spu: get rid of iSPUIRQWait
[pcsx_rearmed.git] / plugins / dfsound / spu.c
... / ...
CommitLineData
1/***************************************************************************
2 spu.c - description
3 -------------------
4 begin : Wed May 15 2002
5 copyright : (C) 2002 by Pete Bernert
6 email : BlackDove@addcom.de
7
8 Portions (C) GraÅžvydas "notaz" Ignotas, 2010-2011
9
10 ***************************************************************************/
11/***************************************************************************
12 * *
13 * This program is free software; you can redistribute it and/or modify *
14 * it under the terms of the GNU General Public License as published by *
15 * the Free Software Foundation; either version 2 of the License, or *
16 * (at your option) any later version. See also the license.txt file for *
17 * additional informations. *
18 * *
19 ***************************************************************************/
20
21#include "stdafx.h"
22
23#define _IN_SPU
24
25#include "externals.h"
26#include "registers.h"
27#include "dsoundoss.h"
28
29#ifdef ENABLE_NLS
30#include <libintl.h>
31#include <locale.h>
32#define _(x) gettext(x)
33#define N_(x) (x)
34#else
35#define _(x) (x)
36#define N_(x) (x)
37#endif
38
39#ifdef __ARM_ARCH_7A__
40 #define ssat32_to_16(v) \
41 asm("ssat %0,#16,%1" : "=r" (v) : "r" (v))
42#else
43 #define ssat32_to_16(v) do { \
44 if (v < -32768) v = -32768; \
45 else if (v > 32767) v = 32767; \
46 } while (0)
47#endif
48
49#define PSXCLK 33868800 /* 33.8688 MHz */
50
51/*
52#if defined (USEMACOSX)
53static char * libraryName = N_("Mac OS X Sound");
54#elif defined (USEALSA)
55static char * libraryName = N_("ALSA Sound");
56#elif defined (USEOSS)
57static char * libraryName = N_("OSS Sound");
58#elif defined (USESDL)
59static char * libraryName = N_("SDL Sound");
60#elif defined (USEPULSEAUDIO)
61static char * libraryName = N_("PulseAudio Sound");
62#else
63static char * libraryName = N_("NULL Sound");
64#endif
65
66static char * libraryInfo = N_("P.E.Op.S. Sound Driver V1.7\nCoded by Pete Bernert and the P.E.Op.S. team\n");
67*/
68
69// globals
70
71// psx buffer / addresses
72
73unsigned short regArea[10000];
74unsigned short spuMem[256*1024];
75unsigned char * spuMemC;
76unsigned char * pSpuIrq=0;
77unsigned char * pSpuBuffer;
78unsigned char * pMixIrq=0;
79
80// user settings
81
82int iVolume=768; // 1024 is 1.0
83int iXAPitch=1;
84int iUseReverb=2;
85int iUseInterpolation=2;
86
87// MAIN infos struct for each channel
88
89SPUCHAN s_chan[MAXCHAN+1]; // channel + 1 infos (1 is security for fmod handling)
90REVERBInfo rvb;
91
92unsigned int dwNoiseVal; // global noise generator
93unsigned int dwNoiseCount;
94
95unsigned short spuCtrl=0; // some vars to store psx reg infos
96unsigned short spuStat=0;
97unsigned short spuIrq=0;
98unsigned long spuAddr=0xffffffff; // address into spu mem
99int bSpuInit=0;
100int bSPUIsOpen=0;
101
102unsigned int dwNewChannel=0; // flags for faster testing, if new channel starts
103unsigned int dwChannelOn=0; // not silent channels
104unsigned int dwPendingChanOff=0;
105unsigned int dwChannelDead=0; // silent+not useful channels
106
107void (CALLBACK *irqCallback)(void)=0; // func of main emu, called on spu irq
108void (CALLBACK *cddavCallback)(unsigned short,unsigned short)=0;
109
110// certain globals (were local before, but with the new timeproc I need em global)
111
112static const int f[8][2] = { { 0, 0 },
113 { 60, 0 },
114 { 115, -52 },
115 { 98, -55 },
116 { 122, -60 } };
117int ChanBuf[NSSIZE+3];
118int SSumLR[(NSSIZE+3)*2];
119int iFMod[NSSIZE];
120int iCycle = 0;
121short * pS;
122
123int had_dma;
124int lastch=-1; // last channel processed on spu irq in timer mode
125static int lastns=0; // last ns pos
126static int cycles_since_update;
127
128#define CDDA_BUFFER_SIZE (16384 * sizeof(uint32_t)) // must be power of 2
129
130////////////////////////////////////////////////////////////////////////
131// CODE AREA
132////////////////////////////////////////////////////////////////////////
133
134// dirty inline func includes
135
136#include "reverb.c"
137#include "adsr.c"
138
139////////////////////////////////////////////////////////////////////////
140// helpers for simple interpolation
141
142//
143// easy interpolation on upsampling, no special filter, just "Pete's common sense" tm
144//
145// instead of having n equal sample values in a row like:
146// ____
147// |____
148//
149// we compare the current delta change with the next delta change.
