drc: remove unnecessary cache flushing
[pcsx_rearmed.git] / libpcsxcore / new_dynarec / new_dynarec.c
1 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
2  *   Mupen64plus - new_dynarec.c                                           *
3  *   Copyright (C) 2009-2011 Ari64                                         *
4  *                                                                         *
5  *   This program is free software; you can redistribute it and/or modify  *
6  *   it under the terms of the GNU General Public License as published by  *
7  *   the Free Software Foundation; either version 2 of the License, or     *
8  *   (at your option) any later version.                                   *
9  *                                                                         *
10  *   This program is distributed in the hope that it will be useful,       *
11  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
12  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
13  *   GNU General Public License for more details.                          *
14  *                                                                         *
15  *   You should have received a copy of the GNU General Public License     *
16  *   along with this program; if not, write to the                         *
17  *   Free Software Foundation, Inc.,                                       *
18  *   51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.          *
19  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
20
21 #include <stdlib.h>
22 #include <stdint.h> //include for uint64_t
23 #include <assert.h>
24 #include <errno.h>
25 #include <sys/mman.h>
26
27 #include "emu_if.h" //emulator interface
28
29 //#define DISASM
30 //#define assem_debug printf
31 //#define inv_debug printf
32 #define assem_debug(...)
33 #define inv_debug(...)
34
35 #ifdef __i386__
36 #include "assem_x86.h"
37 #endif
38 #ifdef __x86_64__
39 #include "assem_x64.h"
40 #endif
41 #ifdef __arm__
42 #include "assem_arm.h"
43 #endif
44
45 #ifdef __BLACKBERRY_QNX__
46 #undef __clear_cache
47 #define __clear_cache(start,end) msync(start, (size_t)((void*)end - (void*)start), MS_SYNC | MS_CACHE_ONLY | MS_INVALIDATE_ICACHE);
48 #elif defined(__MACH__)
49 #include <libkern/OSCacheControl.h>
50 #define __clear_cache mach_clear_cache
51 static void __clear_cache(void *start, void *end) {
52   size_t len = (char *)end - (char *)start;
53   sys_dcache_flush(start, len);
54   sys_icache_invalidate(start, len);
55 }
56 #endif
57
58 #define MAXBLOCK 4096
59 #define MAX_OUTPUT_BLOCK_SIZE 262144
60
61 struct regstat
62 {
63   signed char regmap_entry[HOST_REGS];
64   signed char regmap[HOST_REGS];
65   uint64_t was32;
66   uint64_t is32;
67   uint64_t wasdirty;
68   uint64_t dirty;
69   uint64_t u;
70   uint64_t uu;
71   u_int wasconst;
72   u_int isconst;
73   u_int loadedconst;             // host regs that have constants loaded
74   u_int waswritten;              // MIPS regs that were used as store base before
75 };
76
77 // note: asm depends on this layout
78 struct ll_entry
79 {
80   u_int vaddr;
81   u_int reg_sv_flags;
82   void *addr;
83   struct ll_entry *next;
84 };
85
86   // used by asm:
87   u_char *out;
88   u_int hash_table[65536][4]  __attribute__((aligned(16)));
89   struct ll_entry *jump_in[4096] __attribute__((aligned(16)));
90   struct ll_entry *jump_dirty[4096];
91
92   static struct ll_entry *jump_out[4096];
93   static u_int start;
94   static u_int *source;
95   static char insn[MAXBLOCK][10];
96   static u_char itype[MAXBLOCK];
97   static u_char opcode[MAXBLOCK];
98   static u_char opcode2[MAXBLOCK];
99   static u_char bt[MAXBLOCK];
100   static u_char rs1[MAXBLOCK];
101   static u_char rs2[MAXBLOCK];
102   static u_char rt1[MAXBLOCK];
103   static u_char rt2[MAXBLOCK];
104   static u_char us1[MAXBLOCK];
105   static u_char us2[MAXBLOCK];
106   static u_char dep1[MAXBLOCK];
107   static u_char dep2[MAXBLOCK];
108   static u_char lt1[MAXBLOCK];
109   static uint64_t gte_rs[MAXBLOCK]; // gte: 32 data and 32 ctl regs
110   static uint64_t gte_rt[MAXBLOCK];
111   static uint64_t gte_unneeded[MAXBLOCK];
112   static u_int smrv[32]; // speculated MIPS register values
113   static u_int smrv_strong; // mask or regs that are likely to have correct values
114   static u_int smrv_weak; // same, but somewhat less likely
115   static u_int smrv_strong_next; // same, but after current insn executes
116   static u_int smrv_weak_next;
117   static int imm[MAXBLOCK];
118   static u_int ba[MAXBLOCK];
119   static char likely[MAXBLOCK];
120   static char is_ds[MAXBLOCK];
121   static char ooo[MAXBLOCK];
122   static uint64_t unneeded_reg[MAXBLOCK];
123   static uint64_t unneeded_reg_upper[MAXBLOCK];
124   static uint64_t branch_unneeded_reg[MAXBLOCK];
125   static uint64_t branch_unneeded_reg_upper[MAXBLOCK];
126   static signed char regmap_pre[MAXBLOCK][HOST_REGS];
127   static uint64_t current_constmap[HOST_REGS];
128   static uint64_t constmap[MAXBLOCK][HOST_REGS];
129   static struct regstat regs[MAXBLOCK];
130   static struct regstat branch_regs[MAXBLOCK];
131   static signed char minimum_free_regs[MAXBLOCK];
132   static u_int needed_reg[MAXBLOCK];
133   static u_int wont_dirty[MAXBLOCK];
134   static u_int will_dirty[MAXBLOCK];
135   static int ccadj[MAXBLOCK];
136   static int slen;
137   static u_int instr_addr[MAXBLOCK];
138   static u_int link_addr[MAXBLOCK][3];
139   static int linkcount;
140   static u_int stubs[MAXBLOCK*3][8];
141   static int stubcount;
142   static u_int literals[1024][2];
143   static int literalcount;
144   static int is_delayslot;
145   static int cop1_usable;
146   static char shadow[1048576]  __attribute__((aligned(16)));
147   static void *copy;
148   static int expirep;
149   static u_int stop_after_jal;
150 #ifndef RAM_FIXED
151   static u_int ram_offset;
152 #else
153   static const u_int ram_offset=0;
154 #endif
155
156   int new_dynarec_hacks;
157   int new_dynarec_did_compile;
158   extern u_char restore_candidate[512];
159   extern int cycle_count;
160
161   /* registers that may be allocated */
162   /* 1-31 gpr */
163 #define HIREG 32 // hi
164 #define LOREG 33 // lo
165 #define FSREG 34 // FPU status (FCSR)
166 #define CSREG 35 // Coprocessor status
167 #define CCREG 36 // Cycle count
168 #define INVCP 37 // Pointer to invalid_code
169 //#define MMREG 38 // Pointer to memory_map
170 #define ROREG 39 // ram offset (if rdram!=0x80000000)
171 #define TEMPREG 40
172 #define FTEMP 40 // FPU temporary register
173 #define PTEMP 41 // Prefetch temporary register
174 //#define TLREG 42 // TLB mapping offset
175 #define RHASH 43 // Return address hash
176 #define RHTBL 44 // Return address hash table address
177 #define RTEMP 45 // JR/JALR address register
178 #define MAXREG 45
179 #define AGEN1 46 // Address generation temporary register
180 //#define AGEN2 47 // Address generation temporary register
181 //#define MGEN1 48 // Maptable address generation temporary register
182 //#define MGEN2 49 // Maptable address generation temporary register
183 #define BTREG 50 // Branch target temporary register
184
185   /* instruction types */
186 #define NOP 0     // No operation
187 #define LOAD 1    // Load
188 #define STORE 2   // Store
189 #define LOADLR 3  // Unaligned load
190 #define STORELR 4 // Unaligned store
191 #define MOV 5     // Move
192 #define ALU 6     // Arithmetic/logic
193 #define MULTDIV 7 // Multiply/divide
194 #define SHIFT 8   // Shift by register
195 #define SHIFTIMM 9// Shift by immediate
196 #define IMM16 10  // 16-bit immediate
197 #define RJUMP 11  // Unconditional jump to register
198 #define UJUMP 12  // Unconditional jump
199 #define CJUMP 13  // Conditional branch (BEQ/BNE/BGTZ/BLEZ)
200 #define SJUMP 14  // Conditional branch (regimm format)
201 #define COP0 15   // Coprocessor 0
202 #define COP1 16   // Coprocessor 1
203 #define C1LS 17   // Coprocessor 1 load/store
204 #define FJUMP 18  // Conditional branch (floating point)
205 #define FLOAT 19  // Floating point unit
206 #define FCONV 20  // Convert integer to float
207 #define FCOMP 21  // Floating point compare (sets FSREG)
208 #define SYSCALL 22// SYSCALL
209 #define OTHER 23  // Other
210 #define SPAN 24   // Branch/delay slot spans 2 pages
211 #define NI 25     // Not implemented
212 #define HLECALL 26// PCSX fake opcodes for HLE
213 #define COP2 27   // Coprocessor 2 move
214 #define C2LS 28   // Coprocessor 2 load/store
215 #define C2OP 29   // Coprocessor 2 operation
216 #define INTCALL 30// Call interpreter to handle rare corner cases
217
218   /* stubs */
219 #define CC_STUB 1
220 #define FP_STUB 2
221 #define LOADB_STUB 3
222 #define LOADH_STUB 4
223 #define LOADW_STUB 5
224 #define LOADD_STUB 6
225 #define LOADBU_STUB 7
226 #define LOADHU_STUB 8
227 #define STOREB_STUB 9
228 #define STOREH_STUB 10
229 #define STOREW_STUB 11
230 #define STORED_STUB 12
231 #define STORELR_STUB 13
232 #define INVCODE_STUB 14
233
234   /* branch codes */
235 #define TAKEN 1
236 #define NOTTAKEN 2
237 #define NULLDS 3
238
239 // asm linkage
240 int new_recompile_block(int addr);
241 void *get_addr_ht(u_int vaddr);
242 void invalidate_block(u_int block);
243 void invalidate_addr(u_int addr);
244 void remove_hash(int vaddr);
245 void dyna_linker();
246 void dyna_linker_ds();
247 void verify_code();
248 void verify_code_vm();
249 void verify_code_ds();
250 void cc_interrupt();
251 void fp_exception();
252 void fp_exception_ds();
253 void jump_syscall_hle();
254 void jump_hlecall();
255 void jump_intcall();
256 void new_dyna_leave();
257
258 // Needed by assembler
259 static void wb_register(signed char r,signed char regmap[],uint64_t dirty,uint64_t is32);
260 static void wb_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty);
261 static void wb_needed_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr);
262 static void load_all_regs(signed char i_regmap[]);
263 static void load_needed_regs(signed char i_regmap[],signed char next_regmap[]);
264 static void load_regs_entry(int t);
265 static void load_all_consts(signed char regmap[],int is32,u_int dirty,int i);
266
267 static int verify_dirty(u_int *ptr);
268 static int get_final_value(int hr, int i, int *value);
269 static void add_stub(int type,int addr,int retaddr,int a,int b,int c,int d,int e);
270 static void add_to_linker(int addr,int target,int ext);
271
272 static int tracedebug=0;
273
274 //#define DEBUG_CYCLE_COUNT 1
275
276 #define NO_CYCLE_PENALTY_THR 12
277
278 int cycle_multiplier; // 100 for 1.0
279
280 static int CLOCK_ADJUST(int x)
281 {
282   int s=(x>>31)|1;
283   return (x * cycle_multiplier + s * 50) / 100;
284 }
285
286 static u_int get_page(u_int vaddr)
287 {
288   u_int page=vaddr&~0xe0000000;
289   if (page < 0x1000000)
290     page &= ~0x0e00000; // RAM mirrors
291   page>>=12;
292   if(page>2048) page=2048+(page&2047);
293   return page;
294 }
295
296 // no virtual mem in PCSX
297 static u_int get_vpage(u_int vaddr)
298 {
299   return get_page(vaddr);
300 }
301
302 // Get address from virtual address
303 // This is called from the recompiled JR/JALR instructions
304 void *get_addr(u_int vaddr)
305 {
306   u_int page=get_page(vaddr);
307   u_int vpage=get_vpage(vaddr);
308   struct ll_entry *head;
309   //printf("TRACE: count=%d next=%d (get_addr %x,page %d)\n",Count,next_interupt,vaddr,page);
310   head=jump_in[page];
311   while(head!=NULL) {
312     if(head->vaddr==vaddr) {
313   //printf("TRACE: count=%d next=%d (get_addr match %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
314       u_int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
315       ht_bin[3]=ht_bin[1];
316       ht_bin[2]=ht_bin[0];
317       ht_bin[1]=(u_int)head->addr;
318       ht_bin[0]=vaddr;
319       return head->addr;
320     }
321     head=head->next;
322   }
323   head=jump_dirty[vpage];
324   while(head!=NULL) {
325     if(head->vaddr==vaddr) {
326       //printf("TRACE: count=%d next=%d (get_addr match dirty %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
327       // Don't restore blocks which are about to expire from the cache
328       if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
329       if(verify_dirty(head->addr)) {
330         //printf("restore candidate: %x (%d) d=%d\n",vaddr,page,invalid_code[vaddr>>12]);
331         invalid_code[vaddr>>12]=0;
332         inv_code_start=inv_code_end=~0;
333         if(vpage<2048) {
334           restore_candidate[vpage>>3]|=1<<(vpage&7);
335         }
336         else restore_candidate[page>>3]|=1<<(page&7);
337         u_int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
338         if(ht_bin[0]==vaddr) {
339           ht_bin[1]=(u_int)head->addr; // Replace existing entry
340         }
341         else
342         {
343           ht_bin[3]=ht_bin[1];
344           ht_bin[2]=ht_bin[0];
345           ht_bin[1]=(int)head->addr;
346           ht_bin[0]=vaddr;
347         }
348         return head->addr;
349       }
350     }
351     head=head->next;
352   }
353   //printf("TRACE: count=%d next=%d (get_addr no-match %x)\n",Count,next_interupt,vaddr);
354   int r=new_recompile_block(vaddr);
355   if(r==0) return get_addr(vaddr);
356   // Execute in unmapped page, generate pagefault execption
357   Status|=2;
358   Cause=(vaddr<<31)|0x8;
359   EPC=(vaddr&1)?vaddr-5:vaddr;
360   BadVAddr=(vaddr&~1);
361   Context=(Context&0xFF80000F)|((BadVAddr>>9)&0x007FFFF0);
362   EntryHi=BadVAddr&0xFFFFE000;
363   return get_addr_ht(0x80000000);
364 }
365 // Look up address in hash table first
366 void *get_addr_ht(u_int vaddr)
367 {
368   //printf("TRACE: count=%d next=%d (get_addr_ht %x)\n",Count,next_interupt,vaddr);
369   u_int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
370   if(ht_bin[0]==vaddr) return (void *)ht_bin[1];
371   if(ht_bin[2]==vaddr) return (void *)ht_bin[3];
372   return get_addr(vaddr);
373 }
374
375 void clear_all_regs(signed char regmap[])
376 {
377   int hr;
378   for (hr=0;hr<HOST_REGS;hr++) regmap[hr]=-1;
379 }
380
381 signed char get_reg(signed char regmap[],int r)
382 {
383   int hr;
384   for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap[hr]==r) return hr;
385   return -1;
386 }
387
388 // Find a register that is available for two consecutive cycles
389 signed char get_reg2(signed char regmap1[],signed char regmap2[],int r)
390 {
391   int hr;
392   for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap1[hr]==r&&regmap2[hr]==r) return hr;
393   return -1;
394 }
395
396 int count_free_regs(signed char regmap[])
397 {
398   int count=0;
399   int hr;
400   for(hr=0;hr<HOST_REGS;hr++)
401   {
402     if(hr!=EXCLUDE_REG) {
403       if(regmap[hr]<0) count++;
404     }
405   }
406   return count;
407 }
408
409 void dirty_reg(struct regstat *cur,signed char reg)
410 {
411   int hr;
412   if(!reg) return;
413   for (hr=0;hr<HOST_REGS;hr++) {
414     if((cur->regmap[hr]&63)==reg) {
415       cur->dirty|=1<<hr;
416     }
417   }
418 }
419
420 // If we dirty the lower half of a 64 bit register which is now being
421 // sign-extended, we need to dump the upper half.
422 // Note: Do this only after completion of the instruction, because
423 // some instructions may need to read the full 64-bit value even if
424 // overwriting it (eg SLTI, DSRA32).
425 static void flush_dirty_uppers(struct regstat *cur)
426 {
427   int hr,reg;
428   for (hr=0;hr<HOST_REGS;hr++) {
429     if((cur->dirty>>hr)&1) {
430       reg=cur->regmap[hr];
431       if(reg>=64)
432         if((cur->is32>>(reg&63))&1) cur->regmap[hr]=-1;
433     }
434   }
435 }
436
437 void set_const(struct regstat *cur,signed char reg,uint64_t value)
438 {
439   int hr;
440   if(!reg) return;
441   for (hr=0;hr<HOST_REGS;hr++) {
442     if(cur->regmap[hr]==reg) {
443       cur->isconst|=1<<hr;
444       current_constmap[hr]=value;
445     }
446     else if((cur->regmap[hr]^64)==reg) {
447       cur->isconst|=1<<hr;
448       current_constmap[hr]=value>>32;
449     }
450   }
451 }
452
453 void clear_const(struct regstat *cur,signed char reg)
454 {
455   int hr;
456   if(!reg) return;
457   for (hr=0;hr<HOST_REGS;hr++) {
458     if((cur->regmap[hr]&63)==reg) {
459       cur->isconst&=~(1<<hr);
460     }
461   }
462 }
463
464 int is_const(struct regstat *cur,signed char reg)
465 {
466   int hr;
467   if(reg<0) return 0;
468   if(!reg) return 1;
469   for (hr=0;hr<HOST_REGS;hr++) {
470     if((cur->regmap[hr]&63)==reg) {
471       return (cur->isconst>>hr)&1;
472     }
473   }
474   return 0;
475 }
476 uint64_t get_const(struct regstat *cur,signed char reg)
477 {
478   int hr;
479   if(!reg) return 0;
480   for (hr=0;hr<HOST_REGS;hr++) {
481     if(cur->regmap[hr]==reg) {
482       return current_constmap[hr];
483     }
484   }
485   SysPrintf("Unknown constant in r%d\n",reg);
486   exit(1);
487 }
488
489 // Least soon needed registers
490 // Look at the next ten instructions and see which registers
491 // will be used.  Try not to reallocate these.
492 void lsn(u_char hsn[], int i, int *preferred_reg)
493 {
494   int j;
495   int b=-1;
496   for(j=0;j<9;j++)
497   {
498     if(i+j>=slen) {
499       j=slen-i-1;
500       break;
501     }
502     if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
503     {
504       // Don't go past an unconditonal jump
505       j++;
506       break;
507     }
508   }
509   for(;j>=0;j--)
510   {
511     if(rs1[i+j]) hsn[rs1[i+j]]=j;
512     if(rs2[i+j]) hsn[rs2[i+j]]=j;
513     if(rt1[i+j]) hsn[rt1[i+j]]=j;
514     if(rt2[i+j]) hsn[rt2[i+j]]=j;
515     if(itype[i+j]==STORE || itype[i+j]==STORELR) {
516       // Stores can allocate zero
517       hsn[rs1[i+j]]=j;
518       hsn[rs2[i+j]]=j;
519     }
520     // On some architectures stores need invc_ptr
521     #if defined(HOST_IMM8)
522     if(itype[i+j]==STORE || itype[i+j]==STORELR || (opcode[i+j]&0x3b)==0x39 || (opcode[i+j]&0x3b)==0x3a) {
523       hsn[INVCP]=j;
524     }
525     #endif
526     if(i+j>=0&&(itype[i+j]==UJUMP||itype[i+j]==CJUMP||itype[i+j]==SJUMP||itype[i+j]==FJUMP))
527     {
528       hsn[CCREG]=j;
529       b=j;
530     }
531   }
532   if(b>=0)
533   {
534     if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
535     {
536       // Follow first branch
537       int t=(ba[i+b]-start)>>2;
538       j=7-b;if(t+j>=slen) j=slen-t-1;
539       for(;j>=0;j--)
540       {
541         if(rs1[t+j]) if(hsn[rs1[t+j]]>j+b+2) hsn[rs1[t+j]]=j+b+2;
542         if(rs2[t+j]) if(hsn[rs2[t+j]]>j+b+2) hsn[rs2[t+j]]=j+b+2;
543         //if(rt1[t+j]) if(hsn[rt1[t+j]]>j+b+2) hsn[rt1[t+j]]=j+b+2;
544         //if(rt2[t+j]) if(hsn[rt2[t+j]]>j+b+2) hsn[rt2[t+j]]=j+b+2;
545       }
546     }
547     // TODO: preferred register based on backward branch
548   }
549   // Delay slot should preferably not overwrite branch conditions or cycle count
550   if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)) {
551     if(rs1[i-1]) if(hsn[rs1[i-1]]>1) hsn[rs1[i-1]]=1;
552     if(rs2[i-1]) if(hsn[rs2[i-1]]>1) hsn[rs2[i-1]]=1;
553     hsn[CCREG]=1;
554     // ...or hash tables
555     hsn[RHASH]=1;
556     hsn[RHTBL]=1;
557   }
558   // Coprocessor load/store needs FTEMP, even if not declared
559   if(itype[i]==C1LS||itype[i]==C2LS) {
560     hsn[FTEMP]=0;
561   }
562   // Load L/R also uses FTEMP as a temporary register
563   if(itype[i]==LOADLR) {
564     hsn[FTEMP]=0;
565   }
566   // Also SWL/SWR/SDL/SDR
567   if(opcode[i]==0x2a||opcode[i]==0x2e||opcode[i]==0x2c||opcode[i]==0x2d) {
568     hsn[FTEMP]=0;
569   }
570   // Don't remove the miniht registers
571   if(itype[i]==UJUMP||itype[i]==RJUMP)
572   {
573     hsn[RHASH]=0;
574     hsn[RHTBL]=0;
575   }
576 }
577
578 // We only want to allocate registers if we're going to use them again soon
579 int needed_again(int r, int i)
580 {
581   int j;
582   int b=-1;
583   int rn=10;
584
585   if(i>0&&(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000))
586   {
587     if(ba[i-1]<start || ba[i-1]>start+slen*4-4)
588       return 0; // Don't need any registers if exiting the block
589   }
590   for(j=0;j<9;j++)
591   {
592     if(i+j>=slen) {
593       j=slen-i-1;
594       break;
595     }
596     if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
597     {
598       // Don't go past an unconditonal jump
599       j++;
600       break;
601     }
602     if(itype[i+j]==SYSCALL||itype[i+j]==HLECALL||itype[i+j]==INTCALL||((source[i+j]&0xfc00003f)==0x0d))
603     {
604       break;
605     }
606   }
607   for(;j>=1;j--)
608   {
609     if(rs1[i+j]==r) rn=j;
610     if(rs2[i+j]==r) rn=j;
611     if((unneeded_reg[i+j]>>r)&1) rn=10;
612     if(i+j>=0&&(itype[i+j]==UJUMP||itype[i+j]==CJUMP||itype[i+j]==SJUMP||itype[i+j]==FJUMP))
613     {
614       b=j;
615     }
616   }
617   /*
618   if(b>=0)
619   {
620     if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
621     {
622       // Follow first branch
623       int o=rn;
624       int t=(ba[i+b]-start)>>2;
625       j=7-b;if(t+j>=slen) j=slen-t-1;
626       for(;j>=0;j--)
627       {
628         if(!((unneeded_reg[t+j]>>r)&1)) {
629           if(rs1[t+j]==r) if(rn>j+b+2) rn=j+b+2;
630           if(rs2[t+j]==r) if(rn>j+b+2) rn=j+b+2;
631         }
632         else rn=o;
633       }
634     }
635   }*/
636   if(rn<10) return 1;
637   (void)b;
638   return 0;
639 }
640
641 // Try to match register allocations at the end of a loop with those
642 // at the beginning
643 int loop_reg(int i, int r, int hr)
644 {
645   int j,k;
646   for(j=0;j<9;j++)
647   {
648     if(i+j>=slen) {
649       j=slen-i-1;
650       break;
651     }
652     if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
653     {
654       // Don't go past an unconditonal jump
655       j++;
656       break;
657     }
658   }
659   k=0;
660   if(i>0){
661     if(itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)
662       k--;
663   }
664   for(;k<j;k++)
665   {
666     if(r<64&&((unneeded_reg[i+k]>>r)&1)) return hr;
667     if(r>64&&((unneeded_reg_upper[i+k]>>r)&1)) return hr;
668     if(i+k>=0&&(itype[i+k]==UJUMP||itype[i+k]==CJUMP||itype[i+k]==SJUMP||itype[i+k]==FJUMP))
669     {
670       if(ba[i+k]>=start && ba[i+k]<(start+i*4))
671       {
672         int t=(ba[i+k]-start)>>2;
673         int reg=get_reg(regs[t].regmap_entry,r);
674         if(reg>=0) return reg;
675         //reg=get_reg(regs[t+1].regmap_entry,r);
676         //if(reg>=0) return reg;
677       }
678     }
679   }
680   return hr;
681 }
682
683
684 // Allocate every register, preserving source/target regs
685 void alloc_all(struct regstat *cur,int i)
686 {
687   int hr;
688
689   for(hr=0;hr<HOST_REGS;hr++) {
690     if(hr!=EXCLUDE_REG) {
691       if(((cur->regmap[hr]&63)!=rs1[i])&&((cur->regmap[hr]&63)!=rs2[i])&&
692          ((cur->regmap[hr]&63)!=rt1[i])&&((cur->regmap[hr]&63)!=rt2[i]))
693       {
694         cur->regmap[hr]=-1;
695         cur->dirty&=~(1<<hr);
696       }
697       // Don't need zeros
698       if((cur->regmap[hr]&63)==0)
699       {
700         cur->regmap[hr]=-1;
701         cur->dirty&=~(1<<hr);
702       }
703     }
704   }
705 }
706
707 #ifdef __i386__
708 #include "assem_x86.c"
709 #endif
710 #ifdef __x86_64__
711 #include "assem_x64.c"
712 #endif
713 #ifdef __arm__
714 #include "assem_arm.c"
715 #endif
716
717 // Add virtual address mapping to linked list
718 void ll_add(struct ll_entry **head,int vaddr,void *addr)
719 {
720   struct ll_entry *new_entry;
721   new_entry=malloc(sizeof(struct ll_entry));
722   assert(new_entry!=NULL);
723   new_entry->vaddr=vaddr;
724   new_entry->reg_sv_flags=0;
725   new_entry->addr=addr;
726   new_entry->next=*head;
727   *head=new_entry;
728 }
729
730 void ll_add_flags(struct ll_entry **head,int vaddr,u_int reg_sv_flags,void *addr)
731 {
732   ll_add(head,vaddr,addr);
733   (*head)->reg_sv_flags=reg_sv_flags;
734 }
735
736 // Check if an address is already compiled
737 // but don't return addresses which are about to expire from the cache
738 void *check_addr(u_int vaddr)
739 {
740   u_int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
741   if(ht_bin[0]==vaddr) {
742     if(((ht_bin[1]-MAX_OUTPUT_BLOCK_SIZE-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
743       if(isclean(ht_bin[1])) return (void *)ht_bin[1];
744   }
745   if(ht_bin[2]==vaddr) {
746     if(((ht_bin[3]-MAX_OUTPUT_BLOCK_SIZE-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
747       if(isclean(ht_bin[3])) return (void *)ht_bin[3];
748   }
749   u_int page=get_page(vaddr);
750   struct ll_entry *head;
751   head=jump_in[page];
752   while(head!=NULL) {
753     if(head->vaddr==vaddr) {
754       if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
755         // Update existing entry with current address
756         if(ht_bin[0]==vaddr) {
757           ht_bin[1]=(int)head->addr;
758           return head->addr;
759         }
760         if(ht_bin[2]==vaddr) {
761           ht_bin[3]=(int)head->addr;
762           return head->addr;
763         }
764         // Insert into hash table with low priority.
765         // Don't evict existing entries, as they are probably
766         // addresses that are being accessed frequently.
767         if(ht_bin[0]==-1) {
768           ht_bin[1]=(int)head->addr;
769           ht_bin[0]=vaddr;
770         }else if(ht_bin[2]==-1) {
771           ht_bin[3]=(int)head->addr;
772           ht_bin[2]=vaddr;
773         }
774         return head->addr;
775       }
776     }
777     head=head->next;
778   }
779   return 0;
780 }
781
782 void remove_hash(int vaddr)
783 {
784   //printf("remove hash: %x\n",vaddr);
785   u_int *ht_bin=hash_table[(((vaddr)>>16)^vaddr)&0xFFFF];
786   if(ht_bin[2]==vaddr) {
787     ht_bin[2]=ht_bin[3]=-1;
788   }
789   if(ht_bin[0]==vaddr) {
790     ht_bin[0]=ht_bin[2];
791     ht_bin[1]=ht_bin[3];
792     ht_bin[2]=ht_bin[3]=-1;
793   }
794 }
795
796 void ll_remove_matching_addrs(struct ll_entry **head,int addr,int shift)
797 {
798   struct ll_entry *next;
799   while(*head) {
800     if(((u_int)((*head)->addr)>>shift)==(addr>>shift) ||
801        ((u_int)((*head)->addr-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(addr>>shift))
802     {
803       inv_debug("EXP: Remove pointer to %x (%x)\n",(int)(*head)->addr,(*head)->vaddr);
804       remove_hash((*head)->vaddr);
805       next=(*head)->next;
806       free(*head);
807       *head=next;
808     }
809     else
810     {
811       head=&((*head)->next);
812     }
813   }
814 }
815
816 // Remove all entries from linked list
817 void ll_clear(struct ll_entry **head)
818 {
819   struct ll_entry *cur;
820   struct ll_entry *next;
821   if((cur=*head)) {
822     *head=0;
823     while(cur) {
824       next=cur->next;
825       free(cur);
826       cur=next;
827     }
828   }
829 }
830
831 // Dereference the pointers and remove if it matches
832 void ll_kill_pointers(struct ll_entry *head,int addr,int shift)
833 {
834   while(head) {
835     int ptr=get_pointer(head->addr);
836     inv_debug("EXP: Lookup pointer to %x at %x (%x)\n",(int)ptr,(int)head->addr,head->vaddr);
837     if(((ptr>>shift)==(addr>>shift)) ||
838        (((ptr-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(addr>>shift)))
839     {
840       inv_debug("EXP: Kill pointer at %x (%x)\n",(int)head->addr,head->vaddr);
841       u_int host_addr=(u_int)kill_pointer(head->addr);
842       #ifdef __arm__
843         needs_clear_cache[(host_addr-(u_int)BASE_ADDR)>>17]|=1<<(((host_addr-(u_int)BASE_ADDR)>>12)&31);
844       #endif
845     }
846     head=head->next;
847   }
848 }
849
850 // This is called when we write to a compiled block (see do_invstub)
851 void invalidate_page(u_int page)
852 {
853   struct ll_entry *head;
854   struct ll_entry *next;
855   head=jump_in[page];
856   jump_in[page]=0;
857   while(head!=NULL) {
858     inv_debug("INVALIDATE: %x\n",head->vaddr);
859     remove_hash(head->vaddr);
860     next=head->next;
861     free(head);
862     head=next;
863   }
864   head=jump_out[page];
865   jump_out[page]=0;
866   while(head!=NULL) {
867     inv_debug("INVALIDATE: kill pointer to %x (%x)\n",head->vaddr,(int)head->addr);
868     u_int host_addr=(u_int)kill_pointer(head->addr);
869     #ifdef __arm__
870       needs_clear_cache[(host_addr-(u_int)BASE_ADDR)>>17]|=1<<(((host_addr-(u_int)BASE_ADDR)>>12)&31);
871     #endif
872     next=head->next;
873     free(head);
874     head=next;
875   }
876 }
877
878 static void invalidate_block_range(u_int block, u_int first, u_int last)
879 {
880   u_int page=get_page(block<<12);
881   //printf("first=%d last=%d\n",first,last);
882   invalidate_page(page);
883   assert(first+5>page); // NB: this assumes MAXBLOCK<=4096 (4 pages)
884   assert(last<page+5);
885   // Invalidate the adjacent pages if a block crosses a 4K boundary
886   while(first<page) {
887     invalidate_page(first);
888     first++;
889   }
890   for(first=page+1;first<last;first++) {
891     invalidate_page(first);
892   }
893   #ifdef __arm__
894     do_clear_cache();
895   #endif
896
897   // Don't trap writes
898   invalid_code[block]=1;
899
900   #ifdef USE_MINI_HT
901   memset(mini_ht,-1,sizeof(mini_ht));
902   #endif
903 }
904
905 void invalidate_block(u_int block)
906 {
907   u_int page=get_page(block<<12);
908   u_int vpage=get_vpage(block<<12);
909   inv_debug("INVALIDATE: %x (%d)\n",block<<12,page);
910   //inv_debug("invalid_code[block]=%d\n",invalid_code[block]);
911   u_int first,last;
912   first=last=page;
913   struct ll_entry *head;
914   head=jump_dirty[vpage];
915   //printf("page=%d vpage=%d\n",page,vpage);
916   while(head!=NULL) {
917     u_int start,end;
918     if(vpage>2047||(head->vaddr>>12)==block) { // Ignore vaddr hash collision
919       get_bounds((int)head->addr,&start,&end);
920       //printf("start: %x end: %x\n",start,end);
921       if(page<2048&&start>=(u_int)rdram&&end<(u_int)rdram+RAM_SIZE) {
922         if(((start-(u_int)rdram)>>12)<=page&&((end-1-(u_int)rdram)>>12)>=page) {
923           if((((start-(u_int)rdram)>>12)&2047)<first) first=((start-(u_int)rdram)>>12)&2047;
924           if((((end-1-(u_int)rdram)>>12)&2047)>last) last=((end-1-(u_int)rdram)>>12)&2047;
925         }
926       }
927     }
928     head=head->next;
929   }
930   invalidate_block_range(block,first,last);
931 }
932
933 void invalidate_addr(u_int addr)
934 {
935   //static int rhits;
936   // this check is done by the caller
937   //if (inv_code_start<=addr&&addr<=inv_code_end) { rhits++; return; }
938   u_int page=get_vpage(addr);
939   if(page<2048) { // RAM
940     struct ll_entry *head;
941     u_int addr_min=~0, addr_max=0;
942     u_int mask=RAM_SIZE-1;
943     u_int addr_main=0x80000000|(addr&mask);
944     int pg1;
945     inv_code_start=addr_main&~0xfff;
946     inv_code_end=addr_main|0xfff;
947     pg1=page;
948     if (pg1>0) {
949       // must check previous page too because of spans..
950       pg1--;
951       inv_code_start-=0x1000;
952     }
953     for(;pg1<=page;pg1++) {
954       for(head=jump_dirty[pg1];head!=NULL;head=head->next) {
955         u_int start,end;
956         get_bounds((int)head->addr,&start,&end);
957         if(ram_offset) {
958           start-=ram_offset;
959           end-=ram_offset;
960         }
961         if(start<=addr_main&&addr_main<end) {
962           if(start<addr_min) addr_min=start;
963           if(end>addr_max) addr_max=end;
964         }
965         else if(addr_main<start) {
966           if(start<inv_code_end)
967             inv_code_end=start-1;
968         }
969         else {
970           if(end>inv_code_start)
971             inv_code_start=end;
972         }
973       }
974     }
975     if (addr_min!=~0) {
976       inv_debug("INV ADDR: %08x hit %08x-%08x\n", addr, addr_min, addr_max);
977       inv_code_start=inv_code_end=~0;
978       invalidate_block_range(addr>>12,(addr_min&mask)>>12,(addr_max&mask)>>12);
979       return;
980     }
981     else {
982       inv_code_start=(addr&~mask)|(inv_code_start&mask);
983       inv_code_end=(addr&~mask)|(inv_code_end&mask);
984       inv_debug("INV ADDR: %08x miss, inv %08x-%08x, sk %d\n", addr, inv_code_start, inv_code_end, 0);
985       return;
986     }
987   }
988   invalidate_block(addr>>12);
989 }
990
991 // This is called when loading a save state.
992 // Anything could have changed, so invalidate everything.
993 void invalidate_all_pages()
994 {
995   u_int page;
996   for(page=0;page<4096;page++)
997     invalidate_page(page);
998   for(page=0;page<1048576;page++)
999     if(!invalid_code[page]) {
1000       restore_candidate[(page&2047)>>3]|=1<<(page&7);
1001       restore_candidate[((page&2047)>>3)+256]|=1<<(page&7);
1002     }
1003   #ifdef USE_MINI_HT
1004   memset(mini_ht,-1,sizeof(mini_ht));
1005   #endif
1006 }
1007
1008 // Add an entry to jump_out after making a link
1009 void add_link(u_int vaddr,void *src)
1010 {
1011   u_int page=get_page(vaddr);
1012   inv_debug("add_link: %x -> %x (%d)\n",(int)src,vaddr,page);
1013   int *ptr=(int *)(src+4);
1014   assert((*ptr&0x0fff0000)==0x059f0000);
1015   (void)ptr;
1016   ll_add(jump_out+page,vaddr,src);
1017   //int ptr=get_pointer(src);
1018   //inv_debug("add_link: Pointer is to %x\n",(int)ptr);
1019 }
1020
1021 // If a code block was found to be unmodified (bit was set in
1022 // restore_candidate) and it remains unmodified (bit is clear
1023 // in invalid_code) then move the entries for that 4K page from
1024 // the dirty list to the clean list.
1025 void clean_blocks(u_int page)
1026 {
1027   struct ll_entry *head;
1028   inv_debug("INV: clean_blocks page=%d\n",page);
1029   head=jump_dirty[page];
1030   while(head!=NULL) {
1031     if(!invalid_code[head->vaddr>>12]) {
1032       // Don't restore blocks which are about to expire from the cache
1033       if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1034         u_int start,end;
1035         if(verify_dirty(head->addr)) {
1036           //printf("Possibly Restore %x (%x)\n",head->vaddr, (int)head->addr);
1037           u_int i;
1038           u_int inv=0;
1039           get_bounds((int)head->addr,&start,&end);
1040           if(start-(u_int)rdram<RAM_SIZE) {
1041             for(i=(start-(u_int)rdram+0x80000000)>>12;i<=(end-1-(u_int)rdram+0x80000000)>>12;i++) {
1042               inv|=invalid_code[i];
1043             }
1044           }
1045           else if((signed int)head->vaddr>=(signed int)0x80000000+RAM_SIZE) {
1046             inv=1;
1047           }
1048           if(!inv) {
1049             void * clean_addr=(void *)get_clean_addr((int)head->addr);
1050             if((((u_int)clean_addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1051               u_int ppage=page;
1052               inv_debug("INV: Restored %x (%x/%x)\n",head->vaddr, (int)head->addr, (int)clean_addr);
1053               //printf("page=%x, addr=%x\n",page,head->vaddr);
1054               //assert(head->vaddr>>12==(page|0x80000));
1055               ll_add_flags(jump_in+ppage,head->vaddr,head->reg_sv_flags,clean_addr);
1056               u_int *ht_bin=hash_table[((head->vaddr>>16)^head->vaddr)&0xFFFF];
1057               if(ht_bin[0]==head->vaddr) {
1058                 ht_bin[1]=(u_int)clean_addr; // Replace existing entry
1059               }
1060               if(ht_bin[2]==head->vaddr) {
1061                 ht_bin[3]=(u_int)clean_addr; // Replace existing entry
1062               }
1063             }
1064           }
1065         }
1066       }
1067     }
1068     head=head->next;
1069   }
1070 }
1071
1072
1073 void mov_alloc(struct regstat *current,int i)
1074 {
1075   // Note: Don't need to actually alloc the source registers
1076   if((~current->is32>>rs1[i])&1) {
1077     //alloc_reg64(current,i,rs1[i]);
1078     alloc_reg64(current,i,rt1[i]);
1079     current->is32&=~(1LL<<rt1[i]);
1080   } else {
1081     //alloc_reg(current,i,rs1[i]);
1082     alloc_reg(current,i,rt1[i]);
1083     current->is32|=(1LL<<rt1[i]);
1084   }
1085   clear_const(current,rs1[i]);
1086   clear_const(current,rt1[i]);
1087   dirty_reg(current,rt1[i]);
1088 }
1089
1090 void shiftimm_alloc(struct regstat *current,int i)
1091 {
1092   if(opcode2[i]<=0x3) // SLL/SRL/SRA
1093   {
1094     if(rt1[i]) {
1095       if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1096       else lt1[i]=rs1[i];
1097       alloc_reg(current,i,rt1[i]);
1098       current->is32|=1LL<<rt1[i];
1099       dirty_reg(current,rt1[i]);
1100       if(is_const(current,rs1[i])) {
1101         int v=get_const(current,rs1[i]);
1102         if(opcode2[i]==0x00) set_const(current,rt1[i],v<<imm[i]);
1103         if(opcode2[i]==0x02) set_const(current,rt1[i],(u_int)v>>imm[i]);
1104         if(opcode2[i]==0x03) set_const(current,rt1[i],v>>imm[i]);
1105       }
1106       else clear_const(current,rt1[i]);
1107     }
1108   }
1109   else
1110   {
1111     clear_const(current,rs1[i]);
1112     clear_const(current,rt1[i]);
1113   }
1114
1115   if(opcode2[i]>=0x38&&opcode2[i]<=0x3b) // DSLL/DSRL/DSRA
1116   {
1117     if(rt1[i]) {
1118       if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1119       alloc_reg64(current,i,rt1[i]);
1120       current->is32&=~(1LL<<rt1[i]);
1121       dirty_reg(current,rt1[i]);
1122     }
1123   }
1124   if(opcode2[i]==0x3c) // DSLL32
1125   {
1126     if(rt1[i]) {
1127       if(rs1[i]) alloc_reg(current,i,rs1[i]);
1128       alloc_reg64(current,i,rt1[i]);
1129       current->is32&=~(1LL<<rt1[i]);
1130       dirty_reg(current,rt1[i]);
1131     }
1132   }
1133   if(opcode2[i]==0x3e) // DSRL32
1134   {
1135     if(rt1[i]) {
1136       alloc_reg64(current,i,rs1[i]);
1137       if(imm[i]==32) {
1138         alloc_reg64(current,i,rt1[i]);
1139         current->is32&=~(1LL<<rt1[i]);
1140       } else {
1141         alloc_reg(current,i,rt1[i]);
1142         current->is32|=1LL<<rt1[i];
1143       }
1144       dirty_reg(current,rt1[i]);
1145     }
1146   }
1147   if(opcode2[i]==0x3f) // DSRA32
1148   {
1149     if(rt1[i]) {
1150       alloc_reg64(current,i,rs1[i]);
1151       alloc_reg(current,i,rt1[i]);
1152       current->is32|=1LL<<rt1[i];
1153       dirty_reg(current,rt1[i]);
1154     }
1155   }
1156 }
1157
1158 void shift_alloc(struct regstat *current,int i)
1159 {
1160   if(rt1[i]) {
1161     if(opcode2[i]<=0x07) // SLLV/SRLV/SRAV
1162     {
1163       if(rs1[i]) alloc_reg(current,i,rs1[i]);
1164       if(rs2[i]) alloc_reg(current,i,rs2[i]);
1165       alloc_reg(current,i,rt1[i]);
1166       if(rt1[i]==rs2[i]) {
1167         alloc_reg_temp(current,i,-1);
1168         minimum_free_regs[i]=1;
1169       }
1170       current->is32|=1LL<<rt1[i];
1171     } else { // DSLLV/DSRLV/DSRAV
1172       if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1173       if(rs2[i]) alloc_reg(current,i,rs2[i]);
1174       alloc_reg64(current,i,rt1[i]);
1175       current->is32&=~(1LL<<rt1[i]);
1176       if(opcode2[i]==0x16||opcode2[i]==0x17) // DSRLV and DSRAV need a temporary register
1177       {
1178         alloc_reg_temp(current,i,-1);
1179         minimum_free_regs[i]=1;
1180       }
1181     }
1182     clear_const(current,rs1[i]);
1183     clear_const(current,rs2[i]);
1184     clear_const(current,rt1[i]);
1185     dirty_reg(current,rt1[i]);
1186   }
1187 }
1188
1189 void alu_alloc(struct regstat *current,int i)
1190 {
1191   if(opcode2[i]>=0x20&&opcode2[i]<=0x23) { // ADD/ADDU/SUB/SUBU
1192     if(rt1[i]) {
1193       if(rs1[i]&&rs2[i]) {
1194         alloc_reg(current,i,rs1[i]);
1195         alloc_reg(current,i,rs2[i]);
1196       }
1197       else {
1198         if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1199         if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg(current,i,rs2[i]);
1200       }
1201       alloc_reg(current,i,rt1[i]);
1202     }
1203     current->is32|=1LL<<rt1[i];
1204   }
1205   if(opcode2[i]==0x2a||opcode2[i]==0x2b) { // SLT/SLTU
1206     if(rt1[i]) {
1207       if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1208       {
1209         alloc_reg64(current,i,rs1[i]);
1210         alloc_reg64(current,i,rs2[i]);
1211         alloc_reg(current,i,rt1[i]);
1212       } else {
1213         alloc_reg(current,i,rs1[i]);
1214         alloc_reg(current,i,rs2[i]);
1215         alloc_reg(current,i,rt1[i]);
1216       }
1217     }
1218     current->is32|=1LL<<rt1[i];
1219   }
1220   if(opcode2[i]>=0x24&&opcode2[i]<=0x27) { // AND/OR/XOR/NOR
1221     if(rt1[i]) {
1222       if(rs1[i]&&rs2[i]) {
1223         alloc_reg(current,i,rs1[i]);
1224         alloc_reg(current,i,rs2[i]);
1225       }
1226       else
1227       {
1228         if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1229         if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg(current,i,rs2[i]);
1230       }
1231       alloc_reg(current,i,rt1[i]);
1232       if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1233       {
1234         if(!((current->uu>>rt1[i])&1)) {
1235           alloc_reg64(current,i,rt1[i]);
1236         }
1237         if(get_reg(current->regmap,rt1[i]|64)>=0) {
1238           if(rs1[i]&&rs2[i]) {
1239             alloc_reg64(current,i,rs1[i]);
1240             alloc_reg64(current,i,rs2[i]);
1241           }
1242           else
1243           {
1244             // Is is really worth it to keep 64-bit values in registers?
1245             #ifdef NATIVE_64BIT
1246             if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg64(current,i,rs1[i]);
1247             if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg64(current,i,rs2[i]);
1248             #endif
1249           }
1250         }
1251         current->is32&=~(1LL<<rt1[i]);
1252       } else {
1253         current->is32|=1LL<<rt1[i];
1254       }
1255     }
1256   }
1257   if(opcode2[i]>=0x2c&&opcode2[i]<=0x2f) { // DADD/DADDU/DSUB/DSUBU
1258     if(rt1[i]) {
1259       if(rs1[i]&&rs2[i]) {
1260         if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1261           alloc_reg64(current,i,rs1[i]);
1262           alloc_reg64(current,i,rs2[i]);
1263           alloc_reg64(current,i,rt1[i]);
1264         } else {
1265           alloc_reg(current,i,rs1[i]);
1266           alloc_reg(current,i,rs2[i]);
1267           alloc_reg(current,i,rt1[i]);
1268         }
1269       }
1270       else {
1271         alloc_reg(current,i,rt1[i]);
1272         if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1273           // DADD used as move, or zeroing
1274           // If we have a 64-bit source, then make the target 64 bits too
1275           if(rs1[i]&&!((current->is32>>rs1[i])&1)) {
1276             if(get_reg(current->regmap,rs1[i])>=0) alloc_reg64(current,i,rs1[i]);
1277             alloc_reg64(current,i,rt1[i]);
1278           } else if(rs2[i]&&!((current->is32>>rs2[i])&1)) {
1279             if(get_reg(current->regmap,rs2[i])>=0) alloc_reg64(current,i,rs2[i]);
1280             alloc_reg64(current,i,rt1[i]);
1281           }
1282           if(opcode2[i]>=0x2e&&rs2[i]) {
1283             // DSUB used as negation - 64-bit result
1284             // If we have a 32-bit register, extend it to 64 bits
1285             if(get_reg(current->regmap,rs2[i])>=0) alloc_reg64(current,i,rs2[i]);
1286             alloc_reg64(current,i,rt1[i]);
1287           }
1288         }
1289       }
1290       if(rs1[i]&&rs2[i]) {
1291         current->is32&=~(1LL<<rt1[i]);
1292       } else if(rs1[i]) {
1293         current->is32&=~(1LL<<rt1[i]);
1294         if((current->is32>>rs1[i])&1)
1295           current->is32|=1LL<<rt1[i];
1296       } else if(rs2[i]) {
1297         current->is32&=~(1LL<<rt1[i]);
1298         if((current->is32>>rs2[i])&1)
1299           current->is32|=1LL<<rt1[i];
1300       } else {
1301         current->is32|=1LL<<rt1[i];
1302       }
1303     }
1304   }
1305   clear_const(current,rs1[i]);
1306   clear_const(current,rs2[i]);
1307   clear_const(current,rt1[i]);
1308   dirty_reg(current,rt1[i]);
1309 }
1310
1311 void imm16_alloc(struct regstat *current,int i)
1312 {
1313   if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1314   else lt1[i]=rs1[i];
1315   if(rt1[i]) alloc_reg(current,i,rt1[i]);
1316   if(opcode[i]==0x18||opcode[i]==0x19) { // DADDI/DADDIU
1317     current->is32&=~(1LL<<rt1[i]);
1318     if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1319       // TODO: Could preserve the 32-bit flag if the immediate is zero
1320       alloc_reg64(current,i,rt1[i]);
1321       alloc_reg64(current,i,rs1[i]);
1322     }
1323     clear_const(current,rs1[i]);
1324     clear_const(current,rt1[i]);
1325   }
1326   else if(opcode[i]==0x0a||opcode[i]==0x0b) { // SLTI/SLTIU
1327     if((~current->is32>>rs1[i])&1) alloc_reg64(current,i,rs1[i]);
1328     current->is32|=1LL<<rt1[i];
1329     clear_const(current,rs1[i]);
1330     clear_const(current,rt1[i]);
1331   }
1332   else if(opcode[i]>=0x0c&&opcode[i]<=0x0e) { // ANDI/ORI/XORI
1333     if(((~current->is32>>rs1[i])&1)&&opcode[i]>0x0c) {
1334       if(rs1[i]!=rt1[i]) {
1335         if(needed_again(rs1[i],i)) alloc_reg64(current,i,rs1[i]);
1336         alloc_reg64(current,i,rt1[i]);
1337         current->is32&=~(1LL<<rt1[i]);
1338       }
1339     }
1340     else current->is32|=1LL<<rt1[i]; // ANDI clears upper bits
1341     if(is_const(current,rs1[i])) {
1342       int v=get_const(current,rs1[i]);
1343       if(opcode[i]==0x0c) set_const(current,rt1[i],v&imm[i]);
1344       if(opcode[i]==0x0d) set_const(current,rt1[i],v|imm[i]);
1345       if(opcode[i]==0x0e) set_const(current,rt1[i],v^imm[i]);
1346     }
1347     else clear_const(current,rt1[i]);
1348   }
1349   else if(opcode[i]==0x08||opcode[i]==0x09) { // ADDI/ADDIU
1350     if(is_const(current,rs1[i])) {
1351       int v=get_const(current,rs1[i]);
1352       set_const(current,rt1[i],v+imm[i]);
1353     }
1354     else clear_const(current,rt1[i]);
1355     current->is32|=1LL<<rt1[i];
1356   }
1357   else {
1358     set_const(current,rt1[i],((long long)((short)imm[i]))<<16); // LUI
1359     current->is32|=1LL<<rt1[i];
1360   }
1361   dirty_reg(current,rt1[i]);
1362 }
1363
1364 void load_alloc(struct regstat *current,int i)
1365 {
1366   clear_const(current,rt1[i]);
1367   //if(rs1[i]!=rt1[i]&&needed_again(rs1[i],i)) clear_const(current,rs1[i]); // Does this help or hurt?
