drc: merge Ari64's patch: 10_unnecessary_invalidate
[pcsx_rearmed.git] / libpcsxcore / new_dynarec / new_dynarec.c
1 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
2  *   Mupen64plus - new_dynarec.c                                           *
3  *   Copyright (C) 2009-2010 Ari64                                         *
4  *                                                                         *
5  *   This program is free software; you can redistribute it and/or modify  *
6  *   it under the terms of the GNU General Public License as published by  *
7  *   the Free Software Foundation; either version 2 of the License, or     *
8  *   (at your option) any later version.                                   *
9  *                                                                         *
10  *   This program is distributed in the hope that it will be useful,       *
11  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
12  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
13  *   GNU General Public License for more details.                          *
14  *                                                                         *
15  *   You should have received a copy of the GNU General Public License     *
16  *   along with this program; if not, write to the                         *
17  *   Free Software Foundation, Inc.,                                       *
18  *   51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.          *
19  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
20
21 #include <stdlib.h>
22 #include <stdint.h> //include for uint64_t
23 #include <assert.h>
24
25 #include "emu_if.h" //emulator interface
26
27 #include <sys/mman.h>
28
29 #ifdef __i386__
30 #include "assem_x86.h"
31 #endif
32 #ifdef __x86_64__
33 #include "assem_x64.h"
34 #endif
35 #ifdef __arm__
36 #include "assem_arm.h"
37 #endif
38
39 #define MAXBLOCK 4096
40 #define MAX_OUTPUT_BLOCK_SIZE 262144
41 #define CLOCK_DIVIDER 2
42
43 struct regstat
44 {
45   signed char regmap_entry[HOST_REGS];
46   signed char regmap[HOST_REGS];
47   uint64_t was32;
48   uint64_t is32;
49   uint64_t wasdirty;
50   uint64_t dirty;
51   uint64_t u;
52   uint64_t uu;
53   u_int wasconst;
54   u_int isconst;
55   uint64_t constmap[HOST_REGS];
56 };
57
58 struct ll_entry
59 {
60   u_int vaddr;
61   u_int reg32;
62   void *addr;
63   struct ll_entry *next;
64 };
65
66   u_int start;
67   u_int *source;
68   u_int pagelimit;
69   char insn[MAXBLOCK][10];
70   u_char itype[MAXBLOCK];
71   u_char opcode[MAXBLOCK];
72   u_char opcode2[MAXBLOCK];
73   u_char bt[MAXBLOCK];
74   u_char rs1[MAXBLOCK];
75   u_char rs2[MAXBLOCK];
76   u_char rt1[MAXBLOCK];
77   u_char rt2[MAXBLOCK];
78   u_char us1[MAXBLOCK];
79   u_char us2[MAXBLOCK];
80   u_char dep1[MAXBLOCK];
81   u_char dep2[MAXBLOCK];
82   u_char lt1[MAXBLOCK];
83   int imm[MAXBLOCK];
84   u_int ba[MAXBLOCK];
85   char likely[MAXBLOCK];
86   char is_ds[MAXBLOCK];
87   char ooo[MAXBLOCK];
88   uint64_t unneeded_reg[MAXBLOCK];
89   uint64_t unneeded_reg_upper[MAXBLOCK];
90   uint64_t branch_unneeded_reg[MAXBLOCK];
91   uint64_t branch_unneeded_reg_upper[MAXBLOCK];
92   uint64_t p32[MAXBLOCK];
93   uint64_t pr32[MAXBLOCK];
94   signed char regmap_pre[MAXBLOCK][HOST_REGS];
95   signed char regmap[MAXBLOCK][HOST_REGS];
96   signed char regmap_entry[MAXBLOCK][HOST_REGS];
97   uint64_t constmap[MAXBLOCK][HOST_REGS];
98   struct regstat regs[MAXBLOCK];
99   struct regstat branch_regs[MAXBLOCK];
100   signed char minimum_free_regs[MAXBLOCK];
101   u_int needed_reg[MAXBLOCK];
102   uint64_t requires_32bit[MAXBLOCK];
103   u_int wont_dirty[MAXBLOCK];
104   u_int will_dirty[MAXBLOCK];
105   int ccadj[MAXBLOCK];
106   int slen;
107   u_int instr_addr[MAXBLOCK];
108   u_int link_addr[MAXBLOCK][3];
109   int linkcount;
110   u_int stubs[MAXBLOCK*3][8];
111   int stubcount;
112   u_int literals[1024][2];
113   int literalcount;
114   int is_delayslot;
115   int cop1_usable;
116   u_char *out;
117   struct ll_entry *jump_in[4096];
118   struct ll_entry *jump_out[4096];
119   struct ll_entry *jump_dirty[4096];
120   u_int hash_table[65536][4]  __attribute__((aligned(16)));
121   char shadow[1048576]  __attribute__((aligned(16)));
122   void *copy;
123   int expirep;
124   u_int using_tlb;
125   u_int stop_after_jal;
126   extern u_char restore_candidate[512];
127   extern int cycle_count;
128
129   /* registers that may be allocated */
130   /* 1-31 gpr */
131 #define HIREG 32 // hi
132 #define LOREG 33 // lo
133 #define FSREG 34 // FPU status (FCSR)
134 #define CSREG 35 // Coprocessor status
135 #define CCREG 36 // Cycle count
136 #define INVCP 37 // Pointer to invalid_code
137 #define TEMPREG 38
138 #define FTEMP 38 // FPU/LDL/LDR temporary register
139 #define PTEMP 39 // Prefetch temporary register
140 #define TLREG 40 // TLB mapping offset
141 #define RHASH 41 // Return address hash
142 #define RHTBL 42 // Return address hash table address
143 #define RTEMP 43 // JR/JALR address register
144 #define MAXREG 43
145 #define AGEN1 44 // Address generation temporary register
146 #define AGEN2 45 // Address generation temporary register
147 #define MGEN1 46 // Maptable address generation temporary register
148 #define MGEN2 47 // Maptable address generation temporary register
149 #define BTREG 48 // Branch target temporary register
150
151   /* instruction types */
152 #define NOP 0     // No operation
153 #define LOAD 1    // Load
154 #define STORE 2   // Store
155 #define LOADLR 3  // Unaligned load
156 #define STORELR 4 // Unaligned store
157 #define MOV 5     // Move 
158 #define ALU 6     // Arithmetic/logic
159 #define MULTDIV 7 // Multiply/divide
160 #define SHIFT 8   // Shift by register
161 #define SHIFTIMM 9// Shift by immediate
162 #define IMM16 10  // 16-bit immediate
163 #define RJUMP 11  // Unconditional jump to register
164 #define UJUMP 12  // Unconditional jump
165 #define CJUMP 13  // Conditional branch (BEQ/BNE/BGTZ/BLEZ)
166 #define SJUMP 14  // Conditional branch (regimm format)
167 #define COP0 15   // Coprocessor 0
168 #define COP1 16   // Coprocessor 1
169 #define C1LS 17   // Coprocessor 1 load/store
170 #define FJUMP 18  // Conditional branch (floating point)
171 #define FLOAT 19  // Floating point unit
172 #define FCONV 20  // Convert integer to float
173 #define FCOMP 21  // Floating point compare (sets FSREG)
174 #define SYSCALL 22// SYSCALL
175 #define OTHER 23  // Other
176 #define SPAN 24   // Branch/delay slot spans 2 pages
177 #define NI 25     // Not implemented
178 #define HLECALL 26// PCSX fake opcodes for HLE
179 #define COP2 27   // Coprocessor 2 move
180 #define C2LS 28   // Coprocessor 2 load/store
181 #define C2OP 29   // Coprocessor 2 operation
182 #define INTCALL 30// Call interpreter to handle rare corner cases
183
184   /* stubs */
185 #define CC_STUB 1
186 #define FP_STUB 2
187 #define LOADB_STUB 3
188 #define LOADH_STUB 4
189 #define LOADW_STUB 5
190 #define LOADD_STUB 6
191 #define LOADBU_STUB 7
192 #define LOADHU_STUB 8
193 #define STOREB_STUB 9
194 #define STOREH_STUB 10
195 #define STOREW_STUB 11
196 #define STORED_STUB 12
197 #define STORELR_STUB 13
198 #define INVCODE_STUB 14
199
200   /* branch codes */
201 #define TAKEN 1
202 #define NOTTAKEN 2
203 #define NULLDS 3
204
205 // asm linkage
206 int new_recompile_block(int addr);
207 void *get_addr_ht(u_int vaddr);
208 void invalidate_block(u_int block);
209 void invalidate_addr(u_int addr);
210 void remove_hash(int vaddr);
211 void jump_vaddr();
212 void dyna_linker();
213 void dyna_linker_ds();
214 void verify_code();
215 void verify_code_vm();
216 void verify_code_ds();
217 void cc_interrupt();
218 void fp_exception();
219 void fp_exception_ds();
220 void jump_syscall();
221 void jump_syscall_hle();
222 void jump_eret();
223 void jump_hlecall();
224 void jump_intcall();
225 void new_dyna_leave();
226
227 // TLB
228 void TLBWI_new();
229 void TLBWR_new();
230 void read_nomem_new();
231 void read_nomemb_new();
232 void read_nomemh_new();
233 void read_nomemd_new();
234 void write_nomem_new();
235 void write_nomemb_new();
236 void write_nomemh_new();
237 void write_nomemd_new();
238 void write_rdram_new();
239 void write_rdramb_new();
240 void write_rdramh_new();
241 void write_rdramd_new();
242 extern u_int memory_map[1048576];
243
244 // Needed by assembler
245 void wb_register(signed char r,signed char regmap[],uint64_t dirty,uint64_t is32);
246 void wb_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty);
247 void wb_needed_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr);
248 void load_all_regs(signed char i_regmap[]);
249 void load_needed_regs(signed char i_regmap[],signed char next_regmap[]);
250 void load_regs_entry(int t);
251 void load_all_consts(signed char regmap[],int is32,u_int dirty,int i);
252
253 int tracedebug=0;
254
255 //#define DEBUG_CYCLE_COUNT 1
256
257 void nullf() {}
258 //#define assem_debug printf
259 //#define inv_debug printf
260 #define assem_debug nullf
261 #define inv_debug nullf
262
263 static void tlb_hacks()
264 {
265 #ifndef DISABLE_TLB
266   // Goldeneye hack
267   if (strncmp((char *) ROM_HEADER->nom, "GOLDENEYE",9) == 0)
268   {
269     u_int addr;
270     int n;
271     switch (ROM_HEADER->Country_code&0xFF) 
272     {
273       case 0x45: // U
274         addr=0x34b30;
275         break;                   
276       case 0x4A: // J 
277         addr=0x34b70;    
278         break;    
279       case 0x50: // E 
280         addr=0x329f0;
281         break;                        
282       default: 
283         // Unknown country code
284         addr=0;
285         break;
286     }
287     u_int rom_addr=(u_int)rom;
288     #ifdef ROM_COPY
289     // Since memory_map is 32-bit, on 64-bit systems the rom needs to be
290     // in the lower 4G of memory to use this hack.  Copy it if necessary.
291     if((void *)rom>(void *)0xffffffff) {
292       munmap(ROM_COPY, 67108864);
293       if(mmap(ROM_COPY, 12582912,
294               PROT_READ | PROT_WRITE,
295               MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS,
296               -1, 0) <= 0) {printf("mmap() failed\n");}
297       memcpy(ROM_COPY,rom,12582912);
298       rom_addr=(u_int)ROM_COPY;
299     }
300     #endif
301     if(addr) {
302       for(n=0x7F000;n<0x80000;n++) {
303         memory_map[n]=(((u_int)(rom_addr+addr-0x7F000000))>>2)|0x40000000;
304       }
305     }
306   }
307 #endif
308 }
309
310 static u_int get_page(u_int vaddr)
311 {
312 #ifndef PCSX
313   u_int page=(vaddr^0x80000000)>>12;
314 #else
315   u_int page=vaddr&~0xe0000000;
316   if (page < 0x1000000)
317     page &= ~0x0e00000; // RAM mirrors
318   page>>=12;
319 #endif
320 #ifndef DISABLE_TLB
321   if(page>262143&&tlb_LUT_r[vaddr>>12]) page=(tlb_LUT_r[vaddr>>12]^0x80000000)>>12;
322 #endif
323   if(page>2048) page=2048+(page&2047);
324   return page;
325 }
326
327 static u_int get_vpage(u_int vaddr)
328 {
329   u_int vpage=(vaddr^0x80000000)>>12;
330 #ifndef DISABLE_TLB
331   if(vpage>262143&&tlb_LUT_r[vaddr>>12]) vpage&=2047; // jump_dirty uses a hash of the virtual address instead
332 #endif
333   if(vpage>2048) vpage=2048+(vpage&2047);
334   return vpage;
335 }
336
337 // Get address from virtual address
338 // This is called from the recompiled JR/JALR instructions
339 void *get_addr(u_int vaddr)
340 {
341   u_int page=get_page(vaddr);
342   u_int vpage=get_vpage(vaddr);
343   struct ll_entry *head;
344   //printf("TRACE: count=%d next=%d (get_addr %x,page %d)\n",Count,next_interupt,vaddr,page);
345   head=jump_in[page];
346   while(head!=NULL) {
347     if(head->vaddr==vaddr&&head->reg32==0) {
348   //printf("TRACE: count=%d next=%d (get_addr match %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
349       int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
350       ht_bin[3]=ht_bin[1];
351       ht_bin[2]=ht_bin[0];
352       ht_bin[1]=(int)head->addr;
353       ht_bin[0]=vaddr;
354       return head->addr;
355     }
356     head=head->next;
357   }
358   head=jump_dirty[vpage];
359   while(head!=NULL) {
360     if(head->vaddr==vaddr&&head->reg32==0) {
361       //printf("TRACE: count=%d next=%d (get_addr match dirty %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
362       // Don't restore blocks which are about to expire from the cache
363       if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
364       if(verify_dirty(head->addr)) {
365         //printf("restore candidate: %x (%d) d=%d\n",vaddr,page,invalid_code[vaddr>>12]);
366         invalid_code[vaddr>>12]=0;
367         memory_map[vaddr>>12]|=0x40000000;
368         if(vpage<2048) {
369 #ifndef DISABLE_TLB
370           if(tlb_LUT_r[vaddr>>12]) {
371             invalid_code[tlb_LUT_r[vaddr>>12]>>12]=0;
372             memory_map[tlb_LUT_r[vaddr>>12]>>12]|=0x40000000;
373           }
374 #endif
375           restore_candidate[vpage>>3]|=1<<(vpage&7);
376         }
377         else restore_candidate[page>>3]|=1<<(page&7);
378         int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
379         if(ht_bin[0]==vaddr) {
380           ht_bin[1]=(int)head->addr; // Replace existing entry
381         }
382         else
383         {
384           ht_bin[3]=ht_bin[1];
385           ht_bin[2]=ht_bin[0];
386           ht_bin[1]=(int)head->addr;
387           ht_bin[0]=vaddr;
388         }
389         return head->addr;
390       }
391     }
392     head=head->next;
393   }
394   //printf("TRACE: count=%d next=%d (get_addr no-match %x)\n",Count,next_interupt,vaddr);
395   int r=new_recompile_block(vaddr);
396   if(r==0) return get_addr(vaddr);
397   // Execute in unmapped page, generate pagefault execption
398   Status|=2;
399   Cause=(vaddr<<31)|0x8;
400   EPC=(vaddr&1)?vaddr-5:vaddr;
401   BadVAddr=(vaddr&~1);
402   Context=(Context&0xFF80000F)|((BadVAddr>>9)&0x007FFFF0);
403   EntryHi=BadVAddr&0xFFFFE000;
404   return get_addr_ht(0x80000000);
405 }
406 // Look up address in hash table first
407 void *get_addr_ht(u_int vaddr)
408 {
409   //printf("TRACE: count=%d next=%d (get_addr_ht %x)\n",Count,next_interupt,vaddr);
410   int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
411   if(ht_bin[0]==vaddr) return (void *)ht_bin[1];
412   if(ht_bin[2]==vaddr) return (void *)ht_bin[3];
413   return get_addr(vaddr);
414 }
415
416 void *get_addr_32(u_int vaddr,u_int flags)
417 {
418 #ifdef FORCE32
419   return get_addr(vaddr);
420 #else
421   //printf("TRACE: count=%d next=%d (get_addr_32 %x,flags %x)\n",Count,next_interupt,vaddr,flags);
422   int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
423   if(ht_bin[0]==vaddr) return (void *)ht_bin[1];
424   if(ht_bin[2]==vaddr) return (void *)ht_bin[3];
425   u_int page=get_page(vaddr);
426   u_int vpage=get_vpage(vaddr);
427   struct ll_entry *head;
428   head=jump_in[page];
429   while(head!=NULL) {
430     if(head->vaddr==vaddr&&(head->reg32&flags)==0) {
431       //printf("TRACE: count=%d next=%d (get_addr_32 match %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
432       if(head->reg32==0) {
433         int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
434         if(ht_bin[0]==-1) {
435           ht_bin[1]=(int)head->addr;
436           ht_bin[0]=vaddr;
437         }else if(ht_bin[2]==-1) {
438           ht_bin[3]=(int)head->addr;
439           ht_bin[2]=vaddr;
440         }
441         //ht_bin[3]=ht_bin[1];
442         //ht_bin[2]=ht_bin[0];
443         //ht_bin[1]=(int)head->addr;
444         //ht_bin[0]=vaddr;
445       }
446       return head->addr;
447     }
448     head=head->next;
449   }
450   head=jump_dirty[vpage];
451   while(head!=NULL) {
452     if(head->vaddr==vaddr&&(head->reg32&flags)==0) {
453       //printf("TRACE: count=%d next=%d (get_addr_32 match dirty %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
454       // Don't restore blocks which are about to expire from the cache
455       if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
456       if(verify_dirty(head->addr)) {
457         //printf("restore candidate: %x (%d) d=%d\n",vaddr,page,invalid_code[vaddr>>12]);
458         invalid_code[vaddr>>12]=0;
459         memory_map[vaddr>>12]|=0x40000000;
460         if(vpage<2048) {
461 #ifndef DISABLE_TLB
462           if(tlb_LUT_r[vaddr>>12]) {
463             invalid_code[tlb_LUT_r[vaddr>>12]>>12]=0;
464             memory_map[tlb_LUT_r[vaddr>>12]>>12]|=0x40000000;
465           }
466 #endif
467           restore_candidate[vpage>>3]|=1<<(vpage&7);
468         }
469         else restore_candidate[page>>3]|=1<<(page&7);
470         if(head->reg32==0) {
471           int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
472           if(ht_bin[0]==-1) {
473             ht_bin[1]=(int)head->addr;
474             ht_bin[0]=vaddr;
475           }else if(ht_bin[2]==-1) {
476             ht_bin[3]=(int)head->addr;
477             ht_bin[2]=vaddr;
478           }
479           //ht_bin[3]=ht_bin[1];
480           //ht_bin[2]=ht_bin[0];
481           //ht_bin[1]=(int)head->addr;
482           //ht_bin[0]=vaddr;
483         }
484         return head->addr;
485       }
486     }
487     head=head->next;
488   }
489   //printf("TRACE: count=%d next=%d (get_addr_32 no-match %x,flags %x)\n",Count,next_interupt,vaddr,flags);
490   int r=new_recompile_block(vaddr);
491   if(r==0) return get_addr(vaddr);
492   // Execute in unmapped page, generate pagefault execption
493   Status|=2;
494   Cause=(vaddr<<31)|0x8;
495   EPC=(vaddr&1)?vaddr-5:vaddr;
496   BadVAddr=(vaddr&~1);
497   Context=(Context&0xFF80000F)|((BadVAddr>>9)&0x007FFFF0);
498   EntryHi=BadVAddr&0xFFFFE000;
499   return get_addr_ht(0x80000000);
500 #endif
501 }
502
503 void clear_all_regs(signed char regmap[])
504 {
505   int hr;
506   for (hr=0;hr<HOST_REGS;hr++) regmap[hr]=-1;
507 }
508
509 signed char get_reg(signed char regmap[],int r)
510 {
511   int hr;
512   for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap[hr]==r) return hr;
513   return -1;
514 }
515
516 // Find a register that is available for two consecutive cycles
517 signed char get_reg2(signed char regmap1[],signed char regmap2[],int r)
518 {
519   int hr;
520   for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap1[hr]==r&&regmap2[hr]==r) return hr;
521   return -1;
522 }
523
524 int count_free_regs(signed char regmap[])
525 {
526   int count=0;
527   int hr;
528   for(hr=0;hr<HOST_REGS;hr++)
529   {
530     if(hr!=EXCLUDE_REG) {
531       if(regmap[hr]<0) count++;
532     }
533   }
534   return count;
535 }
536
537 void dirty_reg(struct regstat *cur,signed char reg)
538 {
539   int hr;
540   if(!reg) return;
541   for (hr=0;hr<HOST_REGS;hr++) {
542     if((cur->regmap[hr]&63)==reg) {
543       cur->dirty|=1<<hr;
544     }
545   }
546 }
547
548 // If we dirty the lower half of a 64 bit register which is now being
549 // sign-extended, we need to dump the upper half.
550 // Note: Do this only after completion of the instruction, because
551 // some instructions may need to read the full 64-bit value even if
552 // overwriting it (eg SLTI, DSRA32).
553 static void flush_dirty_uppers(struct regstat *cur)
554 {
555   int hr,reg;
556   for (hr=0;hr<HOST_REGS;hr++) {
557     if((cur->dirty>>hr)&1) {
558       reg=cur->regmap[hr];
559       if(reg>=64) 
560         if((cur->is32>>(reg&63))&1) cur->regmap[hr]=-1;
561     }
562   }
563 }
564
565 void set_const(struct regstat *cur,signed char reg,uint64_t value)
566 {
567   int hr;
568   if(!reg) return;
569   for (hr=0;hr<HOST_REGS;hr++) {
570     if(cur->regmap[hr]==reg) {
571       cur->isconst|=1<<hr;
572       cur->constmap[hr]=value;
573     }
574     else if((cur->regmap[hr]^64)==reg) {
575       cur->isconst|=1<<hr;
576       cur->constmap[hr]=value>>32;
577     }
578   }
579 }
580
581 void clear_const(struct regstat *cur,signed char reg)
582 {
583   int hr;
584   if(!reg) return;
585   for (hr=0;hr<HOST_REGS;hr++) {
586     if((cur->regmap[hr]&63)==reg) {
587       cur->isconst&=~(1<<hr);
588     }
589   }
590 }
591
592 int is_const(struct regstat *cur,signed char reg)
593 {
594   int hr;
595   if(!reg) return 1;
596   for (hr=0;hr<HOST_REGS;hr++) {
597     if((cur->regmap[hr]&63)==reg) {
598       return (cur->isconst>>hr)&1;
599     }
600   }
601   return 0;
602 }
603 uint64_t get_const(struct regstat *cur,signed char reg)
604 {
605   int hr;
606   if(!reg) return 0;
607   for (hr=0;hr<HOST_REGS;hr++) {
608     if(cur->regmap[hr]==reg) {
609       return cur->constmap[hr];
610     }
611   }
612   printf("Unknown constant in r%d\n",reg);
613   exit(1);
614 }
615
616 // Least soon needed registers
617 // Look at the next ten instructions and see which registers
618 // will be used.  Try not to reallocate these.
619 void lsn(u_char hsn[], int i, int *preferred_reg)
620 {
621   int j;
622   int b=-1;
623   for(j=0;j<9;j++)
624   {
625     if(i+j>=slen) {
626       j=slen-i-1;
627       break;
628     }
629     if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
630     {
631       // Don't go past an unconditonal jump
632       j++;
633       break;
634     }
635   }
636   for(;j>=0;j--)
637   {
638     if(rs1[i+j]) hsn[rs1[i+j]]=j;
639     if(rs2[i+j]) hsn[rs2[i+j]]=j;
640     if(rt1[i+j]) hsn[rt1[i+j]]=j;
641     if(rt2[i+j]) hsn[rt2[i+j]]=j;
642     if(itype[i+j]==STORE || itype[i+j]==STORELR) {
643       // Stores can allocate zero
644       hsn[rs1[i+j]]=j;
645       hsn[rs2[i+j]]=j;
646     }
647     // On some architectures stores need invc_ptr
648     #if defined(HOST_IMM8)
649     if(itype[i+j]==STORE || itype[i+j]==STORELR || (opcode[i+j]&0x3b)==0x39 || (opcode[i+j]&0x3b)==0x3a) {
650       hsn[INVCP]=j;
651     }
652     #endif
653     if(i+j>=0&&(itype[i+j]==UJUMP||itype[i+j]==CJUMP||itype[i+j]==SJUMP||itype[i+j]==FJUMP))
654     {
655       hsn[CCREG]=j;
656       b=j;
657     }
658   }
659   if(b>=0)
660   {
661     if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
662     {
663       // Follow first branch
664       int t=(ba[i+b]-start)>>2;
665       j=7-b;if(t+j>=slen) j=slen-t-1;
666       for(;j>=0;j--)
667       {
668         if(rs1[t+j]) if(hsn[rs1[t+j]]>j+b+2) hsn[rs1[t+j]]=j+b+2;
669         if(rs2[t+j]) if(hsn[rs2[t+j]]>j+b+2) hsn[rs2[t+j]]=j+b+2;
670         //if(rt1[t+j]) if(hsn[rt1[t+j]]>j+b+2) hsn[rt1[t+j]]=j+b+2;
671         //if(rt2[t+j]) if(hsn[rt2[t+j]]>j+b+2) hsn[rt2[t+j]]=j+b+2;
672       }
673     }
674     // TODO: preferred register based on backward branch
675   }
676   // Delay slot should preferably not overwrite branch conditions or cycle count
677   if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)) {
678     if(rs1[i-1]) if(hsn[rs1[i-1]]>1) hsn[rs1[i-1]]=1;
679     if(rs2[i-1]) if(hsn[rs2[i-1]]>1) hsn[rs2[i-1]]=1;
680     hsn[CCREG]=1;
681     // ...or hash tables
682     hsn[RHASH]=1;
683     hsn[RHTBL]=1;
684   }
685   // Coprocessor load/store needs FTEMP, even if not declared
686   if(itype[i]==C1LS||itype[i]==C2LS) {
687     hsn[FTEMP]=0;
688   }
689   // Load L/R also uses FTEMP as a temporary register
690   if(itype[i]==LOADLR) {
691     hsn[FTEMP]=0;
692   }
693   // Also SWL/SWR/SDL/SDR
694   if(opcode[i]==0x2a||opcode[i]==0x2e||opcode[i]==0x2c||opcode[i]==0x2d) {
695     hsn[FTEMP]=0;
696   }
697   // Don't remove the TLB registers either
698   if(itype[i]==LOAD || itype[i]==LOADLR || itype[i]==STORE || itype[i]==STORELR || itype[i]==C1LS || itype[i]==C2LS) {
699     hsn[TLREG]=0;
700   }
701   // Don't remove the miniht registers
702   if(itype[i]==UJUMP||itype[i]==RJUMP)
703   {
704     hsn[RHASH]=0;
705     hsn[RHTBL]=0;
706   }
707 }
708
709 // We only want to allocate registers if we're going to use them again soon
710 int needed_again(int r, int i)
711 {
712   int j;
713   int b=-1;
714   int rn=10;
715   int hr;
716   u_char hsn[MAXREG+1];
717   int preferred_reg;
718   
719   memset(hsn,10,sizeof(hsn));
720   lsn(hsn,i,&preferred_reg);
721   
722   if(i>0&&(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000))
723   {
724     if(ba[i-1]<start || ba[i-1]>start+slen*4-4)
725       return 0; // Don't need any registers if exiting the block
726   }
727   for(j=0;j<9;j++)
728   {
729     if(i+j>=slen) {
730       j=slen-i-1;
731       break;
732     }
733     if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
734     {
735       // Don't go past an unconditonal jump
736       j++;
737       break;
738     }
739     if(itype[i+j]==SYSCALL||itype[i+j]==HLECALL||itype[i+j]==INTCALL||((source[i+j]&0xfc00003f)==0x0d))
740     {
741       break;
742     }
743   }
744   for(;j>=1;j--)
745   {
746     if(rs1[i+j]==r) rn=j;
747     if(rs2[i+j]==r) rn=j;
748     if((unneeded_reg[i+j]>>r)&1) rn=10;
749     if(i+j>=0&&(itype[i+j]==UJUMP||itype[i+j]==CJUMP||itype[i+j]==SJUMP||itype[i+j]==FJUMP))
750     {
751       b=j;
752     }
753   }
754   /*
755   if(b>=0)
756   {
757     if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
758     {
759       // Follow first branch
760       int o=rn;
761       int t=(ba[i+b]-start)>>2;
762       j=7-b;if(t+j>=slen) j=slen-t-1;
763       for(;j>=0;j--)
764       {
765         if(!((unneeded_reg[t+j]>>r)&1)) {
766           if(rs1[t+j]==r) if(rn>j+b+2) rn=j+b+2;
767           if(rs2[t+j]==r) if(rn>j+b+2) rn=j+b+2;
768         }
769         else rn=o;
770       }
771     }
772   }*/
773   for(hr=0;hr<HOST_REGS;hr++) {
774     if(hr!=EXCLUDE_REG) {
775       if(rn<hsn[hr]) return 1;
776     }
777   }
778   return 0;
779 }
780
781 // Try to match register allocations at the end of a loop with those
782 // at the beginning
783 int loop_reg(int i, int r, int hr)
784 {
785   int j,k;
786   for(j=0;j<9;j++)
787   {
788     if(i+j>=slen) {
789       j=slen-i-1;
790       break;
791     }
792     if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
793     {
794       // Don't go past an unconditonal jump
795       j++;
796       break;
797     }
798   }
799   k=0;
800   if(i>0){
801     if(itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)
802       k--;
803   }
804   for(;k<j;k++)
805   {
806     if(r<64&&((unneeded_reg[i+k]>>r)&1)) return hr;
807     if(r>64&&((unneeded_reg_upper[i+k]>>r)&1)) return hr;
808     if(i+k>=0&&(itype[i+k]==UJUMP||itype[i+k]==CJUMP||itype[i+k]==SJUMP||itype[i+k]==FJUMP))
809     {
810       if(ba[i+k]>=start && ba[i+k]<(start+i*4))
811       {
812         int t=(ba[i+k]-start)>>2;
813         int reg=get_reg(regs[t].regmap_entry,r);
814         if(reg>=0) return reg;
815         //reg=get_reg(regs[t+1].regmap_entry,r);
816         //if(reg>=0) return reg;
817       }
818     }
819   }
820   return hr;
821 }
822
823
824 // Allocate every register, preserving source/target regs
825 void alloc_all(struct regstat *cur,int i)
826 {
827   int hr;
828   
829   for(hr=0;hr<HOST_REGS;hr++) {
830     if(hr!=EXCLUDE_REG) {
831       if(((cur->regmap[hr]&63)!=rs1[i])&&((cur->regmap[hr]&63)!=rs2[i])&&
832          ((cur->regmap[hr]&63)!=rt1[i])&&((cur->regmap[hr]&63)!=rt2[i]))
833       {
834         cur->regmap[hr]=-1;
835         cur->dirty&=~(1<<hr);
836       }
837       // Don't need zeros
838       if((cur->regmap[hr]&63)==0)
839       {
840         cur->regmap[hr]=-1;
841         cur->dirty&=~(1<<hr);
842       }
843     }
844   }
845 }
846
847
848 void div64(int64_t dividend,int64_t divisor)
849 {
850   lo=dividend/divisor;
851   hi=dividend%divisor;
852   //printf("TRACE: ddiv %8x%8x %8x%8x\n" ,(int)reg[HIREG],(int)(reg[HIREG]>>32)
853   //                                     ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
854 }
855 void divu64(uint64_t dividend,uint64_t divisor)
856 {
857   lo=dividend/divisor;
858   hi=dividend%divisor;
859   //printf("TRACE: ddivu %8x%8x %8x%8x\n",(int)reg[HIREG],(int)(reg[HIREG]>>32)
860   //                                     ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
861 }
862
863 void mult64(uint64_t m1,uint64_t m2)
864 {
865    unsigned long long int op1, op2, op3, op4;
866    unsigned long long int result1, result2, result3, result4;
867    unsigned long long int temp1, temp2, temp3, temp4;
868    int sign = 0;
869    
870    if (m1 < 0)
871      {
872     op2 = -m1;
873     sign = 1 - sign;
874      }
875    else op2 = m1;
876    if (m2 < 0)
877      {
878     op4 = -m2;
879     sign = 1 - sign;
880      }
881    else op4 = m2;
882    
883    op1 = op2 & 0xFFFFFFFF;
884    op2 = (op2 >> 32) & 0xFFFFFFFF;
885    op3 = op4 & 0xFFFFFFFF;
886    op4 = (op4 >> 32) & 0xFFFFFFFF;
887    
888    temp1 = op1 * op3;
889    temp2 = (temp1 >> 32) + op1 * op4;
890    temp3 = op2 * op3;
891    temp4 = (temp3 >> 32) + op2 * op4;
892    
893    result1 = temp1 & 0xFFFFFFFF;
894    result2 = temp2 + (temp3 & 0xFFFFFFFF);
895    result3 = (result2 >> 32) + temp4;
896    result4 = (result3 >> 32);
897    
898    lo = result1 | (result2 << 32);
899    hi = (result3 & 0xFFFFFFFF) | (result4 << 32);
900    if (sign)
901      {
902     hi = ~hi;
903     if (!lo) hi++;
904     else lo = ~lo + 1;
905      }
906 }
907
908 void multu64(uint64_t m1,uint64_t m2)
909 {
910    unsigned long long int op1, op2, op3, op4;
911    unsigned long long int result1, result2, result3, result4;
912    unsigned long long int temp1, temp2, temp3, temp4;
913    
914    op1 = m1 & 0xFFFFFFFF;
915    op2 = (m1 >> 32) & 0xFFFFFFFF;
916    op3 = m2 & 0xFFFFFFFF;
917    op4 = (m2 >> 32) & 0xFFFFFFFF;
918    
919    temp1 = op1 * op3;
920    temp2 = (temp1 >> 32) + op1 * op4;
921    temp3 = op2 * op3;
922    temp4 = (temp3 >> 32) + op2 * op4;
923    
924    result1 = temp1 & 0xFFFFFFFF;
925    result2 = temp2 + (temp3 & 0xFFFFFFFF);
926    result3 = (result2 >> 32) + temp4;
927    result4 = (result3 >> 32);
928    
929    lo = result1 | (result2 << 32);
930    hi = (result3 & 0xFFFFFFFF) | (result4 << 32);
931    
932   //printf("TRACE: dmultu %8x%8x %8x%8x\n",(int)reg[HIREG],(int)(reg[HIREG]>>32)
933   //                                      ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
934 }
935
936 uint64_t ldl_merge(uint64_t original,uint64_t loaded,u_int bits)
937 {
938   if(bits) {
939     original<<=64-bits;
940     original>>=64-bits;
941     loaded<<=bits;
942     original|=loaded;
943   }
944   else original=loaded;
945   return original;
946 }
947 uint64_t ldr_merge(uint64_t original,uint64_t loaded,u_int bits)
948 {
949   if(bits^56) {
950     original>>=64-(bits^56);
951     original<<=64-(bits^56);
952     loaded>>=bits^56;
953     original|=loaded;
954   }
955   else original=loaded;
956   return original;
957 }
958
959 #ifdef __i386__
960 #include "assem_x86.c"
961 #endif
962 #ifdef __x86_64__
963 #include "assem_x64.c"
964 #endif
965 #ifdef __arm__
966 #include "assem_arm.c"
967 #endif
968
969 // Add virtual address mapping to linked list
970 void ll_add(struct ll_entry **head,int vaddr,void *addr)
971 {
972   struct ll_entry *new_entry;
973   new_entry=malloc(sizeof(struct ll_entry));
974   assert(new_entry!=NULL);
975   new_entry->vaddr=vaddr;
976   new_entry->reg32=0;
977   new_entry->addr=addr;
978   new_entry->next=*head;
979   *head=new_entry;
980 }
981
982 // Add virtual address mapping for 32-bit compiled block
983 void ll_add_32(struct ll_entry **head,int vaddr,u_int reg32,void *addr)
984 {
985   ll_add(head,vaddr,addr);
986 #ifndef FORCE32
987   (*head)->reg32=reg32;
988 #endif
989 }
990
991 // Check if an address is already compiled
992 // but don't return addresses which are about to expire from the cache
993 void *check_addr(u_int vaddr)
994 {
995   u_int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
996   if(ht_bin[0]==vaddr) {
997     if(((ht_bin[1]-MAX_OUTPUT_BLOCK_SIZE-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
998       if(isclean(ht_bin[1])) return (void *)ht_bin[1];
999   }
1000   if(ht_bin[2]==vaddr) {
1001     if(((ht_bin[3]-MAX_OUTPUT_BLOCK_SIZE-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
1002       if(isclean(ht_bin[3])) return (void *)ht_bin[3];
1003   }
1004   u_int page=get_page(vaddr);
1005   struct ll_entry *head;
1006   head=jump_in[page];
1007   while(head!=NULL) {
1008     if(head->vaddr==vaddr&&head->reg32==0) {
1009       if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1010         // Update existing entry with current address
1011         if(ht_bin[0]==vaddr) {
1012           ht_bin[1]=(int)head->addr;
1013           return head->addr;
1014         }
1015         if(ht_bin[2]==vaddr) {
1016           ht_bin[3]=(int)head->addr;
1017           return head->addr;
1018         }
1019         // Insert into hash table with low priority.
1020         // Don't evict existing entries, as they are probably
1021         // addresses that are being accessed frequently.
1022         if(ht_bin[0]==-1) {
1023           ht_bin[1]=(int)head->addr;
1024           ht_bin[0]=vaddr;
1025         }else if(ht_bin[2]==-1) {
1026           ht_bin[3]=(int)head->addr;
1027           ht_bin[2]=vaddr;
1028         }
1029         return head->addr;
1030       }
1031     }
1032     head=head->next;
1033   }
1034   return 0;
1035 }
1036
1037 void remove_hash(int vaddr)
1038 {
1039   //printf("remove hash: %x\n",vaddr);
1040   int *ht_bin=hash_table[(((vaddr)>>16)^vaddr)&0xFFFF];
1041   if(ht_bin[2]==vaddr) {
1042     ht_bin[2]=ht_bin[3]=-1;
1043   }
1044   if(ht_bin[0]==vaddr) {
1045     ht_bin[0]=ht_bin[2];
1046     ht_bin[1]=ht_bin[3];
1047     ht_bin[2]=ht_bin[3]=-1;
1048   }
1049 }
1050
1051 void ll_remove_matching_addrs(struct ll_entry **head,int addr,int shift)
1052 {
1053   struct ll_entry *next;
1054   while(*head) {
1055     if(((u_int)((*head)->addr)>>shift)==(addr>>shift) || 
1056        ((u_int)((*head)->addr-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(addr>>shift))
1057     {
1058       inv_debug("EXP: Remove pointer to %x (%x)\n",(int)(*head)->addr,(*head)->vaddr);
1059       remove_hash((*head)->vaddr);
1060       next=(*head)->next;
1061       free(*head);
1062       *head=next;
1063     }
1064     else
1065     {
1066       head=&((*head)->next);
1067     }
1068   }
1069 }
1070
1071 // Remove all entries from linked list
1072 void ll_clear(struct ll_entry **head)
1073 {
1074   struct ll_entry *cur;
1075   struct ll_entry *next;
1076   if(cur=*head) {
1077     *head=0;
1078     while(cur) {
1079       next=cur->next;
1080       free(cur);
1081       cur=next;
1082     }
1083   }
1084 }
1085
1086 // Dereference the pointers and remove if it matches
1087 void ll_kill_pointers(struct ll_entry *head,int addr,int shift)
1088 {
1089   while(head) {
1090     int ptr=get_pointer(head->addr);
1091     inv_debug("EXP: Lookup pointer to %x at %x (%x)\n",(int)ptr,(int)head->addr,head->vaddr);
1092     if(((ptr>>shift)==(addr>>shift)) ||
1093        (((ptr-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(addr>>shift)))
1094     {
1095       inv_debug("EXP: Kill pointer at %x (%x)\n",(int)head->addr,head->vaddr);
1096       u_int host_addr=(u_int)kill_pointer(head->addr);
1097       #ifdef __arm__
1098         needs_clear_cache[(host_addr-(u_int)BASE_ADDR)>>17]|=1<<(((host_addr-(u_int)BASE_ADDR)>>12)&31);
1099       #endif
1100     }
1101     head=head->next;
1102   }
1103 }
1104
1105 // This is called when we write to a compiled block (see do_invstub)
1106 void invalidate_page(u_int page)
1107 {
1108   struct ll_entry *head;
1109   struct ll_entry *next;
1110   head=jump_in[page];
1111   jump_in[page]=0;
1112   while(head!=NULL) {
1113     inv_debug("INVALIDATE: %x\n",head->vaddr);
1114     remove_hash(head->vaddr);
1115     next=head->next;
1116     free(head);
1117     head=next;
1118   }
1119   head=jump_out[page];
1120   jump_out[page]=0;
1121   while(head!=NULL) {
1122     inv_debug("INVALIDATE: kill pointer to %x (%x)\n",head->vaddr,(int)head->addr);
1123     u_int host_addr=(u_int)kill_pointer(head->addr);
1124     #ifdef __arm__
1125       needs_clear_cache[(host_addr-(u_int)BASE_ADDR)>>17]|=1<<(((host_addr-(u_int)BASE_ADDR)>>12)&31);
1126     #endif
1127     next=head->next;
1128     free(head);
1129     head=next;
1130   }
1131 }
1132 void invalidate_block(u_int block)
1133 {
1134   u_int page=get_page(block<<12);
1135   u_int vpage=get_vpage(block<<12);
1136   inv_debug("INVALIDATE: %x (%d)\n",block<<12,page);
1137   //inv_debug("invalid_code[block]=%d\n",invalid_code[block]);
1138   u_int first,last;
1139   first=last=page;
1140   struct ll_entry *head;
1141   head=jump_dirty[vpage];
1142   //printf("page=%d vpage=%d\n",page,vpage);
1143   while(head!=NULL) {
1144     u_int start,end;
1145     if(vpage>2047||(head->vaddr>>12)==block) { // Ignore vaddr hash collision
1146       get_bounds((int)head->addr,&start,&end);
1147       //printf("start: %x end: %x\n",start,end);
1148       if(page<2048&&start>=0x80000000&&end<0x80000000+RAM_SIZE) {
1149         if(((start-(u_int)rdram)>>12)<=page&&((end-1-(u_int)rdram)>>12)>=page) {
1150           if((((start-(u_int)rdram)>>12)&2047)<first) first=((start-(u_int)rdram)>>12)&2047;
1151           if((((end-1-(u_int)rdram)>>12)&2047)>last) last=((end-1-(u_int)rdram)>>12)&2047;
1152         }
1153       }
1154 #ifndef DISABLE_TLB
1155       if(page<2048&&(signed int)start>=(signed int)0xC0000000&&(signed int)end>=(signed int)0xC0000000) {
1156         if(((start+memory_map[start>>12]-(u_int)rdram)>>12)<=page&&((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)>=page) {
1157           if((((start+memory_map[start>>12]-(u_int)rdram)>>12)&2047)<first) first=((start+memory_map[start>>12]-(u_int)rdram)>>12)&2047;
1158           if((((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)&2047)>last) last=((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)&2047;
1159         }
1160       }
1161 #endif
1162     }
1163     head=head->next;
1164   }
1165   //printf("first=%d last=%d\n",first,last);
1166   invalidate_page(page);
1167   assert(first+5>page); // NB: this assumes MAXBLOCK<=4096 (4 pages)
1168   assert(last<page+5);
1169   // Invalidate the adjacent pages if a block crosses a 4K boundary
1170   while(first<page) {
1171     invalidate_page(first);
1172     first++;
1173   }
1174   for(first=page+1;first<last;first++) {
1175     invalidate_page(first);
1176   }
1177   #ifdef __arm__
1178     do_clear_cache();
1179   #endif
1180   
1181   // Don't trap writes
1182   invalid_code[block]=1;
1183 #ifndef DISABLE_TLB
1184   // If there is a valid TLB entry for this page, remove write protect
1185   if(tlb_LUT_w[block]) {
1186     assert(tlb_LUT_r[block]==tlb_LUT_w[block]);
1187     // CHECK: Is this right?
1188     memory_map[block]=((tlb_LUT_w[block]&0xFFFFF000)-(block<<12)+(unsigned int)rdram-0x80000000)>>2;
1189     u_int real_block=tlb_LUT_w[block]>>12;
1190     invalid_code[real_block]=1;
1191     if(real_block>=0x80000&&real_block<0x80800) memory_map[real_block]=((u_int)rdram-0x80000000)>>2;
1192   }
1193   else if(block>=0x80000&&block<0x80800) memory_map[block]=((u_int)rdram-0x80000000)>>2;
1194 #endif
1195
1196   #ifdef USE_MINI_HT
1197   memset(mini_ht,-1,sizeof(mini_ht));
1198   #endif
1199 }
1200 void invalidate_addr(u_int addr)
1201 {
1202   invalidate_block(addr>>12);
1203 }
1204 // This is called when loading a save state.
1205 // Anything could have changed, so invalidate everything.
1206 void invalidate_all_pages()
1207 {
1208   u_int page,n;
1209   for(page=0;page<4096;page++)
1210     invalidate_page(page);
1211   for(page=0;page<1048576;page++)
1212     if(!invalid_code[page]) {
1213       restore_candidate[(page&2047)>>3]|=1<<(page&7);
1214       restore_candidate[((page&2047)>>3)+256]|=1<<(page&7);
1215     }
1216   #ifdef __arm__
1217   __clear_cache((void *)BASE_ADDR,(void *)BASE_ADDR+(1<<TARGET_SIZE_2));
1218   #endif
1219   #ifdef USE_MINI_HT
1220   memset(mini_ht,-1,sizeof(mini_ht));
1221   #endif
1222   #ifndef DISABLE_TLB
1223   // TLB
1224   for(page=0;page<0x100000;page++) {
1225     if(tlb_LUT_r[page]) {
1226       memory_map[page]=((tlb_LUT_r[page]&0xFFFFF000)-(page<<12)+(unsigned int)rdram-0x80000000)>>2;
1227       if(!tlb_LUT_w[page]||!invalid_code[page])
1228         memory_map[page]|=0x40000000; // Write protect
1229     }
1230     else memory_map[page]=-1;
1231     if(page==0x80000) page=0xC0000;
1232   }
1233   tlb_hacks();
1234   #endif
1235 }
1236
1237 // Add an entry to jump_out after making a link
1238 void add_link(u_int vaddr,void *src)
1239 {
1240   u_int page=get_page(vaddr);
1241   inv_debug("add_link: %x -> %x (%d)\n",(int)src,vaddr,page);
1242   ll_add(jump_out+page,vaddr,src);
1243   //int ptr=get_pointer(src);
1244   //inv_debug("add_link: Pointer is to %x\n",(int)ptr);
1245 }
1246
1247 // If a code block was found to be unmodified (bit was set in
1248 // restore_candidate) and it remains unmodified (bit is clear
1249 // in invalid_code) then move the entries for that 4K page from
1250 // the dirty list to the clean list.
1251 void clean_blocks(u_int page)
1252 {
1253   struct ll_entry *head;
1254   inv_debug("INV: clean_blocks page=%d\n",page);
1255   head=jump_dirty[page];
1256   while(head!=NULL) {
1257     if(!invalid_code[head->vaddr>>12]) {
1258       // Don't restore blocks which are about to expire from the cache
1259       if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1260         u_int start,end;
1261         if(verify_dirty((int)head->addr)) {
1262           //printf("Possibly Restore %x (%x)\n",head->vaddr, (int)head->addr);
1263           u_int i;
1264           u_int inv=0;
1265           get_bounds((int)head->addr,&start,&end);
1266           if(start-(u_int)rdram<RAM_SIZE) {
1267             for(i=(start-(u_int)rdram+0x80000000)>>12;i<=(end-1-(u_int)rdram+0x80000000)>>12;i++) {
1268               inv|=invalid_code[i];
1269             }
1270           }
1271           if((signed int)head->vaddr>=(signed int)0xC0000000) {
1272             u_int addr = (head->vaddr+(memory_map[head->vaddr>>12]<<2));
1273             //printf("addr=%x start=%x end=%x\n",addr,start,end);
1274             if(addr<start||addr>=end) inv=1;
1275           }
1276           else if((signed int)head->vaddr>=(signed int)0x80000000+RAM_SIZE) {
1277             inv=1;
1278           }
1279           if(!inv) {
1280             void * clean_addr=(void *)get_clean_addr((int)head->addr);
1281             if((((u_int)clean_addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1282               u_int ppage=page;
1283 #ifndef DISABLE_TLB
1284               if(page<2048&&tlb_LUT_r[head->vaddr>>12]) ppage=(tlb_LUT_r[head->vaddr>>12]^0x80000000)>>12;
1285 #endif
1286               inv_debug("INV: Restored %x (%x/%x)\n",head->vaddr, (int)head->addr, (int)clean_addr);
1287               //printf("page=%x, addr=%x\n",page,head->vaddr);
1288               //assert(head->vaddr>>12==(page|0x80000));
1289               ll_add_32(jump_in+ppage,head->vaddr,head->reg32,clean_addr);
1290               int *ht_bin=hash_table[((head->vaddr>>16)^head->vaddr)&0xFFFF];
1291               if(!head->reg32) {
1292                 if(ht_bin[0]==head->vaddr) {
1293                   ht_bin[1]=(int)clean_addr; // Replace existing entry
1294                 }
1295                 if(ht_bin[2]==head->vaddr) {
1296                   ht_bin[3]=(int)clean_addr; // Replace existing entry
1297                 }
1298               }
1299             }
1300           }
1301         }
1302       }
1303     }
1304     head=head->next;
1305   }
1306 }
1307
1308
1309 void mov_alloc(struct regstat *current,int i)
1310 {
1311   // Note: Don't need to actually alloc the source registers
1312   if((~current->is32>>rs1[i])&1) {
1313     //alloc_reg64(current,i,rs1[i]);
1314     alloc_reg64(current,i,rt1[i]);
1315     current->is32&=~(1LL<<rt1[i]);
1316   } else {
1317     //alloc_reg(current,i,rs1[i]);
1318     alloc_reg(current,i,rt1[i]);
1319     current->is32|=(1LL<<rt1[i]);
1320   }
1321   clear_const(current,rs1[i]);
1322   clear_const(current,rt1[i]);
1323   dirty_reg(current,rt1[i]);
1324 }
1325
1326 void shiftimm_alloc(struct regstat *current,int i)
1327 {
1328   clear_const(current,rs1[i]);
1329   clear_const(current,rt1[i]);
1330   if(opcode2[i]<=0x3) // SLL/SRL/SRA
1331   {
1332     if(rt1[i]) {
1333       if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1334       else lt1[i]=rs1[i];
1335       alloc_reg(current,i,rt1[i]);
1336       current->is32|=1LL<<rt1[i];
1337       dirty_reg(current,rt1[i]);
1338     }
1339   }
1340   if(opcode2[i]>=0x38&&opcode2[i]<=0x3b) // DSLL/DSRL/DSRA
1341   {
1342     if(rt1[i]) {
1343       if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1344       alloc_reg64(current,i,rt1[i]);
1345       current->is32&=~(1LL<<rt1[i]);
1346       dirty_reg(current,rt1[i]);
1347     }
1348   }
1349   if(opcode2[i]==0x3c) // DSLL32
1350   {
1351     if(rt1[i]) {
1352       if(rs1[i]) alloc_reg(current,i,rs1[i]);
1353       alloc_reg64(current,i,rt1[i]);
1354       current->is32&=~(1LL<<rt1[i]);
1355       dirty_reg(current,rt1[i]);
1356     }
1357   }
1358   if(opcode2[i]==0x3e) // DSRL32
1359   {
1360     if(rt1[i]) {
1361       alloc_reg64(current,i,rs1[i]);
1362       if(imm[i]==32) {
1363         alloc_reg64(current,i,rt1[i]);
1364         current->is32&=~(1LL<<rt1[i]);
1365       } else {
1366         alloc_reg(current,i,rt1[i]);
1367         current->is32|=1LL<<rt1[i];
1368       }
1369       dirty_reg(current,rt1[i]);
1370     }
1371   }
1372   if(opcode2[i]==0x3f) // DSRA32
1373   {
1374     if(rt1[i]) {
1375       alloc_reg64(current,i,rs1[i]);
1376       alloc_reg(current,i,rt1[i]);
1377       current->is32|=1LL<<rt1[i];
1378       dirty_reg(current,rt1[i]);
1379     }
1380   }
1381 }
1382
1383 void shift_alloc(struct regstat *current,int i)
1384 {
1385   if(rt1[i]) {
1386     if(opcode2[i]<=0x07) // SLLV/SRLV/SRAV
1387     {
1388       if(rs1[i]) alloc_reg(current,i,rs1[i]);
1389       if(rs2[i]) alloc_reg(current,i,rs2[i]);
1390       alloc_reg(current,i,rt1[i]);
1391       if(rt1[i]==rs2[i]) {
1392         alloc_reg_temp(current,i,-1);
1393         minimum_free_regs[i]=1;
1394       }
1395       current->is32|=1LL<<rt1[i];
1396     } else { // DSLLV/DSRLV/DSRAV
1397       if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1398       if(rs2[i]) alloc_reg(current,i,rs2[i]);
1399       alloc_reg64(current,i,rt1[i]);
1400       current->is32&=~(1LL<<rt1[i]);
1401       if(opcode2[i]==0x16||opcode2[i]==0x17) // DSRLV and DSRAV need a temporary register
1402       {
1403         alloc_reg_temp(current,i,-1);
1404         minimum_free_regs[i]=1;
1405       }
1406     }
1407     clear_const(current,rs1[i]);
1408     clear_const(current,rs2[i]);
1409     clear_const(current,rt1[i]);
1410     dirty_reg(current,rt1[i]);
1411   }
1412 }
1413
1414 void alu_alloc(struct regstat *current,int i)
1415 {
1416   if(opcode2[i]>=0x20&&opcode2[i]<=0x23) { // ADD/ADDU/SUB/SUBU
1417     if(rt1[i]) {
1418       if(rs1[i]&&rs2[i]) {
1419         alloc_reg(current,i,rs1[i]);
1420         alloc_reg(current,i,rs2[i]);
1421       }
1422       else {
1423         if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1424         if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg(current,i,rs2[i]);
1425       }
1426       alloc_reg(current,i,rt1[i]);
1427     }
1428     current->is32|=1LL<<rt1[i];
1429   }
1430   if(opcode2[i]==0x2a||opcode2[i]==0x2b) { // SLT/SLTU
1431     if(rt1[i]) {
1432       if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1433       {
1434         alloc_reg64(current,i,rs1[i]);
1435         alloc_reg64(current,i,rs2[i]);
1436         alloc_reg(current,i,rt1[i]);
1437       } else {
1438         alloc_reg(current,i,rs1[i]);
1439         alloc_reg(current,i,rs2[i]);
1440         alloc_reg(current,i,rt1[i]);
1441       }
1442     }
1443     current->is32|=1LL<<rt1[i];
1444   }
1445   if(opcode2[i]>=0x24&&opcode2[i]<=0x27) { // AND/OR/XOR/NOR
1446     if(rt1[i]) {
1447       if(rs1[i]&&rs2[i]) {
1448         alloc_reg(current,i,rs1[i]);
1449         alloc_reg(current,i,rs2[i]);
1450       }
1451       else
1452       {
1453         if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1454         if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg(current,i,rs2[i]);
1455       }
1456       alloc_reg(current,i,rt1[i]);
1457       if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1458       {
1459         if(!((current->uu>>rt1[i])&1)) {
1460           alloc_reg64(current,i,rt1[i]);
1461         }
1462         if(get_reg(current->regmap,rt1[i]|64)>=0) {
1463           if(rs1[i]&&rs2[i]) {
1464             alloc_reg64(current,i,rs1[i]);
1465             alloc_reg64(current,i,rs2[i]);
1466           }
1467           else
1468           {
1469             // Is is really worth it to keep 64-bit values in registers?
