drc: merge Ari64's patch: 11_dealloc_reg_clear_const_flag
[pcsx_rearmed.git] / libpcsxcore / new_dynarec / new_dynarec.c
1 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
2  *   Mupen64plus - new_dynarec.c                                           *
3  *   Copyright (C) 2009-2011 Ari64                                         *
4  *                                                                         *
5  *   This program is free software; you can redistribute it and/or modify  *
6  *   it under the terms of the GNU General Public License as published by  *
7  *   the Free Software Foundation; either version 2 of the License, or     *
8  *   (at your option) any later version.                                   *
9  *                                                                         *
10  *   This program is distributed in the hope that it will be useful,       *
11  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
12  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
13  *   GNU General Public License for more details.                          *
14  *                                                                         *
15  *   You should have received a copy of the GNU General Public License     *
16  *   along with this program; if not, write to the                         *
17  *   Free Software Foundation, Inc.,                                       *
18  *   51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.          *
19  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
20
21 #include <stdlib.h>
22 #include <stdint.h> //include for uint64_t
23 #include <assert.h>
24
25 #include "emu_if.h" //emulator interface
26
27 #include <sys/mman.h>
28
29 #ifdef __i386__
30 #include "assem_x86.h"
31 #endif
32 #ifdef __x86_64__
33 #include "assem_x64.h"
34 #endif
35 #ifdef __arm__
36 #include "assem_arm.h"
37 #endif
38
39 #define MAXBLOCK 4096
40 #define MAX_OUTPUT_BLOCK_SIZE 262144
41 #define CLOCK_DIVIDER 2
42
43 struct regstat
44 {
45   signed char regmap_entry[HOST_REGS];
46   signed char regmap[HOST_REGS];
47   uint64_t was32;
48   uint64_t is32;
49   uint64_t wasdirty;
50   uint64_t dirty;
51   uint64_t u;
52   uint64_t uu;
53   u_int wasconst;
54   u_int isconst;
55   uint64_t constmap[HOST_REGS];
56 };
57
58 struct ll_entry
59 {
60   u_int vaddr;
61   u_int reg32;
62   void *addr;
63   struct ll_entry *next;
64 };
65
66   u_int start;
67   u_int *source;
68   u_int pagelimit;
69   char insn[MAXBLOCK][10];
70   u_char itype[MAXBLOCK];
71   u_char opcode[MAXBLOCK];
72   u_char opcode2[MAXBLOCK];
73   u_char bt[MAXBLOCK];
74   u_char rs1[MAXBLOCK];
75   u_char rs2[MAXBLOCK];
76   u_char rt1[MAXBLOCK];
77   u_char rt2[MAXBLOCK];
78   u_char us1[MAXBLOCK];
79   u_char us2[MAXBLOCK];
80   u_char dep1[MAXBLOCK];
81   u_char dep2[MAXBLOCK];
82   u_char lt1[MAXBLOCK];
83   int imm[MAXBLOCK];
84   u_int ba[MAXBLOCK];
85   char likely[MAXBLOCK];
86   char is_ds[MAXBLOCK];
87   char ooo[MAXBLOCK];
88   uint64_t unneeded_reg[MAXBLOCK];
89   uint64_t unneeded_reg_upper[MAXBLOCK];
90   uint64_t branch_unneeded_reg[MAXBLOCK];
91   uint64_t branch_unneeded_reg_upper[MAXBLOCK];
92   uint64_t p32[MAXBLOCK];
93   uint64_t pr32[MAXBLOCK];
94   signed char regmap_pre[MAXBLOCK][HOST_REGS];
95   signed char regmap[MAXBLOCK][HOST_REGS];
96   signed char regmap_entry[MAXBLOCK][HOST_REGS];
97   uint64_t constmap[MAXBLOCK][HOST_REGS];
98   struct regstat regs[MAXBLOCK];
99   struct regstat branch_regs[MAXBLOCK];
100   signed char minimum_free_regs[MAXBLOCK];
101   u_int needed_reg[MAXBLOCK];
102   uint64_t requires_32bit[MAXBLOCK];
103   u_int wont_dirty[MAXBLOCK];
104   u_int will_dirty[MAXBLOCK];
105   int ccadj[MAXBLOCK];
106   int slen;
107   u_int instr_addr[MAXBLOCK];
108   u_int link_addr[MAXBLOCK][3];
109   int linkcount;
110   u_int stubs[MAXBLOCK*3][8];
111   int stubcount;
112   u_int literals[1024][2];
113   int literalcount;
114   int is_delayslot;
115   int cop1_usable;
116   u_char *out;
117   struct ll_entry *jump_in[4096];
118   struct ll_entry *jump_out[4096];
119   struct ll_entry *jump_dirty[4096];
120   u_int hash_table[65536][4]  __attribute__((aligned(16)));
121   char shadow[1048576]  __attribute__((aligned(16)));
122   void *copy;
123   int expirep;
124 #ifndef PCSX
125   u_int using_tlb;
126 #else
127   static const u_int using_tlb=0;
128 #endif
129   static u_int sp_in_mirror;
130   u_int stop_after_jal;
131   extern u_char restore_candidate[512];
132   extern int cycle_count;
133
134   /* registers that may be allocated */
135   /* 1-31 gpr */
136 #define HIREG 32 // hi
137 #define LOREG 33 // lo
138 #define FSREG 34 // FPU status (FCSR)
139 #define CSREG 35 // Coprocessor status
140 #define CCREG 36 // Cycle count
141 #define INVCP 37 // Pointer to invalid_code
142 #define MMREG 38 // Pointer to memory_map
143 #define ROREG 39 // ram offset (if rdram!=0x80000000)
144 #define TEMPREG 40
145 #define FTEMP 40 // FPU temporary register
146 #define PTEMP 41 // Prefetch temporary register
147 #define TLREG 42 // TLB mapping offset
148 #define RHASH 43 // Return address hash
149 #define RHTBL 44 // Return address hash table address
150 #define RTEMP 45 // JR/JALR address register
151 #define MAXREG 45
152 #define AGEN1 46 // Address generation temporary register
153 #define AGEN2 47 // Address generation temporary register
154 #define MGEN1 48 // Maptable address generation temporary register
155 #define MGEN2 49 // Maptable address generation temporary register
156 #define BTREG 50 // Branch target temporary register
157
158   /* instruction types */
159 #define NOP 0     // No operation
160 #define LOAD 1    // Load
161 #define STORE 2   // Store
162 #define LOADLR 3  // Unaligned load
163 #define STORELR 4 // Unaligned store
164 #define MOV 5     // Move 
165 #define ALU 6     // Arithmetic/logic
166 #define MULTDIV 7 // Multiply/divide
167 #define SHIFT 8   // Shift by register
168 #define SHIFTIMM 9// Shift by immediate
169 #define IMM16 10  // 16-bit immediate
170 #define RJUMP 11  // Unconditional jump to register
171 #define UJUMP 12  // Unconditional jump
172 #define CJUMP 13  // Conditional branch (BEQ/BNE/BGTZ/BLEZ)
173 #define SJUMP 14  // Conditional branch (regimm format)
174 #define COP0 15   // Coprocessor 0
175 #define COP1 16   // Coprocessor 1
176 #define C1LS 17   // Coprocessor 1 load/store
177 #define FJUMP 18  // Conditional branch (floating point)
178 #define FLOAT 19  // Floating point unit
179 #define FCONV 20  // Convert integer to float
180 #define FCOMP 21  // Floating point compare (sets FSREG)
181 #define SYSCALL 22// SYSCALL
182 #define OTHER 23  // Other
183 #define SPAN 24   // Branch/delay slot spans 2 pages
184 #define NI 25     // Not implemented
185 #define HLECALL 26// PCSX fake opcodes for HLE
186 #define COP2 27   // Coprocessor 2 move
187 #define C2LS 28   // Coprocessor 2 load/store
188 #define C2OP 29   // Coprocessor 2 operation
189 #define INTCALL 30// Call interpreter to handle rare corner cases
190
191   /* stubs */
192 #define CC_STUB 1
193 #define FP_STUB 2
194 #define LOADB_STUB 3
195 #define LOADH_STUB 4
196 #define LOADW_STUB 5
197 #define LOADD_STUB 6
198 #define LOADBU_STUB 7
199 #define LOADHU_STUB 8
200 #define STOREB_STUB 9
201 #define STOREH_STUB 10
202 #define STOREW_STUB 11
203 #define STORED_STUB 12
204 #define STORELR_STUB 13
205 #define INVCODE_STUB 14
206
207   /* branch codes */
208 #define TAKEN 1
209 #define NOTTAKEN 2
210 #define NULLDS 3
211
212 // asm linkage
213 int new_recompile_block(int addr);
214 void *get_addr_ht(u_int vaddr);
215 void invalidate_block(u_int block);
216 void invalidate_addr(u_int addr);
217 void remove_hash(int vaddr);
218 void jump_vaddr();
219 void dyna_linker();
220 void dyna_linker_ds();
221 void verify_code();
222 void verify_code_vm();
223 void verify_code_ds();
224 void cc_interrupt();
225 void fp_exception();
226 void fp_exception_ds();
227 void jump_syscall();
228 void jump_syscall_hle();
229 void jump_eret();
230 void jump_hlecall();
231 void jump_intcall();
232 void new_dyna_leave();
233
234 // TLB
235 void TLBWI_new();
236 void TLBWR_new();
237 void read_nomem_new();
238 void read_nomemb_new();
239 void read_nomemh_new();
240 void read_nomemd_new();
241 void write_nomem_new();
242 void write_nomemb_new();
243 void write_nomemh_new();
244 void write_nomemd_new();
245 void write_rdram_new();
246 void write_rdramb_new();
247 void write_rdramh_new();
248 void write_rdramd_new();
249 extern u_int memory_map[1048576];
250
251 // Needed by assembler
252 void wb_register(signed char r,signed char regmap[],uint64_t dirty,uint64_t is32);
253 void wb_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty);
254 void wb_needed_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr);
255 void load_all_regs(signed char i_regmap[]);
256 void load_needed_regs(signed char i_regmap[],signed char next_regmap[]);
257 void load_regs_entry(int t);
258 void load_all_consts(signed char regmap[],int is32,u_int dirty,int i);
259
260 int tracedebug=0;
261
262 //#define DEBUG_CYCLE_COUNT 1
263
264 void nullf() {}
265 //#define assem_debug printf
266 //#define inv_debug printf
267 #define assem_debug nullf
268 #define inv_debug nullf
269
270 static void tlb_hacks()
271 {
272 #ifndef DISABLE_TLB
273   // Goldeneye hack
274   if (strncmp((char *) ROM_HEADER->nom, "GOLDENEYE",9) == 0)
275   {
276     u_int addr;
277     int n;
278     switch (ROM_HEADER->Country_code&0xFF) 
279     {
280       case 0x45: // U
281         addr=0x34b30;
282         break;                   
283       case 0x4A: // J 
284         addr=0x34b70;    
285         break;    
286       case 0x50: // E 
287         addr=0x329f0;
288         break;                        
289       default: 
290         // Unknown country code
291         addr=0;
292         break;
293     }
294     u_int rom_addr=(u_int)rom;
295     #ifdef ROM_COPY
296     // Since memory_map is 32-bit, on 64-bit systems the rom needs to be
297     // in the lower 4G of memory to use this hack.  Copy it if necessary.
298     if((void *)rom>(void *)0xffffffff) {
299       munmap(ROM_COPY, 67108864);
300       if(mmap(ROM_COPY, 12582912,
301               PROT_READ | PROT_WRITE,
302               MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS,
303               -1, 0) <= 0) {printf("mmap() failed\n");}
304       memcpy(ROM_COPY,rom,12582912);
305       rom_addr=(u_int)ROM_COPY;
306     }
307     #endif
308     if(addr) {
309       for(n=0x7F000;n<0x80000;n++) {
310         memory_map[n]=(((u_int)(rom_addr+addr-0x7F000000))>>2)|0x40000000;
311       }
312     }
313   }
314 #endif
315 }
316
317 static u_int get_page(u_int vaddr)
318 {
319 #ifndef PCSX
320   u_int page=(vaddr^0x80000000)>>12;
321 #else
322   u_int page=vaddr&~0xe0000000;
323   if (page < 0x1000000)
324     page &= ~0x0e00000; // RAM mirrors
325   page>>=12;
326 #endif
327 #ifndef DISABLE_TLB
328   if(page>262143&&tlb_LUT_r[vaddr>>12]) page=(tlb_LUT_r[vaddr>>12]^0x80000000)>>12;
329 #endif
330   if(page>2048) page=2048+(page&2047);
331   return page;
332 }
333
334 static u_int get_vpage(u_int vaddr)
335 {
336   u_int vpage=(vaddr^0x80000000)>>12;
337 #ifndef DISABLE_TLB
338   if(vpage>262143&&tlb_LUT_r[vaddr>>12]) vpage&=2047; // jump_dirty uses a hash of the virtual address instead
339 #endif
340   if(vpage>2048) vpage=2048+(vpage&2047);
341   return vpage;
342 }
343
344 // Get address from virtual address
345 // This is called from the recompiled JR/JALR instructions
346 void *get_addr(u_int vaddr)
347 {
348   u_int page=get_page(vaddr);
349   u_int vpage=get_vpage(vaddr);
350   struct ll_entry *head;
351   //printf("TRACE: count=%d next=%d (get_addr %x,page %d)\n",Count,next_interupt,vaddr,page);
352   head=jump_in[page];
353   while(head!=NULL) {
354     if(head->vaddr==vaddr&&head->reg32==0) {
355   //printf("TRACE: count=%d next=%d (get_addr match %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
356       int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
357       ht_bin[3]=ht_bin[1];
358       ht_bin[2]=ht_bin[0];
359       ht_bin[1]=(int)head->addr;
360       ht_bin[0]=vaddr;
361       return head->addr;
362     }
363     head=head->next;
364   }
365   head=jump_dirty[vpage];
366   while(head!=NULL) {
367     if(head->vaddr==vaddr&&head->reg32==0) {
368       //printf("TRACE: count=%d next=%d (get_addr match dirty %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
369       // Don't restore blocks which are about to expire from the cache
370       if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
371       if(verify_dirty(head->addr)) {
372         //printf("restore candidate: %x (%d) d=%d\n",vaddr,page,invalid_code[vaddr>>12]);
373         invalid_code[vaddr>>12]=0;
374         memory_map[vaddr>>12]|=0x40000000;
375         if(vpage<2048) {
376 #ifndef DISABLE_TLB
377           if(tlb_LUT_r[vaddr>>12]) {
378             invalid_code[tlb_LUT_r[vaddr>>12]>>12]=0;
379             memory_map[tlb_LUT_r[vaddr>>12]>>12]|=0x40000000;
380           }
381 #endif
382           restore_candidate[vpage>>3]|=1<<(vpage&7);
383         }
384         else restore_candidate[page>>3]|=1<<(page&7);
385         int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
386         if(ht_bin[0]==vaddr) {
387           ht_bin[1]=(int)head->addr; // Replace existing entry
388         }
389         else
390         {
391           ht_bin[3]=ht_bin[1];
392           ht_bin[2]=ht_bin[0];
393           ht_bin[1]=(int)head->addr;
394           ht_bin[0]=vaddr;
395         }
396         return head->addr;
397       }
398     }
399     head=head->next;
400   }
401   //printf("TRACE: count=%d next=%d (get_addr no-match %x)\n",Count,next_interupt,vaddr);
402   int r=new_recompile_block(vaddr);
403   if(r==0) return get_addr(vaddr);
404   // Execute in unmapped page, generate pagefault execption
405   Status|=2;
406   Cause=(vaddr<<31)|0x8;
407   EPC=(vaddr&1)?vaddr-5:vaddr;
408   BadVAddr=(vaddr&~1);
409   Context=(Context&0xFF80000F)|((BadVAddr>>9)&0x007FFFF0);
410   EntryHi=BadVAddr&0xFFFFE000;
411   return get_addr_ht(0x80000000);
412 }
413 // Look up address in hash table first
414 void *get_addr_ht(u_int vaddr)
415 {
416   //printf("TRACE: count=%d next=%d (get_addr_ht %x)\n",Count,next_interupt,vaddr);
417   int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
418   if(ht_bin[0]==vaddr) return (void *)ht_bin[1];
419   if(ht_bin[2]==vaddr) return (void *)ht_bin[3];
420   return get_addr(vaddr);
421 }
422
423 void *get_addr_32(u_int vaddr,u_int flags)
424 {
425 #ifdef FORCE32
426   return get_addr(vaddr);
427 #else
428   //printf("TRACE: count=%d next=%d (get_addr_32 %x,flags %x)\n",Count,next_interupt,vaddr,flags);
429   int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
430   if(ht_bin[0]==vaddr) return (void *)ht_bin[1];
431   if(ht_bin[2]==vaddr) return (void *)ht_bin[3];
432   u_int page=get_page(vaddr);
433   u_int vpage=get_vpage(vaddr);
434   struct ll_entry *head;
435   head=jump_in[page];
436   while(head!=NULL) {
437     if(head->vaddr==vaddr&&(head->reg32&flags)==0) {
438       //printf("TRACE: count=%d next=%d (get_addr_32 match %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
439       if(head->reg32==0) {
440         int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
441         if(ht_bin[0]==-1) {
442           ht_bin[1]=(int)head->addr;
443           ht_bin[0]=vaddr;
444         }else if(ht_bin[2]==-1) {
445           ht_bin[3]=(int)head->addr;
446           ht_bin[2]=vaddr;
447         }
448         //ht_bin[3]=ht_bin[1];
449         //ht_bin[2]=ht_bin[0];
450         //ht_bin[1]=(int)head->addr;
451         //ht_bin[0]=vaddr;
452       }
453       return head->addr;
454     }
455     head=head->next;
456   }
457   head=jump_dirty[vpage];
458   while(head!=NULL) {
459     if(head->vaddr==vaddr&&(head->reg32&flags)==0) {
460       //printf("TRACE: count=%d next=%d (get_addr_32 match dirty %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
461       // Don't restore blocks which are about to expire from the cache
462       if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
463       if(verify_dirty(head->addr)) {
464         //printf("restore candidate: %x (%d) d=%d\n",vaddr,page,invalid_code[vaddr>>12]);
465         invalid_code[vaddr>>12]=0;
466         memory_map[vaddr>>12]|=0x40000000;
467         if(vpage<2048) {
468 #ifndef DISABLE_TLB
469           if(tlb_LUT_r[vaddr>>12]) {
470             invalid_code[tlb_LUT_r[vaddr>>12]>>12]=0;
471             memory_map[tlb_LUT_r[vaddr>>12]>>12]|=0x40000000;
472           }
473 #endif
474           restore_candidate[vpage>>3]|=1<<(vpage&7);
475         }
476         else restore_candidate[page>>3]|=1<<(page&7);
477         if(head->reg32==0) {
478           int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
479           if(ht_bin[0]==-1) {
480             ht_bin[1]=(int)head->addr;
481             ht_bin[0]=vaddr;
482           }else if(ht_bin[2]==-1) {
483             ht_bin[3]=(int)head->addr;
484             ht_bin[2]=vaddr;
485           }
486           //ht_bin[3]=ht_bin[1];
487           //ht_bin[2]=ht_bin[0];
488           //ht_bin[1]=(int)head->addr;
489           //ht_bin[0]=vaddr;
490         }
491         return head->addr;
492       }
493     }
494     head=head->next;
495   }
496   //printf("TRACE: count=%d next=%d (get_addr_32 no-match %x,flags %x)\n",Count,next_interupt,vaddr,flags);
497   int r=new_recompile_block(vaddr);
498   if(r==0) return get_addr(vaddr);
499   // Execute in unmapped page, generate pagefault execption
500   Status|=2;
501   Cause=(vaddr<<31)|0x8;
502   EPC=(vaddr&1)?vaddr-5:vaddr;
503   BadVAddr=(vaddr&~1);
504   Context=(Context&0xFF80000F)|((BadVAddr>>9)&0x007FFFF0);
505   EntryHi=BadVAddr&0xFFFFE000;
506   return get_addr_ht(0x80000000);
507 #endif
508 }
509
510 void clear_all_regs(signed char regmap[])
511 {
512   int hr;
513   for (hr=0;hr<HOST_REGS;hr++) regmap[hr]=-1;
514 }
515
516 signed char get_reg(signed char regmap[],int r)
517 {
518   int hr;
519   for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap[hr]==r) return hr;
520   return -1;
521 }
522
523 // Find a register that is available for two consecutive cycles
524 signed char get_reg2(signed char regmap1[],signed char regmap2[],int r)
525 {
526   int hr;
527   for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap1[hr]==r&&regmap2[hr]==r) return hr;
528   return -1;
529 }
530
531 int count_free_regs(signed char regmap[])
532 {
533   int count=0;
534   int hr;
535   for(hr=0;hr<HOST_REGS;hr++)
536   {
537     if(hr!=EXCLUDE_REG) {
538       if(regmap[hr]<0) count++;
539     }
540   }
541   return count;
542 }
543
544 void dirty_reg(struct regstat *cur,signed char reg)
545 {
546   int hr;
547   if(!reg) return;
548   for (hr=0;hr<HOST_REGS;hr++) {
549     if((cur->regmap[hr]&63)==reg) {
550       cur->dirty|=1<<hr;
551     }
552   }
553 }
554
555 // If we dirty the lower half of a 64 bit register which is now being
556 // sign-extended, we need to dump the upper half.
557 // Note: Do this only after completion of the instruction, because
558 // some instructions may need to read the full 64-bit value even if
559 // overwriting it (eg SLTI, DSRA32).
560 static void flush_dirty_uppers(struct regstat *cur)
561 {
562   int hr,reg;
563   for (hr=0;hr<HOST_REGS;hr++) {
564     if((cur->dirty>>hr)&1) {
565       reg=cur->regmap[hr];
566       if(reg>=64) 
567         if((cur->is32>>(reg&63))&1) cur->regmap[hr]=-1;
568     }
569   }
570 }
571
572 void set_const(struct regstat *cur,signed char reg,uint64_t value)
573 {
574   int hr;
575   if(!reg) return;
576   for (hr=0;hr<HOST_REGS;hr++) {
577     if(cur->regmap[hr]==reg) {
578       cur->isconst|=1<<hr;
579       cur->constmap[hr]=value;
580     }
581     else if((cur->regmap[hr]^64)==reg) {
582       cur->isconst|=1<<hr;
583       cur->constmap[hr]=value>>32;
584     }
585   }
586 }
587
588 void clear_const(struct regstat *cur,signed char reg)
589 {
590   int hr;
591   if(!reg) return;
592   for (hr=0;hr<HOST_REGS;hr++) {
593     if((cur->regmap[hr]&63)==reg) {
594       cur->isconst&=~(1<<hr);
595     }
596   }
597 }
598
599 int is_const(struct regstat *cur,signed char reg)
600 {
601   int hr;
602   if(reg<0) return 0;
603   if(!reg) return 1;
604   for (hr=0;hr<HOST_REGS;hr++) {
605     if((cur->regmap[hr]&63)==reg) {
606       return (cur->isconst>>hr)&1;
607     }
608   }
609   return 0;
610 }
611 uint64_t get_const(struct regstat *cur,signed char reg)
612 {
613   int hr;
614   if(!reg) return 0;
615   for (hr=0;hr<HOST_REGS;hr++) {
616     if(cur->regmap[hr]==reg) {
617       return cur->constmap[hr];
618     }
619   }
620   printf("Unknown constant in r%d\n",reg);
621   exit(1);
622 }
623
624 // Least soon needed registers
625 // Look at the next ten instructions and see which registers
626 // will be used.  Try not to reallocate these.
627 void lsn(u_char hsn[], int i, int *preferred_reg)
628 {
629   int j;
630   int b=-1;
631   for(j=0;j<9;j++)
632   {
633     if(i+j>=slen) {
634       j=slen-i-1;
635       break;
636     }
637     if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
638     {
639       // Don't go past an unconditonal jump
640       j++;
641       break;
642     }
643   }
644   for(;j>=0;j--)
645   {
646     if(rs1[i+j]) hsn[rs1[i+j]]=j;
647     if(rs2[i+j]) hsn[rs2[i+j]]=j;
648     if(rt1[i+j]) hsn[rt1[i+j]]=j;
649     if(rt2[i+j]) hsn[rt2[i+j]]=j;
650     if(itype[i+j]==STORE || itype[i+j]==STORELR) {
651       // Stores can allocate zero
652       hsn[rs1[i+j]]=j;
653       hsn[rs2[i+j]]=j;
654     }
655     // On some architectures stores need invc_ptr
656     #if defined(HOST_IMM8)
657     if(itype[i+j]==STORE || itype[i+j]==STORELR || (opcode[i+j]&0x3b)==0x39 || (opcode[i+j]&0x3b)==0x3a) {
658       hsn[INVCP]=j;
659     }
660     #endif
661     if(i+j>=0&&(itype[i+j]==UJUMP||itype[i+j]==CJUMP||itype[i+j]==SJUMP||itype[i+j]==FJUMP))
662     {
663       hsn[CCREG]=j;
664       b=j;
665     }
666   }
667   if(b>=0)
668   {
669     if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
670     {
671       // Follow first branch
672       int t=(ba[i+b]-start)>>2;
673       j=7-b;if(t+j>=slen) j=slen-t-1;
674       for(;j>=0;j--)
675       {
676         if(rs1[t+j]) if(hsn[rs1[t+j]]>j+b+2) hsn[rs1[t+j]]=j+b+2;
677         if(rs2[t+j]) if(hsn[rs2[t+j]]>j+b+2) hsn[rs2[t+j]]=j+b+2;
678         //if(rt1[t+j]) if(hsn[rt1[t+j]]>j+b+2) hsn[rt1[t+j]]=j+b+2;
679         //if(rt2[t+j]) if(hsn[rt2[t+j]]>j+b+2) hsn[rt2[t+j]]=j+b+2;
680       }
681     }
682     // TODO: preferred register based on backward branch
683   }
684   // Delay slot should preferably not overwrite branch conditions or cycle count
685   if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)) {
686     if(rs1[i-1]) if(hsn[rs1[i-1]]>1) hsn[rs1[i-1]]=1;
687     if(rs2[i-1]) if(hsn[rs2[i-1]]>1) hsn[rs2[i-1]]=1;
688     hsn[CCREG]=1;
689     // ...or hash tables
690     hsn[RHASH]=1;
691     hsn[RHTBL]=1;
692   }
693   // Coprocessor load/store needs FTEMP, even if not declared
694   if(itype[i]==C1LS||itype[i]==C2LS) {
695     hsn[FTEMP]=0;
696   }
697   // Load L/R also uses FTEMP as a temporary register
698   if(itype[i]==LOADLR) {
699     hsn[FTEMP]=0;
700   }
701   // Also SWL/SWR/SDL/SDR
702   if(opcode[i]==0x2a||opcode[i]==0x2e||opcode[i]==0x2c||opcode[i]==0x2d) {
703     hsn[FTEMP]=0;
704   }
705   // Don't remove the TLB registers either
706   if(itype[i]==LOAD || itype[i]==LOADLR || itype[i]==STORE || itype[i]==STORELR || itype[i]==C1LS || itype[i]==C2LS) {
707     hsn[TLREG]=0;
708   }
709   // Don't remove the miniht registers
710   if(itype[i]==UJUMP||itype[i]==RJUMP)
711   {
712     hsn[RHASH]=0;
713     hsn[RHTBL]=0;
714   }
715 }
716
717 // We only want to allocate registers if we're going to use them again soon
718 int needed_again(int r, int i)
719 {
720   int j;
721   int b=-1;
722   int rn=10;
723   
724   if(i>0&&(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000))
725   {
726     if(ba[i-1]<start || ba[i-1]>start+slen*4-4)
727       return 0; // Don't need any registers if exiting the block
728   }
729   for(j=0;j<9;j++)
730   {
731     if(i+j>=slen) {
732       j=slen-i-1;
733       break;
734     }
735     if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
736     {
737       // Don't go past an unconditonal jump
738       j++;
739       break;
740     }
741     if(itype[i+j]==SYSCALL||itype[i+j]==HLECALL||itype[i+j]==INTCALL||((source[i+j]&0xfc00003f)==0x0d))
742     {
743       break;
744     }
745   }
746   for(;j>=1;j--)
747   {
748     if(rs1[i+j]==r) rn=j;
749     if(rs2[i+j]==r) rn=j;
750     if((unneeded_reg[i+j]>>r)&1) rn=10;
751     if(i+j>=0&&(itype[i+j]==UJUMP||itype[i+j]==CJUMP||itype[i+j]==SJUMP||itype[i+j]==FJUMP))
752     {
753       b=j;
754     }
755   }
756   /*
757   if(b>=0)
758   {
759     if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
760     {
761       // Follow first branch
762       int o=rn;
763       int t=(ba[i+b]-start)>>2;
764       j=7-b;if(t+j>=slen) j=slen-t-1;
765       for(;j>=0;j--)
766       {
767         if(!((unneeded_reg[t+j]>>r)&1)) {
768           if(rs1[t+j]==r) if(rn>j+b+2) rn=j+b+2;
769           if(rs2[t+j]==r) if(rn>j+b+2) rn=j+b+2;
770         }
771         else rn=o;
772       }
773     }
774   }*/
775   if(rn<10) return 1;
776   return 0;
777 }
778
779 // Try to match register allocations at the end of a loop with those
780 // at the beginning
781 int loop_reg(int i, int r, int hr)
782 {
783   int j,k;
784   for(j=0;j<9;j++)
785   {
786     if(i+j>=slen) {
787       j=slen-i-1;
788       break;
789     }
790     if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
791     {
792       // Don't go past an unconditonal jump
793       j++;
794       break;
795     }
796   }
797   k=0;
798   if(i>0){
799     if(itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)
800       k--;
801   }
802   for(;k<j;k++)
803   {
804     if(r<64&&((unneeded_reg[i+k]>>r)&1)) return hr;
805     if(r>64&&((unneeded_reg_upper[i+k]>>r)&1)) return hr;
806     if(i+k>=0&&(itype[i+k]==UJUMP||itype[i+k]==CJUMP||itype[i+k]==SJUMP||itype[i+k]==FJUMP))
807     {
808       if(ba[i+k]>=start && ba[i+k]<(start+i*4))
809       {
810         int t=(ba[i+k]-start)>>2;
811         int reg=get_reg(regs[t].regmap_entry,r);
812         if(reg>=0) return reg;
813         //reg=get_reg(regs[t+1].regmap_entry,r);
814         //if(reg>=0) return reg;
815       }
816     }
817   }
818   return hr;
819 }
820
821
822 // Allocate every register, preserving source/target regs
823 void alloc_all(struct regstat *cur,int i)
824 {
825   int hr;
826   
827   for(hr=0;hr<HOST_REGS;hr++) {
828     if(hr!=EXCLUDE_REG) {
829       if(((cur->regmap[hr]&63)!=rs1[i])&&((cur->regmap[hr]&63)!=rs2[i])&&
830          ((cur->regmap[hr]&63)!=rt1[i])&&((cur->regmap[hr]&63)!=rt2[i]))
831       {
832         cur->regmap[hr]=-1;
833         cur->dirty&=~(1<<hr);
834       }
835       // Don't need zeros
836       if((cur->regmap[hr]&63)==0)
837       {
838         cur->regmap[hr]=-1;
839         cur->dirty&=~(1<<hr);
840       }
841     }
842   }
843 }
844
845
846 void div64(int64_t dividend,int64_t divisor)
847 {
848   lo=dividend/divisor;
849   hi=dividend%divisor;
850   //printf("TRACE: ddiv %8x%8x %8x%8x\n" ,(int)reg[HIREG],(int)(reg[HIREG]>>32)
851   //                                     ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
852 }
853 void divu64(uint64_t dividend,uint64_t divisor)
854 {
855   lo=dividend/divisor;
856   hi=dividend%divisor;
857   //printf("TRACE: ddivu %8x%8x %8x%8x\n",(int)reg[HIREG],(int)(reg[HIREG]>>32)
858   //                                     ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
859 }
860
861 void mult64(uint64_t m1,uint64_t m2)
862 {
863    unsigned long long int op1, op2, op3, op4;
864    unsigned long long int result1, result2, result3, result4;
865    unsigned long long int temp1, temp2, temp3, temp4;
866    int sign = 0;
867    
868    if (m1 < 0)
869      {
870     op2 = -m1;
871     sign = 1 - sign;
872      }
873    else op2 = m1;
874    if (m2 < 0)
875      {
876     op4 = -m2;
877     sign = 1 - sign;
878      }
879    else op4 = m2;
880    
881    op1 = op2 & 0xFFFFFFFF;
882    op2 = (op2 >> 32) & 0xFFFFFFFF;
883    op3 = op4 & 0xFFFFFFFF;
884    op4 = (op4 >> 32) & 0xFFFFFFFF;
885    
886    temp1 = op1 * op3;
887    temp2 = (temp1 >> 32) + op1 * op4;
888    temp3 = op2 * op3;
889    temp4 = (temp3 >> 32) + op2 * op4;
890    
891    result1 = temp1 & 0xFFFFFFFF;
892    result2 = temp2 + (temp3 & 0xFFFFFFFF);
893    result3 = (result2 >> 32) + temp4;
894    result4 = (result3 >> 32);
895    
896    lo = result1 | (result2 << 32);
897    hi = (result3 & 0xFFFFFFFF) | (result4 << 32);
898    if (sign)
899      {
900     hi = ~hi;
901     if (!lo) hi++;
902     else lo = ~lo + 1;
903      }
904 }
905
906 void multu64(uint64_t m1,uint64_t m2)
907 {
908    unsigned long long int op1, op2, op3, op4;
909    unsigned long long int result1, result2, result3, result4;
910    unsigned long long int temp1, temp2, temp3, temp4;
911    
912    op1 = m1 & 0xFFFFFFFF;
913    op2 = (m1 >> 32) & 0xFFFFFFFF;
914    op3 = m2 & 0xFFFFFFFF;
915    op4 = (m2 >> 32) & 0xFFFFFFFF;
916    
917    temp1 = op1 * op3;
918    temp2 = (temp1 >> 32) + op1 * op4;
919    temp3 = op2 * op3;
920    temp4 = (temp3 >> 32) + op2 * op4;
921    
922    result1 = temp1 & 0xFFFFFFFF;
923    result2 = temp2 + (temp3 & 0xFFFFFFFF);
924    result3 = (result2 >> 32) + temp4;
925    result4 = (result3 >> 32);
926    
927    lo = result1 | (result2 << 32);
928    hi = (result3 & 0xFFFFFFFF) | (result4 << 32);
929    
930   //printf("TRACE: dmultu %8x%8x %8x%8x\n",(int)reg[HIREG],(int)(reg[HIREG]>>32)
931   //                                      ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
932 }
933
934 uint64_t ldl_merge(uint64_t original,uint64_t loaded,u_int bits)
935 {
936   if(bits) {
937     original<<=64-bits;
938     original>>=64-bits;
939     loaded<<=bits;
940     original|=loaded;
941   }
942   else original=loaded;
943   return original;
944 }
945 uint64_t ldr_merge(uint64_t original,uint64_t loaded,u_int bits)
946 {
947   if(bits^56) {
948     original>>=64-(bits^56);
949     original<<=64-(bits^56);
950     loaded>>=bits^56;
951     original|=loaded;
952   }
953   else original=loaded;
954   return original;
955 }
956
957 #ifdef __i386__
958 #include "assem_x86.c"
959 #endif
960 #ifdef __x86_64__
961 #include "assem_x64.c"
962 #endif
963 #ifdef __arm__
964 #include "assem_arm.c"
965 #endif
966
967 // Add virtual address mapping to linked list
968 void ll_add(struct ll_entry **head,int vaddr,void *addr)
969 {
970   struct ll_entry *new_entry;
971   new_entry=malloc(sizeof(struct ll_entry));
972   assert(new_entry!=NULL);
973   new_entry->vaddr=vaddr;
974   new_entry->reg32=0;
975   new_entry->addr=addr;
976   new_entry->next=*head;
977   *head=new_entry;
978 }
979
980 // Add virtual address mapping for 32-bit compiled block
981 void ll_add_32(struct ll_entry **head,int vaddr,u_int reg32,void *addr)
982 {
983   ll_add(head,vaddr,addr);
984 #ifndef FORCE32
985   (*head)->reg32=reg32;
986 #endif
987 }
988
989 // Check if an address is already compiled
990 // but don't return addresses which are about to expire from the cache
991 void *check_addr(u_int vaddr)
992 {
993   u_int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
994   if(ht_bin[0]==vaddr) {
995     if(((ht_bin[1]-MAX_OUTPUT_BLOCK_SIZE-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
996       if(isclean(ht_bin[1])) return (void *)ht_bin[1];
997   }
998   if(ht_bin[2]==vaddr) {
999     if(((ht_bin[3]-MAX_OUTPUT_BLOCK_SIZE-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
1000       if(isclean(ht_bin[3])) return (void *)ht_bin[3];
1001   }
1002   u_int page=get_page(vaddr);
1003   struct ll_entry *head;
1004   head=jump_in[page];
1005   while(head!=NULL) {
1006     if(head->vaddr==vaddr&&head->reg32==0) {
1007       if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1008         // Update existing entry with current address
1009         if(ht_bin[0]==vaddr) {
1010           ht_bin[1]=(int)head->addr;
1011           return head->addr;
1012         }
1013         if(ht_bin[2]==vaddr) {
1014           ht_bin[3]=(int)head->addr;
1015           return head->addr;
1016         }
1017         // Insert into hash table with low priority.
1018         // Don't evict existing entries, as they are probably
1019         // addresses that are being accessed frequently.
1020         if(ht_bin[0]==-1) {
1021           ht_bin[1]=(int)head->addr;
1022           ht_bin[0]=vaddr;
1023         }else if(ht_bin[2]==-1) {
1024           ht_bin[3]=(int)head->addr;
1025           ht_bin[2]=vaddr;
1026         }
1027         return head->addr;
1028       }
1029     }
1030     head=head->next;
1031   }
1032   return 0;
1033 }
1034
1035 void remove_hash(int vaddr)
1036 {
1037   //printf("remove hash: %x\n",vaddr);
1038   int *ht_bin=hash_table[(((vaddr)>>16)^vaddr)&0xFFFF];
1039   if(ht_bin[2]==vaddr) {
1040     ht_bin[2]=ht_bin[3]=-1;
1041   }
1042   if(ht_bin[0]==vaddr) {
1043     ht_bin[0]=ht_bin[2];
1044     ht_bin[1]=ht_bin[3];
1045     ht_bin[2]=ht_bin[3]=-1;
1046   }
1047 }
1048
1049 void ll_remove_matching_addrs(struct ll_entry **head,int addr,int shift)
1050 {
1051   struct ll_entry *next;
1052   while(*head) {
1053     if(((u_int)((*head)->addr)>>shift)==(addr>>shift) || 
1054        ((u_int)((*head)->addr-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(addr>>shift))
1055     {
1056       inv_debug("EXP: Remove pointer to %x (%x)\n",(int)(*head)->addr,(*head)->vaddr);
1057       remove_hash((*head)->vaddr);
1058       next=(*head)->next;
1059       free(*head);
1060       *head=next;
1061     }
1062     else
1063     {
1064       head=&((*head)->next);
1065     }
1066   }
1067 }
1068
1069 // Remove all entries from linked list
1070 void ll_clear(struct ll_entry **head)
1071 {
1072   struct ll_entry *cur;
1073   struct ll_entry *next;
1074   if(cur=*head) {
1075     *head=0;
1076     while(cur) {
1077       next=cur->next;
1078       free(cur);
1079       cur=next;
1080     }
1081   }
1082 }
1083
1084 // Dereference the pointers and remove if it matches
1085 void ll_kill_pointers(struct ll_entry *head,int addr,int shift)
1086 {
1087   while(head) {
1088     int ptr=get_pointer(head->addr);
1089     inv_debug("EXP: Lookup pointer to %x at %x (%x)\n",(int)ptr,(int)head->addr,head->vaddr);
1090     if(((ptr>>shift)==(addr>>shift)) ||
1091        (((ptr-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(addr>>shift)))
1092     {
1093       inv_debug("EXP: Kill pointer at %x (%x)\n",(int)head->addr,head->vaddr);
1094       u_int host_addr=(u_int)kill_pointer(head->addr);
1095       #ifdef __arm__
1096         needs_clear_cache[(host_addr-(u_int)BASE_ADDR)>>17]|=1<<(((host_addr-(u_int)BASE_ADDR)>>12)&31);
1097       #endif
1098     }
1099     head=head->next;
1100   }
1101 }
1102
1103 // This is called when we write to a compiled block (see do_invstub)
1104 void invalidate_page(u_int page)
1105 {
1106   struct ll_entry *head;
1107   struct ll_entry *next;
1108   head=jump_in[page];
1109   jump_in[page]=0;
1110   while(head!=NULL) {
1111     inv_debug("INVALIDATE: %x\n",head->vaddr);
1112     remove_hash(head->vaddr);
1113     next=head->next;
1114     free(head);
1115     head=next;
1116   }
1117   head=jump_out[page];
1118   jump_out[page]=0;
1119   while(head!=NULL) {
1120     inv_debug("INVALIDATE: kill pointer to %x (%x)\n",head->vaddr,(int)head->addr);
1121     u_int host_addr=(u_int)kill_pointer(head->addr);
1122     #ifdef __arm__
1123       needs_clear_cache[(host_addr-(u_int)BASE_ADDR)>>17]|=1<<(((host_addr-(u_int)BASE_ADDR)>>12)&31);
1124     #endif
1125     next=head->next;
1126     free(head);
1127     head=next;
1128   }
1129 }
1130 void invalidate_block(u_int block)
1131 {
1132   u_int page=get_page(block<<12);
1133   u_int vpage=get_vpage(block<<12);
1134   inv_debug("INVALIDATE: %x (%d)\n",block<<12,page);
1135   //inv_debug("invalid_code[block]=%d\n",invalid_code[block]);
1136   u_int first,last;
1137   first=last=page;
1138   struct ll_entry *head;
1139   head=jump_dirty[vpage];
1140   //printf("page=%d vpage=%d\n",page,vpage);
1141   while(head!=NULL) {
1142     u_int start,end;
1143     if(vpage>2047||(head->vaddr>>12)==block) { // Ignore vaddr hash collision
1144       get_bounds((int)head->addr,&start,&end);
1145       //printf("start: %x end: %x\n",start,end);
1146       if(page<2048&&start>=0x80000000&&end<0x80000000+RAM_SIZE) {
1147         if(((start-(u_int)rdram)>>12)<=page&&((end-1-(u_int)rdram)>>12)>=page) {
1148           if((((start-(u_int)rdram)>>12)&2047)<first) first=((start-(u_int)rdram)>>12)&2047;
1149           if((((end-1-(u_int)rdram)>>12)&2047)>last) last=((end-1-(u_int)rdram)>>12)&2047;
1150         }
1151       }
1152 #ifndef DISABLE_TLB
1153       if(page<2048&&(signed int)start>=(signed int)0xC0000000&&(signed int)end>=(signed int)0xC0000000) {
1154         if(((start+memory_map[start>>12]-(u_int)rdram)>>12)<=page&&((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)>=page) {
1155           if((((start+memory_map[start>>12]-(u_int)rdram)>>12)&2047)<first) first=((start+memory_map[start>>12]-(u_int)rdram)>>12)&2047;
1156           if((((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)&2047)>last) last=((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)&2047;
1157         }
1158       }
1159 #endif
1160     }
1161     head=head->next;
1162   }
1163   //printf("first=%d last=%d\n",first,last);
1164   invalidate_page(page);
1165   assert(first+5>page); // NB: this assumes MAXBLOCK<=4096 (4 pages)
1166   assert(last<page+5);
1167   // Invalidate the adjacent pages if a block crosses a 4K boundary
1168   while(first<page) {
1169     invalidate_page(first);
1170     first++;
1171   }
1172   for(first=page+1;first<last;first++) {
1173     invalidate_page(first);
1174   }
1175   #ifdef __arm__
1176     do_clear_cache();
1177   #endif
1178   
1179   // Don't trap writes
1180   invalid_code[block]=1;
1181 #ifdef PCSX
1182   invalid_code[((u_int)0x80000000>>12)|page]=1;
1183 #endif
1184 #ifndef DISABLE_TLB
1185   // If there is a valid TLB entry for this page, remove write protect
1186   if(tlb_LUT_w[block]) {
1187     assert(tlb_LUT_r[block]==tlb_LUT_w[block]);
1188     // CHECK: Is this right?
1189     memory_map[block]=((tlb_LUT_w[block]&0xFFFFF000)-(block<<12)+(unsigned int)rdram-0x80000000)>>2;
1190     u_int real_block=tlb_LUT_w[block]>>12;
1191     invalid_code[real_block]=1;
1192     if(real_block>=0x80000&&real_block<0x80800) memory_map[real_block]=((u_int)rdram-0x80000000)>>2;
1193   }
1194   else if(block>=0x80000&&block<0x80800) memory_map[block]=((u_int)rdram-0x80000000)>>2;
1195 #endif
1196
1197   #ifdef USE_MINI_HT
1198   memset(mini_ht,-1,sizeof(mini_ht));
1199   #endif
1200 }
1201 void invalidate_addr(u_int addr)
1202 {
1203   invalidate_block(addr>>12);
1204 }
1205 // This is called when loading a save state.
1206 // Anything could have changed, so invalidate everything.
1207 void invalidate_all_pages()
1208 {
1209   u_int page,n;
1210   for(page=0;page<4096;page++)
1211     invalidate_page(page);
1212   for(page=0;page<1048576;page++)
1213     if(!invalid_code[page]) {
1214       restore_candidate[(page&2047)>>3]|=1<<(page&7);
1215       restore_candidate[((page&2047)>>3)+256]|=1<<(page&7);
1216     }
1217   #ifdef __arm__
1218   __clear_cache((void *)BASE_ADDR,(void *)BASE_ADDR+(1<<TARGET_SIZE_2));
1219   #endif
1220   #ifdef USE_MINI_HT
1221   memset(mini_ht,-1,sizeof(mini_ht));
1222   #endif
1223   #ifndef DISABLE_TLB
1224   // TLB
1225   for(page=0;page<0x100000;page++) {
1226     if(tlb_LUT_r[page]) {
1227       memory_map[page]=((tlb_LUT_r[page]&0xFFFFF000)-(page<<12)+(unsigned int)rdram-0x80000000)>>2;
1228       if(!tlb_LUT_w[page]||!invalid_code[page])
1229         memory_map[page]|=0x40000000; // Write protect
1230     }
1231     else memory_map[page]=-1;
1232     if(page==0x80000) page=0xC0000;
1233   }
1234   tlb_hacks();
1235   #endif
1236 }
1237
1238 // Add an entry to jump_out after making a link
1239 void add_link(u_int vaddr,void *src)
1240 {
1241   u_int page=get_page(vaddr);
1242   inv_debug("add_link: %x -> %x (%d)\n",(int)src,vaddr,page);
1243   ll_add(jump_out+page,vaddr,src);
1244   //int ptr=get_pointer(src);
1245   //inv_debug("add_link: Pointer is to %x\n",(int)ptr);
1246 }
1247
1248 // If a code block was found to be unmodified (bit was set in
1249 // restore_candidate) and it remains unmodified (bit is clear
1250 // in invalid_code) then move the entries for that 4K page from
1251 // the dirty list to the clean list.
1252 void clean_blocks(u_int page)
1253 {
1254   struct ll_entry *head;
1255   inv_debug("INV: clean_blocks page=%d\n",page);
1256   head=jump_dirty[page];
1257   while(head!=NULL) {
1258     if(!invalid_code[head->vaddr>>12]) {
1259       // Don't restore blocks which are about to expire from the cache
1260       if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1261         u_int start,end;
1262         if(verify_dirty((int)head->addr)) {
1263           //printf("Possibly Restore %x (%x)\n",head->vaddr, (int)head->addr);
1264           u_int i;
1265           u_int inv=0;
1266           get_bounds((int)head->addr,&start,&end);
1267           if(start-(u_int)rdram<RAM_SIZE) {
1268             for(i=(start-(u_int)rdram+0x80000000)>>12;i<=(end-1-(u_int)rdram+0x80000000)>>12;i++) {
1269               inv|=invalid_code[i];
1270             }
1271           }
1272           if((signed int)head->vaddr>=(signed int)0xC0000000) {
1273             u_int addr = (head->vaddr+(memory_map[head->vaddr>>12]<<2));
1274             //printf("addr=%x start=%x end=%x\n",addr,start,end);
1275             if(addr<start||addr>=end) inv=1;
1276           }
1277           else if((signed int)head->vaddr>=(signed int)0x80000000+RAM_SIZE) {
1278             inv=1;
1279           }
1280           if(!inv) {
1281             void * clean_addr=(void *)get_clean_addr((int)head->addr);
1282             if((((u_int)clean_addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1283               u_int ppage=page;
1284 #ifndef DISABLE_TLB
1285               if(page<2048&&tlb_LUT_r[head->vaddr>>12]) ppage=(tlb_LUT_r[head->vaddr>>12]^0x80000000)>>12;
1286 #endif
1287               inv_debug("INV: Restored %x (%x/%x)\n",head->vaddr, (int)head->addr, (int)clean_addr);
1288               //printf("page=%x, addr=%x\n",page,head->vaddr);
1289               //assert(head->vaddr>>12==(page|0x80000));
1290               ll_add_32(jump_in+ppage,head->vaddr,head->reg32,clean_addr);
1291               int *ht_bin=hash_table[((head->vaddr>>16)^head->vaddr)&0xFFFF];
1292               if(!head->reg32) {
1293                 if(ht_bin[0]==head->vaddr) {
1294                   ht_bin[1]=(int)clean_addr; // Replace existing entry
1295                 }
1296                 if(ht_bin[2]==head->vaddr) {
1297                   ht_bin[3]=(int)clean_addr; // Replace existing entry
1298                 }
1299               }
1300             }
1301           }
1302         }
1303       }
1304     }
1305     head=head->next;
1306   }
1307 }
1308
1309
1310 void mov_alloc(struct regstat *current,int i)
1311 {
1312   // Note: Don't need to actually alloc the source registers
1313   if((~current->is32>>rs1[i])&1) {
1314     //alloc_reg64(current,i,rs1[i]);
1315     alloc_reg64(current,i,rt1[i]);
1316     current->is32&=~(1LL<<rt1[i]);
1317   } else {
1318     //alloc_reg(current,i,rs1[i]);
1319     alloc_reg(current,i,rt1[i]);
1320     current->is32|=(1LL<<rt1[i]);
1321   }
1322   clear_const(current,rs1[i]);
1323   clear_const(current,rt1[i]);
1324   dirty_reg(current,rt1[i]);
1325 }
1326
1327 void shiftimm_alloc(struct regstat *current,int i)
1328 {
1329   clear_const(current,rs1[i]);
1330   clear_const(current,rt1[i]);
1331   if(opcode2[i]<=0x3) // SLL/SRL/SRA
1332   {
1333     if(rt1[i]) {
1334       if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1335       else lt1[i]=rs1[i];
1336       alloc_reg(current,i,rt1[i]);
1337       current->is32|=1LL<<rt1[i];
1338       dirty_reg(current,rt1[i]);
1339     }
1340   }
1341   if(opcode2[i]>=0x38&&opcode2[i]<=0x3b) // DSLL/DSRL/DSRA
1342   {
1343     if(rt1[i]) {
1344       if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1345       alloc_reg64(current,i,rt1[i]);
1346       current->is32&=~(1LL<<rt1[i]);
1347       dirty_reg(current,rt1[i]);
1348     }
1349   }
1350   if(opcode2[i]==0x3c) // DSLL32
1351   {
1352     if(rt1[i]) {
1353       if(rs1[i]) alloc_reg(current,i,rs1[i]);
1354       alloc_reg64(current,i,rt1[i]);
1355       current->is32&=~(1LL<<rt1[i]);
1356       dirty_reg(current,rt1[i]);
1357     }
1358   }
1359   if(opcode2[i]==0x3e) // DSRL32
1360   {
1361     if(rt1[i]) {
1362       alloc_reg64(current,i,rs1[i]);
1363       if(imm[i]==32) {
1364         alloc_reg64(current,i,rt1[i]);
1365         current->is32&=~(1LL<<rt1[i]);
1366       } else {
1367         alloc_reg(current,i,rt1[i]);
1368         current->is32|=1LL<<rt1[i];
1369       }
1370       dirty_reg(current,rt1[i]);
1371     }
1372   }
1373   if(opcode2[i]==0x3f) // DSRA32
1374   {
1375     if(rt1[i]) {
1376       alloc_reg64(current,i,rs1[i]);
1377       alloc_reg(current,i,rt1[i]);
1378       current->is32|=1LL<<rt1[i];
1379       dirty_reg(current,rt1[i]);
1380     }
1381   }
1382 }
1383
1384 void shift_alloc(struct regstat *current,int i)
1385 {
1386   if(rt1[i]) {
1387     if(opcode2[i]<=0x07) // SLLV/SRLV/SRAV
1388     {
1389       if(rs1[i]) alloc_reg(current,i,rs1[i]);
1390       if(rs2[i]) alloc_reg(current,i,rs2[i]);
1391       alloc_reg(current,i,rt1[i]);
1392       if(rt1[i]==rs2[i]) {
1393         alloc_reg_temp(current,i,-1);
1394         minimum_free_regs[i]=1;
1395       }
1396       current->is32|=1LL<<rt1[i];
1397     } else { // DSLLV/DSRLV/DSRAV
1398       if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1399       if(rs2[i]) alloc_reg(current,i,rs2[i]);
1400       alloc_reg64(current,i,rt1[i]);
1401       current->is32&=~(1LL<<rt1[i]);
1402       if(opcode2[i]==0x16||opcode2[i]==0x17) // DSRLV and DSRAV need a temporary register
1403       {
1404         alloc_reg_temp(current,i,-1);
1405         minimum_free_regs[i]=1;
1406       }
1407     }
1408     clear_const(current,rs1[i]);
1409     clear_const(current,rs2[i]);
1410     clear_const(current,rt1[i]);
1411     dirty_reg(current,rt1[i]);
1412   }
1413 }
1414
1415 void alu_alloc(struct regstat *current,int i)
1416 {
1417   if(opcode2[i]>=0x20&&opcode2[i]<=0x23) { // ADD/ADDU/SUB/SUBU
1418     if(rt1[i]) {
1419       if(rs1[i]&&rs2[i]) {
1420         alloc_reg(current,i,rs1[i]);
1421         alloc_reg(current,i,rs2[i]);
1422       }
1423       else {
1424         if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1425         if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg(current,i,rs2[i]);
1426       }
1427       alloc_reg(current,i,rt1[i]);
1428     }
1429     current->is32|=1LL<<rt1[i];
1430   }
1431   if(opcode2[i]==0x2a||opcode2[i]==0x2b) { // SLT/SLTU
1432     if(rt1[i]) {
1433       if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1434       {
1435         alloc_reg64(current,i,rs1[i]);
1436         alloc_reg64(current,i,rs2[i]);
1437         alloc_reg(current,i,rt1[i]);
1438       } else {
1439         alloc_reg(current,i,rs1[i]);
1440         alloc_reg(current,i,rs2[i]);
1441         alloc_reg(current,i,rt1[i]);
1442       }
1443     }
1444     current->is32|=1LL<<rt1[i];
1445   }
1446   if(opcode2[i]>=0x24&&opcode2[i]<=0x27) { // AND/OR/XOR/NOR
1447     if(rt1[i]) {
1448       if(rs1[i]&&rs2[i]) {
1449         alloc_reg(current,i,rs1[i]);
1450         alloc_reg(current,i,rs2[i]);
1451       }
1452       else
1453       {
1454         if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1455         if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg(current,i,rs2[i]);
1456       }
1457       alloc_reg(current,i,rt1[i]);
1458       if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1459       {
1460         if(!((current->uu>>rt1[i])&1)) {
1461           alloc_reg64(current,i,rt1[i]);
1462         }
1463         if(get_reg(current->regmap,rt1[i]|64)>=0) {
1464           if(rs1[i]&&rs2[i]) {
1465             alloc_reg64(current,i,rs1[i]);
1466             alloc_reg64(current,i,rs2[i]);
1467           }
1468           else
1469           {
1470             // Is is really worth it to keep 64-bit values in registers?