150//
151// if curr_delta is positive,
152//
153// - and next delta is smaller (or changing direction):
154// \.
155// -__
156//
157// - and next delta significant (at least twice) bigger:
158// --_
159// \.
160//
161// - and next delta is nearly same:
162// \.
163// \.
164//
165//
166// if curr_delta is negative,
167//
168// - and next delta is smaller (or changing direction):
169// _--
170// /
171//
172// - and next delta significant (at least twice) bigger:
173// /
174// __-
175//
176// - and next delta is nearly same:
177// /
178// /
179//
180
181
182INLINE void InterpolateUp(int ch)
183{
184 if(s_chan[ch].SB[32]==1) // flag == 1? calc step and set flag... and don't change the value in this pass
185 {
186 const int id1=s_chan[ch].SB[30]-s_chan[ch].SB[29]; // curr delta to next val
187 const int id2=s_chan[ch].SB[31]-s_chan[ch].SB[30]; // and next delta to next-next val :)
188
189 s_chan[ch].SB[32]=0;
190
191 if(id1>0) // curr delta positive
192 {
193 if(id2<id1)
194 {s_chan[ch].SB[28]=id1;s_chan[ch].SB[32]=2;}
195 else
196 if(id2<(id1<<1))
197 s_chan[ch].SB[28]=(id1*s_chan[ch].sinc)/0x10000L;
198 else
199 s_chan[ch].SB[28]=(id1*s_chan[ch].sinc)/0x20000L;
200 }
201 else // curr delta negative
202 {
203 if(id2>id1)
204 {s_chan[ch].SB[28]=id1;s_chan[ch].SB[32]=2;}
205 else
206 if(id2>(id1<<1))
207 s_chan[ch].SB[28]=(id1*s_chan[ch].sinc)/0x10000L;
208 else
209 s_chan[ch].SB[28]=(id1*s_chan[ch].sinc)/0x20000L;
210 }
211 }
212 else
213 if(s_chan[ch].SB[32]==2) // flag 1: calc step and set flag... and don't change the value in this pass
214 {
215 s_chan[ch].SB[32]=0;
216
217 s_chan[ch].SB[28]=(s_chan[ch].SB[28]*s_chan[ch].sinc)/0x20000L;
218 //if(s_chan[ch].sinc<=0x8000)
219 // s_chan[ch].SB[29]=s_chan[ch].SB[30]-(s_chan[ch].SB[28]*((0x10000/s_chan[ch].sinc)-1));
220 //else
221 s_chan[ch].SB[29]+=s_chan[ch].SB[28];
222 }
223 else // no flags? add bigger val (if possible), calc smaller step, set flag1
224 s_chan[ch].SB[29]+=s_chan[ch].SB[28];
225}
226
227//
228// even easier interpolation on downsampling, also no special filter, again just "Pete's common sense" tm
229//
230
231INLINE void InterpolateDown(int ch)
232{
233 if(s_chan[ch].sinc>=0x20000L) // we would skip at least one val?
234 {
235 s_chan[ch].SB[29]+=(s_chan[ch].SB[30]-s_chan[ch].SB[29])/2; // add easy weight
236 if(s_chan[ch].sinc>=0x30000L) // we would skip even more vals?
237 s_chan[ch].SB[29]+=(s_chan[ch].SB[31]-s_chan[ch].SB[30])/2;// add additional next weight
238 }
239}
240
241////////////////////////////////////////////////////////////////////////
242// helpers for gauss interpolation
243
244#define gval0 (((short*)(&s_chan[ch].SB[29]))[gpos])
245#define gval(x) (((short*)(&s_chan[ch].SB[29]))[(gpos+x)&3])
246
247#include "gauss_i.h"
248
249////////////////////////////////////////////////////////////////////////
250
251#include "xa.c"
252
253////////////////////////////////////////////////////////////////////////
254// START SOUND... called by main thread to setup a new sound on a channel
255////////////////////////////////////////////////////////////////////////
256
257INLINE void StartSound(int ch)
258{
259 StartADSR(ch);
260 StartREVERB(ch);
261
262 // fussy timing issues - do in VoiceOn
263 //s_chan[ch].pCurr=s_chan[ch].pStart; // set sample start
264 //s_chan[ch].bStop=0;
265 //s_chan[ch].bOn=1;
266
267 s_chan[ch].SB[26]=0; // init mixing vars
268 s_chan[ch].SB[27]=0;
269 s_chan[ch].iSBPos=28;
270
271 s_chan[ch].SB[29]=0; // init our interpolation helpers
272 s_chan[ch].SB[30]=0;
273
274 if(iUseInterpolation>=2) // gauss interpolation?
