spu: get rid of bStop, clean up
[pcsx_rearmed.git] / plugins / dfsound / spu.c
... / ...
CommitLineData
1/***************************************************************************
2 spu.c - description
3 -------------------
4 begin : Wed May 15 2002
5 copyright : (C) 2002 by Pete Bernert
6 email : BlackDove@addcom.de
7
8 Portions (C) GraÅžvydas "notaz" Ignotas, 2010-2012,2014
9
10 ***************************************************************************/
11/***************************************************************************
12 * *
13 * This program is free software; you can redistribute it and/or modify *
14 * it under the terms of the GNU General Public License as published by *
15 * the Free Software Foundation; either version 2 of the License, or *
16 * (at your option) any later version. See also the license.txt file for *
17 * additional informations. *
18 * *
19 ***************************************************************************/
20
21#ifndef _WIN32
22#include <sys/time.h> // gettimeofday in xa.c
23#endif
24#include "stdafx.h"
25
26#define _IN_SPU
27
28#include "externals.h"
29#include "registers.h"
30#include "out.h"
31#include "arm_features.h"
32#include "spu_config.h"
33
34#ifdef __ARM_ARCH_7A__
35 #define ssat32_to_16(v) \
36 asm("ssat %0,#16,%1" : "=r" (v) : "r" (v))
37#else
38 #define ssat32_to_16(v) do { \
39 if (v < -32768) v = -32768; \
40 else if (v > 32767) v = 32767; \
41 } while (0)
42#endif
43
44#define PSXCLK 33868800 /* 33.8688 MHz */
45
46// intended to be ~1 frame
47#define IRQ_NEAR_BLOCKS 32
48
49/*
50#if defined (USEMACOSX)
51static char * libraryName = N_("Mac OS X Sound");
52#elif defined (USEALSA)
53static char * libraryName = N_("ALSA Sound");
54#elif defined (USEOSS)
55static char * libraryName = N_("OSS Sound");
56#elif defined (USESDL)
57static char * libraryName = N_("SDL Sound");
58#elif defined (USEPULSEAUDIO)
59static char * libraryName = N_("PulseAudio Sound");
60#else
61static char * libraryName = N_("NULL Sound");
62#endif
63
64static char * libraryInfo = N_("P.E.Op.S. Sound Driver V1.7\nCoded by Pete Bernert and the P.E.Op.S. team\n");
65*/
66
67// globals
68
69SPUInfo spu;
70SPUConfig spu_config;
71
72// MAIN infos struct for each channel
73
74SPUCHAN s_chan[MAXCHAN+1]; // channel + 1 infos (1 is security for fmod handling)
75REVERBInfo rvb;
76
77// certain globals (were local before, but with the new timeproc I need em global)
78
79static const int f[8][2] = { { 0, 0 },
80 { 60, 0 },
81 { 115, -52 },
82 { 98, -55 },
83 { 122, -60 } };
84int ChanBuf[NSSIZE];
85int SSumLR[NSSIZE*2];
86int iFMod[NSSIZE];
87
88#define CDDA_BUFFER_SIZE (16384 * sizeof(uint32_t)) // must be power of 2
89
90////////////////////////////////////////////////////////////////////////
91// CODE AREA
92////////////////////////////////////////////////////////////////////////
93
94// dirty inline func includes
95
96#include "reverb.c"
97#include "adsr.c"
98
99////////////////////////////////////////////////////////////////////////
100// helpers for simple interpolation
101
102//
103// easy interpolation on upsampling, no special filter, just "Pete's common sense" tm
104//
105// instead of having n equal sample values in a row like:
106// ____
107// |____
108//
109// we compare the current delta change with the next delta change.
110//
111// if curr_delta is positive,
112//
113// - and next delta is smaller (or changing direction):
114// \.
115// -__
116//
117// - and next delta significant (at least twice) bigger:
118// --_
119// \.
120//
121// - and next delta is nearly same:
122// \.
123// \.
124//
125//
126// if curr_delta is negative,
127//
128// - and next delta is smaller (or changing direction):
129// _--
130// /
131//
132// - and next delta significant (at least twice) bigger:
133// /
134// __-
135//
136// - and next delta is nearly same:
137// /
138// /
139//
140
141static void InterpolateUp(int *SB, int sinc)
142{
143 if(SB[32]==1) // flag == 1? calc step and set flag... and don't change the value in this pass
144 {
145 const int id1=SB[30]-SB[29]; // curr delta to next val
146 const int id2=SB[31]-SB[30]; // and next delta to next-next val :)
147
148 SB[32]=0;
149
150 if(id1>0) // curr delta positive
151 {
152 if(id2<id1)
153 {SB[28]=id1;SB[32]=2;}
154 else
155 if(id2<(id1<<1))
156 SB[28]=(id1*sinc)>>16;
157 else
158 SB[28]=(id1*sinc)>>17;
159 }
160 else // curr delta negative
161 {
162 if(id2>id1)
163 {SB[28]=id1;SB[32]=2;}
164 else
165 if(id2>(id1<<1))
166 SB[28]=(id1*sinc)>>16;
167 else
168 SB[28]=(id1*sinc)>>17;
169 }
170 }
171 else
172 if(SB[32]==2) // flag 1: calc step and set flag... and don't change the value in this pass
173 {
174 SB[32]=0;
175
176 SB[28]=(SB[28]*sinc)>>17;
177 //if(sinc<=0x8000)
178 // SB[29]=SB[30]-(SB[28]*((0x10000/sinc)-1));
179 //else
180 SB[29]+=SB[28];
181 }
182 else // no flags? add bigger val (if possible), calc smaller step, set flag1
183 SB[29]+=SB[28];
184}
185
186//
187// even easier interpolation on downsampling, also no special filter, again just "Pete's common sense" tm
188//
189
190static void InterpolateDown(int *SB, int sinc)
191{
192 if(sinc>=0x20000L) // we would skip at least one val?
