drc: don't clear ARM caches on whole translation cache - it's very slow
[pcsx_rearmed.git] / libpcsxcore / new_dynarec / new_dynarec.c
1 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
2  *   Mupen64plus - new_dynarec.c                                           *
3  *   Copyright (C) 2009-2010 Ari64                                         *
4  *                                                                         *
5  *   This program is free software; you can redistribute it and/or modify  *
6  *   it under the terms of the GNU General Public License as published by  *
7  *   the Free Software Foundation; either version 2 of the License, or     *
8  *   (at your option) any later version.                                   *
9  *                                                                         *
10  *   This program is distributed in the hope that it will be useful,       *
11  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
12  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
13  *   GNU General Public License for more details.                          *
14  *                                                                         *
15  *   You should have received a copy of the GNU General Public License     *
16  *   along with this program; if not, write to the                         *
17  *   Free Software Foundation, Inc.,                                       *
18  *   51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.          *
19  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
20
21 #include <stdlib.h>
22 #include <stdint.h> //include for uint64_t
23 #include <assert.h>
24
25 #include "emu_if.h" //emulator interface
26
27 #include <sys/mman.h>
28
29 #ifdef __i386__
30 #include "assem_x86.h"
31 #endif
32 #ifdef __x86_64__
33 #include "assem_x64.h"
34 #endif
35 #ifdef __arm__
36 #include "assem_arm.h"
37 #endif
38
39 #define MAXBLOCK 4096
40 #define MAX_OUTPUT_BLOCK_SIZE 262144
41 #define CLOCK_DIVIDER 2
42
43 struct regstat
44 {
45   signed char regmap_entry[HOST_REGS];
46   signed char regmap[HOST_REGS];
47   uint64_t was32;
48   uint64_t is32;
49   uint64_t wasdirty;
50   uint64_t dirty;
51   uint64_t u;
52   uint64_t uu;
53   u_int wasconst;
54   u_int isconst;
55   uint64_t constmap[HOST_REGS];
56 };
57
58 struct ll_entry
59 {
60   u_int vaddr;
61   u_int reg32;
62   void *addr;
63   struct ll_entry *next;
64 };
65
66   u_int start;
67   u_int *source;
68   u_int pagelimit;
69   char insn[MAXBLOCK][10];
70   u_char itype[MAXBLOCK];
71   u_char opcode[MAXBLOCK];
72   u_char opcode2[MAXBLOCK];
73   u_char bt[MAXBLOCK];
74   u_char rs1[MAXBLOCK];
75   u_char rs2[MAXBLOCK];
76   u_char rt1[MAXBLOCK];
77   u_char rt2[MAXBLOCK];
78   u_char us1[MAXBLOCK];
79   u_char us2[MAXBLOCK];
80   u_char dep1[MAXBLOCK];
81   u_char dep2[MAXBLOCK];
82   u_char lt1[MAXBLOCK];
83   int imm[MAXBLOCK];
84   u_int ba[MAXBLOCK];
85   char likely[MAXBLOCK];
86   char is_ds[MAXBLOCK];
87   uint64_t unneeded_reg[MAXBLOCK];
88   uint64_t unneeded_reg_upper[MAXBLOCK];
89   uint64_t branch_unneeded_reg[MAXBLOCK];
90   uint64_t branch_unneeded_reg_upper[MAXBLOCK];
91   uint64_t p32[MAXBLOCK];
92   uint64_t pr32[MAXBLOCK];
93   signed char regmap_pre[MAXBLOCK][HOST_REGS];
94   signed char regmap[MAXBLOCK][HOST_REGS];
95   signed char regmap_entry[MAXBLOCK][HOST_REGS];
96   uint64_t constmap[MAXBLOCK][HOST_REGS];
97   uint64_t known_value[HOST_REGS];
98   u_int known_reg;
99   struct regstat regs[MAXBLOCK];
100   struct regstat branch_regs[MAXBLOCK];
101   u_int needed_reg[MAXBLOCK];
102   uint64_t requires_32bit[MAXBLOCK];
103   u_int wont_dirty[MAXBLOCK];
104   u_int will_dirty[MAXBLOCK];
105   int ccadj[MAXBLOCK];
106   int slen;
107   u_int instr_addr[MAXBLOCK];
108   u_int link_addr[MAXBLOCK][3];
109   int linkcount;
110   u_int stubs[MAXBLOCK*3][8];
111   int stubcount;
112   u_int literals[1024][2];
113   int literalcount;
114   int is_delayslot;
115   int cop1_usable;
116   u_char *out;
117   struct ll_entry *jump_in[4096];
118   struct ll_entry *jump_out[4096];
119   struct ll_entry *jump_dirty[4096];
120   u_int hash_table[65536][4]  __attribute__((aligned(16)));
121   char shadow[1048576]  __attribute__((aligned(16)));
122   void *copy;
123   int expirep;
124   u_int using_tlb;
125   u_int stop_after_jal;
126   extern u_char restore_candidate[512];
127   extern int cycle_count;
128
129   /* registers that may be allocated */
130   /* 1-31 gpr */
131 #define HIREG 32 // hi
132 #define LOREG 33 // lo
133 #define FSREG 34 // FPU status (FCSR)
134 #define CSREG 35 // Coprocessor status
135 #define CCREG 36 // Cycle count
136 #define INVCP 37 // Pointer to invalid_code
137 #define TEMPREG 38
138 #define FTEMP 38 // FPU/LDL/LDR temporary register
139 #define PTEMP 39 // Prefetch temporary register
140 #define TLREG 40 // TLB mapping offset
141 #define RHASH 41 // Return address hash
142 #define RHTBL 42 // Return address hash table address
143 #define RTEMP 43 // JR/JALR address register
144 #define MAXREG 43
145 #define AGEN1 44 // Address generation temporary register
146 #define AGEN2 45 // Address generation temporary register
147 #define MGEN1 46 // Maptable address generation temporary register
148 #define MGEN2 47 // Maptable address generation temporary register
149 #define BTREG 48 // Branch target temporary register
150
151   /* instruction types */
152 #define NOP 0     // No operation
153 #define LOAD 1    // Load
154 #define STORE 2   // Store
155 #define LOADLR 3  // Unaligned load
156 #define STORELR 4 // Unaligned store
157 #define MOV 5     // Move 
158 #define ALU 6     // Arithmetic/logic
159 #define MULTDIV 7 // Multiply/divide
160 #define SHIFT 8   // Shift by register
161 #define SHIFTIMM 9// Shift by immediate
162 #define IMM16 10  // 16-bit immediate
163 #define RJUMP 11  // Unconditional jump to register
164 #define UJUMP 12  // Unconditional jump
165 #define CJUMP 13  // Conditional branch (BEQ/BNE/BGTZ/BLEZ)
166 #define SJUMP 14  // Conditional branch (regimm format)
167 #define COP0 15   // Coprocessor 0
168 #define COP1 16   // Coprocessor 1
169 #define C1LS 17   // Coprocessor 1 load/store
170 #define FJUMP 18  // Conditional branch (floating point)
171 #define FLOAT 19  // Floating point unit
172 #define FCONV 20  // Convert integer to float
173 #define FCOMP 21  // Floating point compare (sets FSREG)
174 #define SYSCALL 22// SYSCALL
175 #define OTHER 23  // Other
176 #define SPAN 24   // Branch/delay slot spans 2 pages
177 #define NI 25     // Not implemented
178 #define HLECALL 26// PCSX fake opcodes for HLE
179 #define COP2 27   // Coprocessor 2 move
180 #define C2LS 28   // Coprocessor 2 load/store
181 #define C2OP 29   // Coprocessor 2 operation
182
183   /* stubs */
184 #define CC_STUB 1
185 #define FP_STUB 2
186 #define LOADB_STUB 3
187 #define LOADH_STUB 4
188 #define LOADW_STUB 5
189 #define LOADD_STUB 6
190 #define LOADBU_STUB 7
191 #define LOADHU_STUB 8
192 #define STOREB_STUB 9
193 #define STOREH_STUB 10
194 #define STOREW_STUB 11
195 #define STORED_STUB 12
196 #define STORELR_STUB 13
197 #define INVCODE_STUB 14
198
199   /* branch codes */
200 #define TAKEN 1
201 #define NOTTAKEN 2
202 #define NULLDS 3
203
204 // asm linkage
205 int new_recompile_block(int addr);
206 void *get_addr_ht(u_int vaddr);
207 void invalidate_block(u_int block);
208 void invalidate_addr(u_int addr);
209 void remove_hash(int vaddr);
210 void jump_vaddr();
211 void dyna_linker();
212 void dyna_linker_ds();
213 void verify_code();
214 void verify_code_vm();
215 void verify_code_ds();
216 void cc_interrupt();
217 void fp_exception();
218 void fp_exception_ds();
219 void jump_syscall();
220 void jump_syscall_hle();
221 void jump_eret();
222 void jump_hlecall();
223 void new_dyna_leave();
224
225 // TLB
226 void TLBWI_new();
227 void TLBWR_new();
228 void read_nomem_new();
229 void read_nomemb_new();
230 void read_nomemh_new();
231 void read_nomemd_new();
232 void write_nomem_new();
233 void write_nomemb_new();
234 void write_nomemh_new();
235 void write_nomemd_new();
236 void write_rdram_new();
237 void write_rdramb_new();
238 void write_rdramh_new();
239 void write_rdramd_new();
240 extern u_int memory_map[1048576];
241
242 // Needed by assembler
243 void wb_register(signed char r,signed char regmap[],uint64_t dirty,uint64_t is32);
244 void wb_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty);
245 void wb_needed_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr);
246 void load_all_regs(signed char i_regmap[]);
247 void load_needed_regs(signed char i_regmap[],signed char next_regmap[]);
248 void load_regs_entry(int t);
249 void load_all_consts(signed char regmap[],int is32,u_int dirty,int i);
250
251 int tracedebug=0;
252
253 //#define DEBUG_CYCLE_COUNT 1
254
255 void nullf() {}
256 //#define assem_debug printf
257 //#define inv_debug printf
258 #define assem_debug nullf
259 #define inv_debug nullf
260
261 static void tlb_hacks()
262 {
263 #ifndef DISABLE_TLB
264   // Goldeneye hack
265   if (strncmp((char *) ROM_HEADER->nom, "GOLDENEYE",9) == 0)
266   {
267     u_int addr;
268     int n;
269     switch (ROM_HEADER->Country_code&0xFF) 
270     {
271       case 0x45: // U
272         addr=0x34b30;
273         break;                   
274       case 0x4A: // J 
275         addr=0x34b70;    
276         break;    
277       case 0x50: // E 
278         addr=0x329f0;
279         break;                        
280       default: 
281         // Unknown country code
282         addr=0;
283         break;
284     }
285     u_int rom_addr=(u_int)rom;
286     #ifdef ROM_COPY
287     // Since memory_map is 32-bit, on 64-bit systems the rom needs to be
288     // in the lower 4G of memory to use this hack.  Copy it if necessary.
289     if((void *)rom>(void *)0xffffffff) {
290       munmap(ROM_COPY, 67108864);
291       if(mmap(ROM_COPY, 12582912,
292               PROT_READ | PROT_WRITE,
293               MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS,
294               -1, 0) <= 0) {printf("mmap() failed\n");}
295       memcpy(ROM_COPY,rom,12582912);
296       rom_addr=(u_int)ROM_COPY;
297     }
298     #endif
299     if(addr) {
300       for(n=0x7F000;n<0x80000;n++) {
301         memory_map[n]=(((u_int)(rom_addr+addr-0x7F000000))>>2)|0x40000000;
302       }
303     }
304   }
305 #endif
306 }
307
308 static u_int get_page(u_int vaddr)
309 {
310   u_int page=(vaddr^0x80000000)>>12;
311 #ifndef DISABLE_TLB
312   if(page>262143&&tlb_LUT_r[vaddr>>12]) page=(tlb_LUT_r[vaddr>>12]^0x80000000)>>12;
313 #endif
314   if(page>2048) page=2048+(page&2047);
315   return page;
316 }
317
318 static u_int get_vpage(u_int vaddr)
319 {
320   u_int vpage=(vaddr^0x80000000)>>12;
321 #ifndef DISABLE_TLB
322   if(vpage>262143&&tlb_LUT_r[vaddr>>12]) vpage&=2047; // jump_dirty uses a hash of the virtual address instead
323 #endif
324   if(vpage>2048) vpage=2048+(vpage&2047);
325   return vpage;
326 }
327
328 // Get address from virtual address
329 // This is called from the recompiled JR/JALR instructions
330 void *get_addr(u_int vaddr)
331 {
332   u_int page=get_page(vaddr);
333   u_int vpage=get_vpage(vaddr);
334   struct ll_entry *head;
335   //printf("TRACE: count=%d next=%d (get_addr %x,page %d)\n",Count,next_interupt,vaddr,page);
336   head=jump_in[page];
337   while(head!=NULL) {
338     if(head->vaddr==vaddr&&head->reg32==0) {
339   //printf("TRACE: count=%d next=%d (get_addr match %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
340       int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
341       ht_bin[3]=ht_bin[1];
342       ht_bin[2]=ht_bin[0];
343       ht_bin[1]=(int)head->addr;
344       ht_bin[0]=vaddr;
345       return head->addr;
346     }
347     head=head->next;
348   }
349   head=jump_dirty[vpage];
350   while(head!=NULL) {
351     if(head->vaddr==vaddr&&head->reg32==0) {
352       //printf("TRACE: count=%d next=%d (get_addr match dirty %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
353       // Don't restore blocks which are about to expire from the cache
354       if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
355       if(verify_dirty(head->addr)) {
356         //printf("restore candidate: %x (%d) d=%d\n",vaddr,page,invalid_code[vaddr>>12]);
357         invalid_code[vaddr>>12]=0;
358         memory_map[vaddr>>12]|=0x40000000;
359         if(vpage<2048) {
360 #ifndef DISABLE_TLB
361           if(tlb_LUT_r[vaddr>>12]) {
362             invalid_code[tlb_LUT_r[vaddr>>12]>>12]=0;
363             memory_map[tlb_LUT_r[vaddr>>12]>>12]|=0x40000000;
364           }
365 #endif
366           restore_candidate[vpage>>3]|=1<<(vpage&7);
367         }
368         else restore_candidate[page>>3]|=1<<(page&7);
369         int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
370         if(ht_bin[0]==vaddr) {
371           ht_bin[1]=(int)head->addr; // Replace existing entry
372         }
373         else
374         {
375           ht_bin[3]=ht_bin[1];
376           ht_bin[2]=ht_bin[0];
377           ht_bin[1]=(int)head->addr;
378           ht_bin[0]=vaddr;
379         }
380         return head->addr;
381       }
382     }
383     head=head->next;
384   }
385   //printf("TRACE: count=%d next=%d (get_addr no-match %x)\n",Count,next_interupt,vaddr);
386   int r=new_recompile_block(vaddr);
387   if(r==0) return get_addr(vaddr);
388   // Execute in unmapped page, generate pagefault execption
389   Status|=2;
390   Cause=(vaddr<<31)|0x8;
391   EPC=(vaddr&1)?vaddr-5:vaddr;
392   BadVAddr=(vaddr&~1);
393   Context=(Context&0xFF80000F)|((BadVAddr>>9)&0x007FFFF0);
394   EntryHi=BadVAddr&0xFFFFE000;
395   return get_addr_ht(0x80000000);
396 }
397 // Look up address in hash table first
398 void *get_addr_ht(u_int vaddr)
399 {
400   //printf("TRACE: count=%d next=%d (get_addr_ht %x)\n",Count,next_interupt,vaddr);
401   int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
402   if(ht_bin[0]==vaddr) return (void *)ht_bin[1];
403   if(ht_bin[2]==vaddr) return (void *)ht_bin[3];
404   return get_addr(vaddr);
405 }
406
407 void *get_addr_32(u_int vaddr,u_int flags)
408 {
409 #ifdef FORCE32
410   return get_addr(vaddr);
411 #endif
412   //printf("TRACE: count=%d next=%d (get_addr_32 %x,flags %x)\n",Count,next_interupt,vaddr,flags);
413   int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
414   if(ht_bin[0]==vaddr) return (void *)ht_bin[1];
415   if(ht_bin[2]==vaddr) return (void *)ht_bin[3];
416   u_int page=get_page(vaddr);
417   u_int vpage=get_vpage(vaddr);
418   struct ll_entry *head;
419   head=jump_in[page];
420   while(head!=NULL) {
421     if(head->vaddr==vaddr&&(head->reg32&flags)==0) {
422       //printf("TRACE: count=%d next=%d (get_addr_32 match %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
423       if(head->reg32==0) {
424         int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
425         if(ht_bin[0]==-1) {
426           ht_bin[1]=(int)head->addr;
427           ht_bin[0]=vaddr;
428         }else if(ht_bin[2]==-1) {
429           ht_bin[3]=(int)head->addr;
430           ht_bin[2]=vaddr;
431         }
432         //ht_bin[3]=ht_bin[1];
433         //ht_bin[2]=ht_bin[0];
434         //ht_bin[1]=(int)head->addr;
435         //ht_bin[0]=vaddr;
436       }
437       return head->addr;
438     }
439     head=head->next;
440   }
441   head=jump_dirty[vpage];
442   while(head!=NULL) {
443     if(head->vaddr==vaddr&&(head->reg32&flags)==0) {
444       //printf("TRACE: count=%d next=%d (get_addr_32 match dirty %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
445       // Don't restore blocks which are about to expire from the cache
446       if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
447       if(verify_dirty(head->addr)) {
448         //printf("restore candidate: %x (%d) d=%d\n",vaddr,page,invalid_code[vaddr>>12]);
449         invalid_code[vaddr>>12]=0;
450         memory_map[vaddr>>12]|=0x40000000;
451         if(vpage<2048) {
452 #ifndef DISABLE_TLB
453           if(tlb_LUT_r[vaddr>>12]) {
454             invalid_code[tlb_LUT_r[vaddr>>12]>>12]=0;
455             memory_map[tlb_LUT_r[vaddr>>12]>>12]|=0x40000000;
456           }
457 #endif
458           restore_candidate[vpage>>3]|=1<<(vpage&7);
459         }
460         else restore_candidate[page>>3]|=1<<(page&7);
461         if(head->reg32==0) {
462           int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
463           if(ht_bin[0]==-1) {
464             ht_bin[1]=(int)head->addr;
465             ht_bin[0]=vaddr;
466           }else if(ht_bin[2]==-1) {
467             ht_bin[3]=(int)head->addr;
468             ht_bin[2]=vaddr;
469           }
470           //ht_bin[3]=ht_bin[1];
471           //ht_bin[2]=ht_bin[0];
472           //ht_bin[1]=(int)head->addr;
473           //ht_bin[0]=vaddr;
474         }
475         return head->addr;
476       }
477     }
478     head=head->next;
479   }
480   //printf("TRACE: count=%d next=%d (get_addr_32 no-match %x,flags %x)\n",Count,next_interupt,vaddr,flags);
481   int r=new_recompile_block(vaddr);
482   if(r==0) return get_addr(vaddr);
483   // Execute in unmapped page, generate pagefault execption
484   Status|=2;
485   Cause=(vaddr<<31)|0x8;
486   EPC=(vaddr&1)?vaddr-5:vaddr;
487   BadVAddr=(vaddr&~1);
488   Context=(Context&0xFF80000F)|((BadVAddr>>9)&0x007FFFF0);
489   EntryHi=BadVAddr&0xFFFFE000;
490   return get_addr_ht(0x80000000);
491 }
492
493 void clear_all_regs(signed char regmap[])
494 {
495   int hr;
496   for (hr=0;hr<HOST_REGS;hr++) regmap[hr]=-1;
497 }
498
499 signed char get_reg(signed char regmap[],int r)
500 {
501   int hr;
502   for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap[hr]==r) return hr;
503   return -1;
504 }
505
506 // Find a register that is available for two consecutive cycles
507 signed char get_reg2(signed char regmap1[],signed char regmap2[],int r)
508 {
509   int hr;
510   for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap1[hr]==r&&regmap2[hr]==r) return hr;
511   return -1;
512 }
513
514 int count_free_regs(signed char regmap[])
515 {
516   int count=0;
517   int hr;
518   for(hr=0;hr<HOST_REGS;hr++)
519   {
520     if(hr!=EXCLUDE_REG) {
521       if(regmap[hr]<0) count++;
522     }
523   }
524   return count;
525 }
526
527 void dirty_reg(struct regstat *cur,signed char reg)
528 {
529   int hr;
530   if(!reg) return;
531   for (hr=0;hr<HOST_REGS;hr++) {
532     if((cur->regmap[hr]&63)==reg) {
533       cur->dirty|=1<<hr;
534     }
535   }
536 }
537
538 // If we dirty the lower half of a 64 bit register which is now being
539 // sign-extended, we need to dump the upper half.
540 // Note: Do this only after completion of the instruction, because
541 // some instructions may need to read the full 64-bit value even if
542 // overwriting it (eg SLTI, DSRA32).
543 static void flush_dirty_uppers(struct regstat *cur)
544 {
545   int hr,reg;
546   for (hr=0;hr<HOST_REGS;hr++) {
547     if((cur->dirty>>hr)&1) {
548       reg=cur->regmap[hr];
549       if(reg>=64) 
550         if((cur->is32>>(reg&63))&1) cur->regmap[hr]=-1;
551     }
552   }
553 }
554
555 void set_const(struct regstat *cur,signed char reg,uint64_t value)
556 {
557   int hr;
558   if(!reg) return;
559   for (hr=0;hr<HOST_REGS;hr++) {
560     if(cur->regmap[hr]==reg) {
561       cur->isconst|=1<<hr;
562       cur->constmap[hr]=value;
563     }
564     else if((cur->regmap[hr]^64)==reg) {
565       cur->isconst|=1<<hr;
566       cur->constmap[hr]=value>>32;
567     }
568   }
569 }
570
571 void clear_const(struct regstat *cur,signed char reg)
572 {
573   int hr;
574   if(!reg) return;
575   for (hr=0;hr<HOST_REGS;hr++) {
576     if((cur->regmap[hr]&63)==reg) {
577       cur->isconst&=~(1<<hr);
578     }
579   }
580 }
581
582 int is_const(struct regstat *cur,signed char reg)
583 {
584   int hr;
585   if(!reg) return 1;
586   for (hr=0;hr<HOST_REGS;hr++) {
587     if((cur->regmap[hr]&63)==reg) {
588       return (cur->isconst>>hr)&1;
589     }
590   }
591   return 0;
592 }
593 uint64_t get_const(struct regstat *cur,signed char reg)
594 {
595   int hr;
596   if(!reg) return 0;
597   for (hr=0;hr<HOST_REGS;hr++) {
598     if(cur->regmap[hr]==reg) {
599       return cur->constmap[hr];
600     }
601   }
602   printf("Unknown constant in r%d\n",reg);
603   exit(1);
604 }
605
606 // Least soon needed registers
607 // Look at the next ten instructions and see which registers
608 // will be used.  Try not to reallocate these.
609 void lsn(u_char hsn[], int i, int *preferred_reg)
610 {
611   int j;
612   int b=-1;
613   for(j=0;j<9;j++)
614   {
615     if(i+j>=slen) {
616       j=slen-i-1;
617       break;
618     }
619     if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
620     {
621       // Don't go past an unconditonal jump
622       j++;
623       break;
624     }
625   }
626   for(;j>=0;j--)
627   {
628     if(rs1[i+j]) hsn[rs1[i+j]]=j;
629     if(rs2[i+j]) hsn[rs2[i+j]]=j;
630     if(rt1[i+j]) hsn[rt1[i+j]]=j;
631     if(rt2[i+j]) hsn[rt2[i+j]]=j;
632     if(itype[i+j]==STORE || itype[i+j]==STORELR) {
633       // Stores can allocate zero
634       hsn[rs1[i+j]]=j;
635       hsn[rs2[i+j]]=j;
636     }
637     // On some architectures stores need invc_ptr
638     #if defined(HOST_IMM8)
639     if(itype[i+j]==STORE || itype[i+j]==STORELR || (opcode[i+j]&0x3b)==0x39 || (opcode[i+j]&0x3b)==0x3a) {
640       hsn[INVCP]=j;
641     }
642     #endif
643     if(i+j>=0&&(itype[i+j]==UJUMP||itype[i+j]==CJUMP||itype[i+j]==SJUMP||itype[i+j]==FJUMP))
644     {
645       hsn[CCREG]=j;
646       b=j;
647     }
648   }
649   if(b>=0)
650   {
651     if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
652     {
653       // Follow first branch
654       int t=(ba[i+b]-start)>>2;
655       j=7-b;if(t+j>=slen) j=slen-t-1;
656       for(;j>=0;j--)
657       {
658         if(rs1[t+j]) if(hsn[rs1[t+j]]>j+b+2) hsn[rs1[t+j]]=j+b+2;
659         if(rs2[t+j]) if(hsn[rs2[t+j]]>j+b+2) hsn[rs2[t+j]]=j+b+2;
660         //if(rt1[t+j]) if(hsn[rt1[t+j]]>j+b+2) hsn[rt1[t+j]]=j+b+2;
661         //if(rt2[t+j]) if(hsn[rt2[t+j]]>j+b+2) hsn[rt2[t+j]]=j+b+2;
662       }
663     }
664     // TODO: preferred register based on backward branch
665   }
666   // Delay slot should preferably not overwrite branch conditions or cycle count
667   if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)) {
668     if(rs1[i-1]) if(hsn[rs1[i-1]]>1) hsn[rs1[i-1]]=1;
669     if(rs2[i-1]) if(hsn[rs2[i-1]]>1) hsn[rs2[i-1]]=1;
670     hsn[CCREG]=1;
671     // ...or hash tables
672     hsn[RHASH]=1;
673     hsn[RHTBL]=1;
674   }
675   // Coprocessor load/store needs FTEMP, even if not declared
676   if(itype[i]==C1LS||itype[i]==C2LS) {
677     hsn[FTEMP]=0;
678   }
679   // Load L/R also uses FTEMP as a temporary register
680   if(itype[i]==LOADLR) {
681     hsn[FTEMP]=0;
682   }
683   // Also 64-bit SDL/SDR
684   if(opcode[i]==0x2c||opcode[i]==0x2d) {
685     hsn[FTEMP]=0;
686   }
687   // Don't remove the TLB registers either
688   if(itype[i]==LOAD || itype[i]==LOADLR || itype[i]==STORE || itype[i]==STORELR || itype[i]==C1LS || itype[i]==C2LS) {
689     hsn[TLREG]=0;
690   }
691   // Don't remove the miniht registers
692   if(itype[i]==UJUMP||itype[i]==RJUMP)
693   {
694     hsn[RHASH]=0;
695     hsn[RHTBL]=0;
696   }
697 }
698
699 // We only want to allocate registers if we're going to use them again soon
700 int needed_again(int r, int i)
701 {
702   int j;
703   int b=-1;
704   int rn=10;
705   int hr;
706   u_char hsn[MAXREG+1];
707   int preferred_reg;
708   
709   memset(hsn,10,sizeof(hsn));
710   lsn(hsn,i,&preferred_reg);
711   
712   if(i>0&&(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000))
713   {
714     if(ba[i-1]<start || ba[i-1]>start+slen*4-4)
715       return 0; // Don't need any registers if exiting the block
716   }
717   for(j=0;j<9;j++)
718   {
719     if(i+j>=slen) {
720       j=slen-i-1;
721       break;
722     }
723     if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
724     {
725       // Don't go past an unconditonal jump
726       j++;
727       break;
728     }
729     if(itype[i+j]==SYSCALL||itype[i+j]==HLECALL||((source[i+j]&0xfc00003f)==0x0d))
730     {
731       break;
732     }
733   }
734   for(;j>=1;j--)
735   {
736     if(rs1[i+j]==r) rn=j;
737     if(rs2[i+j]==r) rn=j;
738     if((unneeded_reg[i+j]>>r)&1) rn=10;
739     if(i+j>=0&&(itype[i+j]==UJUMP||itype[i+j]==CJUMP||itype[i+j]==SJUMP||itype[i+j]==FJUMP))
740     {
741       b=j;
742     }
743   }
744   /*
745   if(b>=0)
746   {
747     if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
748     {
749       // Follow first branch
750       int o=rn;
751       int t=(ba[i+b]-start)>>2;
752       j=7-b;if(t+j>=slen) j=slen-t-1;
753       for(;j>=0;j--)
754       {
755         if(!((unneeded_reg[t+j]>>r)&1)) {
756           if(rs1[t+j]==r) if(rn>j+b+2) rn=j+b+2;
757           if(rs2[t+j]==r) if(rn>j+b+2) rn=j+b+2;
758         }
759         else rn=o;
760       }
761     }
762   }*/
763   for(hr=0;hr<HOST_REGS;hr++) {
764     if(hr!=EXCLUDE_REG) {
765       if(rn<hsn[hr]) return 1;
766     }
767   }
768   return 0;
769 }
770
771 // Try to match register allocations at the end of a loop with those
772 // at the beginning
773 int loop_reg(int i, int r, int hr)
774 {
775   int j,k;
776   for(j=0;j<9;j++)
777   {
778     if(i+j>=slen) {
779       j=slen-i-1;
780       break;
781     }
782     if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
783     {
784       // Don't go past an unconditonal jump
785       j++;
786       break;
787     }
788   }
789   k=0;
790   if(i>0){
791     if(itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)
792       k--;
793   }
794   for(;k<j;k++)
795   {
796     if(r<64&&((unneeded_reg[i+k]>>r)&1)) return hr;
797     if(r>64&&((unneeded_reg_upper[i+k]>>r)&1)) return hr;
798     if(i+k>=0&&(itype[i+k]==UJUMP||itype[i+k]==CJUMP||itype[i+k]==SJUMP||itype[i+k]==FJUMP))
799     {
800       if(ba[i+k]>=start && ba[i+k]<(start+i*4))
801       {
802         int t=(ba[i+k]-start)>>2;
803         int reg=get_reg(regs[t].regmap_entry,r);
804         if(reg>=0) return reg;
805         //reg=get_reg(regs[t+1].regmap_entry,r);
806         //if(reg>=0) return reg;
807       }
808     }
809   }
810   return hr;
811 }
812
813
814 // Allocate every register, preserving source/target regs
815 void alloc_all(struct regstat *cur,int i)
816 {
817   int hr;
818   
819   for(hr=0;hr<HOST_REGS;hr++) {
820     if(hr!=EXCLUDE_REG) {
821       if(((cur->regmap[hr]&63)!=rs1[i])&&((cur->regmap[hr]&63)!=rs2[i])&&
822          ((cur->regmap[hr]&63)!=rt1[i])&&((cur->regmap[hr]&63)!=rt2[i]))
823       {
824         cur->regmap[hr]=-1;
825         cur->dirty&=~(1<<hr);
826       }
827       // Don't need zeros
828       if((cur->regmap[hr]&63)==0)
829       {
830         cur->regmap[hr]=-1;
831         cur->dirty&=~(1<<hr);
832       }
833     }
834   }
835 }
836
837
838 void div64(int64_t dividend,int64_t divisor)
839 {
840   lo=dividend/divisor;
841   hi=dividend%divisor;
842   //printf("TRACE: ddiv %8x%8x %8x%8x\n" ,(int)reg[HIREG],(int)(reg[HIREG]>>32)
843   //                                     ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
844 }
845 void divu64(uint64_t dividend,uint64_t divisor)
846 {
847   lo=dividend/divisor;
848   hi=dividend%divisor;
849   //printf("TRACE: ddivu %8x%8x %8x%8x\n",(int)reg[HIREG],(int)(reg[HIREG]>>32)
850   //                                     ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
851 }
852
853 void mult64(uint64_t m1,uint64_t m2)
854 {
855    unsigned long long int op1, op2, op3, op4;
856    unsigned long long int result1, result2, result3, result4;
857    unsigned long long int temp1, temp2, temp3, temp4;
858    int sign = 0;
859    
860    if (m1 < 0)
861      {
862     op2 = -m1;
863     sign = 1 - sign;
864      }
865    else op2 = m1;
866    if (m2 < 0)
867      {
868     op4 = -m2;
869     sign = 1 - sign;
870      }
871    else op4 = m2;
872    
873    op1 = op2 & 0xFFFFFFFF;
874    op2 = (op2 >> 32) & 0xFFFFFFFF;
875    op3 = op4 & 0xFFFFFFFF;
876    op4 = (op4 >> 32) & 0xFFFFFFFF;
877    
878    temp1 = op1 * op3;
879    temp2 = (temp1 >> 32) + op1 * op4;
880    temp3 = op2 * op3;
881    temp4 = (temp3 >> 32) + op2 * op4;
882    
883    result1 = temp1 & 0xFFFFFFFF;
884    result2 = temp2 + (temp3 & 0xFFFFFFFF);
885    result3 = (result2 >> 32) + temp4;
886    result4 = (result3 >> 32);
887    
888    lo = result1 | (result2 << 32);
889    hi = (result3 & 0xFFFFFFFF) | (result4 << 32);
890    if (sign)
891      {
892     hi = ~hi;
893     if (!lo) hi++;
894     else lo = ~lo + 1;
895      }
896 }
897
898 void multu64(uint64_t m1,uint64_t m2)
899 {
900    unsigned long long int op1, op2, op3, op4;
901    unsigned long long int result1, result2, result3, result4;
902    unsigned long long int temp1, temp2, temp3, temp4;
903    
904    op1 = m1 & 0xFFFFFFFF;
905    op2 = (m1 >> 32) & 0xFFFFFFFF;
906    op3 = m2 & 0xFFFFFFFF;
907    op4 = (m2 >> 32) & 0xFFFFFFFF;
908    
909    temp1 = op1 * op3;
910    temp2 = (temp1 >> 32) + op1 * op4;
911    temp3 = op2 * op3;
912    temp4 = (temp3 >> 32) + op2 * op4;
913    
914    result1 = temp1 & 0xFFFFFFFF;
915    result2 = temp2 + (temp3 & 0xFFFFFFFF);
916    result3 = (result2 >> 32) + temp4;
917    result4 = (result3 >> 32);
918    
919    lo = result1 | (result2 << 32);
920    hi = (result3 & 0xFFFFFFFF) | (result4 << 32);
921    
922   //printf("TRACE: dmultu %8x%8x %8x%8x\n",(int)reg[HIREG],(int)(reg[HIREG]>>32)
923   //                                      ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
924 }
925
926 uint64_t ldl_merge(uint64_t original,uint64_t loaded,u_int bits)
927 {
928   if(bits) {
929     original<<=64-bits;
930     original>>=64-bits;
931     loaded<<=bits;
932     original|=loaded;
933   }
934   else original=loaded;
935   return original;
936 }
937 uint64_t ldr_merge(uint64_t original,uint64_t loaded,u_int bits)
938 {
939   if(bits^56) {
940     original>>=64-(bits^56);
941     original<<=64-(bits^56);
942     loaded>>=bits^56;
943     original|=loaded;
944   }
945   else original=loaded;
946   return original;
947 }
948
949 #ifdef __i386__
950 #include "assem_x86.c"
951 #endif
952 #ifdef __x86_64__
953 #include "assem_x64.c"
954 #endif
955 #ifdef __arm__
956 #include "assem_arm.c"
957 #endif
958
959 // Add virtual address mapping to linked list
960 void ll_add(struct ll_entry **head,int vaddr,void *addr)
961 {
962   struct ll_entry *new_entry;
963   new_entry=malloc(sizeof(struct ll_entry));
964   assert(new_entry!=NULL);
965   new_entry->vaddr=vaddr;
966   new_entry->reg32=0;
967   new_entry->addr=addr;
968   new_entry->next=*head;
969   *head=new_entry;
970 }
971
972 // Add virtual address mapping for 32-bit compiled block
973 void ll_add_32(struct ll_entry **head,int vaddr,u_int reg32,void *addr)
974 {
975   ll_add(head,vaddr,addr);
976 #ifndef FORCE32
977   (*head)->reg32=reg32;
978 #endif
979 }
980
981 // Check if an address is already compiled
982 // but don't return addresses which are about to expire from the cache
983 void *check_addr(u_int vaddr)
984 {
985   u_int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
986   if(ht_bin[0]==vaddr) {
987     if(((ht_bin[1]-MAX_OUTPUT_BLOCK_SIZE-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
988       if(isclean(ht_bin[1])) return (void *)ht_bin[1];
989   }
990   if(ht_bin[2]==vaddr) {
991     if(((ht_bin[3]-MAX_OUTPUT_BLOCK_SIZE-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
992       if(isclean(ht_bin[3])) return (void *)ht_bin[3];
993   }
994   u_int page=get_page(vaddr);
995   struct ll_entry *head;
996   head=jump_in[page];
997   while(head!=NULL) {
998     if(head->vaddr==vaddr&&head->reg32==0) {
999       if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1000         // Update existing entry with current address
1001         if(ht_bin[0]==vaddr) {
1002           ht_bin[1]=(int)head->addr;
1003           return head->addr;
1004         }
1005         if(ht_bin[2]==vaddr) {
1006           ht_bin[3]=(int)head->addr;
1007           return head->addr;
1008         }
1009         // Insert into hash table with low priority.
1010         // Don't evict existing entries, as they are probably
1011         // addresses that are being accessed frequently.
1012         if(ht_bin[0]==-1) {
1013           ht_bin[1]=(int)head->addr;
1014           ht_bin[0]=vaddr;
1015         }else if(ht_bin[2]==-1) {
1016           ht_bin[3]=(int)head->addr;
1017           ht_bin[2]=vaddr;
1018         }
1019         return head->addr;
1020       }
1021     }
1022     head=head->next;
1023   }
1024   return 0;
1025 }
1026
1027 void remove_hash(int vaddr)
1028 {
1029   //printf("remove hash: %x\n",vaddr);
1030   int *ht_bin=hash_table[(((vaddr)>>16)^vaddr)&0xFFFF];
1031   if(ht_bin[2]==vaddr) {
1032     ht_bin[2]=ht_bin[3]=-1;
1033   }
1034   if(ht_bin[0]==vaddr) {
1035     ht_bin[0]=ht_bin[2];
1036     ht_bin[1]=ht_bin[3];
1037     ht_bin[2]=ht_bin[3]=-1;
1038   }
1039 }
1040
1041 void ll_remove_matching_addrs(struct ll_entry **head,int addr,int shift)
1042 {
1043   struct ll_entry *next;
1044   while(*head) {
1045     if(((u_int)((*head)->addr)>>shift)==(addr>>shift) || 
1046        ((u_int)((*head)->addr-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(addr>>shift))
1047     {
1048       inv_debug("EXP: Remove pointer to %x (%x)\n",(int)(*head)->addr,(*head)->vaddr);
1049       remove_hash((*head)->vaddr);
1050       next=(*head)->next;
1051       free(*head);
1052       *head=next;
1053     }
1054     else
1055     {
1056       head=&((*head)->next);
1057     }
1058   }
1059 }
1060
1061 // Remove all entries from linked list
1062 void ll_clear(struct ll_entry **head)
1063 {
1064   struct ll_entry *cur;
1065   struct ll_entry *next;
1066   if(cur=*head) {
1067     *head=0;
1068     while(cur) {
1069       next=cur->next;
1070       free(cur);
1071       cur=next;
1072     }
1073   }
1074 }
1075
1076 // Dereference the pointers and remove if it matches
1077 void ll_kill_pointers(struct ll_entry *head,int addr,int shift)
1078 {
1079   u_int old_host_addr=0;
1080   while(head) {
1081     int ptr=get_pointer(head->addr);
1082     inv_debug("EXP: Lookup pointer to %x at %x (%x)\n",(int)ptr,(int)head->addr,head->vaddr);
1083     if(((ptr>>shift)==(addr>>shift)) ||
1084        (((ptr-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(addr>>shift)))
1085     {
1086       printf("EXP: Kill pointer at %x (%x)\n",(int)head->addr,head->vaddr);
1087       u_int host_addr=(u_int)kill_pointer(head->addr);
1088
1089       if((host_addr>>12)!=(old_host_addr>>12)) {
1090         #ifdef __arm__
1091         __clear_cache((void *)(old_host_addr&~0xfff),(void *)(old_host_addr|0xfff));
1092         #endif
1093         old_host_addr=host_addr;
1094       }
1095     }
1096     head=head->next;
1097   }
1098   #ifdef __arm__
1099   if (old_host_addr)
1100     __clear_cache((void *)(old_host_addr&~0xfff),(void *)(old_host_addr|0xfff));
1101   #endif
1102 }
1103
1104 // This is called when we write to a compiled block (see do_invstub)
1105 void invalidate_page(u_int page)
1106 {
1107   struct ll_entry *head;
1108   struct ll_entry *next;
1109   u_int old_host_addr=0;
1110   head=jump_in[page];
1111   jump_in[page]=0;
1112   while(head!=NULL) {
1113     inv_debug("INVALIDATE: %x\n",head->vaddr);
1114     remove_hash(head->vaddr);
1115     next=head->next;
1116     free(head);
1117     head=next;
1118   }
1119   head=jump_out[page];
1120   jump_out[page]=0;
1121   while(head!=NULL) {
1122     inv_debug("INVALIDATE: kill pointer to %x (%x)\n",head->vaddr,(int)head->addr);
1123     u_int host_addr=(u_int)kill_pointer(head->addr);
1124
1125     if((host_addr>>12)!=(old_host_addr>>12)) {
1126       #ifdef __arm__
1127       __clear_cache((void *)(old_host_addr&~0xfff),(void *)(old_host_addr|0xfff));
1128       #endif
1129       old_host_addr=host_addr;
1130     }
1131     next=head->next;
1132     free(head);
1133     head=next;
1134   }
1135   #ifdef __arm__
1136   if (old_host_addr)
1137     __clear_cache((void *)(old_host_addr&~0xfff),(void *)(old_host_addr|0xfff));
1138   #endif
1139 }
1140 void invalidate_block(u_int block)
1141 {
1142   u_int page=get_page(block<<12);
1143   u_int vpage=get_vpage(block<<12);
1144   inv_debug("INVALIDATE: %x (%d)\n",block<<12,page);
1145   //inv_debug("invalid_code[block]=%d\n",invalid_code[block]);
1146   u_int first,last;
1147   first=last=page;
1148   struct ll_entry *head;
1149   head=jump_dirty[vpage];
1150   //printf("page=%d vpage=%d\n",page,vpage);
1151   while(head!=NULL) {
1152     u_int start,end;
1153     if(vpage>2047||(head->vaddr>>12)==block) { // Ignore vaddr hash collision
1154       get_bounds((int)head->addr,&start,&end);
1155       //printf("start: %x end: %x\n",start,end);
1156       if(page<2048&&start>=0x80000000&&end<0x80800000) {
1157         if(((start-(u_int)rdram)>>12)<=page&&((end-1-(u_int)rdram)>>12)>=page) {
1158           if((((start-(u_int)rdram)>>12)&2047)<first) first=((start-(u_int)rdram)>>12)&2047;
1159           if((((end-1-(u_int)rdram)>>12)&2047)>last) last=((end-1-(u_int)rdram)>>12)&2047;
1160         }
1161       }
1162 #ifndef DISABLE_TLB
1163       if(page<2048&&(signed int)start>=(signed int)0xC0000000&&(signed int)end>=(signed int)0xC0000000) {
1164         if(((start+memory_map[start>>12]-(u_int)rdram)>>12)<=page&&((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)>=page) {
1165           if((((start+memory_map[start>>12]-(u_int)rdram)>>12)&2047)<first) first=((start+memory_map[start>>12]-(u_int)rdram)>>12)&2047;
1166           if((((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)&2047)>last) last=((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)&2047;
1167         }
1168       }
1169 #endif
1170     }
1171     head=head->next;
1172   }
1173   //printf("first=%d last=%d\n",first,last);
1174   invalidate_page(page);
1175   assert(first+5>page); // NB: this assumes MAXBLOCK<=4096 (4 pages)
1176   assert(last<page+5);
1177   // Invalidate the adjacent pages if a block crosses a 4K boundary
1178   while(first<page) {
1179     invalidate_page(first);
1180     first++;
1181   }
1182   for(first=page+1;first<last;first++) {
1183     invalidate_page(first);
1184   }
1185   
1186   // Don't trap writes
1187   invalid_code[block]=1;
1188 #ifndef DISABLE_TLB
1189   // If there is a valid TLB entry for this page, remove write protect
1190   if(tlb_LUT_w[block]) {
1191     assert(tlb_LUT_r[block]==tlb_LUT_w[block]);
1192     // CHECK: Is this right?
1193     memory_map[block]=((tlb_LUT_w[block]&0xFFFFF000)-(block<<12)+(unsigned int)rdram-0x80000000)>>2;
1194     u_int real_block=tlb_LUT_w[block]>>12;
1195     invalid_code[real_block]=1;
1196     if(real_block>=0x80000&&real_block<0x80800) memory_map[real_block]=((u_int)rdram-0x80000000)>>2;
1197   }
1198   else if(block>=0x80000&&block<0x80800) memory_map[block]=((u_int)rdram-0x80000000)>>2;
1199 #endif
1200
1201   #ifdef USE_MINI_HT
1202   memset(mini_ht,-1,sizeof(mini_ht));
1203   #endif
1204 }
1205 void invalidate_addr(u_int addr)
1206 {
1207   invalidate_block(addr>>12);
1208 }
1209 void invalidate_all_pages()
1210 {
1211   u_int page,n;
1212   for(page=0;page<4096;page++)
1213     invalidate_page(page);
1214   for(page=0;page<1048576;page++)
1215     if(!invalid_code[page]) {
1216       restore_candidate[(page&2047)>>3]|=1<<(page&7);
1217       restore_candidate[((page&2047)>>3)+256]|=1<<(page&7);
1218     }
1219   #ifdef __arm__
1220   __clear_cache((void *)BASE_ADDR,(void *)BASE_ADDR+(1<<TARGET_SIZE_2));
1221   #endif
1222   #ifdef USE_MINI_HT
1223   memset(mini_ht,-1,sizeof(mini_ht));
1224   #endif
1225   #ifndef DISABLE_TLB
1226   // TLB
1227   for(page=0;page<0x100000;page++) {
1228     if(tlb_LUT_r[page]) {
1229       memory_map[page]=((tlb_LUT_r[page]&0xFFFFF000)-(page<<12)+(unsigned int)rdram-0x80000000)>>2;
1230       if(!tlb_LUT_w[page]||!invalid_code[page])
1231         memory_map[page]|=0x40000000; // Write protect
1232     }
1233     else memory_map[page]=-1;
1234     if(page==0x80000) page=0xC0000;
1235   }
1236   tlb_hacks();
1237   #endif
1238 }
1239
1240 // Add an entry to jump_out after making a link
1241 void add_link(u_int vaddr,void *src)
1242 {
1243   u_int page=get_page(vaddr);
1244   inv_debug("add_link: %x -> %x (%d)\n",(int)src,vaddr,page);
1245   ll_add(jump_out+page,vaddr,src);
1246   //int ptr=get_pointer(src);
1247   //inv_debug("add_link: Pointer is to %x\n",(int)ptr);
1248 }
1249
1250 // If a code block was found to be unmodified (bit was set in
1251 // restore_candidate) and it remains unmodified (bit is clear
1252 // in invalid_code) then move the entries for that 4K page from
1253 // the dirty list to the clean list.
1254 void clean_blocks(u_int page)
1255 {
1256   struct ll_entry *head;
1257   inv_debug("INV: clean_blocks page=%d\n",page);
1258   head=jump_dirty[page];
1259   while(head!=NULL) {
1260     if(!invalid_code[head->vaddr>>12]) {
1261       // Don't restore blocks which are about to expire from the cache
1262       if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1263         u_int start,end;
1264         if(verify_dirty((int)head->addr)) {
1265           //printf("Possibly Restore %x (%x)\n",head->vaddr, (int)head->addr);
1266           u_int i;
1267           u_int inv=0;
1268           get_bounds((int)head->addr,&start,&end);
1269           if(start-(u_int)rdram<0x800000) {
1270             for(i=(start-(u_int)rdram+0x80000000)>>12;i<=(end-1-(u_int)rdram+0x80000000)>>12;i++) {
1271               inv|=invalid_code[i];
1272             }
1273           }
1274           if((signed int)head->vaddr>=(signed int)0xC0000000) {
1275             u_int addr = (head->vaddr+(memory_map[head->vaddr>>12]<<2));
1276             //printf("addr=%x start=%x end=%x\n",addr,start,end);
1277             if(addr<start||addr>=end) inv=1;
1278           }
1279           else if((signed int)head->vaddr>=(signed int)0x80800000) {
1280             inv=1;
1281           }
1282           if(!inv) {
1283             void * clean_addr=(void *)get_clean_addr((int)head->addr);
1284             if((((u_int)clean_addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1285               u_int ppage=page;
1286 #ifndef DISABLE_TLB
1287               if(page<2048&&tlb_LUT_r[head->vaddr>>12]) ppage=(tlb_LUT_r[head->vaddr>>12]^0x80000000)>>12;
1288 #endif
1289               inv_debug("INV: Restored %x (%x/%x)\n",head->vaddr, (int)head->addr, (int)clean_addr);
1290               //printf("page=%x, addr=%x\n",page,head->vaddr);
1291               //assert(head->vaddr>>12==(page|0x80000));
1292               ll_add_32(jump_in+ppage,head->vaddr,head->reg32,clean_addr);
1293               int *ht_bin=hash_table[((head->vaddr>>16)^head->vaddr)&0xFFFF];
1294               if(!head->reg32) {
1295                 if(ht_bin[0]==head->vaddr) {
1296                   ht_bin[1]=(int)clean_addr; // Replace existing entry
1297                 }
1298                 if(ht_bin[2]==head->vaddr) {
1299                   ht_bin[3]=(int)clean_addr; // Replace existing entry
1300                 }
1301               }
1302             }
1303           }
1304         }
1305       }
1306     }
1307     head=head->next;
1308   }
1309 }
1310
1311
1312 void mov_alloc(struct regstat *current,int i)
1313 {
1314   // Note: Don't need to actually alloc the source registers
1315   if((~current->is32>>rs1[i])&1) {
1316     //alloc_reg64(current,i,rs1[i]);
1317     alloc_reg64(current,i,rt1[i]);
1318     current->is32&=~(1LL<<rt1[i]);
1319   } else {
1320     //alloc_reg(current,i,rs1[i]);
1321     alloc_reg(current,i,rt1[i]);
1322     current->is32|=(1LL<<rt1[i]);
1323   }
1324   clear_const(current,rs1[i]);
1325   clear_const(current,rt1[i]);
1326   dirty_reg(current,rt1[i]);
1327 }
1328
1329 void shiftimm_alloc(struct regstat *current,int i)
1330 {
1331   clear_const(current,rs1[i]);
1332   clear_const(current,rt1[i]);
1333   if(opcode2[i]<=0x3) // SLL/SRL/SRA
1334   {
1335     if(rt1[i]) {
1336       if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1337       else lt1[i]=rs1[i];
1338       alloc_reg(current,i,rt1[i]);
1339       current->is32|=1LL<<rt1[i];
1340       dirty_reg(current,rt1[i]);
1341     }
1342   }
1343   if(opcode2[i]>=0x38&&opcode2[i]<=0x3b) // DSLL/DSRL/DSRA
1344   {
1345     if(rt1[i]) {
1346       if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1347       alloc_reg64(current,i,rt1[i]);
1348       current->is32&=~(1LL<<rt1[i]);
1349       dirty_reg(current,rt1[i]);
1350     }
1351   }
1352   if(opcode2[i]==0x3c) // DSLL32
1353   {
1354     if(rt1[i]) {
1355       if(rs1[i]) alloc_reg(current,i,rs1[i]);
1356       alloc_reg64(current,i,rt1[i]);
1357       current->is32&=~(1LL<<rt1[i]);
1358       dirty_reg(current,rt1[i]);
1359     }
1360   }
1361   if(opcode2[i]==0x3e) // DSRL32
1362   {
1363     if(rt1[i]) {
1364       alloc_reg64(current,i,rs1[i]);
1365       if(imm[i]==32) {
1366         alloc_reg64(current,i,rt1[i]);
1367         current->is32&=~(1LL<<rt1[i]);
1368       } else {
1369         alloc_reg(current,i,rt1[i]);
1370         current->is32|=1LL<<rt1[i];
1371       }
1372       dirty_reg(current,rt1[i]);
1373     }
1374   }
1375   if(opcode2[i]==0x3f) // DSRA32
1376   {
1377     if(rt1[i]) {
1378       alloc_reg64(current,i,rs1[i]);
1379       alloc_reg(current,i,rt1[i]);
1380       current->is32|=1LL<<rt1[i];
1381       dirty_reg(current,rt1[i]);
1382     }
1383   }
1384 }
1385
1386 void shift_alloc(struct regstat *current,int i)
1387 {
1388   if(rt1[i]) {
1389     if(opcode2[i]<=0x07) // SLLV/SRLV/SRAV
1390     {
1391       if(rs1[i]) alloc_reg(current,i,rs1[i]);
1392       if(rs2[i]) alloc_reg(current,i,rs2[i]);
1393       alloc_reg(current,i,rt1[i]);
1394       if(rt1[i]==rs2[i]) alloc_reg_temp(current,i,-1);
1395       current->is32|=1LL<<rt1[i];
1396     } else { // DSLLV/DSRLV/DSRAV
1397       if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1398       if(rs2[i]) alloc_reg(current,i,rs2[i]);
1399       alloc_reg64(current,i,rt1[i]);
1400       current->is32&=~(1LL<<rt1[i]);
1401       if(opcode2[i]==0x16||opcode2[i]==0x17) // DSRLV and DSRAV need a temporary register
1402         alloc_reg_temp(current,i,-1);
1403     }
1404     clear_const(current,rs1[i]);
1405     clear_const(current,rs2[i]);
1406     clear_const(current,rt1[i]);
1407     dirty_reg(current,rt1[i]);
1408   }
1409 }
1410
1411 void alu_alloc(struct regstat *current,int i)
1412 {
1413   if(opcode2[i]>=0x20&&opcode2[i]<=0x23) { // ADD/ADDU/SUB/SUBU
1414     if(rt1[i]) {
1415       if(rs1[i]&&rs2[i]) {
1416         alloc_reg(current,i,rs1[i]);
1417         alloc_reg(current,i,rs2[i]);
1418       }
1419       else {
1420         if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1421         if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg(current,i,rs2[i]);
1422       }
1423       alloc_reg(current,i,rt1[i]);
1424     }
1425     current->is32|=1LL<<rt1[i];
1426   }
1427   if(opcode2[i]==0x2a||opcode2[i]==0x2b) { // SLT/SLTU
1428     if(rt1[i]) {
1429       if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1430       {
1431         alloc_reg64(current,i,rs1[i]);
1432         alloc_reg64(current,i,rs2[i]);
1433         alloc_reg(current,i,rt1[i]);
1434       } else {
1435         alloc_reg(current,i,rs1[i]);
1436         alloc_reg(current,i,rs2[i]);
1437         alloc_reg(current,i,rt1[i]);
1438       }
1439     }
1440     current->is32|=1LL<<rt1[i];
1441   }
1442   if(opcode2[i]>=0x24&&opcode2[i]<=0x27) { // AND/OR/XOR/NOR
1443     if(rt1[i]) {
1444       if(rs1[i]&&rs2[i]) {
1445         alloc_reg(current,i,rs1[i]);
1446         alloc_reg(current,i,rs2[i]);
1447       }
1448       else
1449       {
1450         if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1451         if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg(current,i,rs2[i]);
1452       }
1453       alloc_reg(current,i,rt1[i]);
1454       if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1455       {
1456         if(!((current->uu>>rt1[i])&1)) {
1457           alloc_reg64(current,i,rt1[i]);
1458         }
1459         if(get_reg(current->regmap,rt1[i]|64)>=0) {
1460           if(rs1[i]&&rs2[i]) {
1461             alloc_reg64(current,i,rs1[i]);
1462             alloc_reg64(current,i,rs2[i]);
1463           }
1464           else
1465           {
1466             // Is is really worth it to keep 64-bit values in registers?
