fully reinit drc on change
[pcsx_rearmed.git] / libpcsxcore / new_dynarec / new_dynarec.c
1 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
2  *   Mupen64plus - new_dynarec.c                                           *
3  *   Copyright (C) 2009-2011 Ari64                                         *
4  *                                                                         *
5  *   This program is free software; you can redistribute it and/or modify  *
6  *   it under the terms of the GNU General Public License as published by  *
7  *   the Free Software Foundation; either version 2 of the License, or     *
8  *   (at your option) any later version.                                   *
9  *                                                                         *
10  *   This program is distributed in the hope that it will be useful,       *
11  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
12  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
13  *   GNU General Public License for more details.                          *
14  *                                                                         *
15  *   You should have received a copy of the GNU General Public License     *
16  *   along with this program; if not, write to the                         *
17  *   Free Software Foundation, Inc.,                                       *
18  *   51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.          *
19  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
20
21 #include <stdlib.h>
22 #include <stdint.h> //include for uint64_t
23 #include <assert.h>
24 #include <sys/mman.h>
25
26 #include "emu_if.h" //emulator interface
27
28 //#define DISASM
29 //#define assem_debug printf
30 //#define inv_debug printf
31 #define assem_debug(...)
32 #define inv_debug(...)
33
34 #ifdef __i386__
35 #include "assem_x86.h"
36 #endif
37 #ifdef __x86_64__
38 #include "assem_x64.h"
39 #endif
40 #ifdef __arm__
41 #include "assem_arm.h"
42 #endif
43
44 #define MAXBLOCK 4096
45 #define MAX_OUTPUT_BLOCK_SIZE 262144
46
47 struct regstat
48 {
49   signed char regmap_entry[HOST_REGS];
50   signed char regmap[HOST_REGS];
51   uint64_t was32;
52   uint64_t is32;
53   uint64_t wasdirty;
54   uint64_t dirty;
55   uint64_t u;
56   uint64_t uu;
57   u_int wasconst;
58   u_int isconst;
59   u_int loadedconst;             // host regs that have constants loaded
60   u_int waswritten;              // MIPS regs that were used as store base before
61 };
62
63 struct ll_entry
64 {
65   u_int vaddr;
66   u_int reg32;
67   void *addr;
68   struct ll_entry *next;
69 };
70
71   u_int start;
72   u_int *source;
73   u_int pagelimit;
74   char insn[MAXBLOCK][10];
75   u_char itype[MAXBLOCK];
76   u_char opcode[MAXBLOCK];
77   u_char opcode2[MAXBLOCK];
78   u_char bt[MAXBLOCK];
79   u_char rs1[MAXBLOCK];
80   u_char rs2[MAXBLOCK];
81   u_char rt1[MAXBLOCK];
82   u_char rt2[MAXBLOCK];
83   u_char us1[MAXBLOCK];
84   u_char us2[MAXBLOCK];
85   u_char dep1[MAXBLOCK];
86   u_char dep2[MAXBLOCK];
87   u_char lt1[MAXBLOCK];
88   static uint64_t gte_rs[MAXBLOCK]; // gte: 32 data and 32 ctl regs
89   static uint64_t gte_rt[MAXBLOCK];
90   static uint64_t gte_unneeded[MAXBLOCK];
91   static u_int smrv[32]; // speculated MIPS register values
92   static u_int smrv_strong; // mask or regs that are likely to have correct values
93   static u_int smrv_weak; // same, but somewhat less likely
94   static u_int smrv_strong_next; // same, but after current insn executes
95   static u_int smrv_weak_next;
96   int imm[MAXBLOCK];
97   u_int ba[MAXBLOCK];
98   char likely[MAXBLOCK];
99   char is_ds[MAXBLOCK];
100   char ooo[MAXBLOCK];
101   uint64_t unneeded_reg[MAXBLOCK];
102   uint64_t unneeded_reg_upper[MAXBLOCK];
103   uint64_t branch_unneeded_reg[MAXBLOCK];
104   uint64_t branch_unneeded_reg_upper[MAXBLOCK];
105   uint64_t p32[MAXBLOCK];
106   uint64_t pr32[MAXBLOCK];
107   signed char regmap_pre[MAXBLOCK][HOST_REGS];
108   static uint64_t current_constmap[HOST_REGS];
109   static uint64_t constmap[MAXBLOCK][HOST_REGS];
110   static struct regstat regs[MAXBLOCK];
111   static struct regstat branch_regs[MAXBLOCK];
112   signed char minimum_free_regs[MAXBLOCK];
113   u_int needed_reg[MAXBLOCK];
114   uint64_t requires_32bit[MAXBLOCK];
115   u_int wont_dirty[MAXBLOCK];
116   u_int will_dirty[MAXBLOCK];
117   int ccadj[MAXBLOCK];
118   int slen;
119   u_int instr_addr[MAXBLOCK];
120   u_int link_addr[MAXBLOCK][3];
121   int linkcount;
122   u_int stubs[MAXBLOCK*3][8];
123   int stubcount;
124   u_int literals[1024][2];
125   int literalcount;
126   int is_delayslot;
127   int cop1_usable;
128   u_char *out;
129   struct ll_entry *jump_in[4096];
130   struct ll_entry *jump_out[4096];
131   struct ll_entry *jump_dirty[4096];
132   u_int hash_table[65536][4]  __attribute__((aligned(16)));
133   char shadow[1048576]  __attribute__((aligned(16)));
134   void *copy;
135   int expirep;
136 #ifndef PCSX
137   u_int using_tlb;
138 #else
139   static const u_int using_tlb=0;
140 #endif
141   int new_dynarec_did_compile;
142   int new_dynarec_hacks;
143   u_int stop_after_jal;
144 #ifndef RAM_FIXED
145   static u_int ram_offset;
146 #else
147   static const u_int ram_offset=0;
148 #endif
149   extern u_char restore_candidate[512];
150   extern int cycle_count;
151
152   /* registers that may be allocated */
153   /* 1-31 gpr */
154 #define HIREG 32 // hi
155 #define LOREG 33 // lo
156 #define FSREG 34 // FPU status (FCSR)
157 #define CSREG 35 // Coprocessor status
158 #define CCREG 36 // Cycle count
159 #define INVCP 37 // Pointer to invalid_code
160 #define MMREG 38 // Pointer to memory_map
161 #define ROREG 39 // ram offset (if rdram!=0x80000000)
162 #define TEMPREG 40
163 #define FTEMP 40 // FPU temporary register
164 #define PTEMP 41 // Prefetch temporary register
165 #define TLREG 42 // TLB mapping offset
166 #define RHASH 43 // Return address hash
167 #define RHTBL 44 // Return address hash table address
168 #define RTEMP 45 // JR/JALR address register
169 #define MAXREG 45
170 #define AGEN1 46 // Address generation temporary register
171 #define AGEN2 47 // Address generation temporary register
172 #define MGEN1 48 // Maptable address generation temporary register
173 #define MGEN2 49 // Maptable address generation temporary register
174 #define BTREG 50 // Branch target temporary register
175
176   /* instruction types */
177 #define NOP 0     // No operation
178 #define LOAD 1    // Load
179 #define STORE 2   // Store
180 #define LOADLR 3  // Unaligned load
181 #define STORELR 4 // Unaligned store
182 #define MOV 5     // Move 
183 #define ALU 6     // Arithmetic/logic
184 #define MULTDIV 7 // Multiply/divide
185 #define SHIFT 8   // Shift by register
186 #define SHIFTIMM 9// Shift by immediate
187 #define IMM16 10  // 16-bit immediate
188 #define RJUMP 11  // Unconditional jump to register
189 #define UJUMP 12  // Unconditional jump
190 #define CJUMP 13  // Conditional branch (BEQ/BNE/BGTZ/BLEZ)
191 #define SJUMP 14  // Conditional branch (regimm format)
192 #define COP0 15   // Coprocessor 0
193 #define COP1 16   // Coprocessor 1
194 #define C1LS 17   // Coprocessor 1 load/store
195 #define FJUMP 18  // Conditional branch (floating point)
196 #define FLOAT 19  // Floating point unit
197 #define FCONV 20  // Convert integer to float
198 #define FCOMP 21  // Floating point compare (sets FSREG)
199 #define SYSCALL 22// SYSCALL
200 #define OTHER 23  // Other
201 #define SPAN 24   // Branch/delay slot spans 2 pages
202 #define NI 25     // Not implemented
203 #define HLECALL 26// PCSX fake opcodes for HLE
204 #define COP2 27   // Coprocessor 2 move
205 #define C2LS 28   // Coprocessor 2 load/store
206 #define C2OP 29   // Coprocessor 2 operation
207 #define INTCALL 30// Call interpreter to handle rare corner cases
208
209   /* stubs */
210 #define CC_STUB 1
211 #define FP_STUB 2
212 #define LOADB_STUB 3
213 #define LOADH_STUB 4
214 #define LOADW_STUB 5
215 #define LOADD_STUB 6
216 #define LOADBU_STUB 7
217 #define LOADHU_STUB 8
218 #define STOREB_STUB 9
219 #define STOREH_STUB 10
220 #define STOREW_STUB 11
221 #define STORED_STUB 12
222 #define STORELR_STUB 13
223 #define INVCODE_STUB 14
224
225   /* branch codes */
226 #define TAKEN 1
227 #define NOTTAKEN 2
228 #define NULLDS 3
229
230 // asm linkage
231 int new_recompile_block(int addr);
232 void *get_addr_ht(u_int vaddr);
233 void invalidate_block(u_int block);
234 void invalidate_addr(u_int addr);
235 void remove_hash(int vaddr);
236 void jump_vaddr();
237 void dyna_linker();
238 void dyna_linker_ds();
239 void verify_code();
240 void verify_code_vm();
241 void verify_code_ds();
242 void cc_interrupt();
243 void fp_exception();
244 void fp_exception_ds();
245 void jump_syscall();
246 void jump_syscall_hle();
247 void jump_eret();
248 void jump_hlecall();
249 void jump_intcall();
250 void new_dyna_leave();
251
252 // TLB
253 void TLBWI_new();
254 void TLBWR_new();
255 void read_nomem_new();
256 void read_nomemb_new();
257 void read_nomemh_new();
258 void read_nomemd_new();
259 void write_nomem_new();
260 void write_nomemb_new();
261 void write_nomemh_new();
262 void write_nomemd_new();
263 void write_rdram_new();
264 void write_rdramb_new();
265 void write_rdramh_new();
266 void write_rdramd_new();
267 extern u_int memory_map[1048576];
268
269 // Needed by assembler
270 void wb_register(signed char r,signed char regmap[],uint64_t dirty,uint64_t is32);
271 void wb_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty);
272 void wb_needed_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr);
273 void load_all_regs(signed char i_regmap[]);
274 void load_needed_regs(signed char i_regmap[],signed char next_regmap[]);
275 void load_regs_entry(int t);
276 void load_all_consts(signed char regmap[],int is32,u_int dirty,int i);
277
278 int tracedebug=0;
279
280 //#define DEBUG_CYCLE_COUNT 1
281
282 int cycle_multiplier; // 100 for 1.0
283
284 static int CLOCK_ADJUST(int x)
285 {
286   int s=(x>>31)|1;
287   return (x * cycle_multiplier + s * 50) / 100;
288 }
289
290 static void tlb_hacks()
291 {
292 #ifndef DISABLE_TLB
293   // Goldeneye hack
294   if (strncmp((char *) ROM_HEADER->nom, "GOLDENEYE",9) == 0)
295   {
296     u_int addr;
297     int n;
298     switch (ROM_HEADER->Country_code&0xFF) 
299     {
300       case 0x45: // U
301         addr=0x34b30;
302         break;                   
303       case 0x4A: // J 
304         addr=0x34b70;    
305         break;    
306       case 0x50: // E 
307         addr=0x329f0;
308         break;                        
309       default: 
310         // Unknown country code
311         addr=0;
312         break;
313     }
314     u_int rom_addr=(u_int)rom;
315     #ifdef ROM_COPY
316     // Since memory_map is 32-bit, on 64-bit systems the rom needs to be
317     // in the lower 4G of memory to use this hack.  Copy it if necessary.
318     if((void *)rom>(void *)0xffffffff) {
319       munmap(ROM_COPY, 67108864);
320       if(mmap(ROM_COPY, 12582912,
321               PROT_READ | PROT_WRITE,
322               MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS,
323               -1, 0) <= 0) {printf("mmap() failed\n");}
324       memcpy(ROM_COPY,rom,12582912);
325       rom_addr=(u_int)ROM_COPY;
326     }
327     #endif
328     if(addr) {
329       for(n=0x7F000;n<0x80000;n++) {
330         memory_map[n]=(((u_int)(rom_addr+addr-0x7F000000))>>2)|0x40000000;
331       }
332     }
333   }
334 #endif
335 }
336
337 static u_int get_page(u_int vaddr)
338 {
339 #ifndef PCSX
340   u_int page=(vaddr^0x80000000)>>12;
341 #else
342   u_int page=vaddr&~0xe0000000;
343   if (page < 0x1000000)
344     page &= ~0x0e00000; // RAM mirrors
345   page>>=12;
346 #endif
347 #ifndef DISABLE_TLB
348   if(page>262143&&tlb_LUT_r[vaddr>>12]) page=(tlb_LUT_r[vaddr>>12]^0x80000000)>>12;
349 #endif
350   if(page>2048) page=2048+(page&2047);
351   return page;
352 }
353
354 #ifndef PCSX
355 static u_int get_vpage(u_int vaddr)
356 {
357   u_int vpage=(vaddr^0x80000000)>>12;
358 #ifndef DISABLE_TLB
359   if(vpage>262143&&tlb_LUT_r[vaddr>>12]) vpage&=2047; // jump_dirty uses a hash of the virtual address instead
360 #endif
361   if(vpage>2048) vpage=2048+(vpage&2047);
362   return vpage;
363 }
364 #else
365 // no virtual mem in PCSX
366 static u_int get_vpage(u_int vaddr)
367 {
368   return get_page(vaddr);
369 }
370 #endif
371
372 // Get address from virtual address
373 // This is called from the recompiled JR/JALR instructions
374 void *get_addr(u_int vaddr)
375 {
376   u_int page=get_page(vaddr);
377   u_int vpage=get_vpage(vaddr);
378   struct ll_entry *head;
379   //printf("TRACE: count=%d next=%d (get_addr %x,page %d)\n",Count,next_interupt,vaddr,page);
380   head=jump_in[page];
381   while(head!=NULL) {
382     if(head->vaddr==vaddr&&head->reg32==0) {
383   //printf("TRACE: count=%d next=%d (get_addr match %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
384       int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
385       ht_bin[3]=ht_bin[1];
386       ht_bin[2]=ht_bin[0];
387       ht_bin[1]=(int)head->addr;
388       ht_bin[0]=vaddr;
389       return head->addr;
390     }
391     head=head->next;
392   }
393   head=jump_dirty[vpage];
394   while(head!=NULL) {
395     if(head->vaddr==vaddr&&head->reg32==0) {
396       //printf("TRACE: count=%d next=%d (get_addr match dirty %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
397       // Don't restore blocks which are about to expire from the cache
398       if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
399       if(verify_dirty(head->addr)) {
400         //printf("restore candidate: %x (%d) d=%d\n",vaddr,page,invalid_code[vaddr>>12]);
401         invalid_code[vaddr>>12]=0;
402         inv_code_start=inv_code_end=~0;
403 #ifndef DISABLE_TLB
404         memory_map[vaddr>>12]|=0x40000000;
405 #endif
406         if(vpage<2048) {
407 #ifndef DISABLE_TLB
408           if(tlb_LUT_r[vaddr>>12]) {
409             invalid_code[tlb_LUT_r[vaddr>>12]>>12]=0;
410             memory_map[tlb_LUT_r[vaddr>>12]>>12]|=0x40000000;
411           }
412 #endif
413           restore_candidate[vpage>>3]|=1<<(vpage&7);
414         }
415         else restore_candidate[page>>3]|=1<<(page&7);
416         int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
417         if(ht_bin[0]==vaddr) {
418           ht_bin[1]=(int)head->addr; // Replace existing entry
419         }
420         else
421         {
422           ht_bin[3]=ht_bin[1];
423           ht_bin[2]=ht_bin[0];
424           ht_bin[1]=(int)head->addr;
425           ht_bin[0]=vaddr;
426         }
427         return head->addr;
428       }
429     }
430     head=head->next;
431   }
432   //printf("TRACE: count=%d next=%d (get_addr no-match %x)\n",Count,next_interupt,vaddr);
433   int r=new_recompile_block(vaddr);
434   if(r==0) return get_addr(vaddr);
435   // Execute in unmapped page, generate pagefault execption
436   Status|=2;
437   Cause=(vaddr<<31)|0x8;
438   EPC=(vaddr&1)?vaddr-5:vaddr;
439   BadVAddr=(vaddr&~1);
440   Context=(Context&0xFF80000F)|((BadVAddr>>9)&0x007FFFF0);
441   EntryHi=BadVAddr&0xFFFFE000;
442   return get_addr_ht(0x80000000);
443 }
444 // Look up address in hash table first
445 void *get_addr_ht(u_int vaddr)
446 {
447   //printf("TRACE: count=%d next=%d (get_addr_ht %x)\n",Count,next_interupt,vaddr);
448   int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
449   if(ht_bin[0]==vaddr) return (void *)ht_bin[1];
450   if(ht_bin[2]==vaddr) return (void *)ht_bin[3];
451   return get_addr(vaddr);
452 }
453
454 void *get_addr_32(u_int vaddr,u_int flags)
455 {
456 #ifdef FORCE32
457   return get_addr(vaddr);
458 #else
459   //printf("TRACE: count=%d next=%d (get_addr_32 %x,flags %x)\n",Count,next_interupt,vaddr,flags);
460   int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
461   if(ht_bin[0]==vaddr) return (void *)ht_bin[1];
462   if(ht_bin[2]==vaddr) return (void *)ht_bin[3];
463   u_int page=get_page(vaddr);
464   u_int vpage=get_vpage(vaddr);
465   struct ll_entry *head;
466   head=jump_in[page];
467   while(head!=NULL) {
468     if(head->vaddr==vaddr&&(head->reg32&flags)==0) {
469       //printf("TRACE: count=%d next=%d (get_addr_32 match %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
470       if(head->reg32==0) {
471         int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
472         if(ht_bin[0]==-1) {
473           ht_bin[1]=(int)head->addr;
474           ht_bin[0]=vaddr;
475         }else if(ht_bin[2]==-1) {
476           ht_bin[3]=(int)head->addr;
477           ht_bin[2]=vaddr;
478         }
479         //ht_bin[3]=ht_bin[1];
480         //ht_bin[2]=ht_bin[0];
481         //ht_bin[1]=(int)head->addr;
482         //ht_bin[0]=vaddr;
483       }
484       return head->addr;
485     }
486     head=head->next;
487   }
488   head=jump_dirty[vpage];
489   while(head!=NULL) {
490     if(head->vaddr==vaddr&&(head->reg32&flags)==0) {
491       //printf("TRACE: count=%d next=%d (get_addr_32 match dirty %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
492       // Don't restore blocks which are about to expire from the cache
493       if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
494       if(verify_dirty(head->addr)) {
495         //printf("restore candidate: %x (%d) d=%d\n",vaddr,page,invalid_code[vaddr>>12]);
496         invalid_code[vaddr>>12]=0;
497         inv_code_start=inv_code_end=~0;
498         memory_map[vaddr>>12]|=0x40000000;
499         if(vpage<2048) {
500 #ifndef DISABLE_TLB
501           if(tlb_LUT_r[vaddr>>12]) {
502             invalid_code[tlb_LUT_r[vaddr>>12]>>12]=0;
503             memory_map[tlb_LUT_r[vaddr>>12]>>12]|=0x40000000;
504           }
505 #endif
506           restore_candidate[vpage>>3]|=1<<(vpage&7);
507         }
508         else restore_candidate[page>>3]|=1<<(page&7);
509         if(head->reg32==0) {
510           int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
511           if(ht_bin[0]==-1) {
512             ht_bin[1]=(int)head->addr;
513             ht_bin[0]=vaddr;
514           }else if(ht_bin[2]==-1) {
515             ht_bin[3]=(int)head->addr;
516             ht_bin[2]=vaddr;
517           }
518           //ht_bin[3]=ht_bin[1];
519           //ht_bin[2]=ht_bin[0];
520           //ht_bin[1]=(int)head->addr;
521           //ht_bin[0]=vaddr;
522         }
523         return head->addr;
524       }
525     }
526     head=head->next;
527   }
528   //printf("TRACE: count=%d next=%d (get_addr_32 no-match %x,flags %x)\n",Count,next_interupt,vaddr,flags);
529   int r=new_recompile_block(vaddr);
530   if(r==0) return get_addr(vaddr);
531   // Execute in unmapped page, generate pagefault execption
532   Status|=2;
533   Cause=(vaddr<<31)|0x8;
534   EPC=(vaddr&1)?vaddr-5:vaddr;
535   BadVAddr=(vaddr&~1);
536   Context=(Context&0xFF80000F)|((BadVAddr>>9)&0x007FFFF0);
537   EntryHi=BadVAddr&0xFFFFE000;
538   return get_addr_ht(0x80000000);
539 #endif
540 }
541
542 void clear_all_regs(signed char regmap[])
543 {
544   int hr;
545   for (hr=0;hr<HOST_REGS;hr++) regmap[hr]=-1;
546 }
547
548 signed char get_reg(signed char regmap[],int r)
549 {
550   int hr;
551   for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap[hr]==r) return hr;
552   return -1;
553 }
554
555 // Find a register that is available for two consecutive cycles
556 signed char get_reg2(signed char regmap1[],signed char regmap2[],int r)
557 {
558   int hr;
559   for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap1[hr]==r&&regmap2[hr]==r) return hr;
560   return -1;
561 }
562
563 int count_free_regs(signed char regmap[])
564 {
565   int count=0;
566   int hr;
567   for(hr=0;hr<HOST_REGS;hr++)
568   {
569     if(hr!=EXCLUDE_REG) {
570       if(regmap[hr]<0) count++;
571     }
572   }
573   return count;
574 }
575
576 void dirty_reg(struct regstat *cur,signed char reg)
577 {
578   int hr;
579   if(!reg) return;
580   for (hr=0;hr<HOST_REGS;hr++) {
581     if((cur->regmap[hr]&63)==reg) {
582       cur->dirty|=1<<hr;
583     }
584   }
585 }
586
587 // If we dirty the lower half of a 64 bit register which is now being
588 // sign-extended, we need to dump the upper half.
589 // Note: Do this only after completion of the instruction, because
590 // some instructions may need to read the full 64-bit value even if
591 // overwriting it (eg SLTI, DSRA32).
592 static void flush_dirty_uppers(struct regstat *cur)
593 {
594   int hr,reg;
595   for (hr=0;hr<HOST_REGS;hr++) {
596     if((cur->dirty>>hr)&1) {
597       reg=cur->regmap[hr];
598       if(reg>=64) 
599         if((cur->is32>>(reg&63))&1) cur->regmap[hr]=-1;
600     }
601   }
602 }
603
604 void set_const(struct regstat *cur,signed char reg,uint64_t value)
605 {
606   int hr;
607   if(!reg) return;
608   for (hr=0;hr<HOST_REGS;hr++) {
609     if(cur->regmap[hr]==reg) {
610       cur->isconst|=1<<hr;
611       current_constmap[hr]=value;
612     }
613     else if((cur->regmap[hr]^64)==reg) {
614       cur->isconst|=1<<hr;
615       current_constmap[hr]=value>>32;
616     }
617   }
618 }
619
620 void clear_const(struct regstat *cur,signed char reg)
621 {
622   int hr;
623   if(!reg) return;
624   for (hr=0;hr<HOST_REGS;hr++) {
625     if((cur->regmap[hr]&63)==reg) {
626       cur->isconst&=~(1<<hr);
627     }
628   }
629 }
630
631 int is_const(struct regstat *cur,signed char reg)
632 {
633   int hr;
634   if(reg<0) return 0;
635   if(!reg) return 1;
636   for (hr=0;hr<HOST_REGS;hr++) {
637     if((cur->regmap[hr]&63)==reg) {
638       return (cur->isconst>>hr)&1;
639     }
640   }
641   return 0;
642 }
643 uint64_t get_const(struct regstat *cur,signed char reg)
644 {
645   int hr;
646   if(!reg) return 0;
647   for (hr=0;hr<HOST_REGS;hr++) {
648     if(cur->regmap[hr]==reg) {
649       return current_constmap[hr];
650     }
651   }
652   printf("Unknown constant in r%d\n",reg);
653   exit(1);
654 }
655
656 // Least soon needed registers
657 // Look at the next ten instructions and see which registers
658 // will be used.  Try not to reallocate these.
659 void lsn(u_char hsn[], int i, int *preferred_reg)
660 {
661   int j;
662   int b=-1;
663   for(j=0;j<9;j++)
664   {
665     if(i+j>=slen) {
666       j=slen-i-1;
667       break;
668     }
669     if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
670     {
671       // Don't go past an unconditonal jump
672       j++;
673       break;
674     }
675   }
676   for(;j>=0;j--)
677   {
678     if(rs1[i+j]) hsn[rs1[i+j]]=j;
679     if(rs2[i+j]) hsn[rs2[i+j]]=j;
680     if(rt1[i+j]) hsn[rt1[i+j]]=j;
681     if(rt2[i+j]) hsn[rt2[i+j]]=j;
682     if(itype[i+j]==STORE || itype[i+j]==STORELR) {
683       // Stores can allocate zero
684       hsn[rs1[i+j]]=j;
685       hsn[rs2[i+j]]=j;
686     }
687     // On some architectures stores need invc_ptr
688     #if defined(HOST_IMM8)
689     if(itype[i+j]==STORE || itype[i+j]==STORELR || (opcode[i+j]&0x3b)==0x39 || (opcode[i+j]&0x3b)==0x3a) {
690       hsn[INVCP]=j;
691     }
692     #endif
693     if(i+j>=0&&(itype[i+j]==UJUMP||itype[i+j]==CJUMP||itype[i+j]==SJUMP||itype[i+j]==FJUMP))
694     {
695       hsn[CCREG]=j;
696       b=j;
697     }
698   }
699   if(b>=0)
700   {
701     if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
702     {
703       // Follow first branch
704       int t=(ba[i+b]-start)>>2;
705       j=7-b;if(t+j>=slen) j=slen-t-1;
706       for(;j>=0;j--)
707       {
708         if(rs1[t+j]) if(hsn[rs1[t+j]]>j+b+2) hsn[rs1[t+j]]=j+b+2;
709         if(rs2[t+j]) if(hsn[rs2[t+j]]>j+b+2) hsn[rs2[t+j]]=j+b+2;
710         //if(rt1[t+j]) if(hsn[rt1[t+j]]>j+b+2) hsn[rt1[t+j]]=j+b+2;
711         //if(rt2[t+j]) if(hsn[rt2[t+j]]>j+b+2) hsn[rt2[t+j]]=j+b+2;
712       }
713     }
714     // TODO: preferred register based on backward branch
715   }
716   // Delay slot should preferably not overwrite branch conditions or cycle count
717   if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)) {
718     if(rs1[i-1]) if(hsn[rs1[i-1]]>1) hsn[rs1[i-1]]=1;
719     if(rs2[i-1]) if(hsn[rs2[i-1]]>1) hsn[rs2[i-1]]=1;
720     hsn[CCREG]=1;
721     // ...or hash tables
722     hsn[RHASH]=1;
723     hsn[RHTBL]=1;
724   }
725   // Coprocessor load/store needs FTEMP, even if not declared
726   if(itype[i]==C1LS||itype[i]==C2LS) {
727     hsn[FTEMP]=0;
728   }
729   // Load L/R also uses FTEMP as a temporary register
730   if(itype[i]==LOADLR) {
731     hsn[FTEMP]=0;
732   }
733   // Also SWL/SWR/SDL/SDR
734   if(opcode[i]==0x2a||opcode[i]==0x2e||opcode[i]==0x2c||opcode[i]==0x2d) {
735     hsn[FTEMP]=0;
736   }
737   // Don't remove the TLB registers either
738   if(itype[i]==LOAD || itype[i]==LOADLR || itype[i]==STORE || itype[i]==STORELR || itype[i]==C1LS || itype[i]==C2LS) {
739     hsn[TLREG]=0;
740   }
741   // Don't remove the miniht registers
742   if(itype[i]==UJUMP||itype[i]==RJUMP)
743   {
744     hsn[RHASH]=0;
745     hsn[RHTBL]=0;
746   }
747 }
748
749 // We only want to allocate registers if we're going to use them again soon
750 int needed_again(int r, int i)
751 {
752   int j;
753   int b=-1;
754   int rn=10;
755   
756   if(i>0&&(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000))
757   {
758     if(ba[i-1]<start || ba[i-1]>start+slen*4-4)
759       return 0; // Don't need any registers if exiting the block
760   }
761   for(j=0;j<9;j++)
762   {
763     if(i+j>=slen) {
764       j=slen-i-1;
765       break;
766     }
767     if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
768     {
769       // Don't go past an unconditonal jump
770       j++;
771       break;
772     }
773     if(itype[i+j]==SYSCALL||itype[i+j]==HLECALL||itype[i+j]==INTCALL||((source[i+j]&0xfc00003f)==0x0d))
774     {
775       break;
776     }
777   }
778   for(;j>=1;j--)
779   {
780     if(rs1[i+j]==r) rn=j;
781     if(rs2[i+j]==r) rn=j;
782     if((unneeded_reg[i+j]>>r)&1) rn=10;
783     if(i+j>=0&&(itype[i+j]==UJUMP||itype[i+j]==CJUMP||itype[i+j]==SJUMP||itype[i+j]==FJUMP))
784     {
785       b=j;
786     }
787   }
788   /*
789   if(b>=0)
790   {
791     if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
792     {
793       // Follow first branch
794       int o=rn;
795       int t=(ba[i+b]-start)>>2;
796       j=7-b;if(t+j>=slen) j=slen-t-1;
797       for(;j>=0;j--)
798       {
799         if(!((unneeded_reg[t+j]>>r)&1)) {
800           if(rs1[t+j]==r) if(rn>j+b+2) rn=j+b+2;
801           if(rs2[t+j]==r) if(rn>j+b+2) rn=j+b+2;
802         }
803         else rn=o;
804       }
805     }
806   }*/
807   if(rn<10) return 1;
808   return 0;
809 }
810
811 // Try to match register allocations at the end of a loop with those
812 // at the beginning
813 int loop_reg(int i, int r, int hr)
814 {
815   int j,k;
816   for(j=0;j<9;j++)
817   {
818     if(i+j>=slen) {
819       j=slen-i-1;
820       break;
821     }
822     if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
823     {
824       // Don't go past an unconditonal jump
825       j++;
826       break;
827     }
828   }
829   k=0;
830   if(i>0){
831     if(itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)
832       k--;
833   }
834   for(;k<j;k++)
835   {
836     if(r<64&&((unneeded_reg[i+k]>>r)&1)) return hr;
837     if(r>64&&((unneeded_reg_upper[i+k]>>r)&1)) return hr;
838     if(i+k>=0&&(itype[i+k]==UJUMP||itype[i+k]==CJUMP||itype[i+k]==SJUMP||itype[i+k]==FJUMP))
839     {
840       if(ba[i+k]>=start && ba[i+k]<(start+i*4))
841       {
842         int t=(ba[i+k]-start)>>2;
843         int reg=get_reg(regs[t].regmap_entry,r);
844         if(reg>=0) return reg;
845         //reg=get_reg(regs[t+1].regmap_entry,r);
846         //if(reg>=0) return reg;
847       }
848     }
849   }
850   return hr;
851 }
852
853
854 // Allocate every register, preserving source/target regs
855 void alloc_all(struct regstat *cur,int i)
856 {
857   int hr;
858   
859   for(hr=0;hr<HOST_REGS;hr++) {
860     if(hr!=EXCLUDE_REG) {
861       if(((cur->regmap[hr]&63)!=rs1[i])&&((cur->regmap[hr]&63)!=rs2[i])&&
862          ((cur->regmap[hr]&63)!=rt1[i])&&((cur->regmap[hr]&63)!=rt2[i]))
863       {
864         cur->regmap[hr]=-1;
865         cur->dirty&=~(1<<hr);
866       }
867       // Don't need zeros
868       if((cur->regmap[hr]&63)==0)
869       {
870         cur->regmap[hr]=-1;
871         cur->dirty&=~(1<<hr);
872       }
873     }
874   }
875 }
876
877 #ifndef FORCE32
878 void div64(int64_t dividend,int64_t divisor)
879 {
880   lo=dividend/divisor;
881   hi=dividend%divisor;
882   //printf("TRACE: ddiv %8x%8x %8x%8x\n" ,(int)reg[HIREG],(int)(reg[HIREG]>>32)
883   //                                     ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
884 }
885 void divu64(uint64_t dividend,uint64_t divisor)
886 {
887   lo=dividend/divisor;
888   hi=dividend%divisor;
889   //printf("TRACE: ddivu %8x%8x %8x%8x\n",(int)reg[HIREG],(int)(reg[HIREG]>>32)
890   //                                     ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
891 }
892
893 void mult64(uint64_t m1,uint64_t m2)
894 {
895    unsigned long long int op1, op2, op3, op4;
896    unsigned long long int result1, result2, result3, result4;
897    unsigned long long int temp1, temp2, temp3, temp4;
898    int sign = 0;
899    
900    if (m1 < 0)
901      {
902     op2 = -m1;
903     sign = 1 - sign;
904      }
905    else op2 = m1;
906    if (m2 < 0)
907      {
908     op4 = -m2;
909     sign = 1 - sign;
910      }
911    else op4 = m2;
912    
913    op1 = op2 & 0xFFFFFFFF;
914    op2 = (op2 >> 32) & 0xFFFFFFFF;
915    op3 = op4 & 0xFFFFFFFF;
916    op4 = (op4 >> 32) & 0xFFFFFFFF;
917    
918    temp1 = op1 * op3;
919    temp2 = (temp1 >> 32) + op1 * op4;
920    temp3 = op2 * op3;
921    temp4 = (temp3 >> 32) + op2 * op4;
922    
923    result1 = temp1 & 0xFFFFFFFF;
924    result2 = temp2 + (temp3 & 0xFFFFFFFF);
925    result3 = (result2 >> 32) + temp4;
926    result4 = (result3 >> 32);
927    
928    lo = result1 | (result2 << 32);
929    hi = (result3 & 0xFFFFFFFF) | (result4 << 32);
930    if (sign)
931      {
932     hi = ~hi;
933     if (!lo) hi++;
934     else lo = ~lo + 1;
935      }
936 }
937
938 void multu64(uint64_t m1,uint64_t m2)
939 {
940    unsigned long long int op1, op2, op3, op4;
941    unsigned long long int result1, result2, result3, result4;
942    unsigned long long int temp1, temp2, temp3, temp4;
943    
944    op1 = m1 & 0xFFFFFFFF;
945    op2 = (m1 >> 32) & 0xFFFFFFFF;
946    op3 = m2 & 0xFFFFFFFF;
947    op4 = (m2 >> 32) & 0xFFFFFFFF;
948    
949    temp1 = op1 * op3;
950    temp2 = (temp1 >> 32) + op1 * op4;
951    temp3 = op2 * op3;
952    temp4 = (temp3 >> 32) + op2 * op4;
953    
954    result1 = temp1 & 0xFFFFFFFF;
955    result2 = temp2 + (temp3 & 0xFFFFFFFF);
956    result3 = (result2 >> 32) + temp4;
957    result4 = (result3 >> 32);
958    
959    lo = result1 | (result2 << 32);
960    hi = (result3 & 0xFFFFFFFF) | (result4 << 32);
961    
962   //printf("TRACE: dmultu %8x%8x %8x%8x\n",(int)reg[HIREG],(int)(reg[HIREG]>>32)
963   //                                      ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
964 }
965
966 uint64_t ldl_merge(uint64_t original,uint64_t loaded,u_int bits)
967 {
968   if(bits) {
969     original<<=64-bits;
970     original>>=64-bits;
971     loaded<<=bits;
972     original|=loaded;
973   }
974   else original=loaded;
975   return original;
976 }
977 uint64_t ldr_merge(uint64_t original,uint64_t loaded,u_int bits)
978 {
979   if(bits^56) {
980     original>>=64-(bits^56);
981     original<<=64-(bits^56);
982     loaded>>=bits^56;
983     original|=loaded;
984   }
985   else original=loaded;
986   return original;
987 }
988 #endif
989
990 #ifdef __i386__
991 #include "assem_x86.c"
992 #endif
993 #ifdef __x86_64__
994 #include "assem_x64.c"
995 #endif
996 #ifdef __arm__
997 #include "assem_arm.c"
998 #endif
999
1000 // Add virtual address mapping to linked list
1001 void ll_add(struct ll_entry **head,int vaddr,void *addr)
1002 {
1003   struct ll_entry *new_entry;
1004   new_entry=malloc(sizeof(struct ll_entry));
1005   assert(new_entry!=NULL);
1006   new_entry->vaddr=vaddr;
1007   new_entry->reg32=0;
1008   new_entry->addr=addr;
1009   new_entry->next=*head;
1010   *head=new_entry;
1011 }
1012
1013 // Add virtual address mapping for 32-bit compiled block
1014 void ll_add_32(struct ll_entry **head,int vaddr,u_int reg32,void *addr)
1015 {
1016   ll_add(head,vaddr,addr);
1017 #ifndef FORCE32
1018   (*head)->reg32=reg32;
1019 #endif
1020 }
1021
1022 // Check if an address is already compiled
1023 // but don't return addresses which are about to expire from the cache
1024 void *check_addr(u_int vaddr)
1025 {
1026   u_int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
1027   if(ht_bin[0]==vaddr) {
1028     if(((ht_bin[1]-MAX_OUTPUT_BLOCK_SIZE-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
1029       if(isclean(ht_bin[1])) return (void *)ht_bin[1];
1030   }
1031   if(ht_bin[2]==vaddr) {
1032     if(((ht_bin[3]-MAX_OUTPUT_BLOCK_SIZE-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
1033       if(isclean(ht_bin[3])) return (void *)ht_bin[3];
1034   }
1035   u_int page=get_page(vaddr);
1036   struct ll_entry *head;
1037   head=jump_in[page];
1038   while(head!=NULL) {
1039     if(head->vaddr==vaddr&&head->reg32==0) {
1040       if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1041         // Update existing entry with current address
1042         if(ht_bin[0]==vaddr) {
1043           ht_bin[1]=(int)head->addr;
1044           return head->addr;
1045         }
1046         if(ht_bin[2]==vaddr) {
1047           ht_bin[3]=(int)head->addr;
1048           return head->addr;
1049         }
1050         // Insert into hash table with low priority.
1051         // Don't evict existing entries, as they are probably
1052         // addresses that are being accessed frequently.
1053         if(ht_bin[0]==-1) {
1054           ht_bin[1]=(int)head->addr;
1055           ht_bin[0]=vaddr;
1056         }else if(ht_bin[2]==-1) {
1057           ht_bin[3]=(int)head->addr;
1058           ht_bin[2]=vaddr;
1059         }
1060         return head->addr;
1061       }
1062     }
1063     head=head->next;
1064   }
1065   return 0;
1066 }
1067
1068 void remove_hash(int vaddr)
1069 {
1070   //printf("remove hash: %x\n",vaddr);
1071   int *ht_bin=hash_table[(((vaddr)>>16)^vaddr)&0xFFFF];
1072   if(ht_bin[2]==vaddr) {
1073     ht_bin[2]=ht_bin[3]=-1;
1074   }
1075   if(ht_bin[0]==vaddr) {
1076     ht_bin[0]=ht_bin[2];
1077     ht_bin[1]=ht_bin[3];
1078     ht_bin[2]=ht_bin[3]=-1;
1079   }
1080 }
1081
1082 void ll_remove_matching_addrs(struct ll_entry **head,int addr,int shift)
1083 {
1084   struct ll_entry *next;
1085   while(*head) {
1086     if(((u_int)((*head)->addr)>>shift)==(addr>>shift) || 
1087        ((u_int)((*head)->addr-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(addr>>shift))
1088     {
1089       inv_debug("EXP: Remove pointer to %x (%x)\n",(int)(*head)->addr,(*head)->vaddr);
1090       remove_hash((*head)->vaddr);
1091       next=(*head)->next;
1092       free(*head);
1093       *head=next;
1094     }
1095     else
1096     {
1097       head=&((*head)->next);
1098     }
1099   }
1100 }
1101
1102 // Remove all entries from linked list
1103 void ll_clear(struct ll_entry **head)
1104 {
1105   struct ll_entry *cur;
1106   struct ll_entry *next;
1107   if(cur=*head) {
1108     *head=0;
1109     while(cur) {
1110       next=cur->next;
1111       free(cur);
1112       cur=next;
1113     }
1114   }
1115 }
1116
1117 // Dereference the pointers and remove if it matches
1118 void ll_kill_pointers(struct ll_entry *head,int addr,int shift)
1119 {
1120   while(head) {
1121     int ptr=get_pointer(head->addr);
1122     inv_debug("EXP: Lookup pointer to %x at %x (%x)\n",(int)ptr,(int)head->addr,head->vaddr);
1123     if(((ptr>>shift)==(addr>>shift)) ||
1124        (((ptr-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(addr>>shift)))
1125     {
1126       inv_debug("EXP: Kill pointer at %x (%x)\n",(int)head->addr,head->vaddr);
1127       u_int host_addr=(u_int)kill_pointer(head->addr);
1128       #ifdef __arm__
1129         needs_clear_cache[(host_addr-(u_int)BASE_ADDR)>>17]|=1<<(((host_addr-(u_int)BASE_ADDR)>>12)&31);
1130       #endif
1131     }
1132     head=head->next;
1133   }
1134 }
1135
1136 // This is called when we write to a compiled block (see do_invstub)
1137 void invalidate_page(u_int page)
1138 {
1139   struct ll_entry *head;
1140   struct ll_entry *next;
1141   head=jump_in[page];
1142   jump_in[page]=0;
1143   while(head!=NULL) {
1144     inv_debug("INVALIDATE: %x\n",head->vaddr);
1145     remove_hash(head->vaddr);
1146     next=head->next;
1147     free(head);
1148     head=next;
1149   }
1150   head=jump_out[page];
1151   jump_out[page]=0;
1152   while(head!=NULL) {
1153     inv_debug("INVALIDATE: kill pointer to %x (%x)\n",head->vaddr,(int)head->addr);
1154     u_int host_addr=(u_int)kill_pointer(head->addr);
1155     #ifdef __arm__
1156       needs_clear_cache[(host_addr-(u_int)BASE_ADDR)>>17]|=1<<(((host_addr-(u_int)BASE_ADDR)>>12)&31);
1157     #endif
1158     next=head->next;
1159     free(head);
1160     head=next;
1161   }
1162 }
1163
1164 static void invalidate_block_range(u_int block, u_int first, u_int last)
1165 {
1166   u_int page=get_page(block<<12);
1167   //printf("first=%d last=%d\n",first,last);
1168   invalidate_page(page);
1169   assert(first+5>page); // NB: this assumes MAXBLOCK<=4096 (4 pages)
1170   assert(last<page+5);
1171   // Invalidate the adjacent pages if a block crosses a 4K boundary
1172   while(first<page) {
1173     invalidate_page(first);
1174     first++;
1175   }
1176   for(first=page+1;first<last;first++) {
1177     invalidate_page(first);
1178   }
1179   #ifdef __arm__
1180     do_clear_cache();
1181   #endif
1182   
1183   // Don't trap writes
1184   invalid_code[block]=1;
1185 #ifndef DISABLE_TLB
1186   // If there is a valid TLB entry for this page, remove write protect
1187   if(tlb_LUT_w[block]) {
1188     assert(tlb_LUT_r[block]==tlb_LUT_w[block]);
1189     // CHECK: Is this right?
1190     memory_map[block]=((tlb_LUT_w[block]&0xFFFFF000)-(block<<12)+(unsigned int)rdram-0x80000000)>>2;
1191     u_int real_block=tlb_LUT_w[block]>>12;
1192     invalid_code[real_block]=1;
1193     if(real_block>=0x80000&&real_block<0x80800) memory_map[real_block]=((u_int)rdram-0x80000000)>>2;
1194   }
1195   else if(block>=0x80000&&block<0x80800) memory_map[block]=((u_int)rdram-0x80000000)>>2;
1196 #endif
1197
1198   #ifdef USE_MINI_HT
1199   memset(mini_ht,-1,sizeof(mini_ht));
1200   #endif
1201 }
1202
1203 void invalidate_block(u_int block)
1204 {
1205   u_int page=get_page(block<<12);
1206   u_int vpage=get_vpage(block<<12);
1207   inv_debug("INVALIDATE: %x (%d)\n",block<<12,page);
1208   //inv_debug("invalid_code[block]=%d\n",invalid_code[block]);
1209   u_int first,last;
1210   first=last=page;
1211   struct ll_entry *head;
1212   head=jump_dirty[vpage];
1213   //printf("page=%d vpage=%d\n",page,vpage);
1214   while(head!=NULL) {
1215     u_int start,end;
1216     if(vpage>2047||(head->vaddr>>12)==block) { // Ignore vaddr hash collision
1217       get_bounds((int)head->addr,&start,&end);
1218       //printf("start: %x end: %x\n",start,end);
1219       if(page<2048&&start>=(u_int)rdram&&end<(u_int)rdram+RAM_SIZE) {
1220         if(((start-(u_int)rdram)>>12)<=page&&((end-1-(u_int)rdram)>>12)>=page) {
1221           if((((start-(u_int)rdram)>>12)&2047)<first) first=((start-(u_int)rdram)>>12)&2047;
1222           if((((end-1-(u_int)rdram)>>12)&2047)>last) last=((end-1-(u_int)rdram)>>12)&2047;
1223         }
1224       }
1225 #ifndef DISABLE_TLB
1226       if(page<2048&&(signed int)start>=(signed int)0xC0000000&&(signed int)end>=(signed int)0xC0000000) {
1227         if(((start+memory_map[start>>12]-(u_int)rdram)>>12)<=page&&((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)>=page) {
1228           if((((start+memory_map[start>>12]-(u_int)rdram)>>12)&2047)<first) first=((start+memory_map[start>>12]-(u_int)rdram)>>12)&2047;
1229           if((((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)&2047)>last) last=((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)&2047;
1230         }
1231       }
1232 #endif
1233     }
1234     head=head->next;
1235   }
1236   invalidate_block_range(block,first,last);
1237 }
1238
1239 void invalidate_addr(u_int addr)
1240 {
1241 #ifdef PCSX
1242   //static int rhits;
1243   // this check is done by the caller
1244   //if (inv_code_start<=addr&&addr<=inv_code_end) { rhits++; return; }
1245   u_int page=get_vpage(addr);
1246   if(page<2048) { // RAM
1247     struct ll_entry *head;
1248     u_int addr_min=~0, addr_max=0;
1249     u_int mask=RAM_SIZE-1;
1250     u_int addr_main=0x80000000|(addr&mask);
1251     int pg1;
1252     inv_code_start=addr_main&~0xfff;
1253     inv_code_end=addr_main|0xfff;
1254     pg1=page;
1255     if (pg1>0) {
1256       // must check previous page too because of spans..
1257       pg1--;
1258       inv_code_start-=0x1000;
1259     }
1260     for(;pg1<=page;pg1++) {
1261       for(head=jump_dirty[pg1];head!=NULL;head=head->next) {
1262         u_int start,end;
1263         get_bounds((int)head->addr,&start,&end);
1264         if(ram_offset) {
1265           start-=ram_offset;
1266           end-=ram_offset;
1267         }
1268         if(start<=addr_main&&addr_main<end) {
1269           if(start<addr_min) addr_min=start;
1270           if(end>addr_max) addr_max=end;
1271         }
1272         else if(addr_main<start) {
1273           if(start<inv_code_end)
1274             inv_code_end=start-1;
1275         }
1276         else {
1277           if(end>inv_code_start)
1278             inv_code_start=end;
1279         }
1280       }
1281     }
1282     if (addr_min!=~0) {
1283       inv_debug("INV ADDR: %08x hit %08x-%08x\n", addr, addr_min, addr_max);
1284       inv_code_start=inv_code_end=~0;
1285       invalidate_block_range(addr>>12,(addr_min&mask)>>12,(addr_max&mask)>>12);
1286       return;
1287     }
1288     else {
1289       inv_code_start=(addr&~mask)|(inv_code_start&mask);
1290       inv_code_end=(addr&~mask)|(inv_code_end&mask);
1291       inv_debug("INV ADDR: %08x miss, inv %08x-%08x, sk %d\n", addr, inv_code_start, inv_code_end, 0);
1292       return;
1293     }
1294   }
1295 #endif
1296   invalidate_block(addr>>12);
1297 }
1298
1299 // This is called when loading a save state.
1300 // Anything could have changed, so invalidate everything.
1301 void invalidate_all_pages()
1302 {
1303   u_int page,n;
1304   for(page=0;page<4096;page++)
1305     invalidate_page(page);
1306   for(page=0;page<1048576;page++)
1307     if(!invalid_code[page]) {
1308       restore_candidate[(page&2047)>>3]|=1<<(page&7);
1309       restore_candidate[((page&2047)>>3)+256]|=1<<(page&7);
1310     }
1311   #ifdef __arm__
1312   __clear_cache((void *)BASE_ADDR,(void *)BASE_ADDR+(1<<TARGET_SIZE_2));
1313   #endif
1314   #ifdef USE_MINI_HT
1315   memset(mini_ht,-1,sizeof(mini_ht));
1316   #endif
1317   #ifndef DISABLE_TLB
1318   // TLB
1319   for(page=0;page<0x100000;page++) {
1320     if(tlb_LUT_r[page]) {
1321       memory_map[page]=((tlb_LUT_r[page]&0xFFFFF000)-(page<<12)+(unsigned int)rdram-0x80000000)>>2;
1322       if(!tlb_LUT_w[page]||!invalid_code[page])
1323         memory_map[page]|=0x40000000; // Write protect
1324     }
1325     else memory_map[page]=-1;
1326     if(page==0x80000) page=0xC0000;
1327   }
1328   tlb_hacks();
1329   #endif
1330 }
1331
1332 // Add an entry to jump_out after making a link
1333 void add_link(u_int vaddr,void *src)
1334 {
1335   u_int page=get_page(vaddr);
1336   inv_debug("add_link: %x -> %x (%d)\n",(int)src,vaddr,page);
1337   int *ptr=(int *)(src+4);
1338   assert((*ptr&0x0fff0000)==0x059f0000);
1339   ll_add(jump_out+page,vaddr,src);
1340   //int ptr=get_pointer(src);
1341   //inv_debug("add_link: Pointer is to %x\n",(int)ptr);
1342 }
1343
1344 // If a code block was found to be unmodified (bit was set in
1345 // restore_candidate) and it remains unmodified (bit is clear
1346 // in invalid_code) then move the entries for that 4K page from
1347 // the dirty list to the clean list.
1348 void clean_blocks(u_int page)
1349 {
1350   struct ll_entry *head;
1351   inv_debug("INV: clean_blocks page=%d\n",page);
1352   head=jump_dirty[page];
1353   while(head!=NULL) {
1354     if(!invalid_code[head->vaddr>>12]) {
1355       // Don't restore blocks which are about to expire from the cache
1356       if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1357         u_int start,end;
1358         if(verify_dirty((int)head->addr)) {
1359           //printf("Possibly Restore %x (%x)\n",head->vaddr, (int)head->addr);
1360           u_int i;
1361           u_int inv=0;
1362           get_bounds((int)head->addr,&start,&end);
1363           if(start-(u_int)rdram<RAM_SIZE) {
1364             for(i=(start-(u_int)rdram+0x80000000)>>12;i<=(end-1-(u_int)rdram+0x80000000)>>12;i++) {
1365               inv|=invalid_code[i];
1366             }
1367           }
1368 #ifndef DISABLE_TLB
1369           if((signed int)head->vaddr>=(signed int)0xC0000000) {
1370             u_int addr = (head->vaddr+(memory_map[head->vaddr>>12]<<2));
1371             //printf("addr=%x start=%x end=%x\n",addr,start,end);
1372             if(addr<start||addr>=end) inv=1;
1373           }
1374 #endif
1375           else if((signed int)head->vaddr>=(signed int)0x80000000+RAM_SIZE) {
1376             inv=1;
1377           }
1378           if(!inv) {
1379             void * clean_addr=(void *)get_clean_addr((int)head->addr);
1380             if((((u_int)clean_addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1381               u_int ppage=page;
1382 #ifndef DISABLE_TLB
1383               if(page<2048&&tlb_LUT_r[head->vaddr>>12]) ppage=(tlb_LUT_r[head->vaddr>>12]^0x80000000)>>12;
1384 #endif
1385               inv_debug("INV: Restored %x (%x/%x)\n",head->vaddr, (int)head->addr, (int)clean_addr);
1386               //printf("page=%x, addr=%x\n",page,head->vaddr);
1387               //assert(head->vaddr>>12==(page|0x80000));
1388               ll_add_32(jump_in+ppage,head->vaddr,head->reg32,clean_addr);
1389               int *ht_bin=hash_table[((head->vaddr>>16)^head->vaddr)&0xFFFF];
1390               if(!head->reg32) {
1391                 if(ht_bin[0]==head->vaddr) {
1392                   ht_bin[1]=(int)clean_addr; // Replace existing entry
1393                 }
1394                 if(ht_bin[2]==head->vaddr) {
1395                   ht_bin[3]=(int)clean_addr; // Replace existing entry
1396                 }
1397               }
1398             }
1399           }
1400         }
1401       }
1402     }
1403     head=head->next;
1404   }
1405 }
1406
1407
1408 void mov_alloc(struct regstat *current,int i)
1409 {
1410   // Note: Don't need to actually alloc the source registers
1411   if((~current->is32>>rs1[i])&1) {
1412     //alloc_reg64(current,i,rs1[i]);
1413     alloc_reg64(current,i,rt1[i]);
1414     current->is32&=~(1LL<<rt1[i]);
1415   } else {
1416     //alloc_reg(current,i,rs1[i]);
1417     alloc_reg(current,i,rt1[i]);
1418     current->is32|=(1LL<<rt1[i]);
1419   }
1420   clear_const(current,rs1[i]);
1421   clear_const(current,rt1[i]);
1422   dirty_reg(current,rt1[i]);
1423 }
1424
1425 void shiftimm_alloc(struct regstat *current,int i)
1426 {
1427   if(opcode2[i]<=0x3) // SLL/SRL/SRA
1428   {
1429     if(rt1[i]) {
1430       if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1431       else lt1[i]=rs1[i];
1432       alloc_reg(current,i,rt1[i]);
1433       current->is32|=1LL<<rt1[i];
1434       dirty_reg(current,rt1[i]);
1435       if(is_const(current,rs1[i])) {
1436         int v=get_const(current,rs1[i]);
1437         if(opcode2[i]==0x00) set_const(current,rt1[i],v<<imm[i]);
1438         if(opcode2[i]==0x02) set_const(current,rt1[i],(u_int)v>>imm[i]);
1439         if(opcode2[i]==0x03) set_const(current,rt1[i],v>>imm[i]);
1440       }
1441       else clear_const(current,rt1[i]);
1442     }
1443   }
1444   else
1445   {
1446     clear_const(current,rs1[i]);
1447     clear_const(current,rt1[i]);
1448   }
1449
1450   if(opcode2[i]>=0x38&&opcode2[i]<=0x3b) // DSLL/DSRL/DSRA
1451   {
1452     if(rt1[i]) {
1453       if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1454       alloc_reg64(current,i,rt1[i]);
1455       current->is32&=~(1LL<<rt1[i]);
1456       dirty_reg(current,rt1[i]);
1457     }
1458   }
1459   if(opcode2[i]==0x3c) // DSLL32
1460   {
1461     if(rt1[i]) {
1462       if(rs1[i]) alloc_reg(current,i,rs1[i]);
1463       alloc_reg64(current,i,rt1[i]);
1464       current->is32&=~(1LL<<rt1[i]);
1465       dirty_reg(current,rt1[i]);
1466     }
1467   }
1468   if(opcode2[i]==0x3e) // DSRL32
1469   {
1470     if(rt1[i]) {
1471       alloc_reg64(current,i,rs1[i]);
1472       if(imm[i]==32) {
1473         alloc_reg64(current,i,rt1[i]);
1474         current->is32&=~(1LL<<rt1[i]);
1475       } else {
1476         alloc_reg(current,i,rt1[i]);
1477         current->is32|=1LL<<rt1[i];
1478       }
1479       dirty_reg(current,rt1[i]);
1480     }
1481   }
1482   if(opcode2[i]==0x3f) // DSRA32
1483   {
1484     if(rt1[i]) {
1485       alloc_reg64(current,i,rs1[i]);
1486       alloc_reg(current,i,rt1[i]);
1487       current->is32|=1LL<<rt1[i];
1488       dirty_reg(current,rt1[i]);
1489     }
1490   }
1491 }
1492
1493 void shift_alloc(struct regstat *current,int i)
1494 {
1495   if(rt1[i]) {
1496     if(opcode2[i]<=0x07) // SLLV/SRLV/SRAV
1497     {
1498       if(rs1[i]) alloc_reg(current,i,rs1[i]);
1499       if(rs2[i]) alloc_reg(current,i,rs2[i]);
1500       alloc_reg(current,i,rt1[i]);
1501       if(rt1[i]==rs2[i]) {
1502         alloc_reg_temp(current,i,-1);
1503         minimum_free_regs[i]=1;
1504       }
1505       current->is32|=1LL<<rt1[i];
1506     } else { // DSLLV/DSRLV/DSRAV
1507       if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1508       if(rs2[i]) alloc_reg(current,i,rs2[i]);
1509       alloc_reg64(current,i,rt1[i]);
1510       current->is32&=~(1LL<<rt1[i]);
1511       if(opcode2[i]==0x16||opcode2[i]==0x17) // DSRLV and DSRAV need a temporary register
1512       {
1513         alloc_reg_temp(current,i,-1);
1514         minimum_free_regs[i]=1;
1515       }
1516     }
1517     clear_const(current,rs1[i]);
1518     clear_const(current,rs2[i]);
1519     clear_const(current,rt1[i]);
1520     dirty_reg(current,rt1[i]);
1521   }
1522 }
1523
1524 void alu_alloc(struct regstat *current,int i)
1525 {
1526   if(opcode2[i]>=0x20&&opcode2[i]<=0x23) { // ADD/ADDU/SUB/SUBU
1527     if(rt1[i]) {
1528       if(rs1[i]&&rs2[i]) {
1529         alloc_reg(current,i,rs1[i]);
1530         alloc_reg(current,i,rs2[i]);
1531       }
1532       else {
1533         if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1534         if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg(current,i,rs2[i]);
1535       }
1536       alloc_reg(current,i,rt1[i]);
1537     }
1538     current->is32|=1LL<<rt1[i];
1539   }
1540   if(opcode2[i]==0x2a||opcode2[i]==0x2b) { // SLT/SLTU
1541     if(rt1[i]) {
1542       if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1543       {
1544         alloc_reg64(current,i,rs1[i]);
1545         alloc_reg64(current,i,rs2[i]);
1546         alloc_reg(current,i,rt1[i]);
1547       } else {
1548         alloc_reg(current,i,rs1[i]);
1549         alloc_reg(current,i,rs2[i]);
1550         alloc_reg(current,i,rt1[i]);
1551       }
1552     }
1553     current->is32|=1LL<<rt1[i];
1554   }
1555   if(opcode2[i]>=0x24&&opcode2[i]<=0x27) { // AND/OR/XOR/NOR
1556     if(rt1[i]) {
1557       if(rs1[i]&&rs2[i]) {
1558         alloc_reg(current,i,rs1[i]);
1559         alloc_reg(current,i,rs2[i]);
1560       }
1561       else
1562       {
1563         if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1564         if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg(current,i,rs2[i]);
1565       }
1566       alloc_reg(current,i,rt1[i]);
1567       if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1568       {
1569         if(!((current->uu>>rt1[i])&1)) {
1570           alloc_reg64(current,i,rt1[i]);
1571         }
1572         if(get_reg(current->regmap,rt1[i]|64)>=0) {
1573           if(rs1[i]&&rs2[i]) {
1574             alloc_reg64(current,i,rs1[i]);
1575             alloc_reg64(current,i,rs2[i]);
1576           }
1577           else
1578           {
1579             // Is is really worth it to keep 64-bit values in registers?