1368   if(!rs1[i]) current->u&=~1LL; // Allow allocating r0 if it's the source register
1369   if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1370   if(rt1[i]&&!((current->u>>rt1[i])&1)) {
1371     alloc_reg(current,i,rt1[i]);
1372     assert(get_reg(current->regmap,rt1[i])>=0);
1373     if(opcode[i]==0x27||opcode[i]==0x37) // LWU/LD
1374     {
1375       current->is32&=~(1LL<<rt1[i]);
1376       alloc_reg64(current,i,rt1[i]);
1377     }
1378     else if(opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
1379     {
1380       current->is32&=~(1LL<<rt1[i]);
1381       alloc_reg64(current,i,rt1[i]);
1382       alloc_all(current,i);
1383       alloc_reg64(current,i,FTEMP);
1384       minimum_free_regs[i]=HOST_REGS;
1385     }
1386     else current->is32|=1LL<<rt1[i];
1387     dirty_reg(current,rt1[i]);
1388     // LWL/LWR need a temporary register for the old value
1389     if(opcode[i]==0x22||opcode[i]==0x26)
1390     {
1391       alloc_reg(current,i,FTEMP);
1392       alloc_reg_temp(current,i,-1);
1393       minimum_free_regs[i]=1;
1394     }
1395   }
1396   else
1397   {
1398     // Load to r0 or unneeded register (dummy load)
1399     // but we still need a register to calculate the address
1400     if(opcode[i]==0x22||opcode[i]==0x26)
1401     {
1402       alloc_reg(current,i,FTEMP); // LWL/LWR need another temporary
1403     }
1404     alloc_reg_temp(current,i,-1);
1405     minimum_free_regs[i]=1;
1406     if(opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
1407     {
1408       alloc_all(current,i);
1409       alloc_reg64(current,i,FTEMP);
1410       minimum_free_regs[i]=HOST_REGS;
1411     }
1412   }
1413 }
1414
1415 void store_alloc(struct regstat *current,int i)
1416 {
1417   clear_const(current,rs2[i]);
1418   if(!(rs2[i])) current->u&=~1LL; // Allow allocating r0 if necessary
1419   if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1420   alloc_reg(current,i,rs2[i]);
1421   if(opcode[i]==0x2c||opcode[i]==0x2d||opcode[i]==0x3f) { // 64-bit SDL/SDR/SD
1422     alloc_reg64(current,i,rs2[i]);
1423     if(rs2[i]) alloc_reg(current,i,FTEMP);
1424   }
1425   #if defined(HOST_IMM8)
1426   // On CPUs without 32-bit immediates we need a pointer to invalid_code
1427   else alloc_reg(current,i,INVCP);
1428   #endif
1429   if(opcode[i]==0x2a||opcode[i]==0x2e||opcode[i]==0x2c||opcode[i]==0x2d) { // SWL/SWL/SDL/SDR
1430     alloc_reg(current,i,FTEMP);
1431   }
1432   // We need a temporary register for address generation
1433   alloc_reg_temp(current,i,-1);
1434   minimum_free_regs[i]=1;
1435 }
1436
1437 void c1ls_alloc(struct regstat *current,int i)
1438 {
1439   //clear_const(current,rs1[i]); // FIXME
1440   clear_const(current,rt1[i]);
1441   if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1442   alloc_reg(current,i,CSREG); // Status
1443   alloc_reg(current,i,FTEMP);
1444   if(opcode[i]==0x35||opcode[i]==0x3d) { // 64-bit LDC1/SDC1
1445     alloc_reg64(current,i,FTEMP);
1446   }
1447   #if defined(HOST_IMM8)
1448   // On CPUs without 32-bit immediates we need a pointer to invalid_code
1449   else if((opcode[i]&0x3b)==0x39) // SWC1/SDC1
1450     alloc_reg(current,i,INVCP);
1451   #endif
1452   // We need a temporary register for address generation
1453   alloc_reg_temp(current,i,-1);
1454 }
1455
1456 void c2ls_alloc(struct regstat *current,int i)
1457 {
1458   clear_const(current,rt1[i]);
1459   if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1460   alloc_reg(current,i,FTEMP);
1461   #if defined(HOST_IMM8)
1462   // On CPUs without 32-bit immediates we need a pointer to invalid_code
1463   if((opcode[i]&0x3b)==0x3a) // SWC2/SDC2
1464     alloc_reg(current,i,INVCP);
1465   #endif
1466   // We need a temporary register for address generation
1467   alloc_reg_temp(current,i,-1);
1468   minimum_free_regs[i]=1;
1469 }
1470
1471 #ifndef multdiv_alloc
1472 void multdiv_alloc(struct regstat *current,int i)
1473 {
1474   //  case 0x18: MULT
1475   //  case 0x19: MULTU
1476   //  case 0x1A: DIV
1477   //  case 0x1B: DIVU
1478   //  case 0x1C: DMULT
1479   //  case 0x1D: DMULTU
1480   //  case 0x1E: DDIV
1481   //  case 0x1F: DDIVU
1482   clear_const(current,rs1[i]);
1483   clear_const(current,rs2[i]);
1484   if(rs1[i]&&rs2[i])
1485   {
1486     if((opcode2[i]&4)==0) // 32-bit
1487     {
1488       current->u&=~(1LL<<HIREG);
1489       current->u&=~(1LL<<LOREG);
1490       alloc_reg(current,i,HIREG);
1491       alloc_reg(current,i,LOREG);
1492       alloc_reg(current,i,rs1[i]);
1493       alloc_reg(current,i,rs2[i]);
1494       current->is32|=1LL<<HIREG;
1495       current->is32|=1LL<<LOREG;
1496       dirty_reg(current,HIREG);
1497       dirty_reg(current,LOREG);
1498     }
1499     else // 64-bit
1500     {
1501       current->u&=~(1LL<<HIREG);
1502       current->u&=~(1LL<<LOREG);
1503       current->uu&=~(1LL<<HIREG);
1504       current->uu&=~(1LL<<LOREG);
1505       alloc_reg64(current,i,HIREG);
1506       //if(HOST_REGS>10) alloc_reg64(current,i,LOREG);
1507       alloc_reg64(current,i,rs1[i]);
1508       alloc_reg64(current,i,rs2[i]);
1509       alloc_all(current,i);
1510       current->is32&=~(1LL<<HIREG);
1511       current->is32&=~(1LL<<LOREG);
1512       dirty_reg(current,HIREG);
1513       dirty_reg(current,LOREG);
1514       minimum_free_regs[i]=HOST_REGS;
1515     }
1516   }
1517   else
1518   {
1519     // Multiply by zero is zero.
1520     // MIPS does not have a divide by zero exception.
1521     // The result is undefined, we return zero.
1522     alloc_reg(current,i,HIREG);
1523     alloc_reg(current,i,LOREG);
1524     current->is32|=1LL<<HIREG;
1525     current->is32|=1LL<<LOREG;
1526     dirty_reg(current,HIREG);
1527     dirty_reg(current,LOREG);
1528   }
1529 }
1530 #endif
1531
1532 void cop0_alloc(struct regstat *current,int i)
1533 {
1534   if(opcode2[i]==0) // MFC0
1535   {
1536     if(rt1[i]) {
1537       clear_const(current,rt1[i]);
1538       alloc_all(current,i);
1539       alloc_reg(current,i,rt1[i]);
1540       current->is32|=1LL<<rt1[i];
1541       dirty_reg(current,rt1[i]);
1542     }
1543   }
1544   else if(opcode2[i]==4) // MTC0
1545   {
1546     if(rs1[i]){
1547       clear_const(current,rs1[i]);
1548       alloc_reg(current,i,rs1[i]);
1549       alloc_all(current,i);
1550     }
1551     else {
1552       alloc_all(current,i); // FIXME: Keep r0
1553       current->u&=~1LL;
1554       alloc_reg(current,i,0);
1555     }
1556   }
1557   else
1558   {
1559     // TLBR/TLBWI/TLBWR/TLBP/ERET
1560     assert(opcode2[i]==0x10);
1561     alloc_all(current,i);
1562   }
1563   minimum_free_regs[i]=HOST_REGS;
1564 }
1565
1566 void cop1_alloc(struct regstat *current,int i)
1567 {
1568   alloc_reg(current,i,CSREG); // Load status
1569   if(opcode2[i]<3) // MFC1/DMFC1/CFC1
1570   {
1571     if(rt1[i]){
1572       clear_const(current,rt1[i]);
1573       if(opcode2[i]==1) {
1574         alloc_reg64(current,i,rt1[i]); // DMFC1
1575         current->is32&=~(1LL<<rt1[i]);
1576       }else{
1577         alloc_reg(current,i,rt1[i]); // MFC1/CFC1
1578         current->is32|=1LL<<rt1[i];
1579       }
1580       dirty_reg(current,rt1[i]);
1581     }
1582     alloc_reg_temp(current,i,-1);
1583   }
1584   else if(opcode2[i]>3) // MTC1/DMTC1/CTC1
1585   {
1586     if(rs1[i]){
1587       clear_const(current,rs1[i]);
1588       if(opcode2[i]==5)
1589         alloc_reg64(current,i,rs1[i]); // DMTC1
1590       else
1591         alloc_reg(current,i,rs1[i]); // MTC1/CTC1
1592       alloc_reg_temp(current,i,-1);
1593     }
1594     else {
1595       current->u&=~1LL;
1596       alloc_reg(current,i,0);
1597       alloc_reg_temp(current,i,-1);
1598     }
1599   }
1600   minimum_free_regs[i]=1;
1601 }
1602 void fconv_alloc(struct regstat *current,int i)
1603 {
1604   alloc_reg(current,i,CSREG); // Load status
1605   alloc_reg_temp(current,i,-1);
1606   minimum_free_regs[i]=1;
1607 }
1608 void float_alloc(struct regstat *current,int i)
1609 {
1610   alloc_reg(current,i,CSREG); // Load status
1611   alloc_reg_temp(current,i,-1);
1612   minimum_free_regs[i]=1;
1613 }
1614 void c2op_alloc(struct regstat *current,int i)
1615 {
1616   alloc_reg_temp(current,i,-1);
1617 }
1618 void fcomp_alloc(struct regstat *current,int i)
1619 {
1620   alloc_reg(current,i,CSREG); // Load status
1621   alloc_reg(current,i,FSREG); // Load flags
1622   dirty_reg(current,FSREG); // Flag will be modified
1623   alloc_reg_temp(current,i,-1);
1624   minimum_free_regs[i]=1;
1625 }
1626
1627 void syscall_alloc(struct regstat *current,int i)
1628 {
1629   alloc_cc(current,i);
1630   dirty_reg(current,CCREG);
1631   alloc_all(current,i);
1632   minimum_free_regs[i]=HOST_REGS;
1633   current->isconst=0;
1634 }
1635
1636 void delayslot_alloc(struct regstat *current,int i)
1637 {
1638   switch(itype[i]) {
1639     case UJUMP:
1640     case CJUMP:
1641     case SJUMP:
1642     case RJUMP:
1643     case FJUMP:
1644     case SYSCALL:
1645     case HLECALL:
1646     case SPAN:
1647       assem_debug("jump in the delay slot.  this shouldn't happen.\n");//exit(1);
1648       SysPrintf("Disabled speculative precompilation\n");
1649       stop_after_jal=1;
1650       break;
1651     case IMM16:
1652       imm16_alloc(current,i);
1653       break;
1654     case LOAD:
1655     case LOADLR:
1656       load_alloc(current,i);
1657       break;
1658     case STORE:
1659     case STORELR:
1660       store_alloc(current,i);
1661       break;
1662     case ALU:
1663       alu_alloc(current,i);
1664       break;
1665     case SHIFT:
1666       shift_alloc(current,i);
1667       break;
1668     case MULTDIV:
1669       multdiv_alloc(current,i);
1670       break;
1671     case SHIFTIMM:
1672       shiftimm_alloc(current,i);
1673       break;
1674     case MOV:
1675       mov_alloc(current,i);
1676       break;
1677     case COP0:
1678       cop0_alloc(current,i);
1679       break;
1680     case COP1:
1681     case COP2:
1682       cop1_alloc(current,i);
1683       break;
1684     case C1LS:
1685       c1ls_alloc(current,i);
1686       break;
1687     case C2LS:
1688       c2ls_alloc(current,i);
1689       break;
1690     case FCONV:
1691       fconv_alloc(current,i);
1692       break;
1693     case FLOAT:
1694       float_alloc(current,i);
1695       break;
1696     case FCOMP:
1697       fcomp_alloc(current,i);
1698       break;
1699     case C2OP:
1700       c2op_alloc(current,i);
1701       break;
1702   }
1703 }
1704
1705 // Special case where a branch and delay slot span two pages in virtual memory
1706 static void pagespan_alloc(struct regstat *current,int i)
1707 {
1708   current->isconst=0;
1709   current->wasconst=0;
1710   regs[i].wasconst=0;
1711   minimum_free_regs[i]=HOST_REGS;
1712   alloc_all(current,i);
1713   alloc_cc(current,i);
1714   dirty_reg(current,CCREG);
1715   if(opcode[i]==3) // JAL
1716   {
1717     alloc_reg(current,i,31);
1718     dirty_reg(current,31);
1719   }
1720   if(opcode[i]==0&&(opcode2[i]&0x3E)==8) // JR/JALR
1721   {
1722     alloc_reg(current,i,rs1[i]);
1723     if (rt1[i]!=0) {
1724       alloc_reg(current,i,rt1[i]);
1725       dirty_reg(current,rt1[i]);
1726     }
1727   }
1728   if((opcode[i]&0x2E)==4) // BEQ/BNE/BEQL/BNEL
1729   {
1730     if(rs1[i]) alloc_reg(current,i,rs1[i]);
1731     if(rs2[i]) alloc_reg(current,i,rs2[i]);
1732     if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1733     {
1734       if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1735       if(rs2[i]) alloc_reg64(current,i,rs2[i]);
1736     }
1737   }
1738   else
1739   if((opcode[i]&0x2E)==6) // BLEZ/BGTZ/BLEZL/BGTZL
1740   {
1741     if(rs1[i]) alloc_reg(current,i,rs1[i]);
1742     if(!((current->is32>>rs1[i])&1))
1743     {
1744       if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1745     }
1746   }
1747   else
1748   if(opcode[i]==0x11) // BC1
1749   {
1750     alloc_reg(current,i,FSREG);
1751     alloc_reg(current,i,CSREG);
1752   }
1753   //else ...
1754 }
1755
1756 static void add_stub(int type,int addr,int retaddr,int a,int b,int c,int d,int e)
1757 {
1758   stubs[stubcount][0]=type;
1759   stubs[stubcount][1]=addr;
1760   stubs[stubcount][2]=retaddr;
1761   stubs[stubcount][3]=a;
1762   stubs[stubcount][4]=b;
1763   stubs[stubcount][5]=c;
1764   stubs[stubcount][6]=d;
1765   stubs[stubcount][7]=e;
1766   stubcount++;
1767 }
1768
1769 // Write out a single register
1770 void wb_register(signed char r,signed char regmap[],uint64_t dirty,uint64_t is32)
1771 {
1772   int hr;
1773   for(hr=0;hr<HOST_REGS;hr++) {
1774     if(hr!=EXCLUDE_REG) {
1775       if((regmap[hr]&63)==r) {
1776         if((dirty>>hr)&1) {
1777           if(regmap[hr]<64) {
1778             emit_storereg(r,hr);
1779           }else{
1780             emit_storereg(r|64,hr);
1781           }
1782         }
1783       }
1784     }
1785   }
1786 }
1787
1788 int mchecksum()
1789 {
1790   //if(!tracedebug) return 0;
1791   int i;
1792   int sum=0;
1793   for(i=0;i<2097152;i++) {
1794     unsigned int temp=sum;
1795     sum<<=1;
1796     sum|=(~temp)>>31;
1797     sum^=((u_int *)rdram)[i];
1798   }
1799   return sum;
1800 }
1801 int rchecksum()
1802 {
1803   int i;
1804   int sum=0;
1805   for(i=0;i<64;i++)
1806     sum^=((u_int *)reg)[i];
1807   return sum;
1808 }
1809 void rlist()
1810 {
1811   int i;
1812   printf("TRACE: ");
1813   for(i=0;i<32;i++)
1814     printf("r%d:%8x%8x ",i,((int *)(reg+i))[1],((int *)(reg+i))[0]);
1815   printf("\n");
1816 }
1817
1818 void enabletrace()
1819 {
1820   tracedebug=1;
1821 }
1822
1823 void memdebug(int i)
1824 {
1825   //printf("TRACE: count=%d next=%d (checksum %x) lo=%8x%8x\n",Count,next_interupt,mchecksum(),(int)(reg[LOREG]>>32),(int)reg[LOREG]);
1826   //printf("TRACE: count=%d next=%d (rchecksum %x)\n",Count,next_interupt,rchecksum());
1827   //rlist();
1828   //if(tracedebug) {
1829   //if(Count>=-2084597794) {
1830   if((signed int)Count>=-2084597794&&(signed int)Count<0) {
1831   //if(0) {
1832     printf("TRACE: count=%d next=%d (checksum %x)\n",Count,next_interupt,mchecksum());
1833     //printf("TRACE: count=%d next=%d (checksum %x) Status=%x\n",Count,next_interupt,mchecksum(),Status);
1834     //printf("TRACE: count=%d next=%d (checksum %x) hi=%8x%8x\n",Count,next_interupt,mchecksum(),(int)(reg[HIREG]>>32),(int)reg[HIREG]);
1835     rlist();
1836     #ifdef __i386__
1837     printf("TRACE: %x\n",(&i)[-1]);
1838     #endif
1839     #ifdef __arm__
1840     int j;
1841     printf("TRACE: %x \n",(&j)[10]);
1842     printf("TRACE: %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x\n",(&j)[1],(&j)[2],(&j)[3],(&j)[4],(&j)[5],(&j)[6],(&j)[7],(&j)[8],(&j)[9],(&j)[10],(&j)[11],(&j)[12],(&j)[13],(&j)[14],(&j)[15],(&j)[16],(&j)[17],(&j)[18],(&j)[19],(&j)[20]);
1843     #endif
1844     //fflush(stdout);
1845   }
1846   //printf("TRACE: %x\n",(&i)[-1]);
1847 }
1848
1849 void alu_assemble(int i,struct regstat *i_regs)
1850 {
1851   if(opcode2[i]>=0x20&&opcode2[i]<=0x23) { // ADD/ADDU/SUB/SUBU
1852     if(rt1[i]) {
1853       signed char s1,s2,t;
1854       t=get_reg(i_regs->regmap,rt1[i]);
1855       if(t>=0) {
1856         s1=get_reg(i_regs->regmap,rs1[i]);
1857         s2=get_reg(i_regs->regmap,rs2[i]);
1858         if(rs1[i]&&rs2[i]) {
1859           assert(s1>=0);
1860           assert(s2>=0);
1861           if(opcode2[i]&2) emit_sub(s1,s2,t);
1862           else emit_add(s1,s2,t);
1863         }
1864         else if(rs1[i]) {
1865           if(s1>=0) emit_mov(s1,t);
1866           else emit_loadreg(rs1[i],t);
1867         }
1868         else if(rs2[i]) {
1869           if(s2>=0) {
1870             if(opcode2[i]&2) emit_neg(s2,t);
1871             else emit_mov(s2,t);
1872           }
1873           else {
1874             emit_loadreg(rs2[i],t);
1875             if(opcode2[i]&2) emit_neg(t,t);
1876           }
1877         }
1878         else emit_zeroreg(t);
1879       }
1880     }
1881   }
1882   if(opcode2[i]>=0x2c&&opcode2[i]<=0x2f) { // DADD/DADDU/DSUB/DSUBU
1883     if(rt1[i]) {
1884       signed char s1l,s2l,s1h,s2h,tl,th;
1885       tl=get_reg(i_regs->regmap,rt1[i]);
1886       th=get_reg(i_regs->regmap,rt1[i]|64);
1887       if(tl>=0) {
1888         s1l=get_reg(i_regs->regmap,rs1[i]);
1889         s2l=get_reg(i_regs->regmap,rs2[i]);
1890         s1h=get_reg(i_regs->regmap,rs1[i]|64);
1891         s2h=get_reg(i_regs->regmap,rs2[i]|64);
1892         if(rs1[i]&&rs2[i]) {
1893           assert(s1l>=0);
1894           assert(s2l>=0);
1895           if(opcode2[i]&2) emit_subs(s1l,s2l,tl);
1896           else emit_adds(s1l,s2l,tl);
1897           if(th>=0) {
1898             #ifdef INVERTED_CARRY
1899             if(opcode2[i]&2) {if(s1h!=th) emit_mov(s1h,th);emit_sbb(th,s2h);}
1900             #else
1901             if(opcode2[i]&2) emit_sbc(s1h,s2h,th);
1902             #endif
1903             else emit_add(s1h,s2h,th);
1904           }
1905         }
1906         else if(rs1[i]) {
1907           if(s1l>=0) emit_mov(s1l,tl);
1908           else emit_loadreg(rs1[i],tl);
1909           if(th>=0) {
1910             if(s1h>=0) emit_mov(s1h,th);
1911             else emit_loadreg(rs1[i]|64,th);
1912           }
1913         }
1914         else if(rs2[i]) {
1915           if(s2l>=0) {
1916             if(opcode2[i]&2) emit_negs(s2l,tl);
1917             else emit_mov(s2l,tl);
1918           }
1919           else {
1920             emit_loadreg(rs2[i],tl);
1921             if(opcode2[i]&2) emit_negs(tl,tl);
1922           }
1923           if(th>=0) {
1924             #ifdef INVERTED_CARRY
1925             if(s2h>=0) emit_mov(s2h,th);
1926             else emit_loadreg(rs2[i]|64,th);
1927             if(opcode2[i]&2) {
1928               emit_adcimm(-1,th); // x86 has inverted carry flag
1929               emit_not(th,th);
1930             }
1931             #else
1932             if(opcode2[i]&2) {
1933               if(s2h>=0) emit_rscimm(s2h,0,th);
1934               else {
1935                 emit_loadreg(rs2[i]|64,th);
1936                 emit_rscimm(th,0,th);
1937               }
1938             }else{
1939               if(s2h>=0) emit_mov(s2h,th);
1940               else emit_loadreg(rs2[i]|64,th);
1941             }
1942             #endif
1943           }
1944         }
1945         else {
1946           emit_zeroreg(tl);
1947           if(th>=0) emit_zeroreg(th);
1948         }
1949       }
1950     }
1951   }
1952   if(opcode2[i]==0x2a||opcode2[i]==0x2b) { // SLT/SLTU
1953     if(rt1[i]) {
1954       signed char s1l,s1h,s2l,s2h,t;
1955       if(!((i_regs->was32>>rs1[i])&(i_regs->was32>>rs2[i])&1))
1956       {
1957         t=get_reg(i_regs->regmap,rt1[i]);
1958         //assert(t>=0);
1959         if(t>=0) {
1960           s1l=get_reg(i_regs->regmap,rs1[i]);
1961           s1h=get_reg(i_regs->regmap,rs1[i]|64);
1962           s2l=get_reg(i_regs->regmap,rs2[i]);
1963           s2h=get_reg(i_regs->regmap,rs2[i]|64);
1964           if(rs2[i]==0) // rx<r0
1965           {
1966             assert(s1h>=0);
1967             if(opcode2[i]==0x2a) // SLT
1968               emit_shrimm(s1h,31,t);
1969             else // SLTU (unsigned can not be less than zero)
1970               emit_zeroreg(t);
1971           }
1972           else if(rs1[i]==0) // r0<rx
1973           {
1974             assert(s2h>=0);
1975             if(opcode2[i]==0x2a) // SLT
1976               emit_set_gz64_32(s2h,s2l,t);
1977             else // SLTU (set if not zero)
1978               emit_set_nz64_32(s2h,s2l,t);
1979           }
1980           else {
1981             assert(s1l>=0);assert(s1h>=0);
1982             assert(s2l>=0);assert(s2h>=0);
1983             if(opcode2[i]==0x2a) // SLT
1984               emit_set_if_less64_32(s1h,s1l,s2h,s2l,t);
1985             else // SLTU
1986               emit_set_if_carry64_32(s1h,s1l,s2h,s2l,t);
1987           }
1988         }
1989       } else {
1990         t=get_reg(i_regs->regmap,rt1[i]);
1991         //assert(t>=0);
1992         if(t>=0) {
1993           s1l=get_reg(i_regs->regmap,rs1[i]);
1994           s2l=get_reg(i_regs->regmap,rs2[i]);
1995           if(rs2[i]==0) // rx<r0
1996           {
1997             assert(s1l>=0);
1998             if(opcode2[i]==0x2a) // SLT
1999               emit_shrimm(s1l,31,t);
2000             else // SLTU (unsigned can not be less than zero)
2001               emit_zeroreg(t);
2002           }
2003           else if(rs1[i]==0) // r0<rx
2004           {
2005             assert(s2l>=0);
2006             if(opcode2[i]==0x2a) // SLT
2007               emit_set_gz32(s2l,t);
2008             else // SLTU (set if not zero)
2009               emit_set_nz32(s2l,t);
2010           }
2011           else{
2012             assert(s1l>=0);assert(s2l>=0);
2013             if(opcode2[i]==0x2a) // SLT
2014               emit_set_if_less32(s1l,s2l,t);
2015             else // SLTU
2016               emit_set_if_carry32(s1l,s2l,t);
2017           }
2018         }
2019       }
2020     }
2021   }
2022   if(opcode2[i]>=0x24&&opcode2[i]<=0x27) { // AND/OR/XOR/NOR
2023     if(rt1[i]) {
2024       signed char s1l,s1h,s2l,s2h,th,tl;
2025       tl=get_reg(i_regs->regmap,rt1[i]);
2026       th=get_reg(i_regs->regmap,rt1[i]|64);
2027       if(!((i_regs->was32>>rs1[i])&(i_regs->was32>>rs2[i])&1)&&th>=0)
2028       {
2029         assert(tl>=0);
2030         if(tl>=0) {
2031           s1l=get_reg(i_regs->regmap,rs1[i]);
2032           s1h=get_reg(i_regs->regmap,rs1[i]|64);
2033           s2l=get_reg(i_regs->regmap,rs2[i]);
2034           s2h=get_reg(i_regs->regmap,rs2[i]|64);
2035           if(rs1[i]&&rs2[i]) {
2036             assert(s1l>=0);assert(s1h>=0);
2037             assert(s2l>=0);assert(s2h>=0);
2038             if(opcode2[i]==0x24) { // AND
2039               emit_and(s1l,s2l,tl);
2040               emit_and(s1h,s2h,th);
2041             } else
2042             if(opcode2[i]==0x25) { // OR
2043               emit_or(s1l,s2l,tl);
2044               emit_or(s1h,s2h,th);
2045             } else
2046             if(opcode2[i]==0x26) { // XOR
2047               emit_xor(s1l,s2l,tl);
2048               emit_xor(s1h,s2h,th);
2049             } else
2050             if(opcode2[i]==0x27) { // NOR
2051               emit_or(s1l,s2l,tl);
2052               emit_or(s1h,s2h,th);
2053               emit_not(tl,tl);
2054               emit_not(th,th);
2055             }
2056           }
2057           else
2058           {
2059             if(opcode2[i]==0x24) { // AND
2060               emit_zeroreg(tl);
2061               emit_zeroreg(th);
2062             } else
2063             if(opcode2[i]==0x25||opcode2[i]==0x26) { // OR/XOR
2064               if(rs1[i]){
2065                 if(s1l>=0) emit_mov(s1l,tl);
2066                 else emit_loadreg(rs1[i],tl);
2067                 if(s1h>=0) emit_mov(s1h,th);
2068                 else emit_loadreg(rs1[i]|64,th);
2069               }
2070               else
2071               if(rs2[i]){
2072                 if(s2l>=0) emit_mov(s2l,tl);
2073                 else emit_loadreg(rs2[i],tl);
2074                 if(s2h>=0) emit_mov(s2h,th);
2075                 else emit_loadreg(rs2[i]|64,th);
2076               }
2077               else{
2078                 emit_zeroreg(tl);
2079                 emit_zeroreg(th);
2080               }
2081             } else
2082             if(opcode2[i]==0x27) { // NOR
2083               if(rs1[i]){
2084                 if(s1l>=0) emit_not(s1l,tl);
2085                 else{
2086                   emit_loadreg(rs1[i],tl);
2087                   emit_not(tl,tl);
2088                 }
2089                 if(s1h>=0) emit_not(s1h,th);
2090                 else{
2091                   emit_loadreg(rs1[i]|64,th);
2092                   emit_not(th,th);
2093                 }
2094               }
2095               else
2096               if(rs2[i]){
2097                 if(s2l>=0) emit_not(s2l,tl);
2098                 else{
2099                   emit_loadreg(rs2[i],tl);
2100                   emit_not(tl,tl);
2101                 }
2102                 if(s2h>=0) emit_not(s2h,th);
2103                 else{
2104                   emit_loadreg(rs2[i]|64,th);
2105                   emit_not(th,th);
2106                 }
2107               }
2108               else {
2109                 emit_movimm(-1,tl);
2110                 emit_movimm(-1,th);
2111               }
2112             }
2113           }
2114         }
2115       }
2116       else
2117       {
2118         // 32 bit
2119         if(tl>=0) {
2120           s1l=get_reg(i_regs->regmap,rs1[i]);
2121           s2l=get_reg(i_regs->regmap,rs2[i]);
2122           if(rs1[i]&&rs2[i]) {
2123             assert(s1l>=0);
2124             assert(s2l>=0);
2125             if(opcode2[i]==0x24) { // AND
2126               emit_and(s1l,s2l,tl);
2127             } else
2128             if(opcode2[i]==0x25) { // OR
2129               emit_or(s1l,s2l,tl);
2130             } else
2131             if(opcode2[i]==0x26) { // XOR
2132               emit_xor(s1l,s2l,tl);
2133             } else
2134             if(opcode2[i]==0x27) { // NOR
2135               emit_or(s1l,s2l,tl);
2136               emit_not(tl,tl);
2137             }
2138           }
2139           else
2140           {
2141             if(opcode2[i]==0x24) { // AND
2142               emit_zeroreg(tl);
2143             } else
2144             if(opcode2[i]==0x25||opcode2[i]==0x26) { // OR/XOR
2145               if(rs1[i]){
2146                 if(s1l>=0) emit_mov(s1l,tl);
2147                 else emit_loadreg(rs1[i],tl); // CHECK: regmap_entry?
2148               }
2149               else
2150               if(rs2[i]){
2151                 if(s2l>=0) emit_mov(s2l,tl);
2152                 else emit_loadreg(rs2[i],tl); // CHECK: regmap_entry?
2153               }
2154               else emit_zeroreg(tl);
2155             } else
2156             if(opcode2[i]==0x27) { // NOR
2157               if(rs1[i]){
2158                 if(s1l>=0) emit_not(s1l,tl);
2159                 else {
2160                   emit_loadreg(rs1[i],tl);
2161                   emit_not(tl,tl);
2162                 }
2163               }
2164               else
2165               if(rs2[i]){
2166                 if(s2l>=0) emit_not(s2l,tl);
2167                 else {
2168                   emit_loadreg(rs2[i],tl);
2169                   emit_not(tl,tl);
2170                 }
2171               }
2172               else emit_movimm(-1,tl);
2173             }
2174           }
2175         }
2176       }
2177     }
2178   }
2179 }
2180
2181 void imm16_assemble(int i,struct regstat *i_regs)
2182 {
2183   if (opcode[i]==0x0f) { // LUI
2184     if(rt1[i]) {
2185       signed char t;
2186       t=get_reg(i_regs->regmap,rt1[i]);
2187       //assert(t>=0);
2188       if(t>=0) {
2189         if(!((i_regs->isconst>>t)&1))
2190           emit_movimm(imm[i]<<16,t);
2191       }
2192     }
2193   }
2194   if(opcode[i]==0x08||opcode[i]==0x09) { // ADDI/ADDIU
2195     if(rt1[i]) {
2196       signed char s,t;
2197       t=get_reg(i_regs->regmap,rt1[i]);
2198       s=get_reg(i_regs->regmap,rs1[i]);
2199       if(rs1[i]) {
2200         //assert(t>=0);
2201         //assert(s>=0);
2202         if(t>=0) {
2203           if(!((i_regs->isconst>>t)&1)) {
2204             if(s<0) {
2205               if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2206               emit_addimm(t,imm[i],t);
2207             }else{
2208               if(!((i_regs->wasconst>>s)&1))
2209                 emit_addimm(s,imm[i],t);
2210               else
2211                 emit_movimm(constmap[i][s]+imm[i],t);
2212             }
2213           }
2214         }
2215       } else {
2216         if(t>=0) {
2217           if(!((i_regs->isconst>>t)&1))
2218             emit_movimm(imm[i],t);
2219         }
2220       }
2221     }
2222   }
2223   if(opcode[i]==0x18||opcode[i]==0x19) { // DADDI/DADDIU
2224     if(rt1[i]) {
2225       signed char sh,sl,th,tl;
2226       th=get_reg(i_regs->regmap,rt1[i]|64);
2227       tl=get_reg(i_regs->regmap,rt1[i]);
2228       sh=get_reg(i_regs->regmap,rs1[i]|64);
2229       sl=get_reg(i_regs->regmap,rs1[i]);
2230       if(tl>=0) {
2231         if(rs1[i]) {
2232           assert(sh>=0);
2233           assert(sl>=0);
2234           if(th>=0) {
2235             emit_addimm64_32(sh,sl,imm[i],th,tl);
2236           }
2237           else {
2238             emit_addimm(sl,imm[i],tl);
2239           }
2240         } else {
2241           emit_movimm(imm[i],tl);
2242           if(th>=0) emit_movimm(((signed int)imm[i])>>31,th);
2243         }
2244       }
2245     }
2246   }
2247   else if(opcode[i]==0x0a||opcode[i]==0x0b) { // SLTI/SLTIU
2248     if(rt1[i]) {
2249       //assert(rs1[i]!=0); // r0 might be valid, but it's probably a bug
2250       signed char sh,sl,t;
2251       t=get_reg(i_regs->regmap,rt1[i]);
2252       sh=get_reg(i_regs->regmap,rs1[i]|64);
2253       sl=get_reg(i_regs->regmap,rs1[i]);
2254       //assert(t>=0);
2255       if(t>=0) {
2256         if(rs1[i]>0) {
2257           if(sh<0) assert((i_regs->was32>>rs1[i])&1);
2258           if(sh<0||((i_regs->was32>>rs1[i])&1)) {
2259             if(opcode[i]==0x0a) { // SLTI
2260               if(sl<0) {
2261                 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2262                 emit_slti32(t,imm[i],t);
2263               }else{
2264                 emit_slti32(sl,imm[i],t);
2265               }
2266             }
2267             else { // SLTIU
2268               if(sl<0) {
2269                 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2270                 emit_sltiu32(t,imm[i],t);
2271               }else{
2272                 emit_sltiu32(sl,imm[i],t);
2273               }
2274             }
2275           }else{ // 64-bit
2276             assert(sl>=0);
2277             if(opcode[i]==0x0a) // SLTI
2278               emit_slti64_32(sh,sl,imm[i],t);
2279             else // SLTIU
2280               emit_sltiu64_32(sh,sl,imm[i],t);
2281           }
2282         }else{
2283           // SLTI(U) with r0 is just stupid,
2284           // nonetheless examples can be found
2285           if(opcode[i]==0x0a) // SLTI
2286             if(0<imm[i]) emit_movimm(1,t);
2287             else emit_zeroreg(t);
2288           else // SLTIU
2289           {
2290             if(imm[i]) emit_movimm(1,t);
2291             else emit_zeroreg(t);
2292           }
2293         }
2294       }
2295     }
2296   }
2297   else if(opcode[i]>=0x0c&&opcode[i]<=0x0e) { // ANDI/ORI/XORI
2298     if(rt1[i]) {
2299       signed char sh,sl,th,tl;
2300       th=get_reg(i_regs->regmap,rt1[i]|64);
2301       tl=get_reg(i_regs->regmap,rt1[i]);
2302       sh=get_reg(i_regs->regmap,rs1[i]|64);
2303       sl=get_reg(i_regs->regmap,rs1[i]);
2304       if(tl>=0 && !((i_regs->isconst>>tl)&1)) {
2305         if(opcode[i]==0x0c) //ANDI
2306         {
2307           if(rs1[i]) {
2308             if(sl<0) {
2309               if(i_regs->regmap_entry[tl]!=rs1[i]) emit_loadreg(rs1[i],tl);
2310               emit_andimm(tl,imm[i],tl);
2311             }else{
2312               if(!((i_regs->wasconst>>sl)&1))
2313                 emit_andimm(sl,imm[i],tl);
2314               else
2315                 emit_movimm(constmap[i][sl]&imm[i],tl);
2316             }
2317           }
2318           else
2319             emit_zeroreg(tl);
2320           if(th>=0) emit_zeroreg(th);
2321         }
2322         else
2323         {
2324           if(rs1[i]) {
2325             if(sl<0) {
2326               if(i_regs->regmap_entry[tl]!=rs1[i]) emit_loadreg(rs1[i],tl);
2327             }
2328             if(th>=0) {
2329               if(sh<0) {
2330                 emit_loadreg(rs1[i]|64,th);
2331               }else{
2332                 emit_mov(sh,th);
2333               }
2334             }
2335             if(opcode[i]==0x0d) { // ORI
2336               if(sl<0) {
2337                 emit_orimm(tl,imm[i],tl);
2338               }else{
2339                 if(!((i_regs->wasconst>>sl)&1))
2340                   emit_orimm(sl,imm[i],tl);
2341                 else
2342                   emit_movimm(constmap[i][sl]|imm[i],tl);
2343               }
2344             }
2345             if(opcode[i]==0x0e) { // XORI
2346               if(sl<0) {
2347                 emit_xorimm(tl,imm[i],tl);
2348               }else{
2349                 if(!((i_regs->wasconst>>sl)&1))
2350                   emit_xorimm(sl,imm[i],tl);
2351                 else
2352                   emit_movimm(constmap[i][sl]^imm[i],tl);
2353               }
2354             }
2355           }
2356           else {
2357             emit_movimm(imm[i],tl);
2358             if(th>=0) emit_zeroreg(th);
2359           }
2360         }
2361       }
2362     }
2363   }
2364 }
2365
2366 void shiftimm_assemble(int i,struct regstat *i_regs)
2367 {
2368   if(opcode2[i]<=0x3) // SLL/SRL/SRA
2369   {
2370     if(rt1[i]) {
2371       signed char s,t;
2372       t=get_reg(i_regs->regmap,rt1[i]);
2373       s=get_reg(i_regs->regmap,rs1[i]);
2374       //assert(t>=0);
2375       if(t>=0&&!((i_regs->isconst>>t)&1)){
2376         if(rs1[i]==0)
2377         {
2378           emit_zeroreg(t);
2379         }
2380         else
2381         {
2382           if(s<0&&i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2383           if(imm[i]) {
2384             if(opcode2[i]==0) // SLL
2385             {
2386               emit_shlimm(s<0?t:s,imm[i],t);
2387             }
2388             if(opcode2[i]==2) // SRL
2389             {
2390               emit_shrimm(s<0?t:s,imm[i],t);
2391             }
2392             if(opcode2[i]==3) // SRA
2393             {
2394               emit_sarimm(s<0?t:s,imm[i],t);
2395             }
2396           }else{
2397             // Shift by zero
2398             if(s>=0 && s!=t) emit_mov(s,t);
2399           }
2400         }
2401       }
2402       //emit_storereg(rt1[i],t); //DEBUG
2403     }
2404   }
2405   if(opcode2[i]>=0x38&&opcode2[i]<=0x3b) // DSLL/DSRL/DSRA
2406   {
2407     if(rt1[i]) {
2408       signed char sh,sl,th,tl;
2409       th=get_reg(i_regs->regmap,rt1[i]|64);
2410       tl=get_reg(i_regs->regmap,rt1[i]);
2411       sh=get_reg(i_regs->regmap,rs1[i]|64);
2412       sl=get_reg(i_regs->regmap,rs1[i]);
2413       if(tl>=0) {
2414         if(rs1[i]==0)
2415         {
2416           emit_zeroreg(tl);
2417           if(th>=0) emit_zeroreg(th);
2418         }
2419         else
2420         {
2421           assert(sl>=0);
2422           assert(sh>=0);
2423           if(imm[i]) {
2424             if(opcode2[i]==0x38) // DSLL
2425             {
2426               if(th>=0) emit_shldimm(sh,sl,imm[i],th);
2427               emit_shlimm(sl,imm[i],tl);
2428             }
2429             if(opcode2[i]==0x3a) // DSRL
2430             {
2431               emit_shrdimm(sl,sh,imm[i],tl);
2432               if(th>=0) emit_shrimm(sh,imm[i],th);
2433             }
2434             if(opcode2[i]==0x3b) // DSRA
2435             {
2436               emit_shrdimm(sl,sh,imm[i],tl);
2437               if(th>=0) emit_sarimm(sh,imm[i],th);
2438             }
2439           }else{
2440             // Shift by zero
2441             if(sl!=tl) emit_mov(sl,tl);
2442             if(th>=0&&sh!=th) emit_mov(sh,th);
2443           }
2444         }
2445       }
2446     }
2447   }
2448   if(opcode2[i]==0x3c) // DSLL32
2449   {
2450     if(rt1[i]) {
2451       signed char sl,tl,th;
2452       tl=get_reg(i_regs->regmap,rt1[i]);
2453       th=get_reg(i_regs->regmap,rt1[i]|64);
2454       sl=get_reg(i_regs->regmap,rs1[i]);
2455       if(th>=0||tl>=0){
2456         assert(tl>=0);
2457         assert(th>=0);
2458         assert(sl>=0);
2459         emit_mov(sl,th);
2460         emit_zeroreg(tl);
2461         if(imm[i]>32)
2462         {
2463           emit_shlimm(th,imm[i]&31,th);
2464         }
2465       }
2466     }
2467   }
2468   if(opcode2[i]==0x3e) // DSRL32
2469   {
2470     if(rt1[i]) {
2471       signed char sh,tl,th;
2472       tl=get_reg(i_regs->regmap,rt1[i]);
2473       th=get_reg(i_regs->regmap,rt1[i]|64);
2474       sh=get_reg(i_regs->regmap,rs1[i]|64);
2475       if(tl>=0){
2476         assert(sh>=0);
2477         emit_mov(sh,tl);
2478         if(th>=0) emit_zeroreg(th);
2479         if(imm[i]>32)
2480         {
2481           emit_shrimm(tl,imm[i]&31,tl);
2482         }
2483       }
2484     }
2485   }
2486   if(opcode2[i]==0x3f) // DSRA32
2487   {
2488     if(rt1[i]) {
2489       signed char sh,tl;
2490       tl=get_reg(i_regs->regmap,rt1[i]);
2491       sh=get_reg(i_regs->regmap,rs1[i]|64);
2492       if(tl>=0){
2493         assert(sh>=0);
2494         emit_mov(sh,tl);
2495         if(imm[i]>32)
2496         {
2497           emit_sarimm(tl,imm[i]&31,tl);
2498         }
2499       }
2500     }
2501   }
2502 }
2503
2504 #ifndef shift_assemble
2505 void shift_assemble(int i,struct regstat *i_regs)
2506 {
2507   printf("Need shift_assemble for this architecture.\n");
2508   exit(1);
2509 }
2510 #endif
2511
2512 void load_assemble(int i,struct regstat *i_regs)
2513 {
2514   int s,th,tl,addr,map=-1;
2515   int offset;
2516   int jaddr=0;
2517   int memtarget=0,c=0;
2518   int fastload_reg_override=0;
2519   u_int hr,reglist=0;
2520   th=get_reg(i_regs->regmap,rt1[i]|64);
2521   tl=get_reg(i_regs->regmap,rt1[i]);
2522   s=get_reg(i_regs->regmap,rs1[i]);
2523   offset=imm[i];
2524   for(hr=0;hr<HOST_REGS;hr++) {
2525     if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
2526   }
2527   if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
2528   if(s>=0) {
2529     c=(i_regs->wasconst>>s)&1;
2530     if (c) {
2531       memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
2532     }
2533   }
2534   //printf("load_assemble: c=%d\n",c);
2535   //if(c) printf("load_assemble: const=%x\n",(int)constmap[i][s]+offset);
2536   // FIXME: Even if the load is a NOP, we should check for pagefaults...
2537   if((tl<0&&(!c||(((u_int)constmap[i][s]+offset)>>16)==0x1f80))
2538     ||rt1[i]==0) {
2539       // could be FIFO, must perform the read
2540       // ||dummy read
2541       assem_debug("(forced read)\n");
2542       tl=get_reg(i_regs->regmap,-1);
2543       assert(tl>=0);
2544   }
2545   if(offset||s<0||c) addr=tl;
2546   else addr=s;
2547   //if(tl<0) tl=get_reg(i_regs->regmap,-1);
2548  if(tl>=0) {
2549   //printf("load_assemble: c=%d\n",c);
2550   //if(c) printf("load_assemble: const=%x\n",(int)constmap[i][s]+offset);
2551   assert(tl>=0); // Even if the load is a NOP, we must check for pagefaults and I/O
2552   reglist&=~(1<<tl);
2553   if(th>=0) reglist&=~(1<<th);
2554   if(!c) {
2555     #ifdef RAM_OFFSET
2556     map=get_reg(i_regs->regmap,ROREG);
2557     if(map<0) emit_loadreg(ROREG,map=HOST_TEMPREG);
2558     #endif
2559     #ifdef R29_HACK
2560     // Strmnnrmn's speed hack
2561     if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
2562     #endif
2563     {
2564       jaddr=emit_fastpath_cmp_jump(i,addr,&fastload_reg_override);
2565     }
2566   }
2567   else if(ram_offset&&memtarget) {
2568     emit_addimm(addr,ram_offset,HOST_TEMPREG);
2569     fastload_reg_override=HOST_TEMPREG;
2570   }
2571   int dummy=(rt1[i]==0)||(tl!=get_reg(i_regs->regmap,rt1[i])); // ignore loads to r0 and unneeded reg
2572   if (opcode[i]==0x20) { // LB
2573     if(!c||memtarget) {
2574       if(!dummy) {
2575         #ifdef HOST_IMM_ADDR32
2576         if(c)
2577           emit_movsbl_tlb((constmap[i][s]+offset)^3,map,tl);
2578         else
2579         #endif
2580         {
2581           //emit_xorimm(addr,3,tl);
2582           //emit_movsbl_indexed((int)rdram-0x80000000,tl,tl);
2583           int x=0,a=tl;
2584 #ifdef BIG_ENDIAN_MIPS
2585           if(!c) emit_xorimm(addr,3,tl);
2586           else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2587 #else
2588           if(!c) a=addr;
2589 #endif
2590           if(fastload_reg_override) a=fastload_reg_override;
2591
2592           emit_movsbl_indexed_tlb(x,a,map,tl);
2593         }
2594       }
2595       if(jaddr)
2596         add_stub(LOADB_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2597     }
2598     else
2599       inline_readstub(LOADB_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2600   }
2601   if (opcode[i]==0x21) { // LH
2602     if(!c||memtarget) {
2603       if(!dummy) {
2604         #ifdef HOST_IMM_ADDR32
2605         if(c)
2606           emit_movswl_tlb((constmap[i][s]+offset)^2,map,tl);
2607         else
2608         #endif
2609         {
2610           int x=0,a=tl;
2611 #ifdef BIG_ENDIAN_MIPS
2612           if(!c) emit_xorimm(addr,2,tl);
2613           else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
2614 #else
2615           if(!c) a=addr;
2616 #endif
2617           if(fastload_reg_override) a=fastload_reg_override;
2618           //#ifdef
2619           //emit_movswl_indexed_tlb(x,tl,map,tl);
2620           //else
2621           if(map>=0) {
2622             emit_movswl_indexed(x,a,tl);
2623           }else{
2624             #if 1 //def RAM_OFFSET
2625             emit_movswl_indexed(x,a,tl);
2626             #else
2627             emit_movswl_indexed((int)rdram-0x80000000+x,a,tl);
2628             #endif
2629           }
2630         }
2631       }
2632       if(jaddr)
2633         add_stub(LOADH_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2634     }
2635     else
2636       inline_readstub(LOADH_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2637   }
2638   if (opcode[i]==0x23) { // LW
2639     if(!c||memtarget) {
2640       if(!dummy) {
2641         int a=addr;
2642         if(fastload_reg_override) a=fastload_reg_override;
2643         //emit_readword_indexed((int)rdram-0x80000000,addr,tl);
2644         #ifdef HOST_IMM_ADDR32
2645         if(c)
2646           emit_readword_tlb(constmap[i][s]+offset,map,tl);
2647         else
2648         #endif
2649         emit_readword_indexed_tlb(0,a,map,tl);
2650       }
2651       if(jaddr)
2652         add_stub(LOADW_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2653     }
2654     else
2655       inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2656   }
2657   if (opcode[i]==0x24) { // LBU
2658     if(!c||memtarget) {
2659       if(!dummy) {
2660         #ifdef HOST_IMM_ADDR32
2661         if(c)
2662           emit_movzbl_tlb((constmap[i][s]+offset)^3,map,tl);
2663         else
2664         #endif
2665         {
2666           //emit_xorimm(addr,3,tl);
2667           //emit_movzbl_indexed((int)rdram-0x80000000,tl,tl);
2668           int x=0,a=tl;
2669 #ifdef BIG_ENDIAN_MIPS
2670           if(!c) emit_xorimm(addr,3,tl);
2671           else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2672 #else
2673           if(!c) a=addr;
2674 #endif
2675           if(fastload_reg_override) a=fastload_reg_override;
2676
2677           emit_movzbl_indexed_tlb(x,a,map,tl);
2678         }
2679       }
2680       if(jaddr)
2681         add_stub(LOADBU_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2682     }
2683     else
2684       inline_readstub(LOADBU_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2685   }
2686   if (opcode[i]==0x25) { // LHU
2687     if(!c||memtarget) {
2688       if(!dummy) {
2689         #ifdef HOST_IMM_ADDR32
2690         if(c)
2691           emit_movzwl_tlb((constmap[i][s]+offset)^2,map,tl);
2692         else
2693         #endif
2694         {
2695           int x=0,a=tl;
2696 #ifdef BIG_ENDIAN_MIPS
2697           if(!c) emit_xorimm(addr,2,tl);
2698           else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
2699 #else
2700           if(!c) a=addr;
2701 #endif
2702           if(fastload_reg_override) a=fastload_reg_override;
2703           //#ifdef
2704           //emit_movzwl_indexed_tlb(x,tl,map,tl);
2705           //#else
2706           if(map>=0) {
2707             emit_movzwl_indexed(x,a,tl);
2708           }else{
2709             #if 1 //def RAM_OFFSET
2710             emit_movzwl_indexed(x,a,tl);
2711             #else
2712             emit_movzwl_indexed((int)rdram-0x80000000+x,a,tl);
2713             #endif
2714           }
2715         }
2716       }
2717       if(jaddr)
2718         add_stub(LOADHU_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2719     }
2720     else
2721       inline_readstub(LOADHU_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2722   }
2723   if (opcode[i]==0x27) { // LWU
2724     assert(th>=0);
2725     if(!c||memtarget) {
2726       if(!dummy) {
2727         int a=addr;
2728         if(fastload_reg_override) a=fastload_reg_override;
2729         //emit_readword_indexed((int)rdram-0x80000000,addr,tl);
2730         #ifdef HOST_IMM_ADDR32
2731         if(c)
2732           emit_readword_tlb(constmap[i][s]+offset,map,tl);
2733         else
2734         #endif
2735         emit_readword_indexed_tlb(0,a,map,tl);
2736       }
2737       if(jaddr)
2738         add_stub(LOADW_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2739     }
2740     else {
2741       inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2742     }
2743     emit_zeroreg(th);
2744   }
2745   if (opcode[i]==0x37) { // LD
2746     if(!c||memtarget) {
2747       if(!dummy) {
2748         int a=addr;
2749         if(fastload_reg_override) a=fastload_reg_override;
2750         //if(th>=0) emit_readword_indexed((int)rdram-0x80000000,addr,th);
2751         //emit_readword_indexed((int)rdram-0x7FFFFFFC,addr,tl);
2752         #ifdef HOST_IMM_ADDR32
2753         if(c)
2754           emit_readdword_tlb(constmap[i][s]+offset,map,th,tl);
2755         else
2756         #endif
2757         emit_readdword_indexed_tlb(0,a,map,th,tl);
2758       }
2759       if(jaddr)
2760         add_stub(LOADD_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2761     }
2762     else
2763       inline_readstub(LOADD_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2764   }
2765  }
2766   //emit_storereg(rt1[i],tl); // DEBUG
2767   //if(opcode[i]==0x23)
2768   //if(opcode[i]==0x24)
2769   //if(opcode[i]==0x23||opcode[i]==0x24)
2770   /*if(opcode[i]==0x21||opcode[i]==0x23||opcode[i]==0x24)
2771   {
2772     //emit_pusha();
2773     save_regs(0x100f);
2774         emit_readword((int)&last_count,ECX);
2775         #ifdef __i386__
2776         if(get_reg(i_regs->regmap,CCREG)<0)
2777           emit_loadreg(CCREG,HOST_CCREG);
2778         emit_add(HOST_CCREG,ECX,HOST_CCREG);
2779         emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
2780         emit_writeword(HOST_CCREG,(int)&Count);
2781         #endif
2782         #ifdef __arm__
2783         if(get_reg(i_regs->regmap,CCREG)<0)
2784           emit_loadreg(CCREG,0);
2785         else
2786           emit_mov(HOST_CCREG,0);
2787         emit_add(0,ECX,0);
2788         emit_addimm(0,2*ccadj[i],0);
2789         emit_writeword(0,(int)&Count);
2790         #endif
2791     emit_call((int)memdebug);
2792     //emit_popa();
2793     restore_regs(0x100f);
2794   }*/
2795 }
2796
2797 #ifndef loadlr_assemble
2798 void loadlr_assemble(int i,struct regstat *i_regs)
2799 {
2800   printf("Need loadlr_assemble for this architecture.\n");
2801   exit(1);
2802 }
2803 #endif
2804
2805 void store_assemble(int i,struct regstat *i_regs)
2806 {
2807   int s,th,tl,map=-1;
2808   int addr,temp;
2809   int offset;
2810   int jaddr=0,type;
2811   int memtarget=0,c=0;
2812   int agr=AGEN1+(i&1);
2813   int faststore_reg_override=0;
2814   u_int hr,reglist=0;
2815   th=get_reg(i_regs->regmap,rs2[i]|64);
2816   tl=get_reg(i_regs->regmap,rs2[i]);
2817   s=get_reg(i_regs->regmap,rs1[i]);
2818   temp=get_reg(i_regs->regmap,agr);
2819   if(temp<0) temp=get_reg(i_regs->regmap,-1);
2820   offset=imm[i];
2821   if(s>=0) {
2822     c=(i_regs->wasconst>>s)&1;
2823     if(c) {
2824       memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
2825     }
2826   }
2827   assert(tl>=0);
2828   assert(temp>=0);
2829   for(hr=0;hr<HOST_REGS;hr++) {
2830     if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
2831   }
2832   if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
2833   if(offset||s<0||c) addr=temp;
2834   else addr=s;
2835   if(!c) {
2836     jaddr=emit_fastpath_cmp_jump(i,addr,&faststore_reg_override);
2837   }
2838   else if(ram_offset&&memtarget) {
2839     emit_addimm(addr,ram_offset,HOST_TEMPREG);
2840     faststore_reg_override=HOST_TEMPREG;
2841   }
2842
2843   if (opcode[i]==0x28) { // SB
2844     if(!c||memtarget) {
2845       int x=0,a=temp;
2846 #ifdef BIG_ENDIAN_MIPS
2847       if(!c) emit_xorimm(addr,3,temp);
2848       else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2849 #else
2850       if(!c) a=addr;
2851 #endif
2852       if(faststore_reg_override) a=faststore_reg_override;
2853       //emit_writebyte_indexed(tl,(int)rdram-0x80000000,temp);
2854       emit_writebyte_indexed_tlb(tl,x,a,map,a);
2855     }
2856     type=STOREB_STUB;
2857   }
2858   if (opcode[i]==0x29) { // SH
2859     if(!c||memtarget) {
2860       int x=0,a=temp;
2861 #ifdef BIG_ENDIAN_MIPS
2862       if(!c) emit_xorimm(addr,2,temp);
2863       else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
2864 #else
2865       if(!c) a=addr;
2866 #endif
2867       if(faststore_reg_override) a=faststore_reg_override;
2868       //#ifdef
2869       //emit_writehword_indexed_tlb(tl,x,temp,map,temp);
2870       //#else
2871       if(map>=0) {
2872         emit_writehword_indexed(tl,x,a);
2873       }else
2874         //emit_writehword_indexed(tl,(int)rdram-0x80000000+x,a);
2875         emit_writehword_indexed(tl,x,a);
2876     }
2877     type=STOREH_STUB;
2878   }
2879   if (opcode[i]==0x2B) { // SW
2880     if(!c||memtarget) {
2881       int a=addr;
2882       if(faststore_reg_override) a=faststore_reg_override;
2883       //emit_writeword_indexed(tl,(int)rdram-0x80000000,addr);
2884       emit_writeword_indexed_tlb(tl,0,a,map,temp);
2885     }
2886     type=STOREW_STUB;
2887   }
2888   if (opcode[i]==0x3F) { // SD
2889     if(!c||memtarget) {
2890       int a=addr;
2891       if(faststore_reg_override) a=faststore_reg_override;
2892       if(rs2[i]) {
2893         assert(th>=0);
2894         //emit_writeword_indexed(th,(int)rdram-0x80000000,addr);
2895         //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,addr);
2896         emit_writedword_indexed_tlb(th,tl,0,a,map,temp);
2897       }else{
2898         // Store zero
2899         //emit_writeword_indexed(tl,(int)rdram-0x80000000,temp);
2900         //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,temp);
2901         emit_writedword_indexed_tlb(tl,tl,0,a,map,temp);
2902       }
2903     }
2904     type=STORED_STUB;
2905   }
2906   if(jaddr) {
2907     // PCSX store handlers don't check invcode again
2908     reglist|=1<<addr;
2909     add_stub(type,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2910     jaddr=0;
2911   }
2912   if(!(i_regs->waswritten&(1<<rs1[i]))&&!(new_dynarec_hacks&NDHACK_NO_SMC_CHECK)) {
2913     if(!c||memtarget) {
2914       #ifdef DESTRUCTIVE_SHIFT
2915       // The x86 shift operation is 'destructive'; it overwrites the
2916       // source register, so we need to make a copy first and use that.
