cfce0210cc6d29cb292b471282d2cd2be458742e
[pcsx_rearmed.git] / libpcsxcore / new_dynarec / new_dynarec.c
1 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
2  *   Mupen64plus - new_dynarec.c                                           *
3  *   Copyright (C) 2009-2010 Ari64                                         *
4  *                                                                         *
5  *   This program is free software; you can redistribute it and/or modify  *
6  *   it under the terms of the GNU General Public License as published by  *
7  *   the Free Software Foundation; either version 2 of the License, or     *
8  *   (at your option) any later version.                                   *
9  *                                                                         *
10  *   This program is distributed in the hope that it will be useful,       *
11  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
12  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
13  *   GNU General Public License for more details.                          *
14  *                                                                         *
15  *   You should have received a copy of the GNU General Public License     *
16  *   along with this program; if not, write to the                         *
17  *   Free Software Foundation, Inc.,                                       *
18  *   51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.          *
19  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
20
21 #include <stdlib.h>
22 #include <stdint.h> //include for uint64_t
23 #include <assert.h>
24
25 #include "emu_if.h" //emulator interface
26
27 #include <sys/mman.h>
28
29 #ifdef __i386__
30 #include "assem_x86.h"
31 #endif
32 #ifdef __x86_64__
33 #include "assem_x64.h"
34 #endif
35 #ifdef __arm__
36 #include "assem_arm.h"
37 #endif
38
39 #define MAXBLOCK 4096
40 #define MAX_OUTPUT_BLOCK_SIZE 262144
41 #define CLOCK_DIVIDER 2
42
43 struct regstat
44 {
45   signed char regmap_entry[HOST_REGS];
46   signed char regmap[HOST_REGS];
47   uint64_t was32;
48   uint64_t is32;
49   uint64_t wasdirty;
50   uint64_t dirty;
51   uint64_t u;
52   uint64_t uu;
53   u_int wasconst;
54   u_int isconst;
55   uint64_t constmap[HOST_REGS];
56 };
57
58 struct ll_entry
59 {
60   u_int vaddr;
61   u_int reg32;
62   void *addr;
63   struct ll_entry *next;
64 };
65
66   u_int start;
67   u_int *source;
68   u_int pagelimit;
69   char insn[MAXBLOCK][10];
70   u_char itype[MAXBLOCK];
71   u_char opcode[MAXBLOCK];
72   u_char opcode2[MAXBLOCK];
73   u_char bt[MAXBLOCK];
74   u_char rs1[MAXBLOCK];
75   u_char rs2[MAXBLOCK];
76   u_char rt1[MAXBLOCK];
77   u_char rt2[MAXBLOCK];
78   u_char us1[MAXBLOCK];
79   u_char us2[MAXBLOCK];
80   u_char dep1[MAXBLOCK];
81   u_char dep2[MAXBLOCK];
82   u_char lt1[MAXBLOCK];
83   int imm[MAXBLOCK];
84   u_int ba[MAXBLOCK];
85   char likely[MAXBLOCK];
86   char is_ds[MAXBLOCK];
87   char ooo[MAXBLOCK];
88   uint64_t unneeded_reg[MAXBLOCK];
89   uint64_t unneeded_reg_upper[MAXBLOCK];
90   uint64_t branch_unneeded_reg[MAXBLOCK];
91   uint64_t branch_unneeded_reg_upper[MAXBLOCK];
92   uint64_t p32[MAXBLOCK];
93   uint64_t pr32[MAXBLOCK];
94   signed char regmap_pre[MAXBLOCK][HOST_REGS];
95   signed char regmap[MAXBLOCK][HOST_REGS];
96   signed char regmap_entry[MAXBLOCK][HOST_REGS];
97   uint64_t constmap[MAXBLOCK][HOST_REGS];
98   struct regstat regs[MAXBLOCK];
99   struct regstat branch_regs[MAXBLOCK];
100   signed char minimum_free_regs[MAXBLOCK];
101   u_int needed_reg[MAXBLOCK];
102   uint64_t requires_32bit[MAXBLOCK];
103   u_int wont_dirty[MAXBLOCK];
104   u_int will_dirty[MAXBLOCK];
105   int ccadj[MAXBLOCK];
106   int slen;
107   u_int instr_addr[MAXBLOCK];
108   u_int link_addr[MAXBLOCK][3];
109   int linkcount;
110   u_int stubs[MAXBLOCK*3][8];
111   int stubcount;
112   u_int literals[1024][2];
113   int literalcount;
114   int is_delayslot;
115   int cop1_usable;
116   u_char *out;
117   struct ll_entry *jump_in[4096];
118   struct ll_entry *jump_out[4096];
119   struct ll_entry *jump_dirty[4096];
120   u_int hash_table[65536][4]  __attribute__((aligned(16)));
121   char shadow[1048576]  __attribute__((aligned(16)));
122   void *copy;
123   int expirep;
124   u_int using_tlb;
125   u_int stop_after_jal;
126   extern u_char restore_candidate[512];
127   extern int cycle_count;
128
129   /* registers that may be allocated */
130   /* 1-31 gpr */
131 #define HIREG 32 // hi
132 #define LOREG 33 // lo
133 #define FSREG 34 // FPU status (FCSR)
134 #define CSREG 35 // Coprocessor status
135 #define CCREG 36 // Cycle count
136 #define INVCP 37 // Pointer to invalid_code
137 #define MMREG 38 // Pointer to memory_map
138 #define ROREG 39 // ram offset (if rdram!=0x80000000)
139 #define TEMPREG 40
140 #define FTEMP 40 // FPU temporary register
141 #define PTEMP 41 // Prefetch temporary register
142 #define TLREG 42 // TLB mapping offset
143 #define RHASH 43 // Return address hash
144 #define RHTBL 44 // Return address hash table address
145 #define RTEMP 45 // JR/JALR address register
146 #define MAXREG 45
147 #define AGEN1 46 // Address generation temporary register
148 #define AGEN2 47 // Address generation temporary register
149 #define MGEN1 48 // Maptable address generation temporary register
150 #define MGEN2 49 // Maptable address generation temporary register
151 #define BTREG 50 // Branch target temporary register
152
153   /* instruction types */
154 #define NOP 0     // No operation
155 #define LOAD 1    // Load
156 #define STORE 2   // Store
157 #define LOADLR 3  // Unaligned load
158 #define STORELR 4 // Unaligned store
159 #define MOV 5     // Move 
160 #define ALU 6     // Arithmetic/logic
161 #define MULTDIV 7 // Multiply/divide
162 #define SHIFT 8   // Shift by register
163 #define SHIFTIMM 9// Shift by immediate
164 #define IMM16 10  // 16-bit immediate
165 #define RJUMP 11  // Unconditional jump to register
166 #define UJUMP 12  // Unconditional jump
167 #define CJUMP 13  // Conditional branch (BEQ/BNE/BGTZ/BLEZ)
168 #define SJUMP 14  // Conditional branch (regimm format)
169 #define COP0 15   // Coprocessor 0
170 #define COP1 16   // Coprocessor 1
171 #define C1LS 17   // Coprocessor 1 load/store
172 #define FJUMP 18  // Conditional branch (floating point)
173 #define FLOAT 19  // Floating point unit
174 #define FCONV 20  // Convert integer to float
175 #define FCOMP 21  // Floating point compare (sets FSREG)
176 #define SYSCALL 22// SYSCALL
177 #define OTHER 23  // Other
178 #define SPAN 24   // Branch/delay slot spans 2 pages
179 #define NI 25     // Not implemented
180 #define HLECALL 26// PCSX fake opcodes for HLE
181 #define COP2 27   // Coprocessor 2 move
182 #define C2LS 28   // Coprocessor 2 load/store
183 #define C2OP 29   // Coprocessor 2 operation
184 #define INTCALL 30// Call interpreter to handle rare corner cases
185
186   /* stubs */
187 #define CC_STUB 1
188 #define FP_STUB 2
189 #define LOADB_STUB 3
190 #define LOADH_STUB 4
191 #define LOADW_STUB 5
192 #define LOADD_STUB 6
193 #define LOADBU_STUB 7
194 #define LOADHU_STUB 8
195 #define STOREB_STUB 9
196 #define STOREH_STUB 10
197 #define STOREW_STUB 11
198 #define STORED_STUB 12
199 #define STORELR_STUB 13
200 #define INVCODE_STUB 14
201
202   /* branch codes */
203 #define TAKEN 1
204 #define NOTTAKEN 2
205 #define NULLDS 3
206
207 // asm linkage
208 int new_recompile_block(int addr);
209 void *get_addr_ht(u_int vaddr);
210 void invalidate_block(u_int block);
211 void invalidate_addr(u_int addr);
212 void remove_hash(int vaddr);
213 void jump_vaddr();
214 void dyna_linker();
215 void dyna_linker_ds();
216 void verify_code();
217 void verify_code_vm();
218 void verify_code_ds();
219 void cc_interrupt();
220 void fp_exception();
221 void fp_exception_ds();
222 void jump_syscall();
223 void jump_syscall_hle();
224 void jump_eret();
225 void jump_hlecall();
226 void jump_intcall();
227 void new_dyna_leave();
228
229 // TLB
230 void TLBWI_new();
231 void TLBWR_new();
232 void read_nomem_new();
233 void read_nomemb_new();
234 void read_nomemh_new();
235 void read_nomemd_new();
236 void write_nomem_new();
237 void write_nomemb_new();
238 void write_nomemh_new();
239 void write_nomemd_new();
240 void write_rdram_new();
241 void write_rdramb_new();
242 void write_rdramh_new();
243 void write_rdramd_new();
244 extern u_int memory_map[1048576];
245
246 // Needed by assembler
247 void wb_register(signed char r,signed char regmap[],uint64_t dirty,uint64_t is32);
248 void wb_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty);
249 void wb_needed_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr);
250 void load_all_regs(signed char i_regmap[]);
251 void load_needed_regs(signed char i_regmap[],signed char next_regmap[]);
252 void load_regs_entry(int t);
253 void load_all_consts(signed char regmap[],int is32,u_int dirty,int i);
254
255 int tracedebug=0;
256
257 //#define DEBUG_CYCLE_COUNT 1
258
259 void nullf() {}
260 //#define assem_debug printf
261 //#define inv_debug printf
262 #define assem_debug nullf
263 #define inv_debug nullf
264
265 static void tlb_hacks()
266 {
267 #ifndef DISABLE_TLB
268   // Goldeneye hack
269   if (strncmp((char *) ROM_HEADER->nom, "GOLDENEYE",9) == 0)
270   {
271     u_int addr;
272     int n;
273     switch (ROM_HEADER->Country_code&0xFF) 
274     {
275       case 0x45: // U
276         addr=0x34b30;
277         break;                   
278       case 0x4A: // J 
279         addr=0x34b70;    
280         break;    
281       case 0x50: // E 
282         addr=0x329f0;
283         break;                        
284       default: 
285         // Unknown country code
286         addr=0;
287         break;
288     }
289     u_int rom_addr=(u_int)rom;
290     #ifdef ROM_COPY
291     // Since memory_map is 32-bit, on 64-bit systems the rom needs to be
292     // in the lower 4G of memory to use this hack.  Copy it if necessary.
293     if((void *)rom>(void *)0xffffffff) {
294       munmap(ROM_COPY, 67108864);
295       if(mmap(ROM_COPY, 12582912,
296               PROT_READ | PROT_WRITE,
297               MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS,
298               -1, 0) <= 0) {printf("mmap() failed\n");}
299       memcpy(ROM_COPY,rom,12582912);
300       rom_addr=(u_int)ROM_COPY;
301     }
302     #endif
303     if(addr) {
304       for(n=0x7F000;n<0x80000;n++) {
305         memory_map[n]=(((u_int)(rom_addr+addr-0x7F000000))>>2)|0x40000000;
306       }
307     }
308   }
309 #endif
310 }
311
312 static u_int get_page(u_int vaddr)
313 {
314 #ifndef PCSX
315   u_int page=(vaddr^0x80000000)>>12;
316 #else
317   u_int page=vaddr&~0xe0000000;
318   if (page < 0x1000000)
319     page &= ~0x0e00000; // RAM mirrors
320   page>>=12;
321 #endif
322 #ifndef DISABLE_TLB
323   if(page>262143&&tlb_LUT_r[vaddr>>12]) page=(tlb_LUT_r[vaddr>>12]^0x80000000)>>12;
324 #endif
325   if(page>2048) page=2048+(page&2047);
326   return page;
327 }
328
329 static u_int get_vpage(u_int vaddr)
330 {
331   u_int vpage=(vaddr^0x80000000)>>12;
332 #ifndef DISABLE_TLB
333   if(vpage>262143&&tlb_LUT_r[vaddr>>12]) vpage&=2047; // jump_dirty uses a hash of the virtual address instead
334 #endif
335   if(vpage>2048) vpage=2048+(vpage&2047);
336   return vpage;
337 }
338
339 // Get address from virtual address
340 // This is called from the recompiled JR/JALR instructions
341 void *get_addr(u_int vaddr)
342 {
343   u_int page=get_page(vaddr);
344   u_int vpage=get_vpage(vaddr);
345   struct ll_entry *head;
346   //printf("TRACE: count=%d next=%d (get_addr %x,page %d)\n",Count,next_interupt,vaddr,page);
347   head=jump_in[page];
348   while(head!=NULL) {
349     if(head->vaddr==vaddr&&head->reg32==0) {
350   //printf("TRACE: count=%d next=%d (get_addr match %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
351       int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
352       ht_bin[3]=ht_bin[1];
353       ht_bin[2]=ht_bin[0];
354       ht_bin[1]=(int)head->addr;
355       ht_bin[0]=vaddr;
356       return head->addr;
357     }
358     head=head->next;
359   }
360   head=jump_dirty[vpage];
361   while(head!=NULL) {
362     if(head->vaddr==vaddr&&head->reg32==0) {
363       //printf("TRACE: count=%d next=%d (get_addr match dirty %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
364       // Don't restore blocks which are about to expire from the cache
365       if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
366       if(verify_dirty(head->addr)) {
367         //printf("restore candidate: %x (%d) d=%d\n",vaddr,page,invalid_code[vaddr>>12]);
368         invalid_code[vaddr>>12]=0;
369         memory_map[vaddr>>12]|=0x40000000;
370         if(vpage<2048) {
371 #ifndef DISABLE_TLB
372           if(tlb_LUT_r[vaddr>>12]) {
373             invalid_code[tlb_LUT_r[vaddr>>12]>>12]=0;
374             memory_map[tlb_LUT_r[vaddr>>12]>>12]|=0x40000000;
375           }
376 #endif
377           restore_candidate[vpage>>3]|=1<<(vpage&7);
378         }
379         else restore_candidate[page>>3]|=1<<(page&7);
380         int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
381         if(ht_bin[0]==vaddr) {
382           ht_bin[1]=(int)head->addr; // Replace existing entry
383         }
384         else
385         {
386           ht_bin[3]=ht_bin[1];
387           ht_bin[2]=ht_bin[0];
388           ht_bin[1]=(int)head->addr;
389           ht_bin[0]=vaddr;
390         }
391         return head->addr;
392       }
393     }
394     head=head->next;
395   }
396   //printf("TRACE: count=%d next=%d (get_addr no-match %x)\n",Count,next_interupt,vaddr);
397   int r=new_recompile_block(vaddr);
398   if(r==0) return get_addr(vaddr);
399   // Execute in unmapped page, generate pagefault execption
400   Status|=2;
401   Cause=(vaddr<<31)|0x8;
402   EPC=(vaddr&1)?vaddr-5:vaddr;
403   BadVAddr=(vaddr&~1);
404   Context=(Context&0xFF80000F)|((BadVAddr>>9)&0x007FFFF0);
405   EntryHi=BadVAddr&0xFFFFE000;
406   return get_addr_ht(0x80000000);
407 }
408 // Look up address in hash table first
409 void *get_addr_ht(u_int vaddr)
410 {
411   //printf("TRACE: count=%d next=%d (get_addr_ht %x)\n",Count,next_interupt,vaddr);
412   int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
413   if(ht_bin[0]==vaddr) return (void *)ht_bin[1];
414   if(ht_bin[2]==vaddr) return (void *)ht_bin[3];
415   return get_addr(vaddr);
416 }
417
418 void *get_addr_32(u_int vaddr,u_int flags)
419 {
420 #ifdef FORCE32
421   return get_addr(vaddr);
422 #else
423   //printf("TRACE: count=%d next=%d (get_addr_32 %x,flags %x)\n",Count,next_interupt,vaddr,flags);
424   int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
425   if(ht_bin[0]==vaddr) return (void *)ht_bin[1];
426   if(ht_bin[2]==vaddr) return (void *)ht_bin[3];
427   u_int page=get_page(vaddr);
428   u_int vpage=get_vpage(vaddr);
429   struct ll_entry *head;
430   head=jump_in[page];
431   while(head!=NULL) {
432     if(head->vaddr==vaddr&&(head->reg32&flags)==0) {
433       //printf("TRACE: count=%d next=%d (get_addr_32 match %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
434       if(head->reg32==0) {
435         int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
436         if(ht_bin[0]==-1) {
437           ht_bin[1]=(int)head->addr;
438           ht_bin[0]=vaddr;
439         }else if(ht_bin[2]==-1) {
440           ht_bin[3]=(int)head->addr;
441           ht_bin[2]=vaddr;
442         }
443         //ht_bin[3]=ht_bin[1];
444         //ht_bin[2]=ht_bin[0];
445         //ht_bin[1]=(int)head->addr;
446         //ht_bin[0]=vaddr;
447       }
448       return head->addr;
449     }
450     head=head->next;
451   }
452   head=jump_dirty[vpage];
453   while(head!=NULL) {
454     if(head->vaddr==vaddr&&(head->reg32&flags)==0) {
455       //printf("TRACE: count=%d next=%d (get_addr_32 match dirty %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
456       // Don't restore blocks which are about to expire from the cache
457       if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
458       if(verify_dirty(head->addr)) {
459         //printf("restore candidate: %x (%d) d=%d\n",vaddr,page,invalid_code[vaddr>>12]);
460         invalid_code[vaddr>>12]=0;
461         memory_map[vaddr>>12]|=0x40000000;
462         if(vpage<2048) {
463 #ifndef DISABLE_TLB
464           if(tlb_LUT_r[vaddr>>12]) {
465             invalid_code[tlb_LUT_r[vaddr>>12]>>12]=0;
466             memory_map[tlb_LUT_r[vaddr>>12]>>12]|=0x40000000;
467           }
468 #endif
469           restore_candidate[vpage>>3]|=1<<(vpage&7);
470         }
471         else restore_candidate[page>>3]|=1<<(page&7);
472         if(head->reg32==0) {
473           int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
474           if(ht_bin[0]==-1) {
475             ht_bin[1]=(int)head->addr;
476             ht_bin[0]=vaddr;
477           }else if(ht_bin[2]==-1) {
478             ht_bin[3]=(int)head->addr;
479             ht_bin[2]=vaddr;
480           }
481           //ht_bin[3]=ht_bin[1];
482           //ht_bin[2]=ht_bin[0];
483           //ht_bin[1]=(int)head->addr;
484           //ht_bin[0]=vaddr;
485         }
486         return head->addr;
487       }
488     }
489     head=head->next;
490   }
491   //printf("TRACE: count=%d next=%d (get_addr_32 no-match %x,flags %x)\n",Count,next_interupt,vaddr,flags);
492   int r=new_recompile_block(vaddr);
493   if(r==0) return get_addr(vaddr);
494   // Execute in unmapped page, generate pagefault execption
495   Status|=2;
496   Cause=(vaddr<<31)|0x8;
497   EPC=(vaddr&1)?vaddr-5:vaddr;
498   BadVAddr=(vaddr&~1);
499   Context=(Context&0xFF80000F)|((BadVAddr>>9)&0x007FFFF0);
500   EntryHi=BadVAddr&0xFFFFE000;
501   return get_addr_ht(0x80000000);
502 #endif
503 }
504
505 void clear_all_regs(signed char regmap[])
506 {
507   int hr;
508   for (hr=0;hr<HOST_REGS;hr++) regmap[hr]=-1;
509 }
510
511 signed char get_reg(signed char regmap[],int r)
512 {
513   int hr;
514   for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap[hr]==r) return hr;
515   return -1;
516 }
517
518 // Find a register that is available for two consecutive cycles
519 signed char get_reg2(signed char regmap1[],signed char regmap2[],int r)
520 {
521   int hr;
522   for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap1[hr]==r&&regmap2[hr]==r) return hr;
523   return -1;
524 }
525
526 int count_free_regs(signed char regmap[])
527 {
528   int count=0;
529   int hr;
530   for(hr=0;hr<HOST_REGS;hr++)
531   {
532     if(hr!=EXCLUDE_REG) {
533       if(regmap[hr]<0) count++;
534     }
535   }
536   return count;
537 }
538
539 void dirty_reg(struct regstat *cur,signed char reg)
540 {
541   int hr;
542   if(!reg) return;
543   for (hr=0;hr<HOST_REGS;hr++) {
544     if((cur->regmap[hr]&63)==reg) {
545       cur->dirty|=1<<hr;
546     }
547   }
548 }
549
550 // If we dirty the lower half of a 64 bit register which is now being
551 // sign-extended, we need to dump the upper half.
552 // Note: Do this only after completion of the instruction, because
553 // some instructions may need to read the full 64-bit value even if
554 // overwriting it (eg SLTI, DSRA32).
555 static void flush_dirty_uppers(struct regstat *cur)
556 {
557   int hr,reg;
558   for (hr=0;hr<HOST_REGS;hr++) {
559     if((cur->dirty>>hr)&1) {
560       reg=cur->regmap[hr];
561       if(reg>=64) 
562         if((cur->is32>>(reg&63))&1) cur->regmap[hr]=-1;
563     }
564   }
565 }
566
567 void set_const(struct regstat *cur,signed char reg,uint64_t value)
568 {
569   int hr;
570   if(!reg) return;
571   for (hr=0;hr<HOST_REGS;hr++) {
572     if(cur->regmap[hr]==reg) {
573       cur->isconst|=1<<hr;
574       cur->constmap[hr]=value;
575     }
576     else if((cur->regmap[hr]^64)==reg) {
577       cur->isconst|=1<<hr;
578       cur->constmap[hr]=value>>32;
579     }
580   }
581 }
582
583 void clear_const(struct regstat *cur,signed char reg)
584 {
585   int hr;
586   if(!reg) return;
587   for (hr=0;hr<HOST_REGS;hr++) {
588     if((cur->regmap[hr]&63)==reg) {
589       cur->isconst&=~(1<<hr);
590     }
591   }
592 }
593
594 int is_const(struct regstat *cur,signed char reg)
595 {
596   int hr;
597   if(!reg) return 1;
598   for (hr=0;hr<HOST_REGS;hr++) {
599     if((cur->regmap[hr]&63)==reg) {
600       return (cur->isconst>>hr)&1;
601     }
602   }
603   return 0;
604 }
605 uint64_t get_const(struct regstat *cur,signed char reg)
606 {
607   int hr;
608   if(!reg) return 0;
609   for (hr=0;hr<HOST_REGS;hr++) {
610     if(cur->regmap[hr]==reg) {
611       return cur->constmap[hr];
612     }
613   }
614   printf("Unknown constant in r%d\n",reg);
615   exit(1);
616 }
617
618 // Least soon needed registers
619 // Look at the next ten instructions and see which registers
620 // will be used.  Try not to reallocate these.
621 void lsn(u_char hsn[], int i, int *preferred_reg)
622 {
623   int j;
624   int b=-1;
625   for(j=0;j<9;j++)
626   {
627     if(i+j>=slen) {
628       j=slen-i-1;
629       break;
630     }
631     if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
632     {
633       // Don't go past an unconditonal jump
634       j++;
635       break;
636     }
637   }
638   for(;j>=0;j--)
639   {
640     if(rs1[i+j]) hsn[rs1[i+j]]=j;
641     if(rs2[i+j]) hsn[rs2[i+j]]=j;
642     if(rt1[i+j]) hsn[rt1[i+j]]=j;
643     if(rt2[i+j]) hsn[rt2[i+j]]=j;
644     if(itype[i+j]==STORE || itype[i+j]==STORELR) {
645       // Stores can allocate zero
646       hsn[rs1[i+j]]=j;
647       hsn[rs2[i+j]]=j;
648     }
649     // On some architectures stores need invc_ptr
650     #if defined(HOST_IMM8)
651     if(itype[i+j]==STORE || itype[i+j]==STORELR || (opcode[i+j]&0x3b)==0x39 || (opcode[i+j]&0x3b)==0x3a) {
652       hsn[INVCP]=j;
653     }
654     #endif
655     if(i+j>=0&&(itype[i+j]==UJUMP||itype[i+j]==CJUMP||itype[i+j]==SJUMP||itype[i+j]==FJUMP))
656     {
657       hsn[CCREG]=j;
658       b=j;
659     }
660   }
661   if(b>=0)
662   {
663     if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
664     {
665       // Follow first branch
666       int t=(ba[i+b]-start)>>2;
667       j=7-b;if(t+j>=slen) j=slen-t-1;
668       for(;j>=0;j--)
669       {
670         if(rs1[t+j]) if(hsn[rs1[t+j]]>j+b+2) hsn[rs1[t+j]]=j+b+2;
671         if(rs2[t+j]) if(hsn[rs2[t+j]]>j+b+2) hsn[rs2[t+j]]=j+b+2;
672         //if(rt1[t+j]) if(hsn[rt1[t+j]]>j+b+2) hsn[rt1[t+j]]=j+b+2;
673         //if(rt2[t+j]) if(hsn[rt2[t+j]]>j+b+2) hsn[rt2[t+j]]=j+b+2;
674       }
675     }
676     // TODO: preferred register based on backward branch
677   }
678   // Delay slot should preferably not overwrite branch conditions or cycle count
679   if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)) {
680     if(rs1[i-1]) if(hsn[rs1[i-1]]>1) hsn[rs1[i-1]]=1;
681     if(rs2[i-1]) if(hsn[rs2[i-1]]>1) hsn[rs2[i-1]]=1;
682     hsn[CCREG]=1;
683     // ...or hash tables
684     hsn[RHASH]=1;
685     hsn[RHTBL]=1;
686   }
687   // Coprocessor load/store needs FTEMP, even if not declared
688   if(itype[i]==C1LS||itype[i]==C2LS) {
689     hsn[FTEMP]=0;
690   }
691   // Load L/R also uses FTEMP as a temporary register
692   if(itype[i]==LOADLR) {
693     hsn[FTEMP]=0;
694   }
695   // Also SWL/SWR/SDL/SDR
696   if(opcode[i]==0x2a||opcode[i]==0x2e||opcode[i]==0x2c||opcode[i]==0x2d) {
697     hsn[FTEMP]=0;
698   }
699   // Don't remove the TLB registers either
700   if(itype[i]==LOAD || itype[i]==LOADLR || itype[i]==STORE || itype[i]==STORELR || itype[i]==C1LS || itype[i]==C2LS) {
701     hsn[TLREG]=0;
702   }
703   // Don't remove the miniht registers
704   if(itype[i]==UJUMP||itype[i]==RJUMP)
705   {
706     hsn[RHASH]=0;
707     hsn[RHTBL]=0;
708   }
709 }
710
711 // We only want to allocate registers if we're going to use them again soon
712 int needed_again(int r, int i)
713 {
714   int j;
715   int b=-1;
716   int rn=10;
717   int hr;
718   u_char hsn[MAXREG+1];
719   int preferred_reg;
720   
721   memset(hsn,10,sizeof(hsn));
722   lsn(hsn,i,&preferred_reg);
723   
724   if(i>0&&(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000))
725   {
726     if(ba[i-1]<start || ba[i-1]>start+slen*4-4)
727       return 0; // Don't need any registers if exiting the block
728   }
729   for(j=0;j<9;j++)
730   {
731     if(i+j>=slen) {
732       j=slen-i-1;
733       break;
734     }
735     if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
736     {
737       // Don't go past an unconditonal jump
738       j++;
739       break;
740     }
741     if(itype[i+j]==SYSCALL||itype[i+j]==HLECALL||itype[i+j]==INTCALL||((source[i+j]&0xfc00003f)==0x0d))
742     {
743       break;
744     }
745   }
746   for(;j>=1;j--)
747   {
748     if(rs1[i+j]==r) rn=j;
749     if(rs2[i+j]==r) rn=j;
750     if((unneeded_reg[i+j]>>r)&1) rn=10;
751     if(i+j>=0&&(itype[i+j]==UJUMP||itype[i+j]==CJUMP||itype[i+j]==SJUMP||itype[i+j]==FJUMP))
752     {
753       b=j;
754     }
755   }
756   /*
757   if(b>=0)
758   {
759     if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
760     {
761       // Follow first branch
762       int o=rn;
763       int t=(ba[i+b]-start)>>2;
764       j=7-b;if(t+j>=slen) j=slen-t-1;
765       for(;j>=0;j--)
766       {
767         if(!((unneeded_reg[t+j]>>r)&1)) {
768           if(rs1[t+j]==r) if(rn>j+b+2) rn=j+b+2;
769           if(rs2[t+j]==r) if(rn>j+b+2) rn=j+b+2;
770         }
771         else rn=o;
772       }
773     }
774   }*/
775   for(hr=0;hr<HOST_REGS;hr++) {
776     if(hr!=EXCLUDE_REG) {
777       if(rn<hsn[hr]) return 1;
778     }
779   }
780   return 0;
781 }
782
783 // Try to match register allocations at the end of a loop with those
784 // at the beginning
785 int loop_reg(int i, int r, int hr)
786 {
787   int j,k;
788   for(j=0;j<9;j++)
789   {
790     if(i+j>=slen) {
791       j=slen-i-1;
792       break;
793     }
794     if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
795     {
796       // Don't go past an unconditonal jump
797       j++;
798       break;
799     }
800   }
801   k=0;
802   if(i>0){
803     if(itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)
804       k--;
805   }
806   for(;k<j;k++)
807   {
808     if(r<64&&((unneeded_reg[i+k]>>r)&1)) return hr;
809     if(r>64&&((unneeded_reg_upper[i+k]>>r)&1)) return hr;
810     if(i+k>=0&&(itype[i+k]==UJUMP||itype[i+k]==CJUMP||itype[i+k]==SJUMP||itype[i+k]==FJUMP))
811     {
812       if(ba[i+k]>=start && ba[i+k]<(start+i*4))
813       {
814         int t=(ba[i+k]-start)>>2;
815         int reg=get_reg(regs[t].regmap_entry,r);
816         if(reg>=0) return reg;
817         //reg=get_reg(regs[t+1].regmap_entry,r);
818         //if(reg>=0) return reg;
819       }
820     }
821   }
822   return hr;
823 }
824
825
826 // Allocate every register, preserving source/target regs
827 void alloc_all(struct regstat *cur,int i)
828 {
829   int hr;
830   
831   for(hr=0;hr<HOST_REGS;hr++) {
832     if(hr!=EXCLUDE_REG) {
833       if(((cur->regmap[hr]&63)!=rs1[i])&&((cur->regmap[hr]&63)!=rs2[i])&&
834          ((cur->regmap[hr]&63)!=rt1[i])&&((cur->regmap[hr]&63)!=rt2[i]))
835       {
836         cur->regmap[hr]=-1;
837         cur->dirty&=~(1<<hr);
838       }
839       // Don't need zeros
840       if((cur->regmap[hr]&63)==0)
841       {
842         cur->regmap[hr]=-1;
843         cur->dirty&=~(1<<hr);
844       }
845     }
846   }
847 }
848
849
850 void div64(int64_t dividend,int64_t divisor)
851 {
852   lo=dividend/divisor;
853   hi=dividend%divisor;
854   //printf("TRACE: ddiv %8x%8x %8x%8x\n" ,(int)reg[HIREG],(int)(reg[HIREG]>>32)
855   //                                     ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
856 }
857 void divu64(uint64_t dividend,uint64_t divisor)
858 {
859   lo=dividend/divisor;
860   hi=dividend%divisor;
861   //printf("TRACE: ddivu %8x%8x %8x%8x\n",(int)reg[HIREG],(int)(reg[HIREG]>>32)
862   //                                     ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
863 }
864
865 void mult64(uint64_t m1,uint64_t m2)
866 {
867    unsigned long long int op1, op2, op3, op4;
868    unsigned long long int result1, result2, result3, result4;
869    unsigned long long int temp1, temp2, temp3, temp4;
870    int sign = 0;
871    
872    if (m1 < 0)
873      {
874     op2 = -m1;
875     sign = 1 - sign;
876      }
877    else op2 = m1;
878    if (m2 < 0)
879      {
880     op4 = -m2;
881     sign = 1 - sign;
882      }
883    else op4 = m2;
884    
885    op1 = op2 & 0xFFFFFFFF;
886    op2 = (op2 >> 32) & 0xFFFFFFFF;
887    op3 = op4 & 0xFFFFFFFF;
888    op4 = (op4 >> 32) & 0xFFFFFFFF;
889    
890    temp1 = op1 * op3;
891    temp2 = (temp1 >> 32) + op1 * op4;
892    temp3 = op2 * op3;
893    temp4 = (temp3 >> 32) + op2 * op4;
894    
895    result1 = temp1 & 0xFFFFFFFF;
896    result2 = temp2 + (temp3 & 0xFFFFFFFF);
897    result3 = (result2 >> 32) + temp4;
898    result4 = (result3 >> 32);
899    
900    lo = result1 | (result2 << 32);
901    hi = (result3 & 0xFFFFFFFF) | (result4 << 32);
902    if (sign)
903      {
904     hi = ~hi;
905     if (!lo) hi++;
906     else lo = ~lo + 1;
907      }
908 }
909
910 void multu64(uint64_t m1,uint64_t m2)
911 {
912    unsigned long long int op1, op2, op3, op4;
913    unsigned long long int result1, result2, result3, result4;
914    unsigned long long int temp1, temp2, temp3, temp4;
915    
916    op1 = m1 & 0xFFFFFFFF;
917    op2 = (m1 >> 32) & 0xFFFFFFFF;
918    op3 = m2 & 0xFFFFFFFF;
919    op4 = (m2 >> 32) & 0xFFFFFFFF;
920    
921    temp1 = op1 * op3;
922    temp2 = (temp1 >> 32) + op1 * op4;
923    temp3 = op2 * op3;
924    temp4 = (temp3 >> 32) + op2 * op4;
925    
926    result1 = temp1 & 0xFFFFFFFF;
927    result2 = temp2 + (temp3 & 0xFFFFFFFF);
928    result3 = (result2 >> 32) + temp4;
929    result4 = (result3 >> 32);
930    
931    lo = result1 | (result2 << 32);
932    hi = (result3 & 0xFFFFFFFF) | (result4 << 32);
933    
934   //printf("TRACE: dmultu %8x%8x %8x%8x\n",(int)reg[HIREG],(int)(reg[HIREG]>>32)
935   //                                      ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
936 }
937
938 uint64_t ldl_merge(uint64_t original,uint64_t loaded,u_int bits)
939 {
940   if(bits) {
941     original<<=64-bits;
942     original>>=64-bits;
943     loaded<<=bits;
944     original|=loaded;
945   }
946   else original=loaded;
947   return original;
948 }
949 uint64_t ldr_merge(uint64_t original,uint64_t loaded,u_int bits)
950 {
951   if(bits^56) {
952     original>>=64-(bits^56);
953     original<<=64-(bits^56);
954     loaded>>=bits^56;
955     original|=loaded;
956   }
957   else original=loaded;
958   return original;
959 }
960
961 #ifdef __i386__
962 #include "assem_x86.c"
963 #endif
964 #ifdef __x86_64__
965 #include "assem_x64.c"
966 #endif
967 #ifdef __arm__
968 #include "assem_arm.c"
969 #endif
970
971 // Add virtual address mapping to linked list
972 void ll_add(struct ll_entry **head,int vaddr,void *addr)
973 {
974   struct ll_entry *new_entry;
975   new_entry=malloc(sizeof(struct ll_entry));
976   assert(new_entry!=NULL);
977   new_entry->vaddr=vaddr;
978   new_entry->reg32=0;
979   new_entry->addr=addr;
980   new_entry->next=*head;
981   *head=new_entry;
982 }
983
984 // Add virtual address mapping for 32-bit compiled block
985 void ll_add_32(struct ll_entry **head,int vaddr,u_int reg32,void *addr)
986 {
987   ll_add(head,vaddr,addr);
988 #ifndef FORCE32
989   (*head)->reg32=reg32;
990 #endif
991 }
992
993 // Check if an address is already compiled
994 // but don't return addresses which are about to expire from the cache
995 void *check_addr(u_int vaddr)
996 {
997   u_int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
998   if(ht_bin[0]==vaddr) {
999     if(((ht_bin[1]-MAX_OUTPUT_BLOCK_SIZE-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
1000       if(isclean(ht_bin[1])) return (void *)ht_bin[1];
1001   }
1002   if(ht_bin[2]==vaddr) {
1003     if(((ht_bin[3]-MAX_OUTPUT_BLOCK_SIZE-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
1004       if(isclean(ht_bin[3])) return (void *)ht_bin[3];
1005   }
1006   u_int page=get_page(vaddr);
1007   struct ll_entry *head;
1008   head=jump_in[page];
1009   while(head!=NULL) {
1010     if(head->vaddr==vaddr&&head->reg32==0) {
1011       if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1012         // Update existing entry with current address
1013         if(ht_bin[0]==vaddr) {
1014           ht_bin[1]=(int)head->addr;
1015           return head->addr;
1016         }
1017         if(ht_bin[2]==vaddr) {
1018           ht_bin[3]=(int)head->addr;
1019           return head->addr;
1020         }
1021         // Insert into hash table with low priority.
1022         // Don't evict existing entries, as they are probably
1023         // addresses that are being accessed frequently.
1024         if(ht_bin[0]==-1) {
1025           ht_bin[1]=(int)head->addr;
1026           ht_bin[0]=vaddr;
1027         }else if(ht_bin[2]==-1) {
1028           ht_bin[3]=(int)head->addr;
1029           ht_bin[2]=vaddr;
1030         }
1031         return head->addr;
1032       }
1033     }
1034     head=head->next;
1035   }
1036   return 0;
1037 }
1038
1039 void remove_hash(int vaddr)
1040 {
1041   //printf("remove hash: %x\n",vaddr);
1042   int *ht_bin=hash_table[(((vaddr)>>16)^vaddr)&0xFFFF];
1043   if(ht_bin[2]==vaddr) {
1044     ht_bin[2]=ht_bin[3]=-1;
1045   }
1046   if(ht_bin[0]==vaddr) {
1047     ht_bin[0]=ht_bin[2];
1048     ht_bin[1]=ht_bin[3];
1049     ht_bin[2]=ht_bin[3]=-1;
1050   }
1051 }
1052
1053 void ll_remove_matching_addrs(struct ll_entry **head,int addr,int shift)
1054 {
1055   struct ll_entry *next;
1056   while(*head) {
1057     if(((u_int)((*head)->addr)>>shift)==(addr>>shift) || 
1058        ((u_int)((*head)->addr-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(addr>>shift))
1059     {
1060       inv_debug("EXP: Remove pointer to %x (%x)\n",(int)(*head)->addr,(*head)->vaddr);
1061       remove_hash((*head)->vaddr);
1062       next=(*head)->next;
1063       free(*head);
1064       *head=next;
1065     }
1066     else
1067     {
1068       head=&((*head)->next);
1069     }
1070   }
1071 }
1072
1073 // Remove all entries from linked list
1074 void ll_clear(struct ll_entry **head)
1075 {
1076   struct ll_entry *cur;
1077   struct ll_entry *next;
1078   if(cur=*head) {
1079     *head=0;
1080     while(cur) {
1081       next=cur->next;
1082       free(cur);
1083       cur=next;
1084     }
1085   }
1086 }
1087
1088 // Dereference the pointers and remove if it matches
1089 void ll_kill_pointers(struct ll_entry *head,int addr,int shift)
1090 {
1091   while(head) {
1092     int ptr=get_pointer(head->addr);
1093     inv_debug("EXP: Lookup pointer to %x at %x (%x)\n",(int)ptr,(int)head->addr,head->vaddr);
1094     if(((ptr>>shift)==(addr>>shift)) ||
1095        (((ptr-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(addr>>shift)))
1096     {
1097       inv_debug("EXP: Kill pointer at %x (%x)\n",(int)head->addr,head->vaddr);
1098       u_int host_addr=(u_int)kill_pointer(head->addr);
1099       #ifdef __arm__
1100         needs_clear_cache[(host_addr-(u_int)BASE_ADDR)>>17]|=1<<(((host_addr-(u_int)BASE_ADDR)>>12)&31);
1101       #endif
1102     }
1103     head=head->next;
1104   }
1105 }
1106
1107 // This is called when we write to a compiled block (see do_invstub)
1108 void invalidate_page(u_int page)
1109 {
1110   struct ll_entry *head;
1111   struct ll_entry *next;
1112   head=jump_in[page];
1113   jump_in[page]=0;
1114   while(head!=NULL) {
1115     inv_debug("INVALIDATE: %x\n",head->vaddr);
1116     remove_hash(head->vaddr);
1117     next=head->next;
1118     free(head);
1119     head=next;
1120   }
1121   head=jump_out[page];
1122   jump_out[page]=0;
1123   while(head!=NULL) {
1124     inv_debug("INVALIDATE: kill pointer to %x (%x)\n",head->vaddr,(int)head->addr);
1125     u_int host_addr=(u_int)kill_pointer(head->addr);
1126     #ifdef __arm__
1127       needs_clear_cache[(host_addr-(u_int)BASE_ADDR)>>17]|=1<<(((host_addr-(u_int)BASE_ADDR)>>12)&31);
1128     #endif
1129     next=head->next;
1130     free(head);
1131     head=next;
1132   }
1133 }
1134 void invalidate_block(u_int block)
1135 {
1136   u_int page=get_page(block<<12);
1137   u_int vpage=get_vpage(block<<12);
1138   inv_debug("INVALIDATE: %x (%d)\n",block<<12,page);
1139   //inv_debug("invalid_code[block]=%d\n",invalid_code[block]);
1140   u_int first,last;
1141   first=last=page;
1142   struct ll_entry *head;
1143   head=jump_dirty[vpage];
1144   //printf("page=%d vpage=%d\n",page,vpage);
1145   while(head!=NULL) {
1146     u_int start,end;
1147     if(vpage>2047||(head->vaddr>>12)==block) { // Ignore vaddr hash collision
1148       get_bounds((int)head->addr,&start,&end);
1149       //printf("start: %x end: %x\n",start,end);
1150       if(page<2048&&start>=0x80000000&&end<0x80000000+RAM_SIZE) {
1151         if(((start-(u_int)rdram)>>12)<=page&&((end-1-(u_int)rdram)>>12)>=page) {
1152           if((((start-(u_int)rdram)>>12)&2047)<first) first=((start-(u_int)rdram)>>12)&2047;
1153           if((((end-1-(u_int)rdram)>>12)&2047)>last) last=((end-1-(u_int)rdram)>>12)&2047;
1154         }
1155       }
1156 #ifndef DISABLE_TLB
1157       if(page<2048&&(signed int)start>=(signed int)0xC0000000&&(signed int)end>=(signed int)0xC0000000) {
1158         if(((start+memory_map[start>>12]-(u_int)rdram)>>12)<=page&&((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)>=page) {
1159           if((((start+memory_map[start>>12]-(u_int)rdram)>>12)&2047)<first) first=((start+memory_map[start>>12]-(u_int)rdram)>>12)&2047;
1160           if((((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)&2047)>last) last=((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)&2047;
1161         }
1162       }
1163 #endif
1164     }
1165     head=head->next;
1166   }
1167   //printf("first=%d last=%d\n",first,last);
1168   invalidate_page(page);
1169   assert(first+5>page); // NB: this assumes MAXBLOCK<=4096 (4 pages)
1170   assert(last<page+5);
1171   // Invalidate the adjacent pages if a block crosses a 4K boundary
1172   while(first<page) {
1173     invalidate_page(first);
1174     first++;
1175   }
1176   for(first=page+1;first<last;first++) {
1177     invalidate_page(first);
1178   }
1179   #ifdef __arm__
1180     do_clear_cache();
1181   #endif
1182   
1183   // Don't trap writes
1184   invalid_code[block]=1;
1185 #ifndef DISABLE_TLB
1186   // If there is a valid TLB entry for this page, remove write protect
1187   if(tlb_LUT_w[block]) {
1188     assert(tlb_LUT_r[block]==tlb_LUT_w[block]);
1189     // CHECK: Is this right?
1190     memory_map[block]=((tlb_LUT_w[block]&0xFFFFF000)-(block<<12)+(unsigned int)rdram-0x80000000)>>2;
1191     u_int real_block=tlb_LUT_w[block]>>12;
1192     invalid_code[real_block]=1;
1193     if(real_block>=0x80000&&real_block<0x80800) memory_map[real_block]=((u_int)rdram-0x80000000)>>2;
1194   }
1195   else if(block>=0x80000&&block<0x80800) memory_map[block]=((u_int)rdram-0x80000000)>>2;
1196 #endif
1197
1198   #ifdef USE_MINI_HT
1199   memset(mini_ht,-1,sizeof(mini_ht));
1200   #endif
1201 }
1202 void invalidate_addr(u_int addr)
1203 {
1204   invalidate_block(addr>>12);
1205 }
1206 // This is called when loading a save state.
1207 // Anything could have changed, so invalidate everything.
1208 void invalidate_all_pages()
1209 {
1210   u_int page,n;
1211   for(page=0;page<4096;page++)
1212     invalidate_page(page);
1213   for(page=0;page<1048576;page++)
1214     if(!invalid_code[page]) {
1215       restore_candidate[(page&2047)>>3]|=1<<(page&7);
1216       restore_candidate[((page&2047)>>3)+256]|=1<<(page&7);
1217     }
1218   #ifdef __arm__
1219   __clear_cache((void *)BASE_ADDR,(void *)BASE_ADDR+(1<<TARGET_SIZE_2));
1220   #endif
1221   #ifdef USE_MINI_HT
1222   memset(mini_ht,-1,sizeof(mini_ht));
1223   #endif
1224   #ifndef DISABLE_TLB
1225   // TLB
1226   for(page=0;page<0x100000;page++) {
1227     if(tlb_LUT_r[page]) {
1228       memory_map[page]=((tlb_LUT_r[page]&0xFFFFF000)-(page<<12)+(unsigned int)rdram-0x80000000)>>2;
1229       if(!tlb_LUT_w[page]||!invalid_code[page])
1230         memory_map[page]|=0x40000000; // Write protect
1231     }
1232     else memory_map[page]=-1;
1233     if(page==0x80000) page=0xC0000;
1234   }
1235   tlb_hacks();
1236   #endif
1237 }
1238
1239 // Add an entry to jump_out after making a link
1240 void add_link(u_int vaddr,void *src)
1241 {
1242   u_int page=get_page(vaddr);
1243   inv_debug("add_link: %x -> %x (%d)\n",(int)src,vaddr,page);
1244   ll_add(jump_out+page,vaddr,src);
1245   //int ptr=get_pointer(src);
1246   //inv_debug("add_link: Pointer is to %x\n",(int)ptr);
1247 }
1248
1249 // If a code block was found to be unmodified (bit was set in
1250 // restore_candidate) and it remains unmodified (bit is clear
1251 // in invalid_code) then move the entries for that 4K page from
1252 // the dirty list to the clean list.
1253 void clean_blocks(u_int page)
1254 {
1255   struct ll_entry *head;
1256   inv_debug("INV: clean_blocks page=%d\n",page);
1257   head=jump_dirty[page];
1258   while(head!=NULL) {
1259     if(!invalid_code[head->vaddr>>12]) {
1260       // Don't restore blocks which are about to expire from the cache
1261       if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1262         u_int start,end;
1263         if(verify_dirty((int)head->addr)) {
1264           //printf("Possibly Restore %x (%x)\n",head->vaddr, (int)head->addr);
1265           u_int i;
1266           u_int inv=0;
1267           get_bounds((int)head->addr,&start,&end);
1268           if(start-(u_int)rdram<RAM_SIZE) {
1269             for(i=(start-(u_int)rdram+0x80000000)>>12;i<=(end-1-(u_int)rdram+0x80000000)>>12;i++) {
1270               inv|=invalid_code[i];
1271             }
1272           }
1273           if((signed int)head->vaddr>=(signed int)0xC0000000) {
1274             u_int addr = (head->vaddr+(memory_map[head->vaddr>>12]<<2));
1275             //printf("addr=%x start=%x end=%x\n",addr,start,end);
1276             if(addr<start||addr>=end) inv=1;
1277           }
1278           else if((signed int)head->vaddr>=(signed int)0x80000000+RAM_SIZE) {
1279             inv=1;
1280           }
1281           if(!inv) {
1282             void * clean_addr=(void *)get_clean_addr((int)head->addr);
1283             if((((u_int)clean_addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1284               u_int ppage=page;
1285 #ifndef DISABLE_TLB
1286               if(page<2048&&tlb_LUT_r[head->vaddr>>12]) ppage=(tlb_LUT_r[head->vaddr>>12]^0x80000000)>>12;
1287 #endif
1288               inv_debug("INV: Restored %x (%x/%x)\n",head->vaddr, (int)head->addr, (int)clean_addr);
1289               //printf("page=%x, addr=%x\n",page,head->vaddr);
1290               //assert(head->vaddr>>12==(page|0x80000));
1291               ll_add_32(jump_in+ppage,head->vaddr,head->reg32,clean_addr);
1292               int *ht_bin=hash_table[((head->vaddr>>16)^head->vaddr)&0xFFFF];
1293               if(!head->reg32) {
1294                 if(ht_bin[0]==head->vaddr) {
1295                   ht_bin[1]=(int)clean_addr; // Replace existing entry
1296                 }
1297                 if(ht_bin[2]==head->vaddr) {
1298                   ht_bin[3]=(int)clean_addr; // Replace existing entry
1299                 }
1300               }
1301             }
1302           }
1303         }
1304       }
1305     }
1306     head=head->next;
1307   }
1308 }
1309
1310
1311 void mov_alloc(struct regstat *current,int i)
1312 {
1313   // Note: Don't need to actually alloc the source registers
1314   if((~current->is32>>rs1[i])&1) {
1315     //alloc_reg64(current,i,rs1[i]);
1316     alloc_reg64(current,i,rt1[i]);
1317     current->is32&=~(1LL<<rt1[i]);
1318   } else {
1319     //alloc_reg(current,i,rs1[i]);
1320     alloc_reg(current,i,rt1[i]);
1321     current->is32|=(1LL<<rt1[i]);
1322   }
1323   clear_const(current,rs1[i]);
1324   clear_const(current,rt1[i]);
1325   dirty_reg(current,rt1[i]);
1326 }
1327
1328 void shiftimm_alloc(struct regstat *current,int i)
1329 {
1330   clear_const(current,rs1[i]);
1331   clear_const(current,rt1[i]);
1332   if(opcode2[i]<=0x3) // SLL/SRL/SRA
1333   {
1334     if(rt1[i]) {
1335       if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1336       else lt1[i]=rs1[i];
1337       alloc_reg(current,i,rt1[i]);
1338       current->is32|=1LL<<rt1[i];
1339       dirty_reg(current,rt1[i]);
1340     }
1341   }
1342   if(opcode2[i]>=0x38&&opcode2[i]<=0x3b) // DSLL/DSRL/DSRA
1343   {
1344     if(rt1[i]) {
1345       if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1346       alloc_reg64(current,i,rt1[i]);
1347       current->is32&=~(1LL<<rt1[i]);
1348       dirty_reg(current,rt1[i]);
1349     }
1350   }
1351   if(opcode2[i]==0x3c) // DSLL32
1352   {
1353     if(rt1[i]) {
1354       if(rs1[i]) alloc_reg(current,i,rs1[i]);
1355       alloc_reg64(current,i,rt1[i]);
1356       current->is32&=~(1LL<<rt1[i]);
1357       dirty_reg(current,rt1[i]);
1358     }
1359   }
1360   if(opcode2[i]==0x3e) // DSRL32
1361   {
1362     if(rt1[i]) {
1363       alloc_reg64(current,i,rs1[i]);
1364       if(imm[i]==32) {
1365         alloc_reg64(current,i,rt1[i]);
1366         current->is32&=~(1LL<<rt1[i]);
1367       } else {
1368         alloc_reg(current,i,rt1[i]);
1369         current->is32|=1LL<<rt1[i];
1370       }
1371       dirty_reg(current,rt1[i]);
1372     }
1373   }
1374   if(opcode2[i]==0x3f) // DSRA32
1375   {
1376     if(rt1[i]) {
1377       alloc_reg64(current,i,rs1[i]);
1378       alloc_reg(current,i,rt1[i]);
1379       current->is32|=1LL<<rt1[i];
1380       dirty_reg(current,rt1[i]);
1381     }
1382   }
1383 }
1384
1385 void shift_alloc(struct regstat *current,int i)
1386 {
1387   if(rt1[i]) {
1388     if(opcode2[i]<=0x07) // SLLV/SRLV/SRAV
1389     {
1390       if(rs1[i]) alloc_reg(current,i,rs1[i]);
1391       if(rs2[i]) alloc_reg(current,i,rs2[i]);
1392       alloc_reg(current,i,rt1[i]);
1393       if(rt1[i]==rs2[i]) {
1394         alloc_reg_temp(current,i,-1);
1395         minimum_free_regs[i]=1;
1396       }
1397       current->is32|=1LL<<rt1[i];
1398     } else { // DSLLV/DSRLV/DSRAV
1399       if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1400       if(rs2[i]) alloc_reg(current,i,rs2[i]);
1401       alloc_reg64(current,i,rt1[i]);
1402       current->is32&=~(1LL<<rt1[i]);
1403       if(opcode2[i]==0x16||opcode2[i]==0x17) // DSRLV and DSRAV need a temporary register
1404       {
1405         alloc_reg_temp(current,i,-1);
1406         minimum_free_regs[i]=1;
1407       }
1408     }
1409     clear_const(current,rs1[i]);
1410     clear_const(current,rs2[i]);
1411     clear_const(current,rt1[i]);
1412     dirty_reg(current,rt1[i]);
1413   }
1414 }
1415
1416 void alu_alloc(struct regstat *current,int i)
1417 {
1418   if(opcode2[i]>=0x20&&opcode2[i]<=0x23) { // ADD/ADDU/SUB/SUBU
1419     if(rt1[i]) {
1420       if(rs1[i]&&rs2[i]) {
1421         alloc_reg(current,i,rs1[i]);
1422         alloc_reg(current,i,rs2[i]);
1423       }
1424       else {
1425         if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1426         if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg(current,i,rs2[i]);
1427       }
1428       alloc_reg(current,i,rt1[i]);
1429     }
1430     current->is32|=1LL<<rt1[i];
1431   }
1432   if(opcode2[i]==0x2a||opcode2[i]==0x2b) { // SLT/SLTU
1433     if(rt1[i]) {
1434       if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1435       {
1436         alloc_reg64(current,i,rs1[i]);
1437         alloc_reg64(current,i,rs2[i]);
1438         alloc_reg(current,i,rt1[i]);
1439       } else {
1440         alloc_reg(current,i,rs1[i]);
1441         alloc_reg(current,i,rs2[i]);
1442         alloc_reg(current,i,rt1[i]);
1443       }
1444     }
1445     current->is32|=1LL<<rt1[i];
1446   }
1447   if(opcode2[i]>=0x24&&opcode2[i]<=0x27) { // AND/OR/XOR/NOR
1448     if(rt1[i]) {
1449       if(rs1[i]&&rs2[i]) {
1450         alloc_reg(current,i,rs1[i]);
1451         alloc_reg(current,i,rs2[i]);
1452       }
1453       else
1454       {
1455         if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1456         if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg(current,i,rs2[i]);
1457       }
1458       alloc_reg(current,i,rt1[i]);
1459       if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1460       {
1461         if(!((current->uu>>rt1[i])&1)) {
1462           alloc_reg64(current,i,rt1[i]);
1463         }
1464         if(get_reg(current->regmap,rt1[i]|64)>=0) {
1465           if(rs1[i]&&rs2[i]) {
1466             alloc_reg64(current,i,rs1[i]);
1467             alloc_reg64(current,i,rs2[i]);
1468           }
1469           else
1470           {
1471             // Is is really worth it to keep 64-bit values in registers?
