cdrom: change pause timing again
[pcsx_rearmed.git] / libpcsxcore / new_dynarec / new_dynarec.c
1 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
2  *   Mupen64plus - new_dynarec.c                                           *
3  *   Copyright (C) 2009-2011 Ari64                                         *
4  *                                                                         *
5  *   This program is free software; you can redistribute it and/or modify  *
6  *   it under the terms of the GNU General Public License as published by  *
7  *   the Free Software Foundation; either version 2 of the License, or     *
8  *   (at your option) any later version.                                   *
9  *                                                                         *
10  *   This program is distributed in the hope that it will be useful,       *
11  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
12  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
13  *   GNU General Public License for more details.                          *
14  *                                                                         *
15  *   You should have received a copy of the GNU General Public License     *
16  *   along with this program; if not, write to the                         *
17  *   Free Software Foundation, Inc.,                                       *
18  *   51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.          *
19  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
20
21 #include <stdlib.h>
22 #include <stdint.h> //include for uint64_t
23 #include <assert.h>
24 #include <errno.h>
25 #include <sys/mman.h>
26 #ifdef __MACH__
27 #include <libkern/OSCacheControl.h>
28 #endif
29 #ifdef _3DS
30 #include <3ds_utils.h>
31 #endif
32 #ifdef VITA
33 #include <psp2/kernel/sysmem.h>
34 static int sceBlock;
35 #endif
36
37 #include "new_dynarec_config.h"
38 #include "emu_if.h" //emulator interface
39
40 //#define DISASM
41 //#define assem_debug printf
42 //#define inv_debug printf
43 #define assem_debug(...)
44 #define inv_debug(...)
45
46 #ifdef __i386__
47 #include "assem_x86.h"
48 #endif
49 #ifdef __x86_64__
50 #include "assem_x64.h"
51 #endif
52 #ifdef __arm__
53 #include "assem_arm.h"
54 #endif
55
56 #define MAXBLOCK 4096
57 #define MAX_OUTPUT_BLOCK_SIZE 262144
58
59 struct regstat
60 {
61   signed char regmap_entry[HOST_REGS];
62   signed char regmap[HOST_REGS];
63   uint64_t was32;
64   uint64_t is32;
65   uint64_t wasdirty;
66   uint64_t dirty;
67   uint64_t u;
68   uint64_t uu;
69   u_int wasconst;
70   u_int isconst;
71   u_int loadedconst;             // host regs that have constants loaded
72   u_int waswritten;              // MIPS regs that were used as store base before
73 };
74
75 // note: asm depends on this layout
76 struct ll_entry
77 {
78   u_int vaddr;
79   u_int reg_sv_flags;
80   void *addr;
81   struct ll_entry *next;
82 };
83
84   // used by asm:
85   u_char *out;
86   u_int hash_table[65536][4]  __attribute__((aligned(16)));
87   struct ll_entry *jump_in[4096] __attribute__((aligned(16)));
88   struct ll_entry *jump_dirty[4096];
89
90   static struct ll_entry *jump_out[4096];
91   static u_int start;
92   static u_int *source;
93   static char insn[MAXBLOCK][10];
94   static u_char itype[MAXBLOCK];
95   static u_char opcode[MAXBLOCK];
96   static u_char opcode2[MAXBLOCK];
97   static u_char bt[MAXBLOCK];
98   static u_char rs1[MAXBLOCK];
99   static u_char rs2[MAXBLOCK];
100   static u_char rt1[MAXBLOCK];
101   static u_char rt2[MAXBLOCK];
102   static u_char us1[MAXBLOCK];
103   static u_char us2[MAXBLOCK];
104   static u_char dep1[MAXBLOCK];
105   static u_char dep2[MAXBLOCK];
106   static u_char lt1[MAXBLOCK];
107   static uint64_t gte_rs[MAXBLOCK]; // gte: 32 data and 32 ctl regs
108   static uint64_t gte_rt[MAXBLOCK];
109   static uint64_t gte_unneeded[MAXBLOCK];
110   static u_int smrv[32]; // speculated MIPS register values
111   static u_int smrv_strong; // mask or regs that are likely to have correct values
112   static u_int smrv_weak; // same, but somewhat less likely
113   static u_int smrv_strong_next; // same, but after current insn executes
114   static u_int smrv_weak_next;
115   static int imm[MAXBLOCK];
116   static u_int ba[MAXBLOCK];
117   static char likely[MAXBLOCK];
118   static char is_ds[MAXBLOCK];
119   static char ooo[MAXBLOCK];
120   static uint64_t unneeded_reg[MAXBLOCK];
121   static uint64_t unneeded_reg_upper[MAXBLOCK];
122   static uint64_t branch_unneeded_reg[MAXBLOCK];
123   static uint64_t branch_unneeded_reg_upper[MAXBLOCK];
124   static signed char regmap_pre[MAXBLOCK][HOST_REGS];
125   static uint64_t current_constmap[HOST_REGS];
126   static uint64_t constmap[MAXBLOCK][HOST_REGS];
127   static struct regstat regs[MAXBLOCK];
128   static struct regstat branch_regs[MAXBLOCK];
129   static signed char minimum_free_regs[MAXBLOCK];
130   static u_int needed_reg[MAXBLOCK];
131   static u_int wont_dirty[MAXBLOCK];
132   static u_int will_dirty[MAXBLOCK];
133   static int ccadj[MAXBLOCK];
134   static int slen;
135   static u_int instr_addr[MAXBLOCK];
136   static u_int link_addr[MAXBLOCK][3];
137   static int linkcount;
138   static u_int stubs[MAXBLOCK*3][8];
139   static int stubcount;
140   static u_int literals[1024][2];
141   static int literalcount;
142   static int is_delayslot;
143   static int cop1_usable;
144   static char shadow[1048576]  __attribute__((aligned(16)));
145   static void *copy;
146   static int expirep;
147   static u_int stop_after_jal;
148 #ifndef RAM_FIXED
149   static u_int ram_offset;
150 #else
151   static const u_int ram_offset=0;
152 #endif
153
154   int new_dynarec_hacks;
155   int new_dynarec_did_compile;
156   extern u_char restore_candidate[512];
157   extern int cycle_count;
158
159   /* registers that may be allocated */
160   /* 1-31 gpr */
161 #define HIREG 32 // hi
162 #define LOREG 33 // lo
163 #define FSREG 34 // FPU status (FCSR)
164 #define CSREG 35 // Coprocessor status
165 #define CCREG 36 // Cycle count
166 #define INVCP 37 // Pointer to invalid_code
167 //#define MMREG 38 // Pointer to memory_map
168 #define ROREG 39 // ram offset (if rdram!=0x80000000)
169 #define TEMPREG 40
170 #define FTEMP 40 // FPU temporary register
171 #define PTEMP 41 // Prefetch temporary register
172 //#define TLREG 42 // TLB mapping offset
173 #define RHASH 43 // Return address hash
174 #define RHTBL 44 // Return address hash table address
175 #define RTEMP 45 // JR/JALR address register
176 #define MAXREG 45
177 #define AGEN1 46 // Address generation temporary register
178 //#define AGEN2 47 // Address generation temporary register
179 //#define MGEN1 48 // Maptable address generation temporary register
180 //#define MGEN2 49 // Maptable address generation temporary register
181 #define BTREG 50 // Branch target temporary register
182
183   /* instruction types */
184 #define NOP 0     // No operation
185 #define LOAD 1    // Load
186 #define STORE 2   // Store
187 #define LOADLR 3  // Unaligned load
188 #define STORELR 4 // Unaligned store
189 #define MOV 5     // Move
190 #define ALU 6     // Arithmetic/logic
191 #define MULTDIV 7 // Multiply/divide
192 #define SHIFT 8   // Shift by register
193 #define SHIFTIMM 9// Shift by immediate
194 #define IMM16 10  // 16-bit immediate
195 #define RJUMP 11  // Unconditional jump to register
196 #define UJUMP 12  // Unconditional jump
197 #define CJUMP 13  // Conditional branch (BEQ/BNE/BGTZ/BLEZ)
198 #define SJUMP 14  // Conditional branch (regimm format)
199 #define COP0 15   // Coprocessor 0
200 #define COP1 16   // Coprocessor 1
201 #define C1LS 17   // Coprocessor 1 load/store
202 #define FJUMP 18  // Conditional branch (floating point)
203 #define FLOAT 19  // Floating point unit
204 #define FCONV 20  // Convert integer to float
205 #define FCOMP 21  // Floating point compare (sets FSREG)
206 #define SYSCALL 22// SYSCALL
207 #define OTHER 23  // Other
208 #define SPAN 24   // Branch/delay slot spans 2 pages
209 #define NI 25     // Not implemented
210 #define HLECALL 26// PCSX fake opcodes for HLE
211 #define COP2 27   // Coprocessor 2 move
212 #define C2LS 28   // Coprocessor 2 load/store
213 #define C2OP 29   // Coprocessor 2 operation
214 #define INTCALL 30// Call interpreter to handle rare corner cases
215
216   /* stubs */
217 #define CC_STUB 1
218 #define FP_STUB 2
219 #define LOADB_STUB 3
220 #define LOADH_STUB 4
221 #define LOADW_STUB 5
222 #define LOADD_STUB 6
223 #define LOADBU_STUB 7
224 #define LOADHU_STUB 8
225 #define STOREB_STUB 9
226 #define STOREH_STUB 10
227 #define STOREW_STUB 11
228 #define STORED_STUB 12
229 #define STORELR_STUB 13
230 #define INVCODE_STUB 14
231
232   /* branch codes */
233 #define TAKEN 1
234 #define NOTTAKEN 2
235 #define NULLDS 3
236
237 // asm linkage
238 int new_recompile_block(int addr);
239 void *get_addr_ht(u_int vaddr);
240 void invalidate_block(u_int block);
241 void invalidate_addr(u_int addr);
242 void remove_hash(int vaddr);
243 void dyna_linker();
244 void dyna_linker_ds();
245 void verify_code();
246 void verify_code_vm();
247 void verify_code_ds();
248 void cc_interrupt();
249 void fp_exception();
250 void fp_exception_ds();
251 void jump_syscall_hle();
252 void jump_hlecall();
253 void jump_intcall();
254 void new_dyna_leave();
255
256 // Needed by assembler
257 static void wb_register(signed char r,signed char regmap[],uint64_t dirty,uint64_t is32);
258 static void wb_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty);
259 static void wb_needed_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr);
260 static void load_all_regs(signed char i_regmap[]);
261 static void load_needed_regs(signed char i_regmap[],signed char next_regmap[]);
262 static void load_regs_entry(int t);
263 static void load_all_consts(signed char regmap[],int is32,u_int dirty,int i);
264
265 static int verify_dirty(u_int *ptr);
266 static int get_final_value(int hr, int i, int *value);
267 static void add_stub(int type,int addr,int retaddr,int a,int b,int c,int d,int e);
268 static void add_to_linker(int addr,int target,int ext);
269
270 static int tracedebug=0;
271
272 static void mprotect_w_x(void *start, void *end, int is_x)
273 {
274 #ifdef NO_WRITE_EXEC
275   #if defined(VITA)
276   // *Open* enables write on all memory that was
277   // allocated by sceKernelAllocMemBlockForVM()?
278   if (is_x)
279     sceKernelCloseVMDomain();
280   else
281     sceKernelOpenVMDomain();
282   #else
283   u_long mstart = (u_long)start & ~4095ul;
284   u_long mend = (u_long)end;
285   if (mprotect((void *)mstart, mend - mstart,
286                PROT_READ | (is_x ? PROT_EXEC : PROT_WRITE)) != 0)
287     SysPrintf("mprotect(%c) failed: %s\n", is_x ? 'x' : 'w', strerror(errno));
288   #endif
289 #endif
290 }
291
292 static void start_tcache_write(void *start, void *end)
293 {
294   mprotect_w_x(start, end, 0);
295 }
296
297 static void end_tcache_write(void *start, void *end)
298 {
299 #ifdef __arm__
300   size_t len = (char *)end - (char *)start;
301   #if   defined(__BLACKBERRY_QNX__)
302   msync(start, len, MS_SYNC | MS_CACHE_ONLY | MS_INVALIDATE_ICACHE);
303   #elif defined(__MACH__)
304   sys_cache_control(kCacheFunctionPrepareForExecution, start, len);
305   #elif defined(VITA)
306   sceKernelSyncVMDomain(sceBlock, start, len);
307   #elif defined(_3DS)
308   ctr_flush_invalidate_cache();
309   #else
310   __clear_cache(start, end);
311   #endif
312   (void)len;
313 #endif
314
315   mprotect_w_x(start, end, 1);
316 }
317
318 static void *start_block(void)
319 {
320   u_char *end = out + MAX_OUTPUT_BLOCK_SIZE;
321   if (end > (u_char *)BASE_ADDR + (1<<TARGET_SIZE_2))
322     end = (u_char *)BASE_ADDR + (1<<TARGET_SIZE_2);
323   start_tcache_write(out, end);
324   return out;
325 }
326
327 static void end_block(void *start)
328 {
329   end_tcache_write(start, out);
330 }
331
332 //#define DEBUG_CYCLE_COUNT 1
333
334 #define NO_CYCLE_PENALTY_THR 12
335
336 int cycle_multiplier; // 100 for 1.0
337
338 static int CLOCK_ADJUST(int x)
339 {
340   int s=(x>>31)|1;
341   return (x * cycle_multiplier + s * 50) / 100;
342 }
343
344 static u_int get_page(u_int vaddr)
345 {
346   u_int page=vaddr&~0xe0000000;
347   if (page < 0x1000000)
348     page &= ~0x0e00000; // RAM mirrors
349   page>>=12;
350   if(page>2048) page=2048+(page&2047);
351   return page;
352 }
353
354 // no virtual mem in PCSX
355 static u_int get_vpage(u_int vaddr)
356 {
357   return get_page(vaddr);
358 }
359
360 // Get address from virtual address
361 // This is called from the recompiled JR/JALR instructions
362 void *get_addr(u_int vaddr)
363 {
364   u_int page=get_page(vaddr);
365   u_int vpage=get_vpage(vaddr);
366   struct ll_entry *head;
367   //printf("TRACE: count=%d next=%d (get_addr %x,page %d)\n",Count,next_interupt,vaddr,page);
368   head=jump_in[page];
369   while(head!=NULL) {
370     if(head->vaddr==vaddr) {
371   //printf("TRACE: count=%d next=%d (get_addr match %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
372       u_int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
373       ht_bin[3]=ht_bin[1];
374       ht_bin[2]=ht_bin[0];
375       ht_bin[1]=(u_int)head->addr;
376       ht_bin[0]=vaddr;
377       return head->addr;
378     }
379     head=head->next;
380   }
381   head=jump_dirty[vpage];
382   while(head!=NULL) {
383     if(head->vaddr==vaddr) {
384       //printf("TRACE: count=%d next=%d (get_addr match dirty %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
385       // Don't restore blocks which are about to expire from the cache
386       if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
387       if(verify_dirty(head->addr)) {
388         //printf("restore candidate: %x (%d) d=%d\n",vaddr,page,invalid_code[vaddr>>12]);
389         invalid_code[vaddr>>12]=0;
390         inv_code_start=inv_code_end=~0;
391         if(vpage<2048) {
392           restore_candidate[vpage>>3]|=1<<(vpage&7);
393         }
394         else restore_candidate[page>>3]|=1<<(page&7);
395         u_int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
396         if(ht_bin[0]==vaddr) {
397           ht_bin[1]=(u_int)head->addr; // Replace existing entry
398         }
399         else
400         {
401           ht_bin[3]=ht_bin[1];
402           ht_bin[2]=ht_bin[0];
403           ht_bin[1]=(int)head->addr;
404           ht_bin[0]=vaddr;
405         }
406         return head->addr;
407       }
408     }
409     head=head->next;
410   }
411   //printf("TRACE: count=%d next=%d (get_addr no-match %x)\n",Count,next_interupt,vaddr);
412   int r=new_recompile_block(vaddr);
413   if(r==0) return get_addr(vaddr);
414   // Execute in unmapped page, generate pagefault execption
415   Status|=2;
416   Cause=(vaddr<<31)|0x8;
417   EPC=(vaddr&1)?vaddr-5:vaddr;
418   BadVAddr=(vaddr&~1);
419   Context=(Context&0xFF80000F)|((BadVAddr>>9)&0x007FFFF0);
420   EntryHi=BadVAddr&0xFFFFE000;
421   return get_addr_ht(0x80000000);
422 }
423 // Look up address in hash table first
424 void *get_addr_ht(u_int vaddr)
425 {
426   //printf("TRACE: count=%d next=%d (get_addr_ht %x)\n",Count,next_interupt,vaddr);
427   u_int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
428   if(ht_bin[0]==vaddr) return (void *)ht_bin[1];
429   if(ht_bin[2]==vaddr) return (void *)ht_bin[3];
430   return get_addr(vaddr);
431 }
432
433 void clear_all_regs(signed char regmap[])
434 {
435   int hr;
436   for (hr=0;hr<HOST_REGS;hr++) regmap[hr]=-1;
437 }
438
439 signed char get_reg(signed char regmap[],int r)
440 {
441   int hr;
442   for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap[hr]==r) return hr;
443   return -1;
444 }
445
446 // Find a register that is available for two consecutive cycles
447 signed char get_reg2(signed char regmap1[],signed char regmap2[],int r)
448 {
449   int hr;
450   for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap1[hr]==r&&regmap2[hr]==r) return hr;
451   return -1;
452 }
453
454 int count_free_regs(signed char regmap[])
455 {
456   int count=0;
457   int hr;
458   for(hr=0;hr<HOST_REGS;hr++)
459   {
460     if(hr!=EXCLUDE_REG) {
461       if(regmap[hr]<0) count++;
462     }
463   }
464   return count;
465 }
466
467 void dirty_reg(struct regstat *cur,signed char reg)
468 {
469   int hr;
470   if(!reg) return;
471   for (hr=0;hr<HOST_REGS;hr++) {
472     if((cur->regmap[hr]&63)==reg) {
473       cur->dirty|=1<<hr;
474     }
475   }
476 }
477
478 // If we dirty the lower half of a 64 bit register which is now being
479 // sign-extended, we need to dump the upper half.
480 // Note: Do this only after completion of the instruction, because
481 // some instructions may need to read the full 64-bit value even if
482 // overwriting it (eg SLTI, DSRA32).
483 static void flush_dirty_uppers(struct regstat *cur)
484 {
485   int hr,reg;
486   for (hr=0;hr<HOST_REGS;hr++) {
487     if((cur->dirty>>hr)&1) {
488       reg=cur->regmap[hr];
489       if(reg>=64)
490         if((cur->is32>>(reg&63))&1) cur->regmap[hr]=-1;
491     }
492   }
493 }
494
495 void set_const(struct regstat *cur,signed char reg,uint64_t value)
496 {
497   int hr;
498   if(!reg) return;
499   for (hr=0;hr<HOST_REGS;hr++) {
500     if(cur->regmap[hr]==reg) {
501       cur->isconst|=1<<hr;
502       current_constmap[hr]=value;
503     }
504     else if((cur->regmap[hr]^64)==reg) {
505       cur->isconst|=1<<hr;
506       current_constmap[hr]=value>>32;
507     }
508   }
509 }
510
511 void clear_const(struct regstat *cur,signed char reg)
512 {
513   int hr;
514   if(!reg) return;
515   for (hr=0;hr<HOST_REGS;hr++) {
516     if((cur->regmap[hr]&63)==reg) {
517       cur->isconst&=~(1<<hr);
518     }
519   }
520 }
521
522 int is_const(struct regstat *cur,signed char reg)
523 {
524   int hr;
525   if(reg<0) return 0;
526   if(!reg) return 1;
527   for (hr=0;hr<HOST_REGS;hr++) {
528     if((cur->regmap[hr]&63)==reg) {
529       return (cur->isconst>>hr)&1;
530     }
531   }
532   return 0;
533 }
534 uint64_t get_const(struct regstat *cur,signed char reg)
535 {
536   int hr;
537   if(!reg) return 0;
538   for (hr=0;hr<HOST_REGS;hr++) {
539     if(cur->regmap[hr]==reg) {
540       return current_constmap[hr];
541     }
542   }
543   SysPrintf("Unknown constant in r%d\n",reg);
544   exit(1);
545 }
546
547 // Least soon needed registers
548 // Look at the next ten instructions and see which registers
549 // will be used.  Try not to reallocate these.
550 void lsn(u_char hsn[], int i, int *preferred_reg)
551 {
552   int j;
553   int b=-1;
554   for(j=0;j<9;j++)
555   {
556     if(i+j>=slen) {
557       j=slen-i-1;
558       break;
559     }
560     if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
561     {
562       // Don't go past an unconditonal jump
563       j++;
564       break;
565     }
566   }
567   for(;j>=0;j--)
568   {
569     if(rs1[i+j]) hsn[rs1[i+j]]=j;
570     if(rs2[i+j]) hsn[rs2[i+j]]=j;
571     if(rt1[i+j]) hsn[rt1[i+j]]=j;
572     if(rt2[i+j]) hsn[rt2[i+j]]=j;
573     if(itype[i+j]==STORE || itype[i+j]==STORELR) {
574       // Stores can allocate zero
575       hsn[rs1[i+j]]=j;
576       hsn[rs2[i+j]]=j;
577     }
578     // On some architectures stores need invc_ptr
579     #if defined(HOST_IMM8)
580     if(itype[i+j]==STORE || itype[i+j]==STORELR || (opcode[i+j]&0x3b)==0x39 || (opcode[i+j]&0x3b)==0x3a) {
581       hsn[INVCP]=j;
582     }
583     #endif
584     if(i+j>=0&&(itype[i+j]==UJUMP||itype[i+j]==CJUMP||itype[i+j]==SJUMP||itype[i+j]==FJUMP))
585     {
586       hsn[CCREG]=j;
587       b=j;
588     }
589   }
590   if(b>=0)
591   {
592     if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
593     {
594       // Follow first branch
595       int t=(ba[i+b]-start)>>2;
596       j=7-b;if(t+j>=slen) j=slen-t-1;
597       for(;j>=0;j--)
598       {
599         if(rs1[t+j]) if(hsn[rs1[t+j]]>j+b+2) hsn[rs1[t+j]]=j+b+2;
600         if(rs2[t+j]) if(hsn[rs2[t+j]]>j+b+2) hsn[rs2[t+j]]=j+b+2;
601         //if(rt1[t+j]) if(hsn[rt1[t+j]]>j+b+2) hsn[rt1[t+j]]=j+b+2;
602         //if(rt2[t+j]) if(hsn[rt2[t+j]]>j+b+2) hsn[rt2[t+j]]=j+b+2;
603       }
604     }
605     // TODO: preferred register based on backward branch
606   }
607   // Delay slot should preferably not overwrite branch conditions or cycle count
608   if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)) {
609     if(rs1[i-1]) if(hsn[rs1[i-1]]>1) hsn[rs1[i-1]]=1;
610     if(rs2[i-1]) if(hsn[rs2[i-1]]>1) hsn[rs2[i-1]]=1;
611     hsn[CCREG]=1;
612     // ...or hash tables
613     hsn[RHASH]=1;
614     hsn[RHTBL]=1;
615   }
616   // Coprocessor load/store needs FTEMP, even if not declared
617   if(itype[i]==C1LS||itype[i]==C2LS) {
618     hsn[FTEMP]=0;
619   }
620   // Load L/R also uses FTEMP as a temporary register
621   if(itype[i]==LOADLR) {
622     hsn[FTEMP]=0;
623   }
624   // Also SWL/SWR/SDL/SDR
625   if(opcode[i]==0x2a||opcode[i]==0x2e||opcode[i]==0x2c||opcode[i]==0x2d) {
626     hsn[FTEMP]=0;
627   }
628   // Don't remove the miniht registers
629   if(itype[i]==UJUMP||itype[i]==RJUMP)
630   {
631     hsn[RHASH]=0;
632     hsn[RHTBL]=0;
633   }
634 }
635
636 // We only want to allocate registers if we're going to use them again soon
637 int needed_again(int r, int i)
638 {
639   int j;
640   int b=-1;
641   int rn=10;
642
643   if(i>0&&(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000))
644   {
645     if(ba[i-1]<start || ba[i-1]>start+slen*4-4)
646       return 0; // Don't need any registers if exiting the block
647   }
648   for(j=0;j<9;j++)
649   {
650     if(i+j>=slen) {
651       j=slen-i-1;
652       break;
653     }
654     if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
655     {
656       // Don't go past an unconditonal jump
657       j++;
658       break;
659     }
660     if(itype[i+j]==SYSCALL||itype[i+j]==HLECALL||itype[i+j]==INTCALL||((source[i+j]&0xfc00003f)==0x0d))
661     {
662       break;
663     }
664   }
665   for(;j>=1;j--)
666   {
667     if(rs1[i+j]==r) rn=j;
668     if(rs2[i+j]==r) rn=j;
669     if((unneeded_reg[i+j]>>r)&1) rn=10;
670     if(i+j>=0&&(itype[i+j]==UJUMP||itype[i+j]==CJUMP||itype[i+j]==SJUMP||itype[i+j]==FJUMP))
671     {
672       b=j;
673     }
674   }
675   /*
676   if(b>=0)
677   {
678     if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
679     {
680       // Follow first branch
681       int o=rn;
682       int t=(ba[i+b]-start)>>2;
683       j=7-b;if(t+j>=slen) j=slen-t-1;
684       for(;j>=0;j--)
685       {
686         if(!((unneeded_reg[t+j]>>r)&1)) {
687           if(rs1[t+j]==r) if(rn>j+b+2) rn=j+b+2;
688           if(rs2[t+j]==r) if(rn>j+b+2) rn=j+b+2;
689         }
690         else rn=o;
691       }
692     }
693   }*/
694   if(rn<10) return 1;
695   (void)b;
696   return 0;
697 }
698
699 // Try to match register allocations at the end of a loop with those
700 // at the beginning
701 int loop_reg(int i, int r, int hr)
702 {
703   int j,k;
704   for(j=0;j<9;j++)
705   {
706     if(i+j>=slen) {
707       j=slen-i-1;
708       break;
709     }
710     if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
711     {
712       // Don't go past an unconditonal jump
713       j++;
714       break;
715     }
716   }
717   k=0;
718   if(i>0){
719     if(itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)
720       k--;
721   }
722   for(;k<j;k++)
723   {
724     if(r<64&&((unneeded_reg[i+k]>>r)&1)) return hr;
725     if(r>64&&((unneeded_reg_upper[i+k]>>r)&1)) return hr;
726     if(i+k>=0&&(itype[i+k]==UJUMP||itype[i+k]==CJUMP||itype[i+k]==SJUMP||itype[i+k]==FJUMP))
727     {
728       if(ba[i+k]>=start && ba[i+k]<(start+i*4))
729       {
730         int t=(ba[i+k]-start)>>2;
731         int reg=get_reg(regs[t].regmap_entry,r);
732         if(reg>=0) return reg;
733         //reg=get_reg(regs[t+1].regmap_entry,r);
734         //if(reg>=0) return reg;
735       }
736     }
737   }
738   return hr;
739 }
740
741
742 // Allocate every register, preserving source/target regs
743 void alloc_all(struct regstat *cur,int i)
744 {
745   int hr;
746
747   for(hr=0;hr<HOST_REGS;hr++) {
748     if(hr!=EXCLUDE_REG) {
749       if(((cur->regmap[hr]&63)!=rs1[i])&&((cur->regmap[hr]&63)!=rs2[i])&&
750          ((cur->regmap[hr]&63)!=rt1[i])&&((cur->regmap[hr]&63)!=rt2[i]))
751       {
752         cur->regmap[hr]=-1;
753         cur->dirty&=~(1<<hr);
754       }
755       // Don't need zeros
756       if((cur->regmap[hr]&63)==0)
757       {
758         cur->regmap[hr]=-1;
759         cur->dirty&=~(1<<hr);
760       }
761     }
762   }
763 }
764
765 #ifdef __i386__
766 #include "assem_x86.c"
767 #endif
768 #ifdef __x86_64__
769 #include "assem_x64.c"
770 #endif
771 #ifdef __arm__
772 #include "assem_arm.c"
773 #endif
774
775 // Add virtual address mapping to linked list
776 void ll_add(struct ll_entry **head,int vaddr,void *addr)
777 {
778   struct ll_entry *new_entry;
779   new_entry=malloc(sizeof(struct ll_entry));
780   assert(new_entry!=NULL);
781   new_entry->vaddr=vaddr;
782   new_entry->reg_sv_flags=0;
783   new_entry->addr=addr;
784   new_entry->next=*head;
785   *head=new_entry;
786 }
787
788 void ll_add_flags(struct ll_entry **head,int vaddr,u_int reg_sv_flags,void *addr)
789 {
790   ll_add(head,vaddr,addr);
791   (*head)->reg_sv_flags=reg_sv_flags;
792 }
793
794 // Check if an address is already compiled
795 // but don't return addresses which are about to expire from the cache
796 void *check_addr(u_int vaddr)
797 {
798   u_int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
799   if(ht_bin[0]==vaddr) {
800     if(((ht_bin[1]-MAX_OUTPUT_BLOCK_SIZE-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
801       if(isclean(ht_bin[1])) return (void *)ht_bin[1];
802   }
803   if(ht_bin[2]==vaddr) {
804     if(((ht_bin[3]-MAX_OUTPUT_BLOCK_SIZE-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
805       if(isclean(ht_bin[3])) return (void *)ht_bin[3];
806   }
807   u_int page=get_page(vaddr);
808   struct ll_entry *head;
809   head=jump_in[page];
810   while(head!=NULL) {
811     if(head->vaddr==vaddr) {
812       if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
813         // Update existing entry with current address
814         if(ht_bin[0]==vaddr) {
815           ht_bin[1]=(int)head->addr;
816           return head->addr;
817         }
818         if(ht_bin[2]==vaddr) {
819           ht_bin[3]=(int)head->addr;
820           return head->addr;
821         }
822         // Insert into hash table with low priority.
823         // Don't evict existing entries, as they are probably
824         // addresses that are being accessed frequently.
825         if(ht_bin[0]==-1) {
826           ht_bin[1]=(int)head->addr;
827           ht_bin[0]=vaddr;
828         }else if(ht_bin[2]==-1) {
829           ht_bin[3]=(int)head->addr;
830           ht_bin[2]=vaddr;
831         }
832         return head->addr;
833       }
834     }
835     head=head->next;
836   }
837   return 0;
838 }
839
840 void remove_hash(int vaddr)
841 {
842   //printf("remove hash: %x\n",vaddr);
843   u_int *ht_bin=hash_table[(((vaddr)>>16)^vaddr)&0xFFFF];
844   if(ht_bin[2]==vaddr) {
845     ht_bin[2]=ht_bin[3]=-1;
846   }
847   if(ht_bin[0]==vaddr) {
848     ht_bin[0]=ht_bin[2];
849     ht_bin[1]=ht_bin[3];
850     ht_bin[2]=ht_bin[3]=-1;
851   }
852 }
853
854 void ll_remove_matching_addrs(struct ll_entry **head,int addr,int shift)
855 {
856   struct ll_entry *next;
857   while(*head) {
858     if(((u_int)((*head)->addr)>>shift)==(addr>>shift) ||
859        ((u_int)((*head)->addr-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(addr>>shift))
860     {
861       inv_debug("EXP: Remove pointer to %x (%x)\n",(int)(*head)->addr,(*head)->vaddr);
862       remove_hash((*head)->vaddr);
863       next=(*head)->next;
864       free(*head);
865       *head=next;
866     }
867     else
868     {
869       head=&((*head)->next);
870     }
871   }
872 }
873
874 // Remove all entries from linked list
875 void ll_clear(struct ll_entry **head)
876 {
877   struct ll_entry *cur;
878   struct ll_entry *next;
879   if((cur=*head)) {
880     *head=0;
881     while(cur) {
882       next=cur->next;
883       free(cur);
884       cur=next;
885     }
886   }
887 }
888
889 // Dereference the pointers and remove if it matches
890 static void ll_kill_pointers(struct ll_entry *head,int addr,int shift)
891 {
892   while(head) {
893     int ptr=get_pointer(head->addr);
894     inv_debug("EXP: Lookup pointer to %x at %x (%x)\n",(int)ptr,(int)head->addr,head->vaddr);
895     if(((ptr>>shift)==(addr>>shift)) ||
896        (((ptr-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(addr>>shift)))
897     {
898       inv_debug("EXP: Kill pointer at %x (%x)\n",(int)head->addr,head->vaddr);
899       void *host_addr=find_extjump_insn(head->addr);
900       #ifdef __arm__
901         mark_clear_cache(host_addr);
902       #endif
903       set_jump_target((int)host_addr,(int)head->addr);
904     }
905     head=head->next;
906   }
907 }
908
909 // This is called when we write to a compiled block (see do_invstub)
910 void invalidate_page(u_int page)
911 {
912   struct ll_entry *head;
913   struct ll_entry *next;
914   head=jump_in[page];
915   jump_in[page]=0;
916   while(head!=NULL) {
917     inv_debug("INVALIDATE: %x\n",head->vaddr);
918     remove_hash(head->vaddr);
919     next=head->next;
920     free(head);
921     head=next;
922   }
923   head=jump_out[page];
924   jump_out[page]=0;
925   while(head!=NULL) {
926     inv_debug("INVALIDATE: kill pointer to %x (%x)\n",head->vaddr,(int)head->addr);
927     void *host_addr=find_extjump_insn(head->addr);
928     #ifdef __arm__
929       mark_clear_cache(host_addr);
930     #endif
931     set_jump_target((int)host_addr,(int)head->addr);
932     next=head->next;
933     free(head);
934     head=next;
935   }
936 }
937
938 static void invalidate_block_range(u_int block, u_int first, u_int last)
939 {
940   u_int page=get_page(block<<12);
941   //printf("first=%d last=%d\n",first,last);
942   invalidate_page(page);
943   assert(first+5>page); // NB: this assumes MAXBLOCK<=4096 (4 pages)
944   assert(last<page+5);
945   // Invalidate the adjacent pages if a block crosses a 4K boundary
946   while(first<page) {
947     invalidate_page(first);
948     first++;
949   }
950   for(first=page+1;first<last;first++) {
951     invalidate_page(first);
952   }
953   #ifdef __arm__
954     do_clear_cache();
955   #endif
956
957   // Don't trap writes
958   invalid_code[block]=1;
959
960   #ifdef USE_MINI_HT
961   memset(mini_ht,-1,sizeof(mini_ht));
962   #endif
963 }
964
965 void invalidate_block(u_int block)
966 {
967   u_int page=get_page(block<<12);
968   u_int vpage=get_vpage(block<<12);
969   inv_debug("INVALIDATE: %x (%d)\n",block<<12,page);
970   //inv_debug("invalid_code[block]=%d\n",invalid_code[block]);
971   u_int first,last;
972   first=last=page;
973   struct ll_entry *head;
974   head=jump_dirty[vpage];
975   //printf("page=%d vpage=%d\n",page,vpage);
976   while(head!=NULL) {
977     u_int start,end;
978     if(vpage>2047||(head->vaddr>>12)==block) { // Ignore vaddr hash collision
979       get_bounds((int)head->addr,&start,&end);
980       //printf("start: %x end: %x\n",start,end);
981       if(page<2048&&start>=(u_int)rdram&&end<(u_int)rdram+RAM_SIZE) {
982         if(((start-(u_int)rdram)>>12)<=page&&((end-1-(u_int)rdram)>>12)>=page) {
983           if((((start-(u_int)rdram)>>12)&2047)<first) first=((start-(u_int)rdram)>>12)&2047;
984           if((((end-1-(u_int)rdram)>>12)&2047)>last) last=((end-1-(u_int)rdram)>>12)&2047;
985         }
986       }
987     }
988     head=head->next;
989   }
990   invalidate_block_range(block,first,last);
991 }
992
993 void invalidate_addr(u_int addr)
994 {
995   //static int rhits;
996   // this check is done by the caller
997   //if (inv_code_start<=addr&&addr<=inv_code_end) { rhits++; return; }
998   u_int page=get_vpage(addr);
999   if(page<2048) { // RAM
1000     struct ll_entry *head;
1001     u_int addr_min=~0, addr_max=0;
1002     u_int mask=RAM_SIZE-1;
1003     u_int addr_main=0x80000000|(addr&mask);
1004     int pg1;
1005     inv_code_start=addr_main&~0xfff;
1006     inv_code_end=addr_main|0xfff;
1007     pg1=page;
1008     if (pg1>0) {
1009       // must check previous page too because of spans..
1010       pg1--;
1011       inv_code_start-=0x1000;
1012     }
1013     for(;pg1<=page;pg1++) {
1014       for(head=jump_dirty[pg1];head!=NULL;head=head->next) {
1015         u_int start,end;
1016         get_bounds((int)head->addr,&start,&end);
1017         if(ram_offset) {
1018           start-=ram_offset;
1019           end-=ram_offset;
1020         }
1021         if(start<=addr_main&&addr_main<end) {
1022           if(start<addr_min) addr_min=start;
1023           if(end>addr_max) addr_max=end;
1024         }
1025         else if(addr_main<start) {
1026           if(start<inv_code_end)
1027             inv_code_end=start-1;
1028         }
1029         else {
1030           if(end>inv_code_start)
1031             inv_code_start=end;
1032         }
1033       }
1034     }
1035     if (addr_min!=~0) {
1036       inv_debug("INV ADDR: %08x hit %08x-%08x\n", addr, addr_min, addr_max);
1037       inv_code_start=inv_code_end=~0;
1038       invalidate_block_range(addr>>12,(addr_min&mask)>>12,(addr_max&mask)>>12);
1039       return;
1040     }
1041     else {
1042       inv_code_start=(addr&~mask)|(inv_code_start&mask);
1043       inv_code_end=(addr&~mask)|(inv_code_end&mask);
1044       inv_debug("INV ADDR: %08x miss, inv %08x-%08x, sk %d\n", addr, inv_code_start, inv_code_end, 0);
1045       return;
1046     }
1047   }
1048   invalidate_block(addr>>12);
1049 }
1050
1051 // This is called when loading a save state.
1052 // Anything could have changed, so invalidate everything.
1053 void invalidate_all_pages()
1054 {
1055   u_int page;
1056   for(page=0;page<4096;page++)
1057     invalidate_page(page);
1058   for(page=0;page<1048576;page++)
1059     if(!invalid_code[page]) {
1060       restore_candidate[(page&2047)>>3]|=1<<(page&7);
1061       restore_candidate[((page&2047)>>3)+256]|=1<<(page&7);
1062     }
1063   #ifdef USE_MINI_HT
1064   memset(mini_ht,-1,sizeof(mini_ht));
1065   #endif
1066 }
1067
1068 // Add an entry to jump_out after making a link
1069 void add_link(u_int vaddr,void *src)
1070 {
1071   u_int page=get_page(vaddr);
1072   inv_debug("add_link: %x -> %x (%d)\n",(int)src,vaddr,page);
1073   int *ptr=(int *)(src+4);
1074   assert((*ptr&0x0fff0000)==0x059f0000);
1075   (void)ptr;
1076   ll_add(jump_out+page,vaddr,src);
1077   //int ptr=get_pointer(src);
1078   //inv_debug("add_link: Pointer is to %x\n",(int)ptr);
1079 }
1080
1081 // If a code block was found to be unmodified (bit was set in
1082 // restore_candidate) and it remains unmodified (bit is clear
1083 // in invalid_code) then move the entries for that 4K page from
1084 // the dirty list to the clean list.
1085 void clean_blocks(u_int page)
1086 {
1087   struct ll_entry *head;
1088   inv_debug("INV: clean_blocks page=%d\n",page);
1089   head=jump_dirty[page];
1090   while(head!=NULL) {
1091     if(!invalid_code[head->vaddr>>12]) {
1092       // Don't restore blocks which are about to expire from the cache
1093       if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1094         u_int start,end;
1095         if(verify_dirty(head->addr)) {
1096           //printf("Possibly Restore %x (%x)\n",head->vaddr, (int)head->addr);
1097           u_int i;
1098           u_int inv=0;
1099           get_bounds((int)head->addr,&start,&end);
1100           if(start-(u_int)rdram<RAM_SIZE) {
1101             for(i=(start-(u_int)rdram+0x80000000)>>12;i<=(end-1-(u_int)rdram+0x80000000)>>12;i++) {
1102               inv|=invalid_code[i];
1103             }
1104           }
1105           else if((signed int)head->vaddr>=(signed int)0x80000000+RAM_SIZE) {
1106             inv=1;
1107           }
1108           if(!inv) {
1109             void * clean_addr=(void *)get_clean_addr((int)head->addr);
1110             if((((u_int)clean_addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1111               u_int ppage=page;
1112               inv_debug("INV: Restored %x (%x/%x)\n",head->vaddr, (int)head->addr, (int)clean_addr);
1113               //printf("page=%x, addr=%x\n",page,head->vaddr);
1114               //assert(head->vaddr>>12==(page|0x80000));
1115               ll_add_flags(jump_in+ppage,head->vaddr,head->reg_sv_flags,clean_addr);
1116               u_int *ht_bin=hash_table[((head->vaddr>>16)^head->vaddr)&0xFFFF];
1117               if(ht_bin[0]==head->vaddr) {
1118                 ht_bin[1]=(u_int)clean_addr; // Replace existing entry
1119               }
1120               if(ht_bin[2]==head->vaddr) {
1121                 ht_bin[3]=(u_int)clean_addr; // Replace existing entry
1122               }
1123             }
1124           }
1125         }
1126       }
1127     }
1128     head=head->next;
1129   }
1130 }
1131
1132
1133 void mov_alloc(struct regstat *current,int i)
1134 {
1135   // Note: Don't need to actually alloc the source registers
1136   if((~current->is32>>rs1[i])&1) {
1137     //alloc_reg64(current,i,rs1[i]);
1138     alloc_reg64(current,i,rt1[i]);
1139     current->is32&=~(1LL<<rt1[i]);
1140   } else {
1141     //alloc_reg(current,i,rs1[i]);
1142     alloc_reg(current,i,rt1[i]);
1143     current->is32|=(1LL<<rt1[i]);
1144   }
1145   clear_const(current,rs1[i]);
1146   clear_const(current,rt1[i]);
1147   dirty_reg(current,rt1[i]);
1148 }
1149
1150 void shiftimm_alloc(struct regstat *current,int i)
1151 {
1152   if(opcode2[i]<=0x3) // SLL/SRL/SRA
1153   {
1154     if(rt1[i]) {
1155       if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1156       else lt1[i]=rs1[i];
1157       alloc_reg(current,i,rt1[i]);
1158       current->is32|=1LL<<rt1[i];
1159       dirty_reg(current,rt1[i]);
1160       if(is_const(current,rs1[i])) {
1161         int v=get_const(current,rs1[i]);
1162         if(opcode2[i]==0x00) set_const(current,rt1[i],v<<imm[i]);
1163         if(opcode2[i]==0x02) set_const(current,rt1[i],(u_int)v>>imm[i]);
1164         if(opcode2[i]==0x03) set_const(current,rt1[i],v>>imm[i]);
1165       }
1166       else clear_const(current,rt1[i]);
1167     }
1168   }
1169   else
1170   {
1171     clear_const(current,rs1[i]);
1172     clear_const(current,rt1[i]);
1173   }
1174
1175   if(opcode2[i]>=0x38&&opcode2[i]<=0x3b) // DSLL/DSRL/DSRA
1176   {
1177     if(rt1[i]) {
1178       if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1179       alloc_reg64(current,i,rt1[i]);
1180       current->is32&=~(1LL<<rt1[i]);
1181       dirty_reg(current,rt1[i]);
1182     }
1183   }
1184   if(opcode2[i]==0x3c) // DSLL32
1185   {
1186     if(rt1[i]) {
1187       if(rs1[i]) alloc_reg(current,i,rs1[i]);
1188       alloc_reg64(current,i,rt1[i]);
1189       current->is32&=~(1LL<<rt1[i]);
1190       dirty_reg(current,rt1[i]);
1191     }
1192   }
1193   if(opcode2[i]==0x3e) // DSRL32
1194   {
1195     if(rt1[i]) {
1196       alloc_reg64(current,i,rs1[i]);
1197       if(imm[i]==32) {
1198         alloc_reg64(current,i,rt1[i]);
1199         current->is32&=~(1LL<<rt1[i]);
1200       } else {
1201         alloc_reg(current,i,rt1[i]);
1202         current->is32|=1LL<<rt1[i];
1203       }
1204       dirty_reg(current,rt1[i]);
1205     }
1206   }
1207   if(opcode2[i]==0x3f) // DSRA32
1208   {
1209     if(rt1[i]) {
1210       alloc_reg64(current,i,rs1[i]);
1211       alloc_reg(current,i,rt1[i]);
1212       current->is32|=1LL<<rt1[i];
1213       dirty_reg(current,rt1[i]);
1214     }
1215   }
1216 }
1217
1218 void shift_alloc(struct regstat *current,int i)
1219 {
1220   if(rt1[i]) {
1221     if(opcode2[i]<=0x07) // SLLV/SRLV/SRAV
1222     {
1223       if(rs1[i]) alloc_reg(current,i,rs1[i]);
1224       if(rs2[i]) alloc_reg(current,i,rs2[i]);
1225       alloc_reg(current,i,rt1[i]);
1226       if(rt1[i]==rs2[i]) {
1227         alloc_reg_temp(current,i,-1);
1228         minimum_free_regs[i]=1;
1229       }
1230       current->is32|=1LL<<rt1[i];
1231     } else { // DSLLV/DSRLV/DSRAV
1232       if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1233       if(rs2[i]) alloc_reg(current,i,rs2[i]);
1234       alloc_reg64(current,i,rt1[i]);
1235       current->is32&=~(1LL<<rt1[i]);
1236       if(opcode2[i]==0x16||opcode2[i]==0x17) // DSRLV and DSRAV need a temporary register
1237       {
1238         alloc_reg_temp(current,i,-1);
1239         minimum_free_regs[i]=1;
1240       }
1241     }
1242     clear_const(current,rs1[i]);
1243     clear_const(current,rs2[i]);
1244     clear_const(current,rt1[i]);
1245     dirty_reg(current,rt1[i]);
1246   }
1247 }
1248
1249 void alu_alloc(struct regstat *current,int i)
1250 {
1251   if(opcode2[i]>=0x20&&opcode2[i]<=0x23) { // ADD/ADDU/SUB/SUBU
1252     if(rt1[i]) {
1253       if(rs1[i]&&rs2[i]) {
1254         alloc_reg(current,i,rs1[i]);
1255         alloc_reg(current,i,rs2[i]);
1256       }
1257       else {
1258         if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1259         if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg(current,i,rs2[i]);
1260       }
1261       alloc_reg(current,i,rt1[i]);
1262     }
1263     current->is32|=1LL<<rt1[i];
1264   }
1265   if(opcode2[i]==0x2a||opcode2[i]==0x2b) { // SLT/SLTU
1266     if(rt1[i]) {
1267       if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1268       {
1269         alloc_reg64(current,i,rs1[i]);
1270         alloc_reg64(current,i,rs2[i]);
1271         alloc_reg(current,i,rt1[i]);
1272       } else {
1273         alloc_reg(current,i,rs1[i]);
1274         alloc_reg(current,i,rs2[i]);
1275         alloc_reg(current,i,rt1[i]);
1276       }
1277     }
1278     current->is32|=1LL<<rt1[i];
1279   }
1280   if(opcode2[i]>=0x24&&opcode2[i]<=0x27) { // AND/OR/XOR/NOR
1281     if(rt1[i]) {
1282       if(rs1[i]&&rs2[i]) {
1283         alloc_reg(current,i,rs1[i]);
1284         alloc_reg(current,i,rs2[i]);
1285       }
1286       else
1287       {
1288         if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1289         if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg(current,i,rs2[i]);
1290       }
1291       alloc_reg(current,i,rt1[i]);
1292       if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1293       {
1294         if(!((current->uu>>rt1[i])&1)) {
1295           alloc_reg64(current,i,rt1[i]);
1296         }
1297         if(get_reg(current->regmap,rt1[i]|64)>=0) {
1298           if(rs1[i]&&rs2[i]) {
1299             alloc_reg64(current,i,rs1[i]);
1300             alloc_reg64(current,i,rs2[i]);
1301           }
1302           else
1303           {
1304             // Is is really worth it to keep 64-bit values in registers?
1305             #ifdef NATIVE_64BIT
1306             if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg64(current,i,rs1[i]);
1307             if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg64(current,i,rs2[i]);
1308             #endif
1309           }
1310         }
1311         current->is32&=~(1LL<<rt1[i]);
1312       } else {
1313         current->is32|=1LL<<rt1[i];
1314       }
1315     }
1316   }
1317   if(opcode2[i]>=0x2c&&opcode2[i]<=0x2f) { // DADD/DADDU/DSUB/DSUBU
1318     if(rt1[i]) {
1319       if(rs1[i]&&rs2[i]) {
1320         if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1321           alloc_reg64(current,i,rs1[i]);
1322           alloc_reg64(current,i,rs2[i]);
1323           alloc_reg64(current,i,rt1[i]);
1324         } else {
1325           alloc_reg(current,i,rs1[i]);
1326           alloc_reg(current,i,rs2[i]);
1327           alloc_reg(current,i,rt1[i]);
1328         }
1329       }
1330       else {
1331         alloc_reg(current,i,rt1[i]);
1332         if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1333           // DADD used as move, or zeroing
1334           // If we have a 64-bit source, then make the target 64 bits too
1335           if(rs1[i]&&!((current->is32>>rs1[i])&1)) {
1336             if(get_reg(current->regmap,rs1[i])>=0) alloc_reg64(current,i,rs1[i]);
1337             alloc_reg64(current,i,rt1[i]);
1338           } else if(rs2[i]&&!((current->is32>>rs2[i])&1)) {
1339             if(get_reg(current->regmap,rs2[i])>=0) alloc_reg64(current,i,rs2[i]);
1340             alloc_reg64(current,i,rt1[i]);
1341           }
1342           if(opcode2[i]>=0x2e&&rs2[i]) {
1343             // DSUB used as negation - 64-bit result
1344             // If we have a 32-bit register, extend it to 64 bits
1345             if(get_reg(current->regmap,rs2[i])>=0) alloc_reg64(current,i,rs2[i]);
1346             alloc_reg64(current,i,rt1[i]);
1347           }
1348         }
1349       }
1350       if(rs1[i]&&rs2[i]) {
1351         current->is32&=~(1LL<<rt1[i]);
1352       } else if(rs1[i]) {
1353         current->is32&=~(1LL<<rt1[i]);
1354         if((current->is32>>rs1[i])&1)
1355           current->is32|=1LL<<rt1[i];
1356       } else if(rs2[i]) {
1357         current->is32&=~(1LL<<rt1[i]);
1358         if((current->is32>>rs2[i])&1)
1359           current->is32|=1LL<<rt1[i];
1360       } else {
1361         current->is32|=1LL<<rt1[i];
1362       }
1363     }
1364   }
1365   clear_const(current,rs1[i]);
1366   clear_const(current,rs2[i]);
1367   clear_const(current,rt1[i]);
1368   dirty_reg(current,rt1[i]);
1369 }
1370
1371 void imm16_alloc(struct regstat *current,int i)
1372 {
1373   if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1374   else lt1[i]=rs1[i];
1375   if(rt1[i]) alloc_reg(current,i,rt1[i]);
1376   if(opcode[i]==0x18||opcode[i]==0x19) { // DADDI/DADDIU
1377     current->is32&=~(1LL<<rt1[i]);
1378     if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1379       // TODO: Could preserve the 32-bit flag if the immediate is zero
1380       alloc_reg64(current,i,rt1[i]);
1381       alloc_reg64(current,i,rs1[i]);
1382     }
1383     clear_const(current,rs1[i]);
1384     clear_const(current,rt1[i]);
1385   }
1386   else if(opcode[i]==0x0a||opcode[i]==0x0b) { // SLTI/SLTIU
1387     if((~current->is32>>rs1[i])&1) alloc_reg64(current,i,rs1[i]);
1388     current->is32|=1LL<<rt1[i];
1389     clear_const(current,rs1[i]);
1390     clear_const(current,rt1[i]);
1391   }
1392   else if(opcode[i]>=0x0c&&opcode[i]<=0x0e) { // ANDI/ORI/XORI
1393     if(((~current->is32>>rs1[i])&1)&&opcode[i]>0x0c) {
1394       if(rs1[i]!=rt1[i]) {
1395         if(needed_again(rs1[i],i)) alloc_reg64(current,i,rs1[i]);
1396         alloc_reg64(current,i,rt1[i]);
1397         current->is32&=~(1LL<<rt1[i]);
1398       }
1399     }
1400     else current->is32|=1LL<<rt1[i]; // ANDI clears upper bits
1401     if(is_const(current,rs1[i])) {
1402       int v=get_const(current,rs1[i]);
1403       if(opcode[i]==0x0c) set_const(current,rt1[i],v&imm[i]);
1404       if(opcode[i]==0x0d) set_const(current,rt1[i],v|imm[i]);
1405       if(opcode[i]==0x0e) set_const(current,rt1[i],v^imm[i]);
1406     }
1407     else clear_const(current,rt1[i]);
1408   }
1409   else if(opcode[i]==0x08||opcode[i]==0x09) { // ADDI/ADDIU
1410     if(is_const(current,rs1[i])) {
1411       int v=get_const(current,rs1[i]);
1412       set_const(current,rt1[i],v+imm[i]);
1413     }
1414     else clear_const(current,rt1[i]);
1415     current->is32|=1LL<<rt1[i];
1416   }
1417   else {
1418     set_const(current,rt1[i],((long long)((short)imm[i]))<<16); // LUI
1419     current->is32|=1LL<<rt1[i];
1420   }
1421   dirty_reg(current,rt1[i]);
1422 }
1423
1424 void load_alloc(struct regstat *current,int i)
1425 {
1426   clear_const(current,rt1[i]);
1427   //if(rs1[i]!=rt1[i]&&needed_again(rs1[i],i)) clear_const(current,rs1[i]); // Does this help or hurt?