1471             #ifdef NATIVE_64BIT
1472             if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg64(current,i,rs1[i]);
1473             if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg64(current,i,rs2[i]);
1474             #endif
1475           }
1476         }
1477         current->is32&=~(1LL<<rt1[i]);
1478       } else {
1479         current->is32|=1LL<<rt1[i];
1480       }
1481     }
1482   }
1483   if(opcode2[i]>=0x2c&&opcode2[i]<=0x2f) { // DADD/DADDU/DSUB/DSUBU
1484     if(rt1[i]) {
1485       if(rs1[i]&&rs2[i]) {
1486         if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1487           alloc_reg64(current,i,rs1[i]);
1488           alloc_reg64(current,i,rs2[i]);
1489           alloc_reg64(current,i,rt1[i]);
1490         } else {
1491           alloc_reg(current,i,rs1[i]);
1492           alloc_reg(current,i,rs2[i]);
1493           alloc_reg(current,i,rt1[i]);
1494         }
1495       }
1496       else {
1497         alloc_reg(current,i,rt1[i]);
1498         if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1499           // DADD used as move, or zeroing
1500           // If we have a 64-bit source, then make the target 64 bits too
1501           if(rs1[i]&&!((current->is32>>rs1[i])&1)) {
1502             if(get_reg(current->regmap,rs1[i])>=0) alloc_reg64(current,i,rs1[i]);
1503             alloc_reg64(current,i,rt1[i]);
1504           } else if(rs2[i]&&!((current->is32>>rs2[i])&1)) {
1505             if(get_reg(current->regmap,rs2[i])>=0) alloc_reg64(current,i,rs2[i]);
1506             alloc_reg64(current,i,rt1[i]);
1507           }
1508           if(opcode2[i]>=0x2e&&rs2[i]) {
1509             // DSUB used as negation - 64-bit result
1510             // If we have a 32-bit register, extend it to 64 bits
1511             if(get_reg(current->regmap,rs2[i])>=0) alloc_reg64(current,i,rs2[i]);
1512             alloc_reg64(current,i,rt1[i]);
1513           }
1514         }
1515       }
1516       if(rs1[i]&&rs2[i]) {
1517         current->is32&=~(1LL<<rt1[i]);
1518       } else if(rs1[i]) {
1519         current->is32&=~(1LL<<rt1[i]);
1520         if((current->is32>>rs1[i])&1)
1521           current->is32|=1LL<<rt1[i];
1522       } else if(rs2[i]) {
1523         current->is32&=~(1LL<<rt1[i]);
1524         if((current->is32>>rs2[i])&1)
1525           current->is32|=1LL<<rt1[i];
1526       } else {
1527         current->is32|=1LL<<rt1[i];
1528       }
1529     }
1530   }
1531   clear_const(current,rs1[i]);
1532   clear_const(current,rs2[i]);
1533   clear_const(current,rt1[i]);
1534   dirty_reg(current,rt1[i]);
1535 }
1536
1537 void imm16_alloc(struct regstat *current,int i)
1538 {
1539   if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1540   else lt1[i]=rs1[i];
1541   if(rt1[i]) alloc_reg(current,i,rt1[i]);
1542   if(opcode[i]==0x18||opcode[i]==0x19) { // DADDI/DADDIU
1543     current->is32&=~(1LL<<rt1[i]);
1544     if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1545       // TODO: Could preserve the 32-bit flag if the immediate is zero
1546       alloc_reg64(current,i,rt1[i]);
1547       alloc_reg64(current,i,rs1[i]);
1548     }
1549     clear_const(current,rs1[i]);
1550     clear_const(current,rt1[i]);
1551   }
1552   else if(opcode[i]==0x0a||opcode[i]==0x0b) { // SLTI/SLTIU
1553     if((~current->is32>>rs1[i])&1) alloc_reg64(current,i,rs1[i]);
1554     current->is32|=1LL<<rt1[i];
1555     clear_const(current,rs1[i]);
1556     clear_const(current,rt1[i]);
1557   }
1558   else if(opcode[i]>=0x0c&&opcode[i]<=0x0e) { // ANDI/ORI/XORI
1559     if(((~current->is32>>rs1[i])&1)&&opcode[i]>0x0c) {
1560       if(rs1[i]!=rt1[i]) {
1561         if(needed_again(rs1[i],i)) alloc_reg64(current,i,rs1[i]);
1562         alloc_reg64(current,i,rt1[i]);
1563         current->is32&=~(1LL<<rt1[i]);
1564       }
1565     }
1566     else current->is32|=1LL<<rt1[i]; // ANDI clears upper bits
1567     if(is_const(current,rs1[i])) {
1568       int v=get_const(current,rs1[i]);
1569       if(opcode[i]==0x0c) set_const(current,rt1[i],v&imm[i]);
1570       if(opcode[i]==0x0d) set_const(current,rt1[i],v|imm[i]);
1571       if(opcode[i]==0x0e) set_const(current,rt1[i],v^imm[i]);
1572     }
1573     else clear_const(current,rt1[i]);
1574   }
1575   else if(opcode[i]==0x08||opcode[i]==0x09) { // ADDI/ADDIU
1576     if(is_const(current,rs1[i])) {
1577       int v=get_const(current,rs1[i]);
1578       set_const(current,rt1[i],v+imm[i]);
1579     }
1580     else clear_const(current,rt1[i]);
1581     current->is32|=1LL<<rt1[i];
1582   }
1583   else {
1584     set_const(current,rt1[i],((long long)((short)imm[i]))<<16); // LUI
1585     current->is32|=1LL<<rt1[i];
1586   }
1587   dirty_reg(current,rt1[i]);
1588 }
1589
1590 void load_alloc(struct regstat *current,int i)
1591 {
1592   clear_const(current,rt1[i]);
1593   //if(rs1[i]!=rt1[i]&&needed_again(rs1[i],i)) clear_const(current,rs1[i]); // Does this help or hurt?
1594   if(!rs1[i]) current->u&=~1LL; // Allow allocating r0 if it's the source register
1595   if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1596   if(rt1[i]) {
1597     alloc_reg(current,i,rt1[i]);
1598     if(get_reg(current->regmap,rt1[i])<0) {
1599       // dummy load, but we still need a register to calculate the address
1600       alloc_reg_temp(current,i,-1);
1601       minimum_free_regs[i]=1;
1602     }
1603     if(opcode[i]==0x27||opcode[i]==0x37) // LWU/LD
1604     {
1605       current->is32&=~(1LL<<rt1[i]);
1606       alloc_reg64(current,i,rt1[i]);
1607     }
1608     else if(opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
1609     {
1610       current->is32&=~(1LL<<rt1[i]);
1611       alloc_reg64(current,i,rt1[i]);
1612       alloc_all(current,i);
1613       alloc_reg64(current,i,FTEMP);
1614       minimum_free_regs[i]=HOST_REGS;
1615     }
1616     else current->is32|=1LL<<rt1[i];
1617     dirty_reg(current,rt1[i]);
1618     // If using TLB, need a register for pointer to the mapping table
1619     if(using_tlb) alloc_reg(current,i,TLREG);
1620     // LWL/LWR need a temporary register for the old value
1621     if(opcode[i]==0x22||opcode[i]==0x26)
1622     {
1623       alloc_reg(current,i,FTEMP);
1624       alloc_reg_temp(current,i,-1);
1625       minimum_free_regs[i]=1;
1626     }
1627   }
1628   else
1629   {
1630     // Load to r0 (dummy load)
1631     // but we still need a register to calculate the address
1632     if(opcode[i]==0x22||opcode[i]==0x26)
1633     {
1634       alloc_reg(current,i,FTEMP); // LWL/LWR need another temporary
1635     }
1636     alloc_reg_temp(current,i,-1);
1637     minimum_free_regs[i]=1;
1638     if(opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
1639     {
1640       alloc_all(current,i);
1641       alloc_reg64(current,i,FTEMP);
1642       minimum_free_regs[i]=HOST_REGS;
1643     }
1644   }
1645 }
1646
1647 void store_alloc(struct regstat *current,int i)
1648 {
1649   clear_const(current,rs2[i]);
1650   if(!(rs2[i])) current->u&=~1LL; // Allow allocating r0 if necessary
1651   if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1652   alloc_reg(current,i,rs2[i]);
1653   if(opcode[i]==0x2c||opcode[i]==0x2d||opcode[i]==0x3f) { // 64-bit SDL/SDR/SD
1654     alloc_reg64(current,i,rs2[i]);
1655     if(rs2[i]) alloc_reg(current,i,FTEMP);
1656   }
1657   // If using TLB, need a register for pointer to the mapping table
1658   if(using_tlb) alloc_reg(current,i,TLREG);
1659   #if defined(HOST_IMM8)
1660   // On CPUs without 32-bit immediates we need a pointer to invalid_code
1661   else alloc_reg(current,i,INVCP);
1662   #endif
1663   if(opcode[i]==0x2a||opcode[i]==0x2e||opcode[i]==0x2c||opcode[i]==0x2d) { // SWL/SWL/SDL/SDR
1664     alloc_reg(current,i,FTEMP);
1665   }
1666   // We need a temporary register for address generation
1667   alloc_reg_temp(current,i,-1);
1668   minimum_free_regs[i]=1;
1669 }
1670
1671 void c1ls_alloc(struct regstat *current,int i)
1672 {
1673   //clear_const(current,rs1[i]); // FIXME
1674   clear_const(current,rt1[i]);
1675   if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1676   alloc_reg(current,i,CSREG); // Status
1677   alloc_reg(current,i,FTEMP);
1678   if(opcode[i]==0x35||opcode[i]==0x3d) { // 64-bit LDC1/SDC1
1679     alloc_reg64(current,i,FTEMP);
1680   }
1681   // If using TLB, need a register for pointer to the mapping table
1682   if(using_tlb) alloc_reg(current,i,TLREG);
1683   #if defined(HOST_IMM8)
1684   // On CPUs without 32-bit immediates we need a pointer to invalid_code
1685   else if((opcode[i]&0x3b)==0x39) // SWC1/SDC1
1686     alloc_reg(current,i,INVCP);
1687   #endif
1688   // We need a temporary register for address generation
1689   alloc_reg_temp(current,i,-1);
1690 }
1691
1692 void c2ls_alloc(struct regstat *current,int i)
1693 {
1694   clear_const(current,rt1[i]);
1695   if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1696   alloc_reg(current,i,FTEMP);
1697   // If using TLB, need a register for pointer to the mapping table
1698   if(using_tlb) alloc_reg(current,i,TLREG);
1699   #if defined(HOST_IMM8)
1700   // On CPUs without 32-bit immediates we need a pointer to invalid_code
1701   else if((opcode[i]&0x3b)==0x3a) // SWC2/SDC2
1702     alloc_reg(current,i,INVCP);
1703   #endif
1704   // We need a temporary register for address generation
1705   alloc_reg_temp(current,i,-1);
1706   minimum_free_regs[i]=1;
1707 }
1708
1709 #ifndef multdiv_alloc
1710 void multdiv_alloc(struct regstat *current,int i)
1711 {
1712   //  case 0x18: MULT
1713   //  case 0x19: MULTU
1714   //  case 0x1A: DIV
1715   //  case 0x1B: DIVU
1716   //  case 0x1C: DMULT
1717   //  case 0x1D: DMULTU
1718   //  case 0x1E: DDIV
1719   //  case 0x1F: DDIVU
1720   clear_const(current,rs1[i]);
1721   clear_const(current,rs2[i]);
1722   if(rs1[i]&&rs2[i])
1723   {
1724     if((opcode2[i]&4)==0) // 32-bit
1725     {
1726       current->u&=~(1LL<<HIREG);
1727       current->u&=~(1LL<<LOREG);
1728       alloc_reg(current,i,HIREG);
1729       alloc_reg(current,i,LOREG);
1730       alloc_reg(current,i,rs1[i]);
1731       alloc_reg(current,i,rs2[i]);
1732       current->is32|=1LL<<HIREG;
1733       current->is32|=1LL<<LOREG;
1734       dirty_reg(current,HIREG);
1735       dirty_reg(current,LOREG);
1736     }
1737     else // 64-bit
1738     {
1739       current->u&=~(1LL<<HIREG);
1740       current->u&=~(1LL<<LOREG);
1741       current->uu&=~(1LL<<HIREG);
1742       current->uu&=~(1LL<<LOREG);
1743       alloc_reg64(current,i,HIREG);
1744       //if(HOST_REGS>10) alloc_reg64(current,i,LOREG);
1745       alloc_reg64(current,i,rs1[i]);
1746       alloc_reg64(current,i,rs2[i]);
1747       alloc_all(current,i);
1748       current->is32&=~(1LL<<HIREG);
1749       current->is32&=~(1LL<<LOREG);
1750       dirty_reg(current,HIREG);
1751       dirty_reg(current,LOREG);
1752       minimum_free_regs[i]=HOST_REGS;
1753     }
1754   }
1755   else
1756   {
1757     // Multiply by zero is zero.
1758     // MIPS does not have a divide by zero exception.
1759     // The result is undefined, we return zero.
1760     alloc_reg(current,i,HIREG);
1761     alloc_reg(current,i,LOREG);
1762     current->is32|=1LL<<HIREG;
1763     current->is32|=1LL<<LOREG;
1764     dirty_reg(current,HIREG);
1765     dirty_reg(current,LOREG);
1766   }
1767 }
1768 #endif
1769
1770 void cop0_alloc(struct regstat *current,int i)
1771 {
1772   if(opcode2[i]==0) // MFC0
1773   {
1774     if(rt1[i]) {
1775       clear_const(current,rt1[i]);
1776       alloc_all(current,i);
1777       alloc_reg(current,i,rt1[i]);
1778       current->is32|=1LL<<rt1[i];
1779       dirty_reg(current,rt1[i]);
1780     }
1781   }
1782   else if(opcode2[i]==4) // MTC0
1783   {
1784     if(rs1[i]){
1785       clear_const(current,rs1[i]);
1786       alloc_reg(current,i,rs1[i]);
1787       alloc_all(current,i);
1788     }
1789     else {
1790       alloc_all(current,i); // FIXME: Keep r0
1791       current->u&=~1LL;
1792       alloc_reg(current,i,0);
1793     }
1794   }
1795   else
1796   {
1797     // TLBR/TLBWI/TLBWR/TLBP/ERET
1798     assert(opcode2[i]==0x10);
1799     alloc_all(current,i);
1800   }
1801   minimum_free_regs[i]=HOST_REGS;
1802 }
1803
1804 void cop1_alloc(struct regstat *current,int i)
1805 {
1806   alloc_reg(current,i,CSREG); // Load status
1807   if(opcode2[i]<3) // MFC1/DMFC1/CFC1
1808   {
1809     if(rt1[i]){
1810       clear_const(current,rt1[i]);
1811       if(opcode2[i]==1) {
1812         alloc_reg64(current,i,rt1[i]); // DMFC1
1813         current->is32&=~(1LL<<rt1[i]);
1814       }else{
1815         alloc_reg(current,i,rt1[i]); // MFC1/CFC1
1816         current->is32|=1LL<<rt1[i];
1817       }
1818       dirty_reg(current,rt1[i]);
1819     }
1820     alloc_reg_temp(current,i,-1);
1821   }
1822   else if(opcode2[i]>3) // MTC1/DMTC1/CTC1
1823   {
1824     if(rs1[i]){
1825       clear_const(current,rs1[i]);
1826       if(opcode2[i]==5)
1827         alloc_reg64(current,i,rs1[i]); // DMTC1
1828       else
1829         alloc_reg(current,i,rs1[i]); // MTC1/CTC1
1830       alloc_reg_temp(current,i,-1);
1831     }
1832     else {
1833       current->u&=~1LL;
1834       alloc_reg(current,i,0);
1835       alloc_reg_temp(current,i,-1);
1836     }
1837   }
1838   minimum_free_regs[i]=1;
1839 }
1840 void fconv_alloc(struct regstat *current,int i)
1841 {
1842   alloc_reg(current,i,CSREG); // Load status
1843   alloc_reg_temp(current,i,-1);
1844   minimum_free_regs[i]=1;
1845 }
1846 void float_alloc(struct regstat *current,int i)
1847 {
1848   alloc_reg(current,i,CSREG); // Load status
1849   alloc_reg_temp(current,i,-1);
1850   minimum_free_regs[i]=1;
1851 }
1852 void c2op_alloc(struct regstat *current,int i)
1853 {
1854   alloc_reg_temp(current,i,-1);
1855 }
1856 void fcomp_alloc(struct regstat *current,int i)
1857 {
1858   alloc_reg(current,i,CSREG); // Load status
1859   alloc_reg(current,i,FSREG); // Load flags
1860   dirty_reg(current,FSREG); // Flag will be modified
1861   alloc_reg_temp(current,i,-1);
1862   minimum_free_regs[i]=1;
1863 }
1864
1865 void syscall_alloc(struct regstat *current,int i)
1866 {
1867   alloc_cc(current,i);
1868   dirty_reg(current,CCREG);
1869   alloc_all(current,i);
1870   minimum_free_regs[i]=HOST_REGS;
1871   current->isconst=0;
1872 }
1873
1874 void delayslot_alloc(struct regstat *current,int i)
1875 {
1876   switch(itype[i]) {
1877     case UJUMP:
1878     case CJUMP:
1879     case SJUMP:
1880     case RJUMP:
1881     case FJUMP:
1882     case SYSCALL:
1883     case HLECALL:
1884     case SPAN:
1885       assem_debug("jump in the delay slot.  this shouldn't happen.\n");//exit(1);
1886       printf("Disabled speculative precompilation\n");
1887       stop_after_jal=1;
1888       break;
1889     case IMM16:
1890       imm16_alloc(current,i);
1891       break;
1892     case LOAD:
1893     case LOADLR:
1894       load_alloc(current,i);
1895       break;
1896     case STORE:
1897     case STORELR:
1898       store_alloc(current,i);
1899       break;
1900     case ALU:
1901       alu_alloc(current,i);
1902       break;
1903     case SHIFT:
1904       shift_alloc(current,i);
1905       break;
1906     case MULTDIV:
1907       multdiv_alloc(current,i);
1908       break;
1909     case SHIFTIMM:
1910       shiftimm_alloc(current,i);
1911       break;
1912     case MOV:
1913       mov_alloc(current,i);
1914       break;
1915     case COP0:
1916       cop0_alloc(current,i);
1917       break;
1918     case COP1:
1919     case COP2:
1920       cop1_alloc(current,i);
1921       break;
1922     case C1LS:
1923       c1ls_alloc(current,i);
1924       break;
1925     case C2LS:
1926       c2ls_alloc(current,i);
1927       break;
1928     case FCONV:
1929       fconv_alloc(current,i);
1930       break;
1931     case FLOAT:
1932       float_alloc(current,i);
1933       break;
1934     case FCOMP:
1935       fcomp_alloc(current,i);
1936       break;
1937     case C2OP:
1938       c2op_alloc(current,i);
1939       break;
1940   }
1941 }
1942
1943 // Special case where a branch and delay slot span two pages in virtual memory
1944 static void pagespan_alloc(struct regstat *current,int i)
1945 {
1946   current->isconst=0;
1947   current->wasconst=0;
1948   regs[i].wasconst=0;
1949   minimum_free_regs[i]=HOST_REGS;
1950   alloc_all(current,i);
1951   alloc_cc(current,i);
1952   dirty_reg(current,CCREG);
1953   if(opcode[i]==3) // JAL
1954   {
1955     alloc_reg(current,i,31);
1956     dirty_reg(current,31);
1957   }
1958   if(opcode[i]==0&&(opcode2[i]&0x3E)==8) // JR/JALR
1959   {
1960     alloc_reg(current,i,rs1[i]);
1961     if (rt1[i]!=0) {
1962       alloc_reg(current,i,rt1[i]);
1963       dirty_reg(current,rt1[i]);
1964     }
1965   }
1966   if((opcode[i]&0x2E)==4) // BEQ/BNE/BEQL/BNEL
1967   {
1968     if(rs1[i]) alloc_reg(current,i,rs1[i]);
1969     if(rs2[i]) alloc_reg(current,i,rs2[i]);
1970     if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1971     {
1972       if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1973       if(rs2[i]) alloc_reg64(current,i,rs2[i]);
1974     }
1975   }
1976   else
1977   if((opcode[i]&0x2E)==6) // BLEZ/BGTZ/BLEZL/BGTZL
1978   {
1979     if(rs1[i]) alloc_reg(current,i,rs1[i]);
1980     if(!((current->is32>>rs1[i])&1))
1981     {
1982       if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1983     }
1984   }
1985   else
1986   if(opcode[i]==0x11) // BC1
1987   {
1988     alloc_reg(current,i,FSREG);
1989     alloc_reg(current,i,CSREG);
1990   }
1991   //else ...
1992 }
1993
1994 add_stub(int type,int addr,int retaddr,int a,int b,int c,int d,int e)
1995 {
1996   stubs[stubcount][0]=type;
1997   stubs[stubcount][1]=addr;
1998   stubs[stubcount][2]=retaddr;
1999   stubs[stubcount][3]=a;
2000   stubs[stubcount][4]=b;
2001   stubs[stubcount][5]=c;
2002   stubs[stubcount][6]=d;
2003   stubs[stubcount][7]=e;
2004   stubcount++;
2005 }
2006
2007 // Write out a single register
2008 void wb_register(signed char r,signed char regmap[],uint64_t dirty,uint64_t is32)
2009 {
2010   int hr;
2011   for(hr=0;hr<HOST_REGS;hr++) {
2012     if(hr!=EXCLUDE_REG) {
2013       if((regmap[hr]&63)==r) {
2014         if((dirty>>hr)&1) {
2015           if(regmap[hr]<64) {
2016             emit_storereg(r,hr);
2017 #ifndef FORCE32
2018             if((is32>>regmap[hr])&1) {
2019               emit_sarimm(hr,31,hr);
2020               emit_storereg(r|64,hr);
2021             }
2022 #endif
2023           }else{
2024             emit_storereg(r|64,hr);
2025           }
2026         }
2027       }
2028     }
2029   }
2030 }
2031
2032 int mchecksum()
2033 {
2034   //if(!tracedebug) return 0;
2035   int i;
2036   int sum=0;
2037   for(i=0;i<2097152;i++) {
2038     unsigned int temp=sum;
2039     sum<<=1;
2040     sum|=(~temp)>>31;
2041     sum^=((u_int *)rdram)[i];
2042   }
2043   return sum;
2044 }
2045 int rchecksum()
2046 {
2047   int i;
2048   int sum=0;
2049   for(i=0;i<64;i++)
2050     sum^=((u_int *)reg)[i];
2051   return sum;
2052 }
2053 void rlist()
2054 {
2055   int i;
2056   printf("TRACE: ");
2057   for(i=0;i<32;i++)
2058     printf("r%d:%8x%8x ",i,((int *)(reg+i))[1],((int *)(reg+i))[0]);
2059   printf("\n");
2060 #ifndef DISABLE_COP1
2061   printf("TRACE: ");
2062   for(i=0;i<32;i++)
2063     printf("f%d:%8x%8x ",i,((int*)reg_cop1_simple[i])[1],*((int*)reg_cop1_simple[i]));
2064   printf("\n");
2065 #endif
2066 }
2067
2068 void enabletrace()
2069 {
2070   tracedebug=1;
2071 }
2072
2073 void memdebug(int i)
2074 {
2075   //printf("TRACE: count=%d next=%d (checksum %x) lo=%8x%8x\n",Count,next_interupt,mchecksum(),(int)(reg[LOREG]>>32),(int)reg[LOREG]);
2076   //printf("TRACE: count=%d next=%d (rchecksum %x)\n",Count,next_interupt,rchecksum());
2077   //rlist();
2078   //if(tracedebug) {
2079   //if(Count>=-2084597794) {
2080   if((signed int)Count>=-2084597794&&(signed int)Count<0) {
2081   //if(0) {
2082     printf("TRACE: count=%d next=%d (checksum %x)\n",Count,next_interupt,mchecksum());
2083     //printf("TRACE: count=%d next=%d (checksum %x) Status=%x\n",Count,next_interupt,mchecksum(),Status);
2084     //printf("TRACE: count=%d next=%d (checksum %x) hi=%8x%8x\n",Count,next_interupt,mchecksum(),(int)(reg[HIREG]>>32),(int)reg[HIREG]);
2085     rlist();
2086     #ifdef __i386__
2087     printf("TRACE: %x\n",(&i)[-1]);
2088     #endif
2089     #ifdef __arm__
2090     int j;
2091     printf("TRACE: %x \n",(&j)[10]);
2092     printf("TRACE: %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x\n",(&j)[1],(&j)[2],(&j)[3],(&j)[4],(&j)[5],(&j)[6],(&j)[7],(&j)[8],(&j)[9],(&j)[10],(&j)[11],(&j)[12],(&j)[13],(&j)[14],(&j)[15],(&j)[16],(&j)[17],(&j)[18],(&j)[19],(&j)[20]);
2093     #endif
2094     //fflush(stdout);
2095   }
2096   //printf("TRACE: %x\n",(&i)[-1]);
2097 }
2098
2099 void tlb_debug(u_int cause, u_int addr, u_int iaddr)
2100 {
2101   printf("TLB Exception: instruction=%x addr=%x cause=%x\n",iaddr, addr, cause);
2102 }
2103
2104 void alu_assemble(int i,struct regstat *i_regs)
2105 {
2106   if(opcode2[i]>=0x20&&opcode2[i]<=0x23) { // ADD/ADDU/SUB/SUBU
2107     if(rt1[i]) {
2108       signed char s1,s2,t;
2109       t=get_reg(i_regs->regmap,rt1[i]);
2110       if(t>=0) {
2111         s1=get_reg(i_regs->regmap,rs1[i]);
2112         s2=get_reg(i_regs->regmap,rs2[i]);
2113         if(rs1[i]&&rs2[i]) {
2114           assert(s1>=0);
2115           assert(s2>=0);
2116           if(opcode2[i]&2) emit_sub(s1,s2,t);
2117           else emit_add(s1,s2,t);
2118         }
2119         else if(rs1[i]) {
2120           if(s1>=0) emit_mov(s1,t);
2121           else emit_loadreg(rs1[i],t);
2122         }
2123         else if(rs2[i]) {
2124           if(s2>=0) {
2125             if(opcode2[i]&2) emit_neg(s2,t);
2126             else emit_mov(s2,t);
2127           }
2128           else {
2129             emit_loadreg(rs2[i],t);
2130             if(opcode2[i]&2) emit_neg(t,t);
2131           }
2132         }
2133         else emit_zeroreg(t);
2134       }
2135     }
2136   }
2137   if(opcode2[i]>=0x2c&&opcode2[i]<=0x2f) { // DADD/DADDU/DSUB/DSUBU
2138     if(rt1[i]) {
2139       signed char s1l,s2l,s1h,s2h,tl,th;
2140       tl=get_reg(i_regs->regmap,rt1[i]);
2141       th=get_reg(i_regs->regmap,rt1[i]|64);
2142       if(tl>=0) {
2143         s1l=get_reg(i_regs->regmap,rs1[i]);
2144         s2l=get_reg(i_regs->regmap,rs2[i]);
2145         s1h=get_reg(i_regs->regmap,rs1[i]|64);
2146         s2h=get_reg(i_regs->regmap,rs2[i]|64);
2147         if(rs1[i]&&rs2[i]) {
2148           assert(s1l>=0);
2149           assert(s2l>=0);
2150           if(opcode2[i]&2) emit_subs(s1l,s2l,tl);
2151           else emit_adds(s1l,s2l,tl);
2152           if(th>=0) {
2153             #ifdef INVERTED_CARRY
2154             if(opcode2[i]&2) {if(s1h!=th) emit_mov(s1h,th);emit_sbb(th,s2h);}
2155             #else
2156             if(opcode2[i]&2) emit_sbc(s1h,s2h,th);
2157             #endif
2158             else emit_add(s1h,s2h,th);
2159           }
2160         }
2161         else if(rs1[i]) {
2162           if(s1l>=0) emit_mov(s1l,tl);
2163           else emit_loadreg(rs1[i],tl);
2164           if(th>=0) {
2165             if(s1h>=0) emit_mov(s1h,th);
2166             else emit_loadreg(rs1[i]|64,th);
2167           }
2168         }
2169         else if(rs2[i]) {
2170           if(s2l>=0) {
2171             if(opcode2[i]&2) emit_negs(s2l,tl);
2172             else emit_mov(s2l,tl);
2173           }
2174           else {
2175             emit_loadreg(rs2[i],tl);
2176             if(opcode2[i]&2) emit_negs(tl,tl);
2177           }
2178           if(th>=0) {
2179             #ifdef INVERTED_CARRY
2180             if(s2h>=0) emit_mov(s2h,th);
2181             else emit_loadreg(rs2[i]|64,th);
2182             if(opcode2[i]&2) {
2183               emit_adcimm(-1,th); // x86 has inverted carry flag
2184               emit_not(th,th);
2185             }
2186             #else
2187             if(opcode2[i]&2) {
2188               if(s2h>=0) emit_rscimm(s2h,0,th);
2189               else {
2190                 emit_loadreg(rs2[i]|64,th);
2191                 emit_rscimm(th,0,th);
2192               }
2193             }else{
2194               if(s2h>=0) emit_mov(s2h,th);
2195               else emit_loadreg(rs2[i]|64,th);
2196             }
2197             #endif
2198           }
2199         }
2200         else {
2201           emit_zeroreg(tl);
2202           if(th>=0) emit_zeroreg(th);
2203         }
2204       }
2205     }
2206   }
2207   if(opcode2[i]==0x2a||opcode2[i]==0x2b) { // SLT/SLTU
2208     if(rt1[i]) {
2209       signed char s1l,s1h,s2l,s2h,t;
2210       if(!((i_regs->was32>>rs1[i])&(i_regs->was32>>rs2[i])&1))
2211       {
2212         t=get_reg(i_regs->regmap,rt1[i]);
2213         //assert(t>=0);
2214         if(t>=0) {
2215           s1l=get_reg(i_regs->regmap,rs1[i]);
2216           s1h=get_reg(i_regs->regmap,rs1[i]|64);
2217           s2l=get_reg(i_regs->regmap,rs2[i]);
2218           s2h=get_reg(i_regs->regmap,rs2[i]|64);
2219           if(rs2[i]==0) // rx<r0
2220           {
2221             assert(s1h>=0);
2222             if(opcode2[i]==0x2a) // SLT
2223               emit_shrimm(s1h,31,t);
2224             else // SLTU (unsigned can not be less than zero)
2225               emit_zeroreg(t);
2226           }
2227           else if(rs1[i]==0) // r0<rx
2228           {
2229             assert(s2h>=0);
2230             if(opcode2[i]==0x2a) // SLT
2231               emit_set_gz64_32(s2h,s2l,t);
2232             else // SLTU (set if not zero)
2233               emit_set_nz64_32(s2h,s2l,t);
2234           }
2235           else {
2236             assert(s1l>=0);assert(s1h>=0);
2237             assert(s2l>=0);assert(s2h>=0);
2238             if(opcode2[i]==0x2a) // SLT
2239               emit_set_if_less64_32(s1h,s1l,s2h,s2l,t);
2240             else // SLTU
2241               emit_set_if_carry64_32(s1h,s1l,s2h,s2l,t);
2242           }
2243         }
2244       } else {
2245         t=get_reg(i_regs->regmap,rt1[i]);
2246         //assert(t>=0);
2247         if(t>=0) {
2248           s1l=get_reg(i_regs->regmap,rs1[i]);
2249           s2l=get_reg(i_regs->regmap,rs2[i]);
2250           if(rs2[i]==0) // rx<r0
2251           {
2252             assert(s1l>=0);
2253             if(opcode2[i]==0x2a) // SLT
2254               emit_shrimm(s1l,31,t);
2255             else // SLTU (unsigned can not be less than zero)
2256               emit_zeroreg(t);
2257           }
2258           else if(rs1[i]==0) // r0<rx
2259           {
2260             assert(s2l>=0);
2261             if(opcode2[i]==0x2a) // SLT
2262               emit_set_gz32(s2l,t);
2263             else // SLTU (set if not zero)
2264               emit_set_nz32(s2l,t);
2265           }
2266           else{
2267             assert(s1l>=0);assert(s2l>=0);
2268             if(opcode2[i]==0x2a) // SLT
2269               emit_set_if_less32(s1l,s2l,t);
2270             else // SLTU
2271               emit_set_if_carry32(s1l,s2l,t);
2272           }
2273         }
2274       }
2275     }
2276   }
2277   if(opcode2[i]>=0x24&&opcode2[i]<=0x27) { // AND/OR/XOR/NOR
2278     if(rt1[i]) {
2279       signed char s1l,s1h,s2l,s2h,th,tl;
2280       tl=get_reg(i_regs->regmap,rt1[i]);
2281       th=get_reg(i_regs->regmap,rt1[i]|64);
2282       if(!((i_regs->was32>>rs1[i])&(i_regs->was32>>rs2[i])&1)&&th>=0)
2283       {
2284         assert(tl>=0);
2285         if(tl>=0) {
2286           s1l=get_reg(i_regs->regmap,rs1[i]);
2287           s1h=get_reg(i_regs->regmap,rs1[i]|64);
2288           s2l=get_reg(i_regs->regmap,rs2[i]);
2289           s2h=get_reg(i_regs->regmap,rs2[i]|64);
2290           if(rs1[i]&&rs2[i]) {
2291             assert(s1l>=0);assert(s1h>=0);
2292             assert(s2l>=0);assert(s2h>=0);
2293             if(opcode2[i]==0x24) { // AND
2294               emit_and(s1l,s2l,tl);
2295               emit_and(s1h,s2h,th);
2296             } else
2297             if(opcode2[i]==0x25) { // OR
2298               emit_or(s1l,s2l,tl);
2299               emit_or(s1h,s2h,th);
2300             } else
2301             if(opcode2[i]==0x26) { // XOR
2302               emit_xor(s1l,s2l,tl);
2303               emit_xor(s1h,s2h,th);
2304             } else
2305             if(opcode2[i]==0x27) { // NOR
2306               emit_or(s1l,s2l,tl);
2307               emit_or(s1h,s2h,th);
2308               emit_not(tl,tl);
2309               emit_not(th,th);
2310             }
2311           }
2312           else
2313           {
2314             if(opcode2[i]==0x24) { // AND
2315               emit_zeroreg(tl);
2316               emit_zeroreg(th);
2317             } else
2318             if(opcode2[i]==0x25||opcode2[i]==0x26) { // OR/XOR
2319               if(rs1[i]){
2320                 if(s1l>=0) emit_mov(s1l,tl);
2321                 else emit_loadreg(rs1[i],tl);
2322                 if(s1h>=0) emit_mov(s1h,th);
2323                 else emit_loadreg(rs1[i]|64,th);
2324               }
2325               else
2326               if(rs2[i]){
2327                 if(s2l>=0) emit_mov(s2l,tl);
2328                 else emit_loadreg(rs2[i],tl);
2329                 if(s2h>=0) emit_mov(s2h,th);
2330                 else emit_loadreg(rs2[i]|64,th);
2331               }
2332               else{
2333                 emit_zeroreg(tl);
2334                 emit_zeroreg(th);
2335               }
2336             } else
2337             if(opcode2[i]==0x27) { // NOR
2338               if(rs1[i]){
2339                 if(s1l>=0) emit_not(s1l,tl);
2340                 else{
2341                   emit_loadreg(rs1[i],tl);
2342                   emit_not(tl,tl);
2343                 }
2344                 if(s1h>=0) emit_not(s1h,th);
2345                 else{
2346                   emit_loadreg(rs1[i]|64,th);
2347                   emit_not(th,th);
2348                 }
2349               }
2350               else
2351               if(rs2[i]){
2352                 if(s2l>=0) emit_not(s2l,tl);
2353                 else{
2354                   emit_loadreg(rs2[i],tl);
2355                   emit_not(tl,tl);
2356                 }
2357                 if(s2h>=0) emit_not(s2h,th);
2358                 else{
2359                   emit_loadreg(rs2[i]|64,th);
2360                   emit_not(th,th);
2361                 }
2362               }
2363               else {
2364                 emit_movimm(-1,tl);
2365                 emit_movimm(-1,th);
2366               }
2367             }
2368           }
2369         }
2370       }
2371       else
2372       {
2373         // 32 bit
2374         if(tl>=0) {
2375           s1l=get_reg(i_regs->regmap,rs1[i]);
2376           s2l=get_reg(i_regs->regmap,rs2[i]);
2377           if(rs1[i]&&rs2[i]) {
2378             assert(s1l>=0);
2379             assert(s2l>=0);
2380             if(opcode2[i]==0x24) { // AND
2381               emit_and(s1l,s2l,tl);
2382             } else
2383             if(opcode2[i]==0x25) { // OR
2384               emit_or(s1l,s2l,tl);
2385             } else
2386             if(opcode2[i]==0x26) { // XOR
2387               emit_xor(s1l,s2l,tl);
2388             } else
2389             if(opcode2[i]==0x27) { // NOR
2390               emit_or(s1l,s2l,tl);
2391               emit_not(tl,tl);
2392             }
2393           }
2394           else
2395           {
2396             if(opcode2[i]==0x24) { // AND
2397               emit_zeroreg(tl);
2398             } else
2399             if(opcode2[i]==0x25||opcode2[i]==0x26) { // OR/XOR
2400               if(rs1[i]){
2401                 if(s1l>=0) emit_mov(s1l,tl);
2402                 else emit_loadreg(rs1[i],tl); // CHECK: regmap_entry?
2403               }
2404               else
2405               if(rs2[i]){
2406                 if(s2l>=0) emit_mov(s2l,tl);
2407                 else emit_loadreg(rs2[i],tl); // CHECK: regmap_entry?
2408               }
2409               else emit_zeroreg(tl);
2410             } else
2411             if(opcode2[i]==0x27) { // NOR
2412               if(rs1[i]){
2413                 if(s1l>=0) emit_not(s1l,tl);
2414                 else {
2415                   emit_loadreg(rs1[i],tl);
2416                   emit_not(tl,tl);
2417                 }
2418               }
2419               else
2420               if(rs2[i]){
2421                 if(s2l>=0) emit_not(s2l,tl);
2422                 else {
2423                   emit_loadreg(rs2[i],tl);
2424                   emit_not(tl,tl);
2425                 }
2426               }
2427               else emit_movimm(-1,tl);
2428             }
2429           }
2430         }
2431       }
2432     }
2433   }
2434 }
2435
2436 void imm16_assemble(int i,struct regstat *i_regs)
2437 {
2438   if (opcode[i]==0x0f) { // LUI
2439     if(rt1[i]) {
2440       signed char t;
2441       t=get_reg(i_regs->regmap,rt1[i]);
2442       //assert(t>=0);
2443       if(t>=0) {
2444         if(!((i_regs->isconst>>t)&1))
2445           emit_movimm(imm[i]<<16,t);
2446       }
2447     }
2448   }
2449   if(opcode[i]==0x08||opcode[i]==0x09) { // ADDI/ADDIU
2450     if(rt1[i]) {
2451       signed char s,t;
2452       t=get_reg(i_regs->regmap,rt1[i]);
2453       s=get_reg(i_regs->regmap,rs1[i]);
2454       if(rs1[i]) {
2455         //assert(t>=0);
2456         //assert(s>=0);
2457         if(t>=0) {
2458           if(!((i_regs->isconst>>t)&1)) {
2459             if(s<0) {
2460               if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2461               emit_addimm(t,imm[i],t);
2462             }else{
2463               if(!((i_regs->wasconst>>s)&1))
2464                 emit_addimm(s,imm[i],t);
2465               else
2466                 emit_movimm(constmap[i][s]+imm[i],t);
2467             }
2468           }
2469         }
2470       } else {
2471         if(t>=0) {
2472           if(!((i_regs->isconst>>t)&1))
2473             emit_movimm(imm[i],t);
2474         }
2475       }
2476     }
2477   }
2478   if(opcode[i]==0x18||opcode[i]==0x19) { // DADDI/DADDIU
2479     if(rt1[i]) {
2480       signed char sh,sl,th,tl;
2481       th=get_reg(i_regs->regmap,rt1[i]|64);
2482       tl=get_reg(i_regs->regmap,rt1[i]);
2483       sh=get_reg(i_regs->regmap,rs1[i]|64);
2484       sl=get_reg(i_regs->regmap,rs1[i]);
2485       if(tl>=0) {
2486         if(rs1[i]) {
2487           assert(sh>=0);
2488           assert(sl>=0);
2489           if(th>=0) {
2490             emit_addimm64_32(sh,sl,imm[i],th,tl);
2491           }
2492           else {
2493             emit_addimm(sl,imm[i],tl);
2494           }
2495         } else {
2496           emit_movimm(imm[i],tl);
2497           if(th>=0) emit_movimm(((signed int)imm[i])>>31,th);
2498         }
2499       }
2500     }
2501   }
2502   else if(opcode[i]==0x0a||opcode[i]==0x0b) { // SLTI/SLTIU
2503     if(rt1[i]) {
2504       //assert(rs1[i]!=0); // r0 might be valid, but it's probably a bug
2505       signed char sh,sl,t;
2506       t=get_reg(i_regs->regmap,rt1[i]);
2507       sh=get_reg(i_regs->regmap,rs1[i]|64);
2508       sl=get_reg(i_regs->regmap,rs1[i]);
2509       //assert(t>=0);
2510       if(t>=0) {
2511         if(rs1[i]>0) {
2512           if(sh<0) assert((i_regs->was32>>rs1[i])&1);
2513           if(sh<0||((i_regs->was32>>rs1[i])&1)) {
2514             if(opcode[i]==0x0a) { // SLTI
2515               if(sl<0) {
2516                 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2517                 emit_slti32(t,imm[i],t);
2518               }else{
2519                 emit_slti32(sl,imm[i],t);
2520               }
2521             }
2522             else { // SLTIU
2523               if(sl<0) {
2524                 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2525                 emit_sltiu32(t,imm[i],t);
2526               }else{
2527                 emit_sltiu32(sl,imm[i],t);
2528               }
2529             }
2530           }else{ // 64-bit
2531             assert(sl>=0);
2532             if(opcode[i]==0x0a) // SLTI
2533               emit_slti64_32(sh,sl,imm[i],t);
2534             else // SLTIU
2535               emit_sltiu64_32(sh,sl,imm[i],t);
2536           }
2537         }else{
2538           // SLTI(U) with r0 is just stupid,
2539           // nonetheless examples can be found
2540           if(opcode[i]==0x0a) // SLTI
2541             if(0<imm[i]) emit_movimm(1,t);
2542             else emit_zeroreg(t);
2543           else // SLTIU
2544           {
2545             if(imm[i]) emit_movimm(1,t);
2546             else emit_zeroreg(t);
2547           }
2548         }
2549       }
2550     }
2551   }
2552   else if(opcode[i]>=0x0c&&opcode[i]<=0x0e) { // ANDI/ORI/XORI
2553     if(rt1[i]) {
2554       signed char sh,sl,th,tl;
2555       th=get_reg(i_regs->regmap,rt1[i]|64);
2556       tl=get_reg(i_regs->regmap,rt1[i]);
2557       sh=get_reg(i_regs->regmap,rs1[i]|64);
2558       sl=get_reg(i_regs->regmap,rs1[i]);
2559       if(tl>=0 && !((i_regs->isconst>>tl)&1)) {
2560         if(opcode[i]==0x0c) //ANDI
2561         {
2562           if(rs1[i]) {
2563             if(sl<0) {
2564               if(i_regs->regmap_entry[tl]!=rs1[i]) emit_loadreg(rs1[i],tl);
2565               emit_andimm(tl,imm[i],tl);
2566             }else{
2567               if(!((i_regs->wasconst>>sl)&1))
2568                 emit_andimm(sl,imm[i],tl);
2569               else
2570                 emit_movimm(constmap[i][sl]&imm[i],tl);
2571             }
2572           }
2573           else
2574             emit_zeroreg(tl);
2575           if(th>=0) emit_zeroreg(th);
2576         }
2577         else
2578         {
2579           if(rs1[i]) {
2580             if(sl<0) {
2581               if(i_regs->regmap_entry[tl]!=rs1[i]) emit_loadreg(rs1[i],tl);
2582             }
2583             if(th>=0) {
2584               if(sh<0) {
2585                 emit_loadreg(rs1[i]|64,th);
2586               }else{
2587                 emit_mov(sh,th);
2588               }
2589             }
2590             if(opcode[i]==0x0d) //ORI
2591             if(sl<0) {
2592               emit_orimm(tl,imm[i],tl);
2593             }else{
2594               if(!((i_regs->wasconst>>sl)&1))
2595                 emit_orimm(sl,imm[i],tl);
2596               else
2597                 emit_movimm(constmap[i][sl]|imm[i],tl);
2598             }
2599             if(opcode[i]==0x0e) //XORI
2600             if(sl<0) {
2601               emit_xorimm(tl,imm[i],tl);
2602             }else{
2603               if(!((i_regs->wasconst>>sl)&1))
2604                 emit_xorimm(sl,imm[i],tl);
2605               else
2606                 emit_movimm(constmap[i][sl]^imm[i],tl);
2607             }
2608           }
2609           else {
2610             emit_movimm(imm[i],tl);
2611             if(th>=0) emit_zeroreg(th);
2612           }
2613         }
2614       }
2615     }
2616   }
2617 }
2618
2619 void shiftimm_assemble(int i,struct regstat *i_regs)
2620 {
2621   if(opcode2[i]<=0x3) // SLL/SRL/SRA
2622   {
2623     if(rt1[i]) {
2624       signed char s,t;
2625       t=get_reg(i_regs->regmap,rt1[i]);
2626       s=get_reg(i_regs->regmap,rs1[i]);
2627       //assert(t>=0);
2628       if(t>=0){
2629         if(rs1[i]==0)
2630         {
2631           emit_zeroreg(t);
2632         }
2633         else
2634         {
2635           if(s<0&&i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2636           if(imm[i]) {
2637             if(opcode2[i]==0) // SLL
2638             {
2639               emit_shlimm(s<0?t:s,imm[i],t);
2640             }
2641             if(opcode2[i]==2) // SRL
2642             {
2643               emit_shrimm(s<0?t:s,imm[i],t);
2644             }
2645             if(opcode2[i]==3) // SRA
2646             {
2647               emit_sarimm(s<0?t:s,imm[i],t);
2648             }
2649           }else{
2650             // Shift by zero
2651             if(s>=0 && s!=t) emit_mov(s,t);
2652           }
2653         }
2654       }
2655       //emit_storereg(rt1[i],t); //DEBUG
2656     }
2657   }
2658   if(opcode2[i]>=0x38&&opcode2[i]<=0x3b) // DSLL/DSRL/DSRA
2659   {
2660     if(rt1[i]) {
2661       signed char sh,sl,th,tl;
2662       th=get_reg(i_regs->regmap,rt1[i]|64);
2663       tl=get_reg(i_regs->regmap,rt1[i]);
2664       sh=get_reg(i_regs->regmap,rs1[i]|64);
2665       sl=get_reg(i_regs->regmap,rs1[i]);
2666       if(tl>=0) {
2667         if(rs1[i]==0)
2668         {
2669           emit_zeroreg(tl);
2670           if(th>=0) emit_zeroreg(th);
2671         }
2672         else
2673         {
2674           assert(sl>=0);
2675           assert(sh>=0);
2676           if(imm[i]) {
2677             if(opcode2[i]==0x38) // DSLL
2678             {
2679               if(th>=0) emit_shldimm(sh,sl,imm[i],th);
2680               emit_shlimm(sl,imm[i],tl);
2681             }
2682             if(opcode2[i]==0x3a) // DSRL
2683             {
2684               emit_shrdimm(sl,sh,imm[i],tl);
2685               if(th>=0) emit_shrimm(sh,imm[i],th);
2686             }
2687             if(opcode2[i]==0x3b) // DSRA
2688             {
2689               emit_shrdimm(sl,sh,imm[i],tl);
2690               if(th>=0) emit_sarimm(sh,imm[i],th);
2691             }
2692           }else{
2693             // Shift by zero
2694             if(sl!=tl) emit_mov(sl,tl);
2695             if(th>=0&&sh!=th) emit_mov(sh,th);
2696           }
2697         }
2698       }
2699     }
2700   }
2701   if(opcode2[i]==0x3c) // DSLL32
2702   {
2703     if(rt1[i]) {
2704       signed char sl,tl,th;
2705       tl=get_reg(i_regs->regmap,rt1[i]);
2706       th=get_reg(i_regs->regmap,rt1[i]|64);
2707       sl=get_reg(i_regs->regmap,rs1[i]);
2708       if(th>=0||tl>=0){
2709         assert(tl>=0);
2710         assert(th>=0);
2711         assert(sl>=0);
2712         emit_mov(sl,th);
2713         emit_zeroreg(tl);
2714         if(imm[i]>32)
2715         {
2716           emit_shlimm(th,imm[i]&31,th);
2717         }
2718       }
2719     }
2720   }
2721   if(opcode2[i]==0x3e) // DSRL32
2722   {
2723     if(rt1[i]) {
2724       signed char sh,tl,th;
2725       tl=get_reg(i_regs->regmap,rt1[i]);
2726       th=get_reg(i_regs->regmap,rt1[i]|64);
2727       sh=get_reg(i_regs->regmap,rs1[i]|64);
2728       if(tl>=0){
2729         assert(sh>=0);
2730         emit_mov(sh,tl);
2731         if(th>=0) emit_zeroreg(th);
2732         if(imm[i]>32)
2733         {
2734           emit_shrimm(tl,imm[i]&31,tl);
2735         }
2736       }
2737     }
2738   }
2739   if(opcode2[i]==0x3f) // DSRA32
2740   {
2741     if(rt1[i]) {
2742       signed char sh,tl;
2743       tl=get_reg(i_regs->regmap,rt1[i]);
2744       sh=get_reg(i_regs->regmap,rs1[i]|64);
2745       if(tl>=0){
2746         assert(sh>=0);
2747         emit_mov(sh,tl);
2748         if(imm[i]>32)
2749         {
2750           emit_sarimm(tl,imm[i]&31,tl);
2751         }
2752       }
2753     }
2754   }
2755 }
2756
2757 #ifndef shift_assemble
2758 void shift_assemble(int i,struct regstat *i_regs)
2759 {
2760   printf("Need shift_assemble for this architecture.\n");
2761   exit(1);
2762 }
2763 #endif
2764
2765 void load_assemble(int i,struct regstat *i_regs)
2766 {
2767   int s,th,tl,addr,map=-1;
2768   int offset;
2769   int jaddr=0;
2770   int memtarget=0,c=0;
2771   u_int hr,reglist=0;
2772   th=get_reg(i_regs->regmap,rt1[i]|64);
2773   tl=get_reg(i_regs->regmap,rt1[i]);
2774   s=get_reg(i_regs->regmap,rs1[i]);
2775   offset=imm[i];
2776   for(hr=0;hr<HOST_REGS;hr++) {
2777     if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
2778   }
2779   if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
2780   if(s>=0) {
2781     c=(i_regs->wasconst>>s)&1;
2782     if (c) {
2783       memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
2784       if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
2785     }
2786   }
2787   //printf("load_assemble: c=%d\n",c);
2788   //if(c) printf("load_assemble: const=%x\n",(int)constmap[i][s]+offset);
2789   // FIXME: Even if the load is a NOP, we should check for pagefaults...
