drc: merge Ari64's patch: 13_dummy_loads
[pcsx_rearmed.git] / libpcsxcore / new_dynarec / new_dynarec.c
1 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
2  *   Mupen64plus - new_dynarec.c                                           *
3  *   Copyright (C) 2009-2011 Ari64                                         *
4  *                                                                         *
5  *   This program is free software; you can redistribute it and/or modify  *
6  *   it under the terms of the GNU General Public License as published by  *
7  *   the Free Software Foundation; either version 2 of the License, or     *
8  *   (at your option) any later version.                                   *
9  *                                                                         *
10  *   This program is distributed in the hope that it will be useful,       *
11  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
12  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
13  *   GNU General Public License for more details.                          *
14  *                                                                         *
15  *   You should have received a copy of the GNU General Public License     *
16  *   along with this program; if not, write to the                         *
17  *   Free Software Foundation, Inc.,                                       *
18  *   51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.          *
19  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
20
21 #include <stdlib.h>
22 #include <stdint.h> //include for uint64_t
23 #include <assert.h>
24
25 #include "emu_if.h" //emulator interface
26
27 #include <sys/mman.h>
28
29 #ifdef __i386__
30 #include "assem_x86.h"
31 #endif
32 #ifdef __x86_64__
33 #include "assem_x64.h"
34 #endif
35 #ifdef __arm__
36 #include "assem_arm.h"
37 #endif
38
39 #define MAXBLOCK 4096
40 #define MAX_OUTPUT_BLOCK_SIZE 262144
41 #define CLOCK_DIVIDER 2
42
43 struct regstat
44 {
45   signed char regmap_entry[HOST_REGS];
46   signed char regmap[HOST_REGS];
47   uint64_t was32;
48   uint64_t is32;
49   uint64_t wasdirty;
50   uint64_t dirty;
51   uint64_t u;
52   uint64_t uu;
53   u_int wasconst;
54   u_int isconst;
55   uint64_t constmap[HOST_REGS];
56 };
57
58 struct ll_entry
59 {
60   u_int vaddr;
61   u_int reg32;
62   void *addr;
63   struct ll_entry *next;
64 };
65
66   u_int start;
67   u_int *source;
68   u_int pagelimit;
69   char insn[MAXBLOCK][10];
70   u_char itype[MAXBLOCK];
71   u_char opcode[MAXBLOCK];
72   u_char opcode2[MAXBLOCK];
73   u_char bt[MAXBLOCK];
74   u_char rs1[MAXBLOCK];
75   u_char rs2[MAXBLOCK];
76   u_char rt1[MAXBLOCK];
77   u_char rt2[MAXBLOCK];
78   u_char us1[MAXBLOCK];
79   u_char us2[MAXBLOCK];
80   u_char dep1[MAXBLOCK];
81   u_char dep2[MAXBLOCK];
82   u_char lt1[MAXBLOCK];
83   int imm[MAXBLOCK];
84   u_int ba[MAXBLOCK];
85   char likely[MAXBLOCK];
86   char is_ds[MAXBLOCK];
87   char ooo[MAXBLOCK];
88   uint64_t unneeded_reg[MAXBLOCK];
89   uint64_t unneeded_reg_upper[MAXBLOCK];
90   uint64_t branch_unneeded_reg[MAXBLOCK];
91   uint64_t branch_unneeded_reg_upper[MAXBLOCK];
92   uint64_t p32[MAXBLOCK];
93   uint64_t pr32[MAXBLOCK];
94   signed char regmap_pre[MAXBLOCK][HOST_REGS];
95   signed char regmap[MAXBLOCK][HOST_REGS];
96   signed char regmap_entry[MAXBLOCK][HOST_REGS];
97   uint64_t constmap[MAXBLOCK][HOST_REGS];
98   struct regstat regs[MAXBLOCK];
99   struct regstat branch_regs[MAXBLOCK];
100   signed char minimum_free_regs[MAXBLOCK];
101   u_int needed_reg[MAXBLOCK];
102   uint64_t requires_32bit[MAXBLOCK];
103   u_int wont_dirty[MAXBLOCK];
104   u_int will_dirty[MAXBLOCK];
105   int ccadj[MAXBLOCK];
106   int slen;
107   u_int instr_addr[MAXBLOCK];
108   u_int link_addr[MAXBLOCK][3];
109   int linkcount;
110   u_int stubs[MAXBLOCK*3][8];
111   int stubcount;
112   u_int literals[1024][2];
113   int literalcount;
114   int is_delayslot;
115   int cop1_usable;
116   u_char *out;
117   struct ll_entry *jump_in[4096];
118   struct ll_entry *jump_out[4096];
119   struct ll_entry *jump_dirty[4096];
120   u_int hash_table[65536][4]  __attribute__((aligned(16)));
121   char shadow[1048576]  __attribute__((aligned(16)));
122   void *copy;
123   int expirep;
124 #ifndef PCSX
125   u_int using_tlb;
126 #else
127   static const u_int using_tlb=0;
128 #endif
129   static u_int sp_in_mirror;
130   u_int stop_after_jal;
131   extern u_char restore_candidate[512];
132   extern int cycle_count;
133
134   /* registers that may be allocated */
135   /* 1-31 gpr */
136 #define HIREG 32 // hi
137 #define LOREG 33 // lo
138 #define FSREG 34 // FPU status (FCSR)
139 #define CSREG 35 // Coprocessor status
140 #define CCREG 36 // Cycle count
141 #define INVCP 37 // Pointer to invalid_code
142 #define MMREG 38 // Pointer to memory_map
143 #define ROREG 39 // ram offset (if rdram!=0x80000000)
144 #define TEMPREG 40
145 #define FTEMP 40 // FPU temporary register
146 #define PTEMP 41 // Prefetch temporary register
147 #define TLREG 42 // TLB mapping offset
148 #define RHASH 43 // Return address hash
149 #define RHTBL 44 // Return address hash table address
150 #define RTEMP 45 // JR/JALR address register
151 #define MAXREG 45
152 #define AGEN1 46 // Address generation temporary register
153 #define AGEN2 47 // Address generation temporary register
154 #define MGEN1 48 // Maptable address generation temporary register
155 #define MGEN2 49 // Maptable address generation temporary register
156 #define BTREG 50 // Branch target temporary register
157
158   /* instruction types */
159 #define NOP 0     // No operation
160 #define LOAD 1    // Load
161 #define STORE 2   // Store
162 #define LOADLR 3  // Unaligned load
163 #define STORELR 4 // Unaligned store
164 #define MOV 5     // Move 
165 #define ALU 6     // Arithmetic/logic
166 #define MULTDIV 7 // Multiply/divide
167 #define SHIFT 8   // Shift by register
168 #define SHIFTIMM 9// Shift by immediate
169 #define IMM16 10  // 16-bit immediate
170 #define RJUMP 11  // Unconditional jump to register
171 #define UJUMP 12  // Unconditional jump
172 #define CJUMP 13  // Conditional branch (BEQ/BNE/BGTZ/BLEZ)
173 #define SJUMP 14  // Conditional branch (regimm format)
174 #define COP0 15   // Coprocessor 0
175 #define COP1 16   // Coprocessor 1
176 #define C1LS 17   // Coprocessor 1 load/store
177 #define FJUMP 18  // Conditional branch (floating point)
178 #define FLOAT 19  // Floating point unit
179 #define FCONV 20  // Convert integer to float
180 #define FCOMP 21  // Floating point compare (sets FSREG)
181 #define SYSCALL 22// SYSCALL
182 #define OTHER 23  // Other
183 #define SPAN 24   // Branch/delay slot spans 2 pages
184 #define NI 25     // Not implemented
185 #define HLECALL 26// PCSX fake opcodes for HLE
186 #define COP2 27   // Coprocessor 2 move
187 #define C2LS 28   // Coprocessor 2 load/store
188 #define C2OP 29   // Coprocessor 2 operation
189 #define INTCALL 30// Call interpreter to handle rare corner cases
190
191   /* stubs */
192 #define CC_STUB 1
193 #define FP_STUB 2
194 #define LOADB_STUB 3
195 #define LOADH_STUB 4
196 #define LOADW_STUB 5
197 #define LOADD_STUB 6
198 #define LOADBU_STUB 7
199 #define LOADHU_STUB 8
200 #define STOREB_STUB 9
201 #define STOREH_STUB 10
202 #define STOREW_STUB 11
203 #define STORED_STUB 12
204 #define STORELR_STUB 13
205 #define INVCODE_STUB 14
206
207   /* branch codes */
208 #define TAKEN 1
209 #define NOTTAKEN 2
210 #define NULLDS 3
211
212 // asm linkage
213 int new_recompile_block(int addr);
214 void *get_addr_ht(u_int vaddr);
215 void invalidate_block(u_int block);
216 void invalidate_addr(u_int addr);
217 void remove_hash(int vaddr);
218 void jump_vaddr();
219 void dyna_linker();
220 void dyna_linker_ds();
221 void verify_code();
222 void verify_code_vm();
223 void verify_code_ds();
224 void cc_interrupt();
225 void fp_exception();
226 void fp_exception_ds();
227 void jump_syscall();
228 void jump_syscall_hle();
229 void jump_eret();
230 void jump_hlecall();
231 void jump_intcall();
232 void new_dyna_leave();
233
234 // TLB
235 void TLBWI_new();
236 void TLBWR_new();
237 void read_nomem_new();
238 void read_nomemb_new();
239 void read_nomemh_new();
240 void read_nomemd_new();
241 void write_nomem_new();
242 void write_nomemb_new();
243 void write_nomemh_new();
244 void write_nomemd_new();
245 void write_rdram_new();
246 void write_rdramb_new();
247 void write_rdramh_new();
248 void write_rdramd_new();
249 extern u_int memory_map[1048576];
250
251 // Needed by assembler
252 void wb_register(signed char r,signed char regmap[],uint64_t dirty,uint64_t is32);
253 void wb_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty);
254 void wb_needed_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr);
255 void load_all_regs(signed char i_regmap[]);
256 void load_needed_regs(signed char i_regmap[],signed char next_regmap[]);
257 void load_regs_entry(int t);
258 void load_all_consts(signed char regmap[],int is32,u_int dirty,int i);
259
260 int tracedebug=0;
261
262 //#define DEBUG_CYCLE_COUNT 1
263
264 void nullf() {}
265 //#define assem_debug printf
266 //#define inv_debug printf
267 #define assem_debug nullf
268 #define inv_debug nullf
269
270 static void tlb_hacks()
271 {
272 #ifndef DISABLE_TLB
273   // Goldeneye hack
274   if (strncmp((char *) ROM_HEADER->nom, "GOLDENEYE",9) == 0)
275   {
276     u_int addr;
277     int n;
278     switch (ROM_HEADER->Country_code&0xFF) 
279     {
280       case 0x45: // U
281         addr=0x34b30;
282         break;                   
283       case 0x4A: // J 
284         addr=0x34b70;    
285         break;    
286       case 0x50: // E 
287         addr=0x329f0;
288         break;                        
289       default: 
290         // Unknown country code
291         addr=0;
292         break;
293     }
294     u_int rom_addr=(u_int)rom;
295     #ifdef ROM_COPY
296     // Since memory_map is 32-bit, on 64-bit systems the rom needs to be
297     // in the lower 4G of memory to use this hack.  Copy it if necessary.
298     if((void *)rom>(void *)0xffffffff) {
299       munmap(ROM_COPY, 67108864);
300       if(mmap(ROM_COPY, 12582912,
301               PROT_READ | PROT_WRITE,
302               MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS,
303               -1, 0) <= 0) {printf("mmap() failed\n");}
304       memcpy(ROM_COPY,rom,12582912);
305       rom_addr=(u_int)ROM_COPY;
306     }
307     #endif
308     if(addr) {
309       for(n=0x7F000;n<0x80000;n++) {
310         memory_map[n]=(((u_int)(rom_addr+addr-0x7F000000))>>2)|0x40000000;
311       }
312     }
313   }
314 #endif
315 }
316
317 static u_int get_page(u_int vaddr)
318 {
319 #ifndef PCSX
320   u_int page=(vaddr^0x80000000)>>12;
321 #else
322   u_int page=vaddr&~0xe0000000;
323   if (page < 0x1000000)
324     page &= ~0x0e00000; // RAM mirrors
325   page>>=12;
326 #endif
327 #ifndef DISABLE_TLB
328   if(page>262143&&tlb_LUT_r[vaddr>>12]) page=(tlb_LUT_r[vaddr>>12]^0x80000000)>>12;
329 #endif
330   if(page>2048) page=2048+(page&2047);
331   return page;
332 }
333
334 static u_int get_vpage(u_int vaddr)
335 {
336   u_int vpage=(vaddr^0x80000000)>>12;
337 #ifndef DISABLE_TLB
338   if(vpage>262143&&tlb_LUT_r[vaddr>>12]) vpage&=2047; // jump_dirty uses a hash of the virtual address instead
339 #endif
340   if(vpage>2048) vpage=2048+(vpage&2047);
341   return vpage;
342 }
343
344 // Get address from virtual address
345 // This is called from the recompiled JR/JALR instructions
346 void *get_addr(u_int vaddr)
347 {
348   u_int page=get_page(vaddr);
349   u_int vpage=get_vpage(vaddr);
350   struct ll_entry *head;
351   //printf("TRACE: count=%d next=%d (get_addr %x,page %d)\n",Count,next_interupt,vaddr,page);
352   head=jump_in[page];
353   while(head!=NULL) {
354     if(head->vaddr==vaddr&&head->reg32==0) {
355   //printf("TRACE: count=%d next=%d (get_addr match %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
356       int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
357       ht_bin[3]=ht_bin[1];
358       ht_bin[2]=ht_bin[0];
359       ht_bin[1]=(int)head->addr;
360       ht_bin[0]=vaddr;
361       return head->addr;
362     }
363     head=head->next;
364   }
365   head=jump_dirty[vpage];
366   while(head!=NULL) {
367     if(head->vaddr==vaddr&&head->reg32==0) {
368       //printf("TRACE: count=%d next=%d (get_addr match dirty %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
369       // Don't restore blocks which are about to expire from the cache
370       if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
371       if(verify_dirty(head->addr)) {
372         //printf("restore candidate: %x (%d) d=%d\n",vaddr,page,invalid_code[vaddr>>12]);
373         invalid_code[vaddr>>12]=0;
374         memory_map[vaddr>>12]|=0x40000000;
375         if(vpage<2048) {
376 #ifndef DISABLE_TLB
377           if(tlb_LUT_r[vaddr>>12]) {
378             invalid_code[tlb_LUT_r[vaddr>>12]>>12]=0;
379             memory_map[tlb_LUT_r[vaddr>>12]>>12]|=0x40000000;
380           }
381 #endif
382           restore_candidate[vpage>>3]|=1<<(vpage&7);
383         }
384         else restore_candidate[page>>3]|=1<<(page&7);
385         int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
386         if(ht_bin[0]==vaddr) {
387           ht_bin[1]=(int)head->addr; // Replace existing entry
388         }
389         else
390         {
391           ht_bin[3]=ht_bin[1];
392           ht_bin[2]=ht_bin[0];
393           ht_bin[1]=(int)head->addr;
394           ht_bin[0]=vaddr;
395         }
396         return head->addr;
397       }
398     }
399     head=head->next;
400   }
401   //printf("TRACE: count=%d next=%d (get_addr no-match %x)\n",Count,next_interupt,vaddr);
402   int r=new_recompile_block(vaddr);
403   if(r==0) return get_addr(vaddr);
404   // Execute in unmapped page, generate pagefault execption
405   Status|=2;
406   Cause=(vaddr<<31)|0x8;
407   EPC=(vaddr&1)?vaddr-5:vaddr;
408   BadVAddr=(vaddr&~1);
409   Context=(Context&0xFF80000F)|((BadVAddr>>9)&0x007FFFF0);
410   EntryHi=BadVAddr&0xFFFFE000;
411   return get_addr_ht(0x80000000);
412 }
413 // Look up address in hash table first
414 void *get_addr_ht(u_int vaddr)
415 {
416   //printf("TRACE: count=%d next=%d (get_addr_ht %x)\n",Count,next_interupt,vaddr);
417   int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
418   if(ht_bin[0]==vaddr) return (void *)ht_bin[1];
419   if(ht_bin[2]==vaddr) return (void *)ht_bin[3];
420   return get_addr(vaddr);
421 }
422
423 void *get_addr_32(u_int vaddr,u_int flags)
424 {
425 #ifdef FORCE32
426   return get_addr(vaddr);
427 #else
428   //printf("TRACE: count=%d next=%d (get_addr_32 %x,flags %x)\n",Count,next_interupt,vaddr,flags);
429   int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
430   if(ht_bin[0]==vaddr) return (void *)ht_bin[1];
431   if(ht_bin[2]==vaddr) return (void *)ht_bin[3];
432   u_int page=get_page(vaddr);
433   u_int vpage=get_vpage(vaddr);
434   struct ll_entry *head;
435   head=jump_in[page];
436   while(head!=NULL) {
437     if(head->vaddr==vaddr&&(head->reg32&flags)==0) {
438       //printf("TRACE: count=%d next=%d (get_addr_32 match %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
439       if(head->reg32==0) {
440         int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
441         if(ht_bin[0]==-1) {
442           ht_bin[1]=(int)head->addr;
443           ht_bin[0]=vaddr;
444         }else if(ht_bin[2]==-1) {
445           ht_bin[3]=(int)head->addr;
446           ht_bin[2]=vaddr;
447         }
448         //ht_bin[3]=ht_bin[1];
449         //ht_bin[2]=ht_bin[0];
450         //ht_bin[1]=(int)head->addr;
451         //ht_bin[0]=vaddr;
452       }
453       return head->addr;
454     }
455     head=head->next;
456   }
457   head=jump_dirty[vpage];
458   while(head!=NULL) {
459     if(head->vaddr==vaddr&&(head->reg32&flags)==0) {
460       //printf("TRACE: count=%d next=%d (get_addr_32 match dirty %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
461       // Don't restore blocks which are about to expire from the cache
462       if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
463       if(verify_dirty(head->addr)) {
464         //printf("restore candidate: %x (%d) d=%d\n",vaddr,page,invalid_code[vaddr>>12]);
465         invalid_code[vaddr>>12]=0;
466         memory_map[vaddr>>12]|=0x40000000;
467         if(vpage<2048) {
468 #ifndef DISABLE_TLB
469           if(tlb_LUT_r[vaddr>>12]) {
470             invalid_code[tlb_LUT_r[vaddr>>12]>>12]=0;
471             memory_map[tlb_LUT_r[vaddr>>12]>>12]|=0x40000000;
472           }
473 #endif
474           restore_candidate[vpage>>3]|=1<<(vpage&7);
475         }
476         else restore_candidate[page>>3]|=1<<(page&7);
477         if(head->reg32==0) {
478           int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
479           if(ht_bin[0]==-1) {
480             ht_bin[1]=(int)head->addr;
481             ht_bin[0]=vaddr;
482           }else if(ht_bin[2]==-1) {
483             ht_bin[3]=(int)head->addr;
484             ht_bin[2]=vaddr;
485           }
486           //ht_bin[3]=ht_bin[1];
487           //ht_bin[2]=ht_bin[0];
488           //ht_bin[1]=(int)head->addr;
489           //ht_bin[0]=vaddr;
490         }
491         return head->addr;
492       }
493     }
494     head=head->next;
495   }
496   //printf("TRACE: count=%d next=%d (get_addr_32 no-match %x,flags %x)\n",Count,next_interupt,vaddr,flags);
497   int r=new_recompile_block(vaddr);
498   if(r==0) return get_addr(vaddr);
499   // Execute in unmapped page, generate pagefault execption
500   Status|=2;
501   Cause=(vaddr<<31)|0x8;
502   EPC=(vaddr&1)?vaddr-5:vaddr;
503   BadVAddr=(vaddr&~1);
504   Context=(Context&0xFF80000F)|((BadVAddr>>9)&0x007FFFF0);
505   EntryHi=BadVAddr&0xFFFFE000;
506   return get_addr_ht(0x80000000);
507 #endif
508 }
509
510 void clear_all_regs(signed char regmap[])
511 {
512   int hr;
513   for (hr=0;hr<HOST_REGS;hr++) regmap[hr]=-1;
514 }
515
516 signed char get_reg(signed char regmap[],int r)
517 {
518   int hr;
519   for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap[hr]==r) return hr;
520   return -1;
521 }
522
523 // Find a register that is available for two consecutive cycles
524 signed char get_reg2(signed char regmap1[],signed char regmap2[],int r)
525 {
526   int hr;
527   for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap1[hr]==r&&regmap2[hr]==r) return hr;
528   return -1;
529 }
530
531 int count_free_regs(signed char regmap[])
532 {
533   int count=0;
534   int hr;
535   for(hr=0;hr<HOST_REGS;hr++)
536   {
537     if(hr!=EXCLUDE_REG) {
538       if(regmap[hr]<0) count++;
539     }
540   }
541   return count;
542 }
543
544 void dirty_reg(struct regstat *cur,signed char reg)
545 {
546   int hr;
547   if(!reg) return;
548   for (hr=0;hr<HOST_REGS;hr++) {
549     if((cur->regmap[hr]&63)==reg) {
550       cur->dirty|=1<<hr;
551     }
552   }
553 }
554
555 // If we dirty the lower half of a 64 bit register which is now being
556 // sign-extended, we need to dump the upper half.
557 // Note: Do this only after completion of the instruction, because
558 // some instructions may need to read the full 64-bit value even if
559 // overwriting it (eg SLTI, DSRA32).
560 static void flush_dirty_uppers(struct regstat *cur)
561 {
562   int hr,reg;
563   for (hr=0;hr<HOST_REGS;hr++) {
564     if((cur->dirty>>hr)&1) {
565       reg=cur->regmap[hr];
566       if(reg>=64) 
567         if((cur->is32>>(reg&63))&1) cur->regmap[hr]=-1;
568     }
569   }
570 }
571
572 void set_const(struct regstat *cur,signed char reg,uint64_t value)
573 {
574   int hr;
575   if(!reg) return;
576   for (hr=0;hr<HOST_REGS;hr++) {
577     if(cur->regmap[hr]==reg) {
578       cur->isconst|=1<<hr;
579       cur->constmap[hr]=value;
580     }
581     else if((cur->regmap[hr]^64)==reg) {
582       cur->isconst|=1<<hr;
583       cur->constmap[hr]=value>>32;
584     }
585   }
586 }
587
588 void clear_const(struct regstat *cur,signed char reg)
589 {
590   int hr;
591   if(!reg) return;
592   for (hr=0;hr<HOST_REGS;hr++) {
593     if((cur->regmap[hr]&63)==reg) {
594       cur->isconst&=~(1<<hr);
595     }
596   }
597 }
598
599 int is_const(struct regstat *cur,signed char reg)
600 {
601   int hr;
602   if(reg<0) return 0;
603   if(!reg) return 1;
604   for (hr=0;hr<HOST_REGS;hr++) {
605     if((cur->regmap[hr]&63)==reg) {
606       return (cur->isconst>>hr)&1;
607     }
608   }
609   return 0;
610 }
611 uint64_t get_const(struct regstat *cur,signed char reg)
612 {
613   int hr;
614   if(!reg) return 0;
615   for (hr=0;hr<HOST_REGS;hr++) {
616     if(cur->regmap[hr]==reg) {
617       return cur->constmap[hr];
618     }
619   }
620   printf("Unknown constant in r%d\n",reg);
621   exit(1);
622 }
623
624 // Least soon needed registers
625 // Look at the next ten instructions and see which registers
626 // will be used.  Try not to reallocate these.
627 void lsn(u_char hsn[], int i, int *preferred_reg)
628 {
629   int j;
630   int b=-1;
631   for(j=0;j<9;j++)
632   {
633     if(i+j>=slen) {
634       j=slen-i-1;
635       break;
636     }
637     if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
638     {
639       // Don't go past an unconditonal jump
640       j++;
641       break;
642     }
643   }
644   for(;j>=0;j--)
645   {
646     if(rs1[i+j]) hsn[rs1[i+j]]=j;
647     if(rs2[i+j]) hsn[rs2[i+j]]=j;
648     if(rt1[i+j]) hsn[rt1[i+j]]=j;
649     if(rt2[i+j]) hsn[rt2[i+j]]=j;
650     if(itype[i+j]==STORE || itype[i+j]==STORELR) {
651       // Stores can allocate zero
652       hsn[rs1[i+j]]=j;
653       hsn[rs2[i+j]]=j;
654     }
655     // On some architectures stores need invc_ptr
656     #if defined(HOST_IMM8)
657     if(itype[i+j]==STORE || itype[i+j]==STORELR || (opcode[i+j]&0x3b)==0x39 || (opcode[i+j]&0x3b)==0x3a) {
658       hsn[INVCP]=j;
659     }
660     #endif
661     if(i+j>=0&&(itype[i+j]==UJUMP||itype[i+j]==CJUMP||itype[i+j]==SJUMP||itype[i+j]==FJUMP))
662     {
663       hsn[CCREG]=j;
664       b=j;
665     }
666   }
667   if(b>=0)
668   {
669     if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
670     {
671       // Follow first branch
672       int t=(ba[i+b]-start)>>2;
673       j=7-b;if(t+j>=slen) j=slen-t-1;
674       for(;j>=0;j--)
675       {
676         if(rs1[t+j]) if(hsn[rs1[t+j]]>j+b+2) hsn[rs1[t+j]]=j+b+2;
677         if(rs2[t+j]) if(hsn[rs2[t+j]]>j+b+2) hsn[rs2[t+j]]=j+b+2;
678         //if(rt1[t+j]) if(hsn[rt1[t+j]]>j+b+2) hsn[rt1[t+j]]=j+b+2;
679         //if(rt2[t+j]) if(hsn[rt2[t+j]]>j+b+2) hsn[rt2[t+j]]=j+b+2;
680       }
681     }
682     // TODO: preferred register based on backward branch
683   }
684   // Delay slot should preferably not overwrite branch conditions or cycle count
685   if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)) {
686     if(rs1[i-1]) if(hsn[rs1[i-1]]>1) hsn[rs1[i-1]]=1;
687     if(rs2[i-1]) if(hsn[rs2[i-1]]>1) hsn[rs2[i-1]]=1;
688     hsn[CCREG]=1;
689     // ...or hash tables
690     hsn[RHASH]=1;
691     hsn[RHTBL]=1;
692   }
693   // Coprocessor load/store needs FTEMP, even if not declared
694   if(itype[i]==C1LS||itype[i]==C2LS) {
695     hsn[FTEMP]=0;
696   }
697   // Load L/R also uses FTEMP as a temporary register
698   if(itype[i]==LOADLR) {
699     hsn[FTEMP]=0;
700   }
701   // Also SWL/SWR/SDL/SDR
702   if(opcode[i]==0x2a||opcode[i]==0x2e||opcode[i]==0x2c||opcode[i]==0x2d) {
703     hsn[FTEMP]=0;
704   }
705   // Don't remove the TLB registers either
706   if(itype[i]==LOAD || itype[i]==LOADLR || itype[i]==STORE || itype[i]==STORELR || itype[i]==C1LS || itype[i]==C2LS) {
707     hsn[TLREG]=0;
708   }
709   // Don't remove the miniht registers
710   if(itype[i]==UJUMP||itype[i]==RJUMP)
711   {
712     hsn[RHASH]=0;
713     hsn[RHTBL]=0;
714   }
715 }
716
717 // We only want to allocate registers if we're going to use them again soon
718 int needed_again(int r, int i)
719 {
720   int j;
721   int b=-1;
722   int rn=10;
723   
724   if(i>0&&(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000))
725   {
726     if(ba[i-1]<start || ba[i-1]>start+slen*4-4)
727       return 0; // Don't need any registers if exiting the block
728   }
729   for(j=0;j<9;j++)
730   {
731     if(i+j>=slen) {
732       j=slen-i-1;
733       break;
734     }
735     if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
736     {
737       // Don't go past an unconditonal jump
738       j++;
739       break;
740     }
741     if(itype[i+j]==SYSCALL||itype[i+j]==HLECALL||itype[i+j]==INTCALL||((source[i+j]&0xfc00003f)==0x0d))
742     {
743       break;
744     }
745   }
746   for(;j>=1;j--)
747   {
748     if(rs1[i+j]==r) rn=j;
749     if(rs2[i+j]==r) rn=j;
750     if((unneeded_reg[i+j]>>r)&1) rn=10;
751     if(i+j>=0&&(itype[i+j]==UJUMP||itype[i+j]==CJUMP||itype[i+j]==SJUMP||itype[i+j]==FJUMP))
752     {
753       b=j;
754     }
755   }
756   /*
757   if(b>=0)
758   {
759     if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
760     {
761       // Follow first branch
762       int o=rn;
763       int t=(ba[i+b]-start)>>2;
764       j=7-b;if(t+j>=slen) j=slen-t-1;
765       for(;j>=0;j--)
766       {
767         if(!((unneeded_reg[t+j]>>r)&1)) {
768           if(rs1[t+j]==r) if(rn>j+b+2) rn=j+b+2;
769           if(rs2[t+j]==r) if(rn>j+b+2) rn=j+b+2;
770         }
771         else rn=o;
772       }
773     }
774   }*/
775   if(rn<10) return 1;
776   return 0;
777 }
778
779 // Try to match register allocations at the end of a loop with those
780 // at the beginning
781 int loop_reg(int i, int r, int hr)
782 {
783   int j,k;
784   for(j=0;j<9;j++)
785   {
786     if(i+j>=slen) {
787       j=slen-i-1;
788       break;
789     }
790     if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
791     {
792       // Don't go past an unconditonal jump
793       j++;
794       break;
795     }
796   }
797   k=0;
798   if(i>0){
799     if(itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)
800       k--;
801   }
802   for(;k<j;k++)
803   {
804     if(r<64&&((unneeded_reg[i+k]>>r)&1)) return hr;
805     if(r>64&&((unneeded_reg_upper[i+k]>>r)&1)) return hr;
806     if(i+k>=0&&(itype[i+k]==UJUMP||itype[i+k]==CJUMP||itype[i+k]==SJUMP||itype[i+k]==FJUMP))
807     {
808       if(ba[i+k]>=start && ba[i+k]<(start+i*4))
809       {
810         int t=(ba[i+k]-start)>>2;
811         int reg=get_reg(regs[t].regmap_entry,r);
812         if(reg>=0) return reg;
813         //reg=get_reg(regs[t+1].regmap_entry,r);
814         //if(reg>=0) return reg;
815       }
816     }
817   }
818   return hr;
819 }
820
821
822 // Allocate every register, preserving source/target regs
823 void alloc_all(struct regstat *cur,int i)
824 {
825   int hr;
826   
827   for(hr=0;hr<HOST_REGS;hr++) {
828     if(hr!=EXCLUDE_REG) {
829       if(((cur->regmap[hr]&63)!=rs1[i])&&((cur->regmap[hr]&63)!=rs2[i])&&
830          ((cur->regmap[hr]&63)!=rt1[i])&&((cur->regmap[hr]&63)!=rt2[i]))
831       {
832         cur->regmap[hr]=-1;
833         cur->dirty&=~(1<<hr);
834       }
835       // Don't need zeros
836       if((cur->regmap[hr]&63)==0)
837       {
838         cur->regmap[hr]=-1;
839         cur->dirty&=~(1<<hr);
840       }
841     }
842   }
843 }
844
845
846 void div64(int64_t dividend,int64_t divisor)
847 {
848   lo=dividend/divisor;
849   hi=dividend%divisor;
850   //printf("TRACE: ddiv %8x%8x %8x%8x\n" ,(int)reg[HIREG],(int)(reg[HIREG]>>32)
851   //                                     ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
852 }
853 void divu64(uint64_t dividend,uint64_t divisor)
854 {
855   lo=dividend/divisor;
856   hi=dividend%divisor;
857   //printf("TRACE: ddivu %8x%8x %8x%8x\n",(int)reg[HIREG],(int)(reg[HIREG]>>32)
858   //                                     ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
859 }
860
861 void mult64(uint64_t m1,uint64_t m2)
862 {
863    unsigned long long int op1, op2, op3, op4;
864    unsigned long long int result1, result2, result3, result4;
865    unsigned long long int temp1, temp2, temp3, temp4;
866    int sign = 0;
867    
868    if (m1 < 0)
869      {
870     op2 = -m1;
871     sign = 1 - sign;
872      }
873    else op2 = m1;
874    if (m2 < 0)
875      {
876     op4 = -m2;
877     sign = 1 - sign;
878      }
879    else op4 = m2;
880    
881    op1 = op2 & 0xFFFFFFFF;
882    op2 = (op2 >> 32) & 0xFFFFFFFF;
883    op3 = op4 & 0xFFFFFFFF;
884    op4 = (op4 >> 32) & 0xFFFFFFFF;
885    
886    temp1 = op1 * op3;
887    temp2 = (temp1 >> 32) + op1 * op4;
888    temp3 = op2 * op3;
889    temp4 = (temp3 >> 32) + op2 * op4;
890    
891    result1 = temp1 & 0xFFFFFFFF;
892    result2 = temp2 + (temp3 & 0xFFFFFFFF);
893    result3 = (result2 >> 32) + temp4;
894    result4 = (result3 >> 32);
895    
896    lo = result1 | (result2 << 32);
897    hi = (result3 & 0xFFFFFFFF) | (result4 << 32);
898    if (sign)
899      {
900     hi = ~hi;
901     if (!lo) hi++;
902     else lo = ~lo + 1;
903      }
904 }
905
906 void multu64(uint64_t m1,uint64_t m2)
907 {
908    unsigned long long int op1, op2, op3, op4;
909    unsigned long long int result1, result2, result3, result4;
910    unsigned long long int temp1, temp2, temp3, temp4;
911    
912    op1 = m1 & 0xFFFFFFFF;
913    op2 = (m1 >> 32) & 0xFFFFFFFF;
914    op3 = m2 & 0xFFFFFFFF;
915    op4 = (m2 >> 32) & 0xFFFFFFFF;
916    
917    temp1 = op1 * op3;
918    temp2 = (temp1 >> 32) + op1 * op4;
919    temp3 = op2 * op3;
920    temp4 = (temp3 >> 32) + op2 * op4;
921    
922    result1 = temp1 & 0xFFFFFFFF;
923    result2 = temp2 + (temp3 & 0xFFFFFFFF);
924    result3 = (result2 >> 32) + temp4;
925    result4 = (result3 >> 32);
926    
927    lo = result1 | (result2 << 32);
928    hi = (result3 & 0xFFFFFFFF) | (result4 << 32);
929    
930   //printf("TRACE: dmultu %8x%8x %8x%8x\n",(int)reg[HIREG],(int)(reg[HIREG]>>32)
931   //                                      ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
932 }
933
934 uint64_t ldl_merge(uint64_t original,uint64_t loaded,u_int bits)
935 {
936   if(bits) {
937     original<<=64-bits;
938     original>>=64-bits;
939     loaded<<=bits;
940     original|=loaded;
941   }
942   else original=loaded;
943   return original;
944 }
945 uint64_t ldr_merge(uint64_t original,uint64_t loaded,u_int bits)
946 {
947   if(bits^56) {
948     original>>=64-(bits^56);
949     original<<=64-(bits^56);
950     loaded>>=bits^56;
951     original|=loaded;
952   }
953   else original=loaded;
954   return original;
955 }
956
957 #ifdef __i386__
958 #include "assem_x86.c"
959 #endif
960 #ifdef __x86_64__
961 #include "assem_x64.c"
962 #endif
963 #ifdef __arm__
964 #include "assem_arm.c"
965 #endif
966
967 // Add virtual address mapping to linked list
968 void ll_add(struct ll_entry **head,int vaddr,void *addr)
969 {
970   struct ll_entry *new_entry;
971   new_entry=malloc(sizeof(struct ll_entry));
972   assert(new_entry!=NULL);
973   new_entry->vaddr=vaddr;
974   new_entry->reg32=0;
975   new_entry->addr=addr;
976   new_entry->next=*head;
977   *head=new_entry;
978 }
979
980 // Add virtual address mapping for 32-bit compiled block
981 void ll_add_32(struct ll_entry **head,int vaddr,u_int reg32,void *addr)
982 {
983   ll_add(head,vaddr,addr);
984 #ifndef FORCE32
985   (*head)->reg32=reg32;
986 #endif
987 }
988
989 // Check if an address is already compiled
990 // but don't return addresses which are about to expire from the cache
991 void *check_addr(u_int vaddr)
992 {
993   u_int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
994   if(ht_bin[0]==vaddr) {
995     if(((ht_bin[1]-MAX_OUTPUT_BLOCK_SIZE-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
996       if(isclean(ht_bin[1])) return (void *)ht_bin[1];
997   }
998   if(ht_bin[2]==vaddr) {
999     if(((ht_bin[3]-MAX_OUTPUT_BLOCK_SIZE-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
1000       if(isclean(ht_bin[3])) return (void *)ht_bin[3];
1001   }
1002   u_int page=get_page(vaddr);
1003   struct ll_entry *head;
1004   head=jump_in[page];
1005   while(head!=NULL) {
1006     if(head->vaddr==vaddr&&head->reg32==0) {
1007       if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1008         // Update existing entry with current address
1009         if(ht_bin[0]==vaddr) {
1010           ht_bin[1]=(int)head->addr;
1011           return head->addr;
1012         }
1013         if(ht_bin[2]==vaddr) {
1014           ht_bin[3]=(int)head->addr;
1015           return head->addr;
1016         }
1017         // Insert into hash table with low priority.
1018         // Don't evict existing entries, as they are probably
1019         // addresses that are being accessed frequently.
1020         if(ht_bin[0]==-1) {
1021           ht_bin[1]=(int)head->addr;
1022           ht_bin[0]=vaddr;
1023         }else if(ht_bin[2]==-1) {
1024           ht_bin[3]=(int)head->addr;
1025           ht_bin[2]=vaddr;
1026         }
1027         return head->addr;
1028       }
1029     }
1030     head=head->next;
1031   }
1032   return 0;
1033 }
1034
1035 void remove_hash(int vaddr)
1036 {
1037   //printf("remove hash: %x\n",vaddr);
1038   int *ht_bin=hash_table[(((vaddr)>>16)^vaddr)&0xFFFF];
1039   if(ht_bin[2]==vaddr) {
1040     ht_bin[2]=ht_bin[3]=-1;
1041   }
1042   if(ht_bin[0]==vaddr) {
1043     ht_bin[0]=ht_bin[2];
1044     ht_bin[1]=ht_bin[3];
1045     ht_bin[2]=ht_bin[3]=-1;
1046   }
1047 }
1048
1049 void ll_remove_matching_addrs(struct ll_entry **head,int addr,int shift)
1050 {
1051   struct ll_entry *next;
1052   while(*head) {
1053     if(((u_int)((*head)->addr)>>shift)==(addr>>shift) || 
1054        ((u_int)((*head)->addr-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(addr>>shift))
1055     {
1056       inv_debug("EXP: Remove pointer to %x (%x)\n",(int)(*head)->addr,(*head)->vaddr);
1057       remove_hash((*head)->vaddr);
1058       next=(*head)->next;
1059       free(*head);
1060       *head=next;
1061     }
1062     else
1063     {
1064       head=&((*head)->next);
1065     }
1066   }
1067 }
1068
1069 // Remove all entries from linked list
1070 void ll_clear(struct ll_entry **head)
1071 {
1072   struct ll_entry *cur;
1073   struct ll_entry *next;
1074   if(cur=*head) {
1075     *head=0;
1076     while(cur) {
1077       next=cur->next;
1078       free(cur);
1079       cur=next;
1080     }
1081   }
1082 }
1083
1084 // Dereference the pointers and remove if it matches
1085 void ll_kill_pointers(struct ll_entry *head,int addr,int shift)
1086 {
1087   while(head) {
1088     int ptr=get_pointer(head->addr);
1089     inv_debug("EXP: Lookup pointer to %x at %x (%x)\n",(int)ptr,(int)head->addr,head->vaddr);
1090     if(((ptr>>shift)==(addr>>shift)) ||
1091        (((ptr-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(addr>>shift)))
1092     {
1093       inv_debug("EXP: Kill pointer at %x (%x)\n",(int)head->addr,head->vaddr);
1094       u_int host_addr=(u_int)kill_pointer(head->addr);
1095       #ifdef __arm__
1096         needs_clear_cache[(host_addr-(u_int)BASE_ADDR)>>17]|=1<<(((host_addr-(u_int)BASE_ADDR)>>12)&31);
1097       #endif
1098     }
1099     head=head->next;
1100   }
1101 }
1102
1103 // This is called when we write to a compiled block (see do_invstub)
1104 void invalidate_page(u_int page)
1105 {
1106   struct ll_entry *head;
1107   struct ll_entry *next;
1108   head=jump_in[page];
1109   jump_in[page]=0;
1110   while(head!=NULL) {
1111     inv_debug("INVALIDATE: %x\n",head->vaddr);
1112     remove_hash(head->vaddr);
1113     next=head->next;
1114     free(head);
1115     head=next;
1116   }
1117   head=jump_out[page];
1118   jump_out[page]=0;
1119   while(head!=NULL) {
1120     inv_debug("INVALIDATE: kill pointer to %x (%x)\n",head->vaddr,(int)head->addr);
1121     u_int host_addr=(u_int)kill_pointer(head->addr);
1122     #ifdef __arm__
1123       needs_clear_cache[(host_addr-(u_int)BASE_ADDR)>>17]|=1<<(((host_addr-(u_int)BASE_ADDR)>>12)&31);
1124     #endif
1125     next=head->next;
1126     free(head);
1127     head=next;
1128   }
1129 }
1130 void invalidate_block(u_int block)
1131 {
1132   u_int page=get_page(block<<12);
1133   u_int vpage=get_vpage(block<<12);
1134   inv_debug("INVALIDATE: %x (%d)\n",block<<12,page);
1135   //inv_debug("invalid_code[block]=%d\n",invalid_code[block]);
1136   u_int first,last;
1137   first=last=page;
1138   struct ll_entry *head;
1139   head=jump_dirty[vpage];
1140   //printf("page=%d vpage=%d\n",page,vpage);
1141   while(head!=NULL) {
1142     u_int start,end;
1143     if(vpage>2047||(head->vaddr>>12)==block) { // Ignore vaddr hash collision
1144       get_bounds((int)head->addr,&start,&end);
1145       //printf("start: %x end: %x\n",start,end);
1146       if(page<2048&&start>=0x80000000&&end<0x80000000+RAM_SIZE) {
1147         if(((start-(u_int)rdram)>>12)<=page&&((end-1-(u_int)rdram)>>12)>=page) {
1148           if((((start-(u_int)rdram)>>12)&2047)<first) first=((start-(u_int)rdram)>>12)&2047;
1149           if((((end-1-(u_int)rdram)>>12)&2047)>last) last=((end-1-(u_int)rdram)>>12)&2047;
1150         }
1151       }
1152 #ifndef DISABLE_TLB
1153       if(page<2048&&(signed int)start>=(signed int)0xC0000000&&(signed int)end>=(signed int)0xC0000000) {
1154         if(((start+memory_map[start>>12]-(u_int)rdram)>>12)<=page&&((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)>=page) {
1155           if((((start+memory_map[start>>12]-(u_int)rdram)>>12)&2047)<first) first=((start+memory_map[start>>12]-(u_int)rdram)>>12)&2047;
1156           if((((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)&2047)>last) last=((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)&2047;
1157         }
1158       }
1159 #endif
1160     }
1161     head=head->next;
1162   }
1163   //printf("first=%d last=%d\n",first,last);
1164   invalidate_page(page);
1165   assert(first+5>page); // NB: this assumes MAXBLOCK<=4096 (4 pages)
1166   assert(last<page+5);
1167   // Invalidate the adjacent pages if a block crosses a 4K boundary
1168   while(first<page) {
1169     invalidate_page(first);
1170     first++;
1171   }
1172   for(first=page+1;first<last;first++) {
1173     invalidate_page(first);
1174   }
1175   #ifdef __arm__
1176     do_clear_cache();
1177   #endif
1178   
1179   // Don't trap writes
1180   invalid_code[block]=1;
1181 #ifdef PCSX
1182   invalid_code[((u_int)0x80000000>>12)|page]=1;
1183 #endif
1184 #ifndef DISABLE_TLB
1185   // If there is a valid TLB entry for this page, remove write protect
1186   if(tlb_LUT_w[block]) {
1187     assert(tlb_LUT_r[block]==tlb_LUT_w[block]);
1188     // CHECK: Is this right?
1189     memory_map[block]=((tlb_LUT_w[block]&0xFFFFF000)-(block<<12)+(unsigned int)rdram-0x80000000)>>2;
1190     u_int real_block=tlb_LUT_w[block]>>12;
1191     invalid_code[real_block]=1;
1192     if(real_block>=0x80000&&real_block<0x80800) memory_map[real_block]=((u_int)rdram-0x80000000)>>2;
1193   }
1194   else if(block>=0x80000&&block<0x80800) memory_map[block]=((u_int)rdram-0x80000000)>>2;
1195 #endif
1196
1197   #ifdef USE_MINI_HT
1198   memset(mini_ht,-1,sizeof(mini_ht));
1199   #endif
1200 }
1201 void invalidate_addr(u_int addr)
1202 {
1203   invalidate_block(addr>>12);
1204 }
1205 // This is called when loading a save state.
1206 // Anything could have changed, so invalidate everything.
1207 void invalidate_all_pages()
1208 {
1209   u_int page,n;
1210   for(page=0;page<4096;page++)
1211     invalidate_page(page);
1212   for(page=0;page<1048576;page++)
1213     if(!invalid_code[page]) {
1214       restore_candidate[(page&2047)>>3]|=1<<(page&7);
1215       restore_candidate[((page&2047)>>3)+256]|=1<<(page&7);
1216     }
1217   #ifdef __arm__
1218   __clear_cache((void *)BASE_ADDR,(void *)BASE_ADDR+(1<<TARGET_SIZE_2));
1219   #endif
1220   #ifdef USE_MINI_HT
1221   memset(mini_ht,-1,sizeof(mini_ht));
1222   #endif
1223   #ifndef DISABLE_TLB
1224   // TLB
1225   for(page=0;page<0x100000;page++) {
1226     if(tlb_LUT_r[page]) {
1227       memory_map[page]=((tlb_LUT_r[page]&0xFFFFF000)-(page<<12)+(unsigned int)rdram-0x80000000)>>2;
1228       if(!tlb_LUT_w[page]||!invalid_code[page])
1229         memory_map[page]|=0x40000000; // Write protect
1230     }
1231     else memory_map[page]=-1;
1232     if(page==0x80000) page=0xC0000;
1233   }
1234   tlb_hacks();
1235   #endif
1236 }
1237
1238 // Add an entry to jump_out after making a link
1239 void add_link(u_int vaddr,void *src)
1240 {
1241   u_int page=get_page(vaddr);
1242   inv_debug("add_link: %x -> %x (%d)\n",(int)src,vaddr,page);
1243   ll_add(jump_out+page,vaddr,src);
1244   //int ptr=get_pointer(src);
1245   //inv_debug("add_link: Pointer is to %x\n",(int)ptr);
1246 }
1247
1248 // If a code block was found to be unmodified (bit was set in
1249 // restore_candidate) and it remains unmodified (bit is clear
1250 // in invalid_code) then move the entries for that 4K page from
1251 // the dirty list to the clean list.
1252 void clean_blocks(u_int page)
1253 {
1254   struct ll_entry *head;
1255   inv_debug("INV: clean_blocks page=%d\n",page);
1256   head=jump_dirty[page];
1257   while(head!=NULL) {
1258     if(!invalid_code[head->vaddr>>12]) {
1259       // Don't restore blocks which are about to expire from the cache
1260       if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1261         u_int start,end;
1262         if(verify_dirty((int)head->addr)) {
1263           //printf("Possibly Restore %x (%x)\n",head->vaddr, (int)head->addr);
1264           u_int i;
1265           u_int inv=0;
1266           get_bounds((int)head->addr,&start,&end);
1267           if(start-(u_int)rdram<RAM_SIZE) {
1268             for(i=(start-(u_int)rdram+0x80000000)>>12;i<=(end-1-(u_int)rdram+0x80000000)>>12;i++) {
1269               inv|=invalid_code[i];
1270             }
1271           }
1272           if((signed int)head->vaddr>=(signed int)0xC0000000) {
1273             u_int addr = (head->vaddr+(memory_map[head->vaddr>>12]<<2));
1274             //printf("addr=%x start=%x end=%x\n",addr,start,end);
1275             if(addr<start||addr>=end) inv=1;
1276           }
1277           else if((signed int)head->vaddr>=(signed int)0x80000000+RAM_SIZE) {
1278             inv=1;
1279           }
1280           if(!inv) {
1281             void * clean_addr=(void *)get_clean_addr((int)head->addr);
1282             if((((u_int)clean_addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1283               u_int ppage=page;
1284 #ifndef DISABLE_TLB
1285               if(page<2048&&tlb_LUT_r[head->vaddr>>12]) ppage=(tlb_LUT_r[head->vaddr>>12]^0x80000000)>>12;
1286 #endif
1287               inv_debug("INV: Restored %x (%x/%x)\n",head->vaddr, (int)head->addr, (int)clean_addr);
1288               //printf("page=%x, addr=%x\n",page,head->vaddr);
1289               //assert(head->vaddr>>12==(page|0x80000));
1290               ll_add_32(jump_in+ppage,head->vaddr,head->reg32,clean_addr);
1291               int *ht_bin=hash_table[((head->vaddr>>16)^head->vaddr)&0xFFFF];
1292               if(!head->reg32) {
1293                 if(ht_bin[0]==head->vaddr) {
1294                   ht_bin[1]=(int)clean_addr; // Replace existing entry
1295                 }
1296                 if(ht_bin[2]==head->vaddr) {
1297                   ht_bin[3]=(int)clean_addr; // Replace existing entry
1298                 }
1299               }
1300             }
1301           }
1302         }
1303       }
1304     }
1305     head=head->next;
1306   }
1307 }
1308
1309
1310 void mov_alloc(struct regstat *current,int i)
1311 {
1312   // Note: Don't need to actually alloc the source registers
1313   if((~current->is32>>rs1[i])&1) {
1314     //alloc_reg64(current,i,rs1[i]);
1315     alloc_reg64(current,i,rt1[i]);
1316     current->is32&=~(1LL<<rt1[i]);
1317   } else {
1318     //alloc_reg(current,i,rs1[i]);
1319     alloc_reg(current,i,rt1[i]);
1320     current->is32|=(1LL<<rt1[i]);
1321   }
1322   clear_const(current,rs1[i]);
1323   clear_const(current,rt1[i]);
1324   dirty_reg(current,rt1[i]);
1325 }
1326
1327 void shiftimm_alloc(struct regstat *current,int i)
1328 {
1329   clear_const(current,rs1[i]);
1330   clear_const(current,rt1[i]);
1331   if(opcode2[i]<=0x3) // SLL/SRL/SRA
1332   {
1333     if(rt1[i]) {
1334       if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1335       else lt1[i]=rs1[i];
1336       alloc_reg(current,i,rt1[i]);
1337       current->is32|=1LL<<rt1[i];
1338       dirty_reg(current,rt1[i]);
1339     }
1340   }
1341   if(opcode2[i]>=0x38&&opcode2[i]<=0x3b) // DSLL/DSRL/DSRA
1342   {
1343     if(rt1[i]) {
1344       if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1345       alloc_reg64(current,i,rt1[i]);
1346       current->is32&=~(1LL<<rt1[i]);
1347       dirty_reg(current,rt1[i]);
1348     }
1349   }
1350   if(opcode2[i]==0x3c) // DSLL32
1351   {
1352     if(rt1[i]) {
1353       if(rs1[i]) alloc_reg(current,i,rs1[i]);
1354       alloc_reg64(current,i,rt1[i]);
1355       current->is32&=~(1LL<<rt1[i]);
1356       dirty_reg(current,rt1[i]);
1357     }
1358   }
1359   if(opcode2[i]==0x3e) // DSRL32
1360   {
1361     if(rt1[i]) {
1362       alloc_reg64(current,i,rs1[i]);
1363       if(imm[i]==32) {
1364         alloc_reg64(current,i,rt1[i]);
1365         current->is32&=~(1LL<<rt1[i]);
1366       } else {
1367         alloc_reg(current,i,rt1[i]);
1368         current->is32|=1LL<<rt1[i];
1369       }
1370       dirty_reg(current,rt1[i]);
1371     }
1372   }
1373   if(opcode2[i]==0x3f) // DSRA32
1374   {
1375     if(rt1[i]) {
1376       alloc_reg64(current,i,rs1[i]);
1377       alloc_reg(current,i,rt1[i]);
1378       current->is32|=1LL<<rt1[i];
1379       dirty_reg(current,rt1[i]);
1380     }
1381   }
1382 }
1383
1384 void shift_alloc(struct regstat *current,int i)
1385 {
1386   if(rt1[i]) {
1387     if(opcode2[i]<=0x07) // SLLV/SRLV/SRAV
1388     {
1389       if(rs1[i]) alloc_reg(current,i,rs1[i]);
1390       if(rs2[i]) alloc_reg(current,i,rs2[i]);
1391       alloc_reg(current,i,rt1[i]);
1392       if(rt1[i]==rs2[i]) {
1393         alloc_reg_temp(current,i,-1);
1394         minimum_free_regs[i]=1;
1395       }
1396       current->is32|=1LL<<rt1[i];
1397     } else { // DSLLV/DSRLV/DSRAV
1398       if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1399       if(rs2[i]) alloc_reg(current,i,rs2[i]);
1400       alloc_reg64(current,i,rt1[i]);
1401       current->is32&=~(1LL<<rt1[i]);
1402       if(opcode2[i]==0x16||opcode2[i]==0x17) // DSRLV and DSRAV need a temporary register
1403       {
1404         alloc_reg_temp(current,i,-1);
1405         minimum_free_regs[i]=1;
1406       }
1407     }
1408     clear_const(current,rs1[i]);
1409     clear_const(current,rs2[i]);
1410     clear_const(current,rt1[i]);
1411     dirty_reg(current,rt1[i]);
1412   }
1413 }
1414
1415 void alu_alloc(struct regstat *current,int i)
1416 {
1417   if(opcode2[i]>=0x20&&opcode2[i]<=0x23) { // ADD/ADDU/SUB/SUBU
1418     if(rt1[i]) {
1419       if(rs1[i]&&rs2[i]) {
1420         alloc_reg(current,i,rs1[i]);
1421         alloc_reg(current,i,rs2[i]);
1422       }
1423       else {
1424         if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1425         if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg(current,i,rs2[i]);
1426       }
1427       alloc_reg(current,i,rt1[i]);
1428     }
1429     current->is32|=1LL<<rt1[i];
1430   }
1431   if(opcode2[i]==0x2a||opcode2[i]==0x2b) { // SLT/SLTU
1432     if(rt1[i]) {
1433       if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1434       {
1435         alloc_reg64(current,i,rs1[i]);
1436         alloc_reg64(current,i,rs2[i]);
1437         alloc_reg(current,i,rt1[i]);
1438       } else {
1439         alloc_reg(current,i,rs1[i]);
1440         alloc_reg(current,i,rs2[i]);
1441         alloc_reg(current,i,rt1[i]);
1442       }
1443     }
1444     current->is32|=1LL<<rt1[i];
1445   }
1446   if(opcode2[i]>=0x24&&opcode2[i]<=0x27) { // AND/OR/XOR/NOR
1447     if(rt1[i]) {
1448       if(rs1[i]&&rs2[i]) {
1449         alloc_reg(current,i,rs1[i]);
1450         alloc_reg(current,i,rs2[i]);
1451       }
1452       else
1453       {
1454         if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1455         if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg(current,i,rs2[i]);
1456       }
1457       alloc_reg(current,i,rt1[i]);
1458       if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1459       {
1460         if(!((current->uu>>rt1[i])&1)) {
1461           alloc_reg64(current,i,rt1[i]);
1462         }
1463         if(get_reg(current->regmap,rt1[i]|64)>=0) {
1464           if(rs1[i]&&rs2[i]) {
1465             alloc_reg64(current,i,rs1[i]);
1466             alloc_reg64(current,i,rs2[i]);
1467           }
1468           else
1469           {
1470             // Is is really worth it to keep 64-bit values in registers?
