drc: allow reading r31 in delay slot
[pcsx_rearmed.git] / libpcsxcore / new_dynarec / new_dynarec.c
1 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
2  *   Mupen64plus - new_dynarec.c                                           *
3  *   Copyright (C) 2009-2010 Ari64                                         *
4  *                                                                         *
5  *   This program is free software; you can redistribute it and/or modify  *
6  *   it under the terms of the GNU General Public License as published by  *
7  *   the Free Software Foundation; either version 2 of the License, or     *
8  *   (at your option) any later version.                                   *
9  *                                                                         *
10  *   This program is distributed in the hope that it will be useful,       *
11  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
12  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
13  *   GNU General Public License for more details.                          *
14  *                                                                         *
15  *   You should have received a copy of the GNU General Public License     *
16  *   along with this program; if not, write to the                         *
17  *   Free Software Foundation, Inc.,                                       *
18  *   51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.          *
19  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
20
21 #include <stdlib.h>
22 #include <stdint.h> //include for uint64_t
23 #include <assert.h>
24
25 #include "emu_if.h" //emulator interface
26
27 #include <sys/mman.h>
28
29 #ifdef __i386__
30 #include "assem_x86.h"
31 #endif
32 #ifdef __x86_64__
33 #include "assem_x64.h"
34 #endif
35 #ifdef __arm__
36 #include "assem_arm.h"
37 #endif
38
39 #define MAXBLOCK 4096
40 #define MAX_OUTPUT_BLOCK_SIZE 262144
41 #define CLOCK_DIVIDER 2
42
43 struct regstat
44 {
45   signed char regmap_entry[HOST_REGS];
46   signed char regmap[HOST_REGS];
47   uint64_t was32;
48   uint64_t is32;
49   uint64_t wasdirty;
50   uint64_t dirty;
51   uint64_t u;
52   uint64_t uu;
53   u_int wasconst;
54   u_int isconst;
55   uint64_t constmap[HOST_REGS];
56 };
57
58 struct ll_entry
59 {
60   u_int vaddr;
61   u_int reg32;
62   void *addr;
63   struct ll_entry *next;
64 };
65
66   u_int start;
67   u_int *source;
68   u_int pagelimit;
69   char insn[MAXBLOCK][10];
70   u_char itype[MAXBLOCK];
71   u_char opcode[MAXBLOCK];
72   u_char opcode2[MAXBLOCK];
73   u_char bt[MAXBLOCK];
74   u_char rs1[MAXBLOCK];
75   u_char rs2[MAXBLOCK];
76   u_char rt1[MAXBLOCK];
77   u_char rt2[MAXBLOCK];
78   u_char us1[MAXBLOCK];
79   u_char us2[MAXBLOCK];
80   u_char dep1[MAXBLOCK];
81   u_char dep2[MAXBLOCK];
82   u_char lt1[MAXBLOCK];
83   int imm[MAXBLOCK];
84   u_int ba[MAXBLOCK];
85   char likely[MAXBLOCK];
86   char is_ds[MAXBLOCK];
87   uint64_t unneeded_reg[MAXBLOCK];
88   uint64_t unneeded_reg_upper[MAXBLOCK];
89   uint64_t branch_unneeded_reg[MAXBLOCK];
90   uint64_t branch_unneeded_reg_upper[MAXBLOCK];
91   uint64_t p32[MAXBLOCK];
92   uint64_t pr32[MAXBLOCK];
93   signed char regmap_pre[MAXBLOCK][HOST_REGS];
94   signed char regmap[MAXBLOCK][HOST_REGS];
95   signed char regmap_entry[MAXBLOCK][HOST_REGS];
96   uint64_t constmap[MAXBLOCK][HOST_REGS];
97   uint64_t known_value[HOST_REGS];
98   u_int known_reg;
99   struct regstat regs[MAXBLOCK];
100   struct regstat branch_regs[MAXBLOCK];
101   u_int needed_reg[MAXBLOCK];
102   uint64_t requires_32bit[MAXBLOCK];
103   u_int wont_dirty[MAXBLOCK];
104   u_int will_dirty[MAXBLOCK];
105   int ccadj[MAXBLOCK];
106   int slen;
107   u_int instr_addr[MAXBLOCK];
108   u_int link_addr[MAXBLOCK][3];
109   int linkcount;
110   u_int stubs[MAXBLOCK*3][8];
111   int stubcount;
112   u_int literals[1024][2];
113   int literalcount;
114   int is_delayslot;
115   int cop1_usable;
116   u_char *out;
117   struct ll_entry *jump_in[4096];
118   struct ll_entry *jump_out[4096];
119   struct ll_entry *jump_dirty[4096];
120   u_int hash_table[65536][4]  __attribute__((aligned(16)));
121   char shadow[1048576]  __attribute__((aligned(16)));
122   void *copy;
123   int expirep;
124   u_int using_tlb;
125   u_int stop_after_jal;
126   extern u_char restore_candidate[512];
127   extern int cycle_count;
128
129   /* registers that may be allocated */
130   /* 1-31 gpr */
131 #define HIREG 32 // hi
132 #define LOREG 33 // lo
133 #define FSREG 34 // FPU status (FCSR)
134 #define CSREG 35 // Coprocessor status
135 #define CCREG 36 // Cycle count
136 #define INVCP 37 // Pointer to invalid_code
137 #define TEMPREG 38
138 #define FTEMP 38 // FPU/LDL/LDR temporary register
139 #define PTEMP 39 // Prefetch temporary register
140 #define TLREG 40 // TLB mapping offset
141 #define RHASH 41 // Return address hash
142 #define RHTBL 42 // Return address hash table address
143 #define RTEMP 43 // JR/JALR address register
144 #define MAXREG 43
145 #define AGEN1 44 // Address generation temporary register
146 #define AGEN2 45 // Address generation temporary register
147 #define MGEN1 46 // Maptable address generation temporary register
148 #define MGEN2 47 // Maptable address generation temporary register
149 #define BTREG 48 // Branch target temporary register
150
151   /* instruction types */
152 #define NOP 0     // No operation
153 #define LOAD 1    // Load
154 #define STORE 2   // Store
155 #define LOADLR 3  // Unaligned load
156 #define STORELR 4 // Unaligned store
157 #define MOV 5     // Move 
158 #define ALU 6     // Arithmetic/logic
159 #define MULTDIV 7 // Multiply/divide
160 #define SHIFT 8   // Shift by register
161 #define SHIFTIMM 9// Shift by immediate
162 #define IMM16 10  // 16-bit immediate
163 #define RJUMP 11  // Unconditional jump to register
164 #define UJUMP 12  // Unconditional jump
165 #define CJUMP 13  // Conditional branch (BEQ/BNE/BGTZ/BLEZ)
166 #define SJUMP 14  // Conditional branch (regimm format)
167 #define COP0 15   // Coprocessor 0
168 #define COP1 16   // Coprocessor 1
169 #define C1LS 17   // Coprocessor 1 load/store
170 #define FJUMP 18  // Conditional branch (floating point)
171 #define FLOAT 19  // Floating point unit
172 #define FCONV 20  // Convert integer to float
173 #define FCOMP 21  // Floating point compare (sets FSREG)
174 #define SYSCALL 22// SYSCALL
175 #define OTHER 23  // Other
176 #define SPAN 24   // Branch/delay slot spans 2 pages
177 #define NI 25     // Not implemented
178 #define HLECALL 26// PCSX fake opcodes for HLE
179 #define COP2 27   // Coprocessor 2 move
180 #define C2LS 28   // Coprocessor 2 load/store
181 #define C2OP 29   // Coprocessor 2 operation
182
183   /* stubs */
184 #define CC_STUB 1
185 #define FP_STUB 2
186 #define LOADB_STUB 3
187 #define LOADH_STUB 4
188 #define LOADW_STUB 5
189 #define LOADD_STUB 6
190 #define LOADBU_STUB 7
191 #define LOADHU_STUB 8
192 #define STOREB_STUB 9
193 #define STOREH_STUB 10
194 #define STOREW_STUB 11
195 #define STORED_STUB 12
196 #define STORELR_STUB 13
197 #define INVCODE_STUB 14
198
199   /* branch codes */
200 #define TAKEN 1
201 #define NOTTAKEN 2
202 #define NULLDS 3
203
204 // asm linkage
205 int new_recompile_block(int addr);
206 void *get_addr_ht(u_int vaddr);
207 void invalidate_block(u_int block);
208 void invalidate_addr(u_int addr);
209 void remove_hash(int vaddr);
210 void jump_vaddr();
211 void dyna_linker();
212 void dyna_linker_ds();
213 void verify_code();
214 void verify_code_vm();
215 void verify_code_ds();
216 void cc_interrupt();
217 void fp_exception();
218 void fp_exception_ds();
219 void jump_syscall();
220 void jump_syscall_hle();
221 void jump_eret();
222 void jump_hlecall();
223 void new_dyna_leave();
224
225 // TLB
226 void TLBWI_new();
227 void TLBWR_new();
228 void read_nomem_new();
229 void read_nomemb_new();
230 void read_nomemh_new();
231 void read_nomemd_new();
232 void write_nomem_new();
233 void write_nomemb_new();
234 void write_nomemh_new();
235 void write_nomemd_new();
236 void write_rdram_new();
237 void write_rdramb_new();
238 void write_rdramh_new();
239 void write_rdramd_new();
240 extern u_int memory_map[1048576];
241
242 // Needed by assembler
243 void wb_register(signed char r,signed char regmap[],uint64_t dirty,uint64_t is32);
244 void wb_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty);
245 void wb_needed_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr);
246 void load_all_regs(signed char i_regmap[]);
247 void load_needed_regs(signed char i_regmap[],signed char next_regmap[]);
248 void load_regs_entry(int t);
249 void load_all_consts(signed char regmap[],int is32,u_int dirty,int i);
250
251 int tracedebug=0;
252
253 //#define DEBUG_CYCLE_COUNT 1
254
255 void nullf() {}
256 //#define assem_debug printf
257 //#define inv_debug printf
258 #define assem_debug nullf
259 #define inv_debug nullf
260
261 static void tlb_hacks()
262 {
263 #ifndef DISABLE_TLB
264   // Goldeneye hack
265   if (strncmp((char *) ROM_HEADER->nom, "GOLDENEYE",9) == 0)
266   {
267     u_int addr;
268     int n;
269     switch (ROM_HEADER->Country_code&0xFF) 
270     {
271       case 0x45: // U
272         addr=0x34b30;
273         break;                   
274       case 0x4A: // J 
275         addr=0x34b70;    
276         break;    
277       case 0x50: // E 
278         addr=0x329f0;
279         break;                        
280       default: 
281         // Unknown country code
282         addr=0;
283         break;
284     }
285     u_int rom_addr=(u_int)rom;
286     #ifdef ROM_COPY
287     // Since memory_map is 32-bit, on 64-bit systems the rom needs to be
288     // in the lower 4G of memory to use this hack.  Copy it if necessary.
289     if((void *)rom>(void *)0xffffffff) {
290       munmap(ROM_COPY, 67108864);
291       if(mmap(ROM_COPY, 12582912,
292               PROT_READ | PROT_WRITE,
293               MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS,
294               -1, 0) <= 0) {printf("mmap() failed\n");}
295       memcpy(ROM_COPY,rom,12582912);
296       rom_addr=(u_int)ROM_COPY;
297     }
298     #endif
299     if(addr) {
300       for(n=0x7F000;n<0x80000;n++) {
301         memory_map[n]=(((u_int)(rom_addr+addr-0x7F000000))>>2)|0x40000000;
302       }
303     }
304   }
305 #endif
306 }
307
308 static u_int get_page(u_int vaddr)
309 {
310   u_int page=(vaddr^0x80000000)>>12;
311 #ifndef DISABLE_TLB
312   if(page>262143&&tlb_LUT_r[vaddr>>12]) page=(tlb_LUT_r[vaddr>>12]^0x80000000)>>12;
313 #endif
314   if(page>2048) page=2048+(page&2047);
315   return page;
316 }
317
318 static u_int get_vpage(u_int vaddr)
319 {
320   u_int vpage=(vaddr^0x80000000)>>12;
321 #ifndef DISABLE_TLB
322   if(vpage>262143&&tlb_LUT_r[vaddr>>12]) vpage&=2047; // jump_dirty uses a hash of the virtual address instead
323 #endif
324   if(vpage>2048) vpage=2048+(vpage&2047);
325   return vpage;
326 }
327
328 // Get address from virtual address
329 // This is called from the recompiled JR/JALR instructions
330 void *get_addr(u_int vaddr)
331 {
332   u_int page=get_page(vaddr);
333   u_int vpage=get_vpage(vaddr);
334   struct ll_entry *head;
335   //printf("TRACE: count=%d next=%d (get_addr %x,page %d)\n",Count,next_interupt,vaddr,page);
336   head=jump_in[page];
337   while(head!=NULL) {
338     if(head->vaddr==vaddr&&head->reg32==0) {
339   //printf("TRACE: count=%d next=%d (get_addr match %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
340       int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
341       ht_bin[3]=ht_bin[1];
342       ht_bin[2]=ht_bin[0];
343       ht_bin[1]=(int)head->addr;
344       ht_bin[0]=vaddr;
345       return head->addr;
346     }
347     head=head->next;
348   }
349   head=jump_dirty[vpage];
350   while(head!=NULL) {
351     if(head->vaddr==vaddr&&head->reg32==0) {
352       //printf("TRACE: count=%d next=%d (get_addr match dirty %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
353       // Don't restore blocks which are about to expire from the cache
354       if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
355       if(verify_dirty(head->addr)) {
356         //printf("restore candidate: %x (%d) d=%d\n",vaddr,page,invalid_code[vaddr>>12]);
357         invalid_code[vaddr>>12]=0;
358         memory_map[vaddr>>12]|=0x40000000;
359         if(vpage<2048) {
360 #ifndef DISABLE_TLB
361           if(tlb_LUT_r[vaddr>>12]) {
362             invalid_code[tlb_LUT_r[vaddr>>12]>>12]=0;
363             memory_map[tlb_LUT_r[vaddr>>12]>>12]|=0x40000000;
364           }
365 #endif
366           restore_candidate[vpage>>3]|=1<<(vpage&7);
367         }
368         else restore_candidate[page>>3]|=1<<(page&7);
369         int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
370         if(ht_bin[0]==vaddr) {
371           ht_bin[1]=(int)head->addr; // Replace existing entry
372         }
373         else
374         {
375           ht_bin[3]=ht_bin[1];
376           ht_bin[2]=ht_bin[0];
377           ht_bin[1]=(int)head->addr;
378           ht_bin[0]=vaddr;
379         }
380         return head->addr;
381       }
382     }
383     head=head->next;
384   }
385   //printf("TRACE: count=%d next=%d (get_addr no-match %x)\n",Count,next_interupt,vaddr);
386   int r=new_recompile_block(vaddr);
387   if(r==0) return get_addr(vaddr);
388   // Execute in unmapped page, generate pagefault execption
389   Status|=2;
390   Cause=(vaddr<<31)|0x8;
391   EPC=(vaddr&1)?vaddr-5:vaddr;
392   BadVAddr=(vaddr&~1);
393   Context=(Context&0xFF80000F)|((BadVAddr>>9)&0x007FFFF0);
394   EntryHi=BadVAddr&0xFFFFE000;
395   return get_addr_ht(0x80000000);
396 }
397 // Look up address in hash table first
398 void *get_addr_ht(u_int vaddr)
399 {
400   //printf("TRACE: count=%d next=%d (get_addr_ht %x)\n",Count,next_interupt,vaddr);
401   int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
402   if(ht_bin[0]==vaddr) return (void *)ht_bin[1];
403   if(ht_bin[2]==vaddr) return (void *)ht_bin[3];
404   return get_addr(vaddr);
405 }
406
407 void *get_addr_32(u_int vaddr,u_int flags)
408 {
409 #ifdef FORCE32
410   return get_addr(vaddr);
411 #else
412   //printf("TRACE: count=%d next=%d (get_addr_32 %x,flags %x)\n",Count,next_interupt,vaddr,flags);
413   int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
414   if(ht_bin[0]==vaddr) return (void *)ht_bin[1];
415   if(ht_bin[2]==vaddr) return (void *)ht_bin[3];
416   u_int page=get_page(vaddr);
417   u_int vpage=get_vpage(vaddr);
418   struct ll_entry *head;
419   head=jump_in[page];
420   while(head!=NULL) {
421     if(head->vaddr==vaddr&&(head->reg32&flags)==0) {
422       //printf("TRACE: count=%d next=%d (get_addr_32 match %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
423       if(head->reg32==0) {
424         int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
425         if(ht_bin[0]==-1) {
426           ht_bin[1]=(int)head->addr;
427           ht_bin[0]=vaddr;
428         }else if(ht_bin[2]==-1) {
429           ht_bin[3]=(int)head->addr;
430           ht_bin[2]=vaddr;
431         }
432         //ht_bin[3]=ht_bin[1];
433         //ht_bin[2]=ht_bin[0];
434         //ht_bin[1]=(int)head->addr;
435         //ht_bin[0]=vaddr;
436       }
437       return head->addr;
438     }
439     head=head->next;
440   }
441   head=jump_dirty[vpage];
442   while(head!=NULL) {
443     if(head->vaddr==vaddr&&(head->reg32&flags)==0) {
444       //printf("TRACE: count=%d next=%d (get_addr_32 match dirty %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
445       // Don't restore blocks which are about to expire from the cache
446       if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
447       if(verify_dirty(head->addr)) {
448         //printf("restore candidate: %x (%d) d=%d\n",vaddr,page,invalid_code[vaddr>>12]);
449         invalid_code[vaddr>>12]=0;
450         memory_map[vaddr>>12]|=0x40000000;
451         if(vpage<2048) {
452 #ifndef DISABLE_TLB
453           if(tlb_LUT_r[vaddr>>12]) {
454             invalid_code[tlb_LUT_r[vaddr>>12]>>12]=0;
455             memory_map[tlb_LUT_r[vaddr>>12]>>12]|=0x40000000;
456           }
457 #endif
458           restore_candidate[vpage>>3]|=1<<(vpage&7);
459         }
460         else restore_candidate[page>>3]|=1<<(page&7);
461         if(head->reg32==0) {
462           int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
463           if(ht_bin[0]==-1) {
464             ht_bin[1]=(int)head->addr;
465             ht_bin[0]=vaddr;
466           }else if(ht_bin[2]==-1) {
467             ht_bin[3]=(int)head->addr;
468             ht_bin[2]=vaddr;
469           }
470           //ht_bin[3]=ht_bin[1];
471           //ht_bin[2]=ht_bin[0];
472           //ht_bin[1]=(int)head->addr;
473           //ht_bin[0]=vaddr;
474         }
475         return head->addr;
476       }
477     }
478     head=head->next;
479   }
480   //printf("TRACE: count=%d next=%d (get_addr_32 no-match %x,flags %x)\n",Count,next_interupt,vaddr,flags);
481   int r=new_recompile_block(vaddr);
482   if(r==0) return get_addr(vaddr);
483   // Execute in unmapped page, generate pagefault execption
484   Status|=2;
485   Cause=(vaddr<<31)|0x8;
486   EPC=(vaddr&1)?vaddr-5:vaddr;
487   BadVAddr=(vaddr&~1);
488   Context=(Context&0xFF80000F)|((BadVAddr>>9)&0x007FFFF0);
489   EntryHi=BadVAddr&0xFFFFE000;
490   return get_addr_ht(0x80000000);
491 #endif
492 }
493
494 void clear_all_regs(signed char regmap[])
495 {
496   int hr;
497   for (hr=0;hr<HOST_REGS;hr++) regmap[hr]=-1;
498 }
499
500 signed char get_reg(signed char regmap[],int r)
501 {
502   int hr;
503   for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap[hr]==r) return hr;
504   return -1;
505 }
506
507 // Find a register that is available for two consecutive cycles
508 signed char get_reg2(signed char regmap1[],signed char regmap2[],int r)
509 {
510   int hr;
511   for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap1[hr]==r&&regmap2[hr]==r) return hr;
512   return -1;
513 }
514
515 int count_free_regs(signed char regmap[])
516 {
517   int count=0;
518   int hr;
519   for(hr=0;hr<HOST_REGS;hr++)
520   {
521     if(hr!=EXCLUDE_REG) {
522       if(regmap[hr]<0) count++;
523     }
524   }
525   return count;
526 }
527
528 void dirty_reg(struct regstat *cur,signed char reg)
529 {
530   int hr;
531   if(!reg) return;
532   for (hr=0;hr<HOST_REGS;hr++) {
533     if((cur->regmap[hr]&63)==reg) {
534       cur->dirty|=1<<hr;
535     }
536   }
537 }
538
539 // If we dirty the lower half of a 64 bit register which is now being
540 // sign-extended, we need to dump the upper half.
541 // Note: Do this only after completion of the instruction, because
542 // some instructions may need to read the full 64-bit value even if
543 // overwriting it (eg SLTI, DSRA32).
544 static void flush_dirty_uppers(struct regstat *cur)
545 {
546   int hr,reg;
547   for (hr=0;hr<HOST_REGS;hr++) {
548     if((cur->dirty>>hr)&1) {
549       reg=cur->regmap[hr];
550       if(reg>=64) 
551         if((cur->is32>>(reg&63))&1) cur->regmap[hr]=-1;
552     }
553   }
554 }
555
556 void set_const(struct regstat *cur,signed char reg,uint64_t value)
557 {
558   int hr;
559   if(!reg) return;
560   for (hr=0;hr<HOST_REGS;hr++) {
561     if(cur->regmap[hr]==reg) {
562       cur->isconst|=1<<hr;
563       cur->constmap[hr]=value;
564     }
565     else if((cur->regmap[hr]^64)==reg) {
566       cur->isconst|=1<<hr;
567       cur->constmap[hr]=value>>32;
568     }
569   }
570 }
571
572 void clear_const(struct regstat *cur,signed char reg)
573 {
574   int hr;
575   if(!reg) return;
576   for (hr=0;hr<HOST_REGS;hr++) {
577     if((cur->regmap[hr]&63)==reg) {
578       cur->isconst&=~(1<<hr);
579     }
580   }
581 }
582
583 int is_const(struct regstat *cur,signed char reg)
584 {
585   int hr;
586   if(!reg) return 1;
587   for (hr=0;hr<HOST_REGS;hr++) {
588     if((cur->regmap[hr]&63)==reg) {
589       return (cur->isconst>>hr)&1;
590     }
591   }
592   return 0;
593 }
594 uint64_t get_const(struct regstat *cur,signed char reg)
595 {
596   int hr;
597   if(!reg) return 0;
598   for (hr=0;hr<HOST_REGS;hr++) {
599     if(cur->regmap[hr]==reg) {
600       return cur->constmap[hr];
601     }
602   }
603   printf("Unknown constant in r%d\n",reg);
604   exit(1);
605 }
606
607 // Least soon needed registers
608 // Look at the next ten instructions and see which registers
609 // will be used.  Try not to reallocate these.
610 void lsn(u_char hsn[], int i, int *preferred_reg)
611 {
612   int j;
613   int b=-1;
614   for(j=0;j<9;j++)
615   {
616     if(i+j>=slen) {
617       j=slen-i-1;
618       break;
619     }
620     if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
621     {
622       // Don't go past an unconditonal jump
623       j++;
624       break;
625     }
626   }
627   for(;j>=0;j--)
628   {
629     if(rs1[i+j]) hsn[rs1[i+j]]=j;
630     if(rs2[i+j]) hsn[rs2[i+j]]=j;
631     if(rt1[i+j]) hsn[rt1[i+j]]=j;
632     if(rt2[i+j]) hsn[rt2[i+j]]=j;
633     if(itype[i+j]==STORE || itype[i+j]==STORELR) {
634       // Stores can allocate zero
635       hsn[rs1[i+j]]=j;
636       hsn[rs2[i+j]]=j;
637     }
638     // On some architectures stores need invc_ptr
639     #if defined(HOST_IMM8)
640     if(itype[i+j]==STORE || itype[i+j]==STORELR || (opcode[i+j]&0x3b)==0x39 || (opcode[i+j]&0x3b)==0x3a) {
641       hsn[INVCP]=j;
642     }
643     #endif
644     if(i+j>=0&&(itype[i+j]==UJUMP||itype[i+j]==CJUMP||itype[i+j]==SJUMP||itype[i+j]==FJUMP))
645     {
646       hsn[CCREG]=j;
647       b=j;
648     }
649   }
650   if(b>=0)
651   {
652     if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
653     {
654       // Follow first branch
655       int t=(ba[i+b]-start)>>2;
656       j=7-b;if(t+j>=slen) j=slen-t-1;
657       for(;j>=0;j--)
658       {
659         if(rs1[t+j]) if(hsn[rs1[t+j]]>j+b+2) hsn[rs1[t+j]]=j+b+2;
660         if(rs2[t+j]) if(hsn[rs2[t+j]]>j+b+2) hsn[rs2[t+j]]=j+b+2;
661         //if(rt1[t+j]) if(hsn[rt1[t+j]]>j+b+2) hsn[rt1[t+j]]=j+b+2;
662         //if(rt2[t+j]) if(hsn[rt2[t+j]]>j+b+2) hsn[rt2[t+j]]=j+b+2;
663       }
664     }
665     // TODO: preferred register based on backward branch
666   }
667   // Delay slot should preferably not overwrite branch conditions or cycle count
668   if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)) {
669     if(rs1[i-1]) if(hsn[rs1[i-1]]>1) hsn[rs1[i-1]]=1;
670     if(rs2[i-1]) if(hsn[rs2[i-1]]>1) hsn[rs2[i-1]]=1;
671     hsn[CCREG]=1;
672     // ...or hash tables
673     hsn[RHASH]=1;
674     hsn[RHTBL]=1;
675   }
676   // Coprocessor load/store needs FTEMP, even if not declared
677   if(itype[i]==C1LS||itype[i]==C2LS) {
678     hsn[FTEMP]=0;
679   }
680   // Load L/R also uses FTEMP as a temporary register
681   if(itype[i]==LOADLR) {
682     hsn[FTEMP]=0;
683   }
684   // Also SWL/SWR/SDL/SDR
685   if(opcode[i]==0x2a||opcode[i]==0x2e||opcode[i]==0x2c||opcode[i]==0x2d) {
686     hsn[FTEMP]=0;
687   }
688   // Don't remove the TLB registers either
689   if(itype[i]==LOAD || itype[i]==LOADLR || itype[i]==STORE || itype[i]==STORELR || itype[i]==C1LS || itype[i]==C2LS) {
690     hsn[TLREG]=0;
691   }
692   // Don't remove the miniht registers
693   if(itype[i]==UJUMP||itype[i]==RJUMP)
694   {
695     hsn[RHASH]=0;
696     hsn[RHTBL]=0;
697   }
698 }
699
700 // We only want to allocate registers if we're going to use them again soon
701 int needed_again(int r, int i)
702 {
703   int j;
704   int b=-1;
705   int rn=10;
706   int hr;
707   u_char hsn[MAXREG+1];
708   int preferred_reg;
709   
710   memset(hsn,10,sizeof(hsn));
711   lsn(hsn,i,&preferred_reg);
712   
713   if(i>0&&(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000))
714   {
715     if(ba[i-1]<start || ba[i-1]>start+slen*4-4)
716       return 0; // Don't need any registers if exiting the block
717   }
718   for(j=0;j<9;j++)
719   {
720     if(i+j>=slen) {
721       j=slen-i-1;
722       break;
723     }
724     if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
725     {
726       // Don't go past an unconditonal jump
727       j++;
728       break;
729     }
730     if(itype[i+j]==SYSCALL||itype[i+j]==HLECALL||((source[i+j]&0xfc00003f)==0x0d))
731     {
732       break;
733     }
734   }
735   for(;j>=1;j--)
736   {
737     if(rs1[i+j]==r) rn=j;
738     if(rs2[i+j]==r) rn=j;
739     if((unneeded_reg[i+j]>>r)&1) rn=10;
740     if(i+j>=0&&(itype[i+j]==UJUMP||itype[i+j]==CJUMP||itype[i+j]==SJUMP||itype[i+j]==FJUMP))
741     {
742       b=j;
743     }
744   }
745   /*
746   if(b>=0)
747   {
748     if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
749     {
750       // Follow first branch
751       int o=rn;
752       int t=(ba[i+b]-start)>>2;
753       j=7-b;if(t+j>=slen) j=slen-t-1;
754       for(;j>=0;j--)
755       {
756         if(!((unneeded_reg[t+j]>>r)&1)) {
757           if(rs1[t+j]==r) if(rn>j+b+2) rn=j+b+2;
758           if(rs2[t+j]==r) if(rn>j+b+2) rn=j+b+2;
759         }
760         else rn=o;
761       }
762     }
763   }*/
764   for(hr=0;hr<HOST_REGS;hr++) {
765     if(hr!=EXCLUDE_REG) {
766       if(rn<hsn[hr]) return 1;
767     }
768   }
769   return 0;
770 }
771
772 // Try to match register allocations at the end of a loop with those
773 // at the beginning
774 int loop_reg(int i, int r, int hr)
775 {
776   int j,k;
777   for(j=0;j<9;j++)
778   {
779     if(i+j>=slen) {
780       j=slen-i-1;
781       break;
782     }
783     if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
784     {
785       // Don't go past an unconditonal jump
786       j++;
787       break;
788     }
789   }
790   k=0;
791   if(i>0){
792     if(itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)
793       k--;
794   }
795   for(;k<j;k++)
796   {
797     if(r<64&&((unneeded_reg[i+k]>>r)&1)) return hr;
798     if(r>64&&((unneeded_reg_upper[i+k]>>r)&1)) return hr;
799     if(i+k>=0&&(itype[i+k]==UJUMP||itype[i+k]==CJUMP||itype[i+k]==SJUMP||itype[i+k]==FJUMP))
800     {
801       if(ba[i+k]>=start && ba[i+k]<(start+i*4))
802       {
803         int t=(ba[i+k]-start)>>2;
804         int reg=get_reg(regs[t].regmap_entry,r);
805         if(reg>=0) return reg;
806         //reg=get_reg(regs[t+1].regmap_entry,r);
807         //if(reg>=0) return reg;
808       }
809     }
810   }
811   return hr;
812 }
813
814
815 // Allocate every register, preserving source/target regs
816 void alloc_all(struct regstat *cur,int i)
817 {
818   int hr;
819   
820   for(hr=0;hr<HOST_REGS;hr++) {
821     if(hr!=EXCLUDE_REG) {
822       if(((cur->regmap[hr]&63)!=rs1[i])&&((cur->regmap[hr]&63)!=rs2[i])&&
823          ((cur->regmap[hr]&63)!=rt1[i])&&((cur->regmap[hr]&63)!=rt2[i]))
824       {
825         cur->regmap[hr]=-1;
826         cur->dirty&=~(1<<hr);
827       }
828       // Don't need zeros
829       if((cur->regmap[hr]&63)==0)
830       {
831         cur->regmap[hr]=-1;
832         cur->dirty&=~(1<<hr);
833       }
834     }
835   }
836 }
837
838
839 void div64(int64_t dividend,int64_t divisor)
840 {
841   lo=dividend/divisor;
842   hi=dividend%divisor;
843   //printf("TRACE: ddiv %8x%8x %8x%8x\n" ,(int)reg[HIREG],(int)(reg[HIREG]>>32)
844   //                                     ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
845 }
846 void divu64(uint64_t dividend,uint64_t divisor)
847 {
848   lo=dividend/divisor;
849   hi=dividend%divisor;
850   //printf("TRACE: ddivu %8x%8x %8x%8x\n",(int)reg[HIREG],(int)(reg[HIREG]>>32)
851   //                                     ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
852 }
853
854 void mult64(uint64_t m1,uint64_t m2)
855 {
856    unsigned long long int op1, op2, op3, op4;
857    unsigned long long int result1, result2, result3, result4;
858    unsigned long long int temp1, temp2, temp3, temp4;
859    int sign = 0;
860    
861    if (m1 < 0)
862      {
863     op2 = -m1;
864     sign = 1 - sign;
865      }
866    else op2 = m1;
867    if (m2 < 0)
868      {
869     op4 = -m2;
870     sign = 1 - sign;
871      }
872    else op4 = m2;
873    
874    op1 = op2 & 0xFFFFFFFF;
875    op2 = (op2 >> 32) & 0xFFFFFFFF;
876    op3 = op4 & 0xFFFFFFFF;
877    op4 = (op4 >> 32) & 0xFFFFFFFF;
878    
879    temp1 = op1 * op3;
880    temp2 = (temp1 >> 32) + op1 * op4;
881    temp3 = op2 * op3;
882    temp4 = (temp3 >> 32) + op2 * op4;
883    
884    result1 = temp1 & 0xFFFFFFFF;
885    result2 = temp2 + (temp3 & 0xFFFFFFFF);
886    result3 = (result2 >> 32) + temp4;
887    result4 = (result3 >> 32);
888    
889    lo = result1 | (result2 << 32);
890    hi = (result3 & 0xFFFFFFFF) | (result4 << 32);
891    if (sign)
892      {
893     hi = ~hi;
894     if (!lo) hi++;
895     else lo = ~lo + 1;
896      }
897 }
898
899 void multu64(uint64_t m1,uint64_t m2)
900 {
901    unsigned long long int op1, op2, op3, op4;
902    unsigned long long int result1, result2, result3, result4;
903    unsigned long long int temp1, temp2, temp3, temp4;
904    
905    op1 = m1 & 0xFFFFFFFF;
906    op2 = (m1 >> 32) & 0xFFFFFFFF;
907    op3 = m2 & 0xFFFFFFFF;
908    op4 = (m2 >> 32) & 0xFFFFFFFF;
909    
910    temp1 = op1 * op3;
911    temp2 = (temp1 >> 32) + op1 * op4;
912    temp3 = op2 * op3;
913    temp4 = (temp3 >> 32) + op2 * op4;
914    
915    result1 = temp1 & 0xFFFFFFFF;
916    result2 = temp2 + (temp3 & 0xFFFFFFFF);
917    result3 = (result2 >> 32) + temp4;
918    result4 = (result3 >> 32);
919    
920    lo = result1 | (result2 << 32);
921    hi = (result3 & 0xFFFFFFFF) | (result4 << 32);
922    
923   //printf("TRACE: dmultu %8x%8x %8x%8x\n",(int)reg[HIREG],(int)(reg[HIREG]>>32)
924   //                                      ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
925 }
926
927 uint64_t ldl_merge(uint64_t original,uint64_t loaded,u_int bits)
928 {
929   if(bits) {
930     original<<=64-bits;
931     original>>=64-bits;
932     loaded<<=bits;
933     original|=loaded;
934   }
935   else original=loaded;
936   return original;
937 }
938 uint64_t ldr_merge(uint64_t original,uint64_t loaded,u_int bits)
939 {
940   if(bits^56) {
941     original>>=64-(bits^56);
942     original<<=64-(bits^56);
943     loaded>>=bits^56;
944     original|=loaded;
945   }
946   else original=loaded;
947   return original;
948 }
949
950 #ifdef __i386__
951 #include "assem_x86.c"
952 #endif
953 #ifdef __x86_64__
954 #include "assem_x64.c"
955 #endif
956 #ifdef __arm__
957 #include "assem_arm.c"
958 #endif
959
960 // Add virtual address mapping to linked list
961 void ll_add(struct ll_entry **head,int vaddr,void *addr)
962 {
963   struct ll_entry *new_entry;
964   new_entry=malloc(sizeof(struct ll_entry));
965   assert(new_entry!=NULL);
966   new_entry->vaddr=vaddr;
967   new_entry->reg32=0;
968   new_entry->addr=addr;
969   new_entry->next=*head;
970   *head=new_entry;
971 }
972
973 // Add virtual address mapping for 32-bit compiled block
974 void ll_add_32(struct ll_entry **head,int vaddr,u_int reg32,void *addr)
975 {
976   ll_add(head,vaddr,addr);
977 #ifndef FORCE32
978   (*head)->reg32=reg32;
979 #endif
980 }
981
982 // Check if an address is already compiled
983 // but don't return addresses which are about to expire from the cache
984 void *check_addr(u_int vaddr)
985 {
986   u_int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
987   if(ht_bin[0]==vaddr) {
988     if(((ht_bin[1]-MAX_OUTPUT_BLOCK_SIZE-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
989       if(isclean(ht_bin[1])) return (void *)ht_bin[1];
990   }
991   if(ht_bin[2]==vaddr) {
992     if(((ht_bin[3]-MAX_OUTPUT_BLOCK_SIZE-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
993       if(isclean(ht_bin[3])) return (void *)ht_bin[3];
994   }
995   u_int page=get_page(vaddr);
996   struct ll_entry *head;
997   head=jump_in[page];
998   while(head!=NULL) {
999     if(head->vaddr==vaddr&&head->reg32==0) {
1000       if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1001         // Update existing entry with current address
1002         if(ht_bin[0]==vaddr) {
1003           ht_bin[1]=(int)head->addr;
1004           return head->addr;
1005         }
1006         if(ht_bin[2]==vaddr) {
1007           ht_bin[3]=(int)head->addr;
1008           return head->addr;
1009         }
1010         // Insert into hash table with low priority.
1011         // Don't evict existing entries, as they are probably
1012         // addresses that are being accessed frequently.
1013         if(ht_bin[0]==-1) {
1014           ht_bin[1]=(int)head->addr;
1015           ht_bin[0]=vaddr;
1016         }else if(ht_bin[2]==-1) {
1017           ht_bin[3]=(int)head->addr;
1018           ht_bin[2]=vaddr;
1019         }
1020         return head->addr;
1021       }
1022     }
1023     head=head->next;
1024   }
1025   return 0;
1026 }
1027
1028 void remove_hash(int vaddr)
1029 {
1030   //printf("remove hash: %x\n",vaddr);
1031   int *ht_bin=hash_table[(((vaddr)>>16)^vaddr)&0xFFFF];
1032   if(ht_bin[2]==vaddr) {
1033     ht_bin[2]=ht_bin[3]=-1;
1034   }
1035   if(ht_bin[0]==vaddr) {
1036     ht_bin[0]=ht_bin[2];
1037     ht_bin[1]=ht_bin[3];
1038     ht_bin[2]=ht_bin[3]=-1;
1039   }
1040 }
1041
1042 void ll_remove_matching_addrs(struct ll_entry **head,int addr,int shift)
1043 {
1044   struct ll_entry *next;
1045   while(*head) {
1046     if(((u_int)((*head)->addr)>>shift)==(addr>>shift) || 
1047        ((u_int)((*head)->addr-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(addr>>shift))
1048     {
1049       inv_debug("EXP: Remove pointer to %x (%x)\n",(int)(*head)->addr,(*head)->vaddr);
1050       remove_hash((*head)->vaddr);
1051       next=(*head)->next;
1052       free(*head);
1053       *head=next;
1054     }
1055     else
1056     {
1057       head=&((*head)->next);
1058     }
1059   }
1060 }
1061
1062 // Remove all entries from linked list
1063 void ll_clear(struct ll_entry **head)
1064 {
1065   struct ll_entry *cur;
1066   struct ll_entry *next;
1067   if(cur=*head) {
1068     *head=0;
1069     while(cur) {
1070       next=cur->next;
1071       free(cur);
1072       cur=next;
1073     }
1074   }
1075 }
1076
1077 // Dereference the pointers and remove if it matches
1078 void ll_kill_pointers(struct ll_entry *head,int addr,int shift)
1079 {
1080   u_int old_host_addr=0;
1081   while(head) {
1082     int ptr=get_pointer(head->addr);
1083     inv_debug("EXP: Lookup pointer to %x at %x (%x)\n",(int)ptr,(int)head->addr,head->vaddr);
1084     if(((ptr>>shift)==(addr>>shift)) ||
1085        (((ptr-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(addr>>shift)))
1086     {
1087       printf("EXP: Kill pointer at %x (%x)\n",(int)head->addr,head->vaddr);
1088       u_int host_addr=(u_int)kill_pointer(head->addr);
1089
1090       if((host_addr>>12)!=(old_host_addr>>12)) {
1091         #ifdef __arm__
1092         __clear_cache((void *)(old_host_addr&~0xfff),(void *)(old_host_addr|0xfff));
1093         #endif
1094         old_host_addr=host_addr;
1095       }
1096     }
1097     head=head->next;
1098   }
1099   #ifdef __arm__
1100   if (old_host_addr)
1101     __clear_cache((void *)(old_host_addr&~0xfff),(void *)(old_host_addr|0xfff));
1102   #endif
1103 }
1104
1105 // This is called when we write to a compiled block (see do_invstub)
1106 void invalidate_page(u_int page)
1107 {
1108   struct ll_entry *head;
1109   struct ll_entry *next;
1110   u_int old_host_addr=0;
1111   head=jump_in[page];
1112   jump_in[page]=0;
1113   while(head!=NULL) {
1114     inv_debug("INVALIDATE: %x\n",head->vaddr);
1115     remove_hash(head->vaddr);
1116     next=head->next;
1117     free(head);
1118     head=next;
1119   }
1120   head=jump_out[page];
1121   jump_out[page]=0;
1122   while(head!=NULL) {
1123     inv_debug("INVALIDATE: kill pointer to %x (%x)\n",head->vaddr,(int)head->addr);
1124     u_int host_addr=(u_int)kill_pointer(head->addr);
1125
1126     if((host_addr>>12)!=(old_host_addr>>12)) {
1127       #ifdef __arm__
1128       __clear_cache((void *)(old_host_addr&~0xfff),(void *)(old_host_addr|0xfff));
1129       #endif
1130       old_host_addr=host_addr;
1131     }
1132     next=head->next;
1133     free(head);
1134     head=next;
1135   }
1136   #ifdef __arm__
1137   if (old_host_addr)
1138     __clear_cache((void *)(old_host_addr&~0xfff),(void *)(old_host_addr|0xfff));
1139   #endif
1140 }
1141 void invalidate_block(u_int block)
1142 {
1143   u_int page=get_page(block<<12);
1144   u_int vpage=get_vpage(block<<12);
1145   inv_debug("INVALIDATE: %x (%d)\n",block<<12,page);
1146   //inv_debug("invalid_code[block]=%d\n",invalid_code[block]);
1147   u_int first,last;
1148   first=last=page;
1149   struct ll_entry *head;
1150   head=jump_dirty[vpage];
1151   //printf("page=%d vpage=%d\n",page,vpage);
1152   while(head!=NULL) {
1153     u_int start,end;
1154     if(vpage>2047||(head->vaddr>>12)==block) { // Ignore vaddr hash collision
1155       get_bounds((int)head->addr,&start,&end);
1156       //printf("start: %x end: %x\n",start,end);
1157       if(page<2048&&start>=0x80000000&&end<0x80000000+RAM_SIZE) {
1158         if(((start-(u_int)rdram)>>12)<=page&&((end-1-(u_int)rdram)>>12)>=page) {
1159           if((((start-(u_int)rdram)>>12)&2047)<first) first=((start-(u_int)rdram)>>12)&2047;
1160           if((((end-1-(u_int)rdram)>>12)&2047)>last) last=((end-1-(u_int)rdram)>>12)&2047;
1161         }
1162       }
1163 #ifndef DISABLE_TLB
1164       if(page<2048&&(signed int)start>=(signed int)0xC0000000&&(signed int)end>=(signed int)0xC0000000) {
1165         if(((start+memory_map[start>>12]-(u_int)rdram)>>12)<=page&&((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)>=page) {
1166           if((((start+memory_map[start>>12]-(u_int)rdram)>>12)&2047)<first) first=((start+memory_map[start>>12]-(u_int)rdram)>>12)&2047;
1167           if((((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)&2047)>last) last=((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)&2047;
1168         }
1169       }
1170 #endif
1171     }
1172     head=head->next;
1173   }
1174   //printf("first=%d last=%d\n",first,last);
1175   invalidate_page(page);
1176   assert(first+5>page); // NB: this assumes MAXBLOCK<=4096 (4 pages)
1177   assert(last<page+5);
1178   // Invalidate the adjacent pages if a block crosses a 4K boundary
1179   while(first<page) {
1180     invalidate_page(first);
1181     first++;
1182   }
1183   for(first=page+1;first<last;first++) {
1184     invalidate_page(first);
1185   }
1186   
1187   // Don't trap writes
1188   invalid_code[block]=1;
1189 #ifndef DISABLE_TLB
1190   // If there is a valid TLB entry for this page, remove write protect
1191   if(tlb_LUT_w[block]) {
1192     assert(tlb_LUT_r[block]==tlb_LUT_w[block]);
1193     // CHECK: Is this right?
1194     memory_map[block]=((tlb_LUT_w[block]&0xFFFFF000)-(block<<12)+(unsigned int)rdram-0x80000000)>>2;
1195     u_int real_block=tlb_LUT_w[block]>>12;
1196     invalid_code[real_block]=1;
1197     if(real_block>=0x80000&&real_block<0x80800) memory_map[real_block]=((u_int)rdram-0x80000000)>>2;
1198   }
1199   else if(block>=0x80000&&block<0x80800) memory_map[block]=((u_int)rdram-0x80000000)>>2;
1200 #endif
1201
1202   #ifdef USE_MINI_HT
1203   memset(mini_ht,-1,sizeof(mini_ht));
1204   #endif
1205 }
1206 void invalidate_addr(u_int addr)
1207 {
1208   invalidate_block(addr>>12);
1209 }
1210 void invalidate_all_pages()
1211 {
1212   u_int page,n;
1213   for(page=0;page<4096;page++)
1214     invalidate_page(page);
1215   for(page=0;page<1048576;page++)
1216     if(!invalid_code[page]) {
1217       restore_candidate[(page&2047)>>3]|=1<<(page&7);
1218       restore_candidate[((page&2047)>>3)+256]|=1<<(page&7);
1219     }
1220   #ifdef __arm__
1221   __clear_cache((void *)BASE_ADDR,(void *)BASE_ADDR+(1<<TARGET_SIZE_2));
1222   #endif
1223   #ifdef USE_MINI_HT
1224   memset(mini_ht,-1,sizeof(mini_ht));
1225   #endif
1226   #ifndef DISABLE_TLB
1227   // TLB
1228   for(page=0;page<0x100000;page++) {
1229     if(tlb_LUT_r[page]) {
1230       memory_map[page]=((tlb_LUT_r[page]&0xFFFFF000)-(page<<12)+(unsigned int)rdram-0x80000000)>>2;
1231       if(!tlb_LUT_w[page]||!invalid_code[page])
1232         memory_map[page]|=0x40000000; // Write protect
1233     }
1234     else memory_map[page]=-1;
1235     if(page==0x80000) page=0xC0000;
1236   }
1237   tlb_hacks();
1238   #endif
1239 }
1240
1241 // Add an entry to jump_out after making a link
1242 void add_link(u_int vaddr,void *src)
1243 {
1244   u_int page=get_page(vaddr);
1245   inv_debug("add_link: %x -> %x (%d)\n",(int)src,vaddr,page);
1246   ll_add(jump_out+page,vaddr,src);
1247   //int ptr=get_pointer(src);
1248   //inv_debug("add_link: Pointer is to %x\n",(int)ptr);
1249 }
1250
1251 // If a code block was found to be unmodified (bit was set in
1252 // restore_candidate) and it remains unmodified (bit is clear
1253 // in invalid_code) then move the entries for that 4K page from
1254 // the dirty list to the clean list.
1255 void clean_blocks(u_int page)
1256 {
1257   struct ll_entry *head;
1258   inv_debug("INV: clean_blocks page=%d\n",page);
1259   head=jump_dirty[page];
1260   while(head!=NULL) {
1261     if(!invalid_code[head->vaddr>>12]) {
1262       // Don't restore blocks which are about to expire from the cache
1263       if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1264         u_int start,end;
1265         if(verify_dirty((int)head->addr)) {
1266           //printf("Possibly Restore %x (%x)\n",head->vaddr, (int)head->addr);
1267           u_int i;
1268           u_int inv=0;
1269           get_bounds((int)head->addr,&start,&end);
1270           if(start-(u_int)rdram<RAM_SIZE) {
1271             for(i=(start-(u_int)rdram+0x80000000)>>12;i<=(end-1-(u_int)rdram+0x80000000)>>12;i++) {
1272               inv|=invalid_code[i];
1273             }
1274           }
1275           if((signed int)head->vaddr>=(signed int)0xC0000000) {
1276             u_int addr = (head->vaddr+(memory_map[head->vaddr>>12]<<2));
1277             //printf("addr=%x start=%x end=%x\n",addr,start,end);
1278             if(addr<start||addr>=end) inv=1;
1279           }
1280           else if((signed int)head->vaddr>=(signed int)0x80000000+RAM_SIZE) {
1281             inv=1;
1282           }
1283           if(!inv) {
1284             void * clean_addr=(void *)get_clean_addr((int)head->addr);
1285             if((((u_int)clean_addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1286               u_int ppage=page;
1287 #ifndef DISABLE_TLB
1288               if(page<2048&&tlb_LUT_r[head->vaddr>>12]) ppage=(tlb_LUT_r[head->vaddr>>12]^0x80000000)>>12;
1289 #endif
1290               inv_debug("INV: Restored %x (%x/%x)\n",head->vaddr, (int)head->addr, (int)clean_addr);
1291               //printf("page=%x, addr=%x\n",page,head->vaddr);
1292               //assert(head->vaddr>>12==(page|0x80000));
1293               ll_add_32(jump_in+ppage,head->vaddr,head->reg32,clean_addr);
1294               int *ht_bin=hash_table[((head->vaddr>>16)^head->vaddr)&0xFFFF];
1295               if(!head->reg32) {
1296                 if(ht_bin[0]==head->vaddr) {
1297                   ht_bin[1]=(int)clean_addr; // Replace existing entry
1298                 }
1299                 if(ht_bin[2]==head->vaddr) {
1300                   ht_bin[3]=(int)clean_addr; // Replace existing entry
1301                 }
1302               }
1303             }
1304           }
1305         }
1306       }
1307     }
1308     head=head->next;
1309   }
1310 }
1311
1312
1313 void mov_alloc(struct regstat *current,int i)
1314 {
1315   // Note: Don't need to actually alloc the source registers
1316   if((~current->is32>>rs1[i])&1) {
1317     //alloc_reg64(current,i,rs1[i]);
1318     alloc_reg64(current,i,rt1[i]);
1319     current->is32&=~(1LL<<rt1[i]);
1320   } else {
1321     //alloc_reg(current,i,rs1[i]);
1322     alloc_reg(current,i,rt1[i]);
1323     current->is32|=(1LL<<rt1[i]);
1324   }
1325   clear_const(current,rs1[i]);
1326   clear_const(current,rt1[i]);
1327   dirty_reg(current,rt1[i]);
1328 }
1329
1330 void shiftimm_alloc(struct regstat *current,int i)
1331 {
1332   clear_const(current,rs1[i]);
1333   clear_const(current,rt1[i]);
1334   if(opcode2[i]<=0x3) // SLL/SRL/SRA
1335   {
1336     if(rt1[i]) {
1337       if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1338       else lt1[i]=rs1[i];
1339       alloc_reg(current,i,rt1[i]);
1340       current->is32|=1LL<<rt1[i];
1341       dirty_reg(current,rt1[i]);
1342     }
1343   }
1344   if(opcode2[i]>=0x38&&opcode2[i]<=0x3b) // DSLL/DSRL/DSRA
1345   {
1346     if(rt1[i]) {
1347       if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1348       alloc_reg64(current,i,rt1[i]);
1349       current->is32&=~(1LL<<rt1[i]);
1350       dirty_reg(current,rt1[i]);
1351     }
1352   }
1353   if(opcode2[i]==0x3c) // DSLL32
1354   {
1355     if(rt1[i]) {
1356       if(rs1[i]) alloc_reg(current,i,rs1[i]);
1357       alloc_reg64(current,i,rt1[i]);
1358       current->is32&=~(1LL<<rt1[i]);
1359       dirty_reg(current,rt1[i]);
1360     }
1361   }
1362   if(opcode2[i]==0x3e) // DSRL32
1363   {
1364     if(rt1[i]) {
1365       alloc_reg64(current,i,rs1[i]);
1366       if(imm[i]==32) {
1367         alloc_reg64(current,i,rt1[i]);
1368         current->is32&=~(1LL<<rt1[i]);
1369       } else {
1370         alloc_reg(current,i,rt1[i]);
1371         current->is32|=1LL<<rt1[i];
1372       }
1373       dirty_reg(current,rt1[i]);
1374     }
1375   }
1376   if(opcode2[i]==0x3f) // DSRA32
1377   {
1378     if(rt1[i]) {
1379       alloc_reg64(current,i,rs1[i]);
1380       alloc_reg(current,i,rt1[i]);
1381       current->is32|=1LL<<rt1[i];
1382       dirty_reg(current,rt1[i]);
1383     }
1384   }
1385 }
1386
1387 void shift_alloc(struct regstat *current,int i)
1388 {
1389   if(rt1[i]) {
1390     if(opcode2[i]<=0x07) // SLLV/SRLV/SRAV
1391     {
1392       if(rs1[i]) alloc_reg(current,i,rs1[i]);
1393       if(rs2[i]) alloc_reg(current,i,rs2[i]);
1394       alloc_reg(current,i,rt1[i]);
1395       if(rt1[i]==rs2[i]) alloc_reg_temp(current,i,-1);
1396       current->is32|=1LL<<rt1[i];
1397     } else { // DSLLV/DSRLV/DSRAV
1398       if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1399       if(rs2[i]) alloc_reg(current,i,rs2[i]);
1400       alloc_reg64(current,i,rt1[i]);
1401       current->is32&=~(1LL<<rt1[i]);
1402       if(opcode2[i]==0x16||opcode2[i]==0x17) // DSRLV and DSRAV need a temporary register
1403         alloc_reg_temp(current,i,-1);
1404     }
1405     clear_const(current,rs1[i]);
1406     clear_const(current,rs2[i]);
1407     clear_const(current,rt1[i]);
1408     dirty_reg(current,rt1[i]);
1409   }
1410 }
1411
1412 void alu_alloc(struct regstat *current,int i)
1413 {
1414   if(opcode2[i]>=0x20&&opcode2[i]<=0x23) { // ADD/ADDU/SUB/SUBU
1415     if(rt1[i]) {
1416       if(rs1[i]&&rs2[i]) {
1417         alloc_reg(current,i,rs1[i]);
1418         alloc_reg(current,i,rs2[i]);
1419       }
1420       else {
1421         if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1422         if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg(current,i,rs2[i]);
1423       }
1424       alloc_reg(current,i,rt1[i]);
1425     }
1426     current->is32|=1LL<<rt1[i];
1427   }
1428   if(opcode2[i]==0x2a||opcode2[i]==0x2b) { // SLT/SLTU
1429     if(rt1[i]) {
1430       if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1431       {
1432         alloc_reg64(current,i,rs1[i]);
1433         alloc_reg64(current,i,rs2[i]);
1434         alloc_reg(current,i,rt1[i]);
1435       } else {
1436         alloc_reg(current,i,rs1[i]);
1437         alloc_reg(current,i,rs2[i]);
1438         alloc_reg(current,i,rt1[i]);
1439       }
1440     }
1441     current->is32|=1LL<<rt1[i];
1442   }
1443   if(opcode2[i]>=0x24&&opcode2[i]<=0x27) { // AND/OR/XOR/NOR
1444     if(rt1[i]) {
1445       if(rs1[i]&&rs2[i]) {
1446         alloc_reg(current,i,rs1[i]);
1447         alloc_reg(current,i,rs2[i]);
1448       }
1449       else
1450       {
1451         if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1452         if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg(current,i,rs2[i]);
1453       }
1454       alloc_reg(current,i,rt1[i]);
1455       if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1456       {
1457         if(!((current->uu>>rt1[i])&1)) {
1458           alloc_reg64(current,i,rt1[i]);
1459         }
1460         if(get_reg(current->regmap,rt1[i]|64)>=0) {
1461           if(rs1[i]&&rs2[i]) {
1462             alloc_reg64(current,i,rs1[i]);
1463             alloc_reg64(current,i,rs2[i]);
1464           }
1465           else
1466           {
1467             // Is is really worth it to keep 64-bit values in registers?