1580             #ifdef NATIVE_64BIT
1581             if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg64(current,i,rs1[i]);
1582             if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg64(current,i,rs2[i]);
1583             #endif
1584           }
1585         }
1586         current->is32&=~(1LL<<rt1[i]);
1587       } else {
1588         current->is32|=1LL<<rt1[i];
1589       }
1590     }
1591   }
1592   if(opcode2[i]>=0x2c&&opcode2[i]<=0x2f) { // DADD/DADDU/DSUB/DSUBU
1593     if(rt1[i]) {
1594       if(rs1[i]&&rs2[i]) {
1595         if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1596           alloc_reg64(current,i,rs1[i]);
1597           alloc_reg64(current,i,rs2[i]);
1598           alloc_reg64(current,i,rt1[i]);
1599         } else {
1600           alloc_reg(current,i,rs1[i]);
1601           alloc_reg(current,i,rs2[i]);
1602           alloc_reg(current,i,rt1[i]);
1603         }
1604       }
1605       else {
1606         alloc_reg(current,i,rt1[i]);
1607         if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1608           // DADD used as move, or zeroing
1609           // If we have a 64-bit source, then make the target 64 bits too
1610           if(rs1[i]&&!((current->is32>>rs1[i])&1)) {
1611             if(get_reg(current->regmap,rs1[i])>=0) alloc_reg64(current,i,rs1[i]);
1612             alloc_reg64(current,i,rt1[i]);
1613           } else if(rs2[i]&&!((current->is32>>rs2[i])&1)) {
1614             if(get_reg(current->regmap,rs2[i])>=0) alloc_reg64(current,i,rs2[i]);
1615             alloc_reg64(current,i,rt1[i]);
1616           }
1617           if(opcode2[i]>=0x2e&&rs2[i]) {
1618             // DSUB used as negation - 64-bit result
1619             // If we have a 32-bit register, extend it to 64 bits
1620             if(get_reg(current->regmap,rs2[i])>=0) alloc_reg64(current,i,rs2[i]);
1621             alloc_reg64(current,i,rt1[i]);
1622           }
1623         }
1624       }
1625       if(rs1[i]&&rs2[i]) {
1626         current->is32&=~(1LL<<rt1[i]);
1627       } else if(rs1[i]) {
1628         current->is32&=~(1LL<<rt1[i]);
1629         if((current->is32>>rs1[i])&1)
1630           current->is32|=1LL<<rt1[i];
1631       } else if(rs2[i]) {
1632         current->is32&=~(1LL<<rt1[i]);
1633         if((current->is32>>rs2[i])&1)
1634           current->is32|=1LL<<rt1[i];
1635       } else {
1636         current->is32|=1LL<<rt1[i];
1637       }
1638     }
1639   }
1640   clear_const(current,rs1[i]);
1641   clear_const(current,rs2[i]);
1642   clear_const(current,rt1[i]);
1643   dirty_reg(current,rt1[i]);
1644 }
1645
1646 void imm16_alloc(struct regstat *current,int i)
1647 {
1648   if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1649   else lt1[i]=rs1[i];
1650   if(rt1[i]) alloc_reg(current,i,rt1[i]);
1651   if(opcode[i]==0x18||opcode[i]==0x19) { // DADDI/DADDIU
1652     current->is32&=~(1LL<<rt1[i]);
1653     if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1654       // TODO: Could preserve the 32-bit flag if the immediate is zero
1655       alloc_reg64(current,i,rt1[i]);
1656       alloc_reg64(current,i,rs1[i]);
1657     }
1658     clear_const(current,rs1[i]);
1659     clear_const(current,rt1[i]);
1660   }
1661   else if(opcode[i]==0x0a||opcode[i]==0x0b) { // SLTI/SLTIU
1662     if((~current->is32>>rs1[i])&1) alloc_reg64(current,i,rs1[i]);
1663     current->is32|=1LL<<rt1[i];
1664     clear_const(current,rs1[i]);
1665     clear_const(current,rt1[i]);
1666   }
1667   else if(opcode[i]>=0x0c&&opcode[i]<=0x0e) { // ANDI/ORI/XORI
1668     if(((~current->is32>>rs1[i])&1)&&opcode[i]>0x0c) {
1669       if(rs1[i]!=rt1[i]) {
1670         if(needed_again(rs1[i],i)) alloc_reg64(current,i,rs1[i]);
1671         alloc_reg64(current,i,rt1[i]);
1672         current->is32&=~(1LL<<rt1[i]);
1673       }
1674     }
1675     else current->is32|=1LL<<rt1[i]; // ANDI clears upper bits
1676     if(is_const(current,rs1[i])) {
1677       int v=get_const(current,rs1[i]);
1678       if(opcode[i]==0x0c) set_const(current,rt1[i],v&imm[i]);
1679       if(opcode[i]==0x0d) set_const(current,rt1[i],v|imm[i]);
1680       if(opcode[i]==0x0e) set_const(current,rt1[i],v^imm[i]);
1681     }
1682     else clear_const(current,rt1[i]);
1683   }
1684   else if(opcode[i]==0x08||opcode[i]==0x09) { // ADDI/ADDIU
1685     if(is_const(current,rs1[i])) {
1686       int v=get_const(current,rs1[i]);
1687       set_const(current,rt1[i],v+imm[i]);
1688     }
1689     else clear_const(current,rt1[i]);
1690     current->is32|=1LL<<rt1[i];
1691   }
1692   else {
1693     set_const(current,rt1[i],((long long)((short)imm[i]))<<16); // LUI
1694     current->is32|=1LL<<rt1[i];
1695   }
1696   dirty_reg(current,rt1[i]);
1697 }
1698
1699 void load_alloc(struct regstat *current,int i)
1700 {
1701   clear_const(current,rt1[i]);
1702   //if(rs1[i]!=rt1[i]&&needed_again(rs1[i],i)) clear_const(current,rs1[i]); // Does this help or hurt?
1703   if(!rs1[i]) current->u&=~1LL; // Allow allocating r0 if it's the source register
1704   if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1705   if(rt1[i]&&!((current->u>>rt1[i])&1)) {
1706     alloc_reg(current,i,rt1[i]);
1707     assert(get_reg(current->regmap,rt1[i])>=0);
1708     if(opcode[i]==0x27||opcode[i]==0x37) // LWU/LD
1709     {
1710       current->is32&=~(1LL<<rt1[i]);
1711       alloc_reg64(current,i,rt1[i]);
1712     }
1713     else if(opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
1714     {
1715       current->is32&=~(1LL<<rt1[i]);
1716       alloc_reg64(current,i,rt1[i]);
1717       alloc_all(current,i);
1718       alloc_reg64(current,i,FTEMP);
1719       minimum_free_regs[i]=HOST_REGS;
1720     }
1721     else current->is32|=1LL<<rt1[i];
1722     dirty_reg(current,rt1[i]);
1723     // If using TLB, need a register for pointer to the mapping table
1724     if(using_tlb) alloc_reg(current,i,TLREG);
1725     // LWL/LWR need a temporary register for the old value
1726     if(opcode[i]==0x22||opcode[i]==0x26)
1727     {
1728       alloc_reg(current,i,FTEMP);
1729       alloc_reg_temp(current,i,-1);
1730       minimum_free_regs[i]=1;
1731     }
1732   }
1733   else
1734   {
1735     // Load to r0 or unneeded register (dummy load)
1736     // but we still need a register to calculate the address
1737     if(opcode[i]==0x22||opcode[i]==0x26)
1738     {
1739       alloc_reg(current,i,FTEMP); // LWL/LWR need another temporary
1740     }
1741     // If using TLB, need a register for pointer to the mapping table
1742     if(using_tlb) alloc_reg(current,i,TLREG);
1743     alloc_reg_temp(current,i,-1);
1744     minimum_free_regs[i]=1;
1745     if(opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
1746     {
1747       alloc_all(current,i);
1748       alloc_reg64(current,i,FTEMP);
1749       minimum_free_regs[i]=HOST_REGS;
1750     }
1751   }
1752 }
1753
1754 void store_alloc(struct regstat *current,int i)
1755 {
1756   clear_const(current,rs2[i]);
1757   if(!(rs2[i])) current->u&=~1LL; // Allow allocating r0 if necessary
1758   if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1759   alloc_reg(current,i,rs2[i]);
1760   if(opcode[i]==0x2c||opcode[i]==0x2d||opcode[i]==0x3f) { // 64-bit SDL/SDR/SD
1761     alloc_reg64(current,i,rs2[i]);
1762     if(rs2[i]) alloc_reg(current,i,FTEMP);
1763   }
1764   // If using TLB, need a register for pointer to the mapping table
1765   if(using_tlb) alloc_reg(current,i,TLREG);
1766   #if defined(HOST_IMM8)
1767   // On CPUs without 32-bit immediates we need a pointer to invalid_code
1768   else alloc_reg(current,i,INVCP);
1769   #endif
1770   if(opcode[i]==0x2a||opcode[i]==0x2e||opcode[i]==0x2c||opcode[i]==0x2d) { // SWL/SWL/SDL/SDR
1771     alloc_reg(current,i,FTEMP);
1772   }
1773   // We need a temporary register for address generation
1774   alloc_reg_temp(current,i,-1);
1775   minimum_free_regs[i]=1;
1776 }
1777
1778 void c1ls_alloc(struct regstat *current,int i)
1779 {
1780   //clear_const(current,rs1[i]); // FIXME
1781   clear_const(current,rt1[i]);
1782   if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1783   alloc_reg(current,i,CSREG); // Status
1784   alloc_reg(current,i,FTEMP);
1785   if(opcode[i]==0x35||opcode[i]==0x3d) { // 64-bit LDC1/SDC1
1786     alloc_reg64(current,i,FTEMP);
1787   }
1788   // If using TLB, need a register for pointer to the mapping table
1789   if(using_tlb) alloc_reg(current,i,TLREG);
1790   #if defined(HOST_IMM8)
1791   // On CPUs without 32-bit immediates we need a pointer to invalid_code
1792   else if((opcode[i]&0x3b)==0x39) // SWC1/SDC1
1793     alloc_reg(current,i,INVCP);
1794   #endif
1795   // We need a temporary register for address generation
1796   alloc_reg_temp(current,i,-1);
1797 }
1798
1799 void c2ls_alloc(struct regstat *current,int i)
1800 {
1801   clear_const(current,rt1[i]);
1802   if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1803   alloc_reg(current,i,FTEMP);
1804   // If using TLB, need a register for pointer to the mapping table
1805   if(using_tlb) alloc_reg(current,i,TLREG);
1806   #if defined(HOST_IMM8)
1807   // On CPUs without 32-bit immediates we need a pointer to invalid_code
1808   else if((opcode[i]&0x3b)==0x3a) // SWC2/SDC2
1809     alloc_reg(current,i,INVCP);
1810   #endif
1811   // We need a temporary register for address generation
1812   alloc_reg_temp(current,i,-1);
1813   minimum_free_regs[i]=1;
1814 }
1815
1816 #ifndef multdiv_alloc
1817 void multdiv_alloc(struct regstat *current,int i)
1818 {
1819   //  case 0x18: MULT
1820   //  case 0x19: MULTU
1821   //  case 0x1A: DIV
1822   //  case 0x1B: DIVU
1823   //  case 0x1C: DMULT
1824   //  case 0x1D: DMULTU
1825   //  case 0x1E: DDIV
1826   //  case 0x1F: DDIVU
1827   clear_const(current,rs1[i]);
1828   clear_const(current,rs2[i]);
1829   if(rs1[i]&&rs2[i])
1830   {
1831     if((opcode2[i]&4)==0) // 32-bit
1832     {
1833       current->u&=~(1LL<<HIREG);
1834       current->u&=~(1LL<<LOREG);
1835       alloc_reg(current,i,HIREG);
1836       alloc_reg(current,i,LOREG);
1837       alloc_reg(current,i,rs1[i]);
1838       alloc_reg(current,i,rs2[i]);
1839       current->is32|=1LL<<HIREG;
1840       current->is32|=1LL<<LOREG;
1841       dirty_reg(current,HIREG);
1842       dirty_reg(current,LOREG);
1843     }
1844     else // 64-bit
1845     {
1846       current->u&=~(1LL<<HIREG);
1847       current->u&=~(1LL<<LOREG);
1848       current->uu&=~(1LL<<HIREG);
1849       current->uu&=~(1LL<<LOREG);
1850       alloc_reg64(current,i,HIREG);
1851       //if(HOST_REGS>10) alloc_reg64(current,i,LOREG);
1852       alloc_reg64(current,i,rs1[i]);
1853       alloc_reg64(current,i,rs2[i]);
1854       alloc_all(current,i);
1855       current->is32&=~(1LL<<HIREG);
1856       current->is32&=~(1LL<<LOREG);
1857       dirty_reg(current,HIREG);
1858       dirty_reg(current,LOREG);
1859       minimum_free_regs[i]=HOST_REGS;
1860     }
1861   }
1862   else
1863   {
1864     // Multiply by zero is zero.
1865     // MIPS does not have a divide by zero exception.
1866     // The result is undefined, we return zero.
1867     alloc_reg(current,i,HIREG);
1868     alloc_reg(current,i,LOREG);
1869     current->is32|=1LL<<HIREG;
1870     current->is32|=1LL<<LOREG;
1871     dirty_reg(current,HIREG);
1872     dirty_reg(current,LOREG);
1873   }
1874 }
1875 #endif
1876
1877 void cop0_alloc(struct regstat *current,int i)
1878 {
1879   if(opcode2[i]==0) // MFC0
1880   {
1881     if(rt1[i]) {
1882       clear_const(current,rt1[i]);
1883       alloc_all(current,i);
1884       alloc_reg(current,i,rt1[i]);
1885       current->is32|=1LL<<rt1[i];
1886       dirty_reg(current,rt1[i]);
1887     }
1888   }
1889   else if(opcode2[i]==4) // MTC0
1890   {
1891     if(rs1[i]){
1892       clear_const(current,rs1[i]);
1893       alloc_reg(current,i,rs1[i]);
1894       alloc_all(current,i);
1895     }
1896     else {
1897       alloc_all(current,i); // FIXME: Keep r0
1898       current->u&=~1LL;
1899       alloc_reg(current,i,0);
1900     }
1901   }
1902   else
1903   {
1904     // TLBR/TLBWI/TLBWR/TLBP/ERET
1905     assert(opcode2[i]==0x10);
1906     alloc_all(current,i);
1907   }
1908   minimum_free_regs[i]=HOST_REGS;
1909 }
1910
1911 void cop1_alloc(struct regstat *current,int i)
1912 {
1913   alloc_reg(current,i,CSREG); // Load status
1914   if(opcode2[i]<3) // MFC1/DMFC1/CFC1
1915   {
1916     if(rt1[i]){
1917       clear_const(current,rt1[i]);
1918       if(opcode2[i]==1) {
1919         alloc_reg64(current,i,rt1[i]); // DMFC1
1920         current->is32&=~(1LL<<rt1[i]);
1921       }else{
1922         alloc_reg(current,i,rt1[i]); // MFC1/CFC1
1923         current->is32|=1LL<<rt1[i];
1924       }
1925       dirty_reg(current,rt1[i]);
1926     }
1927     alloc_reg_temp(current,i,-1);
1928   }
1929   else if(opcode2[i]>3) // MTC1/DMTC1/CTC1
1930   {
1931     if(rs1[i]){
1932       clear_const(current,rs1[i]);
1933       if(opcode2[i]==5)
1934         alloc_reg64(current,i,rs1[i]); // DMTC1
1935       else
1936         alloc_reg(current,i,rs1[i]); // MTC1/CTC1
1937       alloc_reg_temp(current,i,-1);
1938     }
1939     else {
1940       current->u&=~1LL;
1941       alloc_reg(current,i,0);
1942       alloc_reg_temp(current,i,-1);
1943     }
1944   }
1945   minimum_free_regs[i]=1;
1946 }
1947 void fconv_alloc(struct regstat *current,int i)
1948 {
1949   alloc_reg(current,i,CSREG); // Load status
1950   alloc_reg_temp(current,i,-1);
1951   minimum_free_regs[i]=1;
1952 }
1953 void float_alloc(struct regstat *current,int i)
1954 {
1955   alloc_reg(current,i,CSREG); // Load status
1956   alloc_reg_temp(current,i,-1);
1957   minimum_free_regs[i]=1;
1958 }
1959 void c2op_alloc(struct regstat *current,int i)
1960 {
1961   alloc_reg_temp(current,i,-1);
1962 }
1963 void fcomp_alloc(struct regstat *current,int i)
1964 {
1965   alloc_reg(current,i,CSREG); // Load status
1966   alloc_reg(current,i,FSREG); // Load flags
1967   dirty_reg(current,FSREG); // Flag will be modified
1968   alloc_reg_temp(current,i,-1);
1969   minimum_free_regs[i]=1;
1970 }
1971
1972 void syscall_alloc(struct regstat *current,int i)
1973 {
1974   alloc_cc(current,i);
1975   dirty_reg(current,CCREG);
1976   alloc_all(current,i);
1977   minimum_free_regs[i]=HOST_REGS;
1978   current->isconst=0;
1979 }
1980
1981 void delayslot_alloc(struct regstat *current,int i)
1982 {
1983   switch(itype[i]) {
1984     case UJUMP:
1985     case CJUMP:
1986     case SJUMP:
1987     case RJUMP:
1988     case FJUMP:
1989     case SYSCALL:
1990     case HLECALL:
1991     case SPAN:
1992       assem_debug("jump in the delay slot.  this shouldn't happen.\n");//exit(1);
1993       printf("Disabled speculative precompilation\n");
1994       stop_after_jal=1;
1995       break;
1996     case IMM16:
1997       imm16_alloc(current,i);
1998       break;
1999     case LOAD:
2000     case LOADLR:
2001       load_alloc(current,i);
2002       break;
2003     case STORE:
2004     case STORELR:
2005       store_alloc(current,i);
2006       break;
2007     case ALU:
2008       alu_alloc(current,i);
2009       break;
2010     case SHIFT:
2011       shift_alloc(current,i);
2012       break;
2013     case MULTDIV:
2014       multdiv_alloc(current,i);
2015       break;
2016     case SHIFTIMM:
2017       shiftimm_alloc(current,i);
2018       break;
2019     case MOV:
2020       mov_alloc(current,i);
2021       break;
2022     case COP0:
2023       cop0_alloc(current,i);
2024       break;
2025     case COP1:
2026     case COP2:
2027       cop1_alloc(current,i);
2028       break;
2029     case C1LS:
2030       c1ls_alloc(current,i);
2031       break;
2032     case C2LS:
2033       c2ls_alloc(current,i);
2034       break;
2035     case FCONV:
2036       fconv_alloc(current,i);
2037       break;
2038     case FLOAT:
2039       float_alloc(current,i);
2040       break;
2041     case FCOMP:
2042       fcomp_alloc(current,i);
2043       break;
2044     case C2OP:
2045       c2op_alloc(current,i);
2046       break;
2047   }
2048 }
2049
2050 // Special case where a branch and delay slot span two pages in virtual memory
2051 static void pagespan_alloc(struct regstat *current,int i)
2052 {
2053   current->isconst=0;
2054   current->wasconst=0;
2055   regs[i].wasconst=0;
2056   minimum_free_regs[i]=HOST_REGS;
2057   alloc_all(current,i);
2058   alloc_cc(current,i);
2059   dirty_reg(current,CCREG);
2060   if(opcode[i]==3) // JAL
2061   {
2062     alloc_reg(current,i,31);
2063     dirty_reg(current,31);
2064   }
2065   if(opcode[i]==0&&(opcode2[i]&0x3E)==8) // JR/JALR
2066   {
2067     alloc_reg(current,i,rs1[i]);
2068     if (rt1[i]!=0) {
2069       alloc_reg(current,i,rt1[i]);
2070       dirty_reg(current,rt1[i]);
2071     }
2072   }
2073   if((opcode[i]&0x2E)==4) // BEQ/BNE/BEQL/BNEL
2074   {
2075     if(rs1[i]) alloc_reg(current,i,rs1[i]);
2076     if(rs2[i]) alloc_reg(current,i,rs2[i]);
2077     if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
2078     {
2079       if(rs1[i]) alloc_reg64(current,i,rs1[i]);
2080       if(rs2[i]) alloc_reg64(current,i,rs2[i]);
2081     }
2082   }
2083   else
2084   if((opcode[i]&0x2E)==6) // BLEZ/BGTZ/BLEZL/BGTZL
2085   {
2086     if(rs1[i]) alloc_reg(current,i,rs1[i]);
2087     if(!((current->is32>>rs1[i])&1))
2088     {
2089       if(rs1[i]) alloc_reg64(current,i,rs1[i]);
2090     }
2091   }
2092   else
2093   if(opcode[i]==0x11) // BC1
2094   {
2095     alloc_reg(current,i,FSREG);
2096     alloc_reg(current,i,CSREG);
2097   }
2098   //else ...
2099 }
2100
2101 add_stub(int type,int addr,int retaddr,int a,int b,int c,int d,int e)
2102 {
2103   stubs[stubcount][0]=type;
2104   stubs[stubcount][1]=addr;
2105   stubs[stubcount][2]=retaddr;
2106   stubs[stubcount][3]=a;
2107   stubs[stubcount][4]=b;
2108   stubs[stubcount][5]=c;
2109   stubs[stubcount][6]=d;
2110   stubs[stubcount][7]=e;
2111   stubcount++;
2112 }
2113
2114 // Write out a single register
2115 void wb_register(signed char r,signed char regmap[],uint64_t dirty,uint64_t is32)
2116 {
2117   int hr;
2118   for(hr=0;hr<HOST_REGS;hr++) {
2119     if(hr!=EXCLUDE_REG) {
2120       if((regmap[hr]&63)==r) {
2121         if((dirty>>hr)&1) {
2122           if(regmap[hr]<64) {
2123             emit_storereg(r,hr);
2124 #ifndef FORCE32
2125             if((is32>>regmap[hr])&1) {
2126               emit_sarimm(hr,31,hr);
2127               emit_storereg(r|64,hr);
2128             }
2129 #endif
2130           }else{
2131             emit_storereg(r|64,hr);
2132           }
2133         }
2134       }
2135     }
2136   }
2137 }
2138
2139 int mchecksum()
2140 {
2141   //if(!tracedebug) return 0;
2142   int i;
2143   int sum=0;
2144   for(i=0;i<2097152;i++) {
2145     unsigned int temp=sum;
2146     sum<<=1;
2147     sum|=(~temp)>>31;
2148     sum^=((u_int *)rdram)[i];
2149   }
2150   return sum;
2151 }
2152 int rchecksum()
2153 {
2154   int i;
2155   int sum=0;
2156   for(i=0;i<64;i++)
2157     sum^=((u_int *)reg)[i];
2158   return sum;
2159 }
2160 void rlist()
2161 {
2162   int i;
2163   printf("TRACE: ");
2164   for(i=0;i<32;i++)
2165     printf("r%d:%8x%8x ",i,((int *)(reg+i))[1],((int *)(reg+i))[0]);
2166   printf("\n");
2167 #ifndef DISABLE_COP1
2168   printf("TRACE: ");
2169   for(i=0;i<32;i++)
2170     printf("f%d:%8x%8x ",i,((int*)reg_cop1_simple[i])[1],*((int*)reg_cop1_simple[i]));
2171   printf("\n");
2172 #endif
2173 }
2174
2175 void enabletrace()
2176 {
2177   tracedebug=1;
2178 }
2179
2180 void memdebug(int i)
2181 {
2182   //printf("TRACE: count=%d next=%d (checksum %x) lo=%8x%8x\n",Count,next_interupt,mchecksum(),(int)(reg[LOREG]>>32),(int)reg[LOREG]);
2183   //printf("TRACE: count=%d next=%d (rchecksum %x)\n",Count,next_interupt,rchecksum());
2184   //rlist();
2185   //if(tracedebug) {
2186   //if(Count>=-2084597794) {
2187   if((signed int)Count>=-2084597794&&(signed int)Count<0) {
2188   //if(0) {
2189     printf("TRACE: count=%d next=%d (checksum %x)\n",Count,next_interupt,mchecksum());
2190     //printf("TRACE: count=%d next=%d (checksum %x) Status=%x\n",Count,next_interupt,mchecksum(),Status);
2191     //printf("TRACE: count=%d next=%d (checksum %x) hi=%8x%8x\n",Count,next_interupt,mchecksum(),(int)(reg[HIREG]>>32),(int)reg[HIREG]);
2192     rlist();
2193     #ifdef __i386__
2194     printf("TRACE: %x\n",(&i)[-1]);
2195     #endif
2196     #ifdef __arm__
2197     int j;
2198     printf("TRACE: %x \n",(&j)[10]);
2199     printf("TRACE: %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x\n",(&j)[1],(&j)[2],(&j)[3],(&j)[4],(&j)[5],(&j)[6],(&j)[7],(&j)[8],(&j)[9],(&j)[10],(&j)[11],(&j)[12],(&j)[13],(&j)[14],(&j)[15],(&j)[16],(&j)[17],(&j)[18],(&j)[19],(&j)[20]);
2200     #endif
2201     //fflush(stdout);
2202   }
2203   //printf("TRACE: %x\n",(&i)[-1]);
2204 }
2205
2206 void tlb_debug(u_int cause, u_int addr, u_int iaddr)
2207 {
2208   printf("TLB Exception: instruction=%x addr=%x cause=%x\n",iaddr, addr, cause);
2209 }
2210
2211 void alu_assemble(int i,struct regstat *i_regs)
2212 {
2213   if(opcode2[i]>=0x20&&opcode2[i]<=0x23) { // ADD/ADDU/SUB/SUBU
2214     if(rt1[i]) {
2215       signed char s1,s2,t;
2216       t=get_reg(i_regs->regmap,rt1[i]);
2217       if(t>=0) {
2218         s1=get_reg(i_regs->regmap,rs1[i]);
2219         s2=get_reg(i_regs->regmap,rs2[i]);
2220         if(rs1[i]&&rs2[i]) {
2221           assert(s1>=0);
2222           assert(s2>=0);
2223           if(opcode2[i]&2) emit_sub(s1,s2,t);
2224           else emit_add(s1,s2,t);
2225         }
2226         else if(rs1[i]) {
2227           if(s1>=0) emit_mov(s1,t);
2228           else emit_loadreg(rs1[i],t);
2229         }
2230         else if(rs2[i]) {
2231           if(s2>=0) {
2232             if(opcode2[i]&2) emit_neg(s2,t);
2233             else emit_mov(s2,t);
2234           }
2235           else {
2236             emit_loadreg(rs2[i],t);
2237             if(opcode2[i]&2) emit_neg(t,t);
2238           }
2239         }
2240         else emit_zeroreg(t);
2241       }
2242     }
2243   }
2244   if(opcode2[i]>=0x2c&&opcode2[i]<=0x2f) { // DADD/DADDU/DSUB/DSUBU
2245     if(rt1[i]) {
2246       signed char s1l,s2l,s1h,s2h,tl,th;
2247       tl=get_reg(i_regs->regmap,rt1[i]);
2248       th=get_reg(i_regs->regmap,rt1[i]|64);
2249       if(tl>=0) {
2250         s1l=get_reg(i_regs->regmap,rs1[i]);
2251         s2l=get_reg(i_regs->regmap,rs2[i]);
2252         s1h=get_reg(i_regs->regmap,rs1[i]|64);
2253         s2h=get_reg(i_regs->regmap,rs2[i]|64);
2254         if(rs1[i]&&rs2[i]) {
2255           assert(s1l>=0);
2256           assert(s2l>=0);
2257           if(opcode2[i]&2) emit_subs(s1l,s2l,tl);
2258           else emit_adds(s1l,s2l,tl);
2259           if(th>=0) {
2260             #ifdef INVERTED_CARRY
2261             if(opcode2[i]&2) {if(s1h!=th) emit_mov(s1h,th);emit_sbb(th,s2h);}
2262             #else
2263             if(opcode2[i]&2) emit_sbc(s1h,s2h,th);
2264             #endif
2265             else emit_add(s1h,s2h,th);
2266           }
2267         }
2268         else if(rs1[i]) {
2269           if(s1l>=0) emit_mov(s1l,tl);
2270           else emit_loadreg(rs1[i],tl);
2271           if(th>=0) {
2272             if(s1h>=0) emit_mov(s1h,th);
2273             else emit_loadreg(rs1[i]|64,th);
2274           }
2275         }
2276         else if(rs2[i]) {
2277           if(s2l>=0) {
2278             if(opcode2[i]&2) emit_negs(s2l,tl);
2279             else emit_mov(s2l,tl);
2280           }
2281           else {
2282             emit_loadreg(rs2[i],tl);
2283             if(opcode2[i]&2) emit_negs(tl,tl);
2284           }
2285           if(th>=0) {
2286             #ifdef INVERTED_CARRY
2287             if(s2h>=0) emit_mov(s2h,th);
2288             else emit_loadreg(rs2[i]|64,th);
2289             if(opcode2[i]&2) {
2290               emit_adcimm(-1,th); // x86 has inverted carry flag
2291               emit_not(th,th);
2292             }
2293             #else
2294             if(opcode2[i]&2) {
2295               if(s2h>=0) emit_rscimm(s2h,0,th);
2296               else {
2297                 emit_loadreg(rs2[i]|64,th);
2298                 emit_rscimm(th,0,th);
2299               }
2300             }else{
2301               if(s2h>=0) emit_mov(s2h,th);
2302               else emit_loadreg(rs2[i]|64,th);
2303             }
2304             #endif
2305           }
2306         }
2307         else {
2308           emit_zeroreg(tl);
2309           if(th>=0) emit_zeroreg(th);
2310         }
2311       }
2312     }
2313   }
2314   if(opcode2[i]==0x2a||opcode2[i]==0x2b) { // SLT/SLTU
2315     if(rt1[i]) {
2316       signed char s1l,s1h,s2l,s2h,t;
2317       if(!((i_regs->was32>>rs1[i])&(i_regs->was32>>rs2[i])&1))
2318       {
2319         t=get_reg(i_regs->regmap,rt1[i]);
2320         //assert(t>=0);
2321         if(t>=0) {
2322           s1l=get_reg(i_regs->regmap,rs1[i]);
2323           s1h=get_reg(i_regs->regmap,rs1[i]|64);
2324           s2l=get_reg(i_regs->regmap,rs2[i]);
2325           s2h=get_reg(i_regs->regmap,rs2[i]|64);
2326           if(rs2[i]==0) // rx<r0
2327           {
2328             assert(s1h>=0);
2329             if(opcode2[i]==0x2a) // SLT
2330               emit_shrimm(s1h,31,t);
2331             else // SLTU (unsigned can not be less than zero)
2332               emit_zeroreg(t);
2333           }
2334           else if(rs1[i]==0) // r0<rx
2335           {
2336             assert(s2h>=0);
2337             if(opcode2[i]==0x2a) // SLT
2338               emit_set_gz64_32(s2h,s2l,t);
2339             else // SLTU (set if not zero)
2340               emit_set_nz64_32(s2h,s2l,t);
2341           }
2342           else {
2343             assert(s1l>=0);assert(s1h>=0);
2344             assert(s2l>=0);assert(s2h>=0);
2345             if(opcode2[i]==0x2a) // SLT
2346               emit_set_if_less64_32(s1h,s1l,s2h,s2l,t);
2347             else // SLTU
2348               emit_set_if_carry64_32(s1h,s1l,s2h,s2l,t);
2349           }
2350         }
2351       } else {
2352         t=get_reg(i_regs->regmap,rt1[i]);
2353         //assert(t>=0);
2354         if(t>=0) {
2355           s1l=get_reg(i_regs->regmap,rs1[i]);
2356           s2l=get_reg(i_regs->regmap,rs2[i]);
2357           if(rs2[i]==0) // rx<r0
2358           {
2359             assert(s1l>=0);
2360             if(opcode2[i]==0x2a) // SLT
2361               emit_shrimm(s1l,31,t);
2362             else // SLTU (unsigned can not be less than zero)
2363               emit_zeroreg(t);
2364           }
2365           else if(rs1[i]==0) // r0<rx
2366           {
2367             assert(s2l>=0);
2368             if(opcode2[i]==0x2a) // SLT
2369               emit_set_gz32(s2l,t);
2370             else // SLTU (set if not zero)
2371               emit_set_nz32(s2l,t);
2372           }
2373           else{
2374             assert(s1l>=0);assert(s2l>=0);
2375             if(opcode2[i]==0x2a) // SLT
2376               emit_set_if_less32(s1l,s2l,t);
2377             else // SLTU
2378               emit_set_if_carry32(s1l,s2l,t);
2379           }
2380         }
2381       }
2382     }
2383   }
2384   if(opcode2[i]>=0x24&&opcode2[i]<=0x27) { // AND/OR/XOR/NOR
2385     if(rt1[i]) {
2386       signed char s1l,s1h,s2l,s2h,th,tl;
2387       tl=get_reg(i_regs->regmap,rt1[i]);
2388       th=get_reg(i_regs->regmap,rt1[i]|64);
2389       if(!((i_regs->was32>>rs1[i])&(i_regs->was32>>rs2[i])&1)&&th>=0)
2390       {
2391         assert(tl>=0);
2392         if(tl>=0) {
2393           s1l=get_reg(i_regs->regmap,rs1[i]);
2394           s1h=get_reg(i_regs->regmap,rs1[i]|64);
2395           s2l=get_reg(i_regs->regmap,rs2[i]);
2396           s2h=get_reg(i_regs->regmap,rs2[i]|64);
2397           if(rs1[i]&&rs2[i]) {
2398             assert(s1l>=0);assert(s1h>=0);
2399             assert(s2l>=0);assert(s2h>=0);
2400             if(opcode2[i]==0x24) { // AND
2401               emit_and(s1l,s2l,tl);
2402               emit_and(s1h,s2h,th);
2403             } else
2404             if(opcode2[i]==0x25) { // OR
2405               emit_or(s1l,s2l,tl);
2406               emit_or(s1h,s2h,th);
2407             } else
2408             if(opcode2[i]==0x26) { // XOR
2409               emit_xor(s1l,s2l,tl);
2410               emit_xor(s1h,s2h,th);
2411             } else
2412             if(opcode2[i]==0x27) { // NOR
2413               emit_or(s1l,s2l,tl);
2414               emit_or(s1h,s2h,th);
2415               emit_not(tl,tl);
2416               emit_not(th,th);
2417             }
2418           }
2419           else
2420           {
2421             if(opcode2[i]==0x24) { // AND
2422               emit_zeroreg(tl);
2423               emit_zeroreg(th);
2424             } else
2425             if(opcode2[i]==0x25||opcode2[i]==0x26) { // OR/XOR
2426               if(rs1[i]){
2427                 if(s1l>=0) emit_mov(s1l,tl);
2428                 else emit_loadreg(rs1[i],tl);
2429                 if(s1h>=0) emit_mov(s1h,th);
2430                 else emit_loadreg(rs1[i]|64,th);
2431               }
2432               else
2433               if(rs2[i]){
2434                 if(s2l>=0) emit_mov(s2l,tl);
2435                 else emit_loadreg(rs2[i],tl);
2436                 if(s2h>=0) emit_mov(s2h,th);
2437                 else emit_loadreg(rs2[i]|64,th);
2438               }
2439               else{
2440                 emit_zeroreg(tl);
2441                 emit_zeroreg(th);
2442               }
2443             } else
2444             if(opcode2[i]==0x27) { // NOR
2445               if(rs1[i]){
2446                 if(s1l>=0) emit_not(s1l,tl);
2447                 else{
2448                   emit_loadreg(rs1[i],tl);
2449                   emit_not(tl,tl);
2450                 }
2451                 if(s1h>=0) emit_not(s1h,th);
2452                 else{
2453                   emit_loadreg(rs1[i]|64,th);
2454                   emit_not(th,th);
2455                 }
2456               }
2457               else
2458               if(rs2[i]){
2459                 if(s2l>=0) emit_not(s2l,tl);
2460                 else{
2461                   emit_loadreg(rs2[i],tl);
2462                   emit_not(tl,tl);
2463                 }
2464                 if(s2h>=0) emit_not(s2h,th);
2465                 else{
2466                   emit_loadreg(rs2[i]|64,th);
2467                   emit_not(th,th);
2468                 }
2469               }
2470               else {
2471                 emit_movimm(-1,tl);
2472                 emit_movimm(-1,th);
2473               }
2474             }
2475           }
2476         }
2477       }
2478       else
2479       {
2480         // 32 bit
2481         if(tl>=0) {
2482           s1l=get_reg(i_regs->regmap,rs1[i]);
2483           s2l=get_reg(i_regs->regmap,rs2[i]);
2484           if(rs1[i]&&rs2[i]) {
2485             assert(s1l>=0);
2486             assert(s2l>=0);
2487             if(opcode2[i]==0x24) { // AND
2488               emit_and(s1l,s2l,tl);
2489             } else
2490             if(opcode2[i]==0x25) { // OR
2491               emit_or(s1l,s2l,tl);
2492             } else
2493             if(opcode2[i]==0x26) { // XOR
2494               emit_xor(s1l,s2l,tl);
2495             } else
2496             if(opcode2[i]==0x27) { // NOR
2497               emit_or(s1l,s2l,tl);
2498               emit_not(tl,tl);
2499             }
2500           }
2501           else
2502           {
2503             if(opcode2[i]==0x24) { // AND
2504               emit_zeroreg(tl);
2505             } else
2506             if(opcode2[i]==0x25||opcode2[i]==0x26) { // OR/XOR
2507               if(rs1[i]){
2508                 if(s1l>=0) emit_mov(s1l,tl);
2509                 else emit_loadreg(rs1[i],tl); // CHECK: regmap_entry?
2510               }
2511               else
2512               if(rs2[i]){
2513                 if(s2l>=0) emit_mov(s2l,tl);
2514                 else emit_loadreg(rs2[i],tl); // CHECK: regmap_entry?
2515               }
2516               else emit_zeroreg(tl);
2517             } else
2518             if(opcode2[i]==0x27) { // NOR
2519               if(rs1[i]){
2520                 if(s1l>=0) emit_not(s1l,tl);
2521                 else {
2522                   emit_loadreg(rs1[i],tl);
2523                   emit_not(tl,tl);
2524                 }
2525               }
2526               else
2527               if(rs2[i]){
2528                 if(s2l>=0) emit_not(s2l,tl);
2529                 else {
2530                   emit_loadreg(rs2[i],tl);
2531                   emit_not(tl,tl);
2532                 }
2533               }
2534               else emit_movimm(-1,tl);
2535             }
2536           }
2537         }
2538       }
2539     }
2540   }
2541 }
2542
2543 void imm16_assemble(int i,struct regstat *i_regs)
2544 {
2545   if (opcode[i]==0x0f) { // LUI
2546     if(rt1[i]) {
2547       signed char t;
2548       t=get_reg(i_regs->regmap,rt1[i]);
2549       //assert(t>=0);
2550       if(t>=0) {
2551         if(!((i_regs->isconst>>t)&1))
2552           emit_movimm(imm[i]<<16,t);
2553       }
2554     }
2555   }
2556   if(opcode[i]==0x08||opcode[i]==0x09) { // ADDI/ADDIU
2557     if(rt1[i]) {
2558       signed char s,t;
2559       t=get_reg(i_regs->regmap,rt1[i]);
2560       s=get_reg(i_regs->regmap,rs1[i]);
2561       if(rs1[i]) {
2562         //assert(t>=0);
2563         //assert(s>=0);
2564         if(t>=0) {
2565           if(!((i_regs->isconst>>t)&1)) {
2566             if(s<0) {
2567               if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2568               emit_addimm(t,imm[i],t);
2569             }else{
2570               if(!((i_regs->wasconst>>s)&1))
2571                 emit_addimm(s,imm[i],t);
2572               else
2573                 emit_movimm(constmap[i][s]+imm[i],t);
2574             }
2575           }
2576         }
2577       } else {
2578         if(t>=0) {
2579           if(!((i_regs->isconst>>t)&1))
2580             emit_movimm(imm[i],t);
2581         }
2582       }
2583     }
2584   }
2585   if(opcode[i]==0x18||opcode[i]==0x19) { // DADDI/DADDIU
2586     if(rt1[i]) {
2587       signed char sh,sl,th,tl;
2588       th=get_reg(i_regs->regmap,rt1[i]|64);
2589       tl=get_reg(i_regs->regmap,rt1[i]);
2590       sh=get_reg(i_regs->regmap,rs1[i]|64);
2591       sl=get_reg(i_regs->regmap,rs1[i]);
2592       if(tl>=0) {
2593         if(rs1[i]) {
2594           assert(sh>=0);
2595           assert(sl>=0);
2596           if(th>=0) {
2597             emit_addimm64_32(sh,sl,imm[i],th,tl);
2598           }
2599           else {
2600             emit_addimm(sl,imm[i],tl);
2601           }
2602         } else {
2603           emit_movimm(imm[i],tl);
2604           if(th>=0) emit_movimm(((signed int)imm[i])>>31,th);
2605         }
2606       }
2607     }
2608   }
2609   else if(opcode[i]==0x0a||opcode[i]==0x0b) { // SLTI/SLTIU
2610     if(rt1[i]) {
2611       //assert(rs1[i]!=0); // r0 might be valid, but it's probably a bug
2612       signed char sh,sl,t;
2613       t=get_reg(i_regs->regmap,rt1[i]);
2614       sh=get_reg(i_regs->regmap,rs1[i]|64);
2615       sl=get_reg(i_regs->regmap,rs1[i]);
2616       //assert(t>=0);
2617       if(t>=0) {
2618         if(rs1[i]>0) {
2619           if(sh<0) assert((i_regs->was32>>rs1[i])&1);
2620           if(sh<0||((i_regs->was32>>rs1[i])&1)) {
2621             if(opcode[i]==0x0a) { // SLTI
2622               if(sl<0) {
2623                 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2624                 emit_slti32(t,imm[i],t);
2625               }else{
2626                 emit_slti32(sl,imm[i],t);
2627               }
2628             }
2629             else { // SLTIU
2630               if(sl<0) {
2631                 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2632                 emit_sltiu32(t,imm[i],t);
2633               }else{
2634                 emit_sltiu32(sl,imm[i],t);
2635               }
2636             }
2637           }else{ // 64-bit
2638             assert(sl>=0);
2639             if(opcode[i]==0x0a) // SLTI
2640               emit_slti64_32(sh,sl,imm[i],t);
2641             else // SLTIU
2642               emit_sltiu64_32(sh,sl,imm[i],t);
2643           }
2644         }else{
2645           // SLTI(U) with r0 is just stupid,
2646           // nonetheless examples can be found
2647           if(opcode[i]==0x0a) // SLTI
2648             if(0<imm[i]) emit_movimm(1,t);
2649             else emit_zeroreg(t);
2650           else // SLTIU
2651           {
2652             if(imm[i]) emit_movimm(1,t);
2653             else emit_zeroreg(t);
2654           }
2655         }
2656       }
2657     }
2658   }
2659   else if(opcode[i]>=0x0c&&opcode[i]<=0x0e) { // ANDI/ORI/XORI
2660     if(rt1[i]) {
2661       signed char sh,sl,th,tl;
2662       th=get_reg(i_regs->regmap,rt1[i]|64);
2663       tl=get_reg(i_regs->regmap,rt1[i]);
2664       sh=get_reg(i_regs->regmap,rs1[i]|64);
2665       sl=get_reg(i_regs->regmap,rs1[i]);
2666       if(tl>=0 && !((i_regs->isconst>>tl)&1)) {
2667         if(opcode[i]==0x0c) //ANDI
2668         {
2669           if(rs1[i]) {
2670             if(sl<0) {
2671               if(i_regs->regmap_entry[tl]!=rs1[i]) emit_loadreg(rs1[i],tl);
2672               emit_andimm(tl,imm[i],tl);
2673             }else{
2674               if(!((i_regs->wasconst>>sl)&1))
2675                 emit_andimm(sl,imm[i],tl);
2676               else
2677                 emit_movimm(constmap[i][sl]&imm[i],tl);
2678             }
2679           }
2680           else
2681             emit_zeroreg(tl);
2682           if(th>=0) emit_zeroreg(th);
2683         }
2684         else
2685         {
2686           if(rs1[i]) {
2687             if(sl<0) {
2688               if(i_regs->regmap_entry[tl]!=rs1[i]) emit_loadreg(rs1[i],tl);
2689             }
2690             if(th>=0) {
2691               if(sh<0) {
2692                 emit_loadreg(rs1[i]|64,th);
2693               }else{
2694                 emit_mov(sh,th);
2695               }
2696             }
2697             if(opcode[i]==0x0d) //ORI
2698             if(sl<0) {
2699               emit_orimm(tl,imm[i],tl);
2700             }else{
2701               if(!((i_regs->wasconst>>sl)&1))
2702                 emit_orimm(sl,imm[i],tl);
2703               else
2704                 emit_movimm(constmap[i][sl]|imm[i],tl);
2705             }
2706             if(opcode[i]==0x0e) //XORI
2707             if(sl<0) {
2708               emit_xorimm(tl,imm[i],tl);
2709             }else{
2710               if(!((i_regs->wasconst>>sl)&1))
2711                 emit_xorimm(sl,imm[i],tl);
2712               else
2713                 emit_movimm(constmap[i][sl]^imm[i],tl);
2714             }
2715           }
2716           else {
2717             emit_movimm(imm[i],tl);
2718             if(th>=0) emit_zeroreg(th);
2719           }
2720         }
2721       }
2722     }
2723   }
2724 }
2725
2726 void shiftimm_assemble(int i,struct regstat *i_regs)
2727 {
2728   if(opcode2[i]<=0x3) // SLL/SRL/SRA
2729   {
2730     if(rt1[i]) {
2731       signed char s,t;
2732       t=get_reg(i_regs->regmap,rt1[i]);
2733       s=get_reg(i_regs->regmap,rs1[i]);
2734       //assert(t>=0);
2735       if(t>=0&&!((i_regs->isconst>>t)&1)){
2736         if(rs1[i]==0)
2737         {
2738           emit_zeroreg(t);
2739         }
2740         else
2741         {
2742           if(s<0&&i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2743           if(imm[i]) {
2744             if(opcode2[i]==0) // SLL
2745             {
2746               emit_shlimm(s<0?t:s,imm[i],t);
2747             }
2748             if(opcode2[i]==2) // SRL
2749             {
2750               emit_shrimm(s<0?t:s,imm[i],t);
2751             }
2752             if(opcode2[i]==3) // SRA
2753             {
2754               emit_sarimm(s<0?t:s,imm[i],t);
2755             }
2756           }else{
2757             // Shift by zero
2758             if(s>=0 && s!=t) emit_mov(s,t);
2759           }
2760         }
2761       }
2762       //emit_storereg(rt1[i],t); //DEBUG
2763     }
2764   }
2765   if(opcode2[i]>=0x38&&opcode2[i]<=0x3b) // DSLL/DSRL/DSRA
2766   {
2767     if(rt1[i]) {
2768       signed char sh,sl,th,tl;
2769       th=get_reg(i_regs->regmap,rt1[i]|64);
2770       tl=get_reg(i_regs->regmap,rt1[i]);
2771       sh=get_reg(i_regs->regmap,rs1[i]|64);
2772       sl=get_reg(i_regs->regmap,rs1[i]);
2773       if(tl>=0) {
2774         if(rs1[i]==0)
2775         {
2776           emit_zeroreg(tl);
2777           if(th>=0) emit_zeroreg(th);
2778         }
2779         else
2780         {
2781           assert(sl>=0);
2782           assert(sh>=0);
2783           if(imm[i]) {
2784             if(opcode2[i]==0x38) // DSLL
2785             {
2786               if(th>=0) emit_shldimm(sh,sl,imm[i],th);
2787               emit_shlimm(sl,imm[i],tl);
2788             }
2789             if(opcode2[i]==0x3a) // DSRL
2790             {
2791               emit_shrdimm(sl,sh,imm[i],tl);
2792               if(th>=0) emit_shrimm(sh,imm[i],th);
2793             }
2794             if(opcode2[i]==0x3b) // DSRA
2795             {
2796               emit_shrdimm(sl,sh,imm[i],tl);
2797               if(th>=0) emit_sarimm(sh,imm[i],th);
2798             }
2799           }else{
2800             // Shift by zero
2801             if(sl!=tl) emit_mov(sl,tl);
2802             if(th>=0&&sh!=th) emit_mov(sh,th);
2803           }
2804         }
2805       }
2806     }
2807   }
2808   if(opcode2[i]==0x3c) // DSLL32
2809   {
2810     if(rt1[i]) {
2811       signed char sl,tl,th;
2812       tl=get_reg(i_regs->regmap,rt1[i]);
2813       th=get_reg(i_regs->regmap,rt1[i]|64);
2814       sl=get_reg(i_regs->regmap,rs1[i]);
2815       if(th>=0||tl>=0){
2816         assert(tl>=0);
2817         assert(th>=0);
2818         assert(sl>=0);
2819         emit_mov(sl,th);
2820         emit_zeroreg(tl);
2821         if(imm[i]>32)
2822         {
2823           emit_shlimm(th,imm[i]&31,th);
2824         }
2825       }
2826     }
2827   }
2828   if(opcode2[i]==0x3e) // DSRL32
2829   {
2830     if(rt1[i]) {
2831       signed char sh,tl,th;
2832       tl=get_reg(i_regs->regmap,rt1[i]);
2833       th=get_reg(i_regs->regmap,rt1[i]|64);
2834       sh=get_reg(i_regs->regmap,rs1[i]|64);
2835       if(tl>=0){
2836         assert(sh>=0);
2837         emit_mov(sh,tl);
2838         if(th>=0) emit_zeroreg(th);
2839         if(imm[i]>32)
2840         {
2841           emit_shrimm(tl,imm[i]&31,tl);
2842         }
2843       }
2844     }
2845   }
2846   if(opcode2[i]==0x3f) // DSRA32
2847   {
2848     if(rt1[i]) {
2849       signed char sh,tl;
2850       tl=get_reg(i_regs->regmap,rt1[i]);
2851       sh=get_reg(i_regs->regmap,rs1[i]|64);
2852       if(tl>=0){
2853         assert(sh>=0);
2854         emit_mov(sh,tl);
2855         if(imm[i]>32)
2856         {
2857           emit_sarimm(tl,imm[i]&31,tl);
2858         }
2859       }
2860     }
2861   }
2862 }
2863
2864 #ifndef shift_assemble
2865 void shift_assemble(int i,struct regstat *i_regs)
2866 {
2867   printf("Need shift_assemble for this architecture.\n");
2868   exit(1);
2869 }
2870 #endif
2871
2872 void load_assemble(int i,struct regstat *i_regs)
2873 {
2874   int s,th,tl,addr,map=-1;
2875   int offset;
2876   int jaddr=0;
2877   int memtarget=0,c=0;
2878   int fastload_reg_override=0;
2879   u_int hr,reglist=0;
2880   th=get_reg(i_regs->regmap,rt1[i]|64);
2881   tl=get_reg(i_regs->regmap,rt1[i]);
2882   s=get_reg(i_regs->regmap,rs1[i]);
2883   offset=imm[i];
2884   for(hr=0;hr<HOST_REGS;hr++) {
2885     if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
2886   }
2887   if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
2888   if(s>=0) {
2889     c=(i_regs->wasconst>>s)&1;
2890     if (c) {
2891       memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
2892       if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
2893     }
2894   }
2895   //printf("load_assemble: c=%d\n",c);
2896   //if(c) printf("load_assemble: const=%x\n",(int)constmap[i][s]+offset);
2897   // FIXME: Even if the load is a NOP, we should check for pagefaults...