193 {
194 SB[29]+=(SB[30]-SB[29])/2; // add easy weight
195 if(sinc>=0x30000L) // we would skip even more vals?
196 SB[29]+=(SB[31]-SB[30])/2; // add additional next weight
197 }
198}
199
200////////////////////////////////////////////////////////////////////////
201// helpers for gauss interpolation
202
203#define gval0 (((short*)(&SB[29]))[gpos&3])
204#define gval(x) ((int)((short*)(&SB[29]))[(gpos+x)&3])
205
206#include "gauss_i.h"
207
208////////////////////////////////////////////////////////////////////////
209
210#include "xa.c"
211
212static void do_irq(void)
213{
214 //if(!(spu.spuStat & STAT_IRQ))
215 {
216 spu.spuStat |= STAT_IRQ; // asserted status?
217 if(spu.irqCallback) spu.irqCallback();
218 }
219}
220
221static int check_irq(int ch, unsigned char *pos)
222{
223 if((spu.spuCtrl & CTRL_IRQ) && pos == spu.pSpuIrq)
224 {
225 //printf("ch%d irq %04x\n", ch, pos - spu.spuMemC);
226 do_irq();
227 return 1;
228 }
229 return 0;
230}
231
232////////////////////////////////////////////////////////////////////////
233// START SOUND... called by main thread to setup a new sound on a channel
234////////////////////////////////////////////////////////////////////////
235
236INLINE void StartSound(int ch)
237{
238 StartADSR(ch);
239 StartREVERB(ch);
240
241 s_chan[ch].prevflags=2;
242
243 s_chan[ch].SB[26]=0; // init mixing vars
244 s_chan[ch].SB[27]=0;
245 s_chan[ch].iSBPos=27;
246
247 s_chan[ch].SB[28]=0;
248 s_chan[ch].SB[29]=0; // init our interpolation helpers
249 s_chan[ch].SB[30]=0;
250 s_chan[ch].SB[31]=0;
251 s_chan[ch].spos=0;
252
253 spu.dwNewChannel&=~(1<<ch); // clear new channel bit
254 spu.dwChannelOn|=1<<ch;
255 spu.dwChannelDead&=~(1<<ch);
256}
257
258////////////////////////////////////////////////////////////////////////
259// ALL KIND OF HELPERS
260////////////////////////////////////////////////////////////////////////
261
262INLINE int FModChangeFrequency(int *SB, int pitch, int ns)
263{
264 unsigned int NP=pitch;
265 int sinc;
266
267 NP=((32768L+iFMod[ns])*NP)>>15;
268
269 if(NP>0x3fff) NP=0x3fff;
270 if(NP<0x1) NP=0x1;
271
272 sinc=NP<<4; // calc frequency
273 if(spu_config.iUseInterpolation==1) // freq change in simple interpolation mode
274 SB[32]=1;
275 iFMod[ns]=0;
276
277 return sinc;
278}
279
280////////////////////////////////////////////////////////////////////////
281
282INLINE void StoreInterpolationVal(int *SB, int sinc, int fa, int fmod_freq)
283{
284 if(fmod_freq) // fmod freq channel
285 SB[29]=fa;
286 else
287 {
288 ssat32_to_16(fa);
289
290 if(spu_config.iUseInterpolation>=2) // gauss/cubic interpolation
291 {
292 int gpos = SB[28];
293 gval0 = fa;
294 gpos = (gpos+1) & 3;
295 SB[28] = gpos;
296 }
297 else
298 if(spu_config.iUseInterpolation==1) // simple interpolation
299 {
300 SB[28] = 0;
301 SB[29] = SB[30]; // -> helpers for simple linear interpolation: delay real val for two slots, and calc the two deltas, for a 'look at the future behaviour'
302 SB[30] = SB[31];
303 SB[31] = fa;
304 SB[32] = 1; // -> flag: calc new interolation
305 }
306 else SB[29]=fa; // no interpolation
307 }
308}
309
310////////////////////////////////////////////////////////////////////////
311
312INLINE int iGetInterpolationVal(int *SB, int sinc, int spos, int fmod_freq)
313{
314 int fa;
315
316 if(fmod_freq) return SB[29];
317
318 switch(spu_config.iUseInterpolation)
319 {
320 //--------------------------------------------------//
321 case 3: // cubic interpolation
322 {
323 long xd;int gpos;
324 xd = (spos >> 1)+1;
325 gpos = SB[28];
326
327 fa = gval(3) - 3*gval(2) + 3*gval(1) - gval0;
328 fa *= (xd - (2<<15)) / 6;
329 fa >>= 15;
330 fa += gval(2) - gval(1) - gval(1) + gval0;
331 fa *= (xd - (1<<15)) >> 1;
332 fa >>= 15;
333 fa += gval(1) - gval0;
334 fa *= xd;
335 fa >>= 15;
336 fa = fa + gval0;
337
338 } break;
339 //--------------------------------------------------//
340 case 2: // gauss interpolation
341 {
342 int vl, vr;int gpos;
343 vl = (spos >> 6) & ~3;
344 gpos = SB[28];
345 vr=(gauss[vl]*(int)gval0)&~2047;
346 vr+=(gauss[vl+1]*gval(1))&~2047;
347 vr+=(gauss[vl+2]*gval(2))&~2047;
348 vr+=(gauss[vl+3]*gval(3))&~2047;
349 fa = vr>>11;
350 } break;
351 //--------------------------------------------------//
352 case 1: // simple interpolation
353 {
354 if(sinc<0x10000L) // -> upsampling?