1428   if(!rs1[i]) current->u&=~1LL; // Allow allocating r0 if it's the source register
1429   if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1430   if(rt1[i]&&!((current->u>>rt1[i])&1)) {
1431     alloc_reg(current,i,rt1[i]);
1432     assert(get_reg(current->regmap,rt1[i])>=0);
1433     if(opcode[i]==0x27||opcode[i]==0x37) // LWU/LD
1434     {
1435       current->is32&=~(1LL<<rt1[i]);
1436       alloc_reg64(current,i,rt1[i]);
1437     }
1438     else if(opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
1439     {
1440       current->is32&=~(1LL<<rt1[i]);
1441       alloc_reg64(current,i,rt1[i]);
1442       alloc_all(current,i);
1443       alloc_reg64(current,i,FTEMP);
1444       minimum_free_regs[i]=HOST_REGS;
1445     }
1446     else current->is32|=1LL<<rt1[i];
1447     dirty_reg(current,rt1[i]);
1448     // LWL/LWR need a temporary register for the old value
1449     if(opcode[i]==0x22||opcode[i]==0x26)
1450     {
1451       alloc_reg(current,i,FTEMP);
1452       alloc_reg_temp(current,i,-1);
1453       minimum_free_regs[i]=1;
1454     }
1455   }
1456   else
1457   {
1458     // Load to r0 or unneeded register (dummy load)
1459     // but we still need a register to calculate the address
1460     if(opcode[i]==0x22||opcode[i]==0x26)
1461     {
1462       alloc_reg(current,i,FTEMP); // LWL/LWR need another temporary
1463     }
1464     alloc_reg_temp(current,i,-1);
1465     minimum_free_regs[i]=1;
1466     if(opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
1467     {
1468       alloc_all(current,i);
1469       alloc_reg64(current,i,FTEMP);
1470       minimum_free_regs[i]=HOST_REGS;
1471     }
1472   }
1473 }
1474
1475 void store_alloc(struct regstat *current,int i)
1476 {
1477   clear_const(current,rs2[i]);
1478   if(!(rs2[i])) current->u&=~1LL; // Allow allocating r0 if necessary
1479   if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1480   alloc_reg(current,i,rs2[i]);
1481   if(opcode[i]==0x2c||opcode[i]==0x2d||opcode[i]==0x3f) { // 64-bit SDL/SDR/SD
1482     alloc_reg64(current,i,rs2[i]);
1483     if(rs2[i]) alloc_reg(current,i,FTEMP);
1484   }
1485   #if defined(HOST_IMM8)
1486   // On CPUs without 32-bit immediates we need a pointer to invalid_code
1487   else alloc_reg(current,i,INVCP);
1488   #endif
1489   if(opcode[i]==0x2a||opcode[i]==0x2e||opcode[i]==0x2c||opcode[i]==0x2d) { // SWL/SWL/SDL/SDR
1490     alloc_reg(current,i,FTEMP);
1491   }
1492   // We need a temporary register for address generation
1493   alloc_reg_temp(current,i,-1);
1494   minimum_free_regs[i]=1;
1495 }
1496
1497 void c1ls_alloc(struct regstat *current,int i)
1498 {
1499   //clear_const(current,rs1[i]); // FIXME
1500   clear_const(current,rt1[i]);
1501   if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1502   alloc_reg(current,i,CSREG); // Status
1503   alloc_reg(current,i,FTEMP);
1504   if(opcode[i]==0x35||opcode[i]==0x3d) { // 64-bit LDC1/SDC1
1505     alloc_reg64(current,i,FTEMP);
1506   }
1507   #if defined(HOST_IMM8)
1508   // On CPUs without 32-bit immediates we need a pointer to invalid_code
1509   else if((opcode[i]&0x3b)==0x39) // SWC1/SDC1
1510     alloc_reg(current,i,INVCP);
1511   #endif
1512   // We need a temporary register for address generation
1513   alloc_reg_temp(current,i,-1);
1514 }
1515
1516 void c2ls_alloc(struct regstat *current,int i)
1517 {
1518   clear_const(current,rt1[i]);
1519   if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1520   alloc_reg(current,i,FTEMP);
1521   #if defined(HOST_IMM8)
1522   // On CPUs without 32-bit immediates we need a pointer to invalid_code
1523   if((opcode[i]&0x3b)==0x3a) // SWC2/SDC2
1524     alloc_reg(current,i,INVCP);
1525   #endif
1526   // We need a temporary register for address generation
1527   alloc_reg_temp(current,i,-1);
1528   minimum_free_regs[i]=1;
1529 }
1530
1531 #ifndef multdiv_alloc
1532 void multdiv_alloc(struct regstat *current,int i)
1533 {
1534   //  case 0x18: MULT
1535   //  case 0x19: MULTU
1536   //  case 0x1A: DIV
1537   //  case 0x1B: DIVU
1538   //  case 0x1C: DMULT
1539   //  case 0x1D: DMULTU
1540   //  case 0x1E: DDIV
1541   //  case 0x1F: DDIVU
1542   clear_const(current,rs1[i]);
1543   clear_const(current,rs2[i]);
1544   if(rs1[i]&&rs2[i])
1545   {
1546     if((opcode2[i]&4)==0) // 32-bit
1547     {
1548       current->u&=~(1LL<<HIREG);
1549       current->u&=~(1LL<<LOREG);
1550       alloc_reg(current,i,HIREG);
1551       alloc_reg(current,i,LOREG);
1552       alloc_reg(current,i,rs1[i]);
1553       alloc_reg(current,i,rs2[i]);
1554       current->is32|=1LL<<HIREG;
1555       current->is32|=1LL<<LOREG;
1556       dirty_reg(current,HIREG);
1557       dirty_reg(current,LOREG);
1558     }
1559     else // 64-bit
1560     {
1561       current->u&=~(1LL<<HIREG);
1562       current->u&=~(1LL<<LOREG);
1563       current->uu&=~(1LL<<HIREG);
1564       current->uu&=~(1LL<<LOREG);
1565       alloc_reg64(current,i,HIREG);
1566       //if(HOST_REGS>10) alloc_reg64(current,i,LOREG);
1567       alloc_reg64(current,i,rs1[i]);
1568       alloc_reg64(current,i,rs2[i]);
1569       alloc_all(current,i);
1570       current->is32&=~(1LL<<HIREG);
1571       current->is32&=~(1LL<<LOREG);
1572       dirty_reg(current,HIREG);
1573       dirty_reg(current,LOREG);
1574       minimum_free_regs[i]=HOST_REGS;
1575     }
1576   }
1577   else
1578   {
1579     // Multiply by zero is zero.
1580     // MIPS does not have a divide by zero exception.
1581     // The result is undefined, we return zero.
1582     alloc_reg(current,i,HIREG);
1583     alloc_reg(current,i,LOREG);
1584     current->is32|=1LL<<HIREG;
1585     current->is32|=1LL<<LOREG;
1586     dirty_reg(current,HIREG);
1587     dirty_reg(current,LOREG);
1588   }
1589 }
1590 #endif
1591
1592 void cop0_alloc(struct regstat *current,int i)
1593 {
1594   if(opcode2[i]==0) // MFC0
1595   {
1596     if(rt1[i]) {
1597       clear_const(current,rt1[i]);
1598       alloc_all(current,i);
1599       alloc_reg(current,i,rt1[i]);
1600       current->is32|=1LL<<rt1[i];
1601       dirty_reg(current,rt1[i]);
1602     }
1603   }
1604   else if(opcode2[i]==4) // MTC0
1605   {
1606     if(rs1[i]){
1607       clear_const(current,rs1[i]);
1608       alloc_reg(current,i,rs1[i]);
1609       alloc_all(current,i);
1610     }
1611     else {
1612       alloc_all(current,i); // FIXME: Keep r0
1613       current->u&=~1LL;
1614       alloc_reg(current,i,0);
1615     }
1616   }
1617   else
1618   {
1619     // TLBR/TLBWI/TLBWR/TLBP/ERET
1620     assert(opcode2[i]==0x10);
1621     alloc_all(current,i);
1622   }
1623   minimum_free_regs[i]=HOST_REGS;
1624 }
1625
1626 void cop1_alloc(struct regstat *current,int i)
1627 {
1628   alloc_reg(current,i,CSREG); // Load status
1629   if(opcode2[i]<3) // MFC1/DMFC1/CFC1
1630   {
1631     if(rt1[i]){
1632       clear_const(current,rt1[i]);
1633       if(opcode2[i]==1) {
1634         alloc_reg64(current,i,rt1[i]); // DMFC1
1635         current->is32&=~(1LL<<rt1[i]);
1636       }else{
1637         alloc_reg(current,i,rt1[i]); // MFC1/CFC1
1638         current->is32|=1LL<<rt1[i];
1639       }
1640       dirty_reg(current,rt1[i]);
1641     }
1642     alloc_reg_temp(current,i,-1);
1643   }
1644   else if(opcode2[i]>3) // MTC1/DMTC1/CTC1
1645   {
1646     if(rs1[i]){
1647       clear_const(current,rs1[i]);
1648       if(opcode2[i]==5)
1649         alloc_reg64(current,i,rs1[i]); // DMTC1
1650       else
1651         alloc_reg(current,i,rs1[i]); // MTC1/CTC1
1652       alloc_reg_temp(current,i,-1);
1653     }
1654     else {
1655       current->u&=~1LL;
1656       alloc_reg(current,i,0);
1657       alloc_reg_temp(current,i,-1);
1658     }
1659   }
1660   minimum_free_regs[i]=1;
1661 }
1662 void fconv_alloc(struct regstat *current,int i)
1663 {
1664   alloc_reg(current,i,CSREG); // Load status
1665   alloc_reg_temp(current,i,-1);
1666   minimum_free_regs[i]=1;
1667 }
1668 void float_alloc(struct regstat *current,int i)
1669 {
1670   alloc_reg(current,i,CSREG); // Load status
1671   alloc_reg_temp(current,i,-1);
1672   minimum_free_regs[i]=1;
1673 }
1674 void c2op_alloc(struct regstat *current,int i)
1675 {
1676   alloc_reg_temp(current,i,-1);
1677 }
1678 void fcomp_alloc(struct regstat *current,int i)
1679 {
1680   alloc_reg(current,i,CSREG); // Load status
1681   alloc_reg(current,i,FSREG); // Load flags
1682   dirty_reg(current,FSREG); // Flag will be modified
1683   alloc_reg_temp(current,i,-1);
1684   minimum_free_regs[i]=1;
1685 }
1686
1687 void syscall_alloc(struct regstat *current,int i)
1688 {
1689   alloc_cc(current,i);
1690   dirty_reg(current,CCREG);
1691   alloc_all(current,i);
1692   minimum_free_regs[i]=HOST_REGS;
1693   current->isconst=0;
1694 }
1695
1696 void delayslot_alloc(struct regstat *current,int i)
1697 {
1698   switch(itype[i]) {
1699     case UJUMP:
1700     case CJUMP:
1701     case SJUMP:
1702     case RJUMP:
1703     case FJUMP:
1704     case SYSCALL:
1705     case HLECALL:
1706     case SPAN:
1707       assem_debug("jump in the delay slot.  this shouldn't happen.\n");//exit(1);
1708       SysPrintf("Disabled speculative precompilation\n");
1709       stop_after_jal=1;
1710       break;
1711     case IMM16:
1712       imm16_alloc(current,i);
1713       break;
1714     case LOAD:
1715     case LOADLR:
1716       load_alloc(current,i);
1717       break;
1718     case STORE:
1719     case STORELR:
1720       store_alloc(current,i);
1721       break;
1722     case ALU:
1723       alu_alloc(current,i);
1724       break;
1725     case SHIFT:
1726       shift_alloc(current,i);
1727       break;
1728     case MULTDIV:
1729       multdiv_alloc(current,i);
1730       break;
1731     case SHIFTIMM:
1732       shiftimm_alloc(current,i);
1733       break;
1734     case MOV:
1735       mov_alloc(current,i);
1736       break;
1737     case COP0:
1738       cop0_alloc(current,i);
1739       break;
1740     case COP1:
1741     case COP2:
1742       cop1_alloc(current,i);
1743       break;
1744     case C1LS:
1745       c1ls_alloc(current,i);
1746       break;
1747     case C2LS:
1748       c2ls_alloc(current,i);
1749       break;
1750     case FCONV:
1751       fconv_alloc(current,i);
1752       break;
1753     case FLOAT:
1754       float_alloc(current,i);
1755       break;
1756     case FCOMP:
1757       fcomp_alloc(current,i);
1758       break;
1759     case C2OP:
1760       c2op_alloc(current,i);
1761       break;
1762   }
1763 }
1764
1765 // Special case where a branch and delay slot span two pages in virtual memory
1766 static void pagespan_alloc(struct regstat *current,int i)
1767 {
1768   current->isconst=0;
1769   current->wasconst=0;
1770   regs[i].wasconst=0;
1771   minimum_free_regs[i]=HOST_REGS;
1772   alloc_all(current,i);
1773   alloc_cc(current,i);
1774   dirty_reg(current,CCREG);
1775   if(opcode[i]==3) // JAL
1776   {
1777     alloc_reg(current,i,31);
1778     dirty_reg(current,31);
1779   }
1780   if(opcode[i]==0&&(opcode2[i]&0x3E)==8) // JR/JALR
1781   {
1782     alloc_reg(current,i,rs1[i]);
1783     if (rt1[i]!=0) {
1784       alloc_reg(current,i,rt1[i]);
1785       dirty_reg(current,rt1[i]);
1786     }
1787   }
1788   if((opcode[i]&0x2E)==4) // BEQ/BNE/BEQL/BNEL
1789   {
1790     if(rs1[i]) alloc_reg(current,i,rs1[i]);
1791     if(rs2[i]) alloc_reg(current,i,rs2[i]);
1792     if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1793     {
1794       if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1795       if(rs2[i]) alloc_reg64(current,i,rs2[i]);
1796     }
1797   }
1798   else
1799   if((opcode[i]&0x2E)==6) // BLEZ/BGTZ/BLEZL/BGTZL
1800   {
1801     if(rs1[i]) alloc_reg(current,i,rs1[i]);
1802     if(!((current->is32>>rs1[i])&1))
1803     {
1804       if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1805     }
1806   }
1807   else
1808   if(opcode[i]==0x11) // BC1
1809   {
1810     alloc_reg(current,i,FSREG);
1811     alloc_reg(current,i,CSREG);
1812   }
1813   //else ...
1814 }
1815
1816 static void add_stub(int type,int addr,int retaddr,int a,int b,int c,int d,int e)
1817 {
1818   stubs[stubcount][0]=type;
1819   stubs[stubcount][1]=addr;
1820   stubs[stubcount][2]=retaddr;
1821   stubs[stubcount][3]=a;
1822   stubs[stubcount][4]=b;
1823   stubs[stubcount][5]=c;
1824   stubs[stubcount][6]=d;
1825   stubs[stubcount][7]=e;
1826   stubcount++;
1827 }
1828
1829 // Write out a single register
1830 void wb_register(signed char r,signed char regmap[],uint64_t dirty,uint64_t is32)
1831 {
1832   int hr;
1833   for(hr=0;hr<HOST_REGS;hr++) {
1834     if(hr!=EXCLUDE_REG) {
1835       if((regmap[hr]&63)==r) {
1836         if((dirty>>hr)&1) {
1837           if(regmap[hr]<64) {
1838             emit_storereg(r,hr);
1839           }else{
1840             emit_storereg(r|64,hr);
1841           }
1842         }
1843       }
1844     }
1845   }
1846 }
1847
1848 int mchecksum()
1849 {
1850   //if(!tracedebug) return 0;
1851   int i;
1852   int sum=0;
1853   for(i=0;i<2097152;i++) {
1854     unsigned int temp=sum;
1855     sum<<=1;
1856     sum|=(~temp)>>31;
1857     sum^=((u_int *)rdram)[i];
1858   }
1859   return sum;
1860 }
1861 int rchecksum()
1862 {
1863   int i;
1864   int sum=0;
1865   for(i=0;i<64;i++)
1866     sum^=((u_int *)reg)[i];
1867   return sum;
1868 }
1869 void rlist()
1870 {
1871   int i;
1872   printf("TRACE: ");
1873   for(i=0;i<32;i++)
1874     printf("r%d:%8x%8x ",i,((int *)(reg+i))[1],((int *)(reg+i))[0]);
1875   printf("\n");
1876 }
1877
1878 void enabletrace()
1879 {
1880   tracedebug=1;
1881 }
1882
1883 void memdebug(int i)
1884 {
1885   //printf("TRACE: count=%d next=%d (checksum %x) lo=%8x%8x\n",Count,next_interupt,mchecksum(),(int)(reg[LOREG]>>32),(int)reg[LOREG]);
1886   //printf("TRACE: count=%d next=%d (rchecksum %x)\n",Count,next_interupt,rchecksum());
1887   //rlist();
1888   //if(tracedebug) {
1889   //if(Count>=-2084597794) {
1890   if((signed int)Count>=-2084597794&&(signed int)Count<0) {
1891   //if(0) {
1892     printf("TRACE: count=%d next=%d (checksum %x)\n",Count,next_interupt,mchecksum());
1893     //printf("TRACE: count=%d next=%d (checksum %x) Status=%x\n",Count,next_interupt,mchecksum(),Status);
1894     //printf("TRACE: count=%d next=%d (checksum %x) hi=%8x%8x\n",Count,next_interupt,mchecksum(),(int)(reg[HIREG]>>32),(int)reg[HIREG]);
1895     rlist();
1896     #ifdef __i386__
1897     printf("TRACE: %x\n",(&i)[-1]);
1898     #endif
1899     #ifdef __arm__
1900     int j;
1901     printf("TRACE: %x \n",(&j)[10]);
1902     printf("TRACE: %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x\n",(&j)[1],(&j)[2],(&j)[3],(&j)[4],(&j)[5],(&j)[6],(&j)[7],(&j)[8],(&j)[9],(&j)[10],(&j)[11],(&j)[12],(&j)[13],(&j)[14],(&j)[15],(&j)[16],(&j)[17],(&j)[18],(&j)[19],(&j)[20]);
1903     #endif
1904     //fflush(stdout);
1905   }
1906   //printf("TRACE: %x\n",(&i)[-1]);
1907 }
1908
1909 void alu_assemble(int i,struct regstat *i_regs)
1910 {
1911   if(opcode2[i]>=0x20&&opcode2[i]<=0x23) { // ADD/ADDU/SUB/SUBU
1912     if(rt1[i]) {
1913       signed char s1,s2,t;
1914       t=get_reg(i_regs->regmap,rt1[i]);
1915       if(t>=0) {
1916         s1=get_reg(i_regs->regmap,rs1[i]);
1917         s2=get_reg(i_regs->regmap,rs2[i]);
1918         if(rs1[i]&&rs2[i]) {
1919           assert(s1>=0);
1920           assert(s2>=0);
1921           if(opcode2[i]&2) emit_sub(s1,s2,t);
1922           else emit_add(s1,s2,t);
1923         }
1924         else if(rs1[i]) {
1925           if(s1>=0) emit_mov(s1,t);
1926           else emit_loadreg(rs1[i],t);
1927         }
1928         else if(rs2[i]) {
1929           if(s2>=0) {
1930             if(opcode2[i]&2) emit_neg(s2,t);
1931             else emit_mov(s2,t);
1932           }
1933           else {
1934             emit_loadreg(rs2[i],t);
1935             if(opcode2[i]&2) emit_neg(t,t);
1936           }
1937         }
1938         else emit_zeroreg(t);
1939       }
1940     }
1941   }
1942   if(opcode2[i]>=0x2c&&opcode2[i]<=0x2f) { // DADD/DADDU/DSUB/DSUBU
1943     if(rt1[i]) {
1944       signed char s1l,s2l,s1h,s2h,tl,th;
1945       tl=get_reg(i_regs->regmap,rt1[i]);
1946       th=get_reg(i_regs->regmap,rt1[i]|64);
1947       if(tl>=0) {
1948         s1l=get_reg(i_regs->regmap,rs1[i]);
1949         s2l=get_reg(i_regs->regmap,rs2[i]);
1950         s1h=get_reg(i_regs->regmap,rs1[i]|64);
1951         s2h=get_reg(i_regs->regmap,rs2[i]|64);
1952         if(rs1[i]&&rs2[i]) {
1953           assert(s1l>=0);
1954           assert(s2l>=0);
1955           if(opcode2[i]&2) emit_subs(s1l,s2l,tl);
1956           else emit_adds(s1l,s2l,tl);
1957           if(th>=0) {
1958             #ifdef INVERTED_CARRY
1959             if(opcode2[i]&2) {if(s1h!=th) emit_mov(s1h,th);emit_sbb(th,s2h);}
1960             #else
1961             if(opcode2[i]&2) emit_sbc(s1h,s2h,th);
1962             #endif
1963             else emit_add(s1h,s2h,th);
1964           }
1965         }
1966         else if(rs1[i]) {
1967           if(s1l>=0) emit_mov(s1l,tl);
1968           else emit_loadreg(rs1[i],tl);
1969           if(th>=0) {
1970             if(s1h>=0) emit_mov(s1h,th);
1971             else emit_loadreg(rs1[i]|64,th);
1972           }
1973         }
1974         else if(rs2[i]) {
1975           if(s2l>=0) {
1976             if(opcode2[i]&2) emit_negs(s2l,tl);
1977             else emit_mov(s2l,tl);
1978           }
1979           else {
1980             emit_loadreg(rs2[i],tl);
1981             if(opcode2[i]&2) emit_negs(tl,tl);
1982           }
1983           if(th>=0) {
1984             #ifdef INVERTED_CARRY
1985             if(s2h>=0) emit_mov(s2h,th);
1986             else emit_loadreg(rs2[i]|64,th);
1987             if(opcode2[i]&2) {
1988               emit_adcimm(-1,th); // x86 has inverted carry flag
1989               emit_not(th,th);
1990             }
1991             #else
1992             if(opcode2[i]&2) {
1993               if(s2h>=0) emit_rscimm(s2h,0,th);
1994               else {
1995                 emit_loadreg(rs2[i]|64,th);
1996                 emit_rscimm(th,0,th);
1997               }
1998             }else{
1999               if(s2h>=0) emit_mov(s2h,th);
2000               else emit_loadreg(rs2[i]|64,th);
2001             }
2002             #endif
2003           }
2004         }
2005         else {
2006           emit_zeroreg(tl);
2007           if(th>=0) emit_zeroreg(th);
2008         }
2009       }
2010     }
2011   }
2012   if(opcode2[i]==0x2a||opcode2[i]==0x2b) { // SLT/SLTU
2013     if(rt1[i]) {
2014       signed char s1l,s1h,s2l,s2h,t;
2015       if(!((i_regs->was32>>rs1[i])&(i_regs->was32>>rs2[i])&1))
2016       {
2017         t=get_reg(i_regs->regmap,rt1[i]);
2018         //assert(t>=0);
2019         if(t>=0) {
2020           s1l=get_reg(i_regs->regmap,rs1[i]);
2021           s1h=get_reg(i_regs->regmap,rs1[i]|64);
2022           s2l=get_reg(i_regs->regmap,rs2[i]);
2023           s2h=get_reg(i_regs->regmap,rs2[i]|64);
2024           if(rs2[i]==0) // rx<r0
2025           {
2026             assert(s1h>=0);
2027             if(opcode2[i]==0x2a) // SLT
2028               emit_shrimm(s1h,31,t);
2029             else // SLTU (unsigned can not be less than zero)
2030               emit_zeroreg(t);
2031           }
2032           else if(rs1[i]==0) // r0<rx
2033           {
2034             assert(s2h>=0);
2035             if(opcode2[i]==0x2a) // SLT
2036               emit_set_gz64_32(s2h,s2l,t);
2037             else // SLTU (set if not zero)
2038               emit_set_nz64_32(s2h,s2l,t);
2039           }
2040           else {
2041             assert(s1l>=0);assert(s1h>=0);
2042             assert(s2l>=0);assert(s2h>=0);
2043             if(opcode2[i]==0x2a) // SLT
2044               emit_set_if_less64_32(s1h,s1l,s2h,s2l,t);
2045             else // SLTU
2046               emit_set_if_carry64_32(s1h,s1l,s2h,s2l,t);
2047           }
2048         }
2049       } else {
2050         t=get_reg(i_regs->regmap,rt1[i]);
2051         //assert(t>=0);
2052         if(t>=0) {
2053           s1l=get_reg(i_regs->regmap,rs1[i]);
2054           s2l=get_reg(i_regs->regmap,rs2[i]);
2055           if(rs2[i]==0) // rx<r0
2056           {
2057             assert(s1l>=0);
2058             if(opcode2[i]==0x2a) // SLT
2059               emit_shrimm(s1l,31,t);
2060             else // SLTU (unsigned can not be less than zero)
2061               emit_zeroreg(t);
2062           }
2063           else if(rs1[i]==0) // r0<rx
2064           {
2065             assert(s2l>=0);
2066             if(opcode2[i]==0x2a) // SLT
2067               emit_set_gz32(s2l,t);
2068             else // SLTU (set if not zero)
2069               emit_set_nz32(s2l,t);
2070           }
2071           else{
2072             assert(s1l>=0);assert(s2l>=0);
2073             if(opcode2[i]==0x2a) // SLT
2074               emit_set_if_less32(s1l,s2l,t);
2075             else // SLTU
2076               emit_set_if_carry32(s1l,s2l,t);
2077           }
2078         }
2079       }
2080     }
2081   }
2082   if(opcode2[i]>=0x24&&opcode2[i]<=0x27) { // AND/OR/XOR/NOR
2083     if(rt1[i]) {
2084       signed char s1l,s1h,s2l,s2h,th,tl;
2085       tl=get_reg(i_regs->regmap,rt1[i]);
2086       th=get_reg(i_regs->regmap,rt1[i]|64);
2087       if(!((i_regs->was32>>rs1[i])&(i_regs->was32>>rs2[i])&1)&&th>=0)
2088       {
2089         assert(tl>=0);
2090         if(tl>=0) {
2091           s1l=get_reg(i_regs->regmap,rs1[i]);
2092           s1h=get_reg(i_regs->regmap,rs1[i]|64);
2093           s2l=get_reg(i_regs->regmap,rs2[i]);
2094           s2h=get_reg(i_regs->regmap,rs2[i]|64);
2095           if(rs1[i]&&rs2[i]) {
2096             assert(s1l>=0);assert(s1h>=0);
2097             assert(s2l>=0);assert(s2h>=0);
2098             if(opcode2[i]==0x24) { // AND
2099               emit_and(s1l,s2l,tl);
2100               emit_and(s1h,s2h,th);
2101             } else
2102             if(opcode2[i]==0x25) { // OR
2103               emit_or(s1l,s2l,tl);
2104               emit_or(s1h,s2h,th);
2105             } else
2106             if(opcode2[i]==0x26) { // XOR
2107               emit_xor(s1l,s2l,tl);
2108               emit_xor(s1h,s2h,th);
2109             } else
2110             if(opcode2[i]==0x27) { // NOR
2111               emit_or(s1l,s2l,tl);
2112               emit_or(s1h,s2h,th);
2113               emit_not(tl,tl);
2114               emit_not(th,th);
2115             }
2116           }
2117           else
2118           {
2119             if(opcode2[i]==0x24) { // AND
2120               emit_zeroreg(tl);
2121               emit_zeroreg(th);
2122             } else
2123             if(opcode2[i]==0x25||opcode2[i]==0x26) { // OR/XOR
2124               if(rs1[i]){
2125                 if(s1l>=0) emit_mov(s1l,tl);
2126                 else emit_loadreg(rs1[i],tl);
2127                 if(s1h>=0) emit_mov(s1h,th);
2128                 else emit_loadreg(rs1[i]|64,th);
2129               }
2130               else
2131               if(rs2[i]){
2132                 if(s2l>=0) emit_mov(s2l,tl);
2133                 else emit_loadreg(rs2[i],tl);
2134                 if(s2h>=0) emit_mov(s2h,th);
2135                 else emit_loadreg(rs2[i]|64,th);
2136               }
2137               else{
2138                 emit_zeroreg(tl);
2139                 emit_zeroreg(th);
2140               }
2141             } else
2142             if(opcode2[i]==0x27) { // NOR
2143               if(rs1[i]){
2144                 if(s1l>=0) emit_not(s1l,tl);
2145                 else{
2146                   emit_loadreg(rs1[i],tl);
2147                   emit_not(tl,tl);
2148                 }
2149                 if(s1h>=0) emit_not(s1h,th);
2150                 else{
2151                   emit_loadreg(rs1[i]|64,th);
2152                   emit_not(th,th);
2153                 }
2154               }
2155               else
2156               if(rs2[i]){
2157                 if(s2l>=0) emit_not(s2l,tl);
2158                 else{
2159                   emit_loadreg(rs2[i],tl);
2160                   emit_not(tl,tl);
2161                 }
2162                 if(s2h>=0) emit_not(s2h,th);
2163                 else{
2164                   emit_loadreg(rs2[i]|64,th);
2165                   emit_not(th,th);
2166                 }
2167               }
2168               else {
2169                 emit_movimm(-1,tl);
2170                 emit_movimm(-1,th);
2171               }
2172             }
2173           }
2174         }
2175       }
2176       else
2177       {
2178         // 32 bit
2179         if(tl>=0) {
2180           s1l=get_reg(i_regs->regmap,rs1[i]);
2181           s2l=get_reg(i_regs->regmap,rs2[i]);
2182           if(rs1[i]&&rs2[i]) {
2183             assert(s1l>=0);
2184             assert(s2l>=0);
2185             if(opcode2[i]==0x24) { // AND
2186               emit_and(s1l,s2l,tl);
2187             } else
2188             if(opcode2[i]==0x25) { // OR
2189               emit_or(s1l,s2l,tl);
2190             } else
2191             if(opcode2[i]==0x26) { // XOR
2192               emit_xor(s1l,s2l,tl);
2193             } else
2194             if(opcode2[i]==0x27) { // NOR
2195               emit_or(s1l,s2l,tl);
2196               emit_not(tl,tl);
2197             }
2198           }
2199           else
2200           {
2201             if(opcode2[i]==0x24) { // AND
2202               emit_zeroreg(tl);
2203             } else
2204             if(opcode2[i]==0x25||opcode2[i]==0x26) { // OR/XOR
2205               if(rs1[i]){
2206                 if(s1l>=0) emit_mov(s1l,tl);
2207                 else emit_loadreg(rs1[i],tl); // CHECK: regmap_entry?
2208               }
2209               else
2210               if(rs2[i]){
2211                 if(s2l>=0) emit_mov(s2l,tl);
2212                 else emit_loadreg(rs2[i],tl); // CHECK: regmap_entry?
2213               }
2214               else emit_zeroreg(tl);
2215             } else
2216             if(opcode2[i]==0x27) { // NOR
2217               if(rs1[i]){
2218                 if(s1l>=0) emit_not(s1l,tl);
2219                 else {
2220                   emit_loadreg(rs1[i],tl);
2221                   emit_not(tl,tl);
2222                 }
2223               }
2224               else
2225               if(rs2[i]){
2226                 if(s2l>=0) emit_not(s2l,tl);
2227                 else {
2228                   emit_loadreg(rs2[i],tl);
2229                   emit_not(tl,tl);
2230                 }
2231               }
2232               else emit_movimm(-1,tl);
2233             }
2234           }
2235         }
2236       }
2237     }
2238   }
2239 }
2240
2241 void imm16_assemble(int i,struct regstat *i_regs)
2242 {
2243   if (opcode[i]==0x0f) { // LUI
2244     if(rt1[i]) {
2245       signed char t;
2246       t=get_reg(i_regs->regmap,rt1[i]);
2247       //assert(t>=0);
2248       if(t>=0) {
2249         if(!((i_regs->isconst>>t)&1))
2250           emit_movimm(imm[i]<<16,t);
2251       }
2252     }
2253   }
2254   if(opcode[i]==0x08||opcode[i]==0x09) { // ADDI/ADDIU
2255     if(rt1[i]) {
2256       signed char s,t;
2257       t=get_reg(i_regs->regmap,rt1[i]);
2258       s=get_reg(i_regs->regmap,rs1[i]);
2259       if(rs1[i]) {
2260         //assert(t>=0);
2261         //assert(s>=0);
2262         if(t>=0) {
2263           if(!((i_regs->isconst>>t)&1)) {
2264             if(s<0) {
2265               if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2266               emit_addimm(t,imm[i],t);
2267             }else{
2268               if(!((i_regs->wasconst>>s)&1))
2269                 emit_addimm(s,imm[i],t);
2270               else
2271                 emit_movimm(constmap[i][s]+imm[i],t);
2272             }
2273           }
2274         }
2275       } else {
2276         if(t>=0) {
2277           if(!((i_regs->isconst>>t)&1))
2278             emit_movimm(imm[i],t);
2279         }
2280       }
2281     }
2282   }
2283   if(opcode[i]==0x18||opcode[i]==0x19) { // DADDI/DADDIU
2284     if(rt1[i]) {
2285       signed char sh,sl,th,tl;
2286       th=get_reg(i_regs->regmap,rt1[i]|64);
2287       tl=get_reg(i_regs->regmap,rt1[i]);
2288       sh=get_reg(i_regs->regmap,rs1[i]|64);
2289       sl=get_reg(i_regs->regmap,rs1[i]);
2290       if(tl>=0) {
2291         if(rs1[i]) {
2292           assert(sh>=0);
2293           assert(sl>=0);
2294           if(th>=0) {
2295             emit_addimm64_32(sh,sl,imm[i],th,tl);
2296           }
2297           else {
2298             emit_addimm(sl,imm[i],tl);
2299           }
2300         } else {
2301           emit_movimm(imm[i],tl);
2302           if(th>=0) emit_movimm(((signed int)imm[i])>>31,th);
2303         }
2304       }
2305     }
2306   }
2307   else if(opcode[i]==0x0a||opcode[i]==0x0b) { // SLTI/SLTIU
2308     if(rt1[i]) {
2309       //assert(rs1[i]!=0); // r0 might be valid, but it's probably a bug
2310       signed char sh,sl,t;
2311       t=get_reg(i_regs->regmap,rt1[i]);
2312       sh=get_reg(i_regs->regmap,rs1[i]|64);
2313       sl=get_reg(i_regs->regmap,rs1[i]);
2314       //assert(t>=0);
2315       if(t>=0) {
2316         if(rs1[i]>0) {
2317           if(sh<0) assert((i_regs->was32>>rs1[i])&1);
2318           if(sh<0||((i_regs->was32>>rs1[i])&1)) {
2319             if(opcode[i]==0x0a) { // SLTI
2320               if(sl<0) {
2321                 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2322                 emit_slti32(t,imm[i],t);
2323               }else{
2324                 emit_slti32(sl,imm[i],t);
2325               }
2326             }
2327             else { // SLTIU
2328               if(sl<0) {
2329                 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2330                 emit_sltiu32(t,imm[i],t);
2331               }else{
2332                 emit_sltiu32(sl,imm[i],t);
2333               }
2334             }
2335           }else{ // 64-bit
2336             assert(sl>=0);
2337             if(opcode[i]==0x0a) // SLTI
2338               emit_slti64_32(sh,sl,imm[i],t);
2339             else // SLTIU
2340               emit_sltiu64_32(sh,sl,imm[i],t);
2341           }
2342         }else{
2343           // SLTI(U) with r0 is just stupid,
2344           // nonetheless examples can be found
2345           if(opcode[i]==0x0a) // SLTI
2346             if(0<imm[i]) emit_movimm(1,t);
2347             else emit_zeroreg(t);
2348           else // SLTIU
2349           {
2350             if(imm[i]) emit_movimm(1,t);
2351             else emit_zeroreg(t);
2352           }
2353         }
2354       }
2355     }
2356   }
2357   else if(opcode[i]>=0x0c&&opcode[i]<=0x0e) { // ANDI/ORI/XORI
2358     if(rt1[i]) {
2359       signed char sh,sl,th,tl;
2360       th=get_reg(i_regs->regmap,rt1[i]|64);
2361       tl=get_reg(i_regs->regmap,rt1[i]);
2362       sh=get_reg(i_regs->regmap,rs1[i]|64);
2363       sl=get_reg(i_regs->regmap,rs1[i]);
2364       if(tl>=0 && !((i_regs->isconst>>tl)&1)) {
2365         if(opcode[i]==0x0c) //ANDI
2366         {
2367           if(rs1[i]) {
2368             if(sl<0) {
2369               if(i_regs->regmap_entry[tl]!=rs1[i]) emit_loadreg(rs1[i],tl);
2370               emit_andimm(tl,imm[i],tl);
2371             }else{
2372               if(!((i_regs->wasconst>>sl)&1))
2373                 emit_andimm(sl,imm[i],tl);
2374               else
2375                 emit_movimm(constmap[i][sl]&imm[i],tl);
2376             }
2377           }
2378           else
2379             emit_zeroreg(tl);
2380           if(th>=0) emit_zeroreg(th);
2381         }
2382         else
2383         {
2384           if(rs1[i]) {
2385             if(sl<0) {
2386               if(i_regs->regmap_entry[tl]!=rs1[i]) emit_loadreg(rs1[i],tl);
2387             }
2388             if(th>=0) {
2389               if(sh<0) {
2390                 emit_loadreg(rs1[i]|64,th);
2391               }else{
2392                 emit_mov(sh,th);
2393               }
2394             }
2395             if(opcode[i]==0x0d) { // ORI
2396               if(sl<0) {
2397                 emit_orimm(tl,imm[i],tl);
2398               }else{
2399                 if(!((i_regs->wasconst>>sl)&1))
2400                   emit_orimm(sl,imm[i],tl);
2401                 else
2402                   emit_movimm(constmap[i][sl]|imm[i],tl);
2403               }
2404             }
2405             if(opcode[i]==0x0e) { // XORI
2406               if(sl<0) {
2407                 emit_xorimm(tl,imm[i],tl);
2408               }else{
2409                 if(!((i_regs->wasconst>>sl)&1))
2410                   emit_xorimm(sl,imm[i],tl);
2411                 else
2412                   emit_movimm(constmap[i][sl]^imm[i],tl);
2413               }
2414             }
2415           }
2416           else {
2417             emit_movimm(imm[i],tl);
2418             if(th>=0) emit_zeroreg(th);
2419           }
2420         }
2421       }
2422     }
2423   }
2424 }
2425
2426 void shiftimm_assemble(int i,struct regstat *i_regs)
2427 {
2428   if(opcode2[i]<=0x3) // SLL/SRL/SRA
2429   {
2430     if(rt1[i]) {
2431       signed char s,t;
2432       t=get_reg(i_regs->regmap,rt1[i]);
2433       s=get_reg(i_regs->regmap,rs1[i]);
2434       //assert(t>=0);
2435       if(t>=0&&!((i_regs->isconst>>t)&1)){
2436         if(rs1[i]==0)
2437         {
2438           emit_zeroreg(t);
2439         }
2440         else
2441         {
2442           if(s<0&&i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2443           if(imm[i]) {
2444             if(opcode2[i]==0) // SLL
2445             {
2446               emit_shlimm(s<0?t:s,imm[i],t);
2447             }
2448             if(opcode2[i]==2) // SRL
2449             {
2450               emit_shrimm(s<0?t:s,imm[i],t);
2451             }
2452             if(opcode2[i]==3) // SRA
2453             {
2454               emit_sarimm(s<0?t:s,imm[i],t);
2455             }
2456           }else{
2457             // Shift by zero
2458             if(s>=0 && s!=t) emit_mov(s,t);
2459           }
2460         }
2461       }
2462       //emit_storereg(rt1[i],t); //DEBUG
2463     }
2464   }
2465   if(opcode2[i]>=0x38&&opcode2[i]<=0x3b) // DSLL/DSRL/DSRA
2466   {
2467     if(rt1[i]) {
2468       signed char sh,sl,th,tl;
2469       th=get_reg(i_regs->regmap,rt1[i]|64);
2470       tl=get_reg(i_regs->regmap,rt1[i]);
2471       sh=get_reg(i_regs->regmap,rs1[i]|64);
2472       sl=get_reg(i_regs->regmap,rs1[i]);
2473       if(tl>=0) {
2474         if(rs1[i]==0)
2475         {
2476           emit_zeroreg(tl);
2477           if(th>=0) emit_zeroreg(th);
2478         }
2479         else
2480         {
2481           assert(sl>=0);
2482           assert(sh>=0);
2483           if(imm[i]) {
2484             if(opcode2[i]==0x38) // DSLL
2485             {
2486               if(th>=0) emit_shldimm(sh,sl,imm[i],th);
2487               emit_shlimm(sl,imm[i],tl);
2488             }
2489             if(opcode2[i]==0x3a) // DSRL
2490             {
2491               emit_shrdimm(sl,sh,imm[i],tl);
2492               if(th>=0) emit_shrimm(sh,imm[i],th);
2493             }
2494             if(opcode2[i]==0x3b) // DSRA
2495             {
2496               emit_shrdimm(sl,sh,imm[i],tl);
2497               if(th>=0) emit_sarimm(sh,imm[i],th);
2498             }
2499           }else{
2500             // Shift by zero
2501             if(sl!=tl) emit_mov(sl,tl);
2502             if(th>=0&&sh!=th) emit_mov(sh,th);
2503           }
2504         }
2505       }
2506     }
2507   }
2508   if(opcode2[i]==0x3c) // DSLL32
2509   {
2510     if(rt1[i]) {
2511       signed char sl,tl,th;
2512       tl=get_reg(i_regs->regmap,rt1[i]);
2513       th=get_reg(i_regs->regmap,rt1[i]|64);
2514       sl=get_reg(i_regs->regmap,rs1[i]);
2515       if(th>=0||tl>=0){
2516         assert(tl>=0);
2517         assert(th>=0);
2518         assert(sl>=0);
2519         emit_mov(sl,th);
2520         emit_zeroreg(tl);
2521         if(imm[i]>32)
2522         {
2523           emit_shlimm(th,imm[i]&31,th);
2524         }
2525       }
2526     }
2527   }
2528   if(opcode2[i]==0x3e) // DSRL32
2529   {
2530     if(rt1[i]) {
2531       signed char sh,tl,th;
2532       tl=get_reg(i_regs->regmap,rt1[i]);
2533       th=get_reg(i_regs->regmap,rt1[i]|64);
2534       sh=get_reg(i_regs->regmap,rs1[i]|64);
2535       if(tl>=0){
2536         assert(sh>=0);
2537         emit_mov(sh,tl);
2538         if(th>=0) emit_zeroreg(th);
2539         if(imm[i]>32)
2540         {
2541           emit_shrimm(tl,imm[i]&31,tl);
2542         }
2543       }
2544     }
2545   }
2546   if(opcode2[i]==0x3f) // DSRA32
2547   {
2548     if(rt1[i]) {
2549       signed char sh,tl;
2550       tl=get_reg(i_regs->regmap,rt1[i]);
2551       sh=get_reg(i_regs->regmap,rs1[i]|64);
2552       if(tl>=0){
2553         assert(sh>=0);
2554         emit_mov(sh,tl);
2555         if(imm[i]>32)
2556         {
2557           emit_sarimm(tl,imm[i]&31,tl);
2558         }
2559       }
2560     }
2561   }
2562 }
2563
2564 #ifndef shift_assemble
2565 void shift_assemble(int i,struct regstat *i_regs)
2566 {
2567   printf("Need shift_assemble for this architecture.\n");
2568   exit(1);
2569 }
2570 #endif
2571
2572 void load_assemble(int i,struct regstat *i_regs)
2573 {
2574   int s,th,tl,addr,map=-1;
2575   int offset;
2576   int jaddr=0;
2577   int memtarget=0,c=0;
2578   int fastload_reg_override=0;
2579   u_int hr,reglist=0;
2580   th=get_reg(i_regs->regmap,rt1[i]|64);
2581   tl=get_reg(i_regs->regmap,rt1[i]);
2582   s=get_reg(i_regs->regmap,rs1[i]);
2583   offset=imm[i];
2584   for(hr=0;hr<HOST_REGS;hr++) {
2585     if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
2586   }
2587   if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
2588   if(s>=0) {
2589     c=(i_regs->wasconst>>s)&1;
2590     if (c) {
2591       memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
2592     }
2593   }
2594   //printf("load_assemble: c=%d\n",c);
2595   //if(c) printf("load_assemble: const=%x\n",(int)constmap[i][s]+offset);
2596   // FIXME: Even if the load is a NOP, we should check for pagefaults...
2597   if((tl<0&&(!c||(((u_int)constmap[i][s]+offset)>>16)==0x1f80))
2598     ||rt1[i]==0) {
2599       // could be FIFO, must perform the read
2600       // ||dummy read
2601       assem_debug("(forced read)\n");
2602       tl=get_reg(i_regs->regmap,-1);
2603       assert(tl>=0);
2604   }
2605   if(offset||s<0||c) addr=tl;
2606   else addr=s;
2607   //if(tl<0) tl=get_reg(i_regs->regmap,-1);
2608  if(tl>=0) {
2609   //printf("load_assemble: c=%d\n",c);
2610   //if(c) printf("load_assemble: const=%x\n",(int)constmap[i][s]+offset);
2611   assert(tl>=0); // Even if the load is a NOP, we must check for pagefaults and I/O
2612   reglist&=~(1<<tl);
2613   if(th>=0) reglist&=~(1<<th);
2614   if(!c) {
2615     #ifdef RAM_OFFSET
2616     map=get_reg(i_regs->regmap,ROREG);
2617     if(map<0) emit_loadreg(ROREG,map=HOST_TEMPREG);
2618     #endif
2619     #ifdef R29_HACK
2620     // Strmnnrmn's speed hack
2621     if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
2622     #endif
2623     {
2624       jaddr=emit_fastpath_cmp_jump(i,addr,&fastload_reg_override);
2625     }
2626   }
2627   else if(ram_offset&&memtarget) {
2628     emit_addimm(addr,ram_offset,HOST_TEMPREG);
2629     fastload_reg_override=HOST_TEMPREG;
2630   }
2631   int dummy=(rt1[i]==0)||(tl!=get_reg(i_regs->regmap,rt1[i])); // ignore loads to r0 and unneeded reg
2632   if (opcode[i]==0x20) { // LB
2633     if(!c||memtarget) {
2634       if(!dummy) {
2635         #ifdef HOST_IMM_ADDR32
2636         if(c)
2637           emit_movsbl_tlb((constmap[i][s]+offset)^3,map,tl);
2638         else
2639         #endif
2640         {
2641           //emit_xorimm(addr,3,tl);
2642           //emit_movsbl_indexed((int)rdram-0x80000000,tl,tl);
2643           int x=0,a=tl;
2644 #ifdef BIG_ENDIAN_MIPS
2645           if(!c) emit_xorimm(addr,3,tl);
2646           else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2647 #else
2648           if(!c) a=addr;
2649 #endif
2650           if(fastload_reg_override) a=fastload_reg_override;
2651
2652           emit_movsbl_indexed_tlb(x,a,map,tl);
2653         }
2654       }
2655       if(jaddr)
2656         add_stub(LOADB_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2657     }
2658     else
2659       inline_readstub(LOADB_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2660   }
2661   if (opcode[i]==0x21) { // LH
2662     if(!c||memtarget) {
2663       if(!dummy) {
2664         #ifdef HOST_IMM_ADDR32
2665         if(c)
2666           emit_movswl_tlb((constmap[i][s]+offset)^2,map,tl);
2667         else
2668         #endif
2669         {
2670           int x=0,a=tl;
2671 #ifdef BIG_ENDIAN_MIPS
2672           if(!c) emit_xorimm(addr,2,tl);
2673           else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
2674 #else
2675           if(!c) a=addr;
2676 #endif
2677           if(fastload_reg_override) a=fastload_reg_override;
2678           //#ifdef
2679           //emit_movswl_indexed_tlb(x,tl,map,tl);
2680           //else
2681           if(map>=0) {
2682             emit_movswl_indexed(x,a,tl);
2683           }else{
2684             #if 1 //def RAM_OFFSET
2685             emit_movswl_indexed(x,a,tl);
2686             #else
2687             emit_movswl_indexed((int)rdram-0x80000000+x,a,tl);
2688             #endif
2689           }
2690         }
2691       }
2692       if(jaddr)
2693         add_stub(LOADH_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2694     }
2695     else
2696       inline_readstub(LOADH_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2697   }
2698   if (opcode[i]==0x23) { // LW
2699     if(!c||memtarget) {
2700       if(!dummy) {
2701         int a=addr;
2702         if(fastload_reg_override) a=fastload_reg_override;
2703         //emit_readword_indexed((int)rdram-0x80000000,addr,tl);
2704         #ifdef HOST_IMM_ADDR32
2705         if(c)
2706           emit_readword_tlb(constmap[i][s]+offset,map,tl);
2707         else
2708         #endif
2709         emit_readword_indexed_tlb(0,a,map,tl);
2710       }
2711       if(jaddr)
2712         add_stub(LOADW_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2713     }
2714     else
2715       inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2716   }
2717   if (opcode[i]==0x24) { // LBU
2718     if(!c||memtarget) {
2719       if(!dummy) {
2720         #ifdef HOST_IMM_ADDR32
2721         if(c)
2722           emit_movzbl_tlb((constmap[i][s]+offset)^3,map,tl);
2723         else
2724         #endif
2725         {
2726           //emit_xorimm(addr,3,tl);
2727           //emit_movzbl_indexed((int)rdram-0x80000000,tl,tl);
2728           int x=0,a=tl;
2729 #ifdef BIG_ENDIAN_MIPS
2730           if(!c) emit_xorimm(addr,3,tl);
2731           else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2732 #else
2733           if(!c) a=addr;
2734 #endif
2735           if(fastload_reg_override) a=fastload_reg_override;
2736
2737           emit_movzbl_indexed_tlb(x,a,map,tl);
2738         }
2739       }
2740       if(jaddr)
2741         add_stub(LOADBU_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2742     }
2743     else
2744       inline_readstub(LOADBU_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2745   }
2746   if (opcode[i]==0x25) { // LHU
2747     if(!c||memtarget) {
2748       if(!dummy) {
2749         #ifdef HOST_IMM_ADDR32
2750         if(c)
2751           emit_movzwl_tlb((constmap[i][s]+offset)^2,map,tl);
2752         else
2753         #endif
2754         {
2755           int x=0,a=tl;
2756 #ifdef BIG_ENDIAN_MIPS
2757           if(!c) emit_xorimm(addr,2,tl);
2758           else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
2759 #else
2760           if(!c) a=addr;
2761 #endif
2762           if(fastload_reg_override) a=fastload_reg_override;
2763           //#ifdef
2764           //emit_movzwl_indexed_tlb(x,tl,map,tl);
2765           //#else
2766           if(map>=0) {
2767             emit_movzwl_indexed(x,a,tl);
2768           }else{
2769             #if 1 //def RAM_OFFSET
2770             emit_movzwl_indexed(x,a,tl);
2771             #else
2772             emit_movzwl_indexed((int)rdram-0x80000000+x,a,tl);
2773             #endif
2774           }
2775         }
2776       }
2777       if(jaddr)
2778         add_stub(LOADHU_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2779     }
2780     else
2781       inline_readstub(LOADHU_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2782   }
2783   if (opcode[i]==0x27) { // LWU
2784     assert(th>=0);
2785     if(!c||memtarget) {
2786       if(!dummy) {
2787         int a=addr;
2788         if(fastload_reg_override) a=fastload_reg_override;
2789         //emit_readword_indexed((int)rdram-0x80000000,addr,tl);
2790         #ifdef HOST_IMM_ADDR32
2791         if(c)
2792           emit_readword_tlb(constmap[i][s]+offset,map,tl);
2793         else
2794         #endif
2795         emit_readword_indexed_tlb(0,a,map,tl);
2796       }
2797       if(jaddr)
2798         add_stub(LOADW_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2799     }
2800     else {
2801       inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2802     }
2803     emit_zeroreg(th);
2804   }
2805   if (opcode[i]==0x37) { // LD
2806     if(!c||memtarget) {
2807       if(!dummy) {
2808         int a=addr;
2809         if(fastload_reg_override) a=fastload_reg_override;
2810         //if(th>=0) emit_readword_indexed((int)rdram-0x80000000,addr,th);
2811         //emit_readword_indexed((int)rdram-0x7FFFFFFC,addr,tl);
2812         #ifdef HOST_IMM_ADDR32
2813         if(c)
2814           emit_readdword_tlb(constmap[i][s]+offset,map,th,tl);
2815         else
2816         #endif
2817         emit_readdword_indexed_tlb(0,a,map,th,tl);
2818       }
2819       if(jaddr)
2820         add_stub(LOADD_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2821     }
2822     else
2823       inline_readstub(LOADD_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2824   }
2825  }
2826   //emit_storereg(rt1[i],tl); // DEBUG
2827   //if(opcode[i]==0x23)
2828   //if(opcode[i]==0x24)
2829   //if(opcode[i]==0x23||opcode[i]==0x24)
2830   /*if(opcode[i]==0x21||opcode[i]==0x23||opcode[i]==0x24)
2831   {
2832     //emit_pusha();
2833     save_regs(0x100f);
2834         emit_readword((int)&last_count,ECX);
2835         #ifdef __i386__
2836         if(get_reg(i_regs->regmap,CCREG)<0)
2837           emit_loadreg(CCREG,HOST_CCREG);
2838         emit_add(HOST_CCREG,ECX,HOST_CCREG);
2839         emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
2840         emit_writeword(HOST_CCREG,(int)&Count);
2841         #endif
2842         #ifdef __arm__
2843         if(get_reg(i_regs->regmap,CCREG)<0)
2844           emit_loadreg(CCREG,0);
2845         else
2846           emit_mov(HOST_CCREG,0);
2847         emit_add(0,ECX,0);
2848         emit_addimm(0,2*ccadj[i],0);
2849         emit_writeword(0,(int)&Count);
2850         #endif
2851     emit_call((int)memdebug);
2852     //emit_popa();
2853     restore_regs(0x100f);
2854   }*/
2855 }
2856
2857 #ifndef loadlr_assemble
2858 void loadlr_assemble(int i,struct regstat *i_regs)
2859 {
2860   printf("Need loadlr_assemble for this architecture.\n");
2861   exit(1);
2862 }
2863 #endif
2864
2865 void store_assemble(int i,struct regstat *i_regs)
2866 {
2867   int s,th,tl,map=-1;
2868   int addr,temp;
2869   int offset;
2870   int jaddr=0,type;
2871   int memtarget=0,c=0;
2872   int agr=AGEN1+(i&1);
2873   int faststore_reg_override=0;
2874   u_int hr,reglist=0;
2875   th=get_reg(i_regs->regmap,rs2[i]|64);
2876   tl=get_reg(i_regs->regmap,rs2[i]);
2877   s=get_reg(i_regs->regmap,rs1[i]);
2878   temp=get_reg(i_regs->regmap,agr);
2879   if(temp<0) temp=get_reg(i_regs->regmap,-1);
2880   offset=imm[i];
2881   if(s>=0) {
2882     c=(i_regs->wasconst>>s)&1;
2883     if(c) {
2884       memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
2885     }
2886   }
2887   assert(tl>=0);
2888   assert(temp>=0);
2889   for(hr=0;hr<HOST_REGS;hr++) {
2890     if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
2891   }
2892   if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
2893   if(offset||s<0||c) addr=temp;
2894   else addr=s;
2895   if(!c) {
2896     jaddr=emit_fastpath_cmp_jump(i,addr,&faststore_reg_override);
2897   }
2898   else if(ram_offset&&memtarget) {
2899     emit_addimm(addr,ram_offset,HOST_TEMPREG);
2900     faststore_reg_override=HOST_TEMPREG;
2901   }
2902
2903   if (opcode[i]==0x28) { // SB
2904     if(!c||memtarget) {
2905       int x=0,a=temp;
2906 #ifdef BIG_ENDIAN_MIPS
2907       if(!c) emit_xorimm(addr,3,temp);
2908       else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2909 #else
2910       if(!c) a=addr;
2911 #endif
2912       if(faststore_reg_override) a=faststore_reg_override;
2913       //emit_writebyte_indexed(tl,(int)rdram-0x80000000,temp);
2914       emit_writebyte_indexed_tlb(tl,x,a,map,a);
2915     }
2916     type=STOREB_STUB;
2917   }
2918   if (opcode[i]==0x29) { // SH
2919     if(!c||memtarget) {
2920       int x=0,a=temp;
2921 #ifdef BIG_ENDIAN_MIPS
2922       if(!c) emit_xorimm(addr,2,temp);
2923       else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
2924 #else
2925       if(!c) a=addr;
2926 #endif
2927       if(faststore_reg_override) a=faststore_reg_override;
2928       //#ifdef
2929       //emit_writehword_indexed_tlb(tl,x,temp,map,temp);
2930       //#else
2931       if(map>=0) {
2932         emit_writehword_indexed(tl,x,a);
2933       }else
2934         //emit_writehword_indexed(tl,(int)rdram-0x80000000+x,a);
2935         emit_writehword_indexed(tl,x,a);
2936     }
2937     type=STOREH_STUB;
2938   }
2939   if (opcode[i]==0x2B) { // SW
2940     if(!c||memtarget) {
2941       int a=addr;
2942       if(faststore_reg_override) a=faststore_reg_override;
2943       //emit_writeword_indexed(tl,(int)rdram-0x80000000,addr);
2944       emit_writeword_indexed_tlb(tl,0,a,map,temp);
2945     }
2946     type=STOREW_STUB;
2947   }
2948   if (opcode[i]==0x3F) { // SD
2949     if(!c||memtarget) {
2950       int a=addr;
2951       if(faststore_reg_override) a=faststore_reg_override;
2952       if(rs2[i]) {
2953         assert(th>=0);
2954         //emit_writeword_indexed(th,(int)rdram-0x80000000,addr);
2955         //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,addr);
2956         emit_writedword_indexed_tlb(th,tl,0,a,map,temp);
2957       }else{
2958         // Store zero
2959         //emit_writeword_indexed(tl,(int)rdram-0x80000000,temp);
2960         //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,temp);
2961         emit_writedword_indexed_tlb(tl,tl,0,a,map,temp);
2962       }
2963     }
2964     type=STORED_STUB;
2965   }
2966   if(jaddr) {
2967     // PCSX store handlers don't check invcode again
2968     reglist|=1<<addr;
2969     add_stub(type,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2970     jaddr=0;
2971   }
2972   if(!(i_regs->waswritten&(1<<rs1[i]))&&!(new_dynarec_hacks&NDHACK_NO_SMC_CHECK)) {
2973     if(!c||memtarget) {
2974       #ifdef DESTRUCTIVE_SHIFT
2975       // The x86 shift operation is 'destructive'; it overwrites the
2976       // source register, so we need to make a copy first and use that.