1467             #ifdef NATIVE_64BIT
1468             if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg64(current,i,rs1[i]);
1469             if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg64(current,i,rs2[i]);
1470             #endif
1471           }
1472         }
1473         current->is32&=~(1LL<<rt1[i]);
1474       } else {
1475         current->is32|=1LL<<rt1[i];
1476       }
1477     }
1478   }
1479   if(opcode2[i]>=0x2c&&opcode2[i]<=0x2f) { // DADD/DADDU/DSUB/DSUBU
1480     if(rt1[i]) {
1481       if(rs1[i]&&rs2[i]) {
1482         if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1483           alloc_reg64(current,i,rs1[i]);
1484           alloc_reg64(current,i,rs2[i]);
1485           alloc_reg64(current,i,rt1[i]);
1486         } else {
1487           alloc_reg(current,i,rs1[i]);
1488           alloc_reg(current,i,rs2[i]);
1489           alloc_reg(current,i,rt1[i]);
1490         }
1491       }
1492       else {
1493         alloc_reg(current,i,rt1[i]);
1494         if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1495           // DADD used as move, or zeroing
1496           // If we have a 64-bit source, then make the target 64 bits too
1497           if(rs1[i]&&!((current->is32>>rs1[i])&1)) {
1498             if(get_reg(current->regmap,rs1[i])>=0) alloc_reg64(current,i,rs1[i]);
1499             alloc_reg64(current,i,rt1[i]);
1500           } else if(rs2[i]&&!((current->is32>>rs2[i])&1)) {
1501             if(get_reg(current->regmap,rs2[i])>=0) alloc_reg64(current,i,rs2[i]);
1502             alloc_reg64(current,i,rt1[i]);
1503           }
1504           if(opcode2[i]>=0x2e&&rs2[i]) {
1505             // DSUB used as negation - 64-bit result
1506             // If we have a 32-bit register, extend it to 64 bits
1507             if(get_reg(current->regmap,rs2[i])>=0) alloc_reg64(current,i,rs2[i]);
1508             alloc_reg64(current,i,rt1[i]);
1509           }
1510         }
1511       }
1512       if(rs1[i]&&rs2[i]) {
1513         current->is32&=~(1LL<<rt1[i]);
1514       } else if(rs1[i]) {
1515         current->is32&=~(1LL<<rt1[i]);
1516         if((current->is32>>rs1[i])&1)
1517           current->is32|=1LL<<rt1[i];
1518       } else if(rs2[i]) {
1519         current->is32&=~(1LL<<rt1[i]);
1520         if((current->is32>>rs2[i])&1)
1521           current->is32|=1LL<<rt1[i];
1522       } else {
1523         current->is32|=1LL<<rt1[i];
1524       }
1525     }
1526   }
1527   clear_const(current,rs1[i]);
1528   clear_const(current,rs2[i]);
1529   clear_const(current,rt1[i]);
1530   dirty_reg(current,rt1[i]);
1531 }
1532
1533 void imm16_alloc(struct regstat *current,int i)
1534 {
1535   if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1536   else lt1[i]=rs1[i];
1537   if(rt1[i]) alloc_reg(current,i,rt1[i]);
1538   if(opcode[i]==0x18||opcode[i]==0x19) { // DADDI/DADDIU
1539     current->is32&=~(1LL<<rt1[i]);
1540     if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1541       // TODO: Could preserve the 32-bit flag if the immediate is zero
1542       alloc_reg64(current,i,rt1[i]);
1543       alloc_reg64(current,i,rs1[i]);
1544     }
1545     clear_const(current,rs1[i]);
1546     clear_const(current,rt1[i]);
1547   }
1548   else if(opcode[i]==0x0a||opcode[i]==0x0b) { // SLTI/SLTIU
1549     if((~current->is32>>rs1[i])&1) alloc_reg64(current,i,rs1[i]);
1550     current->is32|=1LL<<rt1[i];
1551     clear_const(current,rs1[i]);
1552     clear_const(current,rt1[i]);
1553   }
1554   else if(opcode[i]>=0x0c&&opcode[i]<=0x0e) { // ANDI/ORI/XORI
1555     if(((~current->is32>>rs1[i])&1)&&opcode[i]>0x0c) {
1556       if(rs1[i]!=rt1[i]) {
1557         if(needed_again(rs1[i],i)) alloc_reg64(current,i,rs1[i]);
1558         alloc_reg64(current,i,rt1[i]);
1559         current->is32&=~(1LL<<rt1[i]);
1560       }
1561     }
1562     else current->is32|=1LL<<rt1[i]; // ANDI clears upper bits
1563     if(is_const(current,rs1[i])) {
1564       int v=get_const(current,rs1[i]);
1565       if(opcode[i]==0x0c) set_const(current,rt1[i],v&imm[i]);
1566       if(opcode[i]==0x0d) set_const(current,rt1[i],v|imm[i]);
1567       if(opcode[i]==0x0e) set_const(current,rt1[i],v^imm[i]);
1568     }
1569     else clear_const(current,rt1[i]);
1570   }
1571   else if(opcode[i]==0x08||opcode[i]==0x09) { // ADDI/ADDIU
1572     if(is_const(current,rs1[i])) {
1573       int v=get_const(current,rs1[i]);
1574       set_const(current,rt1[i],v+imm[i]);
1575     }
1576     else clear_const(current,rt1[i]);
1577     current->is32|=1LL<<rt1[i];
1578   }
1579   else {
1580     set_const(current,rt1[i],((long long)((short)imm[i]))<<16); // LUI
1581     current->is32|=1LL<<rt1[i];
1582   }
1583   dirty_reg(current,rt1[i]);
1584 }
1585
1586 void load_alloc(struct regstat *current,int i)
1587 {
1588   clear_const(current,rt1[i]);
1589   //if(rs1[i]!=rt1[i]&&needed_again(rs1[i],i)) clear_const(current,rs1[i]); // Does this help or hurt?
1590   if(!rs1[i]) current->u&=~1LL; // Allow allocating r0 if it's the source register
1591   if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1592   if(rt1[i]) {
1593     alloc_reg(current,i,rt1[i]);
1594     if(opcode[i]==0x27||opcode[i]==0x37) // LWU/LD
1595     {
1596       current->is32&=~(1LL<<rt1[i]);
1597       alloc_reg64(current,i,rt1[i]);
1598     }
1599     else if(opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
1600     {
1601       current->is32&=~(1LL<<rt1[i]);
1602       alloc_reg64(current,i,rt1[i]);
1603       alloc_all(current,i);
1604       alloc_reg64(current,i,FTEMP);
1605     }
1606     else current->is32|=1LL<<rt1[i];
1607     dirty_reg(current,rt1[i]);
1608     // If using TLB, need a register for pointer to the mapping table
1609     if(using_tlb) alloc_reg(current,i,TLREG);
1610     // LWL/LWR need a temporary register for the old value
1611     if(opcode[i]==0x22||opcode[i]==0x26)
1612     {
1613       alloc_reg(current,i,FTEMP);
1614       alloc_reg_temp(current,i,-1);
1615     }
1616   }
1617   else
1618   {
1619     // Load to r0 (dummy load)
1620     // but we still need a register to calculate the address
1621     alloc_reg_temp(current,i,-1);
1622   }
1623 }
1624
1625 void store_alloc(struct regstat *current,int i)
1626 {
1627   clear_const(current,rs2[i]);
1628   if(!(rs2[i])) current->u&=~1LL; // Allow allocating r0 if necessary
1629   if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1630   alloc_reg(current,i,rs2[i]);
1631   if(opcode[i]==0x2c||opcode[i]==0x2d||opcode[i]==0x3f) { // 64-bit SDL/SDR/SD
1632     alloc_reg64(current,i,rs2[i]);
1633     if(rs2[i]) alloc_reg(current,i,FTEMP);
1634   }
1635   // If using TLB, need a register for pointer to the mapping table
1636   if(using_tlb) alloc_reg(current,i,TLREG);
1637   #if defined(HOST_IMM8)
1638   // On CPUs without 32-bit immediates we need a pointer to invalid_code
1639   else alloc_reg(current,i,INVCP);
1640   #endif
1641   if(opcode[i]==0x2c||opcode[i]==0x2d) { // 64-bit SDL/SDR
1642     alloc_reg(current,i,FTEMP);
1643   }
1644   // We need a temporary register for address generation
1645   alloc_reg_temp(current,i,-1);
1646 }
1647
1648 void c1ls_alloc(struct regstat *current,int i)
1649 {
1650   //clear_const(current,rs1[i]); // FIXME
1651   clear_const(current,rt1[i]);
1652   if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1653   alloc_reg(current,i,CSREG); // Status
1654   alloc_reg(current,i,FTEMP);
1655   if(opcode[i]==0x35||opcode[i]==0x3d) { // 64-bit LDC1/SDC1
1656     alloc_reg64(current,i,FTEMP);
1657   }
1658   // If using TLB, need a register for pointer to the mapping table
1659   if(using_tlb) alloc_reg(current,i,TLREG);
1660   #if defined(HOST_IMM8)
1661   // On CPUs without 32-bit immediates we need a pointer to invalid_code
1662   else if((opcode[i]&0x3b)==0x39) // SWC1/SDC1
1663     alloc_reg(current,i,INVCP);
1664   #endif
1665   // We need a temporary register for address generation
1666   alloc_reg_temp(current,i,-1);
1667 }
1668
1669 void c2ls_alloc(struct regstat *current,int i)
1670 {
1671   clear_const(current,rt1[i]);
1672   if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1673   alloc_reg(current,i,FTEMP);
1674   // If using TLB, need a register for pointer to the mapping table
1675   if(using_tlb) alloc_reg(current,i,TLREG);
1676   #if defined(HOST_IMM8)
1677   // On CPUs without 32-bit immediates we need a pointer to invalid_code
1678   else if((opcode[i]&0x3b)==0x3a) // SWC2/SDC2
1679     alloc_reg(current,i,INVCP);
1680   #endif
1681   // We need a temporary register for address generation
1682   alloc_reg_temp(current,i,-1);
1683 }
1684
1685 #ifndef multdiv_alloc
1686 void multdiv_alloc(struct regstat *current,int i)
1687 {
1688   //  case 0x18: MULT
1689   //  case 0x19: MULTU
1690   //  case 0x1A: DIV
1691   //  case 0x1B: DIVU
1692   //  case 0x1C: DMULT
1693   //  case 0x1D: DMULTU
1694   //  case 0x1E: DDIV
1695   //  case 0x1F: DDIVU
1696   clear_const(current,rs1[i]);
1697   clear_const(current,rs2[i]);
1698   if(rs1[i]&&rs2[i])
1699   {
1700     if((opcode2[i]&4)==0) // 32-bit
1701     {
1702       current->u&=~(1LL<<HIREG);
1703       current->u&=~(1LL<<LOREG);
1704       alloc_reg(current,i,HIREG);
1705       alloc_reg(current,i,LOREG);
1706       alloc_reg(current,i,rs1[i]);
1707       alloc_reg(current,i,rs2[i]);
1708       current->is32|=1LL<<HIREG;
1709       current->is32|=1LL<<LOREG;
1710       dirty_reg(current,HIREG);
1711       dirty_reg(current,LOREG);
1712     }
1713     else // 64-bit
1714     {
1715       current->u&=~(1LL<<HIREG);
1716       current->u&=~(1LL<<LOREG);
1717       current->uu&=~(1LL<<HIREG);
1718       current->uu&=~(1LL<<LOREG);
1719       alloc_reg64(current,i,HIREG);
1720       //if(HOST_REGS>10) alloc_reg64(current,i,LOREG);
1721       alloc_reg64(current,i,rs1[i]);
1722       alloc_reg64(current,i,rs2[i]);
1723       alloc_all(current,i);
1724       current->is32&=~(1LL<<HIREG);
1725       current->is32&=~(1LL<<LOREG);
1726       dirty_reg(current,HIREG);
1727       dirty_reg(current,LOREG);
1728     }
1729   }
1730   else
1731   {
1732     // Multiply by zero is zero.
1733     // MIPS does not have a divide by zero exception.
1734     // The result is undefined, we return zero.
1735     alloc_reg(current,i,HIREG);
1736     alloc_reg(current,i,LOREG);
1737     current->is32|=1LL<<HIREG;
1738     current->is32|=1LL<<LOREG;
1739     dirty_reg(current,HIREG);
1740     dirty_reg(current,LOREG);
1741   }
1742 }
1743 #endif
1744
1745 void cop0_alloc(struct regstat *current,int i)
1746 {
1747   if(opcode2[i]==0) // MFC0
1748   {
1749     if(rt1[i]) {
1750       clear_const(current,rt1[i]);
1751       alloc_all(current,i);
1752       alloc_reg(current,i,rt1[i]);
1753       current->is32|=1LL<<rt1[i];
1754       dirty_reg(current,rt1[i]);
1755     }
1756   }
1757   else if(opcode2[i]==4) // MTC0
1758   {
1759     if(rs1[i]){
1760       clear_const(current,rs1[i]);
1761       alloc_reg(current,i,rs1[i]);
1762       alloc_all(current,i);
1763     }
1764     else {
1765       alloc_all(current,i); // FIXME: Keep r0
1766       current->u&=~1LL;
1767       alloc_reg(current,i,0);
1768     }
1769   }
1770   else
1771   {
1772     // TLBR/TLBWI/TLBWR/TLBP/ERET
1773     assert(opcode2[i]==0x10);
1774     alloc_all(current,i);
1775   }
1776 }
1777
1778 void cop1_alloc(struct regstat *current,int i)
1779 {
1780   alloc_reg(current,i,CSREG); // Load status
1781   if(opcode2[i]<3) // MFC1/DMFC1/CFC1
1782   {
1783     assert(rt1[i]);
1784     clear_const(current,rt1[i]);
1785     if(opcode2[i]==1) {
1786       alloc_reg64(current,i,rt1[i]); // DMFC1
1787       current->is32&=~(1LL<<rt1[i]);
1788     }else{
1789       alloc_reg(current,i,rt1[i]); // MFC1/CFC1
1790       current->is32|=1LL<<rt1[i];
1791     }
1792     dirty_reg(current,rt1[i]);
1793     alloc_reg_temp(current,i,-1);
1794   }
1795   else if(opcode2[i]>3) // MTC1/DMTC1/CTC1
1796   {
1797     if(rs1[i]){
1798       clear_const(current,rs1[i]);
1799       if(opcode2[i]==5)
1800         alloc_reg64(current,i,rs1[i]); // DMTC1
1801       else
1802         alloc_reg(current,i,rs1[i]); // MTC1/CTC1
1803       alloc_reg_temp(current,i,-1);
1804     }
1805     else {
1806       current->u&=~1LL;
1807       alloc_reg(current,i,0);
1808       alloc_reg_temp(current,i,-1);
1809     }
1810   }
1811 }
1812 void fconv_alloc(struct regstat *current,int i)
1813 {
1814   alloc_reg(current,i,CSREG); // Load status
1815   alloc_reg_temp(current,i,-1);
1816 }
1817 void float_alloc(struct regstat *current,int i)
1818 {
1819   alloc_reg(current,i,CSREG); // Load status
1820   alloc_reg_temp(current,i,-1);
1821 }
1822 void c2op_alloc(struct regstat *current,int i)
1823 {
1824   alloc_reg_temp(current,i,-1);
1825 }
1826 void fcomp_alloc(struct regstat *current,int i)
1827 {
1828   alloc_reg(current,i,CSREG); // Load status
1829   alloc_reg(current,i,FSREG); // Load flags
1830   dirty_reg(current,FSREG); // Flag will be modified
1831   alloc_reg_temp(current,i,-1);
1832 }
1833
1834 void syscall_alloc(struct regstat *current,int i)
1835 {
1836   alloc_cc(current,i);
1837   dirty_reg(current,CCREG);
1838   alloc_all(current,i);
1839   current->isconst=0;
1840 }
1841
1842 void delayslot_alloc(struct regstat *current,int i)
1843 {
1844   switch(itype[i]) {
1845     case UJUMP:
1846     case CJUMP:
1847     case SJUMP:
1848     case RJUMP:
1849     case FJUMP:
1850     case SYSCALL:
1851     case HLECALL:
1852     case SPAN:
1853       assem_debug("jump in the delay slot.  this shouldn't happen.\n");//exit(1);
1854       printf("Disabled speculative precompilation\n");
1855       stop_after_jal=1;
1856       break;
1857     case IMM16:
1858       imm16_alloc(current,i);
1859       break;
1860     case LOAD:
1861     case LOADLR:
1862       load_alloc(current,i);
1863       break;
1864     case STORE:
1865     case STORELR:
1866       store_alloc(current,i);
1867       break;
1868     case ALU:
1869       alu_alloc(current,i);
1870       break;
1871     case SHIFT:
1872       shift_alloc(current,i);
1873       break;
1874     case MULTDIV:
1875       multdiv_alloc(current,i);
1876       break;
1877     case SHIFTIMM:
1878       shiftimm_alloc(current,i);
1879       break;
1880     case MOV:
1881       mov_alloc(current,i);
1882       break;
1883     case COP0:
1884       cop0_alloc(current,i);
1885       break;
1886     case COP1:
1887     case COP2:
1888       cop1_alloc(current,i);
1889       break;
1890     case C1LS:
1891       c1ls_alloc(current,i);
1892       break;
1893     case C2LS:
1894       c2ls_alloc(current,i);
1895       break;
1896     case FCONV:
1897       fconv_alloc(current,i);
1898       break;
1899     case FLOAT:
1900       float_alloc(current,i);
1901       break;
1902     case FCOMP:
1903       fcomp_alloc(current,i);
1904       break;
1905     case C2OP:
1906       c2op_alloc(current,i);
1907       break;
1908   }
1909 }
1910
1911 // Special case where a branch and delay slot span two pages in virtual memory
1912 static void pagespan_alloc(struct regstat *current,int i)
1913 {
1914   current->isconst=0;
1915   current->wasconst=0;
1916   regs[i].wasconst=0;
1917   alloc_all(current,i);
1918   alloc_cc(current,i);
1919   dirty_reg(current,CCREG);
1920   if(opcode[i]==3) // JAL
1921   {
1922     alloc_reg(current,i,31);
1923     dirty_reg(current,31);
1924   }
1925   if(opcode[i]==0&&(opcode2[i]&0x3E)==8) // JR/JALR
1926   {
1927     alloc_reg(current,i,rs1[i]);
1928     if (rt1[i]!=0) {
1929       alloc_reg(current,i,rt1[i]);
1930       dirty_reg(current,rt1[i]);
1931     }
1932   }
1933   if((opcode[i]&0x2E)==4) // BEQ/BNE/BEQL/BNEL
1934   {
1935     if(rs1[i]) alloc_reg(current,i,rs1[i]);
1936     if(rs2[i]) alloc_reg(current,i,rs2[i]);
1937     if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1938     {
1939       if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1940       if(rs2[i]) alloc_reg64(current,i,rs2[i]);
1941     }
1942   }
1943   else
1944   if((opcode[i]&0x2E)==6) // BLEZ/BGTZ/BLEZL/BGTZL
1945   {
1946     if(rs1[i]) alloc_reg(current,i,rs1[i]);
1947     if(!((current->is32>>rs1[i])&1))
1948     {
1949       if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1950     }
1951   }
1952   else
1953   if(opcode[i]==0x11) // BC1
1954   {
1955     alloc_reg(current,i,FSREG);
1956     alloc_reg(current,i,CSREG);
1957   }
1958   //else ...
1959 }
1960
1961 add_stub(int type,int addr,int retaddr,int a,int b,int c,int d,int e)
1962 {
1963   stubs[stubcount][0]=type;
1964   stubs[stubcount][1]=addr;
1965   stubs[stubcount][2]=retaddr;
1966   stubs[stubcount][3]=a;
1967   stubs[stubcount][4]=b;
1968   stubs[stubcount][5]=c;
1969   stubs[stubcount][6]=d;
1970   stubs[stubcount][7]=e;
1971   stubcount++;
1972 }
1973
1974 // Write out a single register
1975 void wb_register(signed char r,signed char regmap[],uint64_t dirty,uint64_t is32)
1976 {
1977   int hr;
1978   for(hr=0;hr<HOST_REGS;hr++) {
1979     if(hr!=EXCLUDE_REG) {
1980       if((regmap[hr]&63)==r) {
1981         if((dirty>>hr)&1) {
1982           if(regmap[hr]<64) {
1983             emit_storereg(r,hr);
1984 #ifndef FORCE32
1985             if((is32>>regmap[hr])&1) {
1986               emit_sarimm(hr,31,hr);
1987               emit_storereg(r|64,hr);
1988             }
1989 #endif
1990           }else{
1991             emit_storereg(r|64,hr);
1992           }
1993         }
1994       }
1995     }
1996   }
1997 }
1998
1999 int mchecksum()
2000 {
2001   //if(!tracedebug) return 0;
2002   int i;
2003   int sum=0;
2004   for(i=0;i<2097152;i++) {
2005     unsigned int temp=sum;
2006     sum<<=1;
2007     sum|=(~temp)>>31;
2008     sum^=((u_int *)rdram)[i];
2009   }
2010   return sum;
2011 }
2012 int rchecksum()
2013 {
2014   int i;
2015   int sum=0;
2016   for(i=0;i<64;i++)
2017     sum^=((u_int *)reg)[i];
2018   return sum;
2019 }
2020 void rlist()
2021 {
2022   int i;
2023   printf("TRACE: ");
2024   for(i=0;i<32;i++)
2025     printf("r%d:%8x%8x ",i,((int *)(reg+i))[1],((int *)(reg+i))[0]);
2026   printf("\n");
2027 #ifndef DISABLE_COP1
2028   printf("TRACE: ");
2029   for(i=0;i<32;i++)
2030     printf("f%d:%8x%8x ",i,((int*)reg_cop1_simple[i])[1],*((int*)reg_cop1_simple[i]));
2031   printf("\n");
2032 #endif
2033 }
2034
2035 void enabletrace()
2036 {
2037   tracedebug=1;
2038 }
2039
2040 void memdebug(int i)
2041 {
2042   //printf("TRACE: count=%d next=%d (checksum %x) lo=%8x%8x\n",Count,next_interupt,mchecksum(),(int)(reg[LOREG]>>32),(int)reg[LOREG]);
2043   //printf("TRACE: count=%d next=%d (rchecksum %x)\n",Count,next_interupt,rchecksum());
2044   //rlist();
2045   //if(tracedebug) {
2046   //if(Count>=-2084597794) {
2047   if((signed int)Count>=-2084597794&&(signed int)Count<0) {
2048   //if(0) {
2049     printf("TRACE: count=%d next=%d (checksum %x)\n",Count,next_interupt,mchecksum());
2050     //printf("TRACE: count=%d next=%d (checksum %x) Status=%x\n",Count,next_interupt,mchecksum(),Status);
2051     //printf("TRACE: count=%d next=%d (checksum %x) hi=%8x%8x\n",Count,next_interupt,mchecksum(),(int)(reg[HIREG]>>32),(int)reg[HIREG]);
2052     rlist();
2053     #ifdef __i386__
2054     printf("TRACE: %x\n",(&i)[-1]);
2055     #endif
2056     #ifdef __arm__
2057     int j;
2058     printf("TRACE: %x \n",(&j)[10]);
2059     printf("TRACE: %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x\n",(&j)[1],(&j)[2],(&j)[3],(&j)[4],(&j)[5],(&j)[6],(&j)[7],(&j)[8],(&j)[9],(&j)[10],(&j)[11],(&j)[12],(&j)[13],(&j)[14],(&j)[15],(&j)[16],(&j)[17],(&j)[18],(&j)[19],(&j)[20]);
2060     #endif
2061     //fflush(stdout);
2062   }
2063   //printf("TRACE: %x\n",(&i)[-1]);
2064 }
2065
2066 void tlb_debug(u_int cause, u_int addr, u_int iaddr)
2067 {
2068   printf("TLB Exception: instruction=%x addr=%x cause=%x\n",iaddr, addr, cause);
2069 }
2070
2071 void alu_assemble(int i,struct regstat *i_regs)
2072 {
2073   if(opcode2[i]>=0x20&&opcode2[i]<=0x23) { // ADD/ADDU/SUB/SUBU
2074     if(rt1[i]) {
2075       signed char s1,s2,t;
2076       t=get_reg(i_regs->regmap,rt1[i]);
2077       if(t>=0) {
2078         s1=get_reg(i_regs->regmap,rs1[i]);
2079         s2=get_reg(i_regs->regmap,rs2[i]);
2080         if(rs1[i]&&rs2[i]) {
2081           assert(s1>=0);
2082           assert(s2>=0);
2083           if(opcode2[i]&2) emit_sub(s1,s2,t);
2084           else emit_add(s1,s2,t);
2085         }
2086         else if(rs1[i]) {
2087           if(s1>=0) emit_mov(s1,t);
2088           else emit_loadreg(rs1[i],t);
2089         }
2090         else if(rs2[i]) {
2091           if(s2>=0) {
2092             if(opcode2[i]&2) emit_neg(s2,t);
2093             else emit_mov(s2,t);
2094           }
2095           else {
2096             emit_loadreg(rs2[i],t);
2097             if(opcode2[i]&2) emit_neg(t,t);
2098           }
2099         }
2100         else emit_zeroreg(t);
2101       }
2102     }
2103   }
2104   if(opcode2[i]>=0x2c&&opcode2[i]<=0x2f) { // DADD/DADDU/DSUB/DSUBU
2105     if(rt1[i]) {
2106       signed char s1l,s2l,s1h,s2h,tl,th;
2107       tl=get_reg(i_regs->regmap,rt1[i]);
2108       th=get_reg(i_regs->regmap,rt1[i]|64);
2109       if(tl>=0) {
2110         s1l=get_reg(i_regs->regmap,rs1[i]);
2111         s2l=get_reg(i_regs->regmap,rs2[i]);
2112         s1h=get_reg(i_regs->regmap,rs1[i]|64);
2113         s2h=get_reg(i_regs->regmap,rs2[i]|64);
2114         if(rs1[i]&&rs2[i]) {
2115           assert(s1l>=0);
2116           assert(s2l>=0);
2117           if(opcode2[i]&2) emit_subs(s1l,s2l,tl);
2118           else emit_adds(s1l,s2l,tl);
2119           if(th>=0) {
2120             #ifdef INVERTED_CARRY
2121             if(opcode2[i]&2) {if(s1h!=th) emit_mov(s1h,th);emit_sbb(th,s2h);}
2122             #else
2123             if(opcode2[i]&2) emit_sbc(s1h,s2h,th);
2124             #endif
2125             else emit_add(s1h,s2h,th);
2126           }
2127         }
2128         else if(rs1[i]) {
2129           if(s1l>=0) emit_mov(s1l,tl);
2130           else emit_loadreg(rs1[i],tl);
2131           if(th>=0) {
2132             if(s1h>=0) emit_mov(s1h,th);
2133             else emit_loadreg(rs1[i]|64,th);
2134           }
2135         }
2136         else if(rs2[i]) {
2137           if(s2l>=0) {
2138             if(opcode2[i]&2) emit_negs(s2l,tl);
2139             else emit_mov(s2l,tl);
2140           }
2141           else {
2142             emit_loadreg(rs2[i],tl);
2143             if(opcode2[i]&2) emit_negs(tl,tl);
2144           }
2145           if(th>=0) {
2146             #ifdef INVERTED_CARRY
2147             if(s2h>=0) emit_mov(s2h,th);
2148             else emit_loadreg(rs2[i]|64,th);
2149             if(opcode2[i]&2) {
2150               emit_adcimm(-1,th); // x86 has inverted carry flag
2151               emit_not(th,th);
2152             }
2153             #else
2154             if(opcode2[i]&2) {
2155               if(s2h>=0) emit_rscimm(s2h,0,th);
2156               else {
2157                 emit_loadreg(rs2[i]|64,th);
2158                 emit_rscimm(th,0,th);
2159               }
2160             }else{
2161               if(s2h>=0) emit_mov(s2h,th);
2162               else emit_loadreg(rs2[i]|64,th);
2163             }
2164             #endif
2165           }
2166         }
2167         else {
2168           emit_zeroreg(tl);
2169           if(th>=0) emit_zeroreg(th);
2170         }
2171       }
2172     }
2173   }
2174   if(opcode2[i]==0x2a||opcode2[i]==0x2b) { // SLT/SLTU
2175     if(rt1[i]) {
2176       signed char s1l,s1h,s2l,s2h,t;
2177       if(!((i_regs->was32>>rs1[i])&(i_regs->was32>>rs2[i])&1))
2178       {
2179         t=get_reg(i_regs->regmap,rt1[i]);
2180         //assert(t>=0);
2181         if(t>=0) {
2182           s1l=get_reg(i_regs->regmap,rs1[i]);
2183           s1h=get_reg(i_regs->regmap,rs1[i]|64);
2184           s2l=get_reg(i_regs->regmap,rs2[i]);
2185           s2h=get_reg(i_regs->regmap,rs2[i]|64);
2186           if(rs2[i]==0) // rx<r0
2187           {
2188             assert(s1h>=0);
2189             if(opcode2[i]==0x2a) // SLT
2190               emit_shrimm(s1h,31,t);
2191             else // SLTU (unsigned can not be less than zero)
2192               emit_zeroreg(t);
2193           }
2194           else if(rs1[i]==0) // r0<rx
2195           {
2196             assert(s2h>=0);
2197             if(opcode2[i]==0x2a) // SLT
2198               emit_set_gz64_32(s2h,s2l,t);
2199             else // SLTU (set if not zero)
2200               emit_set_nz64_32(s2h,s2l,t);
2201           }
2202           else {
2203             assert(s1l>=0);assert(s1h>=0);
2204             assert(s2l>=0);assert(s2h>=0);
2205             if(opcode2[i]==0x2a) // SLT
2206               emit_set_if_less64_32(s1h,s1l,s2h,s2l,t);
2207             else // SLTU
2208               emit_set_if_carry64_32(s1h,s1l,s2h,s2l,t);
2209           }
2210         }
2211       } else {
2212         t=get_reg(i_regs->regmap,rt1[i]);
2213         //assert(t>=0);
2214         if(t>=0) {
2215           s1l=get_reg(i_regs->regmap,rs1[i]);
2216           s2l=get_reg(i_regs->regmap,rs2[i]);
2217           if(rs2[i]==0) // rx<r0
2218           {
2219             assert(s1l>=0);
2220             if(opcode2[i]==0x2a) // SLT
2221               emit_shrimm(s1l,31,t);
2222             else // SLTU (unsigned can not be less than zero)
2223               emit_zeroreg(t);
2224           }
2225           else if(rs1[i]==0) // r0<rx
2226           {
2227             assert(s2l>=0);
2228             if(opcode2[i]==0x2a) // SLT
2229               emit_set_gz32(s2l,t);
2230             else // SLTU (set if not zero)
2231               emit_set_nz32(s2l,t);
2232           }
2233           else{
2234             assert(s1l>=0);assert(s2l>=0);
2235             if(opcode2[i]==0x2a) // SLT
2236               emit_set_if_less32(s1l,s2l,t);
2237             else // SLTU
2238               emit_set_if_carry32(s1l,s2l,t);
2239           }
2240         }
2241       }
2242     }
2243   }
2244   if(opcode2[i]>=0x24&&opcode2[i]<=0x27) { // AND/OR/XOR/NOR
2245     if(rt1[i]) {
2246       signed char s1l,s1h,s2l,s2h,th,tl;
2247       tl=get_reg(i_regs->regmap,rt1[i]);
2248       th=get_reg(i_regs->regmap,rt1[i]|64);
2249       if(!((i_regs->was32>>rs1[i])&(i_regs->was32>>rs2[i])&1)&&th>=0)
2250       {
2251         assert(tl>=0);
2252         if(tl>=0) {
2253           s1l=get_reg(i_regs->regmap,rs1[i]);
2254           s1h=get_reg(i_regs->regmap,rs1[i]|64);
2255           s2l=get_reg(i_regs->regmap,rs2[i]);
2256           s2h=get_reg(i_regs->regmap,rs2[i]|64);
2257           if(rs1[i]&&rs2[i]) {
2258             assert(s1l>=0);assert(s1h>=0);
2259             assert(s2l>=0);assert(s2h>=0);
2260             if(opcode2[i]==0x24) { // AND
2261               emit_and(s1l,s2l,tl);
2262               emit_and(s1h,s2h,th);
2263             } else
2264             if(opcode2[i]==0x25) { // OR
2265               emit_or(s1l,s2l,tl);
2266               emit_or(s1h,s2h,th);
2267             } else
2268             if(opcode2[i]==0x26) { // XOR
2269               emit_xor(s1l,s2l,tl);
2270               emit_xor(s1h,s2h,th);
2271             } else
2272             if(opcode2[i]==0x27) { // NOR
2273               emit_or(s1l,s2l,tl);
2274               emit_or(s1h,s2h,th);
2275               emit_not(tl,tl);
2276               emit_not(th,th);
2277             }
2278           }
2279           else
2280           {
2281             if(opcode2[i]==0x24) { // AND
2282               emit_zeroreg(tl);
2283               emit_zeroreg(th);
2284             } else
2285             if(opcode2[i]==0x25||opcode2[i]==0x26) { // OR/XOR
2286               if(rs1[i]){
2287                 if(s1l>=0) emit_mov(s1l,tl);
2288                 else emit_loadreg(rs1[i],tl);
2289                 if(s1h>=0) emit_mov(s1h,th);
2290                 else emit_loadreg(rs1[i]|64,th);
2291               }
2292               else
2293               if(rs2[i]){
2294                 if(s2l>=0) emit_mov(s2l,tl);
2295                 else emit_loadreg(rs2[i],tl);
2296                 if(s2h>=0) emit_mov(s2h,th);
2297                 else emit_loadreg(rs2[i]|64,th);
2298               }
2299               else{
2300                 emit_zeroreg(tl);
2301                 emit_zeroreg(th);
2302               }
2303             } else
2304             if(opcode2[i]==0x27) { // NOR
2305               if(rs1[i]){
2306                 if(s1l>=0) emit_not(s1l,tl);
2307                 else{
2308                   emit_loadreg(rs1[i],tl);
2309                   emit_not(tl,tl);
2310                 }
2311                 if(s1h>=0) emit_not(s1h,th);
2312                 else{
2313                   emit_loadreg(rs1[i]|64,th);
2314                   emit_not(th,th);
2315                 }
2316               }
2317               else
2318               if(rs2[i]){
2319                 if(s2l>=0) emit_not(s2l,tl);
2320                 else{
2321                   emit_loadreg(rs2[i],tl);
2322                   emit_not(tl,tl);
2323                 }
2324                 if(s2h>=0) emit_not(s2h,th);
2325                 else{
2326                   emit_loadreg(rs2[i]|64,th);
2327                   emit_not(th,th);
2328                 }
2329               }
2330               else {
2331                 emit_movimm(-1,tl);
2332                 emit_movimm(-1,th);
2333               }
2334             }
2335           }
2336         }
2337       }
2338       else
2339       {
2340         // 32 bit
2341         if(tl>=0) {
2342           s1l=get_reg(i_regs->regmap,rs1[i]);
2343           s2l=get_reg(i_regs->regmap,rs2[i]);
2344           if(rs1[i]&&rs2[i]) {
2345             assert(s1l>=0);
2346             assert(s2l>=0);
2347             if(opcode2[i]==0x24) { // AND
2348               emit_and(s1l,s2l,tl);
2349             } else
2350             if(opcode2[i]==0x25) { // OR
2351               emit_or(s1l,s2l,tl);
2352             } else
2353             if(opcode2[i]==0x26) { // XOR
2354               emit_xor(s1l,s2l,tl);
2355             } else
2356             if(opcode2[i]==0x27) { // NOR
2357               emit_or(s1l,s2l,tl);
2358               emit_not(tl,tl);
2359             }
2360           }
2361           else
2362           {
2363             if(opcode2[i]==0x24) { // AND
2364               emit_zeroreg(tl);
2365             } else
2366             if(opcode2[i]==0x25||opcode2[i]==0x26) { // OR/XOR
2367               if(rs1[i]){
2368                 if(s1l>=0) emit_mov(s1l,tl);
2369                 else emit_loadreg(rs1[i],tl); // CHECK: regmap_entry?
2370               }
2371               else
2372               if(rs2[i]){
2373                 if(s2l>=0) emit_mov(s2l,tl);
2374                 else emit_loadreg(rs2[i],tl); // CHECK: regmap_entry?
2375               }
2376               else emit_zeroreg(tl);
2377             } else
2378             if(opcode2[i]==0x27) { // NOR
2379               if(rs1[i]){
2380                 if(s1l>=0) emit_not(s1l,tl);
2381                 else {
2382                   emit_loadreg(rs1[i],tl);
2383                   emit_not(tl,tl);
2384                 }
2385               }
2386               else
2387               if(rs2[i]){
2388                 if(s2l>=0) emit_not(s2l,tl);
2389                 else {
2390                   emit_loadreg(rs2[i],tl);
2391                   emit_not(tl,tl);
2392                 }
2393               }
2394               else emit_movimm(-1,tl);
2395             }
2396           }
2397         }
2398       }
2399     }
2400   }
2401 }
2402
2403 void imm16_assemble(int i,struct regstat *i_regs)
2404 {
2405   if (opcode[i]==0x0f) { // LUI
2406     if(rt1[i]) {
2407       signed char t;
2408       t=get_reg(i_regs->regmap,rt1[i]);
2409       //assert(t>=0);
2410       if(t>=0) {
2411         if(!((i_regs->isconst>>t)&1))
2412           emit_movimm(imm[i]<<16,t);
2413       }
2414     }
2415   }
2416   if(opcode[i]==0x08||opcode[i]==0x09) { // ADDI/ADDIU
2417     if(rt1[i]) {
2418       signed char s,t;
2419       t=get_reg(i_regs->regmap,rt1[i]);
2420       s=get_reg(i_regs->regmap,rs1[i]);
2421       if(rs1[i]) {
2422         //assert(t>=0);
2423         //assert(s>=0);
2424         if(t>=0) {
2425           if(!((i_regs->isconst>>t)&1)) {
2426             if(s<0) {
2427               if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2428               emit_addimm(t,imm[i],t);
2429             }else{
2430               if(!((i_regs->wasconst>>s)&1))
2431                 emit_addimm(s,imm[i],t);
2432               else
2433                 emit_movimm(constmap[i][s]+imm[i],t);
2434             }
2435           }
2436         }
2437       } else {
2438         if(t>=0) {
2439           if(!((i_regs->isconst>>t)&1))
2440             emit_movimm(imm[i],t);
2441         }
2442       }
2443     }
2444   }
2445   if(opcode[i]==0x18||opcode[i]==0x19) { // DADDI/DADDIU
2446     if(rt1[i]) {
2447       signed char sh,sl,th,tl;
2448       th=get_reg(i_regs->regmap,rt1[i]|64);
2449       tl=get_reg(i_regs->regmap,rt1[i]);
2450       sh=get_reg(i_regs->regmap,rs1[i]|64);
2451       sl=get_reg(i_regs->regmap,rs1[i]);
2452       if(tl>=0) {
2453         if(rs1[i]) {
2454           assert(sh>=0);
2455           assert(sl>=0);
2456           if(th>=0) {
2457             emit_addimm64_32(sh,sl,imm[i],th,tl);
2458           }
2459           else {
2460             emit_addimm(sl,imm[i],tl);
2461           }
2462         } else {
2463           emit_movimm(imm[i],tl);
2464           if(th>=0) emit_movimm(((signed int)imm[i])>>31,th);
2465         }
2466       }
2467     }
2468   }
2469   else if(opcode[i]==0x0a||opcode[i]==0x0b) { // SLTI/SLTIU
2470     if(rt1[i]) {
2471       //assert(rs1[i]!=0); // r0 might be valid, but it's probably a bug
2472       signed char sh,sl,t;
2473       t=get_reg(i_regs->regmap,rt1[i]);
2474       sh=get_reg(i_regs->regmap,rs1[i]|64);
2475       sl=get_reg(i_regs->regmap,rs1[i]);
2476       //assert(t>=0);
2477       if(t>=0) {
2478         if(rs1[i]>0) {
2479           if(sh<0) assert((i_regs->was32>>rs1[i])&1);
2480           if(sh<0||((i_regs->was32>>rs1[i])&1)) {
2481             if(opcode[i]==0x0a) { // SLTI
2482               if(sl<0) {
2483                 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2484                 emit_slti32(t,imm[i],t);
2485               }else{
2486                 emit_slti32(sl,imm[i],t);
2487               }
2488             }
2489             else { // SLTIU
2490               if(sl<0) {
2491                 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2492                 emit_sltiu32(t,imm[i],t);
2493               }else{
2494                 emit_sltiu32(sl,imm[i],t);
2495               }
2496             }
2497           }else{ // 64-bit
2498             assert(sl>=0);
2499             if(opcode[i]==0x0a) // SLTI
2500               emit_slti64_32(sh,sl,imm[i],t);
2501             else // SLTIU
2502               emit_sltiu64_32(sh,sl,imm[i],t);
2503           }
2504         }else{
2505           // SLTI(U) with r0 is just stupid,
2506           // nonetheless examples can be found
2507           if(opcode[i]==0x0a) // SLTI
2508             if(0<imm[i]) emit_movimm(1,t);
2509             else emit_zeroreg(t);
2510           else // SLTIU
2511           {
2512             if(imm[i]) emit_movimm(1,t);
2513             else emit_zeroreg(t);
2514           }
2515         }
2516       }
2517     }
2518   }
2519   else if(opcode[i]>=0x0c&&opcode[i]<=0x0e) { // ANDI/ORI/XORI
2520     if(rt1[i]) {
2521       signed char sh,sl,th,tl;
2522       th=get_reg(i_regs->regmap,rt1[i]|64);
2523       tl=get_reg(i_regs->regmap,rt1[i]);
2524       sh=get_reg(i_regs->regmap,rs1[i]|64);
2525       sl=get_reg(i_regs->regmap,rs1[i]);
2526       if(tl>=0 && !((i_regs->isconst>>tl)&1)) {
2527         if(opcode[i]==0x0c) //ANDI
2528         {
2529           if(rs1[i]) {
2530             if(sl<0) {
2531               if(i_regs->regmap_entry[tl]!=rs1[i]) emit_loadreg(rs1[i],tl);
2532               emit_andimm(tl,imm[i],tl);
2533             }else{
2534               if(!((i_regs->wasconst>>sl)&1))
2535                 emit_andimm(sl,imm[i],tl);
2536               else
2537                 emit_movimm(constmap[i][sl]&imm[i],tl);
2538             }
2539           }
2540           else
2541             emit_zeroreg(tl);
2542           if(th>=0) emit_zeroreg(th);
2543         }
2544         else
2545         {
2546           if(rs1[i]) {
2547             if(sl<0) {
2548               if(i_regs->regmap_entry[tl]!=rs1[i]) emit_loadreg(rs1[i],tl);
2549             }
2550             if(th>=0) {
2551               if(sh<0) {
2552                 emit_loadreg(rs1[i]|64,th);
2553               }else{
2554                 emit_mov(sh,th);
2555               }
2556             }
2557             if(opcode[i]==0x0d) //ORI
2558             if(sl<0) {
2559               emit_orimm(tl,imm[i],tl);
2560             }else{
2561               if(!((i_regs->wasconst>>sl)&1))
2562                 emit_orimm(sl,imm[i],tl);
2563               else
2564                 emit_movimm(constmap[i][sl]|imm[i],tl);
2565             }
2566             if(opcode[i]==0x0e) //XORI
2567             if(sl<0) {
2568               emit_xorimm(tl,imm[i],tl);
2569             }else{
2570               if(!((i_regs->wasconst>>sl)&1))
2571                 emit_xorimm(sl,imm[i],tl);
2572               else
2573                 emit_movimm(constmap[i][sl]^imm[i],tl);
2574             }
2575           }
2576           else {
2577             emit_movimm(imm[i],tl);
2578             if(th>=0) emit_zeroreg(th);
2579           }
2580         }
2581       }
2582     }
2583   }
2584 }
2585
2586 void shiftimm_assemble(int i,struct regstat *i_regs)
2587 {
2588   if(opcode2[i]<=0x3) // SLL/SRL/SRA
2589   {
2590     if(rt1[i]) {
2591       signed char s,t;
2592       t=get_reg(i_regs->regmap,rt1[i]);
2593       s=get_reg(i_regs->regmap,rs1[i]);
2594       //assert(t>=0);
2595       if(t>=0){
2596         if(rs1[i]==0)
2597         {
2598           emit_zeroreg(t);
2599         }
2600         else
2601         {
2602           if(s<0&&i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2603           if(imm[i]) {
2604             if(opcode2[i]==0) // SLL
2605             {
2606               emit_shlimm(s<0?t:s,imm[i],t);
2607             }
2608             if(opcode2[i]==2) // SRL
2609             {
2610               emit_shrimm(s<0?t:s,imm[i],t);
2611             }
2612             if(opcode2[i]==3) // SRA
2613             {
2614               emit_sarimm(s<0?t:s,imm[i],t);
2615             }
2616           }else{
2617             // Shift by zero
2618             if(s>=0 && s!=t) emit_mov(s,t);
2619           }
2620         }
2621       }
2622       //emit_storereg(rt1[i],t); //DEBUG
2623     }
2624   }
2625   if(opcode2[i]>=0x38&&opcode2[i]<=0x3b) // DSLL/DSRL/DSRA
2626   {
2627     if(rt1[i]) {
2628       signed char sh,sl,th,tl;
2629       th=get_reg(i_regs->regmap,rt1[i]|64);
2630       tl=get_reg(i_regs->regmap,rt1[i]);
2631       sh=get_reg(i_regs->regmap,rs1[i]|64);
2632       sl=get_reg(i_regs->regmap,rs1[i]);
2633       if(tl>=0) {
2634         if(rs1[i]==0)
2635         {
2636           emit_zeroreg(tl);
2637           if(th>=0) emit_zeroreg(th);
2638         }
2639         else
2640         {
2641           assert(sl>=0);
2642           assert(sh>=0);
2643           if(imm[i]) {
2644             if(opcode2[i]==0x38) // DSLL
2645             {
2646               if(th>=0) emit_shldimm(sh,sl,imm[i],th);
2647               emit_shlimm(sl,imm[i],tl);
2648             }
2649             if(opcode2[i]==0x3a) // DSRL
2650             {
2651               emit_shrdimm(sl,sh,imm[i],tl);
2652               if(th>=0) emit_shrimm(sh,imm[i],th);
2653             }
2654             if(opcode2[i]==0x3b) // DSRA
2655             {
2656               emit_shrdimm(sl,sh,imm[i],tl);
2657               if(th>=0) emit_sarimm(sh,imm[i],th);
2658             }
2659           }else{
2660             // Shift by zero
2661             if(sl!=tl) emit_mov(sl,tl);
2662             if(th>=0&&sh!=th) emit_mov(sh,th);
2663           }
2664         }
2665       }
2666     }
2667   }
2668   if(opcode2[i]==0x3c) // DSLL32
2669   {
2670     if(rt1[i]) {
2671       signed char sl,tl,th;
2672       tl=get_reg(i_regs->regmap,rt1[i]);
2673       th=get_reg(i_regs->regmap,rt1[i]|64);
2674       sl=get_reg(i_regs->regmap,rs1[i]);
2675       if(th>=0||tl>=0){
2676         assert(tl>=0);
2677         assert(th>=0);
2678         assert(sl>=0);
2679         emit_mov(sl,th);
2680         emit_zeroreg(tl);
2681         if(imm[i]>32)
2682         {
2683           emit_shlimm(th,imm[i]&31,th);
2684         }
2685       }
2686     }
2687   }
2688   if(opcode2[i]==0x3e) // DSRL32
2689   {
2690     if(rt1[i]) {
2691       signed char sh,tl,th;
2692       tl=get_reg(i_regs->regmap,rt1[i]);
2693       th=get_reg(i_regs->regmap,rt1[i]|64);
2694       sh=get_reg(i_regs->regmap,rs1[i]|64);
2695       if(tl>=0){
2696         assert(sh>=0);
2697         emit_mov(sh,tl);
2698         if(th>=0) emit_zeroreg(th);
2699         if(imm[i]>32)
2700         {
2701           emit_shrimm(tl,imm[i]&31,tl);
2702         }
2703       }
2704     }
2705   }
2706   if(opcode2[i]==0x3f) // DSRA32
2707   {
2708     if(rt1[i]) {
2709       signed char sh,tl;
2710       tl=get_reg(i_regs->regmap,rt1[i]);
2711       sh=get_reg(i_regs->regmap,rs1[i]|64);
2712       if(tl>=0){
2713         assert(sh>=0);
2714         emit_mov(sh,tl);
2715         if(imm[i]>32)
2716         {
2717           emit_sarimm(tl,imm[i]&31,tl);
2718         }
2719       }
2720     }
2721   }
2722 }
2723
2724 #ifndef shift_assemble
2725 void shift_assemble(int i,struct regstat *i_regs)
2726 {
2727   printf("Need shift_assemble for this architecture.\n");
2728   exit(1);
2729 }
2730 #endif
2731
2732 void load_assemble(int i,struct regstat *i_regs)
2733 {
2734   int s,th,tl,addr,map=-1;
2735   int offset;
2736   int jaddr=0;
2737   int memtarget=0,c=0;
2738   u_int hr,reglist=0;
2739   th=get_reg(i_regs->regmap,rt1[i]|64);
2740   tl=get_reg(i_regs->regmap,rt1[i]);
2741   s=get_reg(i_regs->regmap,rs1[i]);
2742   offset=imm[i];
2743   for(hr=0;hr<HOST_REGS;hr++) {
2744     if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
2745   }
2746   if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
2747   if(s>=0) {
2748     c=(i_regs->wasconst>>s)&1;
2749     memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80800000;
2750     if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
2751   }
2752   //printf("load_assemble: c=%d\n",c);
2753   //if(c) printf("load_assemble: const=%x\n",(int)constmap[i][s]+offset);
2754   // FIXME: Even if the load is a NOP, we should check for pagefaults...