1471             #ifdef NATIVE_64BIT
1472             if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg64(current,i,rs1[i]);
1473             if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg64(current,i,rs2[i]);
1474             #endif
1475           }
1476         }
1477         current->is32&=~(1LL<<rt1[i]);
1478       } else {
1479         current->is32|=1LL<<rt1[i];
1480       }
1481     }
1482   }
1483   if(opcode2[i]>=0x2c&&opcode2[i]<=0x2f) { // DADD/DADDU/DSUB/DSUBU
1484     if(rt1[i]) {
1485       if(rs1[i]&&rs2[i]) {
1486         if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1487           alloc_reg64(current,i,rs1[i]);
1488           alloc_reg64(current,i,rs2[i]);
1489           alloc_reg64(current,i,rt1[i]);
1490         } else {
1491           alloc_reg(current,i,rs1[i]);
1492           alloc_reg(current,i,rs2[i]);
1493           alloc_reg(current,i,rt1[i]);
1494         }
1495       }
1496       else {
1497         alloc_reg(current,i,rt1[i]);
1498         if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1499           // DADD used as move, or zeroing
1500           // If we have a 64-bit source, then make the target 64 bits too
1501           if(rs1[i]&&!((current->is32>>rs1[i])&1)) {
1502             if(get_reg(current->regmap,rs1[i])>=0) alloc_reg64(current,i,rs1[i]);
1503             alloc_reg64(current,i,rt1[i]);
1504           } else if(rs2[i]&&!((current->is32>>rs2[i])&1)) {
1505             if(get_reg(current->regmap,rs2[i])>=0) alloc_reg64(current,i,rs2[i]);
1506             alloc_reg64(current,i,rt1[i]);
1507           }
1508           if(opcode2[i]>=0x2e&&rs2[i]) {
1509             // DSUB used as negation - 64-bit result
1510             // If we have a 32-bit register, extend it to 64 bits
1511             if(get_reg(current->regmap,rs2[i])>=0) alloc_reg64(current,i,rs2[i]);
1512             alloc_reg64(current,i,rt1[i]);
1513           }
1514         }
1515       }
1516       if(rs1[i]&&rs2[i]) {
1517         current->is32&=~(1LL<<rt1[i]);
1518       } else if(rs1[i]) {
1519         current->is32&=~(1LL<<rt1[i]);
1520         if((current->is32>>rs1[i])&1)
1521           current->is32|=1LL<<rt1[i];
1522       } else if(rs2[i]) {
1523         current->is32&=~(1LL<<rt1[i]);
1524         if((current->is32>>rs2[i])&1)
1525           current->is32|=1LL<<rt1[i];
1526       } else {
1527         current->is32|=1LL<<rt1[i];
1528       }
1529     }
1530   }
1531   clear_const(current,rs1[i]);
1532   clear_const(current,rs2[i]);
1533   clear_const(current,rt1[i]);
1534   dirty_reg(current,rt1[i]);
1535 }
1536
1537 void imm16_alloc(struct regstat *current,int i)
1538 {
1539   if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1540   else lt1[i]=rs1[i];
1541   if(rt1[i]) alloc_reg(current,i,rt1[i]);
1542   if(opcode[i]==0x18||opcode[i]==0x19) { // DADDI/DADDIU
1543     current->is32&=~(1LL<<rt1[i]);
1544     if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1545       // TODO: Could preserve the 32-bit flag if the immediate is zero
1546       alloc_reg64(current,i,rt1[i]);
1547       alloc_reg64(current,i,rs1[i]);
1548     }
1549     clear_const(current,rs1[i]);
1550     clear_const(current,rt1[i]);
1551   }
1552   else if(opcode[i]==0x0a||opcode[i]==0x0b) { // SLTI/SLTIU
1553     if((~current->is32>>rs1[i])&1) alloc_reg64(current,i,rs1[i]);
1554     current->is32|=1LL<<rt1[i];
1555     clear_const(current,rs1[i]);
1556     clear_const(current,rt1[i]);
1557   }
1558   else if(opcode[i]>=0x0c&&opcode[i]<=0x0e) { // ANDI/ORI/XORI
1559     if(((~current->is32>>rs1[i])&1)&&opcode[i]>0x0c) {
1560       if(rs1[i]!=rt1[i]) {
1561         if(needed_again(rs1[i],i)) alloc_reg64(current,i,rs1[i]);
1562         alloc_reg64(current,i,rt1[i]);
1563         current->is32&=~(1LL<<rt1[i]);
1564       }
1565     }
1566     else current->is32|=1LL<<rt1[i]; // ANDI clears upper bits
1567     if(is_const(current,rs1[i])) {
1568       int v=get_const(current,rs1[i]);
1569       if(opcode[i]==0x0c) set_const(current,rt1[i],v&imm[i]);
1570       if(opcode[i]==0x0d) set_const(current,rt1[i],v|imm[i]);
1571       if(opcode[i]==0x0e) set_const(current,rt1[i],v^imm[i]);
1572     }
1573     else clear_const(current,rt1[i]);
1574   }
1575   else if(opcode[i]==0x08||opcode[i]==0x09) { // ADDI/ADDIU
1576     if(is_const(current,rs1[i])) {
1577       int v=get_const(current,rs1[i]);
1578       set_const(current,rt1[i],v+imm[i]);
1579     }
1580     else clear_const(current,rt1[i]);
1581     current->is32|=1LL<<rt1[i];
1582   }
1583   else {
1584     set_const(current,rt1[i],((long long)((short)imm[i]))<<16); // LUI
1585     current->is32|=1LL<<rt1[i];
1586   }
1587   dirty_reg(current,rt1[i]);
1588 }
1589
1590 void load_alloc(struct regstat *current,int i)
1591 {
1592   clear_const(current,rt1[i]);
1593   //if(rs1[i]!=rt1[i]&&needed_again(rs1[i],i)) clear_const(current,rs1[i]); // Does this help or hurt?
1594   if(!rs1[i]) current->u&=~1LL; // Allow allocating r0 if it's the source register
1595   if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1596   if(rt1[i]&&!((current->u>>rt1[i])&1)) {
1597     alloc_reg(current,i,rt1[i]);
1598     assert(get_reg(current->regmap,rt1[i])>=0);
1599     if(opcode[i]==0x27||opcode[i]==0x37) // LWU/LD
1600     {
1601       current->is32&=~(1LL<<rt1[i]);
1602       alloc_reg64(current,i,rt1[i]);
1603     }
1604     else if(opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
1605     {
1606       current->is32&=~(1LL<<rt1[i]);
1607       alloc_reg64(current,i,rt1[i]);
1608       alloc_all(current,i);
1609       alloc_reg64(current,i,FTEMP);
1610       minimum_free_regs[i]=HOST_REGS;
1611     }
1612     else current->is32|=1LL<<rt1[i];
1613     dirty_reg(current,rt1[i]);
1614     // If using TLB, need a register for pointer to the mapping table
1615     if(using_tlb) alloc_reg(current,i,TLREG);
1616     // LWL/LWR need a temporary register for the old value
1617     if(opcode[i]==0x22||opcode[i]==0x26)
1618     {
1619       alloc_reg(current,i,FTEMP);
1620       alloc_reg_temp(current,i,-1);
1621       minimum_free_regs[i]=1;
1622     }
1623   }
1624   else
1625   {
1626     // Load to r0 or unneeded register (dummy load)
1627     // but we still need a register to calculate the address
1628     if(opcode[i]==0x22||opcode[i]==0x26)
1629     {
1630       alloc_reg(current,i,FTEMP); // LWL/LWR need another temporary
1631     }
1632     // If using TLB, need a register for pointer to the mapping table
1633     if(using_tlb) alloc_reg(current,i,TLREG);
1634     alloc_reg_temp(current,i,-1);
1635     minimum_free_regs[i]=1;
1636     if(opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
1637     {
1638       alloc_all(current,i);
1639       alloc_reg64(current,i,FTEMP);
1640       minimum_free_regs[i]=HOST_REGS;
1641     }
1642   }
1643 }
1644
1645 void store_alloc(struct regstat *current,int i)
1646 {
1647   clear_const(current,rs2[i]);
1648   if(!(rs2[i])) current->u&=~1LL; // Allow allocating r0 if necessary
1649   if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1650   alloc_reg(current,i,rs2[i]);
1651   if(opcode[i]==0x2c||opcode[i]==0x2d||opcode[i]==0x3f) { // 64-bit SDL/SDR/SD
1652     alloc_reg64(current,i,rs2[i]);
1653     if(rs2[i]) alloc_reg(current,i,FTEMP);
1654   }
1655   // If using TLB, need a register for pointer to the mapping table
1656   if(using_tlb) alloc_reg(current,i,TLREG);
1657   #if defined(HOST_IMM8)
1658   // On CPUs without 32-bit immediates we need a pointer to invalid_code
1659   else alloc_reg(current,i,INVCP);
1660   #endif
1661   if(opcode[i]==0x2a||opcode[i]==0x2e||opcode[i]==0x2c||opcode[i]==0x2d) { // SWL/SWL/SDL/SDR
1662     alloc_reg(current,i,FTEMP);
1663   }
1664   // We need a temporary register for address generation
1665   alloc_reg_temp(current,i,-1);
1666   minimum_free_regs[i]=1;
1667 }
1668
1669 void c1ls_alloc(struct regstat *current,int i)
1670 {
1671   //clear_const(current,rs1[i]); // FIXME
1672   clear_const(current,rt1[i]);
1673   if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1674   alloc_reg(current,i,CSREG); // Status
1675   alloc_reg(current,i,FTEMP);
1676   if(opcode[i]==0x35||opcode[i]==0x3d) { // 64-bit LDC1/SDC1
1677     alloc_reg64(current,i,FTEMP);
1678   }
1679   // If using TLB, need a register for pointer to the mapping table
1680   if(using_tlb) alloc_reg(current,i,TLREG);
1681   #if defined(HOST_IMM8)
1682   // On CPUs without 32-bit immediates we need a pointer to invalid_code
1683   else if((opcode[i]&0x3b)==0x39) // SWC1/SDC1
1684     alloc_reg(current,i,INVCP);
1685   #endif
1686   // We need a temporary register for address generation
1687   alloc_reg_temp(current,i,-1);
1688 }
1689
1690 void c2ls_alloc(struct regstat *current,int i)
1691 {
1692   clear_const(current,rt1[i]);
1693   if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1694   alloc_reg(current,i,FTEMP);
1695   // If using TLB, need a register for pointer to the mapping table
1696   if(using_tlb) alloc_reg(current,i,TLREG);
1697   #if defined(HOST_IMM8)
1698   // On CPUs without 32-bit immediates we need a pointer to invalid_code
1699   else if((opcode[i]&0x3b)==0x3a) // SWC2/SDC2
1700     alloc_reg(current,i,INVCP);
1701   #endif
1702   // We need a temporary register for address generation
1703   alloc_reg_temp(current,i,-1);
1704   minimum_free_regs[i]=1;
1705 }
1706
1707 #ifndef multdiv_alloc
1708 void multdiv_alloc(struct regstat *current,int i)
1709 {
1710   //  case 0x18: MULT
1711   //  case 0x19: MULTU
1712   //  case 0x1A: DIV
1713   //  case 0x1B: DIVU
1714   //  case 0x1C: DMULT
1715   //  case 0x1D: DMULTU
1716   //  case 0x1E: DDIV
1717   //  case 0x1F: DDIVU
1718   clear_const(current,rs1[i]);
1719   clear_const(current,rs2[i]);
1720   if(rs1[i]&&rs2[i])
1721   {
1722     if((opcode2[i]&4)==0) // 32-bit
1723     {
1724       current->u&=~(1LL<<HIREG);
1725       current->u&=~(1LL<<LOREG);
1726       alloc_reg(current,i,HIREG);
1727       alloc_reg(current,i,LOREG);
1728       alloc_reg(current,i,rs1[i]);
1729       alloc_reg(current,i,rs2[i]);
1730       current->is32|=1LL<<HIREG;
1731       current->is32|=1LL<<LOREG;
1732       dirty_reg(current,HIREG);
1733       dirty_reg(current,LOREG);
1734     }
1735     else // 64-bit
1736     {
1737       current->u&=~(1LL<<HIREG);
1738       current->u&=~(1LL<<LOREG);
1739       current->uu&=~(1LL<<HIREG);
1740       current->uu&=~(1LL<<LOREG);
1741       alloc_reg64(current,i,HIREG);
1742       //if(HOST_REGS>10) alloc_reg64(current,i,LOREG);
1743       alloc_reg64(current,i,rs1[i]);
1744       alloc_reg64(current,i,rs2[i]);
1745       alloc_all(current,i);
1746       current->is32&=~(1LL<<HIREG);
1747       current->is32&=~(1LL<<LOREG);
1748       dirty_reg(current,HIREG);
1749       dirty_reg(current,LOREG);
1750       minimum_free_regs[i]=HOST_REGS;
1751     }
1752   }
1753   else
1754   {
1755     // Multiply by zero is zero.
1756     // MIPS does not have a divide by zero exception.
1757     // The result is undefined, we return zero.
1758     alloc_reg(current,i,HIREG);
1759     alloc_reg(current,i,LOREG);
1760     current->is32|=1LL<<HIREG;
1761     current->is32|=1LL<<LOREG;
1762     dirty_reg(current,HIREG);
1763     dirty_reg(current,LOREG);
1764   }
1765 }
1766 #endif
1767
1768 void cop0_alloc(struct regstat *current,int i)
1769 {
1770   if(opcode2[i]==0) // MFC0
1771   {
1772     if(rt1[i]) {
1773       clear_const(current,rt1[i]);
1774       alloc_all(current,i);
1775       alloc_reg(current,i,rt1[i]);
1776       current->is32|=1LL<<rt1[i];
1777       dirty_reg(current,rt1[i]);
1778     }
1779   }
1780   else if(opcode2[i]==4) // MTC0
1781   {
1782     if(rs1[i]){
1783       clear_const(current,rs1[i]);
1784       alloc_reg(current,i,rs1[i]);
1785       alloc_all(current,i);
1786     }
1787     else {
1788       alloc_all(current,i); // FIXME: Keep r0
1789       current->u&=~1LL;
1790       alloc_reg(current,i,0);
1791     }
1792   }
1793   else
1794   {
1795     // TLBR/TLBWI/TLBWR/TLBP/ERET
1796     assert(opcode2[i]==0x10);
1797     alloc_all(current,i);
1798   }
1799   minimum_free_regs[i]=HOST_REGS;
1800 }
1801
1802 void cop1_alloc(struct regstat *current,int i)
1803 {
1804   alloc_reg(current,i,CSREG); // Load status
1805   if(opcode2[i]<3) // MFC1/DMFC1/CFC1
1806   {
1807     if(rt1[i]){
1808       clear_const(current,rt1[i]);
1809       if(opcode2[i]==1) {
1810         alloc_reg64(current,i,rt1[i]); // DMFC1
1811         current->is32&=~(1LL<<rt1[i]);
1812       }else{
1813         alloc_reg(current,i,rt1[i]); // MFC1/CFC1
1814         current->is32|=1LL<<rt1[i];
1815       }
1816       dirty_reg(current,rt1[i]);
1817     }
1818     alloc_reg_temp(current,i,-1);
1819   }
1820   else if(opcode2[i]>3) // MTC1/DMTC1/CTC1
1821   {
1822     if(rs1[i]){
1823       clear_const(current,rs1[i]);
1824       if(opcode2[i]==5)
1825         alloc_reg64(current,i,rs1[i]); // DMTC1
1826       else
1827         alloc_reg(current,i,rs1[i]); // MTC1/CTC1
1828       alloc_reg_temp(current,i,-1);
1829     }
1830     else {
1831       current->u&=~1LL;
1832       alloc_reg(current,i,0);
1833       alloc_reg_temp(current,i,-1);
1834     }
1835   }
1836   minimum_free_regs[i]=1;
1837 }
1838 void fconv_alloc(struct regstat *current,int i)
1839 {
1840   alloc_reg(current,i,CSREG); // Load status
1841   alloc_reg_temp(current,i,-1);
1842   minimum_free_regs[i]=1;
1843 }
1844 void float_alloc(struct regstat *current,int i)
1845 {
1846   alloc_reg(current,i,CSREG); // Load status
1847   alloc_reg_temp(current,i,-1);
1848   minimum_free_regs[i]=1;
1849 }
1850 void c2op_alloc(struct regstat *current,int i)
1851 {
1852   alloc_reg_temp(current,i,-1);
1853 }
1854 void fcomp_alloc(struct regstat *current,int i)
1855 {
1856   alloc_reg(current,i,CSREG); // Load status
1857   alloc_reg(current,i,FSREG); // Load flags
1858   dirty_reg(current,FSREG); // Flag will be modified
1859   alloc_reg_temp(current,i,-1);
1860   minimum_free_regs[i]=1;
1861 }
1862
1863 void syscall_alloc(struct regstat *current,int i)
1864 {
1865   alloc_cc(current,i);
1866   dirty_reg(current,CCREG);
1867   alloc_all(current,i);
1868   minimum_free_regs[i]=HOST_REGS;
1869   current->isconst=0;
1870 }
1871
1872 void delayslot_alloc(struct regstat *current,int i)
1873 {
1874   switch(itype[i]) {
1875     case UJUMP:
1876     case CJUMP:
1877     case SJUMP:
1878     case RJUMP:
1879     case FJUMP:
1880     case SYSCALL:
1881     case HLECALL:
1882     case SPAN:
1883       assem_debug("jump in the delay slot.  this shouldn't happen.\n");//exit(1);
1884       printf("Disabled speculative precompilation\n");
1885       stop_after_jal=1;
1886       break;
1887     case IMM16:
1888       imm16_alloc(current,i);
1889       break;
1890     case LOAD:
1891     case LOADLR:
1892       load_alloc(current,i);
1893       break;
1894     case STORE:
1895     case STORELR:
1896       store_alloc(current,i);
1897       break;
1898     case ALU:
1899       alu_alloc(current,i);
1900       break;
1901     case SHIFT:
1902       shift_alloc(current,i);
1903       break;
1904     case MULTDIV:
1905       multdiv_alloc(current,i);
1906       break;
1907     case SHIFTIMM:
1908       shiftimm_alloc(current,i);
1909       break;
1910     case MOV:
1911       mov_alloc(current,i);
1912       break;
1913     case COP0:
1914       cop0_alloc(current,i);
1915       break;
1916     case COP1:
1917     case COP2:
1918       cop1_alloc(current,i);
1919       break;
1920     case C1LS:
1921       c1ls_alloc(current,i);
1922       break;
1923     case C2LS:
1924       c2ls_alloc(current,i);
1925       break;
1926     case FCONV:
1927       fconv_alloc(current,i);
1928       break;
1929     case FLOAT:
1930       float_alloc(current,i);
1931       break;
1932     case FCOMP:
1933       fcomp_alloc(current,i);
1934       break;
1935     case C2OP:
1936       c2op_alloc(current,i);
1937       break;
1938   }
1939 }
1940
1941 // Special case where a branch and delay slot span two pages in virtual memory
1942 static void pagespan_alloc(struct regstat *current,int i)
1943 {
1944   current->isconst=0;
1945   current->wasconst=0;
1946   regs[i].wasconst=0;
1947   minimum_free_regs[i]=HOST_REGS;
1948   alloc_all(current,i);
1949   alloc_cc(current,i);
1950   dirty_reg(current,CCREG);
1951   if(opcode[i]==3) // JAL
1952   {
1953     alloc_reg(current,i,31);
1954     dirty_reg(current,31);
1955   }
1956   if(opcode[i]==0&&(opcode2[i]&0x3E)==8) // JR/JALR
1957   {
1958     alloc_reg(current,i,rs1[i]);
1959     if (rt1[i]!=0) {
1960       alloc_reg(current,i,rt1[i]);
1961       dirty_reg(current,rt1[i]);
1962     }
1963   }
1964   if((opcode[i]&0x2E)==4) // BEQ/BNE/BEQL/BNEL
1965   {
1966     if(rs1[i]) alloc_reg(current,i,rs1[i]);
1967     if(rs2[i]) alloc_reg(current,i,rs2[i]);
1968     if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1969     {
1970       if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1971       if(rs2[i]) alloc_reg64(current,i,rs2[i]);
1972     }
1973   }
1974   else
1975   if((opcode[i]&0x2E)==6) // BLEZ/BGTZ/BLEZL/BGTZL
1976   {
1977     if(rs1[i]) alloc_reg(current,i,rs1[i]);
1978     if(!((current->is32>>rs1[i])&1))
1979     {
1980       if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1981     }
1982   }
1983   else
1984   if(opcode[i]==0x11) // BC1
1985   {
1986     alloc_reg(current,i,FSREG);
1987     alloc_reg(current,i,CSREG);
1988   }
1989   //else ...
1990 }
1991
1992 add_stub(int type,int addr,int retaddr,int a,int b,int c,int d,int e)
1993 {
1994   stubs[stubcount][0]=type;
1995   stubs[stubcount][1]=addr;
1996   stubs[stubcount][2]=retaddr;
1997   stubs[stubcount][3]=a;
1998   stubs[stubcount][4]=b;
1999   stubs[stubcount][5]=c;
2000   stubs[stubcount][6]=d;
2001   stubs[stubcount][7]=e;
2002   stubcount++;
2003 }
2004
2005 // Write out a single register
2006 void wb_register(signed char r,signed char regmap[],uint64_t dirty,uint64_t is32)
2007 {
2008   int hr;
2009   for(hr=0;hr<HOST_REGS;hr++) {
2010     if(hr!=EXCLUDE_REG) {
2011       if((regmap[hr]&63)==r) {
2012         if((dirty>>hr)&1) {
2013           if(regmap[hr]<64) {
2014             emit_storereg(r,hr);
2015 #ifndef FORCE32
2016             if((is32>>regmap[hr])&1) {
2017               emit_sarimm(hr,31,hr);
2018               emit_storereg(r|64,hr);
2019             }
2020 #endif
2021           }else{
2022             emit_storereg(r|64,hr);
2023           }
2024         }
2025       }
2026     }
2027   }
2028 }
2029
2030 int mchecksum()
2031 {
2032   //if(!tracedebug) return 0;
2033   int i;
2034   int sum=0;
2035   for(i=0;i<2097152;i++) {
2036     unsigned int temp=sum;
2037     sum<<=1;
2038     sum|=(~temp)>>31;
2039     sum^=((u_int *)rdram)[i];
2040   }
2041   return sum;
2042 }
2043 int rchecksum()
2044 {
2045   int i;
2046   int sum=0;
2047   for(i=0;i<64;i++)
2048     sum^=((u_int *)reg)[i];
2049   return sum;
2050 }
2051 void rlist()
2052 {
2053   int i;
2054   printf("TRACE: ");
2055   for(i=0;i<32;i++)
2056     printf("r%d:%8x%8x ",i,((int *)(reg+i))[1],((int *)(reg+i))[0]);
2057   printf("\n");
2058 #ifndef DISABLE_COP1
2059   printf("TRACE: ");
2060   for(i=0;i<32;i++)
2061     printf("f%d:%8x%8x ",i,((int*)reg_cop1_simple[i])[1],*((int*)reg_cop1_simple[i]));
2062   printf("\n");
2063 #endif
2064 }
2065
2066 void enabletrace()
2067 {
2068   tracedebug=1;
2069 }
2070
2071 void memdebug(int i)
2072 {
2073   //printf("TRACE: count=%d next=%d (checksum %x) lo=%8x%8x\n",Count,next_interupt,mchecksum(),(int)(reg[LOREG]>>32),(int)reg[LOREG]);
2074   //printf("TRACE: count=%d next=%d (rchecksum %x)\n",Count,next_interupt,rchecksum());
2075   //rlist();
2076   //if(tracedebug) {
2077   //if(Count>=-2084597794) {
2078   if((signed int)Count>=-2084597794&&(signed int)Count<0) {
2079   //if(0) {
2080     printf("TRACE: count=%d next=%d (checksum %x)\n",Count,next_interupt,mchecksum());
2081     //printf("TRACE: count=%d next=%d (checksum %x) Status=%x\n",Count,next_interupt,mchecksum(),Status);
2082     //printf("TRACE: count=%d next=%d (checksum %x) hi=%8x%8x\n",Count,next_interupt,mchecksum(),(int)(reg[HIREG]>>32),(int)reg[HIREG]);
2083     rlist();
2084     #ifdef __i386__
2085     printf("TRACE: %x\n",(&i)[-1]);
2086     #endif
2087     #ifdef __arm__
2088     int j;
2089     printf("TRACE: %x \n",(&j)[10]);
2090     printf("TRACE: %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x\n",(&j)[1],(&j)[2],(&j)[3],(&j)[4],(&j)[5],(&j)[6],(&j)[7],(&j)[8],(&j)[9],(&j)[10],(&j)[11],(&j)[12],(&j)[13],(&j)[14],(&j)[15],(&j)[16],(&j)[17],(&j)[18],(&j)[19],(&j)[20]);
2091     #endif
2092     //fflush(stdout);
2093   }
2094   //printf("TRACE: %x\n",(&i)[-1]);
2095 }
2096
2097 void tlb_debug(u_int cause, u_int addr, u_int iaddr)
2098 {
2099   printf("TLB Exception: instruction=%x addr=%x cause=%x\n",iaddr, addr, cause);
2100 }
2101
2102 void alu_assemble(int i,struct regstat *i_regs)
2103 {
2104   if(opcode2[i]>=0x20&&opcode2[i]<=0x23) { // ADD/ADDU/SUB/SUBU
2105     if(rt1[i]) {
2106       signed char s1,s2,t;
2107       t=get_reg(i_regs->regmap,rt1[i]);
2108       if(t>=0) {
2109         s1=get_reg(i_regs->regmap,rs1[i]);
2110         s2=get_reg(i_regs->regmap,rs2[i]);
2111         if(rs1[i]&&rs2[i]) {
2112           assert(s1>=0);
2113           assert(s2>=0);
2114           if(opcode2[i]&2) emit_sub(s1,s2,t);
2115           else emit_add(s1,s2,t);
2116         }
2117         else if(rs1[i]) {
2118           if(s1>=0) emit_mov(s1,t);
2119           else emit_loadreg(rs1[i],t);
2120         }
2121         else if(rs2[i]) {
2122           if(s2>=0) {
2123             if(opcode2[i]&2) emit_neg(s2,t);
2124             else emit_mov(s2,t);
2125           }
2126           else {
2127             emit_loadreg(rs2[i],t);
2128             if(opcode2[i]&2) emit_neg(t,t);
2129           }
2130         }
2131         else emit_zeroreg(t);
2132       }
2133     }
2134   }
2135   if(opcode2[i]>=0x2c&&opcode2[i]<=0x2f) { // DADD/DADDU/DSUB/DSUBU
2136     if(rt1[i]) {
2137       signed char s1l,s2l,s1h,s2h,tl,th;
2138       tl=get_reg(i_regs->regmap,rt1[i]);
2139       th=get_reg(i_regs->regmap,rt1[i]|64);
2140       if(tl>=0) {
2141         s1l=get_reg(i_regs->regmap,rs1[i]);
2142         s2l=get_reg(i_regs->regmap,rs2[i]);
2143         s1h=get_reg(i_regs->regmap,rs1[i]|64);
2144         s2h=get_reg(i_regs->regmap,rs2[i]|64);
2145         if(rs1[i]&&rs2[i]) {
2146           assert(s1l>=0);
2147           assert(s2l>=0);
2148           if(opcode2[i]&2) emit_subs(s1l,s2l,tl);
2149           else emit_adds(s1l,s2l,tl);
2150           if(th>=0) {
2151             #ifdef INVERTED_CARRY
2152             if(opcode2[i]&2) {if(s1h!=th) emit_mov(s1h,th);emit_sbb(th,s2h);}
2153             #else
2154             if(opcode2[i]&2) emit_sbc(s1h,s2h,th);
2155             #endif
2156             else emit_add(s1h,s2h,th);
2157           }
2158         }
2159         else if(rs1[i]) {
2160           if(s1l>=0) emit_mov(s1l,tl);
2161           else emit_loadreg(rs1[i],tl);
2162           if(th>=0) {
2163             if(s1h>=0) emit_mov(s1h,th);
2164             else emit_loadreg(rs1[i]|64,th);
2165           }
2166         }
2167         else if(rs2[i]) {
2168           if(s2l>=0) {
2169             if(opcode2[i]&2) emit_negs(s2l,tl);
2170             else emit_mov(s2l,tl);
2171           }
2172           else {
2173             emit_loadreg(rs2[i],tl);
2174             if(opcode2[i]&2) emit_negs(tl,tl);
2175           }
2176           if(th>=0) {
2177             #ifdef INVERTED_CARRY
2178             if(s2h>=0) emit_mov(s2h,th);
2179             else emit_loadreg(rs2[i]|64,th);
2180             if(opcode2[i]&2) {
2181               emit_adcimm(-1,th); // x86 has inverted carry flag
2182               emit_not(th,th);
2183             }
2184             #else
2185             if(opcode2[i]&2) {
2186               if(s2h>=0) emit_rscimm(s2h,0,th);
2187               else {
2188                 emit_loadreg(rs2[i]|64,th);
2189                 emit_rscimm(th,0,th);
2190               }
2191             }else{
2192               if(s2h>=0) emit_mov(s2h,th);
2193               else emit_loadreg(rs2[i]|64,th);
2194             }
2195             #endif
2196           }
2197         }
2198         else {
2199           emit_zeroreg(tl);
2200           if(th>=0) emit_zeroreg(th);
2201         }
2202       }
2203     }
2204   }
2205   if(opcode2[i]==0x2a||opcode2[i]==0x2b) { // SLT/SLTU
2206     if(rt1[i]) {
2207       signed char s1l,s1h,s2l,s2h,t;
2208       if(!((i_regs->was32>>rs1[i])&(i_regs->was32>>rs2[i])&1))
2209       {
2210         t=get_reg(i_regs->regmap,rt1[i]);
2211         //assert(t>=0);
2212         if(t>=0) {
2213           s1l=get_reg(i_regs->regmap,rs1[i]);
2214           s1h=get_reg(i_regs->regmap,rs1[i]|64);
2215           s2l=get_reg(i_regs->regmap,rs2[i]);
2216           s2h=get_reg(i_regs->regmap,rs2[i]|64);
2217           if(rs2[i]==0) // rx<r0
2218           {
2219             assert(s1h>=0);
2220             if(opcode2[i]==0x2a) // SLT
2221               emit_shrimm(s1h,31,t);
2222             else // SLTU (unsigned can not be less than zero)
2223               emit_zeroreg(t);
2224           }
2225           else if(rs1[i]==0) // r0<rx
2226           {
2227             assert(s2h>=0);
2228             if(opcode2[i]==0x2a) // SLT
2229               emit_set_gz64_32(s2h,s2l,t);
2230             else // SLTU (set if not zero)
2231               emit_set_nz64_32(s2h,s2l,t);
2232           }
2233           else {
2234             assert(s1l>=0);assert(s1h>=0);
2235             assert(s2l>=0);assert(s2h>=0);
2236             if(opcode2[i]==0x2a) // SLT
2237               emit_set_if_less64_32(s1h,s1l,s2h,s2l,t);
2238             else // SLTU
2239               emit_set_if_carry64_32(s1h,s1l,s2h,s2l,t);
2240           }
2241         }
2242       } else {
2243         t=get_reg(i_regs->regmap,rt1[i]);
2244         //assert(t>=0);
2245         if(t>=0) {
2246           s1l=get_reg(i_regs->regmap,rs1[i]);
2247           s2l=get_reg(i_regs->regmap,rs2[i]);
2248           if(rs2[i]==0) // rx<r0
2249           {
2250             assert(s1l>=0);
2251             if(opcode2[i]==0x2a) // SLT
2252               emit_shrimm(s1l,31,t);
2253             else // SLTU (unsigned can not be less than zero)
2254               emit_zeroreg(t);
2255           }
2256           else if(rs1[i]==0) // r0<rx
2257           {
2258             assert(s2l>=0);
2259             if(opcode2[i]==0x2a) // SLT
2260               emit_set_gz32(s2l,t);
2261             else // SLTU (set if not zero)
2262               emit_set_nz32(s2l,t);
2263           }
2264           else{
2265             assert(s1l>=0);assert(s2l>=0);
2266             if(opcode2[i]==0x2a) // SLT
2267               emit_set_if_less32(s1l,s2l,t);
2268             else // SLTU
2269               emit_set_if_carry32(s1l,s2l,t);
2270           }
2271         }
2272       }
2273     }
2274   }
2275   if(opcode2[i]>=0x24&&opcode2[i]<=0x27) { // AND/OR/XOR/NOR
2276     if(rt1[i]) {
2277       signed char s1l,s1h,s2l,s2h,th,tl;
2278       tl=get_reg(i_regs->regmap,rt1[i]);
2279       th=get_reg(i_regs->regmap,rt1[i]|64);
2280       if(!((i_regs->was32>>rs1[i])&(i_regs->was32>>rs2[i])&1)&&th>=0)
2281       {
2282         assert(tl>=0);
2283         if(tl>=0) {
2284           s1l=get_reg(i_regs->regmap,rs1[i]);
2285           s1h=get_reg(i_regs->regmap,rs1[i]|64);
2286           s2l=get_reg(i_regs->regmap,rs2[i]);
2287           s2h=get_reg(i_regs->regmap,rs2[i]|64);
2288           if(rs1[i]&&rs2[i]) {
2289             assert(s1l>=0);assert(s1h>=0);
2290             assert(s2l>=0);assert(s2h>=0);
2291             if(opcode2[i]==0x24) { // AND
2292               emit_and(s1l,s2l,tl);
2293               emit_and(s1h,s2h,th);
2294             } else
2295             if(opcode2[i]==0x25) { // OR
2296               emit_or(s1l,s2l,tl);
2297               emit_or(s1h,s2h,th);
2298             } else
2299             if(opcode2[i]==0x26) { // XOR
2300               emit_xor(s1l,s2l,tl);
2301               emit_xor(s1h,s2h,th);
2302             } else
2303             if(opcode2[i]==0x27) { // NOR
2304               emit_or(s1l,s2l,tl);
2305               emit_or(s1h,s2h,th);
2306               emit_not(tl,tl);
2307               emit_not(th,th);
2308             }
2309           }
2310           else
2311           {
2312             if(opcode2[i]==0x24) { // AND
2313               emit_zeroreg(tl);
2314               emit_zeroreg(th);
2315             } else
2316             if(opcode2[i]==0x25||opcode2[i]==0x26) { // OR/XOR
2317               if(rs1[i]){
2318                 if(s1l>=0) emit_mov(s1l,tl);
2319                 else emit_loadreg(rs1[i],tl);
2320                 if(s1h>=0) emit_mov(s1h,th);
2321                 else emit_loadreg(rs1[i]|64,th);
2322               }
2323               else
2324               if(rs2[i]){
2325                 if(s2l>=0) emit_mov(s2l,tl);
2326                 else emit_loadreg(rs2[i],tl);
2327                 if(s2h>=0) emit_mov(s2h,th);
2328                 else emit_loadreg(rs2[i]|64,th);
2329               }
2330               else{
2331                 emit_zeroreg(tl);
2332                 emit_zeroreg(th);
2333               }
2334             } else
2335             if(opcode2[i]==0x27) { // NOR
2336               if(rs1[i]){
2337                 if(s1l>=0) emit_not(s1l,tl);
2338                 else{
2339                   emit_loadreg(rs1[i],tl);
2340                   emit_not(tl,tl);
2341                 }
2342                 if(s1h>=0) emit_not(s1h,th);
2343                 else{
2344                   emit_loadreg(rs1[i]|64,th);
2345                   emit_not(th,th);
2346                 }
2347               }
2348               else
2349               if(rs2[i]){
2350                 if(s2l>=0) emit_not(s2l,tl);
2351                 else{
2352                   emit_loadreg(rs2[i],tl);
2353                   emit_not(tl,tl);
2354                 }
2355                 if(s2h>=0) emit_not(s2h,th);
2356                 else{
2357                   emit_loadreg(rs2[i]|64,th);
2358                   emit_not(th,th);
2359                 }
2360               }
2361               else {
2362                 emit_movimm(-1,tl);
2363                 emit_movimm(-1,th);
2364               }
2365             }
2366           }
2367         }
2368       }
2369       else
2370       {
2371         // 32 bit
2372         if(tl>=0) {
2373           s1l=get_reg(i_regs->regmap,rs1[i]);
2374           s2l=get_reg(i_regs->regmap,rs2[i]);
2375           if(rs1[i]&&rs2[i]) {
2376             assert(s1l>=0);
2377             assert(s2l>=0);
2378             if(opcode2[i]==0x24) { // AND
2379               emit_and(s1l,s2l,tl);
2380             } else
2381             if(opcode2[i]==0x25) { // OR
2382               emit_or(s1l,s2l,tl);
2383             } else
2384             if(opcode2[i]==0x26) { // XOR
2385               emit_xor(s1l,s2l,tl);
2386             } else
2387             if(opcode2[i]==0x27) { // NOR
2388               emit_or(s1l,s2l,tl);
2389               emit_not(tl,tl);
2390             }
2391           }
2392           else
2393           {
2394             if(opcode2[i]==0x24) { // AND
2395               emit_zeroreg(tl);
2396             } else
2397             if(opcode2[i]==0x25||opcode2[i]==0x26) { // OR/XOR
2398               if(rs1[i]){
2399                 if(s1l>=0) emit_mov(s1l,tl);
2400                 else emit_loadreg(rs1[i],tl); // CHECK: regmap_entry?
2401               }
2402               else
2403               if(rs2[i]){
2404                 if(s2l>=0) emit_mov(s2l,tl);
2405                 else emit_loadreg(rs2[i],tl); // CHECK: regmap_entry?
2406               }
2407               else emit_zeroreg(tl);
2408             } else
2409             if(opcode2[i]==0x27) { // NOR
2410               if(rs1[i]){
2411                 if(s1l>=0) emit_not(s1l,tl);
2412                 else {
2413                   emit_loadreg(rs1[i],tl);
2414                   emit_not(tl,tl);
2415                 }
2416               }
2417               else
2418               if(rs2[i]){
2419                 if(s2l>=0) emit_not(s2l,tl);
2420                 else {
2421                   emit_loadreg(rs2[i],tl);
2422                   emit_not(tl,tl);
2423                 }
2424               }
2425               else emit_movimm(-1,tl);
2426             }
2427           }
2428         }
2429       }
2430     }
2431   }
2432 }
2433
2434 void imm16_assemble(int i,struct regstat *i_regs)
2435 {
2436   if (opcode[i]==0x0f) { // LUI
2437     if(rt1[i]) {
2438       signed char t;
2439       t=get_reg(i_regs->regmap,rt1[i]);
2440       //assert(t>=0);
2441       if(t>=0) {
2442         if(!((i_regs->isconst>>t)&1))
2443           emit_movimm(imm[i]<<16,t);
2444       }
2445     }
2446   }
2447   if(opcode[i]==0x08||opcode[i]==0x09) { // ADDI/ADDIU
2448     if(rt1[i]) {
2449       signed char s,t;
2450       t=get_reg(i_regs->regmap,rt1[i]);
2451       s=get_reg(i_regs->regmap,rs1[i]);
2452       if(rs1[i]) {
2453         //assert(t>=0);
2454         //assert(s>=0);
2455         if(t>=0) {
2456           if(!((i_regs->isconst>>t)&1)) {
2457             if(s<0) {
2458               if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2459               emit_addimm(t,imm[i],t);
2460             }else{
2461               if(!((i_regs->wasconst>>s)&1))
2462                 emit_addimm(s,imm[i],t);
2463               else
2464                 emit_movimm(constmap[i][s]+imm[i],t);
2465             }
2466           }
2467         }
2468       } else {
2469         if(t>=0) {
2470           if(!((i_regs->isconst>>t)&1))
2471             emit_movimm(imm[i],t);
2472         }
2473       }
2474     }
2475   }
2476   if(opcode[i]==0x18||opcode[i]==0x19) { // DADDI/DADDIU
2477     if(rt1[i]) {
2478       signed char sh,sl,th,tl;
2479       th=get_reg(i_regs->regmap,rt1[i]|64);
2480       tl=get_reg(i_regs->regmap,rt1[i]);
2481       sh=get_reg(i_regs->regmap,rs1[i]|64);
2482       sl=get_reg(i_regs->regmap,rs1[i]);
2483       if(tl>=0) {
2484         if(rs1[i]) {
2485           assert(sh>=0);
2486           assert(sl>=0);
2487           if(th>=0) {
2488             emit_addimm64_32(sh,sl,imm[i],th,tl);
2489           }
2490           else {
2491             emit_addimm(sl,imm[i],tl);
2492           }
2493         } else {
2494           emit_movimm(imm[i],tl);
2495           if(th>=0) emit_movimm(((signed int)imm[i])>>31,th);
2496         }
2497       }
2498     }
2499   }
2500   else if(opcode[i]==0x0a||opcode[i]==0x0b) { // SLTI/SLTIU
2501     if(rt1[i]) {
2502       //assert(rs1[i]!=0); // r0 might be valid, but it's probably a bug
2503       signed char sh,sl,t;
2504       t=get_reg(i_regs->regmap,rt1[i]);
2505       sh=get_reg(i_regs->regmap,rs1[i]|64);
2506       sl=get_reg(i_regs->regmap,rs1[i]);
2507       //assert(t>=0);
2508       if(t>=0) {
2509         if(rs1[i]>0) {
2510           if(sh<0) assert((i_regs->was32>>rs1[i])&1);
2511           if(sh<0||((i_regs->was32>>rs1[i])&1)) {
2512             if(opcode[i]==0x0a) { // SLTI
2513               if(sl<0) {
2514                 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2515                 emit_slti32(t,imm[i],t);
2516               }else{
2517                 emit_slti32(sl,imm[i],t);
2518               }
2519             }
2520             else { // SLTIU
2521               if(sl<0) {
2522                 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2523                 emit_sltiu32(t,imm[i],t);
2524               }else{
2525                 emit_sltiu32(sl,imm[i],t);
2526               }
2527             }
2528           }else{ // 64-bit
2529             assert(sl>=0);
2530             if(opcode[i]==0x0a) // SLTI
2531               emit_slti64_32(sh,sl,imm[i],t);
2532             else // SLTIU
2533               emit_sltiu64_32(sh,sl,imm[i],t);
2534           }
2535         }else{
2536           // SLTI(U) with r0 is just stupid,
2537           // nonetheless examples can be found
2538           if(opcode[i]==0x0a) // SLTI
2539             if(0<imm[i]) emit_movimm(1,t);
2540             else emit_zeroreg(t);
2541           else // SLTIU
2542           {
2543             if(imm[i]) emit_movimm(1,t);
2544             else emit_zeroreg(t);
2545           }
2546         }
2547       }
2548     }
2549   }
2550   else if(opcode[i]>=0x0c&&opcode[i]<=0x0e) { // ANDI/ORI/XORI
2551     if(rt1[i]) {
2552       signed char sh,sl,th,tl;
2553       th=get_reg(i_regs->regmap,rt1[i]|64);
2554       tl=get_reg(i_regs->regmap,rt1[i]);
2555       sh=get_reg(i_regs->regmap,rs1[i]|64);
2556       sl=get_reg(i_regs->regmap,rs1[i]);
2557       if(tl>=0 && !((i_regs->isconst>>tl)&1)) {
2558         if(opcode[i]==0x0c) //ANDI
2559         {
2560           if(rs1[i]) {
2561             if(sl<0) {
2562               if(i_regs->regmap_entry[tl]!=rs1[i]) emit_loadreg(rs1[i],tl);
2563               emit_andimm(tl,imm[i],tl);
2564             }else{
2565               if(!((i_regs->wasconst>>sl)&1))
2566                 emit_andimm(sl,imm[i],tl);
2567               else
2568                 emit_movimm(constmap[i][sl]&imm[i],tl);
2569             }
2570           }
2571           else
2572             emit_zeroreg(tl);
2573           if(th>=0) emit_zeroreg(th);
2574         }
2575         else
2576         {
2577           if(rs1[i]) {
2578             if(sl<0) {
2579               if(i_regs->regmap_entry[tl]!=rs1[i]) emit_loadreg(rs1[i],tl);
2580             }
2581             if(th>=0) {
2582               if(sh<0) {
2583                 emit_loadreg(rs1[i]|64,th);
2584               }else{
2585                 emit_mov(sh,th);
2586               }
2587             }
2588             if(opcode[i]==0x0d) //ORI
2589             if(sl<0) {
2590               emit_orimm(tl,imm[i],tl);
2591             }else{
2592               if(!((i_regs->wasconst>>sl)&1))
2593                 emit_orimm(sl,imm[i],tl);
2594               else
2595                 emit_movimm(constmap[i][sl]|imm[i],tl);
2596             }
2597             if(opcode[i]==0x0e) //XORI
2598             if(sl<0) {
2599               emit_xorimm(tl,imm[i],tl);
2600             }else{
2601               if(!((i_regs->wasconst>>sl)&1))
2602                 emit_xorimm(sl,imm[i],tl);
2603               else
2604                 emit_movimm(constmap[i][sl]^imm[i],tl);
2605             }
2606           }
2607           else {
2608             emit_movimm(imm[i],tl);
2609             if(th>=0) emit_zeroreg(th);
2610           }
2611         }
2612       }
2613     }
2614   }
2615 }
2616
2617 void shiftimm_assemble(int i,struct regstat *i_regs)
2618 {
2619   if(opcode2[i]<=0x3) // SLL/SRL/SRA
2620   {
2621     if(rt1[i]) {
2622       signed char s,t;
2623       t=get_reg(i_regs->regmap,rt1[i]);
2624       s=get_reg(i_regs->regmap,rs1[i]);
2625       //assert(t>=0);
2626       if(t>=0){
2627         if(rs1[i]==0)
2628         {
2629           emit_zeroreg(t);
2630         }
2631         else
2632         {
2633           if(s<0&&i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2634           if(imm[i]) {
2635             if(opcode2[i]==0) // SLL
2636             {
2637               emit_shlimm(s<0?t:s,imm[i],t);
2638             }
2639             if(opcode2[i]==2) // SRL
2640             {
2641               emit_shrimm(s<0?t:s,imm[i],t);
2642             }
2643             if(opcode2[i]==3) // SRA
2644             {
2645               emit_sarimm(s<0?t:s,imm[i],t);
2646             }
2647           }else{
2648             // Shift by zero
2649             if(s>=0 && s!=t) emit_mov(s,t);
2650           }
2651         }
2652       }
2653       //emit_storereg(rt1[i],t); //DEBUG
2654     }
2655   }
2656   if(opcode2[i]>=0x38&&opcode2[i]<=0x3b) // DSLL/DSRL/DSRA
2657   {
2658     if(rt1[i]) {
2659       signed char sh,sl,th,tl;
2660       th=get_reg(i_regs->regmap,rt1[i]|64);
2661       tl=get_reg(i_regs->regmap,rt1[i]);
2662       sh=get_reg(i_regs->regmap,rs1[i]|64);
2663       sl=get_reg(i_regs->regmap,rs1[i]);
2664       if(tl>=0) {
2665         if(rs1[i]==0)
2666         {
2667           emit_zeroreg(tl);
2668           if(th>=0) emit_zeroreg(th);
2669         }
2670         else
2671         {
2672           assert(sl>=0);
2673           assert(sh>=0);
2674           if(imm[i]) {
2675             if(opcode2[i]==0x38) // DSLL
2676             {
2677               if(th>=0) emit_shldimm(sh,sl,imm[i],th);
2678               emit_shlimm(sl,imm[i],tl);
2679             }
2680             if(opcode2[i]==0x3a) // DSRL
2681             {
2682               emit_shrdimm(sl,sh,imm[i],tl);
2683               if(th>=0) emit_shrimm(sh,imm[i],th);
2684             }
2685             if(opcode2[i]==0x3b) // DSRA
2686             {
2687               emit_shrdimm(sl,sh,imm[i],tl);
2688               if(th>=0) emit_sarimm(sh,imm[i],th);
2689             }
2690           }else{
2691             // Shift by zero
2692             if(sl!=tl) emit_mov(sl,tl);
2693             if(th>=0&&sh!=th) emit_mov(sh,th);
2694           }
2695         }
2696       }
2697     }
2698   }
2699   if(opcode2[i]==0x3c) // DSLL32
2700   {
2701     if(rt1[i]) {
2702       signed char sl,tl,th;
2703       tl=get_reg(i_regs->regmap,rt1[i]);
2704       th=get_reg(i_regs->regmap,rt1[i]|64);
2705       sl=get_reg(i_regs->regmap,rs1[i]);
2706       if(th>=0||tl>=0){
2707         assert(tl>=0);
2708         assert(th>=0);
2709         assert(sl>=0);
2710         emit_mov(sl,th);
2711         emit_zeroreg(tl);
2712         if(imm[i]>32)
2713         {
2714           emit_shlimm(th,imm[i]&31,th);
2715         }
2716       }
2717     }
2718   }
2719   if(opcode2[i]==0x3e) // DSRL32
2720   {
2721     if(rt1[i]) {
2722       signed char sh,tl,th;
2723       tl=get_reg(i_regs->regmap,rt1[i]);
2724       th=get_reg(i_regs->regmap,rt1[i]|64);
2725       sh=get_reg(i_regs->regmap,rs1[i]|64);
2726       if(tl>=0){
2727         assert(sh>=0);
2728         emit_mov(sh,tl);
2729         if(th>=0) emit_zeroreg(th);
2730         if(imm[i]>32)
2731         {
2732           emit_shrimm(tl,imm[i]&31,tl);
2733         }
2734       }
2735     }
2736   }
2737   if(opcode2[i]==0x3f) // DSRA32
2738   {
2739     if(rt1[i]) {
2740       signed char sh,tl;
2741       tl=get_reg(i_regs->regmap,rt1[i]);
2742       sh=get_reg(i_regs->regmap,rs1[i]|64);
2743       if(tl>=0){
2744         assert(sh>=0);
2745         emit_mov(sh,tl);
2746         if(imm[i]>32)
2747         {
2748           emit_sarimm(tl,imm[i]&31,tl);
2749         }
2750       }
2751     }
2752   }
2753 }
2754
2755 #ifndef shift_assemble
2756 void shift_assemble(int i,struct regstat *i_regs)
2757 {
2758   printf("Need shift_assemble for this architecture.\n");
2759   exit(1);
2760 }
2761 #endif
2762
2763 void load_assemble(int i,struct regstat *i_regs)
2764 {
2765   int s,th,tl,addr,map=-1;
2766   int offset;
2767   int jaddr=0;
2768   int memtarget=0,c=0;
2769   u_int hr,reglist=0;
2770   th=get_reg(i_regs->regmap,rt1[i]|64);
2771   tl=get_reg(i_regs->regmap,rt1[i]);
2772   s=get_reg(i_regs->regmap,rs1[i]);
2773   offset=imm[i];
2774   for(hr=0;hr<HOST_REGS;hr++) {
2775     if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
2776   }
2777   if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
2778   if(s>=0) {
2779     c=(i_regs->wasconst>>s)&1;
2780     if (c) {
2781       memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
2782       if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
2783     }
2784   }
2785   //printf("load_assemble: c=%d\n",c);
2786   //if(c) printf("load_assemble: const=%x\n",(int)constmap[i][s]+offset);
2787   // FIXME: Even if the load is a NOP, we should check for pagefaults...