355 InterpolateUp(SB, sinc); // --> interpolate up
356 else InterpolateDown(SB, sinc); // --> else down
357 fa=SB[29];
358 } break;
359 //--------------------------------------------------//
360 default: // no interpolation
361 {
362 fa=SB[29];
363 } break;
364 //--------------------------------------------------//
365 }
366
367 return fa;
368}
369
370static void decode_block_data(int *dest, const unsigned char *src, int predict_nr, int shift_factor)
371{
372 int nSample;
373 int fa, s_1, s_2, d, s;
374
375 s_1 = dest[27];
376 s_2 = dest[26];
377
378 for (nSample = 0; nSample < 28; src++)
379 {
380 d = (int)*src;
381 s = (int)(signed short)((d & 0x0f) << 12);
382
383 fa = s >> shift_factor;
384 fa += ((s_1 * f[predict_nr][0])>>6) + ((s_2 * f[predict_nr][1])>>6);
385 s_2=s_1;s_1=fa;
386
387 dest[nSample++] = fa;
388
389 s = (int)(signed short)((d & 0xf0) << 8);
390 fa = s >> shift_factor;
391 fa += ((s_1 * f[predict_nr][0])>>6) + ((s_2 * f[predict_nr][1])>>6);
392 s_2=s_1;s_1=fa;
393
394 dest[nSample++] = fa;
395 }
396}
397
398static int decode_block(int ch, int *SB)
399{
400 unsigned char *start;
401 int predict_nr, shift_factor, flags;
402 int ret = 0;
403
404 start = s_chan[ch].pCurr; // set up the current pos
405 if (start == spu.spuMemC) // ?
406 ret = 1;
407
408 if (s_chan[ch].prevflags & 1) // 1: stop/loop
409 {
410 if (!(s_chan[ch].prevflags & 2))
411 ret = 1;
412
413 start = s_chan[ch].pLoop;
414 }
415 else
416 check_irq(ch, start); // hack, see check_irq below..
417
418 predict_nr = (int)start[0];
419 shift_factor = predict_nr & 0xf;
420 predict_nr >>= 4;
421
422 decode_block_data(SB, start + 2, predict_nr, shift_factor);
423
424 flags = start[1];
425 if (flags & 4)
426 s_chan[ch].pLoop = start; // loop adress
427
428 start += 16;
429
430 if (flags & 1) { // 1: stop/loop
431 start = s_chan[ch].pLoop;
432 check_irq(ch, start); // hack.. :(
433 }
434
435 if (start - spu.spuMemC >= 0x80000)
436 start = spu.spuMemC;
437
438 s_chan[ch].pCurr = start; // store values for next cycle
439 s_chan[ch].prevflags = flags;
440
441 return ret;
442}
443
444// do block, but ignore sample data
445static int skip_block(int ch)
446{
447 unsigned char *start = s_chan[ch].pCurr;
448 int flags;
449 int ret = 0;
450
451 if (s_chan[ch].prevflags & 1) {
452 if (!(s_chan[ch].prevflags & 2))
453 ret = 1;
454
455 start = s_chan[ch].pLoop;
456 }
457 else
458 check_irq(ch, start);
459
460 flags = start[1];
461 if (flags & 4)
462 s_chan[ch].pLoop = start;
463
464 start += 16;
465
466 if (flags & 1) {
467 start = s_chan[ch].pLoop;
468 check_irq(ch, start);
469 }
470
471 s_chan[ch].pCurr = start;
472 s_chan[ch].prevflags = flags;
473
474 return ret;
475}
476
477// if irq is going to trigger sooner than in upd_samples, set upd_samples
478static void scan_for_irq(int ch, unsigned int *upd_samples)
479{
480 int pos, sinc, sinc_inv, end;
481 unsigned char *block;
482 int flags;
483
484 block = s_chan[ch].pCurr;
485 pos = s_chan[ch].spos;
486 sinc = s_chan[ch].sinc;
487 end = pos + *upd_samples * sinc;
488
489 pos += (28 - s_chan[ch].iSBPos) << 16;
490 while (pos < end)
491 {
492 if (block == spu.pSpuIrq)
493 break;
494 flags = block[1];
495 block += 16;
496 if (flags & 1) { // 1: stop/loop
497 block = s_chan[ch].pLoop;
498 if (block == spu.pSpuIrq) // hack.. (see decode_block)
499 break;
500 }
501 pos += 28 << 16;
502 }
503
504 if (pos < end)
505 {
506 sinc_inv = s_chan[ch].sinc_inv;
507 if (sinc_inv == 0)
508 sinc_inv = s_chan[ch].sinc_inv = (0x80000000u / (uint32_t)sinc) << 1;
509
