21c9669982f538b4205e5bae2c025f04afdec2a3
[pcsx_rearmed.git] / libpcsxcore / new_dynarec / new_dynarec.c
1 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
2  *   Mupen64plus - new_dynarec.c                                           *
3  *   Copyright (C) 2009-2011 Ari64                                         *
4  *                                                                         *
5  *   This program is free software; you can redistribute it and/or modify  *
6  *   it under the terms of the GNU General Public License as published by  *
7  *   the Free Software Foundation; either version 2 of the License, or     *
8  *   (at your option) any later version.                                   *
9  *                                                                         *
10  *   This program is distributed in the hope that it will be useful,       *
11  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
12  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
13  *   GNU General Public License for more details.                          *
14  *                                                                         *
15  *   You should have received a copy of the GNU General Public License     *
16  *   along with this program; if not, write to the                         *
17  *   Free Software Foundation, Inc.,                                       *
18  *   51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.          *
19  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
20
21 #include <stdlib.h>
22 #include <stdint.h> //include for uint64_t
23 #include <assert.h>
24 #include <sys/mman.h>
25
26 #include "emu_if.h" //emulator interface
27
28 //#define DISASM
29 //#define assem_debug printf
30 //#define inv_debug printf
31 #define assem_debug(...)
32 #define inv_debug(...)
33
34 #ifdef __i386__
35 #include "assem_x86.h"
36 #endif
37 #ifdef __x86_64__
38 #include "assem_x64.h"
39 #endif
40 #ifdef __arm__
41 #include "assem_arm.h"
42 #endif
43
44 #define MAXBLOCK 4096
45 #define MAX_OUTPUT_BLOCK_SIZE 262144
46
47 struct regstat
48 {
49   signed char regmap_entry[HOST_REGS];
50   signed char regmap[HOST_REGS];
51   uint64_t was32;
52   uint64_t is32;
53   uint64_t wasdirty;
54   uint64_t dirty;
55   uint64_t u;
56   uint64_t uu;
57   u_int wasconst;
58   u_int isconst;
59   u_int loadedconst;             // host regs that have constants loaded
60   u_int waswritten;              // MIPS regs that were used as store base before
61 };
62
63 struct ll_entry
64 {
65   u_int vaddr;
66   u_int reg32;
67   void *addr;
68   struct ll_entry *next;
69 };
70
71   u_int start;
72   u_int *source;
73   u_int pagelimit;
74   char insn[MAXBLOCK][10];
75   u_char itype[MAXBLOCK];
76   u_char opcode[MAXBLOCK];
77   u_char opcode2[MAXBLOCK];
78   u_char bt[MAXBLOCK];
79   u_char rs1[MAXBLOCK];
80   u_char rs2[MAXBLOCK];
81   u_char rt1[MAXBLOCK];
82   u_char rt2[MAXBLOCK];
83   u_char us1[MAXBLOCK];
84   u_char us2[MAXBLOCK];
85   u_char dep1[MAXBLOCK];
86   u_char dep2[MAXBLOCK];
87   u_char lt1[MAXBLOCK];
88   static uint64_t gte_rs[MAXBLOCK]; // gte: 32 data and 32 ctl regs
89   static uint64_t gte_rt[MAXBLOCK];
90   static uint64_t gte_unneeded[MAXBLOCK];
91   static u_int smrv[32]; // speculated MIPS register values
92   static u_int smrv_strong; // mask or regs that are likely to have correct values
93   static u_int smrv_weak; // same, but somewhat less likely
94   static u_int smrv_strong_next; // same, but after current insn executes
95   static u_int smrv_weak_next;
96   int imm[MAXBLOCK];
97   u_int ba[MAXBLOCK];
98   char likely[MAXBLOCK];
99   char is_ds[MAXBLOCK];
100   char ooo[MAXBLOCK];
101   uint64_t unneeded_reg[MAXBLOCK];
102   uint64_t unneeded_reg_upper[MAXBLOCK];
103   uint64_t branch_unneeded_reg[MAXBLOCK];
104   uint64_t branch_unneeded_reg_upper[MAXBLOCK];
105   uint64_t p32[MAXBLOCK];
106   uint64_t pr32[MAXBLOCK];
107   signed char regmap_pre[MAXBLOCK][HOST_REGS];
108   static uint64_t current_constmap[HOST_REGS];
109   static uint64_t constmap[MAXBLOCK][HOST_REGS];
110   static struct regstat regs[MAXBLOCK];
111   static struct regstat branch_regs[MAXBLOCK];
112   signed char minimum_free_regs[MAXBLOCK];
113   u_int needed_reg[MAXBLOCK];
114   uint64_t requires_32bit[MAXBLOCK];
115   u_int wont_dirty[MAXBLOCK];
116   u_int will_dirty[MAXBLOCK];
117   int ccadj[MAXBLOCK];
118   int slen;
119   u_int instr_addr[MAXBLOCK];
120   u_int link_addr[MAXBLOCK][3];
121   int linkcount;
122   u_int stubs[MAXBLOCK*3][8];
123   int stubcount;
124   u_int literals[1024][2];
125   int literalcount;
126   int is_delayslot;
127   int cop1_usable;
128   u_char *out;
129   struct ll_entry *jump_in[4096];
130   struct ll_entry *jump_out[4096];
131   struct ll_entry *jump_dirty[4096];
132   u_int hash_table[65536][4]  __attribute__((aligned(16)));
133   char shadow[1048576]  __attribute__((aligned(16)));
134   void *copy;
135   int expirep;
136 #ifndef PCSX
137   u_int using_tlb;
138 #else
139   static const u_int using_tlb=0;
140 #endif
141   int new_dynarec_did_compile;
142   int new_dynarec_hacks;
143   u_int stop_after_jal;
144 #ifndef RAM_FIXED
145   static u_int ram_offset;
146 #else
147   static const u_int ram_offset=0;
148 #endif
149   extern u_char restore_candidate[512];
150   extern int cycle_count;
151
152   /* registers that may be allocated */
153   /* 1-31 gpr */
154 #define HIREG 32 // hi
155 #define LOREG 33 // lo
156 #define FSREG 34 // FPU status (FCSR)
157 #define CSREG 35 // Coprocessor status
158 #define CCREG 36 // Cycle count
159 #define INVCP 37 // Pointer to invalid_code
160 #define MMREG 38 // Pointer to memory_map
161 #define ROREG 39 // ram offset (if rdram!=0x80000000)
162 #define TEMPREG 40
163 #define FTEMP 40 // FPU temporary register
164 #define PTEMP 41 // Prefetch temporary register
165 #define TLREG 42 // TLB mapping offset
166 #define RHASH 43 // Return address hash
167 #define RHTBL 44 // Return address hash table address
168 #define RTEMP 45 // JR/JALR address register
169 #define MAXREG 45
170 #define AGEN1 46 // Address generation temporary register
171 #define AGEN2 47 // Address generation temporary register
172 #define MGEN1 48 // Maptable address generation temporary register
173 #define MGEN2 49 // Maptable address generation temporary register
174 #define BTREG 50 // Branch target temporary register
175
176   /* instruction types */
177 #define NOP 0     // No operation
178 #define LOAD 1    // Load
179 #define STORE 2   // Store
180 #define LOADLR 3  // Unaligned load
181 #define STORELR 4 // Unaligned store
182 #define MOV 5     // Move 
183 #define ALU 6     // Arithmetic/logic
184 #define MULTDIV 7 // Multiply/divide
185 #define SHIFT 8   // Shift by register
186 #define SHIFTIMM 9// Shift by immediate
187 #define IMM16 10  // 16-bit immediate
188 #define RJUMP 11  // Unconditional jump to register
189 #define UJUMP 12  // Unconditional jump
190 #define CJUMP 13  // Conditional branch (BEQ/BNE/BGTZ/BLEZ)
191 #define SJUMP 14  // Conditional branch (regimm format)
192 #define COP0 15   // Coprocessor 0
193 #define COP1 16   // Coprocessor 1
194 #define C1LS 17   // Coprocessor 1 load/store
195 #define FJUMP 18  // Conditional branch (floating point)
196 #define FLOAT 19  // Floating point unit
197 #define FCONV 20  // Convert integer to float
198 #define FCOMP 21  // Floating point compare (sets FSREG)
199 #define SYSCALL 22// SYSCALL
200 #define OTHER 23  // Other
201 #define SPAN 24   // Branch/delay slot spans 2 pages
202 #define NI 25     // Not implemented
203 #define HLECALL 26// PCSX fake opcodes for HLE
204 #define COP2 27   // Coprocessor 2 move
205 #define C2LS 28   // Coprocessor 2 load/store
206 #define C2OP 29   // Coprocessor 2 operation
207 #define INTCALL 30// Call interpreter to handle rare corner cases
208
209   /* stubs */
210 #define CC_STUB 1
211 #define FP_STUB 2
212 #define LOADB_STUB 3
213 #define LOADH_STUB 4
214 #define LOADW_STUB 5
215 #define LOADD_STUB 6
216 #define LOADBU_STUB 7
217 #define LOADHU_STUB 8
218 #define STOREB_STUB 9
219 #define STOREH_STUB 10
220 #define STOREW_STUB 11
221 #define STORED_STUB 12
222 #define STORELR_STUB 13
223 #define INVCODE_STUB 14
224
225   /* branch codes */
226 #define TAKEN 1
227 #define NOTTAKEN 2
228 #define NULLDS 3
229
230 // asm linkage
231 int new_recompile_block(int addr);
232 void *get_addr_ht(u_int vaddr);
233 void invalidate_block(u_int block);
234 void invalidate_addr(u_int addr);
235 void remove_hash(int vaddr);
236 void jump_vaddr();
237 void dyna_linker();
238 void dyna_linker_ds();
239 void verify_code();
240 void verify_code_vm();
241 void verify_code_ds();
242 void cc_interrupt();
243 void fp_exception();
244 void fp_exception_ds();
245 void jump_syscall();
246 void jump_syscall_hle();
247 void jump_eret();
248 void jump_hlecall();
249 void jump_intcall();
250 void new_dyna_leave();
251
252 // TLB
253 void TLBWI_new();
254 void TLBWR_new();
255 void read_nomem_new();
256 void read_nomemb_new();
257 void read_nomemh_new();
258 void read_nomemd_new();
259 void write_nomem_new();
260 void write_nomemb_new();
261 void write_nomemh_new();
262 void write_nomemd_new();
263 void write_rdram_new();
264 void write_rdramb_new();
265 void write_rdramh_new();
266 void write_rdramd_new();
267 extern u_int memory_map[1048576];
268
269 // Needed by assembler
270 void wb_register(signed char r,signed char regmap[],uint64_t dirty,uint64_t is32);
271 void wb_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty);
272 void wb_needed_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr);
273 void load_all_regs(signed char i_regmap[]);
274 void load_needed_regs(signed char i_regmap[],signed char next_regmap[]);
275 void load_regs_entry(int t);
276 void load_all_consts(signed char regmap[],int is32,u_int dirty,int i);
277
278 int tracedebug=0;
279
280 //#define DEBUG_CYCLE_COUNT 1
281
282 #define NO_CYCLE_PENALTY_THR 12
283
284 int cycle_multiplier; // 100 for 1.0
285
286 static int CLOCK_ADJUST(int x)
287 {
288   int s=(x>>31)|1;
289   return (x * cycle_multiplier + s * 50) / 100;
290 }
291
292 static void tlb_hacks()
293 {
294 #ifndef DISABLE_TLB
295   // Goldeneye hack
296   if (strncmp((char *) ROM_HEADER->nom, "GOLDENEYE",9) == 0)
297   {
298     u_int addr;
299     int n;
300     switch (ROM_HEADER->Country_code&0xFF) 
301     {
302       case 0x45: // U
303         addr=0x34b30;
304         break;                   
305       case 0x4A: // J 
306         addr=0x34b70;    
307         break;    
308       case 0x50: // E 
309         addr=0x329f0;
310         break;                        
311       default: 
312         // Unknown country code
313         addr=0;
314         break;
315     }
316     u_int rom_addr=(u_int)rom;
317     #ifdef ROM_COPY
318     // Since memory_map is 32-bit, on 64-bit systems the rom needs to be
319     // in the lower 4G of memory to use this hack.  Copy it if necessary.
320     if((void *)rom>(void *)0xffffffff) {
321       munmap(ROM_COPY, 67108864);
322       if(mmap(ROM_COPY, 12582912,
323               PROT_READ | PROT_WRITE,
324               MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS,
325               -1, 0) <= 0) {printf("mmap() failed\n");}
326       memcpy(ROM_COPY,rom,12582912);
327       rom_addr=(u_int)ROM_COPY;
328     }
329     #endif
330     if(addr) {
331       for(n=0x7F000;n<0x80000;n++) {
332         memory_map[n]=(((u_int)(rom_addr+addr-0x7F000000))>>2)|0x40000000;
333       }
334     }
335   }
336 #endif
337 }
338
339 static u_int get_page(u_int vaddr)
340 {
341 #ifndef PCSX
342   u_int page=(vaddr^0x80000000)>>12;
343 #else
344   u_int page=vaddr&~0xe0000000;
345   if (page < 0x1000000)
346     page &= ~0x0e00000; // RAM mirrors
347   page>>=12;
348 #endif
349 #ifndef DISABLE_TLB
350   if(page>262143&&tlb_LUT_r[vaddr>>12]) page=(tlb_LUT_r[vaddr>>12]^0x80000000)>>12;
351 #endif
352   if(page>2048) page=2048+(page&2047);
353   return page;
354 }
355
356 #ifndef PCSX
357 static u_int get_vpage(u_int vaddr)
358 {
359   u_int vpage=(vaddr^0x80000000)>>12;
360 #ifndef DISABLE_TLB
361   if(vpage>262143&&tlb_LUT_r[vaddr>>12]) vpage&=2047; // jump_dirty uses a hash of the virtual address instead
362 #endif
363   if(vpage>2048) vpage=2048+(vpage&2047);
364   return vpage;
365 }
366 #else
367 // no virtual mem in PCSX
368 static u_int get_vpage(u_int vaddr)
369 {
370   return get_page(vaddr);
371 }
372 #endif
373
374 // Get address from virtual address
375 // This is called from the recompiled JR/JALR instructions
376 void *get_addr(u_int vaddr)
377 {
378   u_int page=get_page(vaddr);
379   u_int vpage=get_vpage(vaddr);
380   struct ll_entry *head;
381   //printf("TRACE: count=%d next=%d (get_addr %x,page %d)\n",Count,next_interupt,vaddr,page);
382   head=jump_in[page];
383   while(head!=NULL) {
384     if(head->vaddr==vaddr&&head->reg32==0) {
385   //printf("TRACE: count=%d next=%d (get_addr match %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
386       int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
387       ht_bin[3]=ht_bin[1];
388       ht_bin[2]=ht_bin[0];
389       ht_bin[1]=(int)head->addr;
390       ht_bin[0]=vaddr;
391       return head->addr;
392     }
393     head=head->next;
394   }
395   head=jump_dirty[vpage];
396   while(head!=NULL) {
397     if(head->vaddr==vaddr&&head->reg32==0) {
398       //printf("TRACE: count=%d next=%d (get_addr match dirty %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
399       // Don't restore blocks which are about to expire from the cache
400       if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
401       if(verify_dirty(head->addr)) {
402         //printf("restore candidate: %x (%d) d=%d\n",vaddr,page,invalid_code[vaddr>>12]);
403         invalid_code[vaddr>>12]=0;
404         inv_code_start=inv_code_end=~0;
405 #ifndef DISABLE_TLB
406         memory_map[vaddr>>12]|=0x40000000;
407 #endif
408         if(vpage<2048) {
409 #ifndef DISABLE_TLB
410           if(tlb_LUT_r[vaddr>>12]) {
411             invalid_code[tlb_LUT_r[vaddr>>12]>>12]=0;
412             memory_map[tlb_LUT_r[vaddr>>12]>>12]|=0x40000000;
413           }
414 #endif
415           restore_candidate[vpage>>3]|=1<<(vpage&7);
416         }
417         else restore_candidate[page>>3]|=1<<(page&7);
418         int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
419         if(ht_bin[0]==vaddr) {
420           ht_bin[1]=(int)head->addr; // Replace existing entry
421         }
422         else
423         {
424           ht_bin[3]=ht_bin[1];
425           ht_bin[2]=ht_bin[0];
426           ht_bin[1]=(int)head->addr;
427           ht_bin[0]=vaddr;
428         }
429         return head->addr;
430       }
431     }
432     head=head->next;
433   }
434   //printf("TRACE: count=%d next=%d (get_addr no-match %x)\n",Count,next_interupt,vaddr);
435   int r=new_recompile_block(vaddr);
436   if(r==0) return get_addr(vaddr);
437   // Execute in unmapped page, generate pagefault execption
438   Status|=2;
439   Cause=(vaddr<<31)|0x8;
440   EPC=(vaddr&1)?vaddr-5:vaddr;
441   BadVAddr=(vaddr&~1);
442   Context=(Context&0xFF80000F)|((BadVAddr>>9)&0x007FFFF0);
443   EntryHi=BadVAddr&0xFFFFE000;
444   return get_addr_ht(0x80000000);
445 }
446 // Look up address in hash table first
447 void *get_addr_ht(u_int vaddr)
448 {
449   //printf("TRACE: count=%d next=%d (get_addr_ht %x)\n",Count,next_interupt,vaddr);
450   int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
451   if(ht_bin[0]==vaddr) return (void *)ht_bin[1];
452   if(ht_bin[2]==vaddr) return (void *)ht_bin[3];
453   return get_addr(vaddr);
454 }
455
456 void *get_addr_32(u_int vaddr,u_int flags)
457 {
458 #ifdef FORCE32
459   return get_addr(vaddr);
460 #else
461   //printf("TRACE: count=%d next=%d (get_addr_32 %x,flags %x)\n",Count,next_interupt,vaddr,flags);
462   int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
463   if(ht_bin[0]==vaddr) return (void *)ht_bin[1];
464   if(ht_bin[2]==vaddr) return (void *)ht_bin[3];
465   u_int page=get_page(vaddr);
466   u_int vpage=get_vpage(vaddr);
467   struct ll_entry *head;
468   head=jump_in[page];
469   while(head!=NULL) {
470     if(head->vaddr==vaddr&&(head->reg32&flags)==0) {
471       //printf("TRACE: count=%d next=%d (get_addr_32 match %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
472       if(head->reg32==0) {
473         int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
474         if(ht_bin[0]==-1) {
475           ht_bin[1]=(int)head->addr;
476           ht_bin[0]=vaddr;
477         }else if(ht_bin[2]==-1) {
478           ht_bin[3]=(int)head->addr;
479           ht_bin[2]=vaddr;
480         }
481         //ht_bin[3]=ht_bin[1];
482         //ht_bin[2]=ht_bin[0];
483         //ht_bin[1]=(int)head->addr;
484         //ht_bin[0]=vaddr;
485       }
486       return head->addr;
487     }
488     head=head->next;
489   }
490   head=jump_dirty[vpage];
491   while(head!=NULL) {
492     if(head->vaddr==vaddr&&(head->reg32&flags)==0) {
493       //printf("TRACE: count=%d next=%d (get_addr_32 match dirty %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
494       // Don't restore blocks which are about to expire from the cache
495       if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
496       if(verify_dirty(head->addr)) {
497         //printf("restore candidate: %x (%d) d=%d\n",vaddr,page,invalid_code[vaddr>>12]);
498         invalid_code[vaddr>>12]=0;
499         inv_code_start=inv_code_end=~0;
500         memory_map[vaddr>>12]|=0x40000000;
501         if(vpage<2048) {
502 #ifndef DISABLE_TLB
503           if(tlb_LUT_r[vaddr>>12]) {
504             invalid_code[tlb_LUT_r[vaddr>>12]>>12]=0;
505             memory_map[tlb_LUT_r[vaddr>>12]>>12]|=0x40000000;
506           }
507 #endif
508           restore_candidate[vpage>>3]|=1<<(vpage&7);
509         }
510         else restore_candidate[page>>3]|=1<<(page&7);
511         if(head->reg32==0) {
512           int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
513           if(ht_bin[0]==-1) {
514             ht_bin[1]=(int)head->addr;
515             ht_bin[0]=vaddr;
516           }else if(ht_bin[2]==-1) {
517             ht_bin[3]=(int)head->addr;
518             ht_bin[2]=vaddr;
519           }
520           //ht_bin[3]=ht_bin[1];
521           //ht_bin[2]=ht_bin[0];
522           //ht_bin[1]=(int)head->addr;
523           //ht_bin[0]=vaddr;
524         }
525         return head->addr;
526       }
527     }
528     head=head->next;
529   }
530   //printf("TRACE: count=%d next=%d (get_addr_32 no-match %x,flags %x)\n",Count,next_interupt,vaddr,flags);
531   int r=new_recompile_block(vaddr);
532   if(r==0) return get_addr(vaddr);
533   // Execute in unmapped page, generate pagefault execption
534   Status|=2;
535   Cause=(vaddr<<31)|0x8;
536   EPC=(vaddr&1)?vaddr-5:vaddr;
537   BadVAddr=(vaddr&~1);
538   Context=(Context&0xFF80000F)|((BadVAddr>>9)&0x007FFFF0);
539   EntryHi=BadVAddr&0xFFFFE000;
540   return get_addr_ht(0x80000000);
541 #endif
542 }
543
544 void clear_all_regs(signed char regmap[])
545 {
546   int hr;
547   for (hr=0;hr<HOST_REGS;hr++) regmap[hr]=-1;
548 }
549
550 signed char get_reg(signed char regmap[],int r)
551 {
552   int hr;
553   for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap[hr]==r) return hr;
554   return -1;
555 }
556
557 // Find a register that is available for two consecutive cycles
558 signed char get_reg2(signed char regmap1[],signed char regmap2[],int r)
559 {
560   int hr;
561   for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap1[hr]==r&&regmap2[hr]==r) return hr;
562   return -1;
563 }
564
565 int count_free_regs(signed char regmap[])
566 {
567   int count=0;
568   int hr;
569   for(hr=0;hr<HOST_REGS;hr++)
570   {
571     if(hr!=EXCLUDE_REG) {
572       if(regmap[hr]<0) count++;
573     }
574   }
575   return count;
576 }
577
578 void dirty_reg(struct regstat *cur,signed char reg)
579 {
580   int hr;
581   if(!reg) return;
582   for (hr=0;hr<HOST_REGS;hr++) {
583     if((cur->regmap[hr]&63)==reg) {
584       cur->dirty|=1<<hr;
585     }
586   }
587 }
588
589 // If we dirty the lower half of a 64 bit register which is now being
590 // sign-extended, we need to dump the upper half.
591 // Note: Do this only after completion of the instruction, because
592 // some instructions may need to read the full 64-bit value even if
593 // overwriting it (eg SLTI, DSRA32).
594 static void flush_dirty_uppers(struct regstat *cur)
595 {
596   int hr,reg;
597   for (hr=0;hr<HOST_REGS;hr++) {
598     if((cur->dirty>>hr)&1) {
599       reg=cur->regmap[hr];
600       if(reg>=64) 
601         if((cur->is32>>(reg&63))&1) cur->regmap[hr]=-1;
602     }
603   }
604 }
605
606 void set_const(struct regstat *cur,signed char reg,uint64_t value)
607 {
608   int hr;
609   if(!reg) return;
610   for (hr=0;hr<HOST_REGS;hr++) {
611     if(cur->regmap[hr]==reg) {
612       cur->isconst|=1<<hr;
613       current_constmap[hr]=value;
614     }
615     else if((cur->regmap[hr]^64)==reg) {
616       cur->isconst|=1<<hr;
617       current_constmap[hr]=value>>32;
618     }
619   }
620 }
621
622 void clear_const(struct regstat *cur,signed char reg)
623 {
624   int hr;
625   if(!reg) return;
626   for (hr=0;hr<HOST_REGS;hr++) {
627     if((cur->regmap[hr]&63)==reg) {
628       cur->isconst&=~(1<<hr);
629     }
630   }
631 }
632
633 int is_const(struct regstat *cur,signed char reg)
634 {
635   int hr;
636   if(reg<0) return 0;
637   if(!reg) return 1;
638   for (hr=0;hr<HOST_REGS;hr++) {
639     if((cur->regmap[hr]&63)==reg) {
640       return (cur->isconst>>hr)&1;
641     }
642   }
643   return 0;
644 }
645 uint64_t get_const(struct regstat *cur,signed char reg)
646 {
647   int hr;
648   if(!reg) return 0;
649   for (hr=0;hr<HOST_REGS;hr++) {
650     if(cur->regmap[hr]==reg) {
651       return current_constmap[hr];
652     }
653   }
654   printf("Unknown constant in r%d\n",reg);
655   exit(1);
656 }
657
658 // Least soon needed registers
659 // Look at the next ten instructions and see which registers
660 // will be used.  Try not to reallocate these.
661 void lsn(u_char hsn[], int i, int *preferred_reg)
662 {
663   int j;
664   int b=-1;
665   for(j=0;j<9;j++)
666   {
667     if(i+j>=slen) {
668       j=slen-i-1;
669       break;
670     }
671     if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
672     {
673       // Don't go past an unconditonal jump
674       j++;
675       break;
676     }
677   }
678   for(;j>=0;j--)
679   {
680     if(rs1[i+j]) hsn[rs1[i+j]]=j;
681     if(rs2[i+j]) hsn[rs2[i+j]]=j;
682     if(rt1[i+j]) hsn[rt1[i+j]]=j;
683     if(rt2[i+j]) hsn[rt2[i+j]]=j;
684     if(itype[i+j]==STORE || itype[i+j]==STORELR) {
685       // Stores can allocate zero
686       hsn[rs1[i+j]]=j;
687       hsn[rs2[i+j]]=j;
688     }
689     // On some architectures stores need invc_ptr
690     #if defined(HOST_IMM8)
691     if(itype[i+j]==STORE || itype[i+j]==STORELR || (opcode[i+j]&0x3b)==0x39 || (opcode[i+j]&0x3b)==0x3a) {
692       hsn[INVCP]=j;
693     }
694     #endif
695     if(i+j>=0&&(itype[i+j]==UJUMP||itype[i+j]==CJUMP||itype[i+j]==SJUMP||itype[i+j]==FJUMP))
696     {
697       hsn[CCREG]=j;
698       b=j;
699     }
700   }
701   if(b>=0)
702   {
703     if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
704     {
705       // Follow first branch
706       int t=(ba[i+b]-start)>>2;
707       j=7-b;if(t+j>=slen) j=slen-t-1;
708       for(;j>=0;j--)
709       {
710         if(rs1[t+j]) if(hsn[rs1[t+j]]>j+b+2) hsn[rs1[t+j]]=j+b+2;
711         if(rs2[t+j]) if(hsn[rs2[t+j]]>j+b+2) hsn[rs2[t+j]]=j+b+2;
712         //if(rt1[t+j]) if(hsn[rt1[t+j]]>j+b+2) hsn[rt1[t+j]]=j+b+2;
713         //if(rt2[t+j]) if(hsn[rt2[t+j]]>j+b+2) hsn[rt2[t+j]]=j+b+2;
714       }
715     }
716     // TODO: preferred register based on backward branch
717   }
718   // Delay slot should preferably not overwrite branch conditions or cycle count
719   if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)) {
720     if(rs1[i-1]) if(hsn[rs1[i-1]]>1) hsn[rs1[i-1]]=1;
721     if(rs2[i-1]) if(hsn[rs2[i-1]]>1) hsn[rs2[i-1]]=1;
722     hsn[CCREG]=1;
723     // ...or hash tables
724     hsn[RHASH]=1;
725     hsn[RHTBL]=1;
726   }
727   // Coprocessor load/store needs FTEMP, even if not declared
728   if(itype[i]==C1LS||itype[i]==C2LS) {
729     hsn[FTEMP]=0;
730   }
731   // Load L/R also uses FTEMP as a temporary register
732   if(itype[i]==LOADLR) {
733     hsn[FTEMP]=0;
734   }
735   // Also SWL/SWR/SDL/SDR
736   if(opcode[i]==0x2a||opcode[i]==0x2e||opcode[i]==0x2c||opcode[i]==0x2d) {
737     hsn[FTEMP]=0;
738   }
739   // Don't remove the TLB registers either
740   if(itype[i]==LOAD || itype[i]==LOADLR || itype[i]==STORE || itype[i]==STORELR || itype[i]==C1LS || itype[i]==C2LS) {
741     hsn[TLREG]=0;
742   }
743   // Don't remove the miniht registers
744   if(itype[i]==UJUMP||itype[i]==RJUMP)
745   {
746     hsn[RHASH]=0;
747     hsn[RHTBL]=0;
748   }
749 }
750
751 // We only want to allocate registers if we're going to use them again soon
752 int needed_again(int r, int i)
753 {
754   int j;
755   int b=-1;
756   int rn=10;
757   
758   if(i>0&&(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000))
759   {
760     if(ba[i-1]<start || ba[i-1]>start+slen*4-4)
761       return 0; // Don't need any registers if exiting the block
762   }
763   for(j=0;j<9;j++)
764   {
765     if(i+j>=slen) {
766       j=slen-i-1;
767       break;
768     }
769     if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
770     {
771       // Don't go past an unconditonal jump
772       j++;
773       break;
774     }
775     if(itype[i+j]==SYSCALL||itype[i+j]==HLECALL||itype[i+j]==INTCALL||((source[i+j]&0xfc00003f)==0x0d))
776     {
777       break;
778     }
779   }
780   for(;j>=1;j--)
781   {
782     if(rs1[i+j]==r) rn=j;
783     if(rs2[i+j]==r) rn=j;
784     if((unneeded_reg[i+j]>>r)&1) rn=10;
785     if(i+j>=0&&(itype[i+j]==UJUMP||itype[i+j]==CJUMP||itype[i+j]==SJUMP||itype[i+j]==FJUMP))
786     {
787       b=j;
788     }
789   }
790   /*
791   if(b>=0)
792   {
793     if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
794     {
795       // Follow first branch
796       int o=rn;
797       int t=(ba[i+b]-start)>>2;
798       j=7-b;if(t+j>=slen) j=slen-t-1;
799       for(;j>=0;j--)
800       {
801         if(!((unneeded_reg[t+j]>>r)&1)) {
802           if(rs1[t+j]==r) if(rn>j+b+2) rn=j+b+2;
803           if(rs2[t+j]==r) if(rn>j+b+2) rn=j+b+2;
804         }
805         else rn=o;
806       }
807     }
808   }*/
809   if(rn<10) return 1;
810   return 0;
811 }
812
813 // Try to match register allocations at the end of a loop with those
814 // at the beginning
815 int loop_reg(int i, int r, int hr)
816 {
817   int j,k;
818   for(j=0;j<9;j++)
819   {
820     if(i+j>=slen) {
821       j=slen-i-1;
822       break;
823     }
824     if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
825     {
826       // Don't go past an unconditonal jump
827       j++;
828       break;
829     }
830   }
831   k=0;
832   if(i>0){
833     if(itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)
834       k--;
835   }
836   for(;k<j;k++)
837   {
838     if(r<64&&((unneeded_reg[i+k]>>r)&1)) return hr;
839     if(r>64&&((unneeded_reg_upper[i+k]>>r)&1)) return hr;
840     if(i+k>=0&&(itype[i+k]==UJUMP||itype[i+k]==CJUMP||itype[i+k]==SJUMP||itype[i+k]==FJUMP))
841     {
842       if(ba[i+k]>=start && ba[i+k]<(start+i*4))
843       {
844         int t=(ba[i+k]-start)>>2;
845         int reg=get_reg(regs[t].regmap_entry,r);
846         if(reg>=0) return reg;
847         //reg=get_reg(regs[t+1].regmap_entry,r);
848         //if(reg>=0) return reg;
849       }
850     }
851   }
852   return hr;
853 }
854
855
856 // Allocate every register, preserving source/target regs
857 void alloc_all(struct regstat *cur,int i)
858 {
859   int hr;
860   
861   for(hr=0;hr<HOST_REGS;hr++) {
862     if(hr!=EXCLUDE_REG) {
863       if(((cur->regmap[hr]&63)!=rs1[i])&&((cur->regmap[hr]&63)!=rs2[i])&&
864          ((cur->regmap[hr]&63)!=rt1[i])&&((cur->regmap[hr]&63)!=rt2[i]))
865       {
866         cur->regmap[hr]=-1;
867         cur->dirty&=~(1<<hr);
868       }
869       // Don't need zeros
870       if((cur->regmap[hr]&63)==0)
871       {
872         cur->regmap[hr]=-1;
873         cur->dirty&=~(1<<hr);
874       }
875     }
876   }
877 }
878
879 #ifndef FORCE32
880 void div64(int64_t dividend,int64_t divisor)
881 {
882   lo=dividend/divisor;
883   hi=dividend%divisor;
884   //printf("TRACE: ddiv %8x%8x %8x%8x\n" ,(int)reg[HIREG],(int)(reg[HIREG]>>32)
885   //                                     ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
886 }
887 void divu64(uint64_t dividend,uint64_t divisor)
888 {
889   lo=dividend/divisor;
890   hi=dividend%divisor;
891   //printf("TRACE: ddivu %8x%8x %8x%8x\n",(int)reg[HIREG],(int)(reg[HIREG]>>32)
892   //                                     ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
893 }
894
895 void mult64(uint64_t m1,uint64_t m2)
896 {
897    unsigned long long int op1, op2, op3, op4;
898    unsigned long long int result1, result2, result3, result4;
899    unsigned long long int temp1, temp2, temp3, temp4;
900    int sign = 0;
901    
902    if (m1 < 0)
903      {
904     op2 = -m1;
905     sign = 1 - sign;
906      }
907    else op2 = m1;
908    if (m2 < 0)
909      {
910     op4 = -m2;
911     sign = 1 - sign;
912      }
913    else op4 = m2;
914    
915    op1 = op2 & 0xFFFFFFFF;
916    op2 = (op2 >> 32) & 0xFFFFFFFF;
917    op3 = op4 & 0xFFFFFFFF;
918    op4 = (op4 >> 32) & 0xFFFFFFFF;
919    
920    temp1 = op1 * op3;
921    temp2 = (temp1 >> 32) + op1 * op4;
922    temp3 = op2 * op3;
923    temp4 = (temp3 >> 32) + op2 * op4;
924    
925    result1 = temp1 & 0xFFFFFFFF;
926    result2 = temp2 + (temp3 & 0xFFFFFFFF);
927    result3 = (result2 >> 32) + temp4;
928    result4 = (result3 >> 32);
929    
930    lo = result1 | (result2 << 32);
931    hi = (result3 & 0xFFFFFFFF) | (result4 << 32);
932    if (sign)
933      {
934     hi = ~hi;
935     if (!lo) hi++;
936     else lo = ~lo + 1;
937      }
938 }
939
940 void multu64(uint64_t m1,uint64_t m2)
941 {
942    unsigned long long int op1, op2, op3, op4;
943    unsigned long long int result1, result2, result3, result4;
944    unsigned long long int temp1, temp2, temp3, temp4;
945    
946    op1 = m1 & 0xFFFFFFFF;
947    op2 = (m1 >> 32) & 0xFFFFFFFF;
948    op3 = m2 & 0xFFFFFFFF;
949    op4 = (m2 >> 32) & 0xFFFFFFFF;
950    
951    temp1 = op1 * op3;
952    temp2 = (temp1 >> 32) + op1 * op4;
953    temp3 = op2 * op3;
954    temp4 = (temp3 >> 32) + op2 * op4;
955    
956    result1 = temp1 & 0xFFFFFFFF;
957    result2 = temp2 + (temp3 & 0xFFFFFFFF);
958    result3 = (result2 >> 32) + temp4;
959    result4 = (result3 >> 32);
960    
961    lo = result1 | (result2 << 32);
962    hi = (result3 & 0xFFFFFFFF) | (result4 << 32);
963    
964   //printf("TRACE: dmultu %8x%8x %8x%8x\n",(int)reg[HIREG],(int)(reg[HIREG]>>32)
965   //                                      ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
966 }
967
968 uint64_t ldl_merge(uint64_t original,uint64_t loaded,u_int bits)
969 {
970   if(bits) {
971     original<<=64-bits;
972     original>>=64-bits;
973     loaded<<=bits;
974     original|=loaded;
975   }
976   else original=loaded;
977   return original;
978 }
979 uint64_t ldr_merge(uint64_t original,uint64_t loaded,u_int bits)
980 {
981   if(bits^56) {
982     original>>=64-(bits^56);
983     original<<=64-(bits^56);
984     loaded>>=bits^56;
985     original|=loaded;
986   }
987   else original=loaded;
988   return original;
989 }
990 #endif
991
992 #ifdef __i386__
993 #include "assem_x86.c"
994 #endif
995 #ifdef __x86_64__
996 #include "assem_x64.c"
997 #endif
998 #ifdef __arm__
999 #include "assem_arm.c"
1000 #endif
1001
1002 // Add virtual address mapping to linked list
1003 void ll_add(struct ll_entry **head,int vaddr,void *addr)
1004 {
1005   struct ll_entry *new_entry;
1006   new_entry=malloc(sizeof(struct ll_entry));
1007   assert(new_entry!=NULL);
1008   new_entry->vaddr=vaddr;
1009   new_entry->reg32=0;
1010   new_entry->addr=addr;
1011   new_entry->next=*head;
1012   *head=new_entry;
1013 }
1014
1015 // Add virtual address mapping for 32-bit compiled block
1016 void ll_add_32(struct ll_entry **head,int vaddr,u_int reg32,void *addr)
1017 {
1018   ll_add(head,vaddr,addr);
1019 #ifndef FORCE32
1020   (*head)->reg32=reg32;
1021 #endif
1022 }
1023
1024 // Check if an address is already compiled
1025 // but don't return addresses which are about to expire from the cache
1026 void *check_addr(u_int vaddr)
1027 {
1028   u_int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
1029   if(ht_bin[0]==vaddr) {
1030     if(((ht_bin[1]-MAX_OUTPUT_BLOCK_SIZE-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
1031       if(isclean(ht_bin[1])) return (void *)ht_bin[1];
1032   }
1033   if(ht_bin[2]==vaddr) {
1034     if(((ht_bin[3]-MAX_OUTPUT_BLOCK_SIZE-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
1035       if(isclean(ht_bin[3])) return (void *)ht_bin[3];
1036   }
1037   u_int page=get_page(vaddr);
1038   struct ll_entry *head;
1039   head=jump_in[page];
1040   while(head!=NULL) {
1041     if(head->vaddr==vaddr&&head->reg32==0) {
1042       if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1043         // Update existing entry with current address
1044         if(ht_bin[0]==vaddr) {
1045           ht_bin[1]=(int)head->addr;
1046           return head->addr;
1047         }
1048         if(ht_bin[2]==vaddr) {
1049           ht_bin[3]=(int)head->addr;
1050           return head->addr;
1051         }
1052         // Insert into hash table with low priority.
1053         // Don't evict existing entries, as they are probably
1054         // addresses that are being accessed frequently.
1055         if(ht_bin[0]==-1) {
1056           ht_bin[1]=(int)head->addr;
1057           ht_bin[0]=vaddr;
1058         }else if(ht_bin[2]==-1) {
1059           ht_bin[3]=(int)head->addr;
1060           ht_bin[2]=vaddr;
1061         }
1062         return head->addr;
1063       }
1064     }
1065     head=head->next;
1066   }
1067   return 0;
1068 }
1069
1070 void remove_hash(int vaddr)
1071 {
1072   //printf("remove hash: %x\n",vaddr);
1073   int *ht_bin=hash_table[(((vaddr)>>16)^vaddr)&0xFFFF];
1074   if(ht_bin[2]==vaddr) {
1075     ht_bin[2]=ht_bin[3]=-1;
1076   }
1077   if(ht_bin[0]==vaddr) {
1078     ht_bin[0]=ht_bin[2];
1079     ht_bin[1]=ht_bin[3];
1080     ht_bin[2]=ht_bin[3]=-1;
1081   }
1082 }
1083
1084 void ll_remove_matching_addrs(struct ll_entry **head,int addr,int shift)
1085 {
1086   struct ll_entry *next;
1087   while(*head) {
1088     if(((u_int)((*head)->addr)>>shift)==(addr>>shift) || 
1089        ((u_int)((*head)->addr-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(addr>>shift))
1090     {
1091       inv_debug("EXP: Remove pointer to %x (%x)\n",(int)(*head)->addr,(*head)->vaddr);
1092       remove_hash((*head)->vaddr);
1093       next=(*head)->next;
1094       free(*head);
1095       *head=next;
1096     }
1097     else
1098     {
1099       head=&((*head)->next);
1100     }
1101   }
1102 }
1103
1104 // Remove all entries from linked list
1105 void ll_clear(struct ll_entry **head)
1106 {
1107   struct ll_entry *cur;
1108   struct ll_entry *next;
1109   if(cur=*head) {
1110     *head=0;
1111     while(cur) {
1112       next=cur->next;
1113       free(cur);
1114       cur=next;
1115     }
1116   }
1117 }
1118
1119 // Dereference the pointers and remove if it matches
1120 void ll_kill_pointers(struct ll_entry *head,int addr,int shift)
1121 {
1122   while(head) {
1123     int ptr=get_pointer(head->addr);
1124     inv_debug("EXP: Lookup pointer to %x at %x (%x)\n",(int)ptr,(int)head->addr,head->vaddr);
1125     if(((ptr>>shift)==(addr>>shift)) ||
1126        (((ptr-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(addr>>shift)))
1127     {
1128       inv_debug("EXP: Kill pointer at %x (%x)\n",(int)head->addr,head->vaddr);
1129       u_int host_addr=(u_int)kill_pointer(head->addr);
1130       #ifdef __arm__
1131         needs_clear_cache[(host_addr-(u_int)BASE_ADDR)>>17]|=1<<(((host_addr-(u_int)BASE_ADDR)>>12)&31);
1132       #endif
1133     }
1134     head=head->next;
1135   }
1136 }
1137
1138 // This is called when we write to a compiled block (see do_invstub)
1139 void invalidate_page(u_int page)
1140 {
1141   struct ll_entry *head;
1142   struct ll_entry *next;
1143   head=jump_in[page];
1144   jump_in[page]=0;
1145   while(head!=NULL) {
1146     inv_debug("INVALIDATE: %x\n",head->vaddr);
1147     remove_hash(head->vaddr);
1148     next=head->next;
1149     free(head);
1150     head=next;
1151   }
1152   head=jump_out[page];
1153   jump_out[page]=0;
1154   while(head!=NULL) {
1155     inv_debug("INVALIDATE: kill pointer to %x (%x)\n",head->vaddr,(int)head->addr);
1156     u_int host_addr=(u_int)kill_pointer(head->addr);
1157     #ifdef __arm__
1158       needs_clear_cache[(host_addr-(u_int)BASE_ADDR)>>17]|=1<<(((host_addr-(u_int)BASE_ADDR)>>12)&31);
1159     #endif
1160     next=head->next;
1161     free(head);
1162     head=next;
1163   }
1164 }
1165
1166 static void invalidate_block_range(u_int block, u_int first, u_int last)
1167 {
1168   u_int page=get_page(block<<12);
1169   //printf("first=%d last=%d\n",first,last);
1170   invalidate_page(page);
1171   assert(first+5>page); // NB: this assumes MAXBLOCK<=4096 (4 pages)
1172   assert(last<page+5);
1173   // Invalidate the adjacent pages if a block crosses a 4K boundary
1174   while(first<page) {
1175     invalidate_page(first);
1176     first++;
1177   }
1178   for(first=page+1;first<last;first++) {
1179     invalidate_page(first);
1180   }
1181   #ifdef __arm__
1182     do_clear_cache();
1183   #endif
1184   
1185   // Don't trap writes
1186   invalid_code[block]=1;
1187 #ifndef DISABLE_TLB
1188   // If there is a valid TLB entry for this page, remove write protect
1189   if(tlb_LUT_w[block]) {
1190     assert(tlb_LUT_r[block]==tlb_LUT_w[block]);
1191     // CHECK: Is this right?
1192     memory_map[block]=((tlb_LUT_w[block]&0xFFFFF000)-(block<<12)+(unsigned int)rdram-0x80000000)>>2;
1193     u_int real_block=tlb_LUT_w[block]>>12;
1194     invalid_code[real_block]=1;
1195     if(real_block>=0x80000&&real_block<0x80800) memory_map[real_block]=((u_int)rdram-0x80000000)>>2;
1196   }
1197   else if(block>=0x80000&&block<0x80800) memory_map[block]=((u_int)rdram-0x80000000)>>2;
1198 #endif
1199
1200   #ifdef USE_MINI_HT
1201   memset(mini_ht,-1,sizeof(mini_ht));
1202   #endif
1203 }
1204
1205 void invalidate_block(u_int block)
1206 {
1207   u_int page=get_page(block<<12);
1208   u_int vpage=get_vpage(block<<12);
1209   inv_debug("INVALIDATE: %x (%d)\n",block<<12,page);
1210   //inv_debug("invalid_code[block]=%d\n",invalid_code[block]);
1211   u_int first,last;
1212   first=last=page;
1213   struct ll_entry *head;
1214   head=jump_dirty[vpage];
1215   //printf("page=%d vpage=%d\n",page,vpage);
1216   while(head!=NULL) {
1217     u_int start,end;
1218     if(vpage>2047||(head->vaddr>>12)==block) { // Ignore vaddr hash collision
1219       get_bounds((int)head->addr,&start,&end);
1220       //printf("start: %x end: %x\n",start,end);
1221       if(page<2048&&start>=(u_int)rdram&&end<(u_int)rdram+RAM_SIZE) {
1222         if(((start-(u_int)rdram)>>12)<=page&&((end-1-(u_int)rdram)>>12)>=page) {
1223           if((((start-(u_int)rdram)>>12)&2047)<first) first=((start-(u_int)rdram)>>12)&2047;
1224           if((((end-1-(u_int)rdram)>>12)&2047)>last) last=((end-1-(u_int)rdram)>>12)&2047;
1225         }
1226       }
1227 #ifndef DISABLE_TLB
1228       if(page<2048&&(signed int)start>=(signed int)0xC0000000&&(signed int)end>=(signed int)0xC0000000) {
1229         if(((start+memory_map[start>>12]-(u_int)rdram)>>12)<=page&&((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)>=page) {
1230           if((((start+memory_map[start>>12]-(u_int)rdram)>>12)&2047)<first) first=((start+memory_map[start>>12]-(u_int)rdram)>>12)&2047;
1231           if((((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)&2047)>last) last=((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)&2047;
1232         }
1233       }
1234 #endif
1235     }
1236     head=head->next;
1237   }
1238   invalidate_block_range(block,first,last);
1239 }
1240
1241 void invalidate_addr(u_int addr)
1242 {
1243 #ifdef PCSX
1244   //static int rhits;
1245   // this check is done by the caller
1246   //if (inv_code_start<=addr&&addr<=inv_code_end) { rhits++; return; }
1247   u_int page=get_vpage(addr);
1248   if(page<2048) { // RAM
1249     struct ll_entry *head;
1250     u_int addr_min=~0, addr_max=0;
1251     u_int mask=RAM_SIZE-1;
1252     u_int addr_main=0x80000000|(addr&mask);
1253     int pg1;
1254     inv_code_start=addr_main&~0xfff;
1255     inv_code_end=addr_main|0xfff;
1256     pg1=page;
1257     if (pg1>0) {
1258       // must check previous page too because of spans..
1259       pg1--;
1260       inv_code_start-=0x1000;
1261     }
1262     for(;pg1<=page;pg1++) {
1263       for(head=jump_dirty[pg1];head!=NULL;head=head->next) {
1264         u_int start,end;
1265         get_bounds((int)head->addr,&start,&end);
1266         if(ram_offset) {
1267           start-=ram_offset;
1268           end-=ram_offset;
1269         }
1270         if(start<=addr_main&&addr_main<end) {
1271           if(start<addr_min) addr_min=start;
1272           if(end>addr_max) addr_max=end;
1273         }
1274         else if(addr_main<start) {
1275           if(start<inv_code_end)
1276             inv_code_end=start-1;
1277         }
1278         else {
1279           if(end>inv_code_start)
1280             inv_code_start=end;
1281         }
1282       }
1283     }
1284     if (addr_min!=~0) {
1285       inv_debug("INV ADDR: %08x hit %08x-%08x\n", addr, addr_min, addr_max);
1286       inv_code_start=inv_code_end=~0;
1287       invalidate_block_range(addr>>12,(addr_min&mask)>>12,(addr_max&mask)>>12);
1288       return;
1289     }
1290     else {
1291       inv_code_start=(addr&~mask)|(inv_code_start&mask);
1292       inv_code_end=(addr&~mask)|(inv_code_end&mask);
1293       inv_debug("INV ADDR: %08x miss, inv %08x-%08x, sk %d\n", addr, inv_code_start, inv_code_end, 0);
1294       return;
1295     }
1296   }
1297 #endif
1298   invalidate_block(addr>>12);
1299 }
1300
1301 // This is called when loading a save state.
1302 // Anything could have changed, so invalidate everything.
1303 void invalidate_all_pages()
1304 {
1305   u_int page,n;
1306   for(page=0;page<4096;page++)
1307     invalidate_page(page);
1308   for(page=0;page<1048576;page++)
1309     if(!invalid_code[page]) {
1310       restore_candidate[(page&2047)>>3]|=1<<(page&7);
1311       restore_candidate[((page&2047)>>3)+256]|=1<<(page&7);
1312     }
1313   #ifdef __arm__
1314   __clear_cache((void *)BASE_ADDR,(void *)BASE_ADDR+(1<<TARGET_SIZE_2));
1315   #endif
1316   #ifdef USE_MINI_HT
1317   memset(mini_ht,-1,sizeof(mini_ht));
1318   #endif
1319   #ifndef DISABLE_TLB
1320   // TLB
1321   for(page=0;page<0x100000;page++) {
1322     if(tlb_LUT_r[page]) {
1323       memory_map[page]=((tlb_LUT_r[page]&0xFFFFF000)-(page<<12)+(unsigned int)rdram-0x80000000)>>2;
1324       if(!tlb_LUT_w[page]||!invalid_code[page])
1325         memory_map[page]|=0x40000000; // Write protect
1326     }
1327     else memory_map[page]=-1;
1328     if(page==0x80000) page=0xC0000;
1329   }
1330   tlb_hacks();
1331   #endif
1332 }
1333
1334 // Add an entry to jump_out after making a link
1335 void add_link(u_int vaddr,void *src)
1336 {
1337   u_int page=get_page(vaddr);
1338   inv_debug("add_link: %x -> %x (%d)\n",(int)src,vaddr,page);
1339   int *ptr=(int *)(src+4);
1340   assert((*ptr&0x0fff0000)==0x059f0000);
1341   ll_add(jump_out+page,vaddr,src);
1342   //int ptr=get_pointer(src);
1343   //inv_debug("add_link: Pointer is to %x\n",(int)ptr);
1344 }
1345
1346 // If a code block was found to be unmodified (bit was set in
1347 // restore_candidate) and it remains unmodified (bit is clear
1348 // in invalid_code) then move the entries for that 4K page from
1349 // the dirty list to the clean list.
1350 void clean_blocks(u_int page)
1351 {
1352   struct ll_entry *head;
1353   inv_debug("INV: clean_blocks page=%d\n",page);
1354   head=jump_dirty[page];
1355   while(head!=NULL) {
1356     if(!invalid_code[head->vaddr>>12]) {
1357       // Don't restore blocks which are about to expire from the cache
1358       if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1359         u_int start,end;
1360         if(verify_dirty((int)head->addr)) {
1361           //printf("Possibly Restore %x (%x)\n",head->vaddr, (int)head->addr);
1362           u_int i;
1363           u_int inv=0;
1364           get_bounds((int)head->addr,&start,&end);
1365           if(start-(u_int)rdram<RAM_SIZE) {
1366             for(i=(start-(u_int)rdram+0x80000000)>>12;i<=(end-1-(u_int)rdram+0x80000000)>>12;i++) {
1367               inv|=invalid_code[i];
1368             }
1369           }
1370 #ifndef DISABLE_TLB
1371           if((signed int)head->vaddr>=(signed int)0xC0000000) {
1372             u_int addr = (head->vaddr+(memory_map[head->vaddr>>12]<<2));
1373             //printf("addr=%x start=%x end=%x\n",addr,start,end);
1374             if(addr<start||addr>=end) inv=1;
1375           }
1376 #endif
1377           else if((signed int)head->vaddr>=(signed int)0x80000000+RAM_SIZE) {
1378             inv=1;
1379           }
1380           if(!inv) {
1381             void * clean_addr=(void *)get_clean_addr((int)head->addr);
1382             if((((u_int)clean_addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1383               u_int ppage=page;
1384 #ifndef DISABLE_TLB
1385               if(page<2048&&tlb_LUT_r[head->vaddr>>12]) ppage=(tlb_LUT_r[head->vaddr>>12]^0x80000000)>>12;
1386 #endif
1387               inv_debug("INV: Restored %x (%x/%x)\n",head->vaddr, (int)head->addr, (int)clean_addr);
1388               //printf("page=%x, addr=%x\n",page,head->vaddr);
1389               //assert(head->vaddr>>12==(page|0x80000));
1390               ll_add_32(jump_in+ppage,head->vaddr,head->reg32,clean_addr);
1391               int *ht_bin=hash_table[((head->vaddr>>16)^head->vaddr)&0xFFFF];
1392               if(!head->reg32) {
1393                 if(ht_bin[0]==head->vaddr) {
1394                   ht_bin[1]=(int)clean_addr; // Replace existing entry
1395                 }
1396                 if(ht_bin[2]==head->vaddr) {
1397                   ht_bin[3]=(int)clean_addr; // Replace existing entry
1398                 }
1399               }
1400             }
1401           }
1402         }
1403       }
1404     }
1405     head=head->next;
1406   }
1407 }
1408
1409
1410 void mov_alloc(struct regstat *current,int i)
1411 {
1412   // Note: Don't need to actually alloc the source registers
1413   if((~current->is32>>rs1[i])&1) {
1414     //alloc_reg64(current,i,rs1[i]);
1415     alloc_reg64(current,i,rt1[i]);
1416     current->is32&=~(1LL<<rt1[i]);
1417   } else {
1418     //alloc_reg(current,i,rs1[i]);
1419     alloc_reg(current,i,rt1[i]);
1420     current->is32|=(1LL<<rt1[i]);
1421   }
1422   clear_const(current,rs1[i]);
1423   clear_const(current,rt1[i]);
1424   dirty_reg(current,rt1[i]);
1425 }
1426
1427 void shiftimm_alloc(struct regstat *current,int i)
1428 {
1429   if(opcode2[i]<=0x3) // SLL/SRL/SRA
1430   {
1431     if(rt1[i]) {
1432       if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1433       else lt1[i]=rs1[i];
1434       alloc_reg(current,i,rt1[i]);
1435       current->is32|=1LL<<rt1[i];
1436       dirty_reg(current,rt1[i]);
1437       if(is_const(current,rs1[i])) {
1438         int v=get_const(current,rs1[i]);
1439         if(opcode2[i]==0x00) set_const(current,rt1[i],v<<imm[i]);
1440         if(opcode2[i]==0x02) set_const(current,rt1[i],(u_int)v>>imm[i]);
1441         if(opcode2[i]==0x03) set_const(current,rt1[i],v>>imm[i]);
1442       }
1443       else clear_const(current,rt1[i]);
1444     }
1445   }
1446   else
1447   {
1448     clear_const(current,rs1[i]);
1449     clear_const(current,rt1[i]);
1450   }
1451
1452   if(opcode2[i]>=0x38&&opcode2[i]<=0x3b) // DSLL/DSRL/DSRA
1453   {
1454     if(rt1[i]) {
1455       if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1456       alloc_reg64(current,i,rt1[i]);
1457       current->is32&=~(1LL<<rt1[i]);
1458       dirty_reg(current,rt1[i]);
1459     }
1460   }
1461   if(opcode2[i]==0x3c) // DSLL32
1462   {
1463     if(rt1[i]) {
1464       if(rs1[i]) alloc_reg(current,i,rs1[i]);
1465       alloc_reg64(current,i,rt1[i]);
1466       current->is32&=~(1LL<<rt1[i]);
1467       dirty_reg(current,rt1[i]);
1468     }
1469   }
1470   if(opcode2[i]==0x3e) // DSRL32
1471   {
1472     if(rt1[i]) {
1473       alloc_reg64(current,i,rs1[i]);
1474       if(imm[i]==32) {
1475         alloc_reg64(current,i,rt1[i]);
1476         current->is32&=~(1LL<<rt1[i]);
1477       } else {
1478         alloc_reg(current,i,rt1[i]);
1479         current->is32|=1LL<<rt1[i];
1480       }
1481       dirty_reg(current,rt1[i]);
1482     }
1483   }
1484   if(opcode2[i]==0x3f) // DSRA32
1485   {
1486     if(rt1[i]) {
1487       alloc_reg64(current,i,rs1[i]);
1488       alloc_reg(current,i,rt1[i]);
1489       current->is32|=1LL<<rt1[i];
1490       dirty_reg(current,rt1[i]);
1491     }
1492   }
1493 }
1494
1495 void shift_alloc(struct regstat *current,int i)
1496 {
1497   if(rt1[i]) {
1498     if(opcode2[i]<=0x07) // SLLV/SRLV/SRAV
1499     {
1500       if(rs1[i]) alloc_reg(current,i,rs1[i]);
1501       if(rs2[i]) alloc_reg(current,i,rs2[i]);
1502       alloc_reg(current,i,rt1[i]);
1503       if(rt1[i]==rs2[i]) {
1504         alloc_reg_temp(current,i,-1);
1505         minimum_free_regs[i]=1;
1506       }
1507       current->is32|=1LL<<rt1[i];
1508     } else { // DSLLV/DSRLV/DSRAV
1509       if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1510       if(rs2[i]) alloc_reg(current,i,rs2[i]);
1511       alloc_reg64(current,i,rt1[i]);
1512       current->is32&=~(1LL<<rt1[i]);
1513       if(opcode2[i]==0x16||opcode2[i]==0x17) // DSRLV and DSRAV need a temporary register
1514       {
1515         alloc_reg_temp(current,i,-1);
1516         minimum_free_regs[i]=1;
1517       }
1518     }
1519     clear_const(current,rs1[i]);
1520     clear_const(current,rs2[i]);
1521     clear_const(current,rt1[i]);
1522     dirty_reg(current,rt1[i]);
1523   }
1524 }
1525
1526 void alu_alloc(struct regstat *current,int i)
1527 {
1528   if(opcode2[i]>=0x20&&opcode2[i]<=0x23) { // ADD/ADDU/SUB/SUBU
1529     if(rt1[i]) {
1530       if(rs1[i]&&rs2[i]) {
1531         alloc_reg(current,i,rs1[i]);
1532         alloc_reg(current,i,rs2[i]);
1533       }
1534       else {
1535         if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1536         if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg(current,i,rs2[i]);
1537       }
1538       alloc_reg(current,i,rt1[i]);
1539     }
1540     current->is32|=1LL<<rt1[i];
1541   }
1542   if(opcode2[i]==0x2a||opcode2[i]==0x2b) { // SLT/SLTU
1543     if(rt1[i]) {
1544       if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1545       {
1546         alloc_reg64(current,i,rs1[i]);
1547         alloc_reg64(current,i,rs2[i]);
1548         alloc_reg(current,i,rt1[i]);
1549       } else {
1550         alloc_reg(current,i,rs1[i]);
1551         alloc_reg(current,i,rs2[i]);
1552         alloc_reg(current,i,rt1[i]);
1553       }
1554     }
1555     current->is32|=1LL<<rt1[i];
1556   }
1557   if(opcode2[i]>=0x24&&opcode2[i]<=0x27) { // AND/OR/XOR/NOR
1558     if(rt1[i]) {
1559       if(rs1[i]&&rs2[i]) {
1560         alloc_reg(current,i,rs1[i]);
1561         alloc_reg(current,i,rs2[i]);
1562       }
1563       else
1564       {
1565         if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1566         if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg(current,i,rs2[i]);
1567       }
1568       alloc_reg(current,i,rt1[i]);
1569       if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1570       {
1571         if(!((current->uu>>rt1[i])&1)) {
1572           alloc_reg64(current,i,rt1[i]);
1573         }
1574         if(get_reg(current->regmap,rt1[i]|64)>=0) {
1575           if(rs1[i]&&rs2[i]) {
1576             alloc_reg64(current,i,rs1[i]);
1577             alloc_reg64(current,i,rs2[i]);
1578           }
1579           else
1580           {
1581             // Is is really worth it to keep 64-bit values in registers?