2898 #ifdef PCSX
2899   if(tl<0&&(!c||(((u_int)constmap[i][s]+offset)>>16)==0x1f80)
2900     ||rt1[i]==0) {
2901       // could be FIFO, must perform the read
2902       // ||dummy read
2903       assem_debug("(forced read)\n");
2904       tl=get_reg(i_regs->regmap,-1);
2905       assert(tl>=0);
2906   }
2907 #endif
2908   if(offset||s<0||c) addr=tl;
2909   else addr=s;
2910   //if(tl<0) tl=get_reg(i_regs->regmap,-1);
2911  if(tl>=0) {
2912   //printf("load_assemble: c=%d\n",c);
2913   //if(c) printf("load_assemble: const=%x\n",(int)constmap[i][s]+offset);
2914   assert(tl>=0); // Even if the load is a NOP, we must check for pagefaults and I/O
2915   reglist&=~(1<<tl);
2916   if(th>=0) reglist&=~(1<<th);
2917   if(!using_tlb) {
2918     if(!c) {
2919       #ifdef RAM_OFFSET
2920       map=get_reg(i_regs->regmap,ROREG);
2921       if(map<0) emit_loadreg(ROREG,map=HOST_TEMPREG);
2922       #endif
2923 //#define R29_HACK 1
2924       #ifdef R29_HACK
2925       // Strmnnrmn's speed hack
2926       if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
2927       #endif
2928       {
2929         jaddr=emit_fastpath_cmp_jump(i,addr,&fastload_reg_override);
2930       }
2931     }
2932     else if(ram_offset&&memtarget) {
2933       emit_addimm(addr,ram_offset,HOST_TEMPREG);
2934       fastload_reg_override=HOST_TEMPREG;
2935     }
2936   }else{ // using tlb
2937     int x=0;
2938     if (opcode[i]==0x20||opcode[i]==0x24) x=3; // LB/LBU
2939     if (opcode[i]==0x21||opcode[i]==0x25) x=2; // LH/LHU
2940     map=get_reg(i_regs->regmap,TLREG);
2941     assert(map>=0);
2942     reglist&=~(1<<map);
2943     map=do_tlb_r(addr,tl,map,x,-1,-1,c,constmap[i][s]+offset);
2944     do_tlb_r_branch(map,c,constmap[i][s]+offset,&jaddr);
2945   }
2946   int dummy=(rt1[i]==0)||(tl!=get_reg(i_regs->regmap,rt1[i])); // ignore loads to r0 and unneeded reg
2947   if (opcode[i]==0x20) { // LB
2948     if(!c||memtarget) {
2949       if(!dummy) {
2950         #ifdef HOST_IMM_ADDR32
2951         if(c)
2952           emit_movsbl_tlb((constmap[i][s]+offset)^3,map,tl);
2953         else
2954         #endif
2955         {
2956           //emit_xorimm(addr,3,tl);
2957           //gen_tlb_addr_r(tl,map);
2958           //emit_movsbl_indexed((int)rdram-0x80000000,tl,tl);
2959           int x=0,a=tl;
2960 #ifdef BIG_ENDIAN_MIPS
2961           if(!c) emit_xorimm(addr,3,tl);
2962           else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2963 #else
2964           if(!c) a=addr;
2965 #endif
2966           if(fastload_reg_override) a=fastload_reg_override;
2967
2968           emit_movsbl_indexed_tlb(x,a,map,tl);
2969         }
2970       }
2971       if(jaddr)
2972         add_stub(LOADB_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2973     }
2974     else
2975       inline_readstub(LOADB_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2976   }
2977   if (opcode[i]==0x21) { // LH
2978     if(!c||memtarget) {
2979       if(!dummy) {
2980         #ifdef HOST_IMM_ADDR32
2981         if(c)
2982           emit_movswl_tlb((constmap[i][s]+offset)^2,map,tl);
2983         else
2984         #endif
2985         {
2986           int x=0,a=tl;
2987 #ifdef BIG_ENDIAN_MIPS
2988           if(!c) emit_xorimm(addr,2,tl);
2989           else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
2990 #else
2991           if(!c) a=addr;
2992 #endif
2993           if(fastload_reg_override) a=fastload_reg_override;
2994           //#ifdef
2995           //emit_movswl_indexed_tlb(x,tl,map,tl);
2996           //else
2997           if(map>=0) {
2998             gen_tlb_addr_r(a,map);
2999             emit_movswl_indexed(x,a,tl);
3000           }else{
3001             #if 1 //def RAM_OFFSET
3002             emit_movswl_indexed(x,a,tl);
3003             #else
3004             emit_movswl_indexed((int)rdram-0x80000000+x,a,tl);
3005             #endif
3006           }
3007         }
3008       }
3009       if(jaddr)
3010         add_stub(LOADH_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3011     }
3012     else
3013       inline_readstub(LOADH_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
3014   }
3015   if (opcode[i]==0x23) { // LW
3016     if(!c||memtarget) {
3017       if(!dummy) {
3018         int a=addr;
3019         if(fastload_reg_override) a=fastload_reg_override;
3020         //emit_readword_indexed((int)rdram-0x80000000,addr,tl);
3021         #ifdef HOST_IMM_ADDR32
3022         if(c)
3023           emit_readword_tlb(constmap[i][s]+offset,map,tl);
3024         else
3025         #endif
3026         emit_readword_indexed_tlb(0,a,map,tl);
3027       }
3028       if(jaddr)
3029         add_stub(LOADW_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3030     }
3031     else
3032       inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
3033   }
3034   if (opcode[i]==0x24) { // LBU
3035     if(!c||memtarget) {
3036       if(!dummy) {
3037         #ifdef HOST_IMM_ADDR32
3038         if(c)
3039           emit_movzbl_tlb((constmap[i][s]+offset)^3,map,tl);
3040         else
3041         #endif
3042         {
3043           //emit_xorimm(addr,3,tl);
3044           //gen_tlb_addr_r(tl,map);
3045           //emit_movzbl_indexed((int)rdram-0x80000000,tl,tl);
3046           int x=0,a=tl;
3047 #ifdef BIG_ENDIAN_MIPS
3048           if(!c) emit_xorimm(addr,3,tl);
3049           else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
3050 #else
3051           if(!c) a=addr;
3052 #endif
3053           if(fastload_reg_override) a=fastload_reg_override;
3054
3055           emit_movzbl_indexed_tlb(x,a,map,tl);
3056         }
3057       }
3058       if(jaddr)
3059         add_stub(LOADBU_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3060     }
3061     else
3062       inline_readstub(LOADBU_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
3063   }
3064   if (opcode[i]==0x25) { // LHU
3065     if(!c||memtarget) {
3066       if(!dummy) {
3067         #ifdef HOST_IMM_ADDR32
3068         if(c)
3069           emit_movzwl_tlb((constmap[i][s]+offset)^2,map,tl);
3070         else
3071         #endif
3072         {
3073           int x=0,a=tl;
3074 #ifdef BIG_ENDIAN_MIPS
3075           if(!c) emit_xorimm(addr,2,tl);
3076           else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
3077 #else
3078           if(!c) a=addr;
3079 #endif
3080           if(fastload_reg_override) a=fastload_reg_override;
3081           //#ifdef
3082           //emit_movzwl_indexed_tlb(x,tl,map,tl);
3083           //#else
3084           if(map>=0) {
3085             gen_tlb_addr_r(a,map);
3086             emit_movzwl_indexed(x,a,tl);
3087           }else{
3088             #if 1 //def RAM_OFFSET
3089             emit_movzwl_indexed(x,a,tl);
3090             #else
3091             emit_movzwl_indexed((int)rdram-0x80000000+x,a,tl);
3092             #endif
3093           }
3094         }
3095       }
3096       if(jaddr)
3097         add_stub(LOADHU_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3098     }
3099     else
3100       inline_readstub(LOADHU_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
3101   }
3102   if (opcode[i]==0x27) { // LWU
3103     assert(th>=0);
3104     if(!c||memtarget) {
3105       if(!dummy) {
3106         int a=addr;
3107         if(fastload_reg_override) a=fastload_reg_override;
3108         //emit_readword_indexed((int)rdram-0x80000000,addr,tl);
3109         #ifdef HOST_IMM_ADDR32
3110         if(c)
3111           emit_readword_tlb(constmap[i][s]+offset,map,tl);
3112         else
3113         #endif
3114         emit_readword_indexed_tlb(0,a,map,tl);
3115       }
3116       if(jaddr)
3117         add_stub(LOADW_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3118     }
3119     else {
3120       inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
3121     }
3122     emit_zeroreg(th);
3123   }
3124   if (opcode[i]==0x37) { // LD
3125     if(!c||memtarget) {
3126       if(!dummy) {
3127         int a=addr;
3128         if(fastload_reg_override) a=fastload_reg_override;
3129         //gen_tlb_addr_r(tl,map);
3130         //if(th>=0) emit_readword_indexed((int)rdram-0x80000000,addr,th);
3131         //emit_readword_indexed((int)rdram-0x7FFFFFFC,addr,tl);
3132         #ifdef HOST_IMM_ADDR32
3133         if(c)
3134           emit_readdword_tlb(constmap[i][s]+offset,map,th,tl);
3135         else
3136         #endif
3137         emit_readdword_indexed_tlb(0,a,map,th,tl);
3138       }
3139       if(jaddr)
3140         add_stub(LOADD_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3141     }
3142     else
3143       inline_readstub(LOADD_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
3144   }
3145  }
3146   //emit_storereg(rt1[i],tl); // DEBUG
3147   //if(opcode[i]==0x23)
3148   //if(opcode[i]==0x24)
3149   //if(opcode[i]==0x23||opcode[i]==0x24)
3150   /*if(opcode[i]==0x21||opcode[i]==0x23||opcode[i]==0x24)
3151   {
3152     //emit_pusha();
3153     save_regs(0x100f);
3154         emit_readword((int)&last_count,ECX);
3155         #ifdef __i386__
3156         if(get_reg(i_regs->regmap,CCREG)<0)
3157           emit_loadreg(CCREG,HOST_CCREG);
3158         emit_add(HOST_CCREG,ECX,HOST_CCREG);
3159         emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3160         emit_writeword(HOST_CCREG,(int)&Count);
3161         #endif
3162         #ifdef __arm__
3163         if(get_reg(i_regs->regmap,CCREG)<0)
3164           emit_loadreg(CCREG,0);
3165         else
3166           emit_mov(HOST_CCREG,0);
3167         emit_add(0,ECX,0);
3168         emit_addimm(0,2*ccadj[i],0);
3169         emit_writeword(0,(int)&Count);
3170         #endif
3171     emit_call((int)memdebug);
3172     //emit_popa();
3173     restore_regs(0x100f);
3174   }/**/
3175 }
3176
3177 #ifndef loadlr_assemble
3178 void loadlr_assemble(int i,struct regstat *i_regs)
3179 {
3180   printf("Need loadlr_assemble for this architecture.\n");
3181   exit(1);
3182 }
3183 #endif
3184
3185 void store_assemble(int i,struct regstat *i_regs)
3186 {
3187   int s,th,tl,map=-1;
3188   int addr,temp;
3189   int offset;
3190   int jaddr=0,jaddr2,type;
3191   int memtarget=0,c=0;
3192   int agr=AGEN1+(i&1);
3193   int faststore_reg_override=0;
3194   u_int hr,reglist=0;
3195   th=get_reg(i_regs->regmap,rs2[i]|64);
3196   tl=get_reg(i_regs->regmap,rs2[i]);
3197   s=get_reg(i_regs->regmap,rs1[i]);
3198   temp=get_reg(i_regs->regmap,agr);
3199   if(temp<0) temp=get_reg(i_regs->regmap,-1);
3200   offset=imm[i];
3201   if(s>=0) {
3202     c=(i_regs->wasconst>>s)&1;
3203     if(c) {
3204       memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
3205       if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
3206     }
3207   }
3208   assert(tl>=0);
3209   assert(temp>=0);
3210   for(hr=0;hr<HOST_REGS;hr++) {
3211     if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3212   }
3213   if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
3214   if(offset||s<0||c) addr=temp;
3215   else addr=s;
3216   if(!using_tlb) {
3217     if(!c) {
3218       #ifndef PCSX
3219       #ifdef R29_HACK
3220       // Strmnnrmn's speed hack
3221       if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
3222       #endif
3223       emit_cmpimm(addr,RAM_SIZE);
3224       #ifdef DESTRUCTIVE_SHIFT
3225       if(s==addr) emit_mov(s,temp);
3226       #endif
3227       #ifdef R29_HACK
3228       memtarget=1;
3229       if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
3230       #endif
3231       {
3232         jaddr=(int)out;
3233         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
3234         // Hint to branch predictor that the branch is unlikely to be taken
3235         if(rs1[i]>=28)
3236           emit_jno_unlikely(0);
3237         else
3238         #endif
3239         emit_jno(0);
3240       }
3241       #else
3242         jaddr=emit_fastpath_cmp_jump(i,addr,&faststore_reg_override);
3243       #endif
3244     }
3245     else if(ram_offset&&memtarget) {
3246       emit_addimm(addr,ram_offset,HOST_TEMPREG);
3247       faststore_reg_override=HOST_TEMPREG;
3248     }
3249   }else{ // using tlb
3250     int x=0;
3251     if (opcode[i]==0x28) x=3; // SB
3252     if (opcode[i]==0x29) x=2; // SH
3253     map=get_reg(i_regs->regmap,TLREG);
3254     assert(map>=0);
3255     reglist&=~(1<<map);
3256     map=do_tlb_w(addr,temp,map,x,c,constmap[i][s]+offset);
3257     do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr);
3258   }
3259
3260   if (opcode[i]==0x28) { // SB
3261     if(!c||memtarget) {
3262       int x=0,a=temp;
3263 #ifdef BIG_ENDIAN_MIPS
3264       if(!c) emit_xorimm(addr,3,temp);
3265       else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
3266 #else
3267       if(!c) a=addr;
3268 #endif
3269       if(faststore_reg_override) a=faststore_reg_override;
3270       //gen_tlb_addr_w(temp,map);
3271       //emit_writebyte_indexed(tl,(int)rdram-0x80000000,temp);
3272       emit_writebyte_indexed_tlb(tl,x,a,map,a);
3273     }
3274     type=STOREB_STUB;
3275   }
3276   if (opcode[i]==0x29) { // SH
3277     if(!c||memtarget) {
3278       int x=0,a=temp;
3279 #ifdef BIG_ENDIAN_MIPS
3280       if(!c) emit_xorimm(addr,2,temp);
3281       else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
3282 #else
3283       if(!c) a=addr;
3284 #endif
3285       if(faststore_reg_override) a=faststore_reg_override;
3286       //#ifdef
3287       //emit_writehword_indexed_tlb(tl,x,temp,map,temp);
3288       //#else
3289       if(map>=0) {
3290         gen_tlb_addr_w(a,map);
3291         emit_writehword_indexed(tl,x,a);
3292       }else
3293         //emit_writehword_indexed(tl,(int)rdram-0x80000000+x,a);
3294         emit_writehword_indexed(tl,x,a);
3295     }
3296     type=STOREH_STUB;
3297   }
3298   if (opcode[i]==0x2B) { // SW
3299     if(!c||memtarget) {
3300       int a=addr;
3301       if(faststore_reg_override) a=faststore_reg_override;
3302       //emit_writeword_indexed(tl,(int)rdram-0x80000000,addr);
3303       emit_writeword_indexed_tlb(tl,0,a,map,temp);
3304     }
3305     type=STOREW_STUB;
3306   }
3307   if (opcode[i]==0x3F) { // SD
3308     if(!c||memtarget) {
3309       int a=addr;
3310       if(faststore_reg_override) a=faststore_reg_override;
3311       if(rs2[i]) {
3312         assert(th>=0);
3313         //emit_writeword_indexed(th,(int)rdram-0x80000000,addr);
3314         //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,addr);
3315         emit_writedword_indexed_tlb(th,tl,0,a,map,temp);
3316       }else{
3317         // Store zero
3318         //emit_writeword_indexed(tl,(int)rdram-0x80000000,temp);
3319         //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,temp);
3320         emit_writedword_indexed_tlb(tl,tl,0,a,map,temp);
3321       }
3322     }
3323     type=STORED_STUB;
3324   }
3325 #ifdef PCSX
3326   if(jaddr) {
3327     // PCSX store handlers don't check invcode again
3328     reglist|=1<<addr;
3329     add_stub(type,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3330     jaddr=0;
3331   }
3332 #endif
3333   if(!using_tlb&&!(i_regs->waswritten&(1<<rs1[i]))&&!(new_dynarec_hacks&NDHACK_NO_SMC_CHECK)) {
3334     if(!c||memtarget) {
3335       #ifdef DESTRUCTIVE_SHIFT
3336       // The x86 shift operation is 'destructive'; it overwrites the
3337       // source register, so we need to make a copy first and use that.
3338       addr=temp;
3339       #endif
3340       #if defined(HOST_IMM8)
3341       int ir=get_reg(i_regs->regmap,INVCP);
3342       assert(ir>=0);
3343       emit_cmpmem_indexedsr12_reg(ir,addr,1);
3344       #else
3345       emit_cmpmem_indexedsr12_imm((int)invalid_code,addr,1);
3346       #endif
3347       #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3348       emit_callne(invalidate_addr_reg[addr]);
3349       #else
3350       jaddr2=(int)out;
3351       emit_jne(0);
3352       add_stub(INVCODE_STUB,jaddr2,(int)out,reglist|(1<<HOST_CCREG),addr,0,0,0);
3353       #endif
3354     }
3355   }
3356   u_int addr_val=constmap[i][s]+offset;
3357   if(jaddr) {
3358     add_stub(type,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3359   } else if(c&&!memtarget) {
3360     inline_writestub(type,i,addr_val,i_regs->regmap,rs2[i],ccadj[i],reglist);
3361   }
3362   // basic current block modification detection..
3363   // not looking back as that should be in mips cache already
3364   if(c&&start+i*4<addr_val&&addr_val<start+slen*4) {
3365     printf("write to %08x hits block %08x, pc=%08x\n",addr_val,start,start+i*4);
3366     assert(i_regs->regmap==regs[i].regmap); // not delay slot
3367     if(i_regs->regmap==regs[i].regmap) {
3368       load_all_consts(regs[i].regmap_entry,regs[i].was32,regs[i].wasdirty,i);
3369       wb_dirtys(regs[i].regmap_entry,regs[i].was32,regs[i].wasdirty);
3370       emit_movimm(start+i*4+4,0);
3371       emit_writeword(0,(int)&pcaddr);
3372       emit_jmp((int)do_interrupt);
3373     }
3374   }
3375   //if(opcode[i]==0x2B || opcode[i]==0x3F)
3376   //if(opcode[i]==0x2B || opcode[i]==0x28)
3377   //if(opcode[i]==0x2B || opcode[i]==0x29)
3378   //if(opcode[i]==0x2B)
3379   /*if(opcode[i]==0x2B || opcode[i]==0x28 || opcode[i]==0x29 || opcode[i]==0x3F)
3380   {
3381     #ifdef __i386__
3382     emit_pusha();
3383     #endif
3384     #ifdef __arm__
3385     save_regs(0x100f);
3386     #endif
3387         emit_readword((int)&last_count,ECX);
3388         #ifdef __i386__
3389         if(get_reg(i_regs->regmap,CCREG)<0)
3390           emit_loadreg(CCREG,HOST_CCREG);
3391         emit_add(HOST_CCREG,ECX,HOST_CCREG);
3392         emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3393         emit_writeword(HOST_CCREG,(int)&Count);
3394         #endif
3395         #ifdef __arm__
3396         if(get_reg(i_regs->regmap,CCREG)<0)
3397           emit_loadreg(CCREG,0);
3398         else
3399           emit_mov(HOST_CCREG,0);
3400         emit_add(0,ECX,0);
3401         emit_addimm(0,2*ccadj[i],0);
3402         emit_writeword(0,(int)&Count);
3403         #endif
3404     emit_call((int)memdebug);
3405     #ifdef __i386__
3406     emit_popa();
3407     #endif
3408     #ifdef __arm__
3409     restore_regs(0x100f);
3410     #endif
3411   }/**/
3412 }
3413
3414 void storelr_assemble(int i,struct regstat *i_regs)
3415 {
3416   int s,th,tl;
3417   int temp;
3418   int temp2;
3419   int offset;
3420   int jaddr=0,jaddr2;
3421   int case1,case2,case3;
3422   int done0,done1,done2;
3423   int memtarget=0,c=0;
3424   int agr=AGEN1+(i&1);
3425   u_int hr,reglist=0;
3426   th=get_reg(i_regs->regmap,rs2[i]|64);
3427   tl=get_reg(i_regs->regmap,rs2[i]);
3428   s=get_reg(i_regs->regmap,rs1[i]);
3429   temp=get_reg(i_regs->regmap,agr);
3430   if(temp<0) temp=get_reg(i_regs->regmap,-1);
3431   offset=imm[i];
3432   if(s>=0) {
3433     c=(i_regs->isconst>>s)&1;
3434     if(c) {
3435       memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
3436       if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
3437     }
3438   }
3439   assert(tl>=0);
3440   for(hr=0;hr<HOST_REGS;hr++) {
3441     if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3442   }
3443   assert(temp>=0);
3444   if(!using_tlb) {
3445     if(!c) {
3446       emit_cmpimm(s<0||offset?temp:s,RAM_SIZE);
3447       if(!offset&&s!=temp) emit_mov(s,temp);
3448       jaddr=(int)out;
3449       emit_jno(0);
3450     }
3451     else
3452     {
3453       if(!memtarget||!rs1[i]) {
3454         jaddr=(int)out;
3455         emit_jmp(0);
3456       }
3457     }
3458     #ifdef RAM_OFFSET
3459     int map=get_reg(i_regs->regmap,ROREG);
3460     if(map<0) emit_loadreg(ROREG,map=HOST_TEMPREG);
3461     gen_tlb_addr_w(temp,map);
3462     #else
3463     if((u_int)rdram!=0x80000000) 
3464       emit_addimm_no_flags((u_int)rdram-(u_int)0x80000000,temp);
3465     #endif
3466   }else{ // using tlb
3467     int map=get_reg(i_regs->regmap,TLREG);
3468     assert(map>=0);
3469     reglist&=~(1<<map);
3470     map=do_tlb_w(c||s<0||offset?temp:s,temp,map,0,c,constmap[i][s]+offset);
3471     if(!c&&!offset&&s>=0) emit_mov(s,temp);
3472     do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr);
3473     if(!jaddr&&!memtarget) {
3474       jaddr=(int)out;
3475       emit_jmp(0);
3476     }
3477     gen_tlb_addr_w(temp,map);
3478   }
3479
3480   if (opcode[i]==0x2C||opcode[i]==0x2D) { // SDL/SDR
3481     temp2=get_reg(i_regs->regmap,FTEMP);
3482     if(!rs2[i]) temp2=th=tl;
3483   }
3484
3485 #ifndef BIG_ENDIAN_MIPS
3486     emit_xorimm(temp,3,temp);
3487 #endif
3488   emit_testimm(temp,2);
3489   case2=(int)out;
3490   emit_jne(0);
3491   emit_testimm(temp,1);
3492   case1=(int)out;
3493   emit_jne(0);
3494   // 0
3495   if (opcode[i]==0x2A) { // SWL
3496     emit_writeword_indexed(tl,0,temp);
3497   }
3498   if (opcode[i]==0x2E) { // SWR
3499     emit_writebyte_indexed(tl,3,temp);
3500   }
3501   if (opcode[i]==0x2C) { // SDL
3502     emit_writeword_indexed(th,0,temp);
3503     if(rs2[i]) emit_mov(tl,temp2);
3504   }
3505   if (opcode[i]==0x2D) { // SDR
3506     emit_writebyte_indexed(tl,3,temp);
3507     if(rs2[i]) emit_shldimm(th,tl,24,temp2);
3508   }
3509   done0=(int)out;
3510   emit_jmp(0);
3511   // 1
3512   set_jump_target(case1,(int)out);
3513   if (opcode[i]==0x2A) { // SWL
3514     // Write 3 msb into three least significant bytes
3515     if(rs2[i]) emit_rorimm(tl,8,tl);
3516     emit_writehword_indexed(tl,-1,temp);
3517     if(rs2[i]) emit_rorimm(tl,16,tl);
3518     emit_writebyte_indexed(tl,1,temp);
3519     if(rs2[i]) emit_rorimm(tl,8,tl);
3520   }
3521   if (opcode[i]==0x2E) { // SWR
3522     // Write two lsb into two most significant bytes
3523     emit_writehword_indexed(tl,1,temp);
3524   }
3525   if (opcode[i]==0x2C) { // SDL
3526     if(rs2[i]) emit_shrdimm(tl,th,8,temp2);
3527     // Write 3 msb into three least significant bytes
3528     if(rs2[i]) emit_rorimm(th,8,th);
3529     emit_writehword_indexed(th,-1,temp);
3530     if(rs2[i]) emit_rorimm(th,16,th);
3531     emit_writebyte_indexed(th,1,temp);
3532     if(rs2[i]) emit_rorimm(th,8,th);
3533   }
3534   if (opcode[i]==0x2D) { // SDR
3535     if(rs2[i]) emit_shldimm(th,tl,16,temp2);
3536     // Write two lsb into two most significant bytes
3537     emit_writehword_indexed(tl,1,temp);
3538   }
3539   done1=(int)out;
3540   emit_jmp(0);
3541   // 2
3542   set_jump_target(case2,(int)out);
3543   emit_testimm(temp,1);
3544   case3=(int)out;
3545   emit_jne(0);
3546   if (opcode[i]==0x2A) { // SWL
3547     // Write two msb into two least significant bytes
3548     if(rs2[i]) emit_rorimm(tl,16,tl);
3549     emit_writehword_indexed(tl,-2,temp);
3550     if(rs2[i]) emit_rorimm(tl,16,tl);
3551   }
3552   if (opcode[i]==0x2E) { // SWR
3553     // Write 3 lsb into three most significant bytes
3554     emit_writebyte_indexed(tl,-1,temp);
3555     if(rs2[i]) emit_rorimm(tl,8,tl);
3556     emit_writehword_indexed(tl,0,temp);
3557     if(rs2[i]) emit_rorimm(tl,24,tl);
3558   }
3559   if (opcode[i]==0x2C) { // SDL
3560     if(rs2[i]) emit_shrdimm(tl,th,16,temp2);
3561     // Write two msb into two least significant bytes
3562     if(rs2[i]) emit_rorimm(th,16,th);
3563     emit_writehword_indexed(th,-2,temp);
3564     if(rs2[i]) emit_rorimm(th,16,th);
3565   }
3566   if (opcode[i]==0x2D) { // SDR
3567     if(rs2[i]) emit_shldimm(th,tl,8,temp2);
3568     // Write 3 lsb into three most significant bytes
3569     emit_writebyte_indexed(tl,-1,temp);
3570     if(rs2[i]) emit_rorimm(tl,8,tl);
3571     emit_writehword_indexed(tl,0,temp);
3572     if(rs2[i]) emit_rorimm(tl,24,tl);
3573   }
3574   done2=(int)out;
3575   emit_jmp(0);
3576   // 3
3577   set_jump_target(case3,(int)out);
3578   if (opcode[i]==0x2A) { // SWL
3579     // Write msb into least significant byte
3580     if(rs2[i]) emit_rorimm(tl,24,tl);
3581     emit_writebyte_indexed(tl,-3,temp);
3582     if(rs2[i]) emit_rorimm(tl,8,tl);
3583   }
3584   if (opcode[i]==0x2E) { // SWR
3585     // Write entire word
3586     emit_writeword_indexed(tl,-3,temp);
3587   }
3588   if (opcode[i]==0x2C) { // SDL
3589     if(rs2[i]) emit_shrdimm(tl,th,24,temp2);
3590     // Write msb into least significant byte
3591     if(rs2[i]) emit_rorimm(th,24,th);
3592     emit_writebyte_indexed(th,-3,temp);
3593     if(rs2[i]) emit_rorimm(th,8,th);
3594   }
3595   if (opcode[i]==0x2D) { // SDR
3596     if(rs2[i]) emit_mov(th,temp2);
3597     // Write entire word
3598     emit_writeword_indexed(tl,-3,temp);
3599   }
3600   set_jump_target(done0,(int)out);
3601   set_jump_target(done1,(int)out);
3602   set_jump_target(done2,(int)out);
3603   if (opcode[i]==0x2C) { // SDL
3604     emit_testimm(temp,4);
3605     done0=(int)out;
3606     emit_jne(0);
3607     emit_andimm(temp,~3,temp);
3608     emit_writeword_indexed(temp2,4,temp);
3609     set_jump_target(done0,(int)out);
3610   }
3611   if (opcode[i]==0x2D) { // SDR
3612     emit_testimm(temp,4);
3613     done0=(int)out;
3614     emit_jeq(0);
3615     emit_andimm(temp,~3,temp);
3616     emit_writeword_indexed(temp2,-4,temp);
3617     set_jump_target(done0,(int)out);
3618   }
3619   if(!c||!memtarget)
3620     add_stub(STORELR_STUB,jaddr,(int)out,i,(int)i_regs,temp,ccadj[i],reglist);
3621   if(!using_tlb&&!(i_regs->waswritten&(1<<rs1[i]))&&!(new_dynarec_hacks&NDHACK_NO_SMC_CHECK)) {
3622     #ifdef RAM_OFFSET
3623     int map=get_reg(i_regs->regmap,ROREG);
3624     if(map<0) map=HOST_TEMPREG;
3625     gen_orig_addr_w(temp,map);
3626     #else
3627     emit_addimm_no_flags((u_int)0x80000000-(u_int)rdram,temp);
3628     #endif
3629     #if defined(HOST_IMM8)
3630     int ir=get_reg(i_regs->regmap,INVCP);
3631     assert(ir>=0);
3632     emit_cmpmem_indexedsr12_reg(ir,temp,1);
3633     #else
3634     emit_cmpmem_indexedsr12_imm((int)invalid_code,temp,1);
3635     #endif
3636     #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3637     emit_callne(invalidate_addr_reg[temp]);
3638     #else
3639     jaddr2=(int)out;
3640     emit_jne(0);
3641     add_stub(INVCODE_STUB,jaddr2,(int)out,reglist|(1<<HOST_CCREG),temp,0,0,0);
3642     #endif
3643   }
3644   /*
3645     emit_pusha();
3646     //save_regs(0x100f);
3647         emit_readword((int)&last_count,ECX);
3648         if(get_reg(i_regs->regmap,CCREG)<0)
3649           emit_loadreg(CCREG,HOST_CCREG);
3650         emit_add(HOST_CCREG,ECX,HOST_CCREG);
3651         emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3652         emit_writeword(HOST_CCREG,(int)&Count);
3653     emit_call((int)memdebug);
3654     emit_popa();
3655     //restore_regs(0x100f);
3656   /**/
3657 }
3658
3659 void c1ls_assemble(int i,struct regstat *i_regs)
3660 {
3661 #ifndef DISABLE_COP1
3662   int s,th,tl;
3663   int temp,ar;
3664   int map=-1;
3665   int offset;
3666   int c=0;
3667   int jaddr,jaddr2=0,jaddr3,type;
3668   int agr=AGEN1+(i&1);
3669   u_int hr,reglist=0;
3670   th=get_reg(i_regs->regmap,FTEMP|64);
3671   tl=get_reg(i_regs->regmap,FTEMP);
3672   s=get_reg(i_regs->regmap,rs1[i]);
3673   temp=get_reg(i_regs->regmap,agr);
3674   if(temp<0) temp=get_reg(i_regs->regmap,-1);
3675   offset=imm[i];
3676   assert(tl>=0);
3677   assert(rs1[i]>0);
3678   assert(temp>=0);
3679   for(hr=0;hr<HOST_REGS;hr++) {
3680     if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3681   }
3682   if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
3683   if (opcode[i]==0x31||opcode[i]==0x35) // LWC1/LDC1
3684   {
3685     // Loads use a temporary register which we need to save
3686     reglist|=1<<temp;
3687   }
3688   if (opcode[i]==0x39||opcode[i]==0x3D) // SWC1/SDC1
3689     ar=temp;
3690   else // LWC1/LDC1
3691     ar=tl;
3692   //if(s<0) emit_loadreg(rs1[i],ar); //address_generation does this now
3693   //else c=(i_regs->wasconst>>s)&1;
3694   if(s>=0) c=(i_regs->wasconst>>s)&1;
3695   // Check cop1 unusable
3696   if(!cop1_usable) {
3697     signed char rs=get_reg(i_regs->regmap,CSREG);
3698     assert(rs>=0);
3699     emit_testimm(rs,0x20000000);
3700     jaddr=(int)out;
3701     emit_jeq(0);
3702     add_stub(FP_STUB,jaddr,(int)out,i,rs,(int)i_regs,is_delayslot,0);
3703     cop1_usable=1;
3704   }
3705   if (opcode[i]==0x39) { // SWC1 (get float address)
3706     emit_readword((int)&reg_cop1_simple[(source[i]>>16)&0x1f],tl);
3707   }
3708   if (opcode[i]==0x3D) { // SDC1 (get double address)
3709     emit_readword((int)&reg_cop1_double[(source[i]>>16)&0x1f],tl);
3710   }
3711   // Generate address + offset
3712   if(!using_tlb) {
3713     if(!c)
3714       emit_cmpimm(offset||c||s<0?ar:s,RAM_SIZE);
3715   }
3716   else
3717   {
3718     map=get_reg(i_regs->regmap,TLREG);
3719     assert(map>=0);
3720     reglist&=~(1<<map);
3721     if (opcode[i]==0x31||opcode[i]==0x35) { // LWC1/LDC1
3722       map=do_tlb_r(offset||c||s<0?ar:s,ar,map,0,-1,-1,c,constmap[i][s]+offset);
3723     }
3724     if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3725       map=do_tlb_w(offset||c||s<0?ar:s,ar,map,0,c,constmap[i][s]+offset);
3726     }
3727   }
3728   if (opcode[i]==0x39) { // SWC1 (read float)
3729     emit_readword_indexed(0,tl,tl);
3730   }
3731   if (opcode[i]==0x3D) { // SDC1 (read double)
3732     emit_readword_indexed(4,tl,th);
3733     emit_readword_indexed(0,tl,tl);
3734   }
3735   if (opcode[i]==0x31) { // LWC1 (get target address)
3736     emit_readword((int)&reg_cop1_simple[(source[i]>>16)&0x1f],temp);
3737   }
3738   if (opcode[i]==0x35) { // LDC1 (get target address)
3739     emit_readword((int)&reg_cop1_double[(source[i]>>16)&0x1f],temp);
3740   }
3741   if(!using_tlb) {
3742     if(!c) {
3743       jaddr2=(int)out;
3744       emit_jno(0);
3745     }
3746     else if(((signed int)(constmap[i][s]+offset))>=(signed int)0x80000000+RAM_SIZE) {
3747       jaddr2=(int)out;
3748       emit_jmp(0); // inline_readstub/inline_writestub?  Very rare case
3749     }
3750     #ifdef DESTRUCTIVE_SHIFT
3751     if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3752       if(!offset&&!c&&s>=0) emit_mov(s,ar);
3753     }
3754     #endif
3755   }else{
3756     if (opcode[i]==0x31||opcode[i]==0x35) { // LWC1/LDC1
3757       do_tlb_r_branch(map,c,constmap[i][s]+offset,&jaddr2);
3758     }
3759     if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3760       do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr2);
3761     }
3762   }
3763   if (opcode[i]==0x31) { // LWC1
3764     //if(s>=0&&!c&&!offset) emit_mov(s,tl);
3765     //gen_tlb_addr_r(ar,map);
3766     //emit_readword_indexed((int)rdram-0x80000000,tl,tl);
3767     #ifdef HOST_IMM_ADDR32
3768     if(c) emit_readword_tlb(constmap[i][s]+offset,map,tl);
3769     else
3770     #endif
3771     emit_readword_indexed_tlb(0,offset||c||s<0?tl:s,map,tl);
3772     type=LOADW_STUB;
3773   }
3774   if (opcode[i]==0x35) { // LDC1
3775     assert(th>=0);
3776     //if(s>=0&&!c&&!offset) emit_mov(s,tl);
3777     //gen_tlb_addr_r(ar,map);
3778     //emit_readword_indexed((int)rdram-0x80000000,tl,th);
3779     //emit_readword_indexed((int)rdram-0x7FFFFFFC,tl,tl);
3780     #ifdef HOST_IMM_ADDR32
3781     if(c) emit_readdword_tlb(constmap[i][s]+offset,map,th,tl);
3782     else
3783     #endif
3784     emit_readdword_indexed_tlb(0,offset||c||s<0?tl:s,map,th,tl);
3785     type=LOADD_STUB;
3786   }
3787   if (opcode[i]==0x39) { // SWC1
3788     //emit_writeword_indexed(tl,(int)rdram-0x80000000,temp);
3789     emit_writeword_indexed_tlb(tl,0,offset||c||s<0?temp:s,map,temp);
3790     type=STOREW_STUB;
3791   }
3792   if (opcode[i]==0x3D) { // SDC1
3793     assert(th>=0);
3794     //emit_writeword_indexed(th,(int)rdram-0x80000000,temp);
3795     //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,temp);
3796     emit_writedword_indexed_tlb(th,tl,0,offset||c||s<0?temp:s,map,temp);
3797     type=STORED_STUB;
3798   }
3799   if(!using_tlb&&!(i_regs->waswritten&(1<<rs1[i]))&&!(new_dynarec_hacks&NDHACK_NO_SMC_CHECK)) {
3800     if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3801       #ifndef DESTRUCTIVE_SHIFT
3802       temp=offset||c||s<0?ar:s;
3803       #endif
3804       #if defined(HOST_IMM8)
3805       int ir=get_reg(i_regs->regmap,INVCP);
3806       assert(ir>=0);
3807       emit_cmpmem_indexedsr12_reg(ir,temp,1);
3808       #else
3809       emit_cmpmem_indexedsr12_imm((int)invalid_code,temp,1);
3810       #endif
3811       #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3812       emit_callne(invalidate_addr_reg[temp]);
3813       #else
3814       jaddr3=(int)out;
3815       emit_jne(0);
3816       add_stub(INVCODE_STUB,jaddr3,(int)out,reglist|(1<<HOST_CCREG),temp,0,0,0);
3817       #endif
3818     }
3819   }
3820   if(jaddr2) add_stub(type,jaddr2,(int)out,i,offset||c||s<0?ar:s,(int)i_regs,ccadj[i],reglist);
3821   if (opcode[i]==0x31) { // LWC1 (write float)
3822     emit_writeword_indexed(tl,0,temp);
3823   }
3824   if (opcode[i]==0x35) { // LDC1 (write double)
3825     emit_writeword_indexed(th,4,temp);
3826     emit_writeword_indexed(tl,0,temp);
3827   }
3828   //if(opcode[i]==0x39)
3829   /*if(opcode[i]==0x39||opcode[i]==0x31)
3830   {
3831     emit_pusha();
3832         emit_readword((int)&last_count,ECX);
3833         if(get_reg(i_regs->regmap,CCREG)<0)
3834           emit_loadreg(CCREG,HOST_CCREG);
3835         emit_add(HOST_CCREG,ECX,HOST_CCREG);
3836         emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3837         emit_writeword(HOST_CCREG,(int)&Count);
3838     emit_call((int)memdebug);
3839     emit_popa();
3840   }/**/
3841 #else
3842   cop1_unusable(i, i_regs);
3843 #endif
3844 }
3845
3846 void c2ls_assemble(int i,struct regstat *i_regs)
3847 {
3848   int s,tl;
3849   int ar;
3850   int offset;
3851   int memtarget=0,c=0;
3852   int jaddr2=0,jaddr3,type;
3853   int agr=AGEN1+(i&1);
3854   int fastio_reg_override=0;
3855   u_int hr,reglist=0;
3856   u_int copr=(source[i]>>16)&0x1f;
3857   s=get_reg(i_regs->regmap,rs1[i]);
3858   tl=get_reg(i_regs->regmap,FTEMP);
3859   offset=imm[i];
3860   assert(rs1[i]>0);
3861   assert(tl>=0);
3862   assert(!using_tlb);
3863
3864   for(hr=0;hr<HOST_REGS;hr++) {
3865     if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3866   }
3867   if(i_regs->regmap[HOST_CCREG]==CCREG)
3868     reglist&=~(1<<HOST_CCREG);
3869
3870   // get the address
3871   if (opcode[i]==0x3a) { // SWC2
3872     ar=get_reg(i_regs->regmap,agr);
3873     if(ar<0) ar=get_reg(i_regs->regmap,-1);
3874     reglist|=1<<ar;
3875   } else { // LWC2
3876     ar=tl;
3877   }
3878   if(s>=0) c=(i_regs->wasconst>>s)&1;
3879   memtarget=c&&(((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE);
3880   if (!offset&&!c&&s>=0) ar=s;
3881   assert(ar>=0);
3882
3883   if (opcode[i]==0x3a) { // SWC2
3884     cop2_get_dreg(copr,tl,HOST_TEMPREG);
3885     type=STOREW_STUB;
3886   }
3887   else
3888     type=LOADW_STUB;
3889
3890   if(c&&!memtarget) {
3891     jaddr2=(int)out;
3892     emit_jmp(0); // inline_readstub/inline_writestub?
3893   }
3894   else {
3895     if(!c) {
3896       jaddr2=emit_fastpath_cmp_jump(i,ar,&fastio_reg_override);
3897     }
3898     else if(ram_offset&&memtarget) {
3899       emit_addimm(ar,ram_offset,HOST_TEMPREG);
3900       fastio_reg_override=HOST_TEMPREG;
3901     }
3902     if (opcode[i]==0x32) { // LWC2
3903       #ifdef HOST_IMM_ADDR32
3904       if(c) emit_readword_tlb(constmap[i][s]+offset,-1,tl);
3905       else
3906       #endif
3907       int a=ar;
3908       if(fastio_reg_override) a=fastio_reg_override;
3909       emit_readword_indexed(0,a,tl);
3910     }
3911     if (opcode[i]==0x3a) { // SWC2
3912       #ifdef DESTRUCTIVE_SHIFT
3913       if(!offset&&!c&&s>=0) emit_mov(s,ar);
3914       #endif
3915       int a=ar;
3916       if(fastio_reg_override) a=fastio_reg_override;
3917       emit_writeword_indexed(tl,0,a);
3918     }
3919   }
3920   if(jaddr2)
3921     add_stub(type,jaddr2,(int)out,i,ar,(int)i_regs,ccadj[i],reglist);
3922   if(opcode[i]==0x3a) // SWC2
3923   if(!(i_regs->waswritten&(1<<rs1[i]))&&!(new_dynarec_hacks&NDHACK_NO_SMC_CHECK)) {
3924 #if defined(HOST_IMM8)
3925     int ir=get_reg(i_regs->regmap,INVCP);
3926     assert(ir>=0);
3927     emit_cmpmem_indexedsr12_reg(ir,ar,1);
3928 #else
3929     emit_cmpmem_indexedsr12_imm((int)invalid_code,ar,1);
3930 #endif
3931     #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3932     emit_callne(invalidate_addr_reg[ar]);
3933     #else
3934     jaddr3=(int)out;
3935     emit_jne(0);
3936     add_stub(INVCODE_STUB,jaddr3,(int)out,reglist|(1<<HOST_CCREG),ar,0,0,0);
3937     #endif
3938   }
3939   if (opcode[i]==0x32) { // LWC2
3940     cop2_put_dreg(copr,tl,HOST_TEMPREG);
3941   }
3942 }
3943
3944 #ifndef multdiv_assemble
3945 void multdiv_assemble(int i,struct regstat *i_regs)
3946 {
3947   printf("Need multdiv_assemble for this architecture.\n");
3948   exit(1);
3949 }
3950 #endif
3951
3952 void mov_assemble(int i,struct regstat *i_regs)
3953 {
3954   //if(opcode2[i]==0x10||opcode2[i]==0x12) { // MFHI/MFLO
3955   //if(opcode2[i]==0x11||opcode2[i]==0x13) { // MTHI/MTLO
3956   if(rt1[i]) {
3957     signed char sh,sl,th,tl;
3958     th=get_reg(i_regs->regmap,rt1[i]|64);
3959     tl=get_reg(i_regs->regmap,rt1[i]);
3960     //assert(tl>=0);
3961     if(tl>=0) {
3962       sh=get_reg(i_regs->regmap,rs1[i]|64);
3963       sl=get_reg(i_regs->regmap,rs1[i]);
3964       if(sl>=0) emit_mov(sl,tl);
3965       else emit_loadreg(rs1[i],tl);
3966       if(th>=0) {
3967         if(sh>=0) emit_mov(sh,th);
3968         else emit_loadreg(rs1[i]|64,th);
3969       }
3970     }
3971   }
3972 }
3973
3974 #ifndef fconv_assemble
3975 void fconv_assemble(int i,struct regstat *i_regs)
3976 {
3977   printf("Need fconv_assemble for this architecture.\n");
3978   exit(1);
3979 }
3980 #endif
3981
3982 #if 0
3983 void float_assemble(int i,struct regstat *i_regs)
3984 {
3985   printf("Need float_assemble for this architecture.\n");
3986   exit(1);
3987 }
3988 #endif
3989
3990 void syscall_assemble(int i,struct regstat *i_regs)
3991 {
3992   signed char ccreg=get_reg(i_regs->regmap,CCREG);
3993   assert(ccreg==HOST_CCREG);
3994   assert(!is_delayslot);
3995   emit_movimm(start+i*4,EAX); // Get PC
3996   emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i]),HOST_CCREG); // CHECK: is this right?  There should probably be an extra cycle...
3997   emit_jmp((int)jump_syscall_hle); // XXX
3998 }
3999
4000 void hlecall_assemble(int i,struct regstat *i_regs)
4001 {
4002   signed char ccreg=get_reg(i_regs->regmap,CCREG);
4003   assert(ccreg==HOST_CCREG);
4004   assert(!is_delayslot);
4005   emit_movimm(start+i*4+4,0); // Get PC
4006   emit_movimm((int)psxHLEt[source[i]&7],1);
4007   emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i]),HOST_CCREG); // XXX
4008   emit_jmp((int)jump_hlecall);
4009 }
4010
4011 void intcall_assemble(int i,struct regstat *i_regs)
4012 {
4013   signed char ccreg=get_reg(i_regs->regmap,CCREG);
4014   assert(ccreg==HOST_CCREG);
4015   assert(!is_delayslot);
4016   emit_movimm(start+i*4,0); // Get PC
4017   emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i]),HOST_CCREG);
4018   emit_jmp((int)jump_intcall);
4019 }
4020
4021 void ds_assemble(int i,struct regstat *i_regs)
4022 {
4023   speculate_register_values(i);
4024   is_delayslot=1;
4025   switch(itype[i]) {
4026     case ALU:
4027       alu_assemble(i,i_regs);break;
4028     case IMM16:
4029       imm16_assemble(i,i_regs);break;
4030     case SHIFT:
4031       shift_assemble(i,i_regs);break;
4032     case SHIFTIMM:
4033       shiftimm_assemble(i,i_regs);break;
4034     case LOAD:
4035       load_assemble(i,i_regs);break;
4036     case LOADLR:
4037       loadlr_assemble(i,i_regs);break;
4038     case STORE:
4039       store_assemble(i,i_regs);break;
4040     case STORELR:
4041       storelr_assemble(i,i_regs);break;
4042     case COP0:
4043       cop0_assemble(i,i_regs);break;
4044     case COP1:
4045       cop1_assemble(i,i_regs);break;
4046     case C1LS:
4047       c1ls_assemble(i,i_regs);break;
4048     case COP2:
4049       cop2_assemble(i,i_regs);break;
4050     case C2LS:
4051       c2ls_assemble(i,i_regs);break;
4052     case C2OP:
4053       c2op_assemble(i,i_regs);break;
4054     case FCONV:
4055       fconv_assemble(i,i_regs);break;
4056     case FLOAT:
4057       float_assemble(i,i_regs);break;
4058     case FCOMP:
4059       fcomp_assemble(i,i_regs);break;
4060     case MULTDIV:
4061       multdiv_assemble(i,i_regs);break;
4062     case MOV:
4063       mov_assemble(i,i_regs);break;
4064     case SYSCALL:
4065     case HLECALL:
4066     case INTCALL:
4067     case SPAN:
4068     case UJUMP:
4069     case RJUMP:
4070     case CJUMP:
4071     case SJUMP:
4072     case FJUMP:
4073       printf("Jump in the delay slot.  This is probably a bug.\n");
4074   }
4075   is_delayslot=0;
4076 }
4077
4078 // Is the branch target a valid internal jump?
4079 int internal_branch(uint64_t i_is32,int addr)
4080 {
4081   if(addr&1) return 0; // Indirect (register) jump
4082   if(addr>=start && addr<start+slen*4-4)
4083   {
4084     int t=(addr-start)>>2;
4085     // Delay slots are not valid branch targets
4086     //if(t>0&&(itype[t-1]==RJUMP||itype[t-1]==UJUMP||itype[t-1]==CJUMP||itype[t-1]==SJUMP||itype[t-1]==FJUMP)) return 0;
4087     // 64 -> 32 bit transition requires a recompile
4088     /*if(is32[t]&~unneeded_reg_upper[t]&~i_is32)
4089     {
4090       if(requires_32bit[t]&~i_is32) printf("optimizable: no\n");
4091       else printf("optimizable: yes\n");
4092     }*/
4093     //if(is32[t]&~unneeded_reg_upper[t]&~i_is32) return 0;
4094 #ifndef FORCE32
4095     if(requires_32bit[t]&~i_is32) return 0;
4096     else
4097 #endif
4098       return 1;
4099   }
4100   return 0;
4101 }
4102
4103 #ifndef wb_invalidate
4104 void wb_invalidate(signed char pre[],signed char entry[],uint64_t dirty,uint64_t is32,
4105   uint64_t u,uint64_t uu)
4106 {
4107   int hr;
4108   for(hr=0;hr<HOST_REGS;hr++) {
4109     if(hr!=EXCLUDE_REG) {
4110       if(pre[hr]!=entry[hr]) {
4111         if(pre[hr]>=0) {
4112           if((dirty>>hr)&1) {
4113             if(get_reg(entry,pre[hr])<0) {
4114               if(pre[hr]<64) {
4115                 if(!((u>>pre[hr])&1)) {
4116                   emit_storereg(pre[hr],hr);
4117                   if( ((is32>>pre[hr])&1) && !((uu>>pre[hr])&1) ) {
4118                     emit_sarimm(hr,31,hr);
4119                     emit_storereg(pre[hr]|64,hr);
4120                   }
4121                 }
4122               }else{
4123                 if(!((uu>>(pre[hr]&63))&1) && !((is32>>(pre[hr]&63))&1)) {
4124                   emit_storereg(pre[hr],hr);
4125                 }
4126               }
4127             }
4128           }
4129         }
4130       }
4131     }
4132   }
4133   // Move from one register to another (no writeback)
4134   for(hr=0;hr<HOST_REGS;hr++) {
4135     if(hr!=EXCLUDE_REG) {
4136       if(pre[hr]!=entry[hr]) {
4137         if(pre[hr]>=0&&(pre[hr]&63)<TEMPREG) {
4138           int nr;
4139           if((nr=get_reg(entry,pre[hr]))>=0) {
4140             emit_mov(hr,nr);
4141           }
4142         }
4143       }
4144     }
4145   }
4146 }
4147 #endif
4148
4149 // Load the specified registers
4150 // This only loads the registers given as arguments because
4151 // we don't want to load things that will be overwritten
4152 void load_regs(signed char entry[],signed char regmap[],int is32,int rs1,int rs2)
4153 {
4154   int hr;
4155   // Load 32-bit regs
4156   for(hr=0;hr<HOST_REGS;hr++) {
4157     if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4158       if(entry[hr]!=regmap[hr]) {
4159         if(regmap[hr]==rs1||regmap[hr]==rs2)
4160         {
4161           if(regmap[hr]==0) {
4162             emit_zeroreg(hr);
4163           }
4164           else
4165           {
4166             emit_loadreg(regmap[hr],hr);
4167           }
4168         }
4169       }
4170     }
4171   }
4172   //Load 64-bit regs
4173   for(hr=0;hr<HOST_REGS;hr++) {
4174     if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4175       if(entry[hr]!=regmap[hr]) {
4176         if(regmap[hr]-64==rs1||regmap[hr]-64==rs2)
4177         {
4178           assert(regmap[hr]!=64);
4179           if((is32>>(regmap[hr]&63))&1) {
4180             int lr=get_reg(regmap,regmap[hr]-64);
4181             if(lr>=0)
4182               emit_sarimm(lr,31,hr);
4183             else
4184               emit_loadreg(regmap[hr],hr);
4185           }
4186           else
4187           {
4188             emit_loadreg(regmap[hr],hr);
4189           }
4190         }
4191       }
4192     }
4193   }
4194 }
4195
4196 // Load registers prior to the start of a loop
4197 // so that they are not loaded within the loop
4198 static void loop_preload(signed char pre[],signed char entry[])
4199 {
4200   int hr;
4201   for(hr=0;hr<HOST_REGS;hr++) {
4202     if(hr!=EXCLUDE_REG) {
4203       if(pre[hr]!=entry[hr]) {
4204         if(entry[hr]>=0) {
4205           if(get_reg(pre,entry[hr])<0) {
4206             assem_debug("loop preload:\n");
4207             //printf("loop preload: %d\n",hr);
4208             if(entry[hr]==0) {
4209               emit_zeroreg(hr);
4210             }
4211             else if(entry[hr]<TEMPREG)
4212             {
4213               emit_loadreg(entry[hr],hr);
4214             }
4215             else if(entry[hr]-64<TEMPREG)
4216             {
4217               emit_loadreg(entry[hr],hr);
4218             }
4219           }
4220         }
4221       }
4222     }
4223   }
4224 }
4225
4226 // Generate address for load/store instruction
4227 // goes to AGEN for writes, FTEMP for LOADLR and cop1/2 loads
4228 void address_generation(int i,struct regstat *i_regs,signed char entry[])
4229 {
4230   if(itype[i]==LOAD||itype[i]==LOADLR||itype[i]==STORE||itype[i]==STORELR||itype[i]==C1LS||itype[i]==C2LS) {
4231     int ra=-1;
4232     int agr=AGEN1+(i&1);
4233     int mgr=MGEN1+(i&1);
4234     if(itype[i]==LOAD) {
4235       ra=get_reg(i_regs->regmap,rt1[i]);
4236       if(ra<0) ra=get_reg(i_regs->regmap,-1); 
4237       assert(ra>=0);
4238     }
4239     if(itype[i]==LOADLR) {
4240       ra=get_reg(i_regs->regmap,FTEMP);
4241     }
4242     if(itype[i]==STORE||itype[i]==STORELR) {
4243       ra=get_reg(i_regs->regmap,agr);
4244       if(ra<0) ra=get_reg(i_regs->regmap,-1);
4245     }
4246     if(itype[i]==C1LS||itype[i]==C2LS) {
4247       if ((opcode[i]&0x3b)==0x31||(opcode[i]&0x3b)==0x32) // LWC1/LDC1/LWC2/LDC2
4248         ra=get_reg(i_regs->regmap,FTEMP);
4249       else { // SWC1/SDC1/SWC2/SDC2
4250         ra=get_reg(i_regs->regmap,agr);
4251         if(ra<0) ra=get_reg(i_regs->regmap,-1);
4252       }
4253     }
4254     int rs=get_reg(i_regs->regmap,rs1[i]);
4255     int rm=get_reg(i_regs->regmap,TLREG);
4256     if(ra>=0) {
4257       int offset=imm[i];
4258       int c=(i_regs->wasconst>>rs)&1;
4259       if(rs1[i]==0) {
4260         // Using r0 as a base address
4261         /*if(rm>=0) {
4262           if(!entry||entry[rm]!=mgr) {
4263             generate_map_const(offset,rm);
4264           } // else did it in the previous cycle
4265         }*/
4266         if(!entry||entry[ra]!=agr) {
4267           if (opcode[i]==0x22||opcode[i]==0x26) {
4268             emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
4269           }else if (opcode[i]==0x1a||opcode[i]==0x1b) {
4270             emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
4271           }else{
4272             emit_movimm(offset,ra);
4273           }
4274         } // else did it in the previous cycle
4275       }
4276       else if(rs<0) {
4277         if(!entry||entry[ra]!=rs1[i])
4278           emit_loadreg(rs1[i],ra);
4279         //if(!entry||entry[ra]!=rs1[i])
4280         //  printf("poor load scheduling!\n");
4281       }
4282       else if(c) {
4283 #ifndef DISABLE_TLB
4284         if(rm>=0) {
4285           if(!entry||entry[rm]!=mgr) {
4286             if(itype[i]==STORE||itype[i]==STORELR||(opcode[i]&0x3b)==0x39||(opcode[i]&0x3b)==0x3a) {
4287               // Stores to memory go thru the mapper to detect self-modifying
4288               // code, loads don't.
4289               if((unsigned int)(constmap[i][rs]+offset)>=0xC0000000 ||
4290                  (unsigned int)(constmap[i][rs]+offset)<0x80000000+RAM_SIZE )
4291                 generate_map_const(constmap[i][rs]+offset,rm);
4292             }else{
4293               if((signed int)(constmap[i][rs]+offset)>=(signed int)0xC0000000)
4294                 generate_map_const(constmap[i][rs]+offset,rm);
4295             }
4296           }
4297         }
4298 #endif
4299         if(rs1[i]!=rt1[i]||itype[i]!=LOAD) {
4300           if(!entry||entry[ra]!=agr) {
4301             if (opcode[i]==0x22||opcode[i]==0x26) {
4302               emit_movimm((constmap[i][rs]+offset)&0xFFFFFFFC,ra); // LWL/LWR
4303             }else if (opcode[i]==0x1a||opcode[i]==0x1b) {
4304               emit_movimm((constmap[i][rs]+offset)&0xFFFFFFF8,ra); // LDL/LDR
4305             }else{
4306               #ifdef HOST_IMM_ADDR32
4307               if((itype[i]!=LOAD&&(opcode[i]&0x3b)!=0x31&&(opcode[i]&0x3b)!=0x32) || // LWC1/LDC1/LWC2/LDC2
4308                  (using_tlb&&((signed int)constmap[i][rs]+offset)>=(signed int)0xC0000000))
4309               #endif
4310               emit_movimm(constmap[i][rs]+offset,ra);
4311               regs[i].loadedconst|=1<<ra;
4312             }
4313           } // else did it in the previous cycle
4314         } // else load_consts already did it
4315       }
4316       if(offset&&!c&&rs1[i]) {
4317         if(rs>=0) {
4318           emit_addimm(rs,offset,ra);
4319         }else{
4320           emit_addimm(ra,offset,ra);
4321         }
4322       }
4323     }
4324   }
4325   // Preload constants for next instruction
4326   if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS||itype[i+1]==C2LS) {
4327     int agr,ra;
4328     #if !defined(HOST_IMM_ADDR32) && !defined(DISABLE_TLB)
4329     // Mapper entry
4330     agr=MGEN1+((i+1)&1);
4331     ra=get_reg(i_regs->regmap,agr);
4332     if(ra>=0) {
4333       int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
4334       int offset=imm[i+1];
4335       int c=(regs[i+1].wasconst>>rs)&1;
4336       if(c) {
4337         if(itype[i+1]==STORE||itype[i+1]==STORELR
4338            ||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1, SWC2/SDC2
4339           // Stores to memory go thru the mapper to detect self-modifying
4340           // code, loads don't.
4341           if((unsigned int)(constmap[i+1][rs]+offset)>=0xC0000000 ||
4342              (unsigned int)(constmap[i+1][rs]+offset)<0x80000000+RAM_SIZE )
4343             generate_map_const(constmap[i+1][rs]+offset,ra);
4344         }else{
4345           if((signed int)(constmap[i+1][rs]+offset)>=(signed int)0xC0000000)
4346             generate_map_const(constmap[i+1][rs]+offset,ra);
4347         }
4348       }
4349       /*else if(rs1[i]==0) {
4350         generate_map_const(offset,ra);
4351       }*/
4352     }
4353     #endif
4354     // Actual address
4355     agr=AGEN1+((i+1)&1);
4356     ra=get_reg(i_regs->regmap,agr);
4357     if(ra>=0) {
4358       int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
4359       int offset=imm[i+1];
4360       int c=(regs[i+1].wasconst>>rs)&1;
4361       if(c&&(rs1[i+1]!=rt1[i+1]||itype[i+1]!=LOAD)) {
4362         if (opcode[i+1]==0x22||opcode[i+1]==0x26) {
4363           emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFFC,ra); // LWL/LWR
4364         }else if (opcode[i+1]==0x1a||opcode[i+1]==0x1b) {
4365           emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFF8,ra); // LDL/LDR
4366         }else{
4367           #ifdef HOST_IMM_ADDR32
4368           if((itype[i+1]!=LOAD&&(opcode[i+1]&0x3b)!=0x31&&(opcode[i+1]&0x3b)!=0x32) || // LWC1/LDC1/LWC2/LDC2
4369              (using_tlb&&((signed int)constmap[i+1][rs]+offset)>=(signed int)0xC0000000))
4370           #endif
4371           emit_movimm(constmap[i+1][rs]+offset,ra);
4372           regs[i+1].loadedconst|=1<<ra;
4373         }
4374       }
4375       else if(rs1[i+1]==0) {
4376         // Using r0 as a base address
4377         if (opcode[i+1]==0x22||opcode[i+1]==0x26) {
4378           emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
4379         }else if (opcode[i+1]==0x1a||opcode[i+1]==0x1b) {
4380           emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
4381         }else{
4382           emit_movimm(offset,ra);
4383         }
4384       }
4385     }
4386   }
4387 }
4388
4389 int get_final_value(int hr, int i, int *value)
4390 {
4391   int reg=regs[i].regmap[hr];
4392   while(i<slen-1) {
4393     if(regs[i+1].regmap[hr]!=reg) break;
4394     if(!((regs[i+1].isconst>>hr)&1)) break;
4395     if(bt[i+1]) break;
4396     i++;
4397   }
4398   if(i<slen-1) {
4399     if(itype[i]==UJUMP||itype[i]==RJUMP||itype[i]==CJUMP||itype[i]==SJUMP) {
4400       *value=constmap[i][hr];
4401       return 1;
4402     }
4403     if(!bt[i+1]) {
4404       if(itype[i+1]==UJUMP||itype[i+1]==RJUMP||itype[i+1]==CJUMP||itype[i+1]==SJUMP) {
4405         // Load in delay slot, out-of-order execution
4406         if(itype[i+2]==LOAD&&rs1[i+2]==reg&&rt1[i+2]==reg&&((regs[i+1].wasconst>>hr)&1))
4407         {
4408           #ifdef HOST_IMM_ADDR32
4409           if(!using_tlb||((signed int)constmap[i][hr]+imm[i+2])<(signed int)0xC0000000) return 0;
4410           #endif
4411           // Precompute load address
4412           *value=constmap[i][hr]+imm[i+2];
4413           return 1;
4414         }
4415       }
4416       if(itype[i+1]==LOAD&&rs1[i+1]==reg&&rt1[i+1]==reg)
4417       {
4418         #ifdef HOST_IMM_ADDR32
4419         if(!using_tlb||((signed int)constmap[i][hr]+imm[i+1])<(signed int)0xC0000000) return 0;
4420         #endif
4421         // Precompute load address
4422         *value=constmap[i][hr]+imm[i+1];
4423         //printf("c=%x imm=%x\n",(int)constmap[i][hr],imm[i+1]);
4424         return 1;
4425       }
4426     }
4427   }
4428   *value=constmap[i][hr];
4429   //printf("c=%x\n",(int)constmap[i][hr]);
4430   if(i==slen-1) return 1;
4431   if(reg<64) {
4432     return !((unneeded_reg[i+1]>>reg)&1);
4433   }else{
4434     return !((unneeded_reg_upper[i+1]>>reg)&1);
4435   }
4436 }
4437
4438 // Load registers with known constants
4439 void load_consts(signed char pre[],signed char regmap[],int is32,int i)
4440 {
4441   int hr,hr2;
4442   // propagate loaded constant flags
4443   if(i==0||bt[i])
4444     regs[i].loadedconst=0;
4445   else {
4446     for(hr=0;hr<HOST_REGS;hr++) {
4447       if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((regs[i-1].isconst>>hr)&1)&&pre[hr]==regmap[hr]
4448          &&regmap[hr]==regs[i-1].regmap[hr]&&((regs[i-1].loadedconst>>hr)&1))
4449       {
4450         regs[i].loadedconst|=1<<hr;
4451       }
4452     }
4453   }
4454   // Load 32-bit regs
4455   for(hr=0;hr<HOST_REGS;hr++) {
4456     if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4457       //if(entry[hr]!=regmap[hr]) {
4458       if(!((regs[i].loadedconst>>hr)&1)) {
4459         if(((regs[i].isconst>>hr)&1)&&regmap[hr]<64&&regmap[hr]>0) {
4460           int value,similar=0;
4461           if(get_final_value(hr,i,&value)) {
4462             // see if some other register has similar value
4463             for(hr2=0;hr2<HOST_REGS;hr2++) {
4464               if(hr2!=EXCLUDE_REG&&((regs[i].loadedconst>>hr2)&1)) {
4465                 if(is_similar_value(value,constmap[i][hr2])) {
4466                   similar=1;
4467                   break;
4468                 }
4469               }
4470             }
4471             if(similar) {
4472               int value2;
4473               if(get_final_value(hr2,i,&value2)) // is this needed?