2755 #ifdef PCSX
2756   if(tl<0) {
2757     if(!c||(((u_int)constmap[i][s]+offset)>>16)==0x1f80) {
2758       // could be FIFO, must perform the read
2759       assem_debug("(forced read)\n");
2760       tl=get_reg(i_regs->regmap,-1);
2761       assert(tl>=0);
2762     }
2763   }
2764   if(offset||s<0||c) addr=tl;
2765   else addr=s;
2766 #endif
2767   if(tl>=0) {
2768     //assert(tl>=0);
2769     //assert(rt1[i]);
2770     reglist&=~(1<<tl);
2771     if(th>=0) reglist&=~(1<<th);
2772     if(!using_tlb) {
2773       if(!c) {
2774 //#define R29_HACK 1
2775         #ifdef R29_HACK
2776         // Strmnnrmn's speed hack
2777         if(rs1[i]!=29||start<0x80001000||start>=0x80800000)
2778         #endif
2779         {
2780           emit_cmpimm(addr,0x800000);
2781           jaddr=(int)out;
2782           #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
2783           // Hint to branch predictor that the branch is unlikely to be taken
2784           if(rs1[i]>=28)
2785             emit_jno_unlikely(0);
2786           else
2787           #endif
2788           emit_jno(0);
2789         }
2790       }
2791     }else{ // using tlb
2792       int x=0;
2793       if (opcode[i]==0x20||opcode[i]==0x24) x=3; // LB/LBU
2794       if (opcode[i]==0x21||opcode[i]==0x25) x=2; // LH/LHU
2795       map=get_reg(i_regs->regmap,TLREG);
2796       assert(map>=0);
2797       map=do_tlb_r(addr,tl,map,x,-1,-1,c,constmap[i][s]+offset);
2798       do_tlb_r_branch(map,c,constmap[i][s]+offset,&jaddr);
2799     }
2800     if (opcode[i]==0x20) { // LB
2801       if(!c||memtarget) {
2802         #ifdef HOST_IMM_ADDR32
2803         if(c)
2804           emit_movsbl_tlb((constmap[i][s]+offset)^3,map,tl);
2805         else
2806         #endif
2807         {
2808           //emit_xorimm(addr,3,tl);
2809           //gen_tlb_addr_r(tl,map);
2810           //emit_movsbl_indexed((int)rdram-0x80000000,tl,tl);
2811           int x=0;
2812 #ifdef BIG_ENDIAN_MIPS
2813           if(!c) emit_xorimm(addr,3,tl);
2814           else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2815 #else
2816           if(c) x=(constmap[i][s]+offset)-(constmap[i][s]+offset);
2817           else if (tl!=addr) emit_mov(addr,tl);
2818 #endif
2819           emit_movsbl_indexed_tlb(x,tl,map,tl);
2820         }
2821         if(jaddr)
2822           add_stub(LOADB_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2823       }
2824       else
2825         inline_readstub(LOADB_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2826     }
2827     if (opcode[i]==0x21) { // LH
2828       if(!c||memtarget) {
2829         #ifdef HOST_IMM_ADDR32
2830         if(c)
2831           emit_movswl_tlb((constmap[i][s]+offset)^2,map,tl);
2832         else
2833         #endif
2834         {
2835           int x=0;
2836 #ifdef BIG_ENDIAN_MIPS
2837           if(!c) emit_xorimm(addr,2,tl);
2838           else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
2839 #else
2840           if(c) x=(constmap[i][s]+offset)-(constmap[i][s]+offset);
2841           else if (tl!=addr) emit_mov(addr,tl);
2842 #endif
2843           //#ifdef
2844           //emit_movswl_indexed_tlb(x,tl,map,tl);
2845           //else
2846           if(map>=0) {
2847             gen_tlb_addr_r(tl,map);
2848             emit_movswl_indexed(x,tl,tl);
2849           }else
2850             emit_movswl_indexed((int)rdram-0x80000000+x,tl,tl);
2851         }
2852         if(jaddr)
2853           add_stub(LOADH_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2854       }
2855       else
2856         inline_readstub(LOADH_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2857     }
2858     if (opcode[i]==0x23) { // LW
2859       if(!c||memtarget) {
2860         //emit_readword_indexed((int)rdram-0x80000000,addr,tl);
2861         #ifdef HOST_IMM_ADDR32
2862         if(c)
2863           emit_readword_tlb(constmap[i][s]+offset,map,tl);
2864         else
2865         #endif
2866         emit_readword_indexed_tlb(0,addr,map,tl);
2867         if(jaddr)
2868           add_stub(LOADW_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2869       }
2870       else
2871         inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2872     }
2873     if (opcode[i]==0x24) { // LBU
2874       if(!c||memtarget) {
2875         #ifdef HOST_IMM_ADDR32
2876         if(c)
2877           emit_movzbl_tlb((constmap[i][s]+offset)^3,map,tl);
2878         else
2879         #endif
2880         {
2881           //emit_xorimm(addr,3,tl);
2882           //gen_tlb_addr_r(tl,map);
2883           //emit_movzbl_indexed((int)rdram-0x80000000,tl,tl);
2884           int x=0;
2885 #ifdef BIG_ENDIAN_MIPS
2886           if(!c) emit_xorimm(addr,3,tl);
2887           else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2888 #else
2889           if(c) x=(constmap[i][s]+offset)-(constmap[i][s]+offset);
2890           else if (tl!=addr) emit_mov(addr,tl);
2891 #endif
2892           emit_movzbl_indexed_tlb(x,tl,map,tl);
2893         }
2894         if(jaddr)
2895           add_stub(LOADBU_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2896       }
2897       else
2898         inline_readstub(LOADBU_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2899     }
2900     if (opcode[i]==0x25) { // LHU
2901       if(!c||memtarget) {
2902         #ifdef HOST_IMM_ADDR32
2903         if(c)
2904           emit_movzwl_tlb((constmap[i][s]+offset)^2,map,tl);
2905         else
2906         #endif
2907         {
2908           int x=0;
2909 #ifdef BIG_ENDIAN_MIPS
2910           if(!c) emit_xorimm(addr,2,tl);
2911           else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
2912 #else
2913           if(c) x=(constmap[i][s]+offset)-(constmap[i][s]+offset);
2914           else if (tl!=addr) emit_mov(addr,tl);
2915 #endif
2916           //#ifdef
2917           //emit_movzwl_indexed_tlb(x,tl,map,tl);
2918           //#else
2919           if(map>=0) {
2920             gen_tlb_addr_r(tl,map);
2921             emit_movzwl_indexed(x,tl,tl);
2922           }else
2923             emit_movzwl_indexed((int)rdram-0x80000000+x,tl,tl);
2924           if(jaddr)
2925             add_stub(LOADHU_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2926         }
2927       }
2928       else
2929         inline_readstub(LOADHU_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2930     }
2931     if (opcode[i]==0x27) { // LWU
2932       assert(th>=0);
2933       if(!c||memtarget) {
2934         //emit_readword_indexed((int)rdram-0x80000000,addr,tl);
2935         #ifdef HOST_IMM_ADDR32
2936         if(c)
2937           emit_readword_tlb(constmap[i][s]+offset,map,tl);
2938         else
2939         #endif
2940         emit_readword_indexed_tlb(0,addr,map,tl);
2941         if(jaddr)
2942           add_stub(LOADW_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2943       }
2944       else {
2945         inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2946       }
2947       emit_zeroreg(th);
2948     }
2949     if (opcode[i]==0x37) { // LD
2950       if(!c||memtarget) {
2951         //gen_tlb_addr_r(tl,map);
2952         //if(th>=0) emit_readword_indexed((int)rdram-0x80000000,addr,th);
2953         //emit_readword_indexed((int)rdram-0x7FFFFFFC,addr,tl);
2954         #ifdef HOST_IMM_ADDR32
2955         if(c)
2956           emit_readdword_tlb(constmap[i][s]+offset,map,th,tl);
2957         else
2958         #endif
2959         emit_readdword_indexed_tlb(0,addr,map,th,tl);
2960         if(jaddr)
2961           add_stub(LOADD_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2962       }
2963       else
2964         inline_readstub(LOADD_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2965     }
2966     //emit_storereg(rt1[i],tl); // DEBUG
2967   }
2968   //if(opcode[i]==0x23)
2969   //if(opcode[i]==0x24)
2970   //if(opcode[i]==0x23||opcode[i]==0x24)
2971   /*if(opcode[i]==0x21||opcode[i]==0x23||opcode[i]==0x24)
2972   {
2973     //emit_pusha();
2974     save_regs(0x100f);
2975         emit_readword((int)&last_count,ECX);
2976         #ifdef __i386__
2977         if(get_reg(i_regs->regmap,CCREG)<0)
2978           emit_loadreg(CCREG,HOST_CCREG);
2979         emit_add(HOST_CCREG,ECX,HOST_CCREG);
2980         emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
2981         emit_writeword(HOST_CCREG,(int)&Count);
2982         #endif
2983         #ifdef __arm__
2984         if(get_reg(i_regs->regmap,CCREG)<0)
2985           emit_loadreg(CCREG,0);
2986         else
2987           emit_mov(HOST_CCREG,0);
2988         emit_add(0,ECX,0);
2989         emit_addimm(0,2*ccadj[i],0);
2990         emit_writeword(0,(int)&Count);
2991         #endif
2992     emit_call((int)memdebug);
2993     //emit_popa();
2994     restore_regs(0x100f);
2995   }/**/
2996 }
2997
2998 #ifndef loadlr_assemble
2999 void loadlr_assemble(int i,struct regstat *i_regs)
3000 {
3001   printf("Need loadlr_assemble for this architecture.\n");
3002   exit(1);
3003 }
3004 #endif
3005
3006 void store_assemble(int i,struct regstat *i_regs)
3007 {
3008   int s,th,tl,map=-1;
3009   int addr,temp;
3010   int offset;
3011   int jaddr=0,jaddr2,type;
3012   int memtarget=0,c=0;
3013   int agr=AGEN1+(i&1);
3014   u_int hr,reglist=0;
3015   th=get_reg(i_regs->regmap,rs2[i]|64);
3016   tl=get_reg(i_regs->regmap,rs2[i]);
3017   s=get_reg(i_regs->regmap,rs1[i]);
3018   temp=get_reg(i_regs->regmap,agr);
3019   if(temp<0) temp=get_reg(i_regs->regmap,-1);
3020   offset=imm[i];
3021   if(s>=0) {
3022     c=(i_regs->wasconst>>s)&1;
3023     memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80800000;
3024     if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
3025   }
3026   assert(tl>=0);
3027   assert(temp>=0);
3028   for(hr=0;hr<HOST_REGS;hr++) {
3029     if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3030   }
3031   if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
3032   if(offset||s<0||c) addr=temp;
3033   else addr=s;
3034   if(!using_tlb) {
3035     if(!c) {
3036       #ifdef R29_HACK
3037       // Strmnnrmn's speed hack
3038       memtarget=1;
3039       if(rs1[i]!=29||start<0x80001000||start>=0x80800000)
3040       #endif
3041       emit_cmpimm(addr,0x800000);
3042       #ifdef DESTRUCTIVE_SHIFT
3043       if(s==addr) emit_mov(s,temp);
3044       #endif
3045       #ifdef R29_HACK
3046       if(rs1[i]!=29||start<0x80001000||start>=0x80800000)
3047       #endif
3048       {
3049         jaddr=(int)out;
3050         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
3051         // Hint to branch predictor that the branch is unlikely to be taken
3052         if(rs1[i]>=28)
3053           emit_jno_unlikely(0);
3054         else
3055         #endif
3056         emit_jno(0);
3057       }
3058     }
3059   }else{ // using tlb
3060     int x=0;
3061     if (opcode[i]==0x28) x=3; // SB
3062     if (opcode[i]==0x29) x=2; // SH
3063     map=get_reg(i_regs->regmap,TLREG);
3064     assert(map>=0);
3065     map=do_tlb_w(addr,temp,map,x,c,constmap[i][s]+offset);
3066     do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr);
3067   }
3068
3069   if (opcode[i]==0x28) { // SB
3070     if(!c||memtarget) {
3071       int x=0;
3072 #ifdef BIG_ENDIAN_MIPS
3073       if(!c) emit_xorimm(addr,3,temp);
3074       else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
3075 #else
3076       if(c) x=(constmap[i][s]+offset)-(constmap[i][s]+offset);
3077       else if (addr!=temp) emit_mov(addr,temp);
3078 #endif
3079       //gen_tlb_addr_w(temp,map);
3080       //emit_writebyte_indexed(tl,(int)rdram-0x80000000,temp);
3081       emit_writebyte_indexed_tlb(tl,x,temp,map,temp);
3082     }
3083     type=STOREB_STUB;
3084   }
3085   if (opcode[i]==0x29) { // SH
3086     if(!c||memtarget) {
3087       int x=0;
3088 #ifdef BIG_ENDIAN_MIPS
3089       if(!c) emit_xorimm(addr,2,temp);
3090       else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
3091 #else
3092       if(c) x=(constmap[i][s]+offset)-(constmap[i][s]+offset);
3093       else if (addr!=temp) emit_mov(addr,temp);
3094 #endif
3095       //#ifdef
3096       //emit_writehword_indexed_tlb(tl,x,temp,map,temp);
3097       //#else
3098       if(map>=0) {
3099         gen_tlb_addr_w(temp,map);
3100         emit_writehword_indexed(tl,x,temp);
3101       }else
3102         emit_writehword_indexed(tl,(int)rdram-0x80000000+x,temp);
3103     }
3104     type=STOREH_STUB;
3105   }
3106   if (opcode[i]==0x2B) { // SW
3107     if(!c||memtarget)
3108       //emit_writeword_indexed(tl,(int)rdram-0x80000000,addr);
3109       emit_writeword_indexed_tlb(tl,0,addr,map,temp);
3110     type=STOREW_STUB;
3111   }
3112   if (opcode[i]==0x3F) { // SD
3113     if(!c||memtarget) {
3114       if(rs2[i]) {
3115         assert(th>=0);
3116         //emit_writeword_indexed(th,(int)rdram-0x80000000,addr);
3117         //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,addr);
3118         emit_writedword_indexed_tlb(th,tl,0,addr,map,temp);
3119       }else{
3120         // Store zero
3121         //emit_writeword_indexed(tl,(int)rdram-0x80000000,temp);
3122         //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,temp);
3123         emit_writedword_indexed_tlb(tl,tl,0,addr,map,temp);
3124       }
3125     }
3126     type=STORED_STUB;
3127   }
3128   if(!using_tlb&&(!c||memtarget))
3129     // addr could be a temp, make sure it survives STORE*_STUB
3130     reglist|=1<<addr;
3131   if(jaddr) {
3132     add_stub(type,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3133   } else if(!memtarget) {
3134     inline_writestub(type,i,constmap[i][s]+offset,i_regs->regmap,rs2[i],ccadj[i],reglist);
3135   }
3136   if(!using_tlb) {
3137     if(!c||memtarget) {
3138       #ifdef DESTRUCTIVE_SHIFT
3139       // The x86 shift operation is 'destructive'; it overwrites the
3140       // source register, so we need to make a copy first and use that.
3141       addr=temp;
3142       #endif
3143       #if defined(HOST_IMM8)
3144       int ir=get_reg(i_regs->regmap,INVCP);
3145       assert(ir>=0);
3146       emit_cmpmem_indexedsr12_reg(ir,addr,1);
3147       #else
3148       emit_cmpmem_indexedsr12_imm((int)invalid_code,addr,1);
3149       #endif
3150       jaddr2=(int)out;
3151       emit_jne(0);
3152       add_stub(INVCODE_STUB,jaddr2,(int)out,reglist|(1<<HOST_CCREG),addr,0,0,0);
3153     }
3154   }
3155   //if(opcode[i]==0x2B || opcode[i]==0x3F)
3156   //if(opcode[i]==0x2B || opcode[i]==0x28)
3157   //if(opcode[i]==0x2B || opcode[i]==0x29)
3158   //if(opcode[i]==0x2B)
3159   /*if(opcode[i]==0x2B || opcode[i]==0x28 || opcode[i]==0x29 || opcode[i]==0x3F)
3160   {
3161     //emit_pusha();
3162     save_regs(0x100f);
3163         emit_readword((int)&last_count,ECX);
3164         #ifdef __i386__
3165         if(get_reg(i_regs->regmap,CCREG)<0)
3166           emit_loadreg(CCREG,HOST_CCREG);
3167         emit_add(HOST_CCREG,ECX,HOST_CCREG);
3168         emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3169         emit_writeword(HOST_CCREG,(int)&Count);
3170         #endif
3171         #ifdef __arm__
3172         if(get_reg(i_regs->regmap,CCREG)<0)
3173           emit_loadreg(CCREG,0);
3174         else
3175           emit_mov(HOST_CCREG,0);
3176         emit_add(0,ECX,0);
3177         emit_addimm(0,2*ccadj[i],0);
3178         emit_writeword(0,(int)&Count);
3179         #endif
3180     emit_call((int)memdebug);
3181     //emit_popa();
3182     restore_regs(0x100f);
3183   }/**/
3184 }
3185
3186 void storelr_assemble(int i,struct regstat *i_regs)
3187 {
3188   int s,th,tl;
3189   int temp;
3190   int temp2;
3191   int offset;
3192   int jaddr=0,jaddr2;
3193   int case1,case2,case3;
3194   int done0,done1,done2;
3195   int memtarget,c=0;
3196   u_int hr,reglist=0;
3197   th=get_reg(i_regs->regmap,rs2[i]|64);
3198   tl=get_reg(i_regs->regmap,rs2[i]);
3199   s=get_reg(i_regs->regmap,rs1[i]);
3200   temp=get_reg(i_regs->regmap,-1);
3201   offset=imm[i];
3202   if(s>=0) {
3203     c=(i_regs->isconst>>s)&1;
3204     memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80800000;
3205     if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
3206   }
3207   assert(tl>=0);
3208   for(hr=0;hr<HOST_REGS;hr++) {
3209     if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3210   }
3211   if(tl>=0) {
3212     assert(temp>=0);
3213     if(!using_tlb) {
3214       if(!c) {
3215         emit_cmpimm(s<0||offset?temp:s,0x800000);
3216         if(!offset&&s!=temp) emit_mov(s,temp);
3217         jaddr=(int)out;
3218         emit_jno(0);
3219       }
3220       else
3221       {
3222         if(!memtarget||!rs1[i]) {
3223           jaddr=(int)out;
3224           emit_jmp(0);
3225         }
3226       }
3227       if((u_int)rdram!=0x80000000) 
3228         emit_addimm_no_flags((u_int)rdram-(u_int)0x80000000,temp);
3229     }else{ // using tlb
3230       int map=get_reg(i_regs->regmap,TLREG);
3231       assert(map>=0);
3232       map=do_tlb_w(c||s<0||offset?temp:s,temp,map,0,c,constmap[i][s]+offset);
3233       if(!c&&!offset&&s>=0) emit_mov(s,temp);
3234       do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr);
3235       if(!jaddr&&!memtarget) {
3236         jaddr=(int)out;
3237         emit_jmp(0);
3238       }
3239       gen_tlb_addr_w(temp,map);
3240     }
3241
3242     if (opcode[i]==0x2C||opcode[i]==0x2D) { // SDL/SDR
3243       temp2=get_reg(i_regs->regmap,FTEMP);
3244       if(!rs2[i]) temp2=th=tl;
3245     }
3246
3247 #ifndef BIG_ENDIAN_MIPS
3248     emit_xorimm(temp,3,temp);
3249 #endif
3250     emit_testimm(temp,2);
3251     case2=(int)out;
3252     emit_jne(0);
3253     emit_testimm(temp,1);
3254     case1=(int)out;
3255     emit_jne(0);
3256     // 0
3257     if (opcode[i]==0x2A) { // SWL
3258       emit_writeword_indexed(tl,0,temp);
3259     }
3260     if (opcode[i]==0x2E) { // SWR
3261       emit_writebyte_indexed(tl,3,temp);
3262     }
3263     if (opcode[i]==0x2C) { // SDL
3264       emit_writeword_indexed(th,0,temp);
3265       if(rs2[i]) emit_mov(tl,temp2);
3266     }
3267     if (opcode[i]==0x2D) { // SDR
3268       emit_writebyte_indexed(tl,3,temp);
3269       if(rs2[i]) emit_shldimm(th,tl,24,temp2);
3270     }
3271     done0=(int)out;
3272     emit_jmp(0);
3273     // 1
3274     set_jump_target(case1,(int)out);
3275     if (opcode[i]==0x2A) { // SWL
3276       // Write 3 msb into three least significant bytes
3277       if(rs2[i]) emit_rorimm(tl,8,tl);
3278       emit_writehword_indexed(tl,-1,temp);
3279       if(rs2[i]) emit_rorimm(tl,16,tl);
3280       emit_writebyte_indexed(tl,1,temp);
3281       if(rs2[i]) emit_rorimm(tl,8,tl);
3282     }
3283     if (opcode[i]==0x2E) { // SWR
3284       // Write two lsb into two most significant bytes
3285       emit_writehword_indexed(tl,1,temp);
3286     }
3287     if (opcode[i]==0x2C) { // SDL
3288       if(rs2[i]) emit_shrdimm(tl,th,8,temp2);
3289       // Write 3 msb into three least significant bytes
3290       if(rs2[i]) emit_rorimm(th,8,th);
3291       emit_writehword_indexed(th,-1,temp);
3292       if(rs2[i]) emit_rorimm(th,16,th);
3293       emit_writebyte_indexed(th,1,temp);
3294       if(rs2[i]) emit_rorimm(th,8,th);
3295     }
3296     if (opcode[i]==0x2D) { // SDR
3297       if(rs2[i]) emit_shldimm(th,tl,16,temp2);
3298       // Write two lsb into two most significant bytes
3299       emit_writehword_indexed(tl,1,temp);
3300     }
3301     done1=(int)out;
3302     emit_jmp(0);
3303     // 2
3304     set_jump_target(case2,(int)out);
3305     emit_testimm(temp,1);
3306     case3=(int)out;
3307     emit_jne(0);
3308     if (opcode[i]==0x2A) { // SWL
3309       // Write two msb into two least significant bytes
3310       if(rs2[i]) emit_rorimm(tl,16,tl);
3311       emit_writehword_indexed(tl,-2,temp);
3312       if(rs2[i]) emit_rorimm(tl,16,tl);
3313     }
3314     if (opcode[i]==0x2E) { // SWR
3315       // Write 3 lsb into three most significant bytes
3316       emit_writebyte_indexed(tl,-1,temp);
3317       if(rs2[i]) emit_rorimm(tl,8,tl);
3318       emit_writehword_indexed(tl,0,temp);
3319       if(rs2[i]) emit_rorimm(tl,24,tl);
3320     }
3321     if (opcode[i]==0x2C) { // SDL
3322       if(rs2[i]) emit_shrdimm(tl,th,16,temp2);
3323       // Write two msb into two least significant bytes
3324       if(rs2[i]) emit_rorimm(th,16,th);
3325       emit_writehword_indexed(th,-2,temp);
3326       if(rs2[i]) emit_rorimm(th,16,th);
3327     }
3328     if (opcode[i]==0x2D) { // SDR
3329       if(rs2[i]) emit_shldimm(th,tl,8,temp2);
3330       // Write 3 lsb into three most significant bytes
3331       emit_writebyte_indexed(tl,-1,temp);
3332       if(rs2[i]) emit_rorimm(tl,8,tl);
3333       emit_writehword_indexed(tl,0,temp);
3334       if(rs2[i]) emit_rorimm(tl,24,tl);
3335     }
3336     done2=(int)out;
3337     emit_jmp(0);
3338     // 3
3339     set_jump_target(case3,(int)out);
3340     if (opcode[i]==0x2A) { // SWL
3341       // Write msb into least significant byte
3342       if(rs2[i]) emit_rorimm(tl,24,tl);
3343       emit_writebyte_indexed(tl,-3,temp);
3344       if(rs2[i]) emit_rorimm(tl,8,tl);
3345     }
3346     if (opcode[i]==0x2E) { // SWR
3347       // Write entire word
3348       emit_writeword_indexed(tl,-3,temp);
3349     }
3350     if (opcode[i]==0x2C) { // SDL
3351       if(rs2[i]) emit_shrdimm(tl,th,24,temp2);
3352       // Write msb into least significant byte
3353       if(rs2[i]) emit_rorimm(th,24,th);
3354       emit_writebyte_indexed(th,-3,temp);
3355       if(rs2[i]) emit_rorimm(th,8,th);
3356     }
3357     if (opcode[i]==0x2D) { // SDR
3358       if(rs2[i]) emit_mov(th,temp2);
3359       // Write entire word
3360       emit_writeword_indexed(tl,-3,temp);
3361     }
3362     set_jump_target(done0,(int)out);
3363     set_jump_target(done1,(int)out);
3364     set_jump_target(done2,(int)out);
3365     if (opcode[i]==0x2C) { // SDL
3366       emit_testimm(temp,4);
3367       done0=(int)out;
3368       emit_jne(0);
3369       emit_andimm(temp,~3,temp);
3370       emit_writeword_indexed(temp2,4,temp);
3371       set_jump_target(done0,(int)out);
3372     }
3373     if (opcode[i]==0x2D) { // SDR
3374       emit_testimm(temp,4);
3375       done0=(int)out;
3376       emit_jeq(0);
3377       emit_andimm(temp,~3,temp);
3378       emit_writeword_indexed(temp2,-4,temp);
3379       set_jump_target(done0,(int)out);
3380     }
3381     if(!c||!memtarget)
3382       add_stub(STORELR_STUB,jaddr,(int)out,0,(int)i_regs,rs2[i],ccadj[i],reglist);
3383   }
3384   if(!using_tlb) {
3385     emit_addimm_no_flags((u_int)0x80000000-(u_int)rdram,temp);
3386     #if defined(HOST_IMM8)
3387     int ir=get_reg(i_regs->regmap,INVCP);
3388     assert(ir>=0);
3389     emit_cmpmem_indexedsr12_reg(ir,temp,1);
3390     #else
3391     emit_cmpmem_indexedsr12_imm((int)invalid_code,temp,1);
3392     #endif
3393     jaddr2=(int)out;
3394     emit_jne(0);
3395     add_stub(INVCODE_STUB,jaddr2,(int)out,reglist|(1<<HOST_CCREG),temp,0,0,0);
3396   }
3397   /*
3398     emit_pusha();
3399     //save_regs(0x100f);
3400         emit_readword((int)&last_count,ECX);
3401         if(get_reg(i_regs->regmap,CCREG)<0)
3402           emit_loadreg(CCREG,HOST_CCREG);
3403         emit_add(HOST_CCREG,ECX,HOST_CCREG);
3404         emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3405         emit_writeword(HOST_CCREG,(int)&Count);
3406     emit_call((int)memdebug);
3407     emit_popa();
3408     //restore_regs(0x100f);
3409   /**/
3410 }
3411
3412 void c1ls_assemble(int i,struct regstat *i_regs)
3413 {
3414 #ifndef DISABLE_COP1
3415   int s,th,tl;
3416   int temp,ar;
3417   int map=-1;
3418   int offset;
3419   int c=0;
3420   int jaddr,jaddr2=0,jaddr3,type;
3421   int agr=AGEN1+(i&1);
3422   u_int hr,reglist=0;
3423   th=get_reg(i_regs->regmap,FTEMP|64);
3424   tl=get_reg(i_regs->regmap,FTEMP);
3425   s=get_reg(i_regs->regmap,rs1[i]);
3426   temp=get_reg(i_regs->regmap,agr);
3427   if(temp<0) temp=get_reg(i_regs->regmap,-1);
3428   offset=imm[i];
3429   assert(tl>=0);
3430   assert(rs1[i]>0);
3431   assert(temp>=0);
3432   for(hr=0;hr<HOST_REGS;hr++) {
3433     if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3434   }
3435   if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
3436   if (opcode[i]==0x31||opcode[i]==0x35) // LWC1/LDC1
3437   {
3438     // Loads use a temporary register which we need to save
3439     reglist|=1<<temp;
3440   }
3441   if (opcode[i]==0x39||opcode[i]==0x3D) // SWC1/SDC1
3442     ar=temp;
3443   else // LWC1/LDC1
3444     ar=tl;
3445   //if(s<0) emit_loadreg(rs1[i],ar); //address_generation does this now
3446   //else c=(i_regs->wasconst>>s)&1;
3447   if(s>=0) c=(i_regs->wasconst>>s)&1;
3448   // Check cop1 unusable
3449   if(!cop1_usable) {
3450     signed char rs=get_reg(i_regs->regmap,CSREG);
3451     assert(rs>=0);
3452     emit_testimm(rs,0x20000000);
3453     jaddr=(int)out;
3454     emit_jeq(0);
3455     add_stub(FP_STUB,jaddr,(int)out,i,rs,(int)i_regs,is_delayslot,0);
3456     cop1_usable=1;
3457   }
3458   if (opcode[i]==0x39) { // SWC1 (get float address)
3459     emit_readword((int)&reg_cop1_simple[(source[i]>>16)&0x1f],tl);
3460   }
3461   if (opcode[i]==0x3D) { // SDC1 (get double address)
3462     emit_readword((int)&reg_cop1_double[(source[i]>>16)&0x1f],tl);
3463   }
3464   // Generate address + offset
3465   if(!using_tlb) {
3466     if(!c)
3467       emit_cmpimm(offset||c||s<0?ar:s,0x800000);
3468   }
3469   else
3470   {
3471     map=get_reg(i_regs->regmap,TLREG);
3472     assert(map>=0);
3473     if (opcode[i]==0x31||opcode[i]==0x35) { // LWC1/LDC1
3474       map=do_tlb_r(offset||c||s<0?ar:s,ar,map,0,-1,-1,c,constmap[i][s]+offset);
3475     }
3476     if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3477       map=do_tlb_w(offset||c||s<0?ar:s,ar,map,0,c,constmap[i][s]+offset);
3478     }
3479   }
3480   if (opcode[i]==0x39) { // SWC1 (read float)
3481     emit_readword_indexed(0,tl,tl);
3482   }
3483   if (opcode[i]==0x3D) { // SDC1 (read double)
3484     emit_readword_indexed(4,tl,th);
3485     emit_readword_indexed(0,tl,tl);
3486   }
3487   if (opcode[i]==0x31) { // LWC1 (get target address)
3488     emit_readword((int)&reg_cop1_simple[(source[i]>>16)&0x1f],temp);
3489   }
3490   if (opcode[i]==0x35) { // LDC1 (get target address)
3491     emit_readword((int)&reg_cop1_double[(source[i]>>16)&0x1f],temp);
3492   }
3493   if(!using_tlb) {
3494     if(!c) {
3495       jaddr2=(int)out;
3496       emit_jno(0);
3497     }
3498     else if(((signed int)(constmap[i][s]+offset))>=(signed int)0x80800000) {
3499       jaddr2=(int)out;
3500       emit_jmp(0); // inline_readstub/inline_writestub?  Very rare case
3501     }
3502     #ifdef DESTRUCTIVE_SHIFT
3503     if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3504       if(!offset&&!c&&s>=0) emit_mov(s,ar);
3505     }
3506     #endif
3507   }else{
3508     if (opcode[i]==0x31||opcode[i]==0x35) { // LWC1/LDC1
3509       do_tlb_r_branch(map,c,constmap[i][s]+offset,&jaddr2);
3510     }
3511     if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3512       do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr2);
3513     }
3514   }
3515   if (opcode[i]==0x31) { // LWC1
3516     //if(s>=0&&!c&&!offset) emit_mov(s,tl);
3517     //gen_tlb_addr_r(ar,map);
3518     //emit_readword_indexed((int)rdram-0x80000000,tl,tl);
3519     #ifdef HOST_IMM_ADDR32
3520     if(c) emit_readword_tlb(constmap[i][s]+offset,map,tl);
3521     else
3522     #endif
3523     emit_readword_indexed_tlb(0,offset||c||s<0?tl:s,map,tl);
3524     type=LOADW_STUB;
3525   }
3526   if (opcode[i]==0x35) { // LDC1
3527     assert(th>=0);
3528     //if(s>=0&&!c&&!offset) emit_mov(s,tl);
3529     //gen_tlb_addr_r(ar,map);
3530     //emit_readword_indexed((int)rdram-0x80000000,tl,th);
3531     //emit_readword_indexed((int)rdram-0x7FFFFFFC,tl,tl);
3532     #ifdef HOST_IMM_ADDR32
3533     if(c) emit_readdword_tlb(constmap[i][s]+offset,map,th,tl);
3534     else
3535     #endif
3536     emit_readdword_indexed_tlb(0,offset||c||s<0?tl:s,map,th,tl);
3537     type=LOADD_STUB;
3538   }
3539   if (opcode[i]==0x39) { // SWC1
3540     //emit_writeword_indexed(tl,(int)rdram-0x80000000,temp);
3541     emit_writeword_indexed_tlb(tl,0,offset||c||s<0?temp:s,map,temp);
3542     type=STOREW_STUB;
3543   }
3544   if (opcode[i]==0x3D) { // SDC1
3545     assert(th>=0);
3546     //emit_writeword_indexed(th,(int)rdram-0x80000000,temp);
3547     //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,temp);
3548     emit_writedword_indexed_tlb(th,tl,0,offset||c||s<0?temp:s,map,temp);
3549     type=STORED_STUB;
3550   }
3551   if(!using_tlb) {
3552     if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
3553       #ifndef DESTRUCTIVE_SHIFT
3554       temp=offset||c||s<0?ar:s;
3555       #endif
3556       #if defined(HOST_IMM8)
3557       int ir=get_reg(i_regs->regmap,INVCP);
3558       assert(ir>=0);
3559       emit_cmpmem_indexedsr12_reg(ir,temp,1);
3560       #else
3561       emit_cmpmem_indexedsr12_imm((int)invalid_code,temp,1);
3562       #endif
3563       jaddr3=(int)out;
3564       emit_jne(0);
3565       add_stub(INVCODE_STUB,jaddr3,(int)out,reglist|(1<<HOST_CCREG),temp,0,0,0);
3566     }
3567   }
3568   if(jaddr2) add_stub(type,jaddr2,(int)out,i,offset||c||s<0?ar:s,(int)i_regs,ccadj[i],reglist);
3569   if (opcode[i]==0x31) { // LWC1 (write float)
3570     emit_writeword_indexed(tl,0,temp);
3571   }
3572   if (opcode[i]==0x35) { // LDC1 (write double)
3573     emit_writeword_indexed(th,4,temp);
3574     emit_writeword_indexed(tl,0,temp);
3575   }
3576   //if(opcode[i]==0x39)
3577   /*if(opcode[i]==0x39||opcode[i]==0x31)
3578   {
3579     emit_pusha();
3580         emit_readword((int)&last_count,ECX);
3581         if(get_reg(i_regs->regmap,CCREG)<0)
3582           emit_loadreg(CCREG,HOST_CCREG);
3583         emit_add(HOST_CCREG,ECX,HOST_CCREG);
3584         emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3585         emit_writeword(HOST_CCREG,(int)&Count);
3586     emit_call((int)memdebug);
3587     emit_popa();
3588   }/**/
3589 #else
3590   cop1_unusable(i, i_regs);
3591 #endif
3592 }
3593
3594 void c2ls_assemble(int i,struct regstat *i_regs)
3595 {
3596   int s,tl;
3597   int ar;
3598   int offset;
3599   int c=0;
3600   int jaddr,jaddr2=0,jaddr3,type;
3601   int agr=AGEN1+(i&1);
3602   u_int hr,reglist=0;
3603   u_int copr=(source[i]>>16)&0x1f;
3604   s=get_reg(i_regs->regmap,rs1[i]);
3605   tl=get_reg(i_regs->regmap,FTEMP);
3606   offset=imm[i];
3607   assert(rs1[i]>0);
3608   assert(tl>=0);
3609   assert(!using_tlb);
3610
3611   for(hr=0;hr<HOST_REGS;hr++) {
3612     if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3613   }
3614   if(i_regs->regmap[HOST_CCREG]==CCREG)
3615     reglist&=~(1<<HOST_CCREG);
3616
3617   // get the address
3618   if (opcode[i]==0x3a) { // SWC2
3619     ar=get_reg(i_regs->regmap,agr);
3620     if(ar<0) ar=get_reg(i_regs->regmap,-1);
3621     reglist|=1<<ar;
3622   } else { // LWC2
3623     ar=tl;
3624   }
3625   if (!offset&&!c&&s>=0) ar=s;
3626   assert(ar>=0);
3627
3628   if (opcode[i]==0x3a) { // SWC2
3629     cop2_get_dreg(copr,tl,HOST_TEMPREG);
3630   }
3631   if(s>=0) c=(i_regs->wasconst>>s)&1;
3632   if(!c) {
3633     emit_cmpimm(offset||c||s<0?ar:s,0x800000);
3634     jaddr2=(int)out;
3635     emit_jno(0);
3636   }
3637   else if(((signed int)(constmap[i][s]+offset))>=(signed int)0x80800000) {
3638     jaddr2=(int)out;
3639     emit_jmp(0); // inline_readstub/inline_writestub?  Very rare case
3640   }
3641   if (opcode[i]==0x32) { // LWC2
3642     #ifdef HOST_IMM_ADDR32
3643     if(c) emit_readword_tlb(constmap[i][s]+offset,-1,tl);
3644     else
3645     #endif
3646     emit_readword_indexed(0,ar,tl);
3647     type=LOADW_STUB;
3648   }
3649   if (opcode[i]==0x3a) { // SWC2
3650 #ifdef DESTRUCTIVE_SHIFT
3651     if(!offset&&!c&&s>=0) emit_mov(s,ar);
3652 #endif
3653     emit_writeword_indexed(tl,0,ar);
3654     type=STOREW_STUB;
3655   }
3656   if(jaddr2)
3657     add_stub(type,jaddr2,(int)out,i,ar,(int)i_regs,ccadj[i],reglist);
3658   if (opcode[i]==0x3a) { // SWC2
3659 #if defined(HOST_IMM8)
3660     int ir=get_reg(i_regs->regmap,INVCP);
3661     assert(ir>=0);
3662     emit_cmpmem_indexedsr12_reg(ir,ar,1);
3663 #else
3664     emit_cmpmem_indexedsr12_imm((int)invalid_code,ar,1);
3665 #endif
3666     jaddr3=(int)out;
3667     emit_jne(0);
3668     add_stub(INVCODE_STUB,jaddr3,(int)out,reglist|(1<<HOST_CCREG),ar,0,0,0);
3669   }
3670   if (opcode[i]==0x32) { // LWC2
3671     cop2_put_dreg(copr,tl,HOST_TEMPREG);
3672   }
3673 }
3674
3675 #ifndef multdiv_assemble
3676 void multdiv_assemble(int i,struct regstat *i_regs)
3677 {
3678   printf("Need multdiv_assemble for this architecture.\n");
3679   exit(1);
3680 }
3681 #endif
3682
3683 void mov_assemble(int i,struct regstat *i_regs)
3684 {
3685   //if(opcode2[i]==0x10||opcode2[i]==0x12) { // MFHI/MFLO
3686   //if(opcode2[i]==0x11||opcode2[i]==0x13) { // MTHI/MTLO
3687   assert(rt1[i]>0);
3688   if(rt1[i]) {
3689     signed char sh,sl,th,tl;
3690     th=get_reg(i_regs->regmap,rt1[i]|64);
3691     tl=get_reg(i_regs->regmap,rt1[i]);
3692     //assert(tl>=0);
3693     if(tl>=0) {
3694       sh=get_reg(i_regs->regmap,rs1[i]|64);
3695       sl=get_reg(i_regs->regmap,rs1[i]);
3696       if(sl>=0) emit_mov(sl,tl);
3697       else emit_loadreg(rs1[i],tl);
3698       if(th>=0) {
3699         if(sh>=0) emit_mov(sh,th);
3700         else emit_loadreg(rs1[i]|64,th);
3701       }
3702     }
3703   }
3704 }
3705
3706 #ifndef fconv_assemble
3707 void fconv_assemble(int i,struct regstat *i_regs)
3708 {
3709   printf("Need fconv_assemble for this architecture.\n");
3710   exit(1);
3711 }
3712 #endif
3713
3714 #if 0
3715 void float_assemble(int i,struct regstat *i_regs)
3716 {
3717   printf("Need float_assemble for this architecture.\n");
3718   exit(1);
3719 }
3720 #endif
3721
3722 void syscall_assemble(int i,struct regstat *i_regs)
3723 {
3724   signed char ccreg=get_reg(i_regs->regmap,CCREG);
3725   assert(ccreg==HOST_CCREG);
3726   assert(!is_delayslot);
3727   emit_movimm(start+i*4,EAX); // Get PC
3728   emit_addimm(HOST_CCREG,CLOCK_DIVIDER*ccadj[i],HOST_CCREG); // CHECK: is this right?  There should probably be an extra cycle...
3729   emit_jmp((int)jump_syscall_hle); // XXX
3730 }
3731
3732 void hlecall_assemble(int i,struct regstat *i_regs)
3733 {
3734   signed char ccreg=get_reg(i_regs->regmap,CCREG);
3735   assert(ccreg==HOST_CCREG);
3736   assert(!is_delayslot);
3737   emit_movimm(start+i*4+4,0); // Get PC
3738   emit_movimm((int)psxHLEt[source[i]&7],1);
3739   emit_addimm(HOST_CCREG,CLOCK_DIVIDER*ccadj[i],HOST_CCREG); // XXX
3740   emit_jmp((int)jump_hlecall);
3741 }
3742
3743 void ds_assemble(int i,struct regstat *i_regs)
3744 {
3745   is_delayslot=1;
3746   switch(itype[i]) {
3747     case ALU:
3748       alu_assemble(i,i_regs);break;
3749     case IMM16:
3750       imm16_assemble(i,i_regs);break;
3751     case SHIFT:
3752       shift_assemble(i,i_regs);break;
3753     case SHIFTIMM:
3754       shiftimm_assemble(i,i_regs);break;
3755     case LOAD:
3756       load_assemble(i,i_regs);break;
3757     case LOADLR:
3758       loadlr_assemble(i,i_regs);break;
3759     case STORE:
3760       store_assemble(i,i_regs);break;
3761     case STORELR:
3762       storelr_assemble(i,i_regs);break;
3763     case COP0:
3764       cop0_assemble(i,i_regs);break;
3765     case COP1:
3766       cop1_assemble(i,i_regs);break;
3767     case C1LS:
3768       c1ls_assemble(i,i_regs);break;
3769     case COP2:
3770       cop2_assemble(i,i_regs);break;
3771     case C2LS:
3772       c2ls_assemble(i,i_regs);break;
3773     case C2OP:
3774       c2op_assemble(i,i_regs);break;
3775     case FCONV:
3776       fconv_assemble(i,i_regs);break;
3777     case FLOAT:
3778       float_assemble(i,i_regs);break;
3779     case FCOMP:
3780       fcomp_assemble(i,i_regs);break;
3781     case MULTDIV:
3782       multdiv_assemble(i,i_regs);break;
3783     case MOV:
3784       mov_assemble(i,i_regs);break;
3785     case SYSCALL:
3786     case HLECALL:
3787     case SPAN:
3788     case UJUMP:
3789     case RJUMP:
3790     case CJUMP:
3791     case SJUMP:
3792     case FJUMP:
3793       printf("Jump in the delay slot.  This is probably a bug.\n");
3794   }
3795   is_delayslot=0;
3796 }
3797
3798 // Is the branch target a valid internal jump?
3799 int internal_branch(uint64_t i_is32,int addr)
3800 {
3801   if(addr&1) return 0; // Indirect (register) jump
3802   if(addr>=start && addr<start+slen*4-4)
3803   {
3804     int t=(addr-start)>>2;
3805     // Delay slots are not valid branch targets
3806     //if(t>0&&(itype[t-1]==RJUMP||itype[t-1]==UJUMP||itype[t-1]==CJUMP||itype[t-1]==SJUMP||itype[t-1]==FJUMP)) return 0;
3807     // 64 -> 32 bit transition requires a recompile
3808     /*if(is32[t]&~unneeded_reg_upper[t]&~i_is32)
3809     {
3810       if(requires_32bit[t]&~i_is32) printf("optimizable: no\n");
3811       else printf("optimizable: yes\n");
3812     }*/
3813     //if(is32[t]&~unneeded_reg_upper[t]&~i_is32) return 0;
3814     if(requires_32bit[t]&~i_is32) return 0;
3815     else return 1;
3816   }
3817   return 0;
3818 }
3819
3820 #ifndef wb_invalidate
3821 void wb_invalidate(signed char pre[],signed char entry[],uint64_t dirty,uint64_t is32,
3822   uint64_t u,uint64_t uu)
3823 {
3824   int hr;
3825   for(hr=0;hr<HOST_REGS;hr++) {
3826     if(hr!=EXCLUDE_REG) {
3827       if(pre[hr]!=entry[hr]) {
3828         if(pre[hr]>=0) {
3829           if((dirty>>hr)&1) {
3830             if(get_reg(entry,pre[hr])<0) {
3831               if(pre[hr]<64) {
3832                 if(!((u>>pre[hr])&1)) {
3833                   emit_storereg(pre[hr],hr);
3834                   if( ((is32>>pre[hr])&1) && !((uu>>pre[hr])&1) ) {
3835                     emit_sarimm(hr,31,hr);
3836                     emit_storereg(pre[hr]|64,hr);
3837                   }
3838                 }
3839               }else{
3840                 if(!((uu>>(pre[hr]&63))&1) && !((is32>>(pre[hr]&63))&1)) {
3841                   emit_storereg(pre[hr],hr);
3842                 }
3843               }
3844             }
3845           }
3846         }
3847       }
3848     }
3849   }
3850   // Move from one register to another (no writeback)
3851   for(hr=0;hr<HOST_REGS;hr++) {
3852     if(hr!=EXCLUDE_REG) {
3853       if(pre[hr]!=entry[hr]) {
3854         if(pre[hr]>=0&&(pre[hr]&63)<TEMPREG) {
3855           int nr;
3856           if((nr=get_reg(entry,pre[hr]))>=0) {
3857             emit_mov(hr,nr);
3858           }
3859         }
3860       }
3861     }
3862   }
3863 }
3864 #endif
3865
3866 // Load the specified registers
3867 // This only loads the registers given as arguments because
3868 // we don't want to load things that will be overwritten
3869 void load_regs(signed char entry[],signed char regmap[],int is32,int rs1,int rs2)
3870 {
3871   int hr;
3872   // Load 32-bit regs
3873   for(hr=0;hr<HOST_REGS;hr++) {
3874     if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
3875       if(entry[hr]!=regmap[hr]) {
3876         if(regmap[hr]==rs1||regmap[hr]==rs2)
3877         {
3878           if(regmap[hr]==0) {
3879             emit_zeroreg(hr);
3880           }
3881           else
3882           {
3883             emit_loadreg(regmap[hr],hr);
3884           }
3885         }
3886       }
3887     }
3888   }
3889   //Load 64-bit regs
3890   for(hr=0;hr<HOST_REGS;hr++) {
3891     if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
3892       if(entry[hr]!=regmap[hr]) {
3893         if(regmap[hr]-64==rs1||regmap[hr]-64==rs2)
3894         {
3895           assert(regmap[hr]!=64);
3896           if((is32>>(regmap[hr]&63))&1) {
3897             int lr=get_reg(regmap,regmap[hr]-64);
3898             if(lr>=0)
3899               emit_sarimm(lr,31,hr);
3900             else
3901               emit_loadreg(regmap[hr],hr);
3902           }
3903           else
3904           {
3905             emit_loadreg(regmap[hr],hr);
3906           }
3907         }
3908       }
3909     }
3910   }
3911 }
3912
3913 // Load registers prior to the start of a loop
3914 // so that they are not loaded within the loop
3915 static void loop_preload(signed char pre[],signed char entry[])
3916 {
3917   int hr;
3918   for(hr=0;hr<HOST_REGS;hr++) {
3919     if(hr!=EXCLUDE_REG) {
3920       if(pre[hr]!=entry[hr]) {
3921         if(entry[hr]>=0) {
3922           if(get_reg(pre,entry[hr])<0) {
3923             assem_debug("loop preload:\n");
3924             //printf("loop preload: %d\n",hr);
3925             if(entry[hr]==0) {
3926               emit_zeroreg(hr);
3927             }
3928             else if(entry[hr]<TEMPREG)
3929             {
3930               emit_loadreg(entry[hr],hr);
3931             }
3932             else if(entry[hr]-64<TEMPREG)
3933             {
3934               emit_loadreg(entry[hr],hr);
3935             }
3936           }
3937         }
3938       }
3939     }
3940   }
3941 }
3942
3943 // Generate address for load/store instruction
3944 // goes to AGEN for writes, FTEMP for LOADLR and cop1/2 loads
3945 void address_generation(int i,struct regstat *i_regs,signed char entry[])
3946 {
3947   if(itype[i]==LOAD||itype[i]==LOADLR||itype[i]==STORE||itype[i]==STORELR||itype[i]==C1LS||itype[i]==C2LS) {
3948     int ra;
3949     int agr=AGEN1+(i&1);
3950     int mgr=MGEN1+(i&1);
3951     if(itype[i]==LOAD) {
3952       ra=get_reg(i_regs->regmap,rt1[i]);
3953       //if(rt1[i]) assert(ra>=0);
3954     }
3955     if(itype[i]==LOADLR) {
3956       ra=get_reg(i_regs->regmap,FTEMP);
3957     }
3958     if(itype[i]==STORE||itype[i]==STORELR) {
3959       ra=get_reg(i_regs->regmap,agr);
3960       if(ra<0) ra=get_reg(i_regs->regmap,-1);
3961     }
3962     if(itype[i]==C1LS||itype[i]==C2LS) {
3963       if ((opcode[i]&0x3b)==0x31||(opcode[i]&0x3b)==0x32) // LWC1/LDC1/LWC2/LDC2
3964         ra=get_reg(i_regs->regmap,FTEMP);
3965       else { // SWC1/SDC1
3966         ra=get_reg(i_regs->regmap,agr);
3967         if(ra<0) ra=get_reg(i_regs->regmap,-1);
3968       }
3969     }
3970     int rs=get_reg(i_regs->regmap,rs1[i]);
3971     int rm=get_reg(i_regs->regmap,TLREG);
3972     if(ra>=0) {
3973       int offset=imm[i];
3974       int c=(i_regs->wasconst>>rs)&1;
3975       if(rs1[i]==0) {
3976         // Using r0 as a base address
3977         /*if(rm>=0) {
3978           if(!entry||entry[rm]!=mgr) {
3979             generate_map_const(offset,rm);
3980           } // else did it in the previous cycle
3981         }*/
3982         if(!entry||entry[ra]!=agr) {
3983           if (opcode[i]==0x22||opcode[i]==0x26) {
3984             emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
3985           }else if (opcode[i]==0x1a||opcode[i]==0x1b) {
3986             emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
3987           }else{
3988             emit_movimm(offset,ra);
3989           }
3990         } // else did it in the previous cycle
3991       }
3992       else if(rs<0) {
3993         if(!entry||entry[ra]!=rs1[i])
3994           emit_loadreg(rs1[i],ra);
3995         //if(!entry||entry[ra]!=rs1[i])
3996         //  printf("poor load scheduling!\n");
3997       }
3998       else if(c) {
3999         if(rm>=0) {
4000           if(!entry||entry[rm]!=mgr) {
4001             if(itype[i]==STORE||itype[i]==STORELR||(opcode[i]&0x3b)==0x39||(opcode[i]&0x3b)==0x3a) {
4002               // Stores to memory go thru the mapper to detect self-modifying
4003               // code, loads don't.
4004               if((unsigned int)(constmap[i][rs]+offset)>=0xC0000000 ||
4005                  (unsigned int)(constmap[i][rs]+offset)<0x80800000 )
4006                 generate_map_const(constmap[i][rs]+offset,rm);
4007             }else{
4008               if((signed int)(constmap[i][rs]+offset)>=(signed int)0xC0000000)
4009                 generate_map_const(constmap[i][rs]+offset,rm);
4010             }
4011           }
4012         }
4013         if(rs1[i]!=rt1[i]||itype[i]!=LOAD) {
4014           if(!entry||entry[ra]!=agr) {
4015             if (opcode[i]==0x22||opcode[i]==0x26) {
4016               emit_movimm((constmap[i][rs]+offset)&0xFFFFFFFC,ra); // LWL/LWR
4017             }else if (opcode[i]==0x1a||opcode[i]==0x1b) {
4018               emit_movimm((constmap[i][rs]+offset)&0xFFFFFFF8,ra); // LDL/LDR
4019             }else{
4020               #ifdef HOST_IMM_ADDR32
4021               if((itype[i]!=LOAD&&(opcode[i]&0x3b)!=0x31&&(opcode[i]&0x3b)!=0x32) || // LWC1/LDC1/LWC2/LDC2
4022                  (using_tlb&&((signed int)constmap[i][rs]+offset)>=(signed int)0xC0000000))
4023               #endif
4024               emit_movimm(constmap[i][rs]+offset,ra);
4025             }
4026           } // else did it in the previous cycle
4027         } // else load_consts already did it
4028       }
4029       if(offset&&!c&&rs1[i]) {
4030         if(rs>=0) {
4031           emit_addimm(rs,offset,ra);
4032         }else{
4033           emit_addimm(ra,offset,ra);
4034         }
4035       }
4036     }
4037   }
4038   // Preload constants for next instruction
4039   if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS||itype[i+1]==C2LS) {
4040     int agr,ra;
4041     #ifndef HOST_IMM_ADDR32
4042     // Mapper entry
4043     agr=MGEN1+((i+1)&1);
4044     ra=get_reg(i_regs->regmap,agr);
4045     if(ra>=0) {
4046       int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
4047       int offset=imm[i+1];
4048       int c=(regs[i+1].wasconst>>rs)&1;
4049       if(c) {
4050         if(itype[i+1]==STORE||itype[i+1]==STORELR
4051            ||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1, SWC2/SDC2
4052           // Stores to memory go thru the mapper to detect self-modifying
4053           // code, loads don't.
