRQ)
1106 && spu.pSpuIrq < spu.spuMemC+0x1000))
1107 {
1108 int irq_pos = (spu.pSpuIrq - spu.spuMemC) / 2 & 0x1ff;
1109 int left = (irq_pos - spu.decode_pos) & 0x1ff;
1110 if (0 < left && left <= ns_to)
1111 {
1112 //xprintf("decoder irq %x\n", spu.decode_pos);
1113 do_irq();
1114 }
1115 }
1116
1117 if (do_direct || worker == NULL || !spu_config.iUseThread) {
1118 do_channels(ns_to);
1119 do_samples_finish(spu.SSumLR, spu.RVB, ns_to, silentch, spu.decode_pos);
1120 }
1121 else {
1122 queue_channel_work(ns_to, silentch);
1123 }
1124
1125 // advance "stopped" channels that can cause irqs
1126 // (all chans are always playing on the real thing..)
1127 if (spu.spuCtrl & CTRL_IRQ)
1128 do_silent_chans(ns_to, silentch);
1129
1130 spu.cycles_played += ns_to * 768;
1131 spu.decode_pos = (spu.decode_pos + ns_to) & 0x1ff;
1132}
1133
1134static void do_samples_finish(int *SSumLR, int *RVB, int ns_to,
1135 int silentch, int decode_pos)
1136{
1137 int volmult = spu_config.iVolume;
1138 int ns;
1139 int d;
1140
1141 // must clear silent channel decode buffers
1142 if(unlikely(silentch & spu.decode_dirty_ch & (1<<1)))
1143 {
1144 memset(&spu.spuMem[0x800/2], 0, 0x400);
1145 spu.decode_dirty_ch &= ~(1<<1);
1146 }
1147 if(unlikely(silentch & spu.decode_dirty_ch & (1<<3)))
1148 {
1149 memset(&spu.spuMem[0xc00/2], 0, 0x400);
1150 spu.decode_dirty_ch &= ~(1<<3);
1151 }
1152
1153 //---------------------------------------------------//
1154 // mix XA infos (if any)
1155
1156 MixXA(SSumLR, ns_to, decode_pos);
1157
1158 ///////////////////////////////////////////////////////
1159 // mix all channels (including reverb) into one buffer
1160
1161 if(spu_config.iUseReverb)
1162 REVERBDo(SSumLR, RVB, ns_to);
1163
1164 if((spu.spuCtrl&0x4000)==0) // muted? (rare, don't optimize for this)
1165 {
1166 memset(spu.pS, 0, ns_to * 2 * sizeof(spu.pS[0]));
1167 spu.pS += ns_to * 2;
1168 }
1169 else
1170 for (ns = 0; ns < ns_to * 2; )
1171 {
1172 d = SSumLR[ns]; SSumLR[ns] = 0;
1173 d = d * volmult >> 10;
1174 ssat32_to_16(d);
1175 *spu.pS++ = d;
1176 ns++;
1177
1178 d = SSumLR[ns]; SSumLR[ns] = 0;
1179 d = d * volmult >> 10;
1180 ssat32_to_16(d);
1181 *spu.pS++ = d;
1182 ns++;
1183 }
1184}
1185
1186void schedule_next_irq(void)
1187{
1188 unsigned int upd_samples;
1189 int ch;
1190
1191 if (spu.scheduleCallback == NULL)
1192 return;
1193
1194 upd_samples = 44100 / 50;
1195
1196 for (ch = 0; ch < MAXCHAN; ch++)
1197 {
1198 if (spu.dwChannelDead & (1 << ch))
1199 continue;
1200 if ((unsigned long)(spu.pSpuIrq - spu.s_chan[ch].pCurr) > IRQ_NEAR_BLOCKS * 16
1201 && (unsigned long)(spu.pSpuIrq - spu.s_chan[ch].pLoop) > IRQ_NEAR_BLOCKS * 16)
1202 continue;
1203
1204 scan_for_irq(ch, &upd_samples);
1205 }
1206
1207 if (unlikely(spu.pSpuIrq < spu.spuMemC + 0x1000))
1208 {
1209 int irq_pos = (spu.pSpuIrq - spu.spuMemC) / 2 & 0x1ff;
1210 int left = (irq_pos - spu.decode_pos) & 0x1ff;
1211 if (0 < left && left < upd_samples) {
1212 //xprintf("decode: %3d (%3d/%3d)\n", left, spu.decode_pos, irq_pos);
1213 upd_samples = left;
1214 }
1215 }
1216
1217 if (upd_samples < 44100 / 50)