2977       addr=temp;
2978       #endif
2979       #if defined(HOST_IMM8)
2980       int ir=get_reg(i_regs->regmap,INVCP);
2981       assert(ir>=0);
2982       emit_cmpmem_indexedsr12_reg(ir,addr,1);
2983       #else
2984       emit_cmpmem_indexedsr12_imm((int)invalid_code,addr,1);
2985       #endif
2986       #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
2987       emit_callne(invalidate_addr_reg[addr]);
2988       #else
2989       int jaddr2=(int)out;
2990       emit_jne(0);
2991       add_stub(INVCODE_STUB,jaddr2,(int)out,reglist|(1<<HOST_CCREG),addr,0,0,0);
2992       #endif
2993     }
2994   }
2995   u_int addr_val=constmap[i][s]+offset;
2996   if(jaddr) {
2997     add_stub(type,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2998   } else if(c&&!memtarget) {
2999     inline_writestub(type,i,addr_val,i_regs->regmap,rs2[i],ccadj[i],reglist);
3000   }
3001   // basic current block modification detection..
3002   // not looking back as that should be in mips cache already
3003   if(c&&start+i*4<addr_val&&addr_val<start+slen*4) {
3004     SysPrintf("write to %08x hits block %08x, pc=%08x\n",addr_val,start,start+i*4);
3005     assert(i_regs->regmap==regs[i].regmap); // not delay slot
3006     if(i_regs->regmap==regs[i].regmap) {
3007       load_all_consts(regs[i].regmap_entry,regs[i].was32,regs[i].wasdirty,i);
3008       wb_dirtys(regs[i].regmap_entry,regs[i].was32,regs[i].wasdirty);
3009       emit_movimm(start+i*4+4,0);
3010       emit_writeword(0,(int)&pcaddr);
3011       emit_jmp((int)do_interrupt);
3012     }
3013   }
3014   //if(opcode[i]==0x2B || opcode[i]==0x3F)
3015   //if(opcode[i]==0x2B || opcode[i]==0x28)
3016   //if(opcode[i]==0x2B || opcode[i]==0x29)
3017   //if(opcode[i]==0x2B)
3018   /*if(opcode[i]==0x2B || opcode[i]==0x28 || opcode[i]==0x29 || opcode[i]==0x3F)
3019   {
3020     #ifdef __i386__
3021     emit_pusha();
3022     #endif
3023     #ifdef __arm__
3024     save_regs(0x100f);
3025     #endif
3026         emit_readword((int)&last_count,ECX);
3027         #ifdef __i386__
3028         if(get_reg(i_regs->regmap,CCREG)<0)
3029           emit_loadreg(CCREG,HOST_CCREG);
3030         emit_add(HOST_CCREG,ECX,HOST_CCREG);
3031         emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3032         emit_writeword(HOST_CCREG,(int)&Count);
3033         #endif
3034         #ifdef __arm__
3035         if(get_reg(i_regs->regmap,CCREG)<0)
3036           emit_loadreg(CCREG,0);
3037         else
3038           emit_mov(HOST_CCREG,0);
3039         emit_add(0,ECX,0);
3040         emit_addimm(0,2*ccadj[i],0);
3041         emit_writeword(0,(int)&Count);
3042         #endif
3043     emit_call((int)memdebug);
3044     #ifdef __i386__
3045     emit_popa();
3046     #endif
3047     #ifdef __arm__
3048     restore_regs(0x100f);
3049     #endif
3050   }*/
3051 }
3052
3053 void storelr_assemble(int i,struct regstat *i_regs)
3054 {
3055   int s,th,tl;
3056   int temp;
3057   int temp2=-1;
3058   int offset;
3059   int jaddr=0;
3060   int case1,case2,case3;
3061   int done0,done1,done2;
3062   int memtarget=0,c=0;
3063   int agr=AGEN1+(i&1);
3064   u_int hr,reglist=0;
3065   th=get_reg(i_regs->regmap,rs2[i]|64);
3066   tl=get_reg(i_regs->regmap,rs2[i]);
3067   s=get_reg(i_regs->regmap,rs1[i]);
3068   temp=get_reg(i_regs->regmap,agr);
3069   if(temp<0) temp=get_reg(i_regs->regmap,-1);
3070   offset=imm[i];
3071   if(s>=0) {
3072     c=(i_regs->isconst>>s)&1;
3073     if(c) {
3074       memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
3075     }
3076   }
3077   assert(tl>=0);
3078   for(hr=0;hr<HOST_REGS;hr++) {
3079     if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3080   }
3081   assert(temp>=0);
3082   if(!c) {
3083     emit_cmpimm(s<0||offset?temp:s,RAM_SIZE);
3084     if(!offset&&s!=temp) emit_mov(s,temp);
3085     jaddr=(int)out;
3086     emit_jno(0);
3087   }
3088   else
3089   {
3090     if(!memtarget||!rs1[i]) {
3091       jaddr=(int)out;
3092       emit_jmp(0);
3093     }
3094   }
3095   #ifdef RAM_OFFSET
3096   int map=get_reg(i_regs->regmap,ROREG);
3097   if(map<0) emit_loadreg(ROREG,map=HOST_TEMPREG);
3098   #else
3099   if((u_int)rdram!=0x80000000)
3100     emit_addimm_no_flags((u_int)rdram-(u_int)0x80000000,temp);
3101   #endif
3102
3103   if (opcode[i]==0x2C||opcode[i]==0x2D) { // SDL/SDR
3104     temp2=get_reg(i_regs->regmap,FTEMP);
3105     if(!rs2[i]) temp2=th=tl;
3106   }
3107
3108 #ifndef BIG_ENDIAN_MIPS
3109     emit_xorimm(temp,3,temp);
3110 #endif
3111   emit_testimm(temp,2);
3112   case2=(int)out;
3113   emit_jne(0);
3114   emit_testimm(temp,1);
3115   case1=(int)out;
3116   emit_jne(0);
3117   // 0
3118   if (opcode[i]==0x2A) { // SWL
3119     emit_writeword_indexed(tl,0,temp);
3120   }
3121   if (opcode[i]==0x2E) { // SWR
3122     emit_writebyte_indexed(tl,3,temp);
3123   }
3124   if (opcode[i]==0x2C) { // SDL
3125     emit_writeword_indexed(th,0,temp);
3126     if(rs2[i]) emit_mov(tl,temp2);
3127   }
3128   if (opcode[i]==0x2D) { // SDR
3129     emit_writebyte_indexed(tl,3,temp);
3130     if(rs2[i]) emit_shldimm(th,tl,24,temp2);
3131   }
3132   done0=(int)out;
3133   emit_jmp(0);
3134   // 1
3135   set_jump_target(case1,(int)out);
3136   if (opcode[i]==0x2A) { // SWL
3137     // Write 3 msb into three least significant bytes
3138     if(rs2[i]) emit_rorimm(tl,8,tl);
3139     emit_writehword_indexed(tl,-1,temp);
3140     if(rs2[i]) emit_rorimm(tl,16,tl);
3141     emit_writebyte_indexed(tl,1,temp);
3142     if(rs2[i]) emit_rorimm(tl,8,tl);
3143   }
3144   if (opcode[i]==0x2E) { // SWR
3145     // Write two lsb into two most significant bytes
3146     emit_writehword_indexed(tl,1,temp);
3147   }
3148   if (opcode[i]==0x2C) { // SDL
3149     if(rs2[i]) emit_shrdimm(tl,th,8,temp2);
3150     // Write 3 msb into three least significant bytes
3151     if(rs2[i]) emit_rorimm(th,8,th);
3152     emit_writehword_indexed(th,-1,temp);
3153     if(rs2[i]) emit_rorimm(th,16,th);
3154     emit_writebyte_indexed(th,1,temp);
3155     if(rs2[i]) emit_rorimm(th,8,th);
3156   }
3157   if (opcode[i]==0x2D) { // SDR
3158     if(rs2[i]) emit_shldimm(th,tl,16,temp2);
3159     // Write two lsb into two most significant bytes
3160     emit_writehword_indexed(tl,1,temp);
3161   }
3162   done1=(int)out;
3163   emit_jmp(0);
3164   // 2
3165   set_jump_target(case2,(int)out);
3166   emit_testimm(temp,1);
3167   case3=(int)out;
3168   emit_jne(0);
3169   if (opcode[i]==0x2A) { // SWL
3170     // Write two msb into two least significant bytes
3171     if(rs2[i]) emit_rorimm(tl,16,tl);
3172     emit_writehword_indexed(tl,-2,temp);
3173     if(rs2[i]) emit_rorimm(tl,16,tl);
3174   }
3175   if (opcode[i]==0x2E) { // SWR
3176     // Write 3 lsb into three most significant bytes
3177     emit_writebyte_indexed(tl,-1,temp);
3178     if(rs2[i]) emit_rorimm(tl,8,tl);
3179     emit_writehword_indexed(tl,0,temp);
3180     if(rs2[i]) emit_rorimm(tl,24,tl);
3181   }
3182   if (opcode[i]==0x2C) { // SDL
3183     if(rs2[i]) emit_shrdimm(tl,th,16,temp2);
3184     // Write two msb into two least significant bytes
3185     if(rs2[i]) emit_rorimm(th,16,th);
3186     emit_writehword_indexed(th,-2,temp);
3187     if(rs2[i]) emit_rorimm(th,16,th);
3188   }
3189   if (opcode[i]==0x2D) { // SDR
3190     if(rs2[i]) emit_shldimm(th,tl,8,temp2);
3191     // Write 3 lsb into three most significant bytes
3192     emit_writebyte_indexed(tl,-1,temp);
3193     if(rs2[i]) emit_rorimm(tl,8,tl);
3194     emit_writehword_indexed(tl,0,temp);
3195     if(rs2[i]) emit_rorimm(tl,24,tl);
3196   }
3197   done2=(int)out;
3198   emit_jmp(0);
3199   // 3
3200   set_jump_target(case3,(int)out);
3201   if (opcode[i]==0x2A) { // SWL
3202     // Write msb into least significant byte
3203     if(rs2[i]) emit_rorimm(tl,24,tl);
3204     emit_writebyte_indexed(tl,-3,temp);
3205     if(rs2[i]) emit_rorimm(tl,8,tl);
3206   }
3207   if (opcode[i]==0x2E) { // SWR
3208     // Write entire word
3209     emit_writeword_indexed(tl,-3,temp);
3210   }
3211   if (opcode[i]==0x2C) { // SDL
3212     if(rs2[i]) emit_shrdimm(tl,th,24,temp2);
3213     // Write msb into least significant byte
3214     if(rs2[i]) emit_rorimm(th,24,th);
3215     emit_writebyte_indexed(th,-3,temp);
3216     if(rs2[i]) emit_rorimm(th,8,th);
3217   }
3218   if (opcode[i]==0x2D) { // SDR
3219     if(rs2[i]) emit_mov(th,temp2);
3220     // Write entire word
3221     emit_writeword_indexed(tl,-3,temp);
3222   }
3223   set_jump_target(done0,(int)out);
3224   set_jump_target(done1,(int)out);
3225   set_jump_target(done2,(int)out);
3226   if (opcode[i]==0x2C) { // SDL
3227     emit_testimm(temp,4);
3228     done0=(int)out;
3229     emit_jne(0);
3230     emit_andimm(temp,~3,temp);
3231     emit_writeword_indexed(temp2,4,temp);
3232     set_jump_target(done0,(int)out);
3233   }
3234   if (opcode[i]==0x2D) { // SDR
3235     emit_testimm(temp,4);
3236     done0=(int)out;
3237     emit_jeq(0);
3238     emit_andimm(temp,~3,temp);
3239     emit_writeword_indexed(temp2,-4,temp);
3240     set_jump_target(done0,(int)out);
3241   }
3242   if(!c||!memtarget)
3243     add_stub(STORELR_STUB,jaddr,(int)out,i,(int)i_regs,temp,ccadj[i],reglist);
3244   if(!(i_regs->waswritten&(1<<rs1[i]))&&!(new_dynarec_hacks&NDHACK_NO_SMC_CHECK)) {
3245     #ifdef RAM_OFFSET
3246     int map=get_reg(i_regs->regmap,ROREG);
3247     if(map<0) map=HOST_TEMPREG;
3248     gen_orig_addr_w(temp,map);
3249     #else
3250     emit_addimm_no_flags((u_int)0x80000000-(u_int)rdram,temp);
3251     #endif
3252     #if defined(HOST_IMM8)
3253     int ir=get_reg(i_regs->regmap,INVCP);
3254     assert(ir>=0);
3255     emit_cmpmem_indexedsr12_reg(ir,temp,1);
3256     #else
3257     emit_cmpmem_indexedsr12_imm((int)invalid_code,temp,1);
3258     #endif
3259     #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3260     emit_callne(invalidate_addr_reg[temp]);
3261     #else
3262     int jaddr2=(int)out;
3263     emit_jne(0);
3264     add_stub(INVCODE_STUB,jaddr2,(int)out,reglist|(1<<HOST_CCREG),temp,0,0,0);
3265     #endif
3266   }
3267   /*
3268     emit_pusha();
3269     //save_regs(0x100f);
3270         emit_readword((int)&last_count,ECX);
3271         if(get_reg(i_regs->regmap,CCREG)<0)
3272           emit_loadreg(CCREG,HOST_CCREG);
3273         emit_add(HOST_CCREG,ECX,HOST_CCREG);
3274         emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3275         emit_writeword(HOST_CCREG,(int)&Count);
3276     emit_call((int)memdebug);
3277     emit_popa();
3278     //restore_regs(0x100f);
3279   */
3280 }
3281
3282 void c1ls_assemble(int i,struct regstat *i_regs)
3283 {
3284   cop1_unusable(i, i_regs);
3285 }
3286
3287 void c2ls_assemble(int i,struct regstat *i_regs)
3288 {
3289   int s,tl;
3290   int ar;
3291   int offset;
3292   int memtarget=0,c=0;
3293   int jaddr2=0,type;
3294   int agr=AGEN1+(i&1);
3295   int fastio_reg_override=0;
3296   u_int hr,reglist=0;
3297   u_int copr=(source[i]>>16)&0x1f;
3298   s=get_reg(i_regs->regmap,rs1[i]);
3299   tl=get_reg(i_regs->regmap,FTEMP);
3300   offset=imm[i];
3301   assert(rs1[i]>0);
3302   assert(tl>=0);
3303
3304   for(hr=0;hr<HOST_REGS;hr++) {
3305     if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3306   }
3307   if(i_regs->regmap[HOST_CCREG]==CCREG)
3308     reglist&=~(1<<HOST_CCREG);
3309
3310   // get the address
3311   if (opcode[i]==0x3a) { // SWC2
3312     ar=get_reg(i_regs->regmap,agr);
3313     if(ar<0) ar=get_reg(i_regs->regmap,-1);
3314     reglist|=1<<ar;
3315   } else { // LWC2
3316     ar=tl;
3317   }
3318   if(s>=0) c=(i_regs->wasconst>>s)&1;
3319   memtarget=c&&(((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE);
3320   if (!offset&&!c&&s>=0) ar=s;
3321   assert(ar>=0);
3322
3323   if (opcode[i]==0x3a) { // SWC2
3324     cop2_get_dreg(copr,tl,HOST_TEMPREG);
3325     type=STOREW_STUB;
3326   }
3327   else
3328     type=LOADW_STUB;
3329
3330   if(c&&!memtarget) {
3331     jaddr2=(int)out;
3332     emit_jmp(0); // inline_readstub/inline_writestub?
3333   }
3334   else {
3335     if(!c) {
3336       jaddr2=emit_fastpath_cmp_jump(i,ar,&fastio_reg_override);
3337     }
3338     else if(ram_offset&&memtarget) {
3339       emit_addimm(ar,ram_offset,HOST_TEMPREG);
3340       fastio_reg_override=HOST_TEMPREG;
3341     }
3342     if (opcode[i]==0x32) { // LWC2
3343       #ifdef HOST_IMM_ADDR32
3344       if(c) emit_readword_tlb(constmap[i][s]+offset,-1,tl);
3345       else
3346       #endif
3347       int a=ar;
3348       if(fastio_reg_override) a=fastio_reg_override;
3349       emit_readword_indexed(0,a,tl);
3350     }
3351     if (opcode[i]==0x3a) { // SWC2
3352       #ifdef DESTRUCTIVE_SHIFT
3353       if(!offset&&!c&&s>=0) emit_mov(s,ar);
3354       #endif
3355       int a=ar;
3356       if(fastio_reg_override) a=fastio_reg_override;
3357       emit_writeword_indexed(tl,0,a);
3358     }
3359   }
3360   if(jaddr2)
3361     add_stub(type,jaddr2,(int)out,i,ar,(int)i_regs,ccadj[i],reglist);
3362   if(opcode[i]==0x3a) // SWC2
3363   if(!(i_regs->waswritten&(1<<rs1[i]))&&!(new_dynarec_hacks&NDHACK_NO_SMC_CHECK)) {
3364 #if defined(HOST_IMM8)
3365     int ir=get_reg(i_regs->regmap,INVCP);
3366     assert(ir>=0);
3367     emit_cmpmem_indexedsr12_reg(ir,ar,1);
3368 #else
3369     emit_cmpmem_indexedsr12_imm((int)invalid_code,ar,1);
3370 #endif
3371     #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3372     emit_callne(invalidate_addr_reg[ar]);
3373     #else
3374     int jaddr3=(int)out;
3375     emit_jne(0);
3376     add_stub(INVCODE_STUB,jaddr3,(int)out,reglist|(1<<HOST_CCREG),ar,0,0,0);
3377     #endif
3378   }
3379   if (opcode[i]==0x32) { // LWC2
3380     cop2_put_dreg(copr,tl,HOST_TEMPREG);
3381   }
3382 }
3383
3384 #ifndef multdiv_assemble
3385 void multdiv_assemble(int i,struct regstat *i_regs)
3386 {
3387   printf("Need multdiv_assemble for this architecture.\n");
3388   exit(1);
3389 }
3390 #endif
3391
3392 void mov_assemble(int i,struct regstat *i_regs)
3393 {
3394   //if(opcode2[i]==0x10||opcode2[i]==0x12) { // MFHI/MFLO
3395   //if(opcode2[i]==0x11||opcode2[i]==0x13) { // MTHI/MTLO
3396   if(rt1[i]) {
3397     signed char sh,sl,th,tl;
3398     th=get_reg(i_regs->regmap,rt1[i]|64);
3399     tl=get_reg(i_regs->regmap,rt1[i]);
3400     //assert(tl>=0);
3401     if(tl>=0) {
3402       sh=get_reg(i_regs->regmap,rs1[i]|64);
3403       sl=get_reg(i_regs->regmap,rs1[i]);
3404       if(sl>=0) emit_mov(sl,tl);
3405       else emit_loadreg(rs1[i],tl);
3406       if(th>=0) {
3407         if(sh>=0) emit_mov(sh,th);
3408         else emit_loadreg(rs1[i]|64,th);
3409       }
3410     }
3411   }
3412 }
3413
3414 #ifndef fconv_assemble
3415 void fconv_assemble(int i,struct regstat *i_regs)
3416 {
3417   printf("Need fconv_assemble for this architecture.\n");
3418   exit(1);
3419 }
3420 #endif
3421
3422 #if 0
3423 void float_assemble(int i,struct regstat *i_regs)
3424 {
3425   printf("Need float_assemble for this architecture.\n");
3426   exit(1);
3427 }
3428 #endif
3429
3430 void syscall_assemble(int i,struct regstat *i_regs)
3431 {
3432   signed char ccreg=get_reg(i_regs->regmap,CCREG);
3433   assert(ccreg==HOST_CCREG);
3434   assert(!is_delayslot);
3435   (void)ccreg;
3436   emit_movimm(start+i*4,EAX); // Get PC
3437   emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i]),HOST_CCREG); // CHECK: is this right?  There should probably be an extra cycle...
3438   emit_jmp((int)jump_syscall_hle); // XXX
3439 }
3440
3441 void hlecall_assemble(int i,struct regstat *i_regs)
3442 {
3443   signed char ccreg=get_reg(i_regs->regmap,CCREG);
3444   assert(ccreg==HOST_CCREG);
3445   assert(!is_delayslot);
3446   (void)ccreg;
3447   emit_movimm(start+i*4+4,0); // Get PC
3448   emit_movimm((int)psxHLEt[source[i]&7],1);
3449   emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i]),HOST_CCREG); // XXX
3450   emit_jmp((int)jump_hlecall);
3451 }
3452
3453 void intcall_assemble(int i,struct regstat *i_regs)
3454 {
3455   signed char ccreg=get_reg(i_regs->regmap,CCREG);
3456   assert(ccreg==HOST_CCREG);
3457   assert(!is_delayslot);
3458   (void)ccreg;
3459   emit_movimm(start+i*4,0); // Get PC
3460   emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i]),HOST_CCREG);
3461   emit_jmp((int)jump_intcall);
3462 }
3463
3464 void ds_assemble(int i,struct regstat *i_regs)
3465 {
3466   speculate_register_values(i);
3467   is_delayslot=1;
3468   switch(itype[i]) {
3469     case ALU:
3470       alu_assemble(i,i_regs);break;
3471     case IMM16:
3472       imm16_assemble(i,i_regs);break;
3473     case SHIFT:
3474       shift_assemble(i,i_regs);break;
3475     case SHIFTIMM:
3476       shiftimm_assemble(i,i_regs);break;
3477     case LOAD:
3478       load_assemble(i,i_regs);break;
3479     case LOADLR:
3480       loadlr_assemble(i,i_regs);break;
3481     case STORE:
3482       store_assemble(i,i_regs);break;
3483     case STORELR:
3484       storelr_assemble(i,i_regs);break;
3485     case COP0:
3486       cop0_assemble(i,i_regs);break;
3487     case COP1:
3488       cop1_assemble(i,i_regs);break;
3489     case C1LS:
3490       c1ls_assemble(i,i_regs);break;
3491     case COP2:
3492       cop2_assemble(i,i_regs);break;
3493     case C2LS:
3494       c2ls_assemble(i,i_regs);break;
3495     case C2OP:
3496       c2op_assemble(i,i_regs);break;
3497     case FCONV:
3498       fconv_assemble(i,i_regs);break;
3499     case FLOAT:
3500       float_assemble(i,i_regs);break;
3501     case FCOMP:
3502       fcomp_assemble(i,i_regs);break;
3503     case MULTDIV:
3504       multdiv_assemble(i,i_regs);break;
3505     case MOV:
3506       mov_assemble(i,i_regs);break;
3507     case SYSCALL:
3508     case HLECALL:
3509     case INTCALL:
3510     case SPAN:
3511     case UJUMP:
3512     case RJUMP:
3513     case CJUMP:
3514     case SJUMP:
3515     case FJUMP:
3516       SysPrintf("Jump in the delay slot.  This is probably a bug.\n");
3517   }
3518   is_delayslot=0;
3519 }
3520
3521 // Is the branch target a valid internal jump?
3522 int internal_branch(uint64_t i_is32,int addr)
3523 {
3524   if(addr&1) return 0; // Indirect (register) jump
3525   if(addr>=start && addr<start+slen*4-4)
3526   {
3527     //int t=(addr-start)>>2;
3528     // Delay slots are not valid branch targets
3529     //if(t>0&&(itype[t-1]==RJUMP||itype[t-1]==UJUMP||itype[t-1]==CJUMP||itype[t-1]==SJUMP||itype[t-1]==FJUMP)) return 0;
3530     // 64 -> 32 bit transition requires a recompile
3531     /*if(is32[t]&~unneeded_reg_upper[t]&~i_is32)
3532     {
3533       if(requires_32bit[t]&~i_is32) printf("optimizable: no\n");
3534       else printf("optimizable: yes\n");
3535     }*/
3536     //if(is32[t]&~unneeded_reg_upper[t]&~i_is32) return 0;
3537     return 1;
3538   }
3539   return 0;
3540 }
3541
3542 #ifndef wb_invalidate
3543 void wb_invalidate(signed char pre[],signed char entry[],uint64_t dirty,uint64_t is32,
3544   uint64_t u,uint64_t uu)
3545 {
3546   int hr;
3547   for(hr=0;hr<HOST_REGS;hr++) {
3548     if(hr!=EXCLUDE_REG) {
3549       if(pre[hr]!=entry[hr]) {
3550         if(pre[hr]>=0) {
3551           if((dirty>>hr)&1) {
3552             if(get_reg(entry,pre[hr])<0) {
3553               if(pre[hr]<64) {
3554                 if(!((u>>pre[hr])&1)) {
3555                   emit_storereg(pre[hr],hr);
3556                   if( ((is32>>pre[hr])&1) && !((uu>>pre[hr])&1) ) {
3557                     emit_sarimm(hr,31,hr);
3558                     emit_storereg(pre[hr]|64,hr);
3559                   }
3560                 }
3561               }else{
3562                 if(!((uu>>(pre[hr]&63))&1) && !((is32>>(pre[hr]&63))&1)) {
3563                   emit_storereg(pre[hr],hr);
3564                 }
3565               }
3566             }
3567           }
3568         }
3569       }
3570     }
3571   }
3572   // Move from one register to another (no writeback)
3573   for(hr=0;hr<HOST_REGS;hr++) {
3574     if(hr!=EXCLUDE_REG) {
3575       if(pre[hr]!=entry[hr]) {
3576         if(pre[hr]>=0&&(pre[hr]&63)<TEMPREG) {
3577           int nr;
3578           if((nr=get_reg(entry,pre[hr]))>=0) {
3579             emit_mov(hr,nr);
3580           }
3581         }
3582       }
3583     }
3584   }
3585 }
3586 #endif
3587
3588 // Load the specified registers
3589 // This only loads the registers given as arguments because
3590 // we don't want to load things that will be overwritten
3591 void load_regs(signed char entry[],signed char regmap[],int is32,int rs1,int rs2)
3592 {
3593   int hr;
3594   // Load 32-bit regs
3595   for(hr=0;hr<HOST_REGS;hr++) {
3596     if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
3597       if(entry[hr]!=regmap[hr]) {
3598         if(regmap[hr]==rs1||regmap[hr]==rs2)
3599         {
3600           if(regmap[hr]==0) {
3601             emit_zeroreg(hr);
3602           }
3603           else
3604           {
3605             emit_loadreg(regmap[hr],hr);
3606           }
3607         }
3608       }
3609     }
3610   }
3611   //Load 64-bit regs
3612   for(hr=0;hr<HOST_REGS;hr++) {
3613     if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
3614       if(entry[hr]!=regmap[hr]) {
3615         if(regmap[hr]-64==rs1||regmap[hr]-64==rs2)
3616         {
3617           assert(regmap[hr]!=64);
3618           if((is32>>(regmap[hr]&63))&1) {
3619             int lr=get_reg(regmap,regmap[hr]-64);
3620             if(lr>=0)
3621               emit_sarimm(lr,31,hr);
3622             else
3623               emit_loadreg(regmap[hr],hr);
3624           }
3625           else
3626           {
3627             emit_loadreg(regmap[hr],hr);
3628           }
3629         }
3630       }
3631     }
3632   }
3633 }
3634
3635 // Load registers prior to the start of a loop
3636 // so that they are not loaded within the loop
3637 static void loop_preload(signed char pre[],signed char entry[])
3638 {
3639   int hr;
3640   for(hr=0;hr<HOST_REGS;hr++) {
3641     if(hr!=EXCLUDE_REG) {
3642       if(pre[hr]!=entry[hr]) {
3643         if(entry[hr]>=0) {
3644           if(get_reg(pre,entry[hr])<0) {
3645             assem_debug("loop preload:\n");
3646             //printf("loop preload: %d\n",hr);
3647             if(entry[hr]==0) {
3648               emit_zeroreg(hr);
3649             }
3650             else if(entry[hr]<TEMPREG)
3651             {
3652               emit_loadreg(entry[hr],hr);
3653             }
3654             else if(entry[hr]-64<TEMPREG)
3655             {
3656               emit_loadreg(entry[hr],hr);
3657             }
3658           }
3659         }
3660       }
3661     }
3662   }
3663 }
3664
3665 // Generate address for load/store instruction
3666 // goes to AGEN for writes, FTEMP for LOADLR and cop1/2 loads
3667 void address_generation(int i,struct regstat *i_regs,signed char entry[])
3668 {
3669   if(itype[i]==LOAD||itype[i]==LOADLR||itype[i]==STORE||itype[i]==STORELR||itype[i]==C1LS||itype[i]==C2LS) {
3670     int ra=-1;
3671     int agr=AGEN1+(i&1);
3672     if(itype[i]==LOAD) {
3673       ra=get_reg(i_regs->regmap,rt1[i]);
3674       if(ra<0) ra=get_reg(i_regs->regmap,-1);
3675       assert(ra>=0);
3676     }
3677     if(itype[i]==LOADLR) {
3678       ra=get_reg(i_regs->regmap,FTEMP);
3679     }
3680     if(itype[i]==STORE||itype[i]==STORELR) {
3681       ra=get_reg(i_regs->regmap,agr);
3682       if(ra<0) ra=get_reg(i_regs->regmap,-1);
3683     }
3684     if(itype[i]==C1LS||itype[i]==C2LS) {
3685       if ((opcode[i]&0x3b)==0x31||(opcode[i]&0x3b)==0x32) // LWC1/LDC1/LWC2/LDC2
3686         ra=get_reg(i_regs->regmap,FTEMP);
3687       else { // SWC1/SDC1/SWC2/SDC2
3688         ra=get_reg(i_regs->regmap,agr);
3689         if(ra<0) ra=get_reg(i_regs->regmap,-1);
3690       }
3691     }
3692     int rs=get_reg(i_regs->regmap,rs1[i]);
3693     if(ra>=0) {
3694       int offset=imm[i];
3695       int c=(i_regs->wasconst>>rs)&1;
3696       if(rs1[i]==0) {
3697         // Using r0 as a base address
3698         if(!entry||entry[ra]!=agr) {
3699           if (opcode[i]==0x22||opcode[i]==0x26) {
3700             emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
3701           }else if (opcode[i]==0x1a||opcode[i]==0x1b) {
3702             emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
3703           }else{
3704             emit_movimm(offset,ra);
3705           }
3706         } // else did it in the previous cycle
3707       }
3708       else if(rs<0) {
3709         if(!entry||entry[ra]!=rs1[i])
3710           emit_loadreg(rs1[i],ra);
3711         //if(!entry||entry[ra]!=rs1[i])
3712         //  printf("poor load scheduling!\n");
3713       }
3714       else if(c) {
3715         if(rs1[i]!=rt1[i]||itype[i]!=LOAD) {
3716           if(!entry||entry[ra]!=agr) {
3717             if (opcode[i]==0x22||opcode[i]==0x26) {
3718               emit_movimm((constmap[i][rs]+offset)&0xFFFFFFFC,ra); // LWL/LWR
3719             }else if (opcode[i]==0x1a||opcode[i]==0x1b) {
3720               emit_movimm((constmap[i][rs]+offset)&0xFFFFFFF8,ra); // LDL/LDR
3721             }else{
3722               #ifdef HOST_IMM_ADDR32
3723               if((itype[i]!=LOAD&&(opcode[i]&0x3b)!=0x31&&(opcode[i]&0x3b)!=0x32)) // LWC1/LDC1/LWC2/LDC2
3724               #endif
3725               emit_movimm(constmap[i][rs]+offset,ra);
3726               regs[i].loadedconst|=1<<ra;
3727             }
3728           } // else did it in the previous cycle
3729         } // else load_consts already did it
3730       }
3731       if(offset&&!c&&rs1[i]) {
3732         if(rs>=0) {
3733           emit_addimm(rs,offset,ra);
3734         }else{
3735           emit_addimm(ra,offset,ra);
3736         }
3737       }
3738     }
3739   }
3740   // Preload constants for next instruction
3741   if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS||itype[i+1]==C2LS) {
3742     int agr,ra;
3743     // Actual address
3744     agr=AGEN1+((i+1)&1);
3745     ra=get_reg(i_regs->regmap,agr);
3746     if(ra>=0) {
3747       int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
3748       int offset=imm[i+1];
3749       int c=(regs[i+1].wasconst>>rs)&1;
3750       if(c&&(rs1[i+1]!=rt1[i+1]||itype[i+1]!=LOAD)) {
3751         if (opcode[i+1]==0x22||opcode[i+1]==0x26) {
3752           emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFFC,ra); // LWL/LWR
3753         }else if (opcode[i+1]==0x1a||opcode[i+1]==0x1b) {
3754           emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFF8,ra); // LDL/LDR
3755         }else{
3756           #ifdef HOST_IMM_ADDR32
3757           if((itype[i+1]!=LOAD&&(opcode[i+1]&0x3b)!=0x31&&(opcode[i+1]&0x3b)!=0x32)) // LWC1/LDC1/LWC2/LDC2
3758           #endif
3759           emit_movimm(constmap[i+1][rs]+offset,ra);
3760           regs[i+1].loadedconst|=1<<ra;
3761         }
3762       }
3763       else if(rs1[i+1]==0) {
3764         // Using r0 as a base address
3765         if (opcode[i+1]==0x22||opcode[i+1]==0x26) {
3766           emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
3767         }else if (opcode[i+1]==0x1a||opcode[i+1]==0x1b) {
3768           emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
3769         }else{
3770           emit_movimm(offset,ra);
3771         }
3772       }
3773     }
3774   }
3775 }
3776
3777 static int get_final_value(int hr, int i, int *value)
3778 {
3779   int reg=regs[i].regmap[hr];
3780   while(i<slen-1) {
3781     if(regs[i+1].regmap[hr]!=reg) break;
3782     if(!((regs[i+1].isconst>>hr)&1)) break;
3783     if(bt[i+1]) break;
3784     i++;
3785   }
3786   if(i<slen-1) {
3787     if(itype[i]==UJUMP||itype[i]==RJUMP||itype[i]==CJUMP||itype[i]==SJUMP) {
3788       *value=constmap[i][hr];
3789       return 1;
3790     }
3791     if(!bt[i+1]) {
3792       if(itype[i+1]==UJUMP||itype[i+1]==RJUMP||itype[i+1]==CJUMP||itype[i+1]==SJUMP) {
3793         // Load in delay slot, out-of-order execution
3794         if(itype[i+2]==LOAD&&rs1[i+2]==reg&&rt1[i+2]==reg&&((regs[i+1].wasconst>>hr)&1))
3795         {
3796           // Precompute load address
3797           *value=constmap[i][hr]+imm[i+2];
3798           return 1;
3799         }
3800       }
3801       if(itype[i+1]==LOAD&&rs1[i+1]==reg&&rt1[i+1]==reg)
3802       {
3803         // Precompute load address
3804         *value=constmap[i][hr]+imm[i+1];
3805         //printf("c=%x imm=%x\n",(int)constmap[i][hr],imm[i+1]);
3806         return 1;
3807       }
3808     }
3809   }
3810   *value=constmap[i][hr];
3811   //printf("c=%x\n",(int)constmap[i][hr]);
3812   if(i==slen-1) return 1;
3813   if(reg<64) {
3814     return !((unneeded_reg[i+1]>>reg)&1);
3815   }else{
3816     return !((unneeded_reg_upper[i+1]>>reg)&1);
3817   }
3818 }
3819
3820 // Load registers with known constants
3821 void load_consts(signed char pre[],signed char regmap[],int is32,int i)
3822 {
3823   int hr,hr2;
3824   // propagate loaded constant flags
3825   if(i==0||bt[i])
3826     regs[i].loadedconst=0;
3827   else {
3828     for(hr=0;hr<HOST_REGS;hr++) {
3829       if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((regs[i-1].isconst>>hr)&1)&&pre[hr]==regmap[hr]
3830          &&regmap[hr]==regs[i-1].regmap[hr]&&((regs[i-1].loadedconst>>hr)&1))
3831       {
3832         regs[i].loadedconst|=1<<hr;
3833       }
3834     }
3835   }
3836   // Load 32-bit regs
3837   for(hr=0;hr<HOST_REGS;hr++) {
3838     if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
3839       //if(entry[hr]!=regmap[hr]) {
3840       if(!((regs[i].loadedconst>>hr)&1)) {
3841         if(((regs[i].isconst>>hr)&1)&&regmap[hr]<64&&regmap[hr]>0) {
3842           int value,similar=0;
3843           if(get_final_value(hr,i,&value)) {
3844             // see if some other register has similar value
3845             for(hr2=0;hr2<HOST_REGS;hr2++) {
3846               if(hr2!=EXCLUDE_REG&&((regs[i].loadedconst>>hr2)&1)) {
3847                 if(is_similar_value(value,constmap[i][hr2])) {
3848                   similar=1;
3849                   break;
3850                 }
3851               }
3852             }
3853             if(similar) {
3854               int value2;
3855               if(get_final_value(hr2,i,&value2)) // is this needed?
3856                 emit_movimm_from(value2,hr2,value,hr);
3857               else
3858                 emit_movimm(value,hr);
3859             }
3860             else if(value==0) {
3861               emit_zeroreg(hr);
3862             }
3863             else {
3864               emit_movimm(value,hr);
3865             }
3866           }
3867           regs[i].loadedconst|=1<<hr;
3868         }
3869       }
3870     }
3871   }
3872   // Load 64-bit regs
3873   for(hr=0;hr<HOST_REGS;hr++) {
3874     if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
3875       //if(entry[hr]!=regmap[hr]) {
3876       if(i==0||!((regs[i-1].isconst>>hr)&1)||pre[hr]!=regmap[hr]||bt[i]) {
3877         if(((regs[i].isconst>>hr)&1)&&regmap[hr]>64) {
3878           if((is32>>(regmap[hr]&63))&1) {
3879             int lr=get_reg(regmap,regmap[hr]-64);
3880             assert(lr>=0);
3881             emit_sarimm(lr,31,hr);
3882           }
3883           else
3884           {
3885             int value;
3886             if(get_final_value(hr,i,&value)) {
3887               if(value==0) {
3888                 emit_zeroreg(hr);
3889               }
3890               else {
3891                 emit_movimm(value,hr);
3892               }
3893             }
3894           }
3895         }
3896       }
3897     }
3898   }
3899 }
3900 void load_all_consts(signed char regmap[],int is32,u_int dirty,int i)
3901 {
3902   int hr;
3903   // Load 32-bit regs
3904   for(hr=0;hr<HOST_REGS;hr++) {
3905     if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((dirty>>hr)&1)) {
3906       if(((regs[i].isconst>>hr)&1)&&regmap[hr]<64&&regmap[hr]>0) {
3907         int value=constmap[i][hr];
3908         if(value==0) {
3909           emit_zeroreg(hr);
3910         }
3911         else {
3912           emit_movimm(value,hr);
3913         }
3914       }
3915     }
3916   }
3917   // Load 64-bit regs
3918   for(hr=0;hr<HOST_REGS;hr++) {
3919     if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((dirty>>hr)&1)) {
3920       if(((regs[i].isconst>>hr)&1)&&regmap[hr]>64) {
3921         if((is32>>(regmap[hr]&63))&1) {
3922           int lr=get_reg(regmap,regmap[hr]-64);
3923           assert(lr>=0);
3924           emit_sarimm(lr,31,hr);
3925         }
3926         else
3927         {
3928           int value=constmap[i][hr];
3929           if(value==0) {
3930             emit_zeroreg(hr);
3931           }
3932           else {
3933             emit_movimm(value,hr);
3934           }
3935         }
3936       }
3937     }
3938   }
3939 }
3940
3941 // Write out all dirty registers (except cycle count)
3942 void wb_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty)
3943 {
3944   int hr;
3945   for(hr=0;hr<HOST_REGS;hr++) {
3946     if(hr!=EXCLUDE_REG) {
3947       if(i_regmap[hr]>0) {
3948         if(i_regmap[hr]!=CCREG) {
3949           if((i_dirty>>hr)&1) {
3950             if(i_regmap[hr]<64) {
3951               emit_storereg(i_regmap[hr],hr);
3952             }else{
3953               if( !((i_is32>>(i_regmap[hr]&63))&1) ) {
3954                 emit_storereg(i_regmap[hr],hr);
3955               }
3956             }
3957           }
3958         }
3959       }
3960     }
3961   }
3962 }
3963 // Write out dirty registers that we need to reload (pair with load_needed_regs)
3964 // This writes the registers not written by store_regs_bt
3965 void wb_needed_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
3966 {
3967   int hr;
3968   int t=(addr-start)>>2;
3969   for(hr=0;hr<HOST_REGS;hr++) {
3970     if(hr!=EXCLUDE_REG) {
3971       if(i_regmap[hr]>0) {
3972         if(i_regmap[hr]!=CCREG) {
3973           if(i_regmap[hr]==regs[t].regmap_entry[hr] && ((regs[t].dirty>>hr)&1) && !(((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
3974             if((i_dirty>>hr)&1) {
3975               if(i_regmap[hr]<64) {
3976                 emit_storereg(i_regmap[hr],hr);
3977               }else{
3978                 if( !((i_is32>>(i_regmap[hr]&63))&1) ) {
3979                   emit_storereg(i_regmap[hr],hr);
3980                 }
3981               }
3982             }
3983           }
3984         }
3985       }
3986     }
3987   }
3988 }
3989
3990 // Load all registers (except cycle count)
3991 void load_all_regs(signed char i_regmap[])
3992 {
3993   int hr;
3994   for(hr=0;hr<HOST_REGS;hr++) {
3995     if(hr!=EXCLUDE_REG) {
3996       if(i_regmap[hr]==0) {
3997         emit_zeroreg(hr);
3998       }
3999       else
4000       if(i_regmap[hr]>0 && (i_regmap[hr]&63)<TEMPREG && i_regmap[hr]!=CCREG)
4001       {
4002         emit_loadreg(i_regmap[hr],hr);
4003       }
4004     }
4005   }
4006 }
4007
4008 // Load all current registers also needed by next instruction
4009 void load_needed_regs(signed char i_regmap[],signed char next_regmap[])
4010 {
4011   int hr;
4012   for(hr=0;hr<HOST_REGS;hr++) {
4013     if(hr!=EXCLUDE_REG) {
4014       if(get_reg(next_regmap,i_regmap[hr])>=0) {
4015         if(i_regmap[hr]==0) {
4016           emit_zeroreg(hr);
4017         }
4018         else
4019         if(i_regmap[hr]>0 && (i_regmap[hr]&63)<TEMPREG && i_regmap[hr]!=CCREG)
4020         {
4021           emit_loadreg(i_regmap[hr],hr);
4022         }
4023       }
4024     }
4025   }
4026 }
4027
4028 // Load all regs, storing cycle count if necessary
4029 void load_regs_entry(int t)
4030 {
4031   int hr;
4032   if(is_ds[t]) emit_addimm(HOST_CCREG,CLOCK_ADJUST(1),HOST_CCREG);
4033   else if(ccadj[t]) emit_addimm(HOST_CCREG,-CLOCK_ADJUST(ccadj[t]),HOST_CCREG);
4034   if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
4035     emit_storereg(CCREG,HOST_CCREG);
4036   }
4037   // Load 32-bit regs
4038   for(hr=0;hr<HOST_REGS;hr++) {
4039     if(regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<TEMPREG) {
4040       if(regs[t].regmap_entry[hr]==0) {
4041         emit_zeroreg(hr);
4042       }
4043       else if(regs[t].regmap_entry[hr]!=CCREG)
4044       {
4045         emit_loadreg(regs[t].regmap_entry[hr],hr);
4046       }
4047     }
4048   }
4049   // Load 64-bit regs
4050   for(hr=0;hr<HOST_REGS;hr++) {
4051     if(regs[t].regmap_entry[hr]>=64&&regs[t].regmap_entry[hr]<TEMPREG+64) {
4052       assert(regs[t].regmap_entry[hr]!=64);
4053       if((regs[t].was32>>(regs[t].regmap_entry[hr]&63))&1) {
4054         int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4055         if(lr<0) {
4056           emit_loadreg(regs[t].regmap_entry[hr],hr);
4057         }
4058         else
4059         {
4060           emit_sarimm(lr,31,hr);
4061         }
4062       }
4063       else
4064       {
4065         emit_loadreg(regs[t].regmap_entry[hr],hr);
4066       }
4067     }
4068   }
4069 }
4070
4071 // Store dirty registers prior to branch
4072 void store_regs_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4073 {
4074   if(internal_branch(i_is32,addr))
4075   {
4076     int t=(addr-start)>>2;
4077     int hr;
4078     for(hr=0;hr<HOST_REGS;hr++) {
4079       if(hr!=EXCLUDE_REG) {
4080         if(i_regmap[hr]>0 && i_regmap[hr]!=CCREG) {
4081           if(i_regmap[hr]!=regs[t].regmap_entry[hr] || !((regs[t].dirty>>hr)&1) || (((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4082             if((i_dirty>>hr)&1) {
4083               if(i_regmap[hr]<64) {
4084                 if(!((unneeded_reg[t]>>i_regmap[hr])&1)) {
4085                   emit_storereg(i_regmap[hr],hr);
4086                   if( ((i_is32>>i_regmap[hr])&1) && !((unneeded_reg_upper[t]>>i_regmap[hr])&1) ) {
4087                     #ifdef DESTRUCTIVE_WRITEBACK
4088                     emit_sarimm(hr,31,hr);
4089                     emit_storereg(i_regmap[hr]|64,hr);
4090                     #else
4091                     emit_sarimm(hr,31,HOST_TEMPREG);
4092                     emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4093                     #endif
4094                   }
4095                 }
4096               }else{
4097                 if( !((i_is32>>(i_regmap[hr]&63))&1) && !((unneeded_reg_upper[t]>>(i_regmap[hr]&63))&1) ) {
4098                   emit_storereg(i_regmap[hr],hr);
4099                 }
4100               }
4101             }
4102           }
4103         }
4104       }
4105     }
4106   }
4107   else
4108   {
4109     // Branch out of this block, write out all dirty regs
4110     wb_dirtys(i_regmap,i_is32,i_dirty);
4111   }
4112 }
4113
4114 // Load all needed registers for branch target
4115 void load_regs_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4116 {
4117   //if(addr>=start && addr<(start+slen*4))
4118   if(internal_branch(i_is32,addr))
4119   {
4120     int t=(addr-start)>>2;
4121     int hr;
4122     // Store the cycle count before loading something else
4123     if(i_regmap[HOST_CCREG]!=CCREG) {
4124       assert(i_regmap[HOST_CCREG]==-1);
4125     }
4126     if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
4127       emit_storereg(CCREG,HOST_CCREG);
4128     }
4129     // Load 32-bit regs
4130     for(hr=0;hr<HOST_REGS;hr++) {
4131       if(hr!=EXCLUDE_REG&&regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<TEMPREG) {
4132         #ifdef DESTRUCTIVE_WRITEBACK
4133         if(i_regmap[hr]!=regs[t].regmap_entry[hr] || ( !((regs[t].dirty>>hr)&1) && ((i_dirty>>hr)&1) && (((i_is32&~unneeded_reg_upper[t])>>i_regmap[hr])&1) ) || (((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4134         #else
4135         if(i_regmap[hr]!=regs[t].regmap_entry[hr] ) {
4136         #endif
4137           if(regs[t].regmap_entry[hr]==0) {
4138             emit_zeroreg(hr);
4139           }
4140           else if(regs[t].regmap_entry[hr]!=CCREG)
4141           {
4142             emit_loadreg(regs[t].regmap_entry[hr],hr);
4143           }
4144         }
4145       }
4146     }
4147     //Load 64-bit regs
4148     for(hr=0;hr<HOST_REGS;hr++) {
4149       if(hr!=EXCLUDE_REG&&regs[t].regmap_entry[hr]>=64&&regs[t].regmap_entry[hr]<TEMPREG+64) {
4150         if(i_regmap[hr]!=regs[t].regmap_entry[hr]) {
4151           assert(regs[t].regmap_entry[hr]!=64);
4152           if((i_is32>>(regs[t].regmap_entry[hr]&63))&1) {
4153             int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4154             if(lr<0) {
4155               emit_loadreg(regs[t].regmap_entry[hr],hr);
4156             }
4157             else
4158             {
4159               emit_sarimm(lr,31,hr);
4160             }
4161           }
4162           else
4163           {
4164             emit_loadreg(regs[t].regmap_entry[hr],hr);
4165           }
4166         }
4167         else if((i_is32>>(regs[t].regmap_entry[hr]&63))&1) {
4168           int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4169           assert(lr>=0);
4170           emit_sarimm(lr,31,hr);
4171         }
4172       }
4173     }
4174   }
4175 }
4176
4177 int match_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4178 {
4179   if(addr>=start && addr<start+slen*4-4)
4180   {
4181     int t=(addr-start)>>2;
4182     int hr;
4183     if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) return 0;
4184     for(hr=0;hr<HOST_REGS;hr++)
4185     {
4186       if(hr!=EXCLUDE_REG)
4187       {
4188         if(i_regmap[hr]!=regs[t].regmap_entry[hr])
4189         {
4190           if(regs[t].regmap_entry[hr]>=0&&(regs[t].regmap_entry[hr]|64)<TEMPREG+64)
4191           {
4192             return 0;
4193           }
4194           else
4195           if((i_dirty>>hr)&1)
4196           {
4197             if(i_regmap[hr]<TEMPREG)
4198             {
4199               if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4200                 return 0;
4201             }
4202             else if(i_regmap[hr]>=64&&i_regmap[hr]<TEMPREG+64)
4203             {
4204               if(!((unneeded_reg_upper[t]>>(i_regmap[hr]&63))&1))
4205                 return 0;
4206             }
4207           }
4208         }
4209         else // Same register but is it 32-bit or dirty?