1470             #ifdef NATIVE_64BIT
1471             if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg64(current,i,rs1[i]);
1472             if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg64(current,i,rs2[i]);
1473             #endif
1474           }
1475         }
1476         current->is32&=~(1LL<<rt1[i]);
1477       } else {
1478         current->is32|=1LL<<rt1[i];
1479       }
1480     }
1481   }
1482   if(opcode2[i]>=0x2c&&opcode2[i]<=0x2f) { // DADD/DADDU/DSUB/DSUBU
1483     if(rt1[i]) {
1484       if(rs1[i]&&rs2[i]) {
1485         if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1486           alloc_reg64(current,i,rs1[i]);
1487           alloc_reg64(current,i,rs2[i]);
1488           alloc_reg64(current,i,rt1[i]);
1489         } else {
1490           alloc_reg(current,i,rs1[i]);
1491           alloc_reg(current,i,rs2[i]);
1492           alloc_reg(current,i,rt1[i]);
1493         }
1494       }
1495       else {
1496         alloc_reg(current,i,rt1[i]);
1497         if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1498           // DADD used as move, or zeroing
1499           // If we have a 64-bit source, then make the target 64 bits too
1500           if(rs1[i]&&!((current->is32>>rs1[i])&1)) {
1501             if(get_reg(current->regmap,rs1[i])>=0) alloc_reg64(current,i,rs1[i]);
1502             alloc_reg64(current,i,rt1[i]);
1503           } else if(rs2[i]&&!((current->is32>>rs2[i])&1)) {
1504             if(get_reg(current->regmap,rs2[i])>=0) alloc_reg64(current,i,rs2[i]);
1505             alloc_reg64(current,i,rt1[i]);
1506           }
1507           if(opcode2[i]>=0x2e&&rs2[i]) {
1508             // DSUB used as negation - 64-bit result
1509             // If we have a 32-bit register, extend it to 64 bits
1510             if(get_reg(current->regmap,rs2[i])>=0) alloc_reg64(current,i,rs2[i]);
1511             alloc_reg64(current,i,rt1[i]);
1512           }
1513         }
1514       }
1515       if(rs1[i]&&rs2[i]) {
1516         current->is32&=~(1LL<<rt1[i]);
1517       } else if(rs1[i]) {
1518         current->is32&=~(1LL<<rt1[i]);
1519         if((current->is32>>rs1[i])&1)
1520           current->is32|=1LL<<rt1[i];
1521       } else if(rs2[i]) {
1522         current->is32&=~(1LL<<rt1[i]);
1523         if((current->is32>>rs2[i])&1)
1524           current->is32|=1LL<<rt1[i];
1525       } else {
1526         current->is32|=1LL<<rt1[i];
1527       }
1528     }
1529   }
1530   clear_const(current,rs1[i]);
1531   clear_const(current,rs2[i]);
1532   clear_const(current,rt1[i]);
1533   dirty_reg(current,rt1[i]);
1534 }
1535
1536 void imm16_alloc(struct regstat *current,int i)
1537 {
1538   if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1539   else lt1[i]=rs1[i];
1540   if(rt1[i]) alloc_reg(current,i,rt1[i]);
1541   if(opcode[i]==0x18||opcode[i]==0x19) { // DADDI/DADDIU
1542     current->is32&=~(1LL<<rt1[i]);
1543     if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1544       // TODO: Could preserve the 32-bit flag if the immediate is zero
1545       alloc_reg64(current,i,rt1[i]);
1546       alloc_reg64(current,i,rs1[i]);
1547     }
1548     clear_const(current,rs1[i]);
1549     clear_const(current,rt1[i]);
1550   }
1551   else if(opcode[i]==0x0a||opcode[i]==0x0b) { // SLTI/SLTIU
1552     if((~current->is32>>rs1[i])&1) alloc_reg64(current,i,rs1[i]);
1553     current->is32|=1LL<<rt1[i];
1554     clear_const(current,rs1[i]);
1555     clear_const(current,rt1[i]);
1556   }
1557   else if(opcode[i]>=0x0c&&opcode[i]<=0x0e) { // ANDI/ORI/XORI
1558     if(((~current->is32>>rs1[i])&1)&&opcode[i]>0x0c) {
1559       if(rs1[i]!=rt1[i]) {
1560         if(needed_again(rs1[i],i)) alloc_reg64(current,i,rs1[i]);
1561         alloc_reg64(current,i,rt1[i]);
1562         current->is32&=~(1LL<<rt1[i]);
1563       }
1564     }
1565     else current->is32|=1LL<<rt1[i]; // ANDI clears upper bits
1566     if(is_const(current,rs1[i])) {
1567       int v=get_const(current,rs1[i]);
1568       if(opcode[i]==0x0c) set_const(current,rt1[i],v&imm[i]);
1569       if(opcode[i]==0x0d) set_const(current,rt1[i],v|imm[i]);
1570       if(opcode[i]==0x0e) set_const(current,rt1[i],v^imm[i]);
1571     }
1572     else clear_const(current,rt1[i]);
1573   }
1574   else if(opcode[i]==0x08||opcode[i]==0x09) { // ADDI/ADDIU
1575     if(is_const(current,rs1[i])) {
1576       int v=get_const(current,rs1[i]);
1577       set_const(current,rt1[i],v+imm[i]);
1578     }
1579     else clear_const(current,rt1[i]);
1580     current->is32|=1LL<<rt1[i];
1581   }
1582   else {
1583     set_const(current,rt1[i],((long long)((short)imm[i]))<<16); // LUI
1584     current->is32|=1LL<<rt1[i];
1585   }
1586   dirty_reg(current,rt1[i]);
1587 }
1588
1589 void load_alloc(struct regstat *current,int i)
1590 {
1591   clear_const(current,rt1[i]);
1592   //if(rs1[i]!=rt1[i]&&needed_again(rs1[i],i)) clear_const(current,rs1[i]); // Does this help or hurt?
1593   if(!rs1[i]) current->u&=~1LL; // Allow allocating r0 if it's the source register
1594   if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1595   if(rt1[i]) {
1596     alloc_reg(current,i,rt1[i]);
1597     if(get_reg(current->regmap,rt1[i])<0) {
1598       // dummy load, but we still need a register to calculate the address
1599       alloc_reg_temp(current,i,-1);
1600       minimum_free_regs[i]=1;
1601     }
1602     if(opcode[i]==0x27||opcode[i]==0x37) // LWU/LD
1603     {
1604       current->is32&=~(1LL<<rt1[i]);
1605       alloc_reg64(current,i,rt1[i]);
1606     }
1607     else if(opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
1608     {
1609       current->is32&=~(1LL<<rt1[i]);
1610       alloc_reg64(current,i,rt1[i]);
1611       alloc_all(current,i);
1612       alloc_reg64(current,i,FTEMP);
1613       minimum_free_regs[i]=HOST_REGS;
1614     }
1615     else current->is32|=1LL<<rt1[i];
1616     dirty_reg(current,rt1[i]);
1617     // If using TLB, need a register for pointer to the mapping table
1618     if(using_tlb) alloc_reg(current,i,TLREG);
1619     // LWL/LWR need a temporary register for the old value
1620     if(opcode[i]==0x22||opcode[i]==0x26)
1621     {
1622       alloc_reg(current,i,FTEMP);
1623       alloc_reg_temp(current,i,-1);
1624       minimum_free_regs[i]=1;
1625     }
1626   }
1627   else
1628   {
1629     // Load to r0 (dummy load)
1630     // but we still need a register to calculate the address
1631     if(opcode[i]==0x22||opcode[i]==0x26)
1632     {
1633       alloc_reg(current,i,FTEMP); // LWL/LWR need another temporary
1634     }
1635     alloc_reg_temp(current,i,-1);
1636     minimum_free_regs[i]=1;
1637     if(opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
1638     {
1639       alloc_all(current,i);
1640       alloc_reg64(current,i,FTEMP);
1641       minimum_free_regs[i]=HOST_REGS;
1642     }
1643   }
1644 }
1645
1646 void store_alloc(struct regstat *current,int i)
1647 {
1648   clear_const(current,rs2[i]);
1649   if(!(rs2[i])) current->u&=~1LL; // Allow allocating r0 if necessary
1650   if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1651   alloc_reg(current,i,rs2[i]);
1652   if(opcode[i]==0x2c||opcode[i]==0x2d||opcode[i]==0x3f) { // 64-bit SDL/SDR/SD
1653     alloc_reg64(current,i,rs2[i]);
1654     if(rs2[i]) alloc_reg(current,i,FTEMP);
1655   }
1656   // If using TLB, need a register for pointer to the mapping table
1657   if(using_tlb) alloc_reg(current,i,TLREG);
1658   #if defined(HOST_IMM8)
1659   // On CPUs without 32-bit immediates we need a pointer to invalid_code
1660   else alloc_reg(current,i,INVCP);
1661   #endif
1662   if(opcode[i]==0x2a||opcode[i]==0x2e||opcode[i]==0x2c||opcode[i]==0x2d) { // SWL/SWL/SDL/SDR
1663     alloc_reg(current,i,FTEMP);
1664   }
1665   // We need a temporary register for address generation
1666   alloc_reg_temp(current,i,-1);
1667   minimum_free_regs[i]=1;
1668 }
1669
1670 void c1ls_alloc(struct regstat *current,int i)
1671 {
1672   //clear_const(current,rs1[i]); // FIXME
1673   clear_const(current,rt1[i]);
1674   if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1675   alloc_reg(current,i,CSREG); // Status
1676   alloc_reg(current,i,FTEMP);
1677   if(opcode[i]==0x35||opcode[i]==0x3d) { // 64-bit LDC1/SDC1
1678     alloc_reg64(current,i,FTEMP);
1679   }
1680   // If using TLB, need a register for pointer to the mapping table
1681   if(using_tlb) alloc_reg(current,i,TLREG);
1682   #if defined(HOST_IMM8)
1683   // On CPUs without 32-bit immediates we need a pointer to invalid_code
1684   else if((opcode[i]&0x3b)==0x39) // SWC1/SDC1
1685     alloc_reg(current,i,INVCP);
1686   #endif
1687   // We need a temporary register for address generation
1688   alloc_reg_temp(current,i,-1);
1689 }
1690
1691 void c2ls_alloc(struct regstat *current,int i)
1692 {
1693   clear_const(current,rt1[i]);
1694   if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1695   alloc_reg(current,i,FTEMP);
1696   // If using TLB, need a register for pointer to the mapping table
1697   if(using_tlb) alloc_reg(current,i,TLREG);
1698   #if defined(HOST_IMM8)
1699   // On CPUs without 32-bit immediates we need a pointer to invalid_code
1700   else if((opcode[i]&0x3b)==0x3a) // SWC2/SDC2
1701     alloc_reg(current,i,INVCP);
1702   #endif
1703   // We need a temporary register for address generation
1704   alloc_reg_temp(current,i,-1);
1705   minimum_free_regs[i]=1;
1706 }
1707
1708 #ifndef multdiv_alloc
1709 void multdiv_alloc(struct regstat *current,int i)
1710 {
1711   //  case 0x18: MULT
1712   //  case 0x19: MULTU
1713   //  case 0x1A: DIV
1714   //  case 0x1B: DIVU
1715   //  case 0x1C: DMULT
1716   //  case 0x1D: DMULTU
1717   //  case 0x1E: DDIV
1718   //  case 0x1F: DDIVU
1719   clear_const(current,rs1[i]);
1720   clear_const(current,rs2[i]);
1721   if(rs1[i]&&rs2[i])
1722   {
1723     if((opcode2[i]&4)==0) // 32-bit
1724     {
1725       current->u&=~(1LL<<HIREG);
1726       current->u&=~(1LL<<LOREG);
1727       alloc_reg(current,i,HIREG);
1728       alloc_reg(current,i,LOREG);
1729       alloc_reg(current,i,rs1[i]);
1730       alloc_reg(current,i,rs2[i]);
1731       current->is32|=1LL<<HIREG;
1732       current->is32|=1LL<<LOREG;
1733       dirty_reg(current,HIREG);
1734       dirty_reg(current,LOREG);
1735     }
1736     else // 64-bit
1737     {
1738       current->u&=~(1LL<<HIREG);
1739       current->u&=~(1LL<<LOREG);
1740       current->uu&=~(1LL<<HIREG);
1741       current->uu&=~(1LL<<LOREG);
1742       alloc_reg64(current,i,HIREG);
1743       //if(HOST_REGS>10) alloc_reg64(current,i,LOREG);
1744       alloc_reg64(current,i,rs1[i]);
1745       alloc_reg64(current,i,rs2[i]);
1746       alloc_all(current,i);
1747       current->is32&=~(1LL<<HIREG);
1748       current->is32&=~(1LL<<LOREG);
1749       dirty_reg(current,HIREG);
1750       dirty_reg(current,LOREG);
1751       minimum_free_regs[i]=HOST_REGS;
1752     }
1753   }
1754   else
1755   {
1756     // Multiply by zero is zero.
1757     // MIPS does not have a divide by zero exception.
1758     // The result is undefined, we return zero.
1759     alloc_reg(current,i,HIREG);
1760     alloc_reg(current,i,LOREG);
1761     current->is32|=1LL<<HIREG;
1762     current->is32|=1LL<<LOREG;
1763     dirty_reg(current,HIREG);
1764     dirty_reg(current,LOREG);
1765   }
1766 }
1767 #endif
1768
1769 void cop0_alloc(struct regstat *current,int i)
1770 {
1771   if(opcode2[i]==0) // MFC0
1772   {
1773     if(rt1[i]) {
1774       clear_const(current,rt1[i]);
1775       alloc_all(current,i);
1776       alloc_reg(current,i,rt1[i]);
1777       current->is32|=1LL<<rt1[i];
1778       dirty_reg(current,rt1[i]);
1779     }
1780   }
1781   else if(opcode2[i]==4) // MTC0
1782   {
1783     if(rs1[i]){
1784       clear_const(current,rs1[i]);
1785       alloc_reg(current,i,rs1[i]);
1786       alloc_all(current,i);
1787     }
1788     else {
1789       alloc_all(current,i); // FIXME: Keep r0
1790       current->u&=~1LL;
1791       alloc_reg(current,i,0);
1792     }
1793   }
1794   else
1795   {
1796     // TLBR/TLBWI/TLBWR/TLBP/ERET
1797     assert(opcode2[i]==0x10);
1798     alloc_all(current,i);
1799   }
1800   minimum_free_regs[i]=HOST_REGS;
1801 }
1802
1803 void cop1_alloc(struct regstat *current,int i)
1804 {
1805   alloc_reg(current,i,CSREG); // Load status
1806   if(opcode2[i]<3) // MFC1/DMFC1/CFC1
1807   {
1808     if(rt1[i]){
1809       clear_const(current,rt1[i]);
1810       if(opcode2[i]==1) {
1811         alloc_reg64(current,i,rt1[i]); // DMFC1
1812         current->is32&=~(1LL<<rt1[i]);
1813       }else{
1814         alloc_reg(current,i,rt1[i]); // MFC1/CFC1
1815         current->is32|=1LL<<rt1[i];
1816       }
1817       dirty_reg(current,rt1[i]);
1818     }
1819     alloc_reg_temp(current,i,-1);
1820   }
1821   else if(opcode2[i]>3) // MTC1/DMTC1/CTC1
1822   {
1823     if(rs1[i]){
1824       clear_const(current,rs1[i]);
1825       if(opcode2[i]==5)
1826         alloc_reg64(current,i,rs1[i]); // DMTC1
1827       else
1828         alloc_reg(current,i,rs1[i]); // MTC1/CTC1
1829       alloc_reg_temp(current,i,-1);
1830     }
1831     else {
1832       current->u&=~1LL;
1833       alloc_reg(current,i,0);
1834       alloc_reg_temp(current,i,-1);
1835     }
1836   }
1837   minimum_free_regs[i]=1;
1838 }
1839 void fconv_alloc(struct regstat *current,int i)
1840 {
1841   alloc_reg(current,i,CSREG); // Load status
1842   alloc_reg_temp(current,i,-1);
1843   minimum_free_regs[i]=1;
1844 }
1845 void float_alloc(struct regstat *current,int i)
1846 {
1847   alloc_reg(current,i,CSREG); // Load status
1848   alloc_reg_temp(current,i,-1);
1849   minimum_free_regs[i]=1;
1850 }
1851 void c2op_alloc(struct regstat *current,int i)
1852 {
1853   alloc_reg_temp(current,i,-1);
1854 }
1855 void fcomp_alloc(struct regstat *current,int i)
1856 {
1857   alloc_reg(current,i,CSREG); // Load status
1858   alloc_reg(current,i,FSREG); // Load flags
1859   dirty_reg(current,FSREG); // Flag will be modified
1860   alloc_reg_temp(current,i,-1);
1861   minimum_free_regs[i]=1;
1862 }
1863
1864 void syscall_alloc(struct regstat *current,int i)
1865 {
1866   alloc_cc(current,i);
1867   dirty_reg(current,CCREG);
1868   alloc_all(current,i);
1869   minimum_free_regs[i]=HOST_REGS;
1870   current->isconst=0;
1871 }
1872
1873 void delayslot_alloc(struct regstat *current,int i)
1874 {
1875   switch(itype[i]) {
1876     case UJUMP:
1877     case CJUMP:
1878     case SJUMP:
1879     case RJUMP:
1880     case FJUMP:
1881     case SYSCALL:
1882     case HLECALL:
1883     case SPAN:
1884       assem_debug("jump in the delay slot.  this shouldn't happen.\n");//exit(1);
1885       printf("Disabled speculative precompilation\n");
1886       stop_after_jal=1;
1887       break;
1888     case IMM16:
1889       imm16_alloc(current,i);
1890       break;
1891     case LOAD:
1892     case LOADLR:
1893       load_alloc(current,i);
1894       break;
1895     case STORE:
1896     case STORELR:
1897       store_alloc(current,i);
1898       break;
1899     case ALU:
1900       alu_alloc(current,i);
1901       break;
1902     case SHIFT:
1903       shift_alloc(current,i);
1904       break;
1905     case MULTDIV:
1906       multdiv_alloc(current,i);
1907       break;
1908     case SHIFTIMM:
1909       shiftimm_alloc(current,i);
1910       break;
1911     case MOV:
1912       mov_alloc(current,i);
1913       break;
1914     case COP0:
1915       cop0_alloc(current,i);
1916       break;
1917     case COP1:
1918     case COP2:
1919       cop1_alloc(current,i);
1920       break;
1921     case C1LS:
1922       c1ls_alloc(current,i);
1923       break;
1924     case C2LS:
1925       c2ls_alloc(current,i);
1926       break;
1927     case FCONV:
1928       fconv_alloc(current,i);
1929       break;
1930     case FLOAT:
1931       float_alloc(current,i);
1932       break;
1933     case FCOMP:
1934       fcomp_alloc(current,i);
1935       break;
1936     case C2OP:
1937       c2op_alloc(current,i);
1938       break;
1939   }
1940 }
1941
1942 // Special case where a branch and delay slot span two pages in virtual memory
1943 static void pagespan_alloc(struct regstat *current,int i)
1944 {
1945   current->isconst=0;
1946   current->wasconst=0;
1947   regs[i].wasconst=0;
1948   minimum_free_regs[i]=HOST_REGS;
1949   alloc_all(current,i);
1950   alloc_cc(current,i);
1951   dirty_reg(current,CCREG);
1952   if(opcode[i]==3) // JAL
1953   {
1954     alloc_reg(current,i,31);
1955     dirty_reg(current,31);
1956   }
1957   if(opcode[i]==0&&(opcode2[i]&0x3E)==8) // JR/JALR
1958   {
1959     alloc_reg(current,i,rs1[i]);
1960     if (rt1[i]!=0) {
1961       alloc_reg(current,i,rt1[i]);
1962       dirty_reg(current,rt1[i]);
1963     }
1964   }
1965   if((opcode[i]&0x2E)==4) // BEQ/BNE/BEQL/BNEL
1966   {
1967     if(rs1[i]) alloc_reg(current,i,rs1[i]);
1968     if(rs2[i]) alloc_reg(current,i,rs2[i]);
1969     if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1970     {
1971       if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1972       if(rs2[i]) alloc_reg64(current,i,rs2[i]);
1973     }
1974   }
1975   else
1976   if((opcode[i]&0x2E)==6) // BLEZ/BGTZ/BLEZL/BGTZL
1977   {
1978     if(rs1[i]) alloc_reg(current,i,rs1[i]);
1979     if(!((current->is32>>rs1[i])&1))
1980     {
1981       if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1982     }
1983   }
1984   else
1985   if(opcode[i]==0x11) // BC1
1986   {
1987     alloc_reg(current,i,FSREG);
1988     alloc_reg(current,i,CSREG);
1989   }
1990   //else ...
1991 }
1992
1993 add_stub(int type,int addr,int retaddr,int a,int b,int c,int d,int e)
1994 {
1995   stubs[stubcount][0]=type;
1996   stubs[stubcount][1]=addr;
1997   stubs[stubcount][2]=retaddr;
1998   stubs[stubcount][3]=a;
1999   stubs[stubcount][4]=b;
2000   stubs[stubcount][5]=c;
2001   stubs[stubcount][6]=d;
2002   stubs[stubcount][7]=e;
2003   stubcount++;
2004 }
2005
2006 // Write out a single register
2007 void wb_register(signed char r,signed char regmap[],uint64_t dirty,uint64_t is32)
2008 {
2009   int hr;
2010   for(hr=0;hr<HOST_REGS;hr++) {
2011     if(hr!=EXCLUDE_REG) {
2012       if((regmap[hr]&63)==r) {
2013         if((dirty>>hr)&1) {
2014           if(regmap[hr]<64) {
2015             emit_storereg(r,hr);
2016 #ifndef FORCE32
2017             if((is32>>regmap[hr])&1) {
2018               emit_sarimm(hr,31,hr);
2019               emit_storereg(r|64,hr);
2020             }
2021 #endif
2022           }else{
2023             emit_storereg(r|64,hr);
2024           }
2025         }
2026       }
2027     }
2028   }
2029 }
2030
2031 int mchecksum()
2032 {
2033   //if(!tracedebug) return 0;
2034   int i;
2035   int sum=0;
2036   for(i=0;i<2097152;i++) {
2037     unsigned int temp=sum;
2038     sum<<=1;
2039     sum|=(~temp)>>31;
2040     sum^=((u_int *)rdram)[i];
2041   }
2042   return sum;
2043 }
2044 int rchecksum()
2045 {
2046   int i;
2047   int sum=0;
2048   for(i=0;i<64;i++)
2049     sum^=((u_int *)reg)[i];
2050   return sum;
2051 }
2052 void rlist()
2053 {
2054   int i;
2055   printf("TRACE: ");
2056   for(i=0;i<32;i++)
2057     printf("r%d:%8x%8x ",i,((int *)(reg+i))[1],((int *)(reg+i))[0]);
2058   printf("\n");
2059 #ifndef DISABLE_COP1
2060   printf("TRACE: ");
2061   for(i=0;i<32;i++)
2062     printf("f%d:%8x%8x ",i,((int*)reg_cop1_simple[i])[1],*((int*)reg_cop1_simple[i]));
2063   printf("\n");
2064 #endif
2065 }
2066
2067 void enabletrace()
2068 {
2069   tracedebug=1;
2070 }
2071
2072 void memdebug(int i)
2073 {
2074   //printf("TRACE: count=%d next=%d (checksum %x) lo=%8x%8x\n",Count,next_interupt,mchecksum(),(int)(reg[LOREG]>>32),(int)reg[LOREG]);
2075   //printf("TRACE: count=%d next=%d (rchecksum %x)\n",Count,next_interupt,rchecksum());
2076   //rlist();
2077   //if(tracedebug) {
2078   //if(Count>=-2084597794) {
2079   if((signed int)Count>=-2084597794&&(signed int)Count<0) {
2080   //if(0) {
2081     printf("TRACE: count=%d next=%d (checksum %x)\n",Count,next_interupt,mchecksum());
2082     //printf("TRACE: count=%d next=%d (checksum %x) Status=%x\n",Count,next_interupt,mchecksum(),Status);
2083     //printf("TRACE: count=%d next=%d (checksum %x) hi=%8x%8x\n",Count,next_interupt,mchecksum(),(int)(reg[HIREG]>>32),(int)reg[HIREG]);
2084     rlist();
2085     #ifdef __i386__
2086     printf("TRACE: %x\n",(&i)[-1]);
2087     #endif
2088     #ifdef __arm__
2089     int j;
2090     printf("TRACE: %x \n",(&j)[10]);
2091     printf("TRACE: %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x\n",(&j)[1],(&j)[2],(&j)[3],(&j)[4],(&j)[5],(&j)[6],(&j)[7],(&j)[8],(&j)[9],(&j)[10],(&j)[11],(&j)[12],(&j)[13],(&j)[14],(&j)[15],(&j)[16],(&j)[17],(&j)[18],(&j)[19],(&j)[20]);
2092     #endif
2093     //fflush(stdout);
2094   }
2095   //printf("TRACE: %x\n",(&i)[-1]);
2096 }
2097
2098 void tlb_debug(u_int cause, u_int addr, u_int iaddr)
2099 {
2100   printf("TLB Exception: instruction=%x addr=%x cause=%x\n",iaddr, addr, cause);
2101 }
2102
2103 void alu_assemble(int i,struct regstat *i_regs)
2104 {
2105   if(opcode2[i]>=0x20&&opcode2[i]<=0x23) { // ADD/ADDU/SUB/SUBU
2106     if(rt1[i]) {
2107       signed char s1,s2,t;
2108       t=get_reg(i_regs->regmap,rt1[i]);
2109       if(t>=0) {
2110         s1=get_reg(i_regs->regmap,rs1[i]);
2111         s2=get_reg(i_regs->regmap,rs2[i]);
2112         if(rs1[i]&&rs2[i]) {
2113           assert(s1>=0);
2114           assert(s2>=0);
2115           if(opcode2[i]&2) emit_sub(s1,s2,t);
2116           else emit_add(s1,s2,t);
2117         }
2118         else if(rs1[i]) {
2119           if(s1>=0) emit_mov(s1,t);
2120           else emit_loadreg(rs1[i],t);
2121         }
2122         else if(rs2[i]) {
2123           if(s2>=0) {
2124             if(opcode2[i]&2) emit_neg(s2,t);
2125             else emit_mov(s2,t);
2126           }
2127           else {
2128             emit_loadreg(rs2[i],t);
2129             if(opcode2[i]&2) emit_neg(t,t);
2130           }
2131         }
2132         else emit_zeroreg(t);
2133       }
2134     }
2135   }
2136   if(opcode2[i]>=0x2c&&opcode2[i]<=0x2f) { // DADD/DADDU/DSUB/DSUBU
2137     if(rt1[i]) {
2138       signed char s1l,s2l,s1h,s2h,tl,th;
2139       tl=get_reg(i_regs->regmap,rt1[i]);
2140       th=get_reg(i_regs->regmap,rt1[i]|64);
2141       if(tl>=0) {
2142         s1l=get_reg(i_regs->regmap,rs1[i]);
2143         s2l=get_reg(i_regs->regmap,rs2[i]);
2144         s1h=get_reg(i_regs->regmap,rs1[i]|64);
2145         s2h=get_reg(i_regs->regmap,rs2[i]|64);
2146         if(rs1[i]&&rs2[i]) {
2147           assert(s1l>=0);
2148           assert(s2l>=0);
2149           if(opcode2[i]&2) emit_subs(s1l,s2l,tl);
2150           else emit_adds(s1l,s2l,tl);
2151           if(th>=0) {
2152             #ifdef INVERTED_CARRY
2153             if(opcode2[i]&2) {if(s1h!=th) emit_mov(s1h,th);emit_sbb(th,s2h);}
2154             #else
2155             if(opcode2[i]&2) emit_sbc(s1h,s2h,th);
2156             #endif
2157             else emit_add(s1h,s2h,th);
2158           }
2159         }
2160         else if(rs1[i]) {
2161           if(s1l>=0) emit_mov(s1l,tl);
2162           else emit_loadreg(rs1[i],tl);
2163           if(th>=0) {
2164             if(s1h>=0) emit_mov(s1h,th);
2165             else emit_loadreg(rs1[i]|64,th);
2166           }
2167         }
2168         else if(rs2[i]) {
2169           if(s2l>=0) {
2170             if(opcode2[i]&2) emit_negs(s2l,tl);
2171             else emit_mov(s2l,tl);
2172           }
2173           else {
2174             emit_loadreg(rs2[i],tl);
2175             if(opcode2[i]&2) emit_negs(tl,tl);
2176           }
2177           if(th>=0) {
2178             #ifdef INVERTED_CARRY
2179             if(s2h>=0) emit_mov(s2h,th);
2180             else emit_loadreg(rs2[i]|64,th);
2181             if(opcode2[i]&2) {
2182               emit_adcimm(-1,th); // x86 has inverted carry flag
2183               emit_not(th,th);
2184             }
2185             #else
2186             if(opcode2[i]&2) {
2187               if(s2h>=0) emit_rscimm(s2h,0,th);
2188               else {
2189                 emit_loadreg(rs2[i]|64,th);
2190                 emit_rscimm(th,0,th);
2191               }
2192             }else{
2193               if(s2h>=0) emit_mov(s2h,th);
2194               else emit_loadreg(rs2[i]|64,th);
2195             }
2196             #endif
2197           }
2198         }
2199         else {
2200           emit_zeroreg(tl);
2201           if(th>=0) emit_zeroreg(th);
2202         }
2203       }
2204     }
2205   }
2206   if(opcode2[i]==0x2a||opcode2[i]==0x2b) { // SLT/SLTU
2207     if(rt1[i]) {
2208       signed char s1l,s1h,s2l,s2h,t;
2209       if(!((i_regs->was32>>rs1[i])&(i_regs->was32>>rs2[i])&1))
2210       {
2211         t=get_reg(i_regs->regmap,rt1[i]);
2212         //assert(t>=0);
2213         if(t>=0) {
2214           s1l=get_reg(i_regs->regmap,rs1[i]);
2215           s1h=get_reg(i_regs->regmap,rs1[i]|64);
2216           s2l=get_reg(i_regs->regmap,rs2[i]);
2217           s2h=get_reg(i_regs->regmap,rs2[i]|64);
2218           if(rs2[i]==0) // rx<r0
2219           {
2220             assert(s1h>=0);
2221             if(opcode2[i]==0x2a) // SLT
2222               emit_shrimm(s1h,31,t);
2223             else // SLTU (unsigned can not be less than zero)
2224               emit_zeroreg(t);
2225           }
2226           else if(rs1[i]==0) // r0<rx
2227           {
2228             assert(s2h>=0);
2229             if(opcode2[i]==0x2a) // SLT
2230               emit_set_gz64_32(s2h,s2l,t);
2231             else // SLTU (set if not zero)
2232               emit_set_nz64_32(s2h,s2l,t);
2233           }
2234           else {
2235             assert(s1l>=0);assert(s1h>=0);
2236             assert(s2l>=0);assert(s2h>=0);
2237             if(opcode2[i]==0x2a) // SLT
2238               emit_set_if_less64_32(s1h,s1l,s2h,s2l,t);
2239             else // SLTU
2240               emit_set_if_carry64_32(s1h,s1l,s2h,s2l,t);
2241           }
2242         }
2243       } else {
2244         t=get_reg(i_regs->regmap,rt1[i]);
2245         //assert(t>=0);
2246         if(t>=0) {
2247           s1l=get_reg(i_regs->regmap,rs1[i]);
2248           s2l=get_reg(i_regs->regmap,rs2[i]);
2249           if(rs2[i]==0) // rx<r0
2250           {
2251             assert(s1l>=0);
2252             if(opcode2[i]==0x2a) // SLT
2253               emit_shrimm(s1l,31,t);
2254             else // SLTU (unsigned can not be less than zero)
2255               emit_zeroreg(t);
2256           }
2257           else if(rs1[i]==0) // r0<rx
2258           {
2259             assert(s2l>=0);
2260             if(opcode2[i]==0x2a) // SLT
2261               emit_set_gz32(s2l,t);
2262             else // SLTU (set if not zero)
2263               emit_set_nz32(s2l,t);
2264           }
2265           else{
2266             assert(s1l>=0);assert(s2l>=0);
2267             if(opcode2[i]==0x2a) // SLT
2268               emit_set_if_less32(s1l,s2l,t);
2269             else // SLTU
2270               emit_set_if_carry32(s1l,s2l,t);
2271           }
2272         }
2273       }
2274     }
2275   }
2276   if(opcode2[i]>=0x24&&opcode2[i]<=0x27) { // AND/OR/XOR/NOR
2277     if(rt1[i]) {
2278       signed char s1l,s1h,s2l,s2h,th,tl;
2279       tl=get_reg(i_regs->regmap,rt1[i]);
2280       th=get_reg(i_regs->regmap,rt1[i]|64);
2281       if(!((i_regs->was32>>rs1[i])&(i_regs->was32>>rs2[i])&1)&&th>=0)
2282       {
2283         assert(tl>=0);
2284         if(tl>=0) {
2285           s1l=get_reg(i_regs->regmap,rs1[i]);
2286           s1h=get_reg(i_regs->regmap,rs1[i]|64);
2287           s2l=get_reg(i_regs->regmap,rs2[i]);
2288           s2h=get_reg(i_regs->regmap,rs2[i]|64);
2289           if(rs1[i]&&rs2[i]) {
2290             assert(s1l>=0);assert(s1h>=0);
2291             assert(s2l>=0);assert(s2h>=0);
2292             if(opcode2[i]==0x24) { // AND
2293               emit_and(s1l,s2l,tl);
2294               emit_and(s1h,s2h,th);
2295             } else
2296             if(opcode2[i]==0x25) { // OR
2297               emit_or(s1l,s2l,tl);
2298               emit_or(s1h,s2h,th);
2299             } else
2300             if(opcode2[i]==0x26) { // XOR
2301               emit_xor(s1l,s2l,tl);
2302               emit_xor(s1h,s2h,th);
2303             } else
2304             if(opcode2[i]==0x27) { // NOR
2305               emit_or(s1l,s2l,tl);
2306               emit_or(s1h,s2h,th);
2307               emit_not(tl,tl);
2308               emit_not(th,th);
2309             }
2310           }
2311           else
2312           {
2313             if(opcode2[i]==0x24) { // AND
2314               emit_zeroreg(tl);
2315               emit_zeroreg(th);
2316             } else
2317             if(opcode2[i]==0x25||opcode2[i]==0x26) { // OR/XOR
2318               if(rs1[i]){
2319                 if(s1l>=0) emit_mov(s1l,tl);
2320                 else emit_loadreg(rs1[i],tl);
2321                 if(s1h>=0) emit_mov(s1h,th);
2322                 else emit_loadreg(rs1[i]|64,th);
2323               }
2324               else
2325               if(rs2[i]){
2326                 if(s2l>=0) emit_mov(s2l,tl);
2327                 else emit_loadreg(rs2[i],tl);
2328                 if(s2h>=0) emit_mov(s2h,th);
2329                 else emit_loadreg(rs2[i]|64,th);
2330               }
2331               else{
2332                 emit_zeroreg(tl);
2333                 emit_zeroreg(th);
2334               }
2335             } else
2336             if(opcode2[i]==0x27) { // NOR
2337               if(rs1[i]){
2338                 if(s1l>=0) emit_not(s1l,tl);
2339                 else{
2340                   emit_loadreg(rs1[i],tl);
2341                   emit_not(tl,tl);
2342                 }
2343                 if(s1h>=0) emit_not(s1h,th);
2344                 else{
2345                   emit_loadreg(rs1[i]|64,th);
2346                   emit_not(th,th);
2347                 }
2348               }
2349               else
2350               if(rs2[i]){
2351                 if(s2l>=0) emit_not(s2l,tl);
2352                 else{
2353                   emit_loadreg(rs2[i],tl);
2354                   emit_not(tl,tl);
2355                 }
2356                 if(s2h>=0) emit_not(s2h,th);
2357                 else{
2358                   emit_loadreg(rs2[i]|64,th);
2359                   emit_not(th,th);
2360                 }
2361               }
2362               else {
2363                 emit_movimm(-1,tl);
2364                 emit_movimm(-1,th);
2365               }
2366             }
2367           }
2368         }
2369       }
2370       else
2371       {
2372         // 32 bit
2373         if(tl>=0) {
2374           s1l=get_reg(i_regs->regmap,rs1[i]);
2375           s2l=get_reg(i_regs->regmap,rs2[i]);
2376           if(rs1[i]&&rs2[i]) {
2377             assert(s1l>=0);
2378             assert(s2l>=0);
2379             if(opcode2[i]==0x24) { // AND
2380               emit_and(s1l,s2l,tl);
2381             } else
2382             if(opcode2[i]==0x25) { // OR
2383               emit_or(s1l,s2l,tl);
2384             } else
2385             if(opcode2[i]==0x26) { // XOR
2386               emit_xor(s1l,s2l,tl);
2387             } else
2388             if(opcode2[i]==0x27) { // NOR
2389               emit_or(s1l,s2l,tl);
2390               emit_not(tl,tl);
2391             }
2392           }
2393           else
2394           {
2395             if(opcode2[i]==0x24) { // AND
2396               emit_zeroreg(tl);
2397             } else
2398             if(opcode2[i]==0x25||opcode2[i]==0x26) { // OR/XOR
2399               if(rs1[i]){
2400                 if(s1l>=0) emit_mov(s1l,tl);
2401                 else emit_loadreg(rs1[i],tl); // CHECK: regmap_entry?
2402               }
2403               else
2404               if(rs2[i]){
2405                 if(s2l>=0) emit_mov(s2l,tl);
2406                 else emit_loadreg(rs2[i],tl); // CHECK: regmap_entry?
2407               }
2408               else emit_zeroreg(tl);
2409             } else
2410             if(opcode2[i]==0x27) { // NOR
2411               if(rs1[i]){
2412                 if(s1l>=0) emit_not(s1l,tl);
2413                 else {
2414                   emit_loadreg(rs1[i],tl);
2415                   emit_not(tl,tl);
2416                 }
2417               }
2418               else
2419               if(rs2[i]){
2420                 if(s2l>=0) emit_not(s2l,tl);
2421                 else {
2422                   emit_loadreg(rs2[i],tl);
2423                   emit_not(tl,tl);
2424                 }
2425               }
2426               else emit_movimm(-1,tl);
2427             }
2428           }
2429         }
2430       }
2431     }
2432   }
2433 }
2434
2435 void imm16_assemble(int i,struct regstat *i_regs)
2436 {
2437   if (opcode[i]==0x0f) { // LUI
2438     if(rt1[i]) {
2439       signed char t;
2440       t=get_reg(i_regs->regmap,rt1[i]);
2441       //assert(t>=0);
2442       if(t>=0) {
2443         if(!((i_regs->isconst>>t)&1))
2444           emit_movimm(imm[i]<<16,t);
2445       }
2446     }
2447   }
2448   if(opcode[i]==0x08||opcode[i]==0x09) { // ADDI/ADDIU
2449     if(rt1[i]) {
2450       signed char s,t;
2451       t=get_reg(i_regs->regmap,rt1[i]);
2452       s=get_reg(i_regs->regmap,rs1[i]);
2453       if(rs1[i]) {
2454         //assert(t>=0);
2455         //assert(s>=0);
2456         if(t>=0) {
2457           if(!((i_regs->isconst>>t)&1)) {
2458             if(s<0) {
2459               if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2460               emit_addimm(t,imm[i],t);
2461             }else{
2462               if(!((i_regs->wasconst>>s)&1))
2463                 emit_addimm(s,imm[i],t);
2464               else
2465                 emit_movimm(constmap[i][s]+imm[i],t);
2466             }
2467           }
2468         }
2469       } else {
2470         if(t>=0) {
2471           if(!((i_regs->isconst>>t)&1))
2472             emit_movimm(imm[i],t);
2473         }
2474       }
2475     }
2476   }
2477   if(opcode[i]==0x18||opcode[i]==0x19) { // DADDI/DADDIU
2478     if(rt1[i]) {
2479       signed char sh,sl,th,tl;
2480       th=get_reg(i_regs->regmap,rt1[i]|64);
2481       tl=get_reg(i_regs->regmap,rt1[i]);
2482       sh=get_reg(i_regs->regmap,rs1[i]|64);
2483       sl=get_reg(i_regs->regmap,rs1[i]);
2484       if(tl>=0) {
2485         if(rs1[i]) {
2486           assert(sh>=0);
2487           assert(sl>=0);
2488           if(th>=0) {
2489             emit_addimm64_32(sh,sl,imm[i],th,tl);
2490           }
2491           else {
2492             emit_addimm(sl,imm[i],tl);
2493           }
2494         } else {
2495           emit_movimm(imm[i],tl);
2496           if(th>=0) emit_movimm(((signed int)imm[i])>>31,th);
2497         }
2498       }
2499     }
2500   }
2501   else if(opcode[i]==0x0a||opcode[i]==0x0b) { // SLTI/SLTIU
2502     if(rt1[i]) {
2503       //assert(rs1[i]!=0); // r0 might be valid, but it's probably a bug
2504       signed char sh,sl,t;
2505       t=get_reg(i_regs->regmap,rt1[i]);
2506       sh=get_reg(i_regs->regmap,rs1[i]|64);
2507       sl=get_reg(i_regs->regmap,rs1[i]);
2508       //assert(t>=0);
2509       if(t>=0) {
2510         if(rs1[i]>0) {
2511           if(sh<0) assert((i_regs->was32>>rs1[i])&1);
2512           if(sh<0||((i_regs->was32>>rs1[i])&1)) {
2513             if(opcode[i]==0x0a) { // SLTI
2514               if(sl<0) {
2515                 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2516                 emit_slti32(t,imm[i],t);
2517               }else{
2518                 emit_slti32(sl,imm[i],t);
2519               }
2520             }
2521             else { // SLTIU
2522               if(sl<0) {
2523                 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2524                 emit_sltiu32(t,imm[i],t);
2525               }else{
2526                 emit_sltiu32(sl,imm[i],t);
2527               }
2528             }
2529           }else{ // 64-bit
2530             assert(sl>=0);
2531             if(opcode[i]==0x0a) // SLTI
2532               emit_slti64_32(sh,sl,imm[i],t);
2533             else // SLTIU
2534               emit_sltiu64_32(sh,sl,imm[i],t);
2535           }
2536         }else{
2537           // SLTI(U) with r0 is just stupid,
2538           // nonetheless examples can be found
2539           if(opcode[i]==0x0a) // SLTI
2540             if(0<imm[i]) emit_movimm(1,t);
2541             else emit_zeroreg(t);
2542           else // SLTIU
2543           {
2544             if(imm[i]) emit_movimm(1,t);
2545             else emit_zeroreg(t);
2546           }
2547         }
2548       }
2549     }
2550   }
2551   else if(opcode[i]>=0x0c&&opcode[i]<=0x0e) { // ANDI/ORI/XORI
2552     if(rt1[i]) {
2553       signed char sh,sl,th,tl;
2554       th=get_reg(i_regs->regmap,rt1[i]|64);
2555       tl=get_reg(i_regs->regmap,rt1[i]);
2556       sh=get_reg(i_regs->regmap,rs1[i]|64);
2557       sl=get_reg(i_regs->regmap,rs1[i]);
2558       if(tl>=0 && !((i_regs->isconst>>tl)&1)) {
2559         if(opcode[i]==0x0c) //ANDI
2560         {
2561           if(rs1[i]) {
2562             if(sl<0) {
2563               if(i_regs->regmap_entry[tl]!=rs1[i]) emit_loadreg(rs1[i],tl);
2564               emit_andimm(tl,imm[i],tl);
2565             }else{
2566               if(!((i_regs->wasconst>>sl)&1))
2567                 emit_andimm(sl,imm[i],tl);
2568               else
2569                 emit_movimm(constmap[i][sl]&imm[i],tl);
2570             }
2571           }
2572           else
2573             emit_zeroreg(tl);
2574           if(th>=0) emit_zeroreg(th);
2575         }
2576         else
2577         {
2578           if(rs1[i]) {
2579             if(sl<0) {
2580               if(i_regs->regmap_entry[tl]!=rs1[i]) emit_loadreg(rs1[i],tl);
2581             }
2582             if(th>=0) {
2583               if(sh<0) {
2584                 emit_loadreg(rs1[i]|64,th);
2585               }else{
2586                 emit_mov(sh,th);
2587               }
2588             }
2589             if(opcode[i]==0x0d) //ORI
2590             if(sl<0) {
2591               emit_orimm(tl,imm[i],tl);
2592             }else{
2593               if(!((i_regs->wasconst>>sl)&1))
2594                 emit_orimm(sl,imm[i],tl);
2595               else
2596                 emit_movimm(constmap[i][sl]|imm[i],tl);
2597             }
2598             if(opcode[i]==0x0e) //XORI
2599             if(sl<0) {
2600               emit_xorimm(tl,imm[i],tl);
2601             }else{
2602               if(!((i_regs->wasconst>>sl)&1))
2603                 emit_xorimm(sl,imm[i],tl);
2604               else
2605                 emit_movimm(constmap[i][sl]^imm[i],tl);
2606             }
2607           }
2608           else {
2609             emit_movimm(imm[i],tl);
2610             if(th>=0) emit_zeroreg(th);
2611           }
2612         }
2613       }
2614     }
2615   }
2616 }
2617
2618 void shiftimm_assemble(int i,struct regstat *i_regs)
2619 {
2620   if(opcode2[i]<=0x3) // SLL/SRL/SRA
2621   {
2622     if(rt1[i]) {
2623       signed char s,t;
2624       t=get_reg(i_regs->regmap,rt1[i]);
2625       s=get_reg(i_regs->regmap,rs1[i]);
2626       //assert(t>=0);
2627       if(t>=0){
2628         if(rs1[i]==0)
2629         {
2630           emit_zeroreg(t);
2631         }
2632         else
2633         {
2634           if(s<0&&i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2635           if(imm[i]) {
2636             if(opcode2[i]==0) // SLL
2637             {
2638               emit_shlimm(s<0?t:s,imm[i],t);
2639             }
2640             if(opcode2[i]==2) // SRL
2641             {
2642               emit_shrimm(s<0?t:s,imm[i],t);
2643             }
2644             if(opcode2[i]==3) // SRA
2645             {
2646               emit_sarimm(s<0?t:s,imm[i],t);
2647             }
2648           }else{
2649             // Shift by zero
2650             if(s>=0 && s!=t) emit_mov(s,t);
2651           }
2652         }
2653       }
2654       //emit_storereg(rt1[i],t); //DEBUG
2655     }
2656   }
2657   if(opcode2[i]>=0x38&&opcode2[i]<=0x3b) // DSLL/DSRL/DSRA
2658   {
2659     if(rt1[i]) {
2660       signed char sh,sl,th,tl;
2661       th=get_reg(i_regs->regmap,rt1[i]|64);
2662       tl=get_reg(i_regs->regmap,rt1[i]);
2663       sh=get_reg(i_regs->regmap,rs1[i]|64);
2664       sl=get_reg(i_regs->regmap,rs1[i]);
2665       if(tl>=0) {
2666         if(rs1[i]==0)
2667         {
2668           emit_zeroreg(tl);
2669           if(th>=0) emit_zeroreg(th);
2670         }
2671         else
2672         {
2673           assert(sl>=0);
2674           assert(sh>=0);
2675           if(imm[i]) {
2676             if(opcode2[i]==0x38) // DSLL
2677             {
2678               if(th>=0) emit_shldimm(sh,sl,imm[i],th);
2679               emit_shlimm(sl,imm[i],tl);
2680             }
2681             if(opcode2[i]==0x3a) // DSRL
2682             {
2683               emit_shrdimm(sl,sh,imm[i],tl);
2684               if(th>=0) emit_shrimm(sh,imm[i],th);
2685             }
2686             if(opcode2[i]==0x3b) // DSRA
2687             {
2688               emit_shrdimm(sl,sh,imm[i],tl);
2689               if(th>=0) emit_sarimm(sh,imm[i],th);
2690             }
2691           }else{
2692             // Shift by zero
2693             if(sl!=tl) emit_mov(sl,tl);
2694             if(th>=0&&sh!=th) emit_mov(sh,th);
2695           }
2696         }
2697       }
2698     }
2699   }
2700   if(opcode2[i]==0x3c) // DSLL32
2701   {
2702     if(rt1[i]) {
2703       signed char sl,tl,th;
2704       tl=get_reg(i_regs->regmap,rt1[i]);
2705       th=get_reg(i_regs->regmap,rt1[i]|64);
2706       sl=get_reg(i_regs->regmap,rs1[i]);
2707       if(th>=0||tl>=0){
2708         assert(tl>=0);
2709         assert(th>=0);
2710         assert(sl>=0);
2711         emit_mov(sl,th);
2712         emit_zeroreg(tl);
2713         if(imm[i]>32)
2714         {
2715           emit_shlimm(th,imm[i]&31,th);
2716         }
2717       }
2718     }
2719   }
2720   if(opcode2[i]==0x3e) // DSRL32
2721   {
2722     if(rt1[i]) {
2723       signed char sh,tl,th;
2724       tl=get_reg(i_regs->regmap,rt1[i]);
2725       th=get_reg(i_regs->regmap,rt1[i]|64);
2726       sh=get_reg(i_regs->regmap,rs1[i]|64);
2727       if(tl>=0){
2728         assert(sh>=0);
2729         emit_mov(sh,tl);
2730         if(th>=0) emit_zeroreg(th);
2731         if(imm[i]>32)
2732         {
2733           emit_shrimm(tl,imm[i]&31,tl);
2734         }
2735       }
2736     }
2737   }
2738   if(opcode2[i]==0x3f) // DSRA32
2739   {
2740     if(rt1[i]) {
2741       signed char sh,tl;
2742       tl=get_reg(i_regs->regmap,rt1[i]);
2743       sh=get_reg(i_regs->regmap,rs1[i]|64);
2744       if(tl>=0){
2745         assert(sh>=0);
2746         emit_mov(sh,tl);
2747         if(imm[i]>32)
2748         {
2749           emit_sarimm(tl,imm[i]&31,tl);
2750         }
2751       }
2752     }
2753   }
2754 }
2755
2756 #ifndef shift_assemble
2757 void shift_assemble(int i,struct regstat *i_regs)
2758 {
2759   printf("Need shift_assemble for this architecture.\n");
2760   exit(1);
2761 }
2762 #endif
2763
2764 void load_assemble(int i,struct regstat *i_regs)
2765 {
2766   int s,th,tl,addr,map=-1;
2767   int offset;
2768   int jaddr=0;
2769   int memtarget=0,c=0;
2770   u_int hr,reglist=0;
2771   th=get_reg(i_regs->regmap,rt1[i]|64);
2772   tl=get_reg(i_regs->regmap,rt1[i]);
2773   s=get_reg(i_regs->regmap,rs1[i]);
2774   offset=imm[i];
2775   for(hr=0;hr<HOST_REGS;hr++) {
2776     if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
2777   }
2778   if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
2779   if(s>=0) {
2780     c=(i_regs->wasconst>>s)&1;
2781     memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
2782     if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
2783   }
2784   //printf("load_assemble: c=%d\n",c);
2785   //if(c) printf("load_assemble: const=%x\n",(int)constmap[i][s]+offset);
2786   // FIXME: Even if the load is a NOP, we should check for pagefaults...