510 pos -= s_chan[ch].spos;
511 *upd_samples = (((uint64_t)pos * sinc_inv) >> 32) + 1;
512 //xprintf("ch%02d: irq sched: %3d %03d\n",
513 // ch, *upd_samples, *upd_samples * 60 * 263 / 44100);
514 }
515}
516
517#define make_do_samples(name, fmod_code, interp_start, interp1_code, interp2_code, interp_end) \
518static noinline int do_samples_##name(int ch, int ns_to) \
519{ \
520 int sinc = s_chan[ch].sinc; \
521 int spos = s_chan[ch].spos; \
522 int sbpos = s_chan[ch].iSBPos; \
523 int *SB = s_chan[ch].SB; \
524 int ns, d, fa; \
525 int ret = ns_to; \
526 interp_start; \
527 \
528 for (ns = 0; ns < ns_to; ns++) \
529 { \
530 fmod_code; \
531 \
532 spos += sinc; \
533 while (spos >= 0x10000) \
534 { \
535 fa = SB[sbpos++]; \
536 if (sbpos >= 28) \
537 { \
538 sbpos = 0; \
539 d = decode_block(ch, SB); \
540 if (d && ns < ret) \
541 ret = ns; \
542 } \
543 \
544 interp1_code; \
545 spos -= 0x10000; \
546 } \
547 \
548 interp2_code; \
549 } \
550 \
551 s_chan[ch].sinc = sinc; \
552 s_chan[ch].spos = spos; \
553 s_chan[ch].iSBPos = sbpos; \
554 interp_end; \
555 \
556 return ret; \
557}
558
559#define fmod_recv_check \
560 if(s_chan[ch].bFMod==1 && iFMod[ns]) \
561 sinc = FModChangeFrequency(SB, s_chan[ch].iRawPitch, ns)
562
563make_do_samples(default, fmod_recv_check, ,
564 StoreInterpolationVal(SB, sinc, fa, s_chan[ch].bFMod==2),
565 ChanBuf[ns] = iGetInterpolationVal(SB, sinc, spos, s_chan[ch].bFMod==2), )
566make_do_samples(noint, , fa = SB[29], , ChanBuf[ns] = fa, SB[29] = fa)
567
568#define simple_interp_store \
569 SB[28] = 0; \
570 SB[29] = SB[30]; \
571 SB[30] = SB[31]; \
572 SB[31] = fa; \
573 SB[32] = 1
574
575#define simple_interp_get \
576 if(sinc<0x10000) /* -> upsampling? */ \
577 InterpolateUp(SB, sinc); /* --> interpolate up */ \
578 else InterpolateDown(SB, sinc); /* --> else down */ \
579 ChanBuf[ns] = SB[29]
580
581make_do_samples(simple, , ,
582 simple_interp_store, simple_interp_get, )
583
584static int do_samples_skip(int ch, int ns_to)
585{
586 int ret = ns_to, ns, d;
587
588 s_chan[ch].spos += s_chan[ch].iSBPos << 16;
589
590 for (ns = 0; ns < ns_to; ns++)
591 {
592 s_chan[ch].spos += s_chan[ch].sinc;
593 while (s_chan[ch].spos >= 28*0x10000)
594 {
595 d = skip_block(ch);
596 if (d && ns < ret)
597 ret = ns;
598 s_chan[ch].spos -= 28*0x10000;
599 }
600 }
601
602 s_chan[ch].iSBPos = s_chan[ch].spos >> 16;
603 s_chan[ch].spos &= 0xffff;
604
605 return ret;
606}
607
608static void do_lsfr_samples(int ns_to, int ctrl,
609 unsigned int *dwNoiseCount, unsigned int *dwNoiseVal)
610{
611 unsigned int counter = *dwNoiseCount;
612 unsigned int val = *dwNoiseVal;
613 unsigned int level, shift, bit;
614 int ns;
615
616 // modified from DrHell/shalma, no fraction
617 level = (ctrl >> 10) & 0x0f;
618 level = 0x8000 >> level;
619
620 for (ns = 0; ns < ns_to; ns++)
621 {
622 counter += 2;
623 if (counter >= level)
624 {
625 counter -= level;
626 shift = (val >> 10) & 0x1f;
627 bit = (0x69696969 >> shift) & 1;
628 bit ^= (val >> 15) & 1;
629 val = (val << 1) | bit;
630 }
631
632 ChanBuf[ns] = (signed short)val;
633 }
634
635 *dwNoiseCount = counter;
636 *dwNoiseVal = val;
637}
638
639static int do_samples_noise(int ch, int ns_to)
640{
641 int ret;
642
643 ret = do_samples_skip(ch, ns_to);
644
645 do_lsfr_samples(ns_to, spu.spuCtrl, &spu.dwNoiseCount, &spu.dwNoiseVal);
646
647 return ret;
648}
649
650#ifdef HAVE_ARMV5
651// asm code; lv and rv must be 0-3fff
652extern void mix_chan(int start, int count, int lv, int rv);