2917       addr=temp;
2918       #endif
2919       #if defined(HOST_IMM8)
2920       int ir=get_reg(i_regs->regmap,INVCP);
2921       assert(ir>=0);
2922       emit_cmpmem_indexedsr12_reg(ir,addr,1);
2923       #else
2924       emit_cmpmem_indexedsr12_imm((int)invalid_code,addr,1);
2925       #endif
2926       #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
2927       emit_callne(invalidate_addr_reg[addr]);
2928       #else
2929       int jaddr2=(int)out;
2930       emit_jne(0);
2931       add_stub(INVCODE_STUB,jaddr2,(int)out,reglist|(1<<HOST_CCREG),addr,0,0,0);
2932       #endif
2933     }
2934   }
2935   u_int addr_val=constmap[i][s]+offset;
2936   if(jaddr) {
2937     add_stub(type,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2938   } else if(c&&!memtarget) {
2939     inline_writestub(type,i,addr_val,i_regs->regmap,rs2[i],ccadj[i],reglist);
2940   }
2941   // basic current block modification detection..
2942   // not looking back as that should be in mips cache already
2943   if(c&&start+i*4<addr_val&&addr_val<start+slen*4) {
2944     SysPrintf("write to %08x hits block %08x, pc=%08x\n",addr_val,start,start+i*4);
2945     assert(i_regs->regmap==regs[i].regmap); // not delay slot
2946     if(i_regs->regmap==regs[i].regmap) {
2947       load_all_consts(regs[i].regmap_entry,regs[i].was32,regs[i].wasdirty,i);
2948       wb_dirtys(regs[i].regmap_entry,regs[i].was32,regs[i].wasdirty);
2949       emit_movimm(start+i*4+4,0);
2950       emit_writeword(0,(int)&pcaddr);
2951       emit_jmp((int)do_interrupt);
2952     }
2953   }
2954   //if(opcode[i]==0x2B || opcode[i]==0x3F)
2955   //if(opcode[i]==0x2B || opcode[i]==0x28)
2956   //if(opcode[i]==0x2B || opcode[i]==0x29)
2957   //if(opcode[i]==0x2B)
2958   /*if(opcode[i]==0x2B || opcode[i]==0x28 || opcode[i]==0x29 || opcode[i]==0x3F)
2959   {
2960     #ifdef __i386__
2961     emit_pusha();
2962     #endif
2963     #ifdef __arm__
2964     save_regs(0x100f);
2965     #endif
2966         emit_readword((int)&last_count,ECX);
2967         #ifdef __i386__
2968         if(get_reg(i_regs->regmap,CCREG)<0)
2969           emit_loadreg(CCREG,HOST_CCREG);
2970         emit_add(HOST_CCREG,ECX,HOST_CCREG);
2971         emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
2972         emit_writeword(HOST_CCREG,(int)&Count);
2973         #endif
2974         #ifdef __arm__
2975         if(get_reg(i_regs->regmap,CCREG)<0)
2976           emit_loadreg(CCREG,0);
2977         else
2978           emit_mov(HOST_CCREG,0);
2979         emit_add(0,ECX,0);
2980         emit_addimm(0,2*ccadj[i],0);
2981         emit_writeword(0,(int)&Count);
2982         #endif
2983     emit_call((int)memdebug);
2984     #ifdef __i386__
2985     emit_popa();
2986     #endif
2987     #ifdef __arm__
2988     restore_regs(0x100f);
2989     #endif
2990   }*/
2991 }
2992
2993 void storelr_assemble(int i,struct regstat *i_regs)
2994 {
2995   int s,th,tl;
2996   int temp;
2997   int temp2=-1;
2998   int offset;
2999   int jaddr=0;
3000   int case1,case2,case3;
3001   int done0,done1,done2;
3002   int memtarget=0,c=0;
3003   int agr=AGEN1+(i&1);
3004   u_int hr,reglist=0;
3005   th=get_reg(i_regs->regmap,rs2[i]|64);
3006   tl=get_reg(i_regs->regmap,rs2[i]);
3007   s=get_reg(i_regs->regmap,rs1[i]);
3008   temp=get_reg(i_regs->regmap,agr);
3009   if(temp<0) temp=get_reg(i_regs->regmap,-1);
3010   offset=imm[i];
3011   if(s>=0) {
3012     c=(i_regs->isconst>>s)&1;
3013     if(c) {
3014       memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
3015     }
3016   }
3017   assert(tl>=0);
3018   for(hr=0;hr<HOST_REGS;hr++) {
3019     if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3020   }
3021   assert(temp>=0);
3022   if(!c) {
3023     emit_cmpimm(s<0||offset?temp:s,RAM_SIZE);
3024     if(!offset&&s!=temp) emit_mov(s,temp);
3025     jaddr=(int)out;
3026     emit_jno(0);
3027   }
3028   else
3029   {
3030     if(!memtarget||!rs1[i]) {
3031       jaddr=(int)out;
3032       emit_jmp(0);
3033     }
3034   }
3035   #ifdef RAM_OFFSET
3036   int map=get_reg(i_regs->regmap,ROREG);
3037   if(map<0) emit_loadreg(ROREG,map=HOST_TEMPREG);
3038   #else
3039   if((u_int)rdram!=0x80000000)
3040     emit_addimm_no_flags((u_int)rdram-(u_int)0x80000000,temp);
3041   #endif
3042
3043   if (opcode[i]==0x2C||opcode[i]==0x2D) { // SDL/SDR
3044     temp2=get_reg(i_regs->regmap,FTEMP);
3045     if(!rs2[i]) temp2=th=tl;
3046   }
3047
3048 #ifndef BIG_ENDIAN_MIPS
3049     emit_xorimm(temp,3,temp);
3050 #endif
3051   emit_testimm(temp,2);
3052   case2=(int)out;
3053   emit_jne(0);
3054   emit_testimm(temp,1);
3055   case1=(int)out;
3056   emit_jne(0);
3057   // 0
3058   if (opcode[i]==0x2A) { // SWL
3059     emit_writeword_indexed(tl,0,temp);
3060   }
3061   if (opcode[i]==0x2E) { // SWR
3062     emit_writebyte_indexed(tl,3,temp);
3063   }
3064   if (opcode[i]==0x2C) { // SDL
3065     emit_writeword_indexed(th,0,temp);
3066     if(rs2[i]) emit_mov(tl,temp2);
3067   }
3068   if (opcode[i]==0x2D) { // SDR
3069     emit_writebyte_indexed(tl,3,temp);
3070     if(rs2[i]) emit_shldimm(th,tl,24,temp2);
3071   }
3072   done0=(int)out;
3073   emit_jmp(0);
3074   // 1
3075   set_jump_target(case1,(int)out);
3076   if (opcode[i]==0x2A) { // SWL
3077     // Write 3 msb into three least significant bytes
3078     if(rs2[i]) emit_rorimm(tl,8,tl);
3079     emit_writehword_indexed(tl,-1,temp);
3080     if(rs2[i]) emit_rorimm(tl,16,tl);
3081     emit_writebyte_indexed(tl,1,temp);
3082     if(rs2[i]) emit_rorimm(tl,8,tl);
3083   }
3084   if (opcode[i]==0x2E) { // SWR
3085     // Write two lsb into two most significant bytes
3086     emit_writehword_indexed(tl,1,temp);
3087   }
3088   if (opcode[i]==0x2C) { // SDL
3089     if(rs2[i]) emit_shrdimm(tl,th,8,temp2);
3090     // Write 3 msb into three least significant bytes
3091     if(rs2[i]) emit_rorimm(th,8,th);
3092     emit_writehword_indexed(th,-1,temp);
3093     if(rs2[i]) emit_rorimm(th,16,th);
3094     emit_writebyte_indexed(th,1,temp);
3095     if(rs2[i]) emit_rorimm(th,8,th);
3096   }
3097   if (opcode[i]==0x2D) { // SDR
3098     if(rs2[i]) emit_shldimm(th,tl,16,temp2);
3099     // Write two lsb into two most significant bytes
3100     emit_writehword_indexed(tl,1,temp);
3101   }
3102   done1=(int)out;
3103   emit_jmp(0);
3104   // 2
3105   set_jump_target(case2,(int)out);
3106   emit_testimm(temp,1);
3107   case3=(int)out;
3108   emit_jne(0);
3109   if (opcode[i]==0x2A) { // SWL
3110     // Write two msb into two least significant bytes
3111     if(rs2[i]) emit_rorimm(tl,16,tl);
3112     emit_writehword_indexed(tl,-2,temp);
3113     if(rs2[i]) emit_rorimm(tl,16,tl);
3114   }
3115   if (opcode[i]==0x2E) { // SWR
3116     // Write 3 lsb into three most significant bytes
3117     emit_writebyte_indexed(tl,-1,temp);
3118     if(rs2[i]) emit_rorimm(tl,8,tl);
3119     emit_writehword_indexed(tl,0,temp);
3120     if(rs2[i]) emit_rorimm(tl,24,tl);
3121   }
3122   if (opcode[i]==0x2C) { // SDL
3123     if(rs2[i]) emit_shrdimm(tl,th,16,temp2);
3124     // Write two msb into two least significant bytes
3125     if(rs2[i]) emit_rorimm(th,16,th);
3126     emit_writehword_indexed(th,-2,temp);
3127     if(rs2[i]) emit_rorimm(th,16,th);
3128   }
3129   if (opcode[i]==0x2D) { // SDR
3130     if(rs2[i]) emit_shldimm(th,tl,8,temp2);
3131     // Write 3 lsb into three most significant bytes
3132     emit_writebyte_indexed(tl,-1,temp);
3133     if(rs2[i]) emit_rorimm(tl,8,tl);
3134     emit_writehword_indexed(tl,0,temp);
3135     if(rs2[i]) emit_rorimm(tl,24,tl);
3136   }
3137   done2=(int)out;
3138   emit_jmp(0);
3139   // 3
3140   set_jump_target(case3,(int)out);
3141   if (opcode[i]==0x2A) { // SWL
3142     // Write msb into least significant byte
3143     if(rs2[i]) emit_rorimm(tl,24,tl);
3144     emit_writebyte_indexed(tl,-3,temp);
3145     if(rs2[i]) emit_rorimm(tl,8,tl);
3146   }
3147   if (opcode[i]==0x2E) { // SWR
3148     // Write entire word
3149     emit_writeword_indexed(tl,-3,temp);
3150   }
3151   if (opcode[i]==0x2C) { // SDL
3152     if(rs2[i]) emit_shrdimm(tl,th,24,temp2);
3153     // Write msb into least significant byte
3154     if(rs2[i]) emit_rorimm(th,24,th);
3155     emit_writebyte_indexed(th,-3,temp);
3156     if(rs2[i]) emit_rorimm(th,8,th);
3157   }
3158   if (opcode[i]==0x2D) { // SDR
3159     if(rs2[i]) emit_mov(th,temp2);
3160     // Write entire word
3161     emit_writeword_indexed(tl,-3,temp);
3162   }
3163   set_jump_target(done0,(int)out);
3164   set_jump_target(done1,(int)out);
3165   set_jump_target(done2,(int)out);
3166   if (opcode[i]==0x2C) { // SDL
3167     emit_testimm(temp,4);
3168     done0=(int)out;
3169     emit_jne(0);
3170     emit_andimm(temp,~3,temp);
3171     emit_writeword_indexed(temp2,4,temp);
3172     set_jump_target(done0,(int)out);
3173   }
3174   if (opcode[i]==0x2D) { // SDR
3175     emit_testimm(temp,4);
3176     done0=(int)out;
3177     emit_jeq(0);
3178     emit_andimm(temp,~3,temp);
3179     emit_writeword_indexed(temp2,-4,temp);
3180     set_jump_target(done0,(int)out);
3181   }
3182   if(!c||!memtarget)
3183     add_stub(STORELR_STUB,jaddr,(int)out,i,(int)i_regs,temp,ccadj[i],reglist);
3184   if(!(i_regs->waswritten&(1<<rs1[i]))&&!(new_dynarec_hacks&NDHACK_NO_SMC_CHECK)) {
3185     #ifdef RAM_OFFSET
3186     int map=get_reg(i_regs->regmap,ROREG);
3187     if(map<0) map=HOST_TEMPREG;
3188     gen_orig_addr_w(temp,map);
3189     #else
3190     emit_addimm_no_flags((u_int)0x80000000-(u_int)rdram,temp);
3191     #endif
3192     #if defined(HOST_IMM8)
3193     int ir=get_reg(i_regs->regmap,INVCP);
3194     assert(ir>=0);
3195     emit_cmpmem_indexedsr12_reg(ir,temp,1);
3196     #else
3197     emit_cmpmem_indexedsr12_imm((int)invalid_code,temp,1);
3198     #endif
3199     #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3200     emit_callne(invalidate_addr_reg[temp]);
3201     #else
3202     int jaddr2=(int)out;
3203     emit_jne(0);
3204     add_stub(INVCODE_STUB,jaddr2,(int)out,reglist|(1<<HOST_CCREG),temp,0,0,0);
3205     #endif
3206   }
3207   /*
3208     emit_pusha();
3209     //save_regs(0x100f);
3210         emit_readword((int)&last_count,ECX);
3211         if(get_reg(i_regs->regmap,CCREG)<0)
3212           emit_loadreg(CCREG,HOST_CCREG);
3213         emit_add(HOST_CCREG,ECX,HOST_CCREG);
3214         emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3215         emit_writeword(HOST_CCREG,(int)&Count);
3216     emit_call((int)memdebug);
3217     emit_popa();
3218     //restore_regs(0x100f);
3219   */
3220 }
3221
3222 void c1ls_assemble(int i,struct regstat *i_regs)
3223 {
3224   cop1_unusable(i, i_regs);
3225 }
3226
3227 void c2ls_assemble(int i,struct regstat *i_regs)
3228 {
3229   int s,tl;
3230   int ar;
3231   int offset;
3232   int memtarget=0,c=0;
3233   int jaddr2=0,type;
3234   int agr=AGEN1+(i&1);
3235   int fastio_reg_override=0;
3236   u_int hr,reglist=0;
3237   u_int copr=(source[i]>>16)&0x1f;
3238   s=get_reg(i_regs->regmap,rs1[i]);
3239   tl=get_reg(i_regs->regmap,FTEMP);
3240   offset=imm[i];
3241   assert(rs1[i]>0);
3242   assert(tl>=0);
3243
3244   for(hr=0;hr<HOST_REGS;hr++) {
3245     if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3246   }
3247   if(i_regs->regmap[HOST_CCREG]==CCREG)
3248     reglist&=~(1<<HOST_CCREG);
3249
3250   // get the address
3251   if (opcode[i]==0x3a) { // SWC2
3252     ar=get_reg(i_regs->regmap,agr);
3253     if(ar<0) ar=get_reg(i_regs->regmap,-1);
3254     reglist|=1<<ar;
3255   } else { // LWC2
3256     ar=tl;
3257   }
3258   if(s>=0) c=(i_regs->wasconst>>s)&1;
3259   memtarget=c&&(((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE);
3260   if (!offset&&!c&&s>=0) ar=s;
3261   assert(ar>=0);
3262
3263   if (opcode[i]==0x3a) { // SWC2
3264     cop2_get_dreg(copr,tl,HOST_TEMPREG);
3265     type=STOREW_STUB;
3266   }
3267   else
3268     type=LOADW_STUB;
3269
3270   if(c&&!memtarget) {
3271     jaddr2=(int)out;
3272     emit_jmp(0); // inline_readstub/inline_writestub?
3273   }
3274   else {
3275     if(!c) {
3276       jaddr2=emit_fastpath_cmp_jump(i,ar,&fastio_reg_override);
3277     }
3278     else if(ram_offset&&memtarget) {
3279       emit_addimm(ar,ram_offset,HOST_TEMPREG);
3280       fastio_reg_override=HOST_TEMPREG;
3281     }
3282     if (opcode[i]==0x32) { // LWC2
3283       #ifdef HOST_IMM_ADDR32
3284       if(c) emit_readword_tlb(constmap[i][s]+offset,-1,tl);
3285       else
3286       #endif
3287       int a=ar;
3288       if(fastio_reg_override) a=fastio_reg_override;
3289       emit_readword_indexed(0,a,tl);
3290     }
3291     if (opcode[i]==0x3a) { // SWC2
3292       #ifdef DESTRUCTIVE_SHIFT
3293       if(!offset&&!c&&s>=0) emit_mov(s,ar);
3294       #endif
3295       int a=ar;
3296       if(fastio_reg_override) a=fastio_reg_override;
3297       emit_writeword_indexed(tl,0,a);
3298     }
3299   }
3300   if(jaddr2)
3301     add_stub(type,jaddr2,(int)out,i,ar,(int)i_regs,ccadj[i],reglist);
3302   if(opcode[i]==0x3a) // SWC2
3303   if(!(i_regs->waswritten&(1<<rs1[i]))&&!(new_dynarec_hacks&NDHACK_NO_SMC_CHECK)) {
3304 #if defined(HOST_IMM8)
3305     int ir=get_reg(i_regs->regmap,INVCP);
3306     assert(ir>=0);
3307     emit_cmpmem_indexedsr12_reg(ir,ar,1);
3308 #else
3309     emit_cmpmem_indexedsr12_imm((int)invalid_code,ar,1);
3310 #endif
3311     #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3312     emit_callne(invalidate_addr_reg[ar]);
3313     #else
3314     int jaddr3=(int)out;
3315     emit_jne(0);
3316     add_stub(INVCODE_STUB,jaddr3,(int)out,reglist|(1<<HOST_CCREG),ar,0,0,0);
3317     #endif
3318   }
3319   if (opcode[i]==0x32) { // LWC2
3320     cop2_put_dreg(copr,tl,HOST_TEMPREG);
3321   }
3322 }
3323
3324 #ifndef multdiv_assemble
3325 void multdiv_assemble(int i,struct regstat *i_regs)
3326 {
3327   printf("Need multdiv_assemble for this architecture.\n");
3328   exit(1);
3329 }
3330 #endif
3331
3332 void mov_assemble(int i,struct regstat *i_regs)
3333 {
3334   //if(opcode2[i]==0x10||opcode2[i]==0x12) { // MFHI/MFLO
3335   //if(opcode2[i]==0x11||opcode2[i]==0x13) { // MTHI/MTLO
3336   if(rt1[i]) {
3337     signed char sh,sl,th,tl;
3338     th=get_reg(i_regs->regmap,rt1[i]|64);
3339     tl=get_reg(i_regs->regmap,rt1[i]);
3340     //assert(tl>=0);
3341     if(tl>=0) {
3342       sh=get_reg(i_regs->regmap,rs1[i]|64);
3343       sl=get_reg(i_regs->regmap,rs1[i]);
3344       if(sl>=0) emit_mov(sl,tl);
3345       else emit_loadreg(rs1[i],tl);
3346       if(th>=0) {
3347         if(sh>=0) emit_mov(sh,th);
3348         else emit_loadreg(rs1[i]|64,th);
3349       }
3350     }
3351   }
3352 }
3353
3354 #ifndef fconv_assemble
3355 void fconv_assemble(int i,struct regstat *i_regs)
3356 {
3357   printf("Need fconv_assemble for this architecture.\n");
3358   exit(1);
3359 }
3360 #endif
3361
3362 #if 0
3363 void float_assemble(int i,struct regstat *i_regs)
3364 {
3365   printf("Need float_assemble for this architecture.\n");
3366   exit(1);
3367 }
3368 #endif
3369
3370 void syscall_assemble(int i,struct regstat *i_regs)
3371 {
3372   signed char ccreg=get_reg(i_regs->regmap,CCREG);
3373   assert(ccreg==HOST_CCREG);
3374   assert(!is_delayslot);
3375   (void)ccreg;
3376   emit_movimm(start+i*4,EAX); // Get PC
3377   emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i]),HOST_CCREG); // CHECK: is this right?  There should probably be an extra cycle...
3378   emit_jmp((int)jump_syscall_hle); // XXX
3379 }
3380
3381 void hlecall_assemble(int i,struct regstat *i_regs)
3382 {
3383   signed char ccreg=get_reg(i_regs->regmap,CCREG);
3384   assert(ccreg==HOST_CCREG);
3385   assert(!is_delayslot);
3386   (void)ccreg;
3387   emit_movimm(start+i*4+4,0); // Get PC
3388   emit_movimm((int)psxHLEt[source[i]&7],1);
3389   emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i]),HOST_CCREG); // XXX
3390   emit_jmp((int)jump_hlecall);
3391 }
3392
3393 void intcall_assemble(int i,struct regstat *i_regs)
3394 {
3395   signed char ccreg=get_reg(i_regs->regmap,CCREG);
3396   assert(ccreg==HOST_CCREG);
3397   assert(!is_delayslot);
3398   (void)ccreg;
3399   emit_movimm(start+i*4,0); // Get PC
3400   emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i]),HOST_CCREG);
3401   emit_jmp((int)jump_intcall);
3402 }
3403
3404 void ds_assemble(int i,struct regstat *i_regs)
3405 {
3406   speculate_register_values(i);
3407   is_delayslot=1;
3408   switch(itype[i]) {
3409     case ALU:
3410       alu_assemble(i,i_regs);break;
3411     case IMM16:
3412       imm16_assemble(i,i_regs);break;
3413     case SHIFT:
3414       shift_assemble(i,i_regs);break;
3415     case SHIFTIMM:
3416       shiftimm_assemble(i,i_regs);break;
3417     case LOAD:
3418       load_assemble(i,i_regs);break;
3419     case LOADLR:
3420       loadlr_assemble(i,i_regs);break;
3421     case STORE:
3422       store_assemble(i,i_regs);break;
3423     case STORELR:
3424       storelr_assemble(i,i_regs);break;
3425     case COP0:
3426       cop0_assemble(i,i_regs);break;
3427     case COP1:
3428       cop1_assemble(i,i_regs);break;
3429     case C1LS:
3430       c1ls_assemble(i,i_regs);break;
3431     case COP2:
3432       cop2_assemble(i,i_regs);break;
3433     case C2LS:
3434       c2ls_assemble(i,i_regs);break;
3435     case C2OP:
3436       c2op_assemble(i,i_regs);break;
3437     case FCONV:
3438       fconv_assemble(i,i_regs);break;
3439     case FLOAT:
3440       float_assemble(i,i_regs);break;
3441     case FCOMP:
3442       fcomp_assemble(i,i_regs);break;
3443     case MULTDIV:
3444       multdiv_assemble(i,i_regs);break;
3445     case MOV:
3446       mov_assemble(i,i_regs);break;
3447     case SYSCALL:
3448     case HLECALL:
3449     case INTCALL:
3450     case SPAN:
3451     case UJUMP:
3452     case RJUMP:
3453     case CJUMP:
3454     case SJUMP:
3455     case FJUMP:
3456       SysPrintf("Jump in the delay slot.  This is probably a bug.\n");
3457   }
3458   is_delayslot=0;
3459 }
3460
3461 // Is the branch target a valid internal jump?
3462 int internal_branch(uint64_t i_is32,int addr)
3463 {
3464   if(addr&1) return 0; // Indirect (register) jump
3465   if(addr>=start && addr<start+slen*4-4)
3466   {
3467     //int t=(addr-start)>>2;
3468     // Delay slots are not valid branch targets
3469     //if(t>0&&(itype[t-1]==RJUMP||itype[t-1]==UJUMP||itype[t-1]==CJUMP||itype[t-1]==SJUMP||itype[t-1]==FJUMP)) return 0;
3470     // 64 -> 32 bit transition requires a recompile
3471     /*if(is32[t]&~unneeded_reg_upper[t]&~i_is32)
3472     {
3473       if(requires_32bit[t]&~i_is32) printf("optimizable: no\n");
3474       else printf("optimizable: yes\n");
3475     }*/
3476     //if(is32[t]&~unneeded_reg_upper[t]&~i_is32) return 0;
3477     return 1;
3478   }
3479   return 0;
3480 }
3481
3482 #ifndef wb_invalidate
3483 void wb_invalidate(signed char pre[],signed char entry[],uint64_t dirty,uint64_t is32,
3484   uint64_t u,uint64_t uu)
3485 {
3486   int hr;
3487   for(hr=0;hr<HOST_REGS;hr++) {
3488     if(hr!=EXCLUDE_REG) {
3489       if(pre[hr]!=entry[hr]) {
3490         if(pre[hr]>=0) {
3491           if((dirty>>hr)&1) {
3492             if(get_reg(entry,pre[hr])<0) {
3493               if(pre[hr]<64) {
3494                 if(!((u>>pre[hr])&1)) {
3495                   emit_storereg(pre[hr],hr);
3496                   if( ((is32>>pre[hr])&1) && !((uu>>pre[hr])&1) ) {
3497                     emit_sarimm(hr,31,hr);
3498                     emit_storereg(pre[hr]|64,hr);
3499                   }
3500                 }
3501               }else{
3502                 if(!((uu>>(pre[hr]&63))&1) && !((is32>>(pre[hr]&63))&1)) {
3503                   emit_storereg(pre[hr],hr);
3504                 }
3505               }
3506             }
3507           }
3508         }
3509       }
3510     }
3511   }
3512   // Move from one register to another (no writeback)
3513   for(hr=0;hr<HOST_REGS;hr++) {
3514     if(hr!=EXCLUDE_REG) {
3515       if(pre[hr]!=entry[hr]) {
3516         if(pre[hr]>=0&&(pre[hr]&63)<TEMPREG) {
3517           int nr;
3518           if((nr=get_reg(entry,pre[hr]))>=0) {
3519             emit_mov(hr,nr);
3520           }
3521         }
3522       }
3523     }
3524   }
3525 }
3526 #endif
3527
3528 // Load the specified registers
3529 // This only loads the registers given as arguments because
3530 // we don't want to load things that will be overwritten
3531 void load_regs(signed char entry[],signed char regmap[],int is32,int rs1,int rs2)
3532 {
3533   int hr;
3534   // Load 32-bit regs
3535   for(hr=0;hr<HOST_REGS;hr++) {
3536     if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
3537       if(entry[hr]!=regmap[hr]) {
3538         if(regmap[hr]==rs1||regmap[hr]==rs2)
3539         {
3540           if(regmap[hr]==0) {
3541             emit_zeroreg(hr);
3542           }
3543           else
3544           {
3545             emit_loadreg(regmap[hr],hr);
3546           }
3547         }
3548       }
3549     }
3550   }
3551   //Load 64-bit regs
3552   for(hr=0;hr<HOST_REGS;hr++) {
3553     if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
3554       if(entry[hr]!=regmap[hr]) {
3555         if(regmap[hr]-64==rs1||regmap[hr]-64==rs2)
3556         {
3557           assert(regmap[hr]!=64);
3558           if((is32>>(regmap[hr]&63))&1) {
3559             int lr=get_reg(regmap,regmap[hr]-64);
3560             if(lr>=0)
3561               emit_sarimm(lr,31,hr);
3562             else
3563               emit_loadreg(regmap[hr],hr);
3564           }
3565           else
3566           {
3567             emit_loadreg(regmap[hr],hr);
3568           }
3569         }
3570       }
3571     }
3572   }
3573 }
3574
3575 // Load registers prior to the start of a loop
3576 // so that they are not loaded within the loop
3577 static void loop_preload(signed char pre[],signed char entry[])
3578 {
3579   int hr;
3580   for(hr=0;hr<HOST_REGS;hr++) {
3581     if(hr!=EXCLUDE_REG) {
3582       if(pre[hr]!=entry[hr]) {
3583         if(entry[hr]>=0) {
3584           if(get_reg(pre,entry[hr])<0) {
3585             assem_debug("loop preload:\n");
3586             //printf("loop preload: %d\n",hr);
3587             if(entry[hr]==0) {
3588               emit_zeroreg(hr);
3589             }
3590             else if(entry[hr]<TEMPREG)
3591             {
3592               emit_loadreg(entry[hr],hr);
3593             }
3594             else if(entry[hr]-64<TEMPREG)
3595             {
3596               emit_loadreg(entry[hr],hr);
3597             }
3598           }
3599         }
3600       }
3601     }
3602   }
3603 }
3604
3605 // Generate address for load/store instruction
3606 // goes to AGEN for writes, FTEMP for LOADLR and cop1/2 loads
3607 void address_generation(int i,struct regstat *i_regs,signed char entry[])
3608 {
3609   if(itype[i]==LOAD||itype[i]==LOADLR||itype[i]==STORE||itype[i]==STORELR||itype[i]==C1LS||itype[i]==C2LS) {
3610     int ra=-1;
3611     int agr=AGEN1+(i&1);
3612     if(itype[i]==LOAD) {
3613       ra=get_reg(i_regs->regmap,rt1[i]);
3614       if(ra<0) ra=get_reg(i_regs->regmap,-1);
3615       assert(ra>=0);
3616     }
3617     if(itype[i]==LOADLR) {
3618       ra=get_reg(i_regs->regmap,FTEMP);
3619     }
3620     if(itype[i]==STORE||itype[i]==STORELR) {
3621       ra=get_reg(i_regs->regmap,agr);
3622       if(ra<0) ra=get_reg(i_regs->regmap,-1);
3623     }
3624     if(itype[i]==C1LS||itype[i]==C2LS) {
3625       if ((opcode[i]&0x3b)==0x31||(opcode[i]&0x3b)==0x32) // LWC1/LDC1/LWC2/LDC2
3626         ra=get_reg(i_regs->regmap,FTEMP);
3627       else { // SWC1/SDC1/SWC2/SDC2
3628         ra=get_reg(i_regs->regmap,agr);
3629         if(ra<0) ra=get_reg(i_regs->regmap,-1);
3630       }
3631     }
3632     int rs=get_reg(i_regs->regmap,rs1[i]);
3633     if(ra>=0) {
3634       int offset=imm[i];
3635       int c=(i_regs->wasconst>>rs)&1;
3636       if(rs1[i]==0) {
3637         // Using r0 as a base address
3638         if(!entry||entry[ra]!=agr) {
3639           if (opcode[i]==0x22||opcode[i]==0x26) {
3640             emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
3641           }else if (opcode[i]==0x1a||opcode[i]==0x1b) {
3642             emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
3643           }else{
3644             emit_movimm(offset,ra);
3645           }
3646         } // else did it in the previous cycle
3647       }
3648       else if(rs<0) {
3649         if(!entry||entry[ra]!=rs1[i])
3650           emit_loadreg(rs1[i],ra);
3651         //if(!entry||entry[ra]!=rs1[i])
3652         //  printf("poor load scheduling!\n");
3653       }
3654       else if(c) {
3655         if(rs1[i]!=rt1[i]||itype[i]!=LOAD) {
3656           if(!entry||entry[ra]!=agr) {
3657             if (opcode[i]==0x22||opcode[i]==0x26) {
3658               emit_movimm((constmap[i][rs]+offset)&0xFFFFFFFC,ra); // LWL/LWR
3659             }else if (opcode[i]==0x1a||opcode[i]==0x1b) {
3660               emit_movimm((constmap[i][rs]+offset)&0xFFFFFFF8,ra); // LDL/LDR
3661             }else{
3662               #ifdef HOST_IMM_ADDR32
3663               if((itype[i]!=LOAD&&(opcode[i]&0x3b)!=0x31&&(opcode[i]&0x3b)!=0x32)) // LWC1/LDC1/LWC2/LDC2
3664               #endif
3665               emit_movimm(constmap[i][rs]+offset,ra);
3666               regs[i].loadedconst|=1<<ra;
3667             }
3668           } // else did it in the previous cycle
3669         } // else load_consts already did it
3670       }
3671       if(offset&&!c&&rs1[i]) {
3672         if(rs>=0) {
3673           emit_addimm(rs,offset,ra);
3674         }else{
3675           emit_addimm(ra,offset,ra);
3676         }
3677       }
3678     }
3679   }
3680   // Preload constants for next instruction
3681   if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS||itype[i+1]==C2LS) {
3682     int agr,ra;
3683     // Actual address
3684     agr=AGEN1+((i+1)&1);
3685     ra=get_reg(i_regs->regmap,agr);
3686     if(ra>=0) {
3687       int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
3688       int offset=imm[i+1];
3689       int c=(regs[i+1].wasconst>>rs)&1;
3690       if(c&&(rs1[i+1]!=rt1[i+1]||itype[i+1]!=LOAD)) {
3691         if (opcode[i+1]==0x22||opcode[i+1]==0x26) {
3692           emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFFC,ra); // LWL/LWR
3693         }else if (opcode[i+1]==0x1a||opcode[i+1]==0x1b) {
3694           emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFF8,ra); // LDL/LDR
3695         }else{
3696           #ifdef HOST_IMM_ADDR32
3697           if((itype[i+1]!=LOAD&&(opcode[i+1]&0x3b)!=0x31&&(opcode[i+1]&0x3b)!=0x32)) // LWC1/LDC1/LWC2/LDC2
3698           #endif
3699           emit_movimm(constmap[i+1][rs]+offset,ra);
3700           regs[i+1].loadedconst|=1<<ra;
3701         }
3702       }
3703       else if(rs1[i+1]==0) {
3704         // Using r0 as a base address
3705         if (opcode[i+1]==0x22||opcode[i+1]==0x26) {
3706           emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
3707         }else if (opcode[i+1]==0x1a||opcode[i+1]==0x1b) {
3708           emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
3709         }else{
3710           emit_movimm(offset,ra);
3711         }
3712       }
3713     }
3714   }
3715 }
3716
3717 static int get_final_value(int hr, int i, int *value)
3718 {
3719   int reg=regs[i].regmap[hr];
3720   while(i<slen-1) {
3721     if(regs[i+1].regmap[hr]!=reg) break;
3722     if(!((regs[i+1].isconst>>hr)&1)) break;
3723     if(bt[i+1]) break;
3724     i++;
3725   }
3726   if(i<slen-1) {
3727     if(itype[i]==UJUMP||itype[i]==RJUMP||itype[i]==CJUMP||itype[i]==SJUMP) {
3728       *value=constmap[i][hr];
3729       return 1;
3730     }
3731     if(!bt[i+1]) {
3732       if(itype[i+1]==UJUMP||itype[i+1]==RJUMP||itype[i+1]==CJUMP||itype[i+1]==SJUMP) {
3733         // Load in delay slot, out-of-order execution
3734         if(itype[i+2]==LOAD&&rs1[i+2]==reg&&rt1[i+2]==reg&&((regs[i+1].wasconst>>hr)&1))
3735         {
3736           // Precompute load address
3737           *value=constmap[i][hr]+imm[i+2];
3738           return 1;
3739         }
3740       }
3741       if(itype[i+1]==LOAD&&rs1[i+1]==reg&&rt1[i+1]==reg)
3742       {
3743         // Precompute load address
3744         *value=constmap[i][hr]+imm[i+1];
3745         //printf("c=%x imm=%x\n",(int)constmap[i][hr],imm[i+1]);
3746         return 1;
3747       }
3748     }
3749   }
3750   *value=constmap[i][hr];
3751   //printf("c=%x\n",(int)constmap[i][hr]);
3752   if(i==slen-1) return 1;
3753   if(reg<64) {
3754     return !((unneeded_reg[i+1]>>reg)&1);
3755   }else{
3756     return !((unneeded_reg_upper[i+1]>>reg)&1);
3757   }
3758 }
3759
3760 // Load registers with known constants
3761 void load_consts(signed char pre[],signed char regmap[],int is32,int i)
3762 {
3763   int hr,hr2;
3764   // propagate loaded constant flags
3765   if(i==0||bt[i])
3766     regs[i].loadedconst=0;
3767   else {
3768     for(hr=0;hr<HOST_REGS;hr++) {
3769       if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((regs[i-1].isconst>>hr)&1)&&pre[hr]==regmap[hr]
3770          &&regmap[hr]==regs[i-1].regmap[hr]&&((regs[i-1].loadedconst>>hr)&1))
3771       {
3772         regs[i].loadedconst|=1<<hr;
3773       }
3774     }
3775   }
3776   // Load 32-bit regs
3777   for(hr=0;hr<HOST_REGS;hr++) {
3778     if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
3779       //if(entry[hr]!=regmap[hr]) {
3780       if(!((regs[i].loadedconst>>hr)&1)) {
3781         if(((regs[i].isconst>>hr)&1)&&regmap[hr]<64&&regmap[hr]>0) {
3782           int value,similar=0;
3783           if(get_final_value(hr,i,&value)) {
3784             // see if some other register has similar value
3785             for(hr2=0;hr2<HOST_REGS;hr2++) {
3786               if(hr2!=EXCLUDE_REG&&((regs[i].loadedconst>>hr2)&1)) {
3787                 if(is_similar_value(value,constmap[i][hr2])) {
3788                   similar=1;
3789                   break;
3790                 }
3791               }
3792             }
3793             if(similar) {
3794               int value2;
3795               if(get_final_value(hr2,i,&value2)) // is this needed?
3796                 emit_movimm_from(value2,hr2,value,hr);
3797               else
3798                 emit_movimm(value,hr);
3799             }
3800             else if(value==0) {
3801               emit_zeroreg(hr);
3802             }
3803             else {
3804               emit_movimm(value,hr);
3805             }
3806           }
3807           regs[i].loadedconst|=1<<hr;
3808         }
3809       }
3810     }
3811   }
3812   // Load 64-bit regs
3813   for(hr=0;hr<HOST_REGS;hr++) {
3814     if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
3815       //if(entry[hr]!=regmap[hr]) {
3816       if(i==0||!((regs[i-1].isconst>>hr)&1)||pre[hr]!=regmap[hr]||bt[i]) {
3817         if(((regs[i].isconst>>hr)&1)&&regmap[hr]>64) {
3818           if((is32>>(regmap[hr]&63))&1) {
3819             int lr=get_reg(regmap,regmap[hr]-64);
3820             assert(lr>=0);
3821             emit_sarimm(lr,31,hr);
3822           }
3823           else
3824           {
3825             int value;
3826             if(get_final_value(hr,i,&value)) {
3827               if(value==0) {
3828                 emit_zeroreg(hr);
3829               }
3830               else {
3831                 emit_movimm(value,hr);
3832               }
3833             }
3834           }
3835         }
3836       }
3837     }
3838   }
3839 }
3840 void load_all_consts(signed char regmap[],int is32,u_int dirty,int i)
3841 {
3842   int hr;
3843   // Load 32-bit regs
3844   for(hr=0;hr<HOST_REGS;hr++) {
3845     if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((dirty>>hr)&1)) {
3846       if(((regs[i].isconst>>hr)&1)&&regmap[hr]<64&&regmap[hr]>0) {
3847         int value=constmap[i][hr];
3848         if(value==0) {
3849           emit_zeroreg(hr);
3850         }
3851         else {
3852           emit_movimm(value,hr);
3853         }
3854       }
3855     }
3856   }
3857   // Load 64-bit regs
3858   for(hr=0;hr<HOST_REGS;hr++) {
3859     if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((dirty>>hr)&1)) {
3860       if(((regs[i].isconst>>hr)&1)&&regmap[hr]>64) {
3861         if((is32>>(regmap[hr]&63))&1) {
3862           int lr=get_reg(regmap,regmap[hr]-64);
3863           assert(lr>=0);
3864           emit_sarimm(lr,31,hr);
3865         }
3866         else
3867         {
3868           int value=constmap[i][hr];
3869           if(value==0) {
3870             emit_zeroreg(hr);
3871           }
3872           else {
3873             emit_movimm(value,hr);
3874           }
3875         }
3876       }
3877     }
3878   }
3879 }
3880
3881 // Write out all dirty registers (except cycle count)
3882 void wb_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty)
3883 {
3884   int hr;
3885   for(hr=0;hr<HOST_REGS;hr++) {
3886     if(hr!=EXCLUDE_REG) {
3887       if(i_regmap[hr]>0) {
3888         if(i_regmap[hr]!=CCREG) {
3889           if((i_dirty>>hr)&1) {
3890             if(i_regmap[hr]<64) {
3891               emit_storereg(i_regmap[hr],hr);
3892             }else{
3893               if( !((i_is32>>(i_regmap[hr]&63))&1) ) {
3894                 emit_storereg(i_regmap[hr],hr);
3895               }
3896             }
3897           }
3898         }
3899       }
3900     }
3901   }
3902 }
3903 // Write out dirty registers that we need to reload (pair with load_needed_regs)
3904 // This writes the registers not written by store_regs_bt
3905 void wb_needed_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
3906 {
3907   int hr;
3908   int t=(addr-start)>>2;
3909   for(hr=0;hr<HOST_REGS;hr++) {
3910     if(hr!=EXCLUDE_REG) {
3911       if(i_regmap[hr]>0) {
3912         if(i_regmap[hr]!=CCREG) {
3913           if(i_regmap[hr]==regs[t].regmap_entry[hr] && ((regs[t].dirty>>hr)&1) && !(((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
3914             if((i_dirty>>hr)&1) {
3915               if(i_regmap[hr]<64) {
3916                 emit_storereg(i_regmap[hr],hr);
3917               }else{
3918                 if( !((i_is32>>(i_regmap[hr]&63))&1) ) {
3919                   emit_storereg(i_regmap[hr],hr);
3920                 }
3921               }
3922             }
3923           }
3924         }
3925       }
3926     }
3927   }
3928 }
3929
3930 // Load all registers (except cycle count)
3931 void load_all_regs(signed char i_regmap[])
3932 {
3933   int hr;
3934   for(hr=0;hr<HOST_REGS;hr++) {
3935     if(hr!=EXCLUDE_REG) {
3936       if(i_regmap[hr]==0) {
3937         emit_zeroreg(hr);
3938       }
3939       else
3940       if(i_regmap[hr]>0 && (i_regmap[hr]&63)<TEMPREG && i_regmap[hr]!=CCREG)
3941       {
3942         emit_loadreg(i_regmap[hr],hr);
3943       }
3944     }
3945   }
3946 }
3947
3948 // Load all current registers also needed by next instruction
3949 void load_needed_regs(signed char i_regmap[],signed char next_regmap[])
3950 {
3951   int hr;
3952   for(hr=0;hr<HOST_REGS;hr++) {
3953     if(hr!=EXCLUDE_REG) {
3954       if(get_reg(next_regmap,i_regmap[hr])>=0) {
3955         if(i_regmap[hr]==0) {
3956           emit_zeroreg(hr);
3957         }
3958         else
3959         if(i_regmap[hr]>0 && (i_regmap[hr]&63)<TEMPREG && i_regmap[hr]!=CCREG)
3960         {
3961           emit_loadreg(i_regmap[hr],hr);
3962         }
3963       }
3964     }
3965   }
3966 }
3967
3968 // Load all regs, storing cycle count if necessary
3969 void load_regs_entry(int t)
3970 {
3971   int hr;
3972   if(is_ds[t]) emit_addimm(HOST_CCREG,CLOCK_ADJUST(1),HOST_CCREG);
3973   else if(ccadj[t]) emit_addimm(HOST_CCREG,-CLOCK_ADJUST(ccadj[t]),HOST_CCREG);
3974   if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
3975     emit_storereg(CCREG,HOST_CCREG);
3976   }
3977   // Load 32-bit regs
3978   for(hr=0;hr<HOST_REGS;hr++) {
3979     if(regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<TEMPREG) {
3980       if(regs[t].regmap_entry[hr]==0) {
3981         emit_zeroreg(hr);
3982       }
3983       else if(regs[t].regmap_entry[hr]!=CCREG)
3984       {
3985         emit_loadreg(regs[t].regmap_entry[hr],hr);
3986       }
3987     }
3988   }
3989   // Load 64-bit regs
3990   for(hr=0;hr<HOST_REGS;hr++) {
3991     if(regs[t].regmap_entry[hr]>=64&&regs[t].regmap_entry[hr]<TEMPREG+64) {
3992       assert(regs[t].regmap_entry[hr]!=64);
3993       if((regs[t].was32>>(regs[t].regmap_entry[hr]&63))&1) {
3994         int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
3995         if(lr<0) {
3996           emit_loadreg(regs[t].regmap_entry[hr],hr);
3997         }
3998         else
3999         {
4000           emit_sarimm(lr,31,hr);
4001         }
4002       }
4003       else
4004       {
4005         emit_loadreg(regs[t].regmap_entry[hr],hr);
4006       }
4007     }
4008   }
4009 }
4010
4011 // Store dirty registers prior to branch
4012 void store_regs_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4013 {
4014   if(internal_branch(i_is32,addr))
4015   {
4016     int t=(addr-start)>>2;
4017     int hr;
4018     for(hr=0;hr<HOST_REGS;hr++) {
4019       if(hr!=EXCLUDE_REG) {
4020         if(i_regmap[hr]>0 && i_regmap[hr]!=CCREG) {
4021           if(i_regmap[hr]!=regs[t].regmap_entry[hr] || !((regs[t].dirty>>hr)&1) || (((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4022             if((i_dirty>>hr)&1) {
4023               if(i_regmap[hr]<64) {
4024                 if(!((unneeded_reg[t]>>i_regmap[hr])&1)) {
4025                   emit_storereg(i_regmap[hr],hr);
4026                   if( ((i_is32>>i_regmap[hr])&1) && !((unneeded_reg_upper[t]>>i_regmap[hr])&1) ) {
4027                     #ifdef DESTRUCTIVE_WRITEBACK
4028                     emit_sarimm(hr,31,hr);
4029                     emit_storereg(i_regmap[hr]|64,hr);
4030                     #else
4031                     emit_sarimm(hr,31,HOST_TEMPREG);
4032                     emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4033                     #endif
4034                   }
4035                 }
4036               }else{
4037                 if( !((i_is32>>(i_regmap[hr]&63))&1) && !((unneeded_reg_upper[t]>>(i_regmap[hr]&63))&1) ) {
4038                   emit_storereg(i_regmap[hr],hr);
4039                 }
4040               }
4041             }
4042           }
4043         }
4044       }
4045     }
4046   }
4047   else
4048   {
4049     // Branch out of this block, write out all dirty regs
4050     wb_dirtys(i_regmap,i_is32,i_dirty);
4051   }
4052 }
4053
4054 // Load all needed registers for branch target
4055 void load_regs_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4056 {
4057   //if(addr>=start && addr<(start+slen*4))
4058   if(internal_branch(i_is32,addr))
4059   {
4060     int t=(addr-start)>>2;
4061     int hr;
4062     // Store the cycle count before loading something else
4063     if(i_regmap[HOST_CCREG]!=CCREG) {
4064       assert(i_regmap[HOST_CCREG]==-1);
4065     }
4066     if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
4067       emit_storereg(CCREG,HOST_CCREG);
4068     }
4069     // Load 32-bit regs
4070     for(hr=0;hr<HOST_REGS;hr++) {
4071       if(hr!=EXCLUDE_REG&&regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<TEMPREG) {
4072         #ifdef DESTRUCTIVE_WRITEBACK
4073         if(i_regmap[hr]!=regs[t].regmap_entry[hr] || ( !((regs[t].dirty>>hr)&1) && ((i_dirty>>hr)&1) && (((i_is32&~unneeded_reg_upper[t])>>i_regmap[hr])&1) ) || (((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4074         #else
4075         if(i_regmap[hr]!=regs[t].regmap_entry[hr] ) {
4076         #endif
4077           if(regs[t].regmap_entry[hr]==0) {
4078             emit_zeroreg(hr);
4079           }
4080           else if(regs[t].regmap_entry[hr]!=CCREG)
4081           {
4082             emit_loadreg(regs[t].regmap_entry[hr],hr);
4083           }
4084         }
4085       }
4086     }
4087     //Load 64-bit regs
4088     for(hr=0;hr<HOST_REGS;hr++) {
4089       if(hr!=EXCLUDE_REG&&regs[t].regmap_entry[hr]>=64&&regs[t].regmap_entry[hr]<TEMPREG+64) {
4090         if(i_regmap[hr]!=regs[t].regmap_entry[hr]) {
4091           assert(regs[t].regmap_entry[hr]!=64);
4092           if((i_is32>>(regs[t].regmap_entry[hr]&63))&1) {
4093             int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4094             if(lr<0) {
4095               emit_loadreg(regs[t].regmap_entry[hr],hr);
4096             }
4097             else
4098             {
4099               emit_sarimm(lr,31,hr);
4100             }
4101           }
4102           else
4103           {
4104             emit_loadreg(regs[t].regmap_entry[hr],hr);
4105           }
4106         }
4107         else if((i_is32>>(regs[t].regmap_entry[hr]&63))&1) {
4108           int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4109           assert(lr>=0);
4110           emit_sarimm(lr,31,hr);
4111         }
4112       }
4113     }
4114   }
4115 }
4116
4117 int match_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4118 {
4119   if(addr>=start && addr<start+slen*4-4)
4120   {
4121     int t=(addr-start)>>2;
4122     int hr;
4123     if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) return 0;
4124     for(hr=0;hr<HOST_REGS;hr++)
4125     {
4126       if(hr!=EXCLUDE_REG)
4127       {
4128         if(i_regmap[hr]!=regs[t].regmap_entry[hr])
4129         {
4130           if(regs[t].regmap_entry[hr]>=0&&(regs[t].regmap_entry[hr]|64)<TEMPREG+64)
4131           {
4132             return 0;
4133           }
4134           else
4135           if((i_dirty>>hr)&1)
4136           {
4137             if(i_regmap[hr]<TEMPREG)
4138             {
4139               if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4140                 return 0;
4141             }
4142             else if(i_regmap[hr]>=64&&i_regmap[hr]<TEMPREG+64)
4143             {
4144               if(!((unneeded_reg_upper[t]>>(i_regmap[hr]&63))&1))
4145                 return 0;
4146             }
4147           }
4148         }
4149         else // Same register but is it 32-bit or dirty?