2787 #ifdef PCSX
2788   if(tl<0&&(!c||(((u_int)constmap[i][s]+offset)>>16)==0x1f80)
2789     ||rt1[i]==0) {
2790       // could be FIFO, must perform the read
2791       // ||dummy read
2792       assem_debug("(forced read)\n");
2793       tl=get_reg(i_regs->regmap,-1);
2794       assert(tl>=0);
2795   }
2796 #endif
2797   if(offset||s<0||c) addr=tl;
2798   else addr=s;
2799   //if(tl<0) tl=get_reg(i_regs->regmap,-1);
2800  if(tl>=0) {
2801   //printf("load_assemble: c=%d\n",c);
2802   //if(c) printf("load_assemble: const=%x\n",(int)constmap[i][s]+offset);
2803   assert(tl>=0); // Even if the load is a NOP, we must check for pagefaults and I/O
2804   reglist&=~(1<<tl);
2805   if(th>=0) reglist&=~(1<<th);
2806   if(!using_tlb) {
2807     if(!c) {
2808       #ifdef RAM_OFFSET
2809       map=get_reg(i_regs->regmap,ROREG);
2810       if(map<0) emit_loadreg(ROREG,map=HOST_TEMPREG);
2811       #endif
2812 //#define R29_HACK 1
2813       #ifdef R29_HACK
2814       // Strmnnrmn's speed hack
2815       if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
2816       #endif
2817       {
2818         emit_cmpimm(addr,RAM_SIZE);
2819         jaddr=(int)out;
2820         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
2821         // Hint to branch predictor that the branch is unlikely to be taken
2822         if(rs1[i]>=28)
2823           emit_jno_unlikely(0);
2824         else
2825         #endif
2826         emit_jno(0);
2827       }
2828     }
2829   }else{ // using tlb
2830     int x=0;
2831     if (opcode[i]==0x20||opcode[i]==0x24) x=3; // LB/LBU
2832     if (opcode[i]==0x21||opcode[i]==0x25) x=2; // LH/LHU
2833     map=get_reg(i_regs->regmap,TLREG);
2834     assert(map>=0);
2835     map=do_tlb_r(addr,tl,map,x,-1,-1,c,constmap[i][s]+offset);
2836     do_tlb_r_branch(map,c,constmap[i][s]+offset,&jaddr);
2837   }
2838   int dummy=(rt1[i]==0)||(tl!=get_reg(i_regs->regmap,rt1[i])); // ignore loads to r0 and unneeded reg
2839   if (opcode[i]==0x20) { // LB
2840     if(!c||memtarget) {
2841       if(!dummy) {
2842         #ifdef HOST_IMM_ADDR32
2843         if(c)
2844           emit_movsbl_tlb((constmap[i][s]+offset)^3,map,tl);
2845         else
2846         #endif
2847         {
2848           //emit_xorimm(addr,3,tl);
2849           //gen_tlb_addr_r(tl,map);
2850           //emit_movsbl_indexed((int)rdram-0x80000000,tl,tl);
2851           int x=0,a=tl;
2852 #ifdef BIG_ENDIAN_MIPS
2853           if(!c) emit_xorimm(addr,3,tl);
2854           else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2855 #else
2856           if(!c) a=addr;
2857 #endif
2858           emit_movsbl_indexed_tlb(x,a,map,tl);
2859         }
2860       }
2861       if(jaddr)
2862         add_stub(LOADB_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2863     }
2864     else
2865       inline_readstub(LOADB_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2866   }
2867   if (opcode[i]==0x21) { // LH
2868     if(!c||memtarget) {
2869       if(!dummy) {
2870         #ifdef HOST_IMM_ADDR32
2871         if(c)
2872           emit_movswl_tlb((constmap[i][s]+offset)^2,map,tl);
2873         else
2874         #endif
2875         {
2876           int x=0,a=tl;
2877 #ifdef BIG_ENDIAN_MIPS
2878           if(!c) emit_xorimm(addr,2,tl);
2879           else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
2880 #else
2881           if(!c) a=addr;
2882 #endif
2883           //#ifdef
2884           //emit_movswl_indexed_tlb(x,tl,map,tl);
2885           //else
2886           if(map>=0) {
2887             gen_tlb_addr_r(a,map);
2888             emit_movswl_indexed(x,a,tl);
2889           }else{
2890             #ifdef RAM_OFFSET
2891             emit_movswl_indexed(x,a,tl);
2892             #else
2893             emit_movswl_indexed((int)rdram-0x80000000+x,a,tl);
2894             #endif
2895           }
2896         }
2897       }
2898       if(jaddr)
2899         add_stub(LOADH_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2900     }
2901     else
2902       inline_readstub(LOADH_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2903   }
2904   if (opcode[i]==0x23) { // LW
2905     if(!c||memtarget) {
2906       if(!dummy) {
2907         //emit_readword_indexed((int)rdram-0x80000000,addr,tl);
2908         #ifdef HOST_IMM_ADDR32
2909         if(c)
2910           emit_readword_tlb(constmap[i][s]+offset,map,tl);
2911         else
2912         #endif
2913         emit_readword_indexed_tlb(0,addr,map,tl);
2914       }
2915       if(jaddr)
2916         add_stub(LOADW_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2917     }
2918     else
2919       inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2920   }
2921   if (opcode[i]==0x24) { // LBU
2922     if(!c||memtarget) {
2923       if(!dummy) {
2924         #ifdef HOST_IMM_ADDR32
2925         if(c)
2926           emit_movzbl_tlb((constmap[i][s]+offset)^3,map,tl);
2927         else
2928         #endif
2929         {
2930           //emit_xorimm(addr,3,tl);
2931           //gen_tlb_addr_r(tl,map);
2932           //emit_movzbl_indexed((int)rdram-0x80000000,tl,tl);
2933           int x=0,a=tl;
2934 #ifdef BIG_ENDIAN_MIPS
2935           if(!c) emit_xorimm(addr,3,tl);
2936           else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2937 #else
2938           if(!c) a=addr;
2939 #endif
2940           emit_movzbl_indexed_tlb(x,a,map,tl);
2941         }
2942       }
2943       if(jaddr)
2944         add_stub(LOADBU_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2945     }
2946     else
2947       inline_readstub(LOADBU_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2948   }
2949   if (opcode[i]==0x25) { // LHU
2950     if(!c||memtarget) {
2951       if(!dummy) {
2952         #ifdef HOST_IMM_ADDR32
2953         if(c)
2954           emit_movzwl_tlb((constmap[i][s]+offset)^2,map,tl);
2955         else
2956         #endif
2957         {
2958           int x=0,a=tl;
2959 #ifdef BIG_ENDIAN_MIPS
2960           if(!c) emit_xorimm(addr,2,tl);
2961           else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
2962 #else
2963           if(!c) a=addr;
2964 #endif
2965           //#ifdef
2966           //emit_movzwl_indexed_tlb(x,tl,map,tl);
2967           //#else
2968           if(map>=0) {
2969             gen_tlb_addr_r(a,map);
2970             emit_movzwl_indexed(x,a,tl);
2971           }else{
2972             #ifdef RAM_OFFSET
2973             emit_movzwl_indexed(x,a,tl);
2974             #else
2975             emit_movzwl_indexed((int)rdram-0x80000000+x,a,tl);
2976             #endif
2977           }
2978         }
2979       }
2980       if(jaddr)
2981         add_stub(LOADHU_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2982     }
2983     else
2984       inline_readstub(LOADHU_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2985   }
2986   if (opcode[i]==0x27) { // LWU
2987     assert(th>=0);
2988     if(!c||memtarget) {
2989       if(!dummy) {
2990         //emit_readword_indexed((int)rdram-0x80000000,addr,tl);
2991         #ifdef HOST_IMM_ADDR32
2992         if(c)
2993           emit_readword_tlb(constmap[i][s]+offset,map,tl);
2994         else
2995         #endif
2996         emit_readword_indexed_tlb(0,addr,map,tl);
2997       }
2998       if(jaddr)
2999         add_stub(LOADW_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3000     }
3001     else {
3002       inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
3003     }
3004     emit_zeroreg(th);
3005   }
3006   if (opcode[i]==0x37) { // LD
3007     if(!c||memtarget) {
3008       if(!dummy) {
3009         //gen_tlb_addr_r(tl,map);
3010         //if(th>=0) emit_readword_indexed((int)rdram-0x80000000,addr,th);
3011         //emit_readword_indexed((int)rdram-0x7FFFFFFC,addr,tl);
3012         #ifdef HOST_IMM_ADDR32
3013         if(c)
3014           emit_readdword_tlb(constmap[i][s]+offset,map,th,tl);
3015         else
3016         #endif
3017         emit_readdword_indexed_tlb(0,addr,map,th,tl);
3018       }
3019       if(jaddr)
3020         add_stub(LOADD_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3021     }
3022     else
3023       inline_readstub(LOADD_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
3024   }
3025  }
3026   //emit_storereg(rt1[i],tl); // DEBUG
3027   //if(opcode[i]==0x23)
3028   //if(opcode[i]==0x24)
3029   //if(opcode[i]==0x23||opcode[i]==0x24)
3030   /*if(opcode[i]==0x21||opcode[i]==0x23||opcode[i]==0x24)
3031   {
3032     //emit_pusha();
3033     save_regs(0x100f);
3034         emit_readword((int)&last_count,ECX);
3035         #ifdef __i386__
3036         if(get_reg(i_regs->regmap,CCREG)<0)
3037           emit_loadreg(CCREG,HOST_CCREG);
3038         emit_add(HOST_CCREG,ECX,HOST_CCREG);
3039         emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3040         emit_writeword(HOST_CCREG,(int)&Count);
3041         #endif
3042         #ifdef __arm__
3043         if(get_reg(i_regs->regmap,CCREG)<0)
3044           emit_loadreg(CCREG,0);
3045         else
3046           emit_mov(HOST_CCREG,0);
3047         emit_add(0,ECX,0);
3048         emit_addimm(0,2*ccadj[i],0);
3049         emit_writeword(0,(int)&Count);
3050         #endif
3051     emit_call((int)memdebug);
3052     //emit_popa();
3053     restore_regs(0x100f);
3054   }/**/
3055 }
3056
3057 #ifndef loadlr_assemble
3058 void loadlr_assemble(int i,struct regstat *i_regs)
3059 {
3060   printf("Need loadlr_assemble for this architecture.\n");
3061   exit(1);
3062 }
3063 #endif
3064
3065 void store_assemble(int i,struct regstat *i_regs)
3066 {
3067   int s,th,tl,map=-1;
3068   int addr,temp;
3069   int offset;
3070   int jaddr=0,jaddr2,type;
3071   int memtarget=0,c=0;
3072   int agr=AGEN1+(i&1);
3073   u_int hr,reglist=0;
3074   th=get_reg(i_regs->regmap,rs2[i]|64);
3075   tl=get_reg(i_regs->regmap,rs2[i]);
3076   s=get_reg(i_regs->regmap,rs1[i]);
3077   temp=get_reg(i_regs->regmap,agr);
3078   if(temp<0) temp=get_reg(i_regs->regmap,-1);
3079   offset=imm[i];
3080   if(s>=0) {
3081     c=(i_regs->wasconst>>s)&1;
3082     memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
3083     if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
3084   }
3085   assert(tl>=0);
3086   assert(temp>=0);
3087   for(hr=0;hr<HOST_REGS;hr++) {
3088     if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3089   }
3090   if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
3091   if(offset||s<0||c) addr=temp;
3092   else addr=s;
3093   if(!using_tlb) {
3094     if(!c) {
3095       #ifdef R29_HACK
3096       // Strmnnrmn's speed hack
3097       memtarget=1;
3098       if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
3099       #endif
3100       emit_cmpimm(addr,RAM_SIZE);
3101       #ifdef DESTRUCTIVE_SHIFT
3102       if(s==addr) emit_mov(s,temp);
3103       #endif
3104       #ifdef R29_HACK
3105       if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
3106       #endif
3107       {
3108         jaddr=(int)out;
3109         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
3110         // Hint to branch predictor that the branch is unlikely to be taken
3111         if(rs1[i]>=28)
3112           emit_jno_unlikely(0);
3113         else
3114         #endif
3115         emit_jno(0);
3116       }
3117     }
3118   }else{ // using tlb
3119     int x=0;
3120     if (opcode[i]==0x28) x=3; // SB
3121     if (opcode[i]==0x29) x=2; // SH
3122     map=get_reg(i_regs->regmap,TLREG);
3123     assert(map>=0);
3124     map=do_tlb_w(addr,temp,map,x,c,constmap[i][s]+offset);
3125     do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr);
3126   }
3127
3128   if (opcode[i]==0x28) { // SB
3129     if(!c||memtarget) {
3130       int x=0;
3131 #ifdef BIG_ENDIAN_MIPS
3132       if(!c) emit_xorimm(addr,3,temp);
3133       else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
3134 #else
3135       if(c) x=(constmap[i][s]+offset)-(constmap[i][s]+offset);
3136       else if (addr!=temp) emit_mov(addr,temp);
3137 #endif
3138       //gen_tlb_addr_w(temp,map);
3139       //emit_writebyte_indexed(tl,(int)rdram-0x80000000,temp);
3140       emit_writebyte_indexed_tlb(tl,x,temp,map,temp);
3141     }
3142     type=STOREB_STUB;
3143   }
3144   if (opcode[i]==0x29) { // SH
3145     if(!c||memtarget) {
3146       int x=0;
3147 #ifdef BIG_ENDIAN_MIPS
3148       if(!c) emit_xorimm(addr,2,temp);
3149       else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
3150 #else
3151       if(c) x=(constmap[i][s]+offset)-(constmap[i][s]+offset);
3152       else if (addr!=temp) emit_mov(addr,temp);
3153 #endif
3154       //#ifdef
3155       //emit_writehword_indexed_tlb(tl,x,temp,map,temp);
3156       //#else
3157       if(map>=0) {
3158         gen_tlb_addr_w(temp,map);
3159         emit_writehword_indexed(tl,x,temp);
3160       }else
3161         emit_writehword_indexed(tl,(int)rdram-0x80000000+x,temp);
3162     }
3163     type=STOREH_STUB;
3164   }
3165   if (opcode[i]==0x2B) { // SW
3166     if(!c||memtarget)
3167       //emit_writeword_indexed(tl,(int)rdram-0x80000000,addr);
3168       emit_writeword_indexed_tlb(tl,0,addr,map,temp);
3169     type=STOREW_STUB;
3170   }
3171   if (opcode[i]==0x3F) { // SD
3172     if(!c||memtarget) {
3173       if(rs2[i]) {
3174         assert(th>=0);
3175         //emit_writeword_indexed(th,(int)rdram-0x80000000,addr);
3176         //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,addr);
3177         emit_writedword_indexed_tlb(th,tl,0,addr,map,temp);
3178       }else{
3179         // Store zero
3180         //emit_writeword_indexed(tl,(int)rdram-0x80000000,temp);
3181         //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,temp);
3182         emit_writedword_indexed_tlb(tl,tl,0,addr,map,temp);
3183       }
3184     }
3185     type=STORED_STUB;
3186   }
3187   if(!using_tlb) {
3188     if(!c||memtarget) {
3189       #ifdef DESTRUCTIVE_SHIFT
3190       // The x86 shift operation is 'destructive'; it overwrites the
3191       // source register, so we need to make a copy first and use that.
3192       addr=temp;
3193       #endif
3194       #if defined(HOST_IMM8)
3195       int ir=get_reg(i_regs->regmap,INVCP);
3196       assert(ir>=0);
3197       emit_cmpmem_indexedsr12_reg(ir,addr,1);
3198       #else
3199       emit_cmpmem_indexedsr12_imm((int)invalid_code,addr,1);
3200       #endif
3201       jaddr2=(int)out;
3202       emit_jne(0);
3203       add_stub(INVCODE_STUB,jaddr2,(int)out,reglist|(1<<HOST_CCREG),addr,0,0,0);
3204     }
3205   }
3206   if(jaddr) {
3207     add_stub(type,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3208   } else if(c&&!memtarget) {
3209     inline_writestub(type,i,constmap[i][s]+offset,i_regs->regmap,rs2[i],ccadj[i],reglist);
3210   }
3211   //if(opcode[i]==0x2B || opcode[i]==0x3F)
3212   //if(opcode[i]==0x2B || opcode[i]==0x28)
3213   //if(opcode[i]==0x2B || opcode[i]==0x29)
3214   //if(opcode[i]==0x2B)
3215   /*if(opcode[i]==0x2B || opcode[i]==0x28 || opcode[i]==0x29 || opcode[i]==0x3F)
3216   {
3217     //emit_pusha();
3218     save_regs(0x100f);
3219         emit_readword((int)&last_count,ECX);
3220         #ifdef __i386__
3221         if(get_reg(i_regs->regmap,CCREG)<0)
3222           emit_loadreg(CCREG,HOST_CCREG);
3223         emit_add(HOST_CCREG,ECX,HOST_CCREG);
3224         emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3225         emit_writeword(HOST_CCREG,(int)&Count);
3226         #endif
3227         #ifdef __arm__
3228         if(get_reg(i_regs->regmap,CCREG)<0)
3229           emit_loadreg(CCREG,0);
3230         else
3231           emit_mov(HOST_CCREG,0);
3232         emit_add(0,ECX,0);
3233         emit_addimm(0,2*ccadj[i],0);
3234         emit_writeword(0,(int)&Count);
3235         #endif
3236     emit_call((int)memdebug);
3237     //emit_popa();
3238     restore_regs(0x100f);
3239   }/**/
3240 }
3241
3242 void storelr_assemble(int i,struct regstat *i_regs)
3243 {
3244   int s,th,tl;
3245   int temp;
3246   int temp2;
3247   int offset;
3248   int jaddr=0,jaddr2;
3249   int case1,case2,case3;
3250   int done0,done1,done2;
3251   int memtarget,c=0;
3252   int agr=AGEN1+(i&1);
3253   u_int hr,reglist=0;
3254   th=get_reg(i_regs->regmap,rs2[i]|64);
3255   tl=get_reg(i_regs->regmap,rs2[i]);
3256   s=get_reg(i_regs->regmap,rs1[i]);
3257   temp=get_reg(i_regs->regmap,agr);
3258   if(temp<0) temp=get_reg(i_regs->regmap,-1);
3259   offset=imm[i];
3260   if(s>=0) {
3261     c=(i_regs->isconst>>s)&1;
3262     memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
3263     if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
3264   }
3265   assert(tl>=0);
3266   for(hr=0;hr<HOST_REGS;hr++) {
3267     if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3268   }
3269   assert(temp>=0);
3270   if(!using_tlb) {
3271     if(!c) {
3272       emit_cmpimm(s<0||offset?temp:s,RAM_SIZE);
3273       if(!offset&&s!=temp) emit_mov(s,temp);
3274       jaddr=(int)out;
3275       emit_jno(0);
3276     }
3277     else
3278     {
3279       if(!memtarget||!rs1[i]) {
3280         jaddr=(int)out;
3281         emit_jmp(0);
3282       }
3283     }
3284     #ifdef RAM_OFFSET
3285     int map=get_reg(i_regs->regmap,ROREG);
3286     if(map<0) emit_loadreg(ROREG,map=HOST_TEMPREG);
3287     gen_tlb_addr_w(temp,map);
3288     #else
3289     if((u_int)rdram!=0x80000000) 
3290       emit_addimm_no_flags((u_int)rdram-(u_int)0x80000000,temp);
3291     #endif
3292   }else{ // using tlb
3293     int map=get_reg(i_regs->regmap,TLREG);
3294     assert(map>=0);
3295     map=do_tlb_w(c||s<0||offset?temp:s,temp,map,0,c,constmap[i][s]+offset);
3296     if(!c&&!offset&&s>=0) emit_mov(s,temp);
3297     do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr);
3298     if(!jaddr&&!memtarget) {
3299       jaddr=(int)out;
3300       emit_jmp(0);
3301     }
3302     gen_tlb_addr_w(temp,map);
3303   }
3304
3305   if (opcode[i]==0x2C||opcode[i]==0x2D) { // SDL/SDR
3306     temp2=get_reg(i_regs->regmap,FTEMP);
3307     if(!rs2[i]) temp2=th=tl;
3308   }
3309
3310 #ifndef BIG_ENDIAN_MIPS
3311     emit_xorimm(temp,3,temp);
3312 #endif
3313   emit_testimm(temp,2);
3314   case2=(int)out;
3315   emit_jne(0);
3316   emit_testimm(temp,1);
3317   case1=(int)out;
3318   emit_jne(0);
3319   // 0
3320   if (opcode[i]==0x2A) { // SWL
3321     emit_writeword_indexed(tl,0,temp);
3322   }
3323   if (opcode[i]==0x2E) { // SWR
3324     emit_writebyte_indexed(tl,3,temp);
3325   }
3326   if (opcode[i]==0x2C) { // SDL
3327     emit_writeword_indexed(th,0,temp);
3328     if(rs2[i]) emit_mov(tl,temp2);
3329   }
3330   if (opcode[i]==0x2D) { // SDR
3331     emit_writebyte_indexed(tl,3,temp);
3332     if(rs2[i]) emit_shldimm(th,tl,24,temp2);
3333   }
3334   done0=(int)out;
3335   emit_jmp(0);
3336   // 1
3337   set_jump_target(case1,(int)out);
3338   if (opcode[i]==0x2A) { // SWL
3339     // Write 3 msb into three least significant bytes
3340     if(rs2[i]) emit_rorimm(tl,8,tl);
3341     emit_writehword_indexed(tl,-1,temp);
3342     if(rs2[i]) emit_rorimm(tl,16,tl);
3343     emit_writebyte_indexed(tl,1,temp);
3344     if(rs2[i]) emit_rorimm(tl,8,tl);
3345   }
3346   if (opcode[i]==0x2E) { // SWR
3347     // Write two lsb into two most significant bytes
3348     emit_writehword_indexed(tl,1,temp);
3349   }
3350   if (opcode[i]==0x2C) { // SDL
3351     if(rs2[i]) emit_shrdimm(tl,th,8,temp2);
3352     // Write 3 msb into three least significant bytes
3353     if(rs2[i]) emit_rorimm(th,8,th);
3354     emit_writehword_indexed(th,-1,temp);
3355     if(rs2[i]) emit_rorimm(th,16,th);
3356     emit_writebyte_indexed(th,1,temp);
3357     if(rs2[i]) emit_rorimm(th,8,th);
3358   }
3359   if (opcode[i]==0x2D) { // SDR
3360     if(rs2[i]) emit_shldimm(th,tl,16,temp2);
3361     // Write two lsb into two most significant bytes
3362     emit_writehword_indexed(tl,1,temp);
3363   }
3364   done1=(int)out;
3365   emit_jmp(0);
3366   // 2
3367   set_jump_target(case2,(int)out);
3368   emit_testimm(temp,1);
3369   case3=(int)out;
3370   emit_jne(0);
3371   if (opcode[i]==0x2A) { // SWL
3372     // Write two msb into two least significant bytes
3373     if(rs2[i]) emit_rorimm(tl,16,tl);
3374     emit_writehword_indexed(tl,-2,temp);
3375     if(rs2[i]) emit_rorimm(tl,16,tl);
3376   }
3377   if (opcode[i]==0x2E) { // SWR
3378     // Write 3 lsb into three most significant bytes
3379     emit_writebyte_indexed(tl,-1,temp);
3380     if(rs2[i]) emit_rorimm(tl,8,tl);
3381     emit_writehword_indexed(tl,0,temp);
3382     if(rs2[i]) emit_rorimm(tl,24,tl);
3383   }
3384   if (opcode[i]==0x2C) { // SDL
3385     if(rs2[i]) emit_shrdimm(tl,th,16,temp2);
3386     // Write two msb into two least significant bytes
3387     if(rs2[i]) emit_rorimm(th,16,th);
3388     emit_writehword_indexed(th,-2,temp);
3389     if(rs2[i]) emit_rorimm(th,16,th);
3390   }
3391   if (opcode[i]==0x2D) { // SDR
3392     if(rs2[i]) emit_shldimm(th,tl,8,temp2);
3393     // Write 3 lsb into three most significant bytes
3394     emit_writebyte_indexed(tl,-1,temp);
3395     if(rs2[i]) emit_rorimm(tl,8,tl);
3396     emit_writehword_indexed(tl,0,temp);
3397     if(rs2[i]) emit_rorimm(tl,24,tl);
3398   }
3399   done2=(int)out;
3400   emit_jmp(0);
3401   // 3
3402   set_jump_target(case3,(int)out);
3403   if (opcode[i]==0x2A) { // SWL
3404     // Write msb into least significant byte
3405     if(rs2[i]) emit_rorimm(tl,24,tl);
3406     emit_writebyte_indexed(tl,-3,temp);
3407     if(rs2[i]) emit_rorimm(tl,8,tl);
3408   }
3409   if (opcode[i]==0x2E) { // SWR
3410     // Write entire word
3411     emit_writeword_indexed(tl,-3,temp);
3412   }
3413   if (opcode[i]==0x2C) { // SDL
3414     if(rs2[i]) emit_shrdimm(tl,th,24,temp2);
3415     // Write msb into least significant byte
3416     if(rs2[i]) emit_rorimm(th,24,th);
3417     emit_writebyte_indexed(th,-3,temp);
3418     if(rs2[i]) emit_rorimm(th,8,th);
3419   }
3420   if (opcode[i]==0x2D) { // SDR
3421     if(rs2[i]) emit_mov(th,temp2);
3422     // Write entire word
3423     emit_writeword_indexed(tl,-3,temp);
3424   }
3425   set_jump_target(done0,(int)out);
3426   set_jump_target(done1,(int)out);
3427   set_jump_target(done2,(int)out);
3428   if (opcode[i]==0x2C) { // SDL
3429     emit_testimm(temp,4);
3430     done0=(int)out;
3431     emit_jne(0);
3432     emit_andimm(temp,~3,temp);
3433     emit_writeword_indexed(temp2,4,temp);
3434     set_jump_target(done0,(int)out);
3435   }
3436   if (opcode[i]==0x2D) { // SDR
3437     emit_testimm(temp,4);
3438     done0=(int)out;
3439     emit_jeq(0);
3440     emit_andimm(temp,~3,temp);
3441     emit_writeword_indexed(temp2,-4,temp);
3442     set_jump_target(done0,(int)out);
3443   }
3444   if(!c||!memtarget)
3445     add_stub(STORELR_STUB,jaddr,(int)out,i,(int)i_regs,temp,ccadj[i],reglist);
3446   if(!using_tlb) {
3447     #ifdef RAM_OFFSET
3448     int map=get_reg(i_regs->regmap,ROREG);
3449     if(map<0) map=HOST_TEMPREG;
3450     gen_orig_addr_w(temp,map);
3451     #else
3452     emit_addimm_no_flags((u_int)0x80000000-(u_int)rdram,temp);
3453     #endif
3454     #if defined(HOST_IMM8)
3455     int ir=get_reg(i_regs->regmap,INVCP);
3456     assert(ir>=0);
3457     emit_cmpmem_indexedsr12_reg(ir,temp,1);
3458     #else
3459     emit_cmpmem_indexedsr12_imm((int)invalid_code,temp,1);
3460     #endif
3461     #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3462     emit_callne(invalidate_addr_reg[temp]);
3463     #else
3464     jaddr2=(int)out;
3465     emit_jne(0);
3466     add_stub(INVCODE_STUB,jaddr2,(int)out,reglist|(1<<HOST_CCREG),temp,0,0,0);
3467     #endif
3468   }
3469   /*
3470     emit_pusha();
3471     //save_regs(0x100f);
3472         emit_readword((int)&last_count,ECX);
3473         if(get_reg(i_regs->regmap,CCREG)<0)
3474           emit_loadreg(CCREG,HOST_CCREG);
3475         emit_add(HOST_CCREG,ECX,HOST_CCREG);
3476         emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3477         emit_writeword(HOST_CCREG,(int)&Count);
3478     emit_call((int)memdebug);
3479     emit_popa();
3480     //restore_regs(0x100f);
3481   /**/
3482 }
3483
3484 void c1ls_assemble(int i,struct regstat *i_regs)
3485 {
3486 #ifndef DISABLE_COP1
3487   int s,th,tl;
3488   int temp,ar;
3489   int map=-1;
3490   int offset;
3491   int c=0;
3492   int jaddr,jaddr2=0,jaddr3,type;
3493   int agr=AGEN1+(i&1);
3494   u_int hr,reglist=0;
3495   th=get_reg(i_regs->regmap,FTEMP|64);
3496   tl=get_reg(i_regs->regmap,FTEMP);
3497   s=get_reg(i_regs->regmap,rs1[i]);
3498   temp=get_reg(i_regs->regmap,agr);
3499   if(temp<0) temp=get_reg(i_regs->regmap,-1);
3500   offset=imm[i];
3501   assert(tl>=0);
3502   assert(rs1[i]>0);
3503   assert(temp>=0);
3504   for(hr=0;hr<HOST_REGS;hr++) {
3505     if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3506   }
3507   if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
3508   if (opcode[i]==0x31||opcode[i]==0x35) // LWC1/LDC1
3509   {
3510     // Loads use a temporary register which we need to save
3511     reglist|=1<<temp;
3512   }
3513   if (opcode[i]==0x39||opcode[i]==0x3D) // SWC1/SDC1
3514     ar=temp;
3515   else // LWC1/LDC1
3516     ar=tl;
3517   //if(s<0) emit_loadreg(rs1[i],ar); //address_generation does this now
3518   //else c=(i_regs->wasconst>>s)&1;
3519   if(s>=0) c=(i_regs->wasconst>>s)&1;
3520   // Check cop1 unusable
3521   if(!cop1_usable) {
3522     signed char rs=get_reg(i_regs->regmap,CSREG);
3523     assert(rs>=0);
3524     emit_testimm(rs,0x20000000);
3525     jaddr=(int)out;
3526     emit_jeq(0);
3527     add_stub(FP_STUB,jaddr,(int)out,i,rs,(int)i_regs,is_delayslot,0);
3528     cop1_usable=1;
3529   }
3530   if (opcode[i]==0x39) { // SWC1 (get float address)
3531     emit_readword((int)&reg_cop1_simple[(source[i]>>16)&0x1f],tl);
3532   }
3533   if (opcode[i]==0x3D) { // SDC1 (get double address)
3534     emit_readword((int)&reg_cop1_double[(source[i]>>16)&0x1f],tl);
3535   }
3536   // Generate address + offset
3537   if(!using_tlb) {
3538     if(!c)
3539       emit_cmpimm(offset||c||s<0?ar:s,RAM_SIZE);
3540   }
3541   else
3542   {
3543     map=get_reg(i_regs->regmap,TLREG);
3544     assert(map>=0);
3545     if (opcode[i]==0x31||opcode[i]==0x35) { // LWC1/LDC1
3546       map=do_tlb_r(offset||c||s<0?ar:s,ar,map,0,-1,-1,c,constmap[i][s]+offset);
3547     }
3548     if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3549       map=do_tlb_w(offset||c||s<0?ar:s,ar,map,0,c,constmap[i][s]+offset);
3550     }
3551   }
3552   if (opcode[i]==0x39) { // SWC1 (read float)
3553     emit_readword_indexed(0,tl,tl);
3554   }
3555   if (opcode[i]==0x3D) { // SDC1 (read double)
3556     emit_readword_indexed(4,tl,th);
3557     emit_readword_indexed(0,tl,tl);
3558   }
3559   if (opcode[i]==0x31) { // LWC1 (get target address)
3560     emit_readword((int)&reg_cop1_simple[(source[i]>>16)&0x1f],temp);
3561   }
3562   if (opcode[i]==0x35) { // LDC1 (get target address)
3563     emit_readword((int)&reg_cop1_double[(source[i]>>16)&0x1f],temp);
3564   }
3565   if(!using_tlb) {
3566     if(!c) {
3567       jaddr2=(int)out;
3568       emit_jno(0);
3569     }
3570     else if(((signed int)(constmap[i][s]+offset))>=(signed int)0x80000000+RAM_SIZE) {
3571       jaddr2=(int)out;
3572       emit_jmp(0); // inline_readstub/inline_writestub?  Very rare case
3573     }
3574     #ifdef DESTRUCTIVE_SHIFT
3575     if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3576       if(!offset&&!c&&s>=0) emit_mov(s,ar);
3577     }
3578     #endif
3579   }else{
3580     if (opcode[i]==0x31||opcode[i]==0x35) { // LWC1/LDC1
3581       do_tlb_r_branch(map,c,constmap[i][s]+offset,&jaddr2);
3582     }
3583     if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3584       do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr2);
3585     }
3586   }
3587   if (opcode[i]==0x31) { // LWC1
3588     //if(s>=0&&!c&&!offset) emit_mov(s,tl);
3589     //gen_tlb_addr_r(ar,map);
3590     //emit_readword_indexed((int)rdram-0x80000000,tl,tl);
3591     #ifdef HOST_IMM_ADDR32
3592     if(c) emit_readword_tlb(constmap[i][s]+offset,map,tl);
3593     else
3594     #endif
3595     emit_readword_indexed_tlb(0,offset||c||s<0?tl:s,map,tl);
3596     type=LOADW_STUB;
3597   }
3598   if (opcode[i]==0x35) { // LDC1
3599     assert(th>=0);
3600     //if(s>=0&&!c&&!offset) emit_mov(s,tl);
3601     //gen_tlb_addr_r(ar,map);
3602     //emit_readword_indexed((int)rdram-0x80000000,tl,th);
3603     //emit_readword_indexed((int)rdram-0x7FFFFFFC,tl,tl);
3604     #ifdef HOST_IMM_ADDR32
3605     if(c) emit_readdword_tlb(constmap[i][s]+offset,map,th,tl);
3606     else
3607     #endif
3608     emit_readdword_indexed_tlb(0,offset||c||s<0?tl:s,map,th,tl);
3609     type=LOADD_STUB;
3610   }
3611   if (opcode[i]==0x39) { // SWC1
3612     //emit_writeword_indexed(tl,(int)rdram-0x80000000,temp);
3613     emit_writeword_indexed_tlb(tl,0,offset||c||s<0?temp:s,map,temp);
3614     type=STOREW_STUB;
3615   }
3616   if (opcode[i]==0x3D) { // SDC1
3617     assert(th>=0);
3618     //emit_writeword_indexed(th,(int)rdram-0x80000000,temp);
3619     //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,temp);
3620     emit_writedword_indexed_tlb(th,tl,0,offset||c||s<0?temp:s,map,temp);
3621     type=STORED_STUB;
3622   }
3623   if(!using_tlb) {
3624     if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3625       #ifndef DESTRUCTIVE_SHIFT
3626       temp=offset||c||s<0?ar:s;
3627       #endif
3628       #if defined(HOST_IMM8)
3629       int ir=get_reg(i_regs->regmap,INVCP);
3630       assert(ir>=0);
3631       emit_cmpmem_indexedsr12_reg(ir,temp,1);
3632       #else
3633       emit_cmpmem_indexedsr12_imm((int)invalid_code,temp,1);
3634       #endif
3635       jaddr3=(int)out;
3636       emit_jne(0);
3637       add_stub(INVCODE_STUB,jaddr3,(int)out,reglist|(1<<HOST_CCREG),temp,0,0,0);
3638     }
3639   }
3640   if(jaddr2) add_stub(type,jaddr2,(int)out,i,offset||c||s<0?ar:s,(int)i_regs,ccadj[i],reglist);
3641   if (opcode[i]==0x31) { // LWC1 (write float)
3642     emit_writeword_indexed(tl,0,temp);
3643   }
3644   if (opcode[i]==0x35) { // LDC1 (write double)
3645     emit_writeword_indexed(th,4,temp);
3646     emit_writeword_indexed(tl,0,temp);
3647   }
3648   //if(opcode[i]==0x39)
3649   /*if(opcode[i]==0x39||opcode[i]==0x31)
3650   {
3651     emit_pusha();
3652         emit_readword((int)&last_count,ECX);
3653         if(get_reg(i_regs->regmap,CCREG)<0)
3654           emit_loadreg(CCREG,HOST_CCREG);
3655         emit_add(HOST_CCREG,ECX,HOST_CCREG);
3656         emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3657         emit_writeword(HOST_CCREG,(int)&Count);
3658     emit_call((int)memdebug);
3659     emit_popa();
3660   }/**/
3661 #else
3662   cop1_unusable(i, i_regs);
3663 #endif
3664 }
3665
3666 void c2ls_assemble(int i,struct regstat *i_regs)
3667 {
3668   int s,tl;
3669   int ar;
3670   int offset;
3671   int memtarget=0,c=0;
3672   int jaddr,jaddr2=0,jaddr3,type;
3673   int agr=AGEN1+(i&1);
3674   u_int hr,reglist=0;
3675   u_int copr=(source[i]>>16)&0x1f;
3676   s=get_reg(i_regs->regmap,rs1[i]);
3677   tl=get_reg(i_regs->regmap,FTEMP);
3678   offset=imm[i];
3679   assert(rs1[i]>0);
3680   assert(tl>=0);
3681   assert(!using_tlb);
3682
3683   for(hr=0;hr<HOST_REGS;hr++) {
3684     if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3685   }
3686   if(i_regs->regmap[HOST_CCREG]==CCREG)
3687     reglist&=~(1<<HOST_CCREG);
3688
3689   // get the address
3690   if (opcode[i]==0x3a) { // SWC2
3691     ar=get_reg(i_regs->regmap,agr);
3692     if(ar<0) ar=get_reg(i_regs->regmap,-1);
3693     reglist|=1<<ar;
3694   } else { // LWC2
3695     ar=tl;
3696   }
3697   if(s>=0) c=(i_regs->wasconst>>s)&1;
3698   memtarget=c&&(((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE);
3699   if (!offset&&!c&&s>=0) ar=s;
3700   assert(ar>=0);
3701
3702   if (opcode[i]==0x3a) { // SWC2
3703     cop2_get_dreg(copr,tl,HOST_TEMPREG);
3704     type=STOREW_STUB;
3705   }
3706   else
3707     type=LOADW_STUB;
3708
3709   if(c&&!memtarget) {
3710     jaddr2=(int)out;
3711     emit_jmp(0); // inline_readstub/inline_writestub?
3712   }
3713   else {
3714     if(!c) {
3715       emit_cmpimm(offset||c||s<0?ar:s,RAM_SIZE);
3716       jaddr2=(int)out;
3717       emit_jno(0);
3718     }
3719     if (opcode[i]==0x32) { // LWC2
3720       #ifdef HOST_IMM_ADDR32
3721       if(c) emit_readword_tlb(constmap[i][s]+offset,-1,tl);
3722       else
3723       #endif
3724       emit_readword_indexed(0,ar,tl);
3725     }
3726     if (opcode[i]==0x3a) { // SWC2
3727       #ifdef DESTRUCTIVE_SHIFT
3728       if(!offset&&!c&&s>=0) emit_mov(s,ar);
3729       #endif
3730       emit_writeword_indexed(tl,0,ar);
3731     }
3732   }
3733   if(jaddr2)
3734     add_stub(type,jaddr2,(int)out,i,ar,(int)i_regs,ccadj[i],reglist);
3735   if (opcode[i]==0x3a) { // SWC2
3736 #if defined(HOST_IMM8)
3737     int ir=get_reg(i_regs->regmap,INVCP);
3738     assert(ir>=0);
3739     emit_cmpmem_indexedsr12_reg(ir,ar,1);
3740 #else
3741     emit_cmpmem_indexedsr12_imm((int)invalid_code,ar,1);
3742 #endif
3743     jaddr3=(int)out;
3744     emit_jne(0);
3745     add_stub(INVCODE_STUB,jaddr3,(int)out,reglist|(1<<HOST_CCREG),ar,0,0,0);
3746   }
3747   if (opcode[i]==0x32) { // LWC2
3748     cop2_put_dreg(copr,tl,HOST_TEMPREG);
3749   }
3750 }
3751
3752 #ifndef multdiv_assemble
3753 void multdiv_assemble(int i,struct regstat *i_regs)
3754 {
3755   printf("Need multdiv_assemble for this architecture.\n");
3756   exit(1);
3757 }
3758 #endif
3759
3760 void mov_assemble(int i,struct regstat *i_regs)
3761 {
3762   //if(opcode2[i]==0x10||opcode2[i]==0x12) { // MFHI/MFLO
3763   //if(opcode2[i]==0x11||opcode2[i]==0x13) { // MTHI/MTLO
3764   if(rt1[i]) {
3765     signed char sh,sl,th,tl;
3766     th=get_reg(i_regs->regmap,rt1[i]|64);
3767     tl=get_reg(i_regs->regmap,rt1[i]);
3768     //assert(tl>=0);
3769     if(tl>=0) {
3770       sh=get_reg(i_regs->regmap,rs1[i]|64);
3771       sl=get_reg(i_regs->regmap,rs1[i]);
3772       if(sl>=0) emit_mov(sl,tl);
3773       else emit_loadreg(rs1[i],tl);
3774       if(th>=0) {
3775         if(sh>=0) emit_mov(sh,th);
3776         else emit_loadreg(rs1[i]|64,th);
3777       }
3778     }
3779   }
3780 }
3781
3782 #ifndef fconv_assemble
3783 void fconv_assemble(int i,struct regstat *i_regs)
3784 {
3785   printf("Need fconv_assemble for this architecture.\n");
3786   exit(1);
3787 }
3788 #endif
3789
3790 #if 0
3791 void float_assemble(int i,struct regstat *i_regs)
3792 {
3793   printf("Need float_assemble for this architecture.\n");
3794   exit(1);
3795 }
3796 #endif
3797
3798 void syscall_assemble(int i,struct regstat *i_regs)
3799 {
3800   signed char ccreg=get_reg(i_regs->regmap,CCREG);
3801   assert(ccreg==HOST_CCREG);
3802   assert(!is_delayslot);
3803   emit_movimm(start+i*4,EAX); // Get PC
3804   emit_addimm(HOST_CCREG,CLOCK_DIVIDER*ccadj[i],HOST_CCREG); // CHECK: is this right?  There should probably be an extra cycle...
3805   emit_jmp((int)jump_syscall_hle); // XXX
3806 }
3807
3808 void hlecall_assemble(int i,struct regstat *i_regs)
3809 {
3810   signed char ccreg=get_reg(i_regs->regmap,CCREG);
3811   assert(ccreg==HOST_CCREG);
3812   assert(!is_delayslot);
3813   emit_movimm(start+i*4+4,0); // Get PC
3814   emit_movimm((int)psxHLEt[source[i]&7],1);
3815   emit_addimm(HOST_CCREG,CLOCK_DIVIDER*ccadj[i],HOST_CCREG); // XXX
3816   emit_jmp((int)jump_hlecall);
3817 }
3818
3819 void intcall_assemble(int i,struct regstat *i_regs)
3820 {
3821   signed char ccreg=get_reg(i_regs->regmap,CCREG);
3822   assert(ccreg==HOST_CCREG);
3823   assert(!is_delayslot);
3824   emit_movimm(start+i*4,0); // Get PC
3825   emit_addimm(HOST_CCREG,CLOCK_DIVIDER*ccadj[i],HOST_CCREG);
3826   emit_jmp((int)jump_intcall);
3827 }
3828
3829 void ds_assemble(int i,struct regstat *i_regs)
3830 {
3831   is_delayslot=1;
3832   switch(itype[i]) {
3833     case ALU:
3834       alu_assemble(i,i_regs);break;
3835     case IMM16:
3836       imm16_assemble(i,i_regs);break;
3837     case SHIFT:
3838       shift_assemble(i,i_regs);break;
3839     case SHIFTIMM:
3840       shiftimm_assemble(i,i_regs);break;
3841     case LOAD:
3842       load_assemble(i,i_regs);break;
3843     case LOADLR:
3844       loadlr_assemble(i,i_regs);break;
3845     case STORE:
3846       store_assemble(i,i_regs);break;
3847     case STORELR:
3848       storelr_assemble(i,i_regs);break;
3849     case COP0:
3850       cop0_assemble(i,i_regs);break;
3851     case COP1:
3852       cop1_assemble(i,i_regs);break;
3853     case C1LS:
3854       c1ls_assemble(i,i_regs);break;
3855     case COP2:
3856       cop2_assemble(i,i_regs);break;
3857     case C2LS:
3858       c2ls_assemble(i,i_regs);break;
3859     case C2OP:
3860       c2op_assemble(i,i_regs);break;
3861     case FCONV:
3862       fconv_assemble(i,i_regs);break;
3863     case FLOAT:
3864       float_assemble(i,i_regs);break;
3865     case FCOMP:
3866       fcomp_assemble(i,i_regs);break;
3867     case MULTDIV:
3868       multdiv_assemble(i,i_regs);break;
3869     case MOV:
3870       mov_assemble(i,i_regs);break;
3871     case SYSCALL:
3872     case HLECALL:
3873     case INTCALL:
3874     case SPAN:
3875     case UJUMP:
3876     case RJUMP:
3877     case CJUMP:
3878     case SJUMP:
3879     case FJUMP:
3880       printf("Jump in the delay slot.  This is probably a bug.\n");
3881   }
3882   is_delayslot=0;
3883 }
3884
3885 // Is the branch target a valid internal jump?
3886 int internal_branch(uint64_t i_is32,int addr)
3887 {
3888   if(addr&1) return 0; // Indirect (register) jump
3889   if(addr>=start && addr<start+slen*4-4)
3890   {
3891     int t=(addr-start)>>2;
3892     // Delay slots are not valid branch targets
3893     //if(t>0&&(itype[t-1]==RJUMP||itype[t-1]==UJUMP||itype[t-1]==CJUMP||itype[t-1]==SJUMP||itype[t-1]==FJUMP)) return 0;
3894     // 64 -> 32 bit transition requires a recompile
3895     /*if(is32[t]&~unneeded_reg_upper[t]&~i_is32)
3896     {
3897       if(requires_32bit[t]&~i_is32) printf("optimizable: no\n");
3898       else printf("optimizable: yes\n");
3899     }*/
3900     //if(is32[t]&~unneeded_reg_upper[t]&~i_is32) return 0;
3901 #ifndef FORCE32
3902     if(requires_32bit[t]&~i_is32) return 0;
3903     else
3904 #endif
3905       return 1;
3906   }
3907   return 0;
3908 }
3909
3910 #ifndef wb_invalidate
3911 void wb_invalidate(signed char pre[],signed char entry[],uint64_t dirty,uint64_t is32,
3912   uint64_t u,uint64_t uu)
3913 {
3914   int hr;
3915   for(hr=0;hr<HOST_REGS;hr++) {
3916     if(hr!=EXCLUDE_REG) {
3917       if(pre[hr]!=entry[hr]) {
3918         if(pre[hr]>=0) {
3919           if((dirty>>hr)&1) {
3920             if(get_reg(entry,pre[hr])<0) {
3921               if(pre[hr]<64) {
3922                 if(!((u>>pre[hr])&1)) {
3923                   emit_storereg(pre[hr],hr);
3924                   if( ((is32>>pre[hr])&1) && !((uu>>pre[hr])&1) ) {
3925                     emit_sarimm(hr,31,hr);
3926                     emit_storereg(pre[hr]|64,hr);
3927                   }
3928                 }
3929               }else{
3930                 if(!((uu>>(pre[hr]&63))&1) && !((is32>>(pre[hr]&63))&1)) {
3931                   emit_storereg(pre[hr],hr);
3932                 }
3933               }
3934             }
3935           }
3936         }
3937       }
3938     }
3939   }
3940   // Move from one register to another (no writeback)
3941   for(hr=0;hr<HOST_REGS;hr++) {
3942     if(hr!=EXCLUDE_REG) {
3943       if(pre[hr]!=entry[hr]) {
3944         if(pre[hr]>=0&&(pre[hr]&63)<TEMPREG) {
3945           int nr;
3946           if((nr=get_reg(entry,pre[hr]))>=0) {
3947             emit_mov(hr,nr);
3948           }
3949         }
3950       }
3951     }
3952   }
3953 }
3954 #endif
3955
3956 // Load the specified registers
3957 // This only loads the registers given as arguments because
3958 // we don't want to load things that will be overwritten
3959 void load_regs(signed char entry[],signed char regmap[],int is32,int rs1,int rs2)
3960 {
3961   int hr;
3962   // Load 32-bit regs
3963   for(hr=0;hr<HOST_REGS;hr++) {
3964     if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
3965       if(entry[hr]!=regmap[hr]) {
3966         if(regmap[hr]==rs1||regmap[hr]==rs2)
3967         {
3968           if(regmap[hr]==0) {
3969             emit_zeroreg(hr);
3970           }
3971           else
3972           {
3973             emit_loadreg(regmap[hr],hr);
3974           }
3975         }
3976       }
3977     }
3978   }
3979   //Load 64-bit regs
3980   for(hr=0;hr<HOST_REGS;hr++) {
3981     if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
3982       if(entry[hr]!=regmap[hr]) {
3983         if(regmap[hr]-64==rs1||regmap[hr]-64==rs2)
3984         {
3985           assert(regmap[hr]!=64);
3986           if((is32>>(regmap[hr]&63))&1) {
3987             int lr=get_reg(regmap,regmap[hr]-64);
3988             if(lr>=0)
3989               emit_sarimm(lr,31,hr);
3990             else
3991               emit_loadreg(regmap[hr],hr);
3992           }
3993           else
3994           {
3995             emit_loadreg(regmap[hr],hr);
3996           }
3997         }
3998       }
3999     }
4000   }
4001 }
4002
4003 // Load registers prior to the start of a loop
4004 // so that they are not loaded within the loop
4005 static void loop_preload(signed char pre[],signed char entry[])
4006 {
4007   int hr;
4008   for(hr=0;hr<HOST_REGS;hr++) {
4009     if(hr!=EXCLUDE_REG) {
4010       if(pre[hr]!=entry[hr]) {
4011         if(entry[hr]>=0) {
4012           if(get_reg(pre,entry[hr])<0) {
4013             assem_debug("loop preload:\n");
4014             //printf("loop preload: %d\n",hr);
4015             if(entry[hr]==0) {
4016               emit_zeroreg(hr);
4017             }
4018             else if(entry[hr]<TEMPREG)
4019             {
4020               emit_loadreg(entry[hr],hr);
4021             }
4022             else if(entry[hr]-64<TEMPREG)
4023             {
4024               emit_loadreg(entry[hr],hr);
4025             }
4026           }
4027         }
4028       }
4029     }
4030   }
4031 }
4032
4033 // Generate address for load/store instruction
4034 // goes to AGEN for writes, FTEMP for LOADLR and cop1/2 loads
4035 void address_generation(int i,struct regstat *i_regs,signed char entry[])
4036 {
4037   if(itype[i]==LOAD||itype[i]==LOADLR||itype[i]==STORE||itype[i]==STORELR||itype[i]==C1LS||itype[i]==C2LS) {
4038     int ra;
4039     int agr=AGEN1+(i&1);
4040     int mgr=MGEN1+(i&1);
4041     if(itype[i]==LOAD) {
4042       ra=get_reg(i_regs->regmap,rt1[i]);
4043       if(ra<0) ra=get_reg(i_regs->regmap,-1); 
4044       assert(ra>=0);
4045     }
4046     if(itype[i]==LOADLR) {
4047       ra=get_reg(i_regs->regmap,FTEMP);
4048     }
4049     if(itype[i]==STORE||itype[i]==STORELR) {
4050       ra=get_reg(i_regs->regmap,agr);
4051       if(ra<0) ra=get_reg(i_regs->regmap,-1);
4052     }
4053     if(itype[i]==C1LS||itype[i]==C2LS) {
4054       if ((opcode[i]&0x3b)==0x31||(opcode[i]&0x3b)==0x32) // LWC1/LDC1/LWC2/LDC2
4055         ra=get_reg(i_regs->regmap,FTEMP);
4056       else { // SWC1/SDC1/SWC2/SDC2
4057         ra=get_reg(i_regs->regmap,agr);
4058         if(ra<0) ra=get_reg(i_regs->regmap,-1);
4059       }
4060     }
4061     int rs=get_reg(i_regs->regmap,rs1[i]);
4062     int rm=get_reg(i_regs->regmap,TLREG);
4063     if(ra>=0) {
4064       int offset=imm[i];
4065       int c=(i_regs->wasconst>>rs)&1;
4066       if(rs1[i]==0) {
4067         // Using r0 as a base address
4068         /*if(rm>=0) {
4069           if(!entry||entry[rm]!=mgr) {
4070             generate_map_const(offset,rm);
4071           } // else did it in the previous cycle
4072         }*/
4073         if(!entry||entry[ra]!=agr) {
4074           if (opcode[i]==0x22||opcode[i]==0x26) {
4075             emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
4076           }else if (opcode[i]==0x1a||opcode[i]==0x1b) {
4077             emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
4078           }else{
4079             emit_movimm(offset,ra);
4080           }
4081         } // else did it in the previous cycle
4082       }
4083       else if(rs<0) {
4084         if(!entry||entry[ra]!=rs1[i])
4085           emit_loadreg(rs1[i],ra);
4086         //if(!entry||entry[ra]!=rs1[i])
4087         //  printf("poor load scheduling!\n");
4088       }
4089       else if(c) {
4090         if(rm>=0) {
4091           if(!entry||entry[rm]!=mgr) {
4092             if(itype[i]==STORE||itype[i]==STORELR||(opcode[i]&0x3b)==0x39||(opcode[i]&0x3b)==0x3a) {
4093               // Stores to memory go thru the mapper to detect self-modifying
4094               // code, loads don't.
4095               if((unsigned int)(constmap[i][rs]+offset)>=0xC0000000 ||
4096                  (unsigned int)(constmap[i][rs]+offset)<0x80000000+RAM_SIZE )
4097                 generate_map_const(constmap[i][rs]+offset,rm);
4098             }else{
4099               if((signed int)(constmap[i][rs]+offset)>=(signed int)0xC0000000)
4100                 generate_map_const(constmap[i][rs]+offset,rm);
4101             }
4102           }
4103         }
4104         if(rs1[i]!=rt1[i]||itype[i]!=LOAD) {
4105           if(!entry||entry[ra]!=agr) {
4106             if (opcode[i]==0x22||opcode[i]==0x26) {
4107               emit_movimm((constmap[i][rs]+offset)&0xFFFFFFFC,ra); // LWL/LWR
4108             }else if (opcode[i]==0x1a||opcode[i]==0x1b) {
4109               emit_movimm((constmap[i][rs]+offset)&0xFFFFFFF8,ra); // LDL/LDR
4110             }else{
4111               #ifdef HOST_IMM_ADDR32
4112               if((itype[i]!=LOAD&&(opcode[i]&0x3b)!=0x31&&(opcode[i]&0x3b)!=0x32) || // LWC1/LDC1/LWC2/LDC2
4113                  (using_tlb&&((signed int)constmap[i][rs]+offset)>=(signed int)0xC0000000))
4114               #endif
4115               emit_movimm(constmap[i][rs]+offset,ra);
4116             }
4117           } // else did it in the previous cycle
4118         } // else load_consts already did it
4119       }
4120       if(offset&&!c&&rs1[i]) {
4121         if(rs>=0) {
4122           emit_addimm(rs,offset,ra);
4123         }else{
4124           emit_addimm(ra,offset,ra);
4125         }
4126       }
4127     }
4128   }
4129   // Preload constants for next instruction
4130   if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS||itype[i+1]==C2LS) {
4131     int agr,ra;
4132     #ifndef HOST_IMM_ADDR32
4133     // Mapper entry
4134     agr=MGEN1+((i+1)&1);
4135     ra=get_reg(i_regs->regmap,agr);
4136     if(ra>=0) {
4137       int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
4138       int offset=imm[i+1];
4139       int c=(regs[i+1].wasconst>>rs)&1;
4140       if(c) {
4141         if(itype[i+1]==STORE||itype[i+1]==STORELR
4142            ||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1, SWC2/SDC2
4143           // Stores to memory go thru the mapper to detect self-modifying
4144           // code, loads don't.
