drc: fix SP mirror hack
[pcsx_rearmed.git] / libpcsxcore / new_dynarec / new_dynarec.c
1 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
2  *   Mupen64plus - new_dynarec.c                                           *
3  *   Copyright (C) 2009-2011 Ari64                                         *
4  *                                                                         *
5  *   This program is free software; you can redistribute it and/or modify  *
6  *   it under the terms of the GNU General Public License as published by  *
7  *   the Free Software Foundation; either version 2 of the License, or     *
8  *   (at your option) any later version.                                   *
9  *                                                                         *
10  *   This program is distributed in the hope that it will be useful,       *
11  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
12  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
13  *   GNU General Public License for more details.                          *
14  *                                                                         *
15  *   You should have received a copy of the GNU General Public License     *
16  *   along with this program; if not, write to the                         *
17  *   Free Software Foundation, Inc.,                                       *
18  *   51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.          *
19  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
20
21 #include <stdlib.h>
22 #include <stdint.h> //include for uint64_t
23 #include <assert.h>
24
25 #include "emu_if.h" //emulator interface
26
27 #include <sys/mman.h>
28
29 #ifdef __i386__
30 #include "assem_x86.h"
31 #endif
32 #ifdef __x86_64__
33 #include "assem_x64.h"
34 #endif
35 #ifdef __arm__
36 #include "assem_arm.h"
37 #endif
38
39 #define MAXBLOCK 4096
40 #define MAX_OUTPUT_BLOCK_SIZE 262144
41 #define CLOCK_DIVIDER 2
42
43 struct regstat
44 {
45   signed char regmap_entry[HOST_REGS];
46   signed char regmap[HOST_REGS];
47   uint64_t was32;
48   uint64_t is32;
49   uint64_t wasdirty;
50   uint64_t dirty;
51   uint64_t u;
52   uint64_t uu;
53   u_int wasconst;
54   u_int isconst;
55   uint64_t constmap[HOST_REGS];
56 };
57
58 struct ll_entry
59 {
60   u_int vaddr;
61   u_int reg32;
62   void *addr;
63   struct ll_entry *next;
64 };
65
66   u_int start;
67   u_int *source;
68   u_int pagelimit;
69   char insn[MAXBLOCK][10];
70   u_char itype[MAXBLOCK];
71   u_char opcode[MAXBLOCK];
72   u_char opcode2[MAXBLOCK];
73   u_char bt[MAXBLOCK];
74   u_char rs1[MAXBLOCK];
75   u_char rs2[MAXBLOCK];
76   u_char rt1[MAXBLOCK];
77   u_char rt2[MAXBLOCK];
78   u_char us1[MAXBLOCK];
79   u_char us2[MAXBLOCK];
80   u_char dep1[MAXBLOCK];
81   u_char dep2[MAXBLOCK];
82   u_char lt1[MAXBLOCK];
83   int imm[MAXBLOCK];
84   u_int ba[MAXBLOCK];
85   char likely[MAXBLOCK];
86   char is_ds[MAXBLOCK];
87   char ooo[MAXBLOCK];
88   uint64_t unneeded_reg[MAXBLOCK];
89   uint64_t unneeded_reg_upper[MAXBLOCK];
90   uint64_t branch_unneeded_reg[MAXBLOCK];
91   uint64_t branch_unneeded_reg_upper[MAXBLOCK];
92   uint64_t p32[MAXBLOCK];
93   uint64_t pr32[MAXBLOCK];
94   signed char regmap_pre[MAXBLOCK][HOST_REGS];
95   signed char regmap[MAXBLOCK][HOST_REGS];
96   signed char regmap_entry[MAXBLOCK][HOST_REGS];
97   uint64_t constmap[MAXBLOCK][HOST_REGS];
98   struct regstat regs[MAXBLOCK];
99   struct regstat branch_regs[MAXBLOCK];
100   signed char minimum_free_regs[MAXBLOCK];
101   u_int needed_reg[MAXBLOCK];
102   uint64_t requires_32bit[MAXBLOCK];
103   u_int wont_dirty[MAXBLOCK];
104   u_int will_dirty[MAXBLOCK];
105   int ccadj[MAXBLOCK];
106   int slen;
107   u_int instr_addr[MAXBLOCK];
108   u_int link_addr[MAXBLOCK][3];
109   int linkcount;
110   u_int stubs[MAXBLOCK*3][8];
111   int stubcount;
112   u_int literals[1024][2];
113   int literalcount;
114   int is_delayslot;
115   int cop1_usable;
116   u_char *out;
117   struct ll_entry *jump_in[4096];
118   struct ll_entry *jump_out[4096];
119   struct ll_entry *jump_dirty[4096];
120   u_int hash_table[65536][4]  __attribute__((aligned(16)));
121   char shadow[1048576]  __attribute__((aligned(16)));
122   void *copy;
123   int expirep;
124 #ifndef PCSX
125   u_int using_tlb;
126 #else
127   static const u_int using_tlb=0;
128 #endif
129   static u_int sp_in_mirror;
130   u_int stop_after_jal;
131   extern u_char restore_candidate[512];
132   extern int cycle_count;
133
134   /* registers that may be allocated */
135   /* 1-31 gpr */
136 #define HIREG 32 // hi
137 #define LOREG 33 // lo
138 #define FSREG 34 // FPU status (FCSR)
139 #define CSREG 35 // Coprocessor status
140 #define CCREG 36 // Cycle count
141 #define INVCP 37 // Pointer to invalid_code
142 #define MMREG 38 // Pointer to memory_map
143 #define ROREG 39 // ram offset (if rdram!=0x80000000)
144 #define TEMPREG 40
145 #define FTEMP 40 // FPU temporary register
146 #define PTEMP 41 // Prefetch temporary register
147 #define TLREG 42 // TLB mapping offset
148 #define RHASH 43 // Return address hash
149 #define RHTBL 44 // Return address hash table address
150 #define RTEMP 45 // JR/JALR address register
151 #define MAXREG 45
152 #define AGEN1 46 // Address generation temporary register
153 #define AGEN2 47 // Address generation temporary register
154 #define MGEN1 48 // Maptable address generation temporary register
155 #define MGEN2 49 // Maptable address generation temporary register
156 #define BTREG 50 // Branch target temporary register
157
158   /* instruction types */
159 #define NOP 0     // No operation
160 #define LOAD 1    // Load
161 #define STORE 2   // Store
162 #define LOADLR 3  // Unaligned load
163 #define STORELR 4 // Unaligned store
164 #define MOV 5     // Move 
165 #define ALU 6     // Arithmetic/logic
166 #define MULTDIV 7 // Multiply/divide
167 #define SHIFT 8   // Shift by register
168 #define SHIFTIMM 9// Shift by immediate
169 #define IMM16 10  // 16-bit immediate
170 #define RJUMP 11  // Unconditional jump to register
171 #define UJUMP 12  // Unconditional jump
172 #define CJUMP 13  // Conditional branch (BEQ/BNE/BGTZ/BLEZ)
173 #define SJUMP 14  // Conditional branch (regimm format)
174 #define COP0 15   // Coprocessor 0
175 #define COP1 16   // Coprocessor 1
176 #define C1LS 17   // Coprocessor 1 load/store
177 #define FJUMP 18  // Conditional branch (floating point)
178 #define FLOAT 19  // Floating point unit
179 #define FCONV 20  // Convert integer to float
180 #define FCOMP 21  // Floating point compare (sets FSREG)
181 #define SYSCALL 22// SYSCALL
182 #define OTHER 23  // Other
183 #define SPAN 24   // Branch/delay slot spans 2 pages
184 #define NI 25     // Not implemented
185 #define HLECALL 26// PCSX fake opcodes for HLE
186 #define COP2 27   // Coprocessor 2 move
187 #define C2LS 28   // Coprocessor 2 load/store
188 #define C2OP 29   // Coprocessor 2 operation
189 #define INTCALL 30// Call interpreter to handle rare corner cases
190
191   /* stubs */
192 #define CC_STUB 1
193 #define FP_STUB 2
194 #define LOADB_STUB 3
195 #define LOADH_STUB 4
196 #define LOADW_STUB 5
197 #define LOADD_STUB 6
198 #define LOADBU_STUB 7
199 #define LOADHU_STUB 8
200 #define STOREB_STUB 9
201 #define STOREH_STUB 10
202 #define STOREW_STUB 11
203 #define STORED_STUB 12
204 #define STORELR_STUB 13
205 #define INVCODE_STUB 14
206
207   /* branch codes */
208 #define TAKEN 1
209 #define NOTTAKEN 2
210 #define NULLDS 3
211
212 // asm linkage
213 int new_recompile_block(int addr);
214 void *get_addr_ht(u_int vaddr);
215 void invalidate_block(u_int block);
216 void invalidate_addr(u_int addr);
217 void remove_hash(int vaddr);
218 void jump_vaddr();
219 void dyna_linker();
220 void dyna_linker_ds();
221 void verify_code();
222 void verify_code_vm();
223 void verify_code_ds();
224 void cc_interrupt();
225 void fp_exception();
226 void fp_exception_ds();
227 void jump_syscall();
228 void jump_syscall_hle();
229 void jump_eret();
230 void jump_hlecall();
231 void jump_intcall();
232 void new_dyna_leave();
233
234 // TLB
235 void TLBWI_new();
236 void TLBWR_new();
237 void read_nomem_new();
238 void read_nomemb_new();
239 void read_nomemh_new();
240 void read_nomemd_new();
241 void write_nomem_new();
242 void write_nomemb_new();
243 void write_nomemh_new();
244 void write_nomemd_new();
245 void write_rdram_new();
246 void write_rdramb_new();
247 void write_rdramh_new();
248 void write_rdramd_new();
249 extern u_int memory_map[1048576];
250
251 // Needed by assembler
252 void wb_register(signed char r,signed char regmap[],uint64_t dirty,uint64_t is32);
253 void wb_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty);
254 void wb_needed_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr);
255 void load_all_regs(signed char i_regmap[]);
256 void load_needed_regs(signed char i_regmap[],signed char next_regmap[]);
257 void load_regs_entry(int t);
258 void load_all_consts(signed char regmap[],int is32,u_int dirty,int i);
259
260 int tracedebug=0;
261
262 //#define DEBUG_CYCLE_COUNT 1
263
264 void nullf() {}
265 //#define assem_debug printf
266 //#define inv_debug printf
267 #define assem_debug nullf
268 #define inv_debug nullf
269
270 static void tlb_hacks()
271 {
272 #ifndef DISABLE_TLB
273   // Goldeneye hack
274   if (strncmp((char *) ROM_HEADER->nom, "GOLDENEYE",9) == 0)
275   {
276     u_int addr;
277     int n;
278     switch (ROM_HEADER->Country_code&0xFF) 
279     {
280       case 0x45: // U
281         addr=0x34b30;
282         break;                   
283       case 0x4A: // J 
284         addr=0x34b70;    
285         break;    
286       case 0x50: // E 
287         addr=0x329f0;
288         break;                        
289       default: 
290         // Unknown country code
291         addr=0;
292         break;
293     }
294     u_int rom_addr=(u_int)rom;
295     #ifdef ROM_COPY
296     // Since memory_map is 32-bit, on 64-bit systems the rom needs to be
297     // in the lower 4G of memory to use this hack.  Copy it if necessary.
298     if((void *)rom>(void *)0xffffffff) {
299       munmap(ROM_COPY, 67108864);
300       if(mmap(ROM_COPY, 12582912,
301               PROT_READ | PROT_WRITE,
302               MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS,
303               -1, 0) <= 0) {printf("mmap() failed\n");}
304       memcpy(ROM_COPY,rom,12582912);
305       rom_addr=(u_int)ROM_COPY;
306     }
307     #endif
308     if(addr) {
309       for(n=0x7F000;n<0x80000;n++) {
310         memory_map[n]=(((u_int)(rom_addr+addr-0x7F000000))>>2)|0x40000000;
311       }
312     }
313   }
314 #endif
315 }
316
317 static u_int get_page(u_int vaddr)
318 {
319 #ifndef PCSX
320   u_int page=(vaddr^0x80000000)>>12;
321 #else
322   u_int page=vaddr&~0xe0000000;
323   if (page < 0x1000000)
324     page &= ~0x0e00000; // RAM mirrors
325   page>>=12;
326 #endif
327 #ifndef DISABLE_TLB
328   if(page>262143&&tlb_LUT_r[vaddr>>12]) page=(tlb_LUT_r[vaddr>>12]^0x80000000)>>12;
329 #endif
330   if(page>2048) page=2048+(page&2047);
331   return page;
332 }
333
334 static u_int get_vpage(u_int vaddr)
335 {
336   u_int vpage=(vaddr^0x80000000)>>12;
337 #ifndef DISABLE_TLB
338   if(vpage>262143&&tlb_LUT_r[vaddr>>12]) vpage&=2047; // jump_dirty uses a hash of the virtual address instead
339 #endif
340   if(vpage>2048) vpage=2048+(vpage&2047);
341   return vpage;
342 }
343
344 // Get address from virtual address
345 // This is called from the recompiled JR/JALR instructions
346 void *get_addr(u_int vaddr)
347 {
348   u_int page=get_page(vaddr);
349   u_int vpage=get_vpage(vaddr);
350   struct ll_entry *head;
351   //printf("TRACE: count=%d next=%d (get_addr %x,page %d)\n",Count,next_interupt,vaddr,page);
352   head=jump_in[page];
353   while(head!=NULL) {
354     if(head->vaddr==vaddr&&head->reg32==0) {
355   //printf("TRACE: count=%d next=%d (get_addr match %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
356       int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
357       ht_bin[3]=ht_bin[1];
358       ht_bin[2]=ht_bin[0];
359       ht_bin[1]=(int)head->addr;
360       ht_bin[0]=vaddr;
361       return head->addr;
362     }
363     head=head->next;
364   }
365   head=jump_dirty[vpage];
366   while(head!=NULL) {
367     if(head->vaddr==vaddr&&head->reg32==0) {
368       //printf("TRACE: count=%d next=%d (get_addr match dirty %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
369       // Don't restore blocks which are about to expire from the cache
370       if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
371       if(verify_dirty(head->addr)) {
372         //printf("restore candidate: %x (%d) d=%d\n",vaddr,page,invalid_code[vaddr>>12]);
373         invalid_code[vaddr>>12]=0;
374         memory_map[vaddr>>12]|=0x40000000;
375         if(vpage<2048) {
376 #ifndef DISABLE_TLB
377           if(tlb_LUT_r[vaddr>>12]) {
378             invalid_code[tlb_LUT_r[vaddr>>12]>>12]=0;
379             memory_map[tlb_LUT_r[vaddr>>12]>>12]|=0x40000000;
380           }
381 #endif
382           restore_candidate[vpage>>3]|=1<<(vpage&7);
383         }
384         else restore_candidate[page>>3]|=1<<(page&7);
385         int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
386         if(ht_bin[0]==vaddr) {
387           ht_bin[1]=(int)head->addr; // Replace existing entry
388         }
389         else
390         {
391           ht_bin[3]=ht_bin[1];
392           ht_bin[2]=ht_bin[0];
393           ht_bin[1]=(int)head->addr;
394           ht_bin[0]=vaddr;
395         }
396         return head->addr;
397       }
398     }
399     head=head->next;
400   }
401   //printf("TRACE: count=%d next=%d (get_addr no-match %x)\n",Count,next_interupt,vaddr);
402   int r=new_recompile_block(vaddr);
403   if(r==0) return get_addr(vaddr);
404   // Execute in unmapped page, generate pagefault execption
405   Status|=2;
406   Cause=(vaddr<<31)|0x8;
407   EPC=(vaddr&1)?vaddr-5:vaddr;
408   BadVAddr=(vaddr&~1);
409   Context=(Context&0xFF80000F)|((BadVAddr>>9)&0x007FFFF0);
410   EntryHi=BadVAddr&0xFFFFE000;
411   return get_addr_ht(0x80000000);
412 }
413 // Look up address in hash table first
414 void *get_addr_ht(u_int vaddr)
415 {
416   //printf("TRACE: count=%d next=%d (get_addr_ht %x)\n",Count,next_interupt,vaddr);
417   int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
418   if(ht_bin[0]==vaddr) return (void *)ht_bin[1];
419   if(ht_bin[2]==vaddr) return (void *)ht_bin[3];
420   return get_addr(vaddr);
421 }
422
423 void *get_addr_32(u_int vaddr,u_int flags)
424 {
425 #ifdef FORCE32
426   return get_addr(vaddr);
427 #else
428   //printf("TRACE: count=%d next=%d (get_addr_32 %x,flags %x)\n",Count,next_interupt,vaddr,flags);
429   int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
430   if(ht_bin[0]==vaddr) return (void *)ht_bin[1];
431   if(ht_bin[2]==vaddr) return (void *)ht_bin[3];
432   u_int page=get_page(vaddr);
433   u_int vpage=get_vpage(vaddr);
434   struct ll_entry *head;
435   head=jump_in[page];
436   while(head!=NULL) {
437     if(head->vaddr==vaddr&&(head->reg32&flags)==0) {
438       //printf("TRACE: count=%d next=%d (get_addr_32 match %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
439       if(head->reg32==0) {
440         int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
441         if(ht_bin[0]==-1) {
442           ht_bin[1]=(int)head->addr;
443           ht_bin[0]=vaddr;
444         }else if(ht_bin[2]==-1) {
445           ht_bin[3]=(int)head->addr;
446           ht_bin[2]=vaddr;
447         }
448         //ht_bin[3]=ht_bin[1];
449         //ht_bin[2]=ht_bin[0];
450         //ht_bin[1]=(int)head->addr;
451         //ht_bin[0]=vaddr;
452       }
453       return head->addr;
454     }
455     head=head->next;
456   }
457   head=jump_dirty[vpage];
458   while(head!=NULL) {
459     if(head->vaddr==vaddr&&(head->reg32&flags)==0) {
460       //printf("TRACE: count=%d next=%d (get_addr_32 match dirty %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
461       // Don't restore blocks which are about to expire from the cache
462       if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
463       if(verify_dirty(head->addr)) {
464         //printf("restore candidate: %x (%d) d=%d\n",vaddr,page,invalid_code[vaddr>>12]);
465         invalid_code[vaddr>>12]=0;
466         memory_map[vaddr>>12]|=0x40000000;
467         if(vpage<2048) {
468 #ifndef DISABLE_TLB
469           if(tlb_LUT_r[vaddr>>12]) {
470             invalid_code[tlb_LUT_r[vaddr>>12]>>12]=0;
471             memory_map[tlb_LUT_r[vaddr>>12]>>12]|=0x40000000;
472           }
473 #endif
474           restore_candidate[vpage>>3]|=1<<(vpage&7);
475         }
476         else restore_candidate[page>>3]|=1<<(page&7);
477         if(head->reg32==0) {
478           int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
479           if(ht_bin[0]==-1) {
480             ht_bin[1]=(int)head->addr;
481             ht_bin[0]=vaddr;
482           }else if(ht_bin[2]==-1) {
483             ht_bin[3]=(int)head->addr;
484             ht_bin[2]=vaddr;
485           }
486           //ht_bin[3]=ht_bin[1];
487           //ht_bin[2]=ht_bin[0];
488           //ht_bin[1]=(int)head->addr;
489           //ht_bin[0]=vaddr;
490         }
491         return head->addr;
492       }
493     }
494     head=head->next;
495   }
496   //printf("TRACE: count=%d next=%d (get_addr_32 no-match %x,flags %x)\n",Count,next_interupt,vaddr,flags);
497   int r=new_recompile_block(vaddr);
498   if(r==0) return get_addr(vaddr);
499   // Execute in unmapped page, generate pagefault execption
500   Status|=2;
501   Cause=(vaddr<<31)|0x8;
502   EPC=(vaddr&1)?vaddr-5:vaddr;
503   BadVAddr=(vaddr&~1);
504   Context=(Context&0xFF80000F)|((BadVAddr>>9)&0x007FFFF0);
505   EntryHi=BadVAddr&0xFFFFE000;
506   return get_addr_ht(0x80000000);
507 #endif
508 }
509
510 void clear_all_regs(signed char regmap[])
511 {
512   int hr;
513   for (hr=0;hr<HOST_REGS;hr++) regmap[hr]=-1;
514 }
515
516 signed char get_reg(signed char regmap[],int r)
517 {
518   int hr;
519   for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap[hr]==r) return hr;
520   return -1;
521 }
522
523 // Find a register that is available for two consecutive cycles
524 signed char get_reg2(signed char regmap1[],signed char regmap2[],int r)
525 {
526   int hr;
527   for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap1[hr]==r&&regmap2[hr]==r) return hr;
528   return -1;
529 }
530
531 int count_free_regs(signed char regmap[])
532 {
533   int count=0;
534   int hr;
535   for(hr=0;hr<HOST_REGS;hr++)
536   {
537     if(hr!=EXCLUDE_REG) {
538       if(regmap[hr]<0) count++;
539     }
540   }
541   return count;
542 }
543
544 void dirty_reg(struct regstat *cur,signed char reg)
545 {
546   int hr;
547   if(!reg) return;
548   for (hr=0;hr<HOST_REGS;hr++) {
549     if((cur->regmap[hr]&63)==reg) {
550       cur->dirty|=1<<hr;
551     }
552   }
553 }
554
555 // If we dirty the lower half of a 64 bit register which is now being
556 // sign-extended, we need to dump the upper half.
557 // Note: Do this only after completion of the instruction, because
558 // some instructions may need to read the full 64-bit value even if
559 // overwriting it (eg SLTI, DSRA32).
560 static void flush_dirty_uppers(struct regstat *cur)
561 {
562   int hr,reg;
563   for (hr=0;hr<HOST_REGS;hr++) {
564     if((cur->dirty>>hr)&1) {
565       reg=cur->regmap[hr];
566       if(reg>=64) 
567         if((cur->is32>>(reg&63))&1) cur->regmap[hr]=-1;
568     }
569   }
570 }
571
572 void set_const(struct regstat *cur,signed char reg,uint64_t value)
573 {
574   int hr;
575   if(!reg) return;
576   for (hr=0;hr<HOST_REGS;hr++) {
577     if(cur->regmap[hr]==reg) {
578       cur->isconst|=1<<hr;
579       cur->constmap[hr]=value;
580     }
581     else if((cur->regmap[hr]^64)==reg) {
582       cur->isconst|=1<<hr;
583       cur->constmap[hr]=value>>32;
584     }
585   }
586 }
587
588 void clear_const(struct regstat *cur,signed char reg)
589 {
590   int hr;
591   if(!reg) return;
592   for (hr=0;hr<HOST_REGS;hr++) {
593     if((cur->regmap[hr]&63)==reg) {
594       cur->isconst&=~(1<<hr);
595     }
596   }
597 }
598
599 int is_const(struct regstat *cur,signed char reg)
600 {
601   int hr;
602   if(reg<0) return 0;
603   if(!reg) return 1;
604   for (hr=0;hr<HOST_REGS;hr++) {
605     if((cur->regmap[hr]&63)==reg) {
606       return (cur->isconst>>hr)&1;
607     }
608   }
609   return 0;
610 }
611 uint64_t get_const(struct regstat *cur,signed char reg)
612 {
613   int hr;
614   if(!reg) return 0;
615   for (hr=0;hr<HOST_REGS;hr++) {
616     if(cur->regmap[hr]==reg) {
617       return cur->constmap[hr];
618     }
619   }
620   printf("Unknown constant in r%d\n",reg);
621   exit(1);
622 }
623
624 // Least soon needed registers
625 // Look at the next ten instructions and see which registers
626 // will be used.  Try not to reallocate these.
627 void lsn(u_char hsn[], int i, int *preferred_reg)
628 {
629   int j;
630   int b=-1;
631   for(j=0;j<9;j++)
632   {
633     if(i+j>=slen) {
634       j=slen-i-1;
635       break;
636     }
637     if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
638     {
639       // Don't go past an unconditonal jump
640       j++;
641       break;
642     }
643   }
644   for(;j>=0;j--)
645   {
646     if(rs1[i+j]) hsn[rs1[i+j]]=j;
647     if(rs2[i+j]) hsn[rs2[i+j]]=j;
648     if(rt1[i+j]) hsn[rt1[i+j]]=j;
649     if(rt2[i+j]) hsn[rt2[i+j]]=j;
650     if(itype[i+j]==STORE || itype[i+j]==STORELR) {
651       // Stores can allocate zero
652       hsn[rs1[i+j]]=j;
653       hsn[rs2[i+j]]=j;
654     }
655     // On some architectures stores need invc_ptr
656     #if defined(HOST_IMM8)
657     if(itype[i+j]==STORE || itype[i+j]==STORELR || (opcode[i+j]&0x3b)==0x39 || (opcode[i+j]&0x3b)==0x3a) {
658       hsn[INVCP]=j;
659     }
660     #endif
661     if(i+j>=0&&(itype[i+j]==UJUMP||itype[i+j]==CJUMP||itype[i+j]==SJUMP||itype[i+j]==FJUMP))
662     {
663       hsn[CCREG]=j;
664       b=j;
665     }
666   }
667   if(b>=0)
668   {
669     if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
670     {
671       // Follow first branch
672       int t=(ba[i+b]-start)>>2;
673       j=7-b;if(t+j>=slen) j=slen-t-1;
674       for(;j>=0;j--)
675       {
676         if(rs1[t+j]) if(hsn[rs1[t+j]]>j+b+2) hsn[rs1[t+j]]=j+b+2;
677         if(rs2[t+j]) if(hsn[rs2[t+j]]>j+b+2) hsn[rs2[t+j]]=j+b+2;
678         //if(rt1[t+j]) if(hsn[rt1[t+j]]>j+b+2) hsn[rt1[t+j]]=j+b+2;
679         //if(rt2[t+j]) if(hsn[rt2[t+j]]>j+b+2) hsn[rt2[t+j]]=j+b+2;
680       }
681     }
682     // TODO: preferred register based on backward branch
683   }
684   // Delay slot should preferably not overwrite branch conditions or cycle count
685   if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)) {
686     if(rs1[i-1]) if(hsn[rs1[i-1]]>1) hsn[rs1[i-1]]=1;
687     if(rs2[i-1]) if(hsn[rs2[i-1]]>1) hsn[rs2[i-1]]=1;
688     hsn[CCREG]=1;
689     // ...or hash tables
690     hsn[RHASH]=1;
691     hsn[RHTBL]=1;
692   }
693   // Coprocessor load/store needs FTEMP, even if not declared
694   if(itype[i]==C1LS||itype[i]==C2LS) {
695     hsn[FTEMP]=0;
696   }
697   // Load L/R also uses FTEMP as a temporary register
698   if(itype[i]==LOADLR) {
699     hsn[FTEMP]=0;
700   }
701   // Also SWL/SWR/SDL/SDR
702   if(opcode[i]==0x2a||opcode[i]==0x2e||opcode[i]==0x2c||opcode[i]==0x2d) {
703     hsn[FTEMP]=0;
704   }
705   // Don't remove the TLB registers either
706   if(itype[i]==LOAD || itype[i]==LOADLR || itype[i]==STORE || itype[i]==STORELR || itype[i]==C1LS || itype[i]==C2LS) {
707     hsn[TLREG]=0;
708   }
709   // Don't remove the miniht registers
710   if(itype[i]==UJUMP||itype[i]==RJUMP)
711   {
712     hsn[RHASH]=0;
713     hsn[RHTBL]=0;
714   }
715 }
716
717 // We only want to allocate registers if we're going to use them again soon
718 int needed_again(int r, int i)
719 {
720   int j;
721   int b=-1;
722   int rn=10;
723   
724   if(i>0&&(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000))
725   {
726     if(ba[i-1]<start || ba[i-1]>start+slen*4-4)
727       return 0; // Don't need any registers if exiting the block
728   }
729   for(j=0;j<9;j++)
730   {
731     if(i+j>=slen) {
732       j=slen-i-1;
733       break;
734     }
735     if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
736     {
737       // Don't go past an unconditonal jump
738       j++;
739       break;
740     }
741     if(itype[i+j]==SYSCALL||itype[i+j]==HLECALL||itype[i+j]==INTCALL||((source[i+j]&0xfc00003f)==0x0d))
742     {
743       break;
744     }
745   }
746   for(;j>=1;j--)
747   {
748     if(rs1[i+j]==r) rn=j;
749     if(rs2[i+j]==r) rn=j;
750     if((unneeded_reg[i+j]>>r)&1) rn=10;
751     if(i+j>=0&&(itype[i+j]==UJUMP||itype[i+j]==CJUMP||itype[i+j]==SJUMP||itype[i+j]==FJUMP))
752     {
753       b=j;
754     }
755   }
756   /*
757   if(b>=0)
758   {
759     if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
760     {
761       // Follow first branch
762       int o=rn;
763       int t=(ba[i+b]-start)>>2;
764       j=7-b;if(t+j>=slen) j=slen-t-1;
765       for(;j>=0;j--)
766       {
767         if(!((unneeded_reg[t+j]>>r)&1)) {
768           if(rs1[t+j]==r) if(rn>j+b+2) rn=j+b+2;
769           if(rs2[t+j]==r) if(rn>j+b+2) rn=j+b+2;
770         }
771         else rn=o;
772       }
773     }
774   }*/
775   if(rn<10) return 1;
776   return 0;
777 }
778
779 // Try to match register allocations at the end of a loop with those
780 // at the beginning
781 int loop_reg(int i, int r, int hr)
782 {
783   int j,k;
784   for(j=0;j<9;j++)
785   {
786     if(i+j>=slen) {
787       j=slen-i-1;
788       break;
789     }
790     if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
791     {
792       // Don't go past an unconditonal jump
793       j++;
794       break;
795     }
796   }
797   k=0;
798   if(i>0){
799     if(itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)
800       k--;
801   }
802   for(;k<j;k++)
803   {
804     if(r<64&&((unneeded_reg[i+k]>>r)&1)) return hr;
805     if(r>64&&((unneeded_reg_upper[i+k]>>r)&1)) return hr;
806     if(i+k>=0&&(itype[i+k]==UJUMP||itype[i+k]==CJUMP||itype[i+k]==SJUMP||itype[i+k]==FJUMP))
807     {
808       if(ba[i+k]>=start && ba[i+k]<(start+i*4))
809       {
810         int t=(ba[i+k]-start)>>2;
811         int reg=get_reg(regs[t].regmap_entry,r);
812         if(reg>=0) return reg;
813         //reg=get_reg(regs[t+1].regmap_entry,r);
814         //if(reg>=0) return reg;
815       }
816     }
817   }
818   return hr;
819 }
820
821
822 // Allocate every register, preserving source/target regs
823 void alloc_all(struct regstat *cur,int i)
824 {
825   int hr;
826   
827   for(hr=0;hr<HOST_REGS;hr++) {
828     if(hr!=EXCLUDE_REG) {
829       if(((cur->regmap[hr]&63)!=rs1[i])&&((cur->regmap[hr]&63)!=rs2[i])&&
830          ((cur->regmap[hr]&63)!=rt1[i])&&((cur->regmap[hr]&63)!=rt2[i]))
831       {
832         cur->regmap[hr]=-1;
833         cur->dirty&=~(1<<hr);
834       }
835       // Don't need zeros
836       if((cur->regmap[hr]&63)==0)
837       {
838         cur->regmap[hr]=-1;
839         cur->dirty&=~(1<<hr);
840       }
841     }
842   }
843 }
844
845
846 void div64(int64_t dividend,int64_t divisor)
847 {
848   lo=dividend/divisor;
849   hi=dividend%divisor;
850   //printf("TRACE: ddiv %8x%8x %8x%8x\n" ,(int)reg[HIREG],(int)(reg[HIREG]>>32)
851   //                                     ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
852 }
853 void divu64(uint64_t dividend,uint64_t divisor)
854 {
855   lo=dividend/divisor;
856   hi=dividend%divisor;
857   //printf("TRACE: ddivu %8x%8x %8x%8x\n",(int)reg[HIREG],(int)(reg[HIREG]>>32)
858   //                                     ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
859 }
860
861 void mult64(uint64_t m1,uint64_t m2)
862 {
863    unsigned long long int op1, op2, op3, op4;
864    unsigned long long int result1, result2, result3, result4;
865    unsigned long long int temp1, temp2, temp3, temp4;
866    int sign = 0;
867    
868    if (m1 < 0)
869      {
870     op2 = -m1;
871     sign = 1 - sign;
872      }
873    else op2 = m1;
874    if (m2 < 0)
875      {
876     op4 = -m2;
877     sign = 1 - sign;
878      }
879    else op4 = m2;
880    
881    op1 = op2 & 0xFFFFFFFF;
882    op2 = (op2 >> 32) & 0xFFFFFFFF;
883    op3 = op4 & 0xFFFFFFFF;
884    op4 = (op4 >> 32) & 0xFFFFFFFF;
885    
886    temp1 = op1 * op3;
887    temp2 = (temp1 >> 32) + op1 * op4;
888    temp3 = op2 * op3;
889    temp4 = (temp3 >> 32) + op2 * op4;
890    
891    result1 = temp1 & 0xFFFFFFFF;
892    result2 = temp2 + (temp3 & 0xFFFFFFFF);
893    result3 = (result2 >> 32) + temp4;
894    result4 = (result3 >> 32);
895    
896    lo = result1 | (result2 << 32);
897    hi = (result3 & 0xFFFFFFFF) | (result4 << 32);
898    if (sign)
899      {
900     hi = ~hi;
901     if (!lo) hi++;
902     else lo = ~lo + 1;
903      }
904 }
905
906 void multu64(uint64_t m1,uint64_t m2)
907 {
908    unsigned long long int op1, op2, op3, op4;
909    unsigned long long int result1, result2, result3, result4;
910    unsigned long long int temp1, temp2, temp3, temp4;
911    
912    op1 = m1 & 0xFFFFFFFF;
913    op2 = (m1 >> 32) & 0xFFFFFFFF;
914    op3 = m2 & 0xFFFFFFFF;
915    op4 = (m2 >> 32) & 0xFFFFFFFF;
916    
917    temp1 = op1 * op3;
918    temp2 = (temp1 >> 32) + op1 * op4;
919    temp3 = op2 * op3;
920    temp4 = (temp3 >> 32) + op2 * op4;
921    
922    result1 = temp1 & 0xFFFFFFFF;
923    result2 = temp2 + (temp3 & 0xFFFFFFFF);
924    result3 = (result2 >> 32) + temp4;
925    result4 = (result3 >> 32);
926    
927    lo = result1 | (result2 << 32);
928    hi = (result3 & 0xFFFFFFFF) | (result4 << 32);
929    
930   //printf("TRACE: dmultu %8x%8x %8x%8x\n",(int)reg[HIREG],(int)(reg[HIREG]>>32)
931   //                                      ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
932 }
933
934 uint64_t ldl_merge(uint64_t original,uint64_t loaded,u_int bits)
935 {
936   if(bits) {
937     original<<=64-bits;
938     original>>=64-bits;
939     loaded<<=bits;
940     original|=loaded;
941   }
942   else original=loaded;
943   return original;
944 }
945 uint64_t ldr_merge(uint64_t original,uint64_t loaded,u_int bits)
946 {
947   if(bits^56) {
948     original>>=64-(bits^56);
949     original<<=64-(bits^56);
950     loaded>>=bits^56;
951     original|=loaded;
952   }
953   else original=loaded;
954   return original;
955 }
956
957 #ifdef __i386__
958 #include "assem_x86.c"
959 #endif
960 #ifdef __x86_64__
961 #include "assem_x64.c"
962 #endif
963 #ifdef __arm__
964 #include "assem_arm.c"
965 #endif
966
967 // Add virtual address mapping to linked list
968 void ll_add(struct ll_entry **head,int vaddr,void *addr)
969 {
970   struct ll_entry *new_entry;
971   new_entry=malloc(sizeof(struct ll_entry));
972   assert(new_entry!=NULL);
973   new_entry->vaddr=vaddr;
974   new_entry->reg32=0;
975   new_entry->addr=addr;
976   new_entry->next=*head;
977   *head=new_entry;
978 }
979
980 // Add virtual address mapping for 32-bit compiled block
981 void ll_add_32(struct ll_entry **head,int vaddr,u_int reg32,void *addr)
982 {
983   ll_add(head,vaddr,addr);
984 #ifndef FORCE32
985   (*head)->reg32=reg32;
986 #endif
987 }
988
989 // Check if an address is already compiled
990 // but don't return addresses which are about to expire from the cache
991 void *check_addr(u_int vaddr)
992 {
993   u_int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
994   if(ht_bin[0]==vaddr) {
995     if(((ht_bin[1]-MAX_OUTPUT_BLOCK_SIZE-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
996       if(isclean(ht_bin[1])) return (void *)ht_bin[1];
997   }
998   if(ht_bin[2]==vaddr) {
999     if(((ht_bin[3]-MAX_OUTPUT_BLOCK_SIZE-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
1000       if(isclean(ht_bin[3])) return (void *)ht_bin[3];
1001   }
1002   u_int page=get_page(vaddr);
1003   struct ll_entry *head;
1004   head=jump_in[page];
1005   while(head!=NULL) {
1006     if(head->vaddr==vaddr&&head->reg32==0) {
1007       if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1008         // Update existing entry with current address
1009         if(ht_bin[0]==vaddr) {
1010           ht_bin[1]=(int)head->addr;
1011           return head->addr;
1012         }
1013         if(ht_bin[2]==vaddr) {
1014           ht_bin[3]=(int)head->addr;
1015           return head->addr;
1016         }
1017         // Insert into hash table with low priority.
1018         // Don't evict existing entries, as they are probably
1019         // addresses that are being accessed frequently.
1020         if(ht_bin[0]==-1) {
1021           ht_bin[1]=(int)head->addr;
1022           ht_bin[0]=vaddr;
1023         }else if(ht_bin[2]==-1) {
1024           ht_bin[3]=(int)head->addr;
1025           ht_bin[2]=vaddr;
1026         }
1027         return head->addr;
1028       }
1029     }
1030     head=head->next;
1031   }
1032   return 0;
1033 }
1034
1035 void remove_hash(int vaddr)
1036 {
1037   //printf("remove hash: %x\n",vaddr);
1038   int *ht_bin=hash_table[(((vaddr)>>16)^vaddr)&0xFFFF];
1039   if(ht_bin[2]==vaddr) {
1040     ht_bin[2]=ht_bin[3]=-1;
1041   }
1042   if(ht_bin[0]==vaddr) {
1043     ht_bin[0]=ht_bin[2];
1044     ht_bin[1]=ht_bin[3];
1045     ht_bin[2]=ht_bin[3]=-1;
1046   }
1047 }
1048
1049 void ll_remove_matching_addrs(struct ll_entry **head,int addr,int shift)
1050 {
1051   struct ll_entry *next;
1052   while(*head) {
1053     if(((u_int)((*head)->addr)>>shift)==(addr>>shift) || 
1054        ((u_int)((*head)->addr-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(addr>>shift))
1055     {
1056       inv_debug("EXP: Remove pointer to %x (%x)\n",(int)(*head)->addr,(*head)->vaddr);
1057       remove_hash((*head)->vaddr);
1058       next=(*head)->next;
1059       free(*head);
1060       *head=next;
1061     }
1062     else
1063     {
1064       head=&((*head)->next);
1065     }
1066   }
1067 }
1068
1069 // Remove all entries from linked list
1070 void ll_clear(struct ll_entry **head)
1071 {
1072   struct ll_entry *cur;
1073   struct ll_entry *next;
1074   if(cur=*head) {
1075     *head=0;
1076     while(cur) {
1077       next=cur->next;
1078       free(cur);
1079       cur=next;
1080     }
1081   }
1082 }
1083
1084 // Dereference the pointers and remove if it matches
1085 void ll_kill_pointers(struct ll_entry *head,int addr,int shift)
1086 {
1087   while(head) {
1088     int ptr=get_pointer(head->addr);
1089     inv_debug("EXP: Lookup pointer to %x at %x (%x)\n",(int)ptr,(int)head->addr,head->vaddr);
1090     if(((ptr>>shift)==(addr>>shift)) ||
1091        (((ptr-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(addr>>shift)))
1092     {
1093       inv_debug("EXP: Kill pointer at %x (%x)\n",(int)head->addr,head->vaddr);
1094       u_int host_addr=(u_int)kill_pointer(head->addr);
1095       #ifdef __arm__
1096         needs_clear_cache[(host_addr-(u_int)BASE_ADDR)>>17]|=1<<(((host_addr-(u_int)BASE_ADDR)>>12)&31);
1097       #endif
1098     }
1099     head=head->next;
1100   }
1101 }
1102
1103 // This is called when we write to a compiled block (see do_invstub)
1104 void invalidate_page(u_int page)
1105 {
1106   struct ll_entry *head;
1107   struct ll_entry *next;
1108   head=jump_in[page];
1109   jump_in[page]=0;
1110   while(head!=NULL) {
1111     inv_debug("INVALIDATE: %x\n",head->vaddr);
1112     remove_hash(head->vaddr);
1113     next=head->next;
1114     free(head);
1115     head=next;
1116   }
1117   head=jump_out[page];
1118   jump_out[page]=0;
1119   while(head!=NULL) {
1120     inv_debug("INVALIDATE: kill pointer to %x (%x)\n",head->vaddr,(int)head->addr);
1121     u_int host_addr=(u_int)kill_pointer(head->addr);
1122     #ifdef __arm__
1123       needs_clear_cache[(host_addr-(u_int)BASE_ADDR)>>17]|=1<<(((host_addr-(u_int)BASE_ADDR)>>12)&31);
1124     #endif
1125     next=head->next;
1126     free(head);
1127     head=next;
1128   }
1129 }
1130 void invalidate_block(u_int block)
1131 {
1132   u_int page=get_page(block<<12);
1133   u_int vpage=get_vpage(block<<12);
1134   inv_debug("INVALIDATE: %x (%d)\n",block<<12,page);
1135   //inv_debug("invalid_code[block]=%d\n",invalid_code[block]);
1136   u_int first,last;
1137   first=last=page;
1138   struct ll_entry *head;
1139   head=jump_dirty[vpage];
1140   //printf("page=%d vpage=%d\n",page,vpage);
1141   while(head!=NULL) {
1142     u_int start,end;
1143     if(vpage>2047||(head->vaddr>>12)==block) { // Ignore vaddr hash collision
1144       get_bounds((int)head->addr,&start,&end);
1145       //printf("start: %x end: %x\n",start,end);
1146       if(page<2048&&start>=0x80000000&&end<0x80000000+RAM_SIZE) {
1147         if(((start-(u_int)rdram)>>12)<=page&&((end-1-(u_int)rdram)>>12)>=page) {
1148           if((((start-(u_int)rdram)>>12)&2047)<first) first=((start-(u_int)rdram)>>12)&2047;
1149           if((((end-1-(u_int)rdram)>>12)&2047)>last) last=((end-1-(u_int)rdram)>>12)&2047;
1150         }
1151       }
1152 #ifndef DISABLE_TLB
1153       if(page<2048&&(signed int)start>=(signed int)0xC0000000&&(signed int)end>=(signed int)0xC0000000) {
1154         if(((start+memory_map[start>>12]-(u_int)rdram)>>12)<=page&&((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)>=page) {
1155           if((((start+memory_map[start>>12]-(u_int)rdram)>>12)&2047)<first) first=((start+memory_map[start>>12]-(u_int)rdram)>>12)&2047;
1156           if((((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)&2047)>last) last=((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)&2047;
1157         }
1158       }
1159 #endif
1160     }
1161     head=head->next;
1162   }
1163   //printf("first=%d last=%d\n",first,last);
1164   invalidate_page(page);
1165   assert(first+5>page); // NB: this assumes MAXBLOCK<=4096 (4 pages)
1166   assert(last<page+5);
1167   // Invalidate the adjacent pages if a block crosses a 4K boundary
1168   while(first<page) {
1169     invalidate_page(first);
1170     first++;
1171   }
1172   for(first=page+1;first<last;first++) {
1173     invalidate_page(first);
1174   }
1175   #ifdef __arm__
1176     do_clear_cache();
1177   #endif
1178   
1179   // Don't trap writes
1180   invalid_code[block]=1;
1181 #ifdef PCSX
1182   invalid_code[((u_int)0x80000000>>12)|page]=1;
1183 #endif
1184 #ifndef DISABLE_TLB
1185   // If there is a valid TLB entry for this page, remove write protect
1186   if(tlb_LUT_w[block]) {
1187     assert(tlb_LUT_r[block]==tlb_LUT_w[block]);
1188     // CHECK: Is this right?
1189     memory_map[block]=((tlb_LUT_w[block]&0xFFFFF000)-(block<<12)+(unsigned int)rdram-0x80000000)>>2;
1190     u_int real_block=tlb_LUT_w[block]>>12;
1191     invalid_code[real_block]=1;
1192     if(real_block>=0x80000&&real_block<0x80800) memory_map[real_block]=((u_int)rdram-0x80000000)>>2;
1193   }
1194   else if(block>=0x80000&&block<0x80800) memory_map[block]=((u_int)rdram-0x80000000)>>2;
1195 #endif
1196
1197   #ifdef USE_MINI_HT
1198   memset(mini_ht,-1,sizeof(mini_ht));
1199   #endif
1200 }
1201 void invalidate_addr(u_int addr)
1202 {
1203   invalidate_block(addr>>12);
1204 }
1205 // This is called when loading a save state.
1206 // Anything could have changed, so invalidate everything.
1207 void invalidate_all_pages()
1208 {
1209   u_int page,n;
1210   for(page=0;page<4096;page++)
1211     invalidate_page(page);
1212   for(page=0;page<1048576;page++)
1213     if(!invalid_code[page]) {
1214       restore_candidate[(page&2047)>>3]|=1<<(page&7);
1215       restore_candidate[((page&2047)>>3)+256]|=1<<(page&7);
1216     }
1217   #ifdef __arm__
1218   __clear_cache((void *)BASE_ADDR,(void *)BASE_ADDR+(1<<TARGET_SIZE_2));
1219   #endif
1220   #ifdef USE_MINI_HT
1221   memset(mini_ht,-1,sizeof(mini_ht));
1222   #endif
1223   #ifndef DISABLE_TLB
1224   // TLB
1225   for(page=0;page<0x100000;page++) {
1226     if(tlb_LUT_r[page]) {
1227       memory_map[page]=((tlb_LUT_r[page]&0xFFFFF000)-(page<<12)+(unsigned int)rdram-0x80000000)>>2;
1228       if(!tlb_LUT_w[page]||!invalid_code[page])
1229         memory_map[page]|=0x40000000; // Write protect
1230     }
1231     else memory_map[page]=-1;
1232     if(page==0x80000) page=0xC0000;
1233   }
1234   tlb_hacks();
1235   #endif
1236 }
1237
1238 // Add an entry to jump_out after making a link
1239 void add_link(u_int vaddr,void *src)
1240 {
1241   u_int page=get_page(vaddr);
1242   inv_debug("add_link: %x -> %x (%d)\n",(int)src,vaddr,page);
1243   ll_add(jump_out+page,vaddr,src);
1244   //int ptr=get_pointer(src);
1245   //inv_debug("add_link: Pointer is to %x\n",(int)ptr);
1246 }
1247
1248 // If a code block was found to be unmodified (bit was set in
1249 // restore_candidate) and it remains unmodified (bit is clear
1250 // in invalid_code) then move the entries for that 4K page from
1251 // the dirty list to the clean list.
1252 void clean_blocks(u_int page)
1253 {
1254   struct ll_entry *head;
1255   inv_debug("INV: clean_blocks page=%d\n",page);
1256   head=jump_dirty[page];
1257   while(head!=NULL) {
1258     if(!invalid_code[head->vaddr>>12]) {
1259       // Don't restore blocks which are about to expire from the cache
1260       if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1261         u_int start,end;
1262         if(verify_dirty((int)head->addr)) {
1263           //printf("Possibly Restore %x (%x)\n",head->vaddr, (int)head->addr);
1264           u_int i;
1265           u_int inv=0;
1266           get_bounds((int)head->addr,&start,&end);
1267           if(start-(u_int)rdram<RAM_SIZE) {
1268             for(i=(start-(u_int)rdram+0x80000000)>>12;i<=(end-1-(u_int)rdram+0x80000000)>>12;i++) {
1269               inv|=invalid_code[i];
1270             }
1271           }
1272           if((signed int)head->vaddr>=(signed int)0xC0000000) {
1273             u_int addr = (head->vaddr+(memory_map[head->vaddr>>12]<<2));
1274             //printf("addr=%x start=%x end=%x\n",addr,start,end);
1275             if(addr<start||addr>=end) inv=1;
1276           }
1277           else if((signed int)head->vaddr>=(signed int)0x80000000+RAM_SIZE) {
1278             inv=1;
1279           }
1280           if(!inv) {
1281             void * clean_addr=(void *)get_clean_addr((int)head->addr);
1282             if((((u_int)clean_addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1283               u_int ppage=page;
1284 #ifndef DISABLE_TLB
1285               if(page<2048&&tlb_LUT_r[head->vaddr>>12]) ppage=(tlb_LUT_r[head->vaddr>>12]^0x80000000)>>12;
1286 #endif
1287               inv_debug("INV: Restored %x (%x/%x)\n",head->vaddr, (int)head->addr, (int)clean_addr);
1288               //printf("page=%x, addr=%x\n",page,head->vaddr);
1289               //assert(head->vaddr>>12==(page|0x80000));
1290               ll_add_32(jump_in+ppage,head->vaddr,head->reg32,clean_addr);
1291               int *ht_bin=hash_table[((head->vaddr>>16)^head->vaddr)&0xFFFF];
1292               if(!head->reg32) {
1293                 if(ht_bin[0]==head->vaddr) {
1294                   ht_bin[1]=(int)clean_addr; // Replace existing entry
1295                 }
1296                 if(ht_bin[2]==head->vaddr) {
1297                   ht_bin[3]=(int)clean_addr; // Replace existing entry
1298                 }
1299               }
1300             }
1301           }
1302         }
1303       }
1304     }
1305     head=head->next;
1306   }
1307 }
1308
1309
1310 void mov_alloc(struct regstat *current,int i)
1311 {
1312   // Note: Don't need to actually alloc the source registers
1313   if((~current->is32>>rs1[i])&1) {
1314     //alloc_reg64(current,i,rs1[i]);
1315     alloc_reg64(current,i,rt1[i]);
1316     current->is32&=~(1LL<<rt1[i]);
1317   } else {
1318     //alloc_reg(current,i,rs1[i]);
1319     alloc_reg(current,i,rt1[i]);
1320     current->is32|=(1LL<<rt1[i]);
1321   }
1322   clear_const(current,rs1[i]);
1323   clear_const(current,rt1[i]);
1324   dirty_reg(current,rt1[i]);
1325 }
1326
1327 void shiftimm_alloc(struct regstat *current,int i)
1328 {
1329   clear_const(current,rs1[i]);
1330   clear_const(current,rt1[i]);
1331   if(opcode2[i]<=0x3) // SLL/SRL/SRA
1332   {
1333     if(rt1[i]) {
1334       if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1335       else lt1[i]=rs1[i];
1336       alloc_reg(current,i,rt1[i]);
1337       current->is32|=1LL<<rt1[i];
1338       dirty_reg(current,rt1[i]);
1339     }
1340   }
1341   if(opcode2[i]>=0x38&&opcode2[i]<=0x3b) // DSLL/DSRL/DSRA
1342   {
1343     if(rt1[i]) {
1344       if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1345       alloc_reg64(current,i,rt1[i]);
1346       current->is32&=~(1LL<<rt1[i]);
1347       dirty_reg(current,rt1[i]);
1348     }
1349   }
1350   if(opcode2[i]==0x3c) // DSLL32
1351   {
1352     if(rt1[i]) {
1353       if(rs1[i]) alloc_reg(current,i,rs1[i]);
1354       alloc_reg64(current,i,rt1[i]);
1355       current->is32&=~(1LL<<rt1[i]);
1356       dirty_reg(current,rt1[i]);
1357     }
1358   }
1359   if(opcode2[i]==0x3e) // DSRL32
1360   {
1361     if(rt1[i]) {
1362       alloc_reg64(current,i,rs1[i]);
1363       if(imm[i]==32) {
1364         alloc_reg64(current,i,rt1[i]);
1365         current->is32&=~(1LL<<rt1[i]);
1366       } else {
1367         alloc_reg(current,i,rt1[i]);
1368         current->is32|=1LL<<rt1[i];
1369       }
1370       dirty_reg(current,rt1[i]);
1371     }
1372   }
1373   if(opcode2[i]==0x3f) // DSRA32
1374   {
1375     if(rt1[i]) {
1376       alloc_reg64(current,i,rs1[i]);
1377       alloc_reg(current,i,rt1[i]);
1378       current->is32|=1LL<<rt1[i];
1379       dirty_reg(current,rt1[i]);
1380     }
1381   }
1382 }
1383
1384 void shift_alloc(struct regstat *current,int i)
1385 {
1386   if(rt1[i]) {
1387     if(opcode2[i]<=0x07) // SLLV/SRLV/SRAV
1388     {
1389       if(rs1[i]) alloc_reg(current,i,rs1[i]);
1390       if(rs2[i]) alloc_reg(current,i,rs2[i]);
1391       alloc_reg(current,i,rt1[i]);
1392       if(rt1[i]==rs2[i]) {
1393         alloc_reg_temp(current,i,-1);
1394         minimum_free_regs[i]=1;
1395       }
1396       current->is32|=1LL<<rt1[i];
1397     } else { // DSLLV/DSRLV/DSRAV
1398       if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1399       if(rs2[i]) alloc_reg(current,i,rs2[i]);
1400       alloc_reg64(current,i,rt1[i]);
1401       current->is32&=~(1LL<<rt1[i]);
1402       if(opcode2[i]==0x16||opcode2[i]==0x17) // DSRLV and DSRAV need a temporary register
1403       {
1404         alloc_reg_temp(current,i,-1);
1405         minimum_free_regs[i]=1;
1406       }
1407     }
1408     clear_const(current,rs1[i]);
1409     clear_const(current,rs2[i]);
1410     clear_const(current,rt1[i]);
1411     dirty_reg(current,rt1[i]);
1412   }
1413 }
1414
1415 void alu_alloc(struct regstat *current,int i)
1416 {
1417   if(opcode2[i]>=0x20&&opcode2[i]<=0x23) { // ADD/ADDU/SUB/SUBU
1418     if(rt1[i]) {
1419       if(rs1[i]&&rs2[i]) {
1420         alloc_reg(current,i,rs1[i]);
1421         alloc_reg(current,i,rs2[i]);
1422       }
1423       else {
1424         if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1425         if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg(current,i,rs2[i]);
1426       }
1427       alloc_reg(current,i,rt1[i]);
1428     }
1429     current->is32|=1LL<<rt1[i];
1430   }
1431   if(opcode2[i]==0x2a||opcode2[i]==0x2b) { // SLT/SLTU
1432     if(rt1[i]) {
1433       if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1434       {
1435         alloc_reg64(current,i,rs1[i]);
1436         alloc_reg64(current,i,rs2[i]);
1437         alloc_reg(current,i,rt1[i]);
1438       } else {
1439         alloc_reg(current,i,rs1[i]);
1440         alloc_reg(current,i,rs2[i]);
1441         alloc_reg(current,i,rt1[i]);
1442       }
1443     }
1444     current->is32|=1LL<<rt1[i];
1445   }
1446   if(opcode2[i]>=0x24&&opcode2[i]<=0x27) { // AND/OR/XOR/NOR
1447     if(rt1[i]) {
1448       if(rs1[i]&&rs2[i]) {
1449         alloc_reg(current,i,rs1[i]);
1450         alloc_reg(current,i,rs2[i]);
1451       }
1452       else
1453       {
1454         if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1455         if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg(current,i,rs2[i]);
1456       }
1457       alloc_reg(current,i,rt1[i]);
1458       if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1459       {
1460         if(!((current->uu>>rt1[i])&1)) {
1461           alloc_reg64(current,i,rt1[i]);
1462         }
1463         if(get_reg(current->regmap,rt1[i]|64)>=0) {
1464           if(rs1[i]&&rs2[i]) {
1465             alloc_reg64(current,i,rs1[i]);
1466             alloc_reg64(current,i,rs2[i]);
1467           }
1468           else
1469           {
1470             // Is is really worth it to keep 64-bit values in registers?