4150         if(i_regmap[hr]>=0)
4151         {
4152           if(!((regs[t].dirty>>hr)&1))
4153           {
4154             if((i_dirty>>hr)&1)
4155             {
4156               if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4157               {
4158                 //printf("%x: dirty no match\n",addr);
4159                 return 0;
4160               }
4161             }
4162           }
4163           if((((regs[t].was32^i_is32)&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)
4164           {
4165             //printf("%x: is32 no match\n",addr);
4166             return 0;
4167           }
4168         }
4169       }
4170     }
4171     //if(is32[t]&~unneeded_reg_upper[t]&~i_is32) return 0;
4172     // Delay slots are not valid branch targets
4173     //if(t>0&&(itype[t-1]==RJUMP||itype[t-1]==UJUMP||itype[t-1]==CJUMP||itype[t-1]==SJUMP||itype[t-1]==FJUMP)) return 0;
4174     // Delay slots require additional processing, so do not match
4175     if(is_ds[t]) return 0;
4176   }
4177   else
4178   {
4179     int hr;
4180     for(hr=0;hr<HOST_REGS;hr++)
4181     {
4182       if(hr!=EXCLUDE_REG)
4183       {
4184         if(i_regmap[hr]>=0)
4185         {
4186           if(hr!=HOST_CCREG||i_regmap[hr]!=CCREG)
4187           {
4188             if((i_dirty>>hr)&1)
4189             {
4190               return 0;
4191             }
4192           }
4193         }
4194       }
4195     }
4196   }
4197   return 1;
4198 }
4199
4200 // Used when a branch jumps into the delay slot of another branch
4201 void ds_assemble_entry(int i)
4202 {
4203   int t=(ba[i]-start)>>2;
4204   if(!instr_addr[t]) instr_addr[t]=(u_int)out;
4205   assem_debug("Assemble delay slot at %x\n",ba[i]);
4206   assem_debug("<->\n");
4207   if(regs[t].regmap_entry[HOST_CCREG]==CCREG&&regs[t].regmap[HOST_CCREG]!=CCREG)
4208     wb_register(CCREG,regs[t].regmap_entry,regs[t].wasdirty,regs[t].was32);
4209   load_regs(regs[t].regmap_entry,regs[t].regmap,regs[t].was32,rs1[t],rs2[t]);
4210   address_generation(t,&regs[t],regs[t].regmap_entry);
4211   if(itype[t]==STORE||itype[t]==STORELR||(opcode[t]&0x3b)==0x39||(opcode[t]&0x3b)==0x3a)
4212     load_regs(regs[t].regmap_entry,regs[t].regmap,regs[t].was32,INVCP,INVCP);
4213   cop1_usable=0;
4214   is_delayslot=0;
4215   switch(itype[t]) {
4216     case ALU:
4217       alu_assemble(t,&regs[t]);break;
4218     case IMM16:
4219       imm16_assemble(t,&regs[t]);break;
4220     case SHIFT:
4221       shift_assemble(t,&regs[t]);break;
4222     case SHIFTIMM:
4223       shiftimm_assemble(t,&regs[t]);break;
4224     case LOAD:
4225       load_assemble(t,&regs[t]);break;
4226     case LOADLR:
4227       loadlr_assemble(t,&regs[t]);break;
4228     case STORE:
4229       store_assemble(t,&regs[t]);break;
4230     case STORELR:
4231       storelr_assemble(t,&regs[t]);break;
4232     case COP0:
4233       cop0_assemble(t,&regs[t]);break;
4234     case COP1:
4235       cop1_assemble(t,&regs[t]);break;
4236     case C1LS:
4237       c1ls_assemble(t,&regs[t]);break;
4238     case COP2:
4239       cop2_assemble(t,&regs[t]);break;
4240     case C2LS:
4241       c2ls_assemble(t,&regs[t]);break;
4242     case C2OP:
4243       c2op_assemble(t,&regs[t]);break;
4244     case FCONV:
4245       fconv_assemble(t,&regs[t]);break;
4246     case FLOAT:
4247       float_assemble(t,&regs[t]);break;
4248     case FCOMP:
4249       fcomp_assemble(t,&regs[t]);break;
4250     case MULTDIV:
4251       multdiv_assemble(t,&regs[t]);break;
4252     case MOV:
4253       mov_assemble(t,&regs[t]);break;
4254     case SYSCALL:
4255     case HLECALL:
4256     case INTCALL:
4257     case SPAN:
4258     case UJUMP:
4259     case RJUMP:
4260     case CJUMP:
4261     case SJUMP:
4262     case FJUMP:
4263       SysPrintf("Jump in the delay slot.  This is probably a bug.\n");
4264   }
4265   store_regs_bt(regs[t].regmap,regs[t].is32,regs[t].dirty,ba[i]+4);
4266   load_regs_bt(regs[t].regmap,regs[t].is32,regs[t].dirty,ba[i]+4);
4267   if(internal_branch(regs[t].is32,ba[i]+4))
4268     assem_debug("branch: internal\n");
4269   else
4270     assem_debug("branch: external\n");
4271   assert(internal_branch(regs[t].is32,ba[i]+4));
4272   add_to_linker((int)out,ba[i]+4,internal_branch(regs[t].is32,ba[i]+4));
4273   emit_jmp(0);
4274 }
4275
4276 void do_cc(int i,signed char i_regmap[],int *adj,int addr,int taken,int invert)
4277 {
4278   int count;
4279   int jaddr;
4280   int idle=0;
4281   int t=0;
4282   if(itype[i]==RJUMP)
4283   {
4284     *adj=0;
4285   }
4286   //if(ba[i]>=start && ba[i]<(start+slen*4))
4287   if(internal_branch(branch_regs[i].is32,ba[i]))
4288   {
4289     t=(ba[i]-start)>>2;
4290     if(is_ds[t]) *adj=-1; // Branch into delay slot adds an extra cycle
4291     else *adj=ccadj[t];
4292   }
4293   else
4294   {
4295     *adj=0;
4296   }
4297   count=ccadj[i];
4298   if(taken==TAKEN && i==(ba[i]-start)>>2 && source[i+1]==0) {
4299     // Idle loop
4300     if(count&1) emit_addimm_and_set_flags(2*(count+2),HOST_CCREG);
4301     idle=(int)out;
4302     //emit_subfrommem(&idlecount,HOST_CCREG); // Count idle cycles
4303     emit_andimm(HOST_CCREG,3,HOST_CCREG);
4304     jaddr=(int)out;
4305     emit_jmp(0);
4306   }
4307   else if(*adj==0||invert) {
4308     int cycles=CLOCK_ADJUST(count+2);
4309     // faster loop HACK
4310     if (t&&*adj) {
4311       int rel=t-i;
4312       if(-NO_CYCLE_PENALTY_THR<rel&&rel<0)
4313         cycles=CLOCK_ADJUST(*adj)+count+2-*adj;
4314     }
4315     emit_addimm_and_set_flags(cycles,HOST_CCREG);
4316     jaddr=(int)out;
4317     emit_jns(0);
4318   }
4319   else
4320   {
4321     emit_cmpimm(HOST_CCREG,-CLOCK_ADJUST(count+2));
4322     jaddr=(int)out;
4323     emit_jns(0);
4324   }
4325   add_stub(CC_STUB,jaddr,idle?idle:(int)out,(*adj==0||invert||idle)?0:(count+2),i,addr,taken,0);
4326 }
4327
4328 void do_ccstub(int n)
4329 {
4330   literal_pool(256);
4331   assem_debug("do_ccstub %x\n",start+stubs[n][4]*4);
4332   set_jump_target(stubs[n][1],(int)out);
4333   int i=stubs[n][4];
4334   if(stubs[n][6]==NULLDS) {
4335     // Delay slot instruction is nullified ("likely" branch)
4336     wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
4337   }
4338   else if(stubs[n][6]!=TAKEN) {
4339     wb_dirtys(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty);
4340   }
4341   else {
4342     if(internal_branch(branch_regs[i].is32,ba[i]))
4343       wb_needed_dirtys(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
4344   }
4345   if(stubs[n][5]!=-1)
4346   {
4347     // Save PC as return address
4348     emit_movimm(stubs[n][5],EAX);
4349     emit_writeword(EAX,(int)&pcaddr);
4350   }
4351   else
4352   {
4353     // Return address depends on which way the branch goes
4354     if(itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
4355     {
4356       int s1l=get_reg(branch_regs[i].regmap,rs1[i]);
4357       int s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
4358       int s2l=get_reg(branch_regs[i].regmap,rs2[i]);
4359       int s2h=get_reg(branch_regs[i].regmap,rs2[i]|64);
4360       if(rs1[i]==0)
4361       {
4362         s1l=s2l;s1h=s2h;
4363         s2l=s2h=-1;
4364       }
4365       else if(rs2[i]==0)
4366       {
4367         s2l=s2h=-1;
4368       }
4369       if((branch_regs[i].is32>>rs1[i])&(branch_regs[i].is32>>rs2[i])&1) {
4370         s1h=s2h=-1;
4371       }
4372       assert(s1l>=0);
4373       #ifdef DESTRUCTIVE_WRITEBACK
4374       if(rs1[i]) {
4375         if((branch_regs[i].dirty>>s1l)&(branch_regs[i].is32>>rs1[i])&1)
4376           emit_loadreg(rs1[i],s1l);
4377       }
4378       else {
4379         if((branch_regs[i].dirty>>s1l)&(branch_regs[i].is32>>rs2[i])&1)
4380           emit_loadreg(rs2[i],s1l);
4381       }
4382       if(s2l>=0)
4383         if((branch_regs[i].dirty>>s2l)&(branch_regs[i].is32>>rs2[i])&1)
4384           emit_loadreg(rs2[i],s2l);
4385       #endif
4386       int hr=0;
4387       int addr=-1,alt=-1,ntaddr=-1;
4388       while(hr<HOST_REGS)
4389       {
4390         if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4391            (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
4392            (branch_regs[i].regmap[hr]&63)!=rs2[i] )
4393         {
4394           addr=hr++;break;
4395         }
4396         hr++;
4397       }
4398       while(hr<HOST_REGS)
4399       {
4400         if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4401            (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
4402            (branch_regs[i].regmap[hr]&63)!=rs2[i] )
4403         {
4404           alt=hr++;break;
4405         }
4406         hr++;
4407       }
4408       if((opcode[i]&0x2E)==6) // BLEZ/BGTZ needs another register
4409       {
4410         while(hr<HOST_REGS)
4411         {
4412           if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4413              (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
4414              (branch_regs[i].regmap[hr]&63)!=rs2[i] )
4415           {
4416             ntaddr=hr;break;
4417           }
4418           hr++;
4419         }
4420         assert(hr<HOST_REGS);
4421       }
4422       if((opcode[i]&0x2f)==4) // BEQ
4423       {
4424         #ifdef HAVE_CMOV_IMM
4425         if(s1h<0) {
4426           if(s2l>=0) emit_cmp(s1l,s2l);
4427           else emit_test(s1l,s1l);
4428           emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
4429         }
4430         else
4431         #endif
4432         {
4433           emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
4434           if(s1h>=0) {
4435             if(s2h>=0) emit_cmp(s1h,s2h);
4436             else emit_test(s1h,s1h);
4437             emit_cmovne_reg(alt,addr);
4438           }
4439           if(s2l>=0) emit_cmp(s1l,s2l);
4440           else emit_test(s1l,s1l);
4441           emit_cmovne_reg(alt,addr);
4442         }
4443       }
4444       if((opcode[i]&0x2f)==5) // BNE
4445       {
4446         #ifdef HAVE_CMOV_IMM
4447         if(s1h<0) {
4448           if(s2l>=0) emit_cmp(s1l,s2l);
4449           else emit_test(s1l,s1l);
4450           emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
4451         }
4452         else
4453         #endif
4454         {
4455           emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
4456           if(s1h>=0) {
4457             if(s2h>=0) emit_cmp(s1h,s2h);
4458             else emit_test(s1h,s1h);
4459             emit_cmovne_reg(alt,addr);
4460           }
4461           if(s2l>=0) emit_cmp(s1l,s2l);
4462           else emit_test(s1l,s1l);
4463           emit_cmovne_reg(alt,addr);
4464         }
4465       }
4466       if((opcode[i]&0x2f)==6) // BLEZ
4467       {
4468         //emit_movimm(ba[i],alt);
4469         //emit_movimm(start+i*4+8,addr);
4470         emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
4471         emit_cmpimm(s1l,1);
4472         if(s1h>=0) emit_mov(addr,ntaddr);
4473         emit_cmovl_reg(alt,addr);
4474         if(s1h>=0) {
4475           emit_test(s1h,s1h);
4476           emit_cmovne_reg(ntaddr,addr);
4477           emit_cmovs_reg(alt,addr);
4478         }
4479       }
4480       if((opcode[i]&0x2f)==7) // BGTZ
4481       {
4482         //emit_movimm(ba[i],addr);
4483         //emit_movimm(start+i*4+8,ntaddr);
4484         emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
4485         emit_cmpimm(s1l,1);
4486         if(s1h>=0) emit_mov(addr,alt);
4487         emit_cmovl_reg(ntaddr,addr);
4488         if(s1h>=0) {
4489           emit_test(s1h,s1h);
4490           emit_cmovne_reg(alt,addr);
4491           emit_cmovs_reg(ntaddr,addr);
4492         }
4493       }
4494       if((opcode[i]==1)&&(opcode2[i]&0x2D)==0) // BLTZ
4495       {
4496         //emit_movimm(ba[i],alt);
4497         //emit_movimm(start+i*4+8,addr);
4498         emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
4499         if(s1h>=0) emit_test(s1h,s1h);
4500         else emit_test(s1l,s1l);
4501         emit_cmovs_reg(alt,addr);
4502       }
4503       if((opcode[i]==1)&&(opcode2[i]&0x2D)==1) // BGEZ
4504       {
4505         //emit_movimm(ba[i],addr);
4506         //emit_movimm(start+i*4+8,alt);
4507         emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
4508         if(s1h>=0) emit_test(s1h,s1h);
4509         else emit_test(s1l,s1l);
4510         emit_cmovs_reg(alt,addr);
4511       }
4512       if(opcode[i]==0x11 && opcode2[i]==0x08 ) {
4513         if(source[i]&0x10000) // BC1T
4514         {
4515           //emit_movimm(ba[i],alt);
4516           //emit_movimm(start+i*4+8,addr);
4517           emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
4518           emit_testimm(s1l,0x800000);
4519           emit_cmovne_reg(alt,addr);
4520         }
4521         else // BC1F
4522         {
4523           //emit_movimm(ba[i],addr);
4524           //emit_movimm(start+i*4+8,alt);
4525           emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
4526           emit_testimm(s1l,0x800000);
4527           emit_cmovne_reg(alt,addr);
4528         }
4529       }
4530       emit_writeword(addr,(int)&pcaddr);
4531     }
4532     else
4533     if(itype[i]==RJUMP)
4534     {
4535       int r=get_reg(branch_regs[i].regmap,rs1[i]);
4536       if(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]) {
4537         r=get_reg(branch_regs[i].regmap,RTEMP);
4538       }
4539       emit_writeword(r,(int)&pcaddr);
4540     }
4541     else {SysPrintf("Unknown branch type in do_ccstub\n");exit(1);}
4542   }
4543   // Update cycle count
4544   assert(branch_regs[i].regmap[HOST_CCREG]==CCREG||branch_regs[i].regmap[HOST_CCREG]==-1);
4545   if(stubs[n][3]) emit_addimm(HOST_CCREG,CLOCK_ADJUST((int)stubs[n][3]),HOST_CCREG);
4546   emit_call((int)cc_interrupt);
4547   if(stubs[n][3]) emit_addimm(HOST_CCREG,-CLOCK_ADJUST((int)stubs[n][3]),HOST_CCREG);
4548   if(stubs[n][6]==TAKEN) {
4549     if(internal_branch(branch_regs[i].is32,ba[i]))
4550       load_needed_regs(branch_regs[i].regmap,regs[(ba[i]-start)>>2].regmap_entry);
4551     else if(itype[i]==RJUMP) {
4552       if(get_reg(branch_regs[i].regmap,RTEMP)>=0)
4553         emit_readword((int)&pcaddr,get_reg(branch_regs[i].regmap,RTEMP));
4554       else
4555         emit_loadreg(rs1[i],get_reg(branch_regs[i].regmap,rs1[i]));
4556     }
4557   }else if(stubs[n][6]==NOTTAKEN) {
4558     if(i<slen-2) load_needed_regs(branch_regs[i].regmap,regmap_pre[i+2]);
4559     else load_all_regs(branch_regs[i].regmap);
4560   }else if(stubs[n][6]==NULLDS) {
4561     // Delay slot instruction is nullified ("likely" branch)
4562     if(i<slen-2) load_needed_regs(regs[i].regmap,regmap_pre[i+2]);
4563     else load_all_regs(regs[i].regmap);
4564   }else{
4565     load_all_regs(branch_regs[i].regmap);
4566   }
4567   emit_jmp(stubs[n][2]); // return address
4568
4569   /* This works but uses a lot of memory...
4570   emit_readword((int)&last_count,ECX);
4571   emit_add(HOST_CCREG,ECX,EAX);
4572   emit_writeword(EAX,(int)&Count);
4573   emit_call((int)gen_interupt);
4574   emit_readword((int)&Count,HOST_CCREG);
4575   emit_readword((int)&next_interupt,EAX);
4576   emit_readword((int)&pending_exception,EBX);
4577   emit_writeword(EAX,(int)&last_count);
4578   emit_sub(HOST_CCREG,EAX,HOST_CCREG);
4579   emit_test(EBX,EBX);
4580   int jne_instr=(int)out;
4581   emit_jne(0);
4582   if(stubs[n][3]) emit_addimm(HOST_CCREG,-2*stubs[n][3],HOST_CCREG);
4583   load_all_regs(branch_regs[i].regmap);
4584   emit_jmp(stubs[n][2]); // return address
4585   set_jump_target(jne_instr,(int)out);
4586   emit_readword((int)&pcaddr,EAX);
4587   // Call get_addr_ht instead of doing the hash table here.
4588   // This code is executed infrequently and takes up a lot of space
4589   // so smaller is better.
4590   emit_storereg(CCREG,HOST_CCREG);
4591   emit_pushreg(EAX);
4592   emit_call((int)get_addr_ht);
4593   emit_loadreg(CCREG,HOST_CCREG);
4594   emit_addimm(ESP,4,ESP);
4595   emit_jmpreg(EAX);*/
4596 }
4597
4598 static void add_to_linker(int addr,int target,int ext)
4599 {
4600   link_addr[linkcount][0]=addr;
4601   link_addr[linkcount][1]=target;
4602   link_addr[linkcount][2]=ext;
4603   linkcount++;
4604 }
4605
4606 static void ujump_assemble_write_ra(int i)
4607 {
4608   int rt;
4609   unsigned int return_address;
4610   rt=get_reg(branch_regs[i].regmap,31);
4611   assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
4612   //assert(rt>=0);
4613   return_address=start+i*4+8;
4614   if(rt>=0) {
4615     #ifdef USE_MINI_HT
4616     if(internal_branch(branch_regs[i].is32,return_address)&&rt1[i+1]!=31) {
4617       int temp=-1; // note: must be ds-safe
4618       #ifdef HOST_TEMPREG
4619       temp=HOST_TEMPREG;
4620       #endif
4621       if(temp>=0) do_miniht_insert(return_address,rt,temp);
4622       else emit_movimm(return_address,rt);
4623     }
4624     else
4625     #endif
4626     {
4627       #ifdef REG_PREFETCH
4628       if(temp>=0)
4629       {
4630         if(i_regmap[temp]!=PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
4631       }
4632       #endif
4633       emit_movimm(return_address,rt); // PC into link register
4634       #ifdef IMM_PREFETCH
4635       emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
4636       #endif
4637     }
4638   }
4639 }
4640
4641 void ujump_assemble(int i,struct regstat *i_regs)
4642 {
4643   int ra_done=0;
4644   if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
4645   address_generation(i+1,i_regs,regs[i].regmap_entry);
4646   #ifdef REG_PREFETCH
4647   int temp=get_reg(branch_regs[i].regmap,PTEMP);
4648   if(rt1[i]==31&&temp>=0)
4649   {
4650     signed char *i_regmap=i_regs->regmap;
4651     int return_address=start+i*4+8;
4652     if(get_reg(branch_regs[i].regmap,31)>0)
4653     if(i_regmap[temp]==PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
4654   }
4655   #endif
4656   if(rt1[i]==31&&(rt1[i]==rs1[i+1]||rt1[i]==rs2[i+1])) {
4657     ujump_assemble_write_ra(i); // writeback ra for DS
4658     ra_done=1;
4659   }
4660   ds_assemble(i+1,i_regs);
4661   uint64_t bc_unneeded=branch_regs[i].u;
4662   uint64_t bc_unneeded_upper=branch_regs[i].uu;
4663   bc_unneeded|=1|(1LL<<rt1[i]);
4664   bc_unneeded_upper|=1|(1LL<<rt1[i]);
4665   wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
4666                 bc_unneeded,bc_unneeded_upper);
4667   load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
4668   if(!ra_done&&rt1[i]==31)
4669     ujump_assemble_write_ra(i);
4670   int cc,adj;
4671   cc=get_reg(branch_regs[i].regmap,CCREG);
4672   assert(cc==HOST_CCREG);
4673   store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
4674   #ifdef REG_PREFETCH
4675   if(rt1[i]==31&&temp>=0) emit_prefetchreg(temp);
4676   #endif
4677   do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
4678   if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
4679   load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
4680   if(internal_branch(branch_regs[i].is32,ba[i]))
4681     assem_debug("branch: internal\n");
4682   else
4683     assem_debug("branch: external\n");
4684   if(internal_branch(branch_regs[i].is32,ba[i])&&is_ds[(ba[i]-start)>>2]) {
4685     ds_assemble_entry(i);
4686   }
4687   else {
4688     add_to_linker((int)out,ba[i],internal_branch(branch_regs[i].is32,ba[i]));
4689     emit_jmp(0);
4690   }
4691 }
4692
4693 static void rjump_assemble_write_ra(int i)
4694 {
4695   int rt,return_address;
4696   assert(rt1[i+1]!=rt1[i]);
4697   assert(rt2[i+1]!=rt1[i]);
4698   rt=get_reg(branch_regs[i].regmap,rt1[i]);
4699   assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
4700   assert(rt>=0);
4701   return_address=start+i*4+8;
4702   #ifdef REG_PREFETCH
4703   if(temp>=0)
4704   {
4705     if(i_regmap[temp]!=PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
4706   }
4707   #endif
4708   emit_movimm(return_address,rt); // PC into link register
4709   #ifdef IMM_PREFETCH
4710   emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
4711   #endif
4712 }
4713
4714 void rjump_assemble(int i,struct regstat *i_regs)
4715 {
4716   int temp;
4717   int rs,cc;
4718   int ra_done=0;
4719   rs=get_reg(branch_regs[i].regmap,rs1[i]);
4720   assert(rs>=0);
4721   if(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]) {
4722     // Delay slot abuse, make a copy of the branch address register
4723     temp=get_reg(branch_regs[i].regmap,RTEMP);
4724     assert(temp>=0);
4725     assert(regs[i].regmap[temp]==RTEMP);
4726     emit_mov(rs,temp);
4727     rs=temp;
4728   }
4729   address_generation(i+1,i_regs,regs[i].regmap_entry);
4730   #ifdef REG_PREFETCH
4731   if(rt1[i]==31)
4732   {
4733     if((temp=get_reg(branch_regs[i].regmap,PTEMP))>=0) {
4734       signed char *i_regmap=i_regs->regmap;
4735       int return_address=start+i*4+8;
4736       if(i_regmap[temp]==PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
4737     }
4738   }
4739   #endif
4740   #ifdef USE_MINI_HT
4741   if(rs1[i]==31) {
4742     int rh=get_reg(regs[i].regmap,RHASH);
4743     if(rh>=0) do_preload_rhash(rh);
4744   }
4745   #endif
4746   if(rt1[i]!=0&&(rt1[i]==rs1[i+1]||rt1[i]==rs2[i+1])) {
4747     rjump_assemble_write_ra(i);
4748     ra_done=1;
4749   }
4750   ds_assemble(i+1,i_regs);
4751   uint64_t bc_unneeded=branch_regs[i].u;
4752   uint64_t bc_unneeded_upper=branch_regs[i].uu;
4753   bc_unneeded|=1|(1LL<<rt1[i]);
4754   bc_unneeded_upper|=1|(1LL<<rt1[i]);
4755   bc_unneeded&=~(1LL<<rs1[i]);
4756   wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
4757                 bc_unneeded,bc_unneeded_upper);
4758   load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],CCREG);
4759   if(!ra_done&&rt1[i]!=0)
4760     rjump_assemble_write_ra(i);
4761   cc=get_reg(branch_regs[i].regmap,CCREG);
4762   assert(cc==HOST_CCREG);
4763   (void)cc;
4764   #ifdef USE_MINI_HT
4765   int rh=get_reg(branch_regs[i].regmap,RHASH);
4766   int ht=get_reg(branch_regs[i].regmap,RHTBL);
4767   if(rs1[i]==31) {
4768     if(regs[i].regmap[rh]!=RHASH) do_preload_rhash(rh);
4769     do_preload_rhtbl(ht);
4770     do_rhash(rs,rh);
4771   }
4772   #endif
4773   store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,-1);
4774   #ifdef DESTRUCTIVE_WRITEBACK
4775   if((branch_regs[i].dirty>>rs)&(branch_regs[i].is32>>rs1[i])&1) {
4776     if(rs1[i]!=rt1[i+1]&&rs1[i]!=rt2[i+1]) {
4777       emit_loadreg(rs1[i],rs);
4778     }
4779   }
4780   #endif
4781   #ifdef REG_PREFETCH
4782   if(rt1[i]==31&&temp>=0) emit_prefetchreg(temp);
4783   #endif
4784   #ifdef USE_MINI_HT
4785   if(rs1[i]==31) {
4786     do_miniht_load(ht,rh);
4787   }
4788   #endif
4789   //do_cc(i,branch_regs[i].regmap,&adj,-1,TAKEN);
4790   //if(adj) emit_addimm(cc,2*(ccadj[i]+2-adj),cc); // ??? - Shouldn't happen
4791   //assert(adj==0);
4792   emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),HOST_CCREG);
4793   add_stub(CC_STUB,(int)out,jump_vaddr_reg[rs],0,i,-1,TAKEN,0);
4794   if(itype[i+1]==COP0&&(source[i+1]&0x3f)==0x10)
4795     // special case for RFE
4796     emit_jmp(0);
4797   else
4798     emit_jns(0);
4799   //load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,-1);
4800   #ifdef USE_MINI_HT
4801   if(rs1[i]==31) {
4802     do_miniht_jump(rs,rh,ht);
4803   }
4804   else
4805   #endif
4806   {
4807     //if(rs!=EAX) emit_mov(rs,EAX);
4808     //emit_jmp((int)jump_vaddr_eax);
4809     emit_jmp(jump_vaddr_reg[rs]);
4810   }
4811   /* Check hash table
4812   temp=!rs;
4813   emit_mov(rs,temp);
4814   emit_shrimm(rs,16,rs);
4815   emit_xor(temp,rs,rs);
4816   emit_movzwl_reg(rs,rs);
4817   emit_shlimm(rs,4,rs);
4818   emit_cmpmem_indexed((int)hash_table,rs,temp);
4819   emit_jne((int)out+14);
4820   emit_readword_indexed((int)hash_table+4,rs,rs);
4821   emit_jmpreg(rs);
4822   emit_cmpmem_indexed((int)hash_table+8,rs,temp);
4823   emit_addimm_no_flags(8,rs);
4824   emit_jeq((int)out-17);
4825   // No hit on hash table, call compiler
4826   emit_pushreg(temp);
4827 //DEBUG >
4828 #ifdef DEBUG_CYCLE_COUNT
4829   emit_readword((int)&last_count,ECX);
4830   emit_add(HOST_CCREG,ECX,HOST_CCREG);
4831   emit_readword((int)&next_interupt,ECX);
4832   emit_writeword(HOST_CCREG,(int)&Count);
4833   emit_sub(HOST_CCREG,ECX,HOST_CCREG);
4834   emit_writeword(ECX,(int)&last_count);
4835 #endif
4836 //DEBUG <
4837   emit_storereg(CCREG,HOST_CCREG);
4838   emit_call((int)get_addr);
4839   emit_loadreg(CCREG,HOST_CCREG);
4840   emit_addimm(ESP,4,ESP);
4841   emit_jmpreg(EAX);*/
4842   #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
4843   if(rt1[i]!=31&&i<slen-2&&(((u_int)out)&7)) emit_mov(13,13);
4844   #endif
4845 }
4846
4847 void cjump_assemble(int i,struct regstat *i_regs)
4848 {
4849   signed char *i_regmap=i_regs->regmap;
4850   int cc;
4851   int match;
4852   match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
4853   assem_debug("match=%d\n",match);
4854   int s1h,s1l,s2h,s2l;
4855   int prev_cop1_usable=cop1_usable;
4856   int unconditional=0,nop=0;
4857   int only32=0;
4858   int invert=0;
4859   int internal=internal_branch(branch_regs[i].is32,ba[i]);
4860   if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
4861   if(!match) invert=1;
4862   #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
4863   if(i>(ba[i]-start)>>2) invert=1;
4864   #endif
4865
4866   if(ooo[i]) {
4867     s1l=get_reg(branch_regs[i].regmap,rs1[i]);
4868     s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
4869     s2l=get_reg(branch_regs[i].regmap,rs2[i]);
4870     s2h=get_reg(branch_regs[i].regmap,rs2[i]|64);
4871   }
4872   else {
4873     s1l=get_reg(i_regmap,rs1[i]);
4874     s1h=get_reg(i_regmap,rs1[i]|64);
4875     s2l=get_reg(i_regmap,rs2[i]);
4876     s2h=get_reg(i_regmap,rs2[i]|64);
4877   }
4878   if(rs1[i]==0&&rs2[i]==0)
4879   {
4880     if(opcode[i]&1) nop=1;
4881     else unconditional=1;
4882     //assert(opcode[i]!=5);
4883     //assert(opcode[i]!=7);
4884     //assert(opcode[i]!=0x15);
4885     //assert(opcode[i]!=0x17);
4886   }
4887   else if(rs1[i]==0)
4888   {
4889     s1l=s2l;s1h=s2h;
4890     s2l=s2h=-1;
4891     only32=(regs[i].was32>>rs2[i])&1;
4892   }
4893   else if(rs2[i]==0)
4894   {
4895     s2l=s2h=-1;
4896     only32=(regs[i].was32>>rs1[i])&1;
4897   }
4898   else {
4899     only32=(regs[i].was32>>rs1[i])&(regs[i].was32>>rs2[i])&1;
4900   }
4901
4902   if(ooo[i]) {
4903     // Out of order execution (delay slot first)
4904     //printf("OOOE\n");
4905     address_generation(i+1,i_regs,regs[i].regmap_entry);
4906     ds_assemble(i+1,i_regs);
4907     int adj;
4908     uint64_t bc_unneeded=branch_regs[i].u;
4909     uint64_t bc_unneeded_upper=branch_regs[i].uu;
4910     bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
4911     bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
4912     bc_unneeded|=1;
4913     bc_unneeded_upper|=1;
4914     wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
4915                   bc_unneeded,bc_unneeded_upper);
4916     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs2[i]);
4917     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
4918     cc=get_reg(branch_regs[i].regmap,CCREG);
4919     assert(cc==HOST_CCREG);
4920     if(unconditional)
4921       store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
4922     //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
4923     //assem_debug("cycle count (adj)\n");
4924     if(unconditional) {
4925       do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
4926       if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
4927         if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
4928         load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
4929         if(internal)
4930           assem_debug("branch: internal\n");
4931         else
4932           assem_debug("branch: external\n");
4933         if(internal&&is_ds[(ba[i]-start)>>2]) {
4934           ds_assemble_entry(i);
4935         }
4936         else {
4937           add_to_linker((int)out,ba[i],internal);
4938           emit_jmp(0);
4939         }
4940         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
4941         if(((u_int)out)&7) emit_addnop(0);
4942         #endif
4943       }
4944     }
4945     else if(nop) {
4946       emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),cc);
4947       int jaddr=(int)out;
4948       emit_jns(0);
4949       add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
4950     }
4951     else {
4952       int taken=0,nottaken=0,nottaken1=0;
4953       do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
4954       if(adj&&!invert) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
4955       if(!only32)
4956       {
4957         assert(s1h>=0);
4958         if(opcode[i]==4) // BEQ
4959         {
4960           if(s2h>=0) emit_cmp(s1h,s2h);
4961           else emit_test(s1h,s1h);
4962           nottaken1=(int)out;
4963           emit_jne(1);
4964         }
4965         if(opcode[i]==5) // BNE
4966         {
4967           if(s2h>=0) emit_cmp(s1h,s2h);
4968           else emit_test(s1h,s1h);
4969           if(invert) taken=(int)out;
4970           else add_to_linker((int)out,ba[i],internal);
4971           emit_jne(0);
4972         }
4973         if(opcode[i]==6) // BLEZ
4974         {
4975           emit_test(s1h,s1h);
4976           if(invert) taken=(int)out;
4977           else add_to_linker((int)out,ba[i],internal);
4978           emit_js(0);
4979           nottaken1=(int)out;
4980           emit_jne(1);
4981         }
4982         if(opcode[i]==7) // BGTZ
4983         {
4984           emit_test(s1h,s1h);
4985           nottaken1=(int)out;
4986           emit_js(1);
4987           if(invert) taken=(int)out;
4988           else add_to_linker((int)out,ba[i],internal);
4989           emit_jne(0);
4990         }
4991       } // if(!only32)
4992
4993       //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
4994       assert(s1l>=0);
4995       if(opcode[i]==4) // BEQ
4996       {
4997         if(s2l>=0) emit_cmp(s1l,s2l);
4998         else emit_test(s1l,s1l);
4999         if(invert){
5000           nottaken=(int)out;
5001           emit_jne(1);
5002         }else{
5003           add_to_linker((int)out,ba[i],internal);
5004           emit_jeq(0);
5005         }
5006       }
5007       if(opcode[i]==5) // BNE
5008       {
5009         if(s2l>=0) emit_cmp(s1l,s2l);
5010         else emit_test(s1l,s1l);
5011         if(invert){
5012           nottaken=(int)out;
5013           emit_jeq(1);
5014         }else{
5015           add_to_linker((int)out,ba[i],internal);
5016           emit_jne(0);
5017         }
5018       }
5019       if(opcode[i]==6) // BLEZ
5020       {
5021         emit_cmpimm(s1l,1);
5022         if(invert){
5023           nottaken=(int)out;
5024           emit_jge(1);
5025         }else{
5026           add_to_linker((int)out,ba[i],internal);
5027           emit_jl(0);
5028         }
5029       }
5030       if(opcode[i]==7) // BGTZ
5031       {
5032         emit_cmpimm(s1l,1);
5033         if(invert){
5034           nottaken=(int)out;
5035           emit_jl(1);
5036         }else{
5037           add_to_linker((int)out,ba[i],internal);
5038           emit_jge(0);
5039         }
5040       }
5041       if(invert) {
5042         if(taken) set_jump_target(taken,(int)out);
5043         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5044         if(match&&(!internal||!is_ds[(ba[i]-start)>>2])) {
5045           if(adj) {
5046             emit_addimm(cc,-CLOCK_ADJUST(adj),cc);
5047             add_to_linker((int)out,ba[i],internal);
5048           }else{
5049             emit_addnop(13);
5050             add_to_linker((int)out,ba[i],internal*2);
5051           }
5052           emit_jmp(0);
5053         }else
5054         #endif
5055         {
5056           if(adj) emit_addimm(cc,-CLOCK_ADJUST(adj),cc);
5057           store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5058           load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5059           if(internal)
5060             assem_debug("branch: internal\n");
5061           else
5062             assem_debug("branch: external\n");
5063           if(internal&&is_ds[(ba[i]-start)>>2]) {
5064             ds_assemble_entry(i);
5065           }
5066           else {
5067             add_to_linker((int)out,ba[i],internal);
5068             emit_jmp(0);
5069           }
5070         }
5071         set_jump_target(nottaken,(int)out);
5072       }
5073
5074       if(nottaken1) set_jump_target(nottaken1,(int)out);
5075       if(adj) {
5076         if(!invert) emit_addimm(cc,CLOCK_ADJUST(adj),cc);
5077       }
5078     } // (!unconditional)
5079   } // if(ooo)
5080   else
5081   {
5082     // In-order execution (branch first)
5083     //if(likely[i]) printf("IOL\n");
5084     //else
5085     //printf("IOE\n");
5086     int taken=0,nottaken=0,nottaken1=0;
5087     if(!unconditional&&!nop) {
5088       if(!only32)
5089       {
5090         assert(s1h>=0);
5091         if((opcode[i]&0x2f)==4) // BEQ
5092         {
5093           if(s2h>=0) emit_cmp(s1h,s2h);
5094           else emit_test(s1h,s1h);
5095           nottaken1=(int)out;
5096           emit_jne(2);
5097         }
5098         if((opcode[i]&0x2f)==5) // BNE
5099         {
5100           if(s2h>=0) emit_cmp(s1h,s2h);
5101           else emit_test(s1h,s1h);
5102           taken=(int)out;
5103           emit_jne(1);
5104         }
5105         if((opcode[i]&0x2f)==6) // BLEZ
5106         {
5107           emit_test(s1h,s1h);
5108           taken=(int)out;
5109           emit_js(1);
5110           nottaken1=(int)out;
5111           emit_jne(2);
5112         }
5113         if((opcode[i]&0x2f)==7) // BGTZ
5114         {
5115           emit_test(s1h,s1h);
5116           nottaken1=(int)out;
5117           emit_js(2);
5118           taken=(int)out;
5119           emit_jne(1);
5120         }
5121       } // if(!only32)
5122
5123       //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5124       assert(s1l>=0);
5125       if((opcode[i]&0x2f)==4) // BEQ
5126       {
5127         if(s2l>=0) emit_cmp(s1l,s2l);
5128         else emit_test(s1l,s1l);
5129         nottaken=(int)out;
5130         emit_jne(2);
5131       }
5132       if((opcode[i]&0x2f)==5) // BNE
5133       {
5134         if(s2l>=0) emit_cmp(s1l,s2l);
5135         else emit_test(s1l,s1l);
5136         nottaken=(int)out;
5137         emit_jeq(2);
5138       }
5139       if((opcode[i]&0x2f)==6) // BLEZ
5140       {
5141         emit_cmpimm(s1l,1);
5142         nottaken=(int)out;
5143         emit_jge(2);
5144       }
5145       if((opcode[i]&0x2f)==7) // BGTZ
5146       {
5147         emit_cmpimm(s1l,1);
5148         nottaken=(int)out;
5149         emit_jl(2);
5150       }
5151     } // if(!unconditional)
5152     int adj;
5153     uint64_t ds_unneeded=branch_regs[i].u;
5154     uint64_t ds_unneeded_upper=branch_regs[i].uu;
5155     ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
5156     ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
5157     if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
5158     ds_unneeded|=1;
5159     ds_unneeded_upper|=1;
5160     // branch taken
5161     if(!nop) {
5162       if(taken) set_jump_target(taken,(int)out);
5163       assem_debug("1:\n");
5164       wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5165                     ds_unneeded,ds_unneeded_upper);
5166       // load regs
5167       load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5168       address_generation(i+1,&branch_regs[i],0);
5169       load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
5170       ds_assemble(i+1,&branch_regs[i]);
5171       cc=get_reg(branch_regs[i].regmap,CCREG);
5172       if(cc==-1) {
5173         emit_loadreg(CCREG,cc=HOST_CCREG);
5174         // CHECK: Is the following instruction (fall thru) allocated ok?
5175       }
5176       assert(cc==HOST_CCREG);
5177       store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5178       do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
5179       assem_debug("cycle count (adj)\n");
5180       if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
5181       load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5182       if(internal)
5183         assem_debug("branch: internal\n");
5184       else
5185         assem_debug("branch: external\n");
5186       if(internal&&is_ds[(ba[i]-start)>>2]) {
5187         ds_assemble_entry(i);
5188       }
5189       else {
5190         add_to_linker((int)out,ba[i],internal);
5191         emit_jmp(0);
5192       }
5193     }
5194     // branch not taken
5195     cop1_usable=prev_cop1_usable;
5196     if(!unconditional) {
5197       if(nottaken1) set_jump_target(nottaken1,(int)out);
5198       set_jump_target(nottaken,(int)out);
5199       assem_debug("2:\n");
5200       if(!likely[i]) {
5201         wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5202                       ds_unneeded,ds_unneeded_upper);
5203         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5204         address_generation(i+1,&branch_regs[i],0);
5205         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5206         ds_assemble(i+1,&branch_regs[i]);
5207       }
5208       cc=get_reg(branch_regs[i].regmap,CCREG);
5209       if(cc==-1&&!likely[i]) {
5210         // Cycle count isn't in a register, temporarily load it then write it out
5211         emit_loadreg(CCREG,HOST_CCREG);
5212         emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),HOST_CCREG);
5213         int jaddr=(int)out;
5214         emit_jns(0);
5215         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5216         emit_storereg(CCREG,HOST_CCREG);
5217       }
5218       else{
5219         cc=get_reg(i_regmap,CCREG);
5220         assert(cc==HOST_CCREG);
5221         emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),cc);
5222         int jaddr=(int)out;
5223         emit_jns(0);
5224         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
5225       }
5226     }
5227   }
5228 }
5229
5230 void sjump_assemble(int i,struct regstat *i_regs)
5231 {
5232   signed char *i_regmap=i_regs->regmap;
5233   int cc;
5234   int match;
5235   match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5236   assem_debug("smatch=%d\n",match);
5237   int s1h,s1l;
5238   int prev_cop1_usable=cop1_usable;
5239   int unconditional=0,nevertaken=0;
5240   int only32=0;
5241   int invert=0;
5242   int internal=internal_branch(branch_regs[i].is32,ba[i]);
5243   if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5244   if(!match) invert=1;
5245   #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5246   if(i>(ba[i]-start)>>2) invert=1;
5247   #endif
5248
5249   //if(opcode2[i]>=0x10) return; // FIXME (BxxZAL)
5250   //assert(opcode2[i]<0x10||rs1[i]==0); // FIXME (BxxZAL)
5251
5252   if(ooo[i]) {
5253     s1l=get_reg(branch_regs[i].regmap,rs1[i]);
5254     s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
5255   }
5256   else {
5257     s1l=get_reg(i_regmap,rs1[i]);
5258     s1h=get_reg(i_regmap,rs1[i]|64);
5259   }
5260   if(rs1[i]==0)
5261   {
5262     if(opcode2[i]&1) unconditional=1;
5263     else nevertaken=1;
5264     // These are never taken (r0 is never less than zero)
5265     //assert(opcode2[i]!=0);
5266     //assert(opcode2[i]!=2);
5267     //assert(opcode2[i]!=0x10);
5268     //assert(opcode2[i]!=0x12);
5269   }
5270   else {
5271     only32=(regs[i].was32>>rs1[i])&1;
5272   }
5273
5274   if(ooo[i]) {
5275     // Out of order execution (delay slot first)
5276     //printf("OOOE\n");
5277     address_generation(i+1,i_regs,regs[i].regmap_entry);
5278     ds_assemble(i+1,i_regs);
5279     int adj;
5280     uint64_t bc_unneeded=branch_regs[i].u;
5281     uint64_t bc_unneeded_upper=branch_regs[i].uu;
5282     bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
5283     bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
5284     bc_unneeded|=1;
5285     bc_unneeded_upper|=1;
5286     wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5287                   bc_unneeded,bc_unneeded_upper);
5288     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs1[i]);
5289     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5290     if(rt1[i]==31) {
5291       int rt,return_address;
5292       rt=get_reg(branch_regs[i].regmap,31);
5293       assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5294       if(rt>=0) {
5295         // Save the PC even if the branch is not taken
5296         return_address=start+i*4+8;
5297         emit_movimm(return_address,rt); // PC into link register
5298         #ifdef IMM_PREFETCH
5299         if(!nevertaken) emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5300         #endif
5301       }
5302     }
5303     cc=get_reg(branch_regs[i].regmap,CCREG);
5304     assert(cc==HOST_CCREG);
5305     if(unconditional)
5306       store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5307     //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
5308     assem_debug("cycle count (adj)\n");
5309     if(unconditional) {
5310       do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5311       if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
5312         if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
5313         load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5314         if(internal)
5315           assem_debug("branch: internal\n");
5316         else
5317           assem_debug("branch: external\n");
5318         if(internal&&is_ds[(ba[i]-start)>>2]) {
5319           ds_assemble_entry(i);
5320         }
5321         else {
5322           add_to_linker((int)out,ba[i],internal);
5323           emit_jmp(0);
5324         }
5325         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5326         if(((u_int)out)&7) emit_addnop(0);
5327         #endif
5328       }
5329     }
5330     else if(nevertaken) {
5331       emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),cc);
5332       int jaddr=(int)out;
5333       emit_jns(0);
5334       add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5335     }
5336     else {
5337       int nottaken=0;
5338       do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
5339       if(adj&&!invert) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
5340       if(!only32)
5341       {
5342         assert(s1h>=0);
5343         if((opcode2[i]&0xf)==0) // BLTZ/BLTZAL
5344         {
5345           emit_test(s1h,s1h);
5346           if(invert){
5347             nottaken=(int)out;
5348             emit_jns(1);
5349           }else{
5350             add_to_linker((int)out,ba[i],internal);
5351             emit_js(0);
5352           }
5353         }
5354         if((opcode2[i]&0xf)==1) // BGEZ/BLTZAL
5355         {
5356           emit_test(s1h,s1h);
5357           if(invert){
5358             nottaken=(int)out;
5359             emit_js(1);
5360           }else{
5361             add_to_linker((int)out,ba[i],internal);
5362             emit_jns(0);
5363           }
5364         }
5365       } // if(!only32)
5366       else
5367       {
5368         assert(s1l>=0);
5369         if((opcode2[i]&0xf)==0) // BLTZ/BLTZAL
5370         {
5371           emit_test(s1l,s1l);
5372           if(invert){
5373             nottaken=(int)out;
5374             emit_jns(1);
5375           }else{
5376             add_to_linker((int)out,ba[i],internal);
5377             emit_js(0);
5378           }
5379         }
5380         if((opcode2[i]&0xf)==1) // BGEZ/BLTZAL
5381         {
5382           emit_test(s1l,s1l);
5383           if(invert){
5384             nottaken=(int)out;
5385             emit_js(1);
5386           }else{
5387             add_to_linker((int)out,ba[i],internal);
5388             emit_jns(0);
5389           }
5390         }
5391       } // if(!only32)
5392
5393       if(invert) {
5394         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5395         if(match&&(!internal||!is_ds[(ba[i]-start)>>2])) {
5396           if(adj) {
5397             emit_addimm(cc,-CLOCK_ADJUST(adj),cc);
5398             add_to_linker((int)out,ba[i],internal);
5399           }else{
5400             emit_addnop(13);
5401             add_to_linker((int)out,ba[i],internal*2);
5402           }
5403           emit_jmp(0);
5404         }else
5405         #endif
5406         {
5407           if(adj) emit_addimm(cc,-CLOCK_ADJUST(adj),cc);
5408           store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5409           load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5410           if(internal)
5411             assem_debug("branch: internal\n");
5412           else
5413             assem_debug("branch: external\n");
5414           if(internal&&is_ds[(ba[i]-start)>>2]) {
5415             ds_assemble_entry(i);
5416           }
5417           else {
5418             add_to_linker((int)out,ba[i],internal);
5419             emit_jmp(0);
5420           }
5421         }
5422         set_jump_target(nottaken,(int)out);
5423       }
5424
5425       if(adj) {
5426         if(!invert) emit_addimm(cc,CLOCK_ADJUST(adj),cc);
5427       }
5428     } // (!unconditional)
5429   } // if(ooo)
5430   else
5431   {
5432     // In-order execution (branch first)
5433     //printf("IOE\n");
5434     int nottaken=0;
5435     if(rt1[i]==31) {
5436       int rt,return_address;
5437       rt=get_reg(branch_regs[i].regmap,31);
5438       if(rt>=0) {
5439         // Save the PC even if the branch is not taken
5440         return_address=start+i*4+8;
5441         emit_movimm(return_address,rt); // PC into link register
5442         #ifdef IMM_PREFETCH
5443         emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5444         #endif
5445       }
5446     }
5447     if(!unconditional) {
5448       //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5449       if(!only32)
5450       {
5451         assert(s1h>=0);
5452         if((opcode2[i]&0x0d)==0) // BLTZ/BLTZL/BLTZAL/BLTZALL
5453         {
5454           emit_test(s1h,s1h);
5455           nottaken=(int)out;
5456           emit_jns(1);
5457         }
5458         if((opcode2[i]&0x0d)==1) // BGEZ/BGEZL/BGEZAL/BGEZALL
5459         {
5460           emit_test(s1h,s1h);
5461           nottaken=(int)out;
5462           emit_js(1);
5463         }
5464       } // if(!only32)
5465       else
5466       {
5467         assert(s1l>=0);
5468         if((opcode2[i]&0x0d)==0) // BLTZ/BLTZL/BLTZAL/BLTZALL
5469         {
5470           emit_test(s1l,s1l);
5471           nottaken=(int)out;
5472           emit_jns(1);
5473         }
5474         if((opcode2[i]&0x0d)==1) // BGEZ/BGEZL/BGEZAL/BGEZALL
5475         {
5476           emit_test(s1l,s1l);
5477           nottaken=(int)out;
5478           emit_js(1);
5479         }
5480       }
5481     } // if(!unconditional)
5482     int adj;
5483     uint64_t ds_unneeded=branch_regs[i].u;
5484     uint64_t ds_unneeded_upper=branch_regs[i].uu;
5485     ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
5486     ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
5487     if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
5488     ds_unneeded|=1;
5489     ds_unneeded_upper|=1;
5490     // branch taken
5491     if(!nevertaken) {
5492       //assem_debug("1:\n");
5493       wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5494                     ds_unneeded,ds_unneeded_upper);
5495       // load regs
5496       load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5497       address_generation(i+1,&branch_regs[i],0);
5498       load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
5499       ds_assemble(i+1,&branch_regs[i]);
5500       cc=get_reg(branch_regs[i].regmap,CCREG);
5501       if(cc==-1) {
5502         emit_loadreg(CCREG,cc=HOST_CCREG);
5503         // CHECK: Is the following instruction (fall thru) allocated ok?