275 {s_chan[ch].spos=0x30000L;s_chan[ch].SB[28]=0;} // -> start with more decoding
276 else {s_chan[ch].spos=0x10000L;s_chan[ch].SB[31]=0;} // -> no/simple interpolation starts with one 44100 decoding
277
278 dwNewChannel&=~(1<<ch); // clear new channel bit
279}
280
281////////////////////////////////////////////////////////////////////////
282// ALL KIND OF HELPERS
283////////////////////////////////////////////////////////////////////////
284
285INLINE int FModChangeFrequency(int ch,int ns)
286{
287 unsigned int NP=s_chan[ch].iRawPitch;
288 int sinc;
289
290 NP=((32768L+iFMod[ns])*NP)/32768L;
291
292 if(NP>0x3fff) NP=0x3fff;
293 if(NP<0x1) NP=0x1;
294
295 sinc=NP<<4; // calc frequency
296 if(iUseInterpolation==1) // freq change in simple interpolation mode
297 s_chan[ch].SB[32]=1;
298 iFMod[ns]=0;
299
300 return sinc;
301}
302
303////////////////////////////////////////////////////////////////////////
304
305INLINE void StoreInterpolationVal(int ch,int fa)
306{
307 if(s_chan[ch].bFMod==2) // fmod freq channel
308 s_chan[ch].SB[29]=fa;
309 else
310 {
311 ssat32_to_16(fa);
312
313 if(iUseInterpolation>=2) // gauss/cubic interpolation
314 {
315 int gpos = s_chan[ch].SB[28];
316 gval0 = fa;
317 gpos = (gpos+1) & 3;
318 s_chan[ch].SB[28] = gpos;
319 }
320 else
321 if(iUseInterpolation==1) // simple interpolation
322 {
323 s_chan[ch].SB[28] = 0;
324 s_chan[ch].SB[29] = s_chan[ch].SB[30]; // -> helpers for simple linear interpolation: delay real val for two slots, and calc the two deltas, for a 'look at the future behaviour'
325 s_chan[ch].SB[30] = s_chan[ch].SB[31];
326 s_chan[ch].SB[31] = fa;
327 s_chan[ch].SB[32] = 1; // -> flag: calc new interolation
328 }
329 else s_chan[ch].SB[29]=fa; // no interpolation
330 }
331}
332
333////////////////////////////////////////////////////////////////////////
334
335INLINE int iGetInterpolationVal(int ch, int spos)
336{
337 int fa;
338
339 if(s_chan[ch].bFMod==2) return s_chan[ch].SB[29];
340
341 switch(iUseInterpolation)
342 {
343 //--------------------------------------------------//
344 case 3: // cubic interpolation
345 {
346 long xd;int gpos;
347 xd = (spos >> 1)+1;
348 gpos = s_chan[ch].SB[28];
349
350 fa = gval(3) - 3*gval(2) + 3*gval(1) - gval0;
351 fa *= (xd - (2<<15)) / 6;
352 fa >>= 15;
353 fa += gval(2) - gval(1) - gval(1) + gval0;
354 fa *= (xd - (1<<15)) >> 1;
355 fa >>= 15;
356 fa += gval(1) - gval0;
357 fa *= xd;
358 fa >>= 15;
359 fa = fa + gval0;
360
361 } break;
362 //--------------------------------------------------//
363 case 2: // gauss interpolation
364 {
365 int vl, vr;int gpos;
366 vl = (spos >> 6) & ~3;
367 gpos = s_chan[ch].SB[28];
368 vr=(gauss[vl]*gval0)&~2047;
369 vr+=(gauss[vl+1]*gval(1))&~2047;
370 vr+=(gauss[vl+2]*gval(2))&~2047;
371 vr+=(gauss[vl+3]*gval(3))&~2047;
372 fa = vr>>11;
373 } break;
374 //--------------------------------------------------//
375 case 1: // simple interpolation
376 {
377 if(s_chan[ch].sinc<0x10000L) // -> upsampling?
378 InterpolateUp(ch); // --> interpolate up
379 else InterpolateDown(ch); // --> else down
380 fa=s_chan[ch].SB[29];
381 } break;
382 //--------------------------------------------------//
383 default: // no interpolation
384 {
385 fa=s_chan[ch].SB[29];
386 } break;
387 //--------------------------------------------------//
388 }
389
390 return fa;
391}
392
393static void do_irq(void)
394{
395 //if(!(spuStat & STAT_IRQ))
396 {
397 spuStat |= STAT_IRQ; // asserted status?