1582             #ifdef NATIVE_64BIT
1583             if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg64(current,i,rs1[i]);
1584             if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg64(current,i,rs2[i]);
1585             #endif
1586           }
1587         }
1588         current->is32&=~(1LL<<rt1[i]);
1589       } else {
1590         current->is32|=1LL<<rt1[i];
1591       }
1592     }
1593   }
1594   if(opcode2[i]>=0x2c&&opcode2[i]<=0x2f) { // DADD/DADDU/DSUB/DSUBU
1595     if(rt1[i]) {
1596       if(rs1[i]&&rs2[i]) {
1597         if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1598           alloc_reg64(current,i,rs1[i]);
1599           alloc_reg64(current,i,rs2[i]);
1600           alloc_reg64(current,i,rt1[i]);
1601         } else {
1602           alloc_reg(current,i,rs1[i]);
1603           alloc_reg(current,i,rs2[i]);
1604           alloc_reg(current,i,rt1[i]);
1605         }
1606       }
1607       else {
1608         alloc_reg(current,i,rt1[i]);
1609         if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1610           // DADD used as move, or zeroing
1611           // If we have a 64-bit source, then make the target 64 bits too
1612           if(rs1[i]&&!((current->is32>>rs1[i])&1)) {
1613             if(get_reg(current->regmap,rs1[i])>=0) alloc_reg64(current,i,rs1[i]);
1614             alloc_reg64(current,i,rt1[i]);
1615           } else if(rs2[i]&&!((current->is32>>rs2[i])&1)) {
1616             if(get_reg(current->regmap,rs2[i])>=0) alloc_reg64(current,i,rs2[i]);
1617             alloc_reg64(current,i,rt1[i]);
1618           }
1619           if(opcode2[i]>=0x2e&&rs2[i]) {
1620             // DSUB used as negation - 64-bit result
1621             // If we have a 32-bit register, extend it to 64 bits
1622             if(get_reg(current->regmap,rs2[i])>=0) alloc_reg64(current,i,rs2[i]);
1623             alloc_reg64(current,i,rt1[i]);
1624           }
1625         }
1626       }
1627       if(rs1[i]&&rs2[i]) {
1628         current->is32&=~(1LL<<rt1[i]);
1629       } else if(rs1[i]) {
1630         current->is32&=~(1LL<<rt1[i]);
1631         if((current->is32>>rs1[i])&1)
1632           current->is32|=1LL<<rt1[i];
1633       } else if(rs2[i]) {
1634         current->is32&=~(1LL<<rt1[i]);
1635         if((current->is32>>rs2[i])&1)
1636           current->is32|=1LL<<rt1[i];
1637       } else {
1638         current->is32|=1LL<<rt1[i];
1639       }
1640     }
1641   }
1642   clear_const(current,rs1[i]);
1643   clear_const(current,rs2[i]);
1644   clear_const(current,rt1[i]);
1645   dirty_reg(current,rt1[i]);
1646 }
1647
1648 void imm16_alloc(struct regstat *current,int i)
1649 {
1650   if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1651   else lt1[i]=rs1[i];
1652   if(rt1[i]) alloc_reg(current,i,rt1[i]);
1653   if(opcode[i]==0x18||opcode[i]==0x19) { // DADDI/DADDIU
1654     current->is32&=~(1LL<<rt1[i]);
1655     if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1656       // TODO: Could preserve the 32-bit flag if the immediate is zero
1657       alloc_reg64(current,i,rt1[i]);
1658       alloc_reg64(current,i,rs1[i]);
1659     }
1660     clear_const(current,rs1[i]);
1661     clear_const(current,rt1[i]);
1662   }
1663   else if(opcode[i]==0x0a||opcode[i]==0x0b) { // SLTI/SLTIU
1664     if((~current->is32>>rs1[i])&1) alloc_reg64(current,i,rs1[i]);
1665     current->is32|=1LL<<rt1[i];
1666     clear_const(current,rs1[i]);
1667     clear_const(current,rt1[i]);
1668   }
1669   else if(opcode[i]>=0x0c&&opcode[i]<=0x0e) { // ANDI/ORI/XORI
1670     if(((~current->is32>>rs1[i])&1)&&opcode[i]>0x0c) {
1671       if(rs1[i]!=rt1[i]) {
1672         if(needed_again(rs1[i],i)) alloc_reg64(current,i,rs1[i]);
1673         alloc_reg64(current,i,rt1[i]);
1674         current->is32&=~(1LL<<rt1[i]);
1675       }
1676     }
1677     else current->is32|=1LL<<rt1[i]; // ANDI clears upper bits
1678     if(is_const(current,rs1[i])) {
1679       int v=get_const(current,rs1[i]);
1680       if(opcode[i]==0x0c) set_const(current,rt1[i],v&imm[i]);
1681       if(opcode[i]==0x0d) set_const(current,rt1[i],v|imm[i]);
1682       if(opcode[i]==0x0e) set_const(current,rt1[i],v^imm[i]);
1683     }
1684     else clear_const(current,rt1[i]);
1685   }
1686   else if(opcode[i]==0x08||opcode[i]==0x09) { // ADDI/ADDIU
1687     if(is_const(current,rs1[i])) {
1688       int v=get_const(current,rs1[i]);
1689       set_const(current,rt1[i],v+imm[i]);
1690     }
1691     else clear_const(current,rt1[i]);
1692     current->is32|=1LL<<rt1[i];
1693   }
1694   else {
1695     set_const(current,rt1[i],((long long)((short)imm[i]))<<16); // LUI
1696     current->is32|=1LL<<rt1[i];
1697   }
1698   dirty_reg(current,rt1[i]);
1699 }
1700
1701 void load_alloc(struct regstat *current,int i)
1702 {
1703   clear_const(current,rt1[i]);
1704   //if(rs1[i]!=rt1[i]&&needed_again(rs1[i],i)) clear_const(current,rs1[i]); // Does this help or hurt?
1705   if(!rs1[i]) current->u&=~1LL; // Allow allocating r0 if it's the source register
1706   if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1707   if(rt1[i]&&!((current->u>>rt1[i])&1)) {
1708     alloc_reg(current,i,rt1[i]);
1709     assert(get_reg(current->regmap,rt1[i])>=0);
1710     if(opcode[i]==0x27||opcode[i]==0x37) // LWU/LD
1711     {
1712       current->is32&=~(1LL<<rt1[i]);
1713       alloc_reg64(current,i,rt1[i]);
1714     }
1715     else if(opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
1716     {
1717       current->is32&=~(1LL<<rt1[i]);
1718       alloc_reg64(current,i,rt1[i]);
1719       alloc_all(current,i);
1720       alloc_reg64(current,i,FTEMP);
1721       minimum_free_regs[i]=HOST_REGS;
1722     }
1723     else current->is32|=1LL<<rt1[i];
1724     dirty_reg(current,rt1[i]);
1725     // If using TLB, need a register for pointer to the mapping table
1726     if(using_tlb) alloc_reg(current,i,TLREG);
1727     // LWL/LWR need a temporary register for the old value
1728     if(opcode[i]==0x22||opcode[i]==0x26)
1729     {
1730       alloc_reg(current,i,FTEMP);
1731       alloc_reg_temp(current,i,-1);
1732       minimum_free_regs[i]=1;
1733     }
1734   }
1735   else
1736   {
1737     // Load to r0 or unneeded register (dummy load)
1738     // but we still need a register to calculate the address
1739     if(opcode[i]==0x22||opcode[i]==0x26)
1740     {
1741       alloc_reg(current,i,FTEMP); // LWL/LWR need another temporary
1742     }
1743     // If using TLB, need a register for pointer to the mapping table
1744     if(using_tlb) alloc_reg(current,i,TLREG);
1745     alloc_reg_temp(current,i,-1);
1746     minimum_free_regs[i]=1;
1747     if(opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
1748     {
1749       alloc_all(current,i);
1750       alloc_reg64(current,i,FTEMP);
1751       minimum_free_regs[i]=HOST_REGS;
1752     }
1753   }
1754 }
1755
1756 void store_alloc(struct regstat *current,int i)
1757 {
1758   clear_const(current,rs2[i]);
1759   if(!(rs2[i])) current->u&=~1LL; // Allow allocating r0 if necessary
1760   if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1761   alloc_reg(current,i,rs2[i]);
1762   if(opcode[i]==0x2c||opcode[i]==0x2d||opcode[i]==0x3f) { // 64-bit SDL/SDR/SD
1763     alloc_reg64(current,i,rs2[i]);
1764     if(rs2[i]) alloc_reg(current,i,FTEMP);
1765   }
1766   // If using TLB, need a register for pointer to the mapping table
1767   if(using_tlb) alloc_reg(current,i,TLREG);
1768   #if defined(HOST_IMM8)
1769   // On CPUs without 32-bit immediates we need a pointer to invalid_code
1770   else alloc_reg(current,i,INVCP);
1771   #endif
1772   if(opcode[i]==0x2a||opcode[i]==0x2e||opcode[i]==0x2c||opcode[i]==0x2d) { // SWL/SWL/SDL/SDR
1773     alloc_reg(current,i,FTEMP);
1774   }
1775   // We need a temporary register for address generation
1776   alloc_reg_temp(current,i,-1);
1777   minimum_free_regs[i]=1;
1778 }
1779
1780 void c1ls_alloc(struct regstat *current,int i)
1781 {
1782   //clear_const(current,rs1[i]); // FIXME
1783   clear_const(current,rt1[i]);
1784   if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1785   alloc_reg(current,i,CSREG); // Status
1786   alloc_reg(current,i,FTEMP);
1787   if(opcode[i]==0x35||opcode[i]==0x3d) { // 64-bit LDC1/SDC1
1788     alloc_reg64(current,i,FTEMP);
1789   }
1790   // If using TLB, need a register for pointer to the mapping table
1791   if(using_tlb) alloc_reg(current,i,TLREG);
1792   #if defined(HOST_IMM8)
1793   // On CPUs without 32-bit immediates we need a pointer to invalid_code
1794   else if((opcode[i]&0x3b)==0x39) // SWC1/SDC1
1795     alloc_reg(current,i,INVCP);
1796   #endif
1797   // We need a temporary register for address generation
1798   alloc_reg_temp(current,i,-1);
1799 }
1800
1801 void c2ls_alloc(struct regstat *current,int i)
1802 {
1803   clear_const(current,rt1[i]);
1804   if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1805   alloc_reg(current,i,FTEMP);
1806   // If using TLB, need a register for pointer to the mapping table
1807   if(using_tlb) alloc_reg(current,i,TLREG);
1808   #if defined(HOST_IMM8)
1809   // On CPUs without 32-bit immediates we need a pointer to invalid_code
1810   else if((opcode[i]&0x3b)==0x3a) // SWC2/SDC2
1811     alloc_reg(current,i,INVCP);
1812   #endif
1813   // We need a temporary register for address generation
1814   alloc_reg_temp(current,i,-1);
1815   minimum_free_regs[i]=1;
1816 }
1817
1818 #ifndef multdiv_alloc
1819 void multdiv_alloc(struct regstat *current,int i)
1820 {
1821   //  case 0x18: MULT
1822   //  case 0x19: MULTU
1823   //  case 0x1A: DIV
1824   //  case 0x1B: DIVU
1825   //  case 0x1C: DMULT
1826   //  case 0x1D: DMULTU
1827   //  case 0x1E: DDIV
1828   //  case 0x1F: DDIVU
1829   clear_const(current,rs1[i]);
1830   clear_const(current,rs2[i]);
1831   if(rs1[i]&&rs2[i])
1832   {
1833     if((opcode2[i]&4)==0) // 32-bit
1834     {
1835       current->u&=~(1LL<<HIREG);
1836       current->u&=~(1LL<<LOREG);
1837       alloc_reg(current,i,HIREG);
1838       alloc_reg(current,i,LOREG);
1839       alloc_reg(current,i,rs1[i]);
1840       alloc_reg(current,i,rs2[i]);
1841       current->is32|=1LL<<HIREG;
1842       current->is32|=1LL<<LOREG;
1843       dirty_reg(current,HIREG);
1844       dirty_reg(current,LOREG);
1845     }
1846     else // 64-bit
1847     {
1848       current->u&=~(1LL<<HIREG);
1849       current->u&=~(1LL<<LOREG);
1850       current->uu&=~(1LL<<HIREG);
1851       current->uu&=~(1LL<<LOREG);
1852       alloc_reg64(current,i,HIREG);
1853       //if(HOST_REGS>10) alloc_reg64(current,i,LOREG);
1854       alloc_reg64(current,i,rs1[i]);
1855       alloc_reg64(current,i,rs2[i]);
1856       alloc_all(current,i);
1857       current->is32&=~(1LL<<HIREG);
1858       current->is32&=~(1LL<<LOREG);
1859       dirty_reg(current,HIREG);
1860       dirty_reg(current,LOREG);
1861       minimum_free_regs[i]=HOST_REGS;
1862     }
1863   }
1864   else
1865   {
1866     // Multiply by zero is zero.
1867     // MIPS does not have a divide by zero exception.
1868     // The result is undefined, we return zero.
1869     alloc_reg(current,i,HIREG);
1870     alloc_reg(current,i,LOREG);
1871     current->is32|=1LL<<HIREG;
1872     current->is32|=1LL<<LOREG;
1873     dirty_reg(current,HIREG);
1874     dirty_reg(current,LOREG);
1875   }
1876 }
1877 #endif
1878
1879 void cop0_alloc(struct regstat *current,int i)
1880 {
1881   if(opcode2[i]==0) // MFC0
1882   {
1883     if(rt1[i]) {
1884       clear_const(current,rt1[i]);
1885       alloc_all(current,i);
1886       alloc_reg(current,i,rt1[i]);
1887       current->is32|=1LL<<rt1[i];
1888       dirty_reg(current,rt1[i]);
1889     }
1890   }
1891   else if(opcode2[i]==4) // MTC0
1892   {
1893     if(rs1[i]){
1894       clear_const(current,rs1[i]);
1895       alloc_reg(current,i,rs1[i]);
1896       alloc_all(current,i);
1897     }
1898     else {
1899       alloc_all(current,i); // FIXME: Keep r0
1900       current->u&=~1LL;
1901       alloc_reg(current,i,0);
1902     }
1903   }
1904   else
1905   {
1906     // TLBR/TLBWI/TLBWR/TLBP/ERET
1907     assert(opcode2[i]==0x10);
1908     alloc_all(current,i);
1909   }
1910   minimum_free_regs[i]=HOST_REGS;
1911 }
1912
1913 void cop1_alloc(struct regstat *current,int i)
1914 {
1915   alloc_reg(current,i,CSREG); // Load status
1916   if(opcode2[i]<3) // MFC1/DMFC1/CFC1
1917   {
1918     if(rt1[i]){
1919       clear_const(current,rt1[i]);
1920       if(opcode2[i]==1) {
1921         alloc_reg64(current,i,rt1[i]); // DMFC1
1922         current->is32&=~(1LL<<rt1[i]);
1923       }else{
1924         alloc_reg(current,i,rt1[i]); // MFC1/CFC1
1925         current->is32|=1LL<<rt1[i];
1926       }
1927       dirty_reg(current,rt1[i]);
1928     }
1929     alloc_reg_temp(current,i,-1);
1930   }
1931   else if(opcode2[i]>3) // MTC1/DMTC1/CTC1
1932   {
1933     if(rs1[i]){
1934       clear_const(current,rs1[i]);
1935       if(opcode2[i]==5)
1936         alloc_reg64(current,i,rs1[i]); // DMTC1
1937       else
1938         alloc_reg(current,i,rs1[i]); // MTC1/CTC1
1939       alloc_reg_temp(current,i,-1);
1940     }
1941     else {
1942       current->u&=~1LL;
1943       alloc_reg(current,i,0);
1944       alloc_reg_temp(current,i,-1);
1945     }
1946   }
1947   minimum_free_regs[i]=1;
1948 }
1949 void fconv_alloc(struct regstat *current,int i)
1950 {
1951   alloc_reg(current,i,CSREG); // Load status
1952   alloc_reg_temp(current,i,-1);
1953   minimum_free_regs[i]=1;
1954 }
1955 void float_alloc(struct regstat *current,int i)
1956 {
1957   alloc_reg(current,i,CSREG); // Load status
1958   alloc_reg_temp(current,i,-1);
1959   minimum_free_regs[i]=1;
1960 }
1961 void c2op_alloc(struct regstat *current,int i)
1962 {
1963   alloc_reg_temp(current,i,-1);
1964 }
1965 void fcomp_alloc(struct regstat *current,int i)
1966 {
1967   alloc_reg(current,i,CSREG); // Load status
1968   alloc_reg(current,i,FSREG); // Load flags
1969   dirty_reg(current,FSREG); // Flag will be modified
1970   alloc_reg_temp(current,i,-1);
1971   minimum_free_regs[i]=1;
1972 }
1973
1974 void syscall_alloc(struct regstat *current,int i)
1975 {
1976   alloc_cc(current,i);
1977   dirty_reg(current,CCREG);
1978   alloc_all(current,i);
1979   minimum_free_regs[i]=HOST_REGS;
1980   current->isconst=0;
1981 }
1982
1983 void delayslot_alloc(struct regstat *current,int i)
1984 {
1985   switch(itype[i]) {
1986     case UJUMP:
1987     case CJUMP:
1988     case SJUMP:
1989     case RJUMP:
1990     case FJUMP:
1991     case SYSCALL:
1992     case HLECALL:
1993     case SPAN:
1994       assem_debug("jump in the delay slot.  this shouldn't happen.\n");//exit(1);
1995       printf("Disabled speculative precompilation\n");
1996       stop_after_jal=1;
1997       break;
1998     case IMM16:
1999       imm16_alloc(current,i);
2000       break;
2001     case LOAD:
2002     case LOADLR:
2003       load_alloc(current,i);
2004       break;
2005     case STORE:
2006     case STORELR:
2007       store_alloc(current,i);
2008       break;
2009     case ALU:
2010       alu_alloc(current,i);
2011       break;
2012     case SHIFT:
2013       shift_alloc(current,i);
2014       break;
2015     case MULTDIV:
2016       multdiv_alloc(current,i);
2017       break;
2018     case SHIFTIMM:
2019       shiftimm_alloc(current,i);
2020       break;
2021     case MOV:
2022       mov_alloc(current,i);
2023       break;
2024     case COP0:
2025       cop0_alloc(current,i);
2026       break;
2027     case COP1:
2028     case COP2:
2029       cop1_alloc(current,i);
2030       break;
2031     case C1LS:
2032       c1ls_alloc(current,i);
2033       break;
2034     case C2LS:
2035       c2ls_alloc(current,i);
2036       break;
2037     case FCONV:
2038       fconv_alloc(current,i);
2039       break;
2040     case FLOAT:
2041       float_alloc(current,i);
2042       break;
2043     case FCOMP:
2044       fcomp_alloc(current,i);
2045       break;
2046     case C2OP:
2047       c2op_alloc(current,i);
2048       break;
2049   }
2050 }
2051
2052 // Special case where a branch and delay slot span two pages in virtual memory
2053 static void pagespan_alloc(struct regstat *current,int i)
2054 {
2055   current->isconst=0;
2056   current->wasconst=0;
2057   regs[i].wasconst=0;
2058   minimum_free_regs[i]=HOST_REGS;
2059   alloc_all(current,i);
2060   alloc_cc(current,i);
2061   dirty_reg(current,CCREG);
2062   if(opcode[i]==3) // JAL
2063   {
2064     alloc_reg(current,i,31);
2065     dirty_reg(current,31);
2066   }
2067   if(opcode[i]==0&&(opcode2[i]&0x3E)==8) // JR/JALR
2068   {
2069     alloc_reg(current,i,rs1[i]);
2070     if (rt1[i]!=0) {
2071       alloc_reg(current,i,rt1[i]);
2072       dirty_reg(current,rt1[i]);
2073     }
2074   }
2075   if((opcode[i]&0x2E)==4) // BEQ/BNE/BEQL/BNEL
2076   {
2077     if(rs1[i]) alloc_reg(current,i,rs1[i]);
2078     if(rs2[i]) alloc_reg(current,i,rs2[i]);
2079     if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
2080     {
2081       if(rs1[i]) alloc_reg64(current,i,rs1[i]);
2082       if(rs2[i]) alloc_reg64(current,i,rs2[i]);
2083     }
2084   }
2085   else
2086   if((opcode[i]&0x2E)==6) // BLEZ/BGTZ/BLEZL/BGTZL
2087   {
2088     if(rs1[i]) alloc_reg(current,i,rs1[i]);
2089     if(!((current->is32>>rs1[i])&1))
2090     {
2091       if(rs1[i]) alloc_reg64(current,i,rs1[i]);
2092     }
2093   }
2094   else
2095   if(opcode[i]==0x11) // BC1
2096   {
2097     alloc_reg(current,i,FSREG);
2098     alloc_reg(current,i,CSREG);
2099   }
2100   //else ...
2101 }
2102
2103 add_stub(int type,int addr,int retaddr,int a,int b,int c,int d,int e)
2104 {
2105   stubs[stubcount][0]=type;
2106   stubs[stubcount][1]=addr;
2107   stubs[stubcount][2]=retaddr;
2108   stubs[stubcount][3]=a;
2109   stubs[stubcount][4]=b;
2110   stubs[stubcount][5]=c;
2111   stubs[stubcount][6]=d;
2112   stubs[stubcount][7]=e;
2113   stubcount++;
2114 }
2115
2116 // Write out a single register
2117 void wb_register(signed char r,signed char regmap[],uint64_t dirty,uint64_t is32)
2118 {
2119   int hr;
2120   for(hr=0;hr<HOST_REGS;hr++) {
2121     if(hr!=EXCLUDE_REG) {
2122       if((regmap[hr]&63)==r) {
2123         if((dirty>>hr)&1) {
2124           if(regmap[hr]<64) {
2125             emit_storereg(r,hr);
2126 #ifndef FORCE32
2127             if((is32>>regmap[hr])&1) {
2128               emit_sarimm(hr,31,hr);
2129               emit_storereg(r|64,hr);
2130             }
2131 #endif
2132           }else{
2133             emit_storereg(r|64,hr);
2134           }
2135         }
2136       }
2137     }
2138   }
2139 }
2140
2141 int mchecksum()
2142 {
2143   //if(!tracedebug) return 0;
2144   int i;
2145   int sum=0;
2146   for(i=0;i<2097152;i++) {
2147     unsigned int temp=sum;
2148     sum<<=1;
2149     sum|=(~temp)>>31;
2150     sum^=((u_int *)rdram)[i];
2151   }
2152   return sum;
2153 }
2154 int rchecksum()
2155 {
2156   int i;
2157   int sum=0;
2158   for(i=0;i<64;i++)
2159     sum^=((u_int *)reg)[i];
2160   return sum;
2161 }
2162 void rlist()
2163 {
2164   int i;
2165   printf("TRACE: ");
2166   for(i=0;i<32;i++)
2167     printf("r%d:%8x%8x ",i,((int *)(reg+i))[1],((int *)(reg+i))[0]);
2168   printf("\n");
2169 #ifndef DISABLE_COP1
2170   printf("TRACE: ");
2171   for(i=0;i<32;i++)
2172     printf("f%d:%8x%8x ",i,((int*)reg_cop1_simple[i])[1],*((int*)reg_cop1_simple[i]));
2173   printf("\n");
2174 #endif
2175 }
2176
2177 void enabletrace()
2178 {
2179   tracedebug=1;
2180 }
2181
2182 void memdebug(int i)
2183 {
2184   //printf("TRACE: count=%d next=%d (checksum %x) lo=%8x%8x\n",Count,next_interupt,mchecksum(),(int)(reg[LOREG]>>32),(int)reg[LOREG]);
2185   //printf("TRACE: count=%d next=%d (rchecksum %x)\n",Count,next_interupt,rchecksum());
2186   //rlist();
2187   //if(tracedebug) {
2188   //if(Count>=-2084597794) {
2189   if((signed int)Count>=-2084597794&&(signed int)Count<0) {
2190   //if(0) {
2191     printf("TRACE: count=%d next=%d (checksum %x)\n",Count,next_interupt,mchecksum());
2192     //printf("TRACE: count=%d next=%d (checksum %x) Status=%x\n",Count,next_interupt,mchecksum(),Status);
2193     //printf("TRACE: count=%d next=%d (checksum %x) hi=%8x%8x\n",Count,next_interupt,mchecksum(),(int)(reg[HIREG]>>32),(int)reg[HIREG]);
2194     rlist();
2195     #ifdef __i386__
2196     printf("TRACE: %x\n",(&i)[-1]);
2197     #endif
2198     #ifdef __arm__
2199     int j;
2200     printf("TRACE: %x \n",(&j)[10]);
2201     printf("TRACE: %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x\n",(&j)[1],(&j)[2],(&j)[3],(&j)[4],(&j)[5],(&j)[6],(&j)[7],(&j)[8],(&j)[9],(&j)[10],(&j)[11],(&j)[12],(&j)[13],(&j)[14],(&j)[15],(&j)[16],(&j)[17],(&j)[18],(&j)[19],(&j)[20]);
2202     #endif
2203     //fflush(stdout);
2204   }
2205   //printf("TRACE: %x\n",(&i)[-1]);
2206 }
2207
2208 void tlb_debug(u_int cause, u_int addr, u_int iaddr)
2209 {
2210   printf("TLB Exception: instruction=%x addr=%x cause=%x\n",iaddr, addr, cause);
2211 }
2212
2213 void alu_assemble(int i,struct regstat *i_regs)
2214 {
2215   if(opcode2[i]>=0x20&&opcode2[i]<=0x23) { // ADD/ADDU/SUB/SUBU
2216     if(rt1[i]) {
2217       signed char s1,s2,t;
2218       t=get_reg(i_regs->regmap,rt1[i]);
2219       if(t>=0) {
2220         s1=get_reg(i_regs->regmap,rs1[i]);
2221         s2=get_reg(i_regs->regmap,rs2[i]);
2222         if(rs1[i]&&rs2[i]) {
2223           assert(s1>=0);
2224           assert(s2>=0);
2225           if(opcode2[i]&2) emit_sub(s1,s2,t);
2226           else emit_add(s1,s2,t);
2227         }
2228         else if(rs1[i]) {
2229           if(s1>=0) emit_mov(s1,t);
2230           else emit_loadreg(rs1[i],t);
2231         }
2232         else if(rs2[i]) {
2233           if(s2>=0) {
2234             if(opcode2[i]&2) emit_neg(s2,t);
2235             else emit_mov(s2,t);
2236           }
2237           else {
2238             emit_loadreg(rs2[i],t);
2239             if(opcode2[i]&2) emit_neg(t,t);
2240           }
2241         }
2242         else emit_zeroreg(t);
2243       }
2244     }
2245   }
2246   if(opcode2[i]>=0x2c&&opcode2[i]<=0x2f) { // DADD/DADDU/DSUB/DSUBU
2247     if(rt1[i]) {
2248       signed char s1l,s2l,s1h,s2h,tl,th;
2249       tl=get_reg(i_regs->regmap,rt1[i]);
2250       th=get_reg(i_regs->regmap,rt1[i]|64);
2251       if(tl>=0) {
2252         s1l=get_reg(i_regs->regmap,rs1[i]);
2253         s2l=get_reg(i_regs->regmap,rs2[i]);
2254         s1h=get_reg(i_regs->regmap,rs1[i]|64);
2255         s2h=get_reg(i_regs->regmap,rs2[i]|64);
2256         if(rs1[i]&&rs2[i]) {
2257           assert(s1l>=0);
2258           assert(s2l>=0);
2259           if(opcode2[i]&2) emit_subs(s1l,s2l,tl);
2260           else emit_adds(s1l,s2l,tl);
2261           if(th>=0) {
2262             #ifdef INVERTED_CARRY
2263             if(opcode2[i]&2) {if(s1h!=th) emit_mov(s1h,th);emit_sbb(th,s2h);}
2264             #else
2265             if(opcode2[i]&2) emit_sbc(s1h,s2h,th);
2266             #endif
2267             else emit_add(s1h,s2h,th);
2268           }
2269         }
2270         else if(rs1[i]) {
2271           if(s1l>=0) emit_mov(s1l,tl);
2272           else emit_loadreg(rs1[i],tl);
2273           if(th>=0) {
2274             if(s1h>=0) emit_mov(s1h,th);
2275             else emit_loadreg(rs1[i]|64,th);
2276           }
2277         }
2278         else if(rs2[i]) {
2279           if(s2l>=0) {
2280             if(opcode2[i]&2) emit_negs(s2l,tl);
2281             else emit_mov(s2l,tl);
2282           }
2283           else {
2284             emit_loadreg(rs2[i],tl);
2285             if(opcode2[i]&2) emit_negs(tl,tl);
2286           }
2287           if(th>=0) {
2288             #ifdef INVERTED_CARRY
2289             if(s2h>=0) emit_mov(s2h,th);
2290             else emit_loadreg(rs2[i]|64,th);
2291             if(opcode2[i]&2) {
2292               emit_adcimm(-1,th); // x86 has inverted carry flag
2293               emit_not(th,th);
2294             }
2295             #else
2296             if(opcode2[i]&2) {
2297               if(s2h>=0) emit_rscimm(s2h,0,th);
2298               else {
2299                 emit_loadreg(rs2[i]|64,th);
2300                 emit_rscimm(th,0,th);
2301               }
2302             }else{
2303               if(s2h>=0) emit_mov(s2h,th);
2304               else emit_loadreg(rs2[i]|64,th);
2305             }
2306             #endif
2307           }
2308         }
2309         else {
2310           emit_zeroreg(tl);
2311           if(th>=0) emit_zeroreg(th);
2312         }
2313       }
2314     }
2315   }
2316   if(opcode2[i]==0x2a||opcode2[i]==0x2b) { // SLT/SLTU
2317     if(rt1[i]) {
2318       signed char s1l,s1h,s2l,s2h,t;
2319       if(!((i_regs->was32>>rs1[i])&(i_regs->was32>>rs2[i])&1))
2320       {
2321         t=get_reg(i_regs->regmap,rt1[i]);
2322         //assert(t>=0);
2323         if(t>=0) {
2324           s1l=get_reg(i_regs->regmap,rs1[i]);
2325           s1h=get_reg(i_regs->regmap,rs1[i]|64);
2326           s2l=get_reg(i_regs->regmap,rs2[i]);
2327           s2h=get_reg(i_regs->regmap,rs2[i]|64);
2328           if(rs2[i]==0) // rx<r0
2329           {
2330             assert(s1h>=0);
2331             if(opcode2[i]==0x2a) // SLT
2332               emit_shrimm(s1h,31,t);
2333             else // SLTU (unsigned can not be less than zero)
2334               emit_zeroreg(t);
2335           }
2336           else if(rs1[i]==0) // r0<rx
2337           {
2338             assert(s2h>=0);
2339             if(opcode2[i]==0x2a) // SLT
2340               emit_set_gz64_32(s2h,s2l,t);
2341             else // SLTU (set if not zero)
2342               emit_set_nz64_32(s2h,s2l,t);
2343           }
2344           else {
2345             assert(s1l>=0);assert(s1h>=0);
2346             assert(s2l>=0);assert(s2h>=0);
2347             if(opcode2[i]==0x2a) // SLT
2348               emit_set_if_less64_32(s1h,s1l,s2h,s2l,t);
2349             else // SLTU
2350               emit_set_if_carry64_32(s1h,s1l,s2h,s2l,t);
2351           }
2352         }
2353       } else {
2354         t=get_reg(i_regs->regmap,rt1[i]);
2355         //assert(t>=0);
2356         if(t>=0) {
2357           s1l=get_reg(i_regs->regmap,rs1[i]);
2358           s2l=get_reg(i_regs->regmap,rs2[i]);
2359           if(rs2[i]==0) // rx<r0
2360           {
2361             assert(s1l>=0);
2362             if(opcode2[i]==0x2a) // SLT
2363               emit_shrimm(s1l,31,t);
2364             else // SLTU (unsigned can not be less than zero)
2365               emit_zeroreg(t);
2366           }
2367           else if(rs1[i]==0) // r0<rx
2368           {
2369             assert(s2l>=0);
2370             if(opcode2[i]==0x2a) // SLT
2371               emit_set_gz32(s2l,t);
2372             else // SLTU (set if not zero)
2373               emit_set_nz32(s2l,t);
2374           }
2375           else{
2376             assert(s1l>=0);assert(s2l>=0);
2377             if(opcode2[i]==0x2a) // SLT
2378               emit_set_if_less32(s1l,s2l,t);
2379             else // SLTU
2380               emit_set_if_carry32(s1l,s2l,t);
2381           }
2382         }
2383       }
2384     }
2385   }
2386   if(opcode2[i]>=0x24&&opcode2[i]<=0x27) { // AND/OR/XOR/NOR
2387     if(rt1[i]) {
2388       signed char s1l,s1h,s2l,s2h,th,tl;
2389       tl=get_reg(i_regs->regmap,rt1[i]);
2390       th=get_reg(i_regs->regmap,rt1[i]|64);
2391       if(!((i_regs->was32>>rs1[i])&(i_regs->was32>>rs2[i])&1)&&th>=0)
2392       {
2393         assert(tl>=0);
2394         if(tl>=0) {
2395           s1l=get_reg(i_regs->regmap,rs1[i]);
2396           s1h=get_reg(i_regs->regmap,rs1[i]|64);
2397           s2l=get_reg(i_regs->regmap,rs2[i]);
2398           s2h=get_reg(i_regs->regmap,rs2[i]|64);
2399           if(rs1[i]&&rs2[i]) {
2400             assert(s1l>=0);assert(s1h>=0);
2401             assert(s2l>=0);assert(s2h>=0);
2402             if(opcode2[i]==0x24) { // AND
2403               emit_and(s1l,s2l,tl);
2404               emit_and(s1h,s2h,th);
2405             } else
2406             if(opcode2[i]==0x25) { // OR
2407               emit_or(s1l,s2l,tl);
2408               emit_or(s1h,s2h,th);
2409             } else
2410             if(opcode2[i]==0x26) { // XOR
2411               emit_xor(s1l,s2l,tl);
2412               emit_xor(s1h,s2h,th);
2413             } else
2414             if(opcode2[i]==0x27) { // NOR
2415               emit_or(s1l,s2l,tl);
2416               emit_or(s1h,s2h,th);
2417               emit_not(tl,tl);
2418               emit_not(th,th);
2419             }
2420           }
2421           else
2422           {
2423             if(opcode2[i]==0x24) { // AND
2424               emit_zeroreg(tl);
2425               emit_zeroreg(th);
2426             } else
2427             if(opcode2[i]==0x25||opcode2[i]==0x26) { // OR/XOR
2428               if(rs1[i]){
2429                 if(s1l>=0) emit_mov(s1l,tl);
2430                 else emit_loadreg(rs1[i],tl);
2431                 if(s1h>=0) emit_mov(s1h,th);
2432                 else emit_loadreg(rs1[i]|64,th);
2433               }
2434               else
2435               if(rs2[i]){
2436                 if(s2l>=0) emit_mov(s2l,tl);
2437                 else emit_loadreg(rs2[i],tl);
2438                 if(s2h>=0) emit_mov(s2h,th);
2439                 else emit_loadreg(rs2[i]|64,th);
2440               }
2441               else{
2442                 emit_zeroreg(tl);
2443                 emit_zeroreg(th);
2444               }
2445             } else
2446             if(opcode2[i]==0x27) { // NOR
2447               if(rs1[i]){
2448                 if(s1l>=0) emit_not(s1l,tl);
2449                 else{
2450                   emit_loadreg(rs1[i],tl);
2451                   emit_not(tl,tl);
2452                 }
2453                 if(s1h>=0) emit_not(s1h,th);
2454                 else{
2455                   emit_loadreg(rs1[i]|64,th);
2456                   emit_not(th,th);
2457                 }
2458               }
2459               else
2460               if(rs2[i]){
2461                 if(s2l>=0) emit_not(s2l,tl);
2462                 else{
2463                   emit_loadreg(rs2[i],tl);
2464                   emit_not(tl,tl);
2465                 }
2466                 if(s2h>=0) emit_not(s2h,th);
2467                 else{
2468                   emit_loadreg(rs2[i]|64,th);
2469                   emit_not(th,th);
2470                 }
2471               }
2472               else {
2473                 emit_movimm(-1,tl);
2474                 emit_movimm(-1,th);
2475               }
2476             }
2477           }
2478         }
2479       }
2480       else
2481       {
2482         // 32 bit
2483         if(tl>=0) {
2484           s1l=get_reg(i_regs->regmap,rs1[i]);
2485           s2l=get_reg(i_regs->regmap,rs2[i]);
2486           if(rs1[i]&&rs2[i]) {
2487             assert(s1l>=0);
2488             assert(s2l>=0);
2489             if(opcode2[i]==0x24) { // AND
2490               emit_and(s1l,s2l,tl);
2491             } else
2492             if(opcode2[i]==0x25) { // OR
2493               emit_or(s1l,s2l,tl);
2494             } else
2495             if(opcode2[i]==0x26) { // XOR
2496               emit_xor(s1l,s2l,tl);
2497             } else
2498             if(opcode2[i]==0x27) { // NOR
2499               emit_or(s1l,s2l,tl);
2500               emit_not(tl,tl);
2501             }
2502           }
2503           else
2504           {
2505             if(opcode2[i]==0x24) { // AND
2506               emit_zeroreg(tl);
2507             } else
2508             if(opcode2[i]==0x25||opcode2[i]==0x26) { // OR/XOR
2509               if(rs1[i]){
2510                 if(s1l>=0) emit_mov(s1l,tl);
2511                 else emit_loadreg(rs1[i],tl); // CHECK: regmap_entry?
2512               }
2513               else
2514               if(rs2[i]){
2515                 if(s2l>=0) emit_mov(s2l,tl);
2516                 else emit_loadreg(rs2[i],tl); // CHECK: regmap_entry?
2517               }
2518               else emit_zeroreg(tl);
2519             } else
2520             if(opcode2[i]==0x27) { // NOR
2521               if(rs1[i]){
2522                 if(s1l>=0) emit_not(s1l,tl);
2523                 else {
2524                   emit_loadreg(rs1[i],tl);
2525                   emit_not(tl,tl);
2526                 }
2527               }
2528               else
2529               if(rs2[i]){
2530                 if(s2l>=0) emit_not(s2l,tl);
2531                 else {
2532                   emit_loadreg(rs2[i],tl);
2533                   emit_not(tl,tl);
2534                 }
2535               }
2536               else emit_movimm(-1,tl);
2537             }
2538           }
2539         }
2540       }
2541     }
2542   }
2543 }
2544
2545 void imm16_assemble(int i,struct regstat *i_regs)
2546 {
2547   if (opcode[i]==0x0f) { // LUI
2548     if(rt1[i]) {
2549       signed char t;
2550       t=get_reg(i_regs->regmap,rt1[i]);
2551       //assert(t>=0);
2552       if(t>=0) {
2553         if(!((i_regs->isconst>>t)&1))
2554           emit_movimm(imm[i]<<16,t);
2555       }
2556     }
2557   }
2558   if(opcode[i]==0x08||opcode[i]==0x09) { // ADDI/ADDIU
2559     if(rt1[i]) {
2560       signed char s,t;
2561       t=get_reg(i_regs->regmap,rt1[i]);
2562       s=get_reg(i_regs->regmap,rs1[i]);
2563       if(rs1[i]) {
2564         //assert(t>=0);
2565         //assert(s>=0);
2566         if(t>=0) {
2567           if(!((i_regs->isconst>>t)&1)) {
2568             if(s<0) {
2569               if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2570               emit_addimm(t,imm[i],t);
2571             }else{
2572               if(!((i_regs->wasconst>>s)&1))
2573                 emit_addimm(s,imm[i],t);
2574               else
2575                 emit_movimm(constmap[i][s]+imm[i],t);
2576             }
2577           }
2578         }
2579       } else {
2580         if(t>=0) {
2581           if(!((i_regs->isconst>>t)&1))
2582             emit_movimm(imm[i],t);
2583         }
2584       }
2585     }
2586   }
2587   if(opcode[i]==0x18||opcode[i]==0x19) { // DADDI/DADDIU
2588     if(rt1[i]) {
2589       signed char sh,sl,th,tl;
2590       th=get_reg(i_regs->regmap,rt1[i]|64);
2591       tl=get_reg(i_regs->regmap,rt1[i]);
2592       sh=get_reg(i_regs->regmap,rs1[i]|64);
2593       sl=get_reg(i_regs->regmap,rs1[i]);
2594       if(tl>=0) {
2595         if(rs1[i]) {
2596           assert(sh>=0);
2597           assert(sl>=0);
2598           if(th>=0) {
2599             emit_addimm64_32(sh,sl,imm[i],th,tl);
2600           }
2601           else {
2602             emit_addimm(sl,imm[i],tl);
2603           }
2604         } else {
2605           emit_movimm(imm[i],tl);
2606           if(th>=0) emit_movimm(((signed int)imm[i])>>31,th);
2607         }
2608       }
2609     }
2610   }
2611   else if(opcode[i]==0x0a||opcode[i]==0x0b) { // SLTI/SLTIU
2612     if(rt1[i]) {
2613       //assert(rs1[i]!=0); // r0 might be valid, but it's probably a bug
2614       signed char sh,sl,t;
2615       t=get_reg(i_regs->regmap,rt1[i]);
2616       sh=get_reg(i_regs->regmap,rs1[i]|64);
2617       sl=get_reg(i_regs->regmap,rs1[i]);
2618       //assert(t>=0);
2619       if(t>=0) {
2620         if(rs1[i]>0) {
2621           if(sh<0) assert((i_regs->was32>>rs1[i])&1);
2622           if(sh<0||((i_regs->was32>>rs1[i])&1)) {
2623             if(opcode[i]==0x0a) { // SLTI
2624               if(sl<0) {
2625                 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2626                 emit_slti32(t,imm[i],t);
2627               }else{
2628                 emit_slti32(sl,imm[i],t);
2629               }
2630             }
2631             else { // SLTIU
2632               if(sl<0) {
2633                 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2634                 emit_sltiu32(t,imm[i],t);
2635               }else{
2636                 emit_sltiu32(sl,imm[i],t);
2637               }
2638             }
2639           }else{ // 64-bit
2640             assert(sl>=0);
2641             if(opcode[i]==0x0a) // SLTI
2642               emit_slti64_32(sh,sl,imm[i],t);
2643             else // SLTIU
2644               emit_sltiu64_32(sh,sl,imm[i],t);
2645           }
2646         }else{
2647           // SLTI(U) with r0 is just stupid,
2648           // nonetheless examples can be found
2649           if(opcode[i]==0x0a) // SLTI
2650             if(0<imm[i]) emit_movimm(1,t);
2651             else emit_zeroreg(t);
2652           else // SLTIU
2653           {
2654             if(imm[i]) emit_movimm(1,t);
2655             else emit_zeroreg(t);
2656           }
2657         }
2658       }
2659     }
2660   }
2661   else if(opcode[i]>=0x0c&&opcode[i]<=0x0e) { // ANDI/ORI/XORI
2662     if(rt1[i]) {
2663       signed char sh,sl,th,tl;
2664       th=get_reg(i_regs->regmap,rt1[i]|64);
2665       tl=get_reg(i_regs->regmap,rt1[i]);
2666       sh=get_reg(i_regs->regmap,rs1[i]|64);
2667       sl=get_reg(i_regs->regmap,rs1[i]);
2668       if(tl>=0 && !((i_regs->isconst>>tl)&1)) {
2669         if(opcode[i]==0x0c) //ANDI
2670         {
2671           if(rs1[i]) {
2672             if(sl<0) {
2673               if(i_regs->regmap_entry[tl]!=rs1[i]) emit_loadreg(rs1[i],tl);
2674               emit_andimm(tl,imm[i],tl);
2675             }else{
2676               if(!((i_regs->wasconst>>sl)&1))
2677                 emit_andimm(sl,imm[i],tl);
2678               else
2679                 emit_movimm(constmap[i][sl]&imm[i],tl);
2680             }
2681           }
2682           else
2683             emit_zeroreg(tl);
2684           if(th>=0) emit_zeroreg(th);
2685         }
2686         else
2687         {
2688           if(rs1[i]) {
2689             if(sl<0) {
2690               if(i_regs->regmap_entry[tl]!=rs1[i]) emit_loadreg(rs1[i],tl);
2691             }
2692             if(th>=0) {
2693               if(sh<0) {
2694                 emit_loadreg(rs1[i]|64,th);
2695               }else{
2696                 emit_mov(sh,th);
2697               }
2698             }
2699             if(opcode[i]==0x0d) //ORI
2700             if(sl<0) {
2701               emit_orimm(tl,imm[i],tl);
2702             }else{
2703               if(!((i_regs->wasconst>>sl)&1))
2704                 emit_orimm(sl,imm[i],tl);
2705               else
2706                 emit_movimm(constmap[i][sl]|imm[i],tl);
2707             }
2708             if(opcode[i]==0x0e) //XORI
2709             if(sl<0) {
2710               emit_xorimm(tl,imm[i],tl);
2711             }else{
2712               if(!((i_regs->wasconst>>sl)&1))
2713                 emit_xorimm(sl,imm[i],tl);
2714               else
2715                 emit_movimm(constmap[i][sl]^imm[i],tl);
2716             }
2717           }
2718           else {
2719             emit_movimm(imm[i],tl);
2720             if(th>=0) emit_zeroreg(th);
2721           }
2722         }
2723       }
2724     }
2725   }
2726 }
2727
2728 void shiftimm_assemble(int i,struct regstat *i_regs)
2729 {
2730   if(opcode2[i]<=0x3) // SLL/SRL/SRA
2731   {
2732     if(rt1[i]) {
2733       signed char s,t;
2734       t=get_reg(i_regs->regmap,rt1[i]);
2735       s=get_reg(i_regs->regmap,rs1[i]);
2736       //assert(t>=0);
2737       if(t>=0&&!((i_regs->isconst>>t)&1)){
2738         if(rs1[i]==0)
2739         {
2740           emit_zeroreg(t);
2741         }
2742         else
2743         {
2744           if(s<0&&i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2745           if(imm[i]) {
2746             if(opcode2[i]==0) // SLL
2747             {
2748               emit_shlimm(s<0?t:s,imm[i],t);
2749             }
2750             if(opcode2[i]==2) // SRL
2751             {
2752               emit_shrimm(s<0?t:s,imm[i],t);
2753             }
2754             if(opcode2[i]==3) // SRA
2755             {
2756               emit_sarimm(s<0?t:s,imm[i],t);
2757             }
2758           }else{
2759             // Shift by zero
2760             if(s>=0 && s!=t) emit_mov(s,t);
2761           }
2762         }
2763       }
2764       //emit_storereg(rt1[i],t); //DEBUG
2765     }
2766   }
2767   if(opcode2[i]>=0x38&&opcode2[i]<=0x3b) // DSLL/DSRL/DSRA
2768   {
2769     if(rt1[i]) {
2770       signed char sh,sl,th,tl;
2771       th=get_reg(i_regs->regmap,rt1[i]|64);
2772       tl=get_reg(i_regs->regmap,rt1[i]);
2773       sh=get_reg(i_regs->regmap,rs1[i]|64);
2774       sl=get_reg(i_regs->regmap,rs1[i]);
2775       if(tl>=0) {
2776         if(rs1[i]==0)
2777         {
2778           emit_zeroreg(tl);
2779           if(th>=0) emit_zeroreg(th);
2780         }
2781         else
2782         {
2783           assert(sl>=0);
2784           assert(sh>=0);
2785           if(imm[i]) {
2786             if(opcode2[i]==0x38) // DSLL
2787             {
2788               if(th>=0) emit_shldimm(sh,sl,imm[i],th);
2789               emit_shlimm(sl,imm[i],tl);
2790             }
2791             if(opcode2[i]==0x3a) // DSRL
2792             {
2793               emit_shrdimm(sl,sh,imm[i],tl);
2794               if(th>=0) emit_shrimm(sh,imm[i],th);
2795             }
2796             if(opcode2[i]==0x3b) // DSRA
2797             {
2798               emit_shrdimm(sl,sh,imm[i],tl);
2799               if(th>=0) emit_sarimm(sh,imm[i],th);
2800             }
2801           }else{
2802             // Shift by zero
2803             if(sl!=tl) emit_mov(sl,tl);
2804             if(th>=0&&sh!=th) emit_mov(sh,th);
2805           }
2806         }
2807       }
2808     }
2809   }
2810   if(opcode2[i]==0x3c) // DSLL32
2811   {
2812     if(rt1[i]) {
2813       signed char sl,tl,th;
2814       tl=get_reg(i_regs->regmap,rt1[i]);
2815       th=get_reg(i_regs->regmap,rt1[i]|64);
2816       sl=get_reg(i_regs->regmap,rs1[i]);
2817       if(th>=0||tl>=0){
2818         assert(tl>=0);
2819         assert(th>=0);
2820         assert(sl>=0);
2821         emit_mov(sl,th);
2822         emit_zeroreg(tl);
2823         if(imm[i]>32)
2824         {
2825           emit_shlimm(th,imm[i]&31,th);
2826         }
2827       }
2828     }
2829   }
2830   if(opcode2[i]==0x3e) // DSRL32
2831   {
2832     if(rt1[i]) {
2833       signed char sh,tl,th;
2834       tl=get_reg(i_regs->regmap,rt1[i]);
2835       th=get_reg(i_regs->regmap,rt1[i]|64);
2836       sh=get_reg(i_regs->regmap,rs1[i]|64);
2837       if(tl>=0){
2838         assert(sh>=0);
2839         emit_mov(sh,tl);
2840         if(th>=0) emit_zeroreg(th);
2841         if(imm[i]>32)
2842         {
2843           emit_shrimm(tl,imm[i]&31,tl);
2844         }
2845       }
2846     }
2847   }
2848   if(opcode2[i]==0x3f) // DSRA32
2849   {
2850     if(rt1[i]) {
2851       signed char sh,tl;
2852       tl=get_reg(i_regs->regmap,rt1[i]);
2853       sh=get_reg(i_regs->regmap,rs1[i]|64);
2854       if(tl>=0){
2855         assert(sh>=0);
2856         emit_mov(sh,tl);
2857         if(imm[i]>32)
2858         {
2859           emit_sarimm(tl,imm[i]&31,tl);
2860         }
2861       }
2862     }
2863   }
2864 }
2865
2866 #ifndef shift_assemble
2867 void shift_assemble(int i,struct regstat *i_regs)
2868 {
2869   printf("Need shift_assemble for this architecture.\n");
2870   exit(1);
2871 }
2872 #endif
2873
2874 void load_assemble(int i,struct regstat *i_regs)
2875 {
2876   int s,th,tl,addr,map=-1;
2877   int offset;
2878   int jaddr=0;
2879   int memtarget=0,c=0;
2880   int fastload_reg_override=0;
2881   u_int hr,reglist=0;
2882   th=get_reg(i_regs->regmap,rt1[i]|64);
2883   tl=get_reg(i_regs->regmap,rt1[i]);
2884   s=get_reg(i_regs->regmap,rs1[i]);
2885   offset=imm[i];
2886   for(hr=0;hr<HOST_REGS;hr++) {
2887     if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
2888   }
2889   if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
2890   if(s>=0) {
2891     c=(i_regs->wasconst>>s)&1;
2892     if (c) {
2893       memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
2894       if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
2895     }
2896   }
2897   //printf("load_assemble: c=%d\n",c);
2898   //if(c) printf("load_assemble: const=%x\n",(int)constmap[i][s]+offset);
2899   // FIXME: Even if the load is a NOP, we should check for pagefaults...