2788 #ifdef PCSX
2789   if(tl<0&&(!c||(((u_int)constmap[i][s]+offset)>>16)==0x1f80)
2790     ||rt1[i]==0) {
2791       // could be FIFO, must perform the read
2792       // ||dummy read
2793       assem_debug("(forced read)\n");
2794       tl=get_reg(i_regs->regmap,-1);
2795       assert(tl>=0);
2796   }
2797 #endif
2798   if(offset||s<0||c) addr=tl;
2799   else addr=s;
2800   //if(tl<0) tl=get_reg(i_regs->regmap,-1);
2801  if(tl>=0) {
2802   //printf("load_assemble: c=%d\n",c);
2803   //if(c) printf("load_assemble: const=%x\n",(int)constmap[i][s]+offset);
2804   assert(tl>=0); // Even if the load is a NOP, we must check for pagefaults and I/O
2805   reglist&=~(1<<tl);
2806   if(th>=0) reglist&=~(1<<th);
2807   if(!using_tlb) {
2808     if(!c) {
2809       #ifdef RAM_OFFSET
2810       map=get_reg(i_regs->regmap,ROREG);
2811       if(map<0) emit_loadreg(ROREG,map=HOST_TEMPREG);
2812       #endif
2813 //#define R29_HACK 1
2814       #ifdef R29_HACK
2815       // Strmnnrmn's speed hack
2816       if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
2817       #endif
2818       {
2819         #ifdef PCSX
2820         if(sp_in_mirror&&rs1[i]==29) {
2821           emit_andimm(addr,~0x00e00000,HOST_TEMPREG);
2822           emit_cmpimm(HOST_TEMPREG,RAM_SIZE);
2823         }
2824         else
2825         #endif
2826         emit_cmpimm(addr,RAM_SIZE);
2827         jaddr=(int)out;
2828         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
2829         // Hint to branch predictor that the branch is unlikely to be taken
2830         if(rs1[i]>=28)
2831           emit_jno_unlikely(0);
2832         else
2833         #endif
2834         emit_jno(0);
2835       }
2836     }
2837   }else{ // using tlb
2838     int x=0;
2839     if (opcode[i]==0x20||opcode[i]==0x24) x=3; // LB/LBU
2840     if (opcode[i]==0x21||opcode[i]==0x25) x=2; // LH/LHU
2841     map=get_reg(i_regs->regmap,TLREG);
2842     assert(map>=0);
2843     map=do_tlb_r(addr,tl,map,x,-1,-1,c,constmap[i][s]+offset);
2844     do_tlb_r_branch(map,c,constmap[i][s]+offset,&jaddr);
2845   }
2846   int dummy=(rt1[i]==0)||(tl!=get_reg(i_regs->regmap,rt1[i])); // ignore loads to r0 and unneeded reg
2847   if (opcode[i]==0x20) { // LB
2848     if(!c||memtarget) {
2849       if(!dummy) {
2850         #ifdef HOST_IMM_ADDR32
2851         if(c)
2852           emit_movsbl_tlb((constmap[i][s]+offset)^3,map,tl);
2853         else
2854         #endif
2855         {
2856           //emit_xorimm(addr,3,tl);
2857           //gen_tlb_addr_r(tl,map);
2858           //emit_movsbl_indexed((int)rdram-0x80000000,tl,tl);
2859           int x=0,a=tl;
2860 #ifdef BIG_ENDIAN_MIPS
2861           if(!c) emit_xorimm(addr,3,tl);
2862           else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2863 #else
2864           if(!c) a=addr;
2865 #endif
2866 #ifdef PCSX
2867           if(sp_in_mirror&&rs1[i]==29) a=HOST_TEMPREG;
2868 #endif
2869           emit_movsbl_indexed_tlb(x,a,map,tl);
2870         }
2871       }
2872       if(jaddr)
2873         add_stub(LOADB_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2874     }
2875     else
2876       inline_readstub(LOADB_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2877   }
2878   if (opcode[i]==0x21) { // LH
2879     if(!c||memtarget) {
2880       if(!dummy) {
2881         #ifdef HOST_IMM_ADDR32
2882         if(c)
2883           emit_movswl_tlb((constmap[i][s]+offset)^2,map,tl);
2884         else
2885         #endif
2886         {
2887           int x=0,a=tl;
2888 #ifdef BIG_ENDIAN_MIPS
2889           if(!c) emit_xorimm(addr,2,tl);
2890           else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
2891 #else
2892           if(!c) a=addr;
2893 #endif
2894 #ifdef PCSX
2895           if(sp_in_mirror&&rs1[i]==29) a=HOST_TEMPREG;
2896 #endif
2897           //#ifdef
2898           //emit_movswl_indexed_tlb(x,tl,map,tl);
2899           //else
2900           if(map>=0) {
2901             gen_tlb_addr_r(a,map);
2902             emit_movswl_indexed(x,a,tl);
2903           }else{
2904             #ifdef RAM_OFFSET
2905             emit_movswl_indexed(x,a,tl);
2906             #else
2907             emit_movswl_indexed((int)rdram-0x80000000+x,a,tl);
2908             #endif
2909           }
2910         }
2911       }
2912       if(jaddr)
2913         add_stub(LOADH_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2914     }
2915     else
2916       inline_readstub(LOADH_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2917   }
2918   if (opcode[i]==0x23) { // LW
2919     if(!c||memtarget) {
2920       if(!dummy) {
2921         int a=addr;
2922 #ifdef PCSX
2923         if(sp_in_mirror&&rs1[i]==29) a=HOST_TEMPREG;
2924 #endif
2925         //emit_readword_indexed((int)rdram-0x80000000,addr,tl);
2926         #ifdef HOST_IMM_ADDR32
2927         if(c)
2928           emit_readword_tlb(constmap[i][s]+offset,map,tl);
2929         else
2930         #endif
2931         emit_readword_indexed_tlb(0,a,map,tl);
2932       }
2933       if(jaddr)
2934         add_stub(LOADW_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2935     }
2936     else
2937       inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2938   }
2939   if (opcode[i]==0x24) { // LBU
2940     if(!c||memtarget) {
2941       if(!dummy) {
2942         #ifdef HOST_IMM_ADDR32
2943         if(c)
2944           emit_movzbl_tlb((constmap[i][s]+offset)^3,map,tl);
2945         else
2946         #endif
2947         {
2948           //emit_xorimm(addr,3,tl);
2949           //gen_tlb_addr_r(tl,map);
2950           //emit_movzbl_indexed((int)rdram-0x80000000,tl,tl);
2951           int x=0,a=tl;
2952 #ifdef BIG_ENDIAN_MIPS
2953           if(!c) emit_xorimm(addr,3,tl);
2954           else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2955 #else
2956           if(!c) a=addr;
2957 #endif
2958 #ifdef PCSX
2959           if(sp_in_mirror&&rs1[i]==29) a=HOST_TEMPREG;
2960 #endif
2961           emit_movzbl_indexed_tlb(x,a,map,tl);
2962         }
2963       }
2964       if(jaddr)
2965         add_stub(LOADBU_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2966     }
2967     else
2968       inline_readstub(LOADBU_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2969   }
2970   if (opcode[i]==0x25) { // LHU
2971     if(!c||memtarget) {
2972       if(!dummy) {
2973         #ifdef HOST_IMM_ADDR32
2974         if(c)
2975           emit_movzwl_tlb((constmap[i][s]+offset)^2,map,tl);
2976         else
2977         #endif
2978         {
2979           int x=0,a=tl;
2980 #ifdef BIG_ENDIAN_MIPS
2981           if(!c) emit_xorimm(addr,2,tl);
2982           else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
2983 #else
2984           if(!c) a=addr;
2985 #endif
2986 #ifdef PCSX
2987           if(sp_in_mirror&&rs1[i]==29) a=HOST_TEMPREG;
2988 #endif
2989           //#ifdef
2990           //emit_movzwl_indexed_tlb(x,tl,map,tl);
2991           //#else
2992           if(map>=0) {
2993             gen_tlb_addr_r(a,map);
2994             emit_movzwl_indexed(x,a,tl);
2995           }else{
2996             #ifdef RAM_OFFSET
2997             emit_movzwl_indexed(x,a,tl);
2998             #else
2999             emit_movzwl_indexed((int)rdram-0x80000000+x,a,tl);
3000             #endif
3001           }
3002         }
3003       }
3004       if(jaddr)
3005         add_stub(LOADHU_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3006     }
3007     else
3008       inline_readstub(LOADHU_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
3009   }
3010   if (opcode[i]==0x27) { // LWU
3011     assert(th>=0);
3012     if(!c||memtarget) {
3013       if(!dummy) {
3014         int a=addr;
3015 #ifdef PCSX
3016         if(sp_in_mirror&&rs1[i]==29) a=HOST_TEMPREG;
3017 #endif
3018         //emit_readword_indexed((int)rdram-0x80000000,addr,tl);
3019         #ifdef HOST_IMM_ADDR32
3020         if(c)
3021           emit_readword_tlb(constmap[i][s]+offset,map,tl);
3022         else
3023         #endif
3024         emit_readword_indexed_tlb(0,a,map,tl);
3025       }
3026       if(jaddr)
3027         add_stub(LOADW_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3028     }
3029     else {
3030       inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
3031     }
3032     emit_zeroreg(th);
3033   }
3034   if (opcode[i]==0x37) { // LD
3035     if(!c||memtarget) {
3036       if(!dummy) {
3037         int a=addr;
3038 #ifdef PCSX
3039         if(sp_in_mirror&&rs1[i]==29) a=HOST_TEMPREG;
3040 #endif
3041         //gen_tlb_addr_r(tl,map);
3042         //if(th>=0) emit_readword_indexed((int)rdram-0x80000000,addr,th);
3043         //emit_readword_indexed((int)rdram-0x7FFFFFFC,addr,tl);
3044         #ifdef HOST_IMM_ADDR32
3045         if(c)
3046           emit_readdword_tlb(constmap[i][s]+offset,map,th,tl);
3047         else
3048         #endif
3049         emit_readdword_indexed_tlb(0,a,map,th,tl);
3050       }
3051       if(jaddr)
3052         add_stub(LOADD_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3053     }
3054     else
3055       inline_readstub(LOADD_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
3056   }
3057  }
3058   //emit_storereg(rt1[i],tl); // DEBUG
3059   //if(opcode[i]==0x23)
3060   //if(opcode[i]==0x24)
3061   //if(opcode[i]==0x23||opcode[i]==0x24)
3062   /*if(opcode[i]==0x21||opcode[i]==0x23||opcode[i]==0x24)
3063   {
3064     //emit_pusha();
3065     save_regs(0x100f);
3066         emit_readword((int)&last_count,ECX);
3067         #ifdef __i386__
3068         if(get_reg(i_regs->regmap,CCREG)<0)
3069           emit_loadreg(CCREG,HOST_CCREG);
3070         emit_add(HOST_CCREG,ECX,HOST_CCREG);
3071         emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3072         emit_writeword(HOST_CCREG,(int)&Count);
3073         #endif
3074         #ifdef __arm__
3075         if(get_reg(i_regs->regmap,CCREG)<0)
3076           emit_loadreg(CCREG,0);
3077         else
3078           emit_mov(HOST_CCREG,0);
3079         emit_add(0,ECX,0);
3080         emit_addimm(0,2*ccadj[i],0);
3081         emit_writeword(0,(int)&Count);
3082         #endif
3083     emit_call((int)memdebug);
3084     //emit_popa();
3085     restore_regs(0x100f);
3086   }/**/
3087 }
3088
3089 #ifndef loadlr_assemble
3090 void loadlr_assemble(int i,struct regstat *i_regs)
3091 {
3092   printf("Need loadlr_assemble for this architecture.\n");
3093   exit(1);
3094 }
3095 #endif
3096
3097 void store_assemble(int i,struct regstat *i_regs)
3098 {
3099   int s,th,tl,map=-1;
3100   int addr,temp;
3101   int offset;
3102   int jaddr=0,jaddr2,type;
3103   int memtarget=0,c=0;
3104   int agr=AGEN1+(i&1);
3105   u_int hr,reglist=0;
3106   th=get_reg(i_regs->regmap,rs2[i]|64);
3107   tl=get_reg(i_regs->regmap,rs2[i]);
3108   s=get_reg(i_regs->regmap,rs1[i]);
3109   temp=get_reg(i_regs->regmap,agr);
3110   if(temp<0) temp=get_reg(i_regs->regmap,-1);
3111   offset=imm[i];
3112   if(s>=0) {
3113     c=(i_regs->wasconst>>s)&1;
3114     if(c) {
3115       memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
3116       if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
3117     }
3118   }
3119   assert(tl>=0);
3120   assert(temp>=0);
3121   for(hr=0;hr<HOST_REGS;hr++) {
3122     if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3123   }
3124   if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
3125   if(offset||s<0||c) addr=temp;
3126   else addr=s;
3127   if(!using_tlb) {
3128     if(!c) {
3129       #ifdef PCSX
3130       if(sp_in_mirror&&rs1[i]==29) {
3131         emit_andimm(addr,~0x00e00000,HOST_TEMPREG);
3132         emit_cmpimm(HOST_TEMPREG,RAM_SIZE);
3133       }
3134       else
3135       #endif
3136       #ifdef R29_HACK
3137       // Strmnnrmn's speed hack
3138       if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
3139       #endif
3140       emit_cmpimm(addr,RAM_SIZE);
3141       #ifdef DESTRUCTIVE_SHIFT
3142       if(s==addr) emit_mov(s,temp);
3143       #endif
3144       #ifdef R29_HACK
3145       memtarget=1;
3146       if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
3147       #endif
3148       {
3149         jaddr=(int)out;
3150         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
3151         // Hint to branch predictor that the branch is unlikely to be taken
3152         if(rs1[i]>=28)
3153           emit_jno_unlikely(0);
3154         else
3155         #endif
3156         emit_jno(0);
3157       }
3158     }
3159   }else{ // using tlb
3160     int x=0;
3161     if (opcode[i]==0x28) x=3; // SB
3162     if (opcode[i]==0x29) x=2; // SH
3163     map=get_reg(i_regs->regmap,TLREG);
3164     assert(map>=0);
3165     map=do_tlb_w(addr,temp,map,x,c,constmap[i][s]+offset);
3166     do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr);
3167   }
3168
3169   if (opcode[i]==0x28) { // SB
3170     if(!c||memtarget) {
3171       int x=0,a=temp;
3172 #ifdef BIG_ENDIAN_MIPS
3173       if(!c) emit_xorimm(addr,3,temp);
3174       else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
3175 #else
3176       if(!c) a=addr;
3177 #endif
3178 #ifdef PCSX
3179       if(sp_in_mirror&&rs1[i]==29) a=HOST_TEMPREG;
3180 #endif
3181       //gen_tlb_addr_w(temp,map);
3182       //emit_writebyte_indexed(tl,(int)rdram-0x80000000,temp);
3183       emit_writebyte_indexed_tlb(tl,x,a,map,a);
3184     }
3185     type=STOREB_STUB;
3186   }
3187   if (opcode[i]==0x29) { // SH
3188     if(!c||memtarget) {
3189       int x=0,a=temp;
3190 #ifdef BIG_ENDIAN_MIPS
3191       if(!c) emit_xorimm(addr,2,temp);
3192       else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
3193 #else
3194       if(!c) a=addr;
3195 #endif
3196 #ifdef PCSX
3197       if(sp_in_mirror&&rs1[i]==29) a=HOST_TEMPREG;
3198 #endif
3199       //#ifdef
3200       //emit_writehword_indexed_tlb(tl,x,temp,map,temp);
3201       //#else
3202       if(map>=0) {
3203         gen_tlb_addr_w(a,map);
3204         emit_writehword_indexed(tl,x,a);
3205       }else
3206         emit_writehword_indexed(tl,(int)rdram-0x80000000+x,a);
3207     }
3208     type=STOREH_STUB;
3209   }
3210   if (opcode[i]==0x2B) { // SW
3211     if(!c||memtarget) {
3212       int a=addr;
3213 #ifdef PCSX
3214       if(sp_in_mirror&&rs1[i]==29) a=HOST_TEMPREG;
3215 #endif
3216       //emit_writeword_indexed(tl,(int)rdram-0x80000000,addr);
3217       emit_writeword_indexed_tlb(tl,0,a,map,temp);
3218     }
3219     type=STOREW_STUB;
3220   }
3221   if (opcode[i]==0x3F) { // SD
3222     if(!c||memtarget) {
3223       int a=addr;
3224 #ifdef PCSX
3225       if(sp_in_mirror&&rs1[i]==29) a=HOST_TEMPREG;
3226 #endif
3227       if(rs2[i]) {
3228         assert(th>=0);
3229         //emit_writeword_indexed(th,(int)rdram-0x80000000,addr);
3230         //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,addr);
3231         emit_writedword_indexed_tlb(th,tl,0,a,map,temp);
3232       }else{
3233         // Store zero
3234         //emit_writeword_indexed(tl,(int)rdram-0x80000000,temp);
3235         //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,temp);
3236         emit_writedword_indexed_tlb(tl,tl,0,a,map,temp);
3237       }
3238     }
3239     type=STORED_STUB;
3240   }
3241   if(!using_tlb) {
3242     if(!c||memtarget) {
3243       #ifdef DESTRUCTIVE_SHIFT
3244       // The x86 shift operation is 'destructive'; it overwrites the
3245       // source register, so we need to make a copy first and use that.
3246       addr=temp;
3247       #endif
3248       #if defined(HOST_IMM8)
3249       int ir=get_reg(i_regs->regmap,INVCP);
3250       assert(ir>=0);
3251       emit_cmpmem_indexedsr12_reg(ir,addr,1);
3252       #else
3253       emit_cmpmem_indexedsr12_imm((int)invalid_code,addr,1);
3254       #endif
3255       #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3256       emit_callne(invalidate_addr_reg[addr]);
3257       #else
3258       jaddr2=(int)out;
3259       emit_jne(0);
3260       add_stub(INVCODE_STUB,jaddr2,(int)out,reglist|(1<<HOST_CCREG),addr,0,0,0);
3261       #endif
3262     }
3263   }
3264   if(jaddr) {
3265     add_stub(type,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3266   } else if(c&&!memtarget) {
3267     inline_writestub(type,i,constmap[i][s]+offset,i_regs->regmap,rs2[i],ccadj[i],reglist);
3268   }
3269   //if(opcode[i]==0x2B || opcode[i]==0x3F)
3270   //if(opcode[i]==0x2B || opcode[i]==0x28)
3271   //if(opcode[i]==0x2B || opcode[i]==0x29)
3272   //if(opcode[i]==0x2B)
3273   /*if(opcode[i]==0x2B || opcode[i]==0x28 || opcode[i]==0x29 || opcode[i]==0x3F)
3274   {
3275     //emit_pusha();
3276     save_regs(0x100f);
3277         emit_readword((int)&last_count,ECX);
3278         #ifdef __i386__
3279         if(get_reg(i_regs->regmap,CCREG)<0)
3280           emit_loadreg(CCREG,HOST_CCREG);
3281         emit_add(HOST_CCREG,ECX,HOST_CCREG);
3282         emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3283         emit_writeword(HOST_CCREG,(int)&Count);
3284         #endif
3285         #ifdef __arm__
3286         if(get_reg(i_regs->regmap,CCREG)<0)
3287           emit_loadreg(CCREG,0);
3288         else
3289           emit_mov(HOST_CCREG,0);
3290         emit_add(0,ECX,0);
3291         emit_addimm(0,2*ccadj[i],0);
3292         emit_writeword(0,(int)&Count);
3293         #endif
3294     emit_call((int)memdebug);
3295     //emit_popa();
3296     restore_regs(0x100f);
3297   }/**/
3298 }
3299
3300 void storelr_assemble(int i,struct regstat *i_regs)
3301 {
3302   int s,th,tl;
3303   int temp;
3304   int temp2;
3305   int offset;
3306   int jaddr=0,jaddr2;
3307   int case1,case2,case3;
3308   int done0,done1,done2;
3309   int memtarget=0,c=0;
3310   int agr=AGEN1+(i&1);
3311   u_int hr,reglist=0;
3312   th=get_reg(i_regs->regmap,rs2[i]|64);
3313   tl=get_reg(i_regs->regmap,rs2[i]);
3314   s=get_reg(i_regs->regmap,rs1[i]);
3315   temp=get_reg(i_regs->regmap,agr);
3316   if(temp<0) temp=get_reg(i_regs->regmap,-1);
3317   offset=imm[i];
3318   if(s>=0) {
3319     c=(i_regs->isconst>>s)&1;
3320     if(c) {
3321       memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
3322       if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
3323     }
3324   }
3325   assert(tl>=0);
3326   for(hr=0;hr<HOST_REGS;hr++) {
3327     if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3328   }
3329   assert(temp>=0);
3330   if(!using_tlb) {
3331     if(!c) {
3332       emit_cmpimm(s<0||offset?temp:s,RAM_SIZE);
3333       if(!offset&&s!=temp) emit_mov(s,temp);
3334       jaddr=(int)out;
3335       emit_jno(0);
3336     }
3337     else
3338     {
3339       if(!memtarget||!rs1[i]) {
3340         jaddr=(int)out;
3341         emit_jmp(0);
3342       }
3343     }
3344     #ifdef RAM_OFFSET
3345     int map=get_reg(i_regs->regmap,ROREG);
3346     if(map<0) emit_loadreg(ROREG,map=HOST_TEMPREG);
3347     gen_tlb_addr_w(temp,map);
3348     #else
3349     if((u_int)rdram!=0x80000000) 
3350       emit_addimm_no_flags((u_int)rdram-(u_int)0x80000000,temp);
3351     #endif
3352   }else{ // using tlb
3353     int map=get_reg(i_regs->regmap,TLREG);
3354     assert(map>=0);
3355     map=do_tlb_w(c||s<0||offset?temp:s,temp,map,0,c,constmap[i][s]+offset);
3356     if(!c&&!offset&&s>=0) emit_mov(s,temp);
3357     do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr);
3358     if(!jaddr&&!memtarget) {
3359       jaddr=(int)out;
3360       emit_jmp(0);
3361     }
3362     gen_tlb_addr_w(temp,map);
3363   }
3364
3365   if (opcode[i]==0x2C||opcode[i]==0x2D) { // SDL/SDR
3366     temp2=get_reg(i_regs->regmap,FTEMP);
3367     if(!rs2[i]) temp2=th=tl;
3368   }
3369
3370 #ifndef BIG_ENDIAN_MIPS
3371     emit_xorimm(temp,3,temp);
3372 #endif
3373   emit_testimm(temp,2);
3374   case2=(int)out;
3375   emit_jne(0);
3376   emit_testimm(temp,1);
3377   case1=(int)out;
3378   emit_jne(0);
3379   // 0
3380   if (opcode[i]==0x2A) { // SWL
3381     emit_writeword_indexed(tl,0,temp);
3382   }
3383   if (opcode[i]==0x2E) { // SWR
3384     emit_writebyte_indexed(tl,3,temp);
3385   }
3386   if (opcode[i]==0x2C) { // SDL
3387     emit_writeword_indexed(th,0,temp);
3388     if(rs2[i]) emit_mov(tl,temp2);
3389   }
3390   if (opcode[i]==0x2D) { // SDR
3391     emit_writebyte_indexed(tl,3,temp);
3392     if(rs2[i]) emit_shldimm(th,tl,24,temp2);
3393   }
3394   done0=(int)out;
3395   emit_jmp(0);
3396   // 1
3397   set_jump_target(case1,(int)out);
3398   if (opcode[i]==0x2A) { // SWL
3399     // Write 3 msb into three least significant bytes
3400     if(rs2[i]) emit_rorimm(tl,8,tl);
3401     emit_writehword_indexed(tl,-1,temp);
3402     if(rs2[i]) emit_rorimm(tl,16,tl);
3403     emit_writebyte_indexed(tl,1,temp);
3404     if(rs2[i]) emit_rorimm(tl,8,tl);
3405   }
3406   if (opcode[i]==0x2E) { // SWR
3407     // Write two lsb into two most significant bytes
3408     emit_writehword_indexed(tl,1,temp);
3409   }
3410   if (opcode[i]==0x2C) { // SDL
3411     if(rs2[i]) emit_shrdimm(tl,th,8,temp2);
3412     // Write 3 msb into three least significant bytes
3413     if(rs2[i]) emit_rorimm(th,8,th);
3414     emit_writehword_indexed(th,-1,temp);
3415     if(rs2[i]) emit_rorimm(th,16,th);
3416     emit_writebyte_indexed(th,1,temp);
3417     if(rs2[i]) emit_rorimm(th,8,th);
3418   }
3419   if (opcode[i]==0x2D) { // SDR
3420     if(rs2[i]) emit_shldimm(th,tl,16,temp2);
3421     // Write two lsb into two most significant bytes
3422     emit_writehword_indexed(tl,1,temp);
3423   }
3424   done1=(int)out;
3425   emit_jmp(0);
3426   // 2
3427   set_jump_target(case2,(int)out);
3428   emit_testimm(temp,1);
3429   case3=(int)out;
3430   emit_jne(0);
3431   if (opcode[i]==0x2A) { // SWL
3432     // Write two msb into two least significant bytes
3433     if(rs2[i]) emit_rorimm(tl,16,tl);
3434     emit_writehword_indexed(tl,-2,temp);
3435     if(rs2[i]) emit_rorimm(tl,16,tl);
3436   }
3437   if (opcode[i]==0x2E) { // SWR
3438     // Write 3 lsb into three most significant bytes
3439     emit_writebyte_indexed(tl,-1,temp);
3440     if(rs2[i]) emit_rorimm(tl,8,tl);
3441     emit_writehword_indexed(tl,0,temp);
3442     if(rs2[i]) emit_rorimm(tl,24,tl);
3443   }
3444   if (opcode[i]==0x2C) { // SDL
3445     if(rs2[i]) emit_shrdimm(tl,th,16,temp2);
3446     // Write two msb into two least significant bytes
3447     if(rs2[i]) emit_rorimm(th,16,th);
3448     emit_writehword_indexed(th,-2,temp);
3449     if(rs2[i]) emit_rorimm(th,16,th);
3450   }
3451   if (opcode[i]==0x2D) { // SDR
3452     if(rs2[i]) emit_shldimm(th,tl,8,temp2);
3453     // Write 3 lsb into three most significant bytes
3454     emit_writebyte_indexed(tl,-1,temp);
3455     if(rs2[i]) emit_rorimm(tl,8,tl);
3456     emit_writehword_indexed(tl,0,temp);
3457     if(rs2[i]) emit_rorimm(tl,24,tl);
3458   }
3459   done2=(int)out;
3460   emit_jmp(0);
3461   // 3
3462   set_jump_target(case3,(int)out);
3463   if (opcode[i]==0x2A) { // SWL
3464     // Write msb into least significant byte
3465     if(rs2[i]) emit_rorimm(tl,24,tl);
3466     emit_writebyte_indexed(tl,-3,temp);
3467     if(rs2[i]) emit_rorimm(tl,8,tl);
3468   }
3469   if (opcode[i]==0x2E) { // SWR
3470     // Write entire word
3471     emit_writeword_indexed(tl,-3,temp);
3472   }
3473   if (opcode[i]==0x2C) { // SDL
3474     if(rs2[i]) emit_shrdimm(tl,th,24,temp2);
3475     // Write msb into least significant byte
3476     if(rs2[i]) emit_rorimm(th,24,th);
3477     emit_writebyte_indexed(th,-3,temp);
3478     if(rs2[i]) emit_rorimm(th,8,th);
3479   }
3480   if (opcode[i]==0x2D) { // SDR
3481     if(rs2[i]) emit_mov(th,temp2);
3482     // Write entire word
3483     emit_writeword_indexed(tl,-3,temp);
3484   }
3485   set_jump_target(done0,(int)out);
3486   set_jump_target(done1,(int)out);
3487   set_jump_target(done2,(int)out);
3488   if (opcode[i]==0x2C) { // SDL
3489     emit_testimm(temp,4);
3490     done0=(int)out;
3491     emit_jne(0);
3492     emit_andimm(temp,~3,temp);
3493     emit_writeword_indexed(temp2,4,temp);
3494     set_jump_target(done0,(int)out);
3495   }
3496   if (opcode[i]==0x2D) { // SDR
3497     emit_testimm(temp,4);
3498     done0=(int)out;
3499     emit_jeq(0);
3500     emit_andimm(temp,~3,temp);
3501     emit_writeword_indexed(temp2,-4,temp);
3502     set_jump_target(done0,(int)out);
3503   }
3504   if(!c||!memtarget)
3505     add_stub(STORELR_STUB,jaddr,(int)out,i,(int)i_regs,temp,ccadj[i],reglist);
3506   if(!using_tlb) {
3507     #ifdef RAM_OFFSET
3508     int map=get_reg(i_regs->regmap,ROREG);
3509     if(map<0) map=HOST_TEMPREG;
3510     gen_orig_addr_w(temp,map);
3511     #else
3512     emit_addimm_no_flags((u_int)0x80000000-(u_int)rdram,temp);
3513     #endif
3514     #if defined(HOST_IMM8)
3515     int ir=get_reg(i_regs->regmap,INVCP);
3516     assert(ir>=0);
3517     emit_cmpmem_indexedsr12_reg(ir,temp,1);
3518     #else
3519     emit_cmpmem_indexedsr12_imm((int)invalid_code,temp,1);
3520     #endif
3521     #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3522     emit_callne(invalidate_addr_reg[temp]);
3523     #else
3524     jaddr2=(int)out;
3525     emit_jne(0);
3526     add_stub(INVCODE_STUB,jaddr2,(int)out,reglist|(1<<HOST_CCREG),temp,0,0,0);
3527     #endif
3528   }
3529   /*
3530     emit_pusha();
3531     //save_regs(0x100f);
3532         emit_readword((int)&last_count,ECX);
3533         if(get_reg(i_regs->regmap,CCREG)<0)
3534           emit_loadreg(CCREG,HOST_CCREG);
3535         emit_add(HOST_CCREG,ECX,HOST_CCREG);
3536         emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3537         emit_writeword(HOST_CCREG,(int)&Count);
3538     emit_call((int)memdebug);
3539     emit_popa();
3540     //restore_regs(0x100f);
3541   /**/
3542 }
3543
3544 void c1ls_assemble(int i,struct regstat *i_regs)
3545 {
3546 #ifndef DISABLE_COP1
3547   int s,th,tl;
3548   int temp,ar;
3549   int map=-1;
3550   int offset;
3551   int c=0;
3552   int jaddr,jaddr2=0,jaddr3,type;
3553   int agr=AGEN1+(i&1);
3554   u_int hr,reglist=0;
3555   th=get_reg(i_regs->regmap,FTEMP|64);
3556   tl=get_reg(i_regs->regmap,FTEMP);
3557   s=get_reg(i_regs->regmap,rs1[i]);
3558   temp=get_reg(i_regs->regmap,agr);
3559   if(temp<0) temp=get_reg(i_regs->regmap,-1);
3560   offset=imm[i];
3561   assert(tl>=0);
3562   assert(rs1[i]>0);
3563   assert(temp>=0);
3564   for(hr=0;hr<HOST_REGS;hr++) {
3565     if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3566   }
3567   if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
3568   if (opcode[i]==0x31||opcode[i]==0x35) // LWC1/LDC1
3569   {
3570     // Loads use a temporary register which we need to save
3571     reglist|=1<<temp;
3572   }
3573   if (opcode[i]==0x39||opcode[i]==0x3D) // SWC1/SDC1
3574     ar=temp;
3575   else // LWC1/LDC1
3576     ar=tl;
3577   //if(s<0) emit_loadreg(rs1[i],ar); //address_generation does this now
3578   //else c=(i_regs->wasconst>>s)&1;
3579   if(s>=0) c=(i_regs->wasconst>>s)&1;
3580   // Check cop1 unusable
3581   if(!cop1_usable) {
3582     signed char rs=get_reg(i_regs->regmap,CSREG);
3583     assert(rs>=0);
3584     emit_testimm(rs,0x20000000);
3585     jaddr=(int)out;
3586     emit_jeq(0);
3587     add_stub(FP_STUB,jaddr,(int)out,i,rs,(int)i_regs,is_delayslot,0);
3588     cop1_usable=1;
3589   }
3590   if (opcode[i]==0x39) { // SWC1 (get float address)
3591     emit_readword((int)&reg_cop1_simple[(source[i]>>16)&0x1f],tl);
3592   }
3593   if (opcode[i]==0x3D) { // SDC1 (get double address)
3594     emit_readword((int)&reg_cop1_double[(source[i]>>16)&0x1f],tl);
3595   }
3596   // Generate address + offset
3597   if(!using_tlb) {
3598     if(!c)
3599       emit_cmpimm(offset||c||s<0?ar:s,RAM_SIZE);
3600   }
3601   else
3602   {
3603     map=get_reg(i_regs->regmap,TLREG);
3604     assert(map>=0);
3605     if (opcode[i]==0x31||opcode[i]==0x35) { // LWC1/LDC1
3606       map=do_tlb_r(offset||c||s<0?ar:s,ar,map,0,-1,-1,c,constmap[i][s]+offset);
3607     }
3608     if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3609       map=do_tlb_w(offset||c||s<0?ar:s,ar,map,0,c,constmap[i][s]+offset);
3610     }
3611   }
3612   if (opcode[i]==0x39) { // SWC1 (read float)
3613     emit_readword_indexed(0,tl,tl);
3614   }
3615   if (opcode[i]==0x3D) { // SDC1 (read double)
3616     emit_readword_indexed(4,tl,th);
3617     emit_readword_indexed(0,tl,tl);
3618   }
3619   if (opcode[i]==0x31) { // LWC1 (get target address)
3620     emit_readword((int)&reg_cop1_simple[(source[i]>>16)&0x1f],temp);
3621   }
3622   if (opcode[i]==0x35) { // LDC1 (get target address)
3623     emit_readword((int)&reg_cop1_double[(source[i]>>16)&0x1f],temp);
3624   }
3625   if(!using_tlb) {
3626     if(!c) {
3627       jaddr2=(int)out;
3628       emit_jno(0);
3629     }
3630     else if(((signed int)(constmap[i][s]+offset))>=(signed int)0x80000000+RAM_SIZE) {
3631       jaddr2=(int)out;
3632       emit_jmp(0); // inline_readstub/inline_writestub?  Very rare case
3633     }
3634     #ifdef DESTRUCTIVE_SHIFT
3635     if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3636       if(!offset&&!c&&s>=0) emit_mov(s,ar);
3637     }
3638     #endif
3639   }else{
3640     if (opcode[i]==0x31||opcode[i]==0x35) { // LWC1/LDC1
3641       do_tlb_r_branch(map,c,constmap[i][s]+offset,&jaddr2);
3642     }
3643     if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3644       do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr2);
3645     }
3646   }
3647   if (opcode[i]==0x31) { // LWC1
3648     //if(s>=0&&!c&&!offset) emit_mov(s,tl);
3649     //gen_tlb_addr_r(ar,map);
3650     //emit_readword_indexed((int)rdram-0x80000000,tl,tl);
3651     #ifdef HOST_IMM_ADDR32
3652     if(c) emit_readword_tlb(constmap[i][s]+offset,map,tl);
3653     else
3654     #endif
3655     emit_readword_indexed_tlb(0,offset||c||s<0?tl:s,map,tl);
3656     type=LOADW_STUB;
3657   }
3658   if (opcode[i]==0x35) { // LDC1
3659     assert(th>=0);
3660     //if(s>=0&&!c&&!offset) emit_mov(s,tl);
3661     //gen_tlb_addr_r(ar,map);
3662     //emit_readword_indexed((int)rdram-0x80000000,tl,th);
3663     //emit_readword_indexed((int)rdram-0x7FFFFFFC,tl,tl);
3664     #ifdef HOST_IMM_ADDR32
3665     if(c) emit_readdword_tlb(constmap[i][s]+offset,map,th,tl);
3666     else
3667     #endif
3668     emit_readdword_indexed_tlb(0,offset||c||s<0?tl:s,map,th,tl);
3669     type=LOADD_STUB;
3670   }
3671   if (opcode[i]==0x39) { // SWC1
3672     //emit_writeword_indexed(tl,(int)rdram-0x80000000,temp);
3673     emit_writeword_indexed_tlb(tl,0,offset||c||s<0?temp:s,map,temp);
3674     type=STOREW_STUB;
3675   }
3676   if (opcode[i]==0x3D) { // SDC1
3677     assert(th>=0);
3678     //emit_writeword_indexed(th,(int)rdram-0x80000000,temp);
3679     //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,temp);
3680     emit_writedword_indexed_tlb(th,tl,0,offset||c||s<0?temp:s,map,temp);
3681     type=STORED_STUB;
3682   }
3683   if(!using_tlb) {
3684     if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3685       #ifndef DESTRUCTIVE_SHIFT
3686       temp=offset||c||s<0?ar:s;
3687       #endif
3688       #if defined(HOST_IMM8)
3689       int ir=get_reg(i_regs->regmap,INVCP);
3690       assert(ir>=0);
3691       emit_cmpmem_indexedsr12_reg(ir,temp,1);
3692       #else
3693       emit_cmpmem_indexedsr12_imm((int)invalid_code,temp,1);
3694       #endif
3695       #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3696       emit_callne(invalidate_addr_reg[temp]);
3697       #else
3698       jaddr3=(int)out;
3699       emit_jne(0);
3700       add_stub(INVCODE_STUB,jaddr3,(int)out,reglist|(1<<HOST_CCREG),temp,0,0,0);
3701       #endif
3702     }
3703   }
3704   if(jaddr2) add_stub(type,jaddr2,(int)out,i,offset||c||s<0?ar:s,(int)i_regs,ccadj[i],reglist);
3705   if (opcode[i]==0x31) { // LWC1 (write float)
3706     emit_writeword_indexed(tl,0,temp);
3707   }
3708   if (opcode[i]==0x35) { // LDC1 (write double)
3709     emit_writeword_indexed(th,4,temp);
3710     emit_writeword_indexed(tl,0,temp);
3711   }
3712   //if(opcode[i]==0x39)
3713   /*if(opcode[i]==0x39||opcode[i]==0x31)
3714   {
3715     emit_pusha();
3716         emit_readword((int)&last_count,ECX);
3717         if(get_reg(i_regs->regmap,CCREG)<0)
3718           emit_loadreg(CCREG,HOST_CCREG);
3719         emit_add(HOST_CCREG,ECX,HOST_CCREG);
3720         emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3721         emit_writeword(HOST_CCREG,(int)&Count);
3722     emit_call((int)memdebug);
3723     emit_popa();
3724   }/**/
3725 #else
3726   cop1_unusable(i, i_regs);
3727 #endif
3728 }
3729
3730 void c2ls_assemble(int i,struct regstat *i_regs)
3731 {
3732   int s,tl;
3733   int ar;
3734   int offset;
3735   int memtarget=0,c=0;
3736   int jaddr2=0,jaddr3,type;
3737   int agr=AGEN1+(i&1);
3738   u_int hr,reglist=0;
3739   u_int copr=(source[i]>>16)&0x1f;
3740   s=get_reg(i_regs->regmap,rs1[i]);
3741   tl=get_reg(i_regs->regmap,FTEMP);
3742   offset=imm[i];
3743   assert(rs1[i]>0);
3744   assert(tl>=0);
3745   assert(!using_tlb);
3746
3747   for(hr=0;hr<HOST_REGS;hr++) {
3748     if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3749   }
3750   if(i_regs->regmap[HOST_CCREG]==CCREG)
3751     reglist&=~(1<<HOST_CCREG);
3752
3753   // get the address
3754   if (opcode[i]==0x3a) { // SWC2
3755     ar=get_reg(i_regs->regmap,agr);
3756     if(ar<0) ar=get_reg(i_regs->regmap,-1);
3757     reglist|=1<<ar;
3758   } else { // LWC2
3759     ar=tl;
3760   }
3761   if(s>=0) c=(i_regs->wasconst>>s)&1;
3762   memtarget=c&&(((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE);
3763   if (!offset&&!c&&s>=0) ar=s;
3764   assert(ar>=0);
3765
3766   if (opcode[i]==0x3a) { // SWC2
3767     cop2_get_dreg(copr,tl,HOST_TEMPREG);
3768     type=STOREW_STUB;
3769   }
3770   else
3771     type=LOADW_STUB;
3772
3773   if(c&&!memtarget) {
3774     jaddr2=(int)out;
3775     emit_jmp(0); // inline_readstub/inline_writestub?
3776   }
3777   else {
3778     if(!c) {
3779       emit_cmpimm(offset||c||s<0?ar:s,RAM_SIZE);
3780       jaddr2=(int)out;
3781       emit_jno(0);
3782     }
3783     if (opcode[i]==0x32) { // LWC2
3784       #ifdef HOST_IMM_ADDR32
3785       if(c) emit_readword_tlb(constmap[i][s]+offset,-1,tl);
3786       else
3787       #endif
3788       emit_readword_indexed(0,ar,tl);
3789     }
3790     if (opcode[i]==0x3a) { // SWC2
3791       #ifdef DESTRUCTIVE_SHIFT
3792       if(!offset&&!c&&s>=0) emit_mov(s,ar);
3793       #endif
3794       emit_writeword_indexed(tl,0,ar);
3795     }
3796   }
3797   if(jaddr2)
3798     add_stub(type,jaddr2,(int)out,i,ar,(int)i_regs,ccadj[i],reglist);
3799   if (opcode[i]==0x3a) { // SWC2
3800 #if defined(HOST_IMM8)
3801     int ir=get_reg(i_regs->regmap,INVCP);
3802     assert(ir>=0);
3803     emit_cmpmem_indexedsr12_reg(ir,ar,1);
3804 #else
3805     emit_cmpmem_indexedsr12_imm((int)invalid_code,ar,1);
3806 #endif
3807     #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3808     emit_callne(invalidate_addr_reg[ar]);
3809     #else
3810     jaddr3=(int)out;
3811     emit_jne(0);
3812     add_stub(INVCODE_STUB,jaddr3,(int)out,reglist|(1<<HOST_CCREG),ar,0,0,0);
3813     #endif
3814   }
3815   if (opcode[i]==0x32) { // LWC2
3816     cop2_put_dreg(copr,tl,HOST_TEMPREG);
3817   }
3818 }
3819
3820 #ifndef multdiv_assemble
3821 void multdiv_assemble(int i,struct regstat *i_regs)
3822 {
3823   printf("Need multdiv_assemble for this architecture.\n");
3824   exit(1);
3825 }
3826 #endif
3827
3828 void mov_assemble(int i,struct regstat *i_regs)
3829 {
3830   //if(opcode2[i]==0x10||opcode2[i]==0x12) { // MFHI/MFLO
3831   //if(opcode2[i]==0x11||opcode2[i]==0x13) { // MTHI/MTLO
3832   if(rt1[i]) {
3833     signed char sh,sl,th,tl;
3834     th=get_reg(i_regs->regmap,rt1[i]|64);
3835     tl=get_reg(i_regs->regmap,rt1[i]);
3836     //assert(tl>=0);
3837     if(tl>=0) {
3838       sh=get_reg(i_regs->regmap,rs1[i]|64);
3839       sl=get_reg(i_regs->regmap,rs1[i]);
3840       if(sl>=0) emit_mov(sl,tl);
3841       else emit_loadreg(rs1[i],tl);
3842       if(th>=0) {
3843         if(sh>=0) emit_mov(sh,th);
3844         else emit_loadreg(rs1[i]|64,th);
3845       }
3846     }
3847   }
3848 }
3849
3850 #ifndef fconv_assemble
3851 void fconv_assemble(int i,struct regstat *i_regs)
3852 {
3853   printf("Need fconv_assemble for this architecture.\n");
3854   exit(1);
3855 }
3856 #endif
3857
3858 #if 0
3859 void float_assemble(int i,struct regstat *i_regs)
3860 {
3861   printf("Need float_assemble for this architecture.\n");
3862   exit(1);
3863 }
3864 #endif
3865
3866 void syscall_assemble(int i,struct regstat *i_regs)
3867 {
3868   signed char ccreg=get_reg(i_regs->regmap,CCREG);
3869   assert(ccreg==HOST_CCREG);
3870   assert(!is_delayslot);
3871   emit_movimm(start+i*4,EAX); // Get PC
3872   emit_addimm(HOST_CCREG,CLOCK_DIVIDER*ccadj[i],HOST_CCREG); // CHECK: is this right?  There should probably be an extra cycle...
3873   emit_jmp((int)jump_syscall_hle); // XXX
3874 }
3875
3876 void hlecall_assemble(int i,struct regstat *i_regs)
3877 {
3878   signed char ccreg=get_reg(i_regs->regmap,CCREG);
3879   assert(ccreg==HOST_CCREG);
3880   assert(!is_delayslot);
3881   emit_movimm(start+i*4+4,0); // Get PC
3882   emit_movimm((int)psxHLEt[source[i]&7],1);
3883   emit_addimm(HOST_CCREG,CLOCK_DIVIDER*ccadj[i],HOST_CCREG); // XXX
3884   emit_jmp((int)jump_hlecall);
3885 }
3886
3887 void intcall_assemble(int i,struct regstat *i_regs)
3888 {
3889   signed char ccreg=get_reg(i_regs->regmap,CCREG);
3890   assert(ccreg==HOST_CCREG);
3891   assert(!is_delayslot);
3892   emit_movimm(start+i*4,0); // Get PC
3893   emit_addimm(HOST_CCREG,CLOCK_DIVIDER*ccadj[i],HOST_CCREG);
3894   emit_jmp((int)jump_intcall);
3895 }
3896
3897 void ds_assemble(int i,struct regstat *i_regs)
3898 {
3899   is_delayslot=1;
3900   switch(itype[i]) {
3901     case ALU:
3902       alu_assemble(i,i_regs);break;
3903     case IMM16:
3904       imm16_assemble(i,i_regs);break;
3905     case SHIFT:
3906       shift_assemble(i,i_regs);break;
3907     case SHIFTIMM:
3908       shiftimm_assemble(i,i_regs);break;
3909     case LOAD:
3910       load_assemble(i,i_regs);break;
3911     case LOADLR:
3912       loadlr_assemble(i,i_regs);break;
3913     case STORE:
3914       store_assemble(i,i_regs);break;
3915     case STORELR:
3916       storelr_assemble(i,i_regs);break;
3917     case COP0:
3918       cop0_assemble(i,i_regs);break;
3919     case COP1:
3920       cop1_assemble(i,i_regs);break;
3921     case C1LS:
3922       c1ls_assemble(i,i_regs);break;
3923     case COP2:
3924       cop2_assemble(i,i_regs);break;
3925     case C2LS:
3926       c2ls_assemble(i,i_regs);break;
3927     case C2OP:
3928       c2op_assemble(i,i_regs);break;
3929     case FCONV:
3930       fconv_assemble(i,i_regs);break;
3931     case FLOAT:
3932       float_assemble(i,i_regs);break;
3933     case FCOMP:
3934       fcomp_assemble(i,i_regs);break;
3935     case MULTDIV:
3936       multdiv_assemble(i,i_regs);break;
3937     case MOV:
3938       mov_assemble(i,i_regs);break;
3939     case SYSCALL:
3940     case HLECALL:
3941     case INTCALL:
3942     case SPAN:
3943     case UJUMP:
3944     case RJUMP:
3945     case CJUMP:
3946     case SJUMP:
3947     case FJUMP:
3948       printf("Jump in the delay slot.  This is probably a bug.\n");
3949   }
3950   is_delayslot=0;
3951 }
3952
3953 // Is the branch target a valid internal jump?
3954 int internal_branch(uint64_t i_is32,int addr)
3955 {
3956   if(addr&1) return 0; // Indirect (register) jump
3957   if(addr>=start && addr<start+slen*4-4)
3958   {
3959     int t=(addr-start)>>2;
3960     // Delay slots are not valid branch targets
3961     //if(t>0&&(itype[t-1]==RJUMP||itype[t-1]==UJUMP||itype[t-1]==CJUMP||itype[t-1]==SJUMP||itype[t-1]==FJUMP)) return 0;
3962     // 64 -> 32 bit transition requires a recompile
3963     /*if(is32[t]&~unneeded_reg_upper[t]&~i_is32)
3964     {
3965       if(requires_32bit[t]&~i_is32) printf("optimizable: no\n");
3966       else printf("optimizable: yes\n");
3967     }*/
3968     //if(is32[t]&~unneeded_reg_upper[t]&~i_is32) return 0;
3969 #ifndef FORCE32
3970     if(requires_32bit[t]&~i_is32) return 0;
3971     else
3972 #endif
3973       return 1;
3974   }
3975   return 0;
3976 }
3977
3978 #ifndef wb_invalidate
3979 void wb_invalidate(signed char pre[],signed char entry[],uint64_t dirty,uint64_t is32,
3980   uint64_t u,uint64_t uu)
3981 {
3982   int hr;
3983   for(hr=0;hr<HOST_REGS;hr++) {
3984     if(hr!=EXCLUDE_REG) {
3985       if(pre[hr]!=entry[hr]) {
3986         if(pre[hr]>=0) {
3987           if((dirty>>hr)&1) {
3988             if(get_reg(entry,pre[hr])<0) {
3989               if(pre[hr]<64) {
3990                 if(!((u>>pre[hr])&1)) {
3991                   emit_storereg(pre[hr],hr);
3992                   if( ((is32>>pre[hr])&1) && !((uu>>pre[hr])&1) ) {
3993                     emit_sarimm(hr,31,hr);
3994                     emit_storereg(pre[hr]|64,hr);
3995                   }
3996                 }
3997               }else{
3998                 if(!((uu>>(pre[hr]&63))&1) && !((is32>>(pre[hr]&63))&1)) {
3999                   emit_storereg(pre[hr],hr);
4000                 }
4001               }
4002             }
4003           }
4004         }
4005       }
4006     }
4007   }
4008   // Move from one register to another (no writeback)
4009   for(hr=0;hr<HOST_REGS;hr++) {
4010     if(hr!=EXCLUDE_REG) {
4011       if(pre[hr]!=entry[hr]) {
4012         if(pre[hr]>=0&&(pre[hr]&63)<TEMPREG) {
4013           int nr;
4014           if((nr=get_reg(entry,pre[hr]))>=0) {
4015             emit_mov(hr,nr);
4016           }
4017         }
4018       }
4019     }
4020   }
4021 }
4022 #endif
4023
4024 // Load the specified registers
4025 // This only loads the registers given as arguments because
4026 // we don't want to load things that will be overwritten
4027 void load_regs(signed char entry[],signed char regmap[],int is32,int rs1,int rs2)
4028 {
4029   int hr;
4030   // Load 32-bit regs
4031   for(hr=0;hr<HOST_REGS;hr++) {
4032     if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4033       if(entry[hr]!=regmap[hr]) {
4034         if(regmap[hr]==rs1||regmap[hr]==rs2)
4035         {
4036           if(regmap[hr]==0) {
4037             emit_zeroreg(hr);
4038           }
4039           else
4040           {
4041             emit_loadreg(regmap[hr],hr);
4042           }
4043         }
4044       }
4045     }
4046   }
4047   //Load 64-bit regs
4048   for(hr=0;hr<HOST_REGS;hr++) {
4049     if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4050       if(entry[hr]!=regmap[hr]) {
4051         if(regmap[hr]-64==rs1||regmap[hr]-64==rs2)
4052         {
4053           assert(regmap[hr]!=64);
4054           if((is32>>(regmap[hr]&63))&1) {
4055             int lr=get_reg(regmap,regmap[hr]-64);
4056             if(lr>=0)
4057               emit_sarimm(lr,31,hr);
4058             else
4059               emit_loadreg(regmap[hr],hr);
4060           }
4061           else
4062           {
4063             emit_loadreg(regmap[hr],hr);
4064           }
4065         }
4066       }
4067     }
4068   }
4069 }
4070
4071 // Load registers prior to the start of a loop
4072 // so that they are not loaded within the loop
4073 static void loop_preload(signed char pre[],signed char entry[])
4074 {
4075   int hr;
4076   for(hr=0;hr<HOST_REGS;hr++) {
4077     if(hr!=EXCLUDE_REG) {
4078       if(pre[hr]!=entry[hr]) {
4079         if(entry[hr]>=0) {
4080           if(get_reg(pre,entry[hr])<0) {
4081             assem_debug("loop preload:\n");
4082             //printf("loop preload: %d\n",hr);
4083             if(entry[hr]==0) {
4084               emit_zeroreg(hr);
4085             }
4086             else if(entry[hr]<TEMPREG)
4087             {
4088               emit_loadreg(entry[hr],hr);
4089             }
4090             else if(entry[hr]-64<TEMPREG)
4091             {
4092               emit_loadreg(entry[hr],hr);
4093             }
4094           }
4095         }
4096       }
4097     }
4098   }
4099 }
4100
4101 // Generate address for load/store instruction
4102 // goes to AGEN for writes, FTEMP for LOADLR and cop1/2 loads
4103 void address_generation(int i,struct regstat *i_regs,signed char entry[])
4104 {
4105   if(itype[i]==LOAD||itype[i]==LOADLR||itype[i]==STORE||itype[i]==STORELR||itype[i]==C1LS||itype[i]==C2LS) {
4106     int ra=-1;
4107     int agr=AGEN1+(i&1);
4108     int mgr=MGEN1+(i&1);
4109     if(itype[i]==LOAD) {
4110       ra=get_reg(i_regs->regmap,rt1[i]);
4111       if(ra<0) ra=get_reg(i_regs->regmap,-1); 
4112       assert(ra>=0);
4113     }
4114     if(itype[i]==LOADLR) {
4115       ra=get_reg(i_regs->regmap,FTEMP);
4116     }
4117     if(itype[i]==STORE||itype[i]==STORELR) {
4118       ra=get_reg(i_regs->regmap,agr);
4119       if(ra<0) ra=get_reg(i_regs->regmap,-1);
4120     }
4121     if(itype[i]==C1LS||itype[i]==C2LS) {
4122       if ((opcode[i]&0x3b)==0x31||(opcode[i]&0x3b)==0x32) // LWC1/LDC1/LWC2/LDC2
4123         ra=get_reg(i_regs->regmap,FTEMP);
4124       else { // SWC1/SDC1/SWC2/SDC2
4125         ra=get_reg(i_regs->regmap,agr);
4126         if(ra<0) ra=get_reg(i_regs->regmap,-1);
4127       }
4128     }
4129     int rs=get_reg(i_regs->regmap,rs1[i]);
4130     int rm=get_reg(i_regs->regmap,TLREG);
4131     if(ra>=0) {
4132       int offset=imm[i];
4133       int c=(i_regs->wasconst>>rs)&1;
4134       if(rs1[i]==0) {
4135         // Using r0 as a base address
4136         /*if(rm>=0) {
4137           if(!entry||entry[rm]!=mgr) {
4138             generate_map_const(offset,rm);
4139           } // else did it in the previous cycle
4140         }*/
4141         if(!entry||entry[ra]!=agr) {
4142           if (opcode[i]==0x22||opcode[i]==0x26) {
4143             emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
4144           }else if (opcode[i]==0x1a||opcode[i]==0x1b) {
4145             emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
4146           }else{
4147             emit_movimm(offset,ra);
4148           }
4149         } // else did it in the previous cycle
4150       }
4151       else if(rs<0) {
4152         if(!entry||entry[ra]!=rs1[i])
4153           emit_loadreg(rs1[i],ra);
4154         //if(!entry||entry[ra]!=rs1[i])
4155         //  printf("poor load scheduling!\n");
4156       }
4157       else if(c) {
4158         if(rm>=0) {
4159           if(!entry||entry[rm]!=mgr) {
4160             if(itype[i]==STORE||itype[i]==STORELR||(opcode[i]&0x3b)==0x39||(opcode[i]&0x3b)==0x3a) {
4161               // Stores to memory go thru the mapper to detect self-modifying
4162               // code, loads don't.
4163               if((unsigned int)(constmap[i][rs]+offset)>=0xC0000000 ||
4164                  (unsigned int)(constmap[i][rs]+offset)<0x80000000+RAM_SIZE )
4165                 generate_map_const(constmap[i][rs]+offset,rm);
4166             }else{
4167               if((signed int)(constmap[i][rs]+offset)>=(signed int)0xC0000000)
4168                 generate_map_const(constmap[i][rs]+offset,rm);
4169             }
4170           }
4171         }
4172         if(rs1[i]!=rt1[i]||itype[i]!=LOAD) {
4173           if(!entry||entry[ra]!=agr) {
4174             if (opcode[i]==0x22||opcode[i]==0x26) {
4175               emit_movimm((constmap[i][rs]+offset)&0xFFFFFFFC,ra); // LWL/LWR
4176             }else if (opcode[i]==0x1a||opcode[i]==0x1b) {
4177               emit_movimm((constmap[i][rs]+offset)&0xFFFFFFF8,ra); // LDL/LDR
4178             }else{
4179               #ifdef HOST_IMM_ADDR32
4180               if((itype[i]!=LOAD&&(opcode[i]&0x3b)!=0x31&&(opcode[i]&0x3b)!=0x32) || // LWC1/LDC1/LWC2/LDC2
4181                  (using_tlb&&((signed int)constmap[i][rs]+offset)>=(signed int)0xC0000000))
4182               #endif
4183               emit_movimm(constmap[i][rs]+offset,ra);
4184             }
4185           } // else did it in the previous cycle
4186         } // else load_consts already did it
4187       }
4188       if(offset&&!c&&rs1[i]) {
4189         if(rs>=0) {
4190           emit_addimm(rs,offset,ra);
4191         }else{
4192           emit_addimm(ra,offset,ra);
4193         }
4194       }
4195     }
4196   }
4197   // Preload constants for next instruction
4198   if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS||itype[i+1]==C2LS) {
4199     int agr,ra;
4200     #ifndef HOST_IMM_ADDR32
4201     // Mapper entry
4202     agr=MGEN1+((i+1)&1);
4203     ra=get_reg(i_regs->regmap,agr);
4204     if(ra>=0) {
4205       int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
4206       int offset=imm[i+1];
4207       int c=(regs[i+1].wasconst>>rs)&1;
4208       if(c) {
4209         if(itype[i+1]==STORE||itype[i+1]==STORELR
4210            ||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1, SWC2/SDC2
4211           // Stores to memory go thru the mapper to detect self-modifying
4212           // code, loads don't.