653extern void mix_chan_rvb(int start, int count, int lv, int rv, int *rvb);
654#else
655static void mix_chan(int start, int count, int lv, int rv)
656{
657 int *dst = SSumLR + start * 2;
658 const int *src = ChanBuf + start;
659 int l, r;
660
661 while (count--)
662 {
663 int sval = *src++;
664
665 l = (sval * lv) >> 14;
666 r = (sval * rv) >> 14;
667 *dst++ += l;
668 *dst++ += r;
669 }
670}
671
672static void mix_chan_rvb(int start, int count, int lv, int rv, int *rvb)
673{
674 int *dst = SSumLR + start * 2;
675 int *drvb = rvb + start * 2;
676 const int *src = ChanBuf + start;
677 int l, r;
678
679 while (count--)
680 {
681 int sval = *src++;
682
683 l = (sval * lv) >> 14;
684 r = (sval * rv) >> 14;
685 *dst++ += l;
686 *dst++ += r;
687 *drvb++ += l;
688 *drvb++ += r;
689 }
690}
691#endif
692
693// 0x0800-0x0bff Voice 1
694// 0x0c00-0x0fff Voice 3
695static noinline void do_decode_bufs(unsigned short *mem, int which,
696 int count, int decode_pos)
697{
698 unsigned short *dst = &mem[0x800/2 + which*0x400/2];
699 const int *src = ChanBuf;
700 int cursor = decode_pos;
701
702 while (count-- > 0)
703 {
704 cursor &= 0x1ff;
705 dst[cursor] = *src++;
706 cursor++;
707 }
708
709 // decode_pos is updated and irqs are checked later, after voice loop
710}
711
712static void do_silent_chans(int ns_to, int silentch)
713{
714 int ch;
715
716 for (ch = 0; ch < MAXCHAN; ch++)
717 {
718 if (!(silentch & (1<<ch))) continue; // already handled
719 if (spu.dwChannelDead & (1<<ch)) continue;
720 if (s_chan[ch].pCurr > spu.pSpuIrq && s_chan[ch].pLoop > spu.pSpuIrq)
721 continue;
722
723 s_chan[ch].spos += s_chan[ch].iSBPos << 16;
724 s_chan[ch].iSBPos = 0;
725
726 s_chan[ch].spos += s_chan[ch].sinc * ns_to;
727 while (s_chan[ch].spos >= 28 * 0x10000)
728 {
729 unsigned char *start = s_chan[ch].pCurr;
730
731 skip_block(ch);
732 if (start == s_chan[ch].pCurr || start - spu.spuMemC < 0x1000)
733 {
734 // looping on self or stopped(?)
735 spu.dwChannelDead |= 1<<ch;
736 s_chan[ch].spos = 0;
737 break;
738 }
739
740 s_chan[ch].spos -= 28 * 0x10000;
741 }
742 }
743}
744
745static void do_channels(int ns_to)
746{
747 unsigned int mask;
748 int ch, d;
749
750 InitREVERB(ns_to);
751
752 mask = spu.dwChannelOn & 0xffffff;
753 for (ch = 0; mask != 0; ch++, mask >>= 1) // loop em all...
754 {
755 if (!(mask & 1)) continue; // channel not playing? next
756
757 if (s_chan[ch].bNoise)
758 d = do_samples_noise(ch, ns_to);
759 else if (s_chan[ch].bFMod == 2
760 || (s_chan[ch].bFMod == 0 && spu_config.iUseInterpolation == 0))
761 d = do_samples_noint(ch, ns_to);
762 else if (s_chan[ch].bFMod == 0 && spu_config.iUseInterpolation == 1)
763 d = do_samples_simple(ch, ns_to);
764 else
765 d = do_samples_default(ch, ns_to);
766
767 d = MixADSR(&s_chan[ch].ADSRX, d);
768 if (d < ns_to) {
769 spu.dwChannelOn &= ~(1 << ch);
770 s_chan[ch].ADSRX.EnvelopeVol = 0;
771 memset(&ChanBuf[d], 0, (ns_to - d) * sizeof(ChanBuf[0]));
772 }
773
774 if (ch == 1 || ch == 3)
775 {
776 do_decode_bufs(spu.spuMem, ch/2, ns_to, spu.decode_pos);
777 spu.decode_dirty_ch |= 1 << ch;
778 }
779
780 if (s_chan[ch].bFMod == 2) // fmod freq channel
781 memcpy(iFMod, &ChanBuf, ns_to * sizeof(iFMod[0]));
782 if (s_chan[ch].bRVBActive)
783 mix_chan_rvb(0, ns_to, s_chan[ch].iLeftVolume, s_chan[ch].iRightVolume, spu.sRVBStart);
784 else
785 mix_chan(0, ns_to, s_chan[ch].iLeftVolume, s_chan[ch].iRightVolume);
786 }
787}
788
789////////////////////////////////////////////////////////////////////////
790// MAIN SPU FUNCTION
791// here is the main job handler...