1468             #ifdef NATIVE_64BIT
1469             if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg64(current,i,rs1[i]);
1470             if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg64(current,i,rs2[i]);
1471             #endif
1472           }
1473         }
1474         current->is32&=~(1LL<<rt1[i]);
1475       } else {
1476         current->is32|=1LL<<rt1[i];
1477       }
1478     }
1479   }
1480   if(opcode2[i]>=0x2c&&opcode2[i]<=0x2f) { // DADD/DADDU/DSUB/DSUBU
1481     if(rt1[i]) {
1482       if(rs1[i]&&rs2[i]) {
1483         if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1484           alloc_reg64(current,i,rs1[i]);
1485           alloc_reg64(current,i,rs2[i]);
1486           alloc_reg64(current,i,rt1[i]);
1487         } else {
1488           alloc_reg(current,i,rs1[i]);
1489           alloc_reg(current,i,rs2[i]);
1490           alloc_reg(current,i,rt1[i]);
1491         }
1492       }
1493       else {
1494         alloc_reg(current,i,rt1[i]);
1495         if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1496           // DADD used as move, or zeroing
1497           // If we have a 64-bit source, then make the target 64 bits too
1498           if(rs1[i]&&!((current->is32>>rs1[i])&1)) {
1499             if(get_reg(current->regmap,rs1[i])>=0) alloc_reg64(current,i,rs1[i]);
1500             alloc_reg64(current,i,rt1[i]);
1501           } else if(rs2[i]&&!((current->is32>>rs2[i])&1)) {
1502             if(get_reg(current->regmap,rs2[i])>=0) alloc_reg64(current,i,rs2[i]);
1503             alloc_reg64(current,i,rt1[i]);
1504           }
1505           if(opcode2[i]>=0x2e&&rs2[i]) {
1506             // DSUB used as negation - 64-bit result
1507             // If we have a 32-bit register, extend it to 64 bits
1508             if(get_reg(current->regmap,rs2[i])>=0) alloc_reg64(current,i,rs2[i]);
1509             alloc_reg64(current,i,rt1[i]);
1510           }
1511         }
1512       }
1513       if(rs1[i]&&rs2[i]) {
1514         current->is32&=~(1LL<<rt1[i]);
1515       } else if(rs1[i]) {
1516         current->is32&=~(1LL<<rt1[i]);
1517         if((current->is32>>rs1[i])&1)
1518           current->is32|=1LL<<rt1[i];
1519       } else if(rs2[i]) {
1520         current->is32&=~(1LL<<rt1[i]);
1521         if((current->is32>>rs2[i])&1)
1522           current->is32|=1LL<<rt1[i];
1523       } else {
1524         current->is32|=1LL<<rt1[i];
1525       }
1526     }
1527   }
1528   clear_const(current,rs1[i]);
1529   clear_const(current,rs2[i]);
1530   clear_const(current,rt1[i]);
1531   dirty_reg(current,rt1[i]);
1532 }
1533
1534 void imm16_alloc(struct regstat *current,int i)
1535 {
1536   if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1537   else lt1[i]=rs1[i];
1538   if(rt1[i]) alloc_reg(current,i,rt1[i]);
1539   if(opcode[i]==0x18||opcode[i]==0x19) { // DADDI/DADDIU
1540     current->is32&=~(1LL<<rt1[i]);
1541     if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1542       // TODO: Could preserve the 32-bit flag if the immediate is zero
1543       alloc_reg64(current,i,rt1[i]);
1544       alloc_reg64(current,i,rs1[i]);
1545     }
1546     clear_const(current,rs1[i]);
1547     clear_const(current,rt1[i]);
1548   }
1549   else if(opcode[i]==0x0a||opcode[i]==0x0b) { // SLTI/SLTIU
1550     if((~current->is32>>rs1[i])&1) alloc_reg64(current,i,rs1[i]);
1551     current->is32|=1LL<<rt1[i];
1552     clear_const(current,rs1[i]);
1553     clear_const(current,rt1[i]);
1554   }
1555   else if(opcode[i]>=0x0c&&opcode[i]<=0x0e) { // ANDI/ORI/XORI
1556     if(((~current->is32>>rs1[i])&1)&&opcode[i]>0x0c) {
1557       if(rs1[i]!=rt1[i]) {
1558         if(needed_again(rs1[i],i)) alloc_reg64(current,i,rs1[i]);
1559         alloc_reg64(current,i,rt1[i]);
1560         current->is32&=~(1LL<<rt1[i]);
1561       }
1562     }
1563     else current->is32|=1LL<<rt1[i]; // ANDI clears upper bits
1564     if(is_const(current,rs1[i])) {
1565       int v=get_const(current,rs1[i]);
1566       if(opcode[i]==0x0c) set_const(current,rt1[i],v&imm[i]);
1567       if(opcode[i]==0x0d) set_const(current,rt1[i],v|imm[i]);
1568       if(opcode[i]==0x0e) set_const(current,rt1[i],v^imm[i]);
1569     }
1570     else clear_const(current,rt1[i]);
1571   }
1572   else if(opcode[i]==0x08||opcode[i]==0x09) { // ADDI/ADDIU
1573     if(is_const(current,rs1[i])) {
1574       int v=get_const(current,rs1[i]);
1575       set_const(current,rt1[i],v+imm[i]);
1576     }
1577     else clear_const(current,rt1[i]);
1578     current->is32|=1LL<<rt1[i];
1579   }
1580   else {
1581     set_const(current,rt1[i],((long long)((short)imm[i]))<<16); // LUI
1582     current->is32|=1LL<<rt1[i];
1583   }
1584   dirty_reg(current,rt1[i]);
1585 }
1586
1587 void load_alloc(struct regstat *current,int i)
1588 {
1589   clear_const(current,rt1[i]);
1590   //if(rs1[i]!=rt1[i]&&needed_again(rs1[i],i)) clear_const(current,rs1[i]); // Does this help or hurt?
1591   if(!rs1[i]) current->u&=~1LL; // Allow allocating r0 if it's the source register
1592   if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1593   if(rt1[i]) {
1594     alloc_reg(current,i,rt1[i]);
1595     if(opcode[i]==0x27||opcode[i]==0x37) // LWU/LD
1596     {
1597       current->is32&=~(1LL<<rt1[i]);
1598       alloc_reg64(current,i,rt1[i]);
1599     }
1600     else if(opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
1601     {
1602       current->is32&=~(1LL<<rt1[i]);
1603       alloc_reg64(current,i,rt1[i]);
1604       alloc_all(current,i);
1605       alloc_reg64(current,i,FTEMP);
1606     }
1607     else current->is32|=1LL<<rt1[i];
1608     dirty_reg(current,rt1[i]);
1609     // If using TLB, need a register for pointer to the mapping table
1610     if(using_tlb) alloc_reg(current,i,TLREG);
1611     // LWL/LWR need a temporary register for the old value
1612     if(opcode[i]==0x22||opcode[i]==0x26)
1613     {
1614       alloc_reg(current,i,FTEMP);
1615       alloc_reg_temp(current,i,-1);
1616     }
1617   }
1618   else
1619   {
1620     // Load to r0 (dummy load)
1621     // but we still need a register to calculate the address
1622     alloc_reg_temp(current,i,-1);
1623   }
1624 }
1625
1626 void store_alloc(struct regstat *current,int i)
1627 {
1628   clear_const(current,rs2[i]);
1629   if(!(rs2[i])) current->u&=~1LL; // Allow allocating r0 if necessary
1630   if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1631   alloc_reg(current,i,rs2[i]);
1632   if(opcode[i]==0x2c||opcode[i]==0x2d||opcode[i]==0x3f) { // 64-bit SDL/SDR/SD
1633     alloc_reg64(current,i,rs2[i]);
1634     if(rs2[i]) alloc_reg(current,i,FTEMP);
1635   }
1636   // If using TLB, need a register for pointer to the mapping table
1637   if(using_tlb) alloc_reg(current,i,TLREG);
1638   #if defined(HOST_IMM8)
1639   // On CPUs without 32-bit immediates we need a pointer to invalid_code
1640   else alloc_reg(current,i,INVCP);
1641   #endif
1642   if(opcode[i]==0x2a||opcode[i]==0x2e||opcode[i]==0x2c||opcode[i]==0x2d) { // SWL/SWL/SDL/SDR
1643     alloc_reg(current,i,FTEMP);
1644   }
1645   // We need a temporary register for address generation
1646   alloc_reg_temp(current,i,-1);
1647 }
1648
1649 void c1ls_alloc(struct regstat *current,int i)
1650 {
1651   //clear_const(current,rs1[i]); // FIXME
1652   clear_const(current,rt1[i]);
1653   if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1654   alloc_reg(current,i,CSREG); // Status
1655   alloc_reg(current,i,FTEMP);
1656   if(opcode[i]==0x35||opcode[i]==0x3d) { // 64-bit LDC1/SDC1
1657     alloc_reg64(current,i,FTEMP);
1658   }
1659   // If using TLB, need a register for pointer to the mapping table
1660   if(using_tlb) alloc_reg(current,i,TLREG);
1661   #if defined(HOST_IMM8)
1662   // On CPUs without 32-bit immediates we need a pointer to invalid_code
1663   else if((opcode[i]&0x3b)==0x39) // SWC1/SDC1
1664     alloc_reg(current,i,INVCP);
1665   #endif
1666   // We need a temporary register for address generation
1667   alloc_reg_temp(current,i,-1);
1668 }
1669
1670 void c2ls_alloc(struct regstat *current,int i)
1671 {
1672   clear_const(current,rt1[i]);
1673   if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1674   alloc_reg(current,i,FTEMP);
1675   // If using TLB, need a register for pointer to the mapping table
1676   if(using_tlb) alloc_reg(current,i,TLREG);
1677   #if defined(HOST_IMM8)
1678   // On CPUs without 32-bit immediates we need a pointer to invalid_code
1679   else if((opcode[i]&0x3b)==0x3a) // SWC2/SDC2
1680     alloc_reg(current,i,INVCP);
1681   #endif
1682   // We need a temporary register for address generation
1683   alloc_reg_temp(current,i,-1);
1684 }
1685
1686 #ifndef multdiv_alloc
1687 void multdiv_alloc(struct regstat *current,int i)
1688 {
1689   //  case 0x18: MULT
1690   //  case 0x19: MULTU
1691   //  case 0x1A: DIV
1692   //  case 0x1B: DIVU
1693   //  case 0x1C: DMULT
1694   //  case 0x1D: DMULTU
1695   //  case 0x1E: DDIV
1696   //  case 0x1F: DDIVU
1697   clear_const(current,rs1[i]);
1698   clear_const(current,rs2[i]);
1699   if(rs1[i]&&rs2[i])
1700   {
1701     if((opcode2[i]&4)==0) // 32-bit
1702     {
1703       current->u&=~(1LL<<HIREG);
1704       current->u&=~(1LL<<LOREG);
1705       alloc_reg(current,i,HIREG);
1706       alloc_reg(current,i,LOREG);
1707       alloc_reg(current,i,rs1[i]);
1708       alloc_reg(current,i,rs2[i]);
1709       current->is32|=1LL<<HIREG;
1710       current->is32|=1LL<<LOREG;
1711       dirty_reg(current,HIREG);
1712       dirty_reg(current,LOREG);
1713     }
1714     else // 64-bit
1715     {
1716       current->u&=~(1LL<<HIREG);
1717       current->u&=~(1LL<<LOREG);
1718       current->uu&=~(1LL<<HIREG);
1719       current->uu&=~(1LL<<LOREG);
1720       alloc_reg64(current,i,HIREG);
1721       //if(HOST_REGS>10) alloc_reg64(current,i,LOREG);
1722       alloc_reg64(current,i,rs1[i]);
1723       alloc_reg64(current,i,rs2[i]);
1724       alloc_all(current,i);
1725       current->is32&=~(1LL<<HIREG);
1726       current->is32&=~(1LL<<LOREG);
1727       dirty_reg(current,HIREG);
1728       dirty_reg(current,LOREG);
1729     }
1730   }
1731   else
1732   {
1733     // Multiply by zero is zero.
1734     // MIPS does not have a divide by zero exception.
1735     // The result is undefined, we return zero.
1736     alloc_reg(current,i,HIREG);
1737     alloc_reg(current,i,LOREG);
1738     current->is32|=1LL<<HIREG;
1739     current->is32|=1LL<<LOREG;
1740     dirty_reg(current,HIREG);
1741     dirty_reg(current,LOREG);
1742   }
1743 }
1744 #endif
1745
1746 void cop0_alloc(struct regstat *current,int i)
1747 {
1748   if(opcode2[i]==0) // MFC0
1749   {
1750     if(rt1[i]) {
1751       clear_const(current,rt1[i]);
1752       alloc_all(current,i);
1753       alloc_reg(current,i,rt1[i]);
1754       current->is32|=1LL<<rt1[i];
1755       dirty_reg(current,rt1[i]);
1756     }
1757   }
1758   else if(opcode2[i]==4) // MTC0
1759   {
1760     if(rs1[i]){
1761       clear_const(current,rs1[i]);
1762       alloc_reg(current,i,rs1[i]);
1763       alloc_all(current,i);
1764     }
1765     else {
1766       alloc_all(current,i); // FIXME: Keep r0
1767       current->u&=~1LL;
1768       alloc_reg(current,i,0);
1769     }
1770   }
1771   else
1772   {
1773     // TLBR/TLBWI/TLBWR/TLBP/ERET
1774     assert(opcode2[i]==0x10);
1775     alloc_all(current,i);
1776   }
1777 }
1778
1779 void cop1_alloc(struct regstat *current,int i)
1780 {
1781   alloc_reg(current,i,CSREG); // Load status
1782   if(opcode2[i]<3) // MFC1/DMFC1/CFC1
1783   {
1784     assert(rt1[i]);
1785     clear_const(current,rt1[i]);
1786     if(opcode2[i]==1) {
1787       alloc_reg64(current,i,rt1[i]); // DMFC1
1788       current->is32&=~(1LL<<rt1[i]);
1789     }else{
1790       alloc_reg(current,i,rt1[i]); // MFC1/CFC1
1791       current->is32|=1LL<<rt1[i];
1792     }
1793     dirty_reg(current,rt1[i]);
1794     alloc_reg_temp(current,i,-1);
1795   }
1796   else if(opcode2[i]>3) // MTC1/DMTC1/CTC1
1797   {
1798     if(rs1[i]){
1799       clear_const(current,rs1[i]);
1800       if(opcode2[i]==5)
1801         alloc_reg64(current,i,rs1[i]); // DMTC1
1802       else
1803         alloc_reg(current,i,rs1[i]); // MTC1/CTC1
1804       alloc_reg_temp(current,i,-1);
1805     }
1806     else {
1807       current->u&=~1LL;
1808       alloc_reg(current,i,0);
1809       alloc_reg_temp(current,i,-1);
1810     }
1811   }
1812 }
1813 void fconv_alloc(struct regstat *current,int i)
1814 {
1815   alloc_reg(current,i,CSREG); // Load status
1816   alloc_reg_temp(current,i,-1);
1817 }
1818 void float_alloc(struct regstat *current,int i)
1819 {
1820   alloc_reg(current,i,CSREG); // Load status
1821   alloc_reg_temp(current,i,-1);
1822 }
1823 void c2op_alloc(struct regstat *current,int i)
1824 {
1825   alloc_reg_temp(current,i,-1);
1826 }
1827 void fcomp_alloc(struct regstat *current,int i)
1828 {
1829   alloc_reg(current,i,CSREG); // Load status
1830   alloc_reg(current,i,FSREG); // Load flags
1831   dirty_reg(current,FSREG); // Flag will be modified
1832   alloc_reg_temp(current,i,-1);
1833 }
1834
1835 void syscall_alloc(struct regstat *current,int i)
1836 {
1837   alloc_cc(current,i);
1838   dirty_reg(current,CCREG);
1839   alloc_all(current,i);
1840   current->isconst=0;
1841 }
1842
1843 void delayslot_alloc(struct regstat *current,int i)
1844 {
1845   switch(itype[i]) {
1846     case UJUMP:
1847     case CJUMP:
1848     case SJUMP:
1849     case RJUMP:
1850     case FJUMP:
1851     case SYSCALL:
1852     case HLECALL:
1853     case SPAN:
1854       assem_debug("jump in the delay slot.  this shouldn't happen.\n");//exit(1);
1855       printf("Disabled speculative precompilation\n");
1856       stop_after_jal=1;
1857       break;
1858     case IMM16:
1859       imm16_alloc(current,i);
1860       break;
1861     case LOAD:
1862     case LOADLR:
1863       load_alloc(current,i);
1864       break;
1865     case STORE:
1866     case STORELR:
1867       store_alloc(current,i);
1868       break;
1869     case ALU:
1870       alu_alloc(current,i);
1871       break;
1872     case SHIFT:
1873       shift_alloc(current,i);
1874       break;
1875     case MULTDIV:
1876       multdiv_alloc(current,i);
1877       break;
1878     case SHIFTIMM:
1879       shiftimm_alloc(current,i);
1880       break;
1881     case MOV:
1882       mov_alloc(current,i);
1883       break;
1884     case COP0:
1885       cop0_alloc(current,i);
1886       break;
1887     case COP1:
1888     case COP2:
1889       cop1_alloc(current,i);
1890       break;
1891     case C1LS:
1892       c1ls_alloc(current,i);
1893       break;
1894     case C2LS:
1895       c2ls_alloc(current,i);
1896       break;
1897     case FCONV:
1898       fconv_alloc(current,i);
1899       break;
1900     case FLOAT:
1901       float_alloc(current,i);
1902       break;
1903     case FCOMP:
1904       fcomp_alloc(current,i);
1905       break;
1906     case C2OP:
1907       c2op_alloc(current,i);
1908       break;
1909   }
1910 }
1911
1912 // Special case where a branch and delay slot span two pages in virtual memory
1913 static void pagespan_alloc(struct regstat *current,int i)
1914 {
1915   current->isconst=0;
1916   current->wasconst=0;
1917   regs[i].wasconst=0;
1918   alloc_all(current,i);
1919   alloc_cc(current,i);
1920   dirty_reg(current,CCREG);
1921   if(opcode[i]==3) // JAL
1922   {
1923     alloc_reg(current,i,31);
1924     dirty_reg(current,31);
1925   }
1926   if(opcode[i]==0&&(opcode2[i]&0x3E)==8) // JR/JALR
1927   {
1928     alloc_reg(current,i,rs1[i]);
1929     if (rt1[i]!=0) {
1930       alloc_reg(current,i,rt1[i]);
1931       dirty_reg(current,rt1[i]);
1932     }
1933   }
1934   if((opcode[i]&0x2E)==4) // BEQ/BNE/BEQL/BNEL
1935   {
1936     if(rs1[i]) alloc_reg(current,i,rs1[i]);
1937     if(rs2[i]) alloc_reg(current,i,rs2[i]);
1938     if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1939     {
1940       if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1941       if(rs2[i]) alloc_reg64(current,i,rs2[i]);
1942     }
1943   }
1944   else
1945   if((opcode[i]&0x2E)==6) // BLEZ/BGTZ/BLEZL/BGTZL
1946   {
1947     if(rs1[i]) alloc_reg(current,i,rs1[i]);
1948     if(!((current->is32>>rs1[i])&1))
1949     {
1950       if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1951     }
1952   }
1953   else
1954   if(opcode[i]==0x11) // BC1
1955   {
1956     alloc_reg(current,i,FSREG);
1957     alloc_reg(current,i,CSREG);
1958   }
1959   //else ...
1960 }
1961
1962 add_stub(int type,int addr,int retaddr,int a,int b,int c,int d,int e)
1963 {
1964   stubs[stubcount][0]=type;
1965   stubs[stubcount][1]=addr;
1966   stubs[stubcount][2]=retaddr;
1967   stubs[stubcount][3]=a;
1968   stubs[stubcount][4]=b;
1969   stubs[stubcount][5]=c;
1970   stubs[stubcount][6]=d;
1971   stubs[stubcount][7]=e;
1972   stubcount++;
1973 }
1974
1975 // Write out a single register
1976 void wb_register(signed char r,signed char regmap[],uint64_t dirty,uint64_t is32)
1977 {
1978   int hr;
1979   for(hr=0;hr<HOST_REGS;hr++) {
1980     if(hr!=EXCLUDE_REG) {
1981       if((regmap[hr]&63)==r) {
1982         if((dirty>>hr)&1) {
1983           if(regmap[hr]<64) {
1984             emit_storereg(r,hr);
1985 #ifndef FORCE32
1986             if((is32>>regmap[hr])&1) {
1987               emit_sarimm(hr,31,hr);
1988               emit_storereg(r|64,hr);
1989             }
1990 #endif
1991           }else{
1992             emit_storereg(r|64,hr);
1993           }
1994         }
1995       }
1996     }
1997   }
1998 }
1999
2000 int mchecksum()
2001 {
2002   //if(!tracedebug) return 0;
2003   int i;
2004   int sum=0;
2005   for(i=0;i<2097152;i++) {
2006     unsigned int temp=sum;
2007     sum<<=1;
2008     sum|=(~temp)>>31;
2009     sum^=((u_int *)rdram)[i];
2010   }
2011   return sum;
2012 }
2013 int rchecksum()
2014 {
2015   int i;
2016   int sum=0;
2017   for(i=0;i<64;i++)
2018     sum^=((u_int *)reg)[i];
2019   return sum;
2020 }
2021 void rlist()
2022 {
2023   int i;
2024   printf("TRACE: ");
2025   for(i=0;i<32;i++)
2026     printf("r%d:%8x%8x ",i,((int *)(reg+i))[1],((int *)(reg+i))[0]);
2027   printf("\n");
2028 #ifndef DISABLE_COP1
2029   printf("TRACE: ");
2030   for(i=0;i<32;i++)
2031     printf("f%d:%8x%8x ",i,((int*)reg_cop1_simple[i])[1],*((int*)reg_cop1_simple[i]));
2032   printf("\n");
2033 #endif
2034 }
2035
2036 void enabletrace()
2037 {
2038   tracedebug=1;
2039 }
2040
2041 void memdebug(int i)
2042 {
2043   //printf("TRACE: count=%d next=%d (checksum %x) lo=%8x%8x\n",Count,next_interupt,mchecksum(),(int)(reg[LOREG]>>32),(int)reg[LOREG]);
2044   //printf("TRACE: count=%d next=%d (rchecksum %x)\n",Count,next_interupt,rchecksum());
2045   //rlist();
2046   //if(tracedebug) {
2047   //if(Count>=-2084597794) {
2048   if((signed int)Count>=-2084597794&&(signed int)Count<0) {
2049   //if(0) {
2050     printf("TRACE: count=%d next=%d (checksum %x)\n",Count,next_interupt,mchecksum());
2051     //printf("TRACE: count=%d next=%d (checksum %x) Status=%x\n",Count,next_interupt,mchecksum(),Status);
2052     //printf("TRACE: count=%d next=%d (checksum %x) hi=%8x%8x\n",Count,next_interupt,mchecksum(),(int)(reg[HIREG]>>32),(int)reg[HIREG]);
2053     rlist();
2054     #ifdef __i386__
2055     printf("TRACE: %x\n",(&i)[-1]);
2056     #endif
2057     #ifdef __arm__
2058     int j;
2059     printf("TRACE: %x \n",(&j)[10]);
2060     printf("TRACE: %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x\n",(&j)[1],(&j)[2],(&j)[3],(&j)[4],(&j)[5],(&j)[6],(&j)[7],(&j)[8],(&j)[9],(&j)[10],(&j)[11],(&j)[12],(&j)[13],(&j)[14],(&j)[15],(&j)[16],(&j)[17],(&j)[18],(&j)[19],(&j)[20]);
2061     #endif
2062     //fflush(stdout);
2063   }
2064   //printf("TRACE: %x\n",(&i)[-1]);
2065 }
2066
2067 void tlb_debug(u_int cause, u_int addr, u_int iaddr)
2068 {
2069   printf("TLB Exception: instruction=%x addr=%x cause=%x\n",iaddr, addr, cause);
2070 }
2071
2072 void alu_assemble(int i,struct regstat *i_regs)
2073 {
2074   if(opcode2[i]>=0x20&&opcode2[i]<=0x23) { // ADD/ADDU/SUB/SUBU
2075     if(rt1[i]) {
2076       signed char s1,s2,t;
2077       t=get_reg(i_regs->regmap,rt1[i]);
2078       if(t>=0) {
2079         s1=get_reg(i_regs->regmap,rs1[i]);
2080         s2=get_reg(i_regs->regmap,rs2[i]);
2081         if(rs1[i]&&rs2[i]) {
2082           assert(s1>=0);
2083           assert(s2>=0);
2084           if(opcode2[i]&2) emit_sub(s1,s2,t);
2085           else emit_add(s1,s2,t);
2086         }
2087         else if(rs1[i]) {
2088           if(s1>=0) emit_mov(s1,t);
2089           else emit_loadreg(rs1[i],t);
2090         }
2091         else if(rs2[i]) {
2092           if(s2>=0) {
2093             if(opcode2[i]&2) emit_neg(s2,t);
2094             else emit_mov(s2,t);
2095           }
2096           else {
2097             emit_loadreg(rs2[i],t);
2098             if(opcode2[i]&2) emit_neg(t,t);
2099           }
2100         }
2101         else emit_zeroreg(t);
2102       }
2103     }
2104   }
2105   if(opcode2[i]>=0x2c&&opcode2[i]<=0x2f) { // DADD/DADDU/DSUB/DSUBU
2106     if(rt1[i]) {
2107       signed char s1l,s2l,s1h,s2h,tl,th;
2108       tl=get_reg(i_regs->regmap,rt1[i]);
2109       th=get_reg(i_regs->regmap,rt1[i]|64);
2110       if(tl>=0) {
2111         s1l=get_reg(i_regs->regmap,rs1[i]);
2112         s2l=get_reg(i_regs->regmap,rs2[i]);
2113         s1h=get_reg(i_regs->regmap,rs1[i]|64);
2114         s2h=get_reg(i_regs->regmap,rs2[i]|64);
2115         if(rs1[i]&&rs2[i]) {
2116           assert(s1l>=0);
2117           assert(s2l>=0);
2118           if(opcode2[i]&2) emit_subs(s1l,s2l,tl);
2119           else emit_adds(s1l,s2l,tl);
2120           if(th>=0) {
2121             #ifdef INVERTED_CARRY
2122             if(opcode2[i]&2) {if(s1h!=th) emit_mov(s1h,th);emit_sbb(th,s2h);}
2123             #else
2124             if(opcode2[i]&2) emit_sbc(s1h,s2h,th);
2125             #endif
2126             else emit_add(s1h,s2h,th);
2127           }
2128         }
2129         else if(rs1[i]) {
2130           if(s1l>=0) emit_mov(s1l,tl);
2131           else emit_loadreg(rs1[i],tl);
2132           if(th>=0) {
2133             if(s1h>=0) emit_mov(s1h,th);
2134             else emit_loadreg(rs1[i]|64,th);
2135           }
2136         }
2137         else if(rs2[i]) {
2138           if(s2l>=0) {
2139             if(opcode2[i]&2) emit_negs(s2l,tl);
2140             else emit_mov(s2l,tl);
2141           }
2142           else {
2143             emit_loadreg(rs2[i],tl);
2144             if(opcode2[i]&2) emit_negs(tl,tl);
2145           }
2146           if(th>=0) {
2147             #ifdef INVERTED_CARRY
2148             if(s2h>=0) emit_mov(s2h,th);
2149             else emit_loadreg(rs2[i]|64,th);
2150             if(opcode2[i]&2) {
2151               emit_adcimm(-1,th); // x86 has inverted carry flag
2152               emit_not(th,th);
2153             }
2154             #else
2155             if(opcode2[i]&2) {
2156               if(s2h>=0) emit_rscimm(s2h,0,th);
2157               else {
2158                 emit_loadreg(rs2[i]|64,th);
2159                 emit_rscimm(th,0,th);
2160               }
2161             }else{
2162               if(s2h>=0) emit_mov(s2h,th);
2163               else emit_loadreg(rs2[i]|64,th);
2164             }
2165             #endif
2166           }
2167         }
2168         else {
2169           emit_zeroreg(tl);
2170           if(th>=0) emit_zeroreg(th);
2171         }
2172       }
2173     }
2174   }
2175   if(opcode2[i]==0x2a||opcode2[i]==0x2b) { // SLT/SLTU
2176     if(rt1[i]) {
2177       signed char s1l,s1h,s2l,s2h,t;
2178       if(!((i_regs->was32>>rs1[i])&(i_regs->was32>>rs2[i])&1))
2179       {
2180         t=get_reg(i_regs->regmap,rt1[i]);
2181         //assert(t>=0);
2182         if(t>=0) {
2183           s1l=get_reg(i_regs->regmap,rs1[i]);
2184           s1h=get_reg(i_regs->regmap,rs1[i]|64);
2185           s2l=get_reg(i_regs->regmap,rs2[i]);
2186           s2h=get_reg(i_regs->regmap,rs2[i]|64);
2187           if(rs2[i]==0) // rx<r0
2188           {
2189             assert(s1h>=0);
2190             if(opcode2[i]==0x2a) // SLT
2191               emit_shrimm(s1h,31,t);
2192             else // SLTU (unsigned can not be less than zero)
2193               emit_zeroreg(t);
2194           }
2195           else if(rs1[i]==0) // r0<rx
2196           {
2197             assert(s2h>=0);
2198             if(opcode2[i]==0x2a) // SLT
2199               emit_set_gz64_32(s2h,s2l,t);
2200             else // SLTU (set if not zero)
2201               emit_set_nz64_32(s2h,s2l,t);
2202           }
2203           else {
2204             assert(s1l>=0);assert(s1h>=0);
2205             assert(s2l>=0);assert(s2h>=0);
2206             if(opcode2[i]==0x2a) // SLT
2207               emit_set_if_less64_32(s1h,s1l,s2h,s2l,t);
2208             else // SLTU
2209               emit_set_if_carry64_32(s1h,s1l,s2h,s2l,t);
2210           }
2211         }
2212       } else {
2213         t=get_reg(i_regs->regmap,rt1[i]);
2214         //assert(t>=0);
2215         if(t>=0) {
2216           s1l=get_reg(i_regs->regmap,rs1[i]);
2217           s2l=get_reg(i_regs->regmap,rs2[i]);
2218           if(rs2[i]==0) // rx<r0
2219           {
2220             assert(s1l>=0);
2221             if(opcode2[i]==0x2a) // SLT
2222               emit_shrimm(s1l,31,t);
2223             else // SLTU (unsigned can not be less than zero)
2224               emit_zeroreg(t);
2225           }
2226           else if(rs1[i]==0) // r0<rx
2227           {
2228             assert(s2l>=0);
2229             if(opcode2[i]==0x2a) // SLT
2230               emit_set_gz32(s2l,t);
2231             else // SLTU (set if not zero)
2232               emit_set_nz32(s2l,t);
2233           }
2234           else{
2235             assert(s1l>=0);assert(s2l>=0);
2236             if(opcode2[i]==0x2a) // SLT
2237               emit_set_if_less32(s1l,s2l,t);
2238             else // SLTU
2239               emit_set_if_carry32(s1l,s2l,t);
2240           }
2241         }
2242       }
2243     }
2244   }
2245   if(opcode2[i]>=0x24&&opcode2[i]<=0x27) { // AND/OR/XOR/NOR
2246     if(rt1[i]) {
2247       signed char s1l,s1h,s2l,s2h,th,tl;
2248       tl=get_reg(i_regs->regmap,rt1[i]);
2249       th=get_reg(i_regs->regmap,rt1[i]|64);
2250       if(!((i_regs->was32>>rs1[i])&(i_regs->was32>>rs2[i])&1)&&th>=0)
2251       {
2252         assert(tl>=0);
2253         if(tl>=0) {
2254           s1l=get_reg(i_regs->regmap,rs1[i]);
2255           s1h=get_reg(i_regs->regmap,rs1[i]|64);
2256           s2l=get_reg(i_regs->regmap,rs2[i]);
2257           s2h=get_reg(i_regs->regmap,rs2[i]|64);
2258           if(rs1[i]&&rs2[i]) {
2259             assert(s1l>=0);assert(s1h>=0);
2260             assert(s2l>=0);assert(s2h>=0);
2261             if(opcode2[i]==0x24) { // AND
2262               emit_and(s1l,s2l,tl);
2263               emit_and(s1h,s2h,th);
2264             } else
2265             if(opcode2[i]==0x25) { // OR
2266               emit_or(s1l,s2l,tl);
2267               emit_or(s1h,s2h,th);
2268             } else
2269             if(opcode2[i]==0x26) { // XOR
2270               emit_xor(s1l,s2l,tl);
2271               emit_xor(s1h,s2h,th);
2272             } else
2273             if(opcode2[i]==0x27) { // NOR
2274               emit_or(s1l,s2l,tl);
2275               emit_or(s1h,s2h,th);
2276               emit_not(tl,tl);
2277               emit_not(th,th);
2278             }
2279           }
2280           else
2281           {
2282             if(opcode2[i]==0x24) { // AND
2283               emit_zeroreg(tl);
2284               emit_zeroreg(th);
2285             } else
2286             if(opcode2[i]==0x25||opcode2[i]==0x26) { // OR/XOR
2287               if(rs1[i]){
2288                 if(s1l>=0) emit_mov(s1l,tl);
2289                 else emit_loadreg(rs1[i],tl);
2290                 if(s1h>=0) emit_mov(s1h,th);
2291                 else emit_loadreg(rs1[i]|64,th);
2292               }
2293               else
2294               if(rs2[i]){
2295                 if(s2l>=0) emit_mov(s2l,tl);
2296                 else emit_loadreg(rs2[i],tl);
2297                 if(s2h>=0) emit_mov(s2h,th);
2298                 else emit_loadreg(rs2[i]|64,th);
2299               }
2300               else{
2301                 emit_zeroreg(tl);
2302                 emit_zeroreg(th);
2303               }
2304             } else
2305             if(opcode2[i]==0x27) { // NOR
2306               if(rs1[i]){
2307                 if(s1l>=0) emit_not(s1l,tl);
2308                 else{
2309                   emit_loadreg(rs1[i],tl);
2310                   emit_not(tl,tl);
2311                 }
2312                 if(s1h>=0) emit_not(s1h,th);
2313                 else{
2314                   emit_loadreg(rs1[i]|64,th);
2315                   emit_not(th,th);
2316                 }
2317               }
2318               else
2319               if(rs2[i]){
2320                 if(s2l>=0) emit_not(s2l,tl);
2321                 else{
2322                   emit_loadreg(rs2[i],tl);
2323                   emit_not(tl,tl);
2324                 }
2325                 if(s2h>=0) emit_not(s2h,th);
2326                 else{
2327                   emit_loadreg(rs2[i]|64,th);
2328                   emit_not(th,th);
2329                 }
2330               }
2331               else {
2332                 emit_movimm(-1,tl);
2333                 emit_movimm(-1,th);
2334               }
2335             }
2336           }
2337         }
2338       }
2339       else
2340       {
2341         // 32 bit
2342         if(tl>=0) {
2343           s1l=get_reg(i_regs->regmap,rs1[i]);
2344           s2l=get_reg(i_regs->regmap,rs2[i]);
2345           if(rs1[i]&&rs2[i]) {
2346             assert(s1l>=0);
2347             assert(s2l>=0);
2348             if(opcode2[i]==0x24) { // AND
2349               emit_and(s1l,s2l,tl);
2350             } else
2351             if(opcode2[i]==0x25) { // OR
2352               emit_or(s1l,s2l,tl);
2353             } else
2354             if(opcode2[i]==0x26) { // XOR
2355               emit_xor(s1l,s2l,tl);
2356             } else
2357             if(opcode2[i]==0x27) { // NOR
2358               emit_or(s1l,s2l,tl);
2359               emit_not(tl,tl);
2360             }
2361           }
2362           else
2363           {
2364             if(opcode2[i]==0x24) { // AND
2365               emit_zeroreg(tl);
2366             } else
2367             if(opcode2[i]==0x25||opcode2[i]==0x26) { // OR/XOR
2368               if(rs1[i]){
2369                 if(s1l>=0) emit_mov(s1l,tl);
2370                 else emit_loadreg(rs1[i],tl); // CHECK: regmap_entry?
2371               }
2372               else
2373               if(rs2[i]){
2374                 if(s2l>=0) emit_mov(s2l,tl);
2375                 else emit_loadreg(rs2[i],tl); // CHECK: regmap_entry?
2376               }
2377               else emit_zeroreg(tl);
2378             } else
2379             if(opcode2[i]==0x27) { // NOR
2380               if(rs1[i]){
2381                 if(s1l>=0) emit_not(s1l,tl);
2382                 else {
2383                   emit_loadreg(rs1[i],tl);
2384                   emit_not(tl,tl);
2385                 }
2386               }
2387               else
2388               if(rs2[i]){
2389                 if(s2l>=0) emit_not(s2l,tl);
2390                 else {
2391                   emit_loadreg(rs2[i],tl);
2392                   emit_not(tl,tl);
2393                 }
2394               }
2395               else emit_movimm(-1,tl);
2396             }
2397           }
2398         }
2399       }
2400     }
2401   }
2402 }
2403
2404 void imm16_assemble(int i,struct regstat *i_regs)
2405 {
2406   if (opcode[i]==0x0f) { // LUI
2407     if(rt1[i]) {
2408       signed char t;
2409       t=get_reg(i_regs->regmap,rt1[i]);
2410       //assert(t>=0);
2411       if(t>=0) {
2412         if(!((i_regs->isconst>>t)&1))
2413           emit_movimm(imm[i]<<16,t);
2414       }
2415     }
2416   }
2417   if(opcode[i]==0x08||opcode[i]==0x09) { // ADDI/ADDIU
2418     if(rt1[i]) {
2419       signed char s,t;
2420       t=get_reg(i_regs->regmap,rt1[i]);
2421       s=get_reg(i_regs->regmap,rs1[i]);
2422       if(rs1[i]) {
2423         //assert(t>=0);
2424         //assert(s>=0);
2425         if(t>=0) {
2426           if(!((i_regs->isconst>>t)&1)) {
2427             if(s<0) {
2428               if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2429               emit_addimm(t,imm[i],t);
2430             }else{
2431               if(!((i_regs->wasconst>>s)&1))
2432                 emit_addimm(s,imm[i],t);
2433               else
2434                 emit_movimm(constmap[i][s]+imm[i],t);
2435             }
2436           }
2437         }
2438       } else {
2439         if(t>=0) {
2440           if(!((i_regs->isconst>>t)&1))
2441             emit_movimm(imm[i],t);
2442         }
2443       }
2444     }
2445   }
2446   if(opcode[i]==0x18||opcode[i]==0x19) { // DADDI/DADDIU
2447     if(rt1[i]) {
2448       signed char sh,sl,th,tl;
2449       th=get_reg(i_regs->regmap,rt1[i]|64);
2450       tl=get_reg(i_regs->regmap,rt1[i]);
2451       sh=get_reg(i_regs->regmap,rs1[i]|64);
2452       sl=get_reg(i_regs->regmap,rs1[i]);
2453       if(tl>=0) {
2454         if(rs1[i]) {
2455           assert(sh>=0);
2456           assert(sl>=0);
2457           if(th>=0) {
2458             emit_addimm64_32(sh,sl,imm[i],th,tl);
2459           }
2460           else {
2461             emit_addimm(sl,imm[i],tl);
2462           }
2463         } else {
2464           emit_movimm(imm[i],tl);
2465           if(th>=0) emit_movimm(((signed int)imm[i])>>31,th);
2466         }
2467       }
2468     }
2469   }
2470   else if(opcode[i]==0x0a||opcode[i]==0x0b) { // SLTI/SLTIU
2471     if(rt1[i]) {
2472       //assert(rs1[i]!=0); // r0 might be valid, but it's probably a bug
2473       signed char sh,sl,t;
2474       t=get_reg(i_regs->regmap,rt1[i]);
2475       sh=get_reg(i_regs->regmap,rs1[i]|64);
2476       sl=get_reg(i_regs->regmap,rs1[i]);
2477       //assert(t>=0);
2478       if(t>=0) {
2479         if(rs1[i]>0) {
2480           if(sh<0) assert((i_regs->was32>>rs1[i])&1);
2481           if(sh<0||((i_regs->was32>>rs1[i])&1)) {
2482             if(opcode[i]==0x0a) { // SLTI
2483               if(sl<0) {
2484                 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2485                 emit_slti32(t,imm[i],t);
2486               }else{
2487                 emit_slti32(sl,imm[i],t);
2488               }
2489             }
2490             else { // SLTIU
2491               if(sl<0) {
2492                 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2493                 emit_sltiu32(t,imm[i],t);
2494               }else{
2495                 emit_sltiu32(sl,imm[i],t);
2496               }
2497             }
2498           }else{ // 64-bit
2499             assert(sl>=0);
2500             if(opcode[i]==0x0a) // SLTI
2501               emit_slti64_32(sh,sl,imm[i],t);
2502             else // SLTIU
2503               emit_sltiu64_32(sh,sl,imm[i],t);
2504           }
2505         }else{
2506           // SLTI(U) with r0 is just stupid,
2507           // nonetheless examples can be found
2508           if(opcode[i]==0x0a) // SLTI
2509             if(0<imm[i]) emit_movimm(1,t);
2510             else emit_zeroreg(t);
2511           else // SLTIU
2512           {
2513             if(imm[i]) emit_movimm(1,t);
2514             else emit_zeroreg(t);
2515           }
2516         }
2517       }
2518     }
2519   }
2520   else if(opcode[i]>=0x0c&&opcode[i]<=0x0e) { // ANDI/ORI/XORI
2521     if(rt1[i]) {
2522       signed char sh,sl,th,tl;
2523       th=get_reg(i_regs->regmap,rt1[i]|64);
2524       tl=get_reg(i_regs->regmap,rt1[i]);
2525       sh=get_reg(i_regs->regmap,rs1[i]|64);
2526       sl=get_reg(i_regs->regmap,rs1[i]);
2527       if(tl>=0 && !((i_regs->isconst>>tl)&1)) {
2528         if(opcode[i]==0x0c) //ANDI
2529         {
2530           if(rs1[i]) {
2531             if(sl<0) {
2532               if(i_regs->regmap_entry[tl]!=rs1[i]) emit_loadreg(rs1[i],tl);
2533               emit_andimm(tl,imm[i],tl);
2534             }else{
2535               if(!((i_regs->wasconst>>sl)&1))
2536                 emit_andimm(sl,imm[i],tl);
2537               else
2538                 emit_movimm(constmap[i][sl]&imm[i],tl);
2539             }
2540           }
2541           else
2542             emit_zeroreg(tl);
2543           if(th>=0) emit_zeroreg(th);
2544         }
2545         else
2546         {
2547           if(rs1[i]) {
2548             if(sl<0) {
2549               if(i_regs->regmap_entry[tl]!=rs1[i]) emit_loadreg(rs1[i],tl);
2550             }
2551             if(th>=0) {
2552               if(sh<0) {
2553                 emit_loadreg(rs1[i]|64,th);
2554               }else{
2555                 emit_mov(sh,th);
2556               }
2557             }
2558             if(opcode[i]==0x0d) //ORI
2559             if(sl<0) {
2560               emit_orimm(tl,imm[i],tl);
2561             }else{
2562               if(!((i_regs->wasconst>>sl)&1))
2563                 emit_orimm(sl,imm[i],tl);
2564               else
2565                 emit_movimm(constmap[i][sl]|imm[i],tl);
2566             }
2567             if(opcode[i]==0x0e) //XORI
2568             if(sl<0) {
2569               emit_xorimm(tl,imm[i],tl);
2570             }else{
2571               if(!((i_regs->wasconst>>sl)&1))
2572                 emit_xorimm(sl,imm[i],tl);
2573               else
2574                 emit_movimm(constmap[i][sl]^imm[i],tl);
2575             }
2576           }
2577           else {
2578             emit_movimm(imm[i],tl);
2579             if(th>=0) emit_zeroreg(th);
2580           }
2581         }
2582       }
2583     }
2584   }
2585 }
2586
2587 void shiftimm_assemble(int i,struct regstat *i_regs)
2588 {
2589   if(opcode2[i]<=0x3) // SLL/SRL/SRA
2590   {
2591     if(rt1[i]) {
2592       signed char s,t;
2593       t=get_reg(i_regs->regmap,rt1[i]);
2594       s=get_reg(i_regs->regmap,rs1[i]);
2595       //assert(t>=0);
2596       if(t>=0){
2597         if(rs1[i]==0)
2598         {
2599           emit_zeroreg(t);
2600         }
2601         else
2602         {
2603           if(s<0&&i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2604           if(imm[i]) {
2605             if(opcode2[i]==0) // SLL
2606             {
2607               emit_shlimm(s<0?t:s,imm[i],t);
2608             }
2609             if(opcode2[i]==2) // SRL
2610             {
2611               emit_shrimm(s<0?t:s,imm[i],t);
2612             }
2613             if(opcode2[i]==3) // SRA
2614             {
2615               emit_sarimm(s<0?t:s,imm[i],t);
2616             }
2617           }else{
2618             // Shift by zero
2619             if(s>=0 && s!=t) emit_mov(s,t);
2620           }
2621         }
2622       }
2623       //emit_storereg(rt1[i],t); //DEBUG
2624     }
2625   }
2626   if(opcode2[i]>=0x38&&opcode2[i]<=0x3b) // DSLL/DSRL/DSRA
2627   {
2628     if(rt1[i]) {
2629       signed char sh,sl,th,tl;
2630       th=get_reg(i_regs->regmap,rt1[i]|64);
2631       tl=get_reg(i_regs->regmap,rt1[i]);
2632       sh=get_reg(i_regs->regmap,rs1[i]|64);
2633       sl=get_reg(i_regs->regmap,rs1[i]);
2634       if(tl>=0) {
2635         if(rs1[i]==0)
2636         {
2637           emit_zeroreg(tl);
2638           if(th>=0) emit_zeroreg(th);
2639         }
2640         else
2641         {
2642           assert(sl>=0);
2643           assert(sh>=0);
2644           if(imm[i]) {
2645             if(opcode2[i]==0x38) // DSLL
2646             {
2647               if(th>=0) emit_shldimm(sh,sl,imm[i],th);
2648               emit_shlimm(sl,imm[i],tl);
2649             }
2650             if(opcode2[i]==0x3a) // DSRL
2651             {
2652               emit_shrdimm(sl,sh,imm[i],tl);
2653               if(th>=0) emit_shrimm(sh,imm[i],th);
2654             }
2655             if(opcode2[i]==0x3b) // DSRA
2656             {
2657               emit_shrdimm(sl,sh,imm[i],tl);
2658               if(th>=0) emit_sarimm(sh,imm[i],th);
2659             }
2660           }else{
2661             // Shift by zero
2662             if(sl!=tl) emit_mov(sl,tl);
2663             if(th>=0&&sh!=th) emit_mov(sh,th);
2664           }
2665         }
2666       }
2667     }
2668   }
2669   if(opcode2[i]==0x3c) // DSLL32
2670   {
2671     if(rt1[i]) {
2672       signed char sl,tl,th;
2673       tl=get_reg(i_regs->regmap,rt1[i]);
2674       th=get_reg(i_regs->regmap,rt1[i]|64);
2675       sl=get_reg(i_regs->regmap,rs1[i]);
2676       if(th>=0||tl>=0){
2677         assert(tl>=0);
2678         assert(th>=0);
2679         assert(sl>=0);
2680         emit_mov(sl,th);
2681         emit_zeroreg(tl);
2682         if(imm[i]>32)
2683         {
2684           emit_shlimm(th,imm[i]&31,th);
2685         }
2686       }
2687     }
2688   }
2689   if(opcode2[i]==0x3e) // DSRL32
2690   {
2691     if(rt1[i]) {
2692       signed char sh,tl,th;
2693       tl=get_reg(i_regs->regmap,rt1[i]);
2694       th=get_reg(i_regs->regmap,rt1[i]|64);
2695       sh=get_reg(i_regs->regmap,rs1[i]|64);
2696       if(tl>=0){
2697         assert(sh>=0);
2698         emit_mov(sh,tl);
2699         if(th>=0) emit_zeroreg(th);
2700         if(imm[i]>32)
2701         {
2702           emit_shrimm(tl,imm[i]&31,tl);
2703         }
2704       }
2705     }
2706   }
2707   if(opcode2[i]==0x3f) // DSRA32
2708   {
2709     if(rt1[i]) {
2710       signed char sh,tl;
2711       tl=get_reg(i_regs->regmap,rt1[i]);
2712       sh=get_reg(i_regs->regmap,rs1[i]|64);
2713       if(tl>=0){
2714         assert(sh>=0);
2715         emit_mov(sh,tl);
2716         if(imm[i]>32)
2717         {
2718           emit_sarimm(tl,imm[i]&31,tl);
2719         }
2720       }
2721     }
2722   }
2723 }
2724
2725 #ifndef shift_assemble
2726 void shift_assemble(int i,struct regstat *i_regs)
2727 {
2728   printf("Need shift_assemble for this architecture.\n");
2729   exit(1);
2730 }
2731 #endif
2732
2733 void load_assemble(int i,struct regstat *i_regs)
2734 {
2735   int s,th,tl,addr,map=-1;
2736   int offset;
2737   int jaddr=0;
2738   int memtarget=0,c=0;
2739   u_int hr,reglist=0;
2740   th=get_reg(i_regs->regmap,rt1[i]|64);
2741   tl=get_reg(i_regs->regmap,rt1[i]);
2742   s=get_reg(i_regs->regmap,rs1[i]);
2743   offset=imm[i];
2744   for(hr=0;hr<HOST_REGS;hr++) {
2745     if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
2746   }
2747   if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
2748   if(s>=0) {
2749     c=(i_regs->wasconst>>s)&1;
2750     memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
2751     if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
2752   }
2753   //printf("load_assemble: c=%d\n",c);
2754   //if(c) printf("load_assemble: const=%x\n",(int)constmap[i][s]+offset);
2755   // FIXME: Even if the load is a NOP, we should check for pagefaults...