2790 #ifdef PCSX
2791   if(tl<0&&(!c||(((u_int)constmap[i][s]+offset)>>16)==0x1f80)
2792     ||rt1[i]==0) {
2793       // could be FIFO, must perform the read
2794       // ||dummy read
2795       assem_debug("(forced read)\n");
2796       tl=get_reg(i_regs->regmap,-1);
2797       assert(tl>=0);
2798   }
2799 #endif
2800   if(offset||s<0||c) addr=tl;
2801   else addr=s;
2802   //if(tl<0) tl=get_reg(i_regs->regmap,-1);
2803  if(tl>=0) {
2804   //printf("load_assemble: c=%d\n",c);
2805   //if(c) printf("load_assemble: const=%x\n",(int)constmap[i][s]+offset);
2806   assert(tl>=0); // Even if the load is a NOP, we must check for pagefaults and I/O
2807   reglist&=~(1<<tl);
2808   if(th>=0) reglist&=~(1<<th);
2809   if(!using_tlb) {
2810     if(!c) {
2811       #ifdef RAM_OFFSET
2812       map=get_reg(i_regs->regmap,ROREG);
2813       if(map<0) emit_loadreg(ROREG,map=HOST_TEMPREG);
2814       #endif
2815 //#define R29_HACK 1
2816       #ifdef R29_HACK
2817       // Strmnnrmn's speed hack
2818       if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
2819       #endif
2820       {
2821         #ifdef PCSX
2822         if(sp_in_mirror&&rs1[i]==29) {
2823           emit_andimm(addr,~0x00e00000,HOST_TEMPREG);
2824           emit_cmpimm(HOST_TEMPREG,RAM_SIZE);
2825         }
2826         else
2827         #endif
2828         emit_cmpimm(addr,RAM_SIZE);
2829         jaddr=(int)out;
2830         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
2831         // Hint to branch predictor that the branch is unlikely to be taken
2832         if(rs1[i]>=28)
2833           emit_jno_unlikely(0);
2834         else
2835         #endif
2836         emit_jno(0);
2837       }
2838     }
2839   }else{ // using tlb
2840     int x=0;
2841     if (opcode[i]==0x20||opcode[i]==0x24) x=3; // LB/LBU
2842     if (opcode[i]==0x21||opcode[i]==0x25) x=2; // LH/LHU
2843     map=get_reg(i_regs->regmap,TLREG);
2844     assert(map>=0);
2845     map=do_tlb_r(addr,tl,map,x,-1,-1,c,constmap[i][s]+offset);
2846     do_tlb_r_branch(map,c,constmap[i][s]+offset,&jaddr);
2847   }
2848   int dummy=(rt1[i]==0)||(tl!=get_reg(i_regs->regmap,rt1[i])); // ignore loads to r0 and unneeded reg
2849   if (opcode[i]==0x20) { // LB
2850     if(!c||memtarget) {
2851       if(!dummy) {
2852         #ifdef HOST_IMM_ADDR32
2853         if(c)
2854           emit_movsbl_tlb((constmap[i][s]+offset)^3,map,tl);
2855         else
2856         #endif
2857         {
2858           //emit_xorimm(addr,3,tl);
2859           //gen_tlb_addr_r(tl,map);
2860           //emit_movsbl_indexed((int)rdram-0x80000000,tl,tl);
2861           int x=0,a=tl;
2862 #ifdef BIG_ENDIAN_MIPS
2863           if(!c) emit_xorimm(addr,3,tl);
2864           else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2865 #else
2866           if(!c) a=addr;
2867 #endif
2868 #ifdef PCSX
2869           if(sp_in_mirror&&rs1[i]==29) a=HOST_TEMPREG;
2870 #endif
2871           emit_movsbl_indexed_tlb(x,a,map,tl);
2872         }
2873       }
2874       if(jaddr)
2875         add_stub(LOADB_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2876     }
2877     else
2878       inline_readstub(LOADB_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2879   }
2880   if (opcode[i]==0x21) { // LH
2881     if(!c||memtarget) {
2882       if(!dummy) {
2883         #ifdef HOST_IMM_ADDR32
2884         if(c)
2885           emit_movswl_tlb((constmap[i][s]+offset)^2,map,tl);
2886         else
2887         #endif
2888         {
2889           int x=0,a=tl;
2890 #ifdef BIG_ENDIAN_MIPS
2891           if(!c) emit_xorimm(addr,2,tl);
2892           else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
2893 #else
2894           if(!c) a=addr;
2895 #endif
2896 #ifdef PCSX
2897           if(sp_in_mirror&&rs1[i]==29) a=HOST_TEMPREG;
2898 #endif
2899           //#ifdef
2900           //emit_movswl_indexed_tlb(x,tl,map,tl);
2901           //else
2902           if(map>=0) {
2903             gen_tlb_addr_r(a,map);
2904             emit_movswl_indexed(x,a,tl);
2905           }else{
2906             #ifdef RAM_OFFSET
2907             emit_movswl_indexed(x,a,tl);
2908             #else
2909             emit_movswl_indexed((int)rdram-0x80000000+x,a,tl);
2910             #endif
2911           }
2912         }
2913       }
2914       if(jaddr)
2915         add_stub(LOADH_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2916     }
2917     else
2918       inline_readstub(LOADH_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2919   }
2920   if (opcode[i]==0x23) { // LW
2921     if(!c||memtarget) {
2922       if(!dummy) {
2923         int a=addr;
2924 #ifdef PCSX
2925         if(sp_in_mirror&&rs1[i]==29) a=HOST_TEMPREG;
2926 #endif
2927         //emit_readword_indexed((int)rdram-0x80000000,addr,tl);
2928         #ifdef HOST_IMM_ADDR32
2929         if(c)
2930           emit_readword_tlb(constmap[i][s]+offset,map,tl);
2931         else
2932         #endif
2933         emit_readword_indexed_tlb(0,a,map,tl);
2934       }
2935       if(jaddr)
2936         add_stub(LOADW_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2937     }
2938     else
2939       inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2940   }
2941   if (opcode[i]==0x24) { // LBU
2942     if(!c||memtarget) {
2943       if(!dummy) {
2944         #ifdef HOST_IMM_ADDR32
2945         if(c)
2946           emit_movzbl_tlb((constmap[i][s]+offset)^3,map,tl);
2947         else
2948         #endif
2949         {
2950           //emit_xorimm(addr,3,tl);
2951           //gen_tlb_addr_r(tl,map);
2952           //emit_movzbl_indexed((int)rdram-0x80000000,tl,tl);
2953           int x=0,a=tl;
2954 #ifdef BIG_ENDIAN_MIPS
2955           if(!c) emit_xorimm(addr,3,tl);
2956           else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2957 #else
2958           if(!c) a=addr;
2959 #endif
2960 #ifdef PCSX
2961           if(sp_in_mirror&&rs1[i]==29) a=HOST_TEMPREG;
2962 #endif
2963           emit_movzbl_indexed_tlb(x,a,map,tl);
2964         }
2965       }
2966       if(jaddr)
2967         add_stub(LOADBU_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2968     }
2969     else
2970       inline_readstub(LOADBU_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2971   }
2972   if (opcode[i]==0x25) { // LHU
2973     if(!c||memtarget) {
2974       if(!dummy) {
2975         #ifdef HOST_IMM_ADDR32
2976         if(c)
2977           emit_movzwl_tlb((constmap[i][s]+offset)^2,map,tl);
2978         else
2979         #endif
2980         {
2981           int x=0,a=tl;
2982 #ifdef BIG_ENDIAN_MIPS
2983           if(!c) emit_xorimm(addr,2,tl);
2984           else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
2985 #else
2986           if(!c) a=addr;
2987 #endif
2988 #ifdef PCSX
2989           if(sp_in_mirror&&rs1[i]==29) a=HOST_TEMPREG;
2990 #endif
2991           //#ifdef
2992           //emit_movzwl_indexed_tlb(x,tl,map,tl);
2993           //#else
2994           if(map>=0) {
2995             gen_tlb_addr_r(a,map);
2996             emit_movzwl_indexed(x,a,tl);
2997           }else{
2998             #ifdef RAM_OFFSET
2999             emit_movzwl_indexed(x,a,tl);
3000             #else
3001             emit_movzwl_indexed((int)rdram-0x80000000+x,a,tl);
3002             #endif
3003           }
3004         }
3005       }
3006       if(jaddr)
3007         add_stub(LOADHU_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3008     }
3009     else
3010       inline_readstub(LOADHU_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
3011   }
3012   if (opcode[i]==0x27) { // LWU
3013     assert(th>=0);
3014     if(!c||memtarget) {
3015       if(!dummy) {
3016         int a=addr;
3017 #ifdef PCSX
3018         if(sp_in_mirror&&rs1[i]==29) a=HOST_TEMPREG;
3019 #endif
3020         //emit_readword_indexed((int)rdram-0x80000000,addr,tl);
3021         #ifdef HOST_IMM_ADDR32
3022         if(c)
3023           emit_readword_tlb(constmap[i][s]+offset,map,tl);
3024         else
3025         #endif
3026         emit_readword_indexed_tlb(0,a,map,tl);
3027       }
3028       if(jaddr)
3029         add_stub(LOADW_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3030     }
3031     else {
3032       inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
3033     }
3034     emit_zeroreg(th);
3035   }
3036   if (opcode[i]==0x37) { // LD
3037     if(!c||memtarget) {
3038       if(!dummy) {
3039         int a=addr;
3040 #ifdef PCSX
3041         if(sp_in_mirror&&rs1[i]==29) a=HOST_TEMPREG;
3042 #endif
3043         //gen_tlb_addr_r(tl,map);
3044         //if(th>=0) emit_readword_indexed((int)rdram-0x80000000,addr,th);
3045         //emit_readword_indexed((int)rdram-0x7FFFFFFC,addr,tl);
3046         #ifdef HOST_IMM_ADDR32
3047         if(c)
3048           emit_readdword_tlb(constmap[i][s]+offset,map,th,tl);
3049         else
3050         #endif
3051         emit_readdword_indexed_tlb(0,a,map,th,tl);
3052       }
3053       if(jaddr)
3054         add_stub(LOADD_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3055     }
3056     else
3057       inline_readstub(LOADD_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
3058   }
3059  }
3060   //emit_storereg(rt1[i],tl); // DEBUG
3061   //if(opcode[i]==0x23)
3062   //if(opcode[i]==0x24)
3063   //if(opcode[i]==0x23||opcode[i]==0x24)
3064   /*if(opcode[i]==0x21||opcode[i]==0x23||opcode[i]==0x24)
3065   {
3066     //emit_pusha();
3067     save_regs(0x100f);
3068         emit_readword((int)&last_count,ECX);
3069         #ifdef __i386__
3070         if(get_reg(i_regs->regmap,CCREG)<0)
3071           emit_loadreg(CCREG,HOST_CCREG);
3072         emit_add(HOST_CCREG,ECX,HOST_CCREG);
3073         emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3074         emit_writeword(HOST_CCREG,(int)&Count);
3075         #endif
3076         #ifdef __arm__
3077         if(get_reg(i_regs->regmap,CCREG)<0)
3078           emit_loadreg(CCREG,0);
3079         else
3080           emit_mov(HOST_CCREG,0);
3081         emit_add(0,ECX,0);
3082         emit_addimm(0,2*ccadj[i],0);
3083         emit_writeword(0,(int)&Count);
3084         #endif
3085     emit_call((int)memdebug);
3086     //emit_popa();
3087     restore_regs(0x100f);
3088   }/**/
3089 }
3090
3091 #ifndef loadlr_assemble
3092 void loadlr_assemble(int i,struct regstat *i_regs)
3093 {
3094   printf("Need loadlr_assemble for this architecture.\n");
3095   exit(1);
3096 }
3097 #endif
3098
3099 void store_assemble(int i,struct regstat *i_regs)
3100 {
3101   int s,th,tl,map=-1;
3102   int addr,temp;
3103   int offset;
3104   int jaddr=0,jaddr2,type;
3105   int memtarget=0,c=0;
3106   int agr=AGEN1+(i&1);
3107   u_int hr,reglist=0;
3108   th=get_reg(i_regs->regmap,rs2[i]|64);
3109   tl=get_reg(i_regs->regmap,rs2[i]);
3110   s=get_reg(i_regs->regmap,rs1[i]);
3111   temp=get_reg(i_regs->regmap,agr);
3112   if(temp<0) temp=get_reg(i_regs->regmap,-1);
3113   offset=imm[i];
3114   if(s>=0) {
3115     c=(i_regs->wasconst>>s)&1;
3116     if(c) {
3117       memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
3118       if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
3119     }
3120   }
3121   assert(tl>=0);
3122   assert(temp>=0);
3123   for(hr=0;hr<HOST_REGS;hr++) {
3124     if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3125   }
3126   if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
3127   if(offset||s<0||c) addr=temp;
3128   else addr=s;
3129   if(!using_tlb) {
3130     if(!c) {
3131       #ifdef PCSX
3132       if(sp_in_mirror&&rs1[i]==29) {
3133         emit_andimm(addr,~0x00e00000,HOST_TEMPREG);
3134         emit_cmpimm(HOST_TEMPREG,RAM_SIZE);
3135       }
3136       else
3137       #endif
3138       #ifdef R29_HACK
3139       // Strmnnrmn's speed hack
3140       if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
3141       #endif
3142       emit_cmpimm(addr,RAM_SIZE);
3143       #ifdef DESTRUCTIVE_SHIFT
3144       if(s==addr) emit_mov(s,temp);
3145       #endif
3146       #ifdef R29_HACK
3147       memtarget=1;
3148       if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
3149       #endif
3150       {
3151         jaddr=(int)out;
3152         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
3153         // Hint to branch predictor that the branch is unlikely to be taken
3154         if(rs1[i]>=28)
3155           emit_jno_unlikely(0);
3156         else
3157         #endif
3158         emit_jno(0);
3159       }
3160     }
3161   }else{ // using tlb
3162     int x=0;
3163     if (opcode[i]==0x28) x=3; // SB
3164     if (opcode[i]==0x29) x=2; // SH
3165     map=get_reg(i_regs->regmap,TLREG);
3166     assert(map>=0);
3167     map=do_tlb_w(addr,temp,map,x,c,constmap[i][s]+offset);
3168     do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr);
3169   }
3170
3171   if (opcode[i]==0x28) { // SB
3172     if(!c||memtarget) {
3173       int x=0,a=temp;
3174 #ifdef BIG_ENDIAN_MIPS
3175       if(!c) emit_xorimm(addr,3,temp);
3176       else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
3177 #else
3178       if(!c) a=addr;
3179 #endif
3180 #ifdef PCSX
3181       if(sp_in_mirror&&rs1[i]==29) a=HOST_TEMPREG;
3182 #endif
3183       //gen_tlb_addr_w(temp,map);
3184       //emit_writebyte_indexed(tl,(int)rdram-0x80000000,temp);
3185       emit_writebyte_indexed_tlb(tl,x,a,map,a);
3186     }
3187     type=STOREB_STUB;
3188   }
3189   if (opcode[i]==0x29) { // SH
3190     if(!c||memtarget) {
3191       int x=0,a=temp;
3192 #ifdef BIG_ENDIAN_MIPS
3193       if(!c) emit_xorimm(addr,2,temp);
3194       else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
3195 #else
3196       if(!c) a=addr;
3197 #endif
3198 #ifdef PCSX
3199       if(sp_in_mirror&&rs1[i]==29) a=HOST_TEMPREG;
3200 #endif
3201       //#ifdef
3202       //emit_writehword_indexed_tlb(tl,x,temp,map,temp);
3203       //#else
3204       if(map>=0) {
3205         gen_tlb_addr_w(a,map);
3206         emit_writehword_indexed(tl,x,a);
3207       }else
3208         emit_writehword_indexed(tl,(int)rdram-0x80000000+x,a);
3209     }
3210     type=STOREH_STUB;
3211   }
3212   if (opcode[i]==0x2B) { // SW
3213     if(!c||memtarget) {
3214       int a=addr;
3215 #ifdef PCSX
3216       if(sp_in_mirror&&rs1[i]==29) a=HOST_TEMPREG;
3217 #endif
3218       //emit_writeword_indexed(tl,(int)rdram-0x80000000,addr);
3219       emit_writeword_indexed_tlb(tl,0,a,map,temp);
3220     }
3221     type=STOREW_STUB;
3222   }
3223   if (opcode[i]==0x3F) { // SD
3224     if(!c||memtarget) {
3225       int a=addr;
3226 #ifdef PCSX
3227       if(sp_in_mirror&&rs1[i]==29) a=HOST_TEMPREG;
3228 #endif
3229       if(rs2[i]) {
3230         assert(th>=0);
3231         //emit_writeword_indexed(th,(int)rdram-0x80000000,addr);
3232         //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,addr);
3233         emit_writedword_indexed_tlb(th,tl,0,a,map,temp);
3234       }else{
3235         // Store zero
3236         //emit_writeword_indexed(tl,(int)rdram-0x80000000,temp);
3237         //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,temp);
3238         emit_writedword_indexed_tlb(tl,tl,0,a,map,temp);
3239       }
3240     }
3241     type=STORED_STUB;
3242   }
3243   if(!using_tlb) {
3244     if(!c||memtarget) {
3245       #ifdef DESTRUCTIVE_SHIFT
3246       // The x86 shift operation is 'destructive'; it overwrites the
3247       // source register, so we need to make a copy first and use that.
3248       addr=temp;
3249       #endif
3250       #if defined(HOST_IMM8)
3251       int ir=get_reg(i_regs->regmap,INVCP);
3252       assert(ir>=0);
3253       emit_cmpmem_indexedsr12_reg(ir,addr,1);
3254       #else
3255       emit_cmpmem_indexedsr12_imm((int)invalid_code,addr,1);
3256       #endif
3257       #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3258       emit_callne(invalidate_addr_reg[addr]);
3259       #else
3260       jaddr2=(int)out;
3261       emit_jne(0);
3262       add_stub(INVCODE_STUB,jaddr2,(int)out,reglist|(1<<HOST_CCREG),addr,0,0,0);
3263       #endif
3264     }
3265   }
3266   if(jaddr) {
3267     add_stub(type,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3268   } else if(c&&!memtarget) {
3269     inline_writestub(type,i,constmap[i][s]+offset,i_regs->regmap,rs2[i],ccadj[i],reglist);
3270   }
3271   //if(opcode[i]==0x2B || opcode[i]==0x3F)
3272   //if(opcode[i]==0x2B || opcode[i]==0x28)
3273   //if(opcode[i]==0x2B || opcode[i]==0x29)
3274   //if(opcode[i]==0x2B)
3275   /*if(opcode[i]==0x2B || opcode[i]==0x28 || opcode[i]==0x29 || opcode[i]==0x3F)
3276   {
3277     //emit_pusha();
3278     save_regs(0x100f);
3279         emit_readword((int)&last_count,ECX);
3280         #ifdef __i386__
3281         if(get_reg(i_regs->regmap,CCREG)<0)
3282           emit_loadreg(CCREG,HOST_CCREG);
3283         emit_add(HOST_CCREG,ECX,HOST_CCREG);
3284         emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3285         emit_writeword(HOST_CCREG,(int)&Count);
3286         #endif
3287         #ifdef __arm__
3288         if(get_reg(i_regs->regmap,CCREG)<0)
3289           emit_loadreg(CCREG,0);
3290         else
3291           emit_mov(HOST_CCREG,0);
3292         emit_add(0,ECX,0);
3293         emit_addimm(0,2*ccadj[i],0);
3294         emit_writeword(0,(int)&Count);
3295         #endif
3296     emit_call((int)memdebug);
3297     //emit_popa();
3298     restore_regs(0x100f);
3299   }/**/
3300 }
3301
3302 void storelr_assemble(int i,struct regstat *i_regs)
3303 {
3304   int s,th,tl;
3305   int temp;
3306   int temp2;
3307   int offset;
3308   int jaddr=0,jaddr2;
3309   int case1,case2,case3;
3310   int done0,done1,done2;
3311   int memtarget=0,c=0;
3312   int agr=AGEN1+(i&1);
3313   u_int hr,reglist=0;
3314   th=get_reg(i_regs->regmap,rs2[i]|64);
3315   tl=get_reg(i_regs->regmap,rs2[i]);
3316   s=get_reg(i_regs->regmap,rs1[i]);
3317   temp=get_reg(i_regs->regmap,agr);
3318   if(temp<0) temp=get_reg(i_regs->regmap,-1);
3319   offset=imm[i];
3320   if(s>=0) {
3321     c=(i_regs->isconst>>s)&1;
3322     if(c) {
3323       memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
3324       if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
3325     }
3326   }
3327   assert(tl>=0);
3328   for(hr=0;hr<HOST_REGS;hr++) {
3329     if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3330   }
3331   assert(temp>=0);
3332   if(!using_tlb) {
3333     if(!c) {
3334       emit_cmpimm(s<0||offset?temp:s,RAM_SIZE);
3335       if(!offset&&s!=temp) emit_mov(s,temp);
3336       jaddr=(int)out;
3337       emit_jno(0);
3338     }
3339     else
3340     {
3341       if(!memtarget||!rs1[i]) {
3342         jaddr=(int)out;
3343         emit_jmp(0);
3344       }
3345     }
3346     #ifdef RAM_OFFSET
3347     int map=get_reg(i_regs->regmap,ROREG);
3348     if(map<0) emit_loadreg(ROREG,map=HOST_TEMPREG);
3349     gen_tlb_addr_w(temp,map);
3350     #else
3351     if((u_int)rdram!=0x80000000) 
3352       emit_addimm_no_flags((u_int)rdram-(u_int)0x80000000,temp);
3353     #endif
3354   }else{ // using tlb
3355     int map=get_reg(i_regs->regmap,TLREG);
3356     assert(map>=0);
3357     map=do_tlb_w(c||s<0||offset?temp:s,temp,map,0,c,constmap[i][s]+offset);
3358     if(!c&&!offset&&s>=0) emit_mov(s,temp);
3359     do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr);
3360     if(!jaddr&&!memtarget) {
3361       jaddr=(int)out;
3362       emit_jmp(0);
3363     }
3364     gen_tlb_addr_w(temp,map);
3365   }
3366
3367   if (opcode[i]==0x2C||opcode[i]==0x2D) { // SDL/SDR
3368     temp2=get_reg(i_regs->regmap,FTEMP);
3369     if(!rs2[i]) temp2=th=tl;
3370   }
3371
3372 #ifndef BIG_ENDIAN_MIPS
3373     emit_xorimm(temp,3,temp);
3374 #endif
3375   emit_testimm(temp,2);
3376   case2=(int)out;
3377   emit_jne(0);
3378   emit_testimm(temp,1);
3379   case1=(int)out;
3380   emit_jne(0);
3381   // 0
3382   if (opcode[i]==0x2A) { // SWL
3383     emit_writeword_indexed(tl,0,temp);
3384   }
3385   if (opcode[i]==0x2E) { // SWR
3386     emit_writebyte_indexed(tl,3,temp);
3387   }
3388   if (opcode[i]==0x2C) { // SDL
3389     emit_writeword_indexed(th,0,temp);
3390     if(rs2[i]) emit_mov(tl,temp2);
3391   }
3392   if (opcode[i]==0x2D) { // SDR
3393     emit_writebyte_indexed(tl,3,temp);
3394     if(rs2[i]) emit_shldimm(th,tl,24,temp2);
3395   }
3396   done0=(int)out;
3397   emit_jmp(0);
3398   // 1
3399   set_jump_target(case1,(int)out);
3400   if (opcode[i]==0x2A) { // SWL
3401     // Write 3 msb into three least significant bytes
3402     if(rs2[i]) emit_rorimm(tl,8,tl);
3403     emit_writehword_indexed(tl,-1,temp);
3404     if(rs2[i]) emit_rorimm(tl,16,tl);
3405     emit_writebyte_indexed(tl,1,temp);
3406     if(rs2[i]) emit_rorimm(tl,8,tl);
3407   }
3408   if (opcode[i]==0x2E) { // SWR
3409     // Write two lsb into two most significant bytes
3410     emit_writehword_indexed(tl,1,temp);
3411   }
3412   if (opcode[i]==0x2C) { // SDL
3413     if(rs2[i]) emit_shrdimm(tl,th,8,temp2);
3414     // Write 3 msb into three least significant bytes
3415     if(rs2[i]) emit_rorimm(th,8,th);
3416     emit_writehword_indexed(th,-1,temp);
3417     if(rs2[i]) emit_rorimm(th,16,th);
3418     emit_writebyte_indexed(th,1,temp);
3419     if(rs2[i]) emit_rorimm(th,8,th);
3420   }
3421   if (opcode[i]==0x2D) { // SDR
3422     if(rs2[i]) emit_shldimm(th,tl,16,temp2);
3423     // Write two lsb into two most significant bytes
3424     emit_writehword_indexed(tl,1,temp);
3425   }
3426   done1=(int)out;
3427   emit_jmp(0);
3428   // 2
3429   set_jump_target(case2,(int)out);
3430   emit_testimm(temp,1);
3431   case3=(int)out;
3432   emit_jne(0);
3433   if (opcode[i]==0x2A) { // SWL
3434     // Write two msb into two least significant bytes
3435     if(rs2[i]) emit_rorimm(tl,16,tl);
3436     emit_writehword_indexed(tl,-2,temp);
3437     if(rs2[i]) emit_rorimm(tl,16,tl);
3438   }
3439   if (opcode[i]==0x2E) { // SWR
3440     // Write 3 lsb into three most significant bytes
3441     emit_writebyte_indexed(tl,-1,temp);
3442     if(rs2[i]) emit_rorimm(tl,8,tl);
3443     emit_writehword_indexed(tl,0,temp);
3444     if(rs2[i]) emit_rorimm(tl,24,tl);
3445   }
3446   if (opcode[i]==0x2C) { // SDL
3447     if(rs2[i]) emit_shrdimm(tl,th,16,temp2);
3448     // Write two msb into two least significant bytes
3449     if(rs2[i]) emit_rorimm(th,16,th);
3450     emit_writehword_indexed(th,-2,temp);
3451     if(rs2[i]) emit_rorimm(th,16,th);
3452   }
3453   if (opcode[i]==0x2D) { // SDR
3454     if(rs2[i]) emit_shldimm(th,tl,8,temp2);
3455     // Write 3 lsb into three most significant bytes
3456     emit_writebyte_indexed(tl,-1,temp);
3457     if(rs2[i]) emit_rorimm(tl,8,tl);
3458     emit_writehword_indexed(tl,0,temp);
3459     if(rs2[i]) emit_rorimm(tl,24,tl);
3460   }
3461   done2=(int)out;
3462   emit_jmp(0);
3463   // 3
3464   set_jump_target(case3,(int)out);
3465   if (opcode[i]==0x2A) { // SWL
3466     // Write msb into least significant byte
3467     if(rs2[i]) emit_rorimm(tl,24,tl);
3468     emit_writebyte_indexed(tl,-3,temp);
3469     if(rs2[i]) emit_rorimm(tl,8,tl);
3470   }
3471   if (opcode[i]==0x2E) { // SWR
3472     // Write entire word
3473     emit_writeword_indexed(tl,-3,temp);
3474   }
3475   if (opcode[i]==0x2C) { // SDL
3476     if(rs2[i]) emit_shrdimm(tl,th,24,temp2);
3477     // Write msb into least significant byte
3478     if(rs2[i]) emit_rorimm(th,24,th);
3479     emit_writebyte_indexed(th,-3,temp);
3480     if(rs2[i]) emit_rorimm(th,8,th);
3481   }
3482   if (opcode[i]==0x2D) { // SDR
3483     if(rs2[i]) emit_mov(th,temp2);
3484     // Write entire word
3485     emit_writeword_indexed(tl,-3,temp);
3486   }
3487   set_jump_target(done0,(int)out);
3488   set_jump_target(done1,(int)out);
3489   set_jump_target(done2,(int)out);
3490   if (opcode[i]==0x2C) { // SDL
3491     emit_testimm(temp,4);
3492     done0=(int)out;
3493     emit_jne(0);
3494     emit_andimm(temp,~3,temp);
3495     emit_writeword_indexed(temp2,4,temp);
3496     set_jump_target(done0,(int)out);
3497   }
3498   if (opcode[i]==0x2D) { // SDR
3499     emit_testimm(temp,4);
3500     done0=(int)out;
3501     emit_jeq(0);
3502     emit_andimm(temp,~3,temp);
3503     emit_writeword_indexed(temp2,-4,temp);
3504     set_jump_target(done0,(int)out);
3505   }
3506   if(!c||!memtarget)
3507     add_stub(STORELR_STUB,jaddr,(int)out,i,(int)i_regs,temp,ccadj[i],reglist);
3508   if(!using_tlb) {
3509     #ifdef RAM_OFFSET
3510     int map=get_reg(i_regs->regmap,ROREG);
3511     if(map<0) map=HOST_TEMPREG;
3512     gen_orig_addr_w(temp,map);
3513     #else
3514     emit_addimm_no_flags((u_int)0x80000000-(u_int)rdram,temp);
3515     #endif
3516     #if defined(HOST_IMM8)
3517     int ir=get_reg(i_regs->regmap,INVCP);
3518     assert(ir>=0);
3519     emit_cmpmem_indexedsr12_reg(ir,temp,1);
3520     #else
3521     emit_cmpmem_indexedsr12_imm((int)invalid_code,temp,1);
3522     #endif
3523     #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3524     emit_callne(invalidate_addr_reg[temp]);
3525     #else
3526     jaddr2=(int)out;
3527     emit_jne(0);
3528     add_stub(INVCODE_STUB,jaddr2,(int)out,reglist|(1<<HOST_CCREG),temp,0,0,0);
3529     #endif
3530   }
3531   /*
3532     emit_pusha();
3533     //save_regs(0x100f);
3534         emit_readword((int)&last_count,ECX);
3535         if(get_reg(i_regs->regmap,CCREG)<0)
3536           emit_loadreg(CCREG,HOST_CCREG);
3537         emit_add(HOST_CCREG,ECX,HOST_CCREG);
3538         emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3539         emit_writeword(HOST_CCREG,(int)&Count);
3540     emit_call((int)memdebug);
3541     emit_popa();
3542     //restore_regs(0x100f);
3543   /**/
3544 }
3545
3546 void c1ls_assemble(int i,struct regstat *i_regs)
3547 {
3548 #ifndef DISABLE_COP1
3549   int s,th,tl;
3550   int temp,ar;
3551   int map=-1;
3552   int offset;
3553   int c=0;
3554   int jaddr,jaddr2=0,jaddr3,type;
3555   int agr=AGEN1+(i&1);
3556   u_int hr,reglist=0;
3557   th=get_reg(i_regs->regmap,FTEMP|64);
3558   tl=get_reg(i_regs->regmap,FTEMP);
3559   s=get_reg(i_regs->regmap,rs1[i]);
3560   temp=get_reg(i_regs->regmap,agr);
3561   if(temp<0) temp=get_reg(i_regs->regmap,-1);
3562   offset=imm[i];
3563   assert(tl>=0);
3564   assert(rs1[i]>0);
3565   assert(temp>=0);
3566   for(hr=0;hr<HOST_REGS;hr++) {
3567     if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3568   }
3569   if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
3570   if (opcode[i]==0x31||opcode[i]==0x35) // LWC1/LDC1
3571   {
3572     // Loads use a temporary register which we need to save
3573     reglist|=1<<temp;
3574   }
3575   if (opcode[i]==0x39||opcode[i]==0x3D) // SWC1/SDC1
3576     ar=temp;
3577   else // LWC1/LDC1
3578     ar=tl;
3579   //if(s<0) emit_loadreg(rs1[i],ar); //address_generation does this now
3580   //else c=(i_regs->wasconst>>s)&1;
3581   if(s>=0) c=(i_regs->wasconst>>s)&1;
3582   // Check cop1 unusable
3583   if(!cop1_usable) {
3584     signed char rs=get_reg(i_regs->regmap,CSREG);
3585     assert(rs>=0);
3586     emit_testimm(rs,0x20000000);
3587     jaddr=(int)out;
3588     emit_jeq(0);
3589     add_stub(FP_STUB,jaddr,(int)out,i,rs,(int)i_regs,is_delayslot,0);
3590     cop1_usable=1;
3591   }
3592   if (opcode[i]==0x39) { // SWC1 (get float address)
3593     emit_readword((int)&reg_cop1_simple[(source[i]>>16)&0x1f],tl);
3594   }
3595   if (opcode[i]==0x3D) { // SDC1 (get double address)
3596     emit_readword((int)&reg_cop1_double[(source[i]>>16)&0x1f],tl);
3597   }
3598   // Generate address + offset
3599   if(!using_tlb) {
3600     if(!c)
3601       emit_cmpimm(offset||c||s<0?ar:s,RAM_SIZE);
3602   }
3603   else
3604   {
3605     map=get_reg(i_regs->regmap,TLREG);
3606     assert(map>=0);
3607     if (opcode[i]==0x31||opcode[i]==0x35) { // LWC1/LDC1
3608       map=do_tlb_r(offset||c||s<0?ar:s,ar,map,0,-1,-1,c,constmap[i][s]+offset);
3609     }
3610     if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3611       map=do_tlb_w(offset||c||s<0?ar:s,ar,map,0,c,constmap[i][s]+offset);
3612     }
3613   }
3614   if (opcode[i]==0x39) { // SWC1 (read float)
3615     emit_readword_indexed(0,tl,tl);
3616   }
3617   if (opcode[i]==0x3D) { // SDC1 (read double)
3618     emit_readword_indexed(4,tl,th);
3619     emit_readword_indexed(0,tl,tl);
3620   }
3621   if (opcode[i]==0x31) { // LWC1 (get target address)
3622     emit_readword((int)&reg_cop1_simple[(source[i]>>16)&0x1f],temp);
3623   }
3624   if (opcode[i]==0x35) { // LDC1 (get target address)
3625     emit_readword((int)&reg_cop1_double[(source[i]>>16)&0x1f],temp);
3626   }
3627   if(!using_tlb) {
3628     if(!c) {
3629       jaddr2=(int)out;
3630       emit_jno(0);
3631     }
3632     else if(((signed int)(constmap[i][s]+offset))>=(signed int)0x80000000+RAM_SIZE) {
3633       jaddr2=(int)out;
3634       emit_jmp(0); // inline_readstub/inline_writestub?  Very rare case
3635     }
3636     #ifdef DESTRUCTIVE_SHIFT
3637     if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3638       if(!offset&&!c&&s>=0) emit_mov(s,ar);
3639     }
3640     #endif
3641   }else{
3642     if (opcode[i]==0x31||opcode[i]==0x35) { // LWC1/LDC1
3643       do_tlb_r_branch(map,c,constmap[i][s]+offset,&jaddr2);
3644     }
3645     if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3646       do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr2);
3647     }
3648   }
3649   if (opcode[i]==0x31) { // LWC1
3650     //if(s>=0&&!c&&!offset) emit_mov(s,tl);
3651     //gen_tlb_addr_r(ar,map);
3652     //emit_readword_indexed((int)rdram-0x80000000,tl,tl);
3653     #ifdef HOST_IMM_ADDR32
3654     if(c) emit_readword_tlb(constmap[i][s]+offset,map,tl);
3655     else
3656     #endif
3657     emit_readword_indexed_tlb(0,offset||c||s<0?tl:s,map,tl);
3658     type=LOADW_STUB;
3659   }
3660   if (opcode[i]==0x35) { // LDC1
3661     assert(th>=0);
3662     //if(s>=0&&!c&&!offset) emit_mov(s,tl);
3663     //gen_tlb_addr_r(ar,map);
3664     //emit_readword_indexed((int)rdram-0x80000000,tl,th);
3665     //emit_readword_indexed((int)rdram-0x7FFFFFFC,tl,tl);
3666     #ifdef HOST_IMM_ADDR32
3667     if(c) emit_readdword_tlb(constmap[i][s]+offset,map,th,tl);
3668     else
3669     #endif
3670     emit_readdword_indexed_tlb(0,offset||c||s<0?tl:s,map,th,tl);
3671     type=LOADD_STUB;
3672   }
3673   if (opcode[i]==0x39) { // SWC1
3674     //emit_writeword_indexed(tl,(int)rdram-0x80000000,temp);
3675     emit_writeword_indexed_tlb(tl,0,offset||c||s<0?temp:s,map,temp);
3676     type=STOREW_STUB;
3677   }
3678   if (opcode[i]==0x3D) { // SDC1
3679     assert(th>=0);
3680     //emit_writeword_indexed(th,(int)rdram-0x80000000,temp);
3681     //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,temp);
3682     emit_writedword_indexed_tlb(th,tl,0,offset||c||s<0?temp:s,map,temp);
3683     type=STORED_STUB;
3684   }
3685   if(!using_tlb) {
3686     if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3687       #ifndef DESTRUCTIVE_SHIFT
3688       temp=offset||c||s<0?ar:s;
3689       #endif
3690       #if defined(HOST_IMM8)
3691       int ir=get_reg(i_regs->regmap,INVCP);
3692       assert(ir>=0);
3693       emit_cmpmem_indexedsr12_reg(ir,temp,1);
3694       #else
3695       emit_cmpmem_indexedsr12_imm((int)invalid_code,temp,1);
3696       #endif
3697       #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3698       emit_callne(invalidate_addr_reg[temp]);
3699       #else
3700       jaddr3=(int)out;
3701       emit_jne(0);
3702       add_stub(INVCODE_STUB,jaddr3,(int)out,reglist|(1<<HOST_CCREG),temp,0,0,0);
3703       #endif
3704     }
3705   }
3706   if(jaddr2) add_stub(type,jaddr2,(int)out,i,offset||c||s<0?ar:s,(int)i_regs,ccadj[i],reglist);
3707   if (opcode[i]==0x31) { // LWC1 (write float)
3708     emit_writeword_indexed(tl,0,temp);
3709   }
3710   if (opcode[i]==0x35) { // LDC1 (write double)
3711     emit_writeword_indexed(th,4,temp);
3712     emit_writeword_indexed(tl,0,temp);
3713   }
3714   //if(opcode[i]==0x39)
3715   /*if(opcode[i]==0x39||opcode[i]==0x31)
3716   {
3717     emit_pusha();
3718         emit_readword((int)&last_count,ECX);
3719         if(get_reg(i_regs->regmap,CCREG)<0)
3720           emit_loadreg(CCREG,HOST_CCREG);
3721         emit_add(HOST_CCREG,ECX,HOST_CCREG);
3722         emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3723         emit_writeword(HOST_CCREG,(int)&Count);
3724     emit_call((int)memdebug);
3725     emit_popa();
3726   }/**/
3727 #else
3728   cop1_unusable(i, i_regs);
3729 #endif
3730 }
3731
3732 void c2ls_assemble(int i,struct regstat *i_regs)
3733 {
3734   int s,tl;
3735   int ar;
3736   int offset;
3737   int memtarget=0,c=0;
3738   int jaddr2=0,jaddr3,type;
3739   int agr=AGEN1+(i&1);
3740   u_int hr,reglist=0;
3741   u_int copr=(source[i]>>16)&0x1f;
3742   s=get_reg(i_regs->regmap,rs1[i]);
3743   tl=get_reg(i_regs->regmap,FTEMP);
3744   offset=imm[i];
3745   assert(rs1[i]>0);
3746   assert(tl>=0);
3747   assert(!using_tlb);
3748
3749   for(hr=0;hr<HOST_REGS;hr++) {
3750     if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3751   }
3752   if(i_regs->regmap[HOST_CCREG]==CCREG)
3753     reglist&=~(1<<HOST_CCREG);
3754
3755   // get the address
3756   if (opcode[i]==0x3a) { // SWC2
3757     ar=get_reg(i_regs->regmap,agr);
3758     if(ar<0) ar=get_reg(i_regs->regmap,-1);
3759     reglist|=1<<ar;
3760   } else { // LWC2
3761     ar=tl;
3762   }
3763   if(s>=0) c=(i_regs->wasconst>>s)&1;
3764   memtarget=c&&(((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE);
3765   if (!offset&&!c&&s>=0) ar=s;
3766   assert(ar>=0);
3767
3768   if (opcode[i]==0x3a) { // SWC2
3769     cop2_get_dreg(copr,tl,HOST_TEMPREG);
3770     type=STOREW_STUB;
3771   }
3772   else
3773     type=LOADW_STUB;
3774
3775   if(c&&!memtarget) {
3776     jaddr2=(int)out;
3777     emit_jmp(0); // inline_readstub/inline_writestub?
3778   }
3779   else {
3780     if(!c) {
3781       emit_cmpimm(offset||c||s<0?ar:s,RAM_SIZE);
3782       jaddr2=(int)out;
3783       emit_jno(0);
3784     }
3785     if (opcode[i]==0x32) { // LWC2
3786       #ifdef HOST_IMM_ADDR32
3787       if(c) emit_readword_tlb(constmap[i][s]+offset,-1,tl);
3788       else
3789       #endif
3790       emit_readword_indexed(0,ar,tl);
3791     }
3792     if (opcode[i]==0x3a) { // SWC2
3793       #ifdef DESTRUCTIVE_SHIFT
3794       if(!offset&&!c&&s>=0) emit_mov(s,ar);
3795       #endif
3796       emit_writeword_indexed(tl,0,ar);
3797     }
3798   }
3799   if(jaddr2)
3800     add_stub(type,jaddr2,(int)out,i,ar,(int)i_regs,ccadj[i],reglist);
3801   if (opcode[i]==0x3a) { // SWC2
3802 #if defined(HOST_IMM8)
3803     int ir=get_reg(i_regs->regmap,INVCP);
3804     assert(ir>=0);
3805     emit_cmpmem_indexedsr12_reg(ir,ar,1);
3806 #else
3807     emit_cmpmem_indexedsr12_imm((int)invalid_code,ar,1);
3808 #endif
3809     #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3810     emit_callne(invalidate_addr_reg[ar]);
3811     #else
3812     jaddr3=(int)out;
3813     emit_jne(0);
3814     add_stub(INVCODE_STUB,jaddr3,(int)out,reglist|(1<<HOST_CCREG),ar,0,0,0);
3815     #endif
3816   }
3817   if (opcode[i]==0x32) { // LWC2
3818     cop2_put_dreg(copr,tl,HOST_TEMPREG);
3819   }
3820 }
3821
3822 #ifndef multdiv_assemble
3823 void multdiv_assemble(int i,struct regstat *i_regs)
3824 {
3825   printf("Need multdiv_assemble for this architecture.\n");
3826   exit(1);
3827 }
3828 #endif
3829
3830 void mov_assemble(int i,struct regstat *i_regs)
3831 {
3832   //if(opcode2[i]==0x10||opcode2[i]==0x12) { // MFHI/MFLO
3833   //if(opcode2[i]==0x11||opcode2[i]==0x13) { // MTHI/MTLO
3834   if(rt1[i]) {
3835     signed char sh,sl,th,tl;
3836     th=get_reg(i_regs->regmap,rt1[i]|64);
3837     tl=get_reg(i_regs->regmap,rt1[i]);
3838     //assert(tl>=0);
3839     if(tl>=0) {
3840       sh=get_reg(i_regs->regmap,rs1[i]|64);
3841       sl=get_reg(i_regs->regmap,rs1[i]);
3842       if(sl>=0) emit_mov(sl,tl);
3843       else emit_loadreg(rs1[i],tl);
3844       if(th>=0) {
3845         if(sh>=0) emit_mov(sh,th);
3846         else emit_loadreg(rs1[i]|64,th);
3847       }
3848     }
3849   }
3850 }
3851
3852 #ifndef fconv_assemble
3853 void fconv_assemble(int i,struct regstat *i_regs)
3854 {
3855   printf("Need fconv_assemble for this architecture.\n");
3856   exit(1);
3857 }
3858 #endif
3859
3860 #if 0
3861 void float_assemble(int i,struct regstat *i_regs)
3862 {
3863   printf("Need float_assemble for this architecture.\n");
3864   exit(1);
3865 }
3866 #endif
3867
3868 void syscall_assemble(int i,struct regstat *i_regs)
3869 {
3870   signed char ccreg=get_reg(i_regs->regmap,CCREG);
3871   assert(ccreg==HOST_CCREG);
3872   assert(!is_delayslot);
3873   emit_movimm(start+i*4,EAX); // Get PC
3874   emit_addimm(HOST_CCREG,CLOCK_DIVIDER*ccadj[i],HOST_CCREG); // CHECK: is this right?  There should probably be an extra cycle...
3875   emit_jmp((int)jump_syscall_hle); // XXX
3876 }
3877
3878 void hlecall_assemble(int i,struct regstat *i_regs)
3879 {
3880   signed char ccreg=get_reg(i_regs->regmap,CCREG);
3881   assert(ccreg==HOST_CCREG);
3882   assert(!is_delayslot);
3883   emit_movimm(start+i*4+4,0); // Get PC
3884   emit_movimm((int)psxHLEt[source[i]&7],1);
3885   emit_addimm(HOST_CCREG,CLOCK_DIVIDER*ccadj[i],HOST_CCREG); // XXX
3886   emit_jmp((int)jump_hlecall);
3887 }
3888
3889 void intcall_assemble(int i,struct regstat *i_regs)
3890 {
3891   signed char ccreg=get_reg(i_regs->regmap,CCREG);
3892   assert(ccreg==HOST_CCREG);
3893   assert(!is_delayslot);
3894   emit_movimm(start+i*4,0); // Get PC
3895   emit_addimm(HOST_CCREG,CLOCK_DIVIDER*ccadj[i],HOST_CCREG);
3896   emit_jmp((int)jump_intcall);
3897 }
3898
3899 void ds_assemble(int i,struct regstat *i_regs)
3900 {
3901   is_delayslot=1;
3902   switch(itype[i]) {
3903     case ALU:
3904       alu_assemble(i,i_regs);break;
3905     case IMM16:
3906       imm16_assemble(i,i_regs);break;
3907     case SHIFT:
3908       shift_assemble(i,i_regs);break;
3909     case SHIFTIMM:
3910       shiftimm_assemble(i,i_regs);break;
3911     case LOAD:
3912       load_assemble(i,i_regs);break;
3913     case LOADLR:
3914       loadlr_assemble(i,i_regs);break;
3915     case STORE:
3916       store_assemble(i,i_regs);break;
3917     case STORELR:
3918       storelr_assemble(i,i_regs);break;
3919     case COP0:
3920       cop0_assemble(i,i_regs);break;
3921     case COP1:
3922       cop1_assemble(i,i_regs);break;
3923     case C1LS:
3924       c1ls_assemble(i,i_regs);break;
3925     case COP2:
3926       cop2_assemble(i,i_regs);break;
3927     case C2LS:
3928       c2ls_assemble(i,i_regs);break;
3929     case C2OP:
3930       c2op_assemble(i,i_regs);break;
3931     case FCONV:
3932       fconv_assemble(i,i_regs);break;
3933     case FLOAT:
3934       float_assemble(i,i_regs);break;
3935     case FCOMP:
3936       fcomp_assemble(i,i_regs);break;
3937     case MULTDIV:
3938       multdiv_assemble(i,i_regs);break;
3939     case MOV:
3940       mov_assemble(i,i_regs);break;
3941     case SYSCALL:
3942     case HLECALL:
3943     case INTCALL:
3944     case SPAN:
3945     case UJUMP:
3946     case RJUMP:
3947     case CJUMP:
3948     case SJUMP:
3949     case FJUMP:
3950       printf("Jump in the delay slot.  This is probably a bug.\n");
3951   }
3952   is_delayslot=0;
3953 }
3954
3955 // Is the branch target a valid internal jump?
3956 int internal_branch(uint64_t i_is32,int addr)
3957 {
3958   if(addr&1) return 0; // Indirect (register) jump
3959   if(addr>=start && addr<start+slen*4-4)
3960   {
3961     int t=(addr-start)>>2;
3962     // Delay slots are not valid branch targets
3963     //if(t>0&&(itype[t-1]==RJUMP||itype[t-1]==UJUMP||itype[t-1]==CJUMP||itype[t-1]==SJUMP||itype[t-1]==FJUMP)) return 0;
3964     // 64 -> 32 bit transition requires a recompile
3965     /*if(is32[t]&~unneeded_reg_upper[t]&~i_is32)
3966     {
3967       if(requires_32bit[t]&~i_is32) printf("optimizable: no\n");
3968       else printf("optimizable: yes\n");
3969     }*/
3970     //if(is32[t]&~unneeded_reg_upper[t]&~i_is32) return 0;
3971 #ifndef FORCE32
3972     if(requires_32bit[t]&~i_is32) return 0;
3973     else
3974 #endif
3975       return 1;
3976   }
3977   return 0;
3978 }
3979
3980 #ifndef wb_invalidate
3981 void wb_invalidate(signed char pre[],signed char entry[],uint64_t dirty,uint64_t is32,
3982   uint64_t u,uint64_t uu)
3983 {
3984   int hr;
3985   for(hr=0;hr<HOST_REGS;hr++) {
3986     if(hr!=EXCLUDE_REG) {
3987       if(pre[hr]!=entry[hr]) {
3988         if(pre[hr]>=0) {
3989           if((dirty>>hr)&1) {
3990             if(get_reg(entry,pre[hr])<0) {
3991               if(pre[hr]<64) {
3992                 if(!((u>>pre[hr])&1)) {
3993                   emit_storereg(pre[hr],hr);
3994                   if( ((is32>>pre[hr])&1) && !((uu>>pre[hr])&1) ) {
3995                     emit_sarimm(hr,31,hr);
3996                     emit_storereg(pre[hr]|64,hr);
3997                   }
3998                 }
3999               }else{
4000                 if(!((uu>>(pre[hr]&63))&1) && !((is32>>(pre[hr]&63))&1)) {
4001                   emit_storereg(pre[hr],hr);
4002                 }
4003               }
4004             }
4005           }
4006         }
4007       }
4008     }
4009   }
4010   // Move from one register to another (no writeback)
4011   for(hr=0;hr<HOST_REGS;hr++) {
4012     if(hr!=EXCLUDE_REG) {
4013       if(pre[hr]!=entry[hr]) {
4014         if(pre[hr]>=0&&(pre[hr]&63)<TEMPREG) {
4015           int nr;
4016           if((nr=get_reg(entry,pre[hr]))>=0) {
4017             emit_mov(hr,nr);
4018           }
4019         }
4020       }
4021     }
4022   }
4023 }
4024 #endif
4025
4026 // Load the specified registers
4027 // This only loads the registers given as arguments because
4028 // we don't want to load things that will be overwritten
4029 void load_regs(signed char entry[],signed char regmap[],int is32,int rs1,int rs2)
4030 {
4031   int hr;
4032   // Load 32-bit regs
4033   for(hr=0;hr<HOST_REGS;hr++) {
4034     if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4035       if(entry[hr]!=regmap[hr]) {
4036         if(regmap[hr]==rs1||regmap[hr]==rs2)
4037         {
4038           if(regmap[hr]==0) {
4039             emit_zeroreg(hr);
4040           }
4041           else
4042           {
4043             emit_loadreg(regmap[hr],hr);
4044           }
4045         }
4046       }
4047     }
4048   }
4049   //Load 64-bit regs
4050   for(hr=0;hr<HOST_REGS;hr++) {
4051     if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4052       if(entry[hr]!=regmap[hr]) {
4053         if(regmap[hr]-64==rs1||regmap[hr]-64==rs2)
4054         {
4055           assert(regmap[hr]!=64);
4056           if((is32>>(regmap[hr]&63))&1) {
4057             int lr=get_reg(regmap,regmap[hr]-64);
4058             if(lr>=0)
4059               emit_sarimm(lr,31,hr);
4060             else
4061               emit_loadreg(regmap[hr],hr);
4062           }
4063           else
4064           {
4065             emit_loadreg(regmap[hr],hr);
4066           }
4067         }
4068       }
4069     }
4070   }
4071 }
4072
4073 // Load registers prior to the start of a loop
4074 // so that they are not loaded within the loop
4075 static void loop_preload(signed char pre[],signed char entry[])
4076 {
4077   int hr;
4078   for(hr=0;hr<HOST_REGS;hr++) {
4079     if(hr!=EXCLUDE_REG) {
4080       if(pre[hr]!=entry[hr]) {
4081         if(entry[hr]>=0) {
4082           if(get_reg(pre,entry[hr])<0) {
4083             assem_debug("loop preload:\n");
4084             //printf("loop preload: %d\n",hr);
4085             if(entry[hr]==0) {
4086               emit_zeroreg(hr);
4087             }
4088             else if(entry[hr]<TEMPREG)
4089             {
4090               emit_loadreg(entry[hr],hr);
4091             }
4092             else if(entry[hr]-64<TEMPREG)
4093             {
4094               emit_loadreg(entry[hr],hr);
4095             }
4096           }
4097         }
4098       }
4099     }
4100   }
4101 }
4102
4103 // Generate address for load/store instruction
4104 // goes to AGEN for writes, FTEMP for LOADLR and cop1/2 loads
4105 void address_generation(int i,struct regstat *i_regs,signed char entry[])
4106 {
4107   if(itype[i]==LOAD||itype[i]==LOADLR||itype[i]==STORE||itype[i]==STORELR||itype[i]==C1LS||itype[i]==C2LS) {
4108     int ra=-1;
4109     int agr=AGEN1+(i&1);
4110     int mgr=MGEN1+(i&1);
4111     if(itype[i]==LOAD) {
4112       ra=get_reg(i_regs->regmap,rt1[i]);
4113       if(ra<0) ra=get_reg(i_regs->regmap,-1); 
4114       assert(ra>=0);
4115     }
4116     if(itype[i]==LOADLR) {
4117       ra=get_reg(i_regs->regmap,FTEMP);
4118     }
4119     if(itype[i]==STORE||itype[i]==STORELR) {
4120       ra=get_reg(i_regs->regmap,agr);
4121       if(ra<0) ra=get_reg(i_regs->regmap,-1);
4122     }
4123     if(itype[i]==C1LS||itype[i]==C2LS) {
4124       if ((opcode[i]&0x3b)==0x31||(opcode[i]&0x3b)==0x32) // LWC1/LDC1/LWC2/LDC2
4125         ra=get_reg(i_regs->regmap,FTEMP);
4126       else { // SWC1/SDC1/SWC2/SDC2
4127         ra=get_reg(i_regs->regmap,agr);
4128         if(ra<0) ra=get_reg(i_regs->regmap,-1);
4129       }
4130     }
4131     int rs=get_reg(i_regs->regmap,rs1[i]);
4132     int rm=get_reg(i_regs->regmap,TLREG);
4133     if(ra>=0) {
4134       int offset=imm[i];
4135       int c=(i_regs->wasconst>>rs)&1;
4136       if(rs1[i]==0) {
4137         // Using r0 as a base address
4138         /*if(rm>=0) {
4139           if(!entry||entry[rm]!=mgr) {
4140             generate_map_const(offset,rm);
4141           } // else did it in the previous cycle
4142         }*/
4143         if(!entry||entry[ra]!=agr) {
4144           if (opcode[i]==0x22||opcode[i]==0x26) {
4145             emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
4146           }else if (opcode[i]==0x1a||opcode[i]==0x1b) {
4147             emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
4148           }else{
4149             emit_movimm(offset,ra);
4150           }
4151         } // else did it in the previous cycle
4152       }
4153       else if(rs<0) {
4154         if(!entry||entry[ra]!=rs1[i])
4155           emit_loadreg(rs1[i],ra);
4156         //if(!entry||entry[ra]!=rs1[i])
4157         //  printf("poor load scheduling!\n");
4158       }
4159       else if(c) {
4160         if(rm>=0) {
4161           if(!entry||entry[rm]!=mgr) {
4162             if(itype[i]==STORE||itype[i]==STORELR||(opcode[i]&0x3b)==0x39||(opcode[i]&0x3b)==0x3a) {
4163               // Stores to memory go thru the mapper to detect self-modifying
4164               // code, loads don't.
4165               if((unsigned int)(constmap[i][rs]+offset)>=0xC0000000 ||
4166                  (unsigned int)(constmap[i][rs]+offset)<0x80000000+RAM_SIZE )
4167                 generate_map_const(constmap[i][rs]+offset,rm);
4168             }else{
4169               if((signed int)(constmap[i][rs]+offset)>=(signed int)0xC0000000)
4170                 generate_map_const(constmap[i][rs]+offset,rm);
4171             }
4172           }
4173         }
4174         if(rs1[i]!=rt1[i]||itype[i]!=LOAD) {
4175           if(!entry||entry[ra]!=agr) {
4176             if (opcode[i]==0x22||opcode[i]==0x26) {
4177               emit_movimm((constmap[i][rs]+offset)&0xFFFFFFFC,ra); // LWL/LWR
4178             }else if (opcode[i]==0x1a||opcode[i]==0x1b) {
4179               emit_movimm((constmap[i][rs]+offset)&0xFFFFFFF8,ra); // LDL/LDR
4180             }else{
4181               #ifdef HOST_IMM_ADDR32
4182               if((itype[i]!=LOAD&&(opcode[i]&0x3b)!=0x31&&(opcode[i]&0x3b)!=0x32) || // LWC1/LDC1/LWC2/LDC2
4183                  (using_tlb&&((signed int)constmap[i][rs]+offset)>=(signed int)0xC0000000))
4184               #endif
4185               emit_movimm(constmap[i][rs]+offset,ra);
4186             }
4187           } // else did it in the previous cycle
4188         } // else load_consts already did it
4189       }
4190       if(offset&&!c&&rs1[i]) {
4191         if(rs>=0) {
4192           emit_addimm(rs,offset,ra);
4193         }else{
4194           emit_addimm(ra,offset,ra);
4195         }
4196       }
4197     }
4198   }
4199   // Preload constants for next instruction
4200   if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS||itype[i+1]==C2LS) {
4201     int agr,ra;
4202     #ifndef HOST_IMM_ADDR32
4203     // Mapper entry
4204     agr=MGEN1+((i+1)&1);
4205     ra=get_reg(i_regs->regmap,agr);
4206     if(ra>=0) {
4207       int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
4208       int offset=imm[i+1];
4209       int c=(regs[i+1].wasconst>>rs)&1;
4210       if(c) {
4211         if(itype[i+1]==STORE||itype[i+1]==STORELR
4212            ||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1, SWC2/SDC2
4213           // Stores to memory go thru the mapper to detect self-modifying
4214           // code, loads don't.