4474                 emit_movimm_from(value2,hr2,value,hr);
4475               else
4476                 emit_movimm(value,hr);
4477             }
4478             else if(value==0) {
4479               emit_zeroreg(hr);
4480             }
4481             else {
4482               emit_movimm(value,hr);
4483             }
4484           }
4485           regs[i].loadedconst|=1<<hr;
4486         }
4487       }
4488     }
4489   }
4490   // Load 64-bit regs
4491   for(hr=0;hr<HOST_REGS;hr++) {
4492     if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4493       //if(entry[hr]!=regmap[hr]) {
4494       if(i==0||!((regs[i-1].isconst>>hr)&1)||pre[hr]!=regmap[hr]||bt[i]) {
4495         if(((regs[i].isconst>>hr)&1)&&regmap[hr]>64) {
4496           if((is32>>(regmap[hr]&63))&1) {
4497             int lr=get_reg(regmap,regmap[hr]-64);
4498             assert(lr>=0);
4499             emit_sarimm(lr,31,hr);
4500           }
4501           else
4502           {
4503             int value;
4504             if(get_final_value(hr,i,&value)) {
4505               if(value==0) {
4506                 emit_zeroreg(hr);
4507               }
4508               else {
4509                 emit_movimm(value,hr);
4510               }
4511             }
4512           }
4513         }
4514       }
4515     }
4516   }
4517 }
4518 void load_all_consts(signed char regmap[],int is32,u_int dirty,int i)
4519 {
4520   int hr;
4521   // Load 32-bit regs
4522   for(hr=0;hr<HOST_REGS;hr++) {
4523     if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((dirty>>hr)&1)) {
4524       if(((regs[i].isconst>>hr)&1)&&regmap[hr]<64&&regmap[hr]>0) {
4525         int value=constmap[i][hr];
4526         if(value==0) {
4527           emit_zeroreg(hr);
4528         }
4529         else {
4530           emit_movimm(value,hr);
4531         }
4532       }
4533     }
4534   }
4535   // Load 64-bit regs
4536   for(hr=0;hr<HOST_REGS;hr++) {
4537     if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((dirty>>hr)&1)) {
4538       if(((regs[i].isconst>>hr)&1)&&regmap[hr]>64) {
4539         if((is32>>(regmap[hr]&63))&1) {
4540           int lr=get_reg(regmap,regmap[hr]-64);
4541           assert(lr>=0);
4542           emit_sarimm(lr,31,hr);
4543         }
4544         else
4545         {
4546           int value=constmap[i][hr];
4547           if(value==0) {
4548             emit_zeroreg(hr);
4549           }
4550           else {
4551             emit_movimm(value,hr);
4552           }
4553         }
4554       }
4555     }
4556   }
4557 }
4558
4559 // Write out all dirty registers (except cycle count)
4560 void wb_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty)
4561 {
4562   int hr;
4563   for(hr=0;hr<HOST_REGS;hr++) {
4564     if(hr!=EXCLUDE_REG) {
4565       if(i_regmap[hr]>0) {
4566         if(i_regmap[hr]!=CCREG) {
4567           if((i_dirty>>hr)&1) {
4568             if(i_regmap[hr]<64) {
4569               emit_storereg(i_regmap[hr],hr);
4570 #ifndef FORCE32
4571               if( ((i_is32>>i_regmap[hr])&1) ) {
4572                 #ifdef DESTRUCTIVE_WRITEBACK
4573                 emit_sarimm(hr,31,hr);
4574                 emit_storereg(i_regmap[hr]|64,hr);
4575                 #else
4576                 emit_sarimm(hr,31,HOST_TEMPREG);
4577                 emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4578                 #endif
4579               }
4580 #endif
4581             }else{
4582               if( !((i_is32>>(i_regmap[hr]&63))&1) ) {
4583                 emit_storereg(i_regmap[hr],hr);
4584               }
4585             }
4586           }
4587         }
4588       }
4589     }
4590   }
4591 }
4592 // Write out dirty registers that we need to reload (pair with load_needed_regs)
4593 // This writes the registers not written by store_regs_bt
4594 void wb_needed_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4595 {
4596   int hr;
4597   int t=(addr-start)>>2;
4598   for(hr=0;hr<HOST_REGS;hr++) {
4599     if(hr!=EXCLUDE_REG) {
4600       if(i_regmap[hr]>0) {
4601         if(i_regmap[hr]!=CCREG) {
4602           if(i_regmap[hr]==regs[t].regmap_entry[hr] && ((regs[t].dirty>>hr)&1) && !(((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4603             if((i_dirty>>hr)&1) {
4604               if(i_regmap[hr]<64) {
4605                 emit_storereg(i_regmap[hr],hr);
4606 #ifndef FORCE32
4607                 if( ((i_is32>>i_regmap[hr])&1) ) {
4608                   #ifdef DESTRUCTIVE_WRITEBACK
4609                   emit_sarimm(hr,31,hr);
4610                   emit_storereg(i_regmap[hr]|64,hr);
4611                   #else
4612                   emit_sarimm(hr,31,HOST_TEMPREG);
4613                   emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4614                   #endif
4615                 }
4616 #endif
4617               }else{
4618                 if( !((i_is32>>(i_regmap[hr]&63))&1) ) {
4619                   emit_storereg(i_regmap[hr],hr);
4620                 }
4621               }
4622             }
4623           }
4624         }
4625       }
4626     }
4627   }
4628 }
4629
4630 // Load all registers (except cycle count)
4631 void load_all_regs(signed char i_regmap[])
4632 {
4633   int hr;
4634   for(hr=0;hr<HOST_REGS;hr++) {
4635     if(hr!=EXCLUDE_REG) {
4636       if(i_regmap[hr]==0) {
4637         emit_zeroreg(hr);
4638       }
4639       else
4640       if(i_regmap[hr]>0 && (i_regmap[hr]&63)<TEMPREG && i_regmap[hr]!=CCREG)
4641       {
4642         emit_loadreg(i_regmap[hr],hr);
4643       }
4644     }
4645   }
4646 }
4647
4648 // Load all current registers also needed by next instruction
4649 void load_needed_regs(signed char i_regmap[],signed char next_regmap[])
4650 {
4651   int hr;
4652   for(hr=0;hr<HOST_REGS;hr++) {
4653     if(hr!=EXCLUDE_REG) {
4654       if(get_reg(next_regmap,i_regmap[hr])>=0) {
4655         if(i_regmap[hr]==0) {
4656           emit_zeroreg(hr);
4657         }
4658         else
4659         if(i_regmap[hr]>0 && (i_regmap[hr]&63)<TEMPREG && i_regmap[hr]!=CCREG)
4660         {
4661           emit_loadreg(i_regmap[hr],hr);
4662         }
4663       }
4664     }
4665   }
4666 }
4667
4668 // Load all regs, storing cycle count if necessary
4669 void load_regs_entry(int t)
4670 {
4671   int hr;
4672   if(is_ds[t]) emit_addimm(HOST_CCREG,CLOCK_ADJUST(1),HOST_CCREG);
4673   else if(ccadj[t]) emit_addimm(HOST_CCREG,-CLOCK_ADJUST(ccadj[t]),HOST_CCREG);
4674   if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
4675     emit_storereg(CCREG,HOST_CCREG);
4676   }
4677   // Load 32-bit regs
4678   for(hr=0;hr<HOST_REGS;hr++) {
4679     if(regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<TEMPREG) {
4680       if(regs[t].regmap_entry[hr]==0) {
4681         emit_zeroreg(hr);
4682       }
4683       else if(regs[t].regmap_entry[hr]!=CCREG)
4684       {
4685         emit_loadreg(regs[t].regmap_entry[hr],hr);
4686       }
4687     }
4688   }
4689   // Load 64-bit regs
4690   for(hr=0;hr<HOST_REGS;hr++) {
4691     if(regs[t].regmap_entry[hr]>=64&&regs[t].regmap_entry[hr]<TEMPREG+64) {
4692       assert(regs[t].regmap_entry[hr]!=64);
4693       if((regs[t].was32>>(regs[t].regmap_entry[hr]&63))&1) {
4694         int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4695         if(lr<0) {
4696           emit_loadreg(regs[t].regmap_entry[hr],hr);
4697         }
4698         else
4699         {
4700           emit_sarimm(lr,31,hr);
4701         }
4702       }
4703       else
4704       {
4705         emit_loadreg(regs[t].regmap_entry[hr],hr);
4706       }
4707     }
4708   }
4709 }
4710
4711 // Store dirty registers prior to branch
4712 void store_regs_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4713 {
4714   if(internal_branch(i_is32,addr))
4715   {
4716     int t=(addr-start)>>2;
4717     int hr;
4718     for(hr=0;hr<HOST_REGS;hr++) {
4719       if(hr!=EXCLUDE_REG) {
4720         if(i_regmap[hr]>0 && i_regmap[hr]!=CCREG) {
4721           if(i_regmap[hr]!=regs[t].regmap_entry[hr] || !((regs[t].dirty>>hr)&1) || (((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4722             if((i_dirty>>hr)&1) {
4723               if(i_regmap[hr]<64) {
4724                 if(!((unneeded_reg[t]>>i_regmap[hr])&1)) {
4725                   emit_storereg(i_regmap[hr],hr);
4726                   if( ((i_is32>>i_regmap[hr])&1) && !((unneeded_reg_upper[t]>>i_regmap[hr])&1) ) {
4727                     #ifdef DESTRUCTIVE_WRITEBACK
4728                     emit_sarimm(hr,31,hr);
4729                     emit_storereg(i_regmap[hr]|64,hr);
4730                     #else
4731                     emit_sarimm(hr,31,HOST_TEMPREG);
4732                     emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4733                     #endif
4734                   }
4735                 }
4736               }else{
4737                 if( !((i_is32>>(i_regmap[hr]&63))&1) && !((unneeded_reg_upper[t]>>(i_regmap[hr]&63))&1) ) {
4738                   emit_storereg(i_regmap[hr],hr);
4739                 }
4740               }
4741             }
4742           }
4743         }
4744       }
4745     }
4746   }
4747   else
4748   {
4749     // Branch out of this block, write out all dirty regs
4750     wb_dirtys(i_regmap,i_is32,i_dirty);
4751   }
4752 }
4753
4754 // Load all needed registers for branch target
4755 void load_regs_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4756 {
4757   //if(addr>=start && addr<(start+slen*4))
4758   if(internal_branch(i_is32,addr))
4759   {
4760     int t=(addr-start)>>2;
4761     int hr;
4762     // Store the cycle count before loading something else
4763     if(i_regmap[HOST_CCREG]!=CCREG) {
4764       assert(i_regmap[HOST_CCREG]==-1);
4765     }
4766     if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
4767       emit_storereg(CCREG,HOST_CCREG);
4768     }
4769     // Load 32-bit regs
4770     for(hr=0;hr<HOST_REGS;hr++) {
4771       if(hr!=EXCLUDE_REG&&regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<TEMPREG) {
4772         #ifdef DESTRUCTIVE_WRITEBACK
4773         if(i_regmap[hr]!=regs[t].regmap_entry[hr] || ( !((regs[t].dirty>>hr)&1) && ((i_dirty>>hr)&1) && (((i_is32&~unneeded_reg_upper[t])>>i_regmap[hr])&1) ) || (((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4774         #else
4775         if(i_regmap[hr]!=regs[t].regmap_entry[hr] ) {
4776         #endif
4777           if(regs[t].regmap_entry[hr]==0) {
4778             emit_zeroreg(hr);
4779           }
4780           else if(regs[t].regmap_entry[hr]!=CCREG)
4781           {
4782             emit_loadreg(regs[t].regmap_entry[hr],hr);
4783           }
4784         }
4785       }
4786     }
4787     //Load 64-bit regs
4788     for(hr=0;hr<HOST_REGS;hr++) {
4789       if(hr!=EXCLUDE_REG&&regs[t].regmap_entry[hr]>=64&&regs[t].regmap_entry[hr]<TEMPREG+64) {
4790         if(i_regmap[hr]!=regs[t].regmap_entry[hr]) {
4791           assert(regs[t].regmap_entry[hr]!=64);
4792           if((i_is32>>(regs[t].regmap_entry[hr]&63))&1) {
4793             int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4794             if(lr<0) {
4795               emit_loadreg(regs[t].regmap_entry[hr],hr);
4796             }
4797             else
4798             {
4799               emit_sarimm(lr,31,hr);
4800             }
4801           }
4802           else
4803           {
4804             emit_loadreg(regs[t].regmap_entry[hr],hr);
4805           }
4806         }
4807         else if((i_is32>>(regs[t].regmap_entry[hr]&63))&1) {
4808           int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4809           assert(lr>=0);
4810           emit_sarimm(lr,31,hr);
4811         }
4812       }
4813     }
4814   }
4815 }
4816
4817 int match_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4818 {
4819   if(addr>=start && addr<start+slen*4-4)
4820   {
4821     int t=(addr-start)>>2;
4822     int hr;
4823     if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) return 0;
4824     for(hr=0;hr<HOST_REGS;hr++)
4825     {
4826       if(hr!=EXCLUDE_REG)
4827       {
4828         if(i_regmap[hr]!=regs[t].regmap_entry[hr])
4829         {
4830           if(regs[t].regmap_entry[hr]>=0&&(regs[t].regmap_entry[hr]|64)<TEMPREG+64)
4831           {
4832             return 0;
4833           }
4834           else 
4835           if((i_dirty>>hr)&1)
4836           {
4837             if(i_regmap[hr]<TEMPREG)
4838             {
4839               if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4840                 return 0;
4841             }
4842             else if(i_regmap[hr]>=64&&i_regmap[hr]<TEMPREG+64)
4843             {
4844               if(!((unneeded_reg_upper[t]>>(i_regmap[hr]&63))&1))
4845                 return 0;
4846             }
4847           }
4848         }
4849         else // Same register but is it 32-bit or dirty?
4850         if(i_regmap[hr]>=0)
4851         {
4852           if(!((regs[t].dirty>>hr)&1))
4853           {
4854             if((i_dirty>>hr)&1)
4855             {
4856               if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4857               {
4858                 //printf("%x: dirty no match\n",addr);
4859                 return 0;
4860               }
4861             }
4862           }
4863           if((((regs[t].was32^i_is32)&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)
4864           {
4865             //printf("%x: is32 no match\n",addr);
4866             return 0;
4867           }
4868         }
4869       }
4870     }
4871     //if(is32[t]&~unneeded_reg_upper[t]&~i_is32) return 0;
4872 #ifndef FORCE32
4873     if(requires_32bit[t]&~i_is32) return 0;
4874 #endif
4875     // Delay slots are not valid branch targets
4876     //if(t>0&&(itype[t-1]==RJUMP||itype[t-1]==UJUMP||itype[t-1]==CJUMP||itype[t-1]==SJUMP||itype[t-1]==FJUMP)) return 0;
4877     // Delay slots require additional processing, so do not match
4878     if(is_ds[t]) return 0;
4879   }
4880   else
4881   {
4882     int hr;
4883     for(hr=0;hr<HOST_REGS;hr++)
4884     {
4885       if(hr!=EXCLUDE_REG)
4886       {
4887         if(i_regmap[hr]>=0)
4888         {
4889           if(hr!=HOST_CCREG||i_regmap[hr]!=CCREG)
4890           {
4891             if((i_dirty>>hr)&1)
4892             {
4893               return 0;
4894             }
4895           }
4896         }
4897       }
4898     }
4899   }
4900   return 1;
4901 }
4902
4903 // Used when a branch jumps into the delay slot of another branch
4904 void ds_assemble_entry(int i)
4905 {
4906   int t=(ba[i]-start)>>2;
4907   if(!instr_addr[t]) instr_addr[t]=(u_int)out;
4908   assem_debug("Assemble delay slot at %x\n",ba[i]);
4909   assem_debug("<->\n");
4910   if(regs[t].regmap_entry[HOST_CCREG]==CCREG&&regs[t].regmap[HOST_CCREG]!=CCREG)
4911     wb_register(CCREG,regs[t].regmap_entry,regs[t].wasdirty,regs[t].was32);
4912   load_regs(regs[t].regmap_entry,regs[t].regmap,regs[t].was32,rs1[t],rs2[t]);
4913   address_generation(t,&regs[t],regs[t].regmap_entry);
4914   if(itype[t]==STORE||itype[t]==STORELR||(opcode[t]&0x3b)==0x39||(opcode[t]&0x3b)==0x3a)
4915     load_regs(regs[t].regmap_entry,regs[t].regmap,regs[t].was32,INVCP,INVCP);
4916   cop1_usable=0;
4917   is_delayslot=0;
4918   switch(itype[t]) {
4919     case ALU:
4920       alu_assemble(t,&regs[t]);break;
4921     case IMM16:
4922       imm16_assemble(t,&regs[t]);break;
4923     case SHIFT:
4924       shift_assemble(t,&regs[t]);break;
4925     case SHIFTIMM:
4926       shiftimm_assemble(t,&regs[t]);break;
4927     case LOAD:
4928       load_assemble(t,&regs[t]);break;
4929     case LOADLR:
4930       loadlr_assemble(t,&regs[t]);break;
4931     case STORE:
4932       store_assemble(t,&regs[t]);break;
4933     case STORELR:
4934       storelr_assemble(t,&regs[t]);break;
4935     case COP0:
4936       cop0_assemble(t,&regs[t]);break;
4937     case COP1:
4938       cop1_assemble(t,&regs[t]);break;
4939     case C1LS:
4940       c1ls_assemble(t,&regs[t]);break;
4941     case COP2:
4942       cop2_assemble(t,&regs[t]);break;
4943     case C2LS:
4944       c2ls_assemble(t,&regs[t]);break;
4945     case C2OP:
4946       c2op_assemble(t,&regs[t]);break;
4947     case FCONV:
4948       fconv_assemble(t,&regs[t]);break;
4949     case FLOAT:
4950       float_assemble(t,&regs[t]);break;
4951     case FCOMP:
4952       fcomp_assemble(t,&regs[t]);break;
4953     case MULTDIV:
4954       multdiv_assemble(t,&regs[t]);break;
4955     case MOV:
4956       mov_assemble(t,&regs[t]);break;
4957     case SYSCALL:
4958     case HLECALL:
4959     case INTCALL:
4960     case SPAN:
4961     case UJUMP:
4962     case RJUMP:
4963     case CJUMP:
4964     case SJUMP:
4965     case FJUMP:
4966       printf("Jump in the delay slot.  This is probably a bug.\n");
4967   }
4968   store_regs_bt(regs[t].regmap,regs[t].is32,regs[t].dirty,ba[i]+4);
4969   load_regs_bt(regs[t].regmap,regs[t].is32,regs[t].dirty,ba[i]+4);
4970   if(internal_branch(regs[t].is32,ba[i]+4))
4971     assem_debug("branch: internal\n");
4972   else
4973     assem_debug("branch: external\n");
4974   assert(internal_branch(regs[t].is32,ba[i]+4));
4975   add_to_linker((int)out,ba[i]+4,internal_branch(regs[t].is32,ba[i]+4));
4976   emit_jmp(0);
4977 }
4978
4979 void do_cc(int i,signed char i_regmap[],int *adj,int addr,int taken,int invert)
4980 {
4981   int count;
4982   int jaddr;
4983   int idle=0;
4984   if(itype[i]==RJUMP)
4985   {
4986     *adj=0;
4987   }
4988   //if(ba[i]>=start && ba[i]<(start+slen*4))
4989   if(internal_branch(branch_regs[i].is32,ba[i]))
4990   {
4991     int t=(ba[i]-start)>>2;
4992     if(is_ds[t]) *adj=-1; // Branch into delay slot adds an extra cycle
4993     else *adj=ccadj[t];
4994   }
4995   else
4996   {
4997     *adj=0;
4998   }
4999   count=ccadj[i];
5000   if(taken==TAKEN && i==(ba[i]-start)>>2 && source[i+1]==0) {
5001     // Idle loop
5002     if(count&1) emit_addimm_and_set_flags(2*(count+2),HOST_CCREG);
5003     idle=(int)out;
5004     //emit_subfrommem(&idlecount,HOST_CCREG); // Count idle cycles
5005     emit_andimm(HOST_CCREG,3,HOST_CCREG);
5006     jaddr=(int)out;
5007     emit_jmp(0);
5008   }
5009   else if(*adj==0||invert) {
5010     emit_addimm_and_set_flags(CLOCK_ADJUST(count+2),HOST_CCREG);
5011     jaddr=(int)out;
5012     emit_jns(0);
5013   }
5014   else
5015   {
5016     emit_cmpimm(HOST_CCREG,-CLOCK_ADJUST(count+2));
5017     jaddr=(int)out;
5018     emit_jns(0);
5019   }
5020   add_stub(CC_STUB,jaddr,idle?idle:(int)out,(*adj==0||invert||idle)?0:(count+2),i,addr,taken,0);
5021 }
5022
5023 void do_ccstub(int n)
5024 {
5025   literal_pool(256);
5026   assem_debug("do_ccstub %x\n",start+stubs[n][4]*4);
5027   set_jump_target(stubs[n][1],(int)out);
5028   int i=stubs[n][4];
5029   if(stubs[n][6]==NULLDS) {
5030     // Delay slot instruction is nullified ("likely" branch)
5031     wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
5032   }
5033   else if(stubs[n][6]!=TAKEN) {
5034     wb_dirtys(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty);
5035   }
5036   else {
5037     if(internal_branch(branch_regs[i].is32,ba[i]))
5038       wb_needed_dirtys(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5039   }
5040   if(stubs[n][5]!=-1)
5041   {
5042     // Save PC as return address
5043     emit_movimm(stubs[n][5],EAX);
5044     emit_writeword(EAX,(int)&pcaddr);
5045   }
5046   else
5047   {
5048     // Return address depends on which way the branch goes
5049     if(itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
5050     {
5051       int s1l=get_reg(branch_regs[i].regmap,rs1[i]);
5052       int s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
5053       int s2l=get_reg(branch_regs[i].regmap,rs2[i]);
5054       int s2h=get_reg(branch_regs[i].regmap,rs2[i]|64);
5055       if(rs1[i]==0)
5056       {
5057         s1l=s2l;s1h=s2h;
5058         s2l=s2h=-1;
5059       }
5060       else if(rs2[i]==0)
5061       {
5062         s2l=s2h=-1;
5063       }
5064       if((branch_regs[i].is32>>rs1[i])&(branch_regs[i].is32>>rs2[i])&1) {
5065         s1h=s2h=-1;
5066       }
5067       assert(s1l>=0);
5068       #ifdef DESTRUCTIVE_WRITEBACK
5069       if(rs1[i]) {
5070         if((branch_regs[i].dirty>>s1l)&(branch_regs[i].is32>>rs1[i])&1)
5071           emit_loadreg(rs1[i],s1l);
5072       } 
5073       else {
5074         if((branch_regs[i].dirty>>s1l)&(branch_regs[i].is32>>rs2[i])&1)
5075           emit_loadreg(rs2[i],s1l);
5076       }
5077       if(s2l>=0)
5078         if((branch_regs[i].dirty>>s2l)&(branch_regs[i].is32>>rs2[i])&1)
5079           emit_loadreg(rs2[i],s2l);
5080       #endif
5081       int hr=0;
5082       int addr=-1,alt=-1,ntaddr=-1;
5083       while(hr<HOST_REGS)
5084       {
5085         if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
5086            (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
5087            (branch_regs[i].regmap[hr]&63)!=rs2[i] )
5088         {
5089           addr=hr++;break;
5090         }
5091         hr++;
5092       }
5093       while(hr<HOST_REGS)
5094       {
5095         if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
5096            (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
5097            (branch_regs[i].regmap[hr]&63)!=rs2[i] )
5098         {
5099           alt=hr++;break;
5100         }
5101         hr++;
5102       }
5103       if((opcode[i]&0x2E)==6) // BLEZ/BGTZ needs another register
5104       {
5105         while(hr<HOST_REGS)
5106         {
5107           if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
5108              (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
5109              (branch_regs[i].regmap[hr]&63)!=rs2[i] )
5110           {
5111             ntaddr=hr;break;
5112           }
5113           hr++;
5114         }
5115         assert(hr<HOST_REGS);
5116       }
5117       if((opcode[i]&0x2f)==4) // BEQ
5118       {
5119         #ifdef HAVE_CMOV_IMM
5120         if(s1h<0) {
5121           if(s2l>=0) emit_cmp(s1l,s2l);
5122           else emit_test(s1l,s1l);
5123           emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
5124         }
5125         else
5126         #endif
5127         {
5128           emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
5129           if(s1h>=0) {
5130             if(s2h>=0) emit_cmp(s1h,s2h);
5131             else emit_test(s1h,s1h);
5132             emit_cmovne_reg(alt,addr);
5133           }
5134           if(s2l>=0) emit_cmp(s1l,s2l);
5135           else emit_test(s1l,s1l);
5136           emit_cmovne_reg(alt,addr);
5137         }
5138       }
5139       if((opcode[i]&0x2f)==5) // BNE
5140       {
5141         #ifdef HAVE_CMOV_IMM
5142         if(s1h<0) {
5143           if(s2l>=0) emit_cmp(s1l,s2l);
5144           else emit_test(s1l,s1l);
5145           emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
5146         }
5147         else
5148         #endif
5149         {
5150           emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
5151           if(s1h>=0) {
5152             if(s2h>=0) emit_cmp(s1h,s2h);
5153             else emit_test(s1h,s1h);
5154             emit_cmovne_reg(alt,addr);
5155           }
5156           if(s2l>=0) emit_cmp(s1l,s2l);
5157           else emit_test(s1l,s1l);
5158           emit_cmovne_reg(alt,addr);
5159         }
5160       }
5161       if((opcode[i]&0x2f)==6) // BLEZ
5162       {
5163         //emit_movimm(ba[i],alt);
5164         //emit_movimm(start+i*4+8,addr);
5165         emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
5166         emit_cmpimm(s1l,1);
5167         if(s1h>=0) emit_mov(addr,ntaddr);
5168         emit_cmovl_reg(alt,addr);
5169         if(s1h>=0) {
5170           emit_test(s1h,s1h);
5171           emit_cmovne_reg(ntaddr,addr);
5172           emit_cmovs_reg(alt,addr);
5173         }
5174       }
5175       if((opcode[i]&0x2f)==7) // BGTZ
5176       {
5177         //emit_movimm(ba[i],addr);
5178         //emit_movimm(start+i*4+8,ntaddr);
5179         emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
5180         emit_cmpimm(s1l,1);
5181         if(s1h>=0) emit_mov(addr,alt);
5182         emit_cmovl_reg(ntaddr,addr);
5183         if(s1h>=0) {
5184           emit_test(s1h,s1h);
5185           emit_cmovne_reg(alt,addr);
5186           emit_cmovs_reg(ntaddr,addr);
5187         }
5188       }
5189       if((opcode[i]==1)&&(opcode2[i]&0x2D)==0) // BLTZ
5190       {
5191         //emit_movimm(ba[i],alt);
5192         //emit_movimm(start+i*4+8,addr);
5193         emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
5194         if(s1h>=0) emit_test(s1h,s1h);
5195         else emit_test(s1l,s1l);
5196         emit_cmovs_reg(alt,addr);
5197       }
5198       if((opcode[i]==1)&&(opcode2[i]&0x2D)==1) // BGEZ
5199       {
5200         //emit_movimm(ba[i],addr);
5201         //emit_movimm(start+i*4+8,alt);
5202         emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
5203         if(s1h>=0) emit_test(s1h,s1h);
5204         else emit_test(s1l,s1l);
5205         emit_cmovs_reg(alt,addr);
5206       }
5207       if(opcode[i]==0x11 && opcode2[i]==0x08 ) {
5208         if(source[i]&0x10000) // BC1T
5209         {
5210           //emit_movimm(ba[i],alt);
5211           //emit_movimm(start+i*4+8,addr);
5212           emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
5213           emit_testimm(s1l,0x800000);
5214           emit_cmovne_reg(alt,addr);
5215         }
5216         else // BC1F
5217         {
5218           //emit_movimm(ba[i],addr);
5219           //emit_movimm(start+i*4+8,alt);
5220           emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
5221           emit_testimm(s1l,0x800000);
5222           emit_cmovne_reg(alt,addr);
5223         }
5224       }
5225       emit_writeword(addr,(int)&pcaddr);
5226     }
5227     else
5228     if(itype[i]==RJUMP)
5229     {
5230       int r=get_reg(branch_regs[i].regmap,rs1[i]);
5231       if(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]) {
5232         r=get_reg(branch_regs[i].regmap,RTEMP);
5233       }
5234       emit_writeword(r,(int)&pcaddr);
5235     }
5236     else {printf("Unknown branch type in do_ccstub\n");exit(1);}
5237   }
5238   // Update cycle count
5239   assert(branch_regs[i].regmap[HOST_CCREG]==CCREG||branch_regs[i].regmap[HOST_CCREG]==-1);
5240   if(stubs[n][3]) emit_addimm(HOST_CCREG,CLOCK_ADJUST((int)stubs[n][3]),HOST_CCREG);
5241   emit_call((int)cc_interrupt);
5242   if(stubs[n][3]) emit_addimm(HOST_CCREG,-CLOCK_ADJUST((int)stubs[n][3]),HOST_CCREG);
5243   if(stubs[n][6]==TAKEN) {
5244     if(internal_branch(branch_regs[i].is32,ba[i]))
5245       load_needed_regs(branch_regs[i].regmap,regs[(ba[i]-start)>>2].regmap_entry);
5246     else if(itype[i]==RJUMP) {
5247       if(get_reg(branch_regs[i].regmap,RTEMP)>=0)
5248         emit_readword((int)&pcaddr,get_reg(branch_regs[i].regmap,RTEMP));
5249       else
5250         emit_loadreg(rs1[i],get_reg(branch_regs[i].regmap,rs1[i]));
5251     }
5252   }else if(stubs[n][6]==NOTTAKEN) {
5253     if(i<slen-2) load_needed_regs(branch_regs[i].regmap,regmap_pre[i+2]);
5254     else load_all_regs(branch_regs[i].regmap);
5255   }else if(stubs[n][6]==NULLDS) {
5256     // Delay slot instruction is nullified ("likely" branch)
5257     if(i<slen-2) load_needed_regs(regs[i].regmap,regmap_pre[i+2]);
5258     else load_all_regs(regs[i].regmap);
5259   }else{
5260     load_all_regs(branch_regs[i].regmap);
5261   }
5262   emit_jmp(stubs[n][2]); // return address
5263   
5264   /* This works but uses a lot of memory...
5265   emit_readword((int)&last_count,ECX);
5266   emit_add(HOST_CCREG,ECX,EAX);
5267   emit_writeword(EAX,(int)&Count);
5268   emit_call((int)gen_interupt);
5269   emit_readword((int)&Count,HOST_CCREG);
5270   emit_readword((int)&next_interupt,EAX);
5271   emit_readword((int)&pending_exception,EBX);
5272   emit_writeword(EAX,(int)&last_count);
5273   emit_sub(HOST_CCREG,EAX,HOST_CCREG);
5274   emit_test(EBX,EBX);
5275   int jne_instr=(int)out;
5276   emit_jne(0);
5277   if(stubs[n][3]) emit_addimm(HOST_CCREG,-2*stubs[n][3],HOST_CCREG);
5278   load_all_regs(branch_regs[i].regmap);
5279   emit_jmp(stubs[n][2]); // return address
5280   set_jump_target(jne_instr,(int)out);
5281   emit_readword((int)&pcaddr,EAX);
5282   // Call get_addr_ht instead of doing the hash table here.
5283   // This code is executed infrequently and takes up a lot of space
5284   // so smaller is better.
5285   emit_storereg(CCREG,HOST_CCREG);
5286   emit_pushreg(EAX);
5287   emit_call((int)get_addr_ht);
5288   emit_loadreg(CCREG,HOST_CCREG);
5289   emit_addimm(ESP,4,ESP);
5290   emit_jmpreg(EAX);*/
5291 }
5292
5293 add_to_linker(int addr,int target,int ext)
5294 {
5295   link_addr[linkcount][0]=addr;
5296   link_addr[linkcount][1]=target;
5297   link_addr[linkcount][2]=ext;  
5298   linkcount++;
5299 }
5300
5301 static void ujump_assemble_write_ra(int i)
5302 {
5303   int rt;
5304   unsigned int return_address;
5305   rt=get_reg(branch_regs[i].regmap,31);
5306   assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5307   //assert(rt>=0);
5308   return_address=start+i*4+8;
5309   if(rt>=0) {
5310     #ifdef USE_MINI_HT
5311     if(internal_branch(branch_regs[i].is32,return_address)&&rt1[i+1]!=31) {
5312       int temp=-1; // note: must be ds-safe
5313       #ifdef HOST_TEMPREG
5314       temp=HOST_TEMPREG;
5315       #endif
5316       if(temp>=0) do_miniht_insert(return_address,rt,temp);
5317       else emit_movimm(return_address,rt);
5318     }
5319     else
5320     #endif
5321     {
5322       #ifdef REG_PREFETCH
5323       if(temp>=0) 
5324       {
5325         if(i_regmap[temp]!=PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5326       }
5327       #endif
5328       emit_movimm(return_address,rt); // PC into link register
5329       #ifdef IMM_PREFETCH
5330       emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5331       #endif
5332     }
5333   }
5334 }
5335
5336 void ujump_assemble(int i,struct regstat *i_regs)
5337 {
5338   signed char *i_regmap=i_regs->regmap;
5339   int ra_done=0;
5340   if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5341   address_generation(i+1,i_regs,regs[i].regmap_entry);
5342   #ifdef REG_PREFETCH
5343   int temp=get_reg(branch_regs[i].regmap,PTEMP);
5344   if(rt1[i]==31&&temp>=0) 
5345   {
5346     int return_address=start+i*4+8;
5347     if(get_reg(branch_regs[i].regmap,31)>0) 
5348     if(i_regmap[temp]==PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5349   }
5350   #endif
5351   if(rt1[i]==31&&(rt1[i]==rs1[i+1]||rt1[i]==rs2[i+1])) {
5352     ujump_assemble_write_ra(i); // writeback ra for DS
5353     ra_done=1;
5354   }
5355   ds_assemble(i+1,i_regs);
5356   uint64_t bc_unneeded=branch_regs[i].u;
5357   uint64_t bc_unneeded_upper=branch_regs[i].uu;
5358   bc_unneeded|=1|(1LL<<rt1[i]);
5359   bc_unneeded_upper|=1|(1LL<<rt1[i]);
5360   wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5361                 bc_unneeded,bc_unneeded_upper);
5362   load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5363   if(!ra_done&&rt1[i]==31)
5364     ujump_assemble_write_ra(i);
5365   int cc,adj;
5366   cc=get_reg(branch_regs[i].regmap,CCREG);
5367   assert(cc==HOST_CCREG);
5368   store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5369   #ifdef REG_PREFETCH
5370   if(rt1[i]==31&&temp>=0) emit_prefetchreg(temp);
5371   #endif
5372   do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5373   if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
5374   load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5375   if(internal_branch(branch_regs[i].is32,ba[i]))
5376     assem_debug("branch: internal\n");
5377   else
5378     assem_debug("branch: external\n");
5379   if(internal_branch(branch_regs[i].is32,ba[i])&&is_ds[(ba[i]-start)>>2]) {
5380     ds_assemble_entry(i);
5381   }
5382   else {
5383     add_to_linker((int)out,ba[i],internal_branch(branch_regs[i].is32,ba[i]));
5384     emit_jmp(0);
5385   }
5386 }
5387
5388 static void rjump_assemble_write_ra(int i)
5389 {
5390   int rt,return_address;
5391   assert(rt1[i+1]!=rt1[i]);
5392   assert(rt2[i+1]!=rt1[i]);
5393   rt=get_reg(branch_regs[i].regmap,rt1[i]);
5394   assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5395   assert(rt>=0);
5396   return_address=start+i*4+8;
5397   #ifdef REG_PREFETCH
5398   if(temp>=0) 
5399   {
5400     if(i_regmap[temp]!=PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5401   }
5402   #endif
5403   emit_movimm(return_address,rt); // PC into link register
5404   #ifdef IMM_PREFETCH
5405   emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5406   #endif
5407 }
5408
5409 void rjump_assemble(int i,struct regstat *i_regs)
5410 {
5411   signed char *i_regmap=i_regs->regmap;
5412   int temp;
5413   int rs,cc,adj;
5414   int ra_done=0;
5415   rs=get_reg(branch_regs[i].regmap,rs1[i]);
5416   assert(rs>=0);
5417   if(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]) {
5418     // Delay slot abuse, make a copy of the branch address register
5419     temp=get_reg(branch_regs[i].regmap,RTEMP);
5420     assert(temp>=0);
5421     assert(regs[i].regmap[temp]==RTEMP);
5422     emit_mov(rs,temp);
5423     rs=temp;
5424   }
5425   address_generation(i+1,i_regs,regs[i].regmap_entry);
5426   #ifdef REG_PREFETCH
5427   if(rt1[i]==31) 
5428   {
5429     if((temp=get_reg(branch_regs[i].regmap,PTEMP))>=0) {
5430       int return_address=start+i*4+8;
5431       if(i_regmap[temp]==PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5432     }
5433   }
5434   #endif
5435   #ifdef USE_MINI_HT
5436   if(rs1[i]==31) {
5437     int rh=get_reg(regs[i].regmap,RHASH);
5438     if(rh>=0) do_preload_rhash(rh);
5439   }
5440   #endif
5441   if(rt1[i]!=0&&(rt1[i]==rs1[i+1]||rt1[i]==rs2[i+1])) {
5442     rjump_assemble_write_ra(i);
5443     ra_done=1;
5444   }
5445   ds_assemble(i+1,i_regs);
5446   uint64_t bc_unneeded=branch_regs[i].u;
5447   uint64_t bc_unneeded_upper=branch_regs[i].uu;
5448   bc_unneeded|=1|(1LL<<rt1[i]);
5449   bc_unneeded_upper|=1|(1LL<<rt1[i]);
5450   bc_unneeded&=~(1LL<<rs1[i]);
5451   wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5452                 bc_unneeded,bc_unneeded_upper);
5453   load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],CCREG);
5454   if(!ra_done&&rt1[i]!=0)
5455     rjump_assemble_write_ra(i);
5456   cc=get_reg(branch_regs[i].regmap,CCREG);
5457   assert(cc==HOST_CCREG);
5458   #ifdef USE_MINI_HT
5459   int rh=get_reg(branch_regs[i].regmap,RHASH);
5460   int ht=get_reg(branch_regs[i].regmap,RHTBL);
5461   if(rs1[i]==31) {
5462     if(regs[i].regmap[rh]!=RHASH) do_preload_rhash(rh);
5463     do_preload_rhtbl(ht);
5464     do_rhash(rs,rh);
5465   }
5466   #endif
5467   store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,-1);
5468   #ifdef DESTRUCTIVE_WRITEBACK
5469   if((branch_regs[i].dirty>>rs)&(branch_regs[i].is32>>rs1[i])&1) {
5470     if(rs1[i]!=rt1[i+1]&&rs1[i]!=rt2[i+1]) {
5471       emit_loadreg(rs1[i],rs);
5472     }
5473   }
5474   #endif
5475   #ifdef REG_PREFETCH
5476   if(rt1[i]==31&&temp>=0) emit_prefetchreg(temp);
5477   #endif
5478   #ifdef USE_MINI_HT
5479   if(rs1[i]==31) {
5480     do_miniht_load(ht,rh);
5481   }
5482   #endif
5483   //do_cc(i,branch_regs[i].regmap,&adj,-1,TAKEN);
5484   //if(adj) emit_addimm(cc,2*(ccadj[i]+2-adj),cc); // ??? - Shouldn't happen
5485   //assert(adj==0);
5486   emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),HOST_CCREG);
5487   add_stub(CC_STUB,(int)out,jump_vaddr_reg[rs],0,i,-1,TAKEN,0);
5488 #ifdef PCSX
5489   if(itype[i+1]==COP0&&(source[i+1]&0x3f)==0x10)
5490     // special case for RFE
5491     emit_jmp(0);
5492   else
5493 #endif
5494   emit_jns(0);
5495   //load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,-1);
5496   #ifdef USE_MINI_HT
5497   if(rs1[i]==31) {
5498     do_miniht_jump(rs,rh,ht);
5499   }
5500   else
5501   #endif
5502   {
5503     //if(rs!=EAX) emit_mov(rs,EAX);
5504     //emit_jmp((int)jump_vaddr_eax);
5505     emit_jmp(jump_vaddr_reg[rs]);
5506   }
5507   /* Check hash table
5508   temp=!rs;
5509   emit_mov(rs,temp);
5510   emit_shrimm(rs,16,rs);
5511   emit_xor(temp,rs,rs);
5512   emit_movzwl_reg(rs,rs);
5513   emit_shlimm(rs,4,rs);
5514   emit_cmpmem_indexed((int)hash_table,rs,temp);
5515   emit_jne((int)out+14);
5516   emit_readword_indexed((int)hash_table+4,rs,rs);
5517   emit_jmpreg(rs);
5518   emit_cmpmem_indexed((int)hash_table+8,rs,temp);
5519   emit_addimm_no_flags(8,rs);
5520   emit_jeq((int)out-17);
5521   // No hit on hash table, call compiler
5522   emit_pushreg(temp);
5523 //DEBUG >
5524 #ifdef DEBUG_CYCLE_COUNT
5525   emit_readword((int)&last_count,ECX);
5526   emit_add(HOST_CCREG,ECX,HOST_CCREG);
5527   emit_readword((int)&next_interupt,ECX);
5528   emit_writeword(HOST_CCREG,(int)&Count);
5529   emit_sub(HOST_CCREG,ECX,HOST_CCREG);
5530   emit_writeword(ECX,(int)&last_count);
5531 #endif
5532 //DEBUG <
5533   emit_storereg(CCREG,HOST_CCREG);
5534   emit_call((int)get_addr);
5535   emit_loadreg(CCREG,HOST_CCREG);
5536   emit_addimm(ESP,4,ESP);
5537   emit_jmpreg(EAX);*/
5538   #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5539   if(rt1[i]!=31&&i<slen-2&&(((u_int)out)&7)) emit_mov(13,13);
5540   #endif
5541 }
5542
5543 void cjump_assemble(int i,struct regstat *i_regs)
5544 {
5545   signed char *i_regmap=i_regs->regmap;
5546   int cc;
5547   int match;
5548   match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5549   assem_debug("match=%d\n",match);
5550   int s1h,s1l,s2h,s2l;
5551   int prev_cop1_usable=cop1_usable;
5552   int unconditional=0,nop=0;
5553   int only32=0;
5554   int invert=0;
5555   int internal=internal_branch(branch_regs[i].is32,ba[i]);
5556   if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5557   if(!match) invert=1;
5558   #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5559   if(i>(ba[i]-start)>>2) invert=1;
5560   #endif
5561   
5562   if(ooo[i]) {
5563     s1l=get_reg(branch_regs[i].regmap,rs1[i]);
5564     s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
5565     s2l=get_reg(branch_regs[i].regmap,rs2[i]);
5566     s2h=get_reg(branch_regs[i].regmap,rs2[i]|64);
5567   }
5568   else {
5569     s1l=get_reg(i_regmap,rs1[i]);
5570     s1h=get_reg(i_regmap,rs1[i]|64);
5571     s2l=get_reg(i_regmap,rs2[i]);
5572     s2h=get_reg(i_regmap,rs2[i]|64);
5573   }
5574   if(rs1[i]==0&&rs2[i]==0)
5575   {
5576     if(opcode[i]&1) nop=1;
5577     else unconditional=1;
5578     //assert(opcode[i]!=5);
5579     //assert(opcode[i]!=7);
5580     //assert(opcode[i]!=0x15);
5581     //assert(opcode[i]!=0x17);
5582   }
5583   else if(rs1[i]==0)
5584   {
5585     s1l=s2l;s1h=s2h;
5586     s2l=s2h=-1;
5587     only32=(regs[i].was32>>rs2[i])&1;
5588   }
5589   else if(rs2[i]==0)
5590   {
5591     s2l=s2h=-1;
5592     only32=(regs[i].was32>>rs1[i])&1;
5593   }
5594   else {
5595     only32=(regs[i].was32>>rs1[i])&(regs[i].was32>>rs2[i])&1;
5596   }
5597
5598   if(ooo[i]) {
5599     // Out of order execution (delay slot first)
5600     //printf("OOOE\n");
5601     address_generation(i+1,i_regs,regs[i].regmap_entry);
5602     ds_assemble(i+1,i_regs);
5603     int adj;
5604     uint64_t bc_unneeded=branch_regs[i].u;
5605     uint64_t bc_unneeded_upper=branch_regs[i].uu;
5606     bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
5607     bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
5608     bc_unneeded|=1;
5609     bc_unneeded_upper|=1;
5610     wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5611                   bc_unneeded,bc_unneeded_upper);
5612     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs2[i]);
5613     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5614     cc=get_reg(branch_regs[i].regmap,CCREG);
5615     assert(cc==HOST_CCREG);
5616     if(unconditional) 
5617       store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5618     //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
5619     //assem_debug("cycle count (adj)\n");
5620     if(unconditional) {
5621       do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5622       if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
5623         if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
5624         load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5625         if(internal)
5626           assem_debug("branch: internal\n");
5627         else
5628           assem_debug("branch: external\n");
5629         if(internal&&is_ds[(ba[i]-start)>>2]) {
5630           ds_assemble_entry(i);
5631         }
5632         else {
5633           add_to_linker((int)out,ba[i],internal);
5634           emit_jmp(0);
5635         }
5636         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5637         if(((u_int)out)&7) emit_addnop(0);
5638         #endif
5639       }
5640     }
5641     else if(nop) {
5642       emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),cc);
5643       int jaddr=(int)out;
5644       emit_jns(0);
5645       add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5646     }
5647     else {
5648       int taken=0,nottaken=0,nottaken1=0;
5649       do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
5650       if(adj&&!invert) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
5651       if(!only32)
5652       {
5653         assert(s1h>=0);
5654         if(opcode[i]==4) // BEQ
5655         {
5656           if(s2h>=0) emit_cmp(s1h,s2h);
5657           else emit_test(s1h,s1h);
5658           nottaken1=(int)out;
5659           emit_jne(1);
5660         }
5661         if(opcode[i]==5) // BNE
5662         {
5663           if(s2h>=0) emit_cmp(s1h,s2h);
5664           else emit_test(s1h,s1h);
5665           if(invert) taken=(int)out;
5666           else add_to_linker((int)out,ba[i],internal);
5667           emit_jne(0);
5668         }
5669         if(opcode[i]==6) // BLEZ
5670         {
5671           emit_test(s1h,s1h);
5672           if(invert) taken=(int)out;
5673           else add_to_linker((int)out,ba[i],internal);
5674           emit_js(0);
5675           nottaken1=(int)out;
5676           emit_jne(1);
5677         }
5678         if(opcode[i]==7) // BGTZ
5679         {
5680           emit_test(s1h,s1h);
5681           nottaken1=(int)out;
5682           emit_js(1);
5683           if(invert) taken=(int)out;
5684           else add_to_linker((int)out,ba[i],internal);
5685           emit_jne(0);
5686         }
5687       } // if(!only32)
5688           
5689       //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5690       assert(s1l>=0);
5691       if(opcode[i]==4) // BEQ
5692       {
5693         if(s2l>=0) emit_cmp(s1l,s2l);
5694         else emit_test(s1l,s1l);
5695         if(invert){
5696           nottaken=(int)out;
5697           emit_jne(1);
5698         }else{
5699           add_to_linker((int)out,ba[i],internal);
5700           emit_jeq(0);
5701         }
5702       }
5703       if(opcode[i]==5) // BNE
5704       {
5705         if(s2l>=0) emit_cmp(s1l,s2l);
5706         else emit_test(s1l,s1l);
5707         if(invert){
5708           nottaken=(int)out;
5709           emit_jeq(1);
5710         }else{
5711           add_to_linker((int)out,ba[i],internal);
5712           emit_jne(0);
5713         }
5714       }
5715       if(opcode[i]==6) // BLEZ
5716       {
5717         emit_cmpimm(s1l,1);
5718         if(invert){
5719           nottaken=(int)out;
5720           emit_jge(1);
5721         }else{
5722           add_to_linker((int)out,ba[i],internal);
5723           emit_jl(0);
5724         }
5725       }
5726       if(opcode[i]==7) // BGTZ
5727       {
5728         emit_cmpimm(s1l,1);
5729         if(invert){
5730           nottaken=(int)out;
5731           emit_jl(1);
5732         }else{
5733           add_to_linker((int)out,ba[i],internal);
5734           emit_jge(0);
5735         }
5736       }
5737       if(invert) {
5738         if(taken) set_jump_target(taken,(int)out);
5739         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5740         if(match&&(!internal||!is_ds[(ba[i]-start)>>2])) {
5741           if(adj) {
5742             emit_addimm(cc,-CLOCK_ADJUST(adj),cc);
5743             add_to_linker((int)out,ba[i],internal);
5744           }else{
5745             emit_addnop(13);
5746             add_to_linker((int)out,ba[i],internal*2);
5747           }
5748           emit_jmp(0);
5749         }else
5750         #endif
5751         {
5752           if(adj) emit_addimm(cc,-CLOCK_ADJUST(adj),cc);
5753           store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5754           load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5755           if(internal)
5756             assem_debug("branch: internal\n");
5757           else
5758             assem_debug("branch: external\n");
5759           if(internal&&is_ds[(ba[i]-start)>>2]) {
5760             ds_assemble_entry(i);
5761           }
5762           else {
5763             add_to_linker((int)out,ba[i],internal);
5764             emit_jmp(0);
5765           }
5766         }
5767         set_jump_target(nottaken,(int)out);
5768       }
5769
5770       if(nottaken1) set_jump_target(nottaken1,(int)out);
5771       if(adj) {
5772         if(!invert) emit_addimm(cc,CLOCK_ADJUST(adj),cc);
5773       }
5774     } // (!unconditional)
5775   } // if(ooo)
5776   else
5777   {
5778     // In-order execution (branch first)
5779     //if(likely[i]) printf("IOL\n");
5780     //else
5781     //printf("IOE\n");
5782     int taken=0,nottaken=0,nottaken1=0;
5783     if(!unconditional&&!nop) {
5784       if(!only32)
5785       {
5786         assert(s1h>=0);
5787         if((opcode[i]&0x2f)==4) // BEQ
5788         {
5789           if(s2h>=0) emit_cmp(s1h,s2h);
5790           else emit_test(s1h,s1h);
5791           nottaken1=(int)out;
5792           emit_jne(2);
5793         }
5794         if((opcode[i]&0x2f)==5) // BNE
5795         {
5796           if(s2h>=0) emit_cmp(s1h,s2h);
5797           else emit_test(s1h,s1h);
5798           taken=(int)out;
5799           emit_jne(1);
5800         }
5801         if((opcode[i]&0x2f)==6) // BLEZ
5802         {
5803           emit_test(s1h,s1h);
5804           taken=(int)out;
5805           emit_js(1);
5806           nottaken1=(int)out;
5807           emit_jne(2);
5808         }
5809         if((opcode[i]&0x2f)==7) // BGTZ
5810         {
5811           emit_test(s1h,s1h);
5812           nottaken1=(int)out;
5813           emit_js(2);
5814           taken=(int)out;
5815           emit_jne(1);
5816         }
5817       } // if(!only32)
5818           
5819       //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5820       assert(s1l>=0);
5821       if((opcode[i]&0x2f)==4) // BEQ
5822       {
5823         if(s2l>=0) emit_cmp(s1l,s2l);
5824         else emit_test(s1l,s1l);
5825         nottaken=(int)out;
5826         emit_jne(2);
5827       }
5828       if((opcode[i]&0x2f)==5) // BNE
5829       {
5830         if(s2l>=0) emit_cmp(s1l,s2l);
5831         else emit_test(s1l,s1l);
5832         nottaken=(int)out;
5833         emit_jeq(2);
5834       }
5835       if((opcode[i]&0x2f)==6) // BLEZ
5836       {
5837         emit_cmpimm(s1l,1);
5838         nottaken=(int)out;
5839         emit_jge(2);
5840       }
5841       if((opcode[i]&0x2f)==7) // BGTZ
5842       {
5843         emit_cmpimm(s1l,1);
5844         nottaken=(int)out;
5845         emit_jl(2);
5846       }
5847     } // if(!unconditional)
5848     int adj;
5849     uint64_t ds_unneeded=branch_regs[i].u;
5850     uint64_t ds_unneeded_upper=branch_regs[i].uu;
5851     ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
5852     ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
5853     if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
5854     ds_unneeded|=1;
5855     ds_unneeded_upper|=1;
5856     // branch taken
5857     if(!nop) {
5858       if(taken) set_jump_target(taken,(int)out);
5859       assem_debug("1:\n");
5860       wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5861                     ds_unneeded,ds_unneeded_upper);
5862       // load regs
5863       load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5864       address_generation(i+1,&branch_regs[i],0);
5865       load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
5866       ds_assemble(i+1,&branch_regs[i]);
5867       cc=get_reg(branch_regs[i].regmap,CCREG);
5868       if(cc==-1) {
5869         emit_loadreg(CCREG,cc=HOST_CCREG);
5870         // CHECK: Is the following instruction (fall thru) allocated ok?
5871       }
5872       assert(cc==HOST_CCREG);
5873       store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5874       do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
5875       assem_debug("cycle count (adj)\n");
5876       if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
5877       load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5878       if(internal)
5879         assem_debug("branch: internal\n");
5880       else
5881         assem_debug("branch: external\n");
5882       if(internal&&is_ds[(ba[i]-start)>>2]) {
5883         ds_assemble_entry(i);
5884       }
5885       else {
5886         add_to_linker((int)out,ba[i],internal);
5887         emit_jmp(0);
5888       }
5889     }
5890     // branch not taken
5891     cop1_usable=prev_cop1_usable;
5892     if(!unconditional) {
5893       if(nottaken1) set_jump_target(nottaken1,(int)out);
5894       set_jump_target(nottaken,(int)out);
5895       assem_debug("2:\n");
5896       if(!likely[i]) {
5897         wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5898                       ds_unneeded,ds_unneeded_upper);
5899         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5900         address_generation(i+1,&branch_regs[i],0);
5901         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5902         ds_assemble(i+1,&branch_regs[i]);
5903       }
5904       cc=get_reg(branch_regs[i].regmap,CCREG);
5905       if(cc==-1&&!likely[i]) {
5906         // Cycle count isn't in a register, temporarily load it then write it out
5907         emit_loadreg(CCREG,HOST_CCREG);
5908         emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),HOST_CCREG);
5909         int jaddr=(int)out;
5910         emit_jns(0);
5911         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5912         emit_storereg(CCREG,HOST_CCREG);
5913       }
5914       else{
5915         cc=get_reg(i_regmap,CCREG);
5916         assert(cc==HOST_CCREG);
5917         emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),cc);
5918         int jaddr=(int)out;
5919         emit_jns(0);
5920         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
5921       }
5922     }
5923   }
5924 }
5925
5926 void sjump_assemble(int i,struct regstat *i_regs)
5927 {
5928   signed char *i_regmap=i_regs->regmap;
5929   int cc;
5930   int match;
5931   match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5932   assem_debug("smatch=%d\n",match);
5933   int s1h,s1l;
5934   int prev_cop1_usable=cop1_usable;
5935   int unconditional=0,nevertaken=0;
5936   int only32=0;
5937   int invert=0;
5938   int internal=internal_branch(branch_regs[i].is32,ba[i]);
5939   if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5940   if(!match) invert=1;
5941   #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5942   if(i>(ba[i]-start)>>2) invert=1;
5943   #endif
5944
5945   //if(opcode2[i]>=0x10) return; // FIXME (BxxZAL)
5946   //assert(opcode2[i]<0x10||rs1[i]==0); // FIXME (BxxZAL)
5947
5948   if(ooo[i]) {
5949     s1l=get_reg(branch_regs[i].regmap,rs1[i]);
5950     s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
5951   }
5952   else {
5953     s1l=get_reg(i_regmap,rs1[i]);
5954     s1h=get_reg(i_regmap,rs1[i]|64);
5955   }
5956   if(rs1[i]==0)
5957   {
5958     if(opcode2[i]&1) unconditional=1;
5959     else nevertaken=1;
5960     // These are never taken (r0 is never less than zero)
5961     //assert(opcode2[i]!=0);
5962     //assert(opcode2[i]!=2);
5963     //assert(opcode2[i]!=0x10);
5964     //assert(opcode2[i]!=0x12);
5965   }
5966   else {
5967     only32=(regs[i].was32>>rs1[i])&1;
5968   }
5969
5970   if(ooo[i]) {
5971     // Out of order execution (delay slot first)
5972     //printf("OOOE\n");
5973     address_generation(i+1,i_regs,regs[i].regmap_entry);
5974     ds_assemble(i+1,i_regs);
5975     int adj;
5976     uint64_t bc_unneeded=branch_regs[i].u;
5977     uint64_t bc_unneeded_upper=branch_regs[i].uu;
5978     bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
5979     bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
5980     bc_unneeded|=1;
5981     bc_unneeded_upper|=1;
5982     wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5983                   bc_unneeded,bc_unneeded_upper);
5984     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs1[i]);
5985     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5986     if(rt1[i]==31) {
5987       int rt,return_address;
5988       rt=get_reg(branch_regs[i].regmap,31);
5989       assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5990       if(rt>=0) {
5991         // Save the PC even if the branch is not taken
5992         return_address=start+i*4+8;
5993         emit_movimm(return_address,rt); // PC into link register
5994         #ifdef IMM_PREFETCH
5995         if(!nevertaken) emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5996         #endif
5997       }
5998     }
5999     cc=get_reg(branch_regs[i].regmap,CCREG);
6000     assert(cc==HOST_CCREG);
6001     if(unconditional) 
6002       store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6003     //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
6004     assem_debug("cycle count (adj)\n");
6005     if(unconditional) {
6006       do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
6007       if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
6008         if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
6009         load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6010         if(internal)
6011           assem_debug("branch: internal\n");
6012         else
6013           assem_debug("branch: external\n");
6014         if(internal&&is_ds[(ba[i]-start)>>2]) {
6015           ds_assemble_entry(i);
6016         }
6017         else {
6018           add_to_linker((int)out,ba[i],internal);
6019           emit_jmp(0);
6020         }
6021         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
6022         if(((u_int)out)&7) emit_addnop(0);
6023         #endif
6024       }
6025     }
6026     else if(nevertaken) {
6027       emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),cc);
6028       int jaddr=(int)out;
6029       emit_jns(0);
6030       add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
6031     }
6032     else {
6033       int nottaken=0;
6034       do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
6035       if(adj&&!invert) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
6036       if(!only32)
6037       {
6038         assert(s1h>=0);
6039         if((opcode2[i]&0xf)==0) // BLTZ/BLTZAL
6040         {
6041           emit_test(s1h,s1h);
6042           if(invert){
6043             nottaken=(int)out;
6044             emit_jns(1);
6045           }else{
6046             add_to_linker((int)out,ba[i],internal);
6047             emit_js(0);
6048           }
6049         }
6050         if((opcode2[i]&0xf)==1) // BGEZ/BLTZAL
6051         {
6052           emit_test(s1h,s1h);
6053           if(invert){
6054             nottaken=(int)out;
6055             emit_js(1);
6056           }else{
6057             add_to_linker((int)out,ba[i],internal);
6058             emit_jns(0);
6059           }
6060         }
6061       } // if(!only32)
6062       else
6063       {
6064         assert(s1l>=0);
6065         if((opcode2[i]&0xf)==0) // BLTZ/BLTZAL
6066         {
6067           emit_test(s1l,s1l);
6068           if(invert){
6069             nottaken=(int)out;
6070             emit_jns(1);
6071           }else{
6072             add_to_linker((int)out,ba[i],internal);
6073             emit_js(0);
6074           }
6075         }
6076         if((opcode2[i]&0xf)==1) // BGEZ/BLTZAL
6077         {
6078           emit_test(s1l,s1l);
6079           if(invert){
6080             nottaken=(int)out;
6081             emit_js(1);
6082           }else{
6083             add_to_linker((int)out,ba[i],internal);
6084             emit_jns(0);
6085           }
6086         }
6087       } // if(!only32)
6088           
6089       if(invert) {
6090         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
6091         if(match&&(!internal||!is_ds[(ba[i]-start)>>2])) {
6092           if(adj) {
6093             emit_addimm(cc,-CLOCK_ADJUST(adj),cc);
6094             add_to_linker((int)out,ba[i],internal);
6095           }else{
6096             emit_addnop(13);
6097             add_to_linker((int)out,ba[i],internal*2);
6098           }
6099           emit_jmp(0);
6100         }else
6101         #endif
6102         {
6103           if(adj) emit_addimm(cc,-CLOCK_ADJUST(adj),cc);
6104           store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6105           load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6106           if(internal)
6107             assem_debug("branch: internal\n");
6108           else
6109             assem_debug("branch: external\n");
6110           if(internal&&is_ds[(ba[i]-start)>>2]) {
6111             ds_assemble_entry(i);
6112           }
6113           else {
6114             add_to_linker((int)out,ba[i],internal);
6115             emit_jmp(0);
6116           }
6117         }
6118         set_jump_target(nottaken,(int)out);
6119       }
6120
6121       if(adj) {
6122         if(!invert) emit_addimm(cc,CLOCK_ADJUST(adj),cc);
6123       }
6124     } // (!unconditional)
6125   } // if(ooo)
6126   else
6127   {
6128     // In-order execution (branch first)
6129     //printf("IOE\n");
6130     int nottaken=0;
6131     if(rt1[i]==31) {
6132       int rt,return_address;
6133       rt=get_reg(branch_regs[i].regmap,31);
6134       if(rt>=0) {
6135         // Save the PC even if the branch is not taken
6136         return_address=start+i*4+8;
6137         emit_movimm(return_address,rt); // PC into link register
6138         #ifdef IMM_PREFETCH
6139         emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
6140         #endif
6141       }
6142     }
6143     if(!unconditional) {
6144       //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
6145       if(!only32)
6146       {
6147         assert(s1h>=0);
6148         if((opcode2[i]&0x0d)==0) // BLTZ/BLTZL/BLTZAL/BLTZALL
6149         {
6150           emit_test(s1h,s1h);
6151           nottaken=(int)out;
6152           emit_jns(1);
6153         }
6154         if((opcode2[i]&0x0d)==1) // BGEZ/BGEZL/BGEZAL/BGEZALL
6155         {
6156           emit_test(s1h,s1h);
6157           nottaken=(int)out;
6158           emit_js(1);
6159         }
6160       } // if(!only32)
6161       else
6162       {
6163         assert(s1l>=0);
6164         if((opcode2[i]&0x0d)==0) // BLTZ/BLTZL/BLTZAL/BLTZALL
6165         {
6166           emit_test(s1l,s1l);
6167           nottaken=(int)out;
6168           emit_jns(1);
6169         }
6170         if((opcode2[i]&0x0d)==1) // BGEZ/BGEZL/BGEZAL/BGEZALL
6171         {
6172           emit_test(s1l,s1l);
6173           nottaken=(int)out;
6174           emit_js(1);
6175         }
6176       }
6177     } // if(!unconditional)
6178     int adj;
6179     uint64_t ds_unneeded=branch_regs[i].u;
6180     uint64_t ds_unneeded_upper=branch_regs[i].uu;
6181     ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6182     ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6183     if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
6184     ds_unneeded|=1;
6185     ds_unneeded_upper|=1;
6186     // branch taken
6187     if(!nevertaken) {
6188       //assem_debug("1:\n");
6189       wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6190                     ds_unneeded,ds_unneeded_upper);
6191       // load regs
6192       load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
6193       address_generation(i+1,&branch_regs[i],0);
6194       load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
6195       ds_assemble(i+1,&branch_regs[i]);
6196       cc=get_reg(branch_regs[i].regmap,CCREG);
6197       if(cc==-1) {
6198         emit_loadreg(CCREG,cc=HOST_CCREG);
6199         // CHECK: Is the following instruction (fall thru) allocated ok?