4054           if((unsigned int)(constmap[i+1][rs]+offset)>=0xC0000000 ||
4055              (unsigned int)(constmap[i+1][rs]+offset)<0x80800000 )
4056             generate_map_const(constmap[i+1][rs]+offset,ra);
4057         }else{
4058           if((signed int)(constmap[i+1][rs]+offset)>=(signed int)0xC0000000)
4059             generate_map_const(constmap[i+1][rs]+offset,ra);
4060         }
4061       }
4062       /*else if(rs1[i]==0) {
4063         generate_map_const(offset,ra);
4064       }*/
4065     }
4066     #endif
4067     // Actual address
4068     agr=AGEN1+((i+1)&1);
4069     ra=get_reg(i_regs->regmap,agr);
4070     if(ra>=0) {
4071       int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
4072       int offset=imm[i+1];
4073       int c=(regs[i+1].wasconst>>rs)&1;
4074       if(c&&(rs1[i+1]!=rt1[i+1]||itype[i+1]!=LOAD)) {
4075         if (opcode[i+1]==0x22||opcode[i+1]==0x26) {
4076           emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFFC,ra); // LWL/LWR
4077         }else if (opcode[i+1]==0x1a||opcode[i+1]==0x1b) {
4078           emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFF8,ra); // LDL/LDR
4079         }else{
4080           #ifdef HOST_IMM_ADDR32
4081           if((itype[i+1]!=LOAD&&(opcode[i+1]&0x3b)!=0x31&&(opcode[i+1]&0x3b)!=0x32) || // LWC1/LDC1/LWC2/LDC2
4082              (using_tlb&&((signed int)constmap[i+1][rs]+offset)>=(signed int)0xC0000000))
4083           #endif
4084           emit_movimm(constmap[i+1][rs]+offset,ra);
4085         }
4086       }
4087       else if(rs1[i+1]==0) {
4088         // Using r0 as a base address
4089         if (opcode[i+1]==0x22||opcode[i+1]==0x26) {
4090           emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
4091         }else if (opcode[i+1]==0x1a||opcode[i+1]==0x1b) {
4092           emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
4093         }else{
4094           emit_movimm(offset,ra);
4095         }
4096       }
4097     }
4098   }
4099 }
4100
4101 int get_final_value(int hr, int i, int *value)
4102 {
4103   int reg=regs[i].regmap[hr];
4104   while(i<slen-1) {
4105     if(regs[i+1].regmap[hr]!=reg) break;
4106     if(!((regs[i+1].isconst>>hr)&1)) break;
4107     if(bt[i+1]) break;
4108     i++;
4109   }
4110   if(i<slen-1) {
4111     if(itype[i]==UJUMP||itype[i]==RJUMP||itype[i]==CJUMP||itype[i]==SJUMP) {
4112       *value=constmap[i][hr];
4113       return 1;
4114     }
4115     if(!bt[i+1]) {
4116       if(itype[i+1]==UJUMP||itype[i+1]==RJUMP||itype[i+1]==CJUMP||itype[i+1]==SJUMP) {
4117         // Load in delay slot, out-of-order execution
4118         if(itype[i+2]==LOAD&&rs1[i+2]==reg&&rt1[i+2]==reg&&((regs[i+1].wasconst>>hr)&1))
4119         {
4120           #ifdef HOST_IMM_ADDR32
4121           if(!using_tlb||((signed int)constmap[i][hr]+imm[i+2])<(signed int)0xC0000000) return 0;
4122           #endif
4123           // Precompute load address
4124           *value=constmap[i][hr]+imm[i+2];
4125           return 1;
4126         }
4127       }
4128       if(itype[i+1]==LOAD&&rs1[i+1]==reg&&rt1[i+1]==reg)
4129       {
4130         #ifdef HOST_IMM_ADDR32
4131         if(!using_tlb||((signed int)constmap[i][hr]+imm[i+1])<(signed int)0xC0000000) return 0;
4132         #endif
4133         // Precompute load address
4134         *value=constmap[i][hr]+imm[i+1];
4135         //printf("c=%x imm=%x\n",(int)constmap[i][hr],imm[i+1]);
4136         return 1;
4137       }
4138     }
4139   }
4140   *value=constmap[i][hr];
4141   //printf("c=%x\n",(int)constmap[i][hr]);
4142   if(i==slen-1) return 1;
4143   if(reg<64) {
4144     return !((unneeded_reg[i+1]>>reg)&1);
4145   }else{
4146     return !((unneeded_reg_upper[i+1]>>reg)&1);
4147   }
4148 }
4149
4150 // Load registers with known constants
4151 void load_consts(signed char pre[],signed char regmap[],int is32,int i)
4152 {
4153   int hr;
4154   // Load 32-bit regs
4155   for(hr=0;hr<HOST_REGS;hr++) {
4156     if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4157       //if(entry[hr]!=regmap[hr]) {
4158       if(i==0||!((regs[i-1].isconst>>hr)&1)||pre[hr]!=regmap[hr]||bt[i]) {
4159         if(((regs[i].isconst>>hr)&1)&&regmap[hr]<64&&regmap[hr]>0) {
4160           int value;
4161           if(get_final_value(hr,i,&value)) {
4162             if(value==0) {
4163               emit_zeroreg(hr);
4164             }
4165             else {
4166               emit_movimm(value,hr);
4167             }
4168           }
4169         }
4170       }
4171     }
4172   }
4173   // Load 64-bit regs
4174   for(hr=0;hr<HOST_REGS;hr++) {
4175     if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
4176       //if(entry[hr]!=regmap[hr]) {
4177       if(i==0||!((regs[i-1].isconst>>hr)&1)||pre[hr]!=regmap[hr]||bt[i]) {
4178         if(((regs[i].isconst>>hr)&1)&&regmap[hr]>64) {
4179           if((is32>>(regmap[hr]&63))&1) {
4180             int lr=get_reg(regmap,regmap[hr]-64);
4181             assert(lr>=0);
4182             emit_sarimm(lr,31,hr);
4183           }
4184           else
4185           {
4186             int value;
4187             if(get_final_value(hr,i,&value)) {
4188               if(value==0) {
4189                 emit_zeroreg(hr);
4190               }
4191               else {
4192                 emit_movimm(value,hr);
4193               }
4194             }
4195           }
4196         }
4197       }
4198     }
4199   }
4200 }
4201 void load_all_consts(signed char regmap[],int is32,u_int dirty,int i)
4202 {
4203   int hr;
4204   // Load 32-bit regs
4205   for(hr=0;hr<HOST_REGS;hr++) {
4206     if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((dirty>>hr)&1)) {
4207       if(((regs[i].isconst>>hr)&1)&&regmap[hr]<64&&regmap[hr]>0) {
4208         int value=constmap[i][hr];
4209         if(value==0) {
4210           emit_zeroreg(hr);
4211         }
4212         else {
4213           emit_movimm(value,hr);
4214         }
4215       }
4216     }
4217   }
4218   // Load 64-bit regs
4219   for(hr=0;hr<HOST_REGS;hr++) {
4220     if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((dirty>>hr)&1)) {
4221       if(((regs[i].isconst>>hr)&1)&&regmap[hr]>64) {
4222         if((is32>>(regmap[hr]&63))&1) {
4223           int lr=get_reg(regmap,regmap[hr]-64);
4224           assert(lr>=0);
4225           emit_sarimm(lr,31,hr);
4226         }
4227         else
4228         {
4229           int value=constmap[i][hr];
4230           if(value==0) {
4231             emit_zeroreg(hr);
4232           }
4233           else {
4234             emit_movimm(value,hr);
4235           }
4236         }
4237       }
4238     }
4239   }
4240 }
4241
4242 // Write out all dirty registers (except cycle count)
4243 void wb_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty)
4244 {
4245   int hr;
4246   for(hr=0;hr<HOST_REGS;hr++) {
4247     if(hr!=EXCLUDE_REG) {
4248       if(i_regmap[hr]>0) {
4249         if(i_regmap[hr]!=CCREG) {
4250           if((i_dirty>>hr)&1) {
4251             if(i_regmap[hr]<64) {
4252               emit_storereg(i_regmap[hr],hr);
4253 #ifndef FORCE32
4254               if( ((i_is32>>i_regmap[hr])&1) ) {
4255                 #ifdef DESTRUCTIVE_WRITEBACK
4256                 emit_sarimm(hr,31,hr);
4257                 emit_storereg(i_regmap[hr]|64,hr);
4258                 #else
4259                 emit_sarimm(hr,31,HOST_TEMPREG);
4260                 emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4261                 #endif
4262               }
4263 #endif
4264             }else{
4265               if( !((i_is32>>(i_regmap[hr]&63))&1) ) {
4266                 emit_storereg(i_regmap[hr],hr);
4267               }
4268             }
4269           }
4270         }
4271       }
4272     }
4273   }
4274 }
4275 // Write out dirty registers that we need to reload (pair with load_needed_regs)
4276 // This writes the registers not written by store_regs_bt
4277 void wb_needed_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4278 {
4279   int hr;
4280   int t=(addr-start)>>2;
4281   for(hr=0;hr<HOST_REGS;hr++) {
4282     if(hr!=EXCLUDE_REG) {
4283       if(i_regmap[hr]>0) {
4284         if(i_regmap[hr]!=CCREG) {
4285           if(i_regmap[hr]==regs[t].regmap_entry[hr] && ((regs[t].dirty>>hr)&1) && !(((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4286             if((i_dirty>>hr)&1) {
4287               if(i_regmap[hr]<64) {
4288                 emit_storereg(i_regmap[hr],hr);
4289 #ifndef FORCE32
4290                 if( ((i_is32>>i_regmap[hr])&1) ) {
4291                   #ifdef DESTRUCTIVE_WRITEBACK
4292                   emit_sarimm(hr,31,hr);
4293                   emit_storereg(i_regmap[hr]|64,hr);
4294                   #else
4295                   emit_sarimm(hr,31,HOST_TEMPREG);
4296                   emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4297                   #endif
4298                 }
4299 #endif
4300               }else{
4301                 if( !((i_is32>>(i_regmap[hr]&63))&1) ) {
4302                   emit_storereg(i_regmap[hr],hr);
4303                 }
4304               }
4305             }
4306           }
4307         }
4308       }
4309     }
4310   }
4311 }
4312
4313 // Load all registers (except cycle count)
4314 void load_all_regs(signed char i_regmap[])
4315 {
4316   int hr;
4317   for(hr=0;hr<HOST_REGS;hr++) {
4318     if(hr!=EXCLUDE_REG) {
4319       if(i_regmap[hr]==0) {
4320         emit_zeroreg(hr);
4321       }
4322       else
4323       if(i_regmap[hr]>0 && i_regmap[hr]!=CCREG)
4324       {
4325         emit_loadreg(i_regmap[hr],hr);
4326       }
4327     }
4328   }
4329 }
4330
4331 // Load all current registers also needed by next instruction
4332 void load_needed_regs(signed char i_regmap[],signed char next_regmap[])
4333 {
4334   int hr;
4335   for(hr=0;hr<HOST_REGS;hr++) {
4336     if(hr!=EXCLUDE_REG) {
4337       if(get_reg(next_regmap,i_regmap[hr])>=0) {
4338         if(i_regmap[hr]==0) {
4339           emit_zeroreg(hr);
4340         }
4341         else
4342         if(i_regmap[hr]>0 && i_regmap[hr]!=CCREG)
4343         {
4344           emit_loadreg(i_regmap[hr],hr);
4345         }
4346       }
4347     }
4348   }
4349 }
4350
4351 // Load all regs, storing cycle count if necessary
4352 void load_regs_entry(int t)
4353 {
4354   int hr;
4355   if(is_ds[t]) emit_addimm(HOST_CCREG,CLOCK_DIVIDER,HOST_CCREG);
4356   else if(ccadj[t]) emit_addimm(HOST_CCREG,-ccadj[t]*CLOCK_DIVIDER,HOST_CCREG);
4357   if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
4358     emit_storereg(CCREG,HOST_CCREG);
4359   }
4360   // Load 32-bit regs
4361   for(hr=0;hr<HOST_REGS;hr++) {
4362     if(regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<64) {
4363       if(regs[t].regmap_entry[hr]==0) {
4364         emit_zeroreg(hr);
4365       }
4366       else if(regs[t].regmap_entry[hr]!=CCREG)
4367       {
4368         emit_loadreg(regs[t].regmap_entry[hr],hr);
4369       }
4370     }
4371   }
4372   // Load 64-bit regs
4373   for(hr=0;hr<HOST_REGS;hr++) {
4374     if(regs[t].regmap_entry[hr]>=64) {
4375       assert(regs[t].regmap_entry[hr]!=64);
4376       if((regs[t].was32>>(regs[t].regmap_entry[hr]&63))&1) {
4377         int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4378         if(lr<0) {
4379           emit_loadreg(regs[t].regmap_entry[hr],hr);
4380         }
4381         else
4382         {
4383           emit_sarimm(lr,31,hr);
4384         }
4385       }
4386       else
4387       {
4388         emit_loadreg(regs[t].regmap_entry[hr],hr);
4389       }
4390     }
4391   }
4392 }
4393
4394 // Store dirty registers prior to branch
4395 void store_regs_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4396 {
4397   if(internal_branch(i_is32,addr))
4398   {
4399     int t=(addr-start)>>2;
4400     int hr;
4401     for(hr=0;hr<HOST_REGS;hr++) {
4402       if(hr!=EXCLUDE_REG) {
4403         if(i_regmap[hr]>0 && i_regmap[hr]!=CCREG) {
4404           if(i_regmap[hr]!=regs[t].regmap_entry[hr] || !((regs[t].dirty>>hr)&1) || (((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4405             if((i_dirty>>hr)&1) {
4406               if(i_regmap[hr]<64) {
4407                 if(!((unneeded_reg[t]>>i_regmap[hr])&1)) {
4408                   emit_storereg(i_regmap[hr],hr);
4409                   if( ((i_is32>>i_regmap[hr])&1) && !((unneeded_reg_upper[t]>>i_regmap[hr])&1) ) {
4410                     #ifdef DESTRUCTIVE_WRITEBACK
4411                     emit_sarimm(hr,31,hr);
4412                     emit_storereg(i_regmap[hr]|64,hr);
4413                     #else
4414                     emit_sarimm(hr,31,HOST_TEMPREG);
4415                     emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4416                     #endif
4417                   }
4418                 }
4419               }else{
4420                 if( !((i_is32>>(i_regmap[hr]&63))&1) && !((unneeded_reg_upper[t]>>(i_regmap[hr]&63))&1) ) {
4421                   emit_storereg(i_regmap[hr],hr);
4422                 }
4423               }
4424             }
4425           }
4426         }
4427       }
4428     }
4429   }
4430   else
4431   {
4432     // Branch out of this block, write out all dirty regs
4433     wb_dirtys(i_regmap,i_is32,i_dirty);
4434   }
4435 }
4436
4437 // Load all needed registers for branch target
4438 void load_regs_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4439 {
4440   //if(addr>=start && addr<(start+slen*4))
4441   if(internal_branch(i_is32,addr))
4442   {
4443     int t=(addr-start)>>2;
4444     int hr;
4445     // Store the cycle count before loading something else
4446     if(i_regmap[HOST_CCREG]!=CCREG) {
4447       assert(i_regmap[HOST_CCREG]==-1);
4448     }
4449     if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
4450       emit_storereg(CCREG,HOST_CCREG);
4451     }
4452     // Load 32-bit regs
4453     for(hr=0;hr<HOST_REGS;hr++) {
4454       if(hr!=EXCLUDE_REG&&regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<64) {
4455         #ifdef DESTRUCTIVE_WRITEBACK
4456         if(i_regmap[hr]!=regs[t].regmap_entry[hr] || ( !((regs[t].dirty>>hr)&1) && ((i_dirty>>hr)&1) && (((i_is32&~unneeded_reg_upper[t])>>i_regmap[hr])&1) ) || (((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4457         #else
4458         if(i_regmap[hr]!=regs[t].regmap_entry[hr] ) {
4459         #endif
4460           if(regs[t].regmap_entry[hr]==0) {
4461             emit_zeroreg(hr);
4462           }
4463           else if(regs[t].regmap_entry[hr]!=CCREG)
4464           {
4465             emit_loadreg(regs[t].regmap_entry[hr],hr);
4466           }
4467         }
4468       }
4469     }
4470     //Load 64-bit regs
4471     for(hr=0;hr<HOST_REGS;hr++) {
4472       if(hr!=EXCLUDE_REG&&regs[t].regmap_entry[hr]>=64) {
4473         if(i_regmap[hr]!=regs[t].regmap_entry[hr]) {
4474           assert(regs[t].regmap_entry[hr]!=64);
4475           if((i_is32>>(regs[t].regmap_entry[hr]&63))&1) {
4476             int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4477             if(lr<0) {
4478               emit_loadreg(regs[t].regmap_entry[hr],hr);
4479             }
4480             else
4481             {
4482               emit_sarimm(lr,31,hr);
4483             }
4484           }
4485           else
4486           {
4487             emit_loadreg(regs[t].regmap_entry[hr],hr);
4488           }
4489         }
4490         else if((i_is32>>(regs[t].regmap_entry[hr]&63))&1) {
4491           int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4492           assert(lr>=0);
4493           emit_sarimm(lr,31,hr);
4494         }
4495       }
4496     }
4497   }
4498 }
4499
4500 int match_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4501 {
4502   if(addr>=start && addr<start+slen*4-4)
4503   {
4504     int t=(addr-start)>>2;
4505     int hr;
4506     if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) return 0;
4507     for(hr=0;hr<HOST_REGS;hr++)
4508     {
4509       if(hr!=EXCLUDE_REG)
4510       {
4511         if(i_regmap[hr]!=regs[t].regmap_entry[hr])
4512         {
4513           if(regs[t].regmap_entry[hr]!=-1)
4514           {
4515             return 0;
4516           }
4517           else 
4518           if((i_dirty>>hr)&1)
4519           {
4520             if(i_regmap[hr]<64)
4521             {
4522               if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4523                 return 0;
4524             }
4525             else
4526             {
4527               if(!((unneeded_reg_upper[t]>>(i_regmap[hr]&63))&1))
4528                 return 0;
4529             }
4530           }
4531         }
4532         else // Same register but is it 32-bit or dirty?
4533         if(i_regmap[hr]>=0)
4534         {
4535           if(!((regs[t].dirty>>hr)&1))
4536           {
4537             if((i_dirty>>hr)&1)
4538             {
4539               if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4540               {
4541                 //printf("%x: dirty no match\n",addr);
4542                 return 0;
4543               }
4544             }
4545           }
4546           if((((regs[t].was32^i_is32)&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)
4547           {
4548             //printf("%x: is32 no match\n",addr);
4549             return 0;
4550           }
4551         }
4552       }
4553     }
4554     //if(is32[t]&~unneeded_reg_upper[t]&~i_is32) return 0;
4555     if(requires_32bit[t]&~i_is32) return 0;
4556     // Delay slots are not valid branch targets
4557     //if(t>0&&(itype[t-1]==RJUMP||itype[t-1]==UJUMP||itype[t-1]==CJUMP||itype[t-1]==SJUMP||itype[t-1]==FJUMP)) return 0;
4558     // Delay slots require additional processing, so do not match
4559     if(is_ds[t]) return 0;
4560   }
4561   else
4562   {
4563     int hr;
4564     for(hr=0;hr<HOST_REGS;hr++)
4565     {
4566       if(hr!=EXCLUDE_REG)
4567       {
4568         if(i_regmap[hr]>=0)
4569         {
4570           if(hr!=HOST_CCREG||i_regmap[hr]!=CCREG)
4571           {
4572             if((i_dirty>>hr)&1)
4573             {
4574               return 0;
4575             }
4576           }
4577         }
4578       }
4579     }
4580   }
4581   return 1;
4582 }
4583
4584 // Used when a branch jumps into the delay slot of another branch
4585 void ds_assemble_entry(int i)
4586 {
4587   int t=(ba[i]-start)>>2;
4588   if(!instr_addr[t]) instr_addr[t]=(u_int)out;
4589   assem_debug("Assemble delay slot at %x\n",ba[i]);
4590   assem_debug("<->\n");
4591   if(regs[t].regmap_entry[HOST_CCREG]==CCREG&&regs[t].regmap[HOST_CCREG]!=CCREG)
4592     wb_register(CCREG,regs[t].regmap_entry,regs[t].wasdirty,regs[t].was32);
4593   load_regs(regs[t].regmap_entry,regs[t].regmap,regs[t].was32,rs1[t],rs2[t]);
4594   address_generation(t,&regs[t],regs[t].regmap_entry);
4595   if(itype[t]==STORE||itype[t]==STORELR||(opcode[t]&0x3b)==0x39||(opcode[t]&0x3b)==0x3a)
4596     load_regs(regs[t].regmap_entry,regs[t].regmap,regs[t].was32,INVCP,INVCP);
4597   cop1_usable=0;
4598   is_delayslot=0;
4599   switch(itype[t]) {
4600     case ALU:
4601       alu_assemble(t,&regs[t]);break;
4602     case IMM16:
4603       imm16_assemble(t,&regs[t]);break;
4604     case SHIFT:
4605       shift_assemble(t,&regs[t]);break;
4606     case SHIFTIMM:
4607       shiftimm_assemble(t,&regs[t]);break;
4608     case LOAD:
4609       load_assemble(t,&regs[t]);break;
4610     case LOADLR:
4611       loadlr_assemble(t,&regs[t]);break;
4612     case STORE:
4613       store_assemble(t,&regs[t]);break;
4614     case STORELR:
4615       storelr_assemble(t,&regs[t]);break;
4616     case COP0:
4617       cop0_assemble(t,&regs[t]);break;
4618     case COP1:
4619       cop1_assemble(t,&regs[t]);break;
4620     case C1LS:
4621       c1ls_assemble(t,&regs[t]);break;
4622     case COP2:
4623       cop2_assemble(t,&regs[t]);break;
4624     case C2LS:
4625       c2ls_assemble(t,&regs[t]);break;
4626     case C2OP:
4627       c2op_assemble(t,&regs[t]);break;
4628     case FCONV:
4629       fconv_assemble(t,&regs[t]);break;
4630     case FLOAT:
4631       float_assemble(t,&regs[t]);break;
4632     case FCOMP:
4633       fcomp_assemble(t,&regs[t]);break;
4634     case MULTDIV:
4635       multdiv_assemble(t,&regs[t]);break;
4636     case MOV:
4637       mov_assemble(t,&regs[t]);break;
4638     case SYSCALL:
4639     case HLECALL:
4640     case SPAN:
4641     case UJUMP:
4642     case RJUMP:
4643     case CJUMP:
4644     case SJUMP:
4645     case FJUMP:
4646       printf("Jump in the delay slot.  This is probably a bug.\n");
4647   }
4648   store_regs_bt(regs[t].regmap,regs[t].is32,regs[t].dirty,ba[i]+4);
4649   load_regs_bt(regs[t].regmap,regs[t].is32,regs[t].dirty,ba[i]+4);
4650   if(internal_branch(regs[t].is32,ba[i]+4))
4651     assem_debug("branch: internal\n");
4652   else
4653     assem_debug("branch: external\n");
4654   assert(internal_branch(regs[t].is32,ba[i]+4));
4655   add_to_linker((int)out,ba[i]+4,internal_branch(regs[t].is32,ba[i]+4));
4656   emit_jmp(0);
4657 }
4658
4659 void do_cc(int i,signed char i_regmap[],int *adj,int addr,int taken,int invert)
4660 {
4661   int count;
4662   int jaddr;
4663   int idle=0;
4664   if(itype[i]==RJUMP)
4665   {
4666     *adj=0;
4667   }
4668   //if(ba[i]>=start && ba[i]<(start+slen*4))
4669   if(internal_branch(branch_regs[i].is32,ba[i]))
4670   {
4671     int t=(ba[i]-start)>>2;
4672     if(is_ds[t]) *adj=-1; // Branch into delay slot adds an extra cycle
4673     else *adj=ccadj[t];
4674   }
4675   else
4676   {
4677     *adj=0;
4678   }
4679   count=ccadj[i];
4680   if(taken==TAKEN && i==(ba[i]-start)>>2 && source[i+1]==0) {
4681     // Idle loop
4682     if(count&1) emit_addimm_and_set_flags(2*(count+2),HOST_CCREG);
4683     idle=(int)out;
4684     //emit_subfrommem(&idlecount,HOST_CCREG); // Count idle cycles
4685     emit_andimm(HOST_CCREG,3,HOST_CCREG);
4686     jaddr=(int)out;
4687     emit_jmp(0);
4688   }
4689   else if(*adj==0||invert) {
4690     emit_addimm_and_set_flags(CLOCK_DIVIDER*(count+2),HOST_CCREG);
4691     jaddr=(int)out;
4692     emit_jns(0);
4693   }
4694   else
4695   {
4696     emit_cmpimm(HOST_CCREG,-2*(count+2));
4697     jaddr=(int)out;
4698     emit_jns(0);
4699   }
4700   add_stub(CC_STUB,jaddr,idle?idle:(int)out,(*adj==0||invert||idle)?0:(count+2),i,addr,taken,0);
4701 }
4702
4703 void do_ccstub(int n)
4704 {
4705   literal_pool(256);
4706   assem_debug("do_ccstub %x\n",start+stubs[n][4]*4);
4707   set_jump_target(stubs[n][1],(int)out);
4708   int i=stubs[n][4];
4709   if(stubs[n][6]==NULLDS) {
4710     // Delay slot instruction is nullified ("likely" branch)
4711     wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
4712   }
4713   else if(stubs[n][6]!=TAKEN) {
4714     wb_dirtys(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty);
4715   }
4716   else {
4717     if(internal_branch(branch_regs[i].is32,ba[i]))
4718       wb_needed_dirtys(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
4719   }
4720   if(stubs[n][5]!=-1)
4721   {
4722     // Save PC as return address
4723     emit_movimm(stubs[n][5],EAX);
4724     emit_writeword(EAX,(int)&pcaddr);
4725   }
4726   else
4727   {
4728     // Return address depends on which way the branch goes
4729     if(itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
4730     {
4731       int s1l=get_reg(branch_regs[i].regmap,rs1[i]);
4732       int s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
4733       int s2l=get_reg(branch_regs[i].regmap,rs2[i]);
4734       int s2h=get_reg(branch_regs[i].regmap,rs2[i]|64);
4735       if(rs1[i]==0)
4736       {
4737         s1l=s2l;s1h=s2h;
4738         s2l=s2h=-1;
4739       }
4740       else if(rs2[i]==0)
4741       {
4742         s2l=s2h=-1;
4743       }
4744       if((branch_regs[i].is32>>rs1[i])&(branch_regs[i].is32>>rs2[i])&1) {
4745         s1h=s2h=-1;
4746       }
4747       assert(s1l>=0);
4748       #ifdef DESTRUCTIVE_WRITEBACK
4749       if(rs1[i]) {
4750         if((branch_regs[i].dirty>>s1l)&(branch_regs[i].is32>>rs1[i])&1)
4751           emit_loadreg(rs1[i],s1l);
4752       } 
4753       else {
4754         if((branch_regs[i].dirty>>s1l)&(branch_regs[i].is32>>rs2[i])&1)
4755           emit_loadreg(rs2[i],s1l);
4756       }
4757       if(s2l>=0)
4758         if((branch_regs[i].dirty>>s2l)&(branch_regs[i].is32>>rs2[i])&1)
4759           emit_loadreg(rs2[i],s2l);
4760       #endif
4761       int hr=0;
4762       int addr,alt,ntaddr;
4763       while(hr<HOST_REGS)
4764       {
4765         if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4766            (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
4767            (branch_regs[i].regmap[hr]&63)!=rs2[i] )
4768         {
4769           addr=hr++;break;
4770         }
4771         hr++;
4772       }
4773       while(hr<HOST_REGS)
4774       {
4775         if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4776            (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
4777            (branch_regs[i].regmap[hr]&63)!=rs2[i] )
4778         {
4779           alt=hr++;break;
4780         }
4781         hr++;
4782       }
4783       if((opcode[i]&0x2E)==6) // BLEZ/BGTZ needs another register
4784       {
4785         while(hr<HOST_REGS)
4786         {
4787           if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4788              (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
4789              (branch_regs[i].regmap[hr]&63)!=rs2[i] )
4790           {
4791             ntaddr=hr;break;
4792           }
4793           hr++;
4794         }
4795         assert(hr<HOST_REGS);
4796       }
4797       if((opcode[i]&0x2f)==4) // BEQ
4798       {
4799         #ifdef HAVE_CMOV_IMM
4800         if(s1h<0) {
4801           if(s2l>=0) emit_cmp(s1l,s2l);
4802           else emit_test(s1l,s1l);
4803           emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
4804         }
4805         else
4806         #endif
4807         {
4808           emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
4809           if(s1h>=0) {
4810             if(s2h>=0) emit_cmp(s1h,s2h);
4811             else emit_test(s1h,s1h);
4812             emit_cmovne_reg(alt,addr);
4813           }
4814           if(s2l>=0) emit_cmp(s1l,s2l);
4815           else emit_test(s1l,s1l);
4816           emit_cmovne_reg(alt,addr);
4817         }
4818       }
4819       if((opcode[i]&0x2f)==5) // BNE
4820       {
4821         #ifdef HAVE_CMOV_IMM
4822         if(s1h<0) {
4823           if(s2l>=0) emit_cmp(s1l,s2l);
4824           else emit_test(s1l,s1l);
4825           emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
4826         }
4827         else
4828         #endif
4829         {
4830           emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
4831           if(s1h>=0) {
4832             if(s2h>=0) emit_cmp(s1h,s2h);
4833             else emit_test(s1h,s1h);
4834             emit_cmovne_reg(alt,addr);
4835           }
4836           if(s2l>=0) emit_cmp(s1l,s2l);
4837           else emit_test(s1l,s1l);
4838           emit_cmovne_reg(alt,addr);
4839         }
4840       }
4841       if((opcode[i]&0x2f)==6) // BLEZ
4842       {
4843         //emit_movimm(ba[i],alt);
4844         //emit_movimm(start+i*4+8,addr);
4845         emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
4846         emit_cmpimm(s1l,1);
4847         if(s1h>=0) emit_mov(addr,ntaddr);
4848         emit_cmovl_reg(alt,addr);
4849         if(s1h>=0) {
4850           emit_test(s1h,s1h);
4851           emit_cmovne_reg(ntaddr,addr);
4852           emit_cmovs_reg(alt,addr);
4853         }
4854       }
4855       if((opcode[i]&0x2f)==7) // BGTZ
4856       {
4857         //emit_movimm(ba[i],addr);
4858         //emit_movimm(start+i*4+8,ntaddr);
4859         emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
4860         emit_cmpimm(s1l,1);
4861         if(s1h>=0) emit_mov(addr,alt);
4862         emit_cmovl_reg(ntaddr,addr);
4863         if(s1h>=0) {
4864           emit_test(s1h,s1h);
4865           emit_cmovne_reg(alt,addr);
4866           emit_cmovs_reg(ntaddr,addr);
4867         }
4868       }
4869       if((opcode[i]==1)&&(opcode2[i]&0x2D)==0) // BLTZ
4870       {
4871         //emit_movimm(ba[i],alt);
4872         //emit_movimm(start+i*4+8,addr);
4873         emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
4874         if(s1h>=0) emit_test(s1h,s1h);
4875         else emit_test(s1l,s1l);
4876         emit_cmovs_reg(alt,addr);
4877       }
4878       if((opcode[i]==1)&&(opcode2[i]&0x2D)==1) // BGEZ
4879       {
4880         //emit_movimm(ba[i],addr);
4881         //emit_movimm(start+i*4+8,alt);
4882         emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
4883         if(s1h>=0) emit_test(s1h,s1h);
4884         else emit_test(s1l,s1l);
4885         emit_cmovs_reg(alt,addr);
4886       }
4887       if(opcode[i]==0x11 && opcode2[i]==0x08 ) {
4888         if(source[i]&0x10000) // BC1T
4889         {
4890           //emit_movimm(ba[i],alt);
4891           //emit_movimm(start+i*4+8,addr);
4892           emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
4893           emit_testimm(s1l,0x800000);
4894           emit_cmovne_reg(alt,addr);
4895         }
4896         else // BC1F
4897         {
4898           //emit_movimm(ba[i],addr);
4899           //emit_movimm(start+i*4+8,alt);
4900           emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
4901           emit_testimm(s1l,0x800000);
4902           emit_cmovne_reg(alt,addr);
4903         }
4904       }
4905       emit_writeword(addr,(int)&pcaddr);
4906     }
4907     else
4908     if(itype[i]==RJUMP)
4909     {
4910       int r=get_reg(branch_regs[i].regmap,rs1[i]);
4911       if(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]) {
4912         r=get_reg(branch_regs[i].regmap,RTEMP);
4913       }
4914       emit_writeword(r,(int)&pcaddr);
4915     }
4916     else {printf("Unknown branch type in do_ccstub\n");exit(1);}
4917   }
4918   // Update cycle count
4919   assert(branch_regs[i].regmap[HOST_CCREG]==CCREG||branch_regs[i].regmap[HOST_CCREG]==-1);
4920   if(stubs[n][3]) emit_addimm(HOST_CCREG,CLOCK_DIVIDER*stubs[n][3],HOST_CCREG);
4921   emit_call((int)cc_interrupt);
4922   if(stubs[n][3]) emit_addimm(HOST_CCREG,-CLOCK_DIVIDER*stubs[n][3],HOST_CCREG);
4923   if(stubs[n][6]==TAKEN) {
4924     if(internal_branch(branch_regs[i].is32,ba[i]))
4925       load_needed_regs(branch_regs[i].regmap,regs[(ba[i]-start)>>2].regmap_entry);
4926     else if(itype[i]==RJUMP) {
4927       if(get_reg(branch_regs[i].regmap,RTEMP)>=0)
4928         emit_readword((int)&pcaddr,get_reg(branch_regs[i].regmap,RTEMP));
4929       else
4930         emit_loadreg(rs1[i],get_reg(branch_regs[i].regmap,rs1[i]));
4931     }
4932   }else if(stubs[n][6]==NOTTAKEN) {
4933     if(i<slen-2) load_needed_regs(branch_regs[i].regmap,regmap_pre[i+2]);
4934     else load_all_regs(branch_regs[i].regmap);
4935   }else if(stubs[n][6]==NULLDS) {
4936     // Delay slot instruction is nullified ("likely" branch)
4937     if(i<slen-2) load_needed_regs(regs[i].regmap,regmap_pre[i+2]);
4938     else load_all_regs(regs[i].regmap);
4939   }else{
4940     load_all_regs(branch_regs[i].regmap);
4941   }
4942   emit_jmp(stubs[n][2]); // return address
4943   
4944   /* This works but uses a lot of memory...
4945   emit_readword((int)&last_count,ECX);
4946   emit_add(HOST_CCREG,ECX,EAX);
4947   emit_writeword(EAX,(int)&Count);
4948   emit_call((int)gen_interupt);
4949   emit_readword((int)&Count,HOST_CCREG);
4950   emit_readword((int)&next_interupt,EAX);
4951   emit_readword((int)&pending_exception,EBX);
4952   emit_writeword(EAX,(int)&last_count);
4953   emit_sub(HOST_CCREG,EAX,HOST_CCREG);
4954   emit_test(EBX,EBX);
4955   int jne_instr=(int)out;
4956   emit_jne(0);
4957   if(stubs[n][3]) emit_addimm(HOST_CCREG,-2*stubs[n][3],HOST_CCREG);
4958   load_all_regs(branch_regs[i].regmap);
4959   emit_jmp(stubs[n][2]); // return address
4960   set_jump_target(jne_instr,(int)out);
4961   emit_readword((int)&pcaddr,EAX);
4962   // Call get_addr_ht instead of doing the hash table here.
4963   // This code is executed infrequently and takes up a lot of space
4964   // so smaller is better.
4965   emit_storereg(CCREG,HOST_CCREG);
4966   emit_pushreg(EAX);
4967   emit_call((int)get_addr_ht);
4968   emit_loadreg(CCREG,HOST_CCREG);
4969   emit_addimm(ESP,4,ESP);
4970   emit_jmpreg(EAX);*/
4971 }
4972
4973 add_to_linker(int addr,int target,int ext)
4974 {
4975   link_addr[linkcount][0]=addr;
4976   link_addr[linkcount][1]=target;
4977   link_addr[linkcount][2]=ext;  
4978   linkcount++;
4979 }
4980
4981 void ujump_assemble(int i,struct regstat *i_regs)
4982 {
4983   signed char *i_regmap=i_regs->regmap;
4984   if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
4985   address_generation(i+1,i_regs,regs[i].regmap_entry);
4986   #ifdef REG_PREFETCH
4987   int temp=get_reg(branch_regs[i].regmap,PTEMP);
4988   if(rt1[i]==31&&temp>=0) 
4989   {
4990     int return_address=start+i*4+8;
4991     if(get_reg(branch_regs[i].regmap,31)>0) 
4992     if(i_regmap[temp]==PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
4993   }
4994   #endif
4995   ds_assemble(i+1,i_regs);
4996   uint64_t bc_unneeded=branch_regs[i].u;
4997   uint64_t bc_unneeded_upper=branch_regs[i].uu;
4998   bc_unneeded|=1|(1LL<<rt1[i]);
4999   bc_unneeded_upper|=1|(1LL<<rt1[i]);
5000   wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5001                 bc_unneeded,bc_unneeded_upper);
5002   load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5003   if(rt1[i]==31) {
5004     int rt;
5005     unsigned int return_address;
5006     assert(rt1[i+1]!=31);
5007     assert(rt2[i+1]!=31);
5008     rt=get_reg(branch_regs[i].regmap,31);
5009     assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5010     //assert(rt>=0);
5011     return_address=start+i*4+8;
5012     if(rt>=0) {
5013       #ifdef USE_MINI_HT
5014       if(internal_branch(branch_regs[i].is32,return_address)) {
5015         int temp=rt+1;
5016         if(temp==EXCLUDE_REG||temp>=HOST_REGS||
5017            branch_regs[i].regmap[temp]>=0)
5018         {
5019           temp=get_reg(branch_regs[i].regmap,-1);
5020         }
5021         #ifdef HOST_TEMPREG
5022         if(temp<0) temp=HOST_TEMPREG;
5023         #endif
5024         if(temp>=0) do_miniht_insert(return_address,rt,temp);
5025         else emit_movimm(return_address,rt);
5026       }
5027       else
5028       #endif
5029       {
5030         #ifdef REG_PREFETCH
5031         if(temp>=0) 
5032         {
5033           if(i_regmap[temp]!=PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5034         }
5035         #endif
5036         emit_movimm(return_address,rt); // PC into link register
5037         #ifdef IMM_PREFETCH
5038         emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5039         #endif
5040       }
5041     }
5042   }
5043   int cc,adj;
5044   cc=get_reg(branch_regs[i].regmap,CCREG);
5045   assert(cc==HOST_CCREG);
5046   store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5047   #ifdef REG_PREFETCH
5048   if(rt1[i]==31&&temp>=0) emit_prefetchreg(temp);
5049   #endif
5050   do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5051   if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5052   load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5053   if(internal_branch(branch_regs[i].is32,ba[i]))
5054     assem_debug("branch: internal\n");
5055   else
5056     assem_debug("branch: external\n");
5057   if(internal_branch(branch_regs[i].is32,ba[i])&&is_ds[(ba[i]-start)>>2]) {
5058     ds_assemble_entry(i);
5059   }
5060   else {
5061     add_to_linker((int)out,ba[i],internal_branch(branch_regs[i].is32,ba[i]));
5062     emit_jmp(0);
5063   }
5064 }
5065
5066 void rjump_assemble(int i,struct regstat *i_regs)
5067 {
5068   signed char *i_regmap=i_regs->regmap;
5069   int temp;
5070   int rs,cc,adj;
5071   rs=get_reg(branch_regs[i].regmap,rs1[i]);
5072   assert(rs>=0);
5073   if(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]) {
5074     // Delay slot abuse, make a copy of the branch address register
5075     temp=get_reg(branch_regs[i].regmap,RTEMP);
5076     assert(temp>=0);
5077     assert(regs[i].regmap[temp]==RTEMP);
5078     emit_mov(rs,temp);
5079     rs=temp;
5080   }
5081   address_generation(i+1,i_regs,regs[i].regmap_entry);
5082   #ifdef REG_PREFETCH
5083   if(rt1[i]==31) 
5084   {
5085     if((temp=get_reg(branch_regs[i].regmap,PTEMP))>=0) {
5086       int return_address=start+i*4+8;
5087       if(i_regmap[temp]==PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5088     }
5089   }
5090   #endif
5091   #ifdef USE_MINI_HT
5092   if(rs1[i]==31) {
5093     int rh=get_reg(regs[i].regmap,RHASH);
5094     if(rh>=0) do_preload_rhash(rh);
5095   }
5096   #endif
5097   ds_assemble(i+1,i_regs);
5098   uint64_t bc_unneeded=branch_regs[i].u;
5099   uint64_t bc_unneeded_upper=branch_regs[i].uu;
5100   bc_unneeded|=1|(1LL<<rt1[i]);
5101   bc_unneeded_upper|=1|(1LL<<rt1[i]);
5102   bc_unneeded&=~(1LL<<rs1[i]);
5103   wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5104                 bc_unneeded,bc_unneeded_upper);
5105   load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],CCREG);
5106   if(rt1[i]!=0) {
5107     int rt,return_address;
5108     assert(rt1[i+1]!=rt1[i]);
5109     assert(rt2[i+1]!=rt1[i]);
5110     rt=get_reg(branch_regs[i].regmap,rt1[i]);
5111     assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5112     assert(rt>=0);
5113     return_address=start+i*4+8;
5114     #ifdef REG_PREFETCH
5115     if(temp>=0) 
5116     {
5117       if(i_regmap[temp]!=PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
5118     }
5119     #endif
5120     emit_movimm(return_address,rt); // PC into link register
5121     #ifdef IMM_PREFETCH
5122     emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5123     #endif
5124   }
5125   cc=get_reg(branch_regs[i].regmap,CCREG);
5126   assert(cc==HOST_CCREG);
5127   #ifdef USE_MINI_HT
5128   int rh=get_reg(branch_regs[i].regmap,RHASH);
5129   int ht=get_reg(branch_regs[i].regmap,RHTBL);
5130   if(rs1[i]==31) {
5131     if(regs[i].regmap[rh]!=RHASH) do_preload_rhash(rh);
5132     do_preload_rhtbl(ht);
5133     do_rhash(rs,rh);
5134   }
5135   #endif
5136   store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,-1);
5137   #ifdef DESTRUCTIVE_WRITEBACK
5138   if((branch_regs[i].dirty>>rs)&(branch_regs[i].is32>>rs1[i])&1) {
5139     if(rs1[i]!=rt1[i+1]&&rs1[i]!=rt2[i+1]) {
5140       emit_loadreg(rs1[i],rs);
5141     }
5142   }
5143   #endif
5144   #ifdef REG_PREFETCH
5145   if(rt1[i]==31&&temp>=0) emit_prefetchreg(temp);
5146   #endif
5147   #ifdef USE_MINI_HT
5148   if(rs1[i]==31) {
5149     do_miniht_load(ht,rh);
5150   }
5151   #endif
5152   //do_cc(i,branch_regs[i].regmap,&adj,-1,TAKEN);
5153   //if(adj) emit_addimm(cc,2*(ccadj[i]+2-adj),cc); // ??? - Shouldn't happen
5154   //assert(adj==0);
5155   emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
5156   add_stub(CC_STUB,(int)out,jump_vaddr_reg[rs],0,i,-1,TAKEN,0);
5157   emit_jns(0);
5158   //load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,-1);
5159   #ifdef USE_MINI_HT
5160   if(rs1[i]==31) {
5161     do_miniht_jump(rs,rh,ht);
5162   }
5163   else
5164   #endif
5165   {
5166     //if(rs!=EAX) emit_mov(rs,EAX);
5167     //emit_jmp((int)jump_vaddr_eax);
5168     emit_jmp(jump_vaddr_reg[rs]);
5169   }
5170   /* Check hash table
5171   temp=!rs;
5172   emit_mov(rs,temp);
5173   emit_shrimm(rs,16,rs);
5174   emit_xor(temp,rs,rs);
5175   emit_movzwl_reg(rs,rs);
5176   emit_shlimm(rs,4,rs);
5177   emit_cmpmem_indexed((int)hash_table,rs,temp);
5178   emit_jne((int)out+14);
5179   emit_readword_indexed((int)hash_table+4,rs,rs);
5180   emit_jmpreg(rs);
5181   emit_cmpmem_indexed((int)hash_table+8,rs,temp);
5182   emit_addimm_no_flags(8,rs);
5183   emit_jeq((int)out-17);
5184   // No hit on hash table, call compiler
5185   emit_pushreg(temp);
5186 //DEBUG >
5187 #ifdef DEBUG_CYCLE_COUNT
5188   emit_readword((int)&last_count,ECX);
5189   emit_add(HOST_CCREG,ECX,HOST_CCREG);
5190   emit_readword((int)&next_interupt,ECX);
5191   emit_writeword(HOST_CCREG,(int)&Count);
5192   emit_sub(HOST_CCREG,ECX,HOST_CCREG);
5193   emit_writeword(ECX,(int)&last_count);
5194 #endif
5195 //DEBUG <
5196   emit_storereg(CCREG,HOST_CCREG);
5197   emit_call((int)get_addr);
5198   emit_loadreg(CCREG,HOST_CCREG);
5199   emit_addimm(ESP,4,ESP);
5200   emit_jmpreg(EAX);*/
5201   #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5202   if(rt1[i]!=31&&i<slen-2&&(((u_int)out)&7)) emit_mov(13,13);
5203   #endif
5204 }
5205
5206 void cjump_assemble(int i,struct regstat *i_regs)
5207 {
5208   signed char *i_regmap=i_regs->regmap;
5209   int cc;
5210   int match;
5211   match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5212   assem_debug("match=%d\n",match);
5213   int s1h,s1l,s2h,s2l;
5214   int prev_cop1_usable=cop1_usable;
5215   int unconditional=0,nop=0;
5216   int only32=0;
5217   int ooo=1;
5218   int invert=0;
5219   int internal=internal_branch(branch_regs[i].is32,ba[i]);
5220   if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5221   if(likely[i]) ooo=0;
5222   if(!match) invert=1;
5223   #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5224   if(i>(ba[i]-start)>>2) invert=1;
5225   #endif
5226     
5227   if(ooo)
5228     if((rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]))||
5229        (rs2[i]&&(rs2[i]==rt1[i+1]||rs2[i]==rt2[i+1])))
5230   {
5231     // Write-after-read dependency prevents out of order execution
5232     // First test branch condition, then execute delay slot, then branch
5233     ooo=0;
5234   }
5235
5236   if(ooo) {
5237     s1l=get_reg(branch_regs[i].regmap,rs1[i]);
5238     s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
5239     s2l=get_reg(branch_regs[i].regmap,rs2[i]);
5240     s2h=get_reg(branch_regs[i].regmap,rs2[i]|64);
5241   }
5242   else {
5243     s1l=get_reg(i_regmap,rs1[i]);
5244     s1h=get_reg(i_regmap,rs1[i]|64);
5245     s2l=get_reg(i_regmap,rs2[i]);
5246     s2h=get_reg(i_regmap,rs2[i]|64);
5247   }
5248   if(rs1[i]==0&&rs2[i]==0)
5249   {
5250     if(opcode[i]&1) nop=1;
5251     else unconditional=1;
5252     //assert(opcode[i]!=5);
5253     //assert(opcode[i]!=7);
5254     //assert(opcode[i]!=0x15);
5255     //assert(opcode[i]!=0x17);
5256   }
5257   else if(rs1[i]==0)
5258   {
5259     s1l=s2l;s1h=s2h;
5260     s2l=s2h=-1;
5261     only32=(regs[i].was32>>rs2[i])&1;
5262   }
5263   else if(rs2[i]==0)
5264   {
5265     s2l=s2h=-1;
5266     only32=(regs[i].was32>>rs1[i])&1;
5267   }
5268   else {
5269     only32=(regs[i].was32>>rs1[i])&(regs[i].was32>>rs2[i])&1;
5270   }
5271
5272   if(ooo) {
5273     // Out of order execution (delay slot first)
5274     //printf("OOOE\n");
5275     address_generation(i+1,i_regs,regs[i].regmap_entry);
5276     ds_assemble(i+1,i_regs);
5277     int adj;
5278     uint64_t bc_unneeded=branch_regs[i].u;
5279     uint64_t bc_unneeded_upper=branch_regs[i].uu;
5280     bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
5281     bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
5282     bc_unneeded|=1;
5283     bc_unneeded_upper|=1;
5284     wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5285                   bc_unneeded,bc_unneeded_upper);
5286     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs2[i]);
5287     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5288     cc=get_reg(branch_regs[i].regmap,CCREG);
5289     assert(cc==HOST_CCREG);
5290     if(unconditional) 
5291       store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5292     //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
5293     //assem_debug("cycle count (adj)\n");
5294     if(unconditional) {
5295       do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5296       if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
5297         if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5298         load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5299         if(internal)
5300           assem_debug("branch: internal\n");
5301         else
5302           assem_debug("branch: external\n");
5303         if(internal&&is_ds[(ba[i]-start)>>2]) {
5304           ds_assemble_entry(i);
5305         }
5306         else {
5307           add_to_linker((int)out,ba[i],internal);
5308           emit_jmp(0);
5309         }
5310         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5311         if(((u_int)out)&7) emit_addnop(0);
5312         #endif
5313       }
5314     }
5315     else if(nop) {
5316       emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
5317       int jaddr=(int)out;
5318       emit_jns(0);
5319       add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5320     }
5321     else {
5322       int taken=0,nottaken=0,nottaken1=0;
5323       do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
5324       if(adj&&!invert) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5325       if(!only32)
5326       {
5327         assert(s1h>=0);
5328         if(opcode[i]==4) // BEQ
5329         {
5330           if(s2h>=0) emit_cmp(s1h,s2h);
5331           else emit_test(s1h,s1h);
5332           nottaken1=(int)out;
5333           emit_jne(1);
5334         }
5335         if(opcode[i]==5) // BNE
5336         {
5337           if(s2h>=0) emit_cmp(s1h,s2h);
5338           else emit_test(s1h,s1h);
5339           if(invert) taken=(int)out;
5340           else add_to_linker((int)out,ba[i],internal);
5341           emit_jne(0);
5342         }
5343         if(opcode[i]==6) // BLEZ
5344         {
5345           emit_test(s1h,s1h);
5346           if(invert) taken=(int)out;
5347           else add_to_linker((int)out,ba[i],internal);
5348           emit_js(0);
5349           nottaken1=(int)out;
5350           emit_jne(1);
5351         }
5352         if(opcode[i]==7) // BGTZ
5353         {
5354           emit_test(s1h,s1h);
5355           nottaken1=(int)out;
5356           emit_js(1);
5357           if(invert) taken=(int)out;
5358           else add_to_linker((int)out,ba[i],internal);
5359           emit_jne(0);
5360         }
5361       } // if(!only32)
5362           
5363       //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5364       assert(s1l>=0);
5365       if(opcode[i]==4) // BEQ
5366       {
5367         if(s2l>=0) emit_cmp(s1l,s2l);
5368         else emit_test(s1l,s1l);
5369         if(invert){
5370           nottaken=(int)out;
5371           emit_jne(1);
5372         }else{
5373           add_to_linker((int)out,ba[i],internal);
5374           emit_jeq(0);
5375         }
5376       }
5377       if(opcode[i]==5) // BNE
5378       {
5379         if(s2l>=0) emit_cmp(s1l,s2l);
5380         else emit_test(s1l,s1l);
5381         if(invert){
5382           nottaken=(int)out;
5383           emit_jeq(1);
5384         }else{
5385           add_to_linker((int)out,ba[i],internal);
5386           emit_jne(0);
5387         }
5388       }
5389       if(opcode[i]==6) // BLEZ
5390       {
5391         emit_cmpimm(s1l,1);
5392         if(invert){
5393           nottaken=(int)out;
5394           emit_jge(1);
5395         }else{
5396           add_to_linker((int)out,ba[i],internal);
5397           emit_jl(0);
5398         }
5399       }
5400       if(opcode[i]==7) // BGTZ
5401       {
5402         emit_cmpimm(s1l,1);
5403         if(invert){
5404           nottaken=(int)out;
5405           emit_jl(1);
5406         }else{
5407           add_to_linker((int)out,ba[i],internal);
5408           emit_jge(0);
5409         }
5410       }
5411       if(invert) {
5412         if(taken) set_jump_target(taken,(int)out);
5413         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5414         if(match&&(!internal||!is_ds[(ba[i]-start)>>2])) {
5415           if(adj) {
5416             emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5417             add_to_linker((int)out,ba[i],internal);
5418           }else{
5419             emit_addnop(13);
5420             add_to_linker((int)out,ba[i],internal*2);
5421           }
5422           emit_jmp(0);
5423         }else
5424         #endif
5425         {
5426           if(adj) emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5427           store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5428           load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5429           if(internal)
5430             assem_debug("branch: internal\n");
5431           else
5432             assem_debug("branch: external\n");
5433           if(internal&&is_ds[(ba[i]-start)>>2]) {
5434             ds_assemble_entry(i);
5435           }
5436           else {
5437             add_to_linker((int)out,ba[i],internal);
5438             emit_jmp(0);
5439           }
5440         }
5441         set_jump_target(nottaken,(int)out);
5442       }
5443
5444       if(nottaken1) set_jump_target(nottaken1,(int)out);
5445       if(adj) {
5446         if(!invert) emit_addimm(cc,CLOCK_DIVIDER*adj,cc);
5447       }
5448     } // (!unconditional)
5449   } // if(ooo)
5450   else
5451   {
5452     // In-order execution (branch first)
5453     //if(likely[i]) printf("IOL\n");
5454     //else
5455     //printf("IOE\n");
5456     int taken=0,nottaken=0,nottaken1=0;
5457     if(!unconditional&&!nop) {
5458       if(!only32)
5459       {
5460         assert(s1h>=0);
5461         if((opcode[i]&0x2f)==4) // BEQ
5462         {
5463           if(s2h>=0) emit_cmp(s1h,s2h);
5464           else emit_test(s1h,s1h);
5465           nottaken1=(int)out;
5466           emit_jne(2);
5467         }
5468         if((opcode[i]&0x2f)==5) // BNE
5469         {
5470           if(s2h>=0) emit_cmp(s1h,s2h);
5471           else emit_test(s1h,s1h);
5472           taken=(int)out;
5473           emit_jne(1);
5474         }
5475         if((opcode[i]&0x2f)==6) // BLEZ
5476         {
5477           emit_test(s1h,s1h);
5478           taken=(int)out;
5479           emit_js(1);
5480           nottaken1=(int)out;
5481           emit_jne(2);
5482         }
5483         if((opcode[i]&0x2f)==7) // BGTZ
5484         {
5485           emit_test(s1h,s1h);
5486           nottaken1=(int)out;
5487           emit_js(2);
5488           taken=(int)out;
5489           emit_jne(1);
5490         }
5491       } // if(!only32)
5492           
5493       //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5494       assert(s1l>=0);
5495       if((opcode[i]&0x2f)==4) // BEQ
5496       {
5497         if(s2l>=0) emit_cmp(s1l,s2l);
5498         else emit_test(s1l,s1l);
5499         nottaken=(int)out;
5500         emit_jne(2);
5501       }
5502       if((opcode[i]&0x2f)==5) // BNE
5503       {
5504         if(s2l>=0) emit_cmp(s1l,s2l);
5505         else emit_test(s1l,s1l);
5506         nottaken=(int)out;
5507         emit_jeq(2);
5508       }
5509       if((opcode[i]&0x2f)==6) // BLEZ
5510       {
5511         emit_cmpimm(s1l,1);
5512         nottaken=(int)out;
5513         emit_jge(2);
5514       }
5515       if((opcode[i]&0x2f)==7) // BGTZ
5516       {
5517         emit_cmpimm(s1l,1);
5518         nottaken=(int)out;
5519         emit_jl(2);
5520       }
5521     } // if(!unconditional)
5522     int adj;
5523     uint64_t ds_unneeded=branch_regs[i].u;
5524     uint64_t ds_unneeded_upper=branch_regs[i].uu;
5525     ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
5526     ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
5527     if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
5528     ds_unneeded|=1;
5529     ds_unneeded_upper|=1;
5530     // branch taken
5531     if(!nop) {
5532       if(taken) set_jump_target(taken,(int)out);
5533       assem_debug("1:\n");
5534       wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5535                     ds_unneeded,ds_unneeded_upper);
5536       // load regs
5537       load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5538       address_generation(i+1,&branch_regs[i],0);
5539       load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
5540       ds_assemble(i+1,&branch_regs[i]);
5541       cc=get_reg(branch_regs[i].regmap,CCREG);
5542       if(cc==-1) {
5543         emit_loadreg(CCREG,cc=HOST_CCREG);
5544         // CHECK: Is the following instruction (fall thru) allocated ok?