398 if(irqCallback) irqCallback();
399 }
400}
401
402static void decode_block_data(int *dest, const unsigned char *src, int predict_nr, int shift_factor)
403{
404 int nSample;
405 int fa, s_1, s_2, d, s;
406
407 s_1 = dest[27];
408 s_2 = dest[26];
409
410 for (nSample = 0; nSample < 28; src++)
411 {
412 d = (int)*src;
413 s = (int)(signed short)((d & 0x0f) << 12);
414
415 fa = s >> shift_factor;
416 fa += ((s_1 * f[predict_nr][0])>>6) + ((s_2 * f[predict_nr][1])>>6);
417 s_2=s_1;s_1=fa;
418
419 dest[nSample++] = fa;
420
421 s = (int)(signed short)((d & 0xf0) << 8);
422 fa = s >> shift_factor;
423 fa += ((s_1 * f[predict_nr][0])>>6) + ((s_2 * f[predict_nr][1])>>6);
424 s_2=s_1;s_1=fa;
425
426 dest[nSample++] = fa;
427 }
428}
429
430static int decode_block(int ch)
431{
432 unsigned char *start;
433 int predict_nr,shift_factor,flags;
434 int ret = 0;
435
436 start=s_chan[ch].pCurr; // set up the current pos
437 if(dwPendingChanOff&(1<<ch))
438 {
439 dwChannelOn&=~(1<<ch); // -> turn everything off
440 dwPendingChanOff&=~(1<<ch);
441 s_chan[ch].bStop=1;
442 s_chan[ch].ADSRX.EnvelopeVol=0;
443 }
444
445 //////////////////////////////////////////// irq check
446
447 if(spuCtrl&CTRL_IRQ)
448 {
449 if(pSpuIrq == start) // irq address reached?
450 {
451 do_irq(); // -> call main emu
452 ret = 1;
453 }
454 }
455
456 predict_nr=(int)start[0];
457 shift_factor=predict_nr&0xf;
458 predict_nr >>= 4;
459
460 decode_block_data(s_chan[ch].SB, start + 2, predict_nr, shift_factor);
461
462 //////////////////////////////////////////// flag handler
463
464 flags=(int)start[1];
465 if(flags&4)
466 s_chan[ch].pLoop=start; // loop adress
467
468 start+=16;
469 if(flags&1) // 1: stop/loop
470 {
471 if(!(flags&2))
472 dwPendingChanOff|=1<<ch;
473
474 start = s_chan[ch].pLoop;
475 }
476
477 if (start - spuMemC >= 0x80000) {
478 // most likely wrong
479 start = spuMemC;
480 printf("ch%d oflow\n", ch);
481 }
482
483 s_chan[ch].pCurr = start; // store values for next cycle
484 s_chan[ch].bJump = flags & 1;
485
486 return ret;
487}
488
489// do block, but ignore sample data
490static int skip_block(int ch)
491{
492 unsigned char *start = s_chan[ch].pCurr;
493 int flags = start[1];
494 int ret = 0;
495
496 if(start == pSpuIrq)
497 {
498 do_irq();
499 ret = 1;
500 }
501
502 if(flags & 4)
503 s_chan[ch].pLoop = start;
504
505 s_chan[ch].pCurr += 16;
506
507 if(flags & 1)
508 s_chan[ch].pCurr = s_chan[ch].pLoop;
509
510 s_chan[ch].bJump = flags & 1;
511 return ret;
512}
513
514#define make_do_samples(name, fmod_code, interp_start, interp1_code, interp2_code, interp_end) \
515static int do_samples_##name(int ch, int ns, int ns_to) \
516{ \
517 int sinc = s_chan[ch].sinc; \
518 int spos = s_chan[ch].spos; \
519 int sbpos = s_chan[ch].iSBPos; \
520 int *SB = s_chan[ch].SB; \
521 int ret = -1; \
522 int d, fa; \
523 interp_start; \
524 \
525 for (; ns < ns_to; ns++) \
526 { \
527 fmod_code; \
528 \
529 while (spos >= 0x10000) \
530 { \
531 if(sbpos == 28) \
532 { \
533 sbpos = 0; \
534 d = decode_block(ch); \
535 if(d) \
536 { \
537 ret = ns; \
538 goto out; \
539 } \
540 } \
541 \
542 fa = SB[sbpos++]; \
543 interp1_code; \
544 spos -= 0x10000; \
545 } \
546 \
547 interp2_code; \
548 spos += sinc; \
549 } \
550 \
551out: \
552 s_chan[ch].sinc = sinc; \
553 s_chan[ch].spos = spos; \
554 s_chan[ch].iSBPos = sbpos; \
555 interp_end; \
556 \
557 return ret; \
558}
559
560#define fmod_recv_check \
561 if(s_chan[ch].bFMod==1 && iFMod[ns]) \
562 sinc = FModChangeFrequency(ch,ns)