6200       }
6201       assert(cc==HOST_CCREG);
6202       store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6203       do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
6204       assem_debug("cycle count (adj)\n");
6205       if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
6206       load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6207       if(internal)
6208         assem_debug("branch: internal\n");
6209       else
6210         assem_debug("branch: external\n");
6211       if(internal&&is_ds[(ba[i]-start)>>2]) {
6212         ds_assemble_entry(i);
6213       }
6214       else {
6215         add_to_linker((int)out,ba[i],internal);
6216         emit_jmp(0);
6217       }
6218     }
6219     // branch not taken
6220     cop1_usable=prev_cop1_usable;
6221     if(!unconditional) {
6222       set_jump_target(nottaken,(int)out);
6223       assem_debug("1:\n");
6224       if(!likely[i]) {
6225         wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6226                       ds_unneeded,ds_unneeded_upper);
6227         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
6228         address_generation(i+1,&branch_regs[i],0);
6229         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
6230         ds_assemble(i+1,&branch_regs[i]);
6231       }
6232       cc=get_reg(branch_regs[i].regmap,CCREG);
6233       if(cc==-1&&!likely[i]) {
6234         // Cycle count isn't in a register, temporarily load it then write it out
6235         emit_loadreg(CCREG,HOST_CCREG);
6236         emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),HOST_CCREG);
6237         int jaddr=(int)out;
6238         emit_jns(0);
6239         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
6240         emit_storereg(CCREG,HOST_CCREG);
6241       }
6242       else{
6243         cc=get_reg(i_regmap,CCREG);
6244         assert(cc==HOST_CCREG);
6245         emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),cc);
6246         int jaddr=(int)out;
6247         emit_jns(0);
6248         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
6249       }
6250     }
6251   }
6252 }
6253
6254 void fjump_assemble(int i,struct regstat *i_regs)
6255 {
6256   signed char *i_regmap=i_regs->regmap;
6257   int cc;
6258   int match;
6259   match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6260   assem_debug("fmatch=%d\n",match);
6261   int fs,cs;
6262   int eaddr;
6263   int invert=0;
6264   int internal=internal_branch(branch_regs[i].is32,ba[i]);
6265   if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
6266   if(!match) invert=1;
6267   #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
6268   if(i>(ba[i]-start)>>2) invert=1;
6269   #endif
6270
6271   if(ooo[i]) {
6272     fs=get_reg(branch_regs[i].regmap,FSREG);
6273     address_generation(i+1,i_regs,regs[i].regmap_entry); // Is this okay?
6274   }
6275   else {
6276     fs=get_reg(i_regmap,FSREG);
6277   }
6278
6279   // Check cop1 unusable
6280   if(!cop1_usable) {
6281     cs=get_reg(i_regmap,CSREG);
6282     assert(cs>=0);
6283     emit_testimm(cs,0x20000000);
6284     eaddr=(int)out;
6285     emit_jeq(0);
6286     add_stub(FP_STUB,eaddr,(int)out,i,cs,(int)i_regs,0,0);
6287     cop1_usable=1;
6288   }
6289
6290   if(ooo[i]) {
6291     // Out of order execution (delay slot first)
6292     //printf("OOOE\n");
6293     ds_assemble(i+1,i_regs);
6294     int adj;
6295     uint64_t bc_unneeded=branch_regs[i].u;
6296     uint64_t bc_unneeded_upper=branch_regs[i].uu;
6297     bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
6298     bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
6299     bc_unneeded|=1;
6300     bc_unneeded_upper|=1;
6301     wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6302                   bc_unneeded,bc_unneeded_upper);
6303     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs1[i]);
6304     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
6305     cc=get_reg(branch_regs[i].regmap,CCREG);
6306     assert(cc==HOST_CCREG);
6307     do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
6308     assem_debug("cycle count (adj)\n");
6309     if(1) {
6310       int nottaken=0;
6311       if(adj&&!invert) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
6312       if(1) {
6313         assert(fs>=0);
6314         emit_testimm(fs,0x800000);
6315         if(source[i]&0x10000) // BC1T
6316         {
6317           if(invert){
6318             nottaken=(int)out;
6319             emit_jeq(1);
6320           }else{
6321             add_to_linker((int)out,ba[i],internal);
6322             emit_jne(0);
6323           }
6324         }
6325         else // BC1F
6326           if(invert){
6327             nottaken=(int)out;
6328             emit_jne(1);
6329           }else{
6330             add_to_linker((int)out,ba[i],internal);
6331             emit_jeq(0);
6332           }
6333         {
6334         }
6335       } // if(!only32)
6336           
6337       if(invert) {
6338         if(adj) emit_addimm(cc,-CLOCK_ADJUST(adj),cc);
6339         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
6340         else if(match) emit_addnop(13);
6341         #endif
6342         store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6343         load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6344         if(internal)
6345           assem_debug("branch: internal\n");
6346         else
6347           assem_debug("branch: external\n");
6348         if(internal&&is_ds[(ba[i]-start)>>2]) {
6349           ds_assemble_entry(i);
6350         }
6351         else {
6352           add_to_linker((int)out,ba[i],internal);
6353           emit_jmp(0);
6354         }
6355         set_jump_target(nottaken,(int)out);
6356       }
6357
6358       if(adj) {
6359         if(!invert) emit_addimm(cc,CLOCK_ADJUST(adj),cc);
6360       }
6361     } // (!unconditional)
6362   } // if(ooo)
6363   else
6364   {
6365     // In-order execution (branch first)
6366     //printf("IOE\n");
6367     int nottaken=0;
6368     if(1) {
6369       //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
6370       if(1) {
6371         assert(fs>=0);
6372         emit_testimm(fs,0x800000);
6373         if(source[i]&0x10000) // BC1T
6374         {
6375           nottaken=(int)out;
6376           emit_jeq(1);
6377         }
6378         else // BC1F
6379         {
6380           nottaken=(int)out;
6381           emit_jne(1);
6382         }
6383       }
6384     } // if(!unconditional)
6385     int adj;
6386     uint64_t ds_unneeded=branch_regs[i].u;
6387     uint64_t ds_unneeded_upper=branch_regs[i].uu;
6388     ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6389     ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6390     if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
6391     ds_unneeded|=1;
6392     ds_unneeded_upper|=1;
6393     // branch taken
6394     //assem_debug("1:\n");
6395     wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6396                   ds_unneeded,ds_unneeded_upper);
6397     // load regs
6398     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
6399     address_generation(i+1,&branch_regs[i],0);
6400     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
6401     ds_assemble(i+1,&branch_regs[i]);
6402     cc=get_reg(branch_regs[i].regmap,CCREG);
6403     if(cc==-1) {
6404       emit_loadreg(CCREG,cc=HOST_CCREG);
6405       // CHECK: Is the following instruction (fall thru) allocated ok?
6406     }
6407     assert(cc==HOST_CCREG);
6408     store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6409     do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
6410     assem_debug("cycle count (adj)\n");
6411     if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
6412     load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6413     if(internal)
6414       assem_debug("branch: internal\n");
6415     else
6416       assem_debug("branch: external\n");
6417     if(internal&&is_ds[(ba[i]-start)>>2]) {
6418       ds_assemble_entry(i);
6419     }
6420     else {
6421       add_to_linker((int)out,ba[i],internal);
6422       emit_jmp(0);
6423     }
6424
6425     // branch not taken
6426     if(1) { // <- FIXME (don't need this)
6427       set_jump_target(nottaken,(int)out);
6428       assem_debug("1:\n");
6429       if(!likely[i]) {
6430         wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6431                       ds_unneeded,ds_unneeded_upper);
6432         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
6433         address_generation(i+1,&branch_regs[i],0);
6434         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
6435         ds_assemble(i+1,&branch_regs[i]);
6436       }
6437       cc=get_reg(branch_regs[i].regmap,CCREG);
6438       if(cc==-1&&!likely[i]) {
6439         // Cycle count isn't in a register, temporarily load it then write it out
6440         emit_loadreg(CCREG,HOST_CCREG);
6441         emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),HOST_CCREG);
6442         int jaddr=(int)out;
6443         emit_jns(0);
6444         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
6445         emit_storereg(CCREG,HOST_CCREG);
6446       }
6447       else{
6448         cc=get_reg(i_regmap,CCREG);
6449         assert(cc==HOST_CCREG);
6450         emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),cc);
6451         int jaddr=(int)out;
6452         emit_jns(0);
6453         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
6454       }
6455     }
6456   }
6457 }
6458
6459 static void pagespan_assemble(int i,struct regstat *i_regs)
6460 {
6461   int s1l=get_reg(i_regs->regmap,rs1[i]);
6462   int s1h=get_reg(i_regs->regmap,rs1[i]|64);
6463   int s2l=get_reg(i_regs->regmap,rs2[i]);
6464   int s2h=get_reg(i_regs->regmap,rs2[i]|64);
6465   void *nt_branch=NULL;
6466   int taken=0;
6467   int nottaken=0;
6468   int unconditional=0;
6469   if(rs1[i]==0)
6470   {
6471     s1l=s2l;s1h=s2h;
6472     s2l=s2h=-1;
6473   }
6474   else if(rs2[i]==0)
6475   {
6476     s2l=s2h=-1;
6477   }
6478   if((i_regs->is32>>rs1[i])&(i_regs->is32>>rs2[i])&1) {
6479     s1h=s2h=-1;
6480   }
6481   int hr=0;
6482   int addr,alt,ntaddr;
6483   if(i_regs->regmap[HOST_BTREG]<0) {addr=HOST_BTREG;}
6484   else {
6485     while(hr<HOST_REGS)
6486     {
6487       if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
6488          (i_regs->regmap[hr]&63)!=rs1[i] &&
6489          (i_regs->regmap[hr]&63)!=rs2[i] )
6490       {
6491         addr=hr++;break;
6492       }
6493       hr++;
6494     }
6495   }
6496   while(hr<HOST_REGS)
6497   {
6498     if(hr!=EXCLUDE_REG && hr!=HOST_CCREG && hr!=HOST_BTREG &&
6499        (i_regs->regmap[hr]&63)!=rs1[i] &&
6500        (i_regs->regmap[hr]&63)!=rs2[i] )
6501     {
6502       alt=hr++;break;
6503     }
6504     hr++;
6505   }
6506   if((opcode[i]&0x2E)==6) // BLEZ/BGTZ needs another register
6507   {
6508     while(hr<HOST_REGS)
6509     {
6510       if(hr!=EXCLUDE_REG && hr!=HOST_CCREG && hr!=HOST_BTREG &&
6511          (i_regs->regmap[hr]&63)!=rs1[i] &&
6512          (i_regs->regmap[hr]&63)!=rs2[i] )
6513       {
6514         ntaddr=hr;break;
6515       }
6516       hr++;
6517     }
6518   }
6519   assert(hr<HOST_REGS);
6520   if((opcode[i]&0x2e)==4||opcode[i]==0x11) { // BEQ/BNE/BEQL/BNEL/BC1
6521     load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,CCREG,CCREG);
6522   }
6523   emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i]+2),HOST_CCREG);
6524   if(opcode[i]==2) // J
6525   {
6526     unconditional=1;
6527   }
6528   if(opcode[i]==3) // JAL
6529   {
6530     // TODO: mini_ht
6531     int rt=get_reg(i_regs->regmap,31);
6532     emit_movimm(start+i*4+8,rt);
6533     unconditional=1;
6534   }
6535   if(opcode[i]==0&&(opcode2[i]&0x3E)==8) // JR/JALR
6536   {
6537     emit_mov(s1l,addr);
6538     if(opcode2[i]==9) // JALR
6539     {
6540       int rt=get_reg(i_regs->regmap,rt1[i]);
6541       emit_movimm(start+i*4+8,rt);
6542     }
6543   }
6544   if((opcode[i]&0x3f)==4) // BEQ
6545   {
6546     if(rs1[i]==rs2[i])
6547     {
6548       unconditional=1;
6549     }
6550     else
6551     #ifdef HAVE_CMOV_IMM
6552     if(s1h<0) {
6553       if(s2l>=0) emit_cmp(s1l,s2l);
6554       else emit_test(s1l,s1l);
6555       emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
6556     }
6557     else
6558     #endif
6559     {
6560       assert(s1l>=0);
6561       emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
6562       if(s1h>=0) {
6563         if(s2h>=0) emit_cmp(s1h,s2h);
6564         else emit_test(s1h,s1h);
6565         emit_cmovne_reg(alt,addr);
6566       }
6567       if(s2l>=0) emit_cmp(s1l,s2l);
6568       else emit_test(s1l,s1l);
6569       emit_cmovne_reg(alt,addr);
6570     }
6571   }
6572   if((opcode[i]&0x3f)==5) // BNE
6573   {
6574     #ifdef HAVE_CMOV_IMM
6575     if(s1h<0) {
6576       if(s2l>=0) emit_cmp(s1l,s2l);
6577       else emit_test(s1l,s1l);
6578       emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
6579     }
6580     else
6581     #endif
6582     {
6583       assert(s1l>=0);
6584       emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
6585       if(s1h>=0) {
6586         if(s2h>=0) emit_cmp(s1h,s2h);
6587         else emit_test(s1h,s1h);
6588         emit_cmovne_reg(alt,addr);
6589       }
6590       if(s2l>=0) emit_cmp(s1l,s2l);
6591       else emit_test(s1l,s1l);
6592       emit_cmovne_reg(alt,addr);
6593     }
6594   }
6595   if((opcode[i]&0x3f)==0x14) // BEQL
6596   {
6597     if(s1h>=0) {
6598       if(s2h>=0) emit_cmp(s1h,s2h);
6599       else emit_test(s1h,s1h);
6600       nottaken=(int)out;
6601       emit_jne(0);
6602     }
6603     if(s2l>=0) emit_cmp(s1l,s2l);
6604     else emit_test(s1l,s1l);
6605     if(nottaken) set_jump_target(nottaken,(int)out);
6606     nottaken=(int)out;
6607     emit_jne(0);
6608   }
6609   if((opcode[i]&0x3f)==0x15) // BNEL
6610   {
6611     if(s1h>=0) {
6612       if(s2h>=0) emit_cmp(s1h,s2h);
6613       else emit_test(s1h,s1h);
6614       taken=(int)out;
6615       emit_jne(0);
6616     }
6617     if(s2l>=0) emit_cmp(s1l,s2l);
6618     else emit_test(s1l,s1l);
6619     nottaken=(int)out;
6620     emit_jeq(0);
6621     if(taken) set_jump_target(taken,(int)out);
6622   }
6623   if((opcode[i]&0x3f)==6) // BLEZ
6624   {
6625     emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
6626     emit_cmpimm(s1l,1);
6627     if(s1h>=0) emit_mov(addr,ntaddr);
6628     emit_cmovl_reg(alt,addr);
6629     if(s1h>=0) {
6630       emit_test(s1h,s1h);
6631       emit_cmovne_reg(ntaddr,addr);
6632       emit_cmovs_reg(alt,addr);
6633     }
6634   }
6635   if((opcode[i]&0x3f)==7) // BGTZ
6636   {
6637     emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
6638     emit_cmpimm(s1l,1);
6639     if(s1h>=0) emit_mov(addr,alt);
6640     emit_cmovl_reg(ntaddr,addr);
6641     if(s1h>=0) {
6642       emit_test(s1h,s1h);
6643       emit_cmovne_reg(alt,addr);
6644       emit_cmovs_reg(ntaddr,addr);
6645     }
6646   }
6647   if((opcode[i]&0x3f)==0x16) // BLEZL
6648   {
6649     assert((opcode[i]&0x3f)!=0x16);
6650   }
6651   if((opcode[i]&0x3f)==0x17) // BGTZL
6652   {
6653     assert((opcode[i]&0x3f)!=0x17);
6654   }
6655   assert(opcode[i]!=1); // BLTZ/BGEZ
6656
6657   //FIXME: Check CSREG
6658   if(opcode[i]==0x11 && opcode2[i]==0x08 ) {
6659     if((source[i]&0x30000)==0) // BC1F
6660     {
6661       emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
6662       emit_testimm(s1l,0x800000);
6663       emit_cmovne_reg(alt,addr);
6664     }
6665     if((source[i]&0x30000)==0x10000) // BC1T
6666     {
6667       emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
6668       emit_testimm(s1l,0x800000);
6669       emit_cmovne_reg(alt,addr);
6670     }
6671     if((source[i]&0x30000)==0x20000) // BC1FL
6672     {
6673       emit_testimm(s1l,0x800000);
6674       nottaken=(int)out;
6675       emit_jne(0);
6676     }
6677     if((source[i]&0x30000)==0x30000) // BC1TL
6678     {
6679       emit_testimm(s1l,0x800000);
6680       nottaken=(int)out;
6681       emit_jeq(0);
6682     }
6683   }
6684
6685   assert(i_regs->regmap[HOST_CCREG]==CCREG);
6686   wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
6687   if(likely[i]||unconditional)
6688   {
6689     emit_movimm(ba[i],HOST_BTREG);
6690   }
6691   else if(addr!=HOST_BTREG)
6692   {
6693     emit_mov(addr,HOST_BTREG);
6694   }
6695   void *branch_addr=out;
6696   emit_jmp(0);
6697   int target_addr=start+i*4+5;
6698   void *stub=out;
6699   void *compiled_target_addr=check_addr(target_addr);
6700   emit_extjump_ds((int)branch_addr,target_addr);
6701   if(compiled_target_addr) {
6702     set_jump_target((int)branch_addr,(int)compiled_target_addr);
6703     add_link(target_addr,stub);
6704   }
6705   else set_jump_target((int)branch_addr,(int)stub);
6706   if(likely[i]) {
6707     // Not-taken path
6708     set_jump_target((int)nottaken,(int)out);
6709     wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
6710     void *branch_addr=out;
6711     emit_jmp(0);
6712     int target_addr=start+i*4+8;
6713     void *stub=out;
6714     void *compiled_target_addr=check_addr(target_addr);
6715     emit_extjump_ds((int)branch_addr,target_addr);
6716     if(compiled_target_addr) {
6717       set_jump_target((int)branch_addr,(int)compiled_target_addr);
6718       add_link(target_addr,stub);
6719     }
6720     else set_jump_target((int)branch_addr,(int)stub);
6721   }
6722 }
6723
6724 // Assemble the delay slot for the above
6725 static void pagespan_ds()
6726 {
6727   assem_debug("initial delay slot:\n");
6728   u_int vaddr=start+1;
6729   u_int page=get_page(vaddr);
6730   u_int vpage=get_vpage(vaddr);
6731   ll_add(jump_dirty+vpage,vaddr,(void *)out);
6732   do_dirty_stub_ds();
6733   ll_add(jump_in+page,vaddr,(void *)out);
6734   assert(regs[0].regmap_entry[HOST_CCREG]==CCREG);
6735   if(regs[0].regmap[HOST_CCREG]!=CCREG)
6736     wb_register(CCREG,regs[0].regmap_entry,regs[0].wasdirty,regs[0].was32);
6737   if(regs[0].regmap[HOST_BTREG]!=BTREG)
6738     emit_writeword(HOST_BTREG,(int)&branch_target);
6739   load_regs(regs[0].regmap_entry,regs[0].regmap,regs[0].was32,rs1[0],rs2[0]);
6740   address_generation(0,&regs[0],regs[0].regmap_entry);
6741   if(itype[0]==STORE||itype[0]==STORELR||(opcode[0]&0x3b)==0x39||(opcode[0]&0x3b)==0x3a)
6742     load_regs(regs[0].regmap_entry,regs[0].regmap,regs[0].was32,INVCP,INVCP);
6743   cop1_usable=0;
6744   is_delayslot=0;
6745   switch(itype[0]) {
6746     case ALU:
6747       alu_assemble(0,&regs[0]);break;
6748     case IMM16:
6749       imm16_assemble(0,&regs[0]);break;
6750     case SHIFT:
6751       shift_assemble(0,&regs[0]);break;
6752     case SHIFTIMM:
6753       shiftimm_assemble(0,&regs[0]);break;
6754     case LOAD:
6755       load_assemble(0,&regs[0]);break;
6756     case LOADLR:
6757       loadlr_assemble(0,&regs[0]);break;
6758     case STORE:
6759       store_assemble(0,&regs[0]);break;
6760     case STORELR:
6761       storelr_assemble(0,&regs[0]);break;
6762     case COP0:
6763       cop0_assemble(0,&regs[0]);break;
6764     case COP1:
6765       cop1_assemble(0,&regs[0]);break;
6766     case C1LS:
6767       c1ls_assemble(0,&regs[0]);break;
6768     case COP2:
6769       cop2_assemble(0,&regs[0]);break;
6770     case C2LS:
6771       c2ls_assemble(0,&regs[0]);break;
6772     case C2OP:
6773       c2op_assemble(0,&regs[0]);break;
6774     case FCONV:
6775       fconv_assemble(0,&regs[0]);break;
6776     case FLOAT:
6777       float_assemble(0,&regs[0]);break;
6778     case FCOMP:
6779       fcomp_assemble(0,&regs[0]);break;
6780     case MULTDIV:
6781       multdiv_assemble(0,&regs[0]);break;
6782     case MOV:
6783       mov_assemble(0,&regs[0]);break;
6784     case SYSCALL:
6785     case HLECALL:
6786     case INTCALL:
6787     case SPAN:
6788     case UJUMP:
6789     case RJUMP:
6790     case CJUMP:
6791     case SJUMP:
6792     case FJUMP:
6793       printf("Jump in the delay slot.  This is probably a bug.\n");
6794   }
6795   int btaddr=get_reg(regs[0].regmap,BTREG);
6796   if(btaddr<0) {
6797     btaddr=get_reg(regs[0].regmap,-1);
6798     emit_readword((int)&branch_target,btaddr);
6799   }
6800   assert(btaddr!=HOST_CCREG);
6801   if(regs[0].regmap[HOST_CCREG]!=CCREG) emit_loadreg(CCREG,HOST_CCREG);
6802 #ifdef HOST_IMM8
6803   emit_movimm(start+4,HOST_TEMPREG);
6804   emit_cmp(btaddr,HOST_TEMPREG);
6805 #else
6806   emit_cmpimm(btaddr,start+4);
6807 #endif
6808   int branch=(int)out;
6809   emit_jeq(0);
6810   store_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,-1);
6811   emit_jmp(jump_vaddr_reg[btaddr]);
6812   set_jump_target(branch,(int)out);
6813   store_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,start+4);
6814   load_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,start+4);
6815 }
6816
6817 // Basic liveness analysis for MIPS registers
6818 void unneeded_registers(int istart,int iend,int r)
6819 {
6820   int i;
6821   uint64_t u,uu,gte_u,b,bu,gte_bu;
6822   uint64_t temp_u,temp_uu,temp_gte_u=0;
6823   uint64_t tdep;
6824   uint64_t gte_u_unknown=0;
6825   if(new_dynarec_hacks&NDHACK_GTE_UNNEEDED)
6826     gte_u_unknown=~0ll;
6827   if(iend==slen-1) {
6828     u=1;uu=1;
6829     gte_u=gte_u_unknown;
6830   }else{
6831     u=unneeded_reg[iend+1];
6832     uu=unneeded_reg_upper[iend+1];
6833     u=1;uu=1;
6834     gte_u=gte_unneeded[iend+1];
6835   }
6836
6837   for (i=iend;i>=istart;i--)
6838   {
6839     //printf("unneeded registers i=%d (%d,%d) r=%d\n",i,istart,iend,r);
6840     if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
6841     {
6842       // If subroutine call, flag return address as a possible branch target
6843       if(rt1[i]==31 && i<slen-2) bt[i+2]=1;
6844       
6845       if(ba[i]<start || ba[i]>=(start+slen*4))
6846       {
6847         // Branch out of this block, flush all regs
6848         u=1;
6849         uu=1;
6850         gte_u=gte_u_unknown;
6851         /* Hexagon hack 
6852         if(itype[i]==UJUMP&&rt1[i]==31)
6853         {
6854           uu=u=0x300C00F; // Discard at, v0-v1, t6-t9
6855         }
6856         if(itype[i]==RJUMP&&rs1[i]==31)
6857         {
6858           uu=u=0x300C0F3; // Discard at, a0-a3, t6-t9
6859         }
6860         if(start>0x80000400&&start<0x80000000+RAM_SIZE) {
6861           if(itype[i]==UJUMP&&rt1[i]==31)
6862           {
6863             //uu=u=0x30300FF0FLL; // Discard at, v0-v1, t0-t9, lo, hi
6864             uu=u=0x300FF0F; // Discard at, v0-v1, t0-t9
6865           }
6866           if(itype[i]==RJUMP&&rs1[i]==31)
6867           {
6868             //uu=u=0x30300FFF3LL; // Discard at, a0-a3, t0-t9, lo, hi
6869             uu=u=0x300FFF3; // Discard at, a0-a3, t0-t9
6870           }
6871         }*/
6872         branch_unneeded_reg[i]=u;
6873         branch_unneeded_reg_upper[i]=uu;
6874         // Merge in delay slot
6875         tdep=(~uu>>rt1[i+1])&1;
6876         u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6877         uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6878         u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6879         uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6880         uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6881         u|=1;uu|=1;
6882         gte_u|=gte_rt[i+1];
6883         gte_u&=~gte_rs[i+1];
6884         // If branch is "likely" (and conditional)
6885         // then we skip the delay slot on the fall-thru path
6886         if(likely[i]) {
6887           if(i<slen-1) {
6888             u&=unneeded_reg[i+2];
6889             uu&=unneeded_reg_upper[i+2];
6890             gte_u&=gte_unneeded[i+2];
6891           }
6892           else
6893           {
6894             u=1;
6895             uu=1;
6896             gte_u=gte_u_unknown;
6897           }
6898         }
6899       }
6900       else
6901       {
6902         // Internal branch, flag target
6903         bt[(ba[i]-start)>>2]=1;
6904         if(ba[i]<=start+i*4) {
6905           // Backward branch
6906           if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
6907           {
6908             // Unconditional branch
6909             temp_u=1;temp_uu=1;
6910             temp_gte_u=0;
6911           } else {
6912             // Conditional branch (not taken case)
6913             temp_u=unneeded_reg[i+2];
6914             temp_uu=unneeded_reg_upper[i+2];
6915             temp_gte_u&=gte_unneeded[i+2];
6916           }
6917           // Merge in delay slot
6918           tdep=(~temp_uu>>rt1[i+1])&1;
6919           temp_u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6920           temp_uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6921           temp_u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6922           temp_uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6923           temp_uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6924           temp_u|=1;temp_uu|=1;
6925           temp_gte_u|=gte_rt[i+1];
6926           temp_gte_u&=~gte_rs[i+1];
6927           // If branch is "likely" (and conditional)
6928           // then we skip the delay slot on the fall-thru path
6929           if(likely[i]) {
6930             if(i<slen-1) {
6931               temp_u&=unneeded_reg[i+2];
6932               temp_uu&=unneeded_reg_upper[i+2];
6933               temp_gte_u&=gte_unneeded[i+2];
6934             }
6935             else
6936             {
6937               temp_u=1;
6938               temp_uu=1;
6939               temp_gte_u=gte_u_unknown;
6940             }
6941           }
6942           tdep=(~temp_uu>>rt1[i])&1;
6943           temp_u|=(1LL<<rt1[i])|(1LL<<rt2[i]);
6944           temp_uu|=(1LL<<rt1[i])|(1LL<<rt2[i]);
6945           temp_u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
6946           temp_uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
6947           temp_uu&=~((tdep<<dep1[i])|(tdep<<dep2[i]));
6948           temp_u|=1;temp_uu|=1;
6949           temp_gte_u|=gte_rt[i];
6950           temp_gte_u&=~gte_rs[i];
6951           unneeded_reg[i]=temp_u;
6952           unneeded_reg_upper[i]=temp_uu;
6953           gte_unneeded[i]=temp_gte_u;
6954           // Only go three levels deep.  This recursion can take an
6955           // excessive amount of time if there are a lot of nested loops.
6956           if(r<2) {
6957             unneeded_registers((ba[i]-start)>>2,i-1,r+1);
6958           }else{
6959             unneeded_reg[(ba[i]-start)>>2]=1;
6960             unneeded_reg_upper[(ba[i]-start)>>2]=1;
6961             gte_unneeded[(ba[i]-start)>>2]=gte_u_unknown;
6962           }
6963         } /*else*/ if(1) {
6964           if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
6965           {
6966             // Unconditional branch
6967             u=unneeded_reg[(ba[i]-start)>>2];
6968             uu=unneeded_reg_upper[(ba[i]-start)>>2];
6969             gte_u=gte_unneeded[(ba[i]-start)>>2];
6970             branch_unneeded_reg[i]=u;
6971             branch_unneeded_reg_upper[i]=uu;
6972         //u=1;
6973         //uu=1;
6974         //branch_unneeded_reg[i]=u;
6975         //branch_unneeded_reg_upper[i]=uu;
6976             // Merge in delay slot
6977             tdep=(~uu>>rt1[i+1])&1;
6978             u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6979             uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6980             u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6981             uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6982             uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6983             u|=1;uu|=1;
6984             gte_u|=gte_rt[i+1];
6985             gte_u&=~gte_rs[i+1];
6986           } else {
6987             // Conditional branch
6988             b=unneeded_reg[(ba[i]-start)>>2];
6989             bu=unneeded_reg_upper[(ba[i]-start)>>2];
6990             gte_bu=gte_unneeded[(ba[i]-start)>>2];
6991             branch_unneeded_reg[i]=b;
6992             branch_unneeded_reg_upper[i]=bu;
6993         //b=1;
6994         //bu=1;
6995         //branch_unneeded_reg[i]=b;
6996         //branch_unneeded_reg_upper[i]=bu;
6997             // Branch delay slot
6998             tdep=(~uu>>rt1[i+1])&1;
6999             b|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
7000             bu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
7001             b&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
7002             bu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
7003             bu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
7004             b|=1;bu|=1;
7005             gte_bu|=gte_rt[i+1];
7006             gte_bu&=~gte_rs[i+1];
7007             // If branch is "likely" then we skip the
7008             // delay slot on the fall-thru path
7009             if(likely[i]) {
7010               u=b;
7011               uu=bu;
7012               gte_u=gte_bu;
7013               if(i<slen-1) {
7014                 u&=unneeded_reg[i+2];
7015                 uu&=unneeded_reg_upper[i+2];
7016                 gte_u&=gte_unneeded[i+2];
7017         //u=1;
7018         //uu=1;
7019               }
7020             } else {
7021               u&=b;
7022               uu&=bu;
7023               gte_u&=gte_bu;
7024         //u=1;
7025         //uu=1;
7026             }
7027             if(i<slen-1) {
7028               branch_unneeded_reg[i]&=unneeded_reg[i+2];
7029               branch_unneeded_reg_upper[i]&=unneeded_reg_upper[i+2];
7030         //branch_unneeded_reg[i]=1;
7031         //branch_unneeded_reg_upper[i]=1;
7032             } else {
7033               branch_unneeded_reg[i]=1;
7034               branch_unneeded_reg_upper[i]=1;
7035             }
7036           }
7037         }
7038       }
7039     }
7040     else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
7041     {
7042       // SYSCALL instruction (software interrupt)
7043       u=1;
7044       uu=1;
7045     }
7046     else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
7047     {
7048       // ERET instruction (return from interrupt)
7049       u=1;
7050       uu=1;
7051     }
7052     //u=uu=1; // DEBUG
7053     tdep=(~uu>>rt1[i])&1;
7054     // Written registers are unneeded
7055     u|=1LL<<rt1[i];
7056     u|=1LL<<rt2[i];
7057     uu|=1LL<<rt1[i];
7058     uu|=1LL<<rt2[i];
7059     gte_u|=gte_rt[i];
7060     // Accessed registers are needed
7061     u&=~(1LL<<rs1[i]);
7062     u&=~(1LL<<rs2[i]);
7063     uu&=~(1LL<<us1[i]);
7064     uu&=~(1LL<<us2[i]);
7065     gte_u&=~gte_rs[i];
7066     if(gte_rs[i]&&rt1[i]&&(unneeded_reg[i+1]&(1ll<<rt1[i])))
7067       gte_u|=gte_rs[i]&gte_unneeded[i+1]; // MFC2/CFC2 to dead register, unneeded
7068     // Source-target dependencies
7069     uu&=~(tdep<<dep1[i]);
7070     uu&=~(tdep<<dep2[i]);
7071     // R0 is always unneeded
7072     u|=1;uu|=1;
7073     // Save it
7074     unneeded_reg[i]=u;
7075     unneeded_reg_upper[i]=uu;
7076     gte_unneeded[i]=gte_u;
7077     /*
7078     printf("ur (%d,%d) %x: ",istart,iend,start+i*4);
7079     printf("U:");
7080     int r;
7081     for(r=1;r<=CCREG;r++) {
7082       if((unneeded_reg[i]>>r)&1) {
7083         if(r==HIREG) printf(" HI");
7084         else if(r==LOREG) printf(" LO");
7085         else printf(" r%d",r);
7086       }
7087     }
7088     printf(" UU:");
7089     for(r=1;r<=CCREG;r++) {
7090       if(((unneeded_reg_upper[i]&~unneeded_reg[i])>>r)&1) {
7091         if(r==HIREG) printf(" HI");
7092         else if(r==LOREG) printf(" LO");
7093         else printf(" r%d",r);
7094       }
7095     }
7096     printf("\n");*/
7097   }
7098 #ifdef FORCE32
7099   for (i=iend;i>=istart;i--)
7100   {
7101     unneeded_reg_upper[i]=branch_unneeded_reg_upper[i]=-1LL;
7102   }
7103 #endif
7104 }
7105
7106 // Identify registers which are likely to contain 32-bit values
7107 // This is used to predict whether any branches will jump to a
7108 // location with 64-bit values in registers.
7109 static void provisional_32bit()
7110 {
7111   int i,j;
7112   uint64_t is32=1;
7113   uint64_t lastbranch=1;
7114   
7115   for(i=0;i<slen;i++)
7116   {
7117     if(i>0) {
7118       if(itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP) {
7119         if(i>1) is32=lastbranch;
7120         else is32=1;
7121       }
7122     }
7123     if(i>1)
7124     {
7125       if(itype[i-2]==CJUMP||itype[i-2]==SJUMP||itype[i-2]==FJUMP) {
7126         if(likely[i-2]) {
7127           if(i>2) is32=lastbranch;
7128           else is32=1;
7129         }
7130       }
7131       if((opcode[i-2]&0x2f)==0x05) // BNE/BNEL
7132       {
7133         if(rs1[i-2]==0||rs2[i-2]==0)
7134         {
7135           if(rs1[i-2]) {
7136             is32|=1LL<<rs1[i-2];
7137           }
7138           if(rs2[i-2]) {
7139             is32|=1LL<<rs2[i-2];
7140           }
7141         }
7142       }
7143     }
7144     // If something jumps here with 64-bit values
7145     // then promote those registers to 64 bits
7146     if(bt[i])
7147     {
7148       uint64_t temp_is32=is32;
7149       for(j=i-1;j>=0;j--)
7150       {
7151         if(ba[j]==start+i*4) 
7152           //temp_is32&=branch_regs[j].is32;
7153           temp_is32&=p32[j];
7154       }
7155       for(j=i;j<slen;j++)
7156       {
7157         if(ba[j]==start+i*4) 
7158           temp_is32=1;
7159       }
7160       is32=temp_is32;
7161     }
7162     int type=itype[i];
7163     int op=opcode[i];
7164     int op2=opcode2[i];
7165     int rt=rt1[i];
7166     int s1=rs1[i];
7167     int s2=rs2[i];
7168     if(type==UJUMP||type==RJUMP||type==CJUMP||type==SJUMP||type==FJUMP) {
7169       // Branches don't write registers, consider the delay slot instead.
7170       type=itype[i+1];
7171       op=opcode[i+1];
7172       op2=opcode2[i+1];
7173       rt=rt1[i+1];
7174       s1=rs1[i+1];
7175       s2=rs2[i+1];
7176       lastbranch=is32;
7177     }
7178     switch(type) {
7179       case LOAD:
7180         if(opcode[i]==0x27||opcode[i]==0x37|| // LWU/LD
7181            opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
7182           is32&=~(1LL<<rt);
7183         else
7184           is32|=1LL<<rt;
7185         break;
7186       case STORE:
7187       case STORELR:
7188         break;
7189       case LOADLR:
7190         if(op==0x1a||op==0x1b) is32&=~(1LL<<rt); // LDR/LDL
7191         if(op==0x22) is32|=1LL<<rt; // LWL
7192         break;
7193       case IMM16:
7194         if (op==0x08||op==0x09|| // ADDI/ADDIU
7195             op==0x0a||op==0x0b|| // SLTI/SLTIU
7196             op==0x0c|| // ANDI
7197             op==0x0f)  // LUI
7198         {
7199           is32|=1LL<<rt;
7200         }
7201         if(op==0x18||op==0x19) { // DADDI/DADDIU
7202           is32&=~(1LL<<rt);
7203           //if(imm[i]==0)
7204           //  is32|=((is32>>s1)&1LL)<<rt;
7205         }
7206         if(op==0x0d||op==0x0e) { // ORI/XORI
7207           uint64_t sr=((is32>>s1)&1LL);
7208           is32&=~(1LL<<rt);
7209           is32|=sr<<rt;
7210         }
7211         break;
7212       case UJUMP:
7213         break;
7214       case RJUMP:
7215         break;
7216       case CJUMP:
7217         break;
7218       case SJUMP:
7219         break;
7220       case FJUMP:
7221         break;
7222       case ALU:
7223         if(op2>=0x20&&op2<=0x23) { // ADD/ADDU/SUB/SUBU
7224           is32|=1LL<<rt;
7225         }
7226         if(op2==0x2a||op2==0x2b) { // SLT/SLTU
7227           is32|=1LL<<rt;
7228         }
7229         else if(op2>=0x24&&op2<=0x27) { // AND/OR/XOR/NOR
7230           uint64_t sr=((is32>>s1)&(is32>>s2)&1LL);
7231           is32&=~(1LL<<rt);
7232           is32|=sr<<rt;
7233         }
7234         else if(op2>=0x2c&&op2<=0x2d) { // DADD/DADDU
7235           if(s1==0&&s2==0) {
7236             is32|=1LL<<rt;
7237           }
7238           else if(s2==0) {
7239             uint64_t sr=((is32>>s1)&1LL);
7240             is32&=~(1LL<<rt);
7241             is32|=sr<<rt;
7242           }
7243           else if(s1==0) {
7244             uint64_t sr=((is32>>s2)&1LL);
7245             is32&=~(1LL<<rt);
7246             is32|=sr<<rt;
7247           }
7248           else {
7249             is32&=~(1LL<<rt);
7250           }
7251         }
7252         else if(op2>=0x2e&&op2<=0x2f) { // DSUB/DSUBU
7253           if(s1==0&&s2==0) {
7254             is32|=1LL<<rt;
7255           }
7256           else if(s2==0) {
7257             uint64_t sr=((is32>>s1)&1LL);
7258             is32&=~(1LL<<rt);
7259             is32|=sr<<rt;
7260           }
7261           else {
7262             is32&=~(1LL<<rt);
7263           }
7264         }
7265         break;
7266       case MULTDIV:
7267         if (op2>=0x1c&&op2<=0x1f) { // DMULT/DMULTU/DDIV/DDIVU
7268           is32&=~((1LL<<HIREG)|(1LL<<LOREG));
7269         }
7270         else {
7271           is32|=(1LL<<HIREG)|(1LL<<LOREG);
7272         }
7273         break;
7274       case MOV:
7275         {
7276           uint64_t sr=((is32>>s1)&1LL);
7277           is32&=~(1LL<<rt);
7278           is32|=sr<<rt;
7279         }
7280         break;
7281       case SHIFT:
7282         if(op2>=0x14&&op2<=0x17) is32&=~(1LL<<rt); // DSLLV/DSRLV/DSRAV
7283         else is32|=1LL<<rt; // SLLV/SRLV/SRAV
7284         break;
7285       case SHIFTIMM:
7286         is32|=1LL<<rt;
7287         // DSLL/DSRL/DSRA/DSLL32/DSRL32 but not DSRA32 have 64-bit result
7288         if(op2>=0x38&&op2<0x3f) is32&=~(1LL<<rt);
7289         break;
7290       case COP0:
7291         if(op2==0) is32|=1LL<<rt; // MFC0
7292         break;
7293       case COP1:
7294       case COP2:
7295         if(op2==0) is32|=1LL<<rt; // MFC1
7296         if(op2==1) is32&=~(1LL<<rt); // DMFC1
7297         if(op2==2) is32|=1LL<<rt; // CFC1
7298         break;
7299       case C1LS:
7300       case C2LS:
7301         break;
7302       case FLOAT:
7303       case FCONV:
7304         break;
7305       case FCOMP:
7306         break;
7307       case C2OP:
7308       case SYSCALL:
7309       case HLECALL:
7310         break;
7311       default:
7312         break;
7313     }
7314     is32|=1;
7315     p32[i]=is32;
7316
7317     if(i>0)
7318     {
7319       if(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)
7320       {
7321         if(rt1[i-1]==31) // JAL/JALR
7322         {
7323           // Subroutine call will return here, don't alloc any registers
7324           is32=1;
7325         }
7326         else if(i+1<slen)
7327         {
7328           // Internal branch will jump here, match registers to caller
7329           is32=0x3FFFFFFFFLL;
7330         }
7331       }
7332     }
7333   }
7334 }
7335
7336 // Identify registers which may be assumed to contain 32-bit values
7337 // and where optimizations will rely on this.
7338 // This is used to determine whether backward branches can safely
7339 // jump to a location with 64-bit values in registers.
7340 static void provisional_r32()
7341 {
7342   u_int r32=0;
7343   int i;
7344   
7345   for (i=slen-1;i>=0;i--)
7346   {
7347     int hr;
7348     if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
7349     {
7350       if(ba[i]<start || ba[i]>=(start+slen*4))
7351       {
7352         // Branch out of this block, don't need anything
7353         r32=0;
7354       }
7355       else
7356       {
7357         // Internal branch
7358         // Need whatever matches the target
7359         // (and doesn't get overwritten by the delay slot instruction)
7360         r32=0;
7361         int t=(ba[i]-start)>>2;
7362         if(ba[i]>start+i*4) {
7363           // Forward branch
7364           //if(!(requires_32bit[t]&~regs[i].was32))
7365           //  r32|=requires_32bit[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
7366           if(!(pr32[t]&~regs[i].was32))
7367             r32|=pr32[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
7368         }else{
7369           // Backward branch
7370           if(!(regs[t].was32&~unneeded_reg_upper[t]&~regs[i].was32))
7371             r32|=regs[t].was32&~unneeded_reg_upper[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
7372         }
7373       }
7374       // Conditional branch may need registers for following instructions
7375       if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
7376       {
7377         if(i<slen-2) {
7378           //r32|=requires_32bit[i+2];
7379           r32|=pr32[i+2];
7380           r32&=regs[i].was32;
7381           // Mark this address as a branch target since it may be called
7382           // upon return from interrupt
7383           //bt[i+2]=1;
7384         }
7385       }
7386       // Merge in delay slot
7387       if(!likely[i]) {
7388         // These are overwritten unless the branch is "likely"
7389         // and the delay slot is nullified if not taken
7390         r32&=~(1LL<<rt1[i+1]);
7391         r32&=~(1LL<<rt2[i+1]);
7392       }
7393       // Assume these are needed (delay slot)
7394       if(us1[i+1]>0)
7395       {
7396         if((regs[i].was32>>us1[i+1])&1) r32|=1LL<<us1[i+1];
7397       }
7398       if(us2[i+1]>0)
7399       {
7400         if((regs[i].was32>>us2[i+1])&1) r32|=1LL<<us2[i+1];
7401       }
7402       if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1))
7403       {
7404         if((regs[i].was32>>dep1[i+1])&1) r32|=1LL<<dep1[i+1];
7405       }
7406       if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1))
7407       {
7408         if((regs[i].was32>>dep2[i+1])&1) r32|=1LL<<dep2[i+1];
7409       }
7410     }
7411     else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
7412     {
7413       // SYSCALL instruction (software interrupt)
7414       r32=0;
7415     }
7416     else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
7417     {
7418       // ERET instruction (return from interrupt)
7419       r32=0;
7420     }
7421     // Check 32 bits
7422     r32&=~(1LL<<rt1[i]);
7423     r32&=~(1LL<<rt2[i]);
7424     if(us1[i]>0)
7425     {
7426       if((regs[i].was32>>us1[i])&1) r32|=1LL<<us1[i];
7427     }
7428     if(us2[i]>0)
7429     {
7430       if((regs[i].was32>>us2[i])&1) r32|=1LL<<us2[i];
7431     }
7432     if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1))
7433     {
7434       if((regs[i].was32>>dep1[i])&1) r32|=1LL<<dep1[i];
7435     }
7436     if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1))
7437     {
7438       if((regs[i].was32>>dep2[i])&1) r32|=1LL<<dep2[i];
7439     }
7440     //requires_32bit[i]=r32;
7441     pr32[i]=r32;
7442     
7443     // Dirty registers which are 32-bit, require 32-bit input
7444     // as they will be written as 32-bit values
7445     for(hr=0;hr<HOST_REGS;hr++)
7446     {
7447       if(regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64) {
7448         if((regs[i].was32>>regs[i].regmap_entry[hr])&(regs[i].wasdirty>>hr)&1) {
7449           if(!((unneeded_reg_upper[i]>>regs[i].regmap_entry[hr])&1))
7450           pr32[i]|=1LL<<regs[i].regmap_entry[hr];
7451           //requires_32bit[i]|=1LL<<regs[i].regmap_entry[hr];
7452         }
7453       }
7454     }
7455   }
7456 }
7457
7458 // Write back dirty registers as soon as we will no longer modify them,
7459 // so that we don't end up with lots of writes at the branches.
7460 void clean_registers(int istart,int iend,int wr)
7461 {
7462   int i;
7463   int r;
7464   u_int will_dirty_i,will_dirty_next,temp_will_dirty;
7465   u_int wont_dirty_i,wont_dirty_next,temp_wont_dirty;
7466   if(iend==slen-1) {
7467     will_dirty_i=will_dirty_next=0;
7468     wont_dirty_i=wont_dirty_next=0;
7469   }else{
7470     will_dirty_i=will_dirty_next=will_dirty[iend+1];
7471     wont_dirty_i=wont_dirty_next=wont_dirty[iend+1];
7472   }
7473   for (i=iend;i>=istart;i--)
7474   {
7475     if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
7476     {
7477       if(ba[i]<start || ba[i]>=(start+slen*4))
7478       {
7479         // Branch out of this block, flush all regs
7480         if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
7481         {
7482           // Unconditional branch
7483           will_dirty_i=0;
7484           wont_dirty_i=0;
7485           // Merge in delay slot (will dirty)
7486           for(r=0;r<HOST_REGS;r++) {
7487             if(r!=EXCLUDE_REG) {
7488               if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7489               if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7490               if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7491               if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7492               if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7493               if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7494               if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7495               if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7496               if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7497               if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7498               if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7499               if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7500               if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7501               if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7502             }
7503           }
7504         }
7505         else
7506         {
7507           // Conditional branch
7508           will_dirty_i=0;
7509           wont_dirty_i=wont_dirty_next;
7510           // Merge in delay slot (will dirty)
7511           for(r=0;r<HOST_REGS;r++) {
7512             if(r!=EXCLUDE_REG) {
7513               if(!likely[i]) {
7514                 // Might not dirty if likely branch is not taken
7515                 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7516                 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7517                 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7518                 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7519                 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7520                 if(branch_regs[i].regmap[r]==0) will_dirty_i&=~(1<<r);
7521                 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7522                 //if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7523                 //if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7524                 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7525                 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7526                 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7527                 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7528                 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7529               }
7530             }
7531           }
7532         }
7533         // Merge in delay slot (wont dirty)
7534         for(r=0;r<HOST_REGS;r++) {
7535           if(r!=EXCLUDE_REG) {
7536             if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7537             if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7538             if((regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7539             if((regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7540             if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7541             if((branch_regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7542             if((branch_regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7543             if((branch_regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7544             if((branch_regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7545             if(branch_regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7546           }
7547         }
7548         if(wr) {
7549           #ifndef DESTRUCTIVE_WRITEBACK
7550           branch_regs[i].dirty&=wont_dirty_i;
7551           #endif
7552           branch_regs[i].dirty|=will_dirty_i;
7553         }
7554       }
7555       else
7556       {
7557         // Internal branch
7558         if(ba[i]<=start+i*4) {
7559           // Backward branch
7560           if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
7561           {
7562             // Unconditional branch
7563             temp_will_dirty=0;
7564             temp_wont_dirty=0;
7565             // Merge in delay slot (will dirty)
7566             for(r=0;r<HOST_REGS;r++) {
7567               if(r!=EXCLUDE_REG) {
7568                 if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7569                 if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7570                 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7571                 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7572                 if((branch_regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7573                 if(branch_regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
7574                 if(branch_regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7575                 if((regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7576                 if((regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7577                 if((regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7578                 if((regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7579                 if((regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7580                 if(regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
7581                 if(regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7582               }
7583             }
7584           } else {
7585             // Conditional branch (not taken case)
7586             temp_will_dirty=will_dirty_next;
7587             temp_wont_dirty=wont_dirty_next;
7588             // Merge in delay slot (will dirty)
7589             for(r=0;r<HOST_REGS;r++) {
7590               if(r!=EXCLUDE_REG) {
7591                 if(!likely[i]) {
7592                   // Will not dirty if likely branch is not taken
7593                   if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7594                   if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7595                   if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7596                   if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7597                   if((branch_regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7598                   if(branch_regs[i].regmap[r]==0) temp_will_dirty&=~(1<<r);
7599                   if(branch_regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7600                   //if((regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7601                   //if((regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7602                   if((regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7603                   if((regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7604                   if((regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7605                   if(regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
7606                   if(regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7607                 }
7608               }
7609             }
7610           }
7611           // Merge in delay slot (wont dirty)
7612           for(r=0;r<HOST_REGS;r++) {
7613             if(r!=EXCLUDE_REG) {
7614               if((regs[i].regmap[r]&63)==rt1[i]) temp_wont_dirty|=1<<r;
7615               if((regs[i].regmap[r]&63)==rt2[i]) temp_wont_dirty|=1<<r;
7616               if((regs[i].regmap[r]&63)==rt1[i+1]) temp_wont_dirty|=1<<r;
7617               if((regs[i].regmap[r]&63)==rt2[i+1]) temp_wont_dirty|=1<<r;
7618               if(regs[i].regmap[r]==CCREG) temp_wont_dirty|=1<<r;
7619               if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_wont_dirty|=1<<r;
7620               if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_wont_dirty|=1<<r;
7621               if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_wont_dirty|=1<<r;
7622               if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_wont_dirty|=1<<r;
7623               if(branch_regs[i].regmap[r]==CCREG) temp_wont_dirty|=1<<r;
7624             }
7625           }
7626           // Deal with changed mappings
7627           if(i<iend) {
7628             for(r=0;r<HOST_REGS;r++) {
7629               if(r!=EXCLUDE_REG) {
7630                 if(regs[i].regmap[r]!=regmap_pre[i][r]) {
7631                   temp_will_dirty&=~(1<<r);
7632                   temp_wont_dirty&=~(1<<r);
7633                   if((regmap_pre[i][r]&63)>0 && (regmap_pre[i][r]&63)<34) {
7634                     temp_will_dirty|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7635                     temp_wont_dirty|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7636                   } else {
7637                     temp_will_dirty|=1<<r;
7638                     temp_wont_dirty|=1<<r;
7639                   }
7640                 }
7641               }
7642             }
7643           }
7644           if(wr) {
7645             will_dirty[i]=temp_will_dirty;
7646             wont_dirty[i]=temp_wont_dirty;
7647             clean_registers((ba[i]-start)>>2,i-1,0);
7648           }else{
7649             // Limit recursion.  It can take an excessive amount
7650             // of time if there are a lot of nested loops.
7651             will_dirty[(ba[i]-start)>>2]=0;
7652             wont_dirty[(ba[i]-start)>>2]=-1;
7653           }
7654         }
7655         /*else*/ if(1)
7656         {
7657           if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
7658           {
7659             // Unconditional branch
7660             will_dirty_i=0;
7661             wont_dirty_i=0;
7662           //if(ba[i]>start+i*4) { // Disable recursion (for debugging)
7663             for(r=0;r<HOST_REGS;r++) {
7664               if(r!=EXCLUDE_REG) {
7665                 if(branch_regs[i].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
7666                   will_dirty_i|=will_dirty[(ba[i]-start)>>2]&(1<<r);
7667                   wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
7668                 }
7669                 if(branch_regs[i].regmap[r]>=0) {
7670                   will_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>(branch_regs[i].regmap[r]&63))&1)<<r;
7671                   wont_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>(branch_regs[i].regmap[r]&63))&1)<<r;
7672                 }
7673               }
7674             }
7675           //}
7676             // Merge in delay slot
7677             for(r=0;r<HOST_REGS;r++) {
7678               if(r!=EXCLUDE_REG) {
7679                 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7680                 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7681                 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7682                 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7683                 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7684                 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7685                 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7686                 if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7687                 if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7688                 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7689                 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7690                 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7691                 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7692                 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7693               }
7694             }
7695           } else {
7696             // Conditional branch
7697             will_dirty_i=will_dirty_next;
7698             wont_dirty_i=wont_dirty_next;
7699           //if(ba[i]>start+i*4) { // Disable recursion (for debugging)
7700             for(r=0;r<HOST_REGS;r++) {
7701               if(r!=EXCLUDE_REG) {
7702                 signed char target_reg=branch_regs[i].regmap[r];
7703                 if(target_reg==regs[(ba[i]-start)>>2].regmap_entry[r]) {
7704                   will_dirty_i&=will_dirty[(ba[i]-start)>>2]&(1<<r);
7705                   wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
7706                 }
7707                 else if(target_reg>=0) {
7708                   will_dirty_i&=((unneeded_reg[(ba[i]-start)>>2]>>(target_reg&63))&1)<<r;
7709                   wont_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>(target_reg&63))&1)<<r;
7710                 }
7711                 // Treat delay slot as part of branch too
7712                 /*if(regs[i+1].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
7713                   will_dirty[i+1]&=will_dirty[(ba[i]-start)>>2]&(1<<r);
7714                   wont_dirty[i+1]|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
7715                 }
7716                 else
7717                 {
7718                   will_dirty[i+1]&=~(1<<r);
7719                 }*/
7720               }
7721             }
7722           //}
7723             // Merge in delay slot
7724             for(r=0;r<HOST_REGS;r++) {
7725               if(r!=EXCLUDE_REG) {
7726                 if(!likely[i]) {
7727                   // Might not dirty if likely branch is not taken
7728                   if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7729                   if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7730                   if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7731                   if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7732                   if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7733                   if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7734                   if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7735                   //if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7736                   //if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7737                   if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7738                   if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7739                   if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7740                   if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7741                   if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7742                 }
7743               }
7744             }
7745           }
7746           // Merge in delay slot (won't dirty)
7747           for(r=0;r<HOST_REGS;r++) {
7748             if(r!=EXCLUDE_REG) {
7749               if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7750               if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7751               if((regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7752               if((regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7753               if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7754               if((branch_regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7755               if((branch_regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7756               if((branch_regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7757               if((branch_regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7758               if(branch_regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7759             }
7760           }
7761           if(wr) {
7762             #ifndef DESTRUCTIVE_WRITEBACK
7763             branch_regs[i].dirty&=wont_dirty_i;
7764             #endif
7765             branch_regs[i].dirty|=will_dirty_i;
7766           }
7767         }
7768       }
7769     }
7770     else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
7771     {
7772       // SYSCALL instruction (software interrupt)
7773       will_dirty_i=0;
7774       wont_dirty_i=0;
7775     }
7776     else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
7777     {
7778       // ERET instruction (return from interrupt)
7779       will_dirty_i=0;
7780       wont_dirty_i=0;
7781     }
7782     will_dirty_next=will_dirty_i;
7783     wont_dirty_next=wont_dirty_i;
7784     for(r=0;r<HOST_REGS;r++) {
7785       if(r!=EXCLUDE_REG) {
7786         if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7787         if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7788         if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7789         if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7790         if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7791         if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7792         if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7793         if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7794         if(i>istart) {
7795           if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=FJUMP) 
7796           {
7797             // Don't store a register immediately after writing it,
7798             // may prevent dual-issue.