792////////////////////////////////////////////////////////////////////////
793
794void do_samples_finish(int ns_to, int silentch);
795
796void do_samples(unsigned int cycles_to)
797{
798 unsigned int mask;
799 int ch, ns_to;
800 int silentch;
801 int cycle_diff;
802
803 cycle_diff = cycles_to - spu.cycles_played;
804 if (cycle_diff < -2*1048576 || cycle_diff > 2*1048576)
805 {
806 //xprintf("desync %u %d\n", cycles_to, cycle_diff);
807 spu.cycles_played = cycles_to;
808 return;
809 }
810
811 if (cycle_diff < 2 * 768)
812 return;
813
814 ns_to = (cycle_diff / 768 + 1) & ~1;
815 if (ns_to > NSSIZE) {
816 // should never happen
817 //xprintf("ns_to oflow %d %d\n", ns_to, NSSIZE);
818 ns_to = NSSIZE;
819 }
820
821 //////////////////////////////////////////////////////
822 // special irq handling in the decode buffers (0x0000-0x1000)
823 // we know:
824 // the decode buffers are located in spu memory in the following way:
825 // 0x0000-0x03ff CD audio left
826 // 0x0400-0x07ff CD audio right
827 // 0x0800-0x0bff Voice 1
828 // 0x0c00-0x0fff Voice 3
829 // and decoded data is 16 bit for one sample
830 // we assume:
831 // even if voices 1/3 are off or no cd audio is playing, the internal
832 // play positions will move on and wrap after 0x400 bytes.
833 // Therefore: we just need a pointer from spumem+0 to spumem+3ff, and
834 // increase this pointer on each sample by 2 bytes. If this pointer
835 // (or 0x400 offsets of this pointer) hits the spuirq address, we generate
836 // an IRQ.
837
838 if (unlikely((spu.spuCtrl & CTRL_IRQ)
839 && spu.pSpuIrq < spu.spuMemC+0x1000))
840 {
841 int irq_pos = (spu.pSpuIrq - spu.spuMemC) / 2 & 0x1ff;
842 int left = (irq_pos - spu.decode_pos) & 0x1ff;
843 if (0 < left && left <= ns_to)
844 {
845 //xprintf("decoder irq %x\n", spu.decode_pos);
846 do_irq();
847 }
848 }
849
850 silentch = ~(spu.dwChannelOn|spu.dwNewChannel);
851
852 mask = spu.dwNewChannel & 0xffffff;
853 for (ch = 0; mask != 0; ch++, mask >>= 1) {
854 if (mask & 1)
855 StartSound(ch);
856 }
857
858 if (spu.dwChannelOn == 0)
859 InitREVERB(ns_to);
860 else {
861 do_channels(ns_to);
862 }
863
864 do_samples_finish(ns_to, silentch);
865
866 // advance "stopped" channels that can cause irqs
867 // (all chans are always playing on the real thing..)
868 if (spu.spuCtrl & CTRL_IRQ)
869 do_silent_chans(ns_to, silentch);
870
871 spu.cycles_played += ns_to * 768;
872 spu.decode_pos = (spu.decode_pos + ns_to) & 0x1ff;
873}
874
875void do_samples_finish(int ns_to, int silentch)
876{
877 int volmult = spu_config.iVolume;
878 int ns;
879 int d;
880
881 if(unlikely(silentch & spu.decode_dirty_ch & (1<<1))) // must clear silent channel decode buffers
882 {
883 memset(&spu.spuMem[0x800/2], 0, 0x400);
884 spu.decode_dirty_ch &= ~(1<<1);
885 }
886 if(unlikely(silentch & spu.decode_dirty_ch & (1<<3)))
887 {
888 memset(&spu.spuMem[0xc00/2], 0, 0x400);
889 spu.decode_dirty_ch &= ~(1<<3);
890 }
891
892 //---------------------------------------------------//
893 // mix XA infos (if any)
894
895 MixXA(ns_to, spu.decode_pos);
896
897 ///////////////////////////////////////////////////////
898 // mix all channels (including reverb) into one buffer
899
900 if(spu_config.iUseReverb)
901 REVERBDo(ns_to);
902
903 if((spu.spuCtrl&0x4000)==0) // muted? (rare, don't optimize for this)
904 {
905 memset(spu.pS, 0, ns_to * 2 * sizeof(spu.pS[0]));
906 spu.pS += ns_to * 2;
907 }
908 else
909 for (ns = 0; ns < ns_to * 2; )
910 {
911 d = SSumLR[ns]; SSumLR[ns] = 0;
912 d = d * volmult >> 10;
913 ssat32_to_16(d);
914 *spu.pS++ = d;
915 ns++;
916
917 d = SSumLR[ns]; SSumLR[ns] = 0;
918 d = d * volmult >> 10;
919 ssat32_to_16(d);
920 *spu.pS++ = d;
921 ns++;
922 }
923}
924
925void schedule_next_irq(void)
926{
927 unsigned int upd_samples;
928 int ch;
929
930 if (spu.scheduleCallback == NULL)
931 return;
932
933 upd_samples = 44100 / 50;
934
935 for (ch = 0; ch < MAXCHAN; ch++)
936 {
937 if (spu.dwChannelDead & (1 << ch))
938 continue;
939 if ((unsigned long)(spu.pSpuIrq - s_chan[ch].pCurr) > IRQ_NEAR_BLOCKS * 16
940 && (unsigned long)(spu.pSpuIrq - s_chan[ch].pLoop) > IRQ_NEAR_BLOCKS * 16)
941 continue;
942