4210         if(i_regmap[hr]>=0)
4211         {
4212           if(!((regs[t].dirty>>hr)&1))
4213           {
4214             if((i_dirty>>hr)&1)
4215             {
4216               if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4217               {
4218                 //printf("%x: dirty no match\n",addr);
4219                 return 0;
4220               }
4221             }
4222           }
4223           if((((regs[t].was32^i_is32)&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)
4224           {
4225             //printf("%x: is32 no match\n",addr);
4226             return 0;
4227           }
4228         }
4229       }
4230     }
4231     //if(is32[t]&~unneeded_reg_upper[t]&~i_is32) return 0;
4232     // Delay slots are not valid branch targets
4233     //if(t>0&&(itype[t-1]==RJUMP||itype[t-1]==UJUMP||itype[t-1]==CJUMP||itype[t-1]==SJUMP||itype[t-1]==FJUMP)) return 0;
4234     // Delay slots require additional processing, so do not match
4235     if(is_ds[t]) return 0;
4236   }
4237   else
4238   {
4239     int hr;
4240     for(hr=0;hr<HOST_REGS;hr++)
4241     {
4242       if(hr!=EXCLUDE_REG)
4243       {
4244         if(i_regmap[hr]>=0)
4245         {
4246           if(hr!=HOST_CCREG||i_regmap[hr]!=CCREG)
4247           {
4248             if((i_dirty>>hr)&1)
4249             {
4250               return 0;
4251             }
4252           }
4253         }
4254       }
4255     }
4256   }
4257   return 1;
4258 }
4259
4260 // Used when a branch jumps into the delay slot of another branch
4261 void ds_assemble_entry(int i)
4262 {
4263   int t=(ba[i]-start)>>2;
4264   if(!instr_addr[t]) instr_addr[t]=(u_int)out;
4265   assem_debug("Assemble delay slot at %x\n",ba[i]);
4266   assem_debug("<->\n");
4267   if(regs[t].regmap_entry[HOST_CCREG]==CCREG&&regs[t].regmap[HOST_CCREG]!=CCREG)
4268     wb_register(CCREG,regs[t].regmap_entry,regs[t].wasdirty,regs[t].was32);
4269   load_regs(regs[t].regmap_entry,regs[t].regmap,regs[t].was32,rs1[t],rs2[t]);
4270   address_generation(t,&regs[t],regs[t].regmap_entry);
4271   if(itype[t]==STORE||itype[t]==STORELR||(opcode[t]&0x3b)==0x39||(opcode[t]&0x3b)==0x3a)
4272     load_regs(regs[t].regmap_entry,regs[t].regmap,regs[t].was32,INVCP,INVCP);
4273   cop1_usable=0;
4274   is_delayslot=0;
4275   switch(itype[t]) {
4276     case ALU:
4277       alu_assemble(t,&regs[t]);break;
4278     case IMM16:
4279       imm16_assemble(t,&regs[t]);break;
4280     case SHIFT:
4281       shift_assemble(t,&regs[t]);break;
4282     case SHIFTIMM:
4283       shiftimm_assemble(t,&regs[t]);break;
4284     case LOAD:
4285       load_assemble(t,&regs[t]);break;
4286     case LOADLR:
4287       loadlr_assemble(t,&regs[t]);break;
4288     case STORE:
4289       store_assemble(t,&regs[t]);break;
4290     case STORELR:
4291       storelr_assemble(t,&regs[t]);break;
4292     case COP0:
4293       cop0_assemble(t,&regs[t]);break;
4294     case COP1:
4295       cop1_assemble(t,&regs[t]);break;
4296     case C1LS:
4297       c1ls_assemble(t,&regs[t]);break;
4298     case COP2:
4299       cop2_assemble(t,&regs[t]);break;
4300     case C2LS:
4301       c2ls_assemble(t,&regs[t]);break;
4302     case C2OP:
4303       c2op_assemble(t,&regs[t]);break;
4304     case FCONV:
4305       fconv_assemble(t,&regs[t]);break;
4306     case FLOAT:
4307       float_assemble(t,&regs[t]);break;
4308     case FCOMP:
4309       fcomp_assemble(t,&regs[t]);break;
4310     case MULTDIV:
4311       multdiv_assemble(t,&regs[t]);break;
4312     case MOV:
4313       mov_assemble(t,&regs[t]);break;
4314     case SYSCALL:
4315     case HLECALL:
4316     case INTCALL:
4317     case SPAN:
4318     case UJUMP:
4319     case RJUMP:
4320     case CJUMP:
4321     case SJUMP:
4322     case FJUMP:
4323       SysPrintf("Jump in the delay slot.  This is probably a bug.\n");
4324   }
4325   store_regs_bt(regs[t].regmap,regs[t].is32,regs[t].dirty,ba[i]+4);
4326   load_regs_bt(regs[t].regmap,regs[t].is32,regs[t].dirty,ba[i]+4);
4327   if(internal_branch(regs[t].is32,ba[i]+4))
4328     assem_debug("branch: internal\n");
4329   else
4330     assem_debug("branch: external\n");
4331   assert(internal_branch(regs[t].is32,ba[i]+4));
4332   add_to_linker((int)out,ba[i]+4,internal_branch(regs[t].is32,ba[i]+4));
4333   emit_jmp(0);
4334 }
4335
4336 void do_cc(int i,signed char i_regmap[],int *adj,int addr,int taken,int invert)
4337 {
4338   int count;
4339   int jaddr;
4340   int idle=0;
4341   int t=0;
4342   if(itype[i]==RJUMP)
4343   {
4344     *adj=0;
4345   }
4346   //if(ba[i]>=start && ba[i]<(start+slen*4))
4347   if(internal_branch(branch_regs[i].is32,ba[i]))
4348   {
4349     t=(ba[i]-start)>>2;
4350     if(is_ds[t]) *adj=-1; // Branch into delay slot adds an extra cycle
4351     else *adj=ccadj[t];
4352   }
4353   else
4354   {
4355     *adj=0;
4356   }
4357   count=ccadj[i];
4358   if(taken==TAKEN && i==(ba[i]-start)>>2 && source[i+1]==0) {
4359     // Idle loop
4360     if(count&1) emit_addimm_and_set_flags(2*(count+2),HOST_CCREG);
4361     idle=(int)out;
4362     //emit_subfrommem(&idlecount,HOST_CCREG); // Count idle cycles
4363     emit_andimm(HOST_CCREG,3,HOST_CCREG);
4364     jaddr=(int)out;
4365     emit_jmp(0);
4366   }
4367   else if(*adj==0||invert) {
4368     int cycles=CLOCK_ADJUST(count+2);
4369     // faster loop HACK
4370     if (t&&*adj) {
4371       int rel=t-i;
4372       if(-NO_CYCLE_PENALTY_THR<rel&&rel<0)
4373         cycles=CLOCK_ADJUST(*adj)+count+2-*adj;
4374     }
4375     emit_addimm_and_set_flags(cycles,HOST_CCREG);
4376     jaddr=(int)out;
4377     emit_jns(0);
4378   }
4379   else
4380   {
4381     emit_cmpimm(HOST_CCREG,-CLOCK_ADJUST(count+2));
4382     jaddr=(int)out;
4383     emit_jns(0);
4384   }
4385   add_stub(CC_STUB,jaddr,idle?idle:(int)out,(*adj==0||invert||idle)?0:(count+2),i,addr,taken,0);
4386 }
4387
4388 void do_ccstub(int n)
4389 {
4390   literal_pool(256);
4391   assem_debug("do_ccstub %x\n",start+stubs[n][4]*4);
4392   set_jump_target(stubs[n][1],(int)out);
4393   int i=stubs[n][4];
4394   if(stubs[n][6]==NULLDS) {
4395     // Delay slot instruction is nullified ("likely" branch)
4396     wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
4397   }
4398   else if(stubs[n][6]!=TAKEN) {
4399     wb_dirtys(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty);
4400   }
4401   else {
4402     if(internal_branch(branch_regs[i].is32,ba[i]))
4403       wb_needed_dirtys(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
4404   }
4405   if(stubs[n][5]!=-1)
4406   {
4407     // Save PC as return address
4408     emit_movimm(stubs[n][5],EAX);
4409     emit_writeword(EAX,(int)&pcaddr);
4410   }
4411   else
4412   {
4413     // Return address depends on which way the branch goes
4414     if(itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
4415     {
4416       int s1l=get_reg(branch_regs[i].regmap,rs1[i]);
4417       int s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
4418       int s2l=get_reg(branch_regs[i].regmap,rs2[i]);
4419       int s2h=get_reg(branch_regs[i].regmap,rs2[i]|64);
4420       if(rs1[i]==0)
4421       {
4422         s1l=s2l;s1h=s2h;
4423         s2l=s2h=-1;
4424       }
4425       else if(rs2[i]==0)
4426       {
4427         s2l=s2h=-1;
4428       }
4429       if((branch_regs[i].is32>>rs1[i])&(branch_regs[i].is32>>rs2[i])&1) {
4430         s1h=s2h=-1;
4431       }
4432       assert(s1l>=0);
4433       #ifdef DESTRUCTIVE_WRITEBACK
4434       if(rs1[i]) {
4435         if((branch_regs[i].dirty>>s1l)&(branch_regs[i].is32>>rs1[i])&1)
4436           emit_loadreg(rs1[i],s1l);
4437       }
4438       else {
4439         if((branch_regs[i].dirty>>s1l)&(branch_regs[i].is32>>rs2[i])&1)
4440           emit_loadreg(rs2[i],s1l);
4441       }
4442       if(s2l>=0)
4443         if((branch_regs[i].dirty>>s2l)&(branch_regs[i].is32>>rs2[i])&1)
4444           emit_loadreg(rs2[i],s2l);
4445       #endif
4446       int hr=0;
4447       int addr=-1,alt=-1,ntaddr=-1;
4448       while(hr<HOST_REGS)
4449       {
4450         if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4451            (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
4452            (branch_regs[i].regmap[hr]&63)!=rs2[i] )
4453         {
4454           addr=hr++;break;
4455         }
4456         hr++;
4457       }
4458       while(hr<HOST_REGS)
4459       {
4460         if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4461            (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
4462            (branch_regs[i].regmap[hr]&63)!=rs2[i] )
4463         {
4464           alt=hr++;break;
4465         }
4466         hr++;
4467       }
4468       if((opcode[i]&0x2E)==6) // BLEZ/BGTZ needs another register
4469       {
4470         while(hr<HOST_REGS)
4471         {
4472           if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4473              (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
4474              (branch_regs[i].regmap[hr]&63)!=rs2[i] )
4475           {
4476             ntaddr=hr;break;
4477           }
4478           hr++;
4479         }
4480         assert(hr<HOST_REGS);
4481       }
4482       if((opcode[i]&0x2f)==4) // BEQ
4483       {
4484         #ifdef HAVE_CMOV_IMM
4485         if(s1h<0) {
4486           if(s2l>=0) emit_cmp(s1l,s2l);
4487           else emit_test(s1l,s1l);
4488           emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
4489         }
4490         else
4491         #endif
4492         {
4493           emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
4494           if(s1h>=0) {
4495             if(s2h>=0) emit_cmp(s1h,s2h);
4496             else emit_test(s1h,s1h);
4497             emit_cmovne_reg(alt,addr);
4498           }
4499           if(s2l>=0) emit_cmp(s1l,s2l);
4500           else emit_test(s1l,s1l);
4501           emit_cmovne_reg(alt,addr);
4502         }
4503       }
4504       if((opcode[i]&0x2f)==5) // BNE
4505       {
4506         #ifdef HAVE_CMOV_IMM
4507         if(s1h<0) {
4508           if(s2l>=0) emit_cmp(s1l,s2l);
4509           else emit_test(s1l,s1l);
4510           emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
4511         }
4512         else
4513         #endif
4514         {
4515           emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
4516           if(s1h>=0) {
4517             if(s2h>=0) emit_cmp(s1h,s2h);
4518             else emit_test(s1h,s1h);
4519             emit_cmovne_reg(alt,addr);
4520           }
4521           if(s2l>=0) emit_cmp(s1l,s2l);
4522           else emit_test(s1l,s1l);
4523           emit_cmovne_reg(alt,addr);
4524         }
4525       }
4526       if((opcode[i]&0x2f)==6) // BLEZ
4527       {
4528         //emit_movimm(ba[i],alt);
4529         //emit_movimm(start+i*4+8,addr);
4530         emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
4531         emit_cmpimm(s1l,1);
4532         if(s1h>=0) emit_mov(addr,ntaddr);
4533         emit_cmovl_reg(alt,addr);
4534         if(s1h>=0) {
4535           emit_test(s1h,s1h);
4536           emit_cmovne_reg(ntaddr,addr);
4537           emit_cmovs_reg(alt,addr);
4538         }
4539       }
4540       if((opcode[i]&0x2f)==7) // BGTZ
4541       {
4542         //emit_movimm(ba[i],addr);
4543         //emit_movimm(start+i*4+8,ntaddr);
4544         emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
4545         emit_cmpimm(s1l,1);
4546         if(s1h>=0) emit_mov(addr,alt);
4547         emit_cmovl_reg(ntaddr,addr);
4548         if(s1h>=0) {
4549           emit_test(s1h,s1h);
4550           emit_cmovne_reg(alt,addr);
4551           emit_cmovs_reg(ntaddr,addr);
4552         }
4553       }
4554       if((opcode[i]==1)&&(opcode2[i]&0x2D)==0) // BLTZ
4555       {
4556         //emit_movimm(ba[i],alt);
4557         //emit_movimm(start+i*4+8,addr);
4558         emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
4559         if(s1h>=0) emit_test(s1h,s1h);
4560         else emit_test(s1l,s1l);
4561         emit_cmovs_reg(alt,addr);
4562       }
4563       if((opcode[i]==1)&&(opcode2[i]&0x2D)==1) // BGEZ
4564       {
4565         //emit_movimm(ba[i],addr);
4566         //emit_movimm(start+i*4+8,alt);
4567         emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
4568         if(s1h>=0) emit_test(s1h,s1h);
4569         else emit_test(s1l,s1l);
4570         emit_cmovs_reg(alt,addr);
4571       }
4572       if(opcode[i]==0x11 && opcode2[i]==0x08 ) {
4573         if(source[i]&0x10000) // BC1T
4574         {
4575           //emit_movimm(ba[i],alt);
4576           //emit_movimm(start+i*4+8,addr);
4577           emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
4578           emit_testimm(s1l,0x800000);
4579           emit_cmovne_reg(alt,addr);
4580         }
4581         else // BC1F
4582         {
4583           //emit_movimm(ba[i],addr);
4584           //emit_movimm(start+i*4+8,alt);
4585           emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
4586           emit_testimm(s1l,0x800000);
4587           emit_cmovne_reg(alt,addr);
4588         }
4589       }
4590       emit_writeword(addr,(int)&pcaddr);
4591     }
4592     else
4593     if(itype[i]==RJUMP)
4594     {
4595       int r=get_reg(branch_regs[i].regmap,rs1[i]);
4596       if(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]) {
4597         r=get_reg(branch_regs[i].regmap,RTEMP);
4598       }
4599       emit_writeword(r,(int)&pcaddr);
4600     }
4601     else {SysPrintf("Unknown branch type in do_ccstub\n");exit(1);}
4602   }
4603   // Update cycle count
4604   assert(branch_regs[i].regmap[HOST_CCREG]==CCREG||branch_regs[i].regmap[HOST_CCREG]==-1);
4605   if(stubs[n][3]) emit_addimm(HOST_CCREG,CLOCK_ADJUST((int)stubs[n][3]),HOST_CCREG);
4606   emit_call((int)cc_interrupt);
4607   if(stubs[n][3]) emit_addimm(HOST_CCREG,-CLOCK_ADJUST((int)stubs[n][3]),HOST_CCREG);
4608   if(stubs[n][6]==TAKEN) {
4609     if(internal_branch(branch_regs[i].is32,ba[i]))
4610       load_needed_regs(branch_regs[i].regmap,regs[(ba[i]-start)>>2].regmap_entry);
4611     else if(itype[i]==RJUMP) {
4612       if(get_reg(branch_regs[i].regmap,RTEMP)>=0)
4613         emit_readword((int)&pcaddr,get_reg(branch_regs[i].regmap,RTEMP));
4614       else
4615         emit_loadreg(rs1[i],get_reg(branch_regs[i].regmap,rs1[i]));
4616     }
4617   }else if(stubs[n][6]==NOTTAKEN) {
4618     if(i<slen-2) load_needed_regs(branch_regs[i].regmap,regmap_pre[i+2]);
4619     else load_all_regs(branch_regs[i].regmap);
4620   }else if(stubs[n][6]==NULLDS) {
4621     // Delay slot instruction is nullified ("likely" branch)
4622     if(i<slen-2) load_needed_regs(regs[i].regmap,regmap_pre[i+2]);
4623     else load_all_regs(regs[i].regmap);
4624   }else{
4625     load_all_regs(branch_regs[i].regmap);
4626   }
4627   emit_jmp(stubs[n][2]); // return address
4628
4629   /* This works but uses a lot of memory...
4630   emit_readword((int)&last_count,ECX);
4631   emit_add(HOST_CCREG,ECX,EAX);
4632   emit_writeword(EAX,(int)&Count);
4633   emit_call((int)gen_interupt);
4634   emit_readword((int)&Count,HOST_CCREG);
4635   emit_readword((int)&next_interupt,EAX);
4636   emit_readword((int)&pending_exception,EBX);
4637   emit_writeword(EAX,(int)&last_count);
4638   emit_sub(HOST_CCREG,EAX,HOST_CCREG);
4639   emit_test(EBX,EBX);
4640   int jne_instr=(int)out;
4641   emit_jne(0);
4642   if(stubs[n][3]) emit_addimm(HOST_CCREG,-2*stubs[n][3],HOST_CCREG);
4643   load_all_regs(branch_regs[i].regmap);
4644   emit_jmp(stubs[n][2]); // return address
4645   set_jump_target(jne_instr,(int)out);
4646   emit_readword((int)&pcaddr,EAX);
4647   // Call get_addr_ht instead of doing the hash table here.
4648   // This code is executed infrequently and takes up a lot of space
4649   // so smaller is better.
4650   emit_storereg(CCREG,HOST_CCREG);
4651   emit_pushreg(EAX);
4652   emit_call((int)get_addr_ht);
4653   emit_loadreg(CCREG,HOST_CCREG);
4654   emit_addimm(ESP,4,ESP);
4655   emit_jmpreg(EAX);*/
4656 }
4657
4658 static void add_to_linker(int addr,int target,int ext)
4659 {
4660   link_addr[linkcount][0]=addr;
4661   link_addr[linkcount][1]=target;
4662   link_addr[linkcount][2]=ext;
4663   linkcount++;
4664 }
4665
4666 static void ujump_assemble_write_ra(int i)
4667 {
4668   int rt;
4669   unsigned int return_address;
4670   rt=get_reg(branch_regs[i].regmap,31);
4671   assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
4672   //assert(rt>=0);
4673   return_address=start+i*4+8;
4674   if(rt>=0) {
4675     #ifdef USE_MINI_HT
4676     if(internal_branch(branch_regs[i].is32,return_address)&&rt1[i+1]!=31) {
4677       int temp=-1; // note: must be ds-safe
4678       #ifdef HOST_TEMPREG
4679       temp=HOST_TEMPREG;
4680       #endif
4681       if(temp>=0) do_miniht_insert(return_address,rt,temp);
4682       else emit_movimm(return_address,rt);
4683     }
4684     else
4685     #endif
4686     {
4687       #ifdef REG_PREFETCH
4688       if(temp>=0)
4689       {
4690         if(i_regmap[temp]!=PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
4691       }
4692       #endif
4693       emit_movimm(return_address,rt); // PC into link register
4694       #ifdef IMM_PREFETCH
4695       emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
4696       #endif
4697     }
4698   }
4699 }
4700
4701 void ujump_assemble(int i,struct regstat *i_regs)
4702 {
4703   int ra_done=0;
4704   if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
4705   address_generation(i+1,i_regs,regs[i].regmap_entry);
4706   #ifdef REG_PREFETCH
4707   int temp=get_reg(branch_regs[i].regmap,PTEMP);
4708   if(rt1[i]==31&&temp>=0)
4709   {
4710     signed char *i_regmap=i_regs->regmap;
4711     int return_address=start+i*4+8;
4712     if(get_reg(branch_regs[i].regmap,31)>0)
4713     if(i_regmap[temp]==PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
4714   }
4715   #endif
4716   if(rt1[i]==31&&(rt1[i]==rs1[i+1]||rt1[i]==rs2[i+1])) {
4717     ujump_assemble_write_ra(i); // writeback ra for DS
4718     ra_done=1;
4719   }
4720   ds_assemble(i+1,i_regs);
4721   uint64_t bc_unneeded=branch_regs[i].u;
4722   uint64_t bc_unneeded_upper=branch_regs[i].uu;
4723   bc_unneeded|=1|(1LL<<rt1[i]);
4724   bc_unneeded_upper|=1|(1LL<<rt1[i]);
4725   wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
4726                 bc_unneeded,bc_unneeded_upper);
4727   load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
4728   if(!ra_done&&rt1[i]==31)
4729     ujump_assemble_write_ra(i);
4730   int cc,adj;
4731   cc=get_reg(branch_regs[i].regmap,CCREG);
4732   assert(cc==HOST_CCREG);
4733   store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
4734   #ifdef REG_PREFETCH
4735   if(rt1[i]==31&&temp>=0) emit_prefetchreg(temp);
4736   #endif
4737   do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
4738   if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
4739   load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
4740   if(internal_branch(branch_regs[i].is32,ba[i]))
4741     assem_debug("branch: internal\n");
4742   else
4743     assem_debug("branch: external\n");
4744   if(internal_branch(branch_regs[i].is32,ba[i])&&is_ds[(ba[i]-start)>>2]) {
4745     ds_assemble_entry(i);
4746   }
4747   else {
4748     add_to_linker((int)out,ba[i],internal_branch(branch_regs[i].is32,ba[i]));
4749     emit_jmp(0);
4750   }
4751 }
4752
4753 static void rjump_assemble_write_ra(int i)
4754 {
4755   int rt,return_address;
4756   assert(rt1[i+1]!=rt1[i]);
4757   assert(rt2[i+1]!=rt1[i]);
4758   rt=get_reg(branch_regs[i].regmap,rt1[i]);
4759   assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
4760   assert(rt>=0);
4761   return_address=start+i*4+8;
4762   #ifdef REG_PREFETCH
4763   if(temp>=0)
4764   {
4765     if(i_regmap[temp]!=PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
4766   }
4767   #endif
4768   emit_movimm(return_address,rt); // PC into link register
4769   #ifdef IMM_PREFETCH
4770   emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
4771   #endif
4772 }
4773
4774 void rjump_assemble(int i,struct regstat *i_regs)
4775 {
4776   int temp;
4777   int rs,cc;
4778   int ra_done=0;
4779   rs=get_reg(branch_regs[i].regmap,rs1[i]);
4780   assert(rs>=0);
4781   if(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]) {
4782     // Delay slot abuse, make a copy of the branch address register
4783     temp=get_reg(branch_regs[i].regmap,RTEMP);
4784     assert(temp>=0);
4785     assert(regs[i].regmap[temp]==RTEMP);
4786     emit_mov(rs,temp);
4787     rs=temp;
4788   }
4789   address_generation(i+1,i_regs,regs[i].regmap_entry);
4790   #ifdef REG_PREFETCH
4791   if(rt1[i]==31)
4792   {
4793     if((temp=get_reg(branch_regs[i].regmap,PTEMP))>=0) {
4794       signed char *i_regmap=i_regs->regmap;
4795       int return_address=start+i*4+8;
4796       if(i_regmap[temp]==PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
4797     }
4798   }
4799   #endif
4800   #ifdef USE_MINI_HT
4801   if(rs1[i]==31) {
4802     int rh=get_reg(regs[i].regmap,RHASH);
4803     if(rh>=0) do_preload_rhash(rh);
4804   }
4805   #endif
4806   if(rt1[i]!=0&&(rt1[i]==rs1[i+1]||rt1[i]==rs2[i+1])) {
4807     rjump_assemble_write_ra(i);
4808     ra_done=1;
4809   }
4810   ds_assemble(i+1,i_regs);
4811   uint64_t bc_unneeded=branch_regs[i].u;
4812   uint64_t bc_unneeded_upper=branch_regs[i].uu;
4813   bc_unneeded|=1|(1LL<<rt1[i]);
4814   bc_unneeded_upper|=1|(1LL<<rt1[i]);
4815   bc_unneeded&=~(1LL<<rs1[i]);
4816   wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
4817                 bc_unneeded,bc_unneeded_upper);
4818   load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],CCREG);
4819   if(!ra_done&&rt1[i]!=0)
4820     rjump_assemble_write_ra(i);
4821   cc=get_reg(branch_regs[i].regmap,CCREG);
4822   assert(cc==HOST_CCREG);
4823   (void)cc;
4824   #ifdef USE_MINI_HT
4825   int rh=get_reg(branch_regs[i].regmap,RHASH);
4826   int ht=get_reg(branch_regs[i].regmap,RHTBL);
4827   if(rs1[i]==31) {
4828     if(regs[i].regmap[rh]!=RHASH) do_preload_rhash(rh);
4829     do_preload_rhtbl(ht);
4830     do_rhash(rs,rh);
4831   }
4832   #endif
4833   store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,-1);
4834   #ifdef DESTRUCTIVE_WRITEBACK
4835   if((branch_regs[i].dirty>>rs)&(branch_regs[i].is32>>rs1[i])&1) {
4836     if(rs1[i]!=rt1[i+1]&&rs1[i]!=rt2[i+1]) {
4837       emit_loadreg(rs1[i],rs);
4838     }
4839   }
4840   #endif
4841   #ifdef REG_PREFETCH
4842   if(rt1[i]==31&&temp>=0) emit_prefetchreg(temp);
4843   #endif
4844   #ifdef USE_MINI_HT
4845   if(rs1[i]==31) {
4846     do_miniht_load(ht,rh);
4847   }
4848   #endif
4849   //do_cc(i,branch_regs[i].regmap,&adj,-1,TAKEN);
4850   //if(adj) emit_addimm(cc,2*(ccadj[i]+2-adj),cc); // ??? - Shouldn't happen
4851   //assert(adj==0);
4852   emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),HOST_CCREG);
4853   add_stub(CC_STUB,(int)out,jump_vaddr_reg[rs],0,i,-1,TAKEN,0);
4854   if(itype[i+1]==COP0&&(source[i+1]&0x3f)==0x10)
4855     // special case for RFE
4856     emit_jmp(0);
4857   else
4858     emit_jns(0);
4859   //load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,-1);
4860   #ifdef USE_MINI_HT
4861   if(rs1[i]==31) {
4862     do_miniht_jump(rs,rh,ht);
4863   }
4864   else
4865   #endif
4866   {
4867     //if(rs!=EAX) emit_mov(rs,EAX);
4868     //emit_jmp((int)jump_vaddr_eax);
4869     emit_jmp(jump_vaddr_reg[rs]);
4870   }
4871   /* Check hash table
4872   temp=!rs;
4873   emit_mov(rs,temp);
4874   emit_shrimm(rs,16,rs);
4875   emit_xor(temp,rs,rs);
4876   emit_movzwl_reg(rs,rs);
4877   emit_shlimm(rs,4,rs);
4878   emit_cmpmem_indexed((int)hash_table,rs,temp);
4879   emit_jne((int)out+14);
4880   emit_readword_indexed((int)hash_table+4,rs,rs);
4881   emit_jmpreg(rs);
4882   emit_cmpmem_indexed((int)hash_table+8,rs,temp);
4883   emit_addimm_no_flags(8,rs);
4884   emit_jeq((int)out-17);
4885   // No hit on hash table, call compiler
4886   emit_pushreg(temp);
4887 //DEBUG >
4888 #ifdef DEBUG_CYCLE_COUNT
4889   emit_readword((int)&last_count,ECX);
4890   emit_add(HOST_CCREG,ECX,HOST_CCREG);
4891   emit_readword((int)&next_interupt,ECX);
4892   emit_writeword(HOST_CCREG,(int)&Count);
4893   emit_sub(HOST_CCREG,ECX,HOST_CCREG);
4894   emit_writeword(ECX,(int)&last_count);
4895 #endif
4896 //DEBUG <
4897   emit_storereg(CCREG,HOST_CCREG);
4898   emit_call((int)get_addr);
4899   emit_loadreg(CCREG,HOST_CCREG);
4900   emit_addimm(ESP,4,ESP);
4901   emit_jmpreg(EAX);*/
4902   #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
4903   if(rt1[i]!=31&&i<slen-2&&(((u_int)out)&7)) emit_mov(13,13);
4904   #endif
4905 }
4906
4907 void cjump_assemble(int i,struct regstat *i_regs)
4908 {
4909   signed char *i_regmap=i_regs->regmap;
4910   int cc;
4911   int match;
4912   match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
4913   assem_debug("match=%d\n",match);
4914   int s1h,s1l,s2h,s2l;
4915   int prev_cop1_usable=cop1_usable;
4916   int unconditional=0,nop=0;
4917   int only32=0;
4918   int invert=0;
4919   int internal=internal_branch(branch_regs[i].is32,ba[i]);
4920   if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
4921   if(!match) invert=1;
4922   #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
4923   if(i>(ba[i]-start)>>2) invert=1;
4924   #endif
4925
4926   if(ooo[i]) {
4927     s1l=get_reg(branch_regs[i].regmap,rs1[i]);
4928     s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
4929     s2l=get_reg(branch_regs[i].regmap,rs2[i]);
4930     s2h=get_reg(branch_regs[i].regmap,rs2[i]|64);
4931   }
4932   else {
4933     s1l=get_reg(i_regmap,rs1[i]);
4934     s1h=get_reg(i_regmap,rs1[i]|64);
4935     s2l=get_reg(i_regmap,rs2[i]);
4936     s2h=get_reg(i_regmap,rs2[i]|64);
4937   }
4938   if(rs1[i]==0&&rs2[i]==0)
4939   {
4940     if(opcode[i]&1) nop=1;
4941     else unconditional=1;
4942     //assert(opcode[i]!=5);
4943     //assert(opcode[i]!=7);
4944     //assert(opcode[i]!=0x15);
4945     //assert(opcode[i]!=0x17);
4946   }
4947   else if(rs1[i]==0)
4948   {
4949     s1l=s2l;s1h=s2h;
4950     s2l=s2h=-1;
4951     only32=(regs[i].was32>>rs2[i])&1;
4952   }
4953   else if(rs2[i]==0)
4954   {
4955     s2l=s2h=-1;
4956     only32=(regs[i].was32>>rs1[i])&1;
4957   }
4958   else {
4959     only32=(regs[i].was32>>rs1[i])&(regs[i].was32>>rs2[i])&1;
4960   }
4961
4962   if(ooo[i]) {
4963     // Out of order execution (delay slot first)
4964     //printf("OOOE\n");
4965     address_generation(i+1,i_regs,regs[i].regmap_entry);
4966     ds_assemble(i+1,i_regs);
4967     int adj;
4968     uint64_t bc_unneeded=branch_regs[i].u;
4969     uint64_t bc_unneeded_upper=branch_regs[i].uu;
4970     bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
4971     bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
4972     bc_unneeded|=1;
4973     bc_unneeded_upper|=1;
4974     wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
4975                   bc_unneeded,bc_unneeded_upper);
4976     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs2[i]);
4977     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
4978     cc=get_reg(branch_regs[i].regmap,CCREG);
4979     assert(cc==HOST_CCREG);
4980     if(unconditional)
4981       store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
4982     //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
4983     //assem_debug("cycle count (adj)\n");
4984     if(unconditional) {
4985       do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
4986       if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
4987         if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
4988         load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
4989         if(internal)
4990           assem_debug("branch: internal\n");
4991         else
4992           assem_debug("branch: external\n");
4993         if(internal&&is_ds[(ba[i]-start)>>2]) {
4994           ds_assemble_entry(i);
4995         }
4996         else {
4997           add_to_linker((int)out,ba[i],internal);
4998           emit_jmp(0);
4999         }
5000         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5001         if(((u_int)out)&7) emit_addnop(0);
5002         #endif
5003       }
5004     }
5005     else if(nop) {
5006       emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),cc);
5007       int jaddr=(int)out;
5008       emit_jns(0);
5009       add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5010     }
5011     else {
5012       int taken=0,nottaken=0,nottaken1=0;
5013       do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
5014       if(adj&&!invert) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
5015       if(!only32)
5016       {
5017         assert(s1h>=0);
5018         if(opcode[i]==4) // BEQ
5019         {
5020           if(s2h>=0) emit_cmp(s1h,s2h);
5021           else emit_test(s1h,s1h);
5022           nottaken1=(int)out;
5023           emit_jne(1);
5024         }
5025         if(opcode[i]==5) // BNE
5026         {
5027           if(s2h>=0) emit_cmp(s1h,s2h);
5028           else emit_test(s1h,s1h);
5029           if(invert) taken=(int)out;
5030           else add_to_linker((int)out,ba[i],internal);
5031           emit_jne(0);
5032         }
5033         if(opcode[i]==6) // BLEZ
5034         {
5035           emit_test(s1h,s1h);
5036           if(invert) taken=(int)out;
5037           else add_to_linker((int)out,ba[i],internal);
5038           emit_js(0);
5039           nottaken1=(int)out;
5040           emit_jne(1);
5041         }
5042         if(opcode[i]==7) // BGTZ
5043         {
5044           emit_test(s1h,s1h);
5045           nottaken1=(int)out;
5046           emit_js(1);
5047           if(invert) taken=(int)out;
5048           else add_to_linker((int)out,ba[i],internal);
5049           emit_jne(0);
5050         }
5051       } // if(!only32)
5052
5053       //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5054       assert(s1l>=0);
5055       if(opcode[i]==4) // BEQ
5056       {
5057         if(s2l>=0) emit_cmp(s1l,s2l);
5058         else emit_test(s1l,s1l);
5059         if(invert){
5060           nottaken=(int)out;
5061           emit_jne(1);
5062         }else{
5063           add_to_linker((int)out,ba[i],internal);
5064           emit_jeq(0);
5065         }
5066       }
5067       if(opcode[i]==5) // BNE
5068       {
5069         if(s2l>=0) emit_cmp(s1l,s2l);
5070         else emit_test(s1l,s1l);
5071         if(invert){
5072           nottaken=(int)out;
5073           emit_jeq(1);
5074         }else{
5075           add_to_linker((int)out,ba[i],internal);
5076           emit_jne(0);
5077         }
5078       }
5079       if(opcode[i]==6) // BLEZ
5080       {
5081         emit_cmpimm(s1l,1);
5082         if(invert){
5083           nottaken=(int)out;
5084           emit_jge(1);
5085         }else{
5086           add_to_linker((int)out,ba[i],internal);
5087           emit_jl(0);
5088         }
5089       }
5090       if(opcode[i]==7) // BGTZ
5091       {
5092         emit_cmpimm(s1l,1);
5093         if(invert){
5094           nottaken=(int)out;
5095           emit_jl(1);
5096         }else{
5097           add_to_linker((int)out,ba[i],internal);
5098           emit_jge(0);
5099         }
5100       }
5101       if(invert) {
5102         if(taken) set_jump_target(taken,(int)out);
5103         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5104         if(match&&(!internal||!is_ds[(ba[i]-start)>>2])) {
5105           if(adj) {
5106             emit_addimm(cc,-CLOCK_ADJUST(adj),cc);
5107             add_to_linker((int)out,ba[i],internal);
5108           }else{
5109             emit_addnop(13);
5110             add_to_linker((int)out,ba[i],internal*2);
5111           }
5112           emit_jmp(0);
5113         }else
5114         #endif
5115         {
5116           if(adj) emit_addimm(cc,-CLOCK_ADJUST(adj),cc);
5117           store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5118           load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5119           if(internal)
5120             assem_debug("branch: internal\n");
5121           else
5122             assem_debug("branch: external\n");
5123           if(internal&&is_ds[(ba[i]-start)>>2]) {
5124             ds_assemble_entry(i);
5125           }
5126           else {
5127             add_to_linker((int)out,ba[i],internal);
5128             emit_jmp(0);
5129           }
5130         }
5131         set_jump_target(nottaken,(int)out);
5132       }
5133
5134       if(nottaken1) set_jump_target(nottaken1,(int)out);
5135       if(adj) {
5136         if(!invert) emit_addimm(cc,CLOCK_ADJUST(adj),cc);
5137       }
5138     } // (!unconditional)
5139   } // if(ooo)
5140   else
5141   {
5142     // In-order execution (branch first)
5143     //if(likely[i]) printf("IOL\n");
5144     //else
5145     //printf("IOE\n");
5146     int taken=0,nottaken=0,nottaken1=0;
5147     if(!unconditional&&!nop) {
5148       if(!only32)
5149       {
5150         assert(s1h>=0);
5151         if((opcode[i]&0x2f)==4) // BEQ
5152         {
5153           if(s2h>=0) emit_cmp(s1h,s2h);
5154           else emit_test(s1h,s1h);
5155           nottaken1=(int)out;
5156           emit_jne(2);
5157         }
5158         if((opcode[i]&0x2f)==5) // BNE
5159         {
5160           if(s2h>=0) emit_cmp(s1h,s2h);
5161           else emit_test(s1h,s1h);
5162           taken=(int)out;
5163           emit_jne(1);
5164         }
5165         if((opcode[i]&0x2f)==6) // BLEZ
5166         {
5167           emit_test(s1h,s1h);
5168           taken=(int)out;
5169           emit_js(1);
5170           nottaken1=(int)out;
5171           emit_jne(2);
5172         }
5173         if((opcode[i]&0x2f)==7) // BGTZ
5174         {
5175           emit_test(s1h,s1h);
5176           nottaken1=(int)out;
5177           emit_js(2);
5178           taken=(int)out;
5179           emit_jne(1);
5180         }
5181       } // if(!only32)
5182
5183       //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5184       assert(s1l>=0);
5185       if((opcode[i]&0x2f)==4) // BEQ
5186       {
5187         if(s2l>=0) emit_cmp(s1l,s2l);
5188         else emit_test(s1l,s1l);
5189         nottaken=(int)out;
5190         emit_jne(2);
5191       }
5192       if((opcode[i]&0x2f)==5) // BNE
5193       {
5194         if(s2l>=0) emit_cmp(s1l,s2l);
5195         else emit_test(s1l,s1l);
5196         nottaken=(int)out;
5197         emit_jeq(2);
5198       }
5199       if((opcode[i]&0x2f)==6) // BLEZ
5200       {
5201         emit_cmpimm(s1l,1);
5202         nottaken=(int)out;
5203         emit_jge(2);
5204       }
5205       if((opcode[i]&0x2f)==7) // BGTZ
5206       {
5207         emit_cmpimm(s1l,1);
5208         nottaken=(int)out;
5209         emit_jl(2);
5210       }
5211     } // if(!unconditional)
5212     int adj;
5213     uint64_t ds_unneeded=branch_regs[i].u;
5214     uint64_t ds_unneeded_upper=branch_regs[i].uu;
5215     ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
5216     ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
5217     if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
5218     ds_unneeded|=1;
5219     ds_unneeded_upper|=1;
5220     // branch taken
5221     if(!nop) {
5222       if(taken) set_jump_target(taken,(int)out);
5223       assem_debug("1:\n");
5224       wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5225                     ds_unneeded,ds_unneeded_upper);
5226       // load regs
5227       load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5228       address_generation(i+1,&branch_regs[i],0);
5229       load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
5230       ds_assemble(i+1,&branch_regs[i]);
5231       cc=get_reg(branch_regs[i].regmap,CCREG);
5232       if(cc==-1) {
5233         emit_loadreg(CCREG,cc=HOST_CCREG);
5234         // CHECK: Is the following instruction (fall thru) allocated ok?
5235       }
5236       assert(cc==HOST_CCREG);
5237       store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5238       do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
5239       assem_debug("cycle count (adj)\n");
5240       if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
5241       load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5242       if(internal)
5243         assem_debug("branch: internal\n");
5244       else
5245         assem_debug("branch: external\n");
5246       if(internal&&is_ds[(ba[i]-start)>>2]) {
5247         ds_assemble_entry(i);
5248       }
5249       else {
5250         add_to_linker((int)out,ba[i],internal);
5251         emit_jmp(0);
5252       }
5253     }
5254     // branch not taken
5255     cop1_usable=prev_cop1_usable;
5256     if(!unconditional) {
5257       if(nottaken1) set_jump_target(nottaken1,(int)out);
5258       set_jump_target(nottaken,(int)out);
5259       assem_debug("2:\n");
5260       if(!likely[i]) {
5261         wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5262                       ds_unneeded,ds_unneeded_upper);
5263         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5264         address_generation(i+1,&branch_regs[i],0);
5265         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5266         ds_assemble(i+1,&branch_regs[i]);
5267       }
5268       cc=get_reg(branch_regs[i].regmap,CCREG);
5269       if(cc==-1&&!likely[i]) {
5270         // Cycle count isn't in a register, temporarily load it then write it out
5271         emit_loadreg(CCREG,HOST_CCREG);
5272         emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),HOST_CCREG);
5273         int jaddr=(int)out;
5274         emit_jns(0);
5275         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5276         emit_storereg(CCREG,HOST_CCREG);
5277       }
5278       else{
5279         cc=get_reg(i_regmap,CCREG);
5280         assert(cc==HOST_CCREG);
5281         emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),cc);
5282         int jaddr=(int)out;
5283         emit_jns(0);
5284         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
5285       }
5286     }
5287   }
5288 }
5289
5290 void sjump_assemble(int i,struct regstat *i_regs)
5291 {
5292   signed char *i_regmap=i_regs->regmap;
5293   int cc;
5294   int match;
5295   match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5296   assem_debug("smatch=%d\n",match);
5297   int s1h,s1l;
5298   int prev_cop1_usable=cop1_usable;
5299   int unconditional=0,nevertaken=0;
5300   int only32=0;
5301   int invert=0;
5302   int internal=internal_branch(branch_regs[i].is32,ba[i]);
5303   if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5304   if(!match) invert=1;
5305   #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5306   if(i>(ba[i]-start)>>2) invert=1;
5307   #endif
5308
5309   //if(opcode2[i]>=0x10) return; // FIXME (BxxZAL)
5310   //assert(opcode2[i]<0x10||rs1[i]==0); // FIXME (BxxZAL)
5311
5312   if(ooo[i]) {
5313     s1l=get_reg(branch_regs[i].regmap,rs1[i]);
5314     s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
5315   }
5316   else {
5317     s1l=get_reg(i_regmap,rs1[i]);
5318     s1h=get_reg(i_regmap,rs1[i]|64);
5319   }
5320   if(rs1[i]==0)
5321   {
5322     if(opcode2[i]&1) unconditional=1;
5323     else nevertaken=1;
5324     // These are never taken (r0 is never less than zero)
5325     //assert(opcode2[i]!=0);
5326     //assert(opcode2[i]!=2);
5327     //assert(opcode2[i]!=0x10);
5328     //assert(opcode2[i]!=0x12);
5329   }
5330   else {
5331     only32=(regs[i].was32>>rs1[i])&1;
5332   }
5333
5334   if(ooo[i]) {
5335     // Out of order execution (delay slot first)
5336     //printf("OOOE\n");
5337     address_generation(i+1,i_regs,regs[i].regmap_entry);
5338     ds_assemble(i+1,i_regs);
5339     int adj;
5340     uint64_t bc_unneeded=branch_regs[i].u;
5341     uint64_t bc_unneeded_upper=branch_regs[i].uu;
5342     bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
5343     bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
5344     bc_unneeded|=1;
5345     bc_unneeded_upper|=1;
5346     wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5347                   bc_unneeded,bc_unneeded_upper);
5348     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs1[i]);
5349     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5350     if(rt1[i]==31) {
5351       int rt,return_address;
5352       rt=get_reg(branch_regs[i].regmap,31);
5353       assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5354       if(rt>=0) {
5355         // Save the PC even if the branch is not taken
5356         return_address=start+i*4+8;
5357         emit_movimm(return_address,rt); // PC into link register
5358         #ifdef IMM_PREFETCH
5359         if(!nevertaken) emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5360         #endif
5361       }
5362     }
5363     cc=get_reg(branch_regs[i].regmap,CCREG);
5364     assert(cc==HOST_CCREG);
5365     if(unconditional)
5366       store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5367     //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
5368     assem_debug("cycle count (adj)\n");
5369     if(unconditional) {
5370       do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5371       if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
5372         if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
5373         load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5374         if(internal)
5375           assem_debug("branch: internal\n");
5376         else
5377           assem_debug("branch: external\n");
5378         if(internal&&is_ds[(ba[i]-start)>>2]) {
5379           ds_assemble_entry(i);
5380         }
5381         else {
5382           add_to_linker((int)out,ba[i],internal);
5383           emit_jmp(0);
5384         }
5385         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5386         if(((u_int)out)&7) emit_addnop(0);
5387         #endif
5388       }
5389     }
5390     else if(nevertaken) {
5391       emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),cc);
5392       int jaddr=(int)out;
5393       emit_jns(0);
5394       add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5395     }
5396     else {
5397       int nottaken=0;
5398       do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
5399       if(adj&&!invert) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
5400       if(!only32)
5401       {
5402         assert(s1h>=0);
5403         if((opcode2[i]&0xf)==0) // BLTZ/BLTZAL
5404         {
5405           emit_test(s1h,s1h);
5406           if(invert){
5407             nottaken=(int)out;
5408             emit_jns(1);
5409           }else{
5410             add_to_linker((int)out,ba[i],internal);
5411             emit_js(0);
5412           }
5413         }
5414         if((opcode2[i]&0xf)==1) // BGEZ/BLTZAL
5415         {
5416           emit_test(s1h,s1h);
5417           if(invert){
5418             nottaken=(int)out;
5419             emit_js(1);
5420           }else{
5421             add_to_linker((int)out,ba[i],internal);
5422             emit_jns(0);
5423           }
5424         }
5425       } // if(!only32)
5426       else
5427       {
5428         assert(s1l>=0);
5429         if((opcode2[i]&0xf)==0) // BLTZ/BLTZAL
5430         {
5431           emit_test(s1l,s1l);
5432           if(invert){
5433             nottaken=(int)out;
5434             emit_jns(1);
5435           }else{
5436             add_to_linker((int)out,ba[i],internal);
5437             emit_js(0);
5438           }
5439         }
5440         if((opcode2[i]&0xf)==1) // BGEZ/BLTZAL
5441         {
5442           emit_test(s1l,s1l);
5443           if(invert){
5444             nottaken=(int)out;
5445             emit_js(1);
5446           }else{
5447             add_to_linker((int)out,ba[i],internal);
5448             emit_jns(0);
5449           }
5450         }
5451       } // if(!only32)
5452
5453       if(invert) {
5454         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5455         if(match&&(!internal||!is_ds[(ba[i]-start)>>2])) {
5456           if(adj) {
5457             emit_addimm(cc,-CLOCK_ADJUST(adj),cc);
5458             add_to_linker((int)out,ba[i],internal);
5459           }else{
5460             emit_addnop(13);
5461             add_to_linker((int)out,ba[i],internal*2);
5462           }
5463           emit_jmp(0);
5464         }else
5465         #endif
5466         {
5467           if(adj) emit_addimm(cc,-CLOCK_ADJUST(adj),cc);
5468           store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5469           load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5470           if(internal)
5471             assem_debug("branch: internal\n");
5472           else
5473             assem_debug("branch: external\n");
5474           if(internal&&is_ds[(ba[i]-start)>>2]) {
5475             ds_assemble_entry(i);
5476           }
5477           else {
5478             add_to_linker((int)out,ba[i],internal);
5479             emit_jmp(0);
5480           }
5481         }
5482         set_jump_target(nottaken,(int)out);
5483       }
5484
5485       if(adj) {
5486         if(!invert) emit_addimm(cc,CLOCK_ADJUST(adj),cc);
5487       }
5488     } // (!unconditional)
5489   } // if(ooo)
5490   else
5491   {
5492     // In-order execution (branch first)
5493     //printf("IOE\n");
5494     int nottaken=0;
5495     if(rt1[i]==31) {
5496       int rt,return_address;
5497       rt=get_reg(branch_regs[i].regmap,31);
5498       if(rt>=0) {
5499         // Save the PC even if the branch is not taken
5500         return_address=start+i*4+8;
5501         emit_movimm(return_address,rt); // PC into link register
5502         #ifdef IMM_PREFETCH
5503         emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5504         #endif
5505       }
5506     }
5507     if(!unconditional) {
5508       //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5509       if(!only32)
5510       {
5511         assert(s1h>=0);
5512         if((opcode2[i]&0x0d)==0) // BLTZ/BLTZL/BLTZAL/BLTZALL
5513         {
5514           emit_test(s1h,s1h);
5515           nottaken=(int)out;
5516           emit_jns(1);
5517         }
5518         if((opcode2[i]&0x0d)==1) // BGEZ/BGEZL/BGEZAL/BGEZALL
5519         {
5520           emit_test(s1h,s1h);
5521           nottaken=(int)out;
5522           emit_js(1);
5523         }
5524       } // if(!only32)
5525       else
5526       {
5527         assert(s1l>=0);
5528         if((opcode2[i]&0x0d)==0) // BLTZ/BLTZL/BLTZAL/BLTZALL
5529         {
5530           emit_test(s1l,s1l);
5531           nottaken=(int)out;
5532           emit_jns(1);
5533         }
5534         if((opcode2[i]&0x0d)==1) // BGEZ/BGEZL/BGEZAL/BGEZALL
5535         {
5536           emit_test(s1l,s1l);
5537           nottaken=(int)out;
5538           emit_js(1);
5539         }
5540       }
5541     } // if(!unconditional)
5542     int adj;
5543     uint64_t ds_unneeded=branch_regs[i].u;
5544     uint64_t ds_unneeded_upper=branch_regs[i].uu;
5545     ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
5546     ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
5547     if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
5548     ds_unneeded|=1;
5549     ds_unneeded_upper|=1;
5550     // branch taken
5551     if(!nevertaken) {
5552       //assem_debug("1:\n");
5553       wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5554                     ds_unneeded,ds_unneeded_upper);
5555       // load regs
5556       load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5557       address_generation(i+1,&branch_regs[i],0);
5558       load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
5559       ds_assemble(i+1,&branch_regs[i]);
5560       cc=get_reg(branch_regs[i].regmap,CCREG);
5561       if(cc==-1) {
5562         emit_loadreg(CCREG,cc=HOST_CCREG);
5563         // CHECK: Is the following instruction (fall thru) allocated ok?