7799             if((regs[i].regmap[r]&63)==rt1[i-1]) wont_dirty_i|=1<<r;
7800             if((regs[i].regmap[r]&63)==rt2[i-1]) wont_dirty_i|=1<<r;
7801           }
7802         }
7803       }
7804     }
7805     // Save it
7806     will_dirty[i]=will_dirty_i;
7807     wont_dirty[i]=wont_dirty_i;
7808     // Mark registers that won't be dirtied as not dirty
7809     if(wr) {
7810       /*printf("wr (%d,%d) %x will:",istart,iend,start+i*4);
7811       for(r=0;r<HOST_REGS;r++) {
7812         if((will_dirty_i>>r)&1) {
7813           printf(" r%d",r);
7814         }
7815       }
7816       printf("\n");*/
7817
7818       //if(i==istart||(itype[i-1]!=RJUMP&&itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=FJUMP)) {
7819         regs[i].dirty|=will_dirty_i;
7820         #ifndef DESTRUCTIVE_WRITEBACK
7821         regs[i].dirty&=wont_dirty_i;
7822         if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
7823         {
7824           if(i<iend-1&&itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000) {
7825             for(r=0;r<HOST_REGS;r++) {
7826               if(r!=EXCLUDE_REG) {
7827                 if(regs[i].regmap[r]==regmap_pre[i+2][r]) {
7828                   regs[i+2].wasdirty&=wont_dirty_i|~(1<<r);
7829                 }else {/*printf("i: %x (%d) mismatch(+2): %d\n",start+i*4,i,r);/*assert(!((wont_dirty_i>>r)&1));*/}
7830               }
7831             }
7832           }
7833         }
7834         else
7835         {
7836           if(i<iend) {
7837             for(r=0;r<HOST_REGS;r++) {
7838               if(r!=EXCLUDE_REG) {
7839                 if(regs[i].regmap[r]==regmap_pre[i+1][r]) {
7840                   regs[i+1].wasdirty&=wont_dirty_i|~(1<<r);
7841                 }else {/*printf("i: %x (%d) mismatch(+1): %d\n",start+i*4,i,r);/*assert(!((wont_dirty_i>>r)&1));*/}
7842               }
7843             }
7844           }
7845         }
7846         #endif
7847       //}
7848     }
7849     // Deal with changed mappings
7850     temp_will_dirty=will_dirty_i;
7851     temp_wont_dirty=wont_dirty_i;
7852     for(r=0;r<HOST_REGS;r++) {
7853       if(r!=EXCLUDE_REG) {
7854         int nr;
7855         if(regs[i].regmap[r]==regmap_pre[i][r]) {
7856           if(wr) {
7857             #ifndef DESTRUCTIVE_WRITEBACK
7858             regs[i].wasdirty&=wont_dirty_i|~(1<<r);
7859             #endif
7860             regs[i].wasdirty|=will_dirty_i&(1<<r);
7861           }
7862         }
7863         else if(regmap_pre[i][r]>=0&&(nr=get_reg(regs[i].regmap,regmap_pre[i][r]))>=0) {
7864           // Register moved to a different register
7865           will_dirty_i&=~(1<<r);
7866           wont_dirty_i&=~(1<<r);
7867           will_dirty_i|=((temp_will_dirty>>nr)&1)<<r;
7868           wont_dirty_i|=((temp_wont_dirty>>nr)&1)<<r;
7869           if(wr) {
7870             #ifndef DESTRUCTIVE_WRITEBACK
7871             regs[i].wasdirty&=wont_dirty_i|~(1<<r);
7872             #endif
7873             regs[i].wasdirty|=will_dirty_i&(1<<r);
7874           }
7875         }
7876         else {
7877           will_dirty_i&=~(1<<r);
7878           wont_dirty_i&=~(1<<r);
7879           if((regmap_pre[i][r]&63)>0 && (regmap_pre[i][r]&63)<34) {
7880             will_dirty_i|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7881             wont_dirty_i|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7882           } else {
7883             wont_dirty_i|=1<<r;
7884             /*printf("i: %x (%d) mismatch: %d\n",start+i*4,i,r);/*assert(!((will_dirty>>r)&1));*/
7885           }
7886         }
7887       }
7888     }
7889   }
7890 }
7891
7892 #ifdef DISASM
7893   /* disassembly */
7894 void disassemble_inst(int i)
7895 {
7896     if (bt[i]) printf("*"); else printf(" ");
7897     switch(itype[i]) {
7898       case UJUMP:
7899         printf (" %x: %s %8x\n",start+i*4,insn[i],ba[i]);break;
7900       case CJUMP:
7901         printf (" %x: %s r%d,r%d,%8x\n",start+i*4,insn[i],rs1[i],rs2[i],i?start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14):*ba);break;
7902       case SJUMP:
7903         printf (" %x: %s r%d,%8x\n",start+i*4,insn[i],rs1[i],start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14));break;
7904       case FJUMP:
7905         printf (" %x: %s %8x\n",start+i*4,insn[i],ba[i]);break;
7906       case RJUMP:
7907         if (opcode[i]==0x9&&rt1[i]!=31)
7908           printf (" %x: %s r%d,r%d\n",start+i*4,insn[i],rt1[i],rs1[i]);
7909         else
7910           printf (" %x: %s r%d\n",start+i*4,insn[i],rs1[i]);
7911         break;
7912       case SPAN:
7913         printf (" %x: %s (pagespan) r%d,r%d,%8x\n",start+i*4,insn[i],rs1[i],rs2[i],ba[i]);break;
7914       case IMM16:
7915         if(opcode[i]==0xf) //LUI
7916           printf (" %x: %s r%d,%4x0000\n",start+i*4,insn[i],rt1[i],imm[i]&0xffff);
7917         else
7918           printf (" %x: %s r%d,r%d,%d\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
7919         break;
7920       case LOAD:
7921       case LOADLR:
7922         printf (" %x: %s r%d,r%d+%x\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
7923         break;
7924       case STORE:
7925       case STORELR:
7926         printf (" %x: %s r%d,r%d+%x\n",start+i*4,insn[i],rs2[i],rs1[i],imm[i]);
7927         break;
7928       case ALU:
7929       case SHIFT:
7930         printf (" %x: %s r%d,r%d,r%d\n",start+i*4,insn[i],rt1[i],rs1[i],rs2[i]);
7931         break;
7932       case MULTDIV:
7933         printf (" %x: %s r%d,r%d\n",start+i*4,insn[i],rs1[i],rs2[i]);
7934         break;
7935       case SHIFTIMM:
7936         printf (" %x: %s r%d,r%d,%d\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
7937         break;
7938       case MOV:
7939         if((opcode2[i]&0x1d)==0x10)
7940           printf (" %x: %s r%d\n",start+i*4,insn[i],rt1[i]);
7941         else if((opcode2[i]&0x1d)==0x11)
7942           printf (" %x: %s r%d\n",start+i*4,insn[i],rs1[i]);
7943         else
7944           printf (" %x: %s\n",start+i*4,insn[i]);
7945         break;
7946       case COP0:
7947         if(opcode2[i]==0)
7948           printf (" %x: %s r%d,cpr0[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC0
7949         else if(opcode2[i]==4)
7950           printf (" %x: %s r%d,cpr0[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC0
7951         else printf (" %x: %s\n",start+i*4,insn[i]);
7952         break;
7953       case COP1:
7954         if(opcode2[i]<3)
7955           printf (" %x: %s r%d,cpr1[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC1
7956         else if(opcode2[i]>3)
7957           printf (" %x: %s r%d,cpr1[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC1
7958         else printf (" %x: %s\n",start+i*4,insn[i]);
7959         break;
7960       case COP2:
7961         if(opcode2[i]<3)
7962           printf (" %x: %s r%d,cpr2[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC2
7963         else if(opcode2[i]>3)
7964           printf (" %x: %s r%d,cpr2[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC2
7965         else printf (" %x: %s\n",start+i*4,insn[i]);
7966         break;
7967       case C1LS:
7968         printf (" %x: %s cpr1[%d],r%d+%x\n",start+i*4,insn[i],(source[i]>>16)&0x1f,rs1[i],imm[i]);
7969         break;
7970       case C2LS:
7971         printf (" %x: %s cpr2[%d],r%d+%x\n",start+i*4,insn[i],(source[i]>>16)&0x1f,rs1[i],imm[i]);
7972         break;
7973       case INTCALL:
7974         printf (" %x: %s (INTCALL)\n",start+i*4,insn[i]);
7975         break;
7976       default:
7977         //printf (" %s %8x\n",insn[i],source[i]);
7978         printf (" %x: %s\n",start+i*4,insn[i]);
7979     }
7980 }
7981 #else
7982 static void disassemble_inst(int i) {}
7983 #endif // DISASM
7984
7985 // clear the state completely, instead of just marking
7986 // things invalid like invalidate_all_pages() does
7987 void new_dynarec_clear_full()
7988 {
7989   int n;
7990   out=(u_char *)BASE_ADDR;
7991   memset(invalid_code,1,sizeof(invalid_code));
7992   memset(hash_table,0xff,sizeof(hash_table));
7993   memset(mini_ht,-1,sizeof(mini_ht));
7994   memset(restore_candidate,0,sizeof(restore_candidate));
7995   memset(shadow,0,sizeof(shadow));
7996   copy=shadow;
7997   expirep=16384; // Expiry pointer, +2 blocks
7998   pending_exception=0;
7999   literalcount=0;
8000   stop_after_jal=0;
8001   inv_code_start=inv_code_end=~0;
8002   // TLB
8003 #ifndef DISABLE_TLB
8004   using_tlb=0;
8005   for(n=0;n<524288;n++) // 0 .. 0x7FFFFFFF
8006     memory_map[n]=-1;
8007   for(n=524288;n<526336;n++) // 0x80000000 .. 0x807FFFFF
8008     memory_map[n]=((u_int)rdram-0x80000000)>>2;
8009   for(n=526336;n<1048576;n++) // 0x80800000 .. 0xFFFFFFFF
8010     memory_map[n]=-1;
8011 #endif
8012   for(n=0;n<4096;n++) ll_clear(jump_in+n);
8013   for(n=0;n<4096;n++) ll_clear(jump_out+n);
8014   for(n=0;n<4096;n++) ll_clear(jump_dirty+n);
8015 }
8016
8017 void new_dynarec_init()
8018 {
8019   printf("Init new dynarec\n");
8020   out=(u_char *)BASE_ADDR;
8021 #if BASE_ADDR_FIXED
8022   if (mmap (out, 1<<TARGET_SIZE_2,
8023             PROT_READ | PROT_WRITE | PROT_EXEC,
8024             MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS,
8025             -1, 0) <= 0) {printf("mmap() failed\n");}
8026 #else
8027   // not all systems allow execute in data segment by default
8028   if (mprotect(out, 1<<TARGET_SIZE_2, PROT_READ | PROT_WRITE | PROT_EXEC) != 0)
8029     printf("mprotect() failed\n");
8030 #endif
8031 #ifdef MUPEN64
8032   rdword=&readmem_dword;
8033   fake_pc.f.r.rs=&readmem_dword;
8034   fake_pc.f.r.rt=&readmem_dword;
8035   fake_pc.f.r.rd=&readmem_dword;
8036 #endif
8037   int n;
8038   cycle_multiplier=200;
8039   new_dynarec_clear_full();
8040 #ifdef HOST_IMM8
8041   // Copy this into local area so we don't have to put it in every literal pool
8042   invc_ptr=invalid_code;
8043 #endif
8044 #ifdef MUPEN64
8045   for(n=0;n<0x8000;n++) { // 0 .. 0x7FFFFFFF
8046     writemem[n] = write_nomem_new;
8047     writememb[n] = write_nomemb_new;
8048     writememh[n] = write_nomemh_new;
8049 #ifndef FORCE32
8050     writememd[n] = write_nomemd_new;
8051 #endif
8052     readmem[n] = read_nomem_new;
8053     readmemb[n] = read_nomemb_new;
8054     readmemh[n] = read_nomemh_new;
8055 #ifndef FORCE32
8056     readmemd[n] = read_nomemd_new;
8057 #endif
8058   }
8059   for(n=0x8000;n<0x8080;n++) { // 0x80000000 .. 0x807FFFFF
8060     writemem[n] = write_rdram_new;
8061     writememb[n] = write_rdramb_new;
8062     writememh[n] = write_rdramh_new;
8063 #ifndef FORCE32
8064     writememd[n] = write_rdramd_new;
8065 #endif
8066   }
8067   for(n=0xC000;n<0x10000;n++) { // 0xC0000000 .. 0xFFFFFFFF
8068     writemem[n] = write_nomem_new;
8069     writememb[n] = write_nomemb_new;
8070     writememh[n] = write_nomemh_new;
8071 #ifndef FORCE32
8072     writememd[n] = write_nomemd_new;
8073 #endif
8074     readmem[n] = read_nomem_new;
8075     readmemb[n] = read_nomemb_new;
8076     readmemh[n] = read_nomemh_new;
8077 #ifndef FORCE32
8078     readmemd[n] = read_nomemd_new;
8079 #endif
8080   }
8081 #endif
8082   tlb_hacks();
8083   arch_init();
8084 #ifndef RAM_FIXED
8085   ram_offset=(u_int)rdram-0x80000000;
8086 #endif
8087   if (ram_offset!=0)
8088     printf("warning: RAM is not directly mapped, performance will suffer\n");
8089 }
8090
8091 void new_dynarec_cleanup()
8092 {
8093   int n;
8094   #if BASE_ADDR_FIXED
8095   if (munmap ((void *)BASE_ADDR, 1<<TARGET_SIZE_2) < 0) {printf("munmap() failed\n");}
8096   #endif
8097   for(n=0;n<4096;n++) ll_clear(jump_in+n);
8098   for(n=0;n<4096;n++) ll_clear(jump_out+n);
8099   for(n=0;n<4096;n++) ll_clear(jump_dirty+n);
8100   #ifdef ROM_COPY
8101   if (munmap (ROM_COPY, 67108864) < 0) {printf("munmap() failed\n");}
8102   #endif
8103 }
8104
8105 int new_recompile_block(int addr)
8106 {
8107 /*
8108   if(addr==0x800cd050) {
8109     int block;
8110     for(block=0x80000;block<0x80800;block++) invalidate_block(block);
8111     int n;
8112     for(n=0;n<=2048;n++) ll_clear(jump_dirty+n);
8113   }
8114 */
8115   //if(Count==365117028) tracedebug=1;
8116   assem_debug("NOTCOMPILED: addr = %x -> %x\n", (int)addr, (int)out);
8117   //printf("NOTCOMPILED: addr = %x -> %x\n", (int)addr, (int)out);
8118   //printf("TRACE: count=%d next=%d (compile %x)\n",Count,next_interupt,addr);
8119   //if(debug) 
8120   //printf("TRACE: count=%d next=%d (checksum %x)\n",Count,next_interupt,mchecksum());
8121   //printf("fpu mapping=%x enabled=%x\n",(Status & 0x04000000)>>26,(Status & 0x20000000)>>29);
8122   /*if(Count>=312978186) {
8123     rlist();
8124   }*/
8125   //rlist();
8126   start = (u_int)addr&~3;
8127   //assert(((u_int)addr&1)==0);
8128   new_dynarec_did_compile=1;
8129 #ifdef PCSX
8130   if (Config.HLE && start == 0x80001000) // hlecall
8131   {
8132     // XXX: is this enough? Maybe check hleSoftCall?
8133     u_int beginning=(u_int)out;
8134     u_int page=get_page(start);
8135     invalid_code[start>>12]=0;
8136     emit_movimm(start,0);
8137     emit_writeword(0,(int)&pcaddr);
8138     emit_jmp((int)new_dyna_leave);
8139     literal_pool(0);
8140 #ifdef __arm__
8141     __clear_cache((void *)beginning,out);
8142 #endif
8143     ll_add(jump_in+page,start,(void *)beginning);
8144     return 0;
8145   }
8146   else if ((u_int)addr < 0x00200000 ||
8147     (0xa0000000 <= addr && addr < 0xa0200000)) {
8148     // used for BIOS calls mostly?
8149     source = (u_int *)((u_int)rdram+(start&0x1fffff));
8150     pagelimit = (addr&0xa0000000)|0x00200000;
8151   }
8152   else if (!Config.HLE && (
8153 /*    (0x9fc00000 <= addr && addr < 0x9fc80000) ||*/
8154     (0xbfc00000 <= addr && addr < 0xbfc80000))) {
8155     // BIOS
8156     source = (u_int *)((u_int)psxR+(start&0x7ffff));
8157     pagelimit = (addr&0xfff00000)|0x80000;
8158   }
8159   else
8160 #endif
8161 #ifdef MUPEN64
8162   if ((int)addr >= 0xa4000000 && (int)addr < 0xa4001000) {
8163     source = (u_int *)((u_int)SP_DMEM+start-0xa4000000);
8164     pagelimit = 0xa4001000;
8165   }
8166   else
8167 #endif
8168   if ((int)addr >= 0x80000000 && (int)addr < 0x80000000+RAM_SIZE) {
8169     source = (u_int *)((u_int)rdram+start-0x80000000);
8170     pagelimit = 0x80000000+RAM_SIZE;
8171   }
8172 #ifndef DISABLE_TLB
8173   else if ((signed int)addr >= (signed int)0xC0000000) {
8174     //printf("addr=%x mm=%x\n",(u_int)addr,(memory_map[start>>12]<<2));
8175     //if(tlb_LUT_r[start>>12])
8176       //source = (u_int *)(((int)rdram)+(tlb_LUT_r[start>>12]&0xFFFFF000)+(((int)addr)&0xFFF)-0x80000000);
8177     if((signed int)memory_map[start>>12]>=0) {
8178       source = (u_int *)((u_int)(start+(memory_map[start>>12]<<2)));
8179       pagelimit=(start+4096)&0xFFFFF000;
8180       int map=memory_map[start>>12];
8181       int i;
8182       for(i=0;i<5;i++) {
8183         //printf("start: %x next: %x\n",map,memory_map[pagelimit>>12]);
8184         if((map&0xBFFFFFFF)==(memory_map[pagelimit>>12]&0xBFFFFFFF)) pagelimit+=4096;
8185       }
8186       assem_debug("pagelimit=%x\n",pagelimit);
8187       assem_debug("mapping=%x (%x)\n",memory_map[start>>12],(memory_map[start>>12]<<2)+start);
8188     }
8189     else {
8190       assem_debug("Compile at unmapped memory address: %x \n", (int)addr);
8191       //assem_debug("start: %x next: %x\n",memory_map[start>>12],memory_map[(start+4096)>>12]);
8192       return -1; // Caller will invoke exception handler
8193     }
8194     //printf("source= %x\n",(int)source);
8195   }
8196 #endif
8197   else {
8198     printf("Compile at bogus memory address: %x \n", (int)addr);
8199     exit(1);
8200   }
8201
8202   /* Pass 1: disassemble */
8203   /* Pass 2: register dependencies, branch targets */
8204   /* Pass 3: register allocation */
8205   /* Pass 4: branch dependencies */
8206   /* Pass 5: pre-alloc */
8207   /* Pass 6: optimize clean/dirty state */
8208   /* Pass 7: flag 32-bit registers */
8209   /* Pass 8: assembly */
8210   /* Pass 9: linker */
8211   /* Pass 10: garbage collection / free memory */
8212
8213   int i,j;
8214   int done=0;
8215   unsigned int type,op,op2;
8216
8217   //printf("addr = %x source = %x %x\n", addr,source,source[0]);
8218   
8219   /* Pass 1 disassembly */
8220
8221   for(i=0;!done;i++) {
8222     bt[i]=0;likely[i]=0;ooo[i]=0;op2=0;
8223     minimum_free_regs[i]=0;
8224     opcode[i]=op=source[i]>>26;
8225     switch(op)
8226     {
8227       case 0x00: strcpy(insn[i],"special"); type=NI;
8228         op2=source[i]&0x3f;
8229         switch(op2)
8230         {
8231           case 0x00: strcpy(insn[i],"SLL"); type=SHIFTIMM; break;
8232           case 0x02: strcpy(insn[i],"SRL"); type=SHIFTIMM; break;
8233           case 0x03: strcpy(insn[i],"SRA"); type=SHIFTIMM; break;
8234           case 0x04: strcpy(insn[i],"SLLV"); type=SHIFT; break;
8235           case 0x06: strcpy(insn[i],"SRLV"); type=SHIFT; break;
8236           case 0x07: strcpy(insn[i],"SRAV"); type=SHIFT; break;
8237           case 0x08: strcpy(insn[i],"JR"); type=RJUMP; break;
8238           case 0x09: strcpy(insn[i],"JALR"); type=RJUMP; break;
8239           case 0x0C: strcpy(insn[i],"SYSCALL"); type=SYSCALL; break;
8240           case 0x0D: strcpy(insn[i],"BREAK"); type=OTHER; break;
8241           case 0x0F: strcpy(insn[i],"SYNC"); type=OTHER; break;
8242           case 0x10: strcpy(insn[i],"MFHI"); type=MOV; break;
8243           case 0x11: strcpy(insn[i],"MTHI"); type=MOV; break;
8244           case 0x12: strcpy(insn[i],"MFLO"); type=MOV; break;
8245           case 0x13: strcpy(insn[i],"MTLO"); type=MOV; break;
8246           case 0x18: strcpy(insn[i],"MULT"); type=MULTDIV; break;
8247           case 0x19: strcpy(insn[i],"MULTU"); type=MULTDIV; break;
8248           case 0x1A: strcpy(insn[i],"DIV"); type=MULTDIV; break;
8249           case 0x1B: strcpy(insn[i],"DIVU"); type=MULTDIV; break;
8250           case 0x20: strcpy(insn[i],"ADD"); type=ALU; break;
8251           case 0x21: strcpy(insn[i],"ADDU"); type=ALU; break;
8252           case 0x22: strcpy(insn[i],"SUB"); type=ALU; break;
8253           case 0x23: strcpy(insn[i],"SUBU"); type=ALU; break;
8254           case 0x24: strcpy(insn[i],"AND"); type=ALU; break;
8255           case 0x25: strcpy(insn[i],"OR"); type=ALU; break;
8256           case 0x26: strcpy(insn[i],"XOR"); type=ALU; break;
8257           case 0x27: strcpy(insn[i],"NOR"); type=ALU; break;
8258           case 0x2A: strcpy(insn[i],"SLT"); type=ALU; break;
8259           case 0x2B: strcpy(insn[i],"SLTU"); type=ALU; break;
8260           case 0x30: strcpy(insn[i],"TGE"); type=NI; break;
8261           case 0x31: strcpy(insn[i],"TGEU"); type=NI; break;
8262           case 0x32: strcpy(insn[i],"TLT"); type=NI; break;
8263           case 0x33: strcpy(insn[i],"TLTU"); type=NI; break;
8264           case 0x34: strcpy(insn[i],"TEQ"); type=NI; break;
8265           case 0x36: strcpy(insn[i],"TNE"); type=NI; break;
8266 #ifndef FORCE32
8267           case 0x14: strcpy(insn[i],"DSLLV"); type=SHIFT; break;
8268           case 0x16: strcpy(insn[i],"DSRLV"); type=SHIFT; break;
8269           case 0x17: strcpy(insn[i],"DSRAV"); type=SHIFT; break;
8270           case 0x1C: strcpy(insn[i],"DMULT"); type=MULTDIV; break;
8271           case 0x1D: strcpy(insn[i],"DMULTU"); type=MULTDIV; break;
8272           case 0x1E: strcpy(insn[i],"DDIV"); type=MULTDIV; break;
8273           case 0x1F: strcpy(insn[i],"DDIVU"); type=MULTDIV; break;
8274           case 0x2C: strcpy(insn[i],"DADD"); type=ALU; break;
8275           case 0x2D: strcpy(insn[i],"DADDU"); type=ALU; break;
8276           case 0x2E: strcpy(insn[i],"DSUB"); type=ALU; break;
8277           case 0x2F: strcpy(insn[i],"DSUBU"); type=ALU; break;
8278           case 0x38: strcpy(insn[i],"DSLL"); type=SHIFTIMM; break;
8279           case 0x3A: strcpy(insn[i],"DSRL"); type=SHIFTIMM; break;
8280           case 0x3B: strcpy(insn[i],"DSRA"); type=SHIFTIMM; break;
8281           case 0x3C: strcpy(insn[i],"DSLL32"); type=SHIFTIMM; break;
8282           case 0x3E: strcpy(insn[i],"DSRL32"); type=SHIFTIMM; break;
8283           case 0x3F: strcpy(insn[i],"DSRA32"); type=SHIFTIMM; break;
8284 #endif
8285         }
8286         break;
8287       case 0x01: strcpy(insn[i],"regimm"); type=NI;
8288         op2=(source[i]>>16)&0x1f;
8289         switch(op2)
8290         {
8291           case 0x00: strcpy(insn[i],"BLTZ"); type=SJUMP; break;
8292           case 0x01: strcpy(insn[i],"BGEZ"); type=SJUMP; break;
8293           case 0x02: strcpy(insn[i],"BLTZL"); type=SJUMP; break;
8294           case 0x03: strcpy(insn[i],"BGEZL"); type=SJUMP; break;
8295           case 0x08: strcpy(insn[i],"TGEI"); type=NI; break;
8296           case 0x09: strcpy(insn[i],"TGEIU"); type=NI; break;
8297           case 0x0A: strcpy(insn[i],"TLTI"); type=NI; break;
8298           case 0x0B: strcpy(insn[i],"TLTIU"); type=NI; break;
8299           case 0x0C: strcpy(insn[i],"TEQI"); type=NI; break;
8300           case 0x0E: strcpy(insn[i],"TNEI"); type=NI; break;
8301           case 0x10: strcpy(insn[i],"BLTZAL"); type=SJUMP; break;
8302           case 0x11: strcpy(insn[i],"BGEZAL"); type=SJUMP; break;
8303           case 0x12: strcpy(insn[i],"BLTZALL"); type=SJUMP; break;
8304           case 0x13: strcpy(insn[i],"BGEZALL"); type=SJUMP; break;
8305         }
8306         break;
8307       case 0x02: strcpy(insn[i],"J"); type=UJUMP; break;
8308       case 0x03: strcpy(insn[i],"JAL"); type=UJUMP; break;
8309       case 0x04: strcpy(insn[i],"BEQ"); type=CJUMP; break;
8310       case 0x05: strcpy(insn[i],"BNE"); type=CJUMP; break;
8311       case 0x06: strcpy(insn[i],"BLEZ"); type=CJUMP; break;
8312       case 0x07: strcpy(insn[i],"BGTZ"); type=CJUMP; break;
8313       case 0x08: strcpy(insn[i],"ADDI"); type=IMM16; break;
8314       case 0x09: strcpy(insn[i],"ADDIU"); type=IMM16; break;
8315       case 0x0A: strcpy(insn[i],"SLTI"); type=IMM16; break;
8316       case 0x0B: strcpy(insn[i],"SLTIU"); type=IMM16; break;
8317       case 0x0C: strcpy(insn[i],"ANDI"); type=IMM16; break;
8318       case 0x0D: strcpy(insn[i],"ORI"); type=IMM16; break;
8319       case 0x0E: strcpy(insn[i],"XORI"); type=IMM16; break;
8320       case 0x0F: strcpy(insn[i],"LUI"); type=IMM16; break;
8321       case 0x10: strcpy(insn[i],"cop0"); type=NI;
8322         op2=(source[i]>>21)&0x1f;
8323         switch(op2)
8324         {
8325           case 0x00: strcpy(insn[i],"MFC0"); type=COP0; break;
8326           case 0x04: strcpy(insn[i],"MTC0"); type=COP0; break;
8327           case 0x10: strcpy(insn[i],"tlb"); type=NI;
8328           switch(source[i]&0x3f)
8329           {
8330             case 0x01: strcpy(insn[i],"TLBR"); type=COP0; break;
8331             case 0x02: strcpy(insn[i],"TLBWI"); type=COP0; break;
8332             case 0x06: strcpy(insn[i],"TLBWR"); type=COP0; break;
8333             case 0x08: strcpy(insn[i],"TLBP"); type=COP0; break;
8334 #ifdef PCSX
8335             case 0x10: strcpy(insn[i],"RFE"); type=COP0; break;
8336 #else
8337             case 0x18: strcpy(insn[i],"ERET"); type=COP0; break;
8338 #endif
8339           }
8340         }
8341         break;
8342       case 0x11: strcpy(insn[i],"cop1"); type=NI;
8343         op2=(source[i]>>21)&0x1f;
8344         switch(op2)
8345         {
8346           case 0x00: strcpy(insn[i],"MFC1"); type=COP1; break;
8347           case 0x01: strcpy(insn[i],"DMFC1"); type=COP1; break;
8348           case 0x02: strcpy(insn[i],"CFC1"); type=COP1; break;
8349           case 0x04: strcpy(insn[i],"MTC1"); type=COP1; break;
8350           case 0x05: strcpy(insn[i],"DMTC1"); type=COP1; break;
8351           case 0x06: strcpy(insn[i],"CTC1"); type=COP1; break;
8352           case 0x08: strcpy(insn[i],"BC1"); type=FJUMP;
8353           switch((source[i]>>16)&0x3)
8354           {
8355             case 0x00: strcpy(insn[i],"BC1F"); break;
8356             case 0x01: strcpy(insn[i],"BC1T"); break;
8357             case 0x02: strcpy(insn[i],"BC1FL"); break;
8358             case 0x03: strcpy(insn[i],"BC1TL"); break;
8359           }
8360           break;
8361           case 0x10: strcpy(insn[i],"C1.S"); type=NI;
8362           switch(source[i]&0x3f)
8363           {
8364             case 0x00: strcpy(insn[i],"ADD.S"); type=FLOAT; break;
8365             case 0x01: strcpy(insn[i],"SUB.S"); type=FLOAT; break;
8366             case 0x02: strcpy(insn[i],"MUL.S"); type=FLOAT; break;
8367             case 0x03: strcpy(insn[i],"DIV.S"); type=FLOAT; break;
8368             case 0x04: strcpy(insn[i],"SQRT.S"); type=FLOAT; break;
8369             case 0x05: strcpy(insn[i],"ABS.S"); type=FLOAT; break;
8370             case 0x06: strcpy(insn[i],"MOV.S"); type=FLOAT; break;
8371             case 0x07: strcpy(insn[i],"NEG.S"); type=FLOAT; break;
8372             case 0x08: strcpy(insn[i],"ROUND.L.S"); type=FCONV; break;
8373             case 0x09: strcpy(insn[i],"TRUNC.L.S"); type=FCONV; break;
8374             case 0x0A: strcpy(insn[i],"CEIL.L.S"); type=FCONV; break;
8375             case 0x0B: strcpy(insn[i],"FLOOR.L.S"); type=FCONV; break;
8376             case 0x0C: strcpy(insn[i],"ROUND.W.S"); type=FCONV; break;
8377             case 0x0D: strcpy(insn[i],"TRUNC.W.S"); type=FCONV; break;
8378             case 0x0E: strcpy(insn[i],"CEIL.W.S"); type=FCONV; break;
8379             case 0x0F: strcpy(insn[i],"FLOOR.W.S"); type=FCONV; break;
8380             case 0x21: strcpy(insn[i],"CVT.D.S"); type=FCONV; break;
8381             case 0x24: strcpy(insn[i],"CVT.W.S"); type=FCONV; break;
8382             case 0x25: strcpy(insn[i],"CVT.L.S"); type=FCONV; break;
8383             case 0x30: strcpy(insn[i],"C.F.S"); type=FCOMP; break;
8384             case 0x31: strcpy(insn[i],"C.UN.S"); type=FCOMP; break;
8385             case 0x32: strcpy(insn[i],"C.EQ.S"); type=FCOMP; break;
8386             case 0x33: strcpy(insn[i],"C.UEQ.S"); type=FCOMP; break;
8387             case 0x34: strcpy(insn[i],"C.OLT.S"); type=FCOMP; break;
8388             case 0x35: strcpy(insn[i],"C.ULT.S"); type=FCOMP; break;
8389             case 0x36: strcpy(insn[i],"C.OLE.S"); type=FCOMP; break;
8390             case 0x37: strcpy(insn[i],"C.ULE.S"); type=FCOMP; break;
8391             case 0x38: strcpy(insn[i],"C.SF.S"); type=FCOMP; break;
8392             case 0x39: strcpy(insn[i],"C.NGLE.S"); type=FCOMP; break;
8393             case 0x3A: strcpy(insn[i],"C.SEQ.S"); type=FCOMP; break;
8394             case 0x3B: strcpy(insn[i],"C.NGL.S"); type=FCOMP; break;
8395             case 0x3C: strcpy(insn[i],"C.LT.S"); type=FCOMP; break;
8396             case 0x3D: strcpy(insn[i],"C.NGE.S"); type=FCOMP; break;
8397             case 0x3E: strcpy(insn[i],"C.LE.S"); type=FCOMP; break;
8398             case 0x3F: strcpy(insn[i],"C.NGT.S"); type=FCOMP; break;
8399           }
8400           break;
8401           case 0x11: strcpy(insn[i],"C1.D"); type=NI;
8402           switch(source[i]&0x3f)
8403           {
8404             case 0x00: strcpy(insn[i],"ADD.D"); type=FLOAT; break;
8405             case 0x01: strcpy(insn[i],"SUB.D"); type=FLOAT; break;
8406             case 0x02: strcpy(insn[i],"MUL.D"); type=FLOAT; break;
8407             case 0x03: strcpy(insn[i],"DIV.D"); type=FLOAT; break;
8408             case 0x04: strcpy(insn[i],"SQRT.D"); type=FLOAT; break;
8409             case 0x05: strcpy(insn[i],"ABS.D"); type=FLOAT; break;
8410             case 0x06: strcpy(insn[i],"MOV.D"); type=FLOAT; break;
8411             case 0x07: strcpy(insn[i],"NEG.D"); type=FLOAT; break;
8412             case 0x08: strcpy(insn[i],"ROUND.L.D"); type=FCONV; break;
8413             case 0x09: strcpy(insn[i],"TRUNC.L.D"); type=FCONV; break;
8414             case 0x0A: strcpy(insn[i],"CEIL.L.D"); type=FCONV; break;
8415             case 0x0B: strcpy(insn[i],"FLOOR.L.D"); type=FCONV; break;
8416             case 0x0C: strcpy(insn[i],"ROUND.W.D"); type=FCONV; break;
8417             case 0x0D: strcpy(insn[i],"TRUNC.W.D"); type=FCONV; break;
8418             case 0x0E: strcpy(insn[i],"CEIL.W.D"); type=FCONV; break;
8419             case 0x0F: strcpy(insn[i],"FLOOR.W.D"); type=FCONV; break;
8420             case 0x20: strcpy(insn[i],"CVT.S.D"); type=FCONV; break;
8421             case 0x24: strcpy(insn[i],"CVT.W.D"); type=FCONV; break;
8422             case 0x25: strcpy(insn[i],"CVT.L.D"); type=FCONV; break;
8423             case 0x30: strcpy(insn[i],"C.F.D"); type=FCOMP; break;
8424             case 0x31: strcpy(insn[i],"C.UN.D"); type=FCOMP; break;
8425             case 0x32: strcpy(insn[i],"C.EQ.D"); type=FCOMP; break;
8426             case 0x33: strcpy(insn[i],"C.UEQ.D"); type=FCOMP; break;
8427             case 0x34: strcpy(insn[i],"C.OLT.D"); type=FCOMP; break;
8428             case 0x35: strcpy(insn[i],"C.ULT.D"); type=FCOMP; break;
8429             case 0x36: strcpy(insn[i],"C.OLE.D"); type=FCOMP; break;
8430             case 0x37: strcpy(insn[i],"C.ULE.D"); type=FCOMP; break;
8431             case 0x38: strcpy(insn[i],"C.SF.D"); type=FCOMP; break;
8432             case 0x39: strcpy(insn[i],"C.NGLE.D"); type=FCOMP; break;
8433             case 0x3A: strcpy(insn[i],"C.SEQ.D"); type=FCOMP; break;
8434             case 0x3B: strcpy(insn[i],"C.NGL.D"); type=FCOMP; break;
8435             case 0x3C: strcpy(insn[i],"C.LT.D"); type=FCOMP; break;
8436             case 0x3D: strcpy(insn[i],"C.NGE.D"); type=FCOMP; break;
8437             case 0x3E: strcpy(insn[i],"C.LE.D"); type=FCOMP; break;
8438             case 0x3F: strcpy(insn[i],"C.NGT.D"); type=FCOMP; break;
8439           }
8440           break;
8441           case 0x14: strcpy(insn[i],"C1.W"); type=NI;
8442           switch(source[i]&0x3f)
8443           {
8444             case 0x20: strcpy(insn[i],"CVT.S.W"); type=FCONV; break;
8445             case 0x21: strcpy(insn[i],"CVT.D.W"); type=FCONV; break;
8446           }
8447           break;
8448           case 0x15: strcpy(insn[i],"C1.L"); type=NI;
8449           switch(source[i]&0x3f)
8450           {
8451             case 0x20: strcpy(insn[i],"CVT.S.L"); type=FCONV; break;
8452             case 0x21: strcpy(insn[i],"CVT.D.L"); type=FCONV; break;
8453           }
8454           break;
8455         }
8456         break;
8457 #ifndef FORCE32
8458       case 0x14: strcpy(insn[i],"BEQL"); type=CJUMP; break;
8459       case 0x15: strcpy(insn[i],"BNEL"); type=CJUMP; break;
8460       case 0x16: strcpy(insn[i],"BLEZL"); type=CJUMP; break;
8461       case 0x17: strcpy(insn[i],"BGTZL"); type=CJUMP; break;
8462       case 0x18: strcpy(insn[i],"DADDI"); type=IMM16; break;
8463       case 0x19: strcpy(insn[i],"DADDIU"); type=IMM16; break;
8464       case 0x1A: strcpy(insn[i],"LDL"); type=LOADLR; break;
8465       case 0x1B: strcpy(insn[i],"LDR"); type=LOADLR; break;
8466 #endif
8467       case 0x20: strcpy(insn[i],"LB"); type=LOAD; break;
8468       case 0x21: strcpy(insn[i],"LH"); type=LOAD; break;
8469       case 0x22: strcpy(insn[i],"LWL"); type=LOADLR; break;
8470       case 0x23: strcpy(insn[i],"LW"); type=LOAD; break;
8471       case 0x24: strcpy(insn[i],"LBU"); type=LOAD; break;
8472       case 0x25: strcpy(insn[i],"LHU"); type=LOAD; break;
8473       case 0x26: strcpy(insn[i],"LWR"); type=LOADLR; break;
8474 #ifndef FORCE32
8475       case 0x27: strcpy(insn[i],"LWU"); type=LOAD; break;
8476 #endif
8477       case 0x28: strcpy(insn[i],"SB"); type=STORE; break;
8478       case 0x29: strcpy(insn[i],"SH"); type=STORE; break;
8479       case 0x2A: strcpy(insn[i],"SWL"); type=STORELR; break;
8480       case 0x2B: strcpy(insn[i],"SW"); type=STORE; break;
8481 #ifndef FORCE32
8482       case 0x2C: strcpy(insn[i],"SDL"); type=STORELR; break;
8483       case 0x2D: strcpy(insn[i],"SDR"); type=STORELR; break;
8484 #endif
8485       case 0x2E: strcpy(insn[i],"SWR"); type=STORELR; break;
8486       case 0x2F: strcpy(insn[i],"CACHE"); type=NOP; break;
8487       case 0x30: strcpy(insn[i],"LL"); type=NI; break;
8488       case 0x31: strcpy(insn[i],"LWC1"); type=C1LS; break;
8489 #ifndef FORCE32
8490       case 0x34: strcpy(insn[i],"LLD"); type=NI; break;
8491       case 0x35: strcpy(insn[i],"LDC1"); type=C1LS; break;
8492       case 0x37: strcpy(insn[i],"LD"); type=LOAD; break;
8493 #endif
8494       case 0x38: strcpy(insn[i],"SC"); type=NI; break;
8495       case 0x39: strcpy(insn[i],"SWC1"); type=C1LS; break;
8496 #ifndef FORCE32
8497       case 0x3C: strcpy(insn[i],"SCD"); type=NI; break;
8498       case 0x3D: strcpy(insn[i],"SDC1"); type=C1LS; break;
8499       case 0x3F: strcpy(insn[i],"SD"); type=STORE; break;
8500 #endif
8501 #ifdef PCSX
8502       case 0x12: strcpy(insn[i],"COP2"); type=NI;
8503         op2=(source[i]>>21)&0x1f;
8504         //if (op2 & 0x10) {
8505         if (source[i]&0x3f) { // use this hack to support old savestates with patched gte insns
8506           if (gte_handlers[source[i]&0x3f]!=NULL) {
8507             if (gte_regnames[source[i]&0x3f]!=NULL)
8508               strcpy(insn[i],gte_regnames[source[i]&0x3f]);
8509             else
8510               snprintf(insn[i], sizeof(insn[i]), "COP2 %x", source[i]&0x3f);
8511             type=C2OP;
8512           }
8513         }
8514         else switch(op2)
8515         {
8516           case 0x00: strcpy(insn[i],"MFC2"); type=COP2; break;
8517           case 0x02: strcpy(insn[i],"CFC2"); type=COP2; break;
8518           case 0x04: strcpy(insn[i],"MTC2"); type=COP2; break;
8519           case 0x06: strcpy(insn[i],"CTC2"); type=COP2; break;
8520         }
8521         break;
8522       case 0x32: strcpy(insn[i],"LWC2"); type=C2LS; break;
8523       case 0x3A: strcpy(insn[i],"SWC2"); type=C2LS; break;
8524       case 0x3B: strcpy(insn[i],"HLECALL"); type=HLECALL; break;
8525 #endif
8526       default: strcpy(insn[i],"???"); type=NI;
8527         printf("NI %08x @%08x (%08x)\n", source[i], addr + i*4, addr);
8528         break;
8529     }
8530     itype[i]=type;
8531     opcode2[i]=op2;
8532     /* Get registers/immediates */
8533     lt1[i]=0;
8534     us1[i]=0;
8535     us2[i]=0;
8536     dep1[i]=0;
8537     dep2[i]=0;
8538     gte_rs[i]=gte_rt[i]=0;
8539     switch(type) {
8540       case LOAD:
8541         rs1[i]=(source[i]>>21)&0x1f;
8542         rs2[i]=0;
8543         rt1[i]=(source[i]>>16)&0x1f;
8544         rt2[i]=0;
8545         imm[i]=(short)source[i];
8546         break;
8547       case STORE:
8548       case STORELR:
8549         rs1[i]=(source[i]>>21)&0x1f;
8550         rs2[i]=(source[i]>>16)&0x1f;
8551         rt1[i]=0;
8552         rt2[i]=0;
8553         imm[i]=(short)source[i];
8554         if(op==0x2c||op==0x2d||op==0x3f) us1[i]=rs2[i]; // 64-bit SDL/SDR/SD
8555         break;
8556       case LOADLR:
8557         // LWL/LWR only load part of the register,
8558         // therefore the target register must be treated as a source too
8559         rs1[i]=(source[i]>>21)&0x1f;
8560         rs2[i]=(source[i]>>16)&0x1f;
8561         rt1[i]=(source[i]>>16)&0x1f;
8562         rt2[i]=0;
8563         imm[i]=(short)source[i];
8564         if(op==0x1a||op==0x1b) us1[i]=rs2[i]; // LDR/LDL
8565         if(op==0x26) dep1[i]=rt1[i]; // LWR
8566         break;
8567       case IMM16:
8568         if (op==0x0f) rs1[i]=0; // LUI instruction has no source register
8569         else rs1[i]=(source[i]>>21)&0x1f;
8570         rs2[i]=0;
8571         rt1[i]=(source[i]>>16)&0x1f;
8572         rt2[i]=0;
8573         if(op>=0x0c&&op<=0x0e) { // ANDI/ORI/XORI
8574           imm[i]=(unsigned short)source[i];
8575         }else{
8576           imm[i]=(short)source[i];
8577         }
8578         if(op==0x18||op==0x19) us1[i]=rs1[i]; // DADDI/DADDIU
8579         if(op==0x0a||op==0x0b) us1[i]=rs1[i]; // SLTI/SLTIU
8580         if(op==0x0d||op==0x0e) dep1[i]=rs1[i]; // ORI/XORI
8581         break;
8582       case UJUMP:
8583         rs1[i]=0;
8584         rs2[i]=0;
8585         rt1[i]=0;
8586         rt2[i]=0;
8587         // The JAL instruction writes to r31.
8588         if (op&1) {
8589           rt1[i]=31;
8590         }
8591         rs2[i]=CCREG;
8592         break;
8593       case RJUMP:
8594         rs1[i]=(source[i]>>21)&0x1f;
8595         rs2[i]=0;
8596         rt1[i]=0;
8597         rt2[i]=0;
8598         // The JALR instruction writes to rd.
8599         if (op2&1) {
8600           rt1[i]=(source[i]>>11)&0x1f;
8601         }
8602         rs2[i]=CCREG;
8603         break;
8604       case CJUMP:
8605         rs1[i]=(source[i]>>21)&0x1f;
8606         rs2[i]=(source[i]>>16)&0x1f;
8607         rt1[i]=0;
8608         rt2[i]=0;
8609         if(op&2) { // BGTZ/BLEZ
8610           rs2[i]=0;
8611         }
8612         us1[i]=rs1[i];
8613         us2[i]=rs2[i];
8614         likely[i]=op>>4;
8615         break;
8616       case SJUMP:
8617         rs1[i]=(source[i]>>21)&0x1f;
8618         rs2[i]=CCREG;
8619         rt1[i]=0;
8620         rt2[i]=0;
8621         us1[i]=rs1[i];
8622         if(op2&0x10) { // BxxAL
8623           rt1[i]=31;
8624           // NOTE: If the branch is not taken, r31 is still overwritten
8625         }
8626         likely[i]=(op2&2)>>1;
8627         break;
8628       case FJUMP:
8629         rs1[i]=FSREG;
8630         rs2[i]=CSREG;
8631         rt1[i]=0;
8632         rt2[i]=0;
8633         likely[i]=((source[i])>>17)&1;
8634         break;
8635       case ALU:
8636         rs1[i]=(source[i]>>21)&0x1f; // source
8637         rs2[i]=(source[i]>>16)&0x1f; // subtract amount
8638         rt1[i]=(source[i]>>11)&0x1f; // destination
8639         rt2[i]=0;
8640         if(op2==0x2a||op2==0x2b) { // SLT/SLTU
8641           us1[i]=rs1[i];us2[i]=rs2[i];
8642         }
8643         else if(op2>=0x24&&op2<=0x27) { // AND/OR/XOR/NOR
8644           dep1[i]=rs1[i];dep2[i]=rs2[i];
8645         }
8646         else if(op2>=0x2c&&op2<=0x2f) { // DADD/DSUB
8647           dep1[i]=rs1[i];dep2[i]=rs2[i];
8648         }
8649         break;
8650       case MULTDIV:
8651         rs1[i]=(source[i]>>21)&0x1f; // source
8652         rs2[i]=(source[i]>>16)&0x1f; // divisor
8653         rt1[i]=HIREG;
8654         rt2[i]=LOREG;
8655         if (op2>=0x1c&&op2<=0x1f) { // DMULT/DMULTU/DDIV/DDIVU
8656           us1[i]=rs1[i];us2[i]=rs2[i];
8657         }
8658         break;
8659       case MOV:
8660         rs1[i]=0;
8661         rs2[i]=0;
8662         rt1[i]=0;
8663         rt2[i]=0;
8664         if(op2==0x10) rs1[i]=HIREG; // MFHI
8665         if(op2==0x11) rt1[i]=HIREG; // MTHI
8666         if(op2==0x12) rs1[i]=LOREG; // MFLO
8667         if(op2==0x13) rt1[i]=LOREG; // MTLO
8668         if((op2&0x1d)==0x10) rt1[i]=(source[i]>>11)&0x1f; // MFxx
8669         if((op2&0x1d)==0x11) rs1[i]=(source[i]>>21)&0x1f; // MTxx
8670         dep1[i]=rs1[i];
8671         break;
8672       case SHIFT:
8673         rs1[i]=(source[i]>>16)&0x1f; // target of shift
8674         rs2[i]=(source[i]>>21)&0x1f; // shift amount
8675         rt1[i]=(source[i]>>11)&0x1f; // destination
8676         rt2[i]=0;
8677         // DSLLV/DSRLV/DSRAV are 64-bit
8678         if(op2>=0x14&&op2<=0x17) us1[i]=rs1[i];
8679         break;
8680       case SHIFTIMM:
8681         rs1[i]=(source[i]>>16)&0x1f;
8682         rs2[i]=0;
8683         rt1[i]=(source[i]>>11)&0x1f;
8684         rt2[i]=0;
8685         imm[i]=(source[i]>>6)&0x1f;
8686         // DSxx32 instructions
8687         if(op2>=0x3c) imm[i]|=0x20;
8688         // DSLL/DSRL/DSRA/DSRA32/DSRL32 but not DSLL32 require 64-bit source
8689         if(op2>=0x38&&op2!=0x3c) us1[i]=rs1[i];
8690         break;
8691       case COP0:
8692         rs1[i]=0;
8693         rs2[i]=0;
8694         rt1[i]=0;
8695         rt2[i]=0;
8696         if(op2==0) rt1[i]=(source[i]>>16)&0x1F; // MFC0
8697         if(op2==4) rs1[i]=(source[i]>>16)&0x1F; // MTC0
8698         if(op2==4&&((source[i]>>11)&0x1f)==12) rt2[i]=CSREG; // Status
8699         if(op2==16) if((source[i]&0x3f)==0x18) rs2[i]=CCREG; // ERET
8700         break;
8701       case COP1:
8702         rs1[i]=0;
8703         rs2[i]=0;
8704         rt1[i]=0;
8705         rt2[i]=0;
8706         if(op2<3) rt1[i]=(source[i]>>16)&0x1F; // MFC1/DMFC1/CFC1
8707         if(op2>3) rs1[i]=(source[i]>>16)&0x1F; // MTC1/DMTC1/CTC1
8708         if(op2==5) us1[i]=rs1[i]; // DMTC1
8709         rs2[i]=CSREG;
8710         break;
8711       case COP2:
8712         rs1[i]=0;
8713         rs2[i]=0;
8714         rt1[i]=0;
8715         rt2[i]=0;
8716         if(op2<3) rt1[i]=(source[i]>>16)&0x1F; // MFC2/CFC2
8717         if(op2>3) rs1[i]=(source[i]>>16)&0x1F; // MTC2/CTC2
8718         rs2[i]=CSREG;
8719         int gr=(source[i]>>11)&0x1F;
8720         switch(op2)
8721         {
8722           case 0x00: gte_rs[i]=1ll<<gr; break; // MFC2
8723           case 0x04: gte_rt[i]=1ll<<gr; break; // MTC2
8724           case 0x02: gte_rs[i]=1ll<<(gr+32); break; // CFC2
8725           case 0x06: gte_rt[i]=1ll<<(gr+32); break; // CTC2
8726         }
8727         break;
8728       case C1LS:
8729         rs1[i]=(source[i]>>21)&0x1F;
8730         rs2[i]=CSREG;
8731         rt1[i]=0;
8732         rt2[i]=0;
8733         imm[i]=(short)source[i];
8734         break;
8735       case C2LS:
8736         rs1[i]=(source[i]>>21)&0x1F;
8737         rs2[i]=0;
8738         rt1[i]=0;
8739         rt2[i]=0;
8740         imm[i]=(short)source[i];
8741         if(op==0x32) gte_rt[i]=1ll<<((source[i]>>16)&0x1F); // LWC2
8742         else gte_rs[i]=1ll<<((source[i]>>16)&0x1F); // SWC2
8743         break;
8744       case C2OP:
8745         rs1[i]=0;
8746         rs2[i]=0;
8747         rt1[i]=0;
8748         rt2[i]=0;
8749         gte_rs[i]=gte_reg_reads[source[i]&0x3f];
8750         gte_rt[i]=gte_reg_writes[source[i]&0x3f];
8751         gte_rt[i]|=1ll<<63; // every op changes flags
8752         if((source[i]&0x3f)==GTE_MVMVA) {
8753           int v = (source[i] >> 15) & 3;
8754           gte_rs[i]&=~0xe3fll;
8755           if(v==3) gte_rs[i]|=0xe00ll;
8756           else gte_rs[i]|=3ll<<(v*2);
8757         }
8758         break;
8759       case FLOAT:
8760       case FCONV:
8761         rs1[i]=0;
8762         rs2[i]=CSREG;
8763         rt1[i]=0;
8764         rt2[i]=0;
8765         break;
8766       case FCOMP:
8767         rs1[i]=FSREG;
8768         rs2[i]=CSREG;
8769         rt1[i]=FSREG;
8770         rt2[i]=0;
8771         break;
8772       case SYSCALL:
8773       case HLECALL:
8774       case INTCALL:
8775         rs1[i]=CCREG;
8776         rs2[i]=0;
8777         rt1[i]=0;
8778         rt2[i]=0;
8779         break;
8780       default:
8781         rs1[i]=0;
8782         rs2[i]=0;
8783         rt1[i]=0;
8784         rt2[i]=0;
8785     }
8786     /* Calculate branch target addresses */
8787     if(type==UJUMP)
8788       ba[i]=((start+i*4+4)&0xF0000000)|(((unsigned int)source[i]<<6)>>4);
8789     else if(type==CJUMP&&rs1[i]==rs2[i]&&(op&1))
8790       ba[i]=start+i*4+8; // Ignore never taken branch
8791     else if(type==SJUMP&&rs1[i]==0&&!(op2&1))
8792       ba[i]=start+i*4+8; // Ignore never taken branch
8793     else if(type==CJUMP||type==SJUMP||type==FJUMP)
8794       ba[i]=start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14);
8795     else ba[i]=-1;
8796 #ifdef PCSX
8797     if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)) {
8798       int do_in_intrp=0;
8799       // branch in delay slot?
8800       if(type==RJUMP||type==UJUMP||type==CJUMP||type==SJUMP||type==FJUMP) {
8801         // don't handle first branch and call interpreter if it's hit
8802         printf("branch in delay slot @%08x (%08x)\n", addr + i*4, addr);
8803         do_in_intrp=1;
8804       }
8805       // basic load delay detection
8806       else if((type==LOAD||type==LOADLR||type==COP0||type==COP2||type==C2LS)&&rt1[i]!=0) {
8807         int t=(ba[i-1]-start)/4;
8808         if(0 <= t && t < i &&(rt1[i]==rs1[t]||rt1[i]==rs2[t])&&itype[t]!=CJUMP&&itype[t]!=SJUMP) {
8809           // jump target wants DS result - potential load delay effect
8810           printf("load delay @%08x (%08x)\n", addr + i*4, addr);
8811           do_in_intrp=1;
8812           bt[t+1]=1; // expected return from interpreter
8813         }
8814         else if(i>=2&&rt1[i-2]==2&&rt1[i]==2&&rs1[i]!=2&&rs2[i]!=2&&rs1[i-1]!=2&&rs2[i-1]!=2&&
8815               !(i>=3&&(itype[i-3]==RJUMP||itype[i-3]==UJUMP||itype[i-3]==CJUMP||itype[i-3]==SJUMP))) {
8816           // v0 overwrite like this is a sign of trouble, bail out
8817           printf("v0 overwrite @%08x (%08x)\n", addr + i*4, addr);
8818           do_in_intrp=1;
8819         }
8820       }
8821       if(do_in_intrp) {
8822         rs1[i-1]=CCREG;
8823         rs2[i-1]=rt1[i-1]=rt2[i-1]=0;
8824         ba[i-1]=-1;
8825         itype[i-1]=INTCALL;
8826         done=2;
8827         i--; // don't compile the DS
8828       }
8829     }
8830 #endif
8831     /* Is this the end of the block? */
8832     if(i>0&&(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)) {
8833       if(rt1[i-1]==0) { // Continue past subroutine call (JAL)
8834         done=2;
8835       }
8836       else {
8837         if(stop_after_jal) done=1;
8838         // Stop on BREAK
8839         if((source[i+1]&0xfc00003f)==0x0d) done=1;
8840       }
8841       // Don't recompile stuff that's already compiled
8842       if(check_addr(start+i*4+4)) done=1;
8843       // Don't get too close to the limit
8844       if(i>MAXBLOCK/2) done=1;
8845     }
8846     if(itype[i]==SYSCALL&&stop_after_jal) done=1;
8847     if(itype[i]==HLECALL||itype[i]==INTCALL) done=2;
8848     if(done==2) {
8849       // Does the block continue due to a branch?
8850       for(j=i-1;j>=0;j--)
8851       {
8852         if(ba[j]==start+i*4) done=j=0; // Branch into delay slot
8853         if(ba[j]==start+i*4+4) done=j=0;
8854         if(ba[j]==start+i*4+8) done=j=0;
8855       }
8856     }
8857     //assert(i<MAXBLOCK-1);
8858     if(start+i*4==pagelimit-4) done=1;
8859     assert(start+i*4<pagelimit);
8860     if (i==MAXBLOCK-1) done=1;
8861     // Stop if we're compiling junk
8862     if(itype[i]==NI&&opcode[i]==0x11) {
8863       done=stop_after_jal=1;
8864       printf("Disabled speculative precompilation\n");
8865     }
8866   }
8867   slen=i;
8868   if(itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==RJUMP||itype[i-1]==FJUMP) {
8869     if(start+i*4==pagelimit) {
8870       itype[i-1]=SPAN;
8871     }
8872   }
8873   assert(slen>0);
8874
8875   /* Pass 2 - Register dependencies and branch targets */
8876
8877   unneeded_registers(0,slen-1,0);
8878   
8879   /* Pass 3 - Register allocation */
8880
8881   struct regstat current; // Current register allocations/status
8882   current.is32=1;
8883   current.dirty=0;
8884   current.u=unneeded_reg[0];
8885   current.uu=unneeded_reg_upper[0];
8886   clear_all_regs(current.regmap);
8887   alloc_reg(&current,0,CCREG);
8888   dirty_reg(&current,CCREG);
8889   current.isconst=0;
8890   current.wasconst=0;
8891   current.waswritten=0;
8892   int ds=0;
8893   int cc=0;
8894   int hr=-1;
8895
8896 #ifndef FORCE32
8897   provisional_32bit();
8898 #endif
8899   if((u_int)addr&1) {
8900     // First instruction is delay slot
8901     cc=-1;
8902     bt[1]=1;
8903     ds=1;
8904     unneeded_reg[0]=1;
8905     unneeded_reg_upper[0]=1;
8906     current.regmap[HOST_BTREG]=BTREG;
8907   }
8908   
8909   for(i=0;i<slen;i++)
8910   {
8911     if(bt[i])
8912     {
8913       int hr;
8914       for(hr=0;hr<HOST_REGS;hr++)
8915       {
8916         // Is this really necessary?