2756 #ifdef PCSX
2757   if(tl<0&&(!c||(((u_int)constmap[i][s]+offset)>>16)==0x1f80)
2758     ||rt1[i]==0) {
2759       // could be FIFO, must perform the read
2760       // ||dummy read
2761       assem_debug("(forced read)\n");
2762       tl=get_reg(i_regs->regmap,-1);
2763       assert(tl>=0);
2764   }
2765 #endif
2766   if(offset||s<0||c) addr=tl;
2767   else addr=s;
2768   if(tl>=0) {
2769     //assert(tl>=0);
2770     //assert(rt1[i]);
2771     reglist&=~(1<<tl);
2772     if(th>=0) reglist&=~(1<<th);
2773     if(!using_tlb) {
2774       if(!c) {
2775 //#define R29_HACK 1
2776         #ifdef R29_HACK
2777         // Strmnnrmn's speed hack
2778         if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
2779         #endif
2780         {
2781           emit_cmpimm(addr,RAM_SIZE);
2782           jaddr=(int)out;
2783           #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
2784           // Hint to branch predictor that the branch is unlikely to be taken
2785           if(rs1[i]>=28)
2786             emit_jno_unlikely(0);
2787           else
2788           #endif
2789           emit_jno(0);
2790         }
2791       }
2792     }else{ // using tlb
2793       int x=0;
2794       if (opcode[i]==0x20||opcode[i]==0x24) x=3; // LB/LBU
2795       if (opcode[i]==0x21||opcode[i]==0x25) x=2; // LH/LHU
2796       map=get_reg(i_regs->regmap,TLREG);
2797       assert(map>=0);
2798       map=do_tlb_r(addr,tl,map,x,-1,-1,c,constmap[i][s]+offset);
2799       do_tlb_r_branch(map,c,constmap[i][s]+offset,&jaddr);
2800     }
2801     if (opcode[i]==0x20) { // LB
2802       if(!c||memtarget) {
2803         #ifdef HOST_IMM_ADDR32
2804         if(c)
2805           emit_movsbl_tlb((constmap[i][s]+offset)^3,map,tl);
2806         else
2807         #endif
2808         {
2809           //emit_xorimm(addr,3,tl);
2810           //gen_tlb_addr_r(tl,map);
2811           //emit_movsbl_indexed((int)rdram-0x80000000,tl,tl);
2812           int x=0;
2813 #ifdef BIG_ENDIAN_MIPS
2814           if(!c) emit_xorimm(addr,3,tl);
2815           else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2816 #else
2817           if(c) x=(constmap[i][s]+offset)-(constmap[i][s]+offset);
2818           else if (tl!=addr) emit_mov(addr,tl);
2819 #endif
2820           emit_movsbl_indexed_tlb(x,tl,map,tl);
2821         }
2822         if(jaddr)
2823           add_stub(LOADB_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2824       }
2825       else
2826         inline_readstub(LOADB_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2827     }
2828     if (opcode[i]==0x21) { // LH
2829       if(!c||memtarget) {
2830         #ifdef HOST_IMM_ADDR32
2831         if(c)
2832           emit_movswl_tlb((constmap[i][s]+offset)^2,map,tl);
2833         else
2834         #endif
2835         {
2836           int x=0;
2837 #ifdef BIG_ENDIAN_MIPS
2838           if(!c) emit_xorimm(addr,2,tl);
2839           else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
2840 #else
2841           if(c) x=(constmap[i][s]+offset)-(constmap[i][s]+offset);
2842           else if (tl!=addr) emit_mov(addr,tl);
2843 #endif
2844           //#ifdef
2845           //emit_movswl_indexed_tlb(x,tl,map,tl);
2846           //else
2847           if(map>=0) {
2848             gen_tlb_addr_r(tl,map);
2849             emit_movswl_indexed(x,tl,tl);
2850           }else
2851             emit_movswl_indexed((int)rdram-0x80000000+x,tl,tl);
2852         }
2853         if(jaddr)
2854           add_stub(LOADH_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2855       }
2856       else
2857         inline_readstub(LOADH_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2858     }
2859     if (opcode[i]==0x23) { // LW
2860       if(!c||memtarget) {
2861         //emit_readword_indexed((int)rdram-0x80000000,addr,tl);
2862         #ifdef HOST_IMM_ADDR32
2863         if(c)
2864           emit_readword_tlb(constmap[i][s]+offset,map,tl);
2865         else
2866         #endif
2867         emit_readword_indexed_tlb(0,addr,map,tl);
2868         if(jaddr)
2869           add_stub(LOADW_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2870       }
2871       else
2872         inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2873     }
2874     if (opcode[i]==0x24) { // LBU
2875       if(!c||memtarget) {
2876         #ifdef HOST_IMM_ADDR32
2877         if(c)
2878           emit_movzbl_tlb((constmap[i][s]+offset)^3,map,tl);
2879         else
2880         #endif
2881         {
2882           //emit_xorimm(addr,3,tl);
2883           //gen_tlb_addr_r(tl,map);
2884           //emit_movzbl_indexed((int)rdram-0x80000000,tl,tl);
2885           int x=0;
2886 #ifdef BIG_ENDIAN_MIPS
2887           if(!c) emit_xorimm(addr,3,tl);
2888           else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2889 #else
2890           if(c) x=(constmap[i][s]+offset)-(constmap[i][s]+offset);
2891           else if (tl!=addr) emit_mov(addr,tl);
2892 #endif
2893           emit_movzbl_indexed_tlb(x,tl,map,tl);
2894         }
2895         if(jaddr)
2896           add_stub(LOADBU_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2897       }
2898       else
2899         inline_readstub(LOADBU_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2900     }
2901     if (opcode[i]==0x25) { // LHU
2902       if(!c||memtarget) {
2903         #ifdef HOST_IMM_ADDR32
2904         if(c)
2905           emit_movzwl_tlb((constmap[i][s]+offset)^2,map,tl);
2906         else
2907         #endif
2908         {
2909           int x=0;
2910 #ifdef BIG_ENDIAN_MIPS
2911           if(!c) emit_xorimm(addr,2,tl);
2912           else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
2913 #else
2914           if(c) x=(constmap[i][s]+offset)-(constmap[i][s]+offset);
2915           else if (tl!=addr) emit_mov(addr,tl);
2916 #endif
2917           //#ifdef
2918           //emit_movzwl_indexed_tlb(x,tl,map,tl);
2919           //#else
2920           if(map>=0) {
2921             gen_tlb_addr_r(tl,map);
2922             emit_movzwl_indexed(x,tl,tl);
2923           }else
2924             emit_movzwl_indexed((int)rdram-0x80000000+x,tl,tl);
2925           if(jaddr)
2926             add_stub(LOADHU_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2927         }
2928       }
2929       else
2930         inline_readstub(LOADHU_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2931     }
2932     if (opcode[i]==0x27) { // LWU
2933       assert(th>=0);
2934       if(!c||memtarget) {
2935         //emit_readword_indexed((int)rdram-0x80000000,addr,tl);
2936         #ifdef HOST_IMM_ADDR32
2937         if(c)
2938           emit_readword_tlb(constmap[i][s]+offset,map,tl);
2939         else
2940         #endif
2941         emit_readword_indexed_tlb(0,addr,map,tl);
2942         if(jaddr)
2943           add_stub(LOADW_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2944       }
2945       else {
2946         inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2947       }
2948       emit_zeroreg(th);
2949     }
2950     if (opcode[i]==0x37) { // LD
2951       if(!c||memtarget) {
2952         //gen_tlb_addr_r(tl,map);
2953         //if(th>=0) emit_readword_indexed((int)rdram-0x80000000,addr,th);
2954         //emit_readword_indexed((int)rdram-0x7FFFFFFC,addr,tl);
2955         #ifdef HOST_IMM_ADDR32
2956         if(c)
2957           emit_readdword_tlb(constmap[i][s]+offset,map,th,tl);
2958         else
2959         #endif
2960         emit_readdword_indexed_tlb(0,addr,map,th,tl);
2961         if(jaddr)
2962           add_stub(LOADD_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2963       }
2964       else
2965         inline_readstub(LOADD_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2966     }
2967     //emit_storereg(rt1[i],tl); // DEBUG
2968   }
2969   //if(opcode[i]==0x23)
2970   //if(opcode[i]==0x24)
2971   //if(opcode[i]==0x23||opcode[i]==0x24)
2972   /*if(opcode[i]==0x21||opcode[i]==0x23||opcode[i]==0x24)
2973   {
2974     //emit_pusha();
2975     save_regs(0x100f);
2976         emit_readword((int)&last_count,ECX);
2977         #ifdef __i386__
2978         if(get_reg(i_regs->regmap,CCREG)<0)
2979           emit_loadreg(CCREG,HOST_CCREG);
2980         emit_add(HOST_CCREG,ECX,HOST_CCREG);
2981         emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
2982         emit_writeword(HOST_CCREG,(int)&Count);
2983         #endif
2984         #ifdef __arm__
2985         if(get_reg(i_regs->regmap,CCREG)<0)
2986           emit_loadreg(CCREG,0);
2987         else
2988           emit_mov(HOST_CCREG,0);
2989         emit_add(0,ECX,0);
2990         emit_addimm(0,2*ccadj[i],0);
2991         emit_writeword(0,(int)&Count);
2992         #endif
2993     emit_call((int)memdebug);
2994     //emit_popa();
2995     restore_regs(0x100f);
2996   }/**/
2997 }
2998
2999 #ifndef loadlr_assemble
3000 void loadlr_assemble(int i,struct regstat *i_regs)
3001 {
3002   printf("Need loadlr_assemble for this architecture.\n");
3003   exit(1);
3004 }
3005 #endif
3006
3007 void store_assemble(int i,struct regstat *i_regs)
3008 {
3009   int s,th,tl,map=-1;
3010   int addr,temp;
3011   int offset;
3012   int jaddr=0,jaddr2,type;
3013   int memtarget=0,c=0;
3014   int agr=AGEN1+(i&1);
3015   u_int hr,reglist=0;
3016   th=get_reg(i_regs->regmap,rs2[i]|64);
3017   tl=get_reg(i_regs->regmap,rs2[i]);
3018   s=get_reg(i_regs->regmap,rs1[i]);
3019   temp=get_reg(i_regs->regmap,agr);
3020   if(temp<0) temp=get_reg(i_regs->regmap,-1);
3021   offset=imm[i];
3022   if(s>=0) {
3023     c=(i_regs->wasconst>>s)&1;
3024     memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
3025     if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
3026   }
3027   assert(tl>=0);
3028   assert(temp>=0);
3029   for(hr=0;hr<HOST_REGS;hr++) {
3030     if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3031   }
3032   if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
3033   if(offset||s<0||c) addr=temp;
3034   else addr=s;
3035   if(!using_tlb) {
3036     if(!c) {
3037       #ifdef R29_HACK
3038       // Strmnnrmn's speed hack
3039       memtarget=1;
3040       if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
3041       #endif
3042       emit_cmpimm(addr,RAM_SIZE);
3043       #ifdef DESTRUCTIVE_SHIFT
3044       if(s==addr) emit_mov(s,temp);
3045       #endif
3046       #ifdef R29_HACK
3047       if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
3048       #endif
3049       {
3050         jaddr=(int)out;
3051         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
3052         // Hint to branch predictor that the branch is unlikely to be taken
3053         if(rs1[i]>=28)
3054           emit_jno_unlikely(0);
3055         else
3056         #endif
3057         emit_jno(0);
3058       }
3059     }
3060   }else{ // using tlb
3061     int x=0;
3062     if (opcode[i]==0x28) x=3; // SB
3063     if (opcode[i]==0x29) x=2; // SH
3064     map=get_reg(i_regs->regmap,TLREG);
3065     assert(map>=0);
3066     map=do_tlb_w(addr,temp,map,x,c,constmap[i][s]+offset);
3067     do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr);
3068   }
3069
3070   if (opcode[i]==0x28) { // SB
3071     if(!c||memtarget) {
3072       int x=0;
3073 #ifdef BIG_ENDIAN_MIPS
3074       if(!c) emit_xorimm(addr,3,temp);
3075       else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
3076 #else
3077       if(c) x=(constmap[i][s]+offset)-(constmap[i][s]+offset);
3078       else if (addr!=temp) emit_mov(addr,temp);
3079 #endif
3080       //gen_tlb_addr_w(temp,map);
3081       //emit_writebyte_indexed(tl,(int)rdram-0x80000000,temp);
3082       emit_writebyte_indexed_tlb(tl,x,temp,map,temp);
3083     }
3084     type=STOREB_STUB;
3085   }
3086   if (opcode[i]==0x29) { // SH
3087     if(!c||memtarget) {
3088       int x=0;
3089 #ifdef BIG_ENDIAN_MIPS
3090       if(!c) emit_xorimm(addr,2,temp);
3091       else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
3092 #else
3093       if(c) x=(constmap[i][s]+offset)-(constmap[i][s]+offset);
3094       else if (addr!=temp) emit_mov(addr,temp);
3095 #endif
3096       //#ifdef
3097       //emit_writehword_indexed_tlb(tl,x,temp,map,temp);
3098       //#else
3099       if(map>=0) {
3100         gen_tlb_addr_w(temp,map);
3101         emit_writehword_indexed(tl,x,temp);
3102       }else
3103         emit_writehword_indexed(tl,(int)rdram-0x80000000+x,temp);
3104     }
3105     type=STOREH_STUB;
3106   }
3107   if (opcode[i]==0x2B) { // SW
3108     if(!c||memtarget)
3109       //emit_writeword_indexed(tl,(int)rdram-0x80000000,addr);
3110       emit_writeword_indexed_tlb(tl,0,addr,map,temp);
3111     type=STOREW_STUB;
3112   }
3113   if (opcode[i]==0x3F) { // SD
3114     if(!c||memtarget) {
3115       if(rs2[i]) {
3116         assert(th>=0);
3117         //emit_writeword_indexed(th,(int)rdram-0x80000000,addr);
3118         //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,addr);
3119         emit_writedword_indexed_tlb(th,tl,0,addr,map,temp);
3120       }else{
3121         // Store zero
3122         //emit_writeword_indexed(tl,(int)rdram-0x80000000,temp);
3123         //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,temp);
3124         emit_writedword_indexed_tlb(tl,tl,0,addr,map,temp);
3125       }
3126     }
3127     type=STORED_STUB;
3128   }
3129   if(!using_tlb&&(!c||memtarget))
3130     // addr could be a temp, make sure it survives STORE*_STUB
3131     reglist|=1<<addr;
3132   if(jaddr) {
3133     add_stub(type,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3134   } else if(!memtarget) {
3135     inline_writestub(type,i,constmap[i][s]+offset,i_regs->regmap,rs2[i],ccadj[i],reglist);
3136   }
3137   if(!using_tlb) {
3138     if(!c||memtarget) {
3139       #ifdef DESTRUCTIVE_SHIFT
3140       // The x86 shift operation is 'destructive'; it overwrites the
3141       // source register, so we need to make a copy first and use that.
3142       addr=temp;
3143       #endif
3144       #if defined(HOST_IMM8)
3145       int ir=get_reg(i_regs->regmap,INVCP);
3146       assert(ir>=0);
3147       emit_cmpmem_indexedsr12_reg(ir,addr,1);
3148       #else
3149       emit_cmpmem_indexedsr12_imm((int)invalid_code,addr,1);
3150       #endif
3151       jaddr2=(int)out;
3152       emit_jne(0);
3153       add_stub(INVCODE_STUB,jaddr2,(int)out,reglist|(1<<HOST_CCREG),addr,0,0,0);
3154     }
3155   }
3156   //if(opcode[i]==0x2B || opcode[i]==0x3F)
3157   //if(opcode[i]==0x2B || opcode[i]==0x28)
3158   //if(opcode[i]==0x2B || opcode[i]==0x29)
3159   //if(opcode[i]==0x2B)
3160   /*if(opcode[i]==0x2B || opcode[i]==0x28 || opcode[i]==0x29 || opcode[i]==0x3F)
3161   {
3162     //emit_pusha();
3163     save_regs(0x100f);
3164         emit_readword((int)&last_count,ECX);
3165         #ifdef __i386__
3166         if(get_reg(i_regs->regmap,CCREG)<0)
3167           emit_loadreg(CCREG,HOST_CCREG);
3168         emit_add(HOST_CCREG,ECX,HOST_CCREG);
3169         emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3170         emit_writeword(HOST_CCREG,(int)&Count);
3171         #endif
3172         #ifdef __arm__
3173         if(get_reg(i_regs->regmap,CCREG)<0)
3174           emit_loadreg(CCREG,0);
3175         else
3176           emit_mov(HOST_CCREG,0);
3177         emit_add(0,ECX,0);
3178         emit_addimm(0,2*ccadj[i],0);
3179         emit_writeword(0,(int)&Count);
3180         #endif
3181     emit_call((int)memdebug);
3182     //emit_popa();
3183     restore_regs(0x100f);
3184   }/**/
3185 }
3186
3187 void storelr_assemble(int i,struct regstat *i_regs)
3188 {
3189   int s,th,tl;
3190   int temp;
3191   int temp2;
3192   int offset;
3193   int jaddr=0,jaddr2;
3194   int case1,case2,case3;
3195   int done0,done1,done2;
3196   int memtarget,c=0;
3197   int agr=AGEN1+(i&1);
3198   u_int hr,reglist=0;
3199   th=get_reg(i_regs->regmap,rs2[i]|64);
3200   tl=get_reg(i_regs->regmap,rs2[i]);
3201   s=get_reg(i_regs->regmap,rs1[i]);
3202   temp=get_reg(i_regs->regmap,agr);
3203   if(temp<0) temp=get_reg(i_regs->regmap,-1);
3204   offset=imm[i];
3205   if(s>=0) {
3206     c=(i_regs->isconst>>s)&1;
3207     memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
3208     if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
3209   }
3210   assert(tl>=0);
3211   for(hr=0;hr<HOST_REGS;hr++) {
3212     if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3213   }
3214   if(tl>=0) {
3215     assert(temp>=0);
3216     if(!using_tlb) {
3217       if(!c) {
3218         emit_cmpimm(s<0||offset?temp:s,RAM_SIZE);
3219         if(!offset&&s!=temp) emit_mov(s,temp);
3220         jaddr=(int)out;
3221         emit_jno(0);
3222       }
3223       else
3224       {
3225         if(!memtarget||!rs1[i]) {
3226           jaddr=(int)out;
3227           emit_jmp(0);
3228         }
3229       }
3230       if((u_int)rdram!=0x80000000) 
3231         emit_addimm_no_flags((u_int)rdram-(u_int)0x80000000,temp);
3232     }else{ // using tlb
3233       int map=get_reg(i_regs->regmap,TLREG);
3234       assert(map>=0);
3235       map=do_tlb_w(c||s<0||offset?temp:s,temp,map,0,c,constmap[i][s]+offset);
3236       if(!c&&!offset&&s>=0) emit_mov(s,temp);
3237       do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr);
3238       if(!jaddr&&!memtarget) {
3239         jaddr=(int)out;
3240         emit_jmp(0);
3241       }
3242       gen_tlb_addr_w(temp,map);
3243     }
3244
3245     if (opcode[i]==0x2C||opcode[i]==0x2D) { // SDL/SDR
3246       temp2=get_reg(i_regs->regmap,FTEMP);
3247       if(!rs2[i]) temp2=th=tl;
3248     }
3249
3250 #ifndef BIG_ENDIAN_MIPS
3251     emit_xorimm(temp,3,temp);
3252 #endif
3253     emit_testimm(temp,2);
3254     case2=(int)out;
3255     emit_jne(0);
3256     emit_testimm(temp,1);
3257     case1=(int)out;
3258     emit_jne(0);
3259     // 0
3260     if (opcode[i]==0x2A) { // SWL
3261       emit_writeword_indexed(tl,0,temp);
3262     }
3263     if (opcode[i]==0x2E) { // SWR
3264       emit_writebyte_indexed(tl,3,temp);
3265     }
3266     if (opcode[i]==0x2C) { // SDL
3267       emit_writeword_indexed(th,0,temp);
3268       if(rs2[i]) emit_mov(tl,temp2);
3269     }
3270     if (opcode[i]==0x2D) { // SDR
3271       emit_writebyte_indexed(tl,3,temp);
3272       if(rs2[i]) emit_shldimm(th,tl,24,temp2);
3273     }
3274     done0=(int)out;
3275     emit_jmp(0);
3276     // 1
3277     set_jump_target(case1,(int)out);
3278     if (opcode[i]==0x2A) { // SWL
3279       // Write 3 msb into three least significant bytes
3280       if(rs2[i]) emit_rorimm(tl,8,tl);
3281       emit_writehword_indexed(tl,-1,temp);
3282       if(rs2[i]) emit_rorimm(tl,16,tl);
3283       emit_writebyte_indexed(tl,1,temp);
3284       if(rs2[i]) emit_rorimm(tl,8,tl);
3285     }
3286     if (opcode[i]==0x2E) { // SWR
3287       // Write two lsb into two most significant bytes
3288       emit_writehword_indexed(tl,1,temp);
3289     }
3290     if (opcode[i]==0x2C) { // SDL
3291       if(rs2[i]) emit_shrdimm(tl,th,8,temp2);
3292       // Write 3 msb into three least significant bytes
3293       if(rs2[i]) emit_rorimm(th,8,th);
3294       emit_writehword_indexed(th,-1,temp);
3295       if(rs2[i]) emit_rorimm(th,16,th);
3296       emit_writebyte_indexed(th,1,temp);
3297       if(rs2[i]) emit_rorimm(th,8,th);
3298     }
3299     if (opcode[i]==0x2D) { // SDR
3300       if(rs2[i]) emit_shldimm(th,tl,16,temp2);
3301       // Write two lsb into two most significant bytes
3302       emit_writehword_indexed(tl,1,temp);
3303     }
3304     done1=(int)out;
3305     emit_jmp(0);
3306     // 2
3307     set_jump_target(case2,(int)out);
3308     emit_testimm(temp,1);
3309     case3=(int)out;
3310     emit_jne(0);
3311     if (opcode[i]==0x2A) { // SWL
3312       // Write two msb into two least significant bytes
3313       if(rs2[i]) emit_rorimm(tl,16,tl);
3314       emit_writehword_indexed(tl,-2,temp);
3315       if(rs2[i]) emit_rorimm(tl,16,tl);
3316     }
3317     if (opcode[i]==0x2E) { // SWR
3318       // Write 3 lsb into three most significant bytes
3319       emit_writebyte_indexed(tl,-1,temp);
3320       if(rs2[i]) emit_rorimm(tl,8,tl);
3321       emit_writehword_indexed(tl,0,temp);
3322       if(rs2[i]) emit_rorimm(tl,24,tl);
3323     }
3324     if (opcode[i]==0x2C) { // SDL
3325       if(rs2[i]) emit_shrdimm(tl,th,16,temp2);
3326       // Write two msb into two least significant bytes
3327       if(rs2[i]) emit_rorimm(th,16,th);
3328       emit_writehword_indexed(th,-2,temp);
3329       if(rs2[i]) emit_rorimm(th,16,th);
3330     }
3331     if (opcode[i]==0x2D) { // SDR
3332       if(rs2[i]) emit_shldimm(th,tl,8,temp2);
3333       // Write 3 lsb into three most significant bytes
3334       emit_writebyte_indexed(tl,-1,temp);
3335       if(rs2[i]) emit_rorimm(tl,8,tl);
3336       emit_writehword_indexed(tl,0,temp);
3337       if(rs2[i]) emit_rorimm(tl,24,tl);
3338     }
3339     done2=(int)out;
3340     emit_jmp(0);
3341     // 3
3342     set_jump_target(case3,(int)out);
3343     if (opcode[i]==0x2A) { // SWL
3344       // Write msb into least significant byte
3345       if(rs2[i]) emit_rorimm(tl,24,tl);
3346       emit_writebyte_indexed(tl,-3,temp);
3347       if(rs2[i]) emit_rorimm(tl,8,tl);
3348     }
3349     if (opcode[i]==0x2E) { // SWR
3350       // Write entire word
3351       emit_writeword_indexed(tl,-3,temp);
3352     }
3353     if (opcode[i]==0x2C) { // SDL
3354       if(rs2[i]) emit_shrdimm(tl,th,24,temp2);
3355       // Write msb into least significant byte
3356       if(rs2[i]) emit_rorimm(th,24,th);
3357       emit_writebyte_indexed(th,-3,temp);
3358       if(rs2[i]) emit_rorimm(th,8,th);
3359     }
3360     if (opcode[i]==0x2D) { // SDR
3361       if(rs2[i]) emit_mov(th,temp2);
3362       // Write entire word
3363       emit_writeword_indexed(tl,-3,temp);
3364     }
3365     set_jump_target(done0,(int)out);
3366     set_jump_target(done1,(int)out);
3367     set_jump_target(done2,(int)out);
3368     if (opcode[i]==0x2C) { // SDL
3369       emit_testimm(temp,4);
3370       done0=(int)out;
3371       emit_jne(0);
3372       emit_andimm(temp,~3,temp);
3373       emit_writeword_indexed(temp2,4,temp);
3374       set_jump_target(done0,(int)out);
3375     }
3376     if (opcode[i]==0x2D) { // SDR
3377       emit_testimm(temp,4);
3378       done0=(int)out;
3379       emit_jeq(0);
3380       emit_andimm(temp,~3,temp);
3381       emit_writeword_indexed(temp2,-4,temp);
3382       set_jump_target(done0,(int)out);
3383     }
3384     if(!c||!memtarget)
3385       add_stub(STORELR_STUB,jaddr,(int)out,i,(int)i_regs,temp,ccadj[i],reglist);
3386   }
3387   if(!using_tlb) {
3388     emit_addimm_no_flags((u_int)0x80000000-(u_int)rdram,temp);
3389     #if defined(HOST_IMM8)
3390     int ir=get_reg(i_regs->regmap,INVCP);
3391     assert(ir>=0);
3392     emit_cmpmem_indexedsr12_reg(ir,temp,1);
3393     #else
3394     emit_cmpmem_indexedsr12_imm((int)invalid_code,temp,1);
3395     #endif
3396     jaddr2=(int)out;
3397     emit_jne(0);
3398     add_stub(INVCODE_STUB,jaddr2,(int)out,reglist|(1<<HOST_CCREG),temp,0,0,0);
3399   }
3400   /*
3401     emit_pusha();
3402     //save_regs(0x100f);
3403         emit_readword((int)&last_count,ECX);
3404         if(get_reg(i_regs->regmap,CCREG)<0)
3405           emit_loadreg(CCREG,HOST_CCREG);
3406         emit_add(HOST_CCREG,ECX,HOST_CCREG);
3407         emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3408         emit_writeword(HOST_CCREG,(int)&Count);
3409     emit_call((int)memdebug);
3410     emit_popa();
3411     //restore_regs(0x100f);
3412   /**/
3413 }
3414
3415 void c1ls_assemble(int i,struct regstat *i_regs)
3416 {
3417 #ifndef DISABLE_COP1
3418   int s,th,tl;
3419   int temp,ar;
3420   int map=-1;
3421   int offset;
3422   int c=0;
3423   int jaddr,jaddr2=0,jaddr3,type;
3424   int agr=AGEN1+(i&1);
3425   u_int hr,reglist=0;
3426   th=get_reg(i_regs->regmap,FTEMP|64);
3427   tl=get_reg(i_regs->regmap,FTEMP);
3428   s=get_reg(i_regs->regmap,rs1[i]);
3429   temp=get_reg(i_regs->regmap,agr);
3430   if(temp<0) temp=get_reg(i_regs->regmap,-1);
3431   offset=imm[i];
3432   assert(tl>=0);
3433   assert(rs1[i]>0);
3434   assert(temp>=0);
3435   for(hr=0;hr<HOST_REGS;hr++) {
3436     if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3437   }
3438   if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
3439   if (opcode[i]==0x31||opcode[i]==0x35) // LWC1/LDC1
3440   {
3441     // Loads use a temporary register which we need to save
3442     reglist|=1<<temp;
3443   }
3444   if (opcode[i]==0x39||opcode[i]==0x3D) // SWC1/SDC1
3445     ar=temp;
3446   else // LWC1/LDC1
3447     ar=tl;
3448   //if(s<0) emit_loadreg(rs1[i],ar); //address_generation does this now
3449   //else c=(i_regs->wasconst>>s)&1;
3450   if(s>=0) c=(i_regs->wasconst>>s)&1;
3451   // Check cop1 unusable
3452   if(!cop1_usable) {
3453     signed char rs=get_reg(i_regs->regmap,CSREG);
3454     assert(rs>=0);
3455     emit_testimm(rs,0x20000000);
3456     jaddr=(int)out;
3457     emit_jeq(0);
3458     add_stub(FP_STUB,jaddr,(int)out,i,rs,(int)i_regs,is_delayslot,0);
3459     cop1_usable=1;
3460   }
3461   if (opcode[i]==0x39) { // SWC1 (get float address)
3462     emit_readword((int)&reg_cop1_simple[(source[i]>>16)&0x1f],tl);
3463   }
3464   if (opcode[i]==0x3D) { // SDC1 (get double address)
3465     emit_readword((int)&reg_cop1_double[(source[i]>>16)&0x1f],tl);
3466   }
3467   // Generate address + offset
3468   if(!using_tlb) {
3469     if(!c)
3470       emit_cmpimm(offset||c||s<0?ar:s,RAM_SIZE);
3471   }
3472   else
3473   {
3474     map=get_reg(i_regs->regmap,TLREG);
3475     assert(map>=0);
3476     if (opcode[i]==0x31||opcode[i]==0x35) { // LWC1/LDC1
3477       map=do_tlb_r(offset||c||s<0?ar:s,ar,map,0,-1,-1,c,constmap[i][s]+offset);
3478     }
3479     if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3480       map=do_tlb_w(offset||c||s<0?ar:s,ar,map,0,c,constmap[i][s]+offset);
3481     }
3482   }
3483   if (opcode[i]==0x39) { // SWC1 (read float)
3484     emit_readword_indexed(0,tl,tl);
3485   }
3486   if (opcode[i]==0x3D) { // SDC1 (read double)
3487     emit_readword_indexed(4,tl,th);
3488     emit_readword_indexed(0,tl,tl);
3489   }
3490   if (opcode[i]==0x31) { // LWC1 (get target address)
3491     emit_readword((int)&reg_cop1_simple[(source[i]>>16)&0x1f],temp);
3492   }
3493   if (opcode[i]==0x35) { // LDC1 (get target address)
3494     emit_readword((int)&reg_cop1_double[(source[i]>>16)&0x1f],temp);
3495   }
3496   if(!using_tlb) {
3497     if(!c) {
3498       jaddr2=(int)out;
3499       emit_jno(0);
3500     }
3501     else if(((signed int)(constmap[i][s]+offset))>=(signed int)0x80000000+RAM_SIZE) {
3502       jaddr2=(int)out;
3503       emit_jmp(0); // inline_readstub/inline_writestub?  Very rare case
3504     }
3505     #ifdef DESTRUCTIVE_SHIFT
3506     if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3507       if(!offset&&!c&&s>=0) emit_mov(s,ar);
3508     }
3509     #endif
3510   }else{
3511     if (opcode[i]==0x31||opcode[i]==0x35) { // LWC1/LDC1
3512       do_tlb_r_branch(map,c,constmap[i][s]+offset,&jaddr2);
3513     }
3514     if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3515       do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr2);
3516     }
3517   }
3518   if (opcode[i]==0x31) { // LWC1
3519     //if(s>=0&&!c&&!offset) emit_mov(s,tl);
3520     //gen_tlb_addr_r(ar,map);
3521     //emit_readword_indexed((int)rdram-0x80000000,tl,tl);
3522     #ifdef HOST_IMM_ADDR32
3523     if(c) emit_readword_tlb(constmap[i][s]+offset,map,tl);
3524     else
3525     #endif
3526     emit_readword_indexed_tlb(0,offset||c||s<0?tl:s,map,tl);
3527     type=LOADW_STUB;
3528   }
3529   if (opcode[i]==0x35) { // LDC1
3530     assert(th>=0);
3531     //if(s>=0&&!c&&!offset) emit_mov(s,tl);
3532     //gen_tlb_addr_r(ar,map);
3533     //emit_readword_indexed((int)rdram-0x80000000,tl,th);
3534     //emit_readword_indexed((int)rdram-0x7FFFFFFC,tl,tl);
3535     #ifdef HOST_IMM_ADDR32
3536     if(c) emit_readdword_tlb(constmap[i][s]+offset,map,th,tl);
3537     else
3538     #endif
3539     emit_readdword_indexed_tlb(0,offset||c||s<0?tl:s,map,th,tl);
3540     type=LOADD_STUB;
3541   }
3542   if (opcode[i]==0x39) { // SWC1
3543     //emit_writeword_indexed(tl,(int)rdram-0x80000000,temp);
3544     emit_writeword_indexed_tlb(tl,0,offset||c||s<0?temp:s,map,temp);
3545     type=STOREW_STUB;
3546   }
3547   if (opcode[i]==0x3D) { // SDC1
3548     assert(th>=0);
3549     //emit_writeword_indexed(th,(int)rdram-0x80000000,temp);
3550     //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,temp);
3551     emit_writedword_indexed_tlb(th,tl,0,offset||c||s<0?temp:s,map,temp);
3552     type=STORED_STUB;
3553   }
3554   if(!using_tlb) {
3555     if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3556       #ifndef DESTRUCTIVE_SHIFT
3557       temp=offset||c||s<0?ar:s;
3558       #endif
3559       #if defined(HOST_IMM8)
3560       int ir=get_reg(i_regs->regmap,INVCP);
3561       assert(ir>=0);
3562       emit_cmpmem_indexedsr12_reg(ir,temp,1);
3563       #else
3564       emit_cmpmem_indexedsr12_imm((int)invalid_code,temp,1);
3565       #endif
3566       jaddr3=(int)out;
3567       emit_jne(0);
3568       add_stub(INVCODE_STUB,jaddr3,(int)out,reglist|(1<<HOST_CCREG),temp,0,0,0);
3569     }
3570   }
3571   if(jaddr2) add_stub(type,jaddr2,(int)out,i,offset||c||s<0?ar:s,(int)i_regs,ccadj[i],reglist);
3572   if (opcode[i]==0x31) { // LWC1 (write float)
3573     emit_writeword_indexed(tl,0,temp);
3574   }
3575   if (opcode[i]==0x35) { // LDC1 (write double)
3576     emit_writeword_indexed(th,4,temp);
3577     emit_writeword_indexed(tl,0,temp);
3578   }
3579   //if(opcode[i]==0x39)
3580   /*if(opcode[i]==0x39||opcode[i]==0x31)
3581   {
3582     emit_pusha();
3583         emit_readword((int)&last_count,ECX);
3584         if(get_reg(i_regs->regmap,CCREG)<0)
3585           emit_loadreg(CCREG,HOST_CCREG);
3586         emit_add(HOST_CCREG,ECX,HOST_CCREG);
3587         emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3588         emit_writeword(HOST_CCREG,(int)&Count);
3589     emit_call((int)memdebug);
3590     emit_popa();
3591   }/**/
3592 #else
3593   cop1_unusable(i, i_regs);
3594 #endif
3595 }
3596
3597 void c2ls_assemble(int i,struct regstat *i_regs)
3598 {
3599   int s,tl;
3600   int ar;
3601   int offset;
3602   int memtarget=0,c=0;
3603   int jaddr,jaddr2=0,jaddr3,type;
3604   int agr=AGEN1+(i&1);
3605   u_int hr,reglist=0;
3606   u_int copr=(source[i]>>16)&0x1f;
3607   s=get_reg(i_regs->regmap,rs1[i]);
3608   tl=get_reg(i_regs->regmap,FTEMP);
3609   offset=imm[i];
3610   assert(rs1[i]>0);
3611   assert(tl>=0);
3612   assert(!using_tlb);
3613
3614   for(hr=0;hr<HOST_REGS;hr++) {
3615     if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3616   }
3617   if(i_regs->regmap[HOST_CCREG]==CCREG)
3618     reglist&=~(1<<HOST_CCREG);
3619
3620   // get the address
3621   if (opcode[i]==0x3a) { // SWC2
3622     ar=get_reg(i_regs->regmap,agr);
3623     if(ar<0) ar=get_reg(i_regs->regmap,-1);
3624     reglist|=1<<ar;
3625   } else { // LWC2
3626     ar=tl;
3627   }
3628   if(s>=0) c=(i_regs->wasconst>>s)&1;
3629   memtarget=c&&(((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE);
3630   if (!offset&&!c&&s>=0) ar=s;
3631   assert(ar>=0);
3632
3633   if (opcode[i]==0x3a) { // SWC2
3634     cop2_get_dreg(copr,tl,HOST_TEMPREG);
3635     type=STOREW_STUB;
3636   }
3637   else
3638     type=LOADW_STUB;
3639
3640   if(c&&!memtarget) {
3641     jaddr2=(int)out;
3642     emit_jmp(0); // inline_readstub/inline_writestub?
3643   }
3644   else {
3645     if(!c) {
3646       emit_cmpimm(offset||c||s<0?ar:s,RAM_SIZE);
3647       jaddr2=(int)out;
3648       emit_jno(0);
3649     }
3650     if (opcode[i]==0x32) { // LWC2
3651       #ifdef HOST_IMM_ADDR32
3652       if(c) emit_readword_tlb(constmap[i][s]+offset,-1,tl);
3653       else
3654       #endif
3655       emit_readword_indexed(0,ar,tl);
3656     }
3657     if (opcode[i]==0x3a) { // SWC2
3658       #ifdef DESTRUCTIVE_SHIFT
3659       if(!offset&&!c&&s>=0) emit_mov(s,ar);
3660       #endif
3661       emit_writeword_indexed(tl,0,ar);
3662     }
3663   }
3664   if(jaddr2)
3665     add_stub(type,jaddr2,(int)out,i,ar,(int)i_regs,ccadj[i],reglist);
3666   if (opcode[i]==0x3a) { // SWC2
3667 #if defined(HOST_IMM8)
3668     int ir=get_reg(i_regs->regmap,INVCP);
3669     assert(ir>=0);
3670     emit_cmpmem_indexedsr12_reg(ir,ar,1);
3671 #else
3672     emit_cmpmem_indexedsr12_imm((int)invalid_code,ar,1);
3673 #endif
3674     jaddr3=(int)out;
3675     emit_jne(0);
3676     add_stub(INVCODE_STUB,jaddr3,(int)out,reglist|(1<<HOST_CCREG),ar,0,0,0);
3677   }
3678   if (opcode[i]==0x32) { // LWC2
3679     cop2_put_dreg(copr,tl,HOST_TEMPREG);
3680   }
3681 }
3682
3683 #ifndef multdiv_assemble
3684 void multdiv_assemble(int i,struct regstat *i_regs)
3685 {
3686   printf("Need multdiv_assemble for this architecture.\n");
3687   exit(1);
3688 }
3689 #endif
3690
3691 void mov_assemble(int i,struct regstat *i_regs)
3692 {
3693   //if(opcode2[i]==0x10||opcode2[i]==0x12) { // MFHI/MFLO
3694   //if(opcode2[i]==0x11||opcode2[i]==0x13) { // MTHI/MTLO
3695   //assert(rt1[i]>0);
3696   if(rt1[i]) {
3697     signed char sh,sl,th,tl;
3698     th=get_reg(i_regs->regmap,rt1[i]|64);
3699     tl=get_reg(i_regs->regmap,rt1[i]);
3700     //assert(tl>=0);
3701     if(tl>=0) {
3702       sh=get_reg(i_regs->regmap,rs1[i]|64);
3703       sl=get_reg(i_regs->regmap,rs1[i]);
3704       if(sl>=0) emit_mov(sl,tl);
3705       else emit_loadreg(rs1[i],tl);
3706       if(th>=0) {
3707         if(sh>=0) emit_mov(sh,th);
3708         else emit_loadreg(rs1[i]|64,th);
3709       }
3710     }
3711   }
3712 }
3713
3714 #ifndef fconv_assemble
3715 void fconv_assemble(int i,struct regstat *i_regs)
3716 {
3717   printf("Need fconv_assemble for this architecture.\n");
3718   exit(1);
3719 }
3720 #endif
3721
3722 #if 0
3723 void float_assemble(int i,struct regstat *i_regs)
3724 {
3725   printf("Need float_assemble for this architecture.\n");
3726   exit(1);
3727 }
3728 #endif
3729
3730 void syscall_assemble(int i,struct regstat *i_regs)
3731 {
3732   signed char ccreg=get_reg(i_regs->regmap,CCREG);
3733   assert(ccreg==HOST_CCREG);
3734   assert(!is_delayslot);
3735   emit_movimm(start+i*4,EAX); // Get PC
3736   emit_addimm(HOST_CCREG,CLOCK_DIVIDER*ccadj[i],HOST_CCREG); // CHECK: is this right?  There should probably be an extra cycle...
3737   emit_jmp((int)jump_syscall_hle); // XXX
3738 }
3739
3740 void hlecall_assemble(int i,struct regstat *i_regs)
3741 {
3742   signed char ccreg=get_reg(i_regs->regmap,CCREG);
3743   assert(ccreg==HOST_CCREG);
3744   assert(!is_delayslot);
3745   emit_movimm(start+i*4+4,0); // Get PC
3746   emit_movimm((int)psxHLEt[source[i]&7],1);
3747   emit_addimm(HOST_CCREG,CLOCK_DIVIDER*ccadj[i],HOST_CCREG); // XXX
3748   emit_jmp((int)jump_hlecall);
3749 }
3750
3751 void ds_assemble(int i,struct regstat *i_regs)
3752 {
3753   is_delayslot=1;
3754   switch(itype[i]) {
3755     case ALU:
3756       alu_assemble(i,i_regs);break;
3757     case IMM16:
3758       imm16_assemble(i,i_regs);break;
3759     case SHIFT:
3760       shift_assemble(i,i_regs);break;
3761     case SHIFTIMM:
3762       shiftimm_assemble(i,i_regs);break;
3763     case LOAD:
3764       load_assemble(i,i_regs);break;
3765     case LOADLR:
3766       loadlr_assemble(i,i_regs);break;
3767     case STORE:
3768       store_assemble(i,i_regs);break;
3769     case STORELR:
3770       storelr_assemble(i,i_regs);break;
3771     case COP0:
3772       cop0_assemble(i,i_regs);break;
3773     case COP1:
3774       cop1_assemble(i,i_regs);break;
3775     case C1LS:
3776       c1ls_assemble(i,i_regs);break;
3777     case COP2:
3778       cop2_assemble(i,i_regs);break;
3779     case C2LS:
3780       c2ls_assemble(i,i_regs);break;
3781     case C2OP:
3782       c2op_assemble(i,i_regs);break;
3783     case FCONV:
3784       fconv_assemble(i,i_regs);break;
3785     case FLOAT:
3786       float_assemble(i,i_regs);break;
3787     case FCOMP:
3788       fcomp_assemble(i,i_regs);break;
3789     case MULTDIV:
3790       multdiv_assemble(i,i_regs);break;
3791     case MOV:
3792       mov_assemble(i,i_regs);break;
3793     case SYSCALL:
3794     case HLECALL:
3795     case SPAN:
3796     case UJUMP:
3797     case RJUMP:
3798     case CJUMP:
3799     case SJUMP:
3800     case FJUMP:
3801       printf("Jump in the delay slot.  This is probably a bug.\n");
3802   }
3803   is_delayslot=0;
3804 }
3805
3806 // Is the branch target a valid internal jump?
3807 int internal_branch(uint64_t i_is32,int addr)
3808 {
3809   if(addr&1) return 0; // Indirect (register) jump
3810   if(addr>=start && addr<start+slen*4-4)
3811   {
3812     int t=(addr-start)>>2;
3813     // Delay slots are not valid branch targets
3814     //if(t>0&&(itype[t-1]==RJUMP||itype[t-1]==UJUMP||itype[t-1]==CJUMP||itype[t-1]==SJUMP||itype[t-1]==FJUMP)) return 0;
3815     // 64 -> 32 bit transition requires a recompile
3816     /*if(is32[t]&~unneeded_reg_upper[t]&~i_is32)
3817     {
3818       if(requires_32bit[t]&~i_is32) printf("optimizable: no\n");
3819       else printf("optimizable: yes\n");
3820     }*/
3821     //if(is32[t]&~unneeded_reg_upper[t]&~i_is32) return 0;
3822     if(requires_32bit[t]&~i_is32) return 0;
3823     else return 1;
3824   }
3825   return 0;
3826 }
3827
3828 #ifndef wb_invalidate
3829 void wb_invalidate(signed char pre[],signed char entry[],uint64_t dirty,uint64_t is32,
3830   uint64_t u,uint64_t uu)
3831 {
3832   int hr;
3833   for(hr=0;hr<HOST_REGS;hr++) {
3834     if(hr!=EXCLUDE_REG) {
3835       if(pre[hr]!=entry[hr]) {
3836         if(pre[hr]>=0) {
3837           if((dirty>>hr)&1) {
3838             if(get_reg(entry,pre[hr])<0) {
3839               if(pre[hr]<64) {
3840                 if(!((u>>pre[hr])&1)) {
3841                   emit_storereg(pre[hr],hr);
3842                   if( ((is32>>pre[hr])&1) && !((uu>>pre[hr])&1) ) {
3843                     emit_sarimm(hr,31,hr);
3844                     emit_storereg(pre[hr]|64,hr);
3845                   }
3846                 }
3847               }else{
3848                 if(!((uu>>(pre[hr]&63))&1) && !((is32>>(pre[hr]&63))&1)) {
3849                   emit_storereg(pre[hr],hr);
3850                 }
3851               }
3852             }
3853           }
3854         }
3855       }
3856     }
3857   }
3858   // Move from one register to another (no writeback)
3859   for(hr=0;hr<HOST_REGS;hr++) {
3860     if(hr!=EXCLUDE_REG) {
3861       if(pre[hr]!=entry[hr]) {
3862         if(pre[hr]>=0&&(pre[hr]&63)<TEMPREG) {
3863           int nr;
3864           if((nr=get_reg(entry,pre[hr]))>=0) {
3865             emit_mov(hr,nr);
3866           }
3867         }
3868       }
3869     }
3870   }
3871 }
3872 #endif
3873
3874 // Load the specified registers
3875 // This only loads the registers given as arguments because
3876 // we don't want to load things that will be overwritten
3877 void load_regs(signed char entry[],signed char regmap[],int is32,int rs1,int rs2)
3878 {
3879   int hr;
3880   // Load 32-bit regs
3881   for(hr=0;hr<HOST_REGS;hr++) {
3882     if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
3883       if(entry[hr]!=regmap[hr]) {
3884         if(regmap[hr]==rs1||regmap[hr]==rs2)
3885         {
3886           if(regmap[hr]==0) {
3887             emit_zeroreg(hr);
3888           }
3889           else
3890           {
3891             emit_loadreg(regmap[hr],hr);
3892           }
3893         }
3894       }
3895     }
3896   }
3897   //Load 64-bit regs
3898   for(hr=0;hr<HOST_REGS;hr++) {
3899     if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
3900       if(entry[hr]!=regmap[hr]) {
3901         if(regmap[hr]-64==rs1||regmap[hr]-64==rs2)
3902         {
3903           assert(regmap[hr]!=64);
3904           if((is32>>(regmap[hr]&63))&1) {
3905             int lr=get_reg(regmap,regmap[hr]-64);
3906             if(lr>=0)
3907               emit_sarimm(lr,31,hr);
3908             else
3909               emit_loadreg(regmap[hr],hr);
3910           }
3911           else
3912           {
3913             emit_loadreg(regmap[hr],hr);
3914           }
3915         }
3916       }
3917     }
3918   }
3919 }
3920
3921 // Load registers prior to the start of a loop
3922 // so that they are not loaded within the loop
3923 static void loop_preload(signed char pre[],signed char entry[])
3924 {
3925   int hr;
3926   for(hr=0;hr<HOST_REGS;hr++) {
3927     if(hr!=EXCLUDE_REG) {
3928       if(pre[hr]!=entry[hr]) {
3929         if(entry[hr]>=0) {
3930           if(get_reg(pre,entry[hr])<0) {
3931             assem_debug("loop preload:\n");
3932             //printf("loop preload: %d\n",hr);
3933             if(entry[hr]==0) {
3934               emit_zeroreg(hr);
3935             }
3936             else if(entry[hr]<TEMPREG)
3937             {
3938               emit_loadreg(entry[hr],hr);
3939             }
3940             else if(entry[hr]-64<TEMPREG)
3941             {
3942               emit_loadreg(entry[hr],hr);
3943             }
3944           }
3945         }
3946       }
3947     }
3948   }
3949 }
3950
3951 // Generate address for load/store instruction
3952 // goes to AGEN for writes, FTEMP for LOADLR and cop1/2 loads
3953 void address_generation(int i,struct regstat *i_regs,signed char entry[])
3954 {
3955   if(itype[i]==LOAD||itype[i]==LOADLR||itype[i]==STORE||itype[i]==STORELR||itype[i]==C1LS||itype[i]==C2LS) {
3956     int ra;
3957     int agr=AGEN1+(i&1);
3958     int mgr=MGEN1+(i&1);
3959     if(itype[i]==LOAD) {
3960       ra=get_reg(i_regs->regmap,rt1[i]);
3961       //if(rt1[i]) assert(ra>=0);
3962     }
3963     if(itype[i]==LOADLR) {
3964       ra=get_reg(i_regs->regmap,FTEMP);
3965     }
3966     if(itype[i]==STORE||itype[i]==STORELR) {
3967       ra=get_reg(i_regs->regmap,agr);
3968       if(ra<0) ra=get_reg(i_regs->regmap,-1);
3969     }
3970     if(itype[i]==C1LS||itype[i]==C2LS) {
3971       if ((opcode[i]&0x3b)==0x31||(opcode[i]&0x3b)==0x32) // LWC1/LDC1/LWC2/LDC2
3972         ra=get_reg(i_regs->regmap,FTEMP);
3973       else { // SWC1/SDC1/SWC2/SDC2
3974         ra=get_reg(i_regs->regmap,agr);
3975         if(ra<0) ra=get_reg(i_regs->regmap,-1);
3976       }
3977     }
3978     int rs=get_reg(i_regs->regmap,rs1[i]);
3979     int rm=get_reg(i_regs->regmap,TLREG);
3980     if(ra>=0) {
3981       int offset=imm[i];
3982       int c=(i_regs->wasconst>>rs)&1;
3983       if(rs1[i]==0) {
3984         // Using r0 as a base address
3985         /*if(rm>=0) {
3986           if(!entry||entry[rm]!=mgr) {
3987             generate_map_const(offset,rm);
3988           } // else did it in the previous cycle
3989         }*/
3990         if(!entry||entry[ra]!=agr) {
3991           if (opcode[i]==0x22||opcode[i]==0x26) {
3992             emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
3993           }else if (opcode[i]==0x1a||opcode[i]==0x1b) {
3994             emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
3995           }else{
3996             emit_movimm(offset,ra);
3997           }
3998         } // else did it in the previous cycle
3999       }
4000       else if(rs<0) {
4001         if(!entry||entry[ra]!=rs1[i])
4002           emit_loadreg(rs1[i],ra);
4003         //if(!entry||entry[ra]!=rs1[i])
4004         //  printf("poor load scheduling!\n");
4005       }
4006       else if(c) {
4007         if(rm>=0) {
4008           if(!entry||entry[rm]!=mgr) {
4009             if(itype[i]==STORE||itype[i]==STORELR||(opcode[i]&0x3b)==0x39||(opcode[i]&0x3b)==0x3a) {
4010               // Stores to memory go thru the mapper to detect self-modifying
4011               // code, loads don't.
4012               if((unsigned int)(constmap[i][rs]+offset)>=0xC0000000 ||
4013                  (unsigned int)(constmap[i][rs]+offset)<0x80000000+RAM_SIZE )
4014                 generate_map_const(constmap[i][rs]+offset,rm);
4015             }else{
4016               if((signed int)(constmap[i][rs]+offset)>=(signed int)0xC0000000)
4017                 generate_map_const(constmap[i][rs]+offset,rm);
4018             }
4019           }
4020         }
4021         if(rs1[i]!=rt1[i]||itype[i]!=LOAD) {
4022           if(!entry||entry[ra]!=agr) {
4023             if (opcode[i]==0x22||opcode[i]==0x26) {
4024               emit_movimm((constmap[i][rs]+offset)&0xFFFFFFFC,ra); // LWL/LWR
4025             }else if (opcode[i]==0x1a||opcode[i]==0x1b) {
4026               emit_movimm((constmap[i][rs]+offset)&0xFFFFFFF8,ra); // LDL/LDR
4027             }else{
4028               #ifdef HOST_IMM_ADDR32
4029               if((itype[i]!=LOAD&&(opcode[i]&0x3b)!=0x31&&(opcode[i]&0x3b)!=0x32) || // LWC1/LDC1/LWC2/LDC2
4030                  (using_tlb&&((signed int)constmap[i][rs]+offset)>=(signed int)0xC0000000))
4031               #endif
4032               emit_movimm(constmap[i][rs]+offset,ra);
4033             }
4034           } // else did it in the previous cycle
4035         } // else load_consts already did it
4036       }
4037       if(offset&&!c&&rs1[i]) {
4038         if(rs>=0) {
4039           emit_addimm(rs,offset,ra);
4040         }else{
4041           emit_addimm(ra,offset,ra);
4042         }
4043       }
4044     }
4045   }
4046   // Preload constants for next instruction
4047   if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS||itype[i+1]==C2LS) {
4048     int agr,ra;
4049     #ifndef HOST_IMM_ADDR32
4050     // Mapper entry
4051     agr=MGEN1+((i+1)&1);
4052     ra=get_reg(i_regs->regmap,agr);
4053     if(ra>=0) {
4054       int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
4055       int offset=imm[i+1];
4056       int c=(regs[i+1].wasconst>>rs)&1;
4057       if(c) {
4058         if(itype[i+1]==STORE||itype[i+1]==STORELR
4059            ||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1, SWC2/SDC2
4060           // Stores to memory go thru the mapper to detect self-modifying
4061           // code, loads don't.