5545       }
5546       assert(cc==HOST_CCREG);
5547       store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5548       do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
5549       assem_debug("cycle count (adj)\n");
5550       if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5551       load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5552       if(internal)
5553         assem_debug("branch: internal\n");
5554       else
5555         assem_debug("branch: external\n");
5556       if(internal&&is_ds[(ba[i]-start)>>2]) {
5557         ds_assemble_entry(i);
5558       }
5559       else {
5560         add_to_linker((int)out,ba[i],internal);
5561         emit_jmp(0);
5562       }
5563     }
5564     // branch not taken
5565     cop1_usable=prev_cop1_usable;
5566     if(!unconditional) {
5567       if(nottaken1) set_jump_target(nottaken1,(int)out);
5568       set_jump_target(nottaken,(int)out);
5569       assem_debug("2:\n");
5570       if(!likely[i]) {
5571         wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5572                       ds_unneeded,ds_unneeded_upper);
5573         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5574         address_generation(i+1,&branch_regs[i],0);
5575         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5576         ds_assemble(i+1,&branch_regs[i]);
5577       }
5578       cc=get_reg(branch_regs[i].regmap,CCREG);
5579       if(cc==-1&&!likely[i]) {
5580         // Cycle count isn't in a register, temporarily load it then write it out
5581         emit_loadreg(CCREG,HOST_CCREG);
5582         emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
5583         int jaddr=(int)out;
5584         emit_jns(0);
5585         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5586         emit_storereg(CCREG,HOST_CCREG);
5587       }
5588       else{
5589         cc=get_reg(i_regmap,CCREG);
5590         assert(cc==HOST_CCREG);
5591         emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
5592         int jaddr=(int)out;
5593         emit_jns(0);
5594         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
5595       }
5596     }
5597   }
5598 }
5599
5600 void sjump_assemble(int i,struct regstat *i_regs)
5601 {
5602   signed char *i_regmap=i_regs->regmap;
5603   int cc;
5604   int match;
5605   match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5606   assem_debug("smatch=%d\n",match);
5607   int s1h,s1l;
5608   int prev_cop1_usable=cop1_usable;
5609   int unconditional=0,nevertaken=0;
5610   int only32=0;
5611   int ooo=1;
5612   int invert=0;
5613   int internal=internal_branch(branch_regs[i].is32,ba[i]);
5614   if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5615   if(likely[i]) ooo=0;
5616   if(!match) invert=1;
5617   #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5618   if(i>(ba[i]-start)>>2) invert=1;
5619   #endif
5620
5621   //if(opcode2[i]>=0x10) return; // FIXME (BxxZAL)
5622   assert(opcode2[i]<0x10||rs1[i]==0); // FIXME (BxxZAL)
5623
5624   if(ooo)
5625     if(rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]))
5626   {
5627     // Write-after-read dependency prevents out of order execution
5628     // First test branch condition, then execute delay slot, then branch
5629     ooo=0;
5630   }
5631   // TODO: Conditional branches w/link must execute in-order so that
5632   // condition test and write to r31 occur before cycle count test
5633
5634   if(ooo) {
5635     s1l=get_reg(branch_regs[i].regmap,rs1[i]);
5636     s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
5637   }
5638   else {
5639     s1l=get_reg(i_regmap,rs1[i]);
5640     s1h=get_reg(i_regmap,rs1[i]|64);
5641   }
5642   if(rs1[i]==0)
5643   {
5644     if(opcode2[i]&1) unconditional=1;
5645     else nevertaken=1;
5646     // These are never taken (r0 is never less than zero)
5647     //assert(opcode2[i]!=0);
5648     //assert(opcode2[i]!=2);
5649     //assert(opcode2[i]!=0x10);
5650     //assert(opcode2[i]!=0x12);
5651   }
5652   else {
5653     only32=(regs[i].was32>>rs1[i])&1;
5654   }
5655
5656   if(ooo) {
5657     // Out of order execution (delay slot first)
5658     //printf("OOOE\n");
5659     address_generation(i+1,i_regs,regs[i].regmap_entry);
5660     ds_assemble(i+1,i_regs);
5661     int adj;
5662     uint64_t bc_unneeded=branch_regs[i].u;
5663     uint64_t bc_unneeded_upper=branch_regs[i].uu;
5664     bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
5665     bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
5666     bc_unneeded|=1;
5667     bc_unneeded_upper|=1;
5668     wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5669                   bc_unneeded,bc_unneeded_upper);
5670     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs1[i]);
5671     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5672     if(rt1[i]==31) {
5673       int rt,return_address;
5674       assert(rt1[i+1]!=31);
5675       assert(rt2[i+1]!=31);
5676       rt=get_reg(branch_regs[i].regmap,31);
5677       assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5678       if(rt>=0) {
5679         // Save the PC even if the branch is not taken
5680         return_address=start+i*4+8;
5681         emit_movimm(return_address,rt); // PC into link register
5682         #ifdef IMM_PREFETCH
5683         if(!nevertaken) emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5684         #endif
5685       }
5686     }
5687     cc=get_reg(branch_regs[i].regmap,CCREG);
5688     assert(cc==HOST_CCREG);
5689     if(unconditional) 
5690       store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5691     //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
5692     assem_debug("cycle count (adj)\n");
5693     if(unconditional) {
5694       do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5695       if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
5696         if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5697         load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5698         if(internal)
5699           assem_debug("branch: internal\n");
5700         else
5701           assem_debug("branch: external\n");
5702         if(internal&&is_ds[(ba[i]-start)>>2]) {
5703           ds_assemble_entry(i);
5704         }
5705         else {
5706           add_to_linker((int)out,ba[i],internal);
5707           emit_jmp(0);
5708         }
5709         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5710         if(((u_int)out)&7) emit_addnop(0);
5711         #endif
5712       }
5713     }
5714     else if(nevertaken) {
5715       emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
5716       int jaddr=(int)out;
5717       emit_jns(0);
5718       add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5719     }
5720     else {
5721       int nottaken=0;
5722       do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
5723       if(adj&&!invert) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5724       if(!only32)
5725       {
5726         assert(s1h>=0);
5727         if(opcode2[i]==0) // BLTZ
5728         {
5729           emit_test(s1h,s1h);
5730           if(invert){
5731             nottaken=(int)out;
5732             emit_jns(1);
5733           }else{
5734             add_to_linker((int)out,ba[i],internal);
5735             emit_js(0);
5736           }
5737         }
5738         if(opcode2[i]==1) // BGEZ
5739         {
5740           emit_test(s1h,s1h);
5741           if(invert){
5742             nottaken=(int)out;
5743             emit_js(1);
5744           }else{
5745             add_to_linker((int)out,ba[i],internal);
5746             emit_jns(0);
5747           }
5748         }
5749       } // if(!only32)
5750       else
5751       {
5752         assert(s1l>=0);
5753         if(opcode2[i]==0) // BLTZ
5754         {
5755           emit_test(s1l,s1l);
5756           if(invert){
5757             nottaken=(int)out;
5758             emit_jns(1);
5759           }else{
5760             add_to_linker((int)out,ba[i],internal);
5761             emit_js(0);
5762           }
5763         }
5764         if(opcode2[i]==1) // BGEZ
5765         {
5766           emit_test(s1l,s1l);
5767           if(invert){
5768             nottaken=(int)out;
5769             emit_js(1);
5770           }else{
5771             add_to_linker((int)out,ba[i],internal);
5772             emit_jns(0);
5773           }
5774         }
5775       } // if(!only32)
5776           
5777       if(invert) {
5778         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5779         if(match&&(!internal||!is_ds[(ba[i]-start)>>2])) {
5780           if(adj) {
5781             emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5782             add_to_linker((int)out,ba[i],internal);
5783           }else{
5784             emit_addnop(13);
5785             add_to_linker((int)out,ba[i],internal*2);
5786           }
5787           emit_jmp(0);
5788         }else
5789         #endif
5790         {
5791           if(adj) emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
5792           store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5793           load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5794           if(internal)
5795             assem_debug("branch: internal\n");
5796           else
5797             assem_debug("branch: external\n");
5798           if(internal&&is_ds[(ba[i]-start)>>2]) {
5799             ds_assemble_entry(i);
5800           }
5801           else {
5802             add_to_linker((int)out,ba[i],internal);
5803             emit_jmp(0);
5804           }
5805         }
5806         set_jump_target(nottaken,(int)out);
5807       }
5808
5809       if(adj) {
5810         if(!invert) emit_addimm(cc,CLOCK_DIVIDER*adj,cc);
5811       }
5812     } // (!unconditional)
5813   } // if(ooo)
5814   else
5815   {
5816     // In-order execution (branch first)
5817     //printf("IOE\n");
5818     int nottaken=0;
5819     if(!unconditional) {
5820       //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5821       if(!only32)
5822       {
5823         assert(s1h>=0);
5824         if((opcode2[i]&0x1d)==0) // BLTZ/BLTZL
5825         {
5826           emit_test(s1h,s1h);
5827           nottaken=(int)out;
5828           emit_jns(1);
5829         }
5830         if((opcode2[i]&0x1d)==1) // BGEZ/BGEZL
5831         {
5832           emit_test(s1h,s1h);
5833           nottaken=(int)out;
5834           emit_js(1);
5835         }
5836       } // if(!only32)
5837       else
5838       {
5839         assert(s1l>=0);
5840         if((opcode2[i]&0x1d)==0) // BLTZ/BLTZL
5841         {
5842           emit_test(s1l,s1l);
5843           nottaken=(int)out;
5844           emit_jns(1);
5845         }
5846         if((opcode2[i]&0x1d)==1) // BGEZ/BGEZL
5847         {
5848           emit_test(s1l,s1l);
5849           nottaken=(int)out;
5850           emit_js(1);
5851         }
5852       }
5853     } // if(!unconditional)
5854     int adj;
5855     uint64_t ds_unneeded=branch_regs[i].u;
5856     uint64_t ds_unneeded_upper=branch_regs[i].uu;
5857     ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
5858     ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
5859     if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
5860     ds_unneeded|=1;
5861     ds_unneeded_upper|=1;
5862     // branch taken
5863     if(!nevertaken) {
5864       //assem_debug("1:\n");
5865       wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5866                     ds_unneeded,ds_unneeded_upper);
5867       // load regs
5868       load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5869       address_generation(i+1,&branch_regs[i],0);
5870       load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
5871       ds_assemble(i+1,&branch_regs[i]);
5872       cc=get_reg(branch_regs[i].regmap,CCREG);
5873       if(cc==-1) {
5874         emit_loadreg(CCREG,cc=HOST_CCREG);
5875         // CHECK: Is the following instruction (fall thru) allocated ok?
5876       }
5877       assert(cc==HOST_CCREG);
5878       store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5879       do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
5880       assem_debug("cycle count (adj)\n");
5881       if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5882       load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5883       if(internal)
5884         assem_debug("branch: internal\n");
5885       else
5886         assem_debug("branch: external\n");
5887       if(internal&&is_ds[(ba[i]-start)>>2]) {
5888         ds_assemble_entry(i);
5889       }
5890       else {
5891         add_to_linker((int)out,ba[i],internal);
5892         emit_jmp(0);
5893       }
5894     }
5895     // branch not taken
5896     cop1_usable=prev_cop1_usable;
5897     if(!unconditional) {
5898       set_jump_target(nottaken,(int)out);
5899       assem_debug("1:\n");
5900       if(!likely[i]) {
5901         wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5902                       ds_unneeded,ds_unneeded_upper);
5903         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5904         address_generation(i+1,&branch_regs[i],0);
5905         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5906         ds_assemble(i+1,&branch_regs[i]);
5907       }
5908       cc=get_reg(branch_regs[i].regmap,CCREG);
5909       if(cc==-1&&!likely[i]) {
5910         // Cycle count isn't in a register, temporarily load it then write it out
5911         emit_loadreg(CCREG,HOST_CCREG);
5912         emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
5913         int jaddr=(int)out;
5914         emit_jns(0);
5915         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5916         emit_storereg(CCREG,HOST_CCREG);
5917       }
5918       else{
5919         cc=get_reg(i_regmap,CCREG);
5920         assert(cc==HOST_CCREG);
5921         emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
5922         int jaddr=(int)out;
5923         emit_jns(0);
5924         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
5925       }
5926     }
5927   }
5928 }
5929
5930 void fjump_assemble(int i,struct regstat *i_regs)
5931 {
5932   signed char *i_regmap=i_regs->regmap;
5933   int cc;
5934   int match;
5935   match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5936   assem_debug("fmatch=%d\n",match);
5937   int fs,cs;
5938   int eaddr;
5939   int ooo=1;
5940   int invert=0;
5941   int internal=internal_branch(branch_regs[i].is32,ba[i]);
5942   if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5943   if(likely[i]) ooo=0;
5944   if(!match) invert=1;
5945   #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5946   if(i>(ba[i]-start)>>2) invert=1;
5947   #endif
5948
5949   if(ooo)
5950     if(itype[i+1]==FCOMP)
5951   {
5952     // Write-after-read dependency prevents out of order execution
5953     // First test branch condition, then execute delay slot, then branch
5954     ooo=0;
5955   }
5956
5957   if(ooo) {
5958     fs=get_reg(branch_regs[i].regmap,FSREG);
5959     address_generation(i+1,i_regs,regs[i].regmap_entry); // Is this okay?
5960   }
5961   else {
5962     fs=get_reg(i_regmap,FSREG);
5963   }
5964
5965   // Check cop1 unusable
5966   if(!cop1_usable) {
5967     cs=get_reg(i_regmap,CSREG);
5968     assert(cs>=0);
5969     emit_testimm(cs,0x20000000);
5970     eaddr=(int)out;
5971     emit_jeq(0);
5972     add_stub(FP_STUB,eaddr,(int)out,i,cs,(int)i_regs,0,0);
5973     cop1_usable=1;
5974   }
5975
5976   if(ooo) {
5977     // Out of order execution (delay slot first)
5978     //printf("OOOE\n");
5979     ds_assemble(i+1,i_regs);
5980     int adj;
5981     uint64_t bc_unneeded=branch_regs[i].u;
5982     uint64_t bc_unneeded_upper=branch_regs[i].uu;
5983     bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
5984     bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
5985     bc_unneeded|=1;
5986     bc_unneeded_upper|=1;
5987     wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5988                   bc_unneeded,bc_unneeded_upper);
5989     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs1[i]);
5990     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5991     cc=get_reg(branch_regs[i].regmap,CCREG);
5992     assert(cc==HOST_CCREG);
5993     do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
5994     assem_debug("cycle count (adj)\n");
5995     if(1) {
5996       int nottaken=0;
5997       if(adj&&!invert) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
5998       if(1) {
5999         assert(fs>=0);
6000         emit_testimm(fs,0x800000);
6001         if(source[i]&0x10000) // BC1T
6002         {
6003           if(invert){
6004             nottaken=(int)out;
6005             emit_jeq(1);
6006           }else{
6007             add_to_linker((int)out,ba[i],internal);
6008             emit_jne(0);
6009           }
6010         }
6011         else // BC1F
6012           if(invert){
6013             nottaken=(int)out;
6014             emit_jne(1);
6015           }else{
6016             add_to_linker((int)out,ba[i],internal);
6017             emit_jeq(0);
6018           }
6019         {
6020         }
6021       } // if(!only32)
6022           
6023       if(invert) {
6024         if(adj) emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
6025         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
6026         else if(match) emit_addnop(13);
6027         #endif
6028         store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6029         load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6030         if(internal)
6031           assem_debug("branch: internal\n");
6032         else
6033           assem_debug("branch: external\n");
6034         if(internal&&is_ds[(ba[i]-start)>>2]) {
6035           ds_assemble_entry(i);
6036         }
6037         else {
6038           add_to_linker((int)out,ba[i],internal);
6039           emit_jmp(0);
6040         }
6041         set_jump_target(nottaken,(int)out);
6042       }
6043
6044       if(adj) {
6045         if(!invert) emit_addimm(cc,CLOCK_DIVIDER*adj,cc);
6046       }
6047     } // (!unconditional)
6048   } // if(ooo)
6049   else
6050   {
6051     // In-order execution (branch first)
6052     //printf("IOE\n");
6053     int nottaken=0;
6054     if(1) {
6055       //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
6056       if(1) {
6057         assert(fs>=0);
6058         emit_testimm(fs,0x800000);
6059         if(source[i]&0x10000) // BC1T
6060         {
6061           nottaken=(int)out;
6062           emit_jeq(1);
6063         }
6064         else // BC1F
6065         {
6066           nottaken=(int)out;
6067           emit_jne(1);
6068         }
6069       }
6070     } // if(!unconditional)
6071     int adj;
6072     uint64_t ds_unneeded=branch_regs[i].u;
6073     uint64_t ds_unneeded_upper=branch_regs[i].uu;
6074     ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6075     ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6076     if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
6077     ds_unneeded|=1;
6078     ds_unneeded_upper|=1;
6079     // branch taken
6080     //assem_debug("1:\n");
6081     wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6082                   ds_unneeded,ds_unneeded_upper);
6083     // load regs
6084     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
6085     address_generation(i+1,&branch_regs[i],0);
6086     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
6087     ds_assemble(i+1,&branch_regs[i]);
6088     cc=get_reg(branch_regs[i].regmap,CCREG);
6089     if(cc==-1) {
6090       emit_loadreg(CCREG,cc=HOST_CCREG);
6091       // CHECK: Is the following instruction (fall thru) allocated ok?
6092     }
6093     assert(cc==HOST_CCREG);
6094     store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6095     do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
6096     assem_debug("cycle count (adj)\n");
6097     if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
6098     load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
6099     if(internal)
6100       assem_debug("branch: internal\n");
6101     else
6102       assem_debug("branch: external\n");
6103     if(internal&&is_ds[(ba[i]-start)>>2]) {
6104       ds_assemble_entry(i);
6105     }
6106     else {
6107       add_to_linker((int)out,ba[i],internal);
6108       emit_jmp(0);
6109     }
6110
6111     // branch not taken
6112     if(1) { // <- FIXME (don't need this)
6113       set_jump_target(nottaken,(int)out);
6114       assem_debug("1:\n");
6115       if(!likely[i]) {
6116         wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
6117                       ds_unneeded,ds_unneeded_upper);
6118         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
6119         address_generation(i+1,&branch_regs[i],0);
6120         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
6121         ds_assemble(i+1,&branch_regs[i]);
6122       }
6123       cc=get_reg(branch_regs[i].regmap,CCREG);
6124       if(cc==-1&&!likely[i]) {
6125         // Cycle count isn't in a register, temporarily load it then write it out
6126         emit_loadreg(CCREG,HOST_CCREG);
6127         emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
6128         int jaddr=(int)out;
6129         emit_jns(0);
6130         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
6131         emit_storereg(CCREG,HOST_CCREG);
6132       }
6133       else{
6134         cc=get_reg(i_regmap,CCREG);
6135         assert(cc==HOST_CCREG);
6136         emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
6137         int jaddr=(int)out;
6138         emit_jns(0);
6139         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
6140       }
6141     }
6142   }
6143 }
6144
6145 static void pagespan_assemble(int i,struct regstat *i_regs)
6146 {
6147   int s1l=get_reg(i_regs->regmap,rs1[i]);
6148   int s1h=get_reg(i_regs->regmap,rs1[i]|64);
6149   int s2l=get_reg(i_regs->regmap,rs2[i]);
6150   int s2h=get_reg(i_regs->regmap,rs2[i]|64);
6151   void *nt_branch=NULL;
6152   int taken=0;
6153   int nottaken=0;
6154   int unconditional=0;
6155   if(rs1[i]==0)
6156   {
6157     s1l=s2l;s1h=s2h;
6158     s2l=s2h=-1;
6159   }
6160   else if(rs2[i]==0)
6161   {
6162     s2l=s2h=-1;
6163   }
6164   if((i_regs->is32>>rs1[i])&(i_regs->is32>>rs2[i])&1) {
6165     s1h=s2h=-1;
6166   }
6167   int hr=0;
6168   int addr,alt,ntaddr;
6169   if(i_regs->regmap[HOST_BTREG]<0) {addr=HOST_BTREG;}
6170   else {
6171     while(hr<HOST_REGS)
6172     {
6173       if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
6174          (i_regs->regmap[hr]&63)!=rs1[i] &&
6175          (i_regs->regmap[hr]&63)!=rs2[i] )
6176       {
6177         addr=hr++;break;
6178       }
6179       hr++;
6180     }
6181   }
6182   while(hr<HOST_REGS)
6183   {
6184     if(hr!=EXCLUDE_REG && hr!=HOST_CCREG && hr!=HOST_BTREG &&
6185        (i_regs->regmap[hr]&63)!=rs1[i] &&
6186        (i_regs->regmap[hr]&63)!=rs2[i] )
6187     {
6188       alt=hr++;break;
6189     }
6190     hr++;
6191   }
6192   if((opcode[i]&0x2E)==6) // BLEZ/BGTZ needs another register
6193   {
6194     while(hr<HOST_REGS)
6195     {
6196       if(hr!=EXCLUDE_REG && hr!=HOST_CCREG && hr!=HOST_BTREG &&
6197          (i_regs->regmap[hr]&63)!=rs1[i] &&
6198          (i_regs->regmap[hr]&63)!=rs2[i] )
6199       {
6200         ntaddr=hr;break;
6201       }
6202       hr++;
6203     }
6204   }
6205   assert(hr<HOST_REGS);
6206   if((opcode[i]&0x2e)==4||opcode[i]==0x11) { // BEQ/BNE/BEQL/BNEL/BC1
6207     load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,CCREG,CCREG);
6208   }
6209   emit_addimm(HOST_CCREG,CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
6210   if(opcode[i]==2) // J
6211   {
6212     unconditional=1;
6213   }
6214   if(opcode[i]==3) // JAL
6215   {
6216     // TODO: mini_ht
6217     int rt=get_reg(i_regs->regmap,31);
6218     emit_movimm(start+i*4+8,rt);
6219     unconditional=1;
6220   }
6221   if(opcode[i]==0&&(opcode2[i]&0x3E)==8) // JR/JALR
6222   {
6223     emit_mov(s1l,addr);
6224     if(opcode2[i]==9) // JALR
6225     {
6226       int rt=get_reg(i_regs->regmap,rt1[i]);
6227       emit_movimm(start+i*4+8,rt);
6228     }
6229   }
6230   if((opcode[i]&0x3f)==4) // BEQ
6231   {
6232     if(rs1[i]==rs2[i])
6233     {
6234       unconditional=1;
6235     }
6236     else
6237     #ifdef HAVE_CMOV_IMM
6238     if(s1h<0) {
6239       if(s2l>=0) emit_cmp(s1l,s2l);
6240       else emit_test(s1l,s1l);
6241       emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
6242     }
6243     else
6244     #endif
6245     {
6246       assert(s1l>=0);
6247       emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
6248       if(s1h>=0) {
6249         if(s2h>=0) emit_cmp(s1h,s2h);
6250         else emit_test(s1h,s1h);
6251         emit_cmovne_reg(alt,addr);
6252       }
6253       if(s2l>=0) emit_cmp(s1l,s2l);
6254       else emit_test(s1l,s1l);
6255       emit_cmovne_reg(alt,addr);
6256     }
6257   }
6258   if((opcode[i]&0x3f)==5) // BNE
6259   {
6260     #ifdef HAVE_CMOV_IMM
6261     if(s1h<0) {
6262       if(s2l>=0) emit_cmp(s1l,s2l);
6263       else emit_test(s1l,s1l);
6264       emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
6265     }
6266     else
6267     #endif
6268     {
6269       assert(s1l>=0);
6270       emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
6271       if(s1h>=0) {
6272         if(s2h>=0) emit_cmp(s1h,s2h);
6273         else emit_test(s1h,s1h);
6274         emit_cmovne_reg(alt,addr);
6275       }
6276       if(s2l>=0) emit_cmp(s1l,s2l);
6277       else emit_test(s1l,s1l);
6278       emit_cmovne_reg(alt,addr);
6279     }
6280   }
6281   if((opcode[i]&0x3f)==0x14) // BEQL
6282   {
6283     if(s1h>=0) {
6284       if(s2h>=0) emit_cmp(s1h,s2h);
6285       else emit_test(s1h,s1h);
6286       nottaken=(int)out;
6287       emit_jne(0);
6288     }
6289     if(s2l>=0) emit_cmp(s1l,s2l);
6290     else emit_test(s1l,s1l);
6291     if(nottaken) set_jump_target(nottaken,(int)out);
6292     nottaken=(int)out;
6293     emit_jne(0);
6294   }
6295   if((opcode[i]&0x3f)==0x15) // BNEL
6296   {
6297     if(s1h>=0) {
6298       if(s2h>=0) emit_cmp(s1h,s2h);
6299       else emit_test(s1h,s1h);
6300       taken=(int)out;
6301       emit_jne(0);
6302     }
6303     if(s2l>=0) emit_cmp(s1l,s2l);
6304     else emit_test(s1l,s1l);
6305     nottaken=(int)out;
6306     emit_jeq(0);
6307     if(taken) set_jump_target(taken,(int)out);
6308   }
6309   if((opcode[i]&0x3f)==6) // BLEZ
6310   {
6311     emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
6312     emit_cmpimm(s1l,1);
6313     if(s1h>=0) emit_mov(addr,ntaddr);
6314     emit_cmovl_reg(alt,addr);
6315     if(s1h>=0) {
6316       emit_test(s1h,s1h);
6317       emit_cmovne_reg(ntaddr,addr);
6318       emit_cmovs_reg(alt,addr);
6319     }
6320   }
6321   if((opcode[i]&0x3f)==7) // BGTZ
6322   {
6323     emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
6324     emit_cmpimm(s1l,1);
6325     if(s1h>=0) emit_mov(addr,alt);
6326     emit_cmovl_reg(ntaddr,addr);
6327     if(s1h>=0) {
6328       emit_test(s1h,s1h);
6329       emit_cmovne_reg(alt,addr);
6330       emit_cmovs_reg(ntaddr,addr);
6331     }
6332   }
6333   if((opcode[i]&0x3f)==0x16) // BLEZL
6334   {
6335     assert((opcode[i]&0x3f)!=0x16);
6336   }
6337   if((opcode[i]&0x3f)==0x17) // BGTZL
6338   {
6339     assert((opcode[i]&0x3f)!=0x17);
6340   }
6341   assert(opcode[i]!=1); // BLTZ/BGEZ
6342
6343   //FIXME: Check CSREG
6344   if(opcode[i]==0x11 && opcode2[i]==0x08 ) {
6345     if((source[i]&0x30000)==0) // BC1F
6346     {
6347       emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
6348       emit_testimm(s1l,0x800000);
6349       emit_cmovne_reg(alt,addr);
6350     }
6351     if((source[i]&0x30000)==0x10000) // BC1T
6352     {
6353       emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
6354       emit_testimm(s1l,0x800000);
6355       emit_cmovne_reg(alt,addr);
6356     }
6357     if((source[i]&0x30000)==0x20000) // BC1FL
6358     {
6359       emit_testimm(s1l,0x800000);
6360       nottaken=(int)out;
6361       emit_jne(0);
6362     }
6363     if((source[i]&0x30000)==0x30000) // BC1TL
6364     {
6365       emit_testimm(s1l,0x800000);
6366       nottaken=(int)out;
6367       emit_jeq(0);
6368     }
6369   }
6370
6371   assert(i_regs->regmap[HOST_CCREG]==CCREG);
6372   wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
6373   if(likely[i]||unconditional)
6374   {
6375     emit_movimm(ba[i],HOST_BTREG);
6376   }
6377   else if(addr!=HOST_BTREG)
6378   {
6379     emit_mov(addr,HOST_BTREG);
6380   }
6381   void *branch_addr=out;
6382   emit_jmp(0);
6383   int target_addr=start+i*4+5;
6384   void *stub=out;
6385   void *compiled_target_addr=check_addr(target_addr);
6386   emit_extjump_ds((int)branch_addr,target_addr);
6387   if(compiled_target_addr) {
6388     set_jump_target((int)branch_addr,(int)compiled_target_addr);
6389     add_link(target_addr,stub);
6390   }
6391   else set_jump_target((int)branch_addr,(int)stub);
6392   if(likely[i]) {
6393     // Not-taken path
6394     set_jump_target((int)nottaken,(int)out);
6395     wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
6396     void *branch_addr=out;
6397     emit_jmp(0);
6398     int target_addr=start+i*4+8;
6399     void *stub=out;
6400     void *compiled_target_addr=check_addr(target_addr);
6401     emit_extjump_ds((int)branch_addr,target_addr);
6402     if(compiled_target_addr) {
6403       set_jump_target((int)branch_addr,(int)compiled_target_addr);
6404       add_link(target_addr,stub);
6405     }
6406     else set_jump_target((int)branch_addr,(int)stub);
6407   }
6408 }
6409
6410 // Assemble the delay slot for the above
6411 static void pagespan_ds()
6412 {
6413   assem_debug("initial delay slot:\n");
6414   u_int vaddr=start+1;
6415   u_int page=get_page(vaddr);
6416   u_int vpage=get_vpage(vaddr);
6417   ll_add(jump_dirty+vpage,vaddr,(void *)out);
6418   do_dirty_stub_ds();
6419   ll_add(jump_in+page,vaddr,(void *)out);
6420   assert(regs[0].regmap_entry[HOST_CCREG]==CCREG);
6421   if(regs[0].regmap[HOST_CCREG]!=CCREG)
6422     wb_register(CCREG,regs[0].regmap_entry,regs[0].wasdirty,regs[0].was32);
6423   if(regs[0].regmap[HOST_BTREG]!=BTREG)
6424     emit_writeword(HOST_BTREG,(int)&branch_target);
6425   load_regs(regs[0].regmap_entry,regs[0].regmap,regs[0].was32,rs1[0],rs2[0]);
6426   address_generation(0,&regs[0],regs[0].regmap_entry);
6427   if(itype[0]==STORE||itype[0]==STORELR||(opcode[0]&0x3b)==0x39||(opcode[0]&0x3b)==0x3a)
6428     load_regs(regs[0].regmap_entry,regs[0].regmap,regs[0].was32,INVCP,INVCP);
6429   cop1_usable=0;
6430   is_delayslot=0;
6431   switch(itype[0]) {
6432     case ALU:
6433       alu_assemble(0,&regs[0]);break;
6434     case IMM16:
6435       imm16_assemble(0,&regs[0]);break;
6436     case SHIFT:
6437       shift_assemble(0,&regs[0]);break;
6438     case SHIFTIMM:
6439       shiftimm_assemble(0,&regs[0]);break;
6440     case LOAD:
6441       load_assemble(0,&regs[0]);break;
6442     case LOADLR:
6443       loadlr_assemble(0,&regs[0]);break;
6444     case STORE:
6445       store_assemble(0,&regs[0]);break;
6446     case STORELR:
6447       storelr_assemble(0,&regs[0]);break;
6448     case COP0:
6449       cop0_assemble(0,&regs[0]);break;
6450     case COP1:
6451       cop1_assemble(0,&regs[0]);break;
6452     case C1LS:
6453       c1ls_assemble(0,&regs[0]);break;
6454     case COP2:
6455       cop2_assemble(0,&regs[0]);break;
6456     case C2LS:
6457       c2ls_assemble(0,&regs[0]);break;
6458     case C2OP:
6459       c2op_assemble(0,&regs[0]);break;
6460     case FCONV:
6461       fconv_assemble(0,&regs[0]);break;
6462     case FLOAT:
6463       float_assemble(0,&regs[0]);break;
6464     case FCOMP:
6465       fcomp_assemble(0,&regs[0]);break;
6466     case MULTDIV:
6467       multdiv_assemble(0,&regs[0]);break;
6468     case MOV:
6469       mov_assemble(0,&regs[0]);break;
6470     case SYSCALL:
6471     case HLECALL:
6472     case SPAN:
6473     case UJUMP:
6474     case RJUMP:
6475     case CJUMP:
6476     case SJUMP:
6477     case FJUMP:
6478       printf("Jump in the delay slot.  This is probably a bug.\n");
6479   }
6480   int btaddr=get_reg(regs[0].regmap,BTREG);
6481   if(btaddr<0) {
6482     btaddr=get_reg(regs[0].regmap,-1);
6483     emit_readword((int)&branch_target,btaddr);
6484   }
6485   assert(btaddr!=HOST_CCREG);
6486   if(regs[0].regmap[HOST_CCREG]!=CCREG) emit_loadreg(CCREG,HOST_CCREG);
6487 #ifdef HOST_IMM8
6488   emit_movimm(start+4,HOST_TEMPREG);
6489   emit_cmp(btaddr,HOST_TEMPREG);
6490 #else
6491   emit_cmpimm(btaddr,start+4);
6492 #endif
6493   int branch=(int)out;
6494   emit_jeq(0);
6495   store_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,-1);
6496   emit_jmp(jump_vaddr_reg[btaddr]);
6497   set_jump_target(branch,(int)out);
6498   store_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,start+4);
6499   load_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,start+4);
6500 }
6501
6502 // Basic liveness analysis for MIPS registers
6503 void unneeded_registers(int istart,int iend,int r)
6504 {
6505   int i;
6506   uint64_t u,uu,b,bu;
6507   uint64_t temp_u,temp_uu;
6508   uint64_t tdep;
6509   if(iend==slen-1) {
6510     u=1;uu=1;
6511   }else{
6512     u=unneeded_reg[iend+1];
6513     uu=unneeded_reg_upper[iend+1];
6514     u=1;uu=1;
6515   }
6516   for (i=iend;i>=istart;i--)
6517   {
6518     //printf("unneeded registers i=%d (%d,%d) r=%d\n",i,istart,iend,r);
6519     if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
6520     {
6521       // If subroutine call, flag return address as a possible branch target
6522       if(rt1[i]==31 && i<slen-2) bt[i+2]=1;
6523       
6524       if(ba[i]<start || ba[i]>=(start+slen*4))
6525       {
6526         // Branch out of this block, flush all regs
6527         u=1;
6528         uu=1;
6529         /* Hexagon hack 
6530         if(itype[i]==UJUMP&&rt1[i]==31)
6531         {
6532           uu=u=0x300C00F; // Discard at, v0-v1, t6-t9
6533         }
6534         if(itype[i]==RJUMP&&rs1[i]==31)
6535         {
6536           uu=u=0x300C0F3; // Discard at, a0-a3, t6-t9
6537         }
6538         if(start>0x80000400&&start<0x80800000) {
6539           if(itype[i]==UJUMP&&rt1[i]==31)
6540           {
6541             //uu=u=0x30300FF0FLL; // Discard at, v0-v1, t0-t9, lo, hi
6542             uu=u=0x300FF0F; // Discard at, v0-v1, t0-t9
6543           }
6544           if(itype[i]==RJUMP&&rs1[i]==31)
6545           {
6546             //uu=u=0x30300FFF3LL; // Discard at, a0-a3, t0-t9, lo, hi
6547             uu=u=0x300FFF3; // Discard at, a0-a3, t0-t9
6548           }
6549         }*/
6550         branch_unneeded_reg[i]=u;
6551         branch_unneeded_reg_upper[i]=uu;
6552         // Merge in delay slot
6553         tdep=(~uu>>rt1[i+1])&1;
6554         u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6555         uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6556         u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6557         uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6558         uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6559         u|=1;uu|=1;
6560         // If branch is "likely" (and conditional)
6561         // then we skip the delay slot on the fall-thru path
6562         if(likely[i]) {
6563           if(i<slen-1) {
6564             u&=unneeded_reg[i+2];
6565             uu&=unneeded_reg_upper[i+2];
6566           }
6567           else
6568           {
6569             u=1;
6570             uu=1;
6571           }
6572         }
6573       }
6574       else
6575       {
6576         // Internal branch, flag target
6577         bt[(ba[i]-start)>>2]=1;
6578         if(ba[i]<=start+i*4) {
6579           // Backward branch
6580           if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
6581           {
6582             // Unconditional branch
6583             temp_u=1;temp_uu=1;
6584           } else {
6585             // Conditional branch (not taken case)
6586             temp_u=unneeded_reg[i+2];
6587             temp_uu=unneeded_reg_upper[i+2];
6588           }
6589           // Merge in delay slot
6590           tdep=(~temp_uu>>rt1[i+1])&1;
6591           temp_u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6592           temp_uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6593           temp_u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6594           temp_uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6595           temp_uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6596           temp_u|=1;temp_uu|=1;
6597           // If branch is "likely" (and conditional)
6598           // then we skip the delay slot on the fall-thru path
6599           if(likely[i]) {
6600             if(i<slen-1) {
6601               temp_u&=unneeded_reg[i+2];
6602               temp_uu&=unneeded_reg_upper[i+2];
6603             }
6604             else
6605             {
6606               temp_u=1;
6607               temp_uu=1;
6608             }
6609           }
6610           tdep=(~temp_uu>>rt1[i])&1;
6611           temp_u|=(1LL<<rt1[i])|(1LL<<rt2[i]);
6612           temp_uu|=(1LL<<rt1[i])|(1LL<<rt2[i]);
6613           temp_u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
6614           temp_uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
6615           temp_uu&=~((tdep<<dep1[i])|(tdep<<dep2[i]));
6616           temp_u|=1;temp_uu|=1;
6617           unneeded_reg[i]=temp_u;
6618           unneeded_reg_upper[i]=temp_uu;
6619           // Only go three levels deep.  This recursion can take an
6620           // excessive amount of time if there are a lot of nested loops.
6621           if(r<2) {
6622             unneeded_registers((ba[i]-start)>>2,i-1,r+1);
6623           }else{
6624             unneeded_reg[(ba[i]-start)>>2]=1;
6625             unneeded_reg_upper[(ba[i]-start)>>2]=1;
6626           }
6627         } /*else*/ if(1) {
6628           if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
6629           {
6630             // Unconditional branch
6631             u=unneeded_reg[(ba[i]-start)>>2];
6632             uu=unneeded_reg_upper[(ba[i]-start)>>2];
6633             branch_unneeded_reg[i]=u;
6634             branch_unneeded_reg_upper[i]=uu;
6635         //u=1;
6636         //uu=1;
6637         //branch_unneeded_reg[i]=u;
6638         //branch_unneeded_reg_upper[i]=uu;
6639             // Merge in delay slot
6640             tdep=(~uu>>rt1[i+1])&1;
6641             u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6642             uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6643             u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6644             uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6645             uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6646             u|=1;uu|=1;
6647           } else {
6648             // Conditional branch
6649             b=unneeded_reg[(ba[i]-start)>>2];
6650             bu=unneeded_reg_upper[(ba[i]-start)>>2];
6651             branch_unneeded_reg[i]=b;
6652             branch_unneeded_reg_upper[i]=bu;
6653         //b=1;
6654         //bu=1;
6655         //branch_unneeded_reg[i]=b;
6656         //branch_unneeded_reg_upper[i]=bu;
6657             // Branch delay slot
6658             tdep=(~uu>>rt1[i+1])&1;
6659             b|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6660             bu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6661             b&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6662             bu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6663             bu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6664             b|=1;bu|=1;
6665             // If branch is "likely" then we skip the
6666             // delay slot on the fall-thru path
6667             if(likely[i]) {
6668               u=b;
6669               uu=bu;
6670               if(i<slen-1) {
6671                 u&=unneeded_reg[i+2];
6672                 uu&=unneeded_reg_upper[i+2];
6673         //u=1;
6674         //uu=1;
6675               }
6676             } else {
6677               u&=b;
6678               uu&=bu;
6679         //u=1;
6680         //uu=1;
6681             }
6682             if(i<slen-1) {
6683               branch_unneeded_reg[i]&=unneeded_reg[i+2];
6684               branch_unneeded_reg_upper[i]&=unneeded_reg_upper[i+2];
6685         //branch_unneeded_reg[i]=1;
6686         //branch_unneeded_reg_upper[i]=1;
6687             } else {
6688               branch_unneeded_reg[i]=1;
6689               branch_unneeded_reg_upper[i]=1;
6690             }
6691           }
6692         }
6693       }
6694     }
6695     else if(itype[i]==SYSCALL||itype[i]==HLECALL)
6696     {
6697       // SYSCALL instruction (software interrupt)
6698       u=1;
6699       uu=1;
6700     }
6701     else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
6702     {
6703       // ERET instruction (return from interrupt)
6704       u=1;
6705       uu=1;
6706     }
6707     //u=uu=1; // DEBUG
6708     tdep=(~uu>>rt1[i])&1;
6709     // Written registers are unneeded
6710     u|=1LL<<rt1[i];
6711     u|=1LL<<rt2[i];
6712     uu|=1LL<<rt1[i];
6713     uu|=1LL<<rt2[i];
6714     // Accessed registers are needed
6715     u&=~(1LL<<rs1[i]);
6716     u&=~(1LL<<rs2[i]);
6717     uu&=~(1LL<<us1[i]);
6718     uu&=~(1LL<<us2[i]);
6719     // Source-target dependencies
6720     uu&=~(tdep<<dep1[i]);
6721     uu&=~(tdep<<dep2[i]);
6722     // R0 is always unneeded
6723     u|=1;uu|=1;
6724     // Save it
6725     unneeded_reg[i]=u;
6726     unneeded_reg_upper[i]=uu;
6727     /*
6728     printf("ur (%d,%d) %x: ",istart,iend,start+i*4);
6729     printf("U:");
6730     int r;
6731     for(r=1;r<=CCREG;r++) {
6732       if((unneeded_reg[i]>>r)&1) {
6733         if(r==HIREG) printf(" HI");
6734         else if(r==LOREG) printf(" LO");
6735         else printf(" r%d",r);
6736       }
6737     }
6738     printf(" UU:");
6739     for(r=1;r<=CCREG;r++) {
6740       if(((unneeded_reg_upper[i]&~unneeded_reg[i])>>r)&1) {
6741         if(r==HIREG) printf(" HI");
6742         else if(r==LOREG) printf(" LO");
6743         else printf(" r%d",r);
6744       }
6745     }
6746     printf("\n");*/
6747   }
6748 #ifdef FORCE32
6749   for (i=iend;i>=istart;i--)
6750   {
6751     unneeded_reg_upper[i]=branch_unneeded_reg_upper[i]=-1LL;
6752   }
6753 #endif
6754 }
6755
6756 // Identify registers which are likely to contain 32-bit values
6757 // This is used to predict whether any branches will jump to a
6758 // location with 64-bit values in registers.
6759 static void provisional_32bit()
6760 {
6761   int i,j;
6762   uint64_t is32=1;
6763   uint64_t lastbranch=1;
6764   
6765   for(i=0;i<slen;i++)
6766   {
6767     if(i>0) {
6768       if(itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP) {
6769         if(i>1) is32=lastbranch;
6770         else is32=1;
6771       }
6772     }
6773     if(i>1)
6774     {
6775       if(itype[i-2]==CJUMP||itype[i-2]==SJUMP||itype[i-2]==FJUMP) {
6776         if(likely[i-2]) {
6777           if(i>2) is32=lastbranch;
6778           else is32=1;
6779         }
6780       }
6781       if((opcode[i-2]&0x2f)==0x05) // BNE/BNEL
6782       {
6783         if(rs1[i-2]==0||rs2[i-2]==0)
6784         {
6785           if(rs1[i-2]) {
6786             is32|=1LL<<rs1[i-2];
6787           }
6788           if(rs2[i-2]) {
6789             is32|=1LL<<rs2[i-2];
6790           }
6791         }
6792       }
6793     }
6794     // If something jumps here with 64-bit values
6795     // then promote those registers to 64 bits
6796     if(bt[i])
6797     {
6798       uint64_t temp_is32=is32;
6799       for(j=i-1;j>=0;j--)
6800       {
6801         if(ba[j]==start+i*4) 
6802           //temp_is32&=branch_regs[j].is32;
6803           temp_is32&=p32[j];
6804       }
6805       for(j=i;j<slen;j++)
6806       {
6807         if(ba[j]==start+i*4) 
6808           temp_is32=1;
6809       }
6810       is32=temp_is32;
6811     }
6812     int type=itype[i];
6813     int op=opcode[i];
6814     int op2=opcode2[i];
6815     int rt=rt1[i];
6816     int s1=rs1[i];
6817     int s2=rs2[i];
6818     if(type==UJUMP||type==RJUMP||type==CJUMP||type==SJUMP||type==FJUMP) {
6819       // Branches don't write registers, consider the delay slot instead.
6820       type=itype[i+1];
6821       op=opcode[i+1];
6822       op2=opcode2[i+1];
6823       rt=rt1[i+1];
6824       s1=rs1[i+1];
6825       s2=rs2[i+1];
6826       lastbranch=is32;
6827     }
6828     switch(type) {
6829       case LOAD:
6830         if(opcode[i]==0x27||opcode[i]==0x37|| // LWU/LD
6831            opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
6832           is32&=~(1LL<<rt);
6833         else
6834           is32|=1LL<<rt;
6835         break;
6836       case STORE:
6837       case STORELR:
6838         break;
6839       case LOADLR:
6840         if(op==0x1a||op==0x1b) is32&=~(1LL<<rt); // LDR/LDL
6841         if(op==0x22) is32|=1LL<<rt; // LWL
6842         break;
6843       case IMM16:
6844         if (op==0x08||op==0x09|| // ADDI/ADDIU
6845             op==0x0a||op==0x0b|| // SLTI/SLTIU
6846             op==0x0c|| // ANDI
6847             op==0x0f)  // LUI
6848         {
6849           is32|=1LL<<rt;
6850         }
6851         if(op==0x18||op==0x19) { // DADDI/DADDIU
6852           is32&=~(1LL<<rt);
6853           //if(imm[i]==0)
6854           //  is32|=((is32>>s1)&1LL)<<rt;
6855         }
6856         if(op==0x0d||op==0x0e) { // ORI/XORI
6857           uint64_t sr=((is32>>s1)&1LL);
6858           is32&=~(1LL<<rt);
6859           is32|=sr<<rt;
6860         }
6861         break;
6862       case UJUMP:
6863         break;
6864       case RJUMP:
6865         break;
6866       case CJUMP:
6867         break;
6868       case SJUMP:
6869         break;
6870       case FJUMP:
6871         break;
6872       case ALU:
6873         if(op2>=0x20&&op2<=0x23) { // ADD/ADDU/SUB/SUBU
6874           is32|=1LL<<rt;
6875         }
6876         if(op2==0x2a||op2==0x2b) { // SLT/SLTU
6877           is32|=1LL<<rt;
6878         }
6879         else if(op2>=0x24&&op2<=0x27) { // AND/OR/XOR/NOR
6880           uint64_t sr=((is32>>s1)&(is32>>s2)&1LL);
6881           is32&=~(1LL<<rt);
6882           is32|=sr<<rt;
6883         }
6884         else if(op2>=0x2c&&op2<=0x2d) { // DADD/DADDU
6885           if(s1==0&&s2==0) {
6886             is32|=1LL<<rt;
6887           }
6888           else if(s2==0) {
6889             uint64_t sr=((is32>>s1)&1LL);
6890             is32&=~(1LL<<rt);
6891             is32|=sr<<rt;
6892           }
6893           else if(s1==0) {
6894             uint64_t sr=((is32>>s2)&1LL);
6895             is32&=~(1LL<<rt);
6896             is32|=sr<<rt;
6897           }
6898           else {
6899             is32&=~(1LL<<rt);
6900           }
6901         }
6902         else if(op2>=0x2e&&op2<=0x2f) { // DSUB/DSUBU
6903           if(s1==0&&s2==0) {
6904             is32|=1LL<<rt;
6905           }
6906           else if(s2==0) {
6907             uint64_t sr=((is32>>s1)&1LL);
6908             is32&=~(1LL<<rt);
6909             is32|=sr<<rt;
6910           }
6911           else {
6912             is32&=~(1LL<<rt);
6913           }
6914         }
6915         break;
6916       case MULTDIV:
6917         if (op2>=0x1c&&op2<=0x1f) { // DMULT/DMULTU/DDIV/DDIVU
6918           is32&=~((1LL<<HIREG)|(1LL<<LOREG));
6919         }
6920         else {
6921           is32|=(1LL<<HIREG)|(1LL<<LOREG);
6922         }
6923         break;
6924       case MOV:
6925         {
6926           uint64_t sr=((is32>>s1)&1LL);
6927           is32&=~(1LL<<rt);
6928           is32|=sr<<rt;
6929         }
6930         break;
6931       case SHIFT:
6932         if(op2>=0x14&&op2<=0x17) is32&=~(1LL<<rt); // DSLLV/DSRLV/DSRAV
6933         else is32|=1LL<<rt; // SLLV/SRLV/SRAV
6934         break;
6935       case SHIFTIMM:
6936         is32|=1LL<<rt;
6937         // DSLL/DSRL/DSRA/DSLL32/DSRL32 but not DSRA32 have 64-bit result
6938         if(op2>=0x38&&op2<0x3f) is32&=~(1LL<<rt);
6939         break;
6940       case COP0:
6941         if(op2==0) is32|=1LL<<rt; // MFC0
6942         break;
6943       case COP1:
6944       case COP2:
6945         if(op2==0) is32|=1LL<<rt; // MFC1
6946         if(op2==1) is32&=~(1LL<<rt); // DMFC1
6947         if(op2==2) is32|=1LL<<rt; // CFC1
6948         break;
6949       case C1LS:
6950       case C2LS:
6951         break;
6952       case FLOAT:
6953       case FCONV:
6954         break;
6955       case FCOMP:
6956         break;
6957       case C2OP:
6958       case SYSCALL:
6959       case HLECALL:
6960         break;
6961       default:
6962         break;
6963     }
6964     is32|=1;
6965     p32[i]=is32;
6966
6967     if(i>0)
6968     {
6969       if(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)
6970       {
6971         if(rt1[i-1]==31) // JAL/JALR
6972         {
6973           // Subroutine call will return here, don't alloc any registers
6974           is32=1;
6975         }
6976         else if(i+1<slen)
6977         {
6978           // Internal branch will jump here, match registers to caller
6979           is32=0x3FFFFFFFFLL;
6980         }
6981       }
6982     }
6983   }
6984 }
6985
6986 // Identify registers which may be assumed to contain 32-bit values
6987 // and where optimizations will rely on this.
6988 // This is used to determine whether backward branches can safely
6989 // jump to a location with 64-bit values in registers.
6990 static void provisional_r32()
6991 {
6992   u_int r32=0;
6993   int i;
6994   
6995   for (i=slen-1;i>=0;i--)
6996   {
6997     int hr;
6998     if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
6999     {
7000       if(ba[i]<start || ba[i]>=(start+slen*4))
7001       {
7002         // Branch out of this block, don't need anything
7003         r32=0;
7004       }
7005       else
7006       {
7007         // Internal branch
7008         // Need whatever matches the target
7009         // (and doesn't get overwritten by the delay slot instruction)
7010         r32=0;
7011         int t=(ba[i]-start)>>2;
7012         if(ba[i]>start+i*4) {
7013           // Forward branch
7014           //if(!(requires_32bit[t]&~regs[i].was32))
7015           //  r32|=requires_32bit[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
7016           if(!(pr32[t]&~regs[i].was32))
7017             r32|=pr32[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
7018         }else{
7019           // Backward branch
7020           if(!(regs[t].was32&~unneeded_reg_upper[t]&~regs[i].was32))
7021             r32|=regs[t].was32&~unneeded_reg_upper[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
7022         }
7023       }
7024       // Conditional branch may need registers for following instructions
7025       if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
7026       {
7027         if(i<slen-2) {
7028           //r32|=requires_32bit[i+2];
7029           r32|=pr32[i+2];
7030           r32&=regs[i].was32;
7031           // Mark this address as a branch target since it may be called
7032           // upon return from interrupt
7033           //bt[i+2]=1;
7034         }
7035       }
7036       // Merge in delay slot
7037       if(!likely[i]) {
7038         // These are overwritten unless the branch is "likely"
7039         // and the delay slot is nullified if not taken
7040         r32&=~(1LL<<rt1[i+1]);
7041         r32&=~(1LL<<rt2[i+1]);
7042       }
7043       // Assume these are needed (delay slot)
7044       if(us1[i+1]>0)
7045       {
7046         if((regs[i].was32>>us1[i+1])&1) r32|=1LL<<us1[i+1];
7047       }
7048       if(us2[i+1]>0)
7049       {
7050         if((regs[i].was32>>us2[i+1])&1) r32|=1LL<<us2[i+1];
7051       }
7052       if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1))
7053       {
7054         if((regs[i].was32>>dep1[i+1])&1) r32|=1LL<<dep1[i+1];
7055       }
7056       if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1))
7057       {
7058         if((regs[i].was32>>dep2[i+1])&1) r32|=1LL<<dep2[i+1];
7059       }
7060     }
7061     else if(itype[i]==SYSCALL||itype[i]==HLECALL)
7062     {
7063       // SYSCALL instruction (software interrupt)
7064       r32=0;
7065     }
7066     else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
7067     {
7068       // ERET instruction (return from interrupt)
7069       r32=0;
7070     }
7071     // Check 32 bits
7072     r32&=~(1LL<<rt1[i]);
7073     r32&=~(1LL<<rt2[i]);
7074     if(us1[i]>0)
7075     {
7076       if((regs[i].was32>>us1[i])&1) r32|=1LL<<us1[i];
7077     }
7078     if(us2[i]>0)
7079     {
7080       if((regs[i].was32>>us2[i])&1) r32|=1LL<<us2[i];
7081     }
7082     if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1))
7083     {
7084       if((regs[i].was32>>dep1[i])&1) r32|=1LL<<dep1[i];
7085     }
7086     if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1))
7087     {
7088       if((regs[i].was32>>dep2[i])&1) r32|=1LL<<dep2[i];
7089     }
7090     //requires_32bit[i]=r32;
7091     pr32[i]=r32;
7092     
7093     // Dirty registers which are 32-bit, require 32-bit input
7094     // as they will be written as 32-bit values
7095     for(hr=0;hr<HOST_REGS;hr++)
7096     {
7097       if(regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64) {
7098         if((regs[i].was32>>regs[i].regmap_entry[hr])&(regs[i].wasdirty>>hr)&1) {
7099           if(!((unneeded_reg_upper[i]>>regs[i].regmap_entry[hr])&1))
7100           pr32[i]|=1LL<<regs[i].regmap_entry[hr];
7101           //requires_32bit[i]|=1LL<<regs[i].regmap_entry[hr];
7102         }
7103       }
7104     }
7105   }
7106 }
7107
7108 // Write back dirty registers as soon as we will no longer modify them,
7109 // so that we don't end up with lots of writes at the branches.
7110 void clean_registers(int istart,int iend,int wr)
7111 {
7112   int i;
7113   int r;
7114   u_int will_dirty_i,will_dirty_next,temp_will_dirty;
7115   u_int wont_dirty_i,wont_dirty_next,temp_wont_dirty;
7116   if(iend==slen-1) {
7117     will_dirty_i=will_dirty_next=0;
7118     wont_dirty_i=wont_dirty_next=0;
7119   }else{
7120     will_dirty_i=will_dirty_next=will_dirty[iend+1];
7121     wont_dirty_i=wont_dirty_next=wont_dirty[iend+1];
7122   }
7123   for (i=iend;i>=istart;i--)
7124   {
7125     if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
7126     {
7127       if(ba[i]<start || ba[i]>=(start+slen*4))
7128       {
7129         // Branch out of this block, flush all regs
7130         if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
7131         {
7132           // Unconditional branch
7133           will_dirty_i=0;
7134           wont_dirty_i=0;
7135           // Merge in delay slot (will dirty)
7136           for(r=0;r<HOST_REGS;r++) {
7137             if(r!=EXCLUDE_REG) {
7138               if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7139               if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7140               if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7141               if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7142               if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7143               if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7144               if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7145               if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7146               if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7147               if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7148               if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7149               if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7150               if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7151               if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7152             }
7153           }
7154         }
7155         else
7156         {
7157           // Conditional branch
7158           will_dirty_i=0;
7159           wont_dirty_i=wont_dirty_next;
7160           // Merge in delay slot (will dirty)
7161           for(r=0;r<HOST_REGS;r++) {
7162             if(r!=EXCLUDE_REG) {
7163               if(!likely[i]) {
7164                 // Might not dirty if likely branch is not taken
7165                 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7166                 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7167                 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7168                 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7169                 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7170                 if(branch_regs[i].regmap[r]==0) will_dirty_i&=~(1<<r);
7171                 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7172                 //if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7173                 //if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7174                 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7175                 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7176                 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7177                 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7178                 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7179               }
7180             }
7181           }
7182         }
7183         // Merge in delay slot (wont dirty)
7184         for(r=0;r<HOST_REGS;r++) {
7185           if(r!=EXCLUDE_REG) {
7186             if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7187             if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7188             if((regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7189             if((regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7190             if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7191             if((branch_regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7192             if((branch_regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7193             if((branch_regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7194             if((branch_regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7195             if(branch_regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7196           }
7197         }
7198         if(wr) {
7199           #ifndef DESTRUCTIVE_WRITEBACK
7200           branch_regs[i].dirty&=wont_dirty_i;
7201           #endif
7202           branch_regs[i].dirty|=will_dirty_i;
7203         }
7204       }
7205       else
7206       {
7207         // Internal branch
7208         if(ba[i]<=start+i*4) {
7209           // Backward branch
7210           if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
7211           {
7212             // Unconditional branch
7213             temp_will_dirty=0;
7214             temp_wont_dirty=0;
7215             // Merge in delay slot (will dirty)
7216             for(r=0;r<HOST_REGS;r++) {
7217               if(r!=EXCLUDE_REG) {
7218                 if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7219                 if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7220                 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7221                 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7222                 if((branch_regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7223                 if(branch_regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
7224                 if(branch_regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7225                 if((regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7226                 if((regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7227                 if((regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7228                 if((regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7229                 if((regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7230                 if(regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
7231                 if(regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7232               }
7233             }
7234           } else {
7235             // Conditional branch (not taken case)
7236             temp_will_dirty=will_dirty_next;
7237             temp_wont_dirty=wont_dirty_next;
7238             // Merge in delay slot (will dirty)
7239             for(r=0;r<HOST_REGS;r++) {
7240               if(r!=EXCLUDE_REG) {
7241                 if(!likely[i]) {
7242                   // Will not dirty if likely branch is not taken
7243                   if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7244                   if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7245                   if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7246                   if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7247                   if((branch_regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7248                   if(branch_regs[i].regmap[r]==0) temp_will_dirty&=~(1<<r);
7249                   if(branch_regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7250                   //if((regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
7251                   //if((regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
7252                   if((regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
7253                   if((regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
7254                   if((regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
7255                   if(regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
7256                   if(regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
7257                 }
7258               }
7259             }
7260           }
7261           // Merge in delay slot (wont dirty)
7262           for(r=0;r<HOST_REGS;r++) {
7263             if(r!=EXCLUDE_REG) {
7264               if((regs[i].regmap[r]&63)==rt1[i]) temp_wont_dirty|=1<<r;
7265               if((regs[i].regmap[r]&63)==rt2[i]) temp_wont_dirty|=1<<r;
7266               if((regs[i].regmap[r]&63)==rt1[i+1]) temp_wont_dirty|=1<<r;
7267               if((regs[i].regmap[r]&63)==rt2[i+1]) temp_wont_dirty|=1<<r;
7268               if(regs[i].regmap[r]==CCREG) temp_wont_dirty|=1<<r;
7269               if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_wont_dirty|=1<<r;
7270               if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_wont_dirty|=1<<r;
7271               if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_wont_dirty|=1<<r;
7272               if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_wont_dirty|=1<<r;
7273               if(branch_regs[i].regmap[r]==CCREG) temp_wont_dirty|=1<<r;
7274             }
7275           }
7276           // Deal with changed mappings
7277           if(i<iend) {
7278             for(r=0;r<HOST_REGS;r++) {
7279               if(r!=EXCLUDE_REG) {
7280                 if(regs[i].regmap[r]!=regmap_pre[i][r]) {
7281                   temp_will_dirty&=~(1<<r);
7282                   temp_wont_dirty&=~(1<<r);
7283                   if((regmap_pre[i][r]&63)>0 && (regmap_pre[i][r]&63)<34) {
7284                     temp_will_dirty|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7285                     temp_wont_dirty|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7286                   } else {
7287                     temp_will_dirty|=1<<r;
7288                     temp_wont_dirty|=1<<r;
7289                   }
7290                 }
7291               }
7292             }
7293           }
7294           if(wr) {
7295             will_dirty[i]=temp_will_dirty;
7296             wont_dirty[i]=temp_wont_dirty;
7297             clean_registers((ba[i]-start)>>2,i-1,0);
7298           }else{
7299             // Limit recursion.  It can take an excessive amount
7300             // of time if there are a lot of nested loops.