1471             #ifdef NATIVE_64BIT
1472             if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg64(current,i,rs1[i]);
1473             if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg64(current,i,rs2[i]);
1474             #endif
1475           }
1476         }
1477         current->is32&=~(1LL<<rt1[i]);
1478       } else {
1479         current->is32|=1LL<<rt1[i];
1480       }
1481     }
1482   }
1483   if(opcode2[i]>=0x2c&&opcode2[i]<=0x2f) { // DADD/DADDU/DSUB/DSUBU
1484     if(rt1[i]) {
1485       if(rs1[i]&&rs2[i]) {
1486         if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1487           alloc_reg64(current,i,rs1[i]);
1488           alloc_reg64(current,i,rs2[i]);
1489           alloc_reg64(current,i,rt1[i]);
1490         } else {
1491           alloc_reg(current,i,rs1[i]);
1492           alloc_reg(current,i,rs2[i]);
1493           alloc_reg(current,i,rt1[i]);
1494         }
1495       }
1496       else {
1497         alloc_reg(current,i,rt1[i]);
1498         if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1499           // DADD used as move, or zeroing
1500           // If we have a 64-bit source, then make the target 64 bits too
1501           if(rs1[i]&&!((current->is32>>rs1[i])&1)) {
1502             if(get_reg(current->regmap,rs1[i])>=0) alloc_reg64(current,i,rs1[i]);
1503             alloc_reg64(current,i,rt1[i]);
1504           } else if(rs2[i]&&!((current->is32>>rs2[i])&1)) {
1505             if(get_reg(current->regmap,rs2[i])>=0) alloc_reg64(current,i,rs2[i]);
1506             alloc_reg64(current,i,rt1[i]);
1507           }
1508           if(opcode2[i]>=0x2e&&rs2[i]) {
1509             // DSUB used as negation - 64-bit result
1510             // If we have a 32-bit register, extend it to 64 bits
1511             if(get_reg(current->regmap,rs2[i])>=0) alloc_reg64(current,i,rs2[i]);
1512             alloc_reg64(current,i,rt1[i]);
1513           }
1514         }
1515       }
1516       if(rs1[i]&&rs2[i]) {
1517         current->is32&=~(1LL<<rt1[i]);
1518       } else if(rs1[i]) {
1519         current->is32&=~(1LL<<rt1[i]);
1520         if((current->is32>>rs1[i])&1)
1521           current->is32|=1LL<<rt1[i];
1522       } else if(rs2[i]) {
1523         current->is32&=~(1LL<<rt1[i]);
1524         if((current->is32>>rs2[i])&1)
1525           current->is32|=1LL<<rt1[i];
1526       } else {
1527         current->is32|=1LL<<rt1[i];
1528       }
1529     }
1530   }
1531   clear_const(current,rs1[i]);
1532   clear_const(current,rs2[i]);
1533   clear_const(current,rt1[i]);
1534   dirty_reg(current,rt1[i]);
1535 }
1536
1537 void imm16_alloc(struct regstat *current,int i)
1538 {
1539   if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1540   else lt1[i]=rs1[i];
1541   if(rt1[i]) alloc_reg(current,i,rt1[i]);
1542   if(opcode[i]==0x18||opcode[i]==0x19) { // DADDI/DADDIU
1543     current->is32&=~(1LL<<rt1[i]);
1544     if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1545       // TODO: Could preserve the 32-bit flag if the immediate is zero
1546       alloc_reg64(current,i,rt1[i]);
1547       alloc_reg64(current,i,rs1[i]);
1548     }
1549     clear_const(current,rs1[i]);
1550     clear_const(current,rt1[i]);
1551   }
1552   else if(opcode[i]==0x0a||opcode[i]==0x0b) { // SLTI/SLTIU
1553     if((~current->is32>>rs1[i])&1) alloc_reg64(current,i,rs1[i]);
1554     current->is32|=1LL<<rt1[i];
1555     clear_const(current,rs1[i]);
1556     clear_const(current,rt1[i]);
1557   }
1558   else if(opcode[i]>=0x0c&&opcode[i]<=0x0e) { // ANDI/ORI/XORI
1559     if(((~current->is32>>rs1[i])&1)&&opcode[i]>0x0c) {
1560       if(rs1[i]!=rt1[i]) {
1561         if(needed_again(rs1[i],i)) alloc_reg64(current,i,rs1[i]);
1562         alloc_reg64(current,i,rt1[i]);
1563         current->is32&=~(1LL<<rt1[i]);
1564       }
1565     }
1566     else current->is32|=1LL<<rt1[i]; // ANDI clears upper bits
1567     if(is_const(current,rs1[i])) {
1568       int v=get_const(current,rs1[i]);
1569       if(opcode[i]==0x0c) set_const(current,rt1[i],v&imm[i]);
1570       if(opcode[i]==0x0d) set_const(current,rt1[i],v|imm[i]);
1571       if(opcode[i]==0x0e) set_const(current,rt1[i],v^imm[i]);
1572     }
1573     else clear_const(current,rt1[i]);
1574   }
1575   else if(opcode[i]==0x08||opcode[i]==0x09) { // ADDI/ADDIU
1576     if(is_const(current,rs1[i])) {
1577       int v=get_const(current,rs1[i]);
1578       set_const(current,rt1[i],v+imm[i]);
1579     }
1580     else clear_const(current,rt1[i]);
1581     current->is32|=1LL<<rt1[i];
1582   }
1583   else {
1584     set_const(current,rt1[i],((long long)((short)imm[i]))<<16); // LUI
1585     current->is32|=1LL<<rt1[i];
1586   }
1587   dirty_reg(current,rt1[i]);
1588 }
1589
1590 void load_alloc(struct regstat *current,int i)
1591 {
1592   clear_const(current,rt1[i]);
1593   //if(rs1[i]!=rt1[i]&&needed_again(rs1[i],i)) clear_const(current,rs1[i]); // Does this help or hurt?
1594   if(!rs1[i]) current->u&=~1LL; // Allow allocating r0 if it's the source register
1595   if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1596   if(rt1[i]&&!((current->u>>rt1[i])&1)) {
1597     alloc_reg(current,i,rt1[i]);
1598     assert(get_reg(current->regmap,rt1[i])>=0);
1599     if(opcode[i]==0x27||opcode[i]==0x37) // LWU/LD
1600     {
1601       current->is32&=~(1LL<<rt1[i]);
1602       alloc_reg64(current,i,rt1[i]);
1603     }
1604     else if(opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
1605     {
1606       current->is32&=~(1LL<<rt1[i]);
1607       alloc_reg64(current,i,rt1[i]);
1608       alloc_all(current,i);
1609       alloc_reg64(current,i,FTEMP);
1610       minimum_free_regs[i]=HOST_REGS;
1611     }
1612     else current->is32|=1LL<<rt1[i];
1613     dirty_reg(current,rt1[i]);
1614     // If using TLB, need a register for pointer to the mapping table
1615     if(using_tlb) alloc_reg(current,i,TLREG);
1616     // LWL/LWR need a temporary register for the old value
1617     if(opcode[i]==0x22||opcode[i]==0x26)
1618     {
1619       alloc_reg(current,i,FTEMP);
1620       alloc_reg_temp(current,i,-1);
1621       minimum_free_regs[i]=1;
1622     }
1623   }
1624   else
1625   {
1626     // Load to r0 or unneeded register (dummy load)
1627     // but we still need a register to calculate the address
1628     if(opcode[i]==0x22||opcode[i]==0x26)
1629     {
1630       alloc_reg(current,i,FTEMP); // LWL/LWR need another temporary
1631     }
1632     // If using TLB, need a register for pointer to the mapping table
1633     if(using_tlb) alloc_reg(current,i,TLREG);
1634     alloc_reg_temp(current,i,-1);
1635     minimum_free_regs[i]=1;
1636     if(opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
1637     {
1638       alloc_all(current,i);
1639       alloc_reg64(current,i,FTEMP);
1640       minimum_free_regs[i]=HOST_REGS;
1641     }
1642   }
1643 }
1644
1645 void store_alloc(struct regstat *current,int i)
1646 {
1647   clear_const(current,rs2[i]);
1648   if(!(rs2[i])) current->u&=~1LL; // Allow allocating r0 if necessary
1649   if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1650   alloc_reg(current,i,rs2[i]);
1651   if(opcode[i]==0x2c||opcode[i]==0x2d||opcode[i]==0x3f) { // 64-bit SDL/SDR/SD
1652     alloc_reg64(current,i,rs2[i]);
1653     if(rs2[i]) alloc_reg(current,i,FTEMP);
1654   }
1655   // If using TLB, need a register for pointer to the mapping table
1656   if(using_tlb) alloc_reg(current,i,TLREG);
1657   #if defined(HOST_IMM8)
1658   // On CPUs without 32-bit immediates we need a pointer to invalid_code
1659   else alloc_reg(current,i,INVCP);
1660   #endif
1661   if(opcode[i]==0x2a||opcode[i]==0x2e||opcode[i]==0x2c||opcode[i]==0x2d) { // SWL/SWL/SDL/SDR
1662     alloc_reg(current,i,FTEMP);
1663   }
1664   // We need a temporary register for address generation
1665   alloc_reg_temp(current,i,-1);
1666   minimum_free_regs[i]=1;
1667 }
1668
1669 void c1ls_alloc(struct regstat *current,int i)
1670 {
1671   //clear_const(current,rs1[i]); // FIXME
1672   clear_const(current,rt1[i]);
1673   if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1674   alloc_reg(current,i,CSREG); // Status
1675   alloc_reg(current,i,FTEMP);
1676   if(opcode[i]==0x35||opcode[i]==0x3d) { // 64-bit LDC1/SDC1
1677     alloc_reg64(current,i,FTEMP);
1678   }
1679   // If using TLB, need a register for pointer to the mapping table
1680   if(using_tlb) alloc_reg(current,i,TLREG);
1681   #if defined(HOST_IMM8)
1682   // On CPUs without 32-bit immediates we need a pointer to invalid_code
1683   else if((opcode[i]&0x3b)==0x39) // SWC1/SDC1
1684     alloc_reg(current,i,INVCP);
1685   #endif
1686   // We need a temporary register for address generation
1687   alloc_reg_temp(current,i,-1);
1688 }
1689
1690 void c2ls_alloc(struct regstat *current,int i)
1691 {
1692   clear_const(current,rt1[i]);
1693   if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1694   alloc_reg(current,i,FTEMP);
1695   // If using TLB, need a register for pointer to the mapping table
1696   if(using_tlb) alloc_reg(current,i,TLREG);
1697   #if defined(HOST_IMM8)
1698   // On CPUs without 32-bit immediates we need a pointer to invalid_code
1699   else if((opcode[i]&0x3b)==0x3a) // SWC2/SDC2
1700     alloc_reg(current,i,INVCP);
1701   #endif
1702   // We need a temporary register for address generation
1703   alloc_reg_temp(current,i,-1);
1704   minimum_free_regs[i]=1;
1705 }
1706
1707 #ifndef multdiv_alloc
1708 void multdiv_alloc(struct regstat *current,int i)
1709 {
1710   //  case 0x18: MULT
1711   //  case 0x19: MULTU
1712   //  case 0x1A: DIV
1713   //  case 0x1B: DIVU
1714   //  case 0x1C: DMULT
1715   //  case 0x1D: DMULTU
1716   //  case 0x1E: DDIV
1717   //  case 0x1F: DDIVU
1718   clear_const(current,rs1[i]);
1719   clear_const(current,rs2[i]);
1720   if(rs1[i]&&rs2[i])
1721   {
1722     if((opcode2[i]&4)==0) // 32-bit
1723     {
1724       current->u&=~(1LL<<HIREG);
1725       current->u&=~(1LL<<LOREG);
1726       alloc_reg(current,i,HIREG);
1727       alloc_reg(current,i,LOREG);
1728       alloc_reg(current,i,rs1[i]);
1729       alloc_reg(current,i,rs2[i]);
1730       current->is32|=1LL<<HIREG;
1731       current->is32|=1LL<<LOREG;
1732       dirty_reg(current,HIREG);
1733       dirty_reg(current,LOREG);
1734     }
1735     else // 64-bit
1736     {
1737       current->u&=~(1LL<<HIREG);
1738       current->u&=~(1LL<<LOREG);
1739       current->uu&=~(1LL<<HIREG);
1740       current->uu&=~(1LL<<LOREG);
1741       alloc_reg64(current,i,HIREG);
1742       //if(HOST_REGS>10) alloc_reg64(current,i,LOREG);
1743       alloc_reg64(current,i,rs1[i]);
1744       alloc_reg64(current,i,rs2[i]);
1745       alloc_all(current,i);
1746       current->is32&=~(1LL<<HIREG);
1747       current->is32&=~(1LL<<LOREG);
1748       dirty_reg(current,HIREG);
1749       dirty_reg(current,LOREG);
1750       minimum_free_regs[i]=HOST_REGS;
1751     }
1752   }
1753   else
1754   {
1755     // Multiply by zero is zero.
1756     // MIPS does not have a divide by zero exception.
1757     // The result is undefined, we return zero.
1758     alloc_reg(current,i,HIREG);
1759     alloc_reg(current,i,LOREG);
1760     current->is32|=1LL<<HIREG;
1761     current->is32|=1LL<<LOREG;
1762     dirty_reg(current,HIREG);
1763     dirty_reg(current,LOREG);
1764   }
1765 }
1766 #endif
1767
1768 void cop0_alloc(struct regstat *current,int i)
1769 {
1770   if(opcode2[i]==0) // MFC0
1771   {
1772     if(rt1[i]) {
1773       clear_const(current,rt1[i]);
1774       alloc_all(current,i);
1775       alloc_reg(current,i,rt1[i]);
1776       current->is32|=1LL<<rt1[i];
1777       dirty_reg(current,rt1[i]);
1778     }
1779   }
1780   else if(opcode2[i]==4) // MTC0
1781   {
1782     if(rs1[i]){
1783       clear_const(current,rs1[i]);
1784       alloc_reg(current,i,rs1[i]);
1785       alloc_all(current,i);
1786     }
1787     else {
1788       alloc_all(current,i); // FIXME: Keep r0
1789       current->u&=~1LL;
1790       alloc_reg(current,i,0);
1791     }
1792   }
1793   else
1794   {
1795     // TLBR/TLBWI/TLBWR/TLBP/ERET
1796     assert(opcode2[i]==0x10);
1797     alloc_all(current,i);
1798   }
1799   minimum_free_regs[i]=HOST_REGS;
1800 }
1801
1802 void cop1_alloc(struct regstat *current,int i)
1803 {
1804   alloc_reg(current,i,CSREG); // Load status
1805   if(opcode2[i]<3) // MFC1/DMFC1/CFC1
1806   {
1807     if(rt1[i]){
1808       clear_const(current,rt1[i]);
1809       if(opcode2[i]==1) {
1810         alloc_reg64(current,i,rt1[i]); // DMFC1
1811         current->is32&=~(1LL<<rt1[i]);
1812       }else{
1813         alloc_reg(current,i,rt1[i]); // MFC1/CFC1
1814         current->is32|=1LL<<rt1[i];
1815       }
1816       dirty_reg(current,rt1[i]);
1817     }
1818     alloc_reg_temp(current,i,-1);
1819   }
1820   else if(opcode2[i]>3) // MTC1/DMTC1/CTC1
1821   {
1822     if(rs1[i]){
1823       clear_const(current,rs1[i]);
1824       if(opcode2[i]==5)
1825         alloc_reg64(current,i,rs1[i]); // DMTC1
1826       else
1827         alloc_reg(current,i,rs1[i]); // MTC1/CTC1
1828       alloc_reg_temp(current,i,-1);
1829     }
1830     else {
1831       current->u&=~1LL;
1832       alloc_reg(current,i,0);
1833       alloc_reg_temp(current,i,-1);
1834     }
1835   }
1836   minimum_free_regs[i]=1;
1837 }
1838 void fconv_alloc(struct regstat *current,int i)
1839 {
1840   alloc_reg(current,i,CSREG); // Load status
1841   alloc_reg_temp(current,i,-1);
1842   minimum_free_regs[i]=1;
1843 }
1844 void float_alloc(struct regstat *current,int i)
1845 {
1846   alloc_reg(current,i,CSREG); // Load status
1847   alloc_reg_temp(current,i,-1);
1848   minimum_free_regs[i]=1;
1849 }
1850 void c2op_alloc(struct regstat *current,int i)
1851 {
1852   alloc_reg_temp(current,i,-1);
1853 }
1854 void fcomp_alloc(struct regstat *current,int i)
1855 {
1856   alloc_reg(current,i,CSREG); // Load status
1857   alloc_reg(current,i,FSREG); // Load flags
1858   dirty_reg(current,FSREG); // Flag will be modified
1859   alloc_reg_temp(current,i,-1);
1860   minimum_free_regs[i]=1;
1861 }
1862
1863 void syscall_alloc(struct regstat *current,int i)
1864 {
1865   alloc_cc(current,i);
1866   dirty_reg(current,CCREG);
1867   alloc_all(current,i);
1868   minimum_free_regs[i]=HOST_REGS;
1869   current->isconst=0;
1870 }
1871
1872 void delayslot_alloc(struct regstat *current,int i)
1873 {
1874   switch(itype[i]) {
1875     case UJUMP:
1876     case CJUMP:
1877     case SJUMP:
1878     case RJUMP:
1879     case FJUMP:
1880     case SYSCALL:
1881     case HLECALL:
1882     case SPAN:
1883       assem_debug("jump in the delay slot.  this shouldn't happen.\n");//exit(1);
1884       printf("Disabled speculative precompilation\n");
1885       stop_after_jal=1;
1886       break;
1887     case IMM16:
1888       imm16_alloc(current,i);
1889       break;
1890     case LOAD:
1891     case LOADLR:
1892       load_alloc(current,i);
1893       break;
1894     case STORE:
1895     case STORELR:
1896       store_alloc(current,i);
1897       break;
1898     case ALU:
1899       alu_alloc(current,i);
1900       break;
1901     case SHIFT:
1902       shift_alloc(current,i);
1903       break;
1904     case MULTDIV:
1905       multdiv_alloc(current,i);
1906       break;
1907     case SHIFTIMM:
1908       shiftimm_alloc(current,i);
1909       break;
1910     case MOV:
1911       mov_alloc(current,i);
1912       break;
1913     case COP0:
1914       cop0_alloc(current,i);
1915       break;
1916     case COP1:
1917     case COP2:
1918       cop1_alloc(current,i);
1919       break;
1920     case C1LS:
1921       c1ls_alloc(current,i);
1922       break;
1923     case C2LS:
1924       c2ls_alloc(current,i);
1925       break;
1926     case FCONV:
1927       fconv_alloc(current,i);
1928       break;
1929     case FLOAT:
1930       float_alloc(current,i);
1931       break;
1932     case FCOMP:
1933       fcomp_alloc(current,i);
1934       break;
1935     case C2OP:
1936       c2op_alloc(current,i);
1937       break;
1938   }
1939 }
1940
1941 // Special case where a branch and delay slot span two pages in virtual memory
1942 static void pagespan_alloc(struct regstat *current,int i)
1943 {
1944   current->isconst=0;
1945   current->wasconst=0;
1946   regs[i].wasconst=0;
1947   minimum_free_regs[i]=HOST_REGS;
1948   alloc_all(current,i);
1949   alloc_cc(current,i);
1950   dirty_reg(current,CCREG);
1951   if(opcode[i]==3) // JAL
1952   {
1953     alloc_reg(current,i,31);
1954     dirty_reg(current,31);
1955   }
1956   if(opcode[i]==0&&(opcode2[i]&0x3E)==8) // JR/JALR
1957   {
1958     alloc_reg(current,i,rs1[i]);
1959     if (rt1[i]!=0) {
1960       alloc_reg(current,i,rt1[i]);
1961       dirty_reg(current,rt1[i]);
1962     }
1963   }
1964   if((opcode[i]&0x2E)==4) // BEQ/BNE/BEQL/BNEL
1965   {
1966     if(rs1[i]) alloc_reg(current,i,rs1[i]);
1967     if(rs2[i]) alloc_reg(current,i,rs2[i]);
1968     if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1969     {
1970       if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1971       if(rs2[i]) alloc_reg64(current,i,rs2[i]);
1972     }
1973   }
1974   else
1975   if((opcode[i]&0x2E)==6) // BLEZ/BGTZ/BLEZL/BGTZL
1976   {
1977     if(rs1[i]) alloc_reg(current,i,rs1[i]);
1978     if(!((current->is32>>rs1[i])&1))
1979     {
1980       if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1981     }
1982   }
1983   else
1984   if(opcode[i]==0x11) // BC1
1985   {
1986     alloc_reg(current,i,FSREG);
1987     alloc_reg(current,i,CSREG);
1988   }
1989   //else ...
1990 }
1991
1992 add_stub(int type,int addr,int retaddr,int a,int b,int c,int d,int e)
1993 {
1994   stubs[stubcount][0]=type;
1995   stubs[stubcount][1]=addr;
1996   stubs[stubcount][2]=retaddr;
1997   stubs[stubcount][3]=a;
1998   stubs[stubcount][4]=b;
1999   stubs[stubcount][5]=c;
2000   stubs[stubcount][6]=d;
2001   stubs[stubcount][7]=e;
2002   stubcount++;
2003 }
2004
2005 // Write out a single register
2006 void wb_register(signed char r,signed char regmap[],uint64_t dirty,uint64_t is32)
2007 {
2008   int hr;
2009   for(hr=0;hr<HOST_REGS;hr++) {
2010     if(hr!=EXCLUDE_REG) {
2011       if((regmap[hr]&63)==r) {
2012         if((dirty>>hr)&1) {
2013           if(regmap[hr]<64) {
2014             emit_storereg(r,hr);
2015 #ifndef FORCE32
2016             if((is32>>regmap[hr])&1) {
2017               emit_sarimm(hr,31,hr);
2018               emit_storereg(r|64,hr);
2019             }
2020 #endif
2021           }else{
2022             emit_storereg(r|64,hr);
2023           }
2024         }
2025       }
2026     }
2027   }
2028 }
2029
2030 int mchecksum()
2031 {
2032   //if(!tracedebug) return 0;
2033   int i;
2034   int sum=0;
2035   for(i=0;i<2097152;i++) {
2036     unsigned int temp=sum;
2037     sum<<=1;
2038     sum|=(~temp)>>31;
2039     sum^=((u_int *)rdram)[i];
2040   }
2041   return sum;
2042 }
2043 int rchecksum()
2044 {
2045   int i;
2046   int sum=0;
2047   for(i=0;i<64;i++)
2048     sum^=((u_int *)reg)[i];
2049   return sum;
2050 }
2051 void rlist()
2052 {
2053   int i;
2054   printf("TRACE: ");
2055   for(i=0;i<32;i++)
2056     printf("r%d:%8x%8x ",i,((int *)(reg+i))[1],((int *)(reg+i))[0]);
2057   printf("\n");
2058 #ifndef DISABLE_COP1
2059   printf("TRACE: ");
2060   for(i=0;i<32;i++)
2061     printf("f%d:%8x%8x ",i,((int*)reg_cop1_simple[i])[1],*((int*)reg_cop1_simple[i]));
2062   printf("\n");
2063 #endif
2064 }
2065
2066 void enabletrace()
2067 {
2068   tracedebug=1;
2069 }
2070
2071 void memdebug(int i)
2072 {
2073   //printf("TRACE: count=%d next=%d (checksum %x) lo=%8x%8x\n",Count,next_interupt,mchecksum(),(int)(reg[LOREG]>>32),(int)reg[LOREG]);
2074   //printf("TRACE: count=%d next=%d (rchecksum %x)\n",Count,next_interupt,rchecksum());
2075   //rlist();
2076   //if(tracedebug) {
2077   //if(Count>=-2084597794) {
2078   if((signed int)Count>=-2084597794&&(signed int)Count<0) {
2079   //if(0) {
2080     printf("TRACE: count=%d next=%d (checksum %x)\n",Count,next_interupt,mchecksum());
2081     //printf("TRACE: count=%d next=%d (checksum %x) Status=%x\n",Count,next_interupt,mchecksum(),Status);
2082     //printf("TRACE: count=%d next=%d (checksum %x) hi=%8x%8x\n",Count,next_interupt,mchecksum(),(int)(reg[HIREG]>>32),(int)reg[HIREG]);
2083     rlist();
2084     #ifdef __i386__
2085     printf("TRACE: %x\n",(&i)[-1]);
2086     #endif
2087     #ifdef __arm__
2088     int j;
2089     printf("TRACE: %x \n",(&j)[10]);
2090     printf("TRACE: %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x\n",(&j)[1],(&j)[2],(&j)[3],(&j)[4],(&j)[5],(&j)[6],(&j)[7],(&j)[8],(&j)[9],(&j)[10],(&j)[11],(&j)[12],(&j)[13],(&j)[14],(&j)[15],(&j)[16],(&j)[17],(&j)[18],(&j)[19],(&j)[20]);
2091     #endif
2092     //fflush(stdout);
2093   }
2094   //printf("TRACE: %x\n",(&i)[-1]);
2095 }
2096
2097 void tlb_debug(u_int cause, u_int addr, u_int iaddr)
2098 {
2099   printf("TLB Exception: instruction=%x addr=%x cause=%x\n",iaddr, addr, cause);
2100 }
2101
2102 void alu_assemble(int i,struct regstat *i_regs)
2103 {
2104   if(opcode2[i]>=0x20&&opcode2[i]<=0x23) { // ADD/ADDU/SUB/SUBU
2105     if(rt1[i]) {
2106       signed char s1,s2,t;
2107       t=get_reg(i_regs->regmap,rt1[i]);
2108       if(t>=0) {
2109         s1=get_reg(i_regs->regmap,rs1[i]);
2110         s2=get_reg(i_regs->regmap,rs2[i]);
2111         if(rs1[i]&&rs2[i]) {
2112           assert(s1>=0);
2113           assert(s2>=0);
2114           if(opcode2[i]&2) emit_sub(s1,s2,t);
2115           else emit_add(s1,s2,t);
2116         }
2117         else if(rs1[i]) {
2118           if(s1>=0) emit_mov(s1,t);
2119           else emit_loadreg(rs1[i],t);
2120         }
2121         else if(rs2[i]) {
2122           if(s2>=0) {
2123             if(opcode2[i]&2) emit_neg(s2,t);
2124             else emit_mov(s2,t);
2125           }
2126           else {
2127             emit_loadreg(rs2[i],t);
2128             if(opcode2[i]&2) emit_neg(t,t);
2129           }
2130         }
2131         else emit_zeroreg(t);
2132       }
2133     }
2134   }
2135   if(opcode2[i]>=0x2c&&opcode2[i]<=0x2f) { // DADD/DADDU/DSUB/DSUBU
2136     if(rt1[i]) {
2137       signed char s1l,s2l,s1h,s2h,tl,th;
2138       tl=get_reg(i_regs->regmap,rt1[i]);
2139       th=get_reg(i_regs->regmap,rt1[i]|64);
2140       if(tl>=0) {
2141         s1l=get_reg(i_regs->regmap,rs1[i]);
2142         s2l=get_reg(i_regs->regmap,rs2[i]);
2143         s1h=get_reg(i_regs->regmap,rs1[i]|64);
2144         s2h=get_reg(i_regs->regmap,rs2[i]|64);
2145         if(rs1[i]&&rs2[i]) {
2146           assert(s1l>=0);
2147           assert(s2l>=0);
2148           if(opcode2[i]&2) emit_subs(s1l,s2l,tl);
2149           else emit_adds(s1l,s2l,tl);
2150           if(th>=0) {
2151             #ifdef INVERTED_CARRY
2152             if(opcode2[i]&2) {if(s1h!=th) emit_mov(s1h,th);emit_sbb(th,s2h);}
2153             #else
2154             if(opcode2[i]&2) emit_sbc(s1h,s2h,th);
2155             #endif
2156             else emit_add(s1h,s2h,th);
2157           }
2158         }
2159         else if(rs1[i]) {
2160           if(s1l>=0) emit_mov(s1l,tl);
2161           else emit_loadreg(rs1[i],tl);
2162           if(th>=0) {
2163             if(s1h>=0) emit_mov(s1h,th);
2164             else emit_loadreg(rs1[i]|64,th);
2165           }
2166         }
2167         else if(rs2[i]) {
2168           if(s2l>=0) {
2169             if(opcode2[i]&2) emit_negs(s2l,tl);
2170             else emit_mov(s2l,tl);
2171           }
2172           else {
2173             emit_loadreg(rs2[i],tl);
2174             if(opcode2[i]&2) emit_negs(tl,tl);
2175           }
2176           if(th>=0) {
2177             #ifdef INVERTED_CARRY
2178             if(s2h>=0) emit_mov(s2h,th);
2179             else emit_loadreg(rs2[i]|64,th);
2180             if(opcode2[i]&2) {
2181               emit_adcimm(-1,th); // x86 has inverted carry flag
2182               emit_not(th,th);
2183             }
2184             #else
2185             if(opcode2[i]&2) {
2186               if(s2h>=0) emit_rscimm(s2h,0,th);
2187               else {
2188                 emit_loadreg(rs2[i]|64,th);
2189                 emit_rscimm(th,0,th);
2190               }
2191             }else{
2192               if(s2h>=0) emit_mov(s2h,th);
2193               else emit_loadreg(rs2[i]|64,th);
2194             }
2195             #endif
2196           }
2197         }
2198         else {
2199           emit_zeroreg(tl);
2200           if(th>=0) emit_zeroreg(th);
2201         }
2202       }
2203     }
2204   }
2205   if(opcode2[i]==0x2a||opcode2[i]==0x2b) { // SLT/SLTU
2206     if(rt1[i]) {
2207       signed char s1l,s1h,s2l,s2h,t;
2208       if(!((i_regs->was32>>rs1[i])&(i_regs->was32>>rs2[i])&1))
2209       {
2210         t=get_reg(i_regs->regmap,rt1[i]);
2211         //assert(t>=0);
2212         if(t>=0) {
2213           s1l=get_reg(i_regs->regmap,rs1[i]);
2214           s1h=get_reg(i_regs->regmap,rs1[i]|64);
2215           s2l=get_reg(i_regs->regmap,rs2[i]);
2216           s2h=get_reg(i_regs->regmap,rs2[i]|64);
2217           if(rs2[i]==0) // rx<r0
2218           {
2219             assert(s1h>=0);
2220             if(opcode2[i]==0x2a) // SLT
2221               emit_shrimm(s1h,31,t);
2222             else // SLTU (unsigned can not be less than zero)
2223               emit_zeroreg(t);
2224           }
2225           else if(rs1[i]==0) // r0<rx
2226           {
2227             assert(s2h>=0);
2228             if(opcode2[i]==0x2a) // SLT
2229               emit_set_gz64_32(s2h,s2l,t);
2230             else // SLTU (set if not zero)
2231               emit_set_nz64_32(s2h,s2l,t);
2232           }
2233           else {
2234             assert(s1l>=0);assert(s1h>=0);
2235             assert(s2l>=0);assert(s2h>=0);
2236             if(opcode2[i]==0x2a) // SLT
2237               emit_set_if_less64_32(s1h,s1l,s2h,s2l,t);
2238             else // SLTU
2239               emit_set_if_carry64_32(s1h,s1l,s2h,s2l,t);
2240           }
2241         }
2242       } else {
2243         t=get_reg(i_regs->regmap,rt1[i]);
2244         //assert(t>=0);
2245         if(t>=0) {
2246           s1l=get_reg(i_regs->regmap,rs1[i]);
2247           s2l=get_reg(i_regs->regmap,rs2[i]);
2248           if(rs2[i]==0) // rx<r0
2249           {
2250             assert(s1l>=0);
2251             if(opcode2[i]==0x2a) // SLT
2252               emit_shrimm(s1l,31,t);
2253             else // SLTU (unsigned can not be less than zero)
2254               emit_zeroreg(t);
2255           }
2256           else if(rs1[i]==0) // r0<rx
2257           {
2258             assert(s2l>=0);
2259             if(opcode2[i]==0x2a) // SLT
2260               emit_set_gz32(s2l,t);
2261             else // SLTU (set if not zero)
2262               emit_set_nz32(s2l,t);
2263           }
2264           else{
2265             assert(s1l>=0);assert(s2l>=0);
2266             if(opcode2[i]==0x2a) // SLT
2267               emit_set_if_less32(s1l,s2l,t);
2268             else // SLTU
2269               emit_set_if_carry32(s1l,s2l,t);
2270           }
2271         }
2272       }
2273     }
2274   }
2275   if(opcode2[i]>=0x24&&opcode2[i]<=0x27) { // AND/OR/XOR/NOR
2276     if(rt1[i]) {
2277       signed char s1l,s1h,s2l,s2h,th,tl;
2278       tl=get_reg(i_regs->regmap,rt1[i]);
2279       th=get_reg(i_regs->regmap,rt1[i]|64);
2280       if(!((i_regs->was32>>rs1[i])&(i_regs->was32>>rs2[i])&1)&&th>=0)
2281       {
2282         assert(tl>=0);
2283         if(tl>=0) {
2284           s1l=get_reg(i_regs->regmap,rs1[i]);
2285           s1h=get_reg(i_regs->regmap,rs1[i]|64);
2286           s2l=get_reg(i_regs->regmap,rs2[i]);
2287           s2h=get_reg(i_regs->regmap,rs2[i]|64);
2288           if(rs1[i]&&rs2[i]) {
2289             assert(s1l>=0);assert(s1h>=0);
2290             assert(s2l>=0);assert(s2h>=0);
2291             if(opcode2[i]==0x24) { // AND
2292               emit_and(s1l,s2l,tl);
2293               emit_and(s1h,s2h,th);
2294             } else
2295             if(opcode2[i]==0x25) { // OR
2296               emit_or(s1l,s2l,tl);
2297               emit_or(s1h,s2h,th);
2298             } else
2299             if(opcode2[i]==0x26) { // XOR
2300               emit_xor(s1l,s2l,tl);
2301               emit_xor(s1h,s2h,th);
2302             } else
2303             if(opcode2[i]==0x27) { // NOR
2304               emit_or(s1l,s2l,tl);
2305               emit_or(s1h,s2h,th);
2306               emit_not(tl,tl);
2307               emit_not(th,th);
2308             }
2309           }
2310           else
2311           {
2312             if(opcode2[i]==0x24) { // AND
2313               emit_zeroreg(tl);
2314               emit_zeroreg(th);
2315             } else
2316             if(opcode2[i]==0x25||opcode2[i]==0x26) { // OR/XOR
2317               if(rs1[i]){
2318                 if(s1l>=0) emit_mov(s1l,tl);
2319                 else emit_loadreg(rs1[i],tl);
2320                 if(s1h>=0) emit_mov(s1h,th);
2321                 else emit_loadreg(rs1[i]|64,th);
2322               }
2323               else
2324               if(rs2[i]){
2325                 if(s2l>=0) emit_mov(s2l,tl);
2326                 else emit_loadreg(rs2[i],tl);
2327                 if(s2h>=0) emit_mov(s2h,th);
2328                 else emit_loadreg(rs2[i]|64,th);
2329               }
2330               else{
2331                 emit_zeroreg(tl);
2332                 emit_zeroreg(th);
2333               }
2334             } else
2335             if(opcode2[i]==0x27) { // NOR
2336               if(rs1[i]){
2337                 if(s1l>=0) emit_not(s1l,tl);
2338                 else{
2339                   emit_loadreg(rs1[i],tl);
2340                   emit_not(tl,tl);
2341                 }
2342                 if(s1h>=0) emit_not(s1h,th);
2343                 else{
2344                   emit_loadreg(rs1[i]|64,th);
2345                   emit_not(th,th);
2346                 }
2347               }
2348               else
2349               if(rs2[i]){
2350                 if(s2l>=0) emit_not(s2l,tl);
2351                 else{
2352                   emit_loadreg(rs2[i],tl);
2353                   emit_not(tl,tl);
2354                 }
2355                 if(s2h>=0) emit_not(s2h,th);
2356                 else{
2357                   emit_loadreg(rs2[i]|64,th);
2358                   emit_not(th,th);
2359                 }
2360               }
2361               else {
2362                 emit_movimm(-1,tl);
2363                 emit_movimm(-1,th);
2364               }
2365             }
2366           }
2367         }
2368       }
2369       else
2370       {
2371         // 32 bit
2372         if(tl>=0) {
2373           s1l=get_reg(i_regs->regmap,rs1[i]);
2374           s2l=get_reg(i_regs->regmap,rs2[i]);
2375           if(rs1[i]&&rs2[i]) {
2376             assert(s1l>=0);
2377             assert(s2l>=0);
2378             if(opcode2[i]==0x24) { // AND
2379               emit_and(s1l,s2l,tl);
2380             } else
2381             if(opcode2[i]==0x25) { // OR
2382               emit_or(s1l,s2l,tl);
2383             } else
2384             if(opcode2[i]==0x26) { // XOR
2385               emit_xor(s1l,s2l,tl);
2386             } else
2387             if(opcode2[i]==0x27) { // NOR
2388               emit_or(s1l,s2l,tl);
2389               emit_not(tl,tl);
2390             }
2391           }
2392           else
2393           {
2394             if(opcode2[i]==0x24) { // AND
2395               emit_zeroreg(tl);
2396             } else
2397             if(opcode2[i]==0x25||opcode2[i]==0x26) { // OR/XOR
2398               if(rs1[i]){
2399                 if(s1l>=0) emit_mov(s1l,tl);
2400                 else emit_loadreg(rs1[i],tl); // CHECK: regmap_entry?
2401               }
2402               else
2403               if(rs2[i]){
2404                 if(s2l>=0) emit_mov(s2l,tl);
2405                 else emit_loadreg(rs2[i],tl); // CHECK: regmap_entry?
2406               }
2407               else emit_zeroreg(tl);
2408             } else
2409             if(opcode2[i]==0x27) { // NOR
2410               if(rs1[i]){
2411                 if(s1l>=0) emit_not(s1l,tl);
2412                 else {
2413                   emit_loadreg(rs1[i],tl);
2414                   emit_not(tl,tl);
2415                 }
2416               }
2417               else
2418               if(rs2[i]){
2419                 if(s2l>=0) emit_not(s2l,tl);
2420                 else {
2421                   emit_loadreg(rs2[i],tl);
2422                   emit_not(tl,tl);
2423                 }
2424               }
2425               else emit_movimm(-1,tl);
2426             }
2427           }
2428         }
2429       }
2430     }
2431   }
2432 }
2433
2434 void imm16_assemble(int i,struct regstat *i_regs)
2435 {
2436   if (opcode[i]==0x0f) { // LUI
2437     if(rt1[i]) {
2438       signed char t;
2439       t=get_reg(i_regs->regmap,rt1[i]);
2440       //assert(t>=0);
2441       if(t>=0) {
2442         if(!((i_regs->isconst>>t)&1))
2443           emit_movimm(imm[i]<<16,t);
2444       }
2445     }
2446   }
2447   if(opcode[i]==0x08||opcode[i]==0x09) { // ADDI/ADDIU
2448     if(rt1[i]) {
2449       signed char s,t;
2450       t=get_reg(i_regs->regmap,rt1[i]);
2451       s=get_reg(i_regs->regmap,rs1[i]);
2452       if(rs1[i]) {
2453         //assert(t>=0);
2454         //assert(s>=0);
2455         if(t>=0) {
2456           if(!((i_regs->isconst>>t)&1)) {
2457             if(s<0) {
2458               if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2459               emit_addimm(t,imm[i],t);
2460             }else{
2461               if(!((i_regs->wasconst>>s)&1))
2462                 emit_addimm(s,imm[i],t);
2463               else
2464                 emit_movimm(constmap[i][s]+imm[i],t);
2465             }
2466           }
2467         }
2468       } else {
2469         if(t>=0) {
2470           if(!((i_regs->isconst>>t)&1))
2471             emit_movimm(imm[i],t);
2472         }
2473       }
2474     }
2475   }
2476   if(opcode[i]==0x18||opcode[i]==0x19) { // DADDI/DADDIU
2477     if(rt1[i]) {
2478       signed char sh,sl,th,tl;
2479       th=get_reg(i_regs->regmap,rt1[i]|64);
2480       tl=get_reg(i_regs->regmap,rt1[i]);
2481       sh=get_reg(i_regs->regmap,rs1[i]|64);
2482       sl=get_reg(i_regs->regmap,rs1[i]);
2483       if(tl>=0) {
2484         if(rs1[i]) {
2485           assert(sh>=0);
2486           assert(sl>=0);
2487           if(th>=0) {
2488             emit_addimm64_32(sh,sl,imm[i],th,tl);
2489           }
2490           else {
2491             emit_addimm(sl,imm[i],tl);
2492           }
2493         } else {
2494           emit_movimm(imm[i],tl);
2495           if(th>=0) emit_movimm(((signed int)imm[i])>>31,th);
2496         }
2497       }
2498     }
2499   }
2500   else if(opcode[i]==0x0a||opcode[i]==0x0b) { // SLTI/SLTIU
2501     if(rt1[i]) {
2502       //assert(rs1[i]!=0); // r0 might be valid, but it's probably a bug
2503       signed char sh,sl,t;
2504       t=get_reg(i_regs->regmap,rt1[i]);
2505       sh=get_reg(i_regs->regmap,rs1[i]|64);
2506       sl=get_reg(i_regs->regmap,rs1[i]);
2507       //assert(t>=0);
2508       if(t>=0) {
2509         if(rs1[i]>0) {
2510           if(sh<0) assert((i_regs->was32>>rs1[i])&1);
2511           if(sh<0||((i_regs->was32>>rs1[i])&1)) {
2512             if(opcode[i]==0x0a) { // SLTI
2513               if(sl<0) {
2514                 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2515                 emit_slti32(t,imm[i],t);
2516               }else{
2517                 emit_slti32(sl,imm[i],t);
2518               }
2519             }
2520             else { // SLTIU
2521               if(sl<0) {
2522                 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2523                 emit_sltiu32(t,imm[i],t);
2524               }else{
2525                 emit_sltiu32(sl,imm[i],t);
2526               }
2527             }
2528           }else{ // 64-bit
2529             assert(sl>=0);
2530             if(opcode[i]==0x0a) // SLTI
2531               emit_slti64_32(sh,sl,imm[i],t);
2532             else // SLTIU
2533               emit_sltiu64_32(sh,sl,imm[i],t);
2534           }
2535         }else{
2536           // SLTI(U) with r0 is just stupid,
2537           // nonetheless examples can be found
2538           if(opcode[i]==0x0a) // SLTI
2539             if(0<imm[i]) emit_movimm(1,t);
2540             else emit_zeroreg(t);
2541           else // SLTIU
2542           {
2543             if(imm[i]) emit_movimm(1,t);
2544             else emit_zeroreg(t);
2545           }
2546         }
2547       }
2548     }
2549   }
2550   else if(opcode[i]>=0x0c&&opcode[i]<=0x0e) { // ANDI/ORI/XORI
2551     if(rt1[i]) {
2552       signed char sh,sl,th,tl;
2553       th=get_reg(i_regs->regmap,rt1[i]|64);
2554       tl=get_reg(i_regs->regmap,rt1[i]);
2555       sh=get_reg(i_regs->regmap,rs1[i]|64);
2556       sl=get_reg(i_regs->regmap,rs1[i]);
2557       if(tl>=0 && !((i_regs->isconst>>tl)&1)) {
2558         if(opcode[i]==0x0c) //ANDI
2559         {
2560           if(rs1[i]) {
2561             if(sl<0) {
2562               if(i_regs->regmap_entry[tl]!=rs1[i]) emit_loadreg(rs1[i],tl);
2563               emit_andimm(tl,imm[i],tl);
2564             }else{
2565               if(!((i_regs->wasconst>>sl)&1))
2566                 emit_andimm(sl,imm[i],tl);
2567               else
2568                 emit_movimm(constmap[i][sl]&imm[i],tl);
2569             }
2570           }
2571           else
2572             emit_zeroreg(tl);
2573           if(th>=0) emit_zeroreg(th);
2574         }
2575         else
2576         {
2577           if(rs1[i]) {
2578             if(sl<0) {
2579               if(i_regs->regmap_entry[tl]!=rs1[i]) emit_loadreg(rs1[i],tl);
2580             }
2581             if(th>=0) {
2582               if(sh<0) {
2583                 emit_loadreg(rs1[i]|64,th);
2584               }else{
2585                 emit_mov(sh,th);
2586               }
2587             }
2588             if(opcode[i]==0x0d) //ORI
2589             if(sl<0) {
2590               emit_orimm(tl,imm[i],tl);
2591             }else{
2592               if(!((i_regs->wasconst>>sl)&1))
2593                 emit_orimm(sl,imm[i],tl);
2594               else
2595                 emit_movimm(constmap[i][sl]|imm[i],tl);
2596             }
2597             if(opcode[i]==0x0e) //XORI
2598             if(sl<0) {
2599               emit_xorimm(tl,imm[i],tl);
2600             }else{
2601               if(!((i_regs->wasconst>>sl)&1))
2602                 emit_xorimm(sl,imm[i],tl);
2603               else
2604                 emit_movimm(constmap[i][sl]^imm[i],tl);
2605             }
2606           }
2607           else {
2608             emit_movimm(imm[i],tl);
2609             if(th>=0) emit_zeroreg(th);
2610           }
2611         }
2612       }
2613     }
2614   }
2615 }
2616
2617 void shiftimm_assemble(int i,struct regstat *i_regs)
2618 {
2619   if(opcode2[i]<=0x3) // SLL/SRL/SRA
2620   {
2621     if(rt1[i]) {
2622       signed char s,t;
2623       t=get_reg(i_regs->regmap,rt1[i]);
2624       s=get_reg(i_regs->regmap,rs1[i]);
2625       //assert(t>=0);
2626       if(t>=0){
2627         if(rs1[i]==0)
2628         {
2629           emit_zeroreg(t);
2630         }
2631         else
2632         {
2633           if(s<0&&i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2634           if(imm[i]) {
2635             if(opcode2[i]==0) // SLL
2636             {
2637               emit_shlimm(s<0?t:s,imm[i],t);
2638             }
2639             if(opcode2[i]==2) // SRL
2640             {
2641               emit_shrimm(s<0?t:s,imm[i],t);
2642             }
2643             if(opcode2[i]==3) // SRA
2644             {
2645               emit_sarimm(s<0?t:s,imm[i],t);
2646             }
2647           }else{
2648             // Shift by zero
2649             if(s>=0 && s!=t) emit_mov(s,t);
2650           }
2651         }
2652       }
2653       //emit_storereg(rt1[i],t); //DEBUG
2654     }
2655   }
2656   if(opcode2[i]>=0x38&&opcode2[i]<=0x3b) // DSLL/DSRL/DSRA
2657   {
2658     if(rt1[i]) {
2659       signed char sh,sl,th,tl;
2660       th=get_reg(i_regs->regmap,rt1[i]|64);
2661       tl=get_reg(i_regs->regmap,rt1[i]);
2662       sh=get_reg(i_regs->regmap,rs1[i]|64);
2663       sl=get_reg(i_regs->regmap,rs1[i]);
2664       if(tl>=0) {
2665         if(rs1[i]==0)
2666         {
2667           emit_zeroreg(tl);
2668           if(th>=0) emit_zeroreg(th);
2669         }
2670         else
2671         {
2672           assert(sl>=0);
2673           assert(sh>=0);
2674           if(imm[i]) {
2675             if(opcode2[i]==0x38) // DSLL
2676             {
2677               if(th>=0) emit_shldimm(sh,sl,imm[i],th);
2678               emit_shlimm(sl,imm[i],tl);
2679             }
2680             if(opcode2[i]==0x3a) // DSRL
2681             {
2682               emit_shrdimm(sl,sh,imm[i],tl);
2683               if(th>=0) emit_shrimm(sh,imm[i],th);
2684             }
2685             if(opcode2[i]==0x3b) // DSRA
2686             {
2687               emit_shrdimm(sl,sh,imm[i],tl);
2688               if(th>=0) emit_sarimm(sh,imm[i],th);
2689             }
2690           }else{
2691             // Shift by zero
2692             if(sl!=tl) emit_mov(sl,tl);
2693             if(th>=0&&sh!=th) emit_mov(sh,th);
2694           }
2695         }
2696       }
2697     }
2698   }
2699   if(opcode2[i]==0x3c) // DSLL32
2700   {
2701     if(rt1[i]) {
2702       signed char sl,tl,th;
2703       tl=get_reg(i_regs->regmap,rt1[i]);
2704       th=get_reg(i_regs->regmap,rt1[i]|64);
2705       sl=get_reg(i_regs->regmap,rs1[i]);
2706       if(th>=0||tl>=0){
2707         assert(tl>=0);
2708         assert(th>=0);
2709         assert(sl>=0);
2710         emit_mov(sl,th);
2711         emit_zeroreg(tl);
2712         if(imm[i]>32)
2713         {
2714           emit_shlimm(th,imm[i]&31,th);
2715         }
2716       }
2717     }
2718   }
2719   if(opcode2[i]==0x3e) // DSRL32
2720   {
2721     if(rt1[i]) {
2722       signed char sh,tl,th;
2723       tl=get_reg(i_regs->regmap,rt1[i]);
2724       th=get_reg(i_regs->regmap,rt1[i]|64);
2725       sh=get_reg(i_regs->regmap,rs1[i]|64);
2726       if(tl>=0){
2727         assert(sh>=0);
2728         emit_mov(sh,tl);
2729         if(th>=0) emit_zeroreg(th);
2730         if(imm[i]>32)
2731         {
2732           emit_shrimm(tl,imm[i]&31,tl);
2733         }
2734       }
2735     }
2736   }
2737   if(opcode2[i]==0x3f) // DSRA32
2738   {
2739     if(rt1[i]) {
2740       signed char sh,tl;
2741       tl=get_reg(i_regs->regmap,rt1[i]);
2742       sh=get_reg(i_regs->regmap,rs1[i]|64);
2743       if(tl>=0){
2744         assert(sh>=0);
2745         emit_mov(sh,tl);
2746         if(imm[i]>32)
2747         {
2748           emit_sarimm(tl,imm[i]&31,tl);
2749         }
2750       }
2751     }
2752   }
2753 }
2754
2755 #ifndef shift_assemble
2756 void shift_assemble(int i,struct regstat *i_regs)
2757 {
2758   printf("Need shift_assemble for this architecture.\n");
2759   exit(1);
2760 }
2761 #endif
2762
2763 void load_assemble(int i,struct regstat *i_regs)
2764 {
2765   int s,th,tl,addr,map=-1;
2766   int offset;
2767   int jaddr=0;
2768   int memtarget=0,c=0;
2769   int fastload_reg_override=0;
2770   u_int hr,reglist=0;
2771   th=get_reg(i_regs->regmap,rt1[i]|64);
2772   tl=get_reg(i_regs->regmap,rt1[i]);
2773   s=get_reg(i_regs->regmap,rs1[i]);
2774   offset=imm[i];
2775   for(hr=0;hr<HOST_REGS;hr++) {
2776     if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
2777   }
2778   if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
2779   if(s>=0) {
2780     c=(i_regs->wasconst>>s)&1;
2781     if (c) {
2782       memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
2783       if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
2784     }
2785   }
2786   //printf("load_assemble: c=%d\n",c);
2787   //if(c) printf("load_assemble: const=%x\n",(int)constmap[i][s]+offset);
2788   // FIXME: Even if the load is a NOP, we should check for pagefaults...
2789 #ifdef PCSX
2790   if(tl<0&&(!c||(((u_int)constmap[i][s]+offset)>>16)==0x1f80)
2791     ||rt1[i]==0) {
2792       // could be FIFO, must perform the read
2793       // ||dummy read
2794       assem_debug("(forced read)\n");
2795       tl=get_reg(i_regs->regmap,-1);
2796       assert(tl>=0);
2797   }
2798 #endif
2799   if(offset||s<0||c) addr=tl;
2800   else addr=s;
2801   //if(tl<0) tl=get_reg(i_regs->regmap,-1);
2802  if(tl>=0) {
2803   //printf("load_assemble: c=%d\n",c);
2804   //if(c) printf("load_assemble: const=%x\n",(int)constmap[i][s]+offset);
2805   assert(tl>=0); // Even if the load is a NOP, we must check for pagefaults and I/O
2806   reglist&=~(1<<tl);
2807   if(th>=0) reglist&=~(1<<th);
2808   if(!using_tlb) {
2809     if(!c) {
2810       #ifdef RAM_OFFSET
2811       map=get_reg(i_regs->regmap,ROREG);
2812       if(map<0) emit_loadreg(ROREG,map=HOST_TEMPREG);
2813       #endif
2814 //#define R29_HACK 1
2815       #ifdef R29_HACK
2816       // Strmnnrmn's speed hack
2817       if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
2818       #endif
2819       {
2820         #ifdef PCSX
2821         if(sp_in_mirror&&rs1[i]==29) {
2822           emit_andimm(addr,~0x00e00000,HOST_TEMPREG);
2823           emit_cmpimm(HOST_TEMPREG,RAM_SIZE);
2824           fastload_reg_override=HOST_TEMPREG;
2825         }
2826         else
2827         #endif
2828         emit_cmpimm(addr,RAM_SIZE);
2829         jaddr=(int)out;
2830         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
2831         // Hint to branch predictor that the branch is unlikely to be taken
2832         if(rs1[i]>=28)
2833           emit_jno_unlikely(0);
2834         else
2835         #endif
2836         emit_jno(0);
2837       }
2838     }
2839   }else{ // using tlb
2840     int x=0;
2841     if (opcode[i]==0x20||opcode[i]==0x24) x=3; // LB/LBU
2842     if (opcode[i]==0x21||opcode[i]==0x25) x=2; // LH/LHU
2843     map=get_reg(i_regs->regmap,TLREG);
2844     assert(map>=0);
2845     reglist&=~(1<<map);
2846     map=do_tlb_r(addr,tl,map,x,-1,-1,c,constmap[i][s]+offset);
2847     do_tlb_r_branch(map,c,constmap[i][s]+offset,&jaddr);
2848   }
2849   int dummy=(rt1[i]==0)||(tl!=get_reg(i_regs->regmap,rt1[i])); // ignore loads to r0 and unneeded reg
2850   if (opcode[i]==0x20) { // LB
2851     if(!c||memtarget) {
2852       if(!dummy) {
2853         #ifdef HOST_IMM_ADDR32
2854         if(c)
2855           emit_movsbl_tlb((constmap[i][s]+offset)^3,map,tl);
2856         else
2857         #endif
2858         {
2859           //emit_xorimm(addr,3,tl);
2860           //gen_tlb_addr_r(tl,map);
2861           //emit_movsbl_indexed((int)rdram-0x80000000,tl,tl);
2862           int x=0,a=tl;
2863 #ifdef BIG_ENDIAN_MIPS
2864           if(!c) emit_xorimm(addr,3,tl);
2865           else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2866 #else
2867           if(!c) a=addr;
2868 #endif
2869           if(fastload_reg_override) a=fastload_reg_override;
2870
2871           emit_movsbl_indexed_tlb(x,a,map,tl);
2872         }
2873       }
2874       if(jaddr)
2875         add_stub(LOADB_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2876     }
2877     else
2878       inline_readstub(LOADB_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2879   }
2880   if (opcode[i]==0x21) { // LH
2881     if(!c||memtarget) {
2882       if(!dummy) {
2883         #ifdef HOST_IMM_ADDR32
2884         if(c)
2885           emit_movswl_tlb((constmap[i][s]+offset)^2,map,tl);
2886         else
2887         #endif
2888         {
2889           int x=0,a=tl;
2890 #ifdef BIG_ENDIAN_MIPS
2891           if(!c) emit_xorimm(addr,2,tl);
2892           else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
2893 #else
2894           if(!c) a=addr;
2895 #endif
2896           if(fastload_reg_override) a=fastload_reg_override;
2897           //#ifdef
2898           //emit_movswl_indexed_tlb(x,tl,map,tl);
2899           //else
2900           if(map>=0) {
2901             gen_tlb_addr_r(a,map);
2902             emit_movswl_indexed(x,a,tl);
2903           }else{
2904             #ifdef RAM_OFFSET
2905             emit_movswl_indexed(x,a,tl);
2906             #else
2907             emit_movswl_indexed((int)rdram-0x80000000+x,a,tl);
2908             #endif
2909           }
2910         }
2911       }
2912       if(jaddr)
2913         add_stub(LOADH_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2914     }
2915     else
2916       inline_readstub(LOADH_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2917   }
2918   if (opcode[i]==0x23) { // LW
2919     if(!c||memtarget) {
2920       if(!dummy) {
2921         int a=addr;
2922         if(fastload_reg_override) a=fastload_reg_override;
2923         //emit_readword_indexed((int)rdram-0x80000000,addr,tl);
2924         #ifdef HOST_IMM_ADDR32
2925         if(c)
2926           emit_readword_tlb(constmap[i][s]+offset,map,tl);
2927         else
2928         #endif
2929         emit_readword_indexed_tlb(0,a,map,tl);
2930       }
2931       if(jaddr)
2932         add_stub(LOADW_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2933     }
2934     else
2935       inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2936   }
2937   if (opcode[i]==0x24) { // LBU
2938     if(!c||memtarget) {
2939       if(!dummy) {
2940         #ifdef HOST_IMM_ADDR32
2941         if(c)
2942           emit_movzbl_tlb((constmap[i][s]+offset)^3,map,tl);
2943         else
2944         #endif
2945         {
2946           //emit_xorimm(addr,3,tl);
2947           //gen_tlb_addr_r(tl,map);
2948           //emit_movzbl_indexed((int)rdram-0x80000000,tl,tl);
2949           int x=0,a=tl;
2950 #ifdef BIG_ENDIAN_MIPS
2951           if(!c) emit_xorimm(addr,3,tl);
2952           else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2953 #else
2954           if(!c) a=addr;
2955 #endif
2956           if(fastload_reg_override) a=fastload_reg_override;
2957
2958           emit_movzbl_indexed_tlb(x,a,map,tl);
2959         }
2960       }
2961       if(jaddr)
2962         add_stub(LOADBU_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2963     }
2964     else
2965       inline_readstub(LOADBU_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2966   }
2967   if (opcode[i]==0x25) { // LHU
2968     if(!c||memtarget) {
2969       if(!dummy) {
2970         #ifdef HOST_IMM_ADDR32
2971         if(c)
2972           emit_movzwl_tlb((constmap[i][s]+offset)^2,map,tl);
2973         else
2974         #endif
2975         {
2976           int x=0,a=tl;
2977 #ifdef BIG_ENDIAN_MIPS
2978           if(!c) emit_xorimm(addr,2,tl);
2979           else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
2980 #else
2981           if(!c) a=addr;
2982 #endif
2983           if(fastload_reg_override) a=fastload_reg_override;
2984           //#ifdef
2985           //emit_movzwl_indexed_tlb(x,tl,map,tl);
2986           //#else
2987           if(map>=0) {
2988             gen_tlb_addr_r(a,map);
2989             emit_movzwl_indexed(x,a,tl);
2990           }else{
2991             #ifdef RAM_OFFSET
2992             emit_movzwl_indexed(x,a,tl);
2993             #else
2994             emit_movzwl_indexed((int)rdram-0x80000000+x,a,tl);
2995             #endif
2996           }
2997         }
2998       }
2999       if(jaddr)
3000         add_stub(LOADHU_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3001     }
3002     else
3003       inline_readstub(LOADHU_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
3004   }
3005   if (opcode[i]==0x27) { // LWU
3006     assert(th>=0);
3007     if(!c||memtarget) {
3008       if(!dummy) {
3009         int a=addr;
3010         if(fastload_reg_override) a=fastload_reg_override;
3011         //emit_readword_indexed((int)rdram-0x80000000,addr,tl);
3012         #ifdef HOST_IMM_ADDR32
3013         if(c)
3014           emit_readword_tlb(constmap[i][s]+offset,map,tl);
3015         else
3016         #endif
3017         emit_readword_indexed_tlb(0,a,map,tl);
3018       }
3019       if(jaddr)
3020         add_stub(LOADW_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3021     }
3022     else {
3023       inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
3024     }
3025     emit_zeroreg(th);
3026   }
3027   if (opcode[i]==0x37) { // LD
3028     if(!c||memtarget) {
3029       if(!dummy) {
3030         int a=addr;
3031         if(fastload_reg_override) a=fastload_reg_override;
3032         //gen_tlb_addr_r(tl,map);
3033         //if(th>=0) emit_readword_indexed((int)rdram-0x80000000,addr,th);
3034         //emit_readword_indexed((int)rdram-0x7FFFFFFC,addr,tl);
3035         #ifdef HOST_IMM_ADDR32
3036         if(c)
3037           emit_readdword_tlb(constmap[i][s]+offset,map,th,tl);
3038         else
3039         #endif
3040         emit_readdword_indexed_tlb(0,a,map,th,tl);
3041       }
3042       if(jaddr)
3043         add_stub(LOADD_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3044     }
3045     else
3046       inline_readstub(LOADD_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
3047   }
3048  }
3049   //emit_storereg(rt1[i],tl); // DEBUG
3050   //if(opcode[i]==0x23)
3051   //if(opcode[i]==0x24)
3052   //if(opcode[i]==0x23||opcode[i]==0x24)
3053   /*if(opcode[i]==0x21||opcode[i]==0x23||opcode[i]==0x24)
3054   {
3055     //emit_pusha();
3056     save_regs(0x100f);
3057         emit_readword((int)&last_count,ECX);
3058         #ifdef __i386__
3059         if(get_reg(i_regs->regmap,CCREG)<0)
3060           emit_loadreg(CCREG,HOST_CCREG);
3061         emit_add(HOST_CCREG,ECX,HOST_CCREG);
3062         emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3063         emit_writeword(HOST_CCREG,(int)&Count);
3064         #endif
3065         #ifdef __arm__
3066         if(get_reg(i_regs->regmap,CCREG)<0)
3067           emit_loadreg(CCREG,0);
3068         else
3069           emit_mov(HOST_CCREG,0);
3070         emit_add(0,ECX,0);
3071         emit_addimm(0,2*ccadj[i],0);
3072         emit_writeword(0,(int)&Count);
3073         #endif
3074     emit_call((int)memdebug);
3075     //emit_popa();
3076     restore_regs(0x100f);
3077   }/**/
3078 }
3079
3080 #ifndef loadlr_assemble
3081 void loadlr_assemble(int i,struct regstat *i_regs)
3082 {
3083   printf("Need loadlr_assemble for this architecture.\n");
3084   exit(1);
3085 }
3086 #endif
3087
3088 void store_assemble(int i,struct regstat *i_regs)
3089 {
3090   int s,th,tl,map=-1;
3091   int addr,temp;
3092   int offset;
3093   int jaddr=0,jaddr2,type;
3094   int memtarget=0,c=0;
3095   int agr=AGEN1+(i&1);
3096   int faststore_reg_override=0;
3097   u_int hr,reglist=0;
3098   th=get_reg(i_regs->regmap,rs2[i]|64);
3099   tl=get_reg(i_regs->regmap,rs2[i]);
3100   s=get_reg(i_regs->regmap,rs1[i]);
3101   temp=get_reg(i_regs->regmap,agr);
3102   if(temp<0) temp=get_reg(i_regs->regmap,-1);
3103   offset=imm[i];
3104   if(s>=0) {
3105     c=(i_regs->wasconst>>s)&1;
3106     if(c) {
3107       memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
3108       if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
3109     }
3110   }
3111   assert(tl>=0);
3112   assert(temp>=0);
3113   for(hr=0;hr<HOST_REGS;hr++) {
3114     if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3115   }
3116   if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
3117   if(offset||s<0||c) addr=temp;
3118   else addr=s;
3119   if(!using_tlb) {
3120     if(!c) {
3121       #ifdef PCSX
3122       if(sp_in_mirror&&rs1[i]==29) {
3123         emit_andimm(addr,~0x00e00000,HOST_TEMPREG);
3124         emit_cmpimm(HOST_TEMPREG,RAM_SIZE);
3125         faststore_reg_override=HOST_TEMPREG;
3126       }
3127       else
3128       #endif
3129       #ifdef R29_HACK
3130       // Strmnnrmn's speed hack
3131       if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
3132       #endif
3133       emit_cmpimm(addr,RAM_SIZE);
3134       #ifdef DESTRUCTIVE_SHIFT
3135       if(s==addr) emit_mov(s,temp);
3136       #endif
3137       #ifdef R29_HACK
3138       memtarget=1;
3139       if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
3140       #endif
3141       {
3142         jaddr=(int)out;
3143         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
3144         // Hint to branch predictor that the branch is unlikely to be taken
3145         if(rs1[i]>=28)
3146           emit_jno_unlikely(0);
3147         else
3148         #endif
3149         emit_jno(0);
3150       }
3151     }
3152   }else{ // using tlb
3153     int x=0;
3154     if (opcode[i]==0x28) x=3; // SB
3155     if (opcode[i]==0x29) x=2; // SH
3156     map=get_reg(i_regs->regmap,TLREG);
3157     assert(map>=0);
3158     reglist&=~(1<<map);
3159     map=do_tlb_w(addr,temp,map,x,c,constmap[i][s]+offset);
3160     do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr);
3161   }
3162
3163   if (opcode[i]==0x28) { // SB
3164     if(!c||memtarget) {
3165       int x=0,a=temp;
3166 #ifdef BIG_ENDIAN_MIPS
3167       if(!c) emit_xorimm(addr,3,temp);
3168       else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
3169 #else
3170       if(!c) a=addr;
3171 #endif
3172       if(faststore_reg_override) a=faststore_reg_override;
3173       //gen_tlb_addr_w(temp,map);
3174       //emit_writebyte_indexed(tl,(int)rdram-0x80000000,temp);
3175       emit_writebyte_indexed_tlb(tl,x,a,map,a);
3176     }
3177     type=STOREB_STUB;
3178   }
3179   if (opcode[i]==0x29) { // SH
3180     if(!c||memtarget) {
3181       int x=0,a=temp;
3182 #ifdef BIG_ENDIAN_MIPS
3183       if(!c) emit_xorimm(addr,2,temp);
3184       else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
3185 #else
3186       if(!c) a=addr;
3187 #endif
3188       if(faststore_reg_override) a=faststore_reg_override;
3189       //#ifdef
3190       //emit_writehword_indexed_tlb(tl,x,temp,map,temp);
3191       //#else
3192       if(map>=0) {
3193         gen_tlb_addr_w(a,map);
3194         emit_writehword_indexed(tl,x,a);
3195       }else
3196         emit_writehword_indexed(tl,(int)rdram-0x80000000+x,a);
3197     }
3198     type=STOREH_STUB;
3199   }
3200   if (opcode[i]==0x2B) { // SW
3201     if(!c||memtarget) {
3202       int a=addr;
3203       if(faststore_reg_override) a=faststore_reg_override;
3204       //emit_writeword_indexed(tl,(int)rdram-0x80000000,addr);
3205       emit_writeword_indexed_tlb(tl,0,a,map,temp);
3206     }
3207     type=STOREW_STUB;
3208   }
3209   if (opcode[i]==0x3F) { // SD
3210     if(!c||memtarget) {
3211       int a=addr;
3212       if(faststore_reg_override) a=faststore_reg_override;
3213       if(rs2[i]) {
3214         assert(th>=0);
3215         //emit_writeword_indexed(th,(int)rdram-0x80000000,addr);
3216         //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,addr);
3217         emit_writedword_indexed_tlb(th,tl,0,a,map,temp);
3218       }else{
3219         // Store zero
3220         //emit_writeword_indexed(tl,(int)rdram-0x80000000,temp);
3221         //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,temp);
3222         emit_writedword_indexed_tlb(tl,tl,0,a,map,temp);
3223       }
3224     }
3225     type=STORED_STUB;
3226   }
3227   if(!using_tlb) {
3228     if(!c||memtarget) {
3229       #ifdef DESTRUCTIVE_SHIFT
3230       // The x86 shift operation is 'destructive'; it overwrites the
3231       // source register, so we need to make a copy first and use that.