4062           if((unsigned int)(constmap[i+1][rs]+offset)>=0xC0000000 ||
4063              (unsigned int)(constmap[i+1][rs]+offset)<0x80000000+RAM_SIZE )
4064             generate_map_const(constmap[i+1][rs]+offset,ra);
4065         }else{
4066           if((signed int)(constmap[i+1][rs]+offset)>=(signed int)0xC0000000)
4067             generate_map_const(constmap[i+1][rs]+offset,ra);
4068         }
4069       }
4070       /*else if(rs1[i]==0) {
4071         generate_map_const(offset,ra);
4072       }*/
4073     }
4074     #endif
4075     // Actual address
4076     agr=AGEN1+((i+1)&1);
4077     ra=get_reg(i_regs->regmap,agr);
4078     if(ra>=0) {
4079       int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
4080       int offset=imm[i+1];
4081       int c=(regs[i+1].wasconst>>rs)&1;
4082       if(c&&(rs1[i+1]!=rt1[i+1]||itype[i+1]!=LOAD)) {
4083         if (opcode[i+1]==0x22||opcode[i+1]==0x26) {
4084           emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFFC,ra); // LWL/LWR
4085         }else if (opcode[i+1]==0x1a||opcode[i+1]==0x1b) {
4086           emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFF8,ra); // LDL/LDR
4087         }else{
4088           #ifdef HOST_IMM_ADDR32
4089           if((itype[i+1]!=LOAD&&(opcode[i+1]&0x3b)!=0x31&&(opcode[i+1]&0x3b)!=0x32) || // LWC1/LDC1/LWC2/LDC2
4090              (using_tlb&&((signed int)constmap[i+1][rs]+offset)>=(signed int)0xC0000000))
4091           #endif
4092           emit_movimm(constmap[i+1][rs]+offset,ra);
4093         }
4094       }
4095       else if(rs1[i+1]==0) {
4096         // Using r0 as a base address
4097         if (opcode[i+1]==0x22||opcode[i+1]==0x26) {
4098           emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
4099         }else if (opcode[i+1]==0x1a||opcode[i+1]==0x1b) {
4100           emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
4101         }else{
4102           emit_movimm(offset,ra);
4103         }
4104       }
4105     }
4106   }
4107 }
4108
4109 int get_final_value(int hr, int i, int *value)
4110 {
4111   int reg=regs[i].regmap[hr];
4112   while(i<slen-1) {
4113     if(regs[i+1].regmap[hr]!=reg) break;
4114     if(!((regs[i+1].isconst>>hr)&1)) break;
4115     if(bt[i+1]) break;
4116     i++;
4117   }
4118   if(i<slen-1) {
4119     if(itype[i]==UJUMP||itype[i]==RJUMP||itype[i]==CJUMP||itype[i]==SJUMP) {
4120       *value=constmap[i][hr];
4121       return 1;
4122     }
4123     if(!bt[i+1]) {
4124       if(itype[i+1]==UJUMP||itype[i+1]==RJUMP||itype[i+1]==CJUMP||itype[i+1]==SJUMP) {
4125         // Load in delay slot, out-of-order execution
4126         if(itype[i+2]==LOAD&&rs1[i+2]==reg&&rt1[i+2]==reg&&((regs[i+1].wasconst>>hr)&1))
4127         {
4128           #ifdef HOST_IMM_ADDR32
4129           if(!using_tlb||((signed int)constmap[i][hr]+imm[i+2])<(signed int)0xC0000000) return 0;
4130           #endif
4131           // Precompute load address
4132           *value=constmap[i][hr]+imm[i+2];
4133           return 1;
4134         }
4135       }
4136       if(itype[i+1]==LOAD&&rs1[i+1]==reg&&rt1[i+1]==reg)
4137       {
4138         #ifdef HOST_IMM_ADDR32
4139         if(!using_tlb||((signed int)constmap[i][hr]+imm[i+1])<(signed int)0xC0000000) return 0;
4140         #endif
4141         // Precompute load address
4142         *value=constmap[i][hr]+imm[i+1];
4143         //printf("c=%x imm=%x\n",(int)constmap[i][hr],imm[i+1]);
4144         return 1;
4145       }
4146     }
4147   }
4148   *value=constmap[i][hr];
4149   //printf("c=%x\n",(int)constmap[i][hr]);
4150   if(i==slen-1) return 1;
4151   if(reg<64) {
4152     return !((unneeded_reg[i+1]>>reg)&1);
4153   }else{
4154     return !((unneeded_reg_upper[i+1]>>reg)&1);
4155   }
4156 }
4157
4158 // Load registers with known constants
4159 void load_consts(signed char pre[],signed char regmap[],int is32,int i)
4160 {
4161   int hr;
4162   // Load 32-bit regs
4163   for(hr=0;hr<HOST_REGS;hr++) {
4164     if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4165       //if(entry[hr]!=regmap[hr]) {
4166       if(i==0||!((regs[i-1].isconst>>hr)&1)||pre[hr]!=regmap[hr]||bt[i]) {
4167         if(((regs[i].isconst>>hr)&1)&&regmap[hr]<64&&regmap[hr]>0) {
4168           int value;
4169           if(get_final_value(hr,i,&value)) {
4170             if(value==0) {
4171               emit_zeroreg(hr);
4172             }
4173             else {
4174               emit_movimm(value,hr);
4175             }
4176           }
4177         }
4178       }
4179     }
4180   }
4181   // Load 64-bit regs
4182   for(hr=0;hr<HOST_REGS;hr++) {
4183     if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4184       //if(entry[hr]!=regmap[hr]) {
4185       if(i==0||!((regs[i-1].isconst>>hr)&1)||pre[hr]!=regmap[hr]||bt[i]) {
4186         if(((regs[i].isconst>>hr)&1)&&regmap[hr]>64) {
4187           if((is32>>(regmap[hr]&63))&1) {
4188             int lr=get_reg(regmap,regmap[hr]-64);
4189             assert(lr>=0);
4190             emit_sarimm(lr,31,hr);
4191           }
4192           else
4193           {
4194             int value;
4195             if(get_final_value(hr,i,&value)) {
4196               if(value==0) {
4197                 emit_zeroreg(hr);
4198               }
4199               else {
4200                 emit_movimm(value,hr);
4201               }
4202             }
4203           }
4204         }
4205       }
4206     }
4207   }
4208 }
4209 void load_all_consts(signed char regmap[],int is32,u_int dirty,int i)
4210 {
4211   int hr;
4212   // Load 32-bit regs
4213   for(hr=0;hr<HOST_REGS;hr++) {
4214     if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((dirty>>hr)&1)) {
4215       if(((regs[i].isconst>>hr)&1)&&regmap[hr]<64&&regmap[hr]>0) {
4216         int value=constmap[i][hr];
4217         if(value==0) {
4218           emit_zeroreg(hr);
4219         }
4220         else {
4221           emit_movimm(value,hr);
4222         }
4223       }
4224     }
4225   }
4226   // Load 64-bit regs
4227   for(hr=0;hr<HOST_REGS;hr++) {
4228     if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((dirty>>hr)&1)) {
4229       if(((regs[i].isconst>>hr)&1)&&regmap[hr]>64) {
4230         if((is32>>(regmap[hr]&63))&1) {
4231           int lr=get_reg(regmap,regmap[hr]-64);
4232           assert(lr>=0);
4233           emit_sarimm(lr,31,hr);
4234         }
4235         else
4236         {
4237           int value=constmap[i][hr];
4238           if(value==0) {
4239             emit_zeroreg(hr);
4240           }
4241           else {
4242             emit_movimm(value,hr);
4243           }
4244         }
4245       }
4246     }
4247   }
4248 }
4249
4250 // Write out all dirty registers (except cycle count)
4251 void wb_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty)
4252 {
4253   int hr;
4254   for(hr=0;hr<HOST_REGS;hr++) {
4255     if(hr!=EXCLUDE_REG) {
4256       if(i_regmap[hr]>0) {
4257         if(i_regmap[hr]!=CCREG) {
4258           if((i_dirty>>hr)&1) {
4259             if(i_regmap[hr]<64) {
4260               emit_storereg(i_regmap[hr],hr);
4261 #ifndef FORCE32
4262               if( ((i_is32>>i_regmap[hr])&1) ) {
4263                 #ifdef DESTRUCTIVE_WRITEBACK
4264                 emit_sarimm(hr,31,hr);
4265                 emit_storereg(i_regmap[hr]|64,hr);
4266                 #else
4267                 emit_sarimm(hr,31,HOST_TEMPREG);
4268                 emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4269                 #endif
4270               }
4271 #endif
4272             }else{
4273               if( !((i_is32>>(i_regmap[hr]&63))&1) ) {
4274                 emit_storereg(i_regmap[hr],hr);
4275               }
4276             }
4277           }
4278         }
4279       }
4280     }
4281   }
4282 }
4283 // Write out dirty registers that we need to reload (pair with load_needed_regs)
4284 // This writes the registers not written by store_regs_bt
4285 void wb_needed_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4286 {
4287   int hr;
4288   int t=(addr-start)>>2;
4289   for(hr=0;hr<HOST_REGS;hr++) {
4290     if(hr!=EXCLUDE_REG) {
4291       if(i_regmap[hr]>0) {
4292         if(i_regmap[hr]!=CCREG) {
4293           if(i_regmap[hr]==regs[t].regmap_entry[hr] && ((regs[t].dirty>>hr)&1) && !(((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4294             if((i_dirty>>hr)&1) {
4295               if(i_regmap[hr]<64) {
4296                 emit_storereg(i_regmap[hr],hr);
4297 #ifndef FORCE32
4298                 if( ((i_is32>>i_regmap[hr])&1) ) {
4299                   #ifdef DESTRUCTIVE_WRITEBACK
4300                   emit_sarimm(hr,31,hr);
4301                   emit_storereg(i_regmap[hr]|64,hr);
4302                   #else
4303                   emit_sarimm(hr,31,HOST_TEMPREG);
4304                   emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4305                   #endif
4306                 }
4307 #endif
4308               }else{
4309                 if( !((i_is32>>(i_regmap[hr]&63))&1) ) {
4310                   emit_storereg(i_regmap[hr],hr);
4311                 }
4312               }
4313             }
4314           }
4315         }
4316       }
4317     }
4318   }
4319 }
4320
4321 // Load all registers (except cycle count)
4322 void load_all_regs(signed char i_regmap[])
4323 {
4324   int hr;
4325   for(hr=0;hr<HOST_REGS;hr++) {
4326     if(hr!=EXCLUDE_REG) {
4327       if(i_regmap[hr]==0) {
4328         emit_zeroreg(hr);
4329       }
4330       else
4331       if(i_regmap[hr]>0 && i_regmap[hr]!=CCREG)
4332       {
4333         emit_loadreg(i_regmap[hr],hr);
4334       }
4335     }
4336   }
4337 }
4338
4339 // Load all current registers also needed by next instruction
4340 void load_needed_regs(signed char i_regmap[],signed char next_regmap[])
4341 {
4342   int hr;
4343   for(hr=0;hr<HOST_REGS;hr++) {
4344     if(hr!=EXCLUDE_REG) {
4345       if(get_reg(next_regmap,i_regmap[hr])>=0) {
4346         if(i_regmap[hr]==0) {
4347           emit_zeroreg(hr);
4348         }
4349         else
4350         if(i_regmap[hr]>0 && i_regmap[hr]!=CCREG)
4351         {
4352           emit_loadreg(i_regmap[hr],hr);
4353         }
4354       }
4355     }
4356   }
4357 }
4358
4359 // Load all regs, storing cycle count if necessary
4360 void load_regs_entry(int t)
4361 {
4362   int hr;
4363   if(is_ds[t]) emit_addimm(HOST_CCREG,CLOCK_DIVIDER,HOST_CCREG);
4364   else if(ccadj[t]) emit_addimm(HOST_CCREG,-ccadj[t]*CLOCK_DIVIDER,HOST_CCREG);
4365   if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
4366     emit_storereg(CCREG,HOST_CCREG);
4367   }
4368   // Load 32-bit regs
4369   for(hr=0;hr<HOST_REGS;hr++) {
4370     if(regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<64) {
4371       if(regs[t].regmap_entry[hr]==0) {
4372         emit_zeroreg(hr);
4373       }
4374       else if(regs[t].regmap_entry[hr]!=CCREG)
4375       {
4376         emit_loadreg(regs[t].regmap_entry[hr],hr);
4377       }
4378     }
4379   }
4380   // Load 64-bit regs
4381   for(hr=0;hr<HOST_REGS;hr++) {
4382     if(regs[t].regmap_entry[hr]>=64) {
4383       assert(regs[t].regmap_entry[hr]!=64);
4384       if((regs[t].was32>>(regs[t].regmap_entry[hr]&63))&1) {
4385         int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4386         if(lr<0) {
4387           emit_loadreg(regs[t].regmap_entry[hr],hr);
4388         }
4389         else
4390         {
4391           emit_sarimm(lr,31,hr);
4392         }
4393       }
4394       else
4395       {
4396         emit_loadreg(regs[t].regmap_entry[hr],hr);
4397       }
4398     }
4399   }
4400 }
4401
4402 // Store dirty registers prior to branch
4403 void store_regs_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4404 {
4405   if(internal_branch(i_is32,addr))
4406   {
4407     int t=(addr-start)>>2;
4408     int hr;
4409     for(hr=0;hr<HOST_REGS;hr++) {
4410       if(hr!=EXCLUDE_REG) {
4411         if(i_regmap[hr]>0 && i_regmap[hr]!=CCREG) {
4412           if(i_regmap[hr]!=regs[t].regmap_entry[hr] || !((regs[t].dirty>>hr)&1) || (((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4413             if((i_dirty>>hr)&1) {
4414               if(i_regmap[hr]<64) {
4415                 if(!((unneeded_reg[t]>>i_regmap[hr])&1)) {
4416                   emit_storereg(i_regmap[hr],hr);
4417                   if( ((i_is32>>i_regmap[hr])&1) && !((unneeded_reg_upper[t]>>i_regmap[hr])&1) ) {
4418                     #ifdef DESTRUCTIVE_WRITEBACK
4419                     emit_sarimm(hr,31,hr);
4420                     emit_storereg(i_regmap[hr]|64,hr);
4421                     #else
4422                     emit_sarimm(hr,31,HOST_TEMPREG);
4423                     emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4424                     #endif
4425                   }
4426                 }
4427               }else{
4428                 if( !((i_is32>>(i_regmap[hr]&63))&1) && !((unneeded_reg_upper[t]>>(i_regmap[hr]&63))&1) ) {
4429                   emit_storereg(i_regmap[hr],hr);
4430                 }
4431               }
4432             }
4433           }
4434         }
4435       }
4436     }
4437   }
4438   else
4439   {
4440     // Branch out of this block, write out all dirty regs
4441     wb_dirtys(i_regmap,i_is32,i_dirty);
4442   }
4443 }
4444
4445 // Load all needed registers for branch target
4446 void load_regs_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4447 {
4448   //if(addr>=start && addr<(start+slen*4))
4449   if(internal_branch(i_is32,addr))
4450   {
4451     int t=(addr-start)>>2;
4452     int hr;
4453     // Store the cycle count before loading something else
4454     if(i_regmap[HOST_CCREG]!=CCREG) {
4455       assert(i_regmap[HOST_CCREG]==-1);
4456     }
4457     if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
4458       emit_storereg(CCREG,HOST_CCREG);
4459     }
4460     // Load 32-bit regs
4461     for(hr=0;hr<HOST_REGS;hr++) {
4462       if(hr!=EXCLUDE_REG&&regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<64) {
4463         #ifdef DESTRUCTIVE_WRITEBACK
4464         if(i_regmap[hr]!=regs[t].regmap_entry[hr] || ( !((regs[t].dirty>>hr)&1) && ((i_dirty>>hr)&1) && (((i_is32&~unneeded_reg_upper[t])>>i_regmap[hr])&1) ) || (((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4465         #else
4466         if(i_regmap[hr]!=regs[t].regmap_entry[hr] ) {
4467         #endif
4468           if(regs[t].regmap_entry[hr]==0) {
4469             emit_zeroreg(hr);
4470           }
4471           else if(regs[t].regmap_entry[hr]!=CCREG)
4472           {
4473             emit_loadreg(regs[t].regmap_entry[hr],hr);
4474           }
4475         }
4476       }
4477     }
4478     //Load 64-bit regs
4479     for(hr=0;hr<HOST_REGS;hr++) {
4480       if(hr!=EXCLUDE_REG&&regs[t].regmap_entry[hr]>=64) {
4481         if(i_regmap[hr]!=regs[t].regmap_entry[hr]) {
4482           assert(regs[t].regmap_entry[hr]!=64);
4483           if((i_is32>>(regs[t].regmap_entry[hr]&63))&1) {
4484             int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4485             if(lr<0) {
4486               emit_loadreg(regs[t].regmap_entry[hr],hr);
4487             }
4488             else
4489             {
4490               emit_sarimm(lr,31,hr);
4491             }
4492           }
4493           else
4494           {
4495             emit_loadreg(regs[t].regmap_entry[hr],hr);
4496           }
4497         }
4498         else if((i_is32>>(regs[t].regmap_entry[hr]&63))&1) {
4499           int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4500           assert(lr>=0);
4501           emit_sarimm(lr,31,hr);
4502         }
4503       }
4504     }
4505   }
4506 }
4507
4508 int match_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4509 {
4510   if(addr>=start && addr<start+slen*4-4)
4511   {
4512     int t=(addr-start)>>2;
4513     int hr;
4514     if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) return 0;
4515     for(hr=0;hr<HOST_REGS;hr++)
4516     {
4517       if(hr!=EXCLUDE_REG)
4518       {
4519         if(i_regmap[hr]!=regs[t].regmap_entry[hr])
4520         {
4521           if(regs[t].regmap_entry[hr]!=-1)
4522           {
4523             return 0;
4524           }
4525           else 
4526           if((i_dirty>>hr)&1)
4527           {
4528             if(i_regmap[hr]<64)
4529             {
4530               if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4531                 return 0;
4532             }
4533             else
4534             {
4535               if(!((unneeded_reg_upper[t]>>(i_regmap[hr]&63))&1))
4536                 return 0;
4537             }
4538           }
4539         }
4540         else // Same register but is it 32-bit or dirty?
4541         if(i_regmap[hr]>=0)
4542         {
4543           if(!((regs[t].dirty>>hr)&1))
4544           {
4545             if((i_dirty>>hr)&1)
4546             {
4547               if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4548               {
4549                 //printf("%x: dirty no match\n",addr);
4550                 return 0;
4551               }
4552             }
4553           }
4554           if((((regs[t].was32^i_is32)&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)
4555           {
4556             //printf("%x: is32 no match\n",addr);
4557             return 0;
4558           }
4559         }
4560       }
4561     }
4562     //if(is32[t]&~unneeded_reg_upper[t]&~i_is32) return 0;
4563     if(requires_32bit[t]&~i_is32) return 0;
4564     // Delay slots are not valid branch targets
4565     //if(t>0&&(itype[t-1]==RJUMP||itype[t-1]==UJUMP||itype[t-1]==CJUMP||itype[t-1]==SJUMP||itype[t-1]==FJUMP)) return 0;
4566     // Delay slots require additional processing, so do not match
4567     if(is_ds[t]) return 0;
4568   }
4569   else
4570   {
4571     int hr;
4572     for(hr=0;hr<HOST_REGS;hr++)
4573     {
4574       if(hr!=EXCLUDE_REG)
4575       {
4576         if(i_regmap[hr]>=0)
4577         {
4578           if(hr!=HOST_CCREG||i_regmap[hr]!=CCREG)
4579           {
4580             if((i_dirty>>hr)&1)
4581             {
4582               return 0;
4583             }
4584           }
4585         }
4586       }
4587     }
4588   }
4589   return 1;
4590 }
4591
4592 // Used when a branch jumps into the delay slot of another branch
4593 void ds_assemble_entry(int i)
4594 {
4595   int t=(ba[i]-start)>>2;
4596   if(!instr_addr[t]) instr_addr[t]=(u_int)out;
4597   assem_debug("Assemble delay slot at %x\n",ba[i]);
4598   assem_debug("<->\n");
4599   if(regs[t].regmap_entry[HOST_CCREG]==CCREG&&regs[t].regmap[HOST_CCREG]!=CCREG)
4600     wb_register(CCREG,regs[t].regmap_entry,regs[t].wasdirty,regs[t].was32);
4601   load_regs(regs[t].regmap_entry,regs[t].regmap,regs[t].was32,rs1[t],rs2[t]);
4602   address_generation(t,&regs[t],regs[t].regmap_entry);
4603   if(itype[t]==STORE||itype[t]==STORELR||(opcode[t]&0x3b)==0x39||(opcode[t]&0x3b)==0x3a)
4604     load_regs(regs[t].regmap_entry,regs[t].regmap,regs[t].was32,INVCP,INVCP);
4605   cop1_usable=0;
4606   is_delayslot=0;
4607   switch(itype[t]) {
4608     case ALU:
4609       alu_assemble(t,&regs[t]);break;
4610     case IMM16:
4611       imm16_assemble(t,&regs[t]);break;
4612     case SHIFT:
4613       shift_assemble(t,&regs[t]);break;
4614     case SHIFTIMM:
4615       shiftimm_assemble(t,&regs[t]);break;
4616     case LOAD:
4617       load_assemble(t,&regs[t]);break;
4618     case LOADLR:
4619       loadlr_assemble(t,&regs[t]);break;
4620     case STORE:
4621       store_assemble(t,&regs[t]);break;
4622     case STORELR:
4623       storelr_assemble(t,&regs[t]);break;
4624     case COP0:
4625       cop0_assemble(t,&regs[t]);break;
4626     case COP1:
4627       cop1_assemble(t,&regs[t]);break;
4628     case C1LS:
4629       c1ls_assemble(t,&regs[t]);break;
4630     case COP2:
4631       cop2_assemble(t,&regs[t]);break;
4632     case C2LS:
4633       c2ls_assemble(t,&regs[t]);break;
4634     case C2OP:
4635       c2op_assemble(t,&regs[t]);break;
4636     case FCONV:
4637       fconv_assemble(t,&regs[t]);break;
4638     case FLOAT:
4639       float_assemble(t,&regs[t]);break;
4640     case FCOMP:
4641       fcomp_assemble(t,&regs[t]);break;
4642     case MULTDIV:
4643       multdiv_assemble(t,&regs[t]);break;
4644     case MOV:
4645       mov_assemble(t,&regs[t]);break;
4646     case SYSCALL:
4647     case HLECALL:
4648     case SPAN:
4649     case UJUMP:
4650     case RJUMP:
4651     case CJUMP:
4652     case SJUMP:
4653     case FJUMP:
4654       printf("Jump in the delay slot.  This is probably a bug.\n");
4655   }
4656   store_regs_bt(regs[t].regmap,regs[t].is32,regs[t].dirty,ba[i]+4);
4657   load_regs_bt(regs[t].regmap,regs[t].is32,regs[t].dirty,ba[i]+4);
4658   if(internal_branch(regs[t].is32,ba[i]+4))
4659     assem_debug("branch: internal\n");
4660   else
4661     assem_debug("branch: external\n");
4662   assert(internal_branch(regs[t].is32,ba[i]+4));
4663   add_to_linker((int)out,ba[i]+4,internal_branch(regs[t].is32,ba[i]+4));
4664   emit_jmp(0);
4665 }
4666
4667 void do_cc(int i,signed char i_regmap[],int *adj,int addr,int taken,int invert)
4668 {
4669   int count;
4670   int jaddr;
4671   int idle=0;
4672   if(itype[i]==RJUMP)
4673   {
4674     *adj=0;
4675   }
4676   //if(ba[i]>=start && ba[i]<(start+slen*4))
4677   if(internal_branch(branch_regs[i].is32,ba[i]))
4678   {
4679     int t=(ba[i]-start)>>2;
4680     if(is_ds[t]) *adj=-1; // Branch into delay slot adds an extra cycle
4681     else *adj=ccadj[t];
4682   }
4683   else
4684   {
4685     *adj=0;
4686   }
4687   count=ccadj[i];
4688   if(taken==TAKEN && i==(ba[i]-start)>>2 && source[i+1]==0) {
4689     // Idle loop
4690     if(count&1) emit_addimm_and_set_flags(2*(count+2),HOST_CCREG);
4691     idle=(int)out;
4692     //emit_subfrommem(&idlecount,HOST_CCREG); // Count idle cycles
4693     emit_andimm(HOST_CCREG,3,HOST_CCREG);
4694     jaddr=(int)out;
4695     emit_jmp(0);
4696   }
4697   else if(*adj==0||invert) {
4698     emit_addimm_and_set_flags(CLOCK_DIVIDER*(count+2),HOST_CCREG);
4699     jaddr=(int)out;
4700     emit_jns(0);
4701   }
4702   else
4703   {
4704     emit_cmpimm(HOST_CCREG,-2*(count+2));
4705     jaddr=(int)out;
4706     emit_jns(0);
4707   }
4708   add_stub(CC_STUB,jaddr,idle?idle:(int)out,(*adj==0||invert||idle)?0:(count+2),i,addr,taken,0);
4709 }
4710
4711 void do_ccstub(int n)
4712 {
4713   literal_pool(256);
4714   assem_debug("do_ccstub %x\n",start+stubs[n][4]*4);
4715   set_jump_target(stubs[n][1],(int)out);
4716   int i=stubs[n][4];
4717   if(stubs[n][6]==NULLDS) {
4718     // Delay slot instruction is nullified ("likely" branch)
4719     wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
4720   }
4721   else if(stubs[n][6]!=TAKEN) {
4722     wb_dirtys(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty);
4723   }
4724   else {
4725     if(internal_branch(branch_regs[i].is32,ba[i]))
4726       wb_needed_dirtys(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
4727   }
4728   if(stubs[n][5]!=-1)
4729   {
4730     // Save PC as return address
4731     emit_movimm(stubs[n][5],EAX);
4732     emit_writeword(EAX,(int)&pcaddr);
4733   }
4734   else
4735   {
4736     // Return address depends on which way the branch goes
4737     if(itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
4738     {
4739       int s1l=get_reg(branch_regs[i].regmap,rs1[i]);
4740       int s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
4741       int s2l=get_reg(branch_regs[i].regmap,rs2[i]);
4742       int s2h=get_reg(branch_regs[i].regmap,rs2[i]|64);
4743       if(rs1[i]==0)
4744       {
4745         s1l=s2l;s1h=s2h;
4746         s2l=s2h=-1;
4747       }
4748       else if(rs2[i]==0)
4749       {
4750         s2l=s2h=-1;
4751       }
4752       if((branch_regs[i].is32>>rs1[i])&(branch_regs[i].is32>>rs2[i])&1) {
4753         s1h=s2h=-1;
4754       }
4755       assert(s1l>=0);
4756       #ifdef DESTRUCTIVE_WRITEBACK
4757       if(rs1[i]) {
4758         if((branch_regs[i].dirty>>s1l)&(branch_regs[i].is32>>rs1[i])&1)
4759           emit_loadreg(rs1[i],s1l);
4760       } 
4761       else {
4762         if((branch_regs[i].dirty>>s1l)&(branch_regs[i].is32>>rs2[i])&1)
4763           emit_loadreg(rs2[i],s1l);
4764       }
4765       if(s2l>=0)
4766         if((branch_regs[i].dirty>>s2l)&(branch_regs[i].is32>>rs2[i])&1)
4767           emit_loadreg(rs2[i],s2l);
4768       #endif
4769       int hr=0;
4770       int addr,alt,ntaddr;
4771       while(hr<HOST_REGS)
4772       {
4773         if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4774            (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
4775            (branch_regs[i].regmap[hr]&63)!=rs2[i] )
4776         {
4777           addr=hr++;break;
4778         }
4779         hr++;
4780       }
4781       while(hr<HOST_REGS)
4782       {
4783         if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4784            (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
4785            (branch_regs[i].regmap[hr]&63)!=rs2[i] )
4786         {
4787           alt=hr++;break;
4788         }
4789         hr++;
4790       }
4791       if((opcode[i]&0x2E)==6) // BLEZ/BGTZ needs another register
4792       {
4793         while(hr<HOST_REGS)
4794         {
4795           if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4796              (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
4797              (branch_regs[i].regmap[hr]&63)!=rs2[i] )
4798           {
4799             ntaddr=hr;break;
4800           }
4801           hr++;
4802         }
4803         assert(hr<HOST_REGS);
4804       }
4805       if((opcode[i]&0x2f)==4) // BEQ
4806       {
4807         #ifdef HAVE_CMOV_IMM
4808         if(s1h<0) {
4809           if(s2l>=0) emit_cmp(s1l,s2l);
4810           else emit_test(s1l,s1l);
4811           emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
4812         }
4813         else
4814         #endif
4815         {
4816           emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
4817           if(s1h>=0) {
4818             if(s2h>=0) emit_cmp(s1h,s2h);
4819             else emit_test(s1h,s1h);
4820             emit_cmovne_reg(alt,addr);
4821           }
4822           if(s2l>=0) emit_cmp(s1l,s2l);
4823           else emit_test(s1l,s1l);
4824           emit_cmovne_reg(alt,addr);
4825         }
4826       }
4827       if((opcode[i]&0x2f)==5) // BNE
4828       {
4829         #ifdef HAVE_CMOV_IMM
4830         if(s1h<0) {
4831           if(s2l>=0) emit_cmp(s1l,s2l);
4832           else emit_test(s1l,s1l);
4833           emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
4834         }
4835         else
4836         #endif
4837         {
4838           emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
4839           if(s1h>=0) {
4840             if(s2h>=0) emit_cmp(s1h,s2h);
4841             else emit_test(s1h,s1h);
4842             emit_cmovne_reg(alt,addr);
4843           }
4844           if(s2l>=0) emit_cmp(s1l,s2l);
4845           else emit_test(s1l,s1l);
4846           emit_cmovne_reg(alt,addr);
4847         }
4848       }
4849       if((opcode[i]&0x2f)==6) // BLEZ
4850       {
4851         //emit_movimm(ba[i],alt);
4852         //emit_movimm(start+i*4+8,addr);
4853         emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
4854         emit_cmpimm(s1l,1);
4855         if(s1h>=0) emit_mov(addr,ntaddr);
4856         emit_cmovl_reg(alt,addr);
4857         if(s1h>=0) {
4858           emit_test(s1h,s1h);
4859           emit_cmovne_reg(ntaddr,addr);
4860           emit_cmovs_reg(alt,addr);
4861         }
4862       }
4863       if((opcode[i]&0x2f)==7) // BGTZ
4864       {
4865         //emit_movimm(ba[i],addr);
4866         //emit_movimm(start+i*4+8,ntaddr);
4867         emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
4868         emit_cmpimm(s1l,1);
4869         if(s1h>=0) emit_mov(addr,alt);
4870         emit_cmovl_reg(ntaddr,addr);
4871         if(s1h>=0) {
4872           emit_test(s1h,s1h);
4873           emit_cmovne_reg(alt,addr);
4874           emit_cmovs_reg(ntaddr,addr);
4875         }
4876       }
4877       if((opcode[i]==1)&&(opcode2[i]&0x2D)==0) // BLTZ
4878       {
4879         //emit_movimm(ba[i],alt);
4880         //emit_movimm(start+i*4+8,addr);
4881         emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
4882         if(s1h>=0) emit_test(s1h,s1h);
4883         else emit_test(s1l,s1l);
4884         emit_cmovs_reg(alt,addr);
4885       }
4886       if((opcode[i]==1)&&(opcode2[i]&0x2D)==1) // BGEZ
4887       {
4888         //emit_movimm(ba[i],addr);
4889         //emit_movimm(start+i*4+8,alt);
4890         emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
4891         if(s1h>=0) emit_test(s1h,s1h);
4892         else emit_test(s1l,s1l);
4893         emit_cmovs_reg(alt,addr);
4894       }
4895       if(opcode[i]==0x11 && opcode2[i]==0x08 ) {
4896         if(source[i]&0x10000) // BC1T
4897         {
4898           //emit_movimm(ba[i],alt);
4899           //emit_movimm(start+i*4+8,addr);
4900           emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
4901           emit_testimm(s1l,0x800000);
4902           emit_cmovne_reg(alt,addr);
4903         }
4904         else // BC1F
4905         {
4906           //emit_movimm(ba[i],addr);
4907           //emit_movimm(start+i*4+8,alt);
4908           emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
4909           emit_testimm(s1l,0x800000);
4910           emit_cmovne_reg(alt,addr);
4911         }
4912       }
4913       emit_writeword(addr,(int)&pcaddr);
4914     }
4915     else
4916     if(itype[i]==RJUMP)
4917     {
4918       int r=get_reg(branch_regs[i].regmap,rs1[i]);
4919       if(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]) {
4920         r=get_reg(branch_regs[i].regmap,RTEMP);
4921       }
4922       emit_writeword(r,(int)&pcaddr);
4923     }
4924     else {printf("Unknown branch type in do_ccstub\n");exit(1);}
4925   }
4926   // Update cycle count
4927   assert(branch_regs[i].regmap[HOST_CCREG]==CCREG||branch_regs[i].regmap[HOST_CCREG]==-1);
4928   if(stubs[n][3]) emit_addimm(HOST_CCREG,CLOCK_DIVIDER*stubs[n][3],HOST_CCREG);
4929   emit_call((int)cc_interrupt);
4930   if(stubs[n][3]) emit_addimm(HOST_CCREG,-CLOCK_DIVIDER*stubs[n][3],HOST_CCREG);
4931   if(stubs[n][6]==TAKEN) {
4932     if(internal_branch(branch_regs[i].is32,ba[i]))
4933       load_needed_regs(branch_regs[i].regmap,regs[(ba[i]-start)>>2].regmap_entry);
4934     else if(itype[i]==RJUMP) {
4935       if(get_reg(branch_regs[i].regmap,RTEMP)>=0)
4936         emit_readword((int)&pcaddr,get_reg(branch_regs[i].regmap,RTEMP));
4937       else
4938         emit_loadreg(rs1[i],get_reg(branch_regs[i].regmap,rs1[i]));
4939     }
4940   }else if(stubs[n][6]==NOTTAKEN) {
4941     if(i<slen-2) load_needed_regs(branch_regs[i].regmap,regmap_pre[i+2]);
4942     else load_all_regs(branch_regs[i].regmap);
4943   }else if(stubs[n][6]==NULLDS) {
4944     // Delay slot instruction is nullified ("likely" branch)
4945     if(i<slen-2) load_needed_regs(regs[i].regmap,regmap_pre[i+2]);
4946     else load_all_regs(regs[i].regmap);
4947   }else{
4948     load_all_regs(branch_regs[i].regmap);
4949   }
4950   emit_jmp(stubs[n][2]); // return address
4951   
4952   /* This works but uses a lot of memory...
4953   emit_readword((int)&last_count,ECX);
4954   emit_add(HOST_CCREG,ECX,EAX);
4955   emit_writeword(EAX,(int)&Count);
4956   emit_call((int)gen_interupt);
4957   emit_readword((int)&Count,HOST_CCREG);
4958   emit_readword((int)&next_interupt,EAX);
4959   emit_readword((int)&pending_exception,EBX);
4960   emit_writeword(EAX,(int)&last_count);
4961   emit_sub(HOST_CCREG,EAX,HOST_CCREG);
4962   emit_test(EBX,EBX);
4963   int jne_instr=(int)out;
4964   emit_jne(0);
4965   if(stubs[n][3]) emit_addimm(HOST_CCREG,-2*stubs[n][3],HOST_CCREG);
4966   load_all_regs(branch_regs[i].regmap);
4967   emit_jmp(stubs[n][2]); // return address
4968   set_jump_target(jne_instr,(int)out);
4969   emit_readword((int)&pcaddr,EAX);
4970   // Call get_addr_ht instead of doing the hash table here.
4971   // This code is executed infrequently and takes up a lot of space
4972   // so smaller is better.
4973   emit_storereg(CCREG,HOST_CCREG);
4974   emit_pushreg(EAX);
4975   emit_call((int)get_addr_ht);
4976   emit_loadreg(CCREG,HOST_CCREG);
4977   emit_addimm(ESP,4,ESP);
4978   emit_jmpreg(EAX);*/
4979 }
4980
4981 add_to_linker(int addr,int target,int ext)
4982 {
4983   link_addr[linkcount][0]=addr;
4984   link_addr[linkcount][1]=target;
4985   link_addr[linkcount][2]=ext;  
4986   linkcount++;
4987 }
4988
4989 void ujump_assemble(int i,struct regstat *i_regs)
4990 {
4991   signed char *i_regmap=i_regs->regmap;
4992   if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
4993   address_generation(i+1,i_regs,regs[i].regmap_entry);
4994   #ifdef REG_PREFETCH
4995   int temp=get_reg(branch_regs[i].regmap,PTEMP);
4996   if(rt1[i]==31&&temp>=0) 
4997   {
4998     int return_address=start+i*4+8;
4999     if(get_reg(branch_regs[i].regmap,31)>0) 
5000     if(i_regmap[temp]==PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5001   }
5002   #endif
5003   ds_assemble(i+1,i_regs);
5004   uint64_t bc_unneeded=branch_regs[i].u;
5005   uint64_t bc_unneeded_upper=branch_regs[i].uu;
5006   bc_unneeded|=1|(1LL<<rt1[i]);
5007   bc_unneeded_upper|=1|(1LL<<rt1[i]);
5008   wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5009                 bc_unneeded,bc_unneeded_upper);
5010   load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5011   if(rt1[i]==31) {
5012     int rt;
5013     unsigned int return_address;
5014     assert(rt1[i+1]!=31);
5015     assert(rt2[i+1]!=31);
5016     rt=get_reg(branch_regs[i].regmap,31);
5017     assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5018     //assert(rt>=0);
5019     return_address=start+i*4+8;
5020     if(rt>=0) {
5021       #ifdef USE_MINI_HT
5022       if(internal_branch(branch_regs[i].is32,return_address)) {
5023         int temp=rt+1;
5024         if(temp==EXCLUDE_REG||temp>=HOST_REGS||
5025            branch_regs[i].regmap[temp]>=0)
5026         {
5027           temp=get_reg(branch_regs[i].regmap,-1);
5028         }
5029         #ifdef HOST_TEMPREG
5030         if(temp<0) temp=HOST_TEMPREG;
5031         #endif
5032         if(temp>=0) do_miniht_insert(return_address,rt,temp);
5033         else emit_movimm(return_address,rt);
5034       }
5035       else
5036       #endif
5037       {
5038         #ifdef REG_PREFETCH
5039         if(temp>=0) 
5040         {
5041           if(i_regmap[temp]!=PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5042         }
5043         #endif
5044         emit_movimm(return_address,rt); // PC into link register
5045         #ifdef IMM_PREFETCH
5046         emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5047         #endif
5048       }
5049     }
5050   }
5051   int cc,adj;
5052   cc=get_reg(branch_regs[i].regmap,CCREG);
5053   assert(cc==HOST_CCREG);
5054   store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5055   #ifdef REG_PREFETCH
5056   if(rt1[i]==31&&temp>=0) emit_prefetchreg(temp);
5057   #endif
5058   do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5059   if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5060   load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5061   if(internal_branch(branch_regs[i].is32,ba[i]))
5062     assem_debug("branch: internal\n");
5063   else
5064     assem_debug("branch: external\n");
5065   if(internal_branch(branch_regs[i].is32,ba[i])&&is_ds[(ba[i]-start)>>2]) {
5066     ds_assemble_entry(i);
5067   }
5068   else {
5069     add_to_linker((int)out,ba[i],internal_branch(branch_regs[i].is32,ba[i]));
5070     emit_jmp(0);
5071   }
5072 }
5073
5074 void rjump_assemble(int i,struct regstat *i_regs)
5075 {
5076   signed char *i_regmap=i_regs->regmap;
5077   int temp;
5078   int rs,cc,adj;
5079   rs=get_reg(branch_regs[i].regmap,rs1[i]);
5080   assert(rs>=0);
5081   if(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]) {
5082     // Delay slot abuse, make a copy of the branch address register
5083     temp=get_reg(branch_regs[i].regmap,RTEMP);
5084     assert(temp>=0);
5085     assert(regs[i].regmap[temp]==RTEMP);
5086     emit_mov(rs,temp);
5087     rs=temp;
5088   }
5089   address_generation(i+1,i_regs,regs[i].regmap_entry);
5090   #ifdef REG_PREFETCH
5091   if(rt1[i]==31) 
5092   {
5093     if((temp=get_reg(branch_regs[i].regmap,PTEMP))>=0) {
5094       int return_address=start+i*4+8;
5095       if(i_regmap[temp]==PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5096     }
5097   }
5098   #endif
5099   #ifdef USE_MINI_HT
5100   if(rs1[i]==31) {
5101     int rh=get_reg(regs[i].regmap,RHASH);
5102     if(rh>=0) do_preload_rhash(rh);
5103   }
5104   #endif
5105   ds_assemble(i+1,i_regs);
5106   uint64_t bc_unneeded=branch_regs[i].u;
5107   uint64_t bc_unneeded_upper=branch_regs[i].uu;
5108   bc_unneeded|=1|(1LL<<rt1[i]);
5109   bc_unneeded_upper|=1|(1LL<<rt1[i]);
5110   bc_unneeded&=~(1LL<<rs1[i]);
5111   wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5112                 bc_unneeded,bc_unneeded_upper);
5113   load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],CCREG);
5114   if(rt1[i]!=0) {
5115     int rt,return_address;
5116     assert(rt1[i+1]!=rt1[i]);
5117     assert(rt2[i+1]!=rt1[i]);
5118     rt=get_reg(branch_regs[i].regmap,rt1[i]);
5119     assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5120     assert(rt>=0);
5121     return_address=start+i*4+8;
5122     #ifdef REG_PREFETCH
5123     if(temp>=0) 
5124     {
5125       if(i_regmap[temp]!=PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5126     }
5127     #endif
5128     emit_movimm(return_address,rt); // PC into link register
5129     #ifdef IMM_PREFETCH
5130     emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5131     #endif
5132   }
5133   cc=get_reg(branch_regs[i].regmap,CCREG);
5134   assert(cc==HOST_CCREG);
5135   #ifdef USE_MINI_HT
5136   int rh=get_reg(branch_regs[i].regmap,RHASH);
5137   int ht=get_reg(branch_regs[i].regmap,RHTBL);
5138   if(rs1[i]==31) {
5139     if(regs[i].regmap[rh]!=RHASH) do_preload_rhash(rh);
5140     do_preload_rhtbl(ht);
5141     do_rhash(rs,rh);
5142   }
5143   #endif
5144   store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,-1);
5145   #ifdef DESTRUCTIVE_WRITEBACK
5146   if((branch_regs[i].dirty>>rs)&(branch_regs[i].is32>>rs1[i])&1) {
5147     if(rs1[i]!=rt1[i+1]&&rs1[i]!=rt2[i+1]) {
5148       emit_loadreg(rs1[i],rs);
5149     }
5150   }
5151   #endif
5152   #ifdef REG_PREFETCH
5153   if(rt1[i]==31&&temp>=0) emit_prefetchreg(temp);
5154   #endif
5155   #ifdef USE_MINI_HT
5156   if(rs1[i]==31) {
5157     do_miniht_load(ht,rh);
5158   }
5159   #endif
5160   //do_cc(i,branch_regs[i].regmap,&adj,-1,TAKEN);
5161   //if(adj) emit_addimm(cc,2*(ccadj[i]+2-adj),cc); // ??? - Shouldn't happen
5162   //assert(adj==0);
5163   emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
5164   add_stub(CC_STUB,(int)out,jump_vaddr_reg[rs],0,i,-1,TAKEN,0);
5165   emit_jns(0);
5166   //load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,-1);
5167   #ifdef USE_MINI_HT
5168   if(rs1[i]==31) {
5169     do_miniht_jump(rs,rh,ht);
5170   }
5171   else
5172   #endif
5173   {
5174     //if(rs!=EAX) emit_mov(rs,EAX);
5175     //emit_jmp((int)jump_vaddr_eax);
5176     emit_jmp(jump_vaddr_reg[rs]);
5177   }
5178   /* Check hash table
5179   temp=!rs;
5180   emit_mov(rs,temp);
5181   emit_shrimm(rs,16,rs);
5182   emit_xor(temp,rs,rs);
5183   emit_movzwl_reg(rs,rs);
5184   emit_shlimm(rs,4,rs);
5185   emit_cmpmem_indexed((int)hash_table,rs,temp);
5186   emit_jne((int)out+14);
5187   emit_readword_indexed((int)hash_table+4,rs,rs);
5188   emit_jmpreg(rs);
5189   emit_cmpmem_indexed((int)hash_table+8,rs,temp);
5190   emit_addimm_no_flags(8,rs);
5191   emit_jeq((int)out-17);
5192   // No hit on hash table, call compiler
5193   emit_pushreg(temp);
5194 //DEBUG >
5195 #ifdef DEBUG_CYCLE_COUNT
5196   emit_readword((int)&last_count,ECX);
5197   emit_add(HOST_CCREG,ECX,HOST_CCREG);
5198   emit_readword((int)&next_interupt,ECX);
5199   emit_writeword(HOST_CCREG,(int)&Count);
5200   emit_sub(HOST_CCREG,ECX,HOST_CCREG);
5201   emit_writeword(ECX,(int)&last_count);
5202 #endif
5203 //DEBUG <
5204   emit_storereg(CCREG,HOST_CCREG);
5205   emit_call((int)get_addr);
5206   emit_loadreg(CCREG,HOST_CCREG);
5207   emit_addimm(ESP,4,ESP);
5208   emit_jmpreg(EAX);*/
5209   #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5210   if(rt1[i]!=31&&i<slen-2&&(((u_int)out)&7)) emit_mov(13,13);
5211   #endif
5212 }
5213
5214 void cjump_assemble(int i,struct regstat *i_regs)
5215 {
5216   signed char *i_regmap=i_regs->regmap;
5217   int cc;
5218   int match;
5219   match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5220   assem_debug("match=%d\n",match);
5221   int s1h,s1l,s2h,s2l;
5222   int prev_cop1_usable=cop1_usable;
5223   int unconditional=0,nop=0;
5224   int only32=0;
5225   int ooo=1;
5226   int invert=0;
5227   int internal=internal_branch(branch_regs[i].is32,ba[i]);
5228   if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5229   if(likely[i]) ooo=0;
5230   if(!match) invert=1;
5231   #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5232   if(i>(ba[i]-start)>>2) invert=1;
5233   #endif
5234     
5235   if(ooo)
5236     if((rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]))||
5237        (rs2[i]&&(rs2[i]==rt1[i+1]||rs2[i]==rt2[i+1])))
5238   {
5239     // Write-after-read dependency prevents out of order execution
5240     // First test branch condition, then execute delay slot, then branch
5241     ooo=0;
5242   }
5243
5244   if(ooo) {
5245     s1l=get_reg(branch_regs[i].regmap,rs1[i]);
5246     s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
5247     s2l=get_reg(branch_regs[i].regmap,rs2[i]);
5248     s2h=get_reg(branch_regs[i].regmap,rs2[i]|64);
5249   }
5250   else {
5251     s1l=get_reg(i_regmap,rs1[i]);
5252     s1h=get_reg(i_regmap,rs1[i]|64);
5253     s2l=get_reg(i_regmap,rs2[i]);
5254     s2h=get_reg(i_regmap,rs2[i]|64);
5255   }
5256   if(rs1[i]==0&&rs2[i]==0)
5257   {
5258     if(opcode[i]&1) nop=1;
5259     else unconditional=1;
5260     //assert(opcode[i]!=5);
5261     //assert(opcode[i]!=7);
5262     //assert(opcode[i]!=0x15);
5263     //assert(opcode[i]!=0x17);
5264   }
5265   else if(rs1[i]==0)
5266   {
5267     s1l=s2l;s1h=s2h;
5268     s2l=s2h=-1;
5269     only32=(regs[i].was32>>rs2[i])&1;
5270   }
5271   else if(rs2[i]==0)
5272   {
5273     s2l=s2h=-1;
5274     only32=(regs[i].was32>>rs1[i])&1;
5275   }
5276   else {
5277     only32=(regs[i].was32>>rs1[i])&(regs[i].was32>>rs2[i])&1;
5278   }
5279
5280   if(ooo) {
5281     // Out of order execution (delay slot first)
5282     //printf("OOOE\n");
5283     address_generation(i+1,i_regs,regs[i].regmap_entry);
5284     ds_assemble(i+1,i_regs);
5285     int adj;
5286     uint64_t bc_unneeded=branch_regs[i].u;
5287     uint64_t bc_unneeded_upper=branch_regs[i].uu;
5288     bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
5289     bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
5290     bc_unneeded|=1;
5291     bc_unneeded_upper|=1;
5292     wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5293                   bc_unneeded,bc_unneeded_upper);
5294     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs2[i]);
5295     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5296     cc=get_reg(branch_regs[i].regmap,CCREG);
5297     assert(cc==HOST_CCREG);
5298     if(unconditional) 
5299       store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5300     //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
5301     //assem_debug("cycle count (adj)\n");
5302     if(unconditional) {
5303       do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5304       if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
5305         if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5306         load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5307         if(internal)
5308           assem_debug("branch: internal\n");
5309         else
5310           assem_debug("branch: external\n");
5311         if(internal&&is_ds[(ba[i]-start)>>2]) {
5312           ds_assemble_entry(i);
5313         }
5314         else {
5315           add_to_linker((int)out,ba[i],internal);
5316           emit_jmp(0);
5317         }
5318         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5319         if(((u_int)out)&7) emit_addnop(0);
5320         #endif
5321       }
5322     }
5323     else if(nop) {
5324       emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
5325       int jaddr=(int)out;
5326       emit_jns(0);
5327       add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5328     }
5329     else {
5330       int taken=0,nottaken=0,nottaken1=0;
5331       do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
5332       if(adj&&!invert) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5333       if(!only32)
5334       {
5335         assert(s1h>=0);
5336         if(opcode[i]==4) // BEQ
5337         {
5338           if(s2h>=0) emit_cmp(s1h,s2h);
5339           else emit_test(s1h,s1h);
5340           nottaken1=(int)out;
5341           emit_jne(1);
5342         }
5343         if(opcode[i]==5) // BNE
5344         {
5345           if(s2h>=0) emit_cmp(s1h,s2h);
5346           else emit_test(s1h,s1h);
5347           if(invert) taken=(int)out;
5348           else add_to_linker((int)out,ba[i],internal);
5349           emit_jne(0);
5350         }
5351         if(opcode[i]==6) // BLEZ
5352         {
5353           emit_test(s1h,s1h);
5354           if(invert) taken=(int)out;
5355           else add_to_linker((int)out,ba[i],internal);
5356           emit_js(0);
5357           nottaken1=(int)out;
5358           emit_jne(1);
5359         }
5360         if(opcode[i]==7) // BGTZ
5361         {
5362           emit_test(s1h,s1h);
5363           nottaken1=(int)out;
5364           emit_js(1);
5365           if(invert) taken=(int)out;
5366           else add_to_linker((int)out,ba[i],internal);
5367           emit_jne(0);
5368         }
5369       } // if(!only32)
5370           
5371       //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5372       assert(s1l>=0);
5373       if(opcode[i]==4) // BEQ
5374       {
5375         if(s2l>=0) emit_cmp(s1l,s2l);
5376         else emit_test(s1l,s1l);
5377         if(invert){
5378           nottaken=(int)out;
5379           emit_jne(1);
5380         }else{
5381           add_to_linker((int)out,ba[i],internal);
5382           emit_jeq(0);
5383         }
5384       }
5385       if(opcode[i]==5) // BNE
5386       {
5387         if(s2l>=0) emit_cmp(s1l,s2l);
5388         else emit_test(s1l,s1l);
5389         if(invert){
5390           nottaken=(int)out;
5391           emit_jeq(1);
5392         }else{
5393           add_to_linker((int)out,ba[i],internal);
5394           emit_jne(0);
5395         }
5396       }
5397       if(opcode[i]==6) // BLEZ
5398       {
5399         emit_cmpimm(s1l,1);
5400         if(invert){
5401           nottaken=(int)out;
5402           emit_jge(1);
5403         }else{
5404           add_to_linker((int)out,ba[i],internal);
5405           emit_jl(0);
5406         }
5407       }
5408       if(opcode[i]==7) // BGTZ
5409       {
5410         emit_cmpimm(s1l,1);
5411         if(invert){
5412           nottaken=(int)out;
5413           emit_jl(1);
5414         }else{
5415           add_to_linker((int)out,ba[i],internal);
5416           emit_jge(0);
5417         }
5418       }
5419       if(invert) {
5420         if(taken) set_jump_target(taken,(int)out);
5421         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5422         if(match&&(!internal||!is_ds[(ba[i]-start)>>2])) {
5423           if(adj) {
5424             emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5425             add_to_linker((int)out,ba[i],internal);
5426           }else{
5427             emit_addnop(13);
5428             add_to_linker((int)out,ba[i],internal*2);
5429           }
5430           emit_jmp(0);
5431         }else
5432         #endif
5433         {
5434           if(adj) emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5435           store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5436           load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5437           if(internal)
5438             assem_debug("branch: internal\n");
5439           else
5440             assem_debug("branch: external\n");
5441           if(internal&&is_ds[(ba[i]-start)>>2]) {
5442             ds_assemble_entry(i);
5443           }
5444           else {
5445             add_to_linker((int)out,ba[i],internal);
5446             emit_jmp(0);
5447           }
5448         }
5449         set_jump_target(nottaken,(int)out);
5450       }
5451
5452       if(nottaken1) set_jump_target(nottaken1,(int)out);
5453       if(adj) {
5454         if(!invert) emit_addimm(cc,CLOCK_DIVIDER*adj,cc);
5455       }
5456     } // (!unconditional)
5457   } // if(ooo)
5458   else
5459   {
5460     // In-order execution (branch first)
5461     //if(likely[i]) printf("IOL\n");
5462     //else
5463     //printf("IOE\n");
5464     int taken=0,nottaken=0,nottaken1=0;
5465     if(!unconditional&&!nop) {
5466       if(!only32)
5467       {
5468         assert(s1h>=0);
5469         if((opcode[i]&0x2f)==4) // BEQ
5470         {
5471           if(s2h>=0) emit_cmp(s1h,s2h);
5472           else emit_test(s1h,s1h);
5473           nottaken1=(int)out;
5474           emit_jne(2);
5475         }
5476         if((opcode[i]&0x2f)==5) // BNE
5477         {
5478           if(s2h>=0) emit_cmp(s1h,s2h);
5479           else emit_test(s1h,s1h);
5480           taken=(int)out;
5481           emit_jne(1);
5482         }
5483         if((opcode[i]&0x2f)==6) // BLEZ
5484         {
5485           emit_test(s1h,s1h);
5486           taken=(int)out;
5487           emit_js(1);
5488           nottaken1=(int)out;
5489           emit_jne(2);
5490         }
5491         if((opcode[i]&0x2f)==7) // BGTZ
5492         {
5493           emit_test(s1h,s1h);
5494           nottaken1=(int)out;
5495           emit_js(2);
5496           taken=(int)out;
5497           emit_jne(1);
5498         }
5499       } // if(!only32)
5500           
5501       //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5502       assert(s1l>=0);
5503       if((opcode[i]&0x2f)==4) // BEQ
5504       {
5505         if(s2l>=0) emit_cmp(s1l,s2l);
5506         else emit_test(s1l,s1l);
5507         nottaken=(int)out;
5508         emit_jne(2);
5509       }
5510       if((opcode[i]&0x2f)==5) // BNE
5511       {
5512         if(s2l>=0) emit_cmp(s1l,s2l);
5513         else emit_test(s1l,s1l);
5514         nottaken=(int)out;
5515         emit_jeq(2);
5516       }
5517       if((opcode[i]&0x2f)==6) // BLEZ
5518       {
5519         emit_cmpimm(s1l,1);
5520         nottaken=(int)out;
5521         emit_jge(2);
5522       }
5523       if((opcode[i]&0x2f)==7) // BGTZ
5524       {
5525         emit_cmpimm(s1l,1);
5526         nottaken=(int)out;
5527         emit_jl(2);
5528       }
5529     } // if(!unconditional)
5530     int adj;
5531     uint64_t ds_unneeded=branch_regs[i].u;
5532     uint64_t ds_unneeded_upper=branch_regs[i].uu;
5533     ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
5534     ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
5535     if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
5536     ds_unneeded|=1;
5537     ds_unneeded_upper|=1;
5538     // branch taken
5539     if(!nop) {
5540       if(taken) set_jump_target(taken,(int)out);
5541       assem_debug("1:\n");
5542       wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5543                     ds_unneeded,ds_unneeded_upper);
5544       // load regs
5545       load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5546       address_generation(i+1,&branch_regs[i],0);
5547       load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
5548       ds_assemble(i+1,&branch_regs[i]);
5549       cc=get_reg(branch_regs[i].regmap,CCREG);
5550       if(cc==-1) {
5551         emit_loadreg(CCREG,cc=HOST_CCREG);
5552         // CHECK: Is the following instruction (fall thru) allocated ok?