5504       }
5505       assert(cc==HOST_CCREG);
5506       store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5507       do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
5508       assem_debug("cycle count (adj)\n");
5509       if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
5510       load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5511       if(internal)
5512         assem_debug("branch: internal\n");
5513       else
5514         assem_debug("branch: external\n");
5515       if(internal&&is_ds[(ba[i]-start)>>2]) {
5516         ds_assemble_entry(i);
5517       }
5518       else {
5519         add_to_linker((int)out,ba[i],internal);
5520         emit_jmp(0);
5521       }
5522     }
5523     // branch not taken
5524     cop1_usable=prev_cop1_usable;
5525     if(!unconditional) {
5526       set_jump_target(nottaken,(int)out);
5527       assem_debug("1:\n");
5528       if(!likely[i]) {
5529         wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5530                       ds_unneeded,ds_unneeded_upper);
5531         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5532         address_generation(i+1,&branch_regs[i],0);
5533         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5534         ds_assemble(i+1,&branch_regs[i]);
5535       }
5536       cc=get_reg(branch_regs[i].regmap,CCREG);
5537       if(cc==-1&&!likely[i]) {
5538         // Cycle count isn't in a register, temporarily load it then write it out
5539         emit_loadreg(CCREG,HOST_CCREG);
5540         emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),HOST_CCREG);
5541         int jaddr=(int)out;
5542         emit_jns(0);
5543         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5544         emit_storereg(CCREG,HOST_CCREG);
5545       }
5546       else{
5547         cc=get_reg(i_regmap,CCREG);
5548         assert(cc==HOST_CCREG);
5549         emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),cc);
5550         int jaddr=(int)out;
5551         emit_jns(0);
5552         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
5553       }
5554     }
5555   }
5556 }
5557
5558 void fjump_assemble(int i,struct regstat *i_regs)
5559 {
5560   signed char *i_regmap=i_regs->regmap;
5561   int cc;
5562   int match;
5563   match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5564   assem_debug("fmatch=%d\n",match);
5565   int fs,cs;
5566   int eaddr;
5567   int invert=0;
5568   int internal=internal_branch(branch_regs[i].is32,ba[i]);
5569   if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5570   if(!match) invert=1;
5571   #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5572   if(i>(ba[i]-start)>>2) invert=1;
5573   #endif
5574
5575   if(ooo[i]) {
5576     fs=get_reg(branch_regs[i].regmap,FSREG);
5577     address_generation(i+1,i_regs,regs[i].regmap_entry); // Is this okay?
5578   }
5579   else {
5580     fs=get_reg(i_regmap,FSREG);
5581   }
5582
5583   // Check cop1 unusable
5584   if(!cop1_usable) {
5585     cs=get_reg(i_regmap,CSREG);
5586     assert(cs>=0);
5587     emit_testimm(cs,0x20000000);
5588     eaddr=(int)out;
5589     emit_jeq(0);
5590     add_stub(FP_STUB,eaddr,(int)out,i,cs,(int)i_regs,0,0);
5591     cop1_usable=1;
5592   }
5593
5594   if(ooo[i]) {
5595     // Out of order execution (delay slot first)
5596     //printf("OOOE\n");
5597     ds_assemble(i+1,i_regs);
5598     int adj;
5599     uint64_t bc_unneeded=branch_regs[i].u;
5600     uint64_t bc_unneeded_upper=branch_regs[i].uu;
5601     bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
5602     bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
5603     bc_unneeded|=1;
5604     bc_unneeded_upper|=1;
5605     wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5606                   bc_unneeded,bc_unneeded_upper);
5607     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs1[i]);
5608     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5609     cc=get_reg(branch_regs[i].regmap,CCREG);
5610     assert(cc==HOST_CCREG);
5611     do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
5612     assem_debug("cycle count (adj)\n");
5613     if(1) {
5614       int nottaken=0;
5615       if(adj&&!invert) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
5616       if(1) {
5617         assert(fs>=0);
5618         emit_testimm(fs,0x800000);
5619         if(source[i]&0x10000) // BC1T
5620         {
5621           if(invert){
5622             nottaken=(int)out;
5623             emit_jeq(1);
5624           }else{
5625             add_to_linker((int)out,ba[i],internal);
5626             emit_jne(0);
5627           }
5628         }
5629         else // BC1F
5630           if(invert){
5631             nottaken=(int)out;
5632             emit_jne(1);
5633           }else{
5634             add_to_linker((int)out,ba[i],internal);
5635             emit_jeq(0);
5636           }
5637         {
5638         }
5639       } // if(!only32)
5640
5641       if(invert) {
5642         if(adj) emit_addimm(cc,-CLOCK_ADJUST(adj),cc);
5643         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5644         else if(match) emit_addnop(13);
5645         #endif
5646         store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5647         load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5648         if(internal)
5649           assem_debug("branch: internal\n");
5650         else
5651           assem_debug("branch: external\n");
5652         if(internal&&is_ds[(ba[i]-start)>>2]) {
5653           ds_assemble_entry(i);
5654         }
5655         else {
5656           add_to_linker((int)out,ba[i],internal);
5657           emit_jmp(0);
5658         }
5659         set_jump_target(nottaken,(int)out);
5660       }
5661
5662       if(adj) {
5663         if(!invert) emit_addimm(cc,CLOCK_ADJUST(adj),cc);
5664       }
5665     } // (!unconditional)
5666   } // if(ooo)
5667   else
5668   {
5669     // In-order execution (branch first)
5670     //printf("IOE\n");
5671     int nottaken=0;
5672     if(1) {
5673       //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5674       if(1) {
5675         assert(fs>=0);
5676         emit_testimm(fs,0x800000);
5677         if(source[i]&0x10000) // BC1T
5678         {
5679           nottaken=(int)out;
5680           emit_jeq(1);
5681         }
5682         else // BC1F
5683         {
5684           nottaken=(int)out;
5685           emit_jne(1);
5686         }
5687       }
5688     } // if(!unconditional)
5689     int adj;
5690     uint64_t ds_unneeded=branch_regs[i].u;
5691     uint64_t ds_unneeded_upper=branch_regs[i].uu;
5692     ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
5693     ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
5694     if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
5695     ds_unneeded|=1;
5696     ds_unneeded_upper|=1;
5697     // branch taken
5698     //assem_debug("1:\n");
5699     wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5700                   ds_unneeded,ds_unneeded_upper);
5701     // load regs
5702     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5703     address_generation(i+1,&branch_regs[i],0);
5704     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
5705     ds_assemble(i+1,&branch_regs[i]);
5706     cc=get_reg(branch_regs[i].regmap,CCREG);
5707     if(cc==-1) {
5708       emit_loadreg(CCREG,cc=HOST_CCREG);
5709       // CHECK: Is the following instruction (fall thru) allocated ok?
5710     }
5711     assert(cc==HOST_CCREG);
5712     store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5713     do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
5714     assem_debug("cycle count (adj)\n");
5715     if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
5716     load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5717     if(internal)
5718       assem_debug("branch: internal\n");
5719     else
5720       assem_debug("branch: external\n");
5721     if(internal&&is_ds[(ba[i]-start)>>2]) {
5722       ds_assemble_entry(i);
5723     }
5724     else {
5725       add_to_linker((int)out,ba[i],internal);
5726       emit_jmp(0);
5727     }
5728
5729     // branch not taken
5730     if(1) { // <- FIXME (don't need this)
5731       set_jump_target(nottaken,(int)out);
5732       assem_debug("1:\n");
5733       if(!likely[i]) {
5734         wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5735                       ds_unneeded,ds_unneeded_upper);
5736         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5737         address_generation(i+1,&branch_regs[i],0);
5738         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5739         ds_assemble(i+1,&branch_regs[i]);
5740       }
5741       cc=get_reg(branch_regs[i].regmap,CCREG);
5742       if(cc==-1&&!likely[i]) {
5743         // Cycle count isn't in a register, temporarily load it then write it out
5744         emit_loadreg(CCREG,HOST_CCREG);
5745         emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),HOST_CCREG);
5746         int jaddr=(int)out;
5747         emit_jns(0);
5748         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5749         emit_storereg(CCREG,HOST_CCREG);
5750       }
5751       else{
5752         cc=get_reg(i_regmap,CCREG);
5753         assert(cc==HOST_CCREG);
5754         emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),cc);
5755         int jaddr=(int)out;
5756         emit_jns(0);
5757         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
5758       }
5759     }
5760   }
5761 }
5762
5763 static void pagespan_assemble(int i,struct regstat *i_regs)
5764 {
5765   int s1l=get_reg(i_regs->regmap,rs1[i]);
5766   int s1h=get_reg(i_regs->regmap,rs1[i]|64);
5767   int s2l=get_reg(i_regs->regmap,rs2[i]);
5768   int s2h=get_reg(i_regs->regmap,rs2[i]|64);
5769   int taken=0;
5770   int nottaken=0;
5771   int unconditional=0;
5772   if(rs1[i]==0)
5773   {
5774     s1l=s2l;s1h=s2h;
5775     s2l=s2h=-1;
5776   }
5777   else if(rs2[i]==0)
5778   {
5779     s2l=s2h=-1;
5780   }
5781   if((i_regs->is32>>rs1[i])&(i_regs->is32>>rs2[i])&1) {
5782     s1h=s2h=-1;
5783   }
5784   int hr=0;
5785   int addr=-1,alt=-1,ntaddr=-1;
5786   if(i_regs->regmap[HOST_BTREG]<0) {addr=HOST_BTREG;}
5787   else {
5788     while(hr<HOST_REGS)
5789     {
5790       if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
5791          (i_regs->regmap[hr]&63)!=rs1[i] &&
5792          (i_regs->regmap[hr]&63)!=rs2[i] )
5793       {
5794         addr=hr++;break;
5795       }
5796       hr++;
5797     }
5798   }
5799   while(hr<HOST_REGS)
5800   {
5801     if(hr!=EXCLUDE_REG && hr!=HOST_CCREG && hr!=HOST_BTREG &&
5802        (i_regs->regmap[hr]&63)!=rs1[i] &&
5803        (i_regs->regmap[hr]&63)!=rs2[i] )
5804     {
5805       alt=hr++;break;
5806     }
5807     hr++;
5808   }
5809   if((opcode[i]&0x2E)==6) // BLEZ/BGTZ needs another register
5810   {
5811     while(hr<HOST_REGS)
5812     {
5813       if(hr!=EXCLUDE_REG && hr!=HOST_CCREG && hr!=HOST_BTREG &&
5814          (i_regs->regmap[hr]&63)!=rs1[i] &&
5815          (i_regs->regmap[hr]&63)!=rs2[i] )
5816       {
5817         ntaddr=hr;break;
5818       }
5819       hr++;
5820     }
5821   }
5822   assert(hr<HOST_REGS);
5823   if((opcode[i]&0x2e)==4||opcode[i]==0x11) { // BEQ/BNE/BEQL/BNEL/BC1
5824     load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,CCREG,CCREG);
5825   }
5826   emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i]+2),HOST_CCREG);
5827   if(opcode[i]==2) // J
5828   {
5829     unconditional=1;
5830   }
5831   if(opcode[i]==3) // JAL
5832   {
5833     // TODO: mini_ht
5834     int rt=get_reg(i_regs->regmap,31);
5835     emit_movimm(start+i*4+8,rt);
5836     unconditional=1;
5837   }
5838   if(opcode[i]==0&&(opcode2[i]&0x3E)==8) // JR/JALR
5839   {
5840     emit_mov(s1l,addr);
5841     if(opcode2[i]==9) // JALR
5842     {
5843       int rt=get_reg(i_regs->regmap,rt1[i]);
5844       emit_movimm(start+i*4+8,rt);
5845     }
5846   }
5847   if((opcode[i]&0x3f)==4) // BEQ
5848   {
5849     if(rs1[i]==rs2[i])
5850     {
5851       unconditional=1;
5852     }
5853     else
5854     #ifdef HAVE_CMOV_IMM
5855     if(s1h<0) {
5856       if(s2l>=0) emit_cmp(s1l,s2l);
5857       else emit_test(s1l,s1l);
5858       emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
5859     }
5860     else
5861     #endif
5862     {
5863       assert(s1l>=0);
5864       emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
5865       if(s1h>=0) {
5866         if(s2h>=0) emit_cmp(s1h,s2h);
5867         else emit_test(s1h,s1h);
5868         emit_cmovne_reg(alt,addr);
5869       }
5870       if(s2l>=0) emit_cmp(s1l,s2l);
5871       else emit_test(s1l,s1l);
5872       emit_cmovne_reg(alt,addr);
5873     }
5874   }
5875   if((opcode[i]&0x3f)==5) // BNE
5876   {
5877     #ifdef HAVE_CMOV_IMM
5878     if(s1h<0) {
5879       if(s2l>=0) emit_cmp(s1l,s2l);
5880       else emit_test(s1l,s1l);
5881       emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
5882     }
5883     else
5884     #endif
5885     {
5886       assert(s1l>=0);
5887       emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
5888       if(s1h>=0) {
5889         if(s2h>=0) emit_cmp(s1h,s2h);
5890         else emit_test(s1h,s1h);
5891         emit_cmovne_reg(alt,addr);
5892       }
5893       if(s2l>=0) emit_cmp(s1l,s2l);
5894       else emit_test(s1l,s1l);
5895       emit_cmovne_reg(alt,addr);
5896     }
5897   }
5898   if((opcode[i]&0x3f)==0x14) // BEQL
5899   {
5900     if(s1h>=0) {
5901       if(s2h>=0) emit_cmp(s1h,s2h);
5902       else emit_test(s1h,s1h);
5903       nottaken=(int)out;
5904       emit_jne(0);
5905     }
5906     if(s2l>=0) emit_cmp(s1l,s2l);
5907     else emit_test(s1l,s1l);
5908     if(nottaken) set_jump_target(nottaken,(int)out);
5909     nottaken=(int)out;
5910     emit_jne(0);
5911   }
5912   if((opcode[i]&0x3f)==0x15) // BNEL
5913   {
5914     if(s1h>=0) {
5915       if(s2h>=0) emit_cmp(s1h,s2h);
5916       else emit_test(s1h,s1h);
5917       taken=(int)out;
5918       emit_jne(0);
5919     }
5920     if(s2l>=0) emit_cmp(s1l,s2l);
5921     else emit_test(s1l,s1l);
5922     nottaken=(int)out;
5923     emit_jeq(0);
5924     if(taken) set_jump_target(taken,(int)out);
5925   }
5926   if((opcode[i]&0x3f)==6) // BLEZ
5927   {
5928     emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
5929     emit_cmpimm(s1l,1);
5930     if(s1h>=0) emit_mov(addr,ntaddr);
5931     emit_cmovl_reg(alt,addr);
5932     if(s1h>=0) {
5933       emit_test(s1h,s1h);
5934       emit_cmovne_reg(ntaddr,addr);
5935       emit_cmovs_reg(alt,addr);
5936     }
5937   }
5938   if((opcode[i]&0x3f)==7) // BGTZ
5939   {
5940     emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
5941     emit_cmpimm(s1l,1);
5942     if(s1h>=0) emit_mov(addr,alt);
5943     emit_cmovl_reg(ntaddr,addr);
5944     if(s1h>=0) {
5945       emit_test(s1h,s1h);
5946       emit_cmovne_reg(alt,addr);
5947       emit_cmovs_reg(ntaddr,addr);
5948     }
5949   }
5950   if((opcode[i]&0x3f)==0x16) // BLEZL
5951   {
5952     assert((opcode[i]&0x3f)!=0x16);
5953   }
5954   if((opcode[i]&0x3f)==0x17) // BGTZL
5955   {
5956     assert((opcode[i]&0x3f)!=0x17);
5957   }
5958   assert(opcode[i]!=1); // BLTZ/BGEZ
5959
5960   //FIXME: Check CSREG
5961   if(opcode[i]==0x11 && opcode2[i]==0x08 ) {
5962     if((source[i]&0x30000)==0) // BC1F
5963     {
5964       emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
5965       emit_testimm(s1l,0x800000);
5966       emit_cmovne_reg(alt,addr);
5967     }
5968     if((source[i]&0x30000)==0x10000) // BC1T
5969     {
5970       emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
5971       emit_testimm(s1l,0x800000);
5972       emit_cmovne_reg(alt,addr);
5973     }
5974     if((source[i]&0x30000)==0x20000) // BC1FL
5975     {
5976       emit_testimm(s1l,0x800000);
5977       nottaken=(int)out;
5978       emit_jne(0);
5979     }
5980     if((source[i]&0x30000)==0x30000) // BC1TL
5981     {
5982       emit_testimm(s1l,0x800000);
5983       nottaken=(int)out;
5984       emit_jeq(0);
5985     }
5986   }
5987
5988   assert(i_regs->regmap[HOST_CCREG]==CCREG);
5989   wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
5990   if(likely[i]||unconditional)
5991   {
5992     emit_movimm(ba[i],HOST_BTREG);
5993   }
5994   else if(addr!=HOST_BTREG)
5995   {
5996     emit_mov(addr,HOST_BTREG);
5997   }
5998   void *branch_addr=out;
5999   emit_jmp(0);
6000   int target_addr=start+i*4+5;
6001   void *stub=out;
6002   void *compiled_target_addr=check_addr(target_addr);
6003   emit_extjump_ds((int)branch_addr,target_addr);
6004   if(compiled_target_addr) {
6005     set_jump_target((int)branch_addr,(int)compiled_target_addr);
6006     add_link(target_addr,stub);
6007   }
6008   else set_jump_target((int)branch_addr,(int)stub);
6009   if(likely[i]) {
6010     // Not-taken path
6011     set_jump_target((int)nottaken,(int)out);
6012     wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
6013     void *branch_addr=out;
6014     emit_jmp(0);
6015     int target_addr=start+i*4+8;
6016     void *stub=out;
6017     void *compiled_target_addr=check_addr(target_addr);
6018     emit_extjump_ds((int)branch_addr,target_addr);
6019     if(compiled_target_addr) {
6020       set_jump_target((int)branch_addr,(int)compiled_target_addr);
6021       add_link(target_addr,stub);
6022     }
6023     else set_jump_target((int)branch_addr,(int)stub);
6024   }
6025 }
6026
6027 // Assemble the delay slot for the above
6028 static void pagespan_ds()
6029 {
6030   assem_debug("initial delay slot:\n");
6031   u_int vaddr=start+1;
6032   u_int page=get_page(vaddr);
6033   u_int vpage=get_vpage(vaddr);
6034   ll_add(jump_dirty+vpage,vaddr,(void *)out);
6035   do_dirty_stub_ds();
6036   ll_add(jump_in+page,vaddr,(void *)out);
6037   assert(regs[0].regmap_entry[HOST_CCREG]==CCREG);
6038   if(regs[0].regmap[HOST_CCREG]!=CCREG)
6039     wb_register(CCREG,regs[0].regmap_entry,regs[0].wasdirty,regs[0].was32);
6040   if(regs[0].regmap[HOST_BTREG]!=BTREG)
6041     emit_writeword(HOST_BTREG,(int)&branch_target);
6042   load_regs(regs[0].regmap_entry,regs[0].regmap,regs[0].was32,rs1[0],rs2[0]);
6043   address_generation(0,&regs[0],regs[0].regmap_entry);
6044   if(itype[0]==STORE||itype[0]==STORELR||(opcode[0]&0x3b)==0x39||(opcode[0]&0x3b)==0x3a)
6045     load_regs(regs[0].regmap_entry,regs[0].regmap,regs[0].was32,INVCP,INVCP);
6046   cop1_usable=0;
6047   is_delayslot=0;
6048   switch(itype[0]) {
6049     case ALU:
6050       alu_assemble(0,&regs[0]);break;
6051     case IMM16:
6052       imm16_assemble(0,&regs[0]);break;
6053     case SHIFT:
6054       shift_assemble(0,&regs[0]);break;
6055     case SHIFTIMM:
6056       shiftimm_assemble(0,&regs[0]);break;
6057     case LOAD:
6058       load_assemble(0,&regs[0]);break;
6059     case LOADLR:
6060       loadlr_assemble(0,&regs[0]);break;
6061     case STORE:
6062       store_assemble(0,&regs[0]);break;
6063     case STORELR:
6064       storelr_assemble(0,&regs[0]);break;
6065     case COP0:
6066       cop0_assemble(0,&regs[0]);break;
6067     case COP1:
6068       cop1_assemble(0,&regs[0]);break;
6069     case C1LS:
6070       c1ls_assemble(0,&regs[0]);break;
6071     case COP2:
6072       cop2_assemble(0,&regs[0]);break;
6073     case C2LS:
6074       c2ls_assemble(0,&regs[0]);break;
6075     case C2OP:
6076       c2op_assemble(0,&regs[0]);break;
6077     case FCONV:
6078       fconv_assemble(0,&regs[0]);break;
6079     case FLOAT:
6080       float_assemble(0,&regs[0]);break;
6081     case FCOMP:
6082       fcomp_assemble(0,&regs[0]);break;
6083     case MULTDIV:
6084       multdiv_assemble(0,&regs[0]);break;
6085     case MOV:
6086       mov_assemble(0,&regs[0]);break;
6087     case SYSCALL:
6088     case HLECALL:
6089     case INTCALL:
6090     case SPAN:
6091     case UJUMP:
6092     case RJUMP:
6093     case CJUMP:
6094     case SJUMP:
6095     case FJUMP:
6096       SysPrintf("Jump in the delay slot.  This is probably a bug.\n");
6097   }
6098   int btaddr=get_reg(regs[0].regmap,BTREG);
6099   if(btaddr<0) {
6100     btaddr=get_reg(regs[0].regmap,-1);
6101     emit_readword((int)&branch_target,btaddr);
6102   }
6103   assert(btaddr!=HOST_CCREG);
6104   if(regs[0].regmap[HOST_CCREG]!=CCREG) emit_loadreg(CCREG,HOST_CCREG);
6105 #ifdef HOST_IMM8
6106   emit_movimm(start+4,HOST_TEMPREG);
6107   emit_cmp(btaddr,HOST_TEMPREG);
6108 #else
6109   emit_cmpimm(btaddr,start+4);
6110 #endif
6111   int branch=(int)out;
6112   emit_jeq(0);
6113   store_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,-1);
6114   emit_jmp(jump_vaddr_reg[btaddr]);
6115   set_jump_target(branch,(int)out);
6116   store_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,start+4);
6117   load_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,start+4);
6118 }
6119
6120 // Basic liveness analysis for MIPS registers
6121 void unneeded_registers(int istart,int iend,int r)
6122 {
6123   int i;
6124   uint64_t u,uu,gte_u,b,bu,gte_bu;
6125   uint64_t temp_u,temp_uu,temp_gte_u=0;
6126   uint64_t tdep;
6127   uint64_t gte_u_unknown=0;
6128   if(new_dynarec_hacks&NDHACK_GTE_UNNEEDED)
6129     gte_u_unknown=~0ll;
6130   if(iend==slen-1) {
6131     u=1;uu=1;
6132     gte_u=gte_u_unknown;
6133   }else{
6134     u=unneeded_reg[iend+1];
6135     uu=unneeded_reg_upper[iend+1];
6136     u=1;uu=1;
6137     gte_u=gte_unneeded[iend+1];
6138   }
6139
6140   for (i=iend;i>=istart;i--)
6141   {
6142     //printf("unneeded registers i=%d (%d,%d) r=%d\n",i,istart,iend,r);
6143     if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
6144     {
6145       // If subroutine call, flag return address as a possible branch target
6146       if(rt1[i]==31 && i<slen-2) bt[i+2]=1;
6147
6148       if(ba[i]<start || ba[i]>=(start+slen*4))
6149       {
6150         // Branch out of this block, flush all regs
6151         u=1;
6152         uu=1;
6153         gte_u=gte_u_unknown;
6154         /* Hexagon hack
6155         if(itype[i]==UJUMP&&rt1[i]==31)
6156         {
6157           uu=u=0x300C00F; // Discard at, v0-v1, t6-t9
6158         }
6159         if(itype[i]==RJUMP&&rs1[i]==31)
6160         {
6161           uu=u=0x300C0F3; // Discard at, a0-a3, t6-t9
6162         }
6163         if(start>0x80000400&&start<0x80000000+RAM_SIZE) {
6164           if(itype[i]==UJUMP&&rt1[i]==31)
6165           {
6166             //uu=u=0x30300FF0FLL; // Discard at, v0-v1, t0-t9, lo, hi
6167             uu=u=0x300FF0F; // Discard at, v0-v1, t0-t9
6168           }
6169           if(itype[i]==RJUMP&&rs1[i]==31)
6170           {
6171             //uu=u=0x30300FFF3LL; // Discard at, a0-a3, t0-t9, lo, hi
6172             uu=u=0x300FFF3; // Discard at, a0-a3, t0-t9
6173           }
6174         }*/
6175         branch_unneeded_reg[i]=u;
6176         branch_unneeded_reg_upper[i]=uu;
6177         // Merge in delay slot
6178         tdep=(~uu>>rt1[i+1])&1;
6179         u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6180         uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6181         u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6182         uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6183         uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6184         u|=1;uu|=1;
6185         gte_u|=gte_rt[i+1];
6186         gte_u&=~gte_rs[i+1];
6187         // If branch is "likely" (and conditional)
6188         // then we skip the delay slot on the fall-thru path
6189         if(likely[i]) {
6190           if(i<slen-1) {
6191             u&=unneeded_reg[i+2];
6192             uu&=unneeded_reg_upper[i+2];
6193             gte_u&=gte_unneeded[i+2];
6194           }
6195           else
6196           {
6197             u=1;
6198             uu=1;
6199             gte_u=gte_u_unknown;
6200           }
6201         }
6202       }
6203       else
6204       {
6205         // Internal branch, flag target
6206         bt[(ba[i]-start)>>2]=1;
6207         if(ba[i]<=start+i*4) {
6208           // Backward branch
6209           if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
6210           {
6211             // Unconditional branch
6212             temp_u=1;temp_uu=1;
6213             temp_gte_u=0;
6214           } else {
6215             // Conditional branch (not taken case)
6216             temp_u=unneeded_reg[i+2];
6217             temp_uu=unneeded_reg_upper[i+2];
6218             temp_gte_u&=gte_unneeded[i+2];
6219           }
6220           // Merge in delay slot
6221           tdep=(~temp_uu>>rt1[i+1])&1;
6222           temp_u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6223           temp_uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6224           temp_u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6225           temp_uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6226           temp_uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6227           temp_u|=1;temp_uu|=1;
6228           temp_gte_u|=gte_rt[i+1];
6229           temp_gte_u&=~gte_rs[i+1];
6230           // If branch is "likely" (and conditional)
6231           // then we skip the delay slot on the fall-thru path
6232           if(likely[i]) {
6233             if(i<slen-1) {
6234               temp_u&=unneeded_reg[i+2];
6235               temp_uu&=unneeded_reg_upper[i+2];
6236               temp_gte_u&=gte_unneeded[i+2];
6237             }
6238             else
6239             {
6240               temp_u=1;
6241               temp_uu=1;
6242               temp_gte_u=gte_u_unknown;
6243             }
6244           }
6245           tdep=(~temp_uu>>rt1[i])&1;
6246           temp_u|=(1LL<<rt1[i])|(1LL<<rt2[i]);
6247           temp_uu|=(1LL<<rt1[i])|(1LL<<rt2[i]);
6248           temp_u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
6249           temp_uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
6250           temp_uu&=~((tdep<<dep1[i])|(tdep<<dep2[i]));
6251           temp_u|=1;temp_uu|=1;
6252           temp_gte_u|=gte_rt[i];
6253           temp_gte_u&=~gte_rs[i];
6254           unneeded_reg[i]=temp_u;
6255           unneeded_reg_upper[i]=temp_uu;
6256           gte_unneeded[i]=temp_gte_u;
6257           // Only go three levels deep.  This recursion can take an
6258           // excessive amount of time if there are a lot of nested loops.
6259           if(r<2) {
6260             unneeded_registers((ba[i]-start)>>2,i-1,r+1);
6261           }else{
6262             unneeded_reg[(ba[i]-start)>>2]=1;
6263             unneeded_reg_upper[(ba[i]-start)>>2]=1;
6264             gte_unneeded[(ba[i]-start)>>2]=gte_u_unknown;
6265           }
6266         } /*else*/ if(1) {
6267           if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
6268           {
6269             // Unconditional branch
6270             u=unneeded_reg[(ba[i]-start)>>2];
6271             uu=unneeded_reg_upper[(ba[i]-start)>>2];
6272             gte_u=gte_unneeded[(ba[i]-start)>>2];
6273             branch_unneeded_reg[i]=u;
6274             branch_unneeded_reg_upper[i]=uu;
6275         //u=1;
6276         //uu=1;
6277         //branch_unneeded_reg[i]=u;
6278         //branch_unneeded_reg_upper[i]=uu;
6279             // Merge in delay slot
6280             tdep=(~uu>>rt1[i+1])&1;
6281             u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6282             uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6283             u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6284             uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6285             uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6286             u|=1;uu|=1;
6287             gte_u|=gte_rt[i+1];
6288             gte_u&=~gte_rs[i+1];
6289           } else {
6290             // Conditional branch
6291             b=unneeded_reg[(ba[i]-start)>>2];
6292             bu=unneeded_reg_upper[(ba[i]-start)>>2];
6293             gte_bu=gte_unneeded[(ba[i]-start)>>2];
6294             branch_unneeded_reg[i]=b;
6295             branch_unneeded_reg_upper[i]=bu;
6296         //b=1;
6297         //bu=1;
6298         //branch_unneeded_reg[i]=b;
6299         //branch_unneeded_reg_upper[i]=bu;
6300             // Branch delay slot
6301             tdep=(~uu>>rt1[i+1])&1;
6302             b|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6303             bu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6304             b&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6305             bu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6306             bu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6307             b|=1;bu|=1;
6308             gte_bu|=gte_rt[i+1];
6309             gte_bu&=~gte_rs[i+1];
6310             // If branch is "likely" then we skip the
6311             // delay slot on the fall-thru path
6312             if(likely[i]) {
6313               u=b;
6314               uu=bu;
6315               gte_u=gte_bu;
6316               if(i<slen-1) {
6317                 u&=unneeded_reg[i+2];
6318                 uu&=unneeded_reg_upper[i+2];
6319                 gte_u&=gte_unneeded[i+2];
6320         //u=1;
6321         //uu=1;
6322               }
6323             } else {
6324               u&=b;
6325               uu&=bu;
6326               gte_u&=gte_bu;
6327         //u=1;
6328         //uu=1;
6329             }
6330             if(i<slen-1) {
6331               branch_unneeded_reg[i]&=unneeded_reg[i+2];
6332               branch_unneeded_reg_upper[i]&=unneeded_reg_upper[i+2];
6333         //branch_unneeded_reg[i]=1;
6334         //branch_unneeded_reg_upper[i]=1;
6335             } else {
6336               branch_unneeded_reg[i]=1;
6337               branch_unneeded_reg_upper[i]=1;
6338             }
6339           }
6340         }
6341       }
6342     }
6343     else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
6344     {
6345       // SYSCALL instruction (software interrupt)
6346       u=1;
6347       uu=1;
6348     }
6349     else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
6350     {
6351       // ERET instruction (return from interrupt)
6352       u=1;
6353       uu=1;
6354     }
6355     //u=uu=1; // DEBUG
6356     tdep=(~uu>>rt1[i])&1;
6357     // Written registers are unneeded
6358     u|=1LL<<rt1[i];
6359     u|=1LL<<rt2[i];
6360     uu|=1LL<<rt1[i];
6361     uu|=1LL<<rt2[i];
6362     gte_u|=gte_rt[i];
6363     // Accessed registers are needed
6364     u&=~(1LL<<rs1[i]);
6365     u&=~(1LL<<rs2[i]);
6366     uu&=~(1LL<<us1[i]);
6367     uu&=~(1LL<<us2[i]);
6368     gte_u&=~gte_rs[i];
6369     if(gte_rs[i]&&rt1[i]&&(unneeded_reg[i+1]&(1ll<<rt1[i])))
6370       gte_u|=gte_rs[i]&gte_unneeded[i+1]; // MFC2/CFC2 to dead register, unneeded
6371     // Source-target dependencies
6372     uu&=~(tdep<<dep1[i]);
6373     uu&=~(tdep<<dep2[i]);
6374     // R0 is always unneeded
6375     u|=1;uu|=1;
6376     // Save it
6377     unneeded_reg[i]=u;
6378     unneeded_reg_upper[i]=uu;
6379     gte_unneeded[i]=gte_u;
6380     /*
6381     printf("ur (%d,%d) %x: ",istart,iend,start+i*4);
6382     printf("U:");
6383     int r;
6384     for(r=1;r<=CCREG;r++) {
6385       if((unneeded_reg[i]>>r)&1) {
6386         if(r==HIREG) printf(" HI");
6387         else if(r==LOREG) printf(" LO");
6388         else printf(" r%d",r);
6389       }
6390     }
6391     printf(" UU:");
6392     for(r=1;r<=CCREG;r++) {
6393       if(((unneeded_reg_upper[i]&~unneeded_reg[i])>>r)&1) {
6394         if(r==HIREG) printf(" HI");
6395         else if(r==LOREG) printf(" LO");
6396         else printf(" r%d",r);
6397       }
6398     }
6399     printf("\n");*/
6400   }
6401   for (i=iend;i>=istart;i--)
6402   {
6403     unneeded_reg_upper[i]=branch_unneeded_reg_upper[i]=-1LL;
6404   }
6405 }
6406
6407 // Write back dirty registers as soon as we will no longer modify them,
6408 // so that we don't end up with lots of writes at the branches.
6409 void clean_registers(int istart,int iend,int wr)
6410 {
6411   int i;
6412   int r;
6413   u_int will_dirty_i,will_dirty_next,temp_will_dirty;
6414   u_int wont_dirty_i,wont_dirty_next,temp_wont_dirty;
6415   if(iend==slen-1) {
6416     will_dirty_i=will_dirty_next=0;
6417     wont_dirty_i=wont_dirty_next=0;
6418   }else{
6419     will_dirty_i=will_dirty_next=will_dirty[iend+1];
6420     wont_dirty_i=wont_dirty_next=wont_dirty[iend+1];
6421   }
6422   for (i=iend;i>=istart;i--)
6423   {
6424     if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
6425     {
6426       if(ba[i]<start || ba[i]>=(start+slen*4))
6427       {
6428         // Branch out of this block, flush all regs
6429         if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
6430         {
6431           // Unconditional branch
6432           will_dirty_i=0;
6433           wont_dirty_i=0;
6434           // Merge in delay slot (will dirty)
6435           for(r=0;r<HOST_REGS;r++) {
6436             if(r!=EXCLUDE_REG) {
6437               if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
6438               if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
6439               if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
6440               if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
6441               if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6442               if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6443               if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6444               if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
6445               if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
6446               if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
6447               if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
6448               if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6449               if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6450               if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6451             }
6452           }
6453         }
6454         else
6455         {
6456           // Conditional branch
6457           will_dirty_i=0;
6458           wont_dirty_i=wont_dirty_next;
6459           // Merge in delay slot (will dirty)
6460           for(r=0;r<HOST_REGS;r++) {
6461             if(r!=EXCLUDE_REG) {
6462               if(!likely[i]) {
6463                 // Might not dirty if likely branch is not taken
6464                 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
6465                 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
6466                 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
6467                 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
6468                 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6469                 if(branch_regs[i].regmap[r]==0) will_dirty_i&=~(1<<r);
6470                 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6471                 //if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
6472                 //if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
6473                 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
6474                 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
6475                 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6476                 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6477                 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6478               }
6479             }
6480           }
6481         }
6482         // Merge in delay slot (wont dirty)
6483         for(r=0;r<HOST_REGS;r++) {
6484           if(r!=EXCLUDE_REG) {
6485             if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
6486             if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
6487             if((regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
6488             if((regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
6489             if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
6490             if((branch_regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
6491             if((branch_regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
6492             if((branch_regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
6493             if((branch_regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
6494             if(branch_regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
6495           }
6496         }
6497         if(wr) {
6498           #ifndef DESTRUCTIVE_WRITEBACK
6499           branch_regs[i].dirty&=wont_dirty_i;
6500           #endif
6501           branch_regs[i].dirty|=will_dirty_i;
6502         }
6503       }
6504       else
6505       {
6506         // Internal branch
6507         if(ba[i]<=start+i*4) {
6508           // Backward branch
6509           if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
6510           {
6511             // Unconditional branch
6512             temp_will_dirty=0;
6513             temp_wont_dirty=0;
6514             // Merge in delay slot (will dirty)
6515             for(r=0;r<HOST_REGS;r++) {
6516               if(r!=EXCLUDE_REG) {
6517                 if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
6518                 if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
6519                 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
6520                 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
6521                 if((branch_regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
6522                 if(branch_regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
6523                 if(branch_regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
6524                 if((regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
6525                 if((regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
6526                 if((regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
6527                 if((regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
6528                 if((regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
6529                 if(regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
6530                 if(regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
6531               }
6532             }
6533           } else {
6534             // Conditional branch (not taken case)
6535             temp_will_dirty=will_dirty_next;
6536             temp_wont_dirty=wont_dirty_next;
6537             // Merge in delay slot (will dirty)
6538             for(r=0;r<HOST_REGS;r++) {
6539               if(r!=EXCLUDE_REG) {
6540                 if(!likely[i]) {
6541                   // Will not dirty if likely branch is not taken
6542                   if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
6543                   if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
6544                   if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
6545                   if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
6546                   if((branch_regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
6547                   if(branch_regs[i].regmap[r]==0) temp_will_dirty&=~(1<<r);
6548                   if(branch_regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
6549                   //if((regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
6550                   //if((regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
6551                   if((regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
6552                   if((regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
6553                   if((regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
6554                   if(regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
6555                   if(regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
6556                 }
6557               }
6558             }
6559           }
6560           // Merge in delay slot (wont dirty)
6561           for(r=0;r<HOST_REGS;r++) {
6562             if(r!=EXCLUDE_REG) {
6563               if((regs[i].regmap[r]&63)==rt1[i]) temp_wont_dirty|=1<<r;
6564               if((regs[i].regmap[r]&63)==rt2[i]) temp_wont_dirty|=1<<r;
6565               if((regs[i].regmap[r]&63)==rt1[i+1]) temp_wont_dirty|=1<<r;
6566               if((regs[i].regmap[r]&63)==rt2[i+1]) temp_wont_dirty|=1<<r;
6567               if(regs[i].regmap[r]==CCREG) temp_wont_dirty|=1<<r;
6568               if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_wont_dirty|=1<<r;
6569               if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_wont_dirty|=1<<r;
6570               if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_wont_dirty|=1<<r;
6571               if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_wont_dirty|=1<<r;
6572               if(branch_regs[i].regmap[r]==CCREG) temp_wont_dirty|=1<<r;
6573             }
6574           }
6575           // Deal with changed mappings
6576           if(i<iend) {
6577             for(r=0;r<HOST_REGS;r++) {
6578               if(r!=EXCLUDE_REG) {
6579                 if(regs[i].regmap[r]!=regmap_pre[i][r]) {
6580                   temp_will_dirty&=~(1<<r);
6581                   temp_wont_dirty&=~(1<<r);
6582                   if((regmap_pre[i][r]&63)>0 && (regmap_pre[i][r]&63)<34) {
6583                     temp_will_dirty|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
6584                     temp_wont_dirty|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
6585                   } else {
6586                     temp_will_dirty|=1<<r;
6587                     temp_wont_dirty|=1<<r;
6588                   }
6589                 }
6590               }
6591             }
6592           }
6593           if(wr) {
6594             will_dirty[i]=temp_will_dirty;
6595             wont_dirty[i]=temp_wont_dirty;
6596             clean_registers((ba[i]-start)>>2,i-1,0);
6597           }else{
6598             // Limit recursion.  It can take an excessive amount
6599             // of time if there are a lot of nested loops.
6600             will_dirty[(ba[i]-start)>>2]=0;
6601             wont_dirty[(ba[i]-start)>>2]=-1;
6602           }
6603         }
6604         /*else*/ if(1)
6605         {
6606           if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
6607           {
6608             // Unconditional branch
6609             will_dirty_i=0;
6610             wont_dirty_i=0;
6611           //if(ba[i]>start+i*4) { // Disable recursion (for debugging)
6612             for(r=0;r<HOST_REGS;r++) {
6613               if(r!=EXCLUDE_REG) {
6614                 if(branch_regs[i].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
6615                   will_dirty_i|=will_dirty[(ba[i]-start)>>2]&(1<<r);
6616                   wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
6617                 }
6618                 if(branch_regs[i].regmap[r]>=0) {
6619                   will_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>(branch_regs[i].regmap[r]&63))&1)<<r;
6620                   wont_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>(branch_regs[i].regmap[r]&63))&1)<<r;
6621                 }
6622               }
6623             }
6624           //}
6625             // Merge in delay slot
6626             for(r=0;r<HOST_REGS;r++) {
6627               if(r!=EXCLUDE_REG) {
6628                 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
6629                 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
6630                 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
6631                 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
6632                 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6633                 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6634                 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6635                 if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
6636                 if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
6637                 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
6638                 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
6639                 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6640                 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6641                 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6642               }
6643             }
6644           } else {
6645             // Conditional branch
6646             will_dirty_i=will_dirty_next;
6647             wont_dirty_i=wont_dirty_next;
6648           //if(ba[i]>start+i*4) { // Disable recursion (for debugging)
6649             for(r=0;r<HOST_REGS;r++) {
6650               if(r!=EXCLUDE_REG) {
6651                 signed char target_reg=branch_regs[i].regmap[r];
6652                 if(target_reg==regs[(ba[i]-start)>>2].regmap_entry[r]) {
6653                   will_dirty_i&=will_dirty[(ba[i]-start)>>2]&(1<<r);
6654                   wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
6655                 }
6656                 else if(target_reg>=0) {
6657                   will_dirty_i&=((unneeded_reg[(ba[i]-start)>>2]>>(target_reg&63))&1)<<r;
6658                   wont_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>(target_reg&63))&1)<<r;
6659                 }
6660                 // Treat delay slot as part of branch too
6661                 /*if(regs[i+1].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
6662                   will_dirty[i+1]&=will_dirty[(ba[i]-start)>>2]&(1<<r);
6663                   wont_dirty[i+1]|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
6664                 }
6665                 else
6666                 {
6667                   will_dirty[i+1]&=~(1<<r);
6668                 }*/
6669               }
6670             }
6671           //}
6672             // Merge in delay slot
6673             for(r=0;r<HOST_REGS;r++) {
6674               if(r!=EXCLUDE_REG) {
6675                 if(!likely[i]) {
6676                   // Might not dirty if likely branch is not taken
6677                   if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
6678                   if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
6679                   if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
6680                   if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
6681                   if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6682                   if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6683                   if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6684                   //if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
6685                   //if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
6686                   if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
6687                   if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
6688                   if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6689                   if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6690                   if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6691                 }
6692               }
6693             }
6694           }
6695           // Merge in delay slot (won't dirty)
6696           for(r=0;r<HOST_REGS;r++) {
6697             if(r!=EXCLUDE_REG) {
6698               if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
6699               if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
6700               if((regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
6701               if((regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
6702               if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
6703               if((branch_regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
6704               if((branch_regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
6705               if((branch_regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
6706               if((branch_regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
6707               if(branch_regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
6708             }
6709           }
6710           if(wr) {
6711             #ifndef DESTRUCTIVE_WRITEBACK
6712             branch_regs[i].dirty&=wont_dirty_i;
6713             #endif
6714             branch_regs[i].dirty|=will_dirty_i;
6715           }
6716         }
6717       }
6718     }
6719     else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
6720     {
6721       // SYSCALL instruction (software interrupt)
6722       will_dirty_i=0;
6723       wont_dirty_i=0;
6724     }
6725     else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
6726     {
6727       // ERET instruction (return from interrupt)
6728       will_dirty_i=0;
6729       wont_dirty_i=0;
6730     }
6731     will_dirty_next=will_dirty_i;
6732     wont_dirty_next=wont_dirty_i;
6733     for(r=0;r<HOST_REGS;r++) {
6734       if(r!=EXCLUDE_REG) {
6735         if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
6736         if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
6737         if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6738         if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6739         if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6740         if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
6741         if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
6742         if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
6743         if(i>istart) {
6744           if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=FJUMP)
6745           {
6746             // Don't store a register immediately after writing it,
6747             // may prevent dual-issue.
6748             if((regs[i].regmap[r]&63)==rt1[i-1]) wont_dirty_i|=1<<r;
6749             if((regs[i].regmap[r]&63)==rt2[i-1]) wont_dirty_i|=1<<r;
6750           }
6751         }
6752       }
6753     }
6754     // Save it
6755     will_dirty[i]=will_dirty_i;
6756     wont_dirty[i]=wont_dirty_i;
6757     // Mark registers that won't be dirtied as not dirty
6758     if(wr) {
6759       /*printf("wr (%d,%d) %x will:",istart,iend,start+i*4);
6760       for(r=0;r<HOST_REGS;r++) {
6761         if((will_dirty_i>>r)&1) {
6762           printf(" r%d",r);
6763         }
6764       }
6765       printf("\n");*/
6766
6767       //if(i==istart||(itype[i-1]!=RJUMP&&itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=FJUMP)) {
6768         regs[i].dirty|=will_dirty_i;
6769         #ifndef DESTRUCTIVE_WRITEBACK
6770         regs[i].dirty&=wont_dirty_i;
6771         if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
6772         {
6773           if(i<iend-1&&itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000) {
6774             for(r=0;r<HOST_REGS;r++) {
6775               if(r!=EXCLUDE_REG) {
6776                 if(regs[i].regmap[r]==regmap_pre[i+2][r]) {
6777                   regs[i+2].wasdirty&=wont_dirty_i|~(1<<r);
6778                 }else {/*printf("i: %x (%d) mismatch(+2): %d\n",start+i*4,i,r);assert(!((wont_dirty_i>>r)&1));*/}
6779               }
6780             }
6781           }
6782         }
6783         else
6784         {
6785           if(i<iend) {
6786             for(r=0;r<HOST_REGS;r++) {
6787               if(r!=EXCLUDE_REG) {
6788                 if(regs[i].regmap[r]==regmap_pre[i+1][r]) {
6789                   regs[i+1].wasdirty&=wont_dirty_i|~(1<<r);
6790                 }else {/*printf("i: %x (%d) mismatch(+1): %d\n",start+i*4,i,r);assert(!((wont_dirty_i>>r)&1));*/}
6791               }
6792             }
6793           }
6794         }
6795         #endif
6796       //}
6797     }
6798     // Deal with changed mappings
6799     temp_will_dirty=will_dirty_i;
6800     temp_wont_dirty=wont_dirty_i;
6801     for(r=0;r<HOST_REGS;r++) {
6802       if(r!=EXCLUDE_REG) {
6803         int nr;
6804         if(regs[i].regmap[r]==regmap_pre[i][r]) {
6805           if(wr) {
6806             #ifndef DESTRUCTIVE_WRITEBACK
6807             regs[i].wasdirty&=wont_dirty_i|~(1<<r);
6808             #endif
6809             regs[i].wasdirty|=will_dirty_i&(1<<r);
6810           }
6811         }
6812         else if(regmap_pre[i][r]>=0&&(nr=get_reg(regs[i].regmap,regmap_pre[i][r]))>=0) {
6813           // Register moved to a different register
6814           will_dirty_i&=~(1<<r);
6815           wont_dirty_i&=~(1<<r);
6816           will_dirty_i|=((temp_will_dirty>>nr)&1)<<r;
6817           wont_dirty_i|=((temp_wont_dirty>>nr)&1)<<r;
6818           if(wr) {
6819             #ifndef DESTRUCTIVE_WRITEBACK
6820             regs[i].wasdirty&=wont_dirty_i|~(1<<r);
6821             #endif
6822             regs[i].wasdirty|=will_dirty_i&(1<<r);
6823           }
6824         }
6825         else {
6826           will_dirty_i&=~(1<<r);
6827           wont_dirty_i&=~(1<<r);
6828           if((regmap_pre[i][r]&63)>0 && (regmap_pre[i][r]&63)<34) {
6829             will_dirty_i|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
6830             wont_dirty_i|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
6831           } else {
6832             wont_dirty_i|=1<<r;
6833             /*printf("i: %x (%d) mismatch: %d\n",start+i*4,i,r);assert(!((will_dirty>>r)&1));*/
6834           }
6835         }
6836       }
6837     }
6838   }
6839 }
6840
6841 #ifdef DISASM
6842   /* disassembly */
6843 void disassemble_inst(int i)
6844 {
6845     if (bt[i]) printf("*"); else printf(" ");
6846     switch(itype[i]) {
6847       case UJUMP:
6848         printf (" %x: %s %8x\n",start+i*4,insn[i],ba[i]);break;
6849       case CJUMP:
6850         printf (" %x: %s r%d,r%d,%8x\n",start+i*4,insn[i],rs1[i],rs2[i],i?start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14):*ba);break;
6851       case SJUMP:
6852         printf (" %x: %s r%d,%8x\n",start+i*4,insn[i],rs1[i],start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14));break;
6853       case FJUMP:
6854         printf (" %x: %s %8x\n",start+i*4,insn[i],ba[i]);break;
6855       case RJUMP:
6856         if (opcode[i]==0x9&&rt1[i]!=31)
6857           printf (" %x: %s r%d,r%d\n",start+i*4,insn[i],rt1[i],rs1[i]);
6858         else
6859           printf (" %x: %s r%d\n",start+i*4,insn[i],rs1[i]);
6860         break;
6861       case SPAN:
6862         printf (" %x: %s (pagespan) r%d,r%d,%8x\n",start+i*4,insn[i],rs1[i],rs2[i],ba[i]);break;
6863       case IMM16:
6864         if(opcode[i]==0xf) //LUI
6865           printf (" %x: %s r%d,%4x0000\n",start+i*4,insn[i],rt1[i],imm[i]&0xffff);
6866         else
6867           printf (" %x: %s r%d,r%d,%d\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
6868         break;
6869       case LOAD:
6870       case LOADLR:
6871         printf (" %x: %s r%d,r%d+%x\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
6872         break;
6873       case STORE:
6874       case STORELR:
6875         printf (" %x: %s r%d,r%d+%x\n",start+i*4,insn[i],rs2[i],rs1[i],imm[i]);
6876         break;
6877       case ALU:
6878       case SHIFT:
6879         printf (" %x: %s r%d,r%d,r%d\n",start+i*4,insn[i],rt1[i],rs1[i],rs2[i]);
6880         break;
6881       case MULTDIV:
6882         printf (" %x: %s r%d,r%d\n",start+i*4,insn[i],rs1[i],rs2[i]);
6883         break;
6884       case SHIFTIMM:
6885         printf (" %x: %s r%d,r%d,%d\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
6886         break;
6887       case MOV:
6888         if((opcode2[i]&0x1d)==0x10)
6889           printf (" %x: %s r%d\n",start+i*4,insn[i],rt1[i]);
6890         else if((opcode2[i]&0x1d)==0x11)
6891           printf (" %x: %s r%d\n",start+i*4,insn[i],rs1[i]);
6892         else
6893           printf (" %x: %s\n",start+i*4,insn[i]);
6894         break;
6895       case COP0:
6896         if(opcode2[i]==0)
6897           printf (" %x: %s r%d,cpr0[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC0
6898         else if(opcode2[i]==4)
6899           printf (" %x: %s r%d,cpr0[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC0
6900         else printf (" %x: %s\n",start+i*4,insn[i]);
6901         break;
6902       case COP1:
6903         if(opcode2[i]<3)
6904           printf (" %x: %s r%d,cpr1[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC1
6905         else if(opcode2[i]>3)
6906           printf (" %x: %s r%d,cpr1[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC1
6907         else printf (" %x: %s\n",start+i*4,insn[i]);
6908         break;
6909       case COP2:
6910         if(opcode2[i]<3)
6911           printf (" %x: %s r%d,cpr2[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC2
6912         else if(opcode2[i]>3)
6913           printf (" %x: %s r%d,cpr2[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC2
6914         else printf (" %x: %s\n",start+i*4,insn[i]);
6915         break;
6916       case C1LS:
6917         printf (" %x: %s cpr1[%d],r%d+%x\n",start+i*4,insn[i],(source[i]>>16)&0x1f,rs1[i],imm[i]);
6918         break;
6919       case C2LS:
6920         printf (" %x: %s cpr2[%d],r%d+%x\n",start+i*4,insn[i],(source[i]>>16)&0x1f,rs1[i],imm[i]);
6921         break;
6922       case INTCALL:
6923         printf (" %x: %s (INTCALL)\n",start+i*4,insn[i]);
6924         break;
6925       default:
6926         //printf (" %s %8x\n",insn[i],source[i]);
6927         printf (" %x: %s\n",start+i*4,insn[i]);
6928     }
6929 }
6930 #else
6931 static void disassemble_inst(int i) {}
6932 #endif // DISASM
6933
6934 #define DRC_TEST_VAL 0x74657374
6935
6936 static int new_dynarec_test(void)
6937 {
6938   int (*testfunc)(void) = (void *)out;
6939   int ret;
6940   emit_movimm(DRC_TEST_VAL,0); // test
6941   emit_jmpreg(14);
6942   literal_pool(0);
6943 #ifdef __arm__
6944   __clear_cache((void *)testfunc, out);
6945 #endif
6946   SysPrintf("testing if we can run recompiled code..\n");
6947   ret = testfunc();
6948   if (ret == DRC_TEST_VAL)
6949     SysPrintf("test passed.\n");
6950   else
6951     SysPrintf("test failed: %08x\n", ret);
6952   out=(u_char *)BASE_ADDR;
6953   return ret == DRC_TEST_VAL;
6954 }
6955
6956 // clear the state completely, instead of just marking
6957 // things invalid like invalidate_all_pages() does
6958 void new_dynarec_clear_full()
6959 {
6960   int n;
6961   out=(u_char *)BASE_ADDR;
6962   memset(invalid_code,1,sizeof(invalid_code));
6963   memset(hash_table,0xff,sizeof(hash_table));
6964   memset(mini_ht,-1,sizeof(mini_ht));
6965   memset(restore_candidate,0,sizeof(restore_candidate));
6966   memset(shadow,0,sizeof(shadow));
6967   copy=shadow;
6968   expirep=16384; // Expiry pointer, +2 blocks
6969   pending_exception=0;
6970   literalcount=0;
6971   stop_after_jal=0;
6972   inv_code_start=inv_code_end=~0;
6973   // TLB
6974   for(n=0;n<4096;n++) ll_clear(jump_in+n);
6975   for(n=0;n<4096;n++) ll_clear(jump_out+n);
6976   for(n=0;n<4096;n++) ll_clear(jump_dirty+n);
6977 }
6978
6979 void new_dynarec_init()
6980 {
6981   SysPrintf("Init new dynarec\n");
6982   out=(u_char *)BASE_ADDR;
6983 #if BASE_ADDR_FIXED
6984   if (mmap (out, 1<<TARGET_SIZE_2,
6985             PROT_READ | PROT_WRITE | PROT_EXEC,
6986             MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS,
6987             -1, 0) <= 0) {
6988     SysPrintf("mmap() failed: %s\n", strerror(errno));
6989   }
6990 #else
6991   // not all systems allow execute in data segment by default
6992   if (mprotect(out, 1<<TARGET_SIZE_2, PROT_READ | PROT_WRITE | PROT_EXEC) != 0)
6993     SysPrintf("mprotect() failed: %s\n", strerror(errno));
6994 #endif
6995   cycle_multiplier=200;
6996   new_dynarec_clear_full();
6997 #ifdef HOST_IMM8
6998   // Copy this into local area so we don't have to put it in every literal pool
6999   invc_ptr=invalid_code;
7000 #endif
7001   arch_init();
7002   new_dynarec_test();
7003 #ifndef RAM_FIXED
7004   ram_offset=(u_int)rdram-0x80000000;
7005 #endif
7006   if (ram_offset!=0)
7007     SysPrintf("warning: RAM is not directly mapped, performance will suffer\n");
7008 }
7009
7010 void new_dynarec_cleanup()
7011 {
7012   int n;
7013   #if BASE_ADDR_FIXED
7014   if (munmap ((void *)BASE_ADDR, 1<<TARGET_SIZE_2) < 0) {SysPrintf("munmap() failed\n");}
7015   #endif
7016   for(n=0;n<4096;n++) ll_clear(jump_in+n);
7017   for(n=0;n<4096;n++) ll_clear(jump_out+n);
7018   for(n=0;n<4096;n++) ll_clear(jump_dirty+n);
7019   #ifdef ROM_COPY
7020   if (munmap (ROM_COPY, 67108864) < 0) {SysPrintf("munmap() failed\n");}
7021   #endif
7022 }
7023
7024 static u_int *get_source_start(u_int addr, u_int *limit)
7025 {
7026   if (addr < 0x00200000 ||
7027     (0xa0000000 <= addr && addr < 0xa0200000)) {
7028     // used for BIOS calls mostly?