3232       addr=temp;
3233       #endif
3234       #if defined(HOST_IMM8)
3235       int ir=get_reg(i_regs->regmap,INVCP);
3236       assert(ir>=0);
3237       emit_cmpmem_indexedsr12_reg(ir,addr,1);
3238       #else
3239       emit_cmpmem_indexedsr12_imm((int)invalid_code,addr,1);
3240       #endif
3241       #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3242       emit_callne(invalidate_addr_reg[addr]);
3243       #else
3244       jaddr2=(int)out;
3245       emit_jne(0);
3246       add_stub(INVCODE_STUB,jaddr2,(int)out,reglist|(1<<HOST_CCREG),addr,0,0,0);
3247       #endif
3248     }
3249   }
3250   if(jaddr) {
3251     add_stub(type,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3252   } else if(c&&!memtarget) {
3253     inline_writestub(type,i,constmap[i][s]+offset,i_regs->regmap,rs2[i],ccadj[i],reglist);
3254   }
3255   //if(opcode[i]==0x2B || opcode[i]==0x3F)
3256   //if(opcode[i]==0x2B || opcode[i]==0x28)
3257   //if(opcode[i]==0x2B || opcode[i]==0x29)
3258   //if(opcode[i]==0x2B)
3259   /*if(opcode[i]==0x2B || opcode[i]==0x28 || opcode[i]==0x29 || opcode[i]==0x3F)
3260   {
3261     #ifdef __i386__
3262     emit_pusha();
3263     #endif
3264     #ifdef __arm__
3265     save_regs(0x100f);
3266     #endif
3267         emit_readword((int)&last_count,ECX);
3268         #ifdef __i386__
3269         if(get_reg(i_regs->regmap,CCREG)<0)
3270           emit_loadreg(CCREG,HOST_CCREG);
3271         emit_add(HOST_CCREG,ECX,HOST_CCREG);
3272         emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3273         emit_writeword(HOST_CCREG,(int)&Count);
3274         #endif
3275         #ifdef __arm__
3276         if(get_reg(i_regs->regmap,CCREG)<0)
3277           emit_loadreg(CCREG,0);
3278         else
3279           emit_mov(HOST_CCREG,0);
3280         emit_add(0,ECX,0);
3281         emit_addimm(0,2*ccadj[i],0);
3282         emit_writeword(0,(int)&Count);
3283         #endif
3284     emit_call((int)memdebug);
3285     #ifdef __i386__
3286     emit_popa();
3287     #endif
3288     #ifdef __arm__
3289     restore_regs(0x100f);
3290     #endif
3291   }/**/
3292 }
3293
3294 void storelr_assemble(int i,struct regstat *i_regs)
3295 {
3296   int s,th,tl;
3297   int temp;
3298   int temp2;
3299   int offset;
3300   int jaddr=0,jaddr2;
3301   int case1,case2,case3;
3302   int done0,done1,done2;
3303   int memtarget=0,c=0;
3304   int agr=AGEN1+(i&1);
3305   u_int hr,reglist=0;
3306   th=get_reg(i_regs->regmap,rs2[i]|64);
3307   tl=get_reg(i_regs->regmap,rs2[i]);
3308   s=get_reg(i_regs->regmap,rs1[i]);
3309   temp=get_reg(i_regs->regmap,agr);
3310   if(temp<0) temp=get_reg(i_regs->regmap,-1);
3311   offset=imm[i];
3312   if(s>=0) {
3313     c=(i_regs->isconst>>s)&1;
3314     if(c) {
3315       memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
3316       if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
3317     }
3318   }
3319   assert(tl>=0);
3320   for(hr=0;hr<HOST_REGS;hr++) {
3321     if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3322   }
3323   assert(temp>=0);
3324   if(!using_tlb) {
3325     if(!c) {
3326       emit_cmpimm(s<0||offset?temp:s,RAM_SIZE);
3327       if(!offset&&s!=temp) emit_mov(s,temp);
3328       jaddr=(int)out;
3329       emit_jno(0);
3330     }
3331     else
3332     {
3333       if(!memtarget||!rs1[i]) {
3334         jaddr=(int)out;
3335         emit_jmp(0);
3336       }
3337     }
3338     #ifdef RAM_OFFSET
3339     int map=get_reg(i_regs->regmap,ROREG);
3340     if(map<0) emit_loadreg(ROREG,map=HOST_TEMPREG);
3341     gen_tlb_addr_w(temp,map);
3342     #else
3343     if((u_int)rdram!=0x80000000) 
3344       emit_addimm_no_flags((u_int)rdram-(u_int)0x80000000,temp);
3345     #endif
3346   }else{ // using tlb
3347     int map=get_reg(i_regs->regmap,TLREG);
3348     assert(map>=0);
3349     reglist&=~(1<<map);
3350     map=do_tlb_w(c||s<0||offset?temp:s,temp,map,0,c,constmap[i][s]+offset);
3351     if(!c&&!offset&&s>=0) emit_mov(s,temp);
3352     do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr);
3353     if(!jaddr&&!memtarget) {
3354       jaddr=(int)out;
3355       emit_jmp(0);
3356     }
3357     gen_tlb_addr_w(temp,map);
3358   }
3359
3360   if (opcode[i]==0x2C||opcode[i]==0x2D) { // SDL/SDR
3361     temp2=get_reg(i_regs->regmap,FTEMP);
3362     if(!rs2[i]) temp2=th=tl;
3363   }
3364
3365 #ifndef BIG_ENDIAN_MIPS
3366     emit_xorimm(temp,3,temp);
3367 #endif
3368   emit_testimm(temp,2);
3369   case2=(int)out;
3370   emit_jne(0);
3371   emit_testimm(temp,1);
3372   case1=(int)out;
3373   emit_jne(0);
3374   // 0
3375   if (opcode[i]==0x2A) { // SWL
3376     emit_writeword_indexed(tl,0,temp);
3377   }
3378   if (opcode[i]==0x2E) { // SWR
3379     emit_writebyte_indexed(tl,3,temp);
3380   }
3381   if (opcode[i]==0x2C) { // SDL
3382     emit_writeword_indexed(th,0,temp);
3383     if(rs2[i]) emit_mov(tl,temp2);
3384   }
3385   if (opcode[i]==0x2D) { // SDR
3386     emit_writebyte_indexed(tl,3,temp);
3387     if(rs2[i]) emit_shldimm(th,tl,24,temp2);
3388   }
3389   done0=(int)out;
3390   emit_jmp(0);
3391   // 1
3392   set_jump_target(case1,(int)out);
3393   if (opcode[i]==0x2A) { // SWL
3394     // Write 3 msb into three least significant bytes
3395     if(rs2[i]) emit_rorimm(tl,8,tl);
3396     emit_writehword_indexed(tl,-1,temp);
3397     if(rs2[i]) emit_rorimm(tl,16,tl);
3398     emit_writebyte_indexed(tl,1,temp);
3399     if(rs2[i]) emit_rorimm(tl,8,tl);
3400   }
3401   if (opcode[i]==0x2E) { // SWR
3402     // Write two lsb into two most significant bytes
3403     emit_writehword_indexed(tl,1,temp);
3404   }
3405   if (opcode[i]==0x2C) { // SDL
3406     if(rs2[i]) emit_shrdimm(tl,th,8,temp2);
3407     // Write 3 msb into three least significant bytes
3408     if(rs2[i]) emit_rorimm(th,8,th);
3409     emit_writehword_indexed(th,-1,temp);
3410     if(rs2[i]) emit_rorimm(th,16,th);
3411     emit_writebyte_indexed(th,1,temp);
3412     if(rs2[i]) emit_rorimm(th,8,th);
3413   }
3414   if (opcode[i]==0x2D) { // SDR
3415     if(rs2[i]) emit_shldimm(th,tl,16,temp2);
3416     // Write two lsb into two most significant bytes
3417     emit_writehword_indexed(tl,1,temp);
3418   }
3419   done1=(int)out;
3420   emit_jmp(0);
3421   // 2
3422   set_jump_target(case2,(int)out);
3423   emit_testimm(temp,1);
3424   case3=(int)out;
3425   emit_jne(0);
3426   if (opcode[i]==0x2A) { // SWL
3427     // Write two msb into two least significant bytes
3428     if(rs2[i]) emit_rorimm(tl,16,tl);
3429     emit_writehword_indexed(tl,-2,temp);
3430     if(rs2[i]) emit_rorimm(tl,16,tl);
3431   }
3432   if (opcode[i]==0x2E) { // SWR
3433     // Write 3 lsb into three most significant bytes
3434     emit_writebyte_indexed(tl,-1,temp);
3435     if(rs2[i]) emit_rorimm(tl,8,tl);
3436     emit_writehword_indexed(tl,0,temp);
3437     if(rs2[i]) emit_rorimm(tl,24,tl);
3438   }
3439   if (opcode[i]==0x2C) { // SDL
3440     if(rs2[i]) emit_shrdimm(tl,th,16,temp2);
3441     // Write two msb into two least significant bytes
3442     if(rs2[i]) emit_rorimm(th,16,th);
3443     emit_writehword_indexed(th,-2,temp);
3444     if(rs2[i]) emit_rorimm(th,16,th);
3445   }
3446   if (opcode[i]==0x2D) { // SDR
3447     if(rs2[i]) emit_shldimm(th,tl,8,temp2);
3448     // Write 3 lsb into three most significant bytes
3449     emit_writebyte_indexed(tl,-1,temp);
3450     if(rs2[i]) emit_rorimm(tl,8,tl);
3451     emit_writehword_indexed(tl,0,temp);
3452     if(rs2[i]) emit_rorimm(tl,24,tl);
3453   }
3454   done2=(int)out;
3455   emit_jmp(0);
3456   // 3
3457   set_jump_target(case3,(int)out);
3458   if (opcode[i]==0x2A) { // SWL
3459     // Write msb into least significant byte
3460     if(rs2[i]) emit_rorimm(tl,24,tl);
3461     emit_writebyte_indexed(tl,-3,temp);
3462     if(rs2[i]) emit_rorimm(tl,8,tl);
3463   }
3464   if (opcode[i]==0x2E) { // SWR
3465     // Write entire word
3466     emit_writeword_indexed(tl,-3,temp);
3467   }
3468   if (opcode[i]==0x2C) { // SDL
3469     if(rs2[i]) emit_shrdimm(tl,th,24,temp2);
3470     // Write msb into least significant byte
3471     if(rs2[i]) emit_rorimm(th,24,th);
3472     emit_writebyte_indexed(th,-3,temp);
3473     if(rs2[i]) emit_rorimm(th,8,th);
3474   }
3475   if (opcode[i]==0x2D) { // SDR
3476     if(rs2[i]) emit_mov(th,temp2);
3477     // Write entire word
3478     emit_writeword_indexed(tl,-3,temp);
3479   }
3480   set_jump_target(done0,(int)out);
3481   set_jump_target(done1,(int)out);
3482   set_jump_target(done2,(int)out);
3483   if (opcode[i]==0x2C) { // SDL
3484     emit_testimm(temp,4);
3485     done0=(int)out;
3486     emit_jne(0);
3487     emit_andimm(temp,~3,temp);
3488     emit_writeword_indexed(temp2,4,temp);
3489     set_jump_target(done0,(int)out);
3490   }
3491   if (opcode[i]==0x2D) { // SDR
3492     emit_testimm(temp,4);
3493     done0=(int)out;
3494     emit_jeq(0);
3495     emit_andimm(temp,~3,temp);
3496     emit_writeword_indexed(temp2,-4,temp);
3497     set_jump_target(done0,(int)out);
3498   }
3499   if(!c||!memtarget)
3500     add_stub(STORELR_STUB,jaddr,(int)out,i,(int)i_regs,temp,ccadj[i],reglist);
3501   if(!using_tlb) {
3502     #ifdef RAM_OFFSET
3503     int map=get_reg(i_regs->regmap,ROREG);
3504     if(map<0) map=HOST_TEMPREG;
3505     gen_orig_addr_w(temp,map);
3506     #else
3507     emit_addimm_no_flags((u_int)0x80000000-(u_int)rdram,temp);
3508     #endif
3509     #if defined(HOST_IMM8)
3510     int ir=get_reg(i_regs->regmap,INVCP);
3511     assert(ir>=0);
3512     emit_cmpmem_indexedsr12_reg(ir,temp,1);
3513     #else
3514     emit_cmpmem_indexedsr12_imm((int)invalid_code,temp,1);
3515     #endif
3516     #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3517     emit_callne(invalidate_addr_reg[temp]);
3518     #else
3519     jaddr2=(int)out;
3520     emit_jne(0);
3521     add_stub(INVCODE_STUB,jaddr2,(int)out,reglist|(1<<HOST_CCREG),temp,0,0,0);
3522     #endif
3523   }
3524   /*
3525     emit_pusha();
3526     //save_regs(0x100f);
3527         emit_readword((int)&last_count,ECX);
3528         if(get_reg(i_regs->regmap,CCREG)<0)
3529           emit_loadreg(CCREG,HOST_CCREG);
3530         emit_add(HOST_CCREG,ECX,HOST_CCREG);
3531         emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3532         emit_writeword(HOST_CCREG,(int)&Count);
3533     emit_call((int)memdebug);
3534     emit_popa();
3535     //restore_regs(0x100f);
3536   /**/
3537 }
3538
3539 void c1ls_assemble(int i,struct regstat *i_regs)
3540 {
3541 #ifndef DISABLE_COP1
3542   int s,th,tl;
3543   int temp,ar;
3544   int map=-1;
3545   int offset;
3546   int c=0;
3547   int jaddr,jaddr2=0,jaddr3,type;
3548   int agr=AGEN1+(i&1);
3549   u_int hr,reglist=0;
3550   th=get_reg(i_regs->regmap,FTEMP|64);
3551   tl=get_reg(i_regs->regmap,FTEMP);
3552   s=get_reg(i_regs->regmap,rs1[i]);
3553   temp=get_reg(i_regs->regmap,agr);
3554   if(temp<0) temp=get_reg(i_regs->regmap,-1);
3555   offset=imm[i];
3556   assert(tl>=0);
3557   assert(rs1[i]>0);
3558   assert(temp>=0);
3559   for(hr=0;hr<HOST_REGS;hr++) {
3560     if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3561   }
3562   if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
3563   if (opcode[i]==0x31||opcode[i]==0x35) // LWC1/LDC1
3564   {
3565     // Loads use a temporary register which we need to save
3566     reglist|=1<<temp;
3567   }
3568   if (opcode[i]==0x39||opcode[i]==0x3D) // SWC1/SDC1
3569     ar=temp;
3570   else // LWC1/LDC1
3571     ar=tl;
3572   //if(s<0) emit_loadreg(rs1[i],ar); //address_generation does this now
3573   //else c=(i_regs->wasconst>>s)&1;
3574   if(s>=0) c=(i_regs->wasconst>>s)&1;
3575   // Check cop1 unusable
3576   if(!cop1_usable) {
3577     signed char rs=get_reg(i_regs->regmap,CSREG);
3578     assert(rs>=0);
3579     emit_testimm(rs,0x20000000);
3580     jaddr=(int)out;
3581     emit_jeq(0);
3582     add_stub(FP_STUB,jaddr,(int)out,i,rs,(int)i_regs,is_delayslot,0);
3583     cop1_usable=1;
3584   }
3585   if (opcode[i]==0x39) { // SWC1 (get float address)
3586     emit_readword((int)&reg_cop1_simple[(source[i]>>16)&0x1f],tl);
3587   }
3588   if (opcode[i]==0x3D) { // SDC1 (get double address)
3589     emit_readword((int)&reg_cop1_double[(source[i]>>16)&0x1f],tl);
3590   }
3591   // Generate address + offset
3592   if(!using_tlb) {
3593     if(!c)
3594       emit_cmpimm(offset||c||s<0?ar:s,RAM_SIZE);
3595   }
3596   else
3597   {
3598     map=get_reg(i_regs->regmap,TLREG);
3599     assert(map>=0);
3600     reglist&=~(1<<map);
3601     if (opcode[i]==0x31||opcode[i]==0x35) { // LWC1/LDC1
3602       map=do_tlb_r(offset||c||s<0?ar:s,ar,map,0,-1,-1,c,constmap[i][s]+offset);
3603     }
3604     if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3605       map=do_tlb_w(offset||c||s<0?ar:s,ar,map,0,c,constmap[i][s]+offset);
3606     }
3607   }
3608   if (opcode[i]==0x39) { // SWC1 (read float)
3609     emit_readword_indexed(0,tl,tl);
3610   }
3611   if (opcode[i]==0x3D) { // SDC1 (read double)
3612     emit_readword_indexed(4,tl,th);
3613     emit_readword_indexed(0,tl,tl);
3614   }
3615   if (opcode[i]==0x31) { // LWC1 (get target address)
3616     emit_readword((int)&reg_cop1_simple[(source[i]>>16)&0x1f],temp);
3617   }
3618   if (opcode[i]==0x35) { // LDC1 (get target address)
3619     emit_readword((int)&reg_cop1_double[(source[i]>>16)&0x1f],temp);
3620   }
3621   if(!using_tlb) {
3622     if(!c) {
3623       jaddr2=(int)out;
3624       emit_jno(0);
3625     }
3626     else if(((signed int)(constmap[i][s]+offset))>=(signed int)0x80000000+RAM_SIZE) {
3627       jaddr2=(int)out;
3628       emit_jmp(0); // inline_readstub/inline_writestub?  Very rare case
3629     }
3630     #ifdef DESTRUCTIVE_SHIFT
3631     if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3632       if(!offset&&!c&&s>=0) emit_mov(s,ar);
3633     }
3634     #endif
3635   }else{
3636     if (opcode[i]==0x31||opcode[i]==0x35) { // LWC1/LDC1
3637       do_tlb_r_branch(map,c,constmap[i][s]+offset,&jaddr2);
3638     }
3639     if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3640       do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr2);
3641     }
3642   }
3643   if (opcode[i]==0x31) { // LWC1
3644     //if(s>=0&&!c&&!offset) emit_mov(s,tl);
3645     //gen_tlb_addr_r(ar,map);
3646     //emit_readword_indexed((int)rdram-0x80000000,tl,tl);
3647     #ifdef HOST_IMM_ADDR32
3648     if(c) emit_readword_tlb(constmap[i][s]+offset,map,tl);
3649     else
3650     #endif
3651     emit_readword_indexed_tlb(0,offset||c||s<0?tl:s,map,tl);
3652     type=LOADW_STUB;
3653   }
3654   if (opcode[i]==0x35) { // LDC1
3655     assert(th>=0);
3656     //if(s>=0&&!c&&!offset) emit_mov(s,tl);
3657     //gen_tlb_addr_r(ar,map);
3658     //emit_readword_indexed((int)rdram-0x80000000,tl,th);
3659     //emit_readword_indexed((int)rdram-0x7FFFFFFC,tl,tl);
3660     #ifdef HOST_IMM_ADDR32
3661     if(c) emit_readdword_tlb(constmap[i][s]+offset,map,th,tl);
3662     else
3663     #endif
3664     emit_readdword_indexed_tlb(0,offset||c||s<0?tl:s,map,th,tl);
3665     type=LOADD_STUB;
3666   }
3667   if (opcode[i]==0x39) { // SWC1
3668     //emit_writeword_indexed(tl,(int)rdram-0x80000000,temp);
3669     emit_writeword_indexed_tlb(tl,0,offset||c||s<0?temp:s,map,temp);
3670     type=STOREW_STUB;
3671   }
3672   if (opcode[i]==0x3D) { // SDC1
3673     assert(th>=0);
3674     //emit_writeword_indexed(th,(int)rdram-0x80000000,temp);
3675     //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,temp);
3676     emit_writedword_indexed_tlb(th,tl,0,offset||c||s<0?temp:s,map,temp);
3677     type=STORED_STUB;
3678   }
3679   if(!using_tlb) {
3680     if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3681       #ifndef DESTRUCTIVE_SHIFT
3682       temp=offset||c||s<0?ar:s;
3683       #endif
3684       #if defined(HOST_IMM8)
3685       int ir=get_reg(i_regs->regmap,INVCP);
3686       assert(ir>=0);
3687       emit_cmpmem_indexedsr12_reg(ir,temp,1);
3688       #else
3689       emit_cmpmem_indexedsr12_imm((int)invalid_code,temp,1);
3690       #endif
3691       #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3692       emit_callne(invalidate_addr_reg[temp]);
3693       #else
3694       jaddr3=(int)out;
3695       emit_jne(0);
3696       add_stub(INVCODE_STUB,jaddr3,(int)out,reglist|(1<<HOST_CCREG),temp,0,0,0);
3697       #endif
3698     }
3699   }
3700   if(jaddr2) add_stub(type,jaddr2,(int)out,i,offset||c||s<0?ar:s,(int)i_regs,ccadj[i],reglist);
3701   if (opcode[i]==0x31) { // LWC1 (write float)
3702     emit_writeword_indexed(tl,0,temp);
3703   }
3704   if (opcode[i]==0x35) { // LDC1 (write double)
3705     emit_writeword_indexed(th,4,temp);
3706     emit_writeword_indexed(tl,0,temp);
3707   }
3708   //if(opcode[i]==0x39)
3709   /*if(opcode[i]==0x39||opcode[i]==0x31)
3710   {
3711     emit_pusha();
3712         emit_readword((int)&last_count,ECX);
3713         if(get_reg(i_regs->regmap,CCREG)<0)
3714           emit_loadreg(CCREG,HOST_CCREG);
3715         emit_add(HOST_CCREG,ECX,HOST_CCREG);
3716         emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3717         emit_writeword(HOST_CCREG,(int)&Count);
3718     emit_call((int)memdebug);
3719     emit_popa();
3720   }/**/
3721 #else
3722   cop1_unusable(i, i_regs);
3723 #endif
3724 }
3725
3726 void c2ls_assemble(int i,struct regstat *i_regs)
3727 {
3728   int s,tl;
3729   int ar;
3730   int offset;
3731   int memtarget=0,c=0;
3732   int jaddr2=0,jaddr3,type;
3733   int agr=AGEN1+(i&1);
3734   u_int hr,reglist=0;
3735   u_int copr=(source[i]>>16)&0x1f;
3736   s=get_reg(i_regs->regmap,rs1[i]);
3737   tl=get_reg(i_regs->regmap,FTEMP);
3738   offset=imm[i];
3739   assert(rs1[i]>0);
3740   assert(tl>=0);
3741   assert(!using_tlb);
3742
3743   for(hr=0;hr<HOST_REGS;hr++) {
3744     if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3745   }
3746   if(i_regs->regmap[HOST_CCREG]==CCREG)
3747     reglist&=~(1<<HOST_CCREG);
3748
3749   // get the address
3750   if (opcode[i]==0x3a) { // SWC2
3751     ar=get_reg(i_regs->regmap,agr);
3752     if(ar<0) ar=get_reg(i_regs->regmap,-1);
3753     reglist|=1<<ar;
3754   } else { // LWC2
3755     ar=tl;
3756   }
3757   if(s>=0) c=(i_regs->wasconst>>s)&1;
3758   memtarget=c&&(((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE);
3759   if (!offset&&!c&&s>=0) ar=s;
3760   assert(ar>=0);
3761
3762   if (opcode[i]==0x3a) { // SWC2
3763     cop2_get_dreg(copr,tl,HOST_TEMPREG);
3764     type=STOREW_STUB;
3765   }
3766   else
3767     type=LOADW_STUB;
3768
3769   if(c&&!memtarget) {
3770     jaddr2=(int)out;
3771     emit_jmp(0); // inline_readstub/inline_writestub?
3772   }
3773   else {
3774     if(!c) {
3775       emit_cmpimm(offset||c||s<0?ar:s,RAM_SIZE);
3776       jaddr2=(int)out;
3777       emit_jno(0);
3778     }
3779     if (opcode[i]==0x32) { // LWC2
3780       #ifdef HOST_IMM_ADDR32
3781       if(c) emit_readword_tlb(constmap[i][s]+offset,-1,tl);
3782       else
3783       #endif
3784       emit_readword_indexed(0,ar,tl);
3785     }
3786     if (opcode[i]==0x3a) { // SWC2
3787       #ifdef DESTRUCTIVE_SHIFT
3788       if(!offset&&!c&&s>=0) emit_mov(s,ar);
3789       #endif
3790       emit_writeword_indexed(tl,0,ar);
3791     }
3792   }
3793   if(jaddr2)
3794     add_stub(type,jaddr2,(int)out,i,ar,(int)i_regs,ccadj[i],reglist);
3795   if (opcode[i]==0x3a) { // SWC2
3796 #if defined(HOST_IMM8)
3797     int ir=get_reg(i_regs->regmap,INVCP);
3798     assert(ir>=0);
3799     emit_cmpmem_indexedsr12_reg(ir,ar,1);
3800 #else
3801     emit_cmpmem_indexedsr12_imm((int)invalid_code,ar,1);
3802 #endif
3803     #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3804     emit_callne(invalidate_addr_reg[ar]);
3805     #else
3806     jaddr3=(int)out;
3807     emit_jne(0);
3808     add_stub(INVCODE_STUB,jaddr3,(int)out,reglist|(1<<HOST_CCREG),ar,0,0,0);
3809     #endif
3810   }
3811   if (opcode[i]==0x32) { // LWC2
3812     cop2_put_dreg(copr,tl,HOST_TEMPREG);
3813   }
3814 }
3815
3816 #ifndef multdiv_assemble
3817 void multdiv_assemble(int i,struct regstat *i_regs)
3818 {
3819   printf("Need multdiv_assemble for this architecture.\n");
3820   exit(1);
3821 }
3822 #endif
3823
3824 void mov_assemble(int i,struct regstat *i_regs)
3825 {
3826   //if(opcode2[i]==0x10||opcode2[i]==0x12) { // MFHI/MFLO
3827   //if(opcode2[i]==0x11||opcode2[i]==0x13) { // MTHI/MTLO
3828   if(rt1[i]) {
3829     signed char sh,sl,th,tl;
3830     th=get_reg(i_regs->regmap,rt1[i]|64);
3831     tl=get_reg(i_regs->regmap,rt1[i]);
3832     //assert(tl>=0);
3833     if(tl>=0) {
3834       sh=get_reg(i_regs->regmap,rs1[i]|64);
3835       sl=get_reg(i_regs->regmap,rs1[i]);
3836       if(sl>=0) emit_mov(sl,tl);
3837       else emit_loadreg(rs1[i],tl);
3838       if(th>=0) {
3839         if(sh>=0) emit_mov(sh,th);
3840         else emit_loadreg(rs1[i]|64,th);
3841       }
3842     }
3843   }
3844 }
3845
3846 #ifndef fconv_assemble
3847 void fconv_assemble(int i,struct regstat *i_regs)
3848 {
3849   printf("Need fconv_assemble for this architecture.\n");
3850   exit(1);
3851 }
3852 #endif
3853
3854 #if 0
3855 void float_assemble(int i,struct regstat *i_regs)
3856 {
3857   printf("Need float_assemble for this architecture.\n");
3858   exit(1);
3859 }
3860 #endif
3861
3862 void syscall_assemble(int i,struct regstat *i_regs)
3863 {
3864   signed char ccreg=get_reg(i_regs->regmap,CCREG);
3865   assert(ccreg==HOST_CCREG);
3866   assert(!is_delayslot);
3867   emit_movimm(start+i*4,EAX); // Get PC
3868   emit_addimm(HOST_CCREG,CLOCK_DIVIDER*ccadj[i],HOST_CCREG); // CHECK: is this right?  There should probably be an extra cycle...
3869   emit_jmp((int)jump_syscall_hle); // XXX
3870 }
3871
3872 void hlecall_assemble(int i,struct regstat *i_regs)
3873 {
3874   signed char ccreg=get_reg(i_regs->regmap,CCREG);
3875   assert(ccreg==HOST_CCREG);
3876   assert(!is_delayslot);
3877   emit_movimm(start+i*4+4,0); // Get PC
3878   emit_movimm((int)psxHLEt[source[i]&7],1);
3879   emit_addimm(HOST_CCREG,CLOCK_DIVIDER*ccadj[i],HOST_CCREG); // XXX
3880   emit_jmp((int)jump_hlecall);
3881 }
3882
3883 void intcall_assemble(int i,struct regstat *i_regs)
3884 {
3885   signed char ccreg=get_reg(i_regs->regmap,CCREG);
3886   assert(ccreg==HOST_CCREG);
3887   assert(!is_delayslot);
3888   emit_movimm(start+i*4,0); // Get PC
3889   emit_addimm(HOST_CCREG,CLOCK_DIVIDER*ccadj[i],HOST_CCREG);
3890   emit_jmp((int)jump_intcall);
3891 }
3892
3893 void ds_assemble(int i,struct regstat *i_regs)
3894 {
3895   is_delayslot=1;
3896   switch(itype[i]) {
3897     case ALU:
3898       alu_assemble(i,i_regs);break;
3899     case IMM16:
3900       imm16_assemble(i,i_regs);break;
3901     case SHIFT:
3902       shift_assemble(i,i_regs);break;
3903     case SHIFTIMM:
3904       shiftimm_assemble(i,i_regs);break;
3905     case LOAD:
3906       load_assemble(i,i_regs);break;
3907     case LOADLR:
3908       loadlr_assemble(i,i_regs);break;
3909     case STORE:
3910       store_assemble(i,i_regs);break;
3911     case STORELR:
3912       storelr_assemble(i,i_regs);break;
3913     case COP0:
3914       cop0_assemble(i,i_regs);break;
3915     case COP1:
3916       cop1_assemble(i,i_regs);break;
3917     case C1LS:
3918       c1ls_assemble(i,i_regs);break;
3919     case COP2:
3920       cop2_assemble(i,i_regs);break;
3921     case C2LS:
3922       c2ls_assemble(i,i_regs);break;
3923     case C2OP:
3924       c2op_assemble(i,i_regs);break;
3925     case FCONV:
3926       fconv_assemble(i,i_regs);break;
3927     case FLOAT:
3928       float_assemble(i,i_regs);break;
3929     case FCOMP:
3930       fcomp_assemble(i,i_regs);break;
3931     case MULTDIV:
3932       multdiv_assemble(i,i_regs);break;
3933     case MOV:
3934       mov_assemble(i,i_regs);break;
3935     case SYSCALL:
3936     case HLECALL:
3937     case INTCALL:
3938     case SPAN:
3939     case UJUMP:
3940     case RJUMP:
3941     case CJUMP:
3942     case SJUMP:
3943     case FJUMP:
3944       printf("Jump in the delay slot.  This is probably a bug.\n");
3945   }
3946   is_delayslot=0;
3947 }
3948
3949 // Is the branch target a valid internal jump?
3950 int internal_branch(uint64_t i_is32,int addr)
3951 {
3952   if(addr&1) return 0; // Indirect (register) jump
3953   if(addr>=start && addr<start+slen*4-4)
3954   {
3955     int t=(addr-start)>>2;
3956     // Delay slots are not valid branch targets
3957     //if(t>0&&(itype[t-1]==RJUMP||itype[t-1]==UJUMP||itype[t-1]==CJUMP||itype[t-1]==SJUMP||itype[t-1]==FJUMP)) return 0;
3958     // 64 -> 32 bit transition requires a recompile
3959     /*if(is32[t]&~unneeded_reg_upper[t]&~i_is32)
3960     {
3961       if(requires_32bit[t]&~i_is32) printf("optimizable: no\n");
3962       else printf("optimizable: yes\n");
3963     }*/
3964     //if(is32[t]&~unneeded_reg_upper[t]&~i_is32) return 0;
3965 #ifndef FORCE32
3966     if(requires_32bit[t]&~i_is32) return 0;
3967     else
3968 #endif
3969       return 1;
3970   }
3971   return 0;
3972 }
3973
3974 #ifndef wb_invalidate
3975 void wb_invalidate(signed char pre[],signed char entry[],uint64_t dirty,uint64_t is32,
3976   uint64_t u,uint64_t uu)
3977 {
3978   int hr;
3979   for(hr=0;hr<HOST_REGS;hr++) {
3980     if(hr!=EXCLUDE_REG) {
3981       if(pre[hr]!=entry[hr]) {
3982         if(pre[hr]>=0) {
3983           if((dirty>>hr)&1) {
3984             if(get_reg(entry,pre[hr])<0) {
3985               if(pre[hr]<64) {
3986                 if(!((u>>pre[hr])&1)) {
3987                   emit_storereg(pre[hr],hr);
3988                   if( ((is32>>pre[hr])&1) && !((uu>>pre[hr])&1) ) {
3989                     emit_sarimm(hr,31,hr);
3990                     emit_storereg(pre[hr]|64,hr);
3991                   }
3992                 }
3993               }else{
3994                 if(!((uu>>(pre[hr]&63))&1) && !((is32>>(pre[hr]&63))&1)) {
3995                   emit_storereg(pre[hr],hr);
3996                 }
3997               }
3998             }
3999           }
4000         }
4001       }
4002     }
4003   }
4004   // Move from one register to another (no writeback)
4005   for(hr=0;hr<HOST_REGS;hr++) {
4006     if(hr!=EXCLUDE_REG) {
4007       if(pre[hr]!=entry[hr]) {
4008         if(pre[hr]>=0&&(pre[hr]&63)<TEMPREG) {
4009           int nr;
4010           if((nr=get_reg(entry,pre[hr]))>=0) {
4011             emit_mov(hr,nr);
4012           }
4013         }
4014       }
4015     }
4016   }
4017 }
4018 #endif
4019
4020 // Load the specified registers
4021 // This only loads the registers given as arguments because
4022 // we don't want to load things that will be overwritten
4023 void load_regs(signed char entry[],signed char regmap[],int is32,int rs1,int rs2)
4024 {
4025   int hr;
4026   // Load 32-bit regs
4027   for(hr=0;hr<HOST_REGS;hr++) {
4028     if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4029       if(entry[hr]!=regmap[hr]) {
4030         if(regmap[hr]==rs1||regmap[hr]==rs2)
4031         {
4032           if(regmap[hr]==0) {
4033             emit_zeroreg(hr);
4034           }
4035           else
4036           {
4037             emit_loadreg(regmap[hr],hr);
4038           }
4039         }
4040       }
4041     }
4042   }
4043   //Load 64-bit regs
4044   for(hr=0;hr<HOST_REGS;hr++) {
4045     if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4046       if(entry[hr]!=regmap[hr]) {
4047         if(regmap[hr]-64==rs1||regmap[hr]-64==rs2)
4048         {
4049           assert(regmap[hr]!=64);
4050           if((is32>>(regmap[hr]&63))&1) {
4051             int lr=get_reg(regmap,regmap[hr]-64);
4052             if(lr>=0)
4053               emit_sarimm(lr,31,hr);
4054             else
4055               emit_loadreg(regmap[hr],hr);
4056           }
4057           else
4058           {
4059             emit_loadreg(regmap[hr],hr);
4060           }
4061         }
4062       }
4063     }
4064   }
4065 }
4066
4067 // Load registers prior to the start of a loop
4068 // so that they are not loaded within the loop
4069 static void loop_preload(signed char pre[],signed char entry[])
4070 {
4071   int hr;
4072   for(hr=0;hr<HOST_REGS;hr++) {
4073     if(hr!=EXCLUDE_REG) {
4074       if(pre[hr]!=entry[hr]) {
4075         if(entry[hr]>=0) {
4076           if(get_reg(pre,entry[hr])<0) {
4077             assem_debug("loop preload:\n");
4078             //printf("loop preload: %d\n",hr);
4079             if(entry[hr]==0) {
4080               emit_zeroreg(hr);
4081             }
4082             else if(entry[hr]<TEMPREG)
4083             {
4084               emit_loadreg(entry[hr],hr);
4085             }
4086             else if(entry[hr]-64<TEMPREG)
4087             {
4088               emit_loadreg(entry[hr],hr);
4089             }
4090           }
4091         }
4092       }
4093     }
4094   }
4095 }
4096
4097 // Generate address for load/store instruction
4098 // goes to AGEN for writes, FTEMP for LOADLR and cop1/2 loads
4099 void address_generation(int i,struct regstat *i_regs,signed char entry[])
4100 {
4101   if(itype[i]==LOAD||itype[i]==LOADLR||itype[i]==STORE||itype[i]==STORELR||itype[i]==C1LS||itype[i]==C2LS) {
4102     int ra=-1;
4103     int agr=AGEN1+(i&1);
4104     int mgr=MGEN1+(i&1);
4105     if(itype[i]==LOAD) {
4106       ra=get_reg(i_regs->regmap,rt1[i]);
4107       if(ra<0) ra=get_reg(i_regs->regmap,-1); 
4108       assert(ra>=0);
4109     }
4110     if(itype[i]==LOADLR) {
4111       ra=get_reg(i_regs->regmap,FTEMP);
4112     }
4113     if(itype[i]==STORE||itype[i]==STORELR) {
4114       ra=get_reg(i_regs->regmap,agr);
4115       if(ra<0) ra=get_reg(i_regs->regmap,-1);
4116     }
4117     if(itype[i]==C1LS||itype[i]==C2LS) {
4118       if ((opcode[i]&0x3b)==0x31||(opcode[i]&0x3b)==0x32) // LWC1/LDC1/LWC2/LDC2
4119         ra=get_reg(i_regs->regmap,FTEMP);
4120       else { // SWC1/SDC1/SWC2/SDC2
4121         ra=get_reg(i_regs->regmap,agr);
4122         if(ra<0) ra=get_reg(i_regs->regmap,-1);
4123       }
4124     }
4125     int rs=get_reg(i_regs->regmap,rs1[i]);
4126     int rm=get_reg(i_regs->regmap,TLREG);
4127     if(ra>=0) {
4128       int offset=imm[i];
4129       int c=(i_regs->wasconst>>rs)&1;
4130       if(rs1[i]==0) {
4131         // Using r0 as a base address
4132         /*if(rm>=0) {
4133           if(!entry||entry[rm]!=mgr) {
4134             generate_map_const(offset,rm);
4135           } // else did it in the previous cycle
4136         }*/
4137         if(!entry||entry[ra]!=agr) {
4138           if (opcode[i]==0x22||opcode[i]==0x26) {
4139             emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
4140           }else if (opcode[i]==0x1a||opcode[i]==0x1b) {
4141             emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
4142           }else{
4143             emit_movimm(offset,ra);
4144           }
4145         } // else did it in the previous cycle
4146       }
4147       else if(rs<0) {
4148         if(!entry||entry[ra]!=rs1[i])
4149           emit_loadreg(rs1[i],ra);
4150         //if(!entry||entry[ra]!=rs1[i])
4151         //  printf("poor load scheduling!\n");
4152       }
4153       else if(c) {
4154         if(rm>=0) {
4155           if(!entry||entry[rm]!=mgr) {
4156             if(itype[i]==STORE||itype[i]==STORELR||(opcode[i]&0x3b)==0x39||(opcode[i]&0x3b)==0x3a) {
4157               // Stores to memory go thru the mapper to detect self-modifying
4158               // code, loads don't.
4159               if((unsigned int)(constmap[i][rs]+offset)>=0xC0000000 ||
4160                  (unsigned int)(constmap[i][rs]+offset)<0x80000000+RAM_SIZE )
4161                 generate_map_const(constmap[i][rs]+offset,rm);
4162             }else{
4163               if((signed int)(constmap[i][rs]+offset)>=(signed int)0xC0000000)
4164                 generate_map_const(constmap[i][rs]+offset,rm);
4165             }
4166           }
4167         }
4168         if(rs1[i]!=rt1[i]||itype[i]!=LOAD) {
4169           if(!entry||entry[ra]!=agr) {
4170             if (opcode[i]==0x22||opcode[i]==0x26) {
4171               emit_movimm((constmap[i][rs]+offset)&0xFFFFFFFC,ra); // LWL/LWR
4172             }else if (opcode[i]==0x1a||opcode[i]==0x1b) {
4173               emit_movimm((constmap[i][rs]+offset)&0xFFFFFFF8,ra); // LDL/LDR
4174             }else{
4175               #ifdef HOST_IMM_ADDR32
4176               if((itype[i]!=LOAD&&(opcode[i]&0x3b)!=0x31&&(opcode[i]&0x3b)!=0x32) || // LWC1/LDC1/LWC2/LDC2
4177                  (using_tlb&&((signed int)constmap[i][rs]+offset)>=(signed int)0xC0000000))
4178               #endif
4179               emit_movimm(constmap[i][rs]+offset,ra);
4180             }
4181           } // else did it in the previous cycle
4182         } // else load_consts already did it
4183       }
4184       if(offset&&!c&&rs1[i]) {
4185         if(rs>=0) {
4186           emit_addimm(rs,offset,ra);
4187         }else{
4188           emit_addimm(ra,offset,ra);
4189         }
4190       }
4191     }
4192   }
4193   // Preload constants for next instruction
4194   if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS||itype[i+1]==C2LS) {
4195     int agr,ra;
4196     #ifndef HOST_IMM_ADDR32
4197     // Mapper entry
4198     agr=MGEN1+((i+1)&1);
4199     ra=get_reg(i_regs->regmap,agr);
4200     if(ra>=0) {
4201       int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
4202       int offset=imm[i+1];
4203       int c=(regs[i+1].wasconst>>rs)&1;
4204       if(c) {
4205         if(itype[i+1]==STORE||itype[i+1]==STORELR
4206            ||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1, SWC2/SDC2
4207           // Stores to memory go thru the mapper to detect self-modifying
4208           // code, loads don't.