943 scan_for_irq(ch, &upd_samples);
944 }
945
946 if (unlikely(spu.pSpuIrq < spu.spuMemC + 0x1000))
947 {
948 int irq_pos = (spu.pSpuIrq - spu.spuMemC) / 2 & 0x1ff;
949 int left = (irq_pos - spu.decode_pos) & 0x1ff;
950 if (0 < left && left < upd_samples) {
951 //xprintf("decode: %3d (%3d/%3d)\n", left, spu.decode_pos, irq_pos);
952 upd_samples = left;
953 }
954 }
955
956 if (upd_samples < 44100 / 50)
957 spu.scheduleCallback(upd_samples * 768);
958}
959
960// SPU ASYNC... even newer epsxe func
961// 1 time every 'cycle' cycles... harhar
962
963// rearmed: called dynamically now
964
965void CALLBACK SPUasync(unsigned int cycle, unsigned int flags)
966{
967 do_samples(cycle);
968
969 if (spu.spuCtrl & CTRL_IRQ)
970 schedule_next_irq();
971
972 if (flags & 1) {
973 out_current->feed(spu.pSpuBuffer, (unsigned char *)spu.pS - spu.pSpuBuffer);
974 spu.pS = (short *)spu.pSpuBuffer;
975
976 if (spu_config.iTempo) {
977 if (!out_current->busy())
978 // cause more samples to be generated
979 // (and break some games because of bad sync)
980 spu.cycles_played -= 44100 / 60 / 2 * 768;
981 }
982 }
983}
984
985// SPU UPDATE... new epsxe func
986// 1 time every 32 hsync lines
987// (312/32)x50 in pal
988// (262/32)x60 in ntsc
989
990// since epsxe 1.5.2 (linux) uses SPUupdate, not SPUasync, I will
991// leave that func in the linux port, until epsxe linux is using
992// the async function as well
993
994void CALLBACK SPUupdate(void)
995{
996}
997
998// XA AUDIO
999
1000void CALLBACK SPUplayADPCMchannel(xa_decode_t *xap)
1001{
1002 if(!xap) return;
1003 if(!xap->freq) return; // no xa freq ? bye
1004
1005 FeedXA(xap); // call main XA feeder
1006}
1007
1008// CDDA AUDIO
1009int CALLBACK SPUplayCDDAchannel(short *pcm, int nbytes)
1010{
1011 if (!pcm) return -1;
1012 if (nbytes<=0) return -1;
1013
1014 return FeedCDDA((unsigned char *)pcm, nbytes);
1015}
1016
1017// to be called after state load
1018void ClearWorkingState(void)
1019{
1020 memset(SSumLR,0,sizeof(SSumLR)); // init some mixing buffers
1021 memset(iFMod,0,sizeof(iFMod));
1022 spu.pS=(short *)spu.pSpuBuffer; // setup soundbuffer pointer
1023}
1024
1025// SETUPSTREAMS: init most of the spu buffers
1026void SetupStreams(void)
1027{
1028 int i;
1029
1030 spu.pSpuBuffer = (unsigned char *)malloc(32768); // alloc mixing buffer
1031 spu.sRVBStart = (int *)malloc(NSSIZE*2*4); // alloc reverb buffer
1032 memset(spu.sRVBStart,0,NSSIZE*2*4);
1033
1034 spu.XAStart = // alloc xa buffer
1035 (uint32_t *)malloc(44100 * sizeof(uint32_t));
1036 spu.XAEnd = spu.XAStart + 44100;
1037 spu.XAPlay = spu.XAStart;
1038 spu.XAFeed = spu.XAStart;
1039
1040 spu.CDDAStart = // alloc cdda buffer
1041 (uint32_t *)malloc(CDDA_BUFFER_SIZE);
1042 spu.CDDAEnd = spu.CDDAStart + 16384;
1043 spu.CDDAPlay = spu.CDDAStart;
1044 spu.CDDAFeed = spu.CDDAStart;
1045
1046 for(i=0;i<MAXCHAN;i++) // loop sound channels
1047 {
1048 s_chan[i].ADSRX.SustainLevel = 0xf; // -> init sustain
1049 s_chan[i].ADSRX.SustainIncrease = 1;
1050 s_chan[i].pLoop=spu.spuMemC;
1051 s_chan[i].pCurr=spu.spuMemC;
1052 }
1053
1054 ClearWorkingState();
1055
1056 spu.bSpuInit=1; // flag: we are inited
1057}
1058
1059// REMOVESTREAMS: free most buffer
1060void RemoveStreams(void)
1061{
1062 free(spu.pSpuBuffer); // free mixing buffer
1063 spu.pSpuBuffer = NULL;
1064 free(spu.sRVBStart); // free reverb buffer
1065 spu.sRVBStart = NULL;
1066 free(spu.XAStart); // free XA buffer
1067 spu.XAStart = NULL;
1068 free(spu.CDDAStart); // free CDDA buffer
1069 spu.CDDAStart = NULL;
1070}
1071
1072// INIT/EXIT STUFF
1073
1074// SPUINIT: this func will be called first by the main emu
1075long CALLBACK SPUinit(void)
1076{
1077 spu.spuMemC = (unsigned char *)spu.spuMem; // just small setup
1078 memset((void *)&rvb, 0, sizeof(REVERBInfo));
1079 InitADSR();
1080
1081 spu.spuAddr = 0xffffffff;
1082 spu.decode_pos = 0;
1083 memset((void *)s_chan, 0, sizeof(s_chan));
1084 spu.pSpuIrq = spu.spuMemC;
1085
1086 SetupStreams(); // prepare streaming
1087
1088 if (spu_config.iVolume == 0)
1089 spu_config.iVolume = 768; // 1024 is 1.0
1090
1091 return 0;
1092}
1093
1094// SPUOPEN: called by main emu after init
1095long CALLBACK SPUopen(void)