7301             will_dirty[(ba[i]-start)>>2]=0;
7302             wont_dirty[(ba[i]-start)>>2]=-1;
7303           }
7304         }
7305         /*else*/ if(1)
7306         {
7307           if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
7308           {
7309             // Unconditional branch
7310             will_dirty_i=0;
7311             wont_dirty_i=0;
7312           //if(ba[i]>start+i*4) { // Disable recursion (for debugging)
7313             for(r=0;r<HOST_REGS;r++) {
7314               if(r!=EXCLUDE_REG) {
7315                 if(branch_regs[i].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
7316                   will_dirty_i|=will_dirty[(ba[i]-start)>>2]&(1<<r);
7317                   wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
7318                 }
7319               }
7320             }
7321           //}
7322             // Merge in delay slot
7323             for(r=0;r<HOST_REGS;r++) {
7324               if(r!=EXCLUDE_REG) {
7325                 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7326                 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7327                 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7328                 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7329                 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7330                 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7331                 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7332                 if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7333                 if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7334                 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7335                 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7336                 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7337                 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7338                 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7339               }
7340             }
7341           } else {
7342             // Conditional branch
7343             will_dirty_i=will_dirty_next;
7344             wont_dirty_i=wont_dirty_next;
7345           //if(ba[i]>start+i*4) { // Disable recursion (for debugging)
7346             for(r=0;r<HOST_REGS;r++) {
7347               if(r!=EXCLUDE_REG) {
7348                 if(branch_regs[i].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
7349                   will_dirty_i&=will_dirty[(ba[i]-start)>>2]&(1<<r);
7350                   wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
7351                 }
7352                 else
7353                 {
7354                   will_dirty_i&=~(1<<r);
7355                 }
7356                 // Treat delay slot as part of branch too
7357                 /*if(regs[i+1].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
7358                   will_dirty[i+1]&=will_dirty[(ba[i]-start)>>2]&(1<<r);
7359                   wont_dirty[i+1]|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
7360                 }
7361                 else
7362                 {
7363                   will_dirty[i+1]&=~(1<<r);
7364                 }*/
7365               }
7366             }
7367           //}
7368             // Merge in delay slot
7369             for(r=0;r<HOST_REGS;r++) {
7370               if(r!=EXCLUDE_REG) {
7371                 if(!likely[i]) {
7372                   // Might not dirty if likely branch is not taken
7373                   if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7374                   if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7375                   if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7376                   if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7377                   if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7378                   if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7379                   if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7380                   //if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7381                   //if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7382                   if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
7383                   if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
7384                   if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7385                   if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7386                   if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7387                 }
7388               }
7389             }
7390           }
7391           // Merge in delay slot
7392           for(r=0;r<HOST_REGS;r++) {
7393             if(r!=EXCLUDE_REG) {
7394               if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7395               if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7396               if((regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7397               if((regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7398               if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7399               if((branch_regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7400               if((branch_regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7401               if((branch_regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
7402               if((branch_regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
7403               if(branch_regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7404             }
7405           }
7406           if(wr) {
7407             #ifndef DESTRUCTIVE_WRITEBACK
7408             branch_regs[i].dirty&=wont_dirty_i;
7409             #endif
7410             branch_regs[i].dirty|=will_dirty_i;
7411           }
7412         }
7413       }
7414     }
7415     else if(itype[i]==SYSCALL||itype[i]==HLECALL)
7416     {
7417       // SYSCALL instruction (software interrupt)
7418       will_dirty_i=0;
7419       wont_dirty_i=0;
7420     }
7421     else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
7422     {
7423       // ERET instruction (return from interrupt)
7424       will_dirty_i=0;
7425       wont_dirty_i=0;
7426     }
7427     will_dirty_next=will_dirty_i;
7428     wont_dirty_next=wont_dirty_i;
7429     for(r=0;r<HOST_REGS;r++) {
7430       if(r!=EXCLUDE_REG) {
7431         if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
7432         if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
7433         if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
7434         if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
7435         if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
7436         if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
7437         if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
7438         if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
7439         if(i>istart) {
7440           if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=FJUMP) 
7441           {
7442             // Don't store a register immediately after writing it,
7443             // may prevent dual-issue.
7444             if((regs[i].regmap[r]&63)==rt1[i-1]) wont_dirty_i|=1<<r;
7445             if((regs[i].regmap[r]&63)==rt2[i-1]) wont_dirty_i|=1<<r;
7446           }
7447         }
7448       }
7449     }
7450     // Save it
7451     will_dirty[i]=will_dirty_i;
7452     wont_dirty[i]=wont_dirty_i;
7453     // Mark registers that won't be dirtied as not dirty
7454     if(wr) {
7455       /*printf("wr (%d,%d) %x will:",istart,iend,start+i*4);
7456       for(r=0;r<HOST_REGS;r++) {
7457         if((will_dirty_i>>r)&1) {
7458           printf(" r%d",r);
7459         }
7460       }
7461       printf("\n");*/
7462
7463       //if(i==istart||(itype[i-1]!=RJUMP&&itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=FJUMP)) {
7464         regs[i].dirty|=will_dirty_i;
7465         #ifndef DESTRUCTIVE_WRITEBACK
7466         regs[i].dirty&=wont_dirty_i;
7467         if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
7468         {
7469           if(i<iend-1&&itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000) {
7470             for(r=0;r<HOST_REGS;r++) {
7471               if(r!=EXCLUDE_REG) {
7472                 if(regs[i].regmap[r]==regmap_pre[i+2][r]) {
7473                   regs[i+2].wasdirty&=wont_dirty_i|~(1<<r);
7474                 }else {/*printf("i: %x (%d) mismatch(+2): %d\n",start+i*4,i,r);/*assert(!((wont_dirty_i>>r)&1));*/}
7475               }
7476             }
7477           }
7478         }
7479         else
7480         {
7481           if(i<iend) {
7482             for(r=0;r<HOST_REGS;r++) {
7483               if(r!=EXCLUDE_REG) {
7484                 if(regs[i].regmap[r]==regmap_pre[i+1][r]) {
7485                   regs[i+1].wasdirty&=wont_dirty_i|~(1<<r);
7486                 }else {/*printf("i: %x (%d) mismatch(+1): %d\n",start+i*4,i,r);/*assert(!((wont_dirty_i>>r)&1));*/}
7487               }
7488             }
7489           }
7490         }
7491         #endif
7492       //}
7493     }
7494     // Deal with changed mappings
7495     temp_will_dirty=will_dirty_i;
7496     temp_wont_dirty=wont_dirty_i;
7497     for(r=0;r<HOST_REGS;r++) {
7498       if(r!=EXCLUDE_REG) {
7499         int nr;
7500         if(regs[i].regmap[r]==regmap_pre[i][r]) {
7501           if(wr) {
7502             #ifndef DESTRUCTIVE_WRITEBACK
7503             regs[i].wasdirty&=wont_dirty_i|~(1<<r);
7504             #endif
7505             regs[i].wasdirty|=will_dirty_i&(1<<r);
7506           }
7507         }
7508         else if((nr=get_reg(regs[i].regmap,regmap_pre[i][r]))>=0) {
7509           // Register moved to a different register
7510           will_dirty_i&=~(1<<r);
7511           wont_dirty_i&=~(1<<r);
7512           will_dirty_i|=((temp_will_dirty>>nr)&1)<<r;
7513           wont_dirty_i|=((temp_wont_dirty>>nr)&1)<<r;
7514           if(wr) {
7515             #ifndef DESTRUCTIVE_WRITEBACK
7516             regs[i].wasdirty&=wont_dirty_i|~(1<<r);
7517             #endif
7518             regs[i].wasdirty|=will_dirty_i&(1<<r);
7519           }
7520         }
7521         else {
7522           will_dirty_i&=~(1<<r);
7523           wont_dirty_i&=~(1<<r);
7524           if((regmap_pre[i][r]&63)>0 && (regmap_pre[i][r]&63)<34) {
7525             will_dirty_i|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7526             wont_dirty_i|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
7527           } else {
7528             wont_dirty_i|=1<<r;
7529             /*printf("i: %x (%d) mismatch: %d\n",start+i*4,i,r);/*assert(!((will_dirty>>r)&1));*/
7530           }
7531         }
7532       }
7533     }
7534   }
7535 }
7536
7537   /* disassembly */
7538 void disassemble_inst(int i)
7539 {
7540     if (bt[i]) printf("*"); else printf(" ");
7541     switch(itype[i]) {
7542       case UJUMP:
7543         printf (" %x: %s %8x\n",start+i*4,insn[i],ba[i]);break;
7544       case CJUMP:
7545         printf (" %x: %s r%d,r%d,%8x\n",start+i*4,insn[i],rs1[i],rs2[i],i?start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14):*ba);break;
7546       case SJUMP:
7547         printf (" %x: %s r%d,%8x\n",start+i*4,insn[i],rs1[i],start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14));break;
7548       case FJUMP:
7549         printf (" %x: %s %8x\n",start+i*4,insn[i],ba[i]);break;
7550       case RJUMP:
7551         if (rt1[i]!=31)
7552           printf (" %x: %s r%d,r%d\n",start+i*4,insn[i],rt1[i],rs1[i]);
7553         else
7554           printf (" %x: %s r%d\n",start+i*4,insn[i],rs1[i]);
7555         break;
7556       case SPAN:
7557         printf (" %x: %s (pagespan) r%d,r%d,%8x\n",start+i*4,insn[i],rs1[i],rs2[i],ba[i]);break;
7558       case IMM16:
7559         if(opcode[i]==0xf) //LUI
7560           printf (" %x: %s r%d,%4x0000\n",start+i*4,insn[i],rt1[i],imm[i]&0xffff);
7561         else
7562           printf (" %x: %s r%d,r%d,%d\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
7563         break;
7564       case LOAD:
7565       case LOADLR:
7566         printf (" %x: %s r%d,r%d+%x\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
7567         break;
7568       case STORE:
7569       case STORELR:
7570         printf (" %x: %s r%d,r%d+%x\n",start+i*4,insn[i],rs2[i],rs1[i],imm[i]);
7571         break;
7572       case ALU:
7573       case SHIFT:
7574         printf (" %x: %s r%d,r%d,r%d\n",start+i*4,insn[i],rt1[i],rs1[i],rs2[i]);
7575         break;
7576       case MULTDIV:
7577         printf (" %x: %s r%d,r%d\n",start+i*4,insn[i],rs1[i],rs2[i]);
7578         break;
7579       case SHIFTIMM:
7580         printf (" %x: %s r%d,r%d,%d\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
7581         break;
7582       case MOV:
7583         if((opcode2[i]&0x1d)==0x10)
7584           printf (" %x: %s r%d\n",start+i*4,insn[i],rt1[i]);
7585         else if((opcode2[i]&0x1d)==0x11)
7586           printf (" %x: %s r%d\n",start+i*4,insn[i],rs1[i]);
7587         else
7588           printf (" %x: %s\n",start+i*4,insn[i]);
7589         break;
7590       case COP0:
7591         if(opcode2[i]==0)
7592           printf (" %x: %s r%d,cpr0[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC0
7593         else if(opcode2[i]==4)
7594           printf (" %x: %s r%d,cpr0[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC0
7595         else printf (" %x: %s\n",start+i*4,insn[i]);
7596         break;
7597       case COP1:
7598         if(opcode2[i]<3)
7599           printf (" %x: %s r%d,cpr1[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC1
7600         else if(opcode2[i]>3)
7601           printf (" %x: %s r%d,cpr1[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC1
7602         else printf (" %x: %s\n",start+i*4,insn[i]);
7603         break;
7604       case COP2:
7605         if(opcode2[i]<3)
7606           printf (" %x: %s r%d,cpr2[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC2
7607         else if(opcode2[i]>3)
7608           printf (" %x: %s r%d,cpr2[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC2
7609         else printf (" %x: %s\n",start+i*4,insn[i]);
7610         break;
7611       case C1LS:
7612         printf (" %x: %s cpr1[%d],r%d+%x\n",start+i*4,insn[i],(source[i]>>16)&0x1f,rs1[i],imm[i]);
7613         break;
7614       case C2LS:
7615         printf (" %x: %s cpr2[%d],r%d+%x\n",start+i*4,insn[i],(source[i]>>16)&0x1f,rs1[i],imm[i]);
7616         break;
7617       default:
7618         //printf (" %s %8x\n",insn[i],source[i]);
7619         printf (" %x: %s\n",start+i*4,insn[i]);
7620     }
7621 }
7622
7623 void new_dynarec_init()
7624 {
7625   printf("Init new dynarec\n");
7626   out=(u_char *)BASE_ADDR;
7627   if (mmap (out, 1<<TARGET_SIZE_2,
7628             PROT_READ | PROT_WRITE | PROT_EXEC,
7629             MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS,
7630             -1, 0) <= 0) {printf("mmap() failed\n");}
7631 #ifdef MUPEN64
7632   rdword=&readmem_dword;
7633   fake_pc.f.r.rs=&readmem_dword;
7634   fake_pc.f.r.rt=&readmem_dword;
7635   fake_pc.f.r.rd=&readmem_dword;
7636 #endif
7637   int n;
7638   for(n=0x80000;n<0x80800;n++)
7639     invalid_code[n]=1;
7640   for(n=0;n<65536;n++)
7641     hash_table[n][0]=hash_table[n][2]=-1;
7642   memset(mini_ht,-1,sizeof(mini_ht));
7643   memset(restore_candidate,0,sizeof(restore_candidate));
7644   copy=shadow;
7645   expirep=16384; // Expiry pointer, +2 blocks
7646   pending_exception=0;
7647   literalcount=0;
7648 #ifdef HOST_IMM8
7649   // Copy this into local area so we don't have to put it in every literal pool
7650   invc_ptr=invalid_code;
7651 #endif
7652   stop_after_jal=0;
7653   // TLB
7654   using_tlb=0;
7655   for(n=0;n<524288;n++) // 0 .. 0x7FFFFFFF
7656     memory_map[n]=-1;
7657   for(n=524288;n<526336;n++) // 0x80000000 .. 0x807FFFFF
7658     memory_map[n]=((u_int)rdram-0x80000000)>>2;
7659   for(n=526336;n<1048576;n++) // 0x80800000 .. 0xFFFFFFFF
7660     memory_map[n]=-1;
7661 #ifdef MUPEN64
7662   for(n=0;n<0x8000;n++) { // 0 .. 0x7FFFFFFF
7663     writemem[n] = write_nomem_new;
7664     writememb[n] = write_nomemb_new;
7665     writememh[n] = write_nomemh_new;
7666 #ifndef FORCE32
7667     writememd[n] = write_nomemd_new;
7668 #endif
7669     readmem[n] = read_nomem_new;
7670     readmemb[n] = read_nomemb_new;
7671     readmemh[n] = read_nomemh_new;
7672 #ifndef FORCE32
7673     readmemd[n] = read_nomemd_new;
7674 #endif
7675   }
7676   for(n=0x8000;n<0x8080;n++) { // 0x80000000 .. 0x807FFFFF
7677     writemem[n] = write_rdram_new;
7678     writememb[n] = write_rdramb_new;
7679     writememh[n] = write_rdramh_new;
7680 #ifndef FORCE32
7681     writememd[n] = write_rdramd_new;
7682 #endif
7683   }
7684   for(n=0xC000;n<0x10000;n++) { // 0xC0000000 .. 0xFFFFFFFF
7685     writemem[n] = write_nomem_new;
7686     writememb[n] = write_nomemb_new;
7687     writememh[n] = write_nomemh_new;
7688 #ifndef FORCE32
7689     writememd[n] = write_nomemd_new;
7690 #endif
7691     readmem[n] = read_nomem_new;
7692     readmemb[n] = read_nomemb_new;
7693     readmemh[n] = read_nomemh_new;
7694 #ifndef FORCE32
7695     readmemd[n] = read_nomemd_new;
7696 #endif
7697   }
7698 #endif
7699   tlb_hacks();
7700   arch_init();
7701 }
7702
7703 void new_dynarec_cleanup()
7704 {
7705   int n;
7706   if (munmap ((void *)BASE_ADDR, 1<<TARGET_SIZE_2) < 0) {printf("munmap() failed\n");}
7707   for(n=0;n<4096;n++) ll_clear(jump_in+n);
7708   for(n=0;n<4096;n++) ll_clear(jump_out+n);
7709   for(n=0;n<4096;n++) ll_clear(jump_dirty+n);
7710   #ifdef ROM_COPY
7711   if (munmap (ROM_COPY, 67108864) < 0) {printf("munmap() failed\n");}
7712   #endif
7713 }
7714
7715 int new_recompile_block(int addr)
7716 {
7717 /*
7718   if(addr==0x800cd050) {
7719     int block;
7720     for(block=0x80000;block<0x80800;block++) invalidate_block(block);
7721     int n;
7722     for(n=0;n<=2048;n++) ll_clear(jump_dirty+n);
7723   }
7724 */
7725   //if(Count==365117028) tracedebug=1;
7726   assem_debug("NOTCOMPILED: addr = %x -> %x\n", (int)addr, (int)out);
7727   //printf("NOTCOMPILED: addr = %x -> %x\n", (int)addr, (int)out);
7728   //printf("TRACE: count=%d next=%d (compile %x)\n",Count,next_interupt,addr);
7729   //if(debug) 
7730   //printf("TRACE: count=%d next=%d (checksum %x)\n",Count,next_interupt,mchecksum());
7731   //printf("fpu mapping=%x enabled=%x\n",(Status & 0x04000000)>>26,(Status & 0x20000000)>>29);
7732   /*if(Count>=312978186) {
7733     rlist();
7734   }*/
7735   //rlist();
7736   start = (u_int)addr&~3;
7737   //assert(((u_int)addr&1)==0);
7738 #ifdef PCSX
7739   if (Config.HLE && start == 0x80001000) {
7740     // XXX: is this enough? Maybe check hleSoftCall?
7741     u_int beginning=(u_int)out;
7742     u_int page=get_page(start);
7743     ll_add(jump_in+page,start,out);
7744     invalid_code[start>>12]=0;
7745     emit_movimm(start,0);
7746     emit_writeword(0,(int)&pcaddr);
7747     emit_jmp((int)new_dyna_leave);
7748 #ifdef __arm__
7749     __clear_cache((void *)beginning,out);
7750 #endif
7751     return 0;
7752   }
7753   else if ((u_int)addr < 0x00200000) {
7754     // used for BIOS calls mostly?
7755     source = (u_int *)((u_int)rdram+start-0);
7756     pagelimit = 0x00200000;
7757   }
7758   else
7759 #endif
7760 #ifdef MUPEN64
7761   if ((int)addr >= 0xa4000000 && (int)addr < 0xa4001000) {
7762     source = (u_int *)((u_int)SP_DMEM+start-0xa4000000);
7763     pagelimit = 0xa4001000;
7764   }
7765   else
7766 #endif
7767   if ((int)addr >= 0x80000000 && (int)addr < 0x80800000) {
7768     source = (u_int *)((u_int)rdram+start-0x80000000);
7769     pagelimit = 0x80800000;
7770   }
7771 #ifndef DISABLE_TLB
7772   else if ((signed int)addr >= (signed int)0xC0000000) {
7773     //printf("addr=%x mm=%x\n",(u_int)addr,(memory_map[start>>12]<<2));
7774     //if(tlb_LUT_r[start>>12])
7775       //source = (u_int *)(((int)rdram)+(tlb_LUT_r[start>>12]&0xFFFFF000)+(((int)addr)&0xFFF)-0x80000000);
7776     if((signed int)memory_map[start>>12]>=0) {
7777       source = (u_int *)((u_int)(start+(memory_map[start>>12]<<2)));
7778       pagelimit=(start+4096)&0xFFFFF000;
7779       int map=memory_map[start>>12];
7780       int i;
7781       for(i=0;i<5;i++) {
7782         //printf("start: %x next: %x\n",map,memory_map[pagelimit>>12]);
7783         if((map&0xBFFFFFFF)==(memory_map[pagelimit>>12]&0xBFFFFFFF)) pagelimit+=4096;
7784       }
7785       assem_debug("pagelimit=%x\n",pagelimit);
7786       assem_debug("mapping=%x (%x)\n",memory_map[start>>12],(memory_map[start>>12]<<2)+start);
7787     }
7788     else {
7789       assem_debug("Compile at unmapped memory address: %x \n", (int)addr);
7790       //assem_debug("start: %x next: %x\n",memory_map[start>>12],memory_map[(start+4096)>>12]);
7791       return 1; // Caller will invoke exception handler
7792     }
7793     //printf("source= %x\n",(int)source);
7794   }
7795 #endif
7796   else {
7797     printf("Compile at bogus memory address: %x \n", (int)addr);
7798     exit(1);
7799   }
7800
7801   /* Pass 1: disassemble */
7802   /* Pass 2: register dependencies, branch targets */
7803   /* Pass 3: register allocation */
7804   /* Pass 4: branch dependencies */
7805   /* Pass 5: pre-alloc */
7806   /* Pass 6: optimize clean/dirty state */
7807   /* Pass 7: flag 32-bit registers */
7808   /* Pass 8: assembly */
7809   /* Pass 9: linker */
7810   /* Pass 10: garbage collection / free memory */
7811
7812   int i,j;
7813   int done=0;
7814   unsigned int type,op,op2;
7815
7816   //printf("addr = %x source = %x %x\n", addr,source,source[0]);
7817   
7818   /* Pass 1 disassembly */
7819
7820   for(i=0;!done;i++) {
7821     bt[i]=0;likely[i]=0;op2=0;
7822     opcode[i]=op=source[i]>>26;
7823     switch(op)
7824     {
7825       case 0x00: strcpy(insn[i],"special"); type=NI;
7826         op2=source[i]&0x3f;
7827         switch(op2)
7828         {
7829           case 0x00: strcpy(insn[i],"SLL"); type=SHIFTIMM; break;
7830           case 0x02: strcpy(insn[i],"SRL"); type=SHIFTIMM; break;
7831           case 0x03: strcpy(insn[i],"SRA"); type=SHIFTIMM; break;
7832           case 0x04: strcpy(insn[i],"SLLV"); type=SHIFT; break;
7833           case 0x06: strcpy(insn[i],"SRLV"); type=SHIFT; break;
7834           case 0x07: strcpy(insn[i],"SRAV"); type=SHIFT; break;
7835           case 0x08: strcpy(insn[i],"JR"); type=RJUMP; break;
7836           case 0x09: strcpy(insn[i],"JALR"); type=RJUMP; break;
7837           case 0x0C: strcpy(insn[i],"SYSCALL"); type=SYSCALL; break;
7838           case 0x0D: strcpy(insn[i],"BREAK"); type=OTHER; break;
7839           case 0x0F: strcpy(insn[i],"SYNC"); type=OTHER; break;
7840           case 0x10: strcpy(insn[i],"MFHI"); type=MOV; break;
7841           case 0x11: strcpy(insn[i],"MTHI"); type=MOV; break;
7842           case 0x12: strcpy(insn[i],"MFLO"); type=MOV; break;
7843           case 0x13: strcpy(insn[i],"MTLO"); type=MOV; break;
7844           case 0x14: strcpy(insn[i],"DSLLV"); type=SHIFT; break;
7845           case 0x16: strcpy(insn[i],"DSRLV"); type=SHIFT; break;
7846           case 0x17: strcpy(insn[i],"DSRAV"); type=SHIFT; break;
7847           case 0x18: strcpy(insn[i],"MULT"); type=MULTDIV; break;
7848           case 0x19: strcpy(insn[i],"MULTU"); type=MULTDIV; break;
7849           case 0x1A: strcpy(insn[i],"DIV"); type=MULTDIV; break;
7850           case 0x1B: strcpy(insn[i],"DIVU"); type=MULTDIV; break;
7851           case 0x1C: strcpy(insn[i],"DMULT"); type=MULTDIV; break;
7852           case 0x1D: strcpy(insn[i],"DMULTU"); type=MULTDIV; break;
7853           case 0x1E: strcpy(insn[i],"DDIV"); type=MULTDIV; break;
7854           case 0x1F: strcpy(insn[i],"DDIVU"); type=MULTDIV; break;
7855           case 0x20: strcpy(insn[i],"ADD"); type=ALU; break;
7856           case 0x21: strcpy(insn[i],"ADDU"); type=ALU; break;
7857           case 0x22: strcpy(insn[i],"SUB"); type=ALU; break;
7858           case 0x23: strcpy(insn[i],"SUBU"); type=ALU; break;
7859           case 0x24: strcpy(insn[i],"AND"); type=ALU; break;
7860           case 0x25: strcpy(insn[i],"OR"); type=ALU; break;
7861           case 0x26: strcpy(insn[i],"XOR"); type=ALU; break;
7862           case 0x27: strcpy(insn[i],"NOR"); type=ALU; break;
7863           case 0x2A: strcpy(insn[i],"SLT"); type=ALU; break;
7864           case 0x2B: strcpy(insn[i],"SLTU"); type=ALU; break;
7865           case 0x2C: strcpy(insn[i],"DADD"); type=ALU; break;
7866           case 0x2D: strcpy(insn[i],"DADDU"); type=ALU; break;
7867           case 0x2E: strcpy(insn[i],"DSUB"); type=ALU; break;
7868           case 0x2F: strcpy(insn[i],"DSUBU"); type=ALU; break;
7869           case 0x30: strcpy(insn[i],"TGE"); type=NI; break;
7870           case 0x31: strcpy(insn[i],"TGEU"); type=NI; break;
7871           case 0x32: strcpy(insn[i],"TLT"); type=NI; break;
7872           case 0x33: strcpy(insn[i],"TLTU"); type=NI; break;
7873           case 0x34: strcpy(insn[i],"TEQ"); type=NI; break;
7874           case 0x36: strcpy(insn[i],"TNE"); type=NI; break;
7875           case 0x38: strcpy(insn[i],"DSLL"); type=SHIFTIMM; break;
7876           case 0x3A: strcpy(insn[i],"DSRL"); type=SHIFTIMM; break;
7877           case 0x3B: strcpy(insn[i],"DSRA"); type=SHIFTIMM; break;
7878           case 0x3C: strcpy(insn[i],"DSLL32"); type=SHIFTIMM; break;
7879           case 0x3E: strcpy(insn[i],"DSRL32"); type=SHIFTIMM; break;
7880           case 0x3F: strcpy(insn[i],"DSRA32"); type=SHIFTIMM; break;
7881         }
7882         break;
7883       case 0x01: strcpy(insn[i],"regimm"); type=NI;
7884         op2=(source[i]>>16)&0x1f;
7885         switch(op2)
7886         {
7887           case 0x00: strcpy(insn[i],"BLTZ"); type=SJUMP; break;
7888           case 0x01: strcpy(insn[i],"BGEZ"); type=SJUMP; break;
7889           case 0x02: strcpy(insn[i],"BLTZL"); type=SJUMP; break;
7890           case 0x03: strcpy(insn[i],"BGEZL"); type=SJUMP; break;
7891           case 0x08: strcpy(insn[i],"TGEI"); type=NI; break;
7892           case 0x09: strcpy(insn[i],"TGEIU"); type=NI; break;
7893           case 0x0A: strcpy(insn[i],"TLTI"); type=NI; break;
7894           case 0x0B: strcpy(insn[i],"TLTIU"); type=NI; break;
7895           case 0x0C: strcpy(insn[i],"TEQI"); type=NI; break;
7896           case 0x0E: strcpy(insn[i],"TNEI"); type=NI; break;
7897           case 0x10: strcpy(insn[i],"BLTZAL"); type=SJUMP; break;
7898           case 0x11: strcpy(insn[i],"BGEZAL"); type=SJUMP; break;
7899           case 0x12: strcpy(insn[i],"BLTZALL"); type=SJUMP; break;
7900           case 0x13: strcpy(insn[i],"BGEZALL"); type=SJUMP; break;
7901         }
7902         break;
7903       case 0x02: strcpy(insn[i],"J"); type=UJUMP; break;
7904       case 0x03: strcpy(insn[i],"JAL"); type=UJUMP; break;
7905       case 0x04: strcpy(insn[i],"BEQ"); type=CJUMP; break;
7906       case 0x05: strcpy(insn[i],"BNE"); type=CJUMP; break;
7907       case 0x06: strcpy(insn[i],"BLEZ"); type=CJUMP; break;
7908       case 0x07: strcpy(insn[i],"BGTZ"); type=CJUMP; break;
7909       case 0x08: strcpy(insn[i],"ADDI"); type=IMM16; break;
7910       case 0x09: strcpy(insn[i],"ADDIU"); type=IMM16; break;
7911       case 0x0A: strcpy(insn[i],"SLTI"); type=IMM16; break;
7912       case 0x0B: strcpy(insn[i],"SLTIU"); type=IMM16; break;
7913       case 0x0C: strcpy(insn[i],"ANDI"); type=IMM16; break;
7914       case 0x0D: strcpy(insn[i],"ORI"); type=IMM16; break;
7915       case 0x0E: strcpy(insn[i],"XORI"); type=IMM16; break;
7916       case 0x0F: strcpy(insn[i],"LUI"); type=IMM16; break;
7917       case 0x10: strcpy(insn[i],"cop0"); type=NI;
7918         op2=(source[i]>>21)&0x1f;
7919         switch(op2)
7920         {
7921           case 0x00: strcpy(insn[i],"MFC0"); type=COP0; break;
7922           case 0x04: strcpy(insn[i],"MTC0"); type=COP0; break;
7923           case 0x10: strcpy(insn[i],"tlb"); type=NI;
7924           switch(source[i]&0x3f)
7925           {
7926             case 0x01: strcpy(insn[i],"TLBR"); type=COP0; break;
7927             case 0x02: strcpy(insn[i],"TLBWI"); type=COP0; break;
7928             case 0x06: strcpy(insn[i],"TLBWR"); type=COP0; break;
7929             case 0x08: strcpy(insn[i],"TLBP"); type=COP0; break;
7930             case 0x18: strcpy(insn[i],"ERET"); type=COP0; break;
7931           }
7932         }
7933         break;
7934       case 0x11: strcpy(insn[i],"cop1"); type=NI;
7935         op2=(source[i]>>21)&0x1f;
7936         switch(op2)
7937         {
7938           case 0x00: strcpy(insn[i],"MFC1"); type=COP1; break;
7939           case 0x01: strcpy(insn[i],"DMFC1"); type=COP1; break;
7940           case 0x02: strcpy(insn[i],"CFC1"); type=COP1; break;
7941           case 0x04: strcpy(insn[i],"MTC1"); type=COP1; break;
7942           case 0x05: strcpy(insn[i],"DMTC1"); type=COP1; break;
7943           case 0x06: strcpy(insn[i],"CTC1"); type=COP1; break;
7944           case 0x08: strcpy(insn[i],"BC1"); type=FJUMP;
7945           switch((source[i]>>16)&0x3)
7946           {
7947             case 0x00: strcpy(insn[i],"BC1F"); break;
7948             case 0x01: strcpy(insn[i],"BC1T"); break;
7949             case 0x02: strcpy(insn[i],"BC1FL"); break;
7950             case 0x03: strcpy(insn[i],"BC1TL"); break;
7951           }
7952           break;
7953           case 0x10: strcpy(insn[i],"C1.S"); type=NI;
7954           switch(source[i]&0x3f)
7955           {
7956             case 0x00: strcpy(insn[i],"ADD.S"); type=FLOAT; break;
7957             case 0x01: strcpy(insn[i],"SUB.S"); type=FLOAT; break;
7958             case 0x02: strcpy(insn[i],"MUL.S"); type=FLOAT; break;
7959             case 0x03: strcpy(insn[i],"DIV.S"); type=FLOAT; break;
7960             case 0x04: strcpy(insn[i],"SQRT.S"); type=FLOAT; break;
7961             case 0x05: strcpy(insn[i],"ABS.S"); type=FLOAT; break;
7962             case 0x06: strcpy(insn[i],"MOV.S"); type=FLOAT; break;
7963             case 0x07: strcpy(insn[i],"NEG.S"); type=FLOAT; break;
7964             case 0x08: strcpy(insn[i],"ROUND.L.S"); type=FCONV; break;
7965             case 0x09: strcpy(insn[i],"TRUNC.L.S"); type=FCONV; break;
7966             case 0x0A: strcpy(insn[i],"CEIL.L.S"); type=FCONV; break;
7967             case 0x0B: strcpy(insn[i],"FLOOR.L.S"); type=FCONV; break;
7968             case 0x0C: strcpy(insn[i],"ROUND.W.S"); type=FCONV; break;
7969             case 0x0D: strcpy(insn[i],"TRUNC.W.S"); type=FCONV; break;
7970             case 0x0E: strcpy(insn[i],"CEIL.W.S"); type=FCONV; break;
7971             case 0x0F: strcpy(insn[i],"FLOOR.W.S"); type=FCONV; break;
7972             case 0x21: strcpy(insn[i],"CVT.D.S"); type=FCONV; break;
7973             case 0x24: strcpy(insn[i],"CVT.W.S"); type=FCONV; break;
7974             case 0x25: strcpy(insn[i],"CVT.L.S"); type=FCONV; break;
7975             case 0x30: strcpy(insn[i],"C.F.S"); type=FCOMP; break;
7976             case 0x31: strcpy(insn[i],"C.UN.S"); type=FCOMP; break;
7977             case 0x32: strcpy(insn[i],"C.EQ.S"); type=FCOMP; break;
7978             case 0x33: strcpy(insn[i],"C.UEQ.S"); type=FCOMP; break;
7979             case 0x34: strcpy(insn[i],"C.OLT.S"); type=FCOMP; break;
7980             case 0x35: strcpy(insn[i],"C.ULT.S"); type=FCOMP; break;
7981             case 0x36: strcpy(insn[i],"C.OLE.S"); type=FCOMP; break;
7982             case 0x37: strcpy(insn[i],"C.ULE.S"); type=FCOMP; break;
7983             case 0x38: strcpy(insn[i],"C.SF.S"); type=FCOMP; break;
7984             case 0x39: strcpy(insn[i],"C.NGLE.S"); type=FCOMP; break;
7985             case 0x3A: strcpy(insn[i],"C.SEQ.S"); type=FCOMP; break;
7986             case 0x3B: strcpy(insn[i],"C.NGL.S"); type=FCOMP; break;
7987             case 0x3C: strcpy(insn[i],"C.LT.S"); type=FCOMP; break;
7988             case 0x3D: strcpy(insn[i],"C.NGE.S"); type=FCOMP; break;
7989             case 0x3E: strcpy(insn[i],"C.LE.S"); type=FCOMP; break;
7990             case 0x3F: strcpy(insn[i],"C.NGT.S"); type=FCOMP; break;
7991           }
7992           break;
7993           case 0x11: strcpy(insn[i],"C1.D"); type=NI;
7994           switch(source[i]&0x3f)
7995           {
7996             case 0x00: strcpy(insn[i],"ADD.D"); type=FLOAT; break;
7997             case 0x01: strcpy(insn[i],"SUB.D"); type=FLOAT; break;
7998             case 0x02: strcpy(insn[i],"MUL.D"); type=FLOAT; break;
7999             case 0x03: strcpy(insn[i],"DIV.D"); type=FLOAT; break;
8000             case 0x04: strcpy(insn[i],"SQRT.D"); type=FLOAT; break;
8001             case 0x05: strcpy(insn[i],"ABS.D"); type=FLOAT; break;
8002             case 0x06: strcpy(insn[i],"MOV.D"); type=FLOAT; break;
8003             case 0x07: strcpy(insn[i],"NEG.D"); type=FLOAT; break;
8004             case 0x08: strcpy(insn[i],"ROUND.L.D"); type=FCONV; break;
8005             case 0x09: strcpy(insn[i],"TRUNC.L.D"); type=FCONV; break;
8006             case 0x0A: strcpy(insn[i],"CEIL.L.D"); type=FCONV; break;
8007             case 0x0B: strcpy(insn[i],"FLOOR.L.D"); type=FCONV; break;
8008             case 0x0C: strcpy(insn[i],"ROUND.W.D"); type=FCONV; break;
8009             case 0x0D: strcpy(insn[i],"TRUNC.W.D"); type=FCONV; break;
8010             case 0x0E: strcpy(insn[i],"CEIL.W.D"); type=FCONV; break;
8011             case 0x0F: strcpy(insn[i],"FLOOR.W.D"); type=FCONV; break;
8012             case 0x20: strcpy(insn[i],"CVT.S.D"); type=FCONV; break;
8013             case 0x24: strcpy(insn[i],"CVT.W.D"); type=FCONV; break;
8014             case 0x25: strcpy(insn[i],"CVT.L.D"); type=FCONV; break;
8015             case 0x30: strcpy(insn[i],"C.F.D"); type=FCOMP; break;
8016             case 0x31: strcpy(insn[i],"C.UN.D"); type=FCOMP; break;
8017             case 0x32: strcpy(insn[i],"C.EQ.D"); type=FCOMP; break;
8018             case 0x33: strcpy(insn[i],"C.UEQ.D"); type=FCOMP; break;
8019             case 0x34: strcpy(insn[i],"C.OLT.D"); type=FCOMP; break;
8020             case 0x35: strcpy(insn[i],"C.ULT.D"); type=FCOMP; break;
8021             case 0x36: strcpy(insn[i],"C.OLE.D"); type=FCOMP; break;
8022             case 0x37: strcpy(insn[i],"C.ULE.D"); type=FCOMP; break;
8023             case 0x38: strcpy(insn[i],"C.SF.D"); type=FCOMP; break;
8024             case 0x39: strcpy(insn[i],"C.NGLE.D"); type=FCOMP; break;
8025             case 0x3A: strcpy(insn[i],"C.SEQ.D"); type=FCOMP; break;
8026             case 0x3B: strcpy(insn[i],"C.NGL.D"); type=FCOMP; break;
8027             case 0x3C: strcpy(insn[i],"C.LT.D"); type=FCOMP; break;
8028             case 0x3D: strcpy(insn[i],"C.NGE.D"); type=FCOMP; break;
8029             case 0x3E: strcpy(insn[i],"C.LE.D"); type=FCOMP; break;
8030             case 0x3F: strcpy(insn[i],"C.NGT.D"); type=FCOMP; break;
8031           }
8032           break;
8033           case 0x14: strcpy(insn[i],"C1.W"); type=NI;
8034           switch(source[i]&0x3f)
8035           {
8036             case 0x20: strcpy(insn[i],"CVT.S.W"); type=FCONV; break;
8037             case 0x21: strcpy(insn[i],"CVT.D.W"); type=FCONV; break;
8038           }
8039           break;
8040           case 0x15: strcpy(insn[i],"C1.L"); type=NI;
8041           switch(source[i]&0x3f)
8042           {
8043             case 0x20: strcpy(insn[i],"CVT.S.L"); type=FCONV; break;
8044             case 0x21: strcpy(insn[i],"CVT.D.L"); type=FCONV; break;
8045           }
8046           break;
8047         }
8048         break;
8049       case 0x14: strcpy(insn[i],"BEQL"); type=CJUMP; break;
8050       case 0x15: strcpy(insn[i],"BNEL"); type=CJUMP; break;
8051       case 0x16: strcpy(insn[i],"BLEZL"); type=CJUMP; break;
8052       case 0x17: strcpy(insn[i],"BGTZL"); type=CJUMP; break;
8053       case 0x18: strcpy(insn[i],"DADDI"); type=IMM16; break;
8054       case 0x19: strcpy(insn[i],"DADDIU"); type=IMM16; break;
8055       case 0x1A: strcpy(insn[i],"LDL"); type=LOADLR; break;
8056       case 0x1B: strcpy(insn[i],"LDR"); type=LOADLR; break;
8057       case 0x20: strcpy(insn[i],"LB"); type=LOAD; break;
8058       case 0x21: strcpy(insn[i],"LH"); type=LOAD; break;
8059       case 0x22: strcpy(insn[i],"LWL"); type=LOADLR; break;
8060       case 0x23: strcpy(insn[i],"LW"); type=LOAD; break;
8061       case 0x24: strcpy(insn[i],"LBU"); type=LOAD; break;
8062       case 0x25: strcpy(insn[i],"LHU"); type=LOAD; break;
8063       case 0x26: strcpy(insn[i],"LWR"); type=LOADLR; break;
8064       case 0x27: strcpy(insn[i],"LWU"); type=LOAD; break;
8065       case 0x28: strcpy(insn[i],"SB"); type=STORE; break;
8066       case 0x29: strcpy(insn[i],"SH"); type=STORE; break;
8067       case 0x2A: strcpy(insn[i],"SWL"); type=STORELR; break;
8068       case 0x2B: strcpy(insn[i],"SW"); type=STORE; break;
8069       case 0x2C: strcpy(insn[i],"SDL"); type=STORELR; break;
8070       case 0x2D: strcpy(insn[i],"SDR"); type=STORELR; break;
8071       case 0x2E: strcpy(insn[i],"SWR"); type=STORELR; break;
8072       case 0x2F: strcpy(insn[i],"CACHE"); type=NOP; break;
8073       case 0x30: strcpy(insn[i],"LL"); type=NI; break;
8074       case 0x31: strcpy(insn[i],"LWC1"); type=C1LS; break;
8075       case 0x34: strcpy(insn[i],"LLD"); type=NI; break;
8076       case 0x35: strcpy(insn[i],"LDC1"); type=C1LS; break;
8077       case 0x37: strcpy(insn[i],"LD"); type=LOAD; break;
8078       case 0x38: strcpy(insn[i],"SC"); type=NI; break;
8079       case 0x39: strcpy(insn[i],"SWC1"); type=C1LS; break;
8080       case 0x3C: strcpy(insn[i],"SCD"); type=NI; break;
8081       case 0x3D: strcpy(insn[i],"SDC1"); type=C1LS; break;
8082       case 0x3F: strcpy(insn[i],"SD"); type=STORE; break;
8083 #ifdef PCSX
8084       case 0x12: strcpy(insn[i],"COP2"); type=NI;
8085         op2=(source[i]>>21)&0x1f;
8086         switch(op2)
8087         {
8088           case 0x00: strcpy(insn[i],"MFC2"); type=COP2; break;
8089           case 0x02: strcpy(insn[i],"CFC2"); type=COP2; break;
8090           case 0x04: strcpy(insn[i],"MTC2"); type=COP2; break;
8091           case 0x06: strcpy(insn[i],"CTC2"); type=COP2; break;
8092           default:
8093             if (gte_handlers[source[i]&0x3f]!=NULL) {
8094               snprintf(insn[i], sizeof(insn[i]), "COP2 %x", source[i]&0x3f);
8095               type=C2OP;
8096             }
8097             break;
8098         }
8099         break;
8100       case 0x32: strcpy(insn[i],"LWC2"); type=C2LS; break;
8101       case 0x3A: strcpy(insn[i],"SWC2"); type=C2LS; break;
8102       case 0x3B: strcpy(insn[i],"HLECALL"); type=HLECALL; break;
8103 #endif
8104       default: strcpy(insn[i],"???"); type=NI;
8105         printf("NI %08x @%08x\n", source[i], addr + i*4);
8106         break;
8107     }
8108     itype[i]=type;
8109     opcode2[i]=op2;
8110     /* Get registers/immediates */
8111     lt1[i]=0;
8112     us1[i]=0;
8113     us2[i]=0;
8114     dep1[i]=0;
8115     dep2[i]=0;
8116     switch(type) {
8117       case LOAD:
8118         rs1[i]=(source[i]>>21)&0x1f;
8119         rs2[i]=0;
8120         rt1[i]=(source[i]>>16)&0x1f;
8121         rt2[i]=0;
8122         imm[i]=(short)source[i];
8123         break;
8124       case STORE:
8125       case STORELR:
8126         rs1[i]=(source[i]>>21)&0x1f;
8127         rs2[i]=(source[i]>>16)&0x1f;
8128         rt1[i]=0;
8129         rt2[i]=0;
8130         imm[i]=(short)source[i];
8131         if(op==0x2c||op==0x2d||op==0x3f) us1[i]=rs2[i]; // 64-bit SDL/SDR/SD
8132         break;
8133       case LOADLR:
8134         // LWL/LWR only load part of the register,
8135         // therefore the target register must be treated as a source too
8136         rs1[i]=(source[i]>>21)&0x1f;
8137         rs2[i]=(source[i]>>16)&0x1f;
8138         rt1[i]=(source[i]>>16)&0x1f;
8139         rt2[i]=0;
8140         imm[i]=(short)source[i];
8141         if(op==0x1a||op==0x1b) us1[i]=rs2[i]; // LDR/LDL
8142         if(op==0x26) dep1[i]=rt1[i]; // LWR
8143         break;
8144       case IMM16:
8145         if (op==0x0f) rs1[i]=0; // LUI instruction has no source register
8146         else rs1[i]=(source[i]>>21)&0x1f;
8147         rs2[i]=0;
8148         rt1[i]=(source[i]>>16)&0x1f;
8149         rt2[i]=0;
8150         if(op>=0x0c&&op<=0x0e) { // ANDI/ORI/XORI
8151           imm[i]=(unsigned short)source[i];
8152         }else{
8153           imm[i]=(short)source[i];
8154         }
8155         if(op==0x18||op==0x19) us1[i]=rs1[i]; // DADDI/DADDIU
8156         if(op==0x0a||op==0x0b) us1[i]=rs1[i]; // SLTI/SLTIU
8157         if(op==0x0d||op==0x0e) dep1[i]=rs1[i]; // ORI/XORI
8158         break;
8159       case UJUMP:
8160         rs1[i]=0;
8161         rs2[i]=0;
8162         rt1[i]=0;
8163         rt2[i]=0;
8164         // The JAL instruction writes to r31.
8165         if (op&1) {
8166           rt1[i]=31;
8167         }
8168         rs2[i]=CCREG;
8169         break;
8170       case RJUMP:
8171         rs1[i]=(source[i]>>21)&0x1f;
8172         rs2[i]=0;
8173         rt1[i]=0;
8174         rt2[i]=0;
8175         // The JALR instruction writes to rd.
8176         if (op2&1) {
8177           rt1[i]=(source[i]>>11)&0x1f;
8178         }
8179         rs2[i]=CCREG;
8180         break;
8181       case CJUMP:
8182         rs1[i]=(source[i]>>21)&0x1f;
8183         rs2[i]=(source[i]>>16)&0x1f;
8184         rt1[i]=0;
8185         rt2[i]=0;
8186         if(op&2) { // BGTZ/BLEZ
8187           rs2[i]=0;
8188         }
8189         us1[i]=rs1[i];
8190         us2[i]=rs2[i];
8191         likely[i]=op>>4;
8192         break;
8193       case SJUMP:
8194         rs1[i]=(source[i]>>21)&0x1f;
8195         rs2[i]=CCREG;
8196         rt1[i]=0;
8197         rt2[i]=0;
8198         us1[i]=rs1[i];
8199         if(op2&0x10) { // BxxAL
8200           rt1[i]=31;
8201           // NOTE: If the branch is not taken, r31 is still overwritten
8202         }
8203         likely[i]=(op2&2)>>1;
8204         break;
8205       case FJUMP:
8206         rs1[i]=FSREG;
8207         rs2[i]=CSREG;
8208         rt1[i]=0;
8209         rt2[i]=0;
8210         likely[i]=((source[i])>>17)&1;
8211         break;
8212       case ALU:
8213         rs1[i]=(source[i]>>21)&0x1f; // source
8214         rs2[i]=(source[i]>>16)&0x1f; // subtract amount
8215         rt1[i]=(source[i]>>11)&0x1f; // destination
8216         rt2[i]=0;
8217         if(op2==0x2a||op2==0x2b) { // SLT/SLTU
8218           us1[i]=rs1[i];us2[i]=rs2[i];
8219         }
8220         else if(op2>=0x24&&op2<=0x27) { // AND/OR/XOR/NOR
8221           dep1[i]=rs1[i];dep2[i]=rs2[i];
8222         }
8223         else if(op2>=0x2c&&op2<=0x2f) { // DADD/DSUB
8224           dep1[i]=rs1[i];dep2[i]=rs2[i];
8225         }
8226         break;
8227       case MULTDIV:
8228         rs1[i]=(source[i]>>21)&0x1f; // source
8229         rs2[i]=(source[i]>>16)&0x1f; // divisor
8230         rt1[i]=HIREG;
8231         rt2[i]=LOREG;
8232         if (op2>=0x1c&&op2<=0x1f) { // DMULT/DMULTU/DDIV/DDIVU
8233           us1[i]=rs1[i];us2[i]=rs2[i];
8234         }
8235         break;
8236       case MOV:
8237         rs1[i]=0;
8238         rs2[i]=0;
8239         rt1[i]=0;
8240         rt2[i]=0;
8241         if(op2==0x10) rs1[i]=HIREG; // MFHI
8242         if(op2==0x11) rt1[i]=HIREG; // MTHI
8243         if(op2==0x12) rs1[i]=LOREG; // MFLO
8244         if(op2==0x13) rt1[i]=LOREG; // MTLO
8245         if((op2&0x1d)==0x10) rt1[i]=(source[i]>>11)&0x1f; // MFxx
8246         if((op2&0x1d)==0x11) rs1[i]=(source[i]>>21)&0x1f; // MTxx
8247         dep1[i]=rs1[i];
8248         break;
8249       case SHIFT:
8250         rs1[i]=(source[i]>>16)&0x1f; // target of shift
8251         rs2[i]=(source[i]>>21)&0x1f; // shift amount
8252         rt1[i]=(source[i]>>11)&0x1f; // destination
8253         rt2[i]=0;
8254         // DSLLV/DSRLV/DSRAV are 64-bit
8255         if(op2>=0x14&&op2<=0x17) us1[i]=rs1[i];
8256         break;
8257       case SHIFTIMM:
8258         rs1[i]=(source[i]>>16)&0x1f;
8259         rs2[i]=0;
8260         rt1[i]=(source[i]>>11)&0x1f;
8261         rt2[i]=0;
8262         imm[i]=(source[i]>>6)&0x1f;
8263         // DSxx32 instructions
8264         if(op2>=0x3c) imm[i]|=0x20;
8265         // DSLL/DSRL/DSRA/DSRA32/DSRL32 but not DSLL32 require 64-bit source
8266         if(op2>=0x38&&op2!=0x3c) us1[i]=rs1[i];
8267         break;
8268       case COP0:
8269         rs1[i]=0;
8270         rs2[i]=0;
8271         rt1[i]=0;
8272         rt2[i]=0;
8273         if(op2==0) rt1[i]=(source[i]>>16)&0x1F; // MFC0
8274         if(op2==4) rs1[i]=(source[i]>>16)&0x1F; // MTC0
8275         if(op2==4&&((source[i]>>11)&0x1f)==12) rt2[i]=CSREG; // Status
8276         if(op2==16) if((source[i]&0x3f)==0x18) rs2[i]=CCREG; // ERET
8277         break;
8278       case COP1:
8279       case COP2:
8280         rs1[i]=0;
8281         rs2[i]=0;
8282         rt1[i]=0;
8283         rt2[i]=0;
8284         if(op2<3) rt1[i]=(source[i]>>16)&0x1F; // MFC1/DMFC1/CFC1
8285         if(op2>3) rs1[i]=(source[i]>>16)&0x1F; // MTC1/DMTC1/CTC1
8286         if(op2==5) us1[i]=rs1[i]; // DMTC1
8287         rs2[i]=CSREG;
8288         break;
8289       case C1LS:
8290         rs1[i]=(source[i]>>21)&0x1F;
8291         rs2[i]=CSREG;
8292         rt1[i]=0;
8293         rt2[i]=0;
8294         imm[i]=(short)source[i];
8295         break;
8296       case C2LS:
8297         rs1[i]=(source[i]>>21)&0x1F;
8298         rs2[i]=0;
8299         rt1[i]=0;
8300         rt2[i]=0;
8301         imm[i]=(short)source[i];
8302         break;
8303       case FLOAT:
8304       case FCONV:
8305         rs1[i]=0;
8306         rs2[i]=CSREG;
8307         rt1[i]=0;
8308         rt2[i]=0;
8309         break;
8310       case FCOMP:
8311         rs1[i]=FSREG;
8312         rs2[i]=CSREG;
8313         rt1[i]=FSREG;
8314         rt2[i]=0;
8315         break;
8316       case SYSCALL:
8317       case HLECALL:
8318         rs1[i]=CCREG;
8319         rs2[i]=0;
8320         rt1[i]=0;
8321         rt2[i]=0;
8322         break;
8323       default:
8324         rs1[i]=0;
8325         rs2[i]=0;
8326         rt1[i]=0;
8327         rt2[i]=0;
8328     }
8329     /* Calculate branch target addresses */
8330     if(type==UJUMP)
8331       ba[i]=((start+i*4+4)&0xF0000000)|(((unsigned int)source[i]<<6)>>4);
8332     else if(type==CJUMP&&rs1[i]==rs2[i]&&(op&1))
8333       ba[i]=start+i*4+8; // Ignore never taken branch
8334     else if(type==SJUMP&&rs1[i]==0&&!(op2&1))
8335       ba[i]=start+i*4+8; // Ignore never taken branch
8336     else if(type==CJUMP||type==SJUMP||type==FJUMP)
8337       ba[i]=start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14);
8338     else ba[i]=-1;
8339     /* Is this the end of the block? */
8340     if(i>0&&(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)) {
8341       if(rt1[i-1]==0) { // Continue past subroutine call (JAL)
8342         done=1;
8343         // Does the block continue due to a branch?