1472             #ifdef NATIVE_64BIT
1473             if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg64(current,i,rs1[i]);
1474             if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg64(current,i,rs2[i]);
1475             #endif
1476           }
1477         }
1478         current->is32&=~(1LL<<rt1[i]);
1479       } else {
1480         current->is32|=1LL<<rt1[i];
1481       }
1482     }
1483   }
1484   if(opcode2[i]>=0x2c&&opcode2[i]<=0x2f) { // DADD/DADDU/DSUB/DSUBU
1485     if(rt1[i]) {
1486       if(rs1[i]&&rs2[i]) {
1487         if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1488           alloc_reg64(current,i,rs1[i]);
1489           alloc_reg64(current,i,rs2[i]);
1490           alloc_reg64(current,i,rt1[i]);
1491         } else {
1492           alloc_reg(current,i,rs1[i]);
1493           alloc_reg(current,i,rs2[i]);
1494           alloc_reg(current,i,rt1[i]);
1495         }
1496       }
1497       else {
1498         alloc_reg(current,i,rt1[i]);
1499         if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1500           // DADD used as move, or zeroing
1501           // If we have a 64-bit source, then make the target 64 bits too
1502           if(rs1[i]&&!((current->is32>>rs1[i])&1)) {
1503             if(get_reg(current->regmap,rs1[i])>=0) alloc_reg64(current,i,rs1[i]);
1504             alloc_reg64(current,i,rt1[i]);
1505           } else if(rs2[i]&&!((current->is32>>rs2[i])&1)) {
1506             if(get_reg(current->regmap,rs2[i])>=0) alloc_reg64(current,i,rs2[i]);
1507             alloc_reg64(current,i,rt1[i]);
1508           }
1509           if(opcode2[i]>=0x2e&&rs2[i]) {
1510             // DSUB used as negation - 64-bit result
1511             // If we have a 32-bit register, extend it to 64 bits
1512             if(get_reg(current->regmap,rs2[i])>=0) alloc_reg64(current,i,rs2[i]);
1513             alloc_reg64(current,i,rt1[i]);
1514           }
1515         }
1516       }
1517       if(rs1[i]&&rs2[i]) {
1518         current->is32&=~(1LL<<rt1[i]);
1519       } else if(rs1[i]) {
1520         current->is32&=~(1LL<<rt1[i]);
1521         if((current->is32>>rs1[i])&1)
1522           current->is32|=1LL<<rt1[i];
1523       } else if(rs2[i]) {
1524         current->is32&=~(1LL<<rt1[i]);
1525         if((current->is32>>rs2[i])&1)
1526           current->is32|=1LL<<rt1[i];
1527       } else {
1528         current->is32|=1LL<<rt1[i];
1529       }
1530     }
1531   }
1532   clear_const(current,rs1[i]);
1533   clear_const(current,rs2[i]);
1534   clear_const(current,rt1[i]);
1535   dirty_reg(current,rt1[i]);
1536 }
1537
1538 void imm16_alloc(struct regstat *current,int i)
1539 {
1540   if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1541   else lt1[i]=rs1[i];
1542   if(rt1[i]) alloc_reg(current,i,rt1[i]);
1543   if(opcode[i]==0x18||opcode[i]==0x19) { // DADDI/DADDIU
1544     current->is32&=~(1LL<<rt1[i]);
1545     if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1546       // TODO: Could preserve the 32-bit flag if the immediate is zero
1547       alloc_reg64(current,i,rt1[i]);
1548       alloc_reg64(current,i,rs1[i]);
1549     }
1550     clear_const(current,rs1[i]);
1551     clear_const(current,rt1[i]);
1552   }
1553   else if(opcode[i]==0x0a||opcode[i]==0x0b) { // SLTI/SLTIU
1554     if((~current->is32>>rs1[i])&1) alloc_reg64(current,i,rs1[i]);
1555     current->is32|=1LL<<rt1[i];
1556     clear_const(current,rs1[i]);
1557     clear_const(current,rt1[i]);
1558   }
1559   else if(opcode[i]>=0x0c&&opcode[i]<=0x0e) { // ANDI/ORI/XORI
1560     if(((~current->is32>>rs1[i])&1)&&opcode[i]>0x0c) {
1561       if(rs1[i]!=rt1[i]) {
1562         if(needed_again(rs1[i],i)) alloc_reg64(current,i,rs1[i]);
1563         alloc_reg64(current,i,rt1[i]);
1564         current->is32&=~(1LL<<rt1[i]);
1565       }
1566     }
1567     else current->is32|=1LL<<rt1[i]; // ANDI clears upper bits
1568     if(is_const(current,rs1[i])) {
1569       int v=get_const(current,rs1[i]);
1570       if(opcode[i]==0x0c) set_const(current,rt1[i],v&imm[i]);
1571       if(opcode[i]==0x0d) set_const(current,rt1[i],v|imm[i]);
1572       if(opcode[i]==0x0e) set_const(current,rt1[i],v^imm[i]);
1573     }
1574     else clear_const(current,rt1[i]);
1575   }
1576   else if(opcode[i]==0x08||opcode[i]==0x09) { // ADDI/ADDIU
1577     if(is_const(current,rs1[i])) {
1578       int v=get_const(current,rs1[i]);
1579       set_const(current,rt1[i],v+imm[i]);
1580     }
1581     else clear_const(current,rt1[i]);
1582     current->is32|=1LL<<rt1[i];
1583   }
1584   else {
1585     set_const(current,rt1[i],((long long)((short)imm[i]))<<16); // LUI
1586     current->is32|=1LL<<rt1[i];
1587   }
1588   dirty_reg(current,rt1[i]);
1589 }
1590
1591 void load_alloc(struct regstat *current,int i)
1592 {
1593   clear_const(current,rt1[i]);
1594   //if(rs1[i]!=rt1[i]&&needed_again(rs1[i],i)) clear_const(current,rs1[i]); // Does this help or hurt?
1595   if(!rs1[i]) current->u&=~1LL; // Allow allocating r0 if it's the source register
1596   if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1597   if(rt1[i]) {
1598     alloc_reg(current,i,rt1[i]);
1599     if(get_reg(current->regmap,rt1[i])<0) {
1600       // dummy load, but we still need a register to calculate the address
1601       alloc_reg_temp(current,i,-1);
1602       minimum_free_regs[i]=1;
1603     }
1604     if(opcode[i]==0x27||opcode[i]==0x37) // LWU/LD
1605     {
1606       current->is32&=~(1LL<<rt1[i]);
1607       alloc_reg64(current,i,rt1[i]);
1608     }
1609     else if(opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
1610     {
1611       current->is32&=~(1LL<<rt1[i]);
1612       alloc_reg64(current,i,rt1[i]);
1613       alloc_all(current,i);
1614       alloc_reg64(current,i,FTEMP);
1615       minimum_free_regs[i]=HOST_REGS;
1616     }
1617     else current->is32|=1LL<<rt1[i];
1618     dirty_reg(current,rt1[i]);
1619     // If using TLB, need a register for pointer to the mapping table
1620     if(using_tlb) alloc_reg(current,i,TLREG);
1621     // LWL/LWR need a temporary register for the old value
1622     if(opcode[i]==0x22||opcode[i]==0x26)
1623     {
1624       alloc_reg(current,i,FTEMP);
1625       alloc_reg_temp(current,i,-1);
1626       minimum_free_regs[i]=1;
1627     }
1628   }
1629   else
1630   {
1631     // Load to r0 (dummy load)
1632     // but we still need a register to calculate the address
1633     if(opcode[i]==0x22||opcode[i]==0x26)
1634     {
1635       alloc_reg(current,i,FTEMP); // LWL/LWR need another temporary
1636     }
1637     alloc_reg_temp(current,i,-1);
1638     minimum_free_regs[i]=1;
1639     if(opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
1640     {
1641       alloc_all(current,i);
1642       alloc_reg64(current,i,FTEMP);
1643       minimum_free_regs[i]=HOST_REGS;
1644     }
1645   }
1646 }
1647
1648 void store_alloc(struct regstat *current,int i)
1649 {
1650   clear_const(current,rs2[i]);
1651   if(!(rs2[i])) current->u&=~1LL; // Allow allocating r0 if necessary
1652   if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1653   alloc_reg(current,i,rs2[i]);
1654   if(opcode[i]==0x2c||opcode[i]==0x2d||opcode[i]==0x3f) { // 64-bit SDL/SDR/SD
1655     alloc_reg64(current,i,rs2[i]);
1656     if(rs2[i]) alloc_reg(current,i,FTEMP);
1657   }
1658   // If using TLB, need a register for pointer to the mapping table
1659   if(using_tlb) alloc_reg(current,i,TLREG);
1660   #if defined(HOST_IMM8)
1661   // On CPUs without 32-bit immediates we need a pointer to invalid_code
1662   else alloc_reg(current,i,INVCP);
1663   #endif
1664   if(opcode[i]==0x2a||opcode[i]==0x2e||opcode[i]==0x2c||opcode[i]==0x2d) { // SWL/SWL/SDL/SDR
1665     alloc_reg(current,i,FTEMP);
1666   }
1667   // We need a temporary register for address generation
1668   alloc_reg_temp(current,i,-1);
1669   minimum_free_regs[i]=1;
1670 }
1671
1672 void c1ls_alloc(struct regstat *current,int i)
1673 {
1674   //clear_const(current,rs1[i]); // FIXME
1675   clear_const(current,rt1[i]);
1676   if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1677   alloc_reg(current,i,CSREG); // Status
1678   alloc_reg(current,i,FTEMP);
1679   if(opcode[i]==0x35||opcode[i]==0x3d) { // 64-bit LDC1/SDC1
1680     alloc_reg64(current,i,FTEMP);
1681   }
1682   // If using TLB, need a register for pointer to the mapping table
1683   if(using_tlb) alloc_reg(current,i,TLREG);
1684   #if defined(HOST_IMM8)
1685   // On CPUs without 32-bit immediates we need a pointer to invalid_code
1686   else if((opcode[i]&0x3b)==0x39) // SWC1/SDC1
1687     alloc_reg(current,i,INVCP);
1688   #endif
1689   // We need a temporary register for address generation
1690   alloc_reg_temp(current,i,-1);
1691 }
1692
1693 void c2ls_alloc(struct regstat *current,int i)
1694 {
1695   clear_const(current,rt1[i]);
1696   if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1697   alloc_reg(current,i,FTEMP);
1698   // If using TLB, need a register for pointer to the mapping table
1699   if(using_tlb) alloc_reg(current,i,TLREG);
1700   #if defined(HOST_IMM8)
1701   // On CPUs without 32-bit immediates we need a pointer to invalid_code
1702   else if((opcode[i]&0x3b)==0x3a) // SWC2/SDC2
1703     alloc_reg(current,i,INVCP);
1704   #endif
1705   // We need a temporary register for address generation
1706   alloc_reg_temp(current,i,-1);
1707   minimum_free_regs[i]=1;
1708 }
1709
1710 #ifndef multdiv_alloc
1711 void multdiv_alloc(struct regstat *current,int i)
1712 {
1713   //  case 0x18: MULT
1714   //  case 0x19: MULTU
1715   //  case 0x1A: DIV
1716   //  case 0x1B: DIVU
1717   //  case 0x1C: DMULT
1718   //  case 0x1D: DMULTU
1719   //  case 0x1E: DDIV
1720   //  case 0x1F: DDIVU
1721   clear_const(current,rs1[i]);
1722   clear_const(current,rs2[i]);
1723   if(rs1[i]&&rs2[i])
1724   {
1725     if((opcode2[i]&4)==0) // 32-bit
1726     {
1727       current->u&=~(1LL<<HIREG);
1728       current->u&=~(1LL<<LOREG);
1729       alloc_reg(current,i,HIREG);
1730       alloc_reg(current,i,LOREG);
1731       alloc_reg(current,i,rs1[i]);
1732       alloc_reg(current,i,rs2[i]);
1733       current->is32|=1LL<<HIREG;
1734       current->is32|=1LL<<LOREG;
1735       dirty_reg(current,HIREG);
1736       dirty_reg(current,LOREG);
1737     }
1738     else // 64-bit
1739     {
1740       current->u&=~(1LL<<HIREG);
1741       current->u&=~(1LL<<LOREG);
1742       current->uu&=~(1LL<<HIREG);
1743       current->uu&=~(1LL<<LOREG);
1744       alloc_reg64(current,i,HIREG);
1745       //if(HOST_REGS>10) alloc_reg64(current,i,LOREG);
1746       alloc_reg64(current,i,rs1[i]);
1747       alloc_reg64(current,i,rs2[i]);
1748       alloc_all(current,i);
1749       current->is32&=~(1LL<<HIREG);
1750       current->is32&=~(1LL<<LOREG);
1751       dirty_reg(current,HIREG);
1752       dirty_reg(current,LOREG);
1753       minimum_free_regs[i]=HOST_REGS;
1754     }
1755   }
1756   else
1757   {
1758     // Multiply by zero is zero.
1759     // MIPS does not have a divide by zero exception.
1760     // The result is undefined, we return zero.
1761     alloc_reg(current,i,HIREG);
1762     alloc_reg(current,i,LOREG);
1763     current->is32|=1LL<<HIREG;
1764     current->is32|=1LL<<LOREG;
1765     dirty_reg(current,HIREG);
1766     dirty_reg(current,LOREG);
1767   }
1768 }
1769 #endif
1770
1771 void cop0_alloc(struct regstat *current,int i)
1772 {
1773   if(opcode2[i]==0) // MFC0
1774   {
1775     if(rt1[i]) {
1776       clear_const(current,rt1[i]);
1777       alloc_all(current,i);
1778       alloc_reg(current,i,rt1[i]);
1779       current->is32|=1LL<<rt1[i];
1780       dirty_reg(current,rt1[i]);
1781     }
1782   }
1783   else if(opcode2[i]==4) // MTC0
1784   {
1785     if(rs1[i]){
1786       clear_const(current,rs1[i]);
1787       alloc_reg(current,i,rs1[i]);
1788       alloc_all(current,i);
1789     }
1790     else {
1791       alloc_all(current,i); // FIXME: Keep r0
1792       current->u&=~1LL;
1793       alloc_reg(current,i,0);
1794     }
1795   }
1796   else
1797   {
1798     // TLBR/TLBWI/TLBWR/TLBP/ERET
1799     assert(opcode2[i]==0x10);
1800     alloc_all(current,i);
1801   }
1802   minimum_free_regs[i]=HOST_REGS;
1803 }
1804
1805 void cop1_alloc(struct regstat *current,int i)
1806 {
1807   alloc_reg(current,i,CSREG); // Load status
1808   if(opcode2[i]<3) // MFC1/DMFC1/CFC1
1809   {
1810     if(rt1[i]){
1811       clear_const(current,rt1[i]);
1812       if(opcode2[i]==1) {
1813         alloc_reg64(current,i,rt1[i]); // DMFC1
1814         current->is32&=~(1LL<<rt1[i]);
1815       }else{
1816         alloc_reg(current,i,rt1[i]); // MFC1/CFC1
1817         current->is32|=1LL<<rt1[i];
1818       }
1819       dirty_reg(current,rt1[i]);
1820     }
1821     alloc_reg_temp(current,i,-1);
1822   }
1823   else if(opcode2[i]>3) // MTC1/DMTC1/CTC1
1824   {
1825     if(rs1[i]){
1826       clear_const(current,rs1[i]);
1827       if(opcode2[i]==5)
1828         alloc_reg64(current,i,rs1[i]); // DMTC1
1829       else
1830         alloc_reg(current,i,rs1[i]); // MTC1/CTC1
1831       alloc_reg_temp(current,i,-1);
1832     }
1833     else {
1834       current->u&=~1LL;
1835       alloc_reg(current,i,0);
1836       alloc_reg_temp(current,i,-1);
1837     }
1838   }
1839   minimum_free_regs[i]=1;
1840 }
1841 void fconv_alloc(struct regstat *current,int i)
1842 {
1843   alloc_reg(current,i,CSREG); // Load status
1844   alloc_reg_temp(current,i,-1);
1845   minimum_free_regs[i]=1;
1846 }
1847 void float_alloc(struct regstat *current,int i)
1848 {
1849   alloc_reg(current,i,CSREG); // Load status
1850   alloc_reg_temp(current,i,-1);
1851   minimum_free_regs[i]=1;
1852 }
1853 void c2op_alloc(struct regstat *current,int i)
1854 {
1855   alloc_reg_temp(current,i,-1);
1856 }
1857 void fcomp_alloc(struct regstat *current,int i)
1858 {
1859   alloc_reg(current,i,CSREG); // Load status
1860   alloc_reg(current,i,FSREG); // Load flags
1861   dirty_reg(current,FSREG); // Flag will be modified
1862   alloc_reg_temp(current,i,-1);
1863   minimum_free_regs[i]=1;
1864 }
1865
1866 void syscall_alloc(struct regstat *current,int i)
1867 {
1868   alloc_cc(current,i);
1869   dirty_reg(current,CCREG);
1870   alloc_all(current,i);
1871   minimum_free_regs[i]=HOST_REGS;
1872   current->isconst=0;
1873 }
1874
1875 void delayslot_alloc(struct regstat *current,int i)
1876 {
1877   switch(itype[i]) {
1878     case UJUMP:
1879     case CJUMP:
1880     case SJUMP:
1881     case RJUMP:
1882     case FJUMP:
1883     case SYSCALL:
1884     case HLECALL:
1885     case SPAN:
1886       assem_debug("jump in the delay slot.  this shouldn't happen.\n");//exit(1);
1887       printf("Disabled speculative precompilation\n");
1888       stop_after_jal=1;
1889       break;
1890     case IMM16:
1891       imm16_alloc(current,i);
1892       break;
1893     case LOAD:
1894     case LOADLR:
1895       load_alloc(current,i);
1896       break;
1897     case STORE:
1898     case STORELR:
1899       store_alloc(current,i);
1900       break;
1901     case ALU:
1902       alu_alloc(current,i);
1903       break;
1904     case SHIFT:
1905       shift_alloc(current,i);
1906       break;
1907     case MULTDIV:
1908       multdiv_alloc(current,i);
1909       break;
1910     case SHIFTIMM:
1911       shiftimm_alloc(current,i);
1912       break;
1913     case MOV:
1914       mov_alloc(current,i);
1915       break;
1916     case COP0:
1917       cop0_alloc(current,i);
1918       break;
1919     case COP1:
1920     case COP2:
1921       cop1_alloc(current,i);
1922       break;
1923     case C1LS:
1924       c1ls_alloc(current,i);
1925       break;
1926     case C2LS:
1927       c2ls_alloc(current,i);
1928       break;
1929     case FCONV:
1930       fconv_alloc(current,i);
1931       break;
1932     case FLOAT:
1933       float_alloc(current,i);
1934       break;
1935     case FCOMP:
1936       fcomp_alloc(current,i);
1937       break;
1938     case C2OP:
1939       c2op_alloc(current,i);
1940       break;
1941   }
1942 }
1943
1944 // Special case where a branch and delay slot span two pages in virtual memory
1945 static void pagespan_alloc(struct regstat *current,int i)
1946 {
1947   current->isconst=0;
1948   current->wasconst=0;
1949   regs[i].wasconst=0;
1950   minimum_free_regs[i]=HOST_REGS;
1951   alloc_all(current,i);
1952   alloc_cc(current,i);
1953   dirty_reg(current,CCREG);
1954   if(opcode[i]==3) // JAL
1955   {
1956     alloc_reg(current,i,31);
1957     dirty_reg(current,31);
1958   }
1959   if(opcode[i]==0&&(opcode2[i]&0x3E)==8) // JR/JALR
1960   {
1961     alloc_reg(current,i,rs1[i]);
1962     if (rt1[i]!=0) {
1963       alloc_reg(current,i,rt1[i]);
1964       dirty_reg(current,rt1[i]);
1965     }
1966   }
1967   if((opcode[i]&0x2E)==4) // BEQ/BNE/BEQL/BNEL
1968   {
1969     if(rs1[i]) alloc_reg(current,i,rs1[i]);
1970     if(rs2[i]) alloc_reg(current,i,rs2[i]);
1971     if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1972     {
1973       if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1974       if(rs2[i]) alloc_reg64(current,i,rs2[i]);
1975     }
1976   }
1977   else
1978   if((opcode[i]&0x2E)==6) // BLEZ/BGTZ/BLEZL/BGTZL
1979   {
1980     if(rs1[i]) alloc_reg(current,i,rs1[i]);
1981     if(!((current->is32>>rs1[i])&1))
1982     {
1983       if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1984     }
1985   }
1986   else
1987   if(opcode[i]==0x11) // BC1
1988   {
1989     alloc_reg(current,i,FSREG);
1990     alloc_reg(current,i,CSREG);
1991   }
1992   //else ...
1993 }
1994
1995 add_stub(int type,int addr,int retaddr,int a,int b,int c,int d,int e)
1996 {
1997   stubs[stubcount][0]=type;
1998   stubs[stubcount][1]=addr;
1999   stubs[stubcount][2]=retaddr;
2000   stubs[stubcount][3]=a;
2001   stubs[stubcount][4]=b;
2002   stubs[stubcount][5]=c;
2003   stubs[stubcount][6]=d;
2004   stubs[stubcount][7]=e;
2005   stubcount++;
2006 }
2007
2008 // Write out a single register
2009 void wb_register(signed char r,signed char regmap[],uint64_t dirty,uint64_t is32)
2010 {
2011   int hr;
2012   for(hr=0;hr<HOST_REGS;hr++) {
2013     if(hr!=EXCLUDE_REG) {
2014       if((regmap[hr]&63)==r) {
2015         if((dirty>>hr)&1) {
2016           if(regmap[hr]<64) {
2017             emit_storereg(r,hr);
2018 #ifndef FORCE32
2019             if((is32>>regmap[hr])&1) {
2020               emit_sarimm(hr,31,hr);
2021               emit_storereg(r|64,hr);
2022             }
2023 #endif
2024           }else{
2025             emit_storereg(r|64,hr);
2026           }
2027         }
2028       }
2029     }
2030   }
2031 }
2032
2033 int mchecksum()
2034 {
2035   //if(!tracedebug) return 0;
2036   int i;
2037   int sum=0;
2038   for(i=0;i<2097152;i++) {
2039     unsigned int temp=sum;
2040     sum<<=1;
2041     sum|=(~temp)>>31;
2042     sum^=((u_int *)rdram)[i];
2043   }
2044   return sum;
2045 }
2046 int rchecksum()
2047 {
2048   int i;
2049   int sum=0;
2050   for(i=0;i<64;i++)
2051     sum^=((u_int *)reg)[i];
2052   return sum;
2053 }
2054 void rlist()
2055 {
2056   int i;
2057   printf("TRACE: ");
2058   for(i=0;i<32;i++)
2059     printf("r%d:%8x%8x ",i,((int *)(reg+i))[1],((int *)(reg+i))[0]);
2060   printf("\n");
2061 #ifndef DISABLE_COP1
2062   printf("TRACE: ");
2063   for(i=0;i<32;i++)
2064     printf("f%d:%8x%8x ",i,((int*)reg_cop1_simple[i])[1],*((int*)reg_cop1_simple[i]));
2065   printf("\n");
2066 #endif
2067 }
2068
2069 void enabletrace()
2070 {
2071   tracedebug=1;
2072 }
2073
2074 void memdebug(int i)
2075 {
2076   //printf("TRACE: count=%d next=%d (checksum %x) lo=%8x%8x\n",Count,next_interupt,mchecksum(),(int)(reg[LOREG]>>32),(int)reg[LOREG]);
2077   //printf("TRACE: count=%d next=%d (rchecksum %x)\n",Count,next_interupt,rchecksum());
2078   //rlist();
2079   //if(tracedebug) {
2080   //if(Count>=-2084597794) {
2081   if((signed int)Count>=-2084597794&&(signed int)Count<0) {
2082   //if(0) {
2083     printf("TRACE: count=%d next=%d (checksum %x)\n",Count,next_interupt,mchecksum());
2084     //printf("TRACE: count=%d next=%d (checksum %x) Status=%x\n",Count,next_interupt,mchecksum(),Status);
2085     //printf("TRACE: count=%d next=%d (checksum %x) hi=%8x%8x\n",Count,next_interupt,mchecksum(),(int)(reg[HIREG]>>32),(int)reg[HIREG]);
2086     rlist();
2087     #ifdef __i386__
2088     printf("TRACE: %x\n",(&i)[-1]);
2089     #endif
2090     #ifdef __arm__
2091     int j;
2092     printf("TRACE: %x \n",(&j)[10]);
2093     printf("TRACE: %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x\n",(&j)[1],(&j)[2],(&j)[3],(&j)[4],(&j)[5],(&j)[6],(&j)[7],(&j)[8],(&j)[9],(&j)[10],(&j)[11],(&j)[12],(&j)[13],(&j)[14],(&j)[15],(&j)[16],(&j)[17],(&j)[18],(&j)[19],(&j)[20]);
2094     #endif
2095     //fflush(stdout);
2096   }
2097   //printf("TRACE: %x\n",(&i)[-1]);
2098 }
2099
2100 void tlb_debug(u_int cause, u_int addr, u_int iaddr)
2101 {
2102   printf("TLB Exception: instruction=%x addr=%x cause=%x\n",iaddr, addr, cause);
2103 }
2104
2105 void alu_assemble(int i,struct regstat *i_regs)
2106 {
2107   if(opcode2[i]>=0x20&&opcode2[i]<=0x23) { // ADD/ADDU/SUB/SUBU
2108     if(rt1[i]) {
2109       signed char s1,s2,t;
2110       t=get_reg(i_regs->regmap,rt1[i]);
2111       if(t>=0) {
2112         s1=get_reg(i_regs->regmap,rs1[i]);
2113         s2=get_reg(i_regs->regmap,rs2[i]);
2114         if(rs1[i]&&rs2[i]) {
2115           assert(s1>=0);
2116           assert(s2>=0);
2117           if(opcode2[i]&2) emit_sub(s1,s2,t);
2118           else emit_add(s1,s2,t);
2119         }
2120         else if(rs1[i]) {
2121           if(s1>=0) emit_mov(s1,t);
2122           else emit_loadreg(rs1[i],t);
2123         }
2124         else if(rs2[i]) {
2125           if(s2>=0) {
2126             if(opcode2[i]&2) emit_neg(s2,t);
2127             else emit_mov(s2,t);
2128           }
2129           else {
2130             emit_loadreg(rs2[i],t);
2131             if(opcode2[i]&2) emit_neg(t,t);
2132           }
2133         }
2134         else emit_zeroreg(t);
2135       }
2136     }
2137   }
2138   if(opcode2[i]>=0x2c&&opcode2[i]<=0x2f) { // DADD/DADDU/DSUB/DSUBU
2139     if(rt1[i]) {
2140       signed char s1l,s2l,s1h,s2h,tl,th;
2141       tl=get_reg(i_regs->regmap,rt1[i]);
2142       th=get_reg(i_regs->regmap,rt1[i]|64);
2143       if(tl>=0) {
2144         s1l=get_reg(i_regs->regmap,rs1[i]);
2145         s2l=get_reg(i_regs->regmap,rs2[i]);
2146         s1h=get_reg(i_regs->regmap,rs1[i]|64);
2147         s2h=get_reg(i_regs->regmap,rs2[i]|64);
2148         if(rs1[i]&&rs2[i]) {
2149           assert(s1l>=0);
2150           assert(s2l>=0);
2151           if(opcode2[i]&2) emit_subs(s1l,s2l,tl);
2152           else emit_adds(s1l,s2l,tl);
2153           if(th>=0) {
2154             #ifdef INVERTED_CARRY
2155             if(opcode2[i]&2) {if(s1h!=th) emit_mov(s1h,th);emit_sbb(th,s2h);}
2156             #else
2157             if(opcode2[i]&2) emit_sbc(s1h,s2h,th);
2158             #endif
2159             else emit_add(s1h,s2h,th);
2160           }
2161         }
2162         else if(rs1[i]) {
2163           if(s1l>=0) emit_mov(s1l,tl);
2164           else emit_loadreg(rs1[i],tl);
2165           if(th>=0) {
2166             if(s1h>=0) emit_mov(s1h,th);
2167             else emit_loadreg(rs1[i]|64,th);
2168           }
2169         }
2170         else if(rs2[i]) {
2171           if(s2l>=0) {
2172             if(opcode2[i]&2) emit_negs(s2l,tl);
2173             else emit_mov(s2l,tl);
2174           }
2175           else {
2176             emit_loadreg(rs2[i],tl);
2177             if(opcode2[i]&2) emit_negs(tl,tl);
2178           }
2179           if(th>=0) {
2180             #ifdef INVERTED_CARRY
2181             if(s2h>=0) emit_mov(s2h,th);
2182             else emit_loadreg(rs2[i]|64,th);
2183             if(opcode2[i]&2) {
2184               emit_adcimm(-1,th); // x86 has inverted carry flag
2185               emit_not(th,th);
2186             }
2187             #else
2188             if(opcode2[i]&2) {
2189               if(s2h>=0) emit_rscimm(s2h,0,th);
2190               else {
2191                 emit_loadreg(rs2[i]|64,th);
2192                 emit_rscimm(th,0,th);
2193               }
2194             }else{
2195               if(s2h>=0) emit_mov(s2h,th);
2196               else emit_loadreg(rs2[i]|64,th);
2197             }
2198             #endif
2199           }
2200         }
2201         else {
2202           emit_zeroreg(tl);
2203           if(th>=0) emit_zeroreg(th);
2204         }
2205       }
2206     }
2207   }
2208   if(opcode2[i]==0x2a||opcode2[i]==0x2b) { // SLT/SLTU
2209     if(rt1[i]) {
2210       signed char s1l,s1h,s2l,s2h,t;
2211       if(!((i_regs->was32>>rs1[i])&(i_regs->was32>>rs2[i])&1))
2212       {
2213         t=get_reg(i_regs->regmap,rt1[i]);
2214         //assert(t>=0);
2215         if(t>=0) {
2216           s1l=get_reg(i_regs->regmap,rs1[i]);
2217           s1h=get_reg(i_regs->regmap,rs1[i]|64);
2218           s2l=get_reg(i_regs->regmap,rs2[i]);
2219           s2h=get_reg(i_regs->regmap,rs2[i]|64);
2220           if(rs2[i]==0) // rx<r0
2221           {
2222             assert(s1h>=0);
2223             if(opcode2[i]==0x2a) // SLT
2224               emit_shrimm(s1h,31,t);
2225             else // SLTU (unsigned can not be less than zero)
2226               emit_zeroreg(t);
2227           }
2228           else if(rs1[i]==0) // r0<rx
2229           {
2230             assert(s2h>=0);
2231             if(opcode2[i]==0x2a) // SLT
2232               emit_set_gz64_32(s2h,s2l,t);
2233             else // SLTU (set if not zero)
2234               emit_set_nz64_32(s2h,s2l,t);
2235           }
2236           else {
2237             assert(s1l>=0);assert(s1h>=0);
2238             assert(s2l>=0);assert(s2h>=0);
2239             if(opcode2[i]==0x2a) // SLT
2240               emit_set_if_less64_32(s1h,s1l,s2h,s2l,t);
2241             else // SLTU
2242               emit_set_if_carry64_32(s1h,s1l,s2h,s2l,t);
2243           }
2244         }
2245       } else {
2246         t=get_reg(i_regs->regmap,rt1[i]);
2247         //assert(t>=0);
2248         if(t>=0) {
2249           s1l=get_reg(i_regs->regmap,rs1[i]);
2250           s2l=get_reg(i_regs->regmap,rs2[i]);
2251           if(rs2[i]==0) // rx<r0
2252           {
2253             assert(s1l>=0);
2254             if(opcode2[i]==0x2a) // SLT
2255               emit_shrimm(s1l,31,t);
2256             else // SLTU (unsigned can not be less than zero)
2257               emit_zeroreg(t);
2258           }
2259           else if(rs1[i]==0) // r0<rx
2260           {
2261             assert(s2l>=0);
2262             if(opcode2[i]==0x2a) // SLT
2263               emit_set_gz32(s2l,t);
2264             else // SLTU (set if not zero)
2265               emit_set_nz32(s2l,t);
2266           }
2267           else{
2268             assert(s1l>=0);assert(s2l>=0);
2269             if(opcode2[i]==0x2a) // SLT
2270               emit_set_if_less32(s1l,s2l,t);
2271             else // SLTU
2272               emit_set_if_carry32(s1l,s2l,t);
2273           }
2274         }
2275       }
2276     }
2277   }
2278   if(opcode2[i]>=0x24&&opcode2[i]<=0x27) { // AND/OR/XOR/NOR
2279     if(rt1[i]) {
2280       signed char s1l,s1h,s2l,s2h,th,tl;
2281       tl=get_reg(i_regs->regmap,rt1[i]);
2282       th=get_reg(i_regs->regmap,rt1[i]|64);
2283       if(!((i_regs->was32>>rs1[i])&(i_regs->was32>>rs2[i])&1)&&th>=0)
2284       {
2285         assert(tl>=0);
2286         if(tl>=0) {
2287           s1l=get_reg(i_regs->regmap,rs1[i]);
2288           s1h=get_reg(i_regs->regmap,rs1[i]|64);
2289           s2l=get_reg(i_regs->regmap,rs2[i]);
2290           s2h=get_reg(i_regs->regmap,rs2[i]|64);
2291           if(rs1[i]&&rs2[i]) {
2292             assert(s1l>=0);assert(s1h>=0);
2293             assert(s2l>=0);assert(s2h>=0);
2294             if(opcode2[i]==0x24) { // AND
2295               emit_and(s1l,s2l,tl);
2296               emit_and(s1h,s2h,th);
2297             } else
2298             if(opcode2[i]==0x25) { // OR
2299               emit_or(s1l,s2l,tl);
2300               emit_or(s1h,s2h,th);
2301             } else
2302             if(opcode2[i]==0x26) { // XOR
2303               emit_xor(s1l,s2l,tl);
2304               emit_xor(s1h,s2h,th);
2305             } else
2306             if(opcode2[i]==0x27) { // NOR
2307               emit_or(s1l,s2l,tl);
2308               emit_or(s1h,s2h,th);
2309               emit_not(tl,tl);
2310               emit_not(th,th);
2311             }
2312           }
2313           else
2314           {
2315             if(opcode2[i]==0x24) { // AND
2316               emit_zeroreg(tl);
2317               emit_zeroreg(th);
2318             } else
2319             if(opcode2[i]==0x25||opcode2[i]==0x26) { // OR/XOR
2320               if(rs1[i]){
2321                 if(s1l>=0) emit_mov(s1l,tl);
2322                 else emit_loadreg(rs1[i],tl);
2323                 if(s1h>=0) emit_mov(s1h,th);
2324                 else emit_loadreg(rs1[i]|64,th);
2325               }
2326               else
2327               if(rs2[i]){
2328                 if(s2l>=0) emit_mov(s2l,tl);
2329                 else emit_loadreg(rs2[i],tl);
2330                 if(s2h>=0) emit_mov(s2h,th);
2331                 else emit_loadreg(rs2[i]|64,th);
2332               }
2333               else{
2334                 emit_zeroreg(tl);
2335                 emit_zeroreg(th);
2336               }
2337             } else
2338             if(opcode2[i]==0x27) { // NOR
2339               if(rs1[i]){
2340                 if(s1l>=0) emit_not(s1l,tl);
2341                 else{
2342                   emit_loadreg(rs1[i],tl);
2343                   emit_not(tl,tl);
2344                 }
2345                 if(s1h>=0) emit_not(s1h,th);
2346                 else{
2347                   emit_loadreg(rs1[i]|64,th);
2348                   emit_not(th,th);
2349                 }
2350               }
2351               else
2352               if(rs2[i]){
2353                 if(s2l>=0) emit_not(s2l,tl);
2354                 else{
2355                   emit_loadreg(rs2[i],tl);
2356                   emit_not(tl,tl);
2357                 }
2358                 if(s2h>=0) emit_not(s2h,th);
2359                 else{
2360                   emit_loadreg(rs2[i]|64,th);
2361                   emit_not(th,th);
2362                 }
2363               }
2364               else {
2365                 emit_movimm(-1,tl);
2366                 emit_movimm(-1,th);
2367               }
2368             }
2369           }
2370         }
2371       }
2372       else
2373       {
2374         // 32 bit
2375         if(tl>=0) {
2376           s1l=get_reg(i_regs->regmap,rs1[i]);
2377           s2l=get_reg(i_regs->regmap,rs2[i]);
2378           if(rs1[i]&&rs2[i]) {
2379             assert(s1l>=0);
2380             assert(s2l>=0);
2381             if(opcode2[i]==0x24) { // AND
2382               emit_and(s1l,s2l,tl);
2383             } else
2384             if(opcode2[i]==0x25) { // OR
2385               emit_or(s1l,s2l,tl);
2386             } else
2387             if(opcode2[i]==0x26) { // XOR
2388               emit_xor(s1l,s2l,tl);
2389             } else
2390             if(opcode2[i]==0x27) { // NOR
2391               emit_or(s1l,s2l,tl);
2392               emit_not(tl,tl);
2393             }
2394           }
2395           else
2396           {
2397             if(opcode2[i]==0x24) { // AND
2398               emit_zeroreg(tl);
2399             } else
2400             if(opcode2[i]==0x25||opcode2[i]==0x26) { // OR/XOR
2401               if(rs1[i]){
2402                 if(s1l>=0) emit_mov(s1l,tl);
2403                 else emit_loadreg(rs1[i],tl); // CHECK: regmap_entry?
2404               }
2405               else
2406               if(rs2[i]){
2407                 if(s2l>=0) emit_mov(s2l,tl);
2408                 else emit_loadreg(rs2[i],tl); // CHECK: regmap_entry?
2409               }
2410               else emit_zeroreg(tl);
2411             } else
2412             if(opcode2[i]==0x27) { // NOR
2413               if(rs1[i]){
2414                 if(s1l>=0) emit_not(s1l,tl);
2415                 else {
2416                   emit_loadreg(rs1[i],tl);
2417                   emit_not(tl,tl);
2418                 }
2419               }
2420               else
2421               if(rs2[i]){
2422                 if(s2l>=0) emit_not(s2l,tl);
2423                 else {
2424                   emit_loadreg(rs2[i],tl);
2425                   emit_not(tl,tl);
2426                 }
2427               }
2428               else emit_movimm(-1,tl);
2429             }
2430           }
2431         }
2432       }
2433     }
2434   }
2435 }
2436
2437 void imm16_assemble(int i,struct regstat *i_regs)
2438 {
2439   if (opcode[i]==0x0f) { // LUI
2440     if(rt1[i]) {
2441       signed char t;
2442       t=get_reg(i_regs->regmap,rt1[i]);
2443       //assert(t>=0);
2444       if(t>=0) {
2445         if(!((i_regs->isconst>>t)&1))
2446           emit_movimm(imm[i]<<16,t);
2447       }
2448     }
2449   }
2450   if(opcode[i]==0x08||opcode[i]==0x09) { // ADDI/ADDIU
2451     if(rt1[i]) {
2452       signed char s,t;
2453       t=get_reg(i_regs->regmap,rt1[i]);
2454       s=get_reg(i_regs->regmap,rs1[i]);
2455       if(rs1[i]) {
2456         //assert(t>=0);
2457         //assert(s>=0);
2458         if(t>=0) {
2459           if(!((i_regs->isconst>>t)&1)) {
2460             if(s<0) {
2461               if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2462               emit_addimm(t,imm[i],t);
2463             }else{
2464               if(!((i_regs->wasconst>>s)&1))
2465                 emit_addimm(s,imm[i],t);
2466               else
2467                 emit_movimm(constmap[i][s]+imm[i],t);
2468             }
2469           }
2470         }
2471       } else {
2472         if(t>=0) {
2473           if(!((i_regs->isconst>>t)&1))
2474             emit_movimm(imm[i],t);
2475         }
2476       }
2477     }
2478   }
2479   if(opcode[i]==0x18||opcode[i]==0x19) { // DADDI/DADDIU
2480     if(rt1[i]) {
2481       signed char sh,sl,th,tl;
2482       th=get_reg(i_regs->regmap,rt1[i]|64);
2483       tl=get_reg(i_regs->regmap,rt1[i]);
2484       sh=get_reg(i_regs->regmap,rs1[i]|64);
2485       sl=get_reg(i_regs->regmap,rs1[i]);
2486       if(tl>=0) {
2487         if(rs1[i]) {
2488           assert(sh>=0);
2489           assert(sl>=0);
2490           if(th>=0) {
2491             emit_addimm64_32(sh,sl,imm[i],th,tl);
2492           }
2493           else {
2494             emit_addimm(sl,imm[i],tl);
2495           }
2496         } else {
2497           emit_movimm(imm[i],tl);
2498           if(th>=0) emit_movimm(((signed int)imm[i])>>31,th);
2499         }
2500       }
2501     }
2502   }
2503   else if(opcode[i]==0x0a||opcode[i]==0x0b) { // SLTI/SLTIU
2504     if(rt1[i]) {
2505       //assert(rs1[i]!=0); // r0 might be valid, but it's probably a bug
2506       signed char sh,sl,t;
2507       t=get_reg(i_regs->regmap,rt1[i]);
2508       sh=get_reg(i_regs->regmap,rs1[i]|64);
2509       sl=get_reg(i_regs->regmap,rs1[i]);
2510       //assert(t>=0);
2511       if(t>=0) {
2512         if(rs1[i]>0) {
2513           if(sh<0) assert((i_regs->was32>>rs1[i])&1);
2514           if(sh<0||((i_regs->was32>>rs1[i])&1)) {
2515             if(opcode[i]==0x0a) { // SLTI
2516               if(sl<0) {
2517                 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2518                 emit_slti32(t,imm[i],t);
2519               }else{
2520                 emit_slti32(sl,imm[i],t);
2521               }
2522             }
2523             else { // SLTIU
2524               if(sl<0) {
2525                 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2526                 emit_sltiu32(t,imm[i],t);
2527               }else{
2528                 emit_sltiu32(sl,imm[i],t);
2529               }
2530             }
2531           }else{ // 64-bit
2532             assert(sl>=0);
2533             if(opcode[i]==0x0a) // SLTI
2534               emit_slti64_32(sh,sl,imm[i],t);
2535             else // SLTIU
2536               emit_sltiu64_32(sh,sl,imm[i],t);
2537           }
2538         }else{
2539           // SLTI(U) with r0 is just stupid,
2540           // nonetheless examples can be found
2541           if(opcode[i]==0x0a) // SLTI
2542             if(0<imm[i]) emit_movimm(1,t);
2543             else emit_zeroreg(t);
2544           else // SLTIU
2545           {
2546             if(imm[i]) emit_movimm(1,t);
2547             else emit_zeroreg(t);
2548           }
2549         }
2550       }
2551     }
2552   }
2553   else if(opcode[i]>=0x0c&&opcode[i]<=0x0e) { // ANDI/ORI/XORI
2554     if(rt1[i]) {
2555       signed char sh,sl,th,tl;
2556       th=get_reg(i_regs->regmap,rt1[i]|64);
2557       tl=get_reg(i_regs->regmap,rt1[i]);
2558       sh=get_reg(i_regs->regmap,rs1[i]|64);
2559       sl=get_reg(i_regs->regmap,rs1[i]);
2560       if(tl>=0 && !((i_regs->isconst>>tl)&1)) {
2561         if(opcode[i]==0x0c) //ANDI
2562         {
2563           if(rs1[i]) {
2564             if(sl<0) {
2565               if(i_regs->regmap_entry[tl]!=rs1[i]) emit_loadreg(rs1[i],tl);
2566               emit_andimm(tl,imm[i],tl);
2567             }else{
2568               if(!((i_regs->wasconst>>sl)&1))
2569                 emit_andimm(sl,imm[i],tl);
2570               else
2571                 emit_movimm(constmap[i][sl]&imm[i],tl);
2572             }
2573           }
2574           else
2575             emit_zeroreg(tl);
2576           if(th>=0) emit_zeroreg(th);
2577         }
2578         else
2579         {
2580           if(rs1[i]) {
2581             if(sl<0) {
2582               if(i_regs->regmap_entry[tl]!=rs1[i]) emit_loadreg(rs1[i],tl);
2583             }
2584             if(th>=0) {
2585               if(sh<0) {
2586                 emit_loadreg(rs1[i]|64,th);
2587               }else{
2588                 emit_mov(sh,th);
2589               }
2590             }
2591             if(opcode[i]==0x0d) //ORI
2592             if(sl<0) {
2593               emit_orimm(tl,imm[i],tl);
2594             }else{
2595               if(!((i_regs->wasconst>>sl)&1))
2596                 emit_orimm(sl,imm[i],tl);
2597               else
2598                 emit_movimm(constmap[i][sl]|imm[i],tl);
2599             }
2600             if(opcode[i]==0x0e) //XORI
2601             if(sl<0) {
2602               emit_xorimm(tl,imm[i],tl);
2603             }else{
2604               if(!((i_regs->wasconst>>sl)&1))
2605                 emit_xorimm(sl,imm[i],tl);
2606               else
2607                 emit_movimm(constmap[i][sl]^imm[i],tl);
2608             }
2609           }
2610           else {
2611             emit_movimm(imm[i],tl);
2612             if(th>=0) emit_zeroreg(th);
2613           }
2614         }
2615       }
2616     }
2617   }
2618 }
2619
2620 void shiftimm_assemble(int i,struct regstat *i_regs)
2621 {
2622   if(opcode2[i]<=0x3) // SLL/SRL/SRA
2623   {
2624     if(rt1[i]) {
2625       signed char s,t;
2626       t=get_reg(i_regs->regmap,rt1[i]);
2627       s=get_reg(i_regs->regmap,rs1[i]);
2628       //assert(t>=0);
2629       if(t>=0){
2630         if(rs1[i]==0)
2631         {
2632           emit_zeroreg(t);
2633         }
2634         else
2635         {
2636           if(s<0&&i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2637           if(imm[i]) {
2638             if(opcode2[i]==0) // SLL
2639             {
2640               emit_shlimm(s<0?t:s,imm[i],t);
2641             }
2642             if(opcode2[i]==2) // SRL
2643             {
2644               emit_shrimm(s<0?t:s,imm[i],t);
2645             }
2646             if(opcode2[i]==3) // SRA
2647             {
2648               emit_sarimm(s<0?t:s,imm[i],t);
2649             }
2650           }else{
2651             // Shift by zero
2652             if(s>=0 && s!=t) emit_mov(s,t);
2653           }
2654         }
2655       }
2656       //emit_storereg(rt1[i],t); //DEBUG
2657     }
2658   }
2659   if(opcode2[i]>=0x38&&opcode2[i]<=0x3b) // DSLL/DSRL/DSRA
2660   {
2661     if(rt1[i]) {
2662       signed char sh,sl,th,tl;
2663       th=get_reg(i_regs->regmap,rt1[i]|64);
2664       tl=get_reg(i_regs->regmap,rt1[i]);
2665       sh=get_reg(i_regs->regmap,rs1[i]|64);
2666       sl=get_reg(i_regs->regmap,rs1[i]);
2667       if(tl>=0) {
2668         if(rs1[i]==0)
2669         {
2670           emit_zeroreg(tl);
2671           if(th>=0) emit_zeroreg(th);
2672         }
2673         else
2674         {
2675           assert(sl>=0);
2676           assert(sh>=0);
2677           if(imm[i]) {
2678             if(opcode2[i]==0x38) // DSLL
2679             {
2680               if(th>=0) emit_shldimm(sh,sl,imm[i],th);
2681               emit_shlimm(sl,imm[i],tl);
2682             }
2683             if(opcode2[i]==0x3a) // DSRL
2684             {
2685               emit_shrdimm(sl,sh,imm[i],tl);
2686               if(th>=0) emit_shrimm(sh,imm[i],th);
2687             }
2688             if(opcode2[i]==0x3b) // DSRA
2689             {
2690               emit_shrdimm(sl,sh,imm[i],tl);
2691               if(th>=0) emit_sarimm(sh,imm[i],th);
2692             }
2693           }else{
2694             // Shift by zero
2695             if(sl!=tl) emit_mov(sl,tl);
2696             if(th>=0&&sh!=th) emit_mov(sh,th);
2697           }
2698         }
2699       }
2700     }
2701   }
2702   if(opcode2[i]==0x3c) // DSLL32
2703   {
2704     if(rt1[i]) {
2705       signed char sl,tl,th;
2706       tl=get_reg(i_regs->regmap,rt1[i]);
2707       th=get_reg(i_regs->regmap,rt1[i]|64);
2708       sl=get_reg(i_regs->regmap,rs1[i]);
2709       if(th>=0||tl>=0){
2710         assert(tl>=0);
2711         assert(th>=0);
2712         assert(sl>=0);
2713         emit_mov(sl,th);
2714         emit_zeroreg(tl);
2715         if(imm[i]>32)
2716         {
2717           emit_shlimm(th,imm[i]&31,th);
2718         }
2719       }
2720     }
2721   }
2722   if(opcode2[i]==0x3e) // DSRL32
2723   {
2724     if(rt1[i]) {
2725       signed char sh,tl,th;
2726       tl=get_reg(i_regs->regmap,rt1[i]);
2727       th=get_reg(i_regs->regmap,rt1[i]|64);
2728       sh=get_reg(i_regs->regmap,rs1[i]|64);
2729       if(tl>=0){
2730         assert(sh>=0);
2731         emit_mov(sh,tl);
2732         if(th>=0) emit_zeroreg(th);
2733         if(imm[i]>32)
2734         {
2735           emit_shrimm(tl,imm[i]&31,tl);
2736         }
2737       }
2738     }
2739   }
2740   if(opcode2[i]==0x3f) // DSRA32
2741   {
2742     if(rt1[i]) {
2743       signed char sh,tl;
2744       tl=get_reg(i_regs->regmap,rt1[i]);
2745       sh=get_reg(i_regs->regmap,rs1[i]|64);
2746       if(tl>=0){
2747         assert(sh>=0);
2748         emit_mov(sh,tl);
2749         if(imm[i]>32)
2750         {
2751           emit_sarimm(tl,imm[i]&31,tl);
2752         }
2753       }
2754     }
2755   }
2756 }
2757
2758 #ifndef shift_assemble
2759 void shift_assemble(int i,struct regstat *i_regs)
2760 {
2761   printf("Need shift_assemble for this architecture.\n");
2762   exit(1);
2763 }
2764 #endif
2765
2766 void load_assemble(int i,struct regstat *i_regs)
2767 {
2768   int s,th,tl,addr,map=-1;
2769   int offset;
2770   int jaddr=0;
2771   int memtarget=0,c=0;
2772   u_int hr,reglist=0;
2773   th=get_reg(i_regs->regmap,rt1[i]|64);
2774   tl=get_reg(i_regs->regmap,rt1[i]);
2775   s=get_reg(i_regs->regmap,rs1[i]);
2776   offset=imm[i];
2777   for(hr=0;hr<HOST_REGS;hr++) {
2778     if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
2779   }
2780   if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
2781   if(s>=0) {
2782     c=(i_regs->wasconst>>s)&1;
2783     memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
2784     if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
2785   }
2786   //printf("load_assemble: c=%d\n",c);
2787   //if(c) printf("load_assemble: const=%x\n",(int)constmap[i][s]+offset);
2788   // FIXME: Even if the load is a NOP, we should check for pagefaults...