2900 #ifdef PCSX
2901   if(tl<0&&(!c||(((u_int)constmap[i][s]+offset)>>16)==0x1f80)
2902     ||rt1[i]==0) {
2903       // could be FIFO, must perform the read
2904       // ||dummy read
2905       assem_debug("(forced read)\n");
2906       tl=get_reg(i_regs->regmap,-1);
2907       assert(tl>=0);
2908   }
2909 #endif
2910   if(offset||s<0||c) addr=tl;
2911   else addr=s;
2912   //if(tl<0) tl=get_reg(i_regs->regmap,-1);
2913  if(tl>=0) {
2914   //printf("load_assemble: c=%d\n",c);
2915   //if(c) printf("load_assemble: const=%x\n",(int)constmap[i][s]+offset);
2916   assert(tl>=0); // Even if the load is a NOP, we must check for pagefaults and I/O
2917   reglist&=~(1<<tl);
2918   if(th>=0) reglist&=~(1<<th);
2919   if(!using_tlb) {
2920     if(!c) {
2921       #ifdef RAM_OFFSET
2922       map=get_reg(i_regs->regmap,ROREG);
2923       if(map<0) emit_loadreg(ROREG,map=HOST_TEMPREG);
2924       #endif
2925 //#define R29_HACK 1
2926       #ifdef R29_HACK
2927       // Strmnnrmn's speed hack
2928       if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
2929       #endif
2930       {
2931         jaddr=emit_fastpath_cmp_jump(i,addr,&fastload_reg_override);
2932       }
2933     }
2934     else if(ram_offset&&memtarget) {
2935       emit_addimm(addr,ram_offset,HOST_TEMPREG);
2936       fastload_reg_override=HOST_TEMPREG;
2937     }
2938   }else{ // using tlb
2939     int x=0;
2940     if (opcode[i]==0x20||opcode[i]==0x24) x=3; // LB/LBU
2941     if (opcode[i]==0x21||opcode[i]==0x25) x=2; // LH/LHU
2942     map=get_reg(i_regs->regmap,TLREG);
2943     assert(map>=0);
2944     reglist&=~(1<<map);
2945     map=do_tlb_r(addr,tl,map,x,-1,-1,c,constmap[i][s]+offset);
2946     do_tlb_r_branch(map,c,constmap[i][s]+offset,&jaddr);
2947   }
2948   int dummy=(rt1[i]==0)||(tl!=get_reg(i_regs->regmap,rt1[i])); // ignore loads to r0 and unneeded reg
2949   if (opcode[i]==0x20) { // LB
2950     if(!c||memtarget) {
2951       if(!dummy) {
2952         #ifdef HOST_IMM_ADDR32
2953         if(c)
2954           emit_movsbl_tlb((constmap[i][s]+offset)^3,map,tl);
2955         else
2956         #endif
2957         {
2958           //emit_xorimm(addr,3,tl);
2959           //gen_tlb_addr_r(tl,map);
2960           //emit_movsbl_indexed((int)rdram-0x80000000,tl,tl);
2961           int x=0,a=tl;
2962 #ifdef BIG_ENDIAN_MIPS
2963           if(!c) emit_xorimm(addr,3,tl);
2964           else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2965 #else
2966           if(!c) a=addr;
2967 #endif
2968           if(fastload_reg_override) a=fastload_reg_override;
2969
2970           emit_movsbl_indexed_tlb(x,a,map,tl);
2971         }
2972       }
2973       if(jaddr)
2974         add_stub(LOADB_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2975     }
2976     else
2977       inline_readstub(LOADB_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2978   }
2979   if (opcode[i]==0x21) { // LH
2980     if(!c||memtarget) {
2981       if(!dummy) {
2982         #ifdef HOST_IMM_ADDR32
2983         if(c)
2984           emit_movswl_tlb((constmap[i][s]+offset)^2,map,tl);
2985         else
2986         #endif
2987         {
2988           int x=0,a=tl;
2989 #ifdef BIG_ENDIAN_MIPS
2990           if(!c) emit_xorimm(addr,2,tl);
2991           else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
2992 #else
2993           if(!c) a=addr;
2994 #endif
2995           if(fastload_reg_override) a=fastload_reg_override;
2996           //#ifdef
2997           //emit_movswl_indexed_tlb(x,tl,map,tl);
2998           //else
2999           if(map>=0) {
3000             gen_tlb_addr_r(a,map);
3001             emit_movswl_indexed(x,a,tl);
3002           }else{
3003             #if 1 //def RAM_OFFSET
3004             emit_movswl_indexed(x,a,tl);
3005             #else
3006             emit_movswl_indexed((int)rdram-0x80000000+x,a,tl);
3007             #endif
3008           }
3009         }
3010       }
3011       if(jaddr)
3012         add_stub(LOADH_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3013     }
3014     else
3015       inline_readstub(LOADH_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
3016   }
3017   if (opcode[i]==0x23) { // LW
3018     if(!c||memtarget) {
3019       if(!dummy) {
3020         int a=addr;
3021         if(fastload_reg_override) a=fastload_reg_override;
3022         //emit_readword_indexed((int)rdram-0x80000000,addr,tl);
3023         #ifdef HOST_IMM_ADDR32
3024         if(c)
3025           emit_readword_tlb(constmap[i][s]+offset,map,tl);
3026         else
3027         #endif
3028         emit_readword_indexed_tlb(0,a,map,tl);
3029       }
3030       if(jaddr)
3031         add_stub(LOADW_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3032     }
3033     else
3034       inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
3035   }
3036   if (opcode[i]==0x24) { // LBU
3037     if(!c||memtarget) {
3038       if(!dummy) {
3039         #ifdef HOST_IMM_ADDR32
3040         if(c)
3041           emit_movzbl_tlb((constmap[i][s]+offset)^3,map,tl);
3042         else
3043         #endif
3044         {
3045           //emit_xorimm(addr,3,tl);
3046           //gen_tlb_addr_r(tl,map);
3047           //emit_movzbl_indexed((int)rdram-0x80000000,tl,tl);
3048           int x=0,a=tl;
3049 #ifdef BIG_ENDIAN_MIPS
3050           if(!c) emit_xorimm(addr,3,tl);
3051           else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
3052 #else
3053           if(!c) a=addr;
3054 #endif
3055           if(fastload_reg_override) a=fastload_reg_override;
3056
3057           emit_movzbl_indexed_tlb(x,a,map,tl);
3058         }
3059       }
3060       if(jaddr)
3061         add_stub(LOADBU_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3062     }
3063     else
3064       inline_readstub(LOADBU_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
3065   }
3066   if (opcode[i]==0x25) { // LHU
3067     if(!c||memtarget) {
3068       if(!dummy) {
3069         #ifdef HOST_IMM_ADDR32
3070         if(c)
3071           emit_movzwl_tlb((constmap[i][s]+offset)^2,map,tl);
3072         else
3073         #endif
3074         {
3075           int x=0,a=tl;
3076 #ifdef BIG_ENDIAN_MIPS
3077           if(!c) emit_xorimm(addr,2,tl);
3078           else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
3079 #else
3080           if(!c) a=addr;
3081 #endif
3082           if(fastload_reg_override) a=fastload_reg_override;
3083           //#ifdef
3084           //emit_movzwl_indexed_tlb(x,tl,map,tl);
3085           //#else
3086           if(map>=0) {
3087             gen_tlb_addr_r(a,map);
3088             emit_movzwl_indexed(x,a,tl);
3089           }else{
3090             #if 1 //def RAM_OFFSET
3091             emit_movzwl_indexed(x,a,tl);
3092             #else
3093             emit_movzwl_indexed((int)rdram-0x80000000+x,a,tl);
3094             #endif
3095           }
3096         }
3097       }
3098       if(jaddr)
3099         add_stub(LOADHU_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3100     }
3101     else
3102       inline_readstub(LOADHU_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
3103   }
3104   if (opcode[i]==0x27) { // LWU
3105     assert(th>=0);
3106     if(!c||memtarget) {
3107       if(!dummy) {
3108         int a=addr;
3109         if(fastload_reg_override) a=fastload_reg_override;
3110         //emit_readword_indexed((int)rdram-0x80000000,addr,tl);
3111         #ifdef HOST_IMM_ADDR32
3112         if(c)
3113           emit_readword_tlb(constmap[i][s]+offset,map,tl);
3114         else
3115         #endif
3116         emit_readword_indexed_tlb(0,a,map,tl);
3117       }
3118       if(jaddr)
3119         add_stub(LOADW_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3120     }
3121     else {
3122       inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
3123     }
3124     emit_zeroreg(th);
3125   }
3126   if (opcode[i]==0x37) { // LD
3127     if(!c||memtarget) {
3128       if(!dummy) {
3129         int a=addr;
3130         if(fastload_reg_override) a=fastload_reg_override;
3131         //gen_tlb_addr_r(tl,map);
3132         //if(th>=0) emit_readword_indexed((int)rdram-0x80000000,addr,th);
3133         //emit_readword_indexed((int)rdram-0x7FFFFFFC,addr,tl);
3134         #ifdef HOST_IMM_ADDR32
3135         if(c)
3136           emit_readdword_tlb(constmap[i][s]+offset,map,th,tl);
3137         else
3138         #endif
3139         emit_readdword_indexed_tlb(0,a,map,th,tl);
3140       }
3141       if(jaddr)
3142         add_stub(LOADD_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3143     }
3144     else
3145       inline_readstub(LOADD_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
3146   }
3147  }
3148   //emit_storereg(rt1[i],tl); // DEBUG
3149   //if(opcode[i]==0x23)
3150   //if(opcode[i]==0x24)
3151   //if(opcode[i]==0x23||opcode[i]==0x24)
3152   /*if(opcode[i]==0x21||opcode[i]==0x23||opcode[i]==0x24)
3153   {
3154     //emit_pusha();
3155     save_regs(0x100f);
3156         emit_readword((int)&last_count,ECX);
3157         #ifdef __i386__
3158         if(get_reg(i_regs->regmap,CCREG)<0)
3159           emit_loadreg(CCREG,HOST_CCREG);
3160         emit_add(HOST_CCREG,ECX,HOST_CCREG);
3161         emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3162         emit_writeword(HOST_CCREG,(int)&Count);
3163         #endif
3164         #ifdef __arm__
3165         if(get_reg(i_regs->regmap,CCREG)<0)
3166           emit_loadreg(CCREG,0);
3167         else
3168           emit_mov(HOST_CCREG,0);
3169         emit_add(0,ECX,0);
3170         emit_addimm(0,2*ccadj[i],0);
3171         emit_writeword(0,(int)&Count);
3172         #endif
3173     emit_call((int)memdebug);
3174     //emit_popa();
3175     restore_regs(0x100f);
3176   }/**/
3177 }
3178
3179 #ifndef loadlr_assemble
3180 void loadlr_assemble(int i,struct regstat *i_regs)
3181 {
3182   printf("Need loadlr_assemble for this architecture.\n");
3183   exit(1);
3184 }
3185 #endif
3186
3187 void store_assemble(int i,struct regstat *i_regs)
3188 {
3189   int s,th,tl,map=-1;
3190   int addr,temp;
3191   int offset;
3192   int jaddr=0,jaddr2,type;
3193   int memtarget=0,c=0;
3194   int agr=AGEN1+(i&1);
3195   int faststore_reg_override=0;
3196   u_int hr,reglist=0;
3197   th=get_reg(i_regs->regmap,rs2[i]|64);
3198   tl=get_reg(i_regs->regmap,rs2[i]);
3199   s=get_reg(i_regs->regmap,rs1[i]);
3200   temp=get_reg(i_regs->regmap,agr);
3201   if(temp<0) temp=get_reg(i_regs->regmap,-1);
3202   offset=imm[i];
3203   if(s>=0) {
3204     c=(i_regs->wasconst>>s)&1;
3205     if(c) {
3206       memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
3207       if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
3208     }
3209   }
3210   assert(tl>=0);
3211   assert(temp>=0);
3212   for(hr=0;hr<HOST_REGS;hr++) {
3213     if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3214   }
3215   if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
3216   if(offset||s<0||c) addr=temp;
3217   else addr=s;
3218   if(!using_tlb) {
3219     if(!c) {
3220       #ifndef PCSX
3221       #ifdef R29_HACK
3222       // Strmnnrmn's speed hack
3223       if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
3224       #endif
3225       emit_cmpimm(addr,RAM_SIZE);
3226       #ifdef DESTRUCTIVE_SHIFT
3227       if(s==addr) emit_mov(s,temp);
3228       #endif
3229       #ifdef R29_HACK
3230       memtarget=1;
3231       if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
3232       #endif
3233       {
3234         jaddr=(int)out;
3235         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
3236         // Hint to branch predictor that the branch is unlikely to be taken
3237         if(rs1[i]>=28)
3238           emit_jno_unlikely(0);
3239         else
3240         #endif
3241         emit_jno(0);
3242       }
3243       #else
3244         jaddr=emit_fastpath_cmp_jump(i,addr,&faststore_reg_override);
3245       #endif
3246     }
3247     else if(ram_offset&&memtarget) {
3248       emit_addimm(addr,ram_offset,HOST_TEMPREG);
3249       faststore_reg_override=HOST_TEMPREG;
3250     }
3251   }else{ // using tlb
3252     int x=0;
3253     if (opcode[i]==0x28) x=3; // SB
3254     if (opcode[i]==0x29) x=2; // SH
3255     map=get_reg(i_regs->regmap,TLREG);
3256     assert(map>=0);
3257     reglist&=~(1<<map);
3258     map=do_tlb_w(addr,temp,map,x,c,constmap[i][s]+offset);
3259     do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr);
3260   }
3261
3262   if (opcode[i]==0x28) { // SB
3263     if(!c||memtarget) {
3264       int x=0,a=temp;
3265 #ifdef BIG_ENDIAN_MIPS
3266       if(!c) emit_xorimm(addr,3,temp);
3267       else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
3268 #else
3269       if(!c) a=addr;
3270 #endif
3271       if(faststore_reg_override) a=faststore_reg_override;
3272       //gen_tlb_addr_w(temp,map);
3273       //emit_writebyte_indexed(tl,(int)rdram-0x80000000,temp);
3274       emit_writebyte_indexed_tlb(tl,x,a,map,a);
3275     }
3276     type=STOREB_STUB;
3277   }
3278   if (opcode[i]==0x29) { // SH
3279     if(!c||memtarget) {
3280       int x=0,a=temp;
3281 #ifdef BIG_ENDIAN_MIPS
3282       if(!c) emit_xorimm(addr,2,temp);
3283       else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
3284 #else
3285       if(!c) a=addr;
3286 #endif
3287       if(faststore_reg_override) a=faststore_reg_override;
3288       //#ifdef
3289       //emit_writehword_indexed_tlb(tl,x,temp,map,temp);
3290       //#else
3291       if(map>=0) {
3292         gen_tlb_addr_w(a,map);
3293         emit_writehword_indexed(tl,x,a);
3294       }else
3295         //emit_writehword_indexed(tl,(int)rdram-0x80000000+x,a);
3296         emit_writehword_indexed(tl,x,a);
3297     }
3298     type=STOREH_STUB;
3299   }
3300   if (opcode[i]==0x2B) { // SW
3301     if(!c||memtarget) {
3302       int a=addr;
3303       if(faststore_reg_override) a=faststore_reg_override;
3304       //emit_writeword_indexed(tl,(int)rdram-0x80000000,addr);
3305       emit_writeword_indexed_tlb(tl,0,a,map,temp);
3306     }
3307     type=STOREW_STUB;
3308   }
3309   if (opcode[i]==0x3F) { // SD
3310     if(!c||memtarget) {
3311       int a=addr;
3312       if(faststore_reg_override) a=faststore_reg_override;
3313       if(rs2[i]) {
3314         assert(th>=0);
3315         //emit_writeword_indexed(th,(int)rdram-0x80000000,addr);
3316         //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,addr);
3317         emit_writedword_indexed_tlb(th,tl,0,a,map,temp);
3318       }else{
3319         // Store zero
3320         //emit_writeword_indexed(tl,(int)rdram-0x80000000,temp);
3321         //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,temp);
3322         emit_writedword_indexed_tlb(tl,tl,0,a,map,temp);
3323       }
3324     }
3325     type=STORED_STUB;
3326   }
3327 #ifdef PCSX
3328   if(jaddr) {
3329     // PCSX store handlers don't check invcode again
3330     reglist|=1<<addr;
3331     add_stub(type,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3332     jaddr=0;
3333   }
3334 #endif
3335   if(!using_tlb&&!(i_regs->waswritten&(1<<rs1[i]))&&!(new_dynarec_hacks&NDHACK_NO_SMC_CHECK)) {
3336     if(!c||memtarget) {
3337       #ifdef DESTRUCTIVE_SHIFT
3338       // The x86 shift operation is 'destructive'; it overwrites the
3339       // source register, so we need to make a copy first and use that.
3340       addr=temp;
3341       #endif
3342       #if defined(HOST_IMM8)
3343       int ir=get_reg(i_regs->regmap,INVCP);
3344       assert(ir>=0);
3345       emit_cmpmem_indexedsr12_reg(ir,addr,1);
3346       #else
3347       emit_cmpmem_indexedsr12_imm((int)invalid_code,addr,1);
3348       #endif
3349       #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3350       emit_callne(invalidate_addr_reg[addr]);
3351       #else
3352       jaddr2=(int)out;
3353       emit_jne(0);
3354       add_stub(INVCODE_STUB,jaddr2,(int)out,reglist|(1<<HOST_CCREG),addr,0,0,0);
3355       #endif
3356     }
3357   }
3358   u_int addr_val=constmap[i][s]+offset;
3359   if(jaddr) {
3360     add_stub(type,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3361   } else if(c&&!memtarget) {
3362     inline_writestub(type,i,addr_val,i_regs->regmap,rs2[i],ccadj[i],reglist);
3363   }
3364   // basic current block modification detection..
3365   // not looking back as that should be in mips cache already
3366   if(c&&start+i*4<addr_val&&addr_val<start+slen*4) {
3367     printf("write to %08x hits block %08x, pc=%08x\n",addr_val,start,start+i*4);
3368     assert(i_regs->regmap==regs[i].regmap); // not delay slot
3369     if(i_regs->regmap==regs[i].regmap) {
3370       load_all_consts(regs[i].regmap_entry,regs[i].was32,regs[i].wasdirty,i);
3371       wb_dirtys(regs[i].regmap_entry,regs[i].was32,regs[i].wasdirty);
3372       emit_movimm(start+i*4+4,0);
3373       emit_writeword(0,(int)&pcaddr);
3374       emit_jmp((int)do_interrupt);
3375     }
3376   }
3377   //if(opcode[i]==0x2B || opcode[i]==0x3F)
3378   //if(opcode[i]==0x2B || opcode[i]==0x28)
3379   //if(opcode[i]==0x2B || opcode[i]==0x29)
3380   //if(opcode[i]==0x2B)
3381   /*if(opcode[i]==0x2B || opcode[i]==0x28 || opcode[i]==0x29 || opcode[i]==0x3F)
3382   {
3383     #ifdef __i386__
3384     emit_pusha();
3385     #endif
3386     #ifdef __arm__
3387     save_regs(0x100f);
3388     #endif
3389         emit_readword((int)&last_count,ECX);
3390         #ifdef __i386__
3391         if(get_reg(i_regs->regmap,CCREG)<0)
3392           emit_loadreg(CCREG,HOST_CCREG);
3393         emit_add(HOST_CCREG,ECX,HOST_CCREG);
3394         emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3395         emit_writeword(HOST_CCREG,(int)&Count);
3396         #endif
3397         #ifdef __arm__
3398         if(get_reg(i_regs->regmap,CCREG)<0)
3399           emit_loadreg(CCREG,0);
3400         else
3401           emit_mov(HOST_CCREG,0);
3402         emit_add(0,ECX,0);
3403         emit_addimm(0,2*ccadj[i],0);
3404         emit_writeword(0,(int)&Count);
3405         #endif
3406     emit_call((int)memdebug);
3407     #ifdef __i386__
3408     emit_popa();
3409     #endif
3410     #ifdef __arm__
3411     restore_regs(0x100f);
3412     #endif
3413   }/**/
3414 }
3415
3416 void storelr_assemble(int i,struct regstat *i_regs)
3417 {
3418   int s,th,tl;
3419   int temp;
3420   int temp2;
3421   int offset;
3422   int jaddr=0,jaddr2;
3423   int case1,case2,case3;
3424   int done0,done1,done2;
3425   int memtarget=0,c=0;
3426   int agr=AGEN1+(i&1);
3427   u_int hr,reglist=0;
3428   th=get_reg(i_regs->regmap,rs2[i]|64);
3429   tl=get_reg(i_regs->regmap,rs2[i]);
3430   s=get_reg(i_regs->regmap,rs1[i]);
3431   temp=get_reg(i_regs->regmap,agr);
3432   if(temp<0) temp=get_reg(i_regs->regmap,-1);
3433   offset=imm[i];
3434   if(s>=0) {
3435     c=(i_regs->isconst>>s)&1;
3436     if(c) {
3437       memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
3438       if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
3439     }
3440   }
3441   assert(tl>=0);
3442   for(hr=0;hr<HOST_REGS;hr++) {
3443     if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3444   }
3445   assert(temp>=0);
3446   if(!using_tlb) {
3447     if(!c) {
3448       emit_cmpimm(s<0||offset?temp:s,RAM_SIZE);
3449       if(!offset&&s!=temp) emit_mov(s,temp);
3450       jaddr=(int)out;
3451       emit_jno(0);
3452     }
3453     else
3454     {
3455       if(!memtarget||!rs1[i]) {
3456         jaddr=(int)out;
3457         emit_jmp(0);
3458       }
3459     }
3460     #ifdef RAM_OFFSET
3461     int map=get_reg(i_regs->regmap,ROREG);
3462     if(map<0) emit_loadreg(ROREG,map=HOST_TEMPREG);
3463     gen_tlb_addr_w(temp,map);
3464     #else
3465     if((u_int)rdram!=0x80000000) 
3466       emit_addimm_no_flags((u_int)rdram-(u_int)0x80000000,temp);
3467     #endif
3468   }else{ // using tlb
3469     int map=get_reg(i_regs->regmap,TLREG);
3470     assert(map>=0);
3471     reglist&=~(1<<map);
3472     map=do_tlb_w(c||s<0||offset?temp:s,temp,map,0,c,constmap[i][s]+offset);
3473     if(!c&&!offset&&s>=0) emit_mov(s,temp);
3474     do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr);
3475     if(!jaddr&&!memtarget) {
3476       jaddr=(int)out;
3477       emit_jmp(0);
3478     }
3479     gen_tlb_addr_w(temp,map);
3480   }
3481
3482   if (opcode[i]==0x2C||opcode[i]==0x2D) { // SDL/SDR
3483     temp2=get_reg(i_regs->regmap,FTEMP);
3484     if(!rs2[i]) temp2=th=tl;
3485   }
3486
3487 #ifndef BIG_ENDIAN_MIPS
3488     emit_xorimm(temp,3,temp);
3489 #endif
3490   emit_testimm(temp,2);
3491   case2=(int)out;
3492   emit_jne(0);
3493   emit_testimm(temp,1);
3494   case1=(int)out;
3495   emit_jne(0);
3496   // 0
3497   if (opcode[i]==0x2A) { // SWL
3498     emit_writeword_indexed(tl,0,temp);
3499   }
3500   if (opcode[i]==0x2E) { // SWR
3501     emit_writebyte_indexed(tl,3,temp);
3502   }
3503   if (opcode[i]==0x2C) { // SDL
3504     emit_writeword_indexed(th,0,temp);
3505     if(rs2[i]) emit_mov(tl,temp2);
3506   }
3507   if (opcode[i]==0x2D) { // SDR
3508     emit_writebyte_indexed(tl,3,temp);
3509     if(rs2[i]) emit_shldimm(th,tl,24,temp2);
3510   }
3511   done0=(int)out;
3512   emit_jmp(0);
3513   // 1
3514   set_jump_target(case1,(int)out);
3515   if (opcode[i]==0x2A) { // SWL
3516     // Write 3 msb into three least significant bytes
3517     if(rs2[i]) emit_rorimm(tl,8,tl);
3518     emit_writehword_indexed(tl,-1,temp);
3519     if(rs2[i]) emit_rorimm(tl,16,tl);
3520     emit_writebyte_indexed(tl,1,temp);
3521     if(rs2[i]) emit_rorimm(tl,8,tl);
3522   }
3523   if (opcode[i]==0x2E) { // SWR
3524     // Write two lsb into two most significant bytes
3525     emit_writehword_indexed(tl,1,temp);
3526   }
3527   if (opcode[i]==0x2C) { // SDL
3528     if(rs2[i]) emit_shrdimm(tl,th,8,temp2);
3529     // Write 3 msb into three least significant bytes
3530     if(rs2[i]) emit_rorimm(th,8,th);
3531     emit_writehword_indexed(th,-1,temp);
3532     if(rs2[i]) emit_rorimm(th,16,th);
3533     emit_writebyte_indexed(th,1,temp);
3534     if(rs2[i]) emit_rorimm(th,8,th);
3535   }
3536   if (opcode[i]==0x2D) { // SDR
3537     if(rs2[i]) emit_shldimm(th,tl,16,temp2);
3538     // Write two lsb into two most significant bytes
3539     emit_writehword_indexed(tl,1,temp);
3540   }
3541   done1=(int)out;
3542   emit_jmp(0);
3543   // 2
3544   set_jump_target(case2,(int)out);
3545   emit_testimm(temp,1);
3546   case3=(int)out;
3547   emit_jne(0);
3548   if (opcode[i]==0x2A) { // SWL
3549     // Write two msb into two least significant bytes
3550     if(rs2[i]) emit_rorimm(tl,16,tl);
3551     emit_writehword_indexed(tl,-2,temp);
3552     if(rs2[i]) emit_rorimm(tl,16,tl);
3553   }
3554   if (opcode[i]==0x2E) { // SWR
3555     // Write 3 lsb into three most significant bytes
3556     emit_writebyte_indexed(tl,-1,temp);
3557     if(rs2[i]) emit_rorimm(tl,8,tl);
3558     emit_writehword_indexed(tl,0,temp);
3559     if(rs2[i]) emit_rorimm(tl,24,tl);
3560   }
3561   if (opcode[i]==0x2C) { // SDL
3562     if(rs2[i]) emit_shrdimm(tl,th,16,temp2);
3563     // Write two msb into two least significant bytes
3564     if(rs2[i]) emit_rorimm(th,16,th);
3565     emit_writehword_indexed(th,-2,temp);
3566     if(rs2[i]) emit_rorimm(th,16,th);
3567   }
3568   if (opcode[i]==0x2D) { // SDR
3569     if(rs2[i]) emit_shldimm(th,tl,8,temp2);
3570     // Write 3 lsb into three most significant bytes
3571     emit_writebyte_indexed(tl,-1,temp);
3572     if(rs2[i]) emit_rorimm(tl,8,tl);
3573     emit_writehword_indexed(tl,0,temp);
3574     if(rs2[i]) emit_rorimm(tl,24,tl);
3575   }
3576   done2=(int)out;
3577   emit_jmp(0);
3578   // 3
3579   set_jump_target(case3,(int)out);
3580   if (opcode[i]==0x2A) { // SWL
3581     // Write msb into least significant byte
3582     if(rs2[i]) emit_rorimm(tl,24,tl);
3583     emit_writebyte_indexed(tl,-3,temp);
3584     if(rs2[i]) emit_rorimm(tl,8,tl);
3585   }
3586   if (opcode[i]==0x2E) { // SWR
3587     // Write entire word
3588     emit_writeword_indexed(tl,-3,temp);
3589   }
3590   if (opcode[i]==0x2C) { // SDL
3591     if(rs2[i]) emit_shrdimm(tl,th,24,temp2);
3592     // Write msb into least significant byte
3593     if(rs2[i]) emit_rorimm(th,24,th);
3594     emit_writebyte_indexed(th,-3,temp);
3595     if(rs2[i]) emit_rorimm(th,8,th);
3596   }
3597   if (opcode[i]==0x2D) { // SDR
3598     if(rs2[i]) emit_mov(th,temp2);
3599     // Write entire word
3600     emit_writeword_indexed(tl,-3,temp);
3601   }
3602   set_jump_target(done0,(int)out);
3603   set_jump_target(done1,(int)out);
3604   set_jump_target(done2,(int)out);
3605   if (opcode[i]==0x2C) { // SDL
3606     emit_testimm(temp,4);
3607     done0=(int)out;
3608     emit_jne(0);
3609     emit_andimm(temp,~3,temp);
3610     emit_writeword_indexed(temp2,4,temp);
3611     set_jump_target(done0,(int)out);
3612   }
3613   if (opcode[i]==0x2D) { // SDR
3614     emit_testimm(temp,4);
3615     done0=(int)out;
3616     emit_jeq(0);
3617     emit_andimm(temp,~3,temp);
3618     emit_writeword_indexed(temp2,-4,temp);
3619     set_jump_target(done0,(int)out);
3620   }
3621   if(!c||!memtarget)
3622     add_stub(STORELR_STUB,jaddr,(int)out,i,(int)i_regs,temp,ccadj[i],reglist);
3623   if(!using_tlb&&!(i_regs->waswritten&(1<<rs1[i]))&&!(new_dynarec_hacks&NDHACK_NO_SMC_CHECK)) {
3624     #ifdef RAM_OFFSET
3625     int map=get_reg(i_regs->regmap,ROREG);
3626     if(map<0) map=HOST_TEMPREG;
3627     gen_orig_addr_w(temp,map);
3628     #else
3629     emit_addimm_no_flags((u_int)0x80000000-(u_int)rdram,temp);
3630     #endif
3631     #if defined(HOST_IMM8)
3632     int ir=get_reg(i_regs->regmap,INVCP);
3633     assert(ir>=0);
3634     emit_cmpmem_indexedsr12_reg(ir,temp,1);
3635     #else
3636     emit_cmpmem_indexedsr12_imm((int)invalid_code,temp,1);
3637     #endif
3638     #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3639     emit_callne(invalidate_addr_reg[temp]);
3640     #else
3641     jaddr2=(int)out;
3642     emit_jne(0);
3643     add_stub(INVCODE_STUB,jaddr2,(int)out,reglist|(1<<HOST_CCREG),temp,0,0,0);
3644     #endif
3645   }
3646   /*
3647     emit_pusha();
3648     //save_regs(0x100f);
3649         emit_readword((int)&last_count,ECX);
3650         if(get_reg(i_regs->regmap,CCREG)<0)
3651           emit_loadreg(CCREG,HOST_CCREG);
3652         emit_add(HOST_CCREG,ECX,HOST_CCREG);
3653         emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3654         emit_writeword(HOST_CCREG,(int)&Count);
3655     emit_call((int)memdebug);
3656     emit_popa();
3657     //restore_regs(0x100f);
3658   /**/
3659 }
3660
3661 void c1ls_assemble(int i,struct regstat *i_regs)
3662 {
3663 #ifndef DISABLE_COP1
3664   int s,th,tl;
3665   int temp,ar;
3666   int map=-1;
3667   int offset;
3668   int c=0;
3669   int jaddr,jaddr2=0,jaddr3,type;
3670   int agr=AGEN1+(i&1);
3671   u_int hr,reglist=0;
3672   th=get_reg(i_regs->regmap,FTEMP|64);
3673   tl=get_reg(i_regs->regmap,FTEMP);
3674   s=get_reg(i_regs->regmap,rs1[i]);
3675   temp=get_reg(i_regs->regmap,agr);
3676   if(temp<0) temp=get_reg(i_regs->regmap,-1);
3677   offset=imm[i];
3678   assert(tl>=0);
3679   assert(rs1[i]>0);
3680   assert(temp>=0);
3681   for(hr=0;hr<HOST_REGS;hr++) {
3682     if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3683   }
3684   if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
3685   if (opcode[i]==0x31||opcode[i]==0x35) // LWC1/LDC1
3686   {
3687     // Loads use a temporary register which we need to save
3688     reglist|=1<<temp;
3689   }
3690   if (opcode[i]==0x39||opcode[i]==0x3D) // SWC1/SDC1
3691     ar=temp;
3692   else // LWC1/LDC1
3693     ar=tl;
3694   //if(s<0) emit_loadreg(rs1[i],ar); //address_generation does this now
3695   //else c=(i_regs->wasconst>>s)&1;
3696   if(s>=0) c=(i_regs->wasconst>>s)&1;
3697   // Check cop1 unusable
3698   if(!cop1_usable) {
3699     signed char rs=get_reg(i_regs->regmap,CSREG);
3700     assert(rs>=0);
3701     emit_testimm(rs,0x20000000);
3702     jaddr=(int)out;
3703     emit_jeq(0);
3704     add_stub(FP_STUB,jaddr,(int)out,i,rs,(int)i_regs,is_delayslot,0);
3705     cop1_usable=1;
3706   }
3707   if (opcode[i]==0x39) { // SWC1 (get float address)
3708     emit_readword((int)&reg_cop1_simple[(source[i]>>16)&0x1f],tl);
3709   }
3710   if (opcode[i]==0x3D) { // SDC1 (get double address)
3711     emit_readword((int)&reg_cop1_double[(source[i]>>16)&0x1f],tl);
3712   }
3713   // Generate address + offset
3714   if(!using_tlb) {
3715     if(!c)
3716       emit_cmpimm(offset||c||s<0?ar:s,RAM_SIZE);
3717   }
3718   else
3719   {
3720     map=get_reg(i_regs->regmap,TLREG);
3721     assert(map>=0);
3722     reglist&=~(1<<map);
3723     if (opcode[i]==0x31||opcode[i]==0x35) { // LWC1/LDC1
3724       map=do_tlb_r(offset||c||s<0?ar:s,ar,map,0,-1,-1,c,constmap[i][s]+offset);
3725     }
3726     if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3727       map=do_tlb_w(offset||c||s<0?ar:s,ar,map,0,c,constmap[i][s]+offset);
3728     }
3729   }
3730   if (opcode[i]==0x39) { // SWC1 (read float)
3731     emit_readword_indexed(0,tl,tl);
3732   }
3733   if (opcode[i]==0x3D) { // SDC1 (read double)
3734     emit_readword_indexed(4,tl,th);
3735     emit_readword_indexed(0,tl,tl);
3736   }
3737   if (opcode[i]==0x31) { // LWC1 (get target address)
3738     emit_readword((int)&reg_cop1_simple[(source[i]>>16)&0x1f],temp);
3739   }
3740   if (opcode[i]==0x35) { // LDC1 (get target address)
3741     emit_readword((int)&reg_cop1_double[(source[i]>>16)&0x1f],temp);
3742   }
3743   if(!using_tlb) {
3744     if(!c) {
3745       jaddr2=(int)out;
3746       emit_jno(0);
3747     }
3748     else if(((signed int)(constmap[i][s]+offset))>=(signed int)0x80000000+RAM_SIZE) {
3749       jaddr2=(int)out;
3750       emit_jmp(0); // inline_readstub/inline_writestub?  Very rare case
3751     }
3752     #ifdef DESTRUCTIVE_SHIFT
3753     if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3754       if(!offset&&!c&&s>=0) emit_mov(s,ar);
3755     }
3756     #endif
3757   }else{
3758     if (opcode[i]==0x31||opcode[i]==0x35) { // LWC1/LDC1
3759       do_tlb_r_branch(map,c,constmap[i][s]+offset,&jaddr2);
3760     }
3761     if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3762       do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr2);
3763     }
3764   }
3765   if (opcode[i]==0x31) { // LWC1
3766     //if(s>=0&&!c&&!offset) emit_mov(s,tl);
3767     //gen_tlb_addr_r(ar,map);
3768     //emit_readword_indexed((int)rdram-0x80000000,tl,tl);
3769     #ifdef HOST_IMM_ADDR32
3770     if(c) emit_readword_tlb(constmap[i][s]+offset,map,tl);
3771     else
3772     #endif
3773     emit_readword_indexed_tlb(0,offset||c||s<0?tl:s,map,tl);
3774     type=LOADW_STUB;
3775   }
3776   if (opcode[i]==0x35) { // LDC1
3777     assert(th>=0);
3778     //if(s>=0&&!c&&!offset) emit_mov(s,tl);
3779     //gen_tlb_addr_r(ar,map);
3780     //emit_readword_indexed((int)rdram-0x80000000,tl,th);
3781     //emit_readword_indexed((int)rdram-0x7FFFFFFC,tl,tl);
3782     #ifdef HOST_IMM_ADDR32
3783     if(c) emit_readdword_tlb(constmap[i][s]+offset,map,th,tl);
3784     else
3785     #endif
3786     emit_readdword_indexed_tlb(0,offset||c||s<0?tl:s,map,th,tl);
3787     type=LOADD_STUB;
3788   }
3789   if (opcode[i]==0x39) { // SWC1
3790     //emit_writeword_indexed(tl,(int)rdram-0x80000000,temp);
3791     emit_writeword_indexed_tlb(tl,0,offset||c||s<0?temp:s,map,temp);
3792     type=STOREW_STUB;
3793   }
3794   if (opcode[i]==0x3D) { // SDC1
3795     assert(th>=0);
3796     //emit_writeword_indexed(th,(int)rdram-0x80000000,temp);
3797     //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,temp);
3798     emit_writedword_indexed_tlb(th,tl,0,offset||c||s<0?temp:s,map,temp);
3799     type=STORED_STUB;
3800   }
3801   if(!using_tlb&&!(i_regs->waswritten&(1<<rs1[i]))&&!(new_dynarec_hacks&NDHACK_NO_SMC_CHECK)) {
3802     if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3803       #ifndef DESTRUCTIVE_SHIFT
3804       temp=offset||c||s<0?ar:s;
3805       #endif
3806       #if defined(HOST_IMM8)
3807       int ir=get_reg(i_regs->regmap,INVCP);
3808       assert(ir>=0);
3809       emit_cmpmem_indexedsr12_reg(ir,temp,1);
3810       #else
3811       emit_cmpmem_indexedsr12_imm((int)invalid_code,temp,1);
3812       #endif
3813       #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3814       emit_callne(invalidate_addr_reg[temp]);
3815       #else
3816       jaddr3=(int)out;
3817       emit_jne(0);
3818       add_stub(INVCODE_STUB,jaddr3,(int)out,reglist|(1<<HOST_CCREG),temp,0,0,0);
3819       #endif
3820     }
3821   }
3822   if(jaddr2) add_stub(type,jaddr2,(int)out,i,offset||c||s<0?ar:s,(int)i_regs,ccadj[i],reglist);
3823   if (opcode[i]==0x31) { // LWC1 (write float)
3824     emit_writeword_indexed(tl,0,temp);
3825   }
3826   if (opcode[i]==0x35) { // LDC1 (write double)
3827     emit_writeword_indexed(th,4,temp);
3828     emit_writeword_indexed(tl,0,temp);
3829   }
3830   //if(opcode[i]==0x39)
3831   /*if(opcode[i]==0x39||opcode[i]==0x31)
3832   {
3833     emit_pusha();
3834         emit_readword((int)&last_count,ECX);
3835         if(get_reg(i_regs->regmap,CCREG)<0)
3836           emit_loadreg(CCREG,HOST_CCREG);
3837         emit_add(HOST_CCREG,ECX,HOST_CCREG);
3838         emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3839         emit_writeword(HOST_CCREG,(int)&Count);
3840     emit_call((int)memdebug);
3841     emit_popa();
3842   }/**/
3843 #else
3844   cop1_unusable(i, i_regs);
3845 #endif
3846 }
3847
3848 void c2ls_assemble(int i,struct regstat *i_regs)
3849 {
3850   int s,tl;
3851   int ar;
3852   int offset;
3853   int memtarget=0,c=0;
3854   int jaddr2=0,jaddr3,type;
3855   int agr=AGEN1+(i&1);
3856   int fastio_reg_override=0;
3857   u_int hr,reglist=0;
3858   u_int copr=(source[i]>>16)&0x1f;
3859   s=get_reg(i_regs->regmap,rs1[i]);
3860   tl=get_reg(i_regs->regmap,FTEMP);
3861   offset=imm[i];
3862   assert(rs1[i]>0);
3863   assert(tl>=0);
3864   assert(!using_tlb);
3865
3866   for(hr=0;hr<HOST_REGS;hr++) {
3867     if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3868   }
3869   if(i_regs->regmap[HOST_CCREG]==CCREG)
3870     reglist&=~(1<<HOST_CCREG);
3871
3872   // get the address
3873   if (opcode[i]==0x3a) { // SWC2
3874     ar=get_reg(i_regs->regmap,agr);
3875     if(ar<0) ar=get_reg(i_regs->regmap,-1);
3876     reglist|=1<<ar;
3877   } else { // LWC2
3878     ar=tl;
3879   }
3880   if(s>=0) c=(i_regs->wasconst>>s)&1;
3881   memtarget=c&&(((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE);
3882   if (!offset&&!c&&s>=0) ar=s;
3883   assert(ar>=0);
3884
3885   if (opcode[i]==0x3a) { // SWC2
3886     cop2_get_dreg(copr,tl,HOST_TEMPREG);
3887     type=STOREW_STUB;
3888   }
3889   else
3890     type=LOADW_STUB;
3891
3892   if(c&&!memtarget) {
3893     jaddr2=(int)out;
3894     emit_jmp(0); // inline_readstub/inline_writestub?
3895   }
3896   else {
3897     if(!c) {
3898       jaddr2=emit_fastpath_cmp_jump(i,ar,&fastio_reg_override);
3899     }
3900     else if(ram_offset&&memtarget) {
3901       emit_addimm(ar,ram_offset,HOST_TEMPREG);
3902       fastio_reg_override=HOST_TEMPREG;
3903     }
3904     if (opcode[i]==0x32) { // LWC2
3905       #ifdef HOST_IMM_ADDR32
3906       if(c) emit_readword_tlb(constmap[i][s]+offset,-1,tl);
3907       else
3908       #endif
3909       int a=ar;
3910       if(fastio_reg_override) a=fastio_reg_override;
3911       emit_readword_indexed(0,a,tl);
3912     }
3913     if (opcode[i]==0x3a) { // SWC2
3914       #ifdef DESTRUCTIVE_SHIFT
3915       if(!offset&&!c&&s>=0) emit_mov(s,ar);
3916       #endif
3917       int a=ar;
3918       if(fastio_reg_override) a=fastio_reg_override;
3919       emit_writeword_indexed(tl,0,a);
3920     }
3921   }
3922   if(jaddr2)
3923     add_stub(type,jaddr2,(int)out,i,ar,(int)i_regs,ccadj[i],reglist);
3924   if(opcode[i]==0x3a) // SWC2
3925   if(!(i_regs->waswritten&(1<<rs1[i]))&&!(new_dynarec_hacks&NDHACK_NO_SMC_CHECK)) {
3926 #if defined(HOST_IMM8)
3927     int ir=get_reg(i_regs->regmap,INVCP);
3928     assert(ir>=0);
3929     emit_cmpmem_indexedsr12_reg(ir,ar,1);
3930 #else
3931     emit_cmpmem_indexedsr12_imm((int)invalid_code,ar,1);
3932 #endif
3933     #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3934     emit_callne(invalidate_addr_reg[ar]);
3935     #else
3936     jaddr3=(int)out;
3937     emit_jne(0);
3938     add_stub(INVCODE_STUB,jaddr3,(int)out,reglist|(1<<HOST_CCREG),ar,0,0,0);
3939     #endif
3940   }
3941   if (opcode[i]==0x32) { // LWC2
3942     cop2_put_dreg(copr,tl,HOST_TEMPREG);
3943   }
3944 }
3945
3946 #ifndef multdiv_assemble
3947 void multdiv_assemble(int i,struct regstat *i_regs)
3948 {
3949   printf("Need multdiv_assemble for this architecture.\n");
3950   exit(1);
3951 }
3952 #endif
3953
3954 void mov_assemble(int i,struct regstat *i_regs)
3955 {
3956   //if(opcode2[i]==0x10||opcode2[i]==0x12) { // MFHI/MFLO
3957   //if(opcode2[i]==0x11||opcode2[i]==0x13) { // MTHI/MTLO
3958   if(rt1[i]) {
3959     signed char sh,sl,th,tl;
3960     th=get_reg(i_regs->regmap,rt1[i]|64);
3961     tl=get_reg(i_regs->regmap,rt1[i]);
3962     //assert(tl>=0);
3963     if(tl>=0) {
3964       sh=get_reg(i_regs->regmap,rs1[i]|64);
3965       sl=get_reg(i_regs->regmap,rs1[i]);
3966       if(sl>=0) emit_mov(sl,tl);
3967       else emit_loadreg(rs1[i],tl);
3968       if(th>=0) {
3969         if(sh>=0) emit_mov(sh,th);
3970         else emit_loadreg(rs1[i]|64,th);
3971       }
3972     }
3973   }
3974 }
3975
3976 #ifndef fconv_assemble
3977 void fconv_assemble(int i,struct regstat *i_regs)
3978 {
3979   printf("Need fconv_assemble for this architecture.\n");
3980   exit(1);
3981 }
3982 #endif
3983
3984 #if 0
3985 void float_assemble(int i,struct regstat *i_regs)
3986 {
3987   printf("Need float_assemble for this architecture.\n");
3988   exit(1);
3989 }
3990 #endif
3991
3992 void syscall_assemble(int i,struct regstat *i_regs)
3993 {
3994   signed char ccreg=get_reg(i_regs->regmap,CCREG);
3995   assert(ccreg==HOST_CCREG);
3996   assert(!is_delayslot);
3997   emit_movimm(start+i*4,EAX); // Get PC
3998   emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i]),HOST_CCREG); // CHECK: is this right?  There should probably be an extra cycle...
3999   emit_jmp((int)jump_syscall_hle); // XXX
4000 }
4001
4002 void hlecall_assemble(int i,struct regstat *i_regs)
4003 {
4004   signed char ccreg=get_reg(i_regs->regmap,CCREG);
4005   assert(ccreg==HOST_CCREG);
4006   assert(!is_delayslot);
4007   emit_movimm(start+i*4+4,0); // Get PC
4008   emit_movimm((int)psxHLEt[source[i]&7],1);
4009   emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i]),HOST_CCREG); // XXX
4010   emit_jmp((int)jump_hlecall);
4011 }
4012
4013 void intcall_assemble(int i,struct regstat *i_regs)
4014 {
4015   signed char ccreg=get_reg(i_regs->regmap,CCREG);
4016   assert(ccreg==HOST_CCREG);
4017   assert(!is_delayslot);
4018   emit_movimm(start+i*4,0); // Get PC
4019   emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i]),HOST_CCREG);
4020   emit_jmp((int)jump_intcall);
4021 }
4022
4023 void ds_assemble(int i,struct regstat *i_regs)
4024 {
4025   speculate_register_values(i);
4026   is_delayslot=1;
4027   switch(itype[i]) {
4028     case ALU:
4029       alu_assemble(i,i_regs);break;
4030     case IMM16:
4031       imm16_assemble(i,i_regs);break;
4032     case SHIFT:
4033       shift_assemble(i,i_regs);break;
4034     case SHIFTIMM:
4035       shiftimm_assemble(i,i_regs);break;
4036     case LOAD:
4037       load_assemble(i,i_regs);break;
4038     case LOADLR:
4039       loadlr_assemble(i,i_regs);break;
4040     case STORE:
4041       store_assemble(i,i_regs);break;
4042     case STORELR:
4043       storelr_assemble(i,i_regs);break;
4044     case COP0:
4045       cop0_assemble(i,i_regs);break;
4046     case COP1:
4047       cop1_assemble(i,i_regs);break;
4048     case C1LS:
4049       c1ls_assemble(i,i_regs);break;
4050     case COP2:
4051       cop2_assemble(i,i_regs);break;
4052     case C2LS:
4053       c2ls_assemble(i,i_regs);break;
4054     case C2OP:
4055       c2op_assemble(i,i_regs);break;
4056     case FCONV:
4057       fconv_assemble(i,i_regs);break;
4058     case FLOAT:
4059       float_assemble(i,i_regs);break;
4060     case FCOMP:
4061       fcomp_assemble(i,i_regs);break;
4062     case MULTDIV:
4063       multdiv_assemble(i,i_regs);break;
4064     case MOV:
4065       mov_assemble(i,i_regs);break;
4066     case SYSCALL:
4067     case HLECALL:
4068     case INTCALL:
4069     case SPAN:
4070     case UJUMP:
4071     case RJUMP:
4072     case CJUMP:
4073     case SJUMP:
4074     case FJUMP:
4075       printf("Jump in the delay slot.  This is probably a bug.\n");
4076   }
4077   is_delayslot=0;
4078 }
4079
4080 // Is the branch target a valid internal jump?
4081 int internal_branch(uint64_t i_is32,int addr)
4082 {
4083   if(addr&1) return 0; // Indirect (register) jump
4084   if(addr>=start && addr<start+slen*4-4)
4085   {
4086     int t=(addr-start)>>2;
4087     // Delay slots are not valid branch targets
4088     //if(t>0&&(itype[t-1]==RJUMP||itype[t-1]==UJUMP||itype[t-1]==CJUMP||itype[t-1]==SJUMP||itype[t-1]==FJUMP)) return 0;
4089     // 64 -> 32 bit transition requires a recompile
4090     /*if(is32[t]&~unneeded_reg_upper[t]&~i_is32)
4091     {
4092       if(requires_32bit[t]&~i_is32) printf("optimizable: no\n");
4093       else printf("optimizable: yes\n");
4094     }*/
4095     //if(is32[t]&~unneeded_reg_upper[t]&~i_is32) return 0;
4096 #ifndef FORCE32
4097     if(requires_32bit[t]&~i_is32) return 0;
4098     else
4099 #endif
4100       return 1;
4101   }
4102   return 0;
4103 }
4104
4105 #ifndef wb_invalidate
4106 void wb_invalidate(signed char pre[],signed char entry[],uint64_t dirty,uint64_t is32,
4107   uint64_t u,uint64_t uu)
4108 {
4109   int hr;
4110   for(hr=0;hr<HOST_REGS;hr++) {
4111     if(hr!=EXCLUDE_REG) {
4112       if(pre[hr]!=entry[hr]) {
4113         if(pre[hr]>=0) {
4114           if((dirty>>hr)&1) {
4115             if(get_reg(entry,pre[hr])<0) {
4116               if(pre[hr]<64) {
4117                 if(!((u>>pre[hr])&1)) {
4118                   emit_storereg(pre[hr],hr);
4119                   if( ((is32>>pre[hr])&1) && !((uu>>pre[hr])&1) ) {
4120                     emit_sarimm(hr,31,hr);
4121                     emit_storereg(pre[hr]|64,hr);
4122                   }
4123                 }
4124               }else{
4125                 if(!((uu>>(pre[hr]&63))&1) && !((is32>>(pre[hr]&63))&1)) {
4126                   emit_storereg(pre[hr],hr);
4127                 }
4128               }
4129             }
4130           }
4131         }
4132       }
4133     }
4134   }
4135   // Move from one register to another (no writeback)
4136   for(hr=0;hr<HOST_REGS;hr++) {
4137     if(hr!=EXCLUDE_REG) {
4138       if(pre[hr]!=entry[hr]) {
4139         if(pre[hr]>=0&&(pre[hr]&63)<TEMPREG) {
4140           int nr;
4141           if((nr=get_reg(entry,pre[hr]))>=0) {
4142             emit_mov(hr,nr);
4143           }
4144         }
4145       }
4146     }
4147   }
4148 }
4149 #endif
4150
4151 // Load the specified registers
4152 // This only loads the registers given as arguments because
4153 // we don't want to load things that will be overwritten
4154 void load_regs(signed char entry[],signed char regmap[],int is32,int rs1,int rs2)
4155 {
4156   int hr;
4157   // Load 32-bit regs
4158   for(hr=0;hr<HOST_REGS;hr++) {
4159     if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4160       if(entry[hr]!=regmap[hr]) {
4161         if(regmap[hr]==rs1||regmap[hr]==rs2)
4162         {
4163           if(regmap[hr]==0) {
4164             emit_zeroreg(hr);
4165           }
4166           else
4167           {
4168             emit_loadreg(regmap[hr],hr);
4169           }
4170         }
4171       }
4172     }
4173   }
4174   //Load 64-bit regs
4175   for(hr=0;hr<HOST_REGS;hr++) {
4176     if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4177       if(entry[hr]!=regmap[hr]) {
4178         if(regmap[hr]-64==rs1||regmap[hr]-64==rs2)
4179         {
4180           assert(regmap[hr]!=64);
4181           if((is32>>(regmap[hr]&63))&1) {
4182             int lr=get_reg(regmap,regmap[hr]-64);
4183             if(lr>=0)
4184               emit_sarimm(lr,31,hr);
4185             else
4186               emit_loadreg(regmap[hr],hr);
4187           }
4188           else
4189           {
4190             emit_loadreg(regmap[hr],hr);
4191           }
4192         }
4193       }
4194     }
4195   }
4196 }
4197
4198 // Load registers prior to the start of a loop
4199 // so that they are not loaded within the loop
4200 static void loop_preload(signed char pre[],signed char entry[])
4201 {
4202   int hr;
4203   for(hr=0;hr<HOST_REGS;hr++) {
4204     if(hr!=EXCLUDE_REG) {
4205       if(pre[hr]!=entry[hr]) {
4206         if(entry[hr]>=0) {
4207           if(get_reg(pre,entry[hr])<0) {
4208             assem_debug("loop preload:\n");
4209             //printf("loop preload: %d\n",hr);
4210             if(entry[hr]==0) {
4211               emit_zeroreg(hr);
4212             }
4213             else if(entry[hr]<TEMPREG)
4214             {
4215               emit_loadreg(entry[hr],hr);
4216             }
4217             else if(entry[hr]-64<TEMPREG)
4218             {
4219               emit_loadreg(entry[hr],hr);
4220             }
4221           }
4222         }
4223       }
4224     }
4225   }
4226 }
4227
4228 // Generate address for load/store instruction
4229 // goes to AGEN for writes, FTEMP for LOADLR and cop1/2 loads
4230 void address_generation(int i,struct regstat *i_regs,signed char entry[])
4231 {
4232   if(itype[i]==LOAD||itype[i]==LOADLR||itype[i]==STORE||itype[i]==STORELR||itype[i]==C1LS||itype[i]==C2LS) {
4233     int ra=-1;
4234     int agr=AGEN1+(i&1);
4235     int mgr=MGEN1+(i&1);
4236     if(itype[i]==LOAD) {
4237       ra=get_reg(i_regs->regmap,rt1[i]);
4238       if(ra<0) ra=get_reg(i_regs->regmap,-1); 
4239       assert(ra>=0);
4240     }
4241     if(itype[i]==LOADLR) {
4242       ra=get_reg(i_regs->regmap,FTEMP);
4243     }
4244     if(itype[i]==STORE||itype[i]==STORELR) {
4245       ra=get_reg(i_regs->regmap,agr);
4246       if(ra<0) ra=get_reg(i_regs->regmap,-1);
4247     }
4248     if(itype[i]==C1LS||itype[i]==C2LS) {
4249       if ((opcode[i]&0x3b)==0x31||(opcode[i]&0x3b)==0x32) // LWC1/LDC1/LWC2/LDC2
4250         ra=get_reg(i_regs->regmap,FTEMP);
4251       else { // SWC1/SDC1/SWC2/SDC2
4252         ra=get_reg(i_regs->regmap,agr);
4253         if(ra<0) ra=get_reg(i_regs->regmap,-1);
4254       }
4255     }
4256     int rs=get_reg(i_regs->regmap,rs1[i]);
4257     int rm=get_reg(i_regs->regmap,TLREG);
4258     if(ra>=0) {
4259       int offset=imm[i];
4260       int c=(i_regs->wasconst>>rs)&1;
4261       if(rs1[i]==0) {
4262         // Using r0 as a base address
4263         /*if(rm>=0) {
4264           if(!entry||entry[rm]!=mgr) {
4265             generate_map_const(offset,rm);
4266           } // else did it in the previous cycle
4267         }*/
4268         if(!entry||entry[ra]!=agr) {
4269           if (opcode[i]==0x22||opcode[i]==0x26) {
4270             emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
4271           }else if (opcode[i]==0x1a||opcode[i]==0x1b) {
4272             emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
4273           }else{
4274             emit_movimm(offset,ra);
4275           }
4276         } // else did it in the previous cycle
4277       }
4278       else if(rs<0) {
4279         if(!entry||entry[ra]!=rs1[i])
4280           emit_loadreg(rs1[i],ra);
4281         //if(!entry||entry[ra]!=rs1[i])
4282         //  printf("poor load scheduling!\n");
4283       }
4284       else if(c) {
4285 #ifndef DISABLE_TLB
4286         if(rm>=0) {
4287           if(!entry||entry[rm]!=mgr) {
4288             if(itype[i]==STORE||itype[i]==STORELR||(opcode[i]&0x3b)==0x39||(opcode[i]&0x3b)==0x3a) {
4289               // Stores to memory go thru the mapper to detect self-modifying
4290               // code, loads don't.
4291               if((unsigned int)(constmap[i][rs]+offset)>=0xC0000000 ||
4292                  (unsigned int)(constmap[i][rs]+offset)<0x80000000+RAM_SIZE )
4293                 generate_map_const(constmap[i][rs]+offset,rm);
4294             }else{
4295               if((signed int)(constmap[i][rs]+offset)>=(signed int)0xC0000000)
4296                 generate_map_const(constmap[i][rs]+offset,rm);
4297             }
4298           }
4299         }
4300 #endif
4301         if(rs1[i]!=rt1[i]||itype[i]!=LOAD) {
4302           if(!entry||entry[ra]!=agr) {
4303             if (opcode[i]==0x22||opcode[i]==0x26) {
4304               emit_movimm((constmap[i][rs]+offset)&0xFFFFFFFC,ra); // LWL/LWR
4305             }else if (opcode[i]==0x1a||opcode[i]==0x1b) {
4306               emit_movimm((constmap[i][rs]+offset)&0xFFFFFFF8,ra); // LDL/LDR
4307             }else{
4308               #ifdef HOST_IMM_ADDR32
4309               if((itype[i]!=LOAD&&(opcode[i]&0x3b)!=0x31&&(opcode[i]&0x3b)!=0x32) || // LWC1/LDC1/LWC2/LDC2
4310                  (using_tlb&&((signed int)constmap[i][rs]+offset)>=(signed int)0xC0000000))
4311               #endif
4312               emit_movimm(constmap[i][rs]+offset,ra);
4313               regs[i].loadedconst|=1<<ra;
4314             }
4315           } // else did it in the previous cycle
4316         } // else load_consts already did it
4317       }
4318       if(offset&&!c&&rs1[i]) {
4319         if(rs>=0) {
4320           emit_addimm(rs,offset,ra);
4321         }else{
4322           emit_addimm(ra,offset,ra);
4323         }
4324       }
4325     }
4326   }
4327   // Preload constants for next instruction
4328   if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS||itype[i+1]==C2LS) {
4329     int agr,ra;
4330     #if !defined(HOST_IMM_ADDR32) && !defined(DISABLE_TLB)
4331     // Mapper entry
4332     agr=MGEN1+((i+1)&1);
4333     ra=get_reg(i_regs->regmap,agr);
4334     if(ra>=0) {
4335       int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
4336       int offset=imm[i+1];
4337       int c=(regs[i+1].wasconst>>rs)&1;
4338       if(c) {
4339         if(itype[i+1]==STORE||itype[i+1]==STORELR
4340            ||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1, SWC2/SDC2
4341           // Stores to memory go thru the mapper to detect self-modifying
4342           // code, loads don't.
4343           if((unsigned int)(constmap[i+1][rs]+offset)>=0xC0000000 ||
4344              (unsigned int)(constmap[i+1][rs]+offset)<0x80000000+RAM_SIZE )
4345             generate_map_const(constmap[i+1][rs]+offset,ra);
4346         }else{
4347           if((signed int)(constmap[i+1][rs]+offset)>=(signed int)0xC0000000)
4348             generate_map_const(constmap[i+1][rs]+offset,ra);
4349         }
4350       }
4351       /*else if(rs1[i]==0) {
4352         generate_map_const(offset,ra);
4353       }*/
4354     }
4355     #endif
4356     // Actual address
4357     agr=AGEN1+((i+1)&1);
4358     ra=get_reg(i_regs->regmap,agr);
4359     if(ra>=0) {
4360       int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
4361       int offset=imm[i+1];
4362       int c=(regs[i+1].wasconst>>rs)&1;
4363       if(c&&(rs1[i+1]!=rt1[i+1]||itype[i+1]!=LOAD)) {
4364         if (opcode[i+1]==0x22||opcode[i+1]==0x26) {
4365           emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFFC,ra); // LWL/LWR
4366         }else if (opcode[i+1]==0x1a||opcode[i+1]==0x1b) {
4367           emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFF8,ra); // LDL/LDR
4368         }else{
4369           #ifdef HOST_IMM_ADDR32
4370           if((itype[i+1]!=LOAD&&(opcode[i+1]&0x3b)!=0x31&&(opcode[i+1]&0x3b)!=0x32) || // LWC1/LDC1/LWC2/LDC2
4371              (using_tlb&&((signed int)constmap[i+1][rs]+offset)>=(signed int)0xC0000000))
4372           #endif
4373           emit_movimm(constmap[i+1][rs]+offset,ra);
4374           regs[i+1].loadedconst|=1<<ra;
4375         }
4376       }
4377       else if(rs1[i+1]==0) {
4378         // Using r0 as a base address
4379         if (opcode[i+1]==0x22||opcode[i+1]==0x26) {
4380           emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
4381         }else if (opcode[i+1]==0x1a||opcode[i+1]==0x1b) {
4382           emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
4383         }else{
4384           emit_movimm(offset,ra);
4385         }
4386       }
4387     }
4388   }
4389 }
4390
4391 int get_final_value(int hr, int i, int *value)
4392 {
4393   int reg=regs[i].regmap[hr];
4394   while(i<slen-1) {
4395     if(regs[i+1].regmap[hr]!=reg) break;
4396     if(!((regs[i+1].isconst>>hr)&1)) break;
4397     if(bt[i+1]) break;
4398     i++;
4399   }
4400   if(i<slen-1) {
4401     if(itype[i]==UJUMP||itype[i]==RJUMP||itype[i]==CJUMP||itype[i]==SJUMP) {
4402       *value=constmap[i][hr];
4403       return 1;
4404     }
4405     if(!bt[i+1]) {
4406       if(itype[i+1]==UJUMP||itype[i+1]==RJUMP||itype[i+1]==CJUMP||itype[i+1]==SJUMP) {
4407         // Load in delay slot, out-of-order execution
4408         if(itype[i+2]==LOAD&&rs1[i+2]==reg&&rt1[i+2]==reg&&((regs[i+1].wasconst>>hr)&1))
4409         {
4410           #ifdef HOST_IMM_ADDR32
4411           if(!using_tlb||((signed int)constmap[i][hr]+imm[i+2])<(signed int)0xC0000000) return 0;
4412           #endif
4413           // Precompute load address
4414           *value=constmap[i][hr]+imm[i+2];
4415           return 1;
4416         }
4417       }
4418       if(itype[i+1]==LOAD&&rs1[i+1]==reg&&rt1[i+1]==reg)
4419       {
4420         #ifdef HOST_IMM_ADDR32
4421         if(!using_tlb||((signed int)constmap[i][hr]+imm[i+1])<(signed int)0xC0000000) return 0;
4422         #endif
4423         // Precompute load address
4424         *value=constmap[i][hr]+imm[i+1];
4425         //printf("c=%x imm=%x\n",(int)constmap[i][hr],imm[i+1]);
4426         return 1;
4427       }
4428     }
4429   }
4430   *value=constmap[i][hr];
4431   //printf("c=%x\n",(int)constmap[i][hr]);
4432   if(i==slen-1) return 1;
4433   if(reg<64) {
4434     return !((unneeded_reg[i+1]>>reg)&1);
4435   }else{
4436     return !((unneeded_reg_upper[i+1]>>reg)&1);
4437   }
4438 }
4439
4440 // Load registers with known constants
4441 void load_consts(signed char pre[],signed char regmap[],int is32,int i)
4442 {
4443   int hr,hr2;
4444   // propagate loaded constant flags
4445   if(i==0||bt[i])
4446     regs[i].loadedconst=0;
4447   else {
4448     for(hr=0;hr<HOST_REGS;hr++) {
4449       if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((regs[i-1].isconst>>hr)&1)&&pre[hr]==regmap[hr]
4450          &&regmap[hr]==regs[i-1].regmap[hr]&&((regs[i-1].loadedconst>>hr)&1))
4451       {
4452         regs[i].loadedconst|=1<<hr;
4453       }
4454     }
4455   }
4456   // Load 32-bit regs
4457   for(hr=0;hr<HOST_REGS;hr++) {
4458     if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4459       //if(entry[hr]!=regmap[hr]) {
4460       if(!((regs[i].loadedconst>>hr)&1)) {
4461         if(((regs[i].isconst>>hr)&1)&&regmap[hr]<64&&regmap[hr]>0) {
4462           int value,similar=0;
4463           if(get_final_value(hr,i,&value)) {
4464             // see if some other register has similar value
4465             for(hr2=0;hr2<HOST_REGS;hr2++) {
4466               if(hr2!=EXCLUDE_REG&&((regs[i].loadedconst>>hr2)&1)) {
4467                 if(is_similar_value(value,constmap[i][hr2])) {
4468                   similar=1;
4469                   break;
4470                 }
4471               }
4472             }
4473             if(similar) {
4474               int value2;
4475               if(get_final_value(hr2,i,&value2)) // is this needed?