5564       }
5565       assert(cc==HOST_CCREG);
5566       store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5567       do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
5568       assem_debug("cycle count (adj)\n");
5569       if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
5570       load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5571       if(internal)
5572         assem_debug("branch: internal\n");
5573       else
5574         assem_debug("branch: external\n");
5575       if(internal&&is_ds[(ba[i]-start)>>2]) {
5576         ds_assemble_entry(i);
5577       }
5578       else {
5579         add_to_linker((int)out,ba[i],internal);
5580         emit_jmp(0);
5581       }
5582     }
5583     // branch not taken
5584     cop1_usable=prev_cop1_usable;
5585     if(!unconditional) {
5586       set_jump_target(nottaken,(int)out);
5587       assem_debug("1:\n");
5588       if(!likely[i]) {
5589         wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5590                       ds_unneeded,ds_unneeded_upper);
5591         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5592         address_generation(i+1,&branch_regs[i],0);
5593         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5594         ds_assemble(i+1,&branch_regs[i]);
5595       }
5596       cc=get_reg(branch_regs[i].regmap,CCREG);
5597       if(cc==-1&&!likely[i]) {
5598         // Cycle count isn't in a register, temporarily load it then write it out
5599         emit_loadreg(CCREG,HOST_CCREG);
5600         emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),HOST_CCREG);
5601         int jaddr=(int)out;
5602         emit_jns(0);
5603         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5604         emit_storereg(CCREG,HOST_CCREG);
5605       }
5606       else{
5607         cc=get_reg(i_regmap,CCREG);
5608         assert(cc==HOST_CCREG);
5609         emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),cc);
5610         int jaddr=(int)out;
5611         emit_jns(0);
5612         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
5613       }
5614     }
5615   }
5616 }
5617
5618 void fjump_assemble(int i,struct regstat *i_regs)
5619 {
5620   signed char *i_regmap=i_regs->regmap;
5621   int cc;
5622   int match;
5623   match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5624   assem_debug("fmatch=%d\n",match);
5625   int fs,cs;
5626   int eaddr;
5627   int invert=0;
5628   int internal=internal_branch(branch_regs[i].is32,ba[i]);
5629   if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5630   if(!match) invert=1;
5631   #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5632   if(i>(ba[i]-start)>>2) invert=1;
5633   #endif
5634
5635   if(ooo[i]) {
5636     fs=get_reg(branch_regs[i].regmap,FSREG);
5637     address_generation(i+1,i_regs,regs[i].regmap_entry); // Is this okay?
5638   }
5639   else {
5640     fs=get_reg(i_regmap,FSREG);
5641   }
5642
5643   // Check cop1 unusable
5644   if(!cop1_usable) {
5645     cs=get_reg(i_regmap,CSREG);
5646     assert(cs>=0);
5647     emit_testimm(cs,0x20000000);
5648     eaddr=(int)out;
5649     emit_jeq(0);
5650     add_stub(FP_STUB,eaddr,(int)out,i,cs,(int)i_regs,0,0);
5651     cop1_usable=1;
5652   }
5653
5654   if(ooo[i]) {
5655     // Out of order execution (delay slot first)
5656     //printf("OOOE\n");
5657     ds_assemble(i+1,i_regs);
5658     int adj;
5659     uint64_t bc_unneeded=branch_regs[i].u;
5660     uint64_t bc_unneeded_upper=branch_regs[i].uu;
5661     bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
5662     bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
5663     bc_unneeded|=1;
5664     bc_unneeded_upper|=1;
5665     wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5666                   bc_unneeded,bc_unneeded_upper);
5667     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs1[i]);
5668     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5669     cc=get_reg(branch_regs[i].regmap,CCREG);
5670     assert(cc==HOST_CCREG);
5671     do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
5672     assem_debug("cycle count (adj)\n");
5673     if(1) {
5674       int nottaken=0;
5675       if(adj&&!invert) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
5676       if(1) {
5677         assert(fs>=0);
5678         emit_testimm(fs,0x800000);
5679         if(source[i]&0x10000) // BC1T
5680         {
5681           if(invert){
5682             nottaken=(int)out;
5683             emit_jeq(1);
5684           }else{
5685             add_to_linker((int)out,ba[i],internal);
5686             emit_jne(0);
5687           }
5688         }
5689         else // BC1F
5690           if(invert){
5691             nottaken=(int)out;
5692             emit_jne(1);
5693           }else{
5694             add_to_linker((int)out,ba[i],internal);
5695             emit_jeq(0);
5696           }
5697         {
5698         }
5699       } // if(!only32)
5700
5701       if(invert) {
5702         if(adj) emit_addimm(cc,-CLOCK_ADJUST(adj),cc);
5703         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5704         else if(match) emit_addnop(13);
5705         #endif
5706         store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5707         load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5708         if(internal)
5709           assem_debug("branch: internal\n");
5710         else
5711           assem_debug("branch: external\n");
5712         if(internal&&is_ds[(ba[i]-start)>>2]) {
5713           ds_assemble_entry(i);
5714         }
5715         else {
5716           add_to_linker((int)out,ba[i],internal);
5717           emit_jmp(0);
5718         }
5719         set_jump_target(nottaken,(int)out);
5720       }
5721
5722       if(adj) {
5723         if(!invert) emit_addimm(cc,CLOCK_ADJUST(adj),cc);
5724       }
5725     } // (!unconditional)
5726   } // if(ooo)
5727   else
5728   {
5729     // In-order execution (branch first)
5730     //printf("IOE\n");
5731     int nottaken=0;
5732     if(1) {
5733       //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5734       if(1) {
5735         assert(fs>=0);
5736         emit_testimm(fs,0x800000);
5737         if(source[i]&0x10000) // BC1T
5738         {
5739           nottaken=(int)out;
5740           emit_jeq(1);
5741         }
5742         else // BC1F
5743         {
5744           nottaken=(int)out;
5745           emit_jne(1);
5746         }
5747       }
5748     } // if(!unconditional)
5749     int adj;
5750     uint64_t ds_unneeded=branch_regs[i].u;
5751     uint64_t ds_unneeded_upper=branch_regs[i].uu;
5752     ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
5753     ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
5754     if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
5755     ds_unneeded|=1;
5756     ds_unneeded_upper|=1;
5757     // branch taken
5758     //assem_debug("1:\n");
5759     wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5760                   ds_unneeded,ds_unneeded_upper);
5761     // load regs
5762     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5763     address_generation(i+1,&branch_regs[i],0);
5764     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
5765     ds_assemble(i+1,&branch_regs[i]);
5766     cc=get_reg(branch_regs[i].regmap,CCREG);
5767     if(cc==-1) {
5768       emit_loadreg(CCREG,cc=HOST_CCREG);
5769       // CHECK: Is the following instruction (fall thru) allocated ok?
5770     }
5771     assert(cc==HOST_CCREG);
5772     store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5773     do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
5774     assem_debug("cycle count (adj)\n");
5775     if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
5776     load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5777     if(internal)
5778       assem_debug("branch: internal\n");
5779     else
5780       assem_debug("branch: external\n");
5781     if(internal&&is_ds[(ba[i]-start)>>2]) {
5782       ds_assemble_entry(i);
5783     }
5784     else {
5785       add_to_linker((int)out,ba[i],internal);
5786       emit_jmp(0);
5787     }
5788
5789     // branch not taken
5790     if(1) { // <- FIXME (don't need this)
5791       set_jump_target(nottaken,(int)out);
5792       assem_debug("1:\n");
5793       if(!likely[i]) {
5794         wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5795                       ds_unneeded,ds_unneeded_upper);
5796         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5797         address_generation(i+1,&branch_regs[i],0);
5798         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5799         ds_assemble(i+1,&branch_regs[i]);
5800       }
5801       cc=get_reg(branch_regs[i].regmap,CCREG);
5802       if(cc==-1&&!likely[i]) {
5803         // Cycle count isn't in a register, temporarily load it then write it out
5804         emit_loadreg(CCREG,HOST_CCREG);
5805         emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),HOST_CCREG);
5806         int jaddr=(int)out;
5807         emit_jns(0);
5808         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5809         emit_storereg(CCREG,HOST_CCREG);
5810       }
5811       else{
5812         cc=get_reg(i_regmap,CCREG);
5813         assert(cc==HOST_CCREG);
5814         emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),cc);
5815         int jaddr=(int)out;
5816         emit_jns(0);
5817         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
5818       }
5819     }
5820   }
5821 }
5822
5823 static void pagespan_assemble(int i,struct regstat *i_regs)
5824 {
5825   int s1l=get_reg(i_regs->regmap,rs1[i]);
5826   int s1h=get_reg(i_regs->regmap,rs1[i]|64);
5827   int s2l=get_reg(i_regs->regmap,rs2[i]);
5828   int s2h=get_reg(i_regs->regmap,rs2[i]|64);
5829   int taken=0;
5830   int nottaken=0;
5831   int unconditional=0;
5832   if(rs1[i]==0)
5833   {
5834     s1l=s2l;s1h=s2h;
5835     s2l=s2h=-1;
5836   }
5837   else if(rs2[i]==0)
5838   {
5839     s2l=s2h=-1;
5840   }
5841   if((i_regs->is32>>rs1[i])&(i_regs->is32>>rs2[i])&1) {
5842     s1h=s2h=-1;
5843   }
5844   int hr=0;
5845   int addr=-1,alt=-1,ntaddr=-1;
5846   if(i_regs->regmap[HOST_BTREG]<0) {addr=HOST_BTREG;}
5847   else {
5848     while(hr<HOST_REGS)
5849     {
5850       if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
5851          (i_regs->regmap[hr]&63)!=rs1[i] &&
5852          (i_regs->regmap[hr]&63)!=rs2[i] )
5853       {
5854         addr=hr++;break;
5855       }
5856       hr++;
5857     }
5858   }
5859   while(hr<HOST_REGS)
5860   {
5861     if(hr!=EXCLUDE_REG && hr!=HOST_CCREG && hr!=HOST_BTREG &&
5862        (i_regs->regmap[hr]&63)!=rs1[i] &&
5863        (i_regs->regmap[hr]&63)!=rs2[i] )
5864     {
5865       alt=hr++;break;
5866     }
5867     hr++;
5868   }
5869   if((opcode[i]&0x2E)==6) // BLEZ/BGTZ needs another register
5870   {
5871     while(hr<HOST_REGS)
5872     {
5873       if(hr!=EXCLUDE_REG && hr!=HOST_CCREG && hr!=HOST_BTREG &&
5874          (i_regs->regmap[hr]&63)!=rs1[i] &&
5875          (i_regs->regmap[hr]&63)!=rs2[i] )
5876       {
5877         ntaddr=hr;break;
5878       }
5879       hr++;
5880     }
5881   }
5882   assert(hr<HOST_REGS);
5883   if((opcode[i]&0x2e)==4||opcode[i]==0x11) { // BEQ/BNE/BEQL/BNEL/BC1
5884     load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,CCREG,CCREG);
5885   }
5886   emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i]+2),HOST_CCREG);
5887   if(opcode[i]==2) // J
5888   {
5889     unconditional=1;
5890   }
5891   if(opcode[i]==3) // JAL
5892   {
5893     // TODO: mini_ht
5894     int rt=get_reg(i_regs->regmap,31);
5895     emit_movimm(start+i*4+8,rt);
5896     unconditional=1;
5897   }
5898   if(opcode[i]==0&&(opcode2[i]&0x3E)==8) // JR/JALR
5899   {
5900     emit_mov(s1l,addr);
5901     if(opcode2[i]==9) // JALR
5902     {
5903       int rt=get_reg(i_regs->regmap,rt1[i]);
5904       emit_movimm(start+i*4+8,rt);
5905     }
5906   }
5907   if((opcode[i]&0x3f)==4) // BEQ
5908   {
5909     if(rs1[i]==rs2[i])
5910     {
5911       unconditional=1;
5912     }
5913     else
5914     #ifdef HAVE_CMOV_IMM
5915     if(s1h<0) {
5916       if(s2l>=0) emit_cmp(s1l,s2l);
5917       else emit_test(s1l,s1l);
5918       emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
5919     }
5920     else
5921     #endif
5922     {
5923       assert(s1l>=0);
5924       emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
5925       if(s1h>=0) {
5926         if(s2h>=0) emit_cmp(s1h,s2h);
5927         else emit_test(s1h,s1h);
5928         emit_cmovne_reg(alt,addr);
5929       }
5930       if(s2l>=0) emit_cmp(s1l,s2l);
5931       else emit_test(s1l,s1l);
5932       emit_cmovne_reg(alt,addr);
5933     }
5934   }
5935   if((opcode[i]&0x3f)==5) // BNE
5936   {
5937     #ifdef HAVE_CMOV_IMM
5938     if(s1h<0) {
5939       if(s2l>=0) emit_cmp(s1l,s2l);
5940       else emit_test(s1l,s1l);
5941       emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
5942     }
5943     else
5944     #endif
5945     {
5946       assert(s1l>=0);
5947       emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
5948       if(s1h>=0) {
5949         if(s2h>=0) emit_cmp(s1h,s2h);
5950         else emit_test(s1h,s1h);
5951         emit_cmovne_reg(alt,addr);
5952       }
5953       if(s2l>=0) emit_cmp(s1l,s2l);
5954       else emit_test(s1l,s1l);
5955       emit_cmovne_reg(alt,addr);
5956     }
5957   }
5958   if((opcode[i]&0x3f)==0x14) // BEQL
5959   {
5960     if(s1h>=0) {
5961       if(s2h>=0) emit_cmp(s1h,s2h);
5962       else emit_test(s1h,s1h);
5963       nottaken=(int)out;
5964       emit_jne(0);
5965     }
5966     if(s2l>=0) emit_cmp(s1l,s2l);
5967     else emit_test(s1l,s1l);
5968     if(nottaken) set_jump_target(nottaken,(int)out);
5969     nottaken=(int)out;
5970     emit_jne(0);
5971   }
5972   if((opcode[i]&0x3f)==0x15) // BNEL
5973   {
5974     if(s1h>=0) {
5975       if(s2h>=0) emit_cmp(s1h,s2h);
5976       else emit_test(s1h,s1h);
5977       taken=(int)out;
5978       emit_jne(0);
5979     }
5980     if(s2l>=0) emit_cmp(s1l,s2l);
5981     else emit_test(s1l,s1l);
5982     nottaken=(int)out;
5983     emit_jeq(0);
5984     if(taken) set_jump_target(taken,(int)out);
5985   }
5986   if((opcode[i]&0x3f)==6) // BLEZ
5987   {
5988     emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
5989     emit_cmpimm(s1l,1);
5990     if(s1h>=0) emit_mov(addr,ntaddr);
5991     emit_cmovl_reg(alt,addr);
5992     if(s1h>=0) {
5993       emit_test(s1h,s1h);
5994       emit_cmovne_reg(ntaddr,addr);
5995       emit_cmovs_reg(alt,addr);
5996     }
5997   }
5998   if((opcode[i]&0x3f)==7) // BGTZ
5999   {
6000     emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
6001     emit_cmpimm(s1l,1);
6002     if(s1h>=0) emit_mov(addr,alt);
6003     emit_cmovl_reg(ntaddr,addr);
6004     if(s1h>=0) {
6005       emit_test(s1h,s1h);
6006       emit_cmovne_reg(alt,addr);
6007       emit_cmovs_reg(ntaddr,addr);
6008     }
6009   }
6010   if((opcode[i]&0x3f)==0x16) // BLEZL
6011   {
6012     assert((opcode[i]&0x3f)!=0x16);
6013   }
6014   if((opcode[i]&0x3f)==0x17) // BGTZL
6015   {
6016     assert((opcode[i]&0x3f)!=0x17);
6017   }
6018   assert(opcode[i]!=1); // BLTZ/BGEZ
6019
6020   //FIXME: Check CSREG
6021   if(opcode[i]==0x11 && opcode2[i]==0x08 ) {
6022     if((source[i]&0x30000)==0) // BC1F
6023     {
6024       emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
6025       emit_testimm(s1l,0x800000);
6026       emit_cmovne_reg(alt,addr);
6027     }
6028     if((source[i]&0x30000)==0x10000) // BC1T
6029     {
6030       emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
6031       emit_testimm(s1l,0x800000);
6032       emit_cmovne_reg(alt,addr);
6033     }
6034     if((source[i]&0x30000)==0x20000) // BC1FL
6035     {
6036       emit_testimm(s1l,0x800000);
6037       nottaken=(int)out;
6038       emit_jne(0);
6039     }
6040     if((source[i]&0x30000)==0x30000) // BC1TL
6041     {
6042       emit_testimm(s1l,0x800000);
6043       nottaken=(int)out;
6044       emit_jeq(0);
6045     }
6046   }
6047
6048   assert(i_regs->regmap[HOST_CCREG]==CCREG);
6049   wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
6050   if(likely[i]||unconditional)
6051   {
6052     emit_movimm(ba[i],HOST_BTREG);
6053   }
6054   else if(addr!=HOST_BTREG)
6055   {
6056     emit_mov(addr,HOST_BTREG);
6057   }
6058   void *branch_addr=out;
6059   emit_jmp(0);
6060   int target_addr=start+i*4+5;
6061   void *stub=out;
6062   void *compiled_target_addr=check_addr(target_addr);
6063   emit_extjump_ds((int)branch_addr,target_addr);
6064   if(compiled_target_addr) {
6065     set_jump_target((int)branch_addr,(int)compiled_target_addr);
6066     add_link(target_addr,stub);
6067   }
6068   else set_jump_target((int)branch_addr,(int)stub);
6069   if(likely[i]) {
6070     // Not-taken path
6071     set_jump_target((int)nottaken,(int)out);
6072     wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
6073     void *branch_addr=out;
6074     emit_jmp(0);
6075     int target_addr=start+i*4+8;
6076     void *stub=out;
6077     void *compiled_target_addr=check_addr(target_addr);
6078     emit_extjump_ds((int)branch_addr,target_addr);
6079     if(compiled_target_addr) {
6080       set_jump_target((int)branch_addr,(int)compiled_target_addr);
6081       add_link(target_addr,stub);
6082     }
6083     else set_jump_target((int)branch_addr,(int)stub);
6084   }
6085 }
6086
6087 // Assemble the delay slot for the above
6088 static void pagespan_ds()
6089 {
6090   assem_debug("initial delay slot:\n");
6091   u_int vaddr=start+1;
6092   u_int page=get_page(vaddr);
6093   u_int vpage=get_vpage(vaddr);
6094   ll_add(jump_dirty+vpage,vaddr,(void *)out);
6095   do_dirty_stub_ds();
6096   ll_add(jump_in+page,vaddr,(void *)out);
6097   assert(regs[0].regmap_entry[HOST_CCREG]==CCREG);
6098   if(regs[0].regmap[HOST_CCREG]!=CCREG)
6099     wb_register(CCREG,regs[0].regmap_entry,regs[0].wasdirty,regs[0].was32);
6100   if(regs[0].regmap[HOST_BTREG]!=BTREG)
6101     emit_writeword(HOST_BTREG,(int)&branch_target);
6102   load_regs(regs[0].regmap_entry,regs[0].regmap,regs[0].was32,rs1[0],rs2[0]);
6103   address_generation(0,&regs[0],regs[0].regmap_entry);
6104   if(itype[0]==STORE||itype[0]==STORELR||(opcode[0]&0x3b)==0x39||(opcode[0]&0x3b)==0x3a)
6105     load_regs(regs[0].regmap_entry,regs[0].regmap,regs[0].was32,INVCP,INVCP);
6106   cop1_usable=0;
6107   is_delayslot=0;
6108   switch(itype[0]) {
6109     case ALU:
6110       alu_assemble(0,&regs[0]);break;
6111     case IMM16:
6112       imm16_assemble(0,&regs[0]);break;
6113     case SHIFT:
6114       shift_assemble(0,&regs[0]);break;
6115     case SHIFTIMM:
6116       shiftimm_assemble(0,&regs[0]);break;
6117     case LOAD:
6118       load_assemble(0,&regs[0]);break;
6119     case LOADLR:
6120       loadlr_assemble(0,&regs[0]);break;
6121     case STORE:
6122       store_assemble(0,&regs[0]);break;
6123     case STORELR:
6124       storelr_assemble(0,&regs[0]);break;
6125     case COP0:
6126       cop0_assemble(0,&regs[0]);break;
6127     case COP1:
6128       cop1_assemble(0,&regs[0]);break;
6129     case C1LS:
6130       c1ls_assemble(0,&regs[0]);break;
6131     case COP2:
6132       cop2_assemble(0,&regs[0]);break;
6133     case C2LS:
6134       c2ls_assemble(0,&regs[0]);break;
6135     case C2OP:
6136       c2op_assemble(0,&regs[0]);break;
6137     case FCONV:
6138       fconv_assemble(0,&regs[0]);break;
6139     case FLOAT:
6140       float_assemble(0,&regs[0]);break;
6141     case FCOMP:
6142       fcomp_assemble(0,&regs[0]);break;
6143     case MULTDIV:
6144       multdiv_assemble(0,&regs[0]);break;
6145     case MOV:
6146       mov_assemble(0,&regs[0]);break;
6147     case SYSCALL:
6148     case HLECALL:
6149     case INTCALL:
6150     case SPAN:
6151     case UJUMP:
6152     case RJUMP:
6153     case CJUMP:
6154     case SJUMP:
6155     case FJUMP:
6156       SysPrintf("Jump in the delay slot.  This is probably a bug.\n");
6157   }
6158   int btaddr=get_reg(regs[0].regmap,BTREG);
6159   if(btaddr<0) {
6160     btaddr=get_reg(regs[0].regmap,-1);
6161     emit_readword((int)&branch_target,btaddr);
6162   }
6163   assert(btaddr!=HOST_CCREG);
6164   if(regs[0].regmap[HOST_CCREG]!=CCREG) emit_loadreg(CCREG,HOST_CCREG);
6165 #ifdef HOST_IMM8
6166   emit_movimm(start+4,HOST_TEMPREG);
6167   emit_cmp(btaddr,HOST_TEMPREG);
6168 #else
6169   emit_cmpimm(btaddr,start+4);
6170 #endif
6171   int branch=(int)out;
6172   emit_jeq(0);
6173   store_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,-1);
6174   emit_jmp(jump_vaddr_reg[btaddr]);
6175   set_jump_target(branch,(int)out);
6176   store_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,start+4);
6177   load_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,start+4);
6178 }
6179
6180 // Basic liveness analysis for MIPS registers
6181 void unneeded_registers(int istart,int iend,int r)
6182 {
6183   int i;
6184   uint64_t u,uu,gte_u,b,bu,gte_bu;
6185   uint64_t temp_u,temp_uu,temp_gte_u=0;
6186   uint64_t tdep;
6187   uint64_t gte_u_unknown=0;
6188   if(new_dynarec_hacks&NDHACK_GTE_UNNEEDED)
6189     gte_u_unknown=~0ll;
6190   if(iend==slen-1) {
6191     u=1;uu=1;
6192     gte_u=gte_u_unknown;
6193   }else{
6194     u=unneeded_reg[iend+1];
6195     uu=unneeded_reg_upper[iend+1];
6196     u=1;uu=1;
6197     gte_u=gte_unneeded[iend+1];
6198   }
6199
6200   for (i=iend;i>=istart;i--)
6201   {
6202     //printf("unneeded registers i=%d (%d,%d) r=%d\n",i,istart,iend,r);
6203     if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
6204     {
6205       // If subroutine call, flag return address as a possible branch target
6206       if(rt1[i]==31 && i<slen-2) bt[i+2]=1;
6207
6208       if(ba[i]<start || ba[i]>=(start+slen*4))
6209       {
6210         // Branch out of this block, flush all regs
6211         u=1;
6212         uu=1;
6213         gte_u=gte_u_unknown;
6214         /* Hexagon hack
6215         if(itype[i]==UJUMP&&rt1[i]==31)
6216         {
6217           uu=u=0x300C00F; // Discard at, v0-v1, t6-t9
6218         }
6219         if(itype[i]==RJUMP&&rs1[i]==31)
6220         {
6221           uu=u=0x300C0F3; // Discard at, a0-a3, t6-t9
6222         }
6223         if(start>0x80000400&&start<0x80000000+RAM_SIZE) {
6224           if(itype[i]==UJUMP&&rt1[i]==31)
6225           {
6226             //uu=u=0x30300FF0FLL; // Discard at, v0-v1, t0-t9, lo, hi
6227             uu=u=0x300FF0F; // Discard at, v0-v1, t0-t9
6228           }
6229           if(itype[i]==RJUMP&&rs1[i]==31)
6230           {
6231             //uu=u=0x30300FFF3LL; // Discard at, a0-a3, t0-t9, lo, hi
6232             uu=u=0x300FFF3; // Discard at, a0-a3, t0-t9
6233           }
6234         }*/
6235         branch_unneeded_reg[i]=u;
6236         branch_unneeded_reg_upper[i]=uu;
6237         // Merge in delay slot
6238         tdep=(~uu>>rt1[i+1])&1;
6239         u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6240         uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6241         u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6242         uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6243         uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6244         u|=1;uu|=1;
6245         gte_u|=gte_rt[i+1];
6246         gte_u&=~gte_rs[i+1];
6247         // If branch is "likely" (and conditional)
6248         // then we skip the delay slot on the fall-thru path
6249         if(likely[i]) {
6250           if(i<slen-1) {
6251             u&=unneeded_reg[i+2];
6252             uu&=unneeded_reg_upper[i+2];
6253             gte_u&=gte_unneeded[i+2];
6254           }
6255           else
6256           {
6257             u=1;
6258             uu=1;
6259             gte_u=gte_u_unknown;
6260           }
6261         }
6262       }
6263       else
6264       {
6265         // Internal branch, flag target
6266         bt[(ba[i]-start)>>2]=1;
6267         if(ba[i]<=start+i*4) {
6268           // Backward branch
6269           if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
6270           {
6271             // Unconditional branch
6272             temp_u=1;temp_uu=1;
6273             temp_gte_u=0;
6274           } else {
6275             // Conditional branch (not taken case)
6276             temp_u=unneeded_reg[i+2];
6277             temp_uu=unneeded_reg_upper[i+2];
6278             temp_gte_u&=gte_unneeded[i+2];
6279           }
6280           // Merge in delay slot
6281           tdep=(~temp_uu>>rt1[i+1])&1;
6282           temp_u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6283           temp_uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6284           temp_u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6285           temp_uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6286           temp_uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6287           temp_u|=1;temp_uu|=1;
6288           temp_gte_u|=gte_rt[i+1];
6289           temp_gte_u&=~gte_rs[i+1];
6290           // If branch is "likely" (and conditional)
6291           // then we skip the delay slot on the fall-thru path
6292           if(likely[i]) {
6293             if(i<slen-1) {
6294               temp_u&=unneeded_reg[i+2];
6295               temp_uu&=unneeded_reg_upper[i+2];
6296               temp_gte_u&=gte_unneeded[i+2];
6297             }
6298             else
6299             {
6300               temp_u=1;
6301               temp_uu=1;
6302               temp_gte_u=gte_u_unknown;
6303             }
6304           }
6305           tdep=(~temp_uu>>rt1[i])&1;
6306           temp_u|=(1LL<<rt1[i])|(1LL<<rt2[i]);
6307           temp_uu|=(1LL<<rt1[i])|(1LL<<rt2[i]);
6308           temp_u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
6309           temp_uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
6310           temp_uu&=~((tdep<<dep1[i])|(tdep<<dep2[i]));
6311           temp_u|=1;temp_uu|=1;
6312           temp_gte_u|=gte_rt[i];
6313           temp_gte_u&=~gte_rs[i];
6314           unneeded_reg[i]=temp_u;
6315           unneeded_reg_upper[i]=temp_uu;
6316           gte_unneeded[i]=temp_gte_u;
6317           // Only go three levels deep.  This recursion can take an
6318           // excessive amount of time if there are a lot of nested loops.
6319           if(r<2) {
6320             unneeded_registers((ba[i]-start)>>2,i-1,r+1);
6321           }else{
6322             unneeded_reg[(ba[i]-start)>>2]=1;
6323             unneeded_reg_upper[(ba[i]-start)>>2]=1;
6324             gte_unneeded[(ba[i]-start)>>2]=gte_u_unknown;
6325           }
6326         } /*else*/ if(1) {
6327           if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
6328           {
6329             // Unconditional branch
6330             u=unneeded_reg[(ba[i]-start)>>2];
6331             uu=unneeded_reg_upper[(ba[i]-start)>>2];
6332             gte_u=gte_unneeded[(ba[i]-start)>>2];
6333             branch_unneeded_reg[i]=u;
6334             branch_unneeded_reg_upper[i]=uu;
6335         //u=1;
6336         //uu=1;
6337         //branch_unneeded_reg[i]=u;
6338         //branch_unneeded_reg_upper[i]=uu;
6339             // Merge in delay slot
6340             tdep=(~uu>>rt1[i+1])&1;
6341             u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6342             uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6343             u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6344             uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6345             uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6346             u|=1;uu|=1;
6347             gte_u|=gte_rt[i+1];
6348             gte_u&=~gte_rs[i+1];
6349           } else {
6350             // Conditional branch
6351             b=unneeded_reg[(ba[i]-start)>>2];
6352             bu=unneeded_reg_upper[(ba[i]-start)>>2];
6353             gte_bu=gte_unneeded[(ba[i]-start)>>2];
6354             branch_unneeded_reg[i]=b;
6355             branch_unneeded_reg_upper[i]=bu;
6356         //b=1;
6357         //bu=1;
6358         //branch_unneeded_reg[i]=b;
6359         //branch_unneeded_reg_upper[i]=bu;
6360             // Branch delay slot
6361             tdep=(~uu>>rt1[i+1])&1;
6362             b|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6363             bu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6364             b&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6365             bu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6366             bu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6367             b|=1;bu|=1;
6368             gte_bu|=gte_rt[i+1];
6369             gte_bu&=~gte_rs[i+1];
6370             // If branch is "likely" then we skip the
6371             // delay slot on the fall-thru path
6372             if(likely[i]) {
6373               u=b;
6374               uu=bu;
6375               gte_u=gte_bu;
6376               if(i<slen-1) {
6377                 u&=unneeded_reg[i+2];
6378                 uu&=unneeded_reg_upper[i+2];
6379                 gte_u&=gte_unneeded[i+2];
6380         //u=1;
6381         //uu=1;
6382               }
6383             } else {
6384               u&=b;
6385               uu&=bu;
6386               gte_u&=gte_bu;
6387         //u=1;
6388         //uu=1;
6389             }
6390             if(i<slen-1) {
6391               branch_unneeded_reg[i]&=unneeded_reg[i+2];
6392               branch_unneeded_reg_upper[i]&=unneeded_reg_upper[i+2];
6393         //branch_unneeded_reg[i]=1;
6394         //branch_unneeded_reg_upper[i]=1;
6395             } else {
6396               branch_unneeded_reg[i]=1;
6397               branch_unneeded_reg_upper[i]=1;
6398             }
6399           }
6400         }
6401       }
6402     }
6403     else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
6404     {
6405       // SYSCALL instruction (software interrupt)
6406       u=1;
6407       uu=1;
6408     }
6409     else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
6410     {
6411       // ERET instruction (return from interrupt)
6412       u=1;
6413       uu=1;
6414     }
6415     //u=uu=1; // DEBUG
6416     tdep=(~uu>>rt1[i])&1;
6417     // Written registers are unneeded
6418     u|=1LL<<rt1[i];
6419     u|=1LL<<rt2[i];
6420     uu|=1LL<<rt1[i];
6421     uu|=1LL<<rt2[i];
6422     gte_u|=gte_rt[i];
6423     // Accessed registers are needed
6424     u&=~(1LL<<rs1[i]);
6425     u&=~(1LL<<rs2[i]);
6426     uu&=~(1LL<<us1[i]);
6427     uu&=~(1LL<<us2[i]);
6428     gte_u&=~gte_rs[i];
6429     if(gte_rs[i]&&rt1[i]&&(unneeded_reg[i+1]&(1ll<<rt1[i])))
6430       gte_u|=gte_rs[i]&gte_unneeded[i+1]; // MFC2/CFC2 to dead register, unneeded
6431     // Source-target dependencies
6432     uu&=~(tdep<<dep1[i]);
6433     uu&=~(tdep<<dep2[i]);
6434     // R0 is always unneeded
6435     u|=1;uu|=1;
6436     // Save it
6437     unneeded_reg[i]=u;
6438     unneeded_reg_upper[i]=uu;
6439     gte_unneeded[i]=gte_u;
6440     /*
6441     printf("ur (%d,%d) %x: ",istart,iend,start+i*4);
6442     printf("U:");
6443     int r;
6444     for(r=1;r<=CCREG;r++) {
6445       if((unneeded_reg[i]>>r)&1) {
6446         if(r==HIREG) printf(" HI");
6447         else if(r==LOREG) printf(" LO");
6448         else printf(" r%d",r);
6449       }
6450     }
6451     printf(" UU:");
6452     for(r=1;r<=CCREG;r++) {
6453       if(((unneeded_reg_upper[i]&~unneeded_reg[i])>>r)&1) {
6454         if(r==HIREG) printf(" HI");
6455         else if(r==LOREG) printf(" LO");
6456         else printf(" r%d",r);
6457       }
6458     }
6459     printf("\n");*/
6460   }
6461   for (i=iend;i>=istart;i--)
6462   {
6463     unneeded_reg_upper[i]=branch_unneeded_reg_upper[i]=-1LL;
6464   }
6465 }
6466
6467 // Write back dirty registers as soon as we will no longer modify them,
6468 // so that we don't end up with lots of writes at the branches.
6469 void clean_registers(int istart,int iend,int wr)
6470 {
6471   int i;
6472   int r;
6473   u_int will_dirty_i,will_dirty_next,temp_will_dirty;
6474   u_int wont_dirty_i,wont_dirty_next,temp_wont_dirty;
6475   if(iend==slen-1) {
6476     will_dirty_i=will_dirty_next=0;
6477     wont_dirty_i=wont_dirty_next=0;
6478   }else{
6479     will_dirty_i=will_dirty_next=will_dirty[iend+1];
6480     wont_dirty_i=wont_dirty_next=wont_dirty[iend+1];
6481   }
6482   for (i=iend;i>=istart;i--)
6483   {
6484     if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
6485     {
6486       if(ba[i]<start || ba[i]>=(start+slen*4))
6487       {
6488         // Branch out of this block, flush all regs
6489         if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
6490         {
6491           // Unconditional branch
6492           will_dirty_i=0;
6493           wont_dirty_i=0;
6494           // Merge in delay slot (will dirty)
6495           for(r=0;r<HOST_REGS;r++) {
6496             if(r!=EXCLUDE_REG) {
6497               if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
6498               if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
6499               if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
6500               if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
6501               if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6502               if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6503               if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6504               if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
6505               if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
6506               if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
6507               if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
6508               if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6509               if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6510               if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6511             }
6512           }
6513         }
6514         else
6515         {
6516           // Conditional branch
6517           will_dirty_i=0;
6518           wont_dirty_i=wont_dirty_next;
6519           // Merge in delay slot (will dirty)
6520           for(r=0;r<HOST_REGS;r++) {
6521             if(r!=EXCLUDE_REG) {
6522               if(!likely[i]) {
6523                 // Might not dirty if likely branch is not taken
6524                 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
6525                 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
6526                 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
6527                 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
6528                 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6529                 if(branch_regs[i].regmap[r]==0) will_dirty_i&=~(1<<r);
6530                 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6531                 //if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
6532                 //if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
6533                 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
6534                 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
6535                 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6536                 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6537                 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6538               }
6539             }
6540           }
6541         }
6542         // Merge in delay slot (wont dirty)
6543         for(r=0;r<HOST_REGS;r++) {
6544           if(r!=EXCLUDE_REG) {
6545             if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
6546             if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
6547             if((regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
6548             if((regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
6549             if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
6550             if((branch_regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
6551             if((branch_regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
6552             if((branch_regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
6553             if((branch_regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
6554             if(branch_regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
6555           }
6556         }
6557         if(wr) {
6558           #ifndef DESTRUCTIVE_WRITEBACK
6559           branch_regs[i].dirty&=wont_dirty_i;
6560           #endif
6561           branch_regs[i].dirty|=will_dirty_i;
6562         }
6563       }
6564       else
6565       {
6566         // Internal branch
6567         if(ba[i]<=start+i*4) {
6568           // Backward branch
6569           if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
6570           {
6571             // Unconditional branch
6572             temp_will_dirty=0;
6573             temp_wont_dirty=0;
6574             // Merge in delay slot (will dirty)
6575             for(r=0;r<HOST_REGS;r++) {
6576               if(r!=EXCLUDE_REG) {
6577                 if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
6578                 if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
6579                 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
6580                 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
6581                 if((branch_regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
6582                 if(branch_regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
6583                 if(branch_regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
6584                 if((regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
6585                 if((regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
6586                 if((regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
6587                 if((regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
6588                 if((regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
6589                 if(regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
6590                 if(regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
6591               }
6592             }
6593           } else {
6594             // Conditional branch (not taken case)
6595             temp_will_dirty=will_dirty_next;
6596             temp_wont_dirty=wont_dirty_next;
6597             // Merge in delay slot (will dirty)
6598             for(r=0;r<HOST_REGS;r++) {
6599               if(r!=EXCLUDE_REG) {
6600                 if(!likely[i]) {
6601                   // Will not dirty if likely branch is not taken
6602                   if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
6603                   if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
6604                   if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
6605                   if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
6606                   if((branch_regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
6607                   if(branch_regs[i].regmap[r]==0) temp_will_dirty&=~(1<<r);
6608                   if(branch_regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
6609                   //if((regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
6610                   //if((regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
6611                   if((regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
6612                   if((regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
6613                   if((regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
6614                   if(regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
6615                   if(regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
6616                 }
6617               }
6618             }
6619           }
6620           // Merge in delay slot (wont dirty)
6621           for(r=0;r<HOST_REGS;r++) {
6622             if(r!=EXCLUDE_REG) {
6623               if((regs[i].regmap[r]&63)==rt1[i]) temp_wont_dirty|=1<<r;
6624               if((regs[i].regmap[r]&63)==rt2[i]) temp_wont_dirty|=1<<r;
6625               if((regs[i].regmap[r]&63)==rt1[i+1]) temp_wont_dirty|=1<<r;
6626               if((regs[i].regmap[r]&63)==rt2[i+1]) temp_wont_dirty|=1<<r;
6627               if(regs[i].regmap[r]==CCREG) temp_wont_dirty|=1<<r;
6628               if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_wont_dirty|=1<<r;
6629               if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_wont_dirty|=1<<r;
6630               if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_wont_dirty|=1<<r;
6631               if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_wont_dirty|=1<<r;
6632               if(branch_regs[i].regmap[r]==CCREG) temp_wont_dirty|=1<<r;
6633             }
6634           }
6635           // Deal with changed mappings
6636           if(i<iend) {
6637             for(r=0;r<HOST_REGS;r++) {
6638               if(r!=EXCLUDE_REG) {
6639                 if(regs[i].regmap[r]!=regmap_pre[i][r]) {
6640                   temp_will_dirty&=~(1<<r);
6641                   temp_wont_dirty&=~(1<<r);
6642                   if((regmap_pre[i][r]&63)>0 && (regmap_pre[i][r]&63)<34) {
6643                     temp_will_dirty|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
6644                     temp_wont_dirty|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
6645                   } else {
6646                     temp_will_dirty|=1<<r;
6647                     temp_wont_dirty|=1<<r;
6648                   }
6649                 }
6650               }
6651             }
6652           }
6653           if(wr) {
6654             will_dirty[i]=temp_will_dirty;
6655             wont_dirty[i]=temp_wont_dirty;
6656             clean_registers((ba[i]-start)>>2,i-1,0);
6657           }else{
6658             // Limit recursion.  It can take an excessive amount
6659             // of time if there are a lot of nested loops.
6660             will_dirty[(ba[i]-start)>>2]=0;
6661             wont_dirty[(ba[i]-start)>>2]=-1;
6662           }
6663         }
6664         /*else*/ if(1)
6665         {
6666           if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
6667           {
6668             // Unconditional branch
6669             will_dirty_i=0;
6670             wont_dirty_i=0;
6671           //if(ba[i]>start+i*4) { // Disable recursion (for debugging)
6672             for(r=0;r<HOST_REGS;r++) {
6673               if(r!=EXCLUDE_REG) {
6674                 if(branch_regs[i].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
6675                   will_dirty_i|=will_dirty[(ba[i]-start)>>2]&(1<<r);
6676                   wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
6677                 }
6678                 if(branch_regs[i].regmap[r]>=0) {
6679                   will_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>(branch_regs[i].regmap[r]&63))&1)<<r;
6680                   wont_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>(branch_regs[i].regmap[r]&63))&1)<<r;
6681                 }
6682               }
6683             }
6684           //}
6685             // Merge in delay slot
6686             for(r=0;r<HOST_REGS;r++) {
6687               if(r!=EXCLUDE_REG) {
6688                 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
6689                 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
6690                 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
6691                 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
6692                 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6693                 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6694                 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6695                 if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
6696                 if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
6697                 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
6698                 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
6699                 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6700                 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6701                 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6702               }
6703             }
6704           } else {
6705             // Conditional branch
6706             will_dirty_i=will_dirty_next;
6707             wont_dirty_i=wont_dirty_next;
6708           //if(ba[i]>start+i*4) { // Disable recursion (for debugging)
6709             for(r=0;r<HOST_REGS;r++) {
6710               if(r!=EXCLUDE_REG) {
6711                 signed char target_reg=branch_regs[i].regmap[r];
6712                 if(target_reg==regs[(ba[i]-start)>>2].regmap_entry[r]) {
6713                   will_dirty_i&=will_dirty[(ba[i]-start)>>2]&(1<<r);
6714                   wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
6715                 }
6716                 else if(target_reg>=0) {
6717                   will_dirty_i&=((unneeded_reg[(ba[i]-start)>>2]>>(target_reg&63))&1)<<r;
6718                   wont_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>(target_reg&63))&1)<<r;
6719                 }
6720                 // Treat delay slot as part of branch too
6721                 /*if(regs[i+1].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
6722                   will_dirty[i+1]&=will_dirty[(ba[i]-start)>>2]&(1<<r);
6723                   wont_dirty[i+1]|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
6724                 }
6725                 else
6726                 {
6727                   will_dirty[i+1]&=~(1<<r);
6728                 }*/
6729               }
6730             }
6731           //}
6732             // Merge in delay slot
6733             for(r=0;r<HOST_REGS;r++) {
6734               if(r!=EXCLUDE_REG) {
6735                 if(!likely[i]) {
6736                   // Might not dirty if likely branch is not taken
6737                   if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
6738                   if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
6739                   if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
6740                   if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
6741                   if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6742                   if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6743                   if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6744                   //if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
6745                   //if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
6746                   if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
6747                   if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
6748                   if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6749                   if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6750                   if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6751                 }
6752               }
6753             }
6754           }
6755           // Merge in delay slot (won't dirty)
6756           for(r=0;r<HOST_REGS;r++) {
6757             if(r!=EXCLUDE_REG) {
6758               if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
6759               if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
6760               if((regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
6761               if((regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
6762               if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
6763               if((branch_regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
6764               if((branch_regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
6765               if((branch_regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
6766               if((branch_regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
6767               if(branch_regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
6768             }
6769           }
6770           if(wr) {
6771             #ifndef DESTRUCTIVE_WRITEBACK
6772             branch_regs[i].dirty&=wont_dirty_i;
6773             #endif
6774             branch_regs[i].dirty|=will_dirty_i;
6775           }
6776         }
6777       }
6778     }
6779     else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
6780     {
6781       // SYSCALL instruction (software interrupt)
6782       will_dirty_i=0;
6783       wont_dirty_i=0;
6784     }
6785     else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
6786     {
6787       // ERET instruction (return from interrupt)
6788       will_dirty_i=0;
6789       wont_dirty_i=0;
6790     }
6791     will_dirty_next=will_dirty_i;
6792     wont_dirty_next=wont_dirty_i;
6793     for(r=0;r<HOST_REGS;r++) {
6794       if(r!=EXCLUDE_REG) {
6795         if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
6796         if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
6797         if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6798         if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6799         if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6800         if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
6801         if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
6802         if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
6803         if(i>istart) {
6804           if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=FJUMP)
6805           {
6806             // Don't store a register immediately after writing it,
6807             // may prevent dual-issue.
6808             if((regs[i].regmap[r]&63)==rt1[i-1]) wont_dirty_i|=1<<r;
6809             if((regs[i].regmap[r]&63)==rt2[i-1]) wont_dirty_i|=1<<r;
6810           }
6811         }
6812       }
6813     }
6814     // Save it
6815     will_dirty[i]=will_dirty_i;
6816     wont_dirty[i]=wont_dirty_i;
6817     // Mark registers that won't be dirtied as not dirty
6818     if(wr) {
6819       /*printf("wr (%d,%d) %x will:",istart,iend,start+i*4);
6820       for(r=0;r<HOST_REGS;r++) {
6821         if((will_dirty_i>>r)&1) {
6822           printf(" r%d",r);
6823         }
6824       }
6825       printf("\n");*/
6826
6827       //if(i==istart||(itype[i-1]!=RJUMP&&itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=FJUMP)) {
6828         regs[i].dirty|=will_dirty_i;
6829         #ifndef DESTRUCTIVE_WRITEBACK
6830         regs[i].dirty&=wont_dirty_i;
6831         if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
6832         {
6833           if(i<iend-1&&itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000) {
6834             for(r=0;r<HOST_REGS;r++) {
6835               if(r!=EXCLUDE_REG) {
6836                 if(regs[i].regmap[r]==regmap_pre[i+2][r]) {
6837                   regs[i+2].wasdirty&=wont_dirty_i|~(1<<r);
6838                 }else {/*printf("i: %x (%d) mismatch(+2): %d\n",start+i*4,i,r);assert(!((wont_dirty_i>>r)&1));*/}
6839               }
6840             }
6841           }
6842         }
6843         else
6844         {
6845           if(i<iend) {
6846             for(r=0;r<HOST_REGS;r++) {
6847               if(r!=EXCLUDE_REG) {
6848                 if(regs[i].regmap[r]==regmap_pre[i+1][r]) {
6849                   regs[i+1].wasdirty&=wont_dirty_i|~(1<<r);
6850                 }else {/*printf("i: %x (%d) mismatch(+1): %d\n",start+i*4,i,r);assert(!((wont_dirty_i>>r)&1));*/}
6851               }
6852             }
6853           }
6854         }
6855         #endif
6856       //}
6857     }
6858     // Deal with changed mappings
6859     temp_will_dirty=will_dirty_i;
6860     temp_wont_dirty=wont_dirty_i;
6861     for(r=0;r<HOST_REGS;r++) {
6862       if(r!=EXCLUDE_REG) {
6863         int nr;
6864         if(regs[i].regmap[r]==regmap_pre[i][r]) {
6865           if(wr) {
6866             #ifndef DESTRUCTIVE_WRITEBACK
6867             regs[i].wasdirty&=wont_dirty_i|~(1<<r);
6868             #endif
6869             regs[i].wasdirty|=will_dirty_i&(1<<r);
6870           }
6871         }
6872         else if(regmap_pre[i][r]>=0&&(nr=get_reg(regs[i].regmap,regmap_pre[i][r]))>=0) {
6873           // Register moved to a different register
6874           will_dirty_i&=~(1<<r);
6875           wont_dirty_i&=~(1<<r);
6876           will_dirty_i|=((temp_will_dirty>>nr)&1)<<r;
6877           wont_dirty_i|=((temp_wont_dirty>>nr)&1)<<r;
6878           if(wr) {
6879             #ifndef DESTRUCTIVE_WRITEBACK
6880             regs[i].wasdirty&=wont_dirty_i|~(1<<r);
6881             #endif
6882             regs[i].wasdirty|=will_dirty_i&(1<<r);
6883           }
6884         }
6885         else {
6886           will_dirty_i&=~(1<<r);
6887           wont_dirty_i&=~(1<<r);
6888           if((regmap_pre[i][r]&63)>0 && (regmap_pre[i][r]&63)<34) {
6889             will_dirty_i|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
6890             wont_dirty_i|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
6891           } else {
6892             wont_dirty_i|=1<<r;
6893             /*printf("i: %x (%d) mismatch: %d\n",start+i*4,i,r);assert(!((will_dirty>>r)&1));*/
6894           }
6895         }
6896       }
6897     }
6898   }
6899 }
6900
6901 #ifdef DISASM
6902   /* disassembly */
6903 void disassemble_inst(int i)
6904 {
6905     if (bt[i]) printf("*"); else printf(" ");
6906     switch(itype[i]) {
6907       case UJUMP:
6908         printf (" %x: %s %8x\n",start+i*4,insn[i],ba[i]);break;
6909       case CJUMP:
6910         printf (" %x: %s r%d,r%d,%8x\n",start+i*4,insn[i],rs1[i],rs2[i],i?start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14):*ba);break;
6911       case SJUMP:
6912         printf (" %x: %s r%d,%8x\n",start+i*4,insn[i],rs1[i],start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14));break;
6913       case FJUMP:
6914         printf (" %x: %s %8x\n",start+i*4,insn[i],ba[i]);break;
6915       case RJUMP:
6916         if (opcode[i]==0x9&&rt1[i]!=31)
6917           printf (" %x: %s r%d,r%d\n",start+i*4,insn[i],rt1[i],rs1[i]);
6918         else
6919           printf (" %x: %s r%d\n",start+i*4,insn[i],rs1[i]);
6920         break;
6921       case SPAN:
6922         printf (" %x: %s (pagespan) r%d,r%d,%8x\n",start+i*4,insn[i],rs1[i],rs2[i],ba[i]);break;
6923       case IMM16:
6924         if(opcode[i]==0xf) //LUI
6925           printf (" %x: %s r%d,%4x0000\n",start+i*4,insn[i],rt1[i],imm[i]&0xffff);
6926         else
6927           printf (" %x: %s r%d,r%d,%d\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
6928         break;
6929       case LOAD:
6930       case LOADLR:
6931         printf (" %x: %s r%d,r%d+%x\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
6932         break;
6933       case STORE:
6934       case STORELR:
6935         printf (" %x: %s r%d,r%d+%x\n",start+i*4,insn[i],rs2[i],rs1[i],imm[i]);
6936         break;
6937       case ALU:
6938       case SHIFT:
6939         printf (" %x: %s r%d,r%d,r%d\n",start+i*4,insn[i],rt1[i],rs1[i],rs2[i]);
6940         break;
6941       case MULTDIV:
6942         printf (" %x: %s r%d,r%d\n",start+i*4,insn[i],rs1[i],rs2[i]);
6943         break;
6944       case SHIFTIMM:
6945         printf (" %x: %s r%d,r%d,%d\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
6946         break;
6947       case MOV:
6948         if((opcode2[i]&0x1d)==0x10)
6949           printf (" %x: %s r%d\n",start+i*4,insn[i],rt1[i]);
6950         else if((opcode2[i]&0x1d)==0x11)
6951           printf (" %x: %s r%d\n",start+i*4,insn[i],rs1[i]);
6952         else
6953           printf (" %x: %s\n",start+i*4,insn[i]);
6954         break;
6955       case COP0:
6956         if(opcode2[i]==0)
6957           printf (" %x: %s r%d,cpr0[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC0
6958         else if(opcode2[i]==4)
6959           printf (" %x: %s r%d,cpr0[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC0
6960         else printf (" %x: %s\n",start+i*4,insn[i]);
6961         break;
6962       case COP1:
6963         if(opcode2[i]<3)
6964           printf (" %x: %s r%d,cpr1[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC1
6965         else if(opcode2[i]>3)
6966           printf (" %x: %s r%d,cpr1[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC1
6967         else printf (" %x: %s\n",start+i*4,insn[i]);
6968         break;
6969       case COP2:
6970         if(opcode2[i]<3)
6971           printf (" %x: %s r%d,cpr2[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC2
6972         else if(opcode2[i]>3)
6973           printf (" %x: %s r%d,cpr2[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC2
6974         else printf (" %x: %s\n",start+i*4,insn[i]);
6975         break;
6976       case C1LS:
6977         printf (" %x: %s cpr1[%d],r%d+%x\n",start+i*4,insn[i],(source[i]>>16)&0x1f,rs1[i],imm[i]);
6978         break;
6979       case C2LS:
6980         printf (" %x: %s cpr2[%d],r%d+%x\n",start+i*4,insn[i],(source[i]>>16)&0x1f,rs1[i],imm[i]);
6981         break;
6982       case INTCALL:
6983         printf (" %x: %s (INTCALL)\n",start+i*4,insn[i]);
6984         break;
6985       default:
6986         //printf (" %s %8x\n",insn[i],source[i]);
6987         printf (" %x: %s\n",start+i*4,insn[i]);
6988     }
6989 }
6990 #else
6991 static void disassemble_inst(int i) {}
6992 #endif // DISASM
6993
6994 #define DRC_TEST_VAL 0x74657374
6995
6996 static int new_dynarec_test(void)
6997 {
6998   int (*testfunc)(void) = (void *)out;
6999   void *beginning;
7000   int ret;
7001
7002   beginning = start_block();
7003   emit_movimm(DRC_TEST_VAL,0); // test
7004   emit_jmpreg(14);
7005   literal_pool(0);
7006   end_block(beginning);
7007   SysPrintf("testing if we can run recompiled code..\n");
7008   ret = testfunc();
7009   if (ret == DRC_TEST_VAL)
7010     SysPrintf("test passed.\n");
7011   else
7012     SysPrintf("test failed: %08x\n", ret);
7013   out=(u_char *)BASE_ADDR;
7014   return ret == DRC_TEST_VAL;
7015 }
7016
7017 // clear the state completely, instead of just marking
7018 // things invalid like invalidate_all_pages() does
7019 void new_dynarec_clear_full()
7020 {
7021   int n;
7022   out=(u_char *)BASE_ADDR;
7023   memset(invalid_code,1,sizeof(invalid_code));
7024   memset(hash_table,0xff,sizeof(hash_table));
7025   memset(mini_ht,-1,sizeof(mini_ht));
7026   memset(restore_candidate,0,sizeof(restore_candidate));
7027   memset(shadow,0,sizeof(shadow));
7028   copy=shadow;
7029   expirep=16384; // Expiry pointer, +2 blocks
7030   pending_exception=0;
7031   literalcount=0;
7032   stop_after_jal=0;
7033   inv_code_start=inv_code_end=~0;
7034   // TLB
7035   for(n=0;n<4096;n++) ll_clear(jump_in+n);
7036   for(n=0;n<4096;n++) ll_clear(jump_out+n);
7037   for(n=0;n<4096;n++) ll_clear(jump_dirty+n);
7038 }
7039
7040 void new_dynarec_init()
7041 {
7042   SysPrintf("Init new dynarec\n");
7043
7044   // allocate/prepare a buffer for translation cache
7045   // see assem_arm.h for some explanation
7046 #if   defined(BASE_ADDR_FIXED)
7047   if (mmap (translation_cache, 1 << TARGET_SIZE_2,
7048             PROT_READ | PROT_WRITE | PROT_EXEC,
7049             MAP_PRIVATE | MAP_ANONYMOUS,
7050             -1, 0) != translation_cache) {
7051     SysPrintf("mmap() failed: %s\n", strerror(errno));
7052     SysPrintf("disable BASE_ADDR_FIXED and recompile\n");
7053     abort();
7054   }
7055 #elif defined(BASE_ADDR_DYNAMIC)
7056   #ifdef VITA
7057   sceBlock = sceKernelAllocMemBlockForVM("code", 1 << TARGET_SIZE_2);
7058   if (sceBlock < 0)
7059     SysPrintf("sceKernelAllocMemBlockForVM failed\n");
7060   int ret = sceKernelGetMemBlockBase(sceBlock, (void **)&translation_cache);
7061   if (ret < 0)
7062     SysPrintf("sceKernelGetMemBlockBase failed\n");
7063   #else
7064   translation_cache = mmap (NULL, 1 << TARGET_SIZE_2,
7065             PROT_READ | PROT_WRITE | PROT_EXEC,
7066             MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
7067   if (translation_cache == MAP_FAILED) {
7068     SysPrintf("mmap() failed: %s\n", strerror(errno));
7069     abort();
7070   }
7071   #endif
7072 #else
7073   #ifndef NO_WRITE_EXEC
7074   // not all systems allow execute in data segment by default
7075   if (mprotect((void *)BASE_ADDR, 1<<TARGET_SIZE_2, PROT_READ | PROT_WRITE | PROT_EXEC) != 0)
7076     SysPrintf("mprotect() failed: %s\n", strerror(errno));
7077   #endif
7078 #endif
7079   out=(u_char *)BASE_ADDR;
7080   cycle_multiplier=200;
7081   new_dynarec_clear_full();
7082 #ifdef HOST_IMM8
7083   // Copy this into local area so we don't have to put it in every literal pool
7084   invc_ptr=invalid_code;
7085 #endif
7086   arch_init();
7087   new_dynarec_test();
7088 #ifndef RAM_FIXED
7089   ram_offset=(u_int)rdram-0x80000000;
7090 #endif
7091   if (ram_offset!=0)
7092     SysPrintf("warning: RAM is not directly mapped, performance will suffer\n");
7093 }
7094
7095 void new_dynarec_cleanup()
7096 {
7097   int n;
7098 #if defined(BASE_ADDR_FIXED) || defined(BASE_ADDR_DYNAMIC)
7099   #ifdef VITA
7100   sceKernelFreeMemBlock(sceBlock);
7101   sceBlock = -1;
7102   #else
7103   if (munmap ((void *)BASE_ADDR, 1<<TARGET_SIZE_2) < 0)
7104     SysPrintf("munmap() failed\n");
7105   #endif
7106 #endif
7107   for(n=0;n<4096;n++) ll_clear(jump_in+n);
7108   for(n=0;n<4096;n++) ll_clear(jump_out+n);
7109   for(n=0;n<4096;n++) ll_clear(jump_dirty+n);
7110   #ifdef ROM_COPY
7111   if (munmap (ROM_COPY, 67108864) < 0) {SysPrintf("munmap() failed\n");}
7112   #endif
7113 }
7114
7115 static u_int *get_source_start(u_int addr, u_int *limit)
7116 {
7117   if (addr < 0x00200000 ||
7118     (0xa0000000 <= addr && addr < 0xa0200000)) {
7119     // used for BIOS calls mostly?