4213           if((unsigned int)(constmap[i+1][rs]+offset)>=0xC0000000 ||
4214              (unsigned int)(constmap[i+1][rs]+offset)<0x80000000+RAM_SIZE )
4215             generate_map_const(constmap[i+1][rs]+offset,ra);
4216         }else{
4217           if((signed int)(constmap[i+1][rs]+offset)>=(signed int)0xC0000000)
4218             generate_map_const(constmap[i+1][rs]+offset,ra);
4219         }
4220       }
4221       /*else if(rs1[i]==0) {
4222         generate_map_const(offset,ra);
4223       }*/
4224     }
4225     #endif
4226     // Actual address
4227     agr=AGEN1+((i+1)&1);
4228     ra=get_reg(i_regs->regmap,agr);
4229     if(ra>=0) {
4230       int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
4231       int offset=imm[i+1];
4232       int c=(regs[i+1].wasconst>>rs)&1;
4233       if(c&&(rs1[i+1]!=rt1[i+1]||itype[i+1]!=LOAD)) {
4234         if (opcode[i+1]==0x22||opcode[i+1]==0x26) {
4235           emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFFC,ra); // LWL/LWR
4236         }else if (opcode[i+1]==0x1a||opcode[i+1]==0x1b) {
4237           emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFF8,ra); // LDL/LDR
4238         }else{
4239           #ifdef HOST_IMM_ADDR32
4240           if((itype[i+1]!=LOAD&&(opcode[i+1]&0x3b)!=0x31&&(opcode[i+1]&0x3b)!=0x32) || // LWC1/LDC1/LWC2/LDC2
4241              (using_tlb&&((signed int)constmap[i+1][rs]+offset)>=(signed int)0xC0000000))
4242           #endif
4243           emit_movimm(constmap[i+1][rs]+offset,ra);
4244         }
4245       }
4246       else if(rs1[i+1]==0) {
4247         // Using r0 as a base address
4248         if (opcode[i+1]==0x22||opcode[i+1]==0x26) {
4249           emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
4250         }else if (opcode[i+1]==0x1a||opcode[i+1]==0x1b) {
4251           emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
4252         }else{
4253           emit_movimm(offset,ra);
4254         }
4255       }
4256     }
4257   }
4258 }
4259
4260 int get_final_value(int hr, int i, int *value)
4261 {
4262   int reg=regs[i].regmap[hr];
4263   while(i<slen-1) {
4264     if(regs[i+1].regmap[hr]!=reg) break;
4265     if(!((regs[i+1].isconst>>hr)&1)) break;
4266     if(bt[i+1]) break;
4267     i++;
4268   }
4269   if(i<slen-1) {
4270     if(itype[i]==UJUMP||itype[i]==RJUMP||itype[i]==CJUMP||itype[i]==SJUMP) {
4271       *value=constmap[i][hr];
4272       return 1;
4273     }
4274     if(!bt[i+1]) {
4275       if(itype[i+1]==UJUMP||itype[i+1]==RJUMP||itype[i+1]==CJUMP||itype[i+1]==SJUMP) {
4276         // Load in delay slot, out-of-order execution
4277         if(itype[i+2]==LOAD&&rs1[i+2]==reg&&rt1[i+2]==reg&&((regs[i+1].wasconst>>hr)&1))
4278         {
4279           #ifdef HOST_IMM_ADDR32
4280           if(!using_tlb||((signed int)constmap[i][hr]+imm[i+2])<(signed int)0xC0000000) return 0;
4281           #endif
4282           // Precompute load address
4283           *value=constmap[i][hr]+imm[i+2];
4284           return 1;
4285         }
4286       }
4287       if(itype[i+1]==LOAD&&rs1[i+1]==reg&&rt1[i+1]==reg)
4288       {
4289         #ifdef HOST_IMM_ADDR32
4290         if(!using_tlb||((signed int)constmap[i][hr]+imm[i+1])<(signed int)0xC0000000) return 0;
4291         #endif
4292         // Precompute load address
4293         *value=constmap[i][hr]+imm[i+1];
4294         //printf("c=%x imm=%x\n",(int)constmap[i][hr],imm[i+1]);
4295         return 1;
4296       }
4297     }
4298   }
4299   *value=constmap[i][hr];
4300   //printf("c=%x\n",(int)constmap[i][hr]);
4301   if(i==slen-1) return 1;
4302   if(reg<64) {
4303     return !((unneeded_reg[i+1]>>reg)&1);
4304   }else{
4305     return !((unneeded_reg_upper[i+1]>>reg)&1);
4306   }
4307 }
4308
4309 // Load registers with known constants
4310 void load_consts(signed char pre[],signed char regmap[],int is32,int i)
4311 {
4312   int hr;
4313   // Load 32-bit regs
4314   for(hr=0;hr<HOST_REGS;hr++) {
4315     if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4316       //if(entry[hr]!=regmap[hr]) {
4317       if(i==0||!((regs[i-1].isconst>>hr)&1)||pre[hr]!=regmap[hr]||bt[i]) {
4318         if(((regs[i].isconst>>hr)&1)&&regmap[hr]<64&&regmap[hr]>0) {
4319           int value;
4320           if(get_final_value(hr,i,&value)) {
4321             if(value==0) {
4322               emit_zeroreg(hr);
4323             }
4324             else {
4325               emit_movimm(value,hr);
4326             }
4327           }
4328         }
4329       }
4330     }
4331   }
4332   // Load 64-bit regs
4333   for(hr=0;hr<HOST_REGS;hr++) {
4334     if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4335       //if(entry[hr]!=regmap[hr]) {
4336       if(i==0||!((regs[i-1].isconst>>hr)&1)||pre[hr]!=regmap[hr]||bt[i]) {
4337         if(((regs[i].isconst>>hr)&1)&&regmap[hr]>64) {
4338           if((is32>>(regmap[hr]&63))&1) {
4339             int lr=get_reg(regmap,regmap[hr]-64);
4340             assert(lr>=0);
4341             emit_sarimm(lr,31,hr);
4342           }
4343           else
4344           {
4345             int value;
4346             if(get_final_value(hr,i,&value)) {
4347               if(value==0) {
4348                 emit_zeroreg(hr);
4349               }
4350               else {
4351                 emit_movimm(value,hr);
4352               }
4353             }
4354           }
4355         }
4356       }
4357     }
4358   }
4359 }
4360 void load_all_consts(signed char regmap[],int is32,u_int dirty,int i)
4361 {
4362   int hr;
4363   // Load 32-bit regs
4364   for(hr=0;hr<HOST_REGS;hr++) {
4365     if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((dirty>>hr)&1)) {
4366       if(((regs[i].isconst>>hr)&1)&&regmap[hr]<64&&regmap[hr]>0) {
4367         int value=constmap[i][hr];
4368         if(value==0) {
4369           emit_zeroreg(hr);
4370         }
4371         else {
4372           emit_movimm(value,hr);
4373         }
4374       }
4375     }
4376   }
4377   // Load 64-bit regs
4378   for(hr=0;hr<HOST_REGS;hr++) {
4379     if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((dirty>>hr)&1)) {
4380       if(((regs[i].isconst>>hr)&1)&&regmap[hr]>64) {
4381         if((is32>>(regmap[hr]&63))&1) {
4382           int lr=get_reg(regmap,regmap[hr]-64);
4383           assert(lr>=0);
4384           emit_sarimm(lr,31,hr);
4385         }
4386         else
4387         {
4388           int value=constmap[i][hr];
4389           if(value==0) {
4390             emit_zeroreg(hr);
4391           }
4392           else {
4393             emit_movimm(value,hr);
4394           }
4395         }
4396       }
4397     }
4398   }
4399 }
4400
4401 // Write out all dirty registers (except cycle count)
4402 void wb_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty)
4403 {
4404   int hr;
4405   for(hr=0;hr<HOST_REGS;hr++) {
4406     if(hr!=EXCLUDE_REG) {
4407       if(i_regmap[hr]>0) {
4408         if(i_regmap[hr]!=CCREG) {
4409           if((i_dirty>>hr)&1) {
4410             if(i_regmap[hr]<64) {
4411               emit_storereg(i_regmap[hr],hr);
4412 #ifndef FORCE32
4413               if( ((i_is32>>i_regmap[hr])&1) ) {
4414                 #ifdef DESTRUCTIVE_WRITEBACK
4415                 emit_sarimm(hr,31,hr);
4416                 emit_storereg(i_regmap[hr]|64,hr);
4417                 #else
4418                 emit_sarimm(hr,31,HOST_TEMPREG);
4419                 emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4420                 #endif
4421               }
4422 #endif
4423             }else{
4424               if( !((i_is32>>(i_regmap[hr]&63))&1) ) {
4425                 emit_storereg(i_regmap[hr],hr);
4426               }
4427             }
4428           }
4429         }
4430       }
4431     }
4432   }
4433 }
4434 // Write out dirty registers that we need to reload (pair with load_needed_regs)
4435 // This writes the registers not written by store_regs_bt
4436 void wb_needed_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4437 {
4438   int hr;
4439   int t=(addr-start)>>2;
4440   for(hr=0;hr<HOST_REGS;hr++) {
4441     if(hr!=EXCLUDE_REG) {
4442       if(i_regmap[hr]>0) {
4443         if(i_regmap[hr]!=CCREG) {
4444           if(i_regmap[hr]==regs[t].regmap_entry[hr] && ((regs[t].dirty>>hr)&1) && !(((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4445             if((i_dirty>>hr)&1) {
4446               if(i_regmap[hr]<64) {
4447                 emit_storereg(i_regmap[hr],hr);
4448 #ifndef FORCE32
4449                 if( ((i_is32>>i_regmap[hr])&1) ) {
4450                   #ifdef DESTRUCTIVE_WRITEBACK
4451                   emit_sarimm(hr,31,hr);
4452                   emit_storereg(i_regmap[hr]|64,hr);
4453                   #else
4454                   emit_sarimm(hr,31,HOST_TEMPREG);
4455                   emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4456                   #endif
4457                 }
4458 #endif
4459               }else{
4460                 if( !((i_is32>>(i_regmap[hr]&63))&1) ) {
4461                   emit_storereg(i_regmap[hr],hr);
4462                 }
4463               }
4464             }
4465           }
4466         }
4467       }
4468     }
4469   }
4470 }
4471
4472 // Load all registers (except cycle count)
4473 void load_all_regs(signed char i_regmap[])
4474 {
4475   int hr;
4476   for(hr=0;hr<HOST_REGS;hr++) {
4477     if(hr!=EXCLUDE_REG) {
4478       if(i_regmap[hr]==0) {
4479         emit_zeroreg(hr);
4480       }
4481       else
4482       if(i_regmap[hr]>0 && i_regmap[hr]!=CCREG)
4483       {
4484         emit_loadreg(i_regmap[hr],hr);
4485       }
4486     }
4487   }
4488 }
4489
4490 // Load all current registers also needed by next instruction
4491 void load_needed_regs(signed char i_regmap[],signed char next_regmap[])
4492 {
4493   int hr;
4494   for(hr=0;hr<HOST_REGS;hr++) {
4495     if(hr!=EXCLUDE_REG) {
4496       if(get_reg(next_regmap,i_regmap[hr])>=0) {
4497         if(i_regmap[hr]==0) {
4498           emit_zeroreg(hr);
4499         }
4500         else
4501         if(i_regmap[hr]>0 && i_regmap[hr]!=CCREG)
4502         {
4503           emit_loadreg(i_regmap[hr],hr);
4504         }
4505       }
4506     }
4507   }
4508 }
4509
4510 // Load all regs, storing cycle count if necessary
4511 void load_regs_entry(int t)
4512 {
4513   int hr;
4514   if(is_ds[t]) emit_addimm(HOST_CCREG,CLOCK_DIVIDER,HOST_CCREG);
4515   else if(ccadj[t]) emit_addimm(HOST_CCREG,-ccadj[t]*CLOCK_DIVIDER,HOST_CCREG);
4516   if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
4517     emit_storereg(CCREG,HOST_CCREG);
4518   }
4519   // Load 32-bit regs
4520   for(hr=0;hr<HOST_REGS;hr++) {
4521     if(regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<64) {
4522       if(regs[t].regmap_entry[hr]==0) {
4523         emit_zeroreg(hr);
4524       }
4525       else if(regs[t].regmap_entry[hr]!=CCREG)
4526       {
4527         emit_loadreg(regs[t].regmap_entry[hr],hr);
4528       }
4529     }
4530   }
4531   // Load 64-bit regs
4532   for(hr=0;hr<HOST_REGS;hr++) {
4533     if(regs[t].regmap_entry[hr]>=64) {
4534       assert(regs[t].regmap_entry[hr]!=64);
4535       if((regs[t].was32>>(regs[t].regmap_entry[hr]&63))&1) {
4536         int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4537         if(lr<0) {
4538           emit_loadreg(regs[t].regmap_entry[hr],hr);
4539         }
4540         else
4541         {
4542           emit_sarimm(lr,31,hr);
4543         }
4544       }
4545       else
4546       {
4547         emit_loadreg(regs[t].regmap_entry[hr],hr);
4548       }
4549     }
4550   }
4551 }
4552
4553 // Store dirty registers prior to branch
4554 void store_regs_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4555 {
4556   if(internal_branch(i_is32,addr))
4557   {
4558     int t=(addr-start)>>2;
4559     int hr;
4560     for(hr=0;hr<HOST_REGS;hr++) {
4561       if(hr!=EXCLUDE_REG) {
4562         if(i_regmap[hr]>0 && i_regmap[hr]!=CCREG) {
4563           if(i_regmap[hr]!=regs[t].regmap_entry[hr] || !((regs[t].dirty>>hr)&1) || (((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4564             if((i_dirty>>hr)&1) {
4565               if(i_regmap[hr]<64) {
4566                 if(!((unneeded_reg[t]>>i_regmap[hr])&1)) {
4567                   emit_storereg(i_regmap[hr],hr);
4568                   if( ((i_is32>>i_regmap[hr])&1) && !((unneeded_reg_upper[t]>>i_regmap[hr])&1) ) {
4569                     #ifdef DESTRUCTIVE_WRITEBACK
4570                     emit_sarimm(hr,31,hr);
4571                     emit_storereg(i_regmap[hr]|64,hr);
4572                     #else
4573                     emit_sarimm(hr,31,HOST_TEMPREG);
4574                     emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4575                     #endif
4576                   }
4577                 }
4578               }else{
4579                 if( !((i_is32>>(i_regmap[hr]&63))&1) && !((unneeded_reg_upper[t]>>(i_regmap[hr]&63))&1) ) {
4580                   emit_storereg(i_regmap[hr],hr);
4581                 }
4582               }
4583             }
4584           }
4585         }
4586       }
4587     }
4588   }
4589   else
4590   {
4591     // Branch out of this block, write out all dirty regs
4592     wb_dirtys(i_regmap,i_is32,i_dirty);
4593   }
4594 }
4595
4596 // Load all needed registers for branch target
4597 void load_regs_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4598 {
4599   //if(addr>=start && addr<(start+slen*4))
4600   if(internal_branch(i_is32,addr))
4601   {
4602     int t=(addr-start)>>2;
4603     int hr;
4604     // Store the cycle count before loading something else
4605     if(i_regmap[HOST_CCREG]!=CCREG) {
4606       assert(i_regmap[HOST_CCREG]==-1);
4607     }
4608     if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
4609       emit_storereg(CCREG,HOST_CCREG);
4610     }
4611     // Load 32-bit regs
4612     for(hr=0;hr<HOST_REGS;hr++) {
4613       if(hr!=EXCLUDE_REG&&regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<64) {
4614         #ifdef DESTRUCTIVE_WRITEBACK
4615         if(i_regmap[hr]!=regs[t].regmap_entry[hr] || ( !((regs[t].dirty>>hr)&1) && ((i_dirty>>hr)&1) && (((i_is32&~unneeded_reg_upper[t])>>i_regmap[hr])&1) ) || (((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4616         #else
4617         if(i_regmap[hr]!=regs[t].regmap_entry[hr] ) {
4618         #endif
4619           if(regs[t].regmap_entry[hr]==0) {
4620             emit_zeroreg(hr);
4621           }
4622           else if(regs[t].regmap_entry[hr]!=CCREG)
4623           {
4624             emit_loadreg(regs[t].regmap_entry[hr],hr);
4625           }
4626         }
4627       }
4628     }
4629     //Load 64-bit regs
4630     for(hr=0;hr<HOST_REGS;hr++) {
4631       if(hr!=EXCLUDE_REG&&regs[t].regmap_entry[hr]>=64) {
4632         if(i_regmap[hr]!=regs[t].regmap_entry[hr]) {
4633           assert(regs[t].regmap_entry[hr]!=64);
4634           if((i_is32>>(regs[t].regmap_entry[hr]&63))&1) {
4635             int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4636             if(lr<0) {
4637               emit_loadreg(regs[t].regmap_entry[hr],hr);
4638             }
4639             else
4640             {
4641               emit_sarimm(lr,31,hr);
4642             }
4643           }
4644           else
4645           {
4646             emit_loadreg(regs[t].regmap_entry[hr],hr);
4647           }
4648         }
4649         else if((i_is32>>(regs[t].regmap_entry[hr]&63))&1) {
4650           int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4651           assert(lr>=0);
4652           emit_sarimm(lr,31,hr);
4653         }
4654       }
4655     }
4656   }
4657 }
4658
4659 int match_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4660 {
4661   if(addr>=start && addr<start+slen*4-4)
4662   {
4663     int t=(addr-start)>>2;
4664     int hr;
4665     if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) return 0;
4666     for(hr=0;hr<HOST_REGS;hr++)
4667     {
4668       if(hr!=EXCLUDE_REG)
4669       {
4670         if(i_regmap[hr]!=regs[t].regmap_entry[hr])
4671         {
4672           if(regs[t].regmap_entry[hr]!=-1)
4673           {
4674             return 0;
4675           }
4676           else 
4677           if((i_dirty>>hr)&1)
4678           {
4679             if(i_regmap[hr]<64)
4680             {
4681               if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4682                 return 0;
4683             }
4684             else
4685             {
4686               if(!((unneeded_reg_upper[t]>>(i_regmap[hr]&63))&1))
4687                 return 0;
4688             }
4689           }
4690         }
4691         else // Same register but is it 32-bit or dirty?
4692         if(i_regmap[hr]>=0)
4693         {
4694           if(!((regs[t].dirty>>hr)&1))
4695           {
4696             if((i_dirty>>hr)&1)
4697             {
4698               if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4699               {
4700                 //printf("%x: dirty no match\n",addr);
4701                 return 0;
4702               }
4703             }
4704           }
4705           if((((regs[t].was32^i_is32)&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)
4706           {
4707             //printf("%x: is32 no match\n",addr);
4708             return 0;
4709           }
4710         }
4711       }
4712     }
4713     //if(is32[t]&~unneeded_reg_upper[t]&~i_is32) return 0;
4714 #ifndef FORCE32
4715     if(requires_32bit[t]&~i_is32) return 0;
4716 #endif
4717     // Delay slots are not valid branch targets
4718     //if(t>0&&(itype[t-1]==RJUMP||itype[t-1]==UJUMP||itype[t-1]==CJUMP||itype[t-1]==SJUMP||itype[t-1]==FJUMP)) return 0;
4719     // Delay slots require additional processing, so do not match
4720     if(is_ds[t]) return 0;
4721   }
4722   else
4723   {
4724     int hr;
4725     for(hr=0;hr<HOST_REGS;hr++)
4726     {
4727       if(hr!=EXCLUDE_REG)
4728       {
4729         if(i_regmap[hr]>=0)
4730         {
4731           if(hr!=HOST_CCREG||i_regmap[hr]!=CCREG)
4732           {
4733             if((i_dirty>>hr)&1)
4734             {
4735               return 0;
4736             }
4737           }
4738         }
4739       }
4740     }
4741   }
4742   return 1;
4743 }
4744
4745 // Used when a branch jumps into the delay slot of another branch
4746 void ds_assemble_entry(int i)
4747 {
4748   int t=(ba[i]-start)>>2;
4749   if(!instr_addr[t]) instr_addr[t]=(u_int)out;
4750   assem_debug("Assemble delay slot at %x\n",ba[i]);
4751   assem_debug("<->\n");
4752   if(regs[t].regmap_entry[HOST_CCREG]==CCREG&&regs[t].regmap[HOST_CCREG]!=CCREG)
4753     wb_register(CCREG,regs[t].regmap_entry,regs[t].wasdirty,regs[t].was32);
4754   load_regs(regs[t].regmap_entry,regs[t].regmap,regs[t].was32,rs1[t],rs2[t]);
4755   address_generation(t,&regs[t],regs[t].regmap_entry);
4756   if(itype[t]==STORE||itype[t]==STORELR||(opcode[t]&0x3b)==0x39||(opcode[t]&0x3b)==0x3a)
4757     load_regs(regs[t].regmap_entry,regs[t].regmap,regs[t].was32,INVCP,INVCP);
4758   cop1_usable=0;
4759   is_delayslot=0;
4760   switch(itype[t]) {
4761     case ALU:
4762       alu_assemble(t,&regs[t]);break;
4763     case IMM16:
4764       imm16_assemble(t,&regs[t]);break;
4765     case SHIFT:
4766       shift_assemble(t,&regs[t]);break;
4767     case SHIFTIMM:
4768       shiftimm_assemble(t,&regs[t]);break;
4769     case LOAD:
4770       load_assemble(t,&regs[t]);break;
4771     case LOADLR:
4772       loadlr_assemble(t,&regs[t]);break;
4773     case STORE:
4774       store_assemble(t,&regs[t]);break;
4775     case STORELR:
4776       storelr_assemble(t,&regs[t]);break;
4777     case COP0:
4778       cop0_assemble(t,&regs[t]);break;
4779     case COP1:
4780       cop1_assemble(t,&regs[t]);break;
4781     case C1LS:
4782       c1ls_assemble(t,&regs[t]);break;
4783     case COP2:
4784       cop2_assemble(t,&regs[t]);break;
4785     case C2LS:
4786       c2ls_assemble(t,&regs[t]);break;
4787     case C2OP:
4788       c2op_assemble(t,&regs[t]);break;
4789     case FCONV:
4790       fconv_assemble(t,&regs[t]);break;
4791     case FLOAT:
4792       float_assemble(t,&regs[t]);break;
4793     case FCOMP:
4794       fcomp_assemble(t,&regs[t]);break;
4795     case MULTDIV:
4796       multdiv_assemble(t,&regs[t]);break;
4797     case MOV:
4798       mov_assemble(t,&regs[t]);break;
4799     case SYSCALL:
4800     case HLECALL:
4801     case INTCALL:
4802     case SPAN:
4803     case UJUMP:
4804     case RJUMP:
4805     case CJUMP:
4806     case SJUMP:
4807     case FJUMP:
4808       printf("Jump in the delay slot.  This is probably a bug.\n");
4809   }
4810   store_regs_bt(regs[t].regmap,regs[t].is32,regs[t].dirty,ba[i]+4);
4811   load_regs_bt(regs[t].regmap,regs[t].is32,regs[t].dirty,ba[i]+4);
4812   if(internal_branch(regs[t].is32,ba[i]+4))
4813     assem_debug("branch: internal\n");
4814   else
4815     assem_debug("branch: external\n");
4816   assert(internal_branch(regs[t].is32,ba[i]+4));
4817   add_to_linker((int)out,ba[i]+4,internal_branch(regs[t].is32,ba[i]+4));
4818   emit_jmp(0);
4819 }
4820
4821 void do_cc(int i,signed char i_regmap[],int *adj,int addr,int taken,int invert)
4822 {
4823   int count;
4824   int jaddr;
4825   int idle=0;
4826   if(itype[i]==RJUMP)
4827   {
4828     *adj=0;
4829   }
4830   //if(ba[i]>=start && ba[i]<(start+slen*4))
4831   if(internal_branch(branch_regs[i].is32,ba[i]))
4832   {
4833     int t=(ba[i]-start)>>2;
4834     if(is_ds[t]) *adj=-1; // Branch into delay slot adds an extra cycle
4835     else *adj=ccadj[t];
4836   }
4837   else
4838   {
4839     *adj=0;
4840   }
4841   count=ccadj[i];
4842   if(taken==TAKEN && i==(ba[i]-start)>>2 && source[i+1]==0) {
4843     // Idle loop
4844     if(count&1) emit_addimm_and_set_flags(2*(count+2),HOST_CCREG);
4845     idle=(int)out;
4846     //emit_subfrommem(&idlecount,HOST_CCREG); // Count idle cycles
4847     emit_andimm(HOST_CCREG,3,HOST_CCREG);
4848     jaddr=(int)out;
4849     emit_jmp(0);
4850   }
4851   else if(*adj==0||invert) {
4852     emit_addimm_and_set_flags(CLOCK_DIVIDER*(count+2),HOST_CCREG);
4853     jaddr=(int)out;
4854     emit_jns(0);
4855   }
4856   else
4857   {
4858     emit_cmpimm(HOST_CCREG,-CLOCK_DIVIDER*(count+2));
4859     jaddr=(int)out;
4860     emit_jns(0);
4861   }
4862   add_stub(CC_STUB,jaddr,idle?idle:(int)out,(*adj==0||invert||idle)?0:(count+2),i,addr,taken,0);
4863 }
4864
4865 void do_ccstub(int n)
4866 {
4867   literal_pool(256);
4868   assem_debug("do_ccstub %x\n",start+stubs[n][4]*4);
4869   set_jump_target(stubs[n][1],(int)out);
4870   int i=stubs[n][4];
4871   if(stubs[n][6]==NULLDS) {
4872     // Delay slot instruction is nullified ("likely" branch)
4873     wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
4874   }
4875   else if(stubs[n][6]!=TAKEN) {
4876     wb_dirtys(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty);
4877   }
4878   else {
4879     if(internal_branch(branch_regs[i].is32,ba[i]))
4880       wb_needed_dirtys(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
4881   }
4882   if(stubs[n][5]!=-1)
4883   {
4884     // Save PC as return address
4885     emit_movimm(stubs[n][5],EAX);
4886     emit_writeword(EAX,(int)&pcaddr);
4887   }
4888   else
4889   {
4890     // Return address depends on which way the branch goes
4891     if(itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
4892     {
4893       int s1l=get_reg(branch_regs[i].regmap,rs1[i]);
4894       int s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
4895       int s2l=get_reg(branch_regs[i].regmap,rs2[i]);
4896       int s2h=get_reg(branch_regs[i].regmap,rs2[i]|64);
4897       if(rs1[i]==0)
4898       {
4899         s1l=s2l;s1h=s2h;
4900         s2l=s2h=-1;
4901       }
4902       else if(rs2[i]==0)
4903       {
4904         s2l=s2h=-1;
4905       }
4906       if((branch_regs[i].is32>>rs1[i])&(branch_regs[i].is32>>rs2[i])&1) {
4907         s1h=s2h=-1;
4908       }
4909       assert(s1l>=0);
4910       #ifdef DESTRUCTIVE_WRITEBACK
4911       if(rs1[i]) {
4912         if((branch_regs[i].dirty>>s1l)&(branch_regs[i].is32>>rs1[i])&1)
4913           emit_loadreg(rs1[i],s1l);
4914       } 
4915       else {
4916         if((branch_regs[i].dirty>>s1l)&(branch_regs[i].is32>>rs2[i])&1)
4917           emit_loadreg(rs2[i],s1l);
4918       }
4919       if(s2l>=0)
4920         if((branch_regs[i].dirty>>s2l)&(branch_regs[i].is32>>rs2[i])&1)
4921           emit_loadreg(rs2[i],s2l);
4922       #endif
4923       int hr=0;
4924       int addr=-1,alt=-1,ntaddr=-1;
4925       while(hr<HOST_REGS)
4926       {
4927         if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4928            (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
4929            (branch_regs[i].regmap[hr]&63)!=rs2[i] )
4930         {
4931           addr=hr++;break;
4932         }
4933         hr++;
4934       }
4935       while(hr<HOST_REGS)
4936       {
4937         if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4938            (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
4939            (branch_regs[i].regmap[hr]&63)!=rs2[i] )
4940         {
4941           alt=hr++;break;
4942         }
4943         hr++;
4944       }
4945       if((opcode[i]&0x2E)==6) // BLEZ/BGTZ needs another register
4946       {
4947         while(hr<HOST_REGS)
4948         {
4949           if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4950              (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
4951              (branch_regs[i].regmap[hr]&63)!=rs2[i] )
4952           {
4953             ntaddr=hr;break;
4954           }
4955           hr++;
4956         }
4957         assert(hr<HOST_REGS);
4958       }
4959       if((opcode[i]&0x2f)==4) // BEQ
4960       {
4961         #ifdef HAVE_CMOV_IMM
4962         if(s1h<0) {
4963           if(s2l>=0) emit_cmp(s1l,s2l);
4964           else emit_test(s1l,s1l);
4965           emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
4966         }
4967         else
4968         #endif
4969         {
4970           emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
4971           if(s1h>=0) {
4972             if(s2h>=0) emit_cmp(s1h,s2h);
4973             else emit_test(s1h,s1h);
4974             emit_cmovne_reg(alt,addr);
4975           }
4976           if(s2l>=0) emit_cmp(s1l,s2l);
4977           else emit_test(s1l,s1l);
4978           emit_cmovne_reg(alt,addr);
4979         }
4980       }
4981       if((opcode[i]&0x2f)==5) // BNE
4982       {
4983         #ifdef HAVE_CMOV_IMM
4984         if(s1h<0) {
4985           if(s2l>=0) emit_cmp(s1l,s2l);
4986           else emit_test(s1l,s1l);
4987           emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
4988         }
4989         else
4990         #endif
4991         {
4992           emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
4993           if(s1h>=0) {
4994             if(s2h>=0) emit_cmp(s1h,s2h);
4995             else emit_test(s1h,s1h);
4996             emit_cmovne_reg(alt,addr);
4997           }
4998           if(s2l>=0) emit_cmp(s1l,s2l);
4999           else emit_test(s1l,s1l);
5000           emit_cmovne_reg(alt,addr);
5001         }
5002       }
5003       if((opcode[i]&0x2f)==6) // BLEZ
5004       {
5005         //emit_movimm(ba[i],alt);
5006         //emit_movimm(start+i*4+8,addr);
5007         emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
5008         emit_cmpimm(s1l,1);
5009         if(s1h>=0) emit_mov(addr,ntaddr);
5010         emit_cmovl_reg(alt,addr);
5011         if(s1h>=0) {
5012           emit_test(s1h,s1h);
5013           emit_cmovne_reg(ntaddr,addr);
5014           emit_cmovs_reg(alt,addr);
5015         }
5016       }
5017       if((opcode[i]&0x2f)==7) // BGTZ
5018       {
5019         //emit_movimm(ba[i],addr);
5020         //emit_movimm(start+i*4+8,ntaddr);
5021         emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
5022         emit_cmpimm(s1l,1);
5023         if(s1h>=0) emit_mov(addr,alt);
5024         emit_cmovl_reg(ntaddr,addr);
5025         if(s1h>=0) {
5026           emit_test(s1h,s1h);
5027           emit_cmovne_reg(alt,addr);
5028           emit_cmovs_reg(ntaddr,addr);
5029         }
5030       }
5031       if((opcode[i]==1)&&(opcode2[i]&0x2D)==0) // BLTZ
5032       {
5033         //emit_movimm(ba[i],alt);
5034         //emit_movimm(start+i*4+8,addr);
5035         emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
5036         if(s1h>=0) emit_test(s1h,s1h);
5037         else emit_test(s1l,s1l);
5038         emit_cmovs_reg(alt,addr);
5039       }
5040       if((opcode[i]==1)&&(opcode2[i]&0x2D)==1) // BGEZ
5041       {
5042         //emit_movimm(ba[i],addr);
5043         //emit_movimm(start+i*4+8,alt);
5044         emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
5045         if(s1h>=0) emit_test(s1h,s1h);
5046         else emit_test(s1l,s1l);
5047         emit_cmovs_reg(alt,addr);
5048       }
5049       if(opcode[i]==0x11 && opcode2[i]==0x08 ) {
5050         if(source[i]&0x10000) // BC1T
5051         {
5052           //emit_movimm(ba[i],alt);
5053           //emit_movimm(start+i*4+8,addr);
5054           emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
5055           emit_testimm(s1l,0x800000);
5056           emit_cmovne_reg(alt,addr);
5057         }
5058         else // BC1F
5059         {
5060           //emit_movimm(ba[i],addr);
5061           //emit_movimm(start+i*4+8,alt);
5062           emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
5063           emit_testimm(s1l,0x800000);
5064           emit_cmovne_reg(alt,addr);
5065         }
5066       }
5067       emit_writeword(addr,(int)&pcaddr);
5068     }
5069     else
5070     if(itype[i]==RJUMP)
5071     {
5072       int r=get_reg(branch_regs[i].regmap,rs1[i]);
5073       if(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]) {
5074         r=get_reg(branch_regs[i].regmap,RTEMP);
5075       }
5076       emit_writeword(r,(int)&pcaddr);
5077     }
5078     else {printf("Unknown branch type in do_ccstub\n");exit(1);}
5079   }
5080   // Update cycle count
5081   assert(branch_regs[i].regmap[HOST_CCREG]==CCREG||branch_regs[i].regmap[HOST_CCREG]==-1);
5082   if(stubs[n][3]) emit_addimm(HOST_CCREG,CLOCK_DIVIDER*stubs[n][3],HOST_CCREG);
5083   emit_call((int)cc_interrupt);
5084   if(stubs[n][3]) emit_addimm(HOST_CCREG,-CLOCK_DIVIDER*stubs[n][3],HOST_CCREG);
5085   if(stubs[n][6]==TAKEN) {
5086     if(internal_branch(branch_regs[i].is32,ba[i]))
5087       load_needed_regs(branch_regs[i].regmap,regs[(ba[i]-start)>>2].regmap_entry);
5088     else if(itype[i]==RJUMP) {
5089       if(get_reg(branch_regs[i].regmap,RTEMP)>=0)
5090         emit_readword((int)&pcaddr,get_reg(branch_regs[i].regmap,RTEMP));
5091       else
5092         emit_loadreg(rs1[i],get_reg(branch_regs[i].regmap,rs1[i]));
5093     }
5094   }else if(stubs[n][6]==NOTTAKEN) {
5095     if(i<slen-2) load_needed_regs(branch_regs[i].regmap,regmap_pre[i+2]);
5096     else load_all_regs(branch_regs[i].regmap);
5097   }else if(stubs[n][6]==NULLDS) {
5098     // Delay slot instruction is nullified ("likely" branch)
5099     if(i<slen-2) load_needed_regs(regs[i].regmap,regmap_pre[i+2]);
5100     else load_all_regs(regs[i].regmap);
5101   }else{
5102     load_all_regs(branch_regs[i].regmap);
5103   }
5104   emit_jmp(stubs[n][2]); // return address
5105   
5106   /* This works but uses a lot of memory...
5107   emit_readword((int)&last_count,ECX);
5108   emit_add(HOST_CCREG,ECX,EAX);
5109   emit_writeword(EAX,(int)&Count);
5110   emit_call((int)gen_interupt);
5111   emit_readword((int)&Count,HOST_CCREG);
5112   emit_readword((int)&next_interupt,EAX);
5113   emit_readword((int)&pending_exception,EBX);
5114   emit_writeword(EAX,(int)&last_count);
5115   emit_sub(HOST_CCREG,EAX,HOST_CCREG);
5116   emit_test(EBX,EBX);
5117   int jne_instr=(int)out;
5118   emit_jne(0);
5119   if(stubs[n][3]) emit_addimm(HOST_CCREG,-2*stubs[n][3],HOST_CCREG);
5120   load_all_regs(branch_regs[i].regmap);
5121   emit_jmp(stubs[n][2]); // return address
5122   set_jump_target(jne_instr,(int)out);
5123   emit_readword((int)&pcaddr,EAX);
5124   // Call get_addr_ht instead of doing the hash table here.
5125   // This code is executed infrequently and takes up a lot of space
5126   // so smaller is better.
5127   emit_storereg(CCREG,HOST_CCREG);
5128   emit_pushreg(EAX);
5129   emit_call((int)get_addr_ht);
5130   emit_loadreg(CCREG,HOST_CCREG);
5131   emit_addimm(ESP,4,ESP);
5132   emit_jmpreg(EAX);*/
5133 }
5134
5135 add_to_linker(int addr,int target,int ext)
5136 {
5137   link_addr[linkcount][0]=addr;
5138   link_addr[linkcount][1]=target;
5139   link_addr[linkcount][2]=ext;  
5140   linkcount++;
5141 }
5142
5143 void ujump_assemble(int i,struct regstat *i_regs)
5144 {
5145   signed char *i_regmap=i_regs->regmap;
5146   if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5147   address_generation(i+1,i_regs,regs[i].regmap_entry);
5148   #ifdef REG_PREFETCH
5149   int temp=get_reg(branch_regs[i].regmap,PTEMP);
5150   if(rt1[i]==31&&temp>=0) 
5151   {
5152     int return_address=start+i*4+8;
5153     if(get_reg(branch_regs[i].regmap,31)>0) 
5154     if(i_regmap[temp]==PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5155   }
5156   #endif
5157   if(rt1[i]==31) {
5158     int rt;
5159     unsigned int return_address;
5160     rt=get_reg(branch_regs[i].regmap,31);
5161     assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5162     //assert(rt>=0);
5163     return_address=start+i*4+8;
5164     if(rt>=0) {
5165       #ifdef USE_MINI_HT
5166       if(internal_branch(branch_regs[i].is32,return_address)&&rt1[i+1]!=31) {
5167         int temp=-1; // note: must be ds-safe
5168         #ifdef HOST_TEMPREG
5169         temp=HOST_TEMPREG;
5170         #endif
5171         if(temp>=0) do_miniht_insert(return_address,rt,temp);
5172         else emit_movimm(return_address,rt);
5173       }
5174       else
5175       #endif
5176       {
5177         #ifdef REG_PREFETCH
5178         if(temp>=0) 
5179         {
5180           if(i_regmap[temp]!=PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5181         }
5182         #endif
5183         emit_movimm(return_address,rt); // PC into link register
5184         #ifdef IMM_PREFETCH
5185         emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5186         #endif
5187       }
5188     }
5189   }
5190   ds_assemble(i+1,i_regs);
5191   uint64_t bc_unneeded=branch_regs[i].u;
5192   uint64_t bc_unneeded_upper=branch_regs[i].uu;
5193   bc_unneeded|=1|(1LL<<rt1[i]);
5194   bc_unneeded_upper|=1|(1LL<<rt1[i]);
5195   wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5196                 bc_unneeded,bc_unneeded_upper);
5197   load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5198   int cc,adj;
5199   cc=get_reg(branch_regs[i].regmap,CCREG);
5200   assert(cc==HOST_CCREG);
5201   store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5202   #ifdef REG_PREFETCH
5203   if(rt1[i]==31&&temp>=0) emit_prefetchreg(temp);
5204   #endif
5205   do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5206   if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5207   load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5208   if(internal_branch(branch_regs[i].is32,ba[i]))
5209     assem_debug("branch: internal\n");
5210   else
5211     assem_debug("branch: external\n");
5212   if(internal_branch(branch_regs[i].is32,ba[i])&&is_ds[(ba[i]-start)>>2]) {
5213     ds_assemble_entry(i);
5214   }
5215   else {
5216     add_to_linker((int)out,ba[i],internal_branch(branch_regs[i].is32,ba[i]));
5217     emit_jmp(0);
5218   }
5219 }
5220
5221 void rjump_assemble(int i,struct regstat *i_regs)
5222 {
5223   signed char *i_regmap=i_regs->regmap;
5224   int temp;
5225   int rs,cc,adj;
5226   rs=get_reg(branch_regs[i].regmap,rs1[i]);
5227   assert(rs>=0);
5228   if(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]) {
5229     // Delay slot abuse, make a copy of the branch address register
5230     temp=get_reg(branch_regs[i].regmap,RTEMP);
5231     assert(temp>=0);
5232     assert(regs[i].regmap[temp]==RTEMP);
5233     emit_mov(rs,temp);
5234     rs=temp;
5235   }
5236   address_generation(i+1,i_regs,regs[i].regmap_entry);
5237   #ifdef REG_PREFETCH
5238   if(rt1[i]==31) 
5239   {
5240     if((temp=get_reg(branch_regs[i].regmap,PTEMP))>=0) {
5241       int return_address=start+i*4+8;
5242       if(i_regmap[temp]==PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5243     }
5244   }
5245   #endif
5246   #ifdef USE_MINI_HT
5247   if(rs1[i]==31) {
5248     int rh=get_reg(regs[i].regmap,RHASH);
5249     if(rh>=0) do_preload_rhash(rh);
5250   }
5251   #endif
5252   ds_assemble(i+1,i_regs);
5253   uint64_t bc_unneeded=branch_regs[i].u;
5254   uint64_t bc_unneeded_upper=branch_regs[i].uu;
5255   bc_unneeded|=1|(1LL<<rt1[i]);
5256   bc_unneeded_upper|=1|(1LL<<rt1[i]);
5257   bc_unneeded&=~(1LL<<rs1[i]);
5258   wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5259                 bc_unneeded,bc_unneeded_upper);
5260   load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],CCREG);
5261   if(rt1[i]!=0) {
5262     int rt,return_address;
5263     assert(rt1[i+1]!=rt1[i]);
5264     assert(rt2[i+1]!=rt1[i]);
5265     rt=get_reg(branch_regs[i].regmap,rt1[i]);
5266     assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5267     assert(rt>=0);
5268     return_address=start+i*4+8;
5269     #ifdef REG_PREFETCH
5270     if(temp>=0) 
5271     {
5272       if(i_regmap[temp]!=PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5273     }
5274     #endif
5275     emit_movimm(return_address,rt); // PC into link register
5276     #ifdef IMM_PREFETCH
5277     emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5278     #endif
5279   }
5280   cc=get_reg(branch_regs[i].regmap,CCREG);
5281   assert(cc==HOST_CCREG);
5282   #ifdef USE_MINI_HT
5283   int rh=get_reg(branch_regs[i].regmap,RHASH);
5284   int ht=get_reg(branch_regs[i].regmap,RHTBL);
5285   if(rs1[i]==31) {
5286     if(regs[i].regmap[rh]!=RHASH) do_preload_rhash(rh);
5287     do_preload_rhtbl(ht);
5288     do_rhash(rs,rh);
5289   }
5290   #endif
5291   store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,-1);
5292   #ifdef DESTRUCTIVE_WRITEBACK
5293   if((branch_regs[i].dirty>>rs)&(branch_regs[i].is32>>rs1[i])&1) {
5294     if(rs1[i]!=rt1[i+1]&&rs1[i]!=rt2[i+1]) {
5295       emit_loadreg(rs1[i],rs);
5296     }
5297   }
5298   #endif
5299   #ifdef REG_PREFETCH
5300   if(rt1[i]==31&&temp>=0) emit_prefetchreg(temp);
5301   #endif
5302   #ifdef USE_MINI_HT
5303   if(rs1[i]==31) {
5304     do_miniht_load(ht,rh);
5305   }
5306   #endif
5307   //do_cc(i,branch_regs[i].regmap,&adj,-1,TAKEN);
5308   //if(adj) emit_addimm(cc,2*(ccadj[i]+2-adj),cc); // ??? - Shouldn't happen
5309   //assert(adj==0);
5310   emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
5311   add_stub(CC_STUB,(int)out,jump_vaddr_reg[rs],0,i,-1,TAKEN,0);
5312   emit_jns(0);
5313   //load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,-1);
5314   #ifdef USE_MINI_HT
5315   if(rs1[i]==31) {
5316     do_miniht_jump(rs,rh,ht);
5317   }
5318   else
5319   #endif
5320   {
5321     //if(rs!=EAX) emit_mov(rs,EAX);
5322     //emit_jmp((int)jump_vaddr_eax);
5323     emit_jmp(jump_vaddr_reg[rs]);
5324   }
5325   /* Check hash table
5326   temp=!rs;
5327   emit_mov(rs,temp);
5328   emit_shrimm(rs,16,rs);
5329   emit_xor(temp,rs,rs);
5330   emit_movzwl_reg(rs,rs);
5331   emit_shlimm(rs,4,rs);
5332   emit_cmpmem_indexed((int)hash_table,rs,temp);
5333   emit_jne((int)out+14);
5334   emit_readword_indexed((int)hash_table+4,rs,rs);
5335   emit_jmpreg(rs);
5336   emit_cmpmem_indexed((int)hash_table+8,rs,temp);
5337   emit_addimm_no_flags(8,rs);
5338   emit_jeq((int)out-17);
5339   // No hit on hash table, call compiler
5340   emit_pushreg(temp);
5341 //DEBUG >
5342 #ifdef DEBUG_CYCLE_COUNT
5343   emit_readword((int)&last_count,ECX);
5344   emit_add(HOST_CCREG,ECX,HOST_CCREG);
5345   emit_readword((int)&next_interupt,ECX);
5346   emit_writeword(HOST_CCREG,(int)&Count);
5347   emit_sub(HOST_CCREG,ECX,HOST_CCREG);
5348   emit_writeword(ECX,(int)&last_count);
5349 #endif
5350 //DEBUG <
5351   emit_storereg(CCREG,HOST_CCREG);
5352   emit_call((int)get_addr);
5353   emit_loadreg(CCREG,HOST_CCREG);
5354   emit_addimm(ESP,4,ESP);
5355   emit_jmpreg(EAX);*/
5356   #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5357   if(rt1[i]!=31&&i<slen-2&&(((u_int)out)&7)) emit_mov(13,13);
5358   #endif
5359 }
5360
5361 void cjump_assemble(int i,struct regstat *i_regs)
5362 {
5363   signed char *i_regmap=i_regs->regmap;
5364   int cc;
5365   int match;
5366   match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5367   assem_debug("match=%d\n",match);
5368   int s1h,s1l,s2h,s2l;
5369   int prev_cop1_usable=cop1_usable;
5370   int unconditional=0,nop=0;
5371   int only32=0;
5372   int invert=0;
5373   int internal=internal_branch(branch_regs[i].is32,ba[i]);
5374   if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5375   if(!match) invert=1;
5376   #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5377   if(i>(ba[i]-start)>>2) invert=1;
5378   #endif
5379   
5380   if(ooo[i]) {
5381     s1l=get_reg(branch_regs[i].regmap,rs1[i]);
5382     s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
5383     s2l=get_reg(branch_regs[i].regmap,rs2[i]);
5384     s2h=get_reg(branch_regs[i].regmap,rs2[i]|64);
5385   }
5386   else {
5387     s1l=get_reg(i_regmap,rs1[i]);
5388     s1h=get_reg(i_regmap,rs1[i]|64);
5389     s2l=get_reg(i_regmap,rs2[i]);
5390     s2h=get_reg(i_regmap,rs2[i]|64);
5391   }
5392   if(rs1[i]==0&&rs2[i]==0)
5393   {
5394     if(opcode[i]&1) nop=1;
5395     else unconditional=1;
5396     //assert(opcode[i]!=5);
5397     //assert(opcode[i]!=7);
5398     //assert(opcode[i]!=0x15);
5399     //assert(opcode[i]!=0x17);
5400   }
5401   else if(rs1[i]==0)
5402   {
5403     s1l=s2l;s1h=s2h;
5404     s2l=s2h=-1;
5405     only32=(regs[i].was32>>rs2[i])&1;
5406   }
5407   else if(rs2[i]==0)
5408   {
5409     s2l=s2h=-1;
5410     only32=(regs[i].was32>>rs1[i])&1;
5411   }
5412   else {
5413     only32=(regs[i].was32>>rs1[i])&(regs[i].was32>>rs2[i])&1;
5414   }
5415
5416   if(ooo[i]) {
5417     // Out of order execution (delay slot first)
5418     //printf("OOOE\n");
5419     address_generation(i+1,i_regs,regs[i].regmap_entry);
5420     ds_assemble(i+1,i_regs);
5421     int adj;
5422     uint64_t bc_unneeded=branch_regs[i].u;
5423     uint64_t bc_unneeded_upper=branch_regs[i].uu;
5424     bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
5425     bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
5426     bc_unneeded|=1;
5427     bc_unneeded_upper|=1;
5428     wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5429                   bc_unneeded,bc_unneeded_upper);
5430     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs2[i]);
5431     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5432     cc=get_reg(branch_regs[i].regmap,CCREG);
5433     assert(cc==HOST_CCREG);
5434     if(unconditional) 
5435       store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5436     //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
5437     //assem_debug("cycle count (adj)\n");
5438     if(unconditional) {
5439       do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5440       if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
5441         if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5442         load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5443         if(internal)
5444           assem_debug("branch: internal\n");
5445         else
5446           assem_debug("branch: external\n");
5447         if(internal&&is_ds[(ba[i]-start)>>2]) {
5448           ds_assemble_entry(i);
5449         }
5450         else {
5451           add_to_linker((int)out,ba[i],internal);
5452           emit_jmp(0);
5453         }
5454         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5455         if(((u_int)out)&7) emit_addnop(0);
5456         #endif
5457       }
5458     }
5459     else if(nop) {
5460       emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
5461       int jaddr=(int)out;
5462       emit_jns(0);
5463       add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5464     }
5465     else {
5466       int taken=0,nottaken=0,nottaken1=0;
5467       do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
5468       if(adj&&!invert) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5469       if(!only32)
5470       {
5471         assert(s1h>=0);
5472         if(opcode[i]==4) // BEQ
5473         {
5474           if(s2h>=0) emit_cmp(s1h,s2h);
5475           else emit_test(s1h,s1h);
5476           nottaken1=(int)out;
5477           emit_jne(1);
5478         }
5479         if(opcode[i]==5) // BNE
5480         {
5481           if(s2h>=0) emit_cmp(s1h,s2h);
5482           else emit_test(s1h,s1h);
5483           if(invert) taken=(int)out;
5484           else add_to_linker((int)out,ba[i],internal);
5485           emit_jne(0);
5486         }
5487         if(opcode[i]==6) // BLEZ
5488         {
5489           emit_test(s1h,s1h);
5490           if(invert) taken=(int)out;
5491           else add_to_linker((int)out,ba[i],internal);
5492           emit_js(0);
5493           nottaken1=(int)out;
5494           emit_jne(1);
5495         }
5496         if(opcode[i]==7) // BGTZ
5497         {
5498           emit_test(s1h,s1h);
5499           nottaken1=(int)out;
5500           emit_js(1);
5501           if(invert) taken=(int)out;
5502           else add_to_linker((int)out,ba[i],internal);
5503           emit_jne(0);
5504         }
5505       } // if(!only32)
5506           
5507       //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5508       assert(s1l>=0);
5509       if(opcode[i]==4) // BEQ
5510       {
5511         if(s2l>=0) emit_cmp(s1l,s2l);
5512         else emit_test(s1l,s1l);
5513         if(invert){
5514           nottaken=(int)out;
5515           emit_jne(1);
5516         }else{
5517           add_to_linker((int)out,ba[i],internal);
5518           emit_jeq(0);
5519         }
5520       }
5521       if(opcode[i]==5) // BNE
5522       {
5523         if(s2l>=0) emit_cmp(s1l,s2l);
5524         else emit_test(s1l,s1l);
5525         if(invert){
5526           nottaken=(int)out;
5527           emit_jeq(1);
5528         }else{
5529           add_to_linker((int)out,ba[i],internal);
5530           emit_jne(0);
5531         }
5532       }
5533       if(opcode[i]==6) // BLEZ
5534       {
5535         emit_cmpimm(s1l,1);
5536         if(invert){
5537           nottaken=(int)out;
5538           emit_jge(1);
5539         }else{
5540           add_to_linker((int)out,ba[i],internal);
5541           emit_jl(0);
5542         }
5543       }
5544       if(opcode[i]==7) // BGTZ
5545       {
5546         emit_cmpimm(s1l,1);
5547         if(invert){
5548           nottaken=(int)out;
5549           emit_jl(1);
5550         }else{
5551           add_to_linker((int)out,ba[i],internal);
5552           emit_jge(0);
5553         }
5554       }
5555       if(invert) {
5556         if(taken) set_jump_target(taken,(int)out);
5557         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5558         if(match&&(!internal||!is_ds[(ba[i]-start)>>2])) {
5559           if(adj) {
5560             emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5561             add_to_linker((int)out,ba[i],internal);
5562           }else{
5563             emit_addnop(13);
5564             add_to_linker((int)out,ba[i],internal*2);
5565           }
5566           emit_jmp(0);
5567         }else
5568         #endif
5569         {
5570           if(adj) emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5571           store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5572           load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5573           if(internal)
5574             assem_debug("branch: internal\n");
5575           else
5576             assem_debug("branch: external\n");
5577           if(internal&&is_ds[(ba[i]-start)>>2]) {
5578             ds_assemble_entry(i);
5579           }
5580           else {
5581             add_to_linker((int)out,ba[i],internal);
5582             emit_jmp(0);
5583           }
5584         }
5585         set_jump_target(nottaken,(int)out);
5586       }
5587
5588       if(nottaken1) set_jump_target(nottaken1,(int)out);
5589       if(adj) {
5590         if(!invert) emit_addimm(cc,CLOCK_DIVIDER*adj,cc);
5591       }
5592     } // (!unconditional)
5593   } // if(ooo)
5594   else
5595   {
5596     // In-order execution (branch first)
5597     //if(likely[i]) printf("IOL\n");
5598     //else
5599     //printf("IOE\n");
5600     int taken=0,nottaken=0,nottaken1=0;
5601     if(!unconditional&&!nop) {
5602       if(!only32)
5603       {
5604         assert(s1h>=0);
5605         if((opcode[i]&0x2f)==4) // BEQ
5606         {
5607           if(s2h>=0) emit_cmp(s1h,s2h);
5608           else emit_test(s1h,s1h);
5609           nottaken1=(int)out;
5610           emit_jne(2);
5611         }
5612         if((opcode[i]&0x2f)==5) // BNE
5613         {
5614           if(s2h>=0) emit_cmp(s1h,s2h);
5615           else emit_test(s1h,s1h);
5616           taken=(int)out;
5617           emit_jne(1);
5618         }
5619         if((opcode[i]&0x2f)==6) // BLEZ
5620         {
5621           emit_test(s1h,s1h);
5622           taken=(int)out;
5623           emit_js(1);
5624           nottaken1=(int)out;
5625           emit_jne(2);
5626         }
5627         if((opcode[i]&0x2f)==7) // BGTZ
5628         {
5629           emit_test(s1h,s1h);
5630           nottaken1=(int)out;
5631           emit_js(2);
5632           taken=(int)out;
5633           emit_jne(1);
5634         }
5635       } // if(!only32)
5636           
5637       //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5638       assert(s1l>=0);
5639       if((opcode[i]&0x2f)==4) // BEQ
5640       {
5641         if(s2l>=0) emit_cmp(s1l,s2l);
5642         else emit_test(s1l,s1l);
5643         nottaken=(int)out;
5644         emit_jne(2);
5645       }
5646       if((opcode[i]&0x2f)==5) // BNE
5647       {
5648         if(s2l>=0) emit_cmp(s1l,s2l);
5649         else emit_test(s1l,s1l);
5650         nottaken=(int)out;
5651         emit_jeq(2);
5652       }
5653       if((opcode[i]&0x2f)==6) // BLEZ
5654       {
5655         emit_cmpimm(s1l,1);
5656         nottaken=(int)out;
5657         emit_jge(2);
5658       }
5659       if((opcode[i]&0x2f)==7) // BGTZ
5660       {
5661         emit_cmpimm(s1l,1);
5662         nottaken=(int)out;
5663         emit_jl(2);
5664       }
5665     } // if(!unconditional)
5666     int adj;
5667     uint64_t ds_unneeded=branch_regs[i].u;
5668     uint64_t ds_unneeded_upper=branch_regs[i].uu;
5669     ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
5670     ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
5671     if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
5672     ds_unneeded|=1;
5673     ds_unneeded_upper|=1;
5674     // branch taken
5675     if(!nop) {
5676       if(taken) set_jump_target(taken,(int)out);
5677       assem_debug("1:\n");
5678       wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5679                     ds_unneeded,ds_unneeded_upper);
5680       // load regs
5681       load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5682       address_generation(i+1,&branch_regs[i],0);
5683       load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
5684       ds_assemble(i+1,&branch_regs[i]);
5685       cc=get_reg(branch_regs[i].regmap,CCREG);
5686       if(cc==-1) {
5687         emit_loadreg(CCREG,cc=HOST_CCREG);
5688         // CHECK: Is the following instruction (fall thru) allocated ok?