5553       }
5554       assert(cc==HOST_CCREG);
5555       store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5556       do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
5557       assem_debug("cycle count (adj)\n");
5558       if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5559       load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5560       if(internal)
5561         assem_debug("branch: internal\n");
5562       else
5563         assem_debug("branch: external\n");
5564       if(internal&&is_ds[(ba[i]-start)>>2]) {
5565         ds_assemble_entry(i);
5566       }
5567       else {
5568         add_to_linker((int)out,ba[i],internal);
5569         emit_jmp(0);
5570       }
5571     }
5572     // branch not taken
5573     cop1_usable=prev_cop1_usable;
5574     if(!unconditional) {
5575       if(nottaken1) set_jump_target(nottaken1,(int)out);
5576       set_jump_target(nottaken,(int)out);
5577       assem_debug("2:\n");
5578       if(!likely[i]) {
5579         wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5580                       ds_unneeded,ds_unneeded_upper);
5581         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5582         address_generation(i+1,&branch_regs[i],0);
5583         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5584         ds_assemble(i+1,&branch_regs[i]);
5585       }
5586       cc=get_reg(branch_regs[i].regmap,CCREG);
5587       if(cc==-1&&!likely[i]) {
5588         // Cycle count isn't in a register, temporarily load it then write it out
5589         emit_loadreg(CCREG,HOST_CCREG);
5590         emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
5591         int jaddr=(int)out;
5592         emit_jns(0);
5593         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5594         emit_storereg(CCREG,HOST_CCREG);
5595       }
5596       else{
5597         cc=get_reg(i_regmap,CCREG);
5598         assert(cc==HOST_CCREG);
5599         emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
5600         int jaddr=(int)out;
5601         emit_jns(0);
5602         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
5603       }
5604     }
5605   }
5606 }
5607
5608 void sjump_assemble(int i,struct regstat *i_regs)
5609 {
5610   signed char *i_regmap=i_regs->regmap;
5611   int cc;
5612   int match;
5613   match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5614   assem_debug("smatch=%d\n",match);
5615   int s1h,s1l;
5616   int prev_cop1_usable=cop1_usable;
5617   int unconditional=0,nevertaken=0;
5618   int only32=0;
5619   int ooo=1;
5620   int invert=0;
5621   int internal=internal_branch(branch_regs[i].is32,ba[i]);
5622   if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5623   if(likely[i]) ooo=0;
5624   if(!match) invert=1;
5625   #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5626   if(i>(ba[i]-start)>>2) invert=1;
5627   #endif
5628
5629   //if(opcode2[i]>=0x10) return; // FIXME (BxxZAL)
5630   //assert(opcode2[i]<0x10||rs1[i]==0); // FIXME (BxxZAL)
5631
5632   if(ooo)
5633     if(rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]))
5634   {
5635     // Write-after-read dependency prevents out of order execution
5636     // First test branch condition, then execute delay slot, then branch
5637     ooo=0;
5638   }
5639   assert(opcode2[i]<0x10||ooo); // FIXME (BxxZALL)
5640
5641   if(ooo) {
5642     s1l=get_reg(branch_regs[i].regmap,rs1[i]);
5643     s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
5644   }
5645   else {
5646     s1l=get_reg(i_regmap,rs1[i]);
5647     s1h=get_reg(i_regmap,rs1[i]|64);
5648   }
5649   if(rs1[i]==0)
5650   {
5651     if(opcode2[i]&1) unconditional=1;
5652     else nevertaken=1;
5653     // These are never taken (r0 is never less than zero)
5654     //assert(opcode2[i]!=0);
5655     //assert(opcode2[i]!=2);
5656     //assert(opcode2[i]!=0x10);
5657     //assert(opcode2[i]!=0x12);
5658   }
5659   else {
5660     only32=(regs[i].was32>>rs1[i])&1;
5661   }
5662
5663   if(ooo) {
5664     // Out of order execution (delay slot first)
5665     //printf("OOOE\n");
5666     address_generation(i+1,i_regs,regs[i].regmap_entry);
5667     ds_assemble(i+1,i_regs);
5668     int adj;
5669     uint64_t bc_unneeded=branch_regs[i].u;
5670     uint64_t bc_unneeded_upper=branch_regs[i].uu;
5671     bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
5672     bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
5673     bc_unneeded|=1;
5674     bc_unneeded_upper|=1;
5675     wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5676                   bc_unneeded,bc_unneeded_upper);
5677     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs1[i]);
5678     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5679     if(rt1[i]==31) {
5680       int rt,return_address;
5681       assert(rt1[i+1]!=31);
5682       assert(rt2[i+1]!=31);
5683       rt=get_reg(branch_regs[i].regmap,31);
5684       assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5685       if(rt>=0) {
5686         // Save the PC even if the branch is not taken
5687         return_address=start+i*4+8;
5688         emit_movimm(return_address,rt); // PC into link register
5689         #ifdef IMM_PREFETCH
5690         if(!nevertaken) emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5691         #endif
5692       }
5693     }
5694     cc=get_reg(branch_regs[i].regmap,CCREG);
5695     assert(cc==HOST_CCREG);
5696     if(unconditional) 
5697       store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5698     //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
5699     assem_debug("cycle count (adj)\n");
5700     if(unconditional) {
5701       do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5702       if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
5703         if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5704         load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5705         if(internal)
5706           assem_debug("branch: internal\n");
5707         else
5708           assem_debug("branch: external\n");
5709         if(internal&&is_ds[(ba[i]-start)>>2]) {
5710           ds_assemble_entry(i);
5711         }
5712         else {
5713           add_to_linker((int)out,ba[i],internal);
5714           emit_jmp(0);
5715         }
5716         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5717         if(((u_int)out)&7) emit_addnop(0);
5718         #endif
5719       }
5720     }
5721     else if(nevertaken) {
5722       emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
5723       int jaddr=(int)out;
5724       emit_jns(0);
5725       add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5726     }
5727     else {
5728       int nottaken=0;
5729       do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
5730       if(adj&&!invert) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5731       if(!only32)
5732       {
5733         assert(s1h>=0);
5734         if((opcode2[i]&0xf)==0) // BLTZ/BLTZAL
5735         {
5736           emit_test(s1h,s1h);
5737           if(invert){
5738             nottaken=(int)out;
5739             emit_jns(1);
5740           }else{
5741             add_to_linker((int)out,ba[i],internal);
5742             emit_js(0);
5743           }
5744         }
5745         if((opcode2[i]&0xf)==1) // BGEZ/BLTZAL
5746         {
5747           emit_test(s1h,s1h);
5748           if(invert){
5749             nottaken=(int)out;
5750             emit_js(1);
5751           }else{
5752             add_to_linker((int)out,ba[i],internal);
5753             emit_jns(0);
5754           }
5755         }
5756       } // if(!only32)
5757       else
5758       {
5759         assert(s1l>=0);
5760         if((opcode2[i]&0xf)==0) // BLTZ/BLTZAL
5761         {
5762           emit_test(s1l,s1l);
5763           if(invert){
5764             nottaken=(int)out;
5765             emit_jns(1);
5766           }else{
5767             add_to_linker((int)out,ba[i],internal);
5768             emit_js(0);
5769           }
5770         }
5771         if((opcode2[i]&0xf)==1) // BGEZ/BLTZAL
5772         {
5773           emit_test(s1l,s1l);
5774           if(invert){
5775             nottaken=(int)out;
5776             emit_js(1);
5777           }else{
5778             add_to_linker((int)out,ba[i],internal);
5779             emit_jns(0);
5780           }
5781         }
5782       } // if(!only32)
5783           
5784       if(invert) {
5785         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5786         if(match&&(!internal||!is_ds[(ba[i]-start)>>2])) {
5787           if(adj) {
5788             emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5789             add_to_linker((int)out,ba[i],internal);
5790           }else{
5791             emit_addnop(13);
5792             add_to_linker((int)out,ba[i],internal*2);
5793           }
5794           emit_jmp(0);
5795         }else
5796         #endif
5797         {
5798           if(adj) emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5799           store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5800           load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5801           if(internal)
5802             assem_debug("branch: internal\n");
5803           else
5804             assem_debug("branch: external\n");
5805           if(internal&&is_ds[(ba[i]-start)>>2]) {
5806             ds_assemble_entry(i);
5807           }
5808           else {
5809             add_to_linker((int)out,ba[i],internal);
5810             emit_jmp(0);
5811           }
5812         }
5813         set_jump_target(nottaken,(int)out);
5814       }
5815
5816       if(adj) {
5817         if(!invert) emit_addimm(cc,CLOCK_DIVIDER*adj,cc);
5818       }
5819     } // (!unconditional)
5820   } // if(ooo)
5821   else
5822   {
5823     // In-order execution (branch first)
5824     //printf("IOE\n");
5825     int nottaken=0;
5826     if(!unconditional) {
5827       //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5828       if(!only32)
5829       {
5830         assert(s1h>=0);
5831         if((opcode2[i]&0x1d)==0) // BLTZ/BLTZL
5832         {
5833           emit_test(s1h,s1h);
5834           nottaken=(int)out;
5835           emit_jns(1);
5836         }
5837         if((opcode2[i]&0x1d)==1) // BGEZ/BGEZL
5838         {
5839           emit_test(s1h,s1h);
5840           nottaken=(int)out;
5841           emit_js(1);
5842         }
5843       } // if(!only32)
5844       else
5845       {
5846         assert(s1l>=0);
5847         if((opcode2[i]&0x1d)==0) // BLTZ/BLTZL
5848         {
5849           emit_test(s1l,s1l);
5850           nottaken=(int)out;
5851           emit_jns(1);
5852         }
5853         if((opcode2[i]&0x1d)==1) // BGEZ/BGEZL
5854         {
5855           emit_test(s1l,s1l);
5856           nottaken=(int)out;
5857           emit_js(1);
5858         }
5859       }
5860     } // if(!unconditional)
5861     int adj;
5862     uint64_t ds_unneeded=branch_regs[i].u;
5863     uint64_t ds_unneeded_upper=branch_regs[i].uu;
5864     ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
5865     ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
5866     if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
5867     ds_unneeded|=1;
5868     ds_unneeded_upper|=1;
5869     // branch taken
5870     if(!nevertaken) {
5871       //assem_debug("1:\n");
5872       wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5873                     ds_unneeded,ds_unneeded_upper);
5874       // load regs
5875       load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5876       address_generation(i+1,&branch_regs[i],0);
5877       load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
5878       ds_assemble(i+1,&branch_regs[i]);
5879       cc=get_reg(branch_regs[i].regmap,CCREG);
5880       if(cc==-1) {
5881         emit_loadreg(CCREG,cc=HOST_CCREG);
5882         // CHECK: Is the following instruction (fall thru) allocated ok?
5883       }
5884       assert(cc==HOST_CCREG);
5885       store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5886       do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
5887       assem_debug("cycle count (adj)\n");
5888       if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5889       load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5890       if(internal)
5891         assem_debug("branch: internal\n");
5892       else
5893         assem_debug("branch: external\n");
5894       if(internal&&is_ds[(ba[i]-start)>>2]) {
5895         ds_assemble_entry(i);
5896       }
5897       else {
5898         add_to_linker((int)out,ba[i],internal);
5899         emit_jmp(0);
5900       }
5901     }
5902     // branch not taken
5903     cop1_usable=prev_cop1_usable;
5904     if(!unconditional) {
5905       set_jump_target(nottaken,(int)out);
5906       assem_debug("1:\n");
5907       if(!likely[i]) {
5908         wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5909                       ds_unneeded,ds_unneeded_upper);
5910         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5911         address_generation(i+1,&branch_regs[i],0);
5912         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5913         ds_assemble(i+1,&branch_regs[i]);
5914       }
5915       cc=get_reg(branch_regs[i].regmap,CCREG);
5916       if(cc==-1&&!likely[i]) {
5917         // Cycle count isn't in a register, temporarily load it then write it out
5918         emit_loadreg(CCREG,HOST_CCREG);
5919         emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
5920         int jaddr=(int)out;
5921         emit_jns(0);
5922         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5923         emit_storereg(CCREG,HOST_CCREG);
5924       }
5925       else{
5926         cc=get_reg(i_regmap,CCREG);
5927         assert(cc==HOST_CCREG);
5928         emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
5929         int jaddr=(int)out;
5930         emit_jns(0);
5931         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
5932       }
5933     }
5934   }
5935 }
5936
5937 void fjump_assemble(int i,struct regstat *i_regs)
5938 {
5939   signed char *i_regmap=i_regs->regmap;
5940   int cc;
5941   int match;
5942   match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5943   assem_debug("fmatch=%d\n",match);
5944   int fs,cs;
5945   int eaddr;
5946   int ooo=1;
5947   int invert=0;
5948   int internal=internal_branch(branch_regs[i].is32,ba[i]);
5949   if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5950   if(likely[i]) ooo=0;
5951   if(!match) invert=1;
5952   #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5953   if(i>(ba[i]-start)>>2) invert=1;
5954   #endif
5955
5956   if(ooo)
5957     if(itype[i+1]==FCOMP)
5958   {
5959     // Write-after-read dependency prevents out of order execution
5960     // First test branch condition, then execute delay slot, then branch
5961     ooo=0;
5962   }
5963
5964   if(ooo) {
5965     fs=get_reg(branch_regs[i].regmap,FSREG);
5966     address_generation(i+1,i_regs,regs[i].regmap_entry); // Is this okay?
5967   }
5968   else {
5969     fs=get_reg(i_regmap,FSREG);
5970   }
5971
5972   // Check cop1 unusable
5973   if(!cop1_usable) {
5974     cs=get_reg(i_regmap,CSREG);
5975     assert(cs>=0);
5976     emit_testimm(cs,0x20000000);
5977     eaddr=(int)out;
5978     emit_jeq(0);
5979     add_stub(FP_STUB,eaddr,(int)out,i,cs,(int)i_regs,0,0);
5980     cop1_usable=1;
5981   }
5982
5983   if(ooo) {
5984     // Out of order execution (delay slot first)
5985     //printf("OOOE\n");
5986     ds_assemble(i+1,i_regs);
5987     int adj;
5988     uint64_t bc_unneeded=branch_regs[i].u;
5989     uint64_t bc_unneeded_upper=branch_regs[i].uu;
5990     bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
5991     bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
5992     bc_unneeded|=1;
5993     bc_unneeded_upper|=1;
5994     wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5995                   bc_unneeded,bc_unneeded_upper);
5996     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs1[i]);
5997     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5998     cc=get_reg(branch_regs[i].regmap,CCREG);
5999     assert(cc==HOST_CCREG);
6000     do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
6001     assem_debug("cycle count (adj)\n");
6002     if(1) {
6003       int nottaken=0;
6004       if(adj&&!invert) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
6005       if(1) {
6006         assert(fs>=0);
6007         emit_testimm(fs,0x800000);
6008         if(source[i]&0x10000) // BC1T
6009         {
6010           if(invert){
6011             nottaken=(int)out;
6012             emit_jeq(1);
6013           }else{
6014             add_to_linker((int)out,ba[i],internal);
6015             emit_jne(0);
6016           }
6017         }
6018         else // BC1F
6019           if(invert){
6020             nottaken=(int)out;
6021             emit_jne(1);
6022           }else{
6023             add_to_linker((int)out,ba[i],internal);
6024             emit_jeq(0);
6025           }
6026         {
6027         }
6028       } // if(!only32)
6029           
6030       if(invert) {
6031         if(adj) emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
6032         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
6033         else if(match) emit_addnop(13);
6034         #endif
6035         store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6036         load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6037         if(internal)
6038           assem_debug("branch: internal\n");
6039         else
6040           assem_debug("branch: external\n");
6041         if(internal&&is_ds[(ba[i]-start)>>2]) {
6042           ds_assemble_entry(i);
6043         }
6044         else {
6045           add_to_linker((int)out,ba[i],internal);
6046           emit_jmp(0);
6047         }
6048         set_jump_target(nottaken,(int)out);
6049       }
6050
6051       if(adj) {
6052         if(!invert) emit_addimm(cc,CLOCK_DIVIDER*adj,cc);
6053       }
6054     } // (!unconditional)
6055   } // if(ooo)
6056   else
6057   {
6058     // In-order execution (branch first)
6059     //printf("IOE\n");
6060     int nottaken=0;
6061     if(1) {
6062       //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
6063       if(1) {
6064         assert(fs>=0);
6065         emit_testimm(fs,0x800000);
6066         if(source[i]&0x10000) // BC1T
6067         {
6068           nottaken=(int)out;
6069           emit_jeq(1);
6070         }
6071         else // BC1F
6072         {
6073           nottaken=(int)out;
6074           emit_jne(1);
6075         }
6076       }
6077     } // if(!unconditional)
6078     int adj;
6079     uint64_t ds_unneeded=branch_regs[i].u;
6080     uint64_t ds_unneeded_upper=branch_regs[i].uu;
6081     ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6082     ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6083     if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
6084     ds_unneeded|=1;
6085     ds_unneeded_upper|=1;
6086     // branch taken
6087     //assem_debug("1:\n");
6088     wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6089                   ds_unneeded,ds_unneeded_upper);
6090     // load regs
6091     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
6092     address_generation(i+1,&branch_regs[i],0);
6093     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
6094     ds_assemble(i+1,&branch_regs[i]);
6095     cc=get_reg(branch_regs[i].regmap,CCREG);
6096     if(cc==-1) {
6097       emit_loadreg(CCREG,cc=HOST_CCREG);
6098       // CHECK: Is the following instruction (fall thru) allocated ok?
6099     }
6100     assert(cc==HOST_CCREG);
6101     store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6102     do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
6103     assem_debug("cycle count (adj)\n");
6104     if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
6105     load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6106     if(internal)
6107       assem_debug("branch: internal\n");
6108     else
6109       assem_debug("branch: external\n");
6110     if(internal&&is_ds[(ba[i]-start)>>2]) {
6111       ds_assemble_entry(i);
6112     }
6113     else {
6114       add_to_linker((int)out,ba[i],internal);
6115       emit_jmp(0);
6116     }
6117
6118     // branch not taken
6119     if(1) { // <- FIXME (don't need this)
6120       set_jump_target(nottaken,(int)out);
6121       assem_debug("1:\n");
6122       if(!likely[i]) {
6123         wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6124                       ds_unneeded,ds_unneeded_upper);
6125         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
6126         address_generation(i+1,&branch_regs[i],0);
6127         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
6128         ds_assemble(i+1,&branch_regs[i]);
6129       }
6130       cc=get_reg(branch_regs[i].regmap,CCREG);
6131       if(cc==-1&&!likely[i]) {
6132         // Cycle count isn't in a register, temporarily load it then write it out
6133         emit_loadreg(CCREG,HOST_CCREG);
6134         emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
6135         int jaddr=(int)out;
6136         emit_jns(0);
6137         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
6138         emit_storereg(CCREG,HOST_CCREG);
6139       }
6140       else{
6141         cc=get_reg(i_regmap,CCREG);
6142         assert(cc==HOST_CCREG);
6143         emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
6144         int jaddr=(int)out;
6145         emit_jns(0);
6146         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
6147       }
6148     }
6149   }
6150 }
6151
6152 static void pagespan_assemble(int i,struct regstat *i_regs)
6153 {
6154   int s1l=get_reg(i_regs->regmap,rs1[i]);
6155   int s1h=get_reg(i_regs->regmap,rs1[i]|64);
6156   int s2l=get_reg(i_regs->regmap,rs2[i]);
6157   int s2h=get_reg(i_regs->regmap,rs2[i]|64);
6158   void *nt_branch=NULL;
6159   int taken=0;
6160   int nottaken=0;
6161   int unconditional=0;
6162   if(rs1[i]==0)
6163   {
6164     s1l=s2l;s1h=s2h;
6165     s2l=s2h=-1;
6166   }
6167   else if(rs2[i]==0)
6168   {
6169     s2l=s2h=-1;
6170   }
6171   if((i_regs->is32>>rs1[i])&(i_regs->is32>>rs2[i])&1) {
6172     s1h=s2h=-1;
6173   }
6174   int hr=0;
6175   int addr,alt,ntaddr;
6176   if(i_regs->regmap[HOST_BTREG]<0) {addr=HOST_BTREG;}
6177   else {
6178     while(hr<HOST_REGS)
6179     {
6180       if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
6181          (i_regs->regmap[hr]&63)!=rs1[i] &&
6182          (i_regs->regmap[hr]&63)!=rs2[i] )
6183       {
6184         addr=hr++;break;
6185       }
6186       hr++;
6187     }
6188   }
6189   while(hr<HOST_REGS)
6190   {
6191     if(hr!=EXCLUDE_REG && hr!=HOST_CCREG && hr!=HOST_BTREG &&
6192        (i_regs->regmap[hr]&63)!=rs1[i] &&
6193        (i_regs->regmap[hr]&63)!=rs2[i] )
6194     {
6195       alt=hr++;break;
6196     }
6197     hr++;
6198   }
6199   if((opcode[i]&0x2E)==6) // BLEZ/BGTZ needs another register
6200   {
6201     while(hr<HOST_REGS)
6202     {
6203       if(hr!=EXCLUDE_REG && hr!=HOST_CCREG && hr!=HOST_BTREG &&
6204          (i_regs->regmap[hr]&63)!=rs1[i] &&
6205          (i_regs->regmap[hr]&63)!=rs2[i] )
6206       {
6207         ntaddr=hr;break;
6208       }
6209       hr++;
6210     }
6211   }
6212   assert(hr<HOST_REGS);
6213   if((opcode[i]&0x2e)==4||opcode[i]==0x11) { // BEQ/BNE/BEQL/BNEL/BC1
6214     load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,CCREG,CCREG);
6215   }
6216   emit_addimm(HOST_CCREG,CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
6217   if(opcode[i]==2) // J
6218   {
6219     unconditional=1;
6220   }
6221   if(opcode[i]==3) // JAL
6222   {
6223     // TODO: mini_ht
6224     int rt=get_reg(i_regs->regmap,31);
6225     emit_movimm(start+i*4+8,rt);
6226     unconditional=1;
6227   }
6228   if(opcode[i]==0&&(opcode2[i]&0x3E)==8) // JR/JALR
6229   {
6230     emit_mov(s1l,addr);
6231     if(opcode2[i]==9) // JALR
6232     {
6233       int rt=get_reg(i_regs->regmap,rt1[i]);
6234       emit_movimm(start+i*4+8,rt);
6235     }
6236   }
6237   if((opcode[i]&0x3f)==4) // BEQ
6238   {
6239     if(rs1[i]==rs2[i])
6240     {
6241       unconditional=1;
6242     }
6243     else
6244     #ifdef HAVE_CMOV_IMM
6245     if(s1h<0) {
6246       if(s2l>=0) emit_cmp(s1l,s2l);
6247       else emit_test(s1l,s1l);
6248       emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
6249     }
6250     else
6251     #endif
6252     {
6253       assert(s1l>=0);
6254       emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
6255       if(s1h>=0) {
6256         if(s2h>=0) emit_cmp(s1h,s2h);
6257         else emit_test(s1h,s1h);
6258         emit_cmovne_reg(alt,addr);
6259       }
6260       if(s2l>=0) emit_cmp(s1l,s2l);
6261       else emit_test(s1l,s1l);
6262       emit_cmovne_reg(alt,addr);
6263     }
6264   }
6265   if((opcode[i]&0x3f)==5) // BNE
6266   {
6267     #ifdef HAVE_CMOV_IMM
6268     if(s1h<0) {
6269       if(s2l>=0) emit_cmp(s1l,s2l);
6270       else emit_test(s1l,s1l);
6271       emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
6272     }
6273     else
6274     #endif
6275     {
6276       assert(s1l>=0);
6277       emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
6278       if(s1h>=0) {
6279         if(s2h>=0) emit_cmp(s1h,s2h);
6280         else emit_test(s1h,s1h);
6281         emit_cmovne_reg(alt,addr);
6282       }
6283       if(s2l>=0) emit_cmp(s1l,s2l);
6284       else emit_test(s1l,s1l);
6285       emit_cmovne_reg(alt,addr);
6286     }
6287   }
6288   if((opcode[i]&0x3f)==0x14) // BEQL
6289   {
6290     if(s1h>=0) {
6291       if(s2h>=0) emit_cmp(s1h,s2h);
6292       else emit_test(s1h,s1h);
6293       nottaken=(int)out;
6294       emit_jne(0);
6295     }
6296     if(s2l>=0) emit_cmp(s1l,s2l);
6297     else emit_test(s1l,s1l);
6298     if(nottaken) set_jump_target(nottaken,(int)out);
6299     nottaken=(int)out;
6300     emit_jne(0);
6301   }
6302   if((opcode[i]&0x3f)==0x15) // BNEL
6303   {
6304     if(s1h>=0) {
6305       if(s2h>=0) emit_cmp(s1h,s2h);
6306       else emit_test(s1h,s1h);
6307       taken=(int)out;
6308       emit_jne(0);
6309     }
6310     if(s2l>=0) emit_cmp(s1l,s2l);
6311     else emit_test(s1l,s1l);
6312     nottaken=(int)out;
6313     emit_jeq(0);
6314     if(taken) set_jump_target(taken,(int)out);
6315   }
6316   if((opcode[i]&0x3f)==6) // BLEZ
6317   {
6318     emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
6319     emit_cmpimm(s1l,1);
6320     if(s1h>=0) emit_mov(addr,ntaddr);
6321     emit_cmovl_reg(alt,addr);
6322     if(s1h>=0) {
6323       emit_test(s1h,s1h);
6324       emit_cmovne_reg(ntaddr,addr);
6325       emit_cmovs_reg(alt,addr);
6326     }
6327   }
6328   if((opcode[i]&0x3f)==7) // BGTZ
6329   {
6330     emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
6331     emit_cmpimm(s1l,1);
6332     if(s1h>=0) emit_mov(addr,alt);
6333     emit_cmovl_reg(ntaddr,addr);
6334     if(s1h>=0) {
6335       emit_test(s1h,s1h);
6336       emit_cmovne_reg(alt,addr);
6337       emit_cmovs_reg(ntaddr,addr);
6338     }
6339   }
6340   if((opcode[i]&0x3f)==0x16) // BLEZL
6341   {
6342     assert((opcode[i]&0x3f)!=0x16);
6343   }
6344   if((opcode[i]&0x3f)==0x17) // BGTZL
6345   {
6346     assert((opcode[i]&0x3f)!=0x17);
6347   }
6348   assert(opcode[i]!=1); // BLTZ/BGEZ
6349
6350   //FIXME: Check CSREG
6351   if(opcode[i]==0x11 && opcode2[i]==0x08 ) {
6352     if((source[i]&0x30000)==0) // BC1F
6353     {
6354       emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
6355       emit_testimm(s1l,0x800000);
6356       emit_cmovne_reg(alt,addr);
6357     }
6358     if((source[i]&0x30000)==0x10000) // BC1T
6359     {
6360       emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
6361       emit_testimm(s1l,0x800000);
6362       emit_cmovne_reg(alt,addr);
6363     }
6364     if((source[i]&0x30000)==0x20000) // BC1FL
6365     {
6366       emit_testimm(s1l,0x800000);
6367       nottaken=(int)out;
6368       emit_jne(0);
6369     }
6370     if((source[i]&0x30000)==0x30000) // BC1TL
6371     {
6372       emit_testimm(s1l,0x800000);
6373       nottaken=(int)out;
6374       emit_jeq(0);
6375     }
6376   }
6377
6378   assert(i_regs->regmap[HOST_CCREG]==CCREG);
6379   wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
6380   if(likely[i]||unconditional)
6381   {
6382     emit_movimm(ba[i],HOST_BTREG);
6383   }
6384   else if(addr!=HOST_BTREG)
6385   {
6386     emit_mov(addr,HOST_BTREG);
6387   }
6388   void *branch_addr=out;
6389   emit_jmp(0);
6390   int target_addr=start+i*4+5;
6391   void *stub=out;
6392   void *compiled_target_addr=check_addr(target_addr);
6393   emit_extjump_ds((int)branch_addr,target_addr);
6394   if(compiled_target_addr) {
6395     set_jump_target((int)branch_addr,(int)compiled_target_addr);
6396     add_link(target_addr,stub);
6397   }
6398   else set_jump_target((int)branch_addr,(int)stub);
6399   if(likely[i]) {
6400     // Not-taken path
6401     set_jump_target((int)nottaken,(int)out);
6402     wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
6403     void *branch_addr=out;
6404     emit_jmp(0);
6405     int target_addr=start+i*4+8;
6406     void *stub=out;
6407     void *compiled_target_addr=check_addr(target_addr);
6408     emit_extjump_ds((int)branch_addr,target_addr);
6409     if(compiled_target_addr) {
6410       set_jump_target((int)branch_addr,(int)compiled_target_addr);
6411       add_link(target_addr,stub);
6412     }
6413     else set_jump_target((int)branch_addr,(int)stub);
6414   }
6415 }
6416
6417 // Assemble the delay slot for the above
6418 static void pagespan_ds()
6419 {
6420   assem_debug("initial delay slot:\n");
6421   u_int vaddr=start+1;
6422   u_int page=get_page(vaddr);
6423   u_int vpage=get_vpage(vaddr);
6424   ll_add(jump_dirty+vpage,vaddr,(void *)out);
6425   do_dirty_stub_ds();
6426   ll_add(jump_in+page,vaddr,(void *)out);
6427   assert(regs[0].regmap_entry[HOST_CCREG]==CCREG);
6428   if(regs[0].regmap[HOST_CCREG]!=CCREG)
6429     wb_register(CCREG,regs[0].regmap_entry,regs[0].wasdirty,regs[0].was32);
6430   if(regs[0].regmap[HOST_BTREG]!=BTREG)
6431     emit_writeword(HOST_BTREG,(int)&branch_target);
6432   load_regs(regs[0].regmap_entry,regs[0].regmap,regs[0].was32,rs1[0],rs2[0]);
6433   address_generation(0,&regs[0],regs[0].regmap_entry);
6434   if(itype[0]==STORE||itype[0]==STORELR||(opcode[0]&0x3b)==0x39||(opcode[0]&0x3b)==0x3a)
6435     load_regs(regs[0].regmap_entry,regs[0].regmap,regs[0].was32,INVCP,INVCP);
6436   cop1_usable=0;
6437   is_delayslot=0;
6438   switch(itype[0]) {
6439     case ALU:
6440       alu_assemble(0,&regs[0]);break;
6441     case IMM16:
6442       imm16_assemble(0,&regs[0]);break;
6443     case SHIFT:
6444       shift_assemble(0,&regs[0]);break;
6445     case SHIFTIMM:
6446       shiftimm_assemble(0,&regs[0]);break;
6447     case LOAD:
6448       load_assemble(0,&regs[0]);break;
6449     case LOADLR:
6450       loadlr_assemble(0,&regs[0]);break;
6451     case STORE:
6452       store_assemble(0,&regs[0]);break;
6453     case STORELR:
6454       storelr_assemble(0,&regs[0]);break;
6455     case COP0:
6456       cop0_assemble(0,&regs[0]);break;
6457     case COP1:
6458       cop1_assemble(0,&regs[0]);break;
6459     case C1LS:
6460       c1ls_assemble(0,&regs[0]);break;
6461     case COP2:
6462       cop2_assemble(0,&regs[0]);break;
6463     case C2LS:
6464       c2ls_assemble(0,&regs[0]);break;
6465     case C2OP:
6466       c2op_assemble(0,&regs[0]);break;
6467     case FCONV:
6468       fconv_assemble(0,&regs[0]);break;
6469     case FLOAT:
6470       float_assemble(0,&regs[0]);break;
6471     case FCOMP:
6472       fcomp_assemble(0,&regs[0]);break;
6473     case MULTDIV:
6474       multdiv_assemble(0,&regs[0]);break;
6475     case MOV:
6476       mov_assemble(0,&regs[0]);break;
6477     case SYSCALL:
6478     case HLECALL:
6479     case SPAN:
6480     case UJUMP:
6481     case RJUMP:
6482     case CJUMP:
6483     case SJUMP:
6484     case FJUMP:
6485       printf("Jump in the delay slot.  This is probably a bug.\n");
6486   }
6487   int btaddr=get_reg(regs[0].regmap,BTREG);
6488   if(btaddr<0) {
6489     btaddr=get_reg(regs[0].regmap,-1);
6490     emit_readword((int)&branch_target,btaddr);
6491   }
6492   assert(btaddr!=HOST_CCREG);
6493   if(regs[0].regmap[HOST_CCREG]!=CCREG) emit_loadreg(CCREG,HOST_CCREG);
6494 #ifdef HOST_IMM8
6495   emit_movimm(start+4,HOST_TEMPREG);
6496   emit_cmp(btaddr,HOST_TEMPREG);
6497 #else
6498   emit_cmpimm(btaddr,start+4);
6499 #endif
6500   int branch=(int)out;
6501   emit_jeq(0);
6502   store_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,-1);
6503   emit_jmp(jump_vaddr_reg[btaddr]);
6504   set_jump_target(branch,(int)out);
6505   store_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,start+4);
6506   load_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,start+4);
6507 }
6508
6509 // Basic liveness analysis for MIPS registers
6510 void unneeded_registers(int istart,int iend,int r)
6511 {
6512   int i;
6513   uint64_t u,uu,b,bu;
6514   uint64_t temp_u,temp_uu;
6515   uint64_t tdep;
6516   if(iend==slen-1) {
6517     u=1;uu=1;
6518   }else{
6519     u=unneeded_reg[iend+1];
6520     uu=unneeded_reg_upper[iend+1];
6521     u=1;uu=1;
6522   }
6523   for (i=iend;i>=istart;i--)
6524   {
6525     //printf("unneeded registers i=%d (%d,%d) r=%d\n",i,istart,iend,r);
6526     if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
6527     {
6528       // If subroutine call, flag return address as a possible branch target
6529       if(rt1[i]==31 && i<slen-2) bt[i+2]=1;
6530       
6531       if(ba[i]<start || ba[i]>=(start+slen*4))
6532       {
6533         // Branch out of this block, flush all regs
6534         u=1;
6535         uu=1;
6536         /* Hexagon hack 
6537         if(itype[i]==UJUMP&&rt1[i]==31)
6538         {
6539           uu=u=0x300C00F; // Discard at, v0-v1, t6-t9
6540         }
6541         if(itype[i]==RJUMP&&rs1[i]==31)
6542         {
6543           uu=u=0x300C0F3; // Discard at, a0-a3, t6-t9
6544         }
6545         if(start>0x80000400&&start<0x80000000+RAM_SIZE) {
6546           if(itype[i]==UJUMP&&rt1[i]==31)
6547           {
6548             //uu=u=0x30300FF0FLL; // Discard at, v0-v1, t0-t9, lo, hi
6549             uu=u=0x300FF0F; // Discard at, v0-v1, t0-t9
6550           }
6551           if(itype[i]==RJUMP&&rs1[i]==31)
6552           {
6553             //uu=u=0x30300FFF3LL; // Discard at, a0-a3, t0-t9, lo, hi
6554             uu=u=0x300FFF3; // Discard at, a0-a3, t0-t9
6555           }
6556         }*/
6557         branch_unneeded_reg[i]=u;
6558         branch_unneeded_reg_upper[i]=uu;
6559         // Merge in delay slot
6560         tdep=(~uu>>rt1[i+1])&1;
6561         u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6562         uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6563         u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6564         uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6565         uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6566         u|=1;uu|=1;
6567         // If branch is "likely" (and conditional)
6568         // then we skip the delay slot on the fall-thru path
6569         if(likely[i]) {
6570           if(i<slen-1) {
6571             u&=unneeded_reg[i+2];
6572             uu&=unneeded_reg_upper[i+2];
6573           }
6574           else
6575           {
6576             u=1;
6577             uu=1;
6578           }
6579         }
6580       }
6581       else
6582       {
6583         // Internal branch, flag target
6584         bt[(ba[i]-start)>>2]=1;
6585         if(ba[i]<=start+i*4) {
6586           // Backward branch
6587           if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
6588           {
6589             // Unconditional branch
6590             temp_u=1;temp_uu=1;
6591           } else {
6592             // Conditional branch (not taken case)
6593             temp_u=unneeded_reg[i+2];
6594             temp_uu=unneeded_reg_upper[i+2];
6595           }
6596           // Merge in delay slot
6597           tdep=(~temp_uu>>rt1[i+1])&1;
6598           temp_u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6599           temp_uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6600           temp_u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6601           temp_uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6602           temp_uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6603           temp_u|=1;temp_uu|=1;
6604           // If branch is "likely" (and conditional)
6605           // then we skip the delay slot on the fall-thru path
6606           if(likely[i]) {
6607             if(i<slen-1) {
6608               temp_u&=unneeded_reg[i+2];
6609               temp_uu&=unneeded_reg_upper[i+2];
6610             }
6611             else
6612             {
6613               temp_u=1;
6614               temp_uu=1;
6615             }
6616           }
6617           tdep=(~temp_uu>>rt1[i])&1;
6618           temp_u|=(1LL<<rt1[i])|(1LL<<rt2[i]);
6619           temp_uu|=(1LL<<rt1[i])|(1LL<<rt2[i]);
6620           temp_u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
6621           temp_uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
6622           temp_uu&=~((tdep<<dep1[i])|(tdep<<dep2[i]));
6623           temp_u|=1;temp_uu|=1;
6624           unneeded_reg[i]=temp_u;
6625           unneeded_reg_upper[i]=temp_uu;
6626           // Only go three levels deep.  This recursion can take an
6627           // excessive amount of time if there are a lot of nested loops.
6628           if(r<2) {
6629             unneeded_registers((ba[i]-start)>>2,i-1,r+1);
6630           }else{
6631             unneeded_reg[(ba[i]-start)>>2]=1;
6632             unneeded_reg_upper[(ba[i]-start)>>2]=1;
6633           }
6634         } /*else*/ if(1) {
6635           if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
6636           {
6637             // Unconditional branch
6638             u=unneeded_reg[(ba[i]-start)>>2];
6639             uu=unneeded_reg_upper[(ba[i]-start)>>2];
6640             branch_unneeded_reg[i]=u;
6641             branch_unneeded_reg_upper[i]=uu;
6642         //u=1;
6643         //uu=1;
6644         //branch_unneeded_reg[i]=u;
6645         //branch_unneeded_reg_upper[i]=uu;
6646             // Merge in delay slot
6647             tdep=(~uu>>rt1[i+1])&1;
6648             u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6649             uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6650             u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6651             uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6652             uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6653             u|=1;uu|=1;
6654           } else {
6655             // Conditional branch
6656             b=unneeded_reg[(ba[i]-start)>>2];
6657             bu=unneeded_reg_upper[(ba[i]-start)>>2];
6658             branch_unneeded_reg[i]=b;
6659             branch_unneeded_reg_upper[i]=bu;
6660         //b=1;
6661         //bu=1;
6662         //branch_unneeded_reg[i]=b;
6663         //branch_unneeded_reg_upper[i]=bu;
6664             // Branch delay slot
6665             tdep=(~uu>>rt1[i+1])&1;
6666             b|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6667             bu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6668             b&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6669             bu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6670             bu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6671             b|=1;bu|=1;
6672             // If branch is "likely" then we skip the
6673             // delay slot on the fall-thru path
6674             if(likely[i]) {
6675               u=b;
6676               uu=bu;
6677               if(i<slen-1) {
6678                 u&=unneeded_reg[i+2];
6679                 uu&=unneeded_reg_upper[i+2];
6680         //u=1;
6681         //uu=1;
6682               }
6683             } else {
6684               u&=b;
6685               uu&=bu;
6686         //u=1;
6687         //uu=1;
6688             }
6689             if(i<slen-1) {
6690               branch_unneeded_reg[i]&=unneeded_reg[i+2];
6691               branch_unneeded_reg_upper[i]&=unneeded_reg_upper[i+2];
6692         //branch_unneeded_reg[i]=1;
6693         //branch_unneeded_reg_upper[i]=1;
6694             } else {
6695               branch_unneeded_reg[i]=1;
6696               branch_unneeded_reg_upper[i]=1;
6697             }
6698           }
6699         }
6700       }
6701     }
6702     else if(itype[i]==SYSCALL||itype[i]==HLECALL)
6703     {
6704       // SYSCALL instruction (software interrupt)
6705       u=1;
6706       uu=1;
6707     }
6708     else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
6709     {
6710       // ERET instruction (return from interrupt)
6711       u=1;
6712       uu=1;
6713     }
6714     //u=uu=1; // DEBUG
6715     tdep=(~uu>>rt1[i])&1;
6716     // Written registers are unneeded
6717     u|=1LL<<rt1[i];
6718     u|=1LL<<rt2[i];
6719     uu|=1LL<<rt1[i];
6720     uu|=1LL<<rt2[i];
6721     // Accessed registers are needed
6722     u&=~(1LL<<rs1[i]);
6723     u&=~(1LL<<rs2[i]);
6724     uu&=~(1LL<<us1[i]);
6725     uu&=~(1LL<<us2[i]);
6726     // Source-target dependencies
6727     uu&=~(tdep<<dep1[i]);
6728     uu&=~(tdep<<dep2[i]);
6729     // R0 is always unneeded
6730     u|=1;uu|=1;
6731     // Save it
6732     unneeded_reg[i]=u;
6733     unneeded_reg_upper[i]=uu;
6734     /*
6735     printf("ur (%d,%d) %x: ",istart,iend,start+i*4);
6736     printf("U:");
6737     int r;
6738     for(r=1;r<=CCREG;r++) {
6739       if((unneeded_reg[i]>>r)&1) {
6740         if(r==HIREG) printf(" HI");
6741         else if(r==LOREG) printf(" LO");
6742         else printf(" r%d",r);
6743       }
6744     }
6745     printf(" UU:");
6746     for(r=1;r<=CCREG;r++) {
6747       if(((unneeded_reg_upper[i]&~unneeded_reg[i])>>r)&1) {
6748         if(r==HIREG) printf(" HI");
6749         else if(r==LOREG) printf(" LO");
6750         else printf(" r%d",r);
6751       }
6752     }
6753     printf("\n");*/
6754   }
6755 #ifdef FORCE32
6756   for (i=iend;i>=istart;i--)
6757   {
6758     unneeded_reg_upper[i]=branch_unneeded_reg_upper[i]=-1LL;
6759   }
6760 #endif
6761 }
6762
6763 // Identify registers which are likely to contain 32-bit values
6764 // This is used to predict whether any branches will jump to a
6765 // location with 64-bit values in registers.
6766 static void provisional_32bit()
6767 {
6768   int i,j;
6769   uint64_t is32=1;
6770   uint64_t lastbranch=1;
6771   
6772   for(i=0;i<slen;i++)
6773   {
6774     if(i>0) {
6775       if(itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP) {
6776         if(i>1) is32=lastbranch;
6777         else is32=1;
6778       }
6779     }
6780     if(i>1)
6781     {
6782       if(itype[i-2]==CJUMP||itype[i-2]==SJUMP||itype[i-2]==FJUMP) {
6783         if(likely[i-2]) {
6784           if(i>2) is32=lastbranch;
6785           else is32=1;
6786         }
6787       }
6788       if((opcode[i-2]&0x2f)==0x05) // BNE/BNEL
6789       {
6790         if(rs1[i-2]==0||rs2[i-2]==0)
6791         {
6792           if(rs1[i-2]) {
6793             is32|=1LL<<rs1[i-2];
6794           }
6795           if(rs2[i-2]) {
6796             is32|=1LL<<rs2[i-2];
6797           }
6798         }
6799       }
6800     }
6801     // If something jumps here with 64-bit values
6802     // then promote those registers to 64 bits
6803     if(bt[i])
6804     {
6805       uint64_t temp_is32=is32;
6806       for(j=i-1;j>=0;j--)
6807       {
6808         if(ba[j]==start+i*4) 
6809           //temp_is32&=branch_regs[j].is32;
6810           temp_is32&=p32[j];
6811       }
6812       for(j=i;j<slen;j++)
6813       {
6814         if(ba[j]==start+i*4) 
6815           temp_is32=1;
6816       }
6817       is32=temp_is32;
6818     }
6819     int type=itype[i];
6820     int op=opcode[i];
6821     int op2=opcode2[i];
6822     int rt=rt1[i];
6823     int s1=rs1[i];
6824     int s2=rs2[i];
6825     if(type==UJUMP||type==RJUMP||type==CJUMP||type==SJUMP||type==FJUMP) {
6826       // Branches don't write registers, consider the delay slot instead.
6827       type=itype[i+1];
6828       op=opcode[i+1];
6829       op2=opcode2[i+1];
6830       rt=rt1[i+1];
6831       s1=rs1[i+1];
6832       s2=rs2[i+1];
6833       lastbranch=is32;
6834     }
6835     switch(type) {
6836       case LOAD:
6837         if(opcode[i]==0x27||opcode[i]==0x37|| // LWU/LD
6838            opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
6839           is32&=~(1LL<<rt);
6840         else
6841           is32|=1LL<<rt;
6842         break;
6843       case STORE:
6844       case STORELR:
6845         break;
6846       case LOADLR:
6847         if(op==0x1a||op==0x1b) is32&=~(1LL<<rt); // LDR/LDL
6848         if(op==0x22) is32|=1LL<<rt; // LWL
6849         break;
6850       case IMM16:
6851         if (op==0x08||op==0x09|| // ADDI/ADDIU
6852             op==0x0a||op==0x0b|| // SLTI/SLTIU
6853             op==0x0c|| // ANDI
6854             op==0x0f)  // LUI
6855         {
6856           is32|=1LL<<rt;
6857         }
6858         if(op==0x18||op==0x19) { // DADDI/DADDIU
6859           is32&=~(1LL<<rt);
6860           //if(imm[i]==0)
6861           //  is32|=((is32>>s1)&1LL)<<rt;
6862         }
6863         if(op==0x0d||op==0x0e) { // ORI/XORI
6864           uint64_t sr=((is32>>s1)&1LL);
6865           is32&=~(1LL<<rt);
6866           is32|=sr<<rt;
6867         }
6868         break;
6869       case UJUMP:
6870         break;
6871       case RJUMP:
6872         break;
6873       case CJUMP:
6874         break;
6875       case SJUMP:
6876         break;
6877       case FJUMP:
6878         break;
6879       case ALU:
6880         if(op2>=0x20&&op2<=0x23) { // ADD/ADDU/SUB/SUBU
6881           is32|=1LL<<rt;
6882         }
6883         if(op2==0x2a||op2==0x2b) { // SLT/SLTU
6884           is32|=1LL<<rt;
6885         }
6886         else if(op2>=0x24&&op2<=0x27) { // AND/OR/XOR/NOR
6887           uint64_t sr=((is32>>s1)&(is32>>s2)&1LL);
6888           is32&=~(1LL<<rt);
6889           is32|=sr<<rt;
6890         }
6891         else if(op2>=0x2c&&op2<=0x2d) { // DADD/DADDU
6892           if(s1==0&&s2==0) {
6893             is32|=1LL<<rt;
6894           }
6895           else if(s2==0) {
6896             uint64_t sr=((is32>>s1)&1LL);
6897             is32&=~(1LL<<rt);
6898             is32|=sr<<rt;
6899           }
6900           else if(s1==0) {
6901             uint64_t sr=((is32>>s2)&1LL);
6902             is32&=~(1LL<<rt);
6903             is32|=sr<<rt;
6904           }
6905           else {
6906             is32&=~(1LL<<rt);
6907           }
6908         }
6909         else if(op2>=0x2e&&op2<=0x2f) { // DSUB/DSUBU
6910           if(s1==0&&s2==0) {
6911             is32|=1LL<<rt;
6912           }
6913           else if(s2==0) {
6914             uint64_t sr=((is32>>s1)&1LL);
6915             is32&=~(1LL<<rt);
6916             is32|=sr<<rt;
6917           }
6918           else {
6919             is32&=~(1LL<<rt);
6920           }
6921         }
6922         break;
6923       case MULTDIV:
6924         if (op2>=0x1c&&op2<=0x1f) { // DMULT/DMULTU/DDIV/DDIVU
6925           is32&=~((1LL<<HIREG)|(1LL<<LOREG));
6926         }
6927         else {
6928           is32|=(1LL<<HIREG)|(1LL<<LOREG);
6929         }
6930         break;
6931       case MOV:
6932         {
6933           uint64_t sr=((is32>>s1)&1LL);
6934           is32&=~(1LL<<rt);
6935           is32|=sr<<rt;
6936         }
6937         break;
6938       case SHIFT:
6939         if(op2>=0x14&&op2<=0x17) is32&=~(1LL<<rt); // DSLLV/DSRLV/DSRAV
6940         else is32|=1LL<<rt; // SLLV/SRLV/SRAV
6941         break;
6942       case SHIFTIMM:
6943         is32|=1LL<<rt;
6944         // DSLL/DSRL/DSRA/DSLL32/DSRL32 but not DSRA32 have 64-bit result
6945         if(op2>=0x38&&op2<0x3f) is32&=~(1LL<<rt);
6946         break;
6947       case COP0:
6948         if(op2==0) is32|=1LL<<rt; // MFC0
6949         break;
6950       case COP1:
6951       case COP2:
6952         if(op2==0) is32|=1LL<<rt; // MFC1
6953         if(op2==1) is32&=~(1LL<<rt); // DMFC1
6954         if(op2==2) is32|=1LL<<rt; // CFC1
6955         break;
6956       case C1LS:
6957       case C2LS:
6958         break;
6959       case FLOAT:
6960       case FCONV:
6961         break;
6962       case FCOMP:
6963         break;
6964       case C2OP:
6965       case SYSCALL:
6966       case HLECALL:
6967         break;
6968       default:
6969         break;
6970     }
6971     is32|=1;
6972     p32[i]=is32;
6973
6974     if(i>0)
6975     {
6976       if(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)
6977       {
6978         if(rt1[i-1]==31) // JAL/JALR
6979         {
6980           // Subroutine call will return here, don't alloc any registers
6981           is32=1;
6982         }
6983         else if(i+1<slen)
6984         {
6985           // Internal branch will jump here, match registers to caller
6986           is32=0x3FFFFFFFFLL;
6987         }
6988       }
6989     }
6990   }
6991 }
6992
6993 // Identify registers which may be assumed to contain 32-bit values
6994 // and where optimizations will rely on this.
6995 // This is used to determine whether backward branches can safely
6996 // jump to a location with 64-bit values in registers.
6997 static void provisional_r32()
6998 {
6999   u_int r32=0;
7000   int i;
7001   
7002   for (i=slen-1;i>=0;i--)
7003   {
7004     int hr;
7005     if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
7006     {
7007       if(ba[i]<start || ba[i]>=(start+slen*4))
7008       {
7009         // Branch out of this block, don't need anything
7010         r32=0;
7011       }
7012       else
7013       {
7014         // Internal branch
7015         // Need whatever matches the target
7016         // (and doesn't get overwritten by the delay slot instruction)
7017         r32=0;
7018         int t=(ba[i]-start)>>2;
7019         if(ba[i]>start+i*4) {
7020           // Forward branch
7021           //if(!(requires_32bit[t]&~regs[i].was32))
7022           //  r32|=requires_32bit[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
7023           if(!(pr32[t]&~regs[i].was32))
7024             r32|=pr32[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
7025         }else{
7026           // Backward branch
7027           if(!(regs[t].was32&~unneeded_reg_upper[t]&~regs[i].was32))
7028             r32|=regs[t].was32&~unneeded_reg_upper[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
7029         }
7030       }
7031       // Conditional branch may need registers for following instructions
7032       if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
7033       {
7034         if(i<slen-2) {
7035           //r32|=requires_32bit[i+2];
7036           r32|=pr32[i+2];
7037           r32&=regs[i].was32;
7038           // Mark this address as a branch target since it may be called
7039           // upon return from interrupt
7040           //bt[i+2]=1;
7041         }
7042       }
7043       // Merge in delay slot
7044       if(!likely[i]) {
7045         // These are overwritten unless the branch is "likely"
7046         // and the delay slot is nullified if not taken
7047         r32&=~(1LL<<rt1[i+1]);
7048         r32&=~(1LL<<rt2[i+1]);
7049       }
7050       // Assume these are needed (delay slot)
7051       if(us1[i+1]>0)
7052       {
7053         if((regs[i].was32>>us1[i+1])&1) r32|=1LL<<us1[i+1];
7054       }
7055       if(us2[i+1]>0)
7056       {
7057         if((regs[i].was32>>us2[i+1])&1) r32|=1LL<<us2[i+1];
7058       }
7059       if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1))
7060       {
7061         if((regs[i].was32>>dep1[i+1])&1) r32|=1LL<<dep1[i+1];
7062       }
7063       if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1))
7064       {
7065         if((regs[i].was32>>dep2[i+1])&1) r32|=1LL<<dep2[i+1];
7066       }
7067     }
7068     else if(itype[i]==SYSCALL||itype[i]==HLECALL)
7069     {
7070       // SYSCALL instruction (software interrupt)
7071       r32=0;
7072     }
7073     else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
7074     {
7075       // ERET instruction (return from interrupt)
7076       r32=0;
7077     }
7078     // Check 32 bits
7079     r32&=~(1LL<<rt1[i]);
7080     r32&=~(1LL<<rt2[i]);
7081     if(us1[i]>0)
7082     {
7083       if((regs[i].was32>>us1[i])&1) r32|=1LL<<us1[i];
7084     }
7085     if(us2[i]>0)
7086     {
7087       if((regs[i].was32>>us2[i])&1) r32|=1LL<<us2[i];
7088     }
7089     if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1))
7090     {
7091       if((regs[i].was32>>dep1[i])&1) r32|=1LL<<dep1[i];
7092     }
7093     if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1))
7094     {
7095       if((regs[i].was32>>dep2[i])&1) r32|=1LL<<dep2[i];
7096     }
7097     //requires_32bit[i]=r32;
7098     pr32[i]=r32;
7099     
7100     // Dirty registers which are 32-bit, require 32-bit input
7101     // as they will be written as 32-bit values
7102     for(hr=0;hr<HOST_REGS;hr++)
7103     {
7104       if(regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64) {
7105         if((regs[i].was32>>regs[i].regmap_entry[hr])&(regs[i].wasdirty>>hr)&1) {
7106           if(!((unneeded_reg_upper[i]>>regs[i].regmap_entry[hr])&1))
7107           pr32[i]|=1LL<<regs[i].regmap_entry[hr];
7108           //requires_32bit[i]|=1LL<<regs[i].regmap_entry[hr];
7109         }
7110       }
7111     }
7112   }
7113 }
7114
7115 // Write back dirty registers as soon as we will no longer modify them,
7116 // so that we don't end up with lots of writes at the branches.
7117 void clean_registers(int istart,int iend,int wr)
7118 {
7119   int i;
7120   int r;
7121   u_int will_dirty_i,will_dirty_next,temp_will_dirty;
7122   u_int wont_dirty_i,wont_dirty_next,temp_wont_dirty;
7123   if(iend==slen-1) {
7124     will_dirty_i=will_dirty_next=0;
7125     wont_dirty_i=wont_dirty_next=0;
7126   }else{
7127     will_dirty_i=will_dirty_next=will_dirty[iend+1];
7128     wont_dirty_i=wont_dirty_next=wont_dirty[iend+1];
7129   }
7130   for (i=iend;i>=istart;i--)
7131   {
7132     if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
7133     {
7134       if(ba[i]<start || ba[i]>=(start+slen*4))
7135       {
7136         // Branch out of this block, flush all regs
7137         if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
7138         {
7139           // Unconditional branch
7140           will_dirty_i=0;
7141           wont_dirty_i=0;
7142           // Merge in delay slot (will dirty)
7143           for(r=0;r<HOST_REGS;r++) {
7144             if(r!=EXCLUDE_REG) {
7145               if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7146               if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7147               if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7148               if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7149               if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7150               if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7151               if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7152               if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7153               if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7154               if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7155               if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7156               if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7157               if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7158               if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7159             }
7160           }
7161         }
7162         else
7163         {
7164           // Conditional branch
7165           will_dirty_i=0;
7166           wont_dirty_i=wont_dirty_next;
7167           // Merge in delay slot (will dirty)
7168           for(r=0;r<HOST_REGS;r++) {
7169             if(r!=EXCLUDE_REG) {
7170               if(!likely[i]) {
7171                 // Might not dirty if likely branch is not taken
7172                 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7173                 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7174                 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7175                 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7176                 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7177                 if(branch_regs[i].regmap[r]==0) will_dirty_i&=~(1<<r);
7178                 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7179                 //if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7180                 //if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7181                 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7182                 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7183                 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7184                 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7185                 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7186               }
7187             }
7188           }
7189         }
7190         // Merge in delay slot (wont dirty)
7191         for(r=0;r<HOST_REGS;r++) {
7192           if(r!=EXCLUDE_REG) {
7193             if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7194             if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7195             if((regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7196             if((regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7197             if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7198             if((branch_regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7199             if((branch_regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7200             if((branch_regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7201             if((branch_regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7202             if(branch_regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7203           }
7204         }
7205         if(wr) {
7206           #ifndef DESTRUCTIVE_WRITEBACK
7207           branch_regs[i].dirty&=wont_dirty_i;
7208           #endif
7209           branch_regs[i].dirty|=will_dirty_i;
7210         }
7211       }
7212       else
7213       {
7214         // Internal branch
7215         if(ba[i]<=start+i*4) {
7216           // Backward branch
7217           if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
7218           {
7219             // Unconditional branch
7220             temp_will_dirty=0;
7221             temp_wont_dirty=0;
7222             // Merge in delay slot (will dirty)
7223             for(r=0;r<HOST_REGS;r++) {
7224               if(r!=EXCLUDE_REG) {
7225                 if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7226                 if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7227                 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7228                 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7229                 if((branch_regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7230                 if(branch_regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
7231                 if(branch_regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7232                 if((regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7233                 if((regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7234                 if((regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7235                 if((regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7236                 if((regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7237                 if(regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
7238                 if(regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7239               }
7240             }
7241           } else {
7242             // Conditional branch (not taken case)
7243             temp_will_dirty=will_dirty_next;
7244             temp_wont_dirty=wont_dirty_next;
7245             // Merge in delay slot (will dirty)
7246             for(r=0;r<HOST_REGS;r++) {
7247               if(r!=EXCLUDE_REG) {
7248                 if(!likely[i]) {
7249                   // Will not dirty if likely branch is not taken
7250                   if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7251                   if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7252                   if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7253                   if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7254                   if((branch_regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7255                   if(branch_regs[i].regmap[r]==0) temp_will_dirty&=~(1<<r);
7256                   if(branch_regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7257                   //if((regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7258                   //if((regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7259                   if((regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7260                   if((regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7261                   if((regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7262                   if(regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
7263                   if(regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7264                 }
7265               }
7266             }
7267           }
7268           // Merge in delay slot (wont dirty)
7269           for(r=0;r<HOST_REGS;r++) {
7270             if(r!=EXCLUDE_REG) {
7271               if((regs[i].regmap[r]&63)==rt1[i]) temp_wont_dirty|=1<<r;
7272               if((regs[i].regmap[r]&63)==rt2[i]) temp_wont_dirty|=1<<r;
7273               if((regs[i].regmap[r]&63)==rt1[i+1]) temp_wont_dirty|=1<<r;
7274               if((regs[i].regmap[r]&63)==rt2[i+1]) temp_wont_dirty|=1<<r;
7275               if(regs[i].regmap[r]==CCREG) temp_wont_dirty|=1<<r;
7276               if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_wont_dirty|=1<<r;
7277               if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_wont_dirty|=1<<r;
7278               if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_wont_dirty|=1<<r;
7279               if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_wont_dirty|=1<<r;
7280               if(branch_regs[i].regmap[r]==CCREG) temp_wont_dirty|=1<<r;
7281             }
7282           }
7283           // Deal with changed mappings
7284           if(i<iend) {
7285             for(r=0;r<HOST_REGS;r++) {
7286               if(r!=EXCLUDE_REG) {
7287                 if(regs[i].regmap[r]!=regmap_pre[i][r]) {
7288                   temp_will_dirty&=~(1<<r);
7289                   temp_wont_dirty&=~(1<<r);
7290                   if((regmap_pre[i][r]&63)>0 && (regmap_pre[i][r]&63)<34) {
7291                     temp_will_dirty|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7292                     temp_wont_dirty|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7293                   } else {
7294                     temp_will_dirty|=1<<r;
7295                     temp_wont_dirty|=1<<r;
7296                   }
7297                 }
7298               }
7299             }
7300           }
7301           if(wr) {
7302             will_dirty[i]=temp_will_dirty;
7303             wont_dirty[i]=temp_wont_dirty;
7304             clean_registers((ba[i]-start)>>2,i-1,0);
7305           }else{
7306             // Limit recursion.  It can take an excessive amount
7307             // of time if there are a lot of nested loops.