1218 spu.scheduleCallback(upd_samples * 768);
1219}
1220
1221// SPU ASYNC... even newer epsxe func
1222// 1 time every 'cycle' cycles... harhar
1223
1224// rearmed: called dynamically now
1225
1226void CALLBACK SPUasync(unsigned int cycle, unsigned int flags)
1227{
1228 do_samples(cycle, 0);
1229
1230 if (spu.spuCtrl & CTRL_IRQ)
1231 schedule_next_irq();
1232
1233 if (flags & 1) {
1234 out_current->feed(spu.pSpuBuffer, (unsigned char *)spu.pS - spu.pSpuBuffer);
1235 spu.pS = (short *)spu.pSpuBuffer;
1236
1237 if (spu_config.iTempo) {
1238 if (!out_current->busy())
1239 // cause more samples to be generated
1240 // (and break some games because of bad sync)
1241 spu.cycles_played -= 44100 / 60 / 2 * 768;
1242 }
1243 }
1244}
1245
1246// SPU UPDATE... new epsxe func
1247// 1 time every 32 hsync lines
1248// (312/32)x50 in pal
1249// (262/32)x60 in ntsc
1250
1251// since epsxe 1.5.2 (linux) uses SPUupdate, not SPUasync, I will
1252// leave that func in the linux port, until epsxe linux is using
1253// the async function as well
1254
1255void CALLBACK SPUupdate(void)
1256{
1257}
1258
1259// XA AUDIO
1260
1261void CALLBACK SPUplayADPCMchannel(xa_decode_t *xap)
1262{
1263 if(!xap) return;
1264 if(!xap->freq) return; // no xa freq ? bye
1265
1266 FeedXA(xap); // call main XA feeder
1267}
1268
1269// CDDA AUDIO
1270int CALLBACK SPUplayCDDAchannel(short *pcm, int nbytes)
1271{
1272 if (!pcm) return -1;
1273 if (nbytes<=0) return -1;
1274
1275 return FeedCDDA((unsigned char *)pcm, nbytes);
1276}
1277
1278// to be called after state load
1279void ClearWorkingState(void)
1280{
1281 memset(iFMod, 0, sizeof(iFMod));
1282 spu.pS=(short *)spu.pSpuBuffer; // setup soundbuffer pointer
1283}
1284
1285// SETUPSTREAMS: init most of the spu buffers
1286void SetupStreams(void)
1287{
1288 int i;
1289
1290 spu.pSpuBuffer = (unsigned char *)malloc(32768); // alloc mixing buffer
1291 spu.RVB = calloc(NSSIZE * 2, sizeof(spu.RVB[0]));
1292 spu.SSumLR = calloc(NSSIZE * 2, sizeof(spu.SSumLR[0]));
1293
1294 spu.XAStart = // alloc xa buffer
1295 (uint32_t *)malloc(44100 * sizeof(uint32_t));
1296 spu.XAEnd = spu.XAStart + 44100;
1297 spu.XAPlay = spu.XAStart;
1298 spu.XAFeed = spu.XAStart;
1299
1300 spu.CDDAStart = // alloc cdda buffer
1301 (uint32_t *)malloc(CDDA_BUFFER_SIZE);
1302 spu.CDDAEnd = spu.CDDAStart + 16384;
1303 spu.CDDAPlay = spu.CDDAStart;
1304 spu.CDDAFeed = spu.CDDAStart;
1305
1306 for(i=0;i<MAXCHAN;i++) // loop sound channels
1307 {
1308 spu.s_chan[i].ADSRX.SustainLevel = 0xf; // -> init sustain
1309 spu.s_chan[i].ADSRX.SustainIncrease = 1;
1310 spu.s_chan[i].pLoop=spu.spuMemC;
1311 spu.s_chan[i].pCurr=spu.spuMemC;
1312 }
1313
1314 ClearWorkingState();
1315
1316 spu.bSpuInit=1; // flag: we are inited
1317}
1318
1319// REMOVESTREAMS: free most buffer
1320void RemoveStreams(void)
1321{
1322 free(spu.pSpuBuffer); // free mixing buffer
1323 spu.pSpuBuffer = NULL;
1324 free(spu.RVB); // free reverb buffer
1325 spu.RVB = NULL;
1326 free(spu.SSumLR);
1327 spu.SSumLR = NULL;
1328 free(spu.XAStart); // free XA buffer