4215           if((unsigned int)(constmap[i+1][rs]+offset)>=0xC0000000 ||
4216              (unsigned int)(constmap[i+1][rs]+offset)<0x80000000+RAM_SIZE )
4217             generate_map_const(constmap[i+1][rs]+offset,ra);
4218         }else{
4219           if((signed int)(constmap[i+1][rs]+offset)>=(signed int)0xC0000000)
4220             generate_map_const(constmap[i+1][rs]+offset,ra);
4221         }
4222       }
4223       /*else if(rs1[i]==0) {
4224         generate_map_const(offset,ra);
4225       }*/
4226     }
4227     #endif
4228     // Actual address
4229     agr=AGEN1+((i+1)&1);
4230     ra=get_reg(i_regs->regmap,agr);
4231     if(ra>=0) {
4232       int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
4233       int offset=imm[i+1];
4234       int c=(regs[i+1].wasconst>>rs)&1;
4235       if(c&&(rs1[i+1]!=rt1[i+1]||itype[i+1]!=LOAD)) {
4236         if (opcode[i+1]==0x22||opcode[i+1]==0x26) {
4237           emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFFC,ra); // LWL/LWR
4238         }else if (opcode[i+1]==0x1a||opcode[i+1]==0x1b) {
4239           emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFF8,ra); // LDL/LDR
4240         }else{
4241           #ifdef HOST_IMM_ADDR32
4242           if((itype[i+1]!=LOAD&&(opcode[i+1]&0x3b)!=0x31&&(opcode[i+1]&0x3b)!=0x32) || // LWC1/LDC1/LWC2/LDC2
4243              (using_tlb&&((signed int)constmap[i+1][rs]+offset)>=(signed int)0xC0000000))
4244           #endif
4245           emit_movimm(constmap[i+1][rs]+offset,ra);
4246         }
4247       }
4248       else if(rs1[i+1]==0) {
4249         // Using r0 as a base address
4250         if (opcode[i+1]==0x22||opcode[i+1]==0x26) {
4251           emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
4252         }else if (opcode[i+1]==0x1a||opcode[i+1]==0x1b) {
4253           emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
4254         }else{
4255           emit_movimm(offset,ra);
4256         }
4257       }
4258     }
4259   }
4260 }
4261
4262 int get_final_value(int hr, int i, int *value)
4263 {
4264   int reg=regs[i].regmap[hr];
4265   while(i<slen-1) {
4266     if(regs[i+1].regmap[hr]!=reg) break;
4267     if(!((regs[i+1].isconst>>hr)&1)) break;
4268     if(bt[i+1]) break;
4269     i++;
4270   }
4271   if(i<slen-1) {
4272     if(itype[i]==UJUMP||itype[i]==RJUMP||itype[i]==CJUMP||itype[i]==SJUMP) {
4273       *value=constmap[i][hr];
4274       return 1;
4275     }
4276     if(!bt[i+1]) {
4277       if(itype[i+1]==UJUMP||itype[i+1]==RJUMP||itype[i+1]==CJUMP||itype[i+1]==SJUMP) {
4278         // Load in delay slot, out-of-order execution
4279         if(itype[i+2]==LOAD&&rs1[i+2]==reg&&rt1[i+2]==reg&&((regs[i+1].wasconst>>hr)&1))
4280         {
4281           #ifdef HOST_IMM_ADDR32
4282           if(!using_tlb||((signed int)constmap[i][hr]+imm[i+2])<(signed int)0xC0000000) return 0;
4283           #endif
4284           // Precompute load address
4285           *value=constmap[i][hr]+imm[i+2];
4286           return 1;
4287         }
4288       }
4289       if(itype[i+1]==LOAD&&rs1[i+1]==reg&&rt1[i+1]==reg)
4290       {
4291         #ifdef HOST_IMM_ADDR32
4292         if(!using_tlb||((signed int)constmap[i][hr]+imm[i+1])<(signed int)0xC0000000) return 0;
4293         #endif
4294         // Precompute load address
4295         *value=constmap[i][hr]+imm[i+1];
4296         //printf("c=%x imm=%x\n",(int)constmap[i][hr],imm[i+1]);
4297         return 1;
4298       }
4299     }
4300   }
4301   *value=constmap[i][hr];
4302   //printf("c=%x\n",(int)constmap[i][hr]);
4303   if(i==slen-1) return 1;
4304   if(reg<64) {
4305     return !((unneeded_reg[i+1]>>reg)&1);
4306   }else{
4307     return !((unneeded_reg_upper[i+1]>>reg)&1);
4308   }
4309 }
4310
4311 // Load registers with known constants
4312 void load_consts(signed char pre[],signed char regmap[],int is32,int i)
4313 {
4314   int hr;
4315   // Load 32-bit regs
4316   for(hr=0;hr<HOST_REGS;hr++) {
4317     if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4318       //if(entry[hr]!=regmap[hr]) {
4319       if(i==0||!((regs[i-1].isconst>>hr)&1)||pre[hr]!=regmap[hr]||bt[i]) {
4320         if(((regs[i].isconst>>hr)&1)&&regmap[hr]<64&&regmap[hr]>0) {
4321           int value;
4322           if(get_final_value(hr,i,&value)) {
4323             if(value==0) {
4324               emit_zeroreg(hr);
4325             }
4326             else {
4327               emit_movimm(value,hr);
4328             }
4329           }
4330         }
4331       }
4332     }
4333   }
4334   // Load 64-bit regs
4335   for(hr=0;hr<HOST_REGS;hr++) {
4336     if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4337       //if(entry[hr]!=regmap[hr]) {
4338       if(i==0||!((regs[i-1].isconst>>hr)&1)||pre[hr]!=regmap[hr]||bt[i]) {
4339         if(((regs[i].isconst>>hr)&1)&&regmap[hr]>64) {
4340           if((is32>>(regmap[hr]&63))&1) {
4341             int lr=get_reg(regmap,regmap[hr]-64);
4342             assert(lr>=0);
4343             emit_sarimm(lr,31,hr);
4344           }
4345           else
4346           {
4347             int value;
4348             if(get_final_value(hr,i,&value)) {
4349               if(value==0) {
4350                 emit_zeroreg(hr);
4351               }
4352               else {
4353                 emit_movimm(value,hr);
4354               }
4355             }
4356           }
4357         }
4358       }
4359     }
4360   }
4361 }
4362 void load_all_consts(signed char regmap[],int is32,u_int dirty,int i)
4363 {
4364   int hr;
4365   // Load 32-bit regs
4366   for(hr=0;hr<HOST_REGS;hr++) {
4367     if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((dirty>>hr)&1)) {
4368       if(((regs[i].isconst>>hr)&1)&&regmap[hr]<64&&regmap[hr]>0) {
4369         int value=constmap[i][hr];
4370         if(value==0) {
4371           emit_zeroreg(hr);
4372         }
4373         else {
4374           emit_movimm(value,hr);
4375         }
4376       }
4377     }
4378   }
4379   // Load 64-bit regs
4380   for(hr=0;hr<HOST_REGS;hr++) {
4381     if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((dirty>>hr)&1)) {
4382       if(((regs[i].isconst>>hr)&1)&&regmap[hr]>64) {
4383         if((is32>>(regmap[hr]&63))&1) {
4384           int lr=get_reg(regmap,regmap[hr]-64);
4385           assert(lr>=0);
4386           emit_sarimm(lr,31,hr);
4387         }
4388         else
4389         {
4390           int value=constmap[i][hr];
4391           if(value==0) {
4392             emit_zeroreg(hr);
4393           }
4394           else {
4395             emit_movimm(value,hr);
4396           }
4397         }
4398       }
4399     }
4400   }
4401 }
4402
4403 // Write out all dirty registers (except cycle count)
4404 void wb_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty)
4405 {
4406   int hr;
4407   for(hr=0;hr<HOST_REGS;hr++) {
4408     if(hr!=EXCLUDE_REG) {
4409       if(i_regmap[hr]>0) {
4410         if(i_regmap[hr]!=CCREG) {
4411           if((i_dirty>>hr)&1) {
4412             if(i_regmap[hr]<64) {
4413               emit_storereg(i_regmap[hr],hr);
4414 #ifndef FORCE32
4415               if( ((i_is32>>i_regmap[hr])&1) ) {
4416                 #ifdef DESTRUCTIVE_WRITEBACK
4417                 emit_sarimm(hr,31,hr);
4418                 emit_storereg(i_regmap[hr]|64,hr);
4419                 #else
4420                 emit_sarimm(hr,31,HOST_TEMPREG);
4421                 emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4422                 #endif
4423               }
4424 #endif
4425             }else{
4426               if( !((i_is32>>(i_regmap[hr]&63))&1) ) {
4427                 emit_storereg(i_regmap[hr],hr);
4428               }
4429             }
4430           }
4431         }
4432       }
4433     }
4434   }
4435 }
4436 // Write out dirty registers that we need to reload (pair with load_needed_regs)
4437 // This writes the registers not written by store_regs_bt
4438 void wb_needed_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4439 {
4440   int hr;
4441   int t=(addr-start)>>2;
4442   for(hr=0;hr<HOST_REGS;hr++) {
4443     if(hr!=EXCLUDE_REG) {
4444       if(i_regmap[hr]>0) {
4445         if(i_regmap[hr]!=CCREG) {
4446           if(i_regmap[hr]==regs[t].regmap_entry[hr] && ((regs[t].dirty>>hr)&1) && !(((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4447             if((i_dirty>>hr)&1) {
4448               if(i_regmap[hr]<64) {
4449                 emit_storereg(i_regmap[hr],hr);
4450 #ifndef FORCE32
4451                 if( ((i_is32>>i_regmap[hr])&1) ) {
4452                   #ifdef DESTRUCTIVE_WRITEBACK
4453                   emit_sarimm(hr,31,hr);
4454                   emit_storereg(i_regmap[hr]|64,hr);
4455                   #else
4456                   emit_sarimm(hr,31,HOST_TEMPREG);
4457                   emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4458                   #endif
4459                 }
4460 #endif
4461               }else{
4462                 if( !((i_is32>>(i_regmap[hr]&63))&1) ) {
4463                   emit_storereg(i_regmap[hr],hr);
4464                 }
4465               }
4466             }
4467           }
4468         }
4469       }
4470     }
4471   }
4472 }
4473
4474 // Load all registers (except cycle count)
4475 void load_all_regs(signed char i_regmap[])
4476 {
4477   int hr;
4478   for(hr=0;hr<HOST_REGS;hr++) {
4479     if(hr!=EXCLUDE_REG) {
4480       if(i_regmap[hr]==0) {
4481         emit_zeroreg(hr);
4482       }
4483       else
4484       if(i_regmap[hr]>0 && i_regmap[hr]!=CCREG)
4485       {
4486         emit_loadreg(i_regmap[hr],hr);
4487       }
4488     }
4489   }
4490 }
4491
4492 // Load all current registers also needed by next instruction
4493 void load_needed_regs(signed char i_regmap[],signed char next_regmap[])
4494 {
4495   int hr;
4496   for(hr=0;hr<HOST_REGS;hr++) {
4497     if(hr!=EXCLUDE_REG) {
4498       if(get_reg(next_regmap,i_regmap[hr])>=0) {
4499         if(i_regmap[hr]==0) {
4500           emit_zeroreg(hr);
4501         }
4502         else
4503         if(i_regmap[hr]>0 && i_regmap[hr]!=CCREG)
4504         {
4505           emit_loadreg(i_regmap[hr],hr);
4506         }
4507       }
4508     }
4509   }
4510 }
4511
4512 // Load all regs, storing cycle count if necessary
4513 void load_regs_entry(int t)
4514 {
4515   int hr;
4516   if(is_ds[t]) emit_addimm(HOST_CCREG,CLOCK_DIVIDER,HOST_CCREG);
4517   else if(ccadj[t]) emit_addimm(HOST_CCREG,-ccadj[t]*CLOCK_DIVIDER,HOST_CCREG);
4518   if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
4519     emit_storereg(CCREG,HOST_CCREG);
4520   }
4521   // Load 32-bit regs
4522   for(hr=0;hr<HOST_REGS;hr++) {
4523     if(regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<64) {
4524       if(regs[t].regmap_entry[hr]==0) {
4525         emit_zeroreg(hr);
4526       }
4527       else if(regs[t].regmap_entry[hr]!=CCREG)
4528       {
4529         emit_loadreg(regs[t].regmap_entry[hr],hr);
4530       }
4531     }
4532   }
4533   // Load 64-bit regs
4534   for(hr=0;hr<HOST_REGS;hr++) {
4535     if(regs[t].regmap_entry[hr]>=64) {
4536       assert(regs[t].regmap_entry[hr]!=64);
4537       if((regs[t].was32>>(regs[t].regmap_entry[hr]&63))&1) {
4538         int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4539         if(lr<0) {
4540           emit_loadreg(regs[t].regmap_entry[hr],hr);
4541         }
4542         else
4543         {
4544           emit_sarimm(lr,31,hr);
4545         }
4546       }
4547       else
4548       {
4549         emit_loadreg(regs[t].regmap_entry[hr],hr);
4550       }
4551     }
4552   }
4553 }
4554
4555 // Store dirty registers prior to branch
4556 void store_regs_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4557 {
4558   if(internal_branch(i_is32,addr))
4559   {
4560     int t=(addr-start)>>2;
4561     int hr;
4562     for(hr=0;hr<HOST_REGS;hr++) {
4563       if(hr!=EXCLUDE_REG) {
4564         if(i_regmap[hr]>0 && i_regmap[hr]!=CCREG) {
4565           if(i_regmap[hr]!=regs[t].regmap_entry[hr] || !((regs[t].dirty>>hr)&1) || (((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4566             if((i_dirty>>hr)&1) {
4567               if(i_regmap[hr]<64) {
4568                 if(!((unneeded_reg[t]>>i_regmap[hr])&1)) {
4569                   emit_storereg(i_regmap[hr],hr);
4570                   if( ((i_is32>>i_regmap[hr])&1) && !((unneeded_reg_upper[t]>>i_regmap[hr])&1) ) {
4571                     #ifdef DESTRUCTIVE_WRITEBACK
4572                     emit_sarimm(hr,31,hr);
4573                     emit_storereg(i_regmap[hr]|64,hr);
4574                     #else
4575                     emit_sarimm(hr,31,HOST_TEMPREG);
4576                     emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4577                     #endif
4578                   }
4579                 }
4580               }else{
4581                 if( !((i_is32>>(i_regmap[hr]&63))&1) && !((unneeded_reg_upper[t]>>(i_regmap[hr]&63))&1) ) {
4582                   emit_storereg(i_regmap[hr],hr);
4583                 }
4584               }
4585             }
4586           }
4587         }
4588       }
4589     }
4590   }
4591   else
4592   {
4593     // Branch out of this block, write out all dirty regs
4594     wb_dirtys(i_regmap,i_is32,i_dirty);
4595   }
4596 }
4597
4598 // Load all needed registers for branch target
4599 void load_regs_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4600 {
4601   //if(addr>=start && addr<(start+slen*4))
4602   if(internal_branch(i_is32,addr))
4603   {
4604     int t=(addr-start)>>2;
4605     int hr;
4606     // Store the cycle count before loading something else
4607     if(i_regmap[HOST_CCREG]!=CCREG) {
4608       assert(i_regmap[HOST_CCREG]==-1);
4609     }
4610     if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
4611       emit_storereg(CCREG,HOST_CCREG);
4612     }
4613     // Load 32-bit regs
4614     for(hr=0;hr<HOST_REGS;hr++) {
4615       if(hr!=EXCLUDE_REG&&regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<64) {
4616         #ifdef DESTRUCTIVE_WRITEBACK
4617         if(i_regmap[hr]!=regs[t].regmap_entry[hr] || ( !((regs[t].dirty>>hr)&1) && ((i_dirty>>hr)&1) && (((i_is32&~unneeded_reg_upper[t])>>i_regmap[hr])&1) ) || (((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4618         #else
4619         if(i_regmap[hr]!=regs[t].regmap_entry[hr] ) {
4620         #endif
4621           if(regs[t].regmap_entry[hr]==0) {
4622             emit_zeroreg(hr);
4623           }
4624           else if(regs[t].regmap_entry[hr]!=CCREG)
4625           {
4626             emit_loadreg(regs[t].regmap_entry[hr],hr);
4627           }
4628         }
4629       }
4630     }
4631     //Load 64-bit regs
4632     for(hr=0;hr<HOST_REGS;hr++) {
4633       if(hr!=EXCLUDE_REG&&regs[t].regmap_entry[hr]>=64) {
4634         if(i_regmap[hr]!=regs[t].regmap_entry[hr]) {
4635           assert(regs[t].regmap_entry[hr]!=64);
4636           if((i_is32>>(regs[t].regmap_entry[hr]&63))&1) {
4637             int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4638             if(lr<0) {
4639               emit_loadreg(regs[t].regmap_entry[hr],hr);
4640             }
4641             else
4642             {
4643               emit_sarimm(lr,31,hr);
4644             }
4645           }
4646           else
4647           {
4648             emit_loadreg(regs[t].regmap_entry[hr],hr);
4649           }
4650         }
4651         else if((i_is32>>(regs[t].regmap_entry[hr]&63))&1) {
4652           int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4653           assert(lr>=0);
4654           emit_sarimm(lr,31,hr);
4655         }
4656       }
4657     }
4658   }
4659 }
4660
4661 int match_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4662 {
4663   if(addr>=start && addr<start+slen*4-4)
4664   {
4665     int t=(addr-start)>>2;
4666     int hr;
4667     if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) return 0;
4668     for(hr=0;hr<HOST_REGS;hr++)
4669     {
4670       if(hr!=EXCLUDE_REG)
4671       {
4672         if(i_regmap[hr]!=regs[t].regmap_entry[hr])
4673         {
4674           if(regs[t].regmap_entry[hr]!=-1)
4675           {
4676             return 0;
4677           }
4678           else 
4679           if((i_dirty>>hr)&1)
4680           {
4681             if(i_regmap[hr]<64)
4682             {
4683               if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4684                 return 0;
4685             }
4686             else
4687             {
4688               if(!((unneeded_reg_upper[t]>>(i_regmap[hr]&63))&1))
4689                 return 0;
4690             }
4691           }
4692         }
4693         else // Same register but is it 32-bit or dirty?
4694         if(i_regmap[hr]>=0)
4695         {
4696           if(!((regs[t].dirty>>hr)&1))
4697           {
4698             if((i_dirty>>hr)&1)
4699             {
4700               if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4701               {
4702                 //printf("%x: dirty no match\n",addr);
4703                 return 0;
4704               }
4705             }
4706           }
4707           if((((regs[t].was32^i_is32)&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)
4708           {
4709             //printf("%x: is32 no match\n",addr);
4710             return 0;
4711           }
4712         }
4713       }
4714     }
4715     //if(is32[t]&~unneeded_reg_upper[t]&~i_is32) return 0;
4716 #ifndef FORCE32
4717     if(requires_32bit[t]&~i_is32) return 0;
4718 #endif
4719     // Delay slots are not valid branch targets
4720     //if(t>0&&(itype[t-1]==RJUMP||itype[t-1]==UJUMP||itype[t-1]==CJUMP||itype[t-1]==SJUMP||itype[t-1]==FJUMP)) return 0;
4721     // Delay slots require additional processing, so do not match
4722     if(is_ds[t]) return 0;
4723   }
4724   else
4725   {
4726     int hr;
4727     for(hr=0;hr<HOST_REGS;hr++)
4728     {
4729       if(hr!=EXCLUDE_REG)
4730       {
4731         if(i_regmap[hr]>=0)
4732         {
4733           if(hr!=HOST_CCREG||i_regmap[hr]!=CCREG)
4734           {
4735             if((i_dirty>>hr)&1)
4736             {
4737               return 0;
4738             }
4739           }
4740         }
4741       }
4742     }
4743   }
4744   return 1;
4745 }
4746
4747 // Used when a branch jumps into the delay slot of another branch
4748 void ds_assemble_entry(int i)
4749 {
4750   int t=(ba[i]-start)>>2;
4751   if(!instr_addr[t]) instr_addr[t]=(u_int)out;
4752   assem_debug("Assemble delay slot at %x\n",ba[i]);
4753   assem_debug("<->\n");
4754   if(regs[t].regmap_entry[HOST_CCREG]==CCREG&&regs[t].regmap[HOST_CCREG]!=CCREG)
4755     wb_register(CCREG,regs[t].regmap_entry,regs[t].wasdirty,regs[t].was32);
4756   load_regs(regs[t].regmap_entry,regs[t].regmap,regs[t].was32,rs1[t],rs2[t]);
4757   address_generation(t,&regs[t],regs[t].regmap_entry);
4758   if(itype[t]==STORE||itype[t]==STORELR||(opcode[t]&0x3b)==0x39||(opcode[t]&0x3b)==0x3a)
4759     load_regs(regs[t].regmap_entry,regs[t].regmap,regs[t].was32,INVCP,INVCP);
4760   cop1_usable=0;
4761   is_delayslot=0;
4762   switch(itype[t]) {
4763     case ALU:
4764       alu_assemble(t,&regs[t]);break;
4765     case IMM16:
4766       imm16_assemble(t,&regs[t]);break;
4767     case SHIFT:
4768       shift_assemble(t,&regs[t]);break;
4769     case SHIFTIMM:
4770       shiftimm_assemble(t,&regs[t]);break;
4771     case LOAD:
4772       load_assemble(t,&regs[t]);break;
4773     case LOADLR:
4774       loadlr_assemble(t,&regs[t]);break;
4775     case STORE:
4776       store_assemble(t,&regs[t]);break;
4777     case STORELR:
4778       storelr_assemble(t,&regs[t]);break;
4779     case COP0:
4780       cop0_assemble(t,&regs[t]);break;
4781     case COP1:
4782       cop1_assemble(t,&regs[t]);break;
4783     case C1LS:
4784       c1ls_assemble(t,&regs[t]);break;
4785     case COP2:
4786       cop2_assemble(t,&regs[t]);break;
4787     case C2LS:
4788       c2ls_assemble(t,&regs[t]);break;
4789     case C2OP:
4790       c2op_assemble(t,&regs[t]);break;
4791     case FCONV:
4792       fconv_assemble(t,&regs[t]);break;
4793     case FLOAT:
4794       float_assemble(t,&regs[t]);break;
4795     case FCOMP:
4796       fcomp_assemble(t,&regs[t]);break;
4797     case MULTDIV:
4798       multdiv_assemble(t,&regs[t]);break;
4799     case MOV:
4800       mov_assemble(t,&regs[t]);break;
4801     case SYSCALL:
4802     case HLECALL:
4803     case INTCALL:
4804     case SPAN:
4805     case UJUMP:
4806     case RJUMP:
4807     case CJUMP:
4808     case SJUMP:
4809     case FJUMP:
4810       printf("Jump in the delay slot.  This is probably a bug.\n");
4811   }
4812   store_regs_bt(regs[t].regmap,regs[t].is32,regs[t].dirty,ba[i]+4);
4813   load_regs_bt(regs[t].regmap,regs[t].is32,regs[t].dirty,ba[i]+4);
4814   if(internal_branch(regs[t].is32,ba[i]+4))
4815     assem_debug("branch: internal\n");
4816   else
4817     assem_debug("branch: external\n");
4818   assert(internal_branch(regs[t].is32,ba[i]+4));
4819   add_to_linker((int)out,ba[i]+4,internal_branch(regs[t].is32,ba[i]+4));
4820   emit_jmp(0);
4821 }
4822
4823 void do_cc(int i,signed char i_regmap[],int *adj,int addr,int taken,int invert)
4824 {
4825   int count;
4826   int jaddr;
4827   int idle=0;
4828   if(itype[i]==RJUMP)
4829   {
4830     *adj=0;
4831   }
4832   //if(ba[i]>=start && ba[i]<(start+slen*4))
4833   if(internal_branch(branch_regs[i].is32,ba[i]))
4834   {
4835     int t=(ba[i]-start)>>2;
4836     if(is_ds[t]) *adj=-1; // Branch into delay slot adds an extra cycle
4837     else *adj=ccadj[t];
4838   }
4839   else
4840   {
4841     *adj=0;
4842   }
4843   count=ccadj[i];
4844   if(taken==TAKEN && i==(ba[i]-start)>>2 && source[i+1]==0) {
4845     // Idle loop
4846     if(count&1) emit_addimm_and_set_flags(2*(count+2),HOST_CCREG);
4847     idle=(int)out;
4848     //emit_subfrommem(&idlecount,HOST_CCREG); // Count idle cycles
4849     emit_andimm(HOST_CCREG,3,HOST_CCREG);
4850     jaddr=(int)out;
4851     emit_jmp(0);
4852   }
4853   else if(*adj==0||invert) {
4854     emit_addimm_and_set_flags(CLOCK_DIVIDER*(count+2),HOST_CCREG);
4855     jaddr=(int)out;
4856     emit_jns(0);
4857   }
4858   else
4859   {
4860     emit_cmpimm(HOST_CCREG,-2*(count+2));
4861     jaddr=(int)out;
4862     emit_jns(0);
4863   }
4864   add_stub(CC_STUB,jaddr,idle?idle:(int)out,(*adj==0||invert||idle)?0:(count+2),i,addr,taken,0);
4865 }
4866
4867 void do_ccstub(int n)
4868 {
4869   literal_pool(256);
4870   assem_debug("do_ccstub %x\n",start+stubs[n][4]*4);
4871   set_jump_target(stubs[n][1],(int)out);
4872   int i=stubs[n][4];
4873   if(stubs[n][6]==NULLDS) {
4874     // Delay slot instruction is nullified ("likely" branch)
4875     wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
4876   }
4877   else if(stubs[n][6]!=TAKEN) {
4878     wb_dirtys(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty);
4879   }
4880   else {
4881     if(internal_branch(branch_regs[i].is32,ba[i]))
4882       wb_needed_dirtys(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
4883   }
4884   if(stubs[n][5]!=-1)
4885   {
4886     // Save PC as return address
4887     emit_movimm(stubs[n][5],EAX);
4888     emit_writeword(EAX,(int)&pcaddr);
4889   }
4890   else
4891   {
4892     // Return address depends on which way the branch goes
4893     if(itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
4894     {
4895       int s1l=get_reg(branch_regs[i].regmap,rs1[i]);
4896       int s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
4897       int s2l=get_reg(branch_regs[i].regmap,rs2[i]);
4898       int s2h=get_reg(branch_regs[i].regmap,rs2[i]|64);
4899       if(rs1[i]==0)
4900       {
4901         s1l=s2l;s1h=s2h;
4902         s2l=s2h=-1;
4903       }
4904       else if(rs2[i]==0)
4905       {
4906         s2l=s2h=-1;
4907       }
4908       if((branch_regs[i].is32>>rs1[i])&(branch_regs[i].is32>>rs2[i])&1) {
4909         s1h=s2h=-1;
4910       }
4911       assert(s1l>=0);
4912       #ifdef DESTRUCTIVE_WRITEBACK
4913       if(rs1[i]) {
4914         if((branch_regs[i].dirty>>s1l)&(branch_regs[i].is32>>rs1[i])&1)
4915           emit_loadreg(rs1[i],s1l);
4916       } 
4917       else {
4918         if((branch_regs[i].dirty>>s1l)&(branch_regs[i].is32>>rs2[i])&1)
4919           emit_loadreg(rs2[i],s1l);
4920       }
4921       if(s2l>=0)
4922         if((branch_regs[i].dirty>>s2l)&(branch_regs[i].is32>>rs2[i])&1)
4923           emit_loadreg(rs2[i],s2l);
4924       #endif
4925       int hr=0;
4926       int addr=-1,alt=-1,ntaddr=-1;
4927       while(hr<HOST_REGS)
4928       {
4929         if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4930            (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
4931            (branch_regs[i].regmap[hr]&63)!=rs2[i] )
4932         {
4933           addr=hr++;break;
4934         }
4935         hr++;
4936       }
4937       while(hr<HOST_REGS)
4938       {
4939         if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4940            (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
4941            (branch_regs[i].regmap[hr]&63)!=rs2[i] )
4942         {
4943           alt=hr++;break;
4944         }
4945         hr++;
4946       }
4947       if((opcode[i]&0x2E)==6) // BLEZ/BGTZ needs another register
4948       {
4949         while(hr<HOST_REGS)
4950         {
4951           if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4952              (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
4953              (branch_regs[i].regmap[hr]&63)!=rs2[i] )
4954           {
4955             ntaddr=hr;break;
4956           }
4957           hr++;
4958         }
4959         assert(hr<HOST_REGS);
4960       }
4961       if((opcode[i]&0x2f)==4) // BEQ
4962       {
4963         #ifdef HAVE_CMOV_IMM
4964         if(s1h<0) {
4965           if(s2l>=0) emit_cmp(s1l,s2l);
4966           else emit_test(s1l,s1l);
4967           emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
4968         }
4969         else
4970         #endif
4971         {
4972           emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
4973           if(s1h>=0) {
4974             if(s2h>=0) emit_cmp(s1h,s2h);
4975             else emit_test(s1h,s1h);
4976             emit_cmovne_reg(alt,addr);
4977           }
4978           if(s2l>=0) emit_cmp(s1l,s2l);
4979           else emit_test(s1l,s1l);
4980           emit_cmovne_reg(alt,addr);
4981         }
4982       }
4983       if((opcode[i]&0x2f)==5) // BNE
4984       {
4985         #ifdef HAVE_CMOV_IMM
4986         if(s1h<0) {
4987           if(s2l>=0) emit_cmp(s1l,s2l);
4988           else emit_test(s1l,s1l);
4989           emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
4990         }
4991         else
4992         #endif
4993         {
4994           emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
4995           if(s1h>=0) {
4996             if(s2h>=0) emit_cmp(s1h,s2h);
4997             else emit_test(s1h,s1h);
4998             emit_cmovne_reg(alt,addr);
4999           }
5000           if(s2l>=0) emit_cmp(s1l,s2l);
5001           else emit_test(s1l,s1l);
5002           emit_cmovne_reg(alt,addr);
5003         }
5004       }
5005       if((opcode[i]&0x2f)==6) // BLEZ
5006       {
5007         //emit_movimm(ba[i],alt);
5008         //emit_movimm(start+i*4+8,addr);
5009         emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
5010         emit_cmpimm(s1l,1);
5011         if(s1h>=0) emit_mov(addr,ntaddr);
5012         emit_cmovl_reg(alt,addr);
5013         if(s1h>=0) {
5014           emit_test(s1h,s1h);
5015           emit_cmovne_reg(ntaddr,addr);
5016           emit_cmovs_reg(alt,addr);
5017         }
5018       }
5019       if((opcode[i]&0x2f)==7) // BGTZ
5020       {
5021         //emit_movimm(ba[i],addr);
5022         //emit_movimm(start+i*4+8,ntaddr);
5023         emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
5024         emit_cmpimm(s1l,1);
5025         if(s1h>=0) emit_mov(addr,alt);
5026         emit_cmovl_reg(ntaddr,addr);
5027         if(s1h>=0) {
5028           emit_test(s1h,s1h);
5029           emit_cmovne_reg(alt,addr);
5030           emit_cmovs_reg(ntaddr,addr);
5031         }
5032       }
5033       if((opcode[i]==1)&&(opcode2[i]&0x2D)==0) // BLTZ
5034       {
5035         //emit_movimm(ba[i],alt);
5036         //emit_movimm(start+i*4+8,addr);
5037         emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
5038         if(s1h>=0) emit_test(s1h,s1h);
5039         else emit_test(s1l,s1l);
5040         emit_cmovs_reg(alt,addr);
5041       }
5042       if((opcode[i]==1)&&(opcode2[i]&0x2D)==1) // BGEZ
5043       {
5044         //emit_movimm(ba[i],addr);
5045         //emit_movimm(start+i*4+8,alt);
5046         emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
5047         if(s1h>=0) emit_test(s1h,s1h);
5048         else emit_test(s1l,s1l);
5049         emit_cmovs_reg(alt,addr);
5050       }
5051       if(opcode[i]==0x11 && opcode2[i]==0x08 ) {
5052         if(source[i]&0x10000) // BC1T
5053         {
5054           //emit_movimm(ba[i],alt);
5055           //emit_movimm(start+i*4+8,addr);
5056           emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
5057           emit_testimm(s1l,0x800000);
5058           emit_cmovne_reg(alt,addr);
5059         }
5060         else // BC1F
5061         {
5062           //emit_movimm(ba[i],addr);
5063           //emit_movimm(start+i*4+8,alt);
5064           emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
5065           emit_testimm(s1l,0x800000);
5066           emit_cmovne_reg(alt,addr);
5067         }
5068       }
5069       emit_writeword(addr,(int)&pcaddr);
5070     }
5071     else
5072     if(itype[i]==RJUMP)
5073     {
5074       int r=get_reg(branch_regs[i].regmap,rs1[i]);
5075       if(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]) {
5076         r=get_reg(branch_regs[i].regmap,RTEMP);
5077       }
5078       emit_writeword(r,(int)&pcaddr);
5079     }
5080     else {printf("Unknown branch type in do_ccstub\n");exit(1);}
5081   }
5082   // Update cycle count
5083   assert(branch_regs[i].regmap[HOST_CCREG]==CCREG||branch_regs[i].regmap[HOST_CCREG]==-1);
5084   if(stubs[n][3]) emit_addimm(HOST_CCREG,CLOCK_DIVIDER*stubs[n][3],HOST_CCREG);
5085   emit_call((int)cc_interrupt);
5086   if(stubs[n][3]) emit_addimm(HOST_CCREG,-CLOCK_DIVIDER*stubs[n][3],HOST_CCREG);
5087   if(stubs[n][6]==TAKEN) {
5088     if(internal_branch(branch_regs[i].is32,ba[i]))
5089       load_needed_regs(branch_regs[i].regmap,regs[(ba[i]-start)>>2].regmap_entry);
5090     else if(itype[i]==RJUMP) {
5091       if(get_reg(branch_regs[i].regmap,RTEMP)>=0)
5092         emit_readword((int)&pcaddr,get_reg(branch_regs[i].regmap,RTEMP));
5093       else
5094         emit_loadreg(rs1[i],get_reg(branch_regs[i].regmap,rs1[i]));
5095     }
5096   }else if(stubs[n][6]==NOTTAKEN) {
5097     if(i<slen-2) load_needed_regs(branch_regs[i].regmap,regmap_pre[i+2]);
5098     else load_all_regs(branch_regs[i].regmap);
5099   }else if(stubs[n][6]==NULLDS) {
5100     // Delay slot instruction is nullified ("likely" branch)
5101     if(i<slen-2) load_needed_regs(regs[i].regmap,regmap_pre[i+2]);
5102     else load_all_regs(regs[i].regmap);
5103   }else{
5104     load_all_regs(branch_regs[i].regmap);
5105   }
5106   emit_jmp(stubs[n][2]); // return address
5107   
5108   /* This works but uses a lot of memory...
5109   emit_readword((int)&last_count,ECX);
5110   emit_add(HOST_CCREG,ECX,EAX);
5111   emit_writeword(EAX,(int)&Count);
5112   emit_call((int)gen_interupt);
5113   emit_readword((int)&Count,HOST_CCREG);
5114   emit_readword((int)&next_interupt,EAX);
5115   emit_readword((int)&pending_exception,EBX);
5116   emit_writeword(EAX,(int)&last_count);
5117   emit_sub(HOST_CCREG,EAX,HOST_CCREG);
5118   emit_test(EBX,EBX);
5119   int jne_instr=(int)out;
5120   emit_jne(0);
5121   if(stubs[n][3]) emit_addimm(HOST_CCREG,-2*stubs[n][3],HOST_CCREG);
5122   load_all_regs(branch_regs[i].regmap);
5123   emit_jmp(stubs[n][2]); // return address
5124   set_jump_target(jne_instr,(int)out);
5125   emit_readword((int)&pcaddr,EAX);
5126   // Call get_addr_ht instead of doing the hash table here.
5127   // This code is executed infrequently and takes up a lot of space
5128   // so smaller is better.
5129   emit_storereg(CCREG,HOST_CCREG);
5130   emit_pushreg(EAX);
5131   emit_call((int)get_addr_ht);
5132   emit_loadreg(CCREG,HOST_CCREG);
5133   emit_addimm(ESP,4,ESP);
5134   emit_jmpreg(EAX);*/
5135 }
5136
5137 add_to_linker(int addr,int target,int ext)
5138 {
5139   link_addr[linkcount][0]=addr;
5140   link_addr[linkcount][1]=target;
5141   link_addr[linkcount][2]=ext;  
5142   linkcount++;
5143 }
5144
5145 void ujump_assemble(int i,struct regstat *i_regs)
5146 {
5147   signed char *i_regmap=i_regs->regmap;
5148   if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5149   address_generation(i+1,i_regs,regs[i].regmap_entry);
5150   #ifdef REG_PREFETCH
5151   int temp=get_reg(branch_regs[i].regmap,PTEMP);
5152   if(rt1[i]==31&&temp>=0) 
5153   {
5154     int return_address=start+i*4+8;
5155     if(get_reg(branch_regs[i].regmap,31)>0) 
5156     if(i_regmap[temp]==PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5157   }
5158   #endif
5159   if(rt1[i]==31) {
5160     int rt;
5161     unsigned int return_address;
5162     rt=get_reg(branch_regs[i].regmap,31);
5163     assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5164     //assert(rt>=0);
5165     return_address=start+i*4+8;
5166     if(rt>=0) {
5167       #ifdef USE_MINI_HT
5168       if(internal_branch(branch_regs[i].is32,return_address)&&rt1[i+1]!=31) {
5169         int temp=-1; // note: must be ds-safe
5170         #ifdef HOST_TEMPREG
5171         temp=HOST_TEMPREG;
5172         #endif
5173         if(temp>=0) do_miniht_insert(return_address,rt,temp);
5174         else emit_movimm(return_address,rt);
5175       }
5176       else
5177       #endif
5178       {
5179         #ifdef REG_PREFETCH
5180         if(temp>=0) 
5181         {
5182           if(i_regmap[temp]!=PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5183         }
5184         #endif
5185         emit_movimm(return_address,rt); // PC into link register
5186         #ifdef IMM_PREFETCH
5187         emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5188         #endif
5189       }
5190     }
5191   }
5192   ds_assemble(i+1,i_regs);
5193   uint64_t bc_unneeded=branch_regs[i].u;
5194   uint64_t bc_unneeded_upper=branch_regs[i].uu;
5195   bc_unneeded|=1|(1LL<<rt1[i]);
5196   bc_unneeded_upper|=1|(1LL<<rt1[i]);
5197   wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5198                 bc_unneeded,bc_unneeded_upper);
5199   load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5200   int cc,adj;
5201   cc=get_reg(branch_regs[i].regmap,CCREG);
5202   assert(cc==HOST_CCREG);
5203   store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5204   #ifdef REG_PREFETCH
5205   if(rt1[i]==31&&temp>=0) emit_prefetchreg(temp);
5206   #endif
5207   do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5208   if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5209   load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5210   if(internal_branch(branch_regs[i].is32,ba[i]))
5211     assem_debug("branch: internal\n");
5212   else
5213     assem_debug("branch: external\n");
5214   if(internal_branch(branch_regs[i].is32,ba[i])&&is_ds[(ba[i]-start)>>2]) {
5215     ds_assemble_entry(i);
5216   }
5217   else {
5218     add_to_linker((int)out,ba[i],internal_branch(branch_regs[i].is32,ba[i]));
5219     emit_jmp(0);
5220   }
5221 }
5222
5223 void rjump_assemble(int i,struct regstat *i_regs)
5224 {
5225   signed char *i_regmap=i_regs->regmap;
5226   int temp;
5227   int rs,cc,adj;
5228   rs=get_reg(branch_regs[i].regmap,rs1[i]);
5229   assert(rs>=0);
5230   if(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]) {
5231     // Delay slot abuse, make a copy of the branch address register
5232     temp=get_reg(branch_regs[i].regmap,RTEMP);
5233     assert(temp>=0);
5234     assert(regs[i].regmap[temp]==RTEMP);
5235     emit_mov(rs,temp);
5236     rs=temp;
5237   }
5238   address_generation(i+1,i_regs,regs[i].regmap_entry);
5239   #ifdef REG_PREFETCH
5240   if(rt1[i]==31) 
5241   {
5242     if((temp=get_reg(branch_regs[i].regmap,PTEMP))>=0) {
5243       int return_address=start+i*4+8;
5244       if(i_regmap[temp]==PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5245     }
5246   }
5247   #endif
5248   #ifdef USE_MINI_HT
5249   if(rs1[i]==31) {
5250     int rh=get_reg(regs[i].regmap,RHASH);
5251     if(rh>=0) do_preload_rhash(rh);
5252   }
5253   #endif
5254   ds_assemble(i+1,i_regs);
5255   uint64_t bc_unneeded=branch_regs[i].u;
5256   uint64_t bc_unneeded_upper=branch_regs[i].uu;
5257   bc_unneeded|=1|(1LL<<rt1[i]);
5258   bc_unneeded_upper|=1|(1LL<<rt1[i]);
5259   bc_unneeded&=~(1LL<<rs1[i]);
5260   wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5261                 bc_unneeded,bc_unneeded_upper);
5262   load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],CCREG);
5263   if(rt1[i]!=0) {
5264     int rt,return_address;
5265     assert(rt1[i+1]!=rt1[i]);
5266     assert(rt2[i+1]!=rt1[i]);
5267     rt=get_reg(branch_regs[i].regmap,rt1[i]);
5268     assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5269     assert(rt>=0);
5270     return_address=start+i*4+8;
5271     #ifdef REG_PREFETCH
5272     if(temp>=0) 
5273     {
5274       if(i_regmap[temp]!=PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5275     }
5276     #endif
5277     emit_movimm(return_address,rt); // PC into link register
5278     #ifdef IMM_PREFETCH
5279     emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5280     #endif
5281   }
5282   cc=get_reg(branch_regs[i].regmap,CCREG);
5283   assert(cc==HOST_CCREG);
5284   #ifdef USE_MINI_HT
5285   int rh=get_reg(branch_regs[i].regmap,RHASH);
5286   int ht=get_reg(branch_regs[i].regmap,RHTBL);
5287   if(rs1[i]==31) {
5288     if(regs[i].regmap[rh]!=RHASH) do_preload_rhash(rh);
5289     do_preload_rhtbl(ht);
5290     do_rhash(rs,rh);
5291   }
5292   #endif
5293   store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,-1);
5294   #ifdef DESTRUCTIVE_WRITEBACK
5295   if((branch_regs[i].dirty>>rs)&(branch_regs[i].is32>>rs1[i])&1) {
5296     if(rs1[i]!=rt1[i+1]&&rs1[i]!=rt2[i+1]) {
5297       emit_loadreg(rs1[i],rs);
5298     }
5299   }
5300   #endif
5301   #ifdef REG_PREFETCH
5302   if(rt1[i]==31&&temp>=0) emit_prefetchreg(temp);
5303   #endif
5304   #ifdef USE_MINI_HT
5305   if(rs1[i]==31) {
5306     do_miniht_load(ht,rh);
5307   }
5308   #endif
5309   //do_cc(i,branch_regs[i].regmap,&adj,-1,TAKEN);
5310   //if(adj) emit_addimm(cc,2*(ccadj[i]+2-adj),cc); // ??? - Shouldn't happen
5311   //assert(adj==0);
5312   emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
5313   add_stub(CC_STUB,(int)out,jump_vaddr_reg[rs],0,i,-1,TAKEN,0);
5314   emit_jns(0);
5315   //load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,-1);
5316   #ifdef USE_MINI_HT
5317   if(rs1[i]==31) {
5318     do_miniht_jump(rs,rh,ht);
5319   }
5320   else
5321   #endif
5322   {
5323     //if(rs!=EAX) emit_mov(rs,EAX);
5324     //emit_jmp((int)jump_vaddr_eax);
5325     emit_jmp(jump_vaddr_reg[rs]);
5326   }
5327   /* Check hash table
5328   temp=!rs;
5329   emit_mov(rs,temp);
5330   emit_shrimm(rs,16,rs);
5331   emit_xor(temp,rs,rs);
5332   emit_movzwl_reg(rs,rs);
5333   emit_shlimm(rs,4,rs);
5334   emit_cmpmem_indexed((int)hash_table,rs,temp);
5335   emit_jne((int)out+14);
5336   emit_readword_indexed((int)hash_table+4,rs,rs);
5337   emit_jmpreg(rs);
5338   emit_cmpmem_indexed((int)hash_table+8,rs,temp);
5339   emit_addimm_no_flags(8,rs);
5340   emit_jeq((int)out-17);
5341   // No hit on hash table, call compiler
5342   emit_pushreg(temp);
5343 //DEBUG >
5344 #ifdef DEBUG_CYCLE_COUNT
5345   emit_readword((int)&last_count,ECX);
5346   emit_add(HOST_CCREG,ECX,HOST_CCREG);
5347   emit_readword((int)&next_interupt,ECX);
5348   emit_writeword(HOST_CCREG,(int)&Count);
5349   emit_sub(HOST_CCREG,ECX,HOST_CCREG);
5350   emit_writeword(ECX,(int)&last_count);
5351 #endif
5352 //DEBUG <
5353   emit_storereg(CCREG,HOST_CCREG);
5354   emit_call((int)get_addr);
5355   emit_loadreg(CCREG,HOST_CCREG);
5356   emit_addimm(ESP,4,ESP);
5357   emit_jmpreg(EAX);*/
5358   #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5359   if(rt1[i]!=31&&i<slen-2&&(((u_int)out)&7)) emit_mov(13,13);
5360   #endif
5361 }
5362
5363 void cjump_assemble(int i,struct regstat *i_regs)
5364 {
5365   signed char *i_regmap=i_regs->regmap;
5366   int cc;
5367   int match;
5368   match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5369   assem_debug("match=%d\n",match);
5370   int s1h,s1l,s2h,s2l;
5371   int prev_cop1_usable=cop1_usable;
5372   int unconditional=0,nop=0;
5373   int only32=0;
5374   int invert=0;
5375   int internal=internal_branch(branch_regs[i].is32,ba[i]);
5376   if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5377   if(!match) invert=1;
5378   #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5379   if(i>(ba[i]-start)>>2) invert=1;
5380   #endif
5381   
5382   if(ooo[i]) {
5383     s1l=get_reg(branch_regs[i].regmap,rs1[i]);
5384     s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
5385     s2l=get_reg(branch_regs[i].regmap,rs2[i]);
5386     s2h=get_reg(branch_regs[i].regmap,rs2[i]|64);
5387   }
5388   else {
5389     s1l=get_reg(i_regmap,rs1[i]);
5390     s1h=get_reg(i_regmap,rs1[i]|64);
5391     s2l=get_reg(i_regmap,rs2[i]);
5392     s2h=get_reg(i_regmap,rs2[i]|64);
5393   }
5394   if(rs1[i]==0&&rs2[i]==0)
5395   {
5396     if(opcode[i]&1) nop=1;
5397     else unconditional=1;
5398     //assert(opcode[i]!=5);
5399     //assert(opcode[i]!=7);
5400     //assert(opcode[i]!=0x15);
5401     //assert(opcode[i]!=0x17);
5402   }
5403   else if(rs1[i]==0)
5404   {
5405     s1l=s2l;s1h=s2h;
5406     s2l=s2h=-1;
5407     only32=(regs[i].was32>>rs2[i])&1;
5408   }
5409   else if(rs2[i]==0)
5410   {
5411     s2l=s2h=-1;
5412     only32=(regs[i].was32>>rs1[i])&1;
5413   }
5414   else {
5415     only32=(regs[i].was32>>rs1[i])&(regs[i].was32>>rs2[i])&1;
5416   }
5417
5418   if(ooo[i]) {
5419     // Out of order execution (delay slot first)
5420     //printf("OOOE\n");
5421     address_generation(i+1,i_regs,regs[i].regmap_entry);
5422     ds_assemble(i+1,i_regs);
5423     int adj;
5424     uint64_t bc_unneeded=branch_regs[i].u;
5425     uint64_t bc_unneeded_upper=branch_regs[i].uu;
5426     bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
5427     bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
5428     bc_unneeded|=1;
5429     bc_unneeded_upper|=1;
5430     wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5431                   bc_unneeded,bc_unneeded_upper);
5432     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs2[i]);
5433     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5434     cc=get_reg(branch_regs[i].regmap,CCREG);
5435     assert(cc==HOST_CCREG);
5436     if(unconditional) 
5437       store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5438     //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
5439     //assem_debug("cycle count (adj)\n");
5440     if(unconditional) {
5441       do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5442       if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
5443         if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5444         load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5445         if(internal)
5446           assem_debug("branch: internal\n");
5447         else
5448           assem_debug("branch: external\n");
5449         if(internal&&is_ds[(ba[i]-start)>>2]) {
5450           ds_assemble_entry(i);
5451         }
5452         else {
5453           add_to_linker((int)out,ba[i],internal);
5454           emit_jmp(0);
5455         }
5456         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5457         if(((u_int)out)&7) emit_addnop(0);
5458         #endif
5459       }
5460     }
5461     else if(nop) {
5462       emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
5463       int jaddr=(int)out;
5464       emit_jns(0);
5465       add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5466     }
5467     else {
5468       int taken=0,nottaken=0,nottaken1=0;
5469       do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
5470       if(adj&&!invert) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5471       if(!only32)
5472       {
5473         assert(s1h>=0);
5474         if(opcode[i]==4) // BEQ
5475         {
5476           if(s2h>=0) emit_cmp(s1h,s2h);
5477           else emit_test(s1h,s1h);
5478           nottaken1=(int)out;
5479           emit_jne(1);
5480         }
5481         if(opcode[i]==5) // BNE
5482         {
5483           if(s2h>=0) emit_cmp(s1h,s2h);
5484           else emit_test(s1h,s1h);
5485           if(invert) taken=(int)out;
5486           else add_to_linker((int)out,ba[i],internal);
5487           emit_jne(0);
5488         }
5489         if(opcode[i]==6) // BLEZ
5490         {
5491           emit_test(s1h,s1h);
5492           if(invert) taken=(int)out;
5493           else add_to_linker((int)out,ba[i],internal);
5494           emit_js(0);
5495           nottaken1=(int)out;
5496           emit_jne(1);
5497         }
5498         if(opcode[i]==7) // BGTZ
5499         {
5500           emit_test(s1h,s1h);
5501           nottaken1=(int)out;
5502           emit_js(1);
5503           if(invert) taken=(int)out;
5504           else add_to_linker((int)out,ba[i],internal);
5505           emit_jne(0);
5506         }
5507       } // if(!only32)
5508           
5509       //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5510       assert(s1l>=0);
5511       if(opcode[i]==4) // BEQ
5512       {
5513         if(s2l>=0) emit_cmp(s1l,s2l);
5514         else emit_test(s1l,s1l);
5515         if(invert){
5516           nottaken=(int)out;
5517           emit_jne(1);
5518         }else{
5519           add_to_linker((int)out,ba[i],internal);
5520           emit_jeq(0);
5521         }
5522       }
5523       if(opcode[i]==5) // BNE
5524       {
5525         if(s2l>=0) emit_cmp(s1l,s2l);
5526         else emit_test(s1l,s1l);
5527         if(invert){
5528           nottaken=(int)out;
5529           emit_jeq(1);
5530         }else{
5531           add_to_linker((int)out,ba[i],internal);
5532           emit_jne(0);
5533         }
5534       }
5535       if(opcode[i]==6) // BLEZ
5536       {
5537         emit_cmpimm(s1l,1);
5538         if(invert){
5539           nottaken=(int)out;
5540           emit_jge(1);
5541         }else{
5542           add_to_linker((int)out,ba[i],internal);
5543           emit_jl(0);
5544         }
5545       }
5546       if(opcode[i]==7) // BGTZ
5547       {
5548         emit_cmpimm(s1l,1);
5549         if(invert){
5550           nottaken=(int)out;
5551           emit_jl(1);
5552         }else{
5553           add_to_linker((int)out,ba[i],internal);
5554           emit_jge(0);
5555         }
5556       }
5557       if(invert) {
5558         if(taken) set_jump_target(taken,(int)out);
5559         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5560         if(match&&(!internal||!is_ds[(ba[i]-start)>>2])) {
5561           if(adj) {
5562             emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5563             add_to_linker((int)out,ba[i],internal);
5564           }else{
5565             emit_addnop(13);
5566             add_to_linker((int)out,ba[i],internal*2);
5567           }
5568           emit_jmp(0);
5569         }else
5570         #endif
5571         {
5572           if(adj) emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5573           store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5574           load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5575           if(internal)
5576             assem_debug("branch: internal\n");
5577           else
5578             assem_debug("branch: external\n");
5579           if(internal&&is_ds[(ba[i]-start)>>2]) {
5580             ds_assemble_entry(i);
5581           }
5582           else {
5583             add_to_linker((int)out,ba[i],internal);
5584             emit_jmp(0);
5585           }
5586         }
5587         set_jump_target(nottaken,(int)out);
5588       }
5589
5590       if(nottaken1) set_jump_target(nottaken1,(int)out);
5591       if(adj) {
5592         if(!invert) emit_addimm(cc,CLOCK_DIVIDER*adj,cc);
5593       }
5594     } // (!unconditional)
5595   } // if(ooo)
5596   else
5597   {
5598     // In-order execution (branch first)
5599     //if(likely[i]) printf("IOL\n");
5600     //else
5601     //printf("IOE\n");
5602     int taken=0,nottaken=0,nottaken1=0;
5603     if(!unconditional&&!nop) {
5604       if(!only32)
5605       {
5606         assert(s1h>=0);
5607         if((opcode[i]&0x2f)==4) // BEQ
5608         {
5609           if(s2h>=0) emit_cmp(s1h,s2h);
5610           else emit_test(s1h,s1h);
5611           nottaken1=(int)out;
5612           emit_jne(2);
5613         }
5614         if((opcode[i]&0x2f)==5) // BNE
5615         {
5616           if(s2h>=0) emit_cmp(s1h,s2h);
5617           else emit_test(s1h,s1h);
5618           taken=(int)out;
5619           emit_jne(1);
5620         }
5621         if((opcode[i]&0x2f)==6) // BLEZ
5622         {
5623           emit_test(s1h,s1h);
5624           taken=(int)out;
5625           emit_js(1);
5626           nottaken1=(int)out;
5627           emit_jne(2);
5628         }
5629         if((opcode[i]&0x2f)==7) // BGTZ
5630         {
5631           emit_test(s1h,s1h);
5632           nottaken1=(int)out;
5633           emit_js(2);
5634           taken=(int)out;
5635           emit_jne(1);
5636         }
5637       } // if(!only32)
5638           
5639       //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5640       assert(s1l>=0);
5641       if((opcode[i]&0x2f)==4) // BEQ
5642       {
5643         if(s2l>=0) emit_cmp(s1l,s2l);
5644         else emit_test(s1l,s1l);
5645         nottaken=(int)out;
5646         emit_jne(2);
5647       }
5648       if((opcode[i]&0x2f)==5) // BNE
5649       {
5650         if(s2l>=0) emit_cmp(s1l,s2l);
5651         else emit_test(s1l,s1l);
5652         nottaken=(int)out;
5653         emit_jeq(2);
5654       }
5655       if((opcode[i]&0x2f)==6) // BLEZ
5656       {
5657         emit_cmpimm(s1l,1);
5658         nottaken=(int)out;
5659         emit_jge(2);
5660       }
5661       if((opcode[i]&0x2f)==7) // BGTZ
5662       {
5663         emit_cmpimm(s1l,1);
5664         nottaken=(int)out;
5665         emit_jl(2);
5666       }
5667     } // if(!unconditional)
5668     int adj;
5669     uint64_t ds_unneeded=branch_regs[i].u;
5670     uint64_t ds_unneeded_upper=branch_regs[i].uu;
5671     ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
5672     ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
5673     if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
5674     ds_unneeded|=1;
5675     ds_unneeded_upper|=1;
5676     // branch taken
5677     if(!nop) {
5678       if(taken) set_jump_target(taken,(int)out);
5679       assem_debug("1:\n");
5680       wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5681                     ds_unneeded,ds_unneeded_upper);
5682       // load regs
5683       load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5684       address_generation(i+1,&branch_regs[i],0);
5685       load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
5686       ds_assemble(i+1,&branch_regs[i]);
5687       cc=get_reg(branch_regs[i].regmap,CCREG);
5688       if(cc==-1) {
5689         emit_loadreg(CCREG,cc=HOST_CCREG);
5690         // CHECK: Is the following instruction (fall thru) allocated ok?