4476                 emit_movimm_from(value2,hr2,value,hr);
4477               else
4478                 emit_movimm(value,hr);
4479             }
4480             else if(value==0) {
4481               emit_zeroreg(hr);
4482             }
4483             else {
4484               emit_movimm(value,hr);
4485             }
4486           }
4487           regs[i].loadedconst|=1<<hr;
4488         }
4489       }
4490     }
4491   }
4492   // Load 64-bit regs
4493   for(hr=0;hr<HOST_REGS;hr++) {
4494     if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4495       //if(entry[hr]!=regmap[hr]) {
4496       if(i==0||!((regs[i-1].isconst>>hr)&1)||pre[hr]!=regmap[hr]||bt[i]) {
4497         if(((regs[i].isconst>>hr)&1)&&regmap[hr]>64) {
4498           if((is32>>(regmap[hr]&63))&1) {
4499             int lr=get_reg(regmap,regmap[hr]-64);
4500             assert(lr>=0);
4501             emit_sarimm(lr,31,hr);
4502           }
4503           else
4504           {
4505             int value;
4506             if(get_final_value(hr,i,&value)) {
4507               if(value==0) {
4508                 emit_zeroreg(hr);
4509               }
4510               else {
4511                 emit_movimm(value,hr);
4512               }
4513             }
4514           }
4515         }
4516       }
4517     }
4518   }
4519 }
4520 void load_all_consts(signed char regmap[],int is32,u_int dirty,int i)
4521 {
4522   int hr;
4523   // Load 32-bit regs
4524   for(hr=0;hr<HOST_REGS;hr++) {
4525     if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((dirty>>hr)&1)) {
4526       if(((regs[i].isconst>>hr)&1)&&regmap[hr]<64&&regmap[hr]>0) {
4527         int value=constmap[i][hr];
4528         if(value==0) {
4529           emit_zeroreg(hr);
4530         }
4531         else {
4532           emit_movimm(value,hr);
4533         }
4534       }
4535     }
4536   }
4537   // Load 64-bit regs
4538   for(hr=0;hr<HOST_REGS;hr++) {
4539     if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((dirty>>hr)&1)) {
4540       if(((regs[i].isconst>>hr)&1)&&regmap[hr]>64) {
4541         if((is32>>(regmap[hr]&63))&1) {
4542           int lr=get_reg(regmap,regmap[hr]-64);
4543           assert(lr>=0);
4544           emit_sarimm(lr,31,hr);
4545         }
4546         else
4547         {
4548           int value=constmap[i][hr];
4549           if(value==0) {
4550             emit_zeroreg(hr);
4551           }
4552           else {
4553             emit_movimm(value,hr);
4554           }
4555         }
4556       }
4557     }
4558   }
4559 }
4560
4561 // Write out all dirty registers (except cycle count)
4562 void wb_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty)
4563 {
4564   int hr;
4565   for(hr=0;hr<HOST_REGS;hr++) {
4566     if(hr!=EXCLUDE_REG) {
4567       if(i_regmap[hr]>0) {
4568         if(i_regmap[hr]!=CCREG) {
4569           if((i_dirty>>hr)&1) {
4570             if(i_regmap[hr]<64) {
4571               emit_storereg(i_regmap[hr],hr);
4572 #ifndef FORCE32
4573               if( ((i_is32>>i_regmap[hr])&1) ) {
4574                 #ifdef DESTRUCTIVE_WRITEBACK
4575                 emit_sarimm(hr,31,hr);
4576                 emit_storereg(i_regmap[hr]|64,hr);
4577                 #else
4578                 emit_sarimm(hr,31,HOST_TEMPREG);
4579                 emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4580                 #endif
4581               }
4582 #endif
4583             }else{
4584               if( !((i_is32>>(i_regmap[hr]&63))&1) ) {
4585                 emit_storereg(i_regmap[hr],hr);
4586               }
4587             }
4588           }
4589         }
4590       }
4591     }
4592   }
4593 }
4594 // Write out dirty registers that we need to reload (pair with load_needed_regs)
4595 // This writes the registers not written by store_regs_bt
4596 void wb_needed_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4597 {
4598   int hr;
4599   int t=(addr-start)>>2;
4600   for(hr=0;hr<HOST_REGS;hr++) {
4601     if(hr!=EXCLUDE_REG) {
4602       if(i_regmap[hr]>0) {
4603         if(i_regmap[hr]!=CCREG) {
4604           if(i_regmap[hr]==regs[t].regmap_entry[hr] && ((regs[t].dirty>>hr)&1) && !(((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4605             if((i_dirty>>hr)&1) {
4606               if(i_regmap[hr]<64) {
4607                 emit_storereg(i_regmap[hr],hr);
4608 #ifndef FORCE32
4609                 if( ((i_is32>>i_regmap[hr])&1) ) {
4610                   #ifdef DESTRUCTIVE_WRITEBACK
4611                   emit_sarimm(hr,31,hr);
4612                   emit_storereg(i_regmap[hr]|64,hr);
4613                   #else
4614                   emit_sarimm(hr,31,HOST_TEMPREG);
4615                   emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4616                   #endif
4617                 }
4618 #endif
4619               }else{
4620                 if( !((i_is32>>(i_regmap[hr]&63))&1) ) {
4621                   emit_storereg(i_regmap[hr],hr);
4622                 }
4623               }
4624             }
4625           }
4626         }
4627       }
4628     }
4629   }
4630 }
4631
4632 // Load all registers (except cycle count)
4633 void load_all_regs(signed char i_regmap[])
4634 {
4635   int hr;
4636   for(hr=0;hr<HOST_REGS;hr++) {
4637     if(hr!=EXCLUDE_REG) {
4638       if(i_regmap[hr]==0) {
4639         emit_zeroreg(hr);
4640       }
4641       else
4642       if(i_regmap[hr]>0 && (i_regmap[hr]&63)<TEMPREG && i_regmap[hr]!=CCREG)
4643       {
4644         emit_loadreg(i_regmap[hr],hr);
4645       }
4646     }
4647   }
4648 }
4649
4650 // Load all current registers also needed by next instruction
4651 void load_needed_regs(signed char i_regmap[],signed char next_regmap[])
4652 {
4653   int hr;
4654   for(hr=0;hr<HOST_REGS;hr++) {
4655     if(hr!=EXCLUDE_REG) {
4656       if(get_reg(next_regmap,i_regmap[hr])>=0) {
4657         if(i_regmap[hr]==0) {
4658           emit_zeroreg(hr);
4659         }
4660         else
4661         if(i_regmap[hr]>0 && (i_regmap[hr]&63)<TEMPREG && i_regmap[hr]!=CCREG)
4662         {
4663           emit_loadreg(i_regmap[hr],hr);
4664         }
4665       }
4666     }
4667   }
4668 }
4669
4670 // Load all regs, storing cycle count if necessary
4671 void load_regs_entry(int t)
4672 {
4673   int hr;
4674   if(is_ds[t]) emit_addimm(HOST_CCREG,CLOCK_ADJUST(1),HOST_CCREG);
4675   else if(ccadj[t]) emit_addimm(HOST_CCREG,-CLOCK_ADJUST(ccadj[t]),HOST_CCREG);
4676   if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
4677     emit_storereg(CCREG,HOST_CCREG);
4678   }
4679   // Load 32-bit regs
4680   for(hr=0;hr<HOST_REGS;hr++) {
4681     if(regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<TEMPREG) {
4682       if(regs[t].regmap_entry[hr]==0) {
4683         emit_zeroreg(hr);
4684       }
4685       else if(regs[t].regmap_entry[hr]!=CCREG)
4686       {
4687         emit_loadreg(regs[t].regmap_entry[hr],hr);
4688       }
4689     }
4690   }
4691   // Load 64-bit regs
4692   for(hr=0;hr<HOST_REGS;hr++) {
4693     if(regs[t].regmap_entry[hr]>=64&&regs[t].regmap_entry[hr]<TEMPREG+64) {
4694       assert(regs[t].regmap_entry[hr]!=64);
4695       if((regs[t].was32>>(regs[t].regmap_entry[hr]&63))&1) {
4696         int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4697         if(lr<0) {
4698           emit_loadreg(regs[t].regmap_entry[hr],hr);
4699         }
4700         else
4701         {
4702           emit_sarimm(lr,31,hr);
4703         }
4704       }
4705       else
4706       {
4707         emit_loadreg(regs[t].regmap_entry[hr],hr);
4708       }
4709     }
4710   }
4711 }
4712
4713 // Store dirty registers prior to branch
4714 void store_regs_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4715 {
4716   if(internal_branch(i_is32,addr))
4717   {
4718     int t=(addr-start)>>2;
4719     int hr;
4720     for(hr=0;hr<HOST_REGS;hr++) {
4721       if(hr!=EXCLUDE_REG) {
4722         if(i_regmap[hr]>0 && i_regmap[hr]!=CCREG) {
4723           if(i_regmap[hr]!=regs[t].regmap_entry[hr] || !((regs[t].dirty>>hr)&1) || (((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4724             if((i_dirty>>hr)&1) {
4725               if(i_regmap[hr]<64) {
4726                 if(!((unneeded_reg[t]>>i_regmap[hr])&1)) {
4727                   emit_storereg(i_regmap[hr],hr);
4728                   if( ((i_is32>>i_regmap[hr])&1) && !((unneeded_reg_upper[t]>>i_regmap[hr])&1) ) {
4729                     #ifdef DESTRUCTIVE_WRITEBACK
4730                     emit_sarimm(hr,31,hr);
4731                     emit_storereg(i_regmap[hr]|64,hr);
4732                     #else
4733                     emit_sarimm(hr,31,HOST_TEMPREG);
4734                     emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4735                     #endif
4736                   }
4737                 }
4738               }else{
4739                 if( !((i_is32>>(i_regmap[hr]&63))&1) && !((unneeded_reg_upper[t]>>(i_regmap[hr]&63))&1) ) {
4740                   emit_storereg(i_regmap[hr],hr);
4741                 }
4742               }
4743             }
4744           }
4745         }
4746       }
4747     }
4748   }
4749   else
4750   {
4751     // Branch out of this block, write out all dirty regs
4752     wb_dirtys(i_regmap,i_is32,i_dirty);
4753   }
4754 }
4755
4756 // Load all needed registers for branch target
4757 void load_regs_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4758 {
4759   //if(addr>=start && addr<(start+slen*4))
4760   if(internal_branch(i_is32,addr))
4761   {
4762     int t=(addr-start)>>2;
4763     int hr;
4764     // Store the cycle count before loading something else
4765     if(i_regmap[HOST_CCREG]!=CCREG) {
4766       assert(i_regmap[HOST_CCREG]==-1);
4767     }
4768     if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
4769       emit_storereg(CCREG,HOST_CCREG);
4770     }
4771     // Load 32-bit regs
4772     for(hr=0;hr<HOST_REGS;hr++) {
4773       if(hr!=EXCLUDE_REG&&regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<TEMPREG) {
4774         #ifdef DESTRUCTIVE_WRITEBACK
4775         if(i_regmap[hr]!=regs[t].regmap_entry[hr] || ( !((regs[t].dirty>>hr)&1) && ((i_dirty>>hr)&1) && (((i_is32&~unneeded_reg_upper[t])>>i_regmap[hr])&1) ) || (((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4776         #else
4777         if(i_regmap[hr]!=regs[t].regmap_entry[hr] ) {
4778         #endif
4779           if(regs[t].regmap_entry[hr]==0) {
4780             emit_zeroreg(hr);
4781           }
4782           else if(regs[t].regmap_entry[hr]!=CCREG)
4783           {
4784             emit_loadreg(regs[t].regmap_entry[hr],hr);
4785           }
4786         }
4787       }
4788     }
4789     //Load 64-bit regs
4790     for(hr=0;hr<HOST_REGS;hr++) {
4791       if(hr!=EXCLUDE_REG&&regs[t].regmap_entry[hr]>=64&&regs[t].regmap_entry[hr]<TEMPREG+64) {
4792         if(i_regmap[hr]!=regs[t].regmap_entry[hr]) {
4793           assert(regs[t].regmap_entry[hr]!=64);
4794           if((i_is32>>(regs[t].regmap_entry[hr]&63))&1) {
4795             int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4796             if(lr<0) {
4797               emit_loadreg(regs[t].regmap_entry[hr],hr);
4798             }
4799             else
4800             {
4801               emit_sarimm(lr,31,hr);
4802             }
4803           }
4804           else
4805           {
4806             emit_loadreg(regs[t].regmap_entry[hr],hr);
4807           }
4808         }
4809         else if((i_is32>>(regs[t].regmap_entry[hr]&63))&1) {
4810           int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4811           assert(lr>=0);
4812           emit_sarimm(lr,31,hr);
4813         }
4814       }
4815     }
4816   }
4817 }
4818
4819 int match_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4820 {
4821   if(addr>=start && addr<start+slen*4-4)
4822   {
4823     int t=(addr-start)>>2;
4824     int hr;
4825     if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) return 0;
4826     for(hr=0;hr<HOST_REGS;hr++)
4827     {
4828       if(hr!=EXCLUDE_REG)
4829       {
4830         if(i_regmap[hr]!=regs[t].regmap_entry[hr])
4831         {
4832           if(regs[t].regmap_entry[hr]>=0&&(regs[t].regmap_entry[hr]|64)<TEMPREG+64)
4833           {
4834             return 0;
4835           }
4836           else 
4837           if((i_dirty>>hr)&1)
4838           {
4839             if(i_regmap[hr]<TEMPREG)
4840             {
4841               if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4842                 return 0;
4843             }
4844             else if(i_regmap[hr]>=64&&i_regmap[hr]<TEMPREG+64)
4845             {
4846               if(!((unneeded_reg_upper[t]>>(i_regmap[hr]&63))&1))
4847                 return 0;
4848             }
4849           }
4850         }
4851         else // Same register but is it 32-bit or dirty?
4852         if(i_regmap[hr]>=0)
4853         {
4854           if(!((regs[t].dirty>>hr)&1))
4855           {
4856             if((i_dirty>>hr)&1)
4857             {
4858               if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4859               {
4860                 //printf("%x: dirty no match\n",addr);
4861                 return 0;
4862               }
4863             }
4864           }
4865           if((((regs[t].was32^i_is32)&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)
4866           {
4867             //printf("%x: is32 no match\n",addr);
4868             return 0;
4869           }
4870         }
4871       }
4872     }
4873     //if(is32[t]&~unneeded_reg_upper[t]&~i_is32) return 0;
4874 #ifndef FORCE32
4875     if(requires_32bit[t]&~i_is32) return 0;
4876 #endif
4877     // Delay slots are not valid branch targets
4878     //if(t>0&&(itype[t-1]==RJUMP||itype[t-1]==UJUMP||itype[t-1]==CJUMP||itype[t-1]==SJUMP||itype[t-1]==FJUMP)) return 0;
4879     // Delay slots require additional processing, so do not match
4880     if(is_ds[t]) return 0;
4881   }
4882   else
4883   {
4884     int hr;
4885     for(hr=0;hr<HOST_REGS;hr++)
4886     {
4887       if(hr!=EXCLUDE_REG)
4888       {
4889         if(i_regmap[hr]>=0)
4890         {
4891           if(hr!=HOST_CCREG||i_regmap[hr]!=CCREG)
4892           {
4893             if((i_dirty>>hr)&1)
4894             {
4895               return 0;
4896             }
4897           }
4898         }
4899       }
4900     }
4901   }
4902   return 1;
4903 }
4904
4905 // Used when a branch jumps into the delay slot of another branch
4906 void ds_assemble_entry(int i)
4907 {
4908   int t=(ba[i]-start)>>2;
4909   if(!instr_addr[t]) instr_addr[t]=(u_int)out;
4910   assem_debug("Assemble delay slot at %x\n",ba[i]);
4911   assem_debug("<->\n");
4912   if(regs[t].regmap_entry[HOST_CCREG]==CCREG&&regs[t].regmap[HOST_CCREG]!=CCREG)
4913     wb_register(CCREG,regs[t].regmap_entry,regs[t].wasdirty,regs[t].was32);
4914   load_regs(regs[t].regmap_entry,regs[t].regmap,regs[t].was32,rs1[t],rs2[t]);
4915   address_generation(t,&regs[t],regs[t].regmap_entry);
4916   if(itype[t]==STORE||itype[t]==STORELR||(opcode[t]&0x3b)==0x39||(opcode[t]&0x3b)==0x3a)
4917     load_regs(regs[t].regmap_entry,regs[t].regmap,regs[t].was32,INVCP,INVCP);
4918   cop1_usable=0;
4919   is_delayslot=0;
4920   switch(itype[t]) {
4921     case ALU:
4922       alu_assemble(t,&regs[t]);break;
4923     case IMM16:
4924       imm16_assemble(t,&regs[t]);break;
4925     case SHIFT:
4926       shift_assemble(t,&regs[t]);break;
4927     case SHIFTIMM:
4928       shiftimm_assemble(t,&regs[t]);break;
4929     case LOAD:
4930       load_assemble(t,&regs[t]);break;
4931     case LOADLR:
4932       loadlr_assemble(t,&regs[t]);break;
4933     case STORE:
4934       store_assemble(t,&regs[t]);break;
4935     case STORELR:
4936       storelr_assemble(t,&regs[t]);break;
4937     case COP0:
4938       cop0_assemble(t,&regs[t]);break;
4939     case COP1:
4940       cop1_assemble(t,&regs[t]);break;
4941     case C1LS:
4942       c1ls_assemble(t,&regs[t]);break;
4943     case COP2:
4944       cop2_assemble(t,&regs[t]);break;
4945     case C2LS:
4946       c2ls_assemble(t,&regs[t]);break;
4947     case C2OP:
4948       c2op_assemble(t,&regs[t]);break;
4949     case FCONV:
4950       fconv_assemble(t,&regs[t]);break;
4951     case FLOAT:
4952       float_assemble(t,&regs[t]);break;
4953     case FCOMP:
4954       fcomp_assemble(t,&regs[t]);break;
4955     case MULTDIV:
4956       multdiv_assemble(t,&regs[t]);break;
4957     case MOV:
4958       mov_assemble(t,&regs[t]);break;
4959     case SYSCALL:
4960     case HLECALL:
4961     case INTCALL:
4962     case SPAN:
4963     case UJUMP:
4964     case RJUMP:
4965     case CJUMP:
4966     case SJUMP:
4967     case FJUMP:
4968       printf("Jump in the delay slot.  This is probably a bug.\n");
4969   }
4970   store_regs_bt(regs[t].regmap,regs[t].is32,regs[t].dirty,ba[i]+4);
4971   load_regs_bt(regs[t].regmap,regs[t].is32,regs[t].dirty,ba[i]+4);
4972   if(internal_branch(regs[t].is32,ba[i]+4))
4973     assem_debug("branch: internal\n");
4974   else
4975     assem_debug("branch: external\n");
4976   assert(internal_branch(regs[t].is32,ba[i]+4));
4977   add_to_linker((int)out,ba[i]+4,internal_branch(regs[t].is32,ba[i]+4));
4978   emit_jmp(0);
4979 }
4980
4981 void do_cc(int i,signed char i_regmap[],int *adj,int addr,int taken,int invert)
4982 {
4983   int count;
4984   int jaddr;
4985   int idle=0;
4986   int t=0;
4987   if(itype[i]==RJUMP)
4988   {
4989     *adj=0;
4990   }
4991   //if(ba[i]>=start && ba[i]<(start+slen*4))
4992   if(internal_branch(branch_regs[i].is32,ba[i]))
4993   {
4994     t=(ba[i]-start)>>2;
4995     if(is_ds[t]) *adj=-1; // Branch into delay slot adds an extra cycle
4996     else *adj=ccadj[t];
4997   }
4998   else
4999   {
5000     *adj=0;
5001   }
5002   count=ccadj[i];
5003   if(taken==TAKEN && i==(ba[i]-start)>>2 && source[i+1]==0) {
5004     // Idle loop
5005     if(count&1) emit_addimm_and_set_flags(2*(count+2),HOST_CCREG);
5006     idle=(int)out;
5007     //emit_subfrommem(&idlecount,HOST_CCREG); // Count idle cycles
5008     emit_andimm(HOST_CCREG,3,HOST_CCREG);
5009     jaddr=(int)out;
5010     emit_jmp(0);
5011   }
5012   else if(*adj==0||invert) {
5013     int cycles=CLOCK_ADJUST(count+2);
5014     // faster loop HACK
5015     if (t&&*adj) {
5016       int rel=t-i;
5017       if(-NO_CYCLE_PENALTY_THR<rel&&rel<0)
5018         cycles=CLOCK_ADJUST(*adj)+count+2-*adj;
5019     }
5020     emit_addimm_and_set_flags(cycles,HOST_CCREG);
5021     jaddr=(int)out;
5022     emit_jns(0);
5023   }
5024   else
5025   {
5026     emit_cmpimm(HOST_CCREG,-CLOCK_ADJUST(count+2));
5027     jaddr=(int)out;
5028     emit_jns(0);
5029   }
5030   add_stub(CC_STUB,jaddr,idle?idle:(int)out,(*adj==0||invert||idle)?0:(count+2),i,addr,taken,0);
5031 }
5032
5033 void do_ccstub(int n)
5034 {
5035   literal_pool(256);
5036   assem_debug("do_ccstub %x\n",start+stubs[n][4]*4);
5037   set_jump_target(stubs[n][1],(int)out);
5038   int i=stubs[n][4];
5039   if(stubs[n][6]==NULLDS) {
5040     // Delay slot instruction is nullified ("likely" branch)
5041     wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
5042   }
5043   else if(stubs[n][6]!=TAKEN) {
5044     wb_dirtys(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty);
5045   }
5046   else {
5047     if(internal_branch(branch_regs[i].is32,ba[i]))
5048       wb_needed_dirtys(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5049   }
5050   if(stubs[n][5]!=-1)
5051   {
5052     // Save PC as return address
5053     emit_movimm(stubs[n][5],EAX);
5054     emit_writeword(EAX,(int)&pcaddr);
5055   }
5056   else
5057   {
5058     // Return address depends on which way the branch goes
5059     if(itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
5060     {
5061       int s1l=get_reg(branch_regs[i].regmap,rs1[i]);
5062       int s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
5063       int s2l=get_reg(branch_regs[i].regmap,rs2[i]);
5064       int s2h=get_reg(branch_regs[i].regmap,rs2[i]|64);
5065       if(rs1[i]==0)
5066       {
5067         s1l=s2l;s1h=s2h;
5068         s2l=s2h=-1;
5069       }
5070       else if(rs2[i]==0)
5071       {
5072         s2l=s2h=-1;
5073       }
5074       if((branch_regs[i].is32>>rs1[i])&(branch_regs[i].is32>>rs2[i])&1) {
5075         s1h=s2h=-1;
5076       }
5077       assert(s1l>=0);
5078       #ifdef DESTRUCTIVE_WRITEBACK
5079       if(rs1[i]) {
5080         if((branch_regs[i].dirty>>s1l)&(branch_regs[i].is32>>rs1[i])&1)
5081           emit_loadreg(rs1[i],s1l);
5082       } 
5083       else {
5084         if((branch_regs[i].dirty>>s1l)&(branch_regs[i].is32>>rs2[i])&1)
5085           emit_loadreg(rs2[i],s1l);
5086       }
5087       if(s2l>=0)
5088         if((branch_regs[i].dirty>>s2l)&(branch_regs[i].is32>>rs2[i])&1)
5089           emit_loadreg(rs2[i],s2l);
5090       #endif
5091       int hr=0;
5092       int addr=-1,alt=-1,ntaddr=-1;
5093       while(hr<HOST_REGS)
5094       {
5095         if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
5096            (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
5097            (branch_regs[i].regmap[hr]&63)!=rs2[i] )
5098         {
5099           addr=hr++;break;
5100         }
5101         hr++;
5102       }
5103       while(hr<HOST_REGS)
5104       {
5105         if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
5106            (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
5107            (branch_regs[i].regmap[hr]&63)!=rs2[i] )
5108         {
5109           alt=hr++;break;
5110         }
5111         hr++;
5112       }
5113       if((opcode[i]&0x2E)==6) // BLEZ/BGTZ needs another register
5114       {
5115         while(hr<HOST_REGS)
5116         {
5117           if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
5118              (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
5119              (branch_regs[i].regmap[hr]&63)!=rs2[i] )
5120           {
5121             ntaddr=hr;break;
5122           }
5123           hr++;
5124         }
5125         assert(hr<HOST_REGS);
5126       }
5127       if((opcode[i]&0x2f)==4) // BEQ
5128       {
5129         #ifdef HAVE_CMOV_IMM
5130         if(s1h<0) {
5131           if(s2l>=0) emit_cmp(s1l,s2l);
5132           else emit_test(s1l,s1l);
5133           emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
5134         }
5135         else
5136         #endif
5137         {
5138           emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
5139           if(s1h>=0) {
5140             if(s2h>=0) emit_cmp(s1h,s2h);
5141             else emit_test(s1h,s1h);
5142             emit_cmovne_reg(alt,addr);
5143           }
5144           if(s2l>=0) emit_cmp(s1l,s2l);
5145           else emit_test(s1l,s1l);
5146           emit_cmovne_reg(alt,addr);
5147         }
5148       }
5149       if((opcode[i]&0x2f)==5) // BNE
5150       {
5151         #ifdef HAVE_CMOV_IMM
5152         if(s1h<0) {
5153           if(s2l>=0) emit_cmp(s1l,s2l);
5154           else emit_test(s1l,s1l);
5155           emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
5156         }
5157         else
5158         #endif
5159         {
5160           emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
5161           if(s1h>=0) {
5162             if(s2h>=0) emit_cmp(s1h,s2h);
5163             else emit_test(s1h,s1h);
5164             emit_cmovne_reg(alt,addr);
5165           }
5166           if(s2l>=0) emit_cmp(s1l,s2l);
5167           else emit_test(s1l,s1l);
5168           emit_cmovne_reg(alt,addr);
5169         }
5170       }
5171       if((opcode[i]&0x2f)==6) // BLEZ
5172       {
5173         //emit_movimm(ba[i],alt);
5174         //emit_movimm(start+i*4+8,addr);
5175         emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
5176         emit_cmpimm(s1l,1);
5177         if(s1h>=0) emit_mov(addr,ntaddr);
5178         emit_cmovl_reg(alt,addr);
5179         if(s1h>=0) {
5180           emit_test(s1h,s1h);
5181           emit_cmovne_reg(ntaddr,addr);
5182           emit_cmovs_reg(alt,addr);
5183         }
5184       }
5185       if((opcode[i]&0x2f)==7) // BGTZ
5186       {
5187         //emit_movimm(ba[i],addr);
5188         //emit_movimm(start+i*4+8,ntaddr);
5189         emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
5190         emit_cmpimm(s1l,1);
5191         if(s1h>=0) emit_mov(addr,alt);
5192         emit_cmovl_reg(ntaddr,addr);
5193         if(s1h>=0) {
5194           emit_test(s1h,s1h);
5195           emit_cmovne_reg(alt,addr);
5196           emit_cmovs_reg(ntaddr,addr);
5197         }
5198       }
5199       if((opcode[i]==1)&&(opcode2[i]&0x2D)==0) // BLTZ
5200       {
5201         //emit_movimm(ba[i],alt);
5202         //emit_movimm(start+i*4+8,addr);
5203         emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
5204         if(s1h>=0) emit_test(s1h,s1h);
5205         else emit_test(s1l,s1l);
5206         emit_cmovs_reg(alt,addr);
5207       }
5208       if((opcode[i]==1)&&(opcode2[i]&0x2D)==1) // BGEZ
5209       {
5210         //emit_movimm(ba[i],addr);
5211         //emit_movimm(start+i*4+8,alt);
5212         emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
5213         if(s1h>=0) emit_test(s1h,s1h);
5214         else emit_test(s1l,s1l);
5215         emit_cmovs_reg(alt,addr);
5216       }
5217       if(opcode[i]==0x11 && opcode2[i]==0x08 ) {
5218         if(source[i]&0x10000) // BC1T
5219         {
5220           //emit_movimm(ba[i],alt);
5221           //emit_movimm(start+i*4+8,addr);
5222           emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
5223           emit_testimm(s1l,0x800000);
5224           emit_cmovne_reg(alt,addr);
5225         }
5226         else // BC1F
5227         {
5228           //emit_movimm(ba[i],addr);
5229           //emit_movimm(start+i*4+8,alt);
5230           emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
5231           emit_testimm(s1l,0x800000);
5232           emit_cmovne_reg(alt,addr);
5233         }
5234       }
5235       emit_writeword(addr,(int)&pcaddr);
5236     }
5237     else
5238     if(itype[i]==RJUMP)
5239     {
5240       int r=get_reg(branch_regs[i].regmap,rs1[i]);
5241       if(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]) {
5242         r=get_reg(branch_regs[i].regmap,RTEMP);
5243       }
5244       emit_writeword(r,(int)&pcaddr);
5245     }
5246     else {printf("Unknown branch type in do_ccstub\n");exit(1);}
5247   }
5248   // Update cycle count
5249   assert(branch_regs[i].regmap[HOST_CCREG]==CCREG||branch_regs[i].regmap[HOST_CCREG]==-1);
5250   if(stubs[n][3]) emit_addimm(HOST_CCREG,CLOCK_ADJUST((int)stubs[n][3]),HOST_CCREG);
5251   emit_call((int)cc_interrupt);
5252   if(stubs[n][3]) emit_addimm(HOST_CCREG,-CLOCK_ADJUST((int)stubs[n][3]),HOST_CCREG);
5253   if(stubs[n][6]==TAKEN) {
5254     if(internal_branch(branch_regs[i].is32,ba[i]))
5255       load_needed_regs(branch_regs[i].regmap,regs[(ba[i]-start)>>2].regmap_entry);
5256     else if(itype[i]==RJUMP) {
5257       if(get_reg(branch_regs[i].regmap,RTEMP)>=0)
5258         emit_readword((int)&pcaddr,get_reg(branch_regs[i].regmap,RTEMP));
5259       else
5260         emit_loadreg(rs1[i],get_reg(branch_regs[i].regmap,rs1[i]));
5261     }
5262   }else if(stubs[n][6]==NOTTAKEN) {
5263     if(i<slen-2) load_needed_regs(branch_regs[i].regmap,regmap_pre[i+2]);
5264     else load_all_regs(branch_regs[i].regmap);
5265   }else if(stubs[n][6]==NULLDS) {
5266     // Delay slot instruction is nullified ("likely" branch)
5267     if(i<slen-2) load_needed_regs(regs[i].regmap,regmap_pre[i+2]);
5268     else load_all_regs(regs[i].regmap);
5269   }else{
5270     load_all_regs(branch_regs[i].regmap);
5271   }
5272   emit_jmp(stubs[n][2]); // return address
5273   
5274   /* This works but uses a lot of memory...
5275   emit_readword((int)&last_count,ECX);
5276   emit_add(HOST_CCREG,ECX,EAX);
5277   emit_writeword(EAX,(int)&Count);
5278   emit_call((int)gen_interupt);
5279   emit_readword((int)&Count,HOST_CCREG);
5280   emit_readword((int)&next_interupt,EAX);
5281   emit_readword((int)&pending_exception,EBX);
5282   emit_writeword(EAX,(int)&last_count);
5283   emit_sub(HOST_CCREG,EAX,HOST_CCREG);
5284   emit_test(EBX,EBX);
5285   int jne_instr=(int)out;
5286   emit_jne(0);
5287   if(stubs[n][3]) emit_addimm(HOST_CCREG,-2*stubs[n][3],HOST_CCREG);
5288   load_all_regs(branch_regs[i].regmap);
5289   emit_jmp(stubs[n][2]); // return address
5290   set_jump_target(jne_instr,(int)out);
5291   emit_readword((int)&pcaddr,EAX);
5292   // Call get_addr_ht instead of doing the hash table here.
5293   // This code is executed infrequently and takes up a lot of space
5294   // so smaller is better.
5295   emit_storereg(CCREG,HOST_CCREG);
5296   emit_pushreg(EAX);
5297   emit_call((int)get_addr_ht);
5298   emit_loadreg(CCREG,HOST_CCREG);
5299   emit_addimm(ESP,4,ESP);
5300   emit_jmpreg(EAX);*/
5301 }
5302
5303 add_to_linker(int addr,int target,int ext)
5304 {
5305   link_addr[linkcount][0]=addr;
5306   link_addr[linkcount][1]=target;
5307   link_addr[linkcount][2]=ext;  
5308   linkcount++;
5309 }
5310
5311 static void ujump_assemble_write_ra(int i)
5312 {
5313   int rt;
5314   unsigned int return_address;
5315   rt=get_reg(branch_regs[i].regmap,31);
5316   assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5317   //assert(rt>=0);
5318   return_address=start+i*4+8;
5319   if(rt>=0) {
5320     #ifdef USE_MINI_HT
5321     if(internal_branch(branch_regs[i].is32,return_address)&&rt1[i+1]!=31) {
5322       int temp=-1; // note: must be ds-safe
5323       #ifdef HOST_TEMPREG
5324       temp=HOST_TEMPREG;
5325       #endif
5326       if(temp>=0) do_miniht_insert(return_address,rt,temp);
5327       else emit_movimm(return_address,rt);
5328     }
5329     else
5330     #endif
5331     {
5332       #ifdef REG_PREFETCH
5333       if(temp>=0) 
5334       {
5335         if(i_regmap[temp]!=PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5336       }
5337       #endif
5338       emit_movimm(return_address,rt); // PC into link register
5339       #ifdef IMM_PREFETCH
5340       emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5341       #endif
5342     }
5343   }
5344 }
5345
5346 void ujump_assemble(int i,struct regstat *i_regs)
5347 {
5348   signed char *i_regmap=i_regs->regmap;
5349   int ra_done=0;
5350   if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5351   address_generation(i+1,i_regs,regs[i].regmap_entry);
5352   #ifdef REG_PREFETCH
5353   int temp=get_reg(branch_regs[i].regmap,PTEMP);
5354   if(rt1[i]==31&&temp>=0) 
5355   {
5356     int return_address=start+i*4+8;
5357     if(get_reg(branch_regs[i].regmap,31)>0) 
5358     if(i_regmap[temp]==PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5359   }
5360   #endif
5361   if(rt1[i]==31&&(rt1[i]==rs1[i+1]||rt1[i]==rs2[i+1])) {
5362     ujump_assemble_write_ra(i); // writeback ra for DS
5363     ra_done=1;
5364   }
5365   ds_assemble(i+1,i_regs);
5366   uint64_t bc_unneeded=branch_regs[i].u;
5367   uint64_t bc_unneeded_upper=branch_regs[i].uu;
5368   bc_unneeded|=1|(1LL<<rt1[i]);
5369   bc_unneeded_upper|=1|(1LL<<rt1[i]);
5370   wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5371                 bc_unneeded,bc_unneeded_upper);
5372   load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5373   if(!ra_done&&rt1[i]==31)
5374     ujump_assemble_write_ra(i);
5375   int cc,adj;
5376   cc=get_reg(branch_regs[i].regmap,CCREG);
5377   assert(cc==HOST_CCREG);
5378   store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5379   #ifdef REG_PREFETCH
5380   if(rt1[i]==31&&temp>=0) emit_prefetchreg(temp);
5381   #endif
5382   do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5383   if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
5384   load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5385   if(internal_branch(branch_regs[i].is32,ba[i]))
5386     assem_debug("branch: internal\n");
5387   else
5388     assem_debug("branch: external\n");
5389   if(internal_branch(branch_regs[i].is32,ba[i])&&is_ds[(ba[i]-start)>>2]) {
5390     ds_assemble_entry(i);
5391   }
5392   else {
5393     add_to_linker((int)out,ba[i],internal_branch(branch_regs[i].is32,ba[i]));
5394     emit_jmp(0);
5395   }
5396 }
5397
5398 static void rjump_assemble_write_ra(int i)
5399 {
5400   int rt,return_address;
5401   assert(rt1[i+1]!=rt1[i]);
5402   assert(rt2[i+1]!=rt1[i]);
5403   rt=get_reg(branch_regs[i].regmap,rt1[i]);
5404   assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5405   assert(rt>=0);
5406   return_address=start+i*4+8;
5407   #ifdef REG_PREFETCH
5408   if(temp>=0) 
5409   {
5410     if(i_regmap[temp]!=PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5411   }
5412   #endif
5413   emit_movimm(return_address,rt); // PC into link register
5414   #ifdef IMM_PREFETCH
5415   emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5416   #endif
5417 }
5418
5419 void rjump_assemble(int i,struct regstat *i_regs)
5420 {
5421   signed char *i_regmap=i_regs->regmap;
5422   int temp;
5423   int rs,cc,adj;
5424   int ra_done=0;
5425   rs=get_reg(branch_regs[i].regmap,rs1[i]);
5426   assert(rs>=0);
5427   if(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]) {
5428     // Delay slot abuse, make a copy of the branch address register
5429     temp=get_reg(branch_regs[i].regmap,RTEMP);
5430     assert(temp>=0);
5431     assert(regs[i].regmap[temp]==RTEMP);
5432     emit_mov(rs,temp);
5433     rs=temp;
5434   }
5435   address_generation(i+1,i_regs,regs[i].regmap_entry);
5436   #ifdef REG_PREFETCH
5437   if(rt1[i]==31) 
5438   {
5439     if((temp=get_reg(branch_regs[i].regmap,PTEMP))>=0) {
5440       int return_address=start+i*4+8;
5441       if(i_regmap[temp]==PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5442     }
5443   }
5444   #endif
5445   #ifdef USE_MINI_HT
5446   if(rs1[i]==31) {
5447     int rh=get_reg(regs[i].regmap,RHASH);
5448     if(rh>=0) do_preload_rhash(rh);
5449   }
5450   #endif
5451   if(rt1[i]!=0&&(rt1[i]==rs1[i+1]||rt1[i]==rs2[i+1])) {
5452     rjump_assemble_write_ra(i);
5453     ra_done=1;
5454   }
5455   ds_assemble(i+1,i_regs);
5456   uint64_t bc_unneeded=branch_regs[i].u;
5457   uint64_t bc_unneeded_upper=branch_regs[i].uu;
5458   bc_unneeded|=1|(1LL<<rt1[i]);
5459   bc_unneeded_upper|=1|(1LL<<rt1[i]);
5460   bc_unneeded&=~(1LL<<rs1[i]);
5461   wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5462                 bc_unneeded,bc_unneeded_upper);
5463   load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],CCREG);
5464   if(!ra_done&&rt1[i]!=0)
5465     rjump_assemble_write_ra(i);
5466   cc=get_reg(branch_regs[i].regmap,CCREG);
5467   assert(cc==HOST_CCREG);
5468   #ifdef USE_MINI_HT
5469   int rh=get_reg(branch_regs[i].regmap,RHASH);
5470   int ht=get_reg(branch_regs[i].regmap,RHTBL);
5471   if(rs1[i]==31) {
5472     if(regs[i].regmap[rh]!=RHASH) do_preload_rhash(rh);
5473     do_preload_rhtbl(ht);
5474     do_rhash(rs,rh);
5475   }
5476   #endif
5477   store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,-1);
5478   #ifdef DESTRUCTIVE_WRITEBACK
5479   if((branch_regs[i].dirty>>rs)&(branch_regs[i].is32>>rs1[i])&1) {
5480     if(rs1[i]!=rt1[i+1]&&rs1[i]!=rt2[i+1]) {
5481       emit_loadreg(rs1[i],rs);
5482     }
5483   }
5484   #endif
5485   #ifdef REG_PREFETCH
5486   if(rt1[i]==31&&temp>=0) emit_prefetchreg(temp);
5487   #endif
5488   #ifdef USE_MINI_HT
5489   if(rs1[i]==31) {
5490     do_miniht_load(ht,rh);
5491   }
5492   #endif
5493   //do_cc(i,branch_regs[i].regmap,&adj,-1,TAKEN);
5494   //if(adj) emit_addimm(cc,2*(ccadj[i]+2-adj),cc); // ??? - Shouldn't happen
5495   //assert(adj==0);
5496   emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),HOST_CCREG);
5497   add_stub(CC_STUB,(int)out,jump_vaddr_reg[rs],0,i,-1,TAKEN,0);
5498 #ifdef PCSX
5499   if(itype[i+1]==COP0&&(source[i+1]&0x3f)==0x10)
5500     // special case for RFE
5501     emit_jmp(0);
5502   else
5503 #endif
5504   emit_jns(0);
5505   //load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,-1);
5506   #ifdef USE_MINI_HT
5507   if(rs1[i]==31) {
5508     do_miniht_jump(rs,rh,ht);
5509   }
5510   else
5511   #endif
5512   {
5513     //if(rs!=EAX) emit_mov(rs,EAX);
5514     //emit_jmp((int)jump_vaddr_eax);
5515     emit_jmp(jump_vaddr_reg[rs]);
5516   }
5517   /* Check hash table
5518   temp=!rs;
5519   emit_mov(rs,temp);
5520   emit_shrimm(rs,16,rs);
5521   emit_xor(temp,rs,rs);
5522   emit_movzwl_reg(rs,rs);
5523   emit_shlimm(rs,4,rs);
5524   emit_cmpmem_indexed((int)hash_table,rs,temp);
5525   emit_jne((int)out+14);
5526   emit_readword_indexed((int)hash_table+4,rs,rs);
5527   emit_jmpreg(rs);
5528   emit_cmpmem_indexed((int)hash_table+8,rs,temp);
5529   emit_addimm_no_flags(8,rs);
5530   emit_jeq((int)out-17);
5531   // No hit on hash table, call compiler
5532   emit_pushreg(temp);
5533 //DEBUG >
5534 #ifdef DEBUG_CYCLE_COUNT
5535   emit_readword((int)&last_count,ECX);
5536   emit_add(HOST_CCREG,ECX,HOST_CCREG);
5537   emit_readword((int)&next_interupt,ECX);
5538   emit_writeword(HOST_CCREG,(int)&Count);
5539   emit_sub(HOST_CCREG,ECX,HOST_CCREG);
5540   emit_writeword(ECX,(int)&last_count);
5541 #endif
5542 //DEBUG <
5543   emit_storereg(CCREG,HOST_CCREG);
5544   emit_call((int)get_addr);
5545   emit_loadreg(CCREG,HOST_CCREG);
5546   emit_addimm(ESP,4,ESP);
5547   emit_jmpreg(EAX);*/
5548   #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5549   if(rt1[i]!=31&&i<slen-2&&(((u_int)out)&7)) emit_mov(13,13);
5550   #endif
5551 }
5552
5553 void cjump_assemble(int i,struct regstat *i_regs)
5554 {
5555   signed char *i_regmap=i_regs->regmap;
5556   int cc;
5557   int match;
5558   match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5559   assem_debug("match=%d\n",match);
5560   int s1h,s1l,s2h,s2l;
5561   int prev_cop1_usable=cop1_usable;
5562   int unconditional=0,nop=0;
5563   int only32=0;
5564   int invert=0;
5565   int internal=internal_branch(branch_regs[i].is32,ba[i]);
5566   if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5567   if(!match) invert=1;
5568   #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5569   if(i>(ba[i]-start)>>2) invert=1;
5570   #endif
5571   
5572   if(ooo[i]) {
5573     s1l=get_reg(branch_regs[i].regmap,rs1[i]);
5574     s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
5575     s2l=get_reg(branch_regs[i].regmap,rs2[i]);
5576     s2h=get_reg(branch_regs[i].regmap,rs2[i]|64);
5577   }
5578   else {
5579     s1l=get_reg(i_regmap,rs1[i]);
5580     s1h=get_reg(i_regmap,rs1[i]|64);
5581     s2l=get_reg(i_regmap,rs2[i]);
5582     s2h=get_reg(i_regmap,rs2[i]|64);
5583   }
5584   if(rs1[i]==0&&rs2[i]==0)
5585   {
5586     if(opcode[i]&1) nop=1;
5587     else unconditional=1;
5588     //assert(opcode[i]!=5);
5589     //assert(opcode[i]!=7);
5590     //assert(opcode[i]!=0x15);
5591     //assert(opcode[i]!=0x17);
5592   }
5593   else if(rs1[i]==0)
5594   {
5595     s1l=s2l;s1h=s2h;
5596     s2l=s2h=-1;
5597     only32=(regs[i].was32>>rs2[i])&1;
5598   }
5599   else if(rs2[i]==0)
5600   {
5601     s2l=s2h=-1;
5602     only32=(regs[i].was32>>rs1[i])&1;
5603   }
5604   else {
5605     only32=(regs[i].was32>>rs1[i])&(regs[i].was32>>rs2[i])&1;
5606   }
5607
5608   if(ooo[i]) {
5609     // Out of order execution (delay slot first)
5610     //printf("OOOE\n");
5611     address_generation(i+1,i_regs,regs[i].regmap_entry);
5612     ds_assemble(i+1,i_regs);
5613     int adj;
5614     uint64_t bc_unneeded=branch_regs[i].u;
5615     uint64_t bc_unneeded_upper=branch_regs[i].uu;
5616     bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
5617     bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
5618     bc_unneeded|=1;
5619     bc_unneeded_upper|=1;
5620     wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5621                   bc_unneeded,bc_unneeded_upper);
5622     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs2[i]);
5623     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5624     cc=get_reg(branch_regs[i].regmap,CCREG);
5625     assert(cc==HOST_CCREG);
5626     if(unconditional) 
5627       store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5628     //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
5629     //assem_debug("cycle count (adj)\n");
5630     if(unconditional) {
5631       do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5632       if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
5633         if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
5634         load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5635         if(internal)
5636           assem_debug("branch: internal\n");
5637         else
5638           assem_debug("branch: external\n");
5639         if(internal&&is_ds[(ba[i]-start)>>2]) {
5640           ds_assemble_entry(i);
5641         }
5642         else {
5643           add_to_linker((int)out,ba[i],internal);
5644           emit_jmp(0);
5645         }
5646         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5647         if(((u_int)out)&7) emit_addnop(0);
5648         #endif
5649       }
5650     }
5651     else if(nop) {
5652       emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),cc);
5653       int jaddr=(int)out;
5654       emit_jns(0);
5655       add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5656     }
5657     else {
5658       int taken=0,nottaken=0,nottaken1=0;
5659       do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
5660       if(adj&&!invert) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
5661       if(!only32)
5662       {
5663         assert(s1h>=0);
5664         if(opcode[i]==4) // BEQ
5665         {
5666           if(s2h>=0) emit_cmp(s1h,s2h);
5667           else emit_test(s1h,s1h);
5668           nottaken1=(int)out;
5669           emit_jne(1);
5670         }
5671         if(opcode[i]==5) // BNE
5672         {
5673           if(s2h>=0) emit_cmp(s1h,s2h);
5674           else emit_test(s1h,s1h);
5675           if(invert) taken=(int)out;
5676           else add_to_linker((int)out,ba[i],internal);
5677           emit_jne(0);
5678         }
5679         if(opcode[i]==6) // BLEZ
5680         {
5681           emit_test(s1h,s1h);
5682           if(invert) taken=(int)out;
5683           else add_to_linker((int)out,ba[i],internal);
5684           emit_js(0);
5685           nottaken1=(int)out;
5686           emit_jne(1);
5687         }
5688         if(opcode[i]==7) // BGTZ
5689         {
5690           emit_test(s1h,s1h);
5691           nottaken1=(int)out;
5692           emit_js(1);
5693           if(invert) taken=(int)out;
5694           else add_to_linker((int)out,ba[i],internal);
5695           emit_jne(0);
5696         }
5697       } // if(!only32)
5698           
5699       //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5700       assert(s1l>=0);
5701       if(opcode[i]==4) // BEQ
5702       {
5703         if(s2l>=0) emit_cmp(s1l,s2l);
5704         else emit_test(s1l,s1l);
5705         if(invert){
5706           nottaken=(int)out;
5707           emit_jne(1);
5708         }else{
5709           add_to_linker((int)out,ba[i],internal);
5710           emit_jeq(0);
5711         }
5712       }
5713       if(opcode[i]==5) // BNE
5714       {
5715         if(s2l>=0) emit_cmp(s1l,s2l);
5716         else emit_test(s1l,s1l);
5717         if(invert){
5718           nottaken=(int)out;
5719           emit_jeq(1);
5720         }else{
5721           add_to_linker((int)out,ba[i],internal);
5722           emit_jne(0);
5723         }
5724       }
5725       if(opcode[i]==6) // BLEZ
5726       {
5727         emit_cmpimm(s1l,1);
5728         if(invert){
5729           nottaken=(int)out;
5730           emit_jge(1);
5731         }else{
5732           add_to_linker((int)out,ba[i],internal);
5733           emit_jl(0);
5734         }
5735       }
5736       if(opcode[i]==7) // BGTZ
5737       {
5738         emit_cmpimm(s1l,1);
5739         if(invert){
5740           nottaken=(int)out;
5741           emit_jl(1);
5742         }else{
5743           add_to_linker((int)out,ba[i],internal);
5744           emit_jge(0);
5745         }
5746       }
5747       if(invert) {
5748         if(taken) set_jump_target(taken,(int)out);
5749         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5750         if(match&&(!internal||!is_ds[(ba[i]-start)>>2])) {
5751           if(adj) {
5752             emit_addimm(cc,-CLOCK_ADJUST(adj),cc);
5753             add_to_linker((int)out,ba[i],internal);
5754           }else{
5755             emit_addnop(13);
5756             add_to_linker((int)out,ba[i],internal*2);
5757           }
5758           emit_jmp(0);
5759         }else
5760         #endif
5761         {
5762           if(adj) emit_addimm(cc,-CLOCK_ADJUST(adj),cc);
5763           store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5764           load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5765           if(internal)
5766             assem_debug("branch: internal\n");
5767           else
5768             assem_debug("branch: external\n");
5769           if(internal&&is_ds[(ba[i]-start)>>2]) {
5770             ds_assemble_entry(i);
5771           }
5772           else {
5773             add_to_linker((int)out,ba[i],internal);
5774             emit_jmp(0);
5775           }
5776         }
5777         set_jump_target(nottaken,(int)out);
5778       }
5779
5780       if(nottaken1) set_jump_target(nottaken1,(int)out);
5781       if(adj) {
5782         if(!invert) emit_addimm(cc,CLOCK_ADJUST(adj),cc);
5783       }
5784     } // (!unconditional)
5785   } // if(ooo)
5786   else
5787   {
5788     // In-order execution (branch first)
5789     //if(likely[i]) printf("IOL\n");
5790     //else
5791     //printf("IOE\n");
5792     int taken=0,nottaken=0,nottaken1=0;
5793     if(!unconditional&&!nop) {
5794       if(!only32)
5795       {
5796         assert(s1h>=0);
5797         if((opcode[i]&0x2f)==4) // BEQ
5798         {
5799           if(s2h>=0) emit_cmp(s1h,s2h);
5800           else emit_test(s1h,s1h);
5801           nottaken1=(int)out;
5802           emit_jne(2);
5803         }
5804         if((opcode[i]&0x2f)==5) // BNE
5805         {
5806           if(s2h>=0) emit_cmp(s1h,s2h);
5807           else emit_test(s1h,s1h);
5808           taken=(int)out;
5809           emit_jne(1);
5810         }
5811         if((opcode[i]&0x2f)==6) // BLEZ
5812         {
5813           emit_test(s1h,s1h);
5814           taken=(int)out;
5815           emit_js(1);
5816           nottaken1=(int)out;
5817           emit_jne(2);
5818         }
5819         if((opcode[i]&0x2f)==7) // BGTZ
5820         {
5821           emit_test(s1h,s1h);
5822           nottaken1=(int)out;
5823           emit_js(2);
5824           taken=(int)out;
5825           emit_jne(1);
5826         }
5827       } // if(!only32)
5828           
5829       //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5830       assert(s1l>=0);
5831       if((opcode[i]&0x2f)==4) // BEQ
5832       {
5833         if(s2l>=0) emit_cmp(s1l,s2l);
5834         else emit_test(s1l,s1l);
5835         nottaken=(int)out;
5836         emit_jne(2);
5837       }
5838       if((opcode[i]&0x2f)==5) // BNE
5839       {
5840         if(s2l>=0) emit_cmp(s1l,s2l);
5841         else emit_test(s1l,s1l);
5842         nottaken=(int)out;
5843         emit_jeq(2);
5844       }
5845       if((opcode[i]&0x2f)==6) // BLEZ
5846       {
5847         emit_cmpimm(s1l,1);
5848         nottaken=(int)out;
5849         emit_jge(2);
5850       }
5851       if((opcode[i]&0x2f)==7) // BGTZ
5852       {
5853         emit_cmpimm(s1l,1);
5854         nottaken=(int)out;
5855         emit_jl(2);
5856       }
5857     } // if(!unconditional)
5858     int adj;
5859     uint64_t ds_unneeded=branch_regs[i].u;
5860     uint64_t ds_unneeded_upper=branch_regs[i].uu;
5861     ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
5862     ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
5863     if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
5864     ds_unneeded|=1;
5865     ds_unneeded_upper|=1;
5866     // branch taken
5867     if(!nop) {
5868       if(taken) set_jump_target(taken,(int)out);
5869       assem_debug("1:\n");
5870       wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5871                     ds_unneeded,ds_unneeded_upper);
5872       // load regs
5873       load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5874       address_generation(i+1,&branch_regs[i],0);
5875       load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
5876       ds_assemble(i+1,&branch_regs[i]);
5877       cc=get_reg(branch_regs[i].regmap,CCREG);
5878       if(cc==-1) {
5879         emit_loadreg(CCREG,cc=HOST_CCREG);
5880         // CHECK: Is the following instruction (fall thru) allocated ok?
5881       }
5882       assert(cc==HOST_CCREG);
5883       store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5884       do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
5885       assem_debug("cycle count (adj)\n");
5886       if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
5887       load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5888       if(internal)
5889         assem_debug("branch: internal\n");
5890       else
5891         assem_debug("branch: external\n");
5892       if(internal&&is_ds[(ba[i]-start)>>2]) {
5893         ds_assemble_entry(i);
5894       }
5895       else {
5896         add_to_linker((int)out,ba[i],internal);
5897         emit_jmp(0);
5898       }
5899     }
5900     // branch not taken
5901     cop1_usable=prev_cop1_usable;
5902     if(!unconditional) {
5903       if(nottaken1) set_jump_target(nottaken1,(int)out);
5904       set_jump_target(nottaken,(int)out);
5905       assem_debug("2:\n");
5906       if(!likely[i]) {
5907         wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5908                       ds_unneeded,ds_unneeded_upper);
5909         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5910         address_generation(i+1,&branch_regs[i],0);
5911         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5912         ds_assemble(i+1,&branch_regs[i]);
5913       }
5914       cc=get_reg(branch_regs[i].regmap,CCREG);
5915       if(cc==-1&&!likely[i]) {
5916         // Cycle count isn't in a register, temporarily load it then write it out
5917         emit_loadreg(CCREG,HOST_CCREG);
5918         emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),HOST_CCREG);
5919         int jaddr=(int)out;
5920         emit_jns(0);
5921         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5922         emit_storereg(CCREG,HOST_CCREG);
5923       }
5924       else{
5925         cc=get_reg(i_regmap,CCREG);
5926         assert(cc==HOST_CCREG);
5927         emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),cc);
5928         int jaddr=(int)out;
5929         emit_jns(0);
5930         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
5931       }
5932     }
5933   }
5934 }
5935
5936 void sjump_assemble(int i,struct regstat *i_regs)
5937 {
5938   signed char *i_regmap=i_regs->regmap;
5939   int cc;
5940   int match;
5941   match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5942   assem_debug("smatch=%d\n",match);
5943   int s1h,s1l;
5944   int prev_cop1_usable=cop1_usable;
5945   int unconditional=0,nevertaken=0;
5946   int only32=0;
5947   int invert=0;
5948   int internal=internal_branch(branch_regs[i].is32,ba[i]);
5949   if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5950   if(!match) invert=1;
5951   #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5952   if(i>(ba[i]-start)>>2) invert=1;
5953   #endif
5954
5955   //if(opcode2[i]>=0x10) return; // FIXME (BxxZAL)
5956   //assert(opcode2[i]<0x10||rs1[i]==0); // FIXME (BxxZAL)
5957
5958   if(ooo[i]) {
5959     s1l=get_reg(branch_regs[i].regmap,rs1[i]);
5960     s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
5961   }
5962   else {
5963     s1l=get_reg(i_regmap,rs1[i]);
5964     s1h=get_reg(i_regmap,rs1[i]|64);
5965   }
5966   if(rs1[i]==0)
5967   {
5968     if(opcode2[i]&1) unconditional=1;
5969     else nevertaken=1;
5970     // These are never taken (r0 is never less than zero)
5971     //assert(opcode2[i]!=0);
5972     //assert(opcode2[i]!=2);
5973     //assert(opcode2[i]!=0x10);
5974     //assert(opcode2[i]!=0x12);
5975   }
5976   else {
5977     only32=(regs[i].was32>>rs1[i])&1;
5978   }
5979
5980   if(ooo[i]) {
5981     // Out of order execution (delay slot first)
5982     //printf("OOOE\n");
5983     address_generation(i+1,i_regs,regs[i].regmap_entry);
5984     ds_assemble(i+1,i_regs);
5985     int adj;
5986     uint64_t bc_unneeded=branch_regs[i].u;
5987     uint64_t bc_unneeded_upper=branch_regs[i].uu;
5988     bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
5989     bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
5990     bc_unneeded|=1;
5991     bc_unneeded_upper|=1;
5992     wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5993                   bc_unneeded,bc_unneeded_upper);
5994     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs1[i]);
5995     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5996     if(rt1[i]==31) {
5997       int rt,return_address;
5998       rt=get_reg(branch_regs[i].regmap,31);
5999       assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
6000       if(rt>=0) {
6001         // Save the PC even if the branch is not taken
6002         return_address=start+i*4+8;
6003         emit_movimm(return_address,rt); // PC into link register
6004         #ifdef IMM_PREFETCH
6005         if(!nevertaken) emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
6006         #endif
6007       }
6008     }
6009     cc=get_reg(branch_regs[i].regmap,CCREG);
6010     assert(cc==HOST_CCREG);
6011     if(unconditional) 
6012       store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6013     //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
6014     assem_debug("cycle count (adj)\n");
6015     if(unconditional) {
6016       do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
6017       if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
6018         if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
6019         load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6020         if(internal)
6021           assem_debug("branch: internal\n");
6022         else
6023           assem_debug("branch: external\n");
6024         if(internal&&is_ds[(ba[i]-start)>>2]) {
6025           ds_assemble_entry(i);
6026         }
6027         else {
6028           add_to_linker((int)out,ba[i],internal);
6029           emit_jmp(0);
6030         }
6031         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
6032         if(((u_int)out)&7) emit_addnop(0);
6033         #endif
6034       }
6035     }
6036     else if(nevertaken) {
6037       emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),cc);
6038       int jaddr=(int)out;
6039       emit_jns(0);
6040       add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
6041     }
6042     else {
6043       int nottaken=0;
6044       do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
6045       if(adj&&!invert) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
6046       if(!only32)
6047       {
6048         assert(s1h>=0);
6049         if((opcode2[i]&0xf)==0) // BLTZ/BLTZAL
6050         {
6051           emit_test(s1h,s1h);
6052           if(invert){
6053             nottaken=(int)out;
6054             emit_jns(1);
6055           }else{
6056             add_to_linker((int)out,ba[i],internal);
6057             emit_js(0);
6058           }
6059         }
6060         if((opcode2[i]&0xf)==1) // BGEZ/BLTZAL
6061         {
6062           emit_test(s1h,s1h);
6063           if(invert){
6064             nottaken=(int)out;
6065             emit_js(1);
6066           }else{
6067             add_to_linker((int)out,ba[i],internal);
6068             emit_jns(0);
6069           }
6070         }
6071       } // if(!only32)
6072       else
6073       {
6074         assert(s1l>=0);
6075         if((opcode2[i]&0xf)==0) // BLTZ/BLTZAL
6076         {
6077           emit_test(s1l,s1l);
6078           if(invert){
6079             nottaken=(int)out;
6080             emit_jns(1);
6081           }else{
6082             add_to_linker((int)out,ba[i],internal);
6083             emit_js(0);
6084           }
6085         }
6086         if((opcode2[i]&0xf)==1) // BGEZ/BLTZAL
6087         {
6088           emit_test(s1l,s1l);
6089           if(invert){
6090             nottaken=(int)out;
6091             emit_js(1);
6092           }else{
6093             add_to_linker((int)out,ba[i],internal);
6094             emit_jns(0);
6095           }
6096         }
6097       } // if(!only32)
6098           
6099       if(invert) {
6100         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
6101         if(match&&(!internal||!is_ds[(ba[i]-start)>>2])) {
6102           if(adj) {
6103             emit_addimm(cc,-CLOCK_ADJUST(adj),cc);
6104             add_to_linker((int)out,ba[i],internal);
6105           }else{
6106             emit_addnop(13);
6107             add_to_linker((int)out,ba[i],internal*2);
6108           }
6109           emit_jmp(0);
6110         }else
6111         #endif
6112         {
6113           if(adj) emit_addimm(cc,-CLOCK_ADJUST(adj),cc);
6114           store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6115           load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6116           if(internal)
6117             assem_debug("branch: internal\n");
6118           else
6119             assem_debug("branch: external\n");
6120           if(internal&&is_ds[(ba[i]-start)>>2]) {
6121             ds_assemble_entry(i);
6122           }
6123           else {
6124             add_to_linker((int)out,ba[i],internal);
6125             emit_jmp(0);
6126           }
6127         }
6128         set_jump_target(nottaken,(int)out);
6129       }
6130
6131       if(adj) {
6132         if(!invert) emit_addimm(cc,CLOCK_ADJUST(adj),cc);
6133       }
6134     } // (!unconditional)
6135   } // if(ooo)
6136   else
6137   {
6138     // In-order execution (branch first)
6139     //printf("IOE\n");
6140     int nottaken=0;
6141     if(rt1[i]==31) {
6142       int rt,return_address;
6143       rt=get_reg(branch_regs[i].regmap,31);
6144       if(rt>=0) {
6145         // Save the PC even if the branch is not taken
6146         return_address=start+i*4+8;
6147         emit_movimm(return_address,rt); // PC into link register
6148         #ifdef IMM_PREFETCH
6149         emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
6150         #endif
6151       }
6152     }
6153     if(!unconditional) {
6154       //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
6155       if(!only32)
6156       {
6157         assert(s1h>=0);
6158         if((opcode2[i]&0x0d)==0) // BLTZ/BLTZL/BLTZAL/BLTZALL
6159         {
6160           emit_test(s1h,s1h);
6161           nottaken=(int)out;
6162           emit_jns(1);
6163         }
6164         if((opcode2[i]&0x0d)==1) // BGEZ/BGEZL/BGEZAL/BGEZALL
6165         {
6166           emit_test(s1h,s1h);
6167           nottaken=(int)out;
6168           emit_js(1);
6169         }
6170       } // if(!only32)
6171       else
6172       {
6173         assert(s1l>=0);
6174         if((opcode2[i]&0x0d)==0) // BLTZ/BLTZL/BLTZAL/BLTZALL
6175         {
6176           emit_test(s1l,s1l);
6177           nottaken=(int)out;
6178           emit_jns(1);
6179         }
6180         if((opcode2[i]&0x0d)==1) // BGEZ/BGEZL/BGEZAL/BGEZALL
6181         {
6182           emit_test(s1l,s1l);
6183           nottaken=(int)out;
6184           emit_js(1);
6185         }
6186       }
6187     } // if(!unconditional)
6188     int adj;
6189     uint64_t ds_unneeded=branch_regs[i].u;
6190     uint64_t ds_unneeded_upper=branch_regs[i].uu;
6191     ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6192     ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6193     if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
6194     ds_unneeded|=1;
6195     ds_unneeded_upper|=1;
6196     // branch taken
6197     if(!nevertaken) {
6198       //assem_debug("1:\n");
6199       wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6200                     ds_unneeded,ds_unneeded_upper);
6201       // load regs
6202       load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
6203       address_generation(i+1,&branch_regs[i],0);
6204       load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
6205       ds_assemble(i+1,&branch_regs[i]);
6206       cc=get_reg(branch_regs[i].regmap,CCREG);
6207       if(cc==-1) {
6208         emit_loadreg(CCREG,cc=HOST_CCREG);
6209         // CHECK: Is the following instruction (fall thru) allocated ok?