563
564make_do_samples(default, fmod_recv_check, ,
565 StoreInterpolationVal(ch, fa),
566 ChanBuf[ns] = iGetInterpolationVal(ch, spos), )
567make_do_samples(noint, , fa = s_chan[ch].SB[29], , ChanBuf[ns] = fa, s_chan[ch].SB[29] = fa)
568
569#define simple_interp_store \
570 s_chan[ch].SB[28] = 0; \
571 s_chan[ch].SB[29] = s_chan[ch].SB[30]; \
572 s_chan[ch].SB[30] = s_chan[ch].SB[31]; \
573 s_chan[ch].SB[31] = fa; \
574 s_chan[ch].SB[32] = 1
575
576#define simple_interp_get \
577 if(sinc<0x10000) /* -> upsampling? */ \
578 InterpolateUp(ch); /* --> interpolate up */ \
579 else InterpolateDown(ch); /* --> else down */ \
580 ChanBuf[ns] = s_chan[ch].SB[29]
581
582make_do_samples(simple, , ,
583 simple_interp_store, simple_interp_get, )
584
585static int do_samples_noise(int ch, int ns, int ns_to)
586{
587 int level, shift, bit;
588
589 s_chan[ch].spos += s_chan[ch].sinc * (ns_to - ns);
590 while (s_chan[ch].spos >= 28*0x10000)
591 {
592 skip_block(ch);
593 s_chan[ch].spos -= 28*0x10000;
594 }
595
596 // modified from DrHell/shalma, no fraction
597 level = (spuCtrl >> 10) & 0x0f;
598 level = 0x8000 >> level;
599
600 for (; ns < ns_to; ns++)
601 {
602 dwNoiseCount += 2;
603 if (dwNoiseCount >= level)
604 {
605 dwNoiseCount -= level;
606 shift = (dwNoiseVal >> 10) & 0x1f;
607 bit = (0x69696969 >> shift) & 1;
608 if (dwNoiseVal & 0x8000)
609 bit ^= 1;
610 dwNoiseVal = (dwNoiseVal << 1) | bit;
611 }
612
613 ChanBuf[ns] = (signed short)dwNoiseVal;
614 }
615
616 return -1;
617}
618
619#ifdef __arm__
620// asm code; lv and rv must be 0-3fff
621extern void mix_chan(int start, int count, int lv, int rv);
622extern void mix_chan_rvb(int start, int count, int lv, int rv);
623#else
624static void mix_chan(int start, int count, int lv, int rv)
625{
626 int *dst = SSumLR + start * 2;
627 const int *src = ChanBuf + start;
628 int l, r;
629
630 while (count--)
631 {
632 int sval = *src++;
633
634 l = (sval * lv) >> 14;
635 r = (sval * rv) >> 14;
636 *dst++ += l;
637 *dst++ += r;
638 }
639}
640
641static void mix_chan_rvb(int start, int count, int lv, int rv)
642{
643 int *dst = SSumLR + start * 2;
644 int *drvb = sRVBStart + start * 2;
645 const int *src = ChanBuf + start;
646 int l, r;
647
648 while (count--)
649 {
650 int sval = *src++;
651
652 l = (sval * lv) >> 14;
653 r = (sval * rv) >> 14;
654 *dst++ += l;
655 *dst++ += r;
656 *drvb++ += l;
657 *drvb++ += r;
658 }
659}
660#endif
661
662////////////////////////////////////////////////////////////////////////
663// MAIN SPU FUNCTION
664// here is the main job handler...
665// basically the whole sound processing is done in this fat func!
666////////////////////////////////////////////////////////////////////////
667
668static int do_samples(int forced_updates)
669{
670 int volmult = iVolume;
671 int ns,ns_from,ns_to;
672 int ch,d,silentch;
673 int bIRQReturn=0;
674
675 while(1)
676 {
677 // ok, at the beginning we are looking if there is
678 // enuff free place in the dsound/oss buffer to
679 // fill in new data, or if there is a new channel to start.
680 // if not, we wait (thread) or return (timer/spuasync)
681 // until enuff free place is available/a new channel gets
682 // started
683
684 if(!forced_updates && SoundGetBytesBuffered()) // still enuff data in sound buffer?
685 {
686 return 0;
687 }
688
689 cycles_since_update = 0;
690 if(forced_updates > 0)
691 forced_updates--;
692
693 //--------------------------------------------------// continue from irq handling in timer mode?