7308             will_dirty[(ba[i]-start)>>2]=0;
7309             wont_dirty[(ba[i]-start)>>2]=-1;
7310           }
7311         }
7312         /*else*/ if(1)
7313         {
7314           if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
7315           {
7316             // Unconditional branch
7317             will_dirty_i=0;
7318             wont_dirty_i=0;
7319           //if(ba[i]>start+i*4) { // Disable recursion (for debugging)
7320             for(r=0;r<HOST_REGS;r++) {
7321               if(r!=EXCLUDE_REG) {
7322                 if(branch_regs[i].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
7323                   will_dirty_i|=will_dirty[(ba[i]-start)>>2]&(1<<r);
7324                   wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
7325                 }
7326               }
7327             }
7328           //}
7329             // Merge in delay slot
7330             for(r=0;r<HOST_REGS;r++) {
7331               if(r!=EXCLUDE_REG) {
7332                 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7333                 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7334                 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7335                 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7336                 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7337                 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7338                 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7339                 if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7340                 if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7341                 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7342                 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7343                 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7344                 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7345                 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7346               }
7347             }
7348           } else {
7349             // Conditional branch
7350             will_dirty_i=will_dirty_next;
7351             wont_dirty_i=wont_dirty_next;
7352           //if(ba[i]>start+i*4) { // Disable recursion (for debugging)
7353             for(r=0;r<HOST_REGS;r++) {
7354               if(r!=EXCLUDE_REG) {
7355                 if(branch_regs[i].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
7356                   will_dirty_i&=will_dirty[(ba[i]-start)>>2]&(1<<r);
7357                   wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
7358                 }
7359                 else
7360                 {
7361                   will_dirty_i&=~(1<<r);
7362                 }
7363                 // Treat delay slot as part of branch too
7364                 /*if(regs[i+1].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
7365                   will_dirty[i+1]&=will_dirty[(ba[i]-start)>>2]&(1<<r);
7366                   wont_dirty[i+1]|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
7367                 }
7368                 else
7369                 {
7370                   will_dirty[i+1]&=~(1<<r);
7371                 }*/
7372               }
7373             }
7374           //}
7375             // Merge in delay slot
7376             for(r=0;r<HOST_REGS;r++) {
7377               if(r!=EXCLUDE_REG) {
7378                 if(!likely[i]) {
7379                   // Might not dirty if likely branch is not taken
7380                   if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7381                   if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7382                   if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7383                   if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7384                   if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7385                   if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7386                   if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7387                   //if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7388                   //if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7389                   if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7390                   if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7391                   if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7392                   if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7393                   if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7394                 }
7395               }
7396             }
7397           }
7398           // Merge in delay slot
7399           for(r=0;r<HOST_REGS;r++) {
7400             if(r!=EXCLUDE_REG) {
7401               if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7402               if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7403               if((regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7404               if((regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7405               if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7406               if((branch_regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7407               if((branch_regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7408               if((branch_regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7409               if((branch_regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7410               if(branch_regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7411             }
7412           }
7413           if(wr) {
7414             #ifndef DESTRUCTIVE_WRITEBACK
7415             branch_regs[i].dirty&=wont_dirty_i;
7416             #endif
7417             branch_regs[i].dirty|=will_dirty_i;
7418           }
7419         }
7420       }
7421     }
7422     else if(itype[i]==SYSCALL||itype[i]==HLECALL)
7423     {
7424       // SYSCALL instruction (software interrupt)
7425       will_dirty_i=0;
7426       wont_dirty_i=0;
7427     }
7428     else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
7429     {
7430       // ERET instruction (return from interrupt)
7431       will_dirty_i=0;
7432       wont_dirty_i=0;
7433     }
7434     will_dirty_next=will_dirty_i;
7435     wont_dirty_next=wont_dirty_i;
7436     for(r=0;r<HOST_REGS;r++) {
7437       if(r!=EXCLUDE_REG) {
7438         if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7439         if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7440         if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7441         if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7442         if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7443         if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7444         if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7445         if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7446         if(i>istart) {
7447           if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=FJUMP) 
7448           {
7449             // Don't store a register immediately after writing it,
7450             // may prevent dual-issue.
7451             if((regs[i].regmap[r]&63)==rt1[i-1]) wont_dirty_i|=1<<r;
7452             if((regs[i].regmap[r]&63)==rt2[i-1]) wont_dirty_i|=1<<r;
7453           }
7454         }
7455       }
7456     }
7457     // Save it
7458     will_dirty[i]=will_dirty_i;
7459     wont_dirty[i]=wont_dirty_i;
7460     // Mark registers that won't be dirtied as not dirty
7461     if(wr) {
7462       /*printf("wr (%d,%d) %x will:",istart,iend,start+i*4);
7463       for(r=0;r<HOST_REGS;r++) {
7464         if((will_dirty_i>>r)&1) {
7465           printf(" r%d",r);
7466         }
7467       }
7468       printf("\n");*/
7469
7470       //if(i==istart||(itype[i-1]!=RJUMP&&itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=FJUMP)) {
7471         regs[i].dirty|=will_dirty_i;
7472         #ifndef DESTRUCTIVE_WRITEBACK
7473         regs[i].dirty&=wont_dirty_i;
7474         if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
7475         {
7476           if(i<iend-1&&itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000) {
7477             for(r=0;r<HOST_REGS;r++) {
7478               if(r!=EXCLUDE_REG) {
7479                 if(regs[i].regmap[r]==regmap_pre[i+2][r]) {
7480                   regs[i+2].wasdirty&=wont_dirty_i|~(1<<r);
7481                 }else {/*printf("i: %x (%d) mismatch(+2): %d\n",start+i*4,i,r);/*assert(!((wont_dirty_i>>r)&1));*/}
7482               }
7483             }
7484           }
7485         }
7486         else
7487         {
7488           if(i<iend) {
7489             for(r=0;r<HOST_REGS;r++) {
7490               if(r!=EXCLUDE_REG) {
7491                 if(regs[i].regmap[r]==regmap_pre[i+1][r]) {
7492                   regs[i+1].wasdirty&=wont_dirty_i|~(1<<r);
7493                 }else {/*printf("i: %x (%d) mismatch(+1): %d\n",start+i*4,i,r);/*assert(!((wont_dirty_i>>r)&1));*/}
7494               }
7495             }
7496           }
7497         }
7498         #endif
7499       //}
7500     }
7501     // Deal with changed mappings
7502     temp_will_dirty=will_dirty_i;
7503     temp_wont_dirty=wont_dirty_i;
7504     for(r=0;r<HOST_REGS;r++) {
7505       if(r!=EXCLUDE_REG) {
7506         int nr;
7507         if(regs[i].regmap[r]==regmap_pre[i][r]) {
7508           if(wr) {
7509             #ifndef DESTRUCTIVE_WRITEBACK
7510             regs[i].wasdirty&=wont_dirty_i|~(1<<r);
7511             #endif
7512             regs[i].wasdirty|=will_dirty_i&(1<<r);
7513           }
7514         }
7515         else if((nr=get_reg(regs[i].regmap,regmap_pre[i][r]))>=0) {
7516           // Register moved to a different register
7517           will_dirty_i&=~(1<<r);
7518           wont_dirty_i&=~(1<<r);
7519           will_dirty_i|=((temp_will_dirty>>nr)&1)<<r;
7520           wont_dirty_i|=((temp_wont_dirty>>nr)&1)<<r;
7521           if(wr) {
7522             #ifndef DESTRUCTIVE_WRITEBACK
7523             regs[i].wasdirty&=wont_dirty_i|~(1<<r);
7524             #endif
7525             regs[i].wasdirty|=will_dirty_i&(1<<r);
7526           }
7527         }
7528         else {
7529           will_dirty_i&=~(1<<r);
7530           wont_dirty_i&=~(1<<r);
7531           if((regmap_pre[i][r]&63)>0 && (regmap_pre[i][r]&63)<34) {
7532             will_dirty_i|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7533             wont_dirty_i|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7534           } else {
7535             wont_dirty_i|=1<<r;
7536             /*printf("i: %x (%d) mismatch: %d\n",start+i*4,i,r);/*assert(!((will_dirty>>r)&1));*/
7537           }
7538         }
7539       }
7540     }
7541   }
7542 }
7543
7544   /* disassembly */
7545 void disassemble_inst(int i)
7546 {
7547     if (bt[i]) printf("*"); else printf(" ");
7548     switch(itype[i]) {
7549       case UJUMP:
7550         printf (" %x: %s %8x\n",start+i*4,insn[i],ba[i]);break;
7551       case CJUMP:
7552         printf (" %x: %s r%d,r%d,%8x\n",start+i*4,insn[i],rs1[i],rs2[i],i?start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14):*ba);break;
7553       case SJUMP:
7554         printf (" %x: %s r%d,%8x\n",start+i*4,insn[i],rs1[i],start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14));break;
7555       case FJUMP:
7556         printf (" %x: %s %8x\n",start+i*4,insn[i],ba[i]);break;
7557       case RJUMP:
7558         if (opcode[i]==0x9&&rt1[i]!=31)
7559           printf (" %x: %s r%d,r%d\n",start+i*4,insn[i],rt1[i],rs1[i]);
7560         else
7561           printf (" %x: %s r%d\n",start+i*4,insn[i],rs1[i]);
7562         break;
7563       case SPAN:
7564         printf (" %x: %s (pagespan) r%d,r%d,%8x\n",start+i*4,insn[i],rs1[i],rs2[i],ba[i]);break;
7565       case IMM16:
7566         if(opcode[i]==0xf) //LUI
7567           printf (" %x: %s r%d,%4x0000\n",start+i*4,insn[i],rt1[i],imm[i]&0xffff);
7568         else
7569           printf (" %x: %s r%d,r%d,%d\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
7570         break;
7571       case LOAD:
7572       case LOADLR:
7573         printf (" %x: %s r%d,r%d+%x\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
7574         break;
7575       case STORE:
7576       case STORELR:
7577         printf (" %x: %s r%d,r%d+%x\n",start+i*4,insn[i],rs2[i],rs1[i],imm[i]);
7578         break;
7579       case ALU:
7580       case SHIFT:
7581         printf (" %x: %s r%d,r%d,r%d\n",start+i*4,insn[i],rt1[i],rs1[i],rs2[i]);
7582         break;
7583       case MULTDIV:
7584         printf (" %x: %s r%d,r%d\n",start+i*4,insn[i],rs1[i],rs2[i]);
7585         break;
7586       case SHIFTIMM:
7587         printf (" %x: %s r%d,r%d,%d\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
7588         break;
7589       case MOV:
7590         if((opcode2[i]&0x1d)==0x10)
7591           printf (" %x: %s r%d\n",start+i*4,insn[i],rt1[i]);
7592         else if((opcode2[i]&0x1d)==0x11)
7593           printf (" %x: %s r%d\n",start+i*4,insn[i],rs1[i]);
7594         else
7595           printf (" %x: %s\n",start+i*4,insn[i]);
7596         break;
7597       case COP0:
7598         if(opcode2[i]==0)
7599           printf (" %x: %s r%d,cpr0[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC0
7600         else if(opcode2[i]==4)
7601           printf (" %x: %s r%d,cpr0[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC0
7602         else printf (" %x: %s\n",start+i*4,insn[i]);
7603         break;
7604       case COP1:
7605         if(opcode2[i]<3)
7606           printf (" %x: %s r%d,cpr1[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC1
7607         else if(opcode2[i]>3)
7608           printf (" %x: %s r%d,cpr1[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC1
7609         else printf (" %x: %s\n",start+i*4,insn[i]);
7610         break;
7611       case COP2:
7612         if(opcode2[i]<3)
7613           printf (" %x: %s r%d,cpr2[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC2
7614         else if(opcode2[i]>3)
7615           printf (" %x: %s r%d,cpr2[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC2
7616         else printf (" %x: %s\n",start+i*4,insn[i]);
7617         break;
7618       case C1LS:
7619         printf (" %x: %s cpr1[%d],r%d+%x\n",start+i*4,insn[i],(source[i]>>16)&0x1f,rs1[i],imm[i]);
7620         break;
7621       case C2LS:
7622         printf (" %x: %s cpr2[%d],r%d+%x\n",start+i*4,insn[i],(source[i]>>16)&0x1f,rs1[i],imm[i]);
7623         break;
7624       default:
7625         //printf (" %s %8x\n",insn[i],source[i]);
7626         printf (" %x: %s\n",start+i*4,insn[i]);
7627     }
7628 }
7629
7630 void new_dynarec_init()
7631 {
7632   printf("Init new dynarec\n");
7633   out=(u_char *)BASE_ADDR;
7634   if (mmap (out, 1<<TARGET_SIZE_2,
7635             PROT_READ | PROT_WRITE | PROT_EXEC,
7636             MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS,
7637             -1, 0) <= 0) {printf("mmap() failed\n");}
7638 #ifdef MUPEN64
7639   rdword=&readmem_dword;
7640   fake_pc.f.r.rs=&readmem_dword;
7641   fake_pc.f.r.rt=&readmem_dword;
7642   fake_pc.f.r.rd=&readmem_dword;
7643 #endif
7644   int n;
7645   for(n=0x80000;n<0x80800;n++)
7646     invalid_code[n]=1;
7647   for(n=0;n<65536;n++)
7648     hash_table[n][0]=hash_table[n][2]=-1;
7649   memset(mini_ht,-1,sizeof(mini_ht));
7650   memset(restore_candidate,0,sizeof(restore_candidate));
7651   copy=shadow;
7652   expirep=16384; // Expiry pointer, +2 blocks
7653   pending_exception=0;
7654   literalcount=0;
7655 #ifdef HOST_IMM8
7656   // Copy this into local area so we don't have to put it in every literal pool
7657   invc_ptr=invalid_code;
7658 #endif
7659   stop_after_jal=0;
7660   // TLB
7661   using_tlb=0;
7662   for(n=0;n<524288;n++) // 0 .. 0x7FFFFFFF
7663     memory_map[n]=-1;
7664   for(n=524288;n<526336;n++) // 0x80000000 .. 0x807FFFFF
7665     memory_map[n]=((u_int)rdram-0x80000000)>>2;
7666   for(n=526336;n<1048576;n++) // 0x80800000 .. 0xFFFFFFFF
7667     memory_map[n]=-1;
7668 #ifdef MUPEN64
7669   for(n=0;n<0x8000;n++) { // 0 .. 0x7FFFFFFF
7670     writemem[n] = write_nomem_new;
7671     writememb[n] = write_nomemb_new;
7672     writememh[n] = write_nomemh_new;
7673 #ifndef FORCE32
7674     writememd[n] = write_nomemd_new;
7675 #endif
7676     readmem[n] = read_nomem_new;
7677     readmemb[n] = read_nomemb_new;
7678     readmemh[n] = read_nomemh_new;
7679 #ifndef FORCE32
7680     readmemd[n] = read_nomemd_new;
7681 #endif
7682   }
7683   for(n=0x8000;n<0x8080;n++) { // 0x80000000 .. 0x807FFFFF
7684     writemem[n] = write_rdram_new;
7685     writememb[n] = write_rdramb_new;
7686     writememh[n] = write_rdramh_new;
7687 #ifndef FORCE32
7688     writememd[n] = write_rdramd_new;
7689 #endif
7690   }
7691   for(n=0xC000;n<0x10000;n++) { // 0xC0000000 .. 0xFFFFFFFF
7692     writemem[n] = write_nomem_new;
7693     writememb[n] = write_nomemb_new;
7694     writememh[n] = write_nomemh_new;
7695 #ifndef FORCE32
7696     writememd[n] = write_nomemd_new;
7697 #endif
7698     readmem[n] = read_nomem_new;
7699     readmemb[n] = read_nomemb_new;
7700     readmemh[n] = read_nomemh_new;
7701 #ifndef FORCE32
7702     readmemd[n] = read_nomemd_new;
7703 #endif
7704   }
7705 #endif
7706   tlb_hacks();
7707   arch_init();
7708 }
7709
7710 void new_dynarec_cleanup()
7711 {
7712   int n;
7713   if (munmap ((void *)BASE_ADDR, 1<<TARGET_SIZE_2) < 0) {printf("munmap() failed\n");}
7714   for(n=0;n<4096;n++) ll_clear(jump_in+n);
7715   for(n=0;n<4096;n++) ll_clear(jump_out+n);
7716   for(n=0;n<4096;n++) ll_clear(jump_dirty+n);
7717   #ifdef ROM_COPY
7718   if (munmap (ROM_COPY, 67108864) < 0) {printf("munmap() failed\n");}
7719   #endif
7720 }
7721
7722 int new_recompile_block(int addr)
7723 {
7724 /*
7725   if(addr==0x800cd050) {
7726     int block;
7727     for(block=0x80000;block<0x80800;block++) invalidate_block(block);
7728     int n;
7729     for(n=0;n<=2048;n++) ll_clear(jump_dirty+n);
7730   }
7731 */
7732   //if(Count==365117028) tracedebug=1;
7733   assem_debug("NOTCOMPILED: addr = %x -> %x\n", (int)addr, (int)out);
7734   //printf("NOTCOMPILED: addr = %x -> %x\n", (int)addr, (int)out);
7735   //printf("TRACE: count=%d next=%d (compile %x)\n",Count,next_interupt,addr);
7736   //if(debug) 
7737   //printf("TRACE: count=%d next=%d (checksum %x)\n",Count,next_interupt,mchecksum());
7738   //printf("fpu mapping=%x enabled=%x\n",(Status & 0x04000000)>>26,(Status & 0x20000000)>>29);
7739   /*if(Count>=312978186) {
7740     rlist();
7741   }*/
7742   //rlist();
7743   start = (u_int)addr&~3;
7744   //assert(((u_int)addr&1)==0);
7745 #ifdef PCSX
7746   if (Config.HLE && start == 0x80001000) // hlecall
7747   {
7748     // XXX: is this enough? Maybe check hleSoftCall?
7749     u_int beginning=(u_int)out;
7750     u_int page=get_page(start);
7751     invalid_code[start>>12]=0;
7752     emit_movimm(start,0);
7753     emit_writeword(0,(int)&pcaddr);
7754     emit_jmp((int)new_dyna_leave);
7755 #ifdef __arm__
7756     __clear_cache((void *)beginning,out);
7757 #endif
7758     ll_add(jump_in+page,start,(void *)beginning);
7759     return 0;
7760   }
7761   else if ((u_int)addr < 0x00200000 ||
7762     (0xa0000000 <= addr && addr < 0xa0200000)) {
7763     // used for BIOS calls mostly?
7764     source = (u_int *)((u_int)rdram+(start&0x1fffff));
7765     pagelimit = (addr&0xa0000000)|0x00200000;
7766   }
7767   else if (!Config.HLE && (
7768 /*    (0x9fc00000 <= addr && addr < 0x9fc80000) ||*/
7769     (0xbfc00000 <= addr && addr < 0xbfc80000))) {
7770     // BIOS
7771     source = (u_int *)((u_int)psxR+(start&0x7ffff));
7772     pagelimit = (addr&0xfff00000)|0x80000;
7773   }
7774   else
7775 #endif
7776 #ifdef MUPEN64
7777   if ((int)addr >= 0xa4000000 && (int)addr < 0xa4001000) {
7778     source = (u_int *)((u_int)SP_DMEM+start-0xa4000000);
7779     pagelimit = 0xa4001000;
7780   }
7781   else
7782 #endif
7783   if ((int)addr >= 0x80000000 && (int)addr < 0x80000000+RAM_SIZE) {
7784     source = (u_int *)((u_int)rdram+start-0x80000000);
7785     pagelimit = 0x80000000+RAM_SIZE;
7786   }
7787 #ifndef DISABLE_TLB
7788   else if ((signed int)addr >= (signed int)0xC0000000) {
7789     //printf("addr=%x mm=%x\n",(u_int)addr,(memory_map[start>>12]<<2));
7790     //if(tlb_LUT_r[start>>12])
7791       //source = (u_int *)(((int)rdram)+(tlb_LUT_r[start>>12]&0xFFFFF000)+(((int)addr)&0xFFF)-0x80000000);
7792     if((signed int)memory_map[start>>12]>=0) {
7793       source = (u_int *)((u_int)(start+(memory_map[start>>12]<<2)));
7794       pagelimit=(start+4096)&0xFFFFF000;
7795       int map=memory_map[start>>12];
7796       int i;
7797       for(i=0;i<5;i++) {
7798         //printf("start: %x next: %x\n",map,memory_map[pagelimit>>12]);
7799         if((map&0xBFFFFFFF)==(memory_map[pagelimit>>12]&0xBFFFFFFF)) pagelimit+=4096;
7800       }
7801       assem_debug("pagelimit=%x\n",pagelimit);
7802       assem_debug("mapping=%x (%x)\n",memory_map[start>>12],(memory_map[start>>12]<<2)+start);
7803     }
7804     else {
7805       assem_debug("Compile at unmapped memory address: %x \n", (int)addr);
7806       //assem_debug("start: %x next: %x\n",memory_map[start>>12],memory_map[(start+4096)>>12]);
7807       return -1; // Caller will invoke exception handler
7808     }
7809     //printf("source= %x\n",(int)source);
7810   }
7811 #endif
7812   else {
7813     printf("Compile at bogus memory address: %x \n", (int)addr);
7814     exit(1);
7815   }
7816
7817   /* Pass 1: disassemble */
7818   /* Pass 2: register dependencies, branch targets */
7819   /* Pass 3: register allocation */
7820   /* Pass 4: branch dependencies */
7821   /* Pass 5: pre-alloc */
7822   /* Pass 6: optimize clean/dirty state */
7823   /* Pass 7: flag 32-bit registers */
7824   /* Pass 8: assembly */
7825   /* Pass 9: linker */
7826   /* Pass 10: garbage collection / free memory */
7827
7828   int i,j;
7829   int done=0;
7830   unsigned int type,op,op2;
7831
7832   //printf("addr = %x source = %x %x\n", addr,source,source[0]);
7833   
7834   /* Pass 1 disassembly */
7835
7836   for(i=0;!done;i++) {
7837     bt[i]=0;likely[i]=0;op2=0;
7838     opcode[i]=op=source[i]>>26;
7839     switch(op)
7840     {
7841       case 0x00: strcpy(insn[i],"special"); type=NI;
7842         op2=source[i]&0x3f;
7843         switch(op2)
7844         {
7845           case 0x00: strcpy(insn[i],"SLL"); type=SHIFTIMM; break;
7846           case 0x02: strcpy(insn[i],"SRL"); type=SHIFTIMM; break;
7847           case 0x03: strcpy(insn[i],"SRA"); type=SHIFTIMM; break;
7848           case 0x04: strcpy(insn[i],"SLLV"); type=SHIFT; break;
7849           case 0x06: strcpy(insn[i],"SRLV"); type=SHIFT; break;
7850           case 0x07: strcpy(insn[i],"SRAV"); type=SHIFT; break;
7851           case 0x08: strcpy(insn[i],"JR"); type=RJUMP; break;
7852           case 0x09: strcpy(insn[i],"JALR"); type=RJUMP; break;
7853           case 0x0C: strcpy(insn[i],"SYSCALL"); type=SYSCALL; break;
7854           case 0x0D: strcpy(insn[i],"BREAK"); type=OTHER; break;
7855           case 0x0F: strcpy(insn[i],"SYNC"); type=OTHER; break;
7856           case 0x10: strcpy(insn[i],"MFHI"); type=MOV; break;
7857           case 0x11: strcpy(insn[i],"MTHI"); type=MOV; break;
7858           case 0x12: strcpy(insn[i],"MFLO"); type=MOV; break;
7859           case 0x13: strcpy(insn[i],"MTLO"); type=MOV; break;
7860           case 0x14: strcpy(insn[i],"DSLLV"); type=SHIFT; break;
7861           case 0x16: strcpy(insn[i],"DSRLV"); type=SHIFT; break;
7862           case 0x17: strcpy(insn[i],"DSRAV"); type=SHIFT; break;
7863           case 0x18: strcpy(insn[i],"MULT"); type=MULTDIV; break;
7864           case 0x19: strcpy(insn[i],"MULTU"); type=MULTDIV; break;
7865           case 0x1A: strcpy(insn[i],"DIV"); type=MULTDIV; break;
7866           case 0x1B: strcpy(insn[i],"DIVU"); type=MULTDIV; break;
7867           case 0x1C: strcpy(insn[i],"DMULT"); type=MULTDIV; break;
7868           case 0x1D: strcpy(insn[i],"DMULTU"); type=MULTDIV; break;
7869           case 0x1E: strcpy(insn[i],"DDIV"); type=MULTDIV; break;
7870           case 0x1F: strcpy(insn[i],"DDIVU"); type=MULTDIV; break;
7871           case 0x20: strcpy(insn[i],"ADD"); type=ALU; break;
7872           case 0x21: strcpy(insn[i],"ADDU"); type=ALU; break;
7873           case 0x22: strcpy(insn[i],"SUB"); type=ALU; break;
7874           case 0x23: strcpy(insn[i],"SUBU"); type=ALU; break;
7875           case 0x24: strcpy(insn[i],"AND"); type=ALU; break;
7876           case 0x25: strcpy(insn[i],"OR"); type=ALU; break;
7877           case 0x26: strcpy(insn[i],"XOR"); type=ALU; break;
7878           case 0x27: strcpy(insn[i],"NOR"); type=ALU; break;
7879           case 0x2A: strcpy(insn[i],"SLT"); type=ALU; break;
7880           case 0x2B: strcpy(insn[i],"SLTU"); type=ALU; break;
7881           case 0x2C: strcpy(insn[i],"DADD"); type=ALU; break;
7882           case 0x2D: strcpy(insn[i],"DADDU"); type=ALU; break;
7883           case 0x2E: strcpy(insn[i],"DSUB"); type=ALU; break;
7884           case 0x2F: strcpy(insn[i],"DSUBU"); type=ALU; break;
7885           case 0x30: strcpy(insn[i],"TGE"); type=NI; break;
7886           case 0x31: strcpy(insn[i],"TGEU"); type=NI; break;
7887           case 0x32: strcpy(insn[i],"TLT"); type=NI; break;
7888           case 0x33: strcpy(insn[i],"TLTU"); type=NI; break;
7889           case 0x34: strcpy(insn[i],"TEQ"); type=NI; break;
7890           case 0x36: strcpy(insn[i],"TNE"); type=NI; break;
7891           case 0x38: strcpy(insn[i],"DSLL"); type=SHIFTIMM; break;
7892           case 0x3A: strcpy(insn[i],"DSRL"); type=SHIFTIMM; break;
7893           case 0x3B: strcpy(insn[i],"DSRA"); type=SHIFTIMM; break;
7894           case 0x3C: strcpy(insn[i],"DSLL32"); type=SHIFTIMM; break;
7895           case 0x3E: strcpy(insn[i],"DSRL32"); type=SHIFTIMM; break;
7896           case 0x3F: strcpy(insn[i],"DSRA32"); type=SHIFTIMM; break;
7897         }
7898         break;
7899       case 0x01: strcpy(insn[i],"regimm"); type=NI;
7900         op2=(source[i]>>16)&0x1f;
7901         switch(op2)
7902         {
7903           case 0x00: strcpy(insn[i],"BLTZ"); type=SJUMP; break;
7904           case 0x01: strcpy(insn[i],"BGEZ"); type=SJUMP; break;
7905           case 0x02: strcpy(insn[i],"BLTZL"); type=SJUMP; break;
7906           case 0x03: strcpy(insn[i],"BGEZL"); type=SJUMP; break;
7907           case 0x08: strcpy(insn[i],"TGEI"); type=NI; break;
7908           case 0x09: strcpy(insn[i],"TGEIU"); type=NI; break;
7909           case 0x0A: strcpy(insn[i],"TLTI"); type=NI; break;
7910           case 0x0B: strcpy(insn[i],"TLTIU"); type=NI; break;
7911           case 0x0C: strcpy(insn[i],"TEQI"); type=NI; break;
7912           case 0x0E: strcpy(insn[i],"TNEI"); type=NI; break;
7913           case 0x10: strcpy(insn[i],"BLTZAL"); type=SJUMP; break;
7914           case 0x11: strcpy(insn[i],"BGEZAL"); type=SJUMP; break;
7915           case 0x12: strcpy(insn[i],"BLTZALL"); type=SJUMP; break;
7916           case 0x13: strcpy(insn[i],"BGEZALL"); type=SJUMP; break;
7917         }
7918         break;
7919       case 0x02: strcpy(insn[i],"J"); type=UJUMP; break;
7920       case 0x03: strcpy(insn[i],"JAL"); type=UJUMP; break;
7921       case 0x04: strcpy(insn[i],"BEQ"); type=CJUMP; break;
7922       case 0x05: strcpy(insn[i],"BNE"); type=CJUMP; break;
7923       case 0x06: strcpy(insn[i],"BLEZ"); type=CJUMP; break;
7924       case 0x07: strcpy(insn[i],"BGTZ"); type=CJUMP; break;
7925       case 0x08: strcpy(insn[i],"ADDI"); type=IMM16; break;
7926       case 0x09: strcpy(insn[i],"ADDIU"); type=IMM16; break;
7927       case 0x0A: strcpy(insn[i],"SLTI"); type=IMM16; break;
7928       case 0x0B: strcpy(insn[i],"SLTIU"); type=IMM16; break;
7929       case 0x0C: strcpy(insn[i],"ANDI"); type=IMM16; break;
7930       case 0x0D: strcpy(insn[i],"ORI"); type=IMM16; break;
7931       case 0x0E: strcpy(insn[i],"XORI"); type=IMM16; break;
7932       case 0x0F: strcpy(insn[i],"LUI"); type=IMM16; break;
7933       case 0x10: strcpy(insn[i],"cop0"); type=NI;
7934         op2=(source[i]>>21)&0x1f;
7935         switch(op2)
7936         {
7937           case 0x00: strcpy(insn[i],"MFC0"); type=COP0; break;
7938           case 0x04: strcpy(insn[i],"MTC0"); type=COP0; break;
7939           case 0x10: strcpy(insn[i],"tlb"); type=NI;
7940           switch(source[i]&0x3f)
7941           {
7942             case 0x01: strcpy(insn[i],"TLBR"); type=COP0; break;
7943             case 0x02: strcpy(insn[i],"TLBWI"); type=COP0; break;
7944             case 0x06: strcpy(insn[i],"TLBWR"); type=COP0; break;
7945             case 0x08: strcpy(insn[i],"TLBP"); type=COP0; break;
7946 #ifdef PCSX
7947             case 0x10: strcpy(insn[i],"RFE"); type=COP0; break;
7948 #else
7949             case 0x18: strcpy(insn[i],"ERET"); type=COP0; break;
7950 #endif
7951           }
7952         }
7953         break;
7954       case 0x11: strcpy(insn[i],"cop1"); type=NI;
7955         op2=(source[i]>>21)&0x1f;
7956         switch(op2)
7957         {
7958           case 0x00: strcpy(insn[i],"MFC1"); type=COP1; break;
7959           case 0x01: strcpy(insn[i],"DMFC1"); type=COP1; break;
7960           case 0x02: strcpy(insn[i],"CFC1"); type=COP1; break;
7961           case 0x04: strcpy(insn[i],"MTC1"); type=COP1; break;
7962           case 0x05: strcpy(insn[i],"DMTC1"); type=COP1; break;
7963           case 0x06: strcpy(insn[i],"CTC1"); type=COP1; break;
7964           case 0x08: strcpy(insn[i],"BC1"); type=FJUMP;
7965           switch((source[i]>>16)&0x3)
7966           {
7967             case 0x00: strcpy(insn[i],"BC1F"); break;
7968             case 0x01: strcpy(insn[i],"BC1T"); break;
7969             case 0x02: strcpy(insn[i],"BC1FL"); break;
7970             case 0x03: strcpy(insn[i],"BC1TL"); break;
7971           }
7972           break;
7973           case 0x10: strcpy(insn[i],"C1.S"); type=NI;
7974           switch(source[i]&0x3f)
7975           {
7976             case 0x00: strcpy(insn[i],"ADD.S"); type=FLOAT; break;
7977             case 0x01: strcpy(insn[i],"SUB.S"); type=FLOAT; break;
7978             case 0x02: strcpy(insn[i],"MUL.S"); type=FLOAT; break;
7979             case 0x03: strcpy(insn[i],"DIV.S"); type=FLOAT; break;
7980             case 0x04: strcpy(insn[i],"SQRT.S"); type=FLOAT; break;
7981             case 0x05: strcpy(insn[i],"ABS.S"); type=FLOAT; break;
7982             case 0x06: strcpy(insn[i],"MOV.S"); type=FLOAT; break;
7983             case 0x07: strcpy(insn[i],"NEG.S"); type=FLOAT; break;
7984             case 0x08: strcpy(insn[i],"ROUND.L.S"); type=FCONV; break;
7985             case 0x09: strcpy(insn[i],"TRUNC.L.S"); type=FCONV; break;
7986             case 0x0A: strcpy(insn[i],"CEIL.L.S"); type=FCONV; break;
7987             case 0x0B: strcpy(insn[i],"FLOOR.L.S"); type=FCONV; break;
7988             case 0x0C: strcpy(insn[i],"ROUND.W.S"); type=FCONV; break;
7989             case 0x0D: strcpy(insn[i],"TRUNC.W.S"); type=FCONV; break;
7990             case 0x0E: strcpy(insn[i],"CEIL.W.S"); type=FCONV; break;
7991             case 0x0F: strcpy(insn[i],"FLOOR.W.S"); type=FCONV; break;
7992             case 0x21: strcpy(insn[i],"CVT.D.S"); type=FCONV; break;
7993             case 0x24: strcpy(insn[i],"CVT.W.S"); type=FCONV; break;
7994             case 0x25: strcpy(insn[i],"CVT.L.S"); type=FCONV; break;
7995             case 0x30: strcpy(insn[i],"C.F.S"); type=FCOMP; break;
7996             case 0x31: strcpy(insn[i],"C.UN.S"); type=FCOMP; break;
7997             case 0x32: strcpy(insn[i],"C.EQ.S"); type=FCOMP; break;
7998             case 0x33: strcpy(insn[i],"C.UEQ.S"); type=FCOMP; break;
7999             case 0x34: strcpy(insn[i],"C.OLT.S"); type=FCOMP; break;
8000             case 0x35: strcpy(insn[i],"C.ULT.S"); type=FCOMP; break;
8001             case 0x36: strcpy(insn[i],"C.OLE.S"); type=FCOMP; break;
8002             case 0x37: strcpy(insn[i],"C.ULE.S"); type=FCOMP; break;
8003             case 0x38: strcpy(insn[i],"C.SF.S"); type=FCOMP; break;
8004             case 0x39: strcpy(insn[i],"C.NGLE.S"); type=FCOMP; break;
8005             case 0x3A: strcpy(insn[i],"C.SEQ.S"); type=FCOMP; break;
8006             case 0x3B: strcpy(insn[i],"C.NGL.S"); type=FCOMP; break;
8007             case 0x3C: strcpy(insn[i],"C.LT.S"); type=FCOMP; break;
8008             case 0x3D: strcpy(insn[i],"C.NGE.S"); type=FCOMP; break;
8009             case 0x3E: strcpy(insn[i],"C.LE.S"); type=FCOMP; break;
8010             case 0x3F: strcpy(insn[i],"C.NGT.S"); type=FCOMP; break;
8011           }
8012           break;
8013           case 0x11: strcpy(insn[i],"C1.D"); type=NI;
8014           switch(source[i]&0x3f)
8015           {
8016             case 0x00: strcpy(insn[i],"ADD.D"); type=FLOAT; break;
8017             case 0x01: strcpy(insn[i],"SUB.D"); type=FLOAT; break;
8018             case 0x02: strcpy(insn[i],"MUL.D"); type=FLOAT; break;
8019             case 0x03: strcpy(insn[i],"DIV.D"); type=FLOAT; break;
8020             case 0x04: strcpy(insn[i],"SQRT.D"); type=FLOAT; break;
8021             case 0x05: strcpy(insn[i],"ABS.D"); type=FLOAT; break;
8022             case 0x06: strcpy(insn[i],"MOV.D"); type=FLOAT; break;
8023             case 0x07: strcpy(insn[i],"NEG.D"); type=FLOAT; break;
8024             case 0x08: strcpy(insn[i],"ROUND.L.D"); type=FCONV; break;
8025             case 0x09: strcpy(insn[i],"TRUNC.L.D"); type=FCONV; break;
8026             case 0x0A: strcpy(insn[i],"CEIL.L.D"); type=FCONV; break;
8027             case 0x0B: strcpy(insn[i],"FLOOR.L.D"); type=FCONV; break;
8028             case 0x0C: strcpy(insn[i],"ROUND.W.D"); type=FCONV; break;
8029             case 0x0D: strcpy(insn[i],"TRUNC.W.D"); type=FCONV; break;
8030             case 0x0E: strcpy(insn[i],"CEIL.W.D"); type=FCONV; break;
8031             case 0x0F: strcpy(insn[i],"FLOOR.W.D"); type=FCONV; break;
8032             case 0x20: strcpy(insn[i],"CVT.S.D"); type=FCONV; break;
8033             case 0x24: strcpy(insn[i],"CVT.W.D"); type=FCONV; break;
8034             case 0x25: strcpy(insn[i],"CVT.L.D"); type=FCONV; break;
8035             case 0x30: strcpy(insn[i],"C.F.D"); type=FCOMP; break;
8036             case 0x31: strcpy(insn[i],"C.UN.D"); type=FCOMP; break;
8037             case 0x32: strcpy(insn[i],"C.EQ.D"); type=FCOMP; break;
8038             case 0x33: strcpy(insn[i],"C.UEQ.D"); type=FCOMP; break;
8039             case 0x34: strcpy(insn[i],"C.OLT.D"); type=FCOMP; break;
8040             case 0x35: strcpy(insn[i],"C.ULT.D"); type=FCOMP; break;
8041             case 0x36: strcpy(insn[i],"C.OLE.D"); type=FCOMP; break;
8042             case 0x37: strcpy(insn[i],"C.ULE.D"); type=FCOMP; break;
8043             case 0x38: strcpy(insn[i],"C.SF.D"); type=FCOMP; break;
8044             case 0x39: strcpy(insn[i],"C.NGLE.D"); type=FCOMP; break;
8045             case 0x3A: strcpy(insn[i],"C.SEQ.D"); type=FCOMP; break;
8046             case 0x3B: strcpy(insn[i],"C.NGL.D"); type=FCOMP; break;
8047             case 0x3C: strcpy(insn[i],"C.LT.D"); type=FCOMP; break;
8048             case 0x3D: strcpy(insn[i],"C.NGE.D"); type=FCOMP; break;
8049             case 0x3E: strcpy(insn[i],"C.LE.D"); type=FCOMP; break;
8050             case 0x3F: strcpy(insn[i],"C.NGT.D"); type=FCOMP; break;
8051           }
8052           break;
8053           case 0x14: strcpy(insn[i],"C1.W"); type=NI;
8054           switch(source[i]&0x3f)
8055           {
8056             case 0x20: strcpy(insn[i],"CVT.S.W"); type=FCONV; break;
8057             case 0x21: strcpy(insn[i],"CVT.D.W"); type=FCONV; break;
8058           }
8059           break;
8060           case 0x15: strcpy(insn[i],"C1.L"); type=NI;
8061           switch(source[i]&0x3f)
8062           {
8063             case 0x20: strcpy(insn[i],"CVT.S.L"); type=FCONV; break;
8064             case 0x21: strcpy(insn[i],"CVT.D.L"); type=FCONV; break;
8065           }
8066           break;
8067         }
8068         break;
8069       case 0x14: strcpy(insn[i],"BEQL"); type=CJUMP; break;
8070       case 0x15: strcpy(insn[i],"BNEL"); type=CJUMP; break;
8071       case 0x16: strcpy(insn[i],"BLEZL"); type=CJUMP; break;
8072       case 0x17: strcpy(insn[i],"BGTZL"); type=CJUMP; break;
8073 #ifndef FORCE32
8074       case 0x18: strcpy(insn[i],"DADDI"); type=IMM16; break;
8075       case 0x19: strcpy(insn[i],"DADDIU"); type=IMM16; break;
8076       case 0x1A: strcpy(insn[i],"LDL"); type=LOADLR; break;
8077       case 0x1B: strcpy(insn[i],"LDR"); type=LOADLR; break;
8078 #endif
8079       case 0x20: strcpy(insn[i],"LB"); type=LOAD; break;
8080       case 0x21: strcpy(insn[i],"LH"); type=LOAD; break;
8081       case 0x22: strcpy(insn[i],"LWL"); type=LOADLR; break;
8082       case 0x23: strcpy(insn[i],"LW"); type=LOAD; break;
8083       case 0x24: strcpy(insn[i],"LBU"); type=LOAD; break;
8084       case 0x25: strcpy(insn[i],"LHU"); type=LOAD; break;
8085       case 0x26: strcpy(insn[i],"LWR"); type=LOADLR; break;
8086       case 0x27: strcpy(insn[i],"LWU"); type=LOAD; break;
8087       case 0x28: strcpy(insn[i],"SB"); type=STORE; break;
8088       case 0x29: strcpy(insn[i],"SH"); type=STORE; break;
8089       case 0x2A: strcpy(insn[i],"SWL"); type=STORELR; break;
8090       case 0x2B: strcpy(insn[i],"SW"); type=STORE; break;
8091 #ifndef FORCE32
8092       case 0x2C: strcpy(insn[i],"SDL"); type=STORELR; break;
8093       case 0x2D: strcpy(insn[i],"SDR"); type=STORELR; break;
8094 #endif
8095       case 0x2E: strcpy(insn[i],"SWR"); type=STORELR; break;
8096       case 0x2F: strcpy(insn[i],"CACHE"); type=NOP; break;
8097       case 0x30: strcpy(insn[i],"LL"); type=NI; break;
8098       case 0x31: strcpy(insn[i],"LWC1"); type=C1LS; break;
8099 #ifndef FORCE32
8100       case 0x34: strcpy(insn[i],"LLD"); type=NI; break;
8101       case 0x35: strcpy(insn[i],"LDC1"); type=C1LS; break;
8102       case 0x37: strcpy(insn[i],"LD"); type=LOAD; break;
8103 #endif
8104       case 0x38: strcpy(insn[i],"SC"); type=NI; break;
8105       case 0x39: strcpy(insn[i],"SWC1"); type=C1LS; break;
8106 #ifndef FORCE32
8107       case 0x3C: strcpy(insn[i],"SCD"); type=NI; break;
8108       case 0x3D: strcpy(insn[i],"SDC1"); type=C1LS; break;
8109       case 0x3F: strcpy(insn[i],"SD"); type=STORE; break;
8110 #endif
8111 #ifdef PCSX
8112       case 0x12: strcpy(insn[i],"COP2"); type=NI;
8113         op2=(source[i]>>21)&0x1f;
8114         switch(op2)
8115         {
8116           case 0x00: strcpy(insn[i],"MFC2"); type=COP2; break;
8117           case 0x02: strcpy(insn[i],"CFC2"); type=COP2; break;
8118           case 0x04: strcpy(insn[i],"MTC2"); type=COP2; break;
8119           case 0x06: strcpy(insn[i],"CTC2"); type=COP2; break;
8120           default:
8121             if (gte_handlers[source[i]&0x3f]!=NULL) {
8122               snprintf(insn[i], sizeof(insn[i]), "COP2 %x", source[i]&0x3f);
8123               type=C2OP;
8124             }
8125             break;
8126         }
8127         break;
8128       case 0x32: strcpy(insn[i],"LWC2"); type=C2LS; break;
8129       case 0x3A: strcpy(insn[i],"SWC2"); type=C2LS; break;
8130       case 0x3B: strcpy(insn[i],"HLECALL"); type=HLECALL; break;
8131 #endif
8132       default: strcpy(insn[i],"???"); type=NI;
8133         printf("NI %08x @%08x (%08x)\n", source[i], addr + i*4, addr);
8134         break;
8135     }
8136     itype[i]=type;
8137     opcode2[i]=op2;
8138     /* Get registers/immediates */
8139     lt1[i]=0;
8140     us1[i]=0;
8141     us2[i]=0;
8142     dep1[i]=0;
8143     dep2[i]=0;
8144     switch(type) {
8145       case LOAD:
8146         rs1[i]=(source[i]>>21)&0x1f;
8147         rs2[i]=0;
8148         rt1[i]=(source[i]>>16)&0x1f;
8149         rt2[i]=0;
8150         imm[i]=(short)source[i];
8151         break;
8152       case STORE:
8153       case STORELR:
8154         rs1[i]=(source[i]>>21)&0x1f;
8155         rs2[i]=(source[i]>>16)&0x1f;
8156         rt1[i]=0;
8157         rt2[i]=0;
8158         imm[i]=(short)source[i];
8159         if(op==0x2c||op==0x2d||op==0x3f) us1[i]=rs2[i]; // 64-bit SDL/SDR/SD
8160         break;
8161       case LOADLR:
8162         // LWL/LWR only load part of the register,
8163         // therefore the target register must be treated as a source too
8164         rs1[i]=(source[i]>>21)&0x1f;
8165         rs2[i]=(source[i]>>16)&0x1f;
8166         rt1[i]=(source[i]>>16)&0x1f;
8167         rt2[i]=0;
8168         imm[i]=(short)source[i];
8169         if(op==0x1a||op==0x1b) us1[i]=rs2[i]; // LDR/LDL
8170         if(op==0x26) dep1[i]=rt1[i]; // LWR
8171         break;
8172       case IMM16:
8173         if (op==0x0f) rs1[i]=0; // LUI instruction has no source register
8174         else rs1[i]=(source[i]>>21)&0x1f;
8175         rs2[i]=0;
8176         rt1[i]=(source[i]>>16)&0x1f;
8177         rt2[i]=0;
8178         if(op>=0x0c&&op<=0x0e) { // ANDI/ORI/XORI
8179           imm[i]=(unsigned short)source[i];
8180         }else{
8181           imm[i]=(short)source[i];
8182         }
8183         if(op==0x18||op==0x19) us1[i]=rs1[i]; // DADDI/DADDIU
8184         if(op==0x0a||op==0x0b) us1[i]=rs1[i]; // SLTI/SLTIU
8185         if(op==0x0d||op==0x0e) dep1[i]=rs1[i]; // ORI/XORI
8186         break;
8187       case UJUMP:
8188         rs1[i]=0;
8189         rs2[i]=0;
8190         rt1[i]=0;
8191         rt2[i]=0;
8192         // The JAL instruction writes to r31.
8193         if (op&1) {
8194           rt1[i]=31;
8195         }
8196         rs2[i]=CCREG;
8197         break;
8198       case RJUMP:
8199         rs1[i]=(source[i]>>21)&0x1f;
8200         rs2[i]=0;
8201         rt1[i]=0;
8202         rt2[i]=0;
8203         // The JALR instruction writes to rd.
8204         if (op2&1) {
8205           rt1[i]=(source[i]>>11)&0x1f;
8206         }
8207         rs2[i]=CCREG;
8208         break;
8209       case CJUMP:
8210         rs1[i]=(source[i]>>21)&0x1f;
8211         rs2[i]=(source[i]>>16)&0x1f;
8212         rt1[i]=0;
8213         rt2[i]=0;
8214         if(op&2) { // BGTZ/BLEZ
8215           rs2[i]=0;
8216         }
8217         us1[i]=rs1[i];
8218         us2[i]=rs2[i];
8219         likely[i]=op>>4;
8220         break;
8221       case SJUMP:
8222         rs1[i]=(source[i]>>21)&0x1f;
8223         rs2[i]=CCREG;
8224         rt1[i]=0;
8225         rt2[i]=0;
8226         us1[i]=rs1[i];
8227         if(op2&0x10) { // BxxAL
8228           rt1[i]=31;
8229           // NOTE: If the branch is not taken, r31 is still overwritten
8230         }
8231         likely[i]=(op2&2)>>1;
8232         break;
8233       case FJUMP:
8234         rs1[i]=FSREG;
8235         rs2[i]=CSREG;
8236         rt1[i]=0;
8237         rt2[i]=0;
8238         likely[i]=((source[i])>>17)&1;
8239         break;
8240       case ALU:
8241         rs1[i]=(source[i]>>21)&0x1f; // source
8242         rs2[i]=(source[i]>>16)&0x1f; // subtract amount
8243         rt1[i]=(source[i]>>11)&0x1f; // destination
8244         rt2[i]=0;
8245         if(op2==0x2a||op2==0x2b) { // SLT/SLTU
8246           us1[i]=rs1[i];us2[i]=rs2[i];
8247         }
8248         else if(op2>=0x24&&op2<=0x27) { // AND/OR/XOR/NOR
8249           dep1[i]=rs1[i];dep2[i]=rs2[i];
8250         }
8251         else if(op2>=0x2c&&op2<=0x2f) { // DADD/DSUB
8252           dep1[i]=rs1[i];dep2[i]=rs2[i];
8253         }
8254         break;
8255       case MULTDIV:
8256         rs1[i]=(source[i]>>21)&0x1f; // source
8257         rs2[i]=(source[i]>>16)&0x1f; // divisor
8258         rt1[i]=HIREG;
8259         rt2[i]=LOREG;
8260         if (op2>=0x1c&&op2<=0x1f) { // DMULT/DMULTU/DDIV/DDIVU
8261           us1[i]=rs1[i];us2[i]=rs2[i];
8262         }
8263         break;
8264       case MOV:
8265         rs1[i]=0;
8266         rs2[i]=0;
8267         rt1[i]=0;
8268         rt2[i]=0;
8269         if(op2==0x10) rs1[i]=HIREG; // MFHI
8270         if(op2==0x11) rt1[i]=HIREG; // MTHI
8271         if(op2==0x12) rs1[i]=LOREG; // MFLO
8272         if(op2==0x13) rt1[i]=LOREG; // MTLO
8273         if((op2&0x1d)==0x10) rt1[i]=(source[i]>>11)&0x1f; // MFxx
8274         if((op2&0x1d)==0x11) rs1[i]=(source[i]>>21)&0x1f; // MTxx
8275         dep1[i]=rs1[i];
8276         break;
8277       case SHIFT:
8278         rs1[i]=(source[i]>>16)&0x1f; // target of shift
8279         rs2[i]=(source[i]>>21)&0x1f; // shift amount
8280         rt1[i]=(source[i]>>11)&0x1f; // destination
8281         rt2[i]=0;
8282         // DSLLV/DSRLV/DSRAV are 64-bit
8283         if(op2>=0x14&&op2<=0x17) us1[i]=rs1[i];
8284         break;
8285       case SHIFTIMM:
8286         rs1[i]=(source[i]>>16)&0x1f;
8287         rs2[i]=0;
8288         rt1[i]=(source[i]>>11)&0x1f;
8289         rt2[i]=0;
8290         imm[i]=(source[i]>>6)&0x1f;
8291         // DSxx32 instructions
8292         if(op2>=0x3c) imm[i]|=0x20;
8293         // DSLL/DSRL/DSRA/DSRA32/DSRL32 but not DSLL32 require 64-bit source
8294         if(op2>=0x38&&op2!=0x3c) us1[i]=rs1[i];
8295         break;
8296       case COP0:
8297         rs1[i]=0;
8298         rs2[i]=0;
8299         rt1[i]=0;
8300         rt2[i]=0;
8301         if(op2==0) rt1[i]=(source[i]>>16)&0x1F; // MFC0
8302         if(op2==4) rs1[i]=(source[i]>>16)&0x1F; // MTC0
8303         if(op2==4&&((source[i]>>11)&0x1f)==12) rt2[i]=CSREG; // Status
8304         if(op2==16) if((source[i]&0x3f)==0x18) rs2[i]=CCREG; // ERET
8305         break;
8306       case COP1:
8307       case COP2:
8308         rs1[i]=0;
8309         rs2[i]=0;
8310         rt1[i]=0;
8311         rt2[i]=0;
8312         if(op2<3) rt1[i]=(source[i]>>16)&0x1F; // MFC1/DMFC1/CFC1
8313         if(op2>3) rs1[i]=(source[i]>>16)&0x1F; // MTC1/DMTC1/CTC1
8314         if(op2==5) us1[i]=rs1[i]; // DMTC1
8315         rs2[i]=CSREG;
8316         break;
8317       case C1LS:
8318         rs1[i]=(source[i]>>21)&0x1F;
8319         rs2[i]=CSREG;
8320         rt1[i]=0;
8321         rt2[i]=0;
8322         imm[i]=(short)source[i];
8323         break;
8324       case C2LS:
8325         rs1[i]=(source[i]>>21)&0x1F;
8326         rs2[i]=0;
8327         rt1[i]=0;
8328         rt2[i]=0;
8329         imm[i]=(short)source[i];
8330         break;
8331       case FLOAT:
8332       case FCONV:
8333         rs1[i]=0;
8334         rs2[i]=CSREG;
8335         rt1[i]=0;
8336         rt2[i]=0;
8337         break;
8338       case FCOMP:
8339         rs1[i]=FSREG;
8340         rs2[i]=CSREG;
8341         rt1[i]=FSREG;
8342         rt2[i]=0;
8343         break;
8344       case SYSCALL:
8345       case HLECALL:
8346         rs1[i]=CCREG;
8347         rs2[i]=0;
8348         rt1[i]=0;
8349         rt2[i]=0;
8350         break;
8351       default:
8352         rs1[i]=0;
8353         rs2[i]=0;
8354         rt1[i]=0;
8355         rt2[i]=0;
8356     }
8357     /* Calculate branch target addresses */
8358     if(type==UJUMP)
8359       ba[i]=((start+i*4+4)&0xF0000000)|(((unsigned int)source[i]<<6)>>4);
8360     else if(type==CJUMP&&rs1[i]==rs2[i]&&(op&1))
8361       ba[i]=start+i*4+8; // Ignore never taken branch
8362     else if(type==SJUMP&&rs1[i]==0&&!(op2&1))
8363       ba[i]=start+i*4+8; // Ignore never taken branch
8364     else if(type==CJUMP||type==SJUMP||type==FJUMP)
8365       ba[i]=start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14);
8366     else ba[i]=-1;
8367     /* Is this the end of the block? */
8368     if(i>0&&(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)) {
8369       if(rt1[i-1]==0) { // Continue past subroutine call (JAL)
8370         done=1;
8371         // Does the block continue due to a branch?