8917         if(current.regmap[hr]==0) current.regmap[hr]=-1;
8918       }
8919       current.isconst=0;
8920       current.waswritten=0;
8921     }
8922     if(i>1)
8923     {
8924       if((opcode[i-2]&0x2f)==0x05) // BNE/BNEL
8925       {
8926         if(rs1[i-2]==0||rs2[i-2]==0)
8927         {
8928           if(rs1[i-2]) {
8929             current.is32|=1LL<<rs1[i-2];
8930             int hr=get_reg(current.regmap,rs1[i-2]|64);
8931             if(hr>=0) current.regmap[hr]=-1;
8932           }
8933           if(rs2[i-2]) {
8934             current.is32|=1LL<<rs2[i-2];
8935             int hr=get_reg(current.regmap,rs2[i-2]|64);
8936             if(hr>=0) current.regmap[hr]=-1;
8937           }
8938         }
8939       }
8940     }
8941 #ifndef FORCE32
8942     // If something jumps here with 64-bit values
8943     // then promote those registers to 64 bits
8944     if(bt[i])
8945     {
8946       uint64_t temp_is32=current.is32;
8947       for(j=i-1;j>=0;j--)
8948       {
8949         if(ba[j]==start+i*4) 
8950           temp_is32&=branch_regs[j].is32;
8951       }
8952       for(j=i;j<slen;j++)
8953       {
8954         if(ba[j]==start+i*4) 
8955           //temp_is32=1;
8956           temp_is32&=p32[j];
8957       }
8958       if(temp_is32!=current.is32) {
8959         //printf("dumping 32-bit regs (%x)\n",start+i*4);
8960         #ifndef DESTRUCTIVE_WRITEBACK
8961         if(ds)
8962         #endif
8963         for(hr=0;hr<HOST_REGS;hr++)
8964         {
8965           int r=current.regmap[hr];
8966           if(r>0&&r<64)
8967           {
8968             if((current.dirty>>hr)&((current.is32&~temp_is32)>>r)&1) {
8969               temp_is32|=1LL<<r;
8970               //printf("restore %d\n",r);
8971             }
8972           }
8973         }
8974         current.is32=temp_is32;
8975       }
8976     }
8977 #else
8978     current.is32=-1LL;
8979 #endif
8980
8981     memcpy(regmap_pre[i],current.regmap,sizeof(current.regmap));
8982     regs[i].wasconst=current.isconst;
8983     regs[i].was32=current.is32;
8984     regs[i].wasdirty=current.dirty;
8985     regs[i].loadedconst=0;
8986     #if defined(DESTRUCTIVE_WRITEBACK) && !defined(FORCE32)
8987     // To change a dirty register from 32 to 64 bits, we must write
8988     // it out during the previous cycle (for branches, 2 cycles)
8989     if(i<slen-1&&bt[i+1]&&itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP)
8990     {
8991       uint64_t temp_is32=current.is32;
8992       for(j=i-1;j>=0;j--)
8993       {
8994         if(ba[j]==start+i*4+4) 
8995           temp_is32&=branch_regs[j].is32;
8996       }
8997       for(j=i;j<slen;j++)
8998       {
8999         if(ba[j]==start+i*4+4) 
9000           //temp_is32=1;
9001           temp_is32&=p32[j];
9002       }
9003       if(temp_is32!=current.is32) {
9004         //printf("pre-dumping 32-bit regs (%x)\n",start+i*4);
9005         for(hr=0;hr<HOST_REGS;hr++)
9006         {
9007           int r=current.regmap[hr];
9008           if(r>0)
9009           {
9010             if((current.dirty>>hr)&((current.is32&~temp_is32)>>(r&63))&1) {
9011               if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP)
9012               {
9013                 if(rs1[i]!=(r&63)&&rs2[i]!=(r&63))
9014                 {
9015                   //printf("dump %d/r%d\n",hr,r);
9016                   current.regmap[hr]=-1;
9017                   if(get_reg(current.regmap,r|64)>=0) 
9018                     current.regmap[get_reg(current.regmap,r|64)]=-1;
9019                 }
9020               }
9021             }
9022           }
9023         }
9024       }
9025     }
9026     else if(i<slen-2&&bt[i+2]&&(source[i-1]>>16)!=0x1000&&(itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP))
9027     {
9028       uint64_t temp_is32=current.is32;
9029       for(j=i-1;j>=0;j--)
9030       {
9031         if(ba[j]==start+i*4+8) 
9032           temp_is32&=branch_regs[j].is32;
9033       }
9034       for(j=i;j<slen;j++)
9035       {
9036         if(ba[j]==start+i*4+8) 
9037           //temp_is32=1;
9038           temp_is32&=p32[j];
9039       }
9040       if(temp_is32!=current.is32) {
9041         //printf("pre-dumping 32-bit regs (%x)\n",start+i*4);
9042         for(hr=0;hr<HOST_REGS;hr++)
9043         {
9044           int r=current.regmap[hr];
9045           if(r>0)
9046           {
9047             if((current.dirty>>hr)&((current.is32&~temp_is32)>>(r&63))&1) {
9048               if(rs1[i]!=(r&63)&&rs2[i]!=(r&63)&&rs1[i+1]!=(r&63)&&rs2[i+1]!=(r&63))
9049               {
9050                 //printf("dump %d/r%d\n",hr,r);
9051                 current.regmap[hr]=-1;
9052                 if(get_reg(current.regmap,r|64)>=0) 
9053                   current.regmap[get_reg(current.regmap,r|64)]=-1;
9054               }
9055             }
9056           }
9057         }
9058       }
9059     }
9060     #endif
9061     if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP) {
9062       if(i+1<slen) {
9063         current.u=unneeded_reg[i+1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
9064         current.uu=unneeded_reg_upper[i+1]&~((1LL<<us1[i])|(1LL<<us2[i]));
9065         if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9066         current.u|=1;
9067         current.uu|=1;
9068       } else {
9069         current.u=1;
9070         current.uu=1;
9071       }
9072     } else {
9073       if(i+1<slen) {
9074         current.u=branch_unneeded_reg[i]&~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
9075         current.uu=branch_unneeded_reg_upper[i]&~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
9076         if((~current.uu>>rt1[i+1])&1) current.uu&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
9077         current.u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
9078         current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
9079         current.u|=1;
9080         current.uu|=1;
9081       } else { printf("oops, branch at end of block with no delay slot\n");exit(1); }
9082     }
9083     is_ds[i]=ds;
9084     if(ds) {
9085       ds=0; // Skip delay slot, already allocated as part of branch
9086       // ...but we need to alloc it in case something jumps here
9087       if(i+1<slen) {
9088         current.u=branch_unneeded_reg[i-1]&unneeded_reg[i+1];
9089         current.uu=branch_unneeded_reg_upper[i-1]&unneeded_reg_upper[i+1];
9090       }else{
9091         current.u=branch_unneeded_reg[i-1];
9092         current.uu=branch_unneeded_reg_upper[i-1];
9093       }
9094       current.u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
9095       current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
9096       if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9097       current.u|=1;
9098       current.uu|=1;
9099       struct regstat temp;
9100       memcpy(&temp,&current,sizeof(current));
9101       temp.wasdirty=temp.dirty;
9102       temp.was32=temp.is32;
9103       // TODO: Take into account unconditional branches, as below
9104       delayslot_alloc(&temp,i);
9105       memcpy(regs[i].regmap,temp.regmap,sizeof(temp.regmap));
9106       regs[i].wasdirty=temp.wasdirty;
9107       regs[i].was32=temp.was32;
9108       regs[i].dirty=temp.dirty;
9109       regs[i].is32=temp.is32;
9110       regs[i].isconst=0;
9111       regs[i].wasconst=0;
9112       current.isconst=0;
9113       // Create entry (branch target) regmap
9114       for(hr=0;hr<HOST_REGS;hr++)
9115       {
9116         int r=temp.regmap[hr];
9117         if(r>=0) {
9118           if(r!=regmap_pre[i][hr]) {
9119             regs[i].regmap_entry[hr]=-1;
9120           }
9121           else
9122           {
9123             if(r<64){
9124               if((current.u>>r)&1) {
9125                 regs[i].regmap_entry[hr]=-1;
9126                 regs[i].regmap[hr]=-1;
9127                 //Don't clear regs in the delay slot as the branch might need them
9128                 //current.regmap[hr]=-1;
9129               }else
9130                 regs[i].regmap_entry[hr]=r;
9131             }
9132             else {
9133               if((current.uu>>(r&63))&1) {
9134                 regs[i].regmap_entry[hr]=-1;
9135                 regs[i].regmap[hr]=-1;
9136                 //Don't clear regs in the delay slot as the branch might need them
9137                 //current.regmap[hr]=-1;
9138               }else
9139                 regs[i].regmap_entry[hr]=r;
9140             }
9141           }
9142         } else {
9143           // First instruction expects CCREG to be allocated
9144           if(i==0&&hr==HOST_CCREG) 
9145             regs[i].regmap_entry[hr]=CCREG;
9146           else
9147             regs[i].regmap_entry[hr]=-1;
9148         }
9149       }
9150     }
9151     else { // Not delay slot
9152       switch(itype[i]) {
9153         case UJUMP:
9154           //current.isconst=0; // DEBUG
9155           //current.wasconst=0; // DEBUG
9156           //regs[i].wasconst=0; // DEBUG
9157           clear_const(&current,rt1[i]);
9158           alloc_cc(&current,i);
9159           dirty_reg(&current,CCREG);
9160           if (rt1[i]==31) {
9161             alloc_reg(&current,i,31);
9162             dirty_reg(&current,31);
9163             //assert(rs1[i+1]!=31&&rs2[i+1]!=31);
9164             //assert(rt1[i+1]!=rt1[i]);
9165             #ifdef REG_PREFETCH
9166             alloc_reg(&current,i,PTEMP);
9167             #endif
9168             //current.is32|=1LL<<rt1[i];
9169           }
9170           ooo[i]=1;
9171           delayslot_alloc(&current,i+1);
9172           //current.isconst=0; // DEBUG
9173           ds=1;
9174           //printf("i=%d, isconst=%x\n",i,current.isconst);
9175           break;
9176         case RJUMP:
9177           //current.isconst=0;
9178           //current.wasconst=0;
9179           //regs[i].wasconst=0;
9180           clear_const(&current,rs1[i]);
9181           clear_const(&current,rt1[i]);
9182           alloc_cc(&current,i);
9183           dirty_reg(&current,CCREG);
9184           if(rs1[i]!=rt1[i+1]&&rs1[i]!=rt2[i+1]) {
9185             alloc_reg(&current,i,rs1[i]);
9186             if (rt1[i]!=0) {
9187               alloc_reg(&current,i,rt1[i]);
9188               dirty_reg(&current,rt1[i]);
9189               assert(rs1[i+1]!=rt1[i]&&rs2[i+1]!=rt1[i]);
9190               assert(rt1[i+1]!=rt1[i]);
9191               #ifdef REG_PREFETCH
9192               alloc_reg(&current,i,PTEMP);
9193               #endif
9194             }
9195             #ifdef USE_MINI_HT
9196             if(rs1[i]==31) { // JALR
9197               alloc_reg(&current,i,RHASH);
9198               #ifndef HOST_IMM_ADDR32
9199               alloc_reg(&current,i,RHTBL);
9200               #endif
9201             }
9202             #endif
9203             delayslot_alloc(&current,i+1);
9204           } else {
9205             // The delay slot overwrites our source register,
9206             // allocate a temporary register to hold the old value.
9207             current.isconst=0;
9208             current.wasconst=0;
9209             regs[i].wasconst=0;
9210             delayslot_alloc(&current,i+1);
9211             current.isconst=0;
9212             alloc_reg(&current,i,RTEMP);
9213           }
9214           //current.isconst=0; // DEBUG
9215           ooo[i]=1;
9216           ds=1;
9217           break;
9218         case CJUMP:
9219           //current.isconst=0;
9220           //current.wasconst=0;
9221           //regs[i].wasconst=0;
9222           clear_const(&current,rs1[i]);
9223           clear_const(&current,rs2[i]);
9224           if((opcode[i]&0x3E)==4) // BEQ/BNE
9225           {
9226             alloc_cc(&current,i);
9227             dirty_reg(&current,CCREG);
9228             if(rs1[i]) alloc_reg(&current,i,rs1[i]);
9229             if(rs2[i]) alloc_reg(&current,i,rs2[i]);
9230             if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
9231             {
9232               if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
9233               if(rs2[i]) alloc_reg64(&current,i,rs2[i]);
9234             }
9235             if((rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]))||
9236                (rs2[i]&&(rs2[i]==rt1[i+1]||rs2[i]==rt2[i+1]))) {
9237               // The delay slot overwrites one of our conditions.
9238               // Allocate the branch condition registers instead.
9239               current.isconst=0;
9240               current.wasconst=0;
9241               regs[i].wasconst=0;
9242               if(rs1[i]) alloc_reg(&current,i,rs1[i]);
9243               if(rs2[i]) alloc_reg(&current,i,rs2[i]);
9244               if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
9245               {
9246                 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
9247                 if(rs2[i]) alloc_reg64(&current,i,rs2[i]);
9248               }
9249             }
9250             else
9251             {
9252               ooo[i]=1;
9253               delayslot_alloc(&current,i+1);
9254             }
9255           }
9256           else
9257           if((opcode[i]&0x3E)==6) // BLEZ/BGTZ
9258           {
9259             alloc_cc(&current,i);
9260             dirty_reg(&current,CCREG);
9261             alloc_reg(&current,i,rs1[i]);
9262             if(!(current.is32>>rs1[i]&1))
9263             {
9264               alloc_reg64(&current,i,rs1[i]);
9265             }
9266             if(rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1])) {
9267               // The delay slot overwrites one of our conditions.
9268               // Allocate the branch condition registers instead.
9269               current.isconst=0;
9270               current.wasconst=0;
9271               regs[i].wasconst=0;
9272               if(rs1[i]) alloc_reg(&current,i,rs1[i]);
9273               if(!((current.is32>>rs1[i])&1))
9274               {
9275                 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
9276               }
9277             }
9278             else
9279             {
9280               ooo[i]=1;
9281               delayslot_alloc(&current,i+1);
9282             }
9283           }
9284           else
9285           // Don't alloc the delay slot yet because we might not execute it
9286           if((opcode[i]&0x3E)==0x14) // BEQL/BNEL
9287           {
9288             current.isconst=0;
9289             current.wasconst=0;
9290             regs[i].wasconst=0;
9291             alloc_cc(&current,i);
9292             dirty_reg(&current,CCREG);
9293             alloc_reg(&current,i,rs1[i]);
9294             alloc_reg(&current,i,rs2[i]);
9295             if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
9296             {
9297               alloc_reg64(&current,i,rs1[i]);
9298               alloc_reg64(&current,i,rs2[i]);
9299             }
9300           }
9301           else
9302           if((opcode[i]&0x3E)==0x16) // BLEZL/BGTZL
9303           {
9304             current.isconst=0;
9305             current.wasconst=0;
9306             regs[i].wasconst=0;
9307             alloc_cc(&current,i);
9308             dirty_reg(&current,CCREG);
9309             alloc_reg(&current,i,rs1[i]);
9310             if(!(current.is32>>rs1[i]&1))
9311             {
9312               alloc_reg64(&current,i,rs1[i]);
9313             }
9314           }
9315           ds=1;
9316           //current.isconst=0;
9317           break;
9318         case SJUMP:
9319           //current.isconst=0;
9320           //current.wasconst=0;
9321           //regs[i].wasconst=0;
9322           clear_const(&current,rs1[i]);
9323           clear_const(&current,rt1[i]);
9324           //if((opcode2[i]&0x1E)==0x0) // BLTZ/BGEZ
9325           if((opcode2[i]&0x0E)==0x0) // BLTZ/BGEZ
9326           {
9327             alloc_cc(&current,i);
9328             dirty_reg(&current,CCREG);
9329             alloc_reg(&current,i,rs1[i]);
9330             if(!(current.is32>>rs1[i]&1))
9331             {
9332               alloc_reg64(&current,i,rs1[i]);
9333             }
9334             if (rt1[i]==31) { // BLTZAL/BGEZAL
9335               alloc_reg(&current,i,31);
9336               dirty_reg(&current,31);
9337               //#ifdef REG_PREFETCH
9338               //alloc_reg(&current,i,PTEMP);
9339               //#endif
9340               //current.is32|=1LL<<rt1[i];
9341             }
9342             if((rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1])) // The delay slot overwrites the branch condition.
9343                ||(rt1[i]==31&&(rs1[i+1]==31||rs2[i+1]==31||rt1[i+1]==31||rt2[i+1]==31))) { // DS touches $ra
9344               // Allocate the branch condition registers instead.
9345               current.isconst=0;
9346               current.wasconst=0;
9347               regs[i].wasconst=0;
9348               if(rs1[i]) alloc_reg(&current,i,rs1[i]);
9349               if(!((current.is32>>rs1[i])&1))
9350               {
9351                 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
9352               }
9353             }
9354             else
9355             {
9356               ooo[i]=1;
9357               delayslot_alloc(&current,i+1);
9358             }
9359           }
9360           else
9361           // Don't alloc the delay slot yet because we might not execute it
9362           if((opcode2[i]&0x1E)==0x2) // BLTZL/BGEZL
9363           {
9364             current.isconst=0;
9365             current.wasconst=0;
9366             regs[i].wasconst=0;
9367             alloc_cc(&current,i);
9368             dirty_reg(&current,CCREG);
9369             alloc_reg(&current,i,rs1[i]);
9370             if(!(current.is32>>rs1[i]&1))
9371             {
9372               alloc_reg64(&current,i,rs1[i]);
9373             }
9374           }
9375           ds=1;
9376           //current.isconst=0;
9377           break;
9378         case FJUMP:
9379           current.isconst=0;
9380           current.wasconst=0;
9381           regs[i].wasconst=0;
9382           if(likely[i]==0) // BC1F/BC1T
9383           {
9384             // TODO: Theoretically we can run out of registers here on x86.
9385             // The delay slot can allocate up to six, and we need to check
9386             // CSREG before executing the delay slot.  Possibly we can drop
9387             // the cycle count and then reload it after checking that the
9388             // FPU is in a usable state, or don't do out-of-order execution.
9389             alloc_cc(&current,i);
9390             dirty_reg(&current,CCREG);
9391             alloc_reg(&current,i,FSREG);
9392             alloc_reg(&current,i,CSREG);
9393             if(itype[i+1]==FCOMP) {
9394               // The delay slot overwrites the branch condition.
9395               // Allocate the branch condition registers instead.
9396               alloc_cc(&current,i);
9397               dirty_reg(&current,CCREG);
9398               alloc_reg(&current,i,CSREG);
9399               alloc_reg(&current,i,FSREG);
9400             }
9401             else {
9402               ooo[i]=1;
9403               delayslot_alloc(&current,i+1);
9404               alloc_reg(&current,i+1,CSREG);
9405             }
9406           }
9407           else
9408           // Don't alloc the delay slot yet because we might not execute it
9409           if(likely[i]) // BC1FL/BC1TL
9410           {
9411             alloc_cc(&current,i);
9412             dirty_reg(&current,CCREG);
9413             alloc_reg(&current,i,CSREG);
9414             alloc_reg(&current,i,FSREG);
9415           }
9416           ds=1;
9417           current.isconst=0;
9418           break;
9419         case IMM16:
9420           imm16_alloc(&current,i);
9421           break;
9422         case LOAD:
9423         case LOADLR:
9424           load_alloc(&current,i);
9425           break;
9426         case STORE:
9427         case STORELR:
9428           store_alloc(&current,i);
9429           break;
9430         case ALU:
9431           alu_alloc(&current,i);
9432           break;
9433         case SHIFT:
9434           shift_alloc(&current,i);
9435           break;
9436         case MULTDIV:
9437           multdiv_alloc(&current,i);
9438           break;
9439         case SHIFTIMM:
9440           shiftimm_alloc(&current,i);
9441           break;
9442         case MOV:
9443           mov_alloc(&current,i);
9444           break;
9445         case COP0:
9446           cop0_alloc(&current,i);
9447           break;
9448         case COP1:
9449         case COP2:
9450           cop1_alloc(&current,i);
9451           break;
9452         case C1LS:
9453           c1ls_alloc(&current,i);
9454           break;
9455         case C2LS:
9456           c2ls_alloc(&current,i);
9457           break;
9458         case C2OP:
9459           c2op_alloc(&current,i);
9460           break;
9461         case FCONV:
9462           fconv_alloc(&current,i);
9463           break;
9464         case FLOAT:
9465           float_alloc(&current,i);
9466           break;
9467         case FCOMP:
9468           fcomp_alloc(&current,i);
9469           break;
9470         case SYSCALL:
9471         case HLECALL:
9472         case INTCALL:
9473           syscall_alloc(&current,i);
9474           break;
9475         case SPAN:
9476           pagespan_alloc(&current,i);
9477           break;
9478       }
9479       
9480       // Drop the upper half of registers that have become 32-bit
9481       current.uu|=current.is32&((1LL<<rt1[i])|(1LL<<rt2[i]));
9482       if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP) {
9483         current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
9484         if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9485         current.uu|=1;
9486       } else {
9487         current.uu|=current.is32&((1LL<<rt1[i+1])|(1LL<<rt2[i+1]));
9488         current.uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
9489         if((~current.uu>>rt1[i+1])&1) current.uu&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
9490         current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
9491         current.uu|=1;
9492       }
9493
9494       // Create entry (branch target) regmap
9495       for(hr=0;hr<HOST_REGS;hr++)
9496       {
9497         int r,or,er;
9498         r=current.regmap[hr];
9499         if(r>=0) {
9500           if(r!=regmap_pre[i][hr]) {
9501             // TODO: delay slot (?)
9502             or=get_reg(regmap_pre[i],r); // Get old mapping for this register
9503             if(or<0||(r&63)>=TEMPREG){
9504               regs[i].regmap_entry[hr]=-1;
9505             }
9506             else
9507             {
9508               // Just move it to a different register
9509               regs[i].regmap_entry[hr]=r;
9510               // If it was dirty before, it's still dirty
9511               if((regs[i].wasdirty>>or)&1) dirty_reg(&current,r&63);
9512             }
9513           }
9514           else
9515           {
9516             // Unneeded
9517             if(r==0){
9518               regs[i].regmap_entry[hr]=0;
9519             }
9520             else
9521             if(r<64){
9522               if((current.u>>r)&1) {
9523                 regs[i].regmap_entry[hr]=-1;
9524                 //regs[i].regmap[hr]=-1;
9525                 current.regmap[hr]=-1;
9526               }else
9527                 regs[i].regmap_entry[hr]=r;
9528             }
9529             else {
9530               if((current.uu>>(r&63))&1) {
9531                 regs[i].regmap_entry[hr]=-1;
9532                 //regs[i].regmap[hr]=-1;
9533                 current.regmap[hr]=-1;
9534               }else
9535                 regs[i].regmap_entry[hr]=r;
9536             }
9537           }
9538         } else {
9539           // Branches expect CCREG to be allocated at the target
9540           if(regmap_pre[i][hr]==CCREG) 
9541             regs[i].regmap_entry[hr]=CCREG;
9542           else
9543             regs[i].regmap_entry[hr]=-1;
9544         }
9545       }
9546       memcpy(regs[i].regmap,current.regmap,sizeof(current.regmap));
9547     }
9548
9549     if(i>0&&(itype[i-1]==STORE||itype[i-1]==STORELR||(itype[i-1]==C2LS&&opcode[i-1]==0x3a))&&(u_int)imm[i-1]<0x800)
9550       current.waswritten|=1<<rs1[i-1];
9551     current.waswritten&=~(1<<rt1[i]);
9552     current.waswritten&=~(1<<rt2[i]);
9553     if((itype[i]==STORE||itype[i]==STORELR||(itype[i]==C2LS&&opcode[i]==0x3a))&&(u_int)imm[i]>=0x800)
9554       current.waswritten&=~(1<<rs1[i]);
9555
9556     /* Branch post-alloc */
9557     if(i>0)
9558     {
9559       current.was32=current.is32;
9560       current.wasdirty=current.dirty;
9561       switch(itype[i-1]) {
9562         case UJUMP:
9563           memcpy(&branch_regs[i-1],&current,sizeof(current));
9564           branch_regs[i-1].isconst=0;
9565           branch_regs[i-1].wasconst=0;
9566           branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
9567           branch_regs[i-1].uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
9568           alloc_cc(&branch_regs[i-1],i-1);
9569           dirty_reg(&branch_regs[i-1],CCREG);
9570           if(rt1[i-1]==31) { // JAL
9571             alloc_reg(&branch_regs[i-1],i-1,31);
9572             dirty_reg(&branch_regs[i-1],31);
9573             branch_regs[i-1].is32|=1LL<<31;
9574           }
9575           memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9576           memcpy(constmap[i],constmap[i-1],sizeof(current_constmap));
9577           break;
9578         case RJUMP:
9579           memcpy(&branch_regs[i-1],&current,sizeof(current));
9580           branch_regs[i-1].isconst=0;
9581           branch_regs[i-1].wasconst=0;
9582           branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
9583           branch_regs[i-1].uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
9584           alloc_cc(&branch_regs[i-1],i-1);
9585           dirty_reg(&branch_regs[i-1],CCREG);
9586           alloc_reg(&branch_regs[i-1],i-1,rs1[i-1]);
9587           if(rt1[i-1]!=0) { // JALR
9588             alloc_reg(&branch_regs[i-1],i-1,rt1[i-1]);
9589             dirty_reg(&branch_regs[i-1],rt1[i-1]);
9590             branch_regs[i-1].is32|=1LL<<rt1[i-1];
9591           }
9592           #ifdef USE_MINI_HT
9593           if(rs1[i-1]==31) { // JALR
9594             alloc_reg(&branch_regs[i-1],i-1,RHASH);
9595             #ifndef HOST_IMM_ADDR32
9596             alloc_reg(&branch_regs[i-1],i-1,RHTBL);
9597             #endif
9598           }
9599           #endif
9600           memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9601           memcpy(constmap[i],constmap[i-1],sizeof(current_constmap));
9602           break;
9603         case CJUMP:
9604           if((opcode[i-1]&0x3E)==4) // BEQ/BNE
9605           {
9606             alloc_cc(&current,i-1);
9607             dirty_reg(&current,CCREG);
9608             if((rs1[i-1]&&(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]))||
9609                (rs2[i-1]&&(rs2[i-1]==rt1[i]||rs2[i-1]==rt2[i]))) {
9610               // The delay slot overwrote one of our conditions
9611               // Delay slot goes after the test (in order)
9612               current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
9613               current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
9614               if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9615               current.u|=1;
9616               current.uu|=1;
9617               delayslot_alloc(&current,i);
9618               current.isconst=0;
9619             }
9620             else
9621             {
9622               current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
9623               current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
9624               // Alloc the branch condition registers
9625               if(rs1[i-1]) alloc_reg(&current,i-1,rs1[i-1]);
9626               if(rs2[i-1]) alloc_reg(&current,i-1,rs2[i-1]);
9627               if(!((current.is32>>rs1[i-1])&(current.is32>>rs2[i-1])&1))
9628               {
9629                 if(rs1[i-1]) alloc_reg64(&current,i-1,rs1[i-1]);
9630                 if(rs2[i-1]) alloc_reg64(&current,i-1,rs2[i-1]);
9631               }
9632             }
9633             memcpy(&branch_regs[i-1],&current,sizeof(current));
9634             branch_regs[i-1].isconst=0;
9635             branch_regs[i-1].wasconst=0;
9636             memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9637             memcpy(constmap[i],constmap[i-1],sizeof(current_constmap));
9638           }
9639           else
9640           if((opcode[i-1]&0x3E)==6) // BLEZ/BGTZ
9641           {
9642             alloc_cc(&current,i-1);
9643             dirty_reg(&current,CCREG);
9644             if(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]) {
9645               // The delay slot overwrote the branch condition
9646               // Delay slot goes after the test (in order)
9647               current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
9648               current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
9649               if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9650               current.u|=1;
9651               current.uu|=1;
9652               delayslot_alloc(&current,i);
9653               current.isconst=0;
9654             }
9655             else
9656             {
9657               current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
9658               current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
9659               // Alloc the branch condition register
9660               alloc_reg(&current,i-1,rs1[i-1]);
9661               if(!(current.is32>>rs1[i-1]&1))
9662               {
9663                 alloc_reg64(&current,i-1,rs1[i-1]);
9664               }
9665             }
9666             memcpy(&branch_regs[i-1],&current,sizeof(current));
9667             branch_regs[i-1].isconst=0;
9668             branch_regs[i-1].wasconst=0;
9669             memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9670             memcpy(constmap[i],constmap[i-1],sizeof(current_constmap));
9671           }
9672           else
9673           // Alloc the delay slot in case the branch is taken
9674           if((opcode[i-1]&0x3E)==0x14) // BEQL/BNEL
9675           {
9676             memcpy(&branch_regs[i-1],&current,sizeof(current));
9677             branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9678             branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9679             if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9680             alloc_cc(&branch_regs[i-1],i);
9681             dirty_reg(&branch_regs[i-1],CCREG);
9682             delayslot_alloc(&branch_regs[i-1],i);
9683             branch_regs[i-1].isconst=0;
9684             alloc_reg(&current,i,CCREG); // Not taken path
9685             dirty_reg(&current,CCREG);
9686             memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9687           }
9688           else
9689           if((opcode[i-1]&0x3E)==0x16) // BLEZL/BGTZL
9690           {
9691             memcpy(&branch_regs[i-1],&current,sizeof(current));
9692             branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9693             branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9694             if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9695             alloc_cc(&branch_regs[i-1],i);
9696             dirty_reg(&branch_regs[i-1],CCREG);
9697             delayslot_alloc(&branch_regs[i-1],i);
9698             branch_regs[i-1].isconst=0;
9699             alloc_reg(&current,i,CCREG); // Not taken path
9700             dirty_reg(&current,CCREG);
9701             memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9702           }
9703           break;
9704         case SJUMP:
9705           //if((opcode2[i-1]&0x1E)==0) // BLTZ/BGEZ
9706           if((opcode2[i-1]&0x0E)==0) // BLTZ/BGEZ
9707           {
9708             alloc_cc(&current,i-1);
9709             dirty_reg(&current,CCREG);
9710             if(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]) {
9711               // The delay slot overwrote the branch condition
9712               // Delay slot goes after the test (in order)
9713               current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
9714               current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
9715               if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9716               current.u|=1;
9717               current.uu|=1;
9718               delayslot_alloc(&current,i);
9719               current.isconst=0;
9720             }
9721             else
9722             {
9723               current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
9724               current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
9725               // Alloc the branch condition register
9726               alloc_reg(&current,i-1,rs1[i-1]);
9727               if(!(current.is32>>rs1[i-1]&1))
9728               {
9729                 alloc_reg64(&current,i-1,rs1[i-1]);
9730               }
9731             }
9732             memcpy(&branch_regs[i-1],&current,sizeof(current));
9733             branch_regs[i-1].isconst=0;
9734             branch_regs[i-1].wasconst=0;
9735             memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9736             memcpy(constmap[i],constmap[i-1],sizeof(current_constmap));
9737           }
9738           else
9739           // Alloc the delay slot in case the branch is taken
9740           if((opcode2[i-1]&0x1E)==2) // BLTZL/BGEZL
9741           {
9742             memcpy(&branch_regs[i-1],&current,sizeof(current));
9743             branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9744             branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9745             if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9746             alloc_cc(&branch_regs[i-1],i);
9747             dirty_reg(&branch_regs[i-1],CCREG);
9748             delayslot_alloc(&branch_regs[i-1],i);
9749             branch_regs[i-1].isconst=0;
9750             alloc_reg(&current,i,CCREG); // Not taken path
9751             dirty_reg(&current,CCREG);
9752             memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9753           }
9754           // FIXME: BLTZAL/BGEZAL
9755           if(opcode2[i-1]&0x10) { // BxxZAL
9756             alloc_reg(&branch_regs[i-1],i-1,31);
9757             dirty_reg(&branch_regs[i-1],31);
9758             branch_regs[i-1].is32|=1LL<<31;
9759           }
9760           break;
9761         case FJUMP:
9762           if(likely[i-1]==0) // BC1F/BC1T
9763           {
9764             alloc_cc(&current,i-1);
9765             dirty_reg(&current,CCREG);
9766             if(itype[i]==FCOMP) {
9767               // The delay slot overwrote the branch condition
9768               // Delay slot goes after the test (in order)
9769               delayslot_alloc(&current,i);
9770               current.isconst=0;
9771             }
9772             else
9773             {
9774               current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
9775               current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
9776               // Alloc the branch condition register
9777               alloc_reg(&current,i-1,FSREG);
9778             }
9779             memcpy(&branch_regs[i-1],&current,sizeof(current));
9780             memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9781           }
9782           else // BC1FL/BC1TL
9783           {
9784             // Alloc the delay slot in case the branch is taken
9785             memcpy(&branch_regs[i-1],&current,sizeof(current));
9786             branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9787             branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9788             if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9789             alloc_cc(&branch_regs[i-1],i);
9790             dirty_reg(&branch_regs[i-1],CCREG);
9791             delayslot_alloc(&branch_regs[i-1],i);
9792             branch_regs[i-1].isconst=0;
9793             alloc_reg(&current,i,CCREG); // Not taken path
9794             dirty_reg(&current,CCREG);
9795             memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9796           }
9797           break;
9798       }
9799
9800       if(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)
9801       {
9802         if(rt1[i-1]==31) // JAL/JALR
9803         {
9804           // Subroutine call will return here, don't alloc any registers
9805           current.is32=1;
9806           current.dirty=0;
9807           clear_all_regs(current.regmap);
9808           alloc_reg(&current,i,CCREG);
9809           dirty_reg(&current,CCREG);
9810         }
9811         else if(i+1<slen)
9812         {
9813           // Internal branch will jump here, match registers to caller
9814           current.is32=0x3FFFFFFFFLL;
9815           current.dirty=0;
9816           clear_all_regs(current.regmap);
9817           alloc_reg(&current,i,CCREG);
9818           dirty_reg(&current,CCREG);
9819           for(j=i-1;j>=0;j--)
9820           {
9821             if(ba[j]==start+i*4+4) {
9822               memcpy(current.regmap,branch_regs[j].regmap,sizeof(current.regmap));
9823               current.is32=branch_regs[j].is32;
9824               current.dirty=branch_regs[j].dirty;
9825               break;
9826             }
9827           }
9828           while(j>=0) {
9829             if(ba[j]==start+i*4+4) {
9830               for(hr=0;hr<HOST_REGS;hr++) {
9831                 if(current.regmap[hr]!=branch_regs[j].regmap[hr]) {
9832                   current.regmap[hr]=-1;
9833                 }
9834                 current.is32&=branch_regs[j].is32;
9835                 current.dirty&=branch_regs[j].dirty;
9836               }
9837             }
9838             j--;
9839           }
9840         }
9841       }
9842     }
9843
9844     // Count cycles in between branches
9845     ccadj[i]=cc;
9846     if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP||itype[i]==SYSCALL||itype[i]==HLECALL))
9847     {
9848       cc=0;
9849     }
9850 #if defined(PCSX) && !defined(DRC_DBG)
9851     else if(itype[i]==C2OP&&gte_cycletab[source[i]&0x3f]>2)
9852     {
9853       // GTE runs in parallel until accessed, divide by 2 for a rough guess
9854       cc+=gte_cycletab[source[i]&0x3f]/2;
9855     }
9856     else if(/*itype[i]==LOAD||*/itype[i]==STORE||itype[i]==C1LS) // load causes weird timing issues
9857     {
9858       cc+=2; // 2 cycle penalty (after CLOCK_DIVIDER)
9859     }
9860     else if(itype[i]==C2LS)
9861     {
9862       cc+=4;
9863     }
9864 #endif
9865     else
9866     {
9867       cc++;
9868     }
9869
9870     flush_dirty_uppers(&current);
9871     if(!is_ds[i]) {
9872       regs[i].is32=current.is32;
9873       regs[i].dirty=current.dirty;
9874       regs[i].isconst=current.isconst;
9875       memcpy(constmap[i],current_constmap,sizeof(current_constmap));
9876     }
9877     for(hr=0;hr<HOST_REGS;hr++) {
9878       if(hr!=EXCLUDE_REG&&regs[i].regmap[hr]>=0) {
9879         if(regmap_pre[i][hr]!=regs[i].regmap[hr]) {
9880           regs[i].wasconst&=~(1<<hr);
9881         }
9882       }
9883     }
9884     if(current.regmap[HOST_BTREG]==BTREG) current.regmap[HOST_BTREG]=-1;
9885     regs[i].waswritten=current.waswritten;
9886   }
9887   
9888   /* Pass 4 - Cull unused host registers */
9889   
9890   uint64_t nr=0;
9891   
9892   for (i=slen-1;i>=0;i--)
9893   {
9894     int hr;
9895     if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
9896     {
9897       if(ba[i]<start || ba[i]>=(start+slen*4))
9898       {
9899         // Branch out of this block, don't need anything
9900         nr=0;
9901       }
9902       else
9903       {
9904         // Internal branch
9905         // Need whatever matches the target
9906         nr=0;
9907         int t=(ba[i]-start)>>2;
9908         for(hr=0;hr<HOST_REGS;hr++)
9909         {
9910           if(regs[i].regmap_entry[hr]>=0) {
9911             if(regs[i].regmap_entry[hr]==regs[t].regmap_entry[hr]) nr|=1<<hr;
9912           }
9913         }
9914       }
9915       // Conditional branch may need registers for following instructions
9916       if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
9917       {
9918         if(i<slen-2) {
9919           nr|=needed_reg[i+2];
9920           for(hr=0;hr<HOST_REGS;hr++)
9921           {
9922             if(regmap_pre[i+2][hr]>=0&&get_reg(regs[i+2].regmap_entry,regmap_pre[i+2][hr])<0) nr&=~(1<<hr);
9923             //if((regmap_entry[i+2][hr])>=0) if(!((nr>>hr)&1)) printf("%x-bogus(%d=%d)\n",start+i*4,hr,regmap_entry[i+2][hr]);
9924           }
9925         }
9926       }
9927       // Don't need stuff which is overwritten
9928       //if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
9929       //if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
9930       // Merge in delay slot
9931       for(hr=0;hr<HOST_REGS;hr++)
9932       {
9933         if(!likely[i]) {
9934           // These are overwritten unless the branch is "likely"
9935           // and the delay slot is nullified if not taken
9936           if(rt1[i+1]&&rt1[i+1]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9937           if(rt2[i+1]&&rt2[i+1]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9938         }
9939         if(us1[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9940         if(us2[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9941         if(rs1[i+1]==regmap_pre[i][hr]) nr|=1<<hr;
9942         if(rs2[i+1]==regmap_pre[i][hr]) nr|=1<<hr;
9943         if(us1[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9944         if(us2[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9945         if(rs1[i+1]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9946         if(rs2[i+1]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9947         if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1)) {
9948           if(dep1[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9949           if(dep2[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9950         }
9951         if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1)) {
9952           if(dep1[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9953           if(dep2[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9954         }
9955         if(itype[i+1]==STORE || itype[i+1]==STORELR || (opcode[i+1]&0x3b)==0x39 || (opcode[i+1]&0x3b)==0x3a) {
9956           if(regmap_pre[i][hr]==INVCP) nr|=1<<hr;
9957           if(regs[i].regmap_entry[hr]==INVCP) nr|=1<<hr;
9958         }
9959       }
9960     }
9961     else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
9962     {
9963       // SYSCALL instruction (software interrupt)
9964       nr=0;
9965     }
9966     else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
9967     {
9968       // ERET instruction (return from interrupt)
9969       nr=0;
9970     }
9971     else // Non-branch
9972     {
9973       if(i<slen-1) {
9974         for(hr=0;hr<HOST_REGS;hr++) {
9975           if(regmap_pre[i+1][hr]>=0&&get_reg(regs[i+1].regmap_entry,regmap_pre[i+1][hr])<0) nr&=~(1<<hr);
9976           if(regs[i].regmap[hr]!=regmap_pre[i+1][hr]) nr&=~(1<<hr);
9977           if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
9978           if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
9979         }
9980       }
9981     }
9982     for(hr=0;hr<HOST_REGS;hr++)
9983     {
9984       // Overwritten registers are not needed
9985       if(rt1[i]&&rt1[i]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9986       if(rt2[i]&&rt2[i]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9987       if(FTEMP==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9988       // Source registers are needed
9989       if(us1[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9990       if(us2[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9991       if(rs1[i]==regmap_pre[i][hr]) nr|=1<<hr;
9992       if(rs2[i]==regmap_pre[i][hr]) nr|=1<<hr;
9993       if(us1[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9994       if(us2[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9995       if(rs1[i]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9996       if(rs2[i]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9997       if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1)) {
9998         if(dep1[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9999         if(dep1[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
10000       }
10001       if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1)) {
10002         if(dep2[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
10003         if(dep2[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
10004       }
10005       if(itype[i]==STORE || itype[i]==STORELR || (opcode[i]&0x3b)==0x39 || (opcode[i]&0x3b)==0x3a) {
10006         if(regmap_pre[i][hr]==INVCP) nr|=1<<hr;
10007         if(regs[i].regmap_entry[hr]==INVCP) nr|=1<<hr;
10008       }
10009       // Don't store a register immediately after writing it,
10010       // may prevent dual-issue.
10011       // But do so if this is a branch target, otherwise we
10012       // might have to load the register before the branch.
10013       if(i>0&&!bt[i]&&((regs[i].wasdirty>>hr)&1)) {
10014         if((regmap_pre[i][hr]>0&&regmap_pre[i][hr]<64&&!((unneeded_reg[i]>>regmap_pre[i][hr])&1)) ||
10015            (regmap_pre[i][hr]>64&&!((unneeded_reg_upper[i]>>(regmap_pre[i][hr]&63))&1)) ) {
10016           if(rt1[i-1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
10017           if(rt2[i-1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
10018         }
10019         if((regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64&&!((unneeded_reg[i]>>regs[i].regmap_entry[hr])&1)) ||
10020            (regs[i].regmap_entry[hr]>64&&!((unneeded_reg_upper[i]>>(regs[i].regmap_entry[hr]&63))&1)) ) {
10021           if(rt1[i-1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
10022           if(rt2[i-1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
10023         }
10024       }
10025     }
10026     // Cycle count is needed at branches.  Assume it is needed at the target too.
10027     if(i==0||bt[i]||itype[i]==CJUMP||itype[i]==FJUMP||itype[i]==SPAN) {
10028       if(regmap_pre[i][HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
10029       if(regs[i].regmap_entry[HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
10030     }
10031     // Save it
10032     needed_reg[i]=nr;
10033     
10034     // Deallocate unneeded registers
10035     for(hr=0;hr<HOST_REGS;hr++)
10036     {
10037       if(!((nr>>hr)&1)) {
10038         if(regs[i].regmap_entry[hr]!=CCREG) regs[i].regmap_entry[hr]=-1;
10039         if((regs[i].regmap[hr]&63)!=rs1[i] && (regs[i].regmap[hr]&63)!=rs2[i] &&
10040            (regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
10041            (regs[i].regmap[hr]&63)!=PTEMP && (regs[i].regmap[hr]&63)!=CCREG)
10042         {
10043           if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
10044           {
10045             if(likely[i]) {
10046               regs[i].regmap[hr]=-1;
10047               regs[i].isconst&=~(1<<hr);
10048               if(i<slen-2) {
10049                 regmap_pre[i+2][hr]=-1;
10050                 regs[i+2].wasconst&=~(1<<hr);
10051               }
10052             }
10053           }
10054         }
10055         if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
10056         {
10057           int d1=0,d2=0,map=0,temp=0;
10058           if(get_reg(regs[i].regmap,rt1[i+1]|64)>=0||get_reg(branch_regs[i].regmap,rt1[i+1]|64)>=0)
10059           {
10060             d1=dep1[i+1];
10061             d2=dep2[i+1];
10062           }
10063           if(using_tlb) {
10064             if(itype[i+1]==LOAD || itype[i+1]==LOADLR ||
10065                itype[i+1]==STORE || itype[i+1]==STORELR ||
10066                itype[i+1]==C1LS || itype[i+1]==C2LS)
10067             map=TLREG;
10068           } else
10069           if(itype[i+1]==STORE || itype[i+1]==STORELR ||
10070              (opcode[i+1]&0x3b)==0x39 || (opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1 || SWC2/SDC2
10071             map=INVCP;
10072           }
10073           if(itype[i+1]==LOADLR || itype[i+1]==STORELR ||
10074              itype[i+1]==C1LS || itype[i+1]==C2LS)
10075             temp=FTEMP;
10076           if((regs[i].regmap[hr]&63)!=rs1[i] && (regs[i].regmap[hr]&63)!=rs2[i] &&
10077              (regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
10078              (regs[i].regmap[hr]&63)!=rt1[i+1] && (regs[i].regmap[hr]&63)!=rt2[i+1] &&
10079              (regs[i].regmap[hr]^64)!=us1[i+1] && (regs[i].regmap[hr]^64)!=us2[i+1] &&
10080              (regs[i].regmap[hr]^64)!=d1 && (regs[i].regmap[hr]^64)!=d2 &&
10081              regs[i].regmap[hr]!=rs1[i+1] && regs[i].regmap[hr]!=rs2[i+1] &&
10082              (regs[i].regmap[hr]&63)!=temp && regs[i].regmap[hr]!=PTEMP &&
10083              regs[i].regmap[hr]!=RHASH && regs[i].regmap[hr]!=RHTBL &&
10084              regs[i].regmap[hr]!=RTEMP && regs[i].regmap[hr]!=CCREG &&
10085              regs[i].regmap[hr]!=map )
10086           {
10087             regs[i].regmap[hr]=-1;
10088             regs[i].isconst&=~(1<<hr);
10089             if((branch_regs[i].regmap[hr]&63)!=rs1[i] && (branch_regs[i].regmap[hr]&63)!=rs2[i] &&
10090                (branch_regs[i].regmap[hr]&63)!=rt1[i] && (branch_regs[i].regmap[hr]&63)!=rt2[i] &&
10091                (branch_regs[i].regmap[hr]&63)!=rt1[i+1] && (branch_regs[i].regmap[hr]&63)!=rt2[i+1] &&
10092                (branch_regs[i].regmap[hr]^64)!=us1[i+1] && (branch_regs[i].regmap[hr]^64)!=us2[i+1] &&
10093                (branch_regs[i].regmap[hr]^64)!=d1 && (branch_regs[i].regmap[hr]^64)!=d2 &&
10094                branch_regs[i].regmap[hr]!=rs1[i+1] && branch_regs[i].regmap[hr]!=rs2[i+1] &&
10095                (branch_regs[i].regmap[hr]&63)!=temp && branch_regs[i].regmap[hr]!=PTEMP &&
10096                branch_regs[i].regmap[hr]!=RHASH && branch_regs[i].regmap[hr]!=RHTBL &&
10097                branch_regs[i].regmap[hr]!=RTEMP && branch_regs[i].regmap[hr]!=CCREG &&
10098                branch_regs[i].regmap[hr]!=map)
10099             {
10100               branch_regs[i].regmap[hr]=-1;
10101               branch_regs[i].regmap_entry[hr]=-1;
10102               if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
10103               {
10104                 if(!likely[i]&&i<slen-2) {
10105                   regmap_pre[i+2][hr]=-1;
10106                   regs[i+2].wasconst&=~(1<<hr);
10107                 }
10108               }
10109             }
10110           }
10111         }
10112         else
10113         {
10114           // Non-branch
10115           if(i>0)
10116           {
10117             int d1=0,d2=0,map=-1,temp=-1;
10118             if(get_reg(regs[i].regmap,rt1[i]|64)>=0)
10119             {
10120               d1=dep1[i];
10121               d2=dep2[i];
10122             }
10123             if(using_tlb) {
10124               if(itype[i]==LOAD || itype[i]==LOADLR ||
10125                  itype[i]==STORE || itype[i]==STORELR ||
10126                  itype[i]==C1LS || itype[i]==C2LS)
10127               map=TLREG;
10128             } else if(itype[i]==STORE || itype[i]==STORELR ||
10129                       (opcode[i]&0x3b)==0x39 || (opcode[i]&0x3b)==0x3a) { // SWC1/SDC1 || SWC2/SDC2
10130               map=INVCP;
10131             }
10132             if(itype[i]==LOADLR || itype[i]==STORELR ||
10133                itype[i]==C1LS || itype[i]==C2LS)
10134               temp=FTEMP;
10135             if((regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
10136                (regs[i].regmap[hr]^64)!=us1[i] && (regs[i].regmap[hr]^64)!=us2[i] &&
10137                (regs[i].regmap[hr]^64)!=d1 && (regs[i].regmap[hr]^64)!=d2 &&
10138                regs[i].regmap[hr]!=rs1[i] && regs[i].regmap[hr]!=rs2[i] &&
10139                (regs[i].regmap[hr]&63)!=temp && regs[i].regmap[hr]!=map &&
10140                (itype[i]!=SPAN||regs[i].regmap[hr]!=CCREG))
10141             {
10142               if(i<slen-1&&!is_ds[i]) {
10143                 if(regmap_pre[i+1][hr]!=-1 || regs[i].regmap[hr]!=-1)
10144                 if(regmap_pre[i+1][hr]!=regs[i].regmap[hr])
10145                 if(regs[i].regmap[hr]<64||!((regs[i].was32>>(regs[i].regmap[hr]&63))&1))
10146                 {
10147                   printf("fail: %x (%d %d!=%d)\n",start+i*4,hr,regmap_pre[i+1][hr],regs[i].regmap[hr]);
10148                   assert(regmap_pre[i+1][hr]==regs[i].regmap[hr]);
10149                 }
10150                 regmap_pre[i+1][hr]=-1;
10151                 if(regs[i+1].regmap_entry[hr]==CCREG) regs[i+1].regmap_entry[hr]=-1;
10152                 regs[i+1].wasconst&=~(1<<hr);
10153               }
10154               regs[i].regmap[hr]=-1;
10155               regs[i].isconst&=~(1<<hr);
10156             }
10157           }
10158         }
10159       }
10160     }
10161   }
10162   
10163   /* Pass 5 - Pre-allocate registers */
10164   
10165   // If a register is allocated during a loop, try to allocate it for the
10166   // entire loop, if possible.  This avoids loading/storing registers
10167   // inside of the loop.
10168   
10169   signed char f_regmap[HOST_REGS];
10170   clear_all_regs(f_regmap);
10171   for(i=0;i<slen-1;i++)
10172   {
10173     if(itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
10174     {
10175       if(ba[i]>=start && ba[i]<(start+i*4)) 
10176       if(itype[i+1]==NOP||itype[i+1]==MOV||itype[i+1]==ALU
10177       ||itype[i+1]==SHIFTIMM||itype[i+1]==IMM16||itype[i+1]==LOAD
10178       ||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS
10179       ||itype[i+1]==SHIFT||itype[i+1]==COP1||itype[i+1]==FLOAT
10180       ||itype[i+1]==FCOMP||itype[i+1]==FCONV
10181       ||itype[i+1]==COP2||itype[i+1]==C2LS||itype[i+1]==C2OP)
10182       {
10183         int t=(ba[i]-start)>>2;
10184         if(t>0&&(itype[t-1]!=UJUMP&&itype[t-1]!=RJUMP&&itype[t-1]!=CJUMP&&itype[t-1]!=SJUMP&&itype[t-1]!=FJUMP)) // loop_preload can't handle jumps into delay slots
10185         if(t<2||(itype[t-2]!=UJUMP&&itype[t-2]!=RJUMP)||rt1[t-2]!=31) // call/ret assumes no registers allocated
10186         for(hr=0;hr<HOST_REGS;hr++)
10187         {
10188           if(regs[i].regmap[hr]>64) {
10189             if(!((regs[i].dirty>>hr)&1))
10190               f_regmap[hr]=regs[i].regmap[hr];
10191             else f_regmap[hr]=-1;
10192           }
10193           else if(regs[i].regmap[hr]>=0) {
10194             if(f_regmap[hr]!=regs[i].regmap[hr]) {
10195               // dealloc old register
10196               int n;
10197               for(n=0;n<HOST_REGS;n++)
10198               {
10199                 if(f_regmap[n]==regs[i].regmap[hr]) {f_regmap[n]=-1;}
10200               }
10201               // and alloc new one
10202               f_regmap[hr]=regs[i].regmap[hr];
10203             }
10204           }
10205           if(branch_regs[i].regmap[hr]>64) {
10206             if(!((branch_regs[i].dirty>>hr)&1))
10207               f_regmap[hr]=branch_regs[i].regmap[hr];
10208             else f_regmap[hr]=-1;
10209           }
10210           else if(branch_regs[i].regmap[hr]>=0) {
10211             if(f_regmap[hr]!=branch_regs[i].regmap[hr]) {
10212               // dealloc old register
10213               int n;
10214               for(n=0;n<HOST_REGS;n++)
10215               {
10216                 if(f_regmap[n]==branch_regs[i].regmap[hr]) {f_regmap[n]=-1;}
10217               }
10218               // and alloc new one
10219               f_regmap[hr]=branch_regs[i].regmap[hr];
10220             }
10221           }
10222           if(ooo[i]) {
10223             if(count_free_regs(regs[i].regmap)<=minimum_free_regs[i+1]) 
10224               f_regmap[hr]=branch_regs[i].regmap[hr];
10225           }else{
10226             if(count_free_regs(branch_regs[i].regmap)<=minimum_free_regs[i+1]) 
10227               f_regmap[hr]=branch_regs[i].regmap[hr];
10228           }
10229           // Avoid dirty->clean transition
10230           #ifdef DESTRUCTIVE_WRITEBACK
10231           if(t>0) if(get_reg(regmap_pre[t],f_regmap[hr])>=0) if((regs[t].wasdirty>>get_reg(regmap_pre[t],f_regmap[hr]))&1) f_regmap[hr]=-1;
10232           #endif
10233           // This check is only strictly required in the DESTRUCTIVE_WRITEBACK
10234           // case above, however it's always a good idea.  We can't hoist the
10235           // load if the register was already allocated, so there's no point
10236           // wasting time analyzing most of these cases.  It only "succeeds"
10237           // when the mapping was different and the load can be replaced with
10238           // a mov, which is of negligible benefit.  So such cases are
10239           // skipped below.
10240           if(f_regmap[hr]>0) {
10241             if(regs[t].regmap[hr]==f_regmap[hr]||(regs[t].regmap_entry[hr]<0&&get_reg(regmap_pre[t],f_regmap[hr])<0)) {
10242               int r=f_regmap[hr];
10243               for(j=t;j<=i;j++)
10244               {
10245                 //printf("Test %x -> %x, %x %d/%d\n",start+i*4,ba[i],start+j*4,hr,r);
10246                 if(r<34&&((unneeded_reg[j]>>r)&1)) break;
10247                 if(r>63&&((unneeded_reg_upper[j]>>(r&63))&1)) break;
10248                 if(r>63) {
10249                   // NB This can exclude the case where the upper-half
10250                   // register is lower numbered than the lower-half
10251                   // register.  Not sure if it's worth fixing...
10252                   if(get_reg(regs[j].regmap,r&63)<0) break;
10253                   if(get_reg(regs[j].regmap_entry,r&63)<0) break;
10254                   if(regs[j].is32&(1LL<<(r&63))) break;
10255                 }
10256                 if(regs[j].regmap[hr]==f_regmap[hr]&&(f_regmap[hr]&63)<TEMPREG) {
10257                   //printf("Hit %x -> %x, %x %d/%d\n",start+i*4,ba[i],start+j*4,hr,r);
10258                   int k;
10259                   if(regs[i].regmap[hr]==-1&&branch_regs[i].regmap[hr]==-1) {
10260                     if(get_reg(regs[i+2].regmap,f_regmap[hr])>=0) break;
10261                     if(r>63) {
10262                       if(get_reg(regs[i].regmap,r&63)<0) break;
10263                       if(get_reg(branch_regs[i].regmap,r&63)<0) break;
10264                     }
10265                     k=i;
10266                     while(k>1&&regs[k-1].regmap[hr]==-1) {
10267                       if(count_free_regs(regs[k-1].regmap)<=minimum_free_regs[k-1]) {
10268                         //printf("no free regs for store %x\n",start+(k-1)*4);
10269                         break;
10270                       }
10271                       if(get_reg(regs[k-1].regmap,f_regmap[hr])>=0) {
10272                         //printf("no-match due to different register\n");
10273                         break;
10274                       }
10275                       if(itype[k-2]==UJUMP||itype[k-2]==RJUMP||itype[k-2]==CJUMP||itype[k-2]==SJUMP||itype[k-2]==FJUMP) {
10276                         //printf("no-match due to branch\n");
10277                         break;
10278                       }
10279                       // call/ret fast path assumes no registers allocated
10280                       if(k>2&&(itype[k-3]==UJUMP||itype[k-3]==RJUMP)&&rt1[k-3]==31) {
10281                         break;
10282                       }
10283                       if(r>63) {
10284                         // NB This can exclude the case where the upper-half
10285                         // register is lower numbered than the lower-half
10286                         // register.  Not sure if it's worth fixing...