4145           if((unsigned int)(constmap[i+1][rs]+offset)>=0xC0000000 ||
4146              (unsigned int)(constmap[i+1][rs]+offset)<0x80000000+RAM_SIZE )
4147             generate_map_const(constmap[i+1][rs]+offset,ra);
4148         }else{
4149           if((signed int)(constmap[i+1][rs]+offset)>=(signed int)0xC0000000)
4150             generate_map_const(constmap[i+1][rs]+offset,ra);
4151         }
4152       }
4153       /*else if(rs1[i]==0) {
4154         generate_map_const(offset,ra);
4155       }*/
4156     }
4157     #endif
4158     // Actual address
4159     agr=AGEN1+((i+1)&1);
4160     ra=get_reg(i_regs->regmap,agr);
4161     if(ra>=0) {
4162       int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
4163       int offset=imm[i+1];
4164       int c=(regs[i+1].wasconst>>rs)&1;
4165       if(c&&(rs1[i+1]!=rt1[i+1]||itype[i+1]!=LOAD)) {
4166         if (opcode[i+1]==0x22||opcode[i+1]==0x26) {
4167           emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFFC,ra); // LWL/LWR
4168         }else if (opcode[i+1]==0x1a||opcode[i+1]==0x1b) {
4169           emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFF8,ra); // LDL/LDR
4170         }else{
4171           #ifdef HOST_IMM_ADDR32
4172           if((itype[i+1]!=LOAD&&(opcode[i+1]&0x3b)!=0x31&&(opcode[i+1]&0x3b)!=0x32) || // LWC1/LDC1/LWC2/LDC2
4173              (using_tlb&&((signed int)constmap[i+1][rs]+offset)>=(signed int)0xC0000000))
4174           #endif
4175           emit_movimm(constmap[i+1][rs]+offset,ra);
4176         }
4177       }
4178       else if(rs1[i+1]==0) {
4179         // Using r0 as a base address
4180         if (opcode[i+1]==0x22||opcode[i+1]==0x26) {
4181           emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
4182         }else if (opcode[i+1]==0x1a||opcode[i+1]==0x1b) {
4183           emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
4184         }else{
4185           emit_movimm(offset,ra);
4186         }
4187       }
4188     }
4189   }
4190 }
4191
4192 int get_final_value(int hr, int i, int *value)
4193 {
4194   int reg=regs[i].regmap[hr];
4195   while(i<slen-1) {
4196     if(regs[i+1].regmap[hr]!=reg) break;
4197     if(!((regs[i+1].isconst>>hr)&1)) break;
4198     if(bt[i+1]) break;
4199     i++;
4200   }
4201   if(i<slen-1) {
4202     if(itype[i]==UJUMP||itype[i]==RJUMP||itype[i]==CJUMP||itype[i]==SJUMP) {
4203       *value=constmap[i][hr];
4204       return 1;
4205     }
4206     if(!bt[i+1]) {
4207       if(itype[i+1]==UJUMP||itype[i+1]==RJUMP||itype[i+1]==CJUMP||itype[i+1]==SJUMP) {
4208         // Load in delay slot, out-of-order execution
4209         if(itype[i+2]==LOAD&&rs1[i+2]==reg&&rt1[i+2]==reg&&((regs[i+1].wasconst>>hr)&1))
4210         {
4211           #ifdef HOST_IMM_ADDR32
4212           if(!using_tlb||((signed int)constmap[i][hr]+imm[i+2])<(signed int)0xC0000000) return 0;
4213           #endif
4214           // Precompute load address
4215           *value=constmap[i][hr]+imm[i+2];
4216           return 1;
4217         }
4218       }
4219       if(itype[i+1]==LOAD&&rs1[i+1]==reg&&rt1[i+1]==reg)
4220       {
4221         #ifdef HOST_IMM_ADDR32
4222         if(!using_tlb||((signed int)constmap[i][hr]+imm[i+1])<(signed int)0xC0000000) return 0;
4223         #endif
4224         // Precompute load address
4225         *value=constmap[i][hr]+imm[i+1];
4226         //printf("c=%x imm=%x\n",(int)constmap[i][hr],imm[i+1]);
4227         return 1;
4228       }
4229     }
4230   }
4231   *value=constmap[i][hr];
4232   //printf("c=%x\n",(int)constmap[i][hr]);
4233   if(i==slen-1) return 1;
4234   if(reg<64) {
4235     return !((unneeded_reg[i+1]>>reg)&1);
4236   }else{
4237     return !((unneeded_reg_upper[i+1]>>reg)&1);
4238   }
4239 }
4240
4241 // Load registers with known constants
4242 void load_consts(signed char pre[],signed char regmap[],int is32,int i)
4243 {
4244   int hr;
4245   // Load 32-bit regs
4246   for(hr=0;hr<HOST_REGS;hr++) {
4247     if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4248       //if(entry[hr]!=regmap[hr]) {
4249       if(i==0||!((regs[i-1].isconst>>hr)&1)||pre[hr]!=regmap[hr]||bt[i]) {
4250         if(((regs[i].isconst>>hr)&1)&&regmap[hr]<64&&regmap[hr]>0) {
4251           int value;
4252           if(get_final_value(hr,i,&value)) {
4253             if(value==0) {
4254               emit_zeroreg(hr);
4255             }
4256             else {
4257               emit_movimm(value,hr);
4258             }
4259           }
4260         }
4261       }
4262     }
4263   }
4264   // Load 64-bit regs
4265   for(hr=0;hr<HOST_REGS;hr++) {
4266     if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4267       //if(entry[hr]!=regmap[hr]) {
4268       if(i==0||!((regs[i-1].isconst>>hr)&1)||pre[hr]!=regmap[hr]||bt[i]) {
4269         if(((regs[i].isconst>>hr)&1)&&regmap[hr]>64) {
4270           if((is32>>(regmap[hr]&63))&1) {
4271             int lr=get_reg(regmap,regmap[hr]-64);
4272             assert(lr>=0);
4273             emit_sarimm(lr,31,hr);
4274           }
4275           else
4276           {
4277             int value;
4278             if(get_final_value(hr,i,&value)) {
4279               if(value==0) {
4280                 emit_zeroreg(hr);
4281               }
4282               else {
4283                 emit_movimm(value,hr);
4284               }
4285             }
4286           }
4287         }
4288       }
4289     }
4290   }
4291 }
4292 void load_all_consts(signed char regmap[],int is32,u_int dirty,int i)
4293 {
4294   int hr;
4295   // Load 32-bit regs
4296   for(hr=0;hr<HOST_REGS;hr++) {
4297     if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((dirty>>hr)&1)) {
4298       if(((regs[i].isconst>>hr)&1)&&regmap[hr]<64&&regmap[hr]>0) {
4299         int value=constmap[i][hr];
4300         if(value==0) {
4301           emit_zeroreg(hr);
4302         }
4303         else {
4304           emit_movimm(value,hr);
4305         }
4306       }
4307     }
4308   }
4309   // Load 64-bit regs
4310   for(hr=0;hr<HOST_REGS;hr++) {
4311     if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((dirty>>hr)&1)) {
4312       if(((regs[i].isconst>>hr)&1)&&regmap[hr]>64) {
4313         if((is32>>(regmap[hr]&63))&1) {
4314           int lr=get_reg(regmap,regmap[hr]-64);
4315           assert(lr>=0);
4316           emit_sarimm(lr,31,hr);
4317         }
4318         else
4319         {
4320           int value=constmap[i][hr];
4321           if(value==0) {
4322             emit_zeroreg(hr);
4323           }
4324           else {
4325             emit_movimm(value,hr);
4326           }
4327         }
4328       }
4329     }
4330   }
4331 }
4332
4333 // Write out all dirty registers (except cycle count)
4334 void wb_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty)
4335 {
4336   int hr;
4337   for(hr=0;hr<HOST_REGS;hr++) {
4338     if(hr!=EXCLUDE_REG) {
4339       if(i_regmap[hr]>0) {
4340         if(i_regmap[hr]!=CCREG) {
4341           if((i_dirty>>hr)&1) {
4342             if(i_regmap[hr]<64) {
4343               emit_storereg(i_regmap[hr],hr);
4344 #ifndef FORCE32
4345               if( ((i_is32>>i_regmap[hr])&1) ) {
4346                 #ifdef DESTRUCTIVE_WRITEBACK
4347                 emit_sarimm(hr,31,hr);
4348                 emit_storereg(i_regmap[hr]|64,hr);
4349                 #else
4350                 emit_sarimm(hr,31,HOST_TEMPREG);
4351                 emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4352                 #endif
4353               }
4354 #endif
4355             }else{
4356               if( !((i_is32>>(i_regmap[hr]&63))&1) ) {
4357                 emit_storereg(i_regmap[hr],hr);
4358               }
4359             }
4360           }
4361         }
4362       }
4363     }
4364   }
4365 }
4366 // Write out dirty registers that we need to reload (pair with load_needed_regs)
4367 // This writes the registers not written by store_regs_bt
4368 void wb_needed_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4369 {
4370   int hr;
4371   int t=(addr-start)>>2;
4372   for(hr=0;hr<HOST_REGS;hr++) {
4373     if(hr!=EXCLUDE_REG) {
4374       if(i_regmap[hr]>0) {
4375         if(i_regmap[hr]!=CCREG) {
4376           if(i_regmap[hr]==regs[t].regmap_entry[hr] && ((regs[t].dirty>>hr)&1) && !(((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4377             if((i_dirty>>hr)&1) {
4378               if(i_regmap[hr]<64) {
4379                 emit_storereg(i_regmap[hr],hr);
4380 #ifndef FORCE32
4381                 if( ((i_is32>>i_regmap[hr])&1) ) {
4382                   #ifdef DESTRUCTIVE_WRITEBACK
4383                   emit_sarimm(hr,31,hr);
4384                   emit_storereg(i_regmap[hr]|64,hr);
4385                   #else
4386                   emit_sarimm(hr,31,HOST_TEMPREG);
4387                   emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4388                   #endif
4389                 }
4390 #endif
4391               }else{
4392                 if( !((i_is32>>(i_regmap[hr]&63))&1) ) {
4393                   emit_storereg(i_regmap[hr],hr);
4394                 }
4395               }
4396             }
4397           }
4398         }
4399       }
4400     }
4401   }
4402 }
4403
4404 // Load all registers (except cycle count)
4405 void load_all_regs(signed char i_regmap[])
4406 {
4407   int hr;
4408   for(hr=0;hr<HOST_REGS;hr++) {
4409     if(hr!=EXCLUDE_REG) {
4410       if(i_regmap[hr]==0) {
4411         emit_zeroreg(hr);
4412       }
4413       else
4414       if(i_regmap[hr]>0 && i_regmap[hr]!=CCREG)
4415       {
4416         emit_loadreg(i_regmap[hr],hr);
4417       }
4418     }
4419   }
4420 }
4421
4422 // Load all current registers also needed by next instruction
4423 void load_needed_regs(signed char i_regmap[],signed char next_regmap[])
4424 {
4425   int hr;
4426   for(hr=0;hr<HOST_REGS;hr++) {
4427     if(hr!=EXCLUDE_REG) {
4428       if(get_reg(next_regmap,i_regmap[hr])>=0) {
4429         if(i_regmap[hr]==0) {
4430           emit_zeroreg(hr);
4431         }
4432         else
4433         if(i_regmap[hr]>0 && i_regmap[hr]!=CCREG)
4434         {
4435           emit_loadreg(i_regmap[hr],hr);
4436         }
4437       }
4438     }
4439   }
4440 }
4441
4442 // Load all regs, storing cycle count if necessary
4443 void load_regs_entry(int t)
4444 {
4445   int hr;
4446   if(is_ds[t]) emit_addimm(HOST_CCREG,CLOCK_DIVIDER,HOST_CCREG);
4447   else if(ccadj[t]) emit_addimm(HOST_CCREG,-ccadj[t]*CLOCK_DIVIDER,HOST_CCREG);
4448   if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
4449     emit_storereg(CCREG,HOST_CCREG);
4450   }
4451   // Load 32-bit regs
4452   for(hr=0;hr<HOST_REGS;hr++) {
4453     if(regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<64) {
4454       if(regs[t].regmap_entry[hr]==0) {
4455         emit_zeroreg(hr);
4456       }
4457       else if(regs[t].regmap_entry[hr]!=CCREG)
4458       {
4459         emit_loadreg(regs[t].regmap_entry[hr],hr);
4460       }
4461     }
4462   }
4463   // Load 64-bit regs
4464   for(hr=0;hr<HOST_REGS;hr++) {
4465     if(regs[t].regmap_entry[hr]>=64) {
4466       assert(regs[t].regmap_entry[hr]!=64);
4467       if((regs[t].was32>>(regs[t].regmap_entry[hr]&63))&1) {
4468         int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4469         if(lr<0) {
4470           emit_loadreg(regs[t].regmap_entry[hr],hr);
4471         }
4472         else
4473         {
4474           emit_sarimm(lr,31,hr);
4475         }
4476       }
4477       else
4478       {
4479         emit_loadreg(regs[t].regmap_entry[hr],hr);
4480       }
4481     }
4482   }
4483 }
4484
4485 // Store dirty registers prior to branch
4486 void store_regs_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4487 {
4488   if(internal_branch(i_is32,addr))
4489   {
4490     int t=(addr-start)>>2;
4491     int hr;
4492     for(hr=0;hr<HOST_REGS;hr++) {
4493       if(hr!=EXCLUDE_REG) {
4494         if(i_regmap[hr]>0 && i_regmap[hr]!=CCREG) {
4495           if(i_regmap[hr]!=regs[t].regmap_entry[hr] || !((regs[t].dirty>>hr)&1) || (((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4496             if((i_dirty>>hr)&1) {
4497               if(i_regmap[hr]<64) {
4498                 if(!((unneeded_reg[t]>>i_regmap[hr])&1)) {
4499                   emit_storereg(i_regmap[hr],hr);
4500                   if( ((i_is32>>i_regmap[hr])&1) && !((unneeded_reg_upper[t]>>i_regmap[hr])&1) ) {
4501                     #ifdef DESTRUCTIVE_WRITEBACK
4502                     emit_sarimm(hr,31,hr);
4503                     emit_storereg(i_regmap[hr]|64,hr);
4504                     #else
4505                     emit_sarimm(hr,31,HOST_TEMPREG);
4506                     emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4507                     #endif
4508                   }
4509                 }
4510               }else{
4511                 if( !((i_is32>>(i_regmap[hr]&63))&1) && !((unneeded_reg_upper[t]>>(i_regmap[hr]&63))&1) ) {
4512                   emit_storereg(i_regmap[hr],hr);
4513                 }
4514               }
4515             }
4516           }
4517         }
4518       }
4519     }
4520   }
4521   else
4522   {
4523     // Branch out of this block, write out all dirty regs
4524     wb_dirtys(i_regmap,i_is32,i_dirty);
4525   }
4526 }
4527
4528 // Load all needed registers for branch target
4529 void load_regs_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4530 {
4531   //if(addr>=start && addr<(start+slen*4))
4532   if(internal_branch(i_is32,addr))
4533   {
4534     int t=(addr-start)>>2;
4535     int hr;
4536     // Store the cycle count before loading something else
4537     if(i_regmap[HOST_CCREG]!=CCREG) {
4538       assert(i_regmap[HOST_CCREG]==-1);
4539     }
4540     if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
4541       emit_storereg(CCREG,HOST_CCREG);
4542     }
4543     // Load 32-bit regs
4544     for(hr=0;hr<HOST_REGS;hr++) {
4545       if(hr!=EXCLUDE_REG&&regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<64) {
4546         #ifdef DESTRUCTIVE_WRITEBACK
4547         if(i_regmap[hr]!=regs[t].regmap_entry[hr] || ( !((regs[t].dirty>>hr)&1) && ((i_dirty>>hr)&1) && (((i_is32&~unneeded_reg_upper[t])>>i_regmap[hr])&1) ) || (((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4548         #else
4549         if(i_regmap[hr]!=regs[t].regmap_entry[hr] ) {
4550         #endif
4551           if(regs[t].regmap_entry[hr]==0) {
4552             emit_zeroreg(hr);
4553           }
4554           else if(regs[t].regmap_entry[hr]!=CCREG)
4555           {
4556             emit_loadreg(regs[t].regmap_entry[hr],hr);
4557           }
4558         }
4559       }
4560     }
4561     //Load 64-bit regs
4562     for(hr=0;hr<HOST_REGS;hr++) {
4563       if(hr!=EXCLUDE_REG&&regs[t].regmap_entry[hr]>=64) {
4564         if(i_regmap[hr]!=regs[t].regmap_entry[hr]) {
4565           assert(regs[t].regmap_entry[hr]!=64);
4566           if((i_is32>>(regs[t].regmap_entry[hr]&63))&1) {
4567             int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4568             if(lr<0) {
4569               emit_loadreg(regs[t].regmap_entry[hr],hr);
4570             }
4571             else
4572             {
4573               emit_sarimm(lr,31,hr);
4574             }
4575           }
4576           else
4577           {
4578             emit_loadreg(regs[t].regmap_entry[hr],hr);
4579           }
4580         }
4581         else if((i_is32>>(regs[t].regmap_entry[hr]&63))&1) {
4582           int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4583           assert(lr>=0);
4584           emit_sarimm(lr,31,hr);
4585         }
4586       }
4587     }
4588   }
4589 }
4590
4591 int match_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4592 {
4593   if(addr>=start && addr<start+slen*4-4)
4594   {
4595     int t=(addr-start)>>2;
4596     int hr;
4597     if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) return 0;
4598     for(hr=0;hr<HOST_REGS;hr++)
4599     {
4600       if(hr!=EXCLUDE_REG)
4601       {
4602         if(i_regmap[hr]!=regs[t].regmap_entry[hr])
4603         {
4604           if(regs[t].regmap_entry[hr]!=-1)
4605           {
4606             return 0;
4607           }
4608           else 
4609           if((i_dirty>>hr)&1)
4610           {
4611             if(i_regmap[hr]<64)
4612             {
4613               if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4614                 return 0;
4615             }
4616             else
4617             {
4618               if(!((unneeded_reg_upper[t]>>(i_regmap[hr]&63))&1))
4619                 return 0;
4620             }
4621           }
4622         }
4623         else // Same register but is it 32-bit or dirty?
4624         if(i_regmap[hr]>=0)
4625         {
4626           if(!((regs[t].dirty>>hr)&1))
4627           {
4628             if((i_dirty>>hr)&1)
4629             {
4630               if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4631               {
4632                 //printf("%x: dirty no match\n",addr);
4633                 return 0;
4634               }
4635             }
4636           }
4637           if((((regs[t].was32^i_is32)&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)
4638           {
4639             //printf("%x: is32 no match\n",addr);
4640             return 0;
4641           }
4642         }
4643       }
4644     }
4645     //if(is32[t]&~unneeded_reg_upper[t]&~i_is32) return 0;
4646 #ifndef FORCE32
4647     if(requires_32bit[t]&~i_is32) return 0;
4648 #endif
4649     // Delay slots are not valid branch targets
4650     //if(t>0&&(itype[t-1]==RJUMP||itype[t-1]==UJUMP||itype[t-1]==CJUMP||itype[t-1]==SJUMP||itype[t-1]==FJUMP)) return 0;
4651     // Delay slots require additional processing, so do not match
4652     if(is_ds[t]) return 0;
4653   }
4654   else
4655   {
4656     int hr;
4657     for(hr=0;hr<HOST_REGS;hr++)
4658     {
4659       if(hr!=EXCLUDE_REG)
4660       {
4661         if(i_regmap[hr]>=0)
4662         {
4663           if(hr!=HOST_CCREG||i_regmap[hr]!=CCREG)
4664           {
4665             if((i_dirty>>hr)&1)
4666             {
4667               return 0;
4668             }
4669           }
4670         }
4671       }
4672     }
4673   }
4674   return 1;
4675 }
4676
4677 // Used when a branch jumps into the delay slot of another branch
4678 void ds_assemble_entry(int i)
4679 {
4680   int t=(ba[i]-start)>>2;
4681   if(!instr_addr[t]) instr_addr[t]=(u_int)out;
4682   assem_debug("Assemble delay slot at %x\n",ba[i]);
4683   assem_debug("<->\n");
4684   if(regs[t].regmap_entry[HOST_CCREG]==CCREG&&regs[t].regmap[HOST_CCREG]!=CCREG)
4685     wb_register(CCREG,regs[t].regmap_entry,regs[t].wasdirty,regs[t].was32);
4686   load_regs(regs[t].regmap_entry,regs[t].regmap,regs[t].was32,rs1[t],rs2[t]);
4687   address_generation(t,&regs[t],regs[t].regmap_entry);
4688   if(itype[t]==STORE||itype[t]==STORELR||(opcode[t]&0x3b)==0x39||(opcode[t]&0x3b)==0x3a)
4689     load_regs(regs[t].regmap_entry,regs[t].regmap,regs[t].was32,INVCP,INVCP);
4690   cop1_usable=0;
4691   is_delayslot=0;
4692   switch(itype[t]) {
4693     case ALU:
4694       alu_assemble(t,&regs[t]);break;
4695     case IMM16:
4696       imm16_assemble(t,&regs[t]);break;
4697     case SHIFT:
4698       shift_assemble(t,&regs[t]);break;
4699     case SHIFTIMM:
4700       shiftimm_assemble(t,&regs[t]);break;
4701     case LOAD:
4702       load_assemble(t,&regs[t]);break;
4703     case LOADLR:
4704       loadlr_assemble(t,&regs[t]);break;
4705     case STORE:
4706       store_assemble(t,&regs[t]);break;
4707     case STORELR:
4708       storelr_assemble(t,&regs[t]);break;
4709     case COP0:
4710       cop0_assemble(t,&regs[t]);break;
4711     case COP1:
4712       cop1_assemble(t,&regs[t]);break;
4713     case C1LS:
4714       c1ls_assemble(t,&regs[t]);break;
4715     case COP2:
4716       cop2_assemble(t,&regs[t]);break;
4717     case C2LS:
4718       c2ls_assemble(t,&regs[t]);break;
4719     case C2OP:
4720       c2op_assemble(t,&regs[t]);break;
4721     case FCONV:
4722       fconv_assemble(t,&regs[t]);break;
4723     case FLOAT:
4724       float_assemble(t,&regs[t]);break;
4725     case FCOMP:
4726       fcomp_assemble(t,&regs[t]);break;
4727     case MULTDIV:
4728       multdiv_assemble(t,&regs[t]);break;
4729     case MOV:
4730       mov_assemble(t,&regs[t]);break;
4731     case SYSCALL:
4732     case HLECALL:
4733     case INTCALL:
4734     case SPAN:
4735     case UJUMP:
4736     case RJUMP:
4737     case CJUMP:
4738     case SJUMP:
4739     case FJUMP:
4740       printf("Jump in the delay slot.  This is probably a bug.\n");
4741   }
4742   store_regs_bt(regs[t].regmap,regs[t].is32,regs[t].dirty,ba[i]+4);
4743   load_regs_bt(regs[t].regmap,regs[t].is32,regs[t].dirty,ba[i]+4);
4744   if(internal_branch(regs[t].is32,ba[i]+4))
4745     assem_debug("branch: internal\n");
4746   else
4747     assem_debug("branch: external\n");
4748   assert(internal_branch(regs[t].is32,ba[i]+4));
4749   add_to_linker((int)out,ba[i]+4,internal_branch(regs[t].is32,ba[i]+4));
4750   emit_jmp(0);
4751 }
4752
4753 void do_cc(int i,signed char i_regmap[],int *adj,int addr,int taken,int invert)
4754 {
4755   int count;
4756   int jaddr;
4757   int idle=0;
4758   if(itype[i]==RJUMP)
4759   {
4760     *adj=0;
4761   }
4762   //if(ba[i]>=start && ba[i]<(start+slen*4))
4763   if(internal_branch(branch_regs[i].is32,ba[i]))
4764   {
4765     int t=(ba[i]-start)>>2;
4766     if(is_ds[t]) *adj=-1; // Branch into delay slot adds an extra cycle
4767     else *adj=ccadj[t];
4768   }
4769   else
4770   {
4771     *adj=0;
4772   }
4773   count=ccadj[i];
4774   if(taken==TAKEN && i==(ba[i]-start)>>2 && source[i+1]==0) {
4775     // Idle loop
4776     if(count&1) emit_addimm_and_set_flags(2*(count+2),HOST_CCREG);
4777     idle=(int)out;
4778     //emit_subfrommem(&idlecount,HOST_CCREG); // Count idle cycles
4779     emit_andimm(HOST_CCREG,3,HOST_CCREG);
4780     jaddr=(int)out;
4781     emit_jmp(0);
4782   }
4783   else if(*adj==0||invert) {
4784     emit_addimm_and_set_flags(CLOCK_DIVIDER*(count+2),HOST_CCREG);
4785     jaddr=(int)out;
4786     emit_jns(0);
4787   }
4788   else
4789   {
4790     emit_cmpimm(HOST_CCREG,-2*(count+2));
4791     jaddr=(int)out;
4792     emit_jns(0);
4793   }
4794   add_stub(CC_STUB,jaddr,idle?idle:(int)out,(*adj==0||invert||idle)?0:(count+2),i,addr,taken,0);
4795 }
4796
4797 void do_ccstub(int n)
4798 {
4799   literal_pool(256);
4800   assem_debug("do_ccstub %x\n",start+stubs[n][4]*4);
4801   set_jump_target(stubs[n][1],(int)out);
4802   int i=stubs[n][4];
4803   if(stubs[n][6]==NULLDS) {
4804     // Delay slot instruction is nullified ("likely" branch)
4805     wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
4806   }
4807   else if(stubs[n][6]!=TAKEN) {
4808     wb_dirtys(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty);
4809   }
4810   else {
4811     if(internal_branch(branch_regs[i].is32,ba[i]))
4812       wb_needed_dirtys(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
4813   }
4814   if(stubs[n][5]!=-1)
4815   {
4816     // Save PC as return address
4817     emit_movimm(stubs[n][5],EAX);
4818     emit_writeword(EAX,(int)&pcaddr);
4819   }
4820   else
4821   {
4822     // Return address depends on which way the branch goes
4823     if(itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
4824     {
4825       int s1l=get_reg(branch_regs[i].regmap,rs1[i]);
4826       int s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
4827       int s2l=get_reg(branch_regs[i].regmap,rs2[i]);
4828       int s2h=get_reg(branch_regs[i].regmap,rs2[i]|64);
4829       if(rs1[i]==0)
4830       {
4831         s1l=s2l;s1h=s2h;
4832         s2l=s2h=-1;
4833       }
4834       else if(rs2[i]==0)
4835       {
4836         s2l=s2h=-1;
4837       }
4838       if((branch_regs[i].is32>>rs1[i])&(branch_regs[i].is32>>rs2[i])&1) {
4839         s1h=s2h=-1;
4840       }
4841       assert(s1l>=0);
4842       #ifdef DESTRUCTIVE_WRITEBACK
4843       if(rs1[i]) {
4844         if((branch_regs[i].dirty>>s1l)&(branch_regs[i].is32>>rs1[i])&1)
4845           emit_loadreg(rs1[i],s1l);
4846       } 
4847       else {
4848         if((branch_regs[i].dirty>>s1l)&(branch_regs[i].is32>>rs2[i])&1)
4849           emit_loadreg(rs2[i],s1l);
4850       }
4851       if(s2l>=0)
4852         if((branch_regs[i].dirty>>s2l)&(branch_regs[i].is32>>rs2[i])&1)
4853           emit_loadreg(rs2[i],s2l);
4854       #endif
4855       int hr=0;
4856       int addr,alt,ntaddr;
4857       while(hr<HOST_REGS)
4858       {
4859         if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4860            (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
4861            (branch_regs[i].regmap[hr]&63)!=rs2[i] )
4862         {
4863           addr=hr++;break;
4864         }
4865         hr++;
4866       }
4867       while(hr<HOST_REGS)
4868       {
4869         if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4870            (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
4871            (branch_regs[i].regmap[hr]&63)!=rs2[i] )
4872         {
4873           alt=hr++;break;
4874         }
4875         hr++;
4876       }
4877       if((opcode[i]&0x2E)==6) // BLEZ/BGTZ needs another register
4878       {
4879         while(hr<HOST_REGS)
4880         {
4881           if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4882              (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
4883              (branch_regs[i].regmap[hr]&63)!=rs2[i] )
4884           {
4885             ntaddr=hr;break;
4886           }
4887           hr++;
4888         }
4889         assert(hr<HOST_REGS);
4890       }
4891       if((opcode[i]&0x2f)==4) // BEQ
4892       {
4893         #ifdef HAVE_CMOV_IMM
4894         if(s1h<0) {
4895           if(s2l>=0) emit_cmp(s1l,s2l);
4896           else emit_test(s1l,s1l);
4897           emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
4898         }
4899         else
4900         #endif
4901         {
4902           emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
4903           if(s1h>=0) {
4904             if(s2h>=0) emit_cmp(s1h,s2h);
4905             else emit_test(s1h,s1h);
4906             emit_cmovne_reg(alt,addr);
4907           }
4908           if(s2l>=0) emit_cmp(s1l,s2l);
4909           else emit_test(s1l,s1l);
4910           emit_cmovne_reg(alt,addr);
4911         }
4912       }
4913       if((opcode[i]&0x2f)==5) // BNE
4914       {
4915         #ifdef HAVE_CMOV_IMM
4916         if(s1h<0) {
4917           if(s2l>=0) emit_cmp(s1l,s2l);
4918           else emit_test(s1l,s1l);
4919           emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
4920         }
4921         else
4922         #endif
4923         {
4924           emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
4925           if(s1h>=0) {
4926             if(s2h>=0) emit_cmp(s1h,s2h);
4927             else emit_test(s1h,s1h);
4928             emit_cmovne_reg(alt,addr);
4929           }
4930           if(s2l>=0) emit_cmp(s1l,s2l);
4931           else emit_test(s1l,s1l);
4932           emit_cmovne_reg(alt,addr);
4933         }
4934       }
4935       if((opcode[i]&0x2f)==6) // BLEZ
4936       {
4937         //emit_movimm(ba[i],alt);
4938         //emit_movimm(start+i*4+8,addr);
4939         emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
4940         emit_cmpimm(s1l,1);
4941         if(s1h>=0) emit_mov(addr,ntaddr);
4942         emit_cmovl_reg(alt,addr);
4943         if(s1h>=0) {
4944           emit_test(s1h,s1h);
4945           emit_cmovne_reg(ntaddr,addr);
4946           emit_cmovs_reg(alt,addr);
4947         }
4948       }
4949       if((opcode[i]&0x2f)==7) // BGTZ
4950       {
4951         //emit_movimm(ba[i],addr);
4952         //emit_movimm(start+i*4+8,ntaddr);
4953         emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
4954         emit_cmpimm(s1l,1);
4955         if(s1h>=0) emit_mov(addr,alt);
4956         emit_cmovl_reg(ntaddr,addr);
4957         if(s1h>=0) {
4958           emit_test(s1h,s1h);
4959           emit_cmovne_reg(alt,addr);
4960           emit_cmovs_reg(ntaddr,addr);
4961         }
4962       }
4963       if((opcode[i]==1)&&(opcode2[i]&0x2D)==0) // BLTZ
4964       {
4965         //emit_movimm(ba[i],alt);
4966         //emit_movimm(start+i*4+8,addr);
4967         emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
4968         if(s1h>=0) emit_test(s1h,s1h);
4969         else emit_test(s1l,s1l);
4970         emit_cmovs_reg(alt,addr);
4971       }
4972       if((opcode[i]==1)&&(opcode2[i]&0x2D)==1) // BGEZ
4973       {
4974         //emit_movimm(ba[i],addr);
4975         //emit_movimm(start+i*4+8,alt);
4976         emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
4977         if(s1h>=0) emit_test(s1h,s1h);
4978         else emit_test(s1l,s1l);
4979         emit_cmovs_reg(alt,addr);
4980       }
4981       if(opcode[i]==0x11 && opcode2[i]==0x08 ) {
4982         if(source[i]&0x10000) // BC1T
4983         {
4984           //emit_movimm(ba[i],alt);
4985           //emit_movimm(start+i*4+8,addr);
4986           emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
4987           emit_testimm(s1l,0x800000);
4988           emit_cmovne_reg(alt,addr);
4989         }
4990         else // BC1F
4991         {
4992           //emit_movimm(ba[i],addr);
4993           //emit_movimm(start+i*4+8,alt);
4994           emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
4995           emit_testimm(s1l,0x800000);
4996           emit_cmovne_reg(alt,addr);
4997         }
4998       }
4999       emit_writeword(addr,(int)&pcaddr);
5000     }
5001     else
5002     if(itype[i]==RJUMP)
5003     {
5004       int r=get_reg(branch_regs[i].regmap,rs1[i]);
5005       if(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]) {
5006         r=get_reg(branch_regs[i].regmap,RTEMP);
5007       }
5008       emit_writeword(r,(int)&pcaddr);
5009     }
5010     else {printf("Unknown branch type in do_ccstub\n");exit(1);}
5011   }
5012   // Update cycle count
5013   assert(branch_regs[i].regmap[HOST_CCREG]==CCREG||branch_regs[i].regmap[HOST_CCREG]==-1);
5014   if(stubs[n][3]) emit_addimm(HOST_CCREG,CLOCK_DIVIDER*stubs[n][3],HOST_CCREG);
5015   emit_call((int)cc_interrupt);
5016   if(stubs[n][3]) emit_addimm(HOST_CCREG,-CLOCK_DIVIDER*stubs[n][3],HOST_CCREG);
5017   if(stubs[n][6]==TAKEN) {
5018     if(internal_branch(branch_regs[i].is32,ba[i]))
5019       load_needed_regs(branch_regs[i].regmap,regs[(ba[i]-start)>>2].regmap_entry);
5020     else if(itype[i]==RJUMP) {
5021       if(get_reg(branch_regs[i].regmap,RTEMP)>=0)
5022         emit_readword((int)&pcaddr,get_reg(branch_regs[i].regmap,RTEMP));
5023       else
5024         emit_loadreg(rs1[i],get_reg(branch_regs[i].regmap,rs1[i]));
5025     }
5026   }else if(stubs[n][6]==NOTTAKEN) {
5027     if(i<slen-2) load_needed_regs(branch_regs[i].regmap,regmap_pre[i+2]);
5028     else load_all_regs(branch_regs[i].regmap);
5029   }else if(stubs[n][6]==NULLDS) {
5030     // Delay slot instruction is nullified ("likely" branch)
5031     if(i<slen-2) load_needed_regs(regs[i].regmap,regmap_pre[i+2]);
5032     else load_all_regs(regs[i].regmap);
5033   }else{
5034     load_all_regs(branch_regs[i].regmap);
5035   }
5036   emit_jmp(stubs[n][2]); // return address
5037   
5038   /* This works but uses a lot of memory...
5039   emit_readword((int)&last_count,ECX);
5040   emit_add(HOST_CCREG,ECX,EAX);
5041   emit_writeword(EAX,(int)&Count);
5042   emit_call((int)gen_interupt);
5043   emit_readword((int)&Count,HOST_CCREG);
5044   emit_readword((int)&next_interupt,EAX);
5045   emit_readword((int)&pending_exception,EBX);
5046   emit_writeword(EAX,(int)&last_count);
5047   emit_sub(HOST_CCREG,EAX,HOST_CCREG);
5048   emit_test(EBX,EBX);
5049   int jne_instr=(int)out;
5050   emit_jne(0);
5051   if(stubs[n][3]) emit_addimm(HOST_CCREG,-2*stubs[n][3],HOST_CCREG);
5052   load_all_regs(branch_regs[i].regmap);
5053   emit_jmp(stubs[n][2]); // return address
5054   set_jump_target(jne_instr,(int)out);
5055   emit_readword((int)&pcaddr,EAX);
5056   // Call get_addr_ht instead of doing the hash table here.
5057   // This code is executed infrequently and takes up a lot of space
5058   // so smaller is better.
5059   emit_storereg(CCREG,HOST_CCREG);
5060   emit_pushreg(EAX);
5061   emit_call((int)get_addr_ht);
5062   emit_loadreg(CCREG,HOST_CCREG);
5063   emit_addimm(ESP,4,ESP);
5064   emit_jmpreg(EAX);*/
5065 }
5066
5067 add_to_linker(int addr,int target,int ext)
5068 {
5069   link_addr[linkcount][0]=addr;
5070   link_addr[linkcount][1]=target;
5071   link_addr[linkcount][2]=ext;  
5072   linkcount++;
5073 }
5074
5075 void ujump_assemble(int i,struct regstat *i_regs)
5076 {
5077   signed char *i_regmap=i_regs->regmap;
5078   if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5079   address_generation(i+1,i_regs,regs[i].regmap_entry);
5080   #ifdef REG_PREFETCH
5081   int temp=get_reg(branch_regs[i].regmap,PTEMP);
5082   if(rt1[i]==31&&temp>=0) 
5083   {
5084     int return_address=start+i*4+8;
5085     if(get_reg(branch_regs[i].regmap,31)>0) 
5086     if(i_regmap[temp]==PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5087   }
5088   #endif
5089   ds_assemble(i+1,i_regs);
5090   uint64_t bc_unneeded=branch_regs[i].u;
5091   uint64_t bc_unneeded_upper=branch_regs[i].uu;
5092   bc_unneeded|=1|(1LL<<rt1[i]);
5093   bc_unneeded_upper|=1|(1LL<<rt1[i]);
5094   wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5095                 bc_unneeded,bc_unneeded_upper);
5096   load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5097   if(rt1[i]==31) {
5098     int rt;
5099     unsigned int return_address;
5100     assert(rt1[i+1]!=31);
5101     assert(rt2[i+1]!=31);
5102     rt=get_reg(branch_regs[i].regmap,31);
5103     assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5104     //assert(rt>=0);
5105     return_address=start+i*4+8;
5106     if(rt>=0) {
5107       #ifdef USE_MINI_HT
5108       if(internal_branch(branch_regs[i].is32,return_address)) {
5109         int temp=rt+1;
5110         if(temp==EXCLUDE_REG||temp>=HOST_REGS||
5111            branch_regs[i].regmap[temp]>=0)
5112         {
5113           temp=get_reg(branch_regs[i].regmap,-1);
5114         }
5115         #ifdef HOST_TEMPREG
5116         if(temp<0) temp=HOST_TEMPREG;
5117         #endif
5118         if(temp>=0) do_miniht_insert(return_address,rt,temp);
5119         else emit_movimm(return_address,rt);
5120       }
5121       else
5122       #endif
5123       {
5124         #ifdef REG_PREFETCH
5125         if(temp>=0) 
5126         {
5127           if(i_regmap[temp]!=PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5128         }
5129         #endif
5130         emit_movimm(return_address,rt); // PC into link register
5131         #ifdef IMM_PREFETCH
5132         emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5133         #endif
5134       }
5135     }
5136   }
5137   int cc,adj;
5138   cc=get_reg(branch_regs[i].regmap,CCREG);
5139   assert(cc==HOST_CCREG);
5140   store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5141   #ifdef REG_PREFETCH
5142   if(rt1[i]==31&&temp>=0) emit_prefetchreg(temp);
5143   #endif
5144   do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5145   if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5146   load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5147   if(internal_branch(branch_regs[i].is32,ba[i]))
5148     assem_debug("branch: internal\n");
5149   else
5150     assem_debug("branch: external\n");
5151   if(internal_branch(branch_regs[i].is32,ba[i])&&is_ds[(ba[i]-start)>>2]) {
5152     ds_assemble_entry(i);
5153   }
5154   else {
5155     add_to_linker((int)out,ba[i],internal_branch(branch_regs[i].is32,ba[i]));
5156     emit_jmp(0);
5157   }
5158 }
5159
5160 void rjump_assemble(int i,struct regstat *i_regs)
5161 {
5162   signed char *i_regmap=i_regs->regmap;
5163   int temp;
5164   int rs,cc,adj;
5165   rs=get_reg(branch_regs[i].regmap,rs1[i]);
5166   assert(rs>=0);
5167   if(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]) {
5168     // Delay slot abuse, make a copy of the branch address register
5169     temp=get_reg(branch_regs[i].regmap,RTEMP);
5170     assert(temp>=0);
5171     assert(regs[i].regmap[temp]==RTEMP);
5172     emit_mov(rs,temp);
5173     rs=temp;
5174   }
5175   address_generation(i+1,i_regs,regs[i].regmap_entry);
5176   #ifdef REG_PREFETCH
5177   if(rt1[i]==31) 
5178   {
5179     if((temp=get_reg(branch_regs[i].regmap,PTEMP))>=0) {
5180       int return_address=start+i*4+8;
5181       if(i_regmap[temp]==PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5182     }
5183   }
5184   #endif
5185   #ifdef USE_MINI_HT
5186   if(rs1[i]==31) {
5187     int rh=get_reg(regs[i].regmap,RHASH);
5188     if(rh>=0) do_preload_rhash(rh);
5189   }
5190   #endif
5191   ds_assemble(i+1,i_regs);
5192   uint64_t bc_unneeded=branch_regs[i].u;
5193   uint64_t bc_unneeded_upper=branch_regs[i].uu;
5194   bc_unneeded|=1|(1LL<<rt1[i]);
5195   bc_unneeded_upper|=1|(1LL<<rt1[i]);
5196   bc_unneeded&=~(1LL<<rs1[i]);
5197   wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5198                 bc_unneeded,bc_unneeded_upper);
5199   load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],CCREG);
5200   if(rt1[i]!=0) {
5201     int rt,return_address;
5202     assert(rt1[i+1]!=rt1[i]);
5203     assert(rt2[i+1]!=rt1[i]);
5204     rt=get_reg(branch_regs[i].regmap,rt1[i]);
5205     assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5206     assert(rt>=0);
5207     return_address=start+i*4+8;
5208     #ifdef REG_PREFETCH
5209     if(temp>=0) 
5210     {
5211       if(i_regmap[temp]!=PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5212     }
5213     #endif
5214     emit_movimm(return_address,rt); // PC into link register
5215     #ifdef IMM_PREFETCH
5216     emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5217     #endif
5218   }
5219   cc=get_reg(branch_regs[i].regmap,CCREG);
5220   assert(cc==HOST_CCREG);
5221   #ifdef USE_MINI_HT
5222   int rh=get_reg(branch_regs[i].regmap,RHASH);
5223   int ht=get_reg(branch_regs[i].regmap,RHTBL);
5224   if(rs1[i]==31) {
5225     if(regs[i].regmap[rh]!=RHASH) do_preload_rhash(rh);
5226     do_preload_rhtbl(ht);
5227     do_rhash(rs,rh);
5228   }
5229   #endif
5230   store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,-1);
5231   #ifdef DESTRUCTIVE_WRITEBACK
5232   if((branch_regs[i].dirty>>rs)&(branch_regs[i].is32>>rs1[i])&1) {
5233     if(rs1[i]!=rt1[i+1]&&rs1[i]!=rt2[i+1]) {
5234       emit_loadreg(rs1[i],rs);
5235     }
5236   }
5237   #endif
5238   #ifdef REG_PREFETCH
5239   if(rt1[i]==31&&temp>=0) emit_prefetchreg(temp);
5240   #endif
5241   #ifdef USE_MINI_HT
5242   if(rs1[i]==31) {
5243     do_miniht_load(ht,rh);
5244   }
5245   #endif
5246   //do_cc(i,branch_regs[i].regmap,&adj,-1,TAKEN);
5247   //if(adj) emit_addimm(cc,2*(ccadj[i]+2-adj),cc); // ??? - Shouldn't happen
5248   //assert(adj==0);
5249   emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
5250   add_stub(CC_STUB,(int)out,jump_vaddr_reg[rs],0,i,-1,TAKEN,0);
5251   emit_jns(0);
5252   //load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,-1);
5253   #ifdef USE_MINI_HT
5254   if(rs1[i]==31) {
5255     do_miniht_jump(rs,rh,ht);
5256   }
5257   else
5258   #endif
5259   {
5260     //if(rs!=EAX) emit_mov(rs,EAX);
5261     //emit_jmp((int)jump_vaddr_eax);
5262     emit_jmp(jump_vaddr_reg[rs]);
5263   }
5264   /* Check hash table
5265   temp=!rs;
5266   emit_mov(rs,temp);
5267   emit_shrimm(rs,16,rs);
5268   emit_xor(temp,rs,rs);
5269   emit_movzwl_reg(rs,rs);
5270   emit_shlimm(rs,4,rs);
5271   emit_cmpmem_indexed((int)hash_table,rs,temp);
5272   emit_jne((int)out+14);
5273   emit_readword_indexed((int)hash_table+4,rs,rs);
5274   emit_jmpreg(rs);
5275   emit_cmpmem_indexed((int)hash_table+8,rs,temp);
5276   emit_addimm_no_flags(8,rs);
5277   emit_jeq((int)out-17);
5278   // No hit on hash table, call compiler
5279   emit_pushreg(temp);
5280 //DEBUG >
5281 #ifdef DEBUG_CYCLE_COUNT
5282   emit_readword((int)&last_count,ECX);
5283   emit_add(HOST_CCREG,ECX,HOST_CCREG);
5284   emit_readword((int)&next_interupt,ECX);
5285   emit_writeword(HOST_CCREG,(int)&Count);
5286   emit_sub(HOST_CCREG,ECX,HOST_CCREG);
5287   emit_writeword(ECX,(int)&last_count);
5288 #endif
5289 //DEBUG <
5290   emit_storereg(CCREG,HOST_CCREG);
5291   emit_call((int)get_addr);
5292   emit_loadreg(CCREG,HOST_CCREG);
5293   emit_addimm(ESP,4,ESP);
5294   emit_jmpreg(EAX);*/
5295   #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5296   if(rt1[i]!=31&&i<slen-2&&(((u_int)out)&7)) emit_mov(13,13);
5297   #endif
5298 }
5299
5300 void cjump_assemble(int i,struct regstat *i_regs)
5301 {
5302   signed char *i_regmap=i_regs->regmap;
5303   int cc;
5304   int match;
5305   match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5306   assem_debug("match=%d\n",match);
5307   int s1h,s1l,s2h,s2l;
5308   int prev_cop1_usable=cop1_usable;
5309   int unconditional=0,nop=0;
5310   int only32=0;
5311   int invert=0;
5312   int internal=internal_branch(branch_regs[i].is32,ba[i]);
5313   if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5314   if(!match) invert=1;
5315   #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5316   if(i>(ba[i]-start)>>2) invert=1;
5317   #endif
5318   
5319   if(ooo[i]) {
5320     s1l=get_reg(branch_regs[i].regmap,rs1[i]);
5321     s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
5322     s2l=get_reg(branch_regs[i].regmap,rs2[i]);
5323     s2h=get_reg(branch_regs[i].regmap,rs2[i]|64);
5324   }
5325   else {
5326     s1l=get_reg(i_regmap,rs1[i]);
5327     s1h=get_reg(i_regmap,rs1[i]|64);
5328     s2l=get_reg(i_regmap,rs2[i]);
5329     s2h=get_reg(i_regmap,rs2[i]|64);
5330   }
5331   if(rs1[i]==0&&rs2[i]==0)
5332   {
5333     if(opcode[i]&1) nop=1;
5334     else unconditional=1;
5335     //assert(opcode[i]!=5);
5336     //assert(opcode[i]!=7);
5337     //assert(opcode[i]!=0x15);
5338     //assert(opcode[i]!=0x17);
5339   }
5340   else if(rs1[i]==0)
5341   {
5342     s1l=s2l;s1h=s2h;
5343     s2l=s2h=-1;
5344     only32=(regs[i].was32>>rs2[i])&1;
5345   }
5346   else if(rs2[i]==0)
5347   {
5348     s2l=s2h=-1;
5349     only32=(regs[i].was32>>rs1[i])&1;
5350   }
5351   else {
5352     only32=(regs[i].was32>>rs1[i])&(regs[i].was32>>rs2[i])&1;
5353   }
5354
5355   if(ooo[i]) {
5356     // Out of order execution (delay slot first)
5357     //printf("OOOE\n");
5358     address_generation(i+1,i_regs,regs[i].regmap_entry);
5359     ds_assemble(i+1,i_regs);
5360     int adj;
5361     uint64_t bc_unneeded=branch_regs[i].u;
5362     uint64_t bc_unneeded_upper=branch_regs[i].uu;
5363     bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
5364     bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
5365     bc_unneeded|=1;
5366     bc_unneeded_upper|=1;
5367     wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5368                   bc_unneeded,bc_unneeded_upper);
5369     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs2[i]);
5370     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5371     cc=get_reg(branch_regs[i].regmap,CCREG);
5372     assert(cc==HOST_CCREG);
5373     if(unconditional) 
5374       store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5375     //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
5376     //assem_debug("cycle count (adj)\n");
5377     if(unconditional) {
5378       do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5379       if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
5380         if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5381         load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5382         if(internal)
5383           assem_debug("branch: internal\n");
5384         else
5385           assem_debug("branch: external\n");
5386         if(internal&&is_ds[(ba[i]-start)>>2]) {
5387           ds_assemble_entry(i);
5388         }
5389         else {
5390           add_to_linker((int)out,ba[i],internal);
5391           emit_jmp(0);
5392         }
5393         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5394         if(((u_int)out)&7) emit_addnop(0);
5395         #endif
5396       }
5397     }
5398     else if(nop) {
5399       emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
5400       int jaddr=(int)out;
5401       emit_jns(0);
5402       add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5403     }
5404     else {
5405       int taken=0,nottaken=0,nottaken1=0;
5406       do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
5407       if(adj&&!invert) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5408       if(!only32)
5409       {
5410         assert(s1h>=0);
5411         if(opcode[i]==4) // BEQ
5412         {
5413           if(s2h>=0) emit_cmp(s1h,s2h);
5414           else emit_test(s1h,s1h);
5415           nottaken1=(int)out;
5416           emit_jne(1);
5417         }
5418         if(opcode[i]==5) // BNE
5419         {
5420           if(s2h>=0) emit_cmp(s1h,s2h);
5421           else emit_test(s1h,s1h);
5422           if(invert) taken=(int)out;
5423           else add_to_linker((int)out,ba[i],internal);
5424           emit_jne(0);
5425         }
5426         if(opcode[i]==6) // BLEZ
5427         {
5428           emit_test(s1h,s1h);
5429           if(invert) taken=(int)out;
5430           else add_to_linker((int)out,ba[i],internal);
5431           emit_js(0);
5432           nottaken1=(int)out;
5433           emit_jne(1);
5434         }
5435         if(opcode[i]==7) // BGTZ
5436         {
5437           emit_test(s1h,s1h);
5438           nottaken1=(int)out;
5439           emit_js(1);
5440           if(invert) taken=(int)out;
5441           else add_to_linker((int)out,ba[i],internal);
5442           emit_jne(0);
5443         }
5444       } // if(!only32)
5445           
5446       //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5447       assert(s1l>=0);
5448       if(opcode[i]==4) // BEQ
5449       {
5450         if(s2l>=0) emit_cmp(s1l,s2l);
5451         else emit_test(s1l,s1l);
5452         if(invert){
5453           nottaken=(int)out;
5454           emit_jne(1);
5455         }else{
5456           add_to_linker((int)out,ba[i],internal);
5457           emit_jeq(0);
5458         }
5459       }
5460       if(opcode[i]==5) // BNE
5461       {
5462         if(s2l>=0) emit_cmp(s1l,s2l);
5463         else emit_test(s1l,s1l);
5464         if(invert){
5465           nottaken=(int)out;
5466           emit_jeq(1);
5467         }else{
5468           add_to_linker((int)out,ba[i],internal);
5469           emit_jne(0);
5470         }
5471       }
5472       if(opcode[i]==6) // BLEZ
5473       {
5474         emit_cmpimm(s1l,1);
5475         if(invert){
5476           nottaken=(int)out;
5477           emit_jge(1);
5478         }else{
5479           add_to_linker((int)out,ba[i],internal);
5480           emit_jl(0);
5481         }
5482       }
5483       if(opcode[i]==7) // BGTZ
5484       {
5485         emit_cmpimm(s1l,1);
5486         if(invert){
5487           nottaken=(int)out;
5488           emit_jl(1);
5489         }else{
5490           add_to_linker((int)out,ba[i],internal);
5491           emit_jge(0);
5492         }
5493       }
5494       if(invert) {
5495         if(taken) set_jump_target(taken,(int)out);
5496         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5497         if(match&&(!internal||!is_ds[(ba[i]-start)>>2])) {
5498           if(adj) {
5499             emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5500             add_to_linker((int)out,ba[i],internal);
5501           }else{
5502             emit_addnop(13);
5503             add_to_linker((int)out,ba[i],internal*2);
5504           }
5505           emit_jmp(0);
5506         }else
5507         #endif
5508         {
5509           if(adj) emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5510           store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5511           load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5512           if(internal)
5513             assem_debug("branch: internal\n");
5514           else
5515             assem_debug("branch: external\n");
5516           if(internal&&is_ds[(ba[i]-start)>>2]) {
5517             ds_assemble_entry(i);
5518           }
5519           else {
5520             add_to_linker((int)out,ba[i],internal);
5521             emit_jmp(0);
5522           }
5523         }
5524         set_jump_target(nottaken,(int)out);
5525       }
5526
5527       if(nottaken1) set_jump_target(nottaken1,(int)out);
5528       if(adj) {
5529         if(!invert) emit_addimm(cc,CLOCK_DIVIDER*adj,cc);
5530       }
5531     } // (!unconditional)
5532   } // if(ooo)
5533   else
5534   {
5535     // In-order execution (branch first)
5536     //if(likely[i]) printf("IOL\n");
5537     //else
5538     //printf("IOE\n");
5539     int taken=0,nottaken=0,nottaken1=0;
5540     if(!unconditional&&!nop) {
5541       if(!only32)
5542       {
5543         assert(s1h>=0);
5544         if((opcode[i]&0x2f)==4) // BEQ
5545         {
5546           if(s2h>=0) emit_cmp(s1h,s2h);
5547           else emit_test(s1h,s1h);
5548           nottaken1=(int)out;
5549           emit_jne(2);
5550         }
5551         if((opcode[i]&0x2f)==5) // BNE
5552         {
5553           if(s2h>=0) emit_cmp(s1h,s2h);
5554           else emit_test(s1h,s1h);
5555           taken=(int)out;
5556           emit_jne(1);
5557         }
5558         if((opcode[i]&0x2f)==6) // BLEZ
5559         {
5560           emit_test(s1h,s1h);
5561           taken=(int)out;
5562           emit_js(1);
5563           nottaken1=(int)out;
5564           emit_jne(2);
5565         }
5566         if((opcode[i]&0x2f)==7) // BGTZ
5567         {
5568           emit_test(s1h,s1h);
5569           nottaken1=(int)out;
5570           emit_js(2);
5571           taken=(int)out;
5572           emit_jne(1);
5573         }
5574       } // if(!only32)
5575           
5576       //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5577       assert(s1l>=0);
5578       if((opcode[i]&0x2f)==4) // BEQ
5579       {
5580         if(s2l>=0) emit_cmp(s1l,s2l);
5581         else emit_test(s1l,s1l);
5582         nottaken=(int)out;
5583         emit_jne(2);
5584       }
5585       if((opcode[i]&0x2f)==5) // BNE
5586       {
5587         if(s2l>=0) emit_cmp(s1l,s2l);
5588         else emit_test(s1l,s1l);
5589         nottaken=(int)out;
5590         emit_jeq(2);
5591       }
5592       if((opcode[i]&0x2f)==6) // BLEZ
5593       {
5594         emit_cmpimm(s1l,1);
5595         nottaken=(int)out;
5596         emit_jge(2);
5597       }
5598       if((opcode[i]&0x2f)==7) // BGTZ
5599       {
5600         emit_cmpimm(s1l,1);
5601         nottaken=(int)out;
5602         emit_jl(2);
5603       }
5604     } // if(!unconditional)
5605     int adj;
5606     uint64_t ds_unneeded=branch_regs[i].u;
5607     uint64_t ds_unneeded_upper=branch_regs[i].uu;
5608     ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
5609     ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
5610     if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
5611     ds_unneeded|=1;
5612     ds_unneeded_upper|=1;
5613     // branch taken
5614     if(!nop) {
5615       if(taken) set_jump_target(taken,(int)out);
5616       assem_debug("1:\n");
5617       wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5618                     ds_unneeded,ds_unneeded_upper);
5619       // load regs
5620       load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5621       address_generation(i+1,&branch_regs[i],0);
5622       load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
5623       ds_assemble(i+1,&branch_regs[i]);
5624       cc=get_reg(branch_regs[i].regmap,CCREG);
5625       if(cc==-1) {
5626         emit_loadreg(CCREG,cc=HOST_CCREG);
5627         // CHECK: Is the following instruction (fall thru) allocated ok?