694
695 ns_from=0;
696 ns_to=NSSIZE;
697 ch=0;
698 if(lastch>=0) // will be -1 if no continue is pending
699 {
700 ch=lastch; ns_from=lastns; lastch=-1; // -> setup all kind of vars to continue
701 }
702
703 silentch=~(dwChannelOn|dwNewChannel);
704
705 //--------------------------------------------------//
706 //- main channel loop -//
707 //--------------------------------------------------//
708 {
709 for(;ch<MAXCHAN;ch++) // loop em all... we will collect 1 ms of sound of each playing channel
710 {
711 if(dwNewChannel&(1<<ch)) StartSound(ch); // start new sound
712 if(!(dwChannelOn&(1<<ch))) continue; // channel not playing? next
713
714 if(s_chan[ch].bNoise)
715 d=do_samples_noise(ch, ns_from, ns_to);
716 else if(s_chan[ch].bFMod==2 || (s_chan[ch].bFMod==0 && iUseInterpolation==0))
717 d=do_samples_noint(ch, ns_from, ns_to);
718 else if(s_chan[ch].bFMod==0 && iUseInterpolation==1)
719 d=do_samples_simple(ch, ns_from, ns_to);
720 else
721 d=do_samples_default(ch, ns_from, ns_to);
722 if(d>=0)
723 {
724 bIRQReturn=1;
725 lastch=ch;
726 lastns=ns_to=d;
727 if(d==0)
728 break;
729 }
730
731 MixADSR(ch, ns_from, ns_to);
732
733 if(s_chan[ch].bFMod==2) // fmod freq channel
734 memcpy(iFMod, ChanBuf, sizeof(iFMod));
735 else if(s_chan[ch].bRVBActive)
736 mix_chan_rvb(ns_from,ns_to-ns_from,s_chan[ch].iLeftVolume,s_chan[ch].iRightVolume);
737 else
738 mix_chan(ns_from,ns_to-ns_from,s_chan[ch].iLeftVolume,s_chan[ch].iRightVolume);
739 }
740 }
741
742 // advance "stopped" channels that can cause irqs
743 // (all chans are always playing on the real thing..)
744 if(spuCtrl&CTRL_IRQ)
745 for(ch=0;ch<MAXCHAN;ch++)
746 {
747 if(!(silentch&(1<<ch))) continue; // already handled
748 if(dwChannelDead&(1<<ch)) continue;
749 if(s_chan[ch].pCurr > pSpuIrq && s_chan[ch].pLoop > pSpuIrq)
750 continue;
751
752 s_chan[ch].spos += s_chan[ch].sinc * (ns_to - ns_from);
753 while(s_chan[ch].spos >= 28 * 0x10000)
754 {
755 unsigned char *start = s_chan[ch].pCurr;
756
757 // no need for bIRQReturn since the channel is silent
758 skip_block(ch);
759 if(start == s_chan[ch].pCurr)
760 {
761 // looping on self
762 dwChannelDead |= 1<<ch;
763 s_chan[ch].spos = 0;
764 break;
765 }
766
767 s_chan[ch].spos -= 28 * 0x10000;
768 }
769 }
770
771 if(bIRQReturn) // special return for "spu irq - wait for cpu action"
772 return 0;
773
774
775 //---------------------------------------------------//
776 //- here we have another 1 ms of sound data
777 //---------------------------------------------------//
778 // mix XA infos (if any)
779
780 MixXA();
781
782 ///////////////////////////////////////////////////////
783 // mix all channels (including reverb) into one buffer
784
785 if(iUseReverb)
786 REVERBDo();
787
788 if((spuCtrl&0x4000)==0) // muted? (rare, don't optimize for this)
789 {
790 memset(pS, 0, NSSIZE * 2 * sizeof(pS[0]));
791 pS += NSSIZE*2;
792 }
793 else
794 for (ns = 0; ns < NSSIZE*2; )
795 {
796 d = SSumLR[ns]; SSumLR[ns] = 0;
797 d = d * volmult >> 10;
798 ssat32_to_16(d);
799 *pS++ = d;
800 ns++;
801
802 d = SSumLR[ns]; SSumLR[ns] = 0;
803 d = d * volmult >> 10;
804 ssat32_to_16(d);
805 *pS++ = d;
806 ns++;
807 }
808
809 //////////////////////////////////////////////////////
810 // special irq handling in the decode buffers (0x0000-0x1000)
811 // we know:
812 // the decode buffers are located in spu memory in the following way:
813 // 0x0000-0x03ff CD audio left
814 // 0x0400-0x07ff CD audio right
815 // 0x0800-0x0bff Voice 1
816 // 0x0c00-0x0fff Voice 3
817 // and decoded data is 16 bit for one sample
818 // we assume:
819 // even if voices 1/3 are off or no cd audio is playing, the internal
820 // play positions will move on and wrap after 0x400 bytes.
821 // Therefore: we just need a pointer from spumem+0 to spumem+3ff, and
822 // increase this pointer on each sample by 2 bytes. If this pointer
823 // (or 0x400 offsets of this pointer) hits the spuirq address, we generate
824 // an IRQ. Only problem: the "wait for cpu" option is kinda hard to do here
825 // in some of Peops timer modes. So: we ignore this option here (for now).