2789 #ifdef PCSX
2790   if(tl<0&&(!c||(((u_int)constmap[i][s]+offset)>>16)==0x1f80)
2791     ||rt1[i]==0) {
2792       // could be FIFO, must perform the read
2793       // ||dummy read
2794       assem_debug("(forced read)\n");
2795       tl=get_reg(i_regs->regmap,-1);
2796       assert(tl>=0);
2797   }
2798 #endif
2799   if(offset||s<0||c) addr=tl;
2800   else addr=s;
2801   //if(tl<0) tl=get_reg(i_regs->regmap,-1);
2802  if(tl>=0) {
2803   //printf("load_assemble: c=%d\n",c);
2804   //if(c) printf("load_assemble: const=%x\n",(int)constmap[i][s]+offset);
2805   assert(tl>=0); // Even if the load is a NOP, we must check for pagefaults and I/O
2806   reglist&=~(1<<tl);
2807   if(th>=0) reglist&=~(1<<th);
2808   if(!using_tlb) {
2809     if(!c) {
2810       #ifdef RAM_OFFSET
2811       map=get_reg(i_regs->regmap,ROREG);
2812       if(map<0) emit_loadreg(ROREG,map=HOST_TEMPREG);
2813       #endif
2814 //#define R29_HACK 1
2815       #ifdef R29_HACK
2816       // Strmnnrmn's speed hack
2817       if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
2818       #endif
2819       {
2820         emit_cmpimm(addr,RAM_SIZE);
2821         jaddr=(int)out;
2822         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
2823         // Hint to branch predictor that the branch is unlikely to be taken
2824         if(rs1[i]>=28)
2825           emit_jno_unlikely(0);
2826         else
2827         #endif
2828         emit_jno(0);
2829       }
2830     }
2831   }else{ // using tlb
2832     int x=0;
2833     if (opcode[i]==0x20||opcode[i]==0x24) x=3; // LB/LBU
2834     if (opcode[i]==0x21||opcode[i]==0x25) x=2; // LH/LHU
2835     map=get_reg(i_regs->regmap,TLREG);
2836     assert(map>=0);
2837     map=do_tlb_r(addr,tl,map,x,-1,-1,c,constmap[i][s]+offset);
2838     do_tlb_r_branch(map,c,constmap[i][s]+offset,&jaddr);
2839   }
2840   int dummy=(rt1[i]==0)||(tl!=get_reg(i_regs->regmap,rt1[i])); // ignore loads to r0 and unneeded reg
2841   if (opcode[i]==0x20) { // LB
2842     if(!c||memtarget) {
2843       if(!dummy) {
2844         #ifdef HOST_IMM_ADDR32
2845         if(c)
2846           emit_movsbl_tlb((constmap[i][s]+offset)^3,map,tl);
2847         else
2848         #endif
2849         {
2850           //emit_xorimm(addr,3,tl);
2851           //gen_tlb_addr_r(tl,map);
2852           //emit_movsbl_indexed((int)rdram-0x80000000,tl,tl);
2853           int x=0,a=tl;
2854 #ifdef BIG_ENDIAN_MIPS
2855           if(!c) emit_xorimm(addr,3,tl);
2856           else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2857 #else
2858           if(!c) a=addr;
2859 #endif
2860           emit_movsbl_indexed_tlb(x,a,map,tl);
2861         }
2862       }
2863       if(jaddr)
2864         add_stub(LOADB_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2865     }
2866     else
2867       inline_readstub(LOADB_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2868   }
2869   if (opcode[i]==0x21) { // LH
2870     if(!c||memtarget) {
2871       if(!dummy) {
2872         #ifdef HOST_IMM_ADDR32
2873         if(c)
2874           emit_movswl_tlb((constmap[i][s]+offset)^2,map,tl);
2875         else
2876         #endif
2877         {
2878           int x=0,a=tl;
2879 #ifdef BIG_ENDIAN_MIPS
2880           if(!c) emit_xorimm(addr,2,tl);
2881           else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
2882 #else
2883           if(!c) a=addr;
2884 #endif
2885           //#ifdef
2886           //emit_movswl_indexed_tlb(x,tl,map,tl);
2887           //else
2888           if(map>=0) {
2889             gen_tlb_addr_r(a,map);
2890             emit_movswl_indexed(x,a,tl);
2891           }else{
2892             #ifdef RAM_OFFSET
2893             emit_movswl_indexed(x,a,tl);
2894             #else
2895             emit_movswl_indexed((int)rdram-0x80000000+x,a,tl);
2896             #endif
2897           }
2898         }
2899       }
2900       if(jaddr)
2901         add_stub(LOADH_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2902     }
2903     else
2904       inline_readstub(LOADH_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2905   }
2906   if (opcode[i]==0x23) { // LW
2907     if(!c||memtarget) {
2908       if(!dummy) {
2909         //emit_readword_indexed((int)rdram-0x80000000,addr,tl);
2910         #ifdef HOST_IMM_ADDR32
2911         if(c)
2912           emit_readword_tlb(constmap[i][s]+offset,map,tl);
2913         else
2914         #endif
2915         emit_readword_indexed_tlb(0,addr,map,tl);
2916       }
2917       if(jaddr)
2918         add_stub(LOADW_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2919     }
2920     else
2921       inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2922   }
2923   if (opcode[i]==0x24) { // LBU
2924     if(!c||memtarget) {
2925       if(!dummy) {
2926         #ifdef HOST_IMM_ADDR32
2927         if(c)
2928           emit_movzbl_tlb((constmap[i][s]+offset)^3,map,tl);
2929         else
2930         #endif
2931         {
2932           //emit_xorimm(addr,3,tl);
2933           //gen_tlb_addr_r(tl,map);
2934           //emit_movzbl_indexed((int)rdram-0x80000000,tl,tl);
2935           int x=0,a=tl;
2936 #ifdef BIG_ENDIAN_MIPS
2937           if(!c) emit_xorimm(addr,3,tl);
2938           else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2939 #else
2940           if(!c) a=addr;
2941 #endif
2942           emit_movzbl_indexed_tlb(x,a,map,tl);
2943         }
2944       }
2945       if(jaddr)
2946         add_stub(LOADBU_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2947     }
2948     else
2949       inline_readstub(LOADBU_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2950   }
2951   if (opcode[i]==0x25) { // LHU
2952     if(!c||memtarget) {
2953       if(!dummy) {
2954         #ifdef HOST_IMM_ADDR32
2955         if(c)
2956           emit_movzwl_tlb((constmap[i][s]+offset)^2,map,tl);
2957         else
2958         #endif
2959         {
2960           int x=0,a=tl;
2961 #ifdef BIG_ENDIAN_MIPS
2962           if(!c) emit_xorimm(addr,2,tl);
2963           else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
2964 #else
2965           if(!c) a=addr;
2966 #endif
2967           //#ifdef
2968           //emit_movzwl_indexed_tlb(x,tl,map,tl);
2969           //#else
2970           if(map>=0) {
2971             gen_tlb_addr_r(a,map);
2972             emit_movzwl_indexed(x,a,tl);
2973           }else{
2974             #ifdef RAM_OFFSET
2975             emit_movzwl_indexed(x,a,tl);
2976             #else
2977             emit_movzwl_indexed((int)rdram-0x80000000+x,a,tl);
2978             #endif
2979           }
2980         }
2981       }
2982       if(jaddr)
2983         add_stub(LOADHU_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2984     }
2985     else
2986       inline_readstub(LOADHU_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2987   }
2988   if (opcode[i]==0x27) { // LWU
2989     assert(th>=0);
2990     if(!c||memtarget) {
2991       if(!dummy) {
2992         //emit_readword_indexed((int)rdram-0x80000000,addr,tl);
2993         #ifdef HOST_IMM_ADDR32
2994         if(c)
2995           emit_readword_tlb(constmap[i][s]+offset,map,tl);
2996         else
2997         #endif
2998         emit_readword_indexed_tlb(0,addr,map,tl);
2999       }
3000       if(jaddr)
3001         add_stub(LOADW_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3002     }
3003     else {
3004       inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
3005     }
3006     emit_zeroreg(th);
3007   }
3008   if (opcode[i]==0x37) { // LD
3009     if(!c||memtarget) {
3010       if(!dummy) {
3011         //gen_tlb_addr_r(tl,map);
3012         //if(th>=0) emit_readword_indexed((int)rdram-0x80000000,addr,th);
3013         //emit_readword_indexed((int)rdram-0x7FFFFFFC,addr,tl);
3014         #ifdef HOST_IMM_ADDR32
3015         if(c)
3016           emit_readdword_tlb(constmap[i][s]+offset,map,th,tl);
3017         else
3018         #endif
3019         emit_readdword_indexed_tlb(0,addr,map,th,tl);
3020       }
3021       if(jaddr)
3022         add_stub(LOADD_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3023     }
3024     else
3025       inline_readstub(LOADD_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
3026   }
3027  }
3028   //emit_storereg(rt1[i],tl); // DEBUG
3029   //if(opcode[i]==0x23)
3030   //if(opcode[i]==0x24)
3031   //if(opcode[i]==0x23||opcode[i]==0x24)
3032   /*if(opcode[i]==0x21||opcode[i]==0x23||opcode[i]==0x24)
3033   {
3034     //emit_pusha();
3035     save_regs(0x100f);
3036         emit_readword((int)&last_count,ECX);
3037         #ifdef __i386__
3038         if(get_reg(i_regs->regmap,CCREG)<0)
3039           emit_loadreg(CCREG,HOST_CCREG);
3040         emit_add(HOST_CCREG,ECX,HOST_CCREG);
3041         emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3042         emit_writeword(HOST_CCREG,(int)&Count);
3043         #endif
3044         #ifdef __arm__
3045         if(get_reg(i_regs->regmap,CCREG)<0)
3046           emit_loadreg(CCREG,0);
3047         else
3048           emit_mov(HOST_CCREG,0);
3049         emit_add(0,ECX,0);
3050         emit_addimm(0,2*ccadj[i],0);
3051         emit_writeword(0,(int)&Count);
3052         #endif
3053     emit_call((int)memdebug);
3054     //emit_popa();
3055     restore_regs(0x100f);
3056   }/**/
3057 }
3058
3059 #ifndef loadlr_assemble
3060 void loadlr_assemble(int i,struct regstat *i_regs)
3061 {
3062   printf("Need loadlr_assemble for this architecture.\n");
3063   exit(1);
3064 }
3065 #endif
3066
3067 void store_assemble(int i,struct regstat *i_regs)
3068 {
3069   int s,th,tl,map=-1;
3070   int addr,temp;
3071   int offset;
3072   int jaddr=0,jaddr2,type;
3073   int memtarget=0,c=0;
3074   int agr=AGEN1+(i&1);
3075   u_int hr,reglist=0;
3076   th=get_reg(i_regs->regmap,rs2[i]|64);
3077   tl=get_reg(i_regs->regmap,rs2[i]);
3078   s=get_reg(i_regs->regmap,rs1[i]);
3079   temp=get_reg(i_regs->regmap,agr);
3080   if(temp<0) temp=get_reg(i_regs->regmap,-1);
3081   offset=imm[i];
3082   if(s>=0) {
3083     c=(i_regs->wasconst>>s)&1;
3084     memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
3085     if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
3086   }
3087   assert(tl>=0);
3088   assert(temp>=0);
3089   for(hr=0;hr<HOST_REGS;hr++) {
3090     if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3091   }
3092   if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
3093   if(offset||s<0||c) addr=temp;
3094   else addr=s;
3095   if(!using_tlb) {
3096     if(!c) {
3097       #ifdef R29_HACK
3098       // Strmnnrmn's speed hack
3099       memtarget=1;
3100       if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
3101       #endif
3102       emit_cmpimm(addr,RAM_SIZE);
3103       #ifdef DESTRUCTIVE_SHIFT
3104       if(s==addr) emit_mov(s,temp);
3105       #endif
3106       #ifdef R29_HACK
3107       if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
3108       #endif
3109       {
3110         jaddr=(int)out;
3111         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
3112         // Hint to branch predictor that the branch is unlikely to be taken
3113         if(rs1[i]>=28)
3114           emit_jno_unlikely(0);
3115         else
3116         #endif
3117         emit_jno(0);
3118       }
3119     }
3120   }else{ // using tlb
3121     int x=0;
3122     if (opcode[i]==0x28) x=3; // SB
3123     if (opcode[i]==0x29) x=2; // SH
3124     map=get_reg(i_regs->regmap,TLREG);
3125     assert(map>=0);
3126     map=do_tlb_w(addr,temp,map,x,c,constmap[i][s]+offset);
3127     do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr);
3128   }
3129
3130   if (opcode[i]==0x28) { // SB
3131     if(!c||memtarget) {
3132       int x=0,a=temp;
3133 #ifdef BIG_ENDIAN_MIPS
3134       if(!c) emit_xorimm(addr,3,temp);
3135       else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
3136 #else
3137       if(!c) a=addr;
3138 #endif
3139       //gen_tlb_addr_w(temp,map);
3140       //emit_writebyte_indexed(tl,(int)rdram-0x80000000,temp);
3141       emit_writebyte_indexed_tlb(tl,x,a,map,a);
3142     }
3143     type=STOREB_STUB;
3144   }
3145   if (opcode[i]==0x29) { // SH
3146     if(!c||memtarget) {
3147       int x=0,a=temp;
3148 #ifdef BIG_ENDIAN_MIPS
3149       if(!c) emit_xorimm(addr,2,temp);
3150       else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
3151 #else
3152       if(!c) a=addr;
3153 #endif
3154       //#ifdef
3155       //emit_writehword_indexed_tlb(tl,x,temp,map,temp);
3156       //#else
3157       if(map>=0) {
3158         gen_tlb_addr_w(a,map);
3159         emit_writehword_indexed(tl,x,a);
3160       }else
3161         emit_writehword_indexed(tl,(int)rdram-0x80000000+x,a);
3162     }
3163     type=STOREH_STUB;
3164   }
3165   if (opcode[i]==0x2B) { // SW
3166     if(!c||memtarget)
3167       //emit_writeword_indexed(tl,(int)rdram-0x80000000,addr);
3168       emit_writeword_indexed_tlb(tl,0,addr,map,temp);
3169     type=STOREW_STUB;
3170   }
3171   if (opcode[i]==0x3F) { // SD
3172     if(!c||memtarget) {
3173       if(rs2[i]) {
3174         assert(th>=0);
3175         //emit_writeword_indexed(th,(int)rdram-0x80000000,addr);
3176         //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,addr);
3177         emit_writedword_indexed_tlb(th,tl,0,addr,map,temp);
3178       }else{
3179         // Store zero
3180         //emit_writeword_indexed(tl,(int)rdram-0x80000000,temp);
3181         //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,temp);
3182         emit_writedword_indexed_tlb(tl,tl,0,addr,map,temp);
3183       }
3184     }
3185     type=STORED_STUB;
3186   }
3187   if(!using_tlb) {
3188     if(!c||memtarget) {
3189       #ifdef DESTRUCTIVE_SHIFT
3190       // The x86 shift operation is 'destructive'; it overwrites the
3191       // source register, so we need to make a copy first and use that.
3192       addr=temp;
3193       #endif
3194       #if defined(HOST_IMM8)
3195       int ir=get_reg(i_regs->regmap,INVCP);
3196       assert(ir>=0);
3197       emit_cmpmem_indexedsr12_reg(ir,addr,1);
3198       #else
3199       emit_cmpmem_indexedsr12_imm((int)invalid_code,addr,1);
3200       #endif
3201       #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3202       emit_callne(invalidate_addr_reg[addr]);
3203       #else
3204       jaddr2=(int)out;
3205       emit_jne(0);
3206       add_stub(INVCODE_STUB,jaddr2,(int)out,reglist|(1<<HOST_CCREG),addr,0,0,0);
3207       #endif
3208     }
3209   }
3210   if(jaddr) {
3211     add_stub(type,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3212   } else if(c&&!memtarget) {
3213     inline_writestub(type,i,constmap[i][s]+offset,i_regs->regmap,rs2[i],ccadj[i],reglist);
3214   }
3215   //if(opcode[i]==0x2B || opcode[i]==0x3F)
3216   //if(opcode[i]==0x2B || opcode[i]==0x28)
3217   //if(opcode[i]==0x2B || opcode[i]==0x29)
3218   //if(opcode[i]==0x2B)
3219   /*if(opcode[i]==0x2B || opcode[i]==0x28 || opcode[i]==0x29 || opcode[i]==0x3F)
3220   {
3221     //emit_pusha();
3222     save_regs(0x100f);
3223         emit_readword((int)&last_count,ECX);
3224         #ifdef __i386__
3225         if(get_reg(i_regs->regmap,CCREG)<0)
3226           emit_loadreg(CCREG,HOST_CCREG);
3227         emit_add(HOST_CCREG,ECX,HOST_CCREG);
3228         emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3229         emit_writeword(HOST_CCREG,(int)&Count);
3230         #endif
3231         #ifdef __arm__
3232         if(get_reg(i_regs->regmap,CCREG)<0)
3233           emit_loadreg(CCREG,0);
3234         else
3235           emit_mov(HOST_CCREG,0);
3236         emit_add(0,ECX,0);
3237         emit_addimm(0,2*ccadj[i],0);
3238         emit_writeword(0,(int)&Count);
3239         #endif
3240     emit_call((int)memdebug);
3241     //emit_popa();
3242     restore_regs(0x100f);
3243   }/**/
3244 }
3245
3246 void storelr_assemble(int i,struct regstat *i_regs)
3247 {
3248   int s,th,tl;
3249   int temp;
3250   int temp2;
3251   int offset;
3252   int jaddr=0,jaddr2;
3253   int case1,case2,case3;
3254   int done0,done1,done2;
3255   int memtarget,c=0;
3256   int agr=AGEN1+(i&1);
3257   u_int hr,reglist=0;
3258   th=get_reg(i_regs->regmap,rs2[i]|64);
3259   tl=get_reg(i_regs->regmap,rs2[i]);
3260   s=get_reg(i_regs->regmap,rs1[i]);
3261   temp=get_reg(i_regs->regmap,agr);
3262   if(temp<0) temp=get_reg(i_regs->regmap,-1);
3263   offset=imm[i];
3264   if(s>=0) {
3265     c=(i_regs->isconst>>s)&1;
3266     memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
3267     if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
3268   }
3269   assert(tl>=0);
3270   for(hr=0;hr<HOST_REGS;hr++) {
3271     if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3272   }
3273   assert(temp>=0);
3274   if(!using_tlb) {
3275     if(!c) {
3276       emit_cmpimm(s<0||offset?temp:s,RAM_SIZE);
3277       if(!offset&&s!=temp) emit_mov(s,temp);
3278       jaddr=(int)out;
3279       emit_jno(0);
3280     }
3281     else
3282     {
3283       if(!memtarget||!rs1[i]) {
3284         jaddr=(int)out;
3285         emit_jmp(0);
3286       }
3287     }
3288     #ifdef RAM_OFFSET
3289     int map=get_reg(i_regs->regmap,ROREG);
3290     if(map<0) emit_loadreg(ROREG,map=HOST_TEMPREG);
3291     gen_tlb_addr_w(temp,map);
3292     #else
3293     if((u_int)rdram!=0x80000000) 
3294       emit_addimm_no_flags((u_int)rdram-(u_int)0x80000000,temp);
3295     #endif
3296   }else{ // using tlb
3297     int map=get_reg(i_regs->regmap,TLREG);
3298     assert(map>=0);
3299     map=do_tlb_w(c||s<0||offset?temp:s,temp,map,0,c,constmap[i][s]+offset);
3300     if(!c&&!offset&&s>=0) emit_mov(s,temp);
3301     do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr);
3302     if(!jaddr&&!memtarget) {
3303       jaddr=(int)out;
3304       emit_jmp(0);
3305     }
3306     gen_tlb_addr_w(temp,map);
3307   }
3308
3309   if (opcode[i]==0x2C||opcode[i]==0x2D) { // SDL/SDR
3310     temp2=get_reg(i_regs->regmap,FTEMP);
3311     if(!rs2[i]) temp2=th=tl;
3312   }
3313
3314 #ifndef BIG_ENDIAN_MIPS
3315     emit_xorimm(temp,3,temp);
3316 #endif
3317   emit_testimm(temp,2);
3318   case2=(int)out;
3319   emit_jne(0);
3320   emit_testimm(temp,1);
3321   case1=(int)out;
3322   emit_jne(0);
3323   // 0
3324   if (opcode[i]==0x2A) { // SWL
3325     emit_writeword_indexed(tl,0,temp);
3326   }
3327   if (opcode[i]==0x2E) { // SWR
3328     emit_writebyte_indexed(tl,3,temp);
3329   }
3330   if (opcode[i]==0x2C) { // SDL
3331     emit_writeword_indexed(th,0,temp);
3332     if(rs2[i]) emit_mov(tl,temp2);
3333   }
3334   if (opcode[i]==0x2D) { // SDR
3335     emit_writebyte_indexed(tl,3,temp);
3336     if(rs2[i]) emit_shldimm(th,tl,24,temp2);
3337   }
3338   done0=(int)out;
3339   emit_jmp(0);
3340   // 1
3341   set_jump_target(case1,(int)out);
3342   if (opcode[i]==0x2A) { // SWL
3343     // Write 3 msb into three least significant bytes
3344     if(rs2[i]) emit_rorimm(tl,8,tl);
3345     emit_writehword_indexed(tl,-1,temp);
3346     if(rs2[i]) emit_rorimm(tl,16,tl);
3347     emit_writebyte_indexed(tl,1,temp);
3348     if(rs2[i]) emit_rorimm(tl,8,tl);
3349   }
3350   if (opcode[i]==0x2E) { // SWR
3351     // Write two lsb into two most significant bytes
3352     emit_writehword_indexed(tl,1,temp);
3353   }
3354   if (opcode[i]==0x2C) { // SDL
3355     if(rs2[i]) emit_shrdimm(tl,th,8,temp2);
3356     // Write 3 msb into three least significant bytes
3357     if(rs2[i]) emit_rorimm(th,8,th);
3358     emit_writehword_indexed(th,-1,temp);
3359     if(rs2[i]) emit_rorimm(th,16,th);
3360     emit_writebyte_indexed(th,1,temp);
3361     if(rs2[i]) emit_rorimm(th,8,th);
3362   }
3363   if (opcode[i]==0x2D) { // SDR
3364     if(rs2[i]) emit_shldimm(th,tl,16,temp2);
3365     // Write two lsb into two most significant bytes
3366     emit_writehword_indexed(tl,1,temp);
3367   }
3368   done1=(int)out;
3369   emit_jmp(0);
3370   // 2
3371   set_jump_target(case2,(int)out);
3372   emit_testimm(temp,1);
3373   case3=(int)out;
3374   emit_jne(0);
3375   if (opcode[i]==0x2A) { // SWL
3376     // Write two msb into two least significant bytes
3377     if(rs2[i]) emit_rorimm(tl,16,tl);
3378     emit_writehword_indexed(tl,-2,temp);
3379     if(rs2[i]) emit_rorimm(tl,16,tl);
3380   }
3381   if (opcode[i]==0x2E) { // SWR
3382     // Write 3 lsb into three most significant bytes
3383     emit_writebyte_indexed(tl,-1,temp);
3384     if(rs2[i]) emit_rorimm(tl,8,tl);
3385     emit_writehword_indexed(tl,0,temp);
3386     if(rs2[i]) emit_rorimm(tl,24,tl);
3387   }
3388   if (opcode[i]==0x2C) { // SDL
3389     if(rs2[i]) emit_shrdimm(tl,th,16,temp2);
3390     // Write two msb into two least significant bytes
3391     if(rs2[i]) emit_rorimm(th,16,th);
3392     emit_writehword_indexed(th,-2,temp);
3393     if(rs2[i]) emit_rorimm(th,16,th);
3394   }
3395   if (opcode[i]==0x2D) { // SDR
3396     if(rs2[i]) emit_shldimm(th,tl,8,temp2);
3397     // Write 3 lsb into three most significant bytes
3398     emit_writebyte_indexed(tl,-1,temp);
3399     if(rs2[i]) emit_rorimm(tl,8,tl);
3400     emit_writehword_indexed(tl,0,temp);
3401     if(rs2[i]) emit_rorimm(tl,24,tl);
3402   }
3403   done2=(int)out;
3404   emit_jmp(0);
3405   // 3
3406   set_jump_target(case3,(int)out);
3407   if (opcode[i]==0x2A) { // SWL
3408     // Write msb into least significant byte
3409     if(rs2[i]) emit_rorimm(tl,24,tl);
3410     emit_writebyte_indexed(tl,-3,temp);
3411     if(rs2[i]) emit_rorimm(tl,8,tl);
3412   }
3413   if (opcode[i]==0x2E) { // SWR
3414     // Write entire word
3415     emit_writeword_indexed(tl,-3,temp);
3416   }
3417   if (opcode[i]==0x2C) { // SDL
3418     if(rs2[i]) emit_shrdimm(tl,th,24,temp2);
3419     // Write msb into least significant byte
3420     if(rs2[i]) emit_rorimm(th,24,th);
3421     emit_writebyte_indexed(th,-3,temp);
3422     if(rs2[i]) emit_rorimm(th,8,th);
3423   }
3424   if (opcode[i]==0x2D) { // SDR
3425     if(rs2[i]) emit_mov(th,temp2);
3426     // Write entire word
3427     emit_writeword_indexed(tl,-3,temp);
3428   }
3429   set_jump_target(done0,(int)out);
3430   set_jump_target(done1,(int)out);
3431   set_jump_target(done2,(int)out);
3432   if (opcode[i]==0x2C) { // SDL
3433     emit_testimm(temp,4);
3434     done0=(int)out;
3435     emit_jne(0);
3436     emit_andimm(temp,~3,temp);
3437     emit_writeword_indexed(temp2,4,temp);
3438     set_jump_target(done0,(int)out);
3439   }
3440   if (opcode[i]==0x2D) { // SDR
3441     emit_testimm(temp,4);
3442     done0=(int)out;
3443     emit_jeq(0);
3444     emit_andimm(temp,~3,temp);
3445     emit_writeword_indexed(temp2,-4,temp);
3446     set_jump_target(done0,(int)out);
3447   }
3448   if(!c||!memtarget)
3449     add_stub(STORELR_STUB,jaddr,(int)out,i,(int)i_regs,temp,ccadj[i],reglist);
3450   if(!using_tlb) {
3451     #ifdef RAM_OFFSET
3452     int map=get_reg(i_regs->regmap,ROREG);
3453     if(map<0) map=HOST_TEMPREG;
3454     gen_orig_addr_w(temp,map);
3455     #else
3456     emit_addimm_no_flags((u_int)0x80000000-(u_int)rdram,temp);
3457     #endif
3458     #if defined(HOST_IMM8)
3459     int ir=get_reg(i_regs->regmap,INVCP);
3460     assert(ir>=0);
3461     emit_cmpmem_indexedsr12_reg(ir,temp,1);
3462     #else
3463     emit_cmpmem_indexedsr12_imm((int)invalid_code,temp,1);
3464     #endif
3465     #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3466     emit_callne(invalidate_addr_reg[temp]);
3467     #else
3468     jaddr2=(int)out;
3469     emit_jne(0);
3470     add_stub(INVCODE_STUB,jaddr2,(int)out,reglist|(1<<HOST_CCREG),temp,0,0,0);
3471     #endif
3472   }
3473   /*
3474     emit_pusha();
3475     //save_regs(0x100f);
3476         emit_readword((int)&last_count,ECX);
3477         if(get_reg(i_regs->regmap,CCREG)<0)
3478           emit_loadreg(CCREG,HOST_CCREG);
3479         emit_add(HOST_CCREG,ECX,HOST_CCREG);
3480         emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3481         emit_writeword(HOST_CCREG,(int)&Count);
3482     emit_call((int)memdebug);
3483     emit_popa();
3484     //restore_regs(0x100f);
3485   /**/
3486 }
3487
3488 void c1ls_assemble(int i,struct regstat *i_regs)
3489 {
3490 #ifndef DISABLE_COP1
3491   int s,th,tl;
3492   int temp,ar;
3493   int map=-1;
3494   int offset;
3495   int c=0;
3496   int jaddr,jaddr2=0,jaddr3,type;
3497   int agr=AGEN1+(i&1);
3498   u_int hr,reglist=0;
3499   th=get_reg(i_regs->regmap,FTEMP|64);
3500   tl=get_reg(i_regs->regmap,FTEMP);
3501   s=get_reg(i_regs->regmap,rs1[i]);
3502   temp=get_reg(i_regs->regmap,agr);
3503   if(temp<0) temp=get_reg(i_regs->regmap,-1);
3504   offset=imm[i];
3505   assert(tl>=0);
3506   assert(rs1[i]>0);
3507   assert(temp>=0);
3508   for(hr=0;hr<HOST_REGS;hr++) {
3509     if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3510   }
3511   if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
3512   if (opcode[i]==0x31||opcode[i]==0x35) // LWC1/LDC1
3513   {
3514     // Loads use a temporary register which we need to save
3515     reglist|=1<<temp;
3516   }
3517   if (opcode[i]==0x39||opcode[i]==0x3D) // SWC1/SDC1
3518     ar=temp;
3519   else // LWC1/LDC1
3520     ar=tl;
3521   //if(s<0) emit_loadreg(rs1[i],ar); //address_generation does this now
3522   //else c=(i_regs->wasconst>>s)&1;
3523   if(s>=0) c=(i_regs->wasconst>>s)&1;
3524   // Check cop1 unusable
3525   if(!cop1_usable) {
3526     signed char rs=get_reg(i_regs->regmap,CSREG);
3527     assert(rs>=0);
3528     emit_testimm(rs,0x20000000);
3529     jaddr=(int)out;
3530     emit_jeq(0);
3531     add_stub(FP_STUB,jaddr,(int)out,i,rs,(int)i_regs,is_delayslot,0);
3532     cop1_usable=1;
3533   }
3534   if (opcode[i]==0x39) { // SWC1 (get float address)
3535     emit_readword((int)&reg_cop1_simple[(source[i]>>16)&0x1f],tl);
3536   }
3537   if (opcode[i]==0x3D) { // SDC1 (get double address)
3538     emit_readword((int)&reg_cop1_double[(source[i]>>16)&0x1f],tl);
3539   }
3540   // Generate address + offset
3541   if(!using_tlb) {
3542     if(!c)
3543       emit_cmpimm(offset||c||s<0?ar:s,RAM_SIZE);
3544   }
3545   else
3546   {
3547     map=get_reg(i_regs->regmap,TLREG);
3548     assert(map>=0);
3549     if (opcode[i]==0x31||opcode[i]==0x35) { // LWC1/LDC1
3550       map=do_tlb_r(offset||c||s<0?ar:s,ar,map,0,-1,-1,c,constmap[i][s]+offset);
3551     }
3552     if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3553       map=do_tlb_w(offset||c||s<0?ar:s,ar,map,0,c,constmap[i][s]+offset);
3554     }
3555   }
3556   if (opcode[i]==0x39) { // SWC1 (read float)
3557     emit_readword_indexed(0,tl,tl);
3558   }
3559   if (opcode[i]==0x3D) { // SDC1 (read double)
3560     emit_readword_indexed(4,tl,th);
3561     emit_readword_indexed(0,tl,tl);
3562   }
3563   if (opcode[i]==0x31) { // LWC1 (get target address)
3564     emit_readword((int)&reg_cop1_simple[(source[i]>>16)&0x1f],temp);
3565   }
3566   if (opcode[i]==0x35) { // LDC1 (get target address)
3567     emit_readword((int)&reg_cop1_double[(source[i]>>16)&0x1f],temp);
3568   }
3569   if(!using_tlb) {
3570     if(!c) {
3571       jaddr2=(int)out;
3572       emit_jno(0);
3573     }
3574     else if(((signed int)(constmap[i][s]+offset))>=(signed int)0x80000000+RAM_SIZE) {
3575       jaddr2=(int)out;
3576       emit_jmp(0); // inline_readstub/inline_writestub?  Very rare case
3577     }
3578     #ifdef DESTRUCTIVE_SHIFT
3579     if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3580       if(!offset&&!c&&s>=0) emit_mov(s,ar);
3581     }
3582     #endif
3583   }else{
3584     if (opcode[i]==0x31||opcode[i]==0x35) { // LWC1/LDC1
3585       do_tlb_r_branch(map,c,constmap[i][s]+offset,&jaddr2);
3586     }
3587     if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3588       do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr2);
3589     }
3590   }
3591   if (opcode[i]==0x31) { // LWC1
3592     //if(s>=0&&!c&&!offset) emit_mov(s,tl);
3593     //gen_tlb_addr_r(ar,map);
3594     //emit_readword_indexed((int)rdram-0x80000000,tl,tl);
3595     #ifdef HOST_IMM_ADDR32
3596     if(c) emit_readword_tlb(constmap[i][s]+offset,map,tl);
3597     else
3598     #endif
3599     emit_readword_indexed_tlb(0,offset||c||s<0?tl:s,map,tl);
3600     type=LOADW_STUB;
3601   }
3602   if (opcode[i]==0x35) { // LDC1
3603     assert(th>=0);
3604     //if(s>=0&&!c&&!offset) emit_mov(s,tl);
3605     //gen_tlb_addr_r(ar,map);
3606     //emit_readword_indexed((int)rdram-0x80000000,tl,th);
3607     //emit_readword_indexed((int)rdram-0x7FFFFFFC,tl,tl);
3608     #ifdef HOST_IMM_ADDR32
3609     if(c) emit_readdword_tlb(constmap[i][s]+offset,map,th,tl);
3610     else
3611     #endif
3612     emit_readdword_indexed_tlb(0,offset||c||s<0?tl:s,map,th,tl);
3613     type=LOADD_STUB;
3614   }
3615   if (opcode[i]==0x39) { // SWC1
3616     //emit_writeword_indexed(tl,(int)rdram-0x80000000,temp);
3617     emit_writeword_indexed_tlb(tl,0,offset||c||s<0?temp:s,map,temp);
3618     type=STOREW_STUB;
3619   }
3620   if (opcode[i]==0x3D) { // SDC1
3621     assert(th>=0);
3622     //emit_writeword_indexed(th,(int)rdram-0x80000000,temp);
3623     //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,temp);
3624     emit_writedword_indexed_tlb(th,tl,0,offset||c||s<0?temp:s,map,temp);
3625     type=STORED_STUB;
3626   }
3627   if(!using_tlb) {
3628     if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3629       #ifndef DESTRUCTIVE_SHIFT
3630       temp=offset||c||s<0?ar:s;
3631       #endif
3632       #if defined(HOST_IMM8)
3633       int ir=get_reg(i_regs->regmap,INVCP);
3634       assert(ir>=0);
3635       emit_cmpmem_indexedsr12_reg(ir,temp,1);
3636       #else
3637       emit_cmpmem_indexedsr12_imm((int)invalid_code,temp,1);
3638       #endif
3639       #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3640       emit_callne(invalidate_addr_reg[temp]);
3641       #else
3642       jaddr3=(int)out;
3643       emit_jne(0);
3644       add_stub(INVCODE_STUB,jaddr3,(int)out,reglist|(1<<HOST_CCREG),temp,0,0,0);
3645       #endif
3646     }
3647   }
3648   if(jaddr2) add_stub(type,jaddr2,(int)out,i,offset||c||s<0?ar:s,(int)i_regs,ccadj[i],reglist);
3649   if (opcode[i]==0x31) { // LWC1 (write float)
3650     emit_writeword_indexed(tl,0,temp);
3651   }
3652   if (opcode[i]==0x35) { // LDC1 (write double)
3653     emit_writeword_indexed(th,4,temp);
3654     emit_writeword_indexed(tl,0,temp);
3655   }
3656   //if(opcode[i]==0x39)
3657   /*if(opcode[i]==0x39||opcode[i]==0x31)
3658   {
3659     emit_pusha();
3660         emit_readword((int)&last_count,ECX);
3661         if(get_reg(i_regs->regmap,CCREG)<0)
3662           emit_loadreg(CCREG,HOST_CCREG);
3663         emit_add(HOST_CCREG,ECX,HOST_CCREG);
3664         emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3665         emit_writeword(HOST_CCREG,(int)&Count);
3666     emit_call((int)memdebug);
3667     emit_popa();
3668   }/**/
3669 #else
3670   cop1_unusable(i, i_regs);
3671 #endif
3672 }
3673
3674 void c2ls_assemble(int i,struct regstat *i_regs)
3675 {
3676   int s,tl;
3677   int ar;
3678   int offset;
3679   int memtarget=0,c=0;
3680   int jaddr,jaddr2=0,jaddr3,type;
3681   int agr=AGEN1+(i&1);
3682   u_int hr,reglist=0;
3683   u_int copr=(source[i]>>16)&0x1f;
3684   s=get_reg(i_regs->regmap,rs1[i]);
3685   tl=get_reg(i_regs->regmap,FTEMP);
3686   offset=imm[i];
3687   assert(rs1[i]>0);
3688   assert(tl>=0);
3689   assert(!using_tlb);
3690
3691   for(hr=0;hr<HOST_REGS;hr++) {
3692     if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3693   }
3694   if(i_regs->regmap[HOST_CCREG]==CCREG)
3695     reglist&=~(1<<HOST_CCREG);
3696
3697   // get the address
3698   if (opcode[i]==0x3a) { // SWC2
3699     ar=get_reg(i_regs->regmap,agr);
3700     if(ar<0) ar=get_reg(i_regs->regmap,-1);
3701     reglist|=1<<ar;
3702   } else { // LWC2
3703     ar=tl;
3704   }
3705   if(s>=0) c=(i_regs->wasconst>>s)&1;
3706   memtarget=c&&(((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE);
3707   if (!offset&&!c&&s>=0) ar=s;
3708   assert(ar>=0);
3709
3710   if (opcode[i]==0x3a) { // SWC2
3711     cop2_get_dreg(copr,tl,HOST_TEMPREG);
3712     type=STOREW_STUB;
3713   }
3714   else
3715     type=LOADW_STUB;
3716
3717   if(c&&!memtarget) {
3718     jaddr2=(int)out;
3719     emit_jmp(0); // inline_readstub/inline_writestub?
3720   }
3721   else {
3722     if(!c) {
3723       emit_cmpimm(offset||c||s<0?ar:s,RAM_SIZE);
3724       jaddr2=(int)out;
3725       emit_jno(0);
3726     }
3727     if (opcode[i]==0x32) { // LWC2
3728       #ifdef HOST_IMM_ADDR32
3729       if(c) emit_readword_tlb(constmap[i][s]+offset,-1,tl);
3730       else
3731       #endif
3732       emit_readword_indexed(0,ar,tl);
3733     }
3734     if (opcode[i]==0x3a) { // SWC2
3735       #ifdef DESTRUCTIVE_SHIFT
3736       if(!offset&&!c&&s>=0) emit_mov(s,ar);
3737       #endif
3738       emit_writeword_indexed(tl,0,ar);
3739     }
3740   }
3741   if(jaddr2)
3742     add_stub(type,jaddr2,(int)out,i,ar,(int)i_regs,ccadj[i],reglist);
3743   if (opcode[i]==0x3a) { // SWC2
3744 #if defined(HOST_IMM8)
3745     int ir=get_reg(i_regs->regmap,INVCP);
3746     assert(ir>=0);
3747     emit_cmpmem_indexedsr12_reg(ir,ar,1);
3748 #else
3749     emit_cmpmem_indexedsr12_imm((int)invalid_code,ar,1);
3750 #endif
3751     #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3752     emit_callne(invalidate_addr_reg[ar]);
3753     #else
3754     jaddr3=(int)out;
3755     emit_jne(0);
3756     add_stub(INVCODE_STUB,jaddr3,(int)out,reglist|(1<<HOST_CCREG),ar,0,0,0);
3757     #endif
3758   }
3759   if (opcode[i]==0x32) { // LWC2
3760     cop2_put_dreg(copr,tl,HOST_TEMPREG);
3761   }
3762 }
3763
3764 #ifndef multdiv_assemble
3765 void multdiv_assemble(int i,struct regstat *i_regs)
3766 {
3767   printf("Need multdiv_assemble for this architecture.\n");
3768   exit(1);
3769 }
3770 #endif
3771
3772 void mov_assemble(int i,struct regstat *i_regs)
3773 {
3774   //if(opcode2[i]==0x10||opcode2[i]==0x12) { // MFHI/MFLO
3775   //if(opcode2[i]==0x11||opcode2[i]==0x13) { // MTHI/MTLO
3776   if(rt1[i]) {
3777     signed char sh,sl,th,tl;
3778     th=get_reg(i_regs->regmap,rt1[i]|64);
3779     tl=get_reg(i_regs->regmap,rt1[i]);
3780     //assert(tl>=0);
3781     if(tl>=0) {
3782       sh=get_reg(i_regs->regmap,rs1[i]|64);
3783       sl=get_reg(i_regs->regmap,rs1[i]);
3784       if(sl>=0) emit_mov(sl,tl);
3785       else emit_loadreg(rs1[i],tl);
3786       if(th>=0) {
3787         if(sh>=0) emit_mov(sh,th);
3788         else emit_loadreg(rs1[i]|64,th);
3789       }
3790     }
3791   }
3792 }
3793
3794 #ifndef fconv_assemble
3795 void fconv_assemble(int i,struct regstat *i_regs)
3796 {
3797   printf("Need fconv_assemble for this architecture.\n");
3798   exit(1);
3799 }
3800 #endif
3801
3802 #if 0
3803 void float_assemble(int i,struct regstat *i_regs)
3804 {
3805   printf("Need float_assemble for this architecture.\n");
3806   exit(1);
3807 }
3808 #endif
3809
3810 void syscall_assemble(int i,struct regstat *i_regs)
3811 {
3812   signed char ccreg=get_reg(i_regs->regmap,CCREG);
3813   assert(ccreg==HOST_CCREG);
3814   assert(!is_delayslot);
3815   emit_movimm(start+i*4,EAX); // Get PC
3816   emit_addimm(HOST_CCREG,CLOCK_DIVIDER*ccadj[i],HOST_CCREG); // CHECK: is this right?  There should probably be an extra cycle...
3817   emit_jmp((int)jump_syscall_hle); // XXX
3818 }
3819
3820 void hlecall_assemble(int i,struct regstat *i_regs)
3821 {
3822   signed char ccreg=get_reg(i_regs->regmap,CCREG);
3823   assert(ccreg==HOST_CCREG);
3824   assert(!is_delayslot);
3825   emit_movimm(start+i*4+4,0); // Get PC
3826   emit_movimm((int)psxHLEt[source[i]&7],1);
3827   emit_addimm(HOST_CCREG,CLOCK_DIVIDER*ccadj[i],HOST_CCREG); // XXX
3828   emit_jmp((int)jump_hlecall);
3829 }
3830
3831 void intcall_assemble(int i,struct regstat *i_regs)
3832 {
3833   signed char ccreg=get_reg(i_regs->regmap,CCREG);
3834   assert(ccreg==HOST_CCREG);
3835   assert(!is_delayslot);
3836   emit_movimm(start+i*4,0); // Get PC
3837   emit_addimm(HOST_CCREG,CLOCK_DIVIDER*ccadj[i],HOST_CCREG);
3838   emit_jmp((int)jump_intcall);
3839 }
3840
3841 void ds_assemble(int i,struct regstat *i_regs)
3842 {
3843   is_delayslot=1;
3844   switch(itype[i]) {
3845     case ALU:
3846       alu_assemble(i,i_regs);break;
3847     case IMM16:
3848       imm16_assemble(i,i_regs);break;
3849     case SHIFT:
3850       shift_assemble(i,i_regs);break;
3851     case SHIFTIMM:
3852       shiftimm_assemble(i,i_regs);break;
3853     case LOAD:
3854       load_assemble(i,i_regs);break;
3855     case LOADLR:
3856       loadlr_assemble(i,i_regs);break;
3857     case STORE:
3858       store_assemble(i,i_regs);break;
3859     case STORELR:
3860       storelr_assemble(i,i_regs);break;
3861     case COP0:
3862       cop0_assemble(i,i_regs);break;
3863     case COP1:
3864       cop1_assemble(i,i_regs);break;
3865     case C1LS:
3866       c1ls_assemble(i,i_regs);break;
3867     case COP2:
3868       cop2_assemble(i,i_regs);break;
3869     case C2LS:
3870       c2ls_assemble(i,i_regs);break;
3871     case C2OP:
3872       c2op_assemble(i,i_regs);break;
3873     case FCONV:
3874       fconv_assemble(i,i_regs);break;
3875     case FLOAT:
3876       float_assemble(i,i_regs);break;
3877     case FCOMP:
3878       fcomp_assemble(i,i_regs);break;
3879     case MULTDIV:
3880       multdiv_assemble(i,i_regs);break;
3881     case MOV:
3882       mov_assemble(i,i_regs);break;
3883     case SYSCALL:
3884     case HLECALL:
3885     case INTCALL:
3886     case SPAN:
3887     case UJUMP:
3888     case RJUMP:
3889     case CJUMP:
3890     case SJUMP:
3891     case FJUMP:
3892       printf("Jump in the delay slot.  This is probably a bug.\n");
3893   }
3894   is_delayslot=0;
3895 }
3896
3897 // Is the branch target a valid internal jump?
3898 int internal_branch(uint64_t i_is32,int addr)
3899 {
3900   if(addr&1) return 0; // Indirect (register) jump
3901   if(addr>=start && addr<start+slen*4-4)
3902   {
3903     int t=(addr-start)>>2;
3904     // Delay slots are not valid branch targets
3905     //if(t>0&&(itype[t-1]==RJUMP||itype[t-1]==UJUMP||itype[t-1]==CJUMP||itype[t-1]==SJUMP||itype[t-1]==FJUMP)) return 0;
3906     // 64 -> 32 bit transition requires a recompile
3907     /*if(is32[t]&~unneeded_reg_upper[t]&~i_is32)
3908     {
3909       if(requires_32bit[t]&~i_is32) printf("optimizable: no\n");
3910       else printf("optimizable: yes\n");
3911     }*/
3912     //if(is32[t]&~unneeded_reg_upper[t]&~i_is32) return 0;
3913 #ifndef FORCE32
3914     if(requires_32bit[t]&~i_is32) return 0;
3915     else
3916 #endif
3917       return 1;
3918   }
3919   return 0;
3920 }
3921
3922 #ifndef wb_invalidate
3923 void wb_invalidate(signed char pre[],signed char entry[],uint64_t dirty,uint64_t is32,
3924   uint64_t u,uint64_t uu)
3925 {
3926   int hr;
3927   for(hr=0;hr<HOST_REGS;hr++) {
3928     if(hr!=EXCLUDE_REG) {
3929       if(pre[hr]!=entry[hr]) {
3930         if(pre[hr]>=0) {
3931           if((dirty>>hr)&1) {
3932             if(get_reg(entry,pre[hr])<0) {
3933               if(pre[hr]<64) {
3934                 if(!((u>>pre[hr])&1)) {
3935                   emit_storereg(pre[hr],hr);
3936                   if( ((is32>>pre[hr])&1) && !((uu>>pre[hr])&1) ) {
3937                     emit_sarimm(hr,31,hr);
3938                     emit_storereg(pre[hr]|64,hr);
3939                   }
3940                 }
3941               }else{
3942                 if(!((uu>>(pre[hr]&63))&1) && !((is32>>(pre[hr]&63))&1)) {
3943                   emit_storereg(pre[hr],hr);
3944                 }
3945               }
3946             }
3947           }
3948         }
3949       }
3950     }
3951   }
3952   // Move from one register to another (no writeback)
3953   for(hr=0;hr<HOST_REGS;hr++) {
3954     if(hr!=EXCLUDE_REG) {
3955       if(pre[hr]!=entry[hr]) {
3956         if(pre[hr]>=0&&(pre[hr]&63)<TEMPREG) {
3957           int nr;
3958           if((nr=get_reg(entry,pre[hr]))>=0) {
3959             emit_mov(hr,nr);
3960           }
3961         }
3962       }
3963     }
3964   }
3965 }
3966 #endif
3967
3968 // Load the specified registers
3969 // This only loads the registers given as arguments because
3970 // we don't want to load things that will be overwritten
3971 void load_regs(signed char entry[],signed char regmap[],int is32,int rs1,int rs2)
3972 {
3973   int hr;
3974   // Load 32-bit regs
3975   for(hr=0;hr<HOST_REGS;hr++) {
3976     if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
3977       if(entry[hr]!=regmap[hr]) {
3978         if(regmap[hr]==rs1||regmap[hr]==rs2)
3979         {
3980           if(regmap[hr]==0) {
3981             emit_zeroreg(hr);
3982           }
3983           else
3984           {
3985             emit_loadreg(regmap[hr],hr);
3986           }
3987         }
3988       }
3989     }
3990   }
3991   //Load 64-bit regs
3992   for(hr=0;hr<HOST_REGS;hr++) {
3993     if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
3994       if(entry[hr]!=regmap[hr]) {
3995         if(regmap[hr]-64==rs1||regmap[hr]-64==rs2)
3996         {
3997           assert(regmap[hr]!=64);
3998           if((is32>>(regmap[hr]&63))&1) {
3999             int lr=get_reg(regmap,regmap[hr]-64);
4000             if(lr>=0)
4001               emit_sarimm(lr,31,hr);
4002             else
4003               emit_loadreg(regmap[hr],hr);
4004           }
4005           else
4006           {
4007             emit_loadreg(regmap[hr],hr);
4008           }
4009         }
4010       }
4011     }
4012   }
4013 }
4014
4015 // Load registers prior to the start of a loop
4016 // so that they are not loaded within the loop
4017 static void loop_preload(signed char pre[],signed char entry[])
4018 {
4019   int hr;
4020   for(hr=0;hr<HOST_REGS;hr++) {
4021     if(hr!=EXCLUDE_REG) {
4022       if(pre[hr]!=entry[hr]) {
4023         if(entry[hr]>=0) {
4024           if(get_reg(pre,entry[hr])<0) {
4025             assem_debug("loop preload:\n");
4026             //printf("loop preload: %d\n",hr);
4027             if(entry[hr]==0) {
4028               emit_zeroreg(hr);
4029             }
4030             else if(entry[hr]<TEMPREG)
4031             {
4032               emit_loadreg(entry[hr],hr);
4033             }
4034             else if(entry[hr]-64<TEMPREG)
4035             {
4036               emit_loadreg(entry[hr],hr);
4037             }
4038           }
4039         }
4040       }
4041     }
4042   }
4043 }
4044
4045 // Generate address for load/store instruction
4046 // goes to AGEN for writes, FTEMP for LOADLR and cop1/2 loads
4047 void address_generation(int i,struct regstat *i_regs,signed char entry[])
4048 {
4049   if(itype[i]==LOAD||itype[i]==LOADLR||itype[i]==STORE||itype[i]==STORELR||itype[i]==C1LS||itype[i]==C2LS) {
4050     int ra;
4051     int agr=AGEN1+(i&1);
4052     int mgr=MGEN1+(i&1);
4053     if(itype[i]==LOAD) {
4054       ra=get_reg(i_regs->regmap,rt1[i]);
4055       if(ra<0) ra=get_reg(i_regs->regmap,-1); 
4056       assert(ra>=0);
4057     }
4058     if(itype[i]==LOADLR) {
4059       ra=get_reg(i_regs->regmap,FTEMP);
4060     }
4061     if(itype[i]==STORE||itype[i]==STORELR) {
4062       ra=get_reg(i_regs->regmap,agr);
4063       if(ra<0) ra=get_reg(i_regs->regmap,-1);
4064     }
4065     if(itype[i]==C1LS||itype[i]==C2LS) {
4066       if ((opcode[i]&0x3b)==0x31||(opcode[i]&0x3b)==0x32) // LWC1/LDC1/LWC2/LDC2
4067         ra=get_reg(i_regs->regmap,FTEMP);
4068       else { // SWC1/SDC1/SWC2/SDC2
4069         ra=get_reg(i_regs->regmap,agr);
4070         if(ra<0) ra=get_reg(i_regs->regmap,-1);
4071       }
4072     }
4073     int rs=get_reg(i_regs->regmap,rs1[i]);
4074     int rm=get_reg(i_regs->regmap,TLREG);
4075     if(ra>=0) {
4076       int offset=imm[i];
4077       int c=(i_regs->wasconst>>rs)&1;
4078       if(rs1[i]==0) {
4079         // Using r0 as a base address
4080         /*if(rm>=0) {
4081           if(!entry||entry[rm]!=mgr) {
4082             generate_map_const(offset,rm);
4083           } // else did it in the previous cycle
4084         }*/
4085         if(!entry||entry[ra]!=agr) {
4086           if (opcode[i]==0x22||opcode[i]==0x26) {
4087             emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
4088           }else if (opcode[i]==0x1a||opcode[i]==0x1b) {
4089             emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
4090           }else{
4091             emit_movimm(offset,ra);
4092           }
4093         } // else did it in the previous cycle
4094       }
4095       else if(rs<0) {
4096         if(!entry||entry[ra]!=rs1[i])
4097           emit_loadreg(rs1[i],ra);
4098         //if(!entry||entry[ra]!=rs1[i])
4099         //  printf("poor load scheduling!\n");
4100       }
4101       else if(c) {
4102         if(rm>=0) {
4103           if(!entry||entry[rm]!=mgr) {
4104             if(itype[i]==STORE||itype[i]==STORELR||(opcode[i]&0x3b)==0x39||(opcode[i]&0x3b)==0x3a) {
4105               // Stores to memory go thru the mapper to detect self-modifying
4106               // code, loads don't.
4107               if((unsigned int)(constmap[i][rs]+offset)>=0xC0000000 ||
4108                  (unsigned int)(constmap[i][rs]+offset)<0x80000000+RAM_SIZE )
4109                 generate_map_const(constmap[i][rs]+offset,rm);
4110             }else{
4111               if((signed int)(constmap[i][rs]+offset)>=(signed int)0xC0000000)
4112                 generate_map_const(constmap[i][rs]+offset,rm);
4113             }
4114           }
4115         }
4116         if(rs1[i]!=rt1[i]||itype[i]!=LOAD) {
4117           if(!entry||entry[ra]!=agr) {
4118             if (opcode[i]==0x22||opcode[i]==0x26) {
4119               emit_movimm((constmap[i][rs]+offset)&0xFFFFFFFC,ra); // LWL/LWR
4120             }else if (opcode[i]==0x1a||opcode[i]==0x1b) {
4121               emit_movimm((constmap[i][rs]+offset)&0xFFFFFFF8,ra); // LDL/LDR
4122             }else{
4123               #ifdef HOST_IMM_ADDR32
4124               if((itype[i]!=LOAD&&(opcode[i]&0x3b)!=0x31&&(opcode[i]&0x3b)!=0x32) || // LWC1/LDC1/LWC2/LDC2
4125                  (using_tlb&&((signed int)constmap[i][rs]+offset)>=(signed int)0xC0000000))
4126               #endif
4127               emit_movimm(constmap[i][rs]+offset,ra);
4128             }
4129           } // else did it in the previous cycle
4130         } // else load_consts already did it
4131       }
4132       if(offset&&!c&&rs1[i]) {
4133         if(rs>=0) {
4134           emit_addimm(rs,offset,ra);
4135         }else{
4136           emit_addimm(ra,offset,ra);
4137         }
4138       }
4139     }
4140   }
4141   // Preload constants for next instruction
4142   if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS||itype[i+1]==C2LS) {
4143     int agr,ra;
4144     #ifndef HOST_IMM_ADDR32
4145     // Mapper entry
4146     agr=MGEN1+((i+1)&1);
4147     ra=get_reg(i_regs->regmap,agr);
4148     if(ra>=0) {
4149       int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
4150       int offset=imm[i+1];
4151       int c=(regs[i+1].wasconst>>rs)&1;
4152       if(c) {
4153         if(itype[i+1]==STORE||itype[i+1]==STORELR
4154            ||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1, SWC2/SDC2
4155           // Stores to memory go thru the mapper to detect self-modifying
4156           // code, loads don't.