5628       }
5629       assert(cc==HOST_CCREG);
5630       store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5631       do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
5632       assem_debug("cycle count (adj)\n");
5633       if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5634       load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5635       if(internal)
5636         assem_debug("branch: internal\n");
5637       else
5638         assem_debug("branch: external\n");
5639       if(internal&&is_ds[(ba[i]-start)>>2]) {
5640         ds_assemble_entry(i);
5641       }
5642       else {
5643         add_to_linker((int)out,ba[i],internal);
5644         emit_jmp(0);
5645       }
5646     }
5647     // branch not taken
5648     cop1_usable=prev_cop1_usable;
5649     if(!unconditional) {
5650       if(nottaken1) set_jump_target(nottaken1,(int)out);
5651       set_jump_target(nottaken,(int)out);
5652       assem_debug("2:\n");
5653       if(!likely[i]) {
5654         wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5655                       ds_unneeded,ds_unneeded_upper);
5656         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5657         address_generation(i+1,&branch_regs[i],0);
5658         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5659         ds_assemble(i+1,&branch_regs[i]);
5660       }
5661       cc=get_reg(branch_regs[i].regmap,CCREG);
5662       if(cc==-1&&!likely[i]) {
5663         // Cycle count isn't in a register, temporarily load it then write it out
5664         emit_loadreg(CCREG,HOST_CCREG);
5665         emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
5666         int jaddr=(int)out;
5667         emit_jns(0);
5668         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5669         emit_storereg(CCREG,HOST_CCREG);
5670       }
5671       else{
5672         cc=get_reg(i_regmap,CCREG);
5673         assert(cc==HOST_CCREG);
5674         emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
5675         int jaddr=(int)out;
5676         emit_jns(0);
5677         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
5678       }
5679     }
5680   }
5681 }
5682
5683 void sjump_assemble(int i,struct regstat *i_regs)
5684 {
5685   signed char *i_regmap=i_regs->regmap;
5686   int cc;
5687   int match;
5688   match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5689   assem_debug("smatch=%d\n",match);
5690   int s1h,s1l;
5691   int prev_cop1_usable=cop1_usable;
5692   int unconditional=0,nevertaken=0;
5693   int only32=0;
5694   int invert=0;
5695   int internal=internal_branch(branch_regs[i].is32,ba[i]);
5696   if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5697   if(!match) invert=1;
5698   #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5699   if(i>(ba[i]-start)>>2) invert=1;
5700   #endif
5701
5702   //if(opcode2[i]>=0x10) return; // FIXME (BxxZAL)
5703   //assert(opcode2[i]<0x10||rs1[i]==0); // FIXME (BxxZAL)
5704
5705   if(ooo[i]) {
5706     s1l=get_reg(branch_regs[i].regmap,rs1[i]);
5707     s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
5708   }
5709   else {
5710     s1l=get_reg(i_regmap,rs1[i]);
5711     s1h=get_reg(i_regmap,rs1[i]|64);
5712   }
5713   if(rs1[i]==0)
5714   {
5715     if(opcode2[i]&1) unconditional=1;
5716     else nevertaken=1;
5717     // These are never taken (r0 is never less than zero)
5718     //assert(opcode2[i]!=0);
5719     //assert(opcode2[i]!=2);
5720     //assert(opcode2[i]!=0x10);
5721     //assert(opcode2[i]!=0x12);
5722   }
5723   else {
5724     only32=(regs[i].was32>>rs1[i])&1;
5725   }
5726
5727   if(ooo[i]) {
5728     // Out of order execution (delay slot first)
5729     //printf("OOOE\n");
5730     address_generation(i+1,i_regs,regs[i].regmap_entry);
5731     ds_assemble(i+1,i_regs);
5732     int adj;
5733     uint64_t bc_unneeded=branch_regs[i].u;
5734     uint64_t bc_unneeded_upper=branch_regs[i].uu;
5735     bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
5736     bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
5737     bc_unneeded|=1;
5738     bc_unneeded_upper|=1;
5739     wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5740                   bc_unneeded,bc_unneeded_upper);
5741     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs1[i]);
5742     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5743     if(rt1[i]==31) {
5744       int rt,return_address;
5745       rt=get_reg(branch_regs[i].regmap,31);
5746       assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5747       if(rt>=0) {
5748         // Save the PC even if the branch is not taken
5749         return_address=start+i*4+8;
5750         emit_movimm(return_address,rt); // PC into link register
5751         #ifdef IMM_PREFETCH
5752         if(!nevertaken) emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5753         #endif
5754       }
5755     }
5756     cc=get_reg(branch_regs[i].regmap,CCREG);
5757     assert(cc==HOST_CCREG);
5758     if(unconditional) 
5759       store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5760     //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
5761     assem_debug("cycle count (adj)\n");
5762     if(unconditional) {
5763       do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5764       if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
5765         if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5766         load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5767         if(internal)
5768           assem_debug("branch: internal\n");
5769         else
5770           assem_debug("branch: external\n");
5771         if(internal&&is_ds[(ba[i]-start)>>2]) {
5772           ds_assemble_entry(i);
5773         }
5774         else {
5775           add_to_linker((int)out,ba[i],internal);
5776           emit_jmp(0);
5777         }
5778         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5779         if(((u_int)out)&7) emit_addnop(0);
5780         #endif
5781       }
5782     }
5783     else if(nevertaken) {
5784       emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
5785       int jaddr=(int)out;
5786       emit_jns(0);
5787       add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5788     }
5789     else {
5790       int nottaken=0;
5791       do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
5792       if(adj&&!invert) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5793       if(!only32)
5794       {
5795         assert(s1h>=0);
5796         if((opcode2[i]&0xf)==0) // BLTZ/BLTZAL
5797         {
5798           emit_test(s1h,s1h);
5799           if(invert){
5800             nottaken=(int)out;
5801             emit_jns(1);
5802           }else{
5803             add_to_linker((int)out,ba[i],internal);
5804             emit_js(0);
5805           }
5806         }
5807         if((opcode2[i]&0xf)==1) // BGEZ/BLTZAL
5808         {
5809           emit_test(s1h,s1h);
5810           if(invert){
5811             nottaken=(int)out;
5812             emit_js(1);
5813           }else{
5814             add_to_linker((int)out,ba[i],internal);
5815             emit_jns(0);
5816           }
5817         }
5818       } // if(!only32)
5819       else
5820       {
5821         assert(s1l>=0);
5822         if((opcode2[i]&0xf)==0) // BLTZ/BLTZAL
5823         {
5824           emit_test(s1l,s1l);
5825           if(invert){
5826             nottaken=(int)out;
5827             emit_jns(1);
5828           }else{
5829             add_to_linker((int)out,ba[i],internal);
5830             emit_js(0);
5831           }
5832         }
5833         if((opcode2[i]&0xf)==1) // BGEZ/BLTZAL
5834         {
5835           emit_test(s1l,s1l);
5836           if(invert){
5837             nottaken=(int)out;
5838             emit_js(1);
5839           }else{
5840             add_to_linker((int)out,ba[i],internal);
5841             emit_jns(0);
5842           }
5843         }
5844       } // if(!only32)
5845           
5846       if(invert) {
5847         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5848         if(match&&(!internal||!is_ds[(ba[i]-start)>>2])) {
5849           if(adj) {
5850             emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5851             add_to_linker((int)out,ba[i],internal);
5852           }else{
5853             emit_addnop(13);
5854             add_to_linker((int)out,ba[i],internal*2);
5855           }
5856           emit_jmp(0);
5857         }else
5858         #endif
5859         {
5860           if(adj) emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5861           store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5862           load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5863           if(internal)
5864             assem_debug("branch: internal\n");
5865           else
5866             assem_debug("branch: external\n");
5867           if(internal&&is_ds[(ba[i]-start)>>2]) {
5868             ds_assemble_entry(i);
5869           }
5870           else {
5871             add_to_linker((int)out,ba[i],internal);
5872             emit_jmp(0);
5873           }
5874         }
5875         set_jump_target(nottaken,(int)out);
5876       }
5877
5878       if(adj) {
5879         if(!invert) emit_addimm(cc,CLOCK_DIVIDER*adj,cc);
5880       }
5881     } // (!unconditional)
5882   } // if(ooo)
5883   else
5884   {
5885     // In-order execution (branch first)
5886     //printf("IOE\n");
5887     int nottaken=0;
5888     if(rt1[i]==31) {
5889       int rt,return_address;
5890       rt=get_reg(branch_regs[i].regmap,31);
5891       if(rt>=0) {
5892         // Save the PC even if the branch is not taken
5893         return_address=start+i*4+8;
5894         emit_movimm(return_address,rt); // PC into link register
5895         #ifdef IMM_PREFETCH
5896         emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5897         #endif
5898       }
5899     }
5900     if(!unconditional) {
5901       //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5902       if(!only32)
5903       {
5904         assert(s1h>=0);
5905         if((opcode2[i]&0x0d)==0) // BLTZ/BLTZL/BLTZAL/BLTZALL
5906         {
5907           emit_test(s1h,s1h);
5908           nottaken=(int)out;
5909           emit_jns(1);
5910         }
5911         if((opcode2[i]&0x0d)==1) // BGEZ/BGEZL/BGEZAL/BGEZALL
5912         {
5913           emit_test(s1h,s1h);
5914           nottaken=(int)out;
5915           emit_js(1);
5916         }
5917       } // if(!only32)
5918       else
5919       {
5920         assert(s1l>=0);
5921         if((opcode2[i]&0x0d)==0) // BLTZ/BLTZL/BLTZAL/BLTZALL
5922         {
5923           emit_test(s1l,s1l);
5924           nottaken=(int)out;
5925           emit_jns(1);
5926         }
5927         if((opcode2[i]&0x0d)==1) // BGEZ/BGEZL/BGEZAL/BGEZALL
5928         {
5929           emit_test(s1l,s1l);
5930           nottaken=(int)out;
5931           emit_js(1);
5932         }
5933       }
5934     } // if(!unconditional)
5935     int adj;
5936     uint64_t ds_unneeded=branch_regs[i].u;
5937     uint64_t ds_unneeded_upper=branch_regs[i].uu;
5938     ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
5939     ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
5940     if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
5941     ds_unneeded|=1;
5942     ds_unneeded_upper|=1;
5943     // branch taken
5944     if(!nevertaken) {
5945       //assem_debug("1:\n");
5946       wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5947                     ds_unneeded,ds_unneeded_upper);
5948       // load regs
5949       load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5950       address_generation(i+1,&branch_regs[i],0);
5951       load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
5952       ds_assemble(i+1,&branch_regs[i]);
5953       cc=get_reg(branch_regs[i].regmap,CCREG);
5954       if(cc==-1) {
5955         emit_loadreg(CCREG,cc=HOST_CCREG);
5956         // CHECK: Is the following instruction (fall thru) allocated ok?
5957       }
5958       assert(cc==HOST_CCREG);
5959       store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5960       do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
5961       assem_debug("cycle count (adj)\n");
5962       if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5963       load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5964       if(internal)
5965         assem_debug("branch: internal\n");
5966       else
5967         assem_debug("branch: external\n");
5968       if(internal&&is_ds[(ba[i]-start)>>2]) {
5969         ds_assemble_entry(i);
5970       }
5971       else {
5972         add_to_linker((int)out,ba[i],internal);
5973         emit_jmp(0);
5974       }
5975     }
5976     // branch not taken
5977     cop1_usable=prev_cop1_usable;
5978     if(!unconditional) {
5979       set_jump_target(nottaken,(int)out);
5980       assem_debug("1:\n");
5981       if(!likely[i]) {
5982         wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5983                       ds_unneeded,ds_unneeded_upper);
5984         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5985         address_generation(i+1,&branch_regs[i],0);
5986         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5987         ds_assemble(i+1,&branch_regs[i]);
5988       }
5989       cc=get_reg(branch_regs[i].regmap,CCREG);
5990       if(cc==-1&&!likely[i]) {
5991         // Cycle count isn't in a register, temporarily load it then write it out
5992         emit_loadreg(CCREG,HOST_CCREG);
5993         emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
5994         int jaddr=(int)out;
5995         emit_jns(0);
5996         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5997         emit_storereg(CCREG,HOST_CCREG);
5998       }
5999       else{
6000         cc=get_reg(i_regmap,CCREG);
6001         assert(cc==HOST_CCREG);
6002         emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
6003         int jaddr=(int)out;
6004         emit_jns(0);
6005         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
6006       }
6007     }
6008   }
6009 }
6010
6011 void fjump_assemble(int i,struct regstat *i_regs)
6012 {
6013   signed char *i_regmap=i_regs->regmap;
6014   int cc;
6015   int match;
6016   match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6017   assem_debug("fmatch=%d\n",match);
6018   int fs,cs;
6019   int eaddr;
6020   int invert=0;
6021   int internal=internal_branch(branch_regs[i].is32,ba[i]);
6022   if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
6023   if(!match) invert=1;
6024   #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
6025   if(i>(ba[i]-start)>>2) invert=1;
6026   #endif
6027
6028   if(ooo[i]) {
6029     fs=get_reg(branch_regs[i].regmap,FSREG);
6030     address_generation(i+1,i_regs,regs[i].regmap_entry); // Is this okay?
6031   }
6032   else {
6033     fs=get_reg(i_regmap,FSREG);
6034   }
6035
6036   // Check cop1 unusable
6037   if(!cop1_usable) {
6038     cs=get_reg(i_regmap,CSREG);
6039     assert(cs>=0);
6040     emit_testimm(cs,0x20000000);
6041     eaddr=(int)out;
6042     emit_jeq(0);
6043     add_stub(FP_STUB,eaddr,(int)out,i,cs,(int)i_regs,0,0);
6044     cop1_usable=1;
6045   }
6046
6047   if(ooo[i]) {
6048     // Out of order execution (delay slot first)
6049     //printf("OOOE\n");
6050     ds_assemble(i+1,i_regs);
6051     int adj;
6052     uint64_t bc_unneeded=branch_regs[i].u;
6053     uint64_t bc_unneeded_upper=branch_regs[i].uu;
6054     bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
6055     bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
6056     bc_unneeded|=1;
6057     bc_unneeded_upper|=1;
6058     wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6059                   bc_unneeded,bc_unneeded_upper);
6060     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs1[i]);
6061     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
6062     cc=get_reg(branch_regs[i].regmap,CCREG);
6063     assert(cc==HOST_CCREG);
6064     do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
6065     assem_debug("cycle count (adj)\n");
6066     if(1) {
6067       int nottaken=0;
6068       if(adj&&!invert) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
6069       if(1) {
6070         assert(fs>=0);
6071         emit_testimm(fs,0x800000);
6072         if(source[i]&0x10000) // BC1T
6073         {
6074           if(invert){
6075             nottaken=(int)out;
6076             emit_jeq(1);
6077           }else{
6078             add_to_linker((int)out,ba[i],internal);
6079             emit_jne(0);
6080           }
6081         }
6082         else // BC1F
6083           if(invert){
6084             nottaken=(int)out;
6085             emit_jne(1);
6086           }else{
6087             add_to_linker((int)out,ba[i],internal);
6088             emit_jeq(0);
6089           }
6090         {
6091         }
6092       } // if(!only32)
6093           
6094       if(invert) {
6095         if(adj) emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
6096         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
6097         else if(match) emit_addnop(13);
6098         #endif
6099         store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6100         load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6101         if(internal)
6102           assem_debug("branch: internal\n");
6103         else
6104           assem_debug("branch: external\n");
6105         if(internal&&is_ds[(ba[i]-start)>>2]) {
6106           ds_assemble_entry(i);
6107         }
6108         else {
6109           add_to_linker((int)out,ba[i],internal);
6110           emit_jmp(0);
6111         }
6112         set_jump_target(nottaken,(int)out);
6113       }
6114
6115       if(adj) {
6116         if(!invert) emit_addimm(cc,CLOCK_DIVIDER*adj,cc);
6117       }
6118     } // (!unconditional)
6119   } // if(ooo)
6120   else
6121   {
6122     // In-order execution (branch first)
6123     //printf("IOE\n");
6124     int nottaken=0;
6125     if(1) {
6126       //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
6127       if(1) {
6128         assert(fs>=0);
6129         emit_testimm(fs,0x800000);
6130         if(source[i]&0x10000) // BC1T
6131         {
6132           nottaken=(int)out;
6133           emit_jeq(1);
6134         }
6135         else // BC1F
6136         {
6137           nottaken=(int)out;
6138           emit_jne(1);
6139         }
6140       }
6141     } // if(!unconditional)
6142     int adj;
6143     uint64_t ds_unneeded=branch_regs[i].u;
6144     uint64_t ds_unneeded_upper=branch_regs[i].uu;
6145     ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6146     ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6147     if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
6148     ds_unneeded|=1;
6149     ds_unneeded_upper|=1;
6150     // branch taken
6151     //assem_debug("1:\n");
6152     wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6153                   ds_unneeded,ds_unneeded_upper);
6154     // load regs
6155     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
6156     address_generation(i+1,&branch_regs[i],0);
6157     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
6158     ds_assemble(i+1,&branch_regs[i]);
6159     cc=get_reg(branch_regs[i].regmap,CCREG);
6160     if(cc==-1) {
6161       emit_loadreg(CCREG,cc=HOST_CCREG);
6162       // CHECK: Is the following instruction (fall thru) allocated ok?
6163     }
6164     assert(cc==HOST_CCREG);
6165     store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6166     do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
6167     assem_debug("cycle count (adj)\n");
6168     if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
6169     load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6170     if(internal)
6171       assem_debug("branch: internal\n");
6172     else
6173       assem_debug("branch: external\n");
6174     if(internal&&is_ds[(ba[i]-start)>>2]) {
6175       ds_assemble_entry(i);
6176     }
6177     else {
6178       add_to_linker((int)out,ba[i],internal);
6179       emit_jmp(0);
6180     }
6181
6182     // branch not taken
6183     if(1) { // <- FIXME (don't need this)
6184       set_jump_target(nottaken,(int)out);
6185       assem_debug("1:\n");
6186       if(!likely[i]) {
6187         wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6188                       ds_unneeded,ds_unneeded_upper);
6189         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
6190         address_generation(i+1,&branch_regs[i],0);
6191         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
6192         ds_assemble(i+1,&branch_regs[i]);
6193       }
6194       cc=get_reg(branch_regs[i].regmap,CCREG);
6195       if(cc==-1&&!likely[i]) {
6196         // Cycle count isn't in a register, temporarily load it then write it out
6197         emit_loadreg(CCREG,HOST_CCREG);
6198         emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
6199         int jaddr=(int)out;
6200         emit_jns(0);
6201         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
6202         emit_storereg(CCREG,HOST_CCREG);
6203       }
6204       else{
6205         cc=get_reg(i_regmap,CCREG);
6206         assert(cc==HOST_CCREG);
6207         emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
6208         int jaddr=(int)out;
6209         emit_jns(0);
6210         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
6211       }
6212     }
6213   }
6214 }
6215
6216 static void pagespan_assemble(int i,struct regstat *i_regs)
6217 {
6218   int s1l=get_reg(i_regs->regmap,rs1[i]);
6219   int s1h=get_reg(i_regs->regmap,rs1[i]|64);
6220   int s2l=get_reg(i_regs->regmap,rs2[i]);
6221   int s2h=get_reg(i_regs->regmap,rs2[i]|64);
6222   void *nt_branch=NULL;
6223   int taken=0;
6224   int nottaken=0;
6225   int unconditional=0;
6226   if(rs1[i]==0)
6227   {
6228     s1l=s2l;s1h=s2h;
6229     s2l=s2h=-1;
6230   }
6231   else if(rs2[i]==0)
6232   {
6233     s2l=s2h=-1;
6234   }
6235   if((i_regs->is32>>rs1[i])&(i_regs->is32>>rs2[i])&1) {
6236     s1h=s2h=-1;
6237   }
6238   int hr=0;
6239   int addr,alt,ntaddr;
6240   if(i_regs->regmap[HOST_BTREG]<0) {addr=HOST_BTREG;}
6241   else {
6242     while(hr<HOST_REGS)
6243     {
6244       if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
6245          (i_regs->regmap[hr]&63)!=rs1[i] &&
6246          (i_regs->regmap[hr]&63)!=rs2[i] )
6247       {
6248         addr=hr++;break;
6249       }
6250       hr++;
6251     }
6252   }
6253   while(hr<HOST_REGS)
6254   {
6255     if(hr!=EXCLUDE_REG && hr!=HOST_CCREG && hr!=HOST_BTREG &&
6256        (i_regs->regmap[hr]&63)!=rs1[i] &&
6257        (i_regs->regmap[hr]&63)!=rs2[i] )
6258     {
6259       alt=hr++;break;
6260     }
6261     hr++;
6262   }
6263   if((opcode[i]&0x2E)==6) // BLEZ/BGTZ needs another register
6264   {
6265     while(hr<HOST_REGS)
6266     {
6267       if(hr!=EXCLUDE_REG && hr!=HOST_CCREG && hr!=HOST_BTREG &&
6268          (i_regs->regmap[hr]&63)!=rs1[i] &&
6269          (i_regs->regmap[hr]&63)!=rs2[i] )
6270       {
6271         ntaddr=hr;break;
6272       }
6273       hr++;
6274     }
6275   }
6276   assert(hr<HOST_REGS);
6277   if((opcode[i]&0x2e)==4||opcode[i]==0x11) { // BEQ/BNE/BEQL/BNEL/BC1
6278     load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,CCREG,CCREG);
6279   }
6280   emit_addimm(HOST_CCREG,CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
6281   if(opcode[i]==2) // J
6282   {
6283     unconditional=1;
6284   }
6285   if(opcode[i]==3) // JAL
6286   {
6287     // TODO: mini_ht
6288     int rt=get_reg(i_regs->regmap,31);
6289     emit_movimm(start+i*4+8,rt);
6290     unconditional=1;
6291   }
6292   if(opcode[i]==0&&(opcode2[i]&0x3E)==8) // JR/JALR
6293   {
6294     emit_mov(s1l,addr);
6295     if(opcode2[i]==9) // JALR
6296     {
6297       int rt=get_reg(i_regs->regmap,rt1[i]);
6298       emit_movimm(start+i*4+8,rt);
6299     }
6300   }
6301   if((opcode[i]&0x3f)==4) // BEQ
6302   {
6303     if(rs1[i]==rs2[i])
6304     {
6305       unconditional=1;
6306     }
6307     else
6308     #ifdef HAVE_CMOV_IMM
6309     if(s1h<0) {
6310       if(s2l>=0) emit_cmp(s1l,s2l);
6311       else emit_test(s1l,s1l);
6312       emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
6313     }
6314     else
6315     #endif
6316     {
6317       assert(s1l>=0);
6318       emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
6319       if(s1h>=0) {
6320         if(s2h>=0) emit_cmp(s1h,s2h);
6321         else emit_test(s1h,s1h);
6322         emit_cmovne_reg(alt,addr);
6323       }
6324       if(s2l>=0) emit_cmp(s1l,s2l);
6325       else emit_test(s1l,s1l);
6326       emit_cmovne_reg(alt,addr);
6327     }
6328   }
6329   if((opcode[i]&0x3f)==5) // BNE
6330   {
6331     #ifdef HAVE_CMOV_IMM
6332     if(s1h<0) {
6333       if(s2l>=0) emit_cmp(s1l,s2l);
6334       else emit_test(s1l,s1l);
6335       emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
6336     }
6337     else
6338     #endif
6339     {
6340       assert(s1l>=0);
6341       emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
6342       if(s1h>=0) {
6343         if(s2h>=0) emit_cmp(s1h,s2h);
6344         else emit_test(s1h,s1h);
6345         emit_cmovne_reg(alt,addr);
6346       }
6347       if(s2l>=0) emit_cmp(s1l,s2l);
6348       else emit_test(s1l,s1l);
6349       emit_cmovne_reg(alt,addr);
6350     }
6351   }
6352   if((opcode[i]&0x3f)==0x14) // BEQL
6353   {
6354     if(s1h>=0) {
6355       if(s2h>=0) emit_cmp(s1h,s2h);
6356       else emit_test(s1h,s1h);
6357       nottaken=(int)out;
6358       emit_jne(0);
6359     }
6360     if(s2l>=0) emit_cmp(s1l,s2l);
6361     else emit_test(s1l,s1l);
6362     if(nottaken) set_jump_target(nottaken,(int)out);
6363     nottaken=(int)out;
6364     emit_jne(0);
6365   }
6366   if((opcode[i]&0x3f)==0x15) // BNEL
6367   {
6368     if(s1h>=0) {
6369       if(s2h>=0) emit_cmp(s1h,s2h);
6370       else emit_test(s1h,s1h);
6371       taken=(int)out;
6372       emit_jne(0);
6373     }
6374     if(s2l>=0) emit_cmp(s1l,s2l);
6375     else emit_test(s1l,s1l);
6376     nottaken=(int)out;
6377     emit_jeq(0);
6378     if(taken) set_jump_target(taken,(int)out);
6379   }
6380   if((opcode[i]&0x3f)==6) // BLEZ
6381   {
6382     emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
6383     emit_cmpimm(s1l,1);
6384     if(s1h>=0) emit_mov(addr,ntaddr);
6385     emit_cmovl_reg(alt,addr);
6386     if(s1h>=0) {
6387       emit_test(s1h,s1h);
6388       emit_cmovne_reg(ntaddr,addr);
6389       emit_cmovs_reg(alt,addr);
6390     }
6391   }
6392   if((opcode[i]&0x3f)==7) // BGTZ
6393   {
6394     emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
6395     emit_cmpimm(s1l,1);
6396     if(s1h>=0) emit_mov(addr,alt);
6397     emit_cmovl_reg(ntaddr,addr);
6398     if(s1h>=0) {
6399       emit_test(s1h,s1h);
6400       emit_cmovne_reg(alt,addr);
6401       emit_cmovs_reg(ntaddr,addr);
6402     }
6403   }
6404   if((opcode[i]&0x3f)==0x16) // BLEZL
6405   {
6406     assert((opcode[i]&0x3f)!=0x16);
6407   }
6408   if((opcode[i]&0x3f)==0x17) // BGTZL
6409   {
6410     assert((opcode[i]&0x3f)!=0x17);
6411   }
6412   assert(opcode[i]!=1); // BLTZ/BGEZ
6413
6414   //FIXME: Check CSREG
6415   if(opcode[i]==0x11 && opcode2[i]==0x08 ) {
6416     if((source[i]&0x30000)==0) // BC1F
6417     {
6418       emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
6419       emit_testimm(s1l,0x800000);
6420       emit_cmovne_reg(alt,addr);
6421     }
6422     if((source[i]&0x30000)==0x10000) // BC1T
6423     {
6424       emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
6425       emit_testimm(s1l,0x800000);
6426       emit_cmovne_reg(alt,addr);
6427     }
6428     if((source[i]&0x30000)==0x20000) // BC1FL
6429     {
6430       emit_testimm(s1l,0x800000);
6431       nottaken=(int)out;
6432       emit_jne(0);
6433     }
6434     if((source[i]&0x30000)==0x30000) // BC1TL
6435     {
6436       emit_testimm(s1l,0x800000);
6437       nottaken=(int)out;
6438       emit_jeq(0);
6439     }
6440   }
6441
6442   assert(i_regs->regmap[HOST_CCREG]==CCREG);
6443   wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
6444   if(likely[i]||unconditional)
6445   {
6446     emit_movimm(ba[i],HOST_BTREG);
6447   }
6448   else if(addr!=HOST_BTREG)
6449   {
6450     emit_mov(addr,HOST_BTREG);
6451   }
6452   void *branch_addr=out;
6453   emit_jmp(0);
6454   int target_addr=start+i*4+5;
6455   void *stub=out;
6456   void *compiled_target_addr=check_addr(target_addr);
6457   emit_extjump_ds((int)branch_addr,target_addr);
6458   if(compiled_target_addr) {
6459     set_jump_target((int)branch_addr,(int)compiled_target_addr);
6460     add_link(target_addr,stub);
6461   }
6462   else set_jump_target((int)branch_addr,(int)stub);
6463   if(likely[i]) {
6464     // Not-taken path
6465     set_jump_target((int)nottaken,(int)out);
6466     wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
6467     void *branch_addr=out;
6468     emit_jmp(0);
6469     int target_addr=start+i*4+8;
6470     void *stub=out;
6471     void *compiled_target_addr=check_addr(target_addr);
6472     emit_extjump_ds((int)branch_addr,target_addr);
6473     if(compiled_target_addr) {
6474       set_jump_target((int)branch_addr,(int)compiled_target_addr);
6475       add_link(target_addr,stub);
6476     }
6477     else set_jump_target((int)branch_addr,(int)stub);
6478   }
6479 }
6480
6481 // Assemble the delay slot for the above
6482 static void pagespan_ds()
6483 {
6484   assem_debug("initial delay slot:\n");
6485   u_int vaddr=start+1;
6486   u_int page=get_page(vaddr);
6487   u_int vpage=get_vpage(vaddr);
6488   ll_add(jump_dirty+vpage,vaddr,(void *)out);
6489   do_dirty_stub_ds();
6490   ll_add(jump_in+page,vaddr,(void *)out);
6491   assert(regs[0].regmap_entry[HOST_CCREG]==CCREG);
6492   if(regs[0].regmap[HOST_CCREG]!=CCREG)
6493     wb_register(CCREG,regs[0].regmap_entry,regs[0].wasdirty,regs[0].was32);
6494   if(regs[0].regmap[HOST_BTREG]!=BTREG)
6495     emit_writeword(HOST_BTREG,(int)&branch_target);
6496   load_regs(regs[0].regmap_entry,regs[0].regmap,regs[0].was32,rs1[0],rs2[0]);
6497   address_generation(0,&regs[0],regs[0].regmap_entry);
6498   if(itype[0]==STORE||itype[0]==STORELR||(opcode[0]&0x3b)==0x39||(opcode[0]&0x3b)==0x3a)
6499     load_regs(regs[0].regmap_entry,regs[0].regmap,regs[0].was32,INVCP,INVCP);
6500   cop1_usable=0;
6501   is_delayslot=0;
6502   switch(itype[0]) {
6503     case ALU:
6504       alu_assemble(0,&regs[0]);break;
6505     case IMM16:
6506       imm16_assemble(0,&regs[0]);break;
6507     case SHIFT:
6508       shift_assemble(0,&regs[0]);break;
6509     case SHIFTIMM:
6510       shiftimm_assemble(0,&regs[0]);break;
6511     case LOAD:
6512       load_assemble(0,&regs[0]);break;
6513     case LOADLR:
6514       loadlr_assemble(0,&regs[0]);break;
6515     case STORE:
6516       store_assemble(0,&regs[0]);break;
6517     case STORELR:
6518       storelr_assemble(0,&regs[0]);break;
6519     case COP0:
6520       cop0_assemble(0,&regs[0]);break;
6521     case COP1:
6522       cop1_assemble(0,&regs[0]);break;
6523     case C1LS:
6524       c1ls_assemble(0,&regs[0]);break;
6525     case COP2:
6526       cop2_assemble(0,&regs[0]);break;
6527     case C2LS:
6528       c2ls_assemble(0,&regs[0]);break;
6529     case C2OP:
6530       c2op_assemble(0,&regs[0]);break;
6531     case FCONV:
6532       fconv_assemble(0,&regs[0]);break;
6533     case FLOAT:
6534       float_assemble(0,&regs[0]);break;
6535     case FCOMP:
6536       fcomp_assemble(0,&regs[0]);break;
6537     case MULTDIV:
6538       multdiv_assemble(0,&regs[0]);break;
6539     case MOV:
6540       mov_assemble(0,&regs[0]);break;
6541     case SYSCALL:
6542     case HLECALL:
6543     case INTCALL:
6544     case SPAN:
6545     case UJUMP:
6546     case RJUMP:
6547     case CJUMP:
6548     case SJUMP:
6549     case FJUMP:
6550       printf("Jump in the delay slot.  This is probably a bug.\n");
6551   }
6552   int btaddr=get_reg(regs[0].regmap,BTREG);
6553   if(btaddr<0) {
6554     btaddr=get_reg(regs[0].regmap,-1);
6555     emit_readword((int)&branch_target,btaddr);
6556   }
6557   assert(btaddr!=HOST_CCREG);
6558   if(regs[0].regmap[HOST_CCREG]!=CCREG) emit_loadreg(CCREG,HOST_CCREG);
6559 #ifdef HOST_IMM8
6560   emit_movimm(start+4,HOST_TEMPREG);
6561   emit_cmp(btaddr,HOST_TEMPREG);
6562 #else
6563   emit_cmpimm(btaddr,start+4);
6564 #endif
6565   int branch=(int)out;
6566   emit_jeq(0);
6567   store_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,-1);
6568   emit_jmp(jump_vaddr_reg[btaddr]);
6569   set_jump_target(branch,(int)out);
6570   store_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,start+4);
6571   load_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,start+4);
6572 }
6573
6574 // Basic liveness analysis for MIPS registers
6575 void unneeded_registers(int istart,int iend,int r)
6576 {
6577   int i;
6578   uint64_t u,uu,b,bu;
6579   uint64_t temp_u,temp_uu;
6580   uint64_t tdep;
6581   if(iend==slen-1) {
6582     u=1;uu=1;
6583   }else{
6584     u=unneeded_reg[iend+1];
6585     uu=unneeded_reg_upper[iend+1];
6586     u=1;uu=1;
6587   }
6588   for (i=iend;i>=istart;i--)
6589   {
6590     //printf("unneeded registers i=%d (%d,%d) r=%d\n",i,istart,iend,r);
6591     if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
6592     {
6593       // If subroutine call, flag return address as a possible branch target
6594       if(rt1[i]==31 && i<slen-2) bt[i+2]=1;
6595       
6596       if(ba[i]<start || ba[i]>=(start+slen*4))
6597       {
6598         // Branch out of this block, flush all regs
6599         u=1;
6600         uu=1;
6601         /* Hexagon hack 
6602         if(itype[i]==UJUMP&&rt1[i]==31)
6603         {
6604           uu=u=0x300C00F; // Discard at, v0-v1, t6-t9
6605         }
6606         if(itype[i]==RJUMP&&rs1[i]==31)
6607         {
6608           uu=u=0x300C0F3; // Discard at, a0-a3, t6-t9
6609         }
6610         if(start>0x80000400&&start<0x80000000+RAM_SIZE) {
6611           if(itype[i]==UJUMP&&rt1[i]==31)
6612           {
6613             //uu=u=0x30300FF0FLL; // Discard at, v0-v1, t0-t9, lo, hi
6614             uu=u=0x300FF0F; // Discard at, v0-v1, t0-t9
6615           }
6616           if(itype[i]==RJUMP&&rs1[i]==31)
6617           {
6618             //uu=u=0x30300FFF3LL; // Discard at, a0-a3, t0-t9, lo, hi
6619             uu=u=0x300FFF3; // Discard at, a0-a3, t0-t9
6620           }
6621         }*/
6622         branch_unneeded_reg[i]=u;
6623         branch_unneeded_reg_upper[i]=uu;
6624         // Merge in delay slot
6625         tdep=(~uu>>rt1[i+1])&1;
6626         u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6627         uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6628         u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6629         uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6630         uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6631         u|=1;uu|=1;
6632         // If branch is "likely" (and conditional)
6633         // then we skip the delay slot on the fall-thru path
6634         if(likely[i]) {
6635           if(i<slen-1) {
6636             u&=unneeded_reg[i+2];
6637             uu&=unneeded_reg_upper[i+2];
6638           }
6639           else
6640           {
6641             u=1;
6642             uu=1;
6643           }
6644         }
6645       }
6646       else
6647       {
6648         // Internal branch, flag target
6649         bt[(ba[i]-start)>>2]=1;
6650         if(ba[i]<=start+i*4) {
6651           // Backward branch
6652           if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
6653           {
6654             // Unconditional branch
6655             temp_u=1;temp_uu=1;
6656           } else {
6657             // Conditional branch (not taken case)
6658             temp_u=unneeded_reg[i+2];
6659             temp_uu=unneeded_reg_upper[i+2];
6660           }
6661           // Merge in delay slot
6662           tdep=(~temp_uu>>rt1[i+1])&1;
6663           temp_u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6664           temp_uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6665           temp_u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6666           temp_uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6667           temp_uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6668           temp_u|=1;temp_uu|=1;
6669           // If branch is "likely" (and conditional)
6670           // then we skip the delay slot on the fall-thru path
6671           if(likely[i]) {
6672             if(i<slen-1) {
6673               temp_u&=unneeded_reg[i+2];
6674               temp_uu&=unneeded_reg_upper[i+2];
6675             }
6676             else
6677             {
6678               temp_u=1;
6679               temp_uu=1;
6680             }
6681           }
6682           tdep=(~temp_uu>>rt1[i])&1;
6683           temp_u|=(1LL<<rt1[i])|(1LL<<rt2[i]);
6684           temp_uu|=(1LL<<rt1[i])|(1LL<<rt2[i]);
6685           temp_u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
6686           temp_uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
6687           temp_uu&=~((tdep<<dep1[i])|(tdep<<dep2[i]));
6688           temp_u|=1;temp_uu|=1;
6689           unneeded_reg[i]=temp_u;
6690           unneeded_reg_upper[i]=temp_uu;
6691           // Only go three levels deep.  This recursion can take an
6692           // excessive amount of time if there are a lot of nested loops.
6693           if(r<2) {
6694             unneeded_registers((ba[i]-start)>>2,i-1,r+1);
6695           }else{
6696             unneeded_reg[(ba[i]-start)>>2]=1;
6697             unneeded_reg_upper[(ba[i]-start)>>2]=1;
6698           }
6699         } /*else*/ if(1) {
6700           if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
6701           {
6702             // Unconditional branch
6703             u=unneeded_reg[(ba[i]-start)>>2];
6704             uu=unneeded_reg_upper[(ba[i]-start)>>2];
6705             branch_unneeded_reg[i]=u;
6706             branch_unneeded_reg_upper[i]=uu;
6707         //u=1;
6708         //uu=1;
6709         //branch_unneeded_reg[i]=u;
6710         //branch_unneeded_reg_upper[i]=uu;
6711             // Merge in delay slot
6712             tdep=(~uu>>rt1[i+1])&1;
6713             u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6714             uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6715             u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6716             uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6717             uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6718             u|=1;uu|=1;
6719           } else {
6720             // Conditional branch
6721             b=unneeded_reg[(ba[i]-start)>>2];
6722             bu=unneeded_reg_upper[(ba[i]-start)>>2];
6723             branch_unneeded_reg[i]=b;
6724             branch_unneeded_reg_upper[i]=bu;
6725         //b=1;
6726         //bu=1;
6727         //branch_unneeded_reg[i]=b;
6728         //branch_unneeded_reg_upper[i]=bu;
6729             // Branch delay slot
6730             tdep=(~uu>>rt1[i+1])&1;
6731             b|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6732             bu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6733             b&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6734             bu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6735             bu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6736             b|=1;bu|=1;
6737             // If branch is "likely" then we skip the
6738             // delay slot on the fall-thru path
6739             if(likely[i]) {
6740               u=b;
6741               uu=bu;
6742               if(i<slen-1) {
6743                 u&=unneeded_reg[i+2];
6744                 uu&=unneeded_reg_upper[i+2];
6745         //u=1;
6746         //uu=1;
6747               }
6748             } else {
6749               u&=b;
6750               uu&=bu;
6751         //u=1;
6752         //uu=1;
6753             }
6754             if(i<slen-1) {
6755               branch_unneeded_reg[i]&=unneeded_reg[i+2];
6756               branch_unneeded_reg_upper[i]&=unneeded_reg_upper[i+2];
6757         //branch_unneeded_reg[i]=1;
6758         //branch_unneeded_reg_upper[i]=1;
6759             } else {
6760               branch_unneeded_reg[i]=1;
6761               branch_unneeded_reg_upper[i]=1;
6762             }
6763           }
6764         }
6765       }
6766     }
6767     else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
6768     {
6769       // SYSCALL instruction (software interrupt)
6770       u=1;
6771       uu=1;
6772     }
6773     else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
6774     {
6775       // ERET instruction (return from interrupt)
6776       u=1;
6777       uu=1;
6778     }
6779     //u=uu=1; // DEBUG
6780     tdep=(~uu>>rt1[i])&1;
6781     // Written registers are unneeded
6782     u|=1LL<<rt1[i];
6783     u|=1LL<<rt2[i];
6784     uu|=1LL<<rt1[i];
6785     uu|=1LL<<rt2[i];
6786     // Accessed registers are needed
6787     u&=~(1LL<<rs1[i]);
6788     u&=~(1LL<<rs2[i]);
6789     uu&=~(1LL<<us1[i]);
6790     uu&=~(1LL<<us2[i]);
6791     // Source-target dependencies
6792     uu&=~(tdep<<dep1[i]);
6793     uu&=~(tdep<<dep2[i]);
6794     // R0 is always unneeded
6795     u|=1;uu|=1;
6796     // Save it
6797     unneeded_reg[i]=u;
6798     unneeded_reg_upper[i]=uu;
6799     /*
6800     printf("ur (%d,%d) %x: ",istart,iend,start+i*4);
6801     printf("U:");
6802     int r;
6803     for(r=1;r<=CCREG;r++) {
6804       if((unneeded_reg[i]>>r)&1) {
6805         if(r==HIREG) printf(" HI");
6806         else if(r==LOREG) printf(" LO");
6807         else printf(" r%d",r);
6808       }
6809     }
6810     printf(" UU:");
6811     for(r=1;r<=CCREG;r++) {
6812       if(((unneeded_reg_upper[i]&~unneeded_reg[i])>>r)&1) {
6813         if(r==HIREG) printf(" HI");
6814         else if(r==LOREG) printf(" LO");
6815         else printf(" r%d",r);
6816       }
6817     }
6818     printf("\n");*/
6819   }
6820 #ifdef FORCE32
6821   for (i=iend;i>=istart;i--)
6822   {
6823     unneeded_reg_upper[i]=branch_unneeded_reg_upper[i]=-1LL;
6824   }
6825 #endif
6826 }
6827
6828 // Identify registers which are likely to contain 32-bit values
6829 // This is used to predict whether any branches will jump to a
6830 // location with 64-bit values in registers.
6831 static void provisional_32bit()
6832 {
6833   int i,j;
6834   uint64_t is32=1;
6835   uint64_t lastbranch=1;
6836   
6837   for(i=0;i<slen;i++)
6838   {
6839     if(i>0) {
6840       if(itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP) {
6841         if(i>1) is32=lastbranch;
6842         else is32=1;
6843       }
6844     }
6845     if(i>1)
6846     {
6847       if(itype[i-2]==CJUMP||itype[i-2]==SJUMP||itype[i-2]==FJUMP) {
6848         if(likely[i-2]) {
6849           if(i>2) is32=lastbranch;
6850           else is32=1;
6851         }
6852       }
6853       if((opcode[i-2]&0x2f)==0x05) // BNE/BNEL
6854       {
6855         if(rs1[i-2]==0||rs2[i-2]==0)
6856         {
6857           if(rs1[i-2]) {
6858             is32|=1LL<<rs1[i-2];
6859           }
6860           if(rs2[i-2]) {
6861             is32|=1LL<<rs2[i-2];
6862           }
6863         }
6864       }
6865     }
6866     // If something jumps here with 64-bit values
6867     // then promote those registers to 64 bits
6868     if(bt[i])
6869     {
6870       uint64_t temp_is32=is32;
6871       for(j=i-1;j>=0;j--)
6872       {
6873         if(ba[j]==start+i*4) 
6874           //temp_is32&=branch_regs[j].is32;
6875           temp_is32&=p32[j];
6876       }
6877       for(j=i;j<slen;j++)
6878       {
6879         if(ba[j]==start+i*4) 
6880           temp_is32=1;
6881       }
6882       is32=temp_is32;
6883     }
6884     int type=itype[i];
6885     int op=opcode[i];
6886     int op2=opcode2[i];
6887     int rt=rt1[i];
6888     int s1=rs1[i];
6889     int s2=rs2[i];
6890     if(type==UJUMP||type==RJUMP||type==CJUMP||type==SJUMP||type==FJUMP) {
6891       // Branches don't write registers, consider the delay slot instead.
6892       type=itype[i+1];
6893       op=opcode[i+1];
6894       op2=opcode2[i+1];
6895       rt=rt1[i+1];
6896       s1=rs1[i+1];
6897       s2=rs2[i+1];
6898       lastbranch=is32;
6899     }
6900     switch(type) {
6901       case LOAD:
6902         if(opcode[i]==0x27||opcode[i]==0x37|| // LWU/LD
6903            opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
6904           is32&=~(1LL<<rt);
6905         else
6906           is32|=1LL<<rt;
6907         break;
6908       case STORE:
6909       case STORELR:
6910         break;
6911       case LOADLR:
6912         if(op==0x1a||op==0x1b) is32&=~(1LL<<rt); // LDR/LDL
6913         if(op==0x22) is32|=1LL<<rt; // LWL
6914         break;
6915       case IMM16:
6916         if (op==0x08||op==0x09|| // ADDI/ADDIU
6917             op==0x0a||op==0x0b|| // SLTI/SLTIU
6918             op==0x0c|| // ANDI
6919             op==0x0f)  // LUI
6920         {
6921           is32|=1LL<<rt;
6922         }
6923         if(op==0x18||op==0x19) { // DADDI/DADDIU
6924           is32&=~(1LL<<rt);
6925           //if(imm[i]==0)
6926           //  is32|=((is32>>s1)&1LL)<<rt;
6927         }
6928         if(op==0x0d||op==0x0e) { // ORI/XORI
6929           uint64_t sr=((is32>>s1)&1LL);
6930           is32&=~(1LL<<rt);
6931           is32|=sr<<rt;
6932         }
6933         break;
6934       case UJUMP:
6935         break;
6936       case RJUMP:
6937         break;
6938       case CJUMP:
6939         break;
6940       case SJUMP:
6941         break;
6942       case FJUMP:
6943         break;
6944       case ALU:
6945         if(op2>=0x20&&op2<=0x23) { // ADD/ADDU/SUB/SUBU
6946           is32|=1LL<<rt;
6947         }
6948         if(op2==0x2a||op2==0x2b) { // SLT/SLTU
6949           is32|=1LL<<rt;
6950         }
6951         else if(op2>=0x24&&op2<=0x27) { // AND/OR/XOR/NOR
6952           uint64_t sr=((is32>>s1)&(is32>>s2)&1LL);
6953           is32&=~(1LL<<rt);
6954           is32|=sr<<rt;
6955         }
6956         else if(op2>=0x2c&&op2<=0x2d) { // DADD/DADDU
6957           if(s1==0&&s2==0) {
6958             is32|=1LL<<rt;
6959           }
6960           else if(s2==0) {
6961             uint64_t sr=((is32>>s1)&1LL);
6962             is32&=~(1LL<<rt);
6963             is32|=sr<<rt;
6964           }
6965           else if(s1==0) {
6966             uint64_t sr=((is32>>s2)&1LL);
6967             is32&=~(1LL<<rt);
6968             is32|=sr<<rt;
6969           }
6970           else {
6971             is32&=~(1LL<<rt);
6972           }
6973         }
6974         else if(op2>=0x2e&&op2<=0x2f) { // DSUB/DSUBU
6975           if(s1==0&&s2==0) {
6976             is32|=1LL<<rt;
6977           }
6978           else if(s2==0) {
6979             uint64_t sr=((is32>>s1)&1LL);
6980             is32&=~(1LL<<rt);
6981             is32|=sr<<rt;
6982           }
6983           else {
6984             is32&=~(1LL<<rt);
6985           }
6986         }
6987         break;
6988       case MULTDIV:
6989         if (op2>=0x1c&&op2<=0x1f) { // DMULT/DMULTU/DDIV/DDIVU
6990           is32&=~((1LL<<HIREG)|(1LL<<LOREG));
6991         }
6992         else {
6993           is32|=(1LL<<HIREG)|(1LL<<LOREG);
6994         }
6995         break;
6996       case MOV:
6997         {
6998           uint64_t sr=((is32>>s1)&1LL);
6999           is32&=~(1LL<<rt);
7000           is32|=sr<<rt;
7001         }
7002         break;
7003       case SHIFT:
7004         if(op2>=0x14&&op2<=0x17) is32&=~(1LL<<rt); // DSLLV/DSRLV/DSRAV
7005         else is32|=1LL<<rt; // SLLV/SRLV/SRAV
7006         break;
7007       case SHIFTIMM:
7008         is32|=1LL<<rt;
7009         // DSLL/DSRL/DSRA/DSLL32/DSRL32 but not DSRA32 have 64-bit result
7010         if(op2>=0x38&&op2<0x3f) is32&=~(1LL<<rt);
7011         break;
7012       case COP0:
7013         if(op2==0) is32|=1LL<<rt; // MFC0
7014         break;
7015       case COP1:
7016       case COP2:
7017         if(op2==0) is32|=1LL<<rt; // MFC1
7018         if(op2==1) is32&=~(1LL<<rt); // DMFC1
7019         if(op2==2) is32|=1LL<<rt; // CFC1
7020         break;
7021       case C1LS:
7022       case C2LS:
7023         break;
7024       case FLOAT:
7025       case FCONV:
7026         break;
7027       case FCOMP:
7028         break;
7029       case C2OP:
7030       case SYSCALL:
7031       case HLECALL:
7032         break;
7033       default:
7034         break;
7035     }
7036     is32|=1;
7037     p32[i]=is32;
7038
7039     if(i>0)
7040     {
7041       if(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)
7042       {
7043         if(rt1[i-1]==31) // JAL/JALR
7044         {
7045           // Subroutine call will return here, don't alloc any registers
7046           is32=1;
7047         }
7048         else if(i+1<slen)
7049         {
7050           // Internal branch will jump here, match registers to caller
7051           is32=0x3FFFFFFFFLL;
7052         }
7053       }
7054     }
7055   }
7056 }
7057
7058 // Identify registers which may be assumed to contain 32-bit values
7059 // and where optimizations will rely on this.
7060 // This is used to determine whether backward branches can safely
7061 // jump to a location with 64-bit values in registers.
7062 static void provisional_r32()
7063 {
7064   u_int r32=0;
7065   int i;
7066   
7067   for (i=slen-1;i>=0;i--)
7068   {
7069     int hr;
7070     if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
7071     {
7072       if(ba[i]<start || ba[i]>=(start+slen*4))
7073       {
7074         // Branch out of this block, don't need anything
7075         r32=0;
7076       }
7077       else
7078       {
7079         // Internal branch
7080         // Need whatever matches the target
7081         // (and doesn't get overwritten by the delay slot instruction)
7082         r32=0;
7083         int t=(ba[i]-start)>>2;
7084         if(ba[i]>start+i*4) {
7085           // Forward branch
7086           //if(!(requires_32bit[t]&~regs[i].was32))
7087           //  r32|=requires_32bit[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
7088           if(!(pr32[t]&~regs[i].was32))
7089             r32|=pr32[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
7090         }else{
7091           // Backward branch
7092           if(!(regs[t].was32&~unneeded_reg_upper[t]&~regs[i].was32))
7093             r32|=regs[t].was32&~unneeded_reg_upper[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
7094         }
7095       }
7096       // Conditional branch may need registers for following instructions
7097       if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
7098       {
7099         if(i<slen-2) {
7100           //r32|=requires_32bit[i+2];
7101           r32|=pr32[i+2];
7102           r32&=regs[i].was32;
7103           // Mark this address as a branch target since it may be called
7104           // upon return from interrupt
7105           //bt[i+2]=1;
7106         }
7107       }
7108       // Merge in delay slot
7109       if(!likely[i]) {
7110         // These are overwritten unless the branch is "likely"
7111         // and the delay slot is nullified if not taken
7112         r32&=~(1LL<<rt1[i+1]);
7113         r32&=~(1LL<<rt2[i+1]);
7114       }
7115       // Assume these are needed (delay slot)
7116       if(us1[i+1]>0)
7117       {
7118         if((regs[i].was32>>us1[i+1])&1) r32|=1LL<<us1[i+1];
7119       }
7120       if(us2[i+1]>0)
7121       {
7122         if((regs[i].was32>>us2[i+1])&1) r32|=1LL<<us2[i+1];
7123       }
7124       if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1))
7125       {
7126         if((regs[i].was32>>dep1[i+1])&1) r32|=1LL<<dep1[i+1];
7127       }
7128       if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1))
7129       {
7130         if((regs[i].was32>>dep2[i+1])&1) r32|=1LL<<dep2[i+1];
7131       }
7132     }
7133     else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
7134     {
7135       // SYSCALL instruction (software interrupt)
7136       r32=0;
7137     }
7138     else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
7139     {
7140       // ERET instruction (return from interrupt)
7141       r32=0;
7142     }
7143     // Check 32 bits
7144     r32&=~(1LL<<rt1[i]);
7145     r32&=~(1LL<<rt2[i]);
7146     if(us1[i]>0)
7147     {
7148       if((regs[i].was32>>us1[i])&1) r32|=1LL<<us1[i];
7149     }
7150     if(us2[i]>0)
7151     {
7152       if((regs[i].was32>>us2[i])&1) r32|=1LL<<us2[i];
7153     }
7154     if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1))
7155     {
7156       if((regs[i].was32>>dep1[i])&1) r32|=1LL<<dep1[i];
7157     }
7158     if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1))
7159     {
7160       if((regs[i].was32>>dep2[i])&1) r32|=1LL<<dep2[i];
7161     }
7162     //requires_32bit[i]=r32;
7163     pr32[i]=r32;
7164     
7165     // Dirty registers which are 32-bit, require 32-bit input
7166     // as they will be written as 32-bit values
7167     for(hr=0;hr<HOST_REGS;hr++)
7168     {
7169       if(regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64) {
7170         if((regs[i].was32>>regs[i].regmap_entry[hr])&(regs[i].wasdirty>>hr)&1) {
7171           if(!((unneeded_reg_upper[i]>>regs[i].regmap_entry[hr])&1))
7172           pr32[i]|=1LL<<regs[i].regmap_entry[hr];
7173           //requires_32bit[i]|=1LL<<regs[i].regmap_entry[hr];
7174         }
7175       }
7176     }
7177   }
7178 }
7179
7180 // Write back dirty registers as soon as we will no longer modify them,
7181 // so that we don't end up with lots of writes at the branches.
7182 void clean_registers(int istart,int iend,int wr)
7183 {
7184   int i;
7185   int r;
7186   u_int will_dirty_i,will_dirty_next,temp_will_dirty;
7187   u_int wont_dirty_i,wont_dirty_next,temp_wont_dirty;
7188   if(iend==slen-1) {
7189     will_dirty_i=will_dirty_next=0;
7190     wont_dirty_i=wont_dirty_next=0;
7191   }else{
7192     will_dirty_i=will_dirty_next=will_dirty[iend+1];
7193     wont_dirty_i=wont_dirty_next=wont_dirty[iend+1];
7194   }
7195   for (i=iend;i>=istart;i--)
7196   {
7197     if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
7198     {
7199       if(ba[i]<start || ba[i]>=(start+slen*4))
7200       {
7201         // Branch out of this block, flush all regs
7202         if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
7203         {
7204           // Unconditional branch
7205           will_dirty_i=0;
7206           wont_dirty_i=0;
7207           // Merge in delay slot (will dirty)
7208           for(r=0;r<HOST_REGS;r++) {
7209             if(r!=EXCLUDE_REG) {
7210               if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7211               if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7212               if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7213               if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7214               if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7215               if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7216               if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7217               if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7218               if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7219               if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7220               if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7221               if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7222               if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7223               if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7224             }
7225           }
7226         }
7227         else
7228         {
7229           // Conditional branch
7230           will_dirty_i=0;
7231           wont_dirty_i=wont_dirty_next;
7232           // Merge in delay slot (will dirty)
7233           for(r=0;r<HOST_REGS;r++) {
7234             if(r!=EXCLUDE_REG) {
7235               if(!likely[i]) {
7236                 // Might not dirty if likely branch is not taken
7237                 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7238                 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7239                 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7240                 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7241                 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7242                 if(branch_regs[i].regmap[r]==0) will_dirty_i&=~(1<<r);
7243                 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7244                 //if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7245                 //if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7246                 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7247                 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7248                 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7249                 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7250                 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7251               }
7252             }
7253           }
7254         }
7255         // Merge in delay slot (wont dirty)
7256         for(r=0;r<HOST_REGS;r++) {
7257           if(r!=EXCLUDE_REG) {
7258             if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7259             if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7260             if((regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7261             if((regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7262             if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7263             if((branch_regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7264             if((branch_regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7265             if((branch_regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7266             if((branch_regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7267             if(branch_regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7268           }
7269         }
7270         if(wr) {
7271           #ifndef DESTRUCTIVE_WRITEBACK
7272           branch_regs[i].dirty&=wont_dirty_i;
7273           #endif
7274           branch_regs[i].dirty|=will_dirty_i;
7275         }
7276       }
7277       else
7278       {
7279         // Internal branch
7280         if(ba[i]<=start+i*4) {
7281           // Backward branch
7282           if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
7283           {
7284             // Unconditional branch
7285             temp_will_dirty=0;
7286             temp_wont_dirty=0;
7287             // Merge in delay slot (will dirty)
7288             for(r=0;r<HOST_REGS;r++) {
7289               if(r!=EXCLUDE_REG) {
7290                 if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7291                 if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7292                 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7293                 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7294                 if((branch_regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7295                 if(branch_regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
7296                 if(branch_regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7297                 if((regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7298                 if((regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7299                 if((regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7300                 if((regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7301                 if((regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7302                 if(regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
7303                 if(regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7304               }
7305             }
7306           } else {
7307             // Conditional branch (not taken case)
7308             temp_will_dirty=will_dirty_next;
7309             temp_wont_dirty=wont_dirty_next;
7310             // Merge in delay slot (will dirty)
7311             for(r=0;r<HOST_REGS;r++) {
7312               if(r!=EXCLUDE_REG) {
7313                 if(!likely[i]) {
7314                   // Will not dirty if likely branch is not taken
7315                   if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7316                   if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7317                   if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7318                   if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7319                   if((branch_regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7320                   if(branch_regs[i].regmap[r]==0) temp_will_dirty&=~(1<<r);
7321                   if(branch_regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7322                   //if((regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7323                   //if((regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7324                   if((regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7325                   if((regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7326                   if((regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7327                   if(regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
7328                   if(regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7329                 }
7330               }
7331             }
7332           }
7333           // Merge in delay slot (wont dirty)
7334           for(r=0;r<HOST_REGS;r++) {
7335             if(r!=EXCLUDE_REG) {
7336               if((regs[i].regmap[r]&63)==rt1[i]) temp_wont_dirty|=1<<r;
7337               if((regs[i].regmap[r]&63)==rt2[i]) temp_wont_dirty|=1<<r;
7338               if((regs[i].regmap[r]&63)==rt1[i+1]) temp_wont_dirty|=1<<r;
7339               if((regs[i].regmap[r]&63)==rt2[i+1]) temp_wont_dirty|=1<<r;
7340               if(regs[i].regmap[r]==CCREG) temp_wont_dirty|=1<<r;
7341               if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_wont_dirty|=1<<r;
7342               if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_wont_dirty|=1<<r;
7343               if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_wont_dirty|=1<<r;
7344               if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_wont_dirty|=1<<r;
7345               if(branch_regs[i].regmap[r]==CCREG) temp_wont_dirty|=1<<r;
7346             }
7347           }
7348           // Deal with changed mappings
7349           if(i<iend) {
7350             for(r=0;r<HOST_REGS;r++) {
7351               if(r!=EXCLUDE_REG) {
7352                 if(regs[i].regmap[r]!=regmap_pre[i][r]) {
7353                   temp_will_dirty&=~(1<<r);
7354                   temp_wont_dirty&=~(1<<r);
7355                   if((regmap_pre[i][r]&63)>0 && (regmap_pre[i][r]&63)<34) {
7356                     temp_will_dirty|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7357                     temp_wont_dirty|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7358                   } else {
7359                     temp_will_dirty|=1<<r;
7360                     temp_wont_dirty|=1<<r;
7361                   }
7362                 }
7363               }
7364             }
7365           }
7366           if(wr) {
7367             will_dirty[i]=temp_will_dirty;
7368             wont_dirty[i]=temp_wont_dirty;
7369             clean_registers((ba[i]-start)>>2,i-1,0);
7370           }else{
7371             // Limit recursion.  It can take an excessive amount
7372             // of time if there are a lot of nested loops.