6210       }
6211       assert(cc==HOST_CCREG);
6212       store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6213       do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
6214       assem_debug("cycle count (adj)\n");
6215       if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
6216       load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6217       if(internal)
6218         assem_debug("branch: internal\n");
6219       else
6220         assem_debug("branch: external\n");
6221       if(internal&&is_ds[(ba[i]-start)>>2]) {
6222         ds_assemble_entry(i);
6223       }
6224       else {
6225         add_to_linker((int)out,ba[i],internal);
6226         emit_jmp(0);
6227       }
6228     }
6229     // branch not taken
6230     cop1_usable=prev_cop1_usable;
6231     if(!unconditional) {
6232       set_jump_target(nottaken,(int)out);
6233       assem_debug("1:\n");
6234       if(!likely[i]) {
6235         wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6236                       ds_unneeded,ds_unneeded_upper);
6237         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
6238         address_generation(i+1,&branch_regs[i],0);
6239         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
6240         ds_assemble(i+1,&branch_regs[i]);
6241       }
6242       cc=get_reg(branch_regs[i].regmap,CCREG);
6243       if(cc==-1&&!likely[i]) {
6244         // Cycle count isn't in a register, temporarily load it then write it out
6245         emit_loadreg(CCREG,HOST_CCREG);
6246         emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),HOST_CCREG);
6247         int jaddr=(int)out;
6248         emit_jns(0);
6249         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
6250         emit_storereg(CCREG,HOST_CCREG);
6251       }
6252       else{
6253         cc=get_reg(i_regmap,CCREG);
6254         assert(cc==HOST_CCREG);
6255         emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),cc);
6256         int jaddr=(int)out;
6257         emit_jns(0);
6258         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
6259       }
6260     }
6261   }
6262 }
6263
6264 void fjump_assemble(int i,struct regstat *i_regs)
6265 {
6266   signed char *i_regmap=i_regs->regmap;
6267   int cc;
6268   int match;
6269   match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6270   assem_debug("fmatch=%d\n",match);
6271   int fs,cs;
6272   int eaddr;
6273   int invert=0;
6274   int internal=internal_branch(branch_regs[i].is32,ba[i]);
6275   if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
6276   if(!match) invert=1;
6277   #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
6278   if(i>(ba[i]-start)>>2) invert=1;
6279   #endif
6280
6281   if(ooo[i]) {
6282     fs=get_reg(branch_regs[i].regmap,FSREG);
6283     address_generation(i+1,i_regs,regs[i].regmap_entry); // Is this okay?
6284   }
6285   else {
6286     fs=get_reg(i_regmap,FSREG);
6287   }
6288
6289   // Check cop1 unusable
6290   if(!cop1_usable) {
6291     cs=get_reg(i_regmap,CSREG);
6292     assert(cs>=0);
6293     emit_testimm(cs,0x20000000);
6294     eaddr=(int)out;
6295     emit_jeq(0);
6296     add_stub(FP_STUB,eaddr,(int)out,i,cs,(int)i_regs,0,0);
6297     cop1_usable=1;
6298   }
6299
6300   if(ooo[i]) {
6301     // Out of order execution (delay slot first)
6302     //printf("OOOE\n");
6303     ds_assemble(i+1,i_regs);
6304     int adj;
6305     uint64_t bc_unneeded=branch_regs[i].u;
6306     uint64_t bc_unneeded_upper=branch_regs[i].uu;
6307     bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
6308     bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
6309     bc_unneeded|=1;
6310     bc_unneeded_upper|=1;
6311     wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6312                   bc_unneeded,bc_unneeded_upper);
6313     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs1[i]);
6314     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
6315     cc=get_reg(branch_regs[i].regmap,CCREG);
6316     assert(cc==HOST_CCREG);
6317     do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
6318     assem_debug("cycle count (adj)\n");
6319     if(1) {
6320       int nottaken=0;
6321       if(adj&&!invert) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
6322       if(1) {
6323         assert(fs>=0);
6324         emit_testimm(fs,0x800000);
6325         if(source[i]&0x10000) // BC1T
6326         {
6327           if(invert){
6328             nottaken=(int)out;
6329             emit_jeq(1);
6330           }else{
6331             add_to_linker((int)out,ba[i],internal);
6332             emit_jne(0);
6333           }
6334         }
6335         else // BC1F
6336           if(invert){
6337             nottaken=(int)out;
6338             emit_jne(1);
6339           }else{
6340             add_to_linker((int)out,ba[i],internal);
6341             emit_jeq(0);
6342           }
6343         {
6344         }
6345       } // if(!only32)
6346           
6347       if(invert) {
6348         if(adj) emit_addimm(cc,-CLOCK_ADJUST(adj),cc);
6349         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
6350         else if(match) emit_addnop(13);
6351         #endif
6352         store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6353         load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6354         if(internal)
6355           assem_debug("branch: internal\n");
6356         else
6357           assem_debug("branch: external\n");
6358         if(internal&&is_ds[(ba[i]-start)>>2]) {
6359           ds_assemble_entry(i);
6360         }
6361         else {
6362           add_to_linker((int)out,ba[i],internal);
6363           emit_jmp(0);
6364         }
6365         set_jump_target(nottaken,(int)out);
6366       }
6367
6368       if(adj) {
6369         if(!invert) emit_addimm(cc,CLOCK_ADJUST(adj),cc);
6370       }
6371     } // (!unconditional)
6372   } // if(ooo)
6373   else
6374   {
6375     // In-order execution (branch first)
6376     //printf("IOE\n");
6377     int nottaken=0;
6378     if(1) {
6379       //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
6380       if(1) {
6381         assert(fs>=0);
6382         emit_testimm(fs,0x800000);
6383         if(source[i]&0x10000) // BC1T
6384         {
6385           nottaken=(int)out;
6386           emit_jeq(1);
6387         }
6388         else // BC1F
6389         {
6390           nottaken=(int)out;
6391           emit_jne(1);
6392         }
6393       }
6394     } // if(!unconditional)
6395     int adj;
6396     uint64_t ds_unneeded=branch_regs[i].u;
6397     uint64_t ds_unneeded_upper=branch_regs[i].uu;
6398     ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6399     ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6400     if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
6401     ds_unneeded|=1;
6402     ds_unneeded_upper|=1;
6403     // branch taken
6404     //assem_debug("1:\n");
6405     wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6406                   ds_unneeded,ds_unneeded_upper);
6407     // load regs
6408     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
6409     address_generation(i+1,&branch_regs[i],0);
6410     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
6411     ds_assemble(i+1,&branch_regs[i]);
6412     cc=get_reg(branch_regs[i].regmap,CCREG);
6413     if(cc==-1) {
6414       emit_loadreg(CCREG,cc=HOST_CCREG);
6415       // CHECK: Is the following instruction (fall thru) allocated ok?
6416     }
6417     assert(cc==HOST_CCREG);
6418     store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6419     do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
6420     assem_debug("cycle count (adj)\n");
6421     if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
6422     load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6423     if(internal)
6424       assem_debug("branch: internal\n");
6425     else
6426       assem_debug("branch: external\n");
6427     if(internal&&is_ds[(ba[i]-start)>>2]) {
6428       ds_assemble_entry(i);
6429     }
6430     else {
6431       add_to_linker((int)out,ba[i],internal);
6432       emit_jmp(0);
6433     }
6434
6435     // branch not taken
6436     if(1) { // <- FIXME (don't need this)
6437       set_jump_target(nottaken,(int)out);
6438       assem_debug("1:\n");
6439       if(!likely[i]) {
6440         wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6441                       ds_unneeded,ds_unneeded_upper);
6442         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
6443         address_generation(i+1,&branch_regs[i],0);
6444         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
6445         ds_assemble(i+1,&branch_regs[i]);
6446       }
6447       cc=get_reg(branch_regs[i].regmap,CCREG);
6448       if(cc==-1&&!likely[i]) {
6449         // Cycle count isn't in a register, temporarily load it then write it out
6450         emit_loadreg(CCREG,HOST_CCREG);
6451         emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),HOST_CCREG);
6452         int jaddr=(int)out;
6453         emit_jns(0);
6454         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
6455         emit_storereg(CCREG,HOST_CCREG);
6456       }
6457       else{
6458         cc=get_reg(i_regmap,CCREG);
6459         assert(cc==HOST_CCREG);
6460         emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),cc);
6461         int jaddr=(int)out;
6462         emit_jns(0);
6463         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
6464       }
6465     }
6466   }
6467 }
6468
6469 static void pagespan_assemble(int i,struct regstat *i_regs)
6470 {
6471   int s1l=get_reg(i_regs->regmap,rs1[i]);
6472   int s1h=get_reg(i_regs->regmap,rs1[i]|64);
6473   int s2l=get_reg(i_regs->regmap,rs2[i]);
6474   int s2h=get_reg(i_regs->regmap,rs2[i]|64);
6475   void *nt_branch=NULL;
6476   int taken=0;
6477   int nottaken=0;
6478   int unconditional=0;
6479   if(rs1[i]==0)
6480   {
6481     s1l=s2l;s1h=s2h;
6482     s2l=s2h=-1;
6483   }
6484   else if(rs2[i]==0)
6485   {
6486     s2l=s2h=-1;
6487   }
6488   if((i_regs->is32>>rs1[i])&(i_regs->is32>>rs2[i])&1) {
6489     s1h=s2h=-1;
6490   }
6491   int hr=0;
6492   int addr,alt,ntaddr;
6493   if(i_regs->regmap[HOST_BTREG]<0) {addr=HOST_BTREG;}
6494   else {
6495     while(hr<HOST_REGS)
6496     {
6497       if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
6498          (i_regs->regmap[hr]&63)!=rs1[i] &&
6499          (i_regs->regmap[hr]&63)!=rs2[i] )
6500       {
6501         addr=hr++;break;
6502       }
6503       hr++;
6504     }
6505   }
6506   while(hr<HOST_REGS)
6507   {
6508     if(hr!=EXCLUDE_REG && hr!=HOST_CCREG && hr!=HOST_BTREG &&
6509        (i_regs->regmap[hr]&63)!=rs1[i] &&
6510        (i_regs->regmap[hr]&63)!=rs2[i] )
6511     {
6512       alt=hr++;break;
6513     }
6514     hr++;
6515   }
6516   if((opcode[i]&0x2E)==6) // BLEZ/BGTZ needs another register
6517   {
6518     while(hr<HOST_REGS)
6519     {
6520       if(hr!=EXCLUDE_REG && hr!=HOST_CCREG && hr!=HOST_BTREG &&
6521          (i_regs->regmap[hr]&63)!=rs1[i] &&
6522          (i_regs->regmap[hr]&63)!=rs2[i] )
6523       {
6524         ntaddr=hr;break;
6525       }
6526       hr++;
6527     }
6528   }
6529   assert(hr<HOST_REGS);
6530   if((opcode[i]&0x2e)==4||opcode[i]==0x11) { // BEQ/BNE/BEQL/BNEL/BC1
6531     load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,CCREG,CCREG);
6532   }
6533   emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i]+2),HOST_CCREG);
6534   if(opcode[i]==2) // J
6535   {
6536     unconditional=1;
6537   }
6538   if(opcode[i]==3) // JAL
6539   {
6540     // TODO: mini_ht
6541     int rt=get_reg(i_regs->regmap,31);
6542     emit_movimm(start+i*4+8,rt);
6543     unconditional=1;
6544   }
6545   if(opcode[i]==0&&(opcode2[i]&0x3E)==8) // JR/JALR
6546   {
6547     emit_mov(s1l,addr);
6548     if(opcode2[i]==9) // JALR
6549     {
6550       int rt=get_reg(i_regs->regmap,rt1[i]);
6551       emit_movimm(start+i*4+8,rt);
6552     }
6553   }
6554   if((opcode[i]&0x3f)==4) // BEQ
6555   {
6556     if(rs1[i]==rs2[i])
6557     {
6558       unconditional=1;
6559     }
6560     else
6561     #ifdef HAVE_CMOV_IMM
6562     if(s1h<0) {
6563       if(s2l>=0) emit_cmp(s1l,s2l);
6564       else emit_test(s1l,s1l);
6565       emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
6566     }
6567     else
6568     #endif
6569     {
6570       assert(s1l>=0);
6571       emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
6572       if(s1h>=0) {
6573         if(s2h>=0) emit_cmp(s1h,s2h);
6574         else emit_test(s1h,s1h);
6575         emit_cmovne_reg(alt,addr);
6576       }
6577       if(s2l>=0) emit_cmp(s1l,s2l);
6578       else emit_test(s1l,s1l);
6579       emit_cmovne_reg(alt,addr);
6580     }
6581   }
6582   if((opcode[i]&0x3f)==5) // BNE
6583   {
6584     #ifdef HAVE_CMOV_IMM
6585     if(s1h<0) {
6586       if(s2l>=0) emit_cmp(s1l,s2l);
6587       else emit_test(s1l,s1l);
6588       emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
6589     }
6590     else
6591     #endif
6592     {
6593       assert(s1l>=0);
6594       emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
6595       if(s1h>=0) {
6596         if(s2h>=0) emit_cmp(s1h,s2h);
6597         else emit_test(s1h,s1h);
6598         emit_cmovne_reg(alt,addr);
6599       }
6600       if(s2l>=0) emit_cmp(s1l,s2l);
6601       else emit_test(s1l,s1l);
6602       emit_cmovne_reg(alt,addr);
6603     }
6604   }
6605   if((opcode[i]&0x3f)==0x14) // BEQL
6606   {
6607     if(s1h>=0) {
6608       if(s2h>=0) emit_cmp(s1h,s2h);
6609       else emit_test(s1h,s1h);
6610       nottaken=(int)out;
6611       emit_jne(0);
6612     }
6613     if(s2l>=0) emit_cmp(s1l,s2l);
6614     else emit_test(s1l,s1l);
6615     if(nottaken) set_jump_target(nottaken,(int)out);
6616     nottaken=(int)out;
6617     emit_jne(0);
6618   }
6619   if((opcode[i]&0x3f)==0x15) // BNEL
6620   {
6621     if(s1h>=0) {
6622       if(s2h>=0) emit_cmp(s1h,s2h);
6623       else emit_test(s1h,s1h);
6624       taken=(int)out;
6625       emit_jne(0);
6626     }
6627     if(s2l>=0) emit_cmp(s1l,s2l);
6628     else emit_test(s1l,s1l);
6629     nottaken=(int)out;
6630     emit_jeq(0);
6631     if(taken) set_jump_target(taken,(int)out);
6632   }
6633   if((opcode[i]&0x3f)==6) // BLEZ
6634   {
6635     emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
6636     emit_cmpimm(s1l,1);
6637     if(s1h>=0) emit_mov(addr,ntaddr);
6638     emit_cmovl_reg(alt,addr);
6639     if(s1h>=0) {
6640       emit_test(s1h,s1h);
6641       emit_cmovne_reg(ntaddr,addr);
6642       emit_cmovs_reg(alt,addr);
6643     }
6644   }
6645   if((opcode[i]&0x3f)==7) // BGTZ
6646   {
6647     emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
6648     emit_cmpimm(s1l,1);
6649     if(s1h>=0) emit_mov(addr,alt);
6650     emit_cmovl_reg(ntaddr,addr);
6651     if(s1h>=0) {
6652       emit_test(s1h,s1h);
6653       emit_cmovne_reg(alt,addr);
6654       emit_cmovs_reg(ntaddr,addr);
6655     }
6656   }
6657   if((opcode[i]&0x3f)==0x16) // BLEZL
6658   {
6659     assert((opcode[i]&0x3f)!=0x16);
6660   }
6661   if((opcode[i]&0x3f)==0x17) // BGTZL
6662   {
6663     assert((opcode[i]&0x3f)!=0x17);
6664   }
6665   assert(opcode[i]!=1); // BLTZ/BGEZ
6666
6667   //FIXME: Check CSREG
6668   if(opcode[i]==0x11 && opcode2[i]==0x08 ) {
6669     if((source[i]&0x30000)==0) // BC1F
6670     {
6671       emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
6672       emit_testimm(s1l,0x800000);
6673       emit_cmovne_reg(alt,addr);
6674     }
6675     if((source[i]&0x30000)==0x10000) // BC1T
6676     {
6677       emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
6678       emit_testimm(s1l,0x800000);
6679       emit_cmovne_reg(alt,addr);
6680     }
6681     if((source[i]&0x30000)==0x20000) // BC1FL
6682     {
6683       emit_testimm(s1l,0x800000);
6684       nottaken=(int)out;
6685       emit_jne(0);
6686     }
6687     if((source[i]&0x30000)==0x30000) // BC1TL
6688     {
6689       emit_testimm(s1l,0x800000);
6690       nottaken=(int)out;
6691       emit_jeq(0);
6692     }
6693   }
6694
6695   assert(i_regs->regmap[HOST_CCREG]==CCREG);
6696   wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
6697   if(likely[i]||unconditional)
6698   {
6699     emit_movimm(ba[i],HOST_BTREG);
6700   }
6701   else if(addr!=HOST_BTREG)
6702   {
6703     emit_mov(addr,HOST_BTREG);
6704   }
6705   void *branch_addr=out;
6706   emit_jmp(0);
6707   int target_addr=start+i*4+5;
6708   void *stub=out;
6709   void *compiled_target_addr=check_addr(target_addr);
6710   emit_extjump_ds((int)branch_addr,target_addr);
6711   if(compiled_target_addr) {
6712     set_jump_target((int)branch_addr,(int)compiled_target_addr);
6713     add_link(target_addr,stub);
6714   }
6715   else set_jump_target((int)branch_addr,(int)stub);
6716   if(likely[i]) {
6717     // Not-taken path
6718     set_jump_target((int)nottaken,(int)out);
6719     wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
6720     void *branch_addr=out;
6721     emit_jmp(0);
6722     int target_addr=start+i*4+8;
6723     void *stub=out;
6724     void *compiled_target_addr=check_addr(target_addr);
6725     emit_extjump_ds((int)branch_addr,target_addr);
6726     if(compiled_target_addr) {
6727       set_jump_target((int)branch_addr,(int)compiled_target_addr);
6728       add_link(target_addr,stub);
6729     }
6730     else set_jump_target((int)branch_addr,(int)stub);
6731   }
6732 }
6733
6734 // Assemble the delay slot for the above
6735 static void pagespan_ds()
6736 {
6737   assem_debug("initial delay slot:\n");
6738   u_int vaddr=start+1;
6739   u_int page=get_page(vaddr);
6740   u_int vpage=get_vpage(vaddr);
6741   ll_add(jump_dirty+vpage,vaddr,(void *)out);
6742   do_dirty_stub_ds();
6743   ll_add(jump_in+page,vaddr,(void *)out);
6744   assert(regs[0].regmap_entry[HOST_CCREG]==CCREG);
6745   if(regs[0].regmap[HOST_CCREG]!=CCREG)
6746     wb_register(CCREG,regs[0].regmap_entry,regs[0].wasdirty,regs[0].was32);
6747   if(regs[0].regmap[HOST_BTREG]!=BTREG)
6748     emit_writeword(HOST_BTREG,(int)&branch_target);
6749   load_regs(regs[0].regmap_entry,regs[0].regmap,regs[0].was32,rs1[0],rs2[0]);
6750   address_generation(0,&regs[0],regs[0].regmap_entry);
6751   if(itype[0]==STORE||itype[0]==STORELR||(opcode[0]&0x3b)==0x39||(opcode[0]&0x3b)==0x3a)
6752     load_regs(regs[0].regmap_entry,regs[0].regmap,regs[0].was32,INVCP,INVCP);
6753   cop1_usable=0;
6754   is_delayslot=0;
6755   switch(itype[0]) {
6756     case ALU:
6757       alu_assemble(0,&regs[0]);break;
6758     case IMM16:
6759       imm16_assemble(0,&regs[0]);break;
6760     case SHIFT:
6761       shift_assemble(0,&regs[0]);break;
6762     case SHIFTIMM:
6763       shiftimm_assemble(0,&regs[0]);break;
6764     case LOAD:
6765       load_assemble(0,&regs[0]);break;
6766     case LOADLR:
6767       loadlr_assemble(0,&regs[0]);break;
6768     case STORE:
6769       store_assemble(0,&regs[0]);break;
6770     case STORELR:
6771       storelr_assemble(0,&regs[0]);break;
6772     case COP0:
6773       cop0_assemble(0,&regs[0]);break;
6774     case COP1:
6775       cop1_assemble(0,&regs[0]);break;
6776     case C1LS:
6777       c1ls_assemble(0,&regs[0]);break;
6778     case COP2:
6779       cop2_assemble(0,&regs[0]);break;
6780     case C2LS:
6781       c2ls_assemble(0,&regs[0]);break;
6782     case C2OP:
6783       c2op_assemble(0,&regs[0]);break;
6784     case FCONV:
6785       fconv_assemble(0,&regs[0]);break;
6786     case FLOAT:
6787       float_assemble(0,&regs[0]);break;
6788     case FCOMP:
6789       fcomp_assemble(0,&regs[0]);break;
6790     case MULTDIV:
6791       multdiv_assemble(0,&regs[0]);break;
6792     case MOV:
6793       mov_assemble(0,&regs[0]);break;
6794     case SYSCALL:
6795     case HLECALL:
6796     case INTCALL:
6797     case SPAN:
6798     case UJUMP:
6799     case RJUMP:
6800     case CJUMP:
6801     case SJUMP:
6802     case FJUMP:
6803       printf("Jump in the delay slot.  This is probably a bug.\n");
6804   }
6805   int btaddr=get_reg(regs[0].regmap,BTREG);
6806   if(btaddr<0) {
6807     btaddr=get_reg(regs[0].regmap,-1);
6808     emit_readword((int)&branch_target,btaddr);
6809   }
6810   assert(btaddr!=HOST_CCREG);
6811   if(regs[0].regmap[HOST_CCREG]!=CCREG) emit_loadreg(CCREG,HOST_CCREG);
6812 #ifdef HOST_IMM8
6813   emit_movimm(start+4,HOST_TEMPREG);
6814   emit_cmp(btaddr,HOST_TEMPREG);
6815 #else
6816   emit_cmpimm(btaddr,start+4);
6817 #endif
6818   int branch=(int)out;
6819   emit_jeq(0);
6820   store_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,-1);
6821   emit_jmp(jump_vaddr_reg[btaddr]);
6822   set_jump_target(branch,(int)out);
6823   store_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,start+4);
6824   load_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,start+4);
6825 }
6826
6827 // Basic liveness analysis for MIPS registers
6828 void unneeded_registers(int istart,int iend,int r)
6829 {
6830   int i;
6831   uint64_t u,uu,gte_u,b,bu,gte_bu;
6832   uint64_t temp_u,temp_uu,temp_gte_u=0;
6833   uint64_t tdep;
6834   uint64_t gte_u_unknown=0;
6835   if(new_dynarec_hacks&NDHACK_GTE_UNNEEDED)
6836     gte_u_unknown=~0ll;
6837   if(iend==slen-1) {
6838     u=1;uu=1;
6839     gte_u=gte_u_unknown;
6840   }else{
6841     u=unneeded_reg[iend+1];
6842     uu=unneeded_reg_upper[iend+1];
6843     u=1;uu=1;
6844     gte_u=gte_unneeded[iend+1];
6845   }
6846
6847   for (i=iend;i>=istart;i--)
6848   {
6849     //printf("unneeded registers i=%d (%d,%d) r=%d\n",i,istart,iend,r);
6850     if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
6851     {
6852       // If subroutine call, flag return address as a possible branch target
6853       if(rt1[i]==31 && i<slen-2) bt[i+2]=1;
6854       
6855       if(ba[i]<start || ba[i]>=(start+slen*4))
6856       {
6857         // Branch out of this block, flush all regs
6858         u=1;
6859         uu=1;
6860         gte_u=gte_u_unknown;
6861         /* Hexagon hack 
6862         if(itype[i]==UJUMP&&rt1[i]==31)
6863         {
6864           uu=u=0x300C00F; // Discard at, v0-v1, t6-t9
6865         }
6866         if(itype[i]==RJUMP&&rs1[i]==31)
6867         {
6868           uu=u=0x300C0F3; // Discard at, a0-a3, t6-t9
6869         }
6870         if(start>0x80000400&&start<0x80000000+RAM_SIZE) {
6871           if(itype[i]==UJUMP&&rt1[i]==31)
6872           {
6873             //uu=u=0x30300FF0FLL; // Discard at, v0-v1, t0-t9, lo, hi
6874             uu=u=0x300FF0F; // Discard at, v0-v1, t0-t9
6875           }
6876           if(itype[i]==RJUMP&&rs1[i]==31)
6877           {
6878             //uu=u=0x30300FFF3LL; // Discard at, a0-a3, t0-t9, lo, hi
6879             uu=u=0x300FFF3; // Discard at, a0-a3, t0-t9
6880           }
6881         }*/
6882         branch_unneeded_reg[i]=u;
6883         branch_unneeded_reg_upper[i]=uu;
6884         // Merge in delay slot
6885         tdep=(~uu>>rt1[i+1])&1;
6886         u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6887         uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6888         u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6889         uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6890         uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6891         u|=1;uu|=1;
6892         gte_u|=gte_rt[i+1];
6893         gte_u&=~gte_rs[i+1];
6894         // If branch is "likely" (and conditional)
6895         // then we skip the delay slot on the fall-thru path
6896         if(likely[i]) {
6897           if(i<slen-1) {
6898             u&=unneeded_reg[i+2];
6899             uu&=unneeded_reg_upper[i+2];
6900             gte_u&=gte_unneeded[i+2];
6901           }
6902           else
6903           {
6904             u=1;
6905             uu=1;
6906             gte_u=gte_u_unknown;
6907           }
6908         }
6909       }
6910       else
6911       {
6912         // Internal branch, flag target
6913         bt[(ba[i]-start)>>2]=1;
6914         if(ba[i]<=start+i*4) {
6915           // Backward branch
6916           if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
6917           {
6918             // Unconditional branch
6919             temp_u=1;temp_uu=1;
6920             temp_gte_u=0;
6921           } else {
6922             // Conditional branch (not taken case)
6923             temp_u=unneeded_reg[i+2];
6924             temp_uu=unneeded_reg_upper[i+2];
6925             temp_gte_u&=gte_unneeded[i+2];
6926           }
6927           // Merge in delay slot
6928           tdep=(~temp_uu>>rt1[i+1])&1;
6929           temp_u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6930           temp_uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6931           temp_u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6932           temp_uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6933           temp_uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6934           temp_u|=1;temp_uu|=1;
6935           temp_gte_u|=gte_rt[i+1];
6936           temp_gte_u&=~gte_rs[i+1];
6937           // If branch is "likely" (and conditional)
6938           // then we skip the delay slot on the fall-thru path
6939           if(likely[i]) {
6940             if(i<slen-1) {
6941               temp_u&=unneeded_reg[i+2];
6942               temp_uu&=unneeded_reg_upper[i+2];
6943               temp_gte_u&=gte_unneeded[i+2];
6944             }
6945             else
6946             {
6947               temp_u=1;
6948               temp_uu=1;
6949               temp_gte_u=gte_u_unknown;
6950             }
6951           }
6952           tdep=(~temp_uu>>rt1[i])&1;
6953           temp_u|=(1LL<<rt1[i])|(1LL<<rt2[i]);
6954           temp_uu|=(1LL<<rt1[i])|(1LL<<rt2[i]);
6955           temp_u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
6956           temp_uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
6957           temp_uu&=~((tdep<<dep1[i])|(tdep<<dep2[i]));
6958           temp_u|=1;temp_uu|=1;
6959           temp_gte_u|=gte_rt[i];
6960           temp_gte_u&=~gte_rs[i];
6961           unneeded_reg[i]=temp_u;
6962           unneeded_reg_upper[i]=temp_uu;
6963           gte_unneeded[i]=temp_gte_u;
6964           // Only go three levels deep.  This recursion can take an
6965           // excessive amount of time if there are a lot of nested loops.
6966           if(r<2) {
6967             unneeded_registers((ba[i]-start)>>2,i-1,r+1);
6968           }else{
6969             unneeded_reg[(ba[i]-start)>>2]=1;
6970             unneeded_reg_upper[(ba[i]-start)>>2]=1;
6971             gte_unneeded[(ba[i]-start)>>2]=gte_u_unknown;
6972           }
6973         } /*else*/ if(1) {
6974           if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
6975           {
6976             // Unconditional branch
6977             u=unneeded_reg[(ba[i]-start)>>2];
6978             uu=unneeded_reg_upper[(ba[i]-start)>>2];
6979             gte_u=gte_unneeded[(ba[i]-start)>>2];
6980             branch_unneeded_reg[i]=u;
6981             branch_unneeded_reg_upper[i]=uu;
6982         //u=1;
6983         //uu=1;
6984         //branch_unneeded_reg[i]=u;
6985         //branch_unneeded_reg_upper[i]=uu;
6986             // Merge in delay slot
6987             tdep=(~uu>>rt1[i+1])&1;
6988             u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6989             uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6990             u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6991             uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6992             uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6993             u|=1;uu|=1;
6994             gte_u|=gte_rt[i+1];
6995             gte_u&=~gte_rs[i+1];
6996           } else {
6997             // Conditional branch
6998             b=unneeded_reg[(ba[i]-start)>>2];
6999             bu=unneeded_reg_upper[(ba[i]-start)>>2];
7000             gte_bu=gte_unneeded[(ba[i]-start)>>2];
7001             branch_unneeded_reg[i]=b;
7002             branch_unneeded_reg_upper[i]=bu;
7003         //b=1;
7004         //bu=1;
7005         //branch_unneeded_reg[i]=b;
7006         //branch_unneeded_reg_upper[i]=bu;
7007             // Branch delay slot
7008             tdep=(~uu>>rt1[i+1])&1;
7009             b|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
7010             bu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
7011             b&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
7012             bu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
7013             bu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
7014             b|=1;bu|=1;
7015             gte_bu|=gte_rt[i+1];
7016             gte_bu&=~gte_rs[i+1];
7017             // If branch is "likely" then we skip the
7018             // delay slot on the fall-thru path
7019             if(likely[i]) {
7020               u=b;
7021               uu=bu;
7022               gte_u=gte_bu;
7023               if(i<slen-1) {
7024                 u&=unneeded_reg[i+2];
7025                 uu&=unneeded_reg_upper[i+2];
7026                 gte_u&=gte_unneeded[i+2];
7027         //u=1;
7028         //uu=1;
7029               }
7030             } else {
7031               u&=b;
7032               uu&=bu;
7033               gte_u&=gte_bu;
7034         //u=1;
7035         //uu=1;
7036             }
7037             if(i<slen-1) {
7038               branch_unneeded_reg[i]&=unneeded_reg[i+2];
7039               branch_unneeded_reg_upper[i]&=unneeded_reg_upper[i+2];
7040         //branch_unneeded_reg[i]=1;
7041         //branch_unneeded_reg_upper[i]=1;
7042             } else {
7043               branch_unneeded_reg[i]=1;
7044               branch_unneeded_reg_upper[i]=1;
7045             }
7046           }
7047         }
7048       }
7049     }
7050     else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
7051     {
7052       // SYSCALL instruction (software interrupt)
7053       u=1;
7054       uu=1;
7055     }
7056     else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
7057     {
7058       // ERET instruction (return from interrupt)
7059       u=1;
7060       uu=1;
7061     }
7062     //u=uu=1; // DEBUG
7063     tdep=(~uu>>rt1[i])&1;
7064     // Written registers are unneeded
7065     u|=1LL<<rt1[i];
7066     u|=1LL<<rt2[i];
7067     uu|=1LL<<rt1[i];
7068     uu|=1LL<<rt2[i];
7069     gte_u|=gte_rt[i];
7070     // Accessed registers are needed
7071     u&=~(1LL<<rs1[i]);
7072     u&=~(1LL<<rs2[i]);
7073     uu&=~(1LL<<us1[i]);
7074     uu&=~(1LL<<us2[i]);
7075     gte_u&=~gte_rs[i];
7076     if(gte_rs[i]&&rt1[i]&&(unneeded_reg[i+1]&(1ll<<rt1[i])))
7077       gte_u|=gte_rs[i]&gte_unneeded[i+1]; // MFC2/CFC2 to dead register, unneeded
7078     // Source-target dependencies
7079     uu&=~(tdep<<dep1[i]);
7080     uu&=~(tdep<<dep2[i]);
7081     // R0 is always unneeded
7082     u|=1;uu|=1;
7083     // Save it
7084     unneeded_reg[i]=u;
7085     unneeded_reg_upper[i]=uu;
7086     gte_unneeded[i]=gte_u;
7087     /*
7088     printf("ur (%d,%d) %x: ",istart,iend,start+i*4);
7089     printf("U:");
7090     int r;
7091     for(r=1;r<=CCREG;r++) {
7092       if((unneeded_reg[i]>>r)&1) {
7093         if(r==HIREG) printf(" HI");
7094         else if(r==LOREG) printf(" LO");
7095         else printf(" r%d",r);
7096       }
7097     }
7098     printf(" UU:");
7099     for(r=1;r<=CCREG;r++) {
7100       if(((unneeded_reg_upper[i]&~unneeded_reg[i])>>r)&1) {
7101         if(r==HIREG) printf(" HI");
7102         else if(r==LOREG) printf(" LO");
7103         else printf(" r%d",r);
7104       }
7105     }
7106     printf("\n");*/
7107   }
7108 #ifdef FORCE32
7109   for (i=iend;i>=istart;i--)
7110   {
7111     unneeded_reg_upper[i]=branch_unneeded_reg_upper[i]=-1LL;
7112   }
7113 #endif
7114 }
7115
7116 // Identify registers which are likely to contain 32-bit values
7117 // This is used to predict whether any branches will jump to a
7118 // location with 64-bit values in registers.
7119 static void provisional_32bit()
7120 {
7121   int i,j;
7122   uint64_t is32=1;
7123   uint64_t lastbranch=1;
7124   
7125   for(i=0;i<slen;i++)
7126   {
7127     if(i>0) {
7128       if(itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP) {
7129         if(i>1) is32=lastbranch;
7130         else is32=1;
7131       }
7132     }
7133     if(i>1)
7134     {
7135       if(itype[i-2]==CJUMP||itype[i-2]==SJUMP||itype[i-2]==FJUMP) {
7136         if(likely[i-2]) {
7137           if(i>2) is32=lastbranch;
7138           else is32=1;
7139         }
7140       }
7141       if((opcode[i-2]&0x2f)==0x05) // BNE/BNEL
7142       {
7143         if(rs1[i-2]==0||rs2[i-2]==0)
7144         {
7145           if(rs1[i-2]) {
7146             is32|=1LL<<rs1[i-2];
7147           }
7148           if(rs2[i-2]) {
7149             is32|=1LL<<rs2[i-2];
7150           }
7151         }
7152       }
7153     }
7154     // If something jumps here with 64-bit values
7155     // then promote those registers to 64 bits
7156     if(bt[i])
7157     {
7158       uint64_t temp_is32=is32;
7159       for(j=i-1;j>=0;j--)
7160       {
7161         if(ba[j]==start+i*4) 
7162           //temp_is32&=branch_regs[j].is32;
7163           temp_is32&=p32[j];
7164       }
7165       for(j=i;j<slen;j++)
7166       {
7167         if(ba[j]==start+i*4) 
7168           temp_is32=1;
7169       }
7170       is32=temp_is32;
7171     }
7172     int type=itype[i];
7173     int op=opcode[i];
7174     int op2=opcode2[i];
7175     int rt=rt1[i];
7176     int s1=rs1[i];
7177     int s2=rs2[i];
7178     if(type==UJUMP||type==RJUMP||type==CJUMP||type==SJUMP||type==FJUMP) {
7179       // Branches don't write registers, consider the delay slot instead.
7180       type=itype[i+1];
7181       op=opcode[i+1];
7182       op2=opcode2[i+1];
7183       rt=rt1[i+1];
7184       s1=rs1[i+1];
7185       s2=rs2[i+1];
7186       lastbranch=is32;
7187     }
7188     switch(type) {
7189       case LOAD:
7190         if(opcode[i]==0x27||opcode[i]==0x37|| // LWU/LD
7191            opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
7192           is32&=~(1LL<<rt);
7193         else
7194           is32|=1LL<<rt;
7195         break;
7196       case STORE:
7197       case STORELR:
7198         break;
7199       case LOADLR:
7200         if(op==0x1a||op==0x1b) is32&=~(1LL<<rt); // LDR/LDL
7201         if(op==0x22) is32|=1LL<<rt; // LWL
7202         break;
7203       case IMM16:
7204         if (op==0x08||op==0x09|| // ADDI/ADDIU
7205             op==0x0a||op==0x0b|| // SLTI/SLTIU
7206             op==0x0c|| // ANDI
7207             op==0x0f)  // LUI
7208         {
7209           is32|=1LL<<rt;
7210         }
7211         if(op==0x18||op==0x19) { // DADDI/DADDIU
7212           is32&=~(1LL<<rt);
7213           //if(imm[i]==0)
7214           //  is32|=((is32>>s1)&1LL)<<rt;
7215         }
7216         if(op==0x0d||op==0x0e) { // ORI/XORI
7217           uint64_t sr=((is32>>s1)&1LL);
7218           is32&=~(1LL<<rt);
7219           is32|=sr<<rt;
7220         }
7221         break;
7222       case UJUMP:
7223         break;
7224       case RJUMP:
7225         break;
7226       case CJUMP:
7227         break;
7228       case SJUMP:
7229         break;
7230       case FJUMP:
7231         break;
7232       case ALU:
7233         if(op2>=0x20&&op2<=0x23) { // ADD/ADDU/SUB/SUBU
7234           is32|=1LL<<rt;
7235         }
7236         if(op2==0x2a||op2==0x2b) { // SLT/SLTU
7237           is32|=1LL<<rt;
7238         }
7239         else if(op2>=0x24&&op2<=0x27) { // AND/OR/XOR/NOR
7240           uint64_t sr=((is32>>s1)&(is32>>s2)&1LL);
7241           is32&=~(1LL<<rt);
7242           is32|=sr<<rt;
7243         }
7244         else if(op2>=0x2c&&op2<=0x2d) { // DADD/DADDU
7245           if(s1==0&&s2==0) {
7246             is32|=1LL<<rt;
7247           }
7248           else if(s2==0) {
7249             uint64_t sr=((is32>>s1)&1LL);
7250             is32&=~(1LL<<rt);
7251             is32|=sr<<rt;
7252           }
7253           else if(s1==0) {
7254             uint64_t sr=((is32>>s2)&1LL);
7255             is32&=~(1LL<<rt);
7256             is32|=sr<<rt;
7257           }
7258           else {
7259             is32&=~(1LL<<rt);
7260           }
7261         }
7262         else if(op2>=0x2e&&op2<=0x2f) { // DSUB/DSUBU
7263           if(s1==0&&s2==0) {
7264             is32|=1LL<<rt;
7265           }
7266           else if(s2==0) {
7267             uint64_t sr=((is32>>s1)&1LL);
7268             is32&=~(1LL<<rt);
7269             is32|=sr<<rt;
7270           }
7271           else {
7272             is32&=~(1LL<<rt);
7273           }
7274         }
7275         break;
7276       case MULTDIV:
7277         if (op2>=0x1c&&op2<=0x1f) { // DMULT/DMULTU/DDIV/DDIVU
7278           is32&=~((1LL<<HIREG)|(1LL<<LOREG));
7279         }
7280         else {
7281           is32|=(1LL<<HIREG)|(1LL<<LOREG);
7282         }
7283         break;
7284       case MOV:
7285         {
7286           uint64_t sr=((is32>>s1)&1LL);
7287           is32&=~(1LL<<rt);
7288           is32|=sr<<rt;
7289         }
7290         break;
7291       case SHIFT:
7292         if(op2>=0x14&&op2<=0x17) is32&=~(1LL<<rt); // DSLLV/DSRLV/DSRAV
7293         else is32|=1LL<<rt; // SLLV/SRLV/SRAV
7294         break;
7295       case SHIFTIMM:
7296         is32|=1LL<<rt;
7297         // DSLL/DSRL/DSRA/DSLL32/DSRL32 but not DSRA32 have 64-bit result
7298         if(op2>=0x38&&op2<0x3f) is32&=~(1LL<<rt);
7299         break;
7300       case COP0:
7301         if(op2==0) is32|=1LL<<rt; // MFC0
7302         break;
7303       case COP1:
7304       case COP2:
7305         if(op2==0) is32|=1LL<<rt; // MFC1
7306         if(op2==1) is32&=~(1LL<<rt); // DMFC1
7307         if(op2==2) is32|=1LL<<rt; // CFC1
7308         break;
7309       case C1LS:
7310       case C2LS:
7311         break;
7312       case FLOAT:
7313       case FCONV:
7314         break;
7315       case FCOMP:
7316         break;
7317       case C2OP:
7318       case SYSCALL:
7319       case HLECALL:
7320         break;
7321       default:
7322         break;
7323     }
7324     is32|=1;
7325     p32[i]=is32;
7326
7327     if(i>0)
7328     {
7329       if(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)
7330       {
7331         if(rt1[i-1]==31) // JAL/JALR
7332         {
7333           // Subroutine call will return here, don't alloc any registers
7334           is32=1;
7335         }
7336         else if(i+1<slen)
7337         {
7338           // Internal branch will jump here, match registers to caller
7339           is32=0x3FFFFFFFFLL;
7340         }
7341       }
7342     }
7343   }
7344 }
7345
7346 // Identify registers which may be assumed to contain 32-bit values
7347 // and where optimizations will rely on this.
7348 // This is used to determine whether backward branches can safely
7349 // jump to a location with 64-bit values in registers.
7350 static void provisional_r32()
7351 {
7352   u_int r32=0;
7353   int i;
7354   
7355   for (i=slen-1;i>=0;i--)
7356   {
7357     int hr;
7358     if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
7359     {
7360       if(ba[i]<start || ba[i]>=(start+slen*4))
7361       {
7362         // Branch out of this block, don't need anything
7363         r32=0;
7364       }
7365       else
7366       {
7367         // Internal branch
7368         // Need whatever matches the target
7369         // (and doesn't get overwritten by the delay slot instruction)
7370         r32=0;
7371         int t=(ba[i]-start)>>2;
7372         if(ba[i]>start+i*4) {
7373           // Forward branch
7374           //if(!(requires_32bit[t]&~regs[i].was32))
7375           //  r32|=requires_32bit[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
7376           if(!(pr32[t]&~regs[i].was32))
7377             r32|=pr32[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
7378         }else{
7379           // Backward branch
7380           if(!(regs[t].was32&~unneeded_reg_upper[t]&~regs[i].was32))
7381             r32|=regs[t].was32&~unneeded_reg_upper[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
7382         }
7383       }
7384       // Conditional branch may need registers for following instructions
7385       if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
7386       {
7387         if(i<slen-2) {
7388           //r32|=requires_32bit[i+2];
7389           r32|=pr32[i+2];
7390           r32&=regs[i].was32;
7391           // Mark this address as a branch target since it may be called
7392           // upon return from interrupt
7393           //bt[i+2]=1;
7394         }
7395       }
7396       // Merge in delay slot
7397       if(!likely[i]) {
7398         // These are overwritten unless the branch is "likely"
7399         // and the delay slot is nullified if not taken
7400         r32&=~(1LL<<rt1[i+1]);
7401         r32&=~(1LL<<rt2[i+1]);
7402       }
7403       // Assume these are needed (delay slot)
7404       if(us1[i+1]>0)
7405       {
7406         if((regs[i].was32>>us1[i+1])&1) r32|=1LL<<us1[i+1];
7407       }
7408       if(us2[i+1]>0)
7409       {
7410         if((regs[i].was32>>us2[i+1])&1) r32|=1LL<<us2[i+1];
7411       }
7412       if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1))
7413       {
7414         if((regs[i].was32>>dep1[i+1])&1) r32|=1LL<<dep1[i+1];
7415       }
7416       if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1))
7417       {
7418         if((regs[i].was32>>dep2[i+1])&1) r32|=1LL<<dep2[i+1];
7419       }
7420     }
7421     else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
7422     {
7423       // SYSCALL instruction (software interrupt)
7424       r32=0;
7425     }
7426     else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
7427     {
7428       // ERET instruction (return from interrupt)
7429       r32=0;
7430     }
7431     // Check 32 bits
7432     r32&=~(1LL<<rt1[i]);
7433     r32&=~(1LL<<rt2[i]);
7434     if(us1[i]>0)
7435     {
7436       if((regs[i].was32>>us1[i])&1) r32|=1LL<<us1[i];
7437     }
7438     if(us2[i]>0)
7439     {
7440       if((regs[i].was32>>us2[i])&1) r32|=1LL<<us2[i];
7441     }
7442     if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1))
7443     {
7444       if((regs[i].was32>>dep1[i])&1) r32|=1LL<<dep1[i];
7445     }
7446     if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1))
7447     {
7448       if((regs[i].was32>>dep2[i])&1) r32|=1LL<<dep2[i];
7449     }
7450     //requires_32bit[i]=r32;
7451     pr32[i]=r32;
7452     
7453     // Dirty registers which are 32-bit, require 32-bit input
7454     // as they will be written as 32-bit values
7455     for(hr=0;hr<HOST_REGS;hr++)
7456     {
7457       if(regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64) {
7458         if((regs[i].was32>>regs[i].regmap_entry[hr])&(regs[i].wasdirty>>hr)&1) {
7459           if(!((unneeded_reg_upper[i]>>regs[i].regmap_entry[hr])&1))
7460           pr32[i]|=1LL<<regs[i].regmap_entry[hr];
7461           //requires_32bit[i]|=1LL<<regs[i].regmap_entry[hr];
7462         }
7463       }
7464     }
7465   }
7466 }
7467
7468 // Write back dirty registers as soon as we will no longer modify them,
7469 // so that we don't end up with lots of writes at the branches.
7470 void clean_registers(int istart,int iend,int wr)
7471 {
7472   int i;
7473   int r;
7474   u_int will_dirty_i,will_dirty_next,temp_will_dirty;
7475   u_int wont_dirty_i,wont_dirty_next,temp_wont_dirty;
7476   if(iend==slen-1) {
7477     will_dirty_i=will_dirty_next=0;
7478     wont_dirty_i=wont_dirty_next=0;
7479   }else{
7480     will_dirty_i=will_dirty_next=will_dirty[iend+1];
7481     wont_dirty_i=wont_dirty_next=wont_dirty[iend+1];
7482   }
7483   for (i=iend;i>=istart;i--)
7484   {
7485     if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
7486     {
7487       if(ba[i]<start || ba[i]>=(start+slen*4))
7488       {
7489         // Branch out of this block, flush all regs
7490         if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
7491         {
7492           // Unconditional branch
7493           will_dirty_i=0;
7494           wont_dirty_i=0;
7495           // Merge in delay slot (will dirty)
7496           for(r=0;r<HOST_REGS;r++) {
7497             if(r!=EXCLUDE_REG) {
7498               if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7499               if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7500               if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7501               if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7502               if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7503               if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7504               if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7505               if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7506               if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7507               if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7508               if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7509               if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7510               if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7511               if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7512             }
7513           }
7514         }
7515         else
7516         {
7517           // Conditional branch
7518           will_dirty_i=0;
7519           wont_dirty_i=wont_dirty_next;
7520           // Merge in delay slot (will dirty)
7521           for(r=0;r<HOST_REGS;r++) {
7522             if(r!=EXCLUDE_REG) {
7523               if(!likely[i]) {
7524                 // Might not dirty if likely branch is not taken
7525                 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7526                 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7527                 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7528                 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7529                 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7530                 if(branch_regs[i].regmap[r]==0) will_dirty_i&=~(1<<r);
7531                 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7532                 //if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7533                 //if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7534                 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7535                 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7536                 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7537                 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7538                 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7539               }
7540             }
7541           }
7542         }
7543         // Merge in delay slot (wont dirty)
7544         for(r=0;r<HOST_REGS;r++) {
7545           if(r!=EXCLUDE_REG) {
7546             if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7547             if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7548             if((regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7549             if((regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7550             if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7551             if((branch_regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7552             if((branch_regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7553             if((branch_regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7554             if((branch_regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7555             if(branch_regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7556           }
7557         }
7558         if(wr) {
7559           #ifndef DESTRUCTIVE_WRITEBACK
7560           branch_regs[i].dirty&=wont_dirty_i;
7561           #endif
7562           branch_regs[i].dirty|=will_dirty_i;
7563         }
7564       }
7565       else
7566       {
7567         // Internal branch
7568         if(ba[i]<=start+i*4) {
7569           // Backward branch
7570           if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
7571           {
7572             // Unconditional branch
7573             temp_will_dirty=0;
7574             temp_wont_dirty=0;
7575             // Merge in delay slot (will dirty)
7576             for(r=0;r<HOST_REGS;r++) {
7577               if(r!=EXCLUDE_REG) {
7578                 if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7579                 if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7580                 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7581                 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7582                 if((branch_regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7583                 if(branch_regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
7584                 if(branch_regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7585                 if((regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7586                 if((regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7587                 if((regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7588                 if((regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7589                 if((regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7590                 if(regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
7591                 if(regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7592               }
7593             }
7594           } else {
7595             // Conditional branch (not taken case)
7596             temp_will_dirty=will_dirty_next;
7597             temp_wont_dirty=wont_dirty_next;
7598             // Merge in delay slot (will dirty)
7599             for(r=0;r<HOST_REGS;r++) {
7600               if(r!=EXCLUDE_REG) {
7601                 if(!likely[i]) {
7602                   // Will not dirty if likely branch is not taken
7603                   if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7604                   if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7605                   if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7606                   if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7607                   if((branch_regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7608                   if(branch_regs[i].regmap[r]==0) temp_will_dirty&=~(1<<r);
7609                   if(branch_regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7610                   //if((regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7611                   //if((regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7612                   if((regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7613                   if((regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7614                   if((regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7615                   if(regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
7616                   if(regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7617                 }
7618               }
7619             }
7620           }
7621           // Merge in delay slot (wont dirty)
7622           for(r=0;r<HOST_REGS;r++) {
7623             if(r!=EXCLUDE_REG) {
7624               if((regs[i].regmap[r]&63)==rt1[i]) temp_wont_dirty|=1<<r;
7625               if((regs[i].regmap[r]&63)==rt2[i]) temp_wont_dirty|=1<<r;
7626               if((regs[i].regmap[r]&63)==rt1[i+1]) temp_wont_dirty|=1<<r;
7627               if((regs[i].regmap[r]&63)==rt2[i+1]) temp_wont_dirty|=1<<r;
7628               if(regs[i].regmap[r]==CCREG) temp_wont_dirty|=1<<r;
7629               if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_wont_dirty|=1<<r;
7630               if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_wont_dirty|=1<<r;
7631               if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_wont_dirty|=1<<r;
7632               if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_wont_dirty|=1<<r;
7633               if(branch_regs[i].regmap[r]==CCREG) temp_wont_dirty|=1<<r;
7634             }
7635           }
7636           // Deal with changed mappings
7637           if(i<iend) {
7638             for(r=0;r<HOST_REGS;r++) {
7639               if(r!=EXCLUDE_REG) {
7640                 if(regs[i].regmap[r]!=regmap_pre[i][r]) {
7641                   temp_will_dirty&=~(1<<r);
7642                   temp_wont_dirty&=~(1<<r);
7643                   if((regmap_pre[i][r]&63)>0 && (regmap_pre[i][r]&63)<34) {
7644                     temp_will_dirty|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7645                     temp_wont_dirty|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7646                   } else {
7647                     temp_will_dirty|=1<<r;
7648                     temp_wont_dirty|=1<<r;
7649                   }
7650                 }
7651               }
7652             }
7653           }
7654           if(wr) {
7655             will_dirty[i]=temp_will_dirty;
7656             wont_dirty[i]=temp_wont_dirty;
7657             clean_registers((ba[i]-start)>>2,i-1,0);
7658           }else{
7659             // Limit recursion.  It can take an excessive amount
7660             // of time if there are a lot of nested loops.
7661             will_dirty[(ba[i]-start)>>2]=0;
7662             wont_dirty[(ba[i]-start)>>2]=-1;
7663           }
7664         }
7665         /*else*/ if(1)
7666         {
7667           if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
7668           {
7669             // Unconditional branch
7670             will_dirty_i=0;
7671             wont_dirty_i=0;
7672           //if(ba[i]>start+i*4) { // Disable recursion (for debugging)
7673             for(r=0;r<HOST_REGS;r++) {
7674               if(r!=EXCLUDE_REG) {
7675                 if(branch_regs[i].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
7676                   will_dirty_i|=will_dirty[(ba[i]-start)>>2]&(1<<r);
7677                   wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
7678                 }
7679                 if(branch_regs[i].regmap[r]>=0) {
7680                   will_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>(branch_regs[i].regmap[r]&63))&1)<<r;
7681                   wont_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>(branch_regs[i].regmap[r]&63))&1)<<r;
7682                 }
7683               }
7684             }
7685           //}
7686             // Merge in delay slot
7687             for(r=0;r<HOST_REGS;r++) {
7688               if(r!=EXCLUDE_REG) {
7689                 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7690                 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7691                 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7692                 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7693                 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7694                 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7695                 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7696                 if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7697                 if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7698                 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7699                 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7700                 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7701                 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7702                 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7703               }
7704             }
7705           } else {
7706             // Conditional branch
7707             will_dirty_i=will_dirty_next;
7708             wont_dirty_i=wont_dirty_next;
7709           //if(ba[i]>start+i*4) { // Disable recursion (for debugging)
7710             for(r=0;r<HOST_REGS;r++) {
7711               if(r!=EXCLUDE_REG) {
7712                 signed char target_reg=branch_regs[i].regmap[r];
7713                 if(target_reg==regs[(ba[i]-start)>>2].regmap_entry[r]) {
7714                   will_dirty_i&=will_dirty[(ba[i]-start)>>2]&(1<<r);
7715                   wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
7716                 }
7717                 else if(target_reg>=0) {
7718                   will_dirty_i&=((unneeded_reg[(ba[i]-start)>>2]>>(target_reg&63))&1)<<r;
7719                   wont_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>(target_reg&63))&1)<<r;
7720                 }
7721                 // Treat delay slot as part of branch too
7722                 /*if(regs[i+1].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
7723                   will_dirty[i+1]&=will_dirty[(ba[i]-start)>>2]&(1<<r);
7724                   wont_dirty[i+1]|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
7725                 }
7726                 else
7727                 {
7728                   will_dirty[i+1]&=~(1<<r);
7729                 }*/
7730               }
7731             }
7732           //}
7733             // Merge in delay slot
7734             for(r=0;r<HOST_REGS;r++) {
7735               if(r!=EXCLUDE_REG) {
7736                 if(!likely[i]) {
7737                   // Might not dirty if likely branch is not taken
7738                   if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7739                   if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7740                   if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7741                   if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7742                   if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7743                   if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7744                   if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7745                   //if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7746                   //if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7747                   if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7748                   if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7749                   if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7750                   if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7751                   if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7752                 }
7753               }
7754             }
7755           }
7756           // Merge in delay slot (won't dirty)
7757           for(r=0;r<HOST_REGS;r++) {
7758             if(r!=EXCLUDE_REG) {
7759               if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7760               if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7761               if((regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7762               if((regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7763               if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7764               if((branch_regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7765               if((branch_regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7766               if((branch_regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7767               if((branch_regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7768               if(branch_regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7769             }
7770           }
7771           if(wr) {
7772             #ifndef DESTRUCTIVE_WRITEBACK
7773             branch_regs[i].dirty&=wont_dirty_i;
7774             #endif
7775             branch_regs[i].dirty|=will_dirty_i;
7776           }
7777         }
7778       }
7779     }
7780     else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
7781     {
7782       // SYSCALL instruction (software interrupt)
7783       will_dirty_i=0;
7784       wont_dirty_i=0;
7785     }
7786     else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
7787     {
7788       // ERET instruction (return from interrupt)
7789       will_dirty_i=0;
7790       wont_dirty_i=0;
7791     }
7792     will_dirty_next=will_dirty_i;
7793     wont_dirty_next=wont_dirty_i;
7794     for(r=0;r<HOST_REGS;r++) {
7795       if(r!=EXCLUDE_REG) {
7796         if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7797         if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7798         if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7799         if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7800         if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7801         if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7802         if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7803         if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7804         if(i>istart) {
7805           if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=FJUMP) 
7806           {
7807             // Don't store a register immediately after writing it,
7808             // may prevent dual-issue.