4157           if((unsigned int)(constmap[i+1][rs]+offset)>=0xC0000000 ||
4158              (unsigned int)(constmap[i+1][rs]+offset)<0x80000000+RAM_SIZE )
4159             generate_map_const(constmap[i+1][rs]+offset,ra);
4160         }else{
4161           if((signed int)(constmap[i+1][rs]+offset)>=(signed int)0xC0000000)
4162             generate_map_const(constmap[i+1][rs]+offset,ra);
4163         }
4164       }
4165       /*else if(rs1[i]==0) {
4166         generate_map_const(offset,ra);
4167       }*/
4168     }
4169     #endif
4170     // Actual address
4171     agr=AGEN1+((i+1)&1);
4172     ra=get_reg(i_regs->regmap,agr);
4173     if(ra>=0) {
4174       int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
4175       int offset=imm[i+1];
4176       int c=(regs[i+1].wasconst>>rs)&1;
4177       if(c&&(rs1[i+1]!=rt1[i+1]||itype[i+1]!=LOAD)) {
4178         if (opcode[i+1]==0x22||opcode[i+1]==0x26) {
4179           emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFFC,ra); // LWL/LWR
4180         }else if (opcode[i+1]==0x1a||opcode[i+1]==0x1b) {
4181           emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFF8,ra); // LDL/LDR
4182         }else{
4183           #ifdef HOST_IMM_ADDR32
4184           if((itype[i+1]!=LOAD&&(opcode[i+1]&0x3b)!=0x31&&(opcode[i+1]&0x3b)!=0x32) || // LWC1/LDC1/LWC2/LDC2
4185              (using_tlb&&((signed int)constmap[i+1][rs]+offset)>=(signed int)0xC0000000))
4186           #endif
4187           emit_movimm(constmap[i+1][rs]+offset,ra);
4188         }
4189       }
4190       else if(rs1[i+1]==0) {
4191         // Using r0 as a base address
4192         if (opcode[i+1]==0x22||opcode[i+1]==0x26) {
4193           emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
4194         }else if (opcode[i+1]==0x1a||opcode[i+1]==0x1b) {
4195           emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
4196         }else{
4197           emit_movimm(offset,ra);
4198         }
4199       }
4200     }
4201   }
4202 }
4203
4204 int get_final_value(int hr, int i, int *value)
4205 {
4206   int reg=regs[i].regmap[hr];
4207   while(i<slen-1) {
4208     if(regs[i+1].regmap[hr]!=reg) break;
4209     if(!((regs[i+1].isconst>>hr)&1)) break;
4210     if(bt[i+1]) break;
4211     i++;
4212   }
4213   if(i<slen-1) {
4214     if(itype[i]==UJUMP||itype[i]==RJUMP||itype[i]==CJUMP||itype[i]==SJUMP) {
4215       *value=constmap[i][hr];
4216       return 1;
4217     }
4218     if(!bt[i+1]) {
4219       if(itype[i+1]==UJUMP||itype[i+1]==RJUMP||itype[i+1]==CJUMP||itype[i+1]==SJUMP) {
4220         // Load in delay slot, out-of-order execution
4221         if(itype[i+2]==LOAD&&rs1[i+2]==reg&&rt1[i+2]==reg&&((regs[i+1].wasconst>>hr)&1))
4222         {
4223           #ifdef HOST_IMM_ADDR32
4224           if(!using_tlb||((signed int)constmap[i][hr]+imm[i+2])<(signed int)0xC0000000) return 0;
4225           #endif
4226           // Precompute load address
4227           *value=constmap[i][hr]+imm[i+2];
4228           return 1;
4229         }
4230       }
4231       if(itype[i+1]==LOAD&&rs1[i+1]==reg&&rt1[i+1]==reg)
4232       {
4233         #ifdef HOST_IMM_ADDR32
4234         if(!using_tlb||((signed int)constmap[i][hr]+imm[i+1])<(signed int)0xC0000000) return 0;
4235         #endif
4236         // Precompute load address
4237         *value=constmap[i][hr]+imm[i+1];
4238         //printf("c=%x imm=%x\n",(int)constmap[i][hr],imm[i+1]);
4239         return 1;
4240       }
4241     }
4242   }
4243   *value=constmap[i][hr];
4244   //printf("c=%x\n",(int)constmap[i][hr]);
4245   if(i==slen-1) return 1;
4246   if(reg<64) {
4247     return !((unneeded_reg[i+1]>>reg)&1);
4248   }else{
4249     return !((unneeded_reg_upper[i+1]>>reg)&1);
4250   }
4251 }
4252
4253 // Load registers with known constants
4254 void load_consts(signed char pre[],signed char regmap[],int is32,int i)
4255 {
4256   int hr;
4257   // Load 32-bit regs
4258   for(hr=0;hr<HOST_REGS;hr++) {
4259     if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4260       //if(entry[hr]!=regmap[hr]) {
4261       if(i==0||!((regs[i-1].isconst>>hr)&1)||pre[hr]!=regmap[hr]||bt[i]) {
4262         if(((regs[i].isconst>>hr)&1)&&regmap[hr]<64&&regmap[hr]>0) {
4263           int value;
4264           if(get_final_value(hr,i,&value)) {
4265             if(value==0) {
4266               emit_zeroreg(hr);
4267             }
4268             else {
4269               emit_movimm(value,hr);
4270             }
4271           }
4272         }
4273       }
4274     }
4275   }
4276   // Load 64-bit regs
4277   for(hr=0;hr<HOST_REGS;hr++) {
4278     if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4279       //if(entry[hr]!=regmap[hr]) {
4280       if(i==0||!((regs[i-1].isconst>>hr)&1)||pre[hr]!=regmap[hr]||bt[i]) {
4281         if(((regs[i].isconst>>hr)&1)&&regmap[hr]>64) {
4282           if((is32>>(regmap[hr]&63))&1) {
4283             int lr=get_reg(regmap,regmap[hr]-64);
4284             assert(lr>=0);
4285             emit_sarimm(lr,31,hr);
4286           }
4287           else
4288           {
4289             int value;
4290             if(get_final_value(hr,i,&value)) {
4291               if(value==0) {
4292                 emit_zeroreg(hr);
4293               }
4294               else {
4295                 emit_movimm(value,hr);
4296               }
4297             }
4298           }
4299         }
4300       }
4301     }
4302   }
4303 }
4304 void load_all_consts(signed char regmap[],int is32,u_int dirty,int i)
4305 {
4306   int hr;
4307   // Load 32-bit regs
4308   for(hr=0;hr<HOST_REGS;hr++) {
4309     if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((dirty>>hr)&1)) {
4310       if(((regs[i].isconst>>hr)&1)&&regmap[hr]<64&&regmap[hr]>0) {
4311         int value=constmap[i][hr];
4312         if(value==0) {
4313           emit_zeroreg(hr);
4314         }
4315         else {
4316           emit_movimm(value,hr);
4317         }
4318       }
4319     }
4320   }
4321   // Load 64-bit regs
4322   for(hr=0;hr<HOST_REGS;hr++) {
4323     if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((dirty>>hr)&1)) {
4324       if(((regs[i].isconst>>hr)&1)&&regmap[hr]>64) {
4325         if((is32>>(regmap[hr]&63))&1) {
4326           int lr=get_reg(regmap,regmap[hr]-64);
4327           assert(lr>=0);
4328           emit_sarimm(lr,31,hr);
4329         }
4330         else
4331         {
4332           int value=constmap[i][hr];
4333           if(value==0) {
4334             emit_zeroreg(hr);
4335           }
4336           else {
4337             emit_movimm(value,hr);
4338           }
4339         }
4340       }
4341     }
4342   }
4343 }
4344
4345 // Write out all dirty registers (except cycle count)
4346 void wb_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty)
4347 {
4348   int hr;
4349   for(hr=0;hr<HOST_REGS;hr++) {
4350     if(hr!=EXCLUDE_REG) {
4351       if(i_regmap[hr]>0) {
4352         if(i_regmap[hr]!=CCREG) {
4353           if((i_dirty>>hr)&1) {
4354             if(i_regmap[hr]<64) {
4355               emit_storereg(i_regmap[hr],hr);
4356 #ifndef FORCE32
4357               if( ((i_is32>>i_regmap[hr])&1) ) {
4358                 #ifdef DESTRUCTIVE_WRITEBACK
4359                 emit_sarimm(hr,31,hr);
4360                 emit_storereg(i_regmap[hr]|64,hr);
4361                 #else
4362                 emit_sarimm(hr,31,HOST_TEMPREG);
4363                 emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4364                 #endif
4365               }
4366 #endif
4367             }else{
4368               if( !((i_is32>>(i_regmap[hr]&63))&1) ) {
4369                 emit_storereg(i_regmap[hr],hr);
4370               }
4371             }
4372           }
4373         }
4374       }
4375     }
4376   }
4377 }
4378 // Write out dirty registers that we need to reload (pair with load_needed_regs)
4379 // This writes the registers not written by store_regs_bt
4380 void wb_needed_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4381 {
4382   int hr;
4383   int t=(addr-start)>>2;
4384   for(hr=0;hr<HOST_REGS;hr++) {
4385     if(hr!=EXCLUDE_REG) {
4386       if(i_regmap[hr]>0) {
4387         if(i_regmap[hr]!=CCREG) {
4388           if(i_regmap[hr]==regs[t].regmap_entry[hr] && ((regs[t].dirty>>hr)&1) && !(((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4389             if((i_dirty>>hr)&1) {
4390               if(i_regmap[hr]<64) {
4391                 emit_storereg(i_regmap[hr],hr);
4392 #ifndef FORCE32
4393                 if( ((i_is32>>i_regmap[hr])&1) ) {
4394                   #ifdef DESTRUCTIVE_WRITEBACK
4395                   emit_sarimm(hr,31,hr);
4396                   emit_storereg(i_regmap[hr]|64,hr);
4397                   #else
4398                   emit_sarimm(hr,31,HOST_TEMPREG);
4399                   emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4400                   #endif
4401                 }
4402 #endif
4403               }else{
4404                 if( !((i_is32>>(i_regmap[hr]&63))&1) ) {
4405                   emit_storereg(i_regmap[hr],hr);
4406                 }
4407               }
4408             }
4409           }
4410         }
4411       }
4412     }
4413   }
4414 }
4415
4416 // Load all registers (except cycle count)
4417 void load_all_regs(signed char i_regmap[])
4418 {
4419   int hr;
4420   for(hr=0;hr<HOST_REGS;hr++) {
4421     if(hr!=EXCLUDE_REG) {
4422       if(i_regmap[hr]==0) {
4423         emit_zeroreg(hr);
4424       }
4425       else
4426       if(i_regmap[hr]>0 && i_regmap[hr]!=CCREG)
4427       {
4428         emit_loadreg(i_regmap[hr],hr);
4429       }
4430     }
4431   }
4432 }
4433
4434 // Load all current registers also needed by next instruction
4435 void load_needed_regs(signed char i_regmap[],signed char next_regmap[])
4436 {
4437   int hr;
4438   for(hr=0;hr<HOST_REGS;hr++) {
4439     if(hr!=EXCLUDE_REG) {
4440       if(get_reg(next_regmap,i_regmap[hr])>=0) {
4441         if(i_regmap[hr]==0) {
4442           emit_zeroreg(hr);
4443         }
4444         else
4445         if(i_regmap[hr]>0 && i_regmap[hr]!=CCREG)
4446         {
4447           emit_loadreg(i_regmap[hr],hr);
4448         }
4449       }
4450     }
4451   }
4452 }
4453
4454 // Load all regs, storing cycle count if necessary
4455 void load_regs_entry(int t)
4456 {
4457   int hr;
4458   if(is_ds[t]) emit_addimm(HOST_CCREG,CLOCK_DIVIDER,HOST_CCREG);
4459   else if(ccadj[t]) emit_addimm(HOST_CCREG,-ccadj[t]*CLOCK_DIVIDER,HOST_CCREG);
4460   if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
4461     emit_storereg(CCREG,HOST_CCREG);
4462   }
4463   // Load 32-bit regs
4464   for(hr=0;hr<HOST_REGS;hr++) {
4465     if(regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<64) {
4466       if(regs[t].regmap_entry[hr]==0) {
4467         emit_zeroreg(hr);
4468       }
4469       else if(regs[t].regmap_entry[hr]!=CCREG)
4470       {
4471         emit_loadreg(regs[t].regmap_entry[hr],hr);
4472       }
4473     }
4474   }
4475   // Load 64-bit regs
4476   for(hr=0;hr<HOST_REGS;hr++) {
4477     if(regs[t].regmap_entry[hr]>=64) {
4478       assert(regs[t].regmap_entry[hr]!=64);
4479       if((regs[t].was32>>(regs[t].regmap_entry[hr]&63))&1) {
4480         int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4481         if(lr<0) {
4482           emit_loadreg(regs[t].regmap_entry[hr],hr);
4483         }
4484         else
4485         {
4486           emit_sarimm(lr,31,hr);
4487         }
4488       }
4489       else
4490       {
4491         emit_loadreg(regs[t].regmap_entry[hr],hr);
4492       }
4493     }
4494   }
4495 }
4496
4497 // Store dirty registers prior to branch
4498 void store_regs_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4499 {
4500   if(internal_branch(i_is32,addr))
4501   {
4502     int t=(addr-start)>>2;
4503     int hr;
4504     for(hr=0;hr<HOST_REGS;hr++) {
4505       if(hr!=EXCLUDE_REG) {
4506         if(i_regmap[hr]>0 && i_regmap[hr]!=CCREG) {
4507           if(i_regmap[hr]!=regs[t].regmap_entry[hr] || !((regs[t].dirty>>hr)&1) || (((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4508             if((i_dirty>>hr)&1) {
4509               if(i_regmap[hr]<64) {
4510                 if(!((unneeded_reg[t]>>i_regmap[hr])&1)) {
4511                   emit_storereg(i_regmap[hr],hr);
4512                   if( ((i_is32>>i_regmap[hr])&1) && !((unneeded_reg_upper[t]>>i_regmap[hr])&1) ) {
4513                     #ifdef DESTRUCTIVE_WRITEBACK
4514                     emit_sarimm(hr,31,hr);
4515                     emit_storereg(i_regmap[hr]|64,hr);
4516                     #else
4517                     emit_sarimm(hr,31,HOST_TEMPREG);
4518                     emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4519                     #endif
4520                   }
4521                 }
4522               }else{
4523                 if( !((i_is32>>(i_regmap[hr]&63))&1) && !((unneeded_reg_upper[t]>>(i_regmap[hr]&63))&1) ) {
4524                   emit_storereg(i_regmap[hr],hr);
4525                 }
4526               }
4527             }
4528           }
4529         }
4530       }
4531     }
4532   }
4533   else
4534   {
4535     // Branch out of this block, write out all dirty regs
4536     wb_dirtys(i_regmap,i_is32,i_dirty);
4537   }
4538 }
4539
4540 // Load all needed registers for branch target
4541 void load_regs_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4542 {
4543   //if(addr>=start && addr<(start+slen*4))
4544   if(internal_branch(i_is32,addr))
4545   {
4546     int t=(addr-start)>>2;
4547     int hr;
4548     // Store the cycle count before loading something else
4549     if(i_regmap[HOST_CCREG]!=CCREG) {
4550       assert(i_regmap[HOST_CCREG]==-1);
4551     }
4552     if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
4553       emit_storereg(CCREG,HOST_CCREG);
4554     }
4555     // Load 32-bit regs
4556     for(hr=0;hr<HOST_REGS;hr++) {
4557       if(hr!=EXCLUDE_REG&&regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<64) {
4558         #ifdef DESTRUCTIVE_WRITEBACK
4559         if(i_regmap[hr]!=regs[t].regmap_entry[hr] || ( !((regs[t].dirty>>hr)&1) && ((i_dirty>>hr)&1) && (((i_is32&~unneeded_reg_upper[t])>>i_regmap[hr])&1) ) || (((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4560         #else
4561         if(i_regmap[hr]!=regs[t].regmap_entry[hr] ) {
4562         #endif
4563           if(regs[t].regmap_entry[hr]==0) {
4564             emit_zeroreg(hr);
4565           }
4566           else if(regs[t].regmap_entry[hr]!=CCREG)
4567           {
4568             emit_loadreg(regs[t].regmap_entry[hr],hr);
4569           }
4570         }
4571       }
4572     }
4573     //Load 64-bit regs
4574     for(hr=0;hr<HOST_REGS;hr++) {
4575       if(hr!=EXCLUDE_REG&&regs[t].regmap_entry[hr]>=64) {
4576         if(i_regmap[hr]!=regs[t].regmap_entry[hr]) {
4577           assert(regs[t].regmap_entry[hr]!=64);
4578           if((i_is32>>(regs[t].regmap_entry[hr]&63))&1) {
4579             int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4580             if(lr<0) {
4581               emit_loadreg(regs[t].regmap_entry[hr],hr);
4582             }
4583             else
4584             {
4585               emit_sarimm(lr,31,hr);
4586             }
4587           }
4588           else
4589           {
4590             emit_loadreg(regs[t].regmap_entry[hr],hr);
4591           }
4592         }
4593         else if((i_is32>>(regs[t].regmap_entry[hr]&63))&1) {
4594           int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4595           assert(lr>=0);
4596           emit_sarimm(lr,31,hr);
4597         }
4598       }
4599     }
4600   }
4601 }
4602
4603 int match_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4604 {
4605   if(addr>=start && addr<start+slen*4-4)
4606   {
4607     int t=(addr-start)>>2;
4608     int hr;
4609     if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) return 0;
4610     for(hr=0;hr<HOST_REGS;hr++)
4611     {
4612       if(hr!=EXCLUDE_REG)
4613       {
4614         if(i_regmap[hr]!=regs[t].regmap_entry[hr])
4615         {
4616           if(regs[t].regmap_entry[hr]!=-1)
4617           {
4618             return 0;
4619           }
4620           else 
4621           if((i_dirty>>hr)&1)
4622           {
4623             if(i_regmap[hr]<64)
4624             {
4625               if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4626                 return 0;
4627             }
4628             else
4629             {
4630               if(!((unneeded_reg_upper[t]>>(i_regmap[hr]&63))&1))
4631                 return 0;
4632             }
4633           }
4634         }
4635         else // Same register but is it 32-bit or dirty?
4636         if(i_regmap[hr]>=0)
4637         {
4638           if(!((regs[t].dirty>>hr)&1))
4639           {
4640             if((i_dirty>>hr)&1)
4641             {
4642               if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4643               {
4644                 //printf("%x: dirty no match\n",addr);
4645                 return 0;
4646               }
4647             }
4648           }
4649           if((((regs[t].was32^i_is32)&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)
4650           {
4651             //printf("%x: is32 no match\n",addr);
4652             return 0;
4653           }
4654         }
4655       }
4656     }
4657     //if(is32[t]&~unneeded_reg_upper[t]&~i_is32) return 0;
4658 #ifndef FORCE32
4659     if(requires_32bit[t]&~i_is32) return 0;
4660 #endif
4661     // Delay slots are not valid branch targets
4662     //if(t>0&&(itype[t-1]==RJUMP||itype[t-1]==UJUMP||itype[t-1]==CJUMP||itype[t-1]==SJUMP||itype[t-1]==FJUMP)) return 0;
4663     // Delay slots require additional processing, so do not match
4664     if(is_ds[t]) return 0;
4665   }
4666   else
4667   {
4668     int hr;
4669     for(hr=0;hr<HOST_REGS;hr++)
4670     {
4671       if(hr!=EXCLUDE_REG)
4672       {
4673         if(i_regmap[hr]>=0)
4674         {
4675           if(hr!=HOST_CCREG||i_regmap[hr]!=CCREG)
4676           {
4677             if((i_dirty>>hr)&1)
4678             {
4679               return 0;
4680             }
4681           }
4682         }
4683       }
4684     }
4685   }
4686   return 1;
4687 }
4688
4689 // Used when a branch jumps into the delay slot of another branch
4690 void ds_assemble_entry(int i)
4691 {
4692   int t=(ba[i]-start)>>2;
4693   if(!instr_addr[t]) instr_addr[t]=(u_int)out;
4694   assem_debug("Assemble delay slot at %x\n",ba[i]);
4695   assem_debug("<->\n");
4696   if(regs[t].regmap_entry[HOST_CCREG]==CCREG&&regs[t].regmap[HOST_CCREG]!=CCREG)
4697     wb_register(CCREG,regs[t].regmap_entry,regs[t].wasdirty,regs[t].was32);
4698   load_regs(regs[t].regmap_entry,regs[t].regmap,regs[t].was32,rs1[t],rs2[t]);
4699   address_generation(t,&regs[t],regs[t].regmap_entry);
4700   if(itype[t]==STORE||itype[t]==STORELR||(opcode[t]&0x3b)==0x39||(opcode[t]&0x3b)==0x3a)
4701     load_regs(regs[t].regmap_entry,regs[t].regmap,regs[t].was32,INVCP,INVCP);
4702   cop1_usable=0;
4703   is_delayslot=0;
4704   switch(itype[t]) {
4705     case ALU:
4706       alu_assemble(t,&regs[t]);break;
4707     case IMM16:
4708       imm16_assemble(t,&regs[t]);break;
4709     case SHIFT:
4710       shift_assemble(t,&regs[t]);break;
4711     case SHIFTIMM:
4712       shiftimm_assemble(t,&regs[t]);break;
4713     case LOAD:
4714       load_assemble(t,&regs[t]);break;
4715     case LOADLR:
4716       loadlr_assemble(t,&regs[t]);break;
4717     case STORE:
4718       store_assemble(t,&regs[t]);break;
4719     case STORELR:
4720       storelr_assemble(t,&regs[t]);break;
4721     case COP0:
4722       cop0_assemble(t,&regs[t]);break;
4723     case COP1:
4724       cop1_assemble(t,&regs[t]);break;
4725     case C1LS:
4726       c1ls_assemble(t,&regs[t]);break;
4727     case COP2:
4728       cop2_assemble(t,&regs[t]);break;
4729     case C2LS:
4730       c2ls_assemble(t,&regs[t]);break;
4731     case C2OP:
4732       c2op_assemble(t,&regs[t]);break;
4733     case FCONV:
4734       fconv_assemble(t,&regs[t]);break;
4735     case FLOAT:
4736       float_assemble(t,&regs[t]);break;
4737     case FCOMP:
4738       fcomp_assemble(t,&regs[t]);break;
4739     case MULTDIV:
4740       multdiv_assemble(t,&regs[t]);break;
4741     case MOV:
4742       mov_assemble(t,&regs[t]);break;
4743     case SYSCALL:
4744     case HLECALL:
4745     case INTCALL:
4746     case SPAN:
4747     case UJUMP:
4748     case RJUMP:
4749     case CJUMP:
4750     case SJUMP:
4751     case FJUMP:
4752       printf("Jump in the delay slot.  This is probably a bug.\n");
4753   }
4754   store_regs_bt(regs[t].regmap,regs[t].is32,regs[t].dirty,ba[i]+4);
4755   load_regs_bt(regs[t].regmap,regs[t].is32,regs[t].dirty,ba[i]+4);
4756   if(internal_branch(regs[t].is32,ba[i]+4))
4757     assem_debug("branch: internal\n");
4758   else
4759     assem_debug("branch: external\n");
4760   assert(internal_branch(regs[t].is32,ba[i]+4));
4761   add_to_linker((int)out,ba[i]+4,internal_branch(regs[t].is32,ba[i]+4));
4762   emit_jmp(0);
4763 }
4764
4765 void do_cc(int i,signed char i_regmap[],int *adj,int addr,int taken,int invert)
4766 {
4767   int count;
4768   int jaddr;
4769   int idle=0;
4770   if(itype[i]==RJUMP)
4771   {
4772     *adj=0;
4773   }
4774   //if(ba[i]>=start && ba[i]<(start+slen*4))
4775   if(internal_branch(branch_regs[i].is32,ba[i]))
4776   {
4777     int t=(ba[i]-start)>>2;
4778     if(is_ds[t]) *adj=-1; // Branch into delay slot adds an extra cycle
4779     else *adj=ccadj[t];
4780   }
4781   else
4782   {
4783     *adj=0;
4784   }
4785   count=ccadj[i];
4786   if(taken==TAKEN && i==(ba[i]-start)>>2 && source[i+1]==0) {
4787     // Idle loop
4788     if(count&1) emit_addimm_and_set_flags(2*(count+2),HOST_CCREG);
4789     idle=(int)out;
4790     //emit_subfrommem(&idlecount,HOST_CCREG); // Count idle cycles
4791     emit_andimm(HOST_CCREG,3,HOST_CCREG);
4792     jaddr=(int)out;
4793     emit_jmp(0);
4794   }
4795   else if(*adj==0||invert) {
4796     emit_addimm_and_set_flags(CLOCK_DIVIDER*(count+2),HOST_CCREG);
4797     jaddr=(int)out;
4798     emit_jns(0);
4799   }
4800   else
4801   {
4802     emit_cmpimm(HOST_CCREG,-2*(count+2));
4803     jaddr=(int)out;
4804     emit_jns(0);
4805   }
4806   add_stub(CC_STUB,jaddr,idle?idle:(int)out,(*adj==0||invert||idle)?0:(count+2),i,addr,taken,0);
4807 }
4808
4809 void do_ccstub(int n)
4810 {
4811   literal_pool(256);
4812   assem_debug("do_ccstub %x\n",start+stubs[n][4]*4);
4813   set_jump_target(stubs[n][1],(int)out);
4814   int i=stubs[n][4];
4815   if(stubs[n][6]==NULLDS) {
4816     // Delay slot instruction is nullified ("likely" branch)
4817     wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
4818   }
4819   else if(stubs[n][6]!=TAKEN) {
4820     wb_dirtys(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty);
4821   }
4822   else {
4823     if(internal_branch(branch_regs[i].is32,ba[i]))
4824       wb_needed_dirtys(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
4825   }
4826   if(stubs[n][5]!=-1)
4827   {
4828     // Save PC as return address
4829     emit_movimm(stubs[n][5],EAX);
4830     emit_writeword(EAX,(int)&pcaddr);
4831   }
4832   else
4833   {
4834     // Return address depends on which way the branch goes
4835     if(itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
4836     {
4837       int s1l=get_reg(branch_regs[i].regmap,rs1[i]);
4838       int s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
4839       int s2l=get_reg(branch_regs[i].regmap,rs2[i]);
4840       int s2h=get_reg(branch_regs[i].regmap,rs2[i]|64);
4841       if(rs1[i]==0)
4842       {
4843         s1l=s2l;s1h=s2h;
4844         s2l=s2h=-1;
4845       }
4846       else if(rs2[i]==0)
4847       {
4848         s2l=s2h=-1;
4849       }
4850       if((branch_regs[i].is32>>rs1[i])&(branch_regs[i].is32>>rs2[i])&1) {
4851         s1h=s2h=-1;
4852       }
4853       assert(s1l>=0);
4854       #ifdef DESTRUCTIVE_WRITEBACK
4855       if(rs1[i]) {
4856         if((branch_regs[i].dirty>>s1l)&(branch_regs[i].is32>>rs1[i])&1)
4857           emit_loadreg(rs1[i],s1l);
4858       } 
4859       else {
4860         if((branch_regs[i].dirty>>s1l)&(branch_regs[i].is32>>rs2[i])&1)
4861           emit_loadreg(rs2[i],s1l);
4862       }
4863       if(s2l>=0)
4864         if((branch_regs[i].dirty>>s2l)&(branch_regs[i].is32>>rs2[i])&1)
4865           emit_loadreg(rs2[i],s2l);
4866       #endif
4867       int hr=0;
4868       int addr,alt,ntaddr;
4869       while(hr<HOST_REGS)
4870       {
4871         if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4872            (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
4873            (branch_regs[i].regmap[hr]&63)!=rs2[i] )
4874         {
4875           addr=hr++;break;
4876         }
4877         hr++;
4878       }
4879       while(hr<HOST_REGS)
4880       {
4881         if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4882            (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
4883            (branch_regs[i].regmap[hr]&63)!=rs2[i] )
4884         {
4885           alt=hr++;break;
4886         }
4887         hr++;
4888       }
4889       if((opcode[i]&0x2E)==6) // BLEZ/BGTZ needs another register
4890       {
4891         while(hr<HOST_REGS)
4892         {
4893           if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4894              (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
4895              (branch_regs[i].regmap[hr]&63)!=rs2[i] )
4896           {
4897             ntaddr=hr;break;
4898           }
4899           hr++;
4900         }
4901         assert(hr<HOST_REGS);
4902       }
4903       if((opcode[i]&0x2f)==4) // BEQ
4904       {
4905         #ifdef HAVE_CMOV_IMM
4906         if(s1h<0) {
4907           if(s2l>=0) emit_cmp(s1l,s2l);
4908           else emit_test(s1l,s1l);
4909           emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
4910         }
4911         else
4912         #endif
4913         {
4914           emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
4915           if(s1h>=0) {
4916             if(s2h>=0) emit_cmp(s1h,s2h);
4917             else emit_test(s1h,s1h);
4918             emit_cmovne_reg(alt,addr);
4919           }
4920           if(s2l>=0) emit_cmp(s1l,s2l);
4921           else emit_test(s1l,s1l);
4922           emit_cmovne_reg(alt,addr);
4923         }
4924       }
4925       if((opcode[i]&0x2f)==5) // BNE
4926       {
4927         #ifdef HAVE_CMOV_IMM
4928         if(s1h<0) {
4929           if(s2l>=0) emit_cmp(s1l,s2l);
4930           else emit_test(s1l,s1l);
4931           emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
4932         }
4933         else
4934         #endif
4935         {
4936           emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
4937           if(s1h>=0) {
4938             if(s2h>=0) emit_cmp(s1h,s2h);
4939             else emit_test(s1h,s1h);
4940             emit_cmovne_reg(alt,addr);
4941           }
4942           if(s2l>=0) emit_cmp(s1l,s2l);
4943           else emit_test(s1l,s1l);
4944           emit_cmovne_reg(alt,addr);
4945         }
4946       }
4947       if((opcode[i]&0x2f)==6) // BLEZ
4948       {
4949         //emit_movimm(ba[i],alt);
4950         //emit_movimm(start+i*4+8,addr);
4951         emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
4952         emit_cmpimm(s1l,1);
4953         if(s1h>=0) emit_mov(addr,ntaddr);
4954         emit_cmovl_reg(alt,addr);
4955         if(s1h>=0) {
4956           emit_test(s1h,s1h);
4957           emit_cmovne_reg(ntaddr,addr);
4958           emit_cmovs_reg(alt,addr);
4959         }
4960       }
4961       if((opcode[i]&0x2f)==7) // BGTZ
4962       {
4963         //emit_movimm(ba[i],addr);
4964         //emit_movimm(start+i*4+8,ntaddr);
4965         emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
4966         emit_cmpimm(s1l,1);
4967         if(s1h>=0) emit_mov(addr,alt);
4968         emit_cmovl_reg(ntaddr,addr);
4969         if(s1h>=0) {
4970           emit_test(s1h,s1h);
4971           emit_cmovne_reg(alt,addr);
4972           emit_cmovs_reg(ntaddr,addr);
4973         }
4974       }
4975       if((opcode[i]==1)&&(opcode2[i]&0x2D)==0) // BLTZ
4976       {
4977         //emit_movimm(ba[i],alt);
4978         //emit_movimm(start+i*4+8,addr);
4979         emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
4980         if(s1h>=0) emit_test(s1h,s1h);
4981         else emit_test(s1l,s1l);
4982         emit_cmovs_reg(alt,addr);
4983       }
4984       if((opcode[i]==1)&&(opcode2[i]&0x2D)==1) // BGEZ
4985       {
4986         //emit_movimm(ba[i],addr);
4987         //emit_movimm(start+i*4+8,alt);
4988         emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
4989         if(s1h>=0) emit_test(s1h,s1h);
4990         else emit_test(s1l,s1l);
4991         emit_cmovs_reg(alt,addr);
4992       }
4993       if(opcode[i]==0x11 && opcode2[i]==0x08 ) {
4994         if(source[i]&0x10000) // BC1T
4995         {
4996           //emit_movimm(ba[i],alt);
4997           //emit_movimm(start+i*4+8,addr);
4998           emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
4999           emit_testimm(s1l,0x800000);
5000           emit_cmovne_reg(alt,addr);
5001         }
5002         else // BC1F
5003         {
5004           //emit_movimm(ba[i],addr);
5005           //emit_movimm(start+i*4+8,alt);
5006           emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
5007           emit_testimm(s1l,0x800000);
5008           emit_cmovne_reg(alt,addr);
5009         }
5010       }
5011       emit_writeword(addr,(int)&pcaddr);
5012     }
5013     else
5014     if(itype[i]==RJUMP)
5015     {
5016       int r=get_reg(branch_regs[i].regmap,rs1[i]);
5017       if(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]) {
5018         r=get_reg(branch_regs[i].regmap,RTEMP);
5019       }
5020       emit_writeword(r,(int)&pcaddr);
5021     }
5022     else {printf("Unknown branch type in do_ccstub\n");exit(1);}
5023   }
5024   // Update cycle count
5025   assert(branch_regs[i].regmap[HOST_CCREG]==CCREG||branch_regs[i].regmap[HOST_CCREG]==-1);
5026   if(stubs[n][3]) emit_addimm(HOST_CCREG,CLOCK_DIVIDER*stubs[n][3],HOST_CCREG);
5027   emit_call((int)cc_interrupt);
5028   if(stubs[n][3]) emit_addimm(HOST_CCREG,-CLOCK_DIVIDER*stubs[n][3],HOST_CCREG);
5029   if(stubs[n][6]==TAKEN) {
5030     if(internal_branch(branch_regs[i].is32,ba[i]))
5031       load_needed_regs(branch_regs[i].regmap,regs[(ba[i]-start)>>2].regmap_entry);
5032     else if(itype[i]==RJUMP) {
5033       if(get_reg(branch_regs[i].regmap,RTEMP)>=0)
5034         emit_readword((int)&pcaddr,get_reg(branch_regs[i].regmap,RTEMP));
5035       else
5036         emit_loadreg(rs1[i],get_reg(branch_regs[i].regmap,rs1[i]));
5037     }
5038   }else if(stubs[n][6]==NOTTAKEN) {
5039     if(i<slen-2) load_needed_regs(branch_regs[i].regmap,regmap_pre[i+2]);
5040     else load_all_regs(branch_regs[i].regmap);
5041   }else if(stubs[n][6]==NULLDS) {
5042     // Delay slot instruction is nullified ("likely" branch)
5043     if(i<slen-2) load_needed_regs(regs[i].regmap,regmap_pre[i+2]);
5044     else load_all_regs(regs[i].regmap);
5045   }else{
5046     load_all_regs(branch_regs[i].regmap);
5047   }
5048   emit_jmp(stubs[n][2]); // return address
5049   
5050   /* This works but uses a lot of memory...
5051   emit_readword((int)&last_count,ECX);
5052   emit_add(HOST_CCREG,ECX,EAX);
5053   emit_writeword(EAX,(int)&Count);
5054   emit_call((int)gen_interupt);
5055   emit_readword((int)&Count,HOST_CCREG);
5056   emit_readword((int)&next_interupt,EAX);
5057   emit_readword((int)&pending_exception,EBX);
5058   emit_writeword(EAX,(int)&last_count);
5059   emit_sub(HOST_CCREG,EAX,HOST_CCREG);
5060   emit_test(EBX,EBX);
5061   int jne_instr=(int)out;
5062   emit_jne(0);
5063   if(stubs[n][3]) emit_addimm(HOST_CCREG,-2*stubs[n][3],HOST_CCREG);
5064   load_all_regs(branch_regs[i].regmap);
5065   emit_jmp(stubs[n][2]); // return address
5066   set_jump_target(jne_instr,(int)out);
5067   emit_readword((int)&pcaddr,EAX);
5068   // Call get_addr_ht instead of doing the hash table here.
5069   // This code is executed infrequently and takes up a lot of space
5070   // so smaller is better.
5071   emit_storereg(CCREG,HOST_CCREG);
5072   emit_pushreg(EAX);
5073   emit_call((int)get_addr_ht);
5074   emit_loadreg(CCREG,HOST_CCREG);
5075   emit_addimm(ESP,4,ESP);
5076   emit_jmpreg(EAX);*/
5077 }
5078
5079 add_to_linker(int addr,int target,int ext)
5080 {
5081   link_addr[linkcount][0]=addr;
5082   link_addr[linkcount][1]=target;
5083   link_addr[linkcount][2]=ext;  
5084   linkcount++;
5085 }
5086
5087 void ujump_assemble(int i,struct regstat *i_regs)
5088 {
5089   signed char *i_regmap=i_regs->regmap;
5090   if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5091   address_generation(i+1,i_regs,regs[i].regmap_entry);
5092   #ifdef REG_PREFETCH
5093   int temp=get_reg(branch_regs[i].regmap,PTEMP);
5094   if(rt1[i]==31&&temp>=0) 
5095   {
5096     int return_address=start+i*4+8;
5097     if(get_reg(branch_regs[i].regmap,31)>0) 
5098     if(i_regmap[temp]==PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5099   }
5100   #endif
5101   ds_assemble(i+1,i_regs);
5102   uint64_t bc_unneeded=branch_regs[i].u;
5103   uint64_t bc_unneeded_upper=branch_regs[i].uu;
5104   bc_unneeded|=1|(1LL<<rt1[i]);
5105   bc_unneeded_upper|=1|(1LL<<rt1[i]);
5106   wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5107                 bc_unneeded,bc_unneeded_upper);
5108   load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5109   if(rt1[i]==31) {
5110     int rt;
5111     unsigned int return_address;
5112     assert(rt1[i+1]!=31);
5113     assert(rt2[i+1]!=31);
5114     rt=get_reg(branch_regs[i].regmap,31);
5115     assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5116     //assert(rt>=0);
5117     return_address=start+i*4+8;
5118     if(rt>=0) {
5119       #ifdef USE_MINI_HT
5120       if(internal_branch(branch_regs[i].is32,return_address)) {
5121         int temp=rt+1;
5122         if(temp==EXCLUDE_REG||temp>=HOST_REGS||
5123            branch_regs[i].regmap[temp]>=0)
5124         {
5125           temp=get_reg(branch_regs[i].regmap,-1);
5126         }
5127         #ifdef HOST_TEMPREG
5128         if(temp<0) temp=HOST_TEMPREG;
5129         #endif
5130         if(temp>=0) do_miniht_insert(return_address,rt,temp);
5131         else emit_movimm(return_address,rt);
5132       }
5133       else
5134       #endif
5135       {
5136         #ifdef REG_PREFETCH
5137         if(temp>=0) 
5138         {
5139           if(i_regmap[temp]!=PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5140         }
5141         #endif
5142         emit_movimm(return_address,rt); // PC into link register
5143         #ifdef IMM_PREFETCH
5144         emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5145         #endif
5146       }
5147     }
5148   }
5149   int cc,adj;
5150   cc=get_reg(branch_regs[i].regmap,CCREG);
5151   assert(cc==HOST_CCREG);
5152   store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5153   #ifdef REG_PREFETCH
5154   if(rt1[i]==31&&temp>=0) emit_prefetchreg(temp);
5155   #endif
5156   do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5157   if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5158   load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5159   if(internal_branch(branch_regs[i].is32,ba[i]))
5160     assem_debug("branch: internal\n");
5161   else
5162     assem_debug("branch: external\n");
5163   if(internal_branch(branch_regs[i].is32,ba[i])&&is_ds[(ba[i]-start)>>2]) {
5164     ds_assemble_entry(i);
5165   }
5166   else {
5167     add_to_linker((int)out,ba[i],internal_branch(branch_regs[i].is32,ba[i]));
5168     emit_jmp(0);
5169   }
5170 }
5171
5172 void rjump_assemble(int i,struct regstat *i_regs)
5173 {
5174   signed char *i_regmap=i_regs->regmap;
5175   int temp;
5176   int rs,cc,adj;
5177   rs=get_reg(branch_regs[i].regmap,rs1[i]);
5178   assert(rs>=0);
5179   if(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]) {
5180     // Delay slot abuse, make a copy of the branch address register
5181     temp=get_reg(branch_regs[i].regmap,RTEMP);
5182     assert(temp>=0);
5183     assert(regs[i].regmap[temp]==RTEMP);
5184     emit_mov(rs,temp);
5185     rs=temp;
5186   }
5187   address_generation(i+1,i_regs,regs[i].regmap_entry);
5188   #ifdef REG_PREFETCH
5189   if(rt1[i]==31) 
5190   {
5191     if((temp=get_reg(branch_regs[i].regmap,PTEMP))>=0) {
5192       int return_address=start+i*4+8;
5193       if(i_regmap[temp]==PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5194     }
5195   }
5196   #endif
5197   #ifdef USE_MINI_HT
5198   if(rs1[i]==31) {
5199     int rh=get_reg(regs[i].regmap,RHASH);
5200     if(rh>=0) do_preload_rhash(rh);
5201   }
5202   #endif
5203   ds_assemble(i+1,i_regs);
5204   uint64_t bc_unneeded=branch_regs[i].u;
5205   uint64_t bc_unneeded_upper=branch_regs[i].uu;
5206   bc_unneeded|=1|(1LL<<rt1[i]);
5207   bc_unneeded_upper|=1|(1LL<<rt1[i]);
5208   bc_unneeded&=~(1LL<<rs1[i]);
5209   wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5210                 bc_unneeded,bc_unneeded_upper);
5211   load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],CCREG);
5212   if(rt1[i]!=0) {
5213     int rt,return_address;
5214     assert(rt1[i+1]!=rt1[i]);
5215     assert(rt2[i+1]!=rt1[i]);
5216     rt=get_reg(branch_regs[i].regmap,rt1[i]);
5217     assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5218     assert(rt>=0);
5219     return_address=start+i*4+8;
5220     #ifdef REG_PREFETCH
5221     if(temp>=0) 
5222     {
5223       if(i_regmap[temp]!=PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5224     }
5225     #endif
5226     emit_movimm(return_address,rt); // PC into link register
5227     #ifdef IMM_PREFETCH
5228     emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5229     #endif
5230   }
5231   cc=get_reg(branch_regs[i].regmap,CCREG);
5232   assert(cc==HOST_CCREG);
5233   #ifdef USE_MINI_HT
5234   int rh=get_reg(branch_regs[i].regmap,RHASH);
5235   int ht=get_reg(branch_regs[i].regmap,RHTBL);
5236   if(rs1[i]==31) {
5237     if(regs[i].regmap[rh]!=RHASH) do_preload_rhash(rh);
5238     do_preload_rhtbl(ht);
5239     do_rhash(rs,rh);
5240   }
5241   #endif
5242   store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,-1);
5243   #ifdef DESTRUCTIVE_WRITEBACK
5244   if((branch_regs[i].dirty>>rs)&(branch_regs[i].is32>>rs1[i])&1) {
5245     if(rs1[i]!=rt1[i+1]&&rs1[i]!=rt2[i+1]) {
5246       emit_loadreg(rs1[i],rs);
5247     }
5248   }
5249   #endif
5250   #ifdef REG_PREFETCH
5251   if(rt1[i]==31&&temp>=0) emit_prefetchreg(temp);
5252   #endif
5253   #ifdef USE_MINI_HT
5254   if(rs1[i]==31) {
5255     do_miniht_load(ht,rh);
5256   }
5257   #endif
5258   //do_cc(i,branch_regs[i].regmap,&adj,-1,TAKEN);
5259   //if(adj) emit_addimm(cc,2*(ccadj[i]+2-adj),cc); // ??? - Shouldn't happen
5260   //assert(adj==0);
5261   emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
5262   add_stub(CC_STUB,(int)out,jump_vaddr_reg[rs],0,i,-1,TAKEN,0);
5263   emit_jns(0);
5264   //load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,-1);
5265   #ifdef USE_MINI_HT
5266   if(rs1[i]==31) {
5267     do_miniht_jump(rs,rh,ht);
5268   }
5269   else
5270   #endif
5271   {
5272     //if(rs!=EAX) emit_mov(rs,EAX);
5273     //emit_jmp((int)jump_vaddr_eax);
5274     emit_jmp(jump_vaddr_reg[rs]);
5275   }
5276   /* Check hash table
5277   temp=!rs;
5278   emit_mov(rs,temp);
5279   emit_shrimm(rs,16,rs);
5280   emit_xor(temp,rs,rs);
5281   emit_movzwl_reg(rs,rs);
5282   emit_shlimm(rs,4,rs);
5283   emit_cmpmem_indexed((int)hash_table,rs,temp);
5284   emit_jne((int)out+14);
5285   emit_readword_indexed((int)hash_table+4,rs,rs);
5286   emit_jmpreg(rs);
5287   emit_cmpmem_indexed((int)hash_table+8,rs,temp);
5288   emit_addimm_no_flags(8,rs);
5289   emit_jeq((int)out-17);
5290   // No hit on hash table, call compiler
5291   emit_pushreg(temp);
5292 //DEBUG >
5293 #ifdef DEBUG_CYCLE_COUNT
5294   emit_readword((int)&last_count,ECX);
5295   emit_add(HOST_CCREG,ECX,HOST_CCREG);
5296   emit_readword((int)&next_interupt,ECX);
5297   emit_writeword(HOST_CCREG,(int)&Count);
5298   emit_sub(HOST_CCREG,ECX,HOST_CCREG);
5299   emit_writeword(ECX,(int)&last_count);
5300 #endif
5301 //DEBUG <
5302   emit_storereg(CCREG,HOST_CCREG);
5303   emit_call((int)get_addr);
5304   emit_loadreg(CCREG,HOST_CCREG);
5305   emit_addimm(ESP,4,ESP);
5306   emit_jmpreg(EAX);*/
5307   #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5308   if(rt1[i]!=31&&i<slen-2&&(((u_int)out)&7)) emit_mov(13,13);
5309   #endif
5310 }
5311
5312 void cjump_assemble(int i,struct regstat *i_regs)
5313 {
5314   signed char *i_regmap=i_regs->regmap;
5315   int cc;
5316   int match;
5317   match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5318   assem_debug("match=%d\n",match);
5319   int s1h,s1l,s2h,s2l;
5320   int prev_cop1_usable=cop1_usable;
5321   int unconditional=0,nop=0;
5322   int only32=0;
5323   int invert=0;
5324   int internal=internal_branch(branch_regs[i].is32,ba[i]);
5325   if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5326   if(!match) invert=1;
5327   #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5328   if(i>(ba[i]-start)>>2) invert=1;
5329   #endif
5330   
5331   if(ooo[i]) {
5332     s1l=get_reg(branch_regs[i].regmap,rs1[i]);
5333     s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
5334     s2l=get_reg(branch_regs[i].regmap,rs2[i]);
5335     s2h=get_reg(branch_regs[i].regmap,rs2[i]|64);
5336   }
5337   else {
5338     s1l=get_reg(i_regmap,rs1[i]);
5339     s1h=get_reg(i_regmap,rs1[i]|64);
5340     s2l=get_reg(i_regmap,rs2[i]);
5341     s2h=get_reg(i_regmap,rs2[i]|64);
5342   }
5343   if(rs1[i]==0&&rs2[i]==0)
5344   {
5345     if(opcode[i]&1) nop=1;
5346     else unconditional=1;
5347     //assert(opcode[i]!=5);
5348     //assert(opcode[i]!=7);
5349     //assert(opcode[i]!=0x15);
5350     //assert(opcode[i]!=0x17);
5351   }
5352   else if(rs1[i]==0)
5353   {
5354     s1l=s2l;s1h=s2h;
5355     s2l=s2h=-1;
5356     only32=(regs[i].was32>>rs2[i])&1;
5357   }
5358   else if(rs2[i]==0)
5359   {
5360     s2l=s2h=-1;
5361     only32=(regs[i].was32>>rs1[i])&1;
5362   }
5363   else {
5364     only32=(regs[i].was32>>rs1[i])&(regs[i].was32>>rs2[i])&1;
5365   }
5366
5367   if(ooo[i]) {
5368     // Out of order execution (delay slot first)
5369     //printf("OOOE\n");
5370     address_generation(i+1,i_regs,regs[i].regmap_entry);
5371     ds_assemble(i+1,i_regs);
5372     int adj;
5373     uint64_t bc_unneeded=branch_regs[i].u;
5374     uint64_t bc_unneeded_upper=branch_regs[i].uu;
5375     bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
5376     bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
5377     bc_unneeded|=1;
5378     bc_unneeded_upper|=1;
5379     wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5380                   bc_unneeded,bc_unneeded_upper);
5381     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs2[i]);
5382     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5383     cc=get_reg(branch_regs[i].regmap,CCREG);
5384     assert(cc==HOST_CCREG);
5385     if(unconditional) 
5386       store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5387     //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
5388     //assem_debug("cycle count (adj)\n");
5389     if(unconditional) {
5390       do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5391       if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
5392         if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5393         load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5394         if(internal)
5395           assem_debug("branch: internal\n");
5396         else
5397           assem_debug("branch: external\n");
5398         if(internal&&is_ds[(ba[i]-start)>>2]) {
5399           ds_assemble_entry(i);
5400         }
5401         else {
5402           add_to_linker((int)out,ba[i],internal);
5403           emit_jmp(0);
5404         }
5405         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5406         if(((u_int)out)&7) emit_addnop(0);
5407         #endif
5408       }
5409     }
5410     else if(nop) {
5411       emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
5412       int jaddr=(int)out;
5413       emit_jns(0);
5414       add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5415     }
5416     else {
5417       int taken=0,nottaken=0,nottaken1=0;
5418       do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
5419       if(adj&&!invert) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5420       if(!only32)
5421       {
5422         assert(s1h>=0);
5423         if(opcode[i]==4) // BEQ
5424         {
5425           if(s2h>=0) emit_cmp(s1h,s2h);
5426           else emit_test(s1h,s1h);
5427           nottaken1=(int)out;
5428           emit_jne(1);
5429         }
5430         if(opcode[i]==5) // BNE
5431         {
5432           if(s2h>=0) emit_cmp(s1h,s2h);
5433           else emit_test(s1h,s1h);
5434           if(invert) taken=(int)out;
5435           else add_to_linker((int)out,ba[i],internal);
5436           emit_jne(0);
5437         }
5438         if(opcode[i]==6) // BLEZ
5439         {
5440           emit_test(s1h,s1h);
5441           if(invert) taken=(int)out;
5442           else add_to_linker((int)out,ba[i],internal);
5443           emit_js(0);
5444           nottaken1=(int)out;
5445           emit_jne(1);
5446         }
5447         if(opcode[i]==7) // BGTZ
5448         {
5449           emit_test(s1h,s1h);
5450           nottaken1=(int)out;
5451           emit_js(1);
5452           if(invert) taken=(int)out;
5453           else add_to_linker((int)out,ba[i],internal);
5454           emit_jne(0);
5455         }
5456       } // if(!only32)
5457           
5458       //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5459       assert(s1l>=0);
5460       if(opcode[i]==4) // BEQ
5461       {
5462         if(s2l>=0) emit_cmp(s1l,s2l);
5463         else emit_test(s1l,s1l);
5464         if(invert){
5465           nottaken=(int)out;
5466           emit_jne(1);
5467         }else{
5468           add_to_linker((int)out,ba[i],internal);
5469           emit_jeq(0);
5470         }
5471       }
5472       if(opcode[i]==5) // BNE
5473       {
5474         if(s2l>=0) emit_cmp(s1l,s2l);
5475         else emit_test(s1l,s1l);
5476         if(invert){
5477           nottaken=(int)out;
5478           emit_jeq(1);
5479         }else{
5480           add_to_linker((int)out,ba[i],internal);
5481           emit_jne(0);
5482         }
5483       }
5484       if(opcode[i]==6) // BLEZ
5485       {
5486         emit_cmpimm(s1l,1);
5487         if(invert){
5488           nottaken=(int)out;
5489           emit_jge(1);
5490         }else{
5491           add_to_linker((int)out,ba[i],internal);
5492           emit_jl(0);
5493         }
5494       }
5495       if(opcode[i]==7) // BGTZ
5496       {
5497         emit_cmpimm(s1l,1);
5498         if(invert){
5499           nottaken=(int)out;
5500           emit_jl(1);
5501         }else{
5502           add_to_linker((int)out,ba[i],internal);
5503           emit_jge(0);
5504         }
5505       }
5506       if(invert) {
5507         if(taken) set_jump_target(taken,(int)out);
5508         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5509         if(match&&(!internal||!is_ds[(ba[i]-start)>>2])) {
5510           if(adj) {
5511             emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5512             add_to_linker((int)out,ba[i],internal);
5513           }else{
5514             emit_addnop(13);
5515             add_to_linker((int)out,ba[i],internal*2);
5516           }
5517           emit_jmp(0);
5518         }else
5519         #endif
5520         {
5521           if(adj) emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5522           store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5523           load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5524           if(internal)
5525             assem_debug("branch: internal\n");
5526           else
5527             assem_debug("branch: external\n");
5528           if(internal&&is_ds[(ba[i]-start)>>2]) {
5529             ds_assemble_entry(i);
5530           }
5531           else {
5532             add_to_linker((int)out,ba[i],internal);
5533             emit_jmp(0);
5534           }
5535         }
5536         set_jump_target(nottaken,(int)out);
5537       }
5538
5539       if(nottaken1) set_jump_target(nottaken1,(int)out);
5540       if(adj) {
5541         if(!invert) emit_addimm(cc,CLOCK_DIVIDER*adj,cc);
5542       }
5543     } // (!unconditional)
5544   } // if(ooo)
5545   else
5546   {
5547     // In-order execution (branch first)
5548     //if(likely[i]) printf("IOL\n");
5549     //else
5550     //printf("IOE\n");
5551     int taken=0,nottaken=0,nottaken1=0;
5552     if(!unconditional&&!nop) {
5553       if(!only32)
5554       {
5555         assert(s1h>=0);
5556         if((opcode[i]&0x2f)==4) // BEQ
5557         {
5558           if(s2h>=0) emit_cmp(s1h,s2h);
5559           else emit_test(s1h,s1h);
5560           nottaken1=(int)out;
5561           emit_jne(2);
5562         }
5563         if((opcode[i]&0x2f)==5) // BNE
5564         {
5565           if(s2h>=0) emit_cmp(s1h,s2h);
5566           else emit_test(s1h,s1h);
5567           taken=(int)out;
5568           emit_jne(1);
5569         }
5570         if((opcode[i]&0x2f)==6) // BLEZ
5571         {
5572           emit_test(s1h,s1h);
5573           taken=(int)out;
5574           emit_js(1);
5575           nottaken1=(int)out;
5576           emit_jne(2);
5577         }
5578         if((opcode[i]&0x2f)==7) // BGTZ
5579         {
5580           emit_test(s1h,s1h);
5581           nottaken1=(int)out;
5582           emit_js(2);
5583           taken=(int)out;
5584           emit_jne(1);
5585         }
5586       } // if(!only32)
5587           
5588       //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5589       assert(s1l>=0);
5590       if((opcode[i]&0x2f)==4) // BEQ
5591       {
5592         if(s2l>=0) emit_cmp(s1l,s2l);
5593         else emit_test(s1l,s1l);
5594         nottaken=(int)out;
5595         emit_jne(2);
5596       }
5597       if((opcode[i]&0x2f)==5) // BNE
5598       {
5599         if(s2l>=0) emit_cmp(s1l,s2l);
5600         else emit_test(s1l,s1l);
5601         nottaken=(int)out;
5602         emit_jeq(2);
5603       }
5604       if((opcode[i]&0x2f)==6) // BLEZ
5605       {
5606         emit_cmpimm(s1l,1);
5607         nottaken=(int)out;
5608         emit_jge(2);
5609       }
5610       if((opcode[i]&0x2f)==7) // BGTZ
5611       {
5612         emit_cmpimm(s1l,1);
5613         nottaken=(int)out;
5614         emit_jl(2);
5615       }
5616     } // if(!unconditional)
5617     int adj;
5618     uint64_t ds_unneeded=branch_regs[i].u;
5619     uint64_t ds_unneeded_upper=branch_regs[i].uu;
5620     ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
5621     ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
5622     if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
5623     ds_unneeded|=1;
5624     ds_unneeded_upper|=1;
5625     // branch taken
5626     if(!nop) {
5627       if(taken) set_jump_target(taken,(int)out);
5628       assem_debug("1:\n");
5629       wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5630                     ds_unneeded,ds_unneeded_upper);
5631       // load regs
5632       load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5633       address_generation(i+1,&branch_regs[i],0);
5634       load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
5635       ds_assemble(i+1,&branch_regs[i]);
5636       cc=get_reg(branch_regs[i].regmap,CCREG);
5637       if(cc==-1) {
5638         emit_loadreg(CCREG,cc=HOST_CCREG);
5639         // CHECK: Is the following instruction (fall thru) allocated ok?