5691       }
5692       assert(cc==HOST_CCREG);
5693       store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5694       do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
5695       assem_debug("cycle count (adj)\n");
5696       if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5697       load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5698       if(internal)
5699         assem_debug("branch: internal\n");
5700       else
5701         assem_debug("branch: external\n");
5702       if(internal&&is_ds[(ba[i]-start)>>2]) {
5703         ds_assemble_entry(i);
5704       }
5705       else {
5706         add_to_linker((int)out,ba[i],internal);
5707         emit_jmp(0);
5708       }
5709     }
5710     // branch not taken
5711     cop1_usable=prev_cop1_usable;
5712     if(!unconditional) {
5713       if(nottaken1) set_jump_target(nottaken1,(int)out);
5714       set_jump_target(nottaken,(int)out);
5715       assem_debug("2:\n");
5716       if(!likely[i]) {
5717         wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5718                       ds_unneeded,ds_unneeded_upper);
5719         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5720         address_generation(i+1,&branch_regs[i],0);
5721         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5722         ds_assemble(i+1,&branch_regs[i]);
5723       }
5724       cc=get_reg(branch_regs[i].regmap,CCREG);
5725       if(cc==-1&&!likely[i]) {
5726         // Cycle count isn't in a register, temporarily load it then write it out
5727         emit_loadreg(CCREG,HOST_CCREG);
5728         emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
5729         int jaddr=(int)out;
5730         emit_jns(0);
5731         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5732         emit_storereg(CCREG,HOST_CCREG);
5733       }
5734       else{
5735         cc=get_reg(i_regmap,CCREG);
5736         assert(cc==HOST_CCREG);
5737         emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
5738         int jaddr=(int)out;
5739         emit_jns(0);
5740         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
5741       }
5742     }
5743   }
5744 }
5745
5746 void sjump_assemble(int i,struct regstat *i_regs)
5747 {
5748   signed char *i_regmap=i_regs->regmap;
5749   int cc;
5750   int match;
5751   match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5752   assem_debug("smatch=%d\n",match);
5753   int s1h,s1l;
5754   int prev_cop1_usable=cop1_usable;
5755   int unconditional=0,nevertaken=0;
5756   int only32=0;
5757   int invert=0;
5758   int internal=internal_branch(branch_regs[i].is32,ba[i]);
5759   if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5760   if(!match) invert=1;
5761   #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5762   if(i>(ba[i]-start)>>2) invert=1;
5763   #endif
5764
5765   //if(opcode2[i]>=0x10) return; // FIXME (BxxZAL)
5766   //assert(opcode2[i]<0x10||rs1[i]==0); // FIXME (BxxZAL)
5767
5768   if(ooo[i]) {
5769     s1l=get_reg(branch_regs[i].regmap,rs1[i]);
5770     s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
5771   }
5772   else {
5773     s1l=get_reg(i_regmap,rs1[i]);
5774     s1h=get_reg(i_regmap,rs1[i]|64);
5775   }
5776   if(rs1[i]==0)
5777   {
5778     if(opcode2[i]&1) unconditional=1;
5779     else nevertaken=1;
5780     // These are never taken (r0 is never less than zero)
5781     //assert(opcode2[i]!=0);
5782     //assert(opcode2[i]!=2);
5783     //assert(opcode2[i]!=0x10);
5784     //assert(opcode2[i]!=0x12);
5785   }
5786   else {
5787     only32=(regs[i].was32>>rs1[i])&1;
5788   }
5789
5790   if(ooo[i]) {
5791     // Out of order execution (delay slot first)
5792     //printf("OOOE\n");
5793     address_generation(i+1,i_regs,regs[i].regmap_entry);
5794     ds_assemble(i+1,i_regs);
5795     int adj;
5796     uint64_t bc_unneeded=branch_regs[i].u;
5797     uint64_t bc_unneeded_upper=branch_regs[i].uu;
5798     bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
5799     bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
5800     bc_unneeded|=1;
5801     bc_unneeded_upper|=1;
5802     wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5803                   bc_unneeded,bc_unneeded_upper);
5804     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs1[i]);
5805     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5806     if(rt1[i]==31) {
5807       int rt,return_address;
5808       rt=get_reg(branch_regs[i].regmap,31);
5809       assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5810       if(rt>=0) {
5811         // Save the PC even if the branch is not taken
5812         return_address=start+i*4+8;
5813         emit_movimm(return_address,rt); // PC into link register
5814         #ifdef IMM_PREFETCH
5815         if(!nevertaken) emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5816         #endif
5817       }
5818     }
5819     cc=get_reg(branch_regs[i].regmap,CCREG);
5820     assert(cc==HOST_CCREG);
5821     if(unconditional) 
5822       store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5823     //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
5824     assem_debug("cycle count (adj)\n");
5825     if(unconditional) {
5826       do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5827       if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
5828         if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5829         load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5830         if(internal)
5831           assem_debug("branch: internal\n");
5832         else
5833           assem_debug("branch: external\n");
5834         if(internal&&is_ds[(ba[i]-start)>>2]) {
5835           ds_assemble_entry(i);
5836         }
5837         else {
5838           add_to_linker((int)out,ba[i],internal);
5839           emit_jmp(0);
5840         }
5841         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5842         if(((u_int)out)&7) emit_addnop(0);
5843         #endif
5844       }
5845     }
5846     else if(nevertaken) {
5847       emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
5848       int jaddr=(int)out;
5849       emit_jns(0);
5850       add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5851     }
5852     else {
5853       int nottaken=0;
5854       do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
5855       if(adj&&!invert) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5856       if(!only32)
5857       {
5858         assert(s1h>=0);
5859         if((opcode2[i]&0xf)==0) // BLTZ/BLTZAL
5860         {
5861           emit_test(s1h,s1h);
5862           if(invert){
5863             nottaken=(int)out;
5864             emit_jns(1);
5865           }else{
5866             add_to_linker((int)out,ba[i],internal);
5867             emit_js(0);
5868           }
5869         }
5870         if((opcode2[i]&0xf)==1) // BGEZ/BLTZAL
5871         {
5872           emit_test(s1h,s1h);
5873           if(invert){
5874             nottaken=(int)out;
5875             emit_js(1);
5876           }else{
5877             add_to_linker((int)out,ba[i],internal);
5878             emit_jns(0);
5879           }
5880         }
5881       } // if(!only32)
5882       else
5883       {
5884         assert(s1l>=0);
5885         if((opcode2[i]&0xf)==0) // BLTZ/BLTZAL
5886         {
5887           emit_test(s1l,s1l);
5888           if(invert){
5889             nottaken=(int)out;
5890             emit_jns(1);
5891           }else{
5892             add_to_linker((int)out,ba[i],internal);
5893             emit_js(0);
5894           }
5895         }
5896         if((opcode2[i]&0xf)==1) // BGEZ/BLTZAL
5897         {
5898           emit_test(s1l,s1l);
5899           if(invert){
5900             nottaken=(int)out;
5901             emit_js(1);
5902           }else{
5903             add_to_linker((int)out,ba[i],internal);
5904             emit_jns(0);
5905           }
5906         }
5907       } // if(!only32)
5908           
5909       if(invert) {
5910         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5911         if(match&&(!internal||!is_ds[(ba[i]-start)>>2])) {
5912           if(adj) {
5913             emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5914             add_to_linker((int)out,ba[i],internal);
5915           }else{
5916             emit_addnop(13);
5917             add_to_linker((int)out,ba[i],internal*2);
5918           }
5919           emit_jmp(0);
5920         }else
5921         #endif
5922         {
5923           if(adj) emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5924           store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5925           load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5926           if(internal)
5927             assem_debug("branch: internal\n");
5928           else
5929             assem_debug("branch: external\n");
5930           if(internal&&is_ds[(ba[i]-start)>>2]) {
5931             ds_assemble_entry(i);
5932           }
5933           else {
5934             add_to_linker((int)out,ba[i],internal);
5935             emit_jmp(0);
5936           }
5937         }
5938         set_jump_target(nottaken,(int)out);
5939       }
5940
5941       if(adj) {
5942         if(!invert) emit_addimm(cc,CLOCK_DIVIDER*adj,cc);
5943       }
5944     } // (!unconditional)
5945   } // if(ooo)
5946   else
5947   {
5948     // In-order execution (branch first)
5949     //printf("IOE\n");
5950     int nottaken=0;
5951     if(rt1[i]==31) {
5952       int rt,return_address;
5953       rt=get_reg(branch_regs[i].regmap,31);
5954       if(rt>=0) {
5955         // Save the PC even if the branch is not taken
5956         return_address=start+i*4+8;
5957         emit_movimm(return_address,rt); // PC into link register
5958         #ifdef IMM_PREFETCH
5959         emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5960         #endif
5961       }
5962     }
5963     if(!unconditional) {
5964       //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5965       if(!only32)
5966       {
5967         assert(s1h>=0);
5968         if((opcode2[i]&0x0d)==0) // BLTZ/BLTZL/BLTZAL/BLTZALL
5969         {
5970           emit_test(s1h,s1h);
5971           nottaken=(int)out;
5972           emit_jns(1);
5973         }
5974         if((opcode2[i]&0x0d)==1) // BGEZ/BGEZL/BGEZAL/BGEZALL
5975         {
5976           emit_test(s1h,s1h);
5977           nottaken=(int)out;
5978           emit_js(1);
5979         }
5980       } // if(!only32)
5981       else
5982       {
5983         assert(s1l>=0);
5984         if((opcode2[i]&0x0d)==0) // BLTZ/BLTZL/BLTZAL/BLTZALL
5985         {
5986           emit_test(s1l,s1l);
5987           nottaken=(int)out;
5988           emit_jns(1);
5989         }
5990         if((opcode2[i]&0x0d)==1) // BGEZ/BGEZL/BGEZAL/BGEZALL
5991         {
5992           emit_test(s1l,s1l);
5993           nottaken=(int)out;
5994           emit_js(1);
5995         }
5996       }
5997     } // if(!unconditional)
5998     int adj;
5999     uint64_t ds_unneeded=branch_regs[i].u;
6000     uint64_t ds_unneeded_upper=branch_regs[i].uu;
6001     ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6002     ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6003     if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
6004     ds_unneeded|=1;
6005     ds_unneeded_upper|=1;
6006     // branch taken
6007     if(!nevertaken) {
6008       //assem_debug("1:\n");
6009       wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6010                     ds_unneeded,ds_unneeded_upper);
6011       // load regs
6012       load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
6013       address_generation(i+1,&branch_regs[i],0);
6014       load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
6015       ds_assemble(i+1,&branch_regs[i]);
6016       cc=get_reg(branch_regs[i].regmap,CCREG);
6017       if(cc==-1) {
6018         emit_loadreg(CCREG,cc=HOST_CCREG);
6019         // CHECK: Is the following instruction (fall thru) allocated ok?
6020       }
6021       assert(cc==HOST_CCREG);
6022       store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6023       do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
6024       assem_debug("cycle count (adj)\n");
6025       if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
6026       load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6027       if(internal)
6028         assem_debug("branch: internal\n");
6029       else
6030         assem_debug("branch: external\n");
6031       if(internal&&is_ds[(ba[i]-start)>>2]) {
6032         ds_assemble_entry(i);
6033       }
6034       else {
6035         add_to_linker((int)out,ba[i],internal);
6036         emit_jmp(0);
6037       }
6038     }
6039     // branch not taken
6040     cop1_usable=prev_cop1_usable;
6041     if(!unconditional) {
6042       set_jump_target(nottaken,(int)out);
6043       assem_debug("1:\n");
6044       if(!likely[i]) {
6045         wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6046                       ds_unneeded,ds_unneeded_upper);
6047         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
6048         address_generation(i+1,&branch_regs[i],0);
6049         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
6050         ds_assemble(i+1,&branch_regs[i]);
6051       }
6052       cc=get_reg(branch_regs[i].regmap,CCREG);
6053       if(cc==-1&&!likely[i]) {
6054         // Cycle count isn't in a register, temporarily load it then write it out
6055         emit_loadreg(CCREG,HOST_CCREG);
6056         emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
6057         int jaddr=(int)out;
6058         emit_jns(0);
6059         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
6060         emit_storereg(CCREG,HOST_CCREG);
6061       }
6062       else{
6063         cc=get_reg(i_regmap,CCREG);
6064         assert(cc==HOST_CCREG);
6065         emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
6066         int jaddr=(int)out;
6067         emit_jns(0);
6068         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
6069       }
6070     }
6071   }
6072 }
6073
6074 void fjump_assemble(int i,struct regstat *i_regs)
6075 {
6076   signed char *i_regmap=i_regs->regmap;
6077   int cc;
6078   int match;
6079   match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6080   assem_debug("fmatch=%d\n",match);
6081   int fs,cs;
6082   int eaddr;
6083   int invert=0;
6084   int internal=internal_branch(branch_regs[i].is32,ba[i]);
6085   if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
6086   if(!match) invert=1;
6087   #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
6088   if(i>(ba[i]-start)>>2) invert=1;
6089   #endif
6090
6091   if(ooo[i]) {
6092     fs=get_reg(branch_regs[i].regmap,FSREG);
6093     address_generation(i+1,i_regs,regs[i].regmap_entry); // Is this okay?
6094   }
6095   else {
6096     fs=get_reg(i_regmap,FSREG);
6097   }
6098
6099   // Check cop1 unusable
6100   if(!cop1_usable) {
6101     cs=get_reg(i_regmap,CSREG);
6102     assert(cs>=0);
6103     emit_testimm(cs,0x20000000);
6104     eaddr=(int)out;
6105     emit_jeq(0);
6106     add_stub(FP_STUB,eaddr,(int)out,i,cs,(int)i_regs,0,0);
6107     cop1_usable=1;
6108   }
6109
6110   if(ooo[i]) {
6111     // Out of order execution (delay slot first)
6112     //printf("OOOE\n");
6113     ds_assemble(i+1,i_regs);
6114     int adj;
6115     uint64_t bc_unneeded=branch_regs[i].u;
6116     uint64_t bc_unneeded_upper=branch_regs[i].uu;
6117     bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
6118     bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
6119     bc_unneeded|=1;
6120     bc_unneeded_upper|=1;
6121     wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6122                   bc_unneeded,bc_unneeded_upper);
6123     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs1[i]);
6124     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
6125     cc=get_reg(branch_regs[i].regmap,CCREG);
6126     assert(cc==HOST_CCREG);
6127     do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
6128     assem_debug("cycle count (adj)\n");
6129     if(1) {
6130       int nottaken=0;
6131       if(adj&&!invert) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
6132       if(1) {
6133         assert(fs>=0);
6134         emit_testimm(fs,0x800000);
6135         if(source[i]&0x10000) // BC1T
6136         {
6137           if(invert){
6138             nottaken=(int)out;
6139             emit_jeq(1);
6140           }else{
6141             add_to_linker((int)out,ba[i],internal);
6142             emit_jne(0);
6143           }
6144         }
6145         else // BC1F
6146           if(invert){
6147             nottaken=(int)out;
6148             emit_jne(1);
6149           }else{
6150             add_to_linker((int)out,ba[i],internal);
6151             emit_jeq(0);
6152           }
6153         {
6154         }
6155       } // if(!only32)
6156           
6157       if(invert) {
6158         if(adj) emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
6159         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
6160         else if(match) emit_addnop(13);
6161         #endif
6162         store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6163         load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6164         if(internal)
6165           assem_debug("branch: internal\n");
6166         else
6167           assem_debug("branch: external\n");
6168         if(internal&&is_ds[(ba[i]-start)>>2]) {
6169           ds_assemble_entry(i);
6170         }
6171         else {
6172           add_to_linker((int)out,ba[i],internal);
6173           emit_jmp(0);
6174         }
6175         set_jump_target(nottaken,(int)out);
6176       }
6177
6178       if(adj) {
6179         if(!invert) emit_addimm(cc,CLOCK_DIVIDER*adj,cc);
6180       }
6181     } // (!unconditional)
6182   } // if(ooo)
6183   else
6184   {
6185     // In-order execution (branch first)
6186     //printf("IOE\n");
6187     int nottaken=0;
6188     if(1) {
6189       //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
6190       if(1) {
6191         assert(fs>=0);
6192         emit_testimm(fs,0x800000);
6193         if(source[i]&0x10000) // BC1T
6194         {
6195           nottaken=(int)out;
6196           emit_jeq(1);
6197         }
6198         else // BC1F
6199         {
6200           nottaken=(int)out;
6201           emit_jne(1);
6202         }
6203       }
6204     } // if(!unconditional)
6205     int adj;
6206     uint64_t ds_unneeded=branch_regs[i].u;
6207     uint64_t ds_unneeded_upper=branch_regs[i].uu;
6208     ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6209     ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6210     if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
6211     ds_unneeded|=1;
6212     ds_unneeded_upper|=1;
6213     // branch taken
6214     //assem_debug("1:\n");
6215     wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6216                   ds_unneeded,ds_unneeded_upper);
6217     // load regs
6218     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
6219     address_generation(i+1,&branch_regs[i],0);
6220     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
6221     ds_assemble(i+1,&branch_regs[i]);
6222     cc=get_reg(branch_regs[i].regmap,CCREG);
6223     if(cc==-1) {
6224       emit_loadreg(CCREG,cc=HOST_CCREG);
6225       // CHECK: Is the following instruction (fall thru) allocated ok?
6226     }
6227     assert(cc==HOST_CCREG);
6228     store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6229     do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
6230     assem_debug("cycle count (adj)\n");
6231     if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
6232     load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6233     if(internal)
6234       assem_debug("branch: internal\n");
6235     else
6236       assem_debug("branch: external\n");
6237     if(internal&&is_ds[(ba[i]-start)>>2]) {
6238       ds_assemble_entry(i);
6239     }
6240     else {
6241       add_to_linker((int)out,ba[i],internal);
6242       emit_jmp(0);
6243     }
6244
6245     // branch not taken
6246     if(1) { // <- FIXME (don't need this)
6247       set_jump_target(nottaken,(int)out);
6248       assem_debug("1:\n");
6249       if(!likely[i]) {
6250         wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6251                       ds_unneeded,ds_unneeded_upper);
6252         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
6253         address_generation(i+1,&branch_regs[i],0);
6254         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
6255         ds_assemble(i+1,&branch_regs[i]);
6256       }
6257       cc=get_reg(branch_regs[i].regmap,CCREG);
6258       if(cc==-1&&!likely[i]) {
6259         // Cycle count isn't in a register, temporarily load it then write it out
6260         emit_loadreg(CCREG,HOST_CCREG);
6261         emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
6262         int jaddr=(int)out;
6263         emit_jns(0);
6264         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
6265         emit_storereg(CCREG,HOST_CCREG);
6266       }
6267       else{
6268         cc=get_reg(i_regmap,CCREG);
6269         assert(cc==HOST_CCREG);
6270         emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
6271         int jaddr=(int)out;
6272         emit_jns(0);
6273         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
6274       }
6275     }
6276   }
6277 }
6278
6279 static void pagespan_assemble(int i,struct regstat *i_regs)
6280 {
6281   int s1l=get_reg(i_regs->regmap,rs1[i]);
6282   int s1h=get_reg(i_regs->regmap,rs1[i]|64);
6283   int s2l=get_reg(i_regs->regmap,rs2[i]);
6284   int s2h=get_reg(i_regs->regmap,rs2[i]|64);
6285   void *nt_branch=NULL;
6286   int taken=0;
6287   int nottaken=0;
6288   int unconditional=0;
6289   if(rs1[i]==0)
6290   {
6291     s1l=s2l;s1h=s2h;
6292     s2l=s2h=-1;
6293   }
6294   else if(rs2[i]==0)
6295   {
6296     s2l=s2h=-1;
6297   }
6298   if((i_regs->is32>>rs1[i])&(i_regs->is32>>rs2[i])&1) {
6299     s1h=s2h=-1;
6300   }
6301   int hr=0;
6302   int addr,alt,ntaddr;
6303   if(i_regs->regmap[HOST_BTREG]<0) {addr=HOST_BTREG;}
6304   else {
6305     while(hr<HOST_REGS)
6306     {
6307       if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
6308          (i_regs->regmap[hr]&63)!=rs1[i] &&
6309          (i_regs->regmap[hr]&63)!=rs2[i] )
6310       {
6311         addr=hr++;break;
6312       }
6313       hr++;
6314     }
6315   }
6316   while(hr<HOST_REGS)
6317   {
6318     if(hr!=EXCLUDE_REG && hr!=HOST_CCREG && hr!=HOST_BTREG &&
6319        (i_regs->regmap[hr]&63)!=rs1[i] &&
6320        (i_regs->regmap[hr]&63)!=rs2[i] )
6321     {
6322       alt=hr++;break;
6323     }
6324     hr++;
6325   }
6326   if((opcode[i]&0x2E)==6) // BLEZ/BGTZ needs another register
6327   {
6328     while(hr<HOST_REGS)
6329     {
6330       if(hr!=EXCLUDE_REG && hr!=HOST_CCREG && hr!=HOST_BTREG &&
6331          (i_regs->regmap[hr]&63)!=rs1[i] &&
6332          (i_regs->regmap[hr]&63)!=rs2[i] )
6333       {
6334         ntaddr=hr;break;
6335       }
6336       hr++;
6337     }
6338   }
6339   assert(hr<HOST_REGS);
6340   if((opcode[i]&0x2e)==4||opcode[i]==0x11) { // BEQ/BNE/BEQL/BNEL/BC1
6341     load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,CCREG,CCREG);
6342   }
6343   emit_addimm(HOST_CCREG,CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
6344   if(opcode[i]==2) // J
6345   {
6346     unconditional=1;
6347   }
6348   if(opcode[i]==3) // JAL
6349   {
6350     // TODO: mini_ht
6351     int rt=get_reg(i_regs->regmap,31);
6352     emit_movimm(start+i*4+8,rt);
6353     unconditional=1;
6354   }
6355   if(opcode[i]==0&&(opcode2[i]&0x3E)==8) // JR/JALR
6356   {
6357     emit_mov(s1l,addr);
6358     if(opcode2[i]==9) // JALR
6359     {
6360       int rt=get_reg(i_regs->regmap,rt1[i]);
6361       emit_movimm(start+i*4+8,rt);
6362     }
6363   }
6364   if((opcode[i]&0x3f)==4) // BEQ
6365   {
6366     if(rs1[i]==rs2[i])
6367     {
6368       unconditional=1;
6369     }
6370     else
6371     #ifdef HAVE_CMOV_IMM
6372     if(s1h<0) {
6373       if(s2l>=0) emit_cmp(s1l,s2l);
6374       else emit_test(s1l,s1l);
6375       emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
6376     }
6377     else
6378     #endif
6379     {
6380       assert(s1l>=0);
6381       emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
6382       if(s1h>=0) {
6383         if(s2h>=0) emit_cmp(s1h,s2h);
6384         else emit_test(s1h,s1h);
6385         emit_cmovne_reg(alt,addr);
6386       }
6387       if(s2l>=0) emit_cmp(s1l,s2l);
6388       else emit_test(s1l,s1l);
6389       emit_cmovne_reg(alt,addr);
6390     }
6391   }
6392   if((opcode[i]&0x3f)==5) // BNE
6393   {
6394     #ifdef HAVE_CMOV_IMM
6395     if(s1h<0) {
6396       if(s2l>=0) emit_cmp(s1l,s2l);
6397       else emit_test(s1l,s1l);
6398       emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
6399     }
6400     else
6401     #endif
6402     {
6403       assert(s1l>=0);
6404       emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
6405       if(s1h>=0) {
6406         if(s2h>=0) emit_cmp(s1h,s2h);
6407         else emit_test(s1h,s1h);
6408         emit_cmovne_reg(alt,addr);
6409       }
6410       if(s2l>=0) emit_cmp(s1l,s2l);
6411       else emit_test(s1l,s1l);
6412       emit_cmovne_reg(alt,addr);
6413     }
6414   }
6415   if((opcode[i]&0x3f)==0x14) // BEQL
6416   {
6417     if(s1h>=0) {
6418       if(s2h>=0) emit_cmp(s1h,s2h);
6419       else emit_test(s1h,s1h);
6420       nottaken=(int)out;
6421       emit_jne(0);
6422     }
6423     if(s2l>=0) emit_cmp(s1l,s2l);
6424     else emit_test(s1l,s1l);
6425     if(nottaken) set_jump_target(nottaken,(int)out);
6426     nottaken=(int)out;
6427     emit_jne(0);
6428   }
6429   if((opcode[i]&0x3f)==0x15) // BNEL
6430   {
6431     if(s1h>=0) {
6432       if(s2h>=0) emit_cmp(s1h,s2h);
6433       else emit_test(s1h,s1h);
6434       taken=(int)out;
6435       emit_jne(0);
6436     }
6437     if(s2l>=0) emit_cmp(s1l,s2l);
6438     else emit_test(s1l,s1l);
6439     nottaken=(int)out;
6440     emit_jeq(0);
6441     if(taken) set_jump_target(taken,(int)out);
6442   }
6443   if((opcode[i]&0x3f)==6) // BLEZ
6444   {
6445     emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
6446     emit_cmpimm(s1l,1);
6447     if(s1h>=0) emit_mov(addr,ntaddr);
6448     emit_cmovl_reg(alt,addr);
6449     if(s1h>=0) {
6450       emit_test(s1h,s1h);
6451       emit_cmovne_reg(ntaddr,addr);
6452       emit_cmovs_reg(alt,addr);
6453     }
6454   }
6455   if((opcode[i]&0x3f)==7) // BGTZ
6456   {
6457     emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
6458     emit_cmpimm(s1l,1);
6459     if(s1h>=0) emit_mov(addr,alt);
6460     emit_cmovl_reg(ntaddr,addr);
6461     if(s1h>=0) {
6462       emit_test(s1h,s1h);
6463       emit_cmovne_reg(alt,addr);
6464       emit_cmovs_reg(ntaddr,addr);
6465     }
6466   }
6467   if((opcode[i]&0x3f)==0x16) // BLEZL
6468   {
6469     assert((opcode[i]&0x3f)!=0x16);
6470   }
6471   if((opcode[i]&0x3f)==0x17) // BGTZL
6472   {
6473     assert((opcode[i]&0x3f)!=0x17);
6474   }
6475   assert(opcode[i]!=1); // BLTZ/BGEZ
6476
6477   //FIXME: Check CSREG
6478   if(opcode[i]==0x11 && opcode2[i]==0x08 ) {
6479     if((source[i]&0x30000)==0) // BC1F
6480     {
6481       emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
6482       emit_testimm(s1l,0x800000);
6483       emit_cmovne_reg(alt,addr);
6484     }
6485     if((source[i]&0x30000)==0x10000) // BC1T
6486     {
6487       emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
6488       emit_testimm(s1l,0x800000);
6489       emit_cmovne_reg(alt,addr);
6490     }
6491     if((source[i]&0x30000)==0x20000) // BC1FL
6492     {
6493       emit_testimm(s1l,0x800000);
6494       nottaken=(int)out;
6495       emit_jne(0);
6496     }
6497     if((source[i]&0x30000)==0x30000) // BC1TL
6498     {
6499       emit_testimm(s1l,0x800000);
6500       nottaken=(int)out;
6501       emit_jeq(0);
6502     }
6503   }
6504
6505   assert(i_regs->regmap[HOST_CCREG]==CCREG);
6506   wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
6507   if(likely[i]||unconditional)
6508   {
6509     emit_movimm(ba[i],HOST_BTREG);
6510   }
6511   else if(addr!=HOST_BTREG)
6512   {
6513     emit_mov(addr,HOST_BTREG);
6514   }
6515   void *branch_addr=out;
6516   emit_jmp(0);
6517   int target_addr=start+i*4+5;
6518   void *stub=out;
6519   void *compiled_target_addr=check_addr(target_addr);
6520   emit_extjump_ds((int)branch_addr,target_addr);
6521   if(compiled_target_addr) {
6522     set_jump_target((int)branch_addr,(int)compiled_target_addr);
6523     add_link(target_addr,stub);
6524   }
6525   else set_jump_target((int)branch_addr,(int)stub);
6526   if(likely[i]) {
6527     // Not-taken path
6528     set_jump_target((int)nottaken,(int)out);
6529     wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
6530     void *branch_addr=out;
6531     emit_jmp(0);
6532     int target_addr=start+i*4+8;
6533     void *stub=out;
6534     void *compiled_target_addr=check_addr(target_addr);
6535     emit_extjump_ds((int)branch_addr,target_addr);
6536     if(compiled_target_addr) {
6537       set_jump_target((int)branch_addr,(int)compiled_target_addr);
6538       add_link(target_addr,stub);
6539     }
6540     else set_jump_target((int)branch_addr,(int)stub);
6541   }
6542 }
6543
6544 // Assemble the delay slot for the above
6545 static void pagespan_ds()
6546 {
6547   assem_debug("initial delay slot:\n");
6548   u_int vaddr=start+1;
6549   u_int page=get_page(vaddr);
6550   u_int vpage=get_vpage(vaddr);
6551   ll_add(jump_dirty+vpage,vaddr,(void *)out);
6552   do_dirty_stub_ds();
6553   ll_add(jump_in+page,vaddr,(void *)out);
6554   assert(regs[0].regmap_entry[HOST_CCREG]==CCREG);
6555   if(regs[0].regmap[HOST_CCREG]!=CCREG)
6556     wb_register(CCREG,regs[0].regmap_entry,regs[0].wasdirty,regs[0].was32);
6557   if(regs[0].regmap[HOST_BTREG]!=BTREG)
6558     emit_writeword(HOST_BTREG,(int)&branch_target);
6559   load_regs(regs[0].regmap_entry,regs[0].regmap,regs[0].was32,rs1[0],rs2[0]);
6560   address_generation(0,&regs[0],regs[0].regmap_entry);
6561   if(itype[0]==STORE||itype[0]==STORELR||(opcode[0]&0x3b)==0x39||(opcode[0]&0x3b)==0x3a)
6562     load_regs(regs[0].regmap_entry,regs[0].regmap,regs[0].was32,INVCP,INVCP);
6563   cop1_usable=0;
6564   is_delayslot=0;
6565   switch(itype[0]) {
6566     case ALU:
6567       alu_assemble(0,&regs[0]);break;
6568     case IMM16:
6569       imm16_assemble(0,&regs[0]);break;
6570     case SHIFT:
6571       shift_assemble(0,&regs[0]);break;
6572     case SHIFTIMM:
6573       shiftimm_assemble(0,&regs[0]);break;
6574     case LOAD:
6575       load_assemble(0,&regs[0]);break;
6576     case LOADLR:
6577       loadlr_assemble(0,&regs[0]);break;
6578     case STORE:
6579       store_assemble(0,&regs[0]);break;
6580     case STORELR:
6581       storelr_assemble(0,&regs[0]);break;
6582     case COP0:
6583       cop0_assemble(0,&regs[0]);break;
6584     case COP1:
6585       cop1_assemble(0,&regs[0]);break;
6586     case C1LS:
6587       c1ls_assemble(0,&regs[0]);break;
6588     case COP2:
6589       cop2_assemble(0,&regs[0]);break;
6590     case C2LS:
6591       c2ls_assemble(0,&regs[0]);break;
6592     case C2OP:
6593       c2op_assemble(0,&regs[0]);break;
6594     case FCONV:
6595       fconv_assemble(0,&regs[0]);break;
6596     case FLOAT:
6597       float_assemble(0,&regs[0]);break;
6598     case FCOMP:
6599       fcomp_assemble(0,&regs[0]);break;
6600     case MULTDIV:
6601       multdiv_assemble(0,&regs[0]);break;
6602     case MOV:
6603       mov_assemble(0,&regs[0]);break;
6604     case SYSCALL:
6605     case HLECALL:
6606     case INTCALL:
6607     case SPAN:
6608     case UJUMP:
6609     case RJUMP:
6610     case CJUMP:
6611     case SJUMP:
6612     case FJUMP:
6613       printf("Jump in the delay slot.  This is probably a bug.\n");
6614   }
6615   int btaddr=get_reg(regs[0].regmap,BTREG);
6616   if(btaddr<0) {
6617     btaddr=get_reg(regs[0].regmap,-1);
6618     emit_readword((int)&branch_target,btaddr);
6619   }
6620   assert(btaddr!=HOST_CCREG);
6621   if(regs[0].regmap[HOST_CCREG]!=CCREG) emit_loadreg(CCREG,HOST_CCREG);
6622 #ifdef HOST_IMM8
6623   emit_movimm(start+4,HOST_TEMPREG);
6624   emit_cmp(btaddr,HOST_TEMPREG);
6625 #else
6626   emit_cmpimm(btaddr,start+4);
6627 #endif
6628   int branch=(int)out;
6629   emit_jeq(0);
6630   store_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,-1);
6631   emit_jmp(jump_vaddr_reg[btaddr]);
6632   set_jump_target(branch,(int)out);
6633   store_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,start+4);
6634   load_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,start+4);
6635 }
6636
6637 // Basic liveness analysis for MIPS registers
6638 void unneeded_registers(int istart,int iend,int r)
6639 {
6640   int i;
6641   uint64_t u,uu,b,bu;
6642   uint64_t temp_u,temp_uu;
6643   uint64_t tdep;
6644   if(iend==slen-1) {
6645     u=1;uu=1;
6646   }else{
6647     u=unneeded_reg[iend+1];
6648     uu=unneeded_reg_upper[iend+1];
6649     u=1;uu=1;
6650   }
6651   for (i=iend;i>=istart;i--)
6652   {
6653     //printf("unneeded registers i=%d (%d,%d) r=%d\n",i,istart,iend,r);
6654     if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
6655     {
6656       // If subroutine call, flag return address as a possible branch target
6657       if(rt1[i]==31 && i<slen-2) bt[i+2]=1;
6658       
6659       if(ba[i]<start || ba[i]>=(start+slen*4))
6660       {
6661         // Branch out of this block, flush all regs
6662         u=1;
6663         uu=1;
6664         /* Hexagon hack 
6665         if(itype[i]==UJUMP&&rt1[i]==31)
6666         {
6667           uu=u=0x300C00F; // Discard at, v0-v1, t6-t9
6668         }
6669         if(itype[i]==RJUMP&&rs1[i]==31)
6670         {
6671           uu=u=0x300C0F3; // Discard at, a0-a3, t6-t9
6672         }
6673         if(start>0x80000400&&start<0x80000000+RAM_SIZE) {
6674           if(itype[i]==UJUMP&&rt1[i]==31)
6675           {
6676             //uu=u=0x30300FF0FLL; // Discard at, v0-v1, t0-t9, lo, hi
6677             uu=u=0x300FF0F; // Discard at, v0-v1, t0-t9
6678           }
6679           if(itype[i]==RJUMP&&rs1[i]==31)
6680           {
6681             //uu=u=0x30300FFF3LL; // Discard at, a0-a3, t0-t9, lo, hi
6682             uu=u=0x300FFF3; // Discard at, a0-a3, t0-t9
6683           }
6684         }*/
6685         branch_unneeded_reg[i]=u;
6686         branch_unneeded_reg_upper[i]=uu;
6687         // Merge in delay slot
6688         tdep=(~uu>>rt1[i+1])&1;
6689         u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6690         uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6691         u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6692         uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6693         uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6694         u|=1;uu|=1;
6695         // If branch is "likely" (and conditional)
6696         // then we skip the delay slot on the fall-thru path
6697         if(likely[i]) {
6698           if(i<slen-1) {
6699             u&=unneeded_reg[i+2];
6700             uu&=unneeded_reg_upper[i+2];
6701           }
6702           else
6703           {
6704             u=1;
6705             uu=1;
6706           }
6707         }
6708       }
6709       else
6710       {
6711         // Internal branch, flag target
6712         bt[(ba[i]-start)>>2]=1;
6713         if(ba[i]<=start+i*4) {
6714           // Backward branch
6715           if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
6716           {
6717             // Unconditional branch
6718             temp_u=1;temp_uu=1;
6719           } else {
6720             // Conditional branch (not taken case)
6721             temp_u=unneeded_reg[i+2];
6722             temp_uu=unneeded_reg_upper[i+2];
6723           }
6724           // Merge in delay slot
6725           tdep=(~temp_uu>>rt1[i+1])&1;
6726           temp_u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6727           temp_uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6728           temp_u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6729           temp_uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6730           temp_uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6731           temp_u|=1;temp_uu|=1;
6732           // If branch is "likely" (and conditional)
6733           // then we skip the delay slot on the fall-thru path
6734           if(likely[i]) {
6735             if(i<slen-1) {
6736               temp_u&=unneeded_reg[i+2];
6737               temp_uu&=unneeded_reg_upper[i+2];
6738             }
6739             else
6740             {
6741               temp_u=1;
6742               temp_uu=1;
6743             }
6744           }
6745           tdep=(~temp_uu>>rt1[i])&1;
6746           temp_u|=(1LL<<rt1[i])|(1LL<<rt2[i]);
6747           temp_uu|=(1LL<<rt1[i])|(1LL<<rt2[i]);
6748           temp_u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
6749           temp_uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
6750           temp_uu&=~((tdep<<dep1[i])|(tdep<<dep2[i]));
6751           temp_u|=1;temp_uu|=1;
6752           unneeded_reg[i]=temp_u;
6753           unneeded_reg_upper[i]=temp_uu;
6754           // Only go three levels deep.  This recursion can take an
6755           // excessive amount of time if there are a lot of nested loops.
6756           if(r<2) {
6757             unneeded_registers((ba[i]-start)>>2,i-1,r+1);
6758           }else{
6759             unneeded_reg[(ba[i]-start)>>2]=1;
6760             unneeded_reg_upper[(ba[i]-start)>>2]=1;
6761           }
6762         } /*else*/ if(1) {
6763           if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
6764           {
6765             // Unconditional branch
6766             u=unneeded_reg[(ba[i]-start)>>2];
6767             uu=unneeded_reg_upper[(ba[i]-start)>>2];
6768             branch_unneeded_reg[i]=u;
6769             branch_unneeded_reg_upper[i]=uu;
6770         //u=1;
6771         //uu=1;
6772         //branch_unneeded_reg[i]=u;
6773         //branch_unneeded_reg_upper[i]=uu;
6774             // Merge in delay slot
6775             tdep=(~uu>>rt1[i+1])&1;
6776             u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6777             uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6778             u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6779             uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6780             uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6781             u|=1;uu|=1;
6782           } else {
6783             // Conditional branch
6784             b=unneeded_reg[(ba[i]-start)>>2];
6785             bu=unneeded_reg_upper[(ba[i]-start)>>2];
6786             branch_unneeded_reg[i]=b;
6787             branch_unneeded_reg_upper[i]=bu;
6788         //b=1;
6789         //bu=1;
6790         //branch_unneeded_reg[i]=b;
6791         //branch_unneeded_reg_upper[i]=bu;
6792             // Branch delay slot
6793             tdep=(~uu>>rt1[i+1])&1;
6794             b|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6795             bu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6796             b&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6797             bu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6798             bu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6799             b|=1;bu|=1;
6800             // If branch is "likely" then we skip the
6801             // delay slot on the fall-thru path
6802             if(likely[i]) {
6803               u=b;
6804               uu=bu;
6805               if(i<slen-1) {
6806                 u&=unneeded_reg[i+2];
6807                 uu&=unneeded_reg_upper[i+2];
6808         //u=1;
6809         //uu=1;
6810               }
6811             } else {
6812               u&=b;
6813               uu&=bu;
6814         //u=1;
6815         //uu=1;
6816             }
6817             if(i<slen-1) {
6818               branch_unneeded_reg[i]&=unneeded_reg[i+2];
6819               branch_unneeded_reg_upper[i]&=unneeded_reg_upper[i+2];
6820         //branch_unneeded_reg[i]=1;
6821         //branch_unneeded_reg_upper[i]=1;
6822             } else {
6823               branch_unneeded_reg[i]=1;
6824               branch_unneeded_reg_upper[i]=1;
6825             }
6826           }
6827         }
6828       }
6829     }
6830     else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
6831     {
6832       // SYSCALL instruction (software interrupt)
6833       u=1;
6834       uu=1;
6835     }
6836     else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
6837     {
6838       // ERET instruction (return from interrupt)
6839       u=1;
6840       uu=1;
6841     }
6842     //u=uu=1; // DEBUG
6843     tdep=(~uu>>rt1[i])&1;
6844     // Written registers are unneeded
6845     u|=1LL<<rt1[i];
6846     u|=1LL<<rt2[i];
6847     uu|=1LL<<rt1[i];
6848     uu|=1LL<<rt2[i];
6849     // Accessed registers are needed
6850     u&=~(1LL<<rs1[i]);
6851     u&=~(1LL<<rs2[i]);
6852     uu&=~(1LL<<us1[i]);
6853     uu&=~(1LL<<us2[i]);
6854     // Source-target dependencies
6855     uu&=~(tdep<<dep1[i]);
6856     uu&=~(tdep<<dep2[i]);
6857     // R0 is always unneeded
6858     u|=1;uu|=1;
6859     // Save it
6860     unneeded_reg[i]=u;
6861     unneeded_reg_upper[i]=uu;
6862     /*
6863     printf("ur (%d,%d) %x: ",istart,iend,start+i*4);
6864     printf("U:");
6865     int r;
6866     for(r=1;r<=CCREG;r++) {
6867       if((unneeded_reg[i]>>r)&1) {
6868         if(r==HIREG) printf(" HI");
6869         else if(r==LOREG) printf(" LO");
6870         else printf(" r%d",r);
6871       }
6872     }
6873     printf(" UU:");
6874     for(r=1;r<=CCREG;r++) {
6875       if(((unneeded_reg_upper[i]&~unneeded_reg[i])>>r)&1) {
6876         if(r==HIREG) printf(" HI");
6877         else if(r==LOREG) printf(" LO");
6878         else printf(" r%d",r);
6879       }
6880     }
6881     printf("\n");*/
6882   }
6883 #ifdef FORCE32
6884   for (i=iend;i>=istart;i--)
6885   {
6886     unneeded_reg_upper[i]=branch_unneeded_reg_upper[i]=-1LL;
6887   }
6888 #endif
6889 }
6890
6891 // Identify registers which are likely to contain 32-bit values
6892 // This is used to predict whether any branches will jump to a
6893 // location with 64-bit values in registers.
6894 static void provisional_32bit()
6895 {
6896   int i,j;
6897   uint64_t is32=1;
6898   uint64_t lastbranch=1;
6899   
6900   for(i=0;i<slen;i++)
6901   {
6902     if(i>0) {
6903       if(itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP) {
6904         if(i>1) is32=lastbranch;
6905         else is32=1;
6906       }
6907     }
6908     if(i>1)
6909     {
6910       if(itype[i-2]==CJUMP||itype[i-2]==SJUMP||itype[i-2]==FJUMP) {
6911         if(likely[i-2]) {
6912           if(i>2) is32=lastbranch;
6913           else is32=1;
6914         }
6915       }
6916       if((opcode[i-2]&0x2f)==0x05) // BNE/BNEL
6917       {
6918         if(rs1[i-2]==0||rs2[i-2]==0)
6919         {
6920           if(rs1[i-2]) {
6921             is32|=1LL<<rs1[i-2];
6922           }
6923           if(rs2[i-2]) {
6924             is32|=1LL<<rs2[i-2];
6925           }
6926         }
6927       }
6928     }
6929     // If something jumps here with 64-bit values
6930     // then promote those registers to 64 bits
6931     if(bt[i])
6932     {
6933       uint64_t temp_is32=is32;
6934       for(j=i-1;j>=0;j--)
6935       {
6936         if(ba[j]==start+i*4) 
6937           //temp_is32&=branch_regs[j].is32;
6938           temp_is32&=p32[j];
6939       }
6940       for(j=i;j<slen;j++)
6941       {
6942         if(ba[j]==start+i*4) 
6943           temp_is32=1;
6944       }
6945       is32=temp_is32;
6946     }
6947     int type=itype[i];
6948     int op=opcode[i];
6949     int op2=opcode2[i];
6950     int rt=rt1[i];
6951     int s1=rs1[i];
6952     int s2=rs2[i];
6953     if(type==UJUMP||type==RJUMP||type==CJUMP||type==SJUMP||type==FJUMP) {
6954       // Branches don't write registers, consider the delay slot instead.
6955       type=itype[i+1];
6956       op=opcode[i+1];
6957       op2=opcode2[i+1];
6958       rt=rt1[i+1];
6959       s1=rs1[i+1];
6960       s2=rs2[i+1];
6961       lastbranch=is32;
6962     }
6963     switch(type) {
6964       case LOAD:
6965         if(opcode[i]==0x27||opcode[i]==0x37|| // LWU/LD
6966            opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
6967           is32&=~(1LL<<rt);
6968         else
6969           is32|=1LL<<rt;
6970         break;
6971       case STORE:
6972       case STORELR:
6973         break;
6974       case LOADLR:
6975         if(op==0x1a||op==0x1b) is32&=~(1LL<<rt); // LDR/LDL
6976         if(op==0x22) is32|=1LL<<rt; // LWL
6977         break;
6978       case IMM16:
6979         if (op==0x08||op==0x09|| // ADDI/ADDIU
6980             op==0x0a||op==0x0b|| // SLTI/SLTIU
6981             op==0x0c|| // ANDI
6982             op==0x0f)  // LUI
6983         {
6984           is32|=1LL<<rt;
6985         }
6986         if(op==0x18||op==0x19) { // DADDI/DADDIU
6987           is32&=~(1LL<<rt);
6988           //if(imm[i]==0)
6989           //  is32|=((is32>>s1)&1LL)<<rt;
6990         }
6991         if(op==0x0d||op==0x0e) { // ORI/XORI
6992           uint64_t sr=((is32>>s1)&1LL);
6993           is32&=~(1LL<<rt);
6994           is32|=sr<<rt;
6995         }
6996         break;
6997       case UJUMP:
6998         break;
6999       case RJUMP:
7000         break;
7001       case CJUMP:
7002         break;
7003       case SJUMP:
7004         break;
7005       case FJUMP:
7006         break;
7007       case ALU:
7008         if(op2>=0x20&&op2<=0x23) { // ADD/ADDU/SUB/SUBU
7009           is32|=1LL<<rt;
7010         }
7011         if(op2==0x2a||op2==0x2b) { // SLT/SLTU
7012           is32|=1LL<<rt;
7013         }
7014         else if(op2>=0x24&&op2<=0x27) { // AND/OR/XOR/NOR
7015           uint64_t sr=((is32>>s1)&(is32>>s2)&1LL);
7016           is32&=~(1LL<<rt);
7017           is32|=sr<<rt;
7018         }
7019         else if(op2>=0x2c&&op2<=0x2d) { // DADD/DADDU
7020           if(s1==0&&s2==0) {
7021             is32|=1LL<<rt;
7022           }
7023           else if(s2==0) {
7024             uint64_t sr=((is32>>s1)&1LL);
7025             is32&=~(1LL<<rt);
7026             is32|=sr<<rt;
7027           }
7028           else if(s1==0) {
7029             uint64_t sr=((is32>>s2)&1LL);
7030             is32&=~(1LL<<rt);
7031             is32|=sr<<rt;
7032           }
7033           else {
7034             is32&=~(1LL<<rt);
7035           }
7036         }
7037         else if(op2>=0x2e&&op2<=0x2f) { // DSUB/DSUBU
7038           if(s1==0&&s2==0) {
7039             is32|=1LL<<rt;
7040           }
7041           else if(s2==0) {
7042             uint64_t sr=((is32>>s1)&1LL);
7043             is32&=~(1LL<<rt);
7044             is32|=sr<<rt;
7045           }
7046           else {
7047             is32&=~(1LL<<rt);
7048           }
7049         }
7050         break;
7051       case MULTDIV:
7052         if (op2>=0x1c&&op2<=0x1f) { // DMULT/DMULTU/DDIV/DDIVU
7053           is32&=~((1LL<<HIREG)|(1LL<<LOREG));
7054         }
7055         else {
7056           is32|=(1LL<<HIREG)|(1LL<<LOREG);
7057         }
7058         break;
7059       case MOV:
7060         {
7061           uint64_t sr=((is32>>s1)&1LL);
7062           is32&=~(1LL<<rt);
7063           is32|=sr<<rt;
7064         }
7065         break;
7066       case SHIFT:
7067         if(op2>=0x14&&op2<=0x17) is32&=~(1LL<<rt); // DSLLV/DSRLV/DSRAV
7068         else is32|=1LL<<rt; // SLLV/SRLV/SRAV
7069         break;
7070       case SHIFTIMM:
7071         is32|=1LL<<rt;
7072         // DSLL/DSRL/DSRA/DSLL32/DSRL32 but not DSRA32 have 64-bit result
7073         if(op2>=0x38&&op2<0x3f) is32&=~(1LL<<rt);
7074         break;
7075       case COP0:
7076         if(op2==0) is32|=1LL<<rt; // MFC0
7077         break;
7078       case COP1:
7079       case COP2:
7080         if(op2==0) is32|=1LL<<rt; // MFC1
7081         if(op2==1) is32&=~(1LL<<rt); // DMFC1
7082         if(op2==2) is32|=1LL<<rt; // CFC1
7083         break;
7084       case C1LS:
7085       case C2LS:
7086         break;
7087       case FLOAT:
7088       case FCONV:
7089         break;
7090       case FCOMP:
7091         break;
7092       case C2OP:
7093       case SYSCALL:
7094       case HLECALL:
7095         break;
7096       default:
7097         break;
7098     }
7099     is32|=1;
7100     p32[i]=is32;
7101
7102     if(i>0)
7103     {
7104       if(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)
7105       {
7106         if(rt1[i-1]==31) // JAL/JALR
7107         {
7108           // Subroutine call will return here, don't alloc any registers
7109           is32=1;
7110         }
7111         else if(i+1<slen)
7112         {
7113           // Internal branch will jump here, match registers to caller
7114           is32=0x3FFFFFFFFLL;
7115         }
7116       }
7117     }
7118   }
7119 }
7120
7121 // Identify registers which may be assumed to contain 32-bit values
7122 // and where optimizations will rely on this.
7123 // This is used to determine whether backward branches can safely
7124 // jump to a location with 64-bit values in registers.
7125 static void provisional_r32()
7126 {
7127   u_int r32=0;
7128   int i;
7129   
7130   for (i=slen-1;i>=0;i--)
7131   {
7132     int hr;
7133     if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
7134     {
7135       if(ba[i]<start || ba[i]>=(start+slen*4))
7136       {
7137         // Branch out of this block, don't need anything
7138         r32=0;
7139       }
7140       else
7141       {
7142         // Internal branch
7143         // Need whatever matches the target
7144         // (and doesn't get overwritten by the delay slot instruction)
7145         r32=0;
7146         int t=(ba[i]-start)>>2;
7147         if(ba[i]>start+i*4) {
7148           // Forward branch
7149           //if(!(requires_32bit[t]&~regs[i].was32))
7150           //  r32|=requires_32bit[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
7151           if(!(pr32[t]&~regs[i].was32))
7152             r32|=pr32[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
7153         }else{
7154           // Backward branch
7155           if(!(regs[t].was32&~unneeded_reg_upper[t]&~regs[i].was32))
7156             r32|=regs[t].was32&~unneeded_reg_upper[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
7157         }
7158       }
7159       // Conditional branch may need registers for following instructions
7160       if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
7161       {
7162         if(i<slen-2) {
7163           //r32|=requires_32bit[i+2];
7164           r32|=pr32[i+2];
7165           r32&=regs[i].was32;
7166           // Mark this address as a branch target since it may be called
7167           // upon return from interrupt
7168           //bt[i+2]=1;
7169         }
7170       }
7171       // Merge in delay slot
7172       if(!likely[i]) {
7173         // These are overwritten unless the branch is "likely"
7174         // and the delay slot is nullified if not taken
7175         r32&=~(1LL<<rt1[i+1]);
7176         r32&=~(1LL<<rt2[i+1]);
7177       }
7178       // Assume these are needed (delay slot)
7179       if(us1[i+1]>0)
7180       {
7181         if((regs[i].was32>>us1[i+1])&1) r32|=1LL<<us1[i+1];
7182       }
7183       if(us2[i+1]>0)
7184       {
7185         if((regs[i].was32>>us2[i+1])&1) r32|=1LL<<us2[i+1];
7186       }
7187       if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1))
7188       {
7189         if((regs[i].was32>>dep1[i+1])&1) r32|=1LL<<dep1[i+1];
7190       }
7191       if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1))
7192       {
7193         if((regs[i].was32>>dep2[i+1])&1) r32|=1LL<<dep2[i+1];
7194       }
7195     }
7196     else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
7197     {
7198       // SYSCALL instruction (software interrupt)
7199       r32=0;
7200     }
7201     else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
7202     {
7203       // ERET instruction (return from interrupt)
7204       r32=0;
7205     }
7206     // Check 32 bits
7207     r32&=~(1LL<<rt1[i]);
7208     r32&=~(1LL<<rt2[i]);
7209     if(us1[i]>0)
7210     {
7211       if((regs[i].was32>>us1[i])&1) r32|=1LL<<us1[i];
7212     }
7213     if(us2[i]>0)
7214     {
7215       if((regs[i].was32>>us2[i])&1) r32|=1LL<<us2[i];
7216     }
7217     if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1))
7218     {
7219       if((regs[i].was32>>dep1[i])&1) r32|=1LL<<dep1[i];
7220     }
7221     if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1))
7222     {
7223       if((regs[i].was32>>dep2[i])&1) r32|=1LL<<dep2[i];
7224     }
7225     //requires_32bit[i]=r32;
7226     pr32[i]=r32;
7227     
7228     // Dirty registers which are 32-bit, require 32-bit input
7229     // as they will be written as 32-bit values
7230     for(hr=0;hr<HOST_REGS;hr++)
7231     {
7232       if(regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64) {
7233         if((regs[i].was32>>regs[i].regmap_entry[hr])&(regs[i].wasdirty>>hr)&1) {
7234           if(!((unneeded_reg_upper[i]>>regs[i].regmap_entry[hr])&1))
7235           pr32[i]|=1LL<<regs[i].regmap_entry[hr];
7236           //requires_32bit[i]|=1LL<<regs[i].regmap_entry[hr];
7237         }
7238       }
7239     }
7240   }
7241 }
7242
7243 // Write back dirty registers as soon as we will no longer modify them,
7244 // so that we don't end up with lots of writes at the branches.
7245 void clean_registers(int istart,int iend,int wr)
7246 {
7247   int i;
7248   int r;
7249   u_int will_dirty_i,will_dirty_next,temp_will_dirty;
7250   u_int wont_dirty_i,wont_dirty_next,temp_wont_dirty;
7251   if(iend==slen-1) {
7252     will_dirty_i=will_dirty_next=0;
7253     wont_dirty_i=wont_dirty_next=0;
7254   }else{
7255     will_dirty_i=will_dirty_next=will_dirty[iend+1];
7256     wont_dirty_i=wont_dirty_next=wont_dirty[iend+1];
7257   }
7258   for (i=iend;i>=istart;i--)
7259   {
7260     if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
7261     {
7262       if(ba[i]<start || ba[i]>=(start+slen*4))
7263       {
7264         // Branch out of this block, flush all regs
7265         if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
7266         {
7267           // Unconditional branch
7268           will_dirty_i=0;
7269           wont_dirty_i=0;
7270           // Merge in delay slot (will dirty)
7271           for(r=0;r<HOST_REGS;r++) {
7272             if(r!=EXCLUDE_REG) {
7273               if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7274               if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7275               if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7276               if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7277               if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7278               if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7279               if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7280               if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7281               if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7282               if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7283               if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7284               if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7285               if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7286               if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7287             }
7288           }
7289         }
7290         else
7291         {
7292           // Conditional branch
7293           will_dirty_i=0;
7294           wont_dirty_i=wont_dirty_next;
7295           // Merge in delay slot (will dirty)
7296           for(r=0;r<HOST_REGS;r++) {
7297             if(r!=EXCLUDE_REG) {
7298               if(!likely[i]) {
7299                 // Might not dirty if likely branch is not taken
7300                 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7301                 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7302                 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7303                 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7304                 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7305                 if(branch_regs[i].regmap[r]==0) will_dirty_i&=~(1<<r);
7306                 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7307                 //if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7308                 //if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7309                 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7310                 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7311                 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7312                 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7313                 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7314               }
7315             }
7316           }
7317         }
7318         // Merge in delay slot (wont dirty)
7319         for(r=0;r<HOST_REGS;r++) {
7320           if(r!=EXCLUDE_REG) {
7321             if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7322             if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7323             if((regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7324             if((regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7325             if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7326             if((branch_regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7327             if((branch_regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7328             if((branch_regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7329             if((branch_regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7330             if(branch_regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7331           }
7332         }
7333         if(wr) {
7334           #ifndef DESTRUCTIVE_WRITEBACK
7335           branch_regs[i].dirty&=wont_dirty_i;
7336           #endif
7337           branch_regs[i].dirty|=will_dirty_i;
7338         }
7339       }
7340       else
7341       {
7342         // Internal branch
7343         if(ba[i]<=start+i*4) {
7344           // Backward branch
7345           if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
7346           {
7347             // Unconditional branch
7348             temp_will_dirty=0;
7349             temp_wont_dirty=0;
7350             // Merge in delay slot (will dirty)
7351             for(r=0;r<HOST_REGS;r++) {
7352               if(r!=EXCLUDE_REG) {
7353                 if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7354                 if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7355                 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7356                 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7357                 if((branch_regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7358                 if(branch_regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
7359                 if(branch_regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7360                 if((regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7361                 if((regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7362                 if((regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7363                 if((regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7364                 if((regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7365                 if(regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
7366                 if(regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7367               }
7368             }
7369           } else {
7370             // Conditional branch (not taken case)
7371             temp_will_dirty=will_dirty_next;
7372             temp_wont_dirty=wont_dirty_next;
7373             // Merge in delay slot (will dirty)
7374             for(r=0;r<HOST_REGS;r++) {
7375               if(r!=EXCLUDE_REG) {
7376                 if(!likely[i]) {
7377                   // Will not dirty if likely branch is not taken
7378                   if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7379                   if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7380                   if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7381                   if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7382                   if((branch_regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7383                   if(branch_regs[i].regmap[r]==0) temp_will_dirty&=~(1<<r);
7384                   if(branch_regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7385                   //if((regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7386                   //if((regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7387                   if((regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7388                   if((regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7389                   if((regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7390                   if(regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
7391                   if(regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7392                 }
7393               }
7394             }
7395           }
7396           // Merge in delay slot (wont dirty)
7397           for(r=0;r<HOST_REGS;r++) {
7398             if(r!=EXCLUDE_REG) {
7399               if((regs[i].regmap[r]&63)==rt1[i]) temp_wont_dirty|=1<<r;
7400               if((regs[i].regmap[r]&63)==rt2[i]) temp_wont_dirty|=1<<r;
7401               if((regs[i].regmap[r]&63)==rt1[i+1]) temp_wont_dirty|=1<<r;
7402               if((regs[i].regmap[r]&63)==rt2[i+1]) temp_wont_dirty|=1<<r;
7403               if(regs[i].regmap[r]==CCREG) temp_wont_dirty|=1<<r;
7404               if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_wont_dirty|=1<<r;
7405               if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_wont_dirty|=1<<r;
7406               if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_wont_dirty|=1<<r;
7407               if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_wont_dirty|=1<<r;
7408               if(branch_regs[i].regmap[r]==CCREG) temp_wont_dirty|=1<<r;
7409             }
7410           }
7411           // Deal with changed mappings
7412           if(i<iend) {
7413             for(r=0;r<HOST_REGS;r++) {
7414               if(r!=EXCLUDE_REG) {
7415                 if(regs[i].regmap[r]!=regmap_pre[i][r]) {
7416                   temp_will_dirty&=~(1<<r);
7417                   temp_wont_dirty&=~(1<<r);
7418                   if((regmap_pre[i][r]&63)>0 && (regmap_pre[i][r]&63)<34) {
7419                     temp_will_dirty|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7420                     temp_wont_dirty|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7421                   } else {
7422                     temp_will_dirty|=1<<r;
7423                     temp_wont_dirty|=1<<r;
7424                   }
7425                 }
7426               }
7427             }
7428           }
7429           if(wr) {
7430             will_dirty[i]=temp_will_dirty;
7431             wont_dirty[i]=temp_wont_dirty;
7432             clean_registers((ba[i]-start)>>2,i-1,0);
7433           }else{
7434             // Limit recursion.  It can take an excessive amount
7435             // of time if there are a lot of nested loops.