7809             if((regs[i].regmap[r]&63)==rt1[i-1]) wont_dirty_i|=1<<r;
7810             if((regs[i].regmap[r]&63)==rt2[i-1]) wont_dirty_i|=1<<r;
7811           }
7812         }
7813       }
7814     }
7815     // Save it
7816     will_dirty[i]=will_dirty_i;
7817     wont_dirty[i]=wont_dirty_i;
7818     // Mark registers that won't be dirtied as not dirty
7819     if(wr) {
7820       /*printf("wr (%d,%d) %x will:",istart,iend,start+i*4);
7821       for(r=0;r<HOST_REGS;r++) {
7822         if((will_dirty_i>>r)&1) {
7823           printf(" r%d",r);
7824         }
7825       }
7826       printf("\n");*/
7827
7828       //if(i==istart||(itype[i-1]!=RJUMP&&itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=FJUMP)) {
7829         regs[i].dirty|=will_dirty_i;
7830         #ifndef DESTRUCTIVE_WRITEBACK
7831         regs[i].dirty&=wont_dirty_i;
7832         if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
7833         {
7834           if(i<iend-1&&itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000) {
7835             for(r=0;r<HOST_REGS;r++) {
7836               if(r!=EXCLUDE_REG) {
7837                 if(regs[i].regmap[r]==regmap_pre[i+2][r]) {
7838                   regs[i+2].wasdirty&=wont_dirty_i|~(1<<r);
7839                 }else {/*printf("i: %x (%d) mismatch(+2): %d\n",start+i*4,i,r);/*assert(!((wont_dirty_i>>r)&1));*/}
7840               }
7841             }
7842           }
7843         }
7844         else
7845         {
7846           if(i<iend) {
7847             for(r=0;r<HOST_REGS;r++) {
7848               if(r!=EXCLUDE_REG) {
7849                 if(regs[i].regmap[r]==regmap_pre[i+1][r]) {
7850                   regs[i+1].wasdirty&=wont_dirty_i|~(1<<r);
7851                 }else {/*printf("i: %x (%d) mismatch(+1): %d\n",start+i*4,i,r);/*assert(!((wont_dirty_i>>r)&1));*/}
7852               }
7853             }
7854           }
7855         }
7856         #endif
7857       //}
7858     }
7859     // Deal with changed mappings
7860     temp_will_dirty=will_dirty_i;
7861     temp_wont_dirty=wont_dirty_i;
7862     for(r=0;r<HOST_REGS;r++) {
7863       if(r!=EXCLUDE_REG) {
7864         int nr;
7865         if(regs[i].regmap[r]==regmap_pre[i][r]) {
7866           if(wr) {
7867             #ifndef DESTRUCTIVE_WRITEBACK
7868             regs[i].wasdirty&=wont_dirty_i|~(1<<r);
7869             #endif
7870             regs[i].wasdirty|=will_dirty_i&(1<<r);
7871           }
7872         }
7873         else if(regmap_pre[i][r]>=0&&(nr=get_reg(regs[i].regmap,regmap_pre[i][r]))>=0) {
7874           // Register moved to a different register
7875           will_dirty_i&=~(1<<r);
7876           wont_dirty_i&=~(1<<r);
7877           will_dirty_i|=((temp_will_dirty>>nr)&1)<<r;
7878           wont_dirty_i|=((temp_wont_dirty>>nr)&1)<<r;
7879           if(wr) {
7880             #ifndef DESTRUCTIVE_WRITEBACK
7881             regs[i].wasdirty&=wont_dirty_i|~(1<<r);
7882             #endif
7883             regs[i].wasdirty|=will_dirty_i&(1<<r);
7884           }
7885         }
7886         else {
7887           will_dirty_i&=~(1<<r);
7888           wont_dirty_i&=~(1<<r);
7889           if((regmap_pre[i][r]&63)>0 && (regmap_pre[i][r]&63)<34) {
7890             will_dirty_i|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7891             wont_dirty_i|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7892           } else {
7893             wont_dirty_i|=1<<r;
7894             /*printf("i: %x (%d) mismatch: %d\n",start+i*4,i,r);/*assert(!((will_dirty>>r)&1));*/
7895           }
7896         }
7897       }
7898     }
7899   }
7900 }
7901
7902 #ifdef DISASM
7903   /* disassembly */
7904 void disassemble_inst(int i)
7905 {
7906     if (bt[i]) printf("*"); else printf(" ");
7907     switch(itype[i]) {
7908       case UJUMP:
7909         printf (" %x: %s %8x\n",start+i*4,insn[i],ba[i]);break;
7910       case CJUMP:
7911         printf (" %x: %s r%d,r%d,%8x\n",start+i*4,insn[i],rs1[i],rs2[i],i?start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14):*ba);break;
7912       case SJUMP:
7913         printf (" %x: %s r%d,%8x\n",start+i*4,insn[i],rs1[i],start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14));break;
7914       case FJUMP:
7915         printf (" %x: %s %8x\n",start+i*4,insn[i],ba[i]);break;
7916       case RJUMP:
7917         if (opcode[i]==0x9&&rt1[i]!=31)
7918           printf (" %x: %s r%d,r%d\n",start+i*4,insn[i],rt1[i],rs1[i]);
7919         else
7920           printf (" %x: %s r%d\n",start+i*4,insn[i],rs1[i]);
7921         break;
7922       case SPAN:
7923         printf (" %x: %s (pagespan) r%d,r%d,%8x\n",start+i*4,insn[i],rs1[i],rs2[i],ba[i]);break;
7924       case IMM16:
7925         if(opcode[i]==0xf) //LUI
7926           printf (" %x: %s r%d,%4x0000\n",start+i*4,insn[i],rt1[i],imm[i]&0xffff);
7927         else
7928           printf (" %x: %s r%d,r%d,%d\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
7929         break;
7930       case LOAD:
7931       case LOADLR:
7932         printf (" %x: %s r%d,r%d+%x\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
7933         break;
7934       case STORE:
7935       case STORELR:
7936         printf (" %x: %s r%d,r%d+%x\n",start+i*4,insn[i],rs2[i],rs1[i],imm[i]);
7937         break;
7938       case ALU:
7939       case SHIFT:
7940         printf (" %x: %s r%d,r%d,r%d\n",start+i*4,insn[i],rt1[i],rs1[i],rs2[i]);
7941         break;
7942       case MULTDIV:
7943         printf (" %x: %s r%d,r%d\n",start+i*4,insn[i],rs1[i],rs2[i]);
7944         break;
7945       case SHIFTIMM:
7946         printf (" %x: %s r%d,r%d,%d\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
7947         break;
7948       case MOV:
7949         if((opcode2[i]&0x1d)==0x10)
7950           printf (" %x: %s r%d\n",start+i*4,insn[i],rt1[i]);
7951         else if((opcode2[i]&0x1d)==0x11)
7952           printf (" %x: %s r%d\n",start+i*4,insn[i],rs1[i]);
7953         else
7954           printf (" %x: %s\n",start+i*4,insn[i]);
7955         break;
7956       case COP0:
7957         if(opcode2[i]==0)
7958           printf (" %x: %s r%d,cpr0[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC0
7959         else if(opcode2[i]==4)
7960           printf (" %x: %s r%d,cpr0[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC0
7961         else printf (" %x: %s\n",start+i*4,insn[i]);
7962         break;
7963       case COP1:
7964         if(opcode2[i]<3)
7965           printf (" %x: %s r%d,cpr1[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC1
7966         else if(opcode2[i]>3)
7967           printf (" %x: %s r%d,cpr1[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC1
7968         else printf (" %x: %s\n",start+i*4,insn[i]);
7969         break;
7970       case COP2:
7971         if(opcode2[i]<3)
7972           printf (" %x: %s r%d,cpr2[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC2
7973         else if(opcode2[i]>3)
7974           printf (" %x: %s r%d,cpr2[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC2
7975         else printf (" %x: %s\n",start+i*4,insn[i]);
7976         break;
7977       case C1LS:
7978         printf (" %x: %s cpr1[%d],r%d+%x\n",start+i*4,insn[i],(source[i]>>16)&0x1f,rs1[i],imm[i]);
7979         break;
7980       case C2LS:
7981         printf (" %x: %s cpr2[%d],r%d+%x\n",start+i*4,insn[i],(source[i]>>16)&0x1f,rs1[i],imm[i]);
7982         break;
7983       case INTCALL:
7984         printf (" %x: %s (INTCALL)\n",start+i*4,insn[i]);
7985         break;
7986       default:
7987         //printf (" %s %8x\n",insn[i],source[i]);
7988         printf (" %x: %s\n",start+i*4,insn[i]);
7989     }
7990 }
7991 #else
7992 static void disassemble_inst(int i) {}
7993 #endif // DISASM
7994
7995 // clear the state completely, instead of just marking
7996 // things invalid like invalidate_all_pages() does
7997 void new_dynarec_clear_full()
7998 {
7999   int n;
8000   out=(u_char *)BASE_ADDR;
8001   memset(invalid_code,1,sizeof(invalid_code));
8002   memset(hash_table,0xff,sizeof(hash_table));
8003   memset(mini_ht,-1,sizeof(mini_ht));
8004   memset(restore_candidate,0,sizeof(restore_candidate));
8005   memset(shadow,0,sizeof(shadow));
8006   copy=shadow;
8007   expirep=16384; // Expiry pointer, +2 blocks
8008   pending_exception=0;
8009   literalcount=0;
8010   stop_after_jal=0;
8011   inv_code_start=inv_code_end=~0;
8012   // TLB
8013 #ifndef DISABLE_TLB
8014   using_tlb=0;
8015   for(n=0;n<524288;n++) // 0 .. 0x7FFFFFFF
8016     memory_map[n]=-1;
8017   for(n=524288;n<526336;n++) // 0x80000000 .. 0x807FFFFF
8018     memory_map[n]=((u_int)rdram-0x80000000)>>2;
8019   for(n=526336;n<1048576;n++) // 0x80800000 .. 0xFFFFFFFF
8020     memory_map[n]=-1;
8021 #endif
8022   for(n=0;n<4096;n++) ll_clear(jump_in+n);
8023   for(n=0;n<4096;n++) ll_clear(jump_out+n);
8024   for(n=0;n<4096;n++) ll_clear(jump_dirty+n);
8025 }
8026
8027 void new_dynarec_init()
8028 {
8029   printf("Init new dynarec\n");
8030   out=(u_char *)BASE_ADDR;
8031 #if BASE_ADDR_FIXED
8032   if (mmap (out, 1<<TARGET_SIZE_2,
8033             PROT_READ | PROT_WRITE | PROT_EXEC,
8034             MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS,
8035             -1, 0) <= 0) {printf("mmap() failed\n");}
8036 #else
8037   // not all systems allow execute in data segment by default
8038   if (mprotect(out, 1<<TARGET_SIZE_2, PROT_READ | PROT_WRITE | PROT_EXEC) != 0)
8039     printf("mprotect() failed\n");
8040 #endif
8041 #ifdef MUPEN64
8042   rdword=&readmem_dword;
8043   fake_pc.f.r.rs=&readmem_dword;
8044   fake_pc.f.r.rt=&readmem_dword;
8045   fake_pc.f.r.rd=&readmem_dword;
8046 #endif
8047   int n;
8048   cycle_multiplier=200;
8049   new_dynarec_clear_full();
8050 #ifdef HOST_IMM8
8051   // Copy this into local area so we don't have to put it in every literal pool
8052   invc_ptr=invalid_code;
8053 #endif
8054 #ifdef MUPEN64
8055   for(n=0;n<0x8000;n++) { // 0 .. 0x7FFFFFFF
8056     writemem[n] = write_nomem_new;
8057     writememb[n] = write_nomemb_new;
8058     writememh[n] = write_nomemh_new;
8059 #ifndef FORCE32
8060     writememd[n] = write_nomemd_new;
8061 #endif
8062     readmem[n] = read_nomem_new;
8063     readmemb[n] = read_nomemb_new;
8064     readmemh[n] = read_nomemh_new;
8065 #ifndef FORCE32
8066     readmemd[n] = read_nomemd_new;
8067 #endif
8068   }
8069   for(n=0x8000;n<0x8080;n++) { // 0x80000000 .. 0x807FFFFF
8070     writemem[n] = write_rdram_new;
8071     writememb[n] = write_rdramb_new;
8072     writememh[n] = write_rdramh_new;
8073 #ifndef FORCE32
8074     writememd[n] = write_rdramd_new;
8075 #endif
8076   }
8077   for(n=0xC000;n<0x10000;n++) { // 0xC0000000 .. 0xFFFFFFFF
8078     writemem[n] = write_nomem_new;
8079     writememb[n] = write_nomemb_new;
8080     writememh[n] = write_nomemh_new;
8081 #ifndef FORCE32
8082     writememd[n] = write_nomemd_new;
8083 #endif
8084     readmem[n] = read_nomem_new;
8085     readmemb[n] = read_nomemb_new;
8086     readmemh[n] = read_nomemh_new;
8087 #ifndef FORCE32
8088     readmemd[n] = read_nomemd_new;
8089 #endif
8090   }
8091 #endif
8092   tlb_hacks();
8093   arch_init();
8094 #ifndef RAM_FIXED
8095   ram_offset=(u_int)rdram-0x80000000;
8096 #endif
8097   if (ram_offset!=0)
8098     printf("warning: RAM is not directly mapped, performance will suffer\n");
8099 }
8100
8101 void new_dynarec_cleanup()
8102 {
8103   int n;
8104   #if BASE_ADDR_FIXED
8105   if (munmap ((void *)BASE_ADDR, 1<<TARGET_SIZE_2) < 0) {printf("munmap() failed\n");}
8106   #endif
8107   for(n=0;n<4096;n++) ll_clear(jump_in+n);
8108   for(n=0;n<4096;n++) ll_clear(jump_out+n);
8109   for(n=0;n<4096;n++) ll_clear(jump_dirty+n);
8110   #ifdef ROM_COPY
8111   if (munmap (ROM_COPY, 67108864) < 0) {printf("munmap() failed\n");}
8112   #endif
8113 }
8114
8115 int new_recompile_block(int addr)
8116 {
8117 /*
8118   if(addr==0x800cd050) {
8119     int block;
8120     for(block=0x80000;block<0x80800;block++) invalidate_block(block);
8121     int n;
8122     for(n=0;n<=2048;n++) ll_clear(jump_dirty+n);
8123   }
8124 */
8125   //if(Count==365117028) tracedebug=1;
8126   assem_debug("NOTCOMPILED: addr = %x -> %x\n", (int)addr, (int)out);
8127   //printf("NOTCOMPILED: addr = %x -> %x\n", (int)addr, (int)out);
8128   //printf("TRACE: count=%d next=%d (compile %x)\n",Count,next_interupt,addr);
8129   //if(debug) 
8130   //printf("TRACE: count=%d next=%d (checksum %x)\n",Count,next_interupt,mchecksum());
8131   //printf("fpu mapping=%x enabled=%x\n",(Status & 0x04000000)>>26,(Status & 0x20000000)>>29);
8132   /*if(Count>=312978186) {
8133     rlist();
8134   }*/
8135   //rlist();
8136   start = (u_int)addr&~3;
8137   //assert(((u_int)addr&1)==0);
8138   new_dynarec_did_compile=1;
8139 #ifdef PCSX
8140   if (Config.HLE && start == 0x80001000) // hlecall
8141   {
8142     // XXX: is this enough? Maybe check hleSoftCall?
8143     u_int beginning=(u_int)out;
8144     u_int page=get_page(start);
8145     invalid_code[start>>12]=0;
8146     emit_movimm(start,0);
8147     emit_writeword(0,(int)&pcaddr);
8148     emit_jmp((int)new_dyna_leave);
8149     literal_pool(0);
8150 #ifdef __arm__
8151     __clear_cache((void *)beginning,out);
8152 #endif
8153     ll_add(jump_in+page,start,(void *)beginning);
8154     return 0;
8155   }
8156   else if ((u_int)addr < 0x00200000 ||
8157     (0xa0000000 <= addr && addr < 0xa0200000)) {
8158     // used for BIOS calls mostly?
8159     source = (u_int *)((u_int)rdram+(start&0x1fffff));
8160     pagelimit = (addr&0xa0000000)|0x00200000;
8161   }
8162   else if (!Config.HLE && (
8163 /*    (0x9fc00000 <= addr && addr < 0x9fc80000) ||*/
8164     (0xbfc00000 <= addr && addr < 0xbfc80000))) {
8165     // BIOS
8166     source = (u_int *)((u_int)psxR+(start&0x7ffff));
8167     pagelimit = (addr&0xfff00000)|0x80000;
8168   }
8169   else
8170 #endif
8171 #ifdef MUPEN64
8172   if ((int)addr >= 0xa4000000 && (int)addr < 0xa4001000) {
8173     source = (u_int *)((u_int)SP_DMEM+start-0xa4000000);
8174     pagelimit = 0xa4001000;
8175   }
8176   else
8177 #endif
8178   if ((int)addr >= 0x80000000 && (int)addr < 0x80000000+RAM_SIZE) {
8179     source = (u_int *)((u_int)rdram+start-0x80000000);
8180     pagelimit = 0x80000000+RAM_SIZE;
8181   }
8182 #ifndef DISABLE_TLB
8183   else if ((signed int)addr >= (signed int)0xC0000000) {
8184     //printf("addr=%x mm=%x\n",(u_int)addr,(memory_map[start>>12]<<2));
8185     //if(tlb_LUT_r[start>>12])
8186       //source = (u_int *)(((int)rdram)+(tlb_LUT_r[start>>12]&0xFFFFF000)+(((int)addr)&0xFFF)-0x80000000);
8187     if((signed int)memory_map[start>>12]>=0) {
8188       source = (u_int *)((u_int)(start+(memory_map[start>>12]<<2)));
8189       pagelimit=(start+4096)&0xFFFFF000;
8190       int map=memory_map[start>>12];
8191       int i;
8192       for(i=0;i<5;i++) {
8193         //printf("start: %x next: %x\n",map,memory_map[pagelimit>>12]);
8194         if((map&0xBFFFFFFF)==(memory_map[pagelimit>>12]&0xBFFFFFFF)) pagelimit+=4096;
8195       }
8196       assem_debug("pagelimit=%x\n",pagelimit);
8197       assem_debug("mapping=%x (%x)\n",memory_map[start>>12],(memory_map[start>>12]<<2)+start);
8198     }
8199     else {
8200       assem_debug("Compile at unmapped memory address: %x \n", (int)addr);
8201       //assem_debug("start: %x next: %x\n",memory_map[start>>12],memory_map[(start+4096)>>12]);
8202       return -1; // Caller will invoke exception handler
8203     }
8204     //printf("source= %x\n",(int)source);
8205   }
8206 #endif
8207   else {
8208     printf("Compile at bogus memory address: %x \n", (int)addr);
8209     exit(1);
8210   }
8211
8212   /* Pass 1: disassemble */
8213   /* Pass 2: register dependencies, branch targets */
8214   /* Pass 3: register allocation */
8215   /* Pass 4: branch dependencies */
8216   /* Pass 5: pre-alloc */
8217   /* Pass 6: optimize clean/dirty state */
8218   /* Pass 7: flag 32-bit registers */
8219   /* Pass 8: assembly */
8220   /* Pass 9: linker */
8221   /* Pass 10: garbage collection / free memory */
8222
8223   int i,j;
8224   int done=0;
8225   unsigned int type,op,op2;
8226
8227   //printf("addr = %x source = %x %x\n", addr,source,source[0]);
8228   
8229   /* Pass 1 disassembly */
8230
8231   for(i=0;!done;i++) {
8232     bt[i]=0;likely[i]=0;ooo[i]=0;op2=0;
8233     minimum_free_regs[i]=0;
8234     opcode[i]=op=source[i]>>26;
8235     switch(op)
8236     {
8237       case 0x00: strcpy(insn[i],"special"); type=NI;
8238         op2=source[i]&0x3f;
8239         switch(op2)
8240         {
8241           case 0x00: strcpy(insn[i],"SLL"); type=SHIFTIMM; break;
8242           case 0x02: strcpy(insn[i],"SRL"); type=SHIFTIMM; break;
8243           case 0x03: strcpy(insn[i],"SRA"); type=SHIFTIMM; break;
8244           case 0x04: strcpy(insn[i],"SLLV"); type=SHIFT; break;
8245           case 0x06: strcpy(insn[i],"SRLV"); type=SHIFT; break;
8246           case 0x07: strcpy(insn[i],"SRAV"); type=SHIFT; break;
8247           case 0x08: strcpy(insn[i],"JR"); type=RJUMP; break;
8248           case 0x09: strcpy(insn[i],"JALR"); type=RJUMP; break;
8249           case 0x0C: strcpy(insn[i],"SYSCALL"); type=SYSCALL; break;
8250           case 0x0D: strcpy(insn[i],"BREAK"); type=OTHER; break;
8251           case 0x0F: strcpy(insn[i],"SYNC"); type=OTHER; break;
8252           case 0x10: strcpy(insn[i],"MFHI"); type=MOV; break;
8253           case 0x11: strcpy(insn[i],"MTHI"); type=MOV; break;
8254           case 0x12: strcpy(insn[i],"MFLO"); type=MOV; break;
8255           case 0x13: strcpy(insn[i],"MTLO"); type=MOV; break;
8256           case 0x18: strcpy(insn[i],"MULT"); type=MULTDIV; break;
8257           case 0x19: strcpy(insn[i],"MULTU"); type=MULTDIV; break;
8258           case 0x1A: strcpy(insn[i],"DIV"); type=MULTDIV; break;
8259           case 0x1B: strcpy(insn[i],"DIVU"); type=MULTDIV; break;
8260           case 0x20: strcpy(insn[i],"ADD"); type=ALU; break;
8261           case 0x21: strcpy(insn[i],"ADDU"); type=ALU; break;
8262           case 0x22: strcpy(insn[i],"SUB"); type=ALU; break;
8263           case 0x23: strcpy(insn[i],"SUBU"); type=ALU; break;
8264           case 0x24: strcpy(insn[i],"AND"); type=ALU; break;
8265           case 0x25: strcpy(insn[i],"OR"); type=ALU; break;
8266           case 0x26: strcpy(insn[i],"XOR"); type=ALU; break;
8267           case 0x27: strcpy(insn[i],"NOR"); type=ALU; break;
8268           case 0x2A: strcpy(insn[i],"SLT"); type=ALU; break;
8269           case 0x2B: strcpy(insn[i],"SLTU"); type=ALU; break;
8270           case 0x30: strcpy(insn[i],"TGE"); type=NI; break;
8271           case 0x31: strcpy(insn[i],"TGEU"); type=NI; break;
8272           case 0x32: strcpy(insn[i],"TLT"); type=NI; break;
8273           case 0x33: strcpy(insn[i],"TLTU"); type=NI; break;
8274           case 0x34: strcpy(insn[i],"TEQ"); type=NI; break;
8275           case 0x36: strcpy(insn[i],"TNE"); type=NI; break;
8276 #ifndef FORCE32
8277           case 0x14: strcpy(insn[i],"DSLLV"); type=SHIFT; break;
8278           case 0x16: strcpy(insn[i],"DSRLV"); type=SHIFT; break;
8279           case 0x17: strcpy(insn[i],"DSRAV"); type=SHIFT; break;
8280           case 0x1C: strcpy(insn[i],"DMULT"); type=MULTDIV; break;
8281           case 0x1D: strcpy(insn[i],"DMULTU"); type=MULTDIV; break;
8282           case 0x1E: strcpy(insn[i],"DDIV"); type=MULTDIV; break;
8283           case 0x1F: strcpy(insn[i],"DDIVU"); type=MULTDIV; break;
8284           case 0x2C: strcpy(insn[i],"DADD"); type=ALU; break;
8285           case 0x2D: strcpy(insn[i],"DADDU"); type=ALU; break;
8286           case 0x2E: strcpy(insn[i],"DSUB"); type=ALU; break;
8287           case 0x2F: strcpy(insn[i],"DSUBU"); type=ALU; break;
8288           case 0x38: strcpy(insn[i],"DSLL"); type=SHIFTIMM; break;
8289           case 0x3A: strcpy(insn[i],"DSRL"); type=SHIFTIMM; break;
8290           case 0x3B: strcpy(insn[i],"DSRA"); type=SHIFTIMM; break;
8291           case 0x3C: strcpy(insn[i],"DSLL32"); type=SHIFTIMM; break;
8292           case 0x3E: strcpy(insn[i],"DSRL32"); type=SHIFTIMM; break;
8293           case 0x3F: strcpy(insn[i],"DSRA32"); type=SHIFTIMM; break;
8294 #endif
8295         }
8296         break;
8297       case 0x01: strcpy(insn[i],"regimm"); type=NI;
8298         op2=(source[i]>>16)&0x1f;
8299         switch(op2)
8300         {
8301           case 0x00: strcpy(insn[i],"BLTZ"); type=SJUMP; break;
8302           case 0x01: strcpy(insn[i],"BGEZ"); type=SJUMP; break;
8303           case 0x02: strcpy(insn[i],"BLTZL"); type=SJUMP; break;
8304           case 0x03: strcpy(insn[i],"BGEZL"); type=SJUMP; break;
8305           case 0x08: strcpy(insn[i],"TGEI"); type=NI; break;
8306           case 0x09: strcpy(insn[i],"TGEIU"); type=NI; break;
8307           case 0x0A: strcpy(insn[i],"TLTI"); type=NI; break;
8308           case 0x0B: strcpy(insn[i],"TLTIU"); type=NI; break;
8309           case 0x0C: strcpy(insn[i],"TEQI"); type=NI; break;
8310           case 0x0E: strcpy(insn[i],"TNEI"); type=NI; break;
8311           case 0x10: strcpy(insn[i],"BLTZAL"); type=SJUMP; break;
8312           case 0x11: strcpy(insn[i],"BGEZAL"); type=SJUMP; break;
8313           case 0x12: strcpy(insn[i],"BLTZALL"); type=SJUMP; break;
8314           case 0x13: strcpy(insn[i],"BGEZALL"); type=SJUMP; break;
8315         }
8316         break;
8317       case 0x02: strcpy(insn[i],"J"); type=UJUMP; break;
8318       case 0x03: strcpy(insn[i],"JAL"); type=UJUMP; break;
8319       case 0x04: strcpy(insn[i],"BEQ"); type=CJUMP; break;
8320       case 0x05: strcpy(insn[i],"BNE"); type=CJUMP; break;
8321       case 0x06: strcpy(insn[i],"BLEZ"); type=CJUMP; break;
8322       case 0x07: strcpy(insn[i],"BGTZ"); type=CJUMP; break;
8323       case 0x08: strcpy(insn[i],"ADDI"); type=IMM16; break;
8324       case 0x09: strcpy(insn[i],"ADDIU"); type=IMM16; break;
8325       case 0x0A: strcpy(insn[i],"SLTI"); type=IMM16; break;
8326       case 0x0B: strcpy(insn[i],"SLTIU"); type=IMM16; break;
8327       case 0x0C: strcpy(insn[i],"ANDI"); type=IMM16; break;
8328       case 0x0D: strcpy(insn[i],"ORI"); type=IMM16; break;
8329       case 0x0E: strcpy(insn[i],"XORI"); type=IMM16; break;
8330       case 0x0F: strcpy(insn[i],"LUI"); type=IMM16; break;
8331       case 0x10: strcpy(insn[i],"cop0"); type=NI;
8332         op2=(source[i]>>21)&0x1f;
8333         switch(op2)
8334         {
8335           case 0x00: strcpy(insn[i],"MFC0"); type=COP0; break;
8336           case 0x04: strcpy(insn[i],"MTC0"); type=COP0; break;
8337           case 0x10: strcpy(insn[i],"tlb"); type=NI;
8338           switch(source[i]&0x3f)
8339           {
8340             case 0x01: strcpy(insn[i],"TLBR"); type=COP0; break;
8341             case 0x02: strcpy(insn[i],"TLBWI"); type=COP0; break;
8342             case 0x06: strcpy(insn[i],"TLBWR"); type=COP0; break;
8343             case 0x08: strcpy(insn[i],"TLBP"); type=COP0; break;
8344 #ifdef PCSX
8345             case 0x10: strcpy(insn[i],"RFE"); type=COP0; break;
8346 #else
8347             case 0x18: strcpy(insn[i],"ERET"); type=COP0; break;
8348 #endif
8349           }
8350         }
8351         break;
8352       case 0x11: strcpy(insn[i],"cop1"); type=NI;
8353         op2=(source[i]>>21)&0x1f;
8354         switch(op2)
8355         {
8356           case 0x00: strcpy(insn[i],"MFC1"); type=COP1; break;
8357           case 0x01: strcpy(insn[i],"DMFC1"); type=COP1; break;
8358           case 0x02: strcpy(insn[i],"CFC1"); type=COP1; break;
8359           case 0x04: strcpy(insn[i],"MTC1"); type=COP1; break;
8360           case 0x05: strcpy(insn[i],"DMTC1"); type=COP1; break;
8361           case 0x06: strcpy(insn[i],"CTC1"); type=COP1; break;
8362           case 0x08: strcpy(insn[i],"BC1"); type=FJUMP;
8363           switch((source[i]>>16)&0x3)
8364           {
8365             case 0x00: strcpy(insn[i],"BC1F"); break;
8366             case 0x01: strcpy(insn[i],"BC1T"); break;
8367             case 0x02: strcpy(insn[i],"BC1FL"); break;
8368             case 0x03: strcpy(insn[i],"BC1TL"); break;
8369           }
8370           break;
8371           case 0x10: strcpy(insn[i],"C1.S"); type=NI;
8372           switch(source[i]&0x3f)
8373           {
8374             case 0x00: strcpy(insn[i],"ADD.S"); type=FLOAT; break;
8375             case 0x01: strcpy(insn[i],"SUB.S"); type=FLOAT; break;
8376             case 0x02: strcpy(insn[i],"MUL.S"); type=FLOAT; break;
8377             case 0x03: strcpy(insn[i],"DIV.S"); type=FLOAT; break;
8378             case 0x04: strcpy(insn[i],"SQRT.S"); type=FLOAT; break;
8379             case 0x05: strcpy(insn[i],"ABS.S"); type=FLOAT; break;
8380             case 0x06: strcpy(insn[i],"MOV.S"); type=FLOAT; break;
8381             case 0x07: strcpy(insn[i],"NEG.S"); type=FLOAT; break;
8382             case 0x08: strcpy(insn[i],"ROUND.L.S"); type=FCONV; break;
8383             case 0x09: strcpy(insn[i],"TRUNC.L.S"); type=FCONV; break;
8384             case 0x0A: strcpy(insn[i],"CEIL.L.S"); type=FCONV; break;
8385             case 0x0B: strcpy(insn[i],"FLOOR.L.S"); type=FCONV; break;
8386             case 0x0C: strcpy(insn[i],"ROUND.W.S"); type=FCONV; break;
8387             case 0x0D: strcpy(insn[i],"TRUNC.W.S"); type=FCONV; break;
8388             case 0x0E: strcpy(insn[i],"CEIL.W.S"); type=FCONV; break;
8389             case 0x0F: strcpy(insn[i],"FLOOR.W.S"); type=FCONV; break;
8390             case 0x21: strcpy(insn[i],"CVT.D.S"); type=FCONV; break;
8391             case 0x24: strcpy(insn[i],"CVT.W.S"); type=FCONV; break;
8392             case 0x25: strcpy(insn[i],"CVT.L.S"); type=FCONV; break;
8393             case 0x30: strcpy(insn[i],"C.F.S"); type=FCOMP; break;
8394             case 0x31: strcpy(insn[i],"C.UN.S"); type=FCOMP; break;
8395             case 0x32: strcpy(insn[i],"C.EQ.S"); type=FCOMP; break;
8396             case 0x33: strcpy(insn[i],"C.UEQ.S"); type=FCOMP; break;
8397             case 0x34: strcpy(insn[i],"C.OLT.S"); type=FCOMP; break;
8398             case 0x35: strcpy(insn[i],"C.ULT.S"); type=FCOMP; break;
8399             case 0x36: strcpy(insn[i],"C.OLE.S"); type=FCOMP; break;
8400             case 0x37: strcpy(insn[i],"C.ULE.S"); type=FCOMP; break;
8401             case 0x38: strcpy(insn[i],"C.SF.S"); type=FCOMP; break;
8402             case 0x39: strcpy(insn[i],"C.NGLE.S"); type=FCOMP; break;
8403             case 0x3A: strcpy(insn[i],"C.SEQ.S"); type=FCOMP; break;
8404             case 0x3B: strcpy(insn[i],"C.NGL.S"); type=FCOMP; break;
8405             case 0x3C: strcpy(insn[i],"C.LT.S"); type=FCOMP; break;
8406             case 0x3D: strcpy(insn[i],"C.NGE.S"); type=FCOMP; break;
8407             case 0x3E: strcpy(insn[i],"C.LE.S"); type=FCOMP; break;
8408             case 0x3F: strcpy(insn[i],"C.NGT.S"); type=FCOMP; break;
8409           }
8410           break;
8411           case 0x11: strcpy(insn[i],"C1.D"); type=NI;
8412           switch(source[i]&0x3f)
8413           {
8414             case 0x00: strcpy(insn[i],"ADD.D"); type=FLOAT; break;
8415             case 0x01: strcpy(insn[i],"SUB.D"); type=FLOAT; break;
8416             case 0x02: strcpy(insn[i],"MUL.D"); type=FLOAT; break;
8417             case 0x03: strcpy(insn[i],"DIV.D"); type=FLOAT; break;
8418             case 0x04: strcpy(insn[i],"SQRT.D"); type=FLOAT; break;
8419             case 0x05: strcpy(insn[i],"ABS.D"); type=FLOAT; break;
8420             case 0x06: strcpy(insn[i],"MOV.D"); type=FLOAT; break;
8421             case 0x07: strcpy(insn[i],"NEG.D"); type=FLOAT; break;
8422             case 0x08: strcpy(insn[i],"ROUND.L.D"); type=FCONV; break;
8423             case 0x09: strcpy(insn[i],"TRUNC.L.D"); type=FCONV; break;
8424             case 0x0A: strcpy(insn[i],"CEIL.L.D"); type=FCONV; break;
8425             case 0x0B: strcpy(insn[i],"FLOOR.L.D"); type=FCONV; break;
8426             case 0x0C: strcpy(insn[i],"ROUND.W.D"); type=FCONV; break;
8427             case 0x0D: strcpy(insn[i],"TRUNC.W.D"); type=FCONV; break;
8428             case 0x0E: strcpy(insn[i],"CEIL.W.D"); type=FCONV; break;
8429             case 0x0F: strcpy(insn[i],"FLOOR.W.D"); type=FCONV; break;
8430             case 0x20: strcpy(insn[i],"CVT.S.D"); type=FCONV; break;
8431             case 0x24: strcpy(insn[i],"CVT.W.D"); type=FCONV; break;
8432             case 0x25: strcpy(insn[i],"CVT.L.D"); type=FCONV; break;
8433             case 0x30: strcpy(insn[i],"C.F.D"); type=FCOMP; break;
8434             case 0x31: strcpy(insn[i],"C.UN.D"); type=FCOMP; break;
8435             case 0x32: strcpy(insn[i],"C.EQ.D"); type=FCOMP; break;
8436             case 0x33: strcpy(insn[i],"C.UEQ.D"); type=FCOMP; break;
8437             case 0x34: strcpy(insn[i],"C.OLT.D"); type=FCOMP; break;
8438             case 0x35: strcpy(insn[i],"C.ULT.D"); type=FCOMP; break;
8439             case 0x36: strcpy(insn[i],"C.OLE.D"); type=FCOMP; break;
8440             case 0x37: strcpy(insn[i],"C.ULE.D"); type=FCOMP; break;
8441             case 0x38: strcpy(insn[i],"C.SF.D"); type=FCOMP; break;
8442             case 0x39: strcpy(insn[i],"C.NGLE.D"); type=FCOMP; break;
8443             case 0x3A: strcpy(insn[i],"C.SEQ.D"); type=FCOMP; break;
8444             case 0x3B: strcpy(insn[i],"C.NGL.D"); type=FCOMP; break;
8445             case 0x3C: strcpy(insn[i],"C.LT.D"); type=FCOMP; break;
8446             case 0x3D: strcpy(insn[i],"C.NGE.D"); type=FCOMP; break;
8447             case 0x3E: strcpy(insn[i],"C.LE.D"); type=FCOMP; break;
8448             case 0x3F: strcpy(insn[i],"C.NGT.D"); type=FCOMP; break;
8449           }
8450           break;
8451           case 0x14: strcpy(insn[i],"C1.W"); type=NI;
8452           switch(source[i]&0x3f)
8453           {
8454             case 0x20: strcpy(insn[i],"CVT.S.W"); type=FCONV; break;
8455             case 0x21: strcpy(insn[i],"CVT.D.W"); type=FCONV; break;
8456           }
8457           break;
8458           case 0x15: strcpy(insn[i],"C1.L"); type=NI;
8459           switch(source[i]&0x3f)
8460           {
8461             case 0x20: strcpy(insn[i],"CVT.S.L"); type=FCONV; break;
8462             case 0x21: strcpy(insn[i],"CVT.D.L"); type=FCONV; break;
8463           }
8464           break;
8465         }
8466         break;
8467 #ifndef FORCE32
8468       case 0x14: strcpy(insn[i],"BEQL"); type=CJUMP; break;
8469       case 0x15: strcpy(insn[i],"BNEL"); type=CJUMP; break;
8470       case 0x16: strcpy(insn[i],"BLEZL"); type=CJUMP; break;
8471       case 0x17: strcpy(insn[i],"BGTZL"); type=CJUMP; break;
8472       case 0x18: strcpy(insn[i],"DADDI"); type=IMM16; break;
8473       case 0x19: strcpy(insn[i],"DADDIU"); type=IMM16; break;
8474       case 0x1A: strcpy(insn[i],"LDL"); type=LOADLR; break;
8475       case 0x1B: strcpy(insn[i],"LDR"); type=LOADLR; break;
8476 #endif
8477       case 0x20: strcpy(insn[i],"LB"); type=LOAD; break;
8478       case 0x21: strcpy(insn[i],"LH"); type=LOAD; break;
8479       case 0x22: strcpy(insn[i],"LWL"); type=LOADLR; break;
8480       case 0x23: strcpy(insn[i],"LW"); type=LOAD; break;
8481       case 0x24: strcpy(insn[i],"LBU"); type=LOAD; break;
8482       case 0x25: strcpy(insn[i],"LHU"); type=LOAD; break;
8483       case 0x26: strcpy(insn[i],"LWR"); type=LOADLR; break;
8484 #ifndef FORCE32
8485       case 0x27: strcpy(insn[i],"LWU"); type=LOAD; break;
8486 #endif
8487       case 0x28: strcpy(insn[i],"SB"); type=STORE; break;
8488       case 0x29: strcpy(insn[i],"SH"); type=STORE; break;
8489       case 0x2A: strcpy(insn[i],"SWL"); type=STORELR; break;
8490       case 0x2B: strcpy(insn[i],"SW"); type=STORE; break;
8491 #ifndef FORCE32
8492       case 0x2C: strcpy(insn[i],"SDL"); type=STORELR; break;
8493       case 0x2D: strcpy(insn[i],"SDR"); type=STORELR; break;
8494 #endif
8495       case 0x2E: strcpy(insn[i],"SWR"); type=STORELR; break;
8496       case 0x2F: strcpy(insn[i],"CACHE"); type=NOP; break;
8497       case 0x30: strcpy(insn[i],"LL"); type=NI; break;
8498       case 0x31: strcpy(insn[i],"LWC1"); type=C1LS; break;
8499 #ifndef FORCE32
8500       case 0x34: strcpy(insn[i],"LLD"); type=NI; break;
8501       case 0x35: strcpy(insn[i],"LDC1"); type=C1LS; break;
8502       case 0x37: strcpy(insn[i],"LD"); type=LOAD; break;
8503 #endif
8504       case 0x38: strcpy(insn[i],"SC"); type=NI; break;
8505       case 0x39: strcpy(insn[i],"SWC1"); type=C1LS; break;
8506 #ifndef FORCE32
8507       case 0x3C: strcpy(insn[i],"SCD"); type=NI; break;
8508       case 0x3D: strcpy(insn[i],"SDC1"); type=C1LS; break;
8509       case 0x3F: strcpy(insn[i],"SD"); type=STORE; break;
8510 #endif
8511 #ifdef PCSX
8512       case 0x12: strcpy(insn[i],"COP2"); type=NI;
8513         op2=(source[i]>>21)&0x1f;
8514         //if (op2 & 0x10) {
8515         if (source[i]&0x3f) { // use this hack to support old savestates with patched gte insns
8516           if (gte_handlers[source[i]&0x3f]!=NULL) {
8517             if (gte_regnames[source[i]&0x3f]!=NULL)
8518               strcpy(insn[i],gte_regnames[source[i]&0x3f]);
8519             else
8520               snprintf(insn[i], sizeof(insn[i]), "COP2 %x", source[i]&0x3f);
8521             type=C2OP;
8522           }
8523         }
8524         else switch(op2)
8525         {
8526           case 0x00: strcpy(insn[i],"MFC2"); type=COP2; break;
8527           case 0x02: strcpy(insn[i],"CFC2"); type=COP2; break;
8528           case 0x04: strcpy(insn[i],"MTC2"); type=COP2; break;
8529           case 0x06: strcpy(insn[i],"CTC2"); type=COP2; break;
8530         }
8531         break;
8532       case 0x32: strcpy(insn[i],"LWC2"); type=C2LS; break;
8533       case 0x3A: strcpy(insn[i],"SWC2"); type=C2LS; break;
8534       case 0x3B: strcpy(insn[i],"HLECALL"); type=HLECALL; break;
8535 #endif
8536       default: strcpy(insn[i],"???"); type=NI;
8537         printf("NI %08x @%08x (%08x)\n", source[i], addr + i*4, addr);
8538         break;
8539     }
8540     itype[i]=type;
8541     opcode2[i]=op2;
8542     /* Get registers/immediates */
8543     lt1[i]=0;
8544     us1[i]=0;
8545     us2[i]=0;
8546     dep1[i]=0;
8547     dep2[i]=0;
8548     gte_rs[i]=gte_rt[i]=0;
8549     switch(type) {
8550       case LOAD:
8551         rs1[i]=(source[i]>>21)&0x1f;
8552         rs2[i]=0;
8553         rt1[i]=(source[i]>>16)&0x1f;
8554         rt2[i]=0;
8555         imm[i]=(short)source[i];
8556         break;
8557       case STORE:
8558       case STORELR:
8559         rs1[i]=(source[i]>>21)&0x1f;
8560         rs2[i]=(source[i]>>16)&0x1f;
8561         rt1[i]=0;
8562         rt2[i]=0;
8563         imm[i]=(short)source[i];
8564         if(op==0x2c||op==0x2d||op==0x3f) us1[i]=rs2[i]; // 64-bit SDL/SDR/SD
8565         break;
8566       case LOADLR:
8567         // LWL/LWR only load part of the register,
8568         // therefore the target register must be treated as a source too
8569         rs1[i]=(source[i]>>21)&0x1f;
8570         rs2[i]=(source[i]>>16)&0x1f;
8571         rt1[i]=(source[i]>>16)&0x1f;
8572         rt2[i]=0;
8573         imm[i]=(short)source[i];
8574         if(op==0x1a||op==0x1b) us1[i]=rs2[i]; // LDR/LDL
8575         if(op==0x26) dep1[i]=rt1[i]; // LWR
8576         break;
8577       case IMM16:
8578         if (op==0x0f) rs1[i]=0; // LUI instruction has no source register
8579         else rs1[i]=(source[i]>>21)&0x1f;
8580         rs2[i]=0;
8581         rt1[i]=(source[i]>>16)&0x1f;
8582         rt2[i]=0;
8583         if(op>=0x0c&&op<=0x0e) { // ANDI/ORI/XORI
8584           imm[i]=(unsigned short)source[i];
8585         }else{
8586           imm[i]=(short)source[i];
8587         }
8588         if(op==0x18||op==0x19) us1[i]=rs1[i]; // DADDI/DADDIU
8589         if(op==0x0a||op==0x0b) us1[i]=rs1[i]; // SLTI/SLTIU
8590         if(op==0x0d||op==0x0e) dep1[i]=rs1[i]; // ORI/XORI
8591         break;
8592       case UJUMP:
8593         rs1[i]=0;
8594         rs2[i]=0;
8595         rt1[i]=0;
8596         rt2[i]=0;
8597         // The JAL instruction writes to r31.
8598         if (op&1) {
8599           rt1[i]=31;
8600         }
8601         rs2[i]=CCREG;
8602         break;
8603       case RJUMP:
8604         rs1[i]=(source[i]>>21)&0x1f;
8605         rs2[i]=0;
8606         rt1[i]=0;
8607         rt2[i]=0;
8608         // The JALR instruction writes to rd.
8609         if (op2&1) {
8610           rt1[i]=(source[i]>>11)&0x1f;
8611         }
8612         rs2[i]=CCREG;
8613         break;
8614       case CJUMP:
8615         rs1[i]=(source[i]>>21)&0x1f;
8616         rs2[i]=(source[i]>>16)&0x1f;
8617         rt1[i]=0;
8618         rt2[i]=0;
8619         if(op&2) { // BGTZ/BLEZ
8620           rs2[i]=0;
8621         }
8622         us1[i]=rs1[i];
8623         us2[i]=rs2[i];
8624         likely[i]=op>>4;
8625         break;
8626       case SJUMP:
8627         rs1[i]=(source[i]>>21)&0x1f;
8628         rs2[i]=CCREG;
8629         rt1[i]=0;
8630         rt2[i]=0;
8631         us1[i]=rs1[i];
8632         if(op2&0x10) { // BxxAL
8633           rt1[i]=31;
8634           // NOTE: If the branch is not taken, r31 is still overwritten
8635         }
8636         likely[i]=(op2&2)>>1;
8637         break;
8638       case FJUMP:
8639         rs1[i]=FSREG;
8640         rs2[i]=CSREG;
8641         rt1[i]=0;
8642         rt2[i]=0;
8643         likely[i]=((source[i])>>17)&1;
8644         break;
8645       case ALU:
8646         rs1[i]=(source[i]>>21)&0x1f; // source
8647         rs2[i]=(source[i]>>16)&0x1f; // subtract amount
8648         rt1[i]=(source[i]>>11)&0x1f; // destination
8649         rt2[i]=0;
8650         if(op2==0x2a||op2==0x2b) { // SLT/SLTU
8651           us1[i]=rs1[i];us2[i]=rs2[i];
8652         }
8653         else if(op2>=0x24&&op2<=0x27) { // AND/OR/XOR/NOR
8654           dep1[i]=rs1[i];dep2[i]=rs2[i];
8655         }
8656         else if(op2>=0x2c&&op2<=0x2f) { // DADD/DSUB
8657           dep1[i]=rs1[i];dep2[i]=rs2[i];
8658         }
8659         break;
8660       case MULTDIV:
8661         rs1[i]=(source[i]>>21)&0x1f; // source
8662         rs2[i]=(source[i]>>16)&0x1f; // divisor
8663         rt1[i]=HIREG;
8664         rt2[i]=LOREG;
8665         if (op2>=0x1c&&op2<=0x1f) { // DMULT/DMULTU/DDIV/DDIVU
8666           us1[i]=rs1[i];us2[i]=rs2[i];
8667         }
8668         break;
8669       case MOV:
8670         rs1[i]=0;
8671         rs2[i]=0;
8672         rt1[i]=0;
8673         rt2[i]=0;
8674         if(op2==0x10) rs1[i]=HIREG; // MFHI
8675         if(op2==0x11) rt1[i]=HIREG; // MTHI
8676         if(op2==0x12) rs1[i]=LOREG; // MFLO
8677         if(op2==0x13) rt1[i]=LOREG; // MTLO
8678         if((op2&0x1d)==0x10) rt1[i]=(source[i]>>11)&0x1f; // MFxx
8679         if((op2&0x1d)==0x11) rs1[i]=(source[i]>>21)&0x1f; // MTxx
8680         dep1[i]=rs1[i];
8681         break;
8682       case SHIFT:
8683         rs1[i]=(source[i]>>16)&0x1f; // target of shift
8684         rs2[i]=(source[i]>>21)&0x1f; // shift amount
8685         rt1[i]=(source[i]>>11)&0x1f; // destination
8686         rt2[i]=0;
8687         // DSLLV/DSRLV/DSRAV are 64-bit
8688         if(op2>=0x14&&op2<=0x17) us1[i]=rs1[i];
8689         break;
8690       case SHIFTIMM:
8691         rs1[i]=(source[i]>>16)&0x1f;
8692         rs2[i]=0;
8693         rt1[i]=(source[i]>>11)&0x1f;
8694         rt2[i]=0;
8695         imm[i]=(source[i]>>6)&0x1f;
8696         // DSxx32 instructions
8697         if(op2>=0x3c) imm[i]|=0x20;
8698         // DSLL/DSRL/DSRA/DSRA32/DSRL32 but not DSLL32 require 64-bit source
8699         if(op2>=0x38&&op2!=0x3c) us1[i]=rs1[i];
8700         break;
8701       case COP0:
8702         rs1[i]=0;
8703         rs2[i]=0;
8704         rt1[i]=0;
8705         rt2[i]=0;
8706         if(op2==0) rt1[i]=(source[i]>>16)&0x1F; // MFC0
8707         if(op2==4) rs1[i]=(source[i]>>16)&0x1F; // MTC0
8708         if(op2==4&&((source[i]>>11)&0x1f)==12) rt2[i]=CSREG; // Status
8709         if(op2==16) if((source[i]&0x3f)==0x18) rs2[i]=CCREG; // ERET
8710         break;
8711       case COP1:
8712         rs1[i]=0;
8713         rs2[i]=0;
8714         rt1[i]=0;
8715         rt2[i]=0;
8716         if(op2<3) rt1[i]=(source[i]>>16)&0x1F; // MFC1/DMFC1/CFC1
8717         if(op2>3) rs1[i]=(source[i]>>16)&0x1F; // MTC1/DMTC1/CTC1
8718         if(op2==5) us1[i]=rs1[i]; // DMTC1
8719         rs2[i]=CSREG;
8720         break;
8721       case COP2:
8722         rs1[i]=0;
8723         rs2[i]=0;
8724         rt1[i]=0;
8725         rt2[i]=0;
8726         if(op2<3) rt1[i]=(source[i]>>16)&0x1F; // MFC2/CFC2
8727         if(op2>3) rs1[i]=(source[i]>>16)&0x1F; // MTC2/CTC2
8728         rs2[i]=CSREG;
8729         int gr=(source[i]>>11)&0x1F;
8730         switch(op2)
8731         {
8732           case 0x00: gte_rs[i]=1ll<<gr; break; // MFC2
8733           case 0x04: gte_rt[i]=1ll<<gr; break; // MTC2
8734           case 0x02: gte_rs[i]=1ll<<(gr+32); break; // CFC2
8735           case 0x06: gte_rt[i]=1ll<<(gr+32); break; // CTC2
8736         }
8737         break;
8738       case C1LS:
8739         rs1[i]=(source[i]>>21)&0x1F;
8740         rs2[i]=CSREG;
8741         rt1[i]=0;
8742         rt2[i]=0;
8743         imm[i]=(short)source[i];
8744         break;
8745       case C2LS:
8746         rs1[i]=(source[i]>>21)&0x1F;
8747         rs2[i]=0;
8748         rt1[i]=0;
8749         rt2[i]=0;
8750         imm[i]=(short)source[i];
8751         if(op==0x32) gte_rt[i]=1ll<<((source[i]>>16)&0x1F); // LWC2
8752         else gte_rs[i]=1ll<<((source[i]>>16)&0x1F); // SWC2
8753         break;
8754       case C2OP:
8755         rs1[i]=0;
8756         rs2[i]=0;
8757         rt1[i]=0;
8758         rt2[i]=0;
8759         gte_rs[i]=gte_reg_reads[source[i]&0x3f];
8760         gte_rt[i]=gte_reg_writes[source[i]&0x3f];
8761         gte_rt[i]|=1ll<<63; // every op changes flags
8762         if((source[i]&0x3f)==GTE_MVMVA) {
8763           int v = (source[i] >> 15) & 3;
8764           gte_rs[i]&=~0xe3fll;
8765           if(v==3) gte_rs[i]|=0xe00ll;
8766           else gte_rs[i]|=3ll<<(v*2);
8767         }
8768         break;
8769       case FLOAT:
8770       case FCONV:
8771         rs1[i]=0;
8772         rs2[i]=CSREG;
8773         rt1[i]=0;
8774         rt2[i]=0;
8775         break;
8776       case FCOMP:
8777         rs1[i]=FSREG;
8778         rs2[i]=CSREG;
8779         rt1[i]=FSREG;
8780         rt2[i]=0;
8781         break;
8782       case SYSCALL:
8783       case HLECALL:
8784       case INTCALL:
8785         rs1[i]=CCREG;
8786         rs2[i]=0;
8787         rt1[i]=0;
8788         rt2[i]=0;
8789         break;
8790       default:
8791         rs1[i]=0;
8792         rs2[i]=0;
8793         rt1[i]=0;
8794         rt2[i]=0;
8795     }
8796     /* Calculate branch target addresses */
8797     if(type==UJUMP)
8798       ba[i]=((start+i*4+4)&0xF0000000)|(((unsigned int)source[i]<<6)>>4);
8799     else if(type==CJUMP&&rs1[i]==rs2[i]&&(op&1))
8800       ba[i]=start+i*4+8; // Ignore never taken branch
8801     else if(type==SJUMP&&rs1[i]==0&&!(op2&1))
8802       ba[i]=start+i*4+8; // Ignore never taken branch
8803     else if(type==CJUMP||type==SJUMP||type==FJUMP)
8804       ba[i]=start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14);
8805     else ba[i]=-1;
8806 #ifdef PCSX
8807     if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)) {
8808       int do_in_intrp=0;
8809       // branch in delay slot?
8810       if(type==RJUMP||type==UJUMP||type==CJUMP||type==SJUMP||type==FJUMP) {
8811         // don't handle first branch and call interpreter if it's hit
8812         printf("branch in delay slot @%08x (%08x)\n", addr + i*4, addr);
8813         do_in_intrp=1;
8814       }
8815       // basic load delay detection
8816       else if((type==LOAD||type==LOADLR||type==COP0||type==COP2||type==C2LS)&&rt1[i]!=0) {
8817         int t=(ba[i-1]-start)/4;
8818         if(0 <= t && t < i &&(rt1[i]==rs1[t]||rt1[i]==rs2[t])&&itype[t]!=CJUMP&&itype[t]!=SJUMP) {
8819           // jump target wants DS result - potential load delay effect
8820           printf("load delay @%08x (%08x)\n", addr + i*4, addr);
8821           do_in_intrp=1;
8822           bt[t+1]=1; // expected return from interpreter
8823         }
8824         else if(i>=2&&rt1[i-2]==2&&rt1[i]==2&&rs1[i]!=2&&rs2[i]!=2&&rs1[i-1]!=2&&rs2[i-1]!=2&&
8825               !(i>=3&&(itype[i-3]==RJUMP||itype[i-3]==UJUMP||itype[i-3]==CJUMP||itype[i-3]==SJUMP))) {
8826           // v0 overwrite like this is a sign of trouble, bail out
8827           printf("v0 overwrite @%08x (%08x)\n", addr + i*4, addr);
8828           do_in_intrp=1;
8829         }
8830       }
8831       if(do_in_intrp) {
8832         rs1[i-1]=CCREG;
8833         rs2[i-1]=rt1[i-1]=rt2[i-1]=0;
8834         ba[i-1]=-1;
8835         itype[i-1]=INTCALL;
8836         done=2;
8837         i--; // don't compile the DS
8838       }
8839     }
8840 #endif
8841     /* Is this the end of the block? */
8842     if(i>0&&(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)) {
8843       if(rt1[i-1]==0) { // Continue past subroutine call (JAL)
8844         done=2;
8845       }
8846       else {
8847         if(stop_after_jal) done=1;
8848         // Stop on BREAK
8849         if((source[i+1]&0xfc00003f)==0x0d) done=1;
8850       }
8851       // Don't recompile stuff that's already compiled
8852       if(check_addr(start+i*4+4)) done=1;
8853       // Don't get too close to the limit
8854       if(i>MAXBLOCK/2) done=1;
8855     }
8856     if(itype[i]==SYSCALL&&stop_after_jal) done=1;
8857     if(itype[i]==HLECALL||itype[i]==INTCALL) done=2;
8858     if(done==2) {
8859       // Does the block continue due to a branch?
8860       for(j=i-1;j>=0;j--)
8861       {
8862         if(ba[j]==start+i*4) done=j=0; // Branch into delay slot
8863         if(ba[j]==start+i*4+4) done=j=0;
8864         if(ba[j]==start+i*4+8) done=j=0;
8865       }
8866     }
8867     //assert(i<MAXBLOCK-1);
8868     if(start+i*4==pagelimit-4) done=1;
8869     assert(start+i*4<pagelimit);
8870     if (i==MAXBLOCK-1) done=1;
8871     // Stop if we're compiling junk
8872     if(itype[i]==NI&&opcode[i]==0x11) {
8873       done=stop_after_jal=1;
8874       printf("Disabled speculative precompilation\n");
8875     }
8876   }
8877   slen=i;
8878   if(itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==RJUMP||itype[i-1]==FJUMP) {
8879     if(start+i*4==pagelimit) {
8880       itype[i-1]=SPAN;
8881     }
8882   }
8883   assert(slen>0);
8884
8885   /* Pass 2 - Register dependencies and branch targets */
8886
8887   unneeded_registers(0,slen-1,0);
8888   
8889   /* Pass 3 - Register allocation */
8890
8891   struct regstat current; // Current register allocations/status
8892   current.is32=1;
8893   current.dirty=0;
8894   current.u=unneeded_reg[0];
8895   current.uu=unneeded_reg_upper[0];
8896   clear_all_regs(current.regmap);
8897   alloc_reg(&current,0,CCREG);
8898   dirty_reg(&current,CCREG);
8899   current.isconst=0;
8900   current.wasconst=0;
8901   current.waswritten=0;
8902   int ds=0;
8903   int cc=0;
8904   int hr=-1;
8905
8906 #ifndef FORCE32
8907   provisional_32bit();
8908 #endif
8909   if((u_int)addr&1) {
8910     // First instruction is delay slot
8911     cc=-1;
8912     bt[1]=1;
8913     ds=1;
8914     unneeded_reg[0]=1;
8915     unneeded_reg_upper[0]=1;
8916     current.regmap[HOST_BTREG]=BTREG;
8917   }
8918   
8919   for(i=0;i<slen;i++)
8920   {
8921     if(bt[i])
8922     {
8923       int hr;
8924       for(hr=0;hr<HOST_REGS;hr++)
8925       {
8926         // Is this really necessary?