5640       }
5641       assert(cc==HOST_CCREG);
5642       store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5643       do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
5644       assem_debug("cycle count (adj)\n");
5645       if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5646       load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5647       if(internal)
5648         assem_debug("branch: internal\n");
5649       else
5650         assem_debug("branch: external\n");
5651       if(internal&&is_ds[(ba[i]-start)>>2]) {
5652         ds_assemble_entry(i);
5653       }
5654       else {
5655         add_to_linker((int)out,ba[i],internal);
5656         emit_jmp(0);
5657       }
5658     }
5659     // branch not taken
5660     cop1_usable=prev_cop1_usable;
5661     if(!unconditional) {
5662       if(nottaken1) set_jump_target(nottaken1,(int)out);
5663       set_jump_target(nottaken,(int)out);
5664       assem_debug("2:\n");
5665       if(!likely[i]) {
5666         wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5667                       ds_unneeded,ds_unneeded_upper);
5668         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5669         address_generation(i+1,&branch_regs[i],0);
5670         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5671         ds_assemble(i+1,&branch_regs[i]);
5672       }
5673       cc=get_reg(branch_regs[i].regmap,CCREG);
5674       if(cc==-1&&!likely[i]) {
5675         // Cycle count isn't in a register, temporarily load it then write it out
5676         emit_loadreg(CCREG,HOST_CCREG);
5677         emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
5678         int jaddr=(int)out;
5679         emit_jns(0);
5680         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5681         emit_storereg(CCREG,HOST_CCREG);
5682       }
5683       else{
5684         cc=get_reg(i_regmap,CCREG);
5685         assert(cc==HOST_CCREG);
5686         emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
5687         int jaddr=(int)out;
5688         emit_jns(0);
5689         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
5690       }
5691     }
5692   }
5693 }
5694
5695 void sjump_assemble(int i,struct regstat *i_regs)
5696 {
5697   signed char *i_regmap=i_regs->regmap;
5698   int cc;
5699   int match;
5700   match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5701   assem_debug("smatch=%d\n",match);
5702   int s1h,s1l;
5703   int prev_cop1_usable=cop1_usable;
5704   int unconditional=0,nevertaken=0;
5705   int only32=0;
5706   int invert=0;
5707   int internal=internal_branch(branch_regs[i].is32,ba[i]);
5708   if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5709   if(!match) invert=1;
5710   #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5711   if(i>(ba[i]-start)>>2) invert=1;
5712   #endif
5713
5714   //if(opcode2[i]>=0x10) return; // FIXME (BxxZAL)
5715   //assert(opcode2[i]<0x10||rs1[i]==0); // FIXME (BxxZAL)
5716
5717   if(ooo[i]) {
5718     s1l=get_reg(branch_regs[i].regmap,rs1[i]);
5719     s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
5720   }
5721   else {
5722     s1l=get_reg(i_regmap,rs1[i]);
5723     s1h=get_reg(i_regmap,rs1[i]|64);
5724   }
5725   if(rs1[i]==0)
5726   {
5727     if(opcode2[i]&1) unconditional=1;
5728     else nevertaken=1;
5729     // These are never taken (r0 is never less than zero)
5730     //assert(opcode2[i]!=0);
5731     //assert(opcode2[i]!=2);
5732     //assert(opcode2[i]!=0x10);
5733     //assert(opcode2[i]!=0x12);
5734   }
5735   else {
5736     only32=(regs[i].was32>>rs1[i])&1;
5737   }
5738
5739   if(ooo[i]) {
5740     // Out of order execution (delay slot first)
5741     //printf("OOOE\n");
5742     address_generation(i+1,i_regs,regs[i].regmap_entry);
5743     ds_assemble(i+1,i_regs);
5744     int adj;
5745     uint64_t bc_unneeded=branch_regs[i].u;
5746     uint64_t bc_unneeded_upper=branch_regs[i].uu;
5747     bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
5748     bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
5749     bc_unneeded|=1;
5750     bc_unneeded_upper|=1;
5751     wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5752                   bc_unneeded,bc_unneeded_upper);
5753     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs1[i]);
5754     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5755     if(rt1[i]==31) {
5756       int rt,return_address;
5757       rt=get_reg(branch_regs[i].regmap,31);
5758       assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5759       if(rt>=0) {
5760         // Save the PC even if the branch is not taken
5761         return_address=start+i*4+8;
5762         emit_movimm(return_address,rt); // PC into link register
5763         #ifdef IMM_PREFETCH
5764         if(!nevertaken) emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5765         #endif
5766       }
5767     }
5768     cc=get_reg(branch_regs[i].regmap,CCREG);
5769     assert(cc==HOST_CCREG);
5770     if(unconditional) 
5771       store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5772     //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
5773     assem_debug("cycle count (adj)\n");
5774     if(unconditional) {
5775       do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5776       if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
5777         if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5778         load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5779         if(internal)
5780           assem_debug("branch: internal\n");
5781         else
5782           assem_debug("branch: external\n");
5783         if(internal&&is_ds[(ba[i]-start)>>2]) {
5784           ds_assemble_entry(i);
5785         }
5786         else {
5787           add_to_linker((int)out,ba[i],internal);
5788           emit_jmp(0);
5789         }
5790         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5791         if(((u_int)out)&7) emit_addnop(0);
5792         #endif
5793       }
5794     }
5795     else if(nevertaken) {
5796       emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
5797       int jaddr=(int)out;
5798       emit_jns(0);
5799       add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5800     }
5801     else {
5802       int nottaken=0;
5803       do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
5804       if(adj&&!invert) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5805       if(!only32)
5806       {
5807         assert(s1h>=0);
5808         if((opcode2[i]&0xf)==0) // BLTZ/BLTZAL
5809         {
5810           emit_test(s1h,s1h);
5811           if(invert){
5812             nottaken=(int)out;
5813             emit_jns(1);
5814           }else{
5815             add_to_linker((int)out,ba[i],internal);
5816             emit_js(0);
5817           }
5818         }
5819         if((opcode2[i]&0xf)==1) // BGEZ/BLTZAL
5820         {
5821           emit_test(s1h,s1h);
5822           if(invert){
5823             nottaken=(int)out;
5824             emit_js(1);
5825           }else{
5826             add_to_linker((int)out,ba[i],internal);
5827             emit_jns(0);
5828           }
5829         }
5830       } // if(!only32)
5831       else
5832       {
5833         assert(s1l>=0);
5834         if((opcode2[i]&0xf)==0) // BLTZ/BLTZAL
5835         {
5836           emit_test(s1l,s1l);
5837           if(invert){
5838             nottaken=(int)out;
5839             emit_jns(1);
5840           }else{
5841             add_to_linker((int)out,ba[i],internal);
5842             emit_js(0);
5843           }
5844         }
5845         if((opcode2[i]&0xf)==1) // BGEZ/BLTZAL
5846         {
5847           emit_test(s1l,s1l);
5848           if(invert){
5849             nottaken=(int)out;
5850             emit_js(1);
5851           }else{
5852             add_to_linker((int)out,ba[i],internal);
5853             emit_jns(0);
5854           }
5855         }
5856       } // if(!only32)
5857           
5858       if(invert) {
5859         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5860         if(match&&(!internal||!is_ds[(ba[i]-start)>>2])) {
5861           if(adj) {
5862             emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5863             add_to_linker((int)out,ba[i],internal);
5864           }else{
5865             emit_addnop(13);
5866             add_to_linker((int)out,ba[i],internal*2);
5867           }
5868           emit_jmp(0);
5869         }else
5870         #endif
5871         {
5872           if(adj) emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5873           store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5874           load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5875           if(internal)
5876             assem_debug("branch: internal\n");
5877           else
5878             assem_debug("branch: external\n");
5879           if(internal&&is_ds[(ba[i]-start)>>2]) {
5880             ds_assemble_entry(i);
5881           }
5882           else {
5883             add_to_linker((int)out,ba[i],internal);
5884             emit_jmp(0);
5885           }
5886         }
5887         set_jump_target(nottaken,(int)out);
5888       }
5889
5890       if(adj) {
5891         if(!invert) emit_addimm(cc,CLOCK_DIVIDER*adj,cc);
5892       }
5893     } // (!unconditional)
5894   } // if(ooo)
5895   else
5896   {
5897     // In-order execution (branch first)
5898     //printf("IOE\n");
5899     int nottaken=0;
5900     if(rt1[i]==31) {
5901       int rt,return_address;
5902       rt=get_reg(branch_regs[i].regmap,31);
5903       if(rt>=0) {
5904         // Save the PC even if the branch is not taken
5905         return_address=start+i*4+8;
5906         emit_movimm(return_address,rt); // PC into link register
5907         #ifdef IMM_PREFETCH
5908         emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5909         #endif
5910       }
5911     }
5912     if(!unconditional) {
5913       //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5914       if(!only32)
5915       {
5916         assert(s1h>=0);
5917         if((opcode2[i]&0x0d)==0) // BLTZ/BLTZL/BLTZAL/BLTZALL
5918         {
5919           emit_test(s1h,s1h);
5920           nottaken=(int)out;
5921           emit_jns(1);
5922         }
5923         if((opcode2[i]&0x0d)==1) // BGEZ/BGEZL/BGEZAL/BGEZALL
5924         {
5925           emit_test(s1h,s1h);
5926           nottaken=(int)out;
5927           emit_js(1);
5928         }
5929       } // if(!only32)
5930       else
5931       {
5932         assert(s1l>=0);
5933         if((opcode2[i]&0x0d)==0) // BLTZ/BLTZL/BLTZAL/BLTZALL
5934         {
5935           emit_test(s1l,s1l);
5936           nottaken=(int)out;
5937           emit_jns(1);
5938         }
5939         if((opcode2[i]&0x0d)==1) // BGEZ/BGEZL/BGEZAL/BGEZALL
5940         {
5941           emit_test(s1l,s1l);
5942           nottaken=(int)out;
5943           emit_js(1);
5944         }
5945       }
5946     } // if(!unconditional)
5947     int adj;
5948     uint64_t ds_unneeded=branch_regs[i].u;
5949     uint64_t ds_unneeded_upper=branch_regs[i].uu;
5950     ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
5951     ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
5952     if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
5953     ds_unneeded|=1;
5954     ds_unneeded_upper|=1;
5955     // branch taken
5956     if(!nevertaken) {
5957       //assem_debug("1:\n");
5958       wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5959                     ds_unneeded,ds_unneeded_upper);
5960       // load regs
5961       load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5962       address_generation(i+1,&branch_regs[i],0);
5963       load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
5964       ds_assemble(i+1,&branch_regs[i]);
5965       cc=get_reg(branch_regs[i].regmap,CCREG);
5966       if(cc==-1) {
5967         emit_loadreg(CCREG,cc=HOST_CCREG);
5968         // CHECK: Is the following instruction (fall thru) allocated ok?
5969       }
5970       assert(cc==HOST_CCREG);
5971       store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5972       do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
5973       assem_debug("cycle count (adj)\n");
5974       if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5975       load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5976       if(internal)
5977         assem_debug("branch: internal\n");
5978       else
5979         assem_debug("branch: external\n");
5980       if(internal&&is_ds[(ba[i]-start)>>2]) {
5981         ds_assemble_entry(i);
5982       }
5983       else {
5984         add_to_linker((int)out,ba[i],internal);
5985         emit_jmp(0);
5986       }
5987     }
5988     // branch not taken
5989     cop1_usable=prev_cop1_usable;
5990     if(!unconditional) {
5991       set_jump_target(nottaken,(int)out);
5992       assem_debug("1:\n");
5993       if(!likely[i]) {
5994         wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5995                       ds_unneeded,ds_unneeded_upper);
5996         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5997         address_generation(i+1,&branch_regs[i],0);
5998         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5999         ds_assemble(i+1,&branch_regs[i]);
6000       }
6001       cc=get_reg(branch_regs[i].regmap,CCREG);
6002       if(cc==-1&&!likely[i]) {
6003         // Cycle count isn't in a register, temporarily load it then write it out
6004         emit_loadreg(CCREG,HOST_CCREG);
6005         emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
6006         int jaddr=(int)out;
6007         emit_jns(0);
6008         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
6009         emit_storereg(CCREG,HOST_CCREG);
6010       }
6011       else{
6012         cc=get_reg(i_regmap,CCREG);
6013         assert(cc==HOST_CCREG);
6014         emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
6015         int jaddr=(int)out;
6016         emit_jns(0);
6017         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
6018       }
6019     }
6020   }
6021 }
6022
6023 void fjump_assemble(int i,struct regstat *i_regs)
6024 {
6025   signed char *i_regmap=i_regs->regmap;
6026   int cc;
6027   int match;
6028   match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6029   assem_debug("fmatch=%d\n",match);
6030   int fs,cs;
6031   int eaddr;
6032   int invert=0;
6033   int internal=internal_branch(branch_regs[i].is32,ba[i]);
6034   if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
6035   if(!match) invert=1;
6036   #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
6037   if(i>(ba[i]-start)>>2) invert=1;
6038   #endif
6039
6040   if(ooo[i]) {
6041     fs=get_reg(branch_regs[i].regmap,FSREG);
6042     address_generation(i+1,i_regs,regs[i].regmap_entry); // Is this okay?
6043   }
6044   else {
6045     fs=get_reg(i_regmap,FSREG);
6046   }
6047
6048   // Check cop1 unusable
6049   if(!cop1_usable) {
6050     cs=get_reg(i_regmap,CSREG);
6051     assert(cs>=0);
6052     emit_testimm(cs,0x20000000);
6053     eaddr=(int)out;
6054     emit_jeq(0);
6055     add_stub(FP_STUB,eaddr,(int)out,i,cs,(int)i_regs,0,0);
6056     cop1_usable=1;
6057   }
6058
6059   if(ooo[i]) {
6060     // Out of order execution (delay slot first)
6061     //printf("OOOE\n");
6062     ds_assemble(i+1,i_regs);
6063     int adj;
6064     uint64_t bc_unneeded=branch_regs[i].u;
6065     uint64_t bc_unneeded_upper=branch_regs[i].uu;
6066     bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
6067     bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
6068     bc_unneeded|=1;
6069     bc_unneeded_upper|=1;
6070     wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6071                   bc_unneeded,bc_unneeded_upper);
6072     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs1[i]);
6073     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
6074     cc=get_reg(branch_regs[i].regmap,CCREG);
6075     assert(cc==HOST_CCREG);
6076     do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
6077     assem_debug("cycle count (adj)\n");
6078     if(1) {
6079       int nottaken=0;
6080       if(adj&&!invert) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
6081       if(1) {
6082         assert(fs>=0);
6083         emit_testimm(fs,0x800000);
6084         if(source[i]&0x10000) // BC1T
6085         {
6086           if(invert){
6087             nottaken=(int)out;
6088             emit_jeq(1);
6089           }else{
6090             add_to_linker((int)out,ba[i],internal);
6091             emit_jne(0);
6092           }
6093         }
6094         else // BC1F
6095           if(invert){
6096             nottaken=(int)out;
6097             emit_jne(1);
6098           }else{
6099             add_to_linker((int)out,ba[i],internal);
6100             emit_jeq(0);
6101           }
6102         {
6103         }
6104       } // if(!only32)
6105           
6106       if(invert) {
6107         if(adj) emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
6108         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
6109         else if(match) emit_addnop(13);
6110         #endif
6111         store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6112         load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6113         if(internal)
6114           assem_debug("branch: internal\n");
6115         else
6116           assem_debug("branch: external\n");
6117         if(internal&&is_ds[(ba[i]-start)>>2]) {
6118           ds_assemble_entry(i);
6119         }
6120         else {
6121           add_to_linker((int)out,ba[i],internal);
6122           emit_jmp(0);
6123         }
6124         set_jump_target(nottaken,(int)out);
6125       }
6126
6127       if(adj) {
6128         if(!invert) emit_addimm(cc,CLOCK_DIVIDER*adj,cc);
6129       }
6130     } // (!unconditional)
6131   } // if(ooo)
6132   else
6133   {
6134     // In-order execution (branch first)
6135     //printf("IOE\n");
6136     int nottaken=0;
6137     if(1) {
6138       //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
6139       if(1) {
6140         assert(fs>=0);
6141         emit_testimm(fs,0x800000);
6142         if(source[i]&0x10000) // BC1T
6143         {
6144           nottaken=(int)out;
6145           emit_jeq(1);
6146         }
6147         else // BC1F
6148         {
6149           nottaken=(int)out;
6150           emit_jne(1);
6151         }
6152       }
6153     } // if(!unconditional)
6154     int adj;
6155     uint64_t ds_unneeded=branch_regs[i].u;
6156     uint64_t ds_unneeded_upper=branch_regs[i].uu;
6157     ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6158     ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6159     if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
6160     ds_unneeded|=1;
6161     ds_unneeded_upper|=1;
6162     // branch taken
6163     //assem_debug("1:\n");
6164     wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6165                   ds_unneeded,ds_unneeded_upper);
6166     // load regs
6167     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
6168     address_generation(i+1,&branch_regs[i],0);
6169     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
6170     ds_assemble(i+1,&branch_regs[i]);
6171     cc=get_reg(branch_regs[i].regmap,CCREG);
6172     if(cc==-1) {
6173       emit_loadreg(CCREG,cc=HOST_CCREG);
6174       // CHECK: Is the following instruction (fall thru) allocated ok?
6175     }
6176     assert(cc==HOST_CCREG);
6177     store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6178     do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
6179     assem_debug("cycle count (adj)\n");
6180     if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
6181     load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6182     if(internal)
6183       assem_debug("branch: internal\n");
6184     else
6185       assem_debug("branch: external\n");
6186     if(internal&&is_ds[(ba[i]-start)>>2]) {
6187       ds_assemble_entry(i);
6188     }
6189     else {
6190       add_to_linker((int)out,ba[i],internal);
6191       emit_jmp(0);
6192     }
6193
6194     // branch not taken
6195     if(1) { // <- FIXME (don't need this)
6196       set_jump_target(nottaken,(int)out);
6197       assem_debug("1:\n");
6198       if(!likely[i]) {
6199         wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6200                       ds_unneeded,ds_unneeded_upper);
6201         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
6202         address_generation(i+1,&branch_regs[i],0);
6203         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
6204         ds_assemble(i+1,&branch_regs[i]);
6205       }
6206       cc=get_reg(branch_regs[i].regmap,CCREG);
6207       if(cc==-1&&!likely[i]) {
6208         // Cycle count isn't in a register, temporarily load it then write it out
6209         emit_loadreg(CCREG,HOST_CCREG);
6210         emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
6211         int jaddr=(int)out;
6212         emit_jns(0);
6213         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
6214         emit_storereg(CCREG,HOST_CCREG);
6215       }
6216       else{
6217         cc=get_reg(i_regmap,CCREG);
6218         assert(cc==HOST_CCREG);
6219         emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
6220         int jaddr=(int)out;
6221         emit_jns(0);
6222         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
6223       }
6224     }
6225   }
6226 }
6227
6228 static void pagespan_assemble(int i,struct regstat *i_regs)
6229 {
6230   int s1l=get_reg(i_regs->regmap,rs1[i]);
6231   int s1h=get_reg(i_regs->regmap,rs1[i]|64);
6232   int s2l=get_reg(i_regs->regmap,rs2[i]);
6233   int s2h=get_reg(i_regs->regmap,rs2[i]|64);
6234   void *nt_branch=NULL;
6235   int taken=0;
6236   int nottaken=0;
6237   int unconditional=0;
6238   if(rs1[i]==0)
6239   {
6240     s1l=s2l;s1h=s2h;
6241     s2l=s2h=-1;
6242   }
6243   else if(rs2[i]==0)
6244   {
6245     s2l=s2h=-1;
6246   }
6247   if((i_regs->is32>>rs1[i])&(i_regs->is32>>rs2[i])&1) {
6248     s1h=s2h=-1;
6249   }
6250   int hr=0;
6251   int addr,alt,ntaddr;
6252   if(i_regs->regmap[HOST_BTREG]<0) {addr=HOST_BTREG;}
6253   else {
6254     while(hr<HOST_REGS)
6255     {
6256       if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
6257          (i_regs->regmap[hr]&63)!=rs1[i] &&
6258          (i_regs->regmap[hr]&63)!=rs2[i] )
6259       {
6260         addr=hr++;break;
6261       }
6262       hr++;
6263     }
6264   }
6265   while(hr<HOST_REGS)
6266   {
6267     if(hr!=EXCLUDE_REG && hr!=HOST_CCREG && hr!=HOST_BTREG &&
6268        (i_regs->regmap[hr]&63)!=rs1[i] &&
6269        (i_regs->regmap[hr]&63)!=rs2[i] )
6270     {
6271       alt=hr++;break;
6272     }
6273     hr++;
6274   }
6275   if((opcode[i]&0x2E)==6) // BLEZ/BGTZ needs another register
6276   {
6277     while(hr<HOST_REGS)
6278     {
6279       if(hr!=EXCLUDE_REG && hr!=HOST_CCREG && hr!=HOST_BTREG &&
6280          (i_regs->regmap[hr]&63)!=rs1[i] &&
6281          (i_regs->regmap[hr]&63)!=rs2[i] )
6282       {
6283         ntaddr=hr;break;
6284       }
6285       hr++;
6286     }
6287   }
6288   assert(hr<HOST_REGS);
6289   if((opcode[i]&0x2e)==4||opcode[i]==0x11) { // BEQ/BNE/BEQL/BNEL/BC1
6290     load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,CCREG,CCREG);
6291   }
6292   emit_addimm(HOST_CCREG,CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
6293   if(opcode[i]==2) // J
6294   {
6295     unconditional=1;
6296   }
6297   if(opcode[i]==3) // JAL
6298   {
6299     // TODO: mini_ht
6300     int rt=get_reg(i_regs->regmap,31);
6301     emit_movimm(start+i*4+8,rt);
6302     unconditional=1;
6303   }
6304   if(opcode[i]==0&&(opcode2[i]&0x3E)==8) // JR/JALR
6305   {
6306     emit_mov(s1l,addr);
6307     if(opcode2[i]==9) // JALR
6308     {
6309       int rt=get_reg(i_regs->regmap,rt1[i]);
6310       emit_movimm(start+i*4+8,rt);
6311     }
6312   }
6313   if((opcode[i]&0x3f)==4) // BEQ
6314   {
6315     if(rs1[i]==rs2[i])
6316     {
6317       unconditional=1;
6318     }
6319     else
6320     #ifdef HAVE_CMOV_IMM
6321     if(s1h<0) {
6322       if(s2l>=0) emit_cmp(s1l,s2l);
6323       else emit_test(s1l,s1l);
6324       emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
6325     }
6326     else
6327     #endif
6328     {
6329       assert(s1l>=0);
6330       emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
6331       if(s1h>=0) {
6332         if(s2h>=0) emit_cmp(s1h,s2h);
6333         else emit_test(s1h,s1h);
6334         emit_cmovne_reg(alt,addr);
6335       }
6336       if(s2l>=0) emit_cmp(s1l,s2l);
6337       else emit_test(s1l,s1l);
6338       emit_cmovne_reg(alt,addr);
6339     }
6340   }
6341   if((opcode[i]&0x3f)==5) // BNE
6342   {
6343     #ifdef HAVE_CMOV_IMM
6344     if(s1h<0) {
6345       if(s2l>=0) emit_cmp(s1l,s2l);
6346       else emit_test(s1l,s1l);
6347       emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
6348     }
6349     else
6350     #endif
6351     {
6352       assert(s1l>=0);
6353       emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
6354       if(s1h>=0) {
6355         if(s2h>=0) emit_cmp(s1h,s2h);
6356         else emit_test(s1h,s1h);
6357         emit_cmovne_reg(alt,addr);
6358       }
6359       if(s2l>=0) emit_cmp(s1l,s2l);
6360       else emit_test(s1l,s1l);
6361       emit_cmovne_reg(alt,addr);
6362     }
6363   }
6364   if((opcode[i]&0x3f)==0x14) // BEQL
6365   {
6366     if(s1h>=0) {
6367       if(s2h>=0) emit_cmp(s1h,s2h);
6368       else emit_test(s1h,s1h);
6369       nottaken=(int)out;
6370       emit_jne(0);
6371     }
6372     if(s2l>=0) emit_cmp(s1l,s2l);
6373     else emit_test(s1l,s1l);
6374     if(nottaken) set_jump_target(nottaken,(int)out);
6375     nottaken=(int)out;
6376     emit_jne(0);
6377   }
6378   if((opcode[i]&0x3f)==0x15) // BNEL
6379   {
6380     if(s1h>=0) {
6381       if(s2h>=0) emit_cmp(s1h,s2h);
6382       else emit_test(s1h,s1h);
6383       taken=(int)out;
6384       emit_jne(0);
6385     }
6386     if(s2l>=0) emit_cmp(s1l,s2l);
6387     else emit_test(s1l,s1l);
6388     nottaken=(int)out;
6389     emit_jeq(0);
6390     if(taken) set_jump_target(taken,(int)out);
6391   }
6392   if((opcode[i]&0x3f)==6) // BLEZ
6393   {
6394     emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
6395     emit_cmpimm(s1l,1);
6396     if(s1h>=0) emit_mov(addr,ntaddr);
6397     emit_cmovl_reg(alt,addr);
6398     if(s1h>=0) {
6399       emit_test(s1h,s1h);
6400       emit_cmovne_reg(ntaddr,addr);
6401       emit_cmovs_reg(alt,addr);
6402     }
6403   }
6404   if((opcode[i]&0x3f)==7) // BGTZ
6405   {
6406     emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
6407     emit_cmpimm(s1l,1);
6408     if(s1h>=0) emit_mov(addr,alt);
6409     emit_cmovl_reg(ntaddr,addr);
6410     if(s1h>=0) {
6411       emit_test(s1h,s1h);
6412       emit_cmovne_reg(alt,addr);
6413       emit_cmovs_reg(ntaddr,addr);
6414     }
6415   }
6416   if((opcode[i]&0x3f)==0x16) // BLEZL
6417   {
6418     assert((opcode[i]&0x3f)!=0x16);
6419   }
6420   if((opcode[i]&0x3f)==0x17) // BGTZL
6421   {
6422     assert((opcode[i]&0x3f)!=0x17);
6423   }
6424   assert(opcode[i]!=1); // BLTZ/BGEZ
6425
6426   //FIXME: Check CSREG
6427   if(opcode[i]==0x11 && opcode2[i]==0x08 ) {
6428     if((source[i]&0x30000)==0) // BC1F
6429     {
6430       emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
6431       emit_testimm(s1l,0x800000);
6432       emit_cmovne_reg(alt,addr);
6433     }
6434     if((source[i]&0x30000)==0x10000) // BC1T
6435     {
6436       emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
6437       emit_testimm(s1l,0x800000);
6438       emit_cmovne_reg(alt,addr);
6439     }
6440     if((source[i]&0x30000)==0x20000) // BC1FL
6441     {
6442       emit_testimm(s1l,0x800000);
6443       nottaken=(int)out;
6444       emit_jne(0);
6445     }
6446     if((source[i]&0x30000)==0x30000) // BC1TL
6447     {
6448       emit_testimm(s1l,0x800000);
6449       nottaken=(int)out;
6450       emit_jeq(0);
6451     }
6452   }
6453
6454   assert(i_regs->regmap[HOST_CCREG]==CCREG);
6455   wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
6456   if(likely[i]||unconditional)
6457   {
6458     emit_movimm(ba[i],HOST_BTREG);
6459   }
6460   else if(addr!=HOST_BTREG)
6461   {
6462     emit_mov(addr,HOST_BTREG);
6463   }
6464   void *branch_addr=out;
6465   emit_jmp(0);
6466   int target_addr=start+i*4+5;
6467   void *stub=out;
6468   void *compiled_target_addr=check_addr(target_addr);
6469   emit_extjump_ds((int)branch_addr,target_addr);
6470   if(compiled_target_addr) {
6471     set_jump_target((int)branch_addr,(int)compiled_target_addr);
6472     add_link(target_addr,stub);
6473   }
6474   else set_jump_target((int)branch_addr,(int)stub);
6475   if(likely[i]) {
6476     // Not-taken path
6477     set_jump_target((int)nottaken,(int)out);
6478     wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
6479     void *branch_addr=out;
6480     emit_jmp(0);
6481     int target_addr=start+i*4+8;
6482     void *stub=out;
6483     void *compiled_target_addr=check_addr(target_addr);
6484     emit_extjump_ds((int)branch_addr,target_addr);
6485     if(compiled_target_addr) {
6486       set_jump_target((int)branch_addr,(int)compiled_target_addr);
6487       add_link(target_addr,stub);
6488     }
6489     else set_jump_target((int)branch_addr,(int)stub);
6490   }
6491 }
6492
6493 // Assemble the delay slot for the above
6494 static void pagespan_ds()
6495 {
6496   assem_debug("initial delay slot:\n");
6497   u_int vaddr=start+1;
6498   u_int page=get_page(vaddr);
6499   u_int vpage=get_vpage(vaddr);
6500   ll_add(jump_dirty+vpage,vaddr,(void *)out);
6501   do_dirty_stub_ds();
6502   ll_add(jump_in+page,vaddr,(void *)out);
6503   assert(regs[0].regmap_entry[HOST_CCREG]==CCREG);
6504   if(regs[0].regmap[HOST_CCREG]!=CCREG)
6505     wb_register(CCREG,regs[0].regmap_entry,regs[0].wasdirty,regs[0].was32);
6506   if(regs[0].regmap[HOST_BTREG]!=BTREG)
6507     emit_writeword(HOST_BTREG,(int)&branch_target);
6508   load_regs(regs[0].regmap_entry,regs[0].regmap,regs[0].was32,rs1[0],rs2[0]);
6509   address_generation(0,&regs[0],regs[0].regmap_entry);
6510   if(itype[0]==STORE||itype[0]==STORELR||(opcode[0]&0x3b)==0x39||(opcode[0]&0x3b)==0x3a)
6511     load_regs(regs[0].regmap_entry,regs[0].regmap,regs[0].was32,INVCP,INVCP);
6512   cop1_usable=0;
6513   is_delayslot=0;
6514   switch(itype[0]) {
6515     case ALU:
6516       alu_assemble(0,&regs[0]);break;
6517     case IMM16:
6518       imm16_assemble(0,&regs[0]);break;
6519     case SHIFT:
6520       shift_assemble(0,&regs[0]);break;
6521     case SHIFTIMM:
6522       shiftimm_assemble(0,&regs[0]);break;
6523     case LOAD:
6524       load_assemble(0,&regs[0]);break;
6525     case LOADLR:
6526       loadlr_assemble(0,&regs[0]);break;
6527     case STORE:
6528       store_assemble(0,&regs[0]);break;
6529     case STORELR:
6530       storelr_assemble(0,&regs[0]);break;
6531     case COP0:
6532       cop0_assemble(0,&regs[0]);break;
6533     case COP1:
6534       cop1_assemble(0,&regs[0]);break;
6535     case C1LS:
6536       c1ls_assemble(0,&regs[0]);break;
6537     case COP2:
6538       cop2_assemble(0,&regs[0]);break;
6539     case C2LS:
6540       c2ls_assemble(0,&regs[0]);break;
6541     case C2OP:
6542       c2op_assemble(0,&regs[0]);break;
6543     case FCONV:
6544       fconv_assemble(0,&regs[0]);break;
6545     case FLOAT:
6546       float_assemble(0,&regs[0]);break;
6547     case FCOMP:
6548       fcomp_assemble(0,&regs[0]);break;
6549     case MULTDIV:
6550       multdiv_assemble(0,&regs[0]);break;
6551     case MOV:
6552       mov_assemble(0,&regs[0]);break;
6553     case SYSCALL:
6554     case HLECALL:
6555     case INTCALL:
6556     case SPAN:
6557     case UJUMP:
6558     case RJUMP:
6559     case CJUMP:
6560     case SJUMP:
6561     case FJUMP:
6562       printf("Jump in the delay slot.  This is probably a bug.\n");
6563   }
6564   int btaddr=get_reg(regs[0].regmap,BTREG);
6565   if(btaddr<0) {
6566     btaddr=get_reg(regs[0].regmap,-1);
6567     emit_readword((int)&branch_target,btaddr);
6568   }
6569   assert(btaddr!=HOST_CCREG);
6570   if(regs[0].regmap[HOST_CCREG]!=CCREG) emit_loadreg(CCREG,HOST_CCREG);
6571 #ifdef HOST_IMM8
6572   emit_movimm(start+4,HOST_TEMPREG);
6573   emit_cmp(btaddr,HOST_TEMPREG);
6574 #else
6575   emit_cmpimm(btaddr,start+4);
6576 #endif
6577   int branch=(int)out;
6578   emit_jeq(0);
6579   store_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,-1);
6580   emit_jmp(jump_vaddr_reg[btaddr]);
6581   set_jump_target(branch,(int)out);
6582   store_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,start+4);
6583   load_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,start+4);
6584 }
6585
6586 // Basic liveness analysis for MIPS registers
6587 void unneeded_registers(int istart,int iend,int r)
6588 {
6589   int i;
6590   uint64_t u,uu,b,bu;
6591   uint64_t temp_u,temp_uu;
6592   uint64_t tdep;
6593   if(iend==slen-1) {
6594     u=1;uu=1;
6595   }else{
6596     u=unneeded_reg[iend+1];
6597     uu=unneeded_reg_upper[iend+1];
6598     u=1;uu=1;
6599   }
6600   for (i=iend;i>=istart;i--)
6601   {
6602     //printf("unneeded registers i=%d (%d,%d) r=%d\n",i,istart,iend,r);
6603     if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
6604     {
6605       // If subroutine call, flag return address as a possible branch target
6606       if(rt1[i]==31 && i<slen-2) bt[i+2]=1;
6607       
6608       if(ba[i]<start || ba[i]>=(start+slen*4))
6609       {
6610         // Branch out of this block, flush all regs
6611         u=1;
6612         uu=1;
6613         /* Hexagon hack 
6614         if(itype[i]==UJUMP&&rt1[i]==31)
6615         {
6616           uu=u=0x300C00F; // Discard at, v0-v1, t6-t9
6617         }
6618         if(itype[i]==RJUMP&&rs1[i]==31)
6619         {
6620           uu=u=0x300C0F3; // Discard at, a0-a3, t6-t9
6621         }
6622         if(start>0x80000400&&start<0x80000000+RAM_SIZE) {
6623           if(itype[i]==UJUMP&&rt1[i]==31)
6624           {
6625             //uu=u=0x30300FF0FLL; // Discard at, v0-v1, t0-t9, lo, hi
6626             uu=u=0x300FF0F; // Discard at, v0-v1, t0-t9
6627           }
6628           if(itype[i]==RJUMP&&rs1[i]==31)
6629           {
6630             //uu=u=0x30300FFF3LL; // Discard at, a0-a3, t0-t9, lo, hi
6631             uu=u=0x300FFF3; // Discard at, a0-a3, t0-t9
6632           }
6633         }*/
6634         branch_unneeded_reg[i]=u;
6635         branch_unneeded_reg_upper[i]=uu;
6636         // Merge in delay slot
6637         tdep=(~uu>>rt1[i+1])&1;
6638         u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6639         uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6640         u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6641         uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6642         uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6643         u|=1;uu|=1;
6644         // If branch is "likely" (and conditional)
6645         // then we skip the delay slot on the fall-thru path
6646         if(likely[i]) {
6647           if(i<slen-1) {
6648             u&=unneeded_reg[i+2];
6649             uu&=unneeded_reg_upper[i+2];
6650           }
6651           else
6652           {
6653             u=1;
6654             uu=1;
6655           }
6656         }
6657       }
6658       else
6659       {
6660         // Internal branch, flag target
6661         bt[(ba[i]-start)>>2]=1;
6662         if(ba[i]<=start+i*4) {
6663           // Backward branch
6664           if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
6665           {
6666             // Unconditional branch
6667             temp_u=1;temp_uu=1;
6668           } else {
6669             // Conditional branch (not taken case)
6670             temp_u=unneeded_reg[i+2];
6671             temp_uu=unneeded_reg_upper[i+2];
6672           }
6673           // Merge in delay slot
6674           tdep=(~temp_uu>>rt1[i+1])&1;
6675           temp_u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6676           temp_uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6677           temp_u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6678           temp_uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6679           temp_uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6680           temp_u|=1;temp_uu|=1;
6681           // If branch is "likely" (and conditional)
6682           // then we skip the delay slot on the fall-thru path
6683           if(likely[i]) {
6684             if(i<slen-1) {
6685               temp_u&=unneeded_reg[i+2];
6686               temp_uu&=unneeded_reg_upper[i+2];
6687             }
6688             else
6689             {
6690               temp_u=1;
6691               temp_uu=1;
6692             }
6693           }
6694           tdep=(~temp_uu>>rt1[i])&1;
6695           temp_u|=(1LL<<rt1[i])|(1LL<<rt2[i]);
6696           temp_uu|=(1LL<<rt1[i])|(1LL<<rt2[i]);
6697           temp_u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
6698           temp_uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
6699           temp_uu&=~((tdep<<dep1[i])|(tdep<<dep2[i]));
6700           temp_u|=1;temp_uu|=1;
6701           unneeded_reg[i]=temp_u;
6702           unneeded_reg_upper[i]=temp_uu;
6703           // Only go three levels deep.  This recursion can take an
6704           // excessive amount of time if there are a lot of nested loops.
6705           if(r<2) {
6706             unneeded_registers((ba[i]-start)>>2,i-1,r+1);
6707           }else{
6708             unneeded_reg[(ba[i]-start)>>2]=1;
6709             unneeded_reg_upper[(ba[i]-start)>>2]=1;
6710           }
6711         } /*else*/ if(1) {
6712           if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
6713           {
6714             // Unconditional branch
6715             u=unneeded_reg[(ba[i]-start)>>2];
6716             uu=unneeded_reg_upper[(ba[i]-start)>>2];
6717             branch_unneeded_reg[i]=u;
6718             branch_unneeded_reg_upper[i]=uu;
6719         //u=1;
6720         //uu=1;
6721         //branch_unneeded_reg[i]=u;
6722         //branch_unneeded_reg_upper[i]=uu;
6723             // Merge in delay slot
6724             tdep=(~uu>>rt1[i+1])&1;
6725             u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6726             uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6727             u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6728             uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6729             uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6730             u|=1;uu|=1;
6731           } else {
6732             // Conditional branch
6733             b=unneeded_reg[(ba[i]-start)>>2];
6734             bu=unneeded_reg_upper[(ba[i]-start)>>2];
6735             branch_unneeded_reg[i]=b;
6736             branch_unneeded_reg_upper[i]=bu;
6737         //b=1;
6738         //bu=1;
6739         //branch_unneeded_reg[i]=b;
6740         //branch_unneeded_reg_upper[i]=bu;
6741             // Branch delay slot
6742             tdep=(~uu>>rt1[i+1])&1;
6743             b|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6744             bu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6745             b&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6746             bu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6747             bu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6748             b|=1;bu|=1;
6749             // If branch is "likely" then we skip the
6750             // delay slot on the fall-thru path
6751             if(likely[i]) {
6752               u=b;
6753               uu=bu;
6754               if(i<slen-1) {
6755                 u&=unneeded_reg[i+2];
6756                 uu&=unneeded_reg_upper[i+2];
6757         //u=1;
6758         //uu=1;
6759               }
6760             } else {
6761               u&=b;
6762               uu&=bu;
6763         //u=1;
6764         //uu=1;
6765             }
6766             if(i<slen-1) {
6767               branch_unneeded_reg[i]&=unneeded_reg[i+2];
6768               branch_unneeded_reg_upper[i]&=unneeded_reg_upper[i+2];
6769         //branch_unneeded_reg[i]=1;
6770         //branch_unneeded_reg_upper[i]=1;
6771             } else {
6772               branch_unneeded_reg[i]=1;
6773               branch_unneeded_reg_upper[i]=1;
6774             }
6775           }
6776         }
6777       }
6778     }
6779     else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
6780     {
6781       // SYSCALL instruction (software interrupt)
6782       u=1;
6783       uu=1;
6784     }
6785     else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
6786     {
6787       // ERET instruction (return from interrupt)
6788       u=1;
6789       uu=1;
6790     }
6791     //u=uu=1; // DEBUG
6792     tdep=(~uu>>rt1[i])&1;
6793     // Written registers are unneeded
6794     u|=1LL<<rt1[i];
6795     u|=1LL<<rt2[i];
6796     uu|=1LL<<rt1[i];
6797     uu|=1LL<<rt2[i];
6798     // Accessed registers are needed
6799     u&=~(1LL<<rs1[i]);
6800     u&=~(1LL<<rs2[i]);
6801     uu&=~(1LL<<us1[i]);
6802     uu&=~(1LL<<us2[i]);
6803     // Source-target dependencies
6804     uu&=~(tdep<<dep1[i]);
6805     uu&=~(tdep<<dep2[i]);
6806     // R0 is always unneeded
6807     u|=1;uu|=1;
6808     // Save it
6809     unneeded_reg[i]=u;
6810     unneeded_reg_upper[i]=uu;
6811     /*
6812     printf("ur (%d,%d) %x: ",istart,iend,start+i*4);
6813     printf("U:");
6814     int r;
6815     for(r=1;r<=CCREG;r++) {
6816       if((unneeded_reg[i]>>r)&1) {
6817         if(r==HIREG) printf(" HI");
6818         else if(r==LOREG) printf(" LO");
6819         else printf(" r%d",r);
6820       }
6821     }
6822     printf(" UU:");
6823     for(r=1;r<=CCREG;r++) {
6824       if(((unneeded_reg_upper[i]&~unneeded_reg[i])>>r)&1) {
6825         if(r==HIREG) printf(" HI");
6826         else if(r==LOREG) printf(" LO");
6827         else printf(" r%d",r);
6828       }
6829     }
6830     printf("\n");*/
6831   }
6832 #ifdef FORCE32
6833   for (i=iend;i>=istart;i--)
6834   {
6835     unneeded_reg_upper[i]=branch_unneeded_reg_upper[i]=-1LL;
6836   }
6837 #endif
6838 }
6839
6840 // Identify registers which are likely to contain 32-bit values
6841 // This is used to predict whether any branches will jump to a
6842 // location with 64-bit values in registers.
6843 static void provisional_32bit()
6844 {
6845   int i,j;
6846   uint64_t is32=1;
6847   uint64_t lastbranch=1;
6848   
6849   for(i=0;i<slen;i++)
6850   {
6851     if(i>0) {
6852       if(itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP) {
6853         if(i>1) is32=lastbranch;
6854         else is32=1;
6855       }
6856     }
6857     if(i>1)
6858     {
6859       if(itype[i-2]==CJUMP||itype[i-2]==SJUMP||itype[i-2]==FJUMP) {
6860         if(likely[i-2]) {
6861           if(i>2) is32=lastbranch;
6862           else is32=1;
6863         }
6864       }
6865       if((opcode[i-2]&0x2f)==0x05) // BNE/BNEL
6866       {
6867         if(rs1[i-2]==0||rs2[i-2]==0)
6868         {
6869           if(rs1[i-2]) {
6870             is32|=1LL<<rs1[i-2];
6871           }
6872           if(rs2[i-2]) {
6873             is32|=1LL<<rs2[i-2];
6874           }
6875         }
6876       }
6877     }
6878     // If something jumps here with 64-bit values
6879     // then promote those registers to 64 bits
6880     if(bt[i])
6881     {
6882       uint64_t temp_is32=is32;
6883       for(j=i-1;j>=0;j--)
6884       {
6885         if(ba[j]==start+i*4) 
6886           //temp_is32&=branch_regs[j].is32;
6887           temp_is32&=p32[j];
6888       }
6889       for(j=i;j<slen;j++)
6890       {
6891         if(ba[j]==start+i*4) 
6892           temp_is32=1;
6893       }
6894       is32=temp_is32;
6895     }
6896     int type=itype[i];
6897     int op=opcode[i];
6898     int op2=opcode2[i];
6899     int rt=rt1[i];
6900     int s1=rs1[i];
6901     int s2=rs2[i];
6902     if(type==UJUMP||type==RJUMP||type==CJUMP||type==SJUMP||type==FJUMP) {
6903       // Branches don't write registers, consider the delay slot instead.
6904       type=itype[i+1];
6905       op=opcode[i+1];
6906       op2=opcode2[i+1];
6907       rt=rt1[i+1];
6908       s1=rs1[i+1];
6909       s2=rs2[i+1];
6910       lastbranch=is32;
6911     }
6912     switch(type) {
6913       case LOAD:
6914         if(opcode[i]==0x27||opcode[i]==0x37|| // LWU/LD
6915            opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
6916           is32&=~(1LL<<rt);
6917         else
6918           is32|=1LL<<rt;
6919         break;
6920       case STORE:
6921       case STORELR:
6922         break;
6923       case LOADLR:
6924         if(op==0x1a||op==0x1b) is32&=~(1LL<<rt); // LDR/LDL
6925         if(op==0x22) is32|=1LL<<rt; // LWL
6926         break;
6927       case IMM16:
6928         if (op==0x08||op==0x09|| // ADDI/ADDIU
6929             op==0x0a||op==0x0b|| // SLTI/SLTIU
6930             op==0x0c|| // ANDI
6931             op==0x0f)  // LUI
6932         {
6933           is32|=1LL<<rt;
6934         }
6935         if(op==0x18||op==0x19) { // DADDI/DADDIU
6936           is32&=~(1LL<<rt);
6937           //if(imm[i]==0)
6938           //  is32|=((is32>>s1)&1LL)<<rt;
6939         }
6940         if(op==0x0d||op==0x0e) { // ORI/XORI
6941           uint64_t sr=((is32>>s1)&1LL);
6942           is32&=~(1LL<<rt);
6943           is32|=sr<<rt;
6944         }
6945         break;
6946       case UJUMP:
6947         break;
6948       case RJUMP:
6949         break;
6950       case CJUMP:
6951         break;
6952       case SJUMP:
6953         break;
6954       case FJUMP:
6955         break;
6956       case ALU:
6957         if(op2>=0x20&&op2<=0x23) { // ADD/ADDU/SUB/SUBU
6958           is32|=1LL<<rt;
6959         }
6960         if(op2==0x2a||op2==0x2b) { // SLT/SLTU
6961           is32|=1LL<<rt;
6962         }
6963         else if(op2>=0x24&&op2<=0x27) { // AND/OR/XOR/NOR
6964           uint64_t sr=((is32>>s1)&(is32>>s2)&1LL);
6965           is32&=~(1LL<<rt);
6966           is32|=sr<<rt;
6967         }
6968         else if(op2>=0x2c&&op2<=0x2d) { // DADD/DADDU
6969           if(s1==0&&s2==0) {
6970             is32|=1LL<<rt;
6971           }
6972           else if(s2==0) {
6973             uint64_t sr=((is32>>s1)&1LL);
6974             is32&=~(1LL<<rt);
6975             is32|=sr<<rt;
6976           }
6977           else if(s1==0) {
6978             uint64_t sr=((is32>>s2)&1LL);
6979             is32&=~(1LL<<rt);
6980             is32|=sr<<rt;
6981           }
6982           else {
6983             is32&=~(1LL<<rt);
6984           }
6985         }
6986         else if(op2>=0x2e&&op2<=0x2f) { // DSUB/DSUBU
6987           if(s1==0&&s2==0) {
6988             is32|=1LL<<rt;
6989           }
6990           else if(s2==0) {
6991             uint64_t sr=((is32>>s1)&1LL);
6992             is32&=~(1LL<<rt);
6993             is32|=sr<<rt;
6994           }
6995           else {
6996             is32&=~(1LL<<rt);
6997           }
6998         }
6999         break;
7000       case MULTDIV:
7001         if (op2>=0x1c&&op2<=0x1f) { // DMULT/DMULTU/DDIV/DDIVU
7002           is32&=~((1LL<<HIREG)|(1LL<<LOREG));
7003         }
7004         else {
7005           is32|=(1LL<<HIREG)|(1LL<<LOREG);
7006         }
7007         break;
7008       case MOV:
7009         {
7010           uint64_t sr=((is32>>s1)&1LL);
7011           is32&=~(1LL<<rt);
7012           is32|=sr<<rt;
7013         }
7014         break;
7015       case SHIFT:
7016         if(op2>=0x14&&op2<=0x17) is32&=~(1LL<<rt); // DSLLV/DSRLV/DSRAV
7017         else is32|=1LL<<rt; // SLLV/SRLV/SRAV
7018         break;
7019       case SHIFTIMM:
7020         is32|=1LL<<rt;
7021         // DSLL/DSRL/DSRA/DSLL32/DSRL32 but not DSRA32 have 64-bit result
7022         if(op2>=0x38&&op2<0x3f) is32&=~(1LL<<rt);
7023         break;
7024       case COP0:
7025         if(op2==0) is32|=1LL<<rt; // MFC0
7026         break;
7027       case COP1:
7028       case COP2:
7029         if(op2==0) is32|=1LL<<rt; // MFC1
7030         if(op2==1) is32&=~(1LL<<rt); // DMFC1
7031         if(op2==2) is32|=1LL<<rt; // CFC1
7032         break;
7033       case C1LS:
7034       case C2LS:
7035         break;
7036       case FLOAT:
7037       case FCONV:
7038         break;
7039       case FCOMP:
7040         break;
7041       case C2OP:
7042       case SYSCALL:
7043       case HLECALL:
7044         break;
7045       default:
7046         break;
7047     }
7048     is32|=1;
7049     p32[i]=is32;
7050
7051     if(i>0)
7052     {
7053       if(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)
7054       {
7055         if(rt1[i-1]==31) // JAL/JALR
7056         {
7057           // Subroutine call will return here, don't alloc any registers
7058           is32=1;
7059         }
7060         else if(i+1<slen)
7061         {
7062           // Internal branch will jump here, match registers to caller
7063           is32=0x3FFFFFFFFLL;
7064         }
7065       }
7066     }
7067   }
7068 }
7069
7070 // Identify registers which may be assumed to contain 32-bit values
7071 // and where optimizations will rely on this.
7072 // This is used to determine whether backward branches can safely
7073 // jump to a location with 64-bit values in registers.
7074 static void provisional_r32()
7075 {
7076   u_int r32=0;
7077   int i;
7078   
7079   for (i=slen-1;i>=0;i--)
7080   {
7081     int hr;
7082     if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
7083     {
7084       if(ba[i]<start || ba[i]>=(start+slen*4))
7085       {
7086         // Branch out of this block, don't need anything
7087         r32=0;
7088       }
7089       else
7090       {
7091         // Internal branch
7092         // Need whatever matches the target
7093         // (and doesn't get overwritten by the delay slot instruction)
7094         r32=0;
7095         int t=(ba[i]-start)>>2;
7096         if(ba[i]>start+i*4) {
7097           // Forward branch
7098           //if(!(requires_32bit[t]&~regs[i].was32))
7099           //  r32|=requires_32bit[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
7100           if(!(pr32[t]&~regs[i].was32))
7101             r32|=pr32[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
7102         }else{
7103           // Backward branch
7104           if(!(regs[t].was32&~unneeded_reg_upper[t]&~regs[i].was32))
7105             r32|=regs[t].was32&~unneeded_reg_upper[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
7106         }
7107       }
7108       // Conditional branch may need registers for following instructions
7109       if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
7110       {
7111         if(i<slen-2) {
7112           //r32|=requires_32bit[i+2];
7113           r32|=pr32[i+2];
7114           r32&=regs[i].was32;
7115           // Mark this address as a branch target since it may be called
7116           // upon return from interrupt
7117           //bt[i+2]=1;
7118         }
7119       }
7120       // Merge in delay slot
7121       if(!likely[i]) {
7122         // These are overwritten unless the branch is "likely"
7123         // and the delay slot is nullified if not taken
7124         r32&=~(1LL<<rt1[i+1]);
7125         r32&=~(1LL<<rt2[i+1]);
7126       }
7127       // Assume these are needed (delay slot)
7128       if(us1[i+1]>0)
7129       {
7130         if((regs[i].was32>>us1[i+1])&1) r32|=1LL<<us1[i+1];
7131       }
7132       if(us2[i+1]>0)
7133       {
7134         if((regs[i].was32>>us2[i+1])&1) r32|=1LL<<us2[i+1];
7135       }
7136       if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1))
7137       {
7138         if((regs[i].was32>>dep1[i+1])&1) r32|=1LL<<dep1[i+1];
7139       }
7140       if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1))
7141       {
7142         if((regs[i].was32>>dep2[i+1])&1) r32|=1LL<<dep2[i+1];
7143       }
7144     }
7145     else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
7146     {
7147       // SYSCALL instruction (software interrupt)
7148       r32=0;
7149     }
7150     else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
7151     {
7152       // ERET instruction (return from interrupt)
7153       r32=0;
7154     }
7155     // Check 32 bits
7156     r32&=~(1LL<<rt1[i]);
7157     r32&=~(1LL<<rt2[i]);
7158     if(us1[i]>0)
7159     {
7160       if((regs[i].was32>>us1[i])&1) r32|=1LL<<us1[i];
7161     }
7162     if(us2[i]>0)
7163     {
7164       if((regs[i].was32>>us2[i])&1) r32|=1LL<<us2[i];
7165     }
7166     if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1))
7167     {
7168       if((regs[i].was32>>dep1[i])&1) r32|=1LL<<dep1[i];
7169     }
7170     if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1))
7171     {
7172       if((regs[i].was32>>dep2[i])&1) r32|=1LL<<dep2[i];
7173     }
7174     //requires_32bit[i]=r32;
7175     pr32[i]=r32;
7176     
7177     // Dirty registers which are 32-bit, require 32-bit input
7178     // as they will be written as 32-bit values
7179     for(hr=0;hr<HOST_REGS;hr++)
7180     {
7181       if(regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64) {
7182         if((regs[i].was32>>regs[i].regmap_entry[hr])&(regs[i].wasdirty>>hr)&1) {
7183           if(!((unneeded_reg_upper[i]>>regs[i].regmap_entry[hr])&1))
7184           pr32[i]|=1LL<<regs[i].regmap_entry[hr];
7185           //requires_32bit[i]|=1LL<<regs[i].regmap_entry[hr];
7186         }
7187       }
7188     }
7189   }
7190 }
7191
7192 // Write back dirty registers as soon as we will no longer modify them,
7193 // so that we don't end up with lots of writes at the branches.
7194 void clean_registers(int istart,int iend,int wr)
7195 {
7196   int i;
7197   int r;
7198   u_int will_dirty_i,will_dirty_next,temp_will_dirty;
7199   u_int wont_dirty_i,wont_dirty_next,temp_wont_dirty;
7200   if(iend==slen-1) {
7201     will_dirty_i=will_dirty_next=0;
7202     wont_dirty_i=wont_dirty_next=0;
7203   }else{
7204     will_dirty_i=will_dirty_next=will_dirty[iend+1];
7205     wont_dirty_i=wont_dirty_next=wont_dirty[iend+1];
7206   }
7207   for (i=iend;i>=istart;i--)
7208   {
7209     if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
7210     {
7211       if(ba[i]<start || ba[i]>=(start+slen*4))
7212       {
7213         // Branch out of this block, flush all regs
7214         if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
7215         {
7216           // Unconditional branch
7217           will_dirty_i=0;
7218           wont_dirty_i=0;
7219           // Merge in delay slot (will dirty)
7220           for(r=0;r<HOST_REGS;r++) {
7221             if(r!=EXCLUDE_REG) {
7222               if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7223               if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7224               if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7225               if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7226               if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7227               if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7228               if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7229               if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7230               if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7231               if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7232               if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7233               if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7234               if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7235               if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7236             }
7237           }
7238         }
7239         else
7240         {
7241           // Conditional branch
7242           will_dirty_i=0;
7243           wont_dirty_i=wont_dirty_next;
7244           // Merge in delay slot (will dirty)
7245           for(r=0;r<HOST_REGS;r++) {
7246             if(r!=EXCLUDE_REG) {
7247               if(!likely[i]) {
7248                 // Might not dirty if likely branch is not taken
7249                 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7250                 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7251                 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7252                 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7253                 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7254                 if(branch_regs[i].regmap[r]==0) will_dirty_i&=~(1<<r);
7255                 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7256                 //if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7257                 //if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7258                 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7259                 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7260                 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7261                 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7262                 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7263               }
7264             }
7265           }
7266         }
7267         // Merge in delay slot (wont dirty)
7268         for(r=0;r<HOST_REGS;r++) {
7269           if(r!=EXCLUDE_REG) {
7270             if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7271             if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7272             if((regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7273             if((regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7274             if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7275             if((branch_regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7276             if((branch_regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7277             if((branch_regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7278             if((branch_regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7279             if(branch_regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7280           }
7281         }
7282         if(wr) {
7283           #ifndef DESTRUCTIVE_WRITEBACK
7284           branch_regs[i].dirty&=wont_dirty_i;
7285           #endif
7286           branch_regs[i].dirty|=will_dirty_i;
7287         }
7288       }
7289       else
7290       {
7291         // Internal branch
7292         if(ba[i]<=start+i*4) {
7293           // Backward branch
7294           if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
7295           {
7296             // Unconditional branch
7297             temp_will_dirty=0;
7298             temp_wont_dirty=0;
7299             // Merge in delay slot (will dirty)
7300             for(r=0;r<HOST_REGS;r++) {
7301               if(r!=EXCLUDE_REG) {
7302                 if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7303                 if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7304                 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7305                 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7306                 if((branch_regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7307                 if(branch_regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
7308                 if(branch_regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7309                 if((regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7310                 if((regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7311                 if((regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7312                 if((regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7313                 if((regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7314                 if(regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
7315                 if(regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7316               }
7317             }
7318           } else {
7319             // Conditional branch (not taken case)
7320             temp_will_dirty=will_dirty_next;
7321             temp_wont_dirty=wont_dirty_next;
7322             // Merge in delay slot (will dirty)
7323             for(r=0;r<HOST_REGS;r++) {
7324               if(r!=EXCLUDE_REG) {
7325                 if(!likely[i]) {
7326                   // Will not dirty if likely branch is not taken
7327                   if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7328                   if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7329                   if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7330                   if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7331                   if((branch_regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7332                   if(branch_regs[i].regmap[r]==0) temp_will_dirty&=~(1<<r);
7333                   if(branch_regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7334                   //if((regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7335                   //if((regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7336                   if((regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7337                   if((regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7338                   if((regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7339                   if(regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
7340                   if(regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7341                 }
7342               }
7343             }
7344           }
7345           // Merge in delay slot (wont dirty)
7346           for(r=0;r<HOST_REGS;r++) {
7347             if(r!=EXCLUDE_REG) {
7348               if((regs[i].regmap[r]&63)==rt1[i]) temp_wont_dirty|=1<<r;
7349               if((regs[i].regmap[r]&63)==rt2[i]) temp_wont_dirty|=1<<r;
7350               if((regs[i].regmap[r]&63)==rt1[i+1]) temp_wont_dirty|=1<<r;
7351               if((regs[i].regmap[r]&63)==rt2[i+1]) temp_wont_dirty|=1<<r;
7352               if(regs[i].regmap[r]==CCREG) temp_wont_dirty|=1<<r;
7353               if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_wont_dirty|=1<<r;
7354               if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_wont_dirty|=1<<r;
7355               if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_wont_dirty|=1<<r;
7356               if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_wont_dirty|=1<<r;
7357               if(branch_regs[i].regmap[r]==CCREG) temp_wont_dirty|=1<<r;
7358             }
7359           }
7360           // Deal with changed mappings
7361           if(i<iend) {
7362             for(r=0;r<HOST_REGS;r++) {
7363               if(r!=EXCLUDE_REG) {
7364                 if(regs[i].regmap[r]!=regmap_pre[i][r]) {
7365                   temp_will_dirty&=~(1<<r);
7366                   temp_wont_dirty&=~(1<<r);
7367                   if((regmap_pre[i][r]&63)>0 && (regmap_pre[i][r]&63)<34) {
7368                     temp_will_dirty|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7369                     temp_wont_dirty|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7370                   } else {
7371                     temp_will_dirty|=1<<r;
7372                     temp_wont_dirty|=1<<r;
7373                   }
7374                 }
7375               }
7376             }
7377           }
7378           if(wr) {
7379             will_dirty[i]=temp_will_dirty;
7380             wont_dirty[i]=temp_wont_dirty;
7381             clean_registers((ba[i]-start)>>2,i-1,0);
7382           }else{
7383             // Limit recursion.  It can take an excessive amount
7384             // of time if there are a lot of nested loops.