7436             will_dirty[(ba[i]-start)>>2]=0;
7437             wont_dirty[(ba[i]-start)>>2]=-1;
7438           }
7439         }
7440         /*else*/ if(1)
7441         {
7442           if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
7443           {
7444             // Unconditional branch
7445             will_dirty_i=0;
7446             wont_dirty_i=0;
7447           //if(ba[i]>start+i*4) { // Disable recursion (for debugging)
7448             for(r=0;r<HOST_REGS;r++) {
7449               if(r!=EXCLUDE_REG) {
7450                 if(branch_regs[i].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
7451                   will_dirty_i|=will_dirty[(ba[i]-start)>>2]&(1<<r);
7452                   wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
7453                 }
7454               }
7455             }
7456           //}
7457             // Merge in delay slot
7458             for(r=0;r<HOST_REGS;r++) {
7459               if(r!=EXCLUDE_REG) {
7460                 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7461                 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7462                 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7463                 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7464                 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7465                 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7466                 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7467                 if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7468                 if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7469                 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7470                 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7471                 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7472                 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7473                 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7474               }
7475             }
7476           } else {
7477             // Conditional branch
7478             will_dirty_i=will_dirty_next;
7479             wont_dirty_i=wont_dirty_next;
7480           //if(ba[i]>start+i*4) { // Disable recursion (for debugging)
7481             for(r=0;r<HOST_REGS;r++) {
7482               if(r!=EXCLUDE_REG) {
7483                 if(branch_regs[i].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
7484                   will_dirty_i&=will_dirty[(ba[i]-start)>>2]&(1<<r);
7485                   wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
7486                 }
7487                 else
7488                 {
7489                   will_dirty_i&=~(1<<r);
7490                 }
7491                 // Treat delay slot as part of branch too
7492                 /*if(regs[i+1].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
7493                   will_dirty[i+1]&=will_dirty[(ba[i]-start)>>2]&(1<<r);
7494                   wont_dirty[i+1]|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
7495                 }
7496                 else
7497                 {
7498                   will_dirty[i+1]&=~(1<<r);
7499                 }*/
7500               }
7501             }
7502           //}
7503             // Merge in delay slot
7504             for(r=0;r<HOST_REGS;r++) {
7505               if(r!=EXCLUDE_REG) {
7506                 if(!likely[i]) {
7507                   // Might not dirty if likely branch is not taken
7508                   if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7509                   if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7510                   if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7511                   if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7512                   if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7513                   if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7514                   if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7515                   //if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7516                   //if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7517                   if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7518                   if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7519                   if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7520                   if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7521                   if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7522                 }
7523               }
7524             }
7525           }
7526           // Merge in delay slot
7527           for(r=0;r<HOST_REGS;r++) {
7528             if(r!=EXCLUDE_REG) {
7529               if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7530               if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7531               if((regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7532               if((regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7533               if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7534               if((branch_regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7535               if((branch_regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7536               if((branch_regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7537               if((branch_regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7538               if(branch_regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7539             }
7540           }
7541           if(wr) {
7542             #ifndef DESTRUCTIVE_WRITEBACK
7543             branch_regs[i].dirty&=wont_dirty_i;
7544             #endif
7545             branch_regs[i].dirty|=will_dirty_i;
7546           }
7547         }
7548       }
7549     }
7550     else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
7551     {
7552       // SYSCALL instruction (software interrupt)
7553       will_dirty_i=0;
7554       wont_dirty_i=0;
7555     }
7556     else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
7557     {
7558       // ERET instruction (return from interrupt)
7559       will_dirty_i=0;
7560       wont_dirty_i=0;
7561     }
7562     will_dirty_next=will_dirty_i;
7563     wont_dirty_next=wont_dirty_i;
7564     for(r=0;r<HOST_REGS;r++) {
7565       if(r!=EXCLUDE_REG) {
7566         if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7567         if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7568         if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7569         if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7570         if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7571         if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7572         if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7573         if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7574         if(i>istart) {
7575           if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=FJUMP) 
7576           {
7577             // Don't store a register immediately after writing it,
7578             // may prevent dual-issue.
7579             if((regs[i].regmap[r]&63)==rt1[i-1]) wont_dirty_i|=1<<r;
7580             if((regs[i].regmap[r]&63)==rt2[i-1]) wont_dirty_i|=1<<r;
7581           }
7582         }
7583       }
7584     }
7585     // Save it
7586     will_dirty[i]=will_dirty_i;
7587     wont_dirty[i]=wont_dirty_i;
7588     // Mark registers that won't be dirtied as not dirty
7589     if(wr) {
7590       /*printf("wr (%d,%d) %x will:",istart,iend,start+i*4);
7591       for(r=0;r<HOST_REGS;r++) {
7592         if((will_dirty_i>>r)&1) {
7593           printf(" r%d",r);
7594         }
7595       }
7596       printf("\n");*/
7597
7598       //if(i==istart||(itype[i-1]!=RJUMP&&itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=FJUMP)) {
7599         regs[i].dirty|=will_dirty_i;
7600         #ifndef DESTRUCTIVE_WRITEBACK
7601         regs[i].dirty&=wont_dirty_i;
7602         if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
7603         {
7604           if(i<iend-1&&itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000) {
7605             for(r=0;r<HOST_REGS;r++) {
7606               if(r!=EXCLUDE_REG) {
7607                 if(regs[i].regmap[r]==regmap_pre[i+2][r]) {
7608                   regs[i+2].wasdirty&=wont_dirty_i|~(1<<r);
7609                 }else {/*printf("i: %x (%d) mismatch(+2): %d\n",start+i*4,i,r);/*assert(!((wont_dirty_i>>r)&1));*/}
7610               }
7611             }
7612           }
7613         }
7614         else
7615         {
7616           if(i<iend) {
7617             for(r=0;r<HOST_REGS;r++) {
7618               if(r!=EXCLUDE_REG) {
7619                 if(regs[i].regmap[r]==regmap_pre[i+1][r]) {
7620                   regs[i+1].wasdirty&=wont_dirty_i|~(1<<r);
7621                 }else {/*printf("i: %x (%d) mismatch(+1): %d\n",start+i*4,i,r);/*assert(!((wont_dirty_i>>r)&1));*/}
7622               }
7623             }
7624           }
7625         }
7626         #endif
7627       //}
7628     }
7629     // Deal with changed mappings
7630     temp_will_dirty=will_dirty_i;
7631     temp_wont_dirty=wont_dirty_i;
7632     for(r=0;r<HOST_REGS;r++) {
7633       if(r!=EXCLUDE_REG) {
7634         int nr;
7635         if(regs[i].regmap[r]==regmap_pre[i][r]) {
7636           if(wr) {
7637             #ifndef DESTRUCTIVE_WRITEBACK
7638             regs[i].wasdirty&=wont_dirty_i|~(1<<r);
7639             #endif
7640             regs[i].wasdirty|=will_dirty_i&(1<<r);
7641           }
7642         }
7643         else if((nr=get_reg(regs[i].regmap,regmap_pre[i][r]))>=0) {
7644           // Register moved to a different register
7645           will_dirty_i&=~(1<<r);
7646           wont_dirty_i&=~(1<<r);
7647           will_dirty_i|=((temp_will_dirty>>nr)&1)<<r;
7648           wont_dirty_i|=((temp_wont_dirty>>nr)&1)<<r;
7649           if(wr) {
7650             #ifndef DESTRUCTIVE_WRITEBACK
7651             regs[i].wasdirty&=wont_dirty_i|~(1<<r);
7652             #endif
7653             regs[i].wasdirty|=will_dirty_i&(1<<r);
7654           }
7655         }
7656         else {
7657           will_dirty_i&=~(1<<r);
7658           wont_dirty_i&=~(1<<r);
7659           if((regmap_pre[i][r]&63)>0 && (regmap_pre[i][r]&63)<34) {
7660             will_dirty_i|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7661             wont_dirty_i|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7662           } else {
7663             wont_dirty_i|=1<<r;
7664             /*printf("i: %x (%d) mismatch: %d\n",start+i*4,i,r);/*assert(!((will_dirty>>r)&1));*/
7665           }
7666         }
7667       }
7668     }
7669   }
7670 }
7671
7672   /* disassembly */
7673 void disassemble_inst(int i)
7674 {
7675     if (bt[i]) printf("*"); else printf(" ");
7676     switch(itype[i]) {
7677       case UJUMP:
7678         printf (" %x: %s %8x\n",start+i*4,insn[i],ba[i]);break;
7679       case CJUMP:
7680         printf (" %x: %s r%d,r%d,%8x\n",start+i*4,insn[i],rs1[i],rs2[i],i?start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14):*ba);break;
7681       case SJUMP:
7682         printf (" %x: %s r%d,%8x\n",start+i*4,insn[i],rs1[i],start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14));break;
7683       case FJUMP:
7684         printf (" %x: %s %8x\n",start+i*4,insn[i],ba[i]);break;
7685       case RJUMP:
7686         if (opcode[i]==0x9&&rt1[i]!=31)
7687           printf (" %x: %s r%d,r%d\n",start+i*4,insn[i],rt1[i],rs1[i]);
7688         else
7689           printf (" %x: %s r%d\n",start+i*4,insn[i],rs1[i]);
7690         break;
7691       case SPAN:
7692         printf (" %x: %s (pagespan) r%d,r%d,%8x\n",start+i*4,insn[i],rs1[i],rs2[i],ba[i]);break;
7693       case IMM16:
7694         if(opcode[i]==0xf) //LUI
7695           printf (" %x: %s r%d,%4x0000\n",start+i*4,insn[i],rt1[i],imm[i]&0xffff);
7696         else
7697           printf (" %x: %s r%d,r%d,%d\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
7698         break;
7699       case LOAD:
7700       case LOADLR:
7701         printf (" %x: %s r%d,r%d+%x\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
7702         break;
7703       case STORE:
7704       case STORELR:
7705         printf (" %x: %s r%d,r%d+%x\n",start+i*4,insn[i],rs2[i],rs1[i],imm[i]);
7706         break;
7707       case ALU:
7708       case SHIFT:
7709         printf (" %x: %s r%d,r%d,r%d\n",start+i*4,insn[i],rt1[i],rs1[i],rs2[i]);
7710         break;
7711       case MULTDIV:
7712         printf (" %x: %s r%d,r%d\n",start+i*4,insn[i],rs1[i],rs2[i]);
7713         break;
7714       case SHIFTIMM:
7715         printf (" %x: %s r%d,r%d,%d\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
7716         break;
7717       case MOV:
7718         if((opcode2[i]&0x1d)==0x10)
7719           printf (" %x: %s r%d\n",start+i*4,insn[i],rt1[i]);
7720         else if((opcode2[i]&0x1d)==0x11)
7721           printf (" %x: %s r%d\n",start+i*4,insn[i],rs1[i]);
7722         else
7723           printf (" %x: %s\n",start+i*4,insn[i]);
7724         break;
7725       case COP0:
7726         if(opcode2[i]==0)
7727           printf (" %x: %s r%d,cpr0[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC0
7728         else if(opcode2[i]==4)
7729           printf (" %x: %s r%d,cpr0[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC0
7730         else printf (" %x: %s\n",start+i*4,insn[i]);
7731         break;
7732       case COP1:
7733         if(opcode2[i]<3)
7734           printf (" %x: %s r%d,cpr1[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC1
7735         else if(opcode2[i]>3)
7736           printf (" %x: %s r%d,cpr1[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC1
7737         else printf (" %x: %s\n",start+i*4,insn[i]);
7738         break;
7739       case COP2:
7740         if(opcode2[i]<3)
7741           printf (" %x: %s r%d,cpr2[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC2
7742         else if(opcode2[i]>3)
7743           printf (" %x: %s r%d,cpr2[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC2
7744         else printf (" %x: %s\n",start+i*4,insn[i]);
7745         break;
7746       case C1LS:
7747         printf (" %x: %s cpr1[%d],r%d+%x\n",start+i*4,insn[i],(source[i]>>16)&0x1f,rs1[i],imm[i]);
7748         break;
7749       case C2LS:
7750         printf (" %x: %s cpr2[%d],r%d+%x\n",start+i*4,insn[i],(source[i]>>16)&0x1f,rs1[i],imm[i]);
7751         break;
7752       case INTCALL:
7753         printf (" %x: %s (INTCALL)\n",start+i*4,insn[i]);
7754         break;
7755       default:
7756         //printf (" %s %8x\n",insn[i],source[i]);
7757         printf (" %x: %s\n",start+i*4,insn[i]);
7758     }
7759 }
7760
7761 // clear the state completely, instead of just marking
7762 // things invalid like invalidate_all_pages() does
7763 void new_dynarec_clear_full()
7764 {
7765   int n;
7766   out=(u_char *)BASE_ADDR;
7767   memset(invalid_code,1,sizeof(invalid_code));
7768   memset(hash_table,0xff,sizeof(hash_table));
7769   memset(mini_ht,-1,sizeof(mini_ht));
7770   memset(restore_candidate,0,sizeof(restore_candidate));
7771   memset(shadow,0,sizeof(shadow));
7772   copy=shadow;
7773   expirep=16384; // Expiry pointer, +2 blocks
7774   pending_exception=0;
7775   literalcount=0;
7776   stop_after_jal=0;
7777   // TLB
7778 #ifndef DISABLE_TLB
7779   using_tlb=0;
7780 #endif
7781   sp_in_mirror=0;
7782   for(n=0;n<524288;n++) // 0 .. 0x7FFFFFFF
7783     memory_map[n]=-1;
7784   for(n=524288;n<526336;n++) // 0x80000000 .. 0x807FFFFF
7785     memory_map[n]=((u_int)rdram-0x80000000)>>2;
7786   for(n=526336;n<1048576;n++) // 0x80800000 .. 0xFFFFFFFF
7787     memory_map[n]=-1;
7788   for(n=0;n<4096;n++) ll_clear(jump_in+n);
7789   for(n=0;n<4096;n++) ll_clear(jump_out+n);
7790   for(n=0;n<4096;n++) ll_clear(jump_dirty+n);
7791 }
7792
7793 void new_dynarec_init()
7794 {
7795   printf("Init new dynarec\n");
7796   out=(u_char *)BASE_ADDR;
7797   if (mmap (out, 1<<TARGET_SIZE_2,
7798             PROT_READ | PROT_WRITE | PROT_EXEC,
7799             MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS,
7800             -1, 0) <= 0) {printf("mmap() failed\n");}
7801 #ifdef MUPEN64
7802   rdword=&readmem_dword;
7803   fake_pc.f.r.rs=&readmem_dword;
7804   fake_pc.f.r.rt=&readmem_dword;
7805   fake_pc.f.r.rd=&readmem_dword;
7806 #endif
7807   int n;
7808   new_dynarec_clear_full();
7809 #ifdef HOST_IMM8
7810   // Copy this into local area so we don't have to put it in every literal pool
7811   invc_ptr=invalid_code;
7812 #endif
7813 #ifdef MUPEN64
7814   for(n=0;n<0x8000;n++) { // 0 .. 0x7FFFFFFF
7815     writemem[n] = write_nomem_new;
7816     writememb[n] = write_nomemb_new;
7817     writememh[n] = write_nomemh_new;
7818 #ifndef FORCE32
7819     writememd[n] = write_nomemd_new;
7820 #endif
7821     readmem[n] = read_nomem_new;
7822     readmemb[n] = read_nomemb_new;
7823     readmemh[n] = read_nomemh_new;
7824 #ifndef FORCE32
7825     readmemd[n] = read_nomemd_new;
7826 #endif
7827   }
7828   for(n=0x8000;n<0x8080;n++) { // 0x80000000 .. 0x807FFFFF
7829     writemem[n] = write_rdram_new;
7830     writememb[n] = write_rdramb_new;
7831     writememh[n] = write_rdramh_new;
7832 #ifndef FORCE32
7833     writememd[n] = write_rdramd_new;
7834 #endif
7835   }
7836   for(n=0xC000;n<0x10000;n++) { // 0xC0000000 .. 0xFFFFFFFF
7837     writemem[n] = write_nomem_new;
7838     writememb[n] = write_nomemb_new;
7839     writememh[n] = write_nomemh_new;
7840 #ifndef FORCE32
7841     writememd[n] = write_nomemd_new;
7842 #endif
7843     readmem[n] = read_nomem_new;
7844     readmemb[n] = read_nomemb_new;
7845     readmemh[n] = read_nomemh_new;
7846 #ifndef FORCE32
7847     readmemd[n] = read_nomemd_new;
7848 #endif
7849   }
7850 #endif
7851   tlb_hacks();
7852   arch_init();
7853 }
7854
7855 void new_dynarec_cleanup()
7856 {
7857   int n;
7858   if (munmap ((void *)BASE_ADDR, 1<<TARGET_SIZE_2) < 0) {printf("munmap() failed\n");}
7859   for(n=0;n<4096;n++) ll_clear(jump_in+n);
7860   for(n=0;n<4096;n++) ll_clear(jump_out+n);
7861   for(n=0;n<4096;n++) ll_clear(jump_dirty+n);
7862   #ifdef ROM_COPY
7863   if (munmap (ROM_COPY, 67108864) < 0) {printf("munmap() failed\n");}
7864   #endif
7865 }
7866
7867 int new_recompile_block(int addr)
7868 {
7869 /*
7870   if(addr==0x800cd050) {
7871     int block;
7872     for(block=0x80000;block<0x80800;block++) invalidate_block(block);
7873     int n;
7874     for(n=0;n<=2048;n++) ll_clear(jump_dirty+n);
7875   }
7876 */
7877   //if(Count==365117028) tracedebug=1;
7878   assem_debug("NOTCOMPILED: addr = %x -> %x\n", (int)addr, (int)out);
7879   //printf("NOTCOMPILED: addr = %x -> %x\n", (int)addr, (int)out);
7880   //printf("TRACE: count=%d next=%d (compile %x)\n",Count,next_interupt,addr);
7881   //if(debug) 
7882   //printf("TRACE: count=%d next=%d (checksum %x)\n",Count,next_interupt,mchecksum());
7883   //printf("fpu mapping=%x enabled=%x\n",(Status & 0x04000000)>>26,(Status & 0x20000000)>>29);
7884   /*if(Count>=312978186) {
7885     rlist();
7886   }*/
7887   //rlist();
7888   start = (u_int)addr&~3;
7889   //assert(((u_int)addr&1)==0);
7890 #ifdef PCSX
7891   if(!sp_in_mirror&&(signed int)(psxRegs.GPR.n.sp&0xffe00000)>0x80200000&&
7892      0x10000<=psxRegs.GPR.n.sp&&(psxRegs.GPR.n.sp&~0xe0e00000)<RAM_SIZE) {
7893     printf("SP hack enabled (%08x), @%08x\n", psxRegs.GPR.n.sp, psxRegs.pc);
7894     sp_in_mirror=1;
7895   }
7896   if (Config.HLE && start == 0x80001000) // hlecall
7897   {
7898     // XXX: is this enough? Maybe check hleSoftCall?
7899     u_int beginning=(u_int)out;
7900     u_int page=get_page(start);
7901     invalid_code[start>>12]=0;
7902     emit_movimm(start,0);
7903     emit_writeword(0,(int)&pcaddr);
7904     emit_jmp((int)new_dyna_leave);
7905 #ifdef __arm__
7906     __clear_cache((void *)beginning,out);
7907 #endif
7908     ll_add(jump_in+page,start,(void *)beginning);
7909     return 0;
7910   }
7911   else if ((u_int)addr < 0x00200000 ||
7912     (0xa0000000 <= addr && addr < 0xa0200000)) {
7913     // used for BIOS calls mostly?
7914     source = (u_int *)((u_int)rdram+(start&0x1fffff));
7915     pagelimit = (addr&0xa0000000)|0x00200000;
7916   }
7917   else if (!Config.HLE && (
7918 /*    (0x9fc00000 <= addr && addr < 0x9fc80000) ||*/
7919     (0xbfc00000 <= addr && addr < 0xbfc80000))) {
7920     // BIOS
7921     source = (u_int *)((u_int)psxR+(start&0x7ffff));
7922     pagelimit = (addr&0xfff00000)|0x80000;
7923   }
7924   else
7925 #endif
7926 #ifdef MUPEN64
7927   if ((int)addr >= 0xa4000000 && (int)addr < 0xa4001000) {
7928     source = (u_int *)((u_int)SP_DMEM+start-0xa4000000);
7929     pagelimit = 0xa4001000;
7930   }
7931   else
7932 #endif
7933   if ((int)addr >= 0x80000000 && (int)addr < 0x80000000+RAM_SIZE) {
7934     source = (u_int *)((u_int)rdram+start-0x80000000);
7935     pagelimit = 0x80000000+RAM_SIZE;
7936   }
7937 #ifndef DISABLE_TLB
7938   else if ((signed int)addr >= (signed int)0xC0000000) {
7939     //printf("addr=%x mm=%x\n",(u_int)addr,(memory_map[start>>12]<<2));
7940     //if(tlb_LUT_r[start>>12])
7941       //source = (u_int *)(((int)rdram)+(tlb_LUT_r[start>>12]&0xFFFFF000)+(((int)addr)&0xFFF)-0x80000000);
7942     if((signed int)memory_map[start>>12]>=0) {
7943       source = (u_int *)((u_int)(start+(memory_map[start>>12]<<2)));
7944       pagelimit=(start+4096)&0xFFFFF000;
7945       int map=memory_map[start>>12];
7946       int i;
7947       for(i=0;i<5;i++) {
7948         //printf("start: %x next: %x\n",map,memory_map[pagelimit>>12]);
7949         if((map&0xBFFFFFFF)==(memory_map[pagelimit>>12]&0xBFFFFFFF)) pagelimit+=4096;
7950       }
7951       assem_debug("pagelimit=%x\n",pagelimit);
7952       assem_debug("mapping=%x (%x)\n",memory_map[start>>12],(memory_map[start>>12]<<2)+start);
7953     }
7954     else {
7955       assem_debug("Compile at unmapped memory address: %x \n", (int)addr);
7956       //assem_debug("start: %x next: %x\n",memory_map[start>>12],memory_map[(start+4096)>>12]);
7957       return -1; // Caller will invoke exception handler
7958     }
7959     //printf("source= %x\n",(int)source);
7960   }
7961 #endif
7962   else {
7963     printf("Compile at bogus memory address: %x \n", (int)addr);
7964     exit(1);
7965   }
7966
7967   /* Pass 1: disassemble */
7968   /* Pass 2: register dependencies, branch targets */
7969   /* Pass 3: register allocation */
7970   /* Pass 4: branch dependencies */
7971   /* Pass 5: pre-alloc */
7972   /* Pass 6: optimize clean/dirty state */
7973   /* Pass 7: flag 32-bit registers */
7974   /* Pass 8: assembly */
7975   /* Pass 9: linker */
7976   /* Pass 10: garbage collection / free memory */
7977
7978   int i,j;
7979   int done=0;
7980   unsigned int type,op,op2;
7981
7982   //printf("addr = %x source = %x %x\n", addr,source,source[0]);
7983   
7984   /* Pass 1 disassembly */
7985
7986   for(i=0;!done;i++) {
7987     bt[i]=0;likely[i]=0;ooo[i]=0;op2=0;
7988     minimum_free_regs[i]=0;
7989     opcode[i]=op=source[i]>>26;
7990     switch(op)
7991     {
7992       case 0x00: strcpy(insn[i],"special"); type=NI;
7993         op2=source[i]&0x3f;
7994         switch(op2)
7995         {
7996           case 0x00: strcpy(insn[i],"SLL"); type=SHIFTIMM; break;
7997           case 0x02: strcpy(insn[i],"SRL"); type=SHIFTIMM; break;
7998           case 0x03: strcpy(insn[i],"SRA"); type=SHIFTIMM; break;
7999           case 0x04: strcpy(insn[i],"SLLV"); type=SHIFT; break;
8000           case 0x06: strcpy(insn[i],"SRLV"); type=SHIFT; break;
8001           case 0x07: strcpy(insn[i],"SRAV"); type=SHIFT; break;
8002           case 0x08: strcpy(insn[i],"JR"); type=RJUMP; break;
8003           case 0x09: strcpy(insn[i],"JALR"); type=RJUMP; break;
8004           case 0x0C: strcpy(insn[i],"SYSCALL"); type=SYSCALL; break;
8005           case 0x0D: strcpy(insn[i],"BREAK"); type=OTHER; break;
8006           case 0x0F: strcpy(insn[i],"SYNC"); type=OTHER; break;
8007           case 0x10: strcpy(insn[i],"MFHI"); type=MOV; break;
8008           case 0x11: strcpy(insn[i],"MTHI"); type=MOV; break;
8009           case 0x12: strcpy(insn[i],"MFLO"); type=MOV; break;
8010           case 0x13: strcpy(insn[i],"MTLO"); type=MOV; break;
8011           case 0x18: strcpy(insn[i],"MULT"); type=MULTDIV; break;
8012           case 0x19: strcpy(insn[i],"MULTU"); type=MULTDIV; break;
8013           case 0x1A: strcpy(insn[i],"DIV"); type=MULTDIV; break;
8014           case 0x1B: strcpy(insn[i],"DIVU"); type=MULTDIV; break;
8015           case 0x20: strcpy(insn[i],"ADD"); type=ALU; break;
8016           case 0x21: strcpy(insn[i],"ADDU"); type=ALU; break;
8017           case 0x22: strcpy(insn[i],"SUB"); type=ALU; break;
8018           case 0x23: strcpy(insn[i],"SUBU"); type=ALU; break;
8019           case 0x24: strcpy(insn[i],"AND"); type=ALU; break;
8020           case 0x25: strcpy(insn[i],"OR"); type=ALU; break;
8021           case 0x26: strcpy(insn[i],"XOR"); type=ALU; break;
8022           case 0x27: strcpy(insn[i],"NOR"); type=ALU; break;
8023           case 0x2A: strcpy(insn[i],"SLT"); type=ALU; break;
8024           case 0x2B: strcpy(insn[i],"SLTU"); type=ALU; break;
8025           case 0x30: strcpy(insn[i],"TGE"); type=NI; break;
8026           case 0x31: strcpy(insn[i],"TGEU"); type=NI; break;
8027           case 0x32: strcpy(insn[i],"TLT"); type=NI; break;
8028           case 0x33: strcpy(insn[i],"TLTU"); type=NI; break;
8029           case 0x34: strcpy(insn[i],"TEQ"); type=NI; break;
8030           case 0x36: strcpy(insn[i],"TNE"); type=NI; break;
8031 #ifndef FORCE32
8032           case 0x14: strcpy(insn[i],"DSLLV"); type=SHIFT; break;
8033           case 0x16: strcpy(insn[i],"DSRLV"); type=SHIFT; break;
8034           case 0x17: strcpy(insn[i],"DSRAV"); type=SHIFT; break;
8035           case 0x1C: strcpy(insn[i],"DMULT"); type=MULTDIV; break;
8036           case 0x1D: strcpy(insn[i],"DMULTU"); type=MULTDIV; break;
8037           case 0x1E: strcpy(insn[i],"DDIV"); type=MULTDIV; break;
8038           case 0x1F: strcpy(insn[i],"DDIVU"); type=MULTDIV; break;
8039           case 0x2C: strcpy(insn[i],"DADD"); type=ALU; break;
8040           case 0x2D: strcpy(insn[i],"DADDU"); type=ALU; break;
8041           case 0x2E: strcpy(insn[i],"DSUB"); type=ALU; break;
8042           case 0x2F: strcpy(insn[i],"DSUBU"); type=ALU; break;
8043           case 0x38: strcpy(insn[i],"DSLL"); type=SHIFTIMM; break;
8044           case 0x3A: strcpy(insn[i],"DSRL"); type=SHIFTIMM; break;
8045           case 0x3B: strcpy(insn[i],"DSRA"); type=SHIFTIMM; break;
8046           case 0x3C: strcpy(insn[i],"DSLL32"); type=SHIFTIMM; break;
8047           case 0x3E: strcpy(insn[i],"DSRL32"); type=SHIFTIMM; break;
8048           case 0x3F: strcpy(insn[i],"DSRA32"); type=SHIFTIMM; break;
8049 #endif
8050         }
8051         break;
8052       case 0x01: strcpy(insn[i],"regimm"); type=NI;
8053         op2=(source[i]>>16)&0x1f;
8054         switch(op2)
8055         {
8056           case 0x00: strcpy(insn[i],"BLTZ"); type=SJUMP; break;
8057           case 0x01: strcpy(insn[i],"BGEZ"); type=SJUMP; break;
8058           case 0x02: strcpy(insn[i],"BLTZL"); type=SJUMP; break;
8059           case 0x03: strcpy(insn[i],"BGEZL"); type=SJUMP; break;
8060           case 0x08: strcpy(insn[i],"TGEI"); type=NI; break;
8061           case 0x09: strcpy(insn[i],"TGEIU"); type=NI; break;
8062           case 0x0A: strcpy(insn[i],"TLTI"); type=NI; break;
8063           case 0x0B: strcpy(insn[i],"TLTIU"); type=NI; break;
8064           case 0x0C: strcpy(insn[i],"TEQI"); type=NI; break;
8065           case 0x0E: strcpy(insn[i],"TNEI"); type=NI; break;
8066           case 0x10: strcpy(insn[i],"BLTZAL"); type=SJUMP; break;
8067           case 0x11: strcpy(insn[i],"BGEZAL"); type=SJUMP; break;
8068           case 0x12: strcpy(insn[i],"BLTZALL"); type=SJUMP; break;
8069           case 0x13: strcpy(insn[i],"BGEZALL"); type=SJUMP; break;
8070         }
8071         break;
8072       case 0x02: strcpy(insn[i],"J"); type=UJUMP; break;
8073       case 0x03: strcpy(insn[i],"JAL"); type=UJUMP; break;
8074       case 0x04: strcpy(insn[i],"BEQ"); type=CJUMP; break;
8075       case 0x05: strcpy(insn[i],"BNE"); type=CJUMP; break;
8076       case 0x06: strcpy(insn[i],"BLEZ"); type=CJUMP; break;
8077       case 0x07: strcpy(insn[i],"BGTZ"); type=CJUMP; break;
8078       case 0x08: strcpy(insn[i],"ADDI"); type=IMM16; break;
8079       case 0x09: strcpy(insn[i],"ADDIU"); type=IMM16; break;
8080       case 0x0A: strcpy(insn[i],"SLTI"); type=IMM16; break;
8081       case 0x0B: strcpy(insn[i],"SLTIU"); type=IMM16; break;
8082       case 0x0C: strcpy(insn[i],"ANDI"); type=IMM16; break;
8083       case 0x0D: strcpy(insn[i],"ORI"); type=IMM16; break;
8084       case 0x0E: strcpy(insn[i],"XORI"); type=IMM16; break;
8085       case 0x0F: strcpy(insn[i],"LUI"); type=IMM16; break;
8086       case 0x10: strcpy(insn[i],"cop0"); type=NI;
8087         op2=(source[i]>>21)&0x1f;
8088         switch(op2)
8089         {
8090           case 0x00: strcpy(insn[i],"MFC0"); type=COP0; break;
8091           case 0x04: strcpy(insn[i],"MTC0"); type=COP0; break;
8092           case 0x10: strcpy(insn[i],"tlb"); type=NI;
8093           switch(source[i]&0x3f)
8094           {
8095             case 0x01: strcpy(insn[i],"TLBR"); type=COP0; break;
8096             case 0x02: strcpy(insn[i],"TLBWI"); type=COP0; break;
8097             case 0x06: strcpy(insn[i],"TLBWR"); type=COP0; break;
8098             case 0x08: strcpy(insn[i],"TLBP"); type=COP0; break;
8099 #ifdef PCSX
8100             case 0x10: strcpy(insn[i],"RFE"); type=COP0; break;
8101 #else
8102             case 0x18: strcpy(insn[i],"ERET"); type=COP0; break;
8103 #endif
8104           }
8105         }
8106         break;
8107       case 0x11: strcpy(insn[i],"cop1"); type=NI;
8108         op2=(source[i]>>21)&0x1f;
8109         switch(op2)
8110         {
8111           case 0x00: strcpy(insn[i],"MFC1"); type=COP1; break;
8112           case 0x01: strcpy(insn[i],"DMFC1"); type=COP1; break;
8113           case 0x02: strcpy(insn[i],"CFC1"); type=COP1; break;
8114           case 0x04: strcpy(insn[i],"MTC1"); type=COP1; break;
8115           case 0x05: strcpy(insn[i],"DMTC1"); type=COP1; break;
8116           case 0x06: strcpy(insn[i],"CTC1"); type=COP1; break;
8117           case 0x08: strcpy(insn[i],"BC1"); type=FJUMP;
8118           switch((source[i]>>16)&0x3)
8119           {
8120             case 0x00: strcpy(insn[i],"BC1F"); break;
8121             case 0x01: strcpy(insn[i],"BC1T"); break;
8122             case 0x02: strcpy(insn[i],"BC1FL"); break;
8123             case 0x03: strcpy(insn[i],"BC1TL"); break;
8124           }
8125           break;
8126           case 0x10: strcpy(insn[i],"C1.S"); type=NI;
8127           switch(source[i]&0x3f)
8128           {
8129             case 0x00: strcpy(insn[i],"ADD.S"); type=FLOAT; break;
8130             case 0x01: strcpy(insn[i],"SUB.S"); type=FLOAT; break;
8131             case 0x02: strcpy(insn[i],"MUL.S"); type=FLOAT; break;
8132             case 0x03: strcpy(insn[i],"DIV.S"); type=FLOAT; break;
8133             case 0x04: strcpy(insn[i],"SQRT.S"); type=FLOAT; break;
8134             case 0x05: strcpy(insn[i],"ABS.S"); type=FLOAT; break;
8135             case 0x06: strcpy(insn[i],"MOV.S"); type=FLOAT; break;
8136             case 0x07: strcpy(insn[i],"NEG.S"); type=FLOAT; break;
8137             case 0x08: strcpy(insn[i],"ROUND.L.S"); type=FCONV; break;
8138             case 0x09: strcpy(insn[i],"TRUNC.L.S"); type=FCONV; break;
8139             case 0x0A: strcpy(insn[i],"CEIL.L.S"); type=FCONV; break;
8140             case 0x0B: strcpy(insn[i],"FLOOR.L.S"); type=FCONV; break;
8141             case 0x0C: strcpy(insn[i],"ROUND.W.S"); type=FCONV; break;
8142             case 0x0D: strcpy(insn[i],"TRUNC.W.S"); type=FCONV; break;
8143             case 0x0E: strcpy(insn[i],"CEIL.W.S"); type=FCONV; break;
8144             case 0x0F: strcpy(insn[i],"FLOOR.W.S"); type=FCONV; break;
8145             case 0x21: strcpy(insn[i],"CVT.D.S"); type=FCONV; break;
8146             case 0x24: strcpy(insn[i],"CVT.W.S"); type=FCONV; break;
8147             case 0x25: strcpy(insn[i],"CVT.L.S"); type=FCONV; break;
8148             case 0x30: strcpy(insn[i],"C.F.S"); type=FCOMP; break;
8149             case 0x31: strcpy(insn[i],"C.UN.S"); type=FCOMP; break;
8150             case 0x32: strcpy(insn[i],"C.EQ.S"); type=FCOMP; break;
8151             case 0x33: strcpy(insn[i],"C.UEQ.S"); type=FCOMP; break;
8152             case 0x34: strcpy(insn[i],"C.OLT.S"); type=FCOMP; break;
8153             case 0x35: strcpy(insn[i],"C.ULT.S"); type=FCOMP; break;
8154             case 0x36: strcpy(insn[i],"C.OLE.S"); type=FCOMP; break;
8155             case 0x37: strcpy(insn[i],"C.ULE.S"); type=FCOMP; break;
8156             case 0x38: strcpy(insn[i],"C.SF.S"); type=FCOMP; break;
8157             case 0x39: strcpy(insn[i],"C.NGLE.S"); type=FCOMP; break;
8158             case 0x3A: strcpy(insn[i],"C.SEQ.S"); type=FCOMP; break;
8159             case 0x3B: strcpy(insn[i],"C.NGL.S"); type=FCOMP; break;
8160             case 0x3C: strcpy(insn[i],"C.LT.S"); type=FCOMP; break;
8161             case 0x3D: strcpy(insn[i],"C.NGE.S"); type=FCOMP; break;
8162             case 0x3E: strcpy(insn[i],"C.LE.S"); type=FCOMP; break;
8163             case 0x3F: strcpy(insn[i],"C.NGT.S"); type=FCOMP; break;
8164           }
8165           break;
8166           case 0x11: strcpy(insn[i],"C1.D"); type=NI;
8167           switch(source[i]&0x3f)
8168           {
8169             case 0x00: strcpy(insn[i],"ADD.D"); type=FLOAT; break;
8170             case 0x01: strcpy(insn[i],"SUB.D"); type=FLOAT; break;
8171             case 0x02: strcpy(insn[i],"MUL.D"); type=FLOAT; break;
8172             case 0x03: strcpy(insn[i],"DIV.D"); type=FLOAT; break;
8173             case 0x04: strcpy(insn[i],"SQRT.D"); type=FLOAT; break;
8174             case 0x05: strcpy(insn[i],"ABS.D"); type=FLOAT; break;
8175             case 0x06: strcpy(insn[i],"MOV.D"); type=FLOAT; break;
8176             case 0x07: strcpy(insn[i],"NEG.D"); type=FLOAT; break;
8177             case 0x08: strcpy(insn[i],"ROUND.L.D"); type=FCONV; break;
8178             case 0x09: strcpy(insn[i],"TRUNC.L.D"); type=FCONV; break;
8179             case 0x0A: strcpy(insn[i],"CEIL.L.D"); type=FCONV; break;
8180             case 0x0B: strcpy(insn[i],"FLOOR.L.D"); type=FCONV; break;
8181             case 0x0C: strcpy(insn[i],"ROUND.W.D"); type=FCONV; break;
8182             case 0x0D: strcpy(insn[i],"TRUNC.W.D"); type=FCONV; break;
8183             case 0x0E: strcpy(insn[i],"CEIL.W.D"); type=FCONV; break;
8184             case 0x0F: strcpy(insn[i],"FLOOR.W.D"); type=FCONV; break;
8185             case 0x20: strcpy(insn[i],"CVT.S.D"); type=FCONV; break;
8186             case 0x24: strcpy(insn[i],"CVT.W.D"); type=FCONV; break;
8187             case 0x25: strcpy(insn[i],"CVT.L.D"); type=FCONV; break;
8188             case 0x30: strcpy(insn[i],"C.F.D"); type=FCOMP; break;
8189             case 0x31: strcpy(insn[i],"C.UN.D"); type=FCOMP; break;
8190             case 0x32: strcpy(insn[i],"C.EQ.D"); type=FCOMP; break;
8191             case 0x33: strcpy(insn[i],"C.UEQ.D"); type=FCOMP; break;
8192             case 0x34: strcpy(insn[i],"C.OLT.D"); type=FCOMP; break;
8193             case 0x35: strcpy(insn[i],"C.ULT.D"); type=FCOMP; break;
8194             case 0x36: strcpy(insn[i],"C.OLE.D"); type=FCOMP; break;
8195             case 0x37: strcpy(insn[i],"C.ULE.D"); type=FCOMP; break;
8196             case 0x38: strcpy(insn[i],"C.SF.D"); type=FCOMP; break;
8197             case 0x39: strcpy(insn[i],"C.NGLE.D"); type=FCOMP; break;
8198             case 0x3A: strcpy(insn[i],"C.SEQ.D"); type=FCOMP; break;
8199             case 0x3B: strcpy(insn[i],"C.NGL.D"); type=FCOMP; break;
8200             case 0x3C: strcpy(insn[i],"C.LT.D"); type=FCOMP; break;
8201             case 0x3D: strcpy(insn[i],"C.NGE.D"); type=FCOMP; break;
8202             case 0x3E: strcpy(insn[i],"C.LE.D"); type=FCOMP; break;
8203             case 0x3F: strcpy(insn[i],"C.NGT.D"); type=FCOMP; break;
8204           }
8205           break;
8206           case 0x14: strcpy(insn[i],"C1.W"); type=NI;
8207           switch(source[i]&0x3f)
8208           {
8209             case 0x20: strcpy(insn[i],"CVT.S.W"); type=FCONV; break;
8210             case 0x21: strcpy(insn[i],"CVT.D.W"); type=FCONV; break;
8211           }
8212           break;
8213           case 0x15: strcpy(insn[i],"C1.L"); type=NI;
8214           switch(source[i]&0x3f)
8215           {
8216             case 0x20: strcpy(insn[i],"CVT.S.L"); type=FCONV; break;
8217             case 0x21: strcpy(insn[i],"CVT.D.L"); type=FCONV; break;
8218           }
8219           break;
8220         }
8221         break;
8222 #ifndef FORCE32
8223       case 0x14: strcpy(insn[i],"BEQL"); type=CJUMP; break;
8224       case 0x15: strcpy(insn[i],"BNEL"); type=CJUMP; break;
8225       case 0x16: strcpy(insn[i],"BLEZL"); type=CJUMP; break;
8226       case 0x17: strcpy(insn[i],"BGTZL"); type=CJUMP; break;
8227       case 0x18: strcpy(insn[i],"DADDI"); type=IMM16; break;
8228       case 0x19: strcpy(insn[i],"DADDIU"); type=IMM16; break;
8229       case 0x1A: strcpy(insn[i],"LDL"); type=LOADLR; break;
8230       case 0x1B: strcpy(insn[i],"LDR"); type=LOADLR; break;
8231 #endif
8232       case 0x20: strcpy(insn[i],"LB"); type=LOAD; break;
8233       case 0x21: strcpy(insn[i],"LH"); type=LOAD; break;
8234       case 0x22: strcpy(insn[i],"LWL"); type=LOADLR; break;
8235       case 0x23: strcpy(insn[i],"LW"); type=LOAD; break;
8236       case 0x24: strcpy(insn[i],"LBU"); type=LOAD; break;
8237       case 0x25: strcpy(insn[i],"LHU"); type=LOAD; break;
8238       case 0x26: strcpy(insn[i],"LWR"); type=LOADLR; break;
8239       case 0x27: strcpy(insn[i],"LWU"); type=LOAD; break;
8240       case 0x28: strcpy(insn[i],"SB"); type=STORE; break;
8241       case 0x29: strcpy(insn[i],"SH"); type=STORE; break;
8242       case 0x2A: strcpy(insn[i],"SWL"); type=STORELR; break;
8243       case 0x2B: strcpy(insn[i],"SW"); type=STORE; break;
8244 #ifndef FORCE32
8245       case 0x2C: strcpy(insn[i],"SDL"); type=STORELR; break;
8246       case 0x2D: strcpy(insn[i],"SDR"); type=STORELR; break;
8247 #endif
8248       case 0x2E: strcpy(insn[i],"SWR"); type=STORELR; break;
8249       case 0x2F: strcpy(insn[i],"CACHE"); type=NOP; break;
8250       case 0x30: strcpy(insn[i],"LL"); type=NI; break;
8251       case 0x31: strcpy(insn[i],"LWC1"); type=C1LS; break;
8252 #ifndef FORCE32
8253       case 0x34: strcpy(insn[i],"LLD"); type=NI; break;
8254       case 0x35: strcpy(insn[i],"LDC1"); type=C1LS; break;
8255       case 0x37: strcpy(insn[i],"LD"); type=LOAD; break;
8256 #endif
8257       case 0x38: strcpy(insn[i],"SC"); type=NI; break;
8258       case 0x39: strcpy(insn[i],"SWC1"); type=C1LS; break;
8259 #ifndef FORCE32
8260       case 0x3C: strcpy(insn[i],"SCD"); type=NI; break;
8261       case 0x3D: strcpy(insn[i],"SDC1"); type=C1LS; break;
8262       case 0x3F: strcpy(insn[i],"SD"); type=STORE; break;
8263 #endif
8264 #ifdef PCSX
8265       case 0x12: strcpy(insn[i],"COP2"); type=NI;
8266         // note: COP MIPS-1 encoding differs from MIPS32
8267         op2=(source[i]>>21)&0x1f;
8268         if (source[i]&0x3f) {
8269           if (gte_handlers[source[i]&0x3f]!=NULL) {
8270             snprintf(insn[i], sizeof(insn[i]), "COP2 %x", source[i]&0x3f);
8271             type=C2OP;
8272           }
8273         }
8274         else switch(op2)
8275         {
8276           case 0x00: strcpy(insn[i],"MFC2"); type=COP2; break;
8277           case 0x02: strcpy(insn[i],"CFC2"); type=COP2; break;
8278           case 0x04: strcpy(insn[i],"MTC2"); type=COP2; break;
8279           case 0x06: strcpy(insn[i],"CTC2"); type=COP2; break;
8280         }
8281         break;
8282       case 0x32: strcpy(insn[i],"LWC2"); type=C2LS; break;
8283       case 0x3A: strcpy(insn[i],"SWC2"); type=C2LS; break;
8284       case 0x3B: strcpy(insn[i],"HLECALL"); type=HLECALL; break;
8285 #endif
8286       default: strcpy(insn[i],"???"); type=NI;
8287         printf("NI %08x @%08x (%08x)\n", source[i], addr + i*4, addr);
8288         break;
8289     }
8290     itype[i]=type;
8291     opcode2[i]=op2;
8292     /* Get registers/immediates */
8293     lt1[i]=0;
8294     us1[i]=0;
8295     us2[i]=0;
8296     dep1[i]=0;
8297     dep2[i]=0;
8298     switch(type) {
8299       case LOAD:
8300         rs1[i]=(source[i]>>21)&0x1f;
8301         rs2[i]=0;
8302         rt1[i]=(source[i]>>16)&0x1f;
8303         rt2[i]=0;
8304         imm[i]=(short)source[i];
8305         break;
8306       case STORE:
8307       case STORELR:
8308         rs1[i]=(source[i]>>21)&0x1f;
8309         rs2[i]=(source[i]>>16)&0x1f;
8310         rt1[i]=0;
8311         rt2[i]=0;
8312         imm[i]=(short)source[i];
8313         if(op==0x2c||op==0x2d||op==0x3f) us1[i]=rs2[i]; // 64-bit SDL/SDR/SD
8314         break;
8315       case LOADLR:
8316         // LWL/LWR only load part of the register,
8317         // therefore the target register must be treated as a source too
8318         rs1[i]=(source[i]>>21)&0x1f;
8319         rs2[i]=(source[i]>>16)&0x1f;
8320         rt1[i]=(source[i]>>16)&0x1f;
8321         rt2[i]=0;
8322         imm[i]=(short)source[i];
8323         if(op==0x1a||op==0x1b) us1[i]=rs2[i]; // LDR/LDL
8324         if(op==0x26) dep1[i]=rt1[i]; // LWR
8325         break;
8326       case IMM16:
8327         if (op==0x0f) rs1[i]=0; // LUI instruction has no source register
8328         else rs1[i]=(source[i]>>21)&0x1f;
8329         rs2[i]=0;
8330         rt1[i]=(source[i]>>16)&0x1f;
8331         rt2[i]=0;
8332         if(op>=0x0c&&op<=0x0e) { // ANDI/ORI/XORI
8333           imm[i]=(unsigned short)source[i];
8334         }else{
8335           imm[i]=(short)source[i];
8336         }
8337         if(op==0x18||op==0x19) us1[i]=rs1[i]; // DADDI/DADDIU
8338         if(op==0x0a||op==0x0b) us1[i]=rs1[i]; // SLTI/SLTIU
8339         if(op==0x0d||op==0x0e) dep1[i]=rs1[i]; // ORI/XORI
8340         break;
8341       case UJUMP:
8342         rs1[i]=0;
8343         rs2[i]=0;
8344         rt1[i]=0;
8345         rt2[i]=0;
8346         // The JAL instruction writes to r31.
8347         if (op&1) {
8348           rt1[i]=31;
8349         }
8350         rs2[i]=CCREG;
8351         break;
8352       case RJUMP:
8353         rs1[i]=(source[i]>>21)&0x1f;
8354         rs2[i]=0;
8355         rt1[i]=0;
8356         rt2[i]=0;
8357         // The JALR instruction writes to rd.
8358         if (op2&1) {
8359           rt1[i]=(source[i]>>11)&0x1f;
8360         }
8361         rs2[i]=CCREG;
8362         break;
8363       case CJUMP:
8364         rs1[i]=(source[i]>>21)&0x1f;
8365         rs2[i]=(source[i]>>16)&0x1f;
8366         rt1[i]=0;
8367         rt2[i]=0;
8368         if(op&2) { // BGTZ/BLEZ
8369           rs2[i]=0;
8370         }
8371         us1[i]=rs1[i];
8372         us2[i]=rs2[i];
8373         likely[i]=op>>4;
8374         break;
8375       case SJUMP:
8376         rs1[i]=(source[i]>>21)&0x1f;
8377         rs2[i]=CCREG;
8378         rt1[i]=0;
8379         rt2[i]=0;
8380         us1[i]=rs1[i];
8381         if(op2&0x10) { // BxxAL
8382           rt1[i]=31;
8383           // NOTE: If the branch is not taken, r31 is still overwritten
8384         }
8385         likely[i]=(op2&2)>>1;
8386         break;
8387       case FJUMP:
8388         rs1[i]=FSREG;
8389         rs2[i]=CSREG;
8390         rt1[i]=0;
8391         rt2[i]=0;
8392         likely[i]=((source[i])>>17)&1;
8393         break;
8394       case ALU:
8395         rs1[i]=(source[i]>>21)&0x1f; // source
8396         rs2[i]=(source[i]>>16)&0x1f; // subtract amount
8397         rt1[i]=(source[i]>>11)&0x1f; // destination
8398         rt2[i]=0;
8399         if(op2==0x2a||op2==0x2b) { // SLT/SLTU
8400           us1[i]=rs1[i];us2[i]=rs2[i];
8401         }
8402         else if(op2>=0x24&&op2<=0x27) { // AND/OR/XOR/NOR
8403           dep1[i]=rs1[i];dep2[i]=rs2[i];
8404         }
8405         else if(op2>=0x2c&&op2<=0x2f) { // DADD/DSUB
8406           dep1[i]=rs1[i];dep2[i]=rs2[i];
8407         }
8408         break;
8409       case MULTDIV:
8410         rs1[i]=(source[i]>>21)&0x1f; // source
8411         rs2[i]=(source[i]>>16)&0x1f; // divisor
8412         rt1[i]=HIREG;
8413         rt2[i]=LOREG;
8414         if (op2>=0x1c&&op2<=0x1f) { // DMULT/DMULTU/DDIV/DDIVU
8415           us1[i]=rs1[i];us2[i]=rs2[i];
8416         }
8417         break;
8418       case MOV:
8419         rs1[i]=0;
8420         rs2[i]=0;
8421         rt1[i]=0;
8422         rt2[i]=0;
8423         if(op2==0x10) rs1[i]=HIREG; // MFHI
8424         if(op2==0x11) rt1[i]=HIREG; // MTHI
8425         if(op2==0x12) rs1[i]=LOREG; // MFLO
8426         if(op2==0x13) rt1[i]=LOREG; // MTLO
8427         if((op2&0x1d)==0x10) rt1[i]=(source[i]>>11)&0x1f; // MFxx
8428         if((op2&0x1d)==0x11) rs1[i]=(source[i]>>21)&0x1f; // MTxx
8429         dep1[i]=rs1[i];
8430         break;
8431       case SHIFT:
8432         rs1[i]=(source[i]>>16)&0x1f; // target of shift
8433         rs2[i]=(source[i]>>21)&0x1f; // shift amount
8434         rt1[i]=(source[i]>>11)&0x1f; // destination
8435         rt2[i]=0;
8436         // DSLLV/DSRLV/DSRAV are 64-bit
8437         if(op2>=0x14&&op2<=0x17) us1[i]=rs1[i];
8438         break;
8439       case SHIFTIMM:
8440         rs1[i]=(source[i]>>16)&0x1f;
8441         rs2[i]=0;
8442         rt1[i]=(source[i]>>11)&0x1f;
8443         rt2[i]=0;
8444         imm[i]=(source[i]>>6)&0x1f;
8445         // DSxx32 instructions
8446         if(op2>=0x3c) imm[i]|=0x20;
8447         // DSLL/DSRL/DSRA/DSRA32/DSRL32 but not DSLL32 require 64-bit source
8448         if(op2>=0x38&&op2!=0x3c) us1[i]=rs1[i];
8449         break;
8450       case COP0:
8451         rs1[i]=0;
8452         rs2[i]=0;
8453         rt1[i]=0;
8454         rt2[i]=0;
8455         if(op2==0) rt1[i]=(source[i]>>16)&0x1F; // MFC0
8456         if(op2==4) rs1[i]=(source[i]>>16)&0x1F; // MTC0
8457         if(op2==4&&((source[i]>>11)&0x1f)==12) rt2[i]=CSREG; // Status
8458         if(op2==16) if((source[i]&0x3f)==0x18) rs2[i]=CCREG; // ERET
8459         break;
8460       case COP1:
8461       case COP2:
8462         rs1[i]=0;
8463         rs2[i]=0;
8464         rt1[i]=0;
8465         rt2[i]=0;
8466         if(op2<3) rt1[i]=(source[i]>>16)&0x1F; // MFC1/DMFC1/CFC1
8467         if(op2>3) rs1[i]=(source[i]>>16)&0x1F; // MTC1/DMTC1/CTC1
8468         if(op2==5) us1[i]=rs1[i]; // DMTC1
8469         rs2[i]=CSREG;
8470         break;
8471       case C1LS:
8472         rs1[i]=(source[i]>>21)&0x1F;
8473         rs2[i]=CSREG;
8474         rt1[i]=0;
8475         rt2[i]=0;
8476         imm[i]=(short)source[i];
8477         break;
8478       case C2LS:
8479         rs1[i]=(source[i]>>21)&0x1F;
8480         rs2[i]=0;
8481         rt1[i]=0;
8482         rt2[i]=0;
8483         imm[i]=(short)source[i];
8484         break;
8485       case FLOAT:
8486       case FCONV:
8487         rs1[i]=0;
8488         rs2[i]=CSREG;
8489         rt1[i]=0;
8490         rt2[i]=0;
8491         break;
8492       case FCOMP:
8493         rs1[i]=FSREG;
8494         rs2[i]=CSREG;
8495         rt1[i]=FSREG;
8496         rt2[i]=0;
8497         break;
8498       case SYSCALL:
8499       case HLECALL:
8500       case INTCALL:
8501         rs1[i]=CCREG;
8502         rs2[i]=0;
8503         rt1[i]=0;
8504         rt2[i]=0;
8505         break;
8506       default:
8507         rs1[i]=0;
8508         rs2[i]=0;
8509         rt1[i]=0;
8510         rt2[i]=0;
8511     }
8512     /* Calculate branch target addresses */
8513     if(type==UJUMP)
8514       ba[i]=((start+i*4+4)&0xF0000000)|(((unsigned int)source[i]<<6)>>4);
8515     else if(type==CJUMP&&rs1[i]==rs2[i]&&(op&1))
8516       ba[i]=start+i*4+8; // Ignore never taken branch
8517     else if(type==SJUMP&&rs1[i]==0&&!(op2&1))
8518       ba[i]=start+i*4+8; // Ignore never taken branch
8519     else if(type==CJUMP||type==SJUMP||type==FJUMP)
8520       ba[i]=start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14);
8521     else ba[i]=-1;
8522 #ifdef PCSX
8523     if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)) {
8524       int do_in_intrp=0;
8525       // branch in delay slot?
8526       if(type==RJUMP||type==UJUMP||type==CJUMP||type==SJUMP||type==FJUMP) {
8527         // don't handle first branch and call interpreter if it's hit
8528         printf("branch in delay slot @%08x (%08x)\n", addr + i*4, addr);
8529         do_in_intrp=1;
8530       }
8531       // basic load delay detection
8532       else if((type==LOAD||type==LOADLR||type==COP0||type==COP2||type==C2LS)&&rt1[i]!=0) {
8533         int t=(ba[i-1]-start)/4;
8534         if(0 <= t && t < i &&(rt1[i]==rs1[t]||rt1[i]==rs2[t])&&itype[t]!=CJUMP&&itype[t]!=SJUMP) {
8535           // jump target wants DS result - potential load delay effect
8536           printf("load delay @%08x (%08x)\n", addr + i*4, addr);
8537           do_in_intrp=1;
8538           bt[t+1]=1; // expected return from interpreter
8539         }
8540         else if(i>=2&&rt1[i-2]==2&&rt1[i]==2&&rs1[i]!=2&&rs2[i]!=2&&rs1[i-1]!=2&&rs2[i-1]!=2&&
8541               !(i>=3&&(itype[i-3]==RJUMP||itype[i-3]==UJUMP||itype[i-3]==CJUMP||itype[i-3]==SJUMP))) {
8542           // v0 overwrite like this is a sign of trouble, bail out
8543           printf("v0 overwrite @%08x (%08x)\n", addr + i*4, addr);
8544           do_in_intrp=1;
8545         }
8546       }
8547       if(do_in_intrp) {
8548         rs1[i-1]=CCREG;
8549         rs2[i-1]=rt1[i-1]=rt2[i-1]=0;
8550         ba[i-1]=-1;
8551         itype[i-1]=INTCALL;
8552         done=2;
8553         i--; // don't compile the DS
8554       }
8555     }
8556 #endif
8557     /* Is this the end of the block? */
8558     if(i>0&&(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)) {
8559       if(rt1[i-1]==0) { // Continue past subroutine call (JAL)
8560         done=2;
8561       }
8562       else {
8563         if(stop_after_jal) done=1;
8564         // Stop on BREAK
8565         if((source[i+1]&0xfc00003f)==0x0d) done=1;
8566       }
8567       // Don't recompile stuff that's already compiled
8568       if(check_addr(start+i*4+4)) done=1;
8569       // Don't get too close to the limit
8570       if(i>MAXBLOCK/2) done=1;
8571     }
8572     if(itype[i]==SYSCALL&&stop_after_jal) done=1;
8573     if(itype[i]==HLECALL||itype[i]==INTCALL) done=2;
8574     if(done==2) {
8575       // Does the block continue due to a branch?