8927         if(current.regmap[hr]==0) current.regmap[hr]=-1;
8928       }
8929       current.isconst=0;
8930       current.waswritten=0;
8931     }
8932     if(i>1)
8933     {
8934       if((opcode[i-2]&0x2f)==0x05) // BNE/BNEL
8935       {
8936         if(rs1[i-2]==0||rs2[i-2]==0)
8937         {
8938           if(rs1[i-2]) {
8939             current.is32|=1LL<<rs1[i-2];
8940             int hr=get_reg(current.regmap,rs1[i-2]|64);
8941             if(hr>=0) current.regmap[hr]=-1;
8942           }
8943           if(rs2[i-2]) {
8944             current.is32|=1LL<<rs2[i-2];
8945             int hr=get_reg(current.regmap,rs2[i-2]|64);
8946             if(hr>=0) current.regmap[hr]=-1;
8947           }
8948         }
8949       }
8950     }
8951 #ifndef FORCE32
8952     // If something jumps here with 64-bit values
8953     // then promote those registers to 64 bits
8954     if(bt[i])
8955     {
8956       uint64_t temp_is32=current.is32;
8957       for(j=i-1;j>=0;j--)
8958       {
8959         if(ba[j]==start+i*4) 
8960           temp_is32&=branch_regs[j].is32;
8961       }
8962       for(j=i;j<slen;j++)
8963       {
8964         if(ba[j]==start+i*4) 
8965           //temp_is32=1;
8966           temp_is32&=p32[j];
8967       }
8968       if(temp_is32!=current.is32) {
8969         //printf("dumping 32-bit regs (%x)\n",start+i*4);
8970         #ifndef DESTRUCTIVE_WRITEBACK
8971         if(ds)
8972         #endif
8973         for(hr=0;hr<HOST_REGS;hr++)
8974         {
8975           int r=current.regmap[hr];
8976           if(r>0&&r<64)
8977           {
8978             if((current.dirty>>hr)&((current.is32&~temp_is32)>>r)&1) {
8979               temp_is32|=1LL<<r;
8980               //printf("restore %d\n",r);
8981             }
8982           }
8983         }
8984         current.is32=temp_is32;
8985       }
8986     }
8987 #else
8988     current.is32=-1LL;
8989 #endif
8990
8991     memcpy(regmap_pre[i],current.regmap,sizeof(current.regmap));
8992     regs[i].wasconst=current.isconst;
8993     regs[i].was32=current.is32;
8994     regs[i].wasdirty=current.dirty;
8995     regs[i].loadedconst=0;
8996     #if defined(DESTRUCTIVE_WRITEBACK) && !defined(FORCE32)
8997     // To change a dirty register from 32 to 64 bits, we must write
8998     // it out during the previous cycle (for branches, 2 cycles)
8999     if(i<slen-1&&bt[i+1]&&itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP)
9000     {
9001       uint64_t temp_is32=current.is32;
9002       for(j=i-1;j>=0;j--)
9003       {
9004         if(ba[j]==start+i*4+4) 
9005           temp_is32&=branch_regs[j].is32;
9006       }
9007       for(j=i;j<slen;j++)
9008       {
9009         if(ba[j]==start+i*4+4) 
9010           //temp_is32=1;
9011           temp_is32&=p32[j];
9012       }
9013       if(temp_is32!=current.is32) {
9014         //printf("pre-dumping 32-bit regs (%x)\n",start+i*4);
9015         for(hr=0;hr<HOST_REGS;hr++)
9016         {
9017           int r=current.regmap[hr];
9018           if(r>0)
9019           {
9020             if((current.dirty>>hr)&((current.is32&~temp_is32)>>(r&63))&1) {
9021               if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP)
9022               {
9023                 if(rs1[i]!=(r&63)&&rs2[i]!=(r&63))
9024                 {
9025                   //printf("dump %d/r%d\n",hr,r);
9026                   current.regmap[hr]=-1;
9027                   if(get_reg(current.regmap,r|64)>=0) 
9028                     current.regmap[get_reg(current.regmap,r|64)]=-1;
9029                 }
9030               }
9031             }
9032           }
9033         }
9034       }
9035     }
9036     else if(i<slen-2&&bt[i+2]&&(source[i-1]>>16)!=0x1000&&(itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP))
9037     {
9038       uint64_t temp_is32=current.is32;
9039       for(j=i-1;j>=0;j--)
9040       {
9041         if(ba[j]==start+i*4+8) 
9042           temp_is32&=branch_regs[j].is32;
9043       }
9044       for(j=i;j<slen;j++)
9045       {
9046         if(ba[j]==start+i*4+8) 
9047           //temp_is32=1;
9048           temp_is32&=p32[j];
9049       }
9050       if(temp_is32!=current.is32) {
9051         //printf("pre-dumping 32-bit regs (%x)\n",start+i*4);
9052         for(hr=0;hr<HOST_REGS;hr++)
9053         {
9054           int r=current.regmap[hr];
9055           if(r>0)
9056           {
9057             if((current.dirty>>hr)&((current.is32&~temp_is32)>>(r&63))&1) {
9058               if(rs1[i]!=(r&63)&&rs2[i]!=(r&63)&&rs1[i+1]!=(r&63)&&rs2[i+1]!=(r&63))
9059               {
9060                 //printf("dump %d/r%d\n",hr,r);
9061                 current.regmap[hr]=-1;
9062                 if(get_reg(current.regmap,r|64)>=0) 
9063                   current.regmap[get_reg(current.regmap,r|64)]=-1;
9064               }
9065             }
9066           }
9067         }
9068       }
9069     }
9070     #endif
9071     if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP) {
9072       if(i+1<slen) {
9073         current.u=unneeded_reg[i+1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
9074         current.uu=unneeded_reg_upper[i+1]&~((1LL<<us1[i])|(1LL<<us2[i]));
9075         if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9076         current.u|=1;
9077         current.uu|=1;
9078       } else {
9079         current.u=1;
9080         current.uu=1;
9081       }
9082     } else {
9083       if(i+1<slen) {
9084         current.u=branch_unneeded_reg[i]&~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
9085         current.uu=branch_unneeded_reg_upper[i]&~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
9086         if((~current.uu>>rt1[i+1])&1) current.uu&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
9087         current.u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
9088         current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
9089         current.u|=1;
9090         current.uu|=1;
9091       } else { printf("oops, branch at end of block with no delay slot\n");exit(1); }
9092     }
9093     is_ds[i]=ds;
9094     if(ds) {
9095       ds=0; // Skip delay slot, already allocated as part of branch
9096       // ...but we need to alloc it in case something jumps here
9097       if(i+1<slen) {
9098         current.u=branch_unneeded_reg[i-1]&unneeded_reg[i+1];
9099         current.uu=branch_unneeded_reg_upper[i-1]&unneeded_reg_upper[i+1];
9100       }else{
9101         current.u=branch_unneeded_reg[i-1];
9102         current.uu=branch_unneeded_reg_upper[i-1];
9103       }
9104       current.u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
9105       current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
9106       if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9107       current.u|=1;
9108       current.uu|=1;
9109       struct regstat temp;
9110       memcpy(&temp,&current,sizeof(current));
9111       temp.wasdirty=temp.dirty;
9112       temp.was32=temp.is32;
9113       // TODO: Take into account unconditional branches, as below
9114       delayslot_alloc(&temp,i);
9115       memcpy(regs[i].regmap,temp.regmap,sizeof(temp.regmap));
9116       regs[i].wasdirty=temp.wasdirty;
9117       regs[i].was32=temp.was32;
9118       regs[i].dirty=temp.dirty;
9119       regs[i].is32=temp.is32;
9120       regs[i].isconst=0;
9121       regs[i].wasconst=0;
9122       current.isconst=0;
9123       // Create entry (branch target) regmap
9124       for(hr=0;hr<HOST_REGS;hr++)
9125       {
9126         int r=temp.regmap[hr];
9127         if(r>=0) {
9128           if(r!=regmap_pre[i][hr]) {
9129             regs[i].regmap_entry[hr]=-1;
9130           }
9131           else
9132           {
9133             if(r<64){
9134               if((current.u>>r)&1) {
9135                 regs[i].regmap_entry[hr]=-1;
9136                 regs[i].regmap[hr]=-1;
9137                 //Don't clear regs in the delay slot as the branch might need them
9138                 //current.regmap[hr]=-1;
9139               }else
9140                 regs[i].regmap_entry[hr]=r;
9141             }
9142             else {
9143               if((current.uu>>(r&63))&1) {
9144                 regs[i].regmap_entry[hr]=-1;
9145                 regs[i].regmap[hr]=-1;
9146                 //Don't clear regs in the delay slot as the branch might need them
9147                 //current.regmap[hr]=-1;
9148               }else
9149                 regs[i].regmap_entry[hr]=r;
9150             }
9151           }
9152         } else {
9153           // First instruction expects CCREG to be allocated
9154           if(i==0&&hr==HOST_CCREG) 
9155             regs[i].regmap_entry[hr]=CCREG;
9156           else
9157             regs[i].regmap_entry[hr]=-1;
9158         }
9159       }
9160     }
9161     else { // Not delay slot
9162       switch(itype[i]) {
9163         case UJUMP:
9164           //current.isconst=0; // DEBUG
9165           //current.wasconst=0; // DEBUG
9166           //regs[i].wasconst=0; // DEBUG
9167           clear_const(&current,rt1[i]);
9168           alloc_cc(&current,i);
9169           dirty_reg(&current,CCREG);
9170           if (rt1[i]==31) {
9171             alloc_reg(&current,i,31);
9172             dirty_reg(&current,31);
9173             //assert(rs1[i+1]!=31&&rs2[i+1]!=31);
9174             //assert(rt1[i+1]!=rt1[i]);
9175             #ifdef REG_PREFETCH
9176             alloc_reg(&current,i,PTEMP);
9177             #endif
9178             //current.is32|=1LL<<rt1[i];
9179           }
9180           ooo[i]=1;
9181           delayslot_alloc(&current,i+1);
9182           //current.isconst=0; // DEBUG
9183           ds=1;
9184           //printf("i=%d, isconst=%x\n",i,current.isconst);
9185           break;
9186         case RJUMP:
9187           //current.isconst=0;
9188           //current.wasconst=0;
9189           //regs[i].wasconst=0;
9190           clear_const(&current,rs1[i]);
9191           clear_const(&current,rt1[i]);
9192           alloc_cc(&current,i);
9193           dirty_reg(&current,CCREG);
9194           if(rs1[i]!=rt1[i+1]&&rs1[i]!=rt2[i+1]) {
9195             alloc_reg(&current,i,rs1[i]);
9196             if (rt1[i]!=0) {
9197               alloc_reg(&current,i,rt1[i]);
9198               dirty_reg(&current,rt1[i]);
9199               assert(rs1[i+1]!=rt1[i]&&rs2[i+1]!=rt1[i]);
9200               assert(rt1[i+1]!=rt1[i]);
9201               #ifdef REG_PREFETCH
9202               alloc_reg(&current,i,PTEMP);
9203               #endif
9204             }
9205             #ifdef USE_MINI_HT
9206             if(rs1[i]==31) { // JALR
9207               alloc_reg(&current,i,RHASH);
9208               #ifndef HOST_IMM_ADDR32
9209               alloc_reg(&current,i,RHTBL);
9210               #endif
9211             }
9212             #endif
9213             delayslot_alloc(&current,i+1);
9214           } else {
9215             // The delay slot overwrites our source register,
9216             // allocate a temporary register to hold the old value.
9217             current.isconst=0;
9218             current.wasconst=0;
9219             regs[i].wasconst=0;
9220             delayslot_alloc(&current,i+1);
9221             current.isconst=0;
9222             alloc_reg(&current,i,RTEMP);
9223           }
9224           //current.isconst=0; // DEBUG
9225           ooo[i]=1;
9226           ds=1;
9227           break;
9228         case CJUMP:
9229           //current.isconst=0;
9230           //current.wasconst=0;
9231           //regs[i].wasconst=0;
9232           clear_const(&current,rs1[i]);
9233           clear_const(&current,rs2[i]);
9234           if((opcode[i]&0x3E)==4) // BEQ/BNE
9235           {
9236             alloc_cc(&current,i);
9237             dirty_reg(&current,CCREG);
9238             if(rs1[i]) alloc_reg(&current,i,rs1[i]);
9239             if(rs2[i]) alloc_reg(&current,i,rs2[i]);
9240             if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
9241             {
9242               if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
9243               if(rs2[i]) alloc_reg64(&current,i,rs2[i]);
9244             }
9245             if((rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]))||
9246                (rs2[i]&&(rs2[i]==rt1[i+1]||rs2[i]==rt2[i+1]))) {
9247               // The delay slot overwrites one of our conditions.
9248               // Allocate the branch condition registers instead.
9249               current.isconst=0;
9250               current.wasconst=0;
9251               regs[i].wasconst=0;
9252               if(rs1[i]) alloc_reg(&current,i,rs1[i]);
9253               if(rs2[i]) alloc_reg(&current,i,rs2[i]);
9254               if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
9255               {
9256                 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
9257                 if(rs2[i]) alloc_reg64(&current,i,rs2[i]);
9258               }
9259             }
9260             else
9261             {
9262               ooo[i]=1;
9263               delayslot_alloc(&current,i+1);
9264             }
9265           }
9266           else
9267           if((opcode[i]&0x3E)==6) // BLEZ/BGTZ
9268           {
9269             alloc_cc(&current,i);
9270             dirty_reg(&current,CCREG);
9271             alloc_reg(&current,i,rs1[i]);
9272             if(!(current.is32>>rs1[i]&1))
9273             {
9274               alloc_reg64(&current,i,rs1[i]);
9275             }
9276             if(rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1])) {
9277               // The delay slot overwrites one of our conditions.
9278               // Allocate the branch condition registers instead.
9279               current.isconst=0;
9280               current.wasconst=0;
9281               regs[i].wasconst=0;
9282               if(rs1[i]) alloc_reg(&current,i,rs1[i]);
9283               if(!((current.is32>>rs1[i])&1))
9284               {
9285                 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
9286               }
9287             }
9288             else
9289             {
9290               ooo[i]=1;
9291               delayslot_alloc(&current,i+1);
9292             }
9293           }
9294           else
9295           // Don't alloc the delay slot yet because we might not execute it
9296           if((opcode[i]&0x3E)==0x14) // BEQL/BNEL
9297           {
9298             current.isconst=0;
9299             current.wasconst=0;
9300             regs[i].wasconst=0;
9301             alloc_cc(&current,i);
9302             dirty_reg(&current,CCREG);
9303             alloc_reg(&current,i,rs1[i]);
9304             alloc_reg(&current,i,rs2[i]);
9305             if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
9306             {
9307               alloc_reg64(&current,i,rs1[i]);
9308               alloc_reg64(&current,i,rs2[i]);
9309             }
9310           }
9311           else
9312           if((opcode[i]&0x3E)==0x16) // BLEZL/BGTZL
9313           {
9314             current.isconst=0;
9315             current.wasconst=0;
9316             regs[i].wasconst=0;
9317             alloc_cc(&current,i);
9318             dirty_reg(&current,CCREG);
9319             alloc_reg(&current,i,rs1[i]);
9320             if(!(current.is32>>rs1[i]&1))
9321             {
9322               alloc_reg64(&current,i,rs1[i]);
9323             }
9324           }
9325           ds=1;
9326           //current.isconst=0;
9327           break;
9328         case SJUMP:
9329           //current.isconst=0;
9330           //current.wasconst=0;
9331           //regs[i].wasconst=0;
9332           clear_const(&current,rs1[i]);
9333           clear_const(&current,rt1[i]);
9334           //if((opcode2[i]&0x1E)==0x0) // BLTZ/BGEZ
9335           if((opcode2[i]&0x0E)==0x0) // BLTZ/BGEZ
9336           {
9337             alloc_cc(&current,i);
9338             dirty_reg(&current,CCREG);
9339             alloc_reg(&current,i,rs1[i]);
9340             if(!(current.is32>>rs1[i]&1))
9341             {
9342               alloc_reg64(&current,i,rs1[i]);
9343             }
9344             if (rt1[i]==31) { // BLTZAL/BGEZAL
9345               alloc_reg(&current,i,31);
9346               dirty_reg(&current,31);
9347               //#ifdef REG_PREFETCH
9348               //alloc_reg(&current,i,PTEMP);
9349               //#endif
9350               //current.is32|=1LL<<rt1[i];
9351             }
9352             if((rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1])) // The delay slot overwrites the branch condition.
9353                ||(rt1[i]==31&&(rs1[i+1]==31||rs2[i+1]==31||rt1[i+1]==31||rt2[i+1]==31))) { // DS touches $ra
9354               // Allocate the branch condition registers instead.
9355               current.isconst=0;
9356               current.wasconst=0;
9357               regs[i].wasconst=0;
9358               if(rs1[i]) alloc_reg(&current,i,rs1[i]);
9359               if(!((current.is32>>rs1[i])&1))
9360               {
9361                 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
9362               }
9363             }
9364             else
9365             {
9366               ooo[i]=1;
9367               delayslot_alloc(&current,i+1);
9368             }
9369           }
9370           else
9371           // Don't alloc the delay slot yet because we might not execute it
9372           if((opcode2[i]&0x1E)==0x2) // BLTZL/BGEZL
9373           {
9374             current.isconst=0;
9375             current.wasconst=0;
9376             regs[i].wasconst=0;
9377             alloc_cc(&current,i);
9378             dirty_reg(&current,CCREG);
9379             alloc_reg(&current,i,rs1[i]);
9380             if(!(current.is32>>rs1[i]&1))
9381             {
9382               alloc_reg64(&current,i,rs1[i]);
9383             }
9384           }
9385           ds=1;
9386           //current.isconst=0;
9387           break;
9388         case FJUMP:
9389           current.isconst=0;
9390           current.wasconst=0;
9391           regs[i].wasconst=0;
9392           if(likely[i]==0) // BC1F/BC1T
9393           {
9394             // TODO: Theoretically we can run out of registers here on x86.
9395             // The delay slot can allocate up to six, and we need to check
9396             // CSREG before executing the delay slot.  Possibly we can drop
9397             // the cycle count and then reload it after checking that the
9398             // FPU is in a usable state, or don't do out-of-order execution.
9399             alloc_cc(&current,i);
9400             dirty_reg(&current,CCREG);
9401             alloc_reg(&current,i,FSREG);
9402             alloc_reg(&current,i,CSREG);
9403             if(itype[i+1]==FCOMP) {
9404               // The delay slot overwrites the branch condition.
9405               // Allocate the branch condition registers instead.
9406               alloc_cc(&current,i);
9407               dirty_reg(&current,CCREG);
9408               alloc_reg(&current,i,CSREG);
9409               alloc_reg(&current,i,FSREG);
9410             }
9411             else {
9412               ooo[i]=1;
9413               delayslot_alloc(&current,i+1);
9414               alloc_reg(&current,i+1,CSREG);
9415             }
9416           }
9417           else
9418           // Don't alloc the delay slot yet because we might not execute it
9419           if(likely[i]) // BC1FL/BC1TL
9420           {
9421             alloc_cc(&current,i);
9422             dirty_reg(&current,CCREG);
9423             alloc_reg(&current,i,CSREG);
9424             alloc_reg(&current,i,FSREG);
9425           }
9426           ds=1;
9427           current.isconst=0;
9428           break;
9429         case IMM16:
9430           imm16_alloc(&current,i);
9431           break;
9432         case LOAD:
9433         case LOADLR:
9434           load_alloc(&current,i);
9435           break;
9436         case STORE:
9437         case STORELR:
9438           store_alloc(&current,i);
9439           break;
9440         case ALU:
9441           alu_alloc(&current,i);
9442           break;
9443         case SHIFT:
9444           shift_alloc(&current,i);
9445           break;
9446         case MULTDIV:
9447           multdiv_alloc(&current,i);
9448           break;
9449         case SHIFTIMM:
9450           shiftimm_alloc(&current,i);
9451           break;
9452         case MOV:
9453           mov_alloc(&current,i);
9454           break;
9455         case COP0:
9456           cop0_alloc(&current,i);
9457           break;
9458         case COP1:
9459         case COP2:
9460           cop1_alloc(&current,i);
9461           break;
9462         case C1LS:
9463           c1ls_alloc(&current,i);
9464           break;
9465         case C2LS:
9466           c2ls_alloc(&current,i);
9467           break;
9468         case C2OP:
9469           c2op_alloc(&current,i);
9470           break;
9471         case FCONV:
9472           fconv_alloc(&current,i);
9473           break;
9474         case FLOAT:
9475           float_alloc(&current,i);
9476           break;
9477         case FCOMP:
9478           fcomp_alloc(&current,i);
9479           break;
9480         case SYSCALL:
9481         case HLECALL:
9482         case INTCALL:
9483           syscall_alloc(&current,i);
9484           break;
9485         case SPAN:
9486           pagespan_alloc(&current,i);
9487           break;
9488       }
9489       
9490       // Drop the upper half of registers that have become 32-bit
9491       current.uu|=current.is32&((1LL<<rt1[i])|(1LL<<rt2[i]));
9492       if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP) {
9493         current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
9494         if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9495         current.uu|=1;
9496       } else {
9497         current.uu|=current.is32&((1LL<<rt1[i+1])|(1LL<<rt2[i+1]));
9498         current.uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
9499         if((~current.uu>>rt1[i+1])&1) current.uu&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
9500         current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
9501         current.uu|=1;
9502       }
9503
9504       // Create entry (branch target) regmap
9505       for(hr=0;hr<HOST_REGS;hr++)
9506       {
9507         int r,or,er;
9508         r=current.regmap[hr];
9509         if(r>=0) {
9510           if(r!=regmap_pre[i][hr]) {
9511             // TODO: delay slot (?)
9512             or=get_reg(regmap_pre[i],r); // Get old mapping for this register
9513             if(or<0||(r&63)>=TEMPREG){
9514               regs[i].regmap_entry[hr]=-1;
9515             }
9516             else
9517             {
9518               // Just move it to a different register
9519               regs[i].regmap_entry[hr]=r;
9520               // If it was dirty before, it's still dirty
9521               if((regs[i].wasdirty>>or)&1) dirty_reg(&current,r&63);
9522             }
9523           }
9524           else
9525           {
9526             // Unneeded
9527             if(r==0){
9528               regs[i].regmap_entry[hr]=0;
9529             }
9530             else
9531             if(r<64){
9532               if((current.u>>r)&1) {
9533                 regs[i].regmap_entry[hr]=-1;
9534                 //regs[i].regmap[hr]=-1;
9535                 current.regmap[hr]=-1;
9536               }else
9537                 regs[i].regmap_entry[hr]=r;
9538             }
9539             else {
9540               if((current.uu>>(r&63))&1) {
9541                 regs[i].regmap_entry[hr]=-1;
9542                 //regs[i].regmap[hr]=-1;
9543                 current.regmap[hr]=-1;
9544               }else
9545                 regs[i].regmap_entry[hr]=r;
9546             }
9547           }
9548         } else {
9549           // Branches expect CCREG to be allocated at the target
9550           if(regmap_pre[i][hr]==CCREG) 
9551             regs[i].regmap_entry[hr]=CCREG;
9552           else
9553             regs[i].regmap_entry[hr]=-1;
9554         }
9555       }
9556       memcpy(regs[i].regmap,current.regmap,sizeof(current.regmap));
9557     }
9558
9559     if(i>0&&(itype[i-1]==STORE||itype[i-1]==STORELR||(itype[i-1]==C2LS&&opcode[i-1]==0x3a))&&(u_int)imm[i-1]<0x800)
9560       current.waswritten|=1<<rs1[i-1];
9561     current.waswritten&=~(1<<rt1[i]);
9562     current.waswritten&=~(1<<rt2[i]);
9563     if((itype[i]==STORE||itype[i]==STORELR||(itype[i]==C2LS&&opcode[i]==0x3a))&&(u_int)imm[i]>=0x800)
9564       current.waswritten&=~(1<<rs1[i]);
9565
9566     /* Branch post-alloc */
9567     if(i>0)
9568     {
9569       current.was32=current.is32;
9570       current.wasdirty=current.dirty;
9571       switch(itype[i-1]) {
9572         case UJUMP:
9573           memcpy(&branch_regs[i-1],&current,sizeof(current));
9574           branch_regs[i-1].isconst=0;
9575           branch_regs[i-1].wasconst=0;
9576           branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
9577           branch_regs[i-1].uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
9578           alloc_cc(&branch_regs[i-1],i-1);
9579           dirty_reg(&branch_regs[i-1],CCREG);
9580           if(rt1[i-1]==31) { // JAL
9581             alloc_reg(&branch_regs[i-1],i-1,31);
9582             dirty_reg(&branch_regs[i-1],31);
9583             branch_regs[i-1].is32|=1LL<<31;
9584           }
9585           memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9586           memcpy(constmap[i],constmap[i-1],sizeof(current_constmap));
9587           break;
9588         case RJUMP:
9589           memcpy(&branch_regs[i-1],&current,sizeof(current));
9590           branch_regs[i-1].isconst=0;
9591           branch_regs[i-1].wasconst=0;
9592           branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
9593           branch_regs[i-1].uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
9594           alloc_cc(&branch_regs[i-1],i-1);
9595           dirty_reg(&branch_regs[i-1],CCREG);
9596           alloc_reg(&branch_regs[i-1],i-1,rs1[i-1]);
9597           if(rt1[i-1]!=0) { // JALR
9598             alloc_reg(&branch_regs[i-1],i-1,rt1[i-1]);
9599             dirty_reg(&branch_regs[i-1],rt1[i-1]);
9600             branch_regs[i-1].is32|=1LL<<rt1[i-1];
9601           }
9602           #ifdef USE_MINI_HT
9603           if(rs1[i-1]==31) { // JALR
9604             alloc_reg(&branch_regs[i-1],i-1,RHASH);
9605             #ifndef HOST_IMM_ADDR32
9606             alloc_reg(&branch_regs[i-1],i-1,RHTBL);
9607             #endif
9608           }
9609           #endif
9610           memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9611           memcpy(constmap[i],constmap[i-1],sizeof(current_constmap));
9612           break;
9613         case CJUMP:
9614           if((opcode[i-1]&0x3E)==4) // BEQ/BNE
9615           {
9616             alloc_cc(&current,i-1);
9617             dirty_reg(&current,CCREG);
9618             if((rs1[i-1]&&(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]))||
9619                (rs2[i-1]&&(rs2[i-1]==rt1[i]||rs2[i-1]==rt2[i]))) {
9620               // The delay slot overwrote one of our conditions
9621               // Delay slot goes after the test (in order)
9622               current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
9623               current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
9624               if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9625               current.u|=1;
9626               current.uu|=1;
9627               delayslot_alloc(&current,i);
9628               current.isconst=0;
9629             }
9630             else
9631             {
9632               current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
9633               current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
9634               // Alloc the branch condition registers
9635               if(rs1[i-1]) alloc_reg(&current,i-1,rs1[i-1]);
9636               if(rs2[i-1]) alloc_reg(&current,i-1,rs2[i-1]);
9637               if(!((current.is32>>rs1[i-1])&(current.is32>>rs2[i-1])&1))
9638               {
9639                 if(rs1[i-1]) alloc_reg64(&current,i-1,rs1[i-1]);
9640                 if(rs2[i-1]) alloc_reg64(&current,i-1,rs2[i-1]);
9641               }
9642             }
9643             memcpy(&branch_regs[i-1],&current,sizeof(current));
9644             branch_regs[i-1].isconst=0;
9645             branch_regs[i-1].wasconst=0;
9646             memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9647             memcpy(constmap[i],constmap[i-1],sizeof(current_constmap));
9648           }
9649           else
9650           if((opcode[i-1]&0x3E)==6) // BLEZ/BGTZ
9651           {
9652             alloc_cc(&current,i-1);
9653             dirty_reg(&current,CCREG);
9654             if(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]) {
9655               // The delay slot overwrote the branch condition
9656               // Delay slot goes after the test (in order)
9657               current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
9658               current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
9659               if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9660               current.u|=1;
9661               current.uu|=1;
9662               delayslot_alloc(&current,i);
9663               current.isconst=0;
9664             }
9665             else
9666             {
9667               current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
9668               current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
9669               // Alloc the branch condition register
9670               alloc_reg(&current,i-1,rs1[i-1]);
9671               if(!(current.is32>>rs1[i-1]&1))
9672               {
9673                 alloc_reg64(&current,i-1,rs1[i-1]);
9674               }
9675             }
9676             memcpy(&branch_regs[i-1],&current,sizeof(current));
9677             branch_regs[i-1].isconst=0;
9678             branch_regs[i-1].wasconst=0;
9679             memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9680             memcpy(constmap[i],constmap[i-1],sizeof(current_constmap));
9681           }
9682           else
9683           // Alloc the delay slot in case the branch is taken
9684           if((opcode[i-1]&0x3E)==0x14) // BEQL/BNEL
9685           {
9686             memcpy(&branch_regs[i-1],&current,sizeof(current));
9687             branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9688             branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9689             if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9690             alloc_cc(&branch_regs[i-1],i);
9691             dirty_reg(&branch_regs[i-1],CCREG);
9692             delayslot_alloc(&branch_regs[i-1],i);
9693             branch_regs[i-1].isconst=0;
9694             alloc_reg(&current,i,CCREG); // Not taken path
9695             dirty_reg(&current,CCREG);
9696             memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9697           }
9698           else
9699           if((opcode[i-1]&0x3E)==0x16) // BLEZL/BGTZL
9700           {
9701             memcpy(&branch_regs[i-1],&current,sizeof(current));
9702             branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9703             branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9704             if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9705             alloc_cc(&branch_regs[i-1],i);
9706             dirty_reg(&branch_regs[i-1],CCREG);
9707             delayslot_alloc(&branch_regs[i-1],i);
9708             branch_regs[i-1].isconst=0;
9709             alloc_reg(&current,i,CCREG); // Not taken path
9710             dirty_reg(&current,CCREG);
9711             memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9712           }
9713           break;
9714         case SJUMP:
9715           //if((opcode2[i-1]&0x1E)==0) // BLTZ/BGEZ
9716           if((opcode2[i-1]&0x0E)==0) // BLTZ/BGEZ
9717           {
9718             alloc_cc(&current,i-1);
9719             dirty_reg(&current,CCREG);
9720             if(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]) {
9721               // The delay slot overwrote the branch condition
9722               // Delay slot goes after the test (in order)
9723               current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
9724               current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
9725               if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9726               current.u|=1;
9727               current.uu|=1;
9728               delayslot_alloc(&current,i);
9729               current.isconst=0;
9730             }
9731             else
9732             {
9733               current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
9734               current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
9735               // Alloc the branch condition register
9736               alloc_reg(&current,i-1,rs1[i-1]);
9737               if(!(current.is32>>rs1[i-1]&1))
9738               {
9739                 alloc_reg64(&current,i-1,rs1[i-1]);
9740               }
9741             }
9742             memcpy(&branch_regs[i-1],&current,sizeof(current));
9743             branch_regs[i-1].isconst=0;
9744             branch_regs[i-1].wasconst=0;
9745             memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9746             memcpy(constmap[i],constmap[i-1],sizeof(current_constmap));
9747           }
9748           else
9749           // Alloc the delay slot in case the branch is taken
9750           if((opcode2[i-1]&0x1E)==2) // BLTZL/BGEZL
9751           {
9752             memcpy(&branch_regs[i-1],&current,sizeof(current));
9753             branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9754             branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9755             if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9756             alloc_cc(&branch_regs[i-1],i);
9757             dirty_reg(&branch_regs[i-1],CCREG);
9758             delayslot_alloc(&branch_regs[i-1],i);
9759             branch_regs[i-1].isconst=0;
9760             alloc_reg(&current,i,CCREG); // Not taken path
9761             dirty_reg(&current,CCREG);
9762             memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9763           }
9764           // FIXME: BLTZAL/BGEZAL
9765           if(opcode2[i-1]&0x10) { // BxxZAL
9766             alloc_reg(&branch_regs[i-1],i-1,31);
9767             dirty_reg(&branch_regs[i-1],31);
9768             branch_regs[i-1].is32|=1LL<<31;
9769           }
9770           break;
9771         case FJUMP:
9772           if(likely[i-1]==0) // BC1F/BC1T
9773           {
9774             alloc_cc(&current,i-1);
9775             dirty_reg(&current,CCREG);
9776             if(itype[i]==FCOMP) {
9777               // The delay slot overwrote the branch condition
9778               // Delay slot goes after the test (in order)
9779               delayslot_alloc(&current,i);
9780               current.isconst=0;
9781             }
9782             else
9783             {
9784               current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
9785               current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
9786               // Alloc the branch condition register
9787               alloc_reg(&current,i-1,FSREG);
9788             }
9789             memcpy(&branch_regs[i-1],&current,sizeof(current));
9790             memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9791           }
9792           else // BC1FL/BC1TL
9793           {
9794             // Alloc the delay slot in case the branch is taken
9795             memcpy(&branch_regs[i-1],&current,sizeof(current));
9796             branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9797             branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9798             if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9799             alloc_cc(&branch_regs[i-1],i);
9800             dirty_reg(&branch_regs[i-1],CCREG);
9801             delayslot_alloc(&branch_regs[i-1],i);
9802             branch_regs[i-1].isconst=0;
9803             alloc_reg(&current,i,CCREG); // Not taken path
9804             dirty_reg(&current,CCREG);
9805             memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9806           }
9807           break;
9808       }
9809
9810       if(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)
9811       {
9812         if(rt1[i-1]==31) // JAL/JALR
9813         {
9814           // Subroutine call will return here, don't alloc any registers
9815           current.is32=1;
9816           current.dirty=0;
9817           clear_all_regs(current.regmap);
9818           alloc_reg(&current,i,CCREG);
9819           dirty_reg(&current,CCREG);
9820         }
9821         else if(i+1<slen)
9822         {
9823           // Internal branch will jump here, match registers to caller
9824           current.is32=0x3FFFFFFFFLL;
9825           current.dirty=0;
9826           clear_all_regs(current.regmap);
9827           alloc_reg(&current,i,CCREG);
9828           dirty_reg(&current,CCREG);
9829           for(j=i-1;j>=0;j--)
9830           {
9831             if(ba[j]==start+i*4+4) {
9832               memcpy(current.regmap,branch_regs[j].regmap,sizeof(current.regmap));
9833               current.is32=branch_regs[j].is32;
9834               current.dirty=branch_regs[j].dirty;
9835               break;
9836             }
9837           }
9838           while(j>=0) {
9839             if(ba[j]==start+i*4+4) {
9840               for(hr=0;hr<HOST_REGS;hr++) {
9841                 if(current.regmap[hr]!=branch_regs[j].regmap[hr]) {
9842                   current.regmap[hr]=-1;
9843                 }
9844                 current.is32&=branch_regs[j].is32;
9845                 current.dirty&=branch_regs[j].dirty;
9846               }
9847             }
9848             j--;
9849           }
9850         }
9851       }
9852     }
9853
9854     // Count cycles in between branches
9855     ccadj[i]=cc;
9856     if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP||itype[i]==SYSCALL||itype[i]==HLECALL))
9857     {
9858       cc=0;
9859     }
9860 #if defined(PCSX) && !defined(DRC_DBG)
9861     else if(itype[i]==C2OP&&gte_cycletab[source[i]&0x3f]>2)
9862     {
9863       // GTE runs in parallel until accessed, divide by 2 for a rough guess
9864       cc+=gte_cycletab[source[i]&0x3f]/2;
9865     }
9866     else if(/*itype[i]==LOAD||itype[i]==STORE||*/itype[i]==C1LS) // load,store causes weird timing issues
9867     {
9868       cc+=2; // 2 cycle penalty (after CLOCK_DIVIDER)
9869     }
9870     else if(itype[i]==C2LS)
9871     {
9872       cc+=4;
9873     }
9874 #endif
9875     else
9876     {
9877       cc++;
9878     }
9879
9880     flush_dirty_uppers(&current);
9881     if(!is_ds[i]) {
9882       regs[i].is32=current.is32;
9883       regs[i].dirty=current.dirty;
9884       regs[i].isconst=current.isconst;
9885       memcpy(constmap[i],current_constmap,sizeof(current_constmap));
9886     }
9887     for(hr=0;hr<HOST_REGS;hr++) {
9888       if(hr!=EXCLUDE_REG&&regs[i].regmap[hr]>=0) {
9889         if(regmap_pre[i][hr]!=regs[i].regmap[hr]) {
9890           regs[i].wasconst&=~(1<<hr);
9891         }
9892       }
9893     }
9894     if(current.regmap[HOST_BTREG]==BTREG) current.regmap[HOST_BTREG]=-1;
9895     regs[i].waswritten=current.waswritten;
9896   }
9897   
9898   /* Pass 4 - Cull unused host registers */
9899   
9900   uint64_t nr=0;
9901   
9902   for (i=slen-1;i>=0;i--)
9903   {
9904     int hr;
9905     if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
9906     {
9907       if(ba[i]<start || ba[i]>=(start+slen*4))
9908       {
9909         // Branch out of this block, don't need anything
9910         nr=0;
9911       }
9912       else
9913       {
9914         // Internal branch
9915         // Need whatever matches the target
9916         nr=0;
9917         int t=(ba[i]-start)>>2;
9918         for(hr=0;hr<HOST_REGS;hr++)
9919         {
9920           if(regs[i].regmap_entry[hr]>=0) {
9921             if(regs[i].regmap_entry[hr]==regs[t].regmap_entry[hr]) nr|=1<<hr;
9922           }
9923         }
9924       }
9925       // Conditional branch may need registers for following instructions
9926       if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
9927       {
9928         if(i<slen-2) {
9929           nr|=needed_reg[i+2];
9930           for(hr=0;hr<HOST_REGS;hr++)
9931           {
9932             if(regmap_pre[i+2][hr]>=0&&get_reg(regs[i+2].regmap_entry,regmap_pre[i+2][hr])<0) nr&=~(1<<hr);
9933             //if((regmap_entry[i+2][hr])>=0) if(!((nr>>hr)&1)) printf("%x-bogus(%d=%d)\n",start+i*4,hr,regmap_entry[i+2][hr]);
9934           }
9935         }
9936       }
9937       // Don't need stuff which is overwritten
9938       //if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
9939       //if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
9940       // Merge in delay slot
9941       for(hr=0;hr<HOST_REGS;hr++)
9942       {
9943         if(!likely[i]) {
9944           // These are overwritten unless the branch is "likely"
9945           // and the delay slot is nullified if not taken
9946           if(rt1[i+1]&&rt1[i+1]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9947           if(rt2[i+1]&&rt2[i+1]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9948         }
9949         if(us1[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9950         if(us2[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9951         if(rs1[i+1]==regmap_pre[i][hr]) nr|=1<<hr;
9952         if(rs2[i+1]==regmap_pre[i][hr]) nr|=1<<hr;
9953         if(us1[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9954         if(us2[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9955         if(rs1[i+1]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9956         if(rs2[i+1]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9957         if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1)) {
9958           if(dep1[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9959           if(dep2[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9960         }
9961         if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1)) {
9962           if(dep1[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9963           if(dep2[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9964         }
9965         if(itype[i+1]==STORE || itype[i+1]==STORELR || (opcode[i+1]&0x3b)==0x39 || (opcode[i+1]&0x3b)==0x3a) {
9966           if(regmap_pre[i][hr]==INVCP) nr|=1<<hr;
9967           if(regs[i].regmap_entry[hr]==INVCP) nr|=1<<hr;
9968         }
9969       }
9970     }
9971     else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
9972     {
9973       // SYSCALL instruction (software interrupt)
9974       nr=0;
9975     }
9976     else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
9977     {
9978       // ERET instruction (return from interrupt)
9979       nr=0;
9980     }
9981     else // Non-branch
9982     {
9983       if(i<slen-1) {
9984         for(hr=0;hr<HOST_REGS;hr++) {
9985           if(regmap_pre[i+1][hr]>=0&&get_reg(regs[i+1].regmap_entry,regmap_pre[i+1][hr])<0) nr&=~(1<<hr);
9986           if(regs[i].regmap[hr]!=regmap_pre[i+1][hr]) nr&=~(1<<hr);
9987           if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
9988           if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
9989         }
9990       }
9991     }
9992     for(hr=0;hr<HOST_REGS;hr++)
9993     {
9994       // Overwritten registers are not needed
9995       if(rt1[i]&&rt1[i]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9996       if(rt2[i]&&rt2[i]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9997       if(FTEMP==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9998       // Source registers are needed
9999       if(us1[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
10000       if(us2[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
10001       if(rs1[i]==regmap_pre[i][hr]) nr|=1<<hr;
10002       if(rs2[i]==regmap_pre[i][hr]) nr|=1<<hr;
10003       if(us1[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
10004       if(us2[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
10005       if(rs1[i]==regs[i].regmap_entry[hr]) nr|=1<<hr;
10006       if(rs2[i]==regs[i].regmap_entry[hr]) nr|=1<<hr;
10007       if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1)) {
10008         if(dep1[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
10009         if(dep1[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
10010       }
10011       if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1)) {
10012         if(dep2[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
10013         if(dep2[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
10014       }
10015       if(itype[i]==STORE || itype[i]==STORELR || (opcode[i]&0x3b)==0x39 || (opcode[i]&0x3b)==0x3a) {
10016         if(regmap_pre[i][hr]==INVCP) nr|=1<<hr;
10017         if(regs[i].regmap_entry[hr]==INVCP) nr|=1<<hr;
10018       }
10019       // Don't store a register immediately after writing it,
10020       // may prevent dual-issue.
10021       // But do so if this is a branch target, otherwise we
10022       // might have to load the register before the branch.
10023       if(i>0&&!bt[i]&&((regs[i].wasdirty>>hr)&1)) {
10024         if((regmap_pre[i][hr]>0&&regmap_pre[i][hr]<64&&!((unneeded_reg[i]>>regmap_pre[i][hr])&1)) ||
10025            (regmap_pre[i][hr]>64&&!((unneeded_reg_upper[i]>>(regmap_pre[i][hr]&63))&1)) ) {
10026           if(rt1[i-1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
10027           if(rt2[i-1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
10028         }
10029         if((regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64&&!((unneeded_reg[i]>>regs[i].regmap_entry[hr])&1)) ||
10030            (regs[i].regmap_entry[hr]>64&&!((unneeded_reg_upper[i]>>(regs[i].regmap_entry[hr]&63))&1)) ) {
10031           if(rt1[i-1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
10032           if(rt2[i-1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
10033         }
10034       }
10035     }
10036     // Cycle count is needed at branches.  Assume it is needed at the target too.
10037     if(i==0||bt[i]||itype[i]==CJUMP||itype[i]==FJUMP||itype[i]==SPAN) {
10038       if(regmap_pre[i][HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
10039       if(regs[i].regmap_entry[HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
10040     }
10041     // Save it
10042     needed_reg[i]=nr;
10043     
10044     // Deallocate unneeded registers
10045     for(hr=0;hr<HOST_REGS;hr++)
10046     {
10047       if(!((nr>>hr)&1)) {
10048         if(regs[i].regmap_entry[hr]!=CCREG) regs[i].regmap_entry[hr]=-1;
10049         if((regs[i].regmap[hr]&63)!=rs1[i] && (regs[i].regmap[hr]&63)!=rs2[i] &&
10050            (regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
10051            (regs[i].regmap[hr]&63)!=PTEMP && (regs[i].regmap[hr]&63)!=CCREG)
10052         {
10053           if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
10054           {
10055             if(likely[i]) {
10056               regs[i].regmap[hr]=-1;
10057               regs[i].isconst&=~(1<<hr);
10058               if(i<slen-2) {
10059                 regmap_pre[i+2][hr]=-1;
10060                 regs[i+2].wasconst&=~(1<<hr);
10061               }
10062             }
10063           }
10064         }
10065         if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
10066         {
10067           int d1=0,d2=0,map=0,temp=0;
10068           if(get_reg(regs[i].regmap,rt1[i+1]|64)>=0||get_reg(branch_regs[i].regmap,rt1[i+1]|64)>=0)
10069           {
10070             d1=dep1[i+1];
10071             d2=dep2[i+1];
10072           }
10073           if(using_tlb) {
10074             if(itype[i+1]==LOAD || itype[i+1]==LOADLR ||
10075                itype[i+1]==STORE || itype[i+1]==STORELR ||
10076                itype[i+1]==C1LS || itype[i+1]==C2LS)
10077             map=TLREG;
10078           } else
10079           if(itype[i+1]==STORE || itype[i+1]==STORELR ||
10080              (opcode[i+1]&0x3b)==0x39 || (opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1 || SWC2/SDC2
10081             map=INVCP;
10082           }
10083           if(itype[i+1]==LOADLR || itype[i+1]==STORELR ||
10084              itype[i+1]==C1LS || itype[i+1]==C2LS)
10085             temp=FTEMP;
10086           if((regs[i].regmap[hr]&63)!=rs1[i] && (regs[i].regmap[hr]&63)!=rs2[i] &&
10087              (regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
10088              (regs[i].regmap[hr]&63)!=rt1[i+1] && (regs[i].regmap[hr]&63)!=rt2[i+1] &&
10089              (regs[i].regmap[hr]^64)!=us1[i+1] && (regs[i].regmap[hr]^64)!=us2[i+1] &&
10090              (regs[i].regmap[hr]^64)!=d1 && (regs[i].regmap[hr]^64)!=d2 &&
10091              regs[i].regmap[hr]!=rs1[i+1] && regs[i].regmap[hr]!=rs2[i+1] &&
10092              (regs[i].regmap[hr]&63)!=temp && regs[i].regmap[hr]!=PTEMP &&
10093              regs[i].regmap[hr]!=RHASH && regs[i].regmap[hr]!=RHTBL &&
10094              regs[i].regmap[hr]!=RTEMP && regs[i].regmap[hr]!=CCREG &&
10095              regs[i].regmap[hr]!=map )
10096           {
10097             regs[i].regmap[hr]=-1;
10098             regs[i].isconst&=~(1<<hr);
10099             if((branch_regs[i].regmap[hr]&63)!=rs1[i] && (branch_regs[i].regmap[hr]&63)!=rs2[i] &&
10100                (branch_regs[i].regmap[hr]&63)!=rt1[i] && (branch_regs[i].regmap[hr]&63)!=rt2[i] &&
10101                (branch_regs[i].regmap[hr]&63)!=rt1[i+1] && (branch_regs[i].regmap[hr]&63)!=rt2[i+1] &&
10102                (branch_regs[i].regmap[hr]^64)!=us1[i+1] && (branch_regs[i].regmap[hr]^64)!=us2[i+1] &&
10103                (branch_regs[i].regmap[hr]^64)!=d1 && (branch_regs[i].regmap[hr]^64)!=d2 &&
10104                branch_regs[i].regmap[hr]!=rs1[i+1] && branch_regs[i].regmap[hr]!=rs2[i+1] &&
10105                (branch_regs[i].regmap[hr]&63)!=temp && branch_regs[i].regmap[hr]!=PTEMP &&
10106                branch_regs[i].regmap[hr]!=RHASH && branch_regs[i].regmap[hr]!=RHTBL &&
10107                branch_regs[i].regmap[hr]!=RTEMP && branch_regs[i].regmap[hr]!=CCREG &&
10108                branch_regs[i].regmap[hr]!=map)
10109             {
10110               branch_regs[i].regmap[hr]=-1;
10111               branch_regs[i].regmap_entry[hr]=-1;
10112               if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
10113               {
10114                 if(!likely[i]&&i<slen-2) {
10115                   regmap_pre[i+2][hr]=-1;
10116                   regs[i+2].wasconst&=~(1<<hr);
10117                 }
10118               }
10119             }
10120           }
10121         }
10122         else
10123         {
10124           // Non-branch
10125           if(i>0)
10126           {
10127             int d1=0,d2=0,map=-1,temp=-1;
10128             if(get_reg(regs[i].regmap,rt1[i]|64)>=0)
10129             {
10130               d1=dep1[i];
10131               d2=dep2[i];
10132             }
10133             if(using_tlb) {
10134               if(itype[i]==LOAD || itype[i]==LOADLR ||
10135                  itype[i]==STORE || itype[i]==STORELR ||
10136                  itype[i]==C1LS || itype[i]==C2LS)
10137               map=TLREG;
10138             } else if(itype[i]==STORE || itype[i]==STORELR ||
10139                       (opcode[i]&0x3b)==0x39 || (opcode[i]&0x3b)==0x3a) { // SWC1/SDC1 || SWC2/SDC2
10140               map=INVCP;
10141             }
10142             if(itype[i]==LOADLR || itype[i]==STORELR ||
10143                itype[i]==C1LS || itype[i]==C2LS)
10144               temp=FTEMP;
10145             if((regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
10146                (regs[i].regmap[hr]^64)!=us1[i] && (regs[i].regmap[hr]^64)!=us2[i] &&
10147                (regs[i].regmap[hr]^64)!=d1 && (regs[i].regmap[hr]^64)!=d2 &&
10148                regs[i].regmap[hr]!=rs1[i] && regs[i].regmap[hr]!=rs2[i] &&
10149                (regs[i].regmap[hr]&63)!=temp && regs[i].regmap[hr]!=map &&
10150                (itype[i]!=SPAN||regs[i].regmap[hr]!=CCREG))
10151             {
10152               if(i<slen-1&&!is_ds[i]) {
10153                 if(regmap_pre[i+1][hr]!=-1 || regs[i].regmap[hr]!=-1)
10154                 if(regmap_pre[i+1][hr]!=regs[i].regmap[hr])
10155                 if(regs[i].regmap[hr]<64||!((regs[i].was32>>(regs[i].regmap[hr]&63))&1))
10156                 {
10157                   printf("fail: %x (%d %d!=%d)\n",start+i*4,hr,regmap_pre[i+1][hr],regs[i].regmap[hr]);
10158                   assert(regmap_pre[i+1][hr]==regs[i].regmap[hr]);
10159                 }
10160                 regmap_pre[i+1][hr]=-1;
10161                 if(regs[i+1].regmap_entry[hr]==CCREG) regs[i+1].regmap_entry[hr]=-1;
10162                 regs[i+1].wasconst&=~(1<<hr);
10163               }
10164               regs[i].regmap[hr]=-1;
10165               regs[i].isconst&=~(1<<hr);
10166             }
10167           }
10168         }
10169       }
10170     }
10171   }
10172   
10173   /* Pass 5 - Pre-allocate registers */
10174   
10175   // If a register is allocated during a loop, try to allocate it for the
10176   // entire loop, if possible.  This avoids loading/storing registers
10177   // inside of the loop.
10178   
10179   signed char f_regmap[HOST_REGS];
10180   clear_all_regs(f_regmap);
10181   for(i=0;i<slen-1;i++)
10182   {
10183     if(itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
10184     {
10185       if(ba[i]>=start && ba[i]<(start+i*4)) 
10186       if(itype[i+1]==NOP||itype[i+1]==MOV||itype[i+1]==ALU
10187       ||itype[i+1]==SHIFTIMM||itype[i+1]==IMM16||itype[i+1]==LOAD
10188       ||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS
10189       ||itype[i+1]==SHIFT||itype[i+1]==COP1||itype[i+1]==FLOAT
10190       ||itype[i+1]==FCOMP||itype[i+1]==FCONV
10191       ||itype[i+1]==COP2||itype[i+1]==C2LS||itype[i+1]==C2OP)
10192       {
10193         int t=(ba[i]-start)>>2;
10194         if(t>0&&(itype[t-1]!=UJUMP&&itype[t-1]!=RJUMP&&itype[t-1]!=CJUMP&&itype[t-1]!=SJUMP&&itype[t-1]!=FJUMP)) // loop_preload can't handle jumps into delay slots
10195         if(t<2||(itype[t-2]!=UJUMP&&itype[t-2]!=RJUMP)||rt1[t-2]!=31) // call/ret assumes no registers allocated
10196         for(hr=0;hr<HOST_REGS;hr++)
10197         {
10198           if(regs[i].regmap[hr]>64) {
10199             if(!((regs[i].dirty>>hr)&1))
10200               f_regmap[hr]=regs[i].regmap[hr];
10201             else f_regmap[hr]=-1;
10202           }
10203           else if(regs[i].regmap[hr]>=0) {
10204             if(f_regmap[hr]!=regs[i].regmap[hr]) {
10205               // dealloc old register
10206               int n;
10207               for(n=0;n<HOST_REGS;n++)
10208               {
10209                 if(f_regmap[n]==regs[i].regmap[hr]) {f_regmap[n]=-1;}
10210               }
10211               // and alloc new one
10212               f_regmap[hr]=regs[i].regmap[hr];
10213             }
10214           }
10215           if(branch_regs[i].regmap[hr]>64) {
10216             if(!((branch_regs[i].dirty>>hr)&1))
10217               f_regmap[hr]=branch_regs[i].regmap[hr];
10218             else f_regmap[hr]=-1;
10219           }
10220           else if(branch_regs[i].regmap[hr]>=0) {
10221             if(f_regmap[hr]!=branch_regs[i].regmap[hr]) {
10222               // dealloc old register
10223               int n;
10224               for(n=0;n<HOST_REGS;n++)
10225               {
10226                 if(f_regmap[n]==branch_regs[i].regmap[hr]) {f_regmap[n]=-1;}
10227               }
10228               // and alloc new one
10229               f_regmap[hr]=branch_regs[i].regmap[hr];
10230             }
10231           }
10232           if(ooo[i]) {
10233             if(count_free_regs(regs[i].regmap)<=minimum_free_regs[i+1]) 
10234               f_regmap[hr]=branch_regs[i].regmap[hr];
10235           }else{
10236             if(count_free_regs(branch_regs[i].regmap)<=minimum_free_regs[i+1]) 
10237               f_regmap[hr]=branch_regs[i].regmap[hr];
10238           }
10239           // Avoid dirty->clean transition
10240           #ifdef DESTRUCTIVE_WRITEBACK
10241           if(t>0) if(get_reg(regmap_pre[t],f_regmap[hr])>=0) if((regs[t].wasdirty>>get_reg(regmap_pre[t],f_regmap[hr]))&1) f_regmap[hr]=-1;
10242           #endif
10243           // This check is only strictly required in the DESTRUCTIVE_WRITEBACK
10244           // case above, however it's always a good idea.  We can't hoist the
10245           // load if the register was already allocated, so there's no point
10246           // wasting time analyzing most of these cases.  It only "succeeds"
10247           // when the mapping was different and the load can be replaced with
10248           // a mov, which is of negligible benefit.  So such cases are
10249           // skipped below.
10250           if(f_regmap[hr]>0) {
10251             if(regs[t].regmap[hr]==f_regmap[hr]||(regs[t].regmap_entry[hr]<0&&get_reg(regmap_pre[t],f_regmap[hr])<0)) {
10252               int r=f_regmap[hr];
10253               for(j=t;j<=i;j++)
10254               {
10255                 //printf("Test %x -> %x, %x %d/%d\n",start+i*4,ba[i],start+j*4,hr,r);
10256                 if(r<34&&((unneeded_reg[j]>>r)&1)) break;
10257                 if(r>63&&((unneeded_reg_upper[j]>>(r&63))&1)) break;
10258                 if(r>63) {
10259                   // NB This can exclude the case where the upper-half
10260                   // register is lower numbered than the lower-half
10261                   // register.  Not sure if it's worth fixing...
10262                   if(get_reg(regs[j].regmap,r&63)<0) break;
10263                   if(get_reg(regs[j].regmap_entry,r&63)<0) break;
10264                   if(regs[j].is32&(1LL<<(r&63))) break;
10265                 }
10266                 if(regs[j].regmap[hr]==f_regmap[hr]&&(f_regmap[hr]&63)<TEMPREG) {
10267                   //printf("Hit %x -> %x, %x %d/%d\n",start+i*4,ba[i],start+j*4,hr,r);
10268                   int k;
10269                   if(regs[i].regmap[hr]==-1&&branch_regs[i].regmap[hr]==-1) {
10270                     if(get_reg(regs[i+2].regmap,f_regmap[hr])>=0) break;
10271                     if(r>63) {
10272                       if(get_reg(regs[i].regmap,r&63)<0) break;
10273                       if(get_reg(branch_regs[i].regmap,r&63)<0) break;
10274                     }
10275                     k=i;
10276                     while(k>1&&regs[k-1].regmap[hr]==-1) {
10277                       if(count_free_regs(regs[k-1].regmap)<=minimum_free_regs[k-1]) {
10278                         //printf("no free regs for store %x\n",start+(k-1)*4);
10279                         break;
10280                       }
10281                       if(get_reg(regs[k-1].regmap,f_regmap[hr])>=0) {
10282                         //printf("no-match due to different register\n");
10283                         break;
10284                       }
10285                       if(itype[k-2]==UJUMP||itype[k-2]==RJUMP||itype[k-2]==CJUMP||itype[k-2]==SJUMP||itype[k-2]==FJUMP) {
10286                         //printf("no-match due to branch\n");
10287                         break;
10288                       }
10289                       // call/ret fast path assumes no registers allocated
10290                       if(k>2&&(itype[k-3]==UJUMP||itype[k-3]==RJUMP)&&rt1[k-3]==31) {
10291                         break;
10292                       }
10293                       if(r>63) {
10294                         // NB This can exclude the case where the upper-half
10295                         // register is lower numbered than the lower-half
10296                         // register.  Not sure if it's worth fixing...