7029     *limit = (addr&0xa0000000)|0x00200000;
7030     return (u_int *)((u_int)rdram + (addr&0x1fffff));
7031   }
7032   else if (!Config.HLE && (
7033     /* (0x9fc00000 <= addr && addr < 0x9fc80000) ||*/
7034     (0xbfc00000 <= addr && addr < 0xbfc80000))) {
7035     // BIOS
7036     *limit = (addr & 0xfff00000) | 0x80000;
7037     return (u_int *)((u_int)psxR + (addr&0x7ffff));
7038   }
7039   else if (addr >= 0x80000000 && addr < 0x80000000+RAM_SIZE) {
7040     *limit = (addr & 0x80600000) + 0x00200000;
7041     return (u_int *)((u_int)rdram + (addr&0x1fffff));
7042   }
7043   return NULL;
7044 }
7045
7046 static u_int scan_for_ret(u_int addr)
7047 {
7048   u_int limit = 0;
7049   u_int *mem;
7050
7051   mem = get_source_start(addr, &limit);
7052   if (mem == NULL)
7053     return addr;
7054
7055   if (limit > addr + 0x1000)
7056     limit = addr + 0x1000;
7057   for (; addr < limit; addr += 4, mem++) {
7058     if (*mem == 0x03e00008) // jr $ra
7059       return addr + 8;
7060   }
7061   return addr;
7062 }
7063
7064 struct savestate_block {
7065   uint32_t addr;
7066   uint32_t regflags;
7067 };
7068
7069 static int addr_cmp(const void *p1_, const void *p2_)
7070 {
7071   const struct savestate_block *p1 = p1_, *p2 = p2_;
7072   return p1->addr - p2->addr;
7073 }
7074
7075 int new_dynarec_save_blocks(void *save, int size)
7076 {
7077   struct savestate_block *blocks = save;
7078   int maxcount = size / sizeof(blocks[0]);
7079   struct savestate_block tmp_blocks[1024];
7080   struct ll_entry *head;
7081   int p, s, d, o, bcnt;
7082   u_int addr;
7083
7084   o = 0;
7085   for (p = 0; p < sizeof(jump_in) / sizeof(jump_in[0]); p++) {
7086     bcnt = 0;
7087     for (head = jump_in[p]; head != NULL; head = head->next) {
7088       tmp_blocks[bcnt].addr = head->vaddr;
7089       tmp_blocks[bcnt].regflags = head->reg_sv_flags;
7090       bcnt++;
7091     }
7092     if (bcnt < 1)
7093       continue;
7094     qsort(tmp_blocks, bcnt, sizeof(tmp_blocks[0]), addr_cmp);
7095
7096     addr = tmp_blocks[0].addr;
7097     for (s = d = 0; s < bcnt; s++) {
7098       if (tmp_blocks[s].addr < addr)
7099         continue;
7100       if (d == 0 || tmp_blocks[d-1].addr != tmp_blocks[s].addr)
7101         tmp_blocks[d++] = tmp_blocks[s];
7102       addr = scan_for_ret(tmp_blocks[s].addr);
7103     }
7104
7105     if (o + d > maxcount)
7106       d = maxcount - o;
7107     memcpy(&blocks[o], tmp_blocks, d * sizeof(blocks[0]));
7108     o += d;
7109   }
7110
7111   return o * sizeof(blocks[0]);
7112 }
7113
7114 void new_dynarec_load_blocks(const void *save, int size)
7115 {
7116   const struct savestate_block *blocks = save;
7117   int count = size / sizeof(blocks[0]);
7118   u_int regs_save[32];
7119   uint32_t f;
7120   int i, b;
7121
7122   get_addr(psxRegs.pc);
7123
7124   // change GPRs for speculation to at least partially work..
7125   memcpy(regs_save, &psxRegs.GPR, sizeof(regs_save));
7126   for (i = 1; i < 32; i++)
7127     psxRegs.GPR.r[i] = 0x80000000;
7128
7129   for (b = 0; b < count; b++) {
7130     for (f = blocks[b].regflags, i = 0; f; f >>= 1, i++) {
7131       if (f & 1)
7132         psxRegs.GPR.r[i] = 0x1f800000;
7133     }
7134
7135     get_addr(blocks[b].addr);
7136
7137     for (f = blocks[b].regflags, i = 0; f; f >>= 1, i++) {
7138       if (f & 1)
7139         psxRegs.GPR.r[i] = 0x80000000;
7140     }
7141   }
7142
7143   memcpy(&psxRegs.GPR, regs_save, sizeof(regs_save));
7144 }
7145
7146 int new_recompile_block(int addr)
7147 {
7148   u_int pagelimit = 0;
7149   u_int state_rflags = 0;
7150   int i;
7151
7152   assem_debug("NOTCOMPILED: addr = %x -> %x\n", (int)addr, (int)out);
7153   //printf("NOTCOMPILED: addr = %x -> %x\n", (int)addr, (int)out);
7154   //printf("TRACE: count=%d next=%d (compile %x)\n",Count,next_interupt,addr);
7155   //if(debug)
7156   //printf("TRACE: count=%d next=%d (checksum %x)\n",Count,next_interupt,mchecksum());
7157   //printf("fpu mapping=%x enabled=%x\n",(Status & 0x04000000)>>26,(Status & 0x20000000)>>29);
7158   /*if(Count>=312978186) {
7159     rlist();
7160   }*/
7161   //rlist();
7162
7163   // this is just for speculation
7164   for (i = 1; i < 32; i++) {
7165     if ((psxRegs.GPR.r[i] & 0xffff0000) == 0x1f800000)
7166       state_rflags |= 1 << i;
7167   }
7168
7169   start = (u_int)addr&~3;
7170   //assert(((u_int)addr&1)==0);
7171   new_dynarec_did_compile=1;
7172   if (Config.HLE && start == 0x80001000) // hlecall
7173   {
7174     // XXX: is this enough? Maybe check hleSoftCall?
7175     u_int beginning=(u_int)out;
7176     u_int page=get_page(start);
7177     invalid_code[start>>12]=0;
7178     emit_movimm(start,0);
7179     emit_writeword(0,(int)&pcaddr);
7180     emit_jmp((int)new_dyna_leave);
7181     literal_pool(0);
7182 #ifdef __arm__
7183     __clear_cache((void *)beginning,out);
7184 #endif
7185     ll_add_flags(jump_in+page,start,state_rflags,(void *)beginning);
7186     return 0;
7187   }
7188
7189   source = get_source_start(start, &pagelimit);
7190   if (source == NULL) {
7191     SysPrintf("Compile at bogus memory address: %08x\n", addr);
7192     exit(1);
7193   }
7194
7195   /* Pass 1: disassemble */
7196   /* Pass 2: register dependencies, branch targets */
7197   /* Pass 3: register allocation */
7198   /* Pass 4: branch dependencies */
7199   /* Pass 5: pre-alloc */
7200   /* Pass 6: optimize clean/dirty state */
7201   /* Pass 7: flag 32-bit registers */
7202   /* Pass 8: assembly */
7203   /* Pass 9: linker */
7204   /* Pass 10: garbage collection / free memory */
7205
7206   int j;
7207   int done=0;
7208   unsigned int type,op,op2;
7209
7210   //printf("addr = %x source = %x %x\n", addr,source,source[0]);
7211
7212   /* Pass 1 disassembly */
7213
7214   for(i=0;!done;i++) {
7215     bt[i]=0;likely[i]=0;ooo[i]=0;op2=0;
7216     minimum_free_regs[i]=0;
7217     opcode[i]=op=source[i]>>26;
7218     switch(op)
7219     {
7220       case 0x00: strcpy(insn[i],"special"); type=NI;
7221         op2=source[i]&0x3f;
7222         switch(op2)
7223         {
7224           case 0x00: strcpy(insn[i],"SLL"); type=SHIFTIMM; break;
7225           case 0x02: strcpy(insn[i],"SRL"); type=SHIFTIMM; break;
7226           case 0x03: strcpy(insn[i],"SRA"); type=SHIFTIMM; break;
7227           case 0x04: strcpy(insn[i],"SLLV"); type=SHIFT; break;
7228           case 0x06: strcpy(insn[i],"SRLV"); type=SHIFT; break;
7229           case 0x07: strcpy(insn[i],"SRAV"); type=SHIFT; break;
7230           case 0x08: strcpy(insn[i],"JR"); type=RJUMP; break;
7231           case 0x09: strcpy(insn[i],"JALR"); type=RJUMP; break;
7232           case 0x0C: strcpy(insn[i],"SYSCALL"); type=SYSCALL; break;
7233           case 0x0D: strcpy(insn[i],"BREAK"); type=OTHER; break;
7234           case 0x0F: strcpy(insn[i],"SYNC"); type=OTHER; break;
7235           case 0x10: strcpy(insn[i],"MFHI"); type=MOV; break;
7236           case 0x11: strcpy(insn[i],"MTHI"); type=MOV; break;
7237           case 0x12: strcpy(insn[i],"MFLO"); type=MOV; break;
7238           case 0x13: strcpy(insn[i],"MTLO"); type=MOV; break;
7239           case 0x18: strcpy(insn[i],"MULT"); type=MULTDIV; break;
7240           case 0x19: strcpy(insn[i],"MULTU"); type=MULTDIV; break;
7241           case 0x1A: strcpy(insn[i],"DIV"); type=MULTDIV; break;
7242           case 0x1B: strcpy(insn[i],"DIVU"); type=MULTDIV; break;
7243           case 0x20: strcpy(insn[i],"ADD"); type=ALU; break;
7244           case 0x21: strcpy(insn[i],"ADDU"); type=ALU; break;
7245           case 0x22: strcpy(insn[i],"SUB"); type=ALU; break;
7246           case 0x23: strcpy(insn[i],"SUBU"); type=ALU; break;
7247           case 0x24: strcpy(insn[i],"AND"); type=ALU; break;
7248           case 0x25: strcpy(insn[i],"OR"); type=ALU; break;
7249           case 0x26: strcpy(insn[i],"XOR"); type=ALU; break;
7250           case 0x27: strcpy(insn[i],"NOR"); type=ALU; break;
7251           case 0x2A: strcpy(insn[i],"SLT"); type=ALU; break;
7252           case 0x2B: strcpy(insn[i],"SLTU"); type=ALU; break;
7253           case 0x30: strcpy(insn[i],"TGE"); type=NI; break;
7254           case 0x31: strcpy(insn[i],"TGEU"); type=NI; break;
7255           case 0x32: strcpy(insn[i],"TLT"); type=NI; break;
7256           case 0x33: strcpy(insn[i],"TLTU"); type=NI; break;
7257           case 0x34: strcpy(insn[i],"TEQ"); type=NI; break;
7258           case 0x36: strcpy(insn[i],"TNE"); type=NI; break;
7259 #if 0
7260           case 0x14: strcpy(insn[i],"DSLLV"); type=SHIFT; break;
7261           case 0x16: strcpy(insn[i],"DSRLV"); type=SHIFT; break;
7262           case 0x17: strcpy(insn[i],"DSRAV"); type=SHIFT; break;
7263           case 0x1C: strcpy(insn[i],"DMULT"); type=MULTDIV; break;
7264           case 0x1D: strcpy(insn[i],"DMULTU"); type=MULTDIV; break;
7265           case 0x1E: strcpy(insn[i],"DDIV"); type=MULTDIV; break;
7266           case 0x1F: strcpy(insn[i],"DDIVU"); type=MULTDIV; break;
7267           case 0x2C: strcpy(insn[i],"DADD"); type=ALU; break;
7268           case 0x2D: strcpy(insn[i],"DADDU"); type=ALU; break;
7269           case 0x2E: strcpy(insn[i],"DSUB"); type=ALU; break;
7270           case 0x2F: strcpy(insn[i],"DSUBU"); type=ALU; break;
7271           case 0x38: strcpy(insn[i],"DSLL"); type=SHIFTIMM; break;
7272           case 0x3A: strcpy(insn[i],"DSRL"); type=SHIFTIMM; break;
7273           case 0x3B: strcpy(insn[i],"DSRA"); type=SHIFTIMM; break;
7274           case 0x3C: strcpy(insn[i],"DSLL32"); type=SHIFTIMM; break;
7275           case 0x3E: strcpy(insn[i],"DSRL32"); type=SHIFTIMM; break;
7276           case 0x3F: strcpy(insn[i],"DSRA32"); type=SHIFTIMM; break;
7277 #endif
7278         }
7279         break;
7280       case 0x01: strcpy(insn[i],"regimm"); type=NI;
7281         op2=(source[i]>>16)&0x1f;
7282         switch(op2)
7283         {
7284           case 0x00: strcpy(insn[i],"BLTZ"); type=SJUMP; break;
7285           case 0x01: strcpy(insn[i],"BGEZ"); type=SJUMP; break;
7286           case 0x02: strcpy(insn[i],"BLTZL"); type=SJUMP; break;
7287           case 0x03: strcpy(insn[i],"BGEZL"); type=SJUMP; break;
7288           case 0x08: strcpy(insn[i],"TGEI"); type=NI; break;
7289           case 0x09: strcpy(insn[i],"TGEIU"); type=NI; break;
7290           case 0x0A: strcpy(insn[i],"TLTI"); type=NI; break;
7291           case 0x0B: strcpy(insn[i],"TLTIU"); type=NI; break;
7292           case 0x0C: strcpy(insn[i],"TEQI"); type=NI; break;
7293           case 0x0E: strcpy(insn[i],"TNEI"); type=NI; break;
7294           case 0x10: strcpy(insn[i],"BLTZAL"); type=SJUMP; break;
7295           case 0x11: strcpy(insn[i],"BGEZAL"); type=SJUMP; break;
7296           case 0x12: strcpy(insn[i],"BLTZALL"); type=SJUMP; break;
7297           case 0x13: strcpy(insn[i],"BGEZALL"); type=SJUMP; break;
7298         }
7299         break;
7300       case 0x02: strcpy(insn[i],"J"); type=UJUMP; break;
7301       case 0x03: strcpy(insn[i],"JAL"); type=UJUMP; break;
7302       case 0x04: strcpy(insn[i],"BEQ"); type=CJUMP; break;
7303       case 0x05: strcpy(insn[i],"BNE"); type=CJUMP; break;
7304       case 0x06: strcpy(insn[i],"BLEZ"); type=CJUMP; break;
7305       case 0x07: strcpy(insn[i],"BGTZ"); type=CJUMP; break;
7306       case 0x08: strcpy(insn[i],"ADDI"); type=IMM16; break;
7307       case 0x09: strcpy(insn[i],"ADDIU"); type=IMM16; break;
7308       case 0x0A: strcpy(insn[i],"SLTI"); type=IMM16; break;
7309       case 0x0B: strcpy(insn[i],"SLTIU"); type=IMM16; break;
7310       case 0x0C: strcpy(insn[i],"ANDI"); type=IMM16; break;
7311       case 0x0D: strcpy(insn[i],"ORI"); type=IMM16; break;
7312       case 0x0E: strcpy(insn[i],"XORI"); type=IMM16; break;
7313       case 0x0F: strcpy(insn[i],"LUI"); type=IMM16; break;
7314       case 0x10: strcpy(insn[i],"cop0"); type=NI;
7315         op2=(source[i]>>21)&0x1f;
7316         switch(op2)
7317         {
7318           case 0x00: strcpy(insn[i],"MFC0"); type=COP0; break;
7319           case 0x04: strcpy(insn[i],"MTC0"); type=COP0; break;
7320           case 0x10: strcpy(insn[i],"tlb"); type=NI;
7321           switch(source[i]&0x3f)
7322           {
7323             case 0x01: strcpy(insn[i],"TLBR"); type=COP0; break;
7324             case 0x02: strcpy(insn[i],"TLBWI"); type=COP0; break;
7325             case 0x06: strcpy(insn[i],"TLBWR"); type=COP0; break;
7326             case 0x08: strcpy(insn[i],"TLBP"); type=COP0; break;
7327             case 0x10: strcpy(insn[i],"RFE"); type=COP0; break;
7328             //case 0x18: strcpy(insn[i],"ERET"); type=COP0; break;
7329           }
7330         }
7331         break;
7332       case 0x11: strcpy(insn[i],"cop1"); type=NI;
7333         op2=(source[i]>>21)&0x1f;
7334         switch(op2)
7335         {
7336           case 0x00: strcpy(insn[i],"MFC1"); type=COP1; break;
7337           case 0x01: strcpy(insn[i],"DMFC1"); type=COP1; break;
7338           case 0x02: strcpy(insn[i],"CFC1"); type=COP1; break;
7339           case 0x04: strcpy(insn[i],"MTC1"); type=COP1; break;
7340           case 0x05: strcpy(insn[i],"DMTC1"); type=COP1; break;
7341           case 0x06: strcpy(insn[i],"CTC1"); type=COP1; break;
7342           case 0x08: strcpy(insn[i],"BC1"); type=FJUMP;
7343           switch((source[i]>>16)&0x3)
7344           {
7345             case 0x00: strcpy(insn[i],"BC1F"); break;
7346             case 0x01: strcpy(insn[i],"BC1T"); break;
7347             case 0x02: strcpy(insn[i],"BC1FL"); break;
7348             case 0x03: strcpy(insn[i],"BC1TL"); break;
7349           }
7350           break;
7351           case 0x10: strcpy(insn[i],"C1.S"); type=NI;
7352           switch(source[i]&0x3f)
7353           {
7354             case 0x00: strcpy(insn[i],"ADD.S"); type=FLOAT; break;
7355             case 0x01: strcpy(insn[i],"SUB.S"); type=FLOAT; break;
7356             case 0x02: strcpy(insn[i],"MUL.S"); type=FLOAT; break;
7357             case 0x03: strcpy(insn[i],"DIV.S"); type=FLOAT; break;
7358             case 0x04: strcpy(insn[i],"SQRT.S"); type=FLOAT; break;
7359             case 0x05: strcpy(insn[i],"ABS.S"); type=FLOAT; break;
7360             case 0x06: strcpy(insn[i],"MOV.S"); type=FLOAT; break;
7361             case 0x07: strcpy(insn[i],"NEG.S"); type=FLOAT; break;
7362             case 0x08: strcpy(insn[i],"ROUND.L.S"); type=FCONV; break;
7363             case 0x09: strcpy(insn[i],"TRUNC.L.S"); type=FCONV; break;
7364             case 0x0A: strcpy(insn[i],"CEIL.L.S"); type=FCONV; break;
7365             case 0x0B: strcpy(insn[i],"FLOOR.L.S"); type=FCONV; break;
7366             case 0x0C: strcpy(insn[i],"ROUND.W.S"); type=FCONV; break;
7367             case 0x0D: strcpy(insn[i],"TRUNC.W.S"); type=FCONV; break;
7368             case 0x0E: strcpy(insn[i],"CEIL.W.S"); type=FCONV; break;
7369             case 0x0F: strcpy(insn[i],"FLOOR.W.S"); type=FCONV; break;
7370             case 0x21: strcpy(insn[i],"CVT.D.S"); type=FCONV; break;
7371             case 0x24: strcpy(insn[i],"CVT.W.S"); type=FCONV; break;
7372             case 0x25: strcpy(insn[i],"CVT.L.S"); type=FCONV; break;
7373             case 0x30: strcpy(insn[i],"C.F.S"); type=FCOMP; break;
7374             case 0x31: strcpy(insn[i],"C.UN.S"); type=FCOMP; break;
7375             case 0x32: strcpy(insn[i],"C.EQ.S"); type=FCOMP; break;
7376             case 0x33: strcpy(insn[i],"C.UEQ.S"); type=FCOMP; break;
7377             case 0x34: strcpy(insn[i],"C.OLT.S"); type=FCOMP; break;
7378             case 0x35: strcpy(insn[i],"C.ULT.S"); type=FCOMP; break;
7379             case 0x36: strcpy(insn[i],"C.OLE.S"); type=FCOMP; break;
7380             case 0x37: strcpy(insn[i],"C.ULE.S"); type=FCOMP; break;
7381             case 0x38: strcpy(insn[i],"C.SF.S"); type=FCOMP; break;
7382             case 0x39: strcpy(insn[i],"C.NGLE.S"); type=FCOMP; break;
7383             case 0x3A: strcpy(insn[i],"C.SEQ.S"); type=FCOMP; break;
7384             case 0x3B: strcpy(insn[i],"C.NGL.S"); type=FCOMP; break;
7385             case 0x3C: strcpy(insn[i],"C.LT.S"); type=FCOMP; break;
7386             case 0x3D: strcpy(insn[i],"C.NGE.S"); type=FCOMP; break;
7387             case 0x3E: strcpy(insn[i],"C.LE.S"); type=FCOMP; break;
7388             case 0x3F: strcpy(insn[i],"C.NGT.S"); type=FCOMP; break;
7389           }
7390           break;
7391           case 0x11: strcpy(insn[i],"C1.D"); type=NI;
7392           switch(source[i]&0x3f)
7393           {
7394             case 0x00: strcpy(insn[i],"ADD.D"); type=FLOAT; break;
7395             case 0x01: strcpy(insn[i],"SUB.D"); type=FLOAT; break;
7396             case 0x02: strcpy(insn[i],"MUL.D"); type=FLOAT; break;
7397             case 0x03: strcpy(insn[i],"DIV.D"); type=FLOAT; break;
7398             case 0x04: strcpy(insn[i],"SQRT.D"); type=FLOAT; break;
7399             case 0x05: strcpy(insn[i],"ABS.D"); type=FLOAT; break;
7400             case 0x06: strcpy(insn[i],"MOV.D"); type=FLOAT; break;
7401             case 0x07: strcpy(insn[i],"NEG.D"); type=FLOAT; break;
7402             case 0x08: strcpy(insn[i],"ROUND.L.D"); type=FCONV; break;
7403             case 0x09: strcpy(insn[i],"TRUNC.L.D"); type=FCONV; break;
7404             case 0x0A: strcpy(insn[i],"CEIL.L.D"); type=FCONV; break;
7405             case 0x0B: strcpy(insn[i],"FLOOR.L.D"); type=FCONV; break;
7406             case 0x0C: strcpy(insn[i],"ROUND.W.D"); type=FCONV; break;
7407             case 0x0D: strcpy(insn[i],"TRUNC.W.D"); type=FCONV; break;
7408             case 0x0E: strcpy(insn[i],"CEIL.W.D"); type=FCONV; break;
7409             case 0x0F: strcpy(insn[i],"FLOOR.W.D"); type=FCONV; break;
7410             case 0x20: strcpy(insn[i],"CVT.S.D"); type=FCONV; break;
7411             case 0x24: strcpy(insn[i],"CVT.W.D"); type=FCONV; break;
7412             case 0x25: strcpy(insn[i],"CVT.L.D"); type=FCONV; break;
7413             case 0x30: strcpy(insn[i],"C.F.D"); type=FCOMP; break;
7414             case 0x31: strcpy(insn[i],"C.UN.D"); type=FCOMP; break;
7415             case 0x32: strcpy(insn[i],"C.EQ.D"); type=FCOMP; break;
7416             case 0x33: strcpy(insn[i],"C.UEQ.D"); type=FCOMP; break;
7417             case 0x34: strcpy(insn[i],"C.OLT.D"); type=FCOMP; break;
7418             case 0x35: strcpy(insn[i],"C.ULT.D"); type=FCOMP; break;
7419             case 0x36: strcpy(insn[i],"C.OLE.D"); type=FCOMP; break;
7420             case 0x37: strcpy(insn[i],"C.ULE.D"); type=FCOMP; break;
7421             case 0x38: strcpy(insn[i],"C.SF.D"); type=FCOMP; break;
7422             case 0x39: strcpy(insn[i],"C.NGLE.D"); type=FCOMP; break;
7423             case 0x3A: strcpy(insn[i],"C.SEQ.D"); type=FCOMP; break;
7424             case 0x3B: strcpy(insn[i],"C.NGL.D"); type=FCOMP; break;
7425             case 0x3C: strcpy(insn[i],"C.LT.D"); type=FCOMP; break;
7426             case 0x3D: strcpy(insn[i],"C.NGE.D"); type=FCOMP; break;
7427             case 0x3E: strcpy(insn[i],"C.LE.D"); type=FCOMP; break;
7428             case 0x3F: strcpy(insn[i],"C.NGT.D"); type=FCOMP; break;
7429           }
7430           break;
7431           case 0x14: strcpy(insn[i],"C1.W"); type=NI;
7432           switch(source[i]&0x3f)
7433           {
7434             case 0x20: strcpy(insn[i],"CVT.S.W"); type=FCONV; break;
7435             case 0x21: strcpy(insn[i],"CVT.D.W"); type=FCONV; break;
7436           }
7437           break;
7438           case 0x15: strcpy(insn[i],"C1.L"); type=NI;
7439           switch(source[i]&0x3f)
7440           {
7441             case 0x20: strcpy(insn[i],"CVT.S.L"); type=FCONV; break;
7442             case 0x21: strcpy(insn[i],"CVT.D.L"); type=FCONV; break;
7443           }
7444           break;
7445         }
7446         break;
7447 #if 0
7448       case 0x14: strcpy(insn[i],"BEQL"); type=CJUMP; break;
7449       case 0x15: strcpy(insn[i],"BNEL"); type=CJUMP; break;
7450       case 0x16: strcpy(insn[i],"BLEZL"); type=CJUMP; break;
7451       case 0x17: strcpy(insn[i],"BGTZL"); type=CJUMP; break;
7452       case 0x18: strcpy(insn[i],"DADDI"); type=IMM16; break;
7453       case 0x19: strcpy(insn[i],"DADDIU"); type=IMM16; break;
7454       case 0x1A: strcpy(insn[i],"LDL"); type=LOADLR; break;
7455       case 0x1B: strcpy(insn[i],"LDR"); type=LOADLR; break;
7456 #endif
7457       case 0x20: strcpy(insn[i],"LB"); type=LOAD; break;
7458       case 0x21: strcpy(insn[i],"LH"); type=LOAD; break;
7459       case 0x22: strcpy(insn[i],"LWL"); type=LOADLR; break;
7460       case 0x23: strcpy(insn[i],"LW"); type=LOAD; break;
7461       case 0x24: strcpy(insn[i],"LBU"); type=LOAD; break;
7462       case 0x25: strcpy(insn[i],"LHU"); type=LOAD; break;
7463       case 0x26: strcpy(insn[i],"LWR"); type=LOADLR; break;
7464 #if 0
7465       case 0x27: strcpy(insn[i],"LWU"); type=LOAD; break;
7466 #endif
7467       case 0x28: strcpy(insn[i],"SB"); type=STORE; break;
7468       case 0x29: strcpy(insn[i],"SH"); type=STORE; break;
7469       case 0x2A: strcpy(insn[i],"SWL"); type=STORELR; break;
7470       case 0x2B: strcpy(insn[i],"SW"); type=STORE; break;
7471 #if 0
7472       case 0x2C: strcpy(insn[i],"SDL"); type=STORELR; break;
7473       case 0x2D: strcpy(insn[i],"SDR"); type=STORELR; break;
7474 #endif
7475       case 0x2E: strcpy(insn[i],"SWR"); type=STORELR; break;
7476       case 0x2F: strcpy(insn[i],"CACHE"); type=NOP; break;
7477       case 0x30: strcpy(insn[i],"LL"); type=NI; break;
7478       case 0x31: strcpy(insn[i],"LWC1"); type=C1LS; break;
7479 #if 0
7480       case 0x34: strcpy(insn[i],"LLD"); type=NI; break;
7481       case 0x35: strcpy(insn[i],"LDC1"); type=C1LS; break;
7482       case 0x37: strcpy(insn[i],"LD"); type=LOAD; break;
7483 #endif
7484       case 0x38: strcpy(insn[i],"SC"); type=NI; break;
7485       case 0x39: strcpy(insn[i],"SWC1"); type=C1LS; break;
7486 #if 0
7487       case 0x3C: strcpy(insn[i],"SCD"); type=NI; break;
7488       case 0x3D: strcpy(insn[i],"SDC1"); type=C1LS; break;
7489       case 0x3F: strcpy(insn[i],"SD"); type=STORE; break;
7490 #endif
7491       case 0x12: strcpy(insn[i],"COP2"); type=NI;
7492         op2=(source[i]>>21)&0x1f;
7493         //if (op2 & 0x10) {
7494         if (source[i]&0x3f) { // use this hack to support old savestates with patched gte insns
7495           if (gte_handlers[source[i]&0x3f]!=NULL) {
7496             if (gte_regnames[source[i]&0x3f]!=NULL)
7497               strcpy(insn[i],gte_regnames[source[i]&0x3f]);
7498             else
7499               snprintf(insn[i], sizeof(insn[i]), "COP2 %x", source[i]&0x3f);
7500             type=C2OP;
7501           }
7502         }
7503         else switch(op2)
7504         {
7505           case 0x00: strcpy(insn[i],"MFC2"); type=COP2; break;
7506           case 0x02: strcpy(insn[i],"CFC2"); type=COP2; break;
7507           case 0x04: strcpy(insn[i],"MTC2"); type=COP2; break;
7508           case 0x06: strcpy(insn[i],"CTC2"); type=COP2; break;
7509         }
7510         break;
7511       case 0x32: strcpy(insn[i],"LWC2"); type=C2LS; break;
7512       case 0x3A: strcpy(insn[i],"SWC2"); type=C2LS; break;
7513       case 0x3B: strcpy(insn[i],"HLECALL"); type=HLECALL; break;
7514       default: strcpy(insn[i],"???"); type=NI;
7515         SysPrintf("NI %08x @%08x (%08x)\n", source[i], addr + i*4, addr);
7516         break;
7517     }
7518     itype[i]=type;
7519     opcode2[i]=op2;
7520     /* Get registers/immediates */
7521     lt1[i]=0;
7522     us1[i]=0;
7523     us2[i]=0;
7524     dep1[i]=0;
7525     dep2[i]=0;
7526     gte_rs[i]=gte_rt[i]=0;
7527     switch(type) {
7528       case LOAD:
7529         rs1[i]=(source[i]>>21)&0x1f;
7530         rs2[i]=0;
7531         rt1[i]=(source[i]>>16)&0x1f;
7532         rt2[i]=0;
7533         imm[i]=(short)source[i];
7534         break;
7535       case STORE:
7536       case STORELR:
7537         rs1[i]=(source[i]>>21)&0x1f;
7538         rs2[i]=(source[i]>>16)&0x1f;
7539         rt1[i]=0;
7540         rt2[i]=0;
7541         imm[i]=(short)source[i];
7542         if(op==0x2c||op==0x2d||op==0x3f) us1[i]=rs2[i]; // 64-bit SDL/SDR/SD
7543         break;
7544       case LOADLR:
7545         // LWL/LWR only load part of the register,
7546         // therefore the target register must be treated as a source too
7547         rs1[i]=(source[i]>>21)&0x1f;
7548         rs2[i]=(source[i]>>16)&0x1f;
7549         rt1[i]=(source[i]>>16)&0x1f;
7550         rt2[i]=0;
7551         imm[i]=(short)source[i];
7552         if(op==0x1a||op==0x1b) us1[i]=rs2[i]; // LDR/LDL
7553         if(op==0x26) dep1[i]=rt1[i]; // LWR
7554         break;
7555       case IMM16:
7556         if (op==0x0f) rs1[i]=0; // LUI instruction has no source register
7557         else rs1[i]=(source[i]>>21)&0x1f;
7558         rs2[i]=0;
7559         rt1[i]=(source[i]>>16)&0x1f;
7560         rt2[i]=0;
7561         if(op>=0x0c&&op<=0x0e) { // ANDI/ORI/XORI
7562           imm[i]=(unsigned short)source[i];
7563         }else{
7564           imm[i]=(short)source[i];
7565         }
7566         if(op==0x18||op==0x19) us1[i]=rs1[i]; // DADDI/DADDIU
7567         if(op==0x0a||op==0x0b) us1[i]=rs1[i]; // SLTI/SLTIU
7568         if(op==0x0d||op==0x0e) dep1[i]=rs1[i]; // ORI/XORI
7569         break;
7570       case UJUMP:
7571         rs1[i]=0;
7572         rs2[i]=0;
7573         rt1[i]=0;
7574         rt2[i]=0;
7575         // The JAL instruction writes to r31.
7576         if (op&1) {
7577           rt1[i]=31;
7578         }
7579         rs2[i]=CCREG;
7580         break;
7581       case RJUMP:
7582         rs1[i]=(source[i]>>21)&0x1f;
7583         rs2[i]=0;
7584         rt1[i]=0;
7585         rt2[i]=0;
7586         // The JALR instruction writes to rd.
7587         if (op2&1) {
7588           rt1[i]=(source[i]>>11)&0x1f;
7589         }
7590         rs2[i]=CCREG;
7591         break;
7592       case CJUMP:
7593         rs1[i]=(source[i]>>21)&0x1f;
7594         rs2[i]=(source[i]>>16)&0x1f;
7595         rt1[i]=0;
7596         rt2[i]=0;
7597         if(op&2) { // BGTZ/BLEZ
7598           rs2[i]=0;
7599         }
7600         us1[i]=rs1[i];
7601         us2[i]=rs2[i];
7602         likely[i]=op>>4;
7603         break;
7604       case SJUMP:
7605         rs1[i]=(source[i]>>21)&0x1f;
7606         rs2[i]=CCREG;
7607         rt1[i]=0;
7608         rt2[i]=0;
7609         us1[i]=rs1[i];
7610         if(op2&0x10) { // BxxAL
7611           rt1[i]=31;
7612           // NOTE: If the branch is not taken, r31 is still overwritten
7613         }
7614         likely[i]=(op2&2)>>1;
7615         break;
7616       case FJUMP:
7617         rs1[i]=FSREG;
7618         rs2[i]=CSREG;
7619         rt1[i]=0;
7620         rt2[i]=0;
7621         likely[i]=((source[i])>>17)&1;
7622         break;
7623       case ALU:
7624         rs1[i]=(source[i]>>21)&0x1f; // source
7625         rs2[i]=(source[i]>>16)&0x1f; // subtract amount
7626         rt1[i]=(source[i]>>11)&0x1f; // destination
7627         rt2[i]=0;
7628         if(op2==0x2a||op2==0x2b) { // SLT/SLTU
7629           us1[i]=rs1[i];us2[i]=rs2[i];
7630         }
7631         else if(op2>=0x24&&op2<=0x27) { // AND/OR/XOR/NOR
7632           dep1[i]=rs1[i];dep2[i]=rs2[i];
7633         }
7634         else if(op2>=0x2c&&op2<=0x2f) { // DADD/DSUB
7635           dep1[i]=rs1[i];dep2[i]=rs2[i];
7636         }
7637         break;
7638       case MULTDIV:
7639         rs1[i]=(source[i]>>21)&0x1f; // source
7640         rs2[i]=(source[i]>>16)&0x1f; // divisor
7641         rt1[i]=HIREG;
7642         rt2[i]=LOREG;
7643         if (op2>=0x1c&&op2<=0x1f) { // DMULT/DMULTU/DDIV/DDIVU
7644           us1[i]=rs1[i];us2[i]=rs2[i];
7645         }
7646         break;
7647       case MOV:
7648         rs1[i]=0;
7649         rs2[i]=0;
7650         rt1[i]=0;
7651         rt2[i]=0;
7652         if(op2==0x10) rs1[i]=HIREG; // MFHI
7653         if(op2==0x11) rt1[i]=HIREG; // MTHI
7654         if(op2==0x12) rs1[i]=LOREG; // MFLO
7655         if(op2==0x13) rt1[i]=LOREG; // MTLO
7656         if((op2&0x1d)==0x10) rt1[i]=(source[i]>>11)&0x1f; // MFxx
7657         if((op2&0x1d)==0x11) rs1[i]=(source[i]>>21)&0x1f; // MTxx
7658         dep1[i]=rs1[i];
7659         break;
7660       case SHIFT:
7661         rs1[i]=(source[i]>>16)&0x1f; // target of shift
7662         rs2[i]=(source[i]>>21)&0x1f; // shift amount
7663         rt1[i]=(source[i]>>11)&0x1f; // destination
7664         rt2[i]=0;
7665         // DSLLV/DSRLV/DSRAV are 64-bit
7666         if(op2>=0x14&&op2<=0x17) us1[i]=rs1[i];
7667         break;
7668       case SHIFTIMM:
7669         rs1[i]=(source[i]>>16)&0x1f;
7670         rs2[i]=0;
7671         rt1[i]=(source[i]>>11)&0x1f;
7672         rt2[i]=0;
7673         imm[i]=(source[i]>>6)&0x1f;
7674         // DSxx32 instructions
7675         if(op2>=0x3c) imm[i]|=0x20;
7676         // DSLL/DSRL/DSRA/DSRA32/DSRL32 but not DSLL32 require 64-bit source
7677         if(op2>=0x38&&op2!=0x3c) us1[i]=rs1[i];
7678         break;
7679       case COP0:
7680         rs1[i]=0;
7681         rs2[i]=0;
7682         rt1[i]=0;
7683         rt2[i]=0;
7684         if(op2==0) rt1[i]=(source[i]>>16)&0x1F; // MFC0
7685         if(op2==4) rs1[i]=(source[i]>>16)&0x1F; // MTC0
7686         if(op2==4&&((source[i]>>11)&0x1f)==12) rt2[i]=CSREG; // Status
7687         if(op2==16) if((source[i]&0x3f)==0x18) rs2[i]=CCREG; // ERET
7688         break;
7689       case COP1:
7690         rs1[i]=0;
7691         rs2[i]=0;
7692         rt1[i]=0;
7693         rt2[i]=0;
7694         if(op2<3) rt1[i]=(source[i]>>16)&0x1F; // MFC1/DMFC1/CFC1
7695         if(op2>3) rs1[i]=(source[i]>>16)&0x1F; // MTC1/DMTC1/CTC1
7696         if(op2==5) us1[i]=rs1[i]; // DMTC1
7697         rs2[i]=CSREG;
7698         break;
7699       case COP2:
7700         rs1[i]=0;
7701         rs2[i]=0;
7702         rt1[i]=0;
7703         rt2[i]=0;
7704         if(op2<3) rt1[i]=(source[i]>>16)&0x1F; // MFC2/CFC2
7705         if(op2>3) rs1[i]=(source[i]>>16)&0x1F; // MTC2/CTC2
7706         rs2[i]=CSREG;
7707         int gr=(source[i]>>11)&0x1F;
7708         switch(op2)
7709         {
7710           case 0x00: gte_rs[i]=1ll<<gr; break; // MFC2
7711           case 0x04: gte_rt[i]=1ll<<gr; break; // MTC2
7712           case 0x02: gte_rs[i]=1ll<<(gr+32); break; // CFC2
7713           case 0x06: gte_rt[i]=1ll<<(gr+32); break; // CTC2
7714         }
7715         break;
7716       case C1LS:
7717         rs1[i]=(source[i]>>21)&0x1F;
7718         rs2[i]=CSREG;
7719         rt1[i]=0;
7720         rt2[i]=0;
7721         imm[i]=(short)source[i];
7722         break;
7723       case C2LS:
7724         rs1[i]=(source[i]>>21)&0x1F;
7725         rs2[i]=0;
7726         rt1[i]=0;
7727         rt2[i]=0;
7728         imm[i]=(short)source[i];
7729         if(op==0x32) gte_rt[i]=1ll<<((source[i]>>16)&0x1F); // LWC2
7730         else gte_rs[i]=1ll<<((source[i]>>16)&0x1F); // SWC2
7731         break;
7732       case C2OP:
7733         rs1[i]=0;
7734         rs2[i]=0;
7735         rt1[i]=0;
7736         rt2[i]=0;
7737         gte_rs[i]=gte_reg_reads[source[i]&0x3f];
7738         gte_rt[i]=gte_reg_writes[source[i]&0x3f];
7739         gte_rt[i]|=1ll<<63; // every op changes flags
7740         if((source[i]&0x3f)==GTE_MVMVA) {
7741           int v = (source[i] >> 15) & 3;
7742           gte_rs[i]&=~0xe3fll;
7743           if(v==3) gte_rs[i]|=0xe00ll;
7744           else gte_rs[i]|=3ll<<(v*2);
7745         }
7746         break;
7747       case FLOAT:
7748       case FCONV:
7749         rs1[i]=0;
7750         rs2[i]=CSREG;
7751         rt1[i]=0;
7752         rt2[i]=0;
7753         break;
7754       case FCOMP:
7755         rs1[i]=FSREG;
7756         rs2[i]=CSREG;
7757         rt1[i]=FSREG;
7758         rt2[i]=0;
7759         break;
7760       case SYSCALL:
7761       case HLECALL:
7762       case INTCALL:
7763         rs1[i]=CCREG;
7764         rs2[i]=0;
7765         rt1[i]=0;
7766         rt2[i]=0;
7767         break;
7768       default:
7769         rs1[i]=0;
7770         rs2[i]=0;
7771         rt1[i]=0;
7772         rt2[i]=0;
7773     }
7774     /* Calculate branch target addresses */
7775     if(type==UJUMP)
7776       ba[i]=((start+i*4+4)&0xF0000000)|(((unsigned int)source[i]<<6)>>4);
7777     else if(type==CJUMP&&rs1[i]==rs2[i]&&(op&1))
7778       ba[i]=start+i*4+8; // Ignore never taken branch
7779     else if(type==SJUMP&&rs1[i]==0&&!(op2&1))
7780       ba[i]=start+i*4+8; // Ignore never taken branch
7781     else if(type==CJUMP||type==SJUMP||type==FJUMP)
7782       ba[i]=start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14);
7783     else ba[i]=-1;
7784     if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)) {
7785       int do_in_intrp=0;
7786       // branch in delay slot?
7787       if(type==RJUMP||type==UJUMP||type==CJUMP||type==SJUMP||type==FJUMP) {
7788         // don't handle first branch and call interpreter if it's hit
7789         SysPrintf("branch in delay slot @%08x (%08x)\n", addr + i*4, addr);
7790         do_in_intrp=1;
7791       }
7792       // basic load delay detection
7793       else if((type==LOAD||type==LOADLR||type==COP0||type==COP2||type==C2LS)&&rt1[i]!=0) {
7794         int t=(ba[i-1]-start)/4;
7795         if(0 <= t && t < i &&(rt1[i]==rs1[t]||rt1[i]==rs2[t])&&itype[t]!=CJUMP&&itype[t]!=SJUMP) {
7796           // jump target wants DS result - potential load delay effect
7797           SysPrintf("load delay @%08x (%08x)\n", addr + i*4, addr);
7798           do_in_intrp=1;
7799           bt[t+1]=1; // expected return from interpreter
7800         }
7801         else if(i>=2&&rt1[i-2]==2&&rt1[i]==2&&rs1[i]!=2&&rs2[i]!=2&&rs1[i-1]!=2&&rs2[i-1]!=2&&
7802               !(i>=3&&(itype[i-3]==RJUMP||itype[i-3]==UJUMP||itype[i-3]==CJUMP||itype[i-3]==SJUMP))) {
7803           // v0 overwrite like this is a sign of trouble, bail out
7804           SysPrintf("v0 overwrite @%08x (%08x)\n", addr + i*4, addr);
7805           do_in_intrp=1;
7806         }
7807       }
7808       if(do_in_intrp) {
7809         rs1[i-1]=CCREG;
7810         rs2[i-1]=rt1[i-1]=rt2[i-1]=0;
7811         ba[i-1]=-1;
7812         itype[i-1]=INTCALL;
7813         done=2;
7814         i--; // don't compile the DS
7815       }
7816     }
7817     /* Is this the end of the block? */
7818     if(i>0&&(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)) {
7819       if(rt1[i-1]==0) { // Continue past subroutine call (JAL)
7820         done=2;
7821       }
7822       else {
7823         if(stop_after_jal) done=1;
7824         // Stop on BREAK
7825         if((source[i+1]&0xfc00003f)==0x0d) done=1;
7826       }
7827       // Don't recompile stuff that's already compiled
7828       if(check_addr(start+i*4+4)) done=1;
7829       // Don't get too close to the limit
7830       if(i>MAXBLOCK/2) done=1;
7831     }
7832     if(itype[i]==SYSCALL&&stop_after_jal) done=1;
7833     if(itype[i]==HLECALL||itype[i]==INTCALL) done=2;
7834     if(done==2) {
7835       // Does the block continue due to a branch?
7836       for(j=i-1;j>=0;j--)
7837       {
7838         if(ba[j]==start+i*4) done=j=0; // Branch into delay slot
7839         if(ba[j]==start+i*4+4) done=j=0;
7840         if(ba[j]==start+i*4+8) done=j=0;
7841       }
7842     }
7843     //assert(i<MAXBLOCK-1);
7844     if(start+i*4==pagelimit-4) done=1;
7845     assert(start+i*4<pagelimit);
7846     if (i==MAXBLOCK-1) done=1;
7847     // Stop if we're compiling junk
7848     if(itype[i]==NI&&opcode[i]==0x11) {
7849       done=stop_after_jal=1;
7850       SysPrintf("Disabled speculative precompilation\n");
7851     }
7852   }
7853   slen=i;
7854   if(itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==RJUMP||itype[i-1]==FJUMP) {
7855     if(start+i*4==pagelimit) {
7856       itype[i-1]=SPAN;
7857     }
7858   }
7859   assert(slen>0);
7860
7861   /* Pass 2 - Register dependencies and branch targets */
7862
7863   unneeded_registers(0,slen-1,0);
7864
7865   /* Pass 3 - Register allocation */
7866
7867   struct regstat current; // Current register allocations/status
7868   current.is32=1;
7869   current.dirty=0;
7870   current.u=unneeded_reg[0];
7871   current.uu=unneeded_reg_upper[0];
7872   clear_all_regs(current.regmap);
7873   alloc_reg(&current,0,CCREG);
7874   dirty_reg(&current,CCREG);
7875   current.isconst=0;
7876   current.wasconst=0;
7877   current.waswritten=0;
7878   int ds=0;
7879   int cc=0;
7880   int hr=-1;
7881
7882   if((u_int)addr&1) {
7883     // First instruction is delay slot
7884     cc=-1;
7885     bt[1]=1;
7886     ds=1;
7887     unneeded_reg[0]=1;
7888     unneeded_reg_upper[0]=1;
7889     current.regmap[HOST_BTREG]=BTREG;
7890   }
7891
7892   for(i=0;i<slen;i++)
7893   {
7894     if(bt[i])
7895     {
7896       int hr;
7897       for(hr=0;hr<HOST_REGS;hr++)
7898       {
7899         // Is this really necessary?