7385             will_dirty[(ba[i]-start)>>2]=0;
7386             wont_dirty[(ba[i]-start)>>2]=-1;
7387           }
7388         }
7389         /*else*/ if(1)
7390         {
7391           if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
7392           {
7393             // Unconditional branch
7394             will_dirty_i=0;
7395             wont_dirty_i=0;
7396           //if(ba[i]>start+i*4) { // Disable recursion (for debugging)
7397             for(r=0;r<HOST_REGS;r++) {
7398               if(r!=EXCLUDE_REG) {
7399                 if(branch_regs[i].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
7400                   will_dirty_i|=will_dirty[(ba[i]-start)>>2]&(1<<r);
7401                   wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
7402                 }
7403               }
7404             }
7405           //}
7406             // Merge in delay slot
7407             for(r=0;r<HOST_REGS;r++) {
7408               if(r!=EXCLUDE_REG) {
7409                 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7410                 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7411                 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7412                 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7413                 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7414                 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7415                 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7416                 if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7417                 if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7418                 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7419                 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7420                 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7421                 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7422                 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7423               }
7424             }
7425           } else {
7426             // Conditional branch
7427             will_dirty_i=will_dirty_next;
7428             wont_dirty_i=wont_dirty_next;
7429           //if(ba[i]>start+i*4) { // Disable recursion (for debugging)
7430             for(r=0;r<HOST_REGS;r++) {
7431               if(r!=EXCLUDE_REG) {
7432                 if(branch_regs[i].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
7433                   will_dirty_i&=will_dirty[(ba[i]-start)>>2]&(1<<r);
7434                   wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
7435                 }
7436                 else
7437                 {
7438                   will_dirty_i&=~(1<<r);
7439                 }
7440                 // Treat delay slot as part of branch too
7441                 /*if(regs[i+1].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
7442                   will_dirty[i+1]&=will_dirty[(ba[i]-start)>>2]&(1<<r);
7443                   wont_dirty[i+1]|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
7444                 }
7445                 else
7446                 {
7447                   will_dirty[i+1]&=~(1<<r);
7448                 }*/
7449               }
7450             }
7451           //}
7452             // Merge in delay slot
7453             for(r=0;r<HOST_REGS;r++) {
7454               if(r!=EXCLUDE_REG) {
7455                 if(!likely[i]) {
7456                   // Might not dirty if likely branch is not taken
7457                   if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7458                   if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7459                   if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7460                   if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7461                   if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7462                   if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7463                   if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7464                   //if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7465                   //if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7466                   if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7467                   if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7468                   if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7469                   if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7470                   if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7471                 }
7472               }
7473             }
7474           }
7475           // Merge in delay slot
7476           for(r=0;r<HOST_REGS;r++) {
7477             if(r!=EXCLUDE_REG) {
7478               if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7479               if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7480               if((regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7481               if((regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7482               if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7483               if((branch_regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7484               if((branch_regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7485               if((branch_regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7486               if((branch_regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7487               if(branch_regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7488             }
7489           }
7490           if(wr) {
7491             #ifndef DESTRUCTIVE_WRITEBACK
7492             branch_regs[i].dirty&=wont_dirty_i;
7493             #endif
7494             branch_regs[i].dirty|=will_dirty_i;
7495           }
7496         }
7497       }
7498     }
7499     else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
7500     {
7501       // SYSCALL instruction (software interrupt)
7502       will_dirty_i=0;
7503       wont_dirty_i=0;
7504     }
7505     else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
7506     {
7507       // ERET instruction (return from interrupt)
7508       will_dirty_i=0;
7509       wont_dirty_i=0;
7510     }
7511     will_dirty_next=will_dirty_i;
7512     wont_dirty_next=wont_dirty_i;
7513     for(r=0;r<HOST_REGS;r++) {
7514       if(r!=EXCLUDE_REG) {
7515         if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7516         if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7517         if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7518         if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7519         if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7520         if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7521         if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7522         if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7523         if(i>istart) {
7524           if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=FJUMP) 
7525           {
7526             // Don't store a register immediately after writing it,
7527             // may prevent dual-issue.
7528             if((regs[i].regmap[r]&63)==rt1[i-1]) wont_dirty_i|=1<<r;
7529             if((regs[i].regmap[r]&63)==rt2[i-1]) wont_dirty_i|=1<<r;
7530           }
7531         }
7532       }
7533     }
7534     // Save it
7535     will_dirty[i]=will_dirty_i;
7536     wont_dirty[i]=wont_dirty_i;
7537     // Mark registers that won't be dirtied as not dirty
7538     if(wr) {
7539       /*printf("wr (%d,%d) %x will:",istart,iend,start+i*4);
7540       for(r=0;r<HOST_REGS;r++) {
7541         if((will_dirty_i>>r)&1) {
7542           printf(" r%d",r);
7543         }
7544       }
7545       printf("\n");*/
7546
7547       //if(i==istart||(itype[i-1]!=RJUMP&&itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=FJUMP)) {
7548         regs[i].dirty|=will_dirty_i;
7549         #ifndef DESTRUCTIVE_WRITEBACK
7550         regs[i].dirty&=wont_dirty_i;
7551         if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
7552         {
7553           if(i<iend-1&&itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000) {
7554             for(r=0;r<HOST_REGS;r++) {
7555               if(r!=EXCLUDE_REG) {
7556                 if(regs[i].regmap[r]==regmap_pre[i+2][r]) {
7557                   regs[i+2].wasdirty&=wont_dirty_i|~(1<<r);
7558                 }else {/*printf("i: %x (%d) mismatch(+2): %d\n",start+i*4,i,r);/*assert(!((wont_dirty_i>>r)&1));*/}
7559               }
7560             }
7561           }
7562         }
7563         else
7564         {
7565           if(i<iend) {
7566             for(r=0;r<HOST_REGS;r++) {
7567               if(r!=EXCLUDE_REG) {
7568                 if(regs[i].regmap[r]==regmap_pre[i+1][r]) {
7569                   regs[i+1].wasdirty&=wont_dirty_i|~(1<<r);
7570                 }else {/*printf("i: %x (%d) mismatch(+1): %d\n",start+i*4,i,r);/*assert(!((wont_dirty_i>>r)&1));*/}
7571               }
7572             }
7573           }
7574         }
7575         #endif
7576       //}
7577     }
7578     // Deal with changed mappings
7579     temp_will_dirty=will_dirty_i;
7580     temp_wont_dirty=wont_dirty_i;
7581     for(r=0;r<HOST_REGS;r++) {
7582       if(r!=EXCLUDE_REG) {
7583         int nr;
7584         if(regs[i].regmap[r]==regmap_pre[i][r]) {
7585           if(wr) {
7586             #ifndef DESTRUCTIVE_WRITEBACK
7587             regs[i].wasdirty&=wont_dirty_i|~(1<<r);
7588             #endif
7589             regs[i].wasdirty|=will_dirty_i&(1<<r);
7590           }
7591         }
7592         else if((nr=get_reg(regs[i].regmap,regmap_pre[i][r]))>=0) {
7593           // Register moved to a different register
7594           will_dirty_i&=~(1<<r);
7595           wont_dirty_i&=~(1<<r);
7596           will_dirty_i|=((temp_will_dirty>>nr)&1)<<r;
7597           wont_dirty_i|=((temp_wont_dirty>>nr)&1)<<r;
7598           if(wr) {
7599             #ifndef DESTRUCTIVE_WRITEBACK
7600             regs[i].wasdirty&=wont_dirty_i|~(1<<r);
7601             #endif
7602             regs[i].wasdirty|=will_dirty_i&(1<<r);
7603           }
7604         }
7605         else {
7606           will_dirty_i&=~(1<<r);
7607           wont_dirty_i&=~(1<<r);
7608           if((regmap_pre[i][r]&63)>0 && (regmap_pre[i][r]&63)<34) {
7609             will_dirty_i|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7610             wont_dirty_i|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7611           } else {
7612             wont_dirty_i|=1<<r;
7613             /*printf("i: %x (%d) mismatch: %d\n",start+i*4,i,r);/*assert(!((will_dirty>>r)&1));*/
7614           }
7615         }
7616       }
7617     }
7618   }
7619 }
7620
7621   /* disassembly */
7622 void disassemble_inst(int i)
7623 {
7624     if (bt[i]) printf("*"); else printf(" ");
7625     switch(itype[i]) {
7626       case UJUMP:
7627         printf (" %x: %s %8x\n",start+i*4,insn[i],ba[i]);break;
7628       case CJUMP:
7629         printf (" %x: %s r%d,r%d,%8x\n",start+i*4,insn[i],rs1[i],rs2[i],i?start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14):*ba);break;
7630       case SJUMP:
7631         printf (" %x: %s r%d,%8x\n",start+i*4,insn[i],rs1[i],start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14));break;
7632       case FJUMP:
7633         printf (" %x: %s %8x\n",start+i*4,insn[i],ba[i]);break;
7634       case RJUMP:
7635         if (opcode[i]==0x9&&rt1[i]!=31)
7636           printf (" %x: %s r%d,r%d\n",start+i*4,insn[i],rt1[i],rs1[i]);
7637         else
7638           printf (" %x: %s r%d\n",start+i*4,insn[i],rs1[i]);
7639         break;
7640       case SPAN:
7641         printf (" %x: %s (pagespan) r%d,r%d,%8x\n",start+i*4,insn[i],rs1[i],rs2[i],ba[i]);break;
7642       case IMM16:
7643         if(opcode[i]==0xf) //LUI
7644           printf (" %x: %s r%d,%4x0000\n",start+i*4,insn[i],rt1[i],imm[i]&0xffff);
7645         else
7646           printf (" %x: %s r%d,r%d,%d\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
7647         break;
7648       case LOAD:
7649       case LOADLR:
7650         printf (" %x: %s r%d,r%d+%x\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
7651         break;
7652       case STORE:
7653       case STORELR:
7654         printf (" %x: %s r%d,r%d+%x\n",start+i*4,insn[i],rs2[i],rs1[i],imm[i]);
7655         break;
7656       case ALU:
7657       case SHIFT:
7658         printf (" %x: %s r%d,r%d,r%d\n",start+i*4,insn[i],rt1[i],rs1[i],rs2[i]);
7659         break;
7660       case MULTDIV:
7661         printf (" %x: %s r%d,r%d\n",start+i*4,insn[i],rs1[i],rs2[i]);
7662         break;
7663       case SHIFTIMM:
7664         printf (" %x: %s r%d,r%d,%d\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
7665         break;
7666       case MOV:
7667         if((opcode2[i]&0x1d)==0x10)
7668           printf (" %x: %s r%d\n",start+i*4,insn[i],rt1[i]);
7669         else if((opcode2[i]&0x1d)==0x11)
7670           printf (" %x: %s r%d\n",start+i*4,insn[i],rs1[i]);
7671         else
7672           printf (" %x: %s\n",start+i*4,insn[i]);
7673         break;
7674       case COP0:
7675         if(opcode2[i]==0)
7676           printf (" %x: %s r%d,cpr0[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC0
7677         else if(opcode2[i]==4)
7678           printf (" %x: %s r%d,cpr0[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC0
7679         else printf (" %x: %s\n",start+i*4,insn[i]);
7680         break;
7681       case COP1:
7682         if(opcode2[i]<3)
7683           printf (" %x: %s r%d,cpr1[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC1
7684         else if(opcode2[i]>3)
7685           printf (" %x: %s r%d,cpr1[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC1
7686         else printf (" %x: %s\n",start+i*4,insn[i]);
7687         break;
7688       case COP2:
7689         if(opcode2[i]<3)
7690           printf (" %x: %s r%d,cpr2[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC2
7691         else if(opcode2[i]>3)
7692           printf (" %x: %s r%d,cpr2[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC2
7693         else printf (" %x: %s\n",start+i*4,insn[i]);
7694         break;
7695       case C1LS:
7696         printf (" %x: %s cpr1[%d],r%d+%x\n",start+i*4,insn[i],(source[i]>>16)&0x1f,rs1[i],imm[i]);
7697         break;
7698       case C2LS:
7699         printf (" %x: %s cpr2[%d],r%d+%x\n",start+i*4,insn[i],(source[i]>>16)&0x1f,rs1[i],imm[i]);
7700         break;
7701       case INTCALL:
7702         printf (" %x: %s (INTCALL)\n",start+i*4,insn[i]);
7703         break;
7704       default:
7705         //printf (" %s %8x\n",insn[i],source[i]);
7706         printf (" %x: %s\n",start+i*4,insn[i]);
7707     }
7708 }
7709
7710 // clear the state completely, instead of just marking
7711 // things invalid like invalidate_all_pages() does
7712 void new_dynarec_clear_full()
7713 {
7714   int n;
7715   for(n=0x80000;n<0x80800;n++)
7716     invalid_code[n]=1;
7717   for(n=0;n<65536;n++)
7718     hash_table[n][0]=hash_table[n][2]=-1;
7719   memset(mini_ht,-1,sizeof(mini_ht));
7720   memset(restore_candidate,0,sizeof(restore_candidate));
7721   memset(shadow,0,sizeof(shadow));
7722   copy=shadow;
7723   expirep=16384; // Expiry pointer, +2 blocks
7724   pending_exception=0;
7725   literalcount=0;
7726   stop_after_jal=0;
7727   // TLB
7728   using_tlb=0;
7729   for(n=0;n<524288;n++) // 0 .. 0x7FFFFFFF
7730     memory_map[n]=-1;
7731   for(n=524288;n<526336;n++) // 0x80000000 .. 0x807FFFFF
7732     memory_map[n]=((u_int)rdram-0x80000000)>>2;
7733   for(n=526336;n<1048576;n++) // 0x80800000 .. 0xFFFFFFFF
7734     memory_map[n]=-1;
7735   for(n=0;n<4096;n++) ll_clear(jump_in+n);
7736   for(n=0;n<4096;n++) ll_clear(jump_out+n);
7737   for(n=0;n<4096;n++) ll_clear(jump_dirty+n);
7738 }
7739
7740 void new_dynarec_init()
7741 {
7742   printf("Init new dynarec\n");
7743   out=(u_char *)BASE_ADDR;
7744   if (mmap (out, 1<<TARGET_SIZE_2,
7745             PROT_READ | PROT_WRITE | PROT_EXEC,
7746             MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS,
7747             -1, 0) <= 0) {printf("mmap() failed\n");}
7748 #ifdef MUPEN64
7749   rdword=&readmem_dword;
7750   fake_pc.f.r.rs=&readmem_dword;
7751   fake_pc.f.r.rt=&readmem_dword;
7752   fake_pc.f.r.rd=&readmem_dword;
7753 #endif
7754   int n;
7755   new_dynarec_clear_full();
7756 #ifdef HOST_IMM8
7757   // Copy this into local area so we don't have to put it in every literal pool
7758   invc_ptr=invalid_code;
7759 #endif
7760 #ifdef MUPEN64
7761   for(n=0;n<0x8000;n++) { // 0 .. 0x7FFFFFFF
7762     writemem[n] = write_nomem_new;
7763     writememb[n] = write_nomemb_new;
7764     writememh[n] = write_nomemh_new;
7765 #ifndef FORCE32
7766     writememd[n] = write_nomemd_new;
7767 #endif
7768     readmem[n] = read_nomem_new;
7769     readmemb[n] = read_nomemb_new;
7770     readmemh[n] = read_nomemh_new;
7771 #ifndef FORCE32
7772     readmemd[n] = read_nomemd_new;
7773 #endif
7774   }
7775   for(n=0x8000;n<0x8080;n++) { // 0x80000000 .. 0x807FFFFF
7776     writemem[n] = write_rdram_new;
7777     writememb[n] = write_rdramb_new;
7778     writememh[n] = write_rdramh_new;
7779 #ifndef FORCE32
7780     writememd[n] = write_rdramd_new;
7781 #endif
7782   }
7783   for(n=0xC000;n<0x10000;n++) { // 0xC0000000 .. 0xFFFFFFFF
7784     writemem[n] = write_nomem_new;
7785     writememb[n] = write_nomemb_new;
7786     writememh[n] = write_nomemh_new;
7787 #ifndef FORCE32
7788     writememd[n] = write_nomemd_new;
7789 #endif
7790     readmem[n] = read_nomem_new;
7791     readmemb[n] = read_nomemb_new;
7792     readmemh[n] = read_nomemh_new;
7793 #ifndef FORCE32
7794     readmemd[n] = read_nomemd_new;
7795 #endif
7796   }
7797 #endif
7798   tlb_hacks();
7799   arch_init();
7800 }
7801
7802 void new_dynarec_cleanup()
7803 {
7804   int n;
7805   if (munmap ((void *)BASE_ADDR, 1<<TARGET_SIZE_2) < 0) {printf("munmap() failed\n");}
7806   for(n=0;n<4096;n++) ll_clear(jump_in+n);
7807   for(n=0;n<4096;n++) ll_clear(jump_out+n);
7808   for(n=0;n<4096;n++) ll_clear(jump_dirty+n);
7809   #ifdef ROM_COPY
7810   if (munmap (ROM_COPY, 67108864) < 0) {printf("munmap() failed\n");}
7811   #endif
7812 }
7813
7814 int new_recompile_block(int addr)
7815 {
7816 /*
7817   if(addr==0x800cd050) {
7818     int block;
7819     for(block=0x80000;block<0x80800;block++) invalidate_block(block);
7820     int n;
7821     for(n=0;n<=2048;n++) ll_clear(jump_dirty+n);
7822   }
7823 */
7824   //if(Count==365117028) tracedebug=1;
7825   assem_debug("NOTCOMPILED: addr = %x -> %x\n", (int)addr, (int)out);
7826   //printf("NOTCOMPILED: addr = %x -> %x\n", (int)addr, (int)out);
7827   //printf("TRACE: count=%d next=%d (compile %x)\n",Count,next_interupt,addr);
7828   //if(debug) 
7829   //printf("TRACE: count=%d next=%d (checksum %x)\n",Count,next_interupt,mchecksum());
7830   //printf("fpu mapping=%x enabled=%x\n",(Status & 0x04000000)>>26,(Status & 0x20000000)>>29);
7831   /*if(Count>=312978186) {
7832     rlist();
7833   }*/
7834   //rlist();
7835   start = (u_int)addr&~3;
7836   //assert(((u_int)addr&1)==0);
7837 #ifdef PCSX
7838   if (Config.HLE && start == 0x80001000) // hlecall
7839   {
7840     // XXX: is this enough? Maybe check hleSoftCall?
7841     u_int beginning=(u_int)out;
7842     u_int page=get_page(start);
7843     invalid_code[start>>12]=0;
7844     emit_movimm(start,0);
7845     emit_writeword(0,(int)&pcaddr);
7846     emit_jmp((int)new_dyna_leave);
7847 #ifdef __arm__
7848     __clear_cache((void *)beginning,out);
7849 #endif
7850     ll_add(jump_in+page,start,(void *)beginning);
7851     return 0;
7852   }
7853   else if ((u_int)addr < 0x00200000 ||
7854     (0xa0000000 <= addr && addr < 0xa0200000)) {
7855     // used for BIOS calls mostly?
7856     source = (u_int *)((u_int)rdram+(start&0x1fffff));
7857     pagelimit = (addr&0xa0000000)|0x00200000;
7858   }
7859   else if (!Config.HLE && (
7860 /*    (0x9fc00000 <= addr && addr < 0x9fc80000) ||*/
7861     (0xbfc00000 <= addr && addr < 0xbfc80000))) {
7862     // BIOS
7863     source = (u_int *)((u_int)psxR+(start&0x7ffff));
7864     pagelimit = (addr&0xfff00000)|0x80000;
7865   }
7866   else
7867 #endif
7868 #ifdef MUPEN64
7869   if ((int)addr >= 0xa4000000 && (int)addr < 0xa4001000) {
7870     source = (u_int *)((u_int)SP_DMEM+start-0xa4000000);
7871     pagelimit = 0xa4001000;
7872   }
7873   else
7874 #endif
7875   if ((int)addr >= 0x80000000 && (int)addr < 0x80000000+RAM_SIZE) {
7876     source = (u_int *)((u_int)rdram+start-0x80000000);
7877     pagelimit = 0x80000000+RAM_SIZE;
7878   }
7879 #ifndef DISABLE_TLB
7880   else if ((signed int)addr >= (signed int)0xC0000000) {
7881     //printf("addr=%x mm=%x\n",(u_int)addr,(memory_map[start>>12]<<2));
7882     //if(tlb_LUT_r[start>>12])
7883       //source = (u_int *)(((int)rdram)+(tlb_LUT_r[start>>12]&0xFFFFF000)+(((int)addr)&0xFFF)-0x80000000);
7884     if((signed int)memory_map[start>>12]>=0) {
7885       source = (u_int *)((u_int)(start+(memory_map[start>>12]<<2)));
7886       pagelimit=(start+4096)&0xFFFFF000;
7887       int map=memory_map[start>>12];
7888       int i;
7889       for(i=0;i<5;i++) {
7890         //printf("start: %x next: %x\n",map,memory_map[pagelimit>>12]);
7891         if((map&0xBFFFFFFF)==(memory_map[pagelimit>>12]&0xBFFFFFFF)) pagelimit+=4096;
7892       }
7893       assem_debug("pagelimit=%x\n",pagelimit);
7894       assem_debug("mapping=%x (%x)\n",memory_map[start>>12],(memory_map[start>>12]<<2)+start);
7895     }
7896     else {
7897       assem_debug("Compile at unmapped memory address: %x \n", (int)addr);
7898       //assem_debug("start: %x next: %x\n",memory_map[start>>12],memory_map[(start+4096)>>12]);
7899       return -1; // Caller will invoke exception handler
7900     }
7901     //printf("source= %x\n",(int)source);
7902   }
7903 #endif
7904   else {
7905     printf("Compile at bogus memory address: %x \n", (int)addr);
7906     exit(1);
7907   }
7908
7909   /* Pass 1: disassemble */
7910   /* Pass 2: register dependencies, branch targets */
7911   /* Pass 3: register allocation */
7912   /* Pass 4: branch dependencies */
7913   /* Pass 5: pre-alloc */
7914   /* Pass 6: optimize clean/dirty state */
7915   /* Pass 7: flag 32-bit registers */
7916   /* Pass 8: assembly */
7917   /* Pass 9: linker */
7918   /* Pass 10: garbage collection / free memory */
7919
7920   int i,j;
7921   int done=0;
7922   unsigned int type,op,op2;
7923
7924   //printf("addr = %x source = %x %x\n", addr,source,source[0]);
7925   
7926   /* Pass 1 disassembly */
7927
7928   for(i=0;!done;i++) {
7929     bt[i]=0;likely[i]=0;ooo[i]=0;op2=0;
7930     minimum_free_regs[i]=0;
7931     opcode[i]=op=source[i]>>26;
7932     switch(op)
7933     {
7934       case 0x00: strcpy(insn[i],"special"); type=NI;
7935         op2=source[i]&0x3f;
7936         switch(op2)
7937         {
7938           case 0x00: strcpy(insn[i],"SLL"); type=SHIFTIMM; break;
7939           case 0x02: strcpy(insn[i],"SRL"); type=SHIFTIMM; break;
7940           case 0x03: strcpy(insn[i],"SRA"); type=SHIFTIMM; break;
7941           case 0x04: strcpy(insn[i],"SLLV"); type=SHIFT; break;
7942           case 0x06: strcpy(insn[i],"SRLV"); type=SHIFT; break;
7943           case 0x07: strcpy(insn[i],"SRAV"); type=SHIFT; break;
7944           case 0x08: strcpy(insn[i],"JR"); type=RJUMP; break;
7945           case 0x09: strcpy(insn[i],"JALR"); type=RJUMP; break;
7946           case 0x0C: strcpy(insn[i],"SYSCALL"); type=SYSCALL; break;
7947           case 0x0D: strcpy(insn[i],"BREAK"); type=OTHER; break;
7948           case 0x0F: strcpy(insn[i],"SYNC"); type=OTHER; break;
7949           case 0x10: strcpy(insn[i],"MFHI"); type=MOV; break;
7950           case 0x11: strcpy(insn[i],"MTHI"); type=MOV; break;
7951           case 0x12: strcpy(insn[i],"MFLO"); type=MOV; break;
7952           case 0x13: strcpy(insn[i],"MTLO"); type=MOV; break;
7953           case 0x14: strcpy(insn[i],"DSLLV"); type=SHIFT; break;
7954           case 0x16: strcpy(insn[i],"DSRLV"); type=SHIFT; break;
7955           case 0x17: strcpy(insn[i],"DSRAV"); type=SHIFT; break;
7956           case 0x18: strcpy(insn[i],"MULT"); type=MULTDIV; break;
7957           case 0x19: strcpy(insn[i],"MULTU"); type=MULTDIV; break;
7958           case 0x1A: strcpy(insn[i],"DIV"); type=MULTDIV; break;
7959           case 0x1B: strcpy(insn[i],"DIVU"); type=MULTDIV; break;
7960           case 0x1C: strcpy(insn[i],"DMULT"); type=MULTDIV; break;
7961           case 0x1D: strcpy(insn[i],"DMULTU"); type=MULTDIV; break;
7962           case 0x1E: strcpy(insn[i],"DDIV"); type=MULTDIV; break;
7963           case 0x1F: strcpy(insn[i],"DDIVU"); type=MULTDIV; break;
7964           case 0x20: strcpy(insn[i],"ADD"); type=ALU; break;
7965           case 0x21: strcpy(insn[i],"ADDU"); type=ALU; break;
7966           case 0x22: strcpy(insn[i],"SUB"); type=ALU; break;
7967           case 0x23: strcpy(insn[i],"SUBU"); type=ALU; break;
7968           case 0x24: strcpy(insn[i],"AND"); type=ALU; break;
7969           case 0x25: strcpy(insn[i],"OR"); type=ALU; break;
7970           case 0x26: strcpy(insn[i],"XOR"); type=ALU; break;
7971           case 0x27: strcpy(insn[i],"NOR"); type=ALU; break;
7972           case 0x2A: strcpy(insn[i],"SLT"); type=ALU; break;
7973           case 0x2B: strcpy(insn[i],"SLTU"); type=ALU; break;
7974           case 0x2C: strcpy(insn[i],"DADD"); type=ALU; break;
7975           case 0x2D: strcpy(insn[i],"DADDU"); type=ALU; break;
7976           case 0x2E: strcpy(insn[i],"DSUB"); type=ALU; break;
7977           case 0x2F: strcpy(insn[i],"DSUBU"); type=ALU; break;
7978           case 0x30: strcpy(insn[i],"TGE"); type=NI; break;
7979           case 0x31: strcpy(insn[i],"TGEU"); type=NI; break;
7980           case 0x32: strcpy(insn[i],"TLT"); type=NI; break;
7981           case 0x33: strcpy(insn[i],"TLTU"); type=NI; break;
7982           case 0x34: strcpy(insn[i],"TEQ"); type=NI; break;
7983           case 0x36: strcpy(insn[i],"TNE"); type=NI; break;
7984           case 0x38: strcpy(insn[i],"DSLL"); type=SHIFTIMM; break;
7985           case 0x3A: strcpy(insn[i],"DSRL"); type=SHIFTIMM; break;
7986           case 0x3B: strcpy(insn[i],"DSRA"); type=SHIFTIMM; break;
7987           case 0x3C: strcpy(insn[i],"DSLL32"); type=SHIFTIMM; break;
7988           case 0x3E: strcpy(insn[i],"DSRL32"); type=SHIFTIMM; break;
7989           case 0x3F: strcpy(insn[i],"DSRA32"); type=SHIFTIMM; break;
7990         }
7991         break;
7992       case 0x01: strcpy(insn[i],"regimm"); type=NI;
7993         op2=(source[i]>>16)&0x1f;
7994         switch(op2)
7995         {
7996           case 0x00: strcpy(insn[i],"BLTZ"); type=SJUMP; break;
7997           case 0x01: strcpy(insn[i],"BGEZ"); type=SJUMP; break;
7998           case 0x02: strcpy(insn[i],"BLTZL"); type=SJUMP; break;
7999           case 0x03: strcpy(insn[i],"BGEZL"); type=SJUMP; break;
8000           case 0x08: strcpy(insn[i],"TGEI"); type=NI; break;
8001           case 0x09: strcpy(insn[i],"TGEIU"); type=NI; break;
8002           case 0x0A: strcpy(insn[i],"TLTI"); type=NI; break;
8003           case 0x0B: strcpy(insn[i],"TLTIU"); type=NI; break;
8004           case 0x0C: strcpy(insn[i],"TEQI"); type=NI; break;
8005           case 0x0E: strcpy(insn[i],"TNEI"); type=NI; break;
8006           case 0x10: strcpy(insn[i],"BLTZAL"); type=SJUMP; break;
8007           case 0x11: strcpy(insn[i],"BGEZAL"); type=SJUMP; break;
8008           case 0x12: strcpy(insn[i],"BLTZALL"); type=SJUMP; break;
8009           case 0x13: strcpy(insn[i],"BGEZALL"); type=SJUMP; break;
8010         }
8011         break;
8012       case 0x02: strcpy(insn[i],"J"); type=UJUMP; break;
8013       case 0x03: strcpy(insn[i],"JAL"); type=UJUMP; break;
8014       case 0x04: strcpy(insn[i],"BEQ"); type=CJUMP; break;
8015       case 0x05: strcpy(insn[i],"BNE"); type=CJUMP; break;
8016       case 0x06: strcpy(insn[i],"BLEZ"); type=CJUMP; break;
8017       case 0x07: strcpy(insn[i],"BGTZ"); type=CJUMP; break;
8018       case 0x08: strcpy(insn[i],"ADDI"); type=IMM16; break;
8019       case 0x09: strcpy(insn[i],"ADDIU"); type=IMM16; break;
8020       case 0x0A: strcpy(insn[i],"SLTI"); type=IMM16; break;
8021       case 0x0B: strcpy(insn[i],"SLTIU"); type=IMM16; break;
8022       case 0x0C: strcpy(insn[i],"ANDI"); type=IMM16; break;
8023       case 0x0D: strcpy(insn[i],"ORI"); type=IMM16; break;
8024       case 0x0E: strcpy(insn[i],"XORI"); type=IMM16; break;
8025       case 0x0F: strcpy(insn[i],"LUI"); type=IMM16; break;
8026       case 0x10: strcpy(insn[i],"cop0"); type=NI;
8027         op2=(source[i]>>21)&0x1f;
8028         switch(op2)
8029         {
8030           case 0x00: strcpy(insn[i],"MFC0"); type=COP0; break;
8031           case 0x04: strcpy(insn[i],"MTC0"); type=COP0; break;
8032           case 0x10: strcpy(insn[i],"tlb"); type=NI;
8033           switch(source[i]&0x3f)
8034           {
8035             case 0x01: strcpy(insn[i],"TLBR"); type=COP0; break;
8036             case 0x02: strcpy(insn[i],"TLBWI"); type=COP0; break;
8037             case 0x06: strcpy(insn[i],"TLBWR"); type=COP0; break;
8038             case 0x08: strcpy(insn[i],"TLBP"); type=COP0; break;
8039 #ifdef PCSX
8040             case 0x10: strcpy(insn[i],"RFE"); type=COP0; break;
8041 #else
8042             case 0x18: strcpy(insn[i],"ERET"); type=COP0; break;
8043 #endif
8044           }
8045         }
8046         break;
8047       case 0x11: strcpy(insn[i],"cop1"); type=NI;
8048         op2=(source[i]>>21)&0x1f;
8049         switch(op2)
8050         {
8051           case 0x00: strcpy(insn[i],"MFC1"); type=COP1; break;
8052           case 0x01: strcpy(insn[i],"DMFC1"); type=COP1; break;
8053           case 0x02: strcpy(insn[i],"CFC1"); type=COP1; break;
8054           case 0x04: strcpy(insn[i],"MTC1"); type=COP1; break;
8055           case 0x05: strcpy(insn[i],"DMTC1"); type=COP1; break;
8056           case 0x06: strcpy(insn[i],"CTC1"); type=COP1; break;
8057           case 0x08: strcpy(insn[i],"BC1"); type=FJUMP;
8058           switch((source[i]>>16)&0x3)
8059           {
8060             case 0x00: strcpy(insn[i],"BC1F"); break;
8061             case 0x01: strcpy(insn[i],"BC1T"); break;
8062             case 0x02: strcpy(insn[i],"BC1FL"); break;
8063             case 0x03: strcpy(insn[i],"BC1TL"); break;
8064           }
8065           break;
8066           case 0x10: strcpy(insn[i],"C1.S"); type=NI;
8067           switch(source[i]&0x3f)
8068           {
8069             case 0x00: strcpy(insn[i],"ADD.S"); type=FLOAT; break;
8070             case 0x01: strcpy(insn[i],"SUB.S"); type=FLOAT; break;
8071             case 0x02: strcpy(insn[i],"MUL.S"); type=FLOAT; break;
8072             case 0x03: strcpy(insn[i],"DIV.S"); type=FLOAT; break;
8073             case 0x04: strcpy(insn[i],"SQRT.S"); type=FLOAT; break;
8074             case 0x05: strcpy(insn[i],"ABS.S"); type=FLOAT; break;
8075             case 0x06: strcpy(insn[i],"MOV.S"); type=FLOAT; break;
8076             case 0x07: strcpy(insn[i],"NEG.S"); type=FLOAT; break;
8077             case 0x08: strcpy(insn[i],"ROUND.L.S"); type=FCONV; break;
8078             case 0x09: strcpy(insn[i],"TRUNC.L.S"); type=FCONV; break;
8079             case 0x0A: strcpy(insn[i],"CEIL.L.S"); type=FCONV; break;
8080             case 0x0B: strcpy(insn[i],"FLOOR.L.S"); type=FCONV; break;
8081             case 0x0C: strcpy(insn[i],"ROUND.W.S"); type=FCONV; break;
8082             case 0x0D: strcpy(insn[i],"TRUNC.W.S"); type=FCONV; break;
8083             case 0x0E: strcpy(insn[i],"CEIL.W.S"); type=FCONV; break;
8084             case 0x0F: strcpy(insn[i],"FLOOR.W.S"); type=FCONV; break;
8085             case 0x21: strcpy(insn[i],"CVT.D.S"); type=FCONV; break;
8086             case 0x24: strcpy(insn[i],"CVT.W.S"); type=FCONV; break;
8087             case 0x25: strcpy(insn[i],"CVT.L.S"); type=FCONV; break;
8088             case 0x30: strcpy(insn[i],"C.F.S"); type=FCOMP; break;
8089             case 0x31: strcpy(insn[i],"C.UN.S"); type=FCOMP; break;
8090             case 0x32: strcpy(insn[i],"C.EQ.S"); type=FCOMP; break;
8091             case 0x33: strcpy(insn[i],"C.UEQ.S"); type=FCOMP; break;
8092             case 0x34: strcpy(insn[i],"C.OLT.S"); type=FCOMP; break;
8093             case 0x35: strcpy(insn[i],"C.ULT.S"); type=FCOMP; break;
8094             case 0x36: strcpy(insn[i],"C.OLE.S"); type=FCOMP; break;
8095             case 0x37: strcpy(insn[i],"C.ULE.S"); type=FCOMP; break;
8096             case 0x38: strcpy(insn[i],"C.SF.S"); type=FCOMP; break;
8097             case 0x39: strcpy(insn[i],"C.NGLE.S"); type=FCOMP; break;
8098             case 0x3A: strcpy(insn[i],"C.SEQ.S"); type=FCOMP; break;
8099             case 0x3B: strcpy(insn[i],"C.NGL.S"); type=FCOMP; break;
8100             case 0x3C: strcpy(insn[i],"C.LT.S"); type=FCOMP; break;
8101             case 0x3D: strcpy(insn[i],"C.NGE.S"); type=FCOMP; break;
8102             case 0x3E: strcpy(insn[i],"C.LE.S"); type=FCOMP; break;
8103             case 0x3F: strcpy(insn[i],"C.NGT.S"); type=FCOMP; break;
8104           }
8105           break;
8106           case 0x11: strcpy(insn[i],"C1.D"); type=NI;
8107           switch(source[i]&0x3f)
8108           {
8109             case 0x00: strcpy(insn[i],"ADD.D"); type=FLOAT; break;
8110             case 0x01: strcpy(insn[i],"SUB.D"); type=FLOAT; break;
8111             case 0x02: strcpy(insn[i],"MUL.D"); type=FLOAT; break;
8112             case 0x03: strcpy(insn[i],"DIV.D"); type=FLOAT; break;
8113             case 0x04: strcpy(insn[i],"SQRT.D"); type=FLOAT; break;
8114             case 0x05: strcpy(insn[i],"ABS.D"); type=FLOAT; break;
8115             case 0x06: strcpy(insn[i],"MOV.D"); type=FLOAT; break;
8116             case 0x07: strcpy(insn[i],"NEG.D"); type=FLOAT; break;
8117             case 0x08: strcpy(insn[i],"ROUND.L.D"); type=FCONV; break;
8118             case 0x09: strcpy(insn[i],"TRUNC.L.D"); type=FCONV; break;
8119             case 0x0A: strcpy(insn[i],"CEIL.L.D"); type=FCONV; break;
8120             case 0x0B: strcpy(insn[i],"FLOOR.L.D"); type=FCONV; break;
8121             case 0x0C: strcpy(insn[i],"ROUND.W.D"); type=FCONV; break;
8122             case 0x0D: strcpy(insn[i],"TRUNC.W.D"); type=FCONV; break;
8123             case 0x0E: strcpy(insn[i],"CEIL.W.D"); type=FCONV; break;
8124             case 0x0F: strcpy(insn[i],"FLOOR.W.D"); type=FCONV; break;
8125             case 0x20: strcpy(insn[i],"CVT.S.D"); type=FCONV; break;
8126             case 0x24: strcpy(insn[i],"CVT.W.D"); type=FCONV; break;
8127             case 0x25: strcpy(insn[i],"CVT.L.D"); type=FCONV; break;
8128             case 0x30: strcpy(insn[i],"C.F.D"); type=FCOMP; break;
8129             case 0x31: strcpy(insn[i],"C.UN.D"); type=FCOMP; break;
8130             case 0x32: strcpy(insn[i],"C.EQ.D"); type=FCOMP; break;
8131             case 0x33: strcpy(insn[i],"C.UEQ.D"); type=FCOMP; break;
8132             case 0x34: strcpy(insn[i],"C.OLT.D"); type=FCOMP; break;
8133             case 0x35: strcpy(insn[i],"C.ULT.D"); type=FCOMP; break;
8134             case 0x36: strcpy(insn[i],"C.OLE.D"); type=FCOMP; break;
8135             case 0x37: strcpy(insn[i],"C.ULE.D"); type=FCOMP; break;
8136             case 0x38: strcpy(insn[i],"C.SF.D"); type=FCOMP; break;
8137             case 0x39: strcpy(insn[i],"C.NGLE.D"); type=FCOMP; break;
8138             case 0x3A: strcpy(insn[i],"C.SEQ.D"); type=FCOMP; break;
8139             case 0x3B: strcpy(insn[i],"C.NGL.D"); type=FCOMP; break;
8140             case 0x3C: strcpy(insn[i],"C.LT.D"); type=FCOMP; break;
8141             case 0x3D: strcpy(insn[i],"C.NGE.D"); type=FCOMP; break;
8142             case 0x3E: strcpy(insn[i],"C.LE.D"); type=FCOMP; break;
8143             case 0x3F: strcpy(insn[i],"C.NGT.D"); type=FCOMP; break;
8144           }
8145           break;
8146           case 0x14: strcpy(insn[i],"C1.W"); type=NI;
8147           switch(source[i]&0x3f)
8148           {
8149             case 0x20: strcpy(insn[i],"CVT.S.W"); type=FCONV; break;
8150             case 0x21: strcpy(insn[i],"CVT.D.W"); type=FCONV; break;
8151           }
8152           break;
8153           case 0x15: strcpy(insn[i],"C1.L"); type=NI;
8154           switch(source[i]&0x3f)
8155           {
8156             case 0x20: strcpy(insn[i],"CVT.S.L"); type=FCONV; break;
8157             case 0x21: strcpy(insn[i],"CVT.D.L"); type=FCONV; break;
8158           }
8159           break;
8160         }
8161         break;
8162 #ifndef FORCE32
8163       case 0x14: strcpy(insn[i],"BEQL"); type=CJUMP; break;
8164       case 0x15: strcpy(insn[i],"BNEL"); type=CJUMP; break;
8165       case 0x16: strcpy(insn[i],"BLEZL"); type=CJUMP; break;
8166       case 0x17: strcpy(insn[i],"BGTZL"); type=CJUMP; break;
8167       case 0x18: strcpy(insn[i],"DADDI"); type=IMM16; break;
8168       case 0x19: strcpy(insn[i],"DADDIU"); type=IMM16; break;
8169       case 0x1A: strcpy(insn[i],"LDL"); type=LOADLR; break;
8170       case 0x1B: strcpy(insn[i],"LDR"); type=LOADLR; break;
8171 #endif
8172       case 0x20: strcpy(insn[i],"LB"); type=LOAD; break;
8173       case 0x21: strcpy(insn[i],"LH"); type=LOAD; break;
8174       case 0x22: strcpy(insn[i],"LWL"); type=LOADLR; break;
8175       case 0x23: strcpy(insn[i],"LW"); type=LOAD; break;
8176       case 0x24: strcpy(insn[i],"LBU"); type=LOAD; break;
8177       case 0x25: strcpy(insn[i],"LHU"); type=LOAD; break;
8178       case 0x26: strcpy(insn[i],"LWR"); type=LOADLR; break;
8179       case 0x27: strcpy(insn[i],"LWU"); type=LOAD; break;
8180       case 0x28: strcpy(insn[i],"SB"); type=STORE; break;
8181       case 0x29: strcpy(insn[i],"SH"); type=STORE; break;
8182       case 0x2A: strcpy(insn[i],"SWL"); type=STORELR; break;
8183       case 0x2B: strcpy(insn[i],"SW"); type=STORE; break;
8184 #ifndef FORCE32
8185       case 0x2C: strcpy(insn[i],"SDL"); type=STORELR; break;
8186       case 0x2D: strcpy(insn[i],"SDR"); type=STORELR; break;
8187 #endif
8188       case 0x2E: strcpy(insn[i],"SWR"); type=STORELR; break;
8189       case 0x2F: strcpy(insn[i],"CACHE"); type=NOP; break;
8190       case 0x30: strcpy(insn[i],"LL"); type=NI; break;
8191       case 0x31: strcpy(insn[i],"LWC1"); type=C1LS; break;
8192 #ifndef FORCE32
8193       case 0x34: strcpy(insn[i],"LLD"); type=NI; break;
8194       case 0x35: strcpy(insn[i],"LDC1"); type=C1LS; break;
8195       case 0x37: strcpy(insn[i],"LD"); type=LOAD; break;
8196 #endif
8197       case 0x38: strcpy(insn[i],"SC"); type=NI; break;
8198       case 0x39: strcpy(insn[i],"SWC1"); type=C1LS; break;
8199 #ifndef FORCE32
8200       case 0x3C: strcpy(insn[i],"SCD"); type=NI; break;
8201       case 0x3D: strcpy(insn[i],"SDC1"); type=C1LS; break;
8202       case 0x3F: strcpy(insn[i],"SD"); type=STORE; break;
8203 #endif
8204 #ifdef PCSX
8205       case 0x12: strcpy(insn[i],"COP2"); type=NI;
8206         // note: COP MIPS-1 encoding differs from MIPS32
8207         op2=(source[i]>>21)&0x1f;
8208         if (source[i]&0x3f) {
8209           if (gte_handlers[source[i]&0x3f]!=NULL) {
8210             snprintf(insn[i], sizeof(insn[i]), "COP2 %x", source[i]&0x3f);
8211             type=C2OP;
8212           }
8213         }
8214         else switch(op2)
8215         {
8216           case 0x00: strcpy(insn[i],"MFC2"); type=COP2; break;
8217           case 0x02: strcpy(insn[i],"CFC2"); type=COP2; break;
8218           case 0x04: strcpy(insn[i],"MTC2"); type=COP2; break;
8219           case 0x06: strcpy(insn[i],"CTC2"); type=COP2; break;
8220         }
8221         break;
8222       case 0x32: strcpy(insn[i],"LWC2"); type=C2LS; break;
8223       case 0x3A: strcpy(insn[i],"SWC2"); type=C2LS; break;
8224       case 0x3B: strcpy(insn[i],"HLECALL"); type=HLECALL; break;
8225 #endif
8226       default: strcpy(insn[i],"???"); type=NI;
8227         printf("NI %08x @%08x (%08x)\n", source[i], addr + i*4, addr);
8228         break;
8229     }
8230 #ifdef PCSX
8231     /* detect branch in delay slot early */
8232     if(type==RJUMP||type==UJUMP||type==CJUMP||type==SJUMP||type==FJUMP) {
8233       opcode[i+1]=source[i+1]>>26;
8234       opcode2[i+1]=source[i+1]&0x3f;
8235       if((0<opcode[i+1]&&opcode[i+1]<8)||(opcode[i+1]==0&&(opcode2[i+1]==8||opcode2[i+1]==9))) {
8236         printf("branch in delay slot @%08x (%08x)\n", addr + i*4+4, addr);
8237         // don't handle first branch and call interpreter if it's hit
8238         type=INTCALL;
8239       }
8240     }
8241 #endif
8242     itype[i]=type;
8243     opcode2[i]=op2;
8244     /* Get registers/immediates */
8245     lt1[i]=0;
8246     us1[i]=0;
8247     us2[i]=0;
8248     dep1[i]=0;
8249     dep2[i]=0;
8250     switch(type) {
8251       case LOAD:
8252         rs1[i]=(source[i]>>21)&0x1f;
8253         rs2[i]=0;
8254         rt1[i]=(source[i]>>16)&0x1f;
8255         rt2[i]=0;
8256         imm[i]=(short)source[i];
8257         break;
8258       case STORE:
8259       case STORELR:
8260         rs1[i]=(source[i]>>21)&0x1f;
8261         rs2[i]=(source[i]>>16)&0x1f;
8262         rt1[i]=0;
8263         rt2[i]=0;
8264         imm[i]=(short)source[i];
8265         if(op==0x2c||op==0x2d||op==0x3f) us1[i]=rs2[i]; // 64-bit SDL/SDR/SD
8266         break;
8267       case LOADLR:
8268         // LWL/LWR only load part of the register,
8269         // therefore the target register must be treated as a source too
8270         rs1[i]=(source[i]>>21)&0x1f;
8271         rs2[i]=(source[i]>>16)&0x1f;
8272         rt1[i]=(source[i]>>16)&0x1f;
8273         rt2[i]=0;
8274         imm[i]=(short)source[i];
8275         if(op==0x1a||op==0x1b) us1[i]=rs2[i]; // LDR/LDL
8276         if(op==0x26) dep1[i]=rt1[i]; // LWR
8277         break;
8278       case IMM16:
8279         if (op==0x0f) rs1[i]=0; // LUI instruction has no source register
8280         else rs1[i]=(source[i]>>21)&0x1f;
8281         rs2[i]=0;
8282         rt1[i]=(source[i]>>16)&0x1f;
8283         rt2[i]=0;
8284         if(op>=0x0c&&op<=0x0e) { // ANDI/ORI/XORI
8285           imm[i]=(unsigned short)source[i];
8286         }else{
8287           imm[i]=(short)source[i];
8288         }
8289         if(op==0x18||op==0x19) us1[i]=rs1[i]; // DADDI/DADDIU
8290         if(op==0x0a||op==0x0b) us1[i]=rs1[i]; // SLTI/SLTIU
8291         if(op==0x0d||op==0x0e) dep1[i]=rs1[i]; // ORI/XORI
8292         break;
8293       case UJUMP:
8294         rs1[i]=0;
8295         rs2[i]=0;
8296         rt1[i]=0;
8297         rt2[i]=0;
8298         // The JAL instruction writes to r31.
8299         if (op&1) {
8300           rt1[i]=31;
8301         }
8302         rs2[i]=CCREG;
8303         break;
8304       case RJUMP:
8305         rs1[i]=(source[i]>>21)&0x1f;
8306         rs2[i]=0;
8307         rt1[i]=0;
8308         rt2[i]=0;
8309         // The JALR instruction writes to rd.
8310         if (op2&1) {
8311           rt1[i]=(source[i]>>11)&0x1f;
8312         }
8313         rs2[i]=CCREG;
8314         break;
8315       case CJUMP:
8316         rs1[i]=(source[i]>>21)&0x1f;
8317         rs2[i]=(source[i]>>16)&0x1f;
8318         rt1[i]=0;
8319         rt2[i]=0;
8320         if(op&2) { // BGTZ/BLEZ
8321           rs2[i]=0;
8322         }
8323         us1[i]=rs1[i];
8324         us2[i]=rs2[i];
8325         likely[i]=op>>4;
8326         break;
8327       case SJUMP:
8328         rs1[i]=(source[i]>>21)&0x1f;
8329         rs2[i]=CCREG;
8330         rt1[i]=0;
8331         rt2[i]=0;
8332         us1[i]=rs1[i];
8333         if(op2&0x10) { // BxxAL
8334           rt1[i]=31;
8335           // NOTE: If the branch is not taken, r31 is still overwritten
8336         }
8337         likely[i]=(op2&2)>>1;
8338         break;
8339       case FJUMP:
8340         rs1[i]=FSREG;
8341         rs2[i]=CSREG;
8342         rt1[i]=0;
8343         rt2[i]=0;
8344         likely[i]=((source[i])>>17)&1;
8345         break;
8346       case ALU:
8347         rs1[i]=(source[i]>>21)&0x1f; // source
8348         rs2[i]=(source[i]>>16)&0x1f; // subtract amount
8349         rt1[i]=(source[i]>>11)&0x1f; // destination
8350         rt2[i]=0;
8351         if(op2==0x2a||op2==0x2b) { // SLT/SLTU
8352           us1[i]=rs1[i];us2[i]=rs2[i];
8353         }
8354         else if(op2>=0x24&&op2<=0x27) { // AND/OR/XOR/NOR
8355           dep1[i]=rs1[i];dep2[i]=rs2[i];
8356         }
8357         else if(op2>=0x2c&&op2<=0x2f) { // DADD/DSUB
8358           dep1[i]=rs1[i];dep2[i]=rs2[i];
8359         }
8360         break;
8361       case MULTDIV:
8362         rs1[i]=(source[i]>>21)&0x1f; // source
8363         rs2[i]=(source[i]>>16)&0x1f; // divisor
8364         rt1[i]=HIREG;
8365         rt2[i]=LOREG;
8366         if (op2>=0x1c&&op2<=0x1f) { // DMULT/DMULTU/DDIV/DDIVU
8367           us1[i]=rs1[i];us2[i]=rs2[i];
8368         }
8369         break;
8370       case MOV:
8371         rs1[i]=0;
8372         rs2[i]=0;
8373         rt1[i]=0;
8374         rt2[i]=0;
8375         if(op2==0x10) rs1[i]=HIREG; // MFHI
8376         if(op2==0x11) rt1[i]=HIREG; // MTHI
8377         if(op2==0x12) rs1[i]=LOREG; // MFLO
8378         if(op2==0x13) rt1[i]=LOREG; // MTLO
8379         if((op2&0x1d)==0x10) rt1[i]=(source[i]>>11)&0x1f; // MFxx
8380         if((op2&0x1d)==0x11) rs1[i]=(source[i]>>21)&0x1f; // MTxx
8381         dep1[i]=rs1[i];
8382         break;
8383       case SHIFT:
8384         rs1[i]=(source[i]>>16)&0x1f; // target of shift
8385         rs2[i]=(source[i]>>21)&0x1f; // shift amount
8386         rt1[i]=(source[i]>>11)&0x1f; // destination
8387         rt2[i]=0;
8388         // DSLLV/DSRLV/DSRAV are 64-bit
8389         if(op2>=0x14&&op2<=0x17) us1[i]=rs1[i];
8390         break;
8391       case SHIFTIMM:
8392         rs1[i]=(source[i]>>16)&0x1f;
8393         rs2[i]=0;
8394         rt1[i]=(source[i]>>11)&0x1f;
8395         rt2[i]=0;
8396         imm[i]=(source[i]>>6)&0x1f;
8397         // DSxx32 instructions
8398         if(op2>=0x3c) imm[i]|=0x20;
8399         // DSLL/DSRL/DSRA/DSRA32/DSRL32 but not DSLL32 require 64-bit source
8400         if(op2>=0x38&&op2!=0x3c) us1[i]=rs1[i];
8401         break;
8402       case COP0:
8403         rs1[i]=0;
8404         rs2[i]=0;
8405         rt1[i]=0;
8406         rt2[i]=0;
8407         if(op2==0) rt1[i]=(source[i]>>16)&0x1F; // MFC0
8408         if(op2==4) rs1[i]=(source[i]>>16)&0x1F; // MTC0
8409         if(op2==4&&((source[i]>>11)&0x1f)==12) rt2[i]=CSREG; // Status
8410         if(op2==16) if((source[i]&0x3f)==0x18) rs2[i]=CCREG; // ERET
8411         break;
8412       case COP1:
8413       case COP2:
8414         rs1[i]=0;
8415         rs2[i]=0;
8416         rt1[i]=0;
8417         rt2[i]=0;
8418         if(op2<3) rt1[i]=(source[i]>>16)&0x1F; // MFC1/DMFC1/CFC1
8419         if(op2>3) rs1[i]=(source[i]>>16)&0x1F; // MTC1/DMTC1/CTC1
8420         if(op2==5) us1[i]=rs1[i]; // DMTC1
8421         rs2[i]=CSREG;
8422         break;
8423       case C1LS:
8424         rs1[i]=(source[i]>>21)&0x1F;
8425         rs2[i]=CSREG;
8426         rt1[i]=0;
8427         rt2[i]=0;
8428         imm[i]=(short)source[i];
8429         break;
8430       case C2LS:
8431         rs1[i]=(source[i]>>21)&0x1F;
8432         rs2[i]=0;
8433         rt1[i]=0;
8434         rt2[i]=0;
8435         imm[i]=(short)source[i];
8436         break;
8437       case FLOAT:
8438       case FCONV:
8439         rs1[i]=0;
8440         rs2[i]=CSREG;
8441         rt1[i]=0;
8442         rt2[i]=0;
8443         break;
8444       case FCOMP:
8445         rs1[i]=FSREG;
8446         rs2[i]=CSREG;
8447         rt1[i]=FSREG;
8448         rt2[i]=0;
8449         break;
8450       case SYSCALL:
8451       case HLECALL:
8452       case INTCALL:
8453         rs1[i]=CCREG;
8454         rs2[i]=0;
8455         rt1[i]=0;
8456         rt2[i]=0;
8457         break;
8458       default:
8459         rs1[i]=0;
8460         rs2[i]=0;
8461         rt1[i]=0;
8462         rt2[i]=0;
8463     }
8464     /* Calculate branch target addresses */
8465     if(type==UJUMP)
8466       ba[i]=((start+i*4+4)&0xF0000000)|(((unsigned int)source[i]<<6)>>4);
8467     else if(type==CJUMP&&rs1[i]==rs2[i]&&(op&1))
8468       ba[i]=start+i*4+8; // Ignore never taken branch
8469     else if(type==SJUMP&&rs1[i]==0&&!(op2&1))
8470       ba[i]=start+i*4+8; // Ignore never taken branch
8471     else if(type==CJUMP||type==SJUMP||type==FJUMP)
8472       ba[i]=start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14);
8473     else ba[i]=-1;
8474     /* Is this the end of the block? */
8475     if(i>0&&(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)) {
8476 #ifdef PCSX
8477       // check for link register access in delay slot
8478       int rt1_=rt1[i-1];
8479       if(rt1_!=0&&(rs1[i]==rt1_||rs2[i]==rt1_||rt1[i]==rt1_||rt2[i]==rt1_)) {
8480         printf("link access in delay slot @%08x (%08x)\n", addr + i*4, addr);
8481         ba[i-1]=-1;
8482         itype[i-1]=INTCALL;
8483         done=2;
8484       }
8485       else
8486 #endif
8487       if(rt1[i-1]==0) { // Continue past subroutine call (JAL)
8488         done=2;
8489       }
8490       else {
8491         if(stop_after_jal) done=1;
8492         // Stop on BREAK
8493         if((source[i+1]&0xfc00003f)==0x0d) done=1;
8494       }
8495       // Don't recompile stuff that's already compiled
8496       if(check_addr(start+i*4+4)) done=1;
8497       // Don't get too close to the limit
8498       if(i>MAXBLOCK/2) done=1;
8499     }
8500     if(itype[i]==SYSCALL&&stop_after_jal) done=1;
8501     if(itype[i]==HLECALL||itype[i]==INTCALL) done=2;
8502     if(done==2) {
8503       // Does the block continue due to a branch?