1096{
1097 if (spu.bSPUIsOpen) return 0; // security for some stupid main emus
1098
1099 SetupSound(); // setup sound (before init!)
1100
1101 spu.bSPUIsOpen = 1;
1102
1103 return PSE_SPU_ERR_SUCCESS;
1104}
1105
1106// SPUCLOSE: called before shutdown
1107long CALLBACK SPUclose(void)
1108{
1109 if (!spu.bSPUIsOpen) return 0; // some security
1110
1111 spu.bSPUIsOpen = 0; // no more open
1112
1113 out_current->finish(); // no more sound handling
1114
1115 return 0;
1116}
1117
1118// SPUSHUTDOWN: called by main emu on final exit
1119long CALLBACK SPUshutdown(void)
1120{
1121 SPUclose();
1122 RemoveStreams(); // no more streaming
1123 spu.bSpuInit=0;
1124
1125 return 0;
1126}
1127
1128// SPUTEST: we don't test, we are always fine ;)
1129long CALLBACK SPUtest(void)
1130{
1131 return 0;
1132}
1133
1134// SPUCONFIGURE: call config dialog
1135long CALLBACK SPUconfigure(void)
1136{
1137#ifdef _MACOSX
1138 DoConfiguration();
1139#else
1140// StartCfgTool("CFG");
1141#endif
1142 return 0;
1143}
1144
1145// SPUABOUT: show about window
1146void CALLBACK SPUabout(void)
1147{
1148#ifdef _MACOSX
1149 DoAbout();
1150#else
1151// StartCfgTool("ABOUT");
1152#endif
1153}
1154
1155// SETUP CALLBACKS
1156// this functions will be called once,
1157// passes a callback that should be called on SPU-IRQ/cdda volume change
1158void CALLBACK SPUregisterCallback(void (CALLBACK *callback)(void))
1159{
1160 spu.irqCallback = callback;
1161}
1162
1163void CALLBACK SPUregisterCDDAVolume(void (CALLBACK *CDDAVcallback)(unsigned short,unsigned short))
1164{
1165 spu.cddavCallback = CDDAVcallback;
1166}
1167
1168void CALLBACK SPUregisterScheduleCb(void (CALLBACK *callback)(unsigned int))
1169{
1170 spu.scheduleCallback = callback;
1171}
1172
1173// COMMON PLUGIN INFO FUNCS
1174/*
1175char * CALLBACK PSEgetLibName(void)
1176{
1177 return _(libraryName);
1178}
1179
1180unsigned long CALLBACK PSEgetLibType(void)
1181{
1182 return PSE_LT_SPU;
1183}
1184
1185unsigned long CALLBACK PSEgetLibVersion(void)
1186{
1187 return (1 << 16) | (6 << 8);
1188}
1189
1190char * SPUgetLibInfos(void)
1191{
1192 return _(libraryInfo);
1193}
1194*/
1195
1196// debug
1197void spu_get_debug_info(int *chans_out, int *run_chans, int *fmod_chans_out, int *noise_chans_out)
1198{
1199 int ch = 0, fmod_chans = 0, noise_chans = 0, irq_chans = 0;
1200
1201 for(;ch<MAXCHAN;ch++)
1202 {
1203 if (!(spu.dwChannelOn & (1<<ch)))
1204 continue;
1205 if (s_chan[ch].bFMod == 2)
1206 fmod_chans |= 1 << ch;
1207 if (s_chan[ch].bNoise)
1208 noise_chans |= 1 << ch;
1209 if((spu.spuCtrl&CTRL_IRQ) && s_chan[ch].pCurr <= spu.pSpuIrq && s_chan[ch].pLoop <= spu.pSpuIrq)
1210 irq_chans |= 1 << ch;
1211 }
1212
1213 *chans_out = spu.dwChannelOn;
1214 *run_chans = ~spu.dwChannelOn & ~spu.dwChannelDead & irq_chans;
1215 *fmod_chans_out = fmod_chans;
1216 *noise_chans_out = noise_chans;
1217}
1218
1219// vim:shiftwidth=1:expandtab