10297                         if(get_reg(regs[k-1].regmap,r&63)<0) break;
10298                         if(regs[k-1].is32&(1LL<<(r&63))) break;
10299                       }
10300                       k--;
10301                     }
10302                     if(i<slen-1) {
10303                       if((regs[k].is32&(1LL<<f_regmap[hr]))!=
10304                         (regs[i+2].was32&(1LL<<f_regmap[hr]))) {
10305                         //printf("bad match after branch\n");
10306                         break;
10307                       }
10308                     }
10309                     if(regs[k-1].regmap[hr]==f_regmap[hr]&&regmap_pre[k][hr]==f_regmap[hr]) {
10310                       //printf("Extend r%d, %x ->\n",hr,start+k*4);
10311                       while(k<i) {
10312                         regs[k].regmap_entry[hr]=f_regmap[hr];
10313                         regs[k].regmap[hr]=f_regmap[hr];
10314                         regmap_pre[k+1][hr]=f_regmap[hr];
10315                         regs[k].wasdirty&=~(1<<hr);
10316                         regs[k].dirty&=~(1<<hr);
10317                         regs[k].wasdirty|=(1<<hr)&regs[k-1].dirty;
10318                         regs[k].dirty|=(1<<hr)&regs[k].wasdirty;
10319                         regs[k].wasconst&=~(1<<hr);
10320                         regs[k].isconst&=~(1<<hr);
10321                         k++;
10322                       }
10323                     }
10324                     else {
10325                       //printf("Fail Extend r%d, %x ->\n",hr,start+k*4);
10326                       break;
10327                     }
10328                     assert(regs[i-1].regmap[hr]==f_regmap[hr]);
10329                     if(regs[i-1].regmap[hr]==f_regmap[hr]&&regmap_pre[i][hr]==f_regmap[hr]) {
10330                       //printf("OK fill %x (r%d)\n",start+i*4,hr);
10331                       regs[i].regmap_entry[hr]=f_regmap[hr];
10332                       regs[i].regmap[hr]=f_regmap[hr];
10333                       regs[i].wasdirty&=~(1<<hr);
10334                       regs[i].dirty&=~(1<<hr);
10335                       regs[i].wasdirty|=(1<<hr)&regs[i-1].dirty;
10336                       regs[i].dirty|=(1<<hr)&regs[i-1].dirty;
10337                       regs[i].wasconst&=~(1<<hr);
10338                       regs[i].isconst&=~(1<<hr);
10339                       branch_regs[i].regmap_entry[hr]=f_regmap[hr];
10340                       branch_regs[i].wasdirty&=~(1<<hr);
10341                       branch_regs[i].wasdirty|=(1<<hr)&regs[i].dirty;
10342                       branch_regs[i].regmap[hr]=f_regmap[hr];
10343                       branch_regs[i].dirty&=~(1<<hr);
10344                       branch_regs[i].dirty|=(1<<hr)&regs[i].dirty;
10345                       branch_regs[i].wasconst&=~(1<<hr);
10346                       branch_regs[i].isconst&=~(1<<hr);
10347                       if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000) {
10348                         regmap_pre[i+2][hr]=f_regmap[hr];
10349                         regs[i+2].wasdirty&=~(1<<hr);
10350                         regs[i+2].wasdirty|=(1<<hr)&regs[i].dirty;
10351                         assert((branch_regs[i].is32&(1LL<<f_regmap[hr]))==
10352                           (regs[i+2].was32&(1LL<<f_regmap[hr])));
10353                       }
10354                     }
10355                   }
10356                   for(k=t;k<j;k++) {
10357                     // Alloc register clean at beginning of loop,
10358                     // but may dirty it in pass 6
10359                     regs[k].regmap_entry[hr]=f_regmap[hr];
10360                     regs[k].regmap[hr]=f_regmap[hr];
10361                     regs[k].dirty&=~(1<<hr);
10362                     regs[k].wasconst&=~(1<<hr);
10363                     regs[k].isconst&=~(1<<hr);
10364                     if(itype[k]==UJUMP||itype[k]==RJUMP||itype[k]==CJUMP||itype[k]==SJUMP||itype[k]==FJUMP) {
10365                       branch_regs[k].regmap_entry[hr]=f_regmap[hr];
10366                       branch_regs[k].regmap[hr]=f_regmap[hr];
10367                       branch_regs[k].dirty&=~(1<<hr);
10368                       branch_regs[k].wasconst&=~(1<<hr);
10369                       branch_regs[k].isconst&=~(1<<hr);
10370                       if(itype[k]!=RJUMP&&itype[k]!=UJUMP&&(source[k]>>16)!=0x1000) {
10371                         regmap_pre[k+2][hr]=f_regmap[hr];
10372                         regs[k+2].wasdirty&=~(1<<hr);
10373                         assert((branch_regs[k].is32&(1LL<<f_regmap[hr]))==
10374                           (regs[k+2].was32&(1LL<<f_regmap[hr])));
10375                       }
10376                     }
10377                     else
10378                     {
10379                       regmap_pre[k+1][hr]=f_regmap[hr];
10380                       regs[k+1].wasdirty&=~(1<<hr);
10381                     }
10382                   }
10383                   if(regs[j].regmap[hr]==f_regmap[hr])
10384                     regs[j].regmap_entry[hr]=f_regmap[hr];
10385                   break;
10386                 }
10387                 if(j==i) break;
10388                 if(regs[j].regmap[hr]>=0)
10389                   break;
10390                 if(get_reg(regs[j].regmap,f_regmap[hr])>=0) {
10391                   //printf("no-match due to different register\n");
10392                   break;
10393                 }
10394                 if((regs[j+1].is32&(1LL<<f_regmap[hr]))!=(regs[j].is32&(1LL<<f_regmap[hr]))) {
10395                   //printf("32/64 mismatch %x %d\n",start+j*4,hr);
10396                   break;
10397                 }
10398                 if(itype[j]==UJUMP||itype[j]==RJUMP||(source[j]>>16)==0x1000)
10399                 {
10400                   // Stop on unconditional branch
10401                   break;
10402                 }
10403                 if(itype[j]==CJUMP||itype[j]==SJUMP||itype[j]==FJUMP)
10404                 {
10405                   if(ooo[j]) {
10406                     if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j+1]) 
10407                       break;
10408                   }else{
10409                     if(count_free_regs(branch_regs[j].regmap)<=minimum_free_regs[j+1]) 
10410                       break;
10411                   }
10412                   if(get_reg(branch_regs[j].regmap,f_regmap[hr])>=0) {
10413                     //printf("no-match due to different register (branch)\n");
10414                     break;
10415                   }
10416                 }
10417                 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) {
10418                   //printf("No free regs for store %x\n",start+j*4);
10419                   break;
10420                 }
10421                 if(f_regmap[hr]>=64) {
10422                   if(regs[j].is32&(1LL<<(f_regmap[hr]&63))) {
10423                     break;
10424                   }
10425                   else
10426                   {
10427                     if(get_reg(regs[j].regmap,f_regmap[hr]&63)<0) {
10428                       break;
10429                     }
10430                   }
10431                 }
10432               }
10433             }
10434           }
10435         }
10436       }
10437     }else{
10438       // Non branch or undetermined branch target
10439       for(hr=0;hr<HOST_REGS;hr++)
10440       {
10441         if(hr!=EXCLUDE_REG) {
10442           if(regs[i].regmap[hr]>64) {
10443             if(!((regs[i].dirty>>hr)&1))
10444               f_regmap[hr]=regs[i].regmap[hr];
10445           }
10446           else if(regs[i].regmap[hr]>=0) {
10447             if(f_regmap[hr]!=regs[i].regmap[hr]) {
10448               // dealloc old register
10449               int n;
10450               for(n=0;n<HOST_REGS;n++)
10451               {
10452                 if(f_regmap[n]==regs[i].regmap[hr]) {f_regmap[n]=-1;}
10453               }
10454               // and alloc new one
10455               f_regmap[hr]=regs[i].regmap[hr];
10456             }
10457           }
10458         }
10459       }
10460       // Try to restore cycle count at branch targets
10461       if(bt[i]) {
10462         for(j=i;j<slen-1;j++) {
10463           if(regs[j].regmap[HOST_CCREG]!=-1) break;
10464           if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) {
10465             //printf("no free regs for store %x\n",start+j*4);
10466             break;
10467           }
10468         }
10469         if(regs[j].regmap[HOST_CCREG]==CCREG) {
10470           int k=i;
10471           //printf("Extend CC, %x -> %x\n",start+k*4,start+j*4);
10472           while(k<j) {
10473             regs[k].regmap_entry[HOST_CCREG]=CCREG;
10474             regs[k].regmap[HOST_CCREG]=CCREG;
10475             regmap_pre[k+1][HOST_CCREG]=CCREG;
10476             regs[k+1].wasdirty|=1<<HOST_CCREG;
10477             regs[k].dirty|=1<<HOST_CCREG;
10478             regs[k].wasconst&=~(1<<HOST_CCREG);
10479             regs[k].isconst&=~(1<<HOST_CCREG);
10480             k++;
10481           }
10482           regs[j].regmap_entry[HOST_CCREG]=CCREG;          
10483         }
10484         // Work backwards from the branch target
10485         if(j>i&&f_regmap[HOST_CCREG]==CCREG)
10486         {
10487           //printf("Extend backwards\n");
10488           int k;
10489           k=i;
10490           while(regs[k-1].regmap[HOST_CCREG]==-1) {
10491             if(count_free_regs(regs[k-1].regmap)<=minimum_free_regs[k-1]) {
10492               //printf("no free regs for store %x\n",start+(k-1)*4);
10493               break;
10494             }
10495             k--;
10496           }
10497           if(regs[k-1].regmap[HOST_CCREG]==CCREG) {
10498             //printf("Extend CC, %x ->\n",start+k*4);
10499             while(k<=i) {
10500               regs[k].regmap_entry[HOST_CCREG]=CCREG;
10501               regs[k].regmap[HOST_CCREG]=CCREG;
10502               regmap_pre[k+1][HOST_CCREG]=CCREG;
10503               regs[k+1].wasdirty|=1<<HOST_CCREG;
10504               regs[k].dirty|=1<<HOST_CCREG;
10505               regs[k].wasconst&=~(1<<HOST_CCREG);
10506               regs[k].isconst&=~(1<<HOST_CCREG);
10507               k++;
10508             }
10509           }
10510           else {
10511             //printf("Fail Extend CC, %x ->\n",start+k*4);
10512           }
10513         }
10514       }
10515       if(itype[i]!=STORE&&itype[i]!=STORELR&&itype[i]!=C1LS&&itype[i]!=SHIFT&&
10516          itype[i]!=NOP&&itype[i]!=MOV&&itype[i]!=ALU&&itype[i]!=SHIFTIMM&&
10517          itype[i]!=IMM16&&itype[i]!=LOAD&&itype[i]!=COP1&&itype[i]!=FLOAT&&
10518          itype[i]!=FCONV&&itype[i]!=FCOMP)
10519       {
10520         memcpy(f_regmap,regs[i].regmap,sizeof(f_regmap));
10521       }
10522     }
10523   }
10524   
10525   // Cache memory offset or tlb map pointer if a register is available
10526   #ifndef HOST_IMM_ADDR32
10527   #ifndef RAM_OFFSET
10528   if(using_tlb)
10529   #endif
10530   {
10531     int earliest_available[HOST_REGS];
10532     int loop_start[HOST_REGS];
10533     int score[HOST_REGS];
10534     int end[HOST_REGS];
10535     int reg=using_tlb?MMREG:ROREG;
10536
10537     // Init
10538     for(hr=0;hr<HOST_REGS;hr++) {
10539       score[hr]=0;earliest_available[hr]=0;
10540       loop_start[hr]=MAXBLOCK;
10541     }
10542     for(i=0;i<slen-1;i++)
10543     {
10544       // Can't do anything if no registers are available
10545       if(count_free_regs(regs[i].regmap)<=minimum_free_regs[i]) {
10546         for(hr=0;hr<HOST_REGS;hr++) {
10547           score[hr]=0;earliest_available[hr]=i+1;
10548           loop_start[hr]=MAXBLOCK;
10549         }
10550       }
10551       if(itype[i]==UJUMP||itype[i]==RJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP) {
10552         if(!ooo[i]) {
10553           if(count_free_regs(branch_regs[i].regmap)<=minimum_free_regs[i+1]) {
10554             for(hr=0;hr<HOST_REGS;hr++) {
10555               score[hr]=0;earliest_available[hr]=i+1;
10556               loop_start[hr]=MAXBLOCK;
10557             }
10558           }
10559         }else{
10560           if(count_free_regs(regs[i].regmap)<=minimum_free_regs[i+1]) {
10561             for(hr=0;hr<HOST_REGS;hr++) {
10562               score[hr]=0;earliest_available[hr]=i+1;
10563               loop_start[hr]=MAXBLOCK;
10564             }
10565           }
10566         }
10567       }
10568       // Mark unavailable registers
10569       for(hr=0;hr<HOST_REGS;hr++) {
10570         if(regs[i].regmap[hr]>=0) {
10571           score[hr]=0;earliest_available[hr]=i+1;
10572           loop_start[hr]=MAXBLOCK;
10573         }
10574         if(itype[i]==UJUMP||itype[i]==RJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP) {
10575           if(branch_regs[i].regmap[hr]>=0) {
10576             score[hr]=0;earliest_available[hr]=i+2;
10577             loop_start[hr]=MAXBLOCK;
10578           }
10579         }
10580       }
10581       // No register allocations after unconditional jumps
10582       if(itype[i]==UJUMP||itype[i]==RJUMP||(source[i]>>16)==0x1000)
10583       {
10584         for(hr=0;hr<HOST_REGS;hr++) {
10585           score[hr]=0;earliest_available[hr]=i+2;
10586           loop_start[hr]=MAXBLOCK;
10587         }
10588         i++; // Skip delay slot too
10589         //printf("skip delay slot: %x\n",start+i*4);
10590       }
10591       else
10592       // Possible match
10593       if(itype[i]==LOAD||itype[i]==LOADLR||
10594          itype[i]==STORE||itype[i]==STORELR||itype[i]==C1LS) {
10595         for(hr=0;hr<HOST_REGS;hr++) {
10596           if(hr!=EXCLUDE_REG) {
10597             end[hr]=i-1;
10598             for(j=i;j<slen-1;j++) {
10599               if(regs[j].regmap[hr]>=0) break;
10600               if(itype[j]==UJUMP||itype[j]==RJUMP||itype[j]==CJUMP||itype[j]==SJUMP||itype[j]==FJUMP) {
10601                 if(branch_regs[j].regmap[hr]>=0) break;
10602                 if(ooo[j]) {
10603                   if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j+1]) break;
10604                 }else{
10605                   if(count_free_regs(branch_regs[j].regmap)<=minimum_free_regs[j+1]) break;
10606                 }
10607               }
10608               else if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) break;
10609               if(itype[j]==UJUMP||itype[j]==RJUMP||itype[j]==CJUMP||itype[j]==SJUMP||itype[j]==FJUMP) {
10610                 int t=(ba[j]-start)>>2;
10611                 if(t<j&&t>=earliest_available[hr]) {
10612                   if(t==1||(t>1&&itype[t-2]!=UJUMP&&itype[t-2]!=RJUMP)||(t>1&&rt1[t-2]!=31)) { // call/ret assumes no registers allocated
10613                     // Score a point for hoisting loop invariant
10614                     if(t<loop_start[hr]) loop_start[hr]=t;
10615                     //printf("set loop_start: i=%x j=%x (%x)\n",start+i*4,start+j*4,start+t*4);
10616                     score[hr]++;
10617                     end[hr]=j;
10618                   }
10619                 }
10620                 else if(t<j) {
10621                   if(regs[t].regmap[hr]==reg) {
10622                     // Score a point if the branch target matches this register
10623                     score[hr]++;
10624                     end[hr]=j;
10625                   }
10626                 }
10627                 if(itype[j+1]==LOAD||itype[j+1]==LOADLR||
10628                    itype[j+1]==STORE||itype[j+1]==STORELR||itype[j+1]==C1LS) {
10629                   score[hr]++;
10630                   end[hr]=j;
10631                 }
10632               }
10633               if(itype[j]==UJUMP||itype[j]==RJUMP||(source[j]>>16)==0x1000)
10634               {
10635                 // Stop on unconditional branch
10636                 break;
10637               }
10638               else
10639               if(itype[j]==LOAD||itype[j]==LOADLR||
10640                  itype[j]==STORE||itype[j]==STORELR||itype[j]==C1LS) {
10641                 score[hr]++;
10642                 end[hr]=j;
10643               }
10644             }
10645           }
10646         }
10647         // Find highest score and allocate that register
10648         int maxscore=0;
10649         for(hr=0;hr<HOST_REGS;hr++) {
10650           if(hr!=EXCLUDE_REG) {
10651             if(score[hr]>score[maxscore]) {
10652               maxscore=hr;
10653               //printf("highest score: %d %d (%x->%x)\n",score[hr],hr,start+i*4,start+end[hr]*4);
10654             }
10655           }
10656         }
10657         if(score[maxscore]>1)
10658         {
10659           if(i<loop_start[maxscore]) loop_start[maxscore]=i;
10660           for(j=loop_start[maxscore];j<slen&&j<=end[maxscore];j++) {
10661             //if(regs[j].regmap[maxscore]>=0) {printf("oops: %x %x was %d=%d\n",loop_start[maxscore]*4+start,j*4+start,maxscore,regs[j].regmap[maxscore]);}
10662             assert(regs[j].regmap[maxscore]<0);
10663             if(j>loop_start[maxscore]) regs[j].regmap_entry[maxscore]=reg;
10664             regs[j].regmap[maxscore]=reg;
10665             regs[j].dirty&=~(1<<maxscore);
10666             regs[j].wasconst&=~(1<<maxscore);
10667             regs[j].isconst&=~(1<<maxscore);
10668             if(itype[j]==UJUMP||itype[j]==RJUMP||itype[j]==CJUMP||itype[j]==SJUMP||itype[j]==FJUMP) {
10669               branch_regs[j].regmap[maxscore]=reg;
10670               branch_regs[j].wasdirty&=~(1<<maxscore);
10671               branch_regs[j].dirty&=~(1<<maxscore);
10672               branch_regs[j].wasconst&=~(1<<maxscore);
10673               branch_regs[j].isconst&=~(1<<maxscore);
10674               if(itype[j]!=RJUMP&&itype[j]!=UJUMP&&(source[j]>>16)!=0x1000) {
10675                 regmap_pre[j+2][maxscore]=reg;
10676                 regs[j+2].wasdirty&=~(1<<maxscore);
10677               }
10678               // loop optimization (loop_preload)
10679               int t=(ba[j]-start)>>2;
10680               if(t==loop_start[maxscore]) {
10681                 if(t==1||(t>1&&itype[t-2]!=UJUMP&&itype[t-2]!=RJUMP)||(t>1&&rt1[t-2]!=31)) // call/ret assumes no registers allocated
10682                   regs[t].regmap_entry[maxscore]=reg;
10683               }
10684             }
10685             else
10686             {
10687               if(j<1||(itype[j-1]!=RJUMP&&itype[j-1]!=UJUMP&&itype[j-1]!=CJUMP&&itype[j-1]!=SJUMP&&itype[j-1]!=FJUMP)) {
10688                 regmap_pre[j+1][maxscore]=reg;
10689                 regs[j+1].wasdirty&=~(1<<maxscore);
10690               }
10691             }
10692           }
10693           i=j-1;
10694           if(itype[j-1]==RJUMP||itype[j-1]==UJUMP||itype[j-1]==CJUMP||itype[j-1]==SJUMP||itype[j-1]==FJUMP) i++; // skip delay slot
10695           for(hr=0;hr<HOST_REGS;hr++) {
10696             score[hr]=0;earliest_available[hr]=i+i;
10697             loop_start[hr]=MAXBLOCK;
10698           }
10699         }
10700       }
10701     }
10702   }
10703   #endif
10704   
10705   // This allocates registers (if possible) one instruction prior
10706   // to use, which can avoid a load-use penalty on certain CPUs.
10707   for(i=0;i<slen-1;i++)
10708   {
10709     if(!i||(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP))
10710     {
10711       if(!bt[i+1])
10712       {
10713         if(itype[i]==ALU||itype[i]==MOV||itype[i]==LOAD||itype[i]==SHIFTIMM||itype[i]==IMM16
10714            ||((itype[i]==COP1||itype[i]==COP2)&&opcode2[i]<3))
10715         {
10716           if(rs1[i+1]) {
10717             if((hr=get_reg(regs[i+1].regmap,rs1[i+1]))>=0)
10718             {
10719               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10720               {
10721                 regs[i].regmap[hr]=regs[i+1].regmap[hr];
10722                 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
10723                 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
10724                 regs[i].isconst&=~(1<<hr);
10725                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10726                 constmap[i][hr]=constmap[i+1][hr];
10727                 regs[i+1].wasdirty&=~(1<<hr);
10728                 regs[i].dirty&=~(1<<hr);
10729               }
10730             }
10731           }
10732           if(rs2[i+1]) {
10733             if((hr=get_reg(regs[i+1].regmap,rs2[i+1]))>=0)
10734             {
10735               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10736               {
10737                 regs[i].regmap[hr]=regs[i+1].regmap[hr];
10738                 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
10739                 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
10740                 regs[i].isconst&=~(1<<hr);
10741                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10742                 constmap[i][hr]=constmap[i+1][hr];
10743                 regs[i+1].wasdirty&=~(1<<hr);
10744                 regs[i].dirty&=~(1<<hr);
10745               }
10746             }
10747           }
10748           // Preload target address for load instruction (non-constant)
10749           if(itype[i+1]==LOAD&&rs1[i+1]&&get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10750             if((hr=get_reg(regs[i+1].regmap,rt1[i+1]))>=0)
10751             {
10752               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10753               {
10754                 regs[i].regmap[hr]=rs1[i+1];
10755                 regmap_pre[i+1][hr]=rs1[i+1];
10756                 regs[i+1].regmap_entry[hr]=rs1[i+1];
10757                 regs[i].isconst&=~(1<<hr);
10758                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10759                 constmap[i][hr]=constmap[i+1][hr];
10760                 regs[i+1].wasdirty&=~(1<<hr);
10761                 regs[i].dirty&=~(1<<hr);
10762               }
10763             }
10764           }
10765           // Load source into target register 
10766           if(lt1[i+1]&&get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10767             if((hr=get_reg(regs[i+1].regmap,rt1[i+1]))>=0)
10768             {
10769               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10770               {
10771                 regs[i].regmap[hr]=rs1[i+1];
10772                 regmap_pre[i+1][hr]=rs1[i+1];
10773                 regs[i+1].regmap_entry[hr]=rs1[i+1];
10774                 regs[i].isconst&=~(1<<hr);
10775                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10776                 constmap[i][hr]=constmap[i+1][hr];
10777                 regs[i+1].wasdirty&=~(1<<hr);
10778                 regs[i].dirty&=~(1<<hr);
10779               }
10780             }
10781           }
10782           // Preload map address
10783           #ifndef HOST_IMM_ADDR32
10784           if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS||itype[i+1]==C2LS) {
10785             hr=get_reg(regs[i+1].regmap,TLREG);
10786             if(hr>=0) {
10787               int sr=get_reg(regs[i+1].regmap,rs1[i+1]);
10788               if(sr>=0&&((regs[i+1].wasconst>>sr)&1)) {
10789                 int nr;
10790                 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10791                 {
10792                   regs[i].regmap[hr]=MGEN1+((i+1)&1);
10793                   regmap_pre[i+1][hr]=MGEN1+((i+1)&1);
10794                   regs[i+1].regmap_entry[hr]=MGEN1+((i+1)&1);
10795                   regs[i].isconst&=~(1<<hr);
10796                   regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10797                   constmap[i][hr]=constmap[i+1][hr];
10798                   regs[i+1].wasdirty&=~(1<<hr);
10799                   regs[i].dirty&=~(1<<hr);
10800                 }
10801                 else if((nr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1))>=0)
10802                 {
10803                   // move it to another register
10804                   regs[i+1].regmap[hr]=-1;
10805                   regmap_pre[i+2][hr]=-1;
10806                   regs[i+1].regmap[nr]=TLREG;
10807                   regmap_pre[i+2][nr]=TLREG;
10808                   regs[i].regmap[nr]=MGEN1+((i+1)&1);
10809                   regmap_pre[i+1][nr]=MGEN1+((i+1)&1);
10810                   regs[i+1].regmap_entry[nr]=MGEN1+((i+1)&1);
10811                   regs[i].isconst&=~(1<<nr);
10812                   regs[i+1].isconst&=~(1<<nr);
10813                   regs[i].dirty&=~(1<<nr);
10814                   regs[i+1].wasdirty&=~(1<<nr);
10815                   regs[i+1].dirty&=~(1<<nr);
10816                   regs[i+2].wasdirty&=~(1<<nr);
10817                 }
10818               }
10819             }
10820           }
10821           #endif
10822           // Address for store instruction (non-constant)
10823           if(itype[i+1]==STORE||itype[i+1]==STORELR
10824              ||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SB/SH/SW/SD/SWC1/SDC1/SWC2/SDC2
10825             if(get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10826               hr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1);
10827               if(hr<0) hr=get_reg(regs[i+1].regmap,-1);
10828               else {regs[i+1].regmap[hr]=AGEN1+((i+1)&1);regs[i+1].isconst&=~(1<<hr);}
10829               assert(hr>=0);
10830               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10831               {
10832                 regs[i].regmap[hr]=rs1[i+1];
10833                 regmap_pre[i+1][hr]=rs1[i+1];
10834                 regs[i+1].regmap_entry[hr]=rs1[i+1];
10835                 regs[i].isconst&=~(1<<hr);
10836                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10837                 constmap[i][hr]=constmap[i+1][hr];
10838                 regs[i+1].wasdirty&=~(1<<hr);
10839                 regs[i].dirty&=~(1<<hr);
10840               }
10841             }
10842           }
10843           if(itype[i+1]==LOADLR||(opcode[i+1]&0x3b)==0x31||(opcode[i+1]&0x3b)==0x32) { // LWC1/LDC1, LWC2/LDC2
10844             if(get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10845               int nr;
10846               hr=get_reg(regs[i+1].regmap,FTEMP);
10847               assert(hr>=0);
10848               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10849               {
10850                 regs[i].regmap[hr]=rs1[i+1];
10851                 regmap_pre[i+1][hr]=rs1[i+1];
10852                 regs[i+1].regmap_entry[hr]=rs1[i+1];
10853                 regs[i].isconst&=~(1<<hr);
10854                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10855                 constmap[i][hr]=constmap[i+1][hr];
10856                 regs[i+1].wasdirty&=~(1<<hr);
10857                 regs[i].dirty&=~(1<<hr);
10858               }
10859               else if((nr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1))>=0)
10860               {
10861                 // move it to another register
10862                 regs[i+1].regmap[hr]=-1;
10863                 regmap_pre[i+2][hr]=-1;
10864                 regs[i+1].regmap[nr]=FTEMP;
10865                 regmap_pre[i+2][nr]=FTEMP;
10866                 regs[i].regmap[nr]=rs1[i+1];
10867                 regmap_pre[i+1][nr]=rs1[i+1];
10868                 regs[i+1].regmap_entry[nr]=rs1[i+1];
10869                 regs[i].isconst&=~(1<<nr);
10870                 regs[i+1].isconst&=~(1<<nr);
10871                 regs[i].dirty&=~(1<<nr);
10872                 regs[i+1].wasdirty&=~(1<<nr);
10873                 regs[i+1].dirty&=~(1<<nr);
10874                 regs[i+2].wasdirty&=~(1<<nr);
10875               }
10876             }
10877           }
10878           if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR/*||itype[i+1]==C1LS||||itype[i+1]==C2LS*/) {
10879             if(itype[i+1]==LOAD) 
10880               hr=get_reg(regs[i+1].regmap,rt1[i+1]);
10881             if(itype[i+1]==LOADLR||(opcode[i+1]&0x3b)==0x31||(opcode[i+1]&0x3b)==0x32) // LWC1/LDC1, LWC2/LDC2
10882               hr=get_reg(regs[i+1].regmap,FTEMP);
10883             if(itype[i+1]==STORE||itype[i+1]==STORELR||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1/SWC2/SDC2
10884               hr=get_reg(regs[i+1].regmap,AGEN1+((i+1)&1));
10885               if(hr<0) hr=get_reg(regs[i+1].regmap,-1);
10886             }
10887             if(hr>=0&&regs[i].regmap[hr]<0) {
10888               int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
10889               if(rs>=0&&((regs[i+1].wasconst>>rs)&1)) {
10890                 regs[i].regmap[hr]=AGEN1+((i+1)&1);
10891                 regmap_pre[i+1][hr]=AGEN1+((i+1)&1);
10892                 regs[i+1].regmap_entry[hr]=AGEN1+((i+1)&1);
10893                 regs[i].isconst&=~(1<<hr);
10894                 regs[i+1].wasdirty&=~(1<<hr);
10895                 regs[i].dirty&=~(1<<hr);
10896               }
10897             }
10898           }
10899         }
10900       }
10901     }
10902   }
10903   
10904   /* Pass 6 - Optimize clean/dirty state */
10905   clean_registers(0,slen-1,1);
10906   
10907   /* Pass 7 - Identify 32-bit registers */
10908 #ifndef FORCE32
10909   provisional_r32();
10910
10911   u_int r32=0;
10912   
10913   for (i=slen-1;i>=0;i--)
10914   {
10915     int hr;
10916     if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
10917     {
10918       if(ba[i]<start || ba[i]>=(start+slen*4))
10919       {
10920         // Branch out of this block, don't need anything
10921         r32=0;
10922       }
10923       else
10924       {
10925         // Internal branch
10926         // Need whatever matches the target
10927         // (and doesn't get overwritten by the delay slot instruction)
10928         r32=0;
10929         int t=(ba[i]-start)>>2;
10930         if(ba[i]>start+i*4) {
10931           // Forward branch
10932           if(!(requires_32bit[t]&~regs[i].was32))
10933             r32|=requires_32bit[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
10934         }else{
10935           // Backward branch
10936           //if(!(regs[t].was32&~unneeded_reg_upper[t]&~regs[i].was32))
10937           //  r32|=regs[t].was32&~unneeded_reg_upper[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
10938           if(!(pr32[t]&~regs[i].was32))
10939             r32|=pr32[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
10940         }
10941       }
10942       // Conditional branch may need registers for following instructions
10943       if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
10944       {
10945         if(i<slen-2) {
10946           r32|=requires_32bit[i+2];
10947           r32&=regs[i].was32;
10948           // Mark this address as a branch target since it may be called
10949           // upon return from interrupt
10950           bt[i+2]=1;
10951         }
10952       }
10953       // Merge in delay slot
10954       if(!likely[i]) {
10955         // These are overwritten unless the branch is "likely"
10956         // and the delay slot is nullified if not taken
10957         r32&=~(1LL<<rt1[i+1]);
10958         r32&=~(1LL<<rt2[i+1]);
10959       }
10960       // Assume these are needed (delay slot)
10961       if(us1[i+1]>0)
10962       {
10963         if((regs[i].was32>>us1[i+1])&1) r32|=1LL<<us1[i+1];
10964       }
10965       if(us2[i+1]>0)
10966       {
10967         if((regs[i].was32>>us2[i+1])&1) r32|=1LL<<us2[i+1];
10968       }
10969       if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1))
10970       {
10971         if((regs[i].was32>>dep1[i+1])&1) r32|=1LL<<dep1[i+1];
10972       }
10973       if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1))
10974       {
10975         if((regs[i].was32>>dep2[i+1])&1) r32|=1LL<<dep2[i+1];
10976       }
10977     }
10978     else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
10979     {
10980       // SYSCALL instruction (software interrupt)
10981       r32=0;
10982     }
10983     else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
10984     {
10985       // ERET instruction (return from interrupt)
10986       r32=0;
10987     }
10988     // Check 32 bits
10989     r32&=~(1LL<<rt1[i]);
10990     r32&=~(1LL<<rt2[i]);
10991     if(us1[i]>0)
10992     {
10993       if((regs[i].was32>>us1[i])&1) r32|=1LL<<us1[i];
10994     }
10995     if(us2[i]>0)
10996     {
10997       if((regs[i].was32>>us2[i])&1) r32|=1LL<<us2[i];
10998     }
10999     if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1))
11000     {
11001       if((regs[i].was32>>dep1[i])&1) r32|=1LL<<dep1[i];
11002     }
11003     if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1))
11004     {
11005       if((regs[i].was32>>dep2[i])&1) r32|=1LL<<dep2[i];
11006     }
11007     requires_32bit[i]=r32;
11008     
11009     // Dirty registers which are 32-bit, require 32-bit input
11010     // as they will be written as 32-bit values
11011     for(hr=0;hr<HOST_REGS;hr++)
11012     {
11013       if(regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64) {
11014         if((regs[i].was32>>regs[i].regmap_entry[hr])&(regs[i].wasdirty>>hr)&1) {
11015           if(!((unneeded_reg_upper[i]>>regs[i].regmap_entry[hr])&1))
11016           requires_32bit[i]|=1LL<<regs[i].regmap_entry[hr];
11017         }
11018       }
11019     }
11020     //requires_32bit[i]=is32[i]&~unneeded_reg_upper[i]; // DEBUG
11021   }
11022 #else
11023   for (i=slen-1;i>=0;i--)
11024   {
11025     if(itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
11026     {
11027       // Conditional branch
11028       if((source[i]>>16)!=0x1000&&i<slen-2) {
11029         // Mark this address as a branch target since it may be called
11030         // upon return from interrupt
11031         bt[i+2]=1;
11032       }
11033     }
11034   }
11035 #endif
11036
11037   if(itype[slen-1]==SPAN) {
11038     bt[slen-1]=1; // Mark as a branch target so instruction can restart after exception
11039   }
11040
11041 #ifdef DISASM
11042   /* Debug/disassembly */
11043   for(i=0;i<slen;i++)
11044   {
11045     printf("U:");
11046     int r;
11047     for(r=1;r<=CCREG;r++) {
11048       if((unneeded_reg[i]>>r)&1) {
11049         if(r==HIREG) printf(" HI");
11050         else if(r==LOREG) printf(" LO");
11051         else printf(" r%d",r);
11052       }
11053     }
11054 #ifndef FORCE32
11055     printf(" UU:");
11056     for(r=1;r<=CCREG;r++) {
11057       if(((unneeded_reg_upper[i]&~unneeded_reg[i])>>r)&1) {
11058         if(r==HIREG) printf(" HI");
11059         else if(r==LOREG) printf(" LO");
11060         else printf(" r%d",r);
11061       }
11062     }
11063     printf(" 32:");
11064     for(r=0;r<=CCREG;r++) {
11065       //if(((is32[i]>>r)&(~unneeded_reg[i]>>r))&1) {
11066       if((regs[i].was32>>r)&1) {
11067         if(r==CCREG) printf(" CC");
11068         else if(r==HIREG) printf(" HI");
11069         else if(r==LOREG) printf(" LO");
11070         else printf(" r%d",r);
11071       }
11072     }
11073 #endif
11074     printf("\n");
11075     #if defined(__i386__) || defined(__x86_64__)
11076     printf("pre: eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",regmap_pre[i][0],regmap_pre[i][1],regmap_pre[i][2],regmap_pre[i][3],regmap_pre[i][5],regmap_pre[i][6],regmap_pre[i][7]);
11077     #endif
11078     #ifdef __arm__
11079     printf("pre: r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d\n",regmap_pre[i][0],regmap_pre[i][1],regmap_pre[i][2],regmap_pre[i][3],regmap_pre[i][4],regmap_pre[i][5],regmap_pre[i][6],regmap_pre[i][7],regmap_pre[i][8],regmap_pre[i][9],regmap_pre[i][10],regmap_pre[i][12]);
11080     #endif
11081     printf("needs: ");
11082     if(needed_reg[i]&1) printf("eax ");
11083     if((needed_reg[i]>>1)&1) printf("ecx ");
11084     if((needed_reg[i]>>2)&1) printf("edx ");
11085     if((needed_reg[i]>>3)&1) printf("ebx ");
11086     if((needed_reg[i]>>5)&1) printf("ebp ");
11087     if((needed_reg[i]>>6)&1) printf("esi ");
11088     if((needed_reg[i]>>7)&1) printf("edi ");
11089     printf("r:");
11090     for(r=0;r<=CCREG;r++) {
11091       //if(((requires_32bit[i]>>r)&(~unneeded_reg[i]>>r))&1) {
11092       if((requires_32bit[i]>>r)&1) {
11093         if(r==CCREG) printf(" CC");
11094         else if(r==HIREG) printf(" HI");
11095         else if(r==LOREG) printf(" LO");
11096         else printf(" r%d",r);
11097       }
11098     }
11099     printf("\n");
11100     /*printf("pr:");
11101     for(r=0;r<=CCREG;r++) {
11102       //if(((requires_32bit[i]>>r)&(~unneeded_reg[i]>>r))&1) {
11103       if((pr32[i]>>r)&1) {
11104         if(r==CCREG) printf(" CC");
11105         else if(r==HIREG) printf(" HI");
11106         else if(r==LOREG) printf(" LO");
11107         else printf(" r%d",r);
11108       }
11109     }
11110     if(pr32[i]!=requires_32bit[i]) printf(" OOPS");
11111     printf("\n");*/
11112     #if defined(__i386__) || defined(__x86_64__)
11113     printf("entry: eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",regs[i].regmap_entry[0],regs[i].regmap_entry[1],regs[i].regmap_entry[2],regs[i].regmap_entry[3],regs[i].regmap_entry[5],regs[i].regmap_entry[6],regs[i].regmap_entry[7]);
11114     printf("dirty: ");
11115     if(regs[i].wasdirty&1) printf("eax ");
11116     if((regs[i].wasdirty>>1)&1) printf("ecx ");
11117     if((regs[i].wasdirty>>2)&1) printf("edx ");
11118     if((regs[i].wasdirty>>3)&1) printf("ebx ");
11119     if((regs[i].wasdirty>>5)&1) printf("ebp ");
11120     if((regs[i].wasdirty>>6)&1) printf("esi ");
11121     if((regs[i].wasdirty>>7)&1) printf("edi ");
11122     #endif
11123     #ifdef __arm__
11124     printf("entry: r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d\n",regs[i].regmap_entry[0],regs[i].regmap_entry[1],regs[i].regmap_entry[2],regs[i].regmap_entry[3],regs[i].regmap_entry[4],regs[i].regmap_entry[5],regs[i].regmap_entry[6],regs[i].regmap_entry[7],regs[i].regmap_entry[8],regs[i].regmap_entry[9],regs[i].regmap_entry[10],regs[i].regmap_entry[12]);
11125     printf("dirty: ");
11126     if(regs[i].wasdirty&1) printf("r0 ");
11127     if((regs[i].wasdirty>>1)&1) printf("r1 ");
11128     if((regs[i].wasdirty>>2)&1) printf("r2 ");
11129     if((regs[i].wasdirty>>3)&1) printf("r3 ");
11130     if((regs[i].wasdirty>>4)&1) printf("r4 ");
11131     if((regs[i].wasdirty>>5)&1) printf("r5 ");
11132     if((regs[i].wasdirty>>6)&1) printf("r6 ");
11133     if((regs[i].wasdirty>>7)&1) printf("r7 ");
11134     if((regs[i].wasdirty>>8)&1) printf("r8 ");
11135     if((regs[i].wasdirty>>9)&1) printf("r9 ");
11136     if((regs[i].wasdirty>>10)&1) printf("r10 ");
11137     if((regs[i].wasdirty>>12)&1) printf("r12 ");
11138     #endif
11139     printf("\n");
11140     disassemble_inst(i);
11141     //printf ("ccadj[%d] = %d\n",i,ccadj[i]);
11142     #if defined(__i386__) || defined(__x86_64__)
11143     printf("eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d dirty: ",regs[i].regmap[0],regs[i].regmap[1],regs[i].regmap[2],regs[i].regmap[3],regs[i].regmap[5],regs[i].regmap[6],regs[i].regmap[7]);
11144     if(regs[i].dirty&1) printf("eax ");
11145     if((regs[i].dirty>>1)&1) printf("ecx ");
11146     if((regs[i].dirty>>2)&1) printf("edx ");
11147     if((regs[i].dirty>>3)&1) printf("ebx ");
11148     if((regs[i].dirty>>5)&1) printf("ebp ");
11149     if((regs[i].dirty>>6)&1) printf("esi ");
11150     if((regs[i].dirty>>7)&1) printf("edi ");
11151     #endif
11152     #ifdef __arm__
11153     printf("r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d dirty: ",regs[i].regmap[0],regs[i].regmap[1],regs[i].regmap[2],regs[i].regmap[3],regs[i].regmap[4],regs[i].regmap[5],regs[i].regmap[6],regs[i].regmap[7],regs[i].regmap[8],regs[i].regmap[9],regs[i].regmap[10],regs[i].regmap[12]);
11154     if(regs[i].dirty&1) printf("r0 ");
11155     if((regs[i].dirty>>1)&1) printf("r1 ");
11156     if((regs[i].dirty>>2)&1) printf("r2 ");
11157     if((regs[i].dirty>>3)&1) printf("r3 ");
11158     if((regs[i].dirty>>4)&1) printf("r4 ");
11159     if((regs[i].dirty>>5)&1) printf("r5 ");
11160     if((regs[i].dirty>>6)&1) printf("r6 ");
11161     if((regs[i].dirty>>7)&1) printf("r7 ");
11162     if((regs[i].dirty>>8)&1) printf("r8 ");
11163     if((regs[i].dirty>>9)&1) printf("r9 ");
11164     if((regs[i].dirty>>10)&1) printf("r10 ");
11165     if((regs[i].dirty>>12)&1) printf("r12 ");
11166     #endif
11167     printf("\n");
11168     if(regs[i].isconst) {
11169       printf("constants: ");
11170       #if defined(__i386__) || defined(__x86_64__)
11171       if(regs[i].isconst&1) printf("eax=%x ",(int)constmap[i][0]);
11172       if((regs[i].isconst>>1)&1) printf("ecx=%x ",(int)constmap[i][1]);
11173       if((regs[i].isconst>>2)&1) printf("edx=%x ",(int)constmap[i][2]);
11174       if((regs[i].isconst>>3)&1) printf("ebx=%x ",(int)constmap[i][3]);
11175       if((regs[i].isconst>>5)&1) printf("ebp=%x ",(int)constmap[i][5]);
11176       if((regs[i].isconst>>6)&1) printf("esi=%x ",(int)constmap[i][6]);
11177       if((regs[i].isconst>>7)&1) printf("edi=%x ",(int)constmap[i][7]);
11178       #endif
11179       #ifdef __arm__
11180       if(regs[i].isconst&1) printf("r0=%x ",(int)constmap[i][0]);
11181       if((regs[i].isconst>>1)&1) printf("r1=%x ",(int)constmap[i][1]);
11182       if((regs[i].isconst>>2)&1) printf("r2=%x ",(int)constmap[i][2]);
11183       if((regs[i].isconst>>3)&1) printf("r3=%x ",(int)constmap[i][3]);
11184       if((regs[i].isconst>>4)&1) printf("r4=%x ",(int)constmap[i][4]);
11185       if((regs[i].isconst>>5)&1) printf("r5=%x ",(int)constmap[i][5]);
11186       if((regs[i].isconst>>6)&1) printf("r6=%x ",(int)constmap[i][6]);
11187       if((regs[i].isconst>>7)&1) printf("r7=%x ",(int)constmap[i][7]);
11188       if((regs[i].isconst>>8)&1) printf("r8=%x ",(int)constmap[i][8]);
11189       if((regs[i].isconst>>9)&1) printf("r9=%x ",(int)constmap[i][9]);
11190       if((regs[i].isconst>>10)&1) printf("r10=%x ",(int)constmap[i][10]);
11191       if((regs[i].isconst>>12)&1) printf("r12=%x ",(int)constmap[i][12]);
11192       #endif
11193       printf("\n");
11194     }
11195 #ifndef FORCE32
11196     printf(" 32:");
11197     for(r=0;r<=CCREG;r++) {
11198       if((regs[i].is32>>r)&1) {
11199         if(r==CCREG) printf(" CC");
11200         else if(r==HIREG) printf(" HI");
11201         else if(r==LOREG) printf(" LO");
11202         else printf(" r%d",r);
11203       }
11204     }
11205     printf("\n");
11206 #endif
11207     /*printf(" p32:");
11208     for(r=0;r<=CCREG;r++) {
11209       if((p32[i]>>r)&1) {
11210         if(r==CCREG) printf(" CC");
11211         else if(r==HIREG) printf(" HI");
11212         else if(r==LOREG) printf(" LO");
11213         else printf(" r%d",r);
11214       }
11215     }
11216     if(p32[i]!=regs[i].is32) printf(" NO MATCH\n");
11217     else printf("\n");*/
11218     if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP) {
11219       #if defined(__i386__) || defined(__x86_64__)
11220       printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d dirty: ",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
11221       if(branch_regs[i].dirty&1) printf("eax ");
11222       if((branch_regs[i].dirty>>1)&1) printf("ecx ");
11223       if((branch_regs[i].dirty>>2)&1) printf("edx ");
11224       if((branch_regs[i].dirty>>3)&1) printf("ebx ");
11225       if((branch_regs[i].dirty>>5)&1) printf("ebp ");
11226       if((branch_regs[i].dirty>>6)&1) printf("esi ");
11227       if((branch_regs[i].dirty>>7)&1) printf("edi ");
11228       #endif
11229       #ifdef __arm__
11230       printf("branch(%d): r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d dirty: ",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[4],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7],branch_regs[i].regmap[8],branch_regs[i].regmap[9],branch_regs[i].regmap[10],branch_regs[i].regmap[12]);
11231       if(branch_regs[i].dirty&1) printf("r0 ");
11232       if((branch_regs[i].dirty>>1)&1) printf("r1 ");
11233       if((branch_regs[i].dirty>>2)&1) printf("r2 ");
11234       if((branch_regs[i].dirty>>3)&1) printf("r3 ");
11235       if((branch_regs[i].dirty>>4)&1) printf("r4 ");
11236       if((branch_regs[i].dirty>>5)&1) printf("r5 ");
11237       if((branch_regs[i].dirty>>6)&1) printf("r6 ");
11238       if((branch_regs[i].dirty>>7)&1) printf("r7 ");
11239       if((branch_regs[i].dirty>>8)&1) printf("r8 ");
11240       if((branch_regs[i].dirty>>9)&1) printf("r9 ");
11241       if((branch_regs[i].dirty>>10)&1) printf("r10 ");
11242       if((branch_regs[i].dirty>>12)&1) printf("r12 ");
11243       #endif
11244 #ifndef FORCE32
11245       printf(" 32:");
11246       for(r=0;r<=CCREG;r++) {
11247         if((branch_regs[i].is32>>r)&1) {
11248           if(r==CCREG) printf(" CC");
11249           else if(r==HIREG) printf(" HI");
11250           else if(r==LOREG) printf(" LO");
11251           else printf(" r%d",r);
11252         }
11253       }
11254       printf("\n");
11255 #endif
11256     }
11257   }
11258 #endif // DISASM
11259
11260   /* Pass 8 - Assembly */
11261   linkcount=0;stubcount=0;
11262   ds=0;is_delayslot=0;
11263   cop1_usable=0;
11264   uint64_t is32_pre=0;
11265   u_int dirty_pre=0;
11266   u_int beginning=(u_int)out;
11267   if((u_int)addr&1) {
11268     ds=1;
11269     pagespan_ds();
11270   }
11271   u_int instr_addr0_override=0;
11272
11273 #ifdef PCSX
11274   if (start == 0x80030000) {
11275     // nasty hack for fastbios thing
11276     // override block entry to this code
11277     instr_addr0_override=(u_int)out;
11278     emit_movimm(start,0);
11279     // abuse io address var as a flag that we
11280     // have already returned here once
11281     emit_readword((int)&address,1);
11282     emit_writeword(0,(int)&pcaddr);
11283     emit_writeword(0,(int)&address);
11284     emit_cmp(0,1);
11285     emit_jne((int)new_dyna_leave);
11286   }
11287 #endif
11288   for(i=0;i<slen;i++)
11289   {
11290     //if(ds) printf("ds: ");
11291     disassemble_inst(i);
11292     if(ds) {
11293       ds=0; // Skip delay slot
11294       if(bt[i]) assem_debug("OOPS - branch into delay slot\n");
11295       instr_addr[i]=0;
11296     } else {
11297       speculate_register_values(i);
11298       #ifndef DESTRUCTIVE_WRITEBACK
11299       if(i<2||(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000))
11300       {
11301         wb_sx(regmap_pre[i],regs[i].regmap_entry,regs[i].wasdirty,is32_pre,regs[i].was32,
11302               unneeded_reg[i],unneeded_reg_upper[i]);
11303         wb_valid(regmap_pre[i],regs[i].regmap_entry,dirty_pre,regs[i].wasdirty,is32_pre,
11304               unneeded_reg[i],unneeded_reg_upper[i]);
11305       }
11306       if((itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)&&!likely[i]) {
11307         is32_pre=branch_regs[i].is32;
11308         dirty_pre=branch_regs[i].dirty;
11309       }else{
11310         is32_pre=regs[i].is32;
11311         dirty_pre=regs[i].dirty;
11312       }
11313       #endif
11314       // write back
11315       if(i<2||(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000))
11316       {
11317         wb_invalidate(regmap_pre[i],regs[i].regmap_entry,regs[i].wasdirty,regs[i].was32,
11318                       unneeded_reg[i],unneeded_reg_upper[i]);
11319         loop_preload(regmap_pre[i],regs[i].regmap_entry);
11320       }
11321       // branch target entry point
11322       instr_addr[i]=(u_int)out;
11323       assem_debug("<->\n");
11324       // load regs
11325       if(regs[i].regmap_entry[HOST_CCREG]==CCREG&&regs[i].regmap[HOST_CCREG]!=CCREG)
11326         wb_register(CCREG,regs[i].regmap_entry,regs[i].wasdirty,regs[i].was32);
11327       load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i],rs2[i]);
11328       address_generation(i,&regs[i],regs[i].regmap_entry);
11329       load_consts(regmap_pre[i],regs[i].regmap,regs[i].was32,i);
11330       if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
11331       {
11332         // Load the delay slot registers if necessary
11333         if(rs1[i+1]!=rs1[i]&&rs1[i+1]!=rs2[i]&&(rs1[i+1]!=rt1[i]||rt1[i]==0))
11334           load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i+1],rs1[i+1]);
11335         if(rs2[i+1]!=rs1[i+1]&&rs2[i+1]!=rs1[i]&&rs2[i+1]!=rs2[i]&&(rs2[i+1]!=rt1[i]||rt1[i]==0))
11336           load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs2[i+1],rs2[i+1]);
11337         if(itype[i+1]==STORE||itype[i+1]==STORELR||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a)
11338           load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,INVCP,INVCP);
11339       }
11340       else if(i+1<slen)
11341       {
11342         // Preload registers for following instruction
11343         if(rs1[i+1]!=rs1[i]&&rs1[i+1]!=rs2[i])
11344           if(rs1[i+1]!=rt1[i]&&rs1[i+1]!=rt2[i])
11345             load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i+1],rs1[i+1]);
11346         if(rs2[i+1]!=rs1[i+1]&&rs2[i+1]!=rs1[i]&&rs2[i+1]!=rs2[i])
11347           if(rs2[i+1]!=rt1[i]&&rs2[i+1]!=rt2[i])
11348             load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs2[i+1],rs2[i+1]);
11349       }
11350       // TODO: if(is_ooo(i)) address_generation(i+1);
11351       if(itype[i]==CJUMP||itype[i]==FJUMP)
11352         load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,CCREG,CCREG);
11353       if(itype[i]==STORE||itype[i]==STORELR||(opcode[i]&0x3b)==0x39||(opcode[i]&0x3b)==0x3a)
11354         load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,INVCP,INVCP);
11355       if(bt[i]) cop1_usable=0;
11356       // assemble
11357       switch(itype[i]) {
11358         case ALU:
11359           alu_assemble(i,&regs[i]);break;
11360         case IMM16:
11361           imm16_assemble(i,&regs[i]);break;
11362         case SHIFT:
11363           shift_assemble(i,&regs[i]);break;
11364         case SHIFTIMM:
11365           shiftimm_assemble(i,&regs[i]);break;
11366         case LOAD:
11367           load_assemble(i,&regs[i]);break;
11368         case LOADLR:
11369           loadlr_assemble(i,&regs[i]);break;
11370         case STORE:
11371           store_assemble(i,&regs[i]);break;
11372         case STORELR:
11373           storelr_assemble(i,&regs[i]);break;
11374         case COP0:
11375           cop0_assemble(i,&regs[i]);break;
11376         case COP1:
11377           cop1_assemble(i,&regs[i]);break;
11378         case C1LS:
11379           c1ls_assemble(i,&regs[i]);break;
11380         case COP2:
11381           cop2_assemble(i,&regs[i]);break;
11382         case C2LS:
11383           c2ls_assemble(i,&regs[i]);break;
11384         case C2OP:
11385           c2op_assemble(i,&regs[i]);break;
11386         case FCONV:
11387           fconv_assemble(i,&regs[i]);break;
11388         case FLOAT:
11389           float_assemble(i,&regs[i]);break;
11390         case FCOMP:
11391           fcomp_assemble(i,&regs[i]);break;
11392         case MULTDIV:
11393           multdiv_assemble(i,&regs[i]);break;
11394         case MOV:
11395           mov_assemble(i,&regs[i]);break;
11396         case SYSCALL:
11397           syscall_assemble(i,&regs[i]);break;
11398         case HLECALL:
11399           hlecall_assemble(i,&regs[i]);break;
11400         case INTCALL:
11401           intcall_assemble(i,&regs[i]);break;
11402         case UJUMP:
11403           ujump_assemble(i,&regs[i]);ds=1;break;
11404         case RJUMP:
11405           rjump_assemble(i,&regs[i]);ds=1;break;
11406         case CJUMP:
11407           cjump_assemble(i,&regs[i]);ds=1;break;
11408         case SJUMP:
11409           sjump_assemble(i,&regs[i]);ds=1;break;
11410         case FJUMP:
11411           fjump_assemble(i,&regs[i]);ds=1;break;
11412         case SPAN:
11413           pagespan_assemble(i,&regs[i]);break;
11414       }
11415       if(itype[i]==UJUMP||itype[i]==RJUMP||(source[i]>>16)==0x1000)
11416         literal_pool(1024);
11417       else
11418         literal_pool_jumpover(256);
11419     }
11420   }
11421   //assert(itype[i-2]==UJUMP||itype[i-2]==RJUMP||(source[i-2]>>16)==0x1000);
11422   // If the block did not end with an unconditional branch,
11423   // add a jump to the next instruction.
11424   if(i>1) {
11425     if(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000&&itype[i-1]!=SPAN) {
11426       assert(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP);
11427       assert(i==slen);
11428       if(itype[i-2]!=CJUMP&&itype[i-2]!=SJUMP&&itype[i-2]!=FJUMP) {
11429         store_regs_bt(regs[i-1].regmap,regs[i-1].is32,regs[i-1].dirty,start+i*4);
11430         if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
11431           emit_loadreg(CCREG,HOST_CCREG);
11432         emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i-1]+1),HOST_CCREG);
11433       }
11434       else if(!likely[i-2])
11435       {
11436         store_regs_bt(branch_regs[i-2].regmap,branch_regs[i-2].is32,branch_regs[i-2].dirty,start+i*4);
11437         assert(branch_regs[i-2].regmap[HOST_CCREG]==CCREG);
11438       }
11439       else
11440       {
11441         store_regs_bt(regs[i-2].regmap,regs[i-2].is32,regs[i-2].dirty,start+i*4);
11442         assert(regs[i-2].regmap[HOST_CCREG]==CCREG);
11443       }
11444       add_to_linker((int)out,start+i*4,0);
11445       emit_jmp(0);
11446     }
11447   }
11448   else
11449   {
11450     assert(i>0);
11451     assert(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP);
11452     store_regs_bt(regs[i-1].regmap,regs[i-1].is32,regs[i-1].dirty,start+i*4);
11453     if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
11454       emit_loadreg(CCREG,HOST_CCREG);
11455     emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i-1]+1),HOST_CCREG);
11456     add_to_linker((int)out,start+i*4,0);
11457     emit_jmp(0);
11458   }
11459
11460   // TODO: delay slot stubs?
11461   // Stubs
11462   for(i=0;i<stubcount;i++)
11463   {
11464     switch(stubs[i][0])
11465     {
11466       case LOADB_STUB:
11467       case LOADH_STUB:
11468       case LOADW_STUB:
11469       case LOADD_STUB:
11470       case LOADBU_STUB:
11471       case LOADHU_STUB:
11472         do_readstub(i);break;
11473       case STOREB_STUB:
11474       case STOREH_STUB:
11475       case STOREW_STUB:
11476       case STORED_STUB:
11477         do_writestub(i);break;
11478       case CC_STUB:
11479         do_ccstub(i);break;
11480       case INVCODE_STUB:
11481         do_invstub(i);break;
11482       case FP_STUB:
11483         do_cop1stub(i);break;
11484       case STORELR_STUB:
11485         do_unalignedwritestub(i);break;
11486     }
11487   }
11488
11489   if (instr_addr0_override)
11490     instr_addr[0] = instr_addr0_override;
11491
11492   /* Pass 9 - Linker */
11493   for(i=0;i<linkcount;i++)
11494   {
11495     assem_debug("%8x -> %8x\n",link_addr[i][0],link_addr[i][1]);
11496     literal_pool(64);
11497     if(!link_addr[i][2])
11498     {
11499       void *stub=out;
11500       void *addr=check_addr(link_addr[i][1]);
11501       emit_extjump(link_addr[i][0],link_addr[i][1]);
11502       if(addr) {
11503         set_jump_target(link_addr[i][0],(int)addr);
11504         add_link(link_addr[i][1],stub);
11505       }
11506       else set_jump_target(link_addr[i][0],(int)stub);
11507     }
11508     else
11509     {
11510       // Internal branch
11511       int target=(link_addr[i][1]-start)>>2;
11512       assert(target>=0&&target<slen);
11513       assert(instr_addr[target]);
11514       //#ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
11515       //set_jump_target_fillslot(link_addr[i][0],instr_addr[target],link_addr[i][2]>>1);
11516       //#else
11517       set_jump_target(link_addr[i][0],instr_addr[target]);
11518       //#endif
11519     }
11520   }
11521   // External Branch Targets (jump_in)
11522   if(copy+slen*4>(void *)shadow+sizeof(shadow)) copy=shadow;
11523   for(i=0;i<slen;i++)
11524   {
11525     if(bt[i]||i==0)
11526     {
11527       if(instr_addr[i]) // TODO - delay slots (=null)
11528       {
11529         u_int vaddr=start+i*4;
11530         u_int page=get_page(vaddr);
11531         u_int vpage=get_vpage(vaddr);
11532         literal_pool(256);
11533         //if(!(is32[i]&(~unneeded_reg_upper[i])&~(1LL<<CCREG)))
11534 #ifndef FORCE32
11535         if(!requires_32bit[i])
11536 #else
11537         if(1)
11538 #endif
11539         {
11540           assem_debug("%8x (%d) <- %8x\n",instr_addr[i],i,start+i*4);
11541           assem_debug("jump_in: %x\n",start+i*4);
11542           ll_add(jump_dirty+vpage,vaddr,(void *)out);
11543           int entry_point=do_dirty_stub(i);
11544           ll_add(jump_in+page,vaddr,(void *)entry_point);
11545           // If there was an existing entry in the hash table,
11546           // replace it with the new address.
11547           // Don't add new entries.  We'll insert the
11548           // ones that actually get used in check_addr().
11549           int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
11550           if(ht_bin[0]==vaddr) {
11551             ht_bin[1]=entry_point;
11552           }
11553           if(ht_bin[2]==vaddr) {
11554             ht_bin[3]=entry_point;
11555           }
11556         }
11557         else
11558         {
11559           u_int r=requires_32bit[i]|!!(requires_32bit[i]>>32);
11560           assem_debug("%8x (%d) <- %8x\n",instr_addr[i],i,start+i*4);
11561           assem_debug("jump_in: %x (restricted - %x)\n",start+i*4,r);
11562           //int entry_point=(int)out;
11563           ////assem_debug("entry_point: %x\n",entry_point);
11564           //load_regs_entry(i);
11565           //if(entry_point==(int)out)
11566           //  entry_point=instr_addr[i];
11567           //else
11568           //  emit_jmp(instr_addr[i]);
11569           //ll_add_32(jump_in+page,vaddr,r,(void *)entry_point);
11570           ll_add_32(jump_dirty+vpage,vaddr,r,(void *)out);
11571           int entry_point=do_dirty_stub(i);
11572           ll_add_32(jump_in+page,vaddr,r,(void *)entry_point);
11573         }
11574       }
11575     }
11576   }
11577   // Write out the literal pool if necessary
11578   literal_pool(0);
11579   #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
11580   // Align code
11581   if(((u_int)out)&7) emit_addnop(13);
11582   #endif
11583   assert((u_int)out-beginning<MAX_OUTPUT_BLOCK_SIZE);
11584   //printf("shadow buffer: %x-%x\n",(int)copy,(int)copy+slen*4);
11585   memcpy(copy,source,slen*4);
11586   copy+=slen*4;
11587   
11588   #ifdef __arm__
11589   __clear_cache((void *)beginning,out);
11590   #endif
11591   
11592   // If we're within 256K of the end of the buffer,
11593   // start over from the beginning. (Is 256K enough?)
11594   if((u_int)out>(u_int)BASE_ADDR+(1<<TARGET_SIZE_2)-MAX_OUTPUT_BLOCK_SIZE) out=(u_char *)BASE_ADDR;
11595   
11596   // Trap writes to any of the pages we compiled
11597   for(i=start>>12;i<=(start+slen*4)>>12;i++) {
11598     invalid_code[i]=0;
11599 #ifndef DISABLE_TLB
11600     memory_map[i]|=0x40000000;
11601     if((signed int)start>=(signed int)0xC0000000) {
11602       assert(using_tlb);
11603       j=(((u_int)i<<12)+(memory_map[i]<<2)-(u_int)rdram+(u_int)0x80000000)>>12;
11604       invalid_code[j]=0;
11605       memory_map[j]|=0x40000000;
11606       //printf("write protect physical page: %x (virtual %x)\n",j<<12,start);
11607     }
11608 #endif
11609   }
11610   inv_code_start=inv_code_end=~0;
11611 #ifdef PCSX
11612   // for PCSX we need to mark all mirrors too
11613   if(get_page(start)<(RAM_SIZE>>12))
11614     for(i=start>>12;i<=(start+slen*4)>>12;i++)
11615       invalid_code[((u_int)0x00000000>>12)|(i&0x1ff)]=
11616       invalid_code[((u_int)0x80000000>>12)|(i&0x1ff)]=
11617       invalid_code[((u_int)0xa0000000>>12)|(i&0x1ff)]=0;
11618 #endif
11619   
11620   /* Pass 10 - Free memory by expiring oldest blocks */
11621   
11622   int end=((((int)out-(int)BASE_ADDR)>>(TARGET_SIZE_2-16))+16384)&65535;
11623   while(expirep!=end)
11624   {
11625     int shift=TARGET_SIZE_2-3; // Divide into 8 blocks
11626     int base=(int)BASE_ADDR+((expirep>>13)<<shift); // Base address of this block
11627     inv_debug("EXP: Phase %d\n",expirep);
11628     switch((expirep>>11)&3)
11629     {
11630       case 0:
11631         // Clear jump_in and jump_dirty
11632         ll_remove_matching_addrs(jump_in+(expirep&2047),base,shift);
11633         ll_remove_matching_addrs(jump_dirty+(expirep&2047),base,shift);
11634         ll_remove_matching_addrs(jump_in+2048+(expirep&2047),base,shift);
11635         ll_remove_matching_addrs(jump_dirty+2048+(expirep&2047),base,shift);
11636         break;
11637       case 1:
11638         // Clear pointers
11639         ll_kill_pointers(jump_out[expirep&2047],base,shift);
11640         ll_kill_pointers(jump_out[(expirep&2047)+2048],base,shift);
11641         break;
11642       case 2:
11643         // Clear hash table
11644         for(i=0;i<32;i++) {
11645           int *ht_bin=hash_table[((expirep&2047)<<5)+i];
11646           if((ht_bin[3]>>shift)==(base>>shift) ||
11647              ((ht_bin[3]-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(base>>shift)) {
11648             inv_debug("EXP: Remove hash %x -> %x\n",ht_bin[2],ht_bin[3]);
11649             ht_bin[2]=ht_bin[3]=-1;
11650           }
11651           if((ht_bin[1]>>shift)==(base>>shift) ||
11652              ((ht_bin[1]-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(base>>shift)) {
11653             inv_debug("EXP: Remove hash %x -> %x\n",ht_bin[0],ht_bin[1]);
11654             ht_bin[0]=ht_bin[2];
11655             ht_bin[1]=ht_bin[3];
11656             ht_bin[2]=ht_bin[3]=-1;
11657           }
11658         }
11659         break;
11660       case 3:
11661         // Clear jump_out
11662         #ifdef __arm__
11663         if((expirep&2047)==0) 
11664           do_clear_cache();
11665         #endif
11666         ll_remove_matching_addrs(jump_out+(expirep&2047),base,shift);
11667         ll_remove_matching_addrs(jump_out+2048+(expirep&2047),base,shift);
11668         break;
11669     }
11670     expirep=(expirep+1)&65535;
11671   }
11672   return 0;
11673 }
11674
11675 // vim:shiftwidth=2:expandtab