4209           if((unsigned int)(constmap[i+1][rs]+offset)>=0xC0000000 ||
4210              (unsigned int)(constmap[i+1][rs]+offset)<0x80000000+RAM_SIZE )
4211             generate_map_const(constmap[i+1][rs]+offset,ra);
4212         }else{
4213           if((signed int)(constmap[i+1][rs]+offset)>=(signed int)0xC0000000)
4214             generate_map_const(constmap[i+1][rs]+offset,ra);
4215         }
4216       }
4217       /*else if(rs1[i]==0) {
4218         generate_map_const(offset,ra);
4219       }*/
4220     }
4221     #endif
4222     // Actual address
4223     agr=AGEN1+((i+1)&1);
4224     ra=get_reg(i_regs->regmap,agr);
4225     if(ra>=0) {
4226       int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
4227       int offset=imm[i+1];
4228       int c=(regs[i+1].wasconst>>rs)&1;
4229       if(c&&(rs1[i+1]!=rt1[i+1]||itype[i+1]!=LOAD)) {
4230         if (opcode[i+1]==0x22||opcode[i+1]==0x26) {
4231           emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFFC,ra); // LWL/LWR
4232         }else if (opcode[i+1]==0x1a||opcode[i+1]==0x1b) {
4233           emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFF8,ra); // LDL/LDR
4234         }else{
4235           #ifdef HOST_IMM_ADDR32
4236           if((itype[i+1]!=LOAD&&(opcode[i+1]&0x3b)!=0x31&&(opcode[i+1]&0x3b)!=0x32) || // LWC1/LDC1/LWC2/LDC2
4237              (using_tlb&&((signed int)constmap[i+1][rs]+offset)>=(signed int)0xC0000000))
4238           #endif
4239           emit_movimm(constmap[i+1][rs]+offset,ra);
4240         }
4241       }
4242       else if(rs1[i+1]==0) {
4243         // Using r0 as a base address
4244         if (opcode[i+1]==0x22||opcode[i+1]==0x26) {
4245           emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
4246         }else if (opcode[i+1]==0x1a||opcode[i+1]==0x1b) {
4247           emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
4248         }else{
4249           emit_movimm(offset,ra);
4250         }
4251       }
4252     }
4253   }
4254 }
4255
4256 int get_final_value(int hr, int i, int *value)
4257 {
4258   int reg=regs[i].regmap[hr];
4259   while(i<slen-1) {
4260     if(regs[i+1].regmap[hr]!=reg) break;
4261     if(!((regs[i+1].isconst>>hr)&1)) break;
4262     if(bt[i+1]) break;
4263     i++;
4264   }
4265   if(i<slen-1) {
4266     if(itype[i]==UJUMP||itype[i]==RJUMP||itype[i]==CJUMP||itype[i]==SJUMP) {
4267       *value=constmap[i][hr];
4268       return 1;
4269     }
4270     if(!bt[i+1]) {
4271       if(itype[i+1]==UJUMP||itype[i+1]==RJUMP||itype[i+1]==CJUMP||itype[i+1]==SJUMP) {
4272         // Load in delay slot, out-of-order execution
4273         if(itype[i+2]==LOAD&&rs1[i+2]==reg&&rt1[i+2]==reg&&((regs[i+1].wasconst>>hr)&1))
4274         {
4275           #ifdef HOST_IMM_ADDR32
4276           if(!using_tlb||((signed int)constmap[i][hr]+imm[i+2])<(signed int)0xC0000000) return 0;
4277           #endif
4278           // Precompute load address
4279           *value=constmap[i][hr]+imm[i+2];
4280           return 1;
4281         }
4282       }
4283       if(itype[i+1]==LOAD&&rs1[i+1]==reg&&rt1[i+1]==reg)
4284       {
4285         #ifdef HOST_IMM_ADDR32
4286         if(!using_tlb||((signed int)constmap[i][hr]+imm[i+1])<(signed int)0xC0000000) return 0;
4287         #endif
4288         // Precompute load address
4289         *value=constmap[i][hr]+imm[i+1];
4290         //printf("c=%x imm=%x\n",(int)constmap[i][hr],imm[i+1]);
4291         return 1;
4292       }
4293     }
4294   }
4295   *value=constmap[i][hr];
4296   //printf("c=%x\n",(int)constmap[i][hr]);
4297   if(i==slen-1) return 1;
4298   if(reg<64) {
4299     return !((unneeded_reg[i+1]>>reg)&1);
4300   }else{
4301     return !((unneeded_reg_upper[i+1]>>reg)&1);
4302   }
4303 }
4304
4305 // Load registers with known constants
4306 void load_consts(signed char pre[],signed char regmap[],int is32,int i)
4307 {
4308   int hr;
4309   // Load 32-bit regs
4310   for(hr=0;hr<HOST_REGS;hr++) {
4311     if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4312       //if(entry[hr]!=regmap[hr]) {
4313       if(i==0||!((regs[i-1].isconst>>hr)&1)||pre[hr]!=regmap[hr]||bt[i]) {
4314         if(((regs[i].isconst>>hr)&1)&&regmap[hr]<64&&regmap[hr]>0) {
4315           int value;
4316           if(get_final_value(hr,i,&value)) {
4317             if(value==0) {
4318               emit_zeroreg(hr);
4319             }
4320             else {
4321               emit_movimm(value,hr);
4322             }
4323           }
4324         }
4325       }
4326     }
4327   }
4328   // Load 64-bit regs
4329   for(hr=0;hr<HOST_REGS;hr++) {
4330     if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4331       //if(entry[hr]!=regmap[hr]) {
4332       if(i==0||!((regs[i-1].isconst>>hr)&1)||pre[hr]!=regmap[hr]||bt[i]) {
4333         if(((regs[i].isconst>>hr)&1)&&regmap[hr]>64) {
4334           if((is32>>(regmap[hr]&63))&1) {
4335             int lr=get_reg(regmap,regmap[hr]-64);
4336             assert(lr>=0);
4337             emit_sarimm(lr,31,hr);
4338           }
4339           else
4340           {
4341             int value;
4342             if(get_final_value(hr,i,&value)) {
4343               if(value==0) {
4344                 emit_zeroreg(hr);
4345               }
4346               else {
4347                 emit_movimm(value,hr);
4348               }
4349             }
4350           }
4351         }
4352       }
4353     }
4354   }
4355 }
4356 void load_all_consts(signed char regmap[],int is32,u_int dirty,int i)
4357 {
4358   int hr;
4359   // Load 32-bit regs
4360   for(hr=0;hr<HOST_REGS;hr++) {
4361     if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((dirty>>hr)&1)) {
4362       if(((regs[i].isconst>>hr)&1)&&regmap[hr]<64&&regmap[hr]>0) {
4363         int value=constmap[i][hr];
4364         if(value==0) {
4365           emit_zeroreg(hr);
4366         }
4367         else {
4368           emit_movimm(value,hr);
4369         }
4370       }
4371     }
4372   }
4373   // Load 64-bit regs
4374   for(hr=0;hr<HOST_REGS;hr++) {
4375     if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((dirty>>hr)&1)) {
4376       if(((regs[i].isconst>>hr)&1)&&regmap[hr]>64) {
4377         if((is32>>(regmap[hr]&63))&1) {
4378           int lr=get_reg(regmap,regmap[hr]-64);
4379           assert(lr>=0);
4380           emit_sarimm(lr,31,hr);
4381         }
4382         else
4383         {
4384           int value=constmap[i][hr];
4385           if(value==0) {
4386             emit_zeroreg(hr);
4387           }
4388           else {
4389             emit_movimm(value,hr);
4390           }
4391         }
4392       }
4393     }
4394   }
4395 }
4396
4397 // Write out all dirty registers (except cycle count)
4398 void wb_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty)
4399 {
4400   int hr;
4401   for(hr=0;hr<HOST_REGS;hr++) {
4402     if(hr!=EXCLUDE_REG) {
4403       if(i_regmap[hr]>0) {
4404         if(i_regmap[hr]!=CCREG) {
4405           if((i_dirty>>hr)&1) {
4406             if(i_regmap[hr]<64) {
4407               emit_storereg(i_regmap[hr],hr);
4408 #ifndef FORCE32
4409               if( ((i_is32>>i_regmap[hr])&1) ) {
4410                 #ifdef DESTRUCTIVE_WRITEBACK
4411                 emit_sarimm(hr,31,hr);
4412                 emit_storereg(i_regmap[hr]|64,hr);
4413                 #else
4414                 emit_sarimm(hr,31,HOST_TEMPREG);
4415                 emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4416                 #endif
4417               }
4418 #endif
4419             }else{
4420               if( !((i_is32>>(i_regmap[hr]&63))&1) ) {
4421                 emit_storereg(i_regmap[hr],hr);
4422               }
4423             }
4424           }
4425         }
4426       }
4427     }
4428   }
4429 }
4430 // Write out dirty registers that we need to reload (pair with load_needed_regs)
4431 // This writes the registers not written by store_regs_bt
4432 void wb_needed_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4433 {
4434   int hr;
4435   int t=(addr-start)>>2;
4436   for(hr=0;hr<HOST_REGS;hr++) {
4437     if(hr!=EXCLUDE_REG) {
4438       if(i_regmap[hr]>0) {
4439         if(i_regmap[hr]!=CCREG) {
4440           if(i_regmap[hr]==regs[t].regmap_entry[hr] && ((regs[t].dirty>>hr)&1) && !(((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4441             if((i_dirty>>hr)&1) {
4442               if(i_regmap[hr]<64) {
4443                 emit_storereg(i_regmap[hr],hr);
4444 #ifndef FORCE32
4445                 if( ((i_is32>>i_regmap[hr])&1) ) {
4446                   #ifdef DESTRUCTIVE_WRITEBACK
4447                   emit_sarimm(hr,31,hr);
4448                   emit_storereg(i_regmap[hr]|64,hr);
4449                   #else
4450                   emit_sarimm(hr,31,HOST_TEMPREG);
4451                   emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4452                   #endif
4453                 }
4454 #endif
4455               }else{
4456                 if( !((i_is32>>(i_regmap[hr]&63))&1) ) {
4457                   emit_storereg(i_regmap[hr],hr);
4458                 }
4459               }
4460             }
4461           }
4462         }
4463       }
4464     }
4465   }
4466 }
4467
4468 // Load all registers (except cycle count)
4469 void load_all_regs(signed char i_regmap[])
4470 {
4471   int hr;
4472   for(hr=0;hr<HOST_REGS;hr++) {
4473     if(hr!=EXCLUDE_REG) {
4474       if(i_regmap[hr]==0) {
4475         emit_zeroreg(hr);
4476       }
4477       else
4478       if(i_regmap[hr]>0 && (i_regmap[hr]&63)<TEMPREG && i_regmap[hr]!=CCREG)
4479       {
4480         emit_loadreg(i_regmap[hr],hr);
4481       }
4482     }
4483   }
4484 }
4485
4486 // Load all current registers also needed by next instruction
4487 void load_needed_regs(signed char i_regmap[],signed char next_regmap[])
4488 {
4489   int hr;
4490   for(hr=0;hr<HOST_REGS;hr++) {
4491     if(hr!=EXCLUDE_REG) {
4492       if(get_reg(next_regmap,i_regmap[hr])>=0) {
4493         if(i_regmap[hr]==0) {
4494           emit_zeroreg(hr);
4495         }
4496         else
4497         if(i_regmap[hr]>0 && (i_regmap[hr]&63)<TEMPREG && i_regmap[hr]!=CCREG)
4498         {
4499           emit_loadreg(i_regmap[hr],hr);
4500         }
4501       }
4502     }
4503   }
4504 }
4505
4506 // Load all regs, storing cycle count if necessary
4507 void load_regs_entry(int t)
4508 {
4509   int hr;
4510   if(is_ds[t]) emit_addimm(HOST_CCREG,CLOCK_DIVIDER,HOST_CCREG);
4511   else if(ccadj[t]) emit_addimm(HOST_CCREG,-ccadj[t]*CLOCK_DIVIDER,HOST_CCREG);
4512   if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
4513     emit_storereg(CCREG,HOST_CCREG);
4514   }
4515   // Load 32-bit regs
4516   for(hr=0;hr<HOST_REGS;hr++) {
4517     if(regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<TEMPREG) {
4518       if(regs[t].regmap_entry[hr]==0) {
4519         emit_zeroreg(hr);
4520       }
4521       else if(regs[t].regmap_entry[hr]!=CCREG)
4522       {
4523         emit_loadreg(regs[t].regmap_entry[hr],hr);
4524       }
4525     }
4526   }
4527   // Load 64-bit regs
4528   for(hr=0;hr<HOST_REGS;hr++) {
4529     if(regs[t].regmap_entry[hr]>=64&&regs[t].regmap_entry[hr]<TEMPREG+64) {
4530       assert(regs[t].regmap_entry[hr]!=64);
4531       if((regs[t].was32>>(regs[t].regmap_entry[hr]&63))&1) {
4532         int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4533         if(lr<0) {
4534           emit_loadreg(regs[t].regmap_entry[hr],hr);
4535         }
4536         else
4537         {
4538           emit_sarimm(lr,31,hr);
4539         }
4540       }
4541       else
4542       {
4543         emit_loadreg(regs[t].regmap_entry[hr],hr);
4544       }
4545     }
4546   }
4547 }
4548
4549 // Store dirty registers prior to branch
4550 void store_regs_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4551 {
4552   if(internal_branch(i_is32,addr))
4553   {
4554     int t=(addr-start)>>2;
4555     int hr;
4556     for(hr=0;hr<HOST_REGS;hr++) {
4557       if(hr!=EXCLUDE_REG) {
4558         if(i_regmap[hr]>0 && i_regmap[hr]!=CCREG) {
4559           if(i_regmap[hr]!=regs[t].regmap_entry[hr] || !((regs[t].dirty>>hr)&1) || (((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4560             if((i_dirty>>hr)&1) {
4561               if(i_regmap[hr]<64) {
4562                 if(!((unneeded_reg[t]>>i_regmap[hr])&1)) {
4563                   emit_storereg(i_regmap[hr],hr);
4564                   if( ((i_is32>>i_regmap[hr])&1) && !((unneeded_reg_upper[t]>>i_regmap[hr])&1) ) {
4565                     #ifdef DESTRUCTIVE_WRITEBACK
4566                     emit_sarimm(hr,31,hr);
4567                     emit_storereg(i_regmap[hr]|64,hr);
4568                     #else
4569                     emit_sarimm(hr,31,HOST_TEMPREG);
4570                     emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4571                     #endif
4572                   }
4573                 }
4574               }else{
4575                 if( !((i_is32>>(i_regmap[hr]&63))&1) && !((unneeded_reg_upper[t]>>(i_regmap[hr]&63))&1) ) {
4576                   emit_storereg(i_regmap[hr],hr);
4577                 }
4578               }
4579             }
4580           }
4581         }
4582       }
4583     }
4584   }
4585   else
4586   {
4587     // Branch out of this block, write out all dirty regs
4588     wb_dirtys(i_regmap,i_is32,i_dirty);
4589   }
4590 }
4591
4592 // Load all needed registers for branch target
4593 void load_regs_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4594 {
4595   //if(addr>=start && addr<(start+slen*4))
4596   if(internal_branch(i_is32,addr))
4597   {
4598     int t=(addr-start)>>2;
4599     int hr;
4600     // Store the cycle count before loading something else
4601     if(i_regmap[HOST_CCREG]!=CCREG) {
4602       assert(i_regmap[HOST_CCREG]==-1);
4603     }
4604     if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
4605       emit_storereg(CCREG,HOST_CCREG);
4606     }
4607     // Load 32-bit regs
4608     for(hr=0;hr<HOST_REGS;hr++) {
4609       if(hr!=EXCLUDE_REG&&regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<TEMPREG) {
4610         #ifdef DESTRUCTIVE_WRITEBACK
4611         if(i_regmap[hr]!=regs[t].regmap_entry[hr] || ( !((regs[t].dirty>>hr)&1) && ((i_dirty>>hr)&1) && (((i_is32&~unneeded_reg_upper[t])>>i_regmap[hr])&1) ) || (((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4612         #else
4613         if(i_regmap[hr]!=regs[t].regmap_entry[hr] ) {
4614         #endif
4615           if(regs[t].regmap_entry[hr]==0) {
4616             emit_zeroreg(hr);
4617           }
4618           else if(regs[t].regmap_entry[hr]!=CCREG)
4619           {
4620             emit_loadreg(regs[t].regmap_entry[hr],hr);
4621           }
4622         }
4623       }
4624     }
4625     //Load 64-bit regs
4626     for(hr=0;hr<HOST_REGS;hr++) {
4627       if(hr!=EXCLUDE_REG&&regs[t].regmap_entry[hr]>=64&&regs[t].regmap_entry[hr]<TEMPREG+64) {
4628         if(i_regmap[hr]!=regs[t].regmap_entry[hr]) {
4629           assert(regs[t].regmap_entry[hr]!=64);
4630           if((i_is32>>(regs[t].regmap_entry[hr]&63))&1) {
4631             int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4632             if(lr<0) {
4633               emit_loadreg(regs[t].regmap_entry[hr],hr);
4634             }
4635             else
4636             {
4637               emit_sarimm(lr,31,hr);
4638             }
4639           }
4640           else
4641           {
4642             emit_loadreg(regs[t].regmap_entry[hr],hr);
4643           }
4644         }
4645         else if((i_is32>>(regs[t].regmap_entry[hr]&63))&1) {
4646           int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4647           assert(lr>=0);
4648           emit_sarimm(lr,31,hr);
4649         }
4650       }
4651     }
4652   }
4653 }
4654
4655 int match_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4656 {
4657   if(addr>=start && addr<start+slen*4-4)
4658   {
4659     int t=(addr-start)>>2;
4660     int hr;
4661     if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) return 0;
4662     for(hr=0;hr<HOST_REGS;hr++)
4663     {
4664       if(hr!=EXCLUDE_REG)
4665       {
4666         if(i_regmap[hr]!=regs[t].regmap_entry[hr])
4667         {
4668           if(regs[t].regmap_entry[hr]>=0&&(regs[t].regmap_entry[hr]|64)<TEMPREG+64)
4669           {
4670             return 0;
4671           }
4672           else 
4673           if((i_dirty>>hr)&1)
4674           {
4675             if(i_regmap[hr]<TEMPREG)
4676             {
4677               if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4678                 return 0;
4679             }
4680             else if(i_regmap[hr]>=64&&i_regmap[hr]<TEMPREG+64)
4681             {
4682               if(!((unneeded_reg_upper[t]>>(i_regmap[hr]&63))&1))
4683                 return 0;
4684             }
4685           }
4686         }
4687         else // Same register but is it 32-bit or dirty?
4688         if(i_regmap[hr]>=0)
4689         {
4690           if(!((regs[t].dirty>>hr)&1))
4691           {
4692             if((i_dirty>>hr)&1)
4693             {
4694               if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4695               {
4696                 //printf("%x: dirty no match\n",addr);
4697                 return 0;
4698               }
4699             }
4700           }
4701           if((((regs[t].was32^i_is32)&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)
4702           {
4703             //printf("%x: is32 no match\n",addr);
4704             return 0;
4705           }
4706         }
4707       }
4708     }
4709     //if(is32[t]&~unneeded_reg_upper[t]&~i_is32) return 0;
4710 #ifndef FORCE32
4711     if(requires_32bit[t]&~i_is32) return 0;
4712 #endif
4713     // Delay slots are not valid branch targets
4714     //if(t>0&&(itype[t-1]==RJUMP||itype[t-1]==UJUMP||itype[t-1]==CJUMP||itype[t-1]==SJUMP||itype[t-1]==FJUMP)) return 0;
4715     // Delay slots require additional processing, so do not match
4716     if(is_ds[t]) return 0;
4717   }
4718   else
4719   {
4720     int hr;
4721     for(hr=0;hr<HOST_REGS;hr++)
4722     {
4723       if(hr!=EXCLUDE_REG)
4724       {
4725         if(i_regmap[hr]>=0)
4726         {
4727           if(hr!=HOST_CCREG||i_regmap[hr]!=CCREG)
4728           {
4729             if((i_dirty>>hr)&1)
4730             {
4731               return 0;
4732             }
4733           }
4734         }
4735       }
4736     }
4737   }
4738   return 1;
4739 }
4740
4741 // Used when a branch jumps into the delay slot of another branch
4742 void ds_assemble_entry(int i)
4743 {
4744   int t=(ba[i]-start)>>2;
4745   if(!instr_addr[t]) instr_addr[t]=(u_int)out;
4746   assem_debug("Assemble delay slot at %x\n",ba[i]);
4747   assem_debug("<->\n");
4748   if(regs[t].regmap_entry[HOST_CCREG]==CCREG&&regs[t].regmap[HOST_CCREG]!=CCREG)
4749     wb_register(CCREG,regs[t].regmap_entry,regs[t].wasdirty,regs[t].was32);
4750   load_regs(regs[t].regmap_entry,regs[t].regmap,regs[t].was32,rs1[t],rs2[t]);
4751   address_generation(t,&regs[t],regs[t].regmap_entry);
4752   if(itype[t]==STORE||itype[t]==STORELR||(opcode[t]&0x3b)==0x39||(opcode[t]&0x3b)==0x3a)
4753     load_regs(regs[t].regmap_entry,regs[t].regmap,regs[t].was32,INVCP,INVCP);
4754   cop1_usable=0;
4755   is_delayslot=0;
4756   switch(itype[t]) {
4757     case ALU:
4758       alu_assemble(t,&regs[t]);break;
4759     case IMM16:
4760       imm16_assemble(t,&regs[t]);break;
4761     case SHIFT:
4762       shift_assemble(t,&regs[t]);break;
4763     case SHIFTIMM:
4764       shiftimm_assemble(t,&regs[t]);break;
4765     case LOAD:
4766       load_assemble(t,&regs[t]);break;
4767     case LOADLR:
4768       loadlr_assemble(t,&regs[t]);break;
4769     case STORE:
4770       store_assemble(t,&regs[t]);break;
4771     case STORELR:
4772       storelr_assemble(t,&regs[t]);break;
4773     case COP0:
4774       cop0_assemble(t,&regs[t]);break;
4775     case COP1:
4776       cop1_assemble(t,&regs[t]);break;
4777     case C1LS:
4778       c1ls_assemble(t,&regs[t]);break;
4779     case COP2:
4780       cop2_assemble(t,&regs[t]);break;
4781     case C2LS:
4782       c2ls_assemble(t,&regs[t]);break;
4783     case C2OP:
4784       c2op_assemble(t,&regs[t]);break;
4785     case FCONV:
4786       fconv_assemble(t,&regs[t]);break;
4787     case FLOAT:
4788       float_assemble(t,&regs[t]);break;
4789     case FCOMP:
4790       fcomp_assemble(t,&regs[t]);break;
4791     case MULTDIV:
4792       multdiv_assemble(t,&regs[t]);break;
4793     case MOV:
4794       mov_assemble(t,&regs[t]);break;
4795     case SYSCALL:
4796     case HLECALL:
4797     case INTCALL:
4798     case SPAN:
4799     case UJUMP:
4800     case RJUMP:
4801     case CJUMP:
4802     case SJUMP:
4803     case FJUMP:
4804       printf("Jump in the delay slot.  This is probably a bug.\n");
4805   }
4806   store_regs_bt(regs[t].regmap,regs[t].is32,regs[t].dirty,ba[i]+4);
4807   load_regs_bt(regs[t].regmap,regs[t].is32,regs[t].dirty,ba[i]+4);
4808   if(internal_branch(regs[t].is32,ba[i]+4))
4809     assem_debug("branch: internal\n");
4810   else
4811     assem_debug("branch: external\n");
4812   assert(internal_branch(regs[t].is32,ba[i]+4));
4813   add_to_linker((int)out,ba[i]+4,internal_branch(regs[t].is32,ba[i]+4));
4814   emit_jmp(0);
4815 }
4816
4817 void do_cc(int i,signed char i_regmap[],int *adj,int addr,int taken,int invert)
4818 {
4819   int count;
4820   int jaddr;
4821   int idle=0;
4822   if(itype[i]==RJUMP)
4823   {
4824     *adj=0;
4825   }
4826   //if(ba[i]>=start && ba[i]<(start+slen*4))
4827   if(internal_branch(branch_regs[i].is32,ba[i]))
4828   {
4829     int t=(ba[i]-start)>>2;
4830     if(is_ds[t]) *adj=-1; // Branch into delay slot adds an extra cycle
4831     else *adj=ccadj[t];
4832   }
4833   else
4834   {
4835     *adj=0;
4836   }
4837   count=ccadj[i];
4838   if(taken==TAKEN && i==(ba[i]-start)>>2 && source[i+1]==0) {
4839     // Idle loop
4840     if(count&1) emit_addimm_and_set_flags(2*(count+2),HOST_CCREG);
4841     idle=(int)out;
4842     //emit_subfrommem(&idlecount,HOST_CCREG); // Count idle cycles
4843     emit_andimm(HOST_CCREG,3,HOST_CCREG);
4844     jaddr=(int)out;
4845     emit_jmp(0);
4846   }
4847   else if(*adj==0||invert) {
4848     emit_addimm_and_set_flags(CLOCK_DIVIDER*(count+2),HOST_CCREG);
4849     jaddr=(int)out;
4850     emit_jns(0);
4851   }
4852   else
4853   {
4854     emit_cmpimm(HOST_CCREG,-CLOCK_DIVIDER*(count+2));
4855     jaddr=(int)out;
4856     emit_jns(0);
4857   }
4858   add_stub(CC_STUB,jaddr,idle?idle:(int)out,(*adj==0||invert||idle)?0:(count+2),i,addr,taken,0);
4859 }
4860
4861 void do_ccstub(int n)
4862 {
4863   literal_pool(256);
4864   assem_debug("do_ccstub %x\n",start+stubs[n][4]*4);
4865   set_jump_target(stubs[n][1],(int)out);
4866   int i=stubs[n][4];
4867   if(stubs[n][6]==NULLDS) {
4868     // Delay slot instruction is nullified ("likely" branch)
4869     wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
4870   }
4871   else if(stubs[n][6]!=TAKEN) {
4872     wb_dirtys(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty);
4873   }
4874   else {
4875     if(internal_branch(branch_regs[i].is32,ba[i]))
4876       wb_needed_dirtys(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
4877   }
4878   if(stubs[n][5]!=-1)
4879   {
4880     // Save PC as return address
4881     emit_movimm(stubs[n][5],EAX);
4882     emit_writeword(EAX,(int)&pcaddr);
4883   }
4884   else
4885   {
4886     // Return address depends on which way the branch goes
4887     if(itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
4888     {
4889       int s1l=get_reg(branch_regs[i].regmap,rs1[i]);
4890       int s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
4891       int s2l=get_reg(branch_regs[i].regmap,rs2[i]);
4892       int s2h=get_reg(branch_regs[i].regmap,rs2[i]|64);
4893       if(rs1[i]==0)
4894       {
4895         s1l=s2l;s1h=s2h;
4896         s2l=s2h=-1;
4897       }
4898       else if(rs2[i]==0)
4899       {
4900         s2l=s2h=-1;
4901       }
4902       if((branch_regs[i].is32>>rs1[i])&(branch_regs[i].is32>>rs2[i])&1) {
4903         s1h=s2h=-1;
4904       }
4905       assert(s1l>=0);
4906       #ifdef DESTRUCTIVE_WRITEBACK
4907       if(rs1[i]) {
4908         if((branch_regs[i].dirty>>s1l)&(branch_regs[i].is32>>rs1[i])&1)
4909           emit_loadreg(rs1[i],s1l);
4910       } 
4911       else {
4912         if((branch_regs[i].dirty>>s1l)&(branch_regs[i].is32>>rs2[i])&1)
4913           emit_loadreg(rs2[i],s1l);
4914       }
4915       if(s2l>=0)
4916         if((branch_regs[i].dirty>>s2l)&(branch_regs[i].is32>>rs2[i])&1)
4917           emit_loadreg(rs2[i],s2l);
4918       #endif
4919       int hr=0;
4920       int addr=-1,alt=-1,ntaddr=-1;
4921       while(hr<HOST_REGS)
4922       {
4923         if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4924            (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
4925            (branch_regs[i].regmap[hr]&63)!=rs2[i] )
4926         {
4927           addr=hr++;break;
4928         }
4929         hr++;
4930       }
4931       while(hr<HOST_REGS)
4932       {
4933         if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4934            (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
4935            (branch_regs[i].regmap[hr]&63)!=rs2[i] )
4936         {
4937           alt=hr++;break;
4938         }
4939         hr++;
4940       }
4941       if((opcode[i]&0x2E)==6) // BLEZ/BGTZ needs another register
4942       {
4943         while(hr<HOST_REGS)
4944         {
4945           if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4946              (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
4947              (branch_regs[i].regmap[hr]&63)!=rs2[i] )
4948           {
4949             ntaddr=hr;break;
4950           }
4951           hr++;
4952         }
4953         assert(hr<HOST_REGS);
4954       }
4955       if((opcode[i]&0x2f)==4) // BEQ
4956       {
4957         #ifdef HAVE_CMOV_IMM
4958         if(s1h<0) {
4959           if(s2l>=0) emit_cmp(s1l,s2l);
4960           else emit_test(s1l,s1l);
4961           emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
4962         }
4963         else
4964         #endif
4965         {
4966           emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
4967           if(s1h>=0) {
4968             if(s2h>=0) emit_cmp(s1h,s2h);
4969             else emit_test(s1h,s1h);
4970             emit_cmovne_reg(alt,addr);
4971           }
4972           if(s2l>=0) emit_cmp(s1l,s2l);
4973           else emit_test(s1l,s1l);
4974           emit_cmovne_reg(alt,addr);
4975         }
4976       }
4977       if((opcode[i]&0x2f)==5) // BNE
4978       {
4979         #ifdef HAVE_CMOV_IMM
4980         if(s1h<0) {
4981           if(s2l>=0) emit_cmp(s1l,s2l);
4982           else emit_test(s1l,s1l);
4983           emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
4984         }
4985         else
4986         #endif
4987         {
4988           emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
4989           if(s1h>=0) {
4990             if(s2h>=0) emit_cmp(s1h,s2h);
4991             else emit_test(s1h,s1h);
4992             emit_cmovne_reg(alt,addr);
4993           }
4994           if(s2l>=0) emit_cmp(s1l,s2l);
4995           else emit_test(s1l,s1l);
4996           emit_cmovne_reg(alt,addr);
4997         }
4998       }
4999       if((opcode[i]&0x2f)==6) // BLEZ
5000       {
5001         //emit_movimm(ba[i],alt);
5002         //emit_movimm(start+i*4+8,addr);
5003         emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
5004         emit_cmpimm(s1l,1);
5005         if(s1h>=0) emit_mov(addr,ntaddr);
5006         emit_cmovl_reg(alt,addr);
5007         if(s1h>=0) {
5008           emit_test(s1h,s1h);
5009           emit_cmovne_reg(ntaddr,addr);
5010           emit_cmovs_reg(alt,addr);
5011         }
5012       }
5013       if((opcode[i]&0x2f)==7) // BGTZ
5014       {
5015         //emit_movimm(ba[i],addr);
5016         //emit_movimm(start+i*4+8,ntaddr);
5017         emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
5018         emit_cmpimm(s1l,1);
5019         if(s1h>=0) emit_mov(addr,alt);
5020         emit_cmovl_reg(ntaddr,addr);
5021         if(s1h>=0) {
5022           emit_test(s1h,s1h);
5023           emit_cmovne_reg(alt,addr);
5024           emit_cmovs_reg(ntaddr,addr);
5025         }
5026       }
5027       if((opcode[i]==1)&&(opcode2[i]&0x2D)==0) // BLTZ
5028       {
5029         //emit_movimm(ba[i],alt);
5030         //emit_movimm(start+i*4+8,addr);
5031         emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
5032         if(s1h>=0) emit_test(s1h,s1h);
5033         else emit_test(s1l,s1l);
5034         emit_cmovs_reg(alt,addr);
5035       }
5036       if((opcode[i]==1)&&(opcode2[i]&0x2D)==1) // BGEZ
5037       {
5038         //emit_movimm(ba[i],addr);
5039         //emit_movimm(start+i*4+8,alt);
5040         emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
5041         if(s1h>=0) emit_test(s1h,s1h);
5042         else emit_test(s1l,s1l);
5043         emit_cmovs_reg(alt,addr);
5044       }
5045       if(opcode[i]==0x11 && opcode2[i]==0x08 ) {
5046         if(source[i]&0x10000) // BC1T
5047         {
5048           //emit_movimm(ba[i],alt);
5049           //emit_movimm(start+i*4+8,addr);
5050           emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
5051           emit_testimm(s1l,0x800000);
5052           emit_cmovne_reg(alt,addr);
5053         }
5054         else // BC1F
5055         {
5056           //emit_movimm(ba[i],addr);
5057           //emit_movimm(start+i*4+8,alt);
5058           emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
5059           emit_testimm(s1l,0x800000);
5060           emit_cmovne_reg(alt,addr);
5061         }
5062       }
5063       emit_writeword(addr,(int)&pcaddr);
5064     }
5065     else
5066     if(itype[i]==RJUMP)
5067     {
5068       int r=get_reg(branch_regs[i].regmap,rs1[i]);
5069       if(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]) {
5070         r=get_reg(branch_regs[i].regmap,RTEMP);
5071       }
5072       emit_writeword(r,(int)&pcaddr);
5073     }
5074     else {printf("Unknown branch type in do_ccstub\n");exit(1);}
5075   }
5076   // Update cycle count
5077   assert(branch_regs[i].regmap[HOST_CCREG]==CCREG||branch_regs[i].regmap[HOST_CCREG]==-1);
5078   if(stubs[n][3]) emit_addimm(HOST_CCREG,CLOCK_DIVIDER*stubs[n][3],HOST_CCREG);
5079   emit_call((int)cc_interrupt);
5080   if(stubs[n][3]) emit_addimm(HOST_CCREG,-CLOCK_DIVIDER*stubs[n][3],HOST_CCREG);
5081   if(stubs[n][6]==TAKEN) {
5082     if(internal_branch(branch_regs[i].is32,ba[i]))
5083       load_needed_regs(branch_regs[i].regmap,regs[(ba[i]-start)>>2].regmap_entry);
5084     else if(itype[i]==RJUMP) {
5085       if(get_reg(branch_regs[i].regmap,RTEMP)>=0)
5086         emit_readword((int)&pcaddr,get_reg(branch_regs[i].regmap,RTEMP));
5087       else
5088         emit_loadreg(rs1[i],get_reg(branch_regs[i].regmap,rs1[i]));
5089     }
5090   }else if(stubs[n][6]==NOTTAKEN) {
5091     if(i<slen-2) load_needed_regs(branch_regs[i].regmap,regmap_pre[i+2]);
5092     else load_all_regs(branch_regs[i].regmap);
5093   }else if(stubs[n][6]==NULLDS) {
5094     // Delay slot instruction is nullified ("likely" branch)
5095     if(i<slen-2) load_needed_regs(regs[i].regmap,regmap_pre[i+2]);
5096     else load_all_regs(regs[i].regmap);
5097   }else{
5098     load_all_regs(branch_regs[i].regmap);
5099   }
5100   emit_jmp(stubs[n][2]); // return address
5101   
5102   /* This works but uses a lot of memory...
5103   emit_readword((int)&last_count,ECX);
5104   emit_add(HOST_CCREG,ECX,EAX);
5105   emit_writeword(EAX,(int)&Count);
5106   emit_call((int)gen_interupt);
5107   emit_readword((int)&Count,HOST_CCREG);
5108   emit_readword((int)&next_interupt,EAX);
5109   emit_readword((int)&pending_exception,EBX);
5110   emit_writeword(EAX,(int)&last_count);
5111   emit_sub(HOST_CCREG,EAX,HOST_CCREG);
5112   emit_test(EBX,EBX);
5113   int jne_instr=(int)out;
5114   emit_jne(0);
5115   if(stubs[n][3]) emit_addimm(HOST_CCREG,-2*stubs[n][3],HOST_CCREG);
5116   load_all_regs(branch_regs[i].regmap);
5117   emit_jmp(stubs[n][2]); // return address
5118   set_jump_target(jne_instr,(int)out);
5119   emit_readword((int)&pcaddr,EAX);
5120   // Call get_addr_ht instead of doing the hash table here.
5121   // This code is executed infrequently and takes up a lot of space
5122   // so smaller is better.
5123   emit_storereg(CCREG,HOST_CCREG);
5124   emit_pushreg(EAX);
5125   emit_call((int)get_addr_ht);
5126   emit_loadreg(CCREG,HOST_CCREG);
5127   emit_addimm(ESP,4,ESP);
5128   emit_jmpreg(EAX);*/
5129 }
5130
5131 add_to_linker(int addr,int target,int ext)
5132 {
5133   link_addr[linkcount][0]=addr;
5134   link_addr[linkcount][1]=target;
5135   link_addr[linkcount][2]=ext;  
5136   linkcount++;
5137 }
5138
5139 void ujump_assemble(int i,struct regstat *i_regs)
5140 {
5141   signed char *i_regmap=i_regs->regmap;
5142   if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5143   address_generation(i+1,i_regs,regs[i].regmap_entry);
5144   #ifdef REG_PREFETCH
5145   int temp=get_reg(branch_regs[i].regmap,PTEMP);
5146   if(rt1[i]==31&&temp>=0) 
5147   {
5148     int return_address=start+i*4+8;
5149     if(get_reg(branch_regs[i].regmap,31)>0) 
5150     if(i_regmap[temp]==PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5151   }
5152   #endif
5153   if(rt1[i]==31) {
5154     int rt;
5155     unsigned int return_address;
5156     rt=get_reg(branch_regs[i].regmap,31);
5157     assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5158     //assert(rt>=0);
5159     return_address=start+i*4+8;
5160     if(rt>=0) {
5161       #ifdef USE_MINI_HT
5162       if(internal_branch(branch_regs[i].is32,return_address)&&rt1[i+1]!=31) {
5163         int temp=-1; // note: must be ds-safe
5164         #ifdef HOST_TEMPREG
5165         temp=HOST_TEMPREG;
5166         #endif
5167         if(temp>=0) do_miniht_insert(return_address,rt,temp);
5168         else emit_movimm(return_address,rt);
5169       }
5170       else
5171       #endif
5172       {
5173         #ifdef REG_PREFETCH
5174         if(temp>=0) 
5175         {
5176           if(i_regmap[temp]!=PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5177         }
5178         #endif
5179         emit_movimm(return_address,rt); // PC into link register
5180         #ifdef IMM_PREFETCH
5181         emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5182         #endif
5183       }
5184     }
5185   }
5186   ds_assemble(i+1,i_regs);
5187   uint64_t bc_unneeded=branch_regs[i].u;
5188   uint64_t bc_unneeded_upper=branch_regs[i].uu;
5189   bc_unneeded|=1|(1LL<<rt1[i]);
5190   bc_unneeded_upper|=1|(1LL<<rt1[i]);
5191   wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5192                 bc_unneeded,bc_unneeded_upper);
5193   load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5194   int cc,adj;
5195   cc=get_reg(branch_regs[i].regmap,CCREG);
5196   assert(cc==HOST_CCREG);
5197   store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5198   #ifdef REG_PREFETCH
5199   if(rt1[i]==31&&temp>=0) emit_prefetchreg(temp);
5200   #endif
5201   do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5202   if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5203   load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5204   if(internal_branch(branch_regs[i].is32,ba[i]))
5205     assem_debug("branch: internal\n");
5206   else
5207     assem_debug("branch: external\n");
5208   if(internal_branch(branch_regs[i].is32,ba[i])&&is_ds[(ba[i]-start)>>2]) {
5209     ds_assemble_entry(i);
5210   }
5211   else {
5212     add_to_linker((int)out,ba[i],internal_branch(branch_regs[i].is32,ba[i]));
5213     emit_jmp(0);
5214   }
5215 }
5216
5217 void rjump_assemble(int i,struct regstat *i_regs)
5218 {
5219   signed char *i_regmap=i_regs->regmap;
5220   int temp;
5221   int rs,cc,adj;
5222   rs=get_reg(branch_regs[i].regmap,rs1[i]);
5223   assert(rs>=0);
5224   if(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]) {
5225     // Delay slot abuse, make a copy of the branch address register
5226     temp=get_reg(branch_regs[i].regmap,RTEMP);
5227     assert(temp>=0);
5228     assert(regs[i].regmap[temp]==RTEMP);
5229     emit_mov(rs,temp);
5230     rs=temp;
5231   }
5232   address_generation(i+1,i_regs,regs[i].regmap_entry);
5233   #ifdef REG_PREFETCH
5234   if(rt1[i]==31) 
5235   {
5236     if((temp=get_reg(branch_regs[i].regmap,PTEMP))>=0) {
5237       int return_address=start+i*4+8;
5238       if(i_regmap[temp]==PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5239     }
5240   }
5241   #endif
5242   #ifdef USE_MINI_HT
5243   if(rs1[i]==31) {
5244     int rh=get_reg(regs[i].regmap,RHASH);
5245     if(rh>=0) do_preload_rhash(rh);
5246   }
5247   #endif
5248   ds_assemble(i+1,i_regs);
5249   uint64_t bc_unneeded=branch_regs[i].u;
5250   uint64_t bc_unneeded_upper=branch_regs[i].uu;
5251   bc_unneeded|=1|(1LL<<rt1[i]);
5252   bc_unneeded_upper|=1|(1LL<<rt1[i]);
5253   bc_unneeded&=~(1LL<<rs1[i]);
5254   wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5255                 bc_unneeded,bc_unneeded_upper);
5256   load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],CCREG);
5257   if(rt1[i]!=0) {
5258     int rt,return_address;
5259     assert(rt1[i+1]!=rt1[i]);
5260     assert(rt2[i+1]!=rt1[i]);
5261     rt=get_reg(branch_regs[i].regmap,rt1[i]);
5262     assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5263     assert(rt>=0);
5264     return_address=start+i*4+8;
5265     #ifdef REG_PREFETCH
5266     if(temp>=0) 
5267     {
5268       if(i_regmap[temp]!=PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5269     }
5270     #endif
5271     emit_movimm(return_address,rt); // PC into link register
5272     #ifdef IMM_PREFETCH
5273     emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5274     #endif
5275   }
5276   cc=get_reg(branch_regs[i].regmap,CCREG);
5277   assert(cc==HOST_CCREG);
5278   #ifdef USE_MINI_HT
5279   int rh=get_reg(branch_regs[i].regmap,RHASH);
5280   int ht=get_reg(branch_regs[i].regmap,RHTBL);
5281   if(rs1[i]==31) {
5282     if(regs[i].regmap[rh]!=RHASH) do_preload_rhash(rh);
5283     do_preload_rhtbl(ht);
5284     do_rhash(rs,rh);
5285   }
5286   #endif
5287   store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,-1);
5288   #ifdef DESTRUCTIVE_WRITEBACK
5289   if((branch_regs[i].dirty>>rs)&(branch_regs[i].is32>>rs1[i])&1) {
5290     if(rs1[i]!=rt1[i+1]&&rs1[i]!=rt2[i+1]) {
5291       emit_loadreg(rs1[i],rs);
5292     }
5293   }
5294   #endif
5295   #ifdef REG_PREFETCH
5296   if(rt1[i]==31&&temp>=0) emit_prefetchreg(temp);
5297   #endif
5298   #ifdef USE_MINI_HT
5299   if(rs1[i]==31) {
5300     do_miniht_load(ht,rh);
5301   }
5302   #endif
5303   //do_cc(i,branch_regs[i].regmap,&adj,-1,TAKEN);
5304   //if(adj) emit_addimm(cc,2*(ccadj[i]+2-adj),cc); // ??? - Shouldn't happen
5305   //assert(adj==0);
5306   emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
5307   add_stub(CC_STUB,(int)out,jump_vaddr_reg[rs],0,i,-1,TAKEN,0);
5308   emit_jns(0);
5309   //load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,-1);
5310   #ifdef USE_MINI_HT
5311   if(rs1[i]==31) {
5312     do_miniht_jump(rs,rh,ht);
5313   }
5314   else
5315   #endif
5316   {
5317     //if(rs!=EAX) emit_mov(rs,EAX);
5318     //emit_jmp((int)jump_vaddr_eax);
5319     emit_jmp(jump_vaddr_reg[rs]);
5320   }
5321   /* Check hash table
5322   temp=!rs;
5323   emit_mov(rs,temp);
5324   emit_shrimm(rs,16,rs);
5325   emit_xor(temp,rs,rs);
5326   emit_movzwl_reg(rs,rs);
5327   emit_shlimm(rs,4,rs);
5328   emit_cmpmem_indexed((int)hash_table,rs,temp);
5329   emit_jne((int)out+14);
5330   emit_readword_indexed((int)hash_table+4,rs,rs);
5331   emit_jmpreg(rs);
5332   emit_cmpmem_indexed((int)hash_table+8,rs,temp);
5333   emit_addimm_no_flags(8,rs);
5334   emit_jeq((int)out-17);
5335   // No hit on hash table, call compiler
5336   emit_pushreg(temp);
5337 //DEBUG >
5338 #ifdef DEBUG_CYCLE_COUNT
5339   emit_readword((int)&last_count,ECX);
5340   emit_add(HOST_CCREG,ECX,HOST_CCREG);
5341   emit_readword((int)&next_interupt,ECX);
5342   emit_writeword(HOST_CCREG,(int)&Count);
5343   emit_sub(HOST_CCREG,ECX,HOST_CCREG);
5344   emit_writeword(ECX,(int)&last_count);
5345 #endif
5346 //DEBUG <
5347   emit_storereg(CCREG,HOST_CCREG);
5348   emit_call((int)get_addr);
5349   emit_loadreg(CCREG,HOST_CCREG);
5350   emit_addimm(ESP,4,ESP);
5351   emit_jmpreg(EAX);*/
5352   #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5353   if(rt1[i]!=31&&i<slen-2&&(((u_int)out)&7)) emit_mov(13,13);
5354   #endif
5355 }
5356
5357 void cjump_assemble(int i,struct regstat *i_regs)
5358 {
5359   signed char *i_regmap=i_regs->regmap;
5360   int cc;
5361   int match;
5362   match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5363   assem_debug("match=%d\n",match);
5364   int s1h,s1l,s2h,s2l;
5365   int prev_cop1_usable=cop1_usable;
5366   int unconditional=0,nop=0;
5367   int only32=0;
5368   int invert=0;
5369   int internal=internal_branch(branch_regs[i].is32,ba[i]);
5370   if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5371   if(!match) invert=1;
5372   #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5373   if(i>(ba[i]-start)>>2) invert=1;
5374   #endif
5375   
5376   if(ooo[i]) {
5377     s1l=get_reg(branch_regs[i].regmap,rs1[i]);
5378     s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
5379     s2l=get_reg(branch_regs[i].regmap,rs2[i]);
5380     s2h=get_reg(branch_regs[i].regmap,rs2[i]|64);
5381   }
5382   else {
5383     s1l=get_reg(i_regmap,rs1[i]);
5384     s1h=get_reg(i_regmap,rs1[i]|64);
5385     s2l=get_reg(i_regmap,rs2[i]);
5386     s2h=get_reg(i_regmap,rs2[i]|64);
5387   }
5388   if(rs1[i]==0&&rs2[i]==0)
5389   {
5390     if(opcode[i]&1) nop=1;
5391     else unconditional=1;
5392     //assert(opcode[i]!=5);
5393     //assert(opcode[i]!=7);
5394     //assert(opcode[i]!=0x15);
5395     //assert(opcode[i]!=0x17);
5396   }
5397   else if(rs1[i]==0)
5398   {
5399     s1l=s2l;s1h=s2h;
5400     s2l=s2h=-1;
5401     only32=(regs[i].was32>>rs2[i])&1;
5402   }
5403   else if(rs2[i]==0)
5404   {
5405     s2l=s2h=-1;
5406     only32=(regs[i].was32>>rs1[i])&1;
5407   }
5408   else {
5409     only32=(regs[i].was32>>rs1[i])&(regs[i].was32>>rs2[i])&1;
5410   }
5411
5412   if(ooo[i]) {
5413     // Out of order execution (delay slot first)
5414     //printf("OOOE\n");
5415     address_generation(i+1,i_regs,regs[i].regmap_entry);
5416     ds_assemble(i+1,i_regs);
5417     int adj;
5418     uint64_t bc_unneeded=branch_regs[i].u;
5419     uint64_t bc_unneeded_upper=branch_regs[i].uu;
5420     bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
5421     bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
5422     bc_unneeded|=1;
5423     bc_unneeded_upper|=1;
5424     wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5425                   bc_unneeded,bc_unneeded_upper);
5426     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs2[i]);
5427     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5428     cc=get_reg(branch_regs[i].regmap,CCREG);
5429     assert(cc==HOST_CCREG);
5430     if(unconditional) 
5431       store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5432     //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
5433     //assem_debug("cycle count (adj)\n");
5434     if(unconditional) {
5435       do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5436       if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
5437         if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5438         load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5439         if(internal)
5440           assem_debug("branch: internal\n");
5441         else
5442           assem_debug("branch: external\n");
5443         if(internal&&is_ds[(ba[i]-start)>>2]) {
5444           ds_assemble_entry(i);
5445         }
5446         else {
5447           add_to_linker((int)out,ba[i],internal);
5448           emit_jmp(0);
5449         }
5450         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5451         if(((u_int)out)&7) emit_addnop(0);
5452         #endif
5453       }
5454     }
5455     else if(nop) {
5456       emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
5457       int jaddr=(int)out;
5458       emit_jns(0);
5459       add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5460     }
5461     else {
5462       int taken=0,nottaken=0,nottaken1=0;
5463       do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
5464       if(adj&&!invert) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5465       if(!only32)
5466       {
5467         assert(s1h>=0);
5468         if(opcode[i]==4) // BEQ
5469         {
5470           if(s2h>=0) emit_cmp(s1h,s2h);
5471           else emit_test(s1h,s1h);
5472           nottaken1=(int)out;
5473           emit_jne(1);
5474         }
5475         if(opcode[i]==5) // BNE
5476         {
5477           if(s2h>=0) emit_cmp(s1h,s2h);
5478           else emit_test(s1h,s1h);
5479           if(invert) taken=(int)out;
5480           else add_to_linker((int)out,ba[i],internal);
5481           emit_jne(0);
5482         }
5483         if(opcode[i]==6) // BLEZ
5484         {
5485           emit_test(s1h,s1h);
5486           if(invert) taken=(int)out;
5487           else add_to_linker((int)out,ba[i],internal);
5488           emit_js(0);
5489           nottaken1=(int)out;
5490           emit_jne(1);
5491         }
5492         if(opcode[i]==7) // BGTZ
5493         {
5494           emit_test(s1h,s1h);
5495           nottaken1=(int)out;
5496           emit_js(1);
5497           if(invert) taken=(int)out;
5498           else add_to_linker((int)out,ba[i],internal);
5499           emit_jne(0);
5500         }
5501       } // if(!only32)
5502           
5503       //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5504       assert(s1l>=0);
5505       if(opcode[i]==4) // BEQ
5506       {
5507         if(s2l>=0) emit_cmp(s1l,s2l);
5508         else emit_test(s1l,s1l);
5509         if(invert){
5510           nottaken=(int)out;
5511           emit_jne(1);
5512         }else{
5513           add_to_linker((int)out,ba[i],internal);
5514           emit_jeq(0);
5515         }
5516       }
5517       if(opcode[i]==5) // BNE
5518       {
5519         if(s2l>=0) emit_cmp(s1l,s2l);
5520         else emit_test(s1l,s1l);
5521         if(invert){
5522           nottaken=(int)out;
5523           emit_jeq(1);
5524         }else{
5525           add_to_linker((int)out,ba[i],internal);
5526           emit_jne(0);
5527         }
5528       }
5529       if(opcode[i]==6) // BLEZ
5530       {
5531         emit_cmpimm(s1l,1);
5532         if(invert){
5533           nottaken=(int)out;
5534           emit_jge(1);
5535         }else{
5536           add_to_linker((int)out,ba[i],internal);
5537           emit_jl(0);
5538         }
5539       }
5540       if(opcode[i]==7) // BGTZ
5541       {
5542         emit_cmpimm(s1l,1);
5543         if(invert){
5544           nottaken=(int)out;
5545           emit_jl(1);
5546         }else{
5547           add_to_linker((int)out,ba[i],internal);
5548           emit_jge(0);
5549         }
5550       }
5551       if(invert) {
5552         if(taken) set_jump_target(taken,(int)out);
5553         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5554         if(match&&(!internal||!is_ds[(ba[i]-start)>>2])) {
5555           if(adj) {
5556             emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5557             add_to_linker((int)out,ba[i],internal);
5558           }else{
5559             emit_addnop(13);
5560             add_to_linker((int)out,ba[i],internal*2);
5561           }
5562           emit_jmp(0);
5563         }else
5564         #endif
5565         {
5566           if(adj) emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5567           store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5568           load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5569           if(internal)
5570             assem_debug("branch: internal\n");
5571           else
5572             assem_debug("branch: external\n");
5573           if(internal&&is_ds[(ba[i]-start)>>2]) {
5574             ds_assemble_entry(i);
5575           }
5576           else {
5577             add_to_linker((int)out,ba[i],internal);
5578             emit_jmp(0);
5579           }
5580         }
5581         set_jump_target(nottaken,(int)out);
5582       }
5583
5584       if(nottaken1) set_jump_target(nottaken1,(int)out);
5585       if(adj) {
5586         if(!invert) emit_addimm(cc,CLOCK_DIVIDER*adj,cc);
5587       }
5588     } // (!unconditional)
5589   } // if(ooo)
5590   else
5591   {
5592     // In-order execution (branch first)
5593     //if(likely[i]) printf("IOL\n");
5594     //else
5595     //printf("IOE\n");
5596     int taken=0,nottaken=0,nottaken1=0;
5597     if(!unconditional&&!nop) {
5598       if(!only32)
5599       {
5600         assert(s1h>=0);
5601         if((opcode[i]&0x2f)==4) // BEQ
5602         {
5603           if(s2h>=0) emit_cmp(s1h,s2h);
5604           else emit_test(s1h,s1h);
5605           nottaken1=(int)out;
5606           emit_jne(2);
5607         }
5608         if((opcode[i]&0x2f)==5) // BNE
5609         {
5610           if(s2h>=0) emit_cmp(s1h,s2h);
5611           else emit_test(s1h,s1h);
5612           taken=(int)out;
5613           emit_jne(1);
5614         }
5615         if((opcode[i]&0x2f)==6) // BLEZ
5616         {
5617           emit_test(s1h,s1h);
5618           taken=(int)out;
5619           emit_js(1);
5620           nottaken1=(int)out;
5621           emit_jne(2);
5622         }
5623         if((opcode[i]&0x2f)==7) // BGTZ
5624         {
5625           emit_test(s1h,s1h);
5626           nottaken1=(int)out;
5627           emit_js(2);
5628           taken=(int)out;
5629           emit_jne(1);
5630         }
5631       } // if(!only32)
5632           
5633       //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5634       assert(s1l>=0);
5635       if((opcode[i]&0x2f)==4) // BEQ
5636       {
5637         if(s2l>=0) emit_cmp(s1l,s2l);
5638         else emit_test(s1l,s1l);
5639         nottaken=(int)out;
5640         emit_jne(2);
5641       }
5642       if((opcode[i]&0x2f)==5) // BNE
5643       {
5644         if(s2l>=0) emit_cmp(s1l,s2l);
5645         else emit_test(s1l,s1l);
5646         nottaken=(int)out;
5647         emit_jeq(2);
5648       }
5649       if((opcode[i]&0x2f)==6) // BLEZ
5650       {
5651         emit_cmpimm(s1l,1);
5652         nottaken=(int)out;
5653         emit_jge(2);
5654       }
5655       if((opcode[i]&0x2f)==7) // BGTZ
5656       {
5657         emit_cmpimm(s1l,1);
5658         nottaken=(int)out;
5659         emit_jl(2);
5660       }
5661     } // if(!unconditional)
5662     int adj;
5663     uint64_t ds_unneeded=branch_regs[i].u;
5664     uint64_t ds_unneeded_upper=branch_regs[i].uu;
5665     ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
5666     ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
5667     if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
5668     ds_unneeded|=1;
5669     ds_unneeded_upper|=1;
5670     // branch taken
5671     if(!nop) {
5672       if(taken) set_jump_target(taken,(int)out);
5673       assem_debug("1:\n");
5674       wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5675                     ds_unneeded,ds_unneeded_upper);
5676       // load regs
5677       load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5678       address_generation(i+1,&branch_regs[i],0);
5679       load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
5680       ds_assemble(i+1,&branch_regs[i]);
5681       cc=get_reg(branch_regs[i].regmap,CCREG);
5682       if(cc==-1) {
5683         emit_loadreg(CCREG,cc=HOST_CCREG);
5684         // CHECK: Is the following instruction (fall thru) allocated ok?
5685       }
5686       assert(cc==HOST_CCREG);
5687       store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5688       do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
5689       assem_debug("cycle count (adj)\n");
5690       if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5691       load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5692       if(internal)
5693         assem_debug("branch: internal\n");
5694       else
5695         assem_debug("branch: external\n");
5696       if(internal&&is_ds[(ba[i]-start)>>2]) {
5697         ds_assemble_entry(i);
5698       }
5699       else {
5700         add_to_linker((int)out,ba[i],internal);
5701         emit_jmp(0);
5702       }
5703     }
5704     // branch not taken
5705     cop1_usable=prev_cop1_usable;
5706     if(!unconditional) {
5707       if(nottaken1) set_jump_target(nottaken1,(int)out);
5708       set_jump_target(nottaken,(int)out);
5709       assem_debug("2:\n");
5710       if(!likely[i]) {
5711         wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5712                       ds_unneeded,ds_unneeded_upper);
5713         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5714         address_generation(i+1,&branch_regs[i],0);
5715         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5716         ds_assemble(i+1,&branch_regs[i]);
5717       }
5718       cc=get_reg(branch_regs[i].regmap,CCREG);
5719       if(cc==-1&&!likely[i]) {
5720         // Cycle count isn't in a register, temporarily load it then write it out
5721         emit_loadreg(CCREG,HOST_CCREG);
5722         emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
5723         int jaddr=(int)out;
5724         emit_jns(0);
5725         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5726         emit_storereg(CCREG,HOST_CCREG);
5727       }
5728       else{
5729         cc=get_reg(i_regmap,CCREG);
5730         assert(cc==HOST_CCREG);
5731         emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
5732         int jaddr=(int)out;
5733         emit_jns(0);
5734         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
5735       }
5736     }
5737   }
5738 }
5739
5740 void sjump_assemble(int i,struct regstat *i_regs)
5741 {
5742   signed char *i_regmap=i_regs->regmap;
5743   int cc;
5744   int match;
5745   match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5746   assem_debug("smatch=%d\n",match);
5747   int s1h,s1l;
5748   int prev_cop1_usable=cop1_usable;
5749   int unconditional=0,nevertaken=0;
5750   int only32=0;
5751   int invert=0;
5752   int internal=internal_branch(branch_regs[i].is32,ba[i]);
5753   if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5754   if(!match) invert=1;
5755   #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5756   if(i>(ba[i]-start)>>2) invert=1;
5757   #endif
5758
5759   //if(opcode2[i]>=0x10) return; // FIXME (BxxZAL)
5760   //assert(opcode2[i]<0x10||rs1[i]==0); // FIXME (BxxZAL)
5761
5762   if(ooo[i]) {
5763     s1l=get_reg(branch_regs[i].regmap,rs1[i]);
5764     s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
5765   }
5766   else {
5767     s1l=get_reg(i_regmap,rs1[i]);
5768     s1h=get_reg(i_regmap,rs1[i]|64);
5769   }
5770   if(rs1[i]==0)
5771   {
5772     if(opcode2[i]&1) unconditional=1;
5773     else nevertaken=1;
5774     // These are never taken (r0 is never less than zero)
5775     //assert(opcode2[i]!=0);
5776     //assert(opcode2[i]!=2);
5777     //assert(opcode2[i]!=0x10);
5778     //assert(opcode2[i]!=0x12);
5779   }
5780   else {
5781     only32=(regs[i].was32>>rs1[i])&1;
5782   }
5783
5784   if(ooo[i]) {
5785     // Out of order execution (delay slot first)
5786     //printf("OOOE\n");
5787     address_generation(i+1,i_regs,regs[i].regmap_entry);
5788     ds_assemble(i+1,i_regs);
5789     int adj;
5790     uint64_t bc_unneeded=branch_regs[i].u;
5791     uint64_t bc_unneeded_upper=branch_regs[i].uu;
5792     bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
5793     bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
5794     bc_unneeded|=1;
5795     bc_unneeded_upper|=1;
5796     wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5797                   bc_unneeded,bc_unneeded_upper);
5798     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs1[i]);
5799     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5800     if(rt1[i]==31) {
5801       int rt,return_address;
5802       rt=get_reg(branch_regs[i].regmap,31);
5803       assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5804       if(rt>=0) {
5805         // Save the PC even if the branch is not taken
5806         return_address=start+i*4+8;
5807         emit_movimm(return_address,rt); // PC into link register
5808         #ifdef IMM_PREFETCH
5809         if(!nevertaken) emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5810         #endif
5811       }
5812     }
5813     cc=get_reg(branch_regs[i].regmap,CCREG);
5814     assert(cc==HOST_CCREG);
5815     if(unconditional) 
5816       store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5817     //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
5818     assem_debug("cycle count (adj)\n");
5819     if(unconditional) {
5820       do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5821       if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
5822         if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5823         load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5824         if(internal)
5825           assem_debug("branch: internal\n");
5826         else
5827           assem_debug("branch: external\n");
5828         if(internal&&is_ds[(ba[i]-start)>>2]) {
5829           ds_assemble_entry(i);
5830         }
5831         else {
5832           add_to_linker((int)out,ba[i],internal);
5833           emit_jmp(0);
5834         }
5835         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5836         if(((u_int)out)&7) emit_addnop(0);
5837         #endif
5838       }
5839     }
5840     else if(nevertaken) {
5841       emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
5842       int jaddr=(int)out;
5843       emit_jns(0);
5844       add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5845     }
5846     else {
5847       int nottaken=0;
5848       do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
5849       if(adj&&!invert) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5850       if(!only32)
5851       {
5852         assert(s1h>=0);
5853         if((opcode2[i]&0xf)==0) // BLTZ/BLTZAL
5854         {
5855           emit_test(s1h,s1h);
5856           if(invert){
5857             nottaken=(int)out;
5858             emit_jns(1);
5859           }else{
5860             add_to_linker((int)out,ba[i],internal);
5861             emit_js(0);
5862           }
5863         }
5864         if((opcode2[i]&0xf)==1) // BGEZ/BLTZAL
5865         {
5866           emit_test(s1h,s1h);
5867           if(invert){
5868             nottaken=(int)out;
5869             emit_js(1);
5870           }else{
5871             add_to_linker((int)out,ba[i],internal);
5872             emit_jns(0);
5873           }
5874         }
5875       } // if(!only32)
5876       else
5877       {
5878         assert(s1l>=0);
5879         if((opcode2[i]&0xf)==0) // BLTZ/BLTZAL
5880         {
5881           emit_test(s1l,s1l);
5882           if(invert){
5883             nottaken=(int)out;
5884             emit_jns(1);
5885           }else{
5886             add_to_linker((int)out,ba[i],internal);
5887             emit_js(0);
5888           }
5889         }
5890         if((opcode2[i]&0xf)==1) // BGEZ/BLTZAL
5891         {
5892           emit_test(s1l,s1l);
5893           if(invert){
5894             nottaken=(int)out;
5895             emit_js(1);
5896           }else{
5897             add_to_linker((int)out,ba[i],internal);
5898             emit_jns(0);
5899           }
5900         }
5901       } // if(!only32)
5902           
5903       if(invert) {
5904         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5905         if(match&&(!internal||!is_ds[(ba[i]-start)>>2])) {
5906           if(adj) {
5907             emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5908             add_to_linker((int)out,ba[i],internal);
5909           }else{
5910             emit_addnop(13);
5911             add_to_linker((int)out,ba[i],internal*2);
5912           }
5913           emit_jmp(0);
5914         }else
5915         #endif
5916         {
5917           if(adj) emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5918           store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5919           load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5920           if(internal)
5921             assem_debug("branch: internal\n");
5922           else
5923             assem_debug("branch: external\n");
5924           if(internal&&is_ds[(ba[i]-start)>>2]) {
5925             ds_assemble_entry(i);
5926           }
5927           else {
5928             add_to_linker((int)out,ba[i],internal);
5929             emit_jmp(0);
5930           }
5931         }
5932         set_jump_target(nottaken,(int)out);
5933       }
5934
5935       if(adj) {
5936         if(!invert) emit_addimm(cc,CLOCK_DIVIDER*adj,cc);
5937       }
5938     } // (!unconditional)
5939   } // if(ooo)
5940   else
5941   {
5942     // In-order execution (branch first)
5943     //printf("IOE\n");
5944     int nottaken=0;
5945     if(rt1[i]==31) {
5946       int rt,return_address;
5947       rt=get_reg(branch_regs[i].regmap,31);
5948       if(rt>=0) {
5949         // Save the PC even if the branch is not taken
5950         return_address=start+i*4+8;
5951         emit_movimm(return_address,rt); // PC into link register
5952         #ifdef IMM_PREFETCH
5953         emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5954         #endif
5955       }
5956     }
5957     if(!unconditional) {
5958       //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5959       if(!only32)
5960       {
5961         assert(s1h>=0);
5962         if((opcode2[i]&0x0d)==0) // BLTZ/BLTZL/BLTZAL/BLTZALL
5963         {
5964           emit_test(s1h,s1h);
5965           nottaken=(int)out;
5966           emit_jns(1);
5967         }
5968         if((opcode2[i]&0x0d)==1) // BGEZ/BGEZL/BGEZAL/BGEZALL
5969         {
5970           emit_test(s1h,s1h);
5971           nottaken=(int)out;
5972           emit_js(1);
5973         }
5974       } // if(!only32)
5975       else
5976       {
5977         assert(s1l>=0);
5978         if((opcode2[i]&0x0d)==0) // BLTZ/BLTZL/BLTZAL/BLTZALL
5979         {
5980           emit_test(s1l,s1l);
5981           nottaken=(int)out;
5982           emit_jns(1);
5983         }
5984         if((opcode2[i]&0x0d)==1) // BGEZ/BGEZL/BGEZAL/BGEZALL
5985         {
5986           emit_test(s1l,s1l);
5987           nottaken=(int)out;
5988           emit_js(1);
5989         }
5990       }
5991     } // if(!unconditional)
5992     int adj;
5993     uint64_t ds_unneeded=branch_regs[i].u;
5994     uint64_t ds_unneeded_upper=branch_regs[i].uu;
5995     ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
5996     ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
5997     if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
5998     ds_unneeded|=1;
5999     ds_unneeded_upper|=1;
6000     // branch taken
6001     if(!nevertaken) {
6002       //assem_debug("1:\n");
6003       wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6004                     ds_unneeded,ds_unneeded_upper);
6005       // load regs
6006       load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
6007       address_generation(i+1,&branch_regs[i],0);
6008       load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
6009       ds_assemble(i+1,&branch_regs[i]);
6010       cc=get_reg(branch_regs[i].regmap,CCREG);
6011       if(cc==-1) {
6012         emit_loadreg(CCREG,cc=HOST_CCREG);
6013         // CHECK: Is the following instruction (fall thru) allocated ok?