7373             will_dirty[(ba[i]-start)>>2]=0;
7374             wont_dirty[(ba[i]-start)>>2]=-1;
7375           }
7376         }
7377         /*else*/ if(1)
7378         {
7379           if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
7380           {
7381             // Unconditional branch
7382             will_dirty_i=0;
7383             wont_dirty_i=0;
7384           //if(ba[i]>start+i*4) { // Disable recursion (for debugging)
7385             for(r=0;r<HOST_REGS;r++) {
7386               if(r!=EXCLUDE_REG) {
7387                 if(branch_regs[i].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
7388                   will_dirty_i|=will_dirty[(ba[i]-start)>>2]&(1<<r);
7389                   wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
7390                 }
7391               }
7392             }
7393           //}
7394             // Merge in delay slot
7395             for(r=0;r<HOST_REGS;r++) {
7396               if(r!=EXCLUDE_REG) {
7397                 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7398                 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7399                 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7400                 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7401                 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7402                 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7403                 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7404                 if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7405                 if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7406                 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7407                 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7408                 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7409                 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7410                 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7411               }
7412             }
7413           } else {
7414             // Conditional branch
7415             will_dirty_i=will_dirty_next;
7416             wont_dirty_i=wont_dirty_next;
7417           //if(ba[i]>start+i*4) { // Disable recursion (for debugging)
7418             for(r=0;r<HOST_REGS;r++) {
7419               if(r!=EXCLUDE_REG) {
7420                 if(branch_regs[i].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
7421                   will_dirty_i&=will_dirty[(ba[i]-start)>>2]&(1<<r);
7422                   wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
7423                 }
7424                 else
7425                 {
7426                   will_dirty_i&=~(1<<r);
7427                 }
7428                 // Treat delay slot as part of branch too
7429                 /*if(regs[i+1].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
7430                   will_dirty[i+1]&=will_dirty[(ba[i]-start)>>2]&(1<<r);
7431                   wont_dirty[i+1]|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
7432                 }
7433                 else
7434                 {
7435                   will_dirty[i+1]&=~(1<<r);
7436                 }*/
7437               }
7438             }
7439           //}
7440             // Merge in delay slot
7441             for(r=0;r<HOST_REGS;r++) {
7442               if(r!=EXCLUDE_REG) {
7443                 if(!likely[i]) {
7444                   // Might not dirty if likely branch is not taken
7445                   if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7446                   if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7447                   if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7448                   if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7449                   if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7450                   if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7451                   if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7452                   //if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7453                   //if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7454                   if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7455                   if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7456                   if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7457                   if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7458                   if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7459                 }
7460               }
7461             }
7462           }
7463           // Merge in delay slot
7464           for(r=0;r<HOST_REGS;r++) {
7465             if(r!=EXCLUDE_REG) {
7466               if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7467               if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7468               if((regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7469               if((regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7470               if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7471               if((branch_regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7472               if((branch_regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7473               if((branch_regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7474               if((branch_regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7475               if(branch_regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7476             }
7477           }
7478           if(wr) {
7479             #ifndef DESTRUCTIVE_WRITEBACK
7480             branch_regs[i].dirty&=wont_dirty_i;
7481             #endif
7482             branch_regs[i].dirty|=will_dirty_i;
7483           }
7484         }
7485       }
7486     }
7487     else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
7488     {
7489       // SYSCALL instruction (software interrupt)
7490       will_dirty_i=0;
7491       wont_dirty_i=0;
7492     }
7493     else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
7494     {
7495       // ERET instruction (return from interrupt)
7496       will_dirty_i=0;
7497       wont_dirty_i=0;
7498     }
7499     will_dirty_next=will_dirty_i;
7500     wont_dirty_next=wont_dirty_i;
7501     for(r=0;r<HOST_REGS;r++) {
7502       if(r!=EXCLUDE_REG) {
7503         if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7504         if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7505         if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7506         if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7507         if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7508         if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7509         if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7510         if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7511         if(i>istart) {
7512           if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=FJUMP) 
7513           {
7514             // Don't store a register immediately after writing it,
7515             // may prevent dual-issue.
7516             if((regs[i].regmap[r]&63)==rt1[i-1]) wont_dirty_i|=1<<r;
7517             if((regs[i].regmap[r]&63)==rt2[i-1]) wont_dirty_i|=1<<r;
7518           }
7519         }
7520       }
7521     }
7522     // Save it
7523     will_dirty[i]=will_dirty_i;
7524     wont_dirty[i]=wont_dirty_i;
7525     // Mark registers that won't be dirtied as not dirty
7526     if(wr) {
7527       /*printf("wr (%d,%d) %x will:",istart,iend,start+i*4);
7528       for(r=0;r<HOST_REGS;r++) {
7529         if((will_dirty_i>>r)&1) {
7530           printf(" r%d",r);
7531         }
7532       }
7533       printf("\n");*/
7534
7535       //if(i==istart||(itype[i-1]!=RJUMP&&itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=FJUMP)) {
7536         regs[i].dirty|=will_dirty_i;
7537         #ifndef DESTRUCTIVE_WRITEBACK
7538         regs[i].dirty&=wont_dirty_i;
7539         if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
7540         {
7541           if(i<iend-1&&itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000) {
7542             for(r=0;r<HOST_REGS;r++) {
7543               if(r!=EXCLUDE_REG) {
7544                 if(regs[i].regmap[r]==regmap_pre[i+2][r]) {
7545                   regs[i+2].wasdirty&=wont_dirty_i|~(1<<r);
7546                 }else {/*printf("i: %x (%d) mismatch(+2): %d\n",start+i*4,i,r);/*assert(!((wont_dirty_i>>r)&1));*/}
7547               }
7548             }
7549           }
7550         }
7551         else
7552         {
7553           if(i<iend) {
7554             for(r=0;r<HOST_REGS;r++) {
7555               if(r!=EXCLUDE_REG) {
7556                 if(regs[i].regmap[r]==regmap_pre[i+1][r]) {
7557                   regs[i+1].wasdirty&=wont_dirty_i|~(1<<r);
7558                 }else {/*printf("i: %x (%d) mismatch(+1): %d\n",start+i*4,i,r);/*assert(!((wont_dirty_i>>r)&1));*/}
7559               }
7560             }
7561           }
7562         }
7563         #endif
7564       //}
7565     }
7566     // Deal with changed mappings
7567     temp_will_dirty=will_dirty_i;
7568     temp_wont_dirty=wont_dirty_i;
7569     for(r=0;r<HOST_REGS;r++) {
7570       if(r!=EXCLUDE_REG) {
7571         int nr;
7572         if(regs[i].regmap[r]==regmap_pre[i][r]) {
7573           if(wr) {
7574             #ifndef DESTRUCTIVE_WRITEBACK
7575             regs[i].wasdirty&=wont_dirty_i|~(1<<r);
7576             #endif
7577             regs[i].wasdirty|=will_dirty_i&(1<<r);
7578           }
7579         }
7580         else if((nr=get_reg(regs[i].regmap,regmap_pre[i][r]))>=0) {
7581           // Register moved to a different register
7582           will_dirty_i&=~(1<<r);
7583           wont_dirty_i&=~(1<<r);
7584           will_dirty_i|=((temp_will_dirty>>nr)&1)<<r;
7585           wont_dirty_i|=((temp_wont_dirty>>nr)&1)<<r;
7586           if(wr) {
7587             #ifndef DESTRUCTIVE_WRITEBACK
7588             regs[i].wasdirty&=wont_dirty_i|~(1<<r);
7589             #endif
7590             regs[i].wasdirty|=will_dirty_i&(1<<r);
7591           }
7592         }
7593         else {
7594           will_dirty_i&=~(1<<r);
7595           wont_dirty_i&=~(1<<r);
7596           if((regmap_pre[i][r]&63)>0 && (regmap_pre[i][r]&63)<34) {
7597             will_dirty_i|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7598             wont_dirty_i|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7599           } else {
7600             wont_dirty_i|=1<<r;
7601             /*printf("i: %x (%d) mismatch: %d\n",start+i*4,i,r);/*assert(!((will_dirty>>r)&1));*/
7602           }
7603         }
7604       }
7605     }
7606   }
7607 }
7608
7609   /* disassembly */
7610 void disassemble_inst(int i)
7611 {
7612     if (bt[i]) printf("*"); else printf(" ");
7613     switch(itype[i]) {
7614       case UJUMP:
7615         printf (" %x: %s %8x\n",start+i*4,insn[i],ba[i]);break;
7616       case CJUMP:
7617         printf (" %x: %s r%d,r%d,%8x\n",start+i*4,insn[i],rs1[i],rs2[i],i?start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14):*ba);break;
7618       case SJUMP:
7619         printf (" %x: %s r%d,%8x\n",start+i*4,insn[i],rs1[i],start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14));break;
7620       case FJUMP:
7621         printf (" %x: %s %8x\n",start+i*4,insn[i],ba[i]);break;
7622       case RJUMP:
7623         if (opcode[i]==0x9&&rt1[i]!=31)
7624           printf (" %x: %s r%d,r%d\n",start+i*4,insn[i],rt1[i],rs1[i]);
7625         else
7626           printf (" %x: %s r%d\n",start+i*4,insn[i],rs1[i]);
7627         break;
7628       case SPAN:
7629         printf (" %x: %s (pagespan) r%d,r%d,%8x\n",start+i*4,insn[i],rs1[i],rs2[i],ba[i]);break;
7630       case IMM16:
7631         if(opcode[i]==0xf) //LUI
7632           printf (" %x: %s r%d,%4x0000\n",start+i*4,insn[i],rt1[i],imm[i]&0xffff);
7633         else
7634           printf (" %x: %s r%d,r%d,%d\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
7635         break;
7636       case LOAD:
7637       case LOADLR:
7638         printf (" %x: %s r%d,r%d+%x\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
7639         break;
7640       case STORE:
7641       case STORELR:
7642         printf (" %x: %s r%d,r%d+%x\n",start+i*4,insn[i],rs2[i],rs1[i],imm[i]);
7643         break;
7644       case ALU:
7645       case SHIFT:
7646         printf (" %x: %s r%d,r%d,r%d\n",start+i*4,insn[i],rt1[i],rs1[i],rs2[i]);
7647         break;
7648       case MULTDIV:
7649         printf (" %x: %s r%d,r%d\n",start+i*4,insn[i],rs1[i],rs2[i]);
7650         break;
7651       case SHIFTIMM:
7652         printf (" %x: %s r%d,r%d,%d\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
7653         break;
7654       case MOV:
7655         if((opcode2[i]&0x1d)==0x10)
7656           printf (" %x: %s r%d\n",start+i*4,insn[i],rt1[i]);
7657         else if((opcode2[i]&0x1d)==0x11)
7658           printf (" %x: %s r%d\n",start+i*4,insn[i],rs1[i]);
7659         else
7660           printf (" %x: %s\n",start+i*4,insn[i]);
7661         break;
7662       case COP0:
7663         if(opcode2[i]==0)
7664           printf (" %x: %s r%d,cpr0[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC0
7665         else if(opcode2[i]==4)
7666           printf (" %x: %s r%d,cpr0[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC0
7667         else printf (" %x: %s\n",start+i*4,insn[i]);
7668         break;
7669       case COP1:
7670         if(opcode2[i]<3)
7671           printf (" %x: %s r%d,cpr1[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC1
7672         else if(opcode2[i]>3)
7673           printf (" %x: %s r%d,cpr1[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC1
7674         else printf (" %x: %s\n",start+i*4,insn[i]);
7675         break;
7676       case COP2:
7677         if(opcode2[i]<3)
7678           printf (" %x: %s r%d,cpr2[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC2
7679         else if(opcode2[i]>3)
7680           printf (" %x: %s r%d,cpr2[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC2
7681         else printf (" %x: %s\n",start+i*4,insn[i]);
7682         break;
7683       case C1LS:
7684         printf (" %x: %s cpr1[%d],r%d+%x\n",start+i*4,insn[i],(source[i]>>16)&0x1f,rs1[i],imm[i]);
7685         break;
7686       case C2LS:
7687         printf (" %x: %s cpr2[%d],r%d+%x\n",start+i*4,insn[i],(source[i]>>16)&0x1f,rs1[i],imm[i]);
7688         break;
7689       case INTCALL:
7690         printf (" %x: %s (INTCALL)\n",start+i*4,insn[i]);
7691         break;
7692       default:
7693         //printf (" %s %8x\n",insn[i],source[i]);
7694         printf (" %x: %s\n",start+i*4,insn[i]);
7695     }
7696 }
7697
7698 void new_dynarec_init()
7699 {
7700   printf("Init new dynarec\n");
7701   out=(u_char *)BASE_ADDR;
7702   if (mmap (out, 1<<TARGET_SIZE_2,
7703             PROT_READ | PROT_WRITE | PROT_EXEC,
7704             MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS,
7705             -1, 0) <= 0) {printf("mmap() failed\n");}
7706 #ifdef MUPEN64
7707   rdword=&readmem_dword;
7708   fake_pc.f.r.rs=&readmem_dword;
7709   fake_pc.f.r.rt=&readmem_dword;
7710   fake_pc.f.r.rd=&readmem_dword;
7711 #endif
7712   int n;
7713   for(n=0x80000;n<0x80800;n++)
7714     invalid_code[n]=1;
7715   for(n=0;n<65536;n++)
7716     hash_table[n][0]=hash_table[n][2]=-1;
7717   memset(mini_ht,-1,sizeof(mini_ht));
7718   memset(restore_candidate,0,sizeof(restore_candidate));
7719   copy=shadow;
7720   expirep=16384; // Expiry pointer, +2 blocks
7721   pending_exception=0;
7722   literalcount=0;
7723 #ifdef HOST_IMM8
7724   // Copy this into local area so we don't have to put it in every literal pool
7725   invc_ptr=invalid_code;
7726 #endif
7727   stop_after_jal=0;
7728   // TLB
7729   using_tlb=0;
7730   for(n=0;n<524288;n++) // 0 .. 0x7FFFFFFF
7731     memory_map[n]=-1;
7732   for(n=524288;n<526336;n++) // 0x80000000 .. 0x807FFFFF
7733     memory_map[n]=((u_int)rdram-0x80000000)>>2;
7734   for(n=526336;n<1048576;n++) // 0x80800000 .. 0xFFFFFFFF
7735     memory_map[n]=-1;
7736 #ifdef MUPEN64
7737   for(n=0;n<0x8000;n++) { // 0 .. 0x7FFFFFFF
7738     writemem[n] = write_nomem_new;
7739     writememb[n] = write_nomemb_new;
7740     writememh[n] = write_nomemh_new;
7741 #ifndef FORCE32
7742     writememd[n] = write_nomemd_new;
7743 #endif
7744     readmem[n] = read_nomem_new;
7745     readmemb[n] = read_nomemb_new;
7746     readmemh[n] = read_nomemh_new;
7747 #ifndef FORCE32
7748     readmemd[n] = read_nomemd_new;
7749 #endif
7750   }
7751   for(n=0x8000;n<0x8080;n++) { // 0x80000000 .. 0x807FFFFF
7752     writemem[n] = write_rdram_new;
7753     writememb[n] = write_rdramb_new;
7754     writememh[n] = write_rdramh_new;
7755 #ifndef FORCE32
7756     writememd[n] = write_rdramd_new;
7757 #endif
7758   }
7759   for(n=0xC000;n<0x10000;n++) { // 0xC0000000 .. 0xFFFFFFFF
7760     writemem[n] = write_nomem_new;
7761     writememb[n] = write_nomemb_new;
7762     writememh[n] = write_nomemh_new;
7763 #ifndef FORCE32
7764     writememd[n] = write_nomemd_new;
7765 #endif
7766     readmem[n] = read_nomem_new;
7767     readmemb[n] = read_nomemb_new;
7768     readmemh[n] = read_nomemh_new;
7769 #ifndef FORCE32
7770     readmemd[n] = read_nomemd_new;
7771 #endif
7772   }
7773 #endif
7774   tlb_hacks();
7775   arch_init();
7776 }
7777
7778 void new_dynarec_cleanup()
7779 {
7780   int n;
7781   if (munmap ((void *)BASE_ADDR, 1<<TARGET_SIZE_2) < 0) {printf("munmap() failed\n");}
7782   for(n=0;n<4096;n++) ll_clear(jump_in+n);
7783   for(n=0;n<4096;n++) ll_clear(jump_out+n);
7784   for(n=0;n<4096;n++) ll_clear(jump_dirty+n);
7785   #ifdef ROM_COPY
7786   if (munmap (ROM_COPY, 67108864) < 0) {printf("munmap() failed\n");}
7787   #endif
7788 }
7789
7790 int new_recompile_block(int addr)
7791 {
7792 /*
7793   if(addr==0x800cd050) {
7794     int block;
7795     for(block=0x80000;block<0x80800;block++) invalidate_block(block);
7796     int n;
7797     for(n=0;n<=2048;n++) ll_clear(jump_dirty+n);
7798   }
7799 */
7800   //if(Count==365117028) tracedebug=1;
7801   assem_debug("NOTCOMPILED: addr = %x -> %x\n", (int)addr, (int)out);
7802   //printf("NOTCOMPILED: addr = %x -> %x\n", (int)addr, (int)out);
7803   //printf("TRACE: count=%d next=%d (compile %x)\n",Count,next_interupt,addr);
7804   //if(debug) 
7805   //printf("TRACE: count=%d next=%d (checksum %x)\n",Count,next_interupt,mchecksum());
7806   //printf("fpu mapping=%x enabled=%x\n",(Status & 0x04000000)>>26,(Status & 0x20000000)>>29);
7807   /*if(Count>=312978186) {
7808     rlist();
7809   }*/
7810   //rlist();
7811   start = (u_int)addr&~3;
7812   //assert(((u_int)addr&1)==0);
7813 #ifdef PCSX
7814   if (Config.HLE && start == 0x80001000) // hlecall
7815   {
7816     // XXX: is this enough? Maybe check hleSoftCall?
7817     u_int beginning=(u_int)out;
7818     u_int page=get_page(start);
7819     invalid_code[start>>12]=0;
7820     emit_movimm(start,0);
7821     emit_writeword(0,(int)&pcaddr);
7822     emit_jmp((int)new_dyna_leave);
7823 #ifdef __arm__
7824     __clear_cache((void *)beginning,out);
7825 #endif
7826     ll_add(jump_in+page,start,(void *)beginning);
7827     return 0;
7828   }
7829   else if ((u_int)addr < 0x00200000 ||
7830     (0xa0000000 <= addr && addr < 0xa0200000)) {
7831     // used for BIOS calls mostly?
7832     source = (u_int *)((u_int)rdram+(start&0x1fffff));
7833     pagelimit = (addr&0xa0000000)|0x00200000;
7834   }
7835   else if (!Config.HLE && (
7836 /*    (0x9fc00000 <= addr && addr < 0x9fc80000) ||*/
7837     (0xbfc00000 <= addr && addr < 0xbfc80000))) {
7838     // BIOS
7839     source = (u_int *)((u_int)psxR+(start&0x7ffff));
7840     pagelimit = (addr&0xfff00000)|0x80000;
7841   }
7842   else
7843 #endif
7844 #ifdef MUPEN64
7845   if ((int)addr >= 0xa4000000 && (int)addr < 0xa4001000) {
7846     source = (u_int *)((u_int)SP_DMEM+start-0xa4000000);
7847     pagelimit = 0xa4001000;
7848   }
7849   else
7850 #endif
7851   if ((int)addr >= 0x80000000 && (int)addr < 0x80000000+RAM_SIZE) {
7852     source = (u_int *)((u_int)rdram+start-0x80000000);
7853     pagelimit = 0x80000000+RAM_SIZE;
7854   }
7855 #ifndef DISABLE_TLB
7856   else if ((signed int)addr >= (signed int)0xC0000000) {
7857     //printf("addr=%x mm=%x\n",(u_int)addr,(memory_map[start>>12]<<2));
7858     //if(tlb_LUT_r[start>>12])
7859       //source = (u_int *)(((int)rdram)+(tlb_LUT_r[start>>12]&0xFFFFF000)+(((int)addr)&0xFFF)-0x80000000);
7860     if((signed int)memory_map[start>>12]>=0) {
7861       source = (u_int *)((u_int)(start+(memory_map[start>>12]<<2)));
7862       pagelimit=(start+4096)&0xFFFFF000;
7863       int map=memory_map[start>>12];
7864       int i;
7865       for(i=0;i<5;i++) {
7866         //printf("start: %x next: %x\n",map,memory_map[pagelimit>>12]);
7867         if((map&0xBFFFFFFF)==(memory_map[pagelimit>>12]&0xBFFFFFFF)) pagelimit+=4096;
7868       }
7869       assem_debug("pagelimit=%x\n",pagelimit);
7870       assem_debug("mapping=%x (%x)\n",memory_map[start>>12],(memory_map[start>>12]<<2)+start);
7871     }
7872     else {
7873       assem_debug("Compile at unmapped memory address: %x \n", (int)addr);
7874       //assem_debug("start: %x next: %x\n",memory_map[start>>12],memory_map[(start+4096)>>12]);
7875       return -1; // Caller will invoke exception handler
7876     }
7877     //printf("source= %x\n",(int)source);
7878   }
7879 #endif
7880   else {
7881     printf("Compile at bogus memory address: %x \n", (int)addr);
7882     exit(1);
7883   }
7884
7885   /* Pass 1: disassemble */
7886   /* Pass 2: register dependencies, branch targets */
7887   /* Pass 3: register allocation */
7888   /* Pass 4: branch dependencies */
7889   /* Pass 5: pre-alloc */
7890   /* Pass 6: optimize clean/dirty state */
7891   /* Pass 7: flag 32-bit registers */
7892   /* Pass 8: assembly */
7893   /* Pass 9: linker */
7894   /* Pass 10: garbage collection / free memory */
7895
7896   int i,j;
7897   int done=0;
7898   unsigned int type,op,op2;
7899
7900   //printf("addr = %x source = %x %x\n", addr,source,source[0]);
7901   
7902   /* Pass 1 disassembly */
7903
7904   for(i=0;!done;i++) {
7905     bt[i]=0;likely[i]=0;ooo[i]=0;op2=0;
7906     minimum_free_regs[i]=0;
7907     opcode[i]=op=source[i]>>26;
7908     switch(op)
7909     {
7910       case 0x00: strcpy(insn[i],"special"); type=NI;
7911         op2=source[i]&0x3f;
7912         switch(op2)
7913         {
7914           case 0x00: strcpy(insn[i],"SLL"); type=SHIFTIMM; break;
7915           case 0x02: strcpy(insn[i],"SRL"); type=SHIFTIMM; break;
7916           case 0x03: strcpy(insn[i],"SRA"); type=SHIFTIMM; break;
7917           case 0x04: strcpy(insn[i],"SLLV"); type=SHIFT; break;
7918           case 0x06: strcpy(insn[i],"SRLV"); type=SHIFT; break;
7919           case 0x07: strcpy(insn[i],"SRAV"); type=SHIFT; break;
7920           case 0x08: strcpy(insn[i],"JR"); type=RJUMP; break;
7921           case 0x09: strcpy(insn[i],"JALR"); type=RJUMP; break;
7922           case 0x0C: strcpy(insn[i],"SYSCALL"); type=SYSCALL; break;
7923           case 0x0D: strcpy(insn[i],"BREAK"); type=OTHER; break;
7924           case 0x0F: strcpy(insn[i],"SYNC"); type=OTHER; break;
7925           case 0x10: strcpy(insn[i],"MFHI"); type=MOV; break;
7926           case 0x11: strcpy(insn[i],"MTHI"); type=MOV; break;
7927           case 0x12: strcpy(insn[i],"MFLO"); type=MOV; break;
7928           case 0x13: strcpy(insn[i],"MTLO"); type=MOV; break;
7929           case 0x14: strcpy(insn[i],"DSLLV"); type=SHIFT; break;
7930           case 0x16: strcpy(insn[i],"DSRLV"); type=SHIFT; break;
7931           case 0x17: strcpy(insn[i],"DSRAV"); type=SHIFT; break;
7932           case 0x18: strcpy(insn[i],"MULT"); type=MULTDIV; break;
7933           case 0x19: strcpy(insn[i],"MULTU"); type=MULTDIV; break;
7934           case 0x1A: strcpy(insn[i],"DIV"); type=MULTDIV; break;
7935           case 0x1B: strcpy(insn[i],"DIVU"); type=MULTDIV; break;
7936           case 0x1C: strcpy(insn[i],"DMULT"); type=MULTDIV; break;
7937           case 0x1D: strcpy(insn[i],"DMULTU"); type=MULTDIV; break;
7938           case 0x1E: strcpy(insn[i],"DDIV"); type=MULTDIV; break;
7939           case 0x1F: strcpy(insn[i],"DDIVU"); type=MULTDIV; break;
7940           case 0x20: strcpy(insn[i],"ADD"); type=ALU; break;
7941           case 0x21: strcpy(insn[i],"ADDU"); type=ALU; break;
7942           case 0x22: strcpy(insn[i],"SUB"); type=ALU; break;
7943           case 0x23: strcpy(insn[i],"SUBU"); type=ALU; break;
7944           case 0x24: strcpy(insn[i],"AND"); type=ALU; break;
7945           case 0x25: strcpy(insn[i],"OR"); type=ALU; break;
7946           case 0x26: strcpy(insn[i],"XOR"); type=ALU; break;
7947           case 0x27: strcpy(insn[i],"NOR"); type=ALU; break;
7948           case 0x2A: strcpy(insn[i],"SLT"); type=ALU; break;
7949           case 0x2B: strcpy(insn[i],"SLTU"); type=ALU; break;
7950           case 0x2C: strcpy(insn[i],"DADD"); type=ALU; break;
7951           case 0x2D: strcpy(insn[i],"DADDU"); type=ALU; break;
7952           case 0x2E: strcpy(insn[i],"DSUB"); type=ALU; break;
7953           case 0x2F: strcpy(insn[i],"DSUBU"); type=ALU; break;
7954           case 0x30: strcpy(insn[i],"TGE"); type=NI; break;
7955           case 0x31: strcpy(insn[i],"TGEU"); type=NI; break;
7956           case 0x32: strcpy(insn[i],"TLT"); type=NI; break;
7957           case 0x33: strcpy(insn[i],"TLTU"); type=NI; break;
7958           case 0x34: strcpy(insn[i],"TEQ"); type=NI; break;
7959           case 0x36: strcpy(insn[i],"TNE"); type=NI; break;
7960           case 0x38: strcpy(insn[i],"DSLL"); type=SHIFTIMM; break;
7961           case 0x3A: strcpy(insn[i],"DSRL"); type=SHIFTIMM; break;
7962           case 0x3B: strcpy(insn[i],"DSRA"); type=SHIFTIMM; break;
7963           case 0x3C: strcpy(insn[i],"DSLL32"); type=SHIFTIMM; break;
7964           case 0x3E: strcpy(insn[i],"DSRL32"); type=SHIFTIMM; break;
7965           case 0x3F: strcpy(insn[i],"DSRA32"); type=SHIFTIMM; break;
7966         }
7967         break;
7968       case 0x01: strcpy(insn[i],"regimm"); type=NI;
7969         op2=(source[i]>>16)&0x1f;
7970         switch(op2)
7971         {
7972           case 0x00: strcpy(insn[i],"BLTZ"); type=SJUMP; break;
7973           case 0x01: strcpy(insn[i],"BGEZ"); type=SJUMP; break;
7974           case 0x02: strcpy(insn[i],"BLTZL"); type=SJUMP; break;
7975           case 0x03: strcpy(insn[i],"BGEZL"); type=SJUMP; break;
7976           case 0x08: strcpy(insn[i],"TGEI"); type=NI; break;
7977           case 0x09: strcpy(insn[i],"TGEIU"); type=NI; break;
7978           case 0x0A: strcpy(insn[i],"TLTI"); type=NI; break;
7979           case 0x0B: strcpy(insn[i],"TLTIU"); type=NI; break;
7980           case 0x0C: strcpy(insn[i],"TEQI"); type=NI; break;
7981           case 0x0E: strcpy(insn[i],"TNEI"); type=NI; break;
7982           case 0x10: strcpy(insn[i],"BLTZAL"); type=SJUMP; break;
7983           case 0x11: strcpy(insn[i],"BGEZAL"); type=SJUMP; break;
7984           case 0x12: strcpy(insn[i],"BLTZALL"); type=SJUMP; break;
7985           case 0x13: strcpy(insn[i],"BGEZALL"); type=SJUMP; break;
7986         }
7987         break;
7988       case 0x02: strcpy(insn[i],"J"); type=UJUMP; break;
7989       case 0x03: strcpy(insn[i],"JAL"); type=UJUMP; break;
7990       case 0x04: strcpy(insn[i],"BEQ"); type=CJUMP; break;
7991       case 0x05: strcpy(insn[i],"BNE"); type=CJUMP; break;
7992       case 0x06: strcpy(insn[i],"BLEZ"); type=CJUMP; break;
7993       case 0x07: strcpy(insn[i],"BGTZ"); type=CJUMP; break;
7994       case 0x08: strcpy(insn[i],"ADDI"); type=IMM16; break;
7995       case 0x09: strcpy(insn[i],"ADDIU"); type=IMM16; break;
7996       case 0x0A: strcpy(insn[i],"SLTI"); type=IMM16; break;
7997       case 0x0B: strcpy(insn[i],"SLTIU"); type=IMM16; break;
7998       case 0x0C: strcpy(insn[i],"ANDI"); type=IMM16; break;
7999       case 0x0D: strcpy(insn[i],"ORI"); type=IMM16; break;
8000       case 0x0E: strcpy(insn[i],"XORI"); type=IMM16; break;
8001       case 0x0F: strcpy(insn[i],"LUI"); type=IMM16; break;
8002       case 0x10: strcpy(insn[i],"cop0"); type=NI;
8003         op2=(source[i]>>21)&0x1f;
8004         switch(op2)
8005         {
8006           case 0x00: strcpy(insn[i],"MFC0"); type=COP0; break;
8007           case 0x04: strcpy(insn[i],"MTC0"); type=COP0; break;
8008           case 0x10: strcpy(insn[i],"tlb"); type=NI;
8009           switch(source[i]&0x3f)
8010           {
8011             case 0x01: strcpy(insn[i],"TLBR"); type=COP0; break;
8012             case 0x02: strcpy(insn[i],"TLBWI"); type=COP0; break;
8013             case 0x06: strcpy(insn[i],"TLBWR"); type=COP0; break;
8014             case 0x08: strcpy(insn[i],"TLBP"); type=COP0; break;
8015 #ifdef PCSX
8016             case 0x10: strcpy(insn[i],"RFE"); type=COP0; break;
8017 #else
8018             case 0x18: strcpy(insn[i],"ERET"); type=COP0; break;
8019 #endif
8020           }
8021         }
8022         break;
8023       case 0x11: strcpy(insn[i],"cop1"); type=NI;
8024         op2=(source[i]>>21)&0x1f;
8025         switch(op2)
8026         {
8027           case 0x00: strcpy(insn[i],"MFC1"); type=COP1; break;
8028           case 0x01: strcpy(insn[i],"DMFC1"); type=COP1; break;
8029           case 0x02: strcpy(insn[i],"CFC1"); type=COP1; break;
8030           case 0x04: strcpy(insn[i],"MTC1"); type=COP1; break;
8031           case 0x05: strcpy(insn[i],"DMTC1"); type=COP1; break;
8032           case 0x06: strcpy(insn[i],"CTC1"); type=COP1; break;
8033           case 0x08: strcpy(insn[i],"BC1"); type=FJUMP;
8034           switch((source[i]>>16)&0x3)
8035           {
8036             case 0x00: strcpy(insn[i],"BC1F"); break;
8037             case 0x01: strcpy(insn[i],"BC1T"); break;
8038             case 0x02: strcpy(insn[i],"BC1FL"); break;
8039             case 0x03: strcpy(insn[i],"BC1TL"); break;
8040           }
8041           break;
8042           case 0x10: strcpy(insn[i],"C1.S"); type=NI;
8043           switch(source[i]&0x3f)
8044           {
8045             case 0x00: strcpy(insn[i],"ADD.S"); type=FLOAT; break;
8046             case 0x01: strcpy(insn[i],"SUB.S"); type=FLOAT; break;
8047             case 0x02: strcpy(insn[i],"MUL.S"); type=FLOAT; break;
8048             case 0x03: strcpy(insn[i],"DIV.S"); type=FLOAT; break;
8049             case 0x04: strcpy(insn[i],"SQRT.S"); type=FLOAT; break;
8050             case 0x05: strcpy(insn[i],"ABS.S"); type=FLOAT; break;
8051             case 0x06: strcpy(insn[i],"MOV.S"); type=FLOAT; break;
8052             case 0x07: strcpy(insn[i],"NEG.S"); type=FLOAT; break;
8053             case 0x08: strcpy(insn[i],"ROUND.L.S"); type=FCONV; break;
8054             case 0x09: strcpy(insn[i],"TRUNC.L.S"); type=FCONV; break;
8055             case 0x0A: strcpy(insn[i],"CEIL.L.S"); type=FCONV; break;
8056             case 0x0B: strcpy(insn[i],"FLOOR.L.S"); type=FCONV; break;
8057             case 0x0C: strcpy(insn[i],"ROUND.W.S"); type=FCONV; break;
8058             case 0x0D: strcpy(insn[i],"TRUNC.W.S"); type=FCONV; break;
8059             case 0x0E: strcpy(insn[i],"CEIL.W.S"); type=FCONV; break;
8060             case 0x0F: strcpy(insn[i],"FLOOR.W.S"); type=FCONV; break;
8061             case 0x21: strcpy(insn[i],"CVT.D.S"); type=FCONV; break;
8062             case 0x24: strcpy(insn[i],"CVT.W.S"); type=FCONV; break;
8063             case 0x25: strcpy(insn[i],"CVT.L.S"); type=FCONV; break;
8064             case 0x30: strcpy(insn[i],"C.F.S"); type=FCOMP; break;
8065             case 0x31: strcpy(insn[i],"C.UN.S"); type=FCOMP; break;
8066             case 0x32: strcpy(insn[i],"C.EQ.S"); type=FCOMP; break;
8067             case 0x33: strcpy(insn[i],"C.UEQ.S"); type=FCOMP; break;
8068             case 0x34: strcpy(insn[i],"C.OLT.S"); type=FCOMP; break;
8069             case 0x35: strcpy(insn[i],"C.ULT.S"); type=FCOMP; break;
8070             case 0x36: strcpy(insn[i],"C.OLE.S"); type=FCOMP; break;
8071             case 0x37: strcpy(insn[i],"C.ULE.S"); type=FCOMP; break;
8072             case 0x38: strcpy(insn[i],"C.SF.S"); type=FCOMP; break;
8073             case 0x39: strcpy(insn[i],"C.NGLE.S"); type=FCOMP; break;
8074             case 0x3A: strcpy(insn[i],"C.SEQ.S"); type=FCOMP; break;
8075             case 0x3B: strcpy(insn[i],"C.NGL.S"); type=FCOMP; break;
8076             case 0x3C: strcpy(insn[i],"C.LT.S"); type=FCOMP; break;
8077             case 0x3D: strcpy(insn[i],"C.NGE.S"); type=FCOMP; break;
8078             case 0x3E: strcpy(insn[i],"C.LE.S"); type=FCOMP; break;
8079             case 0x3F: strcpy(insn[i],"C.NGT.S"); type=FCOMP; break;
8080           }
8081           break;
8082           case 0x11: strcpy(insn[i],"C1.D"); type=NI;
8083           switch(source[i]&0x3f)
8084           {
8085             case 0x00: strcpy(insn[i],"ADD.D"); type=FLOAT; break;
8086             case 0x01: strcpy(insn[i],"SUB.D"); type=FLOAT; break;
8087             case 0x02: strcpy(insn[i],"MUL.D"); type=FLOAT; break;
8088             case 0x03: strcpy(insn[i],"DIV.D"); type=FLOAT; break;
8089             case 0x04: strcpy(insn[i],"SQRT.D"); type=FLOAT; break;
8090             case 0x05: strcpy(insn[i],"ABS.D"); type=FLOAT; break;
8091             case 0x06: strcpy(insn[i],"MOV.D"); type=FLOAT; break;
8092             case 0x07: strcpy(insn[i],"NEG.D"); type=FLOAT; break;
8093             case 0x08: strcpy(insn[i],"ROUND.L.D"); type=FCONV; break;
8094             case 0x09: strcpy(insn[i],"TRUNC.L.D"); type=FCONV; break;
8095             case 0x0A: strcpy(insn[i],"CEIL.L.D"); type=FCONV; break;
8096             case 0x0B: strcpy(insn[i],"FLOOR.L.D"); type=FCONV; break;
8097             case 0x0C: strcpy(insn[i],"ROUND.W.D"); type=FCONV; break;
8098             case 0x0D: strcpy(insn[i],"TRUNC.W.D"); type=FCONV; break;
8099             case 0x0E: strcpy(insn[i],"CEIL.W.D"); type=FCONV; break;
8100             case 0x0F: strcpy(insn[i],"FLOOR.W.D"); type=FCONV; break;
8101             case 0x20: strcpy(insn[i],"CVT.S.D"); type=FCONV; break;
8102             case 0x24: strcpy(insn[i],"CVT.W.D"); type=FCONV; break;
8103             case 0x25: strcpy(insn[i],"CVT.L.D"); type=FCONV; break;
8104             case 0x30: strcpy(insn[i],"C.F.D"); type=FCOMP; break;
8105             case 0x31: strcpy(insn[i],"C.UN.D"); type=FCOMP; break;
8106             case 0x32: strcpy(insn[i],"C.EQ.D"); type=FCOMP; break;
8107             case 0x33: strcpy(insn[i],"C.UEQ.D"); type=FCOMP; break;
8108             case 0x34: strcpy(insn[i],"C.OLT.D"); type=FCOMP; break;
8109             case 0x35: strcpy(insn[i],"C.ULT.D"); type=FCOMP; break;
8110             case 0x36: strcpy(insn[i],"C.OLE.D"); type=FCOMP; break;
8111             case 0x37: strcpy(insn[i],"C.ULE.D"); type=FCOMP; break;
8112             case 0x38: strcpy(insn[i],"C.SF.D"); type=FCOMP; break;
8113             case 0x39: strcpy(insn[i],"C.NGLE.D"); type=FCOMP; break;
8114             case 0x3A: strcpy(insn[i],"C.SEQ.D"); type=FCOMP; break;
8115             case 0x3B: strcpy(insn[i],"C.NGL.D"); type=FCOMP; break;
8116             case 0x3C: strcpy(insn[i],"C.LT.D"); type=FCOMP; break;
8117             case 0x3D: strcpy(insn[i],"C.NGE.D"); type=FCOMP; break;
8118             case 0x3E: strcpy(insn[i],"C.LE.D"); type=FCOMP; break;
8119             case 0x3F: strcpy(insn[i],"C.NGT.D"); type=FCOMP; break;
8120           }
8121           break;
8122           case 0x14: strcpy(insn[i],"C1.W"); type=NI;
8123           switch(source[i]&0x3f)
8124           {
8125             case 0x20: strcpy(insn[i],"CVT.S.W"); type=FCONV; break;
8126             case 0x21: strcpy(insn[i],"CVT.D.W"); type=FCONV; break;
8127           }
8128           break;
8129           case 0x15: strcpy(insn[i],"C1.L"); type=NI;
8130           switch(source[i]&0x3f)
8131           {
8132             case 0x20: strcpy(insn[i],"CVT.S.L"); type=FCONV; break;
8133             case 0x21: strcpy(insn[i],"CVT.D.L"); type=FCONV; break;
8134           }
8135           break;
8136         }
8137         break;
8138 #ifndef FORCE32
8139       case 0x14: strcpy(insn[i],"BEQL"); type=CJUMP; break;
8140       case 0x15: strcpy(insn[i],"BNEL"); type=CJUMP; break;
8141       case 0x16: strcpy(insn[i],"BLEZL"); type=CJUMP; break;
8142       case 0x17: strcpy(insn[i],"BGTZL"); type=CJUMP; break;
8143       case 0x18: strcpy(insn[i],"DADDI"); type=IMM16; break;
8144       case 0x19: strcpy(insn[i],"DADDIU"); type=IMM16; break;
8145       case 0x1A: strcpy(insn[i],"LDL"); type=LOADLR; break;
8146       case 0x1B: strcpy(insn[i],"LDR"); type=LOADLR; break;
8147 #endif
8148       case 0x20: strcpy(insn[i],"LB"); type=LOAD; break;
8149       case 0x21: strcpy(insn[i],"LH"); type=LOAD; break;
8150       case 0x22: strcpy(insn[i],"LWL"); type=LOADLR; break;
8151       case 0x23: strcpy(insn[i],"LW"); type=LOAD; break;
8152       case 0x24: strcpy(insn[i],"LBU"); type=LOAD; break;
8153       case 0x25: strcpy(insn[i],"LHU"); type=LOAD; break;
8154       case 0x26: strcpy(insn[i],"LWR"); type=LOADLR; break;
8155       case 0x27: strcpy(insn[i],"LWU"); type=LOAD; break;
8156       case 0x28: strcpy(insn[i],"SB"); type=STORE; break;
8157       case 0x29: strcpy(insn[i],"SH"); type=STORE; break;
8158       case 0x2A: strcpy(insn[i],"SWL"); type=STORELR; break;
8159       case 0x2B: strcpy(insn[i],"SW"); type=STORE; break;
8160 #ifndef FORCE32
8161       case 0x2C: strcpy(insn[i],"SDL"); type=STORELR; break;
8162       case 0x2D: strcpy(insn[i],"SDR"); type=STORELR; break;
8163 #endif
8164       case 0x2E: strcpy(insn[i],"SWR"); type=STORELR; break;
8165       case 0x2F: strcpy(insn[i],"CACHE"); type=NOP; break;
8166       case 0x30: strcpy(insn[i],"LL"); type=NI; break;
8167       case 0x31: strcpy(insn[i],"LWC1"); type=C1LS; break;
8168 #ifndef FORCE32
8169       case 0x34: strcpy(insn[i],"LLD"); type=NI; break;
8170       case 0x35: strcpy(insn[i],"LDC1"); type=C1LS; break;
8171       case 0x37: strcpy(insn[i],"LD"); type=LOAD; break;
8172 #endif
8173       case 0x38: strcpy(insn[i],"SC"); type=NI; break;
8174       case 0x39: strcpy(insn[i],"SWC1"); type=C1LS; break;
8175 #ifndef FORCE32
8176       case 0x3C: strcpy(insn[i],"SCD"); type=NI; break;
8177       case 0x3D: strcpy(insn[i],"SDC1"); type=C1LS; break;
8178       case 0x3F: strcpy(insn[i],"SD"); type=STORE; break;
8179 #endif
8180 #ifdef PCSX
8181       case 0x12: strcpy(insn[i],"COP2"); type=NI;
8182         // note: COP MIPS-1 encoding differs from MIPS32
8183         op2=(source[i]>>21)&0x1f;
8184         if (source[i]&0x3f) {
8185           if (gte_handlers[source[i]&0x3f]!=NULL) {
8186             snprintf(insn[i], sizeof(insn[i]), "COP2 %x", source[i]&0x3f);
8187             type=C2OP;
8188           }
8189         }
8190         else switch(op2)
8191         {
8192           case 0x00: strcpy(insn[i],"MFC2"); type=COP2; break;
8193           case 0x02: strcpy(insn[i],"CFC2"); type=COP2; break;
8194           case 0x04: strcpy(insn[i],"MTC2"); type=COP2; break;
8195           case 0x06: strcpy(insn[i],"CTC2"); type=COP2; break;
8196         }
8197         break;
8198       case 0x32: strcpy(insn[i],"LWC2"); type=C2LS; break;
8199       case 0x3A: strcpy(insn[i],"SWC2"); type=C2LS; break;
8200       case 0x3B: strcpy(insn[i],"HLECALL"); type=HLECALL; break;
8201 #endif
8202       default: strcpy(insn[i],"???"); type=NI;
8203         printf("NI %08x @%08x (%08x)\n", source[i], addr + i*4, addr);
8204         break;
8205     }
8206 #ifdef PCSX
8207     /* detect branch in delay slot early */
8208     if(type==RJUMP||type==UJUMP||type==CJUMP||type==SJUMP||type==FJUMP) {
8209       opcode[i+1]=source[i+1]>>26;
8210       opcode2[i+1]=source[i+1]&0x3f;
8211       if((0<opcode[i+1]&&opcode[i+1]<8)||(opcode[i+1]==0&&(opcode2[i+1]==8||opcode2[i+1]==9))) {
8212         printf("branch in delay slot @%08x (%08x)\n", addr + i*4+4, addr);
8213         // don't handle first branch and call interpreter if it's hit
8214         type=INTCALL;
8215       }
8216     }
8217 #endif
8218     itype[i]=type;
8219     opcode2[i]=op2;
8220     /* Get registers/immediates */
8221     lt1[i]=0;
8222     us1[i]=0;
8223     us2[i]=0;
8224     dep1[i]=0;
8225     dep2[i]=0;
8226     switch(type) {
8227       case LOAD:
8228         rs1[i]=(source[i]>>21)&0x1f;
8229         rs2[i]=0;
8230         rt1[i]=(source[i]>>16)&0x1f;
8231         rt2[i]=0;
8232         imm[i]=(short)source[i];
8233         break;
8234       case STORE:
8235       case STORELR:
8236         rs1[i]=(source[i]>>21)&0x1f;
8237         rs2[i]=(source[i]>>16)&0x1f;
8238         rt1[i]=0;
8239         rt2[i]=0;
8240         imm[i]=(short)source[i];
8241         if(op==0x2c||op==0x2d||op==0x3f) us1[i]=rs2[i]; // 64-bit SDL/SDR/SD
8242         break;
8243       case LOADLR:
8244         // LWL/LWR only load part of the register,
8245         // therefore the target register must be treated as a source too
8246         rs1[i]=(source[i]>>21)&0x1f;
8247         rs2[i]=(source[i]>>16)&0x1f;
8248         rt1[i]=(source[i]>>16)&0x1f;
8249         rt2[i]=0;
8250         imm[i]=(short)source[i];
8251         if(op==0x1a||op==0x1b) us1[i]=rs2[i]; // LDR/LDL
8252         if(op==0x26) dep1[i]=rt1[i]; // LWR
8253         break;
8254       case IMM16:
8255         if (op==0x0f) rs1[i]=0; // LUI instruction has no source register
8256         else rs1[i]=(source[i]>>21)&0x1f;
8257         rs2[i]=0;
8258         rt1[i]=(source[i]>>16)&0x1f;
8259         rt2[i]=0;
8260         if(op>=0x0c&&op<=0x0e) { // ANDI/ORI/XORI
8261           imm[i]=(unsigned short)source[i];
8262         }else{
8263           imm[i]=(short)source[i];
8264         }
8265         if(op==0x18||op==0x19) us1[i]=rs1[i]; // DADDI/DADDIU
8266         if(op==0x0a||op==0x0b) us1[i]=rs1[i]; // SLTI/SLTIU
8267         if(op==0x0d||op==0x0e) dep1[i]=rs1[i]; // ORI/XORI
8268         break;
8269       case UJUMP:
8270         rs1[i]=0;
8271         rs2[i]=0;
8272         rt1[i]=0;
8273         rt2[i]=0;
8274         // The JAL instruction writes to r31.
8275         if (op&1) {
8276           rt1[i]=31;
8277         }
8278         rs2[i]=CCREG;
8279         break;
8280       case RJUMP:
8281         rs1[i]=(source[i]>>21)&0x1f;
8282         rs2[i]=0;
8283         rt1[i]=0;
8284         rt2[i]=0;
8285         // The JALR instruction writes to rd.
8286         if (op2&1) {
8287           rt1[i]=(source[i]>>11)&0x1f;
8288         }
8289         rs2[i]=CCREG;
8290         break;
8291       case CJUMP:
8292         rs1[i]=(source[i]>>21)&0x1f;
8293         rs2[i]=(source[i]>>16)&0x1f;
8294         rt1[i]=0;
8295         rt2[i]=0;
8296         if(op&2) { // BGTZ/BLEZ
8297           rs2[i]=0;
8298         }
8299         us1[i]=rs1[i];
8300         us2[i]=rs2[i];
8301         likely[i]=op>>4;
8302         break;
8303       case SJUMP:
8304         rs1[i]=(source[i]>>21)&0x1f;
8305         rs2[i]=CCREG;
8306         rt1[i]=0;
8307         rt2[i]=0;
8308         us1[i]=rs1[i];
8309         if(op2&0x10) { // BxxAL
8310           rt1[i]=31;
8311           // NOTE: If the branch is not taken, r31 is still overwritten
8312         }
8313         likely[i]=(op2&2)>>1;
8314         break;
8315       case FJUMP:
8316         rs1[i]=FSREG;
8317         rs2[i]=CSREG;
8318         rt1[i]=0;
8319         rt2[i]=0;
8320         likely[i]=((source[i])>>17)&1;
8321         break;
8322       case ALU:
8323         rs1[i]=(source[i]>>21)&0x1f; // source
8324         rs2[i]=(source[i]>>16)&0x1f; // subtract amount
8325         rt1[i]=(source[i]>>11)&0x1f; // destination
8326         rt2[i]=0;
8327         if(op2==0x2a||op2==0x2b) { // SLT/SLTU
8328           us1[i]=rs1[i];us2[i]=rs2[i];
8329         }
8330         else if(op2>=0x24&&op2<=0x27) { // AND/OR/XOR/NOR
8331           dep1[i]=rs1[i];dep2[i]=rs2[i];
8332         }
8333         else if(op2>=0x2c&&op2<=0x2f) { // DADD/DSUB
8334           dep1[i]=rs1[i];dep2[i]=rs2[i];
8335         }
8336         break;
8337       case MULTDIV:
8338         rs1[i]=(source[i]>>21)&0x1f; // source
8339         rs2[i]=(source[i]>>16)&0x1f; // divisor
8340         rt1[i]=HIREG;
8341         rt2[i]=LOREG;
8342         if (op2>=0x1c&&op2<=0x1f) { // DMULT/DMULTU/DDIV/DDIVU
8343           us1[i]=rs1[i];us2[i]=rs2[i];
8344         }
8345         break;
8346       case MOV:
8347         rs1[i]=0;
8348         rs2[i]=0;
8349         rt1[i]=0;
8350         rt2[i]=0;
8351         if(op2==0x10) rs1[i]=HIREG; // MFHI
8352         if(op2==0x11) rt1[i]=HIREG; // MTHI
8353         if(op2==0x12) rs1[i]=LOREG; // MFLO
8354         if(op2==0x13) rt1[i]=LOREG; // MTLO
8355         if((op2&0x1d)==0x10) rt1[i]=(source[i]>>11)&0x1f; // MFxx
8356         if((op2&0x1d)==0x11) rs1[i]=(source[i]>>21)&0x1f; // MTxx
8357         dep1[i]=rs1[i];
8358         break;
8359       case SHIFT:
8360         rs1[i]=(source[i]>>16)&0x1f; // target of shift
8361         rs2[i]=(source[i]>>21)&0x1f; // shift amount
8362         rt1[i]=(source[i]>>11)&0x1f; // destination
8363         rt2[i]=0;
8364         // DSLLV/DSRLV/DSRAV are 64-bit
8365         if(op2>=0x14&&op2<=0x17) us1[i]=rs1[i];
8366         break;
8367       case SHIFTIMM:
8368         rs1[i]=(source[i]>>16)&0x1f;
8369         rs2[i]=0;
8370         rt1[i]=(source[i]>>11)&0x1f;
8371         rt2[i]=0;
8372         imm[i]=(source[i]>>6)&0x1f;
8373         // DSxx32 instructions
8374         if(op2>=0x3c) imm[i]|=0x20;
8375         // DSLL/DSRL/DSRA/DSRA32/DSRL32 but not DSLL32 require 64-bit source
8376         if(op2>=0x38&&op2!=0x3c) us1[i]=rs1[i];
8377         break;
8378       case COP0:
8379         rs1[i]=0;
8380         rs2[i]=0;
8381         rt1[i]=0;
8382         rt2[i]=0;
8383         if(op2==0) rt1[i]=(source[i]>>16)&0x1F; // MFC0
8384         if(op2==4) rs1[i]=(source[i]>>16)&0x1F; // MTC0
8385         if(op2==4&&((source[i]>>11)&0x1f)==12) rt2[i]=CSREG; // Status
8386         if(op2==16) if((source[i]&0x3f)==0x18) rs2[i]=CCREG; // ERET
8387         break;
8388       case COP1:
8389       case COP2:
8390         rs1[i]=0;
8391         rs2[i]=0;
8392         rt1[i]=0;
8393         rt2[i]=0;
8394         if(op2<3) rt1[i]=(source[i]>>16)&0x1F; // MFC1/DMFC1/CFC1
8395         if(op2>3) rs1[i]=(source[i]>>16)&0x1F; // MTC1/DMTC1/CTC1
8396         if(op2==5) us1[i]=rs1[i]; // DMTC1
8397         rs2[i]=CSREG;
8398         break;
8399       case C1LS:
8400         rs1[i]=(source[i]>>21)&0x1F;
8401         rs2[i]=CSREG;
8402         rt1[i]=0;
8403         rt2[i]=0;
8404         imm[i]=(short)source[i];
8405         break;
8406       case C2LS:
8407         rs1[i]=(source[i]>>21)&0x1F;
8408         rs2[i]=0;
8409         rt1[i]=0;
8410         rt2[i]=0;
8411         imm[i]=(short)source[i];
8412         break;
8413       case FLOAT:
8414       case FCONV:
8415         rs1[i]=0;
8416         rs2[i]=CSREG;
8417         rt1[i]=0;
8418         rt2[i]=0;
8419         break;
8420       case FCOMP:
8421         rs1[i]=FSREG;
8422         rs2[i]=CSREG;
8423         rt1[i]=FSREG;
8424         rt2[i]=0;
8425         break;
8426       case SYSCALL:
8427       case HLECALL:
8428       case INTCALL:
8429         rs1[i]=CCREG;
8430         rs2[i]=0;
8431         rt1[i]=0;
8432         rt2[i]=0;
8433         break;
8434       default:
8435         rs1[i]=0;
8436         rs2[i]=0;
8437         rt1[i]=0;
8438         rt2[i]=0;
8439     }
8440     /* Calculate branch target addresses */
8441     if(type==UJUMP)
8442       ba[i]=((start+i*4+4)&0xF0000000)|(((unsigned int)source[i]<<6)>>4);
8443     else if(type==CJUMP&&rs1[i]==rs2[i]&&(op&1))
8444       ba[i]=start+i*4+8; // Ignore never taken branch
8445     else if(type==SJUMP&&rs1[i]==0&&!(op2&1))
8446       ba[i]=start+i*4+8; // Ignore never taken branch
8447     else if(type==CJUMP||type==SJUMP||type==FJUMP)
8448       ba[i]=start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14);
8449     else ba[i]=-1;
8450     /* Is this the end of the block? */
8451     if(i>0&&(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)) {
8452 #ifdef PCSX
8453       // check for link register access in delay slot
8454       int rt1_=rt1[i-1];
8455       if(rt1_!=0&&(rs1[i]==rt1_||rs2[i]==rt1_||rt1[i]==rt1_||rt2[i]==rt1_)) {
8456         printf("link access in delay slot @%08x (%08x)\n", addr + i*4, addr);
8457         ba[i-1]=-1;
8458         itype[i-1]=INTCALL;
8459         done=2;
8460       }
8461       else
8462 #endif
8463       if(rt1[i-1]==0) { // Continue past subroutine call (JAL)
8464         done=2;
8465       }
8466       else {
8467         if(stop_after_jal) done=1;
8468         // Stop on BREAK
8469         if((source[i+1]&0xfc00003f)==0x0d) done=1;
8470       }
8471       // Don't recompile stuff that's already compiled
8472       if(check_addr(start+i*4+4)) done=1;
8473       // Don't get too close to the limit
8474       if(i>MAXBLOCK/2) done=1;
8475     }
8476     if(itype[i]==SYSCALL&&stop_after_jal) done=1;
8477     if(itype[i]==HLECALL||itype[i]==INTCALL) done=2;
8478     if(done==2) {
8479       // Does the block continue due to a branch?