8504       for(j=i-1;j>=0;j--)
8505       {
8506         if(ba[j]==start+i*4+4) done=j=0;
8507         if(ba[j]==start+i*4+8) done=j=0;
8508       }
8509     }
8510     //assert(i<MAXBLOCK-1);
8511     if(start+i*4==pagelimit-4) done=1;
8512     assert(start+i*4<pagelimit);
8513     if (i==MAXBLOCK-1) done=1;
8514     // Stop if we're compiling junk
8515     if(itype[i]==NI&&opcode[i]==0x11) {
8516       done=stop_after_jal=1;
8517       printf("Disabled speculative precompilation\n");
8518     }
8519   }
8520   slen=i;
8521   if(itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==RJUMP||itype[i-1]==FJUMP) {
8522     if(start+i*4==pagelimit) {
8523       itype[i-1]=SPAN;
8524     }
8525   }
8526   assert(slen>0);
8527
8528   /* Pass 2 - Register dependencies and branch targets */
8529
8530   unneeded_registers(0,slen-1,0);
8531   
8532   /* Pass 3 - Register allocation */
8533
8534   struct regstat current; // Current register allocations/status
8535   current.is32=1;
8536   current.dirty=0;
8537   current.u=unneeded_reg[0];
8538   current.uu=unneeded_reg_upper[0];
8539   clear_all_regs(current.regmap);
8540   alloc_reg(&current,0,CCREG);
8541   dirty_reg(&current,CCREG);
8542   current.isconst=0;
8543   current.wasconst=0;
8544   int ds=0;
8545   int cc=0;
8546   int hr;
8547
8548 #ifndef FORCE32
8549   provisional_32bit();
8550 #endif
8551   if((u_int)addr&1) {
8552     // First instruction is delay slot
8553     cc=-1;
8554     bt[1]=1;
8555     ds=1;
8556     unneeded_reg[0]=1;
8557     unneeded_reg_upper[0]=1;
8558     current.regmap[HOST_BTREG]=BTREG;
8559   }
8560   
8561   for(i=0;i<slen;i++)
8562   {
8563     if(bt[i])
8564     {
8565       int hr;
8566       for(hr=0;hr<HOST_REGS;hr++)
8567       {
8568         // Is this really necessary?
8569         if(current.regmap[hr]==0) current.regmap[hr]=-1;
8570       }
8571       current.isconst=0;
8572     }
8573     if(i>1)
8574     {
8575       if((opcode[i-2]&0x2f)==0x05) // BNE/BNEL
8576       {
8577         if(rs1[i-2]==0||rs2[i-2]==0)
8578         {
8579           if(rs1[i-2]) {
8580             current.is32|=1LL<<rs1[i-2];
8581             int hr=get_reg(current.regmap,rs1[i-2]|64);
8582             if(hr>=0) current.regmap[hr]=-1;
8583           }
8584           if(rs2[i-2]) {
8585             current.is32|=1LL<<rs2[i-2];
8586             int hr=get_reg(current.regmap,rs2[i-2]|64);
8587             if(hr>=0) current.regmap[hr]=-1;
8588           }
8589         }
8590       }
8591     }
8592 #ifndef FORCE32
8593     // If something jumps here with 64-bit values
8594     // then promote those registers to 64 bits
8595     if(bt[i])
8596     {
8597       uint64_t temp_is32=current.is32;
8598       for(j=i-1;j>=0;j--)
8599       {
8600         if(ba[j]==start+i*4) 
8601           temp_is32&=branch_regs[j].is32;
8602       }
8603       for(j=i;j<slen;j++)
8604       {
8605         if(ba[j]==start+i*4) 
8606           //temp_is32=1;
8607           temp_is32&=p32[j];
8608       }
8609       if(temp_is32!=current.is32) {
8610         //printf("dumping 32-bit regs (%x)\n",start+i*4);
8611         #ifdef DESTRUCTIVE_WRITEBACK
8612         for(hr=0;hr<HOST_REGS;hr++)
8613         {
8614           int r=current.regmap[hr];
8615           if(r>0&&r<64)
8616           {
8617             if((current.dirty>>hr)&((current.is32&~temp_is32)>>r)&1) {
8618               temp_is32|=1LL<<r;
8619               //printf("restore %d\n",r);
8620             }
8621           }
8622         }
8623         #endif
8624         current.is32=temp_is32;
8625       }
8626     }
8627 #else
8628     current.is32=-1LL;
8629 #endif
8630
8631     memcpy(regmap_pre[i],current.regmap,sizeof(current.regmap));
8632     regs[i].wasconst=current.isconst;
8633     regs[i].was32=current.is32;
8634     regs[i].wasdirty=current.dirty;
8635     #if defined(DESTRUCTIVE_WRITEBACK) && !defined(FORCE32)
8636     // To change a dirty register from 32 to 64 bits, we must write
8637     // it out during the previous cycle (for branches, 2 cycles)
8638     if(i<slen-1&&bt[i+1]&&itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP)
8639     {
8640       uint64_t temp_is32=current.is32;
8641       for(j=i-1;j>=0;j--)
8642       {
8643         if(ba[j]==start+i*4+4) 
8644           temp_is32&=branch_regs[j].is32;
8645       }
8646       for(j=i;j<slen;j++)
8647       {
8648         if(ba[j]==start+i*4+4) 
8649           //temp_is32=1;
8650           temp_is32&=p32[j];
8651       }
8652       if(temp_is32!=current.is32) {
8653         //printf("pre-dumping 32-bit regs (%x)\n",start+i*4);
8654         for(hr=0;hr<HOST_REGS;hr++)
8655         {
8656           int r=current.regmap[hr];
8657           if(r>0)
8658           {
8659             if((current.dirty>>hr)&((current.is32&~temp_is32)>>(r&63))&1) {
8660               if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP)
8661               {
8662                 if(rs1[i]!=(r&63)&&rs2[i]!=(r&63))
8663                 {
8664                   //printf("dump %d/r%d\n",hr,r);
8665                   current.regmap[hr]=-1;
8666                   if(get_reg(current.regmap,r|64)>=0) 
8667                     current.regmap[get_reg(current.regmap,r|64)]=-1;
8668                 }
8669               }
8670             }
8671           }
8672         }
8673       }
8674     }
8675     else if(i<slen-2&&bt[i+2]&&(source[i-1]>>16)!=0x1000&&(itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP))
8676     {
8677       uint64_t temp_is32=current.is32;
8678       for(j=i-1;j>=0;j--)
8679       {
8680         if(ba[j]==start+i*4+8) 
8681           temp_is32&=branch_regs[j].is32;
8682       }
8683       for(j=i;j<slen;j++)
8684       {
8685         if(ba[j]==start+i*4+8) 
8686           //temp_is32=1;
8687           temp_is32&=p32[j];
8688       }
8689       if(temp_is32!=current.is32) {
8690         //printf("pre-dumping 32-bit regs (%x)\n",start+i*4);
8691         for(hr=0;hr<HOST_REGS;hr++)
8692         {
8693           int r=current.regmap[hr];
8694           if(r>0)
8695           {
8696             if((current.dirty>>hr)&((current.is32&~temp_is32)>>(r&63))&1) {
8697               if(rs1[i]!=(r&63)&&rs2[i]!=(r&63)&&rs1[i+1]!=(r&63)&&rs2[i+1]!=(r&63))
8698               {
8699                 //printf("dump %d/r%d\n",hr,r);
8700                 current.regmap[hr]=-1;
8701                 if(get_reg(current.regmap,r|64)>=0) 
8702                   current.regmap[get_reg(current.regmap,r|64)]=-1;
8703               }
8704             }
8705           }
8706         }
8707       }
8708     }
8709     #endif
8710     if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP) {
8711       if(i+1<slen) {
8712         current.u=unneeded_reg[i+1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
8713         current.uu=unneeded_reg_upper[i+1]&~((1LL<<us1[i])|(1LL<<us2[i]));
8714         if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
8715         current.u|=1;
8716         current.uu|=1;
8717       } else {
8718         current.u=1;
8719         current.uu=1;
8720       }
8721     } else {
8722       if(i+1<slen) {
8723         current.u=branch_unneeded_reg[i]&~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
8724         current.uu=branch_unneeded_reg_upper[i]&~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
8725         if((~current.uu>>rt1[i+1])&1) current.uu&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
8726         current.u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
8727         current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
8728         current.u|=1;
8729         current.uu|=1;
8730       } else { printf("oops, branch at end of block with no delay slot\n");exit(1); }
8731     }
8732     is_ds[i]=ds;
8733     if(ds) {
8734       ds=0; // Skip delay slot, already allocated as part of branch
8735       // ...but we need to alloc it in case something jumps here
8736       if(i+1<slen) {
8737         current.u=branch_unneeded_reg[i-1]&unneeded_reg[i+1];
8738         current.uu=branch_unneeded_reg_upper[i-1]&unneeded_reg_upper[i+1];
8739       }else{
8740         current.u=branch_unneeded_reg[i-1];
8741         current.uu=branch_unneeded_reg_upper[i-1];
8742       }
8743       current.u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
8744       current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
8745       if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
8746       current.u|=1;
8747       current.uu|=1;
8748       struct regstat temp;
8749       memcpy(&temp,&current,sizeof(current));
8750       temp.wasdirty=temp.dirty;
8751       temp.was32=temp.is32;
8752       // TODO: Take into account unconditional branches, as below
8753       delayslot_alloc(&temp,i);
8754       memcpy(regs[i].regmap,temp.regmap,sizeof(temp.regmap));
8755       regs[i].wasdirty=temp.wasdirty;
8756       regs[i].was32=temp.was32;
8757       regs[i].dirty=temp.dirty;
8758       regs[i].is32=temp.is32;
8759       regs[i].isconst=0;
8760       regs[i].wasconst=0;
8761       current.isconst=0;
8762       // Create entry (branch target) regmap
8763       for(hr=0;hr<HOST_REGS;hr++)
8764       {
8765         int r=temp.regmap[hr];
8766         if(r>=0) {
8767           if(r!=regmap_pre[i][hr]) {
8768             regs[i].regmap_entry[hr]=-1;
8769           }
8770           else
8771           {
8772             if(r<64){
8773               if((current.u>>r)&1) {
8774                 regs[i].regmap_entry[hr]=-1;
8775                 regs[i].regmap[hr]=-1;
8776                 //Don't clear regs in the delay slot as the branch might need them
8777                 //current.regmap[hr]=-1;
8778               }else
8779                 regs[i].regmap_entry[hr]=r;
8780             }
8781             else {
8782               if((current.uu>>(r&63))&1) {
8783                 regs[i].regmap_entry[hr]=-1;
8784                 regs[i].regmap[hr]=-1;
8785                 //Don't clear regs in the delay slot as the branch might need them
8786                 //current.regmap[hr]=-1;
8787               }else
8788                 regs[i].regmap_entry[hr]=r;
8789             }
8790           }
8791         } else {
8792           // First instruction expects CCREG to be allocated
8793           if(i==0&&hr==HOST_CCREG) 
8794             regs[i].regmap_entry[hr]=CCREG;
8795           else
8796             regs[i].regmap_entry[hr]=-1;
8797         }
8798       }
8799     }
8800     else { // Not delay slot
8801       switch(itype[i]) {
8802         case UJUMP:
8803           //current.isconst=0; // DEBUG
8804           //current.wasconst=0; // DEBUG
8805           //regs[i].wasconst=0; // DEBUG
8806           clear_const(&current,rt1[i]);
8807           alloc_cc(&current,i);
8808           dirty_reg(&current,CCREG);
8809           if (rt1[i]==31) {
8810             alloc_reg(&current,i,31);
8811             dirty_reg(&current,31);
8812             assert(rs1[i+1]!=31&&rs2[i+1]!=31);
8813             assert(rt1[i+1]!=rt1[i]);
8814             #ifdef REG_PREFETCH
8815             alloc_reg(&current,i,PTEMP);
8816             #endif
8817             //current.is32|=1LL<<rt1[i];
8818           }
8819           ooo[i]=1;
8820           delayslot_alloc(&current,i+1);
8821           //current.isconst=0; // DEBUG
8822           ds=1;
8823           //printf("i=%d, isconst=%x\n",i,current.isconst);
8824           break;
8825         case RJUMP:
8826           //current.isconst=0;
8827           //current.wasconst=0;
8828           //regs[i].wasconst=0;
8829           clear_const(&current,rs1[i]);
8830           clear_const(&current,rt1[i]);
8831           alloc_cc(&current,i);
8832           dirty_reg(&current,CCREG);
8833           if(rs1[i]!=rt1[i+1]&&rs1[i]!=rt2[i+1]) {
8834             alloc_reg(&current,i,rs1[i]);
8835             if (rt1[i]!=0) {
8836               alloc_reg(&current,i,rt1[i]);
8837               dirty_reg(&current,rt1[i]);
8838               assert(rs1[i+1]!=rt1[i]&&rs2[i+1]!=rt1[i]);
8839               assert(rt1[i+1]!=rt1[i]);
8840               #ifdef REG_PREFETCH
8841               alloc_reg(&current,i,PTEMP);
8842               #endif
8843             }
8844             #ifdef USE_MINI_HT
8845             if(rs1[i]==31) { // JALR
8846               alloc_reg(&current,i,RHASH);
8847               #ifndef HOST_IMM_ADDR32
8848               alloc_reg(&current,i,RHTBL);
8849               #endif
8850             }
8851             #endif
8852             delayslot_alloc(&current,i+1);
8853           } else {
8854             // The delay slot overwrites our source register,
8855             // allocate a temporary register to hold the old value.
8856             current.isconst=0;
8857             current.wasconst=0;
8858             regs[i].wasconst=0;
8859             delayslot_alloc(&current,i+1);
8860             current.isconst=0;
8861             alloc_reg(&current,i,RTEMP);
8862           }
8863           //current.isconst=0; // DEBUG
8864           ooo[i]=1;
8865           ds=1;
8866           break;
8867         case CJUMP:
8868           //current.isconst=0;
8869           //current.wasconst=0;
8870           //regs[i].wasconst=0;
8871           clear_const(&current,rs1[i]);
8872           clear_const(&current,rs2[i]);
8873           if((opcode[i]&0x3E)==4) // BEQ/BNE
8874           {
8875             alloc_cc(&current,i);
8876             dirty_reg(&current,CCREG);
8877             if(rs1[i]) alloc_reg(&current,i,rs1[i]);
8878             if(rs2[i]) alloc_reg(&current,i,rs2[i]);
8879             if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
8880             {
8881               if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
8882               if(rs2[i]) alloc_reg64(&current,i,rs2[i]);
8883             }
8884             if((rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]))||
8885                (rs2[i]&&(rs2[i]==rt1[i+1]||rs2[i]==rt2[i+1]))) {
8886               // The delay slot overwrites one of our conditions.
8887               // Allocate the branch condition registers instead.
8888               current.isconst=0;
8889               current.wasconst=0;
8890               regs[i].wasconst=0;
8891               if(rs1[i]) alloc_reg(&current,i,rs1[i]);
8892               if(rs2[i]) alloc_reg(&current,i,rs2[i]);
8893               if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
8894               {
8895                 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
8896                 if(rs2[i]) alloc_reg64(&current,i,rs2[i]);
8897               }
8898             }
8899             else
8900             {
8901               ooo[i]=1;
8902               delayslot_alloc(&current,i+1);
8903             }
8904           }
8905           else
8906           if((opcode[i]&0x3E)==6) // BLEZ/BGTZ
8907           {
8908             alloc_cc(&current,i);
8909             dirty_reg(&current,CCREG);
8910             alloc_reg(&current,i,rs1[i]);
8911             if(!(current.is32>>rs1[i]&1))
8912             {
8913               alloc_reg64(&current,i,rs1[i]);
8914             }
8915             if(rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1])) {
8916               // The delay slot overwrites one of our conditions.
8917               // Allocate the branch condition registers instead.
8918               current.isconst=0;
8919               current.wasconst=0;
8920               regs[i].wasconst=0;
8921               if(rs1[i]) alloc_reg(&current,i,rs1[i]);
8922               if(!((current.is32>>rs1[i])&1))
8923               {
8924                 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
8925               }
8926             }
8927             else
8928             {
8929               ooo[i]=1;
8930               delayslot_alloc(&current,i+1);
8931             }
8932           }
8933           else
8934           // Don't alloc the delay slot yet because we might not execute it
8935           if((opcode[i]&0x3E)==0x14) // BEQL/BNEL
8936           {
8937             current.isconst=0;
8938             current.wasconst=0;
8939             regs[i].wasconst=0;
8940             alloc_cc(&current,i);
8941             dirty_reg(&current,CCREG);
8942             alloc_reg(&current,i,rs1[i]);
8943             alloc_reg(&current,i,rs2[i]);
8944             if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
8945             {
8946               alloc_reg64(&current,i,rs1[i]);
8947               alloc_reg64(&current,i,rs2[i]);
8948             }
8949           }
8950           else
8951           if((opcode[i]&0x3E)==0x16) // BLEZL/BGTZL
8952           {
8953             current.isconst=0;
8954             current.wasconst=0;
8955             regs[i].wasconst=0;
8956             alloc_cc(&current,i);
8957             dirty_reg(&current,CCREG);
8958             alloc_reg(&current,i,rs1[i]);
8959             if(!(current.is32>>rs1[i]&1))
8960             {
8961               alloc_reg64(&current,i,rs1[i]);
8962             }
8963           }
8964           ds=1;
8965           //current.isconst=0;
8966           break;
8967         case SJUMP:
8968           //current.isconst=0;
8969           //current.wasconst=0;
8970           //regs[i].wasconst=0;
8971           clear_const(&current,rs1[i]);
8972           clear_const(&current,rt1[i]);
8973           //if((opcode2[i]&0x1E)==0x0) // BLTZ/BGEZ
8974           if((opcode2[i]&0x0E)==0x0) // BLTZ/BGEZ
8975           {
8976             alloc_cc(&current,i);
8977             dirty_reg(&current,CCREG);
8978             alloc_reg(&current,i,rs1[i]);
8979             if(!(current.is32>>rs1[i]&1))
8980             {
8981               alloc_reg64(&current,i,rs1[i]);
8982             }
8983             if (rt1[i]==31) { // BLTZAL/BGEZAL
8984               alloc_reg(&current,i,31);
8985               dirty_reg(&current,31);
8986               //#ifdef REG_PREFETCH
8987               //alloc_reg(&current,i,PTEMP);
8988               //#endif
8989               //current.is32|=1LL<<rt1[i];
8990             }
8991             if((rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1])) // The delay slot overwrites the branch condition.
8992                ||(rt1[i]==31&&(rs1[i+1]==31||rs2[i+1]==31||rt1[i+1]==31||rt2[i+1]==31))) { // DS touches $ra
8993               // Allocate the branch condition registers instead.
8994               current.isconst=0;
8995               current.wasconst=0;
8996               regs[i].wasconst=0;
8997               if(rs1[i]) alloc_reg(&current,i,rs1[i]);
8998               if(!((current.is32>>rs1[i])&1))
8999               {
9000                 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
9001               }
9002             }
9003             else
9004             {
9005               ooo[i]=1;
9006               delayslot_alloc(&current,i+1);
9007             }
9008           }
9009           else
9010           // Don't alloc the delay slot yet because we might not execute it
9011           if((opcode2[i]&0x1E)==0x2) // BLTZL/BGEZL
9012           {
9013             current.isconst=0;
9014             current.wasconst=0;
9015             regs[i].wasconst=0;
9016             alloc_cc(&current,i);
9017             dirty_reg(&current,CCREG);
9018             alloc_reg(&current,i,rs1[i]);
9019             if(!(current.is32>>rs1[i]&1))
9020             {
9021               alloc_reg64(&current,i,rs1[i]);
9022             }
9023           }
9024           ds=1;
9025           //current.isconst=0;
9026           break;
9027         case FJUMP:
9028           current.isconst=0;
9029           current.wasconst=0;
9030           regs[i].wasconst=0;
9031           if(likely[i]==0) // BC1F/BC1T
9032           {
9033             // TODO: Theoretically we can run out of registers here on x86.
9034             // The delay slot can allocate up to six, and we need to check
9035             // CSREG before executing the delay slot.  Possibly we can drop
9036             // the cycle count and then reload it after checking that the
9037             // FPU is in a usable state, or don't do out-of-order execution.
9038             alloc_cc(&current,i);
9039             dirty_reg(&current,CCREG);
9040             alloc_reg(&current,i,FSREG);
9041             alloc_reg(&current,i,CSREG);
9042             if(itype[i+1]==FCOMP) {
9043               // The delay slot overwrites the branch condition.
9044               // Allocate the branch condition registers instead.
9045               alloc_cc(&current,i);
9046               dirty_reg(&current,CCREG);
9047               alloc_reg(&current,i,CSREG);
9048               alloc_reg(&current,i,FSREG);
9049             }
9050             else {
9051               ooo[i]=1;
9052               delayslot_alloc(&current,i+1);
9053               alloc_reg(&current,i+1,CSREG);
9054             }
9055           }
9056           else
9057           // Don't alloc the delay slot yet because we might not execute it
9058           if(likely[i]) // BC1FL/BC1TL
9059           {
9060             alloc_cc(&current,i);
9061             dirty_reg(&current,CCREG);
9062             alloc_reg(&current,i,CSREG);
9063             alloc_reg(&current,i,FSREG);
9064           }
9065           ds=1;
9066           current.isconst=0;
9067           break;
9068         case IMM16:
9069           imm16_alloc(&current,i);
9070           break;
9071         case LOAD:
9072         case LOADLR:
9073           load_alloc(&current,i);
9074           break;
9075         case STORE:
9076         case STORELR:
9077           store_alloc(&current,i);
9078           break;
9079         case ALU:
9080           alu_alloc(&current,i);
9081           break;
9082         case SHIFT:
9083           shift_alloc(&current,i);
9084           break;
9085         case MULTDIV:
9086           multdiv_alloc(&current,i);
9087           break;
9088         case SHIFTIMM:
9089           shiftimm_alloc(&current,i);
9090           break;
9091         case MOV:
9092           mov_alloc(&current,i);
9093           break;
9094         case COP0:
9095           cop0_alloc(&current,i);
9096           break;
9097         case COP1:
9098         case COP2:
9099           cop1_alloc(&current,i);
9100           break;
9101         case C1LS:
9102           c1ls_alloc(&current,i);
9103           break;
9104         case C2LS:
9105           c2ls_alloc(&current,i);
9106           break;
9107         case C2OP:
9108           c2op_alloc(&current,i);
9109           break;
9110         case FCONV:
9111           fconv_alloc(&current,i);
9112           break;
9113         case FLOAT:
9114           float_alloc(&current,i);
9115           break;
9116         case FCOMP:
9117           fcomp_alloc(&current,i);
9118           break;
9119         case SYSCALL:
9120         case HLECALL:
9121         case INTCALL:
9122           syscall_alloc(&current,i);
9123           break;
9124         case SPAN:
9125           pagespan_alloc(&current,i);
9126           break;
9127       }
9128       
9129       // Drop the upper half of registers that have become 32-bit
9130       current.uu|=current.is32&((1LL<<rt1[i])|(1LL<<rt2[i]));
9131       if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP) {
9132         current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
9133         if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9134         current.uu|=1;
9135       } else {
9136         current.uu|=current.is32&((1LL<<rt1[i+1])|(1LL<<rt2[i+1]));
9137         current.uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
9138         if((~current.uu>>rt1[i+1])&1) current.uu&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
9139         current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
9140         current.uu|=1;
9141       }
9142
9143       // Create entry (branch target) regmap
9144       for(hr=0;hr<HOST_REGS;hr++)
9145       {
9146         int r,or,er;
9147         r=current.regmap[hr];
9148         if(r>=0) {
9149           if(r!=regmap_pre[i][hr]) {
9150             // TODO: delay slot (?)
9151             or=get_reg(regmap_pre[i],r); // Get old mapping for this register
9152             if(or<0||(r&63)>=TEMPREG){
9153               regs[i].regmap_entry[hr]=-1;
9154             }
9155             else
9156             {
9157               // Just move it to a different register
9158               regs[i].regmap_entry[hr]=r;
9159               // If it was dirty before, it's still dirty
9160               if((regs[i].wasdirty>>or)&1) dirty_reg(&current,r&63);
9161             }
9162           }
9163           else
9164           {
9165             // Unneeded
9166             if(r==0){
9167               regs[i].regmap_entry[hr]=0;
9168             }
9169             else
9170             if(r<64){
9171               if((current.u>>r)&1) {
9172                 regs[i].regmap_entry[hr]=-1;
9173                 //regs[i].regmap[hr]=-1;
9174                 current.regmap[hr]=-1;
9175               }else
9176                 regs[i].regmap_entry[hr]=r;
9177             }
9178             else {
9179               if((current.uu>>(r&63))&1) {
9180                 regs[i].regmap_entry[hr]=-1;
9181                 //regs[i].regmap[hr]=-1;
9182                 current.regmap[hr]=-1;
9183               }else
9184                 regs[i].regmap_entry[hr]=r;
9185             }
9186           }
9187         } else {
9188           // Branches expect CCREG to be allocated at the target
9189           if(regmap_pre[i][hr]==CCREG) 
9190             regs[i].regmap_entry[hr]=CCREG;
9191           else
9192             regs[i].regmap_entry[hr]=-1;
9193         }
9194       }
9195       memcpy(regs[i].regmap,current.regmap,sizeof(current.regmap));
9196     }
9197     /* Branch post-alloc */
9198     if(i>0)
9199     {
9200       current.was32=current.is32;
9201       current.wasdirty=current.dirty;
9202       switch(itype[i-1]) {
9203         case UJUMP:
9204           memcpy(&branch_regs[i-1],&current,sizeof(current));
9205           branch_regs[i-1].isconst=0;
9206           branch_regs[i-1].wasconst=0;
9207           branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
9208           branch_regs[i-1].uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
9209           alloc_cc(&branch_regs[i-1],i-1);
9210           dirty_reg(&branch_regs[i-1],CCREG);
9211           if(rt1[i-1]==31) { // JAL
9212             alloc_reg(&branch_regs[i-1],i-1,31);
9213             dirty_reg(&branch_regs[i-1],31);
9214             branch_regs[i-1].is32|=1LL<<31;
9215           }
9216           memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9217           memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9218           break;
9219         case RJUMP:
9220           memcpy(&branch_regs[i-1],&current,sizeof(current));
9221           branch_regs[i-1].isconst=0;
9222           branch_regs[i-1].wasconst=0;
9223           branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
9224           branch_regs[i-1].uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
9225           alloc_cc(&branch_regs[i-1],i-1);
9226           dirty_reg(&branch_regs[i-1],CCREG);
9227           alloc_reg(&branch_regs[i-1],i-1,rs1[i-1]);
9228           if(rt1[i-1]!=0) { // JALR
9229             alloc_reg(&branch_regs[i-1],i-1,rt1[i-1]);
9230             dirty_reg(&branch_regs[i-1],rt1[i-1]);
9231             branch_regs[i-1].is32|=1LL<<rt1[i-1];
9232           }
9233           #ifdef USE_MINI_HT
9234           if(rs1[i-1]==31) { // JALR
9235             alloc_reg(&branch_regs[i-1],i-1,RHASH);
9236             #ifndef HOST_IMM_ADDR32
9237             alloc_reg(&branch_regs[i-1],i-1,RHTBL);
9238             #endif
9239           }
9240           #endif
9241           memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9242           memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9243           break;
9244         case CJUMP:
9245           if((opcode[i-1]&0x3E)==4) // BEQ/BNE
9246           {
9247             alloc_cc(&current,i-1);
9248             dirty_reg(&current,CCREG);
9249             if((rs1[i-1]&&(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]))||
9250                (rs2[i-1]&&(rs2[i-1]==rt1[i]||rs2[i-1]==rt2[i]))) {
9251               // The delay slot overwrote one of our conditions
9252               // Delay slot goes after the test (in order)
9253               current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
9254               current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
9255               if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9256               current.u|=1;
9257               current.uu|=1;
9258               delayslot_alloc(&current,i);
9259               current.isconst=0;
9260             }
9261             else
9262             {
9263               current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
9264               current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
9265               // Alloc the branch condition registers
9266               if(rs1[i-1]) alloc_reg(&current,i-1,rs1[i-1]);
9267               if(rs2[i-1]) alloc_reg(&current,i-1,rs2[i-1]);
9268               if(!((current.is32>>rs1[i-1])&(current.is32>>rs2[i-1])&1))
9269               {
9270                 if(rs1[i-1]) alloc_reg64(&current,i-1,rs1[i-1]);
9271                 if(rs2[i-1]) alloc_reg64(&current,i-1,rs2[i-1]);
9272               }
9273             }
9274             memcpy(&branch_regs[i-1],&current,sizeof(current));
9275             branch_regs[i-1].isconst=0;
9276             branch_regs[i-1].wasconst=0;
9277             memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9278             memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9279           }
9280           else
9281           if((opcode[i-1]&0x3E)==6) // BLEZ/BGTZ
9282           {
9283             alloc_cc(&current,i-1);
9284             dirty_reg(&current,CCREG);
9285             if(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]) {
9286               // The delay slot overwrote the branch condition
9287               // Delay slot goes after the test (in order)
9288               current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
9289               current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
9290               if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9291               current.u|=1;
9292               current.uu|=1;
9293               delayslot_alloc(&current,i);
9294               current.isconst=0;
9295             }
9296             else
9297             {
9298               current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
9299               current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
9300               // Alloc the branch condition register
9301               alloc_reg(&current,i-1,rs1[i-1]);
9302               if(!(current.is32>>rs1[i-1]&1))
9303               {
9304                 alloc_reg64(&current,i-1,rs1[i-1]);
9305               }
9306             }
9307             memcpy(&branch_regs[i-1],&current,sizeof(current));
9308             branch_regs[i-1].isconst=0;
9309             branch_regs[i-1].wasconst=0;
9310             memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9311             memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9312           }
9313           else
9314           // Alloc the delay slot in case the branch is taken
9315           if((opcode[i-1]&0x3E)==0x14) // BEQL/BNEL
9316           {
9317             memcpy(&branch_regs[i-1],&current,sizeof(current));
9318             branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9319             branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9320             if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9321             alloc_cc(&branch_regs[i-1],i);
9322             dirty_reg(&branch_regs[i-1],CCREG);
9323             delayslot_alloc(&branch_regs[i-1],i);
9324             branch_regs[i-1].isconst=0;
9325             alloc_reg(&current,i,CCREG); // Not taken path
9326             dirty_reg(&current,CCREG);
9327             memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9328           }
9329           else
9330           if((opcode[i-1]&0x3E)==0x16) // BLEZL/BGTZL
9331           {
9332             memcpy(&branch_regs[i-1],&current,sizeof(current));
9333             branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9334             branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9335             if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9336             alloc_cc(&branch_regs[i-1],i);
9337             dirty_reg(&branch_regs[i-1],CCREG);
9338             delayslot_alloc(&branch_regs[i-1],i);
9339             branch_regs[i-1].isconst=0;
9340             alloc_reg(&current,i,CCREG); // Not taken path
9341             dirty_reg(&current,CCREG);
9342             memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9343           }
9344           break;
9345         case SJUMP:
9346           //if((opcode2[i-1]&0x1E)==0) // BLTZ/BGEZ
9347           if((opcode2[i-1]&0x0E)==0) // BLTZ/BGEZ
9348           {
9349             alloc_cc(&current,i-1);
9350             dirty_reg(&current,CCREG);
9351             if(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]) {
9352               // The delay slot overwrote the branch condition
9353               // Delay slot goes after the test (in order)
9354               current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
9355               current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
9356               if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9357               current.u|=1;
9358               current.uu|=1;
9359               delayslot_alloc(&current,i);
9360               current.isconst=0;
9361             }
9362             else
9363             {
9364               current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
9365               current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
9366               // Alloc the branch condition register
9367               alloc_reg(&current,i-1,rs1[i-1]);
9368               if(!(current.is32>>rs1[i-1]&1))
9369               {
9370                 alloc_reg64(&current,i-1,rs1[i-1]);
9371               }
9372             }
9373             memcpy(&branch_regs[i-1],&current,sizeof(current));
9374             branch_regs[i-1].isconst=0;
9375             branch_regs[i-1].wasconst=0;
9376             memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9377             memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9378           }
9379           else
9380           // Alloc the delay slot in case the branch is taken
9381           if((opcode2[i-1]&0x1E)==2) // BLTZL/BGEZL
9382           {
9383             memcpy(&branch_regs[i-1],&current,sizeof(current));
9384             branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9385             branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9386             if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9387             alloc_cc(&branch_regs[i-1],i);
9388             dirty_reg(&branch_regs[i-1],CCREG);
9389             delayslot_alloc(&branch_regs[i-1],i);
9390             branch_regs[i-1].isconst=0;
9391             alloc_reg(&current,i,CCREG); // Not taken path
9392             dirty_reg(&current,CCREG);
9393             memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9394           }
9395           // FIXME: BLTZAL/BGEZAL
9396           if(opcode2[i-1]&0x10) { // BxxZAL
9397             alloc_reg(&branch_regs[i-1],i-1,31);
9398             dirty_reg(&branch_regs[i-1],31);
9399             branch_regs[i-1].is32|=1LL<<31;
9400           }
9401           break;
9402         case FJUMP:
9403           if(likely[i-1]==0) // BC1F/BC1T
9404           {
9405             alloc_cc(&current,i-1);
9406             dirty_reg(&current,CCREG);
9407             if(itype[i]==FCOMP) {
9408               // The delay slot overwrote the branch condition
9409               // Delay slot goes after the test (in order)
9410               delayslot_alloc(&current,i);
9411               current.isconst=0;
9412             }
9413             else
9414             {
9415               current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
9416               current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
9417               // Alloc the branch condition register
9418               alloc_reg(&current,i-1,FSREG);
9419             }
9420             memcpy(&branch_regs[i-1],&current,sizeof(current));
9421             memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9422           }
9423           else // BC1FL/BC1TL
9424           {
9425             // Alloc the delay slot in case the branch is taken
9426             memcpy(&branch_regs[i-1],&current,sizeof(current));
9427             branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9428             branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9429             if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9430             alloc_cc(&branch_regs[i-1],i);
9431             dirty_reg(&branch_regs[i-1],CCREG);
9432             delayslot_alloc(&branch_regs[i-1],i);
9433             branch_regs[i-1].isconst=0;
9434             alloc_reg(&current,i,CCREG); // Not taken path
9435             dirty_reg(&current,CCREG);
9436             memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9437           }
9438           break;
9439       }
9440
9441       if(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)
9442       {
9443         if(rt1[i-1]==31) // JAL/JALR
9444         {
9445           // Subroutine call will return here, don't alloc any registers
9446           current.is32=1;
9447           current.dirty=0;
9448           clear_all_regs(current.regmap);
9449           alloc_reg(&current,i,CCREG);
9450           dirty_reg(&current,CCREG);
9451         }
9452         else if(i+1<slen)
9453         {
9454           // Internal branch will jump here, match registers to caller
9455           current.is32=0x3FFFFFFFFLL;
9456           current.dirty=0;
9457           clear_all_regs(current.regmap);
9458           alloc_reg(&current,i,CCREG);
9459           dirty_reg(&current,CCREG);
9460           for(j=i-1;j>=0;j--)
9461           {
9462             if(ba[j]==start+i*4+4) {
9463               memcpy(current.regmap,branch_regs[j].regmap,sizeof(current.regmap));
9464               current.is32=branch_regs[j].is32;
9465               current.dirty=branch_regs[j].dirty;
9466               break;
9467             }
9468           }
9469           while(j>=0) {
9470             if(ba[j]==start+i*4+4) {
9471               for(hr=0;hr<HOST_REGS;hr++) {
9472                 if(current.regmap[hr]!=branch_regs[j].regmap[hr]) {
9473                   current.regmap[hr]=-1;
9474                 }
9475                 current.is32&=branch_regs[j].is32;
9476                 current.dirty&=branch_regs[j].dirty;
9477               }
9478             }
9479             j--;
9480           }
9481         }
9482       }
9483     }
9484
9485     // Count cycles in between branches
9486     ccadj[i]=cc;
9487     if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP||itype[i]==SYSCALL||itype[i]==HLECALL))
9488     {
9489       cc=0;
9490     }
9491 #ifdef PCSX
9492     else if(/*itype[i]==LOAD||*/itype[i]==STORE||itype[i]==C1LS) // load causes weird timing issues
9493     {
9494       cc+=2; // 2 cycle penalty (after CLOCK_DIVIDER)
9495     }
9496     else if(itype[i]==C2LS)
9497     {
9498       cc+=4;
9499     }
9500 #endif
9501     else
9502     {
9503       cc++;
9504     }
9505
9506     flush_dirty_uppers(&current);
9507     if(!is_ds[i]) {
9508       regs[i].is32=current.is32;
9509       regs[i].dirty=current.dirty;
9510       regs[i].isconst=current.isconst;
9511       memcpy(constmap[i],current.constmap,sizeof(current.constmap));
9512     }
9513     for(hr=0;hr<HOST_REGS;hr++) {
9514       if(hr!=EXCLUDE_REG&&regs[i].regmap[hr]>=0) {
9515         if(regmap_pre[i][hr]!=regs[i].regmap[hr]) {
9516           regs[i].wasconst&=~(1<<hr);
9517         }
9518       }
9519     }
9520     if(current.regmap[HOST_BTREG]==BTREG) current.regmap[HOST_BTREG]=-1;
9521   }
9522   
9523   /* Pass 4 - Cull unused host registers */
9524   
9525   uint64_t nr=0;
9526   
9527   for (i=slen-1;i>=0;i--)
9528   {
9529     int hr;
9530     if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
9531     {
9532       if(ba[i]<start || ba[i]>=(start+slen*4))
9533       {
9534         // Branch out of this block, don't need anything
9535         nr=0;
9536       }
9537       else
9538       {
9539         // Internal branch
9540         // Need whatever matches the target
9541         nr=0;
9542         int t=(ba[i]-start)>>2;
9543         for(hr=0;hr<HOST_REGS;hr++)
9544         {
9545           if(regs[i].regmap_entry[hr]>=0) {
9546             if(regs[i].regmap_entry[hr]==regs[t].regmap_entry[hr]) nr|=1<<hr;
9547           }
9548         }
9549       }
9550       // Conditional branch may need registers for following instructions
9551       if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
9552       {
9553         if(i<slen-2) {
9554           nr|=needed_reg[i+2];
9555           for(hr=0;hr<HOST_REGS;hr++)
9556           {
9557             if(regmap_pre[i+2][hr]>=0&&get_reg(regs[i+2].regmap_entry,regmap_pre[i+2][hr])<0) nr&=~(1<<hr);
9558             //if((regmap_entry[i+2][hr])>=0) if(!((nr>>hr)&1)) printf("%x-bogus(%d=%d)\n",start+i*4,hr,regmap_entry[i+2][hr]);
9559           }
9560         }
9561       }
9562       // Don't need stuff which is overwritten
9563       if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
9564       if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
9565       // Merge in delay slot
9566       for(hr=0;hr<HOST_REGS;hr++)
9567       {
9568         if(!likely[i]) {
9569           // These are overwritten unless the branch is "likely"
9570           // and the delay slot is nullified if not taken
9571           if(rt1[i+1]&&rt1[i+1]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9572           if(rt2[i+1]&&rt2[i+1]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9573         }
9574         if(us1[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9575         if(us2[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9576         if(rs1[i+1]==regmap_pre[i][hr]) nr|=1<<hr;
9577         if(rs2[i+1]==regmap_pre[i][hr]) nr|=1<<hr;
9578         if(us1[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9579         if(us2[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9580         if(rs1[i+1]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9581         if(rs2[i+1]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9582         if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1)) {
9583           if(dep1[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9584           if(dep2[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9585         }
9586         if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1)) {
9587           if(dep1[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9588           if(dep2[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9589         }
9590         if(itype[i+1]==STORE || itype[i+1]==STORELR || (opcode[i+1]&0x3b)==0x39 || (opcode[i+1]&0x3b)==0x3a) {
9591           if(regmap_pre[i][hr]==INVCP) nr|=1<<hr;
9592           if(regs[i].regmap_entry[hr]==INVCP) nr|=1<<hr;
9593         }
9594       }
9595     }
9596     else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
9597     {
9598       // SYSCALL instruction (software interrupt)
9599       nr=0;
9600     }
9601     else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
9602     {
9603       // ERET instruction (return from interrupt)
9604       nr=0;
9605     }
9606     else // Non-branch
9607     {
9608       if(i<slen-1) {
9609         for(hr=0;hr<HOST_REGS;hr++) {
9610           if(regmap_pre[i+1][hr]>=0&&get_reg(regs[i+1].regmap_entry,regmap_pre[i+1][hr])<0) nr&=~(1<<hr);
9611           if(regs[i].regmap[hr]!=regmap_pre[i+1][hr]) nr&=~(1<<hr);
9612           if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
9613           if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
9614         }
9615       }
9616     }
9617     for(hr=0;hr<HOST_REGS;hr++)
9618     {
9619       // Overwritten registers are not needed
9620       if(rt1[i]&&rt1[i]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9621       if(rt2[i]&&rt2[i]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9622       if(FTEMP==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9623       // Source registers are needed
9624       if(us1[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9625       if(us2[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9626       if(rs1[i]==regmap_pre[i][hr]) nr|=1<<hr;
9627       if(rs2[i]==regmap_pre[i][hr]) nr|=1<<hr;
9628       if(us1[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9629       if(us2[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9630       if(rs1[i]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9631       if(rs2[i]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9632       if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1)) {
9633         if(dep1[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9634         if(dep1[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9635       }
9636       if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1)) {
9637         if(dep2[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9638         if(dep2[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9639       }
9640       if(itype[i]==STORE || itype[i]==STORELR || (opcode[i]&0x3b)==0x39 || (opcode[i]&0x3b)==0x3a) {
9641         if(regmap_pre[i][hr]==INVCP) nr|=1<<hr;
9642         if(regs[i].regmap_entry[hr]==INVCP) nr|=1<<hr;
9643       }
9644       // Don't store a register immediately after writing it,
9645       // may prevent dual-issue.
9646       // But do so if this is a branch target, otherwise we
9647       // might have to load the register before the branch.
9648       if(i>0&&!bt[i]&&((regs[i].wasdirty>>hr)&1)) {
9649         if((regmap_pre[i][hr]>0&&regmap_pre[i][hr]<64&&!((unneeded_reg[i]>>regmap_pre[i][hr])&1)) ||
9650            (regmap_pre[i][hr]>64&&!((unneeded_reg_upper[i]>>(regmap_pre[i][hr]&63))&1)) ) {
9651           if(rt1[i-1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9652           if(rt2[i-1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9653         }
9654         if((regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64&&!((unneeded_reg[i]>>regs[i].regmap_entry[hr])&1)) ||
9655            (regs[i].regmap_entry[hr]>64&&!((unneeded_reg_upper[i]>>(regs[i].regmap_entry[hr]&63))&1)) ) {
9656           if(rt1[i-1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9657           if(rt2[i-1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9658         }
9659       }
9660     }
9661     // Cycle count is needed at branches.  Assume it is needed at the target too.
9662     if(i==0||bt[i]||itype[i]==CJUMP||itype[i]==FJUMP||itype[i]==SPAN) {
9663       if(regmap_pre[i][HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
9664       if(regs[i].regmap_entry[HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
9665     }
9666     // Save it
9667     needed_reg[i]=nr;
9668     
9669     // Deallocate unneeded registers
9670     for(hr=0;hr<HOST_REGS;hr++)
9671     {
9672       if(!((nr>>hr)&1)) {
9673         if(regs[i].regmap_entry[hr]!=CCREG) regs[i].regmap_entry[hr]=-1;
9674         if((regs[i].regmap[hr]&63)!=rs1[i] && (regs[i].regmap[hr]&63)!=rs2[i] &&
9675            (regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
9676            (regs[i].regmap[hr]&63)!=PTEMP && (regs[i].regmap[hr]&63)!=CCREG)
9677         {
9678           if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
9679           {
9680             if(likely[i]) {
9681               regs[i].regmap[hr]=-1;
9682               regs[i].isconst&=~(1<<hr);
9683               if(i<slen-2) regmap_pre[i+2][hr]=-1;
9684             }
9685           }
9686         }
9687         if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
9688         {
9689           int d1=0,d2=0,map=0,temp=0;
9690           if(get_reg(regs[i].regmap,rt1[i+1]|64)>=0||get_reg(branch_regs[i].regmap,rt1[i+1]|64)>=0)
9691           {
9692             d1=dep1[i+1];
9693             d2=dep2[i+1];
9694           }
9695           if(using_tlb) {
9696             if(itype[i+1]==LOAD || itype[i+1]==LOADLR ||
9697                itype[i+1]==STORE || itype[i+1]==STORELR ||
9698                itype[i+1]==C1LS || itype[i+1]==C2LS)
9699             map=TLREG;
9700           } else
9701           if(itype[i+1]==STORE || itype[i+1]==STORELR ||
9702              (opcode[i+1]&0x3b)==0x39 || (opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1 || SWC2/SDC2
9703             map=INVCP;
9704           }
9705           if(itype[i+1]==LOADLR || itype[i+1]==STORELR ||
9706              itype[i+1]==C1LS || itype[i+1]==C2LS)
9707             temp=FTEMP;
9708           if((regs[i].regmap[hr]&63)!=rs1[i] && (regs[i].regmap[hr]&63)!=rs2[i] &&
9709              (regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
9710              (regs[i].regmap[hr]&63)!=rt1[i+1] && (regs[i].regmap[hr]&63)!=rt2[i+1] &&
9711              (regs[i].regmap[hr]^64)!=us1[i+1] && (regs[i].regmap[hr]^64)!=us2[i+1] &&
9712              (regs[i].regmap[hr]^64)!=d1 && (regs[i].regmap[hr]^64)!=d2 &&
9713              regs[i].regmap[hr]!=rs1[i+1] && regs[i].regmap[hr]!=rs2[i+1] &&
9714              (regs[i].regmap[hr]&63)!=temp && regs[i].regmap[hr]!=PTEMP &&
9715              regs[i].regmap[hr]!=RHASH && regs[i].regmap[hr]!=RHTBL &&
9716              regs[i].regmap[hr]!=RTEMP && regs[i].regmap[hr]!=CCREG &&
9717              regs[i].regmap[hr]!=map )
9718           {
9719             regs[i].regmap[hr]=-1;
9720             regs[i].isconst&=~(1<<hr);
9721             if((branch_regs[i].regmap[hr]&63)!=rs1[i] && (branch_regs[i].regmap[hr]&63)!=rs2[i] &&
9722                (branch_regs[i].regmap[hr]&63)!=rt1[i] && (branch_regs[i].regmap[hr]&63)!=rt2[i] &&
9723                (branch_regs[i].regmap[hr]&63)!=rt1[i+1] && (branch_regs[i].regmap[hr]&63)!=rt2[i+1] &&
9724                (branch_regs[i].regmap[hr]^64)!=us1[i+1] && (branch_regs[i].regmap[hr]^64)!=us2[i+1] &&
9725                (branch_regs[i].regmap[hr]^64)!=d1 && (branch_regs[i].regmap[hr]^64)!=d2 &&
9726                branch_regs[i].regmap[hr]!=rs1[i+1] && branch_regs[i].regmap[hr]!=rs2[i+1] &&
9727                (branch_regs[i].regmap[hr]&63)!=temp && branch_regs[i].regmap[hr]!=PTEMP &&
9728                branch_regs[i].regmap[hr]!=RHASH && branch_regs[i].regmap[hr]!=RHTBL &&
9729                branch_regs[i].regmap[hr]!=RTEMP && branch_regs[i].regmap[hr]!=CCREG &&
9730                branch_regs[i].regmap[hr]!=map)
9731             {
9732               branch_regs[i].regmap[hr]=-1;
9733               branch_regs[i].regmap_entry[hr]=-1;
9734               if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
9735               {
9736                 if(!likely[i]&&i<slen-2) {
9737                   regmap_pre[i+2][hr]=-1;
9738                 }
9739               }
9740             }
9741           }
9742         }
9743         else
9744         {
9745           // Non-branch
9746           if(i>0)
9747           {
9748             int d1=0,d2=0,map=-1,temp=-1;
9749             if(get_reg(regs[i].regmap,rt1[i]|64)>=0)
9750             {
9751               d1=dep1[i];
9752               d2=dep2[i];
9753             }
9754             if(using_tlb) {
9755               if(itype[i]==LOAD || itype[i]==LOADLR ||
9756                  itype[i]==STORE || itype[i]==STORELR ||
9757                  itype[i]==C1LS || itype[i]==C2LS)
9758               map=TLREG;
9759             } else if(itype[i]==STORE || itype[i]==STORELR ||
9760                       (opcode[i]&0x3b)==0x39 || (opcode[i]&0x3b)==0x3a) { // SWC1/SDC1 || SWC2/SDC2
9761               map=INVCP;
9762             }
9763             if(itype[i]==LOADLR || itype[i]==STORELR ||
9764                itype[i]==C1LS || itype[i]==C2LS)
9765               temp=FTEMP;
9766             if((regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
9767                (regs[i].regmap[hr]^64)!=us1[i] && (regs[i].regmap[hr]^64)!=us2[i] &&
9768                (regs[i].regmap[hr]^64)!=d1 && (regs[i].regmap[hr]^64)!=d2 &&
9769                regs[i].regmap[hr]!=rs1[i] && regs[i].regmap[hr]!=rs2[i] &&
9770                (regs[i].regmap[hr]&63)!=temp && regs[i].regmap[hr]!=map &&
9771                (itype[i]!=SPAN||regs[i].regmap[hr]!=CCREG))
9772             {
9773               if(i<slen-1&&!is_ds[i]) {
9774                 if(regmap_pre[i+1][hr]!=-1 || regs[i].regmap[hr]!=-1)
9775                 if(regmap_pre[i+1][hr]!=regs[i].regmap[hr])
9776                 if(regs[i].regmap[hr]<64||!((regs[i].was32>>(regs[i].regmap[hr]&63))&1))
9777                 {
9778                   printf("fail: %x (%d %d!=%d)\n",start+i*4,hr,regmap_pre[i+1][hr],regs[i].regmap[hr]);
9779                   assert(regmap_pre[i+1][hr]==regs[i].regmap[hr]);
9780                 }
9781                 regmap_pre[i+1][hr]=-1;
9782                 if(regs[i+1].regmap_entry[hr]==CCREG) regs[i+1].regmap_entry[hr]=-1;
9783               }
9784               regs[i].regmap[hr]=-1;
9785               regs[i].isconst&=~(1<<hr);
9786             }
9787           }
9788         }
9789       }
9790     }
9791   }
9792   
9793   /* Pass 5 - Pre-allocate registers */
9794   
9795   // If a register is allocated during a loop, try to allocate it for the
9796   // entire loop, if possible.  This avoids loading/storing registers
9797   // inside of the loop.
9798
9799   signed char f_regmap[HOST_REGS];
9800   clear_all_regs(f_regmap);
9801   for(i=0;i<slen-1;i++)
9802   {
9803     if(itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
9804     {
9805       if(ba[i]>=start && ba[i]<(start+i*4)) 
9806       if(itype[i+1]==NOP||itype[i+1]==MOV||itype[i+1]==ALU
9807       ||itype[i+1]==SHIFTIMM||itype[i+1]==IMM16||itype[i+1]==LOAD
9808       ||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS
9809       ||itype[i+1]==SHIFT||itype[i+1]==COP1||itype[i+1]==FLOAT
9810       ||itype[i+1]==FCOMP||itype[i+1]==FCONV
9811       ||itype[i+1]==COP2||itype[i+1]==C2LS||itype[i+1]==C2OP)
9812       {
9813         int t=(ba[i]-start)>>2;
9814         if(t>0&&(itype[t-1]!=UJUMP&&itype[t-1]!=RJUMP&&itype[t-1]!=CJUMP&&itype[t-1]!=SJUMP&&itype[t-1]!=FJUMP)) // loop_preload can't handle jumps into delay slots
9815         if(t<2||(itype[t-2]!=UJUMP)) // call/ret assumes no registers allocated
9816         for(hr=0;hr<HOST_REGS;hr++)
9817         {
9818           if(regs[i].regmap[hr]>64) {
9819             if(!((regs[i].dirty>>hr)&1))
9820               f_regmap[hr]=regs[i].regmap[hr];
9821             else f_regmap[hr]=-1;
9822           }
9823           else if(regs[i].regmap[hr]>=0) {
9824             if(f_regmap[hr]!=regs[i].regmap[hr]) {
9825               // dealloc old register
9826               int n;
9827               for(n=0;n<HOST_REGS;n++)
9828               {
9829                 if(f_regmap[n]==regs[i].regmap[hr]) {f_regmap[n]=-1;}
9830               }
9831               // and alloc new one
9832               f_regmap[hr]=regs[i].regmap[hr];
9833             }
9834           }
9835           if(branch_regs[i].regmap[hr]>64) {
9836             if(!((branch_regs[i].dirty>>hr)&1))
9837               f_regmap[hr]=branch_regs[i].regmap[hr];
9838             else f_regmap[hr]=-1;
9839           }
9840           else if(branch_regs[i].regmap[hr]>=0) {
9841             if(f_regmap[hr]!=branch_regs[i].regmap[hr]) {
9842               // dealloc old register
9843               int n;
9844               for(n=0;n<HOST_REGS;n++)
9845               {
9846                 if(f_regmap[n]==branch_regs[i].regmap[hr]) {f_regmap[n]=-1;}
9847               }
9848               // and alloc new one
9849               f_regmap[hr]=branch_regs[i].regmap[hr];
9850             }
9851           }
9852           if(ooo[i]) {
9853             if(count_free_regs(regs[i].regmap)<=minimum_free_regs[i+1]) 
9854               f_regmap[hr]=branch_regs[i].regmap[hr];
9855           }else{
9856             if(count_free_regs(branch_regs[i].regmap)<=minimum_free_regs[i+1]) 
9857               f_regmap[hr]=branch_regs[i].regmap[hr];
9858           }
9859           // Avoid dirty->clean transition
9860           #ifdef DESTRUCTIVE_WRITEBACK
9861           if(t>0) if(get_reg(regmap_pre[t],f_regmap[hr])>=0) if((regs[t].wasdirty>>get_reg(regmap_pre[t],f_regmap[hr]))&1) f_regmap[hr]=-1;
9862           #endif
9863           // This check is only strictly required in the DESTRUCTIVE_WRITEBACK
9864           // case above, however it's always a good idea.  We can't hoist the
9865           // load if the register was already allocated, so there's no point
9866           // wasting time analyzing most of these cases.  It only "succeeds"
9867           // when the mapping was different and the load can be replaced with
9868           // a mov, which is of negligible benefit.  So such cases are
9869           // skipped below.
9870           if(f_regmap[hr]>0) {
9871             if(regs[t].regmap_entry[hr]<0&&get_reg(regmap_pre[t],f_regmap[hr])<0) {
9872               int r=f_regmap[hr];
9873               for(j=t;j<=i;j++)
9874               {
9875                 //printf("Test %x -> %x, %x %d/%d\n",start+i*4,ba[i],start+j*4,hr,r);
9876                 if(r<34&&((unneeded_reg[j]>>r)&1)) break;
9877                 if(r>63&&((unneeded_reg_upper[j]>>(r&63))&1)) break;
9878                 if(r>63) {
9879                   // NB This can exclude the case where the upper-half
9880                   // register is lower numbered than the lower-half
9881                   // register.  Not sure if it's worth fixing...
9882                   if(get_reg(regs[j].regmap,r&63)<0) break;
9883                   if(get_reg(regs[j].regmap_entry,r&63)<0) break;
9884                   if(regs[j].is32&(1LL<<(r&63))) break;
9885                 }
9886                 if(regs[j].regmap[hr]==f_regmap[hr]&&(f_regmap[hr]&63)<TEMPREG) {
9887                   //printf("Hit %x -> %x, %x %d/%d\n",start+i*4,ba[i],start+j*4,hr,r);
9888                   int k;
9889                   if(regs[i].regmap[hr]==-1&&branch_regs[i].regmap[hr]==-1) {
9890                     if(get_reg(regs[i+2].regmap,f_regmap[hr])>=0) break;
9891                     if(r>63) {
9892                       if(get_reg(regs[i].regmap,r&63)<0) break;
9893                       if(get_reg(branch_regs[i].regmap,r&63)<0) break;
9894                     }
9895                     k=i;
9896                     while(k>1&&regs[k-1].regmap[hr]==-1) {
9897                       if(count_free_regs(regs[k-1].regmap)<=minimum_free_regs[k-1]) {
9898                         //printf("no free regs for store %x\n",start+(k-1)*4);
9899                         break;
9900                       }
9901                       if(get_reg(regs[k-1].regmap,f_regmap[hr])>=0) {
9902                         //printf("no-match due to different register\n");
9903                         break;
9904                       }
9905                       if(itype[k-2]==UJUMP||itype[k-2]==RJUMP||itype[k-2]==CJUMP||itype[k-2]==SJUMP||itype[k-2]==FJUMP) {
9906                         //printf("no-match due to branch\n");
9907                         break;
9908                       }
9909                       // call/ret fast path assumes no registers allocated
9910                       if(k>2&&(itype[k-3]==UJUMP||itype[k-3]==RJUMP)) {
9911                         break;
9912                       }
9913                       if(r>63) {
9914                         // NB This can exclude the case where the upper-half
9915                         // register is lower numbered than the lower-half
9916                         // register.  Not sure if it's worth fixing...