6014       }
6015       assert(cc==HOST_CCREG);
6016       store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6017       do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
6018       assem_debug("cycle count (adj)\n");
6019       if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
6020       load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6021       if(internal)
6022         assem_debug("branch: internal\n");
6023       else
6024         assem_debug("branch: external\n");
6025       if(internal&&is_ds[(ba[i]-start)>>2]) {
6026         ds_assemble_entry(i);
6027       }
6028       else {
6029         add_to_linker((int)out,ba[i],internal);
6030         emit_jmp(0);
6031       }
6032     }
6033     // branch not taken
6034     cop1_usable=prev_cop1_usable;
6035     if(!unconditional) {
6036       set_jump_target(nottaken,(int)out);
6037       assem_debug("1:\n");
6038       if(!likely[i]) {
6039         wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6040                       ds_unneeded,ds_unneeded_upper);
6041         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
6042         address_generation(i+1,&branch_regs[i],0);
6043         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
6044         ds_assemble(i+1,&branch_regs[i]);
6045       }
6046       cc=get_reg(branch_regs[i].regmap,CCREG);
6047       if(cc==-1&&!likely[i]) {
6048         // Cycle count isn't in a register, temporarily load it then write it out
6049         emit_loadreg(CCREG,HOST_CCREG);
6050         emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
6051         int jaddr=(int)out;
6052         emit_jns(0);
6053         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
6054         emit_storereg(CCREG,HOST_CCREG);
6055       }
6056       else{
6057         cc=get_reg(i_regmap,CCREG);
6058         assert(cc==HOST_CCREG);
6059         emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
6060         int jaddr=(int)out;
6061         emit_jns(0);
6062         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
6063       }
6064     }
6065   }
6066 }
6067
6068 void fjump_assemble(int i,struct regstat *i_regs)
6069 {
6070   signed char *i_regmap=i_regs->regmap;
6071   int cc;
6072   int match;
6073   match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6074   assem_debug("fmatch=%d\n",match);
6075   int fs,cs;
6076   int eaddr;
6077   int invert=0;
6078   int internal=internal_branch(branch_regs[i].is32,ba[i]);
6079   if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
6080   if(!match) invert=1;
6081   #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
6082   if(i>(ba[i]-start)>>2) invert=1;
6083   #endif
6084
6085   if(ooo[i]) {
6086     fs=get_reg(branch_regs[i].regmap,FSREG);
6087     address_generation(i+1,i_regs,regs[i].regmap_entry); // Is this okay?
6088   }
6089   else {
6090     fs=get_reg(i_regmap,FSREG);
6091   }
6092
6093   // Check cop1 unusable
6094   if(!cop1_usable) {
6095     cs=get_reg(i_regmap,CSREG);
6096     assert(cs>=0);
6097     emit_testimm(cs,0x20000000);
6098     eaddr=(int)out;
6099     emit_jeq(0);
6100     add_stub(FP_STUB,eaddr,(int)out,i,cs,(int)i_regs,0,0);
6101     cop1_usable=1;
6102   }
6103
6104   if(ooo[i]) {
6105     // Out of order execution (delay slot first)
6106     //printf("OOOE\n");
6107     ds_assemble(i+1,i_regs);
6108     int adj;
6109     uint64_t bc_unneeded=branch_regs[i].u;
6110     uint64_t bc_unneeded_upper=branch_regs[i].uu;
6111     bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
6112     bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
6113     bc_unneeded|=1;
6114     bc_unneeded_upper|=1;
6115     wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6116                   bc_unneeded,bc_unneeded_upper);
6117     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs1[i]);
6118     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
6119     cc=get_reg(branch_regs[i].regmap,CCREG);
6120     assert(cc==HOST_CCREG);
6121     do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
6122     assem_debug("cycle count (adj)\n");
6123     if(1) {
6124       int nottaken=0;
6125       if(adj&&!invert) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
6126       if(1) {
6127         assert(fs>=0);
6128         emit_testimm(fs,0x800000);
6129         if(source[i]&0x10000) // BC1T
6130         {
6131           if(invert){
6132             nottaken=(int)out;
6133             emit_jeq(1);
6134           }else{
6135             add_to_linker((int)out,ba[i],internal);
6136             emit_jne(0);
6137           }
6138         }
6139         else // BC1F
6140           if(invert){
6141             nottaken=(int)out;
6142             emit_jne(1);
6143           }else{
6144             add_to_linker((int)out,ba[i],internal);
6145             emit_jeq(0);
6146           }
6147         {
6148         }
6149       } // if(!only32)
6150           
6151       if(invert) {
6152         if(adj) emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
6153         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
6154         else if(match) emit_addnop(13);
6155         #endif
6156         store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6157         load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6158         if(internal)
6159           assem_debug("branch: internal\n");
6160         else
6161           assem_debug("branch: external\n");
6162         if(internal&&is_ds[(ba[i]-start)>>2]) {
6163           ds_assemble_entry(i);
6164         }
6165         else {
6166           add_to_linker((int)out,ba[i],internal);
6167           emit_jmp(0);
6168         }
6169         set_jump_target(nottaken,(int)out);
6170       }
6171
6172       if(adj) {
6173         if(!invert) emit_addimm(cc,CLOCK_DIVIDER*adj,cc);
6174       }
6175     } // (!unconditional)
6176   } // if(ooo)
6177   else
6178   {
6179     // In-order execution (branch first)
6180     //printf("IOE\n");
6181     int nottaken=0;
6182     if(1) {
6183       //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
6184       if(1) {
6185         assert(fs>=0);
6186         emit_testimm(fs,0x800000);
6187         if(source[i]&0x10000) // BC1T
6188         {
6189           nottaken=(int)out;
6190           emit_jeq(1);
6191         }
6192         else // BC1F
6193         {
6194           nottaken=(int)out;
6195           emit_jne(1);
6196         }
6197       }
6198     } // if(!unconditional)
6199     int adj;
6200     uint64_t ds_unneeded=branch_regs[i].u;
6201     uint64_t ds_unneeded_upper=branch_regs[i].uu;
6202     ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6203     ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6204     if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
6205     ds_unneeded|=1;
6206     ds_unneeded_upper|=1;
6207     // branch taken
6208     //assem_debug("1:\n");
6209     wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6210                   ds_unneeded,ds_unneeded_upper);
6211     // load regs
6212     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
6213     address_generation(i+1,&branch_regs[i],0);
6214     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
6215     ds_assemble(i+1,&branch_regs[i]);
6216     cc=get_reg(branch_regs[i].regmap,CCREG);
6217     if(cc==-1) {
6218       emit_loadreg(CCREG,cc=HOST_CCREG);
6219       // CHECK: Is the following instruction (fall thru) allocated ok?
6220     }
6221     assert(cc==HOST_CCREG);
6222     store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6223     do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
6224     assem_debug("cycle count (adj)\n");
6225     if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
6226     load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6227     if(internal)
6228       assem_debug("branch: internal\n");
6229     else
6230       assem_debug("branch: external\n");
6231     if(internal&&is_ds[(ba[i]-start)>>2]) {
6232       ds_assemble_entry(i);
6233     }
6234     else {
6235       add_to_linker((int)out,ba[i],internal);
6236       emit_jmp(0);
6237     }
6238
6239     // branch not taken
6240     if(1) { // <- FIXME (don't need this)
6241       set_jump_target(nottaken,(int)out);
6242       assem_debug("1:\n");
6243       if(!likely[i]) {
6244         wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6245                       ds_unneeded,ds_unneeded_upper);
6246         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
6247         address_generation(i+1,&branch_regs[i],0);
6248         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
6249         ds_assemble(i+1,&branch_regs[i]);
6250       }
6251       cc=get_reg(branch_regs[i].regmap,CCREG);
6252       if(cc==-1&&!likely[i]) {
6253         // Cycle count isn't in a register, temporarily load it then write it out
6254         emit_loadreg(CCREG,HOST_CCREG);
6255         emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
6256         int jaddr=(int)out;
6257         emit_jns(0);
6258         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
6259         emit_storereg(CCREG,HOST_CCREG);
6260       }
6261       else{
6262         cc=get_reg(i_regmap,CCREG);
6263         assert(cc==HOST_CCREG);
6264         emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
6265         int jaddr=(int)out;
6266         emit_jns(0);
6267         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
6268       }
6269     }
6270   }
6271 }
6272
6273 static void pagespan_assemble(int i,struct regstat *i_regs)
6274 {
6275   int s1l=get_reg(i_regs->regmap,rs1[i]);
6276   int s1h=get_reg(i_regs->regmap,rs1[i]|64);
6277   int s2l=get_reg(i_regs->regmap,rs2[i]);
6278   int s2h=get_reg(i_regs->regmap,rs2[i]|64);
6279   void *nt_branch=NULL;
6280   int taken=0;
6281   int nottaken=0;
6282   int unconditional=0;
6283   if(rs1[i]==0)
6284   {
6285     s1l=s2l;s1h=s2h;
6286     s2l=s2h=-1;
6287   }
6288   else if(rs2[i]==0)
6289   {
6290     s2l=s2h=-1;
6291   }
6292   if((i_regs->is32>>rs1[i])&(i_regs->is32>>rs2[i])&1) {
6293     s1h=s2h=-1;
6294   }
6295   int hr=0;
6296   int addr,alt,ntaddr;
6297   if(i_regs->regmap[HOST_BTREG]<0) {addr=HOST_BTREG;}
6298   else {
6299     while(hr<HOST_REGS)
6300     {
6301       if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
6302          (i_regs->regmap[hr]&63)!=rs1[i] &&
6303          (i_regs->regmap[hr]&63)!=rs2[i] )
6304       {
6305         addr=hr++;break;
6306       }
6307       hr++;
6308     }
6309   }
6310   while(hr<HOST_REGS)
6311   {
6312     if(hr!=EXCLUDE_REG && hr!=HOST_CCREG && hr!=HOST_BTREG &&
6313        (i_regs->regmap[hr]&63)!=rs1[i] &&
6314        (i_regs->regmap[hr]&63)!=rs2[i] )
6315     {
6316       alt=hr++;break;
6317     }
6318     hr++;
6319   }
6320   if((opcode[i]&0x2E)==6) // BLEZ/BGTZ needs another register
6321   {
6322     while(hr<HOST_REGS)
6323     {
6324       if(hr!=EXCLUDE_REG && hr!=HOST_CCREG && hr!=HOST_BTREG &&
6325          (i_regs->regmap[hr]&63)!=rs1[i] &&
6326          (i_regs->regmap[hr]&63)!=rs2[i] )
6327       {
6328         ntaddr=hr;break;
6329       }
6330       hr++;
6331     }
6332   }
6333   assert(hr<HOST_REGS);
6334   if((opcode[i]&0x2e)==4||opcode[i]==0x11) { // BEQ/BNE/BEQL/BNEL/BC1
6335     load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,CCREG,CCREG);
6336   }
6337   emit_addimm(HOST_CCREG,CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
6338   if(opcode[i]==2) // J
6339   {
6340     unconditional=1;
6341   }
6342   if(opcode[i]==3) // JAL
6343   {
6344     // TODO: mini_ht
6345     int rt=get_reg(i_regs->regmap,31);
6346     emit_movimm(start+i*4+8,rt);
6347     unconditional=1;
6348   }
6349   if(opcode[i]==0&&(opcode2[i]&0x3E)==8) // JR/JALR
6350   {
6351     emit_mov(s1l,addr);
6352     if(opcode2[i]==9) // JALR
6353     {
6354       int rt=get_reg(i_regs->regmap,rt1[i]);
6355       emit_movimm(start+i*4+8,rt);
6356     }
6357   }
6358   if((opcode[i]&0x3f)==4) // BEQ
6359   {
6360     if(rs1[i]==rs2[i])
6361     {
6362       unconditional=1;
6363     }
6364     else
6365     #ifdef HAVE_CMOV_IMM
6366     if(s1h<0) {
6367       if(s2l>=0) emit_cmp(s1l,s2l);
6368       else emit_test(s1l,s1l);
6369       emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
6370     }
6371     else
6372     #endif
6373     {
6374       assert(s1l>=0);
6375       emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
6376       if(s1h>=0) {
6377         if(s2h>=0) emit_cmp(s1h,s2h);
6378         else emit_test(s1h,s1h);
6379         emit_cmovne_reg(alt,addr);
6380       }
6381       if(s2l>=0) emit_cmp(s1l,s2l);
6382       else emit_test(s1l,s1l);
6383       emit_cmovne_reg(alt,addr);
6384     }
6385   }
6386   if((opcode[i]&0x3f)==5) // BNE
6387   {
6388     #ifdef HAVE_CMOV_IMM
6389     if(s1h<0) {
6390       if(s2l>=0) emit_cmp(s1l,s2l);
6391       else emit_test(s1l,s1l);
6392       emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
6393     }
6394     else
6395     #endif
6396     {
6397       assert(s1l>=0);
6398       emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
6399       if(s1h>=0) {
6400         if(s2h>=0) emit_cmp(s1h,s2h);
6401         else emit_test(s1h,s1h);
6402         emit_cmovne_reg(alt,addr);
6403       }
6404       if(s2l>=0) emit_cmp(s1l,s2l);
6405       else emit_test(s1l,s1l);
6406       emit_cmovne_reg(alt,addr);
6407     }
6408   }
6409   if((opcode[i]&0x3f)==0x14) // BEQL
6410   {
6411     if(s1h>=0) {
6412       if(s2h>=0) emit_cmp(s1h,s2h);
6413       else emit_test(s1h,s1h);
6414       nottaken=(int)out;
6415       emit_jne(0);
6416     }
6417     if(s2l>=0) emit_cmp(s1l,s2l);
6418     else emit_test(s1l,s1l);
6419     if(nottaken) set_jump_target(nottaken,(int)out);
6420     nottaken=(int)out;
6421     emit_jne(0);
6422   }
6423   if((opcode[i]&0x3f)==0x15) // BNEL
6424   {
6425     if(s1h>=0) {
6426       if(s2h>=0) emit_cmp(s1h,s2h);
6427       else emit_test(s1h,s1h);
6428       taken=(int)out;
6429       emit_jne(0);
6430     }
6431     if(s2l>=0) emit_cmp(s1l,s2l);
6432     else emit_test(s1l,s1l);
6433     nottaken=(int)out;
6434     emit_jeq(0);
6435     if(taken) set_jump_target(taken,(int)out);
6436   }
6437   if((opcode[i]&0x3f)==6) // BLEZ
6438   {
6439     emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
6440     emit_cmpimm(s1l,1);
6441     if(s1h>=0) emit_mov(addr,ntaddr);
6442     emit_cmovl_reg(alt,addr);
6443     if(s1h>=0) {
6444       emit_test(s1h,s1h);
6445       emit_cmovne_reg(ntaddr,addr);
6446       emit_cmovs_reg(alt,addr);
6447     }
6448   }
6449   if((opcode[i]&0x3f)==7) // BGTZ
6450   {
6451     emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
6452     emit_cmpimm(s1l,1);
6453     if(s1h>=0) emit_mov(addr,alt);
6454     emit_cmovl_reg(ntaddr,addr);
6455     if(s1h>=0) {
6456       emit_test(s1h,s1h);
6457       emit_cmovne_reg(alt,addr);
6458       emit_cmovs_reg(ntaddr,addr);
6459     }
6460   }
6461   if((opcode[i]&0x3f)==0x16) // BLEZL
6462   {
6463     assert((opcode[i]&0x3f)!=0x16);
6464   }
6465   if((opcode[i]&0x3f)==0x17) // BGTZL
6466   {
6467     assert((opcode[i]&0x3f)!=0x17);
6468   }
6469   assert(opcode[i]!=1); // BLTZ/BGEZ
6470
6471   //FIXME: Check CSREG
6472   if(opcode[i]==0x11 && opcode2[i]==0x08 ) {
6473     if((source[i]&0x30000)==0) // BC1F
6474     {
6475       emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
6476       emit_testimm(s1l,0x800000);
6477       emit_cmovne_reg(alt,addr);
6478     }
6479     if((source[i]&0x30000)==0x10000) // BC1T
6480     {
6481       emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
6482       emit_testimm(s1l,0x800000);
6483       emit_cmovne_reg(alt,addr);
6484     }
6485     if((source[i]&0x30000)==0x20000) // BC1FL
6486     {
6487       emit_testimm(s1l,0x800000);
6488       nottaken=(int)out;
6489       emit_jne(0);
6490     }
6491     if((source[i]&0x30000)==0x30000) // BC1TL
6492     {
6493       emit_testimm(s1l,0x800000);
6494       nottaken=(int)out;
6495       emit_jeq(0);
6496     }
6497   }
6498
6499   assert(i_regs->regmap[HOST_CCREG]==CCREG);
6500   wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
6501   if(likely[i]||unconditional)
6502   {
6503     emit_movimm(ba[i],HOST_BTREG);
6504   }
6505   else if(addr!=HOST_BTREG)
6506   {
6507     emit_mov(addr,HOST_BTREG);
6508   }
6509   void *branch_addr=out;
6510   emit_jmp(0);
6511   int target_addr=start+i*4+5;
6512   void *stub=out;
6513   void *compiled_target_addr=check_addr(target_addr);
6514   emit_extjump_ds((int)branch_addr,target_addr);
6515   if(compiled_target_addr) {
6516     set_jump_target((int)branch_addr,(int)compiled_target_addr);
6517     add_link(target_addr,stub);
6518   }
6519   else set_jump_target((int)branch_addr,(int)stub);
6520   if(likely[i]) {
6521     // Not-taken path
6522     set_jump_target((int)nottaken,(int)out);
6523     wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
6524     void *branch_addr=out;
6525     emit_jmp(0);
6526     int target_addr=start+i*4+8;
6527     void *stub=out;
6528     void *compiled_target_addr=check_addr(target_addr);
6529     emit_extjump_ds((int)branch_addr,target_addr);
6530     if(compiled_target_addr) {
6531       set_jump_target((int)branch_addr,(int)compiled_target_addr);
6532       add_link(target_addr,stub);
6533     }
6534     else set_jump_target((int)branch_addr,(int)stub);
6535   }
6536 }
6537
6538 // Assemble the delay slot for the above
6539 static void pagespan_ds()
6540 {
6541   assem_debug("initial delay slot:\n");
6542   u_int vaddr=start+1;
6543   u_int page=get_page(vaddr);
6544   u_int vpage=get_vpage(vaddr);
6545   ll_add(jump_dirty+vpage,vaddr,(void *)out);
6546   do_dirty_stub_ds();
6547   ll_add(jump_in+page,vaddr,(void *)out);
6548   assert(regs[0].regmap_entry[HOST_CCREG]==CCREG);
6549   if(regs[0].regmap[HOST_CCREG]!=CCREG)
6550     wb_register(CCREG,regs[0].regmap_entry,regs[0].wasdirty,regs[0].was32);
6551   if(regs[0].regmap[HOST_BTREG]!=BTREG)
6552     emit_writeword(HOST_BTREG,(int)&branch_target);
6553   load_regs(regs[0].regmap_entry,regs[0].regmap,regs[0].was32,rs1[0],rs2[0]);
6554   address_generation(0,&regs[0],regs[0].regmap_entry);
6555   if(itype[0]==STORE||itype[0]==STORELR||(opcode[0]&0x3b)==0x39||(opcode[0]&0x3b)==0x3a)
6556     load_regs(regs[0].regmap_entry,regs[0].regmap,regs[0].was32,INVCP,INVCP);
6557   cop1_usable=0;
6558   is_delayslot=0;
6559   switch(itype[0]) {
6560     case ALU:
6561       alu_assemble(0,&regs[0]);break;
6562     case IMM16:
6563       imm16_assemble(0,&regs[0]);break;
6564     case SHIFT:
6565       shift_assemble(0,&regs[0]);break;
6566     case SHIFTIMM:
6567       shiftimm_assemble(0,&regs[0]);break;
6568     case LOAD:
6569       load_assemble(0,&regs[0]);break;
6570     case LOADLR:
6571       loadlr_assemble(0,&regs[0]);break;
6572     case STORE:
6573       store_assemble(0,&regs[0]);break;
6574     case STORELR:
6575       storelr_assemble(0,&regs[0]);break;
6576     case COP0:
6577       cop0_assemble(0,&regs[0]);break;
6578     case COP1:
6579       cop1_assemble(0,&regs[0]);break;
6580     case C1LS:
6581       c1ls_assemble(0,&regs[0]);break;
6582     case COP2:
6583       cop2_assemble(0,&regs[0]);break;
6584     case C2LS:
6585       c2ls_assemble(0,&regs[0]);break;
6586     case C2OP:
6587       c2op_assemble(0,&regs[0]);break;
6588     case FCONV:
6589       fconv_assemble(0,&regs[0]);break;
6590     case FLOAT:
6591       float_assemble(0,&regs[0]);break;
6592     case FCOMP:
6593       fcomp_assemble(0,&regs[0]);break;
6594     case MULTDIV:
6595       multdiv_assemble(0,&regs[0]);break;
6596     case MOV:
6597       mov_assemble(0,&regs[0]);break;
6598     case SYSCALL:
6599     case HLECALL:
6600     case INTCALL:
6601     case SPAN:
6602     case UJUMP:
6603     case RJUMP:
6604     case CJUMP:
6605     case SJUMP:
6606     case FJUMP:
6607       printf("Jump in the delay slot.  This is probably a bug.\n");
6608   }
6609   int btaddr=get_reg(regs[0].regmap,BTREG);
6610   if(btaddr<0) {
6611     btaddr=get_reg(regs[0].regmap,-1);
6612     emit_readword((int)&branch_target,btaddr);
6613   }
6614   assert(btaddr!=HOST_CCREG);
6615   if(regs[0].regmap[HOST_CCREG]!=CCREG) emit_loadreg(CCREG,HOST_CCREG);
6616 #ifdef HOST_IMM8
6617   emit_movimm(start+4,HOST_TEMPREG);
6618   emit_cmp(btaddr,HOST_TEMPREG);
6619 #else
6620   emit_cmpimm(btaddr,start+4);
6621 #endif
6622   int branch=(int)out;
6623   emit_jeq(0);
6624   store_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,-1);
6625   emit_jmp(jump_vaddr_reg[btaddr]);
6626   set_jump_target(branch,(int)out);
6627   store_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,start+4);
6628   load_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,start+4);
6629 }
6630
6631 // Basic liveness analysis for MIPS registers
6632 void unneeded_registers(int istart,int iend,int r)
6633 {
6634   int i;
6635   uint64_t u,uu,b,bu;
6636   uint64_t temp_u,temp_uu;
6637   uint64_t tdep;
6638   if(iend==slen-1) {
6639     u=1;uu=1;
6640   }else{
6641     u=unneeded_reg[iend+1];
6642     uu=unneeded_reg_upper[iend+1];
6643     u=1;uu=1;
6644   }
6645   for (i=iend;i>=istart;i--)
6646   {
6647     //printf("unneeded registers i=%d (%d,%d) r=%d\n",i,istart,iend,r);
6648     if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
6649     {
6650       // If subroutine call, flag return address as a possible branch target
6651       if(rt1[i]==31 && i<slen-2) bt[i+2]=1;
6652       
6653       if(ba[i]<start || ba[i]>=(start+slen*4))
6654       {
6655         // Branch out of this block, flush all regs
6656         u=1;
6657         uu=1;
6658         /* Hexagon hack 
6659         if(itype[i]==UJUMP&&rt1[i]==31)
6660         {
6661           uu=u=0x300C00F; // Discard at, v0-v1, t6-t9
6662         }
6663         if(itype[i]==RJUMP&&rs1[i]==31)
6664         {
6665           uu=u=0x300C0F3; // Discard at, a0-a3, t6-t9
6666         }
6667         if(start>0x80000400&&start<0x80000000+RAM_SIZE) {
6668           if(itype[i]==UJUMP&&rt1[i]==31)
6669           {
6670             //uu=u=0x30300FF0FLL; // Discard at, v0-v1, t0-t9, lo, hi
6671             uu=u=0x300FF0F; // Discard at, v0-v1, t0-t9
6672           }
6673           if(itype[i]==RJUMP&&rs1[i]==31)
6674           {
6675             //uu=u=0x30300FFF3LL; // Discard at, a0-a3, t0-t9, lo, hi
6676             uu=u=0x300FFF3; // Discard at, a0-a3, t0-t9
6677           }
6678         }*/
6679         branch_unneeded_reg[i]=u;
6680         branch_unneeded_reg_upper[i]=uu;
6681         // Merge in delay slot
6682         tdep=(~uu>>rt1[i+1])&1;
6683         u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6684         uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6685         u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6686         uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6687         uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6688         u|=1;uu|=1;
6689         // If branch is "likely" (and conditional)
6690         // then we skip the delay slot on the fall-thru path
6691         if(likely[i]) {
6692           if(i<slen-1) {
6693             u&=unneeded_reg[i+2];
6694             uu&=unneeded_reg_upper[i+2];
6695           }
6696           else
6697           {
6698             u=1;
6699             uu=1;
6700           }
6701         }
6702       }
6703       else
6704       {
6705         // Internal branch, flag target
6706         bt[(ba[i]-start)>>2]=1;
6707         if(ba[i]<=start+i*4) {
6708           // Backward branch
6709           if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
6710           {
6711             // Unconditional branch
6712             temp_u=1;temp_uu=1;
6713           } else {
6714             // Conditional branch (not taken case)
6715             temp_u=unneeded_reg[i+2];
6716             temp_uu=unneeded_reg_upper[i+2];
6717           }
6718           // Merge in delay slot
6719           tdep=(~temp_uu>>rt1[i+1])&1;
6720           temp_u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6721           temp_uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6722           temp_u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6723           temp_uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6724           temp_uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6725           temp_u|=1;temp_uu|=1;
6726           // If branch is "likely" (and conditional)
6727           // then we skip the delay slot on the fall-thru path
6728           if(likely[i]) {
6729             if(i<slen-1) {
6730               temp_u&=unneeded_reg[i+2];
6731               temp_uu&=unneeded_reg_upper[i+2];
6732             }
6733             else
6734             {
6735               temp_u=1;
6736               temp_uu=1;
6737             }
6738           }
6739           tdep=(~temp_uu>>rt1[i])&1;
6740           temp_u|=(1LL<<rt1[i])|(1LL<<rt2[i]);
6741           temp_uu|=(1LL<<rt1[i])|(1LL<<rt2[i]);
6742           temp_u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
6743           temp_uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
6744           temp_uu&=~((tdep<<dep1[i])|(tdep<<dep2[i]));
6745           temp_u|=1;temp_uu|=1;
6746           unneeded_reg[i]=temp_u;
6747           unneeded_reg_upper[i]=temp_uu;
6748           // Only go three levels deep.  This recursion can take an
6749           // excessive amount of time if there are a lot of nested loops.
6750           if(r<2) {
6751             unneeded_registers((ba[i]-start)>>2,i-1,r+1);
6752           }else{
6753             unneeded_reg[(ba[i]-start)>>2]=1;
6754             unneeded_reg_upper[(ba[i]-start)>>2]=1;
6755           }
6756         } /*else*/ if(1) {
6757           if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
6758           {
6759             // Unconditional branch
6760             u=unneeded_reg[(ba[i]-start)>>2];
6761             uu=unneeded_reg_upper[(ba[i]-start)>>2];
6762             branch_unneeded_reg[i]=u;
6763             branch_unneeded_reg_upper[i]=uu;
6764         //u=1;
6765         //uu=1;
6766         //branch_unneeded_reg[i]=u;
6767         //branch_unneeded_reg_upper[i]=uu;
6768             // Merge in delay slot
6769             tdep=(~uu>>rt1[i+1])&1;
6770             u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6771             uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6772             u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6773             uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6774             uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6775             u|=1;uu|=1;
6776           } else {
6777             // Conditional branch
6778             b=unneeded_reg[(ba[i]-start)>>2];
6779             bu=unneeded_reg_upper[(ba[i]-start)>>2];
6780             branch_unneeded_reg[i]=b;
6781             branch_unneeded_reg_upper[i]=bu;
6782         //b=1;
6783         //bu=1;
6784         //branch_unneeded_reg[i]=b;
6785         //branch_unneeded_reg_upper[i]=bu;
6786             // Branch delay slot
6787             tdep=(~uu>>rt1[i+1])&1;
6788             b|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6789             bu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6790             b&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6791             bu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6792             bu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6793             b|=1;bu|=1;
6794             // If branch is "likely" then we skip the
6795             // delay slot on the fall-thru path
6796             if(likely[i]) {
6797               u=b;
6798               uu=bu;
6799               if(i<slen-1) {
6800                 u&=unneeded_reg[i+2];
6801                 uu&=unneeded_reg_upper[i+2];
6802         //u=1;
6803         //uu=1;
6804               }
6805             } else {
6806               u&=b;
6807               uu&=bu;
6808         //u=1;
6809         //uu=1;
6810             }
6811             if(i<slen-1) {
6812               branch_unneeded_reg[i]&=unneeded_reg[i+2];
6813               branch_unneeded_reg_upper[i]&=unneeded_reg_upper[i+2];
6814         //branch_unneeded_reg[i]=1;
6815         //branch_unneeded_reg_upper[i]=1;
6816             } else {
6817               branch_unneeded_reg[i]=1;
6818               branch_unneeded_reg_upper[i]=1;
6819             }
6820           }
6821         }
6822       }
6823     }
6824     else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
6825     {
6826       // SYSCALL instruction (software interrupt)
6827       u=1;
6828       uu=1;
6829     }
6830     else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
6831     {
6832       // ERET instruction (return from interrupt)
6833       u=1;
6834       uu=1;
6835     }
6836     //u=uu=1; // DEBUG
6837     tdep=(~uu>>rt1[i])&1;
6838     // Written registers are unneeded
6839     u|=1LL<<rt1[i];
6840     u|=1LL<<rt2[i];
6841     uu|=1LL<<rt1[i];
6842     uu|=1LL<<rt2[i];
6843     // Accessed registers are needed
6844     u&=~(1LL<<rs1[i]);
6845     u&=~(1LL<<rs2[i]);
6846     uu&=~(1LL<<us1[i]);
6847     uu&=~(1LL<<us2[i]);
6848     // Source-target dependencies
6849     uu&=~(tdep<<dep1[i]);
6850     uu&=~(tdep<<dep2[i]);
6851     // R0 is always unneeded
6852     u|=1;uu|=1;
6853     // Save it
6854     unneeded_reg[i]=u;
6855     unneeded_reg_upper[i]=uu;
6856     /*
6857     printf("ur (%d,%d) %x: ",istart,iend,start+i*4);
6858     printf("U:");
6859     int r;
6860     for(r=1;r<=CCREG;r++) {
6861       if((unneeded_reg[i]>>r)&1) {
6862         if(r==HIREG) printf(" HI");
6863         else if(r==LOREG) printf(" LO");
6864         else printf(" r%d",r);
6865       }
6866     }
6867     printf(" UU:");
6868     for(r=1;r<=CCREG;r++) {
6869       if(((unneeded_reg_upper[i]&~unneeded_reg[i])>>r)&1) {
6870         if(r==HIREG) printf(" HI");
6871         else if(r==LOREG) printf(" LO");
6872         else printf(" r%d",r);
6873       }
6874     }
6875     printf("\n");*/
6876   }
6877 #ifdef FORCE32
6878   for (i=iend;i>=istart;i--)
6879   {
6880     unneeded_reg_upper[i]=branch_unneeded_reg_upper[i]=-1LL;
6881   }
6882 #endif
6883 }
6884
6885 // Identify registers which are likely to contain 32-bit values
6886 // This is used to predict whether any branches will jump to a
6887 // location with 64-bit values in registers.
6888 static void provisional_32bit()
6889 {
6890   int i,j;
6891   uint64_t is32=1;
6892   uint64_t lastbranch=1;
6893   
6894   for(i=0;i<slen;i++)
6895   {
6896     if(i>0) {
6897       if(itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP) {
6898         if(i>1) is32=lastbranch;
6899         else is32=1;
6900       }
6901     }
6902     if(i>1)
6903     {
6904       if(itype[i-2]==CJUMP||itype[i-2]==SJUMP||itype[i-2]==FJUMP) {
6905         if(likely[i-2]) {
6906           if(i>2) is32=lastbranch;
6907           else is32=1;
6908         }
6909       }
6910       if((opcode[i-2]&0x2f)==0x05) // BNE/BNEL
6911       {
6912         if(rs1[i-2]==0||rs2[i-2]==0)
6913         {
6914           if(rs1[i-2]) {
6915             is32|=1LL<<rs1[i-2];
6916           }
6917           if(rs2[i-2]) {
6918             is32|=1LL<<rs2[i-2];
6919           }
6920         }
6921       }
6922     }
6923     // If something jumps here with 64-bit values
6924     // then promote those registers to 64 bits
6925     if(bt[i])
6926     {
6927       uint64_t temp_is32=is32;
6928       for(j=i-1;j>=0;j--)
6929       {
6930         if(ba[j]==start+i*4) 
6931           //temp_is32&=branch_regs[j].is32;
6932           temp_is32&=p32[j];
6933       }
6934       for(j=i;j<slen;j++)
6935       {
6936         if(ba[j]==start+i*4) 
6937           temp_is32=1;
6938       }
6939       is32=temp_is32;
6940     }
6941     int type=itype[i];
6942     int op=opcode[i];
6943     int op2=opcode2[i];
6944     int rt=rt1[i];
6945     int s1=rs1[i];
6946     int s2=rs2[i];
6947     if(type==UJUMP||type==RJUMP||type==CJUMP||type==SJUMP||type==FJUMP) {
6948       // Branches don't write registers, consider the delay slot instead.
6949       type=itype[i+1];
6950       op=opcode[i+1];
6951       op2=opcode2[i+1];
6952       rt=rt1[i+1];
6953       s1=rs1[i+1];
6954       s2=rs2[i+1];
6955       lastbranch=is32;
6956     }
6957     switch(type) {
6958       case LOAD:
6959         if(opcode[i]==0x27||opcode[i]==0x37|| // LWU/LD
6960            opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
6961           is32&=~(1LL<<rt);
6962         else
6963           is32|=1LL<<rt;
6964         break;
6965       case STORE:
6966       case STORELR:
6967         break;
6968       case LOADLR:
6969         if(op==0x1a||op==0x1b) is32&=~(1LL<<rt); // LDR/LDL
6970         if(op==0x22) is32|=1LL<<rt; // LWL
6971         break;
6972       case IMM16:
6973         if (op==0x08||op==0x09|| // ADDI/ADDIU
6974             op==0x0a||op==0x0b|| // SLTI/SLTIU
6975             op==0x0c|| // ANDI
6976             op==0x0f)  // LUI
6977         {
6978           is32|=1LL<<rt;
6979         }
6980         if(op==0x18||op==0x19) { // DADDI/DADDIU
6981           is32&=~(1LL<<rt);
6982           //if(imm[i]==0)
6983           //  is32|=((is32>>s1)&1LL)<<rt;
6984         }
6985         if(op==0x0d||op==0x0e) { // ORI/XORI
6986           uint64_t sr=((is32>>s1)&1LL);
6987           is32&=~(1LL<<rt);
6988           is32|=sr<<rt;
6989         }
6990         break;
6991       case UJUMP:
6992         break;
6993       case RJUMP:
6994         break;
6995       case CJUMP:
6996         break;
6997       case SJUMP:
6998         break;
6999       case FJUMP:
7000         break;
7001       case ALU:
7002         if(op2>=0x20&&op2<=0x23) { // ADD/ADDU/SUB/SUBU
7003           is32|=1LL<<rt;
7004         }
7005         if(op2==0x2a||op2==0x2b) { // SLT/SLTU
7006           is32|=1LL<<rt;
7007         }
7008         else if(op2>=0x24&&op2<=0x27) { // AND/OR/XOR/NOR
7009           uint64_t sr=((is32>>s1)&(is32>>s2)&1LL);
7010           is32&=~(1LL<<rt);
7011           is32|=sr<<rt;
7012         }
7013         else if(op2>=0x2c&&op2<=0x2d) { // DADD/DADDU
7014           if(s1==0&&s2==0) {
7015             is32|=1LL<<rt;
7016           }
7017           else if(s2==0) {
7018             uint64_t sr=((is32>>s1)&1LL);
7019             is32&=~(1LL<<rt);
7020             is32|=sr<<rt;
7021           }
7022           else if(s1==0) {
7023             uint64_t sr=((is32>>s2)&1LL);
7024             is32&=~(1LL<<rt);
7025             is32|=sr<<rt;
7026           }
7027           else {
7028             is32&=~(1LL<<rt);
7029           }
7030         }
7031         else if(op2>=0x2e&&op2<=0x2f) { // DSUB/DSUBU
7032           if(s1==0&&s2==0) {
7033             is32|=1LL<<rt;
7034           }
7035           else if(s2==0) {
7036             uint64_t sr=((is32>>s1)&1LL);
7037             is32&=~(1LL<<rt);
7038             is32|=sr<<rt;
7039           }
7040           else {
7041             is32&=~(1LL<<rt);
7042           }
7043         }
7044         break;
7045       case MULTDIV:
7046         if (op2>=0x1c&&op2<=0x1f) { // DMULT/DMULTU/DDIV/DDIVU
7047           is32&=~((1LL<<HIREG)|(1LL<<LOREG));
7048         }
7049         else {
7050           is32|=(1LL<<HIREG)|(1LL<<LOREG);
7051         }
7052         break;
7053       case MOV:
7054         {
7055           uint64_t sr=((is32>>s1)&1LL);
7056           is32&=~(1LL<<rt);
7057           is32|=sr<<rt;
7058         }
7059         break;
7060       case SHIFT:
7061         if(op2>=0x14&&op2<=0x17) is32&=~(1LL<<rt); // DSLLV/DSRLV/DSRAV
7062         else is32|=1LL<<rt; // SLLV/SRLV/SRAV
7063         break;
7064       case SHIFTIMM:
7065         is32|=1LL<<rt;
7066         // DSLL/DSRL/DSRA/DSLL32/DSRL32 but not DSRA32 have 64-bit result
7067         if(op2>=0x38&&op2<0x3f) is32&=~(1LL<<rt);
7068         break;
7069       case COP0:
7070         if(op2==0) is32|=1LL<<rt; // MFC0
7071         break;
7072       case COP1:
7073       case COP2:
7074         if(op2==0) is32|=1LL<<rt; // MFC1
7075         if(op2==1) is32&=~(1LL<<rt); // DMFC1
7076         if(op2==2) is32|=1LL<<rt; // CFC1
7077         break;
7078       case C1LS:
7079       case C2LS:
7080         break;
7081       case FLOAT:
7082       case FCONV:
7083         break;
7084       case FCOMP:
7085         break;
7086       case C2OP:
7087       case SYSCALL:
7088       case HLECALL:
7089         break;
7090       default:
7091         break;
7092     }
7093     is32|=1;
7094     p32[i]=is32;
7095
7096     if(i>0)
7097     {
7098       if(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)
7099       {
7100         if(rt1[i-1]==31) // JAL/JALR
7101         {
7102           // Subroutine call will return here, don't alloc any registers
7103           is32=1;
7104         }
7105         else if(i+1<slen)
7106         {
7107           // Internal branch will jump here, match registers to caller
7108           is32=0x3FFFFFFFFLL;
7109         }
7110       }
7111     }
7112   }
7113 }
7114
7115 // Identify registers which may be assumed to contain 32-bit values
7116 // and where optimizations will rely on this.
7117 // This is used to determine whether backward branches can safely
7118 // jump to a location with 64-bit values in registers.
7119 static void provisional_r32()
7120 {
7121   u_int r32=0;
7122   int i;
7123   
7124   for (i=slen-1;i>=0;i--)
7125   {
7126     int hr;
7127     if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
7128     {
7129       if(ba[i]<start || ba[i]>=(start+slen*4))
7130       {
7131         // Branch out of this block, don't need anything
7132         r32=0;
7133       }
7134       else
7135       {
7136         // Internal branch
7137         // Need whatever matches the target
7138         // (and doesn't get overwritten by the delay slot instruction)
7139         r32=0;
7140         int t=(ba[i]-start)>>2;
7141         if(ba[i]>start+i*4) {
7142           // Forward branch
7143           //if(!(requires_32bit[t]&~regs[i].was32))
7144           //  r32|=requires_32bit[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
7145           if(!(pr32[t]&~regs[i].was32))
7146             r32|=pr32[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
7147         }else{
7148           // Backward branch
7149           if(!(regs[t].was32&~unneeded_reg_upper[t]&~regs[i].was32))
7150             r32|=regs[t].was32&~unneeded_reg_upper[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
7151         }
7152       }
7153       // Conditional branch may need registers for following instructions
7154       if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
7155       {
7156         if(i<slen-2) {
7157           //r32|=requires_32bit[i+2];
7158           r32|=pr32[i+2];
7159           r32&=regs[i].was32;
7160           // Mark this address as a branch target since it may be called
7161           // upon return from interrupt
7162           //bt[i+2]=1;
7163         }
7164       }
7165       // Merge in delay slot
7166       if(!likely[i]) {
7167         // These are overwritten unless the branch is "likely"
7168         // and the delay slot is nullified if not taken
7169         r32&=~(1LL<<rt1[i+1]);
7170         r32&=~(1LL<<rt2[i+1]);
7171       }
7172       // Assume these are needed (delay slot)
7173       if(us1[i+1]>0)
7174       {
7175         if((regs[i].was32>>us1[i+1])&1) r32|=1LL<<us1[i+1];
7176       }
7177       if(us2[i+1]>0)
7178       {
7179         if((regs[i].was32>>us2[i+1])&1) r32|=1LL<<us2[i+1];
7180       }
7181       if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1))
7182       {
7183         if((regs[i].was32>>dep1[i+1])&1) r32|=1LL<<dep1[i+1];
7184       }
7185       if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1))
7186       {
7187         if((regs[i].was32>>dep2[i+1])&1) r32|=1LL<<dep2[i+1];
7188       }
7189     }
7190     else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
7191     {
7192       // SYSCALL instruction (software interrupt)
7193       r32=0;
7194     }
7195     else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
7196     {
7197       // ERET instruction (return from interrupt)
7198       r32=0;
7199     }
7200     // Check 32 bits
7201     r32&=~(1LL<<rt1[i]);
7202     r32&=~(1LL<<rt2[i]);
7203     if(us1[i]>0)
7204     {
7205       if((regs[i].was32>>us1[i])&1) r32|=1LL<<us1[i];
7206     }
7207     if(us2[i]>0)
7208     {
7209       if((regs[i].was32>>us2[i])&1) r32|=1LL<<us2[i];
7210     }
7211     if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1))
7212     {
7213       if((regs[i].was32>>dep1[i])&1) r32|=1LL<<dep1[i];
7214     }
7215     if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1))
7216     {
7217       if((regs[i].was32>>dep2[i])&1) r32|=1LL<<dep2[i];
7218     }
7219     //requires_32bit[i]=r32;
7220     pr32[i]=r32;
7221     
7222     // Dirty registers which are 32-bit, require 32-bit input
7223     // as they will be written as 32-bit values
7224     for(hr=0;hr<HOST_REGS;hr++)
7225     {
7226       if(regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64) {
7227         if((regs[i].was32>>regs[i].regmap_entry[hr])&(regs[i].wasdirty>>hr)&1) {
7228           if(!((unneeded_reg_upper[i]>>regs[i].regmap_entry[hr])&1))
7229           pr32[i]|=1LL<<regs[i].regmap_entry[hr];
7230           //requires_32bit[i]|=1LL<<regs[i].regmap_entry[hr];
7231         }
7232       }
7233     }
7234   }
7235 }
7236
7237 // Write back dirty registers as soon as we will no longer modify them,
7238 // so that we don't end up with lots of writes at the branches.
7239 void clean_registers(int istart,int iend,int wr)
7240 {
7241   int i;
7242   int r;
7243   u_int will_dirty_i,will_dirty_next,temp_will_dirty;
7244   u_int wont_dirty_i,wont_dirty_next,temp_wont_dirty;
7245   if(iend==slen-1) {
7246     will_dirty_i=will_dirty_next=0;
7247     wont_dirty_i=wont_dirty_next=0;
7248   }else{
7249     will_dirty_i=will_dirty_next=will_dirty[iend+1];
7250     wont_dirty_i=wont_dirty_next=wont_dirty[iend+1];
7251   }
7252   for (i=iend;i>=istart;i--)
7253   {
7254     if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
7255     {
7256       if(ba[i]<start || ba[i]>=(start+slen*4))
7257       {
7258         // Branch out of this block, flush all regs
7259         if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
7260         {
7261           // Unconditional branch
7262           will_dirty_i=0;
7263           wont_dirty_i=0;
7264           // Merge in delay slot (will dirty)
7265           for(r=0;r<HOST_REGS;r++) {
7266             if(r!=EXCLUDE_REG) {
7267               if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7268               if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7269               if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7270               if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7271               if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7272               if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7273               if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7274               if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7275               if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7276               if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7277               if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7278               if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7279               if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7280               if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7281             }
7282           }
7283         }
7284         else
7285         {
7286           // Conditional branch
7287           will_dirty_i=0;
7288           wont_dirty_i=wont_dirty_next;
7289           // Merge in delay slot (will dirty)
7290           for(r=0;r<HOST_REGS;r++) {
7291             if(r!=EXCLUDE_REG) {
7292               if(!likely[i]) {
7293                 // Might not dirty if likely branch is not taken
7294                 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7295                 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7296                 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7297                 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7298                 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7299                 if(branch_regs[i].regmap[r]==0) will_dirty_i&=~(1<<r);
7300                 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7301                 //if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7302                 //if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7303                 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7304                 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7305                 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7306                 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7307                 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7308               }
7309             }
7310           }
7311         }
7312         // Merge in delay slot (wont dirty)
7313         for(r=0;r<HOST_REGS;r++) {
7314           if(r!=EXCLUDE_REG) {
7315             if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7316             if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7317             if((regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7318             if((regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7319             if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7320             if((branch_regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7321             if((branch_regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7322             if((branch_regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7323             if((branch_regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7324             if(branch_regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7325           }
7326         }
7327         if(wr) {
7328           #ifndef DESTRUCTIVE_WRITEBACK
7329           branch_regs[i].dirty&=wont_dirty_i;
7330           #endif
7331           branch_regs[i].dirty|=will_dirty_i;
7332         }
7333       }
7334       else
7335       {
7336         // Internal branch
7337         if(ba[i]<=start+i*4) {
7338           // Backward branch
7339           if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
7340           {
7341             // Unconditional branch
7342             temp_will_dirty=0;
7343             temp_wont_dirty=0;
7344             // Merge in delay slot (will dirty)
7345             for(r=0;r<HOST_REGS;r++) {
7346               if(r!=EXCLUDE_REG) {
7347                 if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7348                 if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7349                 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7350                 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7351                 if((branch_regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7352                 if(branch_regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
7353                 if(branch_regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7354                 if((regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7355                 if((regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7356                 if((regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7357                 if((regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7358                 if((regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7359                 if(regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
7360                 if(regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7361               }
7362             }
7363           } else {
7364             // Conditional branch (not taken case)
7365             temp_will_dirty=will_dirty_next;
7366             temp_wont_dirty=wont_dirty_next;
7367             // Merge in delay slot (will dirty)
7368             for(r=0;r<HOST_REGS;r++) {
7369               if(r!=EXCLUDE_REG) {
7370                 if(!likely[i]) {
7371                   // Will not dirty if likely branch is not taken
7372                   if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7373                   if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7374                   if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7375                   if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7376                   if((branch_regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7377                   if(branch_regs[i].regmap[r]==0) temp_will_dirty&=~(1<<r);
7378                   if(branch_regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7379                   //if((regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7380                   //if((regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7381                   if((regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7382                   if((regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7383                   if((regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7384                   if(regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
7385                   if(regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7386                 }
7387               }
7388             }
7389           }
7390           // Merge in delay slot (wont dirty)
7391           for(r=0;r<HOST_REGS;r++) {
7392             if(r!=EXCLUDE_REG) {
7393               if((regs[i].regmap[r]&63)==rt1[i]) temp_wont_dirty|=1<<r;
7394               if((regs[i].regmap[r]&63)==rt2[i]) temp_wont_dirty|=1<<r;
7395               if((regs[i].regmap[r]&63)==rt1[i+1]) temp_wont_dirty|=1<<r;
7396               if((regs[i].regmap[r]&63)==rt2[i+1]) temp_wont_dirty|=1<<r;
7397               if(regs[i].regmap[r]==CCREG) temp_wont_dirty|=1<<r;
7398               if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_wont_dirty|=1<<r;
7399               if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_wont_dirty|=1<<r;
7400               if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_wont_dirty|=1<<r;
7401               if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_wont_dirty|=1<<r;
7402               if(branch_regs[i].regmap[r]==CCREG) temp_wont_dirty|=1<<r;
7403             }
7404           }
7405           // Deal with changed mappings
7406           if(i<iend) {
7407             for(r=0;r<HOST_REGS;r++) {
7408               if(r!=EXCLUDE_REG) {
7409                 if(regs[i].regmap[r]!=regmap_pre[i][r]) {
7410                   temp_will_dirty&=~(1<<r);
7411                   temp_wont_dirty&=~(1<<r);
7412                   if((regmap_pre[i][r]&63)>0 && (regmap_pre[i][r]&63)<34) {
7413                     temp_will_dirty|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7414                     temp_wont_dirty|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7415                   } else {
7416                     temp_will_dirty|=1<<r;
7417                     temp_wont_dirty|=1<<r;
7418                   }
7419                 }
7420               }
7421             }
7422           }
7423           if(wr) {
7424             will_dirty[i]=temp_will_dirty;
7425             wont_dirty[i]=temp_wont_dirty;
7426             clean_registers((ba[i]-start)>>2,i-1,0);
7427           }else{
7428             // Limit recursion.  It can take an excessive amount
7429             // of time if there are a lot of nested loops.
7430             will_dirty[(ba[i]-start)>>2]=0;
7431             wont_dirty[(ba[i]-start)>>2]=-1;
7432           }
7433         }
7434         /*else*/ if(1)
7435         {
7436           if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
7437           {
7438             // Unconditional branch
7439             will_dirty_i=0;
7440             wont_dirty_i=0;
7441           //if(ba[i]>start+i*4) { // Disable recursion (for debugging)
7442             for(r=0;r<HOST_REGS;r++) {
7443               if(r!=EXCLUDE_REG) {
7444                 if(branch_regs[i].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
7445                   will_dirty_i|=will_dirty[(ba[i]-start)>>2]&(1<<r);
7446                   wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
7447                 }
7448                 if(branch_regs[i].regmap[r]>=0) {
7449                   will_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>(branch_regs[i].regmap[r]&63))&1)<<r;
7450                   wont_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>(branch_regs[i].regmap[r]&63))&1)<<r;
7451                 }
7452               }
7453             }
7454           //}
7455             // Merge in delay slot
7456             for(r=0;r<HOST_REGS;r++) {
7457               if(r!=EXCLUDE_REG) {
7458                 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7459                 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7460                 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7461                 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7462                 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7463                 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7464                 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7465                 if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7466                 if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7467                 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7468                 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7469                 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7470                 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7471                 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7472               }
7473             }
7474           } else {
7475             // Conditional branch
7476             will_dirty_i=will_dirty_next;
7477             wont_dirty_i=wont_dirty_next;
7478           //if(ba[i]>start+i*4) { // Disable recursion (for debugging)
7479             for(r=0;r<HOST_REGS;r++) {
7480               if(r!=EXCLUDE_REG) {
7481                 signed char target_reg=branch_regs[i].regmap[r];
7482                 if(target_reg==regs[(ba[i]-start)>>2].regmap_entry[r]) {
7483                   will_dirty_i&=will_dirty[(ba[i]-start)>>2]&(1<<r);
7484                   wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
7485                 }
7486                 else if(target_reg>=0) {
7487                   will_dirty_i&=((unneeded_reg[(ba[i]-start)>>2]>>(target_reg&63))&1)<<r;
7488                   wont_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>(target_reg&63))&1)<<r;
7489                 }
7490                 // Treat delay slot as part of branch too
7491                 /*if(regs[i+1].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
7492                   will_dirty[i+1]&=will_dirty[(ba[i]-start)>>2]&(1<<r);
7493                   wont_dirty[i+1]|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
7494                 }
7495                 else
7496                 {
7497                   will_dirty[i+1]&=~(1<<r);
7498                 }*/
7499               }
7500             }
7501           //}
7502             // Merge in delay slot
7503             for(r=0;r<HOST_REGS;r++) {
7504               if(r!=EXCLUDE_REG) {
7505                 if(!likely[i]) {
7506                   // Might not dirty if likely branch is not taken
7507                   if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7508                   if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7509                   if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7510                   if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7511                   if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7512                   if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7513                   if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7514                   //if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7515                   //if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7516                   if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7517                   if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7518                   if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7519                   if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7520                   if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7521                 }
7522               }
7523             }
7524           }
7525           // Merge in delay slot (won't dirty)
7526           for(r=0;r<HOST_REGS;r++) {
7527             if(r!=EXCLUDE_REG) {
7528               if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7529               if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7530               if((regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7531               if((regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7532               if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7533               if((branch_regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7534               if((branch_regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7535               if((branch_regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7536               if((branch_regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7537               if(branch_regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7538             }
7539           }
7540           if(wr) {
7541             #ifndef DESTRUCTIVE_WRITEBACK
7542             branch_regs[i].dirty&=wont_dirty_i;
7543             #endif
7544             branch_regs[i].dirty|=will_dirty_i;
7545           }
7546         }
7547       }
7548     }
7549     else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
7550     {
7551       // SYSCALL instruction (software interrupt)
7552       will_dirty_i=0;
7553       wont_dirty_i=0;
7554     }
7555     else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
7556     {
7557       // ERET instruction (return from interrupt)
7558       will_dirty_i=0;
7559       wont_dirty_i=0;
7560     }
7561     will_dirty_next=will_dirty_i;
7562     wont_dirty_next=wont_dirty_i;
7563     for(r=0;r<HOST_REGS;r++) {
7564       if(r!=EXCLUDE_REG) {
7565         if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7566         if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7567         if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7568         if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7569         if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7570         if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7571         if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7572         if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7573         if(i>istart) {
7574           if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=FJUMP) 
7575           {
7576             // Don't store a register immediately after writing it,
7577             // may prevent dual-issue.