7120     *limit = (addr&0xa0000000)|0x00200000;
7121     return (u_int *)((u_int)rdram + (addr&0x1fffff));
7122   }
7123   else if (!Config.HLE && (
7124     /* (0x9fc00000 <= addr && addr < 0x9fc80000) ||*/
7125     (0xbfc00000 <= addr && addr < 0xbfc80000))) {
7126     // BIOS
7127     *limit = (addr & 0xfff00000) | 0x80000;
7128     return (u_int *)((u_int)psxR + (addr&0x7ffff));
7129   }
7130   else if (addr >= 0x80000000 && addr < 0x80000000+RAM_SIZE) {
7131     *limit = (addr & 0x80600000) + 0x00200000;
7132     return (u_int *)((u_int)rdram + (addr&0x1fffff));
7133   }
7134   return NULL;
7135 }
7136
7137 static u_int scan_for_ret(u_int addr)
7138 {
7139   u_int limit = 0;
7140   u_int *mem;
7141
7142   mem = get_source_start(addr, &limit);
7143   if (mem == NULL)
7144     return addr;
7145
7146   if (limit > addr + 0x1000)
7147     limit = addr + 0x1000;
7148   for (; addr < limit; addr += 4, mem++) {
7149     if (*mem == 0x03e00008) // jr $ra
7150       return addr + 8;
7151   }
7152   return addr;
7153 }
7154
7155 struct savestate_block {
7156   uint32_t addr;
7157   uint32_t regflags;
7158 };
7159
7160 static int addr_cmp(const void *p1_, const void *p2_)
7161 {
7162   const struct savestate_block *p1 = p1_, *p2 = p2_;
7163   return p1->addr - p2->addr;
7164 }
7165
7166 int new_dynarec_save_blocks(void *save, int size)
7167 {
7168   struct savestate_block *blocks = save;
7169   int maxcount = size / sizeof(blocks[0]);
7170   struct savestate_block tmp_blocks[1024];
7171   struct ll_entry *head;
7172   int p, s, d, o, bcnt;
7173   u_int addr;
7174
7175   o = 0;
7176   for (p = 0; p < sizeof(jump_in) / sizeof(jump_in[0]); p++) {
7177     bcnt = 0;
7178     for (head = jump_in[p]; head != NULL; head = head->next) {
7179       tmp_blocks[bcnt].addr = head->vaddr;
7180       tmp_blocks[bcnt].regflags = head->reg_sv_flags;
7181       bcnt++;
7182     }
7183     if (bcnt < 1)
7184       continue;
7185     qsort(tmp_blocks, bcnt, sizeof(tmp_blocks[0]), addr_cmp);
7186
7187     addr = tmp_blocks[0].addr;
7188     for (s = d = 0; s < bcnt; s++) {
7189       if (tmp_blocks[s].addr < addr)
7190         continue;
7191       if (d == 0 || tmp_blocks[d-1].addr != tmp_blocks[s].addr)
7192         tmp_blocks[d++] = tmp_blocks[s];
7193       addr = scan_for_ret(tmp_blocks[s].addr);
7194     }
7195
7196     if (o + d > maxcount)
7197       d = maxcount - o;
7198     memcpy(&blocks[o], tmp_blocks, d * sizeof(blocks[0]));
7199     o += d;
7200   }
7201
7202   return o * sizeof(blocks[0]);
7203 }
7204
7205 void new_dynarec_load_blocks(const void *save, int size)
7206 {
7207   const struct savestate_block *blocks = save;
7208   int count = size / sizeof(blocks[0]);
7209   u_int regs_save[32];
7210   uint32_t f;
7211   int i, b;
7212
7213   get_addr(psxRegs.pc);
7214
7215   // change GPRs for speculation to at least partially work..
7216   memcpy(regs_save, &psxRegs.GPR, sizeof(regs_save));
7217   for (i = 1; i < 32; i++)
7218     psxRegs.GPR.r[i] = 0x80000000;
7219
7220   for (b = 0; b < count; b++) {
7221     for (f = blocks[b].regflags, i = 0; f; f >>= 1, i++) {
7222       if (f & 1)
7223         psxRegs.GPR.r[i] = 0x1f800000;
7224     }
7225
7226     get_addr(blocks[b].addr);
7227
7228     for (f = blocks[b].regflags, i = 0; f; f >>= 1, i++) {
7229       if (f & 1)
7230         psxRegs.GPR.r[i] = 0x80000000;
7231     }
7232   }
7233
7234   memcpy(&psxRegs.GPR, regs_save, sizeof(regs_save));
7235 }
7236
7237 int new_recompile_block(int addr)
7238 {
7239   u_int pagelimit = 0;
7240   u_int state_rflags = 0;
7241   int i;
7242
7243   assem_debug("NOTCOMPILED: addr = %x -> %x\n", (int)addr, (int)out);
7244   //printf("NOTCOMPILED: addr = %x -> %x\n", (int)addr, (int)out);
7245   //printf("TRACE: count=%d next=%d (compile %x)\n",Count,next_interupt,addr);
7246   //if(debug)
7247   //printf("TRACE: count=%d next=%d (checksum %x)\n",Count,next_interupt,mchecksum());
7248   //printf("fpu mapping=%x enabled=%x\n",(Status & 0x04000000)>>26,(Status & 0x20000000)>>29);
7249   /*if(Count>=312978186) {
7250     rlist();
7251   }*/
7252   //rlist();
7253
7254   // this is just for speculation
7255   for (i = 1; i < 32; i++) {
7256     if ((psxRegs.GPR.r[i] & 0xffff0000) == 0x1f800000)
7257       state_rflags |= 1 << i;
7258   }
7259
7260   start = (u_int)addr&~3;
7261   //assert(((u_int)addr&1)==0);
7262   new_dynarec_did_compile=1;
7263   if (Config.HLE && start == 0x80001000) // hlecall
7264   {
7265     // XXX: is this enough? Maybe check hleSoftCall?
7266     void *beginning=start_block();
7267     u_int page=get_page(start);
7268
7269     invalid_code[start>>12]=0;
7270     emit_movimm(start,0);
7271     emit_writeword(0,(int)&pcaddr);
7272     emit_jmp((int)new_dyna_leave);
7273     literal_pool(0);
7274     end_block(beginning);
7275     ll_add_flags(jump_in+page,start,state_rflags,(void *)beginning);
7276     return 0;
7277   }
7278
7279   source = get_source_start(start, &pagelimit);
7280   if (source == NULL) {
7281     SysPrintf("Compile at bogus memory address: %08x\n", addr);
7282     exit(1);
7283   }
7284
7285   /* Pass 1: disassemble */
7286   /* Pass 2: register dependencies, branch targets */
7287   /* Pass 3: register allocation */
7288   /* Pass 4: branch dependencies */
7289   /* Pass 5: pre-alloc */
7290   /* Pass 6: optimize clean/dirty state */
7291   /* Pass 7: flag 32-bit registers */
7292   /* Pass 8: assembly */
7293   /* Pass 9: linker */
7294   /* Pass 10: garbage collection / free memory */
7295
7296   int j;
7297   int done=0;
7298   unsigned int type,op,op2;
7299
7300   //printf("addr = %x source = %x %x\n", addr,source,source[0]);
7301
7302   /* Pass 1 disassembly */
7303
7304   for(i=0;!done;i++) {
7305     bt[i]=0;likely[i]=0;ooo[i]=0;op2=0;
7306     minimum_free_regs[i]=0;
7307     opcode[i]=op=source[i]>>26;
7308     switch(op)
7309     {
7310       case 0x00: strcpy(insn[i],"special"); type=NI;
7311         op2=source[i]&0x3f;
7312         switch(op2)
7313         {
7314           case 0x00: strcpy(insn[i],"SLL"); type=SHIFTIMM; break;
7315           case 0x02: strcpy(insn[i],"SRL"); type=SHIFTIMM; break;
7316           case 0x03: strcpy(insn[i],"SRA"); type=SHIFTIMM; break;
7317           case 0x04: strcpy(insn[i],"SLLV"); type=SHIFT; break;
7318           case 0x06: strcpy(insn[i],"SRLV"); type=SHIFT; break;
7319           case 0x07: strcpy(insn[i],"SRAV"); type=SHIFT; break;
7320           case 0x08: strcpy(insn[i],"JR"); type=RJUMP; break;
7321           case 0x09: strcpy(insn[i],"JALR"); type=RJUMP; break;
7322           case 0x0C: strcpy(insn[i],"SYSCALL"); type=SYSCALL; break;
7323           case 0x0D: strcpy(insn[i],"BREAK"); type=OTHER; break;
7324           case 0x0F: strcpy(insn[i],"SYNC"); type=OTHER; break;
7325           case 0x10: strcpy(insn[i],"MFHI"); type=MOV; break;
7326           case 0x11: strcpy(insn[i],"MTHI"); type=MOV; break;
7327           case 0x12: strcpy(insn[i],"MFLO"); type=MOV; break;
7328           case 0x13: strcpy(insn[i],"MTLO"); type=MOV; break;
7329           case 0x18: strcpy(insn[i],"MULT"); type=MULTDIV; break;
7330           case 0x19: strcpy(insn[i],"MULTU"); type=MULTDIV; break;
7331           case 0x1A: strcpy(insn[i],"DIV"); type=MULTDIV; break;
7332           case 0x1B: strcpy(insn[i],"DIVU"); type=MULTDIV; break;
7333           case 0x20: strcpy(insn[i],"ADD"); type=ALU; break;
7334           case 0x21: strcpy(insn[i],"ADDU"); type=ALU; break;
7335           case 0x22: strcpy(insn[i],"SUB"); type=ALU; break;
7336           case 0x23: strcpy(insn[i],"SUBU"); type=ALU; break;
7337           case 0x24: strcpy(insn[i],"AND"); type=ALU; break;
7338           case 0x25: strcpy(insn[i],"OR"); type=ALU; break;
7339           case 0x26: strcpy(insn[i],"XOR"); type=ALU; break;
7340           case 0x27: strcpy(insn[i],"NOR"); type=ALU; break;
7341           case 0x2A: strcpy(insn[i],"SLT"); type=ALU; break;
7342           case 0x2B: strcpy(insn[i],"SLTU"); type=ALU; break;
7343           case 0x30: strcpy(insn[i],"TGE"); type=NI; break;
7344           case 0x31: strcpy(insn[i],"TGEU"); type=NI; break;
7345           case 0x32: strcpy(insn[i],"TLT"); type=NI; break;
7346           case 0x33: strcpy(insn[i],"TLTU"); type=NI; break;
7347           case 0x34: strcpy(insn[i],"TEQ"); type=NI; break;
7348           case 0x36: strcpy(insn[i],"TNE"); type=NI; break;
7349 #if 0
7350           case 0x14: strcpy(insn[i],"DSLLV"); type=SHIFT; break;
7351           case 0x16: strcpy(insn[i],"DSRLV"); type=SHIFT; break;
7352           case 0x17: strcpy(insn[i],"DSRAV"); type=SHIFT; break;
7353           case 0x1C: strcpy(insn[i],"DMULT"); type=MULTDIV; break;
7354           case 0x1D: strcpy(insn[i],"DMULTU"); type=MULTDIV; break;
7355           case 0x1E: strcpy(insn[i],"DDIV"); type=MULTDIV; break;
7356           case 0x1F: strcpy(insn[i],"DDIVU"); type=MULTDIV; break;
7357           case 0x2C: strcpy(insn[i],"DADD"); type=ALU; break;
7358           case 0x2D: strcpy(insn[i],"DADDU"); type=ALU; break;
7359           case 0x2E: strcpy(insn[i],"DSUB"); type=ALU; break;
7360           case 0x2F: strcpy(insn[i],"DSUBU"); type=ALU; break;
7361           case 0x38: strcpy(insn[i],"DSLL"); type=SHIFTIMM; break;
7362           case 0x3A: strcpy(insn[i],"DSRL"); type=SHIFTIMM; break;
7363           case 0x3B: strcpy(insn[i],"DSRA"); type=SHIFTIMM; break;
7364           case 0x3C: strcpy(insn[i],"DSLL32"); type=SHIFTIMM; break;
7365           case 0x3E: strcpy(insn[i],"DSRL32"); type=SHIFTIMM; break;
7366           case 0x3F: strcpy(insn[i],"DSRA32"); type=SHIFTIMM; break;
7367 #endif
7368         }
7369         break;
7370       case 0x01: strcpy(insn[i],"regimm"); type=NI;
7371         op2=(source[i]>>16)&0x1f;
7372         switch(op2)
7373         {
7374           case 0x00: strcpy(insn[i],"BLTZ"); type=SJUMP; break;
7375           case 0x01: strcpy(insn[i],"BGEZ"); type=SJUMP; break;
7376           case 0x02: strcpy(insn[i],"BLTZL"); type=SJUMP; break;
7377           case 0x03: strcpy(insn[i],"BGEZL"); type=SJUMP; break;
7378           case 0x08: strcpy(insn[i],"TGEI"); type=NI; break;
7379           case 0x09: strcpy(insn[i],"TGEIU"); type=NI; break;
7380           case 0x0A: strcpy(insn[i],"TLTI"); type=NI; break;
7381           case 0x0B: strcpy(insn[i],"TLTIU"); type=NI; break;
7382           case 0x0C: strcpy(insn[i],"TEQI"); type=NI; break;
7383           case 0x0E: strcpy(insn[i],"TNEI"); type=NI; break;
7384           case 0x10: strcpy(insn[i],"BLTZAL"); type=SJUMP; break;
7385           case 0x11: strcpy(insn[i],"BGEZAL"); type=SJUMP; break;
7386           case 0x12: strcpy(insn[i],"BLTZALL"); type=SJUMP; break;
7387           case 0x13: strcpy(insn[i],"BGEZALL"); type=SJUMP; break;
7388         }
7389         break;
7390       case 0x02: strcpy(insn[i],"J"); type=UJUMP; break;
7391       case 0x03: strcpy(insn[i],"JAL"); type=UJUMP; break;
7392       case 0x04: strcpy(insn[i],"BEQ"); type=CJUMP; break;
7393       case 0x05: strcpy(insn[i],"BNE"); type=CJUMP; break;
7394       case 0x06: strcpy(insn[i],"BLEZ"); type=CJUMP; break;
7395       case 0x07: strcpy(insn[i],"BGTZ"); type=CJUMP; break;
7396       case 0x08: strcpy(insn[i],"ADDI"); type=IMM16; break;
7397       case 0x09: strcpy(insn[i],"ADDIU"); type=IMM16; break;
7398       case 0x0A: strcpy(insn[i],"SLTI"); type=IMM16; break;
7399       case 0x0B: strcpy(insn[i],"SLTIU"); type=IMM16; break;
7400       case 0x0C: strcpy(insn[i],"ANDI"); type=IMM16; break;
7401       case 0x0D: strcpy(insn[i],"ORI"); type=IMM16; break;
7402       case 0x0E: strcpy(insn[i],"XORI"); type=IMM16; break;
7403       case 0x0F: strcpy(insn[i],"LUI"); type=IMM16; break;
7404       case 0x10: strcpy(insn[i],"cop0"); type=NI;
7405         op2=(source[i]>>21)&0x1f;
7406         switch(op2)
7407         {
7408           case 0x00: strcpy(insn[i],"MFC0"); type=COP0; break;
7409           case 0x04: strcpy(insn[i],"MTC0"); type=COP0; break;
7410           case 0x10: strcpy(insn[i],"tlb"); type=NI;
7411           switch(source[i]&0x3f)
7412           {
7413             case 0x01: strcpy(insn[i],"TLBR"); type=COP0; break;
7414             case 0x02: strcpy(insn[i],"TLBWI"); type=COP0; break;
7415             case 0x06: strcpy(insn[i],"TLBWR"); type=COP0; break;
7416             case 0x08: strcpy(insn[i],"TLBP"); type=COP0; break;
7417             case 0x10: strcpy(insn[i],"RFE"); type=COP0; break;
7418             //case 0x18: strcpy(insn[i],"ERET"); type=COP0; break;
7419           }
7420         }
7421         break;
7422       case 0x11: strcpy(insn[i],"cop1"); type=NI;
7423         op2=(source[i]>>21)&0x1f;
7424         switch(op2)
7425         {
7426           case 0x00: strcpy(insn[i],"MFC1"); type=COP1; break;
7427           case 0x01: strcpy(insn[i],"DMFC1"); type=COP1; break;
7428           case 0x02: strcpy(insn[i],"CFC1"); type=COP1; break;
7429           case 0x04: strcpy(insn[i],"MTC1"); type=COP1; break;
7430           case 0x05: strcpy(insn[i],"DMTC1"); type=COP1; break;
7431           case 0x06: strcpy(insn[i],"CTC1"); type=COP1; break;
7432           case 0x08: strcpy(insn[i],"BC1"); type=FJUMP;
7433           switch((source[i]>>16)&0x3)
7434           {
7435             case 0x00: strcpy(insn[i],"BC1F"); break;
7436             case 0x01: strcpy(insn[i],"BC1T"); break;
7437             case 0x02: strcpy(insn[i],"BC1FL"); break;
7438             case 0x03: strcpy(insn[i],"BC1TL"); break;
7439           }
7440           break;
7441           case 0x10: strcpy(insn[i],"C1.S"); type=NI;
7442           switch(source[i]&0x3f)
7443           {
7444             case 0x00: strcpy(insn[i],"ADD.S"); type=FLOAT; break;
7445             case 0x01: strcpy(insn[i],"SUB.S"); type=FLOAT; break;
7446             case 0x02: strcpy(insn[i],"MUL.S"); type=FLOAT; break;
7447             case 0x03: strcpy(insn[i],"DIV.S"); type=FLOAT; break;
7448             case 0x04: strcpy(insn[i],"SQRT.S"); type=FLOAT; break;
7449             case 0x05: strcpy(insn[i],"ABS.S"); type=FLOAT; break;
7450             case 0x06: strcpy(insn[i],"MOV.S"); type=FLOAT; break;
7451             case 0x07: strcpy(insn[i],"NEG.S"); type=FLOAT; break;
7452             case 0x08: strcpy(insn[i],"ROUND.L.S"); type=FCONV; break;
7453             case 0x09: strcpy(insn[i],"TRUNC.L.S"); type=FCONV; break;
7454             case 0x0A: strcpy(insn[i],"CEIL.L.S"); type=FCONV; break;
7455             case 0x0B: strcpy(insn[i],"FLOOR.L.S"); type=FCONV; break;
7456             case 0x0C: strcpy(insn[i],"ROUND.W.S"); type=FCONV; break;
7457             case 0x0D: strcpy(insn[i],"TRUNC.W.S"); type=FCONV; break;
7458             case 0x0E: strcpy(insn[i],"CEIL.W.S"); type=FCONV; break;
7459             case 0x0F: strcpy(insn[i],"FLOOR.W.S"); type=FCONV; break;
7460             case 0x21: strcpy(insn[i],"CVT.D.S"); type=FCONV; break;
7461             case 0x24: strcpy(insn[i],"CVT.W.S"); type=FCONV; break;
7462             case 0x25: strcpy(insn[i],"CVT.L.S"); type=FCONV; break;
7463             case 0x30: strcpy(insn[i],"C.F.S"); type=FCOMP; break;
7464             case 0x31: strcpy(insn[i],"C.UN.S"); type=FCOMP; break;
7465             case 0x32: strcpy(insn[i],"C.EQ.S"); type=FCOMP; break;
7466             case 0x33: strcpy(insn[i],"C.UEQ.S"); type=FCOMP; break;
7467             case 0x34: strcpy(insn[i],"C.OLT.S"); type=FCOMP; break;
7468             case 0x35: strcpy(insn[i],"C.ULT.S"); type=FCOMP; break;
7469             case 0x36: strcpy(insn[i],"C.OLE.S"); type=FCOMP; break;
7470             case 0x37: strcpy(insn[i],"C.ULE.S"); type=FCOMP; break;
7471             case 0x38: strcpy(insn[i],"C.SF.S"); type=FCOMP; break;
7472             case 0x39: strcpy(insn[i],"C.NGLE.S"); type=FCOMP; break;
7473             case 0x3A: strcpy(insn[i],"C.SEQ.S"); type=FCOMP; break;
7474             case 0x3B: strcpy(insn[i],"C.NGL.S"); type=FCOMP; break;
7475             case 0x3C: strcpy(insn[i],"C.LT.S"); type=FCOMP; break;
7476             case 0x3D: strcpy(insn[i],"C.NGE.S"); type=FCOMP; break;
7477             case 0x3E: strcpy(insn[i],"C.LE.S"); type=FCOMP; break;
7478             case 0x3F: strcpy(insn[i],"C.NGT.S"); type=FCOMP; break;
7479           }
7480           break;
7481           case 0x11: strcpy(insn[i],"C1.D"); type=NI;
7482           switch(source[i]&0x3f)
7483           {
7484             case 0x00: strcpy(insn[i],"ADD.D"); type=FLOAT; break;
7485             case 0x01: strcpy(insn[i],"SUB.D"); type=FLOAT; break;
7486             case 0x02: strcpy(insn[i],"MUL.D"); type=FLOAT; break;
7487             case 0x03: strcpy(insn[i],"DIV.D"); type=FLOAT; break;
7488             case 0x04: strcpy(insn[i],"SQRT.D"); type=FLOAT; break;
7489             case 0x05: strcpy(insn[i],"ABS.D"); type=FLOAT; break;
7490             case 0x06: strcpy(insn[i],"MOV.D"); type=FLOAT; break;
7491             case 0x07: strcpy(insn[i],"NEG.D"); type=FLOAT; break;
7492             case 0x08: strcpy(insn[i],"ROUND.L.D"); type=FCONV; break;
7493             case 0x09: strcpy(insn[i],"TRUNC.L.D"); type=FCONV; break;
7494             case 0x0A: strcpy(insn[i],"CEIL.L.D"); type=FCONV; break;
7495             case 0x0B: strcpy(insn[i],"FLOOR.L.D"); type=FCONV; break;
7496             case 0x0C: strcpy(insn[i],"ROUND.W.D"); type=FCONV; break;
7497             case 0x0D: strcpy(insn[i],"TRUNC.W.D"); type=FCONV; break;
7498             case 0x0E: strcpy(insn[i],"CEIL.W.D"); type=FCONV; break;
7499             case 0x0F: strcpy(insn[i],"FLOOR.W.D"); type=FCONV; break;
7500             case 0x20: strcpy(insn[i],"CVT.S.D"); type=FCONV; break;
7501             case 0x24: strcpy(insn[i],"CVT.W.D"); type=FCONV; break;
7502             case 0x25: strcpy(insn[i],"CVT.L.D"); type=FCONV; break;
7503             case 0x30: strcpy(insn[i],"C.F.D"); type=FCOMP; break;
7504             case 0x31: strcpy(insn[i],"C.UN.D"); type=FCOMP; break;
7505             case 0x32: strcpy(insn[i],"C.EQ.D"); type=FCOMP; break;
7506             case 0x33: strcpy(insn[i],"C.UEQ.D"); type=FCOMP; break;
7507             case 0x34: strcpy(insn[i],"C.OLT.D"); type=FCOMP; break;
7508             case 0x35: strcpy(insn[i],"C.ULT.D"); type=FCOMP; break;
7509             case 0x36: strcpy(insn[i],"C.OLE.D"); type=FCOMP; break;
7510             case 0x37: strcpy(insn[i],"C.ULE.D"); type=FCOMP; break;
7511             case 0x38: strcpy(insn[i],"C.SF.D"); type=FCOMP; break;
7512             case 0x39: strcpy(insn[i],"C.NGLE.D"); type=FCOMP; break;
7513             case 0x3A: strcpy(insn[i],"C.SEQ.D"); type=FCOMP; break;
7514             case 0x3B: strcpy(insn[i],"C.NGL.D"); type=FCOMP; break;
7515             case 0x3C: strcpy(insn[i],"C.LT.D"); type=FCOMP; break;
7516             case 0x3D: strcpy(insn[i],"C.NGE.D"); type=FCOMP; break;
7517             case 0x3E: strcpy(insn[i],"C.LE.D"); type=FCOMP; break;
7518             case 0x3F: strcpy(insn[i],"C.NGT.D"); type=FCOMP; break;
7519           }
7520           break;
7521           case 0x14: strcpy(insn[i],"C1.W"); type=NI;
7522           switch(source[i]&0x3f)
7523           {
7524             case 0x20: strcpy(insn[i],"CVT.S.W"); type=FCONV; break;
7525             case 0x21: strcpy(insn[i],"CVT.D.W"); type=FCONV; break;
7526           }
7527           break;
7528           case 0x15: strcpy(insn[i],"C1.L"); type=NI;
7529           switch(source[i]&0x3f)
7530           {
7531             case 0x20: strcpy(insn[i],"CVT.S.L"); type=FCONV; break;
7532             case 0x21: strcpy(insn[i],"CVT.D.L"); type=FCONV; break;
7533           }
7534           break;
7535         }
7536         break;
7537 #if 0
7538       case 0x14: strcpy(insn[i],"BEQL"); type=CJUMP; break;
7539       case 0x15: strcpy(insn[i],"BNEL"); type=CJUMP; break;
7540       case 0x16: strcpy(insn[i],"BLEZL"); type=CJUMP; break;
7541       case 0x17: strcpy(insn[i],"BGTZL"); type=CJUMP; break;
7542       case 0x18: strcpy(insn[i],"DADDI"); type=IMM16; break;
7543       case 0x19: strcpy(insn[i],"DADDIU"); type=IMM16; break;
7544       case 0x1A: strcpy(insn[i],"LDL"); type=LOADLR; break;
7545       case 0x1B: strcpy(insn[i],"LDR"); type=LOADLR; break;
7546 #endif
7547       case 0x20: strcpy(insn[i],"LB"); type=LOAD; break;
7548       case 0x21: strcpy(insn[i],"LH"); type=LOAD; break;
7549       case 0x22: strcpy(insn[i],"LWL"); type=LOADLR; break;
7550       case 0x23: strcpy(insn[i],"LW"); type=LOAD; break;
7551       case 0x24: strcpy(insn[i],"LBU"); type=LOAD; break;
7552       case 0x25: strcpy(insn[i],"LHU"); type=LOAD; break;
7553       case 0x26: strcpy(insn[i],"LWR"); type=LOADLR; break;
7554 #if 0
7555       case 0x27: strcpy(insn[i],"LWU"); type=LOAD; break;
7556 #endif
7557       case 0x28: strcpy(insn[i],"SB"); type=STORE; break;
7558       case 0x29: strcpy(insn[i],"SH"); type=STORE; break;
7559       case 0x2A: strcpy(insn[i],"SWL"); type=STORELR; break;
7560       case 0x2B: strcpy(insn[i],"SW"); type=STORE; break;
7561 #if 0
7562       case 0x2C: strcpy(insn[i],"SDL"); type=STORELR; break;
7563       case 0x2D: strcpy(insn[i],"SDR"); type=STORELR; break;
7564 #endif
7565       case 0x2E: strcpy(insn[i],"SWR"); type=STORELR; break;
7566       case 0x2F: strcpy(insn[i],"CACHE"); type=NOP; break;
7567       case 0x30: strcpy(insn[i],"LL"); type=NI; break;
7568       case 0x31: strcpy(insn[i],"LWC1"); type=C1LS; break;
7569 #if 0
7570       case 0x34: strcpy(insn[i],"LLD"); type=NI; break;
7571       case 0x35: strcpy(insn[i],"LDC1"); type=C1LS; break;
7572       case 0x37: strcpy(insn[i],"LD"); type=LOAD; break;
7573 #endif
7574       case 0x38: strcpy(insn[i],"SC"); type=NI; break;
7575       case 0x39: strcpy(insn[i],"SWC1"); type=C1LS; break;
7576 #if 0
7577       case 0x3C: strcpy(insn[i],"SCD"); type=NI; break;
7578       case 0x3D: strcpy(insn[i],"SDC1"); type=C1LS; break;
7579       case 0x3F: strcpy(insn[i],"SD"); type=STORE; break;
7580 #endif
7581       case 0x12: strcpy(insn[i],"COP2"); type=NI;
7582         op2=(source[i]>>21)&0x1f;
7583         //if (op2 & 0x10) {
7584         if (source[i]&0x3f) { // use this hack to support old savestates with patched gte insns
7585           if (gte_handlers[source[i]&0x3f]!=NULL) {
7586             if (gte_regnames[source[i]&0x3f]!=NULL)
7587               strcpy(insn[i],gte_regnames[source[i]&0x3f]);
7588             else
7589               snprintf(insn[i], sizeof(insn[i]), "COP2 %x", source[i]&0x3f);
7590             type=C2OP;
7591           }
7592         }
7593         else switch(op2)
7594         {
7595           case 0x00: strcpy(insn[i],"MFC2"); type=COP2; break;
7596           case 0x02: strcpy(insn[i],"CFC2"); type=COP2; break;
7597           case 0x04: strcpy(insn[i],"MTC2"); type=COP2; break;
7598           case 0x06: strcpy(insn[i],"CTC2"); type=COP2; break;
7599         }
7600         break;
7601       case 0x32: strcpy(insn[i],"LWC2"); type=C2LS; break;
7602       case 0x3A: strcpy(insn[i],"SWC2"); type=C2LS; break;
7603       case 0x3B: strcpy(insn[i],"HLECALL"); type=HLECALL; break;
7604       default: strcpy(insn[i],"???"); type=NI;
7605         SysPrintf("NI %08x @%08x (%08x)\n", source[i], addr + i*4, addr);
7606         break;
7607     }
7608     itype[i]=type;
7609     opcode2[i]=op2;
7610     /* Get registers/immediates */
7611     lt1[i]=0;
7612     us1[i]=0;
7613     us2[i]=0;
7614     dep1[i]=0;
7615     dep2[i]=0;
7616     gte_rs[i]=gte_rt[i]=0;
7617     switch(type) {
7618       case LOAD:
7619         rs1[i]=(source[i]>>21)&0x1f;
7620         rs2[i]=0;
7621         rt1[i]=(source[i]>>16)&0x1f;
7622         rt2[i]=0;
7623         imm[i]=(short)source[i];
7624         break;
7625       case STORE:
7626       case STORELR:
7627         rs1[i]=(source[i]>>21)&0x1f;
7628         rs2[i]=(source[i]>>16)&0x1f;
7629         rt1[i]=0;
7630         rt2[i]=0;
7631         imm[i]=(short)source[i];
7632         if(op==0x2c||op==0x2d||op==0x3f) us1[i]=rs2[i]; // 64-bit SDL/SDR/SD
7633         break;
7634       case LOADLR:
7635         // LWL/LWR only load part of the register,
7636         // therefore the target register must be treated as a source too
7637         rs1[i]=(source[i]>>21)&0x1f;
7638         rs2[i]=(source[i]>>16)&0x1f;
7639         rt1[i]=(source[i]>>16)&0x1f;
7640         rt2[i]=0;
7641         imm[i]=(short)source[i];
7642         if(op==0x1a||op==0x1b) us1[i]=rs2[i]; // LDR/LDL
7643         if(op==0x26) dep1[i]=rt1[i]; // LWR
7644         break;
7645       case IMM16:
7646         if (op==0x0f) rs1[i]=0; // LUI instruction has no source register
7647         else rs1[i]=(source[i]>>21)&0x1f;
7648         rs2[i]=0;
7649         rt1[i]=(source[i]>>16)&0x1f;
7650         rt2[i]=0;
7651         if(op>=0x0c&&op<=0x0e) { // ANDI/ORI/XORI
7652           imm[i]=(unsigned short)source[i];
7653         }else{
7654           imm[i]=(short)source[i];
7655         }
7656         if(op==0x18||op==0x19) us1[i]=rs1[i]; // DADDI/DADDIU
7657         if(op==0x0a||op==0x0b) us1[i]=rs1[i]; // SLTI/SLTIU
7658         if(op==0x0d||op==0x0e) dep1[i]=rs1[i]; // ORI/XORI
7659         break;
7660       case UJUMP:
7661         rs1[i]=0;
7662         rs2[i]=0;
7663         rt1[i]=0;
7664         rt2[i]=0;
7665         // The JAL instruction writes to r31.
7666         if (op&1) {
7667           rt1[i]=31;
7668         }
7669         rs2[i]=CCREG;
7670         break;
7671       case RJUMP:
7672         rs1[i]=(source[i]>>21)&0x1f;
7673         rs2[i]=0;
7674         rt1[i]=0;
7675         rt2[i]=0;
7676         // The JALR instruction writes to rd.
7677         if (op2&1) {
7678           rt1[i]=(source[i]>>11)&0x1f;
7679         }
7680         rs2[i]=CCREG;
7681         break;
7682       case CJUMP:
7683         rs1[i]=(source[i]>>21)&0x1f;
7684         rs2[i]=(source[i]>>16)&0x1f;
7685         rt1[i]=0;
7686         rt2[i]=0;
7687         if(op&2) { // BGTZ/BLEZ
7688           rs2[i]=0;
7689         }
7690         us1[i]=rs1[i];
7691         us2[i]=rs2[i];
7692         likely[i]=op>>4;
7693         break;
7694       case SJUMP:
7695         rs1[i]=(source[i]>>21)&0x1f;
7696         rs2[i]=CCREG;
7697         rt1[i]=0;
7698         rt2[i]=0;
7699         us1[i]=rs1[i];
7700         if(op2&0x10) { // BxxAL
7701           rt1[i]=31;
7702           // NOTE: If the branch is not taken, r31 is still overwritten
7703         }
7704         likely[i]=(op2&2)>>1;
7705         break;
7706       case FJUMP:
7707         rs1[i]=FSREG;
7708         rs2[i]=CSREG;
7709         rt1[i]=0;
7710         rt2[i]=0;
7711         likely[i]=((source[i])>>17)&1;
7712         break;
7713       case ALU:
7714         rs1[i]=(source[i]>>21)&0x1f; // source
7715         rs2[i]=(source[i]>>16)&0x1f; // subtract amount
7716         rt1[i]=(source[i]>>11)&0x1f; // destination
7717         rt2[i]=0;
7718         if(op2==0x2a||op2==0x2b) { // SLT/SLTU
7719           us1[i]=rs1[i];us2[i]=rs2[i];
7720         }
7721         else if(op2>=0x24&&op2<=0x27) { // AND/OR/XOR/NOR
7722           dep1[i]=rs1[i];dep2[i]=rs2[i];
7723         }
7724         else if(op2>=0x2c&&op2<=0x2f) { // DADD/DSUB
7725           dep1[i]=rs1[i];dep2[i]=rs2[i];
7726         }
7727         break;
7728       case MULTDIV:
7729         rs1[i]=(source[i]>>21)&0x1f; // source
7730         rs2[i]=(source[i]>>16)&0x1f; // divisor
7731         rt1[i]=HIREG;
7732         rt2[i]=LOREG;
7733         if (op2>=0x1c&&op2<=0x1f) { // DMULT/DMULTU/DDIV/DDIVU
7734           us1[i]=rs1[i];us2[i]=rs2[i];
7735         }
7736         break;
7737       case MOV:
7738         rs1[i]=0;
7739         rs2[i]=0;
7740         rt1[i]=0;
7741         rt2[i]=0;
7742         if(op2==0x10) rs1[i]=HIREG; // MFHI
7743         if(op2==0x11) rt1[i]=HIREG; // MTHI
7744         if(op2==0x12) rs1[i]=LOREG; // MFLO
7745         if(op2==0x13) rt1[i]=LOREG; // MTLO
7746         if((op2&0x1d)==0x10) rt1[i]=(source[i]>>11)&0x1f; // MFxx
7747         if((op2&0x1d)==0x11) rs1[i]=(source[i]>>21)&0x1f; // MTxx
7748         dep1[i]=rs1[i];
7749         break;
7750       case SHIFT:
7751         rs1[i]=(source[i]>>16)&0x1f; // target of shift
7752         rs2[i]=(source[i]>>21)&0x1f; // shift amount
7753         rt1[i]=(source[i]>>11)&0x1f; // destination
7754         rt2[i]=0;
7755         // DSLLV/DSRLV/DSRAV are 64-bit
7756         if(op2>=0x14&&op2<=0x17) us1[i]=rs1[i];
7757         break;
7758       case SHIFTIMM:
7759         rs1[i]=(source[i]>>16)&0x1f;
7760         rs2[i]=0;
7761         rt1[i]=(source[i]>>11)&0x1f;
7762         rt2[i]=0;
7763         imm[i]=(source[i]>>6)&0x1f;
7764         // DSxx32 instructions
7765         if(op2>=0x3c) imm[i]|=0x20;
7766         // DSLL/DSRL/DSRA/DSRA32/DSRL32 but not DSLL32 require 64-bit source
7767         if(op2>=0x38&&op2!=0x3c) us1[i]=rs1[i];
7768         break;
7769       case COP0:
7770         rs1[i]=0;
7771         rs2[i]=0;
7772         rt1[i]=0;
7773         rt2[i]=0;
7774         if(op2==0) rt1[i]=(source[i]>>16)&0x1F; // MFC0
7775         if(op2==4) rs1[i]=(source[i]>>16)&0x1F; // MTC0
7776         if(op2==4&&((source[i]>>11)&0x1f)==12) rt2[i]=CSREG; // Status
7777         if(op2==16) if((source[i]&0x3f)==0x18) rs2[i]=CCREG; // ERET
7778         break;
7779       case COP1:
7780         rs1[i]=0;
7781         rs2[i]=0;
7782         rt1[i]=0;
7783         rt2[i]=0;
7784         if(op2<3) rt1[i]=(source[i]>>16)&0x1F; // MFC1/DMFC1/CFC1
7785         if(op2>3) rs1[i]=(source[i]>>16)&0x1F; // MTC1/DMTC1/CTC1
7786         if(op2==5) us1[i]=rs1[i]; // DMTC1
7787         rs2[i]=CSREG;
7788         break;
7789       case COP2:
7790         rs1[i]=0;
7791         rs2[i]=0;
7792         rt1[i]=0;
7793         rt2[i]=0;
7794         if(op2<3) rt1[i]=(source[i]>>16)&0x1F; // MFC2/CFC2
7795         if(op2>3) rs1[i]=(source[i]>>16)&0x1F; // MTC2/CTC2
7796         rs2[i]=CSREG;
7797         int gr=(source[i]>>11)&0x1F;
7798         switch(op2)
7799         {
7800           case 0x00: gte_rs[i]=1ll<<gr; break; // MFC2
7801           case 0x04: gte_rt[i]=1ll<<gr; break; // MTC2
7802           case 0x02: gte_rs[i]=1ll<<(gr+32); break; // CFC2
7803           case 0x06: gte_rt[i]=1ll<<(gr+32); break; // CTC2
7804         }
7805         break;
7806       case C1LS:
7807         rs1[i]=(source[i]>>21)&0x1F;
7808         rs2[i]=CSREG;
7809         rt1[i]=0;
7810         rt2[i]=0;
7811         imm[i]=(short)source[i];
7812         break;
7813       case C2LS:
7814         rs1[i]=(source[i]>>21)&0x1F;
7815         rs2[i]=0;
7816         rt1[i]=0;
7817         rt2[i]=0;
7818         imm[i]=(short)source[i];
7819         if(op==0x32) gte_rt[i]=1ll<<((source[i]>>16)&0x1F); // LWC2
7820         else gte_rs[i]=1ll<<((source[i]>>16)&0x1F); // SWC2
7821         break;
7822       case C2OP:
7823         rs1[i]=0;
7824         rs2[i]=0;
7825         rt1[i]=0;
7826         rt2[i]=0;
7827         gte_rs[i]=gte_reg_reads[source[i]&0x3f];
7828         gte_rt[i]=gte_reg_writes[source[i]&0x3f];
7829         gte_rt[i]|=1ll<<63; // every op changes flags
7830         if((source[i]&0x3f)==GTE_MVMVA) {
7831           int v = (source[i] >> 15) & 3;
7832           gte_rs[i]&=~0xe3fll;
7833           if(v==3) gte_rs[i]|=0xe00ll;
7834           else gte_rs[i]|=3ll<<(v*2);
7835         }
7836         break;
7837       case FLOAT:
7838       case FCONV:
7839         rs1[i]=0;
7840         rs2[i]=CSREG;
7841         rt1[i]=0;
7842         rt2[i]=0;
7843         break;
7844       case FCOMP:
7845         rs1[i]=FSREG;
7846         rs2[i]=CSREG;
7847         rt1[i]=FSREG;
7848         rt2[i]=0;
7849         break;
7850       case SYSCALL:
7851       case HLECALL:
7852       case INTCALL:
7853         rs1[i]=CCREG;
7854         rs2[i]=0;
7855         rt1[i]=0;
7856         rt2[i]=0;
7857         break;
7858       default:
7859         rs1[i]=0;
7860         rs2[i]=0;
7861         rt1[i]=0;
7862         rt2[i]=0;
7863     }
7864     /* Calculate branch target addresses */
7865     if(type==UJUMP)
7866       ba[i]=((start+i*4+4)&0xF0000000)|(((unsigned int)source[i]<<6)>>4);
7867     else if(type==CJUMP&&rs1[i]==rs2[i]&&(op&1))
7868       ba[i]=start+i*4+8; // Ignore never taken branch
7869     else if(type==SJUMP&&rs1[i]==0&&!(op2&1))
7870       ba[i]=start+i*4+8; // Ignore never taken branch
7871     else if(type==CJUMP||type==SJUMP||type==FJUMP)
7872       ba[i]=start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14);
7873     else ba[i]=-1;
7874     if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)) {
7875       int do_in_intrp=0;
7876       // branch in delay slot?
7877       if(type==RJUMP||type==UJUMP||type==CJUMP||type==SJUMP||type==FJUMP) {
7878         // don't handle first branch and call interpreter if it's hit
7879         SysPrintf("branch in delay slot @%08x (%08x)\n", addr + i*4, addr);
7880         do_in_intrp=1;
7881       }
7882       // basic load delay detection
7883       else if((type==LOAD||type==LOADLR||type==COP0||type==COP2||type==C2LS)&&rt1[i]!=0) {
7884         int t=(ba[i-1]-start)/4;
7885         if(0 <= t && t < i &&(rt1[i]==rs1[t]||rt1[i]==rs2[t])&&itype[t]!=CJUMP&&itype[t]!=SJUMP) {
7886           // jump target wants DS result - potential load delay effect
7887           SysPrintf("load delay @%08x (%08x)\n", addr + i*4, addr);
7888           do_in_intrp=1;
7889           bt[t+1]=1; // expected return from interpreter
7890         }
7891         else if(i>=2&&rt1[i-2]==2&&rt1[i]==2&&rs1[i]!=2&&rs2[i]!=2&&rs1[i-1]!=2&&rs2[i-1]!=2&&
7892               !(i>=3&&(itype[i-3]==RJUMP||itype[i-3]==UJUMP||itype[i-3]==CJUMP||itype[i-3]==SJUMP))) {
7893           // v0 overwrite like this is a sign of trouble, bail out
7894           SysPrintf("v0 overwrite @%08x (%08x)\n", addr + i*4, addr);
7895           do_in_intrp=1;
7896         }
7897       }
7898       if(do_in_intrp) {
7899         rs1[i-1]=CCREG;
7900         rs2[i-1]=rt1[i-1]=rt2[i-1]=0;
7901         ba[i-1]=-1;
7902         itype[i-1]=INTCALL;
7903         done=2;
7904         i--; // don't compile the DS
7905       }
7906     }
7907     /* Is this the end of the block? */
7908     if(i>0&&(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)) {
7909       if(rt1[i-1]==0) { // Continue past subroutine call (JAL)
7910         done=2;
7911       }
7912       else {
7913         if(stop_after_jal) done=1;
7914         // Stop on BREAK
7915         if((source[i+1]&0xfc00003f)==0x0d) done=1;
7916       }
7917       // Don't recompile stuff that's already compiled
7918       if(check_addr(start+i*4+4)) done=1;
7919       // Don't get too close to the limit
7920       if(i>MAXBLOCK/2) done=1;
7921     }
7922     if(itype[i]==SYSCALL&&stop_after_jal) done=1;
7923     if(itype[i]==HLECALL||itype[i]==INTCALL) done=2;
7924     if(done==2) {
7925       // Does the block continue due to a branch?
7926       for(j=i-1;j>=0;j--)
7927       {
7928         if(ba[j]==start+i*4) done=j=0; // Branch into delay slot
7929         if(ba[j]==start+i*4+4) done=j=0;
7930         if(ba[j]==start+i*4+8) done=j=0;
7931       }
7932     }
7933     //assert(i<MAXBLOCK-1);
7934     if(start+i*4==pagelimit-4) done=1;
7935     assert(start+i*4<pagelimit);
7936     if (i==MAXBLOCK-1) done=1;
7937     // Stop if we're compiling junk
7938     if(itype[i]==NI&&opcode[i]==0x11) {
7939       done=stop_after_jal=1;
7940       SysPrintf("Disabled speculative precompilation\n");
7941     }
7942   }
7943   slen=i;
7944   if(itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==RJUMP||itype[i-1]==FJUMP) {
7945     if(start+i*4==pagelimit) {
7946       itype[i-1]=SPAN;
7947     }
7948   }
7949   assert(slen>0);
7950
7951   /* Pass 2 - Register dependencies and branch targets */
7952
7953   unneeded_registers(0,slen-1,0);
7954
7955   /* Pass 3 - Register allocation */
7956
7957   struct regstat current; // Current register allocations/status
7958   current.is32=1;
7959   current.dirty=0;
7960   current.u=unneeded_reg[0];
7961   current.uu=unneeded_reg_upper[0];
7962   clear_all_regs(current.regmap);
7963   alloc_reg(&current,0,CCREG);
7964   dirty_reg(&current,CCREG);
7965   current.isconst=0;
7966   current.wasconst=0;
7967   current.waswritten=0;
7968   int ds=0;
7969   int cc=0;
7970   int hr=-1;
7971
7972   if((u_int)addr&1) {
7973     // First instruction is delay slot
7974     cc=-1;
7975     bt[1]=1;
7976     ds=1;
7977     unneeded_reg[0]=1;
7978     unneeded_reg_upper[0]=1;
7979     current.regmap[HOST_BTREG]=BTREG;
7980   }
7981
7982   for(i=0;i<slen;i++)
7983   {
7984     if(bt[i])
7985     {
7986       int hr;
7987       for(hr=0;hr<HOST_REGS;hr++)
7988       {
7989         // Is this really necessary?