5689       }
5690       assert(cc==HOST_CCREG);
5691       store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5692       do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
5693       assem_debug("cycle count (adj)\n");
5694       if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5695       load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5696       if(internal)
5697         assem_debug("branch: internal\n");
5698       else
5699         assem_debug("branch: external\n");
5700       if(internal&&is_ds[(ba[i]-start)>>2]) {
5701         ds_assemble_entry(i);
5702       }
5703       else {
5704         add_to_linker((int)out,ba[i],internal);
5705         emit_jmp(0);
5706       }
5707     }
5708     // branch not taken
5709     cop1_usable=prev_cop1_usable;
5710     if(!unconditional) {
5711       if(nottaken1) set_jump_target(nottaken1,(int)out);
5712       set_jump_target(nottaken,(int)out);
5713       assem_debug("2:\n");
5714       if(!likely[i]) {
5715         wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5716                       ds_unneeded,ds_unneeded_upper);
5717         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5718         address_generation(i+1,&branch_regs[i],0);
5719         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5720         ds_assemble(i+1,&branch_regs[i]);
5721       }
5722       cc=get_reg(branch_regs[i].regmap,CCREG);
5723       if(cc==-1&&!likely[i]) {
5724         // Cycle count isn't in a register, temporarily load it then write it out
5725         emit_loadreg(CCREG,HOST_CCREG);
5726         emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
5727         int jaddr=(int)out;
5728         emit_jns(0);
5729         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5730         emit_storereg(CCREG,HOST_CCREG);
5731       }
5732       else{
5733         cc=get_reg(i_regmap,CCREG);
5734         assert(cc==HOST_CCREG);
5735         emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
5736         int jaddr=(int)out;
5737         emit_jns(0);
5738         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
5739       }
5740     }
5741   }
5742 }
5743
5744 void sjump_assemble(int i,struct regstat *i_regs)
5745 {
5746   signed char *i_regmap=i_regs->regmap;
5747   int cc;
5748   int match;
5749   match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5750   assem_debug("smatch=%d\n",match);
5751   int s1h,s1l;
5752   int prev_cop1_usable=cop1_usable;
5753   int unconditional=0,nevertaken=0;
5754   int only32=0;
5755   int invert=0;
5756   int internal=internal_branch(branch_regs[i].is32,ba[i]);
5757   if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5758   if(!match) invert=1;
5759   #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5760   if(i>(ba[i]-start)>>2) invert=1;
5761   #endif
5762
5763   //if(opcode2[i]>=0x10) return; // FIXME (BxxZAL)
5764   //assert(opcode2[i]<0x10||rs1[i]==0); // FIXME (BxxZAL)
5765
5766   if(ooo[i]) {
5767     s1l=get_reg(branch_regs[i].regmap,rs1[i]);
5768     s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
5769   }
5770   else {
5771     s1l=get_reg(i_regmap,rs1[i]);
5772     s1h=get_reg(i_regmap,rs1[i]|64);
5773   }
5774   if(rs1[i]==0)
5775   {
5776     if(opcode2[i]&1) unconditional=1;
5777     else nevertaken=1;
5778     // These are never taken (r0 is never less than zero)
5779     //assert(opcode2[i]!=0);
5780     //assert(opcode2[i]!=2);
5781     //assert(opcode2[i]!=0x10);
5782     //assert(opcode2[i]!=0x12);
5783   }
5784   else {
5785     only32=(regs[i].was32>>rs1[i])&1;
5786   }
5787
5788   if(ooo[i]) {
5789     // Out of order execution (delay slot first)
5790     //printf("OOOE\n");
5791     address_generation(i+1,i_regs,regs[i].regmap_entry);
5792     ds_assemble(i+1,i_regs);
5793     int adj;
5794     uint64_t bc_unneeded=branch_regs[i].u;
5795     uint64_t bc_unneeded_upper=branch_regs[i].uu;
5796     bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
5797     bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
5798     bc_unneeded|=1;
5799     bc_unneeded_upper|=1;
5800     wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5801                   bc_unneeded,bc_unneeded_upper);
5802     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs1[i]);
5803     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5804     if(rt1[i]==31) {
5805       int rt,return_address;
5806       rt=get_reg(branch_regs[i].regmap,31);
5807       assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5808       if(rt>=0) {
5809         // Save the PC even if the branch is not taken
5810         return_address=start+i*4+8;
5811         emit_movimm(return_address,rt); // PC into link register
5812         #ifdef IMM_PREFETCH
5813         if(!nevertaken) emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5814         #endif
5815       }
5816     }
5817     cc=get_reg(branch_regs[i].regmap,CCREG);
5818     assert(cc==HOST_CCREG);
5819     if(unconditional) 
5820       store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5821     //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
5822     assem_debug("cycle count (adj)\n");
5823     if(unconditional) {
5824       do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5825       if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
5826         if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5827         load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5828         if(internal)
5829           assem_debug("branch: internal\n");
5830         else
5831           assem_debug("branch: external\n");
5832         if(internal&&is_ds[(ba[i]-start)>>2]) {
5833           ds_assemble_entry(i);
5834         }
5835         else {
5836           add_to_linker((int)out,ba[i],internal);
5837           emit_jmp(0);
5838         }
5839         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5840         if(((u_int)out)&7) emit_addnop(0);
5841         #endif
5842       }
5843     }
5844     else if(nevertaken) {
5845       emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
5846       int jaddr=(int)out;
5847       emit_jns(0);
5848       add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5849     }
5850     else {
5851       int nottaken=0;
5852       do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
5853       if(adj&&!invert) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5854       if(!only32)
5855       {
5856         assert(s1h>=0);
5857         if((opcode2[i]&0xf)==0) // BLTZ/BLTZAL
5858         {
5859           emit_test(s1h,s1h);
5860           if(invert){
5861             nottaken=(int)out;
5862             emit_jns(1);
5863           }else{
5864             add_to_linker((int)out,ba[i],internal);
5865             emit_js(0);
5866           }
5867         }
5868         if((opcode2[i]&0xf)==1) // BGEZ/BLTZAL
5869         {
5870           emit_test(s1h,s1h);
5871           if(invert){
5872             nottaken=(int)out;
5873             emit_js(1);
5874           }else{
5875             add_to_linker((int)out,ba[i],internal);
5876             emit_jns(0);
5877           }
5878         }
5879       } // if(!only32)
5880       else
5881       {
5882         assert(s1l>=0);
5883         if((opcode2[i]&0xf)==0) // BLTZ/BLTZAL
5884         {
5885           emit_test(s1l,s1l);
5886           if(invert){
5887             nottaken=(int)out;
5888             emit_jns(1);
5889           }else{
5890             add_to_linker((int)out,ba[i],internal);
5891             emit_js(0);
5892           }
5893         }
5894         if((opcode2[i]&0xf)==1) // BGEZ/BLTZAL
5895         {
5896           emit_test(s1l,s1l);
5897           if(invert){
5898             nottaken=(int)out;
5899             emit_js(1);
5900           }else{
5901             add_to_linker((int)out,ba[i],internal);
5902             emit_jns(0);
5903           }
5904         }
5905       } // if(!only32)
5906           
5907       if(invert) {
5908         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5909         if(match&&(!internal||!is_ds[(ba[i]-start)>>2])) {
5910           if(adj) {
5911             emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5912             add_to_linker((int)out,ba[i],internal);
5913           }else{
5914             emit_addnop(13);
5915             add_to_linker((int)out,ba[i],internal*2);
5916           }
5917           emit_jmp(0);
5918         }else
5919         #endif
5920         {
5921           if(adj) emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5922           store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5923           load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5924           if(internal)
5925             assem_debug("branch: internal\n");
5926           else
5927             assem_debug("branch: external\n");
5928           if(internal&&is_ds[(ba[i]-start)>>2]) {
5929             ds_assemble_entry(i);
5930           }
5931           else {
5932             add_to_linker((int)out,ba[i],internal);
5933             emit_jmp(0);
5934           }
5935         }
5936         set_jump_target(nottaken,(int)out);
5937       }
5938
5939       if(adj) {
5940         if(!invert) emit_addimm(cc,CLOCK_DIVIDER*adj,cc);
5941       }
5942     } // (!unconditional)
5943   } // if(ooo)
5944   else
5945   {
5946     // In-order execution (branch first)
5947     //printf("IOE\n");
5948     int nottaken=0;
5949     if(rt1[i]==31) {
5950       int rt,return_address;
5951       rt=get_reg(branch_regs[i].regmap,31);
5952       if(rt>=0) {
5953         // Save the PC even if the branch is not taken
5954         return_address=start+i*4+8;
5955         emit_movimm(return_address,rt); // PC into link register
5956         #ifdef IMM_PREFETCH
5957         emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5958         #endif
5959       }
5960     }
5961     if(!unconditional) {
5962       //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5963       if(!only32)
5964       {
5965         assert(s1h>=0);
5966         if((opcode2[i]&0x0d)==0) // BLTZ/BLTZL/BLTZAL/BLTZALL
5967         {
5968           emit_test(s1h,s1h);
5969           nottaken=(int)out;
5970           emit_jns(1);
5971         }
5972         if((opcode2[i]&0x0d)==1) // BGEZ/BGEZL/BGEZAL/BGEZALL
5973         {
5974           emit_test(s1h,s1h);
5975           nottaken=(int)out;
5976           emit_js(1);
5977         }
5978       } // if(!only32)
5979       else
5980       {
5981         assert(s1l>=0);
5982         if((opcode2[i]&0x0d)==0) // BLTZ/BLTZL/BLTZAL/BLTZALL
5983         {
5984           emit_test(s1l,s1l);
5985           nottaken=(int)out;
5986           emit_jns(1);
5987         }
5988         if((opcode2[i]&0x0d)==1) // BGEZ/BGEZL/BGEZAL/BGEZALL
5989         {
5990           emit_test(s1l,s1l);
5991           nottaken=(int)out;
5992           emit_js(1);
5993         }
5994       }
5995     } // if(!unconditional)
5996     int adj;
5997     uint64_t ds_unneeded=branch_regs[i].u;
5998     uint64_t ds_unneeded_upper=branch_regs[i].uu;
5999     ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6000     ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6001     if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
6002     ds_unneeded|=1;
6003     ds_unneeded_upper|=1;
6004     // branch taken
6005     if(!nevertaken) {
6006       //assem_debug("1:\n");
6007       wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6008                     ds_unneeded,ds_unneeded_upper);
6009       // load regs
6010       load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
6011       address_generation(i+1,&branch_regs[i],0);
6012       load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
6013       ds_assemble(i+1,&branch_regs[i]);
6014       cc=get_reg(branch_regs[i].regmap,CCREG);
6015       if(cc==-1) {
6016         emit_loadreg(CCREG,cc=HOST_CCREG);
6017         // CHECK: Is the following instruction (fall thru) allocated ok?
6018       }
6019       assert(cc==HOST_CCREG);
6020       store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6021       do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
6022       assem_debug("cycle count (adj)\n");
6023       if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
6024       load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6025       if(internal)
6026         assem_debug("branch: internal\n");
6027       else
6028         assem_debug("branch: external\n");
6029       if(internal&&is_ds[(ba[i]-start)>>2]) {
6030         ds_assemble_entry(i);
6031       }
6032       else {
6033         add_to_linker((int)out,ba[i],internal);
6034         emit_jmp(0);
6035       }
6036     }
6037     // branch not taken
6038     cop1_usable=prev_cop1_usable;
6039     if(!unconditional) {
6040       set_jump_target(nottaken,(int)out);
6041       assem_debug("1:\n");
6042       if(!likely[i]) {
6043         wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6044                       ds_unneeded,ds_unneeded_upper);
6045         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
6046         address_generation(i+1,&branch_regs[i],0);
6047         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
6048         ds_assemble(i+1,&branch_regs[i]);
6049       }
6050       cc=get_reg(branch_regs[i].regmap,CCREG);
6051       if(cc==-1&&!likely[i]) {
6052         // Cycle count isn't in a register, temporarily load it then write it out
6053         emit_loadreg(CCREG,HOST_CCREG);
6054         emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
6055         int jaddr=(int)out;
6056         emit_jns(0);
6057         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
6058         emit_storereg(CCREG,HOST_CCREG);
6059       }
6060       else{
6061         cc=get_reg(i_regmap,CCREG);
6062         assert(cc==HOST_CCREG);
6063         emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
6064         int jaddr=(int)out;
6065         emit_jns(0);
6066         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
6067       }
6068     }
6069   }
6070 }
6071
6072 void fjump_assemble(int i,struct regstat *i_regs)
6073 {
6074   signed char *i_regmap=i_regs->regmap;
6075   int cc;
6076   int match;
6077   match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6078   assem_debug("fmatch=%d\n",match);
6079   int fs,cs;
6080   int eaddr;
6081   int invert=0;
6082   int internal=internal_branch(branch_regs[i].is32,ba[i]);
6083   if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
6084   if(!match) invert=1;
6085   #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
6086   if(i>(ba[i]-start)>>2) invert=1;
6087   #endif
6088
6089   if(ooo[i]) {
6090     fs=get_reg(branch_regs[i].regmap,FSREG);
6091     address_generation(i+1,i_regs,regs[i].regmap_entry); // Is this okay?
6092   }
6093   else {
6094     fs=get_reg(i_regmap,FSREG);
6095   }
6096
6097   // Check cop1 unusable
6098   if(!cop1_usable) {
6099     cs=get_reg(i_regmap,CSREG);
6100     assert(cs>=0);
6101     emit_testimm(cs,0x20000000);
6102     eaddr=(int)out;
6103     emit_jeq(0);
6104     add_stub(FP_STUB,eaddr,(int)out,i,cs,(int)i_regs,0,0);
6105     cop1_usable=1;
6106   }
6107
6108   if(ooo[i]) {
6109     // Out of order execution (delay slot first)
6110     //printf("OOOE\n");
6111     ds_assemble(i+1,i_regs);
6112     int adj;
6113     uint64_t bc_unneeded=branch_regs[i].u;
6114     uint64_t bc_unneeded_upper=branch_regs[i].uu;
6115     bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
6116     bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
6117     bc_unneeded|=1;
6118     bc_unneeded_upper|=1;
6119     wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6120                   bc_unneeded,bc_unneeded_upper);
6121     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs1[i]);
6122     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
6123     cc=get_reg(branch_regs[i].regmap,CCREG);
6124     assert(cc==HOST_CCREG);
6125     do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
6126     assem_debug("cycle count (adj)\n");
6127     if(1) {
6128       int nottaken=0;
6129       if(adj&&!invert) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
6130       if(1) {
6131         assert(fs>=0);
6132         emit_testimm(fs,0x800000);
6133         if(source[i]&0x10000) // BC1T
6134         {
6135           if(invert){
6136             nottaken=(int)out;
6137             emit_jeq(1);
6138           }else{
6139             add_to_linker((int)out,ba[i],internal);
6140             emit_jne(0);
6141           }
6142         }
6143         else // BC1F
6144           if(invert){
6145             nottaken=(int)out;
6146             emit_jne(1);
6147           }else{
6148             add_to_linker((int)out,ba[i],internal);
6149             emit_jeq(0);
6150           }
6151         {
6152         }
6153       } // if(!only32)
6154           
6155       if(invert) {
6156         if(adj) emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
6157         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
6158         else if(match) emit_addnop(13);
6159         #endif
6160         store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6161         load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6162         if(internal)
6163           assem_debug("branch: internal\n");
6164         else
6165           assem_debug("branch: external\n");
6166         if(internal&&is_ds[(ba[i]-start)>>2]) {
6167           ds_assemble_entry(i);
6168         }
6169         else {
6170           add_to_linker((int)out,ba[i],internal);
6171           emit_jmp(0);
6172         }
6173         set_jump_target(nottaken,(int)out);
6174       }
6175
6176       if(adj) {
6177         if(!invert) emit_addimm(cc,CLOCK_DIVIDER*adj,cc);
6178       }
6179     } // (!unconditional)
6180   } // if(ooo)
6181   else
6182   {
6183     // In-order execution (branch first)
6184     //printf("IOE\n");
6185     int nottaken=0;
6186     if(1) {
6187       //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
6188       if(1) {
6189         assert(fs>=0);
6190         emit_testimm(fs,0x800000);
6191         if(source[i]&0x10000) // BC1T
6192         {
6193           nottaken=(int)out;
6194           emit_jeq(1);
6195         }
6196         else // BC1F
6197         {
6198           nottaken=(int)out;
6199           emit_jne(1);
6200         }
6201       }
6202     } // if(!unconditional)
6203     int adj;
6204     uint64_t ds_unneeded=branch_regs[i].u;
6205     uint64_t ds_unneeded_upper=branch_regs[i].uu;
6206     ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6207     ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6208     if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
6209     ds_unneeded|=1;
6210     ds_unneeded_upper|=1;
6211     // branch taken
6212     //assem_debug("1:\n");
6213     wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6214                   ds_unneeded,ds_unneeded_upper);
6215     // load regs
6216     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
6217     address_generation(i+1,&branch_regs[i],0);
6218     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
6219     ds_assemble(i+1,&branch_regs[i]);
6220     cc=get_reg(branch_regs[i].regmap,CCREG);
6221     if(cc==-1) {
6222       emit_loadreg(CCREG,cc=HOST_CCREG);
6223       // CHECK: Is the following instruction (fall thru) allocated ok?
6224     }
6225     assert(cc==HOST_CCREG);
6226     store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6227     do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
6228     assem_debug("cycle count (adj)\n");
6229     if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
6230     load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6231     if(internal)
6232       assem_debug("branch: internal\n");
6233     else
6234       assem_debug("branch: external\n");
6235     if(internal&&is_ds[(ba[i]-start)>>2]) {
6236       ds_assemble_entry(i);
6237     }
6238     else {
6239       add_to_linker((int)out,ba[i],internal);
6240       emit_jmp(0);
6241     }
6242
6243     // branch not taken
6244     if(1) { // <- FIXME (don't need this)
6245       set_jump_target(nottaken,(int)out);
6246       assem_debug("1:\n");
6247       if(!likely[i]) {
6248         wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6249                       ds_unneeded,ds_unneeded_upper);
6250         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
6251         address_generation(i+1,&branch_regs[i],0);
6252         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
6253         ds_assemble(i+1,&branch_regs[i]);
6254       }
6255       cc=get_reg(branch_regs[i].regmap,CCREG);
6256       if(cc==-1&&!likely[i]) {
6257         // Cycle count isn't in a register, temporarily load it then write it out
6258         emit_loadreg(CCREG,HOST_CCREG);
6259         emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
6260         int jaddr=(int)out;
6261         emit_jns(0);
6262         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
6263         emit_storereg(CCREG,HOST_CCREG);
6264       }
6265       else{
6266         cc=get_reg(i_regmap,CCREG);
6267         assert(cc==HOST_CCREG);
6268         emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
6269         int jaddr=(int)out;
6270         emit_jns(0);
6271         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
6272       }
6273     }
6274   }
6275 }
6276
6277 static void pagespan_assemble(int i,struct regstat *i_regs)
6278 {
6279   int s1l=get_reg(i_regs->regmap,rs1[i]);
6280   int s1h=get_reg(i_regs->regmap,rs1[i]|64);
6281   int s2l=get_reg(i_regs->regmap,rs2[i]);
6282   int s2h=get_reg(i_regs->regmap,rs2[i]|64);
6283   void *nt_branch=NULL;
6284   int taken=0;
6285   int nottaken=0;
6286   int unconditional=0;
6287   if(rs1[i]==0)
6288   {
6289     s1l=s2l;s1h=s2h;
6290     s2l=s2h=-1;
6291   }
6292   else if(rs2[i]==0)
6293   {
6294     s2l=s2h=-1;
6295   }
6296   if((i_regs->is32>>rs1[i])&(i_regs->is32>>rs2[i])&1) {
6297     s1h=s2h=-1;
6298   }
6299   int hr=0;
6300   int addr,alt,ntaddr;
6301   if(i_regs->regmap[HOST_BTREG]<0) {addr=HOST_BTREG;}
6302   else {
6303     while(hr<HOST_REGS)
6304     {
6305       if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
6306          (i_regs->regmap[hr]&63)!=rs1[i] &&
6307          (i_regs->regmap[hr]&63)!=rs2[i] )
6308       {
6309         addr=hr++;break;
6310       }
6311       hr++;
6312     }
6313   }
6314   while(hr<HOST_REGS)
6315   {
6316     if(hr!=EXCLUDE_REG && hr!=HOST_CCREG && hr!=HOST_BTREG &&
6317        (i_regs->regmap[hr]&63)!=rs1[i] &&
6318        (i_regs->regmap[hr]&63)!=rs2[i] )
6319     {
6320       alt=hr++;break;
6321     }
6322     hr++;
6323   }
6324   if((opcode[i]&0x2E)==6) // BLEZ/BGTZ needs another register
6325   {
6326     while(hr<HOST_REGS)
6327     {
6328       if(hr!=EXCLUDE_REG && hr!=HOST_CCREG && hr!=HOST_BTREG &&
6329          (i_regs->regmap[hr]&63)!=rs1[i] &&
6330          (i_regs->regmap[hr]&63)!=rs2[i] )
6331       {
6332         ntaddr=hr;break;
6333       }
6334       hr++;
6335     }
6336   }
6337   assert(hr<HOST_REGS);
6338   if((opcode[i]&0x2e)==4||opcode[i]==0x11) { // BEQ/BNE/BEQL/BNEL/BC1
6339     load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,CCREG,CCREG);
6340   }
6341   emit_addimm(HOST_CCREG,CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
6342   if(opcode[i]==2) // J
6343   {
6344     unconditional=1;
6345   }
6346   if(opcode[i]==3) // JAL
6347   {
6348     // TODO: mini_ht
6349     int rt=get_reg(i_regs->regmap,31);
6350     emit_movimm(start+i*4+8,rt);
6351     unconditional=1;
6352   }
6353   if(opcode[i]==0&&(opcode2[i]&0x3E)==8) // JR/JALR
6354   {
6355     emit_mov(s1l,addr);
6356     if(opcode2[i]==9) // JALR
6357     {
6358       int rt=get_reg(i_regs->regmap,rt1[i]);
6359       emit_movimm(start+i*4+8,rt);
6360     }
6361   }
6362   if((opcode[i]&0x3f)==4) // BEQ
6363   {
6364     if(rs1[i]==rs2[i])
6365     {
6366       unconditional=1;
6367     }
6368     else
6369     #ifdef HAVE_CMOV_IMM
6370     if(s1h<0) {
6371       if(s2l>=0) emit_cmp(s1l,s2l);
6372       else emit_test(s1l,s1l);
6373       emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
6374     }
6375     else
6376     #endif
6377     {
6378       assert(s1l>=0);
6379       emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
6380       if(s1h>=0) {
6381         if(s2h>=0) emit_cmp(s1h,s2h);
6382         else emit_test(s1h,s1h);
6383         emit_cmovne_reg(alt,addr);
6384       }
6385       if(s2l>=0) emit_cmp(s1l,s2l);
6386       else emit_test(s1l,s1l);
6387       emit_cmovne_reg(alt,addr);
6388     }
6389   }
6390   if((opcode[i]&0x3f)==5) // BNE
6391   {
6392     #ifdef HAVE_CMOV_IMM
6393     if(s1h<0) {
6394       if(s2l>=0) emit_cmp(s1l,s2l);
6395       else emit_test(s1l,s1l);
6396       emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
6397     }
6398     else
6399     #endif
6400     {
6401       assert(s1l>=0);
6402       emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
6403       if(s1h>=0) {
6404         if(s2h>=0) emit_cmp(s1h,s2h);
6405         else emit_test(s1h,s1h);
6406         emit_cmovne_reg(alt,addr);
6407       }
6408       if(s2l>=0) emit_cmp(s1l,s2l);
6409       else emit_test(s1l,s1l);
6410       emit_cmovne_reg(alt,addr);
6411     }
6412   }
6413   if((opcode[i]&0x3f)==0x14) // BEQL
6414   {
6415     if(s1h>=0) {
6416       if(s2h>=0) emit_cmp(s1h,s2h);
6417       else emit_test(s1h,s1h);
6418       nottaken=(int)out;
6419       emit_jne(0);
6420     }
6421     if(s2l>=0) emit_cmp(s1l,s2l);
6422     else emit_test(s1l,s1l);
6423     if(nottaken) set_jump_target(nottaken,(int)out);
6424     nottaken=(int)out;
6425     emit_jne(0);
6426   }
6427   if((opcode[i]&0x3f)==0x15) // BNEL
6428   {
6429     if(s1h>=0) {
6430       if(s2h>=0) emit_cmp(s1h,s2h);
6431       else emit_test(s1h,s1h);
6432       taken=(int)out;
6433       emit_jne(0);
6434     }
6435     if(s2l>=0) emit_cmp(s1l,s2l);
6436     else emit_test(s1l,s1l);
6437     nottaken=(int)out;
6438     emit_jeq(0);
6439     if(taken) set_jump_target(taken,(int)out);
6440   }
6441   if((opcode[i]&0x3f)==6) // BLEZ
6442   {
6443     emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
6444     emit_cmpimm(s1l,1);
6445     if(s1h>=0) emit_mov(addr,ntaddr);
6446     emit_cmovl_reg(alt,addr);
6447     if(s1h>=0) {
6448       emit_test(s1h,s1h);
6449       emit_cmovne_reg(ntaddr,addr);
6450       emit_cmovs_reg(alt,addr);
6451     }
6452   }
6453   if((opcode[i]&0x3f)==7) // BGTZ
6454   {
6455     emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
6456     emit_cmpimm(s1l,1);
6457     if(s1h>=0) emit_mov(addr,alt);
6458     emit_cmovl_reg(ntaddr,addr);
6459     if(s1h>=0) {
6460       emit_test(s1h,s1h);
6461       emit_cmovne_reg(alt,addr);
6462       emit_cmovs_reg(ntaddr,addr);
6463     }
6464   }
6465   if((opcode[i]&0x3f)==0x16) // BLEZL
6466   {
6467     assert((opcode[i]&0x3f)!=0x16);
6468   }
6469   if((opcode[i]&0x3f)==0x17) // BGTZL
6470   {
6471     assert((opcode[i]&0x3f)!=0x17);
6472   }
6473   assert(opcode[i]!=1); // BLTZ/BGEZ
6474
6475   //FIXME: Check CSREG
6476   if(opcode[i]==0x11 && opcode2[i]==0x08 ) {
6477     if((source[i]&0x30000)==0) // BC1F
6478     {
6479       emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
6480       emit_testimm(s1l,0x800000);
6481       emit_cmovne_reg(alt,addr);
6482     }
6483     if((source[i]&0x30000)==0x10000) // BC1T
6484     {
6485       emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
6486       emit_testimm(s1l,0x800000);
6487       emit_cmovne_reg(alt,addr);
6488     }
6489     if((source[i]&0x30000)==0x20000) // BC1FL
6490     {
6491       emit_testimm(s1l,0x800000);
6492       nottaken=(int)out;
6493       emit_jne(0);
6494     }
6495     if((source[i]&0x30000)==0x30000) // BC1TL
6496     {
6497       emit_testimm(s1l,0x800000);
6498       nottaken=(int)out;
6499       emit_jeq(0);
6500     }
6501   }
6502
6503   assert(i_regs->regmap[HOST_CCREG]==CCREG);
6504   wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
6505   if(likely[i]||unconditional)
6506   {
6507     emit_movimm(ba[i],HOST_BTREG);
6508   }
6509   else if(addr!=HOST_BTREG)
6510   {
6511     emit_mov(addr,HOST_BTREG);
6512   }
6513   void *branch_addr=out;
6514   emit_jmp(0);
6515   int target_addr=start+i*4+5;
6516   void *stub=out;
6517   void *compiled_target_addr=check_addr(target_addr);
6518   emit_extjump_ds((int)branch_addr,target_addr);
6519   if(compiled_target_addr) {
6520     set_jump_target((int)branch_addr,(int)compiled_target_addr);
6521     add_link(target_addr,stub);
6522   }
6523   else set_jump_target((int)branch_addr,(int)stub);
6524   if(likely[i]) {
6525     // Not-taken path
6526     set_jump_target((int)nottaken,(int)out);
6527     wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
6528     void *branch_addr=out;
6529     emit_jmp(0);
6530     int target_addr=start+i*4+8;
6531     void *stub=out;
6532     void *compiled_target_addr=check_addr(target_addr);
6533     emit_extjump_ds((int)branch_addr,target_addr);
6534     if(compiled_target_addr) {
6535       set_jump_target((int)branch_addr,(int)compiled_target_addr);
6536       add_link(target_addr,stub);
6537     }
6538     else set_jump_target((int)branch_addr,(int)stub);
6539   }
6540 }
6541
6542 // Assemble the delay slot for the above
6543 static void pagespan_ds()
6544 {
6545   assem_debug("initial delay slot:\n");
6546   u_int vaddr=start+1;
6547   u_int page=get_page(vaddr);
6548   u_int vpage=get_vpage(vaddr);
6549   ll_add(jump_dirty+vpage,vaddr,(void *)out);
6550   do_dirty_stub_ds();
6551   ll_add(jump_in+page,vaddr,(void *)out);
6552   assert(regs[0].regmap_entry[HOST_CCREG]==CCREG);
6553   if(regs[0].regmap[HOST_CCREG]!=CCREG)
6554     wb_register(CCREG,regs[0].regmap_entry,regs[0].wasdirty,regs[0].was32);
6555   if(regs[0].regmap[HOST_BTREG]!=BTREG)
6556     emit_writeword(HOST_BTREG,(int)&branch_target);
6557   load_regs(regs[0].regmap_entry,regs[0].regmap,regs[0].was32,rs1[0],rs2[0]);
6558   address_generation(0,&regs[0],regs[0].regmap_entry);
6559   if(itype[0]==STORE||itype[0]==STORELR||(opcode[0]&0x3b)==0x39||(opcode[0]&0x3b)==0x3a)
6560     load_regs(regs[0].regmap_entry,regs[0].regmap,regs[0].was32,INVCP,INVCP);
6561   cop1_usable=0;
6562   is_delayslot=0;
6563   switch(itype[0]) {
6564     case ALU:
6565       alu_assemble(0,&regs[0]);break;
6566     case IMM16:
6567       imm16_assemble(0,&regs[0]);break;
6568     case SHIFT:
6569       shift_assemble(0,&regs[0]);break;
6570     case SHIFTIMM:
6571       shiftimm_assemble(0,&regs[0]);break;
6572     case LOAD:
6573       load_assemble(0,&regs[0]);break;
6574     case LOADLR:
6575       loadlr_assemble(0,&regs[0]);break;
6576     case STORE:
6577       store_assemble(0,&regs[0]);break;
6578     case STORELR:
6579       storelr_assemble(0,&regs[0]);break;
6580     case COP0:
6581       cop0_assemble(0,&regs[0]);break;
6582     case COP1:
6583       cop1_assemble(0,&regs[0]);break;
6584     case C1LS:
6585       c1ls_assemble(0,&regs[0]);break;
6586     case COP2:
6587       cop2_assemble(0,&regs[0]);break;
6588     case C2LS:
6589       c2ls_assemble(0,&regs[0]);break;
6590     case C2OP:
6591       c2op_assemble(0,&regs[0]);break;
6592     case FCONV:
6593       fconv_assemble(0,&regs[0]);break;
6594     case FLOAT:
6595       float_assemble(0,&regs[0]);break;
6596     case FCOMP:
6597       fcomp_assemble(0,&regs[0]);break;
6598     case MULTDIV:
6599       multdiv_assemble(0,&regs[0]);break;
6600     case MOV:
6601       mov_assemble(0,&regs[0]);break;
6602     case SYSCALL:
6603     case HLECALL:
6604     case INTCALL:
6605     case SPAN:
6606     case UJUMP:
6607     case RJUMP:
6608     case CJUMP:
6609     case SJUMP:
6610     case FJUMP:
6611       printf("Jump in the delay slot.  This is probably a bug.\n");
6612   }
6613   int btaddr=get_reg(regs[0].regmap,BTREG);
6614   if(btaddr<0) {
6615     btaddr=get_reg(regs[0].regmap,-1);
6616     emit_readword((int)&branch_target,btaddr);
6617   }
6618   assert(btaddr!=HOST_CCREG);
6619   if(regs[0].regmap[HOST_CCREG]!=CCREG) emit_loadreg(CCREG,HOST_CCREG);
6620 #ifdef HOST_IMM8
6621   emit_movimm(start+4,HOST_TEMPREG);
6622   emit_cmp(btaddr,HOST_TEMPREG);
6623 #else
6624   emit_cmpimm(btaddr,start+4);
6625 #endif
6626   int branch=(int)out;
6627   emit_jeq(0);
6628   store_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,-1);
6629   emit_jmp(jump_vaddr_reg[btaddr]);
6630   set_jump_target(branch,(int)out);
6631   store_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,start+4);
6632   load_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,start+4);
6633 }
6634
6635 // Basic liveness analysis for MIPS registers
6636 void unneeded_registers(int istart,int iend,int r)
6637 {
6638   int i;
6639   uint64_t u,uu,b,bu;
6640   uint64_t temp_u,temp_uu;
6641   uint64_t tdep;
6642   if(iend==slen-1) {
6643     u=1;uu=1;
6644   }else{
6645     u=unneeded_reg[iend+1];
6646     uu=unneeded_reg_upper[iend+1];
6647     u=1;uu=1;
6648   }
6649   for (i=iend;i>=istart;i--)
6650   {
6651     //printf("unneeded registers i=%d (%d,%d) r=%d\n",i,istart,iend,r);
6652     if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
6653     {
6654       // If subroutine call, flag return address as a possible branch target
6655       if(rt1[i]==31 && i<slen-2) bt[i+2]=1;
6656       
6657       if(ba[i]<start || ba[i]>=(start+slen*4))
6658       {
6659         // Branch out of this block, flush all regs
6660         u=1;
6661         uu=1;
6662         /* Hexagon hack 
6663         if(itype[i]==UJUMP&&rt1[i]==31)
6664         {
6665           uu=u=0x300C00F; // Discard at, v0-v1, t6-t9
6666         }
6667         if(itype[i]==RJUMP&&rs1[i]==31)
6668         {
6669           uu=u=0x300C0F3; // Discard at, a0-a3, t6-t9
6670         }
6671         if(start>0x80000400&&start<0x80000000+RAM_SIZE) {
6672           if(itype[i]==UJUMP&&rt1[i]==31)
6673           {
6674             //uu=u=0x30300FF0FLL; // Discard at, v0-v1, t0-t9, lo, hi
6675             uu=u=0x300FF0F; // Discard at, v0-v1, t0-t9
6676           }
6677           if(itype[i]==RJUMP&&rs1[i]==31)
6678           {
6679             //uu=u=0x30300FFF3LL; // Discard at, a0-a3, t0-t9, lo, hi
6680             uu=u=0x300FFF3; // Discard at, a0-a3, t0-t9
6681           }
6682         }*/
6683         branch_unneeded_reg[i]=u;
6684         branch_unneeded_reg_upper[i]=uu;
6685         // Merge in delay slot
6686         tdep=(~uu>>rt1[i+1])&1;
6687         u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6688         uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6689         u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6690         uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6691         uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6692         u|=1;uu|=1;
6693         // If branch is "likely" (and conditional)
6694         // then we skip the delay slot on the fall-thru path
6695         if(likely[i]) {
6696           if(i<slen-1) {
6697             u&=unneeded_reg[i+2];
6698             uu&=unneeded_reg_upper[i+2];
6699           }
6700           else
6701           {
6702             u=1;
6703             uu=1;
6704           }
6705         }
6706       }
6707       else
6708       {
6709         // Internal branch, flag target
6710         bt[(ba[i]-start)>>2]=1;
6711         if(ba[i]<=start+i*4) {
6712           // Backward branch
6713           if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
6714           {
6715             // Unconditional branch
6716             temp_u=1;temp_uu=1;
6717           } else {
6718             // Conditional branch (not taken case)
6719             temp_u=unneeded_reg[i+2];
6720             temp_uu=unneeded_reg_upper[i+2];
6721           }
6722           // Merge in delay slot
6723           tdep=(~temp_uu>>rt1[i+1])&1;
6724           temp_u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6725           temp_uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6726           temp_u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6727           temp_uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6728           temp_uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6729           temp_u|=1;temp_uu|=1;
6730           // If branch is "likely" (and conditional)
6731           // then we skip the delay slot on the fall-thru path
6732           if(likely[i]) {
6733             if(i<slen-1) {
6734               temp_u&=unneeded_reg[i+2];
6735               temp_uu&=unneeded_reg_upper[i+2];
6736             }
6737             else
6738             {
6739               temp_u=1;
6740               temp_uu=1;
6741             }
6742           }
6743           tdep=(~temp_uu>>rt1[i])&1;
6744           temp_u|=(1LL<<rt1[i])|(1LL<<rt2[i]);
6745           temp_uu|=(1LL<<rt1[i])|(1LL<<rt2[i]);
6746           temp_u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
6747           temp_uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
6748           temp_uu&=~((tdep<<dep1[i])|(tdep<<dep2[i]));
6749           temp_u|=1;temp_uu|=1;
6750           unneeded_reg[i]=temp_u;
6751           unneeded_reg_upper[i]=temp_uu;
6752           // Only go three levels deep.  This recursion can take an
6753           // excessive amount of time if there are a lot of nested loops.
6754           if(r<2) {
6755             unneeded_registers((ba[i]-start)>>2,i-1,r+1);
6756           }else{
6757             unneeded_reg[(ba[i]-start)>>2]=1;
6758             unneeded_reg_upper[(ba[i]-start)>>2]=1;
6759           }
6760         } /*else*/ if(1) {
6761           if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
6762           {
6763             // Unconditional branch
6764             u=unneeded_reg[(ba[i]-start)>>2];
6765             uu=unneeded_reg_upper[(ba[i]-start)>>2];
6766             branch_unneeded_reg[i]=u;
6767             branch_unneeded_reg_upper[i]=uu;
6768         //u=1;
6769         //uu=1;
6770         //branch_unneeded_reg[i]=u;
6771         //branch_unneeded_reg_upper[i]=uu;
6772             // Merge in delay slot
6773             tdep=(~uu>>rt1[i+1])&1;
6774             u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6775             uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6776             u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6777             uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6778             uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6779             u|=1;uu|=1;
6780           } else {
6781             // Conditional branch
6782             b=unneeded_reg[(ba[i]-start)>>2];
6783             bu=unneeded_reg_upper[(ba[i]-start)>>2];
6784             branch_unneeded_reg[i]=b;
6785             branch_unneeded_reg_upper[i]=bu;
6786         //b=1;
6787         //bu=1;
6788         //branch_unneeded_reg[i]=b;
6789         //branch_unneeded_reg_upper[i]=bu;
6790             // Branch delay slot
6791             tdep=(~uu>>rt1[i+1])&1;
6792             b|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6793             bu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6794             b&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6795             bu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6796             bu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6797             b|=1;bu|=1;
6798             // If branch is "likely" then we skip the
6799             // delay slot on the fall-thru path
6800             if(likely[i]) {
6801               u=b;
6802               uu=bu;
6803               if(i<slen-1) {
6804                 u&=unneeded_reg[i+2];
6805                 uu&=unneeded_reg_upper[i+2];
6806         //u=1;
6807         //uu=1;
6808               }
6809             } else {
6810               u&=b;
6811               uu&=bu;
6812         //u=1;
6813         //uu=1;
6814             }
6815             if(i<slen-1) {
6816               branch_unneeded_reg[i]&=unneeded_reg[i+2];
6817               branch_unneeded_reg_upper[i]&=unneeded_reg_upper[i+2];
6818         //branch_unneeded_reg[i]=1;
6819         //branch_unneeded_reg_upper[i]=1;
6820             } else {
6821               branch_unneeded_reg[i]=1;
6822               branch_unneeded_reg_upper[i]=1;
6823             }
6824           }
6825         }
6826       }
6827     }
6828     else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
6829     {
6830       // SYSCALL instruction (software interrupt)
6831       u=1;
6832       uu=1;
6833     }
6834     else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
6835     {
6836       // ERET instruction (return from interrupt)
6837       u=1;
6838       uu=1;
6839     }
6840     //u=uu=1; // DEBUG
6841     tdep=(~uu>>rt1[i])&1;
6842     // Written registers are unneeded
6843     u|=1LL<<rt1[i];
6844     u|=1LL<<rt2[i];
6845     uu|=1LL<<rt1[i];
6846     uu|=1LL<<rt2[i];
6847     // Accessed registers are needed
6848     u&=~(1LL<<rs1[i]);
6849     u&=~(1LL<<rs2[i]);
6850     uu&=~(1LL<<us1[i]);
6851     uu&=~(1LL<<us2[i]);
6852     // Source-target dependencies
6853     uu&=~(tdep<<dep1[i]);
6854     uu&=~(tdep<<dep2[i]);
6855     // R0 is always unneeded
6856     u|=1;uu|=1;
6857     // Save it
6858     unneeded_reg[i]=u;
6859     unneeded_reg_upper[i]=uu;
6860     /*
6861     printf("ur (%d,%d) %x: ",istart,iend,start+i*4);
6862     printf("U:");
6863     int r;
6864     for(r=1;r<=CCREG;r++) {
6865       if((unneeded_reg[i]>>r)&1) {
6866         if(r==HIREG) printf(" HI");
6867         else if(r==LOREG) printf(" LO");
6868         else printf(" r%d",r);
6869       }
6870     }
6871     printf(" UU:");
6872     for(r=1;r<=CCREG;r++) {
6873       if(((unneeded_reg_upper[i]&~unneeded_reg[i])>>r)&1) {
6874         if(r==HIREG) printf(" HI");
6875         else if(r==LOREG) printf(" LO");
6876         else printf(" r%d",r);
6877       }
6878     }
6879     printf("\n");*/
6880   }
6881 #ifdef FORCE32
6882   for (i=iend;i>=istart;i--)
6883   {
6884     unneeded_reg_upper[i]=branch_unneeded_reg_upper[i]=-1LL;
6885   }
6886 #endif
6887 }
6888
6889 // Identify registers which are likely to contain 32-bit values
6890 // This is used to predict whether any branches will jump to a
6891 // location with 64-bit values in registers.
6892 static void provisional_32bit()
6893 {
6894   int i,j;
6895   uint64_t is32=1;
6896   uint64_t lastbranch=1;
6897   
6898   for(i=0;i<slen;i++)
6899   {
6900     if(i>0) {
6901       if(itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP) {
6902         if(i>1) is32=lastbranch;
6903         else is32=1;
6904       }
6905     }
6906     if(i>1)
6907     {
6908       if(itype[i-2]==CJUMP||itype[i-2]==SJUMP||itype[i-2]==FJUMP) {
6909         if(likely[i-2]) {
6910           if(i>2) is32=lastbranch;
6911           else is32=1;
6912         }
6913       }
6914       if((opcode[i-2]&0x2f)==0x05) // BNE/BNEL
6915       {
6916         if(rs1[i-2]==0||rs2[i-2]==0)
6917         {
6918           if(rs1[i-2]) {
6919             is32|=1LL<<rs1[i-2];
6920           }
6921           if(rs2[i-2]) {
6922             is32|=1LL<<rs2[i-2];
6923           }
6924         }
6925       }
6926     }
6927     // If something jumps here with 64-bit values
6928     // then promote those registers to 64 bits
6929     if(bt[i])
6930     {
6931       uint64_t temp_is32=is32;
6932       for(j=i-1;j>=0;j--)
6933       {
6934         if(ba[j]==start+i*4) 
6935           //temp_is32&=branch_regs[j].is32;
6936           temp_is32&=p32[j];
6937       }
6938       for(j=i;j<slen;j++)
6939       {
6940         if(ba[j]==start+i*4) 
6941           temp_is32=1;
6942       }
6943       is32=temp_is32;
6944     }
6945     int type=itype[i];
6946     int op=opcode[i];
6947     int op2=opcode2[i];
6948     int rt=rt1[i];
6949     int s1=rs1[i];
6950     int s2=rs2[i];
6951     if(type==UJUMP||type==RJUMP||type==CJUMP||type==SJUMP||type==FJUMP) {
6952       // Branches don't write registers, consider the delay slot instead.
6953       type=itype[i+1];
6954       op=opcode[i+1];
6955       op2=opcode2[i+1];
6956       rt=rt1[i+1];
6957       s1=rs1[i+1];
6958       s2=rs2[i+1];
6959       lastbranch=is32;
6960     }
6961     switch(type) {
6962       case LOAD:
6963         if(opcode[i]==0x27||opcode[i]==0x37|| // LWU/LD
6964            opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
6965           is32&=~(1LL<<rt);
6966         else
6967           is32|=1LL<<rt;
6968         break;
6969       case STORE:
6970       case STORELR:
6971         break;
6972       case LOADLR:
6973         if(op==0x1a||op==0x1b) is32&=~(1LL<<rt); // LDR/LDL
6974         if(op==0x22) is32|=1LL<<rt; // LWL
6975         break;
6976       case IMM16:
6977         if (op==0x08||op==0x09|| // ADDI/ADDIU
6978             op==0x0a||op==0x0b|| // SLTI/SLTIU
6979             op==0x0c|| // ANDI
6980             op==0x0f)  // LUI
6981         {
6982           is32|=1LL<<rt;
6983         }
6984         if(op==0x18||op==0x19) { // DADDI/DADDIU
6985           is32&=~(1LL<<rt);
6986           //if(imm[i]==0)
6987           //  is32|=((is32>>s1)&1LL)<<rt;
6988         }
6989         if(op==0x0d||op==0x0e) { // ORI/XORI
6990           uint64_t sr=((is32>>s1)&1LL);
6991           is32&=~(1LL<<rt);
6992           is32|=sr<<rt;
6993         }
6994         break;
6995       case UJUMP:
6996         break;
6997       case RJUMP:
6998         break;
6999       case CJUMP:
7000         break;
7001       case SJUMP:
7002         break;
7003       case FJUMP:
7004         break;
7005       case ALU:
7006         if(op2>=0x20&&op2<=0x23) { // ADD/ADDU/SUB/SUBU
7007           is32|=1LL<<rt;
7008         }
7009         if(op2==0x2a||op2==0x2b) { // SLT/SLTU
7010           is32|=1LL<<rt;
7011         }
7012         else if(op2>=0x24&&op2<=0x27) { // AND/OR/XOR/NOR
7013           uint64_t sr=((is32>>s1)&(is32>>s2)&1LL);
7014           is32&=~(1LL<<rt);
7015           is32|=sr<<rt;
7016         }
7017         else if(op2>=0x2c&&op2<=0x2d) { // DADD/DADDU
7018           if(s1==0&&s2==0) {
7019             is32|=1LL<<rt;
7020           }
7021           else if(s2==0) {
7022             uint64_t sr=((is32>>s1)&1LL);
7023             is32&=~(1LL<<rt);
7024             is32|=sr<<rt;
7025           }
7026           else if(s1==0) {
7027             uint64_t sr=((is32>>s2)&1LL);
7028             is32&=~(1LL<<rt);
7029             is32|=sr<<rt;
7030           }
7031           else {
7032             is32&=~(1LL<<rt);
7033           }
7034         }
7035         else if(op2>=0x2e&&op2<=0x2f) { // DSUB/DSUBU
7036           if(s1==0&&s2==0) {
7037             is32|=1LL<<rt;
7038           }
7039           else if(s2==0) {
7040             uint64_t sr=((is32>>s1)&1LL);
7041             is32&=~(1LL<<rt);
7042             is32|=sr<<rt;
7043           }
7044           else {
7045             is32&=~(1LL<<rt);
7046           }
7047         }
7048         break;
7049       case MULTDIV:
7050         if (op2>=0x1c&&op2<=0x1f) { // DMULT/DMULTU/DDIV/DDIVU
7051           is32&=~((1LL<<HIREG)|(1LL<<LOREG));
7052         }
7053         else {
7054           is32|=(1LL<<HIREG)|(1LL<<LOREG);
7055         }
7056         break;
7057       case MOV:
7058         {
7059           uint64_t sr=((is32>>s1)&1LL);
7060           is32&=~(1LL<<rt);
7061           is32|=sr<<rt;
7062         }
7063         break;
7064       case SHIFT:
7065         if(op2>=0x14&&op2<=0x17) is32&=~(1LL<<rt); // DSLLV/DSRLV/DSRAV
7066         else is32|=1LL<<rt; // SLLV/SRLV/SRAV
7067         break;
7068       case SHIFTIMM:
7069         is32|=1LL<<rt;
7070         // DSLL/DSRL/DSRA/DSLL32/DSRL32 but not DSRA32 have 64-bit result
7071         if(op2>=0x38&&op2<0x3f) is32&=~(1LL<<rt);
7072         break;
7073       case COP0:
7074         if(op2==0) is32|=1LL<<rt; // MFC0
7075         break;
7076       case COP1:
7077       case COP2:
7078         if(op2==0) is32|=1LL<<rt; // MFC1
7079         if(op2==1) is32&=~(1LL<<rt); // DMFC1
7080         if(op2==2) is32|=1LL<<rt; // CFC1
7081         break;
7082       case C1LS:
7083       case C2LS:
7084         break;
7085       case FLOAT:
7086       case FCONV:
7087         break;
7088       case FCOMP:
7089         break;
7090       case C2OP:
7091       case SYSCALL:
7092       case HLECALL:
7093         break;
7094       default:
7095         break;
7096     }
7097     is32|=1;
7098     p32[i]=is32;
7099
7100     if(i>0)
7101     {
7102       if(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)
7103       {
7104         if(rt1[i-1]==31) // JAL/JALR
7105         {
7106           // Subroutine call will return here, don't alloc any registers
7107           is32=1;
7108         }
7109         else if(i+1<slen)
7110         {
7111           // Internal branch will jump here, match registers to caller
7112           is32=0x3FFFFFFFFLL;
7113         }
7114       }
7115     }
7116   }
7117 }
7118
7119 // Identify registers which may be assumed to contain 32-bit values
7120 // and where optimizations will rely on this.
7121 // This is used to determine whether backward branches can safely
7122 // jump to a location with 64-bit values in registers.
7123 static void provisional_r32()
7124 {
7125   u_int r32=0;
7126   int i;
7127   
7128   for (i=slen-1;i>=0;i--)
7129   {
7130     int hr;
7131     if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
7132     {
7133       if(ba[i]<start || ba[i]>=(start+slen*4))
7134       {
7135         // Branch out of this block, don't need anything
7136         r32=0;
7137       }
7138       else
7139       {
7140         // Internal branch
7141         // Need whatever matches the target
7142         // (and doesn't get overwritten by the delay slot instruction)
7143         r32=0;
7144         int t=(ba[i]-start)>>2;
7145         if(ba[i]>start+i*4) {
7146           // Forward branch
7147           //if(!(requires_32bit[t]&~regs[i].was32))
7148           //  r32|=requires_32bit[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
7149           if(!(pr32[t]&~regs[i].was32))
7150             r32|=pr32[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
7151         }else{
7152           // Backward branch
7153           if(!(regs[t].was32&~unneeded_reg_upper[t]&~regs[i].was32))
7154             r32|=regs[t].was32&~unneeded_reg_upper[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
7155         }
7156       }
7157       // Conditional branch may need registers for following instructions
7158       if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
7159       {
7160         if(i<slen-2) {
7161           //r32|=requires_32bit[i+2];
7162           r32|=pr32[i+2];
7163           r32&=regs[i].was32;
7164           // Mark this address as a branch target since it may be called
7165           // upon return from interrupt
7166           //bt[i+2]=1;
7167         }
7168       }
7169       // Merge in delay slot
7170       if(!likely[i]) {
7171         // These are overwritten unless the branch is "likely"
7172         // and the delay slot is nullified if not taken
7173         r32&=~(1LL<<rt1[i+1]);
7174         r32&=~(1LL<<rt2[i+1]);
7175       }
7176       // Assume these are needed (delay slot)
7177       if(us1[i+1]>0)
7178       {
7179         if((regs[i].was32>>us1[i+1])&1) r32|=1LL<<us1[i+1];
7180       }
7181       if(us2[i+1]>0)
7182       {
7183         if((regs[i].was32>>us2[i+1])&1) r32|=1LL<<us2[i+1];
7184       }
7185       if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1))
7186       {
7187         if((regs[i].was32>>dep1[i+1])&1) r32|=1LL<<dep1[i+1];
7188       }
7189       if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1))
7190       {
7191         if((regs[i].was32>>dep2[i+1])&1) r32|=1LL<<dep2[i+1];
7192       }
7193     }
7194     else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
7195     {
7196       // SYSCALL instruction (software interrupt)
7197       r32=0;
7198     }
7199     else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
7200     {
7201       // ERET instruction (return from interrupt)
7202       r32=0;
7203     }
7204     // Check 32 bits
7205     r32&=~(1LL<<rt1[i]);
7206     r32&=~(1LL<<rt2[i]);
7207     if(us1[i]>0)
7208     {
7209       if((regs[i].was32>>us1[i])&1) r32|=1LL<<us1[i];
7210     }
7211     if(us2[i]>0)
7212     {
7213       if((regs[i].was32>>us2[i])&1) r32|=1LL<<us2[i];
7214     }
7215     if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1))
7216     {
7217       if((regs[i].was32>>dep1[i])&1) r32|=1LL<<dep1[i];
7218     }
7219     if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1))
7220     {
7221       if((regs[i].was32>>dep2[i])&1) r32|=1LL<<dep2[i];
7222     }
7223     //requires_32bit[i]=r32;
7224     pr32[i]=r32;
7225     
7226     // Dirty registers which are 32-bit, require 32-bit input
7227     // as they will be written as 32-bit values
7228     for(hr=0;hr<HOST_REGS;hr++)
7229     {
7230       if(regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64) {
7231         if((regs[i].was32>>regs[i].regmap_entry[hr])&(regs[i].wasdirty>>hr)&1) {
7232           if(!((unneeded_reg_upper[i]>>regs[i].regmap_entry[hr])&1))
7233           pr32[i]|=1LL<<regs[i].regmap_entry[hr];
7234           //requires_32bit[i]|=1LL<<regs[i].regmap_entry[hr];
7235         }
7236       }
7237     }
7238   }
7239 }
7240
7241 // Write back dirty registers as soon as we will no longer modify them,
7242 // so that we don't end up with lots of writes at the branches.
7243 void clean_registers(int istart,int iend,int wr)
7244 {
7245   int i;
7246   int r;
7247   u_int will_dirty_i,will_dirty_next,temp_will_dirty;
7248   u_int wont_dirty_i,wont_dirty_next,temp_wont_dirty;
7249   if(iend==slen-1) {
7250     will_dirty_i=will_dirty_next=0;
7251     wont_dirty_i=wont_dirty_next=0;
7252   }else{
7253     will_dirty_i=will_dirty_next=will_dirty[iend+1];
7254     wont_dirty_i=wont_dirty_next=wont_dirty[iend+1];
7255   }
7256   for (i=iend;i>=istart;i--)
7257   {
7258     if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
7259     {
7260       if(ba[i]<start || ba[i]>=(start+slen*4))
7261       {
7262         // Branch out of this block, flush all regs
7263         if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
7264         {
7265           // Unconditional branch
7266           will_dirty_i=0;
7267           wont_dirty_i=0;
7268           // Merge in delay slot (will dirty)
7269           for(r=0;r<HOST_REGS;r++) {
7270             if(r!=EXCLUDE_REG) {
7271               if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7272               if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7273               if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7274               if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7275               if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7276               if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7277               if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7278               if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7279               if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7280               if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7281               if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7282               if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7283               if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7284               if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7285             }
7286           }
7287         }
7288         else
7289         {
7290           // Conditional branch
7291           will_dirty_i=0;
7292           wont_dirty_i=wont_dirty_next;
7293           // Merge in delay slot (will dirty)
7294           for(r=0;r<HOST_REGS;r++) {
7295             if(r!=EXCLUDE_REG) {
7296               if(!likely[i]) {
7297                 // Might not dirty if likely branch is not taken
7298                 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7299                 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7300                 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7301                 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7302                 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7303                 if(branch_regs[i].regmap[r]==0) will_dirty_i&=~(1<<r);
7304                 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7305                 //if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7306                 //if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7307                 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7308                 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7309                 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7310                 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7311                 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7312               }
7313             }
7314           }
7315         }
7316         // Merge in delay slot (wont dirty)
7317         for(r=0;r<HOST_REGS;r++) {
7318           if(r!=EXCLUDE_REG) {
7319             if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7320             if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7321             if((regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7322             if((regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7323             if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7324             if((branch_regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7325             if((branch_regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7326             if((branch_regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7327             if((branch_regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7328             if(branch_regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7329           }
7330         }
7331         if(wr) {
7332           #ifndef DESTRUCTIVE_WRITEBACK
7333           branch_regs[i].dirty&=wont_dirty_i;
7334           #endif
7335           branch_regs[i].dirty|=will_dirty_i;
7336         }
7337       }
7338       else
7339       {
7340         // Internal branch
7341         if(ba[i]<=start+i*4) {
7342           // Backward branch
7343           if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
7344           {
7345             // Unconditional branch
7346             temp_will_dirty=0;
7347             temp_wont_dirty=0;
7348             // Merge in delay slot (will dirty)
7349             for(r=0;r<HOST_REGS;r++) {
7350               if(r!=EXCLUDE_REG) {
7351                 if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7352                 if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7353                 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7354                 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7355                 if((branch_regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7356                 if(branch_regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
7357                 if(branch_regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7358                 if((regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7359                 if((regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7360                 if((regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7361                 if((regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7362                 if((regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7363                 if(regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
7364                 if(regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7365               }
7366             }
7367           } else {
7368             // Conditional branch (not taken case)
7369             temp_will_dirty=will_dirty_next;
7370             temp_wont_dirty=wont_dirty_next;
7371             // Merge in delay slot (will dirty)
7372             for(r=0;r<HOST_REGS;r++) {
7373               if(r!=EXCLUDE_REG) {
7374                 if(!likely[i]) {
7375                   // Will not dirty if likely branch is not taken
7376                   if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7377                   if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7378                   if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7379                   if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7380                   if((branch_regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7381                   if(branch_regs[i].regmap[r]==0) temp_will_dirty&=~(1<<r);
7382                   if(branch_regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7383                   //if((regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7384                   //if((regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7385                   if((regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7386                   if((regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7387                   if((regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7388                   if(regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
7389                   if(regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7390                 }
7391               }
7392             }
7393           }
7394           // Merge in delay slot (wont dirty)
7395           for(r=0;r<HOST_REGS;r++) {
7396             if(r!=EXCLUDE_REG) {
7397               if((regs[i].regmap[r]&63)==rt1[i]) temp_wont_dirty|=1<<r;
7398               if((regs[i].regmap[r]&63)==rt2[i]) temp_wont_dirty|=1<<r;
7399               if((regs[i].regmap[r]&63)==rt1[i+1]) temp_wont_dirty|=1<<r;
7400               if((regs[i].regmap[r]&63)==rt2[i+1]) temp_wont_dirty|=1<<r;
7401               if(regs[i].regmap[r]==CCREG) temp_wont_dirty|=1<<r;
7402               if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_wont_dirty|=1<<r;
7403               if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_wont_dirty|=1<<r;
7404               if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_wont_dirty|=1<<r;
7405               if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_wont_dirty|=1<<r;
7406               if(branch_regs[i].regmap[r]==CCREG) temp_wont_dirty|=1<<r;
7407             }
7408           }
7409           // Deal with changed mappings
7410           if(i<iend) {
7411             for(r=0;r<HOST_REGS;r++) {
7412               if(r!=EXCLUDE_REG) {
7413                 if(regs[i].regmap[r]!=regmap_pre[i][r]) {
7414                   temp_will_dirty&=~(1<<r);
7415                   temp_wont_dirty&=~(1<<r);
7416                   if((regmap_pre[i][r]&63)>0 && (regmap_pre[i][r]&63)<34) {
7417                     temp_will_dirty|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7418                     temp_wont_dirty|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7419                   } else {
7420                     temp_will_dirty|=1<<r;
7421                     temp_wont_dirty|=1<<r;
7422                   }
7423                 }
7424               }
7425             }
7426           }
7427           if(wr) {
7428             will_dirty[i]=temp_will_dirty;
7429             wont_dirty[i]=temp_wont_dirty;
7430             clean_registers((ba[i]-start)>>2,i-1,0);
7431           }else{
7432             // Limit recursion.  It can take an excessive amount
7433             // of time if there are a lot of nested loops.