7578             if((regs[i].regmap[r]&63)==rt1[i-1]) wont_dirty_i|=1<<r;
7579             if((regs[i].regmap[r]&63)==rt2[i-1]) wont_dirty_i|=1<<r;
7580           }
7581         }
7582       }
7583     }
7584     // Save it
7585     will_dirty[i]=will_dirty_i;
7586     wont_dirty[i]=wont_dirty_i;
7587     // Mark registers that won't be dirtied as not dirty
7588     if(wr) {
7589       /*printf("wr (%d,%d) %x will:",istart,iend,start+i*4);
7590       for(r=0;r<HOST_REGS;r++) {
7591         if((will_dirty_i>>r)&1) {
7592           printf(" r%d",r);
7593         }
7594       }
7595       printf("\n");*/
7596
7597       //if(i==istart||(itype[i-1]!=RJUMP&&itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=FJUMP)) {
7598         regs[i].dirty|=will_dirty_i;
7599         #ifndef DESTRUCTIVE_WRITEBACK
7600         regs[i].dirty&=wont_dirty_i;
7601         if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
7602         {
7603           if(i<iend-1&&itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000) {
7604             for(r=0;r<HOST_REGS;r++) {
7605               if(r!=EXCLUDE_REG) {
7606                 if(regs[i].regmap[r]==regmap_pre[i+2][r]) {
7607                   regs[i+2].wasdirty&=wont_dirty_i|~(1<<r);
7608                 }else {/*printf("i: %x (%d) mismatch(+2): %d\n",start+i*4,i,r);/*assert(!((wont_dirty_i>>r)&1));*/}
7609               }
7610             }
7611           }
7612         }
7613         else
7614         {
7615           if(i<iend) {
7616             for(r=0;r<HOST_REGS;r++) {
7617               if(r!=EXCLUDE_REG) {
7618                 if(regs[i].regmap[r]==regmap_pre[i+1][r]) {
7619                   regs[i+1].wasdirty&=wont_dirty_i|~(1<<r);
7620                 }else {/*printf("i: %x (%d) mismatch(+1): %d\n",start+i*4,i,r);/*assert(!((wont_dirty_i>>r)&1));*/}
7621               }
7622             }
7623           }
7624         }
7625         #endif
7626       //}
7627     }
7628     // Deal with changed mappings
7629     temp_will_dirty=will_dirty_i;
7630     temp_wont_dirty=wont_dirty_i;
7631     for(r=0;r<HOST_REGS;r++) {
7632       if(r!=EXCLUDE_REG) {
7633         int nr;
7634         if(regs[i].regmap[r]==regmap_pre[i][r]) {
7635           if(wr) {
7636             #ifndef DESTRUCTIVE_WRITEBACK
7637             regs[i].wasdirty&=wont_dirty_i|~(1<<r);
7638             #endif
7639             regs[i].wasdirty|=will_dirty_i&(1<<r);
7640           }
7641         }
7642         else if(regmap_pre[i][r]>=0&&(nr=get_reg(regs[i].regmap,regmap_pre[i][r]))>=0) {
7643           // Register moved to a different register
7644           will_dirty_i&=~(1<<r);
7645           wont_dirty_i&=~(1<<r);
7646           will_dirty_i|=((temp_will_dirty>>nr)&1)<<r;
7647           wont_dirty_i|=((temp_wont_dirty>>nr)&1)<<r;
7648           if(wr) {
7649             #ifndef DESTRUCTIVE_WRITEBACK
7650             regs[i].wasdirty&=wont_dirty_i|~(1<<r);
7651             #endif
7652             regs[i].wasdirty|=will_dirty_i&(1<<r);
7653           }
7654         }
7655         else {
7656           will_dirty_i&=~(1<<r);
7657           wont_dirty_i&=~(1<<r);
7658           if((regmap_pre[i][r]&63)>0 && (regmap_pre[i][r]&63)<34) {
7659             will_dirty_i|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7660             wont_dirty_i|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7661           } else {
7662             wont_dirty_i|=1<<r;
7663             /*printf("i: %x (%d) mismatch: %d\n",start+i*4,i,r);/*assert(!((will_dirty>>r)&1));*/
7664           }
7665         }
7666       }
7667     }
7668   }
7669 }
7670
7671   /* disassembly */
7672 void disassemble_inst(int i)
7673 {
7674     if (bt[i]) printf("*"); else printf(" ");
7675     switch(itype[i]) {
7676       case UJUMP:
7677         printf (" %x: %s %8x\n",start+i*4,insn[i],ba[i]);break;
7678       case CJUMP:
7679         printf (" %x: %s r%d,r%d,%8x\n",start+i*4,insn[i],rs1[i],rs2[i],i?start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14):*ba);break;
7680       case SJUMP:
7681         printf (" %x: %s r%d,%8x\n",start+i*4,insn[i],rs1[i],start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14));break;
7682       case FJUMP:
7683         printf (" %x: %s %8x\n",start+i*4,insn[i],ba[i]);break;
7684       case RJUMP:
7685         if (opcode[i]==0x9&&rt1[i]!=31)
7686           printf (" %x: %s r%d,r%d\n",start+i*4,insn[i],rt1[i],rs1[i]);
7687         else
7688           printf (" %x: %s r%d\n",start+i*4,insn[i],rs1[i]);
7689         break;
7690       case SPAN:
7691         printf (" %x: %s (pagespan) r%d,r%d,%8x\n",start+i*4,insn[i],rs1[i],rs2[i],ba[i]);break;
7692       case IMM16:
7693         if(opcode[i]==0xf) //LUI
7694           printf (" %x: %s r%d,%4x0000\n",start+i*4,insn[i],rt1[i],imm[i]&0xffff);
7695         else
7696           printf (" %x: %s r%d,r%d,%d\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
7697         break;
7698       case LOAD:
7699       case LOADLR:
7700         printf (" %x: %s r%d,r%d+%x\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
7701         break;
7702       case STORE:
7703       case STORELR:
7704         printf (" %x: %s r%d,r%d+%x\n",start+i*4,insn[i],rs2[i],rs1[i],imm[i]);
7705         break;
7706       case ALU:
7707       case SHIFT:
7708         printf (" %x: %s r%d,r%d,r%d\n",start+i*4,insn[i],rt1[i],rs1[i],rs2[i]);
7709         break;
7710       case MULTDIV:
7711         printf (" %x: %s r%d,r%d\n",start+i*4,insn[i],rs1[i],rs2[i]);
7712         break;
7713       case SHIFTIMM:
7714         printf (" %x: %s r%d,r%d,%d\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
7715         break;
7716       case MOV:
7717         if((opcode2[i]&0x1d)==0x10)
7718           printf (" %x: %s r%d\n",start+i*4,insn[i],rt1[i]);
7719         else if((opcode2[i]&0x1d)==0x11)
7720           printf (" %x: %s r%d\n",start+i*4,insn[i],rs1[i]);
7721         else
7722           printf (" %x: %s\n",start+i*4,insn[i]);
7723         break;
7724       case COP0:
7725         if(opcode2[i]==0)
7726           printf (" %x: %s r%d,cpr0[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC0
7727         else if(opcode2[i]==4)
7728           printf (" %x: %s r%d,cpr0[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC0
7729         else printf (" %x: %s\n",start+i*4,insn[i]);
7730         break;
7731       case COP1:
7732         if(opcode2[i]<3)
7733           printf (" %x: %s r%d,cpr1[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC1
7734         else if(opcode2[i]>3)
7735           printf (" %x: %s r%d,cpr1[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC1
7736         else printf (" %x: %s\n",start+i*4,insn[i]);
7737         break;
7738       case COP2:
7739         if(opcode2[i]<3)
7740           printf (" %x: %s r%d,cpr2[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC2
7741         else if(opcode2[i]>3)
7742           printf (" %x: %s r%d,cpr2[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC2
7743         else printf (" %x: %s\n",start+i*4,insn[i]);
7744         break;
7745       case C1LS:
7746         printf (" %x: %s cpr1[%d],r%d+%x\n",start+i*4,insn[i],(source[i]>>16)&0x1f,rs1[i],imm[i]);
7747         break;
7748       case C2LS:
7749         printf (" %x: %s cpr2[%d],r%d+%x\n",start+i*4,insn[i],(source[i]>>16)&0x1f,rs1[i],imm[i]);
7750         break;
7751       case INTCALL:
7752         printf (" %x: %s (INTCALL)\n",start+i*4,insn[i]);
7753         break;
7754       default:
7755         //printf (" %s %8x\n",insn[i],source[i]);
7756         printf (" %x: %s\n",start+i*4,insn[i]);
7757     }
7758 }
7759
7760 // clear the state completely, instead of just marking
7761 // things invalid like invalidate_all_pages() does
7762 void new_dynarec_clear_full()
7763 {
7764   int n;
7765   out=(u_char *)BASE_ADDR;
7766   memset(invalid_code,1,sizeof(invalid_code));
7767   memset(hash_table,0xff,sizeof(hash_table));
7768   memset(mini_ht,-1,sizeof(mini_ht));
7769   memset(restore_candidate,0,sizeof(restore_candidate));
7770   memset(shadow,0,sizeof(shadow));
7771   copy=shadow;
7772   expirep=16384; // Expiry pointer, +2 blocks
7773   pending_exception=0;
7774   literalcount=0;
7775   stop_after_jal=0;
7776   // TLB
7777 #ifndef DISABLE_TLB
7778   using_tlb=0;
7779 #endif
7780   sp_in_mirror=0;
7781   for(n=0;n<524288;n++) // 0 .. 0x7FFFFFFF
7782     memory_map[n]=-1;
7783   for(n=524288;n<526336;n++) // 0x80000000 .. 0x807FFFFF
7784     memory_map[n]=((u_int)rdram-0x80000000)>>2;
7785   for(n=526336;n<1048576;n++) // 0x80800000 .. 0xFFFFFFFF
7786     memory_map[n]=-1;
7787   for(n=0;n<4096;n++) ll_clear(jump_in+n);
7788   for(n=0;n<4096;n++) ll_clear(jump_out+n);
7789   for(n=0;n<4096;n++) ll_clear(jump_dirty+n);
7790 }
7791
7792 void new_dynarec_init()
7793 {
7794   printf("Init new dynarec\n");
7795   out=(u_char *)BASE_ADDR;
7796   if (mmap (out, 1<<TARGET_SIZE_2,
7797             PROT_READ | PROT_WRITE | PROT_EXEC,
7798             MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS,
7799             -1, 0) <= 0) {printf("mmap() failed\n");}
7800 #ifdef MUPEN64
7801   rdword=&readmem_dword;
7802   fake_pc.f.r.rs=&readmem_dword;
7803   fake_pc.f.r.rt=&readmem_dword;
7804   fake_pc.f.r.rd=&readmem_dword;
7805 #endif
7806   int n;
7807   new_dynarec_clear_full();
7808 #ifdef HOST_IMM8
7809   // Copy this into local area so we don't have to put it in every literal pool
7810   invc_ptr=invalid_code;
7811 #endif
7812 #ifdef MUPEN64
7813   for(n=0;n<0x8000;n++) { // 0 .. 0x7FFFFFFF
7814     writemem[n] = write_nomem_new;
7815     writememb[n] = write_nomemb_new;
7816     writememh[n] = write_nomemh_new;
7817 #ifndef FORCE32
7818     writememd[n] = write_nomemd_new;
7819 #endif
7820     readmem[n] = read_nomem_new;
7821     readmemb[n] = read_nomemb_new;
7822     readmemh[n] = read_nomemh_new;
7823 #ifndef FORCE32
7824     readmemd[n] = read_nomemd_new;
7825 #endif
7826   }
7827   for(n=0x8000;n<0x8080;n++) { // 0x80000000 .. 0x807FFFFF
7828     writemem[n] = write_rdram_new;
7829     writememb[n] = write_rdramb_new;
7830     writememh[n] = write_rdramh_new;
7831 #ifndef FORCE32
7832     writememd[n] = write_rdramd_new;
7833 #endif
7834   }
7835   for(n=0xC000;n<0x10000;n++) { // 0xC0000000 .. 0xFFFFFFFF
7836     writemem[n] = write_nomem_new;
7837     writememb[n] = write_nomemb_new;
7838     writememh[n] = write_nomemh_new;
7839 #ifndef FORCE32
7840     writememd[n] = write_nomemd_new;
7841 #endif
7842     readmem[n] = read_nomem_new;
7843     readmemb[n] = read_nomemb_new;
7844     readmemh[n] = read_nomemh_new;
7845 #ifndef FORCE32
7846     readmemd[n] = read_nomemd_new;
7847 #endif
7848   }
7849 #endif
7850   tlb_hacks();
7851   arch_init();
7852 }
7853
7854 void new_dynarec_cleanup()
7855 {
7856   int n;
7857   if (munmap ((void *)BASE_ADDR, 1<<TARGET_SIZE_2) < 0) {printf("munmap() failed\n");}
7858   for(n=0;n<4096;n++) ll_clear(jump_in+n);
7859   for(n=0;n<4096;n++) ll_clear(jump_out+n);
7860   for(n=0;n<4096;n++) ll_clear(jump_dirty+n);
7861   #ifdef ROM_COPY
7862   if (munmap (ROM_COPY, 67108864) < 0) {printf("munmap() failed\n");}
7863   #endif
7864 }
7865
7866 int new_recompile_block(int addr)
7867 {
7868 /*
7869   if(addr==0x800cd050) {
7870     int block;
7871     for(block=0x80000;block<0x80800;block++) invalidate_block(block);
7872     int n;
7873     for(n=0;n<=2048;n++) ll_clear(jump_dirty+n);
7874   }
7875 */
7876   //if(Count==365117028) tracedebug=1;
7877   assem_debug("NOTCOMPILED: addr = %x -> %x\n", (int)addr, (int)out);
7878   //printf("NOTCOMPILED: addr = %x -> %x\n", (int)addr, (int)out);
7879   //printf("TRACE: count=%d next=%d (compile %x)\n",Count,next_interupt,addr);
7880   //if(debug) 
7881   //printf("TRACE: count=%d next=%d (checksum %x)\n",Count,next_interupt,mchecksum());
7882   //printf("fpu mapping=%x enabled=%x\n",(Status & 0x04000000)>>26,(Status & 0x20000000)>>29);
7883   /*if(Count>=312978186) {
7884     rlist();
7885   }*/
7886   //rlist();
7887   start = (u_int)addr&~3;
7888   //assert(((u_int)addr&1)==0);
7889 #ifdef PCSX
7890   if(!sp_in_mirror&&(signed int)(psxRegs.GPR.n.sp&0xffe00000)>0x80200000&&
7891      0x10000<=psxRegs.GPR.n.sp&&(psxRegs.GPR.n.sp&~0xe0e00000)<RAM_SIZE) {
7892     printf("SP hack enabled (%08x), @%08x\n", psxRegs.GPR.n.sp, psxRegs.pc);
7893     sp_in_mirror=1;
7894   }
7895   if (Config.HLE && start == 0x80001000) // hlecall
7896   {
7897     // XXX: is this enough? Maybe check hleSoftCall?
7898     u_int beginning=(u_int)out;
7899     u_int page=get_page(start);
7900     invalid_code[start>>12]=0;
7901     emit_movimm(start,0);
7902     emit_writeword(0,(int)&pcaddr);
7903     emit_jmp((int)new_dyna_leave);
7904 #ifdef __arm__
7905     __clear_cache((void *)beginning,out);
7906 #endif
7907     ll_add(jump_in+page,start,(void *)beginning);
7908     return 0;
7909   }
7910   else if ((u_int)addr < 0x00200000 ||
7911     (0xa0000000 <= addr && addr < 0xa0200000)) {
7912     // used for BIOS calls mostly?
7913     source = (u_int *)((u_int)rdram+(start&0x1fffff));
7914     pagelimit = (addr&0xa0000000)|0x00200000;
7915   }
7916   else if (!Config.HLE && (
7917 /*    (0x9fc00000 <= addr && addr < 0x9fc80000) ||*/
7918     (0xbfc00000 <= addr && addr < 0xbfc80000))) {
7919     // BIOS
7920     source = (u_int *)((u_int)psxR+(start&0x7ffff));
7921     pagelimit = (addr&0xfff00000)|0x80000;
7922   }
7923   else
7924 #endif
7925 #ifdef MUPEN64
7926   if ((int)addr >= 0xa4000000 && (int)addr < 0xa4001000) {
7927     source = (u_int *)((u_int)SP_DMEM+start-0xa4000000);
7928     pagelimit = 0xa4001000;
7929   }
7930   else
7931 #endif
7932   if ((int)addr >= 0x80000000 && (int)addr < 0x80000000+RAM_SIZE) {
7933     source = (u_int *)((u_int)rdram+start-0x80000000);
7934     pagelimit = 0x80000000+RAM_SIZE;
7935   }
7936 #ifndef DISABLE_TLB
7937   else if ((signed int)addr >= (signed int)0xC0000000) {
7938     //printf("addr=%x mm=%x\n",(u_int)addr,(memory_map[start>>12]<<2));
7939     //if(tlb_LUT_r[start>>12])
7940       //source = (u_int *)(((int)rdram)+(tlb_LUT_r[start>>12]&0xFFFFF000)+(((int)addr)&0xFFF)-0x80000000);
7941     if((signed int)memory_map[start>>12]>=0) {
7942       source = (u_int *)((u_int)(start+(memory_map[start>>12]<<2)));
7943       pagelimit=(start+4096)&0xFFFFF000;
7944       int map=memory_map[start>>12];
7945       int i;
7946       for(i=0;i<5;i++) {
7947         //printf("start: %x next: %x\n",map,memory_map[pagelimit>>12]);
7948         if((map&0xBFFFFFFF)==(memory_map[pagelimit>>12]&0xBFFFFFFF)) pagelimit+=4096;
7949       }
7950       assem_debug("pagelimit=%x\n",pagelimit);
7951       assem_debug("mapping=%x (%x)\n",memory_map[start>>12],(memory_map[start>>12]<<2)+start);
7952     }
7953     else {
7954       assem_debug("Compile at unmapped memory address: %x \n", (int)addr);
7955       //assem_debug("start: %x next: %x\n",memory_map[start>>12],memory_map[(start+4096)>>12]);
7956       return -1; // Caller will invoke exception handler
7957     }
7958     //printf("source= %x\n",(int)source);
7959   }
7960 #endif
7961   else {
7962     printf("Compile at bogus memory address: %x \n", (int)addr);
7963     exit(1);
7964   }
7965
7966   /* Pass 1: disassemble */
7967   /* Pass 2: register dependencies, branch targets */
7968   /* Pass 3: register allocation */
7969   /* Pass 4: branch dependencies */
7970   /* Pass 5: pre-alloc */
7971   /* Pass 6: optimize clean/dirty state */
7972   /* Pass 7: flag 32-bit registers */
7973   /* Pass 8: assembly */
7974   /* Pass 9: linker */
7975   /* Pass 10: garbage collection / free memory */
7976
7977   int i,j;
7978   int done=0;
7979   unsigned int type,op,op2;
7980
7981   //printf("addr = %x source = %x %x\n", addr,source,source[0]);
7982   
7983   /* Pass 1 disassembly */
7984
7985   for(i=0;!done;i++) {
7986     bt[i]=0;likely[i]=0;ooo[i]=0;op2=0;
7987     minimum_free_regs[i]=0;
7988     opcode[i]=op=source[i]>>26;
7989     switch(op)
7990     {
7991       case 0x00: strcpy(insn[i],"special"); type=NI;
7992         op2=source[i]&0x3f;
7993         switch(op2)
7994         {
7995           case 0x00: strcpy(insn[i],"SLL"); type=SHIFTIMM; break;
7996           case 0x02: strcpy(insn[i],"SRL"); type=SHIFTIMM; break;
7997           case 0x03: strcpy(insn[i],"SRA"); type=SHIFTIMM; break;
7998           case 0x04: strcpy(insn[i],"SLLV"); type=SHIFT; break;
7999           case 0x06: strcpy(insn[i],"SRLV"); type=SHIFT; break;
8000           case 0x07: strcpy(insn[i],"SRAV"); type=SHIFT; break;
8001           case 0x08: strcpy(insn[i],"JR"); type=RJUMP; break;
8002           case 0x09: strcpy(insn[i],"JALR"); type=RJUMP; break;
8003           case 0x0C: strcpy(insn[i],"SYSCALL"); type=SYSCALL; break;
8004           case 0x0D: strcpy(insn[i],"BREAK"); type=OTHER; break;
8005           case 0x0F: strcpy(insn[i],"SYNC"); type=OTHER; break;
8006           case 0x10: strcpy(insn[i],"MFHI"); type=MOV; break;
8007           case 0x11: strcpy(insn[i],"MTHI"); type=MOV; break;
8008           case 0x12: strcpy(insn[i],"MFLO"); type=MOV; break;
8009           case 0x13: strcpy(insn[i],"MTLO"); type=MOV; break;
8010           case 0x18: strcpy(insn[i],"MULT"); type=MULTDIV; break;
8011           case 0x19: strcpy(insn[i],"MULTU"); type=MULTDIV; break;
8012           case 0x1A: strcpy(insn[i],"DIV"); type=MULTDIV; break;
8013           case 0x1B: strcpy(insn[i],"DIVU"); type=MULTDIV; break;
8014           case 0x20: strcpy(insn[i],"ADD"); type=ALU; break;
8015           case 0x21: strcpy(insn[i],"ADDU"); type=ALU; break;
8016           case 0x22: strcpy(insn[i],"SUB"); type=ALU; break;
8017           case 0x23: strcpy(insn[i],"SUBU"); type=ALU; break;
8018           case 0x24: strcpy(insn[i],"AND"); type=ALU; break;
8019           case 0x25: strcpy(insn[i],"OR"); type=ALU; break;
8020           case 0x26: strcpy(insn[i],"XOR"); type=ALU; break;
8021           case 0x27: strcpy(insn[i],"NOR"); type=ALU; break;
8022           case 0x2A: strcpy(insn[i],"SLT"); type=ALU; break;
8023           case 0x2B: strcpy(insn[i],"SLTU"); type=ALU; break;
8024           case 0x30: strcpy(insn[i],"TGE"); type=NI; break;
8025           case 0x31: strcpy(insn[i],"TGEU"); type=NI; break;
8026           case 0x32: strcpy(insn[i],"TLT"); type=NI; break;
8027           case 0x33: strcpy(insn[i],"TLTU"); type=NI; break;
8028           case 0x34: strcpy(insn[i],"TEQ"); type=NI; break;
8029           case 0x36: strcpy(insn[i],"TNE"); type=NI; break;
8030 #ifndef FORCE32
8031           case 0x14: strcpy(insn[i],"DSLLV"); type=SHIFT; break;
8032           case 0x16: strcpy(insn[i],"DSRLV"); type=SHIFT; break;
8033           case 0x17: strcpy(insn[i],"DSRAV"); type=SHIFT; break;
8034           case 0x1C: strcpy(insn[i],"DMULT"); type=MULTDIV; break;
8035           case 0x1D: strcpy(insn[i],"DMULTU"); type=MULTDIV; break;
8036           case 0x1E: strcpy(insn[i],"DDIV"); type=MULTDIV; break;
8037           case 0x1F: strcpy(insn[i],"DDIVU"); type=MULTDIV; break;
8038           case 0x2C: strcpy(insn[i],"DADD"); type=ALU; break;
8039           case 0x2D: strcpy(insn[i],"DADDU"); type=ALU; break;
8040           case 0x2E: strcpy(insn[i],"DSUB"); type=ALU; break;
8041           case 0x2F: strcpy(insn[i],"DSUBU"); type=ALU; break;
8042           case 0x38: strcpy(insn[i],"DSLL"); type=SHIFTIMM; break;
8043           case 0x3A: strcpy(insn[i],"DSRL"); type=SHIFTIMM; break;
8044           case 0x3B: strcpy(insn[i],"DSRA"); type=SHIFTIMM; break;
8045           case 0x3C: strcpy(insn[i],"DSLL32"); type=SHIFTIMM; break;
8046           case 0x3E: strcpy(insn[i],"DSRL32"); type=SHIFTIMM; break;
8047           case 0x3F: strcpy(insn[i],"DSRA32"); type=SHIFTIMM; break;
8048 #endif
8049         }
8050         break;
8051       case 0x01: strcpy(insn[i],"regimm"); type=NI;
8052         op2=(source[i]>>16)&0x1f;
8053         switch(op2)
8054         {
8055           case 0x00: strcpy(insn[i],"BLTZ"); type=SJUMP; break;
8056           case 0x01: strcpy(insn[i],"BGEZ"); type=SJUMP; break;
8057           case 0x02: strcpy(insn[i],"BLTZL"); type=SJUMP; break;
8058           case 0x03: strcpy(insn[i],"BGEZL"); type=SJUMP; break;
8059           case 0x08: strcpy(insn[i],"TGEI"); type=NI; break;
8060           case 0x09: strcpy(insn[i],"TGEIU"); type=NI; break;
8061           case 0x0A: strcpy(insn[i],"TLTI"); type=NI; break;
8062           case 0x0B: strcpy(insn[i],"TLTIU"); type=NI; break;
8063           case 0x0C: strcpy(insn[i],"TEQI"); type=NI; break;
8064           case 0x0E: strcpy(insn[i],"TNEI"); type=NI; break;
8065           case 0x10: strcpy(insn[i],"BLTZAL"); type=SJUMP; break;
8066           case 0x11: strcpy(insn[i],"BGEZAL"); type=SJUMP; break;
8067           case 0x12: strcpy(insn[i],"BLTZALL"); type=SJUMP; break;
8068           case 0x13: strcpy(insn[i],"BGEZALL"); type=SJUMP; break;
8069         }
8070         break;
8071       case 0x02: strcpy(insn[i],"J"); type=UJUMP; break;
8072       case 0x03: strcpy(insn[i],"JAL"); type=UJUMP; break;
8073       case 0x04: strcpy(insn[i],"BEQ"); type=CJUMP; break;
8074       case 0x05: strcpy(insn[i],"BNE"); type=CJUMP; break;
8075       case 0x06: strcpy(insn[i],"BLEZ"); type=CJUMP; break;
8076       case 0x07: strcpy(insn[i],"BGTZ"); type=CJUMP; break;
8077       case 0x08: strcpy(insn[i],"ADDI"); type=IMM16; break;
8078       case 0x09: strcpy(insn[i],"ADDIU"); type=IMM16; break;
8079       case 0x0A: strcpy(insn[i],"SLTI"); type=IMM16; break;
8080       case 0x0B: strcpy(insn[i],"SLTIU"); type=IMM16; break;
8081       case 0x0C: strcpy(insn[i],"ANDI"); type=IMM16; break;
8082       case 0x0D: strcpy(insn[i],"ORI"); type=IMM16; break;
8083       case 0x0E: strcpy(insn[i],"XORI"); type=IMM16; break;
8084       case 0x0F: strcpy(insn[i],"LUI"); type=IMM16; break;
8085       case 0x10: strcpy(insn[i],"cop0"); type=NI;
8086         op2=(source[i]>>21)&0x1f;
8087         switch(op2)
8088         {
8089           case 0x00: strcpy(insn[i],"MFC0"); type=COP0; break;
8090           case 0x04: strcpy(insn[i],"MTC0"); type=COP0; break;
8091           case 0x10: strcpy(insn[i],"tlb"); type=NI;
8092           switch(source[i]&0x3f)
8093           {
8094             case 0x01: strcpy(insn[i],"TLBR"); type=COP0; break;
8095             case 0x02: strcpy(insn[i],"TLBWI"); type=COP0; break;
8096             case 0x06: strcpy(insn[i],"TLBWR"); type=COP0; break;
8097             case 0x08: strcpy(insn[i],"TLBP"); type=COP0; break;
8098 #ifdef PCSX
8099             case 0x10: strcpy(insn[i],"RFE"); type=COP0; break;
8100 #else
8101             case 0x18: strcpy(insn[i],"ERET"); type=COP0; break;
8102 #endif
8103           }
8104         }
8105         break;
8106       case 0x11: strcpy(insn[i],"cop1"); type=NI;
8107         op2=(source[i]>>21)&0x1f;
8108         switch(op2)
8109         {
8110           case 0x00: strcpy(insn[i],"MFC1"); type=COP1; break;
8111           case 0x01: strcpy(insn[i],"DMFC1"); type=COP1; break;
8112           case 0x02: strcpy(insn[i],"CFC1"); type=COP1; break;
8113           case 0x04: strcpy(insn[i],"MTC1"); type=COP1; break;
8114           case 0x05: strcpy(insn[i],"DMTC1"); type=COP1; break;
8115           case 0x06: strcpy(insn[i],"CTC1"); type=COP1; break;
8116           case 0x08: strcpy(insn[i],"BC1"); type=FJUMP;
8117           switch((source[i]>>16)&0x3)
8118           {
8119             case 0x00: strcpy(insn[i],"BC1F"); break;
8120             case 0x01: strcpy(insn[i],"BC1T"); break;
8121             case 0x02: strcpy(insn[i],"BC1FL"); break;
8122             case 0x03: strcpy(insn[i],"BC1TL"); break;
8123           }
8124           break;
8125           case 0x10: strcpy(insn[i],"C1.S"); type=NI;
8126           switch(source[i]&0x3f)
8127           {
8128             case 0x00: strcpy(insn[i],"ADD.S"); type=FLOAT; break;
8129             case 0x01: strcpy(insn[i],"SUB.S"); type=FLOAT; break;
8130             case 0x02: strcpy(insn[i],"MUL.S"); type=FLOAT; break;
8131             case 0x03: strcpy(insn[i],"DIV.S"); type=FLOAT; break;
8132             case 0x04: strcpy(insn[i],"SQRT.S"); type=FLOAT; break;
8133             case 0x05: strcpy(insn[i],"ABS.S"); type=FLOAT; break;
8134             case 0x06: strcpy(insn[i],"MOV.S"); type=FLOAT; break;
8135             case 0x07: strcpy(insn[i],"NEG.S"); type=FLOAT; break;
8136             case 0x08: strcpy(insn[i],"ROUND.L.S"); type=FCONV; break;
8137             case 0x09: strcpy(insn[i],"TRUNC.L.S"); type=FCONV; break;
8138             case 0x0A: strcpy(insn[i],"CEIL.L.S"); type=FCONV; break;
8139             case 0x0B: strcpy(insn[i],"FLOOR.L.S"); type=FCONV; break;
8140             case 0x0C: strcpy(insn[i],"ROUND.W.S"); type=FCONV; break;
8141             case 0x0D: strcpy(insn[i],"TRUNC.W.S"); type=FCONV; break;
8142             case 0x0E: strcpy(insn[i],"CEIL.W.S"); type=FCONV; break;
8143             case 0x0F: strcpy(insn[i],"FLOOR.W.S"); type=FCONV; break;
8144             case 0x21: strcpy(insn[i],"CVT.D.S"); type=FCONV; break;
8145             case 0x24: strcpy(insn[i],"CVT.W.S"); type=FCONV; break;
8146             case 0x25: strcpy(insn[i],"CVT.L.S"); type=FCONV; break;
8147             case 0x30: strcpy(insn[i],"C.F.S"); type=FCOMP; break;
8148             case 0x31: strcpy(insn[i],"C.UN.S"); type=FCOMP; break;
8149             case 0x32: strcpy(insn[i],"C.EQ.S"); type=FCOMP; break;
8150             case 0x33: strcpy(insn[i],"C.UEQ.S"); type=FCOMP; break;
8151             case 0x34: strcpy(insn[i],"C.OLT.S"); type=FCOMP; break;
8152             case 0x35: strcpy(insn[i],"C.ULT.S"); type=FCOMP; break;
8153             case 0x36: strcpy(insn[i],"C.OLE.S"); type=FCOMP; break;
8154             case 0x37: strcpy(insn[i],"C.ULE.S"); type=FCOMP; break;
8155             case 0x38: strcpy(insn[i],"C.SF.S"); type=FCOMP; break;
8156             case 0x39: strcpy(insn[i],"C.NGLE.S"); type=FCOMP; break;
8157             case 0x3A: strcpy(insn[i],"C.SEQ.S"); type=FCOMP; break;
8158             case 0x3B: strcpy(insn[i],"C.NGL.S"); type=FCOMP; break;
8159             case 0x3C: strcpy(insn[i],"C.LT.S"); type=FCOMP; break;
8160             case 0x3D: strcpy(insn[i],"C.NGE.S"); type=FCOMP; break;
8161             case 0x3E: strcpy(insn[i],"C.LE.S"); type=FCOMP; break;
8162             case 0x3F: strcpy(insn[i],"C.NGT.S"); type=FCOMP; break;
8163           }
8164           break;
8165           case 0x11: strcpy(insn[i],"C1.D"); type=NI;
8166           switch(source[i]&0x3f)
8167           {
8168             case 0x00: strcpy(insn[i],"ADD.D"); type=FLOAT; break;
8169             case 0x01: strcpy(insn[i],"SUB.D"); type=FLOAT; break;
8170             case 0x02: strcpy(insn[i],"MUL.D"); type=FLOAT; break;
8171             case 0x03: strcpy(insn[i],"DIV.D"); type=FLOAT; break;
8172             case 0x04: strcpy(insn[i],"SQRT.D"); type=FLOAT; break;
8173             case 0x05: strcpy(insn[i],"ABS.D"); type=FLOAT; break;
8174             case 0x06: strcpy(insn[i],"MOV.D"); type=FLOAT; break;
8175             case 0x07: strcpy(insn[i],"NEG.D"); type=FLOAT; break;
8176             case 0x08: strcpy(insn[i],"ROUND.L.D"); type=FCONV; break;
8177             case 0x09: strcpy(insn[i],"TRUNC.L.D"); type=FCONV; break;
8178             case 0x0A: strcpy(insn[i],"CEIL.L.D"); type=FCONV; break;
8179             case 0x0B: strcpy(insn[i],"FLOOR.L.D"); type=FCONV; break;
8180             case 0x0C: strcpy(insn[i],"ROUND.W.D"); type=FCONV; break;
8181             case 0x0D: strcpy(insn[i],"TRUNC.W.D"); type=FCONV; break;
8182             case 0x0E: strcpy(insn[i],"CEIL.W.D"); type=FCONV; break;
8183             case 0x0F: strcpy(insn[i],"FLOOR.W.D"); type=FCONV; break;
8184             case 0x20: strcpy(insn[i],"CVT.S.D"); type=FCONV; break;
8185             case 0x24: strcpy(insn[i],"CVT.W.D"); type=FCONV; break;
8186             case 0x25: strcpy(insn[i],"CVT.L.D"); type=FCONV; break;
8187             case 0x30: strcpy(insn[i],"C.F.D"); type=FCOMP; break;
8188             case 0x31: strcpy(insn[i],"C.UN.D"); type=FCOMP; break;
8189             case 0x32: strcpy(insn[i],"C.EQ.D"); type=FCOMP; break;
8190             case 0x33: strcpy(insn[i],"C.UEQ.D"); type=FCOMP; break;
8191             case 0x34: strcpy(insn[i],"C.OLT.D"); type=FCOMP; break;
8192             case 0x35: strcpy(insn[i],"C.ULT.D"); type=FCOMP; break;
8193             case 0x36: strcpy(insn[i],"C.OLE.D"); type=FCOMP; break;
8194             case 0x37: strcpy(insn[i],"C.ULE.D"); type=FCOMP; break;
8195             case 0x38: strcpy(insn[i],"C.SF.D"); type=FCOMP; break;
8196             case 0x39: strcpy(insn[i],"C.NGLE.D"); type=FCOMP; break;
8197             case 0x3A: strcpy(insn[i],"C.SEQ.D"); type=FCOMP; break;
8198             case 0x3B: strcpy(insn[i],"C.NGL.D"); type=FCOMP; break;
8199             case 0x3C: strcpy(insn[i],"C.LT.D"); type=FCOMP; break;
8200             case 0x3D: strcpy(insn[i],"C.NGE.D"); type=FCOMP; break;
8201             case 0x3E: strcpy(insn[i],"C.LE.D"); type=FCOMP; break;
8202             case 0x3F: strcpy(insn[i],"C.NGT.D"); type=FCOMP; break;
8203           }
8204           break;
8205           case 0x14: strcpy(insn[i],"C1.W"); type=NI;
8206           switch(source[i]&0x3f)
8207           {
8208             case 0x20: strcpy(insn[i],"CVT.S.W"); type=FCONV; break;
8209             case 0x21: strcpy(insn[i],"CVT.D.W"); type=FCONV; break;
8210           }
8211           break;
8212           case 0x15: strcpy(insn[i],"C1.L"); type=NI;
8213           switch(source[i]&0x3f)
8214           {
8215             case 0x20: strcpy(insn[i],"CVT.S.L"); type=FCONV; break;
8216             case 0x21: strcpy(insn[i],"CVT.D.L"); type=FCONV; break;
8217           }
8218           break;
8219         }
8220         break;
8221 #ifndef FORCE32
8222       case 0x14: strcpy(insn[i],"BEQL"); type=CJUMP; break;
8223       case 0x15: strcpy(insn[i],"BNEL"); type=CJUMP; break;
8224       case 0x16: strcpy(insn[i],"BLEZL"); type=CJUMP; break;
8225       case 0x17: strcpy(insn[i],"BGTZL"); type=CJUMP; break;
8226       case 0x18: strcpy(insn[i],"DADDI"); type=IMM16; break;
8227       case 0x19: strcpy(insn[i],"DADDIU"); type=IMM16; break;
8228       case 0x1A: strcpy(insn[i],"LDL"); type=LOADLR; break;
8229       case 0x1B: strcpy(insn[i],"LDR"); type=LOADLR; break;
8230 #endif
8231       case 0x20: strcpy(insn[i],"LB"); type=LOAD; break;
8232       case 0x21: strcpy(insn[i],"LH"); type=LOAD; break;
8233       case 0x22: strcpy(insn[i],"LWL"); type=LOADLR; break;
8234       case 0x23: strcpy(insn[i],"LW"); type=LOAD; break;
8235       case 0x24: strcpy(insn[i],"LBU"); type=LOAD; break;
8236       case 0x25: strcpy(insn[i],"LHU"); type=LOAD; break;
8237       case 0x26: strcpy(insn[i],"LWR"); type=LOADLR; break;
8238 #ifndef FORCE32
8239       case 0x27: strcpy(insn[i],"LWU"); type=LOAD; break;
8240 #endif
8241       case 0x28: strcpy(insn[i],"SB"); type=STORE; break;
8242       case 0x29: strcpy(insn[i],"SH"); type=STORE; break;
8243       case 0x2A: strcpy(insn[i],"SWL"); type=STORELR; break;
8244       case 0x2B: strcpy(insn[i],"SW"); type=STORE; break;
8245 #ifndef FORCE32
8246       case 0x2C: strcpy(insn[i],"SDL"); type=STORELR; break;
8247       case 0x2D: strcpy(insn[i],"SDR"); type=STORELR; break;
8248 #endif
8249       case 0x2E: strcpy(insn[i],"SWR"); type=STORELR; break;
8250       case 0x2F: strcpy(insn[i],"CACHE"); type=NOP; break;
8251       case 0x30: strcpy(insn[i],"LL"); type=NI; break;
8252       case 0x31: strcpy(insn[i],"LWC1"); type=C1LS; break;
8253 #ifndef FORCE32
8254       case 0x34: strcpy(insn[i],"LLD"); type=NI; break;
8255       case 0x35: strcpy(insn[i],"LDC1"); type=C1LS; break;
8256       case 0x37: strcpy(insn[i],"LD"); type=LOAD; break;
8257 #endif
8258       case 0x38: strcpy(insn[i],"SC"); type=NI; break;
8259       case 0x39: strcpy(insn[i],"SWC1"); type=C1LS; break;
8260 #ifndef FORCE32
8261       case 0x3C: strcpy(insn[i],"SCD"); type=NI; break;
8262       case 0x3D: strcpy(insn[i],"SDC1"); type=C1LS; break;
8263       case 0x3F: strcpy(insn[i],"SD"); type=STORE; break;
8264 #endif
8265 #ifdef PCSX
8266       case 0x12: strcpy(insn[i],"COP2"); type=NI;
8267         // note: COP MIPS-1 encoding differs from MIPS32
8268         op2=(source[i]>>21)&0x1f;
8269         if (source[i]&0x3f) {
8270           if (gte_handlers[source[i]&0x3f]!=NULL) {
8271             snprintf(insn[i], sizeof(insn[i]), "COP2 %x", source[i]&0x3f);
8272             type=C2OP;
8273           }
8274         }
8275         else switch(op2)
8276         {
8277           case 0x00: strcpy(insn[i],"MFC2"); type=COP2; break;
8278           case 0x02: strcpy(insn[i],"CFC2"); type=COP2; break;
8279           case 0x04: strcpy(insn[i],"MTC2"); type=COP2; break;
8280           case 0x06: strcpy(insn[i],"CTC2"); type=COP2; break;
8281         }
8282         break;
8283       case 0x32: strcpy(insn[i],"LWC2"); type=C2LS; break;
8284       case 0x3A: strcpy(insn[i],"SWC2"); type=C2LS; break;
8285       case 0x3B: strcpy(insn[i],"HLECALL"); type=HLECALL; break;
8286 #endif
8287       default: strcpy(insn[i],"???"); type=NI;
8288         printf("NI %08x @%08x (%08x)\n", source[i], addr + i*4, addr);
8289         break;
8290     }
8291     itype[i]=type;
8292     opcode2[i]=op2;
8293     /* Get registers/immediates */
8294     lt1[i]=0;
8295     us1[i]=0;
8296     us2[i]=0;
8297     dep1[i]=0;
8298     dep2[i]=0;
8299     switch(type) {
8300       case LOAD:
8301         rs1[i]=(source[i]>>21)&0x1f;
8302         rs2[i]=0;
8303         rt1[i]=(source[i]>>16)&0x1f;
8304         rt2[i]=0;
8305         imm[i]=(short)source[i];
8306         break;
8307       case STORE:
8308       case STORELR:
8309         rs1[i]=(source[i]>>21)&0x1f;
8310         rs2[i]=(source[i]>>16)&0x1f;
8311         rt1[i]=0;
8312         rt2[i]=0;
8313         imm[i]=(short)source[i];
8314         if(op==0x2c||op==0x2d||op==0x3f) us1[i]=rs2[i]; // 64-bit SDL/SDR/SD
8315         break;
8316       case LOADLR:
8317         // LWL/LWR only load part of the register,
8318         // therefore the target register must be treated as a source too
8319         rs1[i]=(source[i]>>21)&0x1f;
8320         rs2[i]=(source[i]>>16)&0x1f;
8321         rt1[i]=(source[i]>>16)&0x1f;
8322         rt2[i]=0;
8323         imm[i]=(short)source[i];
8324         if(op==0x1a||op==0x1b) us1[i]=rs2[i]; // LDR/LDL
8325         if(op==0x26) dep1[i]=rt1[i]; // LWR
8326         break;
8327       case IMM16:
8328         if (op==0x0f) rs1[i]=0; // LUI instruction has no source register
8329         else rs1[i]=(source[i]>>21)&0x1f;
8330         rs2[i]=0;
8331         rt1[i]=(source[i]>>16)&0x1f;
8332         rt2[i]=0;
8333         if(op>=0x0c&&op<=0x0e) { // ANDI/ORI/XORI
8334           imm[i]=(unsigned short)source[i];
8335         }else{
8336           imm[i]=(short)source[i];
8337         }
8338         if(op==0x18||op==0x19) us1[i]=rs1[i]; // DADDI/DADDIU
8339         if(op==0x0a||op==0x0b) us1[i]=rs1[i]; // SLTI/SLTIU
8340         if(op==0x0d||op==0x0e) dep1[i]=rs1[i]; // ORI/XORI
8341         break;
8342       case UJUMP:
8343         rs1[i]=0;
8344         rs2[i]=0;
8345         rt1[i]=0;
8346         rt2[i]=0;
8347         // The JAL instruction writes to r31.
8348         if (op&1) {
8349           rt1[i]=31;
8350         }
8351         rs2[i]=CCREG;
8352         break;
8353       case RJUMP:
8354         rs1[i]=(source[i]>>21)&0x1f;
8355         rs2[i]=0;
8356         rt1[i]=0;
8357         rt2[i]=0;
8358         // The JALR instruction writes to rd.
8359         if (op2&1) {
8360           rt1[i]=(source[i]>>11)&0x1f;
8361         }
8362         rs2[i]=CCREG;
8363         break;
8364       case CJUMP:
8365         rs1[i]=(source[i]>>21)&0x1f;
8366         rs2[i]=(source[i]>>16)&0x1f;
8367         rt1[i]=0;
8368         rt2[i]=0;
8369         if(op&2) { // BGTZ/BLEZ
8370           rs2[i]=0;
8371         }
8372         us1[i]=rs1[i];
8373         us2[i]=rs2[i];
8374         likely[i]=op>>4;
8375         break;
8376       case SJUMP:
8377         rs1[i]=(source[i]>>21)&0x1f;
8378         rs2[i]=CCREG;
8379         rt1[i]=0;
8380         rt2[i]=0;
8381         us1[i]=rs1[i];
8382         if(op2&0x10) { // BxxAL
8383           rt1[i]=31;
8384           // NOTE: If the branch is not taken, r31 is still overwritten
8385         }
8386         likely[i]=(op2&2)>>1;
8387         break;
8388       case FJUMP:
8389         rs1[i]=FSREG;
8390         rs2[i]=CSREG;
8391         rt1[i]=0;
8392         rt2[i]=0;
8393         likely[i]=((source[i])>>17)&1;
8394         break;
8395       case ALU:
8396         rs1[i]=(source[i]>>21)&0x1f; // source
8397         rs2[i]=(source[i]>>16)&0x1f; // subtract amount
8398         rt1[i]=(source[i]>>11)&0x1f; // destination
8399         rt2[i]=0;
8400         if(op2==0x2a||op2==0x2b) { // SLT/SLTU
8401           us1[i]=rs1[i];us2[i]=rs2[i];
8402         }
8403         else if(op2>=0x24&&op2<=0x27) { // AND/OR/XOR/NOR
8404           dep1[i]=rs1[i];dep2[i]=rs2[i];
8405         }
8406         else if(op2>=0x2c&&op2<=0x2f) { // DADD/DSUB
8407           dep1[i]=rs1[i];dep2[i]=rs2[i];
8408         }
8409         break;
8410       case MULTDIV:
8411         rs1[i]=(source[i]>>21)&0x1f; // source
8412         rs2[i]=(source[i]>>16)&0x1f; // divisor
8413         rt1[i]=HIREG;
8414         rt2[i]=LOREG;
8415         if (op2>=0x1c&&op2<=0x1f) { // DMULT/DMULTU/DDIV/DDIVU
8416           us1[i]=rs1[i];us2[i]=rs2[i];
8417         }
8418         break;
8419       case MOV:
8420         rs1[i]=0;
8421         rs2[i]=0;
8422         rt1[i]=0;
8423         rt2[i]=0;
8424         if(op2==0x10) rs1[i]=HIREG; // MFHI
8425         if(op2==0x11) rt1[i]=HIREG; // MTHI
8426         if(op2==0x12) rs1[i]=LOREG; // MFLO
8427         if(op2==0x13) rt1[i]=LOREG; // MTLO
8428         if((op2&0x1d)==0x10) rt1[i]=(source[i]>>11)&0x1f; // MFxx
8429         if((op2&0x1d)==0x11) rs1[i]=(source[i]>>21)&0x1f; // MTxx
8430         dep1[i]=rs1[i];
8431         break;
8432       case SHIFT:
8433         rs1[i]=(source[i]>>16)&0x1f; // target of shift
8434         rs2[i]=(source[i]>>21)&0x1f; // shift amount
8435         rt1[i]=(source[i]>>11)&0x1f; // destination
8436         rt2[i]=0;
8437         // DSLLV/DSRLV/DSRAV are 64-bit
8438         if(op2>=0x14&&op2<=0x17) us1[i]=rs1[i];
8439         break;
8440       case SHIFTIMM:
8441         rs1[i]=(source[i]>>16)&0x1f;
8442         rs2[i]=0;
8443         rt1[i]=(source[i]>>11)&0x1f;
8444         rt2[i]=0;
8445         imm[i]=(source[i]>>6)&0x1f;
8446         // DSxx32 instructions
8447         if(op2>=0x3c) imm[i]|=0x20;
8448         // DSLL/DSRL/DSRA/DSRA32/DSRL32 but not DSLL32 require 64-bit source
8449         if(op2>=0x38&&op2!=0x3c) us1[i]=rs1[i];
8450         break;
8451       case COP0:
8452         rs1[i]=0;
8453         rs2[i]=0;
8454         rt1[i]=0;
8455         rt2[i]=0;
8456         if(op2==0) rt1[i]=(source[i]>>16)&0x1F; // MFC0
8457         if(op2==4) rs1[i]=(source[i]>>16)&0x1F; // MTC0
8458         if(op2==4&&((source[i]>>11)&0x1f)==12) rt2[i]=CSREG; // Status
8459         if(op2==16) if((source[i]&0x3f)==0x18) rs2[i]=CCREG; // ERET
8460         break;
8461       case COP1:
8462       case COP2:
8463         rs1[i]=0;
8464         rs2[i]=0;
8465         rt1[i]=0;
8466         rt2[i]=0;
8467         if(op2<3) rt1[i]=(source[i]>>16)&0x1F; // MFC1/DMFC1/CFC1
8468         if(op2>3) rs1[i]=(source[i]>>16)&0x1F; // MTC1/DMTC1/CTC1
8469         if(op2==5) us1[i]=rs1[i]; // DMTC1
8470         rs2[i]=CSREG;
8471         break;
8472       case C1LS:
8473         rs1[i]=(source[i]>>21)&0x1F;
8474         rs2[i]=CSREG;
8475         rt1[i]=0;
8476         rt2[i]=0;
8477         imm[i]=(short)source[i];
8478         break;
8479       case C2LS:
8480         rs1[i]=(source[i]>>21)&0x1F;
8481         rs2[i]=0;
8482         rt1[i]=0;
8483         rt2[i]=0;
8484         imm[i]=(short)source[i];
8485         break;
8486       case FLOAT:
8487       case FCONV:
8488         rs1[i]=0;
8489         rs2[i]=CSREG;
8490         rt1[i]=0;
8491         rt2[i]=0;
8492         break;
8493       case FCOMP:
8494         rs1[i]=FSREG;
8495         rs2[i]=CSREG;
8496         rt1[i]=FSREG;
8497         rt2[i]=0;
8498         break;
8499       case SYSCALL:
8500       case HLECALL:
8501       case INTCALL:
8502         rs1[i]=CCREG;
8503         rs2[i]=0;
8504         rt1[i]=0;
8505         rt2[i]=0;
8506         break;
8507       default:
8508         rs1[i]=0;
8509         rs2[i]=0;
8510         rt1[i]=0;
8511         rt2[i]=0;
8512     }
8513     /* Calculate branch target addresses */
8514     if(type==UJUMP)
8515       ba[i]=((start+i*4+4)&0xF0000000)|(((unsigned int)source[i]<<6)>>4);
8516     else if(type==CJUMP&&rs1[i]==rs2[i]&&(op&1))
8517       ba[i]=start+i*4+8; // Ignore never taken branch
8518     else if(type==SJUMP&&rs1[i]==0&&!(op2&1))
8519       ba[i]=start+i*4+8; // Ignore never taken branch
8520     else if(type==CJUMP||type==SJUMP||type==FJUMP)
8521       ba[i]=start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14);
8522     else ba[i]=-1;
8523 #ifdef PCSX
8524     if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)) {
8525       int do_in_intrp=0;
8526       // branch in delay slot?
8527       if(type==RJUMP||type==UJUMP||type==CJUMP||type==SJUMP||type==FJUMP) {
8528         // don't handle first branch and call interpreter if it's hit
8529         printf("branch in delay slot @%08x (%08x)\n", addr + i*4, addr);
8530         do_in_intrp=1;
8531       }
8532       // basic load delay detection
8533       else if((type==LOAD||type==LOADLR||type==COP0||type==COP2||type==C2LS)&&rt1[i]!=0) {
8534         int t=(ba[i-1]-start)/4;
8535         if(0 <= t && t < i &&(rt1[i]==rs1[t]||rt1[i]==rs2[t])&&itype[t]!=CJUMP&&itype[t]!=SJUMP) {
8536           // jump target wants DS result - potential load delay effect
8537           printf("load delay @%08x (%08x)\n", addr + i*4, addr);
8538           do_in_intrp=1;
8539           bt[t+1]=1; // expected return from interpreter
8540         }
8541         else if(i>=2&&rt1[i-2]==2&&rt1[i]==2&&rs1[i]!=2&&rs2[i]!=2&&rs1[i-1]!=2&&rs2[i-1]!=2&&
8542               !(i>=3&&(itype[i-3]==RJUMP||itype[i-3]==UJUMP||itype[i-3]==CJUMP||itype[i-3]==SJUMP))) {
8543           // v0 overwrite like this is a sign of trouble, bail out
8544           printf("v0 overwrite @%08x (%08x)\n", addr + i*4, addr);
8545           do_in_intrp=1;
8546         }
8547       }
8548       if(do_in_intrp) {
8549         rs1[i-1]=CCREG;
8550         rs2[i-1]=rt1[i-1]=rt2[i-1]=0;
8551         ba[i-1]=-1;
8552         itype[i-1]=INTCALL;
8553         done=2;
8554         i--; // don't compile the DS
8555       }
8556     }
8557 #endif
8558     /* Is this the end of the block? */
8559     if(i>0&&(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)) {
8560       if(rt1[i-1]==0) { // Continue past subroutine call (JAL)
8561         done=2;
8562       }
8563       else {
8564         if(stop_after_jal) done=1;
8565         // Stop on BREAK
8566         if((source[i+1]&0xfc00003f)==0x0d) done=1;
8567       }
8568       // Don't recompile stuff that's already compiled
8569       if(check_addr(start+i*4+4)) done=1;
8570       // Don't get too close to the limit
8571       if(i>MAXBLOCK/2) done=1;
8572     }
8573     if(itype[i]==SYSCALL&&stop_after_jal) done=1;
8574     if(itype[i]==HLECALL||itype[i]==INTCALL) done=2;
8575     if(done==2) {
8576       // Does the block continue due to a branch?
8577       for(j=i-1;j>=0;j--)
8578       {
8579         if(ba[j]==start+i*4) done=j=0; // Branch into delay slot
8580         if(ba[j]==start+i*4+4) done=j=0;
8581         if(ba[j]==start+i*4+8) done=j=0;
8582       }
8583     }
8584     //assert(i<MAXBLOCK-1);
8585     if(start+i*4==pagelimit-4) done=1;
8586     assert(start+i*4<pagelimit);
8587     if (i==MAXBLOCK-1) done=1;
8588     // Stop if we're compiling junk
8589     if(itype[i]==NI&&opcode[i]==0x11) {
8590       done=stop_after_jal=1;
8591       printf("Disabled speculative precompilation\n");
8592     }
8593   }
8594   slen=i;
8595   if(itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==RJUMP||itype[i-1]==FJUMP) {
8596     if(start+i*4==pagelimit) {
8597       itype[i-1]=SPAN;
8598     }
8599   }
8600   assert(slen>0);
8601
8602   /* Pass 2 - Register dependencies and branch targets */
8603
8604   unneeded_registers(0,slen-1,0);
8605   
8606   /* Pass 3 - Register allocation */
8607
8608   struct regstat current; // Current register allocations/status
8609   current.is32=1;
8610   current.dirty=0;
8611   current.u=unneeded_reg[0];
8612   current.uu=unneeded_reg_upper[0];
8613   clear_all_regs(current.regmap);
8614   alloc_reg(&current,0,CCREG);
8615   dirty_reg(&current,CCREG);
8616   current.isconst=0;
8617   current.wasconst=0;
8618   int ds=0;
8619   int cc=0;
8620   int hr=-1;
8621
8622 #ifndef FORCE32
8623   provisional_32bit();
8624 #endif
8625   if((u_int)addr&1) {
8626     // First instruction is delay slot
8627     cc=-1;
8628     bt[1]=1;
8629     ds=1;
8630     unneeded_reg[0]=1;
8631     unneeded_reg_upper[0]=1;
8632     current.regmap[HOST_BTREG]=BTREG;
8633   }
8634   
8635   for(i=0;i<slen;i++)
8636   {
8637     if(bt[i])
8638     {
8639       int hr;
8640       for(hr=0;hr<HOST_REGS;hr++)
8641       {
8642         // Is this really necessary?