8372         for(j=i-1;j>=0;j--)
8373         {
8374           if(ba[j]==start+i*4+4) done=j=0;
8375           if(ba[j]==start+i*4+8) done=j=0;
8376         }
8377       }
8378       else {
8379         if(stop_after_jal) done=1;
8380         // Stop on BREAK
8381         if((source[i+1]&0xfc00003f)==0x0d) done=1;
8382       }
8383       // Don't recompile stuff that's already compiled
8384       if(check_addr(start+i*4+4)) done=1;
8385       // Don't get too close to the limit
8386       if(i>MAXBLOCK/2) done=1;
8387     }
8388     if(itype[i]==SYSCALL&&stop_after_jal) done=1;
8389     if(itype[i]==HLECALL) done=1;
8390     //assert(i<MAXBLOCK-1);
8391     if(start+i*4==pagelimit-4) done=1;
8392     assert(start+i*4<pagelimit);
8393     if (i==MAXBLOCK-1) done=1;
8394     // Stop if we're compiling junk
8395     if(itype[i]==NI&&opcode[i]==0x11) {
8396       done=stop_after_jal=1;
8397       printf("Disabled speculative precompilation\n");
8398     }
8399   }
8400   slen=i;
8401   if(itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==RJUMP||itype[i-1]==FJUMP) {
8402     if(start+i*4==pagelimit) {
8403       itype[i-1]=SPAN;
8404     }
8405   }
8406   assert(slen>0);
8407
8408   /* Pass 2 - Register dependencies and branch targets */
8409
8410   unneeded_registers(0,slen-1,0);
8411   
8412   /* Pass 3 - Register allocation */
8413
8414   struct regstat current; // Current register allocations/status
8415   current.is32=1;
8416   current.dirty=0;
8417   current.u=unneeded_reg[0];
8418   current.uu=unneeded_reg_upper[0];
8419   clear_all_regs(current.regmap);
8420   alloc_reg(&current,0,CCREG);
8421   dirty_reg(&current,CCREG);
8422   current.isconst=0;
8423   current.wasconst=0;
8424   int ds=0;
8425   int cc=0;
8426   int hr;
8427   
8428   provisional_32bit();
8429   
8430   if((u_int)addr&1) {
8431     // First instruction is delay slot
8432     cc=-1;
8433     bt[1]=1;
8434     ds=1;
8435     unneeded_reg[0]=1;
8436     unneeded_reg_upper[0]=1;
8437     current.regmap[HOST_BTREG]=BTREG;
8438   }
8439   
8440   for(i=0;i<slen;i++)
8441   {
8442     if(bt[i])
8443     {
8444       int hr;
8445       for(hr=0;hr<HOST_REGS;hr++)
8446       {
8447         // Is this really necessary?
8448         if(current.regmap[hr]==0) current.regmap[hr]=-1;
8449       }
8450       current.isconst=0;
8451     }
8452     if(i>1)
8453     {
8454       if((opcode[i-2]&0x2f)==0x05) // BNE/BNEL
8455       {
8456         if(rs1[i-2]==0||rs2[i-2]==0)
8457         {
8458           if(rs1[i-2]) {
8459             current.is32|=1LL<<rs1[i-2];
8460             int hr=get_reg(current.regmap,rs1[i-2]|64);
8461             if(hr>=0) current.regmap[hr]=-1;
8462           }
8463           if(rs2[i-2]) {
8464             current.is32|=1LL<<rs2[i-2];
8465             int hr=get_reg(current.regmap,rs2[i-2]|64);
8466             if(hr>=0) current.regmap[hr]=-1;
8467           }
8468         }
8469       }
8470     }
8471     // If something jumps here with 64-bit values
8472     // then promote those registers to 64 bits
8473     if(bt[i])
8474     {
8475       uint64_t temp_is32=current.is32;
8476       for(j=i-1;j>=0;j--)
8477       {
8478         if(ba[j]==start+i*4) 
8479           temp_is32&=branch_regs[j].is32;
8480       }
8481       for(j=i;j<slen;j++)
8482       {
8483         if(ba[j]==start+i*4) 
8484           //temp_is32=1;
8485           temp_is32&=p32[j];
8486       }
8487       if(temp_is32!=current.is32) {
8488         //printf("dumping 32-bit regs (%x)\n",start+i*4);
8489         #ifdef DESTRUCTIVE_WRITEBACK
8490         for(hr=0;hr<HOST_REGS;hr++)
8491         {
8492           int r=current.regmap[hr];
8493           if(r>0&&r<64)
8494           {
8495             if((current.dirty>>hr)&((current.is32&~temp_is32)>>r)&1) {
8496               temp_is32|=1LL<<r;
8497               //printf("restore %d\n",r);
8498             }
8499           }
8500         }
8501         #endif
8502         current.is32=temp_is32;
8503       }
8504     }
8505 #ifdef FORCE32
8506     memset(p32, 0xff, sizeof(p32));
8507     current.is32=-1LL;
8508 #endif
8509
8510     memcpy(regmap_pre[i],current.regmap,sizeof(current.regmap));
8511     regs[i].wasconst=current.isconst;
8512     regs[i].was32=current.is32;
8513     regs[i].wasdirty=current.dirty;
8514     #ifdef DESTRUCTIVE_WRITEBACK
8515     // To change a dirty register from 32 to 64 bits, we must write
8516     // it out during the previous cycle (for branches, 2 cycles)
8517     if(i<slen-1&&bt[i+1]&&itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP)
8518     {
8519       uint64_t temp_is32=current.is32;
8520       for(j=i-1;j>=0;j--)
8521       {
8522         if(ba[j]==start+i*4+4) 
8523           temp_is32&=branch_regs[j].is32;
8524       }
8525       for(j=i;j<slen;j++)
8526       {
8527         if(ba[j]==start+i*4+4) 
8528           //temp_is32=1;
8529           temp_is32&=p32[j];
8530       }
8531       if(temp_is32!=current.is32) {
8532         //printf("pre-dumping 32-bit regs (%x)\n",start+i*4);
8533         for(hr=0;hr<HOST_REGS;hr++)
8534         {
8535           int r=current.regmap[hr];
8536           if(r>0)
8537           {
8538             if((current.dirty>>hr)&((current.is32&~temp_is32)>>(r&63))&1) {
8539               if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP)
8540               {
8541                 if(rs1[i]!=(r&63)&&rs2[i]!=(r&63))
8542                 {
8543                   //printf("dump %d/r%d\n",hr,r);
8544                   current.regmap[hr]=-1;
8545                   if(get_reg(current.regmap,r|64)>=0) 
8546                     current.regmap[get_reg(current.regmap,r|64)]=-1;
8547                 }
8548               }
8549             }
8550           }
8551         }
8552       }
8553     }
8554     else if(i<slen-2&&bt[i+2]&&(source[i-1]>>16)!=0x1000&&(itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP))
8555     {
8556       uint64_t temp_is32=current.is32;
8557       for(j=i-1;j>=0;j--)
8558       {
8559         if(ba[j]==start+i*4+8) 
8560           temp_is32&=branch_regs[j].is32;
8561       }
8562       for(j=i;j<slen;j++)
8563       {
8564         if(ba[j]==start+i*4+8) 
8565           //temp_is32=1;
8566           temp_is32&=p32[j];
8567       }
8568       if(temp_is32!=current.is32) {
8569         //printf("pre-dumping 32-bit regs (%x)\n",start+i*4);
8570         for(hr=0;hr<HOST_REGS;hr++)
8571         {
8572           int r=current.regmap[hr];
8573           if(r>0)
8574           {
8575             if((current.dirty>>hr)&((current.is32&~temp_is32)>>(r&63))&1) {
8576               if(rs1[i]!=(r&63)&&rs2[i]!=(r&63)&&rs1[i+1]!=(r&63)&&rs2[i+1]!=(r&63))
8577               {
8578                 //printf("dump %d/r%d\n",hr,r);
8579                 current.regmap[hr]=-1;
8580                 if(get_reg(current.regmap,r|64)>=0) 
8581                   current.regmap[get_reg(current.regmap,r|64)]=-1;
8582               }
8583             }
8584           }
8585         }
8586       }
8587     }
8588     #endif
8589     if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP) {
8590       if(i+1<slen) {
8591         current.u=unneeded_reg[i+1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
8592         current.uu=unneeded_reg_upper[i+1]&~((1LL<<us1[i])|(1LL<<us2[i]));
8593         if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
8594         current.u|=1;
8595         current.uu|=1;
8596       } else {
8597         current.u=1;
8598         current.uu=1;
8599       }
8600     } else {
8601       if(i+1<slen) {
8602         current.u=branch_unneeded_reg[i]&~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
8603         current.uu=branch_unneeded_reg_upper[i]&~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
8604         if((~current.uu>>rt1[i+1])&1) current.uu&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
8605         current.u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
8606         current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
8607         current.u|=1;
8608         current.uu|=1;
8609       } else { printf("oops, branch at end of block with no delay slot\n");exit(1); }
8610     }
8611     is_ds[i]=ds;
8612     if(ds) {
8613       ds=0; // Skip delay slot, already allocated as part of branch
8614       // ...but we need to alloc it in case something jumps here
8615       if(i+1<slen) {
8616         current.u=branch_unneeded_reg[i-1]&unneeded_reg[i+1];
8617         current.uu=branch_unneeded_reg_upper[i-1]&unneeded_reg_upper[i+1];
8618       }else{
8619         current.u=branch_unneeded_reg[i-1];
8620         current.uu=branch_unneeded_reg_upper[i-1];
8621       }
8622       current.u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
8623       current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
8624       if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
8625       current.u|=1;
8626       current.uu|=1;
8627       struct regstat temp;
8628       memcpy(&temp,&current,sizeof(current));
8629       temp.wasdirty=temp.dirty;
8630       temp.was32=temp.is32;
8631       // TODO: Take into account unconditional branches, as below
8632       delayslot_alloc(&temp,i);
8633       memcpy(regs[i].regmap,temp.regmap,sizeof(temp.regmap));
8634       regs[i].wasdirty=temp.wasdirty;
8635       regs[i].was32=temp.was32;
8636       regs[i].dirty=temp.dirty;
8637       regs[i].is32=temp.is32;
8638       regs[i].isconst=0;
8639       regs[i].wasconst=0;
8640       current.isconst=0;
8641       // Create entry (branch target) regmap
8642       for(hr=0;hr<HOST_REGS;hr++)
8643       {
8644         int r=temp.regmap[hr];
8645         if(r>=0) {
8646           if(r!=regmap_pre[i][hr]) {
8647             regs[i].regmap_entry[hr]=-1;
8648           }
8649           else
8650           {
8651             if(r<64){
8652               if((current.u>>r)&1) {
8653                 regs[i].regmap_entry[hr]=-1;
8654                 regs[i].regmap[hr]=-1;
8655                 //Don't clear regs in the delay slot as the branch might need them
8656                 //current.regmap[hr]=-1;
8657               }else
8658                 regs[i].regmap_entry[hr]=r;
8659             }
8660             else {
8661               if((current.uu>>(r&63))&1) {
8662                 regs[i].regmap_entry[hr]=-1;
8663                 regs[i].regmap[hr]=-1;
8664                 //Don't clear regs in the delay slot as the branch might need them
8665                 //current.regmap[hr]=-1;
8666               }else
8667                 regs[i].regmap_entry[hr]=r;
8668             }
8669           }
8670         } else {
8671           // First instruction expects CCREG to be allocated
8672           if(i==0&&hr==HOST_CCREG) 
8673             regs[i].regmap_entry[hr]=CCREG;
8674           else
8675             regs[i].regmap_entry[hr]=-1;
8676         }
8677       }
8678     }
8679     else { // Not delay slot
8680       switch(itype[i]) {
8681         case UJUMP:
8682           //current.isconst=0; // DEBUG
8683           //current.wasconst=0; // DEBUG
8684           //regs[i].wasconst=0; // DEBUG
8685           clear_const(&current,rt1[i]);
8686           alloc_cc(&current,i);
8687           dirty_reg(&current,CCREG);
8688           if (rt1[i]==31) {
8689             alloc_reg(&current,i,31);
8690             dirty_reg(&current,31);
8691             //assert(rs1[i+1]!=31&&rs2[i+1]!=31);
8692             assert(rt1[i+1]!=rt1[i]);
8693             #ifdef REG_PREFETCH
8694             alloc_reg(&current,i,PTEMP);
8695             #endif
8696             //current.is32|=1LL<<rt1[i];
8697           }
8698           delayslot_alloc(&current,i+1);
8699           //current.isconst=0; // DEBUG
8700           ds=1;
8701           //printf("i=%d, isconst=%x\n",i,current.isconst);
8702           break;
8703         case RJUMP:
8704           //current.isconst=0;
8705           //current.wasconst=0;
8706           //regs[i].wasconst=0;
8707           clear_const(&current,rs1[i]);
8708           clear_const(&current,rt1[i]);
8709           alloc_cc(&current,i);
8710           dirty_reg(&current,CCREG);
8711           if(rs1[i]!=rt1[i+1]&&rs1[i]!=rt2[i+1]) {
8712             alloc_reg(&current,i,rs1[i]);
8713             if (rt1[i]!=0) {
8714               alloc_reg(&current,i,rt1[i]);
8715               dirty_reg(&current,rt1[i]);
8716               //assert(rs1[i+1]!=31&&rs2[i+1]!=31);
8717               assert(rt1[i+1]!=rt1[i]);
8718               #ifdef REG_PREFETCH
8719               alloc_reg(&current,i,PTEMP);
8720               #endif
8721             }
8722             #ifdef USE_MINI_HT
8723             if(rs1[i]==31) { // JALR
8724               alloc_reg(&current,i,RHASH);
8725               #ifndef HOST_IMM_ADDR32
8726               alloc_reg(&current,i,RHTBL);
8727               #endif
8728             }
8729             #endif
8730             delayslot_alloc(&current,i+1);
8731           } else {
8732             // The delay slot overwrites our source register,
8733             // allocate a temporary register to hold the old value.
8734             current.isconst=0;
8735             current.wasconst=0;
8736             regs[i].wasconst=0;
8737             delayslot_alloc(&current,i+1);
8738             current.isconst=0;
8739             alloc_reg(&current,i,RTEMP);
8740           }
8741           //current.isconst=0; // DEBUG
8742           ds=1;
8743           break;
8744         case CJUMP:
8745           //current.isconst=0;
8746           //current.wasconst=0;
8747           //regs[i].wasconst=0;
8748           clear_const(&current,rs1[i]);
8749           clear_const(&current,rs2[i]);
8750           if((opcode[i]&0x3E)==4) // BEQ/BNE
8751           {
8752             alloc_cc(&current,i);
8753             dirty_reg(&current,CCREG);
8754             if(rs1[i]) alloc_reg(&current,i,rs1[i]);
8755             if(rs2[i]) alloc_reg(&current,i,rs2[i]);
8756             if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
8757             {
8758               if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
8759               if(rs2[i]) alloc_reg64(&current,i,rs2[i]);
8760             }
8761             if((rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]))||
8762                (rs2[i]&&(rs2[i]==rt1[i+1]||rs2[i]==rt2[i+1]))) {
8763               // The delay slot overwrites one of our conditions.
8764               // Allocate the branch condition registers instead.
8765               // Note that such a sequence of instructions could
8766               // be considered a bug since the branch can not be
8767               // re-executed if an exception occurs.
8768               current.isconst=0;
8769               current.wasconst=0;
8770               regs[i].wasconst=0;
8771               if(rs1[i]) alloc_reg(&current,i,rs1[i]);
8772               if(rs2[i]) alloc_reg(&current,i,rs2[i]);
8773               if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
8774               {
8775                 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
8776                 if(rs2[i]) alloc_reg64(&current,i,rs2[i]);
8777               }
8778             }
8779             else delayslot_alloc(&current,i+1);
8780           }
8781           else
8782           if((opcode[i]&0x3E)==6) // BLEZ/BGTZ
8783           {
8784             alloc_cc(&current,i);
8785             dirty_reg(&current,CCREG);
8786             alloc_reg(&current,i,rs1[i]);
8787             if(!(current.is32>>rs1[i]&1))
8788             {
8789               alloc_reg64(&current,i,rs1[i]);
8790             }
8791             if(rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1])) {
8792               // The delay slot overwrites one of our conditions.
8793               // Allocate the branch condition registers instead.
8794               // Note that such a sequence of instructions could
8795               // be considered a bug since the branch can not be
8796               // re-executed if an exception occurs.
8797               current.isconst=0;
8798               current.wasconst=0;
8799               regs[i].wasconst=0;
8800               if(rs1[i]) alloc_reg(&current,i,rs1[i]);
8801               if(!((current.is32>>rs1[i])&1))
8802               {
8803                 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
8804               }
8805             }
8806             else delayslot_alloc(&current,i+1);
8807           }
8808           else
8809           // Don't alloc the delay slot yet because we might not execute it
8810           if((opcode[i]&0x3E)==0x14) // BEQL/BNEL
8811           {
8812             current.isconst=0;
8813             current.wasconst=0;
8814             regs[i].wasconst=0;
8815             alloc_cc(&current,i);
8816             dirty_reg(&current,CCREG);
8817             alloc_reg(&current,i,rs1[i]);
8818             alloc_reg(&current,i,rs2[i]);
8819             if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
8820             {
8821               alloc_reg64(&current,i,rs1[i]);
8822               alloc_reg64(&current,i,rs2[i]);
8823             }
8824           }
8825           else
8826           if((opcode[i]&0x3E)==0x16) // BLEZL/BGTZL
8827           {
8828             current.isconst=0;
8829             current.wasconst=0;
8830             regs[i].wasconst=0;
8831             alloc_cc(&current,i);
8832             dirty_reg(&current,CCREG);
8833             alloc_reg(&current,i,rs1[i]);
8834             if(!(current.is32>>rs1[i]&1))
8835             {
8836               alloc_reg64(&current,i,rs1[i]);
8837             }
8838           }
8839           ds=1;
8840           //current.isconst=0;
8841           break;
8842         case SJUMP:
8843           //current.isconst=0;
8844           //current.wasconst=0;
8845           //regs[i].wasconst=0;
8846           clear_const(&current,rs1[i]);
8847           clear_const(&current,rt1[i]);
8848           //if((opcode2[i]&0x1E)==0x0) // BLTZ/BGEZ
8849           if((opcode2[i]&0x0E)==0x0) // BLTZ/BGEZ
8850           {
8851             alloc_cc(&current,i);
8852             dirty_reg(&current,CCREG);
8853             alloc_reg(&current,i,rs1[i]);
8854             if(!(current.is32>>rs1[i]&1))
8855             {
8856               alloc_reg64(&current,i,rs1[i]);
8857             }
8858             if (rt1[i]==31) { // BLTZAL/BGEZAL
8859               alloc_reg(&current,i,31);
8860               dirty_reg(&current,31);
8861               assert(rs1[i+1]!=31&&rs2[i+1]!=31);
8862               //#ifdef REG_PREFETCH
8863               //alloc_reg(&current,i,PTEMP);
8864               //#endif
8865               //current.is32|=1LL<<rt1[i];
8866             }
8867             if(rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1])) {
8868               // The delay slot overwrites the branch condition.
8869               // Allocate the branch condition registers instead.
8870               // Note that such a sequence of instructions could
8871               // be considered a bug since the branch can not be
8872               // re-executed if an exception occurs.
8873               current.isconst=0;
8874               current.wasconst=0;
8875               regs[i].wasconst=0;
8876               if(rs1[i]) alloc_reg(&current,i,rs1[i]);
8877               if(!((current.is32>>rs1[i])&1))
8878               {
8879                 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
8880               }
8881             }
8882             else delayslot_alloc(&current,i+1);
8883           }
8884           else
8885           // Don't alloc the delay slot yet because we might not execute it
8886           if((opcode2[i]&0x1E)==0x2) // BLTZL/BGEZL
8887           {
8888             current.isconst=0;
8889             current.wasconst=0;
8890             regs[i].wasconst=0;
8891             alloc_cc(&current,i);
8892             dirty_reg(&current,CCREG);
8893             alloc_reg(&current,i,rs1[i]);
8894             if(!(current.is32>>rs1[i]&1))
8895             {
8896               alloc_reg64(&current,i,rs1[i]);
8897             }
8898           }
8899           ds=1;
8900           //current.isconst=0;
8901           break;
8902         case FJUMP:
8903           current.isconst=0;
8904           current.wasconst=0;
8905           regs[i].wasconst=0;
8906           if(likely[i]==0) // BC1F/BC1T
8907           {
8908             // TODO: Theoretically we can run out of registers here on x86.
8909             // The delay slot can allocate up to six, and we need to check
8910             // CSREG before executing the delay slot.  Possibly we can drop
8911             // the cycle count and then reload it after checking that the
8912             // FPU is in a usable state, or don't do out-of-order execution.
8913             alloc_cc(&current,i);
8914             dirty_reg(&current,CCREG);
8915             alloc_reg(&current,i,FSREG);
8916             alloc_reg(&current,i,CSREG);
8917             if(itype[i+1]==FCOMP) {
8918               // The delay slot overwrites the branch condition.
8919               // Allocate the branch condition registers instead.
8920               // Note that such a sequence of instructions could
8921               // be considered a bug since the branch can not be
8922               // re-executed if an exception occurs.
8923               alloc_cc(&current,i);
8924               dirty_reg(&current,CCREG);
8925               alloc_reg(&current,i,CSREG);
8926               alloc_reg(&current,i,FSREG);
8927             }
8928             else {
8929               delayslot_alloc(&current,i+1);
8930               alloc_reg(&current,i+1,CSREG);
8931             }
8932           }
8933           else
8934           // Don't alloc the delay slot yet because we might not execute it
8935           if(likely[i]) // BC1FL/BC1TL
8936           {
8937             alloc_cc(&current,i);
8938             dirty_reg(&current,CCREG);
8939             alloc_reg(&current,i,CSREG);
8940             alloc_reg(&current,i,FSREG);
8941           }
8942           ds=1;
8943           current.isconst=0;
8944           break;
8945         case IMM16:
8946           imm16_alloc(&current,i);
8947           break;
8948         case LOAD:
8949         case LOADLR:
8950           load_alloc(&current,i);
8951           break;
8952         case STORE:
8953         case STORELR:
8954           store_alloc(&current,i);
8955           break;
8956         case ALU:
8957           alu_alloc(&current,i);
8958           break;
8959         case SHIFT:
8960           shift_alloc(&current,i);
8961           break;
8962         case MULTDIV:
8963           multdiv_alloc(&current,i);
8964           break;
8965         case SHIFTIMM:
8966           shiftimm_alloc(&current,i);
8967           break;
8968         case MOV:
8969           mov_alloc(&current,i);
8970           break;
8971         case COP0:
8972           cop0_alloc(&current,i);
8973           break;
8974         case COP1:
8975         case COP2:
8976           cop1_alloc(&current,i);
8977           break;
8978         case C1LS:
8979           c1ls_alloc(&current,i);
8980           break;
8981         case C2LS:
8982           c2ls_alloc(&current,i);
8983           break;
8984         case C2OP:
8985           c2op_alloc(&current,i);
8986           break;
8987         case FCONV:
8988           fconv_alloc(&current,i);
8989           break;
8990         case FLOAT:
8991           float_alloc(&current,i);
8992           break;
8993         case FCOMP:
8994           fcomp_alloc(&current,i);
8995           break;
8996         case SYSCALL:
8997         case HLECALL:
8998           syscall_alloc(&current,i);
8999           break;
9000         case SPAN:
9001           pagespan_alloc(&current,i);
9002           break;
9003       }
9004       
9005       // Drop the upper half of registers that have become 32-bit
9006       current.uu|=current.is32&((1LL<<rt1[i])|(1LL<<rt2[i]));
9007       if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP) {
9008         current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
9009         if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9010         current.uu|=1;
9011       } else {
9012         current.uu|=current.is32&((1LL<<rt1[i+1])|(1LL<<rt2[i+1]));
9013         current.uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
9014         if((~current.uu>>rt1[i+1])&1) current.uu&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
9015         current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
9016         current.uu|=1;
9017       }
9018
9019       // Create entry (branch target) regmap
9020       for(hr=0;hr<HOST_REGS;hr++)
9021       {
9022         int r,or,er;
9023         r=current.regmap[hr];
9024         if(r>=0) {
9025           if(r!=regmap_pre[i][hr]) {
9026             // TODO: delay slot (?)
9027             or=get_reg(regmap_pre[i],r); // Get old mapping for this register
9028             if(or<0||(r&63)>=TEMPREG){
9029               regs[i].regmap_entry[hr]=-1;
9030             }
9031             else
9032             {
9033               // Just move it to a different register
9034               regs[i].regmap_entry[hr]=r;
9035               // If it was dirty before, it's still dirty
9036               if((regs[i].wasdirty>>or)&1) dirty_reg(&current,r&63);
9037             }
9038           }
9039           else
9040           {
9041             // Unneeded
9042             if(r==0){
9043               regs[i].regmap_entry[hr]=0;
9044             }
9045             else
9046             if(r<64){
9047               if((current.u>>r)&1) {
9048                 regs[i].regmap_entry[hr]=-1;
9049                 //regs[i].regmap[hr]=-1;
9050                 current.regmap[hr]=-1;
9051               }else
9052                 regs[i].regmap_entry[hr]=r;
9053             }
9054             else {
9055               if((current.uu>>(r&63))&1) {
9056                 regs[i].regmap_entry[hr]=-1;
9057                 //regs[i].regmap[hr]=-1;
9058                 current.regmap[hr]=-1;
9059               }else
9060                 regs[i].regmap_entry[hr]=r;
9061             }
9062           }
9063         } else {
9064           // Branches expect CCREG to be allocated at the target
9065           if(regmap_pre[i][hr]==CCREG) 
9066             regs[i].regmap_entry[hr]=CCREG;
9067           else
9068             regs[i].regmap_entry[hr]=-1;
9069         }
9070       }
9071       memcpy(regs[i].regmap,current.regmap,sizeof(current.regmap));
9072     }
9073     /* Branch post-alloc */
9074     if(i>0)
9075     {
9076       current.was32=current.is32;
9077       current.wasdirty=current.dirty;
9078       switch(itype[i-1]) {
9079         case UJUMP:
9080           memcpy(&branch_regs[i-1],&current,sizeof(current));
9081           branch_regs[i-1].isconst=0;
9082           branch_regs[i-1].wasconst=0;
9083           branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
9084           branch_regs[i-1].uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
9085           alloc_cc(&branch_regs[i-1],i-1);
9086           dirty_reg(&branch_regs[i-1],CCREG);
9087           if(rt1[i-1]==31) { // JAL
9088             alloc_reg(&branch_regs[i-1],i-1,31);
9089             dirty_reg(&branch_regs[i-1],31);
9090             branch_regs[i-1].is32|=1LL<<31;
9091           }
9092           memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9093           memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9094           break;
9095         case RJUMP:
9096           memcpy(&branch_regs[i-1],&current,sizeof(current));
9097           branch_regs[i-1].isconst=0;
9098           branch_regs[i-1].wasconst=0;
9099           branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
9100           branch_regs[i-1].uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
9101           alloc_cc(&branch_regs[i-1],i-1);
9102           dirty_reg(&branch_regs[i-1],CCREG);
9103           alloc_reg(&branch_regs[i-1],i-1,rs1[i-1]);
9104           if(rt1[i-1]!=0) { // JALR
9105             alloc_reg(&branch_regs[i-1],i-1,rt1[i-1]);
9106             dirty_reg(&branch_regs[i-1],rt1[i-1]);
9107             branch_regs[i-1].is32|=1LL<<rt1[i-1];
9108           }
9109           #ifdef USE_MINI_HT
9110           if(rs1[i-1]==31) { // JALR
9111             alloc_reg(&branch_regs[i-1],i-1,RHASH);
9112             #ifndef HOST_IMM_ADDR32
9113             alloc_reg(&branch_regs[i-1],i-1,RHTBL);
9114             #endif
9115           }
9116           #endif
9117           memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9118           memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9119           break;
9120         case CJUMP:
9121           if((opcode[i-1]&0x3E)==4) // BEQ/BNE
9122           {
9123             alloc_cc(&current,i-1);
9124             dirty_reg(&current,CCREG);
9125             if((rs1[i-1]&&(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]))||
9126                (rs2[i-1]&&(rs2[i-1]==rt1[i]||rs2[i-1]==rt2[i]))) {
9127               // The delay slot overwrote one of our conditions
9128               // Delay slot goes after the test (in order)
9129               current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
9130               current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
9131               if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9132               current.u|=1;
9133               current.uu|=1;
9134               delayslot_alloc(&current,i);
9135               current.isconst=0;
9136             }
9137             else
9138             {
9139               current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
9140               current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
9141               // Alloc the branch condition registers
9142               if(rs1[i-1]) alloc_reg(&current,i-1,rs1[i-1]);
9143               if(rs2[i-1]) alloc_reg(&current,i-1,rs2[i-1]);
9144               if(!((current.is32>>rs1[i-1])&(current.is32>>rs2[i-1])&1))
9145               {
9146                 if(rs1[i-1]) alloc_reg64(&current,i-1,rs1[i-1]);
9147                 if(rs2[i-1]) alloc_reg64(&current,i-1,rs2[i-1]);
9148               }
9149             }
9150             memcpy(&branch_regs[i-1],&current,sizeof(current));
9151             branch_regs[i-1].isconst=0;
9152             branch_regs[i-1].wasconst=0;
9153             memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9154             memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9155           }
9156           else
9157           if((opcode[i-1]&0x3E)==6) // BLEZ/BGTZ
9158           {
9159             alloc_cc(&current,i-1);
9160             dirty_reg(&current,CCREG);
9161             if(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]) {
9162               // The delay slot overwrote the branch condition
9163               // Delay slot goes after the test (in order)
9164               current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
9165               current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
9166               if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9167               current.u|=1;
9168               current.uu|=1;
9169               delayslot_alloc(&current,i);
9170               current.isconst=0;
9171             }
9172             else
9173             {
9174               current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
9175               current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
9176               // Alloc the branch condition register
9177               alloc_reg(&current,i-1,rs1[i-1]);
9178               if(!(current.is32>>rs1[i-1]&1))
9179               {
9180                 alloc_reg64(&current,i-1,rs1[i-1]);
9181               }
9182             }
9183             memcpy(&branch_regs[i-1],&current,sizeof(current));
9184             branch_regs[i-1].isconst=0;
9185             branch_regs[i-1].wasconst=0;
9186             memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9187             memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9188           }
9189           else
9190           // Alloc the delay slot in case the branch is taken
9191           if((opcode[i-1]&0x3E)==0x14) // BEQL/BNEL
9192           {
9193             memcpy(&branch_regs[i-1],&current,sizeof(current));
9194             branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9195             branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9196             if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9197             alloc_cc(&branch_regs[i-1],i);
9198             dirty_reg(&branch_regs[i-1],CCREG);
9199             delayslot_alloc(&branch_regs[i-1],i);
9200             branch_regs[i-1].isconst=0;
9201             alloc_reg(&current,i,CCREG); // Not taken path
9202             dirty_reg(&current,CCREG);
9203             memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9204           }
9205           else
9206           if((opcode[i-1]&0x3E)==0x16) // BLEZL/BGTZL
9207           {
9208             memcpy(&branch_regs[i-1],&current,sizeof(current));
9209             branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9210             branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9211             if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9212             alloc_cc(&branch_regs[i-1],i);
9213             dirty_reg(&branch_regs[i-1],CCREG);
9214             delayslot_alloc(&branch_regs[i-1],i);
9215             branch_regs[i-1].isconst=0;
9216             alloc_reg(&current,i,CCREG); // Not taken path
9217             dirty_reg(&current,CCREG);
9218             memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9219           }
9220           break;
9221         case SJUMP:
9222           //if((opcode2[i-1]&0x1E)==0) // BLTZ/BGEZ
9223           if((opcode2[i-1]&0x0E)==0) // BLTZ/BGEZ
9224           {
9225             alloc_cc(&current,i-1);
9226             dirty_reg(&current,CCREG);
9227             if(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]) {
9228               // The delay slot overwrote the branch condition
9229               // Delay slot goes after the test (in order)
9230               current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
9231               current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
9232               if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9233               current.u|=1;
9234               current.uu|=1;
9235               delayslot_alloc(&current,i);
9236               current.isconst=0;
9237             }
9238             else
9239             {
9240               current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
9241               current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
9242               // Alloc the branch condition register
9243               alloc_reg(&current,i-1,rs1[i-1]);
9244               if(!(current.is32>>rs1[i-1]&1))
9245               {
9246                 alloc_reg64(&current,i-1,rs1[i-1]);
9247               }
9248             }
9249             memcpy(&branch_regs[i-1],&current,sizeof(current));
9250             branch_regs[i-1].isconst=0;
9251             branch_regs[i-1].wasconst=0;
9252             memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9253             memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9254           }
9255           else
9256           // Alloc the delay slot in case the branch is taken
9257           if((opcode2[i-1]&0x1E)==2) // BLTZL/BGEZL
9258           {
9259             memcpy(&branch_regs[i-1],&current,sizeof(current));
9260             branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9261             branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9262             if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9263             alloc_cc(&branch_regs[i-1],i);
9264             dirty_reg(&branch_regs[i-1],CCREG);
9265             delayslot_alloc(&branch_regs[i-1],i);
9266             branch_regs[i-1].isconst=0;
9267             alloc_reg(&current,i,CCREG); // Not taken path
9268             dirty_reg(&current,CCREG);
9269             memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9270           }
9271           // FIXME: BLTZAL/BGEZAL
9272           if(opcode2[i-1]&0x10) { // BxxZAL
9273             alloc_reg(&branch_regs[i-1],i-1,31);
9274             dirty_reg(&branch_regs[i-1],31);
9275             branch_regs[i-1].is32|=1LL<<31;
9276           }
9277           break;
9278         case FJUMP:
9279           if(likely[i-1]==0) // BC1F/BC1T
9280           {
9281             alloc_cc(&current,i-1);
9282             dirty_reg(&current,CCREG);
9283             if(itype[i]==FCOMP) {
9284               // The delay slot overwrote the branch condition
9285               // Delay slot goes after the test (in order)
9286               delayslot_alloc(&current,i);
9287               current.isconst=0;
9288             }
9289             else
9290             {
9291               current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
9292               current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
9293               // Alloc the branch condition register
9294               alloc_reg(&current,i-1,FSREG);
9295             }
9296             memcpy(&branch_regs[i-1],&current,sizeof(current));
9297             memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9298           }
9299           else // BC1FL/BC1TL
9300           {
9301             // Alloc the delay slot in case the branch is taken
9302             memcpy(&branch_regs[i-1],&current,sizeof(current));
9303             branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9304             branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9305             if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9306             alloc_cc(&branch_regs[i-1],i);
9307             dirty_reg(&branch_regs[i-1],CCREG);
9308             delayslot_alloc(&branch_regs[i-1],i);
9309             branch_regs[i-1].isconst=0;
9310             alloc_reg(&current,i,CCREG); // Not taken path
9311             dirty_reg(&current,CCREG);
9312             memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9313           }
9314           break;
9315       }
9316
9317       if(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)
9318       {
9319         if(rt1[i-1]==31) // JAL/JALR
9320         {
9321           // Subroutine call will return here, don't alloc any registers
9322           current.is32=1;
9323           current.dirty=0;
9324           clear_all_regs(current.regmap);
9325           alloc_reg(&current,i,CCREG);
9326           dirty_reg(&current,CCREG);
9327         }
9328         else if(i+1<slen)
9329         {
9330           // Internal branch will jump here, match registers to caller
9331           current.is32=0x3FFFFFFFFLL;
9332           current.dirty=0;
9333           clear_all_regs(current.regmap);
9334           alloc_reg(&current,i,CCREG);
9335           dirty_reg(&current,CCREG);
9336           for(j=i-1;j>=0;j--)
9337           {
9338             if(ba[j]==start+i*4+4) {
9339               memcpy(current.regmap,branch_regs[j].regmap,sizeof(current.regmap));
9340               current.is32=branch_regs[j].is32;
9341               current.dirty=branch_regs[j].dirty;
9342               break;
9343             }
9344           }
9345           while(j>=0) {
9346             if(ba[j]==start+i*4+4) {
9347               for(hr=0;hr<HOST_REGS;hr++) {
9348                 if(current.regmap[hr]!=branch_regs[j].regmap[hr]) {
9349                   current.regmap[hr]=-1;
9350                 }
9351                 current.is32&=branch_regs[j].is32;
9352                 current.dirty&=branch_regs[j].dirty;
9353               }
9354             }
9355             j--;
9356           }
9357         }
9358       }
9359     }
9360
9361     // Count cycles in between branches
9362     ccadj[i]=cc;
9363     if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP||itype[i]==SYSCALL||itype[i]==HLECALL))
9364     {
9365       cc=0;
9366     }
9367     else
9368     {
9369       cc++;
9370     }
9371
9372     flush_dirty_uppers(&current);
9373     if(!is_ds[i]) {
9374       regs[i].is32=current.is32;
9375       regs[i].dirty=current.dirty;
9376       regs[i].isconst=current.isconst;
9377       memcpy(constmap[i],current.constmap,sizeof(current.constmap));
9378     }
9379     for(hr=0;hr<HOST_REGS;hr++) {
9380       if(hr!=EXCLUDE_REG&&regs[i].regmap[hr]>=0) {
9381         if(regmap_pre[i][hr]!=regs[i].regmap[hr]) {
9382           regs[i].wasconst&=~(1<<hr);
9383         }
9384       }
9385     }
9386     if(current.regmap[HOST_BTREG]==BTREG) current.regmap[HOST_BTREG]=-1;
9387   }
9388   
9389   /* Pass 4 - Cull unused host registers */
9390   
9391   uint64_t nr=0;
9392   
9393   for (i=slen-1;i>=0;i--)
9394   {
9395     int hr;
9396     if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
9397     {
9398       if(ba[i]<start || ba[i]>=(start+slen*4))
9399       {
9400         // Branch out of this block, don't need anything
9401         nr=0;
9402       }
9403       else
9404       {
9405         // Internal branch
9406         // Need whatever matches the target
9407         nr=0;
9408         int t=(ba[i]-start)>>2;
9409         for(hr=0;hr<HOST_REGS;hr++)
9410         {
9411           if(regs[i].regmap_entry[hr]>=0) {
9412             if(regs[i].regmap_entry[hr]==regs[t].regmap_entry[hr]) nr|=1<<hr;
9413           }
9414         }
9415       }
9416       // Conditional branch may need registers for following instructions
9417       if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
9418       {
9419         if(i<slen-2) {
9420           nr|=needed_reg[i+2];
9421           for(hr=0;hr<HOST_REGS;hr++)
9422           {
9423             if(regmap_pre[i+2][hr]>=0&&get_reg(regs[i+2].regmap_entry,regmap_pre[i+2][hr])<0) nr&=~(1<<hr);
9424             //if((regmap_entry[i+2][hr])>=0) if(!((nr>>hr)&1)) printf("%x-bogus(%d=%d)\n",start+i*4,hr,regmap_entry[i+2][hr]);
9425           }
9426         }
9427       }
9428       // Don't need stuff which is overwritten
9429       if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
9430       if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
9431       // Merge in delay slot
9432       for(hr=0;hr<HOST_REGS;hr++)
9433       {
9434         if(!likely[i]) {
9435           // These are overwritten unless the branch is "likely"
9436           // and the delay slot is nullified if not taken
9437           if(rt1[i+1]&&rt1[i+1]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9438           if(rt2[i+1]&&rt2[i+1]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9439         }
9440         if(us1[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9441         if(us2[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9442         if(rs1[i+1]==regmap_pre[i][hr]) nr|=1<<hr;
9443         if(rs2[i+1]==regmap_pre[i][hr]) nr|=1<<hr;
9444         if(us1[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9445         if(us2[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9446         if(rs1[i+1]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9447         if(rs2[i+1]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9448         if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1)) {
9449           if(dep1[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9450           if(dep2[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9451         }
9452         if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1)) {
9453           if(dep1[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9454           if(dep2[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9455         }
9456         if(itype[i+1]==STORE || itype[i+1]==STORELR || (opcode[i+1]&0x3b)==0x39 || (opcode[i+1]&0x3b)==0x3a) {
9457           if(regmap_pre[i][hr]==INVCP) nr|=1<<hr;
9458           if(regs[i].regmap_entry[hr]==INVCP) nr|=1<<hr;
9459         }
9460       }
9461     }
9462     else if(itype[i]==SYSCALL||itype[i]==HLECALL)
9463     {
9464       // SYSCALL instruction (software interrupt)
9465       nr=0;
9466     }
9467     else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
9468     {
9469       // ERET instruction (return from interrupt)
9470       nr=0;
9471     }
9472     else // Non-branch
9473     {
9474       if(i<slen-1) {
9475         for(hr=0;hr<HOST_REGS;hr++) {
9476           if(regmap_pre[i+1][hr]>=0&&get_reg(regs[i+1].regmap_entry,regmap_pre[i+1][hr])<0) nr&=~(1<<hr);
9477           if(regs[i].regmap[hr]!=regmap_pre[i+1][hr]) nr&=~(1<<hr);
9478           if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
9479           if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
9480         }
9481       }
9482     }
9483     for(hr=0;hr<HOST_REGS;hr++)
9484     {
9485       // Overwritten registers are not needed
9486       if(rt1[i]&&rt1[i]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9487       if(rt2[i]&&rt2[i]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9488       if(FTEMP==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9489       // Source registers are needed
9490       if(us1[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9491       if(us2[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9492       if(rs1[i]==regmap_pre[i][hr]) nr|=1<<hr;
9493       if(rs2[i]==regmap_pre[i][hr]) nr|=1<<hr;
9494       if(us1[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9495       if(us2[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9496       if(rs1[i]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9497       if(rs2[i]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9498       if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1)) {
9499         if(dep1[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9500         if(dep1[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9501       }
9502       if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1)) {
9503         if(dep2[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9504         if(dep2[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9505       }
9506       if(itype[i]==STORE || itype[i]==STORELR || (opcode[i]&0x3b)==0x39 || (opcode[i]&0x3b)==0x3a) {
9507         if(regmap_pre[i][hr]==INVCP) nr|=1<<hr;
9508         if(regs[i].regmap_entry[hr]==INVCP) nr|=1<<hr;
9509       }
9510       // Don't store a register immediately after writing it,
9511       // may prevent dual-issue.
9512       // But do so if this is a branch target, otherwise we
9513       // might have to load the register before the branch.
9514       if(i>0&&!bt[i]&&((regs[i].wasdirty>>hr)&1)) {
9515         if((regmap_pre[i][hr]>0&&regmap_pre[i][hr]<64&&!((unneeded_reg[i]>>regmap_pre[i][hr])&1)) ||
9516            (regmap_pre[i][hr]>64&&!((unneeded_reg_upper[i]>>(regmap_pre[i][hr]&63))&1)) ) {
9517           if(rt1[i-1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9518           if(rt2[i-1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9519         }
9520         if((regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64&&!((unneeded_reg[i]>>regs[i].regmap_entry[hr])&1)) ||
9521            (regs[i].regmap_entry[hr]>64&&!((unneeded_reg_upper[i]>>(regs[i].regmap_entry[hr]&63))&1)) ) {
9522           if(rt1[i-1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9523           if(rt2[i-1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9524         }
9525       }
9526     }
9527     // Cycle count is needed at branches.  Assume it is needed at the target too.
9528     if(i==0||bt[i]||itype[i]==CJUMP||itype[i]==FJUMP||itype[i]==SPAN) {
9529       if(regmap_pre[i][HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
9530       if(regs[i].regmap_entry[HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
9531     }
9532     // Save it
9533     needed_reg[i]=nr;
9534     
9535     // Deallocate unneeded registers
9536     for(hr=0;hr<HOST_REGS;hr++)
9537     {
9538       if(!((nr>>hr)&1)) {
9539         if(regs[i].regmap_entry[hr]!=CCREG) regs[i].regmap_entry[hr]=-1;
9540         if((regs[i].regmap[hr]&63)!=rs1[i] && (regs[i].regmap[hr]&63)!=rs2[i] &&
9541            (regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
9542            (regs[i].regmap[hr]&63)!=PTEMP && (regs[i].regmap[hr]&63)!=CCREG)
9543         {
9544           if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
9545           {
9546             if(likely[i]) {
9547               regs[i].regmap[hr]=-1;
9548               regs[i].isconst&=~(1<<hr);
9549               if(i<slen-2) regmap_pre[i+2][hr]=-1;
9550             }
9551           }
9552         }
9553         if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
9554         {
9555           int d1=0,d2=0,map=0,temp=0;
9556           if(get_reg(regs[i].regmap,rt1[i+1]|64)>=0||get_reg(branch_regs[i].regmap,rt1[i+1]|64)>=0)
9557           {
9558             d1=dep1[i+1];
9559             d2=dep2[i+1];
9560           }
9561           if(using_tlb) {
9562             if(itype[i+1]==LOAD || itype[i+1]==LOADLR ||
9563                itype[i+1]==STORE || itype[i+1]==STORELR ||
9564                itype[i+1]==C1LS || itype[i+1]==C2LS)
9565             map=TLREG;
9566           } else
9567           if(itype[i+1]==STORE || itype[i+1]==STORELR ||
9568              (opcode[i+1]&0x3b)==0x39 || (opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1 || SWC2/SDC2
9569             map=INVCP;
9570           }
9571           if(itype[i+1]==LOADLR || itype[i+1]==STORELR ||
9572              itype[i+1]==C1LS || itype[i+1]==C2LS)
9573             temp=FTEMP;
9574           if((regs[i].regmap[hr]&63)!=rs1[i] && (regs[i].regmap[hr]&63)!=rs2[i] &&
9575              (regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
9576              (regs[i].regmap[hr]&63)!=rt1[i+1] && (regs[i].regmap[hr]&63)!=rt2[i+1] &&
9577              (regs[i].regmap[hr]^64)!=us1[i+1] && (regs[i].regmap[hr]^64)!=us2[i+1] &&
9578              (regs[i].regmap[hr]^64)!=d1 && (regs[i].regmap[hr]^64)!=d2 &&
9579              regs[i].regmap[hr]!=rs1[i+1] && regs[i].regmap[hr]!=rs2[i+1] &&
9580              (regs[i].regmap[hr]&63)!=temp && regs[i].regmap[hr]!=PTEMP &&
9581              regs[i].regmap[hr]!=RHASH && regs[i].regmap[hr]!=RHTBL &&
9582              regs[i].regmap[hr]!=RTEMP && regs[i].regmap[hr]!=CCREG &&
9583              regs[i].regmap[hr]!=map )
9584           {
9585             regs[i].regmap[hr]=-1;
9586             regs[i].isconst&=~(1<<hr);
9587             if((branch_regs[i].regmap[hr]&63)!=rs1[i] && (branch_regs[i].regmap[hr]&63)!=rs2[i] &&
9588                (branch_regs[i].regmap[hr]&63)!=rt1[i] && (branch_regs[i].regmap[hr]&63)!=rt2[i] &&
9589                (branch_regs[i].regmap[hr]&63)!=rt1[i+1] && (branch_regs[i].regmap[hr]&63)!=rt2[i+1] &&
9590                (branch_regs[i].regmap[hr]^64)!=us1[i+1] && (branch_regs[i].regmap[hr]^64)!=us2[i+1] &&
9591                (branch_regs[i].regmap[hr]^64)!=d1 && (branch_regs[i].regmap[hr]^64)!=d2 &&
9592                branch_regs[i].regmap[hr]!=rs1[i+1] && branch_regs[i].regmap[hr]!=rs2[i+1] &&
9593                (branch_regs[i].regmap[hr]&63)!=temp && branch_regs[i].regmap[hr]!=PTEMP &&
9594                branch_regs[i].regmap[hr]!=RHASH && branch_regs[i].regmap[hr]!=RHTBL &&
9595                branch_regs[i].regmap[hr]!=RTEMP && branch_regs[i].regmap[hr]!=CCREG &&
9596                branch_regs[i].regmap[hr]!=map)
9597             {
9598               branch_regs[i].regmap[hr]=-1;
9599               branch_regs[i].regmap_entry[hr]=-1;
9600               if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
9601               {
9602                 if(!likely[i]&&i<slen-2) {
9603                   regmap_pre[i+2][hr]=-1;
9604                 }
9605               }
9606             }
9607           }
9608         }
9609         else
9610         {
9611           // Non-branch
9612           if(i>0)
9613           {
9614             int d1=0,d2=0,map=-1,temp=-1;
9615             if(get_reg(regs[i].regmap,rt1[i]|64)>=0)
9616             {
9617               d1=dep1[i];
9618               d2=dep2[i];
9619             }
9620             if(using_tlb) {
9621               if(itype[i]==LOAD || itype[i]==LOADLR ||
9622                  itype[i]==STORE || itype[i]==STORELR ||
9623                  itype[i]==C1LS || itype[i]==C2LS)
9624               map=TLREG;
9625             } else if(itype[i]==STORE || itype[i]==STORELR ||
9626                       (opcode[i]&0x3b)==0x39 || (opcode[i]&0x3b)==0x3a) { // SWC1/SDC1 || SWC2/SDC2
9627               map=INVCP;
9628             }
9629             if(itype[i]==LOADLR || itype[i]==STORELR ||
9630                itype[i]==C1LS || itype[i]==C2LS)
9631               temp=FTEMP;
9632             if((regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
9633                (regs[i].regmap[hr]^64)!=us1[i] && (regs[i].regmap[hr]^64)!=us2[i] &&
9634                (regs[i].regmap[hr]^64)!=d1 && (regs[i].regmap[hr]^64)!=d2 &&
9635                regs[i].regmap[hr]!=rs1[i] && regs[i].regmap[hr]!=rs2[i] &&
9636                (regs[i].regmap[hr]&63)!=temp && regs[i].regmap[hr]!=map &&
9637                (itype[i]!=SPAN||regs[i].regmap[hr]!=CCREG))
9638             {
9639               if(i<slen-1&&!is_ds[i]) {
9640                 if(regmap_pre[i+1][hr]!=-1 || regs[i].regmap[hr]!=-1)
9641                 if(regmap_pre[i+1][hr]!=regs[i].regmap[hr])
9642                 if(regs[i].regmap[hr]<64||!((regs[i].was32>>(regs[i].regmap[hr]&63))&1))
9643                 {
9644                   printf("fail: %x (%d %d!=%d)\n",start+i*4,hr,regmap_pre[i+1][hr],regs[i].regmap[hr]);
9645                   assert(regmap_pre[i+1][hr]==regs[i].regmap[hr]);
9646                 }
9647                 regmap_pre[i+1][hr]=-1;
9648                 if(regs[i+1].regmap_entry[hr]==CCREG) regs[i+1].regmap_entry[hr]=-1;
9649               }
9650               regs[i].regmap[hr]=-1;
9651               regs[i].isconst&=~(1<<hr);
9652             }
9653           }
9654         }
9655       }
9656     }
9657   }
9658   
9659   /* Pass 5 - Pre-allocate registers */
9660   
9661   // If a register is allocated during a loop, try to allocate it for the
9662   // entire loop, if possible.  This avoids loading/storing registers
9663   // inside of the loop.
9664
9665   signed char f_regmap[HOST_REGS];
9666   clear_all_regs(f_regmap);
9667   for(i=0;i<slen-1;i++)
9668   {
9669     if(itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
9670     {
9671       if(ba[i]>=start && ba[i]<(start+i*4)) 
9672       if(itype[i+1]==NOP||itype[i+1]==MOV||itype[i+1]==ALU
9673       ||itype[i+1]==SHIFTIMM||itype[i+1]==IMM16||itype[i+1]==LOAD
9674       ||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS
9675       ||itype[i+1]==SHIFT||itype[i+1]==COP1||itype[i+1]==FLOAT
9676       ||itype[i+1]==FCOMP||itype[i+1]==FCONV
9677       ||itype[i+1]==COP2||itype[i+1]==C2LS||itype[i+1]==C2OP)
9678       {
9679         int t=(ba[i]-start)>>2;
9680         if(t>0&&(itype[t-1]!=UJUMP&&itype[t-1]!=RJUMP&&itype[t-1]!=CJUMP&&itype[t-1]!=SJUMP&&itype[t-1]!=FJUMP)) // loop_preload can't handle jumps into delay slots
9681         if(t<2||(itype[t-2]!=UJUMP)) // call/ret assumes no registers allocated
9682         for(hr=0;hr<HOST_REGS;hr++)
9683         {
9684           if(regs[i].regmap[hr]>64) {
9685             if(!((regs[i].dirty>>hr)&1))
9686               f_regmap[hr]=regs[i].regmap[hr];
9687             else f_regmap[hr]=-1;
9688           }
9689           else if(regs[i].regmap[hr]>=0) f_regmap[hr]=regs[i].regmap[hr];
9690           if(branch_regs[i].regmap[hr]>64) {
9691             if(!((branch_regs[i].dirty>>hr)&1))
9692               f_regmap[hr]=branch_regs[i].regmap[hr];
9693             else f_regmap[hr]=-1;
9694           }
9695           else if(branch_regs[i].regmap[hr]>=0) f_regmap[hr]=branch_regs[i].regmap[hr];
9696           if(itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS
9697           ||itype[i+1]==SHIFT||itype[i+1]==COP1||itype[i+1]==FLOAT
9698           ||itype[i+1]==FCOMP||itype[i+1]==FCONV
9699           ||itype[i+1]==COP2||itype[i+1]==C2LS||itype[i+1]==C2OP)
9700           {
9701             // Test both in case the delay slot is ooo,
9702             // could be done better...
9703             if(count_free_regs(branch_regs[i].regmap)<2
9704              ||count_free_regs(regs[i].regmap)<2) 
9705               f_regmap[hr]=branch_regs[i].regmap[hr];
9706           }
9707           // Avoid dirty->clean transition
9708           // #ifdef DESTRUCTIVE_WRITEBACK here?
9709           if(t>0) if(get_reg(regmap_pre[t],f_regmap[hr])>=0) if((regs[t].wasdirty>>get_reg(regmap_pre[t],f_regmap[hr]))&1) f_regmap[hr]=-1;
9710           if(f_regmap[hr]>0) {
9711             if(regs[t].regmap_entry[hr]<0) {
9712               int r=f_regmap[hr];
9713               for(j=t;j<=i;j++)
9714               {
9715                 //printf("Test %x -> %x, %x %d/%d\n",start+i*4,ba[i],start+j*4,hr,r);
9716                 if(r<34&&((unneeded_reg[j]>>r)&1)) break;
9717                 if(r>63&&((unneeded_reg_upper[j]>>(r&63))&1)) break;
9718                 if(r>63) {
9719                   // NB This can exclude the case where the upper-half
9720                   // register is lower numbered than the lower-half
9721                   // register.  Not sure if it's worth fixing...
9722                   if(get_reg(regs[j].regmap,r&63)<0) break;
9723                   if(regs[j].is32&(1LL<<(r&63))) break;
9724                 }
9725                 if(regs[j].regmap[hr]==f_regmap[hr]&&(f_regmap[hr]&63)<TEMPREG) {
9726                   //printf("Hit %x -> %x, %x %d/%d\n",start+i*4,ba[i],start+j*4,hr,r);
9727                   int k;
9728                   if(regs[i].regmap[hr]==-1&&branch_regs[i].regmap[hr]==-1) {
9729                     if(get_reg(regs[i+2].regmap,f_regmap[hr])>=0) break;
9730                     if(r>63) {
9731                       if(get_reg(regs[i].regmap,r&63)<0) break;
9732                       if(get_reg(branch_regs[i].regmap,r&63)<0) break;
9733                     }
9734                     k=i;
9735                     while(k>1&&regs[k-1].regmap[hr]==-1) {
9736                       if(itype[k-1]==STORE||itype[k-1]==STORELR
9737                       ||itype[k-1]==C1LS||itype[k-1]==SHIFT||itype[k-1]==COP1
9738                       ||itype[k-1]==FLOAT||itype[k-1]==FCONV||itype[k-1]==FCOMP
9739                       ||itype[k-1]==COP2||itype[k-1]==C2LS||itype[k-1]==C2OP) {
9740                         if(count_free_regs(regs[k-1].regmap)<2) {
9741                           //printf("no free regs for store %x\n",start+(k-1)*4);
9742                           break;
9743                         }
9744                       }
9745                       else
9746                       if(itype[k-1]!=NOP&&itype[k-1]!=MOV&&itype[k-1]!=ALU&&itype[k-1]!=SHIFTIMM&&itype[k-1]!=IMM16&&itype[k-1]!=LOAD) break;
9747                       if(get_reg(regs[k-1].regmap,f_regmap[hr])>=0) {
9748                         //printf("no-match due to different register\n");
9749                         break;
9750                       }
9751                       if(itype[k-2]==UJUMP||itype[k-2]==RJUMP||itype[k-2]==CJUMP||itype[k-2]==SJUMP||itype[k-2]==FJUMP) {
9752                         //printf("no-match due to branch\n");
9753                         break;
9754                       }
9755                       // call/ret fast path assumes no registers allocated
9756                       if(k>2&&(itype[k-3]==UJUMP||itype[k-3]==RJUMP)) {
9757                         break;
9758                       }
9759                       if(r>63) {
9760                         // NB This can exclude the case where the upper-half
9761                         // register is lower numbered than the lower-half
9762                         // register.  Not sure if it's worth fixing...