7990         if(current.regmap[hr]==0) current.regmap[hr]=-1;
7991       }
7992       current.isconst=0;
7993       current.waswritten=0;
7994     }
7995     if(i>1)
7996     {
7997       if((opcode[i-2]&0x2f)==0x05) // BNE/BNEL
7998       {
7999         if(rs1[i-2]==0||rs2[i-2]==0)
8000         {
8001           if(rs1[i-2]) {
8002             current.is32|=1LL<<rs1[i-2];
8003             int hr=get_reg(current.regmap,rs1[i-2]|64);
8004             if(hr>=0) current.regmap[hr]=-1;
8005           }
8006           if(rs2[i-2]) {
8007             current.is32|=1LL<<rs2[i-2];
8008             int hr=get_reg(current.regmap,rs2[i-2]|64);
8009             if(hr>=0) current.regmap[hr]=-1;
8010           }
8011         }
8012       }
8013     }
8014     current.is32=-1LL;
8015
8016     memcpy(regmap_pre[i],current.regmap,sizeof(current.regmap));
8017     regs[i].wasconst=current.isconst;
8018     regs[i].was32=current.is32;
8019     regs[i].wasdirty=current.dirty;
8020     regs[i].loadedconst=0;
8021     if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP) {
8022       if(i+1<slen) {
8023         current.u=unneeded_reg[i+1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
8024         current.uu=unneeded_reg_upper[i+1]&~((1LL<<us1[i])|(1LL<<us2[i]));
8025         if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
8026         current.u|=1;
8027         current.uu|=1;
8028       } else {
8029         current.u=1;
8030         current.uu=1;
8031       }
8032     } else {
8033       if(i+1<slen) {
8034         current.u=branch_unneeded_reg[i]&~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
8035         current.uu=branch_unneeded_reg_upper[i]&~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
8036         if((~current.uu>>rt1[i+1])&1) current.uu&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
8037         current.u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
8038         current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
8039         current.u|=1;
8040         current.uu|=1;
8041       } else { SysPrintf("oops, branch at end of block with no delay slot\n");exit(1); }
8042     }
8043     is_ds[i]=ds;
8044     if(ds) {
8045       ds=0; // Skip delay slot, already allocated as part of branch
8046       // ...but we need to alloc it in case something jumps here
8047       if(i+1<slen) {
8048         current.u=branch_unneeded_reg[i-1]&unneeded_reg[i+1];
8049         current.uu=branch_unneeded_reg_upper[i-1]&unneeded_reg_upper[i+1];
8050       }else{
8051         current.u=branch_unneeded_reg[i-1];
8052         current.uu=branch_unneeded_reg_upper[i-1];
8053       }
8054       current.u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
8055       current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
8056       if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
8057       current.u|=1;
8058       current.uu|=1;
8059       struct regstat temp;
8060       memcpy(&temp,&current,sizeof(current));
8061       temp.wasdirty=temp.dirty;
8062       temp.was32=temp.is32;
8063       // TODO: Take into account unconditional branches, as below
8064       delayslot_alloc(&temp,i);
8065       memcpy(regs[i].regmap,temp.regmap,sizeof(temp.regmap));
8066       regs[i].wasdirty=temp.wasdirty;
8067       regs[i].was32=temp.was32;
8068       regs[i].dirty=temp.dirty;
8069       regs[i].is32=temp.is32;
8070       regs[i].isconst=0;
8071       regs[i].wasconst=0;
8072       current.isconst=0;
8073       // Create entry (branch target) regmap
8074       for(hr=0;hr<HOST_REGS;hr++)
8075       {
8076         int r=temp.regmap[hr];
8077         if(r>=0) {
8078           if(r!=regmap_pre[i][hr]) {
8079             regs[i].regmap_entry[hr]=-1;
8080           }
8081           else
8082           {
8083             if(r<64){
8084               if((current.u>>r)&1) {
8085                 regs[i].regmap_entry[hr]=-1;
8086                 regs[i].regmap[hr]=-1;
8087                 //Don't clear regs in the delay slot as the branch might need them
8088                 //current.regmap[hr]=-1;
8089               }else
8090                 regs[i].regmap_entry[hr]=r;
8091             }
8092             else {
8093               if((current.uu>>(r&63))&1) {
8094                 regs[i].regmap_entry[hr]=-1;
8095                 regs[i].regmap[hr]=-1;
8096                 //Don't clear regs in the delay slot as the branch might need them
8097                 //current.regmap[hr]=-1;
8098               }else
8099                 regs[i].regmap_entry[hr]=r;
8100             }
8101           }
8102         } else {
8103           // First instruction expects CCREG to be allocated
8104           if(i==0&&hr==HOST_CCREG)
8105             regs[i].regmap_entry[hr]=CCREG;
8106           else
8107             regs[i].regmap_entry[hr]=-1;
8108         }
8109       }
8110     }
8111     else { // Not delay slot
8112       switch(itype[i]) {
8113         case UJUMP:
8114           //current.isconst=0; // DEBUG
8115           //current.wasconst=0; // DEBUG
8116           //regs[i].wasconst=0; // DEBUG
8117           clear_const(&current,rt1[i]);
8118           alloc_cc(&current,i);
8119           dirty_reg(&current,CCREG);
8120           if (rt1[i]==31) {
8121             alloc_reg(&current,i,31);
8122             dirty_reg(&current,31);
8123             //assert(rs1[i+1]!=31&&rs2[i+1]!=31);
8124             //assert(rt1[i+1]!=rt1[i]);
8125             #ifdef REG_PREFETCH
8126             alloc_reg(&current,i,PTEMP);
8127             #endif
8128             //current.is32|=1LL<<rt1[i];
8129           }
8130           ooo[i]=1;
8131           delayslot_alloc(&current,i+1);
8132           //current.isconst=0; // DEBUG
8133           ds=1;
8134           //printf("i=%d, isconst=%x\n",i,current.isconst);
8135           break;
8136         case RJUMP:
8137           //current.isconst=0;
8138           //current.wasconst=0;
8139           //regs[i].wasconst=0;
8140           clear_const(&current,rs1[i]);
8141           clear_const(&current,rt1[i]);
8142           alloc_cc(&current,i);
8143           dirty_reg(&current,CCREG);
8144           if(rs1[i]!=rt1[i+1]&&rs1[i]!=rt2[i+1]) {
8145             alloc_reg(&current,i,rs1[i]);
8146             if (rt1[i]!=0) {
8147               alloc_reg(&current,i,rt1[i]);
8148               dirty_reg(&current,rt1[i]);
8149               assert(rs1[i+1]!=rt1[i]&&rs2[i+1]!=rt1[i]);
8150               assert(rt1[i+1]!=rt1[i]);
8151               #ifdef REG_PREFETCH
8152               alloc_reg(&current,i,PTEMP);
8153               #endif
8154             }
8155             #ifdef USE_MINI_HT
8156             if(rs1[i]==31) { // JALR
8157               alloc_reg(&current,i,RHASH);
8158               #ifndef HOST_IMM_ADDR32
8159               alloc_reg(&current,i,RHTBL);
8160               #endif
8161             }
8162             #endif
8163             delayslot_alloc(&current,i+1);
8164           } else {
8165             // The delay slot overwrites our source register,
8166             // allocate a temporary register to hold the old value.
8167             current.isconst=0;
8168             current.wasconst=0;
8169             regs[i].wasconst=0;
8170             delayslot_alloc(&current,i+1);
8171             current.isconst=0;
8172             alloc_reg(&current,i,RTEMP);
8173           }
8174           //current.isconst=0; // DEBUG
8175           ooo[i]=1;
8176           ds=1;
8177           break;
8178         case CJUMP:
8179           //current.isconst=0;
8180           //current.wasconst=0;
8181           //regs[i].wasconst=0;
8182           clear_const(&current,rs1[i]);
8183           clear_const(&current,rs2[i]);
8184           if((opcode[i]&0x3E)==4) // BEQ/BNE
8185           {
8186             alloc_cc(&current,i);
8187             dirty_reg(&current,CCREG);
8188             if(rs1[i]) alloc_reg(&current,i,rs1[i]);
8189             if(rs2[i]) alloc_reg(&current,i,rs2[i]);
8190             if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
8191             {
8192               if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
8193               if(rs2[i]) alloc_reg64(&current,i,rs2[i]);
8194             }
8195             if((rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]))||
8196                (rs2[i]&&(rs2[i]==rt1[i+1]||rs2[i]==rt2[i+1]))) {
8197               // The delay slot overwrites one of our conditions.
8198               // Allocate the branch condition registers instead.
8199               current.isconst=0;
8200               current.wasconst=0;
8201               regs[i].wasconst=0;
8202               if(rs1[i]) alloc_reg(&current,i,rs1[i]);
8203               if(rs2[i]) alloc_reg(&current,i,rs2[i]);
8204               if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
8205               {
8206                 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
8207                 if(rs2[i]) alloc_reg64(&current,i,rs2[i]);
8208               }
8209             }
8210             else
8211             {
8212               ooo[i]=1;
8213               delayslot_alloc(&current,i+1);
8214             }
8215           }
8216           else
8217           if((opcode[i]&0x3E)==6) // BLEZ/BGTZ
8218           {
8219             alloc_cc(&current,i);
8220             dirty_reg(&current,CCREG);
8221             alloc_reg(&current,i,rs1[i]);
8222             if(!(current.is32>>rs1[i]&1))
8223             {
8224               alloc_reg64(&current,i,rs1[i]);
8225             }
8226             if(rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1])) {
8227               // The delay slot overwrites one of our conditions.
8228               // Allocate the branch condition registers instead.
8229               current.isconst=0;
8230               current.wasconst=0;
8231               regs[i].wasconst=0;
8232               if(rs1[i]) alloc_reg(&current,i,rs1[i]);
8233               if(!((current.is32>>rs1[i])&1))
8234               {
8235                 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
8236               }
8237             }
8238             else
8239             {
8240               ooo[i]=1;
8241               delayslot_alloc(&current,i+1);
8242             }
8243           }
8244           else
8245           // Don't alloc the delay slot yet because we might not execute it
8246           if((opcode[i]&0x3E)==0x14) // BEQL/BNEL
8247           {
8248             current.isconst=0;
8249             current.wasconst=0;
8250             regs[i].wasconst=0;
8251             alloc_cc(&current,i);
8252             dirty_reg(&current,CCREG);
8253             alloc_reg(&current,i,rs1[i]);
8254             alloc_reg(&current,i,rs2[i]);
8255             if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
8256             {
8257               alloc_reg64(&current,i,rs1[i]);
8258               alloc_reg64(&current,i,rs2[i]);
8259             }
8260           }
8261           else
8262           if((opcode[i]&0x3E)==0x16) // BLEZL/BGTZL
8263           {
8264             current.isconst=0;
8265             current.wasconst=0;
8266             regs[i].wasconst=0;
8267             alloc_cc(&current,i);
8268             dirty_reg(&current,CCREG);
8269             alloc_reg(&current,i,rs1[i]);
8270             if(!(current.is32>>rs1[i]&1))
8271             {
8272               alloc_reg64(&current,i,rs1[i]);
8273             }
8274           }
8275           ds=1;
8276           //current.isconst=0;
8277           break;
8278         case SJUMP:
8279           //current.isconst=0;
8280           //current.wasconst=0;
8281           //regs[i].wasconst=0;
8282           clear_const(&current,rs1[i]);
8283           clear_const(&current,rt1[i]);
8284           //if((opcode2[i]&0x1E)==0x0) // BLTZ/BGEZ
8285           if((opcode2[i]&0x0E)==0x0) // BLTZ/BGEZ
8286           {
8287             alloc_cc(&current,i);
8288             dirty_reg(&current,CCREG);
8289             alloc_reg(&current,i,rs1[i]);
8290             if(!(current.is32>>rs1[i]&1))
8291             {
8292               alloc_reg64(&current,i,rs1[i]);
8293             }
8294             if (rt1[i]==31) { // BLTZAL/BGEZAL
8295               alloc_reg(&current,i,31);
8296               dirty_reg(&current,31);
8297               //#ifdef REG_PREFETCH
8298               //alloc_reg(&current,i,PTEMP);
8299               //#endif
8300               //current.is32|=1LL<<rt1[i];
8301             }
8302             if((rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1])) // The delay slot overwrites the branch condition.
8303                ||(rt1[i]==31&&(rs1[i+1]==31||rs2[i+1]==31||rt1[i+1]==31||rt2[i+1]==31))) { // DS touches $ra
8304               // Allocate the branch condition registers instead.
8305               current.isconst=0;
8306               current.wasconst=0;
8307               regs[i].wasconst=0;
8308               if(rs1[i]) alloc_reg(&current,i,rs1[i]);
8309               if(!((current.is32>>rs1[i])&1))
8310               {
8311                 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
8312               }
8313             }
8314             else
8315             {
8316               ooo[i]=1;
8317               delayslot_alloc(&current,i+1);
8318             }
8319           }
8320           else
8321           // Don't alloc the delay slot yet because we might not execute it
8322           if((opcode2[i]&0x1E)==0x2) // BLTZL/BGEZL
8323           {
8324             current.isconst=0;
8325             current.wasconst=0;
8326             regs[i].wasconst=0;
8327             alloc_cc(&current,i);
8328             dirty_reg(&current,CCREG);
8329             alloc_reg(&current,i,rs1[i]);
8330             if(!(current.is32>>rs1[i]&1))
8331             {
8332               alloc_reg64(&current,i,rs1[i]);
8333             }
8334           }
8335           ds=1;
8336           //current.isconst=0;
8337           break;
8338         case FJUMP:
8339           current.isconst=0;
8340           current.wasconst=0;
8341           regs[i].wasconst=0;
8342           if(likely[i]==0) // BC1F/BC1T
8343           {
8344             // TODO: Theoretically we can run out of registers here on x86.
8345             // The delay slot can allocate up to six, and we need to check
8346             // CSREG before executing the delay slot.  Possibly we can drop
8347             // the cycle count and then reload it after checking that the
8348             // FPU is in a usable state, or don't do out-of-order execution.
8349             alloc_cc(&current,i);
8350             dirty_reg(&current,CCREG);
8351             alloc_reg(&current,i,FSREG);
8352             alloc_reg(&current,i,CSREG);
8353             if(itype[i+1]==FCOMP) {
8354               // The delay slot overwrites the branch condition.
8355               // Allocate the branch condition registers instead.
8356               alloc_cc(&current,i);
8357               dirty_reg(&current,CCREG);
8358               alloc_reg(&current,i,CSREG);
8359               alloc_reg(&current,i,FSREG);
8360             }
8361             else {
8362               ooo[i]=1;
8363               delayslot_alloc(&current,i+1);
8364               alloc_reg(&current,i+1,CSREG);
8365             }
8366           }
8367           else
8368           // Don't alloc the delay slot yet because we might not execute it
8369           if(likely[i]) // BC1FL/BC1TL
8370           {
8371             alloc_cc(&current,i);
8372             dirty_reg(&current,CCREG);
8373             alloc_reg(&current,i,CSREG);
8374             alloc_reg(&current,i,FSREG);
8375           }
8376           ds=1;
8377           current.isconst=0;
8378           break;
8379         case IMM16:
8380           imm16_alloc(&current,i);
8381           break;
8382         case LOAD:
8383         case LOADLR:
8384           load_alloc(&current,i);
8385           break;
8386         case STORE:
8387         case STORELR:
8388           store_alloc(&current,i);
8389           break;
8390         case ALU:
8391           alu_alloc(&current,i);
8392           break;
8393         case SHIFT:
8394           shift_alloc(&current,i);
8395           break;
8396         case MULTDIV:
8397           multdiv_alloc(&current,i);
8398           break;
8399         case SHIFTIMM:
8400           shiftimm_alloc(&current,i);
8401           break;
8402         case MOV:
8403           mov_alloc(&current,i);
8404           break;
8405         case COP0:
8406           cop0_alloc(&current,i);
8407           break;
8408         case COP1:
8409         case COP2:
8410           cop1_alloc(&current,i);
8411           break;
8412         case C1LS:
8413           c1ls_alloc(&current,i);
8414           break;
8415         case C2LS:
8416           c2ls_alloc(&current,i);
8417           break;
8418         case C2OP:
8419           c2op_alloc(&current,i);
8420           break;
8421         case FCONV:
8422           fconv_alloc(&current,i);
8423           break;
8424         case FLOAT:
8425           float_alloc(&current,i);
8426           break;
8427         case FCOMP:
8428           fcomp_alloc(&current,i);
8429           break;
8430         case SYSCALL:
8431         case HLECALL:
8432         case INTCALL:
8433           syscall_alloc(&current,i);
8434           break;
8435         case SPAN:
8436           pagespan_alloc(&current,i);
8437           break;
8438       }
8439
8440       // Drop the upper half of registers that have become 32-bit
8441       current.uu|=current.is32&((1LL<<rt1[i])|(1LL<<rt2[i]));
8442       if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP) {
8443         current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
8444         if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
8445         current.uu|=1;
8446       } else {
8447         current.uu|=current.is32&((1LL<<rt1[i+1])|(1LL<<rt2[i+1]));
8448         current.uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
8449         if((~current.uu>>rt1[i+1])&1) current.uu&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
8450         current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
8451         current.uu|=1;
8452       }
8453
8454       // Create entry (branch target) regmap
8455       for(hr=0;hr<HOST_REGS;hr++)
8456       {
8457         int r,or;
8458         r=current.regmap[hr];
8459         if(r>=0) {
8460           if(r!=regmap_pre[i][hr]) {
8461             // TODO: delay slot (?)
8462             or=get_reg(regmap_pre[i],r); // Get old mapping for this register
8463             if(or<0||(r&63)>=TEMPREG){
8464               regs[i].regmap_entry[hr]=-1;
8465             }
8466             else
8467             {
8468               // Just move it to a different register
8469               regs[i].regmap_entry[hr]=r;
8470               // If it was dirty before, it's still dirty
8471               if((regs[i].wasdirty>>or)&1) dirty_reg(&current,r&63);
8472             }
8473           }
8474           else
8475           {
8476             // Unneeded
8477             if(r==0){
8478               regs[i].regmap_entry[hr]=0;
8479             }
8480             else
8481             if(r<64){
8482               if((current.u>>r)&1) {
8483                 regs[i].regmap_entry[hr]=-1;
8484                 //regs[i].regmap[hr]=-1;
8485                 current.regmap[hr]=-1;
8486               }else
8487                 regs[i].regmap_entry[hr]=r;
8488             }
8489             else {
8490               if((current.uu>>(r&63))&1) {
8491                 regs[i].regmap_entry[hr]=-1;
8492                 //regs[i].regmap[hr]=-1;
8493                 current.regmap[hr]=-1;
8494               }else
8495                 regs[i].regmap_entry[hr]=r;
8496             }
8497           }
8498         } else {
8499           // Branches expect CCREG to be allocated at the target
8500           if(regmap_pre[i][hr]==CCREG)
8501             regs[i].regmap_entry[hr]=CCREG;
8502           else
8503             regs[i].regmap_entry[hr]=-1;
8504         }
8505       }
8506       memcpy(regs[i].regmap,current.regmap,sizeof(current.regmap));
8507     }
8508
8509     if(i>0&&(itype[i-1]==STORE||itype[i-1]==STORELR||(itype[i-1]==C2LS&&opcode[i-1]==0x3a))&&(u_int)imm[i-1]<0x800)
8510       current.waswritten|=1<<rs1[i-1];
8511     current.waswritten&=~(1<<rt1[i]);
8512     current.waswritten&=~(1<<rt2[i]);
8513     if((itype[i]==STORE||itype[i]==STORELR||(itype[i]==C2LS&&opcode[i]==0x3a))&&(u_int)imm[i]>=0x800)
8514       current.waswritten&=~(1<<rs1[i]);
8515
8516     /* Branch post-alloc */
8517     if(i>0)
8518     {
8519       current.was32=current.is32;
8520       current.wasdirty=current.dirty;
8521       switch(itype[i-1]) {
8522         case UJUMP:
8523           memcpy(&branch_regs[i-1],&current,sizeof(current));
8524           branch_regs[i-1].isconst=0;
8525           branch_regs[i-1].wasconst=0;
8526           branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
8527           branch_regs[i-1].uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
8528           alloc_cc(&branch_regs[i-1],i-1);
8529           dirty_reg(&branch_regs[i-1],CCREG);
8530           if(rt1[i-1]==31) { // JAL
8531             alloc_reg(&branch_regs[i-1],i-1,31);
8532             dirty_reg(&branch_regs[i-1],31);
8533             branch_regs[i-1].is32|=1LL<<31;
8534           }
8535           memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
8536           memcpy(constmap[i],constmap[i-1],sizeof(current_constmap));
8537           break;
8538         case RJUMP:
8539           memcpy(&branch_regs[i-1],&current,sizeof(current));
8540           branch_regs[i-1].isconst=0;
8541           branch_regs[i-1].wasconst=0;
8542           branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
8543           branch_regs[i-1].uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
8544           alloc_cc(&branch_regs[i-1],i-1);
8545           dirty_reg(&branch_regs[i-1],CCREG);
8546           alloc_reg(&branch_regs[i-1],i-1,rs1[i-1]);
8547           if(rt1[i-1]!=0) { // JALR
8548             alloc_reg(&branch_regs[i-1],i-1,rt1[i-1]);
8549             dirty_reg(&branch_regs[i-1],rt1[i-1]);
8550             branch_regs[i-1].is32|=1LL<<rt1[i-1];
8551           }
8552           #ifdef USE_MINI_HT
8553           if(rs1[i-1]==31) { // JALR
8554             alloc_reg(&branch_regs[i-1],i-1,RHASH);
8555             #ifndef HOST_IMM_ADDR32
8556             alloc_reg(&branch_regs[i-1],i-1,RHTBL);
8557             #endif
8558           }
8559           #endif
8560           memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
8561           memcpy(constmap[i],constmap[i-1],sizeof(current_constmap));
8562           break;
8563         case CJUMP:
8564           if((opcode[i-1]&0x3E)==4) // BEQ/BNE
8565           {
8566             alloc_cc(&current,i-1);
8567             dirty_reg(&current,CCREG);
8568             if((rs1[i-1]&&(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]))||
8569                (rs2[i-1]&&(rs2[i-1]==rt1[i]||rs2[i-1]==rt2[i]))) {
8570               // The delay slot overwrote one of our conditions
8571               // Delay slot goes after the test (in order)
8572               current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
8573               current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
8574               if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
8575               current.u|=1;
8576               current.uu|=1;
8577               delayslot_alloc(&current,i);
8578               current.isconst=0;
8579             }
8580             else
8581             {
8582               current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
8583               current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
8584               // Alloc the branch condition registers
8585               if(rs1[i-1]) alloc_reg(&current,i-1,rs1[i-1]);
8586               if(rs2[i-1]) alloc_reg(&current,i-1,rs2[i-1]);
8587               if(!((current.is32>>rs1[i-1])&(current.is32>>rs2[i-1])&1))
8588               {
8589                 if(rs1[i-1]) alloc_reg64(&current,i-1,rs1[i-1]);
8590                 if(rs2[i-1]) alloc_reg64(&current,i-1,rs2[i-1]);
8591               }
8592             }
8593             memcpy(&branch_regs[i-1],&current,sizeof(current));
8594             branch_regs[i-1].isconst=0;
8595             branch_regs[i-1].wasconst=0;
8596             memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
8597             memcpy(constmap[i],constmap[i-1],sizeof(current_constmap));
8598           }
8599           else
8600           if((opcode[i-1]&0x3E)==6) // BLEZ/BGTZ
8601           {
8602             alloc_cc(&current,i-1);
8603             dirty_reg(&current,CCREG);
8604             if(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]) {
8605               // The delay slot overwrote the branch condition
8606               // Delay slot goes after the test (in order)
8607               current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
8608               current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
8609               if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
8610               current.u|=1;
8611               current.uu|=1;
8612               delayslot_alloc(&current,i);
8613               current.isconst=0;
8614             }
8615             else
8616             {
8617               current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
8618               current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
8619               // Alloc the branch condition register
8620               alloc_reg(&current,i-1,rs1[i-1]);
8621               if(!(current.is32>>rs1[i-1]&1))
8622               {
8623                 alloc_reg64(&current,i-1,rs1[i-1]);
8624               }
8625             }
8626             memcpy(&branch_regs[i-1],&current,sizeof(current));
8627             branch_regs[i-1].isconst=0;
8628             branch_regs[i-1].wasconst=0;
8629             memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
8630             memcpy(constmap[i],constmap[i-1],sizeof(current_constmap));
8631           }
8632           else
8633           // Alloc the delay slot in case the branch is taken
8634           if((opcode[i-1]&0x3E)==0x14) // BEQL/BNEL
8635           {
8636             memcpy(&branch_regs[i-1],&current,sizeof(current));
8637             branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
8638             branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
8639             if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
8640             alloc_cc(&branch_regs[i-1],i);
8641             dirty_reg(&branch_regs[i-1],CCREG);
8642             delayslot_alloc(&branch_regs[i-1],i);
8643             branch_regs[i-1].isconst=0;
8644             alloc_reg(&current,i,CCREG); // Not taken path
8645             dirty_reg(&current,CCREG);
8646             memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
8647           }
8648           else
8649           if((opcode[i-1]&0x3E)==0x16) // BLEZL/BGTZL
8650           {
8651             memcpy(&branch_regs[i-1],&current,sizeof(current));
8652             branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
8653             branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
8654             if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
8655             alloc_cc(&branch_regs[i-1],i);
8656             dirty_reg(&branch_regs[i-1],CCREG);
8657             delayslot_alloc(&branch_regs[i-1],i);
8658             branch_regs[i-1].isconst=0;
8659             alloc_reg(&current,i,CCREG); // Not taken path
8660             dirty_reg(&current,CCREG);
8661             memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
8662           }
8663           break;
8664         case SJUMP:
8665           //if((opcode2[i-1]&0x1E)==0) // BLTZ/BGEZ
8666           if((opcode2[i-1]&0x0E)==0) // BLTZ/BGEZ
8667           {
8668             alloc_cc(&current,i-1);
8669             dirty_reg(&current,CCREG);
8670             if(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]) {
8671               // The delay slot overwrote the branch condition
8672               // Delay slot goes after the test (in order)
8673               current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
8674               current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
8675               if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
8676               current.u|=1;
8677               current.uu|=1;
8678               delayslot_alloc(&current,i);
8679               current.isconst=0;
8680             }
8681             else
8682             {
8683               current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
8684               current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
8685               // Alloc the branch condition register
8686               alloc_reg(&current,i-1,rs1[i-1]);
8687               if(!(current.is32>>rs1[i-1]&1))
8688               {
8689                 alloc_reg64(&current,i-1,rs1[i-1]);
8690               }
8691             }
8692             memcpy(&branch_regs[i-1],&current,sizeof(current));
8693             branch_regs[i-1].isconst=0;
8694             branch_regs[i-1].wasconst=0;
8695             memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
8696             memcpy(constmap[i],constmap[i-1],sizeof(current_constmap));
8697           }
8698           else
8699           // Alloc the delay slot in case the branch is taken
8700           if((opcode2[i-1]&0x1E)==2) // BLTZL/BGEZL
8701           {
8702             memcpy(&branch_regs[i-1],&current,sizeof(current));
8703             branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
8704             branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
8705             if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
8706             alloc_cc(&branch_regs[i-1],i);
8707             dirty_reg(&branch_regs[i-1],CCREG);
8708             delayslot_alloc(&branch_regs[i-1],i);
8709             branch_regs[i-1].isconst=0;
8710             alloc_reg(&current,i,CCREG); // Not taken path
8711             dirty_reg(&current,CCREG);
8712             memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
8713           }
8714           // FIXME: BLTZAL/BGEZAL
8715           if(opcode2[i-1]&0x10) { // BxxZAL
8716             alloc_reg(&branch_regs[i-1],i-1,31);
8717             dirty_reg(&branch_regs[i-1],31);
8718             branch_regs[i-1].is32|=1LL<<31;
8719           }
8720           break;
8721         case FJUMP:
8722           if(likely[i-1]==0) // BC1F/BC1T
8723           {
8724             alloc_cc(&current,i-1);
8725             dirty_reg(&current,CCREG);
8726             if(itype[i]==FCOMP) {
8727               // The delay slot overwrote the branch condition
8728               // Delay slot goes after the test (in order)
8729               delayslot_alloc(&current,i);
8730               current.isconst=0;
8731             }
8732             else
8733             {
8734               current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
8735               current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
8736               // Alloc the branch condition register
8737               alloc_reg(&current,i-1,FSREG);
8738             }
8739             memcpy(&branch_regs[i-1],&current,sizeof(current));
8740             memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
8741           }
8742           else // BC1FL/BC1TL
8743           {
8744             // Alloc the delay slot in case the branch is taken
8745             memcpy(&branch_regs[i-1],&current,sizeof(current));
8746             branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
8747             branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
8748             if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
8749             alloc_cc(&branch_regs[i-1],i);
8750             dirty_reg(&branch_regs[i-1],CCREG);
8751             delayslot_alloc(&branch_regs[i-1],i);
8752             branch_regs[i-1].isconst=0;
8753             alloc_reg(&current,i,CCREG); // Not taken path
8754             dirty_reg(&current,CCREG);
8755             memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
8756           }
8757           break;
8758       }
8759
8760       if(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)
8761       {
8762         if(rt1[i-1]==31) // JAL/JALR
8763         {
8764           // Subroutine call will return here, don't alloc any registers
8765           current.is32=1;
8766           current.dirty=0;
8767           clear_all_regs(current.regmap);
8768           alloc_reg(&current,i,CCREG);
8769           dirty_reg(&current,CCREG);
8770         }
8771         else if(i+1<slen)
8772         {
8773           // Internal branch will jump here, match registers to caller
8774           current.is32=0x3FFFFFFFFLL;
8775           current.dirty=0;
8776           clear_all_regs(current.regmap);
8777           alloc_reg(&current,i,CCREG);
8778           dirty_reg(&current,CCREG);
8779           for(j=i-1;j>=0;j--)
8780           {
8781             if(ba[j]==start+i*4+4) {
8782               memcpy(current.regmap,branch_regs[j].regmap,sizeof(current.regmap));
8783               current.is32=branch_regs[j].is32;
8784               current.dirty=branch_regs[j].dirty;
8785               break;
8786             }
8787           }
8788           while(j>=0) {
8789             if(ba[j]==start+i*4+4) {
8790               for(hr=0;hr<HOST_REGS;hr++) {
8791                 if(current.regmap[hr]!=branch_regs[j].regmap[hr]) {
8792                   current.regmap[hr]=-1;
8793                 }
8794                 current.is32&=branch_regs[j].is32;
8795                 current.dirty&=branch_regs[j].dirty;
8796               }
8797             }
8798             j--;
8799           }
8800         }
8801       }
8802     }
8803
8804     // Count cycles in between branches
8805     ccadj[i]=cc;
8806     if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP||itype[i]==SYSCALL||itype[i]==HLECALL))
8807     {
8808       cc=0;
8809     }
8810 #if !defined(DRC_DBG)
8811     else if(itype[i]==C2OP&&gte_cycletab[source[i]&0x3f]>2)
8812     {
8813       // GTE runs in parallel until accessed, divide by 2 for a rough guess
8814       cc+=gte_cycletab[source[i]&0x3f]/2;
8815     }
8816     else if(/*itype[i]==LOAD||itype[i]==STORE||*/itype[i]==C1LS) // load,store causes weird timing issues
8817     {
8818       cc+=2; // 2 cycle penalty (after CLOCK_DIVIDER)
8819     }
8820     else if(i>1&&itype[i]==STORE&&itype[i-1]==STORE&&itype[i-2]==STORE&&!bt[i])
8821     {
8822       cc+=4;
8823     }
8824     else if(itype[i]==C2LS)
8825     {
8826       cc+=4;
8827     }
8828 #endif
8829     else
8830     {
8831       cc++;
8832     }
8833
8834     flush_dirty_uppers(&current);
8835     if(!is_ds[i]) {
8836       regs[i].is32=current.is32;
8837       regs[i].dirty=current.dirty;
8838       regs[i].isconst=current.isconst;
8839       memcpy(constmap[i],current_constmap,sizeof(current_constmap));
8840     }
8841     for(hr=0;hr<HOST_REGS;hr++) {
8842       if(hr!=EXCLUDE_REG&&regs[i].regmap[hr]>=0) {
8843         if(regmap_pre[i][hr]!=regs[i].regmap[hr]) {
8844           regs[i].wasconst&=~(1<<hr);
8845         }
8846       }
8847     }
8848     if(current.regmap[HOST_BTREG]==BTREG) current.regmap[HOST_BTREG]=-1;
8849     regs[i].waswritten=current.waswritten;
8850   }
8851
8852   /* Pass 4 - Cull unused host registers */
8853
8854   uint64_t nr=0;
8855
8856   for (i=slen-1;i>=0;i--)
8857   {
8858     int hr;
8859     if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
8860     {
8861       if(ba[i]<start || ba[i]>=(start+slen*4))
8862       {
8863         // Branch out of this block, don't need anything
8864         nr=0;
8865       }
8866       else
8867       {
8868         // Internal branch
8869         // Need whatever matches the target
8870         nr=0;
8871         int t=(ba[i]-start)>>2;
8872         for(hr=0;hr<HOST_REGS;hr++)
8873         {
8874           if(regs[i].regmap_entry[hr]>=0) {
8875             if(regs[i].regmap_entry[hr]==regs[t].regmap_entry[hr]) nr|=1<<hr;
8876           }
8877         }
8878       }
8879       // Conditional branch may need registers for following instructions
8880       if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
8881       {
8882         if(i<slen-2) {
8883           nr|=needed_reg[i+2];
8884           for(hr=0;hr<HOST_REGS;hr++)
8885           {
8886             if(regmap_pre[i+2][hr]>=0&&get_reg(regs[i+2].regmap_entry,regmap_pre[i+2][hr])<0) nr&=~(1<<hr);
8887             //if((regmap_entry[i+2][hr])>=0) if(!((nr>>hr)&1)) printf("%x-bogus(%d=%d)\n",start+i*4,hr,regmap_entry[i+2][hr]);
8888           }
8889         }
8890       }
8891       // Don't need stuff which is overwritten
8892       //if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
8893       //if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
8894       // Merge in delay slot
8895       for(hr=0;hr<HOST_REGS;hr++)
8896       {
8897         if(!likely[i]) {
8898           // These are overwritten unless the branch is "likely"
8899           // and the delay slot is nullified if not taken
8900           if(rt1[i+1]&&rt1[i+1]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
8901           if(rt2[i+1]&&rt2[i+1]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
8902         }
8903         if(us1[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
8904         if(us2[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
8905         if(rs1[i+1]==regmap_pre[i][hr]) nr|=1<<hr;
8906         if(rs2[i+1]==regmap_pre[i][hr]) nr|=1<<hr;
8907         if(us1[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
8908         if(us2[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
8909         if(rs1[i+1]==regs[i].regmap_entry[hr]) nr|=1<<hr;
8910         if(rs2[i+1]==regs[i].regmap_entry[hr]) nr|=1<<hr;
8911         if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1)) {
8912           if(dep1[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
8913           if(dep2[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
8914         }
8915         if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1)) {
8916           if(dep1[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
8917           if(dep2[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
8918         }
8919         if(itype[i+1]==STORE || itype[i+1]==STORELR || (opcode[i+1]&0x3b)==0x39 || (opcode[i+1]&0x3b)==0x3a) {
8920           if(regmap_pre[i][hr]==INVCP) nr|=1<<hr;
8921           if(regs[i].regmap_entry[hr]==INVCP) nr|=1<<hr;
8922         }
8923       }
8924     }
8925     else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
8926     {
8927       // SYSCALL instruction (software interrupt)
8928       nr=0;
8929     }
8930     else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
8931     {
8932       // ERET instruction (return from interrupt)
8933       nr=0;
8934     }
8935     else // Non-branch
8936     {
8937       if(i<slen-1) {
8938         for(hr=0;hr<HOST_REGS;hr++) {
8939           if(regmap_pre[i+1][hr]>=0&&get_reg(regs[i+1].regmap_entry,regmap_pre[i+1][hr])<0) nr&=~(1<<hr);
8940           if(regs[i].regmap[hr]!=regmap_pre[i+1][hr]) nr&=~(1<<hr);
8941           if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
8942           if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
8943         }
8944       }
8945     }
8946     for(hr=0;hr<HOST_REGS;hr++)
8947     {
8948       // Overwritten registers are not needed
8949       if(rt1[i]&&rt1[i]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
8950       if(rt2[i]&&rt2[i]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
8951       if(FTEMP==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
8952       // Source registers are needed
8953       if(us1[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
8954       if(us2[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
8955       if(rs1[i]==regmap_pre[i][hr]) nr|=1<<hr;
8956       if(rs2[i]==regmap_pre[i][hr]) nr|=1<<hr;
8957       if(us1[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
8958       if(us2[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
8959       if(rs1[i]==regs[i].regmap_entry[hr]) nr|=1<<hr;
8960       if(rs2[i]==regs[i].regmap_entry[hr]) nr|=1<<hr;
8961       if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1)) {
8962         if(dep1[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
8963         if(dep1[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
8964       }
8965       if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1)) {
8966         if(dep2[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
8967         if(dep2[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
8968       }
8969       if(itype[i]==STORE || itype[i]==STORELR || (opcode[i]&0x3b)==0x39 || (opcode[i]&0x3b)==0x3a) {
8970         if(regmap_pre[i][hr]==INVCP) nr|=1<<hr;
8971         if(regs[i].regmap_entry[hr]==INVCP) nr|=1<<hr;
8972       }
8973       // Don't store a register immediately after writing it,
8974       // may prevent dual-issue.
8975       // But do so if this is a branch target, otherwise we
8976       // might have to load the register before the branch.
8977       if(i>0&&!bt[i]&&((regs[i].wasdirty>>hr)&1)) {
8978         if((regmap_pre[i][hr]>0&&regmap_pre[i][hr]<64&&!((unneeded_reg[i]>>regmap_pre[i][hr])&1)) ||
8979            (regmap_pre[i][hr]>64&&!((unneeded_reg_upper[i]>>(regmap_pre[i][hr]&63))&1)) ) {
8980           if(rt1[i-1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
8981           if(rt2[i-1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
8982         }
8983         if((regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64&&!((unneeded_reg[i]>>regs[i].regmap_entry[hr])&1)) ||
8984            (regs[i].regmap_entry[hr]>64&&!((unneeded_reg_upper[i]>>(regs[i].regmap_entry[hr]&63))&1)) ) {
8985           if(rt1[i-1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
8986           if(rt2[i-1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
8987         }
8988       }
8989     }
8990     // Cycle count is needed at branches.  Assume it is needed at the target too.
8991     if(i==0||bt[i]||itype[i]==CJUMP||itype[i]==FJUMP||itype[i]==SPAN) {
8992       if(regmap_pre[i][HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
8993       if(regs[i].regmap_entry[HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
8994     }
8995     // Save it
8996     needed_reg[i]=nr;
8997
8998     // Deallocate unneeded registers
8999     for(hr=0;hr<HOST_REGS;hr++)
9000     {
9001       if(!((nr>>hr)&1)) {
9002         if(regs[i].regmap_entry[hr]!=CCREG) regs[i].regmap_entry[hr]=-1;
9003         if((regs[i].regmap[hr]&63)!=rs1[i] && (regs[i].regmap[hr]&63)!=rs2[i] &&
9004            (regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
9005            (regs[i].regmap[hr]&63)!=PTEMP && (regs[i].regmap[hr]&63)!=CCREG)
9006         {
9007           if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
9008           {
9009             if(likely[i]) {
9010               regs[i].regmap[hr]=-1;
9011               regs[i].isconst&=~(1<<hr);
9012               if(i<slen-2) {
9013                 regmap_pre[i+2][hr]=-1;
9014                 regs[i+2].wasconst&=~(1<<hr);
9015               }
9016             }
9017           }
9018         }
9019         if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
9020         {
9021           int d1=0,d2=0,map=0,temp=0;
9022           if(get_reg(regs[i].regmap,rt1[i+1]|64)>=0||get_reg(branch_regs[i].regmap,rt1[i+1]|64)>=0)
9023           {
9024             d1=dep1[i+1];
9025             d2=dep2[i+1];
9026           }
9027           if(itype[i+1]==STORE || itype[i+1]==STORELR ||
9028              (opcode[i+1]&0x3b)==0x39 || (opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1 || SWC2/SDC2
9029             map=INVCP;
9030           }
9031           if(itype[i+1]==LOADLR || itype[i+1]==STORELR ||
9032              itype[i+1]==C1LS || itype[i+1]==C2LS)
9033             temp=FTEMP;
9034           if((regs[i].regmap[hr]&63)!=rs1[i] && (regs[i].regmap[hr]&63)!=rs2[i] &&
9035              (regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
9036              (regs[i].regmap[hr]&63)!=rt1[i+1] && (regs[i].regmap[hr]&63)!=rt2[i+1] &&
9037              (regs[i].regmap[hr]^64)!=us1[i+1] && (regs[i].regmap[hr]^64)!=us2[i+1] &&
9038              (regs[i].regmap[hr]^64)!=d1 && (regs[i].regmap[hr]^64)!=d2 &&
9039              regs[i].regmap[hr]!=rs1[i+1] && regs[i].regmap[hr]!=rs2[i+1] &&
9040              (regs[i].regmap[hr]&63)!=temp && regs[i].regmap[hr]!=PTEMP &&
9041              regs[i].regmap[hr]!=RHASH && regs[i].regmap[hr]!=RHTBL &&
9042              regs[i].regmap[hr]!=RTEMP && regs[i].regmap[hr]!=CCREG &&
9043              regs[i].regmap[hr]!=map )
9044           {
9045             regs[i].regmap[hr]=-1;
9046             regs[i].isconst&=~(1<<hr);
9047             if((branch_regs[i].regmap[hr]&63)!=rs1[i] && (branch_regs[i].regmap[hr]&63)!=rs2[i] &&
9048                (branch_regs[i].regmap[hr]&63)!=rt1[i] && (branch_regs[i].regmap[hr]&63)!=rt2[i] &&
9049                (branch_regs[i].regmap[hr]&63)!=rt1[i+1] && (branch_regs[i].regmap[hr]&63)!=rt2[i+1] &&
9050                (branch_regs[i].regmap[hr]^64)!=us1[i+1] && (branch_regs[i].regmap[hr]^64)!=us2[i+1] &&
9051                (branch_regs[i].regmap[hr]^64)!=d1 && (branch_regs[i].regmap[hr]^64)!=d2 &&
9052                branch_regs[i].regmap[hr]!=rs1[i+1] && branch_regs[i].regmap[hr]!=rs2[i+1] &&
9053                (branch_regs[i].regmap[hr]&63)!=temp && branch_regs[i].regmap[hr]!=PTEMP &&
9054                branch_regs[i].regmap[hr]!=RHASH && branch_regs[i].regmap[hr]!=RHTBL &&
9055                branch_regs[i].regmap[hr]!=RTEMP && branch_regs[i].regmap[hr]!=CCREG &&
9056                branch_regs[i].regmap[hr]!=map)
9057             {
9058               branch_regs[i].regmap[hr]=-1;
9059               branch_regs[i].regmap_entry[hr]=-1;
9060               if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
9061               {
9062                 if(!likely[i]&&i<slen-2) {
9063                   regmap_pre[i+2][hr]=-1;
9064                   regs[i+2].wasconst&=~(1<<hr);
9065                 }
9066               }
9067             }
9068           }
9069         }
9070         else
9071         {
9072           // Non-branch
9073           if(i>0)
9074           {
9075             int d1=0,d2=0,map=-1,temp=-1;
9076             if(get_reg(regs[i].regmap,rt1[i]|64)>=0)
9077             {
9078               d1=dep1[i];
9079               d2=dep2[i];
9080             }
9081             if(itype[i]==STORE || itype[i]==STORELR ||
9082                       (opcode[i]&0x3b)==0x39 || (opcode[i]&0x3b)==0x3a) { // SWC1/SDC1 || SWC2/SDC2
9083               map=INVCP;
9084             }
9085             if(itype[i]==LOADLR || itype[i]==STORELR ||
9086                itype[i]==C1LS || itype[i]==C2LS)
9087               temp=FTEMP;
9088             if((regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
9089                (regs[i].regmap[hr]^64)!=us1[i] && (regs[i].regmap[hr]^64)!=us2[i] &&
9090                (regs[i].regmap[hr]^64)!=d1 && (regs[i].regmap[hr]^64)!=d2 &&
9091                regs[i].regmap[hr]!=rs1[i] && regs[i].regmap[hr]!=rs2[i] &&
9092                (regs[i].regmap[hr]&63)!=temp && regs[i].regmap[hr]!=map &&
9093                (itype[i]!=SPAN||regs[i].regmap[hr]!=CCREG))
9094             {
9095               if(i<slen-1&&!is_ds[i]) {
9096                 if(regmap_pre[i+1][hr]!=-1 || regs[i].regmap[hr]!=-1)
9097                 if(regmap_pre[i+1][hr]!=regs[i].regmap[hr])
9098                 if(regs[i].regmap[hr]<64||!((regs[i].was32>>(regs[i].regmap[hr]&63))&1))
9099                 {
9100                   SysPrintf("fail: %x (%d %d!=%d)\n",start+i*4,hr,regmap_pre[i+1][hr],regs[i].regmap[hr]);
9101                   assert(regmap_pre[i+1][hr]==regs[i].regmap[hr]);
9102                 }
9103                 regmap_pre[i+1][hr]=-1;
9104                 if(regs[i+1].regmap_entry[hr]==CCREG) regs[i+1].regmap_entry[hr]=-1;
9105                 regs[i+1].wasconst&=~(1<<hr);
9106               }
9107               regs[i].regmap[hr]=-1;
9108               regs[i].isconst&=~(1<<hr);
9109             }
9110           }
9111         }
9112       }
9113     }
9114   }
9115
9116   /* Pass 5 - Pre-allocate registers */
9117
9118   // If a register is allocated during a loop, try to allocate it for the
9119   // entire loop, if possible.  This avoids loading/storing registers
9120   // inside of the loop.
9121
9122   signed char f_regmap[HOST_REGS];
9123   clear_all_regs(f_regmap);
9124   for(i=0;i<slen-1;i++)
9125   {
9126     if(itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
9127     {
9128       if(ba[i]>=start && ba[i]<(start+i*4))
9129       if(itype[i+1]==NOP||itype[i+1]==MOV||itype[i+1]==ALU
9130       ||itype[i+1]==SHIFTIMM||itype[i+1]==IMM16||itype[i+1]==LOAD
9131       ||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS
9132       ||itype[i+1]==SHIFT||itype[i+1]==COP1||itype[i+1]==FLOAT
9133       ||itype[i+1]==FCOMP||itype[i+1]==FCONV
9134       ||itype[i+1]==COP2||itype[i+1]==C2LS||itype[i+1]==C2OP)
9135       {
9136         int t=(ba[i]-start)>>2;
9137         if(t>0&&(itype[t-1]!=UJUMP&&itype[t-1]!=RJUMP&&itype[t-1]!=CJUMP&&itype[t-1]!=SJUMP&&itype[t-1]!=FJUMP)) // loop_preload can't handle jumps into delay slots
9138         if(t<2||(itype[t-2]!=UJUMP&&itype[t-2]!=RJUMP)||rt1[t-2]!=31) // call/ret assumes no registers allocated
9139         for(hr=0;hr<HOST_REGS;hr++)
9140         {
9141           if(regs[i].regmap[hr]>64) {
9142             if(!((regs[i].dirty>>hr)&1))
9143               f_regmap[hr]=regs[i].regmap[hr];
9144             else f_regmap[hr]=-1;
9145           }
9146           else if(regs[i].regmap[hr]>=0) {
9147             if(f_regmap[hr]!=regs[i].regmap[hr]) {
9148               // dealloc old register
9149               int n;
9150               for(n=0;n<HOST_REGS;n++)
9151               {
9152                 if(f_regmap[n]==regs[i].regmap[hr]) {f_regmap[n]=-1;}
9153               }
9154               // and alloc new one
9155               f_regmap[hr]=regs[i].regmap[hr];
9156             }
9157           }
9158           if(branch_regs[i].regmap[hr]>64) {
9159             if(!((branch_regs[i].dirty>>hr)&1))
9160               f_regmap[hr]=branch_regs[i].regmap[hr];
9161             else f_regmap[hr]=-1;
9162           }
9163           else if(branch_regs[i].regmap[hr]>=0) {
9164             if(f_regmap[hr]!=branch_regs[i].regmap[hr]) {
9165               // dealloc old register
9166               int n;
9167               for(n=0;n<HOST_REGS;n++)
9168               {
9169                 if(f_regmap[n]==branch_regs[i].regmap[hr]) {f_regmap[n]=-1;}
9170               }
9171               // and alloc new one
9172               f_regmap[hr]=branch_regs[i].regmap[hr];
9173             }
9174           }
9175           if(ooo[i]) {
9176             if(count_free_regs(regs[i].regmap)<=minimum_free_regs[i+1])
9177               f_regmap[hr]=branch_regs[i].regmap[hr];
9178           }else{
9179             if(count_free_regs(branch_regs[i].regmap)<=minimum_free_regs[i+1])
9180               f_regmap[hr]=branch_regs[i].regmap[hr];
9181           }
9182           // Avoid dirty->clean transition
9183           #ifdef DESTRUCTIVE_WRITEBACK
9184           if(t>0) if(get_reg(regmap_pre[t],f_regmap[hr])>=0) if((regs[t].wasdirty>>get_reg(regmap_pre[t],f_regmap[hr]))&1) f_regmap[hr]=-1;
9185           #endif
9186           // This check is only strictly required in the DESTRUCTIVE_WRITEBACK
9187           // case above, however it's always a good idea.  We can't hoist the
9188           // load if the register was already allocated, so there's no point
9189           // wasting time analyzing most of these cases.  It only "succeeds"
9190           // when the mapping was different and the load can be replaced with
9191           // a mov, which is of negligible benefit.  So such cases are
9192           // skipped below.
9193           if(f_regmap[hr]>0) {
9194             if(regs[t].regmap[hr]==f_regmap[hr]||(regs[t].regmap_entry[hr]<0&&get_reg(regmap_pre[t],f_regmap[hr])<0)) {
9195               int r=f_regmap[hr];
9196               for(j=t;j<=i;j++)
9197               {
9198                 //printf("Test %x -> %x, %x %d/%d\n",start+i*4,ba[i],start+j*4,hr,r);
9199                 if(r<34&&((unneeded_reg[j]>>r)&1)) break;
9200                 if(r>63&&((unneeded_reg_upper[j]>>(r&63))&1)) break;
9201                 if(r>63) {
9202                   // NB This can exclude the case where the upper-half
9203                   // register is lower numbered than the lower-half
9204                   // register.  Not sure if it's worth fixing...
9205                   if(get_reg(regs[j].regmap,r&63)<0) break;
9206                   if(get_reg(regs[j].regmap_entry,r&63)<0) break;
9207                   if(regs[j].is32&(1LL<<(r&63))) break;
9208                 }
9209                 if(regs[j].regmap[hr]==f_regmap[hr]&&(f_regmap[hr]&63)<TEMPREG) {
9210                   //printf("Hit %x -> %x, %x %d/%d\n",start+i*4,ba[i],start+j*4,hr,r);
9211                   int k;
9212                   if(regs[i].regmap[hr]==-1&&branch_regs[i].regmap[hr]==-1) {
9213                     if(get_reg(regs[i+2].regmap,f_regmap[hr])>=0) break;
9214                     if(r>63) {
9215                       if(get_reg(regs[i].regmap,r&63)<0) break;
9216                       if(get_reg(branch_regs[i].regmap,r&63)<0) break;
9217                     }
9218                     k=i;
9219                     while(k>1&&regs[k-1].regmap[hr]==-1) {
9220                       if(count_free_regs(regs[k-1].regmap)<=minimum_free_regs[k-1]) {
9221                         //printf("no free regs for store %x\n",start+(k-1)*4);
9222                         break;
9223                       }
9224                       if(get_reg(regs[k-1].regmap,f_regmap[hr])>=0) {
9225                         //printf("no-match due to different register\n");
9226                         break;
9227                       }
9228                       if(itype[k-2]==UJUMP||itype[k-2]==RJUMP||itype[k-2]==CJUMP||itype[k-2]==SJUMP||itype[k-2]==FJUMP) {
9229                         //printf("no-match due to branch\n");
9230                         break;
9231                       }
9232                       // call/ret fast path assumes no registers allocated
9233                       if(k>2&&(itype[k-3]==UJUMP||itype[k-3]==RJUMP)&&rt1[k-3]==31) {
9234                         break;
9235                       }
9236                       if(r>63) {
9237                         // NB This can exclude the case where the upper-half
9238                         // register is lower numbered than the lower-half
9239                         // register.  Not sure if it's worth fixing...