8643         if(current.regmap[hr]==0) current.regmap[hr]=-1;
8644       }
8645       current.isconst=0;
8646     }
8647     if(i>1)
8648     {
8649       if((opcode[i-2]&0x2f)==0x05) // BNE/BNEL
8650       {
8651         if(rs1[i-2]==0||rs2[i-2]==0)
8652         {
8653           if(rs1[i-2]) {
8654             current.is32|=1LL<<rs1[i-2];
8655             int hr=get_reg(current.regmap,rs1[i-2]|64);
8656             if(hr>=0) current.regmap[hr]=-1;
8657           }
8658           if(rs2[i-2]) {
8659             current.is32|=1LL<<rs2[i-2];
8660             int hr=get_reg(current.regmap,rs2[i-2]|64);
8661             if(hr>=0) current.regmap[hr]=-1;
8662           }
8663         }
8664       }
8665     }
8666 #ifndef FORCE32
8667     // If something jumps here with 64-bit values
8668     // then promote those registers to 64 bits
8669     if(bt[i])
8670     {
8671       uint64_t temp_is32=current.is32;
8672       for(j=i-1;j>=0;j--)
8673       {
8674         if(ba[j]==start+i*4) 
8675           temp_is32&=branch_regs[j].is32;
8676       }
8677       for(j=i;j<slen;j++)
8678       {
8679         if(ba[j]==start+i*4) 
8680           //temp_is32=1;
8681           temp_is32&=p32[j];
8682       }
8683       if(temp_is32!=current.is32) {
8684         //printf("dumping 32-bit regs (%x)\n",start+i*4);
8685         #ifndef DESTRUCTIVE_WRITEBACK
8686         if(ds)
8687         #endif
8688         for(hr=0;hr<HOST_REGS;hr++)
8689         {
8690           int r=current.regmap[hr];
8691           if(r>0&&r<64)
8692           {
8693             if((current.dirty>>hr)&((current.is32&~temp_is32)>>r)&1) {
8694               temp_is32|=1LL<<r;
8695               //printf("restore %d\n",r);
8696             }
8697           }
8698         }
8699         current.is32=temp_is32;
8700       }
8701     }
8702 #else
8703     current.is32=-1LL;
8704 #endif
8705
8706     memcpy(regmap_pre[i],current.regmap,sizeof(current.regmap));
8707     regs[i].wasconst=current.isconst;
8708     regs[i].was32=current.is32;
8709     regs[i].wasdirty=current.dirty;
8710     #if defined(DESTRUCTIVE_WRITEBACK) && !defined(FORCE32)
8711     // To change a dirty register from 32 to 64 bits, we must write
8712     // it out during the previous cycle (for branches, 2 cycles)
8713     if(i<slen-1&&bt[i+1]&&itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP)
8714     {
8715       uint64_t temp_is32=current.is32;
8716       for(j=i-1;j>=0;j--)
8717       {
8718         if(ba[j]==start+i*4+4) 
8719           temp_is32&=branch_regs[j].is32;
8720       }
8721       for(j=i;j<slen;j++)
8722       {
8723         if(ba[j]==start+i*4+4) 
8724           //temp_is32=1;
8725           temp_is32&=p32[j];
8726       }
8727       if(temp_is32!=current.is32) {
8728         //printf("pre-dumping 32-bit regs (%x)\n",start+i*4);
8729         for(hr=0;hr<HOST_REGS;hr++)
8730         {
8731           int r=current.regmap[hr];
8732           if(r>0)
8733           {
8734             if((current.dirty>>hr)&((current.is32&~temp_is32)>>(r&63))&1) {
8735               if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP)
8736               {
8737                 if(rs1[i]!=(r&63)&&rs2[i]!=(r&63))
8738                 {
8739                   //printf("dump %d/r%d\n",hr,r);
8740                   current.regmap[hr]=-1;
8741                   if(get_reg(current.regmap,r|64)>=0) 
8742                     current.regmap[get_reg(current.regmap,r|64)]=-1;
8743                 }
8744               }
8745             }
8746           }
8747         }
8748       }
8749     }
8750     else if(i<slen-2&&bt[i+2]&&(source[i-1]>>16)!=0x1000&&(itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP))
8751     {
8752       uint64_t temp_is32=current.is32;
8753       for(j=i-1;j>=0;j--)
8754       {
8755         if(ba[j]==start+i*4+8) 
8756           temp_is32&=branch_regs[j].is32;
8757       }
8758       for(j=i;j<slen;j++)
8759       {
8760         if(ba[j]==start+i*4+8) 
8761           //temp_is32=1;
8762           temp_is32&=p32[j];
8763       }
8764       if(temp_is32!=current.is32) {
8765         //printf("pre-dumping 32-bit regs (%x)\n",start+i*4);
8766         for(hr=0;hr<HOST_REGS;hr++)
8767         {
8768           int r=current.regmap[hr];
8769           if(r>0)
8770           {
8771             if((current.dirty>>hr)&((current.is32&~temp_is32)>>(r&63))&1) {
8772               if(rs1[i]!=(r&63)&&rs2[i]!=(r&63)&&rs1[i+1]!=(r&63)&&rs2[i+1]!=(r&63))
8773               {
8774                 //printf("dump %d/r%d\n",hr,r);
8775                 current.regmap[hr]=-1;
8776                 if(get_reg(current.regmap,r|64)>=0) 
8777                   current.regmap[get_reg(current.regmap,r|64)]=-1;
8778               }
8779             }
8780           }
8781         }
8782       }
8783     }
8784     #endif
8785     if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP) {
8786       if(i+1<slen) {
8787         current.u=unneeded_reg[i+1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
8788         current.uu=unneeded_reg_upper[i+1]&~((1LL<<us1[i])|(1LL<<us2[i]));
8789         if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
8790         current.u|=1;
8791         current.uu|=1;
8792       } else {
8793         current.u=1;
8794         current.uu=1;
8795       }
8796     } else {
8797       if(i+1<slen) {
8798         current.u=branch_unneeded_reg[i]&~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
8799         current.uu=branch_unneeded_reg_upper[i]&~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
8800         if((~current.uu>>rt1[i+1])&1) current.uu&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
8801         current.u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
8802         current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
8803         current.u|=1;
8804         current.uu|=1;
8805       } else { printf("oops, branch at end of block with no delay slot\n");exit(1); }
8806     }
8807     is_ds[i]=ds;
8808     if(ds) {
8809       ds=0; // Skip delay slot, already allocated as part of branch
8810       // ...but we need to alloc it in case something jumps here
8811       if(i+1<slen) {
8812         current.u=branch_unneeded_reg[i-1]&unneeded_reg[i+1];
8813         current.uu=branch_unneeded_reg_upper[i-1]&unneeded_reg_upper[i+1];
8814       }else{
8815         current.u=branch_unneeded_reg[i-1];
8816         current.uu=branch_unneeded_reg_upper[i-1];
8817       }
8818       current.u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
8819       current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
8820       if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
8821       current.u|=1;
8822       current.uu|=1;
8823       struct regstat temp;
8824       memcpy(&temp,&current,sizeof(current));
8825       temp.wasdirty=temp.dirty;
8826       temp.was32=temp.is32;
8827       // TODO: Take into account unconditional branches, as below
8828       delayslot_alloc(&temp,i);
8829       memcpy(regs[i].regmap,temp.regmap,sizeof(temp.regmap));
8830       regs[i].wasdirty=temp.wasdirty;
8831       regs[i].was32=temp.was32;
8832       regs[i].dirty=temp.dirty;
8833       regs[i].is32=temp.is32;
8834       regs[i].isconst=0;
8835       regs[i].wasconst=0;
8836       current.isconst=0;
8837       // Create entry (branch target) regmap
8838       for(hr=0;hr<HOST_REGS;hr++)
8839       {
8840         int r=temp.regmap[hr];
8841         if(r>=0) {
8842           if(r!=regmap_pre[i][hr]) {
8843             regs[i].regmap_entry[hr]=-1;
8844           }
8845           else
8846           {
8847             if(r<64){
8848               if((current.u>>r)&1) {
8849                 regs[i].regmap_entry[hr]=-1;
8850                 regs[i].regmap[hr]=-1;
8851                 //Don't clear regs in the delay slot as the branch might need them
8852                 //current.regmap[hr]=-1;
8853               }else
8854                 regs[i].regmap_entry[hr]=r;
8855             }
8856             else {
8857               if((current.uu>>(r&63))&1) {
8858                 regs[i].regmap_entry[hr]=-1;
8859                 regs[i].regmap[hr]=-1;
8860                 //Don't clear regs in the delay slot as the branch might need them
8861                 //current.regmap[hr]=-1;
8862               }else
8863                 regs[i].regmap_entry[hr]=r;
8864             }
8865           }
8866         } else {
8867           // First instruction expects CCREG to be allocated
8868           if(i==0&&hr==HOST_CCREG) 
8869             regs[i].regmap_entry[hr]=CCREG;
8870           else
8871             regs[i].regmap_entry[hr]=-1;
8872         }
8873       }
8874     }
8875     else { // Not delay slot
8876       switch(itype[i]) {
8877         case UJUMP:
8878           //current.isconst=0; // DEBUG
8879           //current.wasconst=0; // DEBUG
8880           //regs[i].wasconst=0; // DEBUG
8881           clear_const(&current,rt1[i]);
8882           alloc_cc(&current,i);
8883           dirty_reg(&current,CCREG);
8884           ooo[i]=1;
8885           delayslot_alloc(&current,i+1);
8886           if (rt1[i]==31) {
8887             alloc_reg(&current,i,31);
8888             dirty_reg(&current,31);
8889             //assert(rs1[i+1]!=31&&rs2[i+1]!=31);
8890             //assert(rt1[i+1]!=rt1[i]);
8891             #ifdef REG_PREFETCH
8892             alloc_reg(&current,i,PTEMP);
8893             #endif
8894             //current.is32|=1LL<<rt1[i];
8895           }
8896           //current.isconst=0; // DEBUG
8897           ds=1;
8898           //printf("i=%d, isconst=%x\n",i,current.isconst);
8899           break;
8900         case RJUMP:
8901           //current.isconst=0;
8902           //current.wasconst=0;
8903           //regs[i].wasconst=0;
8904           clear_const(&current,rs1[i]);
8905           clear_const(&current,rt1[i]);
8906           alloc_cc(&current,i);
8907           dirty_reg(&current,CCREG);
8908           if(rs1[i]!=rt1[i+1]&&rs1[i]!=rt2[i+1]) {
8909             alloc_reg(&current,i,rs1[i]);
8910             if (rt1[i]!=0) {
8911               alloc_reg(&current,i,rt1[i]);
8912               dirty_reg(&current,rt1[i]);
8913               assert(rs1[i+1]!=rt1[i]&&rs2[i+1]!=rt1[i]);
8914               assert(rt1[i+1]!=rt1[i]);
8915               #ifdef REG_PREFETCH
8916               alloc_reg(&current,i,PTEMP);
8917               #endif
8918             }
8919             #ifdef USE_MINI_HT
8920             if(rs1[i]==31) { // JALR
8921               alloc_reg(&current,i,RHASH);
8922               #ifndef HOST_IMM_ADDR32
8923               alloc_reg(&current,i,RHTBL);
8924               #endif
8925             }
8926             #endif
8927             delayslot_alloc(&current,i+1);
8928           } else {
8929             // The delay slot overwrites our source register,
8930             // allocate a temporary register to hold the old value.
8931             current.isconst=0;
8932             current.wasconst=0;
8933             regs[i].wasconst=0;
8934             delayslot_alloc(&current,i+1);
8935             current.isconst=0;
8936             alloc_reg(&current,i,RTEMP);
8937           }
8938           //current.isconst=0; // DEBUG
8939           ooo[i]=1;
8940           ds=1;
8941           break;
8942         case CJUMP:
8943           //current.isconst=0;
8944           //current.wasconst=0;
8945           //regs[i].wasconst=0;
8946           clear_const(&current,rs1[i]);
8947           clear_const(&current,rs2[i]);
8948           if((opcode[i]&0x3E)==4) // BEQ/BNE
8949           {
8950             alloc_cc(&current,i);
8951             dirty_reg(&current,CCREG);
8952             if(rs1[i]) alloc_reg(&current,i,rs1[i]);
8953             if(rs2[i]) alloc_reg(&current,i,rs2[i]);
8954             if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
8955             {
8956               if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
8957               if(rs2[i]) alloc_reg64(&current,i,rs2[i]);
8958             }
8959             if((rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]))||
8960                (rs2[i]&&(rs2[i]==rt1[i+1]||rs2[i]==rt2[i+1]))) {
8961               // The delay slot overwrites one of our conditions.
8962               // Allocate the branch condition registers instead.
8963               current.isconst=0;
8964               current.wasconst=0;
8965               regs[i].wasconst=0;
8966               if(rs1[i]) alloc_reg(&current,i,rs1[i]);
8967               if(rs2[i]) alloc_reg(&current,i,rs2[i]);
8968               if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
8969               {
8970                 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
8971                 if(rs2[i]) alloc_reg64(&current,i,rs2[i]);
8972               }
8973             }
8974             else
8975             {
8976               ooo[i]=1;
8977               delayslot_alloc(&current,i+1);
8978             }
8979           }
8980           else
8981           if((opcode[i]&0x3E)==6) // BLEZ/BGTZ
8982           {
8983             alloc_cc(&current,i);
8984             dirty_reg(&current,CCREG);
8985             alloc_reg(&current,i,rs1[i]);
8986             if(!(current.is32>>rs1[i]&1))
8987             {
8988               alloc_reg64(&current,i,rs1[i]);
8989             }
8990             if(rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1])) {
8991               // The delay slot overwrites one of our conditions.
8992               // Allocate the branch condition registers instead.
8993               current.isconst=0;
8994               current.wasconst=0;
8995               regs[i].wasconst=0;
8996               if(rs1[i]) alloc_reg(&current,i,rs1[i]);
8997               if(!((current.is32>>rs1[i])&1))
8998               {
8999                 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
9000               }
9001             }
9002             else
9003             {
9004               ooo[i]=1;
9005               delayslot_alloc(&current,i+1);
9006             }
9007           }
9008           else
9009           // Don't alloc the delay slot yet because we might not execute it
9010           if((opcode[i]&0x3E)==0x14) // BEQL/BNEL
9011           {
9012             current.isconst=0;
9013             current.wasconst=0;
9014             regs[i].wasconst=0;
9015             alloc_cc(&current,i);
9016             dirty_reg(&current,CCREG);
9017             alloc_reg(&current,i,rs1[i]);
9018             alloc_reg(&current,i,rs2[i]);
9019             if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
9020             {
9021               alloc_reg64(&current,i,rs1[i]);
9022               alloc_reg64(&current,i,rs2[i]);
9023             }
9024           }
9025           else
9026           if((opcode[i]&0x3E)==0x16) // BLEZL/BGTZL
9027           {
9028             current.isconst=0;
9029             current.wasconst=0;
9030             regs[i].wasconst=0;
9031             alloc_cc(&current,i);
9032             dirty_reg(&current,CCREG);
9033             alloc_reg(&current,i,rs1[i]);
9034             if(!(current.is32>>rs1[i]&1))
9035             {
9036               alloc_reg64(&current,i,rs1[i]);
9037             }
9038           }
9039           ds=1;
9040           //current.isconst=0;
9041           break;
9042         case SJUMP:
9043           //current.isconst=0;
9044           //current.wasconst=0;
9045           //regs[i].wasconst=0;
9046           clear_const(&current,rs1[i]);
9047           clear_const(&current,rt1[i]);
9048           //if((opcode2[i]&0x1E)==0x0) // BLTZ/BGEZ
9049           if((opcode2[i]&0x0E)==0x0) // BLTZ/BGEZ
9050           {
9051             alloc_cc(&current,i);
9052             dirty_reg(&current,CCREG);
9053             alloc_reg(&current,i,rs1[i]);
9054             if(!(current.is32>>rs1[i]&1))
9055             {
9056               alloc_reg64(&current,i,rs1[i]);
9057             }
9058             if (rt1[i]==31) { // BLTZAL/BGEZAL
9059               alloc_reg(&current,i,31);
9060               dirty_reg(&current,31);
9061               //#ifdef REG_PREFETCH
9062               //alloc_reg(&current,i,PTEMP);
9063               //#endif
9064               //current.is32|=1LL<<rt1[i];
9065             }
9066             if((rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1])) // The delay slot overwrites the branch condition.
9067                ||(rt1[i]==31&&(rs1[i+1]==31||rs2[i+1]==31||rt1[i+1]==31||rt2[i+1]==31))) { // DS touches $ra
9068               // Allocate the branch condition registers instead.
9069               current.isconst=0;
9070               current.wasconst=0;
9071               regs[i].wasconst=0;
9072               if(rs1[i]) alloc_reg(&current,i,rs1[i]);
9073               if(!((current.is32>>rs1[i])&1))
9074               {
9075                 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
9076               }
9077             }
9078             else
9079             {
9080               ooo[i]=1;
9081               delayslot_alloc(&current,i+1);
9082             }
9083           }
9084           else
9085           // Don't alloc the delay slot yet because we might not execute it
9086           if((opcode2[i]&0x1E)==0x2) // BLTZL/BGEZL
9087           {
9088             current.isconst=0;
9089             current.wasconst=0;
9090             regs[i].wasconst=0;
9091             alloc_cc(&current,i);
9092             dirty_reg(&current,CCREG);
9093             alloc_reg(&current,i,rs1[i]);
9094             if(!(current.is32>>rs1[i]&1))
9095             {
9096               alloc_reg64(&current,i,rs1[i]);
9097             }
9098           }
9099           ds=1;
9100           //current.isconst=0;
9101           break;
9102         case FJUMP:
9103           current.isconst=0;
9104           current.wasconst=0;
9105           regs[i].wasconst=0;
9106           if(likely[i]==0) // BC1F/BC1T
9107           {
9108             // TODO: Theoretically we can run out of registers here on x86.
9109             // The delay slot can allocate up to six, and we need to check
9110             // CSREG before executing the delay slot.  Possibly we can drop
9111             // the cycle count and then reload it after checking that the
9112             // FPU is in a usable state, or don't do out-of-order execution.
9113             alloc_cc(&current,i);
9114             dirty_reg(&current,CCREG);
9115             alloc_reg(&current,i,FSREG);
9116             alloc_reg(&current,i,CSREG);
9117             if(itype[i+1]==FCOMP) {
9118               // The delay slot overwrites the branch condition.
9119               // Allocate the branch condition registers instead.
9120               alloc_cc(&current,i);
9121               dirty_reg(&current,CCREG);
9122               alloc_reg(&current,i,CSREG);
9123               alloc_reg(&current,i,FSREG);
9124             }
9125             else {
9126               ooo[i]=1;
9127               delayslot_alloc(&current,i+1);
9128               alloc_reg(&current,i+1,CSREG);
9129             }
9130           }
9131           else
9132           // Don't alloc the delay slot yet because we might not execute it
9133           if(likely[i]) // BC1FL/BC1TL
9134           {
9135             alloc_cc(&current,i);
9136             dirty_reg(&current,CCREG);
9137             alloc_reg(&current,i,CSREG);
9138             alloc_reg(&current,i,FSREG);
9139           }
9140           ds=1;
9141           current.isconst=0;
9142           break;
9143         case IMM16:
9144           imm16_alloc(&current,i);
9145           break;
9146         case LOAD:
9147         case LOADLR:
9148           load_alloc(&current,i);
9149           break;
9150         case STORE:
9151         case STORELR:
9152           store_alloc(&current,i);
9153           break;
9154         case ALU:
9155           alu_alloc(&current,i);
9156           break;
9157         case SHIFT:
9158           shift_alloc(&current,i);
9159           break;
9160         case MULTDIV:
9161           multdiv_alloc(&current,i);
9162           break;
9163         case SHIFTIMM:
9164           shiftimm_alloc(&current,i);
9165           break;
9166         case MOV:
9167           mov_alloc(&current,i);
9168           break;
9169         case COP0:
9170           cop0_alloc(&current,i);
9171           break;
9172         case COP1:
9173         case COP2:
9174           cop1_alloc(&current,i);
9175           break;
9176         case C1LS:
9177           c1ls_alloc(&current,i);
9178           break;
9179         case C2LS:
9180           c2ls_alloc(&current,i);
9181           break;
9182         case C2OP:
9183           c2op_alloc(&current,i);
9184           break;
9185         case FCONV:
9186           fconv_alloc(&current,i);
9187           break;
9188         case FLOAT:
9189           float_alloc(&current,i);
9190           break;
9191         case FCOMP:
9192           fcomp_alloc(&current,i);
9193           break;
9194         case SYSCALL:
9195         case HLECALL:
9196         case INTCALL:
9197           syscall_alloc(&current,i);
9198           break;
9199         case SPAN:
9200           pagespan_alloc(&current,i);
9201           break;
9202       }
9203       
9204       // Drop the upper half of registers that have become 32-bit
9205       current.uu|=current.is32&((1LL<<rt1[i])|(1LL<<rt2[i]));
9206       if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP) {
9207         current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
9208         if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9209         current.uu|=1;
9210       } else {
9211         current.uu|=current.is32&((1LL<<rt1[i+1])|(1LL<<rt2[i+1]));
9212         current.uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
9213         if((~current.uu>>rt1[i+1])&1) current.uu&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
9214         current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
9215         current.uu|=1;
9216       }
9217
9218       // Create entry (branch target) regmap
9219       for(hr=0;hr<HOST_REGS;hr++)
9220       {
9221         int r,or,er;
9222         r=current.regmap[hr];
9223         if(r>=0) {
9224           if(r!=regmap_pre[i][hr]) {
9225             // TODO: delay slot (?)
9226             or=get_reg(regmap_pre[i],r); // Get old mapping for this register
9227             if(or<0||(r&63)>=TEMPREG){
9228               regs[i].regmap_entry[hr]=-1;
9229             }
9230             else
9231             {
9232               // Just move it to a different register
9233               regs[i].regmap_entry[hr]=r;
9234               // If it was dirty before, it's still dirty
9235               if((regs[i].wasdirty>>or)&1) dirty_reg(&current,r&63);
9236             }
9237           }
9238           else
9239           {
9240             // Unneeded
9241             if(r==0){
9242               regs[i].regmap_entry[hr]=0;
9243             }
9244             else
9245             if(r<64){
9246               if((current.u>>r)&1) {
9247                 regs[i].regmap_entry[hr]=-1;
9248                 //regs[i].regmap[hr]=-1;
9249                 current.regmap[hr]=-1;
9250               }else
9251                 regs[i].regmap_entry[hr]=r;
9252             }
9253             else {
9254               if((current.uu>>(r&63))&1) {
9255                 regs[i].regmap_entry[hr]=-1;
9256                 //regs[i].regmap[hr]=-1;
9257                 current.regmap[hr]=-1;
9258               }else
9259                 regs[i].regmap_entry[hr]=r;
9260             }
9261           }
9262         } else {
9263           // Branches expect CCREG to be allocated at the target
9264           if(regmap_pre[i][hr]==CCREG) 
9265             regs[i].regmap_entry[hr]=CCREG;
9266           else
9267             regs[i].regmap_entry[hr]=-1;
9268         }
9269       }
9270       memcpy(regs[i].regmap,current.regmap,sizeof(current.regmap));
9271     }
9272     /* Branch post-alloc */
9273     if(i>0)
9274     {
9275       current.was32=current.is32;
9276       current.wasdirty=current.dirty;
9277       switch(itype[i-1]) {
9278         case UJUMP:
9279           memcpy(&branch_regs[i-1],&current,sizeof(current));
9280           branch_regs[i-1].isconst=0;
9281           branch_regs[i-1].wasconst=0;
9282           branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
9283           branch_regs[i-1].uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
9284           alloc_cc(&branch_regs[i-1],i-1);
9285           dirty_reg(&branch_regs[i-1],CCREG);
9286           if(rt1[i-1]==31) { // JAL
9287             alloc_reg(&branch_regs[i-1],i-1,31);
9288             dirty_reg(&branch_regs[i-1],31);
9289             branch_regs[i-1].is32|=1LL<<31;
9290           }
9291           memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9292           memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9293           break;
9294         case RJUMP:
9295           memcpy(&branch_regs[i-1],&current,sizeof(current));
9296           branch_regs[i-1].isconst=0;
9297           branch_regs[i-1].wasconst=0;
9298           branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
9299           branch_regs[i-1].uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
9300           alloc_cc(&branch_regs[i-1],i-1);
9301           dirty_reg(&branch_regs[i-1],CCREG);
9302           alloc_reg(&branch_regs[i-1],i-1,rs1[i-1]);
9303           if(rt1[i-1]!=0) { // JALR
9304             alloc_reg(&branch_regs[i-1],i-1,rt1[i-1]);
9305             dirty_reg(&branch_regs[i-1],rt1[i-1]);
9306             branch_regs[i-1].is32|=1LL<<rt1[i-1];
9307           }
9308           #ifdef USE_MINI_HT
9309           if(rs1[i-1]==31) { // JALR
9310             alloc_reg(&branch_regs[i-1],i-1,RHASH);
9311             #ifndef HOST_IMM_ADDR32
9312             alloc_reg(&branch_regs[i-1],i-1,RHTBL);
9313             #endif
9314           }
9315           #endif
9316           memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9317           memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9318           break;
9319         case CJUMP:
9320           if((opcode[i-1]&0x3E)==4) // BEQ/BNE
9321           {
9322             alloc_cc(&current,i-1);
9323             dirty_reg(&current,CCREG);
9324             if((rs1[i-1]&&(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]))||
9325                (rs2[i-1]&&(rs2[i-1]==rt1[i]||rs2[i-1]==rt2[i]))) {
9326               // The delay slot overwrote one of our conditions
9327               // Delay slot goes after the test (in order)
9328               current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
9329               current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
9330               if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9331               current.u|=1;
9332               current.uu|=1;
9333               delayslot_alloc(&current,i);
9334               current.isconst=0;
9335             }
9336             else
9337             {
9338               current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
9339               current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
9340               // Alloc the branch condition registers
9341               if(rs1[i-1]) alloc_reg(&current,i-1,rs1[i-1]);
9342               if(rs2[i-1]) alloc_reg(&current,i-1,rs2[i-1]);
9343               if(!((current.is32>>rs1[i-1])&(current.is32>>rs2[i-1])&1))
9344               {
9345                 if(rs1[i-1]) alloc_reg64(&current,i-1,rs1[i-1]);
9346                 if(rs2[i-1]) alloc_reg64(&current,i-1,rs2[i-1]);
9347               }
9348             }
9349             memcpy(&branch_regs[i-1],&current,sizeof(current));
9350             branch_regs[i-1].isconst=0;
9351             branch_regs[i-1].wasconst=0;
9352             memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9353             memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9354           }
9355           else
9356           if((opcode[i-1]&0x3E)==6) // BLEZ/BGTZ
9357           {
9358             alloc_cc(&current,i-1);
9359             dirty_reg(&current,CCREG);
9360             if(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]) {
9361               // The delay slot overwrote the branch condition
9362               // Delay slot goes after the test (in order)
9363               current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
9364               current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
9365               if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9366               current.u|=1;
9367               current.uu|=1;
9368               delayslot_alloc(&current,i);
9369               current.isconst=0;
9370             }
9371             else
9372             {
9373               current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
9374               current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
9375               // Alloc the branch condition register
9376               alloc_reg(&current,i-1,rs1[i-1]);
9377               if(!(current.is32>>rs1[i-1]&1))
9378               {
9379                 alloc_reg64(&current,i-1,rs1[i-1]);
9380               }
9381             }
9382             memcpy(&branch_regs[i-1],&current,sizeof(current));
9383             branch_regs[i-1].isconst=0;
9384             branch_regs[i-1].wasconst=0;
9385             memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9386             memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9387           }
9388           else
9389           // Alloc the delay slot in case the branch is taken
9390           if((opcode[i-1]&0x3E)==0x14) // BEQL/BNEL
9391           {
9392             memcpy(&branch_regs[i-1],&current,sizeof(current));
9393             branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9394             branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9395             if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9396             alloc_cc(&branch_regs[i-1],i);
9397             dirty_reg(&branch_regs[i-1],CCREG);
9398             delayslot_alloc(&branch_regs[i-1],i);
9399             branch_regs[i-1].isconst=0;
9400             alloc_reg(&current,i,CCREG); // Not taken path
9401             dirty_reg(&current,CCREG);
9402             memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9403           }
9404           else
9405           if((opcode[i-1]&0x3E)==0x16) // BLEZL/BGTZL
9406           {
9407             memcpy(&branch_regs[i-1],&current,sizeof(current));
9408             branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9409             branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9410             if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9411             alloc_cc(&branch_regs[i-1],i);
9412             dirty_reg(&branch_regs[i-1],CCREG);
9413             delayslot_alloc(&branch_regs[i-1],i);
9414             branch_regs[i-1].isconst=0;
9415             alloc_reg(&current,i,CCREG); // Not taken path
9416             dirty_reg(&current,CCREG);
9417             memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9418           }
9419           break;
9420         case SJUMP:
9421           //if((opcode2[i-1]&0x1E)==0) // BLTZ/BGEZ
9422           if((opcode2[i-1]&0x0E)==0) // BLTZ/BGEZ
9423           {
9424             alloc_cc(&current,i-1);
9425             dirty_reg(&current,CCREG);
9426             if(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]) {
9427               // The delay slot overwrote the branch condition
9428               // Delay slot goes after the test (in order)
9429               current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
9430               current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
9431               if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9432               current.u|=1;
9433               current.uu|=1;
9434               delayslot_alloc(&current,i);
9435               current.isconst=0;
9436             }
9437             else
9438             {
9439               current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
9440               current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
9441               // Alloc the branch condition register
9442               alloc_reg(&current,i-1,rs1[i-1]);
9443               if(!(current.is32>>rs1[i-1]&1))
9444               {
9445                 alloc_reg64(&current,i-1,rs1[i-1]);
9446               }
9447             }
9448             memcpy(&branch_regs[i-1],&current,sizeof(current));
9449             branch_regs[i-1].isconst=0;
9450             branch_regs[i-1].wasconst=0;
9451             memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9452             memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9453           }
9454           else
9455           // Alloc the delay slot in case the branch is taken
9456           if((opcode2[i-1]&0x1E)==2) // BLTZL/BGEZL
9457           {
9458             memcpy(&branch_regs[i-1],&current,sizeof(current));
9459             branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9460             branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9461             if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9462             alloc_cc(&branch_regs[i-1],i);
9463             dirty_reg(&branch_regs[i-1],CCREG);
9464             delayslot_alloc(&branch_regs[i-1],i);
9465             branch_regs[i-1].isconst=0;
9466             alloc_reg(&current,i,CCREG); // Not taken path
9467             dirty_reg(&current,CCREG);
9468             memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9469           }
9470           // FIXME: BLTZAL/BGEZAL
9471           if(opcode2[i-1]&0x10) { // BxxZAL
9472             alloc_reg(&branch_regs[i-1],i-1,31);
9473             dirty_reg(&branch_regs[i-1],31);
9474             branch_regs[i-1].is32|=1LL<<31;
9475           }
9476           break;
9477         case FJUMP:
9478           if(likely[i-1]==0) // BC1F/BC1T
9479           {
9480             alloc_cc(&current,i-1);
9481             dirty_reg(&current,CCREG);
9482             if(itype[i]==FCOMP) {
9483               // The delay slot overwrote the branch condition
9484               // Delay slot goes after the test (in order)
9485               delayslot_alloc(&current,i);
9486               current.isconst=0;
9487             }
9488             else
9489             {
9490               current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
9491               current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
9492               // Alloc the branch condition register
9493               alloc_reg(&current,i-1,FSREG);
9494             }
9495             memcpy(&branch_regs[i-1],&current,sizeof(current));
9496             memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9497           }
9498           else // BC1FL/BC1TL
9499           {
9500             // Alloc the delay slot in case the branch is taken
9501             memcpy(&branch_regs[i-1],&current,sizeof(current));
9502             branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9503             branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9504             if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9505             alloc_cc(&branch_regs[i-1],i);
9506             dirty_reg(&branch_regs[i-1],CCREG);
9507             delayslot_alloc(&branch_regs[i-1],i);
9508             branch_regs[i-1].isconst=0;
9509             alloc_reg(&current,i,CCREG); // Not taken path
9510             dirty_reg(&current,CCREG);
9511             memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9512           }
9513           break;
9514       }
9515
9516       if(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)
9517       {
9518         if(rt1[i-1]==31) // JAL/JALR
9519         {
9520           // Subroutine call will return here, don't alloc any registers
9521           current.is32=1;
9522           current.dirty=0;
9523           clear_all_regs(current.regmap);
9524           alloc_reg(&current,i,CCREG);
9525           dirty_reg(&current,CCREG);
9526         }
9527         else if(i+1<slen)
9528         {
9529           // Internal branch will jump here, match registers to caller
9530           current.is32=0x3FFFFFFFFLL;
9531           current.dirty=0;
9532           clear_all_regs(current.regmap);
9533           alloc_reg(&current,i,CCREG);
9534           dirty_reg(&current,CCREG);
9535           for(j=i-1;j>=0;j--)
9536           {
9537             if(ba[j]==start+i*4+4) {
9538               memcpy(current.regmap,branch_regs[j].regmap,sizeof(current.regmap));
9539               current.is32=branch_regs[j].is32;
9540               current.dirty=branch_regs[j].dirty;
9541               break;
9542             }
9543           }
9544           while(j>=0) {
9545             if(ba[j]==start+i*4+4) {
9546               for(hr=0;hr<HOST_REGS;hr++) {
9547                 if(current.regmap[hr]!=branch_regs[j].regmap[hr]) {
9548                   current.regmap[hr]=-1;
9549                 }
9550                 current.is32&=branch_regs[j].is32;
9551                 current.dirty&=branch_regs[j].dirty;
9552               }
9553             }
9554             j--;
9555           }
9556         }
9557       }
9558     }
9559
9560     // Count cycles in between branches
9561     ccadj[i]=cc;
9562     if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP||itype[i]==SYSCALL||itype[i]==HLECALL))
9563     {
9564       cc=0;
9565     }
9566 #ifdef PCSX
9567     else if(/*itype[i]==LOAD||*/itype[i]==STORE||itype[i]==C1LS) // load causes weird timing issues
9568     {
9569       cc+=2; // 2 cycle penalty (after CLOCK_DIVIDER)
9570     }
9571     else if(itype[i]==C2LS)
9572     {
9573       cc+=4;
9574     }
9575 #endif
9576     else
9577     {
9578       cc++;
9579     }
9580
9581     flush_dirty_uppers(&current);
9582     if(!is_ds[i]) {
9583       regs[i].is32=current.is32;
9584       regs[i].dirty=current.dirty;
9585       regs[i].isconst=current.isconst;
9586       memcpy(constmap[i],current.constmap,sizeof(current.constmap));
9587     }
9588     for(hr=0;hr<HOST_REGS;hr++) {
9589       if(hr!=EXCLUDE_REG&&regs[i].regmap[hr]>=0) {
9590         if(regmap_pre[i][hr]!=regs[i].regmap[hr]) {
9591           regs[i].wasconst&=~(1<<hr);
9592         }
9593       }
9594     }
9595     if(current.regmap[HOST_BTREG]==BTREG) current.regmap[HOST_BTREG]=-1;
9596   }
9597   
9598   /* Pass 4 - Cull unused host registers */
9599   
9600   uint64_t nr=0;
9601   
9602   for (i=slen-1;i>=0;i--)
9603   {
9604     int hr;
9605     if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
9606     {
9607       if(ba[i]<start || ba[i]>=(start+slen*4))
9608       {
9609         // Branch out of this block, don't need anything
9610         nr=0;
9611       }
9612       else
9613       {
9614         // Internal branch
9615         // Need whatever matches the target
9616         nr=0;
9617         int t=(ba[i]-start)>>2;
9618         for(hr=0;hr<HOST_REGS;hr++)
9619         {
9620           if(regs[i].regmap_entry[hr]>=0) {
9621             if(regs[i].regmap_entry[hr]==regs[t].regmap_entry[hr]) nr|=1<<hr;
9622           }
9623         }
9624       }
9625       // Conditional branch may need registers for following instructions
9626       if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
9627       {
9628         if(i<slen-2) {
9629           nr|=needed_reg[i+2];
9630           for(hr=0;hr<HOST_REGS;hr++)
9631           {
9632             if(regmap_pre[i+2][hr]>=0&&get_reg(regs[i+2].regmap_entry,regmap_pre[i+2][hr])<0) nr&=~(1<<hr);
9633             //if((regmap_entry[i+2][hr])>=0) if(!((nr>>hr)&1)) printf("%x-bogus(%d=%d)\n",start+i*4,hr,regmap_entry[i+2][hr]);
9634           }
9635         }
9636       }
9637       // Don't need stuff which is overwritten
9638       //if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
9639       //if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
9640       // Merge in delay slot
9641       for(hr=0;hr<HOST_REGS;hr++)
9642       {
9643         if(!likely[i]) {
9644           // These are overwritten unless the branch is "likely"
9645           // and the delay slot is nullified if not taken
9646           if(rt1[i+1]&&rt1[i+1]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9647           if(rt2[i+1]&&rt2[i+1]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9648         }
9649         if(us1[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9650         if(us2[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9651         if(rs1[i+1]==regmap_pre[i][hr]) nr|=1<<hr;
9652         if(rs2[i+1]==regmap_pre[i][hr]) nr|=1<<hr;
9653         if(us1[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9654         if(us2[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9655         if(rs1[i+1]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9656         if(rs2[i+1]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9657         if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1)) {
9658           if(dep1[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9659           if(dep2[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9660         }
9661         if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1)) {
9662           if(dep1[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9663           if(dep2[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9664         }
9665         if(itype[i+1]==STORE || itype[i+1]==STORELR || (opcode[i+1]&0x3b)==0x39 || (opcode[i+1]&0x3b)==0x3a) {
9666           if(regmap_pre[i][hr]==INVCP) nr|=1<<hr;
9667           if(regs[i].regmap_entry[hr]==INVCP) nr|=1<<hr;
9668         }
9669       }
9670     }
9671     else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
9672     {
9673       // SYSCALL instruction (software interrupt)
9674       nr=0;
9675     }
9676     else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
9677     {
9678       // ERET instruction (return from interrupt)
9679       nr=0;
9680     }
9681     else // Non-branch
9682     {
9683       if(i<slen-1) {
9684         for(hr=0;hr<HOST_REGS;hr++) {
9685           if(regmap_pre[i+1][hr]>=0&&get_reg(regs[i+1].regmap_entry,regmap_pre[i+1][hr])<0) nr&=~(1<<hr);
9686           if(regs[i].regmap[hr]!=regmap_pre[i+1][hr]) nr&=~(1<<hr);
9687           if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
9688           if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
9689         }
9690       }
9691     }
9692     for(hr=0;hr<HOST_REGS;hr++)
9693     {
9694       // Overwritten registers are not needed
9695       if(rt1[i]&&rt1[i]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9696       if(rt2[i]&&rt2[i]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9697       if(FTEMP==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9698       // Source registers are needed
9699       if(us1[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9700       if(us2[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9701       if(rs1[i]==regmap_pre[i][hr]) nr|=1<<hr;
9702       if(rs2[i]==regmap_pre[i][hr]) nr|=1<<hr;
9703       if(us1[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9704       if(us2[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9705       if(rs1[i]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9706       if(rs2[i]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9707       if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1)) {
9708         if(dep1[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9709         if(dep1[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9710       }
9711       if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1)) {
9712         if(dep2[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9713         if(dep2[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9714       }
9715       if(itype[i]==STORE || itype[i]==STORELR || (opcode[i]&0x3b)==0x39 || (opcode[i]&0x3b)==0x3a) {
9716         if(regmap_pre[i][hr]==INVCP) nr|=1<<hr;
9717         if(regs[i].regmap_entry[hr]==INVCP) nr|=1<<hr;
9718       }
9719       // Don't store a register immediately after writing it,
9720       // may prevent dual-issue.
9721       // But do so if this is a branch target, otherwise we
9722       // might have to load the register before the branch.
9723       if(i>0&&!bt[i]&&((regs[i].wasdirty>>hr)&1)) {
9724         if((regmap_pre[i][hr]>0&&regmap_pre[i][hr]<64&&!((unneeded_reg[i]>>regmap_pre[i][hr])&1)) ||
9725            (regmap_pre[i][hr]>64&&!((unneeded_reg_upper[i]>>(regmap_pre[i][hr]&63))&1)) ) {
9726           if(rt1[i-1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9727           if(rt2[i-1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9728         }
9729         if((regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64&&!((unneeded_reg[i]>>regs[i].regmap_entry[hr])&1)) ||
9730            (regs[i].regmap_entry[hr]>64&&!((unneeded_reg_upper[i]>>(regs[i].regmap_entry[hr]&63))&1)) ) {
9731           if(rt1[i-1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9732           if(rt2[i-1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9733         }
9734       }
9735     }
9736     // Cycle count is needed at branches.  Assume it is needed at the target too.
9737     if(i==0||bt[i]||itype[i]==CJUMP||itype[i]==FJUMP||itype[i]==SPAN) {
9738       if(regmap_pre[i][HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
9739       if(regs[i].regmap_entry[HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
9740     }
9741     // Save it
9742     needed_reg[i]=nr;
9743     
9744     // Deallocate unneeded registers
9745     for(hr=0;hr<HOST_REGS;hr++)
9746     {
9747       if(!((nr>>hr)&1)) {
9748         if(regs[i].regmap_entry[hr]!=CCREG) regs[i].regmap_entry[hr]=-1;
9749         if((regs[i].regmap[hr]&63)!=rs1[i] && (regs[i].regmap[hr]&63)!=rs2[i] &&
9750            (regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
9751            (regs[i].regmap[hr]&63)!=PTEMP && (regs[i].regmap[hr]&63)!=CCREG)
9752         {
9753           if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
9754           {
9755             if(likely[i]) {
9756               regs[i].regmap[hr]=-1;
9757               regs[i].isconst&=~(1<<hr);
9758               if(i<slen-2) {
9759                 regmap_pre[i+2][hr]=-1;
9760                 regs[i+2].wasconst&=~(1<<hr);
9761               }
9762             }
9763           }
9764         }
9765         if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
9766         {
9767           int d1=0,d2=0,map=0,temp=0;
9768           if(get_reg(regs[i].regmap,rt1[i+1]|64)>=0||get_reg(branch_regs[i].regmap,rt1[i+1]|64)>=0)
9769           {
9770             d1=dep1[i+1];
9771             d2=dep2[i+1];
9772           }
9773           if(using_tlb) {
9774             if(itype[i+1]==LOAD || itype[i+1]==LOADLR ||
9775                itype[i+1]==STORE || itype[i+1]==STORELR ||
9776                itype[i+1]==C1LS || itype[i+1]==C2LS)
9777             map=TLREG;
9778           } else
9779           if(itype[i+1]==STORE || itype[i+1]==STORELR ||
9780              (opcode[i+1]&0x3b)==0x39 || (opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1 || SWC2/SDC2
9781             map=INVCP;
9782           }
9783           if(itype[i+1]==LOADLR || itype[i+1]==STORELR ||
9784              itype[i+1]==C1LS || itype[i+1]==C2LS)
9785             temp=FTEMP;
9786           if((regs[i].regmap[hr]&63)!=rs1[i] && (regs[i].regmap[hr]&63)!=rs2[i] &&
9787              (regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
9788              (regs[i].regmap[hr]&63)!=rt1[i+1] && (regs[i].regmap[hr]&63)!=rt2[i+1] &&
9789              (regs[i].regmap[hr]^64)!=us1[i+1] && (regs[i].regmap[hr]^64)!=us2[i+1] &&
9790              (regs[i].regmap[hr]^64)!=d1 && (regs[i].regmap[hr]^64)!=d2 &&
9791              regs[i].regmap[hr]!=rs1[i+1] && regs[i].regmap[hr]!=rs2[i+1] &&
9792              (regs[i].regmap[hr]&63)!=temp && regs[i].regmap[hr]!=PTEMP &&
9793              regs[i].regmap[hr]!=RHASH && regs[i].regmap[hr]!=RHTBL &&
9794              regs[i].regmap[hr]!=RTEMP && regs[i].regmap[hr]!=CCREG &&
9795              regs[i].regmap[hr]!=map )
9796           {
9797             regs[i].regmap[hr]=-1;
9798             regs[i].isconst&=~(1<<hr);
9799             if((branch_regs[i].regmap[hr]&63)!=rs1[i] && (branch_regs[i].regmap[hr]&63)!=rs2[i] &&
9800                (branch_regs[i].regmap[hr]&63)!=rt1[i] && (branch_regs[i].regmap[hr]&63)!=rt2[i] &&
9801                (branch_regs[i].regmap[hr]&63)!=rt1[i+1] && (branch_regs[i].regmap[hr]&63)!=rt2[i+1] &&
9802                (branch_regs[i].regmap[hr]^64)!=us1[i+1] && (branch_regs[i].regmap[hr]^64)!=us2[i+1] &&
9803                (branch_regs[i].regmap[hr]^64)!=d1 && (branch_regs[i].regmap[hr]^64)!=d2 &&
9804                branch_regs[i].regmap[hr]!=rs1[i+1] && branch_regs[i].regmap[hr]!=rs2[i+1] &&
9805                (branch_regs[i].regmap[hr]&63)!=temp && branch_regs[i].regmap[hr]!=PTEMP &&
9806                branch_regs[i].regmap[hr]!=RHASH && branch_regs[i].regmap[hr]!=RHTBL &&
9807                branch_regs[i].regmap[hr]!=RTEMP && branch_regs[i].regmap[hr]!=CCREG &&
9808                branch_regs[i].regmap[hr]!=map)
9809             {
9810               branch_regs[i].regmap[hr]=-1;
9811               branch_regs[i].regmap_entry[hr]=-1;
9812               if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
9813               {
9814                 if(!likely[i]&&i<slen-2) {
9815                   regmap_pre[i+2][hr]=-1;
9816                   regs[i+2].wasconst&=~(1<<hr);
9817                 }
9818               }
9819             }
9820           }
9821         }
9822         else
9823         {
9824           // Non-branch
9825           if(i>0)
9826           {
9827             int d1=0,d2=0,map=-1,temp=-1;
9828             if(get_reg(regs[i].regmap,rt1[i]|64)>=0)
9829             {
9830               d1=dep1[i];
9831               d2=dep2[i];
9832             }
9833             if(using_tlb) {
9834               if(itype[i]==LOAD || itype[i]==LOADLR ||
9835                  itype[i]==STORE || itype[i]==STORELR ||
9836                  itype[i]==C1LS || itype[i]==C2LS)
9837               map=TLREG;
9838             } else if(itype[i]==STORE || itype[i]==STORELR ||
9839                       (opcode[i]&0x3b)==0x39 || (opcode[i]&0x3b)==0x3a) { // SWC1/SDC1 || SWC2/SDC2
9840               map=INVCP;
9841             }
9842             if(itype[i]==LOADLR || itype[i]==STORELR ||
9843                itype[i]==C1LS || itype[i]==C2LS)
9844               temp=FTEMP;
9845             if((regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
9846                (regs[i].regmap[hr]^64)!=us1[i] && (regs[i].regmap[hr]^64)!=us2[i] &&
9847                (regs[i].regmap[hr]^64)!=d1 && (regs[i].regmap[hr]^64)!=d2 &&
9848                regs[i].regmap[hr]!=rs1[i] && regs[i].regmap[hr]!=rs2[i] &&
9849                (regs[i].regmap[hr]&63)!=temp && regs[i].regmap[hr]!=map &&
9850                (itype[i]!=SPAN||regs[i].regmap[hr]!=CCREG))
9851             {
9852               if(i<slen-1&&!is_ds[i]) {
9853                 if(regmap_pre[i+1][hr]!=-1 || regs[i].regmap[hr]!=-1)
9854                 if(regmap_pre[i+1][hr]!=regs[i].regmap[hr])
9855                 if(regs[i].regmap[hr]<64||!((regs[i].was32>>(regs[i].regmap[hr]&63))&1))
9856                 {
9857                   printf("fail: %x (%d %d!=%d)\n",start+i*4,hr,regmap_pre[i+1][hr],regs[i].regmap[hr]);
9858                   assert(regmap_pre[i+1][hr]==regs[i].regmap[hr]);
9859                 }
9860                 regmap_pre[i+1][hr]=-1;
9861                 if(regs[i+1].regmap_entry[hr]==CCREG) regs[i+1].regmap_entry[hr]=-1;
9862                 regs[i+1].wasconst&=~(1<<hr);
9863               }
9864               regs[i].regmap[hr]=-1;
9865               regs[i].isconst&=~(1<<hr);
9866             }
9867           }
9868         }
9869       }
9870     }
9871   }
9872   
9873   /* Pass 5 - Pre-allocate registers */
9874   
9875   // If a register is allocated during a loop, try to allocate it for the
9876   // entire loop, if possible.  This avoids loading/storing registers
9877   // inside of the loop.
9878   
9879   signed char f_regmap[HOST_REGS];
9880   clear_all_regs(f_regmap);
9881   for(i=0;i<slen-1;i++)
9882   {
9883     if(itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
9884     {
9885       if(ba[i]>=start && ba[i]<(start+i*4)) 
9886       if(itype[i+1]==NOP||itype[i+1]==MOV||itype[i+1]==ALU
9887       ||itype[i+1]==SHIFTIMM||itype[i+1]==IMM16||itype[i+1]==LOAD
9888       ||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS
9889       ||itype[i+1]==SHIFT||itype[i+1]==COP1||itype[i+1]==FLOAT
9890       ||itype[i+1]==FCOMP||itype[i+1]==FCONV
9891       ||itype[i+1]==COP2||itype[i+1]==C2LS||itype[i+1]==C2OP)
9892       {
9893         int t=(ba[i]-start)>>2;
9894         if(t>0&&(itype[t-1]!=UJUMP&&itype[t-1]!=RJUMP&&itype[t-1]!=CJUMP&&itype[t-1]!=SJUMP&&itype[t-1]!=FJUMP)) // loop_preload can't handle jumps into delay slots
9895         if(t<2||(itype[t-2]!=UJUMP&&itype[t-2]!=RJUMP)||rt1[t-2]!=31) // call/ret assumes no registers allocated
9896         for(hr=0;hr<HOST_REGS;hr++)
9897         {
9898           if(regs[i].regmap[hr]>64) {
9899             if(!((regs[i].dirty>>hr)&1))
9900               f_regmap[hr]=regs[i].regmap[hr];
9901             else f_regmap[hr]=-1;
9902           }
9903           else if(regs[i].regmap[hr]>=0) {
9904             if(f_regmap[hr]!=regs[i].regmap[hr]) {
9905               // dealloc old register
9906               int n;
9907               for(n=0;n<HOST_REGS;n++)
9908               {
9909                 if(f_regmap[n]==regs[i].regmap[hr]) {f_regmap[n]=-1;}
9910               }
9911               // and alloc new one
9912               f_regmap[hr]=regs[i].regmap[hr];
9913             }
9914           }
9915           if(branch_regs[i].regmap[hr]>64) {
9916             if(!((branch_regs[i].dirty>>hr)&1))
9917               f_regmap[hr]=branch_regs[i].regmap[hr];
9918             else f_regmap[hr]=-1;
9919           }
9920           else if(branch_regs[i].regmap[hr]>=0) {
9921             if(f_regmap[hr]!=branch_regs[i].regmap[hr]) {
9922               // dealloc old register
9923               int n;
9924               for(n=0;n<HOST_REGS;n++)
9925               {
9926                 if(f_regmap[n]==branch_regs[i].regmap[hr]) {f_regmap[n]=-1;}
9927               }
9928               // and alloc new one
9929               f_regmap[hr]=branch_regs[i].regmap[hr];
9930             }
9931           }
9932           if(ooo[i]) {
9933             if(count_free_regs(regs[i].regmap)<=minimum_free_regs[i+1]) 
9934               f_regmap[hr]=branch_regs[i].regmap[hr];
9935           }else{
9936             if(count_free_regs(branch_regs[i].regmap)<=minimum_free_regs[i+1]) 
9937               f_regmap[hr]=branch_regs[i].regmap[hr];
9938           }
9939           // Avoid dirty->clean transition
9940           #ifdef DESTRUCTIVE_WRITEBACK
9941           if(t>0) if(get_reg(regmap_pre[t],f_regmap[hr])>=0) if((regs[t].wasdirty>>get_reg(regmap_pre[t],f_regmap[hr]))&1) f_regmap[hr]=-1;
9942           #endif
9943           // This check is only strictly required in the DESTRUCTIVE_WRITEBACK
9944           // case above, however it's always a good idea.  We can't hoist the
9945           // load if the register was already allocated, so there's no point
9946           // wasting time analyzing most of these cases.  It only "succeeds"
9947           // when the mapping was different and the load can be replaced with
9948           // a mov, which is of negligible benefit.  So such cases are
9949           // skipped below.
9950           if(f_regmap[hr]>0) {
9951             if(regs[t].regmap[hr]==f_regmap[hr]||(regs[t].regmap_entry[hr]<0&&get_reg(regmap_pre[t],f_regmap[hr])<0)) {
9952               int r=f_regmap[hr];
9953               for(j=t;j<=i;j++)
9954               {
9955                 //printf("Test %x -> %x, %x %d/%d\n",start+i*4,ba[i],start+j*4,hr,r);
9956                 if(r<34&&((unneeded_reg[j]>>r)&1)) break;
9957                 if(r>63&&((unneeded_reg_upper[j]>>(r&63))&1)) break;
9958                 if(r>63) {
9959                   // NB This can exclude the case where the upper-half
9960                   // register is lower numbered than the lower-half
9961                   // register.  Not sure if it's worth fixing...
9962                   if(get_reg(regs[j].regmap,r&63)<0) break;
9963                   if(get_reg(regs[j].regmap_entry,r&63)<0) break;
9964                   if(regs[j].is32&(1LL<<(r&63))) break;
9965                 }
9966                 if(regs[j].regmap[hr]==f_regmap[hr]&&(f_regmap[hr]&63)<TEMPREG) {
9967                   //printf("Hit %x -> %x, %x %d/%d\n",start+i*4,ba[i],start+j*4,hr,r);
9968                   int k;
9969                   if(regs[i].regmap[hr]==-1&&branch_regs[i].regmap[hr]==-1) {
9970                     if(get_reg(regs[i+2].regmap,f_regmap[hr])>=0) break;
9971                     if(r>63) {
9972                       if(get_reg(regs[i].regmap,r&63)<0) break;
9973                       if(get_reg(branch_regs[i].regmap,r&63)<0) break;
9974                     }
9975                     k=i;
9976                     while(k>1&&regs[k-1].regmap[hr]==-1) {
9977                       if(count_free_regs(regs[k-1].regmap)<=minimum_free_regs[k-1]) {
9978                         //printf("no free regs for store %x\n",start+(k-1)*4);
9979                         break;
9980                       }
9981                       if(get_reg(regs[k-1].regmap,f_regmap[hr])>=0) {
9982                         //printf("no-match due to different register\n");
9983                         break;
9984                       }
9985                       if(itype[k-2]==UJUMP||itype[k-2]==RJUMP||itype[k-2]==CJUMP||itype[k-2]==SJUMP||itype[k-2]==FJUMP) {
9986                         //printf("no-match due to branch\n");
9987                         break;
9988                       }
9989                       // call/ret fast path assumes no registers allocated
9990                       if(k>2&&(itype[k-3]==UJUMP||itype[k-3]==RJUMP)&&rt1[k-3]==31) {
9991                         break;
9992                       }
9993                       if(r>63) {
9994                         // NB This can exclude the case where the upper-half
9995                         // register is lower numbered than the lower-half
9996                         // register.  Not sure if it's worth fixing...