8576       for(j=i-1;j>=0;j--)
8577       {
8578         if(ba[j]==start+i*4+4) done=j=0;
8579         if(ba[j]==start+i*4+8) done=j=0;
8580       }
8581     }
8582     //assert(i<MAXBLOCK-1);
8583     if(start+i*4==pagelimit-4) done=1;
8584     assert(start+i*4<pagelimit);
8585     if (i==MAXBLOCK-1) done=1;
8586     // Stop if we're compiling junk
8587     if(itype[i]==NI&&opcode[i]==0x11) {
8588       done=stop_after_jal=1;
8589       printf("Disabled speculative precompilation\n");
8590     }
8591   }
8592   slen=i;
8593   if(itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==RJUMP||itype[i-1]==FJUMP) {
8594     if(start+i*4==pagelimit) {
8595       itype[i-1]=SPAN;
8596     }
8597   }
8598   assert(slen>0);
8599
8600   /* Pass 2 - Register dependencies and branch targets */
8601
8602   unneeded_registers(0,slen-1,0);
8603   
8604   /* Pass 3 - Register allocation */
8605
8606   struct regstat current; // Current register allocations/status
8607   current.is32=1;
8608   current.dirty=0;
8609   current.u=unneeded_reg[0];
8610   current.uu=unneeded_reg_upper[0];
8611   clear_all_regs(current.regmap);
8612   alloc_reg(&current,0,CCREG);
8613   dirty_reg(&current,CCREG);
8614   current.isconst=0;
8615   current.wasconst=0;
8616   int ds=0;
8617   int cc=0;
8618   int hr=-1;
8619
8620 #ifndef FORCE32
8621   provisional_32bit();
8622 #endif
8623   if((u_int)addr&1) {
8624     // First instruction is delay slot
8625     cc=-1;
8626     bt[1]=1;
8627     ds=1;
8628     unneeded_reg[0]=1;
8629     unneeded_reg_upper[0]=1;
8630     current.regmap[HOST_BTREG]=BTREG;
8631   }
8632   
8633   for(i=0;i<slen;i++)
8634   {
8635     if(bt[i])
8636     {
8637       int hr;
8638       for(hr=0;hr<HOST_REGS;hr++)
8639       {
8640         // Is this really necessary?
8641         if(current.regmap[hr]==0) current.regmap[hr]=-1;
8642       }
8643       current.isconst=0;
8644     }
8645     if(i>1)
8646     {
8647       if((opcode[i-2]&0x2f)==0x05) // BNE/BNEL
8648       {
8649         if(rs1[i-2]==0||rs2[i-2]==0)
8650         {
8651           if(rs1[i-2]) {
8652             current.is32|=1LL<<rs1[i-2];
8653             int hr=get_reg(current.regmap,rs1[i-2]|64);
8654             if(hr>=0) current.regmap[hr]=-1;
8655           }
8656           if(rs2[i-2]) {
8657             current.is32|=1LL<<rs2[i-2];
8658             int hr=get_reg(current.regmap,rs2[i-2]|64);
8659             if(hr>=0) current.regmap[hr]=-1;
8660           }
8661         }
8662       }
8663     }
8664 #ifndef FORCE32
8665     // If something jumps here with 64-bit values
8666     // then promote those registers to 64 bits
8667     if(bt[i])
8668     {
8669       uint64_t temp_is32=current.is32;
8670       for(j=i-1;j>=0;j--)
8671       {
8672         if(ba[j]==start+i*4) 
8673           temp_is32&=branch_regs[j].is32;
8674       }
8675       for(j=i;j<slen;j++)
8676       {
8677         if(ba[j]==start+i*4) 
8678           //temp_is32=1;
8679           temp_is32&=p32[j];
8680       }
8681       if(temp_is32!=current.is32) {
8682         //printf("dumping 32-bit regs (%x)\n",start+i*4);
8683         #ifdef DESTRUCTIVE_WRITEBACK
8684         for(hr=0;hr<HOST_REGS;hr++)
8685         {
8686           int r=current.regmap[hr];
8687           if(r>0&&r<64)
8688           {
8689             if((current.dirty>>hr)&((current.is32&~temp_is32)>>r)&1) {
8690               temp_is32|=1LL<<r;
8691               //printf("restore %d\n",r);
8692             }
8693           }
8694         }
8695         #endif
8696         current.is32=temp_is32;
8697       }
8698     }
8699 #else
8700     current.is32=-1LL;
8701 #endif
8702
8703     memcpy(regmap_pre[i],current.regmap,sizeof(current.regmap));
8704     regs[i].wasconst=current.isconst;
8705     regs[i].was32=current.is32;
8706     regs[i].wasdirty=current.dirty;
8707     #if defined(DESTRUCTIVE_WRITEBACK) && !defined(FORCE32)
8708     // To change a dirty register from 32 to 64 bits, we must write
8709     // it out during the previous cycle (for branches, 2 cycles)
8710     if(i<slen-1&&bt[i+1]&&itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP)
8711     {
8712       uint64_t temp_is32=current.is32;
8713       for(j=i-1;j>=0;j--)
8714       {
8715         if(ba[j]==start+i*4+4) 
8716           temp_is32&=branch_regs[j].is32;
8717       }
8718       for(j=i;j<slen;j++)
8719       {
8720         if(ba[j]==start+i*4+4) 
8721           //temp_is32=1;
8722           temp_is32&=p32[j];
8723       }
8724       if(temp_is32!=current.is32) {
8725         //printf("pre-dumping 32-bit regs (%x)\n",start+i*4);
8726         for(hr=0;hr<HOST_REGS;hr++)
8727         {
8728           int r=current.regmap[hr];
8729           if(r>0)
8730           {
8731             if((current.dirty>>hr)&((current.is32&~temp_is32)>>(r&63))&1) {
8732               if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP)
8733               {
8734                 if(rs1[i]!=(r&63)&&rs2[i]!=(r&63))
8735                 {
8736                   //printf("dump %d/r%d\n",hr,r);
8737                   current.regmap[hr]=-1;
8738                   if(get_reg(current.regmap,r|64)>=0) 
8739                     current.regmap[get_reg(current.regmap,r|64)]=-1;
8740                 }
8741               }
8742             }
8743           }
8744         }
8745       }
8746     }
8747     else if(i<slen-2&&bt[i+2]&&(source[i-1]>>16)!=0x1000&&(itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP))
8748     {
8749       uint64_t temp_is32=current.is32;
8750       for(j=i-1;j>=0;j--)
8751       {
8752         if(ba[j]==start+i*4+8) 
8753           temp_is32&=branch_regs[j].is32;
8754       }
8755       for(j=i;j<slen;j++)
8756       {
8757         if(ba[j]==start+i*4+8) 
8758           //temp_is32=1;
8759           temp_is32&=p32[j];
8760       }
8761       if(temp_is32!=current.is32) {
8762         //printf("pre-dumping 32-bit regs (%x)\n",start+i*4);
8763         for(hr=0;hr<HOST_REGS;hr++)
8764         {
8765           int r=current.regmap[hr];
8766           if(r>0)
8767           {
8768             if((current.dirty>>hr)&((current.is32&~temp_is32)>>(r&63))&1) {
8769               if(rs1[i]!=(r&63)&&rs2[i]!=(r&63)&&rs1[i+1]!=(r&63)&&rs2[i+1]!=(r&63))
8770               {
8771                 //printf("dump %d/r%d\n",hr,r);
8772                 current.regmap[hr]=-1;
8773                 if(get_reg(current.regmap,r|64)>=0) 
8774                   current.regmap[get_reg(current.regmap,r|64)]=-1;
8775               }
8776             }
8777           }
8778         }
8779       }
8780     }
8781     #endif
8782     if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP) {
8783       if(i+1<slen) {
8784         current.u=unneeded_reg[i+1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
8785         current.uu=unneeded_reg_upper[i+1]&~((1LL<<us1[i])|(1LL<<us2[i]));
8786         if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
8787         current.u|=1;
8788         current.uu|=1;
8789       } else {
8790         current.u=1;
8791         current.uu=1;
8792       }
8793     } else {
8794       if(i+1<slen) {
8795         current.u=branch_unneeded_reg[i]&~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
8796         current.uu=branch_unneeded_reg_upper[i]&~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
8797         if((~current.uu>>rt1[i+1])&1) current.uu&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
8798         current.u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
8799         current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
8800         current.u|=1;
8801         current.uu|=1;
8802       } else { printf("oops, branch at end of block with no delay slot\n");exit(1); }
8803     }
8804     is_ds[i]=ds;
8805     if(ds) {
8806       ds=0; // Skip delay slot, already allocated as part of branch
8807       // ...but we need to alloc it in case something jumps here
8808       if(i+1<slen) {
8809         current.u=branch_unneeded_reg[i-1]&unneeded_reg[i+1];
8810         current.uu=branch_unneeded_reg_upper[i-1]&unneeded_reg_upper[i+1];
8811       }else{
8812         current.u=branch_unneeded_reg[i-1];
8813         current.uu=branch_unneeded_reg_upper[i-1];
8814       }
8815       current.u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
8816       current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
8817       if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
8818       current.u|=1;
8819       current.uu|=1;
8820       struct regstat temp;
8821       memcpy(&temp,&current,sizeof(current));
8822       temp.wasdirty=temp.dirty;
8823       temp.was32=temp.is32;
8824       // TODO: Take into account unconditional branches, as below
8825       delayslot_alloc(&temp,i);
8826       memcpy(regs[i].regmap,temp.regmap,sizeof(temp.regmap));
8827       regs[i].wasdirty=temp.wasdirty;
8828       regs[i].was32=temp.was32;
8829       regs[i].dirty=temp.dirty;
8830       regs[i].is32=temp.is32;
8831       regs[i].isconst=0;
8832       regs[i].wasconst=0;
8833       current.isconst=0;
8834       // Create entry (branch target) regmap
8835       for(hr=0;hr<HOST_REGS;hr++)
8836       {
8837         int r=temp.regmap[hr];
8838         if(r>=0) {
8839           if(r!=regmap_pre[i][hr]) {
8840             regs[i].regmap_entry[hr]=-1;
8841           }
8842           else
8843           {
8844             if(r<64){
8845               if((current.u>>r)&1) {
8846                 regs[i].regmap_entry[hr]=-1;
8847                 regs[i].regmap[hr]=-1;
8848                 //Don't clear regs in the delay slot as the branch might need them
8849                 //current.regmap[hr]=-1;
8850               }else
8851                 regs[i].regmap_entry[hr]=r;
8852             }
8853             else {
8854               if((current.uu>>(r&63))&1) {
8855                 regs[i].regmap_entry[hr]=-1;
8856                 regs[i].regmap[hr]=-1;
8857                 //Don't clear regs in the delay slot as the branch might need them
8858                 //current.regmap[hr]=-1;
8859               }else
8860                 regs[i].regmap_entry[hr]=r;
8861             }
8862           }
8863         } else {
8864           // First instruction expects CCREG to be allocated
8865           if(i==0&&hr==HOST_CCREG) 
8866             regs[i].regmap_entry[hr]=CCREG;
8867           else
8868             regs[i].regmap_entry[hr]=-1;
8869         }
8870       }
8871     }
8872     else { // Not delay slot
8873       switch(itype[i]) {
8874         case UJUMP:
8875           //current.isconst=0; // DEBUG
8876           //current.wasconst=0; // DEBUG
8877           //regs[i].wasconst=0; // DEBUG
8878           clear_const(&current,rt1[i]);
8879           alloc_cc(&current,i);
8880           dirty_reg(&current,CCREG);
8881           ooo[i]=1;
8882           delayslot_alloc(&current,i+1);
8883           if (rt1[i]==31) {
8884             alloc_reg(&current,i,31);
8885             dirty_reg(&current,31);
8886             //assert(rs1[i+1]!=31&&rs2[i+1]!=31);
8887             //assert(rt1[i+1]!=rt1[i]);
8888             #ifdef REG_PREFETCH
8889             alloc_reg(&current,i,PTEMP);
8890             #endif
8891             //current.is32|=1LL<<rt1[i];
8892           }
8893           //current.isconst=0; // DEBUG
8894           ds=1;
8895           //printf("i=%d, isconst=%x\n",i,current.isconst);
8896           break;
8897         case RJUMP:
8898           //current.isconst=0;
8899           //current.wasconst=0;
8900           //regs[i].wasconst=0;
8901           clear_const(&current,rs1[i]);
8902           clear_const(&current,rt1[i]);
8903           alloc_cc(&current,i);
8904           dirty_reg(&current,CCREG);
8905           if(rs1[i]!=rt1[i+1]&&rs1[i]!=rt2[i+1]) {
8906             alloc_reg(&current,i,rs1[i]);
8907             if (rt1[i]!=0) {
8908               alloc_reg(&current,i,rt1[i]);
8909               dirty_reg(&current,rt1[i]);
8910               assert(rs1[i+1]!=rt1[i]&&rs2[i+1]!=rt1[i]);
8911               assert(rt1[i+1]!=rt1[i]);
8912               #ifdef REG_PREFETCH
8913               alloc_reg(&current,i,PTEMP);
8914               #endif
8915             }
8916             #ifdef USE_MINI_HT
8917             if(rs1[i]==31) { // JALR
8918               alloc_reg(&current,i,RHASH);
8919               #ifndef HOST_IMM_ADDR32
8920               alloc_reg(&current,i,RHTBL);
8921               #endif
8922             }
8923             #endif
8924             delayslot_alloc(&current,i+1);
8925           } else {
8926             // The delay slot overwrites our source register,
8927             // allocate a temporary register to hold the old value.
8928             current.isconst=0;
8929             current.wasconst=0;
8930             regs[i].wasconst=0;
8931             delayslot_alloc(&current,i+1);
8932             current.isconst=0;
8933             alloc_reg(&current,i,RTEMP);
8934           }
8935           //current.isconst=0; // DEBUG
8936           ooo[i]=1;
8937           ds=1;
8938           break;
8939         case CJUMP:
8940           //current.isconst=0;
8941           //current.wasconst=0;
8942           //regs[i].wasconst=0;
8943           clear_const(&current,rs1[i]);
8944           clear_const(&current,rs2[i]);
8945           if((opcode[i]&0x3E)==4) // BEQ/BNE
8946           {
8947             alloc_cc(&current,i);
8948             dirty_reg(&current,CCREG);
8949             if(rs1[i]) alloc_reg(&current,i,rs1[i]);
8950             if(rs2[i]) alloc_reg(&current,i,rs2[i]);
8951             if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
8952             {
8953               if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
8954               if(rs2[i]) alloc_reg64(&current,i,rs2[i]);
8955             }
8956             if((rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]))||
8957                (rs2[i]&&(rs2[i]==rt1[i+1]||rs2[i]==rt2[i+1]))) {
8958               // The delay slot overwrites one of our conditions.
8959               // Allocate the branch condition registers instead.
8960               current.isconst=0;
8961               current.wasconst=0;
8962               regs[i].wasconst=0;
8963               if(rs1[i]) alloc_reg(&current,i,rs1[i]);
8964               if(rs2[i]) alloc_reg(&current,i,rs2[i]);
8965               if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
8966               {
8967                 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
8968                 if(rs2[i]) alloc_reg64(&current,i,rs2[i]);
8969               }
8970             }
8971             else
8972             {
8973               ooo[i]=1;
8974               delayslot_alloc(&current,i+1);
8975             }
8976           }
8977           else
8978           if((opcode[i]&0x3E)==6) // BLEZ/BGTZ
8979           {
8980             alloc_cc(&current,i);
8981             dirty_reg(&current,CCREG);
8982             alloc_reg(&current,i,rs1[i]);
8983             if(!(current.is32>>rs1[i]&1))
8984             {
8985               alloc_reg64(&current,i,rs1[i]);
8986             }
8987             if(rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1])) {
8988               // The delay slot overwrites one of our conditions.
8989               // Allocate the branch condition registers instead.
8990               current.isconst=0;
8991               current.wasconst=0;
8992               regs[i].wasconst=0;
8993               if(rs1[i]) alloc_reg(&current,i,rs1[i]);
8994               if(!((current.is32>>rs1[i])&1))
8995               {
8996                 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
8997               }
8998             }
8999             else
9000             {
9001               ooo[i]=1;
9002               delayslot_alloc(&current,i+1);
9003             }
9004           }
9005           else
9006           // Don't alloc the delay slot yet because we might not execute it
9007           if((opcode[i]&0x3E)==0x14) // BEQL/BNEL
9008           {
9009             current.isconst=0;
9010             current.wasconst=0;
9011             regs[i].wasconst=0;
9012             alloc_cc(&current,i);
9013             dirty_reg(&current,CCREG);
9014             alloc_reg(&current,i,rs1[i]);
9015             alloc_reg(&current,i,rs2[i]);
9016             if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
9017             {
9018               alloc_reg64(&current,i,rs1[i]);
9019               alloc_reg64(&current,i,rs2[i]);
9020             }
9021           }
9022           else
9023           if((opcode[i]&0x3E)==0x16) // BLEZL/BGTZL
9024           {
9025             current.isconst=0;
9026             current.wasconst=0;
9027             regs[i].wasconst=0;
9028             alloc_cc(&current,i);
9029             dirty_reg(&current,CCREG);
9030             alloc_reg(&current,i,rs1[i]);
9031             if(!(current.is32>>rs1[i]&1))
9032             {
9033               alloc_reg64(&current,i,rs1[i]);
9034             }
9035           }
9036           ds=1;
9037           //current.isconst=0;
9038           break;
9039         case SJUMP:
9040           //current.isconst=0;
9041           //current.wasconst=0;
9042           //regs[i].wasconst=0;
9043           clear_const(&current,rs1[i]);
9044           clear_const(&current,rt1[i]);
9045           //if((opcode2[i]&0x1E)==0x0) // BLTZ/BGEZ
9046           if((opcode2[i]&0x0E)==0x0) // BLTZ/BGEZ
9047           {
9048             alloc_cc(&current,i);
9049             dirty_reg(&current,CCREG);
9050             alloc_reg(&current,i,rs1[i]);
9051             if(!(current.is32>>rs1[i]&1))
9052             {
9053               alloc_reg64(&current,i,rs1[i]);
9054             }
9055             if (rt1[i]==31) { // BLTZAL/BGEZAL
9056               alloc_reg(&current,i,31);
9057               dirty_reg(&current,31);
9058               //#ifdef REG_PREFETCH
9059               //alloc_reg(&current,i,PTEMP);
9060               //#endif
9061               //current.is32|=1LL<<rt1[i];
9062             }
9063             if((rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1])) // The delay slot overwrites the branch condition.
9064                ||(rt1[i]==31&&(rs1[i+1]==31||rs2[i+1]==31||rt1[i+1]==31||rt2[i+1]==31))) { // DS touches $ra
9065               // Allocate the branch condition registers instead.
9066               current.isconst=0;
9067               current.wasconst=0;
9068               regs[i].wasconst=0;
9069               if(rs1[i]) alloc_reg(&current,i,rs1[i]);
9070               if(!((current.is32>>rs1[i])&1))
9071               {
9072                 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
9073               }
9074             }
9075             else
9076             {
9077               ooo[i]=1;
9078               delayslot_alloc(&current,i+1);
9079             }
9080           }
9081           else
9082           // Don't alloc the delay slot yet because we might not execute it
9083           if((opcode2[i]&0x1E)==0x2) // BLTZL/BGEZL
9084           {
9085             current.isconst=0;
9086             current.wasconst=0;
9087             regs[i].wasconst=0;
9088             alloc_cc(&current,i);
9089             dirty_reg(&current,CCREG);
9090             alloc_reg(&current,i,rs1[i]);
9091             if(!(current.is32>>rs1[i]&1))
9092             {
9093               alloc_reg64(&current,i,rs1[i]);
9094             }
9095           }
9096           ds=1;
9097           //current.isconst=0;
9098           break;
9099         case FJUMP:
9100           current.isconst=0;
9101           current.wasconst=0;
9102           regs[i].wasconst=0;
9103           if(likely[i]==0) // BC1F/BC1T
9104           {
9105             // TODO: Theoretically we can run out of registers here on x86.
9106             // The delay slot can allocate up to six, and we need to check
9107             // CSREG before executing the delay slot.  Possibly we can drop
9108             // the cycle count and then reload it after checking that the
9109             // FPU is in a usable state, or don't do out-of-order execution.
9110             alloc_cc(&current,i);
9111             dirty_reg(&current,CCREG);
9112             alloc_reg(&current,i,FSREG);
9113             alloc_reg(&current,i,CSREG);
9114             if(itype[i+1]==FCOMP) {
9115               // The delay slot overwrites the branch condition.
9116               // Allocate the branch condition registers instead.
9117               alloc_cc(&current,i);
9118               dirty_reg(&current,CCREG);
9119               alloc_reg(&current,i,CSREG);
9120               alloc_reg(&current,i,FSREG);
9121             }
9122             else {
9123               ooo[i]=1;
9124               delayslot_alloc(&current,i+1);
9125               alloc_reg(&current,i+1,CSREG);
9126             }
9127           }
9128           else
9129           // Don't alloc the delay slot yet because we might not execute it
9130           if(likely[i]) // BC1FL/BC1TL
9131           {
9132             alloc_cc(&current,i);
9133             dirty_reg(&current,CCREG);
9134             alloc_reg(&current,i,CSREG);
9135             alloc_reg(&current,i,FSREG);
9136           }
9137           ds=1;
9138           current.isconst=0;
9139           break;
9140         case IMM16:
9141           imm16_alloc(&current,i);
9142           break;
9143         case LOAD:
9144         case LOADLR:
9145           load_alloc(&current,i);
9146           break;
9147         case STORE:
9148         case STORELR:
9149           store_alloc(&current,i);
9150           break;
9151         case ALU:
9152           alu_alloc(&current,i);
9153           break;
9154         case SHIFT:
9155           shift_alloc(&current,i);
9156           break;
9157         case MULTDIV:
9158           multdiv_alloc(&current,i);
9159           break;
9160         case SHIFTIMM:
9161           shiftimm_alloc(&current,i);
9162           break;
9163         case MOV:
9164           mov_alloc(&current,i);
9165           break;
9166         case COP0:
9167           cop0_alloc(&current,i);
9168           break;
9169         case COP1:
9170         case COP2:
9171           cop1_alloc(&current,i);
9172           break;
9173         case C1LS:
9174           c1ls_alloc(&current,i);
9175           break;
9176         case C2LS:
9177           c2ls_alloc(&current,i);
9178           break;
9179         case C2OP:
9180           c2op_alloc(&current,i);
9181           break;
9182         case FCONV:
9183           fconv_alloc(&current,i);
9184           break;
9185         case FLOAT:
9186           float_alloc(&current,i);
9187           break;
9188         case FCOMP:
9189           fcomp_alloc(&current,i);
9190           break;
9191         case SYSCALL:
9192         case HLECALL:
9193         case INTCALL:
9194           syscall_alloc(&current,i);
9195           break;
9196         case SPAN:
9197           pagespan_alloc(&current,i);
9198           break;
9199       }
9200       
9201       // Drop the upper half of registers that have become 32-bit
9202       current.uu|=current.is32&((1LL<<rt1[i])|(1LL<<rt2[i]));
9203       if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP) {
9204         current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
9205         if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9206         current.uu|=1;
9207       } else {
9208         current.uu|=current.is32&((1LL<<rt1[i+1])|(1LL<<rt2[i+1]));
9209         current.uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
9210         if((~current.uu>>rt1[i+1])&1) current.uu&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
9211         current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
9212         current.uu|=1;
9213       }
9214
9215       // Create entry (branch target) regmap
9216       for(hr=0;hr<HOST_REGS;hr++)
9217       {
9218         int r,or,er;
9219         r=current.regmap[hr];
9220         if(r>=0) {
9221           if(r!=regmap_pre[i][hr]) {
9222             // TODO: delay slot (?)
9223             or=get_reg(regmap_pre[i],r); // Get old mapping for this register
9224             if(or<0||(r&63)>=TEMPREG){
9225               regs[i].regmap_entry[hr]=-1;
9226             }
9227             else
9228             {
9229               // Just move it to a different register
9230               regs[i].regmap_entry[hr]=r;
9231               // If it was dirty before, it's still dirty
9232               if((regs[i].wasdirty>>or)&1) dirty_reg(&current,r&63);
9233             }
9234           }
9235           else
9236           {
9237             // Unneeded
9238             if(r==0){
9239               regs[i].regmap_entry[hr]=0;
9240             }
9241             else
9242             if(r<64){
9243               if((current.u>>r)&1) {
9244                 regs[i].regmap_entry[hr]=-1;
9245                 //regs[i].regmap[hr]=-1;
9246                 current.regmap[hr]=-1;
9247               }else
9248                 regs[i].regmap_entry[hr]=r;
9249             }
9250             else {
9251               if((current.uu>>(r&63))&1) {
9252                 regs[i].regmap_entry[hr]=-1;
9253                 //regs[i].regmap[hr]=-1;
9254                 current.regmap[hr]=-1;
9255               }else
9256                 regs[i].regmap_entry[hr]=r;
9257             }
9258           }
9259         } else {
9260           // Branches expect CCREG to be allocated at the target
9261           if(regmap_pre[i][hr]==CCREG) 
9262             regs[i].regmap_entry[hr]=CCREG;
9263           else
9264             regs[i].regmap_entry[hr]=-1;
9265         }
9266       }
9267       memcpy(regs[i].regmap,current.regmap,sizeof(current.regmap));
9268     }
9269     /* Branch post-alloc */
9270     if(i>0)
9271     {
9272       current.was32=current.is32;
9273       current.wasdirty=current.dirty;
9274       switch(itype[i-1]) {
9275         case UJUMP:
9276           memcpy(&branch_regs[i-1],&current,sizeof(current));
9277           branch_regs[i-1].isconst=0;
9278           branch_regs[i-1].wasconst=0;
9279           branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
9280           branch_regs[i-1].uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
9281           alloc_cc(&branch_regs[i-1],i-1);
9282           dirty_reg(&branch_regs[i-1],CCREG);
9283           if(rt1[i-1]==31) { // JAL
9284             alloc_reg(&branch_regs[i-1],i-1,31);
9285             dirty_reg(&branch_regs[i-1],31);
9286             branch_regs[i-1].is32|=1LL<<31;
9287           }
9288           memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9289           memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9290           break;
9291         case RJUMP:
9292           memcpy(&branch_regs[i-1],&current,sizeof(current));
9293           branch_regs[i-1].isconst=0;
9294           branch_regs[i-1].wasconst=0;
9295           branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
9296           branch_regs[i-1].uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
9297           alloc_cc(&branch_regs[i-1],i-1);
9298           dirty_reg(&branch_regs[i-1],CCREG);
9299           alloc_reg(&branch_regs[i-1],i-1,rs1[i-1]);
9300           if(rt1[i-1]!=0) { // JALR
9301             alloc_reg(&branch_regs[i-1],i-1,rt1[i-1]);
9302             dirty_reg(&branch_regs[i-1],rt1[i-1]);
9303             branch_regs[i-1].is32|=1LL<<rt1[i-1];
9304           }
9305           #ifdef USE_MINI_HT
9306           if(rs1[i-1]==31) { // JALR
9307             alloc_reg(&branch_regs[i-1],i-1,RHASH);
9308             #ifndef HOST_IMM_ADDR32
9309             alloc_reg(&branch_regs[i-1],i-1,RHTBL);
9310             #endif
9311           }
9312           #endif
9313           memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9314           memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9315           break;
9316         case CJUMP:
9317           if((opcode[i-1]&0x3E)==4) // BEQ/BNE
9318           {
9319             alloc_cc(&current,i-1);
9320             dirty_reg(&current,CCREG);
9321             if((rs1[i-1]&&(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]))||
9322                (rs2[i-1]&&(rs2[i-1]==rt1[i]||rs2[i-1]==rt2[i]))) {
9323               // The delay slot overwrote one of our conditions
9324               // Delay slot goes after the test (in order)
9325               current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
9326               current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
9327               if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9328               current.u|=1;
9329               current.uu|=1;
9330               delayslot_alloc(&current,i);
9331               current.isconst=0;
9332             }
9333             else
9334             {
9335               current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
9336               current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
9337               // Alloc the branch condition registers
9338               if(rs1[i-1]) alloc_reg(&current,i-1,rs1[i-1]);
9339               if(rs2[i-1]) alloc_reg(&current,i-1,rs2[i-1]);
9340               if(!((current.is32>>rs1[i-1])&(current.is32>>rs2[i-1])&1))
9341               {
9342                 if(rs1[i-1]) alloc_reg64(&current,i-1,rs1[i-1]);
9343                 if(rs2[i-1]) alloc_reg64(&current,i-1,rs2[i-1]);
9344               }
9345             }
9346             memcpy(&branch_regs[i-1],&current,sizeof(current));
9347             branch_regs[i-1].isconst=0;
9348             branch_regs[i-1].wasconst=0;
9349             memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9350             memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9351           }
9352           else
9353           if((opcode[i-1]&0x3E)==6) // BLEZ/BGTZ
9354           {
9355             alloc_cc(&current,i-1);
9356             dirty_reg(&current,CCREG);
9357             if(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]) {
9358               // The delay slot overwrote the branch condition
9359               // Delay slot goes after the test (in order)
9360               current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
9361               current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
9362               if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9363               current.u|=1;
9364               current.uu|=1;
9365               delayslot_alloc(&current,i);
9366               current.isconst=0;
9367             }
9368             else
9369             {
9370               current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
9371               current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
9372               // Alloc the branch condition register
9373               alloc_reg(&current,i-1,rs1[i-1]);
9374               if(!(current.is32>>rs1[i-1]&1))
9375               {
9376                 alloc_reg64(&current,i-1,rs1[i-1]);
9377               }
9378             }
9379             memcpy(&branch_regs[i-1],&current,sizeof(current));
9380             branch_regs[i-1].isconst=0;
9381             branch_regs[i-1].wasconst=0;
9382             memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9383             memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9384           }
9385           else
9386           // Alloc the delay slot in case the branch is taken
9387           if((opcode[i-1]&0x3E)==0x14) // BEQL/BNEL
9388           {
9389             memcpy(&branch_regs[i-1],&current,sizeof(current));
9390             branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9391             branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9392             if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9393             alloc_cc(&branch_regs[i-1],i);
9394             dirty_reg(&branch_regs[i-1],CCREG);
9395             delayslot_alloc(&branch_regs[i-1],i);
9396             branch_regs[i-1].isconst=0;
9397             alloc_reg(&current,i,CCREG); // Not taken path
9398             dirty_reg(&current,CCREG);
9399             memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9400           }
9401           else
9402           if((opcode[i-1]&0x3E)==0x16) // BLEZL/BGTZL
9403           {
9404             memcpy(&branch_regs[i-1],&current,sizeof(current));
9405             branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9406             branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9407             if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9408             alloc_cc(&branch_regs[i-1],i);
9409             dirty_reg(&branch_regs[i-1],CCREG);
9410             delayslot_alloc(&branch_regs[i-1],i);
9411             branch_regs[i-1].isconst=0;
9412             alloc_reg(&current,i,CCREG); // Not taken path
9413             dirty_reg(&current,CCREG);
9414             memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9415           }
9416           break;
9417         case SJUMP:
9418           //if((opcode2[i-1]&0x1E)==0) // BLTZ/BGEZ
9419           if((opcode2[i-1]&0x0E)==0) // BLTZ/BGEZ
9420           {
9421             alloc_cc(&current,i-1);
9422             dirty_reg(&current,CCREG);
9423             if(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]) {
9424               // The delay slot overwrote the branch condition
9425               // Delay slot goes after the test (in order)
9426               current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
9427               current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
9428               if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9429               current.u|=1;
9430               current.uu|=1;
9431               delayslot_alloc(&current,i);
9432               current.isconst=0;
9433             }
9434             else
9435             {
9436               current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
9437               current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
9438               // Alloc the branch condition register
9439               alloc_reg(&current,i-1,rs1[i-1]);
9440               if(!(current.is32>>rs1[i-1]&1))
9441               {
9442                 alloc_reg64(&current,i-1,rs1[i-1]);
9443               }
9444             }
9445             memcpy(&branch_regs[i-1],&current,sizeof(current));
9446             branch_regs[i-1].isconst=0;
9447             branch_regs[i-1].wasconst=0;
9448             memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9449             memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9450           }
9451           else
9452           // Alloc the delay slot in case the branch is taken
9453           if((opcode2[i-1]&0x1E)==2) // BLTZL/BGEZL
9454           {
9455             memcpy(&branch_regs[i-1],&current,sizeof(current));
9456             branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9457             branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9458             if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9459             alloc_cc(&branch_regs[i-1],i);
9460             dirty_reg(&branch_regs[i-1],CCREG);
9461             delayslot_alloc(&branch_regs[i-1],i);
9462             branch_regs[i-1].isconst=0;
9463             alloc_reg(&current,i,CCREG); // Not taken path
9464             dirty_reg(&current,CCREG);
9465             memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9466           }
9467           // FIXME: BLTZAL/BGEZAL
9468           if(opcode2[i-1]&0x10) { // BxxZAL
9469             alloc_reg(&branch_regs[i-1],i-1,31);
9470             dirty_reg(&branch_regs[i-1],31);
9471             branch_regs[i-1].is32|=1LL<<31;
9472           }
9473           break;
9474         case FJUMP:
9475           if(likely[i-1]==0) // BC1F/BC1T
9476           {
9477             alloc_cc(&current,i-1);
9478             dirty_reg(&current,CCREG);
9479             if(itype[i]==FCOMP) {
9480               // The delay slot overwrote the branch condition
9481               // Delay slot goes after the test (in order)
9482               delayslot_alloc(&current,i);
9483               current.isconst=0;
9484             }
9485             else
9486             {
9487               current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
9488               current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
9489               // Alloc the branch condition register
9490               alloc_reg(&current,i-1,FSREG);
9491             }
9492             memcpy(&branch_regs[i-1],&current,sizeof(current));
9493             memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9494           }
9495           else // BC1FL/BC1TL
9496           {
9497             // Alloc the delay slot in case the branch is taken
9498             memcpy(&branch_regs[i-1],&current,sizeof(current));
9499             branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9500             branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9501             if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9502             alloc_cc(&branch_regs[i-1],i);
9503             dirty_reg(&branch_regs[i-1],CCREG);
9504             delayslot_alloc(&branch_regs[i-1],i);
9505             branch_regs[i-1].isconst=0;
9506             alloc_reg(&current,i,CCREG); // Not taken path
9507             dirty_reg(&current,CCREG);
9508             memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9509           }
9510           break;
9511       }
9512
9513       if(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)
9514       {
9515         if(rt1[i-1]==31) // JAL/JALR
9516         {
9517           // Subroutine call will return here, don't alloc any registers
9518           current.is32=1;
9519           current.dirty=0;
9520           clear_all_regs(current.regmap);
9521           alloc_reg(&current,i,CCREG);
9522           dirty_reg(&current,CCREG);
9523         }
9524         else if(i+1<slen)
9525         {
9526           // Internal branch will jump here, match registers to caller
9527           current.is32=0x3FFFFFFFFLL;
9528           current.dirty=0;
9529           clear_all_regs(current.regmap);
9530           alloc_reg(&current,i,CCREG);
9531           dirty_reg(&current,CCREG);
9532           for(j=i-1;j>=0;j--)
9533           {
9534             if(ba[j]==start+i*4+4) {
9535               memcpy(current.regmap,branch_regs[j].regmap,sizeof(current.regmap));
9536               current.is32=branch_regs[j].is32;
9537               current.dirty=branch_regs[j].dirty;
9538               break;
9539             }
9540           }
9541           while(j>=0) {
9542             if(ba[j]==start+i*4+4) {
9543               for(hr=0;hr<HOST_REGS;hr++) {
9544                 if(current.regmap[hr]!=branch_regs[j].regmap[hr]) {
9545                   current.regmap[hr]=-1;
9546                 }
9547                 current.is32&=branch_regs[j].is32;
9548                 current.dirty&=branch_regs[j].dirty;
9549               }
9550             }
9551             j--;
9552           }
9553         }
9554       }
9555     }
9556
9557     // Count cycles in between branches
9558     ccadj[i]=cc;
9559     if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP||itype[i]==SYSCALL||itype[i]==HLECALL))
9560     {
9561       cc=0;
9562     }
9563 #ifdef PCSX
9564     else if(/*itype[i]==LOAD||*/itype[i]==STORE||itype[i]==C1LS) // load causes weird timing issues
9565     {
9566       cc+=2; // 2 cycle penalty (after CLOCK_DIVIDER)
9567     }
9568     else if(itype[i]==C2LS)
9569     {
9570       cc+=4;
9571     }
9572 #endif
9573     else
9574     {
9575       cc++;
9576     }
9577
9578     flush_dirty_uppers(&current);
9579     if(!is_ds[i]) {
9580       regs[i].is32=current.is32;
9581       regs[i].dirty=current.dirty;
9582       regs[i].isconst=current.isconst;
9583       memcpy(constmap[i],current.constmap,sizeof(current.constmap));
9584     }
9585     for(hr=0;hr<HOST_REGS;hr++) {
9586       if(hr!=EXCLUDE_REG&&regs[i].regmap[hr]>=0) {
9587         if(regmap_pre[i][hr]!=regs[i].regmap[hr]) {
9588           regs[i].wasconst&=~(1<<hr);
9589         }
9590       }
9591     }
9592     if(current.regmap[HOST_BTREG]==BTREG) current.regmap[HOST_BTREG]=-1;
9593   }
9594   
9595   /* Pass 4 - Cull unused host registers */
9596   
9597   uint64_t nr=0;
9598   
9599   for (i=slen-1;i>=0;i--)
9600   {
9601     int hr;
9602     if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
9603     {
9604       if(ba[i]<start || ba[i]>=(start+slen*4))
9605       {
9606         // Branch out of this block, don't need anything
9607         nr=0;
9608       }
9609       else
9610       {
9611         // Internal branch
9612         // Need whatever matches the target
9613         nr=0;
9614         int t=(ba[i]-start)>>2;
9615         for(hr=0;hr<HOST_REGS;hr++)
9616         {
9617           if(regs[i].regmap_entry[hr]>=0) {
9618             if(regs[i].regmap_entry[hr]==regs[t].regmap_entry[hr]) nr|=1<<hr;
9619           }
9620         }
9621       }
9622       // Conditional branch may need registers for following instructions
9623       if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
9624       {
9625         if(i<slen-2) {
9626           nr|=needed_reg[i+2];
9627           for(hr=0;hr<HOST_REGS;hr++)
9628           {
9629             if(regmap_pre[i+2][hr]>=0&&get_reg(regs[i+2].regmap_entry,regmap_pre[i+2][hr])<0) nr&=~(1<<hr);
9630             //if((regmap_entry[i+2][hr])>=0) if(!((nr>>hr)&1)) printf("%x-bogus(%d=%d)\n",start+i*4,hr,regmap_entry[i+2][hr]);
9631           }
9632         }
9633       }
9634       // Don't need stuff which is overwritten
9635       //if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
9636       //if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
9637       // Merge in delay slot
9638       for(hr=0;hr<HOST_REGS;hr++)
9639       {
9640         if(!likely[i]) {
9641           // These are overwritten unless the branch is "likely"
9642           // and the delay slot is nullified if not taken
9643           if(rt1[i+1]&&rt1[i+1]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9644           if(rt2[i+1]&&rt2[i+1]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9645         }
9646         if(us1[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9647         if(us2[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9648         if(rs1[i+1]==regmap_pre[i][hr]) nr|=1<<hr;
9649         if(rs2[i+1]==regmap_pre[i][hr]) nr|=1<<hr;
9650         if(us1[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9651         if(us2[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9652         if(rs1[i+1]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9653         if(rs2[i+1]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9654         if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1)) {
9655           if(dep1[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9656           if(dep2[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9657         }
9658         if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1)) {
9659           if(dep1[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9660           if(dep2[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9661         }
9662         if(itype[i+1]==STORE || itype[i+1]==STORELR || (opcode[i+1]&0x3b)==0x39 || (opcode[i+1]&0x3b)==0x3a) {
9663           if(regmap_pre[i][hr]==INVCP) nr|=1<<hr;
9664           if(regs[i].regmap_entry[hr]==INVCP) nr|=1<<hr;
9665         }
9666       }
9667     }
9668     else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
9669     {
9670       // SYSCALL instruction (software interrupt)
9671       nr=0;
9672     }
9673     else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
9674     {
9675       // ERET instruction (return from interrupt)
9676       nr=0;
9677     }
9678     else // Non-branch
9679     {
9680       if(i<slen-1) {
9681         for(hr=0;hr<HOST_REGS;hr++) {
9682           if(regmap_pre[i+1][hr]>=0&&get_reg(regs[i+1].regmap_entry,regmap_pre[i+1][hr])<0) nr&=~(1<<hr);
9683           if(regs[i].regmap[hr]!=regmap_pre[i+1][hr]) nr&=~(1<<hr);
9684           if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
9685           if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
9686         }
9687       }
9688     }
9689     for(hr=0;hr<HOST_REGS;hr++)
9690     {
9691       // Overwritten registers are not needed
9692       if(rt1[i]&&rt1[i]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9693       if(rt2[i]&&rt2[i]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9694       if(FTEMP==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9695       // Source registers are needed
9696       if(us1[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9697       if(us2[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9698       if(rs1[i]==regmap_pre[i][hr]) nr|=1<<hr;
9699       if(rs2[i]==regmap_pre[i][hr]) nr|=1<<hr;
9700       if(us1[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9701       if(us2[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9702       if(rs1[i]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9703       if(rs2[i]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9704       if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1)) {
9705         if(dep1[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9706         if(dep1[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9707       }
9708       if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1)) {
9709         if(dep2[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9710         if(dep2[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9711       }
9712       if(itype[i]==STORE || itype[i]==STORELR || (opcode[i]&0x3b)==0x39 || (opcode[i]&0x3b)==0x3a) {
9713         if(regmap_pre[i][hr]==INVCP) nr|=1<<hr;
9714         if(regs[i].regmap_entry[hr]==INVCP) nr|=1<<hr;
9715       }
9716       // Don't store a register immediately after writing it,
9717       // may prevent dual-issue.
9718       // But do so if this is a branch target, otherwise we
9719       // might have to load the register before the branch.
9720       if(i>0&&!bt[i]&&((regs[i].wasdirty>>hr)&1)) {
9721         if((regmap_pre[i][hr]>0&&regmap_pre[i][hr]<64&&!((unneeded_reg[i]>>regmap_pre[i][hr])&1)) ||
9722            (regmap_pre[i][hr]>64&&!((unneeded_reg_upper[i]>>(regmap_pre[i][hr]&63))&1)) ) {
9723           if(rt1[i-1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9724           if(rt2[i-1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9725         }
9726         if((regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64&&!((unneeded_reg[i]>>regs[i].regmap_entry[hr])&1)) ||
9727            (regs[i].regmap_entry[hr]>64&&!((unneeded_reg_upper[i]>>(regs[i].regmap_entry[hr]&63))&1)) ) {
9728           if(rt1[i-1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9729           if(rt2[i-1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9730         }
9731       }
9732     }
9733     // Cycle count is needed at branches.  Assume it is needed at the target too.
9734     if(i==0||bt[i]||itype[i]==CJUMP||itype[i]==FJUMP||itype[i]==SPAN) {
9735       if(regmap_pre[i][HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
9736       if(regs[i].regmap_entry[HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
9737     }
9738     // Save it
9739     needed_reg[i]=nr;
9740     
9741     // Deallocate unneeded registers
9742     for(hr=0;hr<HOST_REGS;hr++)
9743     {
9744       if(!((nr>>hr)&1)) {
9745         if(regs[i].regmap_entry[hr]!=CCREG) regs[i].regmap_entry[hr]=-1;
9746         if((regs[i].regmap[hr]&63)!=rs1[i] && (regs[i].regmap[hr]&63)!=rs2[i] &&
9747            (regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
9748            (regs[i].regmap[hr]&63)!=PTEMP && (regs[i].regmap[hr]&63)!=CCREG)
9749         {
9750           if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
9751           {
9752             if(likely[i]) {
9753               regs[i].regmap[hr]=-1;
9754               regs[i].isconst&=~(1<<hr);
9755               if(i<slen-2) {
9756                 regmap_pre[i+2][hr]=-1;
9757                 regs[i+2].wasconst&=~(1<<hr);
9758               }
9759             }
9760           }
9761         }
9762         if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
9763         {
9764           int d1=0,d2=0,map=0,temp=0;
9765           if(get_reg(regs[i].regmap,rt1[i+1]|64)>=0||get_reg(branch_regs[i].regmap,rt1[i+1]|64)>=0)
9766           {
9767             d1=dep1[i+1];
9768             d2=dep2[i+1];
9769           }
9770           if(using_tlb) {
9771             if(itype[i+1]==LOAD || itype[i+1]==LOADLR ||
9772                itype[i+1]==STORE || itype[i+1]==STORELR ||
9773                itype[i+1]==C1LS || itype[i+1]==C2LS)
9774             map=TLREG;
9775           } else
9776           if(itype[i+1]==STORE || itype[i+1]==STORELR ||
9777              (opcode[i+1]&0x3b)==0x39 || (opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1 || SWC2/SDC2
9778             map=INVCP;
9779           }
9780           if(itype[i+1]==LOADLR || itype[i+1]==STORELR ||
9781              itype[i+1]==C1LS || itype[i+1]==C2LS)
9782             temp=FTEMP;
9783           if((regs[i].regmap[hr]&63)!=rs1[i] && (regs[i].regmap[hr]&63)!=rs2[i] &&
9784              (regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
9785              (regs[i].regmap[hr]&63)!=rt1[i+1] && (regs[i].regmap[hr]&63)!=rt2[i+1] &&
9786              (regs[i].regmap[hr]^64)!=us1[i+1] && (regs[i].regmap[hr]^64)!=us2[i+1] &&
9787              (regs[i].regmap[hr]^64)!=d1 && (regs[i].regmap[hr]^64)!=d2 &&
9788              regs[i].regmap[hr]!=rs1[i+1] && regs[i].regmap[hr]!=rs2[i+1] &&
9789              (regs[i].regmap[hr]&63)!=temp && regs[i].regmap[hr]!=PTEMP &&
9790              regs[i].regmap[hr]!=RHASH && regs[i].regmap[hr]!=RHTBL &&
9791              regs[i].regmap[hr]!=RTEMP && regs[i].regmap[hr]!=CCREG &&
9792              regs[i].regmap[hr]!=map )
9793           {
9794             regs[i].regmap[hr]=-1;
9795             regs[i].isconst&=~(1<<hr);
9796             if((branch_regs[i].regmap[hr]&63)!=rs1[i] && (branch_regs[i].regmap[hr]&63)!=rs2[i] &&
9797                (branch_regs[i].regmap[hr]&63)!=rt1[i] && (branch_regs[i].regmap[hr]&63)!=rt2[i] &&
9798                (branch_regs[i].regmap[hr]&63)!=rt1[i+1] && (branch_regs[i].regmap[hr]&63)!=rt2[i+1] &&
9799                (branch_regs[i].regmap[hr]^64)!=us1[i+1] && (branch_regs[i].regmap[hr]^64)!=us2[i+1] &&
9800                (branch_regs[i].regmap[hr]^64)!=d1 && (branch_regs[i].regmap[hr]^64)!=d2 &&
9801                branch_regs[i].regmap[hr]!=rs1[i+1] && branch_regs[i].regmap[hr]!=rs2[i+1] &&
9802                (branch_regs[i].regmap[hr]&63)!=temp && branch_regs[i].regmap[hr]!=PTEMP &&
9803                branch_regs[i].regmap[hr]!=RHASH && branch_regs[i].regmap[hr]!=RHTBL &&
9804                branch_regs[i].regmap[hr]!=RTEMP && branch_regs[i].regmap[hr]!=CCREG &&
9805                branch_regs[i].regmap[hr]!=map)
9806             {
9807               branch_regs[i].regmap[hr]=-1;
9808               branch_regs[i].regmap_entry[hr]=-1;
9809               if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
9810               {
9811                 if(!likely[i]&&i<slen-2) {
9812                   regmap_pre[i+2][hr]=-1;
9813                   regs[i+2].wasconst&=~(1<<hr);
9814                 }
9815               }
9816             }
9817           }
9818         }
9819         else
9820         {
9821           // Non-branch
9822           if(i>0)
9823           {
9824             int d1=0,d2=0,map=-1,temp=-1;
9825             if(get_reg(regs[i].regmap,rt1[i]|64)>=0)
9826             {
9827               d1=dep1[i];
9828               d2=dep2[i];
9829             }
9830             if(using_tlb) {
9831               if(itype[i]==LOAD || itype[i]==LOADLR ||
9832                  itype[i]==STORE || itype[i]==STORELR ||
9833                  itype[i]==C1LS || itype[i]==C2LS)
9834               map=TLREG;
9835             } else if(itype[i]==STORE || itype[i]==STORELR ||
9836                       (opcode[i]&0x3b)==0x39 || (opcode[i]&0x3b)==0x3a) { // SWC1/SDC1 || SWC2/SDC2
9837               map=INVCP;
9838             }
9839             if(itype[i]==LOADLR || itype[i]==STORELR ||
9840                itype[i]==C1LS || itype[i]==C2LS)
9841               temp=FTEMP;
9842             if((regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
9843                (regs[i].regmap[hr]^64)!=us1[i] && (regs[i].regmap[hr]^64)!=us2[i] &&
9844                (regs[i].regmap[hr]^64)!=d1 && (regs[i].regmap[hr]^64)!=d2 &&
9845                regs[i].regmap[hr]!=rs1[i] && regs[i].regmap[hr]!=rs2[i] &&
9846                (regs[i].regmap[hr]&63)!=temp && regs[i].regmap[hr]!=map &&
9847                (itype[i]!=SPAN||regs[i].regmap[hr]!=CCREG))
9848             {
9849               if(i<slen-1&&!is_ds[i]) {
9850                 if(regmap_pre[i+1][hr]!=-1 || regs[i].regmap[hr]!=-1)
9851                 if(regmap_pre[i+1][hr]!=regs[i].regmap[hr])
9852                 if(regs[i].regmap[hr]<64||!((regs[i].was32>>(regs[i].regmap[hr]&63))&1))
9853                 {
9854                   printf("fail: %x (%d %d!=%d)\n",start+i*4,hr,regmap_pre[i+1][hr],regs[i].regmap[hr]);
9855                   assert(regmap_pre[i+1][hr]==regs[i].regmap[hr]);
9856                 }
9857                 regmap_pre[i+1][hr]=-1;
9858                 if(regs[i+1].regmap_entry[hr]==CCREG) regs[i+1].regmap_entry[hr]=-1;
9859                 regs[i+1].wasconst&=~(1<<hr);
9860               }
9861               regs[i].regmap[hr]=-1;
9862               regs[i].isconst&=~(1<<hr);
9863             }
9864           }
9865         }
9866       }
9867     }
9868   }
9869   
9870   /* Pass 5 - Pre-allocate registers */
9871   
9872   // If a register is allocated during a loop, try to allocate it for the
9873   // entire loop, if possible.  This avoids loading/storing registers
9874   // inside of the loop.
9875
9876   signed char f_regmap[HOST_REGS];
9877   clear_all_regs(f_regmap);
9878   for(i=0;i<slen-1;i++)
9879   {
9880     if(itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
9881     {
9882       if(ba[i]>=start && ba[i]<(start+i*4)) 
9883       if(itype[i+1]==NOP||itype[i+1]==MOV||itype[i+1]==ALU
9884       ||itype[i+1]==SHIFTIMM||itype[i+1]==IMM16||itype[i+1]==LOAD
9885       ||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS
9886       ||itype[i+1]==SHIFT||itype[i+1]==COP1||itype[i+1]==FLOAT
9887       ||itype[i+1]==FCOMP||itype[i+1]==FCONV
9888       ||itype[i+1]==COP2||itype[i+1]==C2LS||itype[i+1]==C2OP)
9889       {
9890         int t=(ba[i]-start)>>2;
9891         if(t>0&&(itype[t-1]!=UJUMP&&itype[t-1]!=RJUMP&&itype[t-1]!=CJUMP&&itype[t-1]!=SJUMP&&itype[t-1]!=FJUMP)) // loop_preload can't handle jumps into delay slots
9892         if(t<2||(itype[t-2]!=UJUMP)) // call/ret assumes no registers allocated
9893         for(hr=0;hr<HOST_REGS;hr++)
9894         {
9895           if(regs[i].regmap[hr]>64) {
9896             if(!((regs[i].dirty>>hr)&1))
9897               f_regmap[hr]=regs[i].regmap[hr];
9898             else f_regmap[hr]=-1;
9899           }
9900           else if(regs[i].regmap[hr]>=0) {
9901             if(f_regmap[hr]!=regs[i].regmap[hr]) {
9902               // dealloc old register
9903               int n;
9904               for(n=0;n<HOST_REGS;n++)
9905               {
9906                 if(f_regmap[n]==regs[i].regmap[hr]) {f_regmap[n]=-1;}
9907               }
9908               // and alloc new one
9909               f_regmap[hr]=regs[i].regmap[hr];
9910             }
9911           }
9912           if(branch_regs[i].regmap[hr]>64) {
9913             if(!((branch_regs[i].dirty>>hr)&1))
9914               f_regmap[hr]=branch_regs[i].regmap[hr];
9915             else f_regmap[hr]=-1;
9916           }
9917           else if(branch_regs[i].regmap[hr]>=0) {
9918             if(f_regmap[hr]!=branch_regs[i].regmap[hr]) {
9919               // dealloc old register
9920               int n;
9921               for(n=0;n<HOST_REGS;n++)
9922               {
9923                 if(f_regmap[n]==branch_regs[i].regmap[hr]) {f_regmap[n]=-1;}
9924               }
9925               // and alloc new one
9926               f_regmap[hr]=branch_regs[i].regmap[hr];
9927             }
9928           }
9929           if(ooo[i]) {
9930             if(count_free_regs(regs[i].regmap)<=minimum_free_regs[i+1]) 
9931               f_regmap[hr]=branch_regs[i].regmap[hr];
9932           }else{
9933             if(count_free_regs(branch_regs[i].regmap)<=minimum_free_regs[i+1]) 
9934               f_regmap[hr]=branch_regs[i].regmap[hr];
9935           }
9936           // Avoid dirty->clean transition
9937           #ifdef DESTRUCTIVE_WRITEBACK
9938           if(t>0) if(get_reg(regmap_pre[t],f_regmap[hr])>=0) if((regs[t].wasdirty>>get_reg(regmap_pre[t],f_regmap[hr]))&1) f_regmap[hr]=-1;
9939           #endif
9940           // This check is only strictly required in the DESTRUCTIVE_WRITEBACK
9941           // case above, however it's always a good idea.  We can't hoist the
9942           // load if the register was already allocated, so there's no point
9943           // wasting time analyzing most of these cases.  It only "succeeds"
9944           // when the mapping was different and the load can be replaced with
9945           // a mov, which is of negligible benefit.  So such cases are
9946           // skipped below.
9947           if(f_regmap[hr]>0) {
9948             if(regs[t].regmap_entry[hr]<0&&get_reg(regmap_pre[t],f_regmap[hr])<0) {
9949               int r=f_regmap[hr];
9950               for(j=t;j<=i;j++)
9951               {
9952                 //printf("Test %x -> %x, %x %d/%d\n",start+i*4,ba[i],start+j*4,hr,r);
9953                 if(r<34&&((unneeded_reg[j]>>r)&1)) break;
9954                 if(r>63&&((unneeded_reg_upper[j]>>(r&63))&1)) break;
9955                 if(r>63) {
9956                   // NB This can exclude the case where the upper-half
9957                   // register is lower numbered than the lower-half
9958                   // register.  Not sure if it's worth fixing...
9959                   if(get_reg(regs[j].regmap,r&63)<0) break;
9960                   if(get_reg(regs[j].regmap_entry,r&63)<0) break;
9961                   if(regs[j].is32&(1LL<<(r&63))) break;
9962                 }
9963                 if(regs[j].regmap[hr]==f_regmap[hr]&&(f_regmap[hr]&63)<TEMPREG) {
9964                   //printf("Hit %x -> %x, %x %d/%d\n",start+i*4,ba[i],start+j*4,hr,r);
9965                   int k;
9966                   if(regs[i].regmap[hr]==-1&&branch_regs[i].regmap[hr]==-1) {
9967                     if(get_reg(regs[i+2].regmap,f_regmap[hr])>=0) break;
9968                     if(r>63) {
9969                       if(get_reg(regs[i].regmap,r&63)<0) break;
9970                       if(get_reg(branch_regs[i].regmap,r&63)<0) break;
9971                     }
9972                     k=i;
9973                     while(k>1&&regs[k-1].regmap[hr]==-1) {
9974                       if(count_free_regs(regs[k-1].regmap)<=minimum_free_regs[k-1]) {
9975                         //printf("no free regs for store %x\n",start+(k-1)*4);
9976                         break;
9977                       }
9978                       if(get_reg(regs[k-1].regmap,f_regmap[hr])>=0) {
9979                         //printf("no-match due to different register\n");
9980                         break;
9981                       }
9982                       if(itype[k-2]==UJUMP||itype[k-2]==RJUMP||itype[k-2]==CJUMP||itype[k-2]==SJUMP||itype[k-2]==FJUMP) {
9983                         //printf("no-match due to branch\n");
9984                         break;
9985                       }
9986                       // call/ret fast path assumes no registers allocated
9987                       if(k>2&&(itype[k-3]==UJUMP||itype[k-3]==RJUMP)) {
9988                         break;
9989                       }
9990                       if(r>63) {
9991                         // NB This can exclude the case where the upper-half
9992                         // register is lower numbered than the lower-half
9993                         // register.  Not sure if it's worth fixing...