9917                         if(get_reg(regs[k-1].regmap,r&63)<0) break;
9918                         if(regs[k-1].is32&(1LL<<(r&63))) break;
9919                       }
9920                       k--;
9921                     }
9922                     if(i<slen-1) {
9923                       if((regs[k].is32&(1LL<<f_regmap[hr]))!=
9924                         (regs[i+2].was32&(1LL<<f_regmap[hr]))) {
9925                         //printf("bad match after branch\n");
9926                         break;
9927                       }
9928                     }
9929                     if(regs[k-1].regmap[hr]==f_regmap[hr]&&regmap_pre[k][hr]==f_regmap[hr]) {
9930                       //printf("Extend r%d, %x ->\n",hr,start+k*4);
9931                       while(k<i) {
9932                         regs[k].regmap_entry[hr]=f_regmap[hr];
9933                         regs[k].regmap[hr]=f_regmap[hr];
9934                         regmap_pre[k+1][hr]=f_regmap[hr];
9935                         regs[k].wasdirty&=~(1<<hr);
9936                         regs[k].dirty&=~(1<<hr);
9937                         regs[k].wasdirty|=(1<<hr)&regs[k-1].dirty;
9938                         regs[k].dirty|=(1<<hr)&regs[k].wasdirty;
9939                         regs[k].wasconst&=~(1<<hr);
9940                         regs[k].isconst&=~(1<<hr);
9941                         k++;
9942                       }
9943                     }
9944                     else {
9945                       //printf("Fail Extend r%d, %x ->\n",hr,start+k*4);
9946                       break;
9947                     }
9948                     assert(regs[i-1].regmap[hr]==f_regmap[hr]);
9949                     if(regs[i-1].regmap[hr]==f_regmap[hr]&&regmap_pre[i][hr]==f_regmap[hr]) {
9950                       //printf("OK fill %x (r%d)\n",start+i*4,hr);
9951                       regs[i].regmap_entry[hr]=f_regmap[hr];
9952                       regs[i].regmap[hr]=f_regmap[hr];
9953                       regs[i].wasdirty&=~(1<<hr);
9954                       regs[i].dirty&=~(1<<hr);
9955                       regs[i].wasdirty|=(1<<hr)&regs[i-1].dirty;
9956                       regs[i].dirty|=(1<<hr)&regs[i-1].dirty;
9957                       regs[i].wasconst&=~(1<<hr);
9958                       regs[i].isconst&=~(1<<hr);
9959                       branch_regs[i].regmap_entry[hr]=f_regmap[hr];
9960                       branch_regs[i].wasdirty&=~(1<<hr);
9961                       branch_regs[i].wasdirty|=(1<<hr)&regs[i].dirty;
9962                       branch_regs[i].regmap[hr]=f_regmap[hr];
9963                       branch_regs[i].dirty&=~(1<<hr);
9964                       branch_regs[i].dirty|=(1<<hr)&regs[i].dirty;
9965                       branch_regs[i].wasconst&=~(1<<hr);
9966                       branch_regs[i].isconst&=~(1<<hr);
9967                       if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000) {
9968                         regmap_pre[i+2][hr]=f_regmap[hr];
9969                         regs[i+2].wasdirty&=~(1<<hr);
9970                         regs[i+2].wasdirty|=(1<<hr)&regs[i].dirty;
9971                         assert((branch_regs[i].is32&(1LL<<f_regmap[hr]))==
9972                           (regs[i+2].was32&(1LL<<f_regmap[hr])));
9973                       }
9974                     }
9975                   }
9976                   for(k=t;k<j;k++) {
9977                     // Alloc register clean at beginning of loop,
9978                     // but may dirty it in pass 6
9979                     regs[k].regmap_entry[hr]=f_regmap[hr];
9980                     regs[k].regmap[hr]=f_regmap[hr];
9981                     regs[k].dirty&=~(1<<hr);
9982                     regs[k].wasconst&=~(1<<hr);
9983                     regs[k].isconst&=~(1<<hr);
9984                     if(itype[k]==UJUMP||itype[k]==RJUMP||itype[k]==CJUMP||itype[k]==SJUMP||itype[k]==FJUMP) {
9985                       branch_regs[k].regmap_entry[hr]=f_regmap[hr];
9986                       branch_regs[k].regmap[hr]=f_regmap[hr];
9987                       branch_regs[k].dirty&=~(1<<hr);
9988                       branch_regs[k].wasconst&=~(1<<hr);
9989                       branch_regs[k].isconst&=~(1<<hr);
9990                       if(itype[k]!=RJUMP&&itype[k]!=UJUMP&&(source[k]>>16)!=0x1000) {
9991                         regmap_pre[k+2][hr]=f_regmap[hr];
9992                         regs[k+2].wasdirty&=~(1<<hr);
9993                         assert((branch_regs[k].is32&(1LL<<f_regmap[hr]))==
9994                           (regs[k+2].was32&(1LL<<f_regmap[hr])));
9995                       }
9996                     }
9997                     else
9998                     {
9999                       regmap_pre[k+1][hr]=f_regmap[hr];
10000                       regs[k+1].wasdirty&=~(1<<hr);
10001                     }
10002                   }
10003                   if(regs[j].regmap[hr]==f_regmap[hr])
10004                     regs[j].regmap_entry[hr]=f_regmap[hr];
10005                   break;
10006                 }
10007                 if(j==i) break;
10008                 if(regs[j].regmap[hr]>=0)
10009                   break;
10010                 if(get_reg(regs[j].regmap,f_regmap[hr])>=0) {
10011                   //printf("no-match due to different register\n");
10012                   break;
10013                 }
10014                 if((regs[j+1].is32&(1LL<<f_regmap[hr]))!=(regs[j].is32&(1LL<<f_regmap[hr]))) {
10015                   //printf("32/64 mismatch %x %d\n",start+j*4,hr);
10016                   break;
10017                 }
10018                 if(itype[j]==UJUMP||itype[j]==RJUMP||(source[j]>>16)==0x1000)
10019                 {
10020                   // Stop on unconditional branch
10021                   break;
10022                 }
10023                 if(itype[j]==CJUMP||itype[j]==SJUMP||itype[j]==FJUMP)
10024                 {
10025                   if(ooo[j]) {
10026                     if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j+1]) 
10027                       break;
10028                   }else{
10029                     if(count_free_regs(branch_regs[j].regmap)<=minimum_free_regs[j+1]) 
10030                       break;
10031                   }
10032                   if(get_reg(branch_regs[j].regmap,f_regmap[hr])>=0) {
10033                     //printf("no-match due to different register (branch)\n");
10034                     break;
10035                   }
10036                 }
10037                 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) {
10038                   //printf("No free regs for store %x\n",start+j*4);
10039                   break;
10040                 }
10041                 if(f_regmap[hr]>=64) {
10042                   if(regs[j].is32&(1LL<<(f_regmap[hr]&63))) {
10043                     break;
10044                   }
10045                   else
10046                   {
10047                     if(get_reg(regs[j].regmap,f_regmap[hr]&63)<0) {
10048                       break;
10049                     }
10050                   }
10051                 }
10052               }
10053             }
10054           }
10055         }
10056       }
10057     }else{
10058       int count=0;
10059       for(hr=0;hr<HOST_REGS;hr++)
10060       {
10061         if(hr!=EXCLUDE_REG) {
10062           if(regs[i].regmap[hr]>64) {
10063             if(!((regs[i].dirty>>hr)&1))
10064               f_regmap[hr]=regs[i].regmap[hr];
10065           }
10066           else if(regs[i].regmap[hr]>=0) {
10067             if(f_regmap[hr]!=regs[i].regmap[hr]) {
10068               // dealloc old register
10069               int n;
10070               for(n=0;n<HOST_REGS;n++)
10071               {
10072                 if(f_regmap[n]==regs[i].regmap[hr]) {f_regmap[n]=-1;}
10073               }
10074               // and alloc new one
10075               f_regmap[hr]=regs[i].regmap[hr];
10076             }
10077           }
10078           else if(regs[i].regmap[hr]<0) count++;
10079         }
10080       }
10081       // Try to restore cycle count at branch targets
10082       if(bt[i]) {
10083         for(j=i;j<slen-1;j++) {
10084           if(regs[j].regmap[HOST_CCREG]!=-1) break;
10085           if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) {
10086             //printf("no free regs for store %x\n",start+j*4);
10087             break;
10088           }
10089         }
10090         if(regs[j].regmap[HOST_CCREG]==CCREG) {
10091           int k=i;
10092           //printf("Extend CC, %x -> %x\n",start+k*4,start+j*4);
10093           while(k<j) {
10094             regs[k].regmap_entry[HOST_CCREG]=CCREG;
10095             regs[k].regmap[HOST_CCREG]=CCREG;
10096             regmap_pre[k+1][HOST_CCREG]=CCREG;
10097             regs[k+1].wasdirty|=1<<HOST_CCREG;
10098             regs[k].dirty|=1<<HOST_CCREG;
10099             regs[k].wasconst&=~(1<<HOST_CCREG);
10100             regs[k].isconst&=~(1<<HOST_CCREG);
10101             k++;
10102           }
10103           regs[j].regmap_entry[HOST_CCREG]=CCREG;          
10104         }
10105         // Work backwards from the branch target
10106         if(j>i&&f_regmap[HOST_CCREG]==CCREG)
10107         {
10108           //printf("Extend backwards\n");
10109           int k;
10110           k=i;
10111           while(regs[k-1].regmap[HOST_CCREG]==-1) {
10112             if(count_free_regs(regs[k-1].regmap)<=minimum_free_regs[k-1]) {
10113               //printf("no free regs for store %x\n",start+(k-1)*4);
10114               break;
10115             }
10116             k--;
10117           }
10118           if(regs[k-1].regmap[HOST_CCREG]==CCREG) {
10119             //printf("Extend CC, %x ->\n",start+k*4);
10120             while(k<=i) {
10121               regs[k].regmap_entry[HOST_CCREG]=CCREG;
10122               regs[k].regmap[HOST_CCREG]=CCREG;
10123               regmap_pre[k+1][HOST_CCREG]=CCREG;
10124               regs[k+1].wasdirty|=1<<HOST_CCREG;
10125               regs[k].dirty|=1<<HOST_CCREG;
10126               regs[k].wasconst&=~(1<<HOST_CCREG);
10127               regs[k].isconst&=~(1<<HOST_CCREG);
10128               k++;
10129             }
10130           }
10131           else {
10132             //printf("Fail Extend CC, %x ->\n",start+k*4);
10133           }
10134         }
10135       }
10136       if(itype[i]!=STORE&&itype[i]!=STORELR&&itype[i]!=C1LS&&itype[i]!=SHIFT&&
10137          itype[i]!=NOP&&itype[i]!=MOV&&itype[i]!=ALU&&itype[i]!=SHIFTIMM&&
10138          itype[i]!=IMM16&&itype[i]!=LOAD&&itype[i]!=COP1&&itype[i]!=FLOAT&&
10139          itype[i]!=FCONV&&itype[i]!=FCOMP)
10140       {
10141         memcpy(f_regmap,regs[i].regmap,sizeof(f_regmap));
10142       }
10143     }
10144   }
10145   
10146   // This allocates registers (if possible) one instruction prior
10147   // to use, which can avoid a load-use penalty on certain CPUs.
10148   for(i=0;i<slen-1;i++)
10149   {
10150     if(!i||(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP))
10151     {
10152       if(!bt[i+1])
10153       {
10154         if(itype[i]==ALU||itype[i]==MOV||itype[i]==LOAD||itype[i]==SHIFTIMM||itype[i]==IMM16
10155            ||((itype[i]==COP1||itype[i]==COP2)&&opcode2[i]<3))
10156         {
10157           if(rs1[i+1]) {
10158             if((hr=get_reg(regs[i+1].regmap,rs1[i+1]))>=0)
10159             {
10160               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10161               {
10162                 regs[i].regmap[hr]=regs[i+1].regmap[hr];
10163                 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
10164                 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
10165                 regs[i].isconst&=~(1<<hr);
10166                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10167                 constmap[i][hr]=constmap[i+1][hr];
10168                 regs[i+1].wasdirty&=~(1<<hr);
10169                 regs[i].dirty&=~(1<<hr);
10170               }
10171             }
10172           }
10173           if(rs2[i+1]) {
10174             if((hr=get_reg(regs[i+1].regmap,rs2[i+1]))>=0)
10175             {
10176               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10177               {
10178                 regs[i].regmap[hr]=regs[i+1].regmap[hr];
10179                 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
10180                 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
10181                 regs[i].isconst&=~(1<<hr);
10182                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10183                 constmap[i][hr]=constmap[i+1][hr];
10184                 regs[i+1].wasdirty&=~(1<<hr);
10185                 regs[i].dirty&=~(1<<hr);
10186               }
10187             }
10188           }
10189           if(itype[i+1]==LOAD&&rs1[i+1]&&get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10190             if((hr=get_reg(regs[i+1].regmap,rt1[i+1]))>=0)
10191             {
10192               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10193               {
10194                 regs[i].regmap[hr]=rs1[i+1];
10195                 regmap_pre[i+1][hr]=rs1[i+1];
10196                 regs[i+1].regmap_entry[hr]=rs1[i+1];
10197                 regs[i].isconst&=~(1<<hr);
10198                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10199                 constmap[i][hr]=constmap[i+1][hr];
10200                 regs[i+1].wasdirty&=~(1<<hr);
10201                 regs[i].dirty&=~(1<<hr);
10202               }
10203             }
10204           }
10205           if(lt1[i+1]&&get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10206             if((hr=get_reg(regs[i+1].regmap,rt1[i+1]))>=0)
10207             {
10208               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10209               {
10210                 regs[i].regmap[hr]=rs1[i+1];
10211                 regmap_pre[i+1][hr]=rs1[i+1];
10212                 regs[i+1].regmap_entry[hr]=rs1[i+1];
10213                 regs[i].isconst&=~(1<<hr);
10214                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10215                 constmap[i][hr]=constmap[i+1][hr];
10216                 regs[i+1].wasdirty&=~(1<<hr);
10217                 regs[i].dirty&=~(1<<hr);
10218               }
10219             }
10220           }
10221           #ifndef HOST_IMM_ADDR32
10222           if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS||itype[i+1]==C2LS) {
10223             hr=get_reg(regs[i+1].regmap,TLREG);
10224             if(hr>=0) {
10225               int sr=get_reg(regs[i+1].regmap,rs1[i+1]);
10226               if(sr>=0&&((regs[i+1].wasconst>>sr)&1)) {
10227                 int nr;
10228                 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10229                 {
10230                   regs[i].regmap[hr]=MGEN1+((i+1)&1);
10231                   regmap_pre[i+1][hr]=MGEN1+((i+1)&1);
10232                   regs[i+1].regmap_entry[hr]=MGEN1+((i+1)&1);
10233                   regs[i].isconst&=~(1<<hr);
10234                   regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10235                   constmap[i][hr]=constmap[i+1][hr];
10236                   regs[i+1].wasdirty&=~(1<<hr);
10237                   regs[i].dirty&=~(1<<hr);
10238                 }
10239                 else if((nr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1))>=0)
10240                 {
10241                   // move it to another register
10242                   regs[i+1].regmap[hr]=-1;
10243                   regmap_pre[i+2][hr]=-1;
10244                   regs[i+1].regmap[nr]=TLREG;
10245                   regmap_pre[i+2][nr]=TLREG;
10246                   regs[i].regmap[nr]=MGEN1+((i+1)&1);
10247                   regmap_pre[i+1][nr]=MGEN1+((i+1)&1);
10248                   regs[i+1].regmap_entry[nr]=MGEN1+((i+1)&1);
10249                   regs[i].isconst&=~(1<<nr);
10250                   regs[i+1].isconst&=~(1<<nr);
10251                   regs[i].dirty&=~(1<<nr);
10252                   regs[i+1].wasdirty&=~(1<<nr);
10253                   regs[i+1].dirty&=~(1<<nr);
10254                   regs[i+2].wasdirty&=~(1<<nr);
10255                 }
10256               }
10257             }
10258           }
10259           #endif
10260           if(itype[i+1]==STORE||itype[i+1]==STORELR
10261              ||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SB/SH/SW/SD/SWC1/SDC1/SWC2/SDC2
10262             if(get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10263               hr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1);
10264               if(hr<0) hr=get_reg(regs[i+1].regmap,-1);
10265               else {regs[i+1].regmap[hr]=AGEN1+((i+1)&1);regs[i+1].isconst&=~(1<<hr);}
10266               assert(hr>=0);
10267               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10268               {
10269                 regs[i].regmap[hr]=rs1[i+1];
10270                 regmap_pre[i+1][hr]=rs1[i+1];
10271                 regs[i+1].regmap_entry[hr]=rs1[i+1];
10272                 regs[i].isconst&=~(1<<hr);
10273                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10274                 constmap[i][hr]=constmap[i+1][hr];
10275                 regs[i+1].wasdirty&=~(1<<hr);
10276                 regs[i].dirty&=~(1<<hr);
10277               }
10278             }
10279           }
10280           if(itype[i+1]==LOADLR||(opcode[i+1]&0x3b)==0x31||(opcode[i+1]&0x3b)==0x32) { // LWC1/LDC1, LWC2/LDC2
10281             if(get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10282               int nr;
10283               hr=get_reg(regs[i+1].regmap,FTEMP);
10284               assert(hr>=0);
10285               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10286               {
10287                 regs[i].regmap[hr]=rs1[i+1];
10288                 regmap_pre[i+1][hr]=rs1[i+1];
10289                 regs[i+1].regmap_entry[hr]=rs1[i+1];
10290                 regs[i].isconst&=~(1<<hr);
10291                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10292                 constmap[i][hr]=constmap[i+1][hr];
10293                 regs[i+1].wasdirty&=~(1<<hr);
10294                 regs[i].dirty&=~(1<<hr);
10295               }
10296               else if((nr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1))>=0)
10297               {
10298                 // move it to another register
10299                 regs[i+1].regmap[hr]=-1;
10300                 regmap_pre[i+2][hr]=-1;
10301                 regs[i+1].regmap[nr]=FTEMP;
10302                 regmap_pre[i+2][nr]=FTEMP;
10303                 regs[i].regmap[nr]=rs1[i+1];
10304                 regmap_pre[i+1][nr]=rs1[i+1];
10305                 regs[i+1].regmap_entry[nr]=rs1[i+1];
10306                 regs[i].isconst&=~(1<<nr);
10307                 regs[i+1].isconst&=~(1<<nr);
10308                 regs[i].dirty&=~(1<<nr);
10309                 regs[i+1].wasdirty&=~(1<<nr);
10310                 regs[i+1].dirty&=~(1<<nr);
10311                 regs[i+2].wasdirty&=~(1<<nr);
10312               }
10313             }
10314           }
10315           if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR/*||itype[i+1]==C1LS||||itype[i+1]==C2LS*/) {
10316             if(itype[i+1]==LOAD) 
10317               hr=get_reg(regs[i+1].regmap,rt1[i+1]);
10318             if(itype[i+1]==LOADLR||(opcode[i+1]&0x3b)==0x31||(opcode[i+1]&0x3b)==0x32) // LWC1/LDC1, LWC2/LDC2
10319               hr=get_reg(regs[i+1].regmap,FTEMP);
10320             if(itype[i+1]==STORE||itype[i+1]==STORELR||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1/SWC2/SDC2
10321               hr=get_reg(regs[i+1].regmap,AGEN1+((i+1)&1));
10322               if(hr<0) hr=get_reg(regs[i+1].regmap,-1);
10323             }
10324             if(hr>=0&&regs[i].regmap[hr]<0) {
10325               int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
10326               if(rs>=0&&((regs[i+1].wasconst>>rs)&1)) {
10327                 regs[i].regmap[hr]=AGEN1+((i+1)&1);
10328                 regmap_pre[i+1][hr]=AGEN1+((i+1)&1);
10329                 regs[i+1].regmap_entry[hr]=AGEN1+((i+1)&1);
10330                 regs[i].isconst&=~(1<<hr);
10331                 regs[i+1].wasdirty&=~(1<<hr);
10332                 regs[i].dirty&=~(1<<hr);
10333               }
10334             }
10335           }
10336         }
10337       }
10338     }
10339   }
10340   
10341   /* Pass 6 - Optimize clean/dirty state */
10342   clean_registers(0,slen-1,1);
10343   
10344   /* Pass 7 - Identify 32-bit registers */
10345 #ifndef FORCE32
10346   provisional_r32();
10347
10348   u_int r32=0;
10349   
10350   for (i=slen-1;i>=0;i--)
10351   {
10352     int hr;
10353     if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
10354     {
10355       if(ba[i]<start || ba[i]>=(start+slen*4))
10356       {
10357         // Branch out of this block, don't need anything
10358         r32=0;
10359       }
10360       else
10361       {
10362         // Internal branch
10363         // Need whatever matches the target
10364         // (and doesn't get overwritten by the delay slot instruction)
10365         r32=0;
10366         int t=(ba[i]-start)>>2;
10367         if(ba[i]>start+i*4) {
10368           // Forward branch
10369           if(!(requires_32bit[t]&~regs[i].was32))
10370             r32|=requires_32bit[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
10371         }else{
10372           // Backward branch
10373           //if(!(regs[t].was32&~unneeded_reg_upper[t]&~regs[i].was32))
10374           //  r32|=regs[t].was32&~unneeded_reg_upper[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
10375           if(!(pr32[t]&~regs[i].was32))
10376             r32|=pr32[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
10377         }
10378       }
10379       // Conditional branch may need registers for following instructions
10380       if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
10381       {
10382         if(i<slen-2) {
10383           r32|=requires_32bit[i+2];
10384           r32&=regs[i].was32;
10385           // Mark this address as a branch target since it may be called
10386           // upon return from interrupt
10387           bt[i+2]=1;
10388         }
10389       }
10390       // Merge in delay slot
10391       if(!likely[i]) {
10392         // These are overwritten unless the branch is "likely"
10393         // and the delay slot is nullified if not taken
10394         r32&=~(1LL<<rt1[i+1]);
10395         r32&=~(1LL<<rt2[i+1]);
10396       }
10397       // Assume these are needed (delay slot)
10398       if(us1[i+1]>0)
10399       {
10400         if((regs[i].was32>>us1[i+1])&1) r32|=1LL<<us1[i+1];
10401       }
10402       if(us2[i+1]>0)
10403       {
10404         if((regs[i].was32>>us2[i+1])&1) r32|=1LL<<us2[i+1];
10405       }
10406       if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1))
10407       {
10408         if((regs[i].was32>>dep1[i+1])&1) r32|=1LL<<dep1[i+1];
10409       }
10410       if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1))
10411       {
10412         if((regs[i].was32>>dep2[i+1])&1) r32|=1LL<<dep2[i+1];
10413       }
10414     }
10415     else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
10416     {
10417       // SYSCALL instruction (software interrupt)
10418       r32=0;
10419     }
10420     else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
10421     {
10422       // ERET instruction (return from interrupt)
10423       r32=0;
10424     }
10425     // Check 32 bits
10426     r32&=~(1LL<<rt1[i]);
10427     r32&=~(1LL<<rt2[i]);
10428     if(us1[i]>0)
10429     {
10430       if((regs[i].was32>>us1[i])&1) r32|=1LL<<us1[i];
10431     }
10432     if(us2[i]>0)
10433     {
10434       if((regs[i].was32>>us2[i])&1) r32|=1LL<<us2[i];
10435     }
10436     if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1))
10437     {
10438       if((regs[i].was32>>dep1[i])&1) r32|=1LL<<dep1[i];
10439     }
10440     if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1))
10441     {
10442       if((regs[i].was32>>dep2[i])&1) r32|=1LL<<dep2[i];
10443     }
10444     requires_32bit[i]=r32;
10445     
10446     // Dirty registers which are 32-bit, require 32-bit input
10447     // as they will be written as 32-bit values
10448     for(hr=0;hr<HOST_REGS;hr++)
10449     {
10450       if(regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64) {
10451         if((regs[i].was32>>regs[i].regmap_entry[hr])&(regs[i].wasdirty>>hr)&1) {
10452           if(!((unneeded_reg_upper[i]>>regs[i].regmap_entry[hr])&1))
10453           requires_32bit[i]|=1LL<<regs[i].regmap_entry[hr];
10454         }
10455       }
10456     }
10457     //requires_32bit[i]=is32[i]&~unneeded_reg_upper[i]; // DEBUG
10458   }
10459 #endif
10460
10461   if(itype[slen-1]==SPAN) {
10462     bt[slen-1]=1; // Mark as a branch target so instruction can restart after exception
10463   }
10464   
10465   /* Debug/disassembly */
10466   if((void*)assem_debug==(void*)printf) 
10467   for(i=0;i<slen;i++)
10468   {
10469     printf("U:");
10470     int r;
10471     for(r=1;r<=CCREG;r++) {
10472       if((unneeded_reg[i]>>r)&1) {
10473         if(r==HIREG) printf(" HI");
10474         else if(r==LOREG) printf(" LO");
10475         else printf(" r%d",r);
10476       }
10477     }
10478 #ifndef FORCE32
10479     printf(" UU:");
10480     for(r=1;r<=CCREG;r++) {
10481       if(((unneeded_reg_upper[i]&~unneeded_reg[i])>>r)&1) {
10482         if(r==HIREG) printf(" HI");
10483         else if(r==LOREG) printf(" LO");
10484         else printf(" r%d",r);
10485       }
10486     }
10487     printf(" 32:");
10488     for(r=0;r<=CCREG;r++) {
10489       //if(((is32[i]>>r)&(~unneeded_reg[i]>>r))&1) {
10490       if((regs[i].was32>>r)&1) {
10491         if(r==CCREG) printf(" CC");
10492         else if(r==HIREG) printf(" HI");
10493         else if(r==LOREG) printf(" LO");
10494         else printf(" r%d",r);
10495       }
10496     }
10497 #endif
10498     printf("\n");
10499     #if defined(__i386__) || defined(__x86_64__)
10500     printf("pre: eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",regmap_pre[i][0],regmap_pre[i][1],regmap_pre[i][2],regmap_pre[i][3],regmap_pre[i][5],regmap_pre[i][6],regmap_pre[i][7]);
10501     #endif
10502     #ifdef __arm__
10503     printf("pre: r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d\n",regmap_pre[i][0],regmap_pre[i][1],regmap_pre[i][2],regmap_pre[i][3],regmap_pre[i][4],regmap_pre[i][5],regmap_pre[i][6],regmap_pre[i][7],regmap_pre[i][8],regmap_pre[i][9],regmap_pre[i][10],regmap_pre[i][12]);
10504     #endif
10505     printf("needs: ");
10506     if(needed_reg[i]&1) printf("eax ");
10507     if((needed_reg[i]>>1)&1) printf("ecx ");
10508     if((needed_reg[i]>>2)&1) printf("edx ");
10509     if((needed_reg[i]>>3)&1) printf("ebx ");
10510     if((needed_reg[i]>>5)&1) printf("ebp ");
10511     if((needed_reg[i]>>6)&1) printf("esi ");
10512     if((needed_reg[i]>>7)&1) printf("edi ");
10513     printf("r:");
10514     for(r=0;r<=CCREG;r++) {
10515       //if(((requires_32bit[i]>>r)&(~unneeded_reg[i]>>r))&1) {
10516       if((requires_32bit[i]>>r)&1) {
10517         if(r==CCREG) printf(" CC");
10518         else if(r==HIREG) printf(" HI");
10519         else if(r==LOREG) printf(" LO");
10520         else printf(" r%d",r);
10521       }
10522     }
10523     printf("\n");
10524     /*printf("pr:");
10525     for(r=0;r<=CCREG;r++) {
10526       //if(((requires_32bit[i]>>r)&(~unneeded_reg[i]>>r))&1) {
10527       if((pr32[i]>>r)&1) {
10528         if(r==CCREG) printf(" CC");
10529         else if(r==HIREG) printf(" HI");
10530         else if(r==LOREG) printf(" LO");
10531         else printf(" r%d",r);
10532       }
10533     }
10534     if(pr32[i]!=requires_32bit[i]) printf(" OOPS");
10535     printf("\n");*/
10536     #if defined(__i386__) || defined(__x86_64__)
10537     printf("entry: eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",regs[i].regmap_entry[0],regs[i].regmap_entry[1],regs[i].regmap_entry[2],regs[i].regmap_entry[3],regs[i].regmap_entry[5],regs[i].regmap_entry[6],regs[i].regmap_entry[7]);
10538     printf("dirty: ");
10539     if(regs[i].wasdirty&1) printf("eax ");
10540     if((regs[i].wasdirty>>1)&1) printf("ecx ");
10541     if((regs[i].wasdirty>>2)&1) printf("edx ");
10542     if((regs[i].wasdirty>>3)&1) printf("ebx ");
10543     if((regs[i].wasdirty>>5)&1) printf("ebp ");
10544     if((regs[i].wasdirty>>6)&1) printf("esi ");
10545     if((regs[i].wasdirty>>7)&1) printf("edi ");
10546     #endif
10547     #ifdef __arm__
10548     printf("entry: r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d\n",regs[i].regmap_entry[0],regs[i].regmap_entry[1],regs[i].regmap_entry[2],regs[i].regmap_entry[3],regs[i].regmap_entry[4],regs[i].regmap_entry[5],regs[i].regmap_entry[6],regs[i].regmap_entry[7],regs[i].regmap_entry[8],regs[i].regmap_entry[9],regs[i].regmap_entry[10],regs[i].regmap_entry[12]);
10549     printf("dirty: ");
10550     if(regs[i].wasdirty&1) printf("r0 ");
10551     if((regs[i].wasdirty>>1)&1) printf("r1 ");
10552     if((regs[i].wasdirty>>2)&1) printf("r2 ");
10553     if((regs[i].wasdirty>>3)&1) printf("r3 ");
10554     if((regs[i].wasdirty>>4)&1) printf("r4 ");
10555     if((regs[i].wasdirty>>5)&1) printf("r5 ");
10556     if((regs[i].wasdirty>>6)&1) printf("r6 ");
10557     if((regs[i].wasdirty>>7)&1) printf("r7 ");
10558     if((regs[i].wasdirty>>8)&1) printf("r8 ");
10559     if((regs[i].wasdirty>>9)&1) printf("r9 ");
10560     if((regs[i].wasdirty>>10)&1) printf("r10 ");
10561     if((regs[i].wasdirty>>12)&1) printf("r12 ");
10562     #endif
10563     printf("\n");
10564     disassemble_inst(i);
10565     //printf ("ccadj[%d] = %d\n",i,ccadj[i]);
10566     #if defined(__i386__) || defined(__x86_64__)
10567     printf("eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d dirty: ",regs[i].regmap[0],regs[i].regmap[1],regs[i].regmap[2],regs[i].regmap[3],regs[i].regmap[5],regs[i].regmap[6],regs[i].regmap[7]);
10568     if(regs[i].dirty&1) printf("eax ");
10569     if((regs[i].dirty>>1)&1) printf("ecx ");
10570     if((regs[i].dirty>>2)&1) printf("edx ");
10571     if((regs[i].dirty>>3)&1) printf("ebx ");
10572     if((regs[i].dirty>>5)&1) printf("ebp ");
10573     if((regs[i].dirty>>6)&1) printf("esi ");
10574     if((regs[i].dirty>>7)&1) printf("edi ");
10575     #endif
10576     #ifdef __arm__
10577     printf("r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d dirty: ",regs[i].regmap[0],regs[i].regmap[1],regs[i].regmap[2],regs[i].regmap[3],regs[i].regmap[4],regs[i].regmap[5],regs[i].regmap[6],regs[i].regmap[7],regs[i].regmap[8],regs[i].regmap[9],regs[i].regmap[10],regs[i].regmap[12]);
10578     if(regs[i].dirty&1) printf("r0 ");
10579     if((regs[i].dirty>>1)&1) printf("r1 ");
10580     if((regs[i].dirty>>2)&1) printf("r2 ");
10581     if((regs[i].dirty>>3)&1) printf("r3 ");
10582     if((regs[i].dirty>>4)&1) printf("r4 ");
10583     if((regs[i].dirty>>5)&1) printf("r5 ");
10584     if((regs[i].dirty>>6)&1) printf("r6 ");
10585     if((regs[i].dirty>>7)&1) printf("r7 ");
10586     if((regs[i].dirty>>8)&1) printf("r8 ");
10587     if((regs[i].dirty>>9)&1) printf("r9 ");
10588     if((regs[i].dirty>>10)&1) printf("r10 ");
10589     if((regs[i].dirty>>12)&1) printf("r12 ");
10590     #endif
10591     printf("\n");
10592     if(regs[i].isconst) {
10593       printf("constants: ");
10594       #if defined(__i386__) || defined(__x86_64__)
10595       if(regs[i].isconst&1) printf("eax=%x ",(int)constmap[i][0]);
10596       if((regs[i].isconst>>1)&1) printf("ecx=%x ",(int)constmap[i][1]);
10597       if((regs[i].isconst>>2)&1) printf("edx=%x ",(int)constmap[i][2]);
10598       if((regs[i].isconst>>3)&1) printf("ebx=%x ",(int)constmap[i][3]);
10599       if((regs[i].isconst>>5)&1) printf("ebp=%x ",(int)constmap[i][5]);
10600       if((regs[i].isconst>>6)&1) printf("esi=%x ",(int)constmap[i][6]);
10601       if((regs[i].isconst>>7)&1) printf("edi=%x ",(int)constmap[i][7]);
10602       #endif
10603       #ifdef __arm__
10604       if(regs[i].isconst&1) printf("r0=%x ",(int)constmap[i][0]);
10605       if((regs[i].isconst>>1)&1) printf("r1=%x ",(int)constmap[i][1]);
10606       if((regs[i].isconst>>2)&1) printf("r2=%x ",(int)constmap[i][2]);
10607       if((regs[i].isconst>>3)&1) printf("r3=%x ",(int)constmap[i][3]);
10608       if((regs[i].isconst>>4)&1) printf("r4=%x ",(int)constmap[i][4]);
10609       if((regs[i].isconst>>5)&1) printf("r5=%x ",(int)constmap[i][5]);
10610       if((regs[i].isconst>>6)&1) printf("r6=%x ",(int)constmap[i][6]);
10611       if((regs[i].isconst>>7)&1) printf("r7=%x ",(int)constmap[i][7]);
10612       if((regs[i].isconst>>8)&1) printf("r8=%x ",(int)constmap[i][8]);
10613       if((regs[i].isconst>>9)&1) printf("r9=%x ",(int)constmap[i][9]);
10614       if((regs[i].isconst>>10)&1) printf("r10=%x ",(int)constmap[i][10]);
10615       if((regs[i].isconst>>12)&1) printf("r12=%x ",(int)constmap[i][12]);
10616       #endif
10617       printf("\n");
10618     }
10619 #ifndef FORCE32
10620     printf(" 32:");
10621     for(r=0;r<=CCREG;r++) {
10622       if((regs[i].is32>>r)&1) {
10623         if(r==CCREG) printf(" CC");
10624         else if(r==HIREG) printf(" HI");
10625         else if(r==LOREG) printf(" LO");
10626         else printf(" r%d",r);
10627       }
10628     }
10629     printf("\n");
10630 #endif
10631     /*printf(" p32:");
10632     for(r=0;r<=CCREG;r++) {
10633       if((p32[i]>>r)&1) {
10634         if(r==CCREG) printf(" CC");
10635         else if(r==HIREG) printf(" HI");
10636         else if(r==LOREG) printf(" LO");
10637         else printf(" r%d",r);
10638       }
10639     }
10640     if(p32[i]!=regs[i].is32) printf(" NO MATCH\n");
10641     else printf("\n");*/
10642     if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP) {
10643       #if defined(__i386__) || defined(__x86_64__)
10644       printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d dirty: ",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
10645       if(branch_regs[i].dirty&1) printf("eax ");
10646       if((branch_regs[i].dirty>>1)&1) printf("ecx ");
10647       if((branch_regs[i].dirty>>2)&1) printf("edx ");
10648       if((branch_regs[i].dirty>>3)&1) printf("ebx ");
10649       if((branch_regs[i].dirty>>5)&1) printf("ebp ");
10650       if((branch_regs[i].dirty>>6)&1) printf("esi ");
10651       if((branch_regs[i].dirty>>7)&1) printf("edi ");
10652       #endif
10653       #ifdef __arm__
10654       printf("branch(%d): r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d dirty: ",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[4],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7],branch_regs[i].regmap[8],branch_regs[i].regmap[9],branch_regs[i].regmap[10],branch_regs[i].regmap[12]);
10655       if(branch_regs[i].dirty&1) printf("r0 ");
10656       if((branch_regs[i].dirty>>1)&1) printf("r1 ");
10657       if((branch_regs[i].dirty>>2)&1) printf("r2 ");
10658       if((branch_regs[i].dirty>>3)&1) printf("r3 ");
10659       if((branch_regs[i].dirty>>4)&1) printf("r4 ");
10660       if((branch_regs[i].dirty>>5)&1) printf("r5 ");
10661       if((branch_regs[i].dirty>>6)&1) printf("r6 ");
10662       if((branch_regs[i].dirty>>7)&1) printf("r7 ");
10663       if((branch_regs[i].dirty>>8)&1) printf("r8 ");
10664       if((branch_regs[i].dirty>>9)&1) printf("r9 ");
10665       if((branch_regs[i].dirty>>10)&1) printf("r10 ");
10666       if((branch_regs[i].dirty>>12)&1) printf("r12 ");
10667       #endif
10668 #ifndef FORCE32
10669       printf(" 32:");
10670       for(r=0;r<=CCREG;r++) {
10671         if((branch_regs[i].is32>>r)&1) {
10672           if(r==CCREG) printf(" CC");
10673           else if(r==HIREG) printf(" HI");
10674           else if(r==LOREG) printf(" LO");
10675           else printf(" r%d",r);
10676         }
10677       }
10678       printf("\n");
10679 #endif
10680     }
10681   }
10682
10683   /* Pass 8 - Assembly */
10684   linkcount=0;stubcount=0;
10685   ds=0;is_delayslot=0;
10686   cop1_usable=0;
10687   uint64_t is32_pre=0;
10688   u_int dirty_pre=0;
10689   u_int beginning=(u_int)out;
10690   if((u_int)addr&1) {
10691     ds=1;
10692     pagespan_ds();
10693   }
10694   u_int instr_addr0_override=0;
10695
10696 #ifdef PCSX
10697   if (start == 0x80030000) {
10698     // nasty hack for fastbios thing
10699     instr_addr0_override=(u_int)out;
10700     emit_movimm(start,0);
10701     emit_readword((int)&pcaddr,1);
10702     emit_writeword(0,(int)&pcaddr);
10703     emit_cmp(0,1);
10704     emit_jne((int)new_dyna_leave);
10705   }
10706 #endif
10707   for(i=0;i<slen;i++)
10708   {
10709     //if(ds) printf("ds: ");
10710     if((void*)assem_debug==(void*)printf) disassemble_inst(i);
10711     if(ds) {
10712       ds=0; // Skip delay slot
10713       if(bt[i]) assem_debug("OOPS - branch into delay slot\n");
10714       instr_addr[i]=0;
10715     } else {
10716       #ifndef DESTRUCTIVE_WRITEBACK
10717       if(i<2||(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000))
10718       {
10719         wb_sx(regmap_pre[i],regs[i].regmap_entry,regs[i].wasdirty,is32_pre,regs[i].was32,
10720               unneeded_reg[i],unneeded_reg_upper[i]);
10721         wb_valid(regmap_pre[i],regs[i].regmap_entry,dirty_pre,regs[i].wasdirty,is32_pre,
10722               unneeded_reg[i],unneeded_reg_upper[i]);
10723       }
10724       is32_pre=regs[i].is32;
10725       dirty_pre=regs[i].dirty;
10726       #endif
10727       // write back
10728       if(i<2||(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000))
10729       {
10730         wb_invalidate(regmap_pre[i],regs[i].regmap_entry,regs[i].wasdirty,regs[i].was32,
10731                       unneeded_reg[i],unneeded_reg_upper[i]);
10732         loop_preload(regmap_pre[i],regs[i].regmap_entry);
10733       }
10734       // branch target entry point
10735       instr_addr[i]=(u_int)out;
10736       assem_debug("<->\n");
10737       // load regs
10738       if(regs[i].regmap_entry[HOST_CCREG]==CCREG&&regs[i].regmap[HOST_CCREG]!=CCREG)
10739         wb_register(CCREG,regs[i].regmap_entry,regs[i].wasdirty,regs[i].was32);
10740       load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i],rs2[i]);
10741       address_generation(i,&regs[i],regs[i].regmap_entry);
10742       load_consts(regmap_pre[i],regs[i].regmap,regs[i].was32,i);
10743       if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
10744       {
10745         // Load the delay slot registers if necessary
10746         if(rs1[i+1]!=rs1[i]&&rs1[i+1]!=rs2[i])
10747           load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i+1],rs1[i+1]);
10748         if(rs2[i+1]!=rs1[i+1]&&rs2[i+1]!=rs1[i]&&rs2[i+1]!=rs2[i])
10749           load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs2[i+1],rs2[i+1]);
10750         if(itype[i+1]==STORE||itype[i+1]==STORELR||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a)
10751           load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,INVCP,INVCP);
10752       }
10753       else if(i+1<slen)
10754       {
10755         // Preload registers for following instruction
10756         if(rs1[i+1]!=rs1[i]&&rs1[i+1]!=rs2[i])
10757           if(rs1[i+1]!=rt1[i]&&rs1[i+1]!=rt2[i])
10758             load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i+1],rs1[i+1]);
10759         if(rs2[i+1]!=rs1[i+1]&&rs2[i+1]!=rs1[i]&&rs2[i+1]!=rs2[i])
10760           if(rs2[i+1]!=rt1[i]&&rs2[i+1]!=rt2[i])
10761             load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs2[i+1],rs2[i+1]);
10762       }
10763       // TODO: if(is_ooo(i)) address_generation(i+1);
10764       if(itype[i]==CJUMP||itype[i]==FJUMP)
10765         load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,CCREG,CCREG);
10766       if(itype[i]==STORE||itype[i]==STORELR||(opcode[i]&0x3b)==0x39||(opcode[i]&0x3b)==0x3a)
10767         load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,INVCP,INVCP);
10768       if(bt[i]) cop1_usable=0;
10769       // assemble
10770       switch(itype[i]) {
10771         case ALU:
10772           alu_assemble(i,&regs[i]);break;
10773         case IMM16:
10774           imm16_assemble(i,&regs[i]);break;
10775         case SHIFT:
10776           shift_assemble(i,&regs[i]);break;
10777         case SHIFTIMM:
10778           shiftimm_assemble(i,&regs[i]);break;
10779         case LOAD:
10780           load_assemble(i,&regs[i]);break;
10781         case LOADLR:
10782           loadlr_assemble(i,&regs[i]);break;
10783         case STORE:
10784           store_assemble(i,&regs[i]);break;
10785         case STORELR:
10786           storelr_assemble(i,&regs[i]);break;
10787         case COP0:
10788           cop0_assemble(i,&regs[i]);break;
10789         case COP1:
10790           cop1_assemble(i,&regs[i]);break;
10791         case C1LS:
10792           c1ls_assemble(i,&regs[i]);break;
10793         case COP2:
10794           cop2_assemble(i,&regs[i]);break;
10795         case C2LS:
10796           c2ls_assemble(i,&regs[i]);break;
10797         case C2OP:
10798           c2op_assemble(i,&regs[i]);break;
10799         case FCONV:
10800           fconv_assemble(i,&regs[i]);break;
10801         case FLOAT:
10802           float_assemble(i,&regs[i]);break;
10803         case FCOMP:
10804           fcomp_assemble(i,&regs[i]);break;
10805         case MULTDIV:
10806           multdiv_assemble(i,&regs[i]);break;
10807         case MOV:
10808           mov_assemble(i,&regs[i]);break;
10809         case SYSCALL:
10810           syscall_assemble(i,&regs[i]);break;
10811         case HLECALL:
10812           hlecall_assemble(i,&regs[i]);break;
10813         case INTCALL:
10814           intcall_assemble(i,&regs[i]);break;
10815         case UJUMP:
10816           ujump_assemble(i,&regs[i]);ds=1;break;
10817         case RJUMP:
10818           rjump_assemble(i,&regs[i]);ds=1;break;
10819         case CJUMP:
10820           cjump_assemble(i,&regs[i]);ds=1;break;
10821         case SJUMP:
10822           sjump_assemble(i,&regs[i]);ds=1;break;
10823         case FJUMP:
10824           fjump_assemble(i,&regs[i]);ds=1;break;
10825         case SPAN:
10826           pagespan_assemble(i,&regs[i]);break;
10827       }
10828       if(itype[i]==UJUMP||itype[i]==RJUMP||(source[i]>>16)==0x1000)
10829         literal_pool(1024);
10830       else
10831         literal_pool_jumpover(256);
10832     }
10833   }
10834   //assert(itype[i-2]==UJUMP||itype[i-2]==RJUMP||(source[i-2]>>16)==0x1000);
10835   // If the block did not end with an unconditional branch,
10836   // add a jump to the next instruction.
10837   if(i>1) {
10838     if(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000&&itype[i-1]!=SPAN) {
10839       assert(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP);
10840       assert(i==slen);
10841       if(itype[i-2]!=CJUMP&&itype[i-2]!=SJUMP&&itype[i-2]!=FJUMP) {
10842         store_regs_bt(regs[i-1].regmap,regs[i-1].is32,regs[i-1].dirty,start+i*4);
10843         if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
10844           emit_loadreg(CCREG,HOST_CCREG);
10845         emit_addimm(HOST_CCREG,CLOCK_DIVIDER*(ccadj[i-1]+1),HOST_CCREG);
10846       }
10847       else if(!likely[i-2])
10848       {
10849         store_regs_bt(branch_regs[i-2].regmap,branch_regs[i-2].is32,branch_regs[i-2].dirty,start+i*4);
10850         assert(branch_regs[i-2].regmap[HOST_CCREG]==CCREG);
10851       }
10852       else
10853       {
10854         store_regs_bt(regs[i-2].regmap,regs[i-2].is32,regs[i-2].dirty,start+i*4);
10855         assert(regs[i-2].regmap[HOST_CCREG]==CCREG);
10856       }
10857       add_to_linker((int)out,start+i*4,0);
10858       emit_jmp(0);
10859     }
10860   }
10861   else
10862   {
10863     assert(i>0);
10864     assert(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP);
10865     store_regs_bt(regs[i-1].regmap,regs[i-1].is32,regs[i-1].dirty,start+i*4);
10866     if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
10867       emit_loadreg(CCREG,HOST_CCREG);
10868     emit_addimm(HOST_CCREG,CLOCK_DIVIDER*(ccadj[i-1]+1),HOST_CCREG);
10869     add_to_linker((int)out,start+i*4,0);
10870     emit_jmp(0);
10871   }
10872
10873   // TODO: delay slot stubs?
10874   // Stubs
10875   for(i=0;i<stubcount;i++)
10876   {
10877     switch(stubs[i][0])
10878     {
10879       case LOADB_STUB:
10880       case LOADH_STUB:
10881       case LOADW_STUB:
10882       case LOADD_STUB:
10883       case LOADBU_STUB:
10884       case LOADHU_STUB:
10885         do_readstub(i);break;
10886       case STOREB_STUB:
10887       case STOREH_STUB:
10888       case STOREW_STUB:
10889       case STORED_STUB:
10890         do_writestub(i);break;
10891       case CC_STUB:
10892         do_ccstub(i);break;
10893       case INVCODE_STUB:
10894         do_invstub(i);break;
10895       case FP_STUB:
10896         do_cop1stub(i);break;
10897       case STORELR_STUB:
10898         do_unalignedwritestub(i);break;
10899     }
10900   }
10901
10902   if (instr_addr0_override)
10903     instr_addr[0] = instr_addr0_override;
10904
10905   /* Pass 9 - Linker */
10906   for(i=0;i<linkcount;i++)
10907   {
10908     assem_debug("%8x -> %8x\n",link_addr[i][0],link_addr[i][1]);
10909     literal_pool(64);
10910     if(!link_addr[i][2])
10911     {
10912       void *stub=out;
10913       void *addr=check_addr(link_addr[i][1]);
10914       emit_extjump(link_addr[i][0],link_addr[i][1]);
10915       if(addr) {
10916         set_jump_target(link_addr[i][0],(int)addr);
10917         add_link(link_addr[i][1],stub);
10918       }
10919       else set_jump_target(link_addr[i][0],(int)stub);
10920     }
10921     else
10922     {
10923       // Internal branch
10924       int target=(link_addr[i][1]-start)>>2;
10925       assert(target>=0&&target<slen);
10926       assert(instr_addr[target]);
10927       //#ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
10928       //set_jump_target_fillslot(link_addr[i][0],instr_addr[target],link_addr[i][2]>>1);
10929       //#else
10930       set_jump_target(link_addr[i][0],instr_addr[target]);
10931       //#endif
10932     }
10933   }
10934   // External Branch Targets (jump_in)
10935   if(copy+slen*4>(void *)shadow+sizeof(shadow)) copy=shadow;
10936   for(i=0;i<slen;i++)
10937   {
10938     if(bt[i]||i==0)
10939     {
10940       if(instr_addr[i]) // TODO - delay slots (=null)
10941       {
10942         u_int vaddr=start+i*4;
10943         u_int page=get_page(vaddr);
10944         u_int vpage=get_vpage(vaddr);
10945         literal_pool(256);
10946         //if(!(is32[i]&(~unneeded_reg_upper[i])&~(1LL<<CCREG)))
10947 #ifndef FORCE32
10948         if(!requires_32bit[i])
10949 #else
10950         if(1)
10951 #endif
10952         {
10953           assem_debug("%8x (%d) <- %8x\n",instr_addr[i],i,start+i*4);
10954           assem_debug("jump_in: %x\n",start+i*4);
10955           ll_add(jump_dirty+vpage,vaddr,(void *)out);
10956           int entry_point=do_dirty_stub(i);
10957           ll_add(jump_in+page,vaddr,(void *)entry_point);
10958           // If there was an existing entry in the hash table,
10959           // replace it with the new address.
10960           // Don't add new entries.  We'll insert the
10961           // ones that actually get used in check_addr().
10962           int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
10963           if(ht_bin[0]==vaddr) {
10964             ht_bin[1]=entry_point;
10965           }
10966           if(ht_bin[2]==vaddr) {
10967             ht_bin[3]=entry_point;
10968           }
10969         }
10970         else
10971         {
10972           u_int r=requires_32bit[i]|!!(requires_32bit[i]>>32);
10973           assem_debug("%8x (%d) <- %8x\n",instr_addr[i],i,start+i*4);
10974           assem_debug("jump_in: %x (restricted - %x)\n",start+i*4,r);
10975           //int entry_point=(int)out;
10976           ////assem_debug("entry_point: %x\n",entry_point);
10977           //load_regs_entry(i);
10978           //if(entry_point==(int)out)
10979           //  entry_point=instr_addr[i];
10980           //else
10981           //  emit_jmp(instr_addr[i]);
10982           //ll_add_32(jump_in+page,vaddr,r,(void *)entry_point);
10983           ll_add_32(jump_dirty+vpage,vaddr,r,(void *)out);
10984           int entry_point=do_dirty_stub(i);
10985           ll_add_32(jump_in+page,vaddr,r,(void *)entry_point);
10986         }
10987       }
10988     }
10989   }
10990   // Write out the literal pool if necessary
10991   literal_pool(0);
10992   #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
10993   // Align code
10994   if(((u_int)out)&7) emit_addnop(13);
10995   #endif
10996   assert((u_int)out-beginning<MAX_OUTPUT_BLOCK_SIZE);
10997   //printf("shadow buffer: %x-%x\n",(int)copy,(int)copy+slen*4);
10998   memcpy(copy,source,slen*4);
10999   copy+=slen*4;
11000   
11001   #ifdef __arm__
11002   __clear_cache((void *)beginning,out);
11003   #endif
11004   
11005   // If we're within 256K of the end of the buffer,
11006   // start over from the beginning. (Is 256K enough?)
11007   if((int)out>BASE_ADDR+(1<<TARGET_SIZE_2)-MAX_OUTPUT_BLOCK_SIZE) out=(u_char *)BASE_ADDR;
11008   
11009   // Trap writes to any of the pages we compiled
11010   for(i=start>>12;i<=(start+slen*4)>>12;i++) {
11011     invalid_code[i]=0;
11012 #ifndef DISABLE_TLB
11013     memory_map[i]|=0x40000000;
11014     if((signed int)start>=(signed int)0xC0000000) {
11015       assert(using_tlb);
11016       j=(((u_int)i<<12)+(memory_map[i]<<2)-(u_int)rdram+(u_int)0x80000000)>>12;
11017       invalid_code[j]=0;
11018       memory_map[j]|=0x40000000;
11019       //printf("write protect physical page: %x (virtual %x)\n",j<<12,start);
11020     }
11021 #endif
11022   }
11023   
11024   /* Pass 10 - Free memory by expiring oldest blocks */
11025   
11026   int end=((((int)out-BASE_ADDR)>>(TARGET_SIZE_2-16))+16384)&65535;
11027   while(expirep!=end)
11028   {
11029     int shift=TARGET_SIZE_2-3; // Divide into 8 blocks
11030     int base=BASE_ADDR+((expirep>>13)<<shift); // Base address of this block
11031     inv_debug("EXP: Phase %d\n",expirep);
11032     switch((expirep>>11)&3)
11033     {
11034       case 0:
11035         // Clear jump_in and jump_dirty
11036         ll_remove_matching_addrs(jump_in+(expirep&2047),base,shift);
11037         ll_remove_matching_addrs(jump_dirty+(expirep&2047),base,shift);
11038         ll_remove_matching_addrs(jump_in+2048+(expirep&2047),base,shift);
11039         ll_remove_matching_addrs(jump_dirty+2048+(expirep&2047),base,shift);
11040         break;
11041       case 1:
11042         // Clear pointers
11043         ll_kill_pointers(jump_out[expirep&2047],base,shift);
11044         ll_kill_pointers(jump_out[(expirep&2047)+2048],base,shift);
11045         break;
11046       case 2:
11047         // Clear hash table
11048         for(i=0;i<32;i++) {
11049           int *ht_bin=hash_table[((expirep&2047)<<5)+i];
11050           if((ht_bin[3]>>shift)==(base>>shift) ||
11051              ((ht_bin[3]-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(base>>shift)) {
11052             inv_debug("EXP: Remove hash %x -> %x\n",ht_bin[2],ht_bin[3]);
11053             ht_bin[2]=ht_bin[3]=-1;
11054           }
11055           if((ht_bin[1]>>shift)==(base>>shift) ||
11056              ((ht_bin[1]-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(base>>shift)) {
11057             inv_debug("EXP: Remove hash %x -> %x\n",ht_bin[0],ht_bin[1]);
11058             ht_bin[0]=ht_bin[2];
11059             ht_bin[1]=ht_bin[3];
11060             ht_bin[2]=ht_bin[3]=-1;
11061           }
11062         }
11063         break;
11064       case 3:
11065         // Clear jump_out
11066         #ifdef __arm__
11067         if((expirep&2047)==0) 
11068           do_clear_cache();
11069         #endif
11070         ll_remove_matching_addrs(jump_out+(expirep&2047),base,shift);
11071         ll_remove_matching_addrs(jump_out+2048+(expirep&2047),base,shift);
11072         break;
11073     }
11074     expirep=(expirep+1)&65535;
11075   }
11076   return 0;
11077 }
11078
11079 // vim:shiftwidth=2:expandtab