1329 spu.XAStart = NULL;
1330 free(spu.CDDAStart); // free CDDA buffer
1331 spu.CDDAStart = NULL;
1332}
1333
1334#if defined(C64X_DSP)
1335
1336/* special code for TI C64x DSP */
1337#include "spu_c64x.c"
1338
1339#elif defined(THREAD_ENABLED)
1340
1341#include <pthread.h>
1342#include <semaphore.h>
1343#include <unistd.h>
1344
1345static struct {
1346 pthread_t thread;
1347 sem_t sem_avail;
1348 sem_t sem_done;
1349} t;
1350
1351/* generic pthread implementation */
1352
1353static void thread_work_start(void)
1354{
1355 sem_post(&t.sem_avail);
1356}
1357
1358static void thread_work_wait_sync(struct work_item *work, int force)
1359{
1360 sem_wait(&t.sem_done);
1361}
1362
1363static int thread_get_i_done(void)
1364{
1365 return worker->i_done;
1366}
1367
1368static void *spu_worker_thread(void *unused)
1369{
1370 struct work_item *work;
1371
1372 while (1) {
1373 sem_wait(&t.sem_avail);
1374 if (worker->exit_thread)
1375 break;
1376
1377 work = &worker->i[worker->i_done & WORK_I_MASK];
1378 do_channel_work(work);
1379 worker->i_done++;
1380
1381 sem_post(&t.sem_done);
1382 }
1383
1384 return NULL;
1385}
1386
1387static void init_spu_thread(void)
1388{
1389 int ret;
1390
1391 if (sysconf(_SC_NPROCESSORS_ONLN) <= 1)
1392 return;
1393
1394 worker = calloc(1, sizeof(*worker));
1395 if (worker == NULL)
1396 return;
1397 ret = sem_init(&t.sem_avail, 0, 0);
1398 if (ret != 0)
1399 goto fail_sem_avail;
1400 ret = sem_init(&t.sem_done, 0, 0);
1401 if (ret != 0)
1402 goto fail_sem_done;
1403
1404 ret = pthread_create(&t.thread, NULL, spu_worker_thread, NULL);
1405 if (ret != 0)
1406 goto fail_thread;
1407
1408 spu_config.iThreadAvail = 1;
1409 return;
1410
1411fail_thread:
1412 sem_destroy(&t.sem_done);
1413fail_sem_done:
1414 sem_destroy(&t.sem_avail);
1415fail_sem_avail:
1416 free(worker);
1417 worker = NULL;
1418 spu_config.iThreadAvail = 0;
1419}
1420
1421static void exit_spu_thread(void)
1422{
1423 if (worker == NULL)
1424 return;
1425 worker->exit_thread = 1;
1426 sem_post(&t.sem_avail);
1427 pthread_join(t.thread, NULL);
1428 sem_destroy(&t.sem_done);
1429 sem_destroy(&t.sem_avail);
1430 free(worker);
1431 worker = NULL;
1432}
1433
1434#else // if !THREAD_ENABLED
1435
1436static void init_spu_thread(void)
1437{
1438}
1439
1440static void exit_spu_thread(void)
1441{
1442}
1443
1444#endif
1445
1446// SPUINIT: this func will be called first by the main emu
1447long CALLBACK SPUinit(void)
1448{
1449 spu.spuMemC = calloc(1, 512 * 1024);
1450 memset((void *)&rvb, 0, sizeof(REVERBInfo));
1451 InitADSR();
1452
1453 spu.s_chan = calloc(MAXCHAN+1, sizeof(spu.s_chan[0])); // channel + 1 infos (1 is security for fmod handling)
1454 spu.SB = calloc(MAXCHAN, sizeof(spu.SB[0]) * SB_SIZE);
1455
1456 spu.spuAddr = 0;
1457 spu.decode_pos = 0;
1458 spu.pSpuIrq = spu.spuMemC;
1459
1460 SetupStreams(); // prepare streaming
1461
1462 if (spu_config.iVolume == 0)
1463 spu_config.iVolume = 768; // 1024 is 1.0
1464
1465 init_spu_thread();
1466
1467 return 0;
1468}
1469
1470// SPUOPEN: called by main emu after init
1471long CALLBACK SPUopen(void)