8480       for(j=i-1;j>=0;j--)
8481       {
8482         if(ba[j]==start+i*4+4) done=j=0;
8483         if(ba[j]==start+i*4+8) done=j=0;
8484       }
8485     }
8486     //assert(i<MAXBLOCK-1);
8487     if(start+i*4==pagelimit-4) done=1;
8488     assert(start+i*4<pagelimit);
8489     if (i==MAXBLOCK-1) done=1;
8490     // Stop if we're compiling junk
8491     if(itype[i]==NI&&opcode[i]==0x11) {
8492       done=stop_after_jal=1;
8493       printf("Disabled speculative precompilation\n");
8494     }
8495   }
8496   slen=i;
8497   if(itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==RJUMP||itype[i-1]==FJUMP) {
8498     if(start+i*4==pagelimit) {
8499       itype[i-1]=SPAN;
8500     }
8501   }
8502   assert(slen>0);
8503
8504   /* Pass 2 - Register dependencies and branch targets */
8505
8506   unneeded_registers(0,slen-1,0);
8507   
8508   /* Pass 3 - Register allocation */
8509
8510   struct regstat current; // Current register allocations/status
8511   current.is32=1;
8512   current.dirty=0;
8513   current.u=unneeded_reg[0];
8514   current.uu=unneeded_reg_upper[0];
8515   clear_all_regs(current.regmap);
8516   alloc_reg(&current,0,CCREG);
8517   dirty_reg(&current,CCREG);
8518   current.isconst=0;
8519   current.wasconst=0;
8520   int ds=0;
8521   int cc=0;
8522   int hr;
8523
8524 #ifndef FORCE32
8525   provisional_32bit();
8526 #endif
8527   if((u_int)addr&1) {
8528     // First instruction is delay slot
8529     cc=-1;
8530     bt[1]=1;
8531     ds=1;
8532     unneeded_reg[0]=1;
8533     unneeded_reg_upper[0]=1;
8534     current.regmap[HOST_BTREG]=BTREG;
8535   }
8536   
8537   for(i=0;i<slen;i++)
8538   {
8539     if(bt[i])
8540     {
8541       int hr;
8542       for(hr=0;hr<HOST_REGS;hr++)
8543       {
8544         // Is this really necessary?
8545         if(current.regmap[hr]==0) current.regmap[hr]=-1;
8546       }
8547       current.isconst=0;
8548     }
8549     if(i>1)
8550     {
8551       if((opcode[i-2]&0x2f)==0x05) // BNE/BNEL
8552       {
8553         if(rs1[i-2]==0||rs2[i-2]==0)
8554         {
8555           if(rs1[i-2]) {
8556             current.is32|=1LL<<rs1[i-2];
8557             int hr=get_reg(current.regmap,rs1[i-2]|64);
8558             if(hr>=0) current.regmap[hr]=-1;
8559           }
8560           if(rs2[i-2]) {
8561             current.is32|=1LL<<rs2[i-2];
8562             int hr=get_reg(current.regmap,rs2[i-2]|64);
8563             if(hr>=0) current.regmap[hr]=-1;
8564           }
8565         }
8566       }
8567     }
8568 #ifndef FORCE32
8569     // If something jumps here with 64-bit values
8570     // then promote those registers to 64 bits
8571     if(bt[i])
8572     {
8573       uint64_t temp_is32=current.is32;
8574       for(j=i-1;j>=0;j--)
8575       {
8576         if(ba[j]==start+i*4) 
8577           temp_is32&=branch_regs[j].is32;
8578       }
8579       for(j=i;j<slen;j++)
8580       {
8581         if(ba[j]==start+i*4) 
8582           //temp_is32=1;
8583           temp_is32&=p32[j];
8584       }
8585       if(temp_is32!=current.is32) {
8586         //printf("dumping 32-bit regs (%x)\n",start+i*4);
8587         #ifdef DESTRUCTIVE_WRITEBACK
8588         for(hr=0;hr<HOST_REGS;hr++)
8589         {
8590           int r=current.regmap[hr];
8591           if(r>0&&r<64)
8592           {
8593             if((current.dirty>>hr)&((current.is32&~temp_is32)>>r)&1) {
8594               temp_is32|=1LL<<r;
8595               //printf("restore %d\n",r);
8596             }
8597           }
8598         }
8599         #endif
8600         current.is32=temp_is32;
8601       }
8602     }
8603 #else
8604     current.is32=-1LL;
8605 #endif
8606
8607     memcpy(regmap_pre[i],current.regmap,sizeof(current.regmap));
8608     regs[i].wasconst=current.isconst;
8609     regs[i].was32=current.is32;
8610     regs[i].wasdirty=current.dirty;
8611     #if defined(DESTRUCTIVE_WRITEBACK) && !defined(FORCE32)
8612     // To change a dirty register from 32 to 64 bits, we must write
8613     // it out during the previous cycle (for branches, 2 cycles)
8614     if(i<slen-1&&bt[i+1]&&itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP)
8615     {
8616       uint64_t temp_is32=current.is32;
8617       for(j=i-1;j>=0;j--)
8618       {
8619         if(ba[j]==start+i*4+4) 
8620           temp_is32&=branch_regs[j].is32;
8621       }
8622       for(j=i;j<slen;j++)
8623       {
8624         if(ba[j]==start+i*4+4) 
8625           //temp_is32=1;
8626           temp_is32&=p32[j];
8627       }
8628       if(temp_is32!=current.is32) {
8629         //printf("pre-dumping 32-bit regs (%x)\n",start+i*4);
8630         for(hr=0;hr<HOST_REGS;hr++)
8631         {
8632           int r=current.regmap[hr];
8633           if(r>0)
8634           {
8635             if((current.dirty>>hr)&((current.is32&~temp_is32)>>(r&63))&1) {
8636               if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP)
8637               {
8638                 if(rs1[i]!=(r&63)&&rs2[i]!=(r&63))
8639                 {
8640                   //printf("dump %d/r%d\n",hr,r);
8641                   current.regmap[hr]=-1;
8642                   if(get_reg(current.regmap,r|64)>=0) 
8643                     current.regmap[get_reg(current.regmap,r|64)]=-1;
8644                 }
8645               }
8646             }
8647           }
8648         }
8649       }
8650     }
8651     else if(i<slen-2&&bt[i+2]&&(source[i-1]>>16)!=0x1000&&(itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP))
8652     {
8653       uint64_t temp_is32=current.is32;
8654       for(j=i-1;j>=0;j--)
8655       {
8656         if(ba[j]==start+i*4+8) 
8657           temp_is32&=branch_regs[j].is32;
8658       }
8659       for(j=i;j<slen;j++)
8660       {
8661         if(ba[j]==start+i*4+8) 
8662           //temp_is32=1;
8663           temp_is32&=p32[j];
8664       }
8665       if(temp_is32!=current.is32) {
8666         //printf("pre-dumping 32-bit regs (%x)\n",start+i*4);
8667         for(hr=0;hr<HOST_REGS;hr++)
8668         {
8669           int r=current.regmap[hr];
8670           if(r>0)
8671           {
8672             if((current.dirty>>hr)&((current.is32&~temp_is32)>>(r&63))&1) {
8673               if(rs1[i]!=(r&63)&&rs2[i]!=(r&63)&&rs1[i+1]!=(r&63)&&rs2[i+1]!=(r&63))
8674               {
8675                 //printf("dump %d/r%d\n",hr,r);
8676                 current.regmap[hr]=-1;
8677                 if(get_reg(current.regmap,r|64)>=0) 
8678                   current.regmap[get_reg(current.regmap,r|64)]=-1;
8679               }
8680             }
8681           }
8682         }
8683       }
8684     }
8685     #endif
8686     if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP) {
8687       if(i+1<slen) {
8688         current.u=unneeded_reg[i+1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
8689         current.uu=unneeded_reg_upper[i+1]&~((1LL<<us1[i])|(1LL<<us2[i]));
8690         if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
8691         current.u|=1;
8692         current.uu|=1;
8693       } else {
8694         current.u=1;
8695         current.uu=1;
8696       }
8697     } else {
8698       if(i+1<slen) {
8699         current.u=branch_unneeded_reg[i]&~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
8700         current.uu=branch_unneeded_reg_upper[i]&~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
8701         if((~current.uu>>rt1[i+1])&1) current.uu&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
8702         current.u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
8703         current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
8704         current.u|=1;
8705         current.uu|=1;
8706       } else { printf("oops, branch at end of block with no delay slot\n");exit(1); }
8707     }
8708     is_ds[i]=ds;
8709     if(ds) {
8710       ds=0; // Skip delay slot, already allocated as part of branch
8711       // ...but we need to alloc it in case something jumps here
8712       if(i+1<slen) {
8713         current.u=branch_unneeded_reg[i-1]&unneeded_reg[i+1];
8714         current.uu=branch_unneeded_reg_upper[i-1]&unneeded_reg_upper[i+1];
8715       }else{
8716         current.u=branch_unneeded_reg[i-1];
8717         current.uu=branch_unneeded_reg_upper[i-1];
8718       }
8719       current.u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
8720       current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
8721       if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
8722       current.u|=1;
8723       current.uu|=1;
8724       struct regstat temp;
8725       memcpy(&temp,&current,sizeof(current));
8726       temp.wasdirty=temp.dirty;
8727       temp.was32=temp.is32;
8728       // TODO: Take into account unconditional branches, as below
8729       delayslot_alloc(&temp,i);
8730       memcpy(regs[i].regmap,temp.regmap,sizeof(temp.regmap));
8731       regs[i].wasdirty=temp.wasdirty;
8732       regs[i].was32=temp.was32;
8733       regs[i].dirty=temp.dirty;
8734       regs[i].is32=temp.is32;
8735       regs[i].isconst=0;
8736       regs[i].wasconst=0;
8737       current.isconst=0;
8738       // Create entry (branch target) regmap
8739       for(hr=0;hr<HOST_REGS;hr++)
8740       {
8741         int r=temp.regmap[hr];
8742         if(r>=0) {
8743           if(r!=regmap_pre[i][hr]) {
8744             regs[i].regmap_entry[hr]=-1;
8745           }
8746           else
8747           {
8748             if(r<64){
8749               if((current.u>>r)&1) {
8750                 regs[i].regmap_entry[hr]=-1;
8751                 regs[i].regmap[hr]=-1;
8752                 //Don't clear regs in the delay slot as the branch might need them
8753                 //current.regmap[hr]=-1;
8754               }else
8755                 regs[i].regmap_entry[hr]=r;
8756             }
8757             else {
8758               if((current.uu>>(r&63))&1) {
8759                 regs[i].regmap_entry[hr]=-1;
8760                 regs[i].regmap[hr]=-1;
8761                 //Don't clear regs in the delay slot as the branch might need them
8762                 //current.regmap[hr]=-1;
8763               }else
8764                 regs[i].regmap_entry[hr]=r;
8765             }
8766           }
8767         } else {
8768           // First instruction expects CCREG to be allocated
8769           if(i==0&&hr==HOST_CCREG) 
8770             regs[i].regmap_entry[hr]=CCREG;
8771           else
8772             regs[i].regmap_entry[hr]=-1;
8773         }
8774       }
8775     }
8776     else { // Not delay slot
8777       switch(itype[i]) {
8778         case UJUMP:
8779           //current.isconst=0; // DEBUG
8780           //current.wasconst=0; // DEBUG
8781           //regs[i].wasconst=0; // DEBUG
8782           clear_const(&current,rt1[i]);
8783           alloc_cc(&current,i);
8784           dirty_reg(&current,CCREG);
8785           if (rt1[i]==31) {
8786             alloc_reg(&current,i,31);
8787             dirty_reg(&current,31);
8788             assert(rs1[i+1]!=31&&rs2[i+1]!=31);
8789             assert(rt1[i+1]!=rt1[i]);
8790             #ifdef REG_PREFETCH
8791             alloc_reg(&current,i,PTEMP);
8792             #endif
8793             //current.is32|=1LL<<rt1[i];
8794           }
8795           ooo[i]=1;
8796           delayslot_alloc(&current,i+1);
8797           //current.isconst=0; // DEBUG
8798           ds=1;
8799           //printf("i=%d, isconst=%x\n",i,current.isconst);
8800           break;
8801         case RJUMP:
8802           //current.isconst=0;
8803           //current.wasconst=0;
8804           //regs[i].wasconst=0;
8805           clear_const(&current,rs1[i]);
8806           clear_const(&current,rt1[i]);
8807           alloc_cc(&current,i);
8808           dirty_reg(&current,CCREG);
8809           if(rs1[i]!=rt1[i+1]&&rs1[i]!=rt2[i+1]) {
8810             alloc_reg(&current,i,rs1[i]);
8811             if (rt1[i]!=0) {
8812               alloc_reg(&current,i,rt1[i]);
8813               dirty_reg(&current,rt1[i]);
8814               assert(rs1[i+1]!=rt1[i]&&rs2[i+1]!=rt1[i]);
8815               assert(rt1[i+1]!=rt1[i]);
8816               #ifdef REG_PREFETCH
8817               alloc_reg(&current,i,PTEMP);
8818               #endif
8819             }
8820             #ifdef USE_MINI_HT
8821             if(rs1[i]==31) { // JALR
8822               alloc_reg(&current,i,RHASH);
8823               #ifndef HOST_IMM_ADDR32
8824               alloc_reg(&current,i,RHTBL);
8825               #endif
8826             }
8827             #endif
8828             delayslot_alloc(&current,i+1);
8829           } else {
8830             // The delay slot overwrites our source register,
8831             // allocate a temporary register to hold the old value.
8832             current.isconst=0;
8833             current.wasconst=0;
8834             regs[i].wasconst=0;
8835             delayslot_alloc(&current,i+1);
8836             current.isconst=0;
8837             alloc_reg(&current,i,RTEMP);
8838           }
8839           //current.isconst=0; // DEBUG
8840           ooo[i]=1;
8841           ds=1;
8842           break;
8843         case CJUMP:
8844           //current.isconst=0;
8845           //current.wasconst=0;
8846           //regs[i].wasconst=0;
8847           clear_const(&current,rs1[i]);
8848           clear_const(&current,rs2[i]);
8849           if((opcode[i]&0x3E)==4) // BEQ/BNE
8850           {
8851             alloc_cc(&current,i);
8852             dirty_reg(&current,CCREG);
8853             if(rs1[i]) alloc_reg(&current,i,rs1[i]);
8854             if(rs2[i]) alloc_reg(&current,i,rs2[i]);
8855             if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
8856             {
8857               if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
8858               if(rs2[i]) alloc_reg64(&current,i,rs2[i]);
8859             }
8860             if((rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]))||
8861                (rs2[i]&&(rs2[i]==rt1[i+1]||rs2[i]==rt2[i+1]))) {
8862               // The delay slot overwrites one of our conditions.
8863               // Allocate the branch condition registers instead.
8864               current.isconst=0;
8865               current.wasconst=0;
8866               regs[i].wasconst=0;
8867               if(rs1[i]) alloc_reg(&current,i,rs1[i]);
8868               if(rs2[i]) alloc_reg(&current,i,rs2[i]);
8869               if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
8870               {
8871                 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
8872                 if(rs2[i]) alloc_reg64(&current,i,rs2[i]);
8873               }
8874             }
8875             else
8876             {
8877               ooo[i]=1;
8878               delayslot_alloc(&current,i+1);
8879             }
8880           }
8881           else
8882           if((opcode[i]&0x3E)==6) // BLEZ/BGTZ
8883           {
8884             alloc_cc(&current,i);
8885             dirty_reg(&current,CCREG);
8886             alloc_reg(&current,i,rs1[i]);
8887             if(!(current.is32>>rs1[i]&1))
8888             {
8889               alloc_reg64(&current,i,rs1[i]);
8890             }
8891             if(rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1])) {
8892               // The delay slot overwrites one of our conditions.
8893               // Allocate the branch condition registers instead.
8894               current.isconst=0;
8895               current.wasconst=0;
8896               regs[i].wasconst=0;
8897               if(rs1[i]) alloc_reg(&current,i,rs1[i]);
8898               if(!((current.is32>>rs1[i])&1))
8899               {
8900                 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
8901               }
8902             }
8903             else
8904             {
8905               ooo[i]=1;
8906               delayslot_alloc(&current,i+1);
8907             }
8908           }
8909           else
8910           // Don't alloc the delay slot yet because we might not execute it
8911           if((opcode[i]&0x3E)==0x14) // BEQL/BNEL
8912           {
8913             current.isconst=0;
8914             current.wasconst=0;
8915             regs[i].wasconst=0;
8916             alloc_cc(&current,i);
8917             dirty_reg(&current,CCREG);
8918             alloc_reg(&current,i,rs1[i]);
8919             alloc_reg(&current,i,rs2[i]);
8920             if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
8921             {
8922               alloc_reg64(&current,i,rs1[i]);
8923               alloc_reg64(&current,i,rs2[i]);
8924             }
8925           }
8926           else
8927           if((opcode[i]&0x3E)==0x16) // BLEZL/BGTZL
8928           {
8929             current.isconst=0;
8930             current.wasconst=0;
8931             regs[i].wasconst=0;
8932             alloc_cc(&current,i);
8933             dirty_reg(&current,CCREG);
8934             alloc_reg(&current,i,rs1[i]);
8935             if(!(current.is32>>rs1[i]&1))
8936             {
8937               alloc_reg64(&current,i,rs1[i]);
8938             }
8939           }
8940           ds=1;
8941           //current.isconst=0;
8942           break;
8943         case SJUMP:
8944           //current.isconst=0;
8945           //current.wasconst=0;
8946           //regs[i].wasconst=0;
8947           clear_const(&current,rs1[i]);
8948           clear_const(&current,rt1[i]);
8949           //if((opcode2[i]&0x1E)==0x0) // BLTZ/BGEZ
8950           if((opcode2[i]&0x0E)==0x0) // BLTZ/BGEZ
8951           {
8952             alloc_cc(&current,i);
8953             dirty_reg(&current,CCREG);
8954             alloc_reg(&current,i,rs1[i]);
8955             if(!(current.is32>>rs1[i]&1))
8956             {
8957               alloc_reg64(&current,i,rs1[i]);
8958             }
8959             if (rt1[i]==31) { // BLTZAL/BGEZAL
8960               alloc_reg(&current,i,31);
8961               dirty_reg(&current,31);
8962               //#ifdef REG_PREFETCH
8963               //alloc_reg(&current,i,PTEMP);
8964               //#endif
8965               //current.is32|=1LL<<rt1[i];
8966             }
8967             if((rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1])) // The delay slot overwrites the branch condition.
8968                ||(rt1[i]==31&&(rs1[i+1]==31||rs2[i+1]==31||rt1[i+1]==31||rt2[i+1]==31))) { // DS touches $ra
8969               // Allocate the branch condition registers instead.
8970               current.isconst=0;
8971               current.wasconst=0;
8972               regs[i].wasconst=0;
8973               if(rs1[i]) alloc_reg(&current,i,rs1[i]);
8974               if(!((current.is32>>rs1[i])&1))
8975               {
8976                 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
8977               }
8978             }
8979             else
8980             {
8981               ooo[i]=1;
8982               delayslot_alloc(&current,i+1);
8983             }
8984           }
8985           else
8986           // Don't alloc the delay slot yet because we might not execute it
8987           if((opcode2[i]&0x1E)==0x2) // BLTZL/BGEZL
8988           {
8989             current.isconst=0;
8990             current.wasconst=0;
8991             regs[i].wasconst=0;
8992             alloc_cc(&current,i);
8993             dirty_reg(&current,CCREG);
8994             alloc_reg(&current,i,rs1[i]);
8995             if(!(current.is32>>rs1[i]&1))
8996             {
8997               alloc_reg64(&current,i,rs1[i]);
8998             }
8999           }
9000           ds=1;
9001           //current.isconst=0;
9002           break;
9003         case FJUMP:
9004           current.isconst=0;
9005           current.wasconst=0;
9006           regs[i].wasconst=0;
9007           if(likely[i]==0) // BC1F/BC1T
9008           {
9009             // TODO: Theoretically we can run out of registers here on x86.
9010             // The delay slot can allocate up to six, and we need to check
9011             // CSREG before executing the delay slot.  Possibly we can drop
9012             // the cycle count and then reload it after checking that the
9013             // FPU is in a usable state, or don't do out-of-order execution.
9014             alloc_cc(&current,i);
9015             dirty_reg(&current,CCREG);
9016             alloc_reg(&current,i,FSREG);
9017             alloc_reg(&current,i,CSREG);
9018             if(itype[i+1]==FCOMP) {
9019               // The delay slot overwrites the branch condition.
9020               // Allocate the branch condition registers instead.
9021               alloc_cc(&current,i);
9022               dirty_reg(&current,CCREG);
9023               alloc_reg(&current,i,CSREG);
9024               alloc_reg(&current,i,FSREG);
9025             }
9026             else {
9027               ooo[i]=1;
9028               delayslot_alloc(&current,i+1);
9029               alloc_reg(&current,i+1,CSREG);
9030             }
9031           }
9032           else
9033           // Don't alloc the delay slot yet because we might not execute it
9034           if(likely[i]) // BC1FL/BC1TL
9035           {
9036             alloc_cc(&current,i);
9037             dirty_reg(&current,CCREG);
9038             alloc_reg(&current,i,CSREG);
9039             alloc_reg(&current,i,FSREG);
9040           }
9041           ds=1;
9042           current.isconst=0;
9043           break;
9044         case IMM16:
9045           imm16_alloc(&current,i);
9046           break;
9047         case LOAD:
9048         case LOADLR:
9049           load_alloc(&current,i);
9050           break;
9051         case STORE:
9052         case STORELR:
9053           store_alloc(&current,i);
9054           break;
9055         case ALU:
9056           alu_alloc(&current,i);
9057           break;
9058         case SHIFT:
9059           shift_alloc(&current,i);
9060           break;
9061         case MULTDIV:
9062           multdiv_alloc(&current,i);
9063           break;
9064         case SHIFTIMM:
9065           shiftimm_alloc(&current,i);
9066           break;
9067         case MOV:
9068           mov_alloc(&current,i);
9069           break;
9070         case COP0:
9071           cop0_alloc(&current,i);
9072           break;
9073         case COP1:
9074         case COP2:
9075           cop1_alloc(&current,i);
9076           break;
9077         case C1LS:
9078           c1ls_alloc(&current,i);
9079           break;
9080         case C2LS:
9081           c2ls_alloc(&current,i);
9082           break;
9083         case C2OP:
9084           c2op_alloc(&current,i);
9085           break;
9086         case FCONV:
9087           fconv_alloc(&current,i);
9088           break;
9089         case FLOAT:
9090           float_alloc(&current,i);
9091           break;
9092         case FCOMP:
9093           fcomp_alloc(&current,i);
9094           break;
9095         case SYSCALL:
9096         case HLECALL:
9097         case INTCALL:
9098           syscall_alloc(&current,i);
9099           break;
9100         case SPAN:
9101           pagespan_alloc(&current,i);
9102           break;
9103       }
9104       
9105       // Drop the upper half of registers that have become 32-bit
9106       current.uu|=current.is32&((1LL<<rt1[i])|(1LL<<rt2[i]));
9107       if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP) {
9108         current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
9109         if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9110         current.uu|=1;
9111       } else {
9112         current.uu|=current.is32&((1LL<<rt1[i+1])|(1LL<<rt2[i+1]));
9113         current.uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
9114         if((~current.uu>>rt1[i+1])&1) current.uu&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
9115         current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
9116         current.uu|=1;
9117       }
9118
9119       // Create entry (branch target) regmap
9120       for(hr=0;hr<HOST_REGS;hr++)
9121       {
9122         int r,or,er;
9123         r=current.regmap[hr];
9124         if(r>=0) {
9125           if(r!=regmap_pre[i][hr]) {
9126             // TODO: delay slot (?)
9127             or=get_reg(regmap_pre[i],r); // Get old mapping for this register
9128             if(or<0||(r&63)>=TEMPREG){
9129               regs[i].regmap_entry[hr]=-1;
9130             }
9131             else
9132             {
9133               // Just move it to a different register
9134               regs[i].regmap_entry[hr]=r;
9135               // If it was dirty before, it's still dirty
9136               if((regs[i].wasdirty>>or)&1) dirty_reg(&current,r&63);
9137             }
9138           }
9139           else
9140           {
9141             // Unneeded
9142             if(r==0){
9143               regs[i].regmap_entry[hr]=0;
9144             }
9145             else
9146             if(r<64){
9147               if((current.u>>r)&1) {
9148                 regs[i].regmap_entry[hr]=-1;
9149                 //regs[i].regmap[hr]=-1;
9150                 current.regmap[hr]=-1;
9151               }else
9152                 regs[i].regmap_entry[hr]=r;
9153             }
9154             else {
9155               if((current.uu>>(r&63))&1) {
9156                 regs[i].regmap_entry[hr]=-1;
9157                 //regs[i].regmap[hr]=-1;
9158                 current.regmap[hr]=-1;
9159               }else
9160                 regs[i].regmap_entry[hr]=r;
9161             }
9162           }
9163         } else {
9164           // Branches expect CCREG to be allocated at the target
9165           if(regmap_pre[i][hr]==CCREG) 
9166             regs[i].regmap_entry[hr]=CCREG;
9167           else
9168             regs[i].regmap_entry[hr]=-1;
9169         }
9170       }
9171       memcpy(regs[i].regmap,current.regmap,sizeof(current.regmap));
9172     }
9173     /* Branch post-alloc */
9174     if(i>0)
9175     {
9176       current.was32=current.is32;
9177       current.wasdirty=current.dirty;
9178       switch(itype[i-1]) {
9179         case UJUMP:
9180           memcpy(&branch_regs[i-1],&current,sizeof(current));
9181           branch_regs[i-1].isconst=0;
9182           branch_regs[i-1].wasconst=0;
9183           branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
9184           branch_regs[i-1].uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
9185           alloc_cc(&branch_regs[i-1],i-1);
9186           dirty_reg(&branch_regs[i-1],CCREG);
9187           if(rt1[i-1]==31) { // JAL
9188             alloc_reg(&branch_regs[i-1],i-1,31);
9189             dirty_reg(&branch_regs[i-1],31);
9190             branch_regs[i-1].is32|=1LL<<31;
9191           }
9192           memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9193           memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9194           break;
9195         case RJUMP:
9196           memcpy(&branch_regs[i-1],&current,sizeof(current));
9197           branch_regs[i-1].isconst=0;
9198           branch_regs[i-1].wasconst=0;
9199           branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
9200           branch_regs[i-1].uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
9201           alloc_cc(&branch_regs[i-1],i-1);
9202           dirty_reg(&branch_regs[i-1],CCREG);
9203           alloc_reg(&branch_regs[i-1],i-1,rs1[i-1]);
9204           if(rt1[i-1]!=0) { // JALR
9205             alloc_reg(&branch_regs[i-1],i-1,rt1[i-1]);
9206             dirty_reg(&branch_regs[i-1],rt1[i-1]);
9207             branch_regs[i-1].is32|=1LL<<rt1[i-1];
9208           }
9209           #ifdef USE_MINI_HT
9210           if(rs1[i-1]==31) { // JALR
9211             alloc_reg(&branch_regs[i-1],i-1,RHASH);
9212             #ifndef HOST_IMM_ADDR32
9213             alloc_reg(&branch_regs[i-1],i-1,RHTBL);
9214             #endif
9215           }
9216           #endif
9217           memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9218           memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9219           break;
9220         case CJUMP:
9221           if((opcode[i-1]&0x3E)==4) // BEQ/BNE
9222           {
9223             alloc_cc(&current,i-1);
9224             dirty_reg(&current,CCREG);
9225             if((rs1[i-1]&&(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]))||
9226                (rs2[i-1]&&(rs2[i-1]==rt1[i]||rs2[i-1]==rt2[i]))) {
9227               // The delay slot overwrote one of our conditions
9228               // Delay slot goes after the test (in order)
9229               current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
9230               current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
9231               if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9232               current.u|=1;
9233               current.uu|=1;
9234               delayslot_alloc(&current,i);
9235               current.isconst=0;
9236             }
9237             else
9238             {
9239               current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
9240               current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
9241               // Alloc the branch condition registers
9242               if(rs1[i-1]) alloc_reg(&current,i-1,rs1[i-1]);
9243               if(rs2[i-1]) alloc_reg(&current,i-1,rs2[i-1]);
9244               if(!((current.is32>>rs1[i-1])&(current.is32>>rs2[i-1])&1))
9245               {
9246                 if(rs1[i-1]) alloc_reg64(&current,i-1,rs1[i-1]);
9247                 if(rs2[i-1]) alloc_reg64(&current,i-1,rs2[i-1]);
9248               }
9249             }
9250             memcpy(&branch_regs[i-1],&current,sizeof(current));
9251             branch_regs[i-1].isconst=0;
9252             branch_regs[i-1].wasconst=0;
9253             memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9254             memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9255           }
9256           else
9257           if((opcode[i-1]&0x3E)==6) // BLEZ/BGTZ
9258           {
9259             alloc_cc(&current,i-1);
9260             dirty_reg(&current,CCREG);
9261             if(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]) {
9262               // The delay slot overwrote the branch condition
9263               // Delay slot goes after the test (in order)
9264               current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
9265               current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
9266               if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9267               current.u|=1;
9268               current.uu|=1;
9269               delayslot_alloc(&current,i);
9270               current.isconst=0;
9271             }
9272             else
9273             {
9274               current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
9275               current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
9276               // Alloc the branch condition register
9277               alloc_reg(&current,i-1,rs1[i-1]);
9278               if(!(current.is32>>rs1[i-1]&1))
9279               {
9280                 alloc_reg64(&current,i-1,rs1[i-1]);
9281               }
9282             }
9283             memcpy(&branch_regs[i-1],&current,sizeof(current));
9284             branch_regs[i-1].isconst=0;
9285             branch_regs[i-1].wasconst=0;
9286             memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9287             memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9288           }
9289           else
9290           // Alloc the delay slot in case the branch is taken
9291           if((opcode[i-1]&0x3E)==0x14) // BEQL/BNEL
9292           {
9293             memcpy(&branch_regs[i-1],&current,sizeof(current));
9294             branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9295             branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9296             if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9297             alloc_cc(&branch_regs[i-1],i);
9298             dirty_reg(&branch_regs[i-1],CCREG);
9299             delayslot_alloc(&branch_regs[i-1],i);
9300             branch_regs[i-1].isconst=0;
9301             alloc_reg(&current,i,CCREG); // Not taken path
9302             dirty_reg(&current,CCREG);
9303             memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9304           }
9305           else
9306           if((opcode[i-1]&0x3E)==0x16) // BLEZL/BGTZL
9307           {
9308             memcpy(&branch_regs[i-1],&current,sizeof(current));
9309             branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9310             branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9311             if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9312             alloc_cc(&branch_regs[i-1],i);
9313             dirty_reg(&branch_regs[i-1],CCREG);
9314             delayslot_alloc(&branch_regs[i-1],i);
9315             branch_regs[i-1].isconst=0;
9316             alloc_reg(&current,i,CCREG); // Not taken path
9317             dirty_reg(&current,CCREG);
9318             memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9319           }
9320           break;
9321         case SJUMP:
9322           //if((opcode2[i-1]&0x1E)==0) // BLTZ/BGEZ
9323           if((opcode2[i-1]&0x0E)==0) // BLTZ/BGEZ
9324           {
9325             alloc_cc(&current,i-1);
9326             dirty_reg(&current,CCREG);
9327             if(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]) {
9328               // The delay slot overwrote the branch condition
9329               // Delay slot goes after the test (in order)
9330               current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
9331               current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
9332               if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9333               current.u|=1;
9334               current.uu|=1;
9335               delayslot_alloc(&current,i);
9336               current.isconst=0;
9337             }
9338             else
9339             {
9340               current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
9341               current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
9342               // Alloc the branch condition register
9343               alloc_reg(&current,i-1,rs1[i-1]);
9344               if(!(current.is32>>rs1[i-1]&1))
9345               {
9346                 alloc_reg64(&current,i-1,rs1[i-1]);
9347               }
9348             }
9349             memcpy(&branch_regs[i-1],&current,sizeof(current));
9350             branch_regs[i-1].isconst=0;
9351             branch_regs[i-1].wasconst=0;
9352             memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9353             memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9354           }
9355           else
9356           // Alloc the delay slot in case the branch is taken
9357           if((opcode2[i-1]&0x1E)==2) // BLTZL/BGEZL
9358           {
9359             memcpy(&branch_regs[i-1],&current,sizeof(current));
9360             branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9361             branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9362             if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9363             alloc_cc(&branch_regs[i-1],i);
9364             dirty_reg(&branch_regs[i-1],CCREG);
9365             delayslot_alloc(&branch_regs[i-1],i);
9366             branch_regs[i-1].isconst=0;
9367             alloc_reg(&current,i,CCREG); // Not taken path
9368             dirty_reg(&current,CCREG);
9369             memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9370           }
9371           // FIXME: BLTZAL/BGEZAL
9372           if(opcode2[i-1]&0x10) { // BxxZAL
9373             alloc_reg(&branch_regs[i-1],i-1,31);
9374             dirty_reg(&branch_regs[i-1],31);
9375             branch_regs[i-1].is32|=1LL<<31;
9376           }
9377           break;
9378         case FJUMP:
9379           if(likely[i-1]==0) // BC1F/BC1T
9380           {
9381             alloc_cc(&current,i-1);
9382             dirty_reg(&current,CCREG);
9383             if(itype[i]==FCOMP) {
9384               // The delay slot overwrote the branch condition
9385               // Delay slot goes after the test (in order)
9386               delayslot_alloc(&current,i);
9387               current.isconst=0;
9388             }
9389             else
9390             {
9391               current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
9392               current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
9393               // Alloc the branch condition register
9394               alloc_reg(&current,i-1,FSREG);
9395             }
9396             memcpy(&branch_regs[i-1],&current,sizeof(current));
9397             memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9398           }
9399           else // BC1FL/BC1TL
9400           {
9401             // Alloc the delay slot in case the branch is taken
9402             memcpy(&branch_regs[i-1],&current,sizeof(current));
9403             branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9404             branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9405             if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9406             alloc_cc(&branch_regs[i-1],i);
9407             dirty_reg(&branch_regs[i-1],CCREG);
9408             delayslot_alloc(&branch_regs[i-1],i);
9409             branch_regs[i-1].isconst=0;
9410             alloc_reg(&current,i,CCREG); // Not taken path
9411             dirty_reg(&current,CCREG);
9412             memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9413           }
9414           break;
9415       }
9416
9417       if(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)
9418       {
9419         if(rt1[i-1]==31) // JAL/JALR
9420         {
9421           // Subroutine call will return here, don't alloc any registers
9422           current.is32=1;
9423           current.dirty=0;
9424           clear_all_regs(current.regmap);
9425           alloc_reg(&current,i,CCREG);
9426           dirty_reg(&current,CCREG);
9427         }
9428         else if(i+1<slen)
9429         {
9430           // Internal branch will jump here, match registers to caller
9431           current.is32=0x3FFFFFFFFLL;
9432           current.dirty=0;
9433           clear_all_regs(current.regmap);
9434           alloc_reg(&current,i,CCREG);
9435           dirty_reg(&current,CCREG);
9436           for(j=i-1;j>=0;j--)
9437           {
9438             if(ba[j]==start+i*4+4) {
9439               memcpy(current.regmap,branch_regs[j].regmap,sizeof(current.regmap));
9440               current.is32=branch_regs[j].is32;
9441               current.dirty=branch_regs[j].dirty;
9442               break;
9443             }
9444           }
9445           while(j>=0) {
9446             if(ba[j]==start+i*4+4) {
9447               for(hr=0;hr<HOST_REGS;hr++) {
9448                 if(current.regmap[hr]!=branch_regs[j].regmap[hr]) {
9449                   current.regmap[hr]=-1;
9450                 }
9451                 current.is32&=branch_regs[j].is32;
9452                 current.dirty&=branch_regs[j].dirty;
9453               }
9454             }
9455             j--;
9456           }
9457         }
9458       }
9459     }
9460
9461     // Count cycles in between branches
9462     ccadj[i]=cc;
9463     if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP||itype[i]==SYSCALL||itype[i]==HLECALL))
9464     {
9465       cc=0;
9466     }
9467     else
9468     {
9469       cc++;
9470     }
9471
9472     flush_dirty_uppers(&current);
9473     if(!is_ds[i]) {
9474       regs[i].is32=current.is32;
9475       regs[i].dirty=current.dirty;
9476       regs[i].isconst=current.isconst;
9477       memcpy(constmap[i],current.constmap,sizeof(current.constmap));
9478     }
9479     for(hr=0;hr<HOST_REGS;hr++) {
9480       if(hr!=EXCLUDE_REG&&regs[i].regmap[hr]>=0) {
9481         if(regmap_pre[i][hr]!=regs[i].regmap[hr]) {
9482           regs[i].wasconst&=~(1<<hr);
9483         }
9484       }
9485     }
9486     if(current.regmap[HOST_BTREG]==BTREG) current.regmap[HOST_BTREG]=-1;
9487   }
9488   
9489   /* Pass 4 - Cull unused host registers */
9490   
9491   uint64_t nr=0;
9492   
9493   for (i=slen-1;i>=0;i--)
9494   {
9495     int hr;
9496     if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
9497     {
9498       if(ba[i]<start || ba[i]>=(start+slen*4))
9499       {
9500         // Branch out of this block, don't need anything
9501         nr=0;
9502       }
9503       else
9504       {
9505         // Internal branch
9506         // Need whatever matches the target
9507         nr=0;
9508         int t=(ba[i]-start)>>2;
9509         for(hr=0;hr<HOST_REGS;hr++)
9510         {
9511           if(regs[i].regmap_entry[hr]>=0) {
9512             if(regs[i].regmap_entry[hr]==regs[t].regmap_entry[hr]) nr|=1<<hr;
9513           }
9514         }
9515       }
9516       // Conditional branch may need registers for following instructions
9517       if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
9518       {
9519         if(i<slen-2) {
9520           nr|=needed_reg[i+2];
9521           for(hr=0;hr<HOST_REGS;hr++)
9522           {
9523             if(regmap_pre[i+2][hr]>=0&&get_reg(regs[i+2].regmap_entry,regmap_pre[i+2][hr])<0) nr&=~(1<<hr);
9524             //if((regmap_entry[i+2][hr])>=0) if(!((nr>>hr)&1)) printf("%x-bogus(%d=%d)\n",start+i*4,hr,regmap_entry[i+2][hr]);
9525           }
9526         }
9527       }
9528       // Don't need stuff which is overwritten
9529       if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
9530       if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
9531       // Merge in delay slot
9532       for(hr=0;hr<HOST_REGS;hr++)
9533       {
9534         if(!likely[i]) {
9535           // These are overwritten unless the branch is "likely"
9536           // and the delay slot is nullified if not taken
9537           if(rt1[i+1]&&rt1[i+1]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9538           if(rt2[i+1]&&rt2[i+1]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9539         }
9540         if(us1[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9541         if(us2[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9542         if(rs1[i+1]==regmap_pre[i][hr]) nr|=1<<hr;
9543         if(rs2[i+1]==regmap_pre[i][hr]) nr|=1<<hr;
9544         if(us1[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9545         if(us2[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9546         if(rs1[i+1]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9547         if(rs2[i+1]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9548         if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1)) {
9549           if(dep1[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9550           if(dep2[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9551         }
9552         if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1)) {
9553           if(dep1[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9554           if(dep2[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9555         }
9556         if(itype[i+1]==STORE || itype[i+1]==STORELR || (opcode[i+1]&0x3b)==0x39 || (opcode[i+1]&0x3b)==0x3a) {
9557           if(regmap_pre[i][hr]==INVCP) nr|=1<<hr;
9558           if(regs[i].regmap_entry[hr]==INVCP) nr|=1<<hr;
9559         }
9560       }
9561     }
9562     else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
9563     {
9564       // SYSCALL instruction (software interrupt)
9565       nr=0;
9566     }
9567     else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
9568     {
9569       // ERET instruction (return from interrupt)
9570       nr=0;
9571     }
9572     else // Non-branch
9573     {
9574       if(i<slen-1) {
9575         for(hr=0;hr<HOST_REGS;hr++) {
9576           if(regmap_pre[i+1][hr]>=0&&get_reg(regs[i+1].regmap_entry,regmap_pre[i+1][hr])<0) nr&=~(1<<hr);
9577           if(regs[i].regmap[hr]!=regmap_pre[i+1][hr]) nr&=~(1<<hr);
9578           if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
9579           if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
9580         }
9581       }
9582     }
9583     for(hr=0;hr<HOST_REGS;hr++)
9584     {
9585       // Overwritten registers are not needed
9586       if(rt1[i]&&rt1[i]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9587       if(rt2[i]&&rt2[i]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9588       if(FTEMP==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9589       // Source registers are needed
9590       if(us1[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9591       if(us2[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9592       if(rs1[i]==regmap_pre[i][hr]) nr|=1<<hr;
9593       if(rs2[i]==regmap_pre[i][hr]) nr|=1<<hr;
9594       if(us1[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9595       if(us2[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9596       if(rs1[i]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9597       if(rs2[i]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9598       if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1)) {
9599         if(dep1[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9600         if(dep1[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9601       }
9602       if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1)) {
9603         if(dep2[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9604         if(dep2[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9605       }
9606       if(itype[i]==STORE || itype[i]==STORELR || (opcode[i]&0x3b)==0x39 || (opcode[i]&0x3b)==0x3a) {
9607         if(regmap_pre[i][hr]==INVCP) nr|=1<<hr;
9608         if(regs[i].regmap_entry[hr]==INVCP) nr|=1<<hr;
9609       }
9610       // Don't store a register immediately after writing it,
9611       // may prevent dual-issue.
9612       // But do so if this is a branch target, otherwise we
9613       // might have to load the register before the branch.
9614       if(i>0&&!bt[i]&&((regs[i].wasdirty>>hr)&1)) {
9615         if((regmap_pre[i][hr]>0&&regmap_pre[i][hr]<64&&!((unneeded_reg[i]>>regmap_pre[i][hr])&1)) ||
9616            (regmap_pre[i][hr]>64&&!((unneeded_reg_upper[i]>>(regmap_pre[i][hr]&63))&1)) ) {
9617           if(rt1[i-1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9618           if(rt2[i-1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9619         }
9620         if((regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64&&!((unneeded_reg[i]>>regs[i].regmap_entry[hr])&1)) ||
9621            (regs[i].regmap_entry[hr]>64&&!((unneeded_reg_upper[i]>>(regs[i].regmap_entry[hr]&63))&1)) ) {
9622           if(rt1[i-1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9623           if(rt2[i-1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9624         }
9625       }
9626     }
9627     // Cycle count is needed at branches.  Assume it is needed at the target too.
9628     if(i==0||bt[i]||itype[i]==CJUMP||itype[i]==FJUMP||itype[i]==SPAN) {
9629       if(regmap_pre[i][HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
9630       if(regs[i].regmap_entry[HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
9631     }
9632     // Save it
9633     needed_reg[i]=nr;
9634     
9635     // Deallocate unneeded registers
9636     for(hr=0;hr<HOST_REGS;hr++)
9637     {
9638       if(!((nr>>hr)&1)) {
9639         if(regs[i].regmap_entry[hr]!=CCREG) regs[i].regmap_entry[hr]=-1;
9640         if((regs[i].regmap[hr]&63)!=rs1[i] && (regs[i].regmap[hr]&63)!=rs2[i] &&
9641            (regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
9642            (regs[i].regmap[hr]&63)!=PTEMP && (regs[i].regmap[hr]&63)!=CCREG)
9643         {
9644           if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
9645           {
9646             if(likely[i]) {
9647               regs[i].regmap[hr]=-1;
9648               regs[i].isconst&=~(1<<hr);
9649               if(i<slen-2) regmap_pre[i+2][hr]=-1;
9650             }
9651           }
9652         }
9653         if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
9654         {
9655           int d1=0,d2=0,map=0,temp=0;
9656           if(get_reg(regs[i].regmap,rt1[i+1]|64)>=0||get_reg(branch_regs[i].regmap,rt1[i+1]|64)>=0)
9657           {
9658             d1=dep1[i+1];
9659             d2=dep2[i+1];
9660           }
9661           if(using_tlb) {
9662             if(itype[i+1]==LOAD || itype[i+1]==LOADLR ||
9663                itype[i+1]==STORE || itype[i+1]==STORELR ||
9664                itype[i+1]==C1LS || itype[i+1]==C2LS)
9665             map=TLREG;
9666           } else
9667           if(itype[i+1]==STORE || itype[i+1]==STORELR ||
9668              (opcode[i+1]&0x3b)==0x39 || (opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1 || SWC2/SDC2
9669             map=INVCP;
9670           }
9671           if(itype[i+1]==LOADLR || itype[i+1]==STORELR ||
9672              itype[i+1]==C1LS || itype[i+1]==C2LS)
9673             temp=FTEMP;
9674           if((regs[i].regmap[hr]&63)!=rs1[i] && (regs[i].regmap[hr]&63)!=rs2[i] &&
9675              (regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
9676              (regs[i].regmap[hr]&63)!=rt1[i+1] && (regs[i].regmap[hr]&63)!=rt2[i+1] &&
9677              (regs[i].regmap[hr]^64)!=us1[i+1] && (regs[i].regmap[hr]^64)!=us2[i+1] &&
9678              (regs[i].regmap[hr]^64)!=d1 && (regs[i].regmap[hr]^64)!=d2 &&
9679              regs[i].regmap[hr]!=rs1[i+1] && regs[i].regmap[hr]!=rs2[i+1] &&
9680              (regs[i].regmap[hr]&63)!=temp && regs[i].regmap[hr]!=PTEMP &&
9681              regs[i].regmap[hr]!=RHASH && regs[i].regmap[hr]!=RHTBL &&
9682              regs[i].regmap[hr]!=RTEMP && regs[i].regmap[hr]!=CCREG &&
9683              regs[i].regmap[hr]!=map )
9684           {
9685             regs[i].regmap[hr]=-1;
9686             regs[i].isconst&=~(1<<hr);
9687             if((branch_regs[i].regmap[hr]&63)!=rs1[i] && (branch_regs[i].regmap[hr]&63)!=rs2[i] &&
9688                (branch_regs[i].regmap[hr]&63)!=rt1[i] && (branch_regs[i].regmap[hr]&63)!=rt2[i] &&
9689                (branch_regs[i].regmap[hr]&63)!=rt1[i+1] && (branch_regs[i].regmap[hr]&63)!=rt2[i+1] &&
9690                (branch_regs[i].regmap[hr]^64)!=us1[i+1] && (branch_regs[i].regmap[hr]^64)!=us2[i+1] &&
9691                (branch_regs[i].regmap[hr]^64)!=d1 && (branch_regs[i].regmap[hr]^64)!=d2 &&
9692                branch_regs[i].regmap[hr]!=rs1[i+1] && branch_regs[i].regmap[hr]!=rs2[i+1] &&
9693                (branch_regs[i].regmap[hr]&63)!=temp && branch_regs[i].regmap[hr]!=PTEMP &&
9694                branch_regs[i].regmap[hr]!=RHASH && branch_regs[i].regmap[hr]!=RHTBL &&
9695                branch_regs[i].regmap[hr]!=RTEMP && branch_regs[i].regmap[hr]!=CCREG &&
9696                branch_regs[i].regmap[hr]!=map)
9697             {
9698               branch_regs[i].regmap[hr]=-1;
9699               branch_regs[i].regmap_entry[hr]=-1;
9700               if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
9701               {
9702                 if(!likely[i]&&i<slen-2) {
9703                   regmap_pre[i+2][hr]=-1;
9704                 }
9705               }
9706             }
9707           }
9708         }
9709         else
9710         {
9711           // Non-branch
9712           if(i>0)
9713           {
9714             int d1=0,d2=0,map=-1,temp=-1;
9715             if(get_reg(regs[i].regmap,rt1[i]|64)>=0)
9716             {
9717               d1=dep1[i];
9718               d2=dep2[i];
9719             }
9720             if(using_tlb) {
9721               if(itype[i]==LOAD || itype[i]==LOADLR ||
9722                  itype[i]==STORE || itype[i]==STORELR ||
9723                  itype[i]==C1LS || itype[i]==C2LS)
9724               map=TLREG;
9725             } else if(itype[i]==STORE || itype[i]==STORELR ||
9726                       (opcode[i]&0x3b)==0x39 || (opcode[i]&0x3b)==0x3a) { // SWC1/SDC1 || SWC2/SDC2
9727               map=INVCP;
9728             }
9729             if(itype[i]==LOADLR || itype[i]==STORELR ||
9730                itype[i]==C1LS || itype[i]==C2LS)
9731               temp=FTEMP;
9732             if((regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
9733                (regs[i].regmap[hr]^64)!=us1[i] && (regs[i].regmap[hr]^64)!=us2[i] &&
9734                (regs[i].regmap[hr]^64)!=d1 && (regs[i].regmap[hr]^64)!=d2 &&
9735                regs[i].regmap[hr]!=rs1[i] && regs[i].regmap[hr]!=rs2[i] &&
9736                (regs[i].regmap[hr]&63)!=temp && regs[i].regmap[hr]!=map &&
9737                (itype[i]!=SPAN||regs[i].regmap[hr]!=CCREG))
9738             {
9739               if(i<slen-1&&!is_ds[i]) {
9740                 if(regmap_pre[i+1][hr]!=-1 || regs[i].regmap[hr]!=-1)
9741                 if(regmap_pre[i+1][hr]!=regs[i].regmap[hr])
9742                 if(regs[i].regmap[hr]<64||!((regs[i].was32>>(regs[i].regmap[hr]&63))&1))
9743                 {
9744                   printf("fail: %x (%d %d!=%d)\n",start+i*4,hr,regmap_pre[i+1][hr],regs[i].regmap[hr]);
9745                   assert(regmap_pre[i+1][hr]==regs[i].regmap[hr]);
9746                 }
9747                 regmap_pre[i+1][hr]=-1;
9748                 if(regs[i+1].regmap_entry[hr]==CCREG) regs[i+1].regmap_entry[hr]=-1;
9749               }
9750               regs[i].regmap[hr]=-1;
9751               regs[i].isconst&=~(1<<hr);
9752             }
9753           }
9754         }
9755       }
9756     }
9757   }
9758   
9759   /* Pass 5 - Pre-allocate registers */
9760   
9761   // If a register is allocated during a loop, try to allocate it for the
9762   // entire loop, if possible.  This avoids loading/storing registers
9763   // inside of the loop.
9764
9765   signed char f_regmap[HOST_REGS];
9766   clear_all_regs(f_regmap);
9767   for(i=0;i<slen-1;i++)
9768   {
9769     if(itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
9770     {
9771       if(ba[i]>=start && ba[i]<(start+i*4)) 
9772       if(itype[i+1]==NOP||itype[i+1]==MOV||itype[i+1]==ALU
9773       ||itype[i+1]==SHIFTIMM||itype[i+1]==IMM16||itype[i+1]==LOAD
9774       ||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS
9775       ||itype[i+1]==SHIFT||itype[i+1]==COP1||itype[i+1]==FLOAT
9776       ||itype[i+1]==FCOMP||itype[i+1]==FCONV
9777       ||itype[i+1]==COP2||itype[i+1]==C2LS||itype[i+1]==C2OP)
9778       {
9779         int t=(ba[i]-start)>>2;
9780         if(t>0&&(itype[t-1]!=UJUMP&&itype[t-1]!=RJUMP&&itype[t-1]!=CJUMP&&itype[t-1]!=SJUMP&&itype[t-1]!=FJUMP)) // loop_preload can't handle jumps into delay slots
9781         if(t<2||(itype[t-2]!=UJUMP)) // call/ret assumes no registers allocated
9782         for(hr=0;hr<HOST_REGS;hr++)
9783         {
9784           if(regs[i].regmap[hr]>64) {
9785             if(!((regs[i].dirty>>hr)&1))
9786               f_regmap[hr]=regs[i].regmap[hr];
9787             else f_regmap[hr]=-1;
9788           }
9789           else if(regs[i].regmap[hr]>=0) {
9790             if(f_regmap[hr]!=regs[i].regmap[hr]) {
9791               // dealloc old register
9792               int n;
9793               for(n=0;n<HOST_REGS;n++)
9794               {
9795                 if(f_regmap[n]==regs[i].regmap[hr]) {f_regmap[n]=-1;}
9796               }
9797               // and alloc new one
9798               f_regmap[hr]=regs[i].regmap[hr];
9799             }
9800           }
9801           if(branch_regs[i].regmap[hr]>64) {
9802             if(!((branch_regs[i].dirty>>hr)&1))
9803               f_regmap[hr]=branch_regs[i].regmap[hr];
9804             else f_regmap[hr]=-1;
9805           }
9806           else if(branch_regs[i].regmap[hr]>=0) {
9807             if(f_regmap[hr]!=branch_regs[i].regmap[hr]) {
9808               // dealloc old register
9809               int n;
9810               for(n=0;n<HOST_REGS;n++)
9811               {
9812                 if(f_regmap[n]==branch_regs[i].regmap[hr]) {f_regmap[n]=-1;}
9813               }
9814               // and alloc new one
9815               f_regmap[hr]=branch_regs[i].regmap[hr];
9816             }
9817           }
9818           if(ooo[i]) {
9819             if(count_free_regs(regs[i].regmap)<=minimum_free_regs[i+1]) 
9820               f_regmap[hr]=branch_regs[i].regmap[hr];
9821           }else{
9822             if(count_free_regs(branch_regs[i].regmap)<=minimum_free_regs[i+1]) 
9823               f_regmap[hr]=branch_regs[i].regmap[hr];
9824           }
9825           // Avoid dirty->clean transition
9826           #ifdef DESTRUCTIVE_WRITEBACK
9827           if(t>0) if(get_reg(regmap_pre[t],f_regmap[hr])>=0) if((regs[t].wasdirty>>get_reg(regmap_pre[t],f_regmap[hr]))&1) f_regmap[hr]=-1;
9828           #endif
9829           // This check is only strictly required in the DESTRUCTIVE_WRITEBACK
9830           // case above, however it's always a good idea.  We can't hoist the
9831           // load if the register was already allocated, so there's no point
9832           // wasting time analyzing most of these cases.  It only "succeeds"
9833           // when the mapping was different and the load can be replaced with
9834           // a mov, which is of negligible benefit.  So such cases are
9835           // skipped below.
9836           if(f_regmap[hr]>0) {
9837             if(regs[t].regmap_entry[hr]<0&&get_reg(regmap_pre[t],f_regmap[hr])<0) {
9838               int r=f_regmap[hr];
9839               for(j=t;j<=i;j++)
9840               {
9841                 //printf("Test %x -> %x, %x %d/%d\n",start+i*4,ba[i],start+j*4,hr,r);
9842                 if(r<34&&((unneeded_reg[j]>>r)&1)) break;
9843                 if(r>63&&((unneeded_reg_upper[j]>>(r&63))&1)) break;
9844                 if(r>63) {
9845                   // NB This can exclude the case where the upper-half
9846                   // register is lower numbered than the lower-half
9847                   // register.  Not sure if it's worth fixing...
9848                   if(get_reg(regs[j].regmap,r&63)<0) break;
9849                   if(get_reg(regs[j].regmap_entry,r&63)<0) break;
9850                   if(regs[j].is32&(1LL<<(r&63))) break;
9851                 }
9852                 if(regs[j].regmap[hr]==f_regmap[hr]&&(f_regmap[hr]&63)<TEMPREG) {
9853                   //printf("Hit %x -> %x, %x %d/%d\n",start+i*4,ba[i],start+j*4,hr,r);
9854                   int k;
9855                   if(regs[i].regmap[hr]==-1&&branch_regs[i].regmap[hr]==-1) {
9856                     if(get_reg(regs[i+2].regmap,f_regmap[hr])>=0) break;
9857                     if(r>63) {
9858                       if(get_reg(regs[i].regmap,r&63)<0) break;
9859                       if(get_reg(branch_regs[i].regmap,r&63)<0) break;
9860                     }
9861                     k=i;
9862                     while(k>1&&regs[k-1].regmap[hr]==-1) {
9863                       if(count_free_regs(regs[k-1].regmap)<=minimum_free_regs[k-1]) {
9864                         //printf("no free regs for store %x\n",start+(k-1)*4);
9865                         break;
9866                       }
9867                       if(get_reg(regs[k-1].regmap,f_regmap[hr])>=0) {
9868                         //printf("no-match due to different register\n");
9869                         break;
9870                       }
9871                       if(itype[k-2]==UJUMP||itype[k-2]==RJUMP||itype[k-2]==CJUMP||itype[k-2]==SJUMP||itype[k-2]==FJUMP) {
9872                         //printf("no-match due to branch\n");
9873                         break;
9874                       }
9875                       // call/ret fast path assumes no registers allocated
9876                       if(k>2&&(itype[k-3]==UJUMP||itype[k-3]==RJUMP)) {
9877                         break;
9878                       }
9879                       if(r>63) {
9880                         // NB This can exclude the case where the upper-half
9881                         // register is lower numbered than the lower-half
9882                         // register.  Not sure if it's worth fixing...