7434             will_dirty[(ba[i]-start)>>2]=0;
7435             wont_dirty[(ba[i]-start)>>2]=-1;
7436           }
7437         }
7438         /*else*/ if(1)
7439         {
7440           if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
7441           {
7442             // Unconditional branch
7443             will_dirty_i=0;
7444             wont_dirty_i=0;
7445           //if(ba[i]>start+i*4) { // Disable recursion (for debugging)
7446             for(r=0;r<HOST_REGS;r++) {
7447               if(r!=EXCLUDE_REG) {
7448                 if(branch_regs[i].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
7449                   will_dirty_i|=will_dirty[(ba[i]-start)>>2]&(1<<r);
7450                   wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
7451                 }
7452               }
7453             }
7454           //}
7455             // Merge in delay slot
7456             for(r=0;r<HOST_REGS;r++) {
7457               if(r!=EXCLUDE_REG) {
7458                 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7459                 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7460                 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7461                 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7462                 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7463                 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7464                 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7465                 if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7466                 if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7467                 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7468                 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7469                 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7470                 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7471                 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7472               }
7473             }
7474           } else {
7475             // Conditional branch
7476             will_dirty_i=will_dirty_next;
7477             wont_dirty_i=wont_dirty_next;
7478           //if(ba[i]>start+i*4) { // Disable recursion (for debugging)
7479             for(r=0;r<HOST_REGS;r++) {
7480               if(r!=EXCLUDE_REG) {
7481                 if(branch_regs[i].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
7482                   will_dirty_i&=will_dirty[(ba[i]-start)>>2]&(1<<r);
7483                   wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
7484                 }
7485                 else
7486                 {
7487                   will_dirty_i&=~(1<<r);
7488                 }
7489                 // Treat delay slot as part of branch too
7490                 /*if(regs[i+1].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
7491                   will_dirty[i+1]&=will_dirty[(ba[i]-start)>>2]&(1<<r);
7492                   wont_dirty[i+1]|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
7493                 }
7494                 else
7495                 {
7496                   will_dirty[i+1]&=~(1<<r);
7497                 }*/
7498               }
7499             }
7500           //}
7501             // Merge in delay slot
7502             for(r=0;r<HOST_REGS;r++) {
7503               if(r!=EXCLUDE_REG) {
7504                 if(!likely[i]) {
7505                   // Might not dirty if likely branch is not taken
7506                   if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7507                   if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7508                   if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7509                   if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7510                   if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7511                   if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7512                   if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7513                   //if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7514                   //if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7515                   if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7516                   if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7517                   if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7518                   if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7519                   if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7520                 }
7521               }
7522             }
7523           }
7524           // Merge in delay slot
7525           for(r=0;r<HOST_REGS;r++) {
7526             if(r!=EXCLUDE_REG) {
7527               if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7528               if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7529               if((regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7530               if((regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7531               if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7532               if((branch_regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7533               if((branch_regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7534               if((branch_regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7535               if((branch_regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7536               if(branch_regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7537             }
7538           }
7539           if(wr) {
7540             #ifndef DESTRUCTIVE_WRITEBACK
7541             branch_regs[i].dirty&=wont_dirty_i;
7542             #endif
7543             branch_regs[i].dirty|=will_dirty_i;
7544           }
7545         }
7546       }
7547     }
7548     else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
7549     {
7550       // SYSCALL instruction (software interrupt)
7551       will_dirty_i=0;
7552       wont_dirty_i=0;
7553     }
7554     else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
7555     {
7556       // ERET instruction (return from interrupt)
7557       will_dirty_i=0;
7558       wont_dirty_i=0;
7559     }
7560     will_dirty_next=will_dirty_i;
7561     wont_dirty_next=wont_dirty_i;
7562     for(r=0;r<HOST_REGS;r++) {
7563       if(r!=EXCLUDE_REG) {
7564         if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7565         if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7566         if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7567         if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7568         if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7569         if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7570         if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7571         if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7572         if(i>istart) {
7573           if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=FJUMP) 
7574           {
7575             // Don't store a register immediately after writing it,
7576             // may prevent dual-issue.
7577             if((regs[i].regmap[r]&63)==rt1[i-1]) wont_dirty_i|=1<<r;
7578             if((regs[i].regmap[r]&63)==rt2[i-1]) wont_dirty_i|=1<<r;
7579           }
7580         }
7581       }
7582     }
7583     // Save it
7584     will_dirty[i]=will_dirty_i;
7585     wont_dirty[i]=wont_dirty_i;
7586     // Mark registers that won't be dirtied as not dirty
7587     if(wr) {
7588       /*printf("wr (%d,%d) %x will:",istart,iend,start+i*4);
7589       for(r=0;r<HOST_REGS;r++) {
7590         if((will_dirty_i>>r)&1) {
7591           printf(" r%d",r);
7592         }
7593       }
7594       printf("\n");*/
7595
7596       //if(i==istart||(itype[i-1]!=RJUMP&&itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=FJUMP)) {
7597         regs[i].dirty|=will_dirty_i;
7598         #ifndef DESTRUCTIVE_WRITEBACK
7599         regs[i].dirty&=wont_dirty_i;
7600         if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
7601         {
7602           if(i<iend-1&&itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000) {
7603             for(r=0;r<HOST_REGS;r++) {
7604               if(r!=EXCLUDE_REG) {
7605                 if(regs[i].regmap[r]==regmap_pre[i+2][r]) {
7606                   regs[i+2].wasdirty&=wont_dirty_i|~(1<<r);
7607                 }else {/*printf("i: %x (%d) mismatch(+2): %d\n",start+i*4,i,r);/*assert(!((wont_dirty_i>>r)&1));*/}
7608               }
7609             }
7610           }
7611         }
7612         else
7613         {
7614           if(i<iend) {
7615             for(r=0;r<HOST_REGS;r++) {
7616               if(r!=EXCLUDE_REG) {
7617                 if(regs[i].regmap[r]==regmap_pre[i+1][r]) {
7618                   regs[i+1].wasdirty&=wont_dirty_i|~(1<<r);
7619                 }else {/*printf("i: %x (%d) mismatch(+1): %d\n",start+i*4,i,r);/*assert(!((wont_dirty_i>>r)&1));*/}
7620               }
7621             }
7622           }
7623         }
7624         #endif
7625       //}
7626     }
7627     // Deal with changed mappings
7628     temp_will_dirty=will_dirty_i;
7629     temp_wont_dirty=wont_dirty_i;
7630     for(r=0;r<HOST_REGS;r++) {
7631       if(r!=EXCLUDE_REG) {
7632         int nr;
7633         if(regs[i].regmap[r]==regmap_pre[i][r]) {
7634           if(wr) {
7635             #ifndef DESTRUCTIVE_WRITEBACK
7636             regs[i].wasdirty&=wont_dirty_i|~(1<<r);
7637             #endif
7638             regs[i].wasdirty|=will_dirty_i&(1<<r);
7639           }
7640         }
7641         else if((nr=get_reg(regs[i].regmap,regmap_pre[i][r]))>=0) {
7642           // Register moved to a different register
7643           will_dirty_i&=~(1<<r);
7644           wont_dirty_i&=~(1<<r);
7645           will_dirty_i|=((temp_will_dirty>>nr)&1)<<r;
7646           wont_dirty_i|=((temp_wont_dirty>>nr)&1)<<r;
7647           if(wr) {
7648             #ifndef DESTRUCTIVE_WRITEBACK
7649             regs[i].wasdirty&=wont_dirty_i|~(1<<r);
7650             #endif
7651             regs[i].wasdirty|=will_dirty_i&(1<<r);
7652           }
7653         }
7654         else {
7655           will_dirty_i&=~(1<<r);
7656           wont_dirty_i&=~(1<<r);
7657           if((regmap_pre[i][r]&63)>0 && (regmap_pre[i][r]&63)<34) {
7658             will_dirty_i|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7659             wont_dirty_i|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7660           } else {
7661             wont_dirty_i|=1<<r;
7662             /*printf("i: %x (%d) mismatch: %d\n",start+i*4,i,r);/*assert(!((will_dirty>>r)&1));*/
7663           }
7664         }
7665       }
7666     }
7667   }
7668 }
7669
7670   /* disassembly */
7671 void disassemble_inst(int i)
7672 {
7673     if (bt[i]) printf("*"); else printf(" ");
7674     switch(itype[i]) {
7675       case UJUMP:
7676         printf (" %x: %s %8x\n",start+i*4,insn[i],ba[i]);break;
7677       case CJUMP:
7678         printf (" %x: %s r%d,r%d,%8x\n",start+i*4,insn[i],rs1[i],rs2[i],i?start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14):*ba);break;
7679       case SJUMP:
7680         printf (" %x: %s r%d,%8x\n",start+i*4,insn[i],rs1[i],start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14));break;
7681       case FJUMP:
7682         printf (" %x: %s %8x\n",start+i*4,insn[i],ba[i]);break;
7683       case RJUMP:
7684         if (opcode[i]==0x9&&rt1[i]!=31)
7685           printf (" %x: %s r%d,r%d\n",start+i*4,insn[i],rt1[i],rs1[i]);
7686         else
7687           printf (" %x: %s r%d\n",start+i*4,insn[i],rs1[i]);
7688         break;
7689       case SPAN:
7690         printf (" %x: %s (pagespan) r%d,r%d,%8x\n",start+i*4,insn[i],rs1[i],rs2[i],ba[i]);break;
7691       case IMM16:
7692         if(opcode[i]==0xf) //LUI
7693           printf (" %x: %s r%d,%4x0000\n",start+i*4,insn[i],rt1[i],imm[i]&0xffff);
7694         else
7695           printf (" %x: %s r%d,r%d,%d\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
7696         break;
7697       case LOAD:
7698       case LOADLR:
7699         printf (" %x: %s r%d,r%d+%x\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
7700         break;
7701       case STORE:
7702       case STORELR:
7703         printf (" %x: %s r%d,r%d+%x\n",start+i*4,insn[i],rs2[i],rs1[i],imm[i]);
7704         break;
7705       case ALU:
7706       case SHIFT:
7707         printf (" %x: %s r%d,r%d,r%d\n",start+i*4,insn[i],rt1[i],rs1[i],rs2[i]);
7708         break;
7709       case MULTDIV:
7710         printf (" %x: %s r%d,r%d\n",start+i*4,insn[i],rs1[i],rs2[i]);
7711         break;
7712       case SHIFTIMM:
7713         printf (" %x: %s r%d,r%d,%d\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
7714         break;
7715       case MOV:
7716         if((opcode2[i]&0x1d)==0x10)
7717           printf (" %x: %s r%d\n",start+i*4,insn[i],rt1[i]);
7718         else if((opcode2[i]&0x1d)==0x11)
7719           printf (" %x: %s r%d\n",start+i*4,insn[i],rs1[i]);
7720         else
7721           printf (" %x: %s\n",start+i*4,insn[i]);
7722         break;
7723       case COP0:
7724         if(opcode2[i]==0)
7725           printf (" %x: %s r%d,cpr0[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC0
7726         else if(opcode2[i]==4)
7727           printf (" %x: %s r%d,cpr0[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC0
7728         else printf (" %x: %s\n",start+i*4,insn[i]);
7729         break;
7730       case COP1:
7731         if(opcode2[i]<3)
7732           printf (" %x: %s r%d,cpr1[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC1
7733         else if(opcode2[i]>3)
7734           printf (" %x: %s r%d,cpr1[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC1
7735         else printf (" %x: %s\n",start+i*4,insn[i]);
7736         break;
7737       case COP2:
7738         if(opcode2[i]<3)
7739           printf (" %x: %s r%d,cpr2[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC2
7740         else if(opcode2[i]>3)
7741           printf (" %x: %s r%d,cpr2[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC2
7742         else printf (" %x: %s\n",start+i*4,insn[i]);
7743         break;
7744       case C1LS:
7745         printf (" %x: %s cpr1[%d],r%d+%x\n",start+i*4,insn[i],(source[i]>>16)&0x1f,rs1[i],imm[i]);
7746         break;
7747       case C2LS:
7748         printf (" %x: %s cpr2[%d],r%d+%x\n",start+i*4,insn[i],(source[i]>>16)&0x1f,rs1[i],imm[i]);
7749         break;
7750       case INTCALL:
7751         printf (" %x: %s (INTCALL)\n",start+i*4,insn[i]);
7752         break;
7753       default:
7754         //printf (" %s %8x\n",insn[i],source[i]);
7755         printf (" %x: %s\n",start+i*4,insn[i]);
7756     }
7757 }
7758
7759 // clear the state completely, instead of just marking
7760 // things invalid like invalidate_all_pages() does
7761 void new_dynarec_clear_full()
7762 {
7763   int n;
7764   out=(u_char *)BASE_ADDR;
7765   memset(invalid_code,1,sizeof(invalid_code));
7766   memset(hash_table,0xff,sizeof(hash_table));
7767   memset(mini_ht,-1,sizeof(mini_ht));
7768   memset(restore_candidate,0,sizeof(restore_candidate));
7769   memset(shadow,0,sizeof(shadow));
7770   copy=shadow;
7771   expirep=16384; // Expiry pointer, +2 blocks
7772   pending_exception=0;
7773   literalcount=0;
7774   stop_after_jal=0;
7775   // TLB
7776 #ifndef DISABLE_TLB
7777   using_tlb=0;
7778 #endif
7779   sp_in_mirror=0;
7780   for(n=0;n<524288;n++) // 0 .. 0x7FFFFFFF
7781     memory_map[n]=-1;
7782   for(n=524288;n<526336;n++) // 0x80000000 .. 0x807FFFFF
7783     memory_map[n]=((u_int)rdram-0x80000000)>>2;
7784   for(n=526336;n<1048576;n++) // 0x80800000 .. 0xFFFFFFFF
7785     memory_map[n]=-1;
7786   for(n=0;n<4096;n++) ll_clear(jump_in+n);
7787   for(n=0;n<4096;n++) ll_clear(jump_out+n);
7788   for(n=0;n<4096;n++) ll_clear(jump_dirty+n);
7789 }
7790
7791 void new_dynarec_init()
7792 {
7793   printf("Init new dynarec\n");
7794   out=(u_char *)BASE_ADDR;
7795   if (mmap (out, 1<<TARGET_SIZE_2,
7796             PROT_READ | PROT_WRITE | PROT_EXEC,
7797             MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS,
7798             -1, 0) <= 0) {printf("mmap() failed\n");}
7799 #ifdef MUPEN64
7800   rdword=&readmem_dword;
7801   fake_pc.f.r.rs=&readmem_dword;
7802   fake_pc.f.r.rt=&readmem_dword;
7803   fake_pc.f.r.rd=&readmem_dword;
7804 #endif
7805   int n;
7806   new_dynarec_clear_full();
7807 #ifdef HOST_IMM8
7808   // Copy this into local area so we don't have to put it in every literal pool
7809   invc_ptr=invalid_code;
7810 #endif
7811 #ifdef MUPEN64
7812   for(n=0;n<0x8000;n++) { // 0 .. 0x7FFFFFFF
7813     writemem[n] = write_nomem_new;
7814     writememb[n] = write_nomemb_new;
7815     writememh[n] = write_nomemh_new;
7816 #ifndef FORCE32
7817     writememd[n] = write_nomemd_new;
7818 #endif
7819     readmem[n] = read_nomem_new;
7820     readmemb[n] = read_nomemb_new;
7821     readmemh[n] = read_nomemh_new;
7822 #ifndef FORCE32
7823     readmemd[n] = read_nomemd_new;
7824 #endif
7825   }
7826   for(n=0x8000;n<0x8080;n++) { // 0x80000000 .. 0x807FFFFF
7827     writemem[n] = write_rdram_new;
7828     writememb[n] = write_rdramb_new;
7829     writememh[n] = write_rdramh_new;
7830 #ifndef FORCE32
7831     writememd[n] = write_rdramd_new;
7832 #endif
7833   }
7834   for(n=0xC000;n<0x10000;n++) { // 0xC0000000 .. 0xFFFFFFFF
7835     writemem[n] = write_nomem_new;
7836     writememb[n] = write_nomemb_new;
7837     writememh[n] = write_nomemh_new;
7838 #ifndef FORCE32
7839     writememd[n] = write_nomemd_new;
7840 #endif
7841     readmem[n] = read_nomem_new;
7842     readmemb[n] = read_nomemb_new;
7843     readmemh[n] = read_nomemh_new;
7844 #ifndef FORCE32
7845     readmemd[n] = read_nomemd_new;
7846 #endif
7847   }
7848 #endif
7849   tlb_hacks();
7850   arch_init();
7851 }
7852
7853 void new_dynarec_cleanup()
7854 {
7855   int n;
7856   if (munmap ((void *)BASE_ADDR, 1<<TARGET_SIZE_2) < 0) {printf("munmap() failed\n");}
7857   for(n=0;n<4096;n++) ll_clear(jump_in+n);
7858   for(n=0;n<4096;n++) ll_clear(jump_out+n);
7859   for(n=0;n<4096;n++) ll_clear(jump_dirty+n);
7860   #ifdef ROM_COPY
7861   if (munmap (ROM_COPY, 67108864) < 0) {printf("munmap() failed\n");}
7862   #endif
7863 }
7864
7865 int new_recompile_block(int addr)
7866 {
7867 /*
7868   if(addr==0x800cd050) {
7869     int block;
7870     for(block=0x80000;block<0x80800;block++) invalidate_block(block);
7871     int n;
7872     for(n=0;n<=2048;n++) ll_clear(jump_dirty+n);
7873   }
7874 */
7875   //if(Count==365117028) tracedebug=1;
7876   assem_debug("NOTCOMPILED: addr = %x -> %x\n", (int)addr, (int)out);
7877   //printf("NOTCOMPILED: addr = %x -> %x\n", (int)addr, (int)out);
7878   //printf("TRACE: count=%d next=%d (compile %x)\n",Count,next_interupt,addr);
7879   //if(debug) 
7880   //printf("TRACE: count=%d next=%d (checksum %x)\n",Count,next_interupt,mchecksum());
7881   //printf("fpu mapping=%x enabled=%x\n",(Status & 0x04000000)>>26,(Status & 0x20000000)>>29);
7882   /*if(Count>=312978186) {
7883     rlist();
7884   }*/
7885   //rlist();
7886   start = (u_int)addr&~3;
7887   //assert(((u_int)addr&1)==0);
7888 #ifdef PCSX
7889   if(!sp_in_mirror&&(signed int)(psxRegs.GPR.n.sp&0xffe00000)>0x80200000&&
7890      0x10000<=psxRegs.GPR.n.sp&&(psxRegs.GPR.n.sp&~0xe0e00000)<RAM_SIZE) {
7891     printf("SP hack enabled (%08x), @%08x\n", psxRegs.GPR.n.sp, psxRegs.pc);
7892     sp_in_mirror=1;
7893   }
7894   if (Config.HLE && start == 0x80001000) // hlecall
7895   {
7896     // XXX: is this enough? Maybe check hleSoftCall?
7897     u_int beginning=(u_int)out;
7898     u_int page=get_page(start);
7899     invalid_code[start>>12]=0;
7900     emit_movimm(start,0);
7901     emit_writeword(0,(int)&pcaddr);
7902     emit_jmp((int)new_dyna_leave);
7903 #ifdef __arm__
7904     __clear_cache((void *)beginning,out);
7905 #endif
7906     ll_add(jump_in+page,start,(void *)beginning);
7907     return 0;
7908   }
7909   else if ((u_int)addr < 0x00200000 ||
7910     (0xa0000000 <= addr && addr < 0xa0200000)) {
7911     // used for BIOS calls mostly?
7912     source = (u_int *)((u_int)rdram+(start&0x1fffff));
7913     pagelimit = (addr&0xa0000000)|0x00200000;
7914   }
7915   else if (!Config.HLE && (
7916 /*    (0x9fc00000 <= addr && addr < 0x9fc80000) ||*/
7917     (0xbfc00000 <= addr && addr < 0xbfc80000))) {
7918     // BIOS
7919     source = (u_int *)((u_int)psxR+(start&0x7ffff));
7920     pagelimit = (addr&0xfff00000)|0x80000;
7921   }
7922   else
7923 #endif
7924 #ifdef MUPEN64
7925   if ((int)addr >= 0xa4000000 && (int)addr < 0xa4001000) {
7926     source = (u_int *)((u_int)SP_DMEM+start-0xa4000000);
7927     pagelimit = 0xa4001000;
7928   }
7929   else
7930 #endif
7931   if ((int)addr >= 0x80000000 && (int)addr < 0x80000000+RAM_SIZE) {
7932     source = (u_int *)((u_int)rdram+start-0x80000000);
7933     pagelimit = 0x80000000+RAM_SIZE;
7934   }
7935 #ifndef DISABLE_TLB
7936   else if ((signed int)addr >= (signed int)0xC0000000) {
7937     //printf("addr=%x mm=%x\n",(u_int)addr,(memory_map[start>>12]<<2));
7938     //if(tlb_LUT_r[start>>12])
7939       //source = (u_int *)(((int)rdram)+(tlb_LUT_r[start>>12]&0xFFFFF000)+(((int)addr)&0xFFF)-0x80000000);
7940     if((signed int)memory_map[start>>12]>=0) {
7941       source = (u_int *)((u_int)(start+(memory_map[start>>12]<<2)));
7942       pagelimit=(start+4096)&0xFFFFF000;
7943       int map=memory_map[start>>12];
7944       int i;
7945       for(i=0;i<5;i++) {
7946         //printf("start: %x next: %x\n",map,memory_map[pagelimit>>12]);
7947         if((map&0xBFFFFFFF)==(memory_map[pagelimit>>12]&0xBFFFFFFF)) pagelimit+=4096;
7948       }
7949       assem_debug("pagelimit=%x\n",pagelimit);
7950       assem_debug("mapping=%x (%x)\n",memory_map[start>>12],(memory_map[start>>12]<<2)+start);
7951     }
7952     else {
7953       assem_debug("Compile at unmapped memory address: %x \n", (int)addr);
7954       //assem_debug("start: %x next: %x\n",memory_map[start>>12],memory_map[(start+4096)>>12]);
7955       return -1; // Caller will invoke exception handler
7956     }
7957     //printf("source= %x\n",(int)source);
7958   }
7959 #endif
7960   else {
7961     printf("Compile at bogus memory address: %x \n", (int)addr);
7962     exit(1);
7963   }
7964
7965   /* Pass 1: disassemble */
7966   /* Pass 2: register dependencies, branch targets */
7967   /* Pass 3: register allocation */
7968   /* Pass 4: branch dependencies */
7969   /* Pass 5: pre-alloc */
7970   /* Pass 6: optimize clean/dirty state */
7971   /* Pass 7: flag 32-bit registers */
7972   /* Pass 8: assembly */
7973   /* Pass 9: linker */
7974   /* Pass 10: garbage collection / free memory */
7975
7976   int i,j;
7977   int done=0;
7978   unsigned int type,op,op2;
7979
7980   //printf("addr = %x source = %x %x\n", addr,source,source[0]);
7981   
7982   /* Pass 1 disassembly */
7983
7984   for(i=0;!done;i++) {
7985     bt[i]=0;likely[i]=0;ooo[i]=0;op2=0;
7986     minimum_free_regs[i]=0;
7987     opcode[i]=op=source[i]>>26;
7988     switch(op)
7989     {
7990       case 0x00: strcpy(insn[i],"special"); type=NI;
7991         op2=source[i]&0x3f;
7992         switch(op2)
7993         {
7994           case 0x00: strcpy(insn[i],"SLL"); type=SHIFTIMM; break;
7995           case 0x02: strcpy(insn[i],"SRL"); type=SHIFTIMM; break;
7996           case 0x03: strcpy(insn[i],"SRA"); type=SHIFTIMM; break;
7997           case 0x04: strcpy(insn[i],"SLLV"); type=SHIFT; break;
7998           case 0x06: strcpy(insn[i],"SRLV"); type=SHIFT; break;
7999           case 0x07: strcpy(insn[i],"SRAV"); type=SHIFT; break;
8000           case 0x08: strcpy(insn[i],"JR"); type=RJUMP; break;
8001           case 0x09: strcpy(insn[i],"JALR"); type=RJUMP; break;
8002           case 0x0C: strcpy(insn[i],"SYSCALL"); type=SYSCALL; break;
8003           case 0x0D: strcpy(insn[i],"BREAK"); type=OTHER; break;
8004           case 0x0F: strcpy(insn[i],"SYNC"); type=OTHER; break;
8005           case 0x10: strcpy(insn[i],"MFHI"); type=MOV; break;
8006           case 0x11: strcpy(insn[i],"MTHI"); type=MOV; break;
8007           case 0x12: strcpy(insn[i],"MFLO"); type=MOV; break;
8008           case 0x13: strcpy(insn[i],"MTLO"); type=MOV; break;
8009           case 0x18: strcpy(insn[i],"MULT"); type=MULTDIV; break;
8010           case 0x19: strcpy(insn[i],"MULTU"); type=MULTDIV; break;
8011           case 0x1A: strcpy(insn[i],"DIV"); type=MULTDIV; break;
8012           case 0x1B: strcpy(insn[i],"DIVU"); type=MULTDIV; break;
8013           case 0x20: strcpy(insn[i],"ADD"); type=ALU; break;
8014           case 0x21: strcpy(insn[i],"ADDU"); type=ALU; break;
8015           case 0x22: strcpy(insn[i],"SUB"); type=ALU; break;
8016           case 0x23: strcpy(insn[i],"SUBU"); type=ALU; break;
8017           case 0x24: strcpy(insn[i],"AND"); type=ALU; break;
8018           case 0x25: strcpy(insn[i],"OR"); type=ALU; break;
8019           case 0x26: strcpy(insn[i],"XOR"); type=ALU; break;
8020           case 0x27: strcpy(insn[i],"NOR"); type=ALU; break;
8021           case 0x2A: strcpy(insn[i],"SLT"); type=ALU; break;
8022           case 0x2B: strcpy(insn[i],"SLTU"); type=ALU; break;
8023           case 0x30: strcpy(insn[i],"TGE"); type=NI; break;
8024           case 0x31: strcpy(insn[i],"TGEU"); type=NI; break;
8025           case 0x32: strcpy(insn[i],"TLT"); type=NI; break;
8026           case 0x33: strcpy(insn[i],"TLTU"); type=NI; break;
8027           case 0x34: strcpy(insn[i],"TEQ"); type=NI; break;
8028           case 0x36: strcpy(insn[i],"TNE"); type=NI; break;
8029 #ifndef FORCE32
8030           case 0x14: strcpy(insn[i],"DSLLV"); type=SHIFT; break;
8031           case 0x16: strcpy(insn[i],"DSRLV"); type=SHIFT; break;
8032           case 0x17: strcpy(insn[i],"DSRAV"); type=SHIFT; break;
8033           case 0x1C: strcpy(insn[i],"DMULT"); type=MULTDIV; break;
8034           case 0x1D: strcpy(insn[i],"DMULTU"); type=MULTDIV; break;
8035           case 0x1E: strcpy(insn[i],"DDIV"); type=MULTDIV; break;
8036           case 0x1F: strcpy(insn[i],"DDIVU"); type=MULTDIV; break;
8037           case 0x2C: strcpy(insn[i],"DADD"); type=ALU; break;
8038           case 0x2D: strcpy(insn[i],"DADDU"); type=ALU; break;
8039           case 0x2E: strcpy(insn[i],"DSUB"); type=ALU; break;
8040           case 0x2F: strcpy(insn[i],"DSUBU"); type=ALU; break;
8041           case 0x38: strcpy(insn[i],"DSLL"); type=SHIFTIMM; break;
8042           case 0x3A: strcpy(insn[i],"DSRL"); type=SHIFTIMM; break;
8043           case 0x3B: strcpy(insn[i],"DSRA"); type=SHIFTIMM; break;
8044           case 0x3C: strcpy(insn[i],"DSLL32"); type=SHIFTIMM; break;
8045           case 0x3E: strcpy(insn[i],"DSRL32"); type=SHIFTIMM; break;
8046           case 0x3F: strcpy(insn[i],"DSRA32"); type=SHIFTIMM; break;
8047 #endif
8048         }
8049         break;
8050       case 0x01: strcpy(insn[i],"regimm"); type=NI;
8051         op2=(source[i]>>16)&0x1f;
8052         switch(op2)
8053         {
8054           case 0x00: strcpy(insn[i],"BLTZ"); type=SJUMP; break;
8055           case 0x01: strcpy(insn[i],"BGEZ"); type=SJUMP; break;
8056           case 0x02: strcpy(insn[i],"BLTZL"); type=SJUMP; break;
8057           case 0x03: strcpy(insn[i],"BGEZL"); type=SJUMP; break;
8058           case 0x08: strcpy(insn[i],"TGEI"); type=NI; break;
8059           case 0x09: strcpy(insn[i],"TGEIU"); type=NI; break;
8060           case 0x0A: strcpy(insn[i],"TLTI"); type=NI; break;
8061           case 0x0B: strcpy(insn[i],"TLTIU"); type=NI; break;
8062           case 0x0C: strcpy(insn[i],"TEQI"); type=NI; break;
8063           case 0x0E: strcpy(insn[i],"TNEI"); type=NI; break;
8064           case 0x10: strcpy(insn[i],"BLTZAL"); type=SJUMP; break;
8065           case 0x11: strcpy(insn[i],"BGEZAL"); type=SJUMP; break;
8066           case 0x12: strcpy(insn[i],"BLTZALL"); type=SJUMP; break;
8067           case 0x13: strcpy(insn[i],"BGEZALL"); type=SJUMP; break;
8068         }
8069         break;
8070       case 0x02: strcpy(insn[i],"J"); type=UJUMP; break;
8071       case 0x03: strcpy(insn[i],"JAL"); type=UJUMP; break;
8072       case 0x04: strcpy(insn[i],"BEQ"); type=CJUMP; break;
8073       case 0x05: strcpy(insn[i],"BNE"); type=CJUMP; break;
8074       case 0x06: strcpy(insn[i],"BLEZ"); type=CJUMP; break;
8075       case 0x07: strcpy(insn[i],"BGTZ"); type=CJUMP; break;
8076       case 0x08: strcpy(insn[i],"ADDI"); type=IMM16; break;
8077       case 0x09: strcpy(insn[i],"ADDIU"); type=IMM16; break;
8078       case 0x0A: strcpy(insn[i],"SLTI"); type=IMM16; break;
8079       case 0x0B: strcpy(insn[i],"SLTIU"); type=IMM16; break;
8080       case 0x0C: strcpy(insn[i],"ANDI"); type=IMM16; break;
8081       case 0x0D: strcpy(insn[i],"ORI"); type=IMM16; break;
8082       case 0x0E: strcpy(insn[i],"XORI"); type=IMM16; break;
8083       case 0x0F: strcpy(insn[i],"LUI"); type=IMM16; break;
8084       case 0x10: strcpy(insn[i],"cop0"); type=NI;
8085         op2=(source[i]>>21)&0x1f;
8086         switch(op2)
8087         {
8088           case 0x00: strcpy(insn[i],"MFC0"); type=COP0; break;
8089           case 0x04: strcpy(insn[i],"MTC0"); type=COP0; break;
8090           case 0x10: strcpy(insn[i],"tlb"); type=NI;
8091           switch(source[i]&0x3f)
8092           {
8093             case 0x01: strcpy(insn[i],"TLBR"); type=COP0; break;
8094             case 0x02: strcpy(insn[i],"TLBWI"); type=COP0; break;
8095             case 0x06: strcpy(insn[i],"TLBWR"); type=COP0; break;
8096             case 0x08: strcpy(insn[i],"TLBP"); type=COP0; break;
8097 #ifdef PCSX
8098             case 0x10: strcpy(insn[i],"RFE"); type=COP0; break;
8099 #else
8100             case 0x18: strcpy(insn[i],"ERET"); type=COP0; break;
8101 #endif
8102           }
8103         }
8104         break;
8105       case 0x11: strcpy(insn[i],"cop1"); type=NI;
8106         op2=(source[i]>>21)&0x1f;
8107         switch(op2)
8108         {
8109           case 0x00: strcpy(insn[i],"MFC1"); type=COP1; break;
8110           case 0x01: strcpy(insn[i],"DMFC1"); type=COP1; break;
8111           case 0x02: strcpy(insn[i],"CFC1"); type=COP1; break;
8112           case 0x04: strcpy(insn[i],"MTC1"); type=COP1; break;
8113           case 0x05: strcpy(insn[i],"DMTC1"); type=COP1; break;
8114           case 0x06: strcpy(insn[i],"CTC1"); type=COP1; break;
8115           case 0x08: strcpy(insn[i],"BC1"); type=FJUMP;
8116           switch((source[i]>>16)&0x3)
8117           {
8118             case 0x00: strcpy(insn[i],"BC1F"); break;
8119             case 0x01: strcpy(insn[i],"BC1T"); break;
8120             case 0x02: strcpy(insn[i],"BC1FL"); break;
8121             case 0x03: strcpy(insn[i],"BC1TL"); break;
8122           }
8123           break;
8124           case 0x10: strcpy(insn[i],"C1.S"); type=NI;
8125           switch(source[i]&0x3f)
8126           {
8127             case 0x00: strcpy(insn[i],"ADD.S"); type=FLOAT; break;
8128             case 0x01: strcpy(insn[i],"SUB.S"); type=FLOAT; break;
8129             case 0x02: strcpy(insn[i],"MUL.S"); type=FLOAT; break;
8130             case 0x03: strcpy(insn[i],"DIV.S"); type=FLOAT; break;
8131             case 0x04: strcpy(insn[i],"SQRT.S"); type=FLOAT; break;
8132             case 0x05: strcpy(insn[i],"ABS.S"); type=FLOAT; break;
8133             case 0x06: strcpy(insn[i],"MOV.S"); type=FLOAT; break;
8134             case 0x07: strcpy(insn[i],"NEG.S"); type=FLOAT; break;
8135             case 0x08: strcpy(insn[i],"ROUND.L.S"); type=FCONV; break;
8136             case 0x09: strcpy(insn[i],"TRUNC.L.S"); type=FCONV; break;
8137             case 0x0A: strcpy(insn[i],"CEIL.L.S"); type=FCONV; break;
8138             case 0x0B: strcpy(insn[i],"FLOOR.L.S"); type=FCONV; break;
8139             case 0x0C: strcpy(insn[i],"ROUND.W.S"); type=FCONV; break;
8140             case 0x0D: strcpy(insn[i],"TRUNC.W.S"); type=FCONV; break;
8141             case 0x0E: strcpy(insn[i],"CEIL.W.S"); type=FCONV; break;
8142             case 0x0F: strcpy(insn[i],"FLOOR.W.S"); type=FCONV; break;
8143             case 0x21: strcpy(insn[i],"CVT.D.S"); type=FCONV; break;
8144             case 0x24: strcpy(insn[i],"CVT.W.S"); type=FCONV; break;
8145             case 0x25: strcpy(insn[i],"CVT.L.S"); type=FCONV; break;
8146             case 0x30: strcpy(insn[i],"C.F.S"); type=FCOMP; break;
8147             case 0x31: strcpy(insn[i],"C.UN.S"); type=FCOMP; break;
8148             case 0x32: strcpy(insn[i],"C.EQ.S"); type=FCOMP; break;
8149             case 0x33: strcpy(insn[i],"C.UEQ.S"); type=FCOMP; break;
8150             case 0x34: strcpy(insn[i],"C.OLT.S"); type=FCOMP; break;
8151             case 0x35: strcpy(insn[i],"C.ULT.S"); type=FCOMP; break;
8152             case 0x36: strcpy(insn[i],"C.OLE.S"); type=FCOMP; break;
8153             case 0x37: strcpy(insn[i],"C.ULE.S"); type=FCOMP; break;
8154             case 0x38: strcpy(insn[i],"C.SF.S"); type=FCOMP; break;
8155             case 0x39: strcpy(insn[i],"C.NGLE.S"); type=FCOMP; break;
8156             case 0x3A: strcpy(insn[i],"C.SEQ.S"); type=FCOMP; break;
8157             case 0x3B: strcpy(insn[i],"C.NGL.S"); type=FCOMP; break;
8158             case 0x3C: strcpy(insn[i],"C.LT.S"); type=FCOMP; break;
8159             case 0x3D: strcpy(insn[i],"C.NGE.S"); type=FCOMP; break;
8160             case 0x3E: strcpy(insn[i],"C.LE.S"); type=FCOMP; break;
8161             case 0x3F: strcpy(insn[i],"C.NGT.S"); type=FCOMP; break;
8162           }
8163           break;
8164           case 0x11: strcpy(insn[i],"C1.D"); type=NI;
8165           switch(source[i]&0x3f)
8166           {
8167             case 0x00: strcpy(insn[i],"ADD.D"); type=FLOAT; break;
8168             case 0x01: strcpy(insn[i],"SUB.D"); type=FLOAT; break;
8169             case 0x02: strcpy(insn[i],"MUL.D"); type=FLOAT; break;
8170             case 0x03: strcpy(insn[i],"DIV.D"); type=FLOAT; break;
8171             case 0x04: strcpy(insn[i],"SQRT.D"); type=FLOAT; break;
8172             case 0x05: strcpy(insn[i],"ABS.D"); type=FLOAT; break;
8173             case 0x06: strcpy(insn[i],"MOV.D"); type=FLOAT; break;
8174             case 0x07: strcpy(insn[i],"NEG.D"); type=FLOAT; break;
8175             case 0x08: strcpy(insn[i],"ROUND.L.D"); type=FCONV; break;
8176             case 0x09: strcpy(insn[i],"TRUNC.L.D"); type=FCONV; break;
8177             case 0x0A: strcpy(insn[i],"CEIL.L.D"); type=FCONV; break;
8178             case 0x0B: strcpy(insn[i],"FLOOR.L.D"); type=FCONV; break;
8179             case 0x0C: strcpy(insn[i],"ROUND.W.D"); type=FCONV; break;
8180             case 0x0D: strcpy(insn[i],"TRUNC.W.D"); type=FCONV; break;
8181             case 0x0E: strcpy(insn[i],"CEIL.W.D"); type=FCONV; break;
8182             case 0x0F: strcpy(insn[i],"FLOOR.W.D"); type=FCONV; break;
8183             case 0x20: strcpy(insn[i],"CVT.S.D"); type=FCONV; break;
8184             case 0x24: strcpy(insn[i],"CVT.W.D"); type=FCONV; break;
8185             case 0x25: strcpy(insn[i],"CVT.L.D"); type=FCONV; break;
8186             case 0x30: strcpy(insn[i],"C.F.D"); type=FCOMP; break;
8187             case 0x31: strcpy(insn[i],"C.UN.D"); type=FCOMP; break;
8188             case 0x32: strcpy(insn[i],"C.EQ.D"); type=FCOMP; break;
8189             case 0x33: strcpy(insn[i],"C.UEQ.D"); type=FCOMP; break;
8190             case 0x34: strcpy(insn[i],"C.OLT.D"); type=FCOMP; break;
8191             case 0x35: strcpy(insn[i],"C.ULT.D"); type=FCOMP; break;
8192             case 0x36: strcpy(insn[i],"C.OLE.D"); type=FCOMP; break;
8193             case 0x37: strcpy(insn[i],"C.ULE.D"); type=FCOMP; break;
8194             case 0x38: strcpy(insn[i],"C.SF.D"); type=FCOMP; break;
8195             case 0x39: strcpy(insn[i],"C.NGLE.D"); type=FCOMP; break;
8196             case 0x3A: strcpy(insn[i],"C.SEQ.D"); type=FCOMP; break;
8197             case 0x3B: strcpy(insn[i],"C.NGL.D"); type=FCOMP; break;
8198             case 0x3C: strcpy(insn[i],"C.LT.D"); type=FCOMP; break;
8199             case 0x3D: strcpy(insn[i],"C.NGE.D"); type=FCOMP; break;
8200             case 0x3E: strcpy(insn[i],"C.LE.D"); type=FCOMP; break;
8201             case 0x3F: strcpy(insn[i],"C.NGT.D"); type=FCOMP; break;
8202           }
8203           break;
8204           case 0x14: strcpy(insn[i],"C1.W"); type=NI;
8205           switch(source[i]&0x3f)
8206           {
8207             case 0x20: strcpy(insn[i],"CVT.S.W"); type=FCONV; break;
8208             case 0x21: strcpy(insn[i],"CVT.D.W"); type=FCONV; break;
8209           }
8210           break;
8211           case 0x15: strcpy(insn[i],"C1.L"); type=NI;
8212           switch(source[i]&0x3f)
8213           {
8214             case 0x20: strcpy(insn[i],"CVT.S.L"); type=FCONV; break;
8215             case 0x21: strcpy(insn[i],"CVT.D.L"); type=FCONV; break;
8216           }
8217           break;
8218         }
8219         break;
8220 #ifndef FORCE32
8221       case 0x14: strcpy(insn[i],"BEQL"); type=CJUMP; break;
8222       case 0x15: strcpy(insn[i],"BNEL"); type=CJUMP; break;
8223       case 0x16: strcpy(insn[i],"BLEZL"); type=CJUMP; break;
8224       case 0x17: strcpy(insn[i],"BGTZL"); type=CJUMP; break;
8225       case 0x18: strcpy(insn[i],"DADDI"); type=IMM16; break;
8226       case 0x19: strcpy(insn[i],"DADDIU"); type=IMM16; break;
8227       case 0x1A: strcpy(insn[i],"LDL"); type=LOADLR; break;
8228       case 0x1B: strcpy(insn[i],"LDR"); type=LOADLR; break;
8229 #endif
8230       case 0x20: strcpy(insn[i],"LB"); type=LOAD; break;
8231       case 0x21: strcpy(insn[i],"LH"); type=LOAD; break;
8232       case 0x22: strcpy(insn[i],"LWL"); type=LOADLR; break;
8233       case 0x23: strcpy(insn[i],"LW"); type=LOAD; break;
8234       case 0x24: strcpy(insn[i],"LBU"); type=LOAD; break;
8235       case 0x25: strcpy(insn[i],"LHU"); type=LOAD; break;
8236       case 0x26: strcpy(insn[i],"LWR"); type=LOADLR; break;
8237       case 0x27: strcpy(insn[i],"LWU"); type=LOAD; break;
8238       case 0x28: strcpy(insn[i],"SB"); type=STORE; break;
8239       case 0x29: strcpy(insn[i],"SH"); type=STORE; break;
8240       case 0x2A: strcpy(insn[i],"SWL"); type=STORELR; break;
8241       case 0x2B: strcpy(insn[i],"SW"); type=STORE; break;
8242 #ifndef FORCE32
8243       case 0x2C: strcpy(insn[i],"SDL"); type=STORELR; break;
8244       case 0x2D: strcpy(insn[i],"SDR"); type=STORELR; break;
8245 #endif
8246       case 0x2E: strcpy(insn[i],"SWR"); type=STORELR; break;
8247       case 0x2F: strcpy(insn[i],"CACHE"); type=NOP; break;
8248       case 0x30: strcpy(insn[i],"LL"); type=NI; break;
8249       case 0x31: strcpy(insn[i],"LWC1"); type=C1LS; break;
8250 #ifndef FORCE32
8251       case 0x34: strcpy(insn[i],"LLD"); type=NI; break;
8252       case 0x35: strcpy(insn[i],"LDC1"); type=C1LS; break;
8253       case 0x37: strcpy(insn[i],"LD"); type=LOAD; break;
8254 #endif
8255       case 0x38: strcpy(insn[i],"SC"); type=NI; break;
8256       case 0x39: strcpy(insn[i],"SWC1"); type=C1LS; break;
8257 #ifndef FORCE32
8258       case 0x3C: strcpy(insn[i],"SCD"); type=NI; break;
8259       case 0x3D: strcpy(insn[i],"SDC1"); type=C1LS; break;
8260       case 0x3F: strcpy(insn[i],"SD"); type=STORE; break;
8261 #endif
8262 #ifdef PCSX
8263       case 0x12: strcpy(insn[i],"COP2"); type=NI;
8264         // note: COP MIPS-1 encoding differs from MIPS32
8265         op2=(source[i]>>21)&0x1f;
8266         if (source[i]&0x3f) {
8267           if (gte_handlers[source[i]&0x3f]!=NULL) {
8268             snprintf(insn[i], sizeof(insn[i]), "COP2 %x", source[i]&0x3f);
8269             type=C2OP;
8270           }
8271         }
8272         else switch(op2)
8273         {
8274           case 0x00: strcpy(insn[i],"MFC2"); type=COP2; break;
8275           case 0x02: strcpy(insn[i],"CFC2"); type=COP2; break;
8276           case 0x04: strcpy(insn[i],"MTC2"); type=COP2; break;
8277           case 0x06: strcpy(insn[i],"CTC2"); type=COP2; break;
8278         }
8279         break;
8280       case 0x32: strcpy(insn[i],"LWC2"); type=C2LS; break;
8281       case 0x3A: strcpy(insn[i],"SWC2"); type=C2LS; break;
8282       case 0x3B: strcpy(insn[i],"HLECALL"); type=HLECALL; break;
8283 #endif
8284       default: strcpy(insn[i],"???"); type=NI;
8285         printf("NI %08x @%08x (%08x)\n", source[i], addr + i*4, addr);
8286         break;
8287     }
8288     itype[i]=type;
8289     opcode2[i]=op2;
8290     /* Get registers/immediates */
8291     lt1[i]=0;
8292     us1[i]=0;
8293     us2[i]=0;
8294     dep1[i]=0;
8295     dep2[i]=0;
8296     switch(type) {
8297       case LOAD:
8298         rs1[i]=(source[i]>>21)&0x1f;
8299         rs2[i]=0;
8300         rt1[i]=(source[i]>>16)&0x1f;
8301         rt2[i]=0;
8302         imm[i]=(short)source[i];
8303         break;
8304       case STORE:
8305       case STORELR:
8306         rs1[i]=(source[i]>>21)&0x1f;
8307         rs2[i]=(source[i]>>16)&0x1f;
8308         rt1[i]=0;
8309         rt2[i]=0;
8310         imm[i]=(short)source[i];
8311         if(op==0x2c||op==0x2d||op==0x3f) us1[i]=rs2[i]; // 64-bit SDL/SDR/SD
8312         break;
8313       case LOADLR:
8314         // LWL/LWR only load part of the register,
8315         // therefore the target register must be treated as a source too
8316         rs1[i]=(source[i]>>21)&0x1f;
8317         rs2[i]=(source[i]>>16)&0x1f;
8318         rt1[i]=(source[i]>>16)&0x1f;
8319         rt2[i]=0;
8320         imm[i]=(short)source[i];
8321         if(op==0x1a||op==0x1b) us1[i]=rs2[i]; // LDR/LDL
8322         if(op==0x26) dep1[i]=rt1[i]; // LWR
8323         break;
8324       case IMM16:
8325         if (op==0x0f) rs1[i]=0; // LUI instruction has no source register
8326         else rs1[i]=(source[i]>>21)&0x1f;
8327         rs2[i]=0;
8328         rt1[i]=(source[i]>>16)&0x1f;
8329         rt2[i]=0;
8330         if(op>=0x0c&&op<=0x0e) { // ANDI/ORI/XORI
8331           imm[i]=(unsigned short)source[i];
8332         }else{
8333           imm[i]=(short)source[i];
8334         }
8335         if(op==0x18||op==0x19) us1[i]=rs1[i]; // DADDI/DADDIU
8336         if(op==0x0a||op==0x0b) us1[i]=rs1[i]; // SLTI/SLTIU
8337         if(op==0x0d||op==0x0e) dep1[i]=rs1[i]; // ORI/XORI
8338         break;
8339       case UJUMP:
8340         rs1[i]=0;
8341         rs2[i]=0;
8342         rt1[i]=0;
8343         rt2[i]=0;
8344         // The JAL instruction writes to r31.
8345         if (op&1) {
8346           rt1[i]=31;
8347         }
8348         rs2[i]=CCREG;
8349         break;
8350       case RJUMP:
8351         rs1[i]=(source[i]>>21)&0x1f;
8352         rs2[i]=0;
8353         rt1[i]=0;
8354         rt2[i]=0;
8355         // The JALR instruction writes to rd.
8356         if (op2&1) {
8357           rt1[i]=(source[i]>>11)&0x1f;
8358         }
8359         rs2[i]=CCREG;
8360         break;
8361       case CJUMP:
8362         rs1[i]=(source[i]>>21)&0x1f;
8363         rs2[i]=(source[i]>>16)&0x1f;
8364         rt1[i]=0;
8365         rt2[i]=0;
8366         if(op&2) { // BGTZ/BLEZ
8367           rs2[i]=0;
8368         }
8369         us1[i]=rs1[i];
8370         us2[i]=rs2[i];
8371         likely[i]=op>>4;
8372         break;
8373       case SJUMP:
8374         rs1[i]=(source[i]>>21)&0x1f;
8375         rs2[i]=CCREG;
8376         rt1[i]=0;
8377         rt2[i]=0;
8378         us1[i]=rs1[i];
8379         if(op2&0x10) { // BxxAL
8380           rt1[i]=31;
8381           // NOTE: If the branch is not taken, r31 is still overwritten
8382         }
8383         likely[i]=(op2&2)>>1;
8384         break;
8385       case FJUMP:
8386         rs1[i]=FSREG;
8387         rs2[i]=CSREG;
8388         rt1[i]=0;
8389         rt2[i]=0;
8390         likely[i]=((source[i])>>17)&1;
8391         break;
8392       case ALU:
8393         rs1[i]=(source[i]>>21)&0x1f; // source
8394         rs2[i]=(source[i]>>16)&0x1f; // subtract amount
8395         rt1[i]=(source[i]>>11)&0x1f; // destination
8396         rt2[i]=0;
8397         if(op2==0x2a||op2==0x2b) { // SLT/SLTU
8398           us1[i]=rs1[i];us2[i]=rs2[i];
8399         }
8400         else if(op2>=0x24&&op2<=0x27) { // AND/OR/XOR/NOR
8401           dep1[i]=rs1[i];dep2[i]=rs2[i];
8402         }
8403         else if(op2>=0x2c&&op2<=0x2f) { // DADD/DSUB
8404           dep1[i]=rs1[i];dep2[i]=rs2[i];
8405         }
8406         break;
8407       case MULTDIV:
8408         rs1[i]=(source[i]>>21)&0x1f; // source
8409         rs2[i]=(source[i]>>16)&0x1f; // divisor
8410         rt1[i]=HIREG;
8411         rt2[i]=LOREG;
8412         if (op2>=0x1c&&op2<=0x1f) { // DMULT/DMULTU/DDIV/DDIVU
8413           us1[i]=rs1[i];us2[i]=rs2[i];
8414         }
8415         break;
8416       case MOV:
8417         rs1[i]=0;
8418         rs2[i]=0;
8419         rt1[i]=0;
8420         rt2[i]=0;
8421         if(op2==0x10) rs1[i]=HIREG; // MFHI
8422         if(op2==0x11) rt1[i]=HIREG; // MTHI
8423         if(op2==0x12) rs1[i]=LOREG; // MFLO
8424         if(op2==0x13) rt1[i]=LOREG; // MTLO
8425         if((op2&0x1d)==0x10) rt1[i]=(source[i]>>11)&0x1f; // MFxx
8426         if((op2&0x1d)==0x11) rs1[i]=(source[i]>>21)&0x1f; // MTxx
8427         dep1[i]=rs1[i];
8428         break;
8429       case SHIFT:
8430         rs1[i]=(source[i]>>16)&0x1f; // target of shift
8431         rs2[i]=(source[i]>>21)&0x1f; // shift amount
8432         rt1[i]=(source[i]>>11)&0x1f; // destination
8433         rt2[i]=0;
8434         // DSLLV/DSRLV/DSRAV are 64-bit
8435         if(op2>=0x14&&op2<=0x17) us1[i]=rs1[i];
8436         break;
8437       case SHIFTIMM:
8438         rs1[i]=(source[i]>>16)&0x1f;
8439         rs2[i]=0;
8440         rt1[i]=(source[i]>>11)&0x1f;
8441         rt2[i]=0;
8442         imm[i]=(source[i]>>6)&0x1f;
8443         // DSxx32 instructions
8444         if(op2>=0x3c) imm[i]|=0x20;
8445         // DSLL/DSRL/DSRA/DSRA32/DSRL32 but not DSLL32 require 64-bit source
8446         if(op2>=0x38&&op2!=0x3c) us1[i]=rs1[i];
8447         break;
8448       case COP0:
8449         rs1[i]=0;
8450         rs2[i]=0;
8451         rt1[i]=0;
8452         rt2[i]=0;
8453         if(op2==0) rt1[i]=(source[i]>>16)&0x1F; // MFC0
8454         if(op2==4) rs1[i]=(source[i]>>16)&0x1F; // MTC0
8455         if(op2==4&&((source[i]>>11)&0x1f)==12) rt2[i]=CSREG; // Status
8456         if(op2==16) if((source[i]&0x3f)==0x18) rs2[i]=CCREG; // ERET
8457         break;
8458       case COP1:
8459       case COP2:
8460         rs1[i]=0;
8461         rs2[i]=0;
8462         rt1[i]=0;
8463         rt2[i]=0;
8464         if(op2<3) rt1[i]=(source[i]>>16)&0x1F; // MFC1/DMFC1/CFC1
8465         if(op2>3) rs1[i]=(source[i]>>16)&0x1F; // MTC1/DMTC1/CTC1
8466         if(op2==5) us1[i]=rs1[i]; // DMTC1
8467         rs2[i]=CSREG;
8468         break;
8469       case C1LS:
8470         rs1[i]=(source[i]>>21)&0x1F;
8471         rs2[i]=CSREG;
8472         rt1[i]=0;
8473         rt2[i]=0;
8474         imm[i]=(short)source[i];
8475         break;
8476       case C2LS:
8477         rs1[i]=(source[i]>>21)&0x1F;
8478         rs2[i]=0;
8479         rt1[i]=0;
8480         rt2[i]=0;
8481         imm[i]=(short)source[i];
8482         break;
8483       case FLOAT:
8484       case FCONV:
8485         rs1[i]=0;
8486         rs2[i]=CSREG;
8487         rt1[i]=0;
8488         rt2[i]=0;
8489         break;
8490       case FCOMP:
8491         rs1[i]=FSREG;
8492         rs2[i]=CSREG;
8493         rt1[i]=FSREG;
8494         rt2[i]=0;
8495         break;
8496       case SYSCALL:
8497       case HLECALL:
8498       case INTCALL:
8499         rs1[i]=CCREG;
8500         rs2[i]=0;
8501         rt1[i]=0;
8502         rt2[i]=0;
8503         break;
8504       default:
8505         rs1[i]=0;
8506         rs2[i]=0;
8507         rt1[i]=0;
8508         rt2[i]=0;
8509     }
8510     /* Calculate branch target addresses */
8511     if(type==UJUMP)
8512       ba[i]=((start+i*4+4)&0xF0000000)|(((unsigned int)source[i]<<6)>>4);
8513     else if(type==CJUMP&&rs1[i]==rs2[i]&&(op&1))
8514       ba[i]=start+i*4+8; // Ignore never taken branch
8515     else if(type==SJUMP&&rs1[i]==0&&!(op2&1))
8516       ba[i]=start+i*4+8; // Ignore never taken branch
8517     else if(type==CJUMP||type==SJUMP||type==FJUMP)
8518       ba[i]=start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14);
8519     else ba[i]=-1;
8520 #ifdef PCSX
8521     if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)) {
8522       int do_in_intrp=0;
8523       // branch in delay slot?
8524       if(type==RJUMP||type==UJUMP||type==CJUMP||type==SJUMP||type==FJUMP) {
8525         // don't handle first branch and call interpreter if it's hit
8526         printf("branch in delay slot @%08x (%08x)\n", addr + i*4, addr);
8527         do_in_intrp=1;
8528       }
8529       // basic load delay detection
8530       else if((type==LOAD||type==LOADLR||type==COP0||type==COP2||type==C2LS)&&rt1[i]!=0) {
8531         int t=(ba[i-1]-start)/4;
8532         if(0 <= t && t < i &&(rt1[i]==rs1[t]||rt1[i]==rs2[t])&&itype[t]!=CJUMP&&itype[t]!=SJUMP) {
8533           // jump target wants DS result - potential load delay effect
8534           printf("load delay @%08x (%08x)\n", addr + i*4, addr);
8535           do_in_intrp=1;
8536           bt[t+1]=1; // expected return from interpreter
8537         }
8538         else if(i>=2&&rt1[i-2]==2&&rt1[i]==2&&rs1[i]!=2&&rs2[i]!=2&&rs1[i-1]!=2&&rs2[i-1]!=2&&
8539               !(i>=3&&(itype[i-3]==RJUMP||itype[i-3]==UJUMP||itype[i-3]==CJUMP||itype[i-3]==SJUMP))) {
8540           // v0 overwrite like this is a sign of trouble, bail out
8541           printf("v0 overwrite @%08x (%08x)\n", addr + i*4, addr);
8542           do_in_intrp=1;
8543         }
8544       }
8545       if(do_in_intrp) {
8546         rs1[i-1]=CCREG;
8547         rs2[i-1]=rt1[i-1]=rt2[i-1]=0;
8548         ba[i-1]=-1;
8549         itype[i-1]=INTCALL;
8550         done=2;
8551         i--; // don't compile the DS
8552       }
8553     }
8554 #endif
8555     /* Is this the end of the block? */
8556     if(i>0&&(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)) {
8557       if(rt1[i-1]==0) { // Continue past subroutine call (JAL)
8558         done=2;
8559       }
8560       else {
8561         if(stop_after_jal) done=1;
8562         // Stop on BREAK
8563         if((source[i+1]&0xfc00003f)==0x0d) done=1;
8564       }
8565       // Don't recompile stuff that's already compiled
8566       if(check_addr(start+i*4+4)) done=1;
8567       // Don't get too close to the limit
8568       if(i>MAXBLOCK/2) done=1;
8569     }
8570     if(itype[i]==SYSCALL&&stop_after_jal) done=1;
8571     if(itype[i]==HLECALL||itype[i]==INTCALL) done=2;
8572     if(done==2) {
8573       // Does the block continue due to a branch?