7900         if(current.regmap[hr]==0) current.regmap[hr]=-1;
7901       }
7902       current.isconst=0;
7903       current.waswritten=0;
7904     }
7905     if(i>1)
7906     {
7907       if((opcode[i-2]&0x2f)==0x05) // BNE/BNEL
7908       {
7909         if(rs1[i-2]==0||rs2[i-2]==0)
7910         {
7911           if(rs1[i-2]) {
7912             current.is32|=1LL<<rs1[i-2];
7913             int hr=get_reg(current.regmap,rs1[i-2]|64);
7914             if(hr>=0) current.regmap[hr]=-1;
7915           }
7916           if(rs2[i-2]) {
7917             current.is32|=1LL<<rs2[i-2];
7918             int hr=get_reg(current.regmap,rs2[i-2]|64);
7919             if(hr>=0) current.regmap[hr]=-1;
7920           }
7921         }
7922       }
7923     }
7924     current.is32=-1LL;
7925
7926     memcpy(regmap_pre[i],current.regmap,sizeof(current.regmap));
7927     regs[i].wasconst=current.isconst;
7928     regs[i].was32=current.is32;
7929     regs[i].wasdirty=current.dirty;
7930     regs[i].loadedconst=0;
7931     if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP) {
7932       if(i+1<slen) {
7933         current.u=unneeded_reg[i+1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
7934         current.uu=unneeded_reg_upper[i+1]&~((1LL<<us1[i])|(1LL<<us2[i]));
7935         if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
7936         current.u|=1;
7937         current.uu|=1;
7938       } else {
7939         current.u=1;
7940         current.uu=1;
7941       }
7942     } else {
7943       if(i+1<slen) {
7944         current.u=branch_unneeded_reg[i]&~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
7945         current.uu=branch_unneeded_reg_upper[i]&~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
7946         if((~current.uu>>rt1[i+1])&1) current.uu&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
7947         current.u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
7948         current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
7949         current.u|=1;
7950         current.uu|=1;
7951       } else { SysPrintf("oops, branch at end of block with no delay slot\n");exit(1); }
7952     }
7953     is_ds[i]=ds;
7954     if(ds) {
7955       ds=0; // Skip delay slot, already allocated as part of branch
7956       // ...but we need to alloc it in case something jumps here
7957       if(i+1<slen) {
7958         current.u=branch_unneeded_reg[i-1]&unneeded_reg[i+1];
7959         current.uu=branch_unneeded_reg_upper[i-1]&unneeded_reg_upper[i+1];
7960       }else{
7961         current.u=branch_unneeded_reg[i-1];
7962         current.uu=branch_unneeded_reg_upper[i-1];
7963       }
7964       current.u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
7965       current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
7966       if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
7967       current.u|=1;
7968       current.uu|=1;
7969       struct regstat temp;
7970       memcpy(&temp,&current,sizeof(current));
7971       temp.wasdirty=temp.dirty;
7972       temp.was32=temp.is32;
7973       // TODO: Take into account unconditional branches, as below
7974       delayslot_alloc(&temp,i);
7975       memcpy(regs[i].regmap,temp.regmap,sizeof(temp.regmap));
7976       regs[i].wasdirty=temp.wasdirty;
7977       regs[i].was32=temp.was32;
7978       regs[i].dirty=temp.dirty;
7979       regs[i].is32=temp.is32;
7980       regs[i].isconst=0;
7981       regs[i].wasconst=0;
7982       current.isconst=0;
7983       // Create entry (branch target) regmap
7984       for(hr=0;hr<HOST_REGS;hr++)
7985       {
7986         int r=temp.regmap[hr];
7987         if(r>=0) {
7988           if(r!=regmap_pre[i][hr]) {
7989             regs[i].regmap_entry[hr]=-1;
7990           }
7991           else
7992           {
7993             if(r<64){
7994               if((current.u>>r)&1) {
7995                 regs[i].regmap_entry[hr]=-1;
7996                 regs[i].regmap[hr]=-1;
7997                 //Don't clear regs in the delay slot as the branch might need them
7998                 //current.regmap[hr]=-1;
7999               }else
8000                 regs[i].regmap_entry[hr]=r;
8001             }
8002             else {
8003               if((current.uu>>(r&63))&1) {
8004                 regs[i].regmap_entry[hr]=-1;
8005                 regs[i].regmap[hr]=-1;
8006                 //Don't clear regs in the delay slot as the branch might need them
8007                 //current.regmap[hr]=-1;
8008               }else
8009                 regs[i].regmap_entry[hr]=r;
8010             }
8011           }
8012         } else {
8013           // First instruction expects CCREG to be allocated
8014           if(i==0&&hr==HOST_CCREG)
8015             regs[i].regmap_entry[hr]=CCREG;
8016           else
8017             regs[i].regmap_entry[hr]=-1;
8018         }
8019       }
8020     }
8021     else { // Not delay slot
8022       switch(itype[i]) {
8023         case UJUMP:
8024           //current.isconst=0; // DEBUG
8025           //current.wasconst=0; // DEBUG
8026           //regs[i].wasconst=0; // DEBUG
8027           clear_const(&current,rt1[i]);
8028           alloc_cc(&current,i);
8029           dirty_reg(&current,CCREG);
8030           if (rt1[i]==31) {
8031             alloc_reg(&current,i,31);
8032             dirty_reg(&current,31);
8033             //assert(rs1[i+1]!=31&&rs2[i+1]!=31);
8034             //assert(rt1[i+1]!=rt1[i]);
8035             #ifdef REG_PREFETCH
8036             alloc_reg(&current,i,PTEMP);
8037             #endif
8038             //current.is32|=1LL<<rt1[i];
8039           }
8040           ooo[i]=1;
8041           delayslot_alloc(&current,i+1);
8042           //current.isconst=0; // DEBUG
8043           ds=1;
8044           //printf("i=%d, isconst=%x\n",i,current.isconst);
8045           break;
8046         case RJUMP:
8047           //current.isconst=0;
8048           //current.wasconst=0;
8049           //regs[i].wasconst=0;
8050           clear_const(&current,rs1[i]);
8051           clear_const(&current,rt1[i]);
8052           alloc_cc(&current,i);
8053           dirty_reg(&current,CCREG);
8054           if(rs1[i]!=rt1[i+1]&&rs1[i]!=rt2[i+1]) {
8055             alloc_reg(&current,i,rs1[i]);
8056             if (rt1[i]!=0) {
8057               alloc_reg(&current,i,rt1[i]);
8058               dirty_reg(&current,rt1[i]);
8059               assert(rs1[i+1]!=rt1[i]&&rs2[i+1]!=rt1[i]);
8060               assert(rt1[i+1]!=rt1[i]);
8061               #ifdef REG_PREFETCH
8062               alloc_reg(&current,i,PTEMP);
8063               #endif
8064             }
8065             #ifdef USE_MINI_HT
8066             if(rs1[i]==31) { // JALR
8067               alloc_reg(&current,i,RHASH);
8068               #ifndef HOST_IMM_ADDR32
8069               alloc_reg(&current,i,RHTBL);
8070               #endif
8071             }
8072             #endif
8073             delayslot_alloc(&current,i+1);
8074           } else {
8075             // The delay slot overwrites our source register,
8076             // allocate a temporary register to hold the old value.
8077             current.isconst=0;
8078             current.wasconst=0;
8079             regs[i].wasconst=0;
8080             delayslot_alloc(&current,i+1);
8081             current.isconst=0;
8082             alloc_reg(&current,i,RTEMP);
8083           }
8084           //current.isconst=0; // DEBUG
8085           ooo[i]=1;
8086           ds=1;
8087           break;
8088         case CJUMP:
8089           //current.isconst=0;
8090           //current.wasconst=0;
8091           //regs[i].wasconst=0;
8092           clear_const(&current,rs1[i]);
8093           clear_const(&current,rs2[i]);
8094           if((opcode[i]&0x3E)==4) // BEQ/BNE
8095           {
8096             alloc_cc(&current,i);
8097             dirty_reg(&current,CCREG);
8098             if(rs1[i]) alloc_reg(&current,i,rs1[i]);
8099             if(rs2[i]) alloc_reg(&current,i,rs2[i]);
8100             if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
8101             {
8102               if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
8103               if(rs2[i]) alloc_reg64(&current,i,rs2[i]);
8104             }
8105             if((rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]))||
8106                (rs2[i]&&(rs2[i]==rt1[i+1]||rs2[i]==rt2[i+1]))) {
8107               // The delay slot overwrites one of our conditions.
8108               // Allocate the branch condition registers instead.
8109               current.isconst=0;
8110               current.wasconst=0;
8111               regs[i].wasconst=0;
8112               if(rs1[i]) alloc_reg(&current,i,rs1[i]);
8113               if(rs2[i]) alloc_reg(&current,i,rs2[i]);
8114               if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
8115               {
8116                 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
8117                 if(rs2[i]) alloc_reg64(&current,i,rs2[i]);
8118               }
8119             }
8120             else
8121             {
8122               ooo[i]=1;
8123               delayslot_alloc(&current,i+1);
8124             }
8125           }
8126           else
8127           if((opcode[i]&0x3E)==6) // BLEZ/BGTZ
8128           {
8129             alloc_cc(&current,i);
8130             dirty_reg(&current,CCREG);
8131             alloc_reg(&current,i,rs1[i]);
8132             if(!(current.is32>>rs1[i]&1))
8133             {
8134               alloc_reg64(&current,i,rs1[i]);
8135             }
8136             if(rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1])) {
8137               // The delay slot overwrites one of our conditions.
8138               // Allocate the branch condition registers instead.
8139               current.isconst=0;
8140               current.wasconst=0;
8141               regs[i].wasconst=0;
8142               if(rs1[i]) alloc_reg(&current,i,rs1[i]);
8143               if(!((current.is32>>rs1[i])&1))
8144               {
8145                 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
8146               }
8147             }
8148             else
8149             {
8150               ooo[i]=1;
8151               delayslot_alloc(&current,i+1);
8152             }
8153           }
8154           else
8155           // Don't alloc the delay slot yet because we might not execute it
8156           if((opcode[i]&0x3E)==0x14) // BEQL/BNEL
8157           {
8158             current.isconst=0;
8159             current.wasconst=0;
8160             regs[i].wasconst=0;
8161             alloc_cc(&current,i);
8162             dirty_reg(&current,CCREG);
8163             alloc_reg(&current,i,rs1[i]);
8164             alloc_reg(&current,i,rs2[i]);
8165             if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
8166             {
8167               alloc_reg64(&current,i,rs1[i]);
8168               alloc_reg64(&current,i,rs2[i]);
8169             }
8170           }
8171           else
8172           if((opcode[i]&0x3E)==0x16) // BLEZL/BGTZL
8173           {
8174             current.isconst=0;
8175             current.wasconst=0;
8176             regs[i].wasconst=0;
8177             alloc_cc(&current,i);
8178             dirty_reg(&current,CCREG);
8179             alloc_reg(&current,i,rs1[i]);
8180             if(!(current.is32>>rs1[i]&1))
8181             {
8182               alloc_reg64(&current,i,rs1[i]);
8183             }
8184           }
8185           ds=1;
8186           //current.isconst=0;
8187           break;
8188         case SJUMP:
8189           //current.isconst=0;
8190           //current.wasconst=0;
8191           //regs[i].wasconst=0;
8192           clear_const(&current,rs1[i]);
8193           clear_const(&current,rt1[i]);
8194           //if((opcode2[i]&0x1E)==0x0) // BLTZ/BGEZ
8195           if((opcode2[i]&0x0E)==0x0) // BLTZ/BGEZ
8196           {
8197             alloc_cc(&current,i);
8198             dirty_reg(&current,CCREG);
8199             alloc_reg(&current,i,rs1[i]);
8200             if(!(current.is32>>rs1[i]&1))
8201             {
8202               alloc_reg64(&current,i,rs1[i]);
8203             }
8204             if (rt1[i]==31) { // BLTZAL/BGEZAL
8205               alloc_reg(&current,i,31);
8206               dirty_reg(&current,31);
8207               //#ifdef REG_PREFETCH
8208               //alloc_reg(&current,i,PTEMP);
8209               //#endif
8210               //current.is32|=1LL<<rt1[i];
8211             }
8212             if((rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1])) // The delay slot overwrites the branch condition.
8213                ||(rt1[i]==31&&(rs1[i+1]==31||rs2[i+1]==31||rt1[i+1]==31||rt2[i+1]==31))) { // DS touches $ra
8214               // Allocate the branch condition registers instead.
8215               current.isconst=0;
8216               current.wasconst=0;
8217               regs[i].wasconst=0;
8218               if(rs1[i]) alloc_reg(&current,i,rs1[i]);
8219               if(!((current.is32>>rs1[i])&1))
8220               {
8221                 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
8222               }
8223             }
8224             else
8225             {
8226               ooo[i]=1;
8227               delayslot_alloc(&current,i+1);
8228             }
8229           }
8230           else
8231           // Don't alloc the delay slot yet because we might not execute it
8232           if((opcode2[i]&0x1E)==0x2) // BLTZL/BGEZL
8233           {
8234             current.isconst=0;
8235             current.wasconst=0;
8236             regs[i].wasconst=0;
8237             alloc_cc(&current,i);
8238             dirty_reg(&current,CCREG);
8239             alloc_reg(&current,i,rs1[i]);
8240             if(!(current.is32>>rs1[i]&1))
8241             {
8242               alloc_reg64(&current,i,rs1[i]);
8243             }
8244           }
8245           ds=1;
8246           //current.isconst=0;
8247           break;
8248         case FJUMP:
8249           current.isconst=0;
8250           current.wasconst=0;
8251           regs[i].wasconst=0;
8252           if(likely[i]==0) // BC1F/BC1T
8253           {
8254             // TODO: Theoretically we can run out of registers here on x86.
8255             // The delay slot can allocate up to six, and we need to check
8256             // CSREG before executing the delay slot.  Possibly we can drop
8257             // the cycle count and then reload it after checking that the
8258             // FPU is in a usable state, or don't do out-of-order execution.
8259             alloc_cc(&current,i);
8260             dirty_reg(&current,CCREG);
8261             alloc_reg(&current,i,FSREG);
8262             alloc_reg(&current,i,CSREG);
8263             if(itype[i+1]==FCOMP) {
8264               // The delay slot overwrites the branch condition.
8265               // Allocate the branch condition registers instead.
8266               alloc_cc(&current,i);
8267               dirty_reg(&current,CCREG);
8268               alloc_reg(&current,i,CSREG);
8269               alloc_reg(&current,i,FSREG);
8270             }
8271             else {
8272               ooo[i]=1;
8273               delayslot_alloc(&current,i+1);
8274               alloc_reg(&current,i+1,CSREG);
8275             }
8276           }
8277           else
8278           // Don't alloc the delay slot yet because we might not execute it
8279           if(likely[i]) // BC1FL/BC1TL
8280           {
8281             alloc_cc(&current,i);
8282             dirty_reg(&current,CCREG);
8283             alloc_reg(&current,i,CSREG);
8284             alloc_reg(&current,i,FSREG);
8285           }
8286           ds=1;
8287           current.isconst=0;
8288           break;
8289         case IMM16:
8290           imm16_alloc(&current,i);
8291           break;
8292         case LOAD:
8293         case LOADLR:
8294           load_alloc(&current,i);
8295           break;
8296         case STORE:
8297         case STORELR:
8298           store_alloc(&current,i);
8299           break;
8300         case ALU:
8301           alu_alloc(&current,i);
8302           break;
8303         case SHIFT:
8304           shift_alloc(&current,i);
8305           break;
8306         case MULTDIV:
8307           multdiv_alloc(&current,i);
8308           break;
8309         case SHIFTIMM:
8310           shiftimm_alloc(&current,i);
8311           break;
8312         case MOV:
8313           mov_alloc(&current,i);
8314           break;
8315         case COP0:
8316           cop0_alloc(&current,i);
8317           break;
8318         case COP1:
8319         case COP2:
8320           cop1_alloc(&current,i);
8321           break;
8322         case C1LS:
8323           c1ls_alloc(&current,i);
8324           break;
8325         case C2LS:
8326           c2ls_alloc(&current,i);
8327           break;
8328         case C2OP:
8329           c2op_alloc(&current,i);
8330           break;
8331         case FCONV:
8332           fconv_alloc(&current,i);
8333           break;
8334         case FLOAT:
8335           float_alloc(&current,i);
8336           break;
8337         case FCOMP:
8338           fcomp_alloc(&current,i);
8339           break;
8340         case SYSCALL:
8341         case HLECALL:
8342         case INTCALL:
8343           syscall_alloc(&current,i);
8344           break;
8345         case SPAN:
8346           pagespan_alloc(&current,i);
8347           break;
8348       }
8349
8350       // Drop the upper half of registers that have become 32-bit
8351       current.uu|=current.is32&((1LL<<rt1[i])|(1LL<<rt2[i]));
8352       if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP) {
8353         current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
8354         if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
8355         current.uu|=1;
8356       } else {
8357         current.uu|=current.is32&((1LL<<rt1[i+1])|(1LL<<rt2[i+1]));
8358         current.uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
8359         if((~current.uu>>rt1[i+1])&1) current.uu&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
8360         current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
8361         current.uu|=1;
8362       }
8363
8364       // Create entry (branch target) regmap
8365       for(hr=0;hr<HOST_REGS;hr++)
8366       {
8367         int r,or;
8368         r=current.regmap[hr];
8369         if(r>=0) {
8370           if(r!=regmap_pre[i][hr]) {
8371             // TODO: delay slot (?)
8372             or=get_reg(regmap_pre[i],r); // Get old mapping for this register
8373             if(or<0||(r&63)>=TEMPREG){
8374               regs[i].regmap_entry[hr]=-1;
8375             }
8376             else
8377             {
8378               // Just move it to a different register
8379               regs[i].regmap_entry[hr]=r;
8380               // If it was dirty before, it's still dirty
8381               if((regs[i].wasdirty>>or)&1) dirty_reg(&current,r&63);
8382             }
8383           }
8384           else
8385           {
8386             // Unneeded
8387             if(r==0){
8388               regs[i].regmap_entry[hr]=0;
8389             }
8390             else
8391             if(r<64){
8392               if((current.u>>r)&1) {
8393                 regs[i].regmap_entry[hr]=-1;
8394                 //regs[i].regmap[hr]=-1;
8395                 current.regmap[hr]=-1;
8396               }else
8397                 regs[i].regmap_entry[hr]=r;
8398             }
8399             else {
8400               if((current.uu>>(r&63))&1) {
8401                 regs[i].regmap_entry[hr]=-1;
8402                 //regs[i].regmap[hr]=-1;
8403                 current.regmap[hr]=-1;
8404               }else
8405                 regs[i].regmap_entry[hr]=r;
8406             }
8407           }
8408         } else {
8409           // Branches expect CCREG to be allocated at the target
8410           if(regmap_pre[i][hr]==CCREG)
8411             regs[i].regmap_entry[hr]=CCREG;
8412           else
8413             regs[i].regmap_entry[hr]=-1;
8414         }
8415       }
8416       memcpy(regs[i].regmap,current.regmap,sizeof(current.regmap));
8417     }
8418
8419     if(i>0&&(itype[i-1]==STORE||itype[i-1]==STORELR||(itype[i-1]==C2LS&&opcode[i-1]==0x3a))&&(u_int)imm[i-1]<0x800)
8420       current.waswritten|=1<<rs1[i-1];
8421     current.waswritten&=~(1<<rt1[i]);
8422     current.waswritten&=~(1<<rt2[i]);
8423     if((itype[i]==STORE||itype[i]==STORELR||(itype[i]==C2LS&&opcode[i]==0x3a))&&(u_int)imm[i]>=0x800)
8424       current.waswritten&=~(1<<rs1[i]);
8425
8426     /* Branch post-alloc */
8427     if(i>0)
8428     {
8429       current.was32=current.is32;
8430       current.wasdirty=current.dirty;
8431       switch(itype[i-1]) {
8432         case UJUMP:
8433           memcpy(&branch_regs[i-1],&current,sizeof(current));
8434           branch_regs[i-1].isconst=0;
8435           branch_regs[i-1].wasconst=0;
8436           branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
8437           branch_regs[i-1].uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
8438           alloc_cc(&branch_regs[i-1],i-1);
8439           dirty_reg(&branch_regs[i-1],CCREG);
8440           if(rt1[i-1]==31) { // JAL
8441             alloc_reg(&branch_regs[i-1],i-1,31);
8442             dirty_reg(&branch_regs[i-1],31);
8443             branch_regs[i-1].is32|=1LL<<31;
8444           }
8445           memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
8446           memcpy(constmap[i],constmap[i-1],sizeof(current_constmap));
8447           break;
8448         case RJUMP:
8449           memcpy(&branch_regs[i-1],&current,sizeof(current));
8450           branch_regs[i-1].isconst=0;
8451           branch_regs[i-1].wasconst=0;
8452           branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
8453           branch_regs[i-1].uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
8454           alloc_cc(&branch_regs[i-1],i-1);
8455           dirty_reg(&branch_regs[i-1],CCREG);
8456           alloc_reg(&branch_regs[i-1],i-1,rs1[i-1]);
8457           if(rt1[i-1]!=0) { // JALR
8458             alloc_reg(&branch_regs[i-1],i-1,rt1[i-1]);
8459             dirty_reg(&branch_regs[i-1],rt1[i-1]);
8460             branch_regs[i-1].is32|=1LL<<rt1[i-1];
8461           }
8462           #ifdef USE_MINI_HT
8463           if(rs1[i-1]==31) { // JALR
8464             alloc_reg(&branch_regs[i-1],i-1,RHASH);
8465             #ifndef HOST_IMM_ADDR32
8466             alloc_reg(&branch_regs[i-1],i-1,RHTBL);
8467             #endif
8468           }
8469           #endif
8470           memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
8471           memcpy(constmap[i],constmap[i-1],sizeof(current_constmap));
8472           break;
8473         case CJUMP:
8474           if((opcode[i-1]&0x3E)==4) // BEQ/BNE
8475           {
8476             alloc_cc(&current,i-1);
8477             dirty_reg(&current,CCREG);
8478             if((rs1[i-1]&&(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]))||
8479                (rs2[i-1]&&(rs2[i-1]==rt1[i]||rs2[i-1]==rt2[i]))) {
8480               // The delay slot overwrote one of our conditions
8481               // Delay slot goes after the test (in order)
8482               current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
8483               current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
8484               if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
8485               current.u|=1;
8486               current.uu|=1;
8487               delayslot_alloc(&current,i);
8488               current.isconst=0;
8489             }
8490             else
8491             {
8492               current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
8493               current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
8494               // Alloc the branch condition registers
8495               if(rs1[i-1]) alloc_reg(&current,i-1,rs1[i-1]);
8496               if(rs2[i-1]) alloc_reg(&current,i-1,rs2[i-1]);
8497               if(!((current.is32>>rs1[i-1])&(current.is32>>rs2[i-1])&1))
8498               {
8499                 if(rs1[i-1]) alloc_reg64(&current,i-1,rs1[i-1]);
8500                 if(rs2[i-1]) alloc_reg64(&current,i-1,rs2[i-1]);
8501               }
8502             }
8503             memcpy(&branch_regs[i-1],&current,sizeof(current));
8504             branch_regs[i-1].isconst=0;
8505             branch_regs[i-1].wasconst=0;
8506             memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
8507             memcpy(constmap[i],constmap[i-1],sizeof(current_constmap));
8508           }
8509           else
8510           if((opcode[i-1]&0x3E)==6) // BLEZ/BGTZ
8511           {
8512             alloc_cc(&current,i-1);
8513             dirty_reg(&current,CCREG);
8514             if(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]) {
8515               // The delay slot overwrote the branch condition
8516               // Delay slot goes after the test (in order)
8517               current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
8518               current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
8519               if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
8520               current.u|=1;
8521               current.uu|=1;
8522               delayslot_alloc(&current,i);
8523               current.isconst=0;
8524             }
8525             else
8526             {
8527               current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
8528               current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
8529               // Alloc the branch condition register
8530               alloc_reg(&current,i-1,rs1[i-1]);
8531               if(!(current.is32>>rs1[i-1]&1))
8532               {
8533                 alloc_reg64(&current,i-1,rs1[i-1]);
8534               }
8535             }
8536             memcpy(&branch_regs[i-1],&current,sizeof(current));
8537             branch_regs[i-1].isconst=0;
8538             branch_regs[i-1].wasconst=0;
8539             memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
8540             memcpy(constmap[i],constmap[i-1],sizeof(current_constmap));
8541           }
8542           else
8543           // Alloc the delay slot in case the branch is taken
8544           if((opcode[i-1]&0x3E)==0x14) // BEQL/BNEL
8545           {
8546             memcpy(&branch_regs[i-1],&current,sizeof(current));
8547             branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
8548             branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
8549             if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
8550             alloc_cc(&branch_regs[i-1],i);
8551             dirty_reg(&branch_regs[i-1],CCREG);
8552             delayslot_alloc(&branch_regs[i-1],i);
8553             branch_regs[i-1].isconst=0;
8554             alloc_reg(&current,i,CCREG); // Not taken path
8555             dirty_reg(&current,CCREG);
8556             memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
8557           }
8558           else
8559           if((opcode[i-1]&0x3E)==0x16) // BLEZL/BGTZL
8560           {
8561             memcpy(&branch_regs[i-1],&current,sizeof(current));
8562             branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
8563             branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
8564             if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
8565             alloc_cc(&branch_regs[i-1],i);
8566             dirty_reg(&branch_regs[i-1],CCREG);
8567             delayslot_alloc(&branch_regs[i-1],i);
8568             branch_regs[i-1].isconst=0;
8569             alloc_reg(&current,i,CCREG); // Not taken path
8570             dirty_reg(&current,CCREG);
8571             memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
8572           }
8573           break;
8574         case SJUMP:
8575           //if((opcode2[i-1]&0x1E)==0) // BLTZ/BGEZ
8576           if((opcode2[i-1]&0x0E)==0) // BLTZ/BGEZ
8577           {
8578             alloc_cc(&current,i-1);
8579             dirty_reg(&current,CCREG);
8580             if(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]) {
8581               // The delay slot overwrote the branch condition
8582               // Delay slot goes after the test (in order)
8583               current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
8584               current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
8585               if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
8586               current.u|=1;
8587               current.uu|=1;
8588               delayslot_alloc(&current,i);
8589               current.isconst=0;
8590             }
8591             else
8592             {
8593               current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
8594               current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
8595               // Alloc the branch condition register
8596               alloc_reg(&current,i-1,rs1[i-1]);
8597               if(!(current.is32>>rs1[i-1]&1))
8598               {
8599                 alloc_reg64(&current,i-1,rs1[i-1]);
8600               }
8601             }
8602             memcpy(&branch_regs[i-1],&current,sizeof(current));
8603             branch_regs[i-1].isconst=0;
8604             branch_regs[i-1].wasconst=0;
8605             memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
8606             memcpy(constmap[i],constmap[i-1],sizeof(current_constmap));
8607           }
8608           else
8609           // Alloc the delay slot in case the branch is taken
8610           if((opcode2[i-1]&0x1E)==2) // BLTZL/BGEZL
8611           {
8612             memcpy(&branch_regs[i-1],&current,sizeof(current));
8613             branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
8614             branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
8615             if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
8616             alloc_cc(&branch_regs[i-1],i);
8617             dirty_reg(&branch_regs[i-1],CCREG);
8618             delayslot_alloc(&branch_regs[i-1],i);
8619             branch_regs[i-1].isconst=0;
8620             alloc_reg(&current,i,CCREG); // Not taken path
8621             dirty_reg(&current,CCREG);
8622             memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
8623           }
8624           // FIXME: BLTZAL/BGEZAL
8625           if(opcode2[i-1]&0x10) { // BxxZAL
8626             alloc_reg(&branch_regs[i-1],i-1,31);
8627             dirty_reg(&branch_regs[i-1],31);
8628             branch_regs[i-1].is32|=1LL<<31;
8629           }
8630           break;
8631         case FJUMP:
8632           if(likely[i-1]==0) // BC1F/BC1T
8633           {
8634             alloc_cc(&current,i-1);
8635             dirty_reg(&current,CCREG);
8636             if(itype[i]==FCOMP) {
8637               // The delay slot overwrote the branch condition
8638               // Delay slot goes after the test (in order)
8639               delayslot_alloc(&current,i);
8640               current.isconst=0;
8641             }
8642             else
8643             {
8644               current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
8645               current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
8646               // Alloc the branch condition register
8647               alloc_reg(&current,i-1,FSREG);
8648             }
8649             memcpy(&branch_regs[i-1],&current,sizeof(current));
8650             memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
8651           }
8652           else // BC1FL/BC1TL
8653           {
8654             // Alloc the delay slot in case the branch is taken
8655             memcpy(&branch_regs[i-1],&current,sizeof(current));
8656             branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
8657             branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
8658             if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
8659             alloc_cc(&branch_regs[i-1],i);
8660             dirty_reg(&branch_regs[i-1],CCREG);
8661             delayslot_alloc(&branch_regs[i-1],i);
8662             branch_regs[i-1].isconst=0;
8663             alloc_reg(&current,i,CCREG); // Not taken path
8664             dirty_reg(&current,CCREG);
8665             memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
8666           }
8667           break;
8668       }
8669
8670       if(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)
8671       {
8672         if(rt1[i-1]==31) // JAL/JALR
8673         {
8674           // Subroutine call will return here, don't alloc any registers
8675           current.is32=1;
8676           current.dirty=0;
8677           clear_all_regs(current.regmap);
8678           alloc_reg(&current,i,CCREG);
8679           dirty_reg(&current,CCREG);
8680         }
8681         else if(i+1<slen)
8682         {
8683           // Internal branch will jump here, match registers to caller
8684           current.is32=0x3FFFFFFFFLL;
8685           current.dirty=0;
8686           clear_all_regs(current.regmap);
8687           alloc_reg(&current,i,CCREG);
8688           dirty_reg(&current,CCREG);
8689           for(j=i-1;j>=0;j--)
8690           {
8691             if(ba[j]==start+i*4+4) {
8692               memcpy(current.regmap,branch_regs[j].regmap,sizeof(current.regmap));
8693               current.is32=branch_regs[j].is32;
8694               current.dirty=branch_regs[j].dirty;
8695               break;
8696             }
8697           }
8698           while(j>=0) {
8699             if(ba[j]==start+i*4+4) {
8700               for(hr=0;hr<HOST_REGS;hr++) {
8701                 if(current.regmap[hr]!=branch_regs[j].regmap[hr]) {
8702                   current.regmap[hr]=-1;
8703                 }
8704                 current.is32&=branch_regs[j].is32;
8705                 current.dirty&=branch_regs[j].dirty;
8706               }
8707             }
8708             j--;
8709           }
8710         }
8711       }
8712     }
8713
8714     // Count cycles in between branches
8715     ccadj[i]=cc;
8716     if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP||itype[i]==SYSCALL||itype[i]==HLECALL))
8717     {
8718       cc=0;
8719     }
8720 #if !defined(DRC_DBG)
8721     else if(itype[i]==C2OP&&gte_cycletab[source[i]&0x3f]>2)
8722     {
8723       // GTE runs in parallel until accessed, divide by 2 for a rough guess
8724       cc+=gte_cycletab[source[i]&0x3f]/2;
8725     }
8726     else if(/*itype[i]==LOAD||itype[i]==STORE||*/itype[i]==C1LS) // load,store causes weird timing issues
8727     {
8728       cc+=2; // 2 cycle penalty (after CLOCK_DIVIDER)
8729     }
8730     else if(i>1&&itype[i]==STORE&&itype[i-1]==STORE&&itype[i-2]==STORE&&!bt[i])
8731     {
8732       cc+=4;
8733     }
8734     else if(itype[i]==C2LS)
8735     {
8736       cc+=4;
8737     }
8738 #endif
8739     else
8740     {
8741       cc++;
8742     }
8743
8744     flush_dirty_uppers(&current);
8745     if(!is_ds[i]) {
8746       regs[i].is32=current.is32;
8747       regs[i].dirty=current.dirty;
8748       regs[i].isconst=current.isconst;
8749       memcpy(constmap[i],current_constmap,sizeof(current_constmap));
8750     }
8751     for(hr=0;hr<HOST_REGS;hr++) {
8752       if(hr!=EXCLUDE_REG&&regs[i].regmap[hr]>=0) {
8753         if(regmap_pre[i][hr]!=regs[i].regmap[hr]) {
8754           regs[i].wasconst&=~(1<<hr);
8755         }
8756       }
8757     }
8758     if(current.regmap[HOST_BTREG]==BTREG) current.regmap[HOST_BTREG]=-1;
8759     regs[i].waswritten=current.waswritten;
8760   }
8761
8762   /* Pass 4 - Cull unused host registers */
8763
8764   uint64_t nr=0;
8765
8766   for (i=slen-1;i>=0;i--)
8767   {
8768     int hr;
8769     if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
8770     {
8771       if(ba[i]<start || ba[i]>=(start+slen*4))
8772       {
8773         // Branch out of this block, don't need anything
8774         nr=0;
8775       }
8776       else
8777       {
8778         // Internal branch
8779         // Need whatever matches the target
8780         nr=0;
8781         int t=(ba[i]-start)>>2;
8782         for(hr=0;hr<HOST_REGS;hr++)
8783         {
8784           if(regs[i].regmap_entry[hr]>=0) {
8785             if(regs[i].regmap_entry[hr]==regs[t].regmap_entry[hr]) nr|=1<<hr;
8786           }
8787         }
8788       }
8789       // Conditional branch may need registers for following instructions
8790       if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
8791       {
8792         if(i<slen-2) {
8793           nr|=needed_reg[i+2];
8794           for(hr=0;hr<HOST_REGS;hr++)
8795           {
8796             if(regmap_pre[i+2][hr]>=0&&get_reg(regs[i+2].regmap_entry,regmap_pre[i+2][hr])<0) nr&=~(1<<hr);
8797             //if((regmap_entry[i+2][hr])>=0) if(!((nr>>hr)&1)) printf("%x-bogus(%d=%d)\n",start+i*4,hr,regmap_entry[i+2][hr]);
8798           }
8799         }
8800       }
8801       // Don't need stuff which is overwritten
8802       //if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
8803       //if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
8804       // Merge in delay slot
8805       for(hr=0;hr<HOST_REGS;hr++)
8806       {
8807         if(!likely[i]) {
8808           // These are overwritten unless the branch is "likely"
8809           // and the delay slot is nullified if not taken
8810           if(rt1[i+1]&&rt1[i+1]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
8811           if(rt2[i+1]&&rt2[i+1]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
8812         }
8813         if(us1[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
8814         if(us2[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
8815         if(rs1[i+1]==regmap_pre[i][hr]) nr|=1<<hr;
8816         if(rs2[i+1]==regmap_pre[i][hr]) nr|=1<<hr;
8817         if(us1[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
8818         if(us2[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
8819         if(rs1[i+1]==regs[i].regmap_entry[hr]) nr|=1<<hr;
8820         if(rs2[i+1]==regs[i].regmap_entry[hr]) nr|=1<<hr;
8821         if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1)) {
8822           if(dep1[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
8823           if(dep2[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
8824         }
8825         if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1)) {
8826           if(dep1[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
8827           if(dep2[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
8828         }
8829         if(itype[i+1]==STORE || itype[i+1]==STORELR || (opcode[i+1]&0x3b)==0x39 || (opcode[i+1]&0x3b)==0x3a) {
8830           if(regmap_pre[i][hr]==INVCP) nr|=1<<hr;
8831           if(regs[i].regmap_entry[hr]==INVCP) nr|=1<<hr;
8832         }
8833       }
8834     }
8835     else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
8836     {
8837       // SYSCALL instruction (software interrupt)
8838       nr=0;
8839     }
8840     else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
8841     {
8842       // ERET instruction (return from interrupt)
8843       nr=0;
8844     }
8845     else // Non-branch
8846     {
8847       if(i<slen-1) {
8848         for(hr=0;hr<HOST_REGS;hr++) {
8849           if(regmap_pre[i+1][hr]>=0&&get_reg(regs[i+1].regmap_entry,regmap_pre[i+1][hr])<0) nr&=~(1<<hr);
8850           if(regs[i].regmap[hr]!=regmap_pre[i+1][hr]) nr&=~(1<<hr);
8851           if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
8852           if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
8853         }
8854       }
8855     }
8856     for(hr=0;hr<HOST_REGS;hr++)
8857     {
8858       // Overwritten registers are not needed
8859       if(rt1[i]&&rt1[i]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
8860       if(rt2[i]&&rt2[i]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
8861       if(FTEMP==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
8862       // Source registers are needed
8863       if(us1[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
8864       if(us2[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
8865       if(rs1[i]==regmap_pre[i][hr]) nr|=1<<hr;
8866       if(rs2[i]==regmap_pre[i][hr]) nr|=1<<hr;
8867       if(us1[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
8868       if(us2[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
8869       if(rs1[i]==regs[i].regmap_entry[hr]) nr|=1<<hr;
8870       if(rs2[i]==regs[i].regmap_entry[hr]) nr|=1<<hr;
8871       if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1)) {
8872         if(dep1[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
8873         if(dep1[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
8874       }
8875       if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1)) {
8876         if(dep2[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
8877         if(dep2[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
8878       }
8879       if(itype[i]==STORE || itype[i]==STORELR || (opcode[i]&0x3b)==0x39 || (opcode[i]&0x3b)==0x3a) {
8880         if(regmap_pre[i][hr]==INVCP) nr|=1<<hr;
8881         if(regs[i].regmap_entry[hr]==INVCP) nr|=1<<hr;
8882       }
8883       // Don't store a register immediately after writing it,
8884       // may prevent dual-issue.
8885       // But do so if this is a branch target, otherwise we
8886       // might have to load the register before the branch.
8887       if(i>0&&!bt[i]&&((regs[i].wasdirty>>hr)&1)) {
8888         if((regmap_pre[i][hr]>0&&regmap_pre[i][hr]<64&&!((unneeded_reg[i]>>regmap_pre[i][hr])&1)) ||
8889            (regmap_pre[i][hr]>64&&!((unneeded_reg_upper[i]>>(regmap_pre[i][hr]&63))&1)) ) {
8890           if(rt1[i-1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
8891           if(rt2[i-1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
8892         }
8893         if((regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64&&!((unneeded_reg[i]>>regs[i].regmap_entry[hr])&1)) ||
8894            (regs[i].regmap_entry[hr]>64&&!((unneeded_reg_upper[i]>>(regs[i].regmap_entry[hr]&63))&1)) ) {
8895           if(rt1[i-1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
8896           if(rt2[i-1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
8897         }
8898       }
8899     }
8900     // Cycle count is needed at branches.  Assume it is needed at the target too.
8901     if(i==0||bt[i]||itype[i]==CJUMP||itype[i]==FJUMP||itype[i]==SPAN) {
8902       if(regmap_pre[i][HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
8903       if(regs[i].regmap_entry[HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
8904     }
8905     // Save it
8906     needed_reg[i]=nr;
8907
8908     // Deallocate unneeded registers
8909     for(hr=0;hr<HOST_REGS;hr++)
8910     {
8911       if(!((nr>>hr)&1)) {
8912         if(regs[i].regmap_entry[hr]!=CCREG) regs[i].regmap_entry[hr]=-1;
8913         if((regs[i].regmap[hr]&63)!=rs1[i] && (regs[i].regmap[hr]&63)!=rs2[i] &&
8914            (regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
8915            (regs[i].regmap[hr]&63)!=PTEMP && (regs[i].regmap[hr]&63)!=CCREG)
8916         {
8917           if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
8918           {
8919             if(likely[i]) {
8920               regs[i].regmap[hr]=-1;
8921               regs[i].isconst&=~(1<<hr);
8922               if(i<slen-2) {
8923                 regmap_pre[i+2][hr]=-1;
8924                 regs[i+2].wasconst&=~(1<<hr);
8925               }
8926             }
8927           }
8928         }
8929         if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
8930         {
8931           int d1=0,d2=0,map=0,temp=0;
8932           if(get_reg(regs[i].regmap,rt1[i+1]|64)>=0||get_reg(branch_regs[i].regmap,rt1[i+1]|64)>=0)
8933           {
8934             d1=dep1[i+1];
8935             d2=dep2[i+1];
8936           }
8937           if(itype[i+1]==STORE || itype[i+1]==STORELR ||
8938              (opcode[i+1]&0x3b)==0x39 || (opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1 || SWC2/SDC2
8939             map=INVCP;
8940           }
8941           if(itype[i+1]==LOADLR || itype[i+1]==STORELR ||
8942              itype[i+1]==C1LS || itype[i+1]==C2LS)
8943             temp=FTEMP;
8944           if((regs[i].regmap[hr]&63)!=rs1[i] && (regs[i].regmap[hr]&63)!=rs2[i] &&
8945              (regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
8946              (regs[i].regmap[hr]&63)!=rt1[i+1] && (regs[i].regmap[hr]&63)!=rt2[i+1] &&
8947              (regs[i].regmap[hr]^64)!=us1[i+1] && (regs[i].regmap[hr]^64)!=us2[i+1] &&
8948              (regs[i].regmap[hr]^64)!=d1 && (regs[i].regmap[hr]^64)!=d2 &&
8949              regs[i].regmap[hr]!=rs1[i+1] && regs[i].regmap[hr]!=rs2[i+1] &&
8950              (regs[i].regmap[hr]&63)!=temp && regs[i].regmap[hr]!=PTEMP &&
8951              regs[i].regmap[hr]!=RHASH && regs[i].regmap[hr]!=RHTBL &&
8952              regs[i].regmap[hr]!=RTEMP && regs[i].regmap[hr]!=CCREG &&
8953              regs[i].regmap[hr]!=map )
8954           {
8955             regs[i].regmap[hr]=-1;
8956             regs[i].isconst&=~(1<<hr);
8957             if((branch_regs[i].regmap[hr]&63)!=rs1[i] && (branch_regs[i].regmap[hr]&63)!=rs2[i] &&
8958                (branch_regs[i].regmap[hr]&63)!=rt1[i] && (branch_regs[i].regmap[hr]&63)!=rt2[i] &&
8959                (branch_regs[i].regmap[hr]&63)!=rt1[i+1] && (branch_regs[i].regmap[hr]&63)!=rt2[i+1] &&
8960                (branch_regs[i].regmap[hr]^64)!=us1[i+1] && (branch_regs[i].regmap[hr]^64)!=us2[i+1] &&
8961                (branch_regs[i].regmap[hr]^64)!=d1 && (branch_regs[i].regmap[hr]^64)!=d2 &&
8962                branch_regs[i].regmap[hr]!=rs1[i+1] && branch_regs[i].regmap[hr]!=rs2[i+1] &&
8963                (branch_regs[i].regmap[hr]&63)!=temp && branch_regs[i].regmap[hr]!=PTEMP &&
8964                branch_regs[i].regmap[hr]!=RHASH && branch_regs[i].regmap[hr]!=RHTBL &&
8965                branch_regs[i].regmap[hr]!=RTEMP && branch_regs[i].regmap[hr]!=CCREG &&
8966                branch_regs[i].regmap[hr]!=map)
8967             {
8968               branch_regs[i].regmap[hr]=-1;
8969               branch_regs[i].regmap_entry[hr]=-1;
8970               if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
8971               {
8972                 if(!likely[i]&&i<slen-2) {
8973                   regmap_pre[i+2][hr]=-1;
8974                   regs[i+2].wasconst&=~(1<<hr);
8975                 }
8976               }
8977             }
8978           }
8979         }
8980         else
8981         {
8982           // Non-branch
8983           if(i>0)
8984           {
8985             int d1=0,d2=0,map=-1,temp=-1;
8986             if(get_reg(regs[i].regmap,rt1[i]|64)>=0)
8987             {
8988               d1=dep1[i];
8989               d2=dep2[i];
8990             }
8991             if(itype[i]==STORE || itype[i]==STORELR ||
8992                       (opcode[i]&0x3b)==0x39 || (opcode[i]&0x3b)==0x3a) { // SWC1/SDC1 || SWC2/SDC2
8993               map=INVCP;
8994             }
8995             if(itype[i]==LOADLR || itype[i]==STORELR ||
8996                itype[i]==C1LS || itype[i]==C2LS)
8997               temp=FTEMP;
8998             if((regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
8999                (regs[i].regmap[hr]^64)!=us1[i] && (regs[i].regmap[hr]^64)!=us2[i] &&
9000                (regs[i].regmap[hr]^64)!=d1 && (regs[i].regmap[hr]^64)!=d2 &&
9001                regs[i].regmap[hr]!=rs1[i] && regs[i].regmap[hr]!=rs2[i] &&
9002                (regs[i].regmap[hr]&63)!=temp && regs[i].regmap[hr]!=map &&
9003                (itype[i]!=SPAN||regs[i].regmap[hr]!=CCREG))
9004             {
9005               if(i<slen-1&&!is_ds[i]) {
9006                 if(regmap_pre[i+1][hr]!=-1 || regs[i].regmap[hr]!=-1)
9007                 if(regmap_pre[i+1][hr]!=regs[i].regmap[hr])
9008                 if(regs[i].regmap[hr]<64||!((regs[i].was32>>(regs[i].regmap[hr]&63))&1))
9009                 {
9010                   SysPrintf("fail: %x (%d %d!=%d)\n",start+i*4,hr,regmap_pre[i+1][hr],regs[i].regmap[hr]);
9011                   assert(regmap_pre[i+1][hr]==regs[i].regmap[hr]);
9012                 }
9013                 regmap_pre[i+1][hr]=-1;
9014                 if(regs[i+1].regmap_entry[hr]==CCREG) regs[i+1].regmap_entry[hr]=-1;
9015                 regs[i+1].wasconst&=~(1<<hr);
9016               }
9017               regs[i].regmap[hr]=-1;
9018               regs[i].isconst&=~(1<<hr);
9019             }
9020           }
9021         }
9022       }
9023     }
9024   }
9025
9026   /* Pass 5 - Pre-allocate registers */
9027
9028   // If a register is allocated during a loop, try to allocate it for the
9029   // entire loop, if possible.  This avoids loading/storing registers
9030   // inside of the loop.
9031
9032   signed char f_regmap[HOST_REGS];
9033   clear_all_regs(f_regmap);
9034   for(i=0;i<slen-1;i++)
9035   {
9036     if(itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
9037     {
9038       if(ba[i]>=start && ba[i]<(start+i*4))
9039       if(itype[i+1]==NOP||itype[i+1]==MOV||itype[i+1]==ALU
9040       ||itype[i+1]==SHIFTIMM||itype[i+1]==IMM16||itype[i+1]==LOAD
9041       ||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS
9042       ||itype[i+1]==SHIFT||itype[i+1]==COP1||itype[i+1]==FLOAT
9043       ||itype[i+1]==FCOMP||itype[i+1]==FCONV
9044       ||itype[i+1]==COP2||itype[i+1]==C2LS||itype[i+1]==C2OP)
9045       {
9046         int t=(ba[i]-start)>>2;
9047         if(t>0&&(itype[t-1]!=UJUMP&&itype[t-1]!=RJUMP&&itype[t-1]!=CJUMP&&itype[t-1]!=SJUMP&&itype[t-1]!=FJUMP)) // loop_preload can't handle jumps into delay slots
9048         if(t<2||(itype[t-2]!=UJUMP&&itype[t-2]!=RJUMP)||rt1[t-2]!=31) // call/ret assumes no registers allocated
9049         for(hr=0;hr<HOST_REGS;hr++)
9050         {
9051           if(regs[i].regmap[hr]>64) {
9052             if(!((regs[i].dirty>>hr)&1))
9053               f_regmap[hr]=regs[i].regmap[hr];
9054             else f_regmap[hr]=-1;
9055           }
9056           else if(regs[i].regmap[hr]>=0) {
9057             if(f_regmap[hr]!=regs[i].regmap[hr]) {
9058               // dealloc old register
9059               int n;
9060               for(n=0;n<HOST_REGS;n++)
9061               {
9062                 if(f_regmap[n]==regs[i].regmap[hr]) {f_regmap[n]=-1;}
9063               }
9064               // and alloc new one
9065               f_regmap[hr]=regs[i].regmap[hr];
9066             }
9067           }
9068           if(branch_regs[i].regmap[hr]>64) {
9069             if(!((branch_regs[i].dirty>>hr)&1))
9070               f_regmap[hr]=branch_regs[i].regmap[hr];
9071             else f_regmap[hr]=-1;
9072           }
9073           else if(branch_regs[i].regmap[hr]>=0) {
9074             if(f_regmap[hr]!=branch_regs[i].regmap[hr]) {
9075               // dealloc old register
9076               int n;
9077               for(n=0;n<HOST_REGS;n++)
9078               {
9079                 if(f_regmap[n]==branch_regs[i].regmap[hr]) {f_regmap[n]=-1;}
9080               }
9081               // and alloc new one
9082               f_regmap[hr]=branch_regs[i].regmap[hr];
9083             }
9084           }
9085           if(ooo[i]) {
9086             if(count_free_regs(regs[i].regmap)<=minimum_free_regs[i+1])
9087               f_regmap[hr]=branch_regs[i].regmap[hr];
9088           }else{
9089             if(count_free_regs(branch_regs[i].regmap)<=minimum_free_regs[i+1])
9090               f_regmap[hr]=branch_regs[i].regmap[hr];
9091           }
9092           // Avoid dirty->clean transition
9093           #ifdef DESTRUCTIVE_WRITEBACK
9094           if(t>0) if(get_reg(regmap_pre[t],f_regmap[hr])>=0) if((regs[t].wasdirty>>get_reg(regmap_pre[t],f_regmap[hr]))&1) f_regmap[hr]=-1;
9095           #endif
9096           // This check is only strictly required in the DESTRUCTIVE_WRITEBACK
9097           // case above, however it's always a good idea.  We can't hoist the
9098           // load if the register was already allocated, so there's no point
9099           // wasting time analyzing most of these cases.  It only "succeeds"
9100           // when the mapping was different and the load can be replaced with
9101           // a mov, which is of negligible benefit.  So such cases are
9102           // skipped below.
9103           if(f_regmap[hr]>0) {
9104             if(regs[t].regmap[hr]==f_regmap[hr]||(regs[t].regmap_entry[hr]<0&&get_reg(regmap_pre[t],f_regmap[hr])<0)) {
9105               int r=f_regmap[hr];
9106               for(j=t;j<=i;j++)
9107               {
9108                 //printf("Test %x -> %x, %x %d/%d\n",start+i*4,ba[i],start+j*4,hr,r);
9109                 if(r<34&&((unneeded_reg[j]>>r)&1)) break;
9110                 if(r>63&&((unneeded_reg_upper[j]>>(r&63))&1)) break;
9111                 if(r>63) {
9112                   // NB This can exclude the case where the upper-half
9113                   // register is lower numbered than the lower-half
9114                   // register.  Not sure if it's worth fixing...
9115                   if(get_reg(regs[j].regmap,r&63)<0) break;
9116                   if(get_reg(regs[j].regmap_entry,r&63)<0) break;
9117                   if(regs[j].is32&(1LL<<(r&63))) break;
9118                 }
9119                 if(regs[j].regmap[hr]==f_regmap[hr]&&(f_regmap[hr]&63)<TEMPREG) {
9120                   //printf("Hit %x -> %x, %x %d/%d\n",start+i*4,ba[i],start+j*4,hr,r);
9121                   int k;
9122                   if(regs[i].regmap[hr]==-1&&branch_regs[i].regmap[hr]==-1) {
9123                     if(get_reg(regs[i+2].regmap,f_regmap[hr])>=0) break;
9124                     if(r>63) {
9125                       if(get_reg(regs[i].regmap,r&63)<0) break;
9126                       if(get_reg(branch_regs[i].regmap,r&63)<0) break;
9127                     }
9128                     k=i;
9129                     while(k>1&&regs[k-1].regmap[hr]==-1) {
9130                       if(count_free_regs(regs[k-1].regmap)<=minimum_free_regs[k-1]) {
9131                         //printf("no free regs for store %x\n",start+(k-1)*4);
9132                         break;
9133                       }
9134                       if(get_reg(regs[k-1].regmap,f_regmap[hr])>=0) {
9135                         //printf("no-match due to different register\n");
9136                         break;
9137                       }
9138                       if(itype[k-2]==UJUMP||itype[k-2]==RJUMP||itype[k-2]==CJUMP||itype[k-2]==SJUMP||itype[k-2]==FJUMP) {
9139                         //printf("no-match due to branch\n");
9140                         break;
9141                       }
9142                       // call/ret fast path assumes no registers allocated
9143                       if(k>2&&(itype[k-3]==UJUMP||itype[k-3]==RJUMP)&&rt1[k-3]==31) {
9144                         break;
9145                       }
9146                       if(r>63) {
9147                         // NB This can exclude the case where the upper-half
9148                         // register is lower numbered than the lower-half
9149                         // register.  Not sure if it's worth fixing...