826
827 if(pMixIrq)
828 {
829 for(ns=0;ns<NSSIZE;ns++)
830 {
831 if((spuCtrl&0x40) && pSpuIrq && pSpuIrq<spuMemC+0x1000)
832 {
833 for(ch=0;ch<4;ch++)
834 {
835 if(pSpuIrq>=pMixIrq+(ch*0x400) && pSpuIrq<pMixIrq+(ch*0x400)+2)
836 do_irq();
837 }
838 }
839 pMixIrq+=2;if(pMixIrq>spuMemC+0x3ff) pMixIrq=spuMemC;
840 }
841 }
842
843 InitREVERB();
844
845 // feed the sound
846 // wanna have around 1/60 sec (16.666 ms) updates
847 if (iCycle++ > 16/FRAG_MSECS)
848 {
849 SoundFeedStreamData((unsigned char *)pSpuBuffer,
850 ((unsigned char *)pS) - ((unsigned char *)pSpuBuffer));
851 pS = (short *)pSpuBuffer;
852 iCycle = 0;
853 }
854 }
855
856 return 0;
857}
858
859// SPU ASYNC... even newer epsxe func
860// 1 time every 'cycle' cycles... harhar
861
862// rearmed: called every 2ms now
863
864void CALLBACK SPUasync(unsigned long cycle)
865{
866 int forced_updates = 0;
867 int do_update = 0;
868
869 if(!bSpuInit) return; // -> no init, no call
870
871 cycles_since_update += cycle;
872
873 if(dwNewChannel || had_dma)
874 {
875 forced_updates = 1;
876 do_update = 1;
877 had_dma = 0;
878 }
879
880 // once per frame should be fine (using a bit more because of BIAS)
881 if(cycles_since_update > PSXCLK/60 * 5/4)
882 do_update = 1;
883
884 if(do_update)
885 do_samples(forced_updates);
886}
887
888// SPU UPDATE... new epsxe func
889// 1 time every 32 hsync lines
890// (312/32)x50 in pal
891// (262/32)x60 in ntsc
892
893// since epsxe 1.5.2 (linux) uses SPUupdate, not SPUasync, I will
894// leave that func in the linux port, until epsxe linux is using
895// the async function as well
896
897void CALLBACK SPUupdate(void)
898{
899 SPUasync(0);
900}
901
902// XA AUDIO
903
904void CALLBACK SPUplayADPCMchannel(xa_decode_t *xap)
905{
906 if(!xap) return;
907 if(!xap->freq) return; // no xa freq ? bye
908
909 FeedXA(xap); // call main XA feeder
910}
911
912// CDDA AUDIO
913int CALLBACK SPUplayCDDAchannel(short *pcm, int nbytes)
914{
915 if (!pcm) return -1;
916 if (nbytes<=0) return -1;
917
918 return FeedCDDA((unsigned char *)pcm, nbytes);
919}
920
921// to be called after state load
922void ClearWorkingState(void)
923{
924 memset(SSumLR,0,sizeof(SSumLR)); // init some mixing buffers
925 memset(iFMod,0,sizeof(iFMod));
926 pS=(short *)pSpuBuffer; // setup soundbuffer pointer
927}
928
929// SETUPSTREAMS: init most of the spu buffers
930void SetupStreams(void)
931{
932 int i;
933
934 pSpuBuffer=(unsigned char *)malloc(32768); // alloc mixing buffer
935
936 if(iUseReverb==1) i=88200*2;
937 else i=NSSIZE*2;
938
939 sRVBStart = (int *)malloc(i*4); // alloc reverb buffer
940 memset(sRVBStart,0,i*4);
941 sRVBEnd = sRVBStart + i;
942 sRVBPlay = sRVBStart;
943
944 XAStart = // alloc xa buffer
945 (uint32_t *)malloc(44100 * sizeof(uint32_t));
946 XAEnd = XAStart + 44100;
947 XAPlay = XAStart;
948 XAFeed = XAStart;
949
950 CDDAStart = // alloc cdda buffer
951 (uint32_t *)malloc(CDDA_BUFFER_SIZE);
952 CDDAEnd = CDDAStart + 16384;
953 CDDAPlay = CDDAStart;
954 CDDAFeed = CDDAStart;
955
956 for(i=0;i<MAXCHAN;i++) // loop sound channels
957 {
958// we don't use mutex sync... not needed, would only
959// slow us down:
960// s_chan[i].hMutex=CreateMutex(NULL,FALSE,NULL);
961 s_chan[i].ADSRX.SustainLevel = 0xf; // -> init sustain
962 s_chan[i].pLoop=spuMemC;
963 s_chan[i].pCurr=spuMemC;
964 }
965
966 pMixIrq=spuMemC; // enable decoded buffer irqs by setting the address
967
968 ClearWorkingState();
969
970 bSpuInit=1; // flag: we are inited
971}
972
973// REMOVESTREAMS: free most buffer
974void RemoveStreams(void)
975{
976 free(pSpuBuffer); // free mixing buffer
977 pSpuBuffer = NULL;
978 free(sRVBStart); // free reverb buffer
979 sRVBStart = NULL;
980 free(XAStart); // free XA buffer
981 XAStart = NULL;
982 free(CDDAStart); // free CDDA buffer
983 CDDAStart = NULL;
984}
985
986// INIT/EXIT STUFF
987
988// SPUINIT: this func will be called first by the main emu
989long CALLBACK SPUinit(void)
990{
991 spuMemC = (unsigned char *)spuMem; // just small setup
992 memset((void *)&rvb, 0, sizeof(REVERBInfo));
993 InitADSR();
994
995 spuIrq = 0;
996 spuAddr = 0xffffffff;
997 spuMemC = (unsigned char *)spuMem;
998 pMixIrq = 0;
999 memset((void *)s_chan, 0, (MAXCHAN + 1) * sizeof(SPUCHAN));
1000 pSpuIrq = 0;
1001 lastch = -1;
1002
1003 SetupStreams(); // prepare streaming
1004
1005 return 0;
1006}
1007
1008// SPUOPEN: called by main emu after init
1009long CALLBACK SPUopen(void)