9997                         if(get_reg(regs[k-1].regmap,r&63)<0) break;
9998                         if(regs[k-1].is32&(1LL<<(r&63))) break;
9999                       }
10000                       k--;
10001                     }
10002                     if(i<slen-1) {
10003                       if((regs[k].is32&(1LL<<f_regmap[hr]))!=
10004                         (regs[i+2].was32&(1LL<<f_regmap[hr]))) {
10005                         //printf("bad match after branch\n");
10006                         break;
10007                       }
10008                     }
10009                     if(regs[k-1].regmap[hr]==f_regmap[hr]&&regmap_pre[k][hr]==f_regmap[hr]) {
10010                       //printf("Extend r%d, %x ->\n",hr,start+k*4);
10011                       while(k<i) {
10012                         regs[k].regmap_entry[hr]=f_regmap[hr];
10013                         regs[k].regmap[hr]=f_regmap[hr];
10014                         regmap_pre[k+1][hr]=f_regmap[hr];
10015                         regs[k].wasdirty&=~(1<<hr);
10016                         regs[k].dirty&=~(1<<hr);
10017                         regs[k].wasdirty|=(1<<hr)&regs[k-1].dirty;
10018                         regs[k].dirty|=(1<<hr)&regs[k].wasdirty;
10019                         regs[k].wasconst&=~(1<<hr);
10020                         regs[k].isconst&=~(1<<hr);
10021                         k++;
10022                       }
10023                     }
10024                     else {
10025                       //printf("Fail Extend r%d, %x ->\n",hr,start+k*4);
10026                       break;
10027                     }
10028                     assert(regs[i-1].regmap[hr]==f_regmap[hr]);
10029                     if(regs[i-1].regmap[hr]==f_regmap[hr]&&regmap_pre[i][hr]==f_regmap[hr]) {
10030                       //printf("OK fill %x (r%d)\n",start+i*4,hr);
10031                       regs[i].regmap_entry[hr]=f_regmap[hr];
10032                       regs[i].regmap[hr]=f_regmap[hr];
10033                       regs[i].wasdirty&=~(1<<hr);
10034                       regs[i].dirty&=~(1<<hr);
10035                       regs[i].wasdirty|=(1<<hr)&regs[i-1].dirty;
10036                       regs[i].dirty|=(1<<hr)&regs[i-1].dirty;
10037                       regs[i].wasconst&=~(1<<hr);
10038                       regs[i].isconst&=~(1<<hr);
10039                       branch_regs[i].regmap_entry[hr]=f_regmap[hr];
10040                       branch_regs[i].wasdirty&=~(1<<hr);
10041                       branch_regs[i].wasdirty|=(1<<hr)&regs[i].dirty;
10042                       branch_regs[i].regmap[hr]=f_regmap[hr];
10043                       branch_regs[i].dirty&=~(1<<hr);
10044                       branch_regs[i].dirty|=(1<<hr)&regs[i].dirty;
10045                       branch_regs[i].wasconst&=~(1<<hr);
10046                       branch_regs[i].isconst&=~(1<<hr);
10047                       if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000) {
10048                         regmap_pre[i+2][hr]=f_regmap[hr];
10049                         regs[i+2].wasdirty&=~(1<<hr);
10050                         regs[i+2].wasdirty|=(1<<hr)&regs[i].dirty;
10051                         assert((branch_regs[i].is32&(1LL<<f_regmap[hr]))==
10052                           (regs[i+2].was32&(1LL<<f_regmap[hr])));
10053                       }
10054                     }
10055                   }
10056                   for(k=t;k<j;k++) {
10057                     // Alloc register clean at beginning of loop,
10058                     // but may dirty it in pass 6
10059                     regs[k].regmap_entry[hr]=f_regmap[hr];
10060                     regs[k].regmap[hr]=f_regmap[hr];
10061                     regs[k].dirty&=~(1<<hr);
10062                     regs[k].wasconst&=~(1<<hr);
10063                     regs[k].isconst&=~(1<<hr);
10064                     if(itype[k]==UJUMP||itype[k]==RJUMP||itype[k]==CJUMP||itype[k]==SJUMP||itype[k]==FJUMP) {
10065                       branch_regs[k].regmap_entry[hr]=f_regmap[hr];
10066                       branch_regs[k].regmap[hr]=f_regmap[hr];
10067                       branch_regs[k].dirty&=~(1<<hr);
10068                       branch_regs[k].wasconst&=~(1<<hr);
10069                       branch_regs[k].isconst&=~(1<<hr);
10070                       if(itype[k]!=RJUMP&&itype[k]!=UJUMP&&(source[k]>>16)!=0x1000) {
10071                         regmap_pre[k+2][hr]=f_regmap[hr];
10072                         regs[k+2].wasdirty&=~(1<<hr);
10073                         assert((branch_regs[k].is32&(1LL<<f_regmap[hr]))==
10074                           (regs[k+2].was32&(1LL<<f_regmap[hr])));
10075                       }
10076                     }
10077                     else
10078                     {
10079                       regmap_pre[k+1][hr]=f_regmap[hr];
10080                       regs[k+1].wasdirty&=~(1<<hr);
10081                     }
10082                   }
10083                   if(regs[j].regmap[hr]==f_regmap[hr])
10084                     regs[j].regmap_entry[hr]=f_regmap[hr];
10085                   break;
10086                 }
10087                 if(j==i) break;
10088                 if(regs[j].regmap[hr]>=0)
10089                   break;
10090                 if(get_reg(regs[j].regmap,f_regmap[hr])>=0) {
10091                   //printf("no-match due to different register\n");
10092                   break;
10093                 }
10094                 if((regs[j+1].is32&(1LL<<f_regmap[hr]))!=(regs[j].is32&(1LL<<f_regmap[hr]))) {
10095                   //printf("32/64 mismatch %x %d\n",start+j*4,hr);
10096                   break;
10097                 }
10098                 if(itype[j]==UJUMP||itype[j]==RJUMP||(source[j]>>16)==0x1000)
10099                 {
10100                   // Stop on unconditional branch
10101                   break;
10102                 }
10103                 if(itype[j]==CJUMP||itype[j]==SJUMP||itype[j]==FJUMP)
10104                 {
10105                   if(ooo[j]) {
10106                     if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j+1]) 
10107                       break;
10108                   }else{
10109                     if(count_free_regs(branch_regs[j].regmap)<=minimum_free_regs[j+1]) 
10110                       break;
10111                   }
10112                   if(get_reg(branch_regs[j].regmap,f_regmap[hr])>=0) {
10113                     //printf("no-match due to different register (branch)\n");
10114                     break;
10115                   }
10116                 }
10117                 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) {
10118                   //printf("No free regs for store %x\n",start+j*4);
10119                   break;
10120                 }
10121                 if(f_regmap[hr]>=64) {
10122                   if(regs[j].is32&(1LL<<(f_regmap[hr]&63))) {
10123                     break;
10124                   }
10125                   else
10126                   {
10127                     if(get_reg(regs[j].regmap,f_regmap[hr]&63)<0) {
10128                       break;
10129                     }
10130                   }
10131                 }
10132               }
10133             }
10134           }
10135         }
10136       }
10137     }else{
10138       // Non branch or undetermined branch target
10139       for(hr=0;hr<HOST_REGS;hr++)
10140       {
10141         if(hr!=EXCLUDE_REG) {
10142           if(regs[i].regmap[hr]>64) {
10143             if(!((regs[i].dirty>>hr)&1))
10144               f_regmap[hr]=regs[i].regmap[hr];
10145           }
10146           else if(regs[i].regmap[hr]>=0) {
10147             if(f_regmap[hr]!=regs[i].regmap[hr]) {
10148               // dealloc old register
10149               int n;
10150               for(n=0;n<HOST_REGS;n++)
10151               {
10152                 if(f_regmap[n]==regs[i].regmap[hr]) {f_regmap[n]=-1;}
10153               }
10154               // and alloc new one
10155               f_regmap[hr]=regs[i].regmap[hr];
10156             }
10157           }
10158         }
10159       }
10160       // Try to restore cycle count at branch targets
10161       if(bt[i]) {
10162         for(j=i;j<slen-1;j++) {
10163           if(regs[j].regmap[HOST_CCREG]!=-1) break;
10164           if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) {
10165             //printf("no free regs for store %x\n",start+j*4);
10166             break;
10167           }
10168         }
10169         if(regs[j].regmap[HOST_CCREG]==CCREG) {
10170           int k=i;
10171           //printf("Extend CC, %x -> %x\n",start+k*4,start+j*4);
10172           while(k<j) {
10173             regs[k].regmap_entry[HOST_CCREG]=CCREG;
10174             regs[k].regmap[HOST_CCREG]=CCREG;
10175             regmap_pre[k+1][HOST_CCREG]=CCREG;
10176             regs[k+1].wasdirty|=1<<HOST_CCREG;
10177             regs[k].dirty|=1<<HOST_CCREG;
10178             regs[k].wasconst&=~(1<<HOST_CCREG);
10179             regs[k].isconst&=~(1<<HOST_CCREG);
10180             k++;
10181           }
10182           regs[j].regmap_entry[HOST_CCREG]=CCREG;          
10183         }
10184         // Work backwards from the branch target
10185         if(j>i&&f_regmap[HOST_CCREG]==CCREG)
10186         {
10187           //printf("Extend backwards\n");
10188           int k;
10189           k=i;
10190           while(regs[k-1].regmap[HOST_CCREG]==-1) {
10191             if(count_free_regs(regs[k-1].regmap)<=minimum_free_regs[k-1]) {
10192               //printf("no free regs for store %x\n",start+(k-1)*4);
10193               break;
10194             }
10195             k--;
10196           }
10197           if(regs[k-1].regmap[HOST_CCREG]==CCREG) {
10198             //printf("Extend CC, %x ->\n",start+k*4);
10199             while(k<=i) {
10200               regs[k].regmap_entry[HOST_CCREG]=CCREG;
10201               regs[k].regmap[HOST_CCREG]=CCREG;
10202               regmap_pre[k+1][HOST_CCREG]=CCREG;
10203               regs[k+1].wasdirty|=1<<HOST_CCREG;
10204               regs[k].dirty|=1<<HOST_CCREG;
10205               regs[k].wasconst&=~(1<<HOST_CCREG);
10206               regs[k].isconst&=~(1<<HOST_CCREG);
10207               k++;
10208             }
10209           }
10210           else {
10211             //printf("Fail Extend CC, %x ->\n",start+k*4);
10212           }
10213         }
10214       }
10215       if(itype[i]!=STORE&&itype[i]!=STORELR&&itype[i]!=C1LS&&itype[i]!=SHIFT&&
10216          itype[i]!=NOP&&itype[i]!=MOV&&itype[i]!=ALU&&itype[i]!=SHIFTIMM&&
10217          itype[i]!=IMM16&&itype[i]!=LOAD&&itype[i]!=COP1&&itype[i]!=FLOAT&&
10218          itype[i]!=FCONV&&itype[i]!=FCOMP)
10219       {
10220         memcpy(f_regmap,regs[i].regmap,sizeof(f_regmap));
10221       }
10222     }
10223   }
10224   
10225   // Cache memory offset or tlb map pointer if a register is available
10226   #ifndef HOST_IMM_ADDR32
10227   #ifndef RAM_OFFSET
10228   if(using_tlb)
10229   #endif
10230   {
10231     int earliest_available[HOST_REGS];
10232     int loop_start[HOST_REGS];
10233     int score[HOST_REGS];
10234     int end[HOST_REGS];
10235     int reg=using_tlb?MMREG:ROREG;
10236
10237     // Init
10238     for(hr=0;hr<HOST_REGS;hr++) {
10239       score[hr]=0;earliest_available[hr]=0;
10240       loop_start[hr]=MAXBLOCK;
10241     }
10242     for(i=0;i<slen-1;i++)
10243     {
10244       // Can't do anything if no registers are available
10245       if(count_free_regs(regs[i].regmap)<=minimum_free_regs[i]) {
10246         for(hr=0;hr<HOST_REGS;hr++) {
10247           score[hr]=0;earliest_available[hr]=i+1;
10248           loop_start[hr]=MAXBLOCK;
10249         }
10250       }
10251       if(itype[i]==UJUMP||itype[i]==RJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP) {
10252         if(!ooo[i]) {
10253           if(count_free_regs(branch_regs[i].regmap)<=minimum_free_regs[i+1]) {
10254             for(hr=0;hr<HOST_REGS;hr++) {
10255               score[hr]=0;earliest_available[hr]=i+1;
10256               loop_start[hr]=MAXBLOCK;
10257             }
10258           }
10259         }else{
10260           if(count_free_regs(regs[i].regmap)<=minimum_free_regs[i+1]) {
10261             for(hr=0;hr<HOST_REGS;hr++) {
10262               score[hr]=0;earliest_available[hr]=i+1;
10263               loop_start[hr]=MAXBLOCK;
10264             }
10265           }
10266         }
10267       }
10268       // Mark unavailable registers
10269       for(hr=0;hr<HOST_REGS;hr++) {
10270         if(regs[i].regmap[hr]>=0) {
10271           score[hr]=0;earliest_available[hr]=i+1;
10272           loop_start[hr]=MAXBLOCK;
10273         }
10274         if(itype[i]==UJUMP||itype[i]==RJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP) {
10275           if(branch_regs[i].regmap[hr]>=0) {
10276             score[hr]=0;earliest_available[hr]=i+2;
10277             loop_start[hr]=MAXBLOCK;
10278           }
10279         }
10280       }
10281       // No register allocations after unconditional jumps
10282       if(itype[i]==UJUMP||itype[i]==RJUMP||(source[i]>>16)==0x1000)
10283       {
10284         for(hr=0;hr<HOST_REGS;hr++) {
10285           score[hr]=0;earliest_available[hr]=i+2;
10286           loop_start[hr]=MAXBLOCK;
10287         }
10288         i++; // Skip delay slot too
10289         //printf("skip delay slot: %x\n",start+i*4);
10290       }
10291       else
10292       // Possible match
10293       if(itype[i]==LOAD||itype[i]==LOADLR||
10294          itype[i]==STORE||itype[i]==STORELR||itype[i]==C1LS) {
10295         for(hr=0;hr<HOST_REGS;hr++) {
10296           if(hr!=EXCLUDE_REG) {
10297             end[hr]=i-1;
10298             for(j=i;j<slen-1;j++) {
10299               if(regs[j].regmap[hr]>=0) break;
10300               if(itype[j]==UJUMP||itype[j]==RJUMP||itype[j]==CJUMP||itype[j]==SJUMP||itype[j]==FJUMP) {
10301                 if(branch_regs[j].regmap[hr]>=0) break;
10302                 if(ooo[j]) {
10303                   if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j+1]) break;
10304                 }else{
10305                   if(count_free_regs(branch_regs[j].regmap)<=minimum_free_regs[j+1]) break;
10306                 }
10307               }
10308               else if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) break;
10309               if(itype[j]==UJUMP||itype[j]==RJUMP||itype[j]==CJUMP||itype[j]==SJUMP||itype[j]==FJUMP) {
10310                 int t=(ba[j]-start)>>2;
10311                 if(t<j&&t>=earliest_available[hr]) {
10312                   if(t==1||(t>1&&itype[t-2]!=UJUMP&&itype[t-2]!=RJUMP)||(t>1&&rt1[t-2]!=31)) { // call/ret assumes no registers allocated
10313                     // Score a point for hoisting loop invariant
10314                     if(t<loop_start[hr]) loop_start[hr]=t;
10315                     //printf("set loop_start: i=%x j=%x (%x)\n",start+i*4,start+j*4,start+t*4);
10316                     score[hr]++;
10317                     end[hr]=j;
10318                   }
10319                 }
10320                 else if(t<j) {
10321                   if(regs[t].regmap[hr]==reg) {
10322                     // Score a point if the branch target matches this register
10323                     score[hr]++;
10324                     end[hr]=j;
10325                   }
10326                 }
10327                 if(itype[j+1]==LOAD||itype[j+1]==LOADLR||
10328                    itype[j+1]==STORE||itype[j+1]==STORELR||itype[j+1]==C1LS) {
10329                   score[hr]++;
10330                   end[hr]=j;
10331                 }
10332               }
10333               if(itype[j]==UJUMP||itype[j]==RJUMP||(source[j]>>16)==0x1000)
10334               {
10335                 // Stop on unconditional branch
10336                 break;
10337               }
10338               else
10339               if(itype[j]==LOAD||itype[j]==LOADLR||
10340                  itype[j]==STORE||itype[j]==STORELR||itype[j]==C1LS) {
10341                 score[hr]++;
10342                 end[hr]=j;
10343               }
10344             }
10345           }
10346         }
10347         // Find highest score and allocate that register
10348         int maxscore=0;
10349         for(hr=0;hr<HOST_REGS;hr++) {
10350           if(hr!=EXCLUDE_REG) {
10351             if(score[hr]>score[maxscore]) {
10352               maxscore=hr;
10353               //printf("highest score: %d %d (%x->%x)\n",score[hr],hr,start+i*4,start+end[hr]*4);
10354             }
10355           }
10356         }
10357         if(score[maxscore]>1)
10358         {
10359           if(i<loop_start[maxscore]) loop_start[maxscore]=i;
10360           for(j=loop_start[maxscore];j<slen&&j<=end[maxscore];j++) {
10361             //if(regs[j].regmap[maxscore]>=0) {printf("oops: %x %x was %d=%d\n",loop_start[maxscore]*4+start,j*4+start,maxscore,regs[j].regmap[maxscore]);}
10362             assert(regs[j].regmap[maxscore]<0);
10363             if(j>loop_start[maxscore]) regs[j].regmap_entry[maxscore]=reg;
10364             regs[j].regmap[maxscore]=reg;
10365             regs[j].dirty&=~(1<<maxscore);
10366             regs[j].wasconst&=~(1<<maxscore);
10367             regs[j].isconst&=~(1<<maxscore);
10368             if(itype[j]==UJUMP||itype[j]==RJUMP||itype[j]==CJUMP||itype[j]==SJUMP||itype[j]==FJUMP) {
10369               branch_regs[j].regmap[maxscore]=reg;
10370               branch_regs[j].wasdirty&=~(1<<maxscore);
10371               branch_regs[j].dirty&=~(1<<maxscore);
10372               branch_regs[j].wasconst&=~(1<<maxscore);
10373               branch_regs[j].isconst&=~(1<<maxscore);
10374               if(itype[j]!=RJUMP&&itype[j]!=UJUMP&&(source[j]>>16)!=0x1000) {
10375                 regmap_pre[j+2][maxscore]=reg;
10376                 regs[j+2].wasdirty&=~(1<<maxscore);
10377               }
10378               // loop optimization (loop_preload)
10379               int t=(ba[j]-start)>>2;
10380               if(t==loop_start[maxscore]) {
10381                 if(t==1||(t>1&&itype[t-2]!=UJUMP&&itype[t-2]!=RJUMP)||(t>1&&rt1[t-2]!=31)) // call/ret assumes no registers allocated
10382                   regs[t].regmap_entry[maxscore]=reg;
10383               }
10384             }
10385             else
10386             {
10387               if(j<1||(itype[j-1]!=RJUMP&&itype[j-1]!=UJUMP&&itype[j-1]!=CJUMP&&itype[j-1]!=SJUMP&&itype[j-1]!=FJUMP)) {
10388                 regmap_pre[j+1][maxscore]=reg;
10389                 regs[j+1].wasdirty&=~(1<<maxscore);
10390               }
10391             }
10392           }
10393           i=j-1;
10394           if(itype[j-1]==RJUMP||itype[j-1]==UJUMP||itype[j-1]==CJUMP||itype[j-1]==SJUMP||itype[j-1]==FJUMP) i++; // skip delay slot
10395           for(hr=0;hr<HOST_REGS;hr++) {
10396             score[hr]=0;earliest_available[hr]=i+i;
10397             loop_start[hr]=MAXBLOCK;
10398           }
10399         }
10400       }
10401     }
10402   }
10403   #endif
10404   
10405   // This allocates registers (if possible) one instruction prior
10406   // to use, which can avoid a load-use penalty on certain CPUs.
10407   for(i=0;i<slen-1;i++)
10408   {
10409     if(!i||(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP))
10410     {
10411       if(!bt[i+1])
10412       {
10413         if(itype[i]==ALU||itype[i]==MOV||itype[i]==LOAD||itype[i]==SHIFTIMM||itype[i]==IMM16
10414            ||((itype[i]==COP1||itype[i]==COP2)&&opcode2[i]<3))
10415         {
10416           if(rs1[i+1]) {
10417             if((hr=get_reg(regs[i+1].regmap,rs1[i+1]))>=0)
10418             {
10419               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10420               {
10421                 regs[i].regmap[hr]=regs[i+1].regmap[hr];
10422                 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
10423                 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
10424                 regs[i].isconst&=~(1<<hr);
10425                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10426                 constmap[i][hr]=constmap[i+1][hr];
10427                 regs[i+1].wasdirty&=~(1<<hr);
10428                 regs[i].dirty&=~(1<<hr);
10429               }
10430             }
10431           }
10432           if(rs2[i+1]) {
10433             if((hr=get_reg(regs[i+1].regmap,rs2[i+1]))>=0)
10434             {
10435               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10436               {
10437                 regs[i].regmap[hr]=regs[i+1].regmap[hr];
10438                 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
10439                 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
10440                 regs[i].isconst&=~(1<<hr);
10441                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10442                 constmap[i][hr]=constmap[i+1][hr];
10443                 regs[i+1].wasdirty&=~(1<<hr);
10444                 regs[i].dirty&=~(1<<hr);
10445               }
10446             }
10447           }
10448           // Preload target address for load instruction (non-constant)
10449           if(itype[i+1]==LOAD&&rs1[i+1]&&get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10450             if((hr=get_reg(regs[i+1].regmap,rt1[i+1]))>=0)
10451             {
10452               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10453               {
10454                 regs[i].regmap[hr]=rs1[i+1];
10455                 regmap_pre[i+1][hr]=rs1[i+1];
10456                 regs[i+1].regmap_entry[hr]=rs1[i+1];
10457                 regs[i].isconst&=~(1<<hr);
10458                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10459                 constmap[i][hr]=constmap[i+1][hr];
10460                 regs[i+1].wasdirty&=~(1<<hr);
10461                 regs[i].dirty&=~(1<<hr);
10462               }
10463             }
10464           }
10465           // Load source into target register 
10466           if(lt1[i+1]&&get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10467             if((hr=get_reg(regs[i+1].regmap,rt1[i+1]))>=0)
10468             {
10469               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10470               {
10471                 regs[i].regmap[hr]=rs1[i+1];
10472                 regmap_pre[i+1][hr]=rs1[i+1];
10473                 regs[i+1].regmap_entry[hr]=rs1[i+1];
10474                 regs[i].isconst&=~(1<<hr);
10475                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10476                 constmap[i][hr]=constmap[i+1][hr];
10477                 regs[i+1].wasdirty&=~(1<<hr);
10478                 regs[i].dirty&=~(1<<hr);
10479               }
10480             }
10481           }
10482           // Preload map address
10483           #ifndef HOST_IMM_ADDR32
10484           if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS||itype[i+1]==C2LS) {
10485             hr=get_reg(regs[i+1].regmap,TLREG);
10486             if(hr>=0) {
10487               int sr=get_reg(regs[i+1].regmap,rs1[i+1]);
10488               if(sr>=0&&((regs[i+1].wasconst>>sr)&1)) {
10489                 int nr;
10490                 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10491                 {
10492                   regs[i].regmap[hr]=MGEN1+((i+1)&1);
10493                   regmap_pre[i+1][hr]=MGEN1+((i+1)&1);
10494                   regs[i+1].regmap_entry[hr]=MGEN1+((i+1)&1);
10495                   regs[i].isconst&=~(1<<hr);
10496                   regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10497                   constmap[i][hr]=constmap[i+1][hr];
10498                   regs[i+1].wasdirty&=~(1<<hr);
10499                   regs[i].dirty&=~(1<<hr);
10500                 }
10501                 else if((nr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1))>=0)
10502                 {
10503                   // move it to another register
10504                   regs[i+1].regmap[hr]=-1;
10505                   regmap_pre[i+2][hr]=-1;
10506                   regs[i+1].regmap[nr]=TLREG;
10507                   regmap_pre[i+2][nr]=TLREG;
10508                   regs[i].regmap[nr]=MGEN1+((i+1)&1);
10509                   regmap_pre[i+1][nr]=MGEN1+((i+1)&1);
10510                   regs[i+1].regmap_entry[nr]=MGEN1+((i+1)&1);
10511                   regs[i].isconst&=~(1<<nr);
10512                   regs[i+1].isconst&=~(1<<nr);
10513                   regs[i].dirty&=~(1<<nr);
10514                   regs[i+1].wasdirty&=~(1<<nr);
10515                   regs[i+1].dirty&=~(1<<nr);
10516                   regs[i+2].wasdirty&=~(1<<nr);
10517                 }
10518               }
10519             }
10520           }
10521           #endif
10522           // Address for store instruction (non-constant)
10523           if(itype[i+1]==STORE||itype[i+1]==STORELR
10524              ||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SB/SH/SW/SD/SWC1/SDC1/SWC2/SDC2
10525             if(get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10526               hr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1);
10527               if(hr<0) hr=get_reg(regs[i+1].regmap,-1);
10528               else {regs[i+1].regmap[hr]=AGEN1+((i+1)&1);regs[i+1].isconst&=~(1<<hr);}
10529               assert(hr>=0);
10530               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10531               {
10532                 regs[i].regmap[hr]=rs1[i+1];
10533                 regmap_pre[i+1][hr]=rs1[i+1];
10534                 regs[i+1].regmap_entry[hr]=rs1[i+1];
10535                 regs[i].isconst&=~(1<<hr);
10536                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10537                 constmap[i][hr]=constmap[i+1][hr];
10538                 regs[i+1].wasdirty&=~(1<<hr);
10539                 regs[i].dirty&=~(1<<hr);
10540               }
10541             }
10542           }
10543           if(itype[i+1]==LOADLR||(opcode[i+1]&0x3b)==0x31||(opcode[i+1]&0x3b)==0x32) { // LWC1/LDC1, LWC2/LDC2
10544             if(get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10545               int nr;
10546               hr=get_reg(regs[i+1].regmap,FTEMP);
10547               assert(hr>=0);
10548               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10549               {
10550                 regs[i].regmap[hr]=rs1[i+1];
10551                 regmap_pre[i+1][hr]=rs1[i+1];
10552                 regs[i+1].regmap_entry[hr]=rs1[i+1];
10553                 regs[i].isconst&=~(1<<hr);
10554                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10555                 constmap[i][hr]=constmap[i+1][hr];
10556                 regs[i+1].wasdirty&=~(1<<hr);
10557                 regs[i].dirty&=~(1<<hr);
10558               }
10559               else if((nr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1))>=0)
10560               {
10561                 // move it to another register
10562                 regs[i+1].regmap[hr]=-1;
10563                 regmap_pre[i+2][hr]=-1;
10564                 regs[i+1].regmap[nr]=FTEMP;
10565                 regmap_pre[i+2][nr]=FTEMP;
10566                 regs[i].regmap[nr]=rs1[i+1];
10567                 regmap_pre[i+1][nr]=rs1[i+1];
10568                 regs[i+1].regmap_entry[nr]=rs1[i+1];
10569                 regs[i].isconst&=~(1<<nr);
10570                 regs[i+1].isconst&=~(1<<nr);
10571                 regs[i].dirty&=~(1<<nr);
10572                 regs[i+1].wasdirty&=~(1<<nr);
10573                 regs[i+1].dirty&=~(1<<nr);
10574                 regs[i+2].wasdirty&=~(1<<nr);
10575               }
10576             }
10577           }
10578           if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR/*||itype[i+1]==C1LS||||itype[i+1]==C2LS*/) {
10579             if(itype[i+1]==LOAD) 
10580               hr=get_reg(regs[i+1].regmap,rt1[i+1]);
10581             if(itype[i+1]==LOADLR||(opcode[i+1]&0x3b)==0x31||(opcode[i+1]&0x3b)==0x32) // LWC1/LDC1, LWC2/LDC2
10582               hr=get_reg(regs[i+1].regmap,FTEMP);
10583             if(itype[i+1]==STORE||itype[i+1]==STORELR||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1/SWC2/SDC2
10584               hr=get_reg(regs[i+1].regmap,AGEN1+((i+1)&1));
10585               if(hr<0) hr=get_reg(regs[i+1].regmap,-1);
10586             }
10587             if(hr>=0&&regs[i].regmap[hr]<0) {
10588               int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
10589               if(rs>=0&&((regs[i+1].wasconst>>rs)&1)) {
10590                 regs[i].regmap[hr]=AGEN1+((i+1)&1);
10591                 regmap_pre[i+1][hr]=AGEN1+((i+1)&1);
10592                 regs[i+1].regmap_entry[hr]=AGEN1+((i+1)&1);
10593                 regs[i].isconst&=~(1<<hr);
10594                 regs[i+1].wasdirty&=~(1<<hr);
10595                 regs[i].dirty&=~(1<<hr);
10596               }
10597             }
10598           }
10599         }
10600       }
10601     }
10602   }
10603   
10604   /* Pass 6 - Optimize clean/dirty state */
10605   clean_registers(0,slen-1,1);
10606   
10607   /* Pass 7 - Identify 32-bit registers */
10608 #ifndef FORCE32
10609   provisional_r32();
10610
10611   u_int r32=0;
10612   
10613   for (i=slen-1;i>=0;i--)
10614   {
10615     int hr;
10616     if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
10617     {
10618       if(ba[i]<start || ba[i]>=(start+slen*4))
10619       {
10620         // Branch out of this block, don't need anything
10621         r32=0;
10622       }
10623       else
10624       {
10625         // Internal branch
10626         // Need whatever matches the target
10627         // (and doesn't get overwritten by the delay slot instruction)
10628         r32=0;
10629         int t=(ba[i]-start)>>2;
10630         if(ba[i]>start+i*4) {
10631           // Forward branch
10632           if(!(requires_32bit[t]&~regs[i].was32))
10633             r32|=requires_32bit[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
10634         }else{
10635           // Backward branch
10636           //if(!(regs[t].was32&~unneeded_reg_upper[t]&~regs[i].was32))
10637           //  r32|=regs[t].was32&~unneeded_reg_upper[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
10638           if(!(pr32[t]&~regs[i].was32))
10639             r32|=pr32[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
10640         }
10641       }
10642       // Conditional branch may need registers for following instructions
10643       if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
10644       {
10645         if(i<slen-2) {
10646           r32|=requires_32bit[i+2];
10647           r32&=regs[i].was32;
10648           // Mark this address as a branch target since it may be called
10649           // upon return from interrupt
10650           bt[i+2]=1;
10651         }
10652       }
10653       // Merge in delay slot
10654       if(!likely[i]) {
10655         // These are overwritten unless the branch is "likely"
10656         // and the delay slot is nullified if not taken
10657         r32&=~(1LL<<rt1[i+1]);
10658         r32&=~(1LL<<rt2[i+1]);
10659       }
10660       // Assume these are needed (delay slot)
10661       if(us1[i+1]>0)
10662       {
10663         if((regs[i].was32>>us1[i+1])&1) r32|=1LL<<us1[i+1];
10664       }
10665       if(us2[i+1]>0)
10666       {
10667         if((regs[i].was32>>us2[i+1])&1) r32|=1LL<<us2[i+1];
10668       }
10669       if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1))
10670       {
10671         if((regs[i].was32>>dep1[i+1])&1) r32|=1LL<<dep1[i+1];
10672       }
10673       if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1))
10674       {
10675         if((regs[i].was32>>dep2[i+1])&1) r32|=1LL<<dep2[i+1];
10676       }
10677     }
10678     else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
10679     {
10680       // SYSCALL instruction (software interrupt)
10681       r32=0;
10682     }
10683     else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
10684     {
10685       // ERET instruction (return from interrupt)
10686       r32=0;
10687     }
10688     // Check 32 bits
10689     r32&=~(1LL<<rt1[i]);
10690     r32&=~(1LL<<rt2[i]);
10691     if(us1[i]>0)
10692     {
10693       if((regs[i].was32>>us1[i])&1) r32|=1LL<<us1[i];
10694     }
10695     if(us2[i]>0)
10696     {
10697       if((regs[i].was32>>us2[i])&1) r32|=1LL<<us2[i];
10698     }
10699     if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1))
10700     {
10701       if((regs[i].was32>>dep1[i])&1) r32|=1LL<<dep1[i];
10702     }
10703     if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1))
10704     {
10705       if((regs[i].was32>>dep2[i])&1) r32|=1LL<<dep2[i];
10706     }
10707     requires_32bit[i]=r32;
10708     
10709     // Dirty registers which are 32-bit, require 32-bit input
10710     // as they will be written as 32-bit values
10711     for(hr=0;hr<HOST_REGS;hr++)
10712     {
10713       if(regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64) {
10714         if((regs[i].was32>>regs[i].regmap_entry[hr])&(regs[i].wasdirty>>hr)&1) {
10715           if(!((unneeded_reg_upper[i]>>regs[i].regmap_entry[hr])&1))
10716           requires_32bit[i]|=1LL<<regs[i].regmap_entry[hr];
10717         }
10718       }
10719     }
10720     //requires_32bit[i]=is32[i]&~unneeded_reg_upper[i]; // DEBUG
10721   }
10722 #else
10723   for (i=slen-1;i>=0;i--)
10724   {
10725     if(itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
10726     {
10727       // Conditional branch
10728       if((source[i]>>16)!=0x1000&&i<slen-2) {
10729         // Mark this address as a branch target since it may be called
10730         // upon return from interrupt
10731         bt[i+2]=1;
10732       }
10733     }
10734   }
10735 #endif
10736
10737   if(itype[slen-1]==SPAN) {
10738     bt[slen-1]=1; // Mark as a branch target so instruction can restart after exception
10739   }
10740   
10741   /* Debug/disassembly */
10742   if((void*)assem_debug==(void*)printf) 
10743   for(i=0;i<slen;i++)
10744   {
10745     printf("U:");
10746     int r;
10747     for(r=1;r<=CCREG;r++) {
10748       if((unneeded_reg[i]>>r)&1) {
10749         if(r==HIREG) printf(" HI");
10750         else if(r==LOREG) printf(" LO");
10751         else printf(" r%d",r);
10752       }
10753     }
10754 #ifndef FORCE32
10755     printf(" UU:");
10756     for(r=1;r<=CCREG;r++) {
10757       if(((unneeded_reg_upper[i]&~unneeded_reg[i])>>r)&1) {
10758         if(r==HIREG) printf(" HI");
10759         else if(r==LOREG) printf(" LO");
10760         else printf(" r%d",r);
10761       }
10762     }
10763     printf(" 32:");
10764     for(r=0;r<=CCREG;r++) {
10765       //if(((is32[i]>>r)&(~unneeded_reg[i]>>r))&1) {
10766       if((regs[i].was32>>r)&1) {
10767         if(r==CCREG) printf(" CC");
10768         else if(r==HIREG) printf(" HI");
10769         else if(r==LOREG) printf(" LO");
10770         else printf(" r%d",r);
10771       }
10772     }
10773 #endif
10774     printf("\n");
10775     #if defined(__i386__) || defined(__x86_64__)
10776     printf("pre: eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",regmap_pre[i][0],regmap_pre[i][1],regmap_pre[i][2],regmap_pre[i][3],regmap_pre[i][5],regmap_pre[i][6],regmap_pre[i][7]);
10777     #endif
10778     #ifdef __arm__
10779     printf("pre: r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d\n",regmap_pre[i][0],regmap_pre[i][1],regmap_pre[i][2],regmap_pre[i][3],regmap_pre[i][4],regmap_pre[i][5],regmap_pre[i][6],regmap_pre[i][7],regmap_pre[i][8],regmap_pre[i][9],regmap_pre[i][10],regmap_pre[i][12]);
10780     #endif
10781     printf("needs: ");
10782     if(needed_reg[i]&1) printf("eax ");
10783     if((needed_reg[i]>>1)&1) printf("ecx ");
10784     if((needed_reg[i]>>2)&1) printf("edx ");
10785     if((needed_reg[i]>>3)&1) printf("ebx ");
10786     if((needed_reg[i]>>5)&1) printf("ebp ");
10787     if((needed_reg[i]>>6)&1) printf("esi ");
10788     if((needed_reg[i]>>7)&1) printf("edi ");
10789     printf("r:");
10790     for(r=0;r<=CCREG;r++) {
10791       //if(((requires_32bit[i]>>r)&(~unneeded_reg[i]>>r))&1) {
10792       if((requires_32bit[i]>>r)&1) {
10793         if(r==CCREG) printf(" CC");
10794         else if(r==HIREG) printf(" HI");
10795         else if(r==LOREG) printf(" LO");
10796         else printf(" r%d",r);
10797       }
10798     }
10799     printf("\n");
10800     /*printf("pr:");
10801     for(r=0;r<=CCREG;r++) {
10802       //if(((requires_32bit[i]>>r)&(~unneeded_reg[i]>>r))&1) {
10803       if((pr32[i]>>r)&1) {
10804         if(r==CCREG) printf(" CC");
10805         else if(r==HIREG) printf(" HI");
10806         else if(r==LOREG) printf(" LO");
10807         else printf(" r%d",r);
10808       }
10809     }
10810     if(pr32[i]!=requires_32bit[i]) printf(" OOPS");
10811     printf("\n");*/
10812     #if defined(__i386__) || defined(__x86_64__)
10813     printf("entry: eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",regs[i].regmap_entry[0],regs[i].regmap_entry[1],regs[i].regmap_entry[2],regs[i].regmap_entry[3],regs[i].regmap_entry[5],regs[i].regmap_entry[6],regs[i].regmap_entry[7]);
10814     printf("dirty: ");
10815     if(regs[i].wasdirty&1) printf("eax ");
10816     if((regs[i].wasdirty>>1)&1) printf("ecx ");
10817     if((regs[i].wasdirty>>2)&1) printf("edx ");
10818     if((regs[i].wasdirty>>3)&1) printf("ebx ");
10819     if((regs[i].wasdirty>>5)&1) printf("ebp ");
10820     if((regs[i].wasdirty>>6)&1) printf("esi ");
10821     if((regs[i].wasdirty>>7)&1) printf("edi ");
10822     #endif
10823     #ifdef __arm__
10824     printf("entry: r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d\n",regs[i].regmap_entry[0],regs[i].regmap_entry[1],regs[i].regmap_entry[2],regs[i].regmap_entry[3],regs[i].regmap_entry[4],regs[i].regmap_entry[5],regs[i].regmap_entry[6],regs[i].regmap_entry[7],regs[i].regmap_entry[8],regs[i].regmap_entry[9],regs[i].regmap_entry[10],regs[i].regmap_entry[12]);
10825     printf("dirty: ");
10826     if(regs[i].wasdirty&1) printf("r0 ");
10827     if((regs[i].wasdirty>>1)&1) printf("r1 ");
10828     if((regs[i].wasdirty>>2)&1) printf("r2 ");
10829     if((regs[i].wasdirty>>3)&1) printf("r3 ");
10830     if((regs[i].wasdirty>>4)&1) printf("r4 ");
10831     if((regs[i].wasdirty>>5)&1) printf("r5 ");
10832     if((regs[i].wasdirty>>6)&1) printf("r6 ");
10833     if((regs[i].wasdirty>>7)&1) printf("r7 ");
10834     if((regs[i].wasdirty>>8)&1) printf("r8 ");
10835     if((regs[i].wasdirty>>9)&1) printf("r9 ");
10836     if((regs[i].wasdirty>>10)&1) printf("r10 ");
10837     if((regs[i].wasdirty>>12)&1) printf("r12 ");
10838     #endif
10839     printf("\n");
10840     disassemble_inst(i);
10841     //printf ("ccadj[%d] = %d\n",i,ccadj[i]);
10842     #if defined(__i386__) || defined(__x86_64__)
10843     printf("eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d dirty: ",regs[i].regmap[0],regs[i].regmap[1],regs[i].regmap[2],regs[i].regmap[3],regs[i].regmap[5],regs[i].regmap[6],regs[i].regmap[7]);
10844     if(regs[i].dirty&1) printf("eax ");
10845     if((regs[i].dirty>>1)&1) printf("ecx ");
10846     if((regs[i].dirty>>2)&1) printf("edx ");
10847     if((regs[i].dirty>>3)&1) printf("ebx ");
10848     if((regs[i].dirty>>5)&1) printf("ebp ");
10849     if((regs[i].dirty>>6)&1) printf("esi ");
10850     if((regs[i].dirty>>7)&1) printf("edi ");
10851     #endif
10852     #ifdef __arm__
10853     printf("r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d dirty: ",regs[i].regmap[0],regs[i].regmap[1],regs[i].regmap[2],regs[i].regmap[3],regs[i].regmap[4],regs[i].regmap[5],regs[i].regmap[6],regs[i].regmap[7],regs[i].regmap[8],regs[i].regmap[9],regs[i].regmap[10],regs[i].regmap[12]);
10854     if(regs[i].dirty&1) printf("r0 ");
10855     if((regs[i].dirty>>1)&1) printf("r1 ");
10856     if((regs[i].dirty>>2)&1) printf("r2 ");
10857     if((regs[i].dirty>>3)&1) printf("r3 ");
10858     if((regs[i].dirty>>4)&1) printf("r4 ");
10859     if((regs[i].dirty>>5)&1) printf("r5 ");
10860     if((regs[i].dirty>>6)&1) printf("r6 ");
10861     if((regs[i].dirty>>7)&1) printf("r7 ");
10862     if((regs[i].dirty>>8)&1) printf("r8 ");
10863     if((regs[i].dirty>>9)&1) printf("r9 ");
10864     if((regs[i].dirty>>10)&1) printf("r10 ");
10865     if((regs[i].dirty>>12)&1) printf("r12 ");
10866     #endif
10867     printf("\n");
10868     if(regs[i].isconst) {
10869       printf("constants: ");
10870       #if defined(__i386__) || defined(__x86_64__)
10871       if(regs[i].isconst&1) printf("eax=%x ",(int)constmap[i][0]);
10872       if((regs[i].isconst>>1)&1) printf("ecx=%x ",(int)constmap[i][1]);
10873       if((regs[i].isconst>>2)&1) printf("edx=%x ",(int)constmap[i][2]);
10874       if((regs[i].isconst>>3)&1) printf("ebx=%x ",(int)constmap[i][3]);
10875       if((regs[i].isconst>>5)&1) printf("ebp=%x ",(int)constmap[i][5]);
10876       if((regs[i].isconst>>6)&1) printf("esi=%x ",(int)constmap[i][6]);
10877       if((regs[i].isconst>>7)&1) printf("edi=%x ",(int)constmap[i][7]);
10878       #endif
10879       #ifdef __arm__
10880       if(regs[i].isconst&1) printf("r0=%x ",(int)constmap[i][0]);
10881       if((regs[i].isconst>>1)&1) printf("r1=%x ",(int)constmap[i][1]);
10882       if((regs[i].isconst>>2)&1) printf("r2=%x ",(int)constmap[i][2]);
10883       if((regs[i].isconst>>3)&1) printf("r3=%x ",(int)constmap[i][3]);
10884       if((regs[i].isconst>>4)&1) printf("r4=%x ",(int)constmap[i][4]);
10885       if((regs[i].isconst>>5)&1) printf("r5=%x ",(int)constmap[i][5]);
10886       if((regs[i].isconst>>6)&1) printf("r6=%x ",(int)constmap[i][6]);
10887       if((regs[i].isconst>>7)&1) printf("r7=%x ",(int)constmap[i][7]);
10888       if((regs[i].isconst>>8)&1) printf("r8=%x ",(int)constmap[i][8]);
10889       if((regs[i].isconst>>9)&1) printf("r9=%x ",(int)constmap[i][9]);
10890       if((regs[i].isconst>>10)&1) printf("r10=%x ",(int)constmap[i][10]);
10891       if((regs[i].isconst>>12)&1) printf("r12=%x ",(int)constmap[i][12]);
10892       #endif
10893       printf("\n");
10894     }
10895 #ifndef FORCE32
10896     printf(" 32:");
10897     for(r=0;r<=CCREG;r++) {
10898       if((regs[i].is32>>r)&1) {
10899         if(r==CCREG) printf(" CC");
10900         else if(r==HIREG) printf(" HI");
10901         else if(r==LOREG) printf(" LO");
10902         else printf(" r%d",r);
10903       }
10904     }
10905     printf("\n");
10906 #endif
10907     /*printf(" p32:");
10908     for(r=0;r<=CCREG;r++) {
10909       if((p32[i]>>r)&1) {
10910         if(r==CCREG) printf(" CC");
10911         else if(r==HIREG) printf(" HI");
10912         else if(r==LOREG) printf(" LO");
10913         else printf(" r%d",r);
10914       }
10915     }
10916     if(p32[i]!=regs[i].is32) printf(" NO MATCH\n");
10917     else printf("\n");*/
10918     if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP) {
10919       #if defined(__i386__) || defined(__x86_64__)
10920       printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d dirty: ",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
10921       if(branch_regs[i].dirty&1) printf("eax ");
10922       if((branch_regs[i].dirty>>1)&1) printf("ecx ");
10923       if((branch_regs[i].dirty>>2)&1) printf("edx ");
10924       if((branch_regs[i].dirty>>3)&1) printf("ebx ");
10925       if((branch_regs[i].dirty>>5)&1) printf("ebp ");
10926       if((branch_regs[i].dirty>>6)&1) printf("esi ");
10927       if((branch_regs[i].dirty>>7)&1) printf("edi ");
10928       #endif
10929       #ifdef __arm__
10930       printf("branch(%d): r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d dirty: ",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[4],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7],branch_regs[i].regmap[8],branch_regs[i].regmap[9],branch_regs[i].regmap[10],branch_regs[i].regmap[12]);
10931       if(branch_regs[i].dirty&1) printf("r0 ");
10932       if((branch_regs[i].dirty>>1)&1) printf("r1 ");
10933       if((branch_regs[i].dirty>>2)&1) printf("r2 ");
10934       if((branch_regs[i].dirty>>3)&1) printf("r3 ");
10935       if((branch_regs[i].dirty>>4)&1) printf("r4 ");
10936       if((branch_regs[i].dirty>>5)&1) printf("r5 ");
10937       if((branch_regs[i].dirty>>6)&1) printf("r6 ");
10938       if((branch_regs[i].dirty>>7)&1) printf("r7 ");
10939       if((branch_regs[i].dirty>>8)&1) printf("r8 ");
10940       if((branch_regs[i].dirty>>9)&1) printf("r9 ");
10941       if((branch_regs[i].dirty>>10)&1) printf("r10 ");
10942       if((branch_regs[i].dirty>>12)&1) printf("r12 ");
10943       #endif
10944 #ifndef FORCE32
10945       printf(" 32:");
10946       for(r=0;r<=CCREG;r++) {
10947         if((branch_regs[i].is32>>r)&1) {
10948           if(r==CCREG) printf(" CC");
10949           else if(r==HIREG) printf(" HI");
10950           else if(r==LOREG) printf(" LO");
10951           else printf(" r%d",r);
10952         }
10953       }
10954       printf("\n");
10955 #endif
10956     }
10957   }
10958
10959   /* Pass 8 - Assembly */
10960   linkcount=0;stubcount=0;
10961   ds=0;is_delayslot=0;
10962   cop1_usable=0;
10963   uint64_t is32_pre=0;
10964   u_int dirty_pre=0;
10965   u_int beginning=(u_int)out;
10966   if((u_int)addr&1) {
10967     ds=1;
10968     pagespan_ds();
10969   }
10970   u_int instr_addr0_override=0;
10971
10972 #ifdef PCSX
10973   if (start == 0x80030000) {
10974     // nasty hack for fastbios thing
10975     // override block entry to this code
10976     instr_addr0_override=(u_int)out;
10977     emit_movimm(start,0);
10978     // abuse io address var as a flag that we
10979     // have already returned here once
10980     emit_readword((int)&address,1);
10981     emit_writeword(0,(int)&pcaddr);
10982     emit_writeword(0,(int)&address);
10983     emit_cmp(0,1);
10984     emit_jne((int)new_dyna_leave);
10985   }
10986 #endif
10987   for(i=0;i<slen;i++)
10988   {
10989     //if(ds) printf("ds: ");
10990     if((void*)assem_debug==(void*)printf) disassemble_inst(i);
10991     if(ds) {
10992       ds=0; // Skip delay slot
10993       if(bt[i]) assem_debug("OOPS - branch into delay slot\n");
10994       instr_addr[i]=0;
10995     } else {
10996       #ifndef DESTRUCTIVE_WRITEBACK
10997       if(i<2||(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000))
10998       {
10999         wb_sx(regmap_pre[i],regs[i].regmap_entry,regs[i].wasdirty,is32_pre,regs[i].was32,
11000               unneeded_reg[i],unneeded_reg_upper[i]);
11001         wb_valid(regmap_pre[i],regs[i].regmap_entry,dirty_pre,regs[i].wasdirty,is32_pre,
11002               unneeded_reg[i],unneeded_reg_upper[i]);
11003       }
11004       if((itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)&&!likely[i]) {
11005         is32_pre=branch_regs[i].is32;
11006         dirty_pre=branch_regs[i].dirty;
11007       }else{
11008         is32_pre=regs[i].is32;
11009         dirty_pre=regs[i].dirty;
11010       }
11011       #endif
11012       // write back
11013       if(i<2||(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000))
11014       {
11015         wb_invalidate(regmap_pre[i],regs[i].regmap_entry,regs[i].wasdirty,regs[i].was32,
11016                       unneeded_reg[i],unneeded_reg_upper[i]);
11017         loop_preload(regmap_pre[i],regs[i].regmap_entry);
11018       }
11019       // branch target entry point
11020       instr_addr[i]=(u_int)out;
11021       assem_debug("<->\n");
11022       // load regs
11023       if(regs[i].regmap_entry[HOST_CCREG]==CCREG&&regs[i].regmap[HOST_CCREG]!=CCREG)
11024         wb_register(CCREG,regs[i].regmap_entry,regs[i].wasdirty,regs[i].was32);
11025       load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i],rs2[i]);
11026       address_generation(i,&regs[i],regs[i].regmap_entry);
11027       load_consts(regmap_pre[i],regs[i].regmap,regs[i].was32,i);
11028       if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
11029       {
11030         // Load the delay slot registers if necessary
11031         if(rs1[i+1]!=rs1[i]&&rs1[i+1]!=rs2[i]&&(rs1[i+1]!=rt1[i]||rt1[i]==0))
11032           load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i+1],rs1[i+1]);
11033         if(rs2[i+1]!=rs1[i+1]&&rs2[i+1]!=rs1[i]&&rs2[i+1]!=rs2[i]&&(rs2[i+1]!=rt1[i]||rt1[i]==0))
11034           load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs2[i+1],rs2[i+1]);
11035         if(itype[i+1]==STORE||itype[i+1]==STORELR||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a)
11036           load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,INVCP,INVCP);
11037       }
11038       else if(i+1<slen)
11039       {
11040         // Preload registers for following instruction
11041         if(rs1[i+1]!=rs1[i]&&rs1[i+1]!=rs2[i])
11042           if(rs1[i+1]!=rt1[i]&&rs1[i+1]!=rt2[i])
11043             load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i+1],rs1[i+1]);
11044         if(rs2[i+1]!=rs1[i+1]&&rs2[i+1]!=rs1[i]&&rs2[i+1]!=rs2[i])
11045           if(rs2[i+1]!=rt1[i]&&rs2[i+1]!=rt2[i])
11046             load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs2[i+1],rs2[i+1]);
11047       }
11048       // TODO: if(is_ooo(i)) address_generation(i+1);
11049       if(itype[i]==CJUMP||itype[i]==FJUMP)
11050         load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,CCREG,CCREG);
11051       if(itype[i]==STORE||itype[i]==STORELR||(opcode[i]&0x3b)==0x39||(opcode[i]&0x3b)==0x3a)
11052         load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,INVCP,INVCP);
11053       if(bt[i]) cop1_usable=0;
11054       // assemble
11055       switch(itype[i]) {
11056         case ALU:
11057           alu_assemble(i,&regs[i]);break;
11058         case IMM16:
11059           imm16_assemble(i,&regs[i]);break;
11060         case SHIFT:
11061           shift_assemble(i,&regs[i]);break;
11062         case SHIFTIMM:
11063           shiftimm_assemble(i,&regs[i]);break;
11064         case LOAD:
11065           load_assemble(i,&regs[i]);break;
11066         case LOADLR:
11067           loadlr_assemble(i,&regs[i]);break;
11068         case STORE:
11069           store_assemble(i,&regs[i]);break;
11070         case STORELR:
11071           storelr_assemble(i,&regs[i]);break;
11072         case COP0:
11073           cop0_assemble(i,&regs[i]);break;
11074         case COP1:
11075           cop1_assemble(i,&regs[i]);break;
11076         case C1LS:
11077           c1ls_assemble(i,&regs[i]);break;
11078         case COP2:
11079           cop2_assemble(i,&regs[i]);break;
11080         case C2LS:
11081           c2ls_assemble(i,&regs[i]);break;
11082         case C2OP:
11083           c2op_assemble(i,&regs[i]);break;
11084         case FCONV:
11085           fconv_assemble(i,&regs[i]);break;
11086         case FLOAT:
11087           float_assemble(i,&regs[i]);break;
11088         case FCOMP:
11089           fcomp_assemble(i,&regs[i]);break;
11090         case MULTDIV:
11091           multdiv_assemble(i,&regs[i]);break;
11092         case MOV:
11093           mov_assemble(i,&regs[i]);break;
11094         case SYSCALL:
11095           syscall_assemble(i,&regs[i]);break;
11096         case HLECALL:
11097           hlecall_assemble(i,&regs[i]);break;
11098         case INTCALL:
11099           intcall_assemble(i,&regs[i]);break;
11100         case UJUMP:
11101           ujump_assemble(i,&regs[i]);ds=1;break;
11102         case RJUMP:
11103           rjump_assemble(i,&regs[i]);ds=1;break;
11104         case CJUMP:
11105           cjump_assemble(i,&regs[i]);ds=1;break;
11106         case SJUMP:
11107           sjump_assemble(i,&regs[i]);ds=1;break;
11108         case FJUMP:
11109           fjump_assemble(i,&regs[i]);ds=1;break;
11110         case SPAN:
11111           pagespan_assemble(i,&regs[i]);break;
11112       }
11113       if(itype[i]==UJUMP||itype[i]==RJUMP||(source[i]>>16)==0x1000)
11114         literal_pool(1024);
11115       else
11116         literal_pool_jumpover(256);
11117     }
11118   }
11119   //assert(itype[i-2]==UJUMP||itype[i-2]==RJUMP||(source[i-2]>>16)==0x1000);
11120   // If the block did not end with an unconditional branch,
11121   // add a jump to the next instruction.
11122   if(i>1) {
11123     if(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000&&itype[i-1]!=SPAN) {
11124       assert(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP);
11125       assert(i==slen);
11126       if(itype[i-2]!=CJUMP&&itype[i-2]!=SJUMP&&itype[i-2]!=FJUMP) {
11127         store_regs_bt(regs[i-1].regmap,regs[i-1].is32,regs[i-1].dirty,start+i*4);
11128         if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
11129           emit_loadreg(CCREG,HOST_CCREG);
11130         emit_addimm(HOST_CCREG,CLOCK_DIVIDER*(ccadj[i-1]+1),HOST_CCREG);
11131       }
11132       else if(!likely[i-2])
11133       {
11134         store_regs_bt(branch_regs[i-2].regmap,branch_regs[i-2].is32,branch_regs[i-2].dirty,start+i*4);
11135         assert(branch_regs[i-2].regmap[HOST_CCREG]==CCREG);
11136       }
11137       else
11138       {
11139         store_regs_bt(regs[i-2].regmap,regs[i-2].is32,regs[i-2].dirty,start+i*4);
11140         assert(regs[i-2].regmap[HOST_CCREG]==CCREG);
11141       }
11142       add_to_linker((int)out,start+i*4,0);
11143       emit_jmp(0);
11144     }
11145   }
11146   else
11147   {
11148     assert(i>0);
11149     assert(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP);
11150     store_regs_bt(regs[i-1].regmap,regs[i-1].is32,regs[i-1].dirty,start+i*4);
11151     if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
11152       emit_loadreg(CCREG,HOST_CCREG);
11153     emit_addimm(HOST_CCREG,CLOCK_DIVIDER*(ccadj[i-1]+1),HOST_CCREG);
11154     add_to_linker((int)out,start+i*4,0);
11155     emit_jmp(0);
11156   }
11157
11158   // TODO: delay slot stubs?
11159   // Stubs
11160   for(i=0;i<stubcount;i++)
11161   {
11162     switch(stubs[i][0])
11163     {
11164       case LOADB_STUB:
11165       case LOADH_STUB:
11166       case LOADW_STUB:
11167       case LOADD_STUB:
11168       case LOADBU_STUB:
11169       case LOADHU_STUB:
11170         do_readstub(i);break;
11171       case STOREB_STUB:
11172       case STOREH_STUB:
11173       case STOREW_STUB:
11174       case STORED_STUB:
11175         do_writestub(i);break;
11176       case CC_STUB:
11177         do_ccstub(i);break;
11178       case INVCODE_STUB:
11179         do_invstub(i);break;
11180       case FP_STUB:
11181         do_cop1stub(i);break;
11182       case STORELR_STUB:
11183         do_unalignedwritestub(i);break;
11184     }
11185   }
11186
11187   if (instr_addr0_override)
11188     instr_addr[0] = instr_addr0_override;
11189
11190   /* Pass 9 - Linker */
11191   for(i=0;i<linkcount;i++)
11192   {
11193     assem_debug("%8x -> %8x\n",link_addr[i][0],link_addr[i][1]);
11194     literal_pool(64);
11195     if(!link_addr[i][2])
11196     {
11197       void *stub=out;
11198       void *addr=check_addr(link_addr[i][1]);
11199       emit_extjump(link_addr[i][0],link_addr[i][1]);
11200       if(addr) {
11201         set_jump_target(link_addr[i][0],(int)addr);
11202         add_link(link_addr[i][1],stub);
11203       }
11204       else set_jump_target(link_addr[i][0],(int)stub);
11205     }
11206     else
11207     {
11208       // Internal branch
11209       int target=(link_addr[i][1]-start)>>2;
11210       assert(target>=0&&target<slen);
11211       assert(instr_addr[target]);
11212       //#ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
11213       //set_jump_target_fillslot(link_addr[i][0],instr_addr[target],link_addr[i][2]>>1);
11214       //#else
11215       set_jump_target(link_addr[i][0],instr_addr[target]);
11216       //#endif
11217     }
11218   }
11219   // External Branch Targets (jump_in)
11220   if(copy+slen*4>(void *)shadow+sizeof(shadow)) copy=shadow;
11221   for(i=0;i<slen;i++)
11222   {
11223     if(bt[i]||i==0)
11224     {
11225       if(instr_addr[i]) // TODO - delay slots (=null)
11226       {
11227         u_int vaddr=start+i*4;
11228         u_int page=get_page(vaddr);
11229         u_int vpage=get_vpage(vaddr);
11230         literal_pool(256);
11231         //if(!(is32[i]&(~unneeded_reg_upper[i])&~(1LL<<CCREG)))
11232 #ifndef FORCE32
11233         if(!requires_32bit[i])
11234 #else
11235         if(1)
11236 #endif
11237         {
11238           assem_debug("%8x (%d) <- %8x\n",instr_addr[i],i,start+i*4);
11239           assem_debug("jump_in: %x\n",start+i*4);
11240           ll_add(jump_dirty+vpage,vaddr,(void *)out);
11241           int entry_point=do_dirty_stub(i);
11242           ll_add(jump_in+page,vaddr,(void *)entry_point);
11243           // If there was an existing entry in the hash table,
11244           // replace it with the new address.
11245           // Don't add new entries.  We'll insert the
11246           // ones that actually get used in check_addr().
11247           int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
11248           if(ht_bin[0]==vaddr) {
11249             ht_bin[1]=entry_point;
11250           }
11251           if(ht_bin[2]==vaddr) {
11252             ht_bin[3]=entry_point;
11253           }
11254         }
11255         else
11256         {
11257           u_int r=requires_32bit[i]|!!(requires_32bit[i]>>32);
11258           assem_debug("%8x (%d) <- %8x\n",instr_addr[i],i,start+i*4);
11259           assem_debug("jump_in: %x (restricted - %x)\n",start+i*4,r);
11260           //int entry_point=(int)out;
11261           ////assem_debug("entry_point: %x\n",entry_point);
11262           //load_regs_entry(i);
11263           //if(entry_point==(int)out)
11264           //  entry_point=instr_addr[i];
11265           //else
11266           //  emit_jmp(instr_addr[i]);
11267           //ll_add_32(jump_in+page,vaddr,r,(void *)entry_point);
11268           ll_add_32(jump_dirty+vpage,vaddr,r,(void *)out);
11269           int entry_point=do_dirty_stub(i);
11270           ll_add_32(jump_in+page,vaddr,r,(void *)entry_point);
11271         }
11272       }
11273     }
11274   }
11275   // Write out the literal pool if necessary
11276   literal_pool(0);
11277   #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
11278   // Align code
11279   if(((u_int)out)&7) emit_addnop(13);
11280   #endif
11281   assert((u_int)out-beginning<MAX_OUTPUT_BLOCK_SIZE);
11282   //printf("shadow buffer: %x-%x\n",(int)copy,(int)copy+slen*4);
11283   memcpy(copy,source,slen*4);
11284   copy+=slen*4;
11285   
11286   #ifdef __arm__
11287   __clear_cache((void *)beginning,out);
11288   #endif
11289   
11290   // If we're within 256K of the end of the buffer,
11291   // start over from the beginning. (Is 256K enough?)
11292   if((int)out>BASE_ADDR+(1<<TARGET_SIZE_2)-MAX_OUTPUT_BLOCK_SIZE) out=(u_char *)BASE_ADDR;
11293   
11294   // Trap writes to any of the pages we compiled
11295   for(i=start>>12;i<=(start+slen*4)>>12;i++) {
11296     invalid_code[i]=0;
11297 #ifndef DISABLE_TLB
11298     memory_map[i]|=0x40000000;
11299     if((signed int)start>=(signed int)0xC0000000) {
11300       assert(using_tlb);
11301       j=(((u_int)i<<12)+(memory_map[i]<<2)-(u_int)rdram+(u_int)0x80000000)>>12;
11302       invalid_code[j]=0;
11303       memory_map[j]|=0x40000000;
11304       //printf("write protect physical page: %x (virtual %x)\n",j<<12,start);
11305     }
11306 #endif
11307   }
11308 #ifdef PCSX
11309   // PCSX maps all RAM mirror invalid_code tests to 0x80000000..0x80000000+RAM_SIZE
11310   if(get_page(start)<(RAM_SIZE>>12))
11311     for(i=start>>12;i<=(start+slen*4)>>12;i++)
11312       invalid_code[((u_int)0x80000000>>12)|i]=0;
11313 #endif
11314   
11315   /* Pass 10 - Free memory by expiring oldest blocks */
11316   
11317   int end=((((int)out-BASE_ADDR)>>(TARGET_SIZE_2-16))+16384)&65535;
11318   while(expirep!=end)
11319   {
11320     int shift=TARGET_SIZE_2-3; // Divide into 8 blocks
11321     int base=BASE_ADDR+((expirep>>13)<<shift); // Base address of this block
11322     inv_debug("EXP: Phase %d\n",expirep);
11323     switch((expirep>>11)&3)
11324     {
11325       case 0:
11326         // Clear jump_in and jump_dirty
11327         ll_remove_matching_addrs(jump_in+(expirep&2047),base,shift);
11328         ll_remove_matching_addrs(jump_dirty+(expirep&2047),base,shift);
11329         ll_remove_matching_addrs(jump_in+2048+(expirep&2047),base,shift);
11330         ll_remove_matching_addrs(jump_dirty+2048+(expirep&2047),base,shift);
11331         break;
11332       case 1:
11333         // Clear pointers
11334         ll_kill_pointers(jump_out[expirep&2047],base,shift);
11335         ll_kill_pointers(jump_out[(expirep&2047)+2048],base,shift);
11336         break;
11337       case 2:
11338         // Clear hash table
11339         for(i=0;i<32;i++) {
11340           int *ht_bin=hash_table[((expirep&2047)<<5)+i];
11341           if((ht_bin[3]>>shift)==(base>>shift) ||
11342              ((ht_bin[3]-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(base>>shift)) {
11343             inv_debug("EXP: Remove hash %x -> %x\n",ht_bin[2],ht_bin[3]);
11344             ht_bin[2]=ht_bin[3]=-1;
11345           }
11346           if((ht_bin[1]>>shift)==(base>>shift) ||
11347              ((ht_bin[1]-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(base>>shift)) {
11348             inv_debug("EXP: Remove hash %x -> %x\n",ht_bin[0],ht_bin[1]);
11349             ht_bin[0]=ht_bin[2];
11350             ht_bin[1]=ht_bin[3];
11351             ht_bin[2]=ht_bin[3]=-1;
11352           }
11353         }
11354         break;
11355       case 3:
11356         // Clear jump_out
11357         #ifdef __arm__
11358         if((expirep&2047)==0) 
11359           do_clear_cache();
11360         #endif
11361         ll_remove_matching_addrs(jump_out+(expirep&2047),base,shift);
11362         ll_remove_matching_addrs(jump_out+2048+(expirep&2047),base,shift);
11363         break;
11364     }
11365     expirep=(expirep+1)&65535;
11366   }
11367   return 0;
11368 }
11369
11370 // vim:shiftwidth=2:expandtab