9763                         if(get_reg(regs[k-1].regmap,r&63)<0) break;
9764                         if(regs[k-1].is32&(1LL<<(r&63))) break;
9765                       }
9766                       k--;
9767                     }
9768                     if(i<slen-1) {
9769                       if((regs[k].is32&(1LL<<f_regmap[hr]))!=
9770                         (regs[i+2].was32&(1LL<<f_regmap[hr]))) {
9771                         //printf("bad match after branch\n");
9772                         break;
9773                       }
9774                     }
9775                     if(regs[k-1].regmap[hr]==f_regmap[hr]&&regmap_pre[k][hr]==f_regmap[hr]) {
9776                       //printf("Extend r%d, %x ->\n",hr,start+k*4);
9777                       while(k<i) {
9778                         regs[k].regmap_entry[hr]=f_regmap[hr];
9779                         regs[k].regmap[hr]=f_regmap[hr];
9780                         regmap_pre[k+1][hr]=f_regmap[hr];
9781                         regs[k].wasdirty&=~(1<<hr);
9782                         regs[k].dirty&=~(1<<hr);
9783                         regs[k].wasdirty|=(1<<hr)&regs[k-1].dirty;
9784                         regs[k].dirty|=(1<<hr)&regs[k].wasdirty;
9785                         regs[k].wasconst&=~(1<<hr);
9786                         regs[k].isconst&=~(1<<hr);
9787                         k++;
9788                       }
9789                     }
9790                     else {
9791                       //printf("Fail Extend r%d, %x ->\n",hr,start+k*4);
9792                       break;
9793                     }
9794                     assert(regs[i-1].regmap[hr]==f_regmap[hr]);
9795                     if(regs[i-1].regmap[hr]==f_regmap[hr]&&regmap_pre[i][hr]==f_regmap[hr]) {
9796                       //printf("OK fill %x (r%d)\n",start+i*4,hr);
9797                       regs[i].regmap_entry[hr]=f_regmap[hr];
9798                       regs[i].regmap[hr]=f_regmap[hr];
9799                       regs[i].wasdirty&=~(1<<hr);
9800                       regs[i].dirty&=~(1<<hr);
9801                       regs[i].wasdirty|=(1<<hr)&regs[i-1].dirty;
9802                       regs[i].dirty|=(1<<hr)&regs[i-1].dirty;
9803                       regs[i].wasconst&=~(1<<hr);
9804                       regs[i].isconst&=~(1<<hr);
9805                       branch_regs[i].regmap_entry[hr]=f_regmap[hr];
9806                       branch_regs[i].wasdirty&=~(1<<hr);
9807                       branch_regs[i].wasdirty|=(1<<hr)&regs[i].dirty;
9808                       branch_regs[i].regmap[hr]=f_regmap[hr];
9809                       branch_regs[i].dirty&=~(1<<hr);
9810                       branch_regs[i].dirty|=(1<<hr)&regs[i].dirty;
9811                       branch_regs[i].wasconst&=~(1<<hr);
9812                       branch_regs[i].isconst&=~(1<<hr);
9813                       if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000) {
9814                         regmap_pre[i+2][hr]=f_regmap[hr];
9815                         regs[i+2].wasdirty&=~(1<<hr);
9816                         regs[i+2].wasdirty|=(1<<hr)&regs[i].dirty;
9817                         assert((branch_regs[i].is32&(1LL<<f_regmap[hr]))==
9818                           (regs[i+2].was32&(1LL<<f_regmap[hr])));
9819                       }
9820                     }
9821                   }
9822                   for(k=t;k<j;k++) {
9823                     regs[k].regmap_entry[hr]=f_regmap[hr];
9824                     regs[k].regmap[hr]=f_regmap[hr];
9825                     regmap_pre[k+1][hr]=f_regmap[hr];
9826                     regs[k+1].wasdirty&=~(1<<hr);
9827                     regs[k].dirty&=~(1<<hr);
9828                     regs[k].wasconst&=~(1<<hr);
9829                     regs[k].isconst&=~(1<<hr);
9830                   }
9831                   if(regs[j].regmap[hr]==f_regmap[hr])
9832                     regs[j].regmap_entry[hr]=f_regmap[hr];
9833                   break;
9834                 }
9835                 if(j==i) break;
9836                 if(regs[j].regmap[hr]>=0)
9837                   break;
9838                 if(get_reg(regs[j].regmap,f_regmap[hr])>=0) {
9839                   //printf("no-match due to different register\n");
9840                   break;
9841                 }
9842                 if((regs[j+1].is32&(1LL<<f_regmap[hr]))!=(regs[j].is32&(1LL<<f_regmap[hr]))) {
9843                   //printf("32/64 mismatch %x %d\n",start+j*4,hr);
9844                   break;
9845                 }
9846                 if(itype[j]==STORE||itype[j]==STORELR||itype[j]==C1LS
9847                 ||itype[j]==SHIFT||itype[j]==COP1||itype[j]==FLOAT
9848                 ||itype[j]==FCOMP||itype[j]==FCONV
9849                 ||itype[j]==COP2||itype[j]==C2LS||itype[j]==C2OP) {
9850                   if(count_free_regs(regs[j].regmap)<2) {
9851                     //printf("No free regs for store %x\n",start+j*4);
9852                     break;
9853                   }
9854                 }
9855                 else if(itype[j]!=NOP&&itype[j]!=MOV&&itype[j]!=ALU&&itype[j]!=SHIFTIMM&&itype[j]!=IMM16&&itype[j]!=LOAD) break;
9856                 if(f_regmap[hr]>=64) {
9857                   if(regs[j].is32&(1LL<<(f_regmap[hr]&63))) {
9858                     break;
9859                   }
9860                   else
9861                   {
9862                     if(get_reg(regs[j].regmap,f_regmap[hr]&63)<0) {
9863                       break;
9864                     }
9865                   }
9866                 }
9867               }
9868             }
9869           }
9870         }
9871       }
9872     }else{
9873       int count=0;
9874       for(hr=0;hr<HOST_REGS;hr++)
9875       {
9876         if(hr!=EXCLUDE_REG) {
9877           if(regs[i].regmap[hr]>64) {
9878             if(!((regs[i].dirty>>hr)&1))
9879               f_regmap[hr]=regs[i].regmap[hr];
9880           }
9881           else if(regs[i].regmap[hr]>=0) f_regmap[hr]=regs[i].regmap[hr];
9882           else if(regs[i].regmap[hr]<0) count++;
9883         }
9884       }
9885       // Try to restore cycle count at branch targets
9886       if(bt[i]) {
9887         for(j=i;j<slen-1;j++) {
9888           if(regs[j].regmap[HOST_CCREG]!=-1) break;
9889           if(itype[j]==STORE||itype[j]==STORELR||itype[j]==C1LS
9890           ||itype[j]==SHIFT||itype[j]==COP1||itype[j]==FLOAT
9891           ||itype[j]==FCOMP||itype[j]==FCONV
9892           ||itype[j]==COP2||itype[j]==C2LS||itype[j]==C2OP) {
9893             if(count_free_regs(regs[j].regmap)<2) {
9894               //printf("no free regs for store %x\n",start+j*4);
9895               break;
9896             }
9897           }
9898           else
9899           if(itype[j]!=NOP&&itype[j]!=MOV&&itype[j]!=ALU&&itype[j]!=SHIFTIMM&&itype[j]!=IMM16&&itype[j]!=LOAD) break;
9900         }
9901         if(regs[j].regmap[HOST_CCREG]==CCREG) {
9902           int k=i;
9903           //printf("Extend CC, %x -> %x\n",start+k*4,start+j*4);
9904           while(k<j) {
9905             regs[k].regmap_entry[HOST_CCREG]=CCREG;
9906             regs[k].regmap[HOST_CCREG]=CCREG;
9907             regmap_pre[k+1][HOST_CCREG]=CCREG;
9908             regs[k+1].wasdirty|=1<<HOST_CCREG;
9909             regs[k].dirty|=1<<HOST_CCREG;
9910             regs[k].wasconst&=~(1<<HOST_CCREG);
9911             regs[k].isconst&=~(1<<HOST_CCREG);
9912             k++;
9913           }
9914           regs[j].regmap_entry[HOST_CCREG]=CCREG;          
9915         }
9916         // Work backwards from the branch target
9917         if(j>i&&f_regmap[HOST_CCREG]==CCREG)
9918         {
9919           //printf("Extend backwards\n");
9920           int k;
9921           k=i;
9922           while(regs[k-1].regmap[HOST_CCREG]==-1) {
9923             if(itype[k-1]==STORE||itype[k-1]==STORELR||itype[k-1]==C1LS
9924             ||itype[k-1]==SHIFT||itype[k-1]==COP1||itype[k-1]==FLOAT
9925             ||itype[k-1]==FCONV||itype[k-1]==FCOMP
9926             ||itype[k-1]==COP2||itype[k-1]==C2LS||itype[k-1]==C2OP) {
9927               if(count_free_regs(regs[k-1].regmap)<2) {
9928                 //printf("no free regs for store %x\n",start+(k-1)*4);
9929                 break;
9930               }
9931             }
9932             else
9933             if(itype[k-1]!=NOP&&itype[k-1]!=MOV&&itype[k-1]!=ALU&&itype[k-1]!=SHIFTIMM&&itype[k-1]!=IMM16&&itype[k-1]!=LOAD) break;
9934             k--;
9935           }
9936           if(regs[k-1].regmap[HOST_CCREG]==CCREG) {
9937             //printf("Extend CC, %x ->\n",start+k*4);
9938             while(k<=i) {
9939               regs[k].regmap_entry[HOST_CCREG]=CCREG;
9940               regs[k].regmap[HOST_CCREG]=CCREG;
9941               regmap_pre[k+1][HOST_CCREG]=CCREG;
9942               regs[k+1].wasdirty|=1<<HOST_CCREG;
9943               regs[k].dirty|=1<<HOST_CCREG;
9944               regs[k].wasconst&=~(1<<HOST_CCREG);
9945               regs[k].isconst&=~(1<<HOST_CCREG);
9946               k++;
9947             }
9948           }
9949           else {
9950             //printf("Fail Extend CC, %x ->\n",start+k*4);
9951           }
9952         }
9953       }
9954       if(itype[i]!=STORE&&itype[i]!=STORELR&&itype[i]!=C1LS&&itype[i]!=SHIFT&&
9955          itype[i]!=NOP&&itype[i]!=MOV&&itype[i]!=ALU&&itype[i]!=SHIFTIMM&&
9956          itype[i]!=IMM16&&itype[i]!=LOAD&&itype[i]!=COP1&&itype[i]!=FLOAT&&
9957          itype[i]!=FCONV&&itype[i]!=FCOMP&&
9958          itype[i]!=COP2&&itype[i]!=C2LS&&itype[i]!=C2OP)
9959       {
9960         memcpy(f_regmap,regs[i].regmap,sizeof(f_regmap));
9961       }
9962     }
9963   }
9964   
9965   // This allocates registers (if possible) one instruction prior
9966   // to use, which can avoid a load-use penalty on certain CPUs.
9967   for(i=0;i<slen-1;i++)
9968   {
9969     if(!i||(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP))
9970     {
9971       if(!bt[i+1])
9972       {
9973         if(itype[i]==ALU||itype[i]==MOV||itype[i]==LOAD||itype[i]==SHIFTIMM||itype[i]==IMM16
9974            ||((itype[i]==COP1||itype[i]==COP2)&&opcode2[i]<3))
9975         {
9976           if(rs1[i+1]) {
9977             if((hr=get_reg(regs[i+1].regmap,rs1[i+1]))>=0)
9978             {
9979               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
9980               {
9981                 regs[i].regmap[hr]=regs[i+1].regmap[hr];
9982                 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
9983                 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
9984                 regs[i].isconst&=~(1<<hr);
9985                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
9986                 constmap[i][hr]=constmap[i+1][hr];
9987                 regs[i+1].wasdirty&=~(1<<hr);
9988                 regs[i].dirty&=~(1<<hr);
9989               }
9990             }
9991           }
9992           if(rs2[i+1]) {
9993             if((hr=get_reg(regs[i+1].regmap,rs2[i+1]))>=0)
9994             {
9995               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
9996               {
9997                 regs[i].regmap[hr]=regs[i+1].regmap[hr];
9998                 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
9999                 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
10000                 regs[i].isconst&=~(1<<hr);
10001                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10002                 constmap[i][hr]=constmap[i+1][hr];
10003                 regs[i+1].wasdirty&=~(1<<hr);
10004                 regs[i].dirty&=~(1<<hr);
10005               }
10006             }
10007           }
10008           if(itype[i+1]==LOAD&&rs1[i+1]&&get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10009             if((hr=get_reg(regs[i+1].regmap,rt1[i+1]))>=0)
10010             {
10011               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10012               {
10013                 regs[i].regmap[hr]=rs1[i+1];
10014                 regmap_pre[i+1][hr]=rs1[i+1];
10015                 regs[i+1].regmap_entry[hr]=rs1[i+1];
10016                 regs[i].isconst&=~(1<<hr);
10017                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10018                 constmap[i][hr]=constmap[i+1][hr];
10019                 regs[i+1].wasdirty&=~(1<<hr);
10020                 regs[i].dirty&=~(1<<hr);
10021               }
10022             }
10023           }
10024           if(lt1[i+1]&&get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10025             if((hr=get_reg(regs[i+1].regmap,rt1[i+1]))>=0)
10026             {
10027               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10028               {
10029                 regs[i].regmap[hr]=rs1[i+1];
10030                 regmap_pre[i+1][hr]=rs1[i+1];
10031                 regs[i+1].regmap_entry[hr]=rs1[i+1];
10032                 regs[i].isconst&=~(1<<hr);
10033                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10034                 constmap[i][hr]=constmap[i+1][hr];
10035                 regs[i+1].wasdirty&=~(1<<hr);
10036                 regs[i].dirty&=~(1<<hr);
10037               }
10038             }
10039           }
10040           #ifndef HOST_IMM_ADDR32
10041           if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS||itype[i+1]==C2LS) {
10042             hr=get_reg(regs[i+1].regmap,TLREG);
10043             if(hr>=0) {
10044               int sr=get_reg(regs[i+1].regmap,rs1[i+1]);
10045               if(sr>=0&&((regs[i+1].wasconst>>sr)&1)) {
10046                 int nr;
10047                 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10048                 {
10049                   regs[i].regmap[hr]=MGEN1+((i+1)&1);
10050                   regmap_pre[i+1][hr]=MGEN1+((i+1)&1);
10051                   regs[i+1].regmap_entry[hr]=MGEN1+((i+1)&1);
10052                   regs[i].isconst&=~(1<<hr);
10053                   regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10054                   constmap[i][hr]=constmap[i+1][hr];
10055                   regs[i+1].wasdirty&=~(1<<hr);
10056                   regs[i].dirty&=~(1<<hr);
10057                 }
10058                 else if((nr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1))>=0)
10059                 {
10060                   // move it to another register
10061                   regs[i+1].regmap[hr]=-1;
10062                   regmap_pre[i+2][hr]=-1;
10063                   regs[i+1].regmap[nr]=TLREG;
10064                   regmap_pre[i+2][nr]=TLREG;
10065                   regs[i].regmap[nr]=MGEN1+((i+1)&1);
10066                   regmap_pre[i+1][nr]=MGEN1+((i+1)&1);
10067                   regs[i+1].regmap_entry[nr]=MGEN1+((i+1)&1);
10068                   regs[i].isconst&=~(1<<nr);
10069                   regs[i+1].isconst&=~(1<<nr);
10070                   regs[i].dirty&=~(1<<nr);
10071                   regs[i+1].wasdirty&=~(1<<nr);
10072                   regs[i+1].dirty&=~(1<<nr);
10073                   regs[i+2].wasdirty&=~(1<<nr);
10074                 }
10075               }
10076             }
10077           }
10078           #endif
10079           if(itype[i+1]==STORE||itype[i+1]==STORELR
10080              ||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SB/SH/SW/SD/SWC1/SDC1/SWC2/SDC2
10081             if(get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10082               hr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1);
10083               if(hr<0) hr=get_reg(regs[i+1].regmap,-1);
10084               else {regs[i+1].regmap[hr]=AGEN1+((i+1)&1);regs[i+1].isconst&=~(1<<hr);}
10085               assert(hr>=0);
10086               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10087               {
10088                 regs[i].regmap[hr]=rs1[i+1];
10089                 regmap_pre[i+1][hr]=rs1[i+1];
10090                 regs[i+1].regmap_entry[hr]=rs1[i+1];
10091                 regs[i].isconst&=~(1<<hr);
10092                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10093                 constmap[i][hr]=constmap[i+1][hr];
10094                 regs[i+1].wasdirty&=~(1<<hr);
10095                 regs[i].dirty&=~(1<<hr);
10096               }
10097             }
10098           }
10099           if(itype[i+1]==LOADLR||(opcode[i+1]&0x3b)==0x31||(opcode[i+1]&0x3b)==0x32) { // LWC1/LDC1, LWC2/LDC2
10100             if(get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10101               int nr;
10102               hr=get_reg(regs[i+1].regmap,FTEMP);
10103               assert(hr>=0);
10104               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10105               {
10106                 regs[i].regmap[hr]=rs1[i+1];
10107                 regmap_pre[i+1][hr]=rs1[i+1];
10108                 regs[i+1].regmap_entry[hr]=rs1[i+1];
10109                 regs[i].isconst&=~(1<<hr);
10110                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10111                 constmap[i][hr]=constmap[i+1][hr];
10112                 regs[i+1].wasdirty&=~(1<<hr);
10113                 regs[i].dirty&=~(1<<hr);
10114               }
10115               else if((nr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1))>=0)
10116               {
10117                 // move it to another register
10118                 regs[i+1].regmap[hr]=-1;
10119                 regmap_pre[i+2][hr]=-1;
10120                 regs[i+1].regmap[nr]=FTEMP;
10121                 regmap_pre[i+2][nr]=FTEMP;
10122                 regs[i].regmap[nr]=rs1[i+1];
10123                 regmap_pre[i+1][nr]=rs1[i+1];
10124                 regs[i+1].regmap_entry[nr]=rs1[i+1];
10125                 regs[i].isconst&=~(1<<nr);
10126                 regs[i+1].isconst&=~(1<<nr);
10127                 regs[i].dirty&=~(1<<nr);
10128                 regs[i+1].wasdirty&=~(1<<nr);
10129                 regs[i+1].dirty&=~(1<<nr);
10130                 regs[i+2].wasdirty&=~(1<<nr);
10131               }
10132             }
10133           }
10134           if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR/*||itype[i+1]==C1LS||||itype[i+1]==C2LS*/) {
10135             if(itype[i+1]==LOAD) 
10136               hr=get_reg(regs[i+1].regmap,rt1[i+1]);
10137             if(itype[i+1]==LOADLR||(opcode[i+1]&0x3b)==0x31||(opcode[i+1]&0x3b)==0x32) // LWC1/LDC1, LWC2/LDC2
10138               hr=get_reg(regs[i+1].regmap,FTEMP);
10139             if(itype[i+1]==STORE||itype[i+1]==STORELR||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1/SWC2/SDC2
10140               hr=get_reg(regs[i+1].regmap,AGEN1+((i+1)&1));
10141               if(hr<0) hr=get_reg(regs[i+1].regmap,-1);
10142             }
10143             if(hr>=0&&regs[i].regmap[hr]<0) {
10144               int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
10145               if(rs>=0&&((regs[i+1].wasconst>>rs)&1)) {
10146                 regs[i].regmap[hr]=AGEN1+((i+1)&1);
10147                 regmap_pre[i+1][hr]=AGEN1+((i+1)&1);
10148                 regs[i+1].regmap_entry[hr]=AGEN1+((i+1)&1);
10149                 regs[i].isconst&=~(1<<hr);
10150                 regs[i+1].wasdirty&=~(1<<hr);
10151                 regs[i].dirty&=~(1<<hr);
10152               }
10153             }
10154           }
10155         }
10156       }
10157     }
10158   }
10159   
10160   /* Pass 6 - Optimize clean/dirty state */
10161   clean_registers(0,slen-1,1);
10162   
10163   /* Pass 7 - Identify 32-bit registers */
10164   
10165   provisional_r32();
10166
10167   u_int r32=0;
10168   
10169   for (i=slen-1;i>=0;i--)
10170   {
10171     int hr;
10172     if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
10173     {
10174       if(ba[i]<start || ba[i]>=(start+slen*4))
10175       {
10176         // Branch out of this block, don't need anything
10177         r32=0;
10178       }
10179       else
10180       {
10181         // Internal branch
10182         // Need whatever matches the target
10183         // (and doesn't get overwritten by the delay slot instruction)
10184         r32=0;
10185         int t=(ba[i]-start)>>2;
10186         if(ba[i]>start+i*4) {
10187           // Forward branch
10188           if(!(requires_32bit[t]&~regs[i].was32))
10189             r32|=requires_32bit[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
10190         }else{
10191           // Backward branch
10192           //if(!(regs[t].was32&~unneeded_reg_upper[t]&~regs[i].was32))
10193           //  r32|=regs[t].was32&~unneeded_reg_upper[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
10194           if(!(pr32[t]&~regs[i].was32))
10195             r32|=pr32[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
10196         }
10197       }
10198       // Conditional branch may need registers for following instructions
10199       if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
10200       {
10201         if(i<slen-2) {
10202           r32|=requires_32bit[i+2];
10203           r32&=regs[i].was32;
10204           // Mark this address as a branch target since it may be called
10205           // upon return from interrupt
10206           bt[i+2]=1;
10207         }
10208       }
10209       // Merge in delay slot
10210       if(!likely[i]) {
10211         // These are overwritten unless the branch is "likely"
10212         // and the delay slot is nullified if not taken
10213         r32&=~(1LL<<rt1[i+1]);
10214         r32&=~(1LL<<rt2[i+1]);
10215       }
10216       // Assume these are needed (delay slot)
10217       if(us1[i+1]>0)
10218       {
10219         if((regs[i].was32>>us1[i+1])&1) r32|=1LL<<us1[i+1];
10220       }
10221       if(us2[i+1]>0)
10222       {
10223         if((regs[i].was32>>us2[i+1])&1) r32|=1LL<<us2[i+1];
10224       }
10225       if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1))
10226       {
10227         if((regs[i].was32>>dep1[i+1])&1) r32|=1LL<<dep1[i+1];
10228       }
10229       if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1))
10230       {
10231         if((regs[i].was32>>dep2[i+1])&1) r32|=1LL<<dep2[i+1];
10232       }
10233     }
10234     else if(itype[i]==SYSCALL||itype[i]==HLECALL)
10235     {
10236       // SYSCALL instruction (software interrupt)
10237       r32=0;
10238     }
10239     else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
10240     {
10241       // ERET instruction (return from interrupt)
10242       r32=0;
10243     }
10244     // Check 32 bits
10245     r32&=~(1LL<<rt1[i]);
10246     r32&=~(1LL<<rt2[i]);
10247     if(us1[i]>0)
10248     {
10249       if((regs[i].was32>>us1[i])&1) r32|=1LL<<us1[i];
10250     }
10251     if(us2[i]>0)
10252     {
10253       if((regs[i].was32>>us2[i])&1) r32|=1LL<<us2[i];
10254     }
10255     if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1))
10256     {
10257       if((regs[i].was32>>dep1[i])&1) r32|=1LL<<dep1[i];
10258     }
10259     if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1))
10260     {
10261       if((regs[i].was32>>dep2[i])&1) r32|=1LL<<dep2[i];
10262     }
10263     requires_32bit[i]=r32;
10264     
10265     // Dirty registers which are 32-bit, require 32-bit input
10266     // as they will be written as 32-bit values
10267     for(hr=0;hr<HOST_REGS;hr++)
10268     {
10269       if(regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64) {
10270         if((regs[i].was32>>regs[i].regmap_entry[hr])&(regs[i].wasdirty>>hr)&1) {
10271           if(!((unneeded_reg_upper[i]>>regs[i].regmap_entry[hr])&1))
10272           requires_32bit[i]|=1LL<<regs[i].regmap_entry[hr];
10273         }
10274       }
10275     }
10276     //requires_32bit[i]=is32[i]&~unneeded_reg_upper[i]; // DEBUG
10277   }
10278
10279   if(itype[slen-1]==SPAN) {
10280     bt[slen-1]=1; // Mark as a branch target so instruction can restart after exception
10281   }
10282   
10283   /* Debug/disassembly */
10284   if((void*)assem_debug==(void*)printf) 
10285   for(i=0;i<slen;i++)
10286   {
10287     printf("U:");
10288     int r;
10289     for(r=1;r<=CCREG;r++) {
10290       if((unneeded_reg[i]>>r)&1) {
10291         if(r==HIREG) printf(" HI");
10292         else if(r==LOREG) printf(" LO");
10293         else printf(" r%d",r);
10294       }
10295     }
10296 #ifndef FORCE32
10297     printf(" UU:");
10298     for(r=1;r<=CCREG;r++) {
10299       if(((unneeded_reg_upper[i]&~unneeded_reg[i])>>r)&1) {
10300         if(r==HIREG) printf(" HI");
10301         else if(r==LOREG) printf(" LO");
10302         else printf(" r%d",r);
10303       }
10304     }
10305     printf(" 32:");
10306     for(r=0;r<=CCREG;r++) {
10307       //if(((is32[i]>>r)&(~unneeded_reg[i]>>r))&1) {
10308       if((regs[i].was32>>r)&1) {
10309         if(r==CCREG) printf(" CC");
10310         else if(r==HIREG) printf(" HI");
10311         else if(r==LOREG) printf(" LO");
10312         else printf(" r%d",r);
10313       }
10314     }
10315 #endif
10316     printf("\n");
10317     #if defined(__i386__) || defined(__x86_64__)
10318     printf("pre: eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",regmap_pre[i][0],regmap_pre[i][1],regmap_pre[i][2],regmap_pre[i][3],regmap_pre[i][5],regmap_pre[i][6],regmap_pre[i][7]);
10319     #endif
10320     #ifdef __arm__
10321     printf("pre: r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d\n",regmap_pre[i][0],regmap_pre[i][1],regmap_pre[i][2],regmap_pre[i][3],regmap_pre[i][4],regmap_pre[i][5],regmap_pre[i][6],regmap_pre[i][7],regmap_pre[i][8],regmap_pre[i][9],regmap_pre[i][10],regmap_pre[i][12]);
10322     #endif
10323     printf("needs: ");
10324     if(needed_reg[i]&1) printf("eax ");
10325     if((needed_reg[i]>>1)&1) printf("ecx ");
10326     if((needed_reg[i]>>2)&1) printf("edx ");
10327     if((needed_reg[i]>>3)&1) printf("ebx ");
10328     if((needed_reg[i]>>5)&1) printf("ebp ");
10329     if((needed_reg[i]>>6)&1) printf("esi ");
10330     if((needed_reg[i]>>7)&1) printf("edi ");
10331     printf("r:");
10332     for(r=0;r<=CCREG;r++) {
10333       //if(((requires_32bit[i]>>r)&(~unneeded_reg[i]>>r))&1) {
10334       if((requires_32bit[i]>>r)&1) {
10335         if(r==CCREG) printf(" CC");
10336         else if(r==HIREG) printf(" HI");
10337         else if(r==LOREG) printf(" LO");
10338         else printf(" r%d",r);
10339       }
10340     }
10341     printf("\n");
10342     /*printf("pr:");
10343     for(r=0;r<=CCREG;r++) {
10344       //if(((requires_32bit[i]>>r)&(~unneeded_reg[i]>>r))&1) {
10345       if((pr32[i]>>r)&1) {
10346         if(r==CCREG) printf(" CC");
10347         else if(r==HIREG) printf(" HI");
10348         else if(r==LOREG) printf(" LO");
10349         else printf(" r%d",r);
10350       }
10351     }
10352     if(pr32[i]!=requires_32bit[i]) printf(" OOPS");
10353     printf("\n");*/
10354     #if defined(__i386__) || defined(__x86_64__)
10355     printf("entry: eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",regs[i].regmap_entry[0],regs[i].regmap_entry[1],regs[i].regmap_entry[2],regs[i].regmap_entry[3],regs[i].regmap_entry[5],regs[i].regmap_entry[6],regs[i].regmap_entry[7]);
10356     printf("dirty: ");
10357     if(regs[i].wasdirty&1) printf("eax ");
10358     if((regs[i].wasdirty>>1)&1) printf("ecx ");
10359     if((regs[i].wasdirty>>2)&1) printf("edx ");
10360     if((regs[i].wasdirty>>3)&1) printf("ebx ");
10361     if((regs[i].wasdirty>>5)&1) printf("ebp ");
10362     if((regs[i].wasdirty>>6)&1) printf("esi ");
10363     if((regs[i].wasdirty>>7)&1) printf("edi ");
10364     #endif
10365     #ifdef __arm__
10366     printf("entry: r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d\n",regs[i].regmap_entry[0],regs[i].regmap_entry[1],regs[i].regmap_entry[2],regs[i].regmap_entry[3],regs[i].regmap_entry[4],regs[i].regmap_entry[5],regs[i].regmap_entry[6],regs[i].regmap_entry[7],regs[i].regmap_entry[8],regs[i].regmap_entry[9],regs[i].regmap_entry[10],regs[i].regmap_entry[12]);
10367     printf("dirty: ");
10368     if(regs[i].wasdirty&1) printf("r0 ");
10369     if((regs[i].wasdirty>>1)&1) printf("r1 ");
10370     if((regs[i].wasdirty>>2)&1) printf("r2 ");
10371     if((regs[i].wasdirty>>3)&1) printf("r3 ");
10372     if((regs[i].wasdirty>>4)&1) printf("r4 ");
10373     if((regs[i].wasdirty>>5)&1) printf("r5 ");
10374     if((regs[i].wasdirty>>6)&1) printf("r6 ");
10375     if((regs[i].wasdirty>>7)&1) printf("r7 ");
10376     if((regs[i].wasdirty>>8)&1) printf("r8 ");
10377     if((regs[i].wasdirty>>9)&1) printf("r9 ");
10378     if((regs[i].wasdirty>>10)&1) printf("r10 ");
10379     if((regs[i].wasdirty>>12)&1) printf("r12 ");
10380     #endif
10381     printf("\n");
10382     disassemble_inst(i);
10383     //printf ("ccadj[%d] = %d\n",i,ccadj[i]);
10384     #if defined(__i386__) || defined(__x86_64__)
10385     printf("eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d dirty: ",regs[i].regmap[0],regs[i].regmap[1],regs[i].regmap[2],regs[i].regmap[3],regs[i].regmap[5],regs[i].regmap[6],regs[i].regmap[7]);
10386     if(regs[i].dirty&1) printf("eax ");
10387     if((regs[i].dirty>>1)&1) printf("ecx ");
10388     if((regs[i].dirty>>2)&1) printf("edx ");
10389     if((regs[i].dirty>>3)&1) printf("ebx ");
10390     if((regs[i].dirty>>5)&1) printf("ebp ");
10391     if((regs[i].dirty>>6)&1) printf("esi ");
10392     if((regs[i].dirty>>7)&1) printf("edi ");
10393     #endif
10394     #ifdef __arm__
10395     printf("r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d dirty: ",regs[i].regmap[0],regs[i].regmap[1],regs[i].regmap[2],regs[i].regmap[3],regs[i].regmap[4],regs[i].regmap[5],regs[i].regmap[6],regs[i].regmap[7],regs[i].regmap[8],regs[i].regmap[9],regs[i].regmap[10],regs[i].regmap[12]);
10396     if(regs[i].dirty&1) printf("r0 ");
10397     if((regs[i].dirty>>1)&1) printf("r1 ");
10398     if((regs[i].dirty>>2)&1) printf("r2 ");
10399     if((regs[i].dirty>>3)&1) printf("r3 ");
10400     if((regs[i].dirty>>4)&1) printf("r4 ");
10401     if((regs[i].dirty>>5)&1) printf("r5 ");
10402     if((regs[i].dirty>>6)&1) printf("r6 ");
10403     if((regs[i].dirty>>7)&1) printf("r7 ");
10404     if((regs[i].dirty>>8)&1) printf("r8 ");
10405     if((regs[i].dirty>>9)&1) printf("r9 ");
10406     if((regs[i].dirty>>10)&1) printf("r10 ");
10407     if((regs[i].dirty>>12)&1) printf("r12 ");
10408     #endif
10409     printf("\n");
10410     if(regs[i].isconst) {
10411       printf("constants: ");
10412       #if defined(__i386__) || defined(__x86_64__)
10413       if(regs[i].isconst&1) printf("eax=%x ",(int)constmap[i][0]);
10414       if((regs[i].isconst>>1)&1) printf("ecx=%x ",(int)constmap[i][1]);
10415       if((regs[i].isconst>>2)&1) printf("edx=%x ",(int)constmap[i][2]);
10416       if((regs[i].isconst>>3)&1) printf("ebx=%x ",(int)constmap[i][3]);
10417       if((regs[i].isconst>>5)&1) printf("ebp=%x ",(int)constmap[i][5]);
10418       if((regs[i].isconst>>6)&1) printf("esi=%x ",(int)constmap[i][6]);
10419       if((regs[i].isconst>>7)&1) printf("edi=%x ",(int)constmap[i][7]);
10420       #endif
10421       #ifdef __arm__
10422       if(regs[i].isconst&1) printf("r0=%x ",(int)constmap[i][0]);
10423       if((regs[i].isconst>>1)&1) printf("r1=%x ",(int)constmap[i][1]);
10424       if((regs[i].isconst>>2)&1) printf("r2=%x ",(int)constmap[i][2]);
10425       if((regs[i].isconst>>3)&1) printf("r3=%x ",(int)constmap[i][3]);
10426       if((regs[i].isconst>>4)&1) printf("r4=%x ",(int)constmap[i][4]);
10427       if((regs[i].isconst>>5)&1) printf("r5=%x ",(int)constmap[i][5]);
10428       if((regs[i].isconst>>6)&1) printf("r6=%x ",(int)constmap[i][6]);
10429       if((regs[i].isconst>>7)&1) printf("r7=%x ",(int)constmap[i][7]);
10430       if((regs[i].isconst>>8)&1) printf("r8=%x ",(int)constmap[i][8]);
10431       if((regs[i].isconst>>9)&1) printf("r9=%x ",(int)constmap[i][9]);
10432       if((regs[i].isconst>>10)&1) printf("r10=%x ",(int)constmap[i][10]);
10433       if((regs[i].isconst>>12)&1) printf("r12=%x ",(int)constmap[i][12]);
10434       #endif
10435       printf("\n");
10436     }
10437 #ifndef FORCE32
10438     printf(" 32:");
10439     for(r=0;r<=CCREG;r++) {
10440       if((regs[i].is32>>r)&1) {
10441         if(r==CCREG) printf(" CC");
10442         else if(r==HIREG) printf(" HI");
10443         else if(r==LOREG) printf(" LO");
10444         else printf(" r%d",r);
10445       }
10446     }
10447     printf("\n");
10448 #endif
10449     /*printf(" p32:");
10450     for(r=0;r<=CCREG;r++) {
10451       if((p32[i]>>r)&1) {
10452         if(r==CCREG) printf(" CC");
10453         else if(r==HIREG) printf(" HI");
10454         else if(r==LOREG) printf(" LO");
10455         else printf(" r%d",r);
10456       }
10457     }
10458     if(p32[i]!=regs[i].is32) printf(" NO MATCH\n");
10459     else printf("\n");*/
10460     if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP) {
10461       #if defined(__i386__) || defined(__x86_64__)
10462       printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d dirty: ",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
10463       if(branch_regs[i].dirty&1) printf("eax ");
10464       if((branch_regs[i].dirty>>1)&1) printf("ecx ");
10465       if((branch_regs[i].dirty>>2)&1) printf("edx ");
10466       if((branch_regs[i].dirty>>3)&1) printf("ebx ");
10467       if((branch_regs[i].dirty>>5)&1) printf("ebp ");
10468       if((branch_regs[i].dirty>>6)&1) printf("esi ");
10469       if((branch_regs[i].dirty>>7)&1) printf("edi ");
10470       #endif
10471       #ifdef __arm__
10472       printf("branch(%d): r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d dirty: ",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[4],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7],branch_regs[i].regmap[8],branch_regs[i].regmap[9],branch_regs[i].regmap[10],branch_regs[i].regmap[12]);
10473       if(branch_regs[i].dirty&1) printf("r0 ");
10474       if((branch_regs[i].dirty>>1)&1) printf("r1 ");
10475       if((branch_regs[i].dirty>>2)&1) printf("r2 ");
10476       if((branch_regs[i].dirty>>3)&1) printf("r3 ");
10477       if((branch_regs[i].dirty>>4)&1) printf("r4 ");
10478       if((branch_regs[i].dirty>>5)&1) printf("r5 ");
10479       if((branch_regs[i].dirty>>6)&1) printf("r6 ");
10480       if((branch_regs[i].dirty>>7)&1) printf("r7 ");
10481       if((branch_regs[i].dirty>>8)&1) printf("r8 ");
10482       if((branch_regs[i].dirty>>9)&1) printf("r9 ");
10483       if((branch_regs[i].dirty>>10)&1) printf("r10 ");
10484       if((branch_regs[i].dirty>>12)&1) printf("r12 ");
10485       #endif
10486 #ifndef FORCE32
10487       printf(" 32:");
10488       for(r=0;r<=CCREG;r++) {
10489         if((branch_regs[i].is32>>r)&1) {
10490           if(r==CCREG) printf(" CC");
10491           else if(r==HIREG) printf(" HI");
10492           else if(r==LOREG) printf(" LO");
10493           else printf(" r%d",r);
10494         }
10495       }
10496       printf("\n");
10497 #endif
10498     }
10499   }
10500
10501   /* Pass 8 - Assembly */
10502   linkcount=0;stubcount=0;
10503   ds=0;is_delayslot=0;
10504   cop1_usable=0;
10505   uint64_t is32_pre=0;
10506   u_int dirty_pre=0;
10507   u_int beginning=(u_int)out;
10508   if((u_int)addr&1) {
10509     ds=1;
10510     pagespan_ds();
10511   }
10512   u_int instr_addr0_override=0;
10513
10514 #ifdef PCSX
10515   if (start == 0x80030000) {
10516     // nasty hack for fastbios thing
10517     instr_addr0_override=(u_int)out;
10518     emit_movimm(start,0);
10519     emit_readword((int)&pcaddr,1);
10520     emit_writeword(0,(int)&pcaddr);
10521     emit_cmp(0,1);
10522     emit_jne((int)new_dyna_leave);
10523   }
10524 #endif
10525   for(i=0;i<slen;i++)
10526   {
10527     //if(ds) printf("ds: ");
10528     if((void*)assem_debug==(void*)printf) disassemble_inst(i);
10529     if(ds) {
10530       ds=0; // Skip delay slot
10531       if(bt[i]) assem_debug("OOPS - branch into delay slot\n");
10532       instr_addr[i]=0;
10533     } else {
10534       #ifndef DESTRUCTIVE_WRITEBACK
10535       if(i<2||(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000))
10536       {
10537         wb_sx(regmap_pre[i],regs[i].regmap_entry,regs[i].wasdirty,is32_pre,regs[i].was32,
10538               unneeded_reg[i],unneeded_reg_upper[i]);
10539         wb_valid(regmap_pre[i],regs[i].regmap_entry,dirty_pre,regs[i].wasdirty,is32_pre,
10540               unneeded_reg[i],unneeded_reg_upper[i]);
10541       }
10542       is32_pre=regs[i].is32;
10543       dirty_pre=regs[i].dirty;
10544       #endif
10545       // write back
10546       if(i<2||(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000))
10547       {
10548         wb_invalidate(regmap_pre[i],regs[i].regmap_entry,regs[i].wasdirty,regs[i].was32,
10549                       unneeded_reg[i],unneeded_reg_upper[i]);
10550         loop_preload(regmap_pre[i],regs[i].regmap_entry);
10551       }
10552       // branch target entry point
10553       instr_addr[i]=(u_int)out;
10554       assem_debug("<->\n");
10555       // load regs
10556       if(regs[i].regmap_entry[HOST_CCREG]==CCREG&&regs[i].regmap[HOST_CCREG]!=CCREG)
10557         wb_register(CCREG,regs[i].regmap_entry,regs[i].wasdirty,regs[i].was32);
10558       load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i],rs2[i]);
10559       address_generation(i,&regs[i],regs[i].regmap_entry);
10560       load_consts(regmap_pre[i],regs[i].regmap,regs[i].was32,i);
10561       if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
10562       {
10563         // Load the delay slot registers if necessary
10564         if(rs1[i+1]!=rs1[i]&&rs1[i+1]!=rs2[i])
10565           load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i+1],rs1[i+1]);
10566         if(rs2[i+1]!=rs1[i+1]&&rs2[i+1]!=rs1[i]&&rs2[i+1]!=rs2[i])
10567           load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs2[i+1],rs2[i+1]);
10568         if(itype[i+1]==STORE||itype[i+1]==STORELR||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a)
10569           load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,INVCP,INVCP);
10570       }
10571       else if(i+1<slen)
10572       {
10573         // Preload registers for following instruction
10574         if(rs1[i+1]!=rs1[i]&&rs1[i+1]!=rs2[i])
10575           if(rs1[i+1]!=rt1[i]&&rs1[i+1]!=rt2[i])
10576             load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i+1],rs1[i+1]);
10577         if(rs2[i+1]!=rs1[i+1]&&rs2[i+1]!=rs1[i]&&rs2[i+1]!=rs2[i])
10578           if(rs2[i+1]!=rt1[i]&&rs2[i+1]!=rt2[i])
10579             load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs2[i+1],rs2[i+1]);
10580       }
10581       // TODO: if(is_ooo(i)) address_generation(i+1);
10582       if(itype[i]==CJUMP||itype[i]==FJUMP)
10583         load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,CCREG,CCREG);
10584       if(itype[i]==STORE||itype[i]==STORELR||(opcode[i]&0x3b)==0x39||(opcode[i]&0x3b)==0x3a)
10585         load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,INVCP,INVCP);
10586       if(bt[i]) cop1_usable=0;
10587       // assemble
10588       switch(itype[i]) {
10589         case ALU:
10590           alu_assemble(i,&regs[i]);break;
10591         case IMM16:
10592           imm16_assemble(i,&regs[i]);break;
10593         case SHIFT:
10594           shift_assemble(i,&regs[i]);break;
10595         case SHIFTIMM:
10596           shiftimm_assemble(i,&regs[i]);break;
10597         case LOAD:
10598           load_assemble(i,&regs[i]);break;
10599         case LOADLR:
10600           loadlr_assemble(i,&regs[i]);break;
10601         case STORE:
10602           store_assemble(i,&regs[i]);break;
10603         case STORELR:
10604           storelr_assemble(i,&regs[i]);break;
10605         case COP0:
10606           cop0_assemble(i,&regs[i]);break;
10607         case COP1:
10608           cop1_assemble(i,&regs[i]);break;
10609         case C1LS:
10610           c1ls_assemble(i,&regs[i]);break;
10611         case COP2:
10612           cop2_assemble(i,&regs[i]);break;
10613         case C2LS:
10614           c2ls_assemble(i,&regs[i]);break;
10615         case C2OP:
10616           c2op_assemble(i,&regs[i]);break;
10617         case FCONV:
10618           fconv_assemble(i,&regs[i]);break;
10619         case FLOAT:
10620           float_assemble(i,&regs[i]);break;
10621         case FCOMP:
10622           fcomp_assemble(i,&regs[i]);break;
10623         case MULTDIV:
10624           multdiv_assemble(i,&regs[i]);break;
10625         case MOV:
10626           mov_assemble(i,&regs[i]);break;
10627         case SYSCALL:
10628           syscall_assemble(i,&regs[i]);break;
10629         case HLECALL:
10630           hlecall_assemble(i,&regs[i]);break;
10631         case UJUMP:
10632           ujump_assemble(i,&regs[i]);ds=1;break;
10633         case RJUMP:
10634           rjump_assemble(i,&regs[i]);ds=1;break;
10635         case CJUMP:
10636           cjump_assemble(i,&regs[i]);ds=1;break;
10637         case SJUMP:
10638           sjump_assemble(i,&regs[i]);ds=1;break;
10639         case FJUMP:
10640           fjump_assemble(i,&regs[i]);ds=1;break;
10641         case SPAN:
10642           pagespan_assemble(i,&regs[i]);break;
10643       }
10644       if(itype[i]==UJUMP||itype[i]==RJUMP||(source[i]>>16)==0x1000)
10645         literal_pool(1024);
10646       else
10647         literal_pool_jumpover(256);
10648     }
10649   }
10650   //assert(itype[i-2]==UJUMP||itype[i-2]==RJUMP||(source[i-2]>>16)==0x1000);
10651   // If the block did not end with an unconditional branch,
10652   // add a jump to the next instruction.
10653   if(i>1) {
10654     if(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000&&itype[i-1]!=SPAN) {
10655       assert(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP);
10656       assert(i==slen);
10657       if(itype[i-2]!=CJUMP&&itype[i-2]!=SJUMP&&itype[i-2]!=FJUMP) {
10658         store_regs_bt(regs[i-1].regmap,regs[i-1].is32,regs[i-1].dirty,start+i*4);
10659         if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
10660           emit_loadreg(CCREG,HOST_CCREG);
10661         emit_addimm(HOST_CCREG,CLOCK_DIVIDER*(ccadj[i-1]+1),HOST_CCREG);
10662       }
10663       else if(!likely[i-2])
10664       {
10665         store_regs_bt(branch_regs[i-2].regmap,branch_regs[i-2].is32,branch_regs[i-2].dirty,start+i*4);
10666         assert(branch_regs[i-2].regmap[HOST_CCREG]==CCREG);
10667       }
10668       else
10669       {
10670         store_regs_bt(regs[i-2].regmap,regs[i-2].is32,regs[i-2].dirty,start+i*4);
10671         assert(regs[i-2].regmap[HOST_CCREG]==CCREG);
10672       }
10673       add_to_linker((int)out,start+i*4,0);
10674       emit_jmp(0);
10675     }
10676   }
10677   else
10678   {
10679     assert(i>0);
10680     assert(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP);
10681     store_regs_bt(regs[i-1].regmap,regs[i-1].is32,regs[i-1].dirty,start+i*4);
10682     if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
10683       emit_loadreg(CCREG,HOST_CCREG);
10684     emit_addimm(HOST_CCREG,CLOCK_DIVIDER*(ccadj[i-1]+1),HOST_CCREG);
10685     add_to_linker((int)out,start+i*4,0);
10686     emit_jmp(0);
10687   }
10688
10689   // TODO: delay slot stubs?
10690   // Stubs
10691   for(i=0;i<stubcount;i++)
10692   {
10693     switch(stubs[i][0])
10694     {
10695       case LOADB_STUB:
10696       case LOADH_STUB:
10697       case LOADW_STUB:
10698       case LOADD_STUB:
10699       case LOADBU_STUB:
10700       case LOADHU_STUB:
10701         do_readstub(i);break;
10702       case STOREB_STUB:
10703       case STOREH_STUB:
10704       case STOREW_STUB:
10705       case STORED_STUB:
10706         do_writestub(i);break;
10707       case CC_STUB:
10708         do_ccstub(i);break;
10709       case INVCODE_STUB:
10710         do_invstub(i);break;
10711       case FP_STUB:
10712         do_cop1stub(i);break;
10713       case STORELR_STUB:
10714         do_unalignedwritestub(i);break;
10715     }
10716   }
10717
10718   if (instr_addr0_override)
10719     instr_addr[0] = instr_addr0_override;
10720
10721   /* Pass 9 - Linker */
10722   for(i=0;i<linkcount;i++)
10723   {
10724     assem_debug("%8x -> %8x\n",link_addr[i][0],link_addr[i][1]);
10725     literal_pool(64);
10726     if(!link_addr[i][2])
10727     {
10728       void *stub=out;
10729       void *addr=check_addr(link_addr[i][1]);
10730       emit_extjump(link_addr[i][0],link_addr[i][1]);
10731       if(addr) {
10732         set_jump_target(link_addr[i][0],(int)addr);
10733         add_link(link_addr[i][1],stub);
10734       }
10735       else set_jump_target(link_addr[i][0],(int)stub);
10736     }
10737     else
10738     {
10739       // Internal branch
10740       int target=(link_addr[i][1]-start)>>2;
10741       assert(target>=0&&target<slen);
10742       assert(instr_addr[target]);
10743       //#ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
10744       //set_jump_target_fillslot(link_addr[i][0],instr_addr[target],link_addr[i][2]>>1);
10745       //#else
10746       set_jump_target(link_addr[i][0],instr_addr[target]);
10747       //#endif
10748     }
10749   }
10750   // External Branch Targets (jump_in)
10751   if(copy+slen*4>(void *)shadow+sizeof(shadow)) copy=shadow;
10752   for(i=0;i<slen;i++)
10753   {
10754     if(bt[i]||i==0)
10755     {
10756       if(instr_addr[i]) // TODO - delay slots (=null)
10757       {
10758         u_int vaddr=start+i*4;
10759         u_int page=get_page(vaddr);
10760         u_int vpage=get_vpage(vaddr);
10761         literal_pool(256);
10762         //if(!(is32[i]&(~unneeded_reg_upper[i])&~(1LL<<CCREG)))
10763         if(!requires_32bit[i])
10764         {
10765           assem_debug("%8x (%d) <- %8x\n",instr_addr[i],i,start+i*4);
10766           assem_debug("jump_in: %x\n",start+i*4);
10767           ll_add(jump_dirty+vpage,vaddr,(void *)out);
10768           int entry_point=do_dirty_stub(i);
10769           ll_add(jump_in+page,vaddr,(void *)entry_point);
10770           // If there was an existing entry in the hash table,
10771           // replace it with the new address.
10772           // Don't add new entries.  We'll insert the
10773           // ones that actually get used in check_addr().
10774           int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
10775           if(ht_bin[0]==vaddr) {
10776             ht_bin[1]=entry_point;
10777           }
10778           if(ht_bin[2]==vaddr) {
10779             ht_bin[3]=entry_point;
10780           }
10781         }
10782         else
10783         {
10784           u_int r=requires_32bit[i]|!!(requires_32bit[i]>>32);
10785           assem_debug("%8x (%d) <- %8x\n",instr_addr[i],i,start+i*4);
10786           assem_debug("jump_in: %x (restricted - %x)\n",start+i*4,r);
10787           //int entry_point=(int)out;
10788           ////assem_debug("entry_point: %x\n",entry_point);
10789           //load_regs_entry(i);
10790           //if(entry_point==(int)out)
10791           //  entry_point=instr_addr[i];
10792           //else
10793           //  emit_jmp(instr_addr[i]);
10794           //ll_add_32(jump_in+page,vaddr,r,(void *)entry_point);
10795           ll_add_32(jump_dirty+vpage,vaddr,r,(void *)out);
10796           int entry_point=do_dirty_stub(i);
10797           ll_add_32(jump_in+page,vaddr,r,(void *)entry_point);
10798         }
10799       }
10800     }
10801   }
10802   // Write out the literal pool if necessary
10803   literal_pool(0);
10804   #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
10805   // Align code
10806   if(((u_int)out)&7) emit_addnop(13);
10807   #endif
10808   assert((u_int)out-beginning<MAX_OUTPUT_BLOCK_SIZE);
10809   //printf("shadow buffer: %x-%x\n",(int)copy,(int)copy+slen*4);
10810   memcpy(copy,source,slen*4);
10811   copy+=slen*4;
10812   
10813   #ifdef __arm__
10814   __clear_cache((void *)beginning,out);
10815   #endif
10816   
10817   // If we're within 256K of the end of the buffer,
10818   // start over from the beginning. (Is 256K enough?)
10819   if((int)out>BASE_ADDR+(1<<TARGET_SIZE_2)-MAX_OUTPUT_BLOCK_SIZE) out=(u_char *)BASE_ADDR;
10820   
10821   // Trap writes to any of the pages we compiled
10822   for(i=start>>12;i<=(start+slen*4)>>12;i++) {
10823     invalid_code[i]=0;
10824 #ifndef DISABLE_TLB
10825     memory_map[i]|=0x40000000;
10826     if((signed int)start>=(signed int)0xC0000000) {
10827       assert(using_tlb);
10828       j=(((u_int)i<<12)+(memory_map[i]<<2)-(u_int)rdram+(u_int)0x80000000)>>12;
10829       invalid_code[j]=0;
10830       memory_map[j]|=0x40000000;
10831       //printf("write protect physical page: %x (virtual %x)\n",j<<12,start);
10832     }
10833 #endif
10834   }
10835   
10836   /* Pass 10 - Free memory by expiring oldest blocks */
10837   
10838   int end=((((int)out-BASE_ADDR)>>(TARGET_SIZE_2-16))+16384)&65535;
10839   while(expirep!=end)
10840   {
10841     int shift=TARGET_SIZE_2-3; // Divide into 8 blocks
10842     int base=BASE_ADDR+((expirep>>13)<<shift); // Base address of this block
10843     inv_debug("EXP: Phase %d\n",expirep);
10844     switch((expirep>>11)&3)
10845     {
10846       case 0:
10847         // Clear jump_in and jump_dirty
10848         ll_remove_matching_addrs(jump_in+(expirep&2047),base,shift);
10849         ll_remove_matching_addrs(jump_dirty+(expirep&2047),base,shift);
10850         ll_remove_matching_addrs(jump_in+2048+(expirep&2047),base,shift);
10851         ll_remove_matching_addrs(jump_dirty+2048+(expirep&2047),base,shift);
10852         break;
10853       case 1:
10854         // Clear pointers
10855         ll_kill_pointers(jump_out[expirep&2047],base,shift);
10856         ll_kill_pointers(jump_out[(expirep&2047)+2048],base,shift);
10857         break;
10858       case 2:
10859         // Clear hash table
10860         for(i=0;i<32;i++) {
10861           int *ht_bin=hash_table[((expirep&2047)<<5)+i];
10862           if((ht_bin[3]>>shift)==(base>>shift) ||
10863              ((ht_bin[3]-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(base>>shift)) {
10864             inv_debug("EXP: Remove hash %x -> %x\n",ht_bin[2],ht_bin[3]);
10865             ht_bin[2]=ht_bin[3]=-1;
10866           }
10867           if((ht_bin[1]>>shift)==(base>>shift) ||
10868              ((ht_bin[1]-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(base>>shift)) {
10869             inv_debug("EXP: Remove hash %x -> %x\n",ht_bin[0],ht_bin[1]);
10870             ht_bin[0]=ht_bin[2];
10871             ht_bin[1]=ht_bin[3];
10872             ht_bin[2]=ht_bin[3]=-1;
10873           }
10874         }
10875         break;
10876       case 3:
10877         // Clear jump_out
10878         ll_remove_matching_addrs(jump_out+(expirep&2047),base,shift);
10879         ll_remove_matching_addrs(jump_out+2048+(expirep&2047),base,shift);
10880         break;
10881     }
10882     expirep=(expirep+1)&65535;
10883   }
10884   return 0;
10885 }
10886
10887 // vim:shiftwidth=2:expandtab