8344         for(j=i-1;j>=0;j--)
8345         {
8346           if(ba[j]==start+i*4+4) done=j=0;
8347           if(ba[j]==start+i*4+8) done=j=0;
8348         }
8349       }
8350       else {
8351         if(stop_after_jal) done=1;
8352         // Stop on BREAK
8353         if((source[i+1]&0xfc00003f)==0x0d) done=1;
8354       }
8355       // Don't recompile stuff that's already compiled
8356       if(check_addr(start+i*4+4)) done=1;
8357       // Don't get too close to the limit
8358       if(i>MAXBLOCK/2) done=1;
8359     }
8360     if(i>0&&itype[i-1]==SYSCALL&&stop_after_jal) done=1;
8361     if(itype[i-1]==HLECALL) done=1;
8362     assert(i<MAXBLOCK-1);
8363     if(start+i*4==pagelimit-4) done=1;
8364     assert(start+i*4<pagelimit);
8365     if (i==MAXBLOCK-1) done=1;
8366     // Stop if we're compiling junk
8367     if(itype[i]==NI&&opcode[i]==0x11) {
8368       done=stop_after_jal=1;
8369       printf("Disabled speculative precompilation\n");
8370     }
8371   }
8372   slen=i;
8373   if(itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==RJUMP||itype[i-1]==FJUMP) {
8374     if(start+i*4==pagelimit) {
8375       itype[i-1]=SPAN;
8376     }
8377   }
8378   assert(slen>0);
8379
8380   /* Pass 2 - Register dependencies and branch targets */
8381
8382   unneeded_registers(0,slen-1,0);
8383   
8384   /* Pass 3 - Register allocation */
8385
8386   struct regstat current; // Current register allocations/status
8387   current.is32=1;
8388   current.dirty=0;
8389   current.u=unneeded_reg[0];
8390   current.uu=unneeded_reg_upper[0];
8391   clear_all_regs(current.regmap);
8392   alloc_reg(&current,0,CCREG);
8393   dirty_reg(&current,CCREG);
8394   current.isconst=0;
8395   current.wasconst=0;
8396   int ds=0;
8397   int cc=0;
8398   int hr;
8399   
8400   provisional_32bit();
8401   
8402   if((u_int)addr&1) {
8403     // First instruction is delay slot
8404     cc=-1;
8405     bt[1]=1;
8406     ds=1;
8407     unneeded_reg[0]=1;
8408     unneeded_reg_upper[0]=1;
8409     current.regmap[HOST_BTREG]=BTREG;
8410   }
8411   
8412   for(i=0;i<slen;i++)
8413   {
8414     if(bt[i])
8415     {
8416       int hr;
8417       for(hr=0;hr<HOST_REGS;hr++)
8418       {
8419         // Is this really necessary?
8420         if(current.regmap[hr]==0) current.regmap[hr]=-1;
8421       }
8422       current.isconst=0;
8423     }
8424     if(i>1)
8425     {
8426       if((opcode[i-2]&0x2f)==0x05) // BNE/BNEL
8427       {
8428         if(rs1[i-2]==0||rs2[i-2]==0)
8429         {
8430           if(rs1[i-2]) {
8431             current.is32|=1LL<<rs1[i-2];
8432             int hr=get_reg(current.regmap,rs1[i-2]|64);
8433             if(hr>=0) current.regmap[hr]=-1;
8434           }
8435           if(rs2[i-2]) {
8436             current.is32|=1LL<<rs2[i-2];
8437             int hr=get_reg(current.regmap,rs2[i-2]|64);
8438             if(hr>=0) current.regmap[hr]=-1;
8439           }
8440         }
8441       }
8442     }
8443     // If something jumps here with 64-bit values
8444     // then promote those registers to 64 bits
8445     if(bt[i])
8446     {
8447       uint64_t temp_is32=current.is32;
8448       for(j=i-1;j>=0;j--)
8449       {
8450         if(ba[j]==start+i*4) 
8451           temp_is32&=branch_regs[j].is32;
8452       }
8453       for(j=i;j<slen;j++)
8454       {
8455         if(ba[j]==start+i*4) 
8456           //temp_is32=1;
8457           temp_is32&=p32[j];
8458       }
8459       if(temp_is32!=current.is32) {
8460         //printf("dumping 32-bit regs (%x)\n",start+i*4);
8461         #ifdef DESTRUCTIVE_WRITEBACK
8462         for(hr=0;hr<HOST_REGS;hr++)
8463         {
8464           int r=current.regmap[hr];
8465           if(r>0&&r<64)
8466           {
8467             if((current.dirty>>hr)&((current.is32&~temp_is32)>>r)&1) {
8468               temp_is32|=1LL<<r;
8469               //printf("restore %d\n",r);
8470             }
8471           }
8472         }
8473         #endif
8474         current.is32=temp_is32;
8475       }
8476     }
8477 #ifdef FORCE32
8478     memset(p32, 0xff, sizeof(p32));
8479     current.is32=-1LL;
8480 #endif
8481
8482     memcpy(regmap_pre[i],current.regmap,sizeof(current.regmap));
8483     regs[i].wasconst=current.isconst;
8484     regs[i].was32=current.is32;
8485     regs[i].wasdirty=current.dirty;
8486     #ifdef DESTRUCTIVE_WRITEBACK
8487     // To change a dirty register from 32 to 64 bits, we must write
8488     // it out during the previous cycle (for branches, 2 cycles)
8489     if(i<slen-1&&bt[i+1]&&itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP)
8490     {
8491       uint64_t temp_is32=current.is32;
8492       for(j=i-1;j>=0;j--)
8493       {
8494         if(ba[j]==start+i*4+4) 
8495           temp_is32&=branch_regs[j].is32;
8496       }
8497       for(j=i;j<slen;j++)
8498       {
8499         if(ba[j]==start+i*4+4) 
8500           //temp_is32=1;
8501           temp_is32&=p32[j];
8502       }
8503       if(temp_is32!=current.is32) {
8504         //printf("pre-dumping 32-bit regs (%x)\n",start+i*4);
8505         for(hr=0;hr<HOST_REGS;hr++)
8506         {
8507           int r=current.regmap[hr];
8508           if(r>0)
8509           {
8510             if((current.dirty>>hr)&((current.is32&~temp_is32)>>(r&63))&1) {
8511               if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP)
8512               {
8513                 if(rs1[i]!=(r&63)&&rs2[i]!=(r&63))
8514                 {
8515                   //printf("dump %d/r%d\n",hr,r);
8516                   current.regmap[hr]=-1;
8517                   if(get_reg(current.regmap,r|64)>=0) 
8518                     current.regmap[get_reg(current.regmap,r|64)]=-1;
8519                 }
8520               }
8521             }
8522           }
8523         }
8524       }
8525     }
8526     else if(i<slen-2&&bt[i+2]&&(source[i-1]>>16)!=0x1000&&(itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP))
8527     {
8528       uint64_t temp_is32=current.is32;
8529       for(j=i-1;j>=0;j--)
8530       {
8531         if(ba[j]==start+i*4+8) 
8532           temp_is32&=branch_regs[j].is32;
8533       }
8534       for(j=i;j<slen;j++)
8535       {
8536         if(ba[j]==start+i*4+8) 
8537           //temp_is32=1;
8538           temp_is32&=p32[j];
8539       }
8540       if(temp_is32!=current.is32) {
8541         //printf("pre-dumping 32-bit regs (%x)\n",start+i*4);
8542         for(hr=0;hr<HOST_REGS;hr++)
8543         {
8544           int r=current.regmap[hr];
8545           if(r>0)
8546           {
8547             if((current.dirty>>hr)&((current.is32&~temp_is32)>>(r&63))&1) {
8548               if(rs1[i]!=(r&63)&&rs2[i]!=(r&63)&&rs1[i+1]!=(r&63)&&rs2[i+1]!=(r&63))
8549               {
8550                 //printf("dump %d/r%d\n",hr,r);
8551                 current.regmap[hr]=-1;
8552                 if(get_reg(current.regmap,r|64)>=0) 
8553                   current.regmap[get_reg(current.regmap,r|64)]=-1;
8554               }
8555             }
8556           }
8557         }
8558       }
8559     }
8560     #endif
8561     if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP) {
8562       if(i+1<slen) {
8563         current.u=unneeded_reg[i+1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
8564         current.uu=unneeded_reg_upper[i+1]&~((1LL<<us1[i])|(1LL<<us2[i]));
8565         if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
8566         current.u|=1;
8567         current.uu|=1;
8568       } else {
8569         current.u=1;
8570         current.uu=1;
8571       }
8572     } else {
8573       if(i+1<slen) {
8574         current.u=branch_unneeded_reg[i]&~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
8575         current.uu=branch_unneeded_reg_upper[i]&~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
8576         if((~current.uu>>rt1[i+1])&1) current.uu&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
8577         current.u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
8578         current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
8579         current.u|=1;
8580         current.uu|=1;
8581       } else { printf("oops, branch at end of block with no delay slot\n");exit(1); }
8582     }
8583     is_ds[i]=ds;
8584     if(ds) {
8585       ds=0; // Skip delay slot, already allocated as part of branch
8586       // ...but we need to alloc it in case something jumps here
8587       if(i+1<slen) {
8588         current.u=branch_unneeded_reg[i-1]&unneeded_reg[i+1];
8589         current.uu=branch_unneeded_reg_upper[i-1]&unneeded_reg_upper[i+1];
8590       }else{
8591         current.u=branch_unneeded_reg[i-1];
8592         current.uu=branch_unneeded_reg_upper[i-1];
8593       }
8594       current.u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
8595       current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
8596       if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
8597       current.u|=1;
8598       current.uu|=1;
8599       struct regstat temp;
8600       memcpy(&temp,&current,sizeof(current));
8601       temp.wasdirty=temp.dirty;
8602       temp.was32=temp.is32;
8603       // TODO: Take into account unconditional branches, as below
8604       delayslot_alloc(&temp,i);
8605       memcpy(regs[i].regmap,temp.regmap,sizeof(temp.regmap));
8606       regs[i].wasdirty=temp.wasdirty;
8607       regs[i].was32=temp.was32;
8608       regs[i].dirty=temp.dirty;
8609       regs[i].is32=temp.is32;
8610       regs[i].isconst=0;
8611       regs[i].wasconst=0;
8612       current.isconst=0;
8613       // Create entry (branch target) regmap
8614       for(hr=0;hr<HOST_REGS;hr++)
8615       {
8616         int r=temp.regmap[hr];
8617         if(r>=0) {
8618           if(r!=regmap_pre[i][hr]) {
8619             regs[i].regmap_entry[hr]=-1;
8620           }
8621           else
8622           {
8623             if(r<64){
8624               if((current.u>>r)&1) {
8625                 regs[i].regmap_entry[hr]=-1;
8626                 regs[i].regmap[hr]=-1;
8627                 //Don't clear regs in the delay slot as the branch might need them
8628                 //current.regmap[hr]=-1;
8629               }else
8630                 regs[i].regmap_entry[hr]=r;
8631             }
8632             else {
8633               if((current.uu>>(r&63))&1) {
8634                 regs[i].regmap_entry[hr]=-1;
8635                 regs[i].regmap[hr]=-1;
8636                 //Don't clear regs in the delay slot as the branch might need them
8637                 //current.regmap[hr]=-1;
8638               }else
8639                 regs[i].regmap_entry[hr]=r;
8640             }
8641           }
8642         } else {
8643           // First instruction expects CCREG to be allocated
8644           if(i==0&&hr==HOST_CCREG) 
8645             regs[i].regmap_entry[hr]=CCREG;
8646           else
8647             regs[i].regmap_entry[hr]=-1;
8648         }
8649       }
8650     }
8651     else { // Not delay slot
8652       switch(itype[i]) {
8653         case UJUMP:
8654           //current.isconst=0; // DEBUG
8655           //current.wasconst=0; // DEBUG
8656           //regs[i].wasconst=0; // DEBUG
8657           clear_const(&current,rt1[i]);
8658           alloc_cc(&current,i);
8659           dirty_reg(&current,CCREG);
8660           if (rt1[i]==31) {
8661             alloc_reg(&current,i,31);
8662             dirty_reg(&current,31);
8663             assert(rs1[i+1]!=31&&rs2[i+1]!=31);
8664             #ifdef REG_PREFETCH
8665             alloc_reg(&current,i,PTEMP);
8666             #endif
8667             //current.is32|=1LL<<rt1[i];
8668           }
8669           delayslot_alloc(&current,i+1);
8670           //current.isconst=0; // DEBUG
8671           ds=1;
8672           //printf("i=%d, isconst=%x\n",i,current.isconst);
8673           break;
8674         case RJUMP:
8675           //current.isconst=0;
8676           //current.wasconst=0;
8677           //regs[i].wasconst=0;
8678           clear_const(&current,rs1[i]);
8679           clear_const(&current,rt1[i]);
8680           alloc_cc(&current,i);
8681           dirty_reg(&current,CCREG);
8682           if(rs1[i]!=rt1[i+1]&&rs1[i]!=rt2[i+1]) {
8683             alloc_reg(&current,i,rs1[i]);
8684             if (rt1[i]!=0) {
8685               alloc_reg(&current,i,rt1[i]);
8686               dirty_reg(&current,rt1[i]);
8687               assert(rs1[i+1]!=31&&rs2[i+1]!=31);
8688               #ifdef REG_PREFETCH
8689               alloc_reg(&current,i,PTEMP);
8690               #endif
8691             }
8692             #ifdef USE_MINI_HT
8693             if(rs1[i]==31) { // JALR
8694               alloc_reg(&current,i,RHASH);
8695               #ifndef HOST_IMM_ADDR32
8696               alloc_reg(&current,i,RHTBL);
8697               #endif
8698             }
8699             #endif
8700             delayslot_alloc(&current,i+1);
8701           } else {
8702             // The delay slot overwrites our source register,
8703             // allocate a temporary register to hold the old value.
8704             current.isconst=0;
8705             current.wasconst=0;
8706             regs[i].wasconst=0;
8707             delayslot_alloc(&current,i+1);
8708             current.isconst=0;
8709             alloc_reg(&current,i,RTEMP);
8710           }
8711           //current.isconst=0; // DEBUG
8712           ds=1;
8713           break;
8714         case CJUMP:
8715           //current.isconst=0;
8716           //current.wasconst=0;
8717           //regs[i].wasconst=0;
8718           clear_const(&current,rs1[i]);
8719           clear_const(&current,rs2[i]);
8720           if((opcode[i]&0x3E)==4) // BEQ/BNE
8721           {
8722             alloc_cc(&current,i);
8723             dirty_reg(&current,CCREG);
8724             if(rs1[i]) alloc_reg(&current,i,rs1[i]);
8725             if(rs2[i]) alloc_reg(&current,i,rs2[i]);
8726             if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
8727             {
8728               if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
8729               if(rs2[i]) alloc_reg64(&current,i,rs2[i]);
8730             }
8731             if((rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]))||
8732                (rs2[i]&&(rs2[i]==rt1[i+1]||rs2[i]==rt2[i+1]))) {
8733               // The delay slot overwrites one of our conditions.
8734               // Allocate the branch condition registers instead.
8735               // Note that such a sequence of instructions could
8736               // be considered a bug since the branch can not be
8737               // re-executed if an exception occurs.
8738               current.isconst=0;
8739               current.wasconst=0;
8740               regs[i].wasconst=0;
8741               if(rs1[i]) alloc_reg(&current,i,rs1[i]);
8742               if(rs2[i]) alloc_reg(&current,i,rs2[i]);
8743               if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
8744               {
8745                 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
8746                 if(rs2[i]) alloc_reg64(&current,i,rs2[i]);
8747               }
8748             }
8749             else delayslot_alloc(&current,i+1);
8750           }
8751           else
8752           if((opcode[i]&0x3E)==6) // BLEZ/BGTZ
8753           {
8754             alloc_cc(&current,i);
8755             dirty_reg(&current,CCREG);
8756             alloc_reg(&current,i,rs1[i]);
8757             if(!(current.is32>>rs1[i]&1))
8758             {
8759               alloc_reg64(&current,i,rs1[i]);
8760             }
8761             if(rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1])) {
8762               // The delay slot overwrites one of our conditions.
8763               // Allocate the branch condition registers instead.
8764               // Note that such a sequence of instructions could
8765               // be considered a bug since the branch can not be
8766               // re-executed if an exception occurs.
8767               current.isconst=0;
8768               current.wasconst=0;
8769               regs[i].wasconst=0;
8770               if(rs1[i]) alloc_reg(&current,i,rs1[i]);
8771               if(!((current.is32>>rs1[i])&1))
8772               {
8773                 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
8774               }
8775             }
8776             else delayslot_alloc(&current,i+1);
8777           }
8778           else
8779           // Don't alloc the delay slot yet because we might not execute it
8780           if((opcode[i]&0x3E)==0x14) // BEQL/BNEL
8781           {
8782             current.isconst=0;
8783             current.wasconst=0;
8784             regs[i].wasconst=0;
8785             alloc_cc(&current,i);
8786             dirty_reg(&current,CCREG);
8787             alloc_reg(&current,i,rs1[i]);
8788             alloc_reg(&current,i,rs2[i]);
8789             if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
8790             {
8791               alloc_reg64(&current,i,rs1[i]);
8792               alloc_reg64(&current,i,rs2[i]);
8793             }
8794           }
8795           else
8796           if((opcode[i]&0x3E)==0x16) // BLEZL/BGTZL
8797           {
8798             current.isconst=0;
8799             current.wasconst=0;
8800             regs[i].wasconst=0;
8801             alloc_cc(&current,i);
8802             dirty_reg(&current,CCREG);
8803             alloc_reg(&current,i,rs1[i]);
8804             if(!(current.is32>>rs1[i]&1))
8805             {
8806               alloc_reg64(&current,i,rs1[i]);
8807             }
8808           }
8809           ds=1;
8810           //current.isconst=0;
8811           break;
8812         case SJUMP:
8813           //current.isconst=0;
8814           //current.wasconst=0;
8815           //regs[i].wasconst=0;
8816           clear_const(&current,rs1[i]);
8817           clear_const(&current,rt1[i]);
8818           //if((opcode2[i]&0x1E)==0x0) // BLTZ/BGEZ
8819           if((opcode2[i]&0x0E)==0x0) // BLTZ/BGEZ
8820           {
8821             alloc_cc(&current,i);
8822             dirty_reg(&current,CCREG);
8823             alloc_reg(&current,i,rs1[i]);
8824             if(!(current.is32>>rs1[i]&1))
8825             {
8826               alloc_reg64(&current,i,rs1[i]);
8827             }
8828             if (rt1[i]==31) { // BLTZAL/BGEZAL
8829               alloc_reg(&current,i,31);
8830               dirty_reg(&current,31);
8831               assert(rs1[i+1]!=31&&rs2[i+1]!=31);
8832               //#ifdef REG_PREFETCH
8833               //alloc_reg(&current,i,PTEMP);
8834               //#endif
8835               //current.is32|=1LL<<rt1[i];
8836             }
8837             if(rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1])) {
8838               // The delay slot overwrites the branch condition.
8839               // Allocate the branch condition registers instead.
8840               // Note that such a sequence of instructions could
8841               // be considered a bug since the branch can not be
8842               // re-executed if an exception occurs.
8843               current.isconst=0;
8844               current.wasconst=0;
8845               regs[i].wasconst=0;
8846               if(rs1[i]) alloc_reg(&current,i,rs1[i]);
8847               if(!((current.is32>>rs1[i])&1))
8848               {
8849                 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
8850               }
8851             }
8852             else delayslot_alloc(&current,i+1);
8853           }
8854           else
8855           // Don't alloc the delay slot yet because we might not execute it
8856           if((opcode2[i]&0x1E)==0x2) // BLTZL/BGEZL
8857           {
8858             current.isconst=0;
8859             current.wasconst=0;
8860             regs[i].wasconst=0;
8861             alloc_cc(&current,i);
8862             dirty_reg(&current,CCREG);
8863             alloc_reg(&current,i,rs1[i]);
8864             if(!(current.is32>>rs1[i]&1))
8865             {
8866               alloc_reg64(&current,i,rs1[i]);
8867             }
8868           }
8869           ds=1;
8870           //current.isconst=0;
8871           break;
8872         case FJUMP:
8873           current.isconst=0;
8874           current.wasconst=0;
8875           regs[i].wasconst=0;
8876           if(likely[i]==0) // BC1F/BC1T
8877           {
8878             // TODO: Theoretically we can run out of registers here on x86.
8879             // The delay slot can allocate up to six, and we need to check
8880             // CSREG before executing the delay slot.  Possibly we can drop
8881             // the cycle count and then reload it after checking that the
8882             // FPU is in a usable state, or don't do out-of-order execution.
8883             alloc_cc(&current,i);
8884             dirty_reg(&current,CCREG);
8885             alloc_reg(&current,i,FSREG);
8886             alloc_reg(&current,i,CSREG);
8887             if(itype[i+1]==FCOMP) {
8888               // The delay slot overwrites the branch condition.
8889               // Allocate the branch condition registers instead.
8890               // Note that such a sequence of instructions could
8891               // be considered a bug since the branch can not be
8892               // re-executed if an exception occurs.
8893               alloc_cc(&current,i);
8894               dirty_reg(&current,CCREG);
8895               alloc_reg(&current,i,CSREG);
8896               alloc_reg(&current,i,FSREG);
8897             }
8898             else {
8899               delayslot_alloc(&current,i+1);
8900               alloc_reg(&current,i+1,CSREG);
8901             }
8902           }
8903           else
8904           // Don't alloc the delay slot yet because we might not execute it
8905           if(likely[i]) // BC1FL/BC1TL
8906           {
8907             alloc_cc(&current,i);
8908             dirty_reg(&current,CCREG);
8909             alloc_reg(&current,i,CSREG);
8910             alloc_reg(&current,i,FSREG);
8911           }
8912           ds=1;
8913           current.isconst=0;
8914           break;
8915         case IMM16:
8916           imm16_alloc(&current,i);
8917           break;
8918         case LOAD:
8919         case LOADLR:
8920           load_alloc(&current,i);
8921           break;
8922         case STORE:
8923         case STORELR:
8924           store_alloc(&current,i);
8925           break;
8926         case ALU:
8927           alu_alloc(&current,i);
8928           break;
8929         case SHIFT:
8930           shift_alloc(&current,i);
8931           break;
8932         case MULTDIV:
8933           multdiv_alloc(&current,i);
8934           break;
8935         case SHIFTIMM:
8936           shiftimm_alloc(&current,i);
8937           break;
8938         case MOV:
8939           mov_alloc(&current,i);
8940           break;
8941         case COP0:
8942           cop0_alloc(&current,i);
8943           break;
8944         case COP1:
8945         case COP2:
8946           cop1_alloc(&current,i);
8947           break;
8948         case C1LS:
8949           c1ls_alloc(&current,i);
8950           break;
8951         case C2LS:
8952           c2ls_alloc(&current,i);
8953           break;
8954         case C2OP:
8955           c2op_alloc(&current,i);
8956           break;
8957         case FCONV:
8958           fconv_alloc(&current,i);
8959           break;
8960         case FLOAT:
8961           float_alloc(&current,i);
8962           break;
8963         case FCOMP:
8964           fcomp_alloc(&current,i);
8965           break;
8966         case SYSCALL:
8967         case HLECALL:
8968           syscall_alloc(&current,i);
8969           break;
8970         case SPAN:
8971           pagespan_alloc(&current,i);
8972           break;
8973       }
8974       
8975       // Drop the upper half of registers that have become 32-bit
8976       current.uu|=current.is32&((1LL<<rt1[i])|(1LL<<rt2[i]));
8977       if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP) {
8978         current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
8979         if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
8980         current.uu|=1;
8981       } else {
8982         current.uu|=current.is32&((1LL<<rt1[i+1])|(1LL<<rt2[i+1]));
8983         current.uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
8984         if((~current.uu>>rt1[i+1])&1) current.uu&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
8985         current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
8986         current.uu|=1;
8987       }
8988
8989       // Create entry (branch target) regmap
8990       for(hr=0;hr<HOST_REGS;hr++)
8991       {
8992         int r,or,er;
8993         r=current.regmap[hr];
8994         if(r>=0) {
8995           if(r!=regmap_pre[i][hr]) {
8996             // TODO: delay slot (?)
8997             or=get_reg(regmap_pre[i],r); // Get old mapping for this register
8998             if(or<0||(r&63)>=TEMPREG){
8999               regs[i].regmap_entry[hr]=-1;
9000             }
9001             else
9002             {
9003               // Just move it to a different register
9004               regs[i].regmap_entry[hr]=r;
9005               // If it was dirty before, it's still dirty
9006               if((regs[i].wasdirty>>or)&1) dirty_reg(&current,r&63);
9007             }
9008           }
9009           else
9010           {
9011             // Unneeded
9012             if(r==0){
9013               regs[i].regmap_entry[hr]=0;
9014             }
9015             else
9016             if(r<64){
9017               if((current.u>>r)&1) {
9018                 regs[i].regmap_entry[hr]=-1;
9019                 //regs[i].regmap[hr]=-1;
9020                 current.regmap[hr]=-1;
9021               }else
9022                 regs[i].regmap_entry[hr]=r;
9023             }
9024             else {
9025               if((current.uu>>(r&63))&1) {
9026                 regs[i].regmap_entry[hr]=-1;
9027                 //regs[i].regmap[hr]=-1;
9028                 current.regmap[hr]=-1;
9029               }else
9030                 regs[i].regmap_entry[hr]=r;
9031             }
9032           }
9033         } else {
9034           // Branches expect CCREG to be allocated at the target
9035           if(regmap_pre[i][hr]==CCREG) 
9036             regs[i].regmap_entry[hr]=CCREG;
9037           else
9038             regs[i].regmap_entry[hr]=-1;
9039         }
9040       }
9041       memcpy(regs[i].regmap,current.regmap,sizeof(current.regmap));
9042     }
9043     /* Branch post-alloc */
9044     if(i>0)
9045     {
9046       current.was32=current.is32;
9047       current.wasdirty=current.dirty;
9048       switch(itype[i-1]) {
9049         case UJUMP:
9050           memcpy(&branch_regs[i-1],&current,sizeof(current));
9051           branch_regs[i-1].isconst=0;
9052           branch_regs[i-1].wasconst=0;
9053           branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
9054           branch_regs[i-1].uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
9055           alloc_cc(&branch_regs[i-1],i-1);
9056           dirty_reg(&branch_regs[i-1],CCREG);
9057           if(rt1[i-1]==31) { // JAL
9058             alloc_reg(&branch_regs[i-1],i-1,31);
9059             dirty_reg(&branch_regs[i-1],31);
9060             branch_regs[i-1].is32|=1LL<<31;
9061           }
9062           memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9063           memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9064           break;
9065         case RJUMP:
9066           memcpy(&branch_regs[i-1],&current,sizeof(current));
9067           branch_regs[i-1].isconst=0;
9068           branch_regs[i-1].wasconst=0;
9069           branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
9070           branch_regs[i-1].uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
9071           alloc_cc(&branch_regs[i-1],i-1);
9072           dirty_reg(&branch_regs[i-1],CCREG);
9073           alloc_reg(&branch_regs[i-1],i-1,rs1[i-1]);
9074           if(rt1[i-1]!=0) { // JALR
9075             alloc_reg(&branch_regs[i-1],i-1,rt1[i-1]);
9076             dirty_reg(&branch_regs[i-1],rt1[i-1]);
9077             branch_regs[i-1].is32|=1LL<<rt1[i-1];
9078           }
9079           #ifdef USE_MINI_HT
9080           if(rs1[i-1]==31) { // JALR
9081             alloc_reg(&branch_regs[i-1],i-1,RHASH);
9082             #ifndef HOST_IMM_ADDR32
9083             alloc_reg(&branch_regs[i-1],i-1,RHTBL);
9084             #endif
9085           }
9086           #endif
9087           memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9088           memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9089           break;
9090         case CJUMP:
9091           if((opcode[i-1]&0x3E)==4) // BEQ/BNE
9092           {
9093             alloc_cc(&current,i-1);
9094             dirty_reg(&current,CCREG);
9095             if((rs1[i-1]&&(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]))||
9096                (rs2[i-1]&&(rs2[i-1]==rt1[i]||rs2[i-1]==rt2[i]))) {
9097               // The delay slot overwrote one of our conditions
9098               // Delay slot goes after the test (in order)
9099               current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
9100               current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
9101               if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9102               current.u|=1;
9103               current.uu|=1;
9104               delayslot_alloc(&current,i);
9105               current.isconst=0;
9106             }
9107             else
9108             {
9109               current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
9110               current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
9111               // Alloc the branch condition registers
9112               if(rs1[i-1]) alloc_reg(&current,i-1,rs1[i-1]);
9113               if(rs2[i-1]) alloc_reg(&current,i-1,rs2[i-1]);
9114               if(!((current.is32>>rs1[i-1])&(current.is32>>rs2[i-1])&1))
9115               {
9116                 if(rs1[i-1]) alloc_reg64(&current,i-1,rs1[i-1]);
9117                 if(rs2[i-1]) alloc_reg64(&current,i-1,rs2[i-1]);
9118               }
9119             }
9120             memcpy(&branch_regs[i-1],&current,sizeof(current));
9121             branch_regs[i-1].isconst=0;
9122             branch_regs[i-1].wasconst=0;
9123             memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9124             memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9125           }
9126           else
9127           if((opcode[i-1]&0x3E)==6) // BLEZ/BGTZ
9128           {
9129             alloc_cc(&current,i-1);
9130             dirty_reg(&current,CCREG);
9131             if(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]) {
9132               // The delay slot overwrote the branch condition
9133               // Delay slot goes after the test (in order)
9134               current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
9135               current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
9136               if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9137               current.u|=1;
9138               current.uu|=1;
9139               delayslot_alloc(&current,i);
9140               current.isconst=0;
9141             }
9142             else
9143             {
9144               current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
9145               current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
9146               // Alloc the branch condition register
9147               alloc_reg(&current,i-1,rs1[i-1]);
9148               if(!(current.is32>>rs1[i-1]&1))
9149               {
9150                 alloc_reg64(&current,i-1,rs1[i-1]);
9151               }
9152             }
9153             memcpy(&branch_regs[i-1],&current,sizeof(current));
9154             branch_regs[i-1].isconst=0;
9155             branch_regs[i-1].wasconst=0;
9156             memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9157             memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9158           }
9159           else
9160           // Alloc the delay slot in case the branch is taken
9161           if((opcode[i-1]&0x3E)==0x14) // BEQL/BNEL
9162           {
9163             memcpy(&branch_regs[i-1],&current,sizeof(current));
9164             branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9165             branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9166             if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9167             alloc_cc(&branch_regs[i-1],i);
9168             dirty_reg(&branch_regs[i-1],CCREG);
9169             delayslot_alloc(&branch_regs[i-1],i);
9170             branch_regs[i-1].isconst=0;
9171             alloc_reg(&current,i,CCREG); // Not taken path
9172             dirty_reg(&current,CCREG);
9173             memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9174           }
9175           else
9176           if((opcode[i-1]&0x3E)==0x16) // BLEZL/BGTZL
9177           {
9178             memcpy(&branch_regs[i-1],&current,sizeof(current));
9179             branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9180             branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9181             if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9182             alloc_cc(&branch_regs[i-1],i);
9183             dirty_reg(&branch_regs[i-1],CCREG);
9184             delayslot_alloc(&branch_regs[i-1],i);
9185             branch_regs[i-1].isconst=0;
9186             alloc_reg(&current,i,CCREG); // Not taken path
9187             dirty_reg(&current,CCREG);
9188             memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9189           }
9190           break;
9191         case SJUMP:
9192           //if((opcode2[i-1]&0x1E)==0) // BLTZ/BGEZ
9193           if((opcode2[i-1]&0x0E)==0) // BLTZ/BGEZ
9194           {
9195             alloc_cc(&current,i-1);
9196             dirty_reg(&current,CCREG);
9197             if(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]) {
9198               // The delay slot overwrote the branch condition
9199               // Delay slot goes after the test (in order)
9200               current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
9201               current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
9202               if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
9203               current.u|=1;
9204               current.uu|=1;
9205               delayslot_alloc(&current,i);
9206               current.isconst=0;
9207             }
9208             else
9209             {
9210               current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
9211               current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
9212               // Alloc the branch condition register
9213               alloc_reg(&current,i-1,rs1[i-1]);
9214               if(!(current.is32>>rs1[i-1]&1))
9215               {
9216                 alloc_reg64(&current,i-1,rs1[i-1]);
9217               }
9218             }
9219             memcpy(&branch_regs[i-1],&current,sizeof(current));
9220             branch_regs[i-1].isconst=0;
9221             branch_regs[i-1].wasconst=0;
9222             memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9223             memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
9224           }
9225           else
9226           // Alloc the delay slot in case the branch is taken
9227           if((opcode2[i-1]&0x1E)==2) // BLTZL/BGEZL
9228           {
9229             memcpy(&branch_regs[i-1],&current,sizeof(current));
9230             branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9231             branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9232             if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9233             alloc_cc(&branch_regs[i-1],i);
9234             dirty_reg(&branch_regs[i-1],CCREG);
9235             delayslot_alloc(&branch_regs[i-1],i);
9236             branch_regs[i-1].isconst=0;
9237             alloc_reg(&current,i,CCREG); // Not taken path
9238             dirty_reg(&current,CCREG);
9239             memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9240           }
9241           // FIXME: BLTZAL/BGEZAL
9242           if(opcode2[i-1]&0x10) { // BxxZAL
9243             alloc_reg(&branch_regs[i-1],i-1,31);
9244             dirty_reg(&branch_regs[i-1],31);
9245             branch_regs[i-1].is32|=1LL<<31;
9246           }
9247           break;
9248         case FJUMP:
9249           if(likely[i-1]==0) // BC1F/BC1T
9250           {
9251             alloc_cc(&current,i-1);
9252             dirty_reg(&current,CCREG);
9253             if(itype[i]==FCOMP) {
9254               // The delay slot overwrote the branch condition
9255               // Delay slot goes after the test (in order)
9256               delayslot_alloc(&current,i);
9257               current.isconst=0;
9258             }
9259             else
9260             {
9261               current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
9262               current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
9263               // Alloc the branch condition register
9264               alloc_reg(&current,i-1,FSREG);
9265             }
9266             memcpy(&branch_regs[i-1],&current,sizeof(current));
9267             memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
9268           }
9269           else // BC1FL/BC1TL
9270           {
9271             // Alloc the delay slot in case the branch is taken
9272             memcpy(&branch_regs[i-1],&current,sizeof(current));
9273             branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9274             branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
9275             if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
9276             alloc_cc(&branch_regs[i-1],i);
9277             dirty_reg(&branch_regs[i-1],CCREG);
9278             delayslot_alloc(&branch_regs[i-1],i);
9279             branch_regs[i-1].isconst=0;
9280             alloc_reg(&current,i,CCREG); // Not taken path
9281             dirty_reg(&current,CCREG);
9282             memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
9283           }
9284           break;
9285       }
9286
9287       if(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)
9288       {
9289         if(rt1[i-1]==31) // JAL/JALR
9290         {
9291           // Subroutine call will return here, don't alloc any registers
9292           current.is32=1;
9293           current.dirty=0;
9294           clear_all_regs(current.regmap);
9295           alloc_reg(&current,i,CCREG);
9296           dirty_reg(&current,CCREG);
9297         }
9298         else if(i+1<slen)
9299         {
9300           // Internal branch will jump here, match registers to caller
9301           current.is32=0x3FFFFFFFFLL;
9302           current.dirty=0;
9303           clear_all_regs(current.regmap);
9304           alloc_reg(&current,i,CCREG);
9305           dirty_reg(&current,CCREG);
9306           for(j=i-1;j>=0;j--)
9307           {
9308             if(ba[j]==start+i*4+4) {
9309               memcpy(current.regmap,branch_regs[j].regmap,sizeof(current.regmap));
9310               current.is32=branch_regs[j].is32;
9311               current.dirty=branch_regs[j].dirty;
9312               break;
9313             }
9314           }
9315           while(j>=0) {
9316             if(ba[j]==start+i*4+4) {
9317               for(hr=0;hr<HOST_REGS;hr++) {
9318                 if(current.regmap[hr]!=branch_regs[j].regmap[hr]) {
9319                   current.regmap[hr]=-1;
9320                 }
9321                 current.is32&=branch_regs[j].is32;
9322                 current.dirty&=branch_regs[j].dirty;
9323               }
9324             }
9325             j--;
9326           }
9327         }
9328       }
9329     }
9330
9331     // Count cycles in between branches
9332     ccadj[i]=cc;
9333     if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP||itype[i]==SYSCALL||itype[i]==HLECALL))
9334     {
9335       cc=0;
9336     }
9337     else
9338     {
9339       cc++;
9340     }
9341
9342     flush_dirty_uppers(&current);
9343     if(!is_ds[i]) {
9344       regs[i].is32=current.is32;
9345       regs[i].dirty=current.dirty;
9346       regs[i].isconst=current.isconst;
9347       memcpy(constmap[i],current.constmap,sizeof(current.constmap));
9348     }
9349     for(hr=0;hr<HOST_REGS;hr++) {
9350       if(hr!=EXCLUDE_REG&&regs[i].regmap[hr]>=0) {
9351         if(regmap_pre[i][hr]!=regs[i].regmap[hr]) {
9352           regs[i].wasconst&=~(1<<hr);
9353         }
9354       }
9355     }
9356     if(current.regmap[HOST_BTREG]==BTREG) current.regmap[HOST_BTREG]=-1;
9357   }
9358   
9359   /* Pass 4 - Cull unused host registers */
9360   
9361   uint64_t nr=0;
9362   
9363   for (i=slen-1;i>=0;i--)
9364   {
9365     int hr;
9366     if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
9367     {
9368       if(ba[i]<start || ba[i]>=(start+slen*4))
9369       {
9370         // Branch out of this block, don't need anything
9371         nr=0;
9372       }
9373       else
9374       {
9375         // Internal branch
9376         // Need whatever matches the target
9377         nr=0;
9378         int t=(ba[i]-start)>>2;
9379         for(hr=0;hr<HOST_REGS;hr++)
9380         {
9381           if(regs[i].regmap_entry[hr]>=0) {
9382             if(regs[i].regmap_entry[hr]==regs[t].regmap_entry[hr]) nr|=1<<hr;
9383           }
9384         }
9385       }
9386       // Conditional branch may need registers for following instructions
9387       if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
9388       {
9389         if(i<slen-2) {
9390           nr|=needed_reg[i+2];
9391           for(hr=0;hr<HOST_REGS;hr++)
9392           {
9393             if(regmap_pre[i+2][hr]>=0&&get_reg(regs[i+2].regmap_entry,regmap_pre[i+2][hr])<0) nr&=~(1<<hr);
9394             //if((regmap_entry[i+2][hr])>=0) if(!((nr>>hr)&1)) printf("%x-bogus(%d=%d)\n",start+i*4,hr,regmap_entry[i+2][hr]);
9395           }
9396         }
9397       }
9398       // Don't need stuff which is overwritten
9399       if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
9400       if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
9401       // Merge in delay slot
9402       for(hr=0;hr<HOST_REGS;hr++)
9403       {
9404         if(!likely[i]) {
9405           // These are overwritten unless the branch is "likely"
9406           // and the delay slot is nullified if not taken
9407           if(rt1[i+1]&&rt1[i+1]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9408           if(rt2[i+1]&&rt2[i+1]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9409         }
9410         if(us1[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9411         if(us2[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9412         if(rs1[i+1]==regmap_pre[i][hr]) nr|=1<<hr;
9413         if(rs2[i+1]==regmap_pre[i][hr]) nr|=1<<hr;
9414         if(us1[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9415         if(us2[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9416         if(rs1[i+1]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9417         if(rs2[i+1]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9418         if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1)) {
9419           if(dep1[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9420           if(dep2[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9421         }
9422         if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1)) {
9423           if(dep1[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9424           if(dep2[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9425         }
9426         if(itype[i+1]==STORE || itype[i+1]==STORELR || (opcode[i+1]&0x3b)==0x39 || (opcode[i+1]&0x3b)==0x3a) {
9427           if(regmap_pre[i][hr]==INVCP) nr|=1<<hr;
9428           if(regs[i].regmap_entry[hr]==INVCP) nr|=1<<hr;
9429         }
9430       }
9431     }
9432     else if(itype[i]==SYSCALL||itype[i]==HLECALL)
9433     {
9434       // SYSCALL instruction (software interrupt)
9435       nr=0;
9436     }
9437     else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
9438     {
9439       // ERET instruction (return from interrupt)
9440       nr=0;
9441     }
9442     else // Non-branch
9443     {
9444       if(i<slen-1) {
9445         for(hr=0;hr<HOST_REGS;hr++) {
9446           if(regmap_pre[i+1][hr]>=0&&get_reg(regs[i+1].regmap_entry,regmap_pre[i+1][hr])<0) nr&=~(1<<hr);
9447           if(regs[i].regmap[hr]!=regmap_pre[i+1][hr]) nr&=~(1<<hr);
9448           if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
9449           if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
9450         }
9451       }
9452     }
9453     for(hr=0;hr<HOST_REGS;hr++)
9454     {
9455       // Overwritten registers are not needed
9456       if(rt1[i]&&rt1[i]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9457       if(rt2[i]&&rt2[i]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9458       if(FTEMP==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
9459       // Source registers are needed
9460       if(us1[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9461       if(us2[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9462       if(rs1[i]==regmap_pre[i][hr]) nr|=1<<hr;
9463       if(rs2[i]==regmap_pre[i][hr]) nr|=1<<hr;
9464       if(us1[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9465       if(us2[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9466       if(rs1[i]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9467       if(rs2[i]==regs[i].regmap_entry[hr]) nr|=1<<hr;
9468       if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1)) {
9469         if(dep1[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9470         if(dep1[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9471       }
9472       if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1)) {
9473         if(dep2[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9474         if(dep2[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9475       }
9476       if(itype[i]==STORE || itype[i]==STORELR || (opcode[i]&0x3b)==0x39 || (opcode[i]&0x3b)==0x3a) {
9477         if(regmap_pre[i][hr]==INVCP) nr|=1<<hr;
9478         if(regs[i].regmap_entry[hr]==INVCP) nr|=1<<hr;
9479       }
9480       // Don't store a register immediately after writing it,
9481       // may prevent dual-issue.
9482       // But do so if this is a branch target, otherwise we
9483       // might have to load the register before the branch.
9484       if(i>0&&!bt[i]&&((regs[i].wasdirty>>hr)&1)) {
9485         if((regmap_pre[i][hr]>0&&regmap_pre[i][hr]<64&&!((unneeded_reg[i]>>regmap_pre[i][hr])&1)) ||
9486            (regmap_pre[i][hr]>64&&!((unneeded_reg_upper[i]>>(regmap_pre[i][hr]&63))&1)) ) {
9487           if(rt1[i-1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9488           if(rt2[i-1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
9489         }
9490         if((regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64&&!((unneeded_reg[i]>>regs[i].regmap_entry[hr])&1)) ||
9491            (regs[i].regmap_entry[hr]>64&&!((unneeded_reg_upper[i]>>(regs[i].regmap_entry[hr]&63))&1)) ) {
9492           if(rt1[i-1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9493           if(rt2[i-1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
9494         }
9495       }
9496     }
9497     // Cycle count is needed at branches.  Assume it is needed at the target too.
9498     if(i==0||bt[i]||itype[i]==CJUMP||itype[i]==FJUMP||itype[i]==SPAN) {
9499       if(regmap_pre[i][HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
9500       if(regs[i].regmap_entry[HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
9501     }
9502     // Save it
9503     needed_reg[i]=nr;
9504     
9505     // Deallocate unneeded registers
9506     for(hr=0;hr<HOST_REGS;hr++)
9507     {
9508       if(!((nr>>hr)&1)) {
9509         if(regs[i].regmap_entry[hr]!=CCREG) regs[i].regmap_entry[hr]=-1;
9510         if((regs[i].regmap[hr]&63)!=rs1[i] && (regs[i].regmap[hr]&63)!=rs2[i] &&
9511            (regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
9512            (regs[i].regmap[hr]&63)!=PTEMP && (regs[i].regmap[hr]&63)!=CCREG)
9513         {
9514           if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
9515           {
9516             if(likely[i]) {
9517               regs[i].regmap[hr]=-1;
9518               regs[i].isconst&=~(1<<hr);
9519               if(i<slen-2) regmap_pre[i+2][hr]=-1;
9520             }
9521           }
9522         }
9523         if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
9524         {
9525           int d1=0,d2=0,map=0,temp=0;
9526           if(get_reg(regs[i].regmap,rt1[i+1]|64)>=0||get_reg(branch_regs[i].regmap,rt1[i+1]|64)>=0)
9527           {
9528             d1=dep1[i+1];
9529             d2=dep2[i+1];
9530           }
9531           if(using_tlb) {
9532             if(itype[i+1]==LOAD || itype[i+1]==LOADLR ||
9533                itype[i+1]==STORE || itype[i+1]==STORELR ||
9534                itype[i+1]==C1LS || itype[i+1]==C2LS)
9535             map=TLREG;
9536           } else
9537           if(itype[i+1]==STORE || itype[i+1]==STORELR ||
9538              (opcode[i+1]&0x3b)==0x39 || (opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1 || SWC2/SDC2
9539             map=INVCP;
9540           }
9541           if(itype[i+1]==LOADLR || itype[i+1]==STORELR ||
9542              itype[i+1]==C1LS || itype[i+1]==C2LS)
9543             temp=FTEMP;
9544           if((regs[i].regmap[hr]&63)!=rs1[i] && (regs[i].regmap[hr]&63)!=rs2[i] &&
9545              (regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
9546              (regs[i].regmap[hr]&63)!=rt1[i+1] && (regs[i].regmap[hr]&63)!=rt2[i+1] &&
9547              (regs[i].regmap[hr]^64)!=us1[i+1] && (regs[i].regmap[hr]^64)!=us2[i+1] &&
9548              (regs[i].regmap[hr]^64)!=d1 && (regs[i].regmap[hr]^64)!=d2 &&
9549              regs[i].regmap[hr]!=rs1[i+1] && regs[i].regmap[hr]!=rs2[i+1] &&
9550              (regs[i].regmap[hr]&63)!=temp && regs[i].regmap[hr]!=PTEMP &&
9551              regs[i].regmap[hr]!=RHASH && regs[i].regmap[hr]!=RHTBL &&
9552              regs[i].regmap[hr]!=RTEMP && regs[i].regmap[hr]!=CCREG &&
9553              regs[i].regmap[hr]!=map )
9554           {
9555             regs[i].regmap[hr]=-1;
9556             regs[i].isconst&=~(1<<hr);
9557             if((branch_regs[i].regmap[hr]&63)!=rs1[i] && (branch_regs[i].regmap[hr]&63)!=rs2[i] &&
9558                (branch_regs[i].regmap[hr]&63)!=rt1[i] && (branch_regs[i].regmap[hr]&63)!=rt2[i] &&
9559                (branch_regs[i].regmap[hr]&63)!=rt1[i+1] && (branch_regs[i].regmap[hr]&63)!=rt2[i+1] &&
9560                (branch_regs[i].regmap[hr]^64)!=us1[i+1] && (branch_regs[i].regmap[hr]^64)!=us2[i+1] &&
9561                (branch_regs[i].regmap[hr]^64)!=d1 && (branch_regs[i].regmap[hr]^64)!=d2 &&
9562                branch_regs[i].regmap[hr]!=rs1[i+1] && branch_regs[i].regmap[hr]!=rs2[i+1] &&
9563                (branch_regs[i].regmap[hr]&63)!=temp && branch_regs[i].regmap[hr]!=PTEMP &&
9564                branch_regs[i].regmap[hr]!=RHASH && branch_regs[i].regmap[hr]!=RHTBL &&
9565                branch_regs[i].regmap[hr]!=RTEMP && branch_regs[i].regmap[hr]!=CCREG &&
9566                branch_regs[i].regmap[hr]!=map)
9567             {
9568               branch_regs[i].regmap[hr]=-1;
9569               branch_regs[i].regmap_entry[hr]=-1;
9570               if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
9571               {
9572                 if(!likely[i]&&i<slen-2) {
9573                   regmap_pre[i+2][hr]=-1;
9574                 }
9575               }
9576             }
9577           }
9578         }
9579         else
9580         {
9581           // Non-branch
9582           if(i>0)
9583           {
9584             int d1=0,d2=0,map=-1,temp=-1;
9585             if(get_reg(regs[i].regmap,rt1[i]|64)>=0)
9586             {
9587               d1=dep1[i];
9588               d2=dep2[i];
9589             }
9590             if(using_tlb) {
9591               if(itype[i]==LOAD || itype[i]==LOADLR ||
9592                  itype[i]==STORE || itype[i]==STORELR ||
9593                  itype[i]==C1LS || itype[i]==C2LS)
9594               map=TLREG;
9595             } else if(itype[i]==STORE || itype[i]==STORELR ||
9596                       (opcode[i]&0x3b)==0x39 || (opcode[i]&0x3b)==0x3a) { // SWC1/SDC1 || SWC2/SDC2
9597               map=INVCP;
9598             }
9599             if(itype[i]==LOADLR || itype[i]==STORELR ||
9600                itype[i]==C1LS || itype[i]==C2LS)
9601               temp=FTEMP;
9602             if((regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
9603                (regs[i].regmap[hr]^64)!=us1[i] && (regs[i].regmap[hr]^64)!=us2[i] &&
9604                (regs[i].regmap[hr]^64)!=d1 && (regs[i].regmap[hr]^64)!=d2 &&
9605                regs[i].regmap[hr]!=rs1[i] && regs[i].regmap[hr]!=rs2[i] &&
9606                (regs[i].regmap[hr]&63)!=temp && regs[i].regmap[hr]!=map &&
9607                (itype[i]!=SPAN||regs[i].regmap[hr]!=CCREG))
9608             {
9609               if(i<slen-1&&!is_ds[i]) {
9610                 if(regmap_pre[i+1][hr]!=-1 || regs[i].regmap[hr]!=-1)
9611                 if(regmap_pre[i+1][hr]!=regs[i].regmap[hr])
9612                 if(regs[i].regmap[hr]<64||!((regs[i].was32>>(regs[i].regmap[hr]&63))&1))
9613                 {
9614                   printf("fail: %x (%d %d!=%d)\n",start+i*4,hr,regmap_pre[i+1][hr],regs[i].regmap[hr]);
9615                   assert(regmap_pre[i+1][hr]==regs[i].regmap[hr]);
9616                 }
9617                 regmap_pre[i+1][hr]=-1;
9618                 if(regs[i+1].regmap_entry[hr]==CCREG) regs[i+1].regmap_entry[hr]=-1;
9619               }
9620               regs[i].regmap[hr]=-1;
9621               regs[i].isconst&=~(1<<hr);
9622             }
9623           }
9624         }
9625       }
9626     }
9627   }
9628   
9629   /* Pass 5 - Pre-allocate registers */
9630   
9631   // If a register is allocated during a loop, try to allocate it for the
9632   // entire loop, if possible.  This avoids loading/storing registers
9633   // inside of the loop.
9634
9635   signed char f_regmap[HOST_REGS];
9636   clear_all_regs(f_regmap);
9637   for(i=0;i<slen-1;i++)
9638   {
9639     if(itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
9640     {
9641       if(ba[i]>=start && ba[i]<(start+i*4)) 
9642       if(itype[i+1]==NOP||itype[i+1]==MOV||itype[i+1]==ALU
9643       ||itype[i+1]==SHIFTIMM||itype[i+1]==IMM16||itype[i+1]==LOAD
9644       ||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS
9645       ||itype[i+1]==SHIFT||itype[i+1]==COP1||itype[i+1]==FLOAT
9646       ||itype[i+1]==FCOMP||itype[i+1]==FCONV
9647       ||itype[i+1]==COP2||itype[i+1]==C2LS||itype[i+1]==C2OP)
9648       {
9649         int t=(ba[i]-start)>>2;
9650         if(t>0&&(itype[t-1]!=UJUMP&&itype[t-1]!=RJUMP&&itype[t-1]!=CJUMP&&itype[t-1]!=SJUMP&&itype[t-1]!=FJUMP)) // loop_preload can't handle jumps into delay slots
9651         if(t<2||(itype[t-2]!=UJUMP)) // call/ret assumes no registers allocated
9652         for(hr=0;hr<HOST_REGS;hr++)
9653         {
9654           if(regs[i].regmap[hr]>64) {
9655             if(!((regs[i].dirty>>hr)&1))
9656               f_regmap[hr]=regs[i].regmap[hr];
9657             else f_regmap[hr]=-1;
9658           }
9659           else if(regs[i].regmap[hr]>=0) f_regmap[hr]=regs[i].regmap[hr];
9660           if(branch_regs[i].regmap[hr]>64) {
9661             if(!((branch_regs[i].dirty>>hr)&1))
9662               f_regmap[hr]=branch_regs[i].regmap[hr];
9663             else f_regmap[hr]=-1;
9664           }
9665           else if(branch_regs[i].regmap[hr]>=0) f_regmap[hr]=branch_regs[i].regmap[hr];
9666           if(itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS
9667           ||itype[i+1]==SHIFT||itype[i+1]==COP1||itype[i+1]==FLOAT
9668           ||itype[i+1]==FCOMP||itype[i+1]==FCONV
9669           ||itype[i+1]==COP2||itype[i+1]==C2LS||itype[i+1]==C2OP)
9670           {
9671             // Test both in case the delay slot is ooo,
9672             // could be done better...
9673             if(count_free_regs(branch_regs[i].regmap)<2
9674              ||count_free_regs(regs[i].regmap)<2) 
9675               f_regmap[hr]=branch_regs[i].regmap[hr];
9676           }
9677           // Avoid dirty->clean transition
9678           // #ifdef DESTRUCTIVE_WRITEBACK here?
9679           if(t>0) if(get_reg(regmap_pre[t],f_regmap[hr])>=0) if((regs[t].wasdirty>>get_reg(regmap_pre[t],f_regmap[hr]))&1) f_regmap[hr]=-1;
9680           if(f_regmap[hr]>0) {
9681             if(regs[t].regmap_entry[hr]<0) {
9682               int r=f_regmap[hr];
9683               for(j=t;j<=i;j++)
9684               {
9685                 //printf("Test %x -> %x, %x %d/%d\n",start+i*4,ba[i],start+j*4,hr,r);
9686                 if(r<34&&((unneeded_reg[j]>>r)&1)) break;
9687                 if(r>63&&((unneeded_reg_upper[j]>>(r&63))&1)) break;
9688                 if(r>63) {
9689                   // NB This can exclude the case where the upper-half
9690                   // register is lower numbered than the lower-half
9691                   // register.  Not sure if it's worth fixing...
9692                   if(get_reg(regs[j].regmap,r&63)<0) break;
9693                   if(regs[j].is32&(1LL<<(r&63))) break;
9694                 }
9695                 if(regs[j].regmap[hr]==f_regmap[hr]&&(f_regmap[hr]&63)<TEMPREG) {
9696                   //printf("Hit %x -> %x, %x %d/%d\n",start+i*4,ba[i],start+j*4,hr,r);
9697                   int k;
9698                   if(regs[i].regmap[hr]==-1&&branch_regs[i].regmap[hr]==-1) {
9699                     if(get_reg(regs[i+2].regmap,f_regmap[hr])>=0) break;
9700                     if(r>63) {
9701                       if(get_reg(regs[i].regmap,r&63)<0) break;
9702                       if(get_reg(branch_regs[i].regmap,r&63)<0) break;
9703                     }
9704                     k=i;
9705                     while(k>1&&regs[k-1].regmap[hr]==-1) {
9706                       if(itype[k-1]==STORE||itype[k-1]==STORELR
9707                       ||itype[k-1]==C1LS||itype[k-1]==SHIFT||itype[k-1]==COP1
9708                       ||itype[k-1]==FLOAT||itype[k-1]==FCONV||itype[k-1]==FCOMP
9709                       ||itype[k-1]==COP2||itype[k-1]==C2LS||itype[k-1]==C2OP) {
9710                         if(count_free_regs(regs[k-1].regmap)<2) {
9711                           //printf("no free regs for store %x\n",start+(k-1)*4);
9712                           break;
9713                         }
9714                       }
9715                       else
9716                       if(itype[k-1]!=NOP&&itype[k-1]!=MOV&&itype[k-1]!=ALU&&itype[k-1]!=SHIFTIMM&&itype[k-1]!=IMM16&&itype[k-1]!=LOAD) break;
9717                       if(get_reg(regs[k-1].regmap,f_regmap[hr])>=0) {
9718                         //printf("no-match due to different register\n");
9719                         break;
9720                       }
9721                       if(itype[k-2]==UJUMP||itype[k-2]==RJUMP||itype[k-2]==CJUMP||itype[k-2]==SJUMP||itype[k-2]==FJUMP) {
9722                         //printf("no-match due to branch\n");
9723                         break;
9724                       }
9725                       // call/ret fast path assumes no registers allocated
9726                       if(k>2&&(itype[k-3]==UJUMP||itype[k-3]==RJUMP)) {
9727                         break;
9728                       }
9729                       if(r>63) {
9730                         // NB This can exclude the case where the upper-half
9731                         // register is lower numbered than the lower-half
9732                         // register.  Not sure if it's worth fixing...