10287                         if(get_reg(regs[k-1].regmap,r&63)<0) break;
10288                         if(regs[k-1].is32&(1LL<<(r&63))) break;
10289                       }
10290                       k--;
10291                     }
10292                     if(i<slen-1) {
10293                       if((regs[k].is32&(1LL<<f_regmap[hr]))!=
10294                         (regs[i+2].was32&(1LL<<f_regmap[hr]))) {
10295                         //printf("bad match after branch\n");
10296                         break;
10297                       }
10298                     }
10299                     if(regs[k-1].regmap[hr]==f_regmap[hr]&&regmap_pre[k][hr]==f_regmap[hr]) {
10300                       //printf("Extend r%d, %x ->\n",hr,start+k*4);
10301                       while(k<i) {
10302                         regs[k].regmap_entry[hr]=f_regmap[hr];
10303                         regs[k].regmap[hr]=f_regmap[hr];
10304                         regmap_pre[k+1][hr]=f_regmap[hr];
10305                         regs[k].wasdirty&=~(1<<hr);
10306                         regs[k].dirty&=~(1<<hr);
10307                         regs[k].wasdirty|=(1<<hr)&regs[k-1].dirty;
10308                         regs[k].dirty|=(1<<hr)&regs[k].wasdirty;
10309                         regs[k].wasconst&=~(1<<hr);
10310                         regs[k].isconst&=~(1<<hr);
10311                         k++;
10312                       }
10313                     }
10314                     else {
10315                       //printf("Fail Extend r%d, %x ->\n",hr,start+k*4);
10316                       break;
10317                     }
10318                     assert(regs[i-1].regmap[hr]==f_regmap[hr]);
10319                     if(regs[i-1].regmap[hr]==f_regmap[hr]&&regmap_pre[i][hr]==f_regmap[hr]) {
10320                       //printf("OK fill %x (r%d)\n",start+i*4,hr);
10321                       regs[i].regmap_entry[hr]=f_regmap[hr];
10322                       regs[i].regmap[hr]=f_regmap[hr];
10323                       regs[i].wasdirty&=~(1<<hr);
10324                       regs[i].dirty&=~(1<<hr);
10325                       regs[i].wasdirty|=(1<<hr)&regs[i-1].dirty;
10326                       regs[i].dirty|=(1<<hr)&regs[i-1].dirty;
10327                       regs[i].wasconst&=~(1<<hr);
10328                       regs[i].isconst&=~(1<<hr);
10329                       branch_regs[i].regmap_entry[hr]=f_regmap[hr];
10330                       branch_regs[i].wasdirty&=~(1<<hr);
10331                       branch_regs[i].wasdirty|=(1<<hr)&regs[i].dirty;
10332                       branch_regs[i].regmap[hr]=f_regmap[hr];
10333                       branch_regs[i].dirty&=~(1<<hr);
10334                       branch_regs[i].dirty|=(1<<hr)&regs[i].dirty;
10335                       branch_regs[i].wasconst&=~(1<<hr);
10336                       branch_regs[i].isconst&=~(1<<hr);
10337                       if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000) {
10338                         regmap_pre[i+2][hr]=f_regmap[hr];
10339                         regs[i+2].wasdirty&=~(1<<hr);
10340                         regs[i+2].wasdirty|=(1<<hr)&regs[i].dirty;
10341                         assert((branch_regs[i].is32&(1LL<<f_regmap[hr]))==
10342                           (regs[i+2].was32&(1LL<<f_regmap[hr])));
10343                       }
10344                     }
10345                   }
10346                   for(k=t;k<j;k++) {
10347                     // Alloc register clean at beginning of loop,
10348                     // but may dirty it in pass 6
10349                     regs[k].regmap_entry[hr]=f_regmap[hr];
10350                     regs[k].regmap[hr]=f_regmap[hr];
10351                     regs[k].dirty&=~(1<<hr);
10352                     regs[k].wasconst&=~(1<<hr);
10353                     regs[k].isconst&=~(1<<hr);
10354                     if(itype[k]==UJUMP||itype[k]==RJUMP||itype[k]==CJUMP||itype[k]==SJUMP||itype[k]==FJUMP) {
10355                       branch_regs[k].regmap_entry[hr]=f_regmap[hr];
10356                       branch_regs[k].regmap[hr]=f_regmap[hr];
10357                       branch_regs[k].dirty&=~(1<<hr);
10358                       branch_regs[k].wasconst&=~(1<<hr);
10359                       branch_regs[k].isconst&=~(1<<hr);
10360                       if(itype[k]!=RJUMP&&itype[k]!=UJUMP&&(source[k]>>16)!=0x1000) {
10361                         regmap_pre[k+2][hr]=f_regmap[hr];
10362                         regs[k+2].wasdirty&=~(1<<hr);
10363                         assert((branch_regs[k].is32&(1LL<<f_regmap[hr]))==
10364                           (regs[k+2].was32&(1LL<<f_regmap[hr])));
10365                       }
10366                     }
10367                     else
10368                     {
10369                       regmap_pre[k+1][hr]=f_regmap[hr];
10370                       regs[k+1].wasdirty&=~(1<<hr);
10371                     }
10372                   }
10373                   if(regs[j].regmap[hr]==f_regmap[hr])
10374                     regs[j].regmap_entry[hr]=f_regmap[hr];
10375                   break;
10376                 }
10377                 if(j==i) break;
10378                 if(regs[j].regmap[hr]>=0)
10379                   break;
10380                 if(get_reg(regs[j].regmap,f_regmap[hr])>=0) {
10381                   //printf("no-match due to different register\n");
10382                   break;
10383                 }
10384                 if((regs[j+1].is32&(1LL<<f_regmap[hr]))!=(regs[j].is32&(1LL<<f_regmap[hr]))) {
10385                   //printf("32/64 mismatch %x %d\n",start+j*4,hr);
10386                   break;
10387                 }
10388                 if(itype[j]==UJUMP||itype[j]==RJUMP||(source[j]>>16)==0x1000)
10389                 {
10390                   // Stop on unconditional branch
10391                   break;
10392                 }
10393                 if(itype[j]==CJUMP||itype[j]==SJUMP||itype[j]==FJUMP)
10394                 {
10395                   if(ooo[j]) {
10396                     if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j+1]) 
10397                       break;
10398                   }else{
10399                     if(count_free_regs(branch_regs[j].regmap)<=minimum_free_regs[j+1]) 
10400                       break;
10401                   }
10402                   if(get_reg(branch_regs[j].regmap,f_regmap[hr])>=0) {
10403                     //printf("no-match due to different register (branch)\n");
10404                     break;
10405                   }
10406                 }
10407                 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) {
10408                   //printf("No free regs for store %x\n",start+j*4);
10409                   break;
10410                 }
10411                 if(f_regmap[hr]>=64) {
10412                   if(regs[j].is32&(1LL<<(f_regmap[hr]&63))) {
10413                     break;
10414                   }
10415                   else
10416                   {
10417                     if(get_reg(regs[j].regmap,f_regmap[hr]&63)<0) {
10418                       break;
10419                     }
10420                   }
10421                 }
10422               }
10423             }
10424           }
10425         }
10426       }
10427     }else{
10428       // Non branch or undetermined branch target
10429       for(hr=0;hr<HOST_REGS;hr++)
10430       {
10431         if(hr!=EXCLUDE_REG) {
10432           if(regs[i].regmap[hr]>64) {
10433             if(!((regs[i].dirty>>hr)&1))
10434               f_regmap[hr]=regs[i].regmap[hr];
10435           }
10436           else if(regs[i].regmap[hr]>=0) {
10437             if(f_regmap[hr]!=regs[i].regmap[hr]) {
10438               // dealloc old register
10439               int n;
10440               for(n=0;n<HOST_REGS;n++)
10441               {
10442                 if(f_regmap[n]==regs[i].regmap[hr]) {f_regmap[n]=-1;}
10443               }
10444               // and alloc new one
10445               f_regmap[hr]=regs[i].regmap[hr];
10446             }
10447           }
10448         }
10449       }
10450       // Try to restore cycle count at branch targets
10451       if(bt[i]) {
10452         for(j=i;j<slen-1;j++) {
10453           if(regs[j].regmap[HOST_CCREG]!=-1) break;
10454           if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) {
10455             //printf("no free regs for store %x\n",start+j*4);
10456             break;
10457           }
10458         }
10459         if(regs[j].regmap[HOST_CCREG]==CCREG) {
10460           int k=i;
10461           //printf("Extend CC, %x -> %x\n",start+k*4,start+j*4);
10462           while(k<j) {
10463             regs[k].regmap_entry[HOST_CCREG]=CCREG;
10464             regs[k].regmap[HOST_CCREG]=CCREG;
10465             regmap_pre[k+1][HOST_CCREG]=CCREG;
10466             regs[k+1].wasdirty|=1<<HOST_CCREG;
10467             regs[k].dirty|=1<<HOST_CCREG;
10468             regs[k].wasconst&=~(1<<HOST_CCREG);
10469             regs[k].isconst&=~(1<<HOST_CCREG);
10470             k++;
10471           }
10472           regs[j].regmap_entry[HOST_CCREG]=CCREG;          
10473         }
10474         // Work backwards from the branch target
10475         if(j>i&&f_regmap[HOST_CCREG]==CCREG)
10476         {
10477           //printf("Extend backwards\n");
10478           int k;
10479           k=i;
10480           while(regs[k-1].regmap[HOST_CCREG]==-1) {
10481             if(count_free_regs(regs[k-1].regmap)<=minimum_free_regs[k-1]) {
10482               //printf("no free regs for store %x\n",start+(k-1)*4);
10483               break;
10484             }
10485             k--;
10486           }
10487           if(regs[k-1].regmap[HOST_CCREG]==CCREG) {
10488             //printf("Extend CC, %x ->\n",start+k*4);
10489             while(k<=i) {
10490               regs[k].regmap_entry[HOST_CCREG]=CCREG;
10491               regs[k].regmap[HOST_CCREG]=CCREG;
10492               regmap_pre[k+1][HOST_CCREG]=CCREG;
10493               regs[k+1].wasdirty|=1<<HOST_CCREG;
10494               regs[k].dirty|=1<<HOST_CCREG;
10495               regs[k].wasconst&=~(1<<HOST_CCREG);
10496               regs[k].isconst&=~(1<<HOST_CCREG);
10497               k++;
10498             }
10499           }
10500           else {
10501             //printf("Fail Extend CC, %x ->\n",start+k*4);
10502           }
10503         }
10504       }
10505       if(itype[i]!=STORE&&itype[i]!=STORELR&&itype[i]!=C1LS&&itype[i]!=SHIFT&&
10506          itype[i]!=NOP&&itype[i]!=MOV&&itype[i]!=ALU&&itype[i]!=SHIFTIMM&&
10507          itype[i]!=IMM16&&itype[i]!=LOAD&&itype[i]!=COP1&&itype[i]!=FLOAT&&
10508          itype[i]!=FCONV&&itype[i]!=FCOMP)
10509       {
10510         memcpy(f_regmap,regs[i].regmap,sizeof(f_regmap));
10511       }
10512     }
10513   }
10514   
10515   // Cache memory offset or tlb map pointer if a register is available
10516   #ifndef HOST_IMM_ADDR32
10517   #ifndef RAM_OFFSET
10518   if(using_tlb)
10519   #endif
10520   {
10521     int earliest_available[HOST_REGS];
10522     int loop_start[HOST_REGS];
10523     int score[HOST_REGS];
10524     int end[HOST_REGS];
10525     int reg=using_tlb?MMREG:ROREG;
10526
10527     // Init
10528     for(hr=0;hr<HOST_REGS;hr++) {
10529       score[hr]=0;earliest_available[hr]=0;
10530       loop_start[hr]=MAXBLOCK;
10531     }
10532     for(i=0;i<slen-1;i++)
10533     {
10534       // Can't do anything if no registers are available
10535       if(count_free_regs(regs[i].regmap)<=minimum_free_regs[i]) {
10536         for(hr=0;hr<HOST_REGS;hr++) {
10537           score[hr]=0;earliest_available[hr]=i+1;
10538           loop_start[hr]=MAXBLOCK;
10539         }
10540       }
10541       if(itype[i]==UJUMP||itype[i]==RJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP) {
10542         if(!ooo[i]) {
10543           if(count_free_regs(branch_regs[i].regmap)<=minimum_free_regs[i+1]) {
10544             for(hr=0;hr<HOST_REGS;hr++) {
10545               score[hr]=0;earliest_available[hr]=i+1;
10546               loop_start[hr]=MAXBLOCK;
10547             }
10548           }
10549         }else{
10550           if(count_free_regs(regs[i].regmap)<=minimum_free_regs[i+1]) {
10551             for(hr=0;hr<HOST_REGS;hr++) {
10552               score[hr]=0;earliest_available[hr]=i+1;
10553               loop_start[hr]=MAXBLOCK;
10554             }
10555           }
10556         }
10557       }
10558       // Mark unavailable registers
10559       for(hr=0;hr<HOST_REGS;hr++) {
10560         if(regs[i].regmap[hr]>=0) {
10561           score[hr]=0;earliest_available[hr]=i+1;
10562           loop_start[hr]=MAXBLOCK;
10563         }
10564         if(itype[i]==UJUMP||itype[i]==RJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP) {
10565           if(branch_regs[i].regmap[hr]>=0) {
10566             score[hr]=0;earliest_available[hr]=i+2;
10567             loop_start[hr]=MAXBLOCK;
10568           }
10569         }
10570       }
10571       // No register allocations after unconditional jumps
10572       if(itype[i]==UJUMP||itype[i]==RJUMP||(source[i]>>16)==0x1000)
10573       {
10574         for(hr=0;hr<HOST_REGS;hr++) {
10575           score[hr]=0;earliest_available[hr]=i+2;
10576           loop_start[hr]=MAXBLOCK;
10577         }
10578         i++; // Skip delay slot too
10579         //printf("skip delay slot: %x\n",start+i*4);
10580       }
10581       else
10582       // Possible match
10583       if(itype[i]==LOAD||itype[i]==LOADLR||
10584          itype[i]==STORE||itype[i]==STORELR||itype[i]==C1LS) {
10585         for(hr=0;hr<HOST_REGS;hr++) {
10586           if(hr!=EXCLUDE_REG) {
10587             end[hr]=i-1;
10588             for(j=i;j<slen-1;j++) {
10589               if(regs[j].regmap[hr]>=0) break;
10590               if(itype[j]==UJUMP||itype[j]==RJUMP||itype[j]==CJUMP||itype[j]==SJUMP||itype[j]==FJUMP) {
10591                 if(branch_regs[j].regmap[hr]>=0) break;
10592                 if(ooo[j]) {
10593                   if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j+1]) break;
10594                 }else{
10595                   if(count_free_regs(branch_regs[j].regmap)<=minimum_free_regs[j+1]) break;
10596                 }
10597               }
10598               else if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) break;
10599               if(itype[j]==UJUMP||itype[j]==RJUMP||itype[j]==CJUMP||itype[j]==SJUMP||itype[j]==FJUMP) {
10600                 int t=(ba[j]-start)>>2;
10601                 if(t<j&&t>=earliest_available[hr]) {
10602                   if(t==1||(t>1&&itype[t-2]!=UJUMP&&itype[t-2]!=RJUMP)||(t>1&&rt1[t-2]!=31)) { // call/ret assumes no registers allocated
10603                     // Score a point for hoisting loop invariant
10604                     if(t<loop_start[hr]) loop_start[hr]=t;
10605                     //printf("set loop_start: i=%x j=%x (%x)\n",start+i*4,start+j*4,start+t*4);
10606                     score[hr]++;
10607                     end[hr]=j;
10608                   }
10609                 }
10610                 else if(t<j) {
10611                   if(regs[t].regmap[hr]==reg) {
10612                     // Score a point if the branch target matches this register
10613                     score[hr]++;
10614                     end[hr]=j;
10615                   }
10616                 }
10617                 if(itype[j+1]==LOAD||itype[j+1]==LOADLR||
10618                    itype[j+1]==STORE||itype[j+1]==STORELR||itype[j+1]==C1LS) {
10619                   score[hr]++;
10620                   end[hr]=j;
10621                 }
10622               }
10623               if(itype[j]==UJUMP||itype[j]==RJUMP||(source[j]>>16)==0x1000)
10624               {
10625                 // Stop on unconditional branch
10626                 break;
10627               }
10628               else
10629               if(itype[j]==LOAD||itype[j]==LOADLR||
10630                  itype[j]==STORE||itype[j]==STORELR||itype[j]==C1LS) {
10631                 score[hr]++;
10632                 end[hr]=j;
10633               }
10634             }
10635           }
10636         }
10637         // Find highest score and allocate that register
10638         int maxscore=0;
10639         for(hr=0;hr<HOST_REGS;hr++) {
10640           if(hr!=EXCLUDE_REG) {
10641             if(score[hr]>score[maxscore]) {
10642               maxscore=hr;
10643               //printf("highest score: %d %d (%x->%x)\n",score[hr],hr,start+i*4,start+end[hr]*4);
10644             }
10645           }
10646         }
10647         if(score[maxscore]>1)
10648         {
10649           if(i<loop_start[maxscore]) loop_start[maxscore]=i;
10650           for(j=loop_start[maxscore];j<slen&&j<=end[maxscore];j++) {
10651             //if(regs[j].regmap[maxscore]>=0) {printf("oops: %x %x was %d=%d\n",loop_start[maxscore]*4+start,j*4+start,maxscore,regs[j].regmap[maxscore]);}
10652             assert(regs[j].regmap[maxscore]<0);
10653             if(j>loop_start[maxscore]) regs[j].regmap_entry[maxscore]=reg;
10654             regs[j].regmap[maxscore]=reg;
10655             regs[j].dirty&=~(1<<maxscore);
10656             regs[j].wasconst&=~(1<<maxscore);
10657             regs[j].isconst&=~(1<<maxscore);
10658             if(itype[j]==UJUMP||itype[j]==RJUMP||itype[j]==CJUMP||itype[j]==SJUMP||itype[j]==FJUMP) {
10659               branch_regs[j].regmap[maxscore]=reg;
10660               branch_regs[j].wasdirty&=~(1<<maxscore);
10661               branch_regs[j].dirty&=~(1<<maxscore);
10662               branch_regs[j].wasconst&=~(1<<maxscore);
10663               branch_regs[j].isconst&=~(1<<maxscore);
10664               if(itype[j]!=RJUMP&&itype[j]!=UJUMP&&(source[j]>>16)!=0x1000) {
10665                 regmap_pre[j+2][maxscore]=reg;
10666                 regs[j+2].wasdirty&=~(1<<maxscore);
10667               }
10668               // loop optimization (loop_preload)
10669               int t=(ba[j]-start)>>2;
10670               if(t==loop_start[maxscore]) {
10671                 if(t==1||(t>1&&itype[t-2]!=UJUMP&&itype[t-2]!=RJUMP)||(t>1&&rt1[t-2]!=31)) // call/ret assumes no registers allocated
10672                   regs[t].regmap_entry[maxscore]=reg;
10673               }
10674             }
10675             else
10676             {
10677               if(j<1||(itype[j-1]!=RJUMP&&itype[j-1]!=UJUMP&&itype[j-1]!=CJUMP&&itype[j-1]!=SJUMP&&itype[j-1]!=FJUMP)) {
10678                 regmap_pre[j+1][maxscore]=reg;
10679                 regs[j+1].wasdirty&=~(1<<maxscore);
10680               }
10681             }
10682           }
10683           i=j-1;
10684           if(itype[j-1]==RJUMP||itype[j-1]==UJUMP||itype[j-1]==CJUMP||itype[j-1]==SJUMP||itype[j-1]==FJUMP) i++; // skip delay slot
10685           for(hr=0;hr<HOST_REGS;hr++) {
10686             score[hr]=0;earliest_available[hr]=i+i;
10687             loop_start[hr]=MAXBLOCK;
10688           }
10689         }
10690       }
10691     }
10692   }
10693   #endif
10694   
10695   // This allocates registers (if possible) one instruction prior
10696   // to use, which can avoid a load-use penalty on certain CPUs.
10697   for(i=0;i<slen-1;i++)
10698   {
10699     if(!i||(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP))
10700     {
10701       if(!bt[i+1])
10702       {
10703         if(itype[i]==ALU||itype[i]==MOV||itype[i]==LOAD||itype[i]==SHIFTIMM||itype[i]==IMM16
10704            ||((itype[i]==COP1||itype[i]==COP2)&&opcode2[i]<3))
10705         {
10706           if(rs1[i+1]) {
10707             if((hr=get_reg(regs[i+1].regmap,rs1[i+1]))>=0)
10708             {
10709               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10710               {
10711                 regs[i].regmap[hr]=regs[i+1].regmap[hr];
10712                 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
10713                 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
10714                 regs[i].isconst&=~(1<<hr);
10715                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10716                 constmap[i][hr]=constmap[i+1][hr];
10717                 regs[i+1].wasdirty&=~(1<<hr);
10718                 regs[i].dirty&=~(1<<hr);
10719               }
10720             }
10721           }
10722           if(rs2[i+1]) {
10723             if((hr=get_reg(regs[i+1].regmap,rs2[i+1]))>=0)
10724             {
10725               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10726               {
10727                 regs[i].regmap[hr]=regs[i+1].regmap[hr];
10728                 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
10729                 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
10730                 regs[i].isconst&=~(1<<hr);
10731                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10732                 constmap[i][hr]=constmap[i+1][hr];
10733                 regs[i+1].wasdirty&=~(1<<hr);
10734                 regs[i].dirty&=~(1<<hr);
10735               }
10736             }
10737           }
10738           // Preload target address for load instruction (non-constant)
10739           if(itype[i+1]==LOAD&&rs1[i+1]&&get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10740             if((hr=get_reg(regs[i+1].regmap,rt1[i+1]))>=0)
10741             {
10742               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10743               {
10744                 regs[i].regmap[hr]=rs1[i+1];
10745                 regmap_pre[i+1][hr]=rs1[i+1];
10746                 regs[i+1].regmap_entry[hr]=rs1[i+1];
10747                 regs[i].isconst&=~(1<<hr);
10748                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10749                 constmap[i][hr]=constmap[i+1][hr];
10750                 regs[i+1].wasdirty&=~(1<<hr);
10751                 regs[i].dirty&=~(1<<hr);
10752               }
10753             }
10754           }
10755           // Load source into target register 
10756           if(lt1[i+1]&&get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10757             if((hr=get_reg(regs[i+1].regmap,rt1[i+1]))>=0)
10758             {
10759               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10760               {
10761                 regs[i].regmap[hr]=rs1[i+1];
10762                 regmap_pre[i+1][hr]=rs1[i+1];
10763                 regs[i+1].regmap_entry[hr]=rs1[i+1];
10764                 regs[i].isconst&=~(1<<hr);
10765                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10766                 constmap[i][hr]=constmap[i+1][hr];
10767                 regs[i+1].wasdirty&=~(1<<hr);
10768                 regs[i].dirty&=~(1<<hr);
10769               }
10770             }
10771           }
10772           // Preload map address
10773           #ifndef HOST_IMM_ADDR32
10774           if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS||itype[i+1]==C2LS) {
10775             hr=get_reg(regs[i+1].regmap,TLREG);
10776             if(hr>=0) {
10777               int sr=get_reg(regs[i+1].regmap,rs1[i+1]);
10778               if(sr>=0&&((regs[i+1].wasconst>>sr)&1)) {
10779                 int nr;
10780                 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10781                 {
10782                   regs[i].regmap[hr]=MGEN1+((i+1)&1);
10783                   regmap_pre[i+1][hr]=MGEN1+((i+1)&1);
10784                   regs[i+1].regmap_entry[hr]=MGEN1+((i+1)&1);
10785                   regs[i].isconst&=~(1<<hr);
10786                   regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10787                   constmap[i][hr]=constmap[i+1][hr];
10788                   regs[i+1].wasdirty&=~(1<<hr);
10789                   regs[i].dirty&=~(1<<hr);
10790                 }
10791                 else if((nr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1))>=0)
10792                 {
10793                   // move it to another register
10794                   regs[i+1].regmap[hr]=-1;
10795                   regmap_pre[i+2][hr]=-1;
10796                   regs[i+1].regmap[nr]=TLREG;
10797                   regmap_pre[i+2][nr]=TLREG;
10798                   regs[i].regmap[nr]=MGEN1+((i+1)&1);
10799                   regmap_pre[i+1][nr]=MGEN1+((i+1)&1);
10800                   regs[i+1].regmap_entry[nr]=MGEN1+((i+1)&1);
10801                   regs[i].isconst&=~(1<<nr);
10802                   regs[i+1].isconst&=~(1<<nr);
10803                   regs[i].dirty&=~(1<<nr);
10804                   regs[i+1].wasdirty&=~(1<<nr);
10805                   regs[i+1].dirty&=~(1<<nr);
10806                   regs[i+2].wasdirty&=~(1<<nr);
10807                 }
10808               }
10809             }
10810           }
10811           #endif
10812           // Address for store instruction (non-constant)
10813           if(itype[i+1]==STORE||itype[i+1]==STORELR
10814              ||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SB/SH/SW/SD/SWC1/SDC1/SWC2/SDC2
10815             if(get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10816               hr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1);
10817               if(hr<0) hr=get_reg(regs[i+1].regmap,-1);
10818               else {regs[i+1].regmap[hr]=AGEN1+((i+1)&1);regs[i+1].isconst&=~(1<<hr);}
10819               assert(hr>=0);
10820               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10821               {
10822                 regs[i].regmap[hr]=rs1[i+1];
10823                 regmap_pre[i+1][hr]=rs1[i+1];
10824                 regs[i+1].regmap_entry[hr]=rs1[i+1];
10825                 regs[i].isconst&=~(1<<hr);
10826                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10827                 constmap[i][hr]=constmap[i+1][hr];
10828                 regs[i+1].wasdirty&=~(1<<hr);
10829                 regs[i].dirty&=~(1<<hr);
10830               }
10831             }
10832           }
10833           if(itype[i+1]==LOADLR||(opcode[i+1]&0x3b)==0x31||(opcode[i+1]&0x3b)==0x32) { // LWC1/LDC1, LWC2/LDC2
10834             if(get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10835               int nr;
10836               hr=get_reg(regs[i+1].regmap,FTEMP);
10837               assert(hr>=0);
10838               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10839               {
10840                 regs[i].regmap[hr]=rs1[i+1];
10841                 regmap_pre[i+1][hr]=rs1[i+1];
10842                 regs[i+1].regmap_entry[hr]=rs1[i+1];
10843                 regs[i].isconst&=~(1<<hr);
10844                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10845                 constmap[i][hr]=constmap[i+1][hr];
10846                 regs[i+1].wasdirty&=~(1<<hr);
10847                 regs[i].dirty&=~(1<<hr);
10848               }
10849               else if((nr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1))>=0)
10850               {
10851                 // move it to another register
10852                 regs[i+1].regmap[hr]=-1;
10853                 regmap_pre[i+2][hr]=-1;
10854                 regs[i+1].regmap[nr]=FTEMP;
10855                 regmap_pre[i+2][nr]=FTEMP;
10856                 regs[i].regmap[nr]=rs1[i+1];
10857                 regmap_pre[i+1][nr]=rs1[i+1];
10858                 regs[i+1].regmap_entry[nr]=rs1[i+1];
10859                 regs[i].isconst&=~(1<<nr);
10860                 regs[i+1].isconst&=~(1<<nr);
10861                 regs[i].dirty&=~(1<<nr);
10862                 regs[i+1].wasdirty&=~(1<<nr);
10863                 regs[i+1].dirty&=~(1<<nr);
10864                 regs[i+2].wasdirty&=~(1<<nr);
10865               }
10866             }
10867           }
10868           if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR/*||itype[i+1]==C1LS||||itype[i+1]==C2LS*/) {
10869             if(itype[i+1]==LOAD) 
10870               hr=get_reg(regs[i+1].regmap,rt1[i+1]);
10871             if(itype[i+1]==LOADLR||(opcode[i+1]&0x3b)==0x31||(opcode[i+1]&0x3b)==0x32) // LWC1/LDC1, LWC2/LDC2
10872               hr=get_reg(regs[i+1].regmap,FTEMP);
10873             if(itype[i+1]==STORE||itype[i+1]==STORELR||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1/SWC2/SDC2
10874               hr=get_reg(regs[i+1].regmap,AGEN1+((i+1)&1));
10875               if(hr<0) hr=get_reg(regs[i+1].regmap,-1);
10876             }
10877             if(hr>=0&&regs[i].regmap[hr]<0) {
10878               int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
10879               if(rs>=0&&((regs[i+1].wasconst>>rs)&1)) {
10880                 regs[i].regmap[hr]=AGEN1+((i+1)&1);
10881                 regmap_pre[i+1][hr]=AGEN1+((i+1)&1);
10882                 regs[i+1].regmap_entry[hr]=AGEN1+((i+1)&1);
10883                 regs[i].isconst&=~(1<<hr);
10884                 regs[i+1].wasdirty&=~(1<<hr);
10885                 regs[i].dirty&=~(1<<hr);
10886               }
10887             }
10888           }
10889         }
10890       }
10891     }
10892   }
10893   
10894   /* Pass 6 - Optimize clean/dirty state */
10895   clean_registers(0,slen-1,1);
10896   
10897   /* Pass 7 - Identify 32-bit registers */
10898 #ifndef FORCE32
10899   provisional_r32();
10900
10901   u_int r32=0;
10902   
10903   for (i=slen-1;i>=0;i--)
10904   {
10905     int hr;
10906     if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
10907     {
10908       if(ba[i]<start || ba[i]>=(start+slen*4))
10909       {
10910         // Branch out of this block, don't need anything
10911         r32=0;
10912       }
10913       else
10914       {
10915         // Internal branch
10916         // Need whatever matches the target
10917         // (and doesn't get overwritten by the delay slot instruction)
10918         r32=0;
10919         int t=(ba[i]-start)>>2;
10920         if(ba[i]>start+i*4) {
10921           // Forward branch
10922           if(!(requires_32bit[t]&~regs[i].was32))
10923             r32|=requires_32bit[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
10924         }else{
10925           // Backward branch
10926           //if(!(regs[t].was32&~unneeded_reg_upper[t]&~regs[i].was32))
10927           //  r32|=regs[t].was32&~unneeded_reg_upper[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
10928           if(!(pr32[t]&~regs[i].was32))
10929             r32|=pr32[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
10930         }
10931       }
10932       // Conditional branch may need registers for following instructions
10933       if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
10934       {
10935         if(i<slen-2) {
10936           r32|=requires_32bit[i+2];
10937           r32&=regs[i].was32;
10938           // Mark this address as a branch target since it may be called
10939           // upon return from interrupt
10940           bt[i+2]=1;
10941         }
10942       }
10943       // Merge in delay slot
10944       if(!likely[i]) {
10945         // These are overwritten unless the branch is "likely"
10946         // and the delay slot is nullified if not taken
10947         r32&=~(1LL<<rt1[i+1]);
10948         r32&=~(1LL<<rt2[i+1]);
10949       }
10950       // Assume these are needed (delay slot)
10951       if(us1[i+1]>0)
10952       {
10953         if((regs[i].was32>>us1[i+1])&1) r32|=1LL<<us1[i+1];
10954       }
10955       if(us2[i+1]>0)
10956       {
10957         if((regs[i].was32>>us2[i+1])&1) r32|=1LL<<us2[i+1];
10958       }
10959       if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1))
10960       {
10961         if((regs[i].was32>>dep1[i+1])&1) r32|=1LL<<dep1[i+1];
10962       }
10963       if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1))
10964       {
10965         if((regs[i].was32>>dep2[i+1])&1) r32|=1LL<<dep2[i+1];
10966       }
10967     }
10968     else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
10969     {
10970       // SYSCALL instruction (software interrupt)
10971       r32=0;
10972     }
10973     else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
10974     {
10975       // ERET instruction (return from interrupt)
10976       r32=0;
10977     }
10978     // Check 32 bits
10979     r32&=~(1LL<<rt1[i]);
10980     r32&=~(1LL<<rt2[i]);
10981     if(us1[i]>0)
10982     {
10983       if((regs[i].was32>>us1[i])&1) r32|=1LL<<us1[i];
10984     }
10985     if(us2[i]>0)
10986     {
10987       if((regs[i].was32>>us2[i])&1) r32|=1LL<<us2[i];
10988     }
10989     if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1))
10990     {
10991       if((regs[i].was32>>dep1[i])&1) r32|=1LL<<dep1[i];
10992     }
10993     if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1))
10994     {
10995       if((regs[i].was32>>dep2[i])&1) r32|=1LL<<dep2[i];
10996     }
10997     requires_32bit[i]=r32;
10998     
10999     // Dirty registers which are 32-bit, require 32-bit input
11000     // as they will be written as 32-bit values
11001     for(hr=0;hr<HOST_REGS;hr++)
11002     {
11003       if(regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64) {
11004         if((regs[i].was32>>regs[i].regmap_entry[hr])&(regs[i].wasdirty>>hr)&1) {
11005           if(!((unneeded_reg_upper[i]>>regs[i].regmap_entry[hr])&1))
11006           requires_32bit[i]|=1LL<<regs[i].regmap_entry[hr];
11007         }
11008       }
11009     }
11010     //requires_32bit[i]=is32[i]&~unneeded_reg_upper[i]; // DEBUG
11011   }
11012 #else
11013   for (i=slen-1;i>=0;i--)
11014   {
11015     if(itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
11016     {
11017       // Conditional branch
11018       if((source[i]>>16)!=0x1000&&i<slen-2) {
11019         // Mark this address as a branch target since it may be called
11020         // upon return from interrupt
11021         bt[i+2]=1;
11022       }
11023     }
11024   }
11025 #endif
11026
11027   if(itype[slen-1]==SPAN) {
11028     bt[slen-1]=1; // Mark as a branch target so instruction can restart after exception
11029   }
11030
11031 #ifdef DISASM
11032   /* Debug/disassembly */
11033   for(i=0;i<slen;i++)
11034   {
11035     printf("U:");
11036     int r;
11037     for(r=1;r<=CCREG;r++) {
11038       if((unneeded_reg[i]>>r)&1) {
11039         if(r==HIREG) printf(" HI");
11040         else if(r==LOREG) printf(" LO");
11041         else printf(" r%d",r);
11042       }
11043     }
11044 #ifndef FORCE32
11045     printf(" UU:");
11046     for(r=1;r<=CCREG;r++) {
11047       if(((unneeded_reg_upper[i]&~unneeded_reg[i])>>r)&1) {
11048         if(r==HIREG) printf(" HI");
11049         else if(r==LOREG) printf(" LO");
11050         else printf(" r%d",r);
11051       }
11052     }
11053     printf(" 32:");
11054     for(r=0;r<=CCREG;r++) {
11055       //if(((is32[i]>>r)&(~unneeded_reg[i]>>r))&1) {
11056       if((regs[i].was32>>r)&1) {
11057         if(r==CCREG) printf(" CC");
11058         else if(r==HIREG) printf(" HI");
11059         else if(r==LOREG) printf(" LO");
11060         else printf(" r%d",r);
11061       }
11062     }
11063 #endif
11064     printf("\n");
11065     #if defined(__i386__) || defined(__x86_64__)
11066     printf("pre: eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",regmap_pre[i][0],regmap_pre[i][1],regmap_pre[i][2],regmap_pre[i][3],regmap_pre[i][5],regmap_pre[i][6],regmap_pre[i][7]);
11067     #endif
11068     #ifdef __arm__
11069     printf("pre: r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d\n",regmap_pre[i][0],regmap_pre[i][1],regmap_pre[i][2],regmap_pre[i][3],regmap_pre[i][4],regmap_pre[i][5],regmap_pre[i][6],regmap_pre[i][7],regmap_pre[i][8],regmap_pre[i][9],regmap_pre[i][10],regmap_pre[i][12]);
11070     #endif
11071     printf("needs: ");
11072     if(needed_reg[i]&1) printf("eax ");
11073     if((needed_reg[i]>>1)&1) printf("ecx ");
11074     if((needed_reg[i]>>2)&1) printf("edx ");
11075     if((needed_reg[i]>>3)&1) printf("ebx ");
11076     if((needed_reg[i]>>5)&1) printf("ebp ");
11077     if((needed_reg[i]>>6)&1) printf("esi ");
11078     if((needed_reg[i]>>7)&1) printf("edi ");
11079     printf("r:");
11080     for(r=0;r<=CCREG;r++) {
11081       //if(((requires_32bit[i]>>r)&(~unneeded_reg[i]>>r))&1) {
11082       if((requires_32bit[i]>>r)&1) {
11083         if(r==CCREG) printf(" CC");
11084         else if(r==HIREG) printf(" HI");
11085         else if(r==LOREG) printf(" LO");
11086         else printf(" r%d",r);
11087       }
11088     }
11089     printf("\n");
11090     /*printf("pr:");
11091     for(r=0;r<=CCREG;r++) {
11092       //if(((requires_32bit[i]>>r)&(~unneeded_reg[i]>>r))&1) {
11093       if((pr32[i]>>r)&1) {
11094         if(r==CCREG) printf(" CC");
11095         else if(r==HIREG) printf(" HI");
11096         else if(r==LOREG) printf(" LO");
11097         else printf(" r%d",r);
11098       }
11099     }
11100     if(pr32[i]!=requires_32bit[i]) printf(" OOPS");
11101     printf("\n");*/
11102     #if defined(__i386__) || defined(__x86_64__)
11103     printf("entry: eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",regs[i].regmap_entry[0],regs[i].regmap_entry[1],regs[i].regmap_entry[2],regs[i].regmap_entry[3],regs[i].regmap_entry[5],regs[i].regmap_entry[6],regs[i].regmap_entry[7]);
11104     printf("dirty: ");
11105     if(regs[i].wasdirty&1) printf("eax ");
11106     if((regs[i].wasdirty>>1)&1) printf("ecx ");
11107     if((regs[i].wasdirty>>2)&1) printf("edx ");
11108     if((regs[i].wasdirty>>3)&1) printf("ebx ");
11109     if((regs[i].wasdirty>>5)&1) printf("ebp ");
11110     if((regs[i].wasdirty>>6)&1) printf("esi ");
11111     if((regs[i].wasdirty>>7)&1) printf("edi ");
11112     #endif
11113     #ifdef __arm__
11114     printf("entry: r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d\n",regs[i].regmap_entry[0],regs[i].regmap_entry[1],regs[i].regmap_entry[2],regs[i].regmap_entry[3],regs[i].regmap_entry[4],regs[i].regmap_entry[5],regs[i].regmap_entry[6],regs[i].regmap_entry[7],regs[i].regmap_entry[8],regs[i].regmap_entry[9],regs[i].regmap_entry[10],regs[i].regmap_entry[12]);
11115     printf("dirty: ");
11116     if(regs[i].wasdirty&1) printf("r0 ");
11117     if((regs[i].wasdirty>>1)&1) printf("r1 ");
11118     if((regs[i].wasdirty>>2)&1) printf("r2 ");
11119     if((regs[i].wasdirty>>3)&1) printf("r3 ");
11120     if((regs[i].wasdirty>>4)&1) printf("r4 ");
11121     if((regs[i].wasdirty>>5)&1) printf("r5 ");
11122     if((regs[i].wasdirty>>6)&1) printf("r6 ");
11123     if((regs[i].wasdirty>>7)&1) printf("r7 ");
11124     if((regs[i].wasdirty>>8)&1) printf("r8 ");
11125     if((regs[i].wasdirty>>9)&1) printf("r9 ");
11126     if((regs[i].wasdirty>>10)&1) printf("r10 ");
11127     if((regs[i].wasdirty>>12)&1) printf("r12 ");
11128     #endif
11129     printf("\n");
11130     disassemble_inst(i);
11131     //printf ("ccadj[%d] = %d\n",i,ccadj[i]);
11132     #if defined(__i386__) || defined(__x86_64__)
11133     printf("eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d dirty: ",regs[i].regmap[0],regs[i].regmap[1],regs[i].regmap[2],regs[i].regmap[3],regs[i].regmap[5],regs[i].regmap[6],regs[i].regmap[7]);
11134     if(regs[i].dirty&1) printf("eax ");
11135     if((regs[i].dirty>>1)&1) printf("ecx ");
11136     if((regs[i].dirty>>2)&1) printf("edx ");
11137     if((regs[i].dirty>>3)&1) printf("ebx ");
11138     if((regs[i].dirty>>5)&1) printf("ebp ");
11139     if((regs[i].dirty>>6)&1) printf("esi ");
11140     if((regs[i].dirty>>7)&1) printf("edi ");
11141     #endif
11142     #ifdef __arm__
11143     printf("r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d dirty: ",regs[i].regmap[0],regs[i].regmap[1],regs[i].regmap[2],regs[i].regmap[3],regs[i].regmap[4],regs[i].regmap[5],regs[i].regmap[6],regs[i].regmap[7],regs[i].regmap[8],regs[i].regmap[9],regs[i].regmap[10],regs[i].regmap[12]);
11144     if(regs[i].dirty&1) printf("r0 ");
11145     if((regs[i].dirty>>1)&1) printf("r1 ");
11146     if((regs[i].dirty>>2)&1) printf("r2 ");
11147     if((regs[i].dirty>>3)&1) printf("r3 ");
11148     if((regs[i].dirty>>4)&1) printf("r4 ");
11149     if((regs[i].dirty>>5)&1) printf("r5 ");
11150     if((regs[i].dirty>>6)&1) printf("r6 ");
11151     if((regs[i].dirty>>7)&1) printf("r7 ");
11152     if((regs[i].dirty>>8)&1) printf("r8 ");
11153     if((regs[i].dirty>>9)&1) printf("r9 ");
11154     if((regs[i].dirty>>10)&1) printf("r10 ");
11155     if((regs[i].dirty>>12)&1) printf("r12 ");
11156     #endif
11157     printf("\n");
11158     if(regs[i].isconst) {
11159       printf("constants: ");
11160       #if defined(__i386__) || defined(__x86_64__)
11161       if(regs[i].isconst&1) printf("eax=%x ",(int)constmap[i][0]);
11162       if((regs[i].isconst>>1)&1) printf("ecx=%x ",(int)constmap[i][1]);
11163       if((regs[i].isconst>>2)&1) printf("edx=%x ",(int)constmap[i][2]);
11164       if((regs[i].isconst>>3)&1) printf("ebx=%x ",(int)constmap[i][3]);
11165       if((regs[i].isconst>>5)&1) printf("ebp=%x ",(int)constmap[i][5]);
11166       if((regs[i].isconst>>6)&1) printf("esi=%x ",(int)constmap[i][6]);
11167       if((regs[i].isconst>>7)&1) printf("edi=%x ",(int)constmap[i][7]);
11168       #endif
11169       #ifdef __arm__
11170       if(regs[i].isconst&1) printf("r0=%x ",(int)constmap[i][0]);
11171       if((regs[i].isconst>>1)&1) printf("r1=%x ",(int)constmap[i][1]);
11172       if((regs[i].isconst>>2)&1) printf("r2=%x ",(int)constmap[i][2]);
11173       if((regs[i].isconst>>3)&1) printf("r3=%x ",(int)constmap[i][3]);
11174       if((regs[i].isconst>>4)&1) printf("r4=%x ",(int)constmap[i][4]);
11175       if((regs[i].isconst>>5)&1) printf("r5=%x ",(int)constmap[i][5]);
11176       if((regs[i].isconst>>6)&1) printf("r6=%x ",(int)constmap[i][6]);
11177       if((regs[i].isconst>>7)&1) printf("r7=%x ",(int)constmap[i][7]);
11178       if((regs[i].isconst>>8)&1) printf("r8=%x ",(int)constmap[i][8]);
11179       if((regs[i].isconst>>9)&1) printf("r9=%x ",(int)constmap[i][9]);
11180       if((regs[i].isconst>>10)&1) printf("r10=%x ",(int)constmap[i][10]);
11181       if((regs[i].isconst>>12)&1) printf("r12=%x ",(int)constmap[i][12]);
11182       #endif
11183       printf("\n");
11184     }
11185 #ifndef FORCE32
11186     printf(" 32:");
11187     for(r=0;r<=CCREG;r++) {
11188       if((regs[i].is32>>r)&1) {
11189         if(r==CCREG) printf(" CC");
11190         else if(r==HIREG) printf(" HI");
11191         else if(r==LOREG) printf(" LO");
11192         else printf(" r%d",r);
11193       }
11194     }
11195     printf("\n");
11196 #endif
11197     /*printf(" p32:");
11198     for(r=0;r<=CCREG;r++) {
11199       if((p32[i]>>r)&1) {
11200         if(r==CCREG) printf(" CC");
11201         else if(r==HIREG) printf(" HI");
11202         else if(r==LOREG) printf(" LO");
11203         else printf(" r%d",r);
11204       }
11205     }
11206     if(p32[i]!=regs[i].is32) printf(" NO MATCH\n");
11207     else printf("\n");*/
11208     if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP) {
11209       #if defined(__i386__) || defined(__x86_64__)
11210       printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d dirty: ",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
11211       if(branch_regs[i].dirty&1) printf("eax ");
11212       if((branch_regs[i].dirty>>1)&1) printf("ecx ");
11213       if((branch_regs[i].dirty>>2)&1) printf("edx ");
11214       if((branch_regs[i].dirty>>3)&1) printf("ebx ");
11215       if((branch_regs[i].dirty>>5)&1) printf("ebp ");
11216       if((branch_regs[i].dirty>>6)&1) printf("esi ");
11217       if((branch_regs[i].dirty>>7)&1) printf("edi ");
11218       #endif
11219       #ifdef __arm__
11220       printf("branch(%d): r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d dirty: ",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[4],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7],branch_regs[i].regmap[8],branch_regs[i].regmap[9],branch_regs[i].regmap[10],branch_regs[i].regmap[12]);
11221       if(branch_regs[i].dirty&1) printf("r0 ");
11222       if((branch_regs[i].dirty>>1)&1) printf("r1 ");
11223       if((branch_regs[i].dirty>>2)&1) printf("r2 ");
11224       if((branch_regs[i].dirty>>3)&1) printf("r3 ");
11225       if((branch_regs[i].dirty>>4)&1) printf("r4 ");
11226       if((branch_regs[i].dirty>>5)&1) printf("r5 ");
11227       if((branch_regs[i].dirty>>6)&1) printf("r6 ");
11228       if((branch_regs[i].dirty>>7)&1) printf("r7 ");
11229       if((branch_regs[i].dirty>>8)&1) printf("r8 ");
11230       if((branch_regs[i].dirty>>9)&1) printf("r9 ");
11231       if((branch_regs[i].dirty>>10)&1) printf("r10 ");
11232       if((branch_regs[i].dirty>>12)&1) printf("r12 ");
11233       #endif
11234 #ifndef FORCE32
11235       printf(" 32:");
11236       for(r=0;r<=CCREG;r++) {
11237         if((branch_regs[i].is32>>r)&1) {
11238           if(r==CCREG) printf(" CC");
11239           else if(r==HIREG) printf(" HI");
11240           else if(r==LOREG) printf(" LO");
11241           else printf(" r%d",r);
11242         }
11243       }
11244       printf("\n");
11245 #endif
11246     }
11247   }
11248 #endif // DISASM
11249
11250   /* Pass 8 - Assembly */
11251   linkcount=0;stubcount=0;
11252   ds=0;is_delayslot=0;
11253   cop1_usable=0;
11254   uint64_t is32_pre=0;
11255   u_int dirty_pre=0;
11256   u_int beginning=(u_int)out;
11257   if((u_int)addr&1) {
11258     ds=1;
11259     pagespan_ds();
11260   }
11261   u_int instr_addr0_override=0;
11262
11263 #ifdef PCSX
11264   if (start == 0x80030000) {
11265     // nasty hack for fastbios thing
11266     // override block entry to this code
11267     instr_addr0_override=(u_int)out;
11268     emit_movimm(start,0);
11269     // abuse io address var as a flag that we
11270     // have already returned here once
11271     emit_readword((int)&address,1);
11272     emit_writeword(0,(int)&pcaddr);
11273     emit_writeword(0,(int)&address);
11274     emit_cmp(0,1);
11275     emit_jne((int)new_dyna_leave);
11276   }
11277 #endif
11278   for(i=0;i<slen;i++)
11279   {
11280     //if(ds) printf("ds: ");
11281     disassemble_inst(i);
11282     if(ds) {
11283       ds=0; // Skip delay slot
11284       if(bt[i]) assem_debug("OOPS - branch into delay slot\n");
11285       instr_addr[i]=0;
11286     } else {
11287       speculate_register_values(i);
11288       #ifndef DESTRUCTIVE_WRITEBACK
11289       if(i<2||(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000))
11290       {
11291         wb_sx(regmap_pre[i],regs[i].regmap_entry,regs[i].wasdirty,is32_pre,regs[i].was32,
11292               unneeded_reg[i],unneeded_reg_upper[i]);
11293         wb_valid(regmap_pre[i],regs[i].regmap_entry,dirty_pre,regs[i].wasdirty,is32_pre,
11294               unneeded_reg[i],unneeded_reg_upper[i]);
11295       }
11296       if((itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)&&!likely[i]) {
11297         is32_pre=branch_regs[i].is32;
11298         dirty_pre=branch_regs[i].dirty;
11299       }else{
11300         is32_pre=regs[i].is32;
11301         dirty_pre=regs[i].dirty;
11302       }
11303       #endif
11304       // write back
11305       if(i<2||(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000))
11306       {
11307         wb_invalidate(regmap_pre[i],regs[i].regmap_entry,regs[i].wasdirty,regs[i].was32,
11308                       unneeded_reg[i],unneeded_reg_upper[i]);
11309         loop_preload(regmap_pre[i],regs[i].regmap_entry);
11310       }
11311       // branch target entry point
11312       instr_addr[i]=(u_int)out;
11313       assem_debug("<->\n");
11314       // load regs
11315       if(regs[i].regmap_entry[HOST_CCREG]==CCREG&&regs[i].regmap[HOST_CCREG]!=CCREG)
11316         wb_register(CCREG,regs[i].regmap_entry,regs[i].wasdirty,regs[i].was32);
11317       load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i],rs2[i]);
11318       address_generation(i,&regs[i],regs[i].regmap_entry);
11319       load_consts(regmap_pre[i],regs[i].regmap,regs[i].was32,i);
11320       if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
11321       {
11322         // Load the delay slot registers if necessary
11323         if(rs1[i+1]!=rs1[i]&&rs1[i+1]!=rs2[i]&&(rs1[i+1]!=rt1[i]||rt1[i]==0))
11324           load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i+1],rs1[i+1]);
11325         if(rs2[i+1]!=rs1[i+1]&&rs2[i+1]!=rs1[i]&&rs2[i+1]!=rs2[i]&&(rs2[i+1]!=rt1[i]||rt1[i]==0))
11326           load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs2[i+1],rs2[i+1]);
11327         if(itype[i+1]==STORE||itype[i+1]==STORELR||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a)
11328           load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,INVCP,INVCP);
11329       }
11330       else if(i+1<slen)
11331       {
11332         // Preload registers for following instruction
11333         if(rs1[i+1]!=rs1[i]&&rs1[i+1]!=rs2[i])
11334           if(rs1[i+1]!=rt1[i]&&rs1[i+1]!=rt2[i])
11335             load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i+1],rs1[i+1]);
11336         if(rs2[i+1]!=rs1[i+1]&&rs2[i+1]!=rs1[i]&&rs2[i+1]!=rs2[i])
11337           if(rs2[i+1]!=rt1[i]&&rs2[i+1]!=rt2[i])
11338             load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs2[i+1],rs2[i+1]);
11339       }
11340       // TODO: if(is_ooo(i)) address_generation(i+1);
11341       if(itype[i]==CJUMP||itype[i]==FJUMP)
11342         load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,CCREG,CCREG);
11343       if(itype[i]==STORE||itype[i]==STORELR||(opcode[i]&0x3b)==0x39||(opcode[i]&0x3b)==0x3a)
11344         load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,INVCP,INVCP);
11345       if(bt[i]) cop1_usable=0;
11346       // assemble
11347       switch(itype[i]) {
11348         case ALU:
11349           alu_assemble(i,&regs[i]);break;
11350         case IMM16:
11351           imm16_assemble(i,&regs[i]);break;
11352         case SHIFT:
11353           shift_assemble(i,&regs[i]);break;
11354         case SHIFTIMM:
11355           shiftimm_assemble(i,&regs[i]);break;
11356         case LOAD:
11357           load_assemble(i,&regs[i]);break;
11358         case LOADLR:
11359           loadlr_assemble(i,&regs[i]);break;
11360         case STORE:
11361           store_assemble(i,&regs[i]);break;
11362         case STORELR:
11363           storelr_assemble(i,&regs[i]);break;
11364         case COP0:
11365           cop0_assemble(i,&regs[i]);break;
11366         case COP1:
11367           cop1_assemble(i,&regs[i]);break;
11368         case C1LS:
11369           c1ls_assemble(i,&regs[i]);break;
11370         case COP2:
11371           cop2_assemble(i,&regs[i]);break;
11372         case C2LS:
11373           c2ls_assemble(i,&regs[i]);break;
11374         case C2OP:
11375           c2op_assemble(i,&regs[i]);break;
11376         case FCONV:
11377           fconv_assemble(i,&regs[i]);break;
11378         case FLOAT:
11379           float_assemble(i,&regs[i]);break;
11380         case FCOMP:
11381           fcomp_assemble(i,&regs[i]);break;
11382         case MULTDIV:
11383           multdiv_assemble(i,&regs[i]);break;
11384         case MOV:
11385           mov_assemble(i,&regs[i]);break;
11386         case SYSCALL:
11387           syscall_assemble(i,&regs[i]);break;
11388         case HLECALL:
11389           hlecall_assemble(i,&regs[i]);break;
11390         case INTCALL:
11391           intcall_assemble(i,&regs[i]);break;
11392         case UJUMP:
11393           ujump_assemble(i,&regs[i]);ds=1;break;
11394         case RJUMP:
11395           rjump_assemble(i,&regs[i]);ds=1;break;
11396         case CJUMP:
11397           cjump_assemble(i,&regs[i]);ds=1;break;
11398         case SJUMP:
11399           sjump_assemble(i,&regs[i]);ds=1;break;
11400         case FJUMP:
11401           fjump_assemble(i,&regs[i]);ds=1;break;
11402         case SPAN:
11403           pagespan_assemble(i,&regs[i]);break;
11404       }
11405       if(itype[i]==UJUMP||itype[i]==RJUMP||(source[i]>>16)==0x1000)
11406         literal_pool(1024);
11407       else
11408         literal_pool_jumpover(256);
11409     }
11410   }
11411   //assert(itype[i-2]==UJUMP||itype[i-2]==RJUMP||(source[i-2]>>16)==0x1000);
11412   // If the block did not end with an unconditional branch,
11413   // add a jump to the next instruction.
11414   if(i>1) {
11415     if(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000&&itype[i-1]!=SPAN) {
11416       assert(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP);
11417       assert(i==slen);
11418       if(itype[i-2]!=CJUMP&&itype[i-2]!=SJUMP&&itype[i-2]!=FJUMP) {
11419         store_regs_bt(regs[i-1].regmap,regs[i-1].is32,regs[i-1].dirty,start+i*4);
11420         if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
11421           emit_loadreg(CCREG,HOST_CCREG);
11422         emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i-1]+1),HOST_CCREG);
11423       }
11424       else if(!likely[i-2])
11425       {
11426         store_regs_bt(branch_regs[i-2].regmap,branch_regs[i-2].is32,branch_regs[i-2].dirty,start+i*4);
11427         assert(branch_regs[i-2].regmap[HOST_CCREG]==CCREG);
11428       }
11429       else
11430       {
11431         store_regs_bt(regs[i-2].regmap,regs[i-2].is32,regs[i-2].dirty,start+i*4);
11432         assert(regs[i-2].regmap[HOST_CCREG]==CCREG);
11433       }
11434       add_to_linker((int)out,start+i*4,0);
11435       emit_jmp(0);
11436     }
11437   }
11438   else
11439   {
11440     assert(i>0);
11441     assert(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP);
11442     store_regs_bt(regs[i-1].regmap,regs[i-1].is32,regs[i-1].dirty,start+i*4);
11443     if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
11444       emit_loadreg(CCREG,HOST_CCREG);
11445     emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i-1]+1),HOST_CCREG);
11446     add_to_linker((int)out,start+i*4,0);
11447     emit_jmp(0);
11448   }
11449
11450   // TODO: delay slot stubs?
11451   // Stubs
11452   for(i=0;i<stubcount;i++)
11453   {
11454     switch(stubs[i][0])
11455     {
11456       case LOADB_STUB:
11457       case LOADH_STUB:
11458       case LOADW_STUB:
11459       case LOADD_STUB:
11460       case LOADBU_STUB:
11461       case LOADHU_STUB:
11462         do_readstub(i);break;
11463       case STOREB_STUB:
11464       case STOREH_STUB:
11465       case STOREW_STUB:
11466       case STORED_STUB:
11467         do_writestub(i);break;
11468       case CC_STUB:
11469         do_ccstub(i);break;
11470       case INVCODE_STUB:
11471         do_invstub(i);break;
11472       case FP_STUB:
11473         do_cop1stub(i);break;
11474       case STORELR_STUB:
11475         do_unalignedwritestub(i);break;
11476     }
11477   }
11478
11479   if (instr_addr0_override)
11480     instr_addr[0] = instr_addr0_override;
11481
11482   /* Pass 9 - Linker */
11483   for(i=0;i<linkcount;i++)
11484   {
11485     assem_debug("%8x -> %8x\n",link_addr[i][0],link_addr[i][1]);
11486     literal_pool(64);
11487     if(!link_addr[i][2])
11488     {
11489       void *stub=out;
11490       void *addr=check_addr(link_addr[i][1]);
11491       emit_extjump(link_addr[i][0],link_addr[i][1]);
11492       if(addr) {
11493         set_jump_target(link_addr[i][0],(int)addr);
11494         add_link(link_addr[i][1],stub);
11495       }
11496       else set_jump_target(link_addr[i][0],(int)stub);
11497     }
11498     else
11499     {
11500       // Internal branch
11501       int target=(link_addr[i][1]-start)>>2;
11502       assert(target>=0&&target<slen);
11503       assert(instr_addr[target]);
11504       //#ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
11505       //set_jump_target_fillslot(link_addr[i][0],instr_addr[target],link_addr[i][2]>>1);
11506       //#else
11507       set_jump_target(link_addr[i][0],instr_addr[target]);
11508       //#endif
11509     }
11510   }
11511   // External Branch Targets (jump_in)
11512   if(copy+slen*4>(void *)shadow+sizeof(shadow)) copy=shadow;
11513   for(i=0;i<slen;i++)
11514   {
11515     if(bt[i]||i==0)
11516     {
11517       if(instr_addr[i]) // TODO - delay slots (=null)
11518       {
11519         u_int vaddr=start+i*4;
11520         u_int page=get_page(vaddr);
11521         u_int vpage=get_vpage(vaddr);
11522         literal_pool(256);
11523         //if(!(is32[i]&(~unneeded_reg_upper[i])&~(1LL<<CCREG)))
11524 #ifndef FORCE32
11525         if(!requires_32bit[i])
11526 #else
11527         if(1)
11528 #endif
11529         {
11530           assem_debug("%8x (%d) <- %8x\n",instr_addr[i],i,start+i*4);
11531           assem_debug("jump_in: %x\n",start+i*4);
11532           ll_add(jump_dirty+vpage,vaddr,(void *)out);
11533           int entry_point=do_dirty_stub(i);
11534           ll_add(jump_in+page,vaddr,(void *)entry_point);
11535           // If there was an existing entry in the hash table,
11536           // replace it with the new address.
11537           // Don't add new entries.  We'll insert the
11538           // ones that actually get used in check_addr().
11539           int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
11540           if(ht_bin[0]==vaddr) {
11541             ht_bin[1]=entry_point;
11542           }
11543           if(ht_bin[2]==vaddr) {
11544             ht_bin[3]=entry_point;
11545           }
11546         }
11547         else
11548         {
11549           u_int r=requires_32bit[i]|!!(requires_32bit[i]>>32);
11550           assem_debug("%8x (%d) <- %8x\n",instr_addr[i],i,start+i*4);
11551           assem_debug("jump_in: %x (restricted - %x)\n",start+i*4,r);
11552           //int entry_point=(int)out;
11553           ////assem_debug("entry_point: %x\n",entry_point);
11554           //load_regs_entry(i);
11555           //if(entry_point==(int)out)
11556           //  entry_point=instr_addr[i];
11557           //else
11558           //  emit_jmp(instr_addr[i]);
11559           //ll_add_32(jump_in+page,vaddr,r,(void *)entry_point);
11560           ll_add_32(jump_dirty+vpage,vaddr,r,(void *)out);
11561           int entry_point=do_dirty_stub(i);
11562           ll_add_32(jump_in+page,vaddr,r,(void *)entry_point);
11563         }
11564       }
11565     }
11566   }
11567   // Write out the literal pool if necessary
11568   literal_pool(0);
11569   #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
11570   // Align code
11571   if(((u_int)out)&7) emit_addnop(13);
11572   #endif
11573   assert((u_int)out-beginning<MAX_OUTPUT_BLOCK_SIZE);
11574   //printf("shadow buffer: %x-%x\n",(int)copy,(int)copy+slen*4);
11575   memcpy(copy,source,slen*4);
11576   copy+=slen*4;
11577   
11578   #ifdef __arm__
11579   __clear_cache((void *)beginning,out);
11580   #endif
11581   
11582   // If we're within 256K of the end of the buffer,
11583   // start over from the beginning. (Is 256K enough?)
11584   if((u_int)out>(u_int)BASE_ADDR+(1<<TARGET_SIZE_2)-MAX_OUTPUT_BLOCK_SIZE) out=(u_char *)BASE_ADDR;
11585   
11586   // Trap writes to any of the pages we compiled
11587   for(i=start>>12;i<=(start+slen*4)>>12;i++) {
11588     invalid_code[i]=0;
11589 #ifndef DISABLE_TLB
11590     memory_map[i]|=0x40000000;
11591     if((signed int)start>=(signed int)0xC0000000) {
11592       assert(using_tlb);
11593       j=(((u_int)i<<12)+(memory_map[i]<<2)-(u_int)rdram+(u_int)0x80000000)>>12;
11594       invalid_code[j]=0;
11595       memory_map[j]|=0x40000000;
11596       //printf("write protect physical page: %x (virtual %x)\n",j<<12,start);
11597     }
11598 #endif
11599   }
11600   inv_code_start=inv_code_end=~0;
11601 #ifdef PCSX
11602   // for PCSX we need to mark all mirrors too
11603   if(get_page(start)<(RAM_SIZE>>12))
11604     for(i=start>>12;i<=(start+slen*4)>>12;i++)
11605       invalid_code[((u_int)0x00000000>>12)|(i&0x1ff)]=
11606       invalid_code[((u_int)0x80000000>>12)|(i&0x1ff)]=
11607       invalid_code[((u_int)0xa0000000>>12)|(i&0x1ff)]=0;
11608 #endif
11609   
11610   /* Pass 10 - Free memory by expiring oldest blocks */
11611   
11612   int end=((((int)out-(int)BASE_ADDR)>>(TARGET_SIZE_2-16))+16384)&65535;
11613   while(expirep!=end)
11614   {
11615     int shift=TARGET_SIZE_2-3; // Divide into 8 blocks
11616     int base=(int)BASE_ADDR+((expirep>>13)<<shift); // Base address of this block
11617     inv_debug("EXP: Phase %d\n",expirep);
11618     switch((expirep>>11)&3)
11619     {
11620       case 0:
11621         // Clear jump_in and jump_dirty
11622         ll_remove_matching_addrs(jump_in+(expirep&2047),base,shift);
11623         ll_remove_matching_addrs(jump_dirty+(expirep&2047),base,shift);
11624         ll_remove_matching_addrs(jump_in+2048+(expirep&2047),base,shift);
11625         ll_remove_matching_addrs(jump_dirty+2048+(expirep&2047),base,shift);
11626         break;
11627       case 1:
11628         // Clear pointers
11629         ll_kill_pointers(jump_out[expirep&2047],base,shift);
11630         ll_kill_pointers(jump_out[(expirep&2047)+2048],base,shift);
11631         break;
11632       case 2:
11633         // Clear hash table
11634         for(i=0;i<32;i++) {
11635           int *ht_bin=hash_table[((expirep&2047)<<5)+i];
11636           if((ht_bin[3]>>shift)==(base>>shift) ||
11637              ((ht_bin[3]-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(base>>shift)) {
11638             inv_debug("EXP: Remove hash %x -> %x\n",ht_bin[2],ht_bin[3]);
11639             ht_bin[2]=ht_bin[3]=-1;
11640           }
11641           if((ht_bin[1]>>shift)==(base>>shift) ||
11642              ((ht_bin[1]-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(base>>shift)) {
11643             inv_debug("EXP: Remove hash %x -> %x\n",ht_bin[0],ht_bin[1]);
11644             ht_bin[0]=ht_bin[2];
11645             ht_bin[1]=ht_bin[3];
11646             ht_bin[2]=ht_bin[3]=-1;
11647           }
11648         }
11649         break;
11650       case 3:
11651         // Clear jump_out
11652         #ifdef __arm__
11653         if((expirep&2047)==0) 
11654           do_clear_cache();
11655         #endif
11656         ll_remove_matching_addrs(jump_out+(expirep&2047),base,shift);
11657         ll_remove_matching_addrs(jump_out+2048+(expirep&2047),base,shift);
11658         break;
11659     }
11660     expirep=(expirep+1)&65535;
11661   }
11662   return 0;
11663 }
11664
11665 // vim:shiftwidth=2:expandtab