8574       for(j=i-1;j>=0;j--)
8575       {
8576         if(ba[j]==start+i*4+4) done=j=0;
8577         if(ba[j]==start+i*4+8) done=j=0;
8578       }
8579     }
8580     //assert(i<MAXBLOCK-1);
8581     if(start+i*4==pagelimit-4) done=1;
8582     assert(start+i*4<pagelimit);
8583     if (i==MAXBLOCK-1) done=1;
8584     // Stop if we're compiling junk
8585     if(itype[i]==NI&&opcode[i]==0x11) {
8586       done=stop_after_jal=1;
8587       printf("Disabled speculative precompilation\n");
8588     }
8589   }
8590   slen=i;
8591   if(itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==RJUMP||itype[i-1]==FJUMP) {
8592     if(start+i*4==pagelimit) {
8593       itype[i-1]=SPAN;
8594     }
8595   }
8596   assert(slen>0);
8597
8598   /* Pass 2 - Register dependencies and branch targets */
8599
8600   unneeded_registers(0,slen-1,0);
8601   
8602   /* Pass 3 - Register allocation */
8603
8604   struct regstat current; // Current register allocations/status
8605   current.is32=1;
8606   current.dirty=0;
8607   current.u=unneeded_reg[0];
8608   current.uu=unneeded_reg_upper[0];
8609   clear_all_regs(current.regmap);
8610   alloc_reg(&current,0,CCREG);
8611   dirty_reg(&current,CCREG);
8612   current.isconst=0;
8613   current.wasconst=0;
8614   int ds=0;
8615   int cc=0;
8616   int hr=-1;
8617
8618 #ifndef FORCE32
8619   provisional_32bit();
8620 #endif
8621   if((u_int)addr&1) {
8622     // First instruction is delay slot
8623     cc=-1;
8624     bt[1]=1;
8625     ds=1;
8626     unneeded_reg[0]=1;
8627     unneeded_reg_upper[0]=1;
8628     current.regmap[HOST_BTREG]=BTREG;
8629   }
8630   
8631   for(i=0;i<slen;i++)
8632   {
8633     if(bt[i])
8634     {
8635       int hr;
8636       for(hr=0;hr<HOST_REGS;hr++)
8637       {
8638         // Is this really necessary?
8639         if(current.regmap[hr]==0) current.regmap[hr]=-1;
8640       }
8641       current.isconst=0;
8642     }
8643     if(i>1)
8644     {
8645       if((opcode[i-2]&0x2f)==0x05) // BNE/BNEL
8646       {
8647         if(rs1[i-2]==0||rs2[i-2]==0)
8648         {
8649           if(rs1[i-2]) {
8650             current.is32|=1LL<<rs1[i-2];
8651             int hr=get_reg(current.regmap,rs1[i-2]|64);
8652             if(hr>=0) current.regmap[hr]=-1;
8653           }
8654           if(rs2[i-2]) {
8655             current.is32|=1LL<<rs2[i-2];
8656             int hr=get_reg(current.regmap,rs2[i-2]|64);
8657             if(hr>=0) current.regmap[hr]=-1;
8658           }
8659         }
8660       }
8661     }
8662 #ifndef FORCE32
8663     // If something jumps here with 64-bit values
8664     // then promote those registers to 64 bits
8665     if(bt[i])
8666     {
8667       uint64_t temp_is32=current.is32;
8668       for(j=i-1;j>=0;j--)
8669       {
8670         if(ba[j]==start+i*4) 
8671           temp_is32&=branch_regs[j].is32;
8672       }
8673       for(j=i;j<slen;j++)
8674       {
8675         if(ba[j]==start+i*4) 
8676           //temp_is32=1;
8677           temp_is32&=p32[j];
8678       }
8679       if(temp_is32!=current.is32) {
8680         //printf("dumping 32-bit regs (%x)\n",start+i*4);
8681         #ifdef DESTRUCTIVE_WRITEBACK
8682         for(hr=0;hr<HOST_REGS;hr++)
8683         {
8684           int r=current.regmap[hr];
8685           if(r>0&&r<64)
8686           {
8687             if((current.dirty>>hr)&((current.is32&~temp_is32)>>r)&1) {
8688               temp_is32|=1LL<<r;
8689               //printf("restore %d\n",r);
8690             }
8691           }
8692         }
8693         #endif
8694         current.is32=temp_is32;
8695       }
8696     }
8697 #else
8698     current.is32=-1LL;
8699 #endif
8700
8701     memcpy(regmap_pre[i],current.regmap,sizeof(current.regmap));
8702     regs[i].wasconst=current.isconst;
8703     regs[i].was32=current.is32;
8704     regs[i].wasdirty=current.dirty;
8705     #if defined(DESTRUCTIVE_WRITEBACK) && !defined(FORCE32)
8706     // To change a dirty register from 32 to 64 bits, we must write
8707     // it out during the previous cycle (for branches, 2 cycles)
8708     if(i<slen-1&&bt[i+1]&&itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP)
8709     {
8710       uint64_t temp_is32=current.is32;
8711       for(j=i-1;j>=0;j--)
8712       {
8713         if(ba[j]==start+i*4+4) 
8714           temp_is32&=branch_regs[j].is32;
8715       }
8716       for(j=i;j<slen;j++)
8717       {
8718         if(ba[j]==start+i*4+4) 
8719           //temp_is32=1;
8720           temp_is32&=p32[j];
8721       }
8722       if(temp_is32!=current.is32) {
8723         //printf("pre-dumping 32-bit regs (%x)\n",start+i*4);
8724         for(hr=0;hr<HOST_REGS;hr++)
8725         {
8726           int r=current.regmap[hr];
8727           if(r>0)
8728           {
8729             if((current.dirty>>hr)&((current.is32&~temp_is32)>>(r&63))&1) {
8730               if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP)
8731               {
8732                 if(rs1[i]!=(r&63)&&rs2[i]!=(r&63))
8733                 {
8734                   //printf("dump %d/r%d\n",hr,r);
8735                   current.regmap[hr]=-1;
8736                   if(get_reg(current.regmap,r|64)>=0) 
8737                     current.regmap[get_reg(current.regmap,r|64)]=-1;
8738                 }
8739               }
8740             }
8741           }
8742         }
8743       }
8744     }
8745     else if(i<slen-2&&bt[i+2]&&(source[i-1]>>16)!=0x1000&&(itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP))
8746     {
8747       uint64_t temp_is32=current.is32;
8748       for(j=i-1;j>=0;j--)
8749       {
8750         if(ba[j]==start+i*4+8) 
8751           temp_is32&=branch_regs[j].is32;
8752       }
8753       for(j=i;j<slen;j++)
8754       {
8755         if(ba[j]==start+i*4+8) 
8756           //temp_is32=1;
8757           temp_is32&=p32[j];
8758       }
8759       if(temp_is32!=current.is32) {
8760         //printf("pre-dumping 32-bit regs (%x)\n",start+i*4);
8761         for(hr=0;hr<HOST_REGS;hr++)
8762         {
8763           int r=current.regmap[hr];
8764           if(r>0)
8765           {
8766             if((current.dirty>>hr)&((current.is32&~temp_is32)>>(r&63))&1) {
8767               if(rs1[i]!=(r&63)&&rs2[i]!=(r&63)&&rs1[i+1]!=(r&63)&&rs2[i+1]!=(r&63))
8768               {
8769                 //printf("dump %d/r%d\n",hr,r);
8770                 current.regmap[hr]=-1;
8771                 if(get_reg(current.regmap,r|64)>=0) 
8772                   current.regmap[get_reg(current.regmap,r|64)]=-1;
8773               }
8774             }
8775           }
8776         }
8777       }
8778     }
8779     #endif
8780     if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP) {
8781       if(i+1<slen) {
8782         current.u=unneeded_reg[i+1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
8783         current.uu=unneeded_reg_upper[i+1]&~((1LL<<us1[i])|(1LL<<us2[i]));
8784         if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
8785         current.u|=1;
8786         current.uu|=1;
8787       } else {
8788         current.u=1;
8789         current.uu=1;
8790       }
8791     } else {
8792       if(i+1<slen) {
8793         current.u=branch_unneeded_reg[i]&~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
8794         current.uu=branch_unneeded_reg_upper[i]&~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
8795         if((~current.uu>>rt1[i+1])&1) current.uu&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
8796         current.u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
8797         current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
8798         current.u|=1;
8799         current.uu|=1;
8800       } else { printf("oops, branch at end of block with no delay slot\n");exit(1); }
8801     }
8802     is_ds[i]=ds;
8803     if(ds) {
8804       ds=0; // Skip delay slot, already allocated as part of branch
8805       // ...but we need to alloc it in case something jumps here
8806       if(i+1<slen) {
8807         current.u=branch_unneeded_reg[i-1]&unneeded_reg[i+1];
8808         current.uu=branch_unneeded_reg_upper[i-1]&unneeded_reg_upper[i+1];
8809       }else{
8810         current.u=branch_unneeded_reg[i-1];
8811         current.uu=branch_unneeded_reg_upper[i-1];
8812       }
8813       current.u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
8814       current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
8815       if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
8816       current.u|=1;
8817       current.uu|=1;
8818       struct regstat temp;
8819       memcpy(&temp,&current,sizeof(current));
8820       temp.wasdirty=temp.dirty;
8821       temp.was32=temp.is32;
8822       // TODO: Take into account unconditional branches, as below
8823       delayslot_alloc(&temp,i);
8824       memcpy(regs[i].regmap,temp.regmap,sizeof(temp.regmap));
8825       regs[i].wasdirty=temp.wasdirty;
8826       regs[i].was32=temp.was32;
8827       regs[i].dirty=temp.dirty;
8828       regs[i].is32=temp.is32;
8829       regs[i].isconst=0;
8830       regs[i].wasconst=0;
8831       current.isconst=0;
8832       // Create entry (branch target) regmap
8833       for(hr=0;hr<HOST_REGS;hr++)
8834       {
8835         int r=temp.regmap[hr];
8836         if(r>=0) {
8837           if(r!=regmap_pre[i][hr]) {
8838             regs[i].regmap_entry[hr]=-1;
8839           }
8840           else
8841           {
8842             if(r<64){
8843               if((current.u>>r)&1) {
8844                 regs[i].regmap_entry[hr]=-1;
8845                 regs[i].regmap[hr]=-1;
8846                 //Don't clear regs in the delay slot as the branch might need them
8847                 //current.regmap[hr]=-1;
8848               }else
8849                 regs[i].regmap_entry[hr]=r;
8850             }
8851             else {
8852               if((current.uu>>(r&63))&1) {
8853                 regs[i].regmap_entry[hr]=-1;
8854                 regs[i].regmap[hr]=-1;
8855                 //Don't clear regs in the delay slot as the branch might need them
8856                 //current.regmap[hr]=-1;
8857               }else
8858                 regs[i].regmap_entry[hr]=r;
8859             }
8860           }
8861         } else {
8862           // First instruction expects CCREG to be allocated
8863           if(i==0&&hr==HOST_CCREG) 
8864             regs[i].regmap_entry[hr]=CCREG;
8865           else
8866             regs[i].regmap_entry[hr]=-1;
8867         }
8868       }
8869     }
8870     else { // Not delay slot
8871       switch(itype[i]) {
8872         case UJUMP:
8873           //current.isconst=0; // DEBUG
8874           //current.wasconst=0; // DEBUG
8875           //regs[i].wasconst=0; // DEBUG
8876           clear_const(&current,rt1[i]);
8877           alloc_cc(&current,i);
8878           dirty_reg(&current,CCREG);
8879           ooo[i]=1;
8880           delayslot_alloc(&current,i+1);
8881           if (rt1[i]==31) {
8882             alloc_reg(&current,i,31);
8883             dirty_reg(&current,31);
8884             //assert(rs1[i+1]!=31&&rs2[i+1]!=31);
8885             //assert(rt1[i+1]!=rt1[i]);
8886             #ifdef REG_PREFETCH
8887             alloc_reg(&current,i,PTEMP);
8888             #endif
8889             //current.is32|=1LL<<rt1[i];
8890           }
8891           //current.isconst=0; // DEBUG
8892           ds=1;
8893           //printf("i=%d, isconst=%x\n",i,current.isconst);
8894           break;
8895         case RJUMP:
8896           //current.isconst=0;
8897           //current.wasconst=0;
8898           //regs[i].wasconst=0;
8899           clear_const(&current,rs1[i]);
8900           clear_const(&current,rt1[i]);
8901           alloc_cc(&current,i);
8902           dirty_reg(&current,CCREG);
8903           if(rs1[i]!=rt1[i+1]&&rs1[i]!=rt2[i+1]) {
8904             alloc_reg(&current,i,rs1[i]);
8905             if (rt1[i]!=0) {
8906               alloc_reg(&current,i,rt1[i]);
8907               dirty_reg(&current,rt1[i]);
8908               assert(rs1[i+1]!=rt1[i]&&rs2[i+1]!=rt1[i]);
8909               assert(rt1[i+1]!=rt1[i]);
8910               #ifdef REG_PREFETCH
8911               alloc_reg(&current,i,PTEMP);
8912               #endif
8913             }
8914             #ifdef USE_MINI_HT
8915             if(rs1[i]==31) { // JALR
8916               alloc_reg(&current,i,RHASH);
8917               #ifndef HOST_IMM_ADDR32
8918               alloc_reg(&current,i,RHTBL);
8919               #endif
8920             }
8921             #endif
8922             delayslot_alloc(&current,i+1);
8923           } else {
8924             // The delay slot overwrites our source register,
8925             // allocate a temporary register to hold the old value.
8926             current.isconst=0;
8927             current.wasconst=0;
8928             regs[i].wasconst=0;
8929             delayslot_alloc(&current,i+1);
8930             current.isconst=0;
8931             alloc_reg(&current,i,RTEMP);
8932           }
8933           //current.isconst=0; // DEBUG
8934           ooo[i]=1;
8935           ds=1;
8936           break;
8937         case CJUMP:
8938           //current.isconst=0;
8939           //current.wasconst=0;
8940           //regs[i].wasconst=0;
8941           clear_const(&current,rs1[i]);
8942           clear_const(&current,rs2[i]);
8943           if((opcode[i]&0x3E)==4) // BEQ/BNE
8944           {
8945             alloc_cc(&current,i);
8946             dirty_reg(&current,CCREG);
8947             if(rs1[i]) alloc_reg(&current,i,rs1[i]);
8948             if(rs2[i]) alloc_reg(&current,i,rs2[i]);
8949             if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
8950             {
8951               if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
8952               if(rs2[i]) alloc_reg64(&current,i,rs2[i]);
8953             }
8954             if((rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]))||
8955                (rs2[i]&&(rs2[i]==rt1[i+1]||rs2[i]==rt2[i+1]))) {
8956               // The delay slot overwrites one of our conditions.
8957               // Allocate the branch condition registers instead.
8958               current.isconst=0;
8959               current.wasconst=0;
8960               regs[i].wasconst=0;
8961               if(rs1[i]) alloc_reg(&current,i,rs1[i]);
8962               if(rs2[i]) alloc_reg(&current,i,rs2[i]);
8963               if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
8964               {
8965                 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
8966                 if(rs2[i]) alloc_reg64(&current,i,rs2[i]);
8967               }
8968             }
8969             else
8970             {
8971               ooo[i]=1;
8972               delayslot_alloc(&current,i+1);
8973             }
8974           }
8975           else
8976           if((opcode[i]&0x3E)==6) // BLEZ/BGTZ
8977           {
8978             alloc_cc(&current,i);
8979             dirty_reg(&current,CCREG);
8980             alloc_reg(&current,i,rs1[i]);
8981             if(!(current.is32>>rs1[i]&1))
8982             {
8983               alloc_reg64(&current,i,rs1[i]);
8984             }
8985             if(rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1])) {
8986               // The delay slot overwrites one of our conditions.
8987               // Allocate the branch condition registers instead.
8988               current.isconst=0;
8989               current.wasconst=0;
8990               regs[i].wasconst=0;
8991               if(rs1[i]) alloc_reg(&current,i,rs1[i]);
8992               if(!((current.is32>>rs1[i])&1))
8993               {
8994                 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
8995               }
8996             }
8997             else
8998             {
8999               ooo[i]=1;
9000               delayslot_alloc(&current,i+1);
9001             }
9002           }
9003           else
9004           // Don't alloc the delay slot yet because we might not execute it
9005           if((opcode[i]&0x3E)==0x14) // BEQL/BNEL
9006           {
9007             current.isconst=0;
9008             current.wasconst=0;
9009             regs[i].wasconst=0;
9010             alloc_cc(&current,i);
9011             dirty_reg(&current,CCREG);
9012             alloc_reg(&current,i,rs1[i]);
9013             alloc_reg(&current,i,rs2[i]);
9014             if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
9015             {
9016               alloc_reg64(&current,i,rs1[i]);
9017               alloc_reg64(&current,i,rs2[i]);
9018             }
9019           }
9020           else
9021           if((opcode[i]&0x3E)==0x16) // BLEZL/BGTZL
9022           {
9023             current.isconst=0;
9024             current.wasconst=0;
9025             regs[i].wasconst=0;
9026             alloc_cc(&current,i);
9027             dirty_reg(&current,CCREG);
9028             alloc_reg(&current,i,rs1[i]);
9029             if(!(current.is32>>rs1[i]&1))
9030             {
9031               alloc_reg64(&current,i,rs1[i]);
9032             }
9033           }
9034           ds=1;
9035           //current.isconst=0;
9036           break;
9037         case SJUMP:
9038           //current.isconst=0;
9039           //current.wasconst=0;
9040           //regs[i].wasconst=0;
9041           clear_const(&current,rs1[i]);
9042           clear_const(&current,rt1[i]);
9043           //if((opcode2[i]&0x1E)==0x0) // BLTZ/BGEZ
9044           if((opcode2[i]&0x0E)==0x0) // BLTZ/BGEZ
9045           {
9046             alloc_cc(&current,i);
9047             dirty_reg(&current,CCREG);
9048             alloc_reg(&current,i,rs1[i]);
9049             if(!(current.is32>>rs1[i]&1))
9050             {
9051               alloc_reg64(&current,i,rs1[i]);
9052             }
9053             if (rt1[i]==31) { // BLTZAL/BGEZAL
9054               alloc_reg(&current,i,31);
9055               dirty_reg(&current,31);
9056               //#ifdef REG_PREFETCH
9057               //alloc_reg(&current,i,PTEMP);
9058               //#endif
9059               //current.is32|=1LL<<rt1[i];
9060             }
9061             if((rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1])) // The delay slot overwrites the branch condition.
9062                ||(rt1[i]==31&&(rs1[i+1]==31||rs2[i+1]==31||rt1[i+1]==31||rt2[i+1]==31))) { // DS touches $ra
9063               // Allocate the branch condition registers instead.
9064               current.isconst=0;
9065               current.wasconst=0;
9066               regs[i].wasconst=0;
9067               if(rs1[i]) alloc_reg(&current,i,rs1[i]);
9068               if(!((current.is32>>rs1[i])&1))
9069               {
9070                 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
9071               }
9072             }
9073             else
9074             {
9075               ooo[i]=1;
9076               delayslot_alloc(&current,i+1);
9077             }
9078           }
9079           else
9080           // Don't alloc the delay slot yet because we might not execute it
9081           if((opcode2[i]&0x1E)==0x2) // BLTZL/BGEZL
9082           {
9083             current.isconst=0;
9084             current.wasconst=0;
9085             regs[i].wasconst=0;
9086             alloc_cc(&current,i);
9087             dirty_reg(&current,CCREG);
9088             alloc_reg(&current,i,rs1[i]);
9089             if(!(current.is32>>rs1[i]&1))
9090             {
9091               alloc_reg64(&current,i,rs1[i]);
9092             }
9093           }
9094           ds=1;
9095           //current.isconst=0;
9096           break;
9097         case FJUMP:
9098           current.isconst=0;
9099           current.wasconst=0;
9100           regs[i].wasconst=0;
9101           if(likely[i]==0) // BC1F/BC1T
9102           {
9103             // TODO: Theoretically we can run out of registers here on x86.
9104             // The delay slot can allocate up to six, and we need to check
9105             // CSREG before executing the delay slot.  Possibly we can drop
9106             // the cycle count and then reload it after checking that the
9107             // FPU is in a usable state, or don't do out-of-order execution.
9108             alloc_cc(&current,i);
9109             dirty_reg(&current,CCREG);
9110             alloc_reg(&current,i,FSREG);
9111             alloc_reg(&current,i,CSREG);
9112             if(itype[i+1]==FCOMP) {
9113               // The delay slot overwrites the branch condition.
9114               // Allocate the branch condition registers instead.
9115               alloc_cc(&current,i);
9116               dirty_reg(&current,CCREG);
9117               alloc_reg(&current,i,CSREG);
9118               alloc_reg(&current,i,FSREG);
9119             }
9120             else {
9121               ooo[i]=1;
9122               delayslot_alloc(&current,i+1);
9123               alloc_reg(&current,i+1,CSREG);
9124             }
9125           }
9126           else
9127           // Don't alloc the delay slot yet because we might not execute it
9128           if(likely[i]) // BC1FL/BC1TL
9129           {
9130             alloc_cc(&current,i);
9131             dirty_reg(&current,CCREG);
9132             alloc_reg(&current,i,CSREG);
9133             alloc_reg(&current,i,FSREG);
9134           }
9135           ds=1;
9136           current.isconst=0;
9137           break;
9138         case IMM16:
9139           imm16_alloc(&current,i);
9140           break;
9141         case LOAD:
9142         case LOADLR:
9143           load_alloc(&current,i);
9144           break;
9145         case STORE:
9146         case STORELR:
9147           store_alloc(&current,i);
9148           break;
9149         case ALU:
9150           alu_alloc(&current,i);
9151           break;
9152         case SHIFT:
9153           shift_alloc(&current,i);
9154           break;
9155         case MULTDIV:
9156           multdiv_alloc(&current,i);
9157           break;
9158         case SHIFTIMM:
9159           shiftimm_alloc(&current,i);
9160           break;
9161         case MOV:
9162           mov_alloc(&current,i);
9163           break;
9164         case COP0:
9165           cop0_alloc(&current,i);
9166           break;
9167         case COP1:
9168         case COP2:
9169           cop1_alloc(&current,i);
9170           break;
9171         case C1LS:
9172           c1ls_alloc(&current,i);
9173           break;
9174         case C2LS:
9175           c2ls_alloc(&current,i);
9176           break;
9177         case C2OP:
9178           c2op_alloc(&current,i);
9179           break;
9180         case FCONV:
9181           fconv_alloc(&current,i);
9182           break;
9183         case FLOAT:
9184           float_alloc(&current,i);
9185           break;
9186         case FCOMP:
9187           fcomp_alloc(&current,i);
9188           break;
9189         case SYSCALL:
9190         case HLECALL:
9191         case INTCALL:
9192           syscall_alloc(&current,i);
9193           break;
9194         case SPAN:
9195           pagespan_alloc(&current,i);
9196           break;
9197       }
9198       
9199       // Drop the upper half of registers that have become 32-bit
9200       current.uu|=current.is32&((1LL<<rt1[i])|(1LL<<rt2[i]));
9201       if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP) {
9202         current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
9203         if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9204         current.uu|=1;
9205       } else {
9206         current.uu|=current.is32&((1LL<<rt1[i+1])|(1LL<<rt2[i+1]));
9207         current.uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
9208         if((~current.uu>>rt1[i+1])&1) current.uu&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
9209         current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
9210         current.uu|=1;
9211       }
9212
9213       // Create entry (branch target) regmap
9214       for(hr=0;hr<HOST_REGS;hr++)
9215       {
9216         int r,or,er;
9217         r=current.regmap[hr];
9218         if(r>=0) {
9219           if(r!=regmap_pre[i][hr]) {
9220             // TODO: delay slot (?)
9221             or=get_reg(regmap_pre[i],r); // Get old mapping for this register
9222             if(or<0||(r&63)>=TEMPREG){
9223               regs[i].regmap_entry[hr]=-1;
9224             }
9225             else
9226             {
9227               // Just move it to a different register
9228               regs[i].regmap_entry[hr]=r;
9229               // If it was dirty before, it's still dirty
9230               if((regs[i].wasdirty>>or)&1) dirty_reg(&current,r&63);
9231             }
9232           }
9233           else
9234           {
9235             // Unneeded
9236             if(r==0){
9237               regs[i].regmap_entry[hr]=0;
9238             }
9239             else
9240             if(r<64){
9241               if((current.u>>r)&1) {
9242                 regs[i].regmap_entry[hr]=-1;
9243                 //regs[i].regmap[hr]=-1;
9244                 current.regmap[hr]=-1;
9245               }else
9246                 regs[i].regmap_entry[hr]=r;
9247             }
9248             else {
9249               if((current.uu>>(r&63))&1) {
9250                 regs[i].regmap_entry[hr]=-1;
9251                 //regs[i].regmap[hr]=-1;
9252                 current.regmap[hr]=-1;
9253               }else
9254                 regs[i].regmap_entry[hr]=r;
9255             }
9256           }
9257         } else {
9258           // Branches expect CCREG to be allocated at the target
9259           if(regmap_pre[i][hr]==CCREG) 
9260             regs[i].regmap_entry[hr]=CCREG;
9261           else
9262             regs[i].regmap_entry[hr]=-1;
9263         }
9264       }
9265       memcpy(regs[i].regmap,current.regmap,sizeof(current.regmap));
9266     }
9267     /* Branch post-alloc */
9268     if(i>0)
9269     {
9270       current.was32=current.is32;
9271       current.wasdirty=current.dirty;
9272       switch(itype[i-1]) {
9273         case UJUMP:
9274           memcpy(&branch_regs[i-1],&current,sizeof(current));
9275           branch_regs[i-1].isconst=0;
9276           branch_regs[i-1].wasconst=0;
9277           branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
9278           branch_regs[i-1].uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
9279           alloc_cc(&branch_regs[i-1],i-1);
9280           dirty_reg(&branch_regs[i-1],CCREG);
9281           if(rt1[i-1]==31) { // JAL
9282             alloc_reg(&branch_regs[i-1],i-1,31);
9283             dirty_reg(&branch_regs[i-1],31);
9284             branch_regs[i-1].is32|=1LL<<31;
9285           }
9286           memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9287           memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9288           break;
9289         case RJUMP:
9290           memcpy(&branch_regs[i-1],&current,sizeof(current));
9291           branch_regs[i-1].isconst=0;
9292           branch_regs[i-1].wasconst=0;
9293           branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
9294           branch_regs[i-1].uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
9295           alloc_cc(&branch_regs[i-1],i-1);
9296           dirty_reg(&branch_regs[i-1],CCREG);
9297           alloc_reg(&branch_regs[i-1],i-1,rs1[i-1]);
9298           if(rt1[i-1]!=0) { // JALR
9299             alloc_reg(&branch_regs[i-1],i-1,rt1[i-1]);
9300             dirty_reg(&branch_regs[i-1],rt1[i-1]);
9301             branch_regs[i-1].is32|=1LL<<rt1[i-1];
9302           }
9303           #ifdef USE_MINI_HT
9304           if(rs1[i-1]==31) { // JALR
9305             alloc_reg(&branch_regs[i-1],i-1,RHASH);
9306             #ifndef HOST_IMM_ADDR32
9307             alloc_reg(&branch_regs[i-1],i-1,RHTBL);
9308             #endif
9309           }
9310           #endif
9311           memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9312           memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9313           break;
9314         case CJUMP:
9315           if((opcode[i-1]&0x3E)==4) // BEQ/BNE
9316           {
9317             alloc_cc(&current,i-1);
9318             dirty_reg(&current,CCREG);
9319             if((rs1[i-1]&&(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]))||
9320                (rs2[i-1]&&(rs2[i-1]==rt1[i]||rs2[i-1]==rt2[i]))) {
9321               // The delay slot overwrote one of our conditions
9322               // Delay slot goes after the test (in order)
9323               current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
9324               current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
9325               if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9326               current.u|=1;
9327               current.uu|=1;
9328               delayslot_alloc(&current,i);
9329               current.isconst=0;
9330             }
9331             else
9332             {
9333               current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
9334               current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
9335               // Alloc the branch condition registers
9336               if(rs1[i-1]) alloc_reg(&current,i-1,rs1[i-1]);
9337               if(rs2[i-1]) alloc_reg(&current,i-1,rs2[i-1]);
9338               if(!((current.is32>>rs1[i-1])&(current.is32>>rs2[i-1])&1))
9339               {
9340                 if(rs1[i-1]) alloc_reg64(&current,i-1,rs1[i-1]);
9341                 if(rs2[i-1]) alloc_reg64(&current,i-1,rs2[i-1]);
9342               }
9343             }
9344             memcpy(&branch_regs[i-1],&current,sizeof(current));
9345             branch_regs[i-1].isconst=0;
9346             branch_regs[i-1].wasconst=0;
9347             memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9348             memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9349           }
9350           else
9351           if((opcode[i-1]&0x3E)==6) // BLEZ/BGTZ
9352           {
9353             alloc_cc(&current,i-1);
9354             dirty_reg(&current,CCREG);
9355             if(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]) {
9356               // The delay slot overwrote the branch condition
9357               // Delay slot goes after the test (in order)
9358               current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
9359               current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
9360               if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9361               current.u|=1;
9362               current.uu|=1;
9363               delayslot_alloc(&current,i);
9364               current.isconst=0;
9365             }
9366             else
9367             {
9368               current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
9369               current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
9370               // Alloc the branch condition register
9371               alloc_reg(&current,i-1,rs1[i-1]);
9372               if(!(current.is32>>rs1[i-1]&1))
9373               {
9374                 alloc_reg64(&current,i-1,rs1[i-1]);
9375               }
9376             }
9377             memcpy(&branch_regs[i-1],&current,sizeof(current));
9378             branch_regs[i-1].isconst=0;
9379             branch_regs[i-1].wasconst=0;
9380             memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9381             memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9382           }
9383           else
9384           // Alloc the delay slot in case the branch is taken
9385           if((opcode[i-1]&0x3E)==0x14) // BEQL/BNEL
9386           {
9387             memcpy(&branch_regs[i-1],&current,sizeof(current));
9388             branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9389             branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9390             if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9391             alloc_cc(&branch_regs[i-1],i);
9392             dirty_reg(&branch_regs[i-1],CCREG);
9393             delayslot_alloc(&branch_regs[i-1],i);
9394             branch_regs[i-1].isconst=0;
9395             alloc_reg(&current,i,CCREG); // Not taken path
9396             dirty_reg(&current,CCREG);
9397             memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9398           }
9399           else
9400           if((opcode[i-1]&0x3E)==0x16) // BLEZL/BGTZL
9401           {
9402             memcpy(&branch_regs[i-1],&current,sizeof(current));
9403             branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9404             branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9405             if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9406             alloc_cc(&branch_regs[i-1],i);
9407             dirty_reg(&branch_regs[i-1],CCREG);
9408             delayslot_alloc(&branch_regs[i-1],i);
9409             branch_regs[i-1].isconst=0;
9410             alloc_reg(&current,i,CCREG); // Not taken path
9411             dirty_reg(&current,CCREG);
9412             memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9413           }
9414           break;
9415         case SJUMP:
9416           //if((opcode2[i-1]&0x1E)==0) // BLTZ/BGEZ
9417           if((opcode2[i-1]&0x0E)==0) // BLTZ/BGEZ
9418           {
9419             alloc_cc(&current,i-1);
9420             dirty_reg(&current,CCREG);
9421             if(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]) {
9422               // The delay slot overwrote the branch condition
9423               // Delay slot goes after the test (in order)
9424               current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
9425               current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
9426               if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9427               current.u|=1;
9428               current.uu|=1;
9429               delayslot_alloc(&current,i);
9430               current.isconst=0;
9431             }
9432             else
9433             {
9434               current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
9435               current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
9436               // Alloc the branch condition register
9437               alloc_reg(&current,i-1,rs1[i-1]);
9438               if(!(current.is32>>rs1[i-1]&1))
9439               {
9440                 alloc_reg64(&current,i-1,rs1[i-1]);
9441               }
9442             }
9443             memcpy(&branch_regs[i-1],&current,sizeof(current));
9444             branch_regs[i-1].isconst=0;
9445             branch_regs[i-1].wasconst=0;
9446             memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9447             memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9448           }
9449           else
9450           // Alloc the delay slot in case the branch is taken
9451           if((opcode2[i-1]&0x1E)==2) // BLTZL/BGEZL
9452           {
9453             memcpy(&branch_regs[i-1],&current,sizeof(current));
9454             branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9455             branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9456             if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9457             alloc_cc(&branch_regs[i-1],i);
9458             dirty_reg(&branch_regs[i-1],CCREG);
9459             delayslot_alloc(&branch_regs[i-1],i);
9460             branch_regs[i-1].isconst=0;
9461             alloc_reg(&current,i,CCREG); // Not taken path
9462             dirty_reg(&current,CCREG);
9463             memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9464           }
9465           // FIXME: BLTZAL/BGEZAL
9466           if(opcode2[i-1]&0x10) { // BxxZAL
9467             alloc_reg(&branch_regs[i-1],i-1,31);
9468             dirty_reg(&branch_regs[i-1],31);
9469             branch_regs[i-1].is32|=1LL<<31;
9470           }
9471           break;
9472         case FJUMP:
9473           if(likely[i-1]==0) // BC1F/BC1T
9474           {
9475             alloc_cc(&current,i-1);
9476             dirty_reg(&current,CCREG);
9477             if(itype[i]==FCOMP) {
9478               // The delay slot overwrote the branch condition
9479               // Delay slot goes after the test (in order)
9480               delayslot_alloc(&current,i);
9481               current.isconst=0;
9482             }
9483             else
9484             {
9485               current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
9486               current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
9487               // Alloc the branch condition register
9488               alloc_reg(&current,i-1,FSREG);
9489             }
9490             memcpy(&branch_regs[i-1],&current,sizeof(current));
9491             memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9492           }
9493           else // BC1FL/BC1TL
9494           {
9495             // Alloc the delay slot in case the branch is taken
9496             memcpy(&branch_regs[i-1],&current,sizeof(current));
9497             branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9498             branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9499             if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9500             alloc_cc(&branch_regs[i-1],i);
9501             dirty_reg(&branch_regs[i-1],CCREG);
9502             delayslot_alloc(&branch_regs[i-1],i);
9503             branch_regs[i-1].isconst=0;
9504             alloc_reg(&current,i,CCREG); // Not taken path
9505             dirty_reg(&current,CCREG);
9506             memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9507           }
9508           break;
9509       }
9510
9511       if(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)
9512       {
9513         if(rt1[i-1]==31) // JAL/JALR
9514         {
9515           // Subroutine call will return here, don't alloc any registers
9516           current.is32=1;
9517           current.dirty=0;
9518           clear_all_regs(current.regmap);
9519           alloc_reg(&current,i,CCREG);
9520           dirty_reg(&current,CCREG);
9521         }
9522         else if(i+1<slen)
9523         {
9524           // Internal branch will jump here, match registers to caller
9525           current.is32=0x3FFFFFFFFLL;
9526           current.dirty=0;
9527           clear_all_regs(current.regmap);
9528           alloc_reg(&current,i,CCREG);
9529           dirty_reg(&current,CCREG);
9530           for(j=i-1;j>=0;j--)
9531           {
9532             if(ba[j]==start+i*4+4) {
9533               memcpy(current.regmap,branch_regs[j].regmap,sizeof(current.regmap));
9534               current.is32=branch_regs[j].is32;
9535               current.dirty=branch_regs[j].dirty;
9536               break;
9537             }
9538           }
9539           while(j>=0) {
9540             if(ba[j]==start+i*4+4) {
9541               for(hr=0;hr<HOST_REGS;hr++) {
9542                 if(current.regmap[hr]!=branch_regs[j].regmap[hr]) {
9543                   current.regmap[hr]=-1;
9544                 }
9545                 current.is32&=branch_regs[j].is32;
9546                 current.dirty&=branch_regs[j].dirty;
9547               }
9548             }
9549             j--;
9550           }
9551         }
9552       }
9553     }
9554
9555     // Count cycles in between branches
9556     ccadj[i]=cc;
9557     if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP||itype[i]==SYSCALL||itype[i]==HLECALL))
9558     {
9559       cc=0;
9560     }
9561 #ifdef PCSX
9562     else if(/*itype[i]==LOAD||*/itype[i]==STORE||itype[i]==C1LS) // load causes weird timing issues
9563     {
9564       cc+=2; // 2 cycle penalty (after CLOCK_DIVIDER)
9565     }
9566     else if(itype[i]==C2LS)
9567     {
9568       cc+=4;
9569     }
9570 #endif
9571     else
9572     {
9573       cc++;
9574     }
9575
9576     flush_dirty_uppers(&current);
9577     if(!is_ds[i]) {
9578       regs[i].is32=current.is32;
9579       regs[i].dirty=current.dirty;
9580       regs[i].isconst=current.isconst;
9581       memcpy(constmap[i],current.constmap,sizeof(current.constmap));
9582     }
9583     for(hr=0;hr<HOST_REGS;hr++) {
9584       if(hr!=EXCLUDE_REG&&regs[i].regmap[hr]>=0) {
9585         if(regmap_pre[i][hr]!=regs[i].regmap[hr]) {
9586           regs[i].wasconst&=~(1<<hr);
9587         }
9588       }
9589     }
9590     if(current.regmap[HOST_BTREG]==BTREG) current.regmap[HOST_BTREG]=-1;
9591   }
9592   
9593   /* Pass 4 - Cull unused host registers */
9594   
9595   uint64_t nr=0;
9596   
9597   for (i=slen-1;i>=0;i--)
9598   {
9599     int hr;
9600     if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
9601     {
9602       if(ba[i]<start || ba[i]>=(start+slen*4))
9603       {
9604         // Branch out of this block, don't need anything
9605         nr=0;
9606       }
9607       else
9608       {
9609         // Internal branch
9610         // Need whatever matches the target
9611         nr=0;
9612         int t=(ba[i]-start)>>2;
9613         for(hr=0;hr<HOST_REGS;hr++)
9614         {
9615           if(regs[i].regmap_entry[hr]>=0) {
9616             if(regs[i].regmap_entry[hr]==regs[t].regmap_entry[hr]) nr|=1<<hr;
9617           }
9618         }
9619       }
9620       // Conditional branch may need registers for following instructions
9621       if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
9622       {
9623         if(i<slen-2) {
9624           nr|=needed_reg[i+2];
9625           for(hr=0;hr<HOST_REGS;hr++)
9626           {
9627             if(regmap_pre[i+2][hr]>=0&&get_reg(regs[i+2].regmap_entry,regmap_pre[i+2][hr])<0) nr&=~(1<<hr);
9628             //if((regmap_entry[i+2][hr])>=0) if(!((nr>>hr)&1)) printf("%x-bogus(%d=%d)\n",start+i*4,hr,regmap_entry[i+2][hr]);
9629           }
9630         }
9631       }
9632       // Don't need stuff which is overwritten
9633       //if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
9634       //if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
9635       // Merge in delay slot
9636       for(hr=0;hr<HOST_REGS;hr++)
9637       {
9638         if(!likely[i]) {
9639           // These are overwritten unless the branch is "likely"
9640           // and the delay slot is nullified if not taken
9641           if(rt1[i+1]&&rt1[i+1]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9642           if(rt2[i+1]&&rt2[i+1]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9643         }
9644         if(us1[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9645         if(us2[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9646         if(rs1[i+1]==regmap_pre[i][hr]) nr|=1<<hr;
9647         if(rs2[i+1]==regmap_pre[i][hr]) nr|=1<<hr;
9648         if(us1[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9649         if(us2[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9650         if(rs1[i+1]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9651         if(rs2[i+1]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9652         if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1)) {
9653           if(dep1[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9654           if(dep2[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9655         }
9656         if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1)) {
9657           if(dep1[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9658           if(dep2[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9659         }
9660         if(itype[i+1]==STORE || itype[i+1]==STORELR || (opcode[i+1]&0x3b)==0x39 || (opcode[i+1]&0x3b)==0x3a) {
9661           if(regmap_pre[i][hr]==INVCP) nr|=1<<hr;
9662           if(regs[i].regmap_entry[hr]==INVCP) nr|=1<<hr;
9663         }
9664       }
9665     }
9666     else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
9667     {
9668       // SYSCALL instruction (software interrupt)
9669       nr=0;
9670     }
9671     else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
9672     {
9673       // ERET instruction (return from interrupt)
9674       nr=0;
9675     }
9676     else // Non-branch
9677     {
9678       if(i<slen-1) {
9679         for(hr=0;hr<HOST_REGS;hr++) {
9680           if(regmap_pre[i+1][hr]>=0&&get_reg(regs[i+1].regmap_entry,regmap_pre[i+1][hr])<0) nr&=~(1<<hr);
9681           if(regs[i].regmap[hr]!=regmap_pre[i+1][hr]) nr&=~(1<<hr);
9682           if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
9683           if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
9684         }
9685       }
9686     }
9687     for(hr=0;hr<HOST_REGS;hr++)
9688     {
9689       // Overwritten registers are not needed
9690       if(rt1[i]&&rt1[i]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9691       if(rt2[i]&&rt2[i]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9692       if(FTEMP==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9693       // Source registers are needed
9694       if(us1[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9695       if(us2[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9696       if(rs1[i]==regmap_pre[i][hr]) nr|=1<<hr;
9697       if(rs2[i]==regmap_pre[i][hr]) nr|=1<<hr;
9698       if(us1[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9699       if(us2[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9700       if(rs1[i]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9701       if(rs2[i]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9702       if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1)) {
9703         if(dep1[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9704         if(dep1[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9705       }
9706       if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1)) {
9707         if(dep2[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9708         if(dep2[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9709       }
9710       if(itype[i]==STORE || itype[i]==STORELR || (opcode[i]&0x3b)==0x39 || (opcode[i]&0x3b)==0x3a) {
9711         if(regmap_pre[i][hr]==INVCP) nr|=1<<hr;
9712         if(regs[i].regmap_entry[hr]==INVCP) nr|=1<<hr;
9713       }
9714       // Don't store a register immediately after writing it,
9715       // may prevent dual-issue.
9716       // But do so if this is a branch target, otherwise we
9717       // might have to load the register before the branch.
9718       if(i>0&&!bt[i]&&((regs[i].wasdirty>>hr)&1)) {
9719         if((regmap_pre[i][hr]>0&&regmap_pre[i][hr]<64&&!((unneeded_reg[i]>>regmap_pre[i][hr])&1)) ||
9720            (regmap_pre[i][hr]>64&&!((unneeded_reg_upper[i]>>(regmap_pre[i][hr]&63))&1)) ) {
9721           if(rt1[i-1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9722           if(rt2[i-1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9723         }
9724         if((regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64&&!((unneeded_reg[i]>>regs[i].regmap_entry[hr])&1)) ||
9725            (regs[i].regmap_entry[hr]>64&&!((unneeded_reg_upper[i]>>(regs[i].regmap_entry[hr]&63))&1)) ) {
9726           if(rt1[i-1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9727           if(rt2[i-1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9728         }
9729       }
9730     }
9731     // Cycle count is needed at branches.  Assume it is needed at the target too.
9732     if(i==0||bt[i]||itype[i]==CJUMP||itype[i]==FJUMP||itype[i]==SPAN) {
9733       if(regmap_pre[i][HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
9734       if(regs[i].regmap_entry[HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
9735     }
9736     // Save it
9737     needed_reg[i]=nr;
9738     
9739     // Deallocate unneeded registers
9740     for(hr=0;hr<HOST_REGS;hr++)
9741     {
9742       if(!((nr>>hr)&1)) {
9743         if(regs[i].regmap_entry[hr]!=CCREG) regs[i].regmap_entry[hr]=-1;
9744         if((regs[i].regmap[hr]&63)!=rs1[i] && (regs[i].regmap[hr]&63)!=rs2[i] &&
9745            (regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
9746            (regs[i].regmap[hr]&63)!=PTEMP && (regs[i].regmap[hr]&63)!=CCREG)
9747         {
9748           if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
9749           {
9750             if(likely[i]) {
9751               regs[i].regmap[hr]=-1;
9752               regs[i].isconst&=~(1<<hr);
9753               if(i<slen-2) {
9754                 regmap_pre[i+2][hr]=-1;
9755                 regs[i+2].wasconst&=~(1<<hr);
9756               }
9757             }
9758           }
9759         }
9760         if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
9761         {
9762           int d1=0,d2=0,map=0,temp=0;
9763           if(get_reg(regs[i].regmap,rt1[i+1]|64)>=0||get_reg(branch_regs[i].regmap,rt1[i+1]|64)>=0)
9764           {
9765             d1=dep1[i+1];
9766             d2=dep2[i+1];
9767           }
9768           if(using_tlb) {
9769             if(itype[i+1]==LOAD || itype[i+1]==LOADLR ||
9770                itype[i+1]==STORE || itype[i+1]==STORELR ||
9771                itype[i+1]==C1LS || itype[i+1]==C2LS)
9772             map=TLREG;
9773           } else
9774           if(itype[i+1]==STORE || itype[i+1]==STORELR ||
9775              (opcode[i+1]&0x3b)==0x39 || (opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1 || SWC2/SDC2
9776             map=INVCP;
9777           }
9778           if(itype[i+1]==LOADLR || itype[i+1]==STORELR ||
9779              itype[i+1]==C1LS || itype[i+1]==C2LS)
9780             temp=FTEMP;
9781           if((regs[i].regmap[hr]&63)!=rs1[i] && (regs[i].regmap[hr]&63)!=rs2[i] &&
9782              (regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
9783              (regs[i].regmap[hr]&63)!=rt1[i+1] && (regs[i].regmap[hr]&63)!=rt2[i+1] &&
9784              (regs[i].regmap[hr]^64)!=us1[i+1] && (regs[i].regmap[hr]^64)!=us2[i+1] &&
9785              (regs[i].regmap[hr]^64)!=d1 && (regs[i].regmap[hr]^64)!=d2 &&
9786              regs[i].regmap[hr]!=rs1[i+1] && regs[i].regmap[hr]!=rs2[i+1] &&
9787              (regs[i].regmap[hr]&63)!=temp && regs[i].regmap[hr]!=PTEMP &&
9788              regs[i].regmap[hr]!=RHASH && regs[i].regmap[hr]!=RHTBL &&
9789              regs[i].regmap[hr]!=RTEMP && regs[i].regmap[hr]!=CCREG &&
9790              regs[i].regmap[hr]!=map )
9791           {
9792             regs[i].regmap[hr]=-1;
9793             regs[i].isconst&=~(1<<hr);
9794             if((branch_regs[i].regmap[hr]&63)!=rs1[i] && (branch_regs[i].regmap[hr]&63)!=rs2[i] &&
9795                (branch_regs[i].regmap[hr]&63)!=rt1[i] && (branch_regs[i].regmap[hr]&63)!=rt2[i] &&
9796                (branch_regs[i].regmap[hr]&63)!=rt1[i+1] && (branch_regs[i].regmap[hr]&63)!=rt2[i+1] &&
9797                (branch_regs[i].regmap[hr]^64)!=us1[i+1] && (branch_regs[i].regmap[hr]^64)!=us2[i+1] &&
9798                (branch_regs[i].regmap[hr]^64)!=d1 && (branch_regs[i].regmap[hr]^64)!=d2 &&
9799                branch_regs[i].regmap[hr]!=rs1[i+1] && branch_regs[i].regmap[hr]!=rs2[i+1] &&
9800                (branch_regs[i].regmap[hr]&63)!=temp && branch_regs[i].regmap[hr]!=PTEMP &&
9801                branch_regs[i].regmap[hr]!=RHASH && branch_regs[i].regmap[hr]!=RHTBL &&
9802                branch_regs[i].regmap[hr]!=RTEMP && branch_regs[i].regmap[hr]!=CCREG &&
9803                branch_regs[i].regmap[hr]!=map)
9804             {
9805               branch_regs[i].regmap[hr]=-1;
9806               branch_regs[i].regmap_entry[hr]=-1;
9807               if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
9808               {
9809                 if(!likely[i]&&i<slen-2) {
9810                   regmap_pre[i+2][hr]=-1;
9811                   regs[i+2].wasconst&=~(1<<hr);
9812                 }
9813               }
9814             }
9815           }
9816         }
9817         else
9818         {
9819           // Non-branch
9820           if(i>0)
9821           {
9822             int d1=0,d2=0,map=-1,temp=-1;
9823             if(get_reg(regs[i].regmap,rt1[i]|64)>=0)
9824             {
9825               d1=dep1[i];
9826               d2=dep2[i];
9827             }
9828             if(using_tlb) {
9829               if(itype[i]==LOAD || itype[i]==LOADLR ||
9830                  itype[i]==STORE || itype[i]==STORELR ||
9831                  itype[i]==C1LS || itype[i]==C2LS)
9832               map=TLREG;
9833             } else if(itype[i]==STORE || itype[i]==STORELR ||
9834                       (opcode[i]&0x3b)==0x39 || (opcode[i]&0x3b)==0x3a) { // SWC1/SDC1 || SWC2/SDC2
9835               map=INVCP;
9836             }
9837             if(itype[i]==LOADLR || itype[i]==STORELR ||
9838                itype[i]==C1LS || itype[i]==C2LS)
9839               temp=FTEMP;
9840             if((regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
9841                (regs[i].regmap[hr]^64)!=us1[i] && (regs[i].regmap[hr]^64)!=us2[i] &&
9842                (regs[i].regmap[hr]^64)!=d1 && (regs[i].regmap[hr]^64)!=d2 &&
9843                regs[i].regmap[hr]!=rs1[i] && regs[i].regmap[hr]!=rs2[i] &&
9844                (regs[i].regmap[hr]&63)!=temp && regs[i].regmap[hr]!=map &&
9845                (itype[i]!=SPAN||regs[i].regmap[hr]!=CCREG))
9846             {
9847               if(i<slen-1&&!is_ds[i]) {
9848                 if(regmap_pre[i+1][hr]!=-1 || regs[i].regmap[hr]!=-1)
9849                 if(regmap_pre[i+1][hr]!=regs[i].regmap[hr])
9850                 if(regs[i].regmap[hr]<64||!((regs[i].was32>>(regs[i].regmap[hr]&63))&1))
9851                 {
9852                   printf("fail: %x (%d %d!=%d)\n",start+i*4,hr,regmap_pre[i+1][hr],regs[i].regmap[hr]);
9853                   assert(regmap_pre[i+1][hr]==regs[i].regmap[hr]);
9854                 }
9855                 regmap_pre[i+1][hr]=-1;
9856                 if(regs[i+1].regmap_entry[hr]==CCREG) regs[i+1].regmap_entry[hr]=-1;
9857                 regs[i+1].wasconst&=~(1<<hr);
9858               }
9859               regs[i].regmap[hr]=-1;
9860               regs[i].isconst&=~(1<<hr);
9861             }
9862           }
9863         }
9864       }
9865     }
9866   }
9867   
9868   /* Pass 5 - Pre-allocate registers */
9869   
9870   // If a register is allocated during a loop, try to allocate it for the
9871   // entire loop, if possible.  This avoids loading/storing registers
9872   // inside of the loop.
9873
9874   signed char f_regmap[HOST_REGS];
9875   clear_all_regs(f_regmap);
9876   for(i=0;i<slen-1;i++)
9877   {
9878     if(itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
9879     {
9880       if(ba[i]>=start && ba[i]<(start+i*4)) 
9881       if(itype[i+1]==NOP||itype[i+1]==MOV||itype[i+1]==ALU
9882       ||itype[i+1]==SHIFTIMM||itype[i+1]==IMM16||itype[i+1]==LOAD
9883       ||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS
9884       ||itype[i+1]==SHIFT||itype[i+1]==COP1||itype[i+1]==FLOAT
9885       ||itype[i+1]==FCOMP||itype[i+1]==FCONV
9886       ||itype[i+1]==COP2||itype[i+1]==C2LS||itype[i+1]==C2OP)
9887       {
9888         int t=(ba[i]-start)>>2;
9889         if(t>0&&(itype[t-1]!=UJUMP&&itype[t-1]!=RJUMP&&itype[t-1]!=CJUMP&&itype[t-1]!=SJUMP&&itype[t-1]!=FJUMP)) // loop_preload can't handle jumps into delay slots
9890         if(t<2||(itype[t-2]!=UJUMP)) // call/ret assumes no registers allocated
9891         for(hr=0;hr<HOST_REGS;hr++)
9892         {
9893           if(regs[i].regmap[hr]>64) {
9894             if(!((regs[i].dirty>>hr)&1))
9895               f_regmap[hr]=regs[i].regmap[hr];
9896             else f_regmap[hr]=-1;
9897           }
9898           else if(regs[i].regmap[hr]>=0) {
9899             if(f_regmap[hr]!=regs[i].regmap[hr]) {
9900               // dealloc old register
9901               int n;
9902               for(n=0;n<HOST_REGS;n++)
9903               {
9904                 if(f_regmap[n]==regs[i].regmap[hr]) {f_regmap[n]=-1;}
9905               }
9906               // and alloc new one
9907               f_regmap[hr]=regs[i].regmap[hr];
9908             }
9909           }
9910           if(branch_regs[i].regmap[hr]>64) {
9911             if(!((branch_regs[i].dirty>>hr)&1))
9912               f_regmap[hr]=branch_regs[i].regmap[hr];
9913             else f_regmap[hr]=-1;
9914           }
9915           else if(branch_regs[i].regmap[hr]>=0) {
9916             if(f_regmap[hr]!=branch_regs[i].regmap[hr]) {
9917               // dealloc old register
9918               int n;
9919               for(n=0;n<HOST_REGS;n++)
9920               {
9921                 if(f_regmap[n]==branch_regs[i].regmap[hr]) {f_regmap[n]=-1;}
9922               }
9923               // and alloc new one
9924               f_regmap[hr]=branch_regs[i].regmap[hr];
9925             }
9926           }
9927           if(ooo[i]) {
9928             if(count_free_regs(regs[i].regmap)<=minimum_free_regs[i+1]) 
9929               f_regmap[hr]=branch_regs[i].regmap[hr];
9930           }else{
9931             if(count_free_regs(branch_regs[i].regmap)<=minimum_free_regs[i+1]) 
9932               f_regmap[hr]=branch_regs[i].regmap[hr];
9933           }
9934           // Avoid dirty->clean transition
9935           #ifdef DESTRUCTIVE_WRITEBACK
9936           if(t>0) if(get_reg(regmap_pre[t],f_regmap[hr])>=0) if((regs[t].wasdirty>>get_reg(regmap_pre[t],f_regmap[hr]))&1) f_regmap[hr]=-1;
9937           #endif
9938           // This check is only strictly required in the DESTRUCTIVE_WRITEBACK
9939           // case above, however it's always a good idea.  We can't hoist the
9940           // load if the register was already allocated, so there's no point
9941           // wasting time analyzing most of these cases.  It only "succeeds"
9942           // when the mapping was different and the load can be replaced with
9943           // a mov, which is of negligible benefit.  So such cases are
9944           // skipped below.
9945           if(f_regmap[hr]>0) {
9946             if(regs[t].regmap_entry[hr]<0&&get_reg(regmap_pre[t],f_regmap[hr])<0) {
9947               int r=f_regmap[hr];
9948               for(j=t;j<=i;j++)
9949               {
9950                 //printf("Test %x -> %x, %x %d/%d\n",start+i*4,ba[i],start+j*4,hr,r);
9951                 if(r<34&&((unneeded_reg[j]>>r)&1)) break;
9952                 if(r>63&&((unneeded_reg_upper[j]>>(r&63))&1)) break;
9953                 if(r>63) {
9954                   // NB This can exclude the case where the upper-half
9955                   // register is lower numbered than the lower-half
9956                   // register.  Not sure if it's worth fixing...
9957                   if(get_reg(regs[j].regmap,r&63)<0) break;
9958                   if(get_reg(regs[j].regmap_entry,r&63)<0) break;
9959                   if(regs[j].is32&(1LL<<(r&63))) break;
9960                 }
9961                 if(regs[j].regmap[hr]==f_regmap[hr]&&(f_regmap[hr]&63)<TEMPREG) {
9962                   //printf("Hit %x -> %x, %x %d/%d\n",start+i*4,ba[i],start+j*4,hr,r);
9963                   int k;
9964                   if(regs[i].regmap[hr]==-1&&branch_regs[i].regmap[hr]==-1) {
9965                     if(get_reg(regs[i+2].regmap,f_regmap[hr])>=0) break;
9966                     if(r>63) {
9967                       if(get_reg(regs[i].regmap,r&63)<0) break;
9968                       if(get_reg(branch_regs[i].regmap,r&63)<0) break;
9969                     }
9970                     k=i;
9971                     while(k>1&&regs[k-1].regmap[hr]==-1) {
9972                       if(count_free_regs(regs[k-1].regmap)<=minimum_free_regs[k-1]) {
9973                         //printf("no free regs for store %x\n",start+(k-1)*4);
9974                         break;
9975                       }
9976                       if(get_reg(regs[k-1].regmap,f_regmap[hr])>=0) {
9977                         //printf("no-match due to different register\n");
9978                         break;
9979                       }
9980                       if(itype[k-2]==UJUMP||itype[k-2]==RJUMP||itype[k-2]==CJUMP||itype[k-2]==SJUMP||itype[k-2]==FJUMP) {
9981                         //printf("no-match due to branch\n");
9982                         break;
9983                       }
9984                       // call/ret fast path assumes no registers allocated
9985                       if(k>2&&(itype[k-3]==UJUMP||itype[k-3]==RJUMP)) {
9986                         break;
9987                       }
9988                       if(r>63) {
9989                         // NB This can exclude the case where the upper-half
9990                         // register is lower numbered than the lower-half
9991                         // register.  Not sure if it's worth fixing...