1010{
1011 if (bSPUIsOpen) return 0; // security for some stupid main emus
1012
1013 SetupSound(); // setup sound (before init!)
1014
1015 bSPUIsOpen = 1;
1016
1017 return PSE_SPU_ERR_SUCCESS;
1018}
1019
1020// SPUCLOSE: called before shutdown
1021long CALLBACK SPUclose(void)
1022{
1023 if (!bSPUIsOpen) return 0; // some security
1024
1025 bSPUIsOpen = 0; // no more open
1026
1027 RemoveSound(); // no more sound handling
1028
1029 return 0;
1030}
1031
1032// SPUSHUTDOWN: called by main emu on final exit
1033long CALLBACK SPUshutdown(void)
1034{
1035 SPUclose();
1036 RemoveStreams(); // no more streaming
1037 bSpuInit=0;
1038
1039 return 0;
1040}
1041
1042// SPUTEST: we don't test, we are always fine ;)
1043long CALLBACK SPUtest(void)
1044{
1045 return 0;
1046}
1047
1048// SPUCONFIGURE: call config dialog
1049long CALLBACK SPUconfigure(void)
1050{
1051#ifdef _MACOSX
1052 DoConfiguration();
1053#else
1054// StartCfgTool("CFG");
1055#endif
1056 return 0;
1057}
1058
1059// SPUABOUT: show about window
1060void CALLBACK SPUabout(void)
1061{
1062#ifdef _MACOSX
1063 DoAbout();
1064#else
1065// StartCfgTool("ABOUT");
1066#endif
1067}
1068
1069// SETUP CALLBACKS
1070// this functions will be called once,
1071// passes a callback that should be called on SPU-IRQ/cdda volume change
1072void CALLBACK SPUregisterCallback(void (CALLBACK *callback)(void))
1073{
1074 irqCallback = callback;
1075}
1076
1077void CALLBACK SPUregisterCDDAVolume(void (CALLBACK *CDDAVcallback)(unsigned short,unsigned short))
1078{
1079 cddavCallback = CDDAVcallback;
1080}
1081
1082// COMMON PLUGIN INFO FUNCS
1083/*
1084char * CALLBACK PSEgetLibName(void)
1085{
1086 return _(libraryName);
1087}
1088
1089unsigned long CALLBACK PSEgetLibType(void)
1090{
1091 return PSE_LT_SPU;
1092}
1093
1094unsigned long CALLBACK PSEgetLibVersion(void)
1095{
1096 return (1 << 16) | (6 << 8);
1097}
1098
1099char * SPUgetLibInfos(void)
1100{
1101 return _(libraryInfo);
1102}
1103*/
1104
1105// debug
1106void spu_get_debug_info(int *chans_out, int *run_chans, int *fmod_chans_out, int *noise_chans_out)
1107{
1108 int ch = 0, fmod_chans = 0, noise_chans = 0, irq_chans = 0;
1109
1110 for(;ch<MAXCHAN;ch++)
1111 {
1112 if (!(dwChannelOn & (1<<ch)))
1113 continue;
1114 if (s_chan[ch].bFMod == 2)
1115 fmod_chans |= 1 << ch;
1116 if (s_chan[ch].bNoise)
1117 noise_chans |= 1 << ch;
1118 if((spuCtrl&CTRL_IRQ) && s_chan[ch].pCurr <= pSpuIrq && s_chan[ch].pLoop <= pSpuIrq)
1119 irq_chans |= 1 << ch;
1120 }
1121
1122 *chans_out = dwChannelOn;
1123 *run_chans = ~dwChannelOn & ~dwChannelDead & irq_chans;
1124 *fmod_chans_out = fmod_chans;
1125 *noise_chans_out = noise_chans;
1126}
1127
1128// vim:shiftwidth=1:expandtab