9733                         if(get_reg(regs[k-1].regmap,r&63)<0) break;
9734                         if(regs[k-1].is32&(1LL<<(r&63))) break;
9735                       }
9736                       k--;
9737                     }
9738                     if(i<slen-1) {
9739                       if((regs[k].is32&(1LL<<f_regmap[hr]))!=
9740                         (regs[i+2].was32&(1LL<<f_regmap[hr]))) {
9741                         //printf("bad match after branch\n");
9742                         break;
9743                       }
9744                     }
9745                     if(regs[k-1].regmap[hr]==f_regmap[hr]&&regmap_pre[k][hr]==f_regmap[hr]) {
9746                       //printf("Extend r%d, %x ->\n",hr,start+k*4);
9747                       while(k<i) {
9748                         regs[k].regmap_entry[hr]=f_regmap[hr];
9749                         regs[k].regmap[hr]=f_regmap[hr];
9750                         regmap_pre[k+1][hr]=f_regmap[hr];
9751                         regs[k].wasdirty&=~(1<<hr);
9752                         regs[k].dirty&=~(1<<hr);
9753                         regs[k].wasdirty|=(1<<hr)&regs[k-1].dirty;
9754                         regs[k].dirty|=(1<<hr)&regs[k].wasdirty;
9755                         regs[k].wasconst&=~(1<<hr);
9756                         regs[k].isconst&=~(1<<hr);
9757                         k++;
9758                       }
9759                     }
9760                     else {
9761                       //printf("Fail Extend r%d, %x ->\n",hr,start+k*4);
9762                       break;
9763                     }
9764                     assert(regs[i-1].regmap[hr]==f_regmap[hr]);
9765                     if(regs[i-1].regmap[hr]==f_regmap[hr]&&regmap_pre[i][hr]==f_regmap[hr]) {
9766                       //printf("OK fill %x (r%d)\n",start+i*4,hr);
9767                       regs[i].regmap_entry[hr]=f_regmap[hr];
9768                       regs[i].regmap[hr]=f_regmap[hr];
9769                       regs[i].wasdirty&=~(1<<hr);
9770                       regs[i].dirty&=~(1<<hr);
9771                       regs[i].wasdirty|=(1<<hr)&regs[i-1].dirty;
9772                       regs[i].dirty|=(1<<hr)&regs[i-1].dirty;
9773                       regs[i].wasconst&=~(1<<hr);
9774                       regs[i].isconst&=~(1<<hr);
9775                       branch_regs[i].regmap_entry[hr]=f_regmap[hr];
9776                       branch_regs[i].wasdirty&=~(1<<hr);
9777                       branch_regs[i].wasdirty|=(1<<hr)&regs[i].dirty;
9778                       branch_regs[i].regmap[hr]=f_regmap[hr];
9779                       branch_regs[i].dirty&=~(1<<hr);
9780                       branch_regs[i].dirty|=(1<<hr)&regs[i].dirty;
9781                       branch_regs[i].wasconst&=~(1<<hr);
9782                       branch_regs[i].isconst&=~(1<<hr);
9783                       if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000) {
9784                         regmap_pre[i+2][hr]=f_regmap[hr];
9785                         regs[i+2].wasdirty&=~(1<<hr);
9786                         regs[i+2].wasdirty|=(1<<hr)&regs[i].dirty;
9787                         assert((branch_regs[i].is32&(1LL<<f_regmap[hr]))==
9788                           (regs[i+2].was32&(1LL<<f_regmap[hr])));
9789                       }
9790                     }
9791                   }
9792                   for(k=t;k<j;k++) {
9793                     regs[k].regmap_entry[hr]=f_regmap[hr];
9794                     regs[k].regmap[hr]=f_regmap[hr];
9795                     regmap_pre[k+1][hr]=f_regmap[hr];
9796                     regs[k+1].wasdirty&=~(1<<hr);
9797                     regs[k].dirty&=~(1<<hr);
9798                     regs[k].wasconst&=~(1<<hr);
9799                     regs[k].isconst&=~(1<<hr);
9800                   }
9801                   if(regs[j].regmap[hr]==f_regmap[hr])
9802                     regs[j].regmap_entry[hr]=f_regmap[hr];
9803                   break;
9804                 }
9805                 if(j==i) break;
9806                 if(regs[j].regmap[hr]>=0)
9807                   break;
9808                 if(get_reg(regs[j].regmap,f_regmap[hr])>=0) {
9809                   //printf("no-match due to different register\n");
9810                   break;
9811                 }
9812                 if((regs[j+1].is32&(1LL<<f_regmap[hr]))!=(regs[j].is32&(1LL<<f_regmap[hr]))) {
9813                   //printf("32/64 mismatch %x %d\n",start+j*4,hr);
9814                   break;
9815                 }
9816                 if(itype[j]==STORE||itype[j]==STORELR||itype[j]==C1LS
9817                 ||itype[j]==SHIFT||itype[j]==COP1||itype[j]==FLOAT
9818                 ||itype[j]==FCOMP||itype[j]==FCONV
9819                 ||itype[j]==COP2||itype[j]==C2LS||itype[j]==C2OP) {
9820                   if(count_free_regs(regs[j].regmap)<2) {
9821                     //printf("No free regs for store %x\n",start+j*4);
9822                     break;
9823                   }
9824                 }
9825                 else if(itype[j]!=NOP&&itype[j]!=MOV&&itype[j]!=ALU&&itype[j]!=SHIFTIMM&&itype[j]!=IMM16&&itype[j]!=LOAD) break;
9826                 if(f_regmap[hr]>=64) {
9827                   if(regs[j].is32&(1LL<<(f_regmap[hr]&63))) {
9828                     break;
9829                   }
9830                   else
9831                   {
9832                     if(get_reg(regs[j].regmap,f_regmap[hr]&63)<0) {
9833                       break;
9834                     }
9835                   }
9836                 }
9837               }
9838             }
9839           }
9840         }
9841       }
9842     }else{
9843       int count=0;
9844       for(hr=0;hr<HOST_REGS;hr++)
9845       {
9846         if(hr!=EXCLUDE_REG) {
9847           if(regs[i].regmap[hr]>64) {
9848             if(!((regs[i].dirty>>hr)&1))
9849               f_regmap[hr]=regs[i].regmap[hr];
9850           }
9851           else if(regs[i].regmap[hr]>=0) f_regmap[hr]=regs[i].regmap[hr];
9852           else if(regs[i].regmap[hr]<0) count++;
9853         }
9854       }
9855       // Try to restore cycle count at branch targets
9856       if(bt[i]) {
9857         for(j=i;j<slen-1;j++) {
9858           if(regs[j].regmap[HOST_CCREG]!=-1) break;
9859           if(itype[j]==STORE||itype[j]==STORELR||itype[j]==C1LS
9860           ||itype[j]==SHIFT||itype[j]==COP1||itype[j]==FLOAT
9861           ||itype[j]==FCOMP||itype[j]==FCONV
9862           ||itype[j]==COP2||itype[j]==C2LS||itype[j]==C2OP) {
9863             if(count_free_regs(regs[j].regmap)<2) {
9864               //printf("no free regs for store %x\n",start+j*4);
9865               break;
9866             }
9867           }
9868           else
9869           if(itype[j]!=NOP&&itype[j]!=MOV&&itype[j]!=ALU&&itype[j]!=SHIFTIMM&&itype[j]!=IMM16&&itype[j]!=LOAD) break;
9870         }
9871         if(regs[j].regmap[HOST_CCREG]==CCREG) {
9872           int k=i;
9873           //printf("Extend CC, %x -> %x\n",start+k*4,start+j*4);
9874           while(k<j) {
9875             regs[k].regmap_entry[HOST_CCREG]=CCREG;
9876             regs[k].regmap[HOST_CCREG]=CCREG;
9877             regmap_pre[k+1][HOST_CCREG]=CCREG;
9878             regs[k+1].wasdirty|=1<<HOST_CCREG;
9879             regs[k].dirty|=1<<HOST_CCREG;
9880             regs[k].wasconst&=~(1<<HOST_CCREG);
9881             regs[k].isconst&=~(1<<HOST_CCREG);
9882             k++;
9883           }
9884           regs[j].regmap_entry[HOST_CCREG]=CCREG;          
9885         }
9886         // Work backwards from the branch target
9887         if(j>i&&f_regmap[HOST_CCREG]==CCREG)
9888         {
9889           //printf("Extend backwards\n");
9890           int k;
9891           k=i;
9892           while(regs[k-1].regmap[HOST_CCREG]==-1) {
9893             if(itype[k-1]==STORE||itype[k-1]==STORELR||itype[k-1]==C1LS
9894             ||itype[k-1]==SHIFT||itype[k-1]==COP1||itype[k-1]==FLOAT
9895             ||itype[k-1]==FCONV||itype[k-1]==FCOMP
9896             ||itype[k-1]==COP2||itype[k-1]==C2LS||itype[k-1]==C2OP) {
9897               if(count_free_regs(regs[k-1].regmap)<2) {
9898                 //printf("no free regs for store %x\n",start+(k-1)*4);
9899                 break;
9900               }
9901             }
9902             else
9903             if(itype[k-1]!=NOP&&itype[k-1]!=MOV&&itype[k-1]!=ALU&&itype[k-1]!=SHIFTIMM&&itype[k-1]!=IMM16&&itype[k-1]!=LOAD) break;
9904             k--;
9905           }
9906           if(regs[k-1].regmap[HOST_CCREG]==CCREG) {
9907             //printf("Extend CC, %x ->\n",start+k*4);
9908             while(k<=i) {
9909               regs[k].regmap_entry[HOST_CCREG]=CCREG;
9910               regs[k].regmap[HOST_CCREG]=CCREG;
9911               regmap_pre[k+1][HOST_CCREG]=CCREG;
9912               regs[k+1].wasdirty|=1<<HOST_CCREG;
9913               regs[k].dirty|=1<<HOST_CCREG;
9914               regs[k].wasconst&=~(1<<HOST_CCREG);
9915               regs[k].isconst&=~(1<<HOST_CCREG);
9916               k++;
9917             }
9918           }
9919           else {
9920             //printf("Fail Extend CC, %x ->\n",start+k*4);
9921           }
9922         }
9923       }
9924       if(itype[i]!=STORE&&itype[i]!=STORELR&&itype[i]!=C1LS&&itype[i]!=SHIFT&&
9925          itype[i]!=NOP&&itype[i]!=MOV&&itype[i]!=ALU&&itype[i]!=SHIFTIMM&&
9926          itype[i]!=IMM16&&itype[i]!=LOAD&&itype[i]!=COP1&&itype[i]!=FLOAT&&
9927          itype[i]!=FCONV&&itype[i]!=FCOMP&&
9928          itype[i]!=COP2&&itype[i]!=C2LS&&itype[i]!=C2OP)
9929       {
9930         memcpy(f_regmap,regs[i].regmap,sizeof(f_regmap));
9931       }
9932     }
9933   }
9934   
9935   // This allocates registers (if possible) one instruction prior
9936   // to use, which can avoid a load-use penalty on certain CPUs.
9937   for(i=0;i<slen-1;i++)
9938   {
9939     if(!i||(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP))
9940     {
9941       if(!bt[i+1])
9942       {
9943         if(itype[i]==ALU||itype[i]==MOV||itype[i]==LOAD||itype[i]==SHIFTIMM||itype[i]==IMM16
9944            ||((itype[i]==COP1||itype[i]==COP2)&&opcode2[i]<3))
9945         {
9946           if(rs1[i+1]) {
9947             if((hr=get_reg(regs[i+1].regmap,rs1[i+1]))>=0)
9948             {
9949               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
9950               {
9951                 regs[i].regmap[hr]=regs[i+1].regmap[hr];
9952                 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
9953                 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
9954                 regs[i].isconst&=~(1<<hr);
9955                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
9956                 constmap[i][hr]=constmap[i+1][hr];
9957                 regs[i+1].wasdirty&=~(1<<hr);
9958                 regs[i].dirty&=~(1<<hr);
9959               }
9960             }
9961           }
9962           if(rs2[i+1]) {
9963             if((hr=get_reg(regs[i+1].regmap,rs2[i+1]))>=0)
9964             {
9965               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
9966               {
9967                 regs[i].regmap[hr]=regs[i+1].regmap[hr];
9968                 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
9969                 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
9970                 regs[i].isconst&=~(1<<hr);
9971                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
9972                 constmap[i][hr]=constmap[i+1][hr];
9973                 regs[i+1].wasdirty&=~(1<<hr);
9974                 regs[i].dirty&=~(1<<hr);
9975               }
9976             }
9977           }
9978           if(itype[i+1]==LOAD&&rs1[i+1]&&get_reg(regs[i+1].regmap,rs1[i+1])<0) {
9979             if((hr=get_reg(regs[i+1].regmap,rt1[i+1]))>=0)
9980             {
9981               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
9982               {
9983                 regs[i].regmap[hr]=rs1[i+1];
9984                 regmap_pre[i+1][hr]=rs1[i+1];
9985                 regs[i+1].regmap_entry[hr]=rs1[i+1];
9986                 regs[i].isconst&=~(1<<hr);
9987                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
9988                 constmap[i][hr]=constmap[i+1][hr];
9989                 regs[i+1].wasdirty&=~(1<<hr);
9990                 regs[i].dirty&=~(1<<hr);
9991               }
9992             }
9993           }
9994           if(lt1[i+1]&&get_reg(regs[i+1].regmap,rs1[i+1])<0) {
9995             if((hr=get_reg(regs[i+1].regmap,rt1[i+1]))>=0)
9996             {
9997               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
9998               {
9999                 regs[i].regmap[hr]=rs1[i+1];
10000                 regmap_pre[i+1][hr]=rs1[i+1];
10001                 regs[i+1].regmap_entry[hr]=rs1[i+1];
10002                 regs[i].isconst&=~(1<<hr);
10003                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10004                 constmap[i][hr]=constmap[i+1][hr];
10005                 regs[i+1].wasdirty&=~(1<<hr);
10006                 regs[i].dirty&=~(1<<hr);
10007               }
10008             }
10009           }
10010           #ifndef HOST_IMM_ADDR32
10011           if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS||itype[i+1]==C2LS) {
10012             hr=get_reg(regs[i+1].regmap,TLREG);
10013             if(hr>=0) {
10014               int sr=get_reg(regs[i+1].regmap,rs1[i+1]);
10015               if(sr>=0&&((regs[i+1].wasconst>>sr)&1)) {
10016                 int nr;
10017                 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10018                 {
10019                   regs[i].regmap[hr]=MGEN1+((i+1)&1);
10020                   regmap_pre[i+1][hr]=MGEN1+((i+1)&1);
10021                   regs[i+1].regmap_entry[hr]=MGEN1+((i+1)&1);
10022                   regs[i].isconst&=~(1<<hr);
10023                   regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10024                   constmap[i][hr]=constmap[i+1][hr];
10025                   regs[i+1].wasdirty&=~(1<<hr);
10026                   regs[i].dirty&=~(1<<hr);
10027                 }
10028                 else if((nr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1))>=0)
10029                 {
10030                   // move it to another register
10031                   regs[i+1].regmap[hr]=-1;
10032                   regmap_pre[i+2][hr]=-1;
10033                   regs[i+1].regmap[nr]=TLREG;
10034                   regmap_pre[i+2][nr]=TLREG;
10035                   regs[i].regmap[nr]=MGEN1+((i+1)&1);
10036                   regmap_pre[i+1][nr]=MGEN1+((i+1)&1);
10037                   regs[i+1].regmap_entry[nr]=MGEN1+((i+1)&1);
10038                   regs[i].isconst&=~(1<<nr);
10039                   regs[i+1].isconst&=~(1<<nr);
10040                   regs[i].dirty&=~(1<<nr);
10041                   regs[i+1].wasdirty&=~(1<<nr);
10042                   regs[i+1].dirty&=~(1<<nr);
10043                   regs[i+2].wasdirty&=~(1<<nr);
10044                 }
10045               }
10046             }
10047           }
10048           #endif
10049           if(itype[i+1]==STORE||itype[i+1]==STORELR
10050              ||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SB/SH/SW/SD/SWC1/SDC1/SWC2/SDC2
10051             if(get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10052               hr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1);
10053               if(hr<0) hr=get_reg(regs[i+1].regmap,-1);
10054               else {regs[i+1].regmap[hr]=AGEN1+((i+1)&1);regs[i+1].isconst&=~(1<<hr);}
10055               assert(hr>=0);
10056               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10057               {
10058                 regs[i].regmap[hr]=rs1[i+1];
10059                 regmap_pre[i+1][hr]=rs1[i+1];
10060                 regs[i+1].regmap_entry[hr]=rs1[i+1];
10061                 regs[i].isconst&=~(1<<hr);
10062                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10063                 constmap[i][hr]=constmap[i+1][hr];
10064                 regs[i+1].wasdirty&=~(1<<hr);
10065                 regs[i].dirty&=~(1<<hr);
10066               }
10067             }
10068           }
10069           if(itype[i+1]==LOADLR||(opcode[i+1]&0x3b)==0x31||(opcode[i+1]&0x3b)==0x32) { // LWC1/LDC1, LWC2/LDC2
10070             if(get_reg(regs[i+1].regmap,rs1[i+1])<0) {
10071               int nr;
10072               hr=get_reg(regs[i+1].regmap,FTEMP);
10073               assert(hr>=0);
10074               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
10075               {
10076                 regs[i].regmap[hr]=rs1[i+1];
10077                 regmap_pre[i+1][hr]=rs1[i+1];
10078                 regs[i+1].regmap_entry[hr]=rs1[i+1];
10079                 regs[i].isconst&=~(1<<hr);
10080                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
10081                 constmap[i][hr]=constmap[i+1][hr];
10082                 regs[i+1].wasdirty&=~(1<<hr);
10083                 regs[i].dirty&=~(1<<hr);
10084               }
10085               else if((nr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1))>=0)
10086               {
10087                 // move it to another register
10088                 regs[i+1].regmap[hr]=-1;
10089                 regmap_pre[i+2][hr]=-1;
10090                 regs[i+1].regmap[nr]=FTEMP;
10091                 regmap_pre[i+2][nr]=FTEMP;
10092                 regs[i].regmap[nr]=rs1[i+1];
10093                 regmap_pre[i+1][nr]=rs1[i+1];
10094                 regs[i+1].regmap_entry[nr]=rs1[i+1];
10095                 regs[i].isconst&=~(1<<nr);
10096                 regs[i+1].isconst&=~(1<<nr);
10097                 regs[i].dirty&=~(1<<nr);
10098                 regs[i+1].wasdirty&=~(1<<nr);
10099                 regs[i+1].dirty&=~(1<<nr);
10100                 regs[i+2].wasdirty&=~(1<<nr);
10101               }
10102             }
10103           }
10104           if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR/*||itype[i+1]==C1LS||||itype[i+1]==C2LS*/) {
10105             if(itype[i+1]==LOAD) 
10106               hr=get_reg(regs[i+1].regmap,rt1[i+1]);
10107             if(itype[i+1]==LOADLR||(opcode[i+1]&0x3b)==0x31||(opcode[i+1]&0x3b)==0x32) // LWC1/LDC1, LWC2/LDC2
10108               hr=get_reg(regs[i+1].regmap,FTEMP);
10109             if(itype[i+1]==STORE||itype[i+1]==STORELR||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1/SWC2/SDC2
10110               hr=get_reg(regs[i+1].regmap,AGEN1+((i+1)&1));
10111               if(hr<0) hr=get_reg(regs[i+1].regmap,-1);
10112             }
10113             if(hr>=0&&regs[i].regmap[hr]<0) {
10114               int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
10115               if(rs>=0&&((regs[i+1].wasconst>>rs)&1)) {
10116                 regs[i].regmap[hr]=AGEN1+((i+1)&1);
10117                 regmap_pre[i+1][hr]=AGEN1+((i+1)&1);
10118                 regs[i+1].regmap_entry[hr]=AGEN1+((i+1)&1);
10119                 regs[i].isconst&=~(1<<hr);
10120                 regs[i+1].wasdirty&=~(1<<hr);
10121                 regs[i].dirty&=~(1<<hr);
10122               }
10123             }
10124           }
10125         }
10126       }
10127     }
10128   }
10129   
10130   /* Pass 6 - Optimize clean/dirty state */
10131   clean_registers(0,slen-1,1);
10132   
10133   /* Pass 7 - Identify 32-bit registers */
10134   
10135   provisional_r32();
10136
10137   u_int r32=0;
10138   
10139   for (i=slen-1;i>=0;i--)
10140   {
10141     int hr;
10142     if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
10143     {
10144       if(ba[i]<start || ba[i]>=(start+slen*4))
10145       {
10146         // Branch out of this block, don't need anything
10147         r32=0;
10148       }
10149       else
10150       {
10151         // Internal branch
10152         // Need whatever matches the target
10153         // (and doesn't get overwritten by the delay slot instruction)
10154         r32=0;
10155         int t=(ba[i]-start)>>2;
10156         if(ba[i]>start+i*4) {
10157           // Forward branch
10158           if(!(requires_32bit[t]&~regs[i].was32))
10159             r32|=requires_32bit[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
10160         }else{
10161           // Backward branch
10162           //if(!(regs[t].was32&~unneeded_reg_upper[t]&~regs[i].was32))
10163           //  r32|=regs[t].was32&~unneeded_reg_upper[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
10164           if(!(pr32[t]&~regs[i].was32))
10165             r32|=pr32[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
10166         }
10167       }
10168       // Conditional branch may need registers for following instructions
10169       if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
10170       {
10171         if(i<slen-2) {
10172           r32|=requires_32bit[i+2];
10173           r32&=regs[i].was32;
10174           // Mark this address as a branch target since it may be called
10175           // upon return from interrupt
10176           bt[i+2]=1;
10177         }
10178       }
10179       // Merge in delay slot
10180       if(!likely[i]) {
10181         // These are overwritten unless the branch is "likely"
10182         // and the delay slot is nullified if not taken
10183         r32&=~(1LL<<rt1[i+1]);
10184         r32&=~(1LL<<rt2[i+1]);
10185       }
10186       // Assume these are needed (delay slot)
10187       if(us1[i+1]>0)
10188       {
10189         if((regs[i].was32>>us1[i+1])&1) r32|=1LL<<us1[i+1];
10190       }
10191       if(us2[i+1]>0)
10192       {
10193         if((regs[i].was32>>us2[i+1])&1) r32|=1LL<<us2[i+1];
10194       }
10195       if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1))
10196       {
10197         if((regs[i].was32>>dep1[i+1])&1) r32|=1LL<<dep1[i+1];
10198       }
10199       if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1))
10200       {
10201         if((regs[i].was32>>dep2[i+1])&1) r32|=1LL<<dep2[i+1];
10202       }
10203     }
10204     else if(itype[i]==SYSCALL||itype[i]==HLECALL)
10205     {
10206       // SYSCALL instruction (software interrupt)
10207       r32=0;
10208     }
10209     else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
10210     {
10211       // ERET instruction (return from interrupt)
10212       r32=0;
10213     }
10214     // Check 32 bits
10215     r32&=~(1LL<<rt1[i]);
10216     r32&=~(1LL<<rt2[i]);
10217     if(us1[i]>0)
10218     {
10219       if((regs[i].was32>>us1[i])&1) r32|=1LL<<us1[i];
10220     }
10221     if(us2[i]>0)
10222     {
10223       if((regs[i].was32>>us2[i])&1) r32|=1LL<<us2[i];
10224     }
10225     if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1))
10226     {
10227       if((regs[i].was32>>dep1[i])&1) r32|=1LL<<dep1[i];
10228     }
10229     if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1))
10230     {
10231       if((regs[i].was32>>dep2[i])&1) r32|=1LL<<dep2[i];
10232     }
10233     requires_32bit[i]=r32;
10234     
10235     // Dirty registers which are 32-bit, require 32-bit input
10236     // as they will be written as 32-bit values
10237     for(hr=0;hr<HOST_REGS;hr++)
10238     {
10239       if(regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64) {
10240         if((regs[i].was32>>regs[i].regmap_entry[hr])&(regs[i].wasdirty>>hr)&1) {
10241           if(!((unneeded_reg_upper[i]>>regs[i].regmap_entry[hr])&1))
10242           requires_32bit[i]|=1LL<<regs[i].regmap_entry[hr];
10243         }
10244       }
10245     }
10246     //requires_32bit[i]=is32[i]&~unneeded_reg_upper[i]; // DEBUG
10247   }
10248
10249   if(itype[slen-1]==SPAN) {
10250     bt[slen-1]=1; // Mark as a branch target so instruction can restart after exception
10251   }
10252   
10253   /* Debug/disassembly */
10254   if((void*)assem_debug==(void*)printf) 
10255   for(i=0;i<slen;i++)
10256   {
10257     printf("U:");
10258     int r;
10259     for(r=1;r<=CCREG;r++) {
10260       if((unneeded_reg[i]>>r)&1) {
10261         if(r==HIREG) printf(" HI");
10262         else if(r==LOREG) printf(" LO");
10263         else printf(" r%d",r);
10264       }
10265     }
10266 #ifndef FORCE32
10267     printf(" UU:");
10268     for(r=1;r<=CCREG;r++) {
10269       if(((unneeded_reg_upper[i]&~unneeded_reg[i])>>r)&1) {
10270         if(r==HIREG) printf(" HI");
10271         else if(r==LOREG) printf(" LO");
10272         else printf(" r%d",r);
10273       }
10274     }
10275     printf(" 32:");
10276     for(r=0;r<=CCREG;r++) {
10277       //if(((is32[i]>>r)&(~unneeded_reg[i]>>r))&1) {
10278       if((regs[i].was32>>r)&1) {
10279         if(r==CCREG) printf(" CC");
10280         else if(r==HIREG) printf(" HI");
10281         else if(r==LOREG) printf(" LO");
10282         else printf(" r%d",r);
10283       }
10284     }
10285 #endif
10286     printf("\n");
10287     #if defined(__i386__) || defined(__x86_64__)
10288     printf("pre: eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",regmap_pre[i][0],regmap_pre[i][1],regmap_pre[i][2],regmap_pre[i][3],regmap_pre[i][5],regmap_pre[i][6],regmap_pre[i][7]);
10289     #endif
10290     #ifdef __arm__
10291     printf("pre: r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d\n",regmap_pre[i][0],regmap_pre[i][1],regmap_pre[i][2],regmap_pre[i][3],regmap_pre[i][4],regmap_pre[i][5],regmap_pre[i][6],regmap_pre[i][7],regmap_pre[i][8],regmap_pre[i][9],regmap_pre[i][10],regmap_pre[i][12]);
10292     #endif
10293     printf("needs: ");
10294     if(needed_reg[i]&1) printf("eax ");
10295     if((needed_reg[i]>>1)&1) printf("ecx ");
10296     if((needed_reg[i]>>2)&1) printf("edx ");
10297     if((needed_reg[i]>>3)&1) printf("ebx ");
10298     if((needed_reg[i]>>5)&1) printf("ebp ");
10299     if((needed_reg[i]>>6)&1) printf("esi ");
10300     if((needed_reg[i]>>7)&1) printf("edi ");
10301     printf("r:");
10302     for(r=0;r<=CCREG;r++) {
10303       //if(((requires_32bit[i]>>r)&(~unneeded_reg[i]>>r))&1) {
10304       if((requires_32bit[i]>>r)&1) {
10305         if(r==CCREG) printf(" CC");
10306         else if(r==HIREG) printf(" HI");
10307         else if(r==LOREG) printf(" LO");
10308         else printf(" r%d",r);
10309       }
10310     }
10311     printf("\n");
10312     /*printf("pr:");
10313     for(r=0;r<=CCREG;r++) {
10314       //if(((requires_32bit[i]>>r)&(~unneeded_reg[i]>>r))&1) {
10315       if((pr32[i]>>r)&1) {
10316         if(r==CCREG) printf(" CC");
10317         else if(r==HIREG) printf(" HI");
10318         else if(r==LOREG) printf(" LO");
10319         else printf(" r%d",r);
10320       }
10321     }
10322     if(pr32[i]!=requires_32bit[i]) printf(" OOPS");
10323     printf("\n");*/
10324     #if defined(__i386__) || defined(__x86_64__)
10325     printf("entry: eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",regs[i].regmap_entry[0],regs[i].regmap_entry[1],regs[i].regmap_entry[2],regs[i].regmap_entry[3],regs[i].regmap_entry[5],regs[i].regmap_entry[6],regs[i].regmap_entry[7]);
10326     printf("dirty: ");
10327     if(regs[i].wasdirty&1) printf("eax ");
10328     if((regs[i].wasdirty>>1)&1) printf("ecx ");
10329     if((regs[i].wasdirty>>2)&1) printf("edx ");
10330     if((regs[i].wasdirty>>3)&1) printf("ebx ");
10331     if((regs[i].wasdirty>>5)&1) printf("ebp ");
10332     if((regs[i].wasdirty>>6)&1) printf("esi ");
10333     if((regs[i].wasdirty>>7)&1) printf("edi ");
10334     #endif
10335     #ifdef __arm__
10336     printf("entry: r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d\n",regs[i].regmap_entry[0],regs[i].regmap_entry[1],regs[i].regmap_entry[2],regs[i].regmap_entry[3],regs[i].regmap_entry[4],regs[i].regmap_entry[5],regs[i].regmap_entry[6],regs[i].regmap_entry[7],regs[i].regmap_entry[8],regs[i].regmap_entry[9],regs[i].regmap_entry[10],regs[i].regmap_entry[12]);
10337     printf("dirty: ");
10338     if(regs[i].wasdirty&1) printf("r0 ");
10339     if((regs[i].wasdirty>>1)&1) printf("r1 ");
10340     if((regs[i].wasdirty>>2)&1) printf("r2 ");
10341     if((regs[i].wasdirty>>3)&1) printf("r3 ");
10342     if((regs[i].wasdirty>>4)&1) printf("r4 ");
10343     if((regs[i].wasdirty>>5)&1) printf("r5 ");
10344     if((regs[i].wasdirty>>6)&1) printf("r6 ");
10345     if((regs[i].wasdirty>>7)&1) printf("r7 ");
10346     if((regs[i].wasdirty>>8)&1) printf("r8 ");
10347     if((regs[i].wasdirty>>9)&1) printf("r9 ");
10348     if((regs[i].wasdirty>>10)&1) printf("r10 ");
10349     if((regs[i].wasdirty>>12)&1) printf("r12 ");
10350     #endif
10351     printf("\n");
10352     disassemble_inst(i);
10353     //printf ("ccadj[%d] = %d\n",i,ccadj[i]);
10354     #if defined(__i386__) || defined(__x86_64__)
10355     printf("eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d dirty: ",regs[i].regmap[0],regs[i].regmap[1],regs[i].regmap[2],regs[i].regmap[3],regs[i].regmap[5],regs[i].regmap[6],regs[i].regmap[7]);
10356     if(regs[i].dirty&1) printf("eax ");
10357     if((regs[i].dirty>>1)&1) printf("ecx ");
10358     if((regs[i].dirty>>2)&1) printf("edx ");
10359     if((regs[i].dirty>>3)&1) printf("ebx ");
10360     if((regs[i].dirty>>5)&1) printf("ebp ");
10361     if((regs[i].dirty>>6)&1) printf("esi ");
10362     if((regs[i].dirty>>7)&1) printf("edi ");
10363     #endif
10364     #ifdef __arm__
10365     printf("r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d dirty: ",regs[i].regmap[0],regs[i].regmap[1],regs[i].regmap[2],regs[i].regmap[3],regs[i].regmap[4],regs[i].regmap[5],regs[i].regmap[6],regs[i].regmap[7],regs[i].regmap[8],regs[i].regmap[9],regs[i].regmap[10],regs[i].regmap[12]);
10366     if(regs[i].dirty&1) printf("r0 ");
10367     if((regs[i].dirty>>1)&1) printf("r1 ");
10368     if((regs[i].dirty>>2)&1) printf("r2 ");
10369     if((regs[i].dirty>>3)&1) printf("r3 ");
10370     if((regs[i].dirty>>4)&1) printf("r4 ");
10371     if((regs[i].dirty>>5)&1) printf("r5 ");
10372     if((regs[i].dirty>>6)&1) printf("r6 ");
10373     if((regs[i].dirty>>7)&1) printf("r7 ");
10374     if((regs[i].dirty>>8)&1) printf("r8 ");
10375     if((regs[i].dirty>>9)&1) printf("r9 ");
10376     if((regs[i].dirty>>10)&1) printf("r10 ");
10377     if((regs[i].dirty>>12)&1) printf("r12 ");
10378     #endif
10379     printf("\n");
10380     if(regs[i].isconst) {
10381       printf("constants: ");
10382       #if defined(__i386__) || defined(__x86_64__)
10383       if(regs[i].isconst&1) printf("eax=%x ",(int)constmap[i][0]);
10384       if((regs[i].isconst>>1)&1) printf("ecx=%x ",(int)constmap[i][1]);
10385       if((regs[i].isconst>>2)&1) printf("edx=%x ",(int)constmap[i][2]);
10386       if((regs[i].isconst>>3)&1) printf("ebx=%x ",(int)constmap[i][3]);
10387       if((regs[i].isconst>>5)&1) printf("ebp=%x ",(int)constmap[i][5]);
10388       if((regs[i].isconst>>6)&1) printf("esi=%x ",(int)constmap[i][6]);
10389       if((regs[i].isconst>>7)&1) printf("edi=%x ",(int)constmap[i][7]);
10390       #endif
10391       #ifdef __arm__
10392       if(regs[i].isconst&1) printf("r0=%x ",(int)constmap[i][0]);
10393       if((regs[i].isconst>>1)&1) printf("r1=%x ",(int)constmap[i][1]);
10394       if((regs[i].isconst>>2)&1) printf("r2=%x ",(int)constmap[i][2]);
10395       if((regs[i].isconst>>3)&1) printf("r3=%x ",(int)constmap[i][3]);
10396       if((regs[i].isconst>>4)&1) printf("r4=%x ",(int)constmap[i][4]);
10397       if((regs[i].isconst>>5)&1) printf("r5=%x ",(int)constmap[i][5]);
10398       if((regs[i].isconst>>6)&1) printf("r6=%x ",(int)constmap[i][6]);
10399       if((regs[i].isconst>>7)&1) printf("r7=%x ",(int)constmap[i][7]);
10400       if((regs[i].isconst>>8)&1) printf("r8=%x ",(int)constmap[i][8]);
10401       if((regs[i].isconst>>9)&1) printf("r9=%x ",(int)constmap[i][9]);
10402       if((regs[i].isconst>>10)&1) printf("r10=%x ",(int)constmap[i][10]);
10403       if((regs[i].isconst>>12)&1) printf("r12=%x ",(int)constmap[i][12]);
10404       #endif
10405       printf("\n");
10406     }
10407 #ifndef FORCE32
10408     printf(" 32:");
10409     for(r=0;r<=CCREG;r++) {
10410       if((regs[i].is32>>r)&1) {
10411         if(r==CCREG) printf(" CC");
10412         else if(r==HIREG) printf(" HI");
10413         else if(r==LOREG) printf(" LO");
10414         else printf(" r%d",r);
10415       }
10416     }
10417     printf("\n");
10418 #endif
10419     /*printf(" p32:");
10420     for(r=0;r<=CCREG;r++) {
10421       if((p32[i]>>r)&1) {
10422         if(r==CCREG) printf(" CC");
10423         else if(r==HIREG) printf(" HI");
10424         else if(r==LOREG) printf(" LO");
10425         else printf(" r%d",r);
10426       }
10427     }
10428     if(p32[i]!=regs[i].is32) printf(" NO MATCH\n");
10429     else printf("\n");*/
10430     if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP) {
10431       #if defined(__i386__) || defined(__x86_64__)
10432       printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d dirty: ",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
10433       if(branch_regs[i].dirty&1) printf("eax ");
10434       if((branch_regs[i].dirty>>1)&1) printf("ecx ");
10435       if((branch_regs[i].dirty>>2)&1) printf("edx ");
10436       if((branch_regs[i].dirty>>3)&1) printf("ebx ");
10437       if((branch_regs[i].dirty>>5)&1) printf("ebp ");
10438       if((branch_regs[i].dirty>>6)&1) printf("esi ");
10439       if((branch_regs[i].dirty>>7)&1) printf("edi ");
10440       #endif
10441       #ifdef __arm__
10442       printf("branch(%d): r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d dirty: ",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[4],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7],branch_regs[i].regmap[8],branch_regs[i].regmap[9],branch_regs[i].regmap[10],branch_regs[i].regmap[12]);
10443       if(branch_regs[i].dirty&1) printf("r0 ");
10444       if((branch_regs[i].dirty>>1)&1) printf("r1 ");
10445       if((branch_regs[i].dirty>>2)&1) printf("r2 ");
10446       if((branch_regs[i].dirty>>3)&1) printf("r3 ");
10447       if((branch_regs[i].dirty>>4)&1) printf("r4 ");
10448       if((branch_regs[i].dirty>>5)&1) printf("r5 ");
10449       if((branch_regs[i].dirty>>6)&1) printf("r6 ");
10450       if((branch_regs[i].dirty>>7)&1) printf("r7 ");
10451       if((branch_regs[i].dirty>>8)&1) printf("r8 ");
10452       if((branch_regs[i].dirty>>9)&1) printf("r9 ");
10453       if((branch_regs[i].dirty>>10)&1) printf("r10 ");
10454       if((branch_regs[i].dirty>>12)&1) printf("r12 ");
10455       #endif
10456 #ifndef FORCE32
10457       printf(" 32:");
10458       for(r=0;r<=CCREG;r++) {
10459         if((branch_regs[i].is32>>r)&1) {
10460           if(r==CCREG) printf(" CC");
10461           else if(r==HIREG) printf(" HI");
10462           else if(r==LOREG) printf(" LO");
10463           else printf(" r%d",r);
10464         }
10465       }
10466       printf("\n");
10467 #endif
10468     }
10469   }
10470
10471   /* Pass 8 - Assembly */
10472   linkcount=0;stubcount=0;
10473   ds=0;is_delayslot=0;
10474   cop1_usable=0;
10475   uint64_t is32_pre=0;
10476   u_int dirty_pre=0;
10477   u_int beginning=(u_int)out;
10478   if((u_int)addr&1) {
10479     ds=1;
10480     pagespan_ds();
10481   }
10482   for(i=0;i<slen;i++)
10483   {
10484     //if(ds) printf("ds: ");
10485     if((void*)assem_debug==(void*)printf) disassemble_inst(i);
10486     if(ds) {
10487       ds=0; // Skip delay slot
10488       if(bt[i]) assem_debug("OOPS - branch into delay slot\n");
10489       instr_addr[i]=0;
10490     } else {
10491       #ifndef DESTRUCTIVE_WRITEBACK
10492       if(i<2||(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000))
10493       {
10494         wb_sx(regmap_pre[i],regs[i].regmap_entry,regs[i].wasdirty,is32_pre,regs[i].was32,
10495               unneeded_reg[i],unneeded_reg_upper[i]);
10496         wb_valid(regmap_pre[i],regs[i].regmap_entry,dirty_pre,regs[i].wasdirty,is32_pre,
10497               unneeded_reg[i],unneeded_reg_upper[i]);
10498       }
10499       is32_pre=regs[i].is32;
10500       dirty_pre=regs[i].dirty;
10501       #endif
10502       // write back
10503       if(i<2||(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000))
10504       {
10505         wb_invalidate(regmap_pre[i],regs[i].regmap_entry,regs[i].wasdirty,regs[i].was32,
10506                       unneeded_reg[i],unneeded_reg_upper[i]);
10507         loop_preload(regmap_pre[i],regs[i].regmap_entry);
10508       }
10509       // branch target entry point
10510       instr_addr[i]=(u_int)out;
10511       assem_debug("<->\n");
10512       // load regs
10513       if(regs[i].regmap_entry[HOST_CCREG]==CCREG&&regs[i].regmap[HOST_CCREG]!=CCREG)
10514         wb_register(CCREG,regs[i].regmap_entry,regs[i].wasdirty,regs[i].was32);
10515       load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i],rs2[i]);
10516       address_generation(i,&regs[i],regs[i].regmap_entry);
10517       load_consts(regmap_pre[i],regs[i].regmap,regs[i].was32,i);
10518       if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
10519       {
10520         // Load the delay slot registers if necessary
10521         if(rs1[i+1]!=rs1[i]&&rs1[i+1]!=rs2[i])
10522           load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i+1],rs1[i+1]);
10523         if(rs2[i+1]!=rs1[i+1]&&rs2[i+1]!=rs1[i]&&rs2[i+1]!=rs2[i])
10524           load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs2[i+1],rs2[i+1]);
10525         if(itype[i+1]==STORE||itype[i+1]==STORELR||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a)
10526           load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,INVCP,INVCP);
10527       }
10528       else if(i+1<slen)
10529       {
10530         // Preload registers for following instruction
10531         if(rs1[i+1]!=rs1[i]&&rs1[i+1]!=rs2[i])
10532           if(rs1[i+1]!=rt1[i]&&rs1[i+1]!=rt2[i])
10533             load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i+1],rs1[i+1]);
10534         if(rs2[i+1]!=rs1[i+1]&&rs2[i+1]!=rs1[i]&&rs2[i+1]!=rs2[i])
10535           if(rs2[i+1]!=rt1[i]&&rs2[i+1]!=rt2[i])
10536             load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs2[i+1],rs2[i+1]);
10537       }
10538       // TODO: if(is_ooo(i)) address_generation(i+1);
10539       if(itype[i]==CJUMP||itype[i]==FJUMP)
10540         load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,CCREG,CCREG);
10541       if(itype[i]==STORE||itype[i]==STORELR||(opcode[i]&0x3b)==0x39||(opcode[i]&0x3b)==0x3a)
10542         load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,INVCP,INVCP);
10543       if(bt[i]) cop1_usable=0;
10544       // assemble
10545       switch(itype[i]) {
10546         case ALU:
10547           alu_assemble(i,&regs[i]);break;
10548         case IMM16:
10549           imm16_assemble(i,&regs[i]);break;
10550         case SHIFT:
10551           shift_assemble(i,&regs[i]);break;
10552         case SHIFTIMM:
10553           shiftimm_assemble(i,&regs[i]);break;
10554         case LOAD:
10555           load_assemble(i,&regs[i]);break;
10556         case LOADLR:
10557           loadlr_assemble(i,&regs[i]);break;
10558         case STORE:
10559           store_assemble(i,&regs[i]);break;
10560         case STORELR:
10561           storelr_assemble(i,&regs[i]);break;
10562         case COP0:
10563           cop0_assemble(i,&regs[i]);break;
10564         case COP1:
10565           cop1_assemble(i,&regs[i]);break;
10566         case C1LS:
10567           c1ls_assemble(i,&regs[i]);break;
10568         case COP2:
10569           cop2_assemble(i,&regs[i]);break;
10570         case C2LS:
10571           c2ls_assemble(i,&regs[i]);break;
10572         case C2OP:
10573           c2op_assemble(i,&regs[i]);break;
10574         case FCONV:
10575           fconv_assemble(i,&regs[i]);break;
10576         case FLOAT:
10577           float_assemble(i,&regs[i]);break;
10578         case FCOMP:
10579           fcomp_assemble(i,&regs[i]);break;
10580         case MULTDIV:
10581           multdiv_assemble(i,&regs[i]);break;
10582         case MOV:
10583           mov_assemble(i,&regs[i]);break;
10584         case SYSCALL:
10585           syscall_assemble(i,&regs[i]);break;
10586         case HLECALL:
10587           hlecall_assemble(i,&regs[i]);break;
10588         case UJUMP:
10589           ujump_assemble(i,&regs[i]);ds=1;break;
10590         case RJUMP:
10591           rjump_assemble(i,&regs[i]);ds=1;break;
10592         case CJUMP:
10593           cjump_assemble(i,&regs[i]);ds=1;break;
10594         case SJUMP:
10595           sjump_assemble(i,&regs[i]);ds=1;break;
10596         case FJUMP:
10597           fjump_assemble(i,&regs[i]);ds=1;break;
10598         case SPAN:
10599           pagespan_assemble(i,&regs[i]);break;
10600       }
10601       if(itype[i]==UJUMP||itype[i]==RJUMP||(source[i]>>16)==0x1000)
10602         literal_pool(1024);
10603       else
10604         literal_pool_jumpover(256);
10605     }
10606   }
10607   //assert(itype[i-2]==UJUMP||itype[i-2]==RJUMP||(source[i-2]>>16)==0x1000);
10608   // If the block did not end with an unconditional branch,
10609   // add a jump to the next instruction.
10610   if(i>1) {
10611     if(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000&&itype[i-1]!=SPAN) {
10612       assert(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP);
10613       assert(i==slen);
10614       if(itype[i-2]!=CJUMP&&itype[i-2]!=SJUMP&&itype[i-2]!=FJUMP) {
10615         store_regs_bt(regs[i-1].regmap,regs[i-1].is32,regs[i-1].dirty,start+i*4);
10616         if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
10617           emit_loadreg(CCREG,HOST_CCREG);
10618         emit_addimm(HOST_CCREG,CLOCK_DIVIDER*(ccadj[i-1]+1),HOST_CCREG);
10619       }
10620       else if(!likely[i-2])
10621       {
10622         store_regs_bt(branch_regs[i-2].regmap,branch_regs[i-2].is32,branch_regs[i-2].dirty,start+i*4);
10623         assert(branch_regs[i-2].regmap[HOST_CCREG]==CCREG);
10624       }
10625       else
10626       {
10627         store_regs_bt(regs[i-2].regmap,regs[i-2].is32,regs[i-2].dirty,start+i*4);
10628         assert(regs[i-2].regmap[HOST_CCREG]==CCREG);
10629       }
10630       add_to_linker((int)out,start+i*4,0);
10631       emit_jmp(0);
10632     }
10633   }
10634   else
10635   {
10636     assert(i>0);
10637     assert(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP);
10638     store_regs_bt(regs[i-1].regmap,regs[i-1].is32,regs[i-1].dirty,start+i*4);
10639     if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
10640       emit_loadreg(CCREG,HOST_CCREG);
10641     emit_addimm(HOST_CCREG,CLOCK_DIVIDER*(ccadj[i-1]+1),HOST_CCREG);
10642     add_to_linker((int)out,start+i*4,0);
10643     emit_jmp(0);
10644   }
10645
10646   // TODO: delay slot stubs?
10647   // Stubs
10648   for(i=0;i<stubcount;i++)
10649   {
10650     switch(stubs[i][0])
10651     {
10652       case LOADB_STUB:
10653       case LOADH_STUB:
10654       case LOADW_STUB:
10655       case LOADD_STUB:
10656       case LOADBU_STUB:
10657       case LOADHU_STUB:
10658         do_readstub(i);break;
10659       case STOREB_STUB:
10660       case STOREH_STUB:
10661       case STOREW_STUB:
10662       case STORED_STUB:
10663         do_writestub(i);break;
10664       case CC_STUB:
10665         do_ccstub(i);break;
10666       case INVCODE_STUB:
10667         do_invstub(i);break;
10668       case FP_STUB:
10669         do_cop1stub(i);break;
10670       case STORELR_STUB:
10671         do_unalignedwritestub(i);break;
10672     }
10673   }
10674
10675   /* Pass 9 - Linker */
10676   for(i=0;i<linkcount;i++)
10677   {
10678     assem_debug("%8x -> %8x\n",link_addr[i][0],link_addr[i][1]);
10679     literal_pool(64);
10680     if(!link_addr[i][2])
10681     {
10682       void *stub=out;
10683       void *addr=check_addr(link_addr[i][1]);
10684       emit_extjump(link_addr[i][0],link_addr[i][1]);
10685       if(addr) {
10686         set_jump_target(link_addr[i][0],(int)addr);
10687         add_link(link_addr[i][1],stub);
10688       }
10689       else set_jump_target(link_addr[i][0],(int)stub);
10690     }
10691     else
10692     {
10693       // Internal branch
10694       int target=(link_addr[i][1]-start)>>2;
10695       assert(target>=0&&target<slen);
10696       assert(instr_addr[target]);
10697       //#ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
10698       //set_jump_target_fillslot(link_addr[i][0],instr_addr[target],link_addr[i][2]>>1);
10699       //#else
10700       set_jump_target(link_addr[i][0],instr_addr[target]);
10701       //#endif
10702     }
10703   }
10704   // External Branch Targets (jump_in)
10705   if(copy+slen*4>(void *)shadow+sizeof(shadow)) copy=shadow;
10706   for(i=0;i<slen;i++)
10707   {
10708     if(bt[i]||i==0)
10709     {
10710       if(instr_addr[i]) // TODO - delay slots (=null)
10711       {
10712         u_int vaddr=start+i*4;
10713         u_int page=get_page(vaddr);
10714         u_int vpage=get_vpage(vaddr);
10715         literal_pool(256);
10716         //if(!(is32[i]&(~unneeded_reg_upper[i])&~(1LL<<CCREG)))
10717         if(!requires_32bit[i])
10718         {
10719           assem_debug("%8x (%d) <- %8x\n",instr_addr[i],i,start+i*4);
10720           assem_debug("jump_in: %x\n",start+i*4);
10721           ll_add(jump_dirty+vpage,vaddr,(void *)out);
10722           int entry_point=do_dirty_stub(i);
10723           ll_add(jump_in+page,vaddr,(void *)entry_point);
10724           // If there was an existing entry in the hash table,
10725           // replace it with the new address.
10726           // Don't add new entries.  We'll insert the
10727           // ones that actually get used in check_addr().
10728           int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
10729           if(ht_bin[0]==vaddr) {
10730             ht_bin[1]=entry_point;
10731           }
10732           if(ht_bin[2]==vaddr) {
10733             ht_bin[3]=entry_point;
10734           }
10735         }
10736         else
10737         {
10738           u_int r=requires_32bit[i]|!!(requires_32bit[i]>>32);
10739           assem_debug("%8x (%d) <- %8x\n",instr_addr[i],i,start+i*4);
10740           assem_debug("jump_in: %x (restricted - %x)\n",start+i*4,r);
10741           //int entry_point=(int)out;
10742           ////assem_debug("entry_point: %x\n",entry_point);
10743           //load_regs_entry(i);
10744           //if(entry_point==(int)out)
10745           //  entry_point=instr_addr[i];
10746           //else
10747           //  emit_jmp(instr_addr[i]);
10748           //ll_add_32(jump_in+page,vaddr,r,(void *)entry_point);
10749           ll_add_32(jump_dirty+vpage,vaddr,r,(void *)out);
10750           int entry_point=do_dirty_stub(i);
10751           ll_add_32(jump_in+page,vaddr,r,(void *)entry_point);
10752         }
10753       }
10754     }
10755   }
10756   // Write out the literal pool if necessary
10757   literal_pool(0);
10758   #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
10759   // Align code
10760   if(((u_int)out)&7) emit_addnop(13);
10761   #endif
10762   assert((u_int)out-beginning<MAX_OUTPUT_BLOCK_SIZE);
10763   //printf("shadow buffer: %x-%x\n",(int)copy,(int)copy+slen*4);
10764   memcpy(copy,source,slen*4);
10765   copy+=slen*4;
10766   
10767   #ifdef __arm__
10768   __clear_cache((void *)beginning,out);
10769   #endif
10770   
10771   // If we're within 256K of the end of the buffer,
10772   // start over from the beginning. (Is 256K enough?)
10773   if((int)out>BASE_ADDR+(1<<TARGET_SIZE_2)-MAX_OUTPUT_BLOCK_SIZE) out=(u_char *)BASE_ADDR;
10774   
10775   // Trap writes to any of the pages we compiled
10776   for(i=start>>12;i<=(start+slen*4)>>12;i++) {
10777     invalid_code[i]=0;
10778 #ifndef DISABLE_TLB
10779     memory_map[i]|=0x40000000;
10780     if((signed int)start>=(signed int)0xC0000000) {
10781       assert(using_tlb);
10782       j=(((u_int)i<<12)+(memory_map[i]<<2)-(u_int)rdram+(u_int)0x80000000)>>12;
10783       invalid_code[j]=0;
10784       memory_map[j]|=0x40000000;
10785       //printf("write protect physical page: %x (virtual %x)\n",j<<12,start);
10786     }
10787 #endif
10788   }
10789   
10790   /* Pass 10 - Free memory by expiring oldest blocks */
10791   
10792   int end=((((int)out-BASE_ADDR)>>(TARGET_SIZE_2-16))+16384)&65535;
10793   while(expirep!=end)
10794   {
10795     int shift=TARGET_SIZE_2-3; // Divide into 8 blocks
10796     int base=BASE_ADDR+((expirep>>13)<<shift); // Base address of this block
10797     inv_debug("EXP: Phase %d\n",expirep);
10798     switch((expirep>>11)&3)
10799     {
10800       case 0:
10801         // Clear jump_in and jump_dirty
10802         ll_remove_matching_addrs(jump_in+(expirep&2047),base,shift);
10803         ll_remove_matching_addrs(jump_dirty+(expirep&2047),base,shift);
10804         ll_remove_matching_addrs(jump_in+2048+(expirep&2047),base,shift);
10805         ll_remove_matching_addrs(jump_dirty+2048+(expirep&2047),base,shift);
10806         break;
10807       case 1:
10808         // Clear pointers
10809         ll_kill_pointers(jump_out[expirep&2047],base,shift);
10810         ll_kill_pointers(jump_out[(expirep&2047)+2048],base,shift);
10811         break;
10812       case 2:
10813         // Clear hash table
10814         for(i=0;i<32;i++) {
10815           int *ht_bin=hash_table[((expirep&2047)<<5)+i];
10816           if((ht_bin[3]>>shift)==(base>>shift) ||
10817              ((ht_bin[3]-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(base>>shift)) {
10818             inv_debug("EXP: Remove hash %x -> %x\n",ht_bin[2],ht_bin[3]);
10819             ht_bin[2]=ht_bin[3]=-1;
10820           }
10821           if((ht_bin[1]>>shift)==(base>>shift) ||
10822              ((ht_bin[1]-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(base>>shift)) {
10823             inv_debug("EXP: Remove hash %x -> %x\n",ht_bin[0],ht_bin[1]);
10824             ht_bin[0]=ht_bin[2];
10825             ht_bin[1]=ht_bin[3];
10826             ht_bin[2]=ht_bin[3]=-1;
10827           }
10828         }
10829         break;
10830       case 3:
10831         // Clear jump_out
10832         ll_remove_matching_addrs(jump_out+(expirep&2047),base,shift);
10833         ll_remove_matching_addrs(jump_out+2048+(expirep&2047),base,shift);
10834         break;
10835     }
10836     expirep=(expirep+1)&65535;
10837   }
10838   return 0;
10839 }
10840
10841 // vim:shiftwidth=2:expandtab