1472{
1473 if (spu.bSPUIsOpen) return 0; // security for some stupid main emus
1474
1475 SetupSound(); // setup sound (before init!)
1476
1477 spu.bSPUIsOpen = 1;
1478
1479 return PSE_SPU_ERR_SUCCESS;
1480}
1481
1482// SPUCLOSE: called before shutdown
1483long CALLBACK SPUclose(void)
1484{
1485 if (!spu.bSPUIsOpen) return 0; // some security
1486
1487 spu.bSPUIsOpen = 0; // no more open
1488
1489 out_current->finish(); // no more sound handling
1490
1491 return 0;
1492}
1493
1494// SPUSHUTDOWN: called by main emu on final exit
1495long CALLBACK SPUshutdown(void)
1496{
1497 SPUclose();
1498
1499 exit_spu_thread();
1500
1501 free(spu.spuMemC);
1502 spu.spuMemC = NULL;
1503 free(spu.SB);
1504 spu.SB = NULL;
1505 free(spu.s_chan);
1506 spu.s_chan = NULL;
1507
1508 RemoveStreams(); // no more streaming
1509 spu.bSpuInit=0;
1510
1511 return 0;
1512}
1513
1514// SPUTEST: we don't test, we are always fine ;)
1515long CALLBACK SPUtest(void)
1516{
1517 return 0;
1518}
1519
1520// SPUCONFIGURE: call config dialog
1521long CALLBACK SPUconfigure(void)
1522{
1523#ifdef _MACOSX
1524 DoConfiguration();
1525#else
1526// StartCfgTool("CFG");
1527#endif
1528 return 0;
1529}
1530
1531// SPUABOUT: show about window
1532void CALLBACK SPUabout(void)
1533{
1534#ifdef _MACOSX
1535 DoAbout();
1536#else
1537// StartCfgTool("ABOUT");
1538#endif
1539}
1540
1541// SETUP CALLBACKS
1542// this functions will be called once,
1543// passes a callback that should be called on SPU-IRQ/cdda volume change
1544void CALLBACK SPUregisterCallback(void (CALLBACK *callback)(void))
1545{
1546 spu.irqCallback = callback;
1547}
1548
1549void CALLBACK SPUregisterCDDAVolume(void (CALLBACK *CDDAVcallback)(unsigned short,unsigned short))
1550{
1551 spu.cddavCallback = CDDAVcallback;
1552}
1553
1554void CALLBACK SPUregisterScheduleCb(void (CALLBACK *callback)(unsigned int))
1555{
1556 spu.scheduleCallback = callback;
1557}
1558
1559// COMMON PLUGIN INFO FUNCS
1560/*
1561char * CALLBACK PSEgetLibName(void)
1562{
1563 return _(libraryName);
1564}
1565
1566unsigned long CALLBACK PSEgetLibType(void)
1567{
1568 return PSE_LT_SPU;
1569}
1570
1571unsigned long CALLBACK PSEgetLibVersion(void)
1572{
1573 return (1 << 16) | (6 << 8);
1574}
1575
1576char * SPUgetLibInfos(void)
1577{
1578 return _(libraryInfo);
1579}
1580*/
1581
1582// debug
1583void spu_get_debug_info(int *chans_out, int *run_chans, int *fmod_chans_out, int *noise_chans_out)
1584{
1585 int ch = 0, fmod_chans = 0, noise_chans = 0, irq_chans = 0;
1586
1587 if (spu.s_chan == NULL)
1588 return;
1589
1590 for(;ch<MAXCHAN;ch++)
1591 {
1592 if (!(spu.dwChannelOn & (1<<ch)))
1593 continue;
1594 if (spu.s_chan[ch].bFMod == 2)
1595 fmod_chans |= 1 << ch;
1596 if (spu.s_chan[ch].bNoise)
1597 noise_chans |= 1 << ch;
1598 if((spu.spuCtrl&CTRL_IRQ) && spu.s_chan[ch].pCurr <= spu.pSpuIrq && spu.s_chan[ch].pLoop <= spu.pSpuIrq)
1599 irq_chans |= 1 << ch;
1600 }
1601
1602 *chans_out = spu.dwChannelOn;
1603 *run_chans = ~spu.dwChannelOn & ~spu.dwChannelDead & irq_chans;
1604 *fmod_chans_out = fmod_chans;
1605 *noise_chans_out = noise_chans;
1606}
1607
1608// vim:shiftwidth=1:expandtab