9883                         if(get_reg(regs[k-1].regmap,r&63)<0) break;
9884                         if(regs[k-1].is32&(1LL<<(r&63))) break;
9885                       }
9886                       k--;
9887                     }
9888                     if(i<slen-1) {
9889                       if((regs[k].is32&(1LL<<f_regmap[hr]))!=
9890                         (regs[i+2].was32&(1LL<<f_regmap[hr]))) {
9891                         //printf("bad match after branch\n");
9892                         break;
9893                       }
9894                     }
9895                     if(regs[k-1].regmap[hr]==f_regmap[hr]&&regmap_pre[k][hr]==f_regmap[hr]) {
9896                       //printf("Extend r%d, %x ->\n",hr,start+k*4);
9897                       while(k<i) {
9898                         regs[k].regmap_entry[hr]=f_regmap[hr];
9899                         regs[k].regmap[hr]=f_regmap[hr];
9900                         regmap_pre[k+1][hr]=f_regmap[hr];
9901                         regs[k].wasdirty&=~(1<<hr);
9902                         regs[k].dirty&=~(1<<hr);
9903                         regs[k].wasdirty|=(1<<hr)&regs[k-1].dirty;
9904                         regs[k].dirty|=(1<<hr)&regs[k].wasdirty;
9905                         regs[k].wasconst&=~(1<<hr);
9906                         regs[k].isconst&=~(1<<hr);
9907                         k++;
9908                       }
9909                     }
9910                     else {
9911                       //printf("Fail Extend r%d, %x ->\n",hr,start+k*4);
9912                       break;
9913                     }
9914                     assert(regs[i-1].regmap[hr]==f_regmap[hr]);
9915                     if(regs[i-1].regmap[hr]==f_regmap[hr]&&regmap_pre[i][hr]==f_regmap[hr]) {
9916                       //printf("OK fill %x (r%d)\n",start+i*4,hr);
9917                       regs[i].regmap_entry[hr]=f_regmap[hr];
9918                       regs[i].regmap[hr]=f_regmap[hr];
9919                       regs[i].wasdirty&=~(1<<hr);
9920                       regs[i].dirty&=~(1<<hr);
9921                       regs[i].wasdirty|=(1<<hr)&regs[i-1].dirty;
9922                       regs[i].dirty|=(1<<hr)&regs[i-1].dirty;
9923                       regs[i].wasconst&=~(1<<hr);
9924                       regs[i].isconst&=~(1<<hr);
9925                       branch_regs[i].regmap_entry[hr]=f_regmap[hr];
9926                       branch_regs[i].wasdirty&=~(1<<hr);
9927                       branch_regs[i].wasdirty|=(1<<hr)&regs[i].dirty;
9928                       branch_regs[i].regmap[hr]=f_regmap[hr];
9929                       branch_regs[i].dirty&=~(1<<hr);
9930                       branch_regs[i].dirty|=(1<<hr)&regs[i].dirty;
9931                       branch_regs[i].wasconst&=~(1<<hr);
9932                       branch_regs[i].isconst&=~(1<<hr);
9933                       if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000) {
9934                         regmap_pre[i+2][hr]=f_regmap[hr];
9935                         regs[i+2].wasdirty&=~(1<<hr);
9936                         regs[i+2].wasdirty|=(1<<hr)&regs[i].dirty;
9937                         assert((branch_regs[i].is32&(1LL<<f_regmap[hr]))==
9938                           (regs[i+2].was32&(1LL<<f_regmap[hr])));
9939                       }
9940                     }
9941                   }
9942                   for(k=t;k<j;k++) {
9943                     // Alloc register clean at beginning of loop,
9944                     // but may dirty it in pass 6
9945                     regs[k].regmap_entry[hr]=f_regmap[hr];
9946                     regs[k].regmap[hr]=f_regmap[hr];
9947                     regs[k].dirty&=~(1<<hr);
9948                     regs[k].wasconst&=~(1<<hr);
9949                     regs[k].isconst&=~(1<<hr);
9950                     if(itype[k]==UJUMP||itype[k]==RJUMP||itype[k]==CJUMP||itype[k]==SJUMP||itype[k]==FJUMP) {
9951                       branch_regs[k].regmap_entry[hr]=f_regmap[hr];
9952                       branch_regs[k].regmap[hr]=f_regmap[hr];
9953                       branch_regs[k].dirty&=~(1<<hr);
9954                       branch_regs[k].wasconst&=~(1<<hr);
9955                       branch_regs[k].isconst&=~(1<<hr);
9956                       if(itype[k]!=RJUMP&&itype[k]!=UJUMP&&(source[k]>>16)!=0x1000) {
9957                         regmap_pre[k+2][hr]=f_regmap[hr];
9958                         regs[k+2].wasdirty&=~(1<<hr);
9959                         assert((branch_regs[k].is32&(1LL<<f_regmap[hr]))==
9960                           (regs[k+2].was32&(1LL<<f_regmap[hr])));
9961                       }
9962                     }
9963                     else
9964                     {
9965                       regmap_pre[k+1][hr]=f_regmap[hr];
9966                       regs[k+1].wasdirty&=~(1<<hr);
9967                     }
9968                   }
9969                   if(regs[j].regmap[hr]==f_regmap[hr])
9970                     regs[j].regmap_entry[hr]=f_regmap[hr];
9971                   break;
9972                 }
9973                 if(j==i) break;
9974                 if(regs[j].regmap[hr]>=0)
9975                   break;
9976                 if(get_reg(regs[j].regmap,f_regmap[hr])>=0) {
9977                   //printf("no-match due to different register\n");
9978                   break;
9979                 }
9980                 if((regs[j+1].is32&(1LL<<f_regmap[hr]))!=(regs[j].is32&(1LL<<f_regmap[hr]))) {
9981                   //printf("32/64 mismatch %x %d\n",start+j*4,hr);
9982                   break;
9983                 }
9984                 if(itype[j]==UJUMP||itype[j]==RJUMP||(source[j]>>16)==0x1000)
9985                 {
9986                   // Stop on unconditional branch
9987                   break;
9988                 }
9989                 if(itype[j]==CJUMP||itype[j]==SJUMP||itype[j]==FJUMP)
9990                 {
9991                   if(ooo[j]) {
9992                     if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j+1]) 
9993                       break;
9994                   }else{
9995                     if(count_free_regs(branch_regs[j].regmap)<=minimum_free_regs[j+1]) 
9996                       break;
9997                   }
9998                   if(get_reg(branch_regs[j].regmap,f_regmap[hr])>=0) {
9999                     //printf("no-match due to different register (branch)\n");
10000                     break;
10001                   }
10002                 }
10003                 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) {
10004                   //printf("No free regs for store %x\n",start+j*4);
10005                   break;
10006                 }
10007                 if(f_regmap[hr]>=64) {
10008                   if(regs[j].is32&(1LL<<(f_regmap[hr]&63))) {
10009                     break;
10010                   }
10011                   else
10012                   {
10013                     if(get_reg(regs[j].regmap,f_regmap[hr]&63)<0) {
10014                       break;
10015                     }
10016                   }
10017                 }
10018               }
10019             }
10020           }
10021         }
10022       }
10023     }else{
10024       int count=0;
10025       for(hr=0;hr<HOST_REGS;hr++)
10026       {
10027         if(hr!=EXCLUDE_REG) {
10028           if(regs[i].regmap[hr]>64) {
10029             if(!((regs[i].dirty>>hr)&1))
10030               f_regmap[hr]=regs[i].regmap[hr];
10031           }
10032           else if(regs[i].regmap[hr]>=0) {
10033             if(f_regmap[hr]!=regs[i].regmap[hr]) {
10034               // dealloc old register
10035               int n;
10036               for(n=0;n<HOST_REGS;n++)
10037               {
10038                 if(f_regmap[n]==regs[i].regmap[hr]) {f_regmap[n]=-1;}
10039               }
10040               // and alloc new one
10041               f_regmap[hr]=regs[i].regmap[hr];
10042             }
10043           }
10044           else if(regs[i].regmap[hr]<0) count++;
10045         }
10046       }
10047       // Try to restore cycle count at branch targets
10048       if(bt[i]) {
10049         for(j=i;j<slen-1;j++) {
10050           if(regs[j].regmap[HOST_CCREG]!=-1) break;
10051           if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) {
10052             //printf("no free regs for store %x\n",start+j*4);
10053             break;
10054           }
10055         }
10056         if(regs[j].regmap[HOST_CCREG]==CCREG) {
10057           int k=i;
10058           //printf("Extend CC, %x -> %x\n",start+k*4,start+j*4);
10059           while(k<j) {
10060             regs[k].regmap_entry[HOST_CCREG]=CCREG;
10061             regs[k].regmap[HOST_CCREG]=CCREG;
10062             regmap_pre[k+1][HOST_CCREG]=CCREG;
10063             regs[k+1].wasdirty|=1<<HOST_CCREG;
10064             regs[k].dirty|=1<<HOST_CCREG;
10065             regs[k].wasconst&=~(1<<HOST_CCREG);
10066             regs[k].isconst&=~(1<<HOST_CCREG);
10067             k++;
10068           }
10069           regs[j].regmap_entry[HOST_CCREG]=CCREG;          
10070         }
10071         // Work backwards from the branch target
10072         if(j>i&&f_regmap[HOST_CCREG]==CCREG)
10073         {
10074           //printf("Extend backwards\n");
10075           int k;
10076           k=i;
10077           while(regs[k-1].regmap[HOST_CCREG]==-1) {
10078             if(count_free_regs(regs[k-1].regmap)<=minimum_free_regs[k-1]) {
10079               //printf("no free regs for store %x\n",start+(k-1)*4);
10080               break;
10081             }
10082             k--;
10083           }
10084           if(regs[k-1].regmap[HOST_CCREG]==CCREG) {
10085             //printf("Extend CC, %x ->\n",start+k*4);
10086             while(k<=i) {
10087               regs[k].regmap_entry[HOST_CCREG]=CCREG;
10088               regs[k].regmap[HOST_CCREG]=CCREG;
10089               regmap_pre[k+1][HOST_CCREG]=CCREG;
10090               regs[k+1].wasdirty|=1<<HOST_CCREG;
10091               regs[k].dirty|=1<<HOST_CCREG;
10092               regs[k].wasconst&=~(1<<HOST_CCREG);
10093               regs[k].isconst&=~(1<<HOST_CCREG);
10094               k++;
10095             }
10096           }
10097           else {
10098             //printf("Fail Extend CC, %x ->\n",start+k*4);
10099           }
10100         }
10101       }
10102       if(itype[i]!=STORE&&itype[i]!=STORELR&&itype[i]!=C1LS&&itype[i]!=SHIFT&&
10103          itype[i]!=NOP&&itype[i]!=MOV&&itype[i]!=ALU&&itype[i]!=SHIFTIMM&&
10104          itype[i]!=IMM16&&itype[i]!=LOAD&&itype[i]!=COP1&&itype[i]!=FLOAT&&
10105          itype[i]!=FCONV&&itype[i]!=FCOMP)
10106       {
10107         memcpy(f_regmap,regs[i].regmap,sizeof(f_regmap));
10108       }
10109     }
10110   }
10111   
10112   // This allocates registers (if possible) one instruction prior
10113   // to use, which can avoid a load-use penalty on certain CPUs.
10114   for(i=0;i<slen-1;i++)
10115   {
10116     if(!i||(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP))
10117     {
10118       if(!bt[i+1])
10119       {
10120         if(itype[i]==ALU||itype[i]==MOV||itype[i]==LOAD||itype[i]==SHIFTIMM||itype[i]==IMM16
10121            ||((itype[i]==COP1||itype[i]==COP2)&&opcode2[i]<3))
10122         {
10123           if(rs1[i+1]) {
10124             if((hr=get_reg(regs[i+1].regmap,rs1[i+1]))>=0)
10125             {
10126               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10127               {
10128                 regs[i].regmap[hr]=regs[i+1].regmap[hr];
10129                 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
10130                 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
10131                 regs[i].isconst&=~(1<<hr);
10132                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10133                 constmap[i][hr]=constmap[i+1][hr];
10134                 regs[i+1].wasdirty&=~(1<<hr);
10135                 regs[i].dirty&=~(1<<hr);
10136               }
10137             }
10138           }
10139           if(rs2[i+1]) {
10140             if((hr=get_reg(regs[i+1].regmap,rs2[i+1]))>=0)
10141             {
10142               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10143               {
10144                 regs[i].regmap[hr]=regs[i+1].regmap[hr];
10145                 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
10146                 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
10147                 regs[i].isconst&=~(1<<hr);
10148                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10149                 constmap[i][hr]=constmap[i+1][hr];
10150                 regs[i+1].wasdirty&=~(1<<hr);
10151                 regs[i].dirty&=~(1<<hr);
10152               }
10153             }
10154           }
10155           if(itype[i+1]==LOAD&&rs1[i+1]&&get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10156             if((hr=get_reg(regs[i+1].regmap,rt1[i+1]))>=0)
10157             {
10158               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10159               {
10160                 regs[i].regmap[hr]=rs1[i+1];
10161                 regmap_pre[i+1][hr]=rs1[i+1];
10162                 regs[i+1].regmap_entry[hr]=rs1[i+1];
10163                 regs[i].isconst&=~(1<<hr);
10164                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10165                 constmap[i][hr]=constmap[i+1][hr];
10166                 regs[i+1].wasdirty&=~(1<<hr);
10167                 regs[i].dirty&=~(1<<hr);
10168               }
10169             }
10170           }
10171           if(lt1[i+1]&&get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10172             if((hr=get_reg(regs[i+1].regmap,rt1[i+1]))>=0)
10173             {
10174               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10175               {
10176                 regs[i].regmap[hr]=rs1[i+1];
10177                 regmap_pre[i+1][hr]=rs1[i+1];
10178                 regs[i+1].regmap_entry[hr]=rs1[i+1];
10179                 regs[i].isconst&=~(1<<hr);
10180                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10181                 constmap[i][hr]=constmap[i+1][hr];
10182                 regs[i+1].wasdirty&=~(1<<hr);
10183                 regs[i].dirty&=~(1<<hr);
10184               }
10185             }
10186           }
10187           #ifndef HOST_IMM_ADDR32
10188           if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS||itype[i+1]==C2LS) {
10189             hr=get_reg(regs[i+1].regmap,TLREG);
10190             if(hr>=0) {
10191               int sr=get_reg(regs[i+1].regmap,rs1[i+1]);
10192               if(sr>=0&&((regs[i+1].wasconst>>sr)&1)) {
10193                 int nr;
10194                 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10195                 {
10196                   regs[i].regmap[hr]=MGEN1+((i+1)&1);
10197                   regmap_pre[i+1][hr]=MGEN1+((i+1)&1);
10198                   regs[i+1].regmap_entry[hr]=MGEN1+((i+1)&1);
10199                   regs[i].isconst&=~(1<<hr);
10200                   regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10201                   constmap[i][hr]=constmap[i+1][hr];
10202                   regs[i+1].wasdirty&=~(1<<hr);
10203                   regs[i].dirty&=~(1<<hr);
10204                 }
10205                 else if((nr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1))>=0)
10206                 {
10207                   // move it to another register
10208                   regs[i+1].regmap[hr]=-1;
10209                   regmap_pre[i+2][hr]=-1;
10210                   regs[i+1].regmap[nr]=TLREG;
10211                   regmap_pre[i+2][nr]=TLREG;
10212                   regs[i].regmap[nr]=MGEN1+((i+1)&1);
10213                   regmap_pre[i+1][nr]=MGEN1+((i+1)&1);
10214                   regs[i+1].regmap_entry[nr]=MGEN1+((i+1)&1);
10215                   regs[i].isconst&=~(1<<nr);
10216                   regs[i+1].isconst&=~(1<<nr);
10217                   regs[i].dirty&=~(1<<nr);
10218                   regs[i+1].wasdirty&=~(1<<nr);
10219                   regs[i+1].dirty&=~(1<<nr);
10220                   regs[i+2].wasdirty&=~(1<<nr);
10221                 }
10222               }
10223             }
10224           }
10225           #endif
10226           if(itype[i+1]==STORE||itype[i+1]==STORELR
10227              ||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SB/SH/SW/SD/SWC1/SDC1/SWC2/SDC2
10228             if(get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10229               hr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1);
10230               if(hr<0) hr=get_reg(regs[i+1].regmap,-1);
10231               else {regs[i+1].regmap[hr]=AGEN1+((i+1)&1);regs[i+1].isconst&=~(1<<hr);}
10232               assert(hr>=0);
10233               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10234               {
10235                 regs[i].regmap[hr]=rs1[i+1];
10236                 regmap_pre[i+1][hr]=rs1[i+1];
10237                 regs[i+1].regmap_entry[hr]=rs1[i+1];
10238                 regs[i].isconst&=~(1<<hr);
10239                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10240                 constmap[i][hr]=constmap[i+1][hr];
10241                 regs[i+1].wasdirty&=~(1<<hr);
10242                 regs[i].dirty&=~(1<<hr);
10243               }
10244             }
10245           }
10246           if(itype[i+1]==LOADLR||(opcode[i+1]&0x3b)==0x31||(opcode[i+1]&0x3b)==0x32) { // LWC1/LDC1, LWC2/LDC2
10247             if(get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10248               int nr;
10249               hr=get_reg(regs[i+1].regmap,FTEMP);
10250               assert(hr>=0);
10251               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10252               {
10253                 regs[i].regmap[hr]=rs1[i+1];
10254                 regmap_pre[i+1][hr]=rs1[i+1];
10255                 regs[i+1].regmap_entry[hr]=rs1[i+1];
10256                 regs[i].isconst&=~(1<<hr);
10257                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10258                 constmap[i][hr]=constmap[i+1][hr];
10259                 regs[i+1].wasdirty&=~(1<<hr);
10260                 regs[i].dirty&=~(1<<hr);
10261               }
10262               else if((nr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1))>=0)
10263               {
10264                 // move it to another register
10265                 regs[i+1].regmap[hr]=-1;
10266                 regmap_pre[i+2][hr]=-1;
10267                 regs[i+1].regmap[nr]=FTEMP;
10268                 regmap_pre[i+2][nr]=FTEMP;
10269                 regs[i].regmap[nr]=rs1[i+1];
10270                 regmap_pre[i+1][nr]=rs1[i+1];
10271                 regs[i+1].regmap_entry[nr]=rs1[i+1];
10272                 regs[i].isconst&=~(1<<nr);
10273                 regs[i+1].isconst&=~(1<<nr);
10274                 regs[i].dirty&=~(1<<nr);
10275                 regs[i+1].wasdirty&=~(1<<nr);
10276                 regs[i+1].dirty&=~(1<<nr);
10277                 regs[i+2].wasdirty&=~(1<<nr);
10278               }
10279             }
10280           }
10281           if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR/*||itype[i+1]==C1LS||||itype[i+1]==C2LS*/) {
10282             if(itype[i+1]==LOAD) 
10283               hr=get_reg(regs[i+1].regmap,rt1[i+1]);
10284             if(itype[i+1]==LOADLR||(opcode[i+1]&0x3b)==0x31||(opcode[i+1]&0x3b)==0x32) // LWC1/LDC1, LWC2/LDC2
10285               hr=get_reg(regs[i+1].regmap,FTEMP);
10286             if(itype[i+1]==STORE||itype[i+1]==STORELR||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1/SWC2/SDC2
10287               hr=get_reg(regs[i+1].regmap,AGEN1+((i+1)&1));
10288               if(hr<0) hr=get_reg(regs[i+1].regmap,-1);
10289             }
10290             if(hr>=0&&regs[i].regmap[hr]<0) {
10291               int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
10292               if(rs>=0&&((regs[i+1].wasconst>>rs)&1)) {
10293                 regs[i].regmap[hr]=AGEN1+((i+1)&1);
10294                 regmap_pre[i+1][hr]=AGEN1+((i+1)&1);
10295                 regs[i+1].regmap_entry[hr]=AGEN1+((i+1)&1);
10296                 regs[i].isconst&=~(1<<hr);
10297                 regs[i+1].wasdirty&=~(1<<hr);
10298                 regs[i].dirty&=~(1<<hr);
10299               }
10300             }
10301           }
10302         }
10303       }
10304     }
10305   }
10306   
10307   /* Pass 6 - Optimize clean/dirty state */
10308   clean_registers(0,slen-1,1);
10309   
10310   /* Pass 7 - Identify 32-bit registers */
10311 #ifndef FORCE32
10312   provisional_r32();
10313
10314   u_int r32=0;
10315   
10316   for (i=slen-1;i>=0;i--)
10317   {
10318     int hr;
10319     if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
10320     {
10321       if(ba[i]<start || ba[i]>=(start+slen*4))
10322       {
10323         // Branch out of this block, don't need anything
10324         r32=0;
10325       }
10326       else
10327       {
10328         // Internal branch
10329         // Need whatever matches the target
10330         // (and doesn't get overwritten by the delay slot instruction)
10331         r32=0;
10332         int t=(ba[i]-start)>>2;
10333         if(ba[i]>start+i*4) {
10334           // Forward branch
10335           if(!(requires_32bit[t]&~regs[i].was32))
10336             r32|=requires_32bit[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
10337         }else{
10338           // Backward branch
10339           //if(!(regs[t].was32&~unneeded_reg_upper[t]&~regs[i].was32))
10340           //  r32|=regs[t].was32&~unneeded_reg_upper[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
10341           if(!(pr32[t]&~regs[i].was32))
10342             r32|=pr32[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
10343         }
10344       }
10345       // Conditional branch may need registers for following instructions
10346       if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
10347       {
10348         if(i<slen-2) {
10349           r32|=requires_32bit[i+2];
10350           r32&=regs[i].was32;
10351           // Mark this address as a branch target since it may be called
10352           // upon return from interrupt
10353           bt[i+2]=1;
10354         }
10355       }
10356       // Merge in delay slot
10357       if(!likely[i]) {
10358         // These are overwritten unless the branch is "likely"
10359         // and the delay slot is nullified if not taken
10360         r32&=~(1LL<<rt1[i+1]);
10361         r32&=~(1LL<<rt2[i+1]);
10362       }
10363       // Assume these are needed (delay slot)
10364       if(us1[i+1]>0)
10365       {
10366         if((regs[i].was32>>us1[i+1])&1) r32|=1LL<<us1[i+1];
10367       }
10368       if(us2[i+1]>0)
10369       {
10370         if((regs[i].was32>>us2[i+1])&1) r32|=1LL<<us2[i+1];
10371       }
10372       if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1))
10373       {
10374         if((regs[i].was32>>dep1[i+1])&1) r32|=1LL<<dep1[i+1];
10375       }
10376       if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1))
10377       {
10378         if((regs[i].was32>>dep2[i+1])&1) r32|=1LL<<dep2[i+1];
10379       }
10380     }
10381     else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
10382     {
10383       // SYSCALL instruction (software interrupt)
10384       r32=0;
10385     }
10386     else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
10387     {
10388       // ERET instruction (return from interrupt)
10389       r32=0;
10390     }
10391     // Check 32 bits
10392     r32&=~(1LL<<rt1[i]);
10393     r32&=~(1LL<<rt2[i]);
10394     if(us1[i]>0)
10395     {
10396       if((regs[i].was32>>us1[i])&1) r32|=1LL<<us1[i];
10397     }
10398     if(us2[i]>0)
10399     {
10400       if((regs[i].was32>>us2[i])&1) r32|=1LL<<us2[i];
10401     }
10402     if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1))
10403     {
10404       if((regs[i].was32>>dep1[i])&1) r32|=1LL<<dep1[i];
10405     }
10406     if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1))
10407     {
10408       if((regs[i].was32>>dep2[i])&1) r32|=1LL<<dep2[i];
10409     }
10410     requires_32bit[i]=r32;
10411     
10412     // Dirty registers which are 32-bit, require 32-bit input
10413     // as they will be written as 32-bit values
10414     for(hr=0;hr<HOST_REGS;hr++)
10415     {
10416       if(regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64) {
10417         if((regs[i].was32>>regs[i].regmap_entry[hr])&(regs[i].wasdirty>>hr)&1) {
10418           if(!((unneeded_reg_upper[i]>>regs[i].regmap_entry[hr])&1))
10419           requires_32bit[i]|=1LL<<regs[i].regmap_entry[hr];
10420         }
10421       }
10422     }
10423     //requires_32bit[i]=is32[i]&~unneeded_reg_upper[i]; // DEBUG
10424   }
10425 #endif
10426
10427   if(itype[slen-1]==SPAN) {
10428     bt[slen-1]=1; // Mark as a branch target so instruction can restart after exception
10429   }
10430   
10431   /* Debug/disassembly */
10432   if((void*)assem_debug==(void*)printf) 
10433   for(i=0;i<slen;i++)
10434   {
10435     printf("U:");
10436     int r;
10437     for(r=1;r<=CCREG;r++) {
10438       if((unneeded_reg[i]>>r)&1) {
10439         if(r==HIREG) printf(" HI");
10440         else if(r==LOREG) printf(" LO");
10441         else printf(" r%d",r);
10442       }
10443     }
10444 #ifndef FORCE32
10445     printf(" UU:");
10446     for(r=1;r<=CCREG;r++) {
10447       if(((unneeded_reg_upper[i]&~unneeded_reg[i])>>r)&1) {
10448         if(r==HIREG) printf(" HI");
10449         else if(r==LOREG) printf(" LO");
10450         else printf(" r%d",r);
10451       }
10452     }
10453     printf(" 32:");
10454     for(r=0;r<=CCREG;r++) {
10455       //if(((is32[i]>>r)&(~unneeded_reg[i]>>r))&1) {
10456       if((regs[i].was32>>r)&1) {
10457         if(r==CCREG) printf(" CC");
10458         else if(r==HIREG) printf(" HI");
10459         else if(r==LOREG) printf(" LO");
10460         else printf(" r%d",r);
10461       }
10462     }
10463 #endif
10464     printf("\n");
10465     #if defined(__i386__) || defined(__x86_64__)
10466     printf("pre: eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",regmap_pre[i][0],regmap_pre[i][1],regmap_pre[i][2],regmap_pre[i][3],regmap_pre[i][5],regmap_pre[i][6],regmap_pre[i][7]);
10467     #endif
10468     #ifdef __arm__
10469     printf("pre: r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d\n",regmap_pre[i][0],regmap_pre[i][1],regmap_pre[i][2],regmap_pre[i][3],regmap_pre[i][4],regmap_pre[i][5],regmap_pre[i][6],regmap_pre[i][7],regmap_pre[i][8],regmap_pre[i][9],regmap_pre[i][10],regmap_pre[i][12]);
10470     #endif
10471     printf("needs: ");
10472     if(needed_reg[i]&1) printf("eax ");
10473     if((needed_reg[i]>>1)&1) printf("ecx ");
10474     if((needed_reg[i]>>2)&1) printf("edx ");
10475     if((needed_reg[i]>>3)&1) printf("ebx ");
10476     if((needed_reg[i]>>5)&1) printf("ebp ");
10477     if((needed_reg[i]>>6)&1) printf("esi ");
10478     if((needed_reg[i]>>7)&1) printf("edi ");
10479     printf("r:");
10480     for(r=0;r<=CCREG;r++) {
10481       //if(((requires_32bit[i]>>r)&(~unneeded_reg[i]>>r))&1) {
10482       if((requires_32bit[i]>>r)&1) {
10483         if(r==CCREG) printf(" CC");
10484         else if(r==HIREG) printf(" HI");
10485         else if(r==LOREG) printf(" LO");
10486         else printf(" r%d",r);
10487       }
10488     }
10489     printf("\n");
10490     /*printf("pr:");
10491     for(r=0;r<=CCREG;r++) {
10492       //if(((requires_32bit[i]>>r)&(~unneeded_reg[i]>>r))&1) {
10493       if((pr32[i]>>r)&1) {
10494         if(r==CCREG) printf(" CC");
10495         else if(r==HIREG) printf(" HI");
10496         else if(r==LOREG) printf(" LO");
10497         else printf(" r%d",r);
10498       }
10499     }
10500     if(pr32[i]!=requires_32bit[i]) printf(" OOPS");
10501     printf("\n");*/
10502     #if defined(__i386__) || defined(__x86_64__)
10503     printf("entry: eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",regs[i].regmap_entry[0],regs[i].regmap_entry[1],regs[i].regmap_entry[2],regs[i].regmap_entry[3],regs[i].regmap_entry[5],regs[i].regmap_entry[6],regs[i].regmap_entry[7]);
10504     printf("dirty: ");
10505     if(regs[i].wasdirty&1) printf("eax ");
10506     if((regs[i].wasdirty>>1)&1) printf("ecx ");
10507     if((regs[i].wasdirty>>2)&1) printf("edx ");
10508     if((regs[i].wasdirty>>3)&1) printf("ebx ");
10509     if((regs[i].wasdirty>>5)&1) printf("ebp ");
10510     if((regs[i].wasdirty>>6)&1) printf("esi ");
10511     if((regs[i].wasdirty>>7)&1) printf("edi ");
10512     #endif
10513     #ifdef __arm__
10514     printf("entry: r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d\n",regs[i].regmap_entry[0],regs[i].regmap_entry[1],regs[i].regmap_entry[2],regs[i].regmap_entry[3],regs[i].regmap_entry[4],regs[i].regmap_entry[5],regs[i].regmap_entry[6],regs[i].regmap_entry[7],regs[i].regmap_entry[8],regs[i].regmap_entry[9],regs[i].regmap_entry[10],regs[i].regmap_entry[12]);
10515     printf("dirty: ");
10516     if(regs[i].wasdirty&1) printf("r0 ");
10517     if((regs[i].wasdirty>>1)&1) printf("r1 ");
10518     if((regs[i].wasdirty>>2)&1) printf("r2 ");
10519     if((regs[i].wasdirty>>3)&1) printf("r3 ");
10520     if((regs[i].wasdirty>>4)&1) printf("r4 ");
10521     if((regs[i].wasdirty>>5)&1) printf("r5 ");
10522     if((regs[i].wasdirty>>6)&1) printf("r6 ");
10523     if((regs[i].wasdirty>>7)&1) printf("r7 ");
10524     if((regs[i].wasdirty>>8)&1) printf("r8 ");
10525     if((regs[i].wasdirty>>9)&1) printf("r9 ");
10526     if((regs[i].wasdirty>>10)&1) printf("r10 ");
10527     if((regs[i].wasdirty>>12)&1) printf("r12 ");
10528     #endif
10529     printf("\n");
10530     disassemble_inst(i);
10531     //printf ("ccadj[%d] = %d\n",i,ccadj[i]);
10532     #if defined(__i386__) || defined(__x86_64__)
10533     printf("eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d dirty: ",regs[i].regmap[0],regs[i].regmap[1],regs[i].regmap[2],regs[i].regmap[3],regs[i].regmap[5],regs[i].regmap[6],regs[i].regmap[7]);
10534     if(regs[i].dirty&1) printf("eax ");
10535     if((regs[i].dirty>>1)&1) printf("ecx ");
10536     if((regs[i].dirty>>2)&1) printf("edx ");
10537     if((regs[i].dirty>>3)&1) printf("ebx ");
10538     if((regs[i].dirty>>5)&1) printf("ebp ");
10539     if((regs[i].dirty>>6)&1) printf("esi ");
10540     if((regs[i].dirty>>7)&1) printf("edi ");
10541     #endif
10542     #ifdef __arm__
10543     printf("r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d dirty: ",regs[i].regmap[0],regs[i].regmap[1],regs[i].regmap[2],regs[i].regmap[3],regs[i].regmap[4],regs[i].regmap[5],regs[i].regmap[6],regs[i].regmap[7],regs[i].regmap[8],regs[i].regmap[9],regs[i].regmap[10],regs[i].regmap[12]);
10544     if(regs[i].dirty&1) printf("r0 ");
10545     if((regs[i].dirty>>1)&1) printf("r1 ");
10546     if((regs[i].dirty>>2)&1) printf("r2 ");
10547     if((regs[i].dirty>>3)&1) printf("r3 ");
10548     if((regs[i].dirty>>4)&1) printf("r4 ");
10549     if((regs[i].dirty>>5)&1) printf("r5 ");
10550     if((regs[i].dirty>>6)&1) printf("r6 ");
10551     if((regs[i].dirty>>7)&1) printf("r7 ");
10552     if((regs[i].dirty>>8)&1) printf("r8 ");
10553     if((regs[i].dirty>>9)&1) printf("r9 ");
10554     if((regs[i].dirty>>10)&1) printf("r10 ");
10555     if((regs[i].dirty>>12)&1) printf("r12 ");
10556     #endif
10557     printf("\n");
10558     if(regs[i].isconst) {
10559       printf("constants: ");
10560       #if defined(__i386__) || defined(__x86_64__)
10561       if(regs[i].isconst&1) printf("eax=%x ",(int)constmap[i][0]);
10562       if((regs[i].isconst>>1)&1) printf("ecx=%x ",(int)constmap[i][1]);
10563       if((regs[i].isconst>>2)&1) printf("edx=%x ",(int)constmap[i][2]);
10564       if((regs[i].isconst>>3)&1) printf("ebx=%x ",(int)constmap[i][3]);
10565       if((regs[i].isconst>>5)&1) printf("ebp=%x ",(int)constmap[i][5]);
10566       if((regs[i].isconst>>6)&1) printf("esi=%x ",(int)constmap[i][6]);
10567       if((regs[i].isconst>>7)&1) printf("edi=%x ",(int)constmap[i][7]);
10568       #endif
10569       #ifdef __arm__
10570       if(regs[i].isconst&1) printf("r0=%x ",(int)constmap[i][0]);
10571       if((regs[i].isconst>>1)&1) printf("r1=%x ",(int)constmap[i][1]);
10572       if((regs[i].isconst>>2)&1) printf("r2=%x ",(int)constmap[i][2]);
10573       if((regs[i].isconst>>3)&1) printf("r3=%x ",(int)constmap[i][3]);
10574       if((regs[i].isconst>>4)&1) printf("r4=%x ",(int)constmap[i][4]);
10575       if((regs[i].isconst>>5)&1) printf("r5=%x ",(int)constmap[i][5]);
10576       if((regs[i].isconst>>6)&1) printf("r6=%x ",(int)constmap[i][6]);
10577       if((regs[i].isconst>>7)&1) printf("r7=%x ",(int)constmap[i][7]);
10578       if((regs[i].isconst>>8)&1) printf("r8=%x ",(int)constmap[i][8]);
10579       if((regs[i].isconst>>9)&1) printf("r9=%x ",(int)constmap[i][9]);
10580       if((regs[i].isconst>>10)&1) printf("r10=%x ",(int)constmap[i][10]);
10581       if((regs[i].isconst>>12)&1) printf("r12=%x ",(int)constmap[i][12]);
10582       #endif
10583       printf("\n");
10584     }
10585 #ifndef FORCE32
10586     printf(" 32:");
10587     for(r=0;r<=CCREG;r++) {
10588       if((regs[i].is32>>r)&1) {
10589         if(r==CCREG) printf(" CC");
10590         else if(r==HIREG) printf(" HI");
10591         else if(r==LOREG) printf(" LO");
10592         else printf(" r%d",r);
10593       }
10594     }
10595     printf("\n");
10596 #endif
10597     /*printf(" p32:");
10598     for(r=0;r<=CCREG;r++) {
10599       if((p32[i]>>r)&1) {
10600         if(r==CCREG) printf(" CC");
10601         else if(r==HIREG) printf(" HI");
10602         else if(r==LOREG) printf(" LO");
10603         else printf(" r%d",r);
10604       }
10605     }
10606     if(p32[i]!=regs[i].is32) printf(" NO MATCH\n");
10607     else printf("\n");*/
10608     if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP) {
10609       #if defined(__i386__) || defined(__x86_64__)
10610       printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d dirty: ",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
10611       if(branch_regs[i].dirty&1) printf("eax ");
10612       if((branch_regs[i].dirty>>1)&1) printf("ecx ");
10613       if((branch_regs[i].dirty>>2)&1) printf("edx ");
10614       if((branch_regs[i].dirty>>3)&1) printf("ebx ");
10615       if((branch_regs[i].dirty>>5)&1) printf("ebp ");
10616       if((branch_regs[i].dirty>>6)&1) printf("esi ");
10617       if((branch_regs[i].dirty>>7)&1) printf("edi ");
10618       #endif
10619       #ifdef __arm__
10620       printf("branch(%d): r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d dirty: ",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[4],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7],branch_regs[i].regmap[8],branch_regs[i].regmap[9],branch_regs[i].regmap[10],branch_regs[i].regmap[12]);
10621       if(branch_regs[i].dirty&1) printf("r0 ");
10622       if((branch_regs[i].dirty>>1)&1) printf("r1 ");
10623       if((branch_regs[i].dirty>>2)&1) printf("r2 ");
10624       if((branch_regs[i].dirty>>3)&1) printf("r3 ");
10625       if((branch_regs[i].dirty>>4)&1) printf("r4 ");
10626       if((branch_regs[i].dirty>>5)&1) printf("r5 ");
10627       if((branch_regs[i].dirty>>6)&1) printf("r6 ");
10628       if((branch_regs[i].dirty>>7)&1) printf("r7 ");
10629       if((branch_regs[i].dirty>>8)&1) printf("r8 ");
10630       if((branch_regs[i].dirty>>9)&1) printf("r9 ");
10631       if((branch_regs[i].dirty>>10)&1) printf("r10 ");
10632       if((branch_regs[i].dirty>>12)&1) printf("r12 ");
10633       #endif
10634 #ifndef FORCE32
10635       printf(" 32:");
10636       for(r=0;r<=CCREG;r++) {
10637         if((branch_regs[i].is32>>r)&1) {
10638           if(r==CCREG) printf(" CC");
10639           else if(r==HIREG) printf(" HI");
10640           else if(r==LOREG) printf(" LO");
10641           else printf(" r%d",r);
10642         }
10643       }
10644       printf("\n");
10645 #endif
10646     }
10647   }
10648
10649   /* Pass 8 - Assembly */
10650   linkcount=0;stubcount=0;
10651   ds=0;is_delayslot=0;
10652   cop1_usable=0;
10653   uint64_t is32_pre=0;
10654   u_int dirty_pre=0;
10655   u_int beginning=(u_int)out;
10656   if((u_int)addr&1) {
10657     ds=1;
10658     pagespan_ds();
10659   }
10660   u_int instr_addr0_override=0;
10661
10662 #ifdef PCSX
10663   if (start == 0x80030000) {
10664     // nasty hack for fastbios thing
10665     instr_addr0_override=(u_int)out;
10666     emit_movimm(start,0);
10667     emit_readword((int)&pcaddr,1);
10668     emit_writeword(0,(int)&pcaddr);
10669     emit_cmp(0,1);
10670     emit_jne((int)new_dyna_leave);
10671   }
10672 #endif
10673   for(i=0;i<slen;i++)
10674   {
10675     //if(ds) printf("ds: ");
10676     if((void*)assem_debug==(void*)printf) disassemble_inst(i);
10677     if(ds) {
10678       ds=0; // Skip delay slot
10679       if(bt[i]) assem_debug("OOPS - branch into delay slot\n");
10680       instr_addr[i]=0;
10681     } else {
10682       #ifndef DESTRUCTIVE_WRITEBACK
10683       if(i<2||(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000))
10684       {
10685         wb_sx(regmap_pre[i],regs[i].regmap_entry,regs[i].wasdirty,is32_pre,regs[i].was32,
10686               unneeded_reg[i],unneeded_reg_upper[i]);
10687         wb_valid(regmap_pre[i],regs[i].regmap_entry,dirty_pre,regs[i].wasdirty,is32_pre,
10688               unneeded_reg[i],unneeded_reg_upper[i]);
10689       }
10690       is32_pre=regs[i].is32;
10691       dirty_pre=regs[i].dirty;
10692       #endif
10693       // write back
10694       if(i<2||(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000))
10695       {
10696         wb_invalidate(regmap_pre[i],regs[i].regmap_entry,regs[i].wasdirty,regs[i].was32,
10697                       unneeded_reg[i],unneeded_reg_upper[i]);
10698         loop_preload(regmap_pre[i],regs[i].regmap_entry);
10699       }
10700       // branch target entry point
10701       instr_addr[i]=(u_int)out;
10702       assem_debug("<->\n");
10703       // load regs
10704       if(regs[i].regmap_entry[HOST_CCREG]==CCREG&&regs[i].regmap[HOST_CCREG]!=CCREG)
10705         wb_register(CCREG,regs[i].regmap_entry,regs[i].wasdirty,regs[i].was32);
10706       load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i],rs2[i]);
10707       address_generation(i,&regs[i],regs[i].regmap_entry);
10708       load_consts(regmap_pre[i],regs[i].regmap,regs[i].was32,i);
10709       if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
10710       {
10711         // Load the delay slot registers if necessary
10712         if(rs1[i+1]!=rs1[i]&&rs1[i+1]!=rs2[i])
10713           load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i+1],rs1[i+1]);
10714         if(rs2[i+1]!=rs1[i+1]&&rs2[i+1]!=rs1[i]&&rs2[i+1]!=rs2[i])
10715           load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs2[i+1],rs2[i+1]);
10716         if(itype[i+1]==STORE||itype[i+1]==STORELR||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a)
10717           load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,INVCP,INVCP);
10718       }
10719       else if(i+1<slen)
10720       {
10721         // Preload registers for following instruction
10722         if(rs1[i+1]!=rs1[i]&&rs1[i+1]!=rs2[i])
10723           if(rs1[i+1]!=rt1[i]&&rs1[i+1]!=rt2[i])
10724             load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i+1],rs1[i+1]);
10725         if(rs2[i+1]!=rs1[i+1]&&rs2[i+1]!=rs1[i]&&rs2[i+1]!=rs2[i])
10726           if(rs2[i+1]!=rt1[i]&&rs2[i+1]!=rt2[i])
10727             load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs2[i+1],rs2[i+1]);
10728       }
10729       // TODO: if(is_ooo(i)) address_generation(i+1);
10730       if(itype[i]==CJUMP||itype[i]==FJUMP)
10731         load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,CCREG,CCREG);
10732       if(itype[i]==STORE||itype[i]==STORELR||(opcode[i]&0x3b)==0x39||(opcode[i]&0x3b)==0x3a)
10733         load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,INVCP,INVCP);
10734       if(bt[i]) cop1_usable=0;
10735       // assemble
10736       switch(itype[i]) {
10737         case ALU:
10738           alu_assemble(i,&regs[i]);break;
10739         case IMM16:
10740           imm16_assemble(i,&regs[i]);break;
10741         case SHIFT:
10742           shift_assemble(i,&regs[i]);break;
10743         case SHIFTIMM:
10744           shiftimm_assemble(i,&regs[i]);break;
10745         case LOAD:
10746           load_assemble(i,&regs[i]);break;
10747         case LOADLR:
10748           loadlr_assemble(i,&regs[i]);break;
10749         case STORE:
10750           store_assemble(i,&regs[i]);break;
10751         case STORELR:
10752           storelr_assemble(i,&regs[i]);break;
10753         case COP0:
10754           cop0_assemble(i,&regs[i]);break;
10755         case COP1:
10756           cop1_assemble(i,&regs[i]);break;
10757         case C1LS:
10758           c1ls_assemble(i,&regs[i]);break;
10759         case COP2:
10760           cop2_assemble(i,&regs[i]);break;
10761         case C2LS:
10762           c2ls_assemble(i,&regs[i]);break;
10763         case C2OP:
10764           c2op_assemble(i,&regs[i]);break;
10765         case FCONV:
10766           fconv_assemble(i,&regs[i]);break;
10767         case FLOAT:
10768           float_assemble(i,&regs[i]);break;
10769         case FCOMP:
10770           fcomp_assemble(i,&regs[i]);break;
10771         case MULTDIV:
10772           multdiv_assemble(i,&regs[i]);break;
10773         case MOV:
10774           mov_assemble(i,&regs[i]);break;
10775         case SYSCALL:
10776           syscall_assemble(i,&regs[i]);break;
10777         case HLECALL:
10778           hlecall_assemble(i,&regs[i]);break;
10779         case INTCALL:
10780           intcall_assemble(i,&regs[i]);break;
10781         case UJUMP:
10782           ujump_assemble(i,&regs[i]);ds=1;break;
10783         case RJUMP:
10784           rjump_assemble(i,&regs[i]);ds=1;break;
10785         case CJUMP:
10786           cjump_assemble(i,&regs[i]);ds=1;break;
10787         case SJUMP:
10788           sjump_assemble(i,&regs[i]);ds=1;break;
10789         case FJUMP:
10790           fjump_assemble(i,&regs[i]);ds=1;break;
10791         case SPAN:
10792           pagespan_assemble(i,&regs[i]);break;
10793       }
10794       if(itype[i]==UJUMP||itype[i]==RJUMP||(source[i]>>16)==0x1000)
10795         literal_pool(1024);
10796       else
10797         literal_pool_jumpover(256);
10798     }
10799   }
10800   //assert(itype[i-2]==UJUMP||itype[i-2]==RJUMP||(source[i-2]>>16)==0x1000);
10801   // If the block did not end with an unconditional branch,
10802   // add a jump to the next instruction.
10803   if(i>1) {
10804     if(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000&&itype[i-1]!=SPAN) {
10805       assert(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP);
10806       assert(i==slen);
10807       if(itype[i-2]!=CJUMP&&itype[i-2]!=SJUMP&&itype[i-2]!=FJUMP) {
10808         store_regs_bt(regs[i-1].regmap,regs[i-1].is32,regs[i-1].dirty,start+i*4);
10809         if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
10810           emit_loadreg(CCREG,HOST_CCREG);
10811         emit_addimm(HOST_CCREG,CLOCK_DIVIDER*(ccadj[i-1]+1),HOST_CCREG);
10812       }
10813       else if(!likely[i-2])
10814       {
10815         store_regs_bt(branch_regs[i-2].regmap,branch_regs[i-2].is32,branch_regs[i-2].dirty,start+i*4);
10816         assert(branch_regs[i-2].regmap[HOST_CCREG]==CCREG);
10817       }
10818       else
10819       {
10820         store_regs_bt(regs[i-2].regmap,regs[i-2].is32,regs[i-2].dirty,start+i*4);
10821         assert(regs[i-2].regmap[HOST_CCREG]==CCREG);
10822       }
10823       add_to_linker((int)out,start+i*4,0);
10824       emit_jmp(0);
10825     }
10826   }
10827   else
10828   {
10829     assert(i>0);
10830     assert(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP);
10831     store_regs_bt(regs[i-1].regmap,regs[i-1].is32,regs[i-1].dirty,start+i*4);
10832     if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
10833       emit_loadreg(CCREG,HOST_CCREG);
10834     emit_addimm(HOST_CCREG,CLOCK_DIVIDER*(ccadj[i-1]+1),HOST_CCREG);
10835     add_to_linker((int)out,start+i*4,0);
10836     emit_jmp(0);
10837   }
10838
10839   // TODO: delay slot stubs?
10840   // Stubs
10841   for(i=0;i<stubcount;i++)
10842   {
10843     switch(stubs[i][0])
10844     {
10845       case LOADB_STUB:
10846       case LOADH_STUB:
10847       case LOADW_STUB:
10848       case LOADD_STUB:
10849       case LOADBU_STUB:
10850       case LOADHU_STUB:
10851         do_readstub(i);break;
10852       case STOREB_STUB:
10853       case STOREH_STUB:
10854       case STOREW_STUB:
10855       case STORED_STUB:
10856         do_writestub(i);break;
10857       case CC_STUB:
10858         do_ccstub(i);break;
10859       case INVCODE_STUB:
10860         do_invstub(i);break;
10861       case FP_STUB:
10862         do_cop1stub(i);break;
10863       case STORELR_STUB:
10864         do_unalignedwritestub(i);break;
10865     }
10866   }
10867
10868   if (instr_addr0_override)
10869     instr_addr[0] = instr_addr0_override;
10870
10871   /* Pass 9 - Linker */
10872   for(i=0;i<linkcount;i++)
10873   {
10874     assem_debug("%8x -> %8x\n",link_addr[i][0],link_addr[i][1]);
10875     literal_pool(64);
10876     if(!link_addr[i][2])
10877     {
10878       void *stub=out;
10879       void *addr=check_addr(link_addr[i][1]);
10880       emit_extjump(link_addr[i][0],link_addr[i][1]);
10881       if(addr) {
10882         set_jump_target(link_addr[i][0],(int)addr);
10883         add_link(link_addr[i][1],stub);
10884       }
10885       else set_jump_target(link_addr[i][0],(int)stub);
10886     }
10887     else
10888     {
10889       // Internal branch
10890       int target=(link_addr[i][1]-start)>>2;
10891       assert(target>=0&&target<slen);
10892       assert(instr_addr[target]);
10893       //#ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
10894       //set_jump_target_fillslot(link_addr[i][0],instr_addr[target],link_addr[i][2]>>1);
10895       //#else
10896       set_jump_target(link_addr[i][0],instr_addr[target]);
10897       //#endif
10898     }
10899   }
10900   // External Branch Targets (jump_in)
10901   if(copy+slen*4>(void *)shadow+sizeof(shadow)) copy=shadow;
10902   for(i=0;i<slen;i++)
10903   {
10904     if(bt[i]||i==0)
10905     {
10906       if(instr_addr[i]) // TODO - delay slots (=null)
10907       {
10908         u_int vaddr=start+i*4;
10909         u_int page=get_page(vaddr);
10910         u_int vpage=get_vpage(vaddr);
10911         literal_pool(256);
10912         //if(!(is32[i]&(~unneeded_reg_upper[i])&~(1LL<<CCREG)))
10913 #ifndef FORCE32
10914         if(!requires_32bit[i])
10915 #else
10916         if(1)
10917 #endif
10918         {
10919           assem_debug("%8x (%d) <- %8x\n",instr_addr[i],i,start+i*4);
10920           assem_debug("jump_in: %x\n",start+i*4);
10921           ll_add(jump_dirty+vpage,vaddr,(void *)out);
10922           int entry_point=do_dirty_stub(i);
10923           ll_add(jump_in+page,vaddr,(void *)entry_point);
10924           // If there was an existing entry in the hash table,
10925           // replace it with the new address.
10926           // Don't add new entries.  We'll insert the
10927           // ones that actually get used in check_addr().
10928           int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
10929           if(ht_bin[0]==vaddr) {
10930             ht_bin[1]=entry_point;
10931           }
10932           if(ht_bin[2]==vaddr) {
10933             ht_bin[3]=entry_point;
10934           }
10935         }
10936         else
10937         {
10938           u_int r=requires_32bit[i]|!!(requires_32bit[i]>>32);
10939           assem_debug("%8x (%d) <- %8x\n",instr_addr[i],i,start+i*4);
10940           assem_debug("jump_in: %x (restricted - %x)\n",start+i*4,r);
10941           //int entry_point=(int)out;
10942           ////assem_debug("entry_point: %x\n",entry_point);
10943           //load_regs_entry(i);
10944           //if(entry_point==(int)out)
10945           //  entry_point=instr_addr[i];
10946           //else
10947           //  emit_jmp(instr_addr[i]);
10948           //ll_add_32(jump_in+page,vaddr,r,(void *)entry_point);
10949           ll_add_32(jump_dirty+vpage,vaddr,r,(void *)out);
10950           int entry_point=do_dirty_stub(i);
10951           ll_add_32(jump_in+page,vaddr,r,(void *)entry_point);
10952         }
10953       }
10954     }
10955   }
10956   // Write out the literal pool if necessary
10957   literal_pool(0);
10958   #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
10959   // Align code
10960   if(((u_int)out)&7) emit_addnop(13);
10961   #endif
10962   assert((u_int)out-beginning<MAX_OUTPUT_BLOCK_SIZE);
10963   //printf("shadow buffer: %x-%x\n",(int)copy,(int)copy+slen*4);
10964   memcpy(copy,source,slen*4);
10965   copy+=slen*4;
10966   
10967   #ifdef __arm__
10968   __clear_cache((void *)beginning,out);
10969   #endif
10970   
10971   // If we're within 256K of the end of the buffer,
10972   // start over from the beginning. (Is 256K enough?)
10973   if((int)out>BASE_ADDR+(1<<TARGET_SIZE_2)-MAX_OUTPUT_BLOCK_SIZE) out=(u_char *)BASE_ADDR;
10974   
10975   // Trap writes to any of the pages we compiled
10976   for(i=start>>12;i<=(start+slen*4)>>12;i++) {
10977     invalid_code[i]=0;
10978 #ifndef DISABLE_TLB
10979     memory_map[i]|=0x40000000;
10980     if((signed int)start>=(signed int)0xC0000000) {
10981       assert(using_tlb);
10982       j=(((u_int)i<<12)+(memory_map[i]<<2)-(u_int)rdram+(u_int)0x80000000)>>12;
10983       invalid_code[j]=0;
10984       memory_map[j]|=0x40000000;
10985       //printf("write protect physical page: %x (virtual %x)\n",j<<12,start);
10986     }
10987 #endif
10988   }
10989   
10990   /* Pass 10 - Free memory by expiring oldest blocks */
10991   
10992   int end=((((int)out-BASE_ADDR)>>(TARGET_SIZE_2-16))+16384)&65535;
10993   while(expirep!=end)
10994   {
10995     int shift=TARGET_SIZE_2-3; // Divide into 8 blocks
10996     int base=BASE_ADDR+((expirep>>13)<<shift); // Base address of this block
10997     inv_debug("EXP: Phase %d\n",expirep);
10998     switch((expirep>>11)&3)
10999     {
11000       case 0:
11001         // Clear jump_in and jump_dirty
11002         ll_remove_matching_addrs(jump_in+(expirep&2047),base,shift);
11003         ll_remove_matching_addrs(jump_dirty+(expirep&2047),base,shift);
11004         ll_remove_matching_addrs(jump_in+2048+(expirep&2047),base,shift);
11005         ll_remove_matching_addrs(jump_dirty+2048+(expirep&2047),base,shift);
11006         break;
11007       case 1:
11008         // Clear pointers
11009         ll_kill_pointers(jump_out[expirep&2047],base,shift);
11010         ll_kill_pointers(jump_out[(expirep&2047)+2048],base,shift);
11011         break;
11012       case 2:
11013         // Clear hash table
11014         for(i=0;i<32;i++) {
11015           int *ht_bin=hash_table[((expirep&2047)<<5)+i];
11016           if((ht_bin[3]>>shift)==(base>>shift) ||
11017              ((ht_bin[3]-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(base>>shift)) {
11018             inv_debug("EXP: Remove hash %x -> %x\n",ht_bin[2],ht_bin[3]);
11019             ht_bin[2]=ht_bin[3]=-1;
11020           }
11021           if((ht_bin[1]>>shift)==(base>>shift) ||
11022              ((ht_bin[1]-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(base>>shift)) {
11023             inv_debug("EXP: Remove hash %x -> %x\n",ht_bin[0],ht_bin[1]);
11024             ht_bin[0]=ht_bin[2];
11025             ht_bin[1]=ht_bin[3];
11026             ht_bin[2]=ht_bin[3]=-1;
11027           }
11028         }
11029         break;
11030       case 3:
11031         // Clear jump_out
11032         #ifdef __arm__
11033         if((expirep&2047)==0) 
11034           do_clear_cache();
11035         #endif
11036         ll_remove_matching_addrs(jump_out+(expirep&2047),base,shift);
11037         ll_remove_matching_addrs(jump_out+2048+(expirep&2047),base,shift);
11038         break;
11039     }
11040     expirep=(expirep+1)&65535;
11041   }
11042   return 0;
11043 }
11044
11045 // vim:shiftwidth=2:expandtab