9994                         if(get_reg(regs[k-1].regmap,r&63)<0) break;
9995                         if(regs[k-1].is32&(1LL<<(r&63))) break;
9996                       }
9997                       k--;
9998                     }
9999                     if(i<slen-1) {
10000                       if((regs[k].is32&(1LL<<f_regmap[hr]))!=
10001                         (regs[i+2].was32&(1LL<<f_regmap[hr]))) {
10002                         //printf("bad match after branch\n");
10003                         break;
10004                       }
10005                     }
10006                     if(regs[k-1].regmap[hr]==f_regmap[hr]&&regmap_pre[k][hr]==f_regmap[hr]) {
10007                       //printf("Extend r%d, %x ->\n",hr,start+k*4);
10008                       while(k<i) {
10009                         regs[k].regmap_entry[hr]=f_regmap[hr];
10010                         regs[k].regmap[hr]=f_regmap[hr];
10011                         regmap_pre[k+1][hr]=f_regmap[hr];
10012                         regs[k].wasdirty&=~(1<<hr);
10013                         regs[k].dirty&=~(1<<hr);
10014                         regs[k].wasdirty|=(1<<hr)&regs[k-1].dirty;
10015                         regs[k].dirty|=(1<<hr)&regs[k].wasdirty;
10016                         regs[k].wasconst&=~(1<<hr);
10017                         regs[k].isconst&=~(1<<hr);
10018                         k++;
10019                       }
10020                     }
10021                     else {
10022                       //printf("Fail Extend r%d, %x ->\n",hr,start+k*4);
10023                       break;
10024                     }
10025                     assert(regs[i-1].regmap[hr]==f_regmap[hr]);
10026                     if(regs[i-1].regmap[hr]==f_regmap[hr]&&regmap_pre[i][hr]==f_regmap[hr]) {
10027                       //printf("OK fill %x (r%d)\n",start+i*4,hr);
10028                       regs[i].regmap_entry[hr]=f_regmap[hr];
10029                       regs[i].regmap[hr]=f_regmap[hr];
10030                       regs[i].wasdirty&=~(1<<hr);
10031                       regs[i].dirty&=~(1<<hr);
10032                       regs[i].wasdirty|=(1<<hr)&regs[i-1].dirty;
10033                       regs[i].dirty|=(1<<hr)&regs[i-1].dirty;
10034                       regs[i].wasconst&=~(1<<hr);
10035                       regs[i].isconst&=~(1<<hr);
10036                       branch_regs[i].regmap_entry[hr]=f_regmap[hr];
10037                       branch_regs[i].wasdirty&=~(1<<hr);
10038                       branch_regs[i].wasdirty|=(1<<hr)&regs[i].dirty;
10039                       branch_regs[i].regmap[hr]=f_regmap[hr];
10040                       branch_regs[i].dirty&=~(1<<hr);
10041                       branch_regs[i].dirty|=(1<<hr)&regs[i].dirty;
10042                       branch_regs[i].wasconst&=~(1<<hr);
10043                       branch_regs[i].isconst&=~(1<<hr);
10044                       if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000) {
10045                         regmap_pre[i+2][hr]=f_regmap[hr];
10046                         regs[i+2].wasdirty&=~(1<<hr);
10047                         regs[i+2].wasdirty|=(1<<hr)&regs[i].dirty;
10048                         assert((branch_regs[i].is32&(1LL<<f_regmap[hr]))==
10049                           (regs[i+2].was32&(1LL<<f_regmap[hr])));
10050                       }
10051                     }
10052                   }
10053                   for(k=t;k<j;k++) {
10054                     // Alloc register clean at beginning of loop,
10055                     // but may dirty it in pass 6
10056                     regs[k].regmap_entry[hr]=f_regmap[hr];
10057                     regs[k].regmap[hr]=f_regmap[hr];
10058                     regs[k].dirty&=~(1<<hr);
10059                     regs[k].wasconst&=~(1<<hr);
10060                     regs[k].isconst&=~(1<<hr);
10061                     if(itype[k]==UJUMP||itype[k]==RJUMP||itype[k]==CJUMP||itype[k]==SJUMP||itype[k]==FJUMP) {
10062                       branch_regs[k].regmap_entry[hr]=f_regmap[hr];
10063                       branch_regs[k].regmap[hr]=f_regmap[hr];
10064                       branch_regs[k].dirty&=~(1<<hr);
10065                       branch_regs[k].wasconst&=~(1<<hr);
10066                       branch_regs[k].isconst&=~(1<<hr);
10067                       if(itype[k]!=RJUMP&&itype[k]!=UJUMP&&(source[k]>>16)!=0x1000) {
10068                         regmap_pre[k+2][hr]=f_regmap[hr];
10069                         regs[k+2].wasdirty&=~(1<<hr);
10070                         assert((branch_regs[k].is32&(1LL<<f_regmap[hr]))==
10071                           (regs[k+2].was32&(1LL<<f_regmap[hr])));
10072                       }
10073                     }
10074                     else
10075                     {
10076                       regmap_pre[k+1][hr]=f_regmap[hr];
10077                       regs[k+1].wasdirty&=~(1<<hr);
10078                     }
10079                   }
10080                   if(regs[j].regmap[hr]==f_regmap[hr])
10081                     regs[j].regmap_entry[hr]=f_regmap[hr];
10082                   break;
10083                 }
10084                 if(j==i) break;
10085                 if(regs[j].regmap[hr]>=0)
10086                   break;
10087                 if(get_reg(regs[j].regmap,f_regmap[hr])>=0) {
10088                   //printf("no-match due to different register\n");
10089                   break;
10090                 }
10091                 if((regs[j+1].is32&(1LL<<f_regmap[hr]))!=(regs[j].is32&(1LL<<f_regmap[hr]))) {
10092                   //printf("32/64 mismatch %x %d\n",start+j*4,hr);
10093                   break;
10094                 }
10095                 if(itype[j]==UJUMP||itype[j]==RJUMP||(source[j]>>16)==0x1000)
10096                 {
10097                   // Stop on unconditional branch
10098                   break;
10099                 }
10100                 if(itype[j]==CJUMP||itype[j]==SJUMP||itype[j]==FJUMP)
10101                 {
10102                   if(ooo[j]) {
10103                     if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j+1]) 
10104                       break;
10105                   }else{
10106                     if(count_free_regs(branch_regs[j].regmap)<=minimum_free_regs[j+1]) 
10107                       break;
10108                   }
10109                   if(get_reg(branch_regs[j].regmap,f_regmap[hr])>=0) {
10110                     //printf("no-match due to different register (branch)\n");
10111                     break;
10112                   }
10113                 }
10114                 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) {
10115                   //printf("No free regs for store %x\n",start+j*4);
10116                   break;
10117                 }
10118                 if(f_regmap[hr]>=64) {
10119                   if(regs[j].is32&(1LL<<(f_regmap[hr]&63))) {
10120                     break;
10121                   }
10122                   else
10123                   {
10124                     if(get_reg(regs[j].regmap,f_regmap[hr]&63)<0) {
10125                       break;
10126                     }
10127                   }
10128                 }
10129               }
10130             }
10131           }
10132         }
10133       }
10134     }else{
10135       int count=0;
10136       for(hr=0;hr<HOST_REGS;hr++)
10137       {
10138         if(hr!=EXCLUDE_REG) {
10139           if(regs[i].regmap[hr]>64) {
10140             if(!((regs[i].dirty>>hr)&1))
10141               f_regmap[hr]=regs[i].regmap[hr];
10142           }
10143           else if(regs[i].regmap[hr]>=0) {
10144             if(f_regmap[hr]!=regs[i].regmap[hr]) {
10145               // dealloc old register
10146               int n;
10147               for(n=0;n<HOST_REGS;n++)
10148               {
10149                 if(f_regmap[n]==regs[i].regmap[hr]) {f_regmap[n]=-1;}
10150               }
10151               // and alloc new one
10152               f_regmap[hr]=regs[i].regmap[hr];
10153             }
10154           }
10155           else if(regs[i].regmap[hr]<0) count++;
10156         }
10157       }
10158       // Try to restore cycle count at branch targets
10159       if(bt[i]) {
10160         for(j=i;j<slen-1;j++) {
10161           if(regs[j].regmap[HOST_CCREG]!=-1) break;
10162           if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) {
10163             //printf("no free regs for store %x\n",start+j*4);
10164             break;
10165           }
10166         }
10167         if(regs[j].regmap[HOST_CCREG]==CCREG) {
10168           int k=i;
10169           //printf("Extend CC, %x -> %x\n",start+k*4,start+j*4);
10170           while(k<j) {
10171             regs[k].regmap_entry[HOST_CCREG]=CCREG;
10172             regs[k].regmap[HOST_CCREG]=CCREG;
10173             regmap_pre[k+1][HOST_CCREG]=CCREG;
10174             regs[k+1].wasdirty|=1<<HOST_CCREG;
10175             regs[k].dirty|=1<<HOST_CCREG;
10176             regs[k].wasconst&=~(1<<HOST_CCREG);
10177             regs[k].isconst&=~(1<<HOST_CCREG);
10178             k++;
10179           }
10180           regs[j].regmap_entry[HOST_CCREG]=CCREG;          
10181         }
10182         // Work backwards from the branch target
10183         if(j>i&&f_regmap[HOST_CCREG]==CCREG)
10184         {
10185           //printf("Extend backwards\n");
10186           int k;
10187           k=i;
10188           while(regs[k-1].regmap[HOST_CCREG]==-1) {
10189             if(count_free_regs(regs[k-1].regmap)<=minimum_free_regs[k-1]) {
10190               //printf("no free regs for store %x\n",start+(k-1)*4);
10191               break;
10192             }
10193             k--;
10194           }
10195           if(regs[k-1].regmap[HOST_CCREG]==CCREG) {
10196             //printf("Extend CC, %x ->\n",start+k*4);
10197             while(k<=i) {
10198               regs[k].regmap_entry[HOST_CCREG]=CCREG;
10199               regs[k].regmap[HOST_CCREG]=CCREG;
10200               regmap_pre[k+1][HOST_CCREG]=CCREG;
10201               regs[k+1].wasdirty|=1<<HOST_CCREG;
10202               regs[k].dirty|=1<<HOST_CCREG;
10203               regs[k].wasconst&=~(1<<HOST_CCREG);
10204               regs[k].isconst&=~(1<<HOST_CCREG);
10205               k++;
10206             }
10207           }
10208           else {
10209             //printf("Fail Extend CC, %x ->\n",start+k*4);
10210           }
10211         }
10212       }
10213       if(itype[i]!=STORE&&itype[i]!=STORELR&&itype[i]!=C1LS&&itype[i]!=SHIFT&&
10214          itype[i]!=NOP&&itype[i]!=MOV&&itype[i]!=ALU&&itype[i]!=SHIFTIMM&&
10215          itype[i]!=IMM16&&itype[i]!=LOAD&&itype[i]!=COP1&&itype[i]!=FLOAT&&
10216          itype[i]!=FCONV&&itype[i]!=FCOMP)
10217       {
10218         memcpy(f_regmap,regs[i].regmap,sizeof(f_regmap));
10219       }
10220     }
10221   }
10222   
10223   // This allocates registers (if possible) one instruction prior
10224   // to use, which can avoid a load-use penalty on certain CPUs.
10225   for(i=0;i<slen-1;i++)
10226   {
10227     if(!i||(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP))
10228     {
10229       if(!bt[i+1])
10230       {
10231         if(itype[i]==ALU||itype[i]==MOV||itype[i]==LOAD||itype[i]==SHIFTIMM||itype[i]==IMM16
10232            ||((itype[i]==COP1||itype[i]==COP2)&&opcode2[i]<3))
10233         {
10234           if(rs1[i+1]) {
10235             if((hr=get_reg(regs[i+1].regmap,rs1[i+1]))>=0)
10236             {
10237               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10238               {
10239                 regs[i].regmap[hr]=regs[i+1].regmap[hr];
10240                 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
10241                 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
10242                 regs[i].isconst&=~(1<<hr);
10243                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10244                 constmap[i][hr]=constmap[i+1][hr];
10245                 regs[i+1].wasdirty&=~(1<<hr);
10246                 regs[i].dirty&=~(1<<hr);
10247               }
10248             }
10249           }
10250           if(rs2[i+1]) {
10251             if((hr=get_reg(regs[i+1].regmap,rs2[i+1]))>=0)
10252             {
10253               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10254               {
10255                 regs[i].regmap[hr]=regs[i+1].regmap[hr];
10256                 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
10257                 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
10258                 regs[i].isconst&=~(1<<hr);
10259                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10260                 constmap[i][hr]=constmap[i+1][hr];
10261                 regs[i+1].wasdirty&=~(1<<hr);
10262                 regs[i].dirty&=~(1<<hr);
10263               }
10264             }
10265           }
10266           if(itype[i+1]==LOAD&&rs1[i+1]&&get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10267             if((hr=get_reg(regs[i+1].regmap,rt1[i+1]))>=0)
10268             {
10269               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10270               {
10271                 regs[i].regmap[hr]=rs1[i+1];
10272                 regmap_pre[i+1][hr]=rs1[i+1];
10273                 regs[i+1].regmap_entry[hr]=rs1[i+1];
10274                 regs[i].isconst&=~(1<<hr);
10275                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10276                 constmap[i][hr]=constmap[i+1][hr];
10277                 regs[i+1].wasdirty&=~(1<<hr);
10278                 regs[i].dirty&=~(1<<hr);
10279               }
10280             }
10281           }
10282           if(lt1[i+1]&&get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10283             if((hr=get_reg(regs[i+1].regmap,rt1[i+1]))>=0)
10284             {
10285               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10286               {
10287                 regs[i].regmap[hr]=rs1[i+1];
10288                 regmap_pre[i+1][hr]=rs1[i+1];
10289                 regs[i+1].regmap_entry[hr]=rs1[i+1];
10290                 regs[i].isconst&=~(1<<hr);
10291                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10292                 constmap[i][hr]=constmap[i+1][hr];
10293                 regs[i+1].wasdirty&=~(1<<hr);
10294                 regs[i].dirty&=~(1<<hr);
10295               }
10296             }
10297           }
10298           #ifndef HOST_IMM_ADDR32
10299           if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS||itype[i+1]==C2LS) {
10300             hr=get_reg(regs[i+1].regmap,TLREG);
10301             if(hr>=0) {
10302               int sr=get_reg(regs[i+1].regmap,rs1[i+1]);
10303               if(sr>=0&&((regs[i+1].wasconst>>sr)&1)) {
10304                 int nr;
10305                 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10306                 {
10307                   regs[i].regmap[hr]=MGEN1+((i+1)&1);
10308                   regmap_pre[i+1][hr]=MGEN1+((i+1)&1);
10309                   regs[i+1].regmap_entry[hr]=MGEN1+((i+1)&1);
10310                   regs[i].isconst&=~(1<<hr);
10311                   regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10312                   constmap[i][hr]=constmap[i+1][hr];
10313                   regs[i+1].wasdirty&=~(1<<hr);
10314                   regs[i].dirty&=~(1<<hr);
10315                 }
10316                 else if((nr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1))>=0)
10317                 {
10318                   // move it to another register
10319                   regs[i+1].regmap[hr]=-1;
10320                   regmap_pre[i+2][hr]=-1;
10321                   regs[i+1].regmap[nr]=TLREG;
10322                   regmap_pre[i+2][nr]=TLREG;
10323                   regs[i].regmap[nr]=MGEN1+((i+1)&1);
10324                   regmap_pre[i+1][nr]=MGEN1+((i+1)&1);
10325                   regs[i+1].regmap_entry[nr]=MGEN1+((i+1)&1);
10326                   regs[i].isconst&=~(1<<nr);
10327                   regs[i+1].isconst&=~(1<<nr);
10328                   regs[i].dirty&=~(1<<nr);
10329                   regs[i+1].wasdirty&=~(1<<nr);
10330                   regs[i+1].dirty&=~(1<<nr);
10331                   regs[i+2].wasdirty&=~(1<<nr);
10332                 }
10333               }
10334             }
10335           }
10336           #endif
10337           if(itype[i+1]==STORE||itype[i+1]==STORELR
10338              ||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SB/SH/SW/SD/SWC1/SDC1/SWC2/SDC2
10339             if(get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10340               hr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1);
10341               if(hr<0) hr=get_reg(regs[i+1].regmap,-1);
10342               else {regs[i+1].regmap[hr]=AGEN1+((i+1)&1);regs[i+1].isconst&=~(1<<hr);}
10343               assert(hr>=0);
10344               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10345               {
10346                 regs[i].regmap[hr]=rs1[i+1];
10347                 regmap_pre[i+1][hr]=rs1[i+1];
10348                 regs[i+1].regmap_entry[hr]=rs1[i+1];
10349                 regs[i].isconst&=~(1<<hr);
10350                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10351                 constmap[i][hr]=constmap[i+1][hr];
10352                 regs[i+1].wasdirty&=~(1<<hr);
10353                 regs[i].dirty&=~(1<<hr);
10354               }
10355             }
10356           }
10357           if(itype[i+1]==LOADLR||(opcode[i+1]&0x3b)==0x31||(opcode[i+1]&0x3b)==0x32) { // LWC1/LDC1, LWC2/LDC2
10358             if(get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10359               int nr;
10360               hr=get_reg(regs[i+1].regmap,FTEMP);
10361               assert(hr>=0);
10362               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10363               {
10364                 regs[i].regmap[hr]=rs1[i+1];
10365                 regmap_pre[i+1][hr]=rs1[i+1];
10366                 regs[i+1].regmap_entry[hr]=rs1[i+1];
10367                 regs[i].isconst&=~(1<<hr);
10368                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10369                 constmap[i][hr]=constmap[i+1][hr];
10370                 regs[i+1].wasdirty&=~(1<<hr);
10371                 regs[i].dirty&=~(1<<hr);
10372               }
10373               else if((nr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1))>=0)
10374               {
10375                 // move it to another register
10376                 regs[i+1].regmap[hr]=-1;
10377                 regmap_pre[i+2][hr]=-1;
10378                 regs[i+1].regmap[nr]=FTEMP;
10379                 regmap_pre[i+2][nr]=FTEMP;
10380                 regs[i].regmap[nr]=rs1[i+1];
10381                 regmap_pre[i+1][nr]=rs1[i+1];
10382                 regs[i+1].regmap_entry[nr]=rs1[i+1];
10383                 regs[i].isconst&=~(1<<nr);
10384                 regs[i+1].isconst&=~(1<<nr);
10385                 regs[i].dirty&=~(1<<nr);
10386                 regs[i+1].wasdirty&=~(1<<nr);
10387                 regs[i+1].dirty&=~(1<<nr);
10388                 regs[i+2].wasdirty&=~(1<<nr);
10389               }
10390             }
10391           }
10392           if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR/*||itype[i+1]==C1LS||||itype[i+1]==C2LS*/) {
10393             if(itype[i+1]==LOAD) 
10394               hr=get_reg(regs[i+1].regmap,rt1[i+1]);
10395             if(itype[i+1]==LOADLR||(opcode[i+1]&0x3b)==0x31||(opcode[i+1]&0x3b)==0x32) // LWC1/LDC1, LWC2/LDC2
10396               hr=get_reg(regs[i+1].regmap,FTEMP);
10397             if(itype[i+1]==STORE||itype[i+1]==STORELR||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1/SWC2/SDC2
10398               hr=get_reg(regs[i+1].regmap,AGEN1+((i+1)&1));
10399               if(hr<0) hr=get_reg(regs[i+1].regmap,-1);
10400             }
10401             if(hr>=0&&regs[i].regmap[hr]<0) {
10402               int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
10403               if(rs>=0&&((regs[i+1].wasconst>>rs)&1)) {
10404                 regs[i].regmap[hr]=AGEN1+((i+1)&1);
10405                 regmap_pre[i+1][hr]=AGEN1+((i+1)&1);
10406                 regs[i+1].regmap_entry[hr]=AGEN1+((i+1)&1);
10407                 regs[i].isconst&=~(1<<hr);
10408                 regs[i+1].wasdirty&=~(1<<hr);
10409                 regs[i].dirty&=~(1<<hr);
10410               }
10411             }
10412           }
10413         }
10414       }
10415     }
10416   }
10417   
10418   /* Pass 6 - Optimize clean/dirty state */
10419   clean_registers(0,slen-1,1);
10420   
10421   /* Pass 7 - Identify 32-bit registers */
10422 #ifndef FORCE32
10423   provisional_r32();
10424
10425   u_int r32=0;
10426   
10427   for (i=slen-1;i>=0;i--)
10428   {
10429     int hr;
10430     if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
10431     {
10432       if(ba[i]<start || ba[i]>=(start+slen*4))
10433       {
10434         // Branch out of this block, don't need anything
10435         r32=0;
10436       }
10437       else
10438       {
10439         // Internal branch
10440         // Need whatever matches the target
10441         // (and doesn't get overwritten by the delay slot instruction)
10442         r32=0;
10443         int t=(ba[i]-start)>>2;
10444         if(ba[i]>start+i*4) {
10445           // Forward branch
10446           if(!(requires_32bit[t]&~regs[i].was32))
10447             r32|=requires_32bit[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
10448         }else{
10449           // Backward branch
10450           //if(!(regs[t].was32&~unneeded_reg_upper[t]&~regs[i].was32))
10451           //  r32|=regs[t].was32&~unneeded_reg_upper[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
10452           if(!(pr32[t]&~regs[i].was32))
10453             r32|=pr32[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
10454         }
10455       }
10456       // Conditional branch may need registers for following instructions
10457       if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
10458       {
10459         if(i<slen-2) {
10460           r32|=requires_32bit[i+2];
10461           r32&=regs[i].was32;
10462           // Mark this address as a branch target since it may be called
10463           // upon return from interrupt
10464           bt[i+2]=1;
10465         }
10466       }
10467       // Merge in delay slot
10468       if(!likely[i]) {
10469         // These are overwritten unless the branch is "likely"
10470         // and the delay slot is nullified if not taken
10471         r32&=~(1LL<<rt1[i+1]);
10472         r32&=~(1LL<<rt2[i+1]);
10473       }
10474       // Assume these are needed (delay slot)
10475       if(us1[i+1]>0)
10476       {
10477         if((regs[i].was32>>us1[i+1])&1) r32|=1LL<<us1[i+1];
10478       }
10479       if(us2[i+1]>0)
10480       {
10481         if((regs[i].was32>>us2[i+1])&1) r32|=1LL<<us2[i+1];
10482       }
10483       if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1))
10484       {
10485         if((regs[i].was32>>dep1[i+1])&1) r32|=1LL<<dep1[i+1];
10486       }
10487       if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1))
10488       {
10489         if((regs[i].was32>>dep2[i+1])&1) r32|=1LL<<dep2[i+1];
10490       }
10491     }
10492     else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
10493     {
10494       // SYSCALL instruction (software interrupt)
10495       r32=0;
10496     }
10497     else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
10498     {
10499       // ERET instruction (return from interrupt)
10500       r32=0;
10501     }
10502     // Check 32 bits
10503     r32&=~(1LL<<rt1[i]);
10504     r32&=~(1LL<<rt2[i]);
10505     if(us1[i]>0)
10506     {
10507       if((regs[i].was32>>us1[i])&1) r32|=1LL<<us1[i];
10508     }
10509     if(us2[i]>0)
10510     {
10511       if((regs[i].was32>>us2[i])&1) r32|=1LL<<us2[i];
10512     }
10513     if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1))
10514     {
10515       if((regs[i].was32>>dep1[i])&1) r32|=1LL<<dep1[i];
10516     }
10517     if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1))
10518     {
10519       if((regs[i].was32>>dep2[i])&1) r32|=1LL<<dep2[i];
10520     }
10521     requires_32bit[i]=r32;
10522     
10523     // Dirty registers which are 32-bit, require 32-bit input
10524     // as they will be written as 32-bit values
10525     for(hr=0;hr<HOST_REGS;hr++)
10526     {
10527       if(regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64) {
10528         if((regs[i].was32>>regs[i].regmap_entry[hr])&(regs[i].wasdirty>>hr)&1) {
10529           if(!((unneeded_reg_upper[i]>>regs[i].regmap_entry[hr])&1))
10530           requires_32bit[i]|=1LL<<regs[i].regmap_entry[hr];
10531         }
10532       }
10533     }
10534     //requires_32bit[i]=is32[i]&~unneeded_reg_upper[i]; // DEBUG
10535   }
10536 #else
10537   for (i=slen-1;i>=0;i--)
10538   {
10539     if(itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
10540     {
10541       // Conditional branch
10542       if((source[i]>>16)!=0x1000&&i<slen-2) {
10543         // Mark this address as a branch target since it may be called
10544         // upon return from interrupt
10545         bt[i+2]=1;
10546       }
10547     }
10548   }
10549 #endif
10550
10551   if(itype[slen-1]==SPAN) {
10552     bt[slen-1]=1; // Mark as a branch target so instruction can restart after exception
10553   }
10554   
10555   /* Debug/disassembly */
10556   if((void*)assem_debug==(void*)printf) 
10557   for(i=0;i<slen;i++)
10558   {
10559     printf("U:");
10560     int r;
10561     for(r=1;r<=CCREG;r++) {
10562       if((unneeded_reg[i]>>r)&1) {
10563         if(r==HIREG) printf(" HI");
10564         else if(r==LOREG) printf(" LO");
10565         else printf(" r%d",r);
10566       }
10567     }
10568 #ifndef FORCE32
10569     printf(" UU:");
10570     for(r=1;r<=CCREG;r++) {
10571       if(((unneeded_reg_upper[i]&~unneeded_reg[i])>>r)&1) {
10572         if(r==HIREG) printf(" HI");
10573         else if(r==LOREG) printf(" LO");
10574         else printf(" r%d",r);
10575       }
10576     }
10577     printf(" 32:");
10578     for(r=0;r<=CCREG;r++) {
10579       //if(((is32[i]>>r)&(~unneeded_reg[i]>>r))&1) {
10580       if((regs[i].was32>>r)&1) {
10581         if(r==CCREG) printf(" CC");
10582         else if(r==HIREG) printf(" HI");
10583         else if(r==LOREG) printf(" LO");
10584         else printf(" r%d",r);
10585       }
10586     }
10587 #endif
10588     printf("\n");
10589     #if defined(__i386__) || defined(__x86_64__)
10590     printf("pre: eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",regmap_pre[i][0],regmap_pre[i][1],regmap_pre[i][2],regmap_pre[i][3],regmap_pre[i][5],regmap_pre[i][6],regmap_pre[i][7]);
10591     #endif
10592     #ifdef __arm__
10593     printf("pre: r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d\n",regmap_pre[i][0],regmap_pre[i][1],regmap_pre[i][2],regmap_pre[i][3],regmap_pre[i][4],regmap_pre[i][5],regmap_pre[i][6],regmap_pre[i][7],regmap_pre[i][8],regmap_pre[i][9],regmap_pre[i][10],regmap_pre[i][12]);
10594     #endif
10595     printf("needs: ");
10596     if(needed_reg[i]&1) printf("eax ");
10597     if((needed_reg[i]>>1)&1) printf("ecx ");
10598     if((needed_reg[i]>>2)&1) printf("edx ");
10599     if((needed_reg[i]>>3)&1) printf("ebx ");
10600     if((needed_reg[i]>>5)&1) printf("ebp ");
10601     if((needed_reg[i]>>6)&1) printf("esi ");
10602     if((needed_reg[i]>>7)&1) printf("edi ");
10603     printf("r:");
10604     for(r=0;r<=CCREG;r++) {
10605       //if(((requires_32bit[i]>>r)&(~unneeded_reg[i]>>r))&1) {
10606       if((requires_32bit[i]>>r)&1) {
10607         if(r==CCREG) printf(" CC");
10608         else if(r==HIREG) printf(" HI");
10609         else if(r==LOREG) printf(" LO");
10610         else printf(" r%d",r);
10611       }
10612     }
10613     printf("\n");
10614     /*printf("pr:");
10615     for(r=0;r<=CCREG;r++) {
10616       //if(((requires_32bit[i]>>r)&(~unneeded_reg[i]>>r))&1) {
10617       if((pr32[i]>>r)&1) {
10618         if(r==CCREG) printf(" CC");
10619         else if(r==HIREG) printf(" HI");
10620         else if(r==LOREG) printf(" LO");
10621         else printf(" r%d",r);
10622       }
10623     }
10624     if(pr32[i]!=requires_32bit[i]) printf(" OOPS");
10625     printf("\n");*/
10626     #if defined(__i386__) || defined(__x86_64__)
10627     printf("entry: eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",regs[i].regmap_entry[0],regs[i].regmap_entry[1],regs[i].regmap_entry[2],regs[i].regmap_entry[3],regs[i].regmap_entry[5],regs[i].regmap_entry[6],regs[i].regmap_entry[7]);
10628     printf("dirty: ");
10629     if(regs[i].wasdirty&1) printf("eax ");
10630     if((regs[i].wasdirty>>1)&1) printf("ecx ");
10631     if((regs[i].wasdirty>>2)&1) printf("edx ");
10632     if((regs[i].wasdirty>>3)&1) printf("ebx ");
10633     if((regs[i].wasdirty>>5)&1) printf("ebp ");
10634     if((regs[i].wasdirty>>6)&1) printf("esi ");
10635     if((regs[i].wasdirty>>7)&1) printf("edi ");
10636     #endif
10637     #ifdef __arm__
10638     printf("entry: r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d\n",regs[i].regmap_entry[0],regs[i].regmap_entry[1],regs[i].regmap_entry[2],regs[i].regmap_entry[3],regs[i].regmap_entry[4],regs[i].regmap_entry[5],regs[i].regmap_entry[6],regs[i].regmap_entry[7],regs[i].regmap_entry[8],regs[i].regmap_entry[9],regs[i].regmap_entry[10],regs[i].regmap_entry[12]);
10639     printf("dirty: ");
10640     if(regs[i].wasdirty&1) printf("r0 ");
10641     if((regs[i].wasdirty>>1)&1) printf("r1 ");
10642     if((regs[i].wasdirty>>2)&1) printf("r2 ");
10643     if((regs[i].wasdirty>>3)&1) printf("r3 ");
10644     if((regs[i].wasdirty>>4)&1) printf("r4 ");
10645     if((regs[i].wasdirty>>5)&1) printf("r5 ");
10646     if((regs[i].wasdirty>>6)&1) printf("r6 ");
10647     if((regs[i].wasdirty>>7)&1) printf("r7 ");
10648     if((regs[i].wasdirty>>8)&1) printf("r8 ");
10649     if((regs[i].wasdirty>>9)&1) printf("r9 ");
10650     if((regs[i].wasdirty>>10)&1) printf("r10 ");
10651     if((regs[i].wasdirty>>12)&1) printf("r12 ");
10652     #endif
10653     printf("\n");
10654     disassemble_inst(i);
10655     //printf ("ccadj[%d] = %d\n",i,ccadj[i]);
10656     #if defined(__i386__) || defined(__x86_64__)
10657     printf("eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d dirty: ",regs[i].regmap[0],regs[i].regmap[1],regs[i].regmap[2],regs[i].regmap[3],regs[i].regmap[5],regs[i].regmap[6],regs[i].regmap[7]);
10658     if(regs[i].dirty&1) printf("eax ");
10659     if((regs[i].dirty>>1)&1) printf("ecx ");
10660     if((regs[i].dirty>>2)&1) printf("edx ");
10661     if((regs[i].dirty>>3)&1) printf("ebx ");
10662     if((regs[i].dirty>>5)&1) printf("ebp ");
10663     if((regs[i].dirty>>6)&1) printf("esi ");
10664     if((regs[i].dirty>>7)&1) printf("edi ");
10665     #endif
10666     #ifdef __arm__
10667     printf("r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d dirty: ",regs[i].regmap[0],regs[i].regmap[1],regs[i].regmap[2],regs[i].regmap[3],regs[i].regmap[4],regs[i].regmap[5],regs[i].regmap[6],regs[i].regmap[7],regs[i].regmap[8],regs[i].regmap[9],regs[i].regmap[10],regs[i].regmap[12]);
10668     if(regs[i].dirty&1) printf("r0 ");
10669     if((regs[i].dirty>>1)&1) printf("r1 ");
10670     if((regs[i].dirty>>2)&1) printf("r2 ");
10671     if((regs[i].dirty>>3)&1) printf("r3 ");
10672     if((regs[i].dirty>>4)&1) printf("r4 ");
10673     if((regs[i].dirty>>5)&1) printf("r5 ");
10674     if((regs[i].dirty>>6)&1) printf("r6 ");
10675     if((regs[i].dirty>>7)&1) printf("r7 ");
10676     if((regs[i].dirty>>8)&1) printf("r8 ");
10677     if((regs[i].dirty>>9)&1) printf("r9 ");
10678     if((regs[i].dirty>>10)&1) printf("r10 ");
10679     if((regs[i].dirty>>12)&1) printf("r12 ");
10680     #endif
10681     printf("\n");
10682     if(regs[i].isconst) {
10683       printf("constants: ");
10684       #if defined(__i386__) || defined(__x86_64__)
10685       if(regs[i].isconst&1) printf("eax=%x ",(int)constmap[i][0]);
10686       if((regs[i].isconst>>1)&1) printf("ecx=%x ",(int)constmap[i][1]);
10687       if((regs[i].isconst>>2)&1) printf("edx=%x ",(int)constmap[i][2]);
10688       if((regs[i].isconst>>3)&1) printf("ebx=%x ",(int)constmap[i][3]);
10689       if((regs[i].isconst>>5)&1) printf("ebp=%x ",(int)constmap[i][5]);
10690       if((regs[i].isconst>>6)&1) printf("esi=%x ",(int)constmap[i][6]);
10691       if((regs[i].isconst>>7)&1) printf("edi=%x ",(int)constmap[i][7]);
10692       #endif
10693       #ifdef __arm__
10694       if(regs[i].isconst&1) printf("r0=%x ",(int)constmap[i][0]);
10695       if((regs[i].isconst>>1)&1) printf("r1=%x ",(int)constmap[i][1]);
10696       if((regs[i].isconst>>2)&1) printf("r2=%x ",(int)constmap[i][2]);
10697       if((regs[i].isconst>>3)&1) printf("r3=%x ",(int)constmap[i][3]);
10698       if((regs[i].isconst>>4)&1) printf("r4=%x ",(int)constmap[i][4]);
10699       if((regs[i].isconst>>5)&1) printf("r5=%x ",(int)constmap[i][5]);
10700       if((regs[i].isconst>>6)&1) printf("r6=%x ",(int)constmap[i][6]);
10701       if((regs[i].isconst>>7)&1) printf("r7=%x ",(int)constmap[i][7]);
10702       if((regs[i].isconst>>8)&1) printf("r8=%x ",(int)constmap[i][8]);
10703       if((regs[i].isconst>>9)&1) printf("r9=%x ",(int)constmap[i][9]);
10704       if((regs[i].isconst>>10)&1) printf("r10=%x ",(int)constmap[i][10]);
10705       if((regs[i].isconst>>12)&1) printf("r12=%x ",(int)constmap[i][12]);
10706       #endif
10707       printf("\n");
10708     }
10709 #ifndef FORCE32
10710     printf(" 32:");
10711     for(r=0;r<=CCREG;r++) {
10712       if((regs[i].is32>>r)&1) {
10713         if(r==CCREG) printf(" CC");
10714         else if(r==HIREG) printf(" HI");
10715         else if(r==LOREG) printf(" LO");
10716         else printf(" r%d",r);
10717       }
10718     }
10719     printf("\n");
10720 #endif
10721     /*printf(" p32:");
10722     for(r=0;r<=CCREG;r++) {
10723       if((p32[i]>>r)&1) {
10724         if(r==CCREG) printf(" CC");
10725         else if(r==HIREG) printf(" HI");
10726         else if(r==LOREG) printf(" LO");
10727         else printf(" r%d",r);
10728       }
10729     }
10730     if(p32[i]!=regs[i].is32) printf(" NO MATCH\n");
10731     else printf("\n");*/
10732     if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP) {
10733       #if defined(__i386__) || defined(__x86_64__)
10734       printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d dirty: ",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
10735       if(branch_regs[i].dirty&1) printf("eax ");
10736       if((branch_regs[i].dirty>>1)&1) printf("ecx ");
10737       if((branch_regs[i].dirty>>2)&1) printf("edx ");
10738       if((branch_regs[i].dirty>>3)&1) printf("ebx ");
10739       if((branch_regs[i].dirty>>5)&1) printf("ebp ");
10740       if((branch_regs[i].dirty>>6)&1) printf("esi ");
10741       if((branch_regs[i].dirty>>7)&1) printf("edi ");
10742       #endif
10743       #ifdef __arm__
10744       printf("branch(%d): r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d dirty: ",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[4],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7],branch_regs[i].regmap[8],branch_regs[i].regmap[9],branch_regs[i].regmap[10],branch_regs[i].regmap[12]);
10745       if(branch_regs[i].dirty&1) printf("r0 ");
10746       if((branch_regs[i].dirty>>1)&1) printf("r1 ");
10747       if((branch_regs[i].dirty>>2)&1) printf("r2 ");
10748       if((branch_regs[i].dirty>>3)&1) printf("r3 ");
10749       if((branch_regs[i].dirty>>4)&1) printf("r4 ");
10750       if((branch_regs[i].dirty>>5)&1) printf("r5 ");
10751       if((branch_regs[i].dirty>>6)&1) printf("r6 ");
10752       if((branch_regs[i].dirty>>7)&1) printf("r7 ");
10753       if((branch_regs[i].dirty>>8)&1) printf("r8 ");
10754       if((branch_regs[i].dirty>>9)&1) printf("r9 ");
10755       if((branch_regs[i].dirty>>10)&1) printf("r10 ");
10756       if((branch_regs[i].dirty>>12)&1) printf("r12 ");
10757       #endif
10758 #ifndef FORCE32
10759       printf(" 32:");
10760       for(r=0;r<=CCREG;r++) {
10761         if((branch_regs[i].is32>>r)&1) {
10762           if(r==CCREG) printf(" CC");
10763           else if(r==HIREG) printf(" HI");
10764           else if(r==LOREG) printf(" LO");
10765           else printf(" r%d",r);
10766         }
10767       }
10768       printf("\n");
10769 #endif
10770     }
10771   }
10772
10773   /* Pass 8 - Assembly */
10774   linkcount=0;stubcount=0;
10775   ds=0;is_delayslot=0;
10776   cop1_usable=0;
10777   uint64_t is32_pre=0;
10778   u_int dirty_pre=0;
10779   u_int beginning=(u_int)out;
10780   if((u_int)addr&1) {
10781     ds=1;
10782     pagespan_ds();
10783   }
10784   u_int instr_addr0_override=0;
10785
10786 #ifdef PCSX
10787   if (start == 0x80030000) {
10788     // nasty hack for fastbios thing
10789     instr_addr0_override=(u_int)out;
10790     emit_movimm(start,0);
10791     emit_readword((int)&pcaddr,1);
10792     emit_writeword(0,(int)&pcaddr);
10793     emit_cmp(0,1);
10794     emit_jne((int)new_dyna_leave);
10795   }
10796 #endif
10797   for(i=0;i<slen;i++)
10798   {
10799     //if(ds) printf("ds: ");
10800     if((void*)assem_debug==(void*)printf) disassemble_inst(i);
10801     if(ds) {
10802       ds=0; // Skip delay slot
10803       if(bt[i]) assem_debug("OOPS - branch into delay slot\n");
10804       instr_addr[i]=0;
10805     } else {
10806       #ifndef DESTRUCTIVE_WRITEBACK
10807       if(i<2||(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000))
10808       {
10809         wb_sx(regmap_pre[i],regs[i].regmap_entry,regs[i].wasdirty,is32_pre,regs[i].was32,
10810               unneeded_reg[i],unneeded_reg_upper[i]);
10811         wb_valid(regmap_pre[i],regs[i].regmap_entry,dirty_pre,regs[i].wasdirty,is32_pre,
10812               unneeded_reg[i],unneeded_reg_upper[i]);
10813       }
10814       is32_pre=regs[i].is32;
10815       dirty_pre=regs[i].dirty;
10816       #endif
10817       // write back
10818       if(i<2||(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000))
10819       {
10820         wb_invalidate(regmap_pre[i],regs[i].regmap_entry,regs[i].wasdirty,regs[i].was32,
10821                       unneeded_reg[i],unneeded_reg_upper[i]);
10822         loop_preload(regmap_pre[i],regs[i].regmap_entry);
10823       }
10824       // branch target entry point
10825       instr_addr[i]=(u_int)out;
10826       assem_debug("<->\n");
10827       // load regs
10828       if(regs[i].regmap_entry[HOST_CCREG]==CCREG&&regs[i].regmap[HOST_CCREG]!=CCREG)
10829         wb_register(CCREG,regs[i].regmap_entry,regs[i].wasdirty,regs[i].was32);
10830       load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i],rs2[i]);
10831       address_generation(i,&regs[i],regs[i].regmap_entry);
10832       load_consts(regmap_pre[i],regs[i].regmap,regs[i].was32,i);
10833       if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
10834       {
10835         // Load the delay slot registers if necessary
10836         if(rs1[i+1]!=rs1[i]&&rs1[i+1]!=rs2[i]&&(rs1[i+1]!=rt1[i]||rt1[i]==0))
10837           load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i+1],rs1[i+1]);
10838         if(rs2[i+1]!=rs1[i+1]&&rs2[i+1]!=rs1[i]&&rs2[i+1]!=rs2[i]&&(rs2[i+1]!=rt1[i]||rt1[i]==0))
10839           load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs2[i+1],rs2[i+1]);
10840         if(itype[i+1]==STORE||itype[i+1]==STORELR||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a)
10841           load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,INVCP,INVCP);
10842       }
10843       else if(i+1<slen)
10844       {
10845         // Preload registers for following instruction
10846         if(rs1[i+1]!=rs1[i]&&rs1[i+1]!=rs2[i])
10847           if(rs1[i+1]!=rt1[i]&&rs1[i+1]!=rt2[i])
10848             load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i+1],rs1[i+1]);
10849         if(rs2[i+1]!=rs1[i+1]&&rs2[i+1]!=rs1[i]&&rs2[i+1]!=rs2[i])
10850           if(rs2[i+1]!=rt1[i]&&rs2[i+1]!=rt2[i])
10851             load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs2[i+1],rs2[i+1]);
10852       }
10853       // TODO: if(is_ooo(i)) address_generation(i+1);
10854       if(itype[i]==CJUMP||itype[i]==FJUMP)
10855         load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,CCREG,CCREG);
10856       if(itype[i]==STORE||itype[i]==STORELR||(opcode[i]&0x3b)==0x39||(opcode[i]&0x3b)==0x3a)
10857         load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,INVCP,INVCP);
10858       if(bt[i]) cop1_usable=0;
10859       // assemble
10860       switch(itype[i]) {
10861         case ALU:
10862           alu_assemble(i,&regs[i]);break;
10863         case IMM16:
10864           imm16_assemble(i,&regs[i]);break;
10865         case SHIFT:
10866           shift_assemble(i,&regs[i]);break;
10867         case SHIFTIMM:
10868           shiftimm_assemble(i,&regs[i]);break;
10869         case LOAD:
10870           load_assemble(i,&regs[i]);break;
10871         case LOADLR:
10872           loadlr_assemble(i,&regs[i]);break;
10873         case STORE:
10874           store_assemble(i,&regs[i]);break;
10875         case STORELR:
10876           storelr_assemble(i,&regs[i]);break;
10877         case COP0:
10878           cop0_assemble(i,&regs[i]);break;
10879         case COP1:
10880           cop1_assemble(i,&regs[i]);break;
10881         case C1LS:
10882           c1ls_assemble(i,&regs[i]);break;
10883         case COP2:
10884           cop2_assemble(i,&regs[i]);break;
10885         case C2LS:
10886           c2ls_assemble(i,&regs[i]);break;
10887         case C2OP:
10888           c2op_assemble(i,&regs[i]);break;
10889         case FCONV:
10890           fconv_assemble(i,&regs[i]);break;
10891         case FLOAT:
10892           float_assemble(i,&regs[i]);break;
10893         case FCOMP:
10894           fcomp_assemble(i,&regs[i]);break;
10895         case MULTDIV:
10896           multdiv_assemble(i,&regs[i]);break;
10897         case MOV:
10898           mov_assemble(i,&regs[i]);break;
10899         case SYSCALL:
10900           syscall_assemble(i,&regs[i]);break;
10901         case HLECALL:
10902           hlecall_assemble(i,&regs[i]);break;
10903         case INTCALL:
10904           intcall_assemble(i,&regs[i]);break;
10905         case UJUMP:
10906           ujump_assemble(i,&regs[i]);ds=1;break;
10907         case RJUMP:
10908           rjump_assemble(i,&regs[i]);ds=1;break;
10909         case CJUMP:
10910           cjump_assemble(i,&regs[i]);ds=1;break;
10911         case SJUMP:
10912           sjump_assemble(i,&regs[i]);ds=1;break;
10913         case FJUMP:
10914           fjump_assemble(i,&regs[i]);ds=1;break;
10915         case SPAN:
10916           pagespan_assemble(i,&regs[i]);break;
10917       }
10918       if(itype[i]==UJUMP||itype[i]==RJUMP||(source[i]>>16)==0x1000)
10919         literal_pool(1024);
10920       else
10921         literal_pool_jumpover(256);
10922     }
10923   }
10924   //assert(itype[i-2]==UJUMP||itype[i-2]==RJUMP||(source[i-2]>>16)==0x1000);
10925   // If the block did not end with an unconditional branch,
10926   // add a jump to the next instruction.
10927   if(i>1) {
10928     if(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000&&itype[i-1]!=SPAN) {
10929       assert(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP);
10930       assert(i==slen);
10931       if(itype[i-2]!=CJUMP&&itype[i-2]!=SJUMP&&itype[i-2]!=FJUMP) {
10932         store_regs_bt(regs[i-1].regmap,regs[i-1].is32,regs[i-1].dirty,start+i*4);
10933         if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
10934           emit_loadreg(CCREG,HOST_CCREG);
10935         emit_addimm(HOST_CCREG,CLOCK_DIVIDER*(ccadj[i-1]+1),HOST_CCREG);
10936       }
10937       else if(!likely[i-2])
10938       {
10939         store_regs_bt(branch_regs[i-2].regmap,branch_regs[i-2].is32,branch_regs[i-2].dirty,start+i*4);
10940         assert(branch_regs[i-2].regmap[HOST_CCREG]==CCREG);
10941       }
10942       else
10943       {
10944         store_regs_bt(regs[i-2].regmap,regs[i-2].is32,regs[i-2].dirty,start+i*4);
10945         assert(regs[i-2].regmap[HOST_CCREG]==CCREG);
10946       }
10947       add_to_linker((int)out,start+i*4,0);
10948       emit_jmp(0);
10949     }
10950   }
10951   else
10952   {
10953     assert(i>0);
10954     assert(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP);
10955     store_regs_bt(regs[i-1].regmap,regs[i-1].is32,regs[i-1].dirty,start+i*4);
10956     if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
10957       emit_loadreg(CCREG,HOST_CCREG);
10958     emit_addimm(HOST_CCREG,CLOCK_DIVIDER*(ccadj[i-1]+1),HOST_CCREG);
10959     add_to_linker((int)out,start+i*4,0);
10960     emit_jmp(0);
10961   }
10962
10963   // TODO: delay slot stubs?
10964   // Stubs
10965   for(i=0;i<stubcount;i++)
10966   {
10967     switch(stubs[i][0])
10968     {
10969       case LOADB_STUB:
10970       case LOADH_STUB:
10971       case LOADW_STUB:
10972       case LOADD_STUB:
10973       case LOADBU_STUB:
10974       case LOADHU_STUB:
10975         do_readstub(i);break;
10976       case STOREB_STUB:
10977       case STOREH_STUB:
10978       case STOREW_STUB:
10979       case STORED_STUB:
10980         do_writestub(i);break;
10981       case CC_STUB:
10982         do_ccstub(i);break;
10983       case INVCODE_STUB:
10984         do_invstub(i);break;
10985       case FP_STUB:
10986         do_cop1stub(i);break;
10987       case STORELR_STUB:
10988         do_unalignedwritestub(i);break;
10989     }
10990   }
10991
10992   if (instr_addr0_override)
10993     instr_addr[0] = instr_addr0_override;
10994
10995   /* Pass 9 - Linker */
10996   for(i=0;i<linkcount;i++)
10997   {
10998     assem_debug("%8x -> %8x\n",link_addr[i][0],link_addr[i][1]);
10999     literal_pool(64);
11000     if(!link_addr[i][2])
11001     {
11002       void *stub=out;
11003       void *addr=check_addr(link_addr[i][1]);
11004       emit_extjump(link_addr[i][0],link_addr[i][1]);
11005       if(addr) {
11006         set_jump_target(link_addr[i][0],(int)addr);
11007         add_link(link_addr[i][1],stub);
11008       }
11009       else set_jump_target(link_addr[i][0],(int)stub);
11010     }
11011     else
11012     {
11013       // Internal branch
11014       int target=(link_addr[i][1]-start)>>2;
11015       assert(target>=0&&target<slen);
11016       assert(instr_addr[target]);
11017       //#ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
11018       //set_jump_target_fillslot(link_addr[i][0],instr_addr[target],link_addr[i][2]>>1);
11019       //#else
11020       set_jump_target(link_addr[i][0],instr_addr[target]);
11021       //#endif
11022     }
11023   }
11024   // External Branch Targets (jump_in)
11025   if(copy+slen*4>(void *)shadow+sizeof(shadow)) copy=shadow;
11026   for(i=0;i<slen;i++)
11027   {
11028     if(bt[i]||i==0)
11029     {
11030       if(instr_addr[i]) // TODO - delay slots (=null)
11031       {
11032         u_int vaddr=start+i*4;
11033         u_int page=get_page(vaddr);
11034         u_int vpage=get_vpage(vaddr);
11035         literal_pool(256);
11036         //if(!(is32[i]&(~unneeded_reg_upper[i])&~(1LL<<CCREG)))
11037 #ifndef FORCE32
11038         if(!requires_32bit[i])
11039 #else
11040         if(1)
11041 #endif
11042         {
11043           assem_debug("%8x (%d) <- %8x\n",instr_addr[i],i,start+i*4);
11044           assem_debug("jump_in: %x\n",start+i*4);
11045           ll_add(jump_dirty+vpage,vaddr,(void *)out);
11046           int entry_point=do_dirty_stub(i);
11047           ll_add(jump_in+page,vaddr,(void *)entry_point);
11048           // If there was an existing entry in the hash table,
11049           // replace it with the new address.
11050           // Don't add new entries.  We'll insert the
11051           // ones that actually get used in check_addr().
11052           int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
11053           if(ht_bin[0]==vaddr) {
11054             ht_bin[1]=entry_point;
11055           }
11056           if(ht_bin[2]==vaddr) {
11057             ht_bin[3]=entry_point;
11058           }
11059         }
11060         else
11061         {
11062           u_int r=requires_32bit[i]|!!(requires_32bit[i]>>32);
11063           assem_debug("%8x (%d) <- %8x\n",instr_addr[i],i,start+i*4);
11064           assem_debug("jump_in: %x (restricted - %x)\n",start+i*4,r);
11065           //int entry_point=(int)out;
11066           ////assem_debug("entry_point: %x\n",entry_point);
11067           //load_regs_entry(i);
11068           //if(entry_point==(int)out)
11069           //  entry_point=instr_addr[i];
11070           //else
11071           //  emit_jmp(instr_addr[i]);
11072           //ll_add_32(jump_in+page,vaddr,r,(void *)entry_point);
11073           ll_add_32(jump_dirty+vpage,vaddr,r,(void *)out);
11074           int entry_point=do_dirty_stub(i);
11075           ll_add_32(jump_in+page,vaddr,r,(void *)entry_point);
11076         }
11077       }
11078     }
11079   }
11080   // Write out the literal pool if necessary
11081   literal_pool(0);
11082   #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
11083   // Align code
11084   if(((u_int)out)&7) emit_addnop(13);
11085   #endif
11086   assert((u_int)out-beginning<MAX_OUTPUT_BLOCK_SIZE);
11087   //printf("shadow buffer: %x-%x\n",(int)copy,(int)copy+slen*4);
11088   memcpy(copy,source,slen*4);
11089   copy+=slen*4;
11090   
11091   #ifdef __arm__
11092   __clear_cache((void *)beginning,out);
11093   #endif
11094   
11095   // If we're within 256K of the end of the buffer,
11096   // start over from the beginning. (Is 256K enough?)
11097   if((int)out>BASE_ADDR+(1<<TARGET_SIZE_2)-MAX_OUTPUT_BLOCK_SIZE) out=(u_char *)BASE_ADDR;
11098   
11099   // Trap writes to any of the pages we compiled
11100   for(i=start>>12;i<=(start+slen*4)>>12;i++) {
11101     invalid_code[i]=0;
11102 #ifndef DISABLE_TLB
11103     memory_map[i]|=0x40000000;
11104     if((signed int)start>=(signed int)0xC0000000) {
11105       assert(using_tlb);
11106       j=(((u_int)i<<12)+(memory_map[i]<<2)-(u_int)rdram+(u_int)0x80000000)>>12;
11107       invalid_code[j]=0;
11108       memory_map[j]|=0x40000000;
11109       //printf("write protect physical page: %x (virtual %x)\n",j<<12,start);
11110     }
11111 #endif
11112   }
11113 #ifdef PCSX
11114   // PCSX maps all RAM mirror invalid_code tests to 0x80000000..0x80000000+RAM_SIZE
11115   if(get_page(start)<(RAM_SIZE>>12))
11116     for(i=start>>12;i<=(start+slen*4)>>12;i++)
11117       invalid_code[((u_int)0x80000000>>12)|i]=0;
11118 #endif
11119   
11120   /* Pass 10 - Free memory by expiring oldest blocks */
11121   
11122   int end=((((int)out-BASE_ADDR)>>(TARGET_SIZE_2-16))+16384)&65535;
11123   while(expirep!=end)
11124   {
11125     int shift=TARGET_SIZE_2-3; // Divide into 8 blocks
11126     int base=BASE_ADDR+((expirep>>13)<<shift); // Base address of this block
11127     inv_debug("EXP: Phase %d\n",expirep);
11128     switch((expirep>>11)&3)
11129     {
11130       case 0:
11131         // Clear jump_in and jump_dirty
11132         ll_remove_matching_addrs(jump_in+(expirep&2047),base,shift);
11133         ll_remove_matching_addrs(jump_dirty+(expirep&2047),base,shift);
11134         ll_remove_matching_addrs(jump_in+2048+(expirep&2047),base,shift);
11135         ll_remove_matching_addrs(jump_dirty+2048+(expirep&2047),base,shift);
11136         break;
11137       case 1:
11138         // Clear pointers
11139         ll_kill_pointers(jump_out[expirep&2047],base,shift);
11140         ll_kill_pointers(jump_out[(expirep&2047)+2048],base,shift);
11141         break;
11142       case 2:
11143         // Clear hash table
11144         for(i=0;i<32;i++) {
11145           int *ht_bin=hash_table[((expirep&2047)<<5)+i];
11146           if((ht_bin[3]>>shift)==(base>>shift) ||
11147              ((ht_bin[3]-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(base>>shift)) {
11148             inv_debug("EXP: Remove hash %x -> %x\n",ht_bin[2],ht_bin[3]);
11149             ht_bin[2]=ht_bin[3]=-1;
11150           }
11151           if((ht_bin[1]>>shift)==(base>>shift) ||
11152              ((ht_bin[1]-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(base>>shift)) {
11153             inv_debug("EXP: Remove hash %x -> %x\n",ht_bin[0],ht_bin[1]);
11154             ht_bin[0]=ht_bin[2];
11155             ht_bin[1]=ht_bin[3];
11156             ht_bin[2]=ht_bin[3]=-1;
11157           }
11158         }
11159         break;
11160       case 3:
11161         // Clear jump_out
11162         #ifdef __arm__
11163         if((expirep&2047)==0) 
11164           do_clear_cache();
11165         #endif
11166         ll_remove_matching_addrs(jump_out+(expirep&2047),base,shift);
11167         ll_remove_matching_addrs(jump_out+2048+(expirep&2047),base,shift);
11168         break;
11169     }
11170     expirep=(expirep+1)&65535;
11171   }
11172   return 0;
11173 }
11174
11175 // vim:shiftwidth=2:expandtab