9992                         if(get_reg(regs[k-1].regmap,r&63)<0) break;
9993                         if(regs[k-1].is32&(1LL<<(r&63))) break;
9994                       }
9995                       k--;
9996                     }
9997                     if(i<slen-1) {
9998                       if((regs[k].is32&(1LL<<f_regmap[hr]))!=
9999                         (regs[i+2].was32&(1LL<<f_regmap[hr]))) {
10000                         //printf("bad match after branch\n");
10001                         break;
10002                       }
10003                     }
10004                     if(regs[k-1].regmap[hr]==f_regmap[hr]&&regmap_pre[k][hr]==f_regmap[hr]) {
10005                       //printf("Extend r%d, %x ->\n",hr,start+k*4);
10006                       while(k<i) {
10007                         regs[k].regmap_entry[hr]=f_regmap[hr];
10008                         regs[k].regmap[hr]=f_regmap[hr];
10009                         regmap_pre[k+1][hr]=f_regmap[hr];
10010                         regs[k].wasdirty&=~(1<<hr);
10011                         regs[k].dirty&=~(1<<hr);
10012                         regs[k].wasdirty|=(1<<hr)&regs[k-1].dirty;
10013                         regs[k].dirty|=(1<<hr)&regs[k].wasdirty;
10014                         regs[k].wasconst&=~(1<<hr);
10015                         regs[k].isconst&=~(1<<hr);
10016                         k++;
10017                       }
10018                     }
10019                     else {
10020                       //printf("Fail Extend r%d, %x ->\n",hr,start+k*4);
10021                       break;
10022                     }
10023                     assert(regs[i-1].regmap[hr]==f_regmap[hr]);
10024                     if(regs[i-1].regmap[hr]==f_regmap[hr]&&regmap_pre[i][hr]==f_regmap[hr]) {
10025                       //printf("OK fill %x (r%d)\n",start+i*4,hr);
10026                       regs[i].regmap_entry[hr]=f_regmap[hr];
10027                       regs[i].regmap[hr]=f_regmap[hr];
10028                       regs[i].wasdirty&=~(1<<hr);
10029                       regs[i].dirty&=~(1<<hr);
10030                       regs[i].wasdirty|=(1<<hr)&regs[i-1].dirty;
10031                       regs[i].dirty|=(1<<hr)&regs[i-1].dirty;
10032                       regs[i].wasconst&=~(1<<hr);
10033                       regs[i].isconst&=~(1<<hr);
10034                       branch_regs[i].regmap_entry[hr]=f_regmap[hr];
10035                       branch_regs[i].wasdirty&=~(1<<hr);
10036                       branch_regs[i].wasdirty|=(1<<hr)&regs[i].dirty;
10037                       branch_regs[i].regmap[hr]=f_regmap[hr];
10038                       branch_regs[i].dirty&=~(1<<hr);
10039                       branch_regs[i].dirty|=(1<<hr)&regs[i].dirty;
10040                       branch_regs[i].wasconst&=~(1<<hr);
10041                       branch_regs[i].isconst&=~(1<<hr);
10042                       if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000) {
10043                         regmap_pre[i+2][hr]=f_regmap[hr];
10044                         regs[i+2].wasdirty&=~(1<<hr);
10045                         regs[i+2].wasdirty|=(1<<hr)&regs[i].dirty;
10046                         assert((branch_regs[i].is32&(1LL<<f_regmap[hr]))==
10047                           (regs[i+2].was32&(1LL<<f_regmap[hr])));
10048                       }
10049                     }
10050                   }
10051                   for(k=t;k<j;k++) {
10052                     // Alloc register clean at beginning of loop,
10053                     // but may dirty it in pass 6
10054                     regs[k].regmap_entry[hr]=f_regmap[hr];
10055                     regs[k].regmap[hr]=f_regmap[hr];
10056                     regs[k].dirty&=~(1<<hr);
10057                     regs[k].wasconst&=~(1<<hr);
10058                     regs[k].isconst&=~(1<<hr);
10059                     if(itype[k]==UJUMP||itype[k]==RJUMP||itype[k]==CJUMP||itype[k]==SJUMP||itype[k]==FJUMP) {
10060                       branch_regs[k].regmap_entry[hr]=f_regmap[hr];
10061                       branch_regs[k].regmap[hr]=f_regmap[hr];
10062                       branch_regs[k].dirty&=~(1<<hr);
10063                       branch_regs[k].wasconst&=~(1<<hr);
10064                       branch_regs[k].isconst&=~(1<<hr);
10065                       if(itype[k]!=RJUMP&&itype[k]!=UJUMP&&(source[k]>>16)!=0x1000) {
10066                         regmap_pre[k+2][hr]=f_regmap[hr];
10067                         regs[k+2].wasdirty&=~(1<<hr);
10068                         assert((branch_regs[k].is32&(1LL<<f_regmap[hr]))==
10069                           (regs[k+2].was32&(1LL<<f_regmap[hr])));
10070                       }
10071                     }
10072                     else
10073                     {
10074                       regmap_pre[k+1][hr]=f_regmap[hr];
10075                       regs[k+1].wasdirty&=~(1<<hr);
10076                     }
10077                   }
10078                   if(regs[j].regmap[hr]==f_regmap[hr])
10079                     regs[j].regmap_entry[hr]=f_regmap[hr];
10080                   break;
10081                 }
10082                 if(j==i) break;
10083                 if(regs[j].regmap[hr]>=0)
10084                   break;
10085                 if(get_reg(regs[j].regmap,f_regmap[hr])>=0) {
10086                   //printf("no-match due to different register\n");
10087                   break;
10088                 }
10089                 if((regs[j+1].is32&(1LL<<f_regmap[hr]))!=(regs[j].is32&(1LL<<f_regmap[hr]))) {
10090                   //printf("32/64 mismatch %x %d\n",start+j*4,hr);
10091                   break;
10092                 }
10093                 if(itype[j]==UJUMP||itype[j]==RJUMP||(source[j]>>16)==0x1000)
10094                 {
10095                   // Stop on unconditional branch
10096                   break;
10097                 }
10098                 if(itype[j]==CJUMP||itype[j]==SJUMP||itype[j]==FJUMP)
10099                 {
10100                   if(ooo[j]) {
10101                     if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j+1]) 
10102                       break;
10103                   }else{
10104                     if(count_free_regs(branch_regs[j].regmap)<=minimum_free_regs[j+1]) 
10105                       break;
10106                   }
10107                   if(get_reg(branch_regs[j].regmap,f_regmap[hr])>=0) {
10108                     //printf("no-match due to different register (branch)\n");
10109                     break;
10110                   }
10111                 }
10112                 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) {
10113                   //printf("No free regs for store %x\n",start+j*4);
10114                   break;
10115                 }
10116                 if(f_regmap[hr]>=64) {
10117                   if(regs[j].is32&(1LL<<(f_regmap[hr]&63))) {
10118                     break;
10119                   }
10120                   else
10121                   {
10122                     if(get_reg(regs[j].regmap,f_regmap[hr]&63)<0) {
10123                       break;
10124                     }
10125                   }
10126                 }
10127               }
10128             }
10129           }
10130         }
10131       }
10132     }else{
10133       int count=0;
10134       for(hr=0;hr<HOST_REGS;hr++)
10135       {
10136         if(hr!=EXCLUDE_REG) {
10137           if(regs[i].regmap[hr]>64) {
10138             if(!((regs[i].dirty>>hr)&1))
10139               f_regmap[hr]=regs[i].regmap[hr];
10140           }
10141           else if(regs[i].regmap[hr]>=0) {
10142             if(f_regmap[hr]!=regs[i].regmap[hr]) {
10143               // dealloc old register
10144               int n;
10145               for(n=0;n<HOST_REGS;n++)
10146               {
10147                 if(f_regmap[n]==regs[i].regmap[hr]) {f_regmap[n]=-1;}
10148               }
10149               // and alloc new one
10150               f_regmap[hr]=regs[i].regmap[hr];
10151             }
10152           }
10153           else if(regs[i].regmap[hr]<0) count++;
10154         }
10155       }
10156       // Try to restore cycle count at branch targets
10157       if(bt[i]) {
10158         for(j=i;j<slen-1;j++) {
10159           if(regs[j].regmap[HOST_CCREG]!=-1) break;
10160           if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) {
10161             //printf("no free regs for store %x\n",start+j*4);
10162             break;
10163           }
10164         }
10165         if(regs[j].regmap[HOST_CCREG]==CCREG) {
10166           int k=i;
10167           //printf("Extend CC, %x -> %x\n",start+k*4,start+j*4);
10168           while(k<j) {
10169             regs[k].regmap_entry[HOST_CCREG]=CCREG;
10170             regs[k].regmap[HOST_CCREG]=CCREG;
10171             regmap_pre[k+1][HOST_CCREG]=CCREG;
10172             regs[k+1].wasdirty|=1<<HOST_CCREG;
10173             regs[k].dirty|=1<<HOST_CCREG;
10174             regs[k].wasconst&=~(1<<HOST_CCREG);
10175             regs[k].isconst&=~(1<<HOST_CCREG);
10176             k++;
10177           }
10178           regs[j].regmap_entry[HOST_CCREG]=CCREG;          
10179         }
10180         // Work backwards from the branch target
10181         if(j>i&&f_regmap[HOST_CCREG]==CCREG)
10182         {
10183           //printf("Extend backwards\n");
10184           int k;
10185           k=i;
10186           while(regs[k-1].regmap[HOST_CCREG]==-1) {
10187             if(count_free_regs(regs[k-1].regmap)<=minimum_free_regs[k-1]) {
10188               //printf("no free regs for store %x\n",start+(k-1)*4);
10189               break;
10190             }
10191             k--;
10192           }
10193           if(regs[k-1].regmap[HOST_CCREG]==CCREG) {
10194             //printf("Extend CC, %x ->\n",start+k*4);
10195             while(k<=i) {
10196               regs[k].regmap_entry[HOST_CCREG]=CCREG;
10197               regs[k].regmap[HOST_CCREG]=CCREG;
10198               regmap_pre[k+1][HOST_CCREG]=CCREG;
10199               regs[k+1].wasdirty|=1<<HOST_CCREG;
10200               regs[k].dirty|=1<<HOST_CCREG;
10201               regs[k].wasconst&=~(1<<HOST_CCREG);
10202               regs[k].isconst&=~(1<<HOST_CCREG);
10203               k++;
10204             }
10205           }
10206           else {
10207             //printf("Fail Extend CC, %x ->\n",start+k*4);
10208           }
10209         }
10210       }
10211       if(itype[i]!=STORE&&itype[i]!=STORELR&&itype[i]!=C1LS&&itype[i]!=SHIFT&&
10212          itype[i]!=NOP&&itype[i]!=MOV&&itype[i]!=ALU&&itype[i]!=SHIFTIMM&&
10213          itype[i]!=IMM16&&itype[i]!=LOAD&&itype[i]!=COP1&&itype[i]!=FLOAT&&
10214          itype[i]!=FCONV&&itype[i]!=FCOMP)
10215       {
10216         memcpy(f_regmap,regs[i].regmap,sizeof(f_regmap));
10217       }
10218     }
10219   }
10220   
10221   // This allocates registers (if possible) one instruction prior
10222   // to use, which can avoid a load-use penalty on certain CPUs.
10223   for(i=0;i<slen-1;i++)
10224   {
10225     if(!i||(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP))
10226     {
10227       if(!bt[i+1])
10228       {
10229         if(itype[i]==ALU||itype[i]==MOV||itype[i]==LOAD||itype[i]==SHIFTIMM||itype[i]==IMM16
10230            ||((itype[i]==COP1||itype[i]==COP2)&&opcode2[i]<3))
10231         {
10232           if(rs1[i+1]) {
10233             if((hr=get_reg(regs[i+1].regmap,rs1[i+1]))>=0)
10234             {
10235               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10236               {
10237                 regs[i].regmap[hr]=regs[i+1].regmap[hr];
10238                 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
10239                 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
10240                 regs[i].isconst&=~(1<<hr);
10241                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10242                 constmap[i][hr]=constmap[i+1][hr];
10243                 regs[i+1].wasdirty&=~(1<<hr);
10244                 regs[i].dirty&=~(1<<hr);
10245               }
10246             }
10247           }
10248           if(rs2[i+1]) {
10249             if((hr=get_reg(regs[i+1].regmap,rs2[i+1]))>=0)
10250             {
10251               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10252               {
10253                 regs[i].regmap[hr]=regs[i+1].regmap[hr];
10254                 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
10255                 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
10256                 regs[i].isconst&=~(1<<hr);
10257                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10258                 constmap[i][hr]=constmap[i+1][hr];
10259                 regs[i+1].wasdirty&=~(1<<hr);
10260                 regs[i].dirty&=~(1<<hr);
10261               }
10262             }
10263           }
10264           if(itype[i+1]==LOAD&&rs1[i+1]&&get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10265             if((hr=get_reg(regs[i+1].regmap,rt1[i+1]))>=0)
10266             {
10267               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10268               {
10269                 regs[i].regmap[hr]=rs1[i+1];
10270                 regmap_pre[i+1][hr]=rs1[i+1];
10271                 regs[i+1].regmap_entry[hr]=rs1[i+1];
10272                 regs[i].isconst&=~(1<<hr);
10273                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10274                 constmap[i][hr]=constmap[i+1][hr];
10275                 regs[i+1].wasdirty&=~(1<<hr);
10276                 regs[i].dirty&=~(1<<hr);
10277               }
10278             }
10279           }
10280           if(lt1[i+1]&&get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10281             if((hr=get_reg(regs[i+1].regmap,rt1[i+1]))>=0)
10282             {
10283               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10284               {
10285                 regs[i].regmap[hr]=rs1[i+1];
10286                 regmap_pre[i+1][hr]=rs1[i+1];
10287                 regs[i+1].regmap_entry[hr]=rs1[i+1];
10288                 regs[i].isconst&=~(1<<hr);
10289                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10290                 constmap[i][hr]=constmap[i+1][hr];
10291                 regs[i+1].wasdirty&=~(1<<hr);
10292                 regs[i].dirty&=~(1<<hr);
10293               }
10294             }
10295           }
10296           #ifndef HOST_IMM_ADDR32
10297           if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS||itype[i+1]==C2LS) {
10298             hr=get_reg(regs[i+1].regmap,TLREG);
10299             if(hr>=0) {
10300               int sr=get_reg(regs[i+1].regmap,rs1[i+1]);
10301               if(sr>=0&&((regs[i+1].wasconst>>sr)&1)) {
10302                 int nr;
10303                 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10304                 {
10305                   regs[i].regmap[hr]=MGEN1+((i+1)&1);
10306                   regmap_pre[i+1][hr]=MGEN1+((i+1)&1);
10307                   regs[i+1].regmap_entry[hr]=MGEN1+((i+1)&1);
10308                   regs[i].isconst&=~(1<<hr);
10309                   regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10310                   constmap[i][hr]=constmap[i+1][hr];
10311                   regs[i+1].wasdirty&=~(1<<hr);
10312                   regs[i].dirty&=~(1<<hr);
10313                 }
10314                 else if((nr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1))>=0)
10315                 {
10316                   // move it to another register
10317                   regs[i+1].regmap[hr]=-1;
10318                   regmap_pre[i+2][hr]=-1;
10319                   regs[i+1].regmap[nr]=TLREG;
10320                   regmap_pre[i+2][nr]=TLREG;
10321                   regs[i].regmap[nr]=MGEN1+((i+1)&1);
10322                   regmap_pre[i+1][nr]=MGEN1+((i+1)&1);
10323                   regs[i+1].regmap_entry[nr]=MGEN1+((i+1)&1);
10324                   regs[i].isconst&=~(1<<nr);
10325                   regs[i+1].isconst&=~(1<<nr);
10326                   regs[i].dirty&=~(1<<nr);
10327                   regs[i+1].wasdirty&=~(1<<nr);
10328                   regs[i+1].dirty&=~(1<<nr);
10329                   regs[i+2].wasdirty&=~(1<<nr);
10330                 }
10331               }
10332             }
10333           }
10334           #endif
10335           if(itype[i+1]==STORE||itype[i+1]==STORELR
10336              ||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SB/SH/SW/SD/SWC1/SDC1/SWC2/SDC2
10337             if(get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10338               hr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1);
10339               if(hr<0) hr=get_reg(regs[i+1].regmap,-1);
10340               else {regs[i+1].regmap[hr]=AGEN1+((i+1)&1);regs[i+1].isconst&=~(1<<hr);}
10341               assert(hr>=0);
10342               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10343               {
10344                 regs[i].regmap[hr]=rs1[i+1];
10345                 regmap_pre[i+1][hr]=rs1[i+1];
10346                 regs[i+1].regmap_entry[hr]=rs1[i+1];
10347                 regs[i].isconst&=~(1<<hr);
10348                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10349                 constmap[i][hr]=constmap[i+1][hr];
10350                 regs[i+1].wasdirty&=~(1<<hr);
10351                 regs[i].dirty&=~(1<<hr);
10352               }
10353             }
10354           }
10355           if(itype[i+1]==LOADLR||(opcode[i+1]&0x3b)==0x31||(opcode[i+1]&0x3b)==0x32) { // LWC1/LDC1, LWC2/LDC2
10356             if(get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10357               int nr;
10358               hr=get_reg(regs[i+1].regmap,FTEMP);
10359               assert(hr>=0);
10360               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10361               {
10362                 regs[i].regmap[hr]=rs1[i+1];
10363                 regmap_pre[i+1][hr]=rs1[i+1];
10364                 regs[i+1].regmap_entry[hr]=rs1[i+1];
10365                 regs[i].isconst&=~(1<<hr);
10366                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10367                 constmap[i][hr]=constmap[i+1][hr];
10368                 regs[i+1].wasdirty&=~(1<<hr);
10369                 regs[i].dirty&=~(1<<hr);
10370               }
10371               else if((nr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1))>=0)
10372               {
10373                 // move it to another register
10374                 regs[i+1].regmap[hr]=-1;
10375                 regmap_pre[i+2][hr]=-1;
10376                 regs[i+1].regmap[nr]=FTEMP;
10377                 regmap_pre[i+2][nr]=FTEMP;
10378                 regs[i].regmap[nr]=rs1[i+1];
10379                 regmap_pre[i+1][nr]=rs1[i+1];
10380                 regs[i+1].regmap_entry[nr]=rs1[i+1];
10381                 regs[i].isconst&=~(1<<nr);
10382                 regs[i+1].isconst&=~(1<<nr);
10383                 regs[i].dirty&=~(1<<nr);
10384                 regs[i+1].wasdirty&=~(1<<nr);
10385                 regs[i+1].dirty&=~(1<<nr);
10386                 regs[i+2].wasdirty&=~(1<<nr);
10387               }
10388             }
10389           }
10390           if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR/*||itype[i+1]==C1LS||||itype[i+1]==C2LS*/) {
10391             if(itype[i+1]==LOAD) 
10392               hr=get_reg(regs[i+1].regmap,rt1[i+1]);
10393             if(itype[i+1]==LOADLR||(opcode[i+1]&0x3b)==0x31||(opcode[i+1]&0x3b)==0x32) // LWC1/LDC1, LWC2/LDC2
10394               hr=get_reg(regs[i+1].regmap,FTEMP);
10395             if(itype[i+1]==STORE||itype[i+1]==STORELR||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1/SWC2/SDC2
10396               hr=get_reg(regs[i+1].regmap,AGEN1+((i+1)&1));
10397               if(hr<0) hr=get_reg(regs[i+1].regmap,-1);
10398             }
10399             if(hr>=0&&regs[i].regmap[hr]<0) {
10400               int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
10401               if(rs>=0&&((regs[i+1].wasconst>>rs)&1)) {
10402                 regs[i].regmap[hr]=AGEN1+((i+1)&1);
10403                 regmap_pre[i+1][hr]=AGEN1+((i+1)&1);
10404                 regs[i+1].regmap_entry[hr]=AGEN1+((i+1)&1);
10405                 regs[i].isconst&=~(1<<hr);
10406                 regs[i+1].wasdirty&=~(1<<hr);
10407                 regs[i].dirty&=~(1<<hr);
10408               }
10409             }
10410           }
10411         }
10412       }
10413     }
10414   }
10415   
10416   /* Pass 6 - Optimize clean/dirty state */
10417   clean_registers(0,slen-1,1);
10418   
10419   /* Pass 7 - Identify 32-bit registers */
10420 #ifndef FORCE32
10421   provisional_r32();
10422
10423   u_int r32=0;
10424   
10425   for (i=slen-1;i>=0;i--)
10426   {
10427     int hr;
10428     if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
10429     {
10430       if(ba[i]<start || ba[i]>=(start+slen*4))
10431       {
10432         // Branch out of this block, don't need anything
10433         r32=0;
10434       }
10435       else
10436       {
10437         // Internal branch
10438         // Need whatever matches the target
10439         // (and doesn't get overwritten by the delay slot instruction)
10440         r32=0;
10441         int t=(ba[i]-start)>>2;
10442         if(ba[i]>start+i*4) {
10443           // Forward branch
10444           if(!(requires_32bit[t]&~regs[i].was32))
10445             r32|=requires_32bit[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
10446         }else{
10447           // Backward branch
10448           //if(!(regs[t].was32&~unneeded_reg_upper[t]&~regs[i].was32))
10449           //  r32|=regs[t].was32&~unneeded_reg_upper[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
10450           if(!(pr32[t]&~regs[i].was32))
10451             r32|=pr32[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
10452         }
10453       }
10454       // Conditional branch may need registers for following instructions
10455       if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
10456       {
10457         if(i<slen-2) {
10458           r32|=requires_32bit[i+2];
10459           r32&=regs[i].was32;
10460           // Mark this address as a branch target since it may be called
10461           // upon return from interrupt
10462           bt[i+2]=1;
10463         }
10464       }
10465       // Merge in delay slot
10466       if(!likely[i]) {
10467         // These are overwritten unless the branch is "likely"
10468         // and the delay slot is nullified if not taken
10469         r32&=~(1LL<<rt1[i+1]);
10470         r32&=~(1LL<<rt2[i+1]);
10471       }
10472       // Assume these are needed (delay slot)
10473       if(us1[i+1]>0)
10474       {
10475         if((regs[i].was32>>us1[i+1])&1) r32|=1LL<<us1[i+1];
10476       }
10477       if(us2[i+1]>0)
10478       {
10479         if((regs[i].was32>>us2[i+1])&1) r32|=1LL<<us2[i+1];
10480       }
10481       if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1))
10482       {
10483         if((regs[i].was32>>dep1[i+1])&1) r32|=1LL<<dep1[i+1];
10484       }
10485       if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1))
10486       {
10487         if((regs[i].was32>>dep2[i+1])&1) r32|=1LL<<dep2[i+1];
10488       }
10489     }
10490     else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
10491     {
10492       // SYSCALL instruction (software interrupt)
10493       r32=0;
10494     }
10495     else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
10496     {
10497       // ERET instruction (return from interrupt)
10498       r32=0;
10499     }
10500     // Check 32 bits
10501     r32&=~(1LL<<rt1[i]);
10502     r32&=~(1LL<<rt2[i]);
10503     if(us1[i]>0)
10504     {
10505       if((regs[i].was32>>us1[i])&1) r32|=1LL<<us1[i];
10506     }
10507     if(us2[i]>0)
10508     {
10509       if((regs[i].was32>>us2[i])&1) r32|=1LL<<us2[i];
10510     }
10511     if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1))
10512     {
10513       if((regs[i].was32>>dep1[i])&1) r32|=1LL<<dep1[i];
10514     }
10515     if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1))
10516     {
10517       if((regs[i].was32>>dep2[i])&1) r32|=1LL<<dep2[i];
10518     }
10519     requires_32bit[i]=r32;
10520     
10521     // Dirty registers which are 32-bit, require 32-bit input
10522     // as they will be written as 32-bit values
10523     for(hr=0;hr<HOST_REGS;hr++)
10524     {
10525       if(regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64) {
10526         if((regs[i].was32>>regs[i].regmap_entry[hr])&(regs[i].wasdirty>>hr)&1) {
10527           if(!((unneeded_reg_upper[i]>>regs[i].regmap_entry[hr])&1))
10528           requires_32bit[i]|=1LL<<regs[i].regmap_entry[hr];
10529         }
10530       }
10531     }
10532     //requires_32bit[i]=is32[i]&~unneeded_reg_upper[i]; // DEBUG
10533   }
10534 #else
10535   for (i=slen-1;i>=0;i--)
10536   {
10537     if(itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
10538     {
10539       // Conditional branch
10540       if((source[i]>>16)!=0x1000&&i<slen-2) {
10541         // Mark this address as a branch target since it may be called
10542         // upon return from interrupt
10543         bt[i+2]=1;
10544       }
10545     }
10546   }
10547 #endif
10548
10549   if(itype[slen-1]==SPAN) {
10550     bt[slen-1]=1; // Mark as a branch target so instruction can restart after exception
10551   }
10552   
10553   /* Debug/disassembly */
10554   if((void*)assem_debug==(void*)printf) 
10555   for(i=0;i<slen;i++)
10556   {
10557     printf("U:");
10558     int r;
10559     for(r=1;r<=CCREG;r++) {
10560       if((unneeded_reg[i]>>r)&1) {
10561         if(r==HIREG) printf(" HI");
10562         else if(r==LOREG) printf(" LO");
10563         else printf(" r%d",r);
10564       }
10565     }
10566 #ifndef FORCE32
10567     printf(" UU:");
10568     for(r=1;r<=CCREG;r++) {
10569       if(((unneeded_reg_upper[i]&~unneeded_reg[i])>>r)&1) {
10570         if(r==HIREG) printf(" HI");
10571         else if(r==LOREG) printf(" LO");
10572         else printf(" r%d",r);
10573       }
10574     }
10575     printf(" 32:");
10576     for(r=0;r<=CCREG;r++) {
10577       //if(((is32[i]>>r)&(~unneeded_reg[i]>>r))&1) {
10578       if((regs[i].was32>>r)&1) {
10579         if(r==CCREG) printf(" CC");
10580         else if(r==HIREG) printf(" HI");
10581         else if(r==LOREG) printf(" LO");
10582         else printf(" r%d",r);
10583       }
10584     }
10585 #endif
10586     printf("\n");
10587     #if defined(__i386__) || defined(__x86_64__)
10588     printf("pre: eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",regmap_pre[i][0],regmap_pre[i][1],regmap_pre[i][2],regmap_pre[i][3],regmap_pre[i][5],regmap_pre[i][6],regmap_pre[i][7]);
10589     #endif
10590     #ifdef __arm__
10591     printf("pre: r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d\n",regmap_pre[i][0],regmap_pre[i][1],regmap_pre[i][2],regmap_pre[i][3],regmap_pre[i][4],regmap_pre[i][5],regmap_pre[i][6],regmap_pre[i][7],regmap_pre[i][8],regmap_pre[i][9],regmap_pre[i][10],regmap_pre[i][12]);
10592     #endif
10593     printf("needs: ");
10594     if(needed_reg[i]&1) printf("eax ");
10595     if((needed_reg[i]>>1)&1) printf("ecx ");
10596     if((needed_reg[i]>>2)&1) printf("edx ");
10597     if((needed_reg[i]>>3)&1) printf("ebx ");
10598     if((needed_reg[i]>>5)&1) printf("ebp ");
10599     if((needed_reg[i]>>6)&1) printf("esi ");
10600     if((needed_reg[i]>>7)&1) printf("edi ");
10601     printf("r:");
10602     for(r=0;r<=CCREG;r++) {
10603       //if(((requires_32bit[i]>>r)&(~unneeded_reg[i]>>r))&1) {
10604       if((requires_32bit[i]>>r)&1) {
10605         if(r==CCREG) printf(" CC");
10606         else if(r==HIREG) printf(" HI");
10607         else if(r==LOREG) printf(" LO");
10608         else printf(" r%d",r);
10609       }
10610     }
10611     printf("\n");
10612     /*printf("pr:");
10613     for(r=0;r<=CCREG;r++) {
10614       //if(((requires_32bit[i]>>r)&(~unneeded_reg[i]>>r))&1) {
10615       if((pr32[i]>>r)&1) {
10616         if(r==CCREG) printf(" CC");
10617         else if(r==HIREG) printf(" HI");
10618         else if(r==LOREG) printf(" LO");
10619         else printf(" r%d",r);
10620       }
10621     }
10622     if(pr32[i]!=requires_32bit[i]) printf(" OOPS");
10623     printf("\n");*/
10624     #if defined(__i386__) || defined(__x86_64__)
10625     printf("entry: eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",regs[i].regmap_entry[0],regs[i].regmap_entry[1],regs[i].regmap_entry[2],regs[i].regmap_entry[3],regs[i].regmap_entry[5],regs[i].regmap_entry[6],regs[i].regmap_entry[7]);
10626     printf("dirty: ");
10627     if(regs[i].wasdirty&1) printf("eax ");
10628     if((regs[i].wasdirty>>1)&1) printf("ecx ");
10629     if((regs[i].wasdirty>>2)&1) printf("edx ");
10630     if((regs[i].wasdirty>>3)&1) printf("ebx ");
10631     if((regs[i].wasdirty>>5)&1) printf("ebp ");
10632     if((regs[i].wasdirty>>6)&1) printf("esi ");
10633     if((regs[i].wasdirty>>7)&1) printf("edi ");
10634     #endif
10635     #ifdef __arm__
10636     printf("entry: r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d\n",regs[i].regmap_entry[0],regs[i].regmap_entry[1],regs[i].regmap_entry[2],regs[i].regmap_entry[3],regs[i].regmap_entry[4],regs[i].regmap_entry[5],regs[i].regmap_entry[6],regs[i].regmap_entry[7],regs[i].regmap_entry[8],regs[i].regmap_entry[9],regs[i].regmap_entry[10],regs[i].regmap_entry[12]);
10637     printf("dirty: ");
10638     if(regs[i].wasdirty&1) printf("r0 ");
10639     if((regs[i].wasdirty>>1)&1) printf("r1 ");
10640     if((regs[i].wasdirty>>2)&1) printf("r2 ");
10641     if((regs[i].wasdirty>>3)&1) printf("r3 ");
10642     if((regs[i].wasdirty>>4)&1) printf("r4 ");
10643     if((regs[i].wasdirty>>5)&1) printf("r5 ");
10644     if((regs[i].wasdirty>>6)&1) printf("r6 ");
10645     if((regs[i].wasdirty>>7)&1) printf("r7 ");
10646     if((regs[i].wasdirty>>8)&1) printf("r8 ");
10647     if((regs[i].wasdirty>>9)&1) printf("r9 ");
10648     if((regs[i].wasdirty>>10)&1) printf("r10 ");
10649     if((regs[i].wasdirty>>12)&1) printf("r12 ");
10650     #endif
10651     printf("\n");
10652     disassemble_inst(i);
10653     //printf ("ccadj[%d] = %d\n",i,ccadj[i]);
10654     #if defined(__i386__) || defined(__x86_64__)
10655     printf("eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d dirty: ",regs[i].regmap[0],regs[i].regmap[1],regs[i].regmap[2],regs[i].regmap[3],regs[i].regmap[5],regs[i].regmap[6],regs[i].regmap[7]);
10656     if(regs[i].dirty&1) printf("eax ");
10657     if((regs[i].dirty>>1)&1) printf("ecx ");
10658     if((regs[i].dirty>>2)&1) printf("edx ");
10659     if((regs[i].dirty>>3)&1) printf("ebx ");
10660     if((regs[i].dirty>>5)&1) printf("ebp ");
10661     if((regs[i].dirty>>6)&1) printf("esi ");
10662     if((regs[i].dirty>>7)&1) printf("edi ");
10663     #endif
10664     #ifdef __arm__
10665     printf("r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d dirty: ",regs[i].regmap[0],regs[i].regmap[1],regs[i].regmap[2],regs[i].regmap[3],regs[i].regmap[4],regs[i].regmap[5],regs[i].regmap[6],regs[i].regmap[7],regs[i].regmap[8],regs[i].regmap[9],regs[i].regmap[10],regs[i].regmap[12]);
10666     if(regs[i].dirty&1) printf("r0 ");
10667     if((regs[i].dirty>>1)&1) printf("r1 ");
10668     if((regs[i].dirty>>2)&1) printf("r2 ");
10669     if((regs[i].dirty>>3)&1) printf("r3 ");
10670     if((regs[i].dirty>>4)&1) printf("r4 ");
10671     if((regs[i].dirty>>5)&1) printf("r5 ");
10672     if((regs[i].dirty>>6)&1) printf("r6 ");
10673     if((regs[i].dirty>>7)&1) printf("r7 ");
10674     if((regs[i].dirty>>8)&1) printf("r8 ");
10675     if((regs[i].dirty>>9)&1) printf("r9 ");
10676     if((regs[i].dirty>>10)&1) printf("r10 ");
10677     if((regs[i].dirty>>12)&1) printf("r12 ");
10678     #endif
10679     printf("\n");
10680     if(regs[i].isconst) {
10681       printf("constants: ");
10682       #if defined(__i386__) || defined(__x86_64__)
10683       if(regs[i].isconst&1) printf("eax=%x ",(int)constmap[i][0]);
10684       if((regs[i].isconst>>1)&1) printf("ecx=%x ",(int)constmap[i][1]);
10685       if((regs[i].isconst>>2)&1) printf("edx=%x ",(int)constmap[i][2]);
10686       if((regs[i].isconst>>3)&1) printf("ebx=%x ",(int)constmap[i][3]);
10687       if((regs[i].isconst>>5)&1) printf("ebp=%x ",(int)constmap[i][5]);
10688       if((regs[i].isconst>>6)&1) printf("esi=%x ",(int)constmap[i][6]);
10689       if((regs[i].isconst>>7)&1) printf("edi=%x ",(int)constmap[i][7]);
10690       #endif
10691       #ifdef __arm__
10692       if(regs[i].isconst&1) printf("r0=%x ",(int)constmap[i][0]);
10693       if((regs[i].isconst>>1)&1) printf("r1=%x ",(int)constmap[i][1]);
10694       if((regs[i].isconst>>2)&1) printf("r2=%x ",(int)constmap[i][2]);
10695       if((regs[i].isconst>>3)&1) printf("r3=%x ",(int)constmap[i][3]);
10696       if((regs[i].isconst>>4)&1) printf("r4=%x ",(int)constmap[i][4]);
10697       if((regs[i].isconst>>5)&1) printf("r5=%x ",(int)constmap[i][5]);
10698       if((regs[i].isconst>>6)&1) printf("r6=%x ",(int)constmap[i][6]);
10699       if((regs[i].isconst>>7)&1) printf("r7=%x ",(int)constmap[i][7]);
10700       if((regs[i].isconst>>8)&1) printf("r8=%x ",(int)constmap[i][8]);
10701       if((regs[i].isconst>>9)&1) printf("r9=%x ",(int)constmap[i][9]);
10702       if((regs[i].isconst>>10)&1) printf("r10=%x ",(int)constmap[i][10]);
10703       if((regs[i].isconst>>12)&1) printf("r12=%x ",(int)constmap[i][12]);
10704       #endif
10705       printf("\n");
10706     }
10707 #ifndef FORCE32
10708     printf(" 32:");
10709     for(r=0;r<=CCREG;r++) {
10710       if((regs[i].is32>>r)&1) {
10711         if(r==CCREG) printf(" CC");
10712         else if(r==HIREG) printf(" HI");
10713         else if(r==LOREG) printf(" LO");
10714         else printf(" r%d",r);
10715       }
10716     }
10717     printf("\n");
10718 #endif
10719     /*printf(" p32:");
10720     for(r=0;r<=CCREG;r++) {
10721       if((p32[i]>>r)&1) {
10722         if(r==CCREG) printf(" CC");
10723         else if(r==HIREG) printf(" HI");
10724         else if(r==LOREG) printf(" LO");
10725         else printf(" r%d",r);
10726       }
10727     }
10728     if(p32[i]!=regs[i].is32) printf(" NO MATCH\n");
10729     else printf("\n");*/
10730     if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP) {
10731       #if defined(__i386__) || defined(__x86_64__)
10732       printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d dirty: ",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
10733       if(branch_regs[i].dirty&1) printf("eax ");
10734       if((branch_regs[i].dirty>>1)&1) printf("ecx ");
10735       if((branch_regs[i].dirty>>2)&1) printf("edx ");
10736       if((branch_regs[i].dirty>>3)&1) printf("ebx ");
10737       if((branch_regs[i].dirty>>5)&1) printf("ebp ");
10738       if((branch_regs[i].dirty>>6)&1) printf("esi ");
10739       if((branch_regs[i].dirty>>7)&1) printf("edi ");
10740       #endif
10741       #ifdef __arm__
10742       printf("branch(%d): r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d dirty: ",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[4],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7],branch_regs[i].regmap[8],branch_regs[i].regmap[9],branch_regs[i].regmap[10],branch_regs[i].regmap[12]);
10743       if(branch_regs[i].dirty&1) printf("r0 ");
10744       if((branch_regs[i].dirty>>1)&1) printf("r1 ");
10745       if((branch_regs[i].dirty>>2)&1) printf("r2 ");
10746       if((branch_regs[i].dirty>>3)&1) printf("r3 ");
10747       if((branch_regs[i].dirty>>4)&1) printf("r4 ");
10748       if((branch_regs[i].dirty>>5)&1) printf("r5 ");
10749       if((branch_regs[i].dirty>>6)&1) printf("r6 ");
10750       if((branch_regs[i].dirty>>7)&1) printf("r7 ");
10751       if((branch_regs[i].dirty>>8)&1) printf("r8 ");
10752       if((branch_regs[i].dirty>>9)&1) printf("r9 ");
10753       if((branch_regs[i].dirty>>10)&1) printf("r10 ");
10754       if((branch_regs[i].dirty>>12)&1) printf("r12 ");
10755       #endif
10756 #ifndef FORCE32
10757       printf(" 32:");
10758       for(r=0;r<=CCREG;r++) {
10759         if((branch_regs[i].is32>>r)&1) {
10760           if(r==CCREG) printf(" CC");
10761           else if(r==HIREG) printf(" HI");
10762           else if(r==LOREG) printf(" LO");
10763           else printf(" r%d",r);
10764         }
10765       }
10766       printf("\n");
10767 #endif
10768     }
10769   }
10770
10771   /* Pass 8 - Assembly */
10772   linkcount=0;stubcount=0;
10773   ds=0;is_delayslot=0;
10774   cop1_usable=0;
10775   uint64_t is32_pre=0;
10776   u_int dirty_pre=0;
10777   u_int beginning=(u_int)out;
10778   if((u_int)addr&1) {
10779     ds=1;
10780     pagespan_ds();
10781   }
10782   u_int instr_addr0_override=0;
10783
10784 #ifdef PCSX
10785   if (start == 0x80030000) {
10786     // nasty hack for fastbios thing
10787     instr_addr0_override=(u_int)out;
10788     emit_movimm(start,0);
10789     emit_readword((int)&pcaddr,1);
10790     emit_writeword(0,(int)&pcaddr);
10791     emit_cmp(0,1);
10792     emit_jne((int)new_dyna_leave);
10793   }
10794 #endif
10795   for(i=0;i<slen;i++)
10796   {
10797     //if(ds) printf("ds: ");
10798     if((void*)assem_debug==(void*)printf) disassemble_inst(i);
10799     if(ds) {
10800       ds=0; // Skip delay slot
10801       if(bt[i]) assem_debug("OOPS - branch into delay slot\n");
10802       instr_addr[i]=0;
10803     } else {
10804       #ifndef DESTRUCTIVE_WRITEBACK
10805       if(i<2||(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000))
10806       {
10807         wb_sx(regmap_pre[i],regs[i].regmap_entry,regs[i].wasdirty,is32_pre,regs[i].was32,
10808               unneeded_reg[i],unneeded_reg_upper[i]);
10809         wb_valid(regmap_pre[i],regs[i].regmap_entry,dirty_pre,regs[i].wasdirty,is32_pre,
10810               unneeded_reg[i],unneeded_reg_upper[i]);
10811       }
10812       is32_pre=regs[i].is32;
10813       dirty_pre=regs[i].dirty;
10814       #endif
10815       // write back
10816       if(i<2||(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000))
10817       {
10818         wb_invalidate(regmap_pre[i],regs[i].regmap_entry,regs[i].wasdirty,regs[i].was32,
10819                       unneeded_reg[i],unneeded_reg_upper[i]);
10820         loop_preload(regmap_pre[i],regs[i].regmap_entry);
10821       }
10822       // branch target entry point
10823       instr_addr[i]=(u_int)out;
10824       assem_debug("<->\n");
10825       // load regs
10826       if(regs[i].regmap_entry[HOST_CCREG]==CCREG&&regs[i].regmap[HOST_CCREG]!=CCREG)
10827         wb_register(CCREG,regs[i].regmap_entry,regs[i].wasdirty,regs[i].was32);
10828       load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i],rs2[i]);
10829       address_generation(i,&regs[i],regs[i].regmap_entry);
10830       load_consts(regmap_pre[i],regs[i].regmap,regs[i].was32,i);
10831       if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
10832       {
10833         // Load the delay slot registers if necessary
10834         if(rs1[i+1]!=rs1[i]&&rs1[i+1]!=rs2[i]&&(rs1[i+1]!=rt1[i]||rt1[i]==0))
10835           load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i+1],rs1[i+1]);
10836         if(rs2[i+1]!=rs1[i+1]&&rs2[i+1]!=rs1[i]&&rs2[i+1]!=rs2[i]&&(rs2[i+1]!=rt1[i]||rt1[i]==0))
10837           load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs2[i+1],rs2[i+1]);
10838         if(itype[i+1]==STORE||itype[i+1]==STORELR||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a)
10839           load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,INVCP,INVCP);
10840       }
10841       else if(i+1<slen)
10842       {
10843         // Preload registers for following instruction
10844         if(rs1[i+1]!=rs1[i]&&rs1[i+1]!=rs2[i])
10845           if(rs1[i+1]!=rt1[i]&&rs1[i+1]!=rt2[i])
10846             load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i+1],rs1[i+1]);
10847         if(rs2[i+1]!=rs1[i+1]&&rs2[i+1]!=rs1[i]&&rs2[i+1]!=rs2[i])
10848           if(rs2[i+1]!=rt1[i]&&rs2[i+1]!=rt2[i])
10849             load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs2[i+1],rs2[i+1]);
10850       }
10851       // TODO: if(is_ooo(i)) address_generation(i+1);
10852       if(itype[i]==CJUMP||itype[i]==FJUMP)
10853         load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,CCREG,CCREG);
10854       if(itype[i]==STORE||itype[i]==STORELR||(opcode[i]&0x3b)==0x39||(opcode[i]&0x3b)==0x3a)
10855         load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,INVCP,INVCP);
10856       if(bt[i]) cop1_usable=0;
10857       // assemble
10858       switch(itype[i]) {
10859         case ALU:
10860           alu_assemble(i,&regs[i]);break;
10861         case IMM16:
10862           imm16_assemble(i,&regs[i]);break;
10863         case SHIFT:
10864           shift_assemble(i,&regs[i]);break;
10865         case SHIFTIMM:
10866           shiftimm_assemble(i,&regs[i]);break;
10867         case LOAD:
10868           load_assemble(i,&regs[i]);break;
10869         case LOADLR:
10870           loadlr_assemble(i,&regs[i]);break;
10871         case STORE:
10872           store_assemble(i,&regs[i]);break;
10873         case STORELR:
10874           storelr_assemble(i,&regs[i]);break;
10875         case COP0:
10876           cop0_assemble(i,&regs[i]);break;
10877         case COP1:
10878           cop1_assemble(i,&regs[i]);break;
10879         case C1LS:
10880           c1ls_assemble(i,&regs[i]);break;
10881         case COP2:
10882           cop2_assemble(i,&regs[i]);break;
10883         case C2LS:
10884           c2ls_assemble(i,&regs[i]);break;
10885         case C2OP:
10886           c2op_assemble(i,&regs[i]);break;
10887         case FCONV:
10888           fconv_assemble(i,&regs[i]);break;
10889         case FLOAT:
10890           float_assemble(i,&regs[i]);break;
10891         case FCOMP:
10892           fcomp_assemble(i,&regs[i]);break;
10893         case MULTDIV:
10894           multdiv_assemble(i,&regs[i]);break;
10895         case MOV:
10896           mov_assemble(i,&regs[i]);break;
10897         case SYSCALL:
10898           syscall_assemble(i,&regs[i]);break;
10899         case HLECALL:
10900           hlecall_assemble(i,&regs[i]);break;
10901         case INTCALL:
10902           intcall_assemble(i,&regs[i]);break;
10903         case UJUMP:
10904           ujump_assemble(i,&regs[i]);ds=1;break;
10905         case RJUMP:
10906           rjump_assemble(i,&regs[i]);ds=1;break;
10907         case CJUMP:
10908           cjump_assemble(i,&regs[i]);ds=1;break;
10909         case SJUMP:
10910           sjump_assemble(i,&regs[i]);ds=1;break;
10911         case FJUMP:
10912           fjump_assemble(i,&regs[i]);ds=1;break;
10913         case SPAN:
10914           pagespan_assemble(i,&regs[i]);break;
10915       }
10916       if(itype[i]==UJUMP||itype[i]==RJUMP||(source[i]>>16)==0x1000)
10917         literal_pool(1024);
10918       else
10919         literal_pool_jumpover(256);
10920     }
10921   }
10922   //assert(itype[i-2]==UJUMP||itype[i-2]==RJUMP||(source[i-2]>>16)==0x1000);
10923   // If the block did not end with an unconditional branch,
10924   // add a jump to the next instruction.
10925   if(i>1) {
10926     if(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000&&itype[i-1]!=SPAN) {
10927       assert(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP);
10928       assert(i==slen);
10929       if(itype[i-2]!=CJUMP&&itype[i-2]!=SJUMP&&itype[i-2]!=FJUMP) {
10930         store_regs_bt(regs[i-1].regmap,regs[i-1].is32,regs[i-1].dirty,start+i*4);
10931         if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
10932           emit_loadreg(CCREG,HOST_CCREG);
10933         emit_addimm(HOST_CCREG,CLOCK_DIVIDER*(ccadj[i-1]+1),HOST_CCREG);
10934       }
10935       else if(!likely[i-2])
10936       {
10937         store_regs_bt(branch_regs[i-2].regmap,branch_regs[i-2].is32,branch_regs[i-2].dirty,start+i*4);
10938         assert(branch_regs[i-2].regmap[HOST_CCREG]==CCREG);
10939       }
10940       else
10941       {
10942         store_regs_bt(regs[i-2].regmap,regs[i-2].is32,regs[i-2].dirty,start+i*4);
10943         assert(regs[i-2].regmap[HOST_CCREG]==CCREG);
10944       }
10945       add_to_linker((int)out,start+i*4,0);
10946       emit_jmp(0);
10947     }
10948   }
10949   else
10950   {
10951     assert(i>0);
10952     assert(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP);
10953     store_regs_bt(regs[i-1].regmap,regs[i-1].is32,regs[i-1].dirty,start+i*4);
10954     if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
10955       emit_loadreg(CCREG,HOST_CCREG);
10956     emit_addimm(HOST_CCREG,CLOCK_DIVIDER*(ccadj[i-1]+1),HOST_CCREG);
10957     add_to_linker((int)out,start+i*4,0);
10958     emit_jmp(0);
10959   }
10960
10961   // TODO: delay slot stubs?
10962   // Stubs
10963   for(i=0;i<stubcount;i++)
10964   {
10965     switch(stubs[i][0])
10966     {
10967       case LOADB_STUB:
10968       case LOADH_STUB:
10969       case LOADW_STUB:
10970       case LOADD_STUB:
10971       case LOADBU_STUB:
10972       case LOADHU_STUB:
10973         do_readstub(i);break;
10974       case STOREB_STUB:
10975       case STOREH_STUB:
10976       case STOREW_STUB:
10977       case STORED_STUB:
10978         do_writestub(i);break;
10979       case CC_STUB:
10980         do_ccstub(i);break;
10981       case INVCODE_STUB:
10982         do_invstub(i);break;
10983       case FP_STUB:
10984         do_cop1stub(i);break;
10985       case STORELR_STUB:
10986         do_unalignedwritestub(i);break;
10987     }
10988   }
10989
10990   if (instr_addr0_override)
10991     instr_addr[0] = instr_addr0_override;
10992
10993   /* Pass 9 - Linker */
10994   for(i=0;i<linkcount;i++)
10995   {
10996     assem_debug("%8x -> %8x\n",link_addr[i][0],link_addr[i][1]);
10997     literal_pool(64);
10998     if(!link_addr[i][2])
10999     {
11000       void *stub=out;
11001       void *addr=check_addr(link_addr[i][1]);
11002       emit_extjump(link_addr[i][0],link_addr[i][1]);
11003       if(addr) {
11004         set_jump_target(link_addr[i][0],(int)addr);
11005         add_link(link_addr[i][1],stub);
11006       }
11007       else set_jump_target(link_addr[i][0],(int)stub);
11008     }
11009     else
11010     {
11011       // Internal branch
11012       int target=(link_addr[i][1]-start)>>2;
11013       assert(target>=0&&target<slen);
11014       assert(instr_addr[target]);
11015       //#ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
11016       //set_jump_target_fillslot(link_addr[i][0],instr_addr[target],link_addr[i][2]>>1);
11017       //#else
11018       set_jump_target(link_addr[i][0],instr_addr[target]);
11019       //#endif
11020     }
11021   }
11022   // External Branch Targets (jump_in)
11023   if(copy+slen*4>(void *)shadow+sizeof(shadow)) copy=shadow;
11024   for(i=0;i<slen;i++)
11025   {
11026     if(bt[i]||i==0)
11027     {
11028       if(instr_addr[i]) // TODO - delay slots (=null)
11029       {
11030         u_int vaddr=start+i*4;
11031         u_int page=get_page(vaddr);
11032         u_int vpage=get_vpage(vaddr);
11033         literal_pool(256);
11034         //if(!(is32[i]&(~unneeded_reg_upper[i])&~(1LL<<CCREG)))
11035 #ifndef FORCE32
11036         if(!requires_32bit[i])
11037 #else
11038         if(1)
11039 #endif
11040         {
11041           assem_debug("%8x (%d) <- %8x\n",instr_addr[i],i,start+i*4);
11042           assem_debug("jump_in: %x\n",start+i*4);
11043           ll_add(jump_dirty+vpage,vaddr,(void *)out);
11044           int entry_point=do_dirty_stub(i);
11045           ll_add(jump_in+page,vaddr,(void *)entry_point);
11046           // If there was an existing entry in the hash table,
11047           // replace it with the new address.
11048           // Don't add new entries.  We'll insert the
11049           // ones that actually get used in check_addr().
11050           int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
11051           if(ht_bin[0]==vaddr) {
11052             ht_bin[1]=entry_point;
11053           }
11054           if(ht_bin[2]==vaddr) {
11055             ht_bin[3]=entry_point;
11056           }
11057         }
11058         else
11059         {
11060           u_int r=requires_32bit[i]|!!(requires_32bit[i]>>32);
11061           assem_debug("%8x (%d) <- %8x\n",instr_addr[i],i,start+i*4);
11062           assem_debug("jump_in: %x (restricted - %x)\n",start+i*4,r);
11063           //int entry_point=(int)out;
11064           ////assem_debug("entry_point: %x\n",entry_point);
11065           //load_regs_entry(i);
11066           //if(entry_point==(int)out)
11067           //  entry_point=instr_addr[i];
11068           //else
11069           //  emit_jmp(instr_addr[i]);
11070           //ll_add_32(jump_in+page,vaddr,r,(void *)entry_point);
11071           ll_add_32(jump_dirty+vpage,vaddr,r,(void *)out);
11072           int entry_point=do_dirty_stub(i);
11073           ll_add_32(jump_in+page,vaddr,r,(void *)entry_point);
11074         }
11075       }
11076     }
11077   }
11078   // Write out the literal pool if necessary
11079   literal_pool(0);
11080   #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
11081   // Align code
11082   if(((u_int)out)&7) emit_addnop(13);
11083   #endif
11084   assert((u_int)out-beginning<MAX_OUTPUT_BLOCK_SIZE);
11085   //printf("shadow buffer: %x-%x\n",(int)copy,(int)copy+slen*4);
11086   memcpy(copy,source,slen*4);
11087   copy+=slen*4;
11088   
11089   #ifdef __arm__
11090   __clear_cache((void *)beginning,out);
11091   #endif
11092   
11093   // If we're within 256K of the end of the buffer,
11094   // start over from the beginning. (Is 256K enough?)
11095   if((int)out>BASE_ADDR+(1<<TARGET_SIZE_2)-MAX_OUTPUT_BLOCK_SIZE) out=(u_char *)BASE_ADDR;
11096   
11097   // Trap writes to any of the pages we compiled
11098   for(i=start>>12;i<=(start+slen*4)>>12;i++) {
11099     invalid_code[i]=0;
11100 #ifndef DISABLE_TLB
11101     memory_map[i]|=0x40000000;
11102     if((signed int)start>=(signed int)0xC0000000) {
11103       assert(using_tlb);
11104       j=(((u_int)i<<12)+(memory_map[i]<<2)-(u_int)rdram+(u_int)0x80000000)>>12;
11105       invalid_code[j]=0;
11106       memory_map[j]|=0x40000000;
11107       //printf("write protect physical page: %x (virtual %x)\n",j<<12,start);
11108     }
11109 #endif
11110   }
11111 #ifdef PCSX
11112   // PCSX maps all RAM mirror invalid_code tests to 0x80000000..0x80000000+RAM_SIZE
11113   if(get_page(start)<(RAM_SIZE>>12))
11114     for(i=start>>12;i<=(start+slen*4)>>12;i++)
11115       invalid_code[((u_int)0x80000000>>12)|i]=0;
11116 #endif
11117   
11118   /* Pass 10 - Free memory by expiring oldest blocks */
11119   
11120   int end=((((int)out-BASE_ADDR)>>(TARGET_SIZE_2-16))+16384)&65535;
11121   while(expirep!=end)
11122   {
11123     int shift=TARGET_SIZE_2-3; // Divide into 8 blocks
11124     int base=BASE_ADDR+((expirep>>13)<<shift); // Base address of this block
11125     inv_debug("EXP: Phase %d\n",expirep);
11126     switch((expirep>>11)&3)
11127     {
11128       case 0:
11129         // Clear jump_in and jump_dirty
11130         ll_remove_matching_addrs(jump_in+(expirep&2047),base,shift);
11131         ll_remove_matching_addrs(jump_dirty+(expirep&2047),base,shift);
11132         ll_remove_matching_addrs(jump_in+2048+(expirep&2047),base,shift);
11133         ll_remove_matching_addrs(jump_dirty+2048+(expirep&2047),base,shift);
11134         break;
11135       case 1:
11136         // Clear pointers
11137         ll_kill_pointers(jump_out[expirep&2047],base,shift);
11138         ll_kill_pointers(jump_out[(expirep&2047)+2048],base,shift);
11139         break;
11140       case 2:
11141         // Clear hash table
11142         for(i=0;i<32;i++) {
11143           int *ht_bin=hash_table[((expirep&2047)<<5)+i];
11144           if((ht_bin[3]>>shift)==(base>>shift) ||
11145              ((ht_bin[3]-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(base>>shift)) {
11146             inv_debug("EXP: Remove hash %x -> %x\n",ht_bin[2],ht_bin[3]);
11147             ht_bin[2]=ht_bin[3]=-1;
11148           }
11149           if((ht_bin[1]>>shift)==(base>>shift) ||
11150              ((ht_bin[1]-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(base>>shift)) {
11151             inv_debug("EXP: Remove hash %x -> %x\n",ht_bin[0],ht_bin[1]);
11152             ht_bin[0]=ht_bin[2];
11153             ht_bin[1]=ht_bin[3];
11154             ht_bin[2]=ht_bin[3]=-1;
11155           }
11156         }
11157         break;
11158       case 3:
11159         // Clear jump_out
11160         #ifdef __arm__
11161         if((expirep&2047)==0) 
11162           do_clear_cache();
11163         #endif
11164         ll_remove_matching_addrs(jump_out+(expirep&2047),base,shift);
11165         ll_remove_matching_addrs(jump_out+2048+(expirep&2047),base,shift);
11166         break;
11167     }
11168     expirep=(expirep+1)&65535;
11169   }
11170   return 0;
11171 }
11172
11173 // vim:shiftwidth=2:expandtab