9240                         if(get_reg(regs[k-1].regmap,r&63)<0) break;
9241                         if(regs[k-1].is32&(1LL<<(r&63))) break;
9242                       }
9243                       k--;
9244                     }
9245                     if(i<slen-1) {
9246                       if((regs[k].is32&(1LL<<f_regmap[hr]))!=
9247                         (regs[i+2].was32&(1LL<<f_regmap[hr]))) {
9248                         //printf("bad match after branch\n");
9249                         break;
9250                       }
9251                     }
9252                     if(regs[k-1].regmap[hr]==f_regmap[hr]&&regmap_pre[k][hr]==f_regmap[hr]) {
9253                       //printf("Extend r%d, %x ->\n",hr,start+k*4);
9254                       while(k<i) {
9255                         regs[k].regmap_entry[hr]=f_regmap[hr];
9256                         regs[k].regmap[hr]=f_regmap[hr];
9257                         regmap_pre[k+1][hr]=f_regmap[hr];
9258                         regs[k].wasdirty&=~(1<<hr);
9259                         regs[k].dirty&=~(1<<hr);
9260                         regs[k].wasdirty|=(1<<hr)&regs[k-1].dirty;
9261                         regs[k].dirty|=(1<<hr)&regs[k].wasdirty;
9262                         regs[k].wasconst&=~(1<<hr);
9263                         regs[k].isconst&=~(1<<hr);
9264                         k++;
9265                       }
9266                     }
9267                     else {
9268                       //printf("Fail Extend r%d, %x ->\n",hr,start+k*4);
9269                       break;
9270                     }
9271                     assert(regs[i-1].regmap[hr]==f_regmap[hr]);
9272                     if(regs[i-1].regmap[hr]==f_regmap[hr]&&regmap_pre[i][hr]==f_regmap[hr]) {
9273                       //printf("OK fill %x (r%d)\n",start+i*4,hr);
9274                       regs[i].regmap_entry[hr]=f_regmap[hr];
9275                       regs[i].regmap[hr]=f_regmap[hr];
9276                       regs[i].wasdirty&=~(1<<hr);
9277                       regs[i].dirty&=~(1<<hr);
9278                       regs[i].wasdirty|=(1<<hr)&regs[i-1].dirty;
9279                       regs[i].dirty|=(1<<hr)&regs[i-1].dirty;
9280                       regs[i].wasconst&=~(1<<hr);
9281                       regs[i].isconst&=~(1<<hr);
9282                       branch_regs[i].regmap_entry[hr]=f_regmap[hr];
9283                       branch_regs[i].wasdirty&=~(1<<hr);
9284                       branch_regs[i].wasdirty|=(1<<hr)&regs[i].dirty;
9285                       branch_regs[i].regmap[hr]=f_regmap[hr];
9286                       branch_regs[i].dirty&=~(1<<hr);
9287                       branch_regs[i].dirty|=(1<<hr)&regs[i].dirty;
9288                       branch_regs[i].wasconst&=~(1<<hr);
9289                       branch_regs[i].isconst&=~(1<<hr);
9290                       if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000) {
9291                         regmap_pre[i+2][hr]=f_regmap[hr];
9292                         regs[i+2].wasdirty&=~(1<<hr);
9293                         regs[i+2].wasdirty|=(1<<hr)&regs[i].dirty;
9294                         assert((branch_regs[i].is32&(1LL<<f_regmap[hr]))==
9295                           (regs[i+2].was32&(1LL<<f_regmap[hr])));
9296                       }
9297                     }
9298                   }
9299                   for(k=t;k<j;k++) {
9300                     // Alloc register clean at beginning of loop,
9301                     // but may dirty it in pass 6
9302                     regs[k].regmap_entry[hr]=f_regmap[hr];
9303                     regs[k].regmap[hr]=f_regmap[hr];
9304                     regs[k].dirty&=~(1<<hr);
9305                     regs[k].wasconst&=~(1<<hr);
9306                     regs[k].isconst&=~(1<<hr);
9307                     if(itype[k]==UJUMP||itype[k]==RJUMP||itype[k]==CJUMP||itype[k]==SJUMP||itype[k]==FJUMP) {
9308                       branch_regs[k].regmap_entry[hr]=f_regmap[hr];
9309                       branch_regs[k].regmap[hr]=f_regmap[hr];
9310                       branch_regs[k].dirty&=~(1<<hr);
9311                       branch_regs[k].wasconst&=~(1<<hr);
9312                       branch_regs[k].isconst&=~(1<<hr);
9313                       if(itype[k]!=RJUMP&&itype[k]!=UJUMP&&(source[k]>>16)!=0x1000) {
9314                         regmap_pre[k+2][hr]=f_regmap[hr];
9315                         regs[k+2].wasdirty&=~(1<<hr);
9316                         assert((branch_regs[k].is32&(1LL<<f_regmap[hr]))==
9317                           (regs[k+2].was32&(1LL<<f_regmap[hr])));
9318                       }
9319                     }
9320                     else
9321                     {
9322                       regmap_pre[k+1][hr]=f_regmap[hr];
9323                       regs[k+1].wasdirty&=~(1<<hr);
9324                     }
9325                   }
9326                   if(regs[j].regmap[hr]==f_regmap[hr])
9327                     regs[j].regmap_entry[hr]=f_regmap[hr];
9328                   break;
9329                 }
9330                 if(j==i) break;
9331                 if(regs[j].regmap[hr]>=0)
9332                   break;
9333                 if(get_reg(regs[j].regmap,f_regmap[hr])>=0) {
9334                   //printf("no-match due to different register\n");
9335                   break;
9336                 }
9337                 if((regs[j+1].is32&(1LL<<f_regmap[hr]))!=(regs[j].is32&(1LL<<f_regmap[hr]))) {
9338                   //printf("32/64 mismatch %x %d\n",start+j*4,hr);
9339                   break;
9340                 }
9341                 if(itype[j]==UJUMP||itype[j]==RJUMP||(source[j]>>16)==0x1000)
9342                 {
9343                   // Stop on unconditional branch
9344                   break;
9345                 }
9346                 if(itype[j]==CJUMP||itype[j]==SJUMP||itype[j]==FJUMP)
9347                 {
9348                   if(ooo[j]) {
9349                     if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j+1])
9350                       break;
9351                   }else{
9352                     if(count_free_regs(branch_regs[j].regmap)<=minimum_free_regs[j+1])
9353                       break;
9354                   }
9355                   if(get_reg(branch_regs[j].regmap,f_regmap[hr])>=0) {
9356                     //printf("no-match due to different register (branch)\n");
9357                     break;
9358                   }
9359                 }
9360                 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) {
9361                   //printf("No free regs for store %x\n",start+j*4);
9362                   break;
9363                 }
9364                 if(f_regmap[hr]>=64) {
9365                   if(regs[j].is32&(1LL<<(f_regmap[hr]&63))) {
9366                     break;
9367                   }
9368                   else
9369                   {
9370                     if(get_reg(regs[j].regmap,f_regmap[hr]&63)<0) {
9371                       break;
9372                     }
9373                   }
9374                 }
9375               }
9376             }
9377           }
9378         }
9379       }
9380     }else{
9381       // Non branch or undetermined branch target
9382       for(hr=0;hr<HOST_REGS;hr++)
9383       {
9384         if(hr!=EXCLUDE_REG) {
9385           if(regs[i].regmap[hr]>64) {
9386             if(!((regs[i].dirty>>hr)&1))
9387               f_regmap[hr]=regs[i].regmap[hr];
9388           }
9389           else if(regs[i].regmap[hr]>=0) {
9390             if(f_regmap[hr]!=regs[i].regmap[hr]) {
9391               // dealloc old register
9392               int n;
9393               for(n=0;n<HOST_REGS;n++)
9394               {
9395                 if(f_regmap[n]==regs[i].regmap[hr]) {f_regmap[n]=-1;}
9396               }
9397               // and alloc new one
9398               f_regmap[hr]=regs[i].regmap[hr];
9399             }
9400           }
9401         }
9402       }
9403       // Try to restore cycle count at branch targets
9404       if(bt[i]) {
9405         for(j=i;j<slen-1;j++) {
9406           if(regs[j].regmap[HOST_CCREG]!=-1) break;
9407           if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) {
9408             //printf("no free regs for store %x\n",start+j*4);
9409             break;
9410           }
9411         }
9412         if(regs[j].regmap[HOST_CCREG]==CCREG) {
9413           int k=i;
9414           //printf("Extend CC, %x -> %x\n",start+k*4,start+j*4);
9415           while(k<j) {
9416             regs[k].regmap_entry[HOST_CCREG]=CCREG;
9417             regs[k].regmap[HOST_CCREG]=CCREG;
9418             regmap_pre[k+1][HOST_CCREG]=CCREG;
9419             regs[k+1].wasdirty|=1<<HOST_CCREG;
9420             regs[k].dirty|=1<<HOST_CCREG;
9421             regs[k].wasconst&=~(1<<HOST_CCREG);
9422             regs[k].isconst&=~(1<<HOST_CCREG);
9423             k++;
9424           }
9425           regs[j].regmap_entry[HOST_CCREG]=CCREG;
9426         }
9427         // Work backwards from the branch target
9428         if(j>i&&f_regmap[HOST_CCREG]==CCREG)
9429         {
9430           //printf("Extend backwards\n");
9431           int k;
9432           k=i;
9433           while(regs[k-1].regmap[HOST_CCREG]==-1) {
9434             if(count_free_regs(regs[k-1].regmap)<=minimum_free_regs[k-1]) {
9435               //printf("no free regs for store %x\n",start+(k-1)*4);
9436               break;
9437             }
9438             k--;
9439           }
9440           if(regs[k-1].regmap[HOST_CCREG]==CCREG) {
9441             //printf("Extend CC, %x ->\n",start+k*4);
9442             while(k<=i) {
9443               regs[k].regmap_entry[HOST_CCREG]=CCREG;
9444               regs[k].regmap[HOST_CCREG]=CCREG;
9445               regmap_pre[k+1][HOST_CCREG]=CCREG;
9446               regs[k+1].wasdirty|=1<<HOST_CCREG;
9447               regs[k].dirty|=1<<HOST_CCREG;
9448               regs[k].wasconst&=~(1<<HOST_CCREG);
9449               regs[k].isconst&=~(1<<HOST_CCREG);
9450               k++;
9451             }
9452           }
9453           else {
9454             //printf("Fail Extend CC, %x ->\n",start+k*4);
9455           }
9456         }
9457       }
9458       if(itype[i]!=STORE&&itype[i]!=STORELR&&itype[i]!=C1LS&&itype[i]!=SHIFT&&
9459          itype[i]!=NOP&&itype[i]!=MOV&&itype[i]!=ALU&&itype[i]!=SHIFTIMM&&
9460          itype[i]!=IMM16&&itype[i]!=LOAD&&itype[i]!=COP1&&itype[i]!=FLOAT&&
9461          itype[i]!=FCONV&&itype[i]!=FCOMP)
9462       {
9463         memcpy(f_regmap,regs[i].regmap,sizeof(f_regmap));
9464       }
9465     }
9466   }
9467
9468   // Cache memory offset or tlb map pointer if a register is available
9469   #ifndef HOST_IMM_ADDR32
9470   #ifndef RAM_OFFSET
9471   if(0)
9472   #endif
9473   {
9474     int earliest_available[HOST_REGS];
9475     int loop_start[HOST_REGS];
9476     int score[HOST_REGS];
9477     int end[HOST_REGS];
9478     int reg=ROREG;
9479
9480     // Init
9481     for(hr=0;hr<HOST_REGS;hr++) {
9482       score[hr]=0;earliest_available[hr]=0;
9483       loop_start[hr]=MAXBLOCK;
9484     }
9485     for(i=0;i<slen-1;i++)
9486     {
9487       // Can't do anything if no registers are available
9488       if(count_free_regs(regs[i].regmap)<=minimum_free_regs[i]) {
9489         for(hr=0;hr<HOST_REGS;hr++) {
9490           score[hr]=0;earliest_available[hr]=i+1;
9491           loop_start[hr]=MAXBLOCK;
9492         }
9493       }
9494       if(itype[i]==UJUMP||itype[i]==RJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP) {
9495         if(!ooo[i]) {
9496           if(count_free_regs(branch_regs[i].regmap)<=minimum_free_regs[i+1]) {
9497             for(hr=0;hr<HOST_REGS;hr++) {
9498               score[hr]=0;earliest_available[hr]=i+1;
9499               loop_start[hr]=MAXBLOCK;
9500             }
9501           }
9502         }else{
9503           if(count_free_regs(regs[i].regmap)<=minimum_free_regs[i+1]) {
9504             for(hr=0;hr<HOST_REGS;hr++) {
9505               score[hr]=0;earliest_available[hr]=i+1;
9506               loop_start[hr]=MAXBLOCK;
9507             }
9508           }
9509         }
9510       }
9511       // Mark unavailable registers
9512       for(hr=0;hr<HOST_REGS;hr++) {
9513         if(regs[i].regmap[hr]>=0) {
9514           score[hr]=0;earliest_available[hr]=i+1;
9515           loop_start[hr]=MAXBLOCK;
9516         }
9517         if(itype[i]==UJUMP||itype[i]==RJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP) {
9518           if(branch_regs[i].regmap[hr]>=0) {
9519             score[hr]=0;earliest_available[hr]=i+2;
9520             loop_start[hr]=MAXBLOCK;
9521           }
9522         }
9523       }
9524       // No register allocations after unconditional jumps
9525       if(itype[i]==UJUMP||itype[i]==RJUMP||(source[i]>>16)==0x1000)
9526       {
9527         for(hr=0;hr<HOST_REGS;hr++) {
9528           score[hr]=0;earliest_available[hr]=i+2;
9529           loop_start[hr]=MAXBLOCK;
9530         }
9531         i++; // Skip delay slot too
9532         //printf("skip delay slot: %x\n",start+i*4);
9533       }
9534       else
9535       // Possible match
9536       if(itype[i]==LOAD||itype[i]==LOADLR||
9537          itype[i]==STORE||itype[i]==STORELR||itype[i]==C1LS) {
9538         for(hr=0;hr<HOST_REGS;hr++) {
9539           if(hr!=EXCLUDE_REG) {
9540             end[hr]=i-1;
9541             for(j=i;j<slen-1;j++) {
9542               if(regs[j].regmap[hr]>=0) break;
9543               if(itype[j]==UJUMP||itype[j]==RJUMP||itype[j]==CJUMP||itype[j]==SJUMP||itype[j]==FJUMP) {
9544                 if(branch_regs[j].regmap[hr]>=0) break;
9545                 if(ooo[j]) {
9546                   if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j+1]) break;
9547                 }else{
9548                   if(count_free_regs(branch_regs[j].regmap)<=minimum_free_regs[j+1]) break;
9549                 }
9550               }
9551               else if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) break;
9552               if(itype[j]==UJUMP||itype[j]==RJUMP||itype[j]==CJUMP||itype[j]==SJUMP||itype[j]==FJUMP) {
9553                 int t=(ba[j]-start)>>2;
9554                 if(t<j&&t>=earliest_available[hr]) {
9555                   if(t==1||(t>1&&itype[t-2]!=UJUMP&&itype[t-2]!=RJUMP)||(t>1&&rt1[t-2]!=31)) { // call/ret assumes no registers allocated
9556                     // Score a point for hoisting loop invariant
9557                     if(t<loop_start[hr]) loop_start[hr]=t;
9558                     //printf("set loop_start: i=%x j=%x (%x)\n",start+i*4,start+j*4,start+t*4);
9559                     score[hr]++;
9560                     end[hr]=j;
9561                   }
9562                 }
9563                 else if(t<j) {
9564                   if(regs[t].regmap[hr]==reg) {
9565                     // Score a point if the branch target matches this register
9566                     score[hr]++;
9567                     end[hr]=j;
9568                   }
9569                 }
9570                 if(itype[j+1]==LOAD||itype[j+1]==LOADLR||
9571                    itype[j+1]==STORE||itype[j+1]==STORELR||itype[j+1]==C1LS) {
9572                   score[hr]++;
9573                   end[hr]=j;
9574                 }
9575               }
9576               if(itype[j]==UJUMP||itype[j]==RJUMP||(source[j]>>16)==0x1000)
9577               {
9578                 // Stop on unconditional branch
9579                 break;
9580               }
9581               else
9582               if(itype[j]==LOAD||itype[j]==LOADLR||
9583                  itype[j]==STORE||itype[j]==STORELR||itype[j]==C1LS) {
9584                 score[hr]++;
9585                 end[hr]=j;
9586               }
9587             }
9588           }
9589         }
9590         // Find highest score and allocate that register
9591         int maxscore=0;
9592         for(hr=0;hr<HOST_REGS;hr++) {
9593           if(hr!=EXCLUDE_REG) {
9594             if(score[hr]>score[maxscore]) {
9595               maxscore=hr;
9596               //printf("highest score: %d %d (%x->%x)\n",score[hr],hr,start+i*4,start+end[hr]*4);
9597             }
9598           }
9599         }
9600         if(score[maxscore]>1)
9601         {
9602           if(i<loop_start[maxscore]) loop_start[maxscore]=i;
9603           for(j=loop_start[maxscore];j<slen&&j<=end[maxscore];j++) {
9604             //if(regs[j].regmap[maxscore]>=0) {printf("oops: %x %x was %d=%d\n",loop_start[maxscore]*4+start,j*4+start,maxscore,regs[j].regmap[maxscore]);}
9605             assert(regs[j].regmap[maxscore]<0);
9606             if(j>loop_start[maxscore]) regs[j].regmap_entry[maxscore]=reg;
9607             regs[j].regmap[maxscore]=reg;
9608             regs[j].dirty&=~(1<<maxscore);
9609             regs[j].wasconst&=~(1<<maxscore);
9610             regs[j].isconst&=~(1<<maxscore);
9611             if(itype[j]==UJUMP||itype[j]==RJUMP||itype[j]==CJUMP||itype[j]==SJUMP||itype[j]==FJUMP) {
9612               branch_regs[j].regmap[maxscore]=reg;
9613               branch_regs[j].wasdirty&=~(1<<maxscore);
9614               branch_regs[j].dirty&=~(1<<maxscore);
9615               branch_regs[j].wasconst&=~(1<<maxscore);
9616               branch_regs[j].isconst&=~(1<<maxscore);
9617               if(itype[j]!=RJUMP&&itype[j]!=UJUMP&&(source[j]>>16)!=0x1000) {
9618                 regmap_pre[j+2][maxscore]=reg;
9619                 regs[j+2].wasdirty&=~(1<<maxscore);
9620               }
9621               // loop optimization (loop_preload)
9622               int t=(ba[j]-start)>>2;
9623               if(t==loop_start[maxscore]) {
9624                 if(t==1||(t>1&&itype[t-2]!=UJUMP&&itype[t-2]!=RJUMP)||(t>1&&rt1[t-2]!=31)) // call/ret assumes no registers allocated
9625                   regs[t].regmap_entry[maxscore]=reg;
9626               }
9627             }
9628             else
9629             {
9630               if(j<1||(itype[j-1]!=RJUMP&&itype[j-1]!=UJUMP&&itype[j-1]!=CJUMP&&itype[j-1]!=SJUMP&&itype[j-1]!=FJUMP)) {
9631                 regmap_pre[j+1][maxscore]=reg;
9632                 regs[j+1].wasdirty&=~(1<<maxscore);
9633               }
9634             }
9635           }
9636           i=j-1;
9637           if(itype[j-1]==RJUMP||itype[j-1]==UJUMP||itype[j-1]==CJUMP||itype[j-1]==SJUMP||itype[j-1]==FJUMP) i++; // skip delay slot
9638           for(hr=0;hr<HOST_REGS;hr++) {
9639             score[hr]=0;earliest_available[hr]=i+i;
9640             loop_start[hr]=MAXBLOCK;
9641           }
9642         }
9643       }
9644     }
9645   }
9646   #endif
9647
9648   // This allocates registers (if possible) one instruction prior
9649   // to use, which can avoid a load-use penalty on certain CPUs.
9650   for(i=0;i<slen-1;i++)
9651   {
9652     if(!i||(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP))
9653     {
9654       if(!bt[i+1])
9655       {
9656         if(itype[i]==ALU||itype[i]==MOV||itype[i]==LOAD||itype[i]==SHIFTIMM||itype[i]==IMM16
9657            ||((itype[i]==COP1||itype[i]==COP2)&&opcode2[i]<3))
9658         {
9659           if(rs1[i+1]) {
9660             if((hr=get_reg(regs[i+1].regmap,rs1[i+1]))>=0)
9661             {
9662               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
9663               {
9664                 regs[i].regmap[hr]=regs[i+1].regmap[hr];
9665                 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
9666                 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
9667                 regs[i].isconst&=~(1<<hr);
9668                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
9669                 constmap[i][hr]=constmap[i+1][hr];
9670                 regs[i+1].wasdirty&=~(1<<hr);
9671                 regs[i].dirty&=~(1<<hr);
9672               }
9673             }
9674           }
9675           if(rs2[i+1]) {
9676             if((hr=get_reg(regs[i+1].regmap,rs2[i+1]))>=0)
9677             {
9678               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
9679               {
9680                 regs[i].regmap[hr]=regs[i+1].regmap[hr];
9681                 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
9682                 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
9683                 regs[i].isconst&=~(1<<hr);
9684                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
9685                 constmap[i][hr]=constmap[i+1][hr];
9686                 regs[i+1].wasdirty&=~(1<<hr);
9687                 regs[i].dirty&=~(1<<hr);
9688               }
9689             }
9690           }
9691           // Preload target address for load instruction (non-constant)
9692           if(itype[i+1]==LOAD&&rs1[i+1]&&get_reg(regs[i+1].regmap,rs1[i+1])<0) {
9693             if((hr=get_reg(regs[i+1].regmap,rt1[i+1]))>=0)
9694             {
9695               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
9696               {
9697                 regs[i].regmap[hr]=rs1[i+1];
9698                 regmap_pre[i+1][hr]=rs1[i+1];
9699                 regs[i+1].regmap_entry[hr]=rs1[i+1];
9700                 regs[i].isconst&=~(1<<hr);
9701                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
9702                 constmap[i][hr]=constmap[i+1][hr];
9703                 regs[i+1].wasdirty&=~(1<<hr);
9704                 regs[i].dirty&=~(1<<hr);
9705               }
9706             }
9707           }
9708           // Load source into target register
9709           if(lt1[i+1]&&get_reg(regs[i+1].regmap,rs1[i+1])<0) {
9710             if((hr=get_reg(regs[i+1].regmap,rt1[i+1]))>=0)
9711             {
9712               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
9713               {
9714                 regs[i].regmap[hr]=rs1[i+1];
9715                 regmap_pre[i+1][hr]=rs1[i+1];
9716                 regs[i+1].regmap_entry[hr]=rs1[i+1];
9717                 regs[i].isconst&=~(1<<hr);
9718                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
9719                 constmap[i][hr]=constmap[i+1][hr];
9720                 regs[i+1].wasdirty&=~(1<<hr);
9721                 regs[i].dirty&=~(1<<hr);
9722               }
9723             }
9724           }
9725           // Address for store instruction (non-constant)
9726           if(itype[i+1]==STORE||itype[i+1]==STORELR
9727              ||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SB/SH/SW/SD/SWC1/SDC1/SWC2/SDC2
9728             if(get_reg(regs[i+1].regmap,rs1[i+1])<0) {
9729               hr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1);
9730               if(hr<0) hr=get_reg(regs[i+1].regmap,-1);
9731               else {regs[i+1].regmap[hr]=AGEN1+((i+1)&1);regs[i+1].isconst&=~(1<<hr);}
9732               assert(hr>=0);
9733               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
9734               {
9735                 regs[i].regmap[hr]=rs1[i+1];
9736                 regmap_pre[i+1][hr]=rs1[i+1];
9737                 regs[i+1].regmap_entry[hr]=rs1[i+1];
9738                 regs[i].isconst&=~(1<<hr);
9739                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
9740                 constmap[i][hr]=constmap[i+1][hr];
9741                 regs[i+1].wasdirty&=~(1<<hr);
9742                 regs[i].dirty&=~(1<<hr);
9743               }
9744             }
9745           }
9746           if(itype[i+1]==LOADLR||(opcode[i+1]&0x3b)==0x31||(opcode[i+1]&0x3b)==0x32) { // LWC1/LDC1, LWC2/LDC2
9747             if(get_reg(regs[i+1].regmap,rs1[i+1])<0) {
9748               int nr;
9749               hr=get_reg(regs[i+1].regmap,FTEMP);
9750               assert(hr>=0);
9751               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
9752               {
9753                 regs[i].regmap[hr]=rs1[i+1];
9754                 regmap_pre[i+1][hr]=rs1[i+1];
9755                 regs[i+1].regmap_entry[hr]=rs1[i+1];
9756                 regs[i].isconst&=~(1<<hr);
9757                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
9758                 constmap[i][hr]=constmap[i+1][hr];
9759                 regs[i+1].wasdirty&=~(1<<hr);
9760                 regs[i].dirty&=~(1<<hr);
9761               }
9762               else if((nr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1))>=0)
9763               {
9764                 // move it to another register
9765                 regs[i+1].regmap[hr]=-1;
9766                 regmap_pre[i+2][hr]=-1;
9767                 regs[i+1].regmap[nr]=FTEMP;
9768                 regmap_pre[i+2][nr]=FTEMP;
9769                 regs[i].regmap[nr]=rs1[i+1];
9770                 regmap_pre[i+1][nr]=rs1[i+1];
9771                 regs[i+1].regmap_entry[nr]=rs1[i+1];
9772                 regs[i].isconst&=~(1<<nr);
9773                 regs[i+1].isconst&=~(1<<nr);
9774                 regs[i].dirty&=~(1<<nr);
9775                 regs[i+1].wasdirty&=~(1<<nr);
9776                 regs[i+1].dirty&=~(1<<nr);
9777                 regs[i+2].wasdirty&=~(1<<nr);
9778               }
9779             }
9780           }
9781           if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR/*||itype[i+1]==C1LS||||itype[i+1]==C2LS*/) {
9782             if(itype[i+1]==LOAD)
9783               hr=get_reg(regs[i+1].regmap,rt1[i+1]);
9784             if(itype[i+1]==LOADLR||(opcode[i+1]&0x3b)==0x31||(opcode[i+1]&0x3b)==0x32) // LWC1/LDC1, LWC2/LDC2
9785               hr=get_reg(regs[i+1].regmap,FTEMP);
9786             if(itype[i+1]==STORE||itype[i+1]==STORELR||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1/SWC2/SDC2
9787               hr=get_reg(regs[i+1].regmap,AGEN1+((i+1)&1));
9788               if(hr<0) hr=get_reg(regs[i+1].regmap,-1);
9789             }
9790             if(hr>=0&&regs[i].regmap[hr]<0) {
9791               int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
9792               if(rs>=0&&((regs[i+1].wasconst>>rs)&1)) {
9793                 regs[i].regmap[hr]=AGEN1+((i+1)&1);
9794                 regmap_pre[i+1][hr]=AGEN1+((i+1)&1);
9795                 regs[i+1].regmap_entry[hr]=AGEN1+((i+1)&1);
9796                 regs[i].isconst&=~(1<<hr);
9797                 regs[i+1].wasdirty&=~(1<<hr);
9798                 regs[i].dirty&=~(1<<hr);
9799               }
9800             }
9801           }
9802         }
9803       }
9804     }
9805   }
9806
9807   /* Pass 6 - Optimize clean/dirty state */
9808   clean_registers(0,slen-1,1);
9809
9810   /* Pass 7 - Identify 32-bit registers */
9811   for (i=slen-1;i>=0;i--)
9812   {
9813     if(itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
9814     {
9815       // Conditional branch
9816       if((source[i]>>16)!=0x1000&&i<slen-2) {
9817         // Mark this address as a branch target since it may be called
9818         // upon return from interrupt
9819         bt[i+2]=1;
9820       }
9821     }
9822   }
9823
9824   if(itype[slen-1]==SPAN) {
9825     bt[slen-1]=1; // Mark as a branch target so instruction can restart after exception
9826   }
9827
9828 #ifdef DISASM
9829   /* Debug/disassembly */
9830   for(i=0;i<slen;i++)
9831   {
9832     printf("U:");
9833     int r;
9834     for(r=1;r<=CCREG;r++) {
9835       if((unneeded_reg[i]>>r)&1) {
9836         if(r==HIREG) printf(" HI");
9837         else if(r==LOREG) printf(" LO");
9838         else printf(" r%d",r);
9839       }
9840     }
9841     printf("\n");
9842     #if defined(__i386__) || defined(__x86_64__)
9843     printf("pre: eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",regmap_pre[i][0],regmap_pre[i][1],regmap_pre[i][2],regmap_pre[i][3],regmap_pre[i][5],regmap_pre[i][6],regmap_pre[i][7]);
9844     #endif
9845     #ifdef __arm__
9846     printf("pre: r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d\n",regmap_pre[i][0],regmap_pre[i][1],regmap_pre[i][2],regmap_pre[i][3],regmap_pre[i][4],regmap_pre[i][5],regmap_pre[i][6],regmap_pre[i][7],regmap_pre[i][8],regmap_pre[i][9],regmap_pre[i][10],regmap_pre[i][12]);
9847     #endif
9848     printf("needs: ");
9849     if(needed_reg[i]&1) printf("eax ");
9850     if((needed_reg[i]>>1)&1) printf("ecx ");
9851     if((needed_reg[i]>>2)&1) printf("edx ");
9852     if((needed_reg[i]>>3)&1) printf("ebx ");
9853     if((needed_reg[i]>>5)&1) printf("ebp ");
9854     if((needed_reg[i]>>6)&1) printf("esi ");
9855     if((needed_reg[i]>>7)&1) printf("edi ");
9856     printf("\n");
9857     #if defined(__i386__) || defined(__x86_64__)
9858     printf("entry: eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",regs[i].regmap_entry[0],regs[i].regmap_entry[1],regs[i].regmap_entry[2],regs[i].regmap_entry[3],regs[i].regmap_entry[5],regs[i].regmap_entry[6],regs[i].regmap_entry[7]);
9859     printf("dirty: ");
9860     if(regs[i].wasdirty&1) printf("eax ");
9861     if((regs[i].wasdirty>>1)&1) printf("ecx ");
9862     if((regs[i].wasdirty>>2)&1) printf("edx ");
9863     if((regs[i].wasdirty>>3)&1) printf("ebx ");
9864     if((regs[i].wasdirty>>5)&1) printf("ebp ");
9865     if((regs[i].wasdirty>>6)&1) printf("esi ");
9866     if((regs[i].wasdirty>>7)&1) printf("edi ");
9867     #endif
9868     #ifdef __arm__
9869     printf("entry: r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d\n",regs[i].regmap_entry[0],regs[i].regmap_entry[1],regs[i].regmap_entry[2],regs[i].regmap_entry[3],regs[i].regmap_entry[4],regs[i].regmap_entry[5],regs[i].regmap_entry[6],regs[i].regmap_entry[7],regs[i].regmap_entry[8],regs[i].regmap_entry[9],regs[i].regmap_entry[10],regs[i].regmap_entry[12]);
9870     printf("dirty: ");
9871     if(regs[i].wasdirty&1) printf("r0 ");
9872     if((regs[i].wasdirty>>1)&1) printf("r1 ");
9873     if((regs[i].wasdirty>>2)&1) printf("r2 ");
9874     if((regs[i].wasdirty>>3)&1) printf("r3 ");
9875     if((regs[i].wasdirty>>4)&1) printf("r4 ");
9876     if((regs[i].wasdirty>>5)&1) printf("r5 ");
9877     if((regs[i].wasdirty>>6)&1) printf("r6 ");
9878     if((regs[i].wasdirty>>7)&1) printf("r7 ");
9879     if((regs[i].wasdirty>>8)&1) printf("r8 ");
9880     if((regs[i].wasdirty>>9)&1) printf("r9 ");
9881     if((regs[i].wasdirty>>10)&1) printf("r10 ");
9882     if((regs[i].wasdirty>>12)&1) printf("r12 ");
9883     #endif
9884     printf("\n");
9885     disassemble_inst(i);
9886     //printf ("ccadj[%d] = %d\n",i,ccadj[i]);
9887     #if defined(__i386__) || defined(__x86_64__)
9888     printf("eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d dirty: ",regs[i].regmap[0],regs[i].regmap[1],regs[i].regmap[2],regs[i].regmap[3],regs[i].regmap[5],regs[i].regmap[6],regs[i].regmap[7]);
9889     if(regs[i].dirty&1) printf("eax ");
9890     if((regs[i].dirty>>1)&1) printf("ecx ");
9891     if((regs[i].dirty>>2)&1) printf("edx ");
9892     if((regs[i].dirty>>3)&1) printf("ebx ");
9893     if((regs[i].dirty>>5)&1) printf("ebp ");
9894     if((regs[i].dirty>>6)&1) printf("esi ");
9895     if((regs[i].dirty>>7)&1) printf("edi ");
9896     #endif
9897     #ifdef __arm__
9898     printf("r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d dirty: ",regs[i].regmap[0],regs[i].regmap[1],regs[i].regmap[2],regs[i].regmap[3],regs[i].regmap[4],regs[i].regmap[5],regs[i].regmap[6],regs[i].regmap[7],regs[i].regmap[8],regs[i].regmap[9],regs[i].regmap[10],regs[i].regmap[12]);
9899     if(regs[i].dirty&1) printf("r0 ");
9900     if((regs[i].dirty>>1)&1) printf("r1 ");
9901     if((regs[i].dirty>>2)&1) printf("r2 ");
9902     if((regs[i].dirty>>3)&1) printf("r3 ");
9903     if((regs[i].dirty>>4)&1) printf("r4 ");
9904     if((regs[i].dirty>>5)&1) printf("r5 ");
9905     if((regs[i].dirty>>6)&1) printf("r6 ");
9906     if((regs[i].dirty>>7)&1) printf("r7 ");
9907     if((regs[i].dirty>>8)&1) printf("r8 ");
9908     if((regs[i].dirty>>9)&1) printf("r9 ");
9909     if((regs[i].dirty>>10)&1) printf("r10 ");
9910     if((regs[i].dirty>>12)&1) printf("r12 ");
9911     #endif
9912     printf("\n");
9913     if(regs[i].isconst) {
9914       printf("constants: ");
9915       #if defined(__i386__) || defined(__x86_64__)
9916       if(regs[i].isconst&1) printf("eax=%x ",(int)constmap[i][0]);
9917       if((regs[i].isconst>>1)&1) printf("ecx=%x ",(int)constmap[i][1]);
9918       if((regs[i].isconst>>2)&1) printf("edx=%x ",(int)constmap[i][2]);
9919       if((regs[i].isconst>>3)&1) printf("ebx=%x ",(int)constmap[i][3]);
9920       if((regs[i].isconst>>5)&1) printf("ebp=%x ",(int)constmap[i][5]);
9921       if((regs[i].isconst>>6)&1) printf("esi=%x ",(int)constmap[i][6]);
9922       if((regs[i].isconst>>7)&1) printf("edi=%x ",(int)constmap[i][7]);
9923       #endif
9924       #ifdef __arm__
9925       if(regs[i].isconst&1) printf("r0=%x ",(int)constmap[i][0]);
9926       if((regs[i].isconst>>1)&1) printf("r1=%x ",(int)constmap[i][1]);
9927       if((regs[i].isconst>>2)&1) printf("r2=%x ",(int)constmap[i][2]);
9928       if((regs[i].isconst>>3)&1) printf("r3=%x ",(int)constmap[i][3]);
9929       if((regs[i].isconst>>4)&1) printf("r4=%x ",(int)constmap[i][4]);
9930       if((regs[i].isconst>>5)&1) printf("r5=%x ",(int)constmap[i][5]);
9931       if((regs[i].isconst>>6)&1) printf("r6=%x ",(int)constmap[i][6]);
9932       if((regs[i].isconst>>7)&1) printf("r7=%x ",(int)constmap[i][7]);
9933       if((regs[i].isconst>>8)&1) printf("r8=%x ",(int)constmap[i][8]);
9934       if((regs[i].isconst>>9)&1) printf("r9=%x ",(int)constmap[i][9]);
9935       if((regs[i].isconst>>10)&1) printf("r10=%x ",(int)constmap[i][10]);
9936       if((regs[i].isconst>>12)&1) printf("r12=%x ",(int)constmap[i][12]);
9937       #endif
9938       printf("\n");
9939     }
9940     if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP) {
9941       #if defined(__i386__) || defined(__x86_64__)
9942       printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d dirty: ",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
9943       if(branch_regs[i].dirty&1) printf("eax ");
9944       if((branch_regs[i].dirty>>1)&1) printf("ecx ");
9945       if((branch_regs[i].dirty>>2)&1) printf("edx ");
9946       if((branch_regs[i].dirty>>3)&1) printf("ebx ");
9947       if((branch_regs[i].dirty>>5)&1) printf("ebp ");
9948       if((branch_regs[i].dirty>>6)&1) printf("esi ");
9949       if((branch_regs[i].dirty>>7)&1) printf("edi ");
9950       #endif
9951       #ifdef __arm__
9952       printf("branch(%d): r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d dirty: ",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[4],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7],branch_regs[i].regmap[8],branch_regs[i].regmap[9],branch_regs[i].regmap[10],branch_regs[i].regmap[12]);
9953       if(branch_regs[i].dirty&1) printf("r0 ");
9954       if((branch_regs[i].dirty>>1)&1) printf("r1 ");
9955       if((branch_regs[i].dirty>>2)&1) printf("r2 ");
9956       if((branch_regs[i].dirty>>3)&1) printf("r3 ");
9957       if((branch_regs[i].dirty>>4)&1) printf("r4 ");
9958       if((branch_regs[i].dirty>>5)&1) printf("r5 ");
9959       if((branch_regs[i].dirty>>6)&1) printf("r6 ");
9960       if((branch_regs[i].dirty>>7)&1) printf("r7 ");
9961       if((branch_regs[i].dirty>>8)&1) printf("r8 ");
9962       if((branch_regs[i].dirty>>9)&1) printf("r9 ");
9963       if((branch_regs[i].dirty>>10)&1) printf("r10 ");
9964       if((branch_regs[i].dirty>>12)&1) printf("r12 ");
9965       #endif
9966     }
9967   }
9968 #endif // DISASM
9969
9970   /* Pass 8 - Assembly */
9971   linkcount=0;stubcount=0;
9972   ds=0;is_delayslot=0;
9973   cop1_usable=0;
9974   uint64_t is32_pre=0;
9975   u_int dirty_pre=0;
9976   void *beginning=start_block();
9977   if((u_int)addr&1) {
9978     ds=1;
9979     pagespan_ds();
9980   }
9981   u_int instr_addr0_override=0;
9982
9983   if (start == 0x80030000) {
9984     // nasty hack for fastbios thing
9985     // override block entry to this code
9986     instr_addr0_override=(u_int)out;
9987     emit_movimm(start,0);
9988     // abuse io address var as a flag that we
9989     // have already returned here once
9990     emit_readword((int)&address,1);
9991     emit_writeword(0,(int)&pcaddr);
9992     emit_writeword(0,(int)&address);
9993     emit_cmp(0,1);
9994     emit_jne((int)new_dyna_leave);
9995   }
9996   for(i=0;i<slen;i++)
9997   {
9998     //if(ds) printf("ds: ");
9999     disassemble_inst(i);
10000     if(ds) {
10001       ds=0; // Skip delay slot
10002       if(bt[i]) assem_debug("OOPS - branch into delay slot\n");
10003       instr_addr[i]=0;
10004     } else {
10005       speculate_register_values(i);
10006       #ifndef DESTRUCTIVE_WRITEBACK
10007       if(i<2||(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000))
10008       {
10009         wb_valid(regmap_pre[i],regs[i].regmap_entry,dirty_pre,regs[i].wasdirty,is32_pre,
10010               unneeded_reg[i],unneeded_reg_upper[i]);
10011       }
10012       if((itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)&&!likely[i]) {
10013         is32_pre=branch_regs[i].is32;
10014         dirty_pre=branch_regs[i].dirty;
10015       }else{
10016         is32_pre=regs[i].is32;
10017         dirty_pre=regs[i].dirty;
10018       }
10019       #endif
10020       // write back
10021       if(i<2||(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000))
10022       {
10023         wb_invalidate(regmap_pre[i],regs[i].regmap_entry,regs[i].wasdirty,regs[i].was32,
10024                       unneeded_reg[i],unneeded_reg_upper[i]);
10025         loop_preload(regmap_pre[i],regs[i].regmap_entry);
10026       }
10027       // branch target entry point
10028       instr_addr[i]=(u_int)out;
10029       assem_debug("<->\n");
10030       // load regs
10031       if(regs[i].regmap_entry[HOST_CCREG]==CCREG&&regs[i].regmap[HOST_CCREG]!=CCREG)
10032         wb_register(CCREG,regs[i].regmap_entry,regs[i].wasdirty,regs[i].was32);
10033       load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i],rs2[i]);
10034       address_generation(i,&regs[i],regs[i].regmap_entry);
10035       load_consts(regmap_pre[i],regs[i].regmap,regs[i].was32,i);
10036       if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
10037       {
10038         // Load the delay slot registers if necessary
10039         if(rs1[i+1]!=rs1[i]&&rs1[i+1]!=rs2[i]&&(rs1[i+1]!=rt1[i]||rt1[i]==0))
10040           load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i+1],rs1[i+1]);
10041         if(rs2[i+1]!=rs1[i+1]&&rs2[i+1]!=rs1[i]&&rs2[i+1]!=rs2[i]&&(rs2[i+1]!=rt1[i]||rt1[i]==0))
10042           load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs2[i+1],rs2[i+1]);
10043         if(itype[i+1]==STORE||itype[i+1]==STORELR||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a)
10044           load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,INVCP,INVCP);
10045       }
10046       else if(i+1<slen)
10047       {
10048         // Preload registers for following instruction
10049         if(rs1[i+1]!=rs1[i]&&rs1[i+1]!=rs2[i])
10050           if(rs1[i+1]!=rt1[i]&&rs1[i+1]!=rt2[i])
10051             load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i+1],rs1[i+1]);
10052         if(rs2[i+1]!=rs1[i+1]&&rs2[i+1]!=rs1[i]&&rs2[i+1]!=rs2[i])
10053           if(rs2[i+1]!=rt1[i]&&rs2[i+1]!=rt2[i])
10054             load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs2[i+1],rs2[i+1]);
10055       }
10056       // TODO: if(is_ooo(i)) address_generation(i+1);
10057       if(itype[i]==CJUMP||itype[i]==FJUMP)
10058         load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,CCREG,CCREG);
10059       if(itype[i]==STORE||itype[i]==STORELR||(opcode[i]&0x3b)==0x39||(opcode[i]&0x3b)==0x3a)
10060         load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,INVCP,INVCP);
10061       if(bt[i]) cop1_usable=0;
10062       // assemble
10063       switch(itype[i]) {
10064         case ALU:
10065           alu_assemble(i,&regs[i]);break;
10066         case IMM16:
10067           imm16_assemble(i,&regs[i]);break;
10068         case SHIFT:
10069           shift_assemble(i,&regs[i]);break;
10070         case SHIFTIMM:
10071           shiftimm_assemble(i,&regs[i]);break;
10072         case LOAD:
10073           load_assemble(i,&regs[i]);break;
10074         case LOADLR:
10075           loadlr_assemble(i,&regs[i]);break;
10076         case STORE:
10077           store_assemble(i,&regs[i]);break;
10078         case STORELR:
10079           storelr_assemble(i,&regs[i]);break;
10080         case COP0:
10081           cop0_assemble(i,&regs[i]);break;
10082         case COP1:
10083           cop1_assemble(i,&regs[i]);break;
10084         case C1LS:
10085           c1ls_assemble(i,&regs[i]);break;
10086         case COP2:
10087           cop2_assemble(i,&regs[i]);break;
10088         case C2LS:
10089           c2ls_assemble(i,&regs[i]);break;
10090         case C2OP:
10091           c2op_assemble(i,&regs[i]);break;
10092         case FCONV:
10093           fconv_assemble(i,&regs[i]);break;
10094         case FLOAT:
10095           float_assemble(i,&regs[i]);break;
10096         case FCOMP:
10097           fcomp_assemble(i,&regs[i]);break;
10098         case MULTDIV:
10099           multdiv_assemble(i,&regs[i]);break;
10100         case MOV:
10101           mov_assemble(i,&regs[i]);break;
10102         case SYSCALL:
10103           syscall_assemble(i,&regs[i]);break;
10104         case HLECALL:
10105           hlecall_assemble(i,&regs[i]);break;
10106         case INTCALL:
10107           intcall_assemble(i,&regs[i]);break;
10108         case UJUMP:
10109           ujump_assemble(i,&regs[i]);ds=1;break;
10110         case RJUMP:
10111           rjump_assemble(i,&regs[i]);ds=1;break;
10112         case CJUMP:
10113           cjump_assemble(i,&regs[i]);ds=1;break;
10114         case SJUMP:
10115           sjump_assemble(i,&regs[i]);ds=1;break;
10116         case FJUMP:
10117           fjump_assemble(i,&regs[i]);ds=1;break;
10118         case SPAN:
10119           pagespan_assemble(i,&regs[i]);break;
10120       }
10121       if(itype[i]==UJUMP||itype[i]==RJUMP||(source[i]>>16)==0x1000)
10122         literal_pool(1024);
10123       else
10124         literal_pool_jumpover(256);
10125     }
10126   }
10127   //assert(itype[i-2]==UJUMP||itype[i-2]==RJUMP||(source[i-2]>>16)==0x1000);
10128   // If the block did not end with an unconditional branch,
10129   // add a jump to the next instruction.
10130   if(i>1) {
10131     if(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000&&itype[i-1]!=SPAN) {
10132       assert(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP);
10133       assert(i==slen);
10134       if(itype[i-2]!=CJUMP&&itype[i-2]!=SJUMP&&itype[i-2]!=FJUMP) {
10135         store_regs_bt(regs[i-1].regmap,regs[i-1].is32,regs[i-1].dirty,start+i*4);
10136         if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
10137           emit_loadreg(CCREG,HOST_CCREG);
10138         emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i-1]+1),HOST_CCREG);
10139       }
10140       else if(!likely[i-2])
10141       {
10142         store_regs_bt(branch_regs[i-2].regmap,branch_regs[i-2].is32,branch_regs[i-2].dirty,start+i*4);
10143         assert(branch_regs[i-2].regmap[HOST_CCREG]==CCREG);
10144       }
10145       else
10146       {
10147         store_regs_bt(regs[i-2].regmap,regs[i-2].is32,regs[i-2].dirty,start+i*4);
10148         assert(regs[i-2].regmap[HOST_CCREG]==CCREG);
10149       }
10150       add_to_linker((int)out,start+i*4,0);
10151       emit_jmp(0);
10152     }
10153   }
10154   else
10155   {
10156     assert(i>0);
10157     assert(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP);
10158     store_regs_bt(regs[i-1].regmap,regs[i-1].is32,regs[i-1].dirty,start+i*4);
10159     if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
10160       emit_loadreg(CCREG,HOST_CCREG);
10161     emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i-1]+1),HOST_CCREG);
10162     add_to_linker((int)out,start+i*4,0);
10163     emit_jmp(0);
10164   }
10165
10166   // TODO: delay slot stubs?
10167   // Stubs
10168   for(i=0;i<stubcount;i++)
10169   {
10170     switch(stubs[i][0])
10171     {
10172       case LOADB_STUB:
10173       case LOADH_STUB:
10174       case LOADW_STUB:
10175       case LOADD_STUB:
10176       case LOADBU_STUB:
10177       case LOADHU_STUB:
10178         do_readstub(i);break;
10179       case STOREB_STUB:
10180       case STOREH_STUB:
10181       case STOREW_STUB:
10182       case STORED_STUB:
10183         do_writestub(i);break;
10184       case CC_STUB:
10185         do_ccstub(i);break;
10186       case INVCODE_STUB:
10187         do_invstub(i);break;
10188       case FP_STUB:
10189         do_cop1stub(i);break;
10190       case STORELR_STUB:
10191         do_unalignedwritestub(i);break;
10192     }
10193   }
10194
10195   if (instr_addr0_override)
10196     instr_addr[0] = instr_addr0_override;
10197
10198   /* Pass 9 - Linker */
10199   for(i=0;i<linkcount;i++)
10200   {
10201     assem_debug("%8x -> %8x\n",link_addr[i][0],link_addr[i][1]);
10202     literal_pool(64);
10203     if(!link_addr[i][2])
10204     {
10205       void *stub=out;
10206       void *addr=check_addr(link_addr[i][1]);
10207       emit_extjump(link_addr[i][0],link_addr[i][1]);
10208       if(addr) {
10209         set_jump_target(link_addr[i][0],(int)addr);
10210         add_link(link_addr[i][1],stub);
10211       }
10212       else set_jump_target(link_addr[i][0],(int)stub);
10213     }
10214     else
10215     {
10216       // Internal branch
10217       int target=(link_addr[i][1]-start)>>2;
10218       assert(target>=0&&target<slen);
10219       assert(instr_addr[target]);
10220       //#ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
10221       //set_jump_target_fillslot(link_addr[i][0],instr_addr[target],link_addr[i][2]>>1);
10222       //#else
10223       set_jump_target(link_addr[i][0],instr_addr[target]);
10224       //#endif
10225     }
10226   }
10227   // External Branch Targets (jump_in)
10228   if(copy+slen*4>(void *)shadow+sizeof(shadow)) copy=shadow;
10229   for(i=0;i<slen;i++)
10230   {
10231     if(bt[i]||i==0)
10232     {
10233       if(instr_addr[i]) // TODO - delay slots (=null)
10234       {
10235         u_int vaddr=start+i*4;
10236         u_int page=get_page(vaddr);
10237         u_int vpage=get_vpage(vaddr);
10238         literal_pool(256);
10239         {
10240           assem_debug("%8x (%d) <- %8x\n",instr_addr[i],i,start+i*4);
10241           assem_debug("jump_in: %x\n",start+i*4);
10242           ll_add(jump_dirty+vpage,vaddr,(void *)out);
10243           int entry_point=do_dirty_stub(i);
10244           ll_add_flags(jump_in+page,vaddr,state_rflags,(void *)entry_point);
10245           // If there was an existing entry in the hash table,
10246           // replace it with the new address.
10247           // Don't add new entries.  We'll insert the
10248           // ones that actually get used in check_addr().
10249           u_int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
10250           if(ht_bin[0]==vaddr) {
10251             ht_bin[1]=entry_point;
10252           }
10253           if(ht_bin[2]==vaddr) {
10254             ht_bin[3]=entry_point;
10255           }
10256         }
10257       }
10258     }
10259   }
10260   // Write out the literal pool if necessary
10261   literal_pool(0);
10262   #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
10263   // Align code
10264   if(((u_int)out)&7) emit_addnop(13);
10265   #endif
10266   assert((u_int)out-(u_int)beginning<MAX_OUTPUT_BLOCK_SIZE);
10267   //printf("shadow buffer: %x-%x\n",(int)copy,(int)copy+slen*4);
10268   memcpy(copy,source,slen*4);
10269   copy+=slen*4;
10270
10271   end_block(beginning);
10272
10273   // If we're within 256K of the end of the buffer,
10274   // start over from the beginning. (Is 256K enough?)
10275   if((u_int)out>(u_int)BASE_ADDR+(1<<TARGET_SIZE_2)-MAX_OUTPUT_BLOCK_SIZE) out=(u_char *)BASE_ADDR;
10276
10277   // Trap writes to any of the pages we compiled
10278   for(i=start>>12;i<=(start+slen*4)>>12;i++) {
10279     invalid_code[i]=0;
10280   }
10281   inv_code_start=inv_code_end=~0;
10282
10283   // for PCSX we need to mark all mirrors too
10284   if(get_page(start)<(RAM_SIZE>>12))
10285     for(i=start>>12;i<=(start+slen*4)>>12;i++)
10286       invalid_code[((u_int)0x00000000>>12)|(i&0x1ff)]=
10287       invalid_code[((u_int)0x80000000>>12)|(i&0x1ff)]=
10288       invalid_code[((u_int)0xa0000000>>12)|(i&0x1ff)]=0;
10289
10290   /* Pass 10 - Free memory by expiring oldest blocks */
10291
10292   int end=((((int)out-(int)BASE_ADDR)>>(TARGET_SIZE_2-16))+16384)&65535;
10293   while(expirep!=end)
10294   {
10295     int shift=TARGET_SIZE_2-3; // Divide into 8 blocks
10296     int base=(int)BASE_ADDR+((expirep>>13)<<shift); // Base address of this block
10297     inv_debug("EXP: Phase %d\n",expirep);
10298     switch((expirep>>11)&3)
10299     {
10300       case 0:
10301         // Clear jump_in and jump_dirty
10302         ll_remove_matching_addrs(jump_in+(expirep&2047),base,shift);
10303         ll_remove_matching_addrs(jump_dirty+(expirep&2047),base,shift);
10304         ll_remove_matching_addrs(jump_in+2048+(expirep&2047),base,shift);
10305         ll_remove_matching_addrs(jump_dirty+2048+(expirep&2047),base,shift);
10306         break;
10307       case 1:
10308         // Clear pointers
10309         ll_kill_pointers(jump_out[expirep&2047],base,shift);
10310         ll_kill_pointers(jump_out[(expirep&2047)+2048],base,shift);
10311         break;
10312       case 2:
10313         // Clear hash table
10314         for(i=0;i<32;i++) {
10315           u_int *ht_bin=hash_table[((expirep&2047)<<5)+i];
10316           if((ht_bin[3]>>shift)==(base>>shift) ||
10317              ((ht_bin[3]-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(base>>shift)) {
10318             inv_debug("EXP: Remove hash %x -> %x\n",ht_bin[2],ht_bin[3]);
10319             ht_bin[2]=ht_bin[3]=-1;
10320           }
10321           if((ht_bin[1]>>shift)==(base>>shift) ||
10322              ((ht_bin[1]-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(base>>shift)) {
10323             inv_debug("EXP: Remove hash %x -> %x\n",ht_bin[0],ht_bin[1]);
10324             ht_bin[0]=ht_bin[2];
10325             ht_bin[1]=ht_bin[3];
10326             ht_bin[2]=ht_bin[3]=-1;
10327           }
10328         }
10329         break;
10330       case 3:
10331         // Clear jump_out
10332         #ifdef __arm__
10333         if((expirep&2047)==0)
10334           do_clear_cache();
10335         #endif
10336         ll_remove_matching_addrs(jump_out+(expirep&2047),base,shift);
10337         ll_remove_matching_addrs(jump_out+2048+(expirep&2047),base,shift);
10338         break;
10339     }
10340     expirep=(expirep+1)&65535;
10341   }
10342   return 0;
10343 }
10344
10345 // vim:shiftwidth=2:expandtab