9150                         if(get_reg(regs[k-1].regmap,r&63)<0) break;
9151                         if(regs[k-1].is32&(1LL<<(r&63))) break;
9152                       }
9153                       k--;
9154                     }
9155                     if(i<slen-1) {
9156                       if((regs[k].is32&(1LL<<f_regmap[hr]))!=
9157                         (regs[i+2].was32&(1LL<<f_regmap[hr]))) {
9158                         //printf("bad match after branch\n");
9159                         break;
9160                       }
9161                     }
9162                     if(regs[k-1].regmap[hr]==f_regmap[hr]&&regmap_pre[k][hr]==f_regmap[hr]) {
9163                       //printf("Extend r%d, %x ->\n",hr,start+k*4);
9164                       while(k<i) {
9165                         regs[k].regmap_entry[hr]=f_regmap[hr];
9166                         regs[k].regmap[hr]=f_regmap[hr];
9167                         regmap_pre[k+1][hr]=f_regmap[hr];
9168                         regs[k].wasdirty&=~(1<<hr);
9169                         regs[k].dirty&=~(1<<hr);
9170                         regs[k].wasdirty|=(1<<hr)&regs[k-1].dirty;
9171                         regs[k].dirty|=(1<<hr)&regs[k].wasdirty;
9172                         regs[k].wasconst&=~(1<<hr);
9173                         regs[k].isconst&=~(1<<hr);
9174                         k++;
9175                       }
9176                     }
9177                     else {
9178                       //printf("Fail Extend r%d, %x ->\n",hr,start+k*4);
9179                       break;
9180                     }
9181                     assert(regs[i-1].regmap[hr]==f_regmap[hr]);
9182                     if(regs[i-1].regmap[hr]==f_regmap[hr]&&regmap_pre[i][hr]==f_regmap[hr]) {
9183                       //printf("OK fill %x (r%d)\n",start+i*4,hr);
9184                       regs[i].regmap_entry[hr]=f_regmap[hr];
9185                       regs[i].regmap[hr]=f_regmap[hr];
9186                       regs[i].wasdirty&=~(1<<hr);
9187                       regs[i].dirty&=~(1<<hr);
9188                       regs[i].wasdirty|=(1<<hr)&regs[i-1].dirty;
9189                       regs[i].dirty|=(1<<hr)&regs[i-1].dirty;
9190                       regs[i].wasconst&=~(1<<hr);
9191                       regs[i].isconst&=~(1<<hr);
9192                       branch_regs[i].regmap_entry[hr]=f_regmap[hr];
9193                       branch_regs[i].wasdirty&=~(1<<hr);
9194                       branch_regs[i].wasdirty|=(1<<hr)&regs[i].dirty;
9195                       branch_regs[i].regmap[hr]=f_regmap[hr];
9196                       branch_regs[i].dirty&=~(1<<hr);
9197                       branch_regs[i].dirty|=(1<<hr)&regs[i].dirty;
9198                       branch_regs[i].wasconst&=~(1<<hr);
9199                       branch_regs[i].isconst&=~(1<<hr);
9200                       if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000) {
9201                         regmap_pre[i+2][hr]=f_regmap[hr];
9202                         regs[i+2].wasdirty&=~(1<<hr);
9203                         regs[i+2].wasdirty|=(1<<hr)&regs[i].dirty;
9204                         assert((branch_regs[i].is32&(1LL<<f_regmap[hr]))==
9205                           (regs[i+2].was32&(1LL<<f_regmap[hr])));
9206                       }
9207                     }
9208                   }
9209                   for(k=t;k<j;k++) {
9210                     // Alloc register clean at beginning of loop,
9211                     // but may dirty it in pass 6
9212                     regs[k].regmap_entry[hr]=f_regmap[hr];
9213                     regs[k].regmap[hr]=f_regmap[hr];
9214                     regs[k].dirty&=~(1<<hr);
9215                     regs[k].wasconst&=~(1<<hr);
9216                     regs[k].isconst&=~(1<<hr);
9217                     if(itype[k]==UJUMP||itype[k]==RJUMP||itype[k]==CJUMP||itype[k]==SJUMP||itype[k]==FJUMP) {
9218                       branch_regs[k].regmap_entry[hr]=f_regmap[hr];
9219                       branch_regs[k].regmap[hr]=f_regmap[hr];
9220                       branch_regs[k].dirty&=~(1<<hr);
9221                       branch_regs[k].wasconst&=~(1<<hr);
9222                       branch_regs[k].isconst&=~(1<<hr);
9223                       if(itype[k]!=RJUMP&&itype[k]!=UJUMP&&(source[k]>>16)!=0x1000) {
9224                         regmap_pre[k+2][hr]=f_regmap[hr];
9225                         regs[k+2].wasdirty&=~(1<<hr);
9226                         assert((branch_regs[k].is32&(1LL<<f_regmap[hr]))==
9227                           (regs[k+2].was32&(1LL<<f_regmap[hr])));
9228                       }
9229                     }
9230                     else
9231                     {
9232                       regmap_pre[k+1][hr]=f_regmap[hr];
9233                       regs[k+1].wasdirty&=~(1<<hr);
9234                     }
9235                   }
9236                   if(regs[j].regmap[hr]==f_regmap[hr])
9237                     regs[j].regmap_entry[hr]=f_regmap[hr];
9238                   break;
9239                 }
9240                 if(j==i) break;
9241                 if(regs[j].regmap[hr]>=0)
9242                   break;
9243                 if(get_reg(regs[j].regmap,f_regmap[hr])>=0) {
9244                   //printf("no-match due to different register\n");
9245                   break;
9246                 }
9247                 if((regs[j+1].is32&(1LL<<f_regmap[hr]))!=(regs[j].is32&(1LL<<f_regmap[hr]))) {
9248                   //printf("32/64 mismatch %x %d\n",start+j*4,hr);
9249                   break;
9250                 }
9251                 if(itype[j]==UJUMP||itype[j]==RJUMP||(source[j]>>16)==0x1000)
9252                 {
9253                   // Stop on unconditional branch
9254                   break;
9255                 }
9256                 if(itype[j]==CJUMP||itype[j]==SJUMP||itype[j]==FJUMP)
9257                 {
9258                   if(ooo[j]) {
9259                     if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j+1])
9260                       break;
9261                   }else{
9262                     if(count_free_regs(branch_regs[j].regmap)<=minimum_free_regs[j+1])
9263                       break;
9264                   }
9265                   if(get_reg(branch_regs[j].regmap,f_regmap[hr])>=0) {
9266                     //printf("no-match due to different register (branch)\n");
9267                     break;
9268                   }
9269                 }
9270                 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) {
9271                   //printf("No free regs for store %x\n",start+j*4);
9272                   break;
9273                 }
9274                 if(f_regmap[hr]>=64) {
9275                   if(regs[j].is32&(1LL<<(f_regmap[hr]&63))) {
9276                     break;
9277                   }
9278                   else
9279                   {
9280                     if(get_reg(regs[j].regmap,f_regmap[hr]&63)<0) {
9281                       break;
9282                     }
9283                   }
9284                 }
9285               }
9286             }
9287           }
9288         }
9289       }
9290     }else{
9291       // Non branch or undetermined branch target
9292       for(hr=0;hr<HOST_REGS;hr++)
9293       {
9294         if(hr!=EXCLUDE_REG) {
9295           if(regs[i].regmap[hr]>64) {
9296             if(!((regs[i].dirty>>hr)&1))
9297               f_regmap[hr]=regs[i].regmap[hr];
9298           }
9299           else if(regs[i].regmap[hr]>=0) {
9300             if(f_regmap[hr]!=regs[i].regmap[hr]) {
9301               // dealloc old register
9302               int n;
9303               for(n=0;n<HOST_REGS;n++)
9304               {
9305                 if(f_regmap[n]==regs[i].regmap[hr]) {f_regmap[n]=-1;}
9306               }
9307               // and alloc new one
9308               f_regmap[hr]=regs[i].regmap[hr];
9309             }
9310           }
9311         }
9312       }
9313       // Try to restore cycle count at branch targets
9314       if(bt[i]) {
9315         for(j=i;j<slen-1;j++) {
9316           if(regs[j].regmap[HOST_CCREG]!=-1) break;
9317           if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) {
9318             //printf("no free regs for store %x\n",start+j*4);
9319             break;
9320           }
9321         }
9322         if(regs[j].regmap[HOST_CCREG]==CCREG) {
9323           int k=i;
9324           //printf("Extend CC, %x -> %x\n",start+k*4,start+j*4);
9325           while(k<j) {
9326             regs[k].regmap_entry[HOST_CCREG]=CCREG;
9327             regs[k].regmap[HOST_CCREG]=CCREG;
9328             regmap_pre[k+1][HOST_CCREG]=CCREG;
9329             regs[k+1].wasdirty|=1<<HOST_CCREG;
9330             regs[k].dirty|=1<<HOST_CCREG;
9331             regs[k].wasconst&=~(1<<HOST_CCREG);
9332             regs[k].isconst&=~(1<<HOST_CCREG);
9333             k++;
9334           }
9335           regs[j].regmap_entry[HOST_CCREG]=CCREG;
9336         }
9337         // Work backwards from the branch target
9338         if(j>i&&f_regmap[HOST_CCREG]==CCREG)
9339         {
9340           //printf("Extend backwards\n");
9341           int k;
9342           k=i;
9343           while(regs[k-1].regmap[HOST_CCREG]==-1) {
9344             if(count_free_regs(regs[k-1].regmap)<=minimum_free_regs[k-1]) {
9345               //printf("no free regs for store %x\n",start+(k-1)*4);
9346               break;
9347             }
9348             k--;
9349           }
9350           if(regs[k-1].regmap[HOST_CCREG]==CCREG) {
9351             //printf("Extend CC, %x ->\n",start+k*4);
9352             while(k<=i) {
9353               regs[k].regmap_entry[HOST_CCREG]=CCREG;
9354               regs[k].regmap[HOST_CCREG]=CCREG;
9355               regmap_pre[k+1][HOST_CCREG]=CCREG;
9356               regs[k+1].wasdirty|=1<<HOST_CCREG;
9357               regs[k].dirty|=1<<HOST_CCREG;
9358               regs[k].wasconst&=~(1<<HOST_CCREG);
9359               regs[k].isconst&=~(1<<HOST_CCREG);
9360               k++;
9361             }
9362           }
9363           else {
9364             //printf("Fail Extend CC, %x ->\n",start+k*4);
9365           }
9366         }
9367       }
9368       if(itype[i]!=STORE&&itype[i]!=STORELR&&itype[i]!=C1LS&&itype[i]!=SHIFT&&
9369          itype[i]!=NOP&&itype[i]!=MOV&&itype[i]!=ALU&&itype[i]!=SHIFTIMM&&
9370          itype[i]!=IMM16&&itype[i]!=LOAD&&itype[i]!=COP1&&itype[i]!=FLOAT&&
9371          itype[i]!=FCONV&&itype[i]!=FCOMP)
9372       {
9373         memcpy(f_regmap,regs[i].regmap,sizeof(f_regmap));
9374       }
9375     }
9376   }
9377
9378   // Cache memory offset or tlb map pointer if a register is available
9379   #ifndef HOST_IMM_ADDR32
9380   #ifndef RAM_OFFSET
9381   if(0)
9382   #endif
9383   {
9384     int earliest_available[HOST_REGS];
9385     int loop_start[HOST_REGS];
9386     int score[HOST_REGS];
9387     int end[HOST_REGS];
9388     int reg=ROREG;
9389
9390     // Init
9391     for(hr=0;hr<HOST_REGS;hr++) {
9392       score[hr]=0;earliest_available[hr]=0;
9393       loop_start[hr]=MAXBLOCK;
9394     }
9395     for(i=0;i<slen-1;i++)
9396     {
9397       // Can't do anything if no registers are available
9398       if(count_free_regs(regs[i].regmap)<=minimum_free_regs[i]) {
9399         for(hr=0;hr<HOST_REGS;hr++) {
9400           score[hr]=0;earliest_available[hr]=i+1;
9401           loop_start[hr]=MAXBLOCK;
9402         }
9403       }
9404       if(itype[i]==UJUMP||itype[i]==RJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP) {
9405         if(!ooo[i]) {
9406           if(count_free_regs(branch_regs[i].regmap)<=minimum_free_regs[i+1]) {
9407             for(hr=0;hr<HOST_REGS;hr++) {
9408               score[hr]=0;earliest_available[hr]=i+1;
9409               loop_start[hr]=MAXBLOCK;
9410             }
9411           }
9412         }else{
9413           if(count_free_regs(regs[i].regmap)<=minimum_free_regs[i+1]) {
9414             for(hr=0;hr<HOST_REGS;hr++) {
9415               score[hr]=0;earliest_available[hr]=i+1;
9416               loop_start[hr]=MAXBLOCK;
9417             }
9418           }
9419         }
9420       }
9421       // Mark unavailable registers
9422       for(hr=0;hr<HOST_REGS;hr++) {
9423         if(regs[i].regmap[hr]>=0) {
9424           score[hr]=0;earliest_available[hr]=i+1;
9425           loop_start[hr]=MAXBLOCK;
9426         }
9427         if(itype[i]==UJUMP||itype[i]==RJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP) {
9428           if(branch_regs[i].regmap[hr]>=0) {
9429             score[hr]=0;earliest_available[hr]=i+2;
9430             loop_start[hr]=MAXBLOCK;
9431           }
9432         }
9433       }
9434       // No register allocations after unconditional jumps
9435       if(itype[i]==UJUMP||itype[i]==RJUMP||(source[i]>>16)==0x1000)
9436       {
9437         for(hr=0;hr<HOST_REGS;hr++) {
9438           score[hr]=0;earliest_available[hr]=i+2;
9439           loop_start[hr]=MAXBLOCK;
9440         }
9441         i++; // Skip delay slot too
9442         //printf("skip delay slot: %x\n",start+i*4);
9443       }
9444       else
9445       // Possible match
9446       if(itype[i]==LOAD||itype[i]==LOADLR||
9447          itype[i]==STORE||itype[i]==STORELR||itype[i]==C1LS) {
9448         for(hr=0;hr<HOST_REGS;hr++) {
9449           if(hr!=EXCLUDE_REG) {
9450             end[hr]=i-1;
9451             for(j=i;j<slen-1;j++) {
9452               if(regs[j].regmap[hr]>=0) break;
9453               if(itype[j]==UJUMP||itype[j]==RJUMP||itype[j]==CJUMP||itype[j]==SJUMP||itype[j]==FJUMP) {
9454                 if(branch_regs[j].regmap[hr]>=0) break;
9455                 if(ooo[j]) {
9456                   if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j+1]) break;
9457                 }else{
9458                   if(count_free_regs(branch_regs[j].regmap)<=minimum_free_regs[j+1]) break;
9459                 }
9460               }
9461               else if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) break;
9462               if(itype[j]==UJUMP||itype[j]==RJUMP||itype[j]==CJUMP||itype[j]==SJUMP||itype[j]==FJUMP) {
9463                 int t=(ba[j]-start)>>2;
9464                 if(t<j&&t>=earliest_available[hr]) {
9465                   if(t==1||(t>1&&itype[t-2]!=UJUMP&&itype[t-2]!=RJUMP)||(t>1&&rt1[t-2]!=31)) { // call/ret assumes no registers allocated
9466                     // Score a point for hoisting loop invariant
9467                     if(t<loop_start[hr]) loop_start[hr]=t;
9468                     //printf("set loop_start: i=%x j=%x (%x)\n",start+i*4,start+j*4,start+t*4);
9469                     score[hr]++;
9470                     end[hr]=j;
9471                   }
9472                 }
9473                 else if(t<j) {
9474                   if(regs[t].regmap[hr]==reg) {
9475                     // Score a point if the branch target matches this register
9476                     score[hr]++;
9477                     end[hr]=j;
9478                   }
9479                 }
9480                 if(itype[j+1]==LOAD||itype[j+1]==LOADLR||
9481                    itype[j+1]==STORE||itype[j+1]==STORELR||itype[j+1]==C1LS) {
9482                   score[hr]++;
9483                   end[hr]=j;
9484                 }
9485               }
9486               if(itype[j]==UJUMP||itype[j]==RJUMP||(source[j]>>16)==0x1000)
9487               {
9488                 // Stop on unconditional branch
9489                 break;
9490               }
9491               else
9492               if(itype[j]==LOAD||itype[j]==LOADLR||
9493                  itype[j]==STORE||itype[j]==STORELR||itype[j]==C1LS) {
9494                 score[hr]++;
9495                 end[hr]=j;
9496               }
9497             }
9498           }
9499         }
9500         // Find highest score and allocate that register
9501         int maxscore=0;
9502         for(hr=0;hr<HOST_REGS;hr++) {
9503           if(hr!=EXCLUDE_REG) {
9504             if(score[hr]>score[maxscore]) {
9505               maxscore=hr;
9506               //printf("highest score: %d %d (%x->%x)\n",score[hr],hr,start+i*4,start+end[hr]*4);
9507             }
9508           }
9509         }
9510         if(score[maxscore]>1)
9511         {
9512           if(i<loop_start[maxscore]) loop_start[maxscore]=i;
9513           for(j=loop_start[maxscore];j<slen&&j<=end[maxscore];j++) {
9514             //if(regs[j].regmap[maxscore]>=0) {printf("oops: %x %x was %d=%d\n",loop_start[maxscore]*4+start,j*4+start,maxscore,regs[j].regmap[maxscore]);}
9515             assert(regs[j].regmap[maxscore]<0);
9516             if(j>loop_start[maxscore]) regs[j].regmap_entry[maxscore]=reg;
9517             regs[j].regmap[maxscore]=reg;
9518             regs[j].dirty&=~(1<<maxscore);
9519             regs[j].wasconst&=~(1<<maxscore);
9520             regs[j].isconst&=~(1<<maxscore);
9521             if(itype[j]==UJUMP||itype[j]==RJUMP||itype[j]==CJUMP||itype[j]==SJUMP||itype[j]==FJUMP) {
9522               branch_regs[j].regmap[maxscore]=reg;
9523               branch_regs[j].wasdirty&=~(1<<maxscore);
9524               branch_regs[j].dirty&=~(1<<maxscore);
9525               branch_regs[j].wasconst&=~(1<<maxscore);
9526               branch_regs[j].isconst&=~(1<<maxscore);
9527               if(itype[j]!=RJUMP&&itype[j]!=UJUMP&&(source[j]>>16)!=0x1000) {
9528                 regmap_pre[j+2][maxscore]=reg;
9529                 regs[j+2].wasdirty&=~(1<<maxscore);
9530               }
9531               // loop optimization (loop_preload)
9532               int t=(ba[j]-start)>>2;
9533               if(t==loop_start[maxscore]) {
9534                 if(t==1||(t>1&&itype[t-2]!=UJUMP&&itype[t-2]!=RJUMP)||(t>1&&rt1[t-2]!=31)) // call/ret assumes no registers allocated
9535                   regs[t].regmap_entry[maxscore]=reg;
9536               }
9537             }
9538             else
9539             {
9540               if(j<1||(itype[j-1]!=RJUMP&&itype[j-1]!=UJUMP&&itype[j-1]!=CJUMP&&itype[j-1]!=SJUMP&&itype[j-1]!=FJUMP)) {
9541                 regmap_pre[j+1][maxscore]=reg;
9542                 regs[j+1].wasdirty&=~(1<<maxscore);
9543               }
9544             }
9545           }
9546           i=j-1;
9547           if(itype[j-1]==RJUMP||itype[j-1]==UJUMP||itype[j-1]==CJUMP||itype[j-1]==SJUMP||itype[j-1]==FJUMP) i++; // skip delay slot
9548           for(hr=0;hr<HOST_REGS;hr++) {
9549             score[hr]=0;earliest_available[hr]=i+i;
9550             loop_start[hr]=MAXBLOCK;
9551           }
9552         }
9553       }
9554     }
9555   }
9556   #endif
9557
9558   // This allocates registers (if possible) one instruction prior
9559   // to use, which can avoid a load-use penalty on certain CPUs.
9560   for(i=0;i<slen-1;i++)
9561   {
9562     if(!i||(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP))
9563     {
9564       if(!bt[i+1])
9565       {
9566         if(itype[i]==ALU||itype[i]==MOV||itype[i]==LOAD||itype[i]==SHIFTIMM||itype[i]==IMM16
9567            ||((itype[i]==COP1||itype[i]==COP2)&&opcode2[i]<3))
9568         {
9569           if(rs1[i+1]) {
9570             if((hr=get_reg(regs[i+1].regmap,rs1[i+1]))>=0)
9571             {
9572               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
9573               {
9574                 regs[i].regmap[hr]=regs[i+1].regmap[hr];
9575                 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
9576                 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
9577                 regs[i].isconst&=~(1<<hr);
9578                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
9579                 constmap[i][hr]=constmap[i+1][hr];
9580                 regs[i+1].wasdirty&=~(1<<hr);
9581                 regs[i].dirty&=~(1<<hr);
9582               }
9583             }
9584           }
9585           if(rs2[i+1]) {
9586             if((hr=get_reg(regs[i+1].regmap,rs2[i+1]))>=0)
9587             {
9588               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
9589               {
9590                 regs[i].regmap[hr]=regs[i+1].regmap[hr];
9591                 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
9592                 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
9593                 regs[i].isconst&=~(1<<hr);
9594                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
9595                 constmap[i][hr]=constmap[i+1][hr];
9596                 regs[i+1].wasdirty&=~(1<<hr);
9597                 regs[i].dirty&=~(1<<hr);
9598               }
9599             }
9600           }
9601           // Preload target address for load instruction (non-constant)
9602           if(itype[i+1]==LOAD&&rs1[i+1]&&get_reg(regs[i+1].regmap,rs1[i+1])<0) {
9603             if((hr=get_reg(regs[i+1].regmap,rt1[i+1]))>=0)
9604             {
9605               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
9606               {
9607                 regs[i].regmap[hr]=rs1[i+1];
9608                 regmap_pre[i+1][hr]=rs1[i+1];
9609                 regs[i+1].regmap_entry[hr]=rs1[i+1];
9610                 regs[i].isconst&=~(1<<hr);
9611                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
9612                 constmap[i][hr]=constmap[i+1][hr];
9613                 regs[i+1].wasdirty&=~(1<<hr);
9614                 regs[i].dirty&=~(1<<hr);
9615               }
9616             }
9617           }
9618           // Load source into target register
9619           if(lt1[i+1]&&get_reg(regs[i+1].regmap,rs1[i+1])<0) {
9620             if((hr=get_reg(regs[i+1].regmap,rt1[i+1]))>=0)
9621             {
9622               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
9623               {
9624                 regs[i].regmap[hr]=rs1[i+1];
9625                 regmap_pre[i+1][hr]=rs1[i+1];
9626                 regs[i+1].regmap_entry[hr]=rs1[i+1];
9627                 regs[i].isconst&=~(1<<hr);
9628                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
9629                 constmap[i][hr]=constmap[i+1][hr];
9630                 regs[i+1].wasdirty&=~(1<<hr);
9631                 regs[i].dirty&=~(1<<hr);
9632               }
9633             }
9634           }
9635           // Address for store instruction (non-constant)
9636           if(itype[i+1]==STORE||itype[i+1]==STORELR
9637              ||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SB/SH/SW/SD/SWC1/SDC1/SWC2/SDC2
9638             if(get_reg(regs[i+1].regmap,rs1[i+1])<0) {
9639               hr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1);
9640               if(hr<0) hr=get_reg(regs[i+1].regmap,-1);
9641               else {regs[i+1].regmap[hr]=AGEN1+((i+1)&1);regs[i+1].isconst&=~(1<<hr);}
9642               assert(hr>=0);
9643               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
9644               {
9645                 regs[i].regmap[hr]=rs1[i+1];
9646                 regmap_pre[i+1][hr]=rs1[i+1];
9647                 regs[i+1].regmap_entry[hr]=rs1[i+1];
9648                 regs[i].isconst&=~(1<<hr);
9649                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
9650                 constmap[i][hr]=constmap[i+1][hr];
9651                 regs[i+1].wasdirty&=~(1<<hr);
9652                 regs[i].dirty&=~(1<<hr);
9653               }
9654             }
9655           }
9656           if(itype[i+1]==LOADLR||(opcode[i+1]&0x3b)==0x31||(opcode[i+1]&0x3b)==0x32) { // LWC1/LDC1, LWC2/LDC2
9657             if(get_reg(regs[i+1].regmap,rs1[i+1])<0) {
9658               int nr;
9659               hr=get_reg(regs[i+1].regmap,FTEMP);
9660               assert(hr>=0);
9661               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
9662               {
9663                 regs[i].regmap[hr]=rs1[i+1];
9664                 regmap_pre[i+1][hr]=rs1[i+1];
9665                 regs[i+1].regmap_entry[hr]=rs1[i+1];
9666                 regs[i].isconst&=~(1<<hr);
9667                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
9668                 constmap[i][hr]=constmap[i+1][hr];
9669                 regs[i+1].wasdirty&=~(1<<hr);
9670                 regs[i].dirty&=~(1<<hr);
9671               }
9672               else if((nr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1))>=0)
9673               {
9674                 // move it to another register
9675                 regs[i+1].regmap[hr]=-1;
9676                 regmap_pre[i+2][hr]=-1;
9677                 regs[i+1].regmap[nr]=FTEMP;
9678                 regmap_pre[i+2][nr]=FTEMP;
9679                 regs[i].regmap[nr]=rs1[i+1];
9680                 regmap_pre[i+1][nr]=rs1[i+1];
9681                 regs[i+1].regmap_entry[nr]=rs1[i+1];
9682                 regs[i].isconst&=~(1<<nr);
9683                 regs[i+1].isconst&=~(1<<nr);
9684                 regs[i].dirty&=~(1<<nr);
9685                 regs[i+1].wasdirty&=~(1<<nr);
9686                 regs[i+1].dirty&=~(1<<nr);
9687                 regs[i+2].wasdirty&=~(1<<nr);
9688               }
9689             }
9690           }
9691           if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR/*||itype[i+1]==C1LS||||itype[i+1]==C2LS*/) {
9692             if(itype[i+1]==LOAD)
9693               hr=get_reg(regs[i+1].regmap,rt1[i+1]);
9694             if(itype[i+1]==LOADLR||(opcode[i+1]&0x3b)==0x31||(opcode[i+1]&0x3b)==0x32) // LWC1/LDC1, LWC2/LDC2
9695               hr=get_reg(regs[i+1].regmap,FTEMP);
9696             if(itype[i+1]==STORE||itype[i+1]==STORELR||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1/SWC2/SDC2
9697               hr=get_reg(regs[i+1].regmap,AGEN1+((i+1)&1));
9698               if(hr<0) hr=get_reg(regs[i+1].regmap,-1);
9699             }
9700             if(hr>=0&&regs[i].regmap[hr]<0) {
9701               int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
9702               if(rs>=0&&((regs[i+1].wasconst>>rs)&1)) {
9703                 regs[i].regmap[hr]=AGEN1+((i+1)&1);
9704                 regmap_pre[i+1][hr]=AGEN1+((i+1)&1);
9705                 regs[i+1].regmap_entry[hr]=AGEN1+((i+1)&1);
9706                 regs[i].isconst&=~(1<<hr);
9707                 regs[i+1].wasdirty&=~(1<<hr);
9708                 regs[i].dirty&=~(1<<hr);
9709               }
9710             }
9711           }
9712         }
9713       }
9714     }
9715   }
9716
9717   /* Pass 6 - Optimize clean/dirty state */
9718   clean_registers(0,slen-1,1);
9719
9720   /* Pass 7 - Identify 32-bit registers */
9721   for (i=slen-1;i>=0;i--)
9722   {
9723     if(itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
9724     {
9725       // Conditional branch
9726       if((source[i]>>16)!=0x1000&&i<slen-2) {
9727         // Mark this address as a branch target since it may be called
9728         // upon return from interrupt
9729         bt[i+2]=1;
9730       }
9731     }
9732   }
9733
9734   if(itype[slen-1]==SPAN) {
9735     bt[slen-1]=1; // Mark as a branch target so instruction can restart after exception
9736   }
9737
9738 #ifdef DISASM
9739   /* Debug/disassembly */
9740   for(i=0;i<slen;i++)
9741   {
9742     printf("U:");
9743     int r;
9744     for(r=1;r<=CCREG;r++) {
9745       if((unneeded_reg[i]>>r)&1) {
9746         if(r==HIREG) printf(" HI");
9747         else if(r==LOREG) printf(" LO");
9748         else printf(" r%d",r);
9749       }
9750     }
9751     printf("\n");
9752     #if defined(__i386__) || defined(__x86_64__)
9753     printf("pre: eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",regmap_pre[i][0],regmap_pre[i][1],regmap_pre[i][2],regmap_pre[i][3],regmap_pre[i][5],regmap_pre[i][6],regmap_pre[i][7]);
9754     #endif
9755     #ifdef __arm__
9756     printf("pre: r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d\n",regmap_pre[i][0],regmap_pre[i][1],regmap_pre[i][2],regmap_pre[i][3],regmap_pre[i][4],regmap_pre[i][5],regmap_pre[i][6],regmap_pre[i][7],regmap_pre[i][8],regmap_pre[i][9],regmap_pre[i][10],regmap_pre[i][12]);
9757     #endif
9758     printf("needs: ");
9759     if(needed_reg[i]&1) printf("eax ");
9760     if((needed_reg[i]>>1)&1) printf("ecx ");
9761     if((needed_reg[i]>>2)&1) printf("edx ");
9762     if((needed_reg[i]>>3)&1) printf("ebx ");
9763     if((needed_reg[i]>>5)&1) printf("ebp ");
9764     if((needed_reg[i]>>6)&1) printf("esi ");
9765     if((needed_reg[i]>>7)&1) printf("edi ");
9766     printf("\n");
9767     #if defined(__i386__) || defined(__x86_64__)
9768     printf("entry: eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",regs[i].regmap_entry[0],regs[i].regmap_entry[1],regs[i].regmap_entry[2],regs[i].regmap_entry[3],regs[i].regmap_entry[5],regs[i].regmap_entry[6],regs[i].regmap_entry[7]);
9769     printf("dirty: ");
9770     if(regs[i].wasdirty&1) printf("eax ");
9771     if((regs[i].wasdirty>>1)&1) printf("ecx ");
9772     if((regs[i].wasdirty>>2)&1) printf("edx ");
9773     if((regs[i].wasdirty>>3)&1) printf("ebx ");
9774     if((regs[i].wasdirty>>5)&1) printf("ebp ");
9775     if((regs[i].wasdirty>>6)&1) printf("esi ");
9776     if((regs[i].wasdirty>>7)&1) printf("edi ");
9777     #endif
9778     #ifdef __arm__
9779     printf("entry: r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d\n",regs[i].regmap_entry[0],regs[i].regmap_entry[1],regs[i].regmap_entry[2],regs[i].regmap_entry[3],regs[i].regmap_entry[4],regs[i].regmap_entry[5],regs[i].regmap_entry[6],regs[i].regmap_entry[7],regs[i].regmap_entry[8],regs[i].regmap_entry[9],regs[i].regmap_entry[10],regs[i].regmap_entry[12]);
9780     printf("dirty: ");
9781     if(regs[i].wasdirty&1) printf("r0 ");
9782     if((regs[i].wasdirty>>1)&1) printf("r1 ");
9783     if((regs[i].wasdirty>>2)&1) printf("r2 ");
9784     if((regs[i].wasdirty>>3)&1) printf("r3 ");
9785     if((regs[i].wasdirty>>4)&1) printf("r4 ");
9786     if((regs[i].wasdirty>>5)&1) printf("r5 ");
9787     if((regs[i].wasdirty>>6)&1) printf("r6 ");
9788     if((regs[i].wasdirty>>7)&1) printf("r7 ");
9789     if((regs[i].wasdirty>>8)&1) printf("r8 ");
9790     if((regs[i].wasdirty>>9)&1) printf("r9 ");
9791     if((regs[i].wasdirty>>10)&1) printf("r10 ");
9792     if((regs[i].wasdirty>>12)&1) printf("r12 ");
9793     #endif
9794     printf("\n");
9795     disassemble_inst(i);
9796     //printf ("ccadj[%d] = %d\n",i,ccadj[i]);
9797     #if defined(__i386__) || defined(__x86_64__)
9798     printf("eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d dirty: ",regs[i].regmap[0],regs[i].regmap[1],regs[i].regmap[2],regs[i].regmap[3],regs[i].regmap[5],regs[i].regmap[6],regs[i].regmap[7]);
9799     if(regs[i].dirty&1) printf("eax ");
9800     if((regs[i].dirty>>1)&1) printf("ecx ");
9801     if((regs[i].dirty>>2)&1) printf("edx ");
9802     if((regs[i].dirty>>3)&1) printf("ebx ");
9803     if((regs[i].dirty>>5)&1) printf("ebp ");
9804     if((regs[i].dirty>>6)&1) printf("esi ");
9805     if((regs[i].dirty>>7)&1) printf("edi ");
9806     #endif
9807     #ifdef __arm__
9808     printf("r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d dirty: ",regs[i].regmap[0],regs[i].regmap[1],regs[i].regmap[2],regs[i].regmap[3],regs[i].regmap[4],regs[i].regmap[5],regs[i].regmap[6],regs[i].regmap[7],regs[i].regmap[8],regs[i].regmap[9],regs[i].regmap[10],regs[i].regmap[12]);
9809     if(regs[i].dirty&1) printf("r0 ");
9810     if((regs[i].dirty>>1)&1) printf("r1 ");
9811     if((regs[i].dirty>>2)&1) printf("r2 ");
9812     if((regs[i].dirty>>3)&1) printf("r3 ");
9813     if((regs[i].dirty>>4)&1) printf("r4 ");
9814     if((regs[i].dirty>>5)&1) printf("r5 ");
9815     if((regs[i].dirty>>6)&1) printf("r6 ");
9816     if((regs[i].dirty>>7)&1) printf("r7 ");
9817     if((regs[i].dirty>>8)&1) printf("r8 ");
9818     if((regs[i].dirty>>9)&1) printf("r9 ");
9819     if((regs[i].dirty>>10)&1) printf("r10 ");
9820     if((regs[i].dirty>>12)&1) printf("r12 ");
9821     #endif
9822     printf("\n");
9823     if(regs[i].isconst) {
9824       printf("constants: ");
9825       #if defined(__i386__) || defined(__x86_64__)
9826       if(regs[i].isconst&1) printf("eax=%x ",(int)constmap[i][0]);
9827       if((regs[i].isconst>>1)&1) printf("ecx=%x ",(int)constmap[i][1]);
9828       if((regs[i].isconst>>2)&1) printf("edx=%x ",(int)constmap[i][2]);
9829       if((regs[i].isconst>>3)&1) printf("ebx=%x ",(int)constmap[i][3]);
9830       if((regs[i].isconst>>5)&1) printf("ebp=%x ",(int)constmap[i][5]);
9831       if((regs[i].isconst>>6)&1) printf("esi=%x ",(int)constmap[i][6]);
9832       if((regs[i].isconst>>7)&1) printf("edi=%x ",(int)constmap[i][7]);
9833       #endif
9834       #ifdef __arm__
9835       if(regs[i].isconst&1) printf("r0=%x ",(int)constmap[i][0]);
9836       if((regs[i].isconst>>1)&1) printf("r1=%x ",(int)constmap[i][1]);
9837       if((regs[i].isconst>>2)&1) printf("r2=%x ",(int)constmap[i][2]);
9838       if((regs[i].isconst>>3)&1) printf("r3=%x ",(int)constmap[i][3]);
9839       if((regs[i].isconst>>4)&1) printf("r4=%x ",(int)constmap[i][4]);
9840       if((regs[i].isconst>>5)&1) printf("r5=%x ",(int)constmap[i][5]);
9841       if((regs[i].isconst>>6)&1) printf("r6=%x ",(int)constmap[i][6]);
9842       if((regs[i].isconst>>7)&1) printf("r7=%x ",(int)constmap[i][7]);
9843       if((regs[i].isconst>>8)&1) printf("r8=%x ",(int)constmap[i][8]);
9844       if((regs[i].isconst>>9)&1) printf("r9=%x ",(int)constmap[i][9]);
9845       if((regs[i].isconst>>10)&1) printf("r10=%x ",(int)constmap[i][10]);
9846       if((regs[i].isconst>>12)&1) printf("r12=%x ",(int)constmap[i][12]);
9847       #endif
9848       printf("\n");
9849     }
9850     if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP) {
9851       #if defined(__i386__) || defined(__x86_64__)
9852       printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d dirty: ",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
9853       if(branch_regs[i].dirty&1) printf("eax ");
9854       if((branch_regs[i].dirty>>1)&1) printf("ecx ");
9855       if((branch_regs[i].dirty>>2)&1) printf("edx ");
9856       if((branch_regs[i].dirty>>3)&1) printf("ebx ");
9857       if((branch_regs[i].dirty>>5)&1) printf("ebp ");
9858       if((branch_regs[i].dirty>>6)&1) printf("esi ");
9859       if((branch_regs[i].dirty>>7)&1) printf("edi ");
9860       #endif
9861       #ifdef __arm__
9862       printf("branch(%d): r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d dirty: ",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[4],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7],branch_regs[i].regmap[8],branch_regs[i].regmap[9],branch_regs[i].regmap[10],branch_regs[i].regmap[12]);
9863       if(branch_regs[i].dirty&1) printf("r0 ");
9864       if((branch_regs[i].dirty>>1)&1) printf("r1 ");
9865       if((branch_regs[i].dirty>>2)&1) printf("r2 ");
9866       if((branch_regs[i].dirty>>3)&1) printf("r3 ");
9867       if((branch_regs[i].dirty>>4)&1) printf("r4 ");
9868       if((branch_regs[i].dirty>>5)&1) printf("r5 ");
9869       if((branch_regs[i].dirty>>6)&1) printf("r6 ");
9870       if((branch_regs[i].dirty>>7)&1) printf("r7 ");
9871       if((branch_regs[i].dirty>>8)&1) printf("r8 ");
9872       if((branch_regs[i].dirty>>9)&1) printf("r9 ");
9873       if((branch_regs[i].dirty>>10)&1) printf("r10 ");
9874       if((branch_regs[i].dirty>>12)&1) printf("r12 ");
9875       #endif
9876     }
9877   }
9878 #endif // DISASM
9879
9880   /* Pass 8 - Assembly */
9881   linkcount=0;stubcount=0;
9882   ds=0;is_delayslot=0;
9883   cop1_usable=0;
9884   uint64_t is32_pre=0;
9885   u_int dirty_pre=0;
9886   u_int beginning=(u_int)out;
9887   if((u_int)addr&1) {
9888     ds=1;
9889     pagespan_ds();
9890   }
9891   u_int instr_addr0_override=0;
9892
9893   if (start == 0x80030000) {
9894     // nasty hack for fastbios thing
9895     // override block entry to this code
9896     instr_addr0_override=(u_int)out;
9897     emit_movimm(start,0);
9898     // abuse io address var as a flag that we
9899     // have already returned here once
9900     emit_readword((int)&address,1);
9901     emit_writeword(0,(int)&pcaddr);
9902     emit_writeword(0,(int)&address);
9903     emit_cmp(0,1);
9904     emit_jne((int)new_dyna_leave);
9905   }
9906   for(i=0;i<slen;i++)
9907   {
9908     //if(ds) printf("ds: ");
9909     disassemble_inst(i);
9910     if(ds) {
9911       ds=0; // Skip delay slot
9912       if(bt[i]) assem_debug("OOPS - branch into delay slot\n");
9913       instr_addr[i]=0;
9914     } else {
9915       speculate_register_values(i);
9916       #ifndef DESTRUCTIVE_WRITEBACK
9917       if(i<2||(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000))
9918       {
9919         wb_valid(regmap_pre[i],regs[i].regmap_entry,dirty_pre,regs[i].wasdirty,is32_pre,
9920               unneeded_reg[i],unneeded_reg_upper[i]);
9921       }
9922       if((itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)&&!likely[i]) {
9923         is32_pre=branch_regs[i].is32;
9924         dirty_pre=branch_regs[i].dirty;
9925       }else{
9926         is32_pre=regs[i].is32;
9927         dirty_pre=regs[i].dirty;
9928       }
9929       #endif
9930       // write back
9931       if(i<2||(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000))
9932       {
9933         wb_invalidate(regmap_pre[i],regs[i].regmap_entry,regs[i].wasdirty,regs[i].was32,
9934                       unneeded_reg[i],unneeded_reg_upper[i]);
9935         loop_preload(regmap_pre[i],regs[i].regmap_entry);
9936       }
9937       // branch target entry point
9938       instr_addr[i]=(u_int)out;
9939       assem_debug("<->\n");
9940       // load regs
9941       if(regs[i].regmap_entry[HOST_CCREG]==CCREG&&regs[i].regmap[HOST_CCREG]!=CCREG)
9942         wb_register(CCREG,regs[i].regmap_entry,regs[i].wasdirty,regs[i].was32);
9943       load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i],rs2[i]);
9944       address_generation(i,&regs[i],regs[i].regmap_entry);
9945       load_consts(regmap_pre[i],regs[i].regmap,regs[i].was32,i);
9946       if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
9947       {
9948         // Load the delay slot registers if necessary
9949         if(rs1[i+1]!=rs1[i]&&rs1[i+1]!=rs2[i]&&(rs1[i+1]!=rt1[i]||rt1[i]==0))
9950           load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i+1],rs1[i+1]);
9951         if(rs2[i+1]!=rs1[i+1]&&rs2[i+1]!=rs1[i]&&rs2[i+1]!=rs2[i]&&(rs2[i+1]!=rt1[i]||rt1[i]==0))
9952           load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs2[i+1],rs2[i+1]);
9953         if(itype[i+1]==STORE||itype[i+1]==STORELR||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a)
9954           load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,INVCP,INVCP);
9955       }
9956       else if(i+1<slen)
9957       {
9958         // Preload registers for following instruction
9959         if(rs1[i+1]!=rs1[i]&&rs1[i+1]!=rs2[i])
9960           if(rs1[i+1]!=rt1[i]&&rs1[i+1]!=rt2[i])
9961             load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i+1],rs1[i+1]);
9962         if(rs2[i+1]!=rs1[i+1]&&rs2[i+1]!=rs1[i]&&rs2[i+1]!=rs2[i])
9963           if(rs2[i+1]!=rt1[i]&&rs2[i+1]!=rt2[i])
9964             load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs2[i+1],rs2[i+1]);
9965       }
9966       // TODO: if(is_ooo(i)) address_generation(i+1);
9967       if(itype[i]==CJUMP||itype[i]==FJUMP)
9968         load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,CCREG,CCREG);
9969       if(itype[i]==STORE||itype[i]==STORELR||(opcode[i]&0x3b)==0x39||(opcode[i]&0x3b)==0x3a)
9970         load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,INVCP,INVCP);
9971       if(bt[i]) cop1_usable=0;
9972       // assemble
9973       switch(itype[i]) {
9974         case ALU:
9975           alu_assemble(i,&regs[i]);break;
9976         case IMM16:
9977           imm16_assemble(i,&regs[i]);break;
9978         case SHIFT:
9979           shift_assemble(i,&regs[i]);break;
9980         case SHIFTIMM:
9981           shiftimm_assemble(i,&regs[i]);break;
9982         case LOAD:
9983           load_assemble(i,&regs[i]);break;
9984         case LOADLR:
9985           loadlr_assemble(i,&regs[i]);break;
9986         case STORE:
9987           store_assemble(i,&regs[i]);break;
9988         case STORELR:
9989           storelr_assemble(i,&regs[i]);break;
9990         case COP0:
9991           cop0_assemble(i,&regs[i]);break;
9992         case COP1:
9993           cop1_assemble(i,&regs[i]);break;
9994         case C1LS:
9995           c1ls_assemble(i,&regs[i]);break;
9996         case COP2:
9997           cop2_assemble(i,&regs[i]);break;
9998         case C2LS:
9999           c2ls_assemble(i,&regs[i]);break;
10000         case C2OP:
10001           c2op_assemble(i,&regs[i]);break;
10002         case FCONV:
10003           fconv_assemble(i,&regs[i]);break;
10004         case FLOAT:
10005           float_assemble(i,&regs[i]);break;
10006         case FCOMP:
10007           fcomp_assemble(i,&regs[i]);break;
10008         case MULTDIV:
10009           multdiv_assemble(i,&regs[i]);break;
10010         case MOV:
10011           mov_assemble(i,&regs[i]);break;
10012         case SYSCALL:
10013           syscall_assemble(i,&regs[i]);break;
10014         case HLECALL:
10015           hlecall_assemble(i,&regs[i]);break;
10016         case INTCALL:
10017           intcall_assemble(i,&regs[i]);break;
10018         case UJUMP:
10019           ujump_assemble(i,&regs[i]);ds=1;break;
10020         case RJUMP:
10021           rjump_assemble(i,&regs[i]);ds=1;break;
10022         case CJUMP:
10023           cjump_assemble(i,&regs[i]);ds=1;break;
10024         case SJUMP:
10025           sjump_assemble(i,&regs[i]);ds=1;break;
10026         case FJUMP:
10027           fjump_assemble(i,&regs[i]);ds=1;break;
10028         case SPAN:
10029           pagespan_assemble(i,&regs[i]);break;
10030       }
10031       if(itype[i]==UJUMP||itype[i]==RJUMP||(source[i]>>16)==0x1000)
10032         literal_pool(1024);
10033       else
10034         literal_pool_jumpover(256);
10035     }
10036   }
10037   //assert(itype[i-2]==UJUMP||itype[i-2]==RJUMP||(source[i-2]>>16)==0x1000);
10038   // If the block did not end with an unconditional branch,
10039   // add a jump to the next instruction.
10040   if(i>1) {
10041     if(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000&&itype[i-1]!=SPAN) {
10042       assert(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP);
10043       assert(i==slen);
10044       if(itype[i-2]!=CJUMP&&itype[i-2]!=SJUMP&&itype[i-2]!=FJUMP) {
10045         store_regs_bt(regs[i-1].regmap,regs[i-1].is32,regs[i-1].dirty,start+i*4);
10046         if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
10047           emit_loadreg(CCREG,HOST_CCREG);
10048         emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i-1]+1),HOST_CCREG);
10049       }
10050       else if(!likely[i-2])
10051       {
10052         store_regs_bt(branch_regs[i-2].regmap,branch_regs[i-2].is32,branch_regs[i-2].dirty,start+i*4);
10053         assert(branch_regs[i-2].regmap[HOST_CCREG]==CCREG);
10054       }
10055       else
10056       {
10057         store_regs_bt(regs[i-2].regmap,regs[i-2].is32,regs[i-2].dirty,start+i*4);
10058         assert(regs[i-2].regmap[HOST_CCREG]==CCREG);
10059       }
10060       add_to_linker((int)out,start+i*4,0);
10061       emit_jmp(0);
10062     }
10063   }
10064   else
10065   {
10066     assert(i>0);
10067     assert(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP);
10068     store_regs_bt(regs[i-1].regmap,regs[i-1].is32,regs[i-1].dirty,start+i*4);
10069     if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
10070       emit_loadreg(CCREG,HOST_CCREG);
10071     emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i-1]+1),HOST_CCREG);
10072     add_to_linker((int)out,start+i*4,0);
10073     emit_jmp(0);
10074   }
10075
10076   // TODO: delay slot stubs?
10077   // Stubs
10078   for(i=0;i<stubcount;i++)
10079   {
10080     switch(stubs[i][0])
10081     {
10082       case LOADB_STUB:
10083       case LOADH_STUB:
10084       case LOADW_STUB:
10085       case LOADD_STUB:
10086       case LOADBU_STUB:
10087       case LOADHU_STUB:
10088         do_readstub(i);break;
10089       case STOREB_STUB:
10090       case STOREH_STUB:
10091       case STOREW_STUB:
10092       case STORED_STUB:
10093         do_writestub(i);break;
10094       case CC_STUB:
10095         do_ccstub(i);break;
10096       case INVCODE_STUB:
10097         do_invstub(i);break;
10098       case FP_STUB:
10099         do_cop1stub(i);break;
10100       case STORELR_STUB:
10101         do_unalignedwritestub(i);break;
10102     }
10103   }
10104
10105   if (instr_addr0_override)
10106     instr_addr[0] = instr_addr0_override;
10107
10108   /* Pass 9 - Linker */
10109   for(i=0;i<linkcount;i++)
10110   {
10111     assem_debug("%8x -> %8x\n",link_addr[i][0],link_addr[i][1]);
10112     literal_pool(64);
10113     if(!link_addr[i][2])
10114     {
10115       void *stub=out;
10116       void *addr=check_addr(link_addr[i][1]);
10117       emit_extjump(link_addr[i][0],link_addr[i][1]);
10118       if(addr) {
10119         set_jump_target(link_addr[i][0],(int)addr);
10120         add_link(link_addr[i][1],stub);
10121       }
10122       else set_jump_target(link_addr[i][0],(int)stub);
10123     }
10124     else
10125     {
10126       // Internal branch
10127       int target=(link_addr[i][1]-start)>>2;
10128       assert(target>=0&&target<slen);
10129       assert(instr_addr[target]);
10130       //#ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
10131       //set_jump_target_fillslot(link_addr[i][0],instr_addr[target],link_addr[i][2]>>1);
10132       //#else
10133       set_jump_target(link_addr[i][0],instr_addr[target]);
10134       //#endif
10135     }
10136   }
10137   // External Branch Targets (jump_in)
10138   if(copy+slen*4>(void *)shadow+sizeof(shadow)) copy=shadow;
10139   for(i=0;i<slen;i++)
10140   {
10141     if(bt[i]||i==0)
10142     {
10143       if(instr_addr[i]) // TODO - delay slots (=null)
10144       {
10145         u_int vaddr=start+i*4;
10146         u_int page=get_page(vaddr);
10147         u_int vpage=get_vpage(vaddr);
10148         literal_pool(256);
10149         {
10150           assem_debug("%8x (%d) <- %8x\n",instr_addr[i],i,start+i*4);
10151           assem_debug("jump_in: %x\n",start+i*4);
10152           ll_add(jump_dirty+vpage,vaddr,(void *)out);
10153           int entry_point=do_dirty_stub(i);
10154           ll_add_flags(jump_in+page,vaddr,state_rflags,(void *)entry_point);
10155           // If there was an existing entry in the hash table,
10156           // replace it with the new address.
10157           // Don't add new entries.  We'll insert the
10158           // ones that actually get used in check_addr().
10159           u_int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
10160           if(ht_bin[0]==vaddr) {
10161             ht_bin[1]=entry_point;
10162           }
10163           if(ht_bin[2]==vaddr) {
10164             ht_bin[3]=entry_point;
10165           }
10166         }
10167       }
10168     }
10169   }
10170   // Write out the literal pool if necessary
10171   literal_pool(0);
10172   #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
10173   // Align code
10174   if(((u_int)out)&7) emit_addnop(13);
10175   #endif
10176   assert((u_int)out-beginning<MAX_OUTPUT_BLOCK_SIZE);
10177   //printf("shadow buffer: %x-%x\n",(int)copy,(int)copy+slen*4);
10178   memcpy(copy,source,slen*4);
10179   copy+=slen*4;
10180
10181   #ifdef __arm__
10182   __clear_cache((void *)beginning,out);
10183   #endif
10184
10185   // If we're within 256K of the end of the buffer,
10186   // start over from the beginning. (Is 256K enough?)
10187   if((u_int)out>(u_int)BASE_ADDR+(1<<TARGET_SIZE_2)-MAX_OUTPUT_BLOCK_SIZE) out=(u_char *)BASE_ADDR;
10188
10189   // Trap writes to any of the pages we compiled
10190   for(i=start>>12;i<=(start+slen*4)>>12;i++) {
10191     invalid_code[i]=0;
10192   }
10193   inv_code_start=inv_code_end=~0;
10194
10195   // for PCSX we need to mark all mirrors too
10196   if(get_page(start)<(RAM_SIZE>>12))
10197     for(i=start>>12;i<=(start+slen*4)>>12;i++)
10198       invalid_code[((u_int)0x00000000>>12)|(i&0x1ff)]=
10199       invalid_code[((u_int)0x80000000>>12)|(i&0x1ff)]=
10200       invalid_code[((u_int)0xa0000000>>12)|(i&0x1ff)]=0;
10201
10202   /* Pass 10 - Free memory by expiring oldest blocks */
10203
10204   int end=((((int)out-(int)BASE_ADDR)>>(TARGET_SIZE_2-16))+16384)&65535;
10205   while(expirep!=end)
10206   {
10207     int shift=TARGET_SIZE_2-3; // Divide into 8 blocks
10208     int base=(int)BASE_ADDR+((expirep>>13)<<shift); // Base address of this block
10209     inv_debug("EXP: Phase %d\n",expirep);
10210     switch((expirep>>11)&3)
10211     {
10212       case 0:
10213         // Clear jump_in and jump_dirty
10214         ll_remove_matching_addrs(jump_in+(expirep&2047),base,shift);
10215         ll_remove_matching_addrs(jump_dirty+(expirep&2047),base,shift);
10216         ll_remove_matching_addrs(jump_in+2048+(expirep&2047),base,shift);
10217         ll_remove_matching_addrs(jump_dirty+2048+(expirep&2047),base,shift);
10218         break;
10219       case 1:
10220         // Clear pointers
10221         ll_kill_pointers(jump_out[expirep&2047],base,shift);
10222         ll_kill_pointers(jump_out[(expirep&2047)+2048],base,shift);
10223         break;
10224       case 2:
10225         // Clear hash table
10226         for(i=0;i<32;i++) {
10227           u_int *ht_bin=hash_table[((expirep&2047)<<5)+i];
10228           if((ht_bin[3]>>shift)==(base>>shift) ||
10229              ((ht_bin[3]-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(base>>shift)) {
10230             inv_debug("EXP: Remove hash %x -> %x\n",ht_bin[2],ht_bin[3]);
10231             ht_bin[2]=ht_bin[3]=-1;
10232           }
10233           if((ht_bin[1]>>shift)==(base>>shift) ||
10234              ((ht_bin[1]-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(base>>shift)) {
10235             inv_debug("EXP: Remove hash %x -> %x\n",ht_bin[0],ht_bin[1]);
10236             ht_bin[0]=ht_bin[2];
10237             ht_bin[1]=ht_bin[3];
10238             ht_bin[2]=ht_bin[3]=-1;
10239           }
10240         }
10241         break;
10242       case 3:
10243         // Clear jump_out
10244         #ifdef __arm__
10245         if((expirep&2047)==0)
10246           do_clear_cache();
10247         #endif
10248         ll_remove_matching_addrs(jump_out+(expirep&2047),base,shift);
10249         ll_remove_matching_addrs(jump_out+2048+(expirep&2047),base,shift);
10250         break;
10251     }
10252     expirep=(expirep+1)&65535;
10253   }
10254   return 0;
10255 }
10256
10257 // vim:shiftwidth=2:expandtab