13434b46b140a888ff571484a2ecacc2a48ecd3e
[pcsx_rearmed.git] / deps / lightrec / lightrec.c
1 // SPDX-License-Identifier: LGPL-2.1-or-later
2 /*
3  * Copyright (C) 2014-2021 Paul Cercueil <paul@crapouillou.net>
4  */
5
6 #include "blockcache.h"
7 #include "debug.h"
8 #include "disassembler.h"
9 #include "emitter.h"
10 #include "interpreter.h"
11 #include "lightrec-config.h"
12 #include "lightning-wrapper.h"
13 #include "lightrec.h"
14 #include "memmanager.h"
15 #include "reaper.h"
16 #include "recompiler.h"
17 #include "regcache.h"
18 #include "optimizer.h"
19 #include "tlsf/tlsf.h"
20
21 #include <errno.h>
22 #include <inttypes.h>
23 #include <limits.h>
24 #if ENABLE_THREADED_COMPILER
25 #include <stdatomic.h>
26 #endif
27 #include <stdbool.h>
28 #include <stddef.h>
29 #include <string.h>
30
31 static struct block * lightrec_precompile_block(struct lightrec_state *state,
32                                                 u32 pc);
33 static bool lightrec_block_is_fully_tagged(const struct block *block);
34
35 static void lightrec_mtc2(struct lightrec_state *state, u8 reg, u32 data);
36 static u32 lightrec_mfc2(struct lightrec_state *state, u8 reg);
37
38 static void lightrec_default_sb(struct lightrec_state *state, u32 opcode,
39                                 void *host, u32 addr, u32 data)
40 {
41         *(u8 *)host = (u8)data;
42
43         if (!(state->opt_flags & LIGHTREC_OPT_INV_DMA_ONLY))
44                 lightrec_invalidate(state, addr, 1);
45 }
46
47 static void lightrec_default_sh(struct lightrec_state *state, u32 opcode,
48                                 void *host, u32 addr, u32 data)
49 {
50         *(u16 *)host = HTOLE16((u16)data);
51
52         if (!(state->opt_flags & LIGHTREC_OPT_INV_DMA_ONLY))
53                 lightrec_invalidate(state, addr, 2);
54 }
55
56 static void lightrec_default_sw(struct lightrec_state *state, u32 opcode,
57                                 void *host, u32 addr, u32 data)
58 {
59         *(u32 *)host = HTOLE32(data);
60
61         if (!(state->opt_flags & LIGHTREC_OPT_INV_DMA_ONLY))
62                 lightrec_invalidate(state, addr, 4);
63 }
64
65 static u8 lightrec_default_lb(struct lightrec_state *state,
66                               u32 opcode, void *host, u32 addr)
67 {
68         return *(u8 *)host;
69 }
70
71 static u16 lightrec_default_lh(struct lightrec_state *state,
72                                u32 opcode, void *host, u32 addr)
73 {
74         return LE16TOH(*(u16 *)host);
75 }
76
77 static u32 lightrec_default_lw(struct lightrec_state *state,
78                                u32 opcode, void *host, u32 addr)
79 {
80         return LE32TOH(*(u32 *)host);
81 }
82
83 static u32 lightrec_default_lwu(struct lightrec_state *state,
84                                 u32 opcode, void *host, u32 addr)
85 {
86         u32 val;
87
88         memcpy(&val, host, 4);
89
90         return LE32TOH(val);
91 }
92
93 static void lightrec_default_swu(struct lightrec_state *state, u32 opcode,
94                                  void *host, u32 addr, u32 data)
95 {
96         data = HTOLE32(data);
97
98         memcpy(host, &data, 4);
99
100         if (!(state->opt_flags & LIGHTREC_OPT_INV_DMA_ONLY))
101                 lightrec_invalidate(state, addr & ~0x3, 8);
102 }
103
104 static const struct lightrec_mem_map_ops lightrec_default_ops = {
105         .sb = lightrec_default_sb,
106         .sh = lightrec_default_sh,
107         .sw = lightrec_default_sw,
108         .lb = lightrec_default_lb,
109         .lh = lightrec_default_lh,
110         .lw = lightrec_default_lw,
111         .lwu = lightrec_default_lwu,
112         .swu = lightrec_default_swu,
113 };
114
115 static void __segfault_cb(struct lightrec_state *state, u32 addr,
116                           const struct block *block)
117 {
118         lightrec_set_exit_flags(state, LIGHTREC_EXIT_SEGFAULT);
119         pr_err("Segmentation fault in recompiled code: invalid "
120                "load/store at address "PC_FMT"\n", addr);
121         if (block)
122                 pr_err("Was executing block "PC_FMT"\n", block->pc);
123 }
124
125 static void lightrec_swl(struct lightrec_state *state,
126                          const struct lightrec_mem_map_ops *ops,
127                          u32 opcode, void *host, u32 addr, u32 data)
128 {
129         unsigned int shift = addr & 0x3;
130         unsigned int mask = shift < 3 ? GENMASK(31, (shift + 1) * 8) : 0;
131         u32 old_data;
132
133         /* Align to 32 bits */
134         addr &= ~3;
135         host = (void *)((uintptr_t)host & ~3);
136
137         old_data = ops->lw(state, opcode, host, addr);
138
139         data = (data >> ((3 - shift) * 8)) | (old_data & mask);
140
141         ops->sw(state, opcode, host, addr, data);
142 }
143
144 static void lightrec_swr(struct lightrec_state *state,
145                          const struct lightrec_mem_map_ops *ops,
146                          u32 opcode, void *host, u32 addr, u32 data)
147 {
148         unsigned int shift = addr & 0x3;
149         unsigned int mask = (1 << (shift * 8)) - 1;
150         u32 old_data;
151
152         /* Align to 32 bits */
153         addr &= ~3;
154         host = (void *)((uintptr_t)host & ~3);
155
156         old_data = ops->lw(state, opcode, host, addr);
157
158         data = (data << (shift * 8)) | (old_data & mask);
159
160         ops->sw(state, opcode, host, addr, data);
161 }
162
163 static void lightrec_swc2(struct lightrec_state *state, union code op,
164                           const struct lightrec_mem_map_ops *ops,
165                           void *host, u32 addr)
166 {
167         u32 data = lightrec_mfc2(state, op.i.rt);
168
169         ops->sw(state, op.opcode, host, addr, data);
170 }
171
172 static u32 lightrec_lwl(struct lightrec_state *state,
173                         const struct lightrec_mem_map_ops *ops,
174                         u32 opcode, void *host, u32 addr, u32 data)
175 {
176         unsigned int shift = addr & 0x3;
177         unsigned int mask = (1 << (24 - shift * 8)) - 1;
178         u32 old_data;
179
180         /* Align to 32 bits */
181         addr &= ~3;
182         host = (void *)((uintptr_t)host & ~3);
183
184         old_data = ops->lw(state, opcode, host, addr);
185
186         return (data & mask) | (old_data << (24 - shift * 8));
187 }
188
189 static u32 lightrec_lwr(struct lightrec_state *state,
190                         const struct lightrec_mem_map_ops *ops,
191                         u32 opcode, void *host, u32 addr, u32 data)
192 {
193         unsigned int shift = addr & 0x3;
194         unsigned int mask = shift ? GENMASK(31, 32 - shift * 8) : 0;
195         u32 old_data;
196
197         /* Align to 32 bits */
198         addr &= ~3;
199         host = (void *)((uintptr_t)host & ~3);
200
201         old_data = ops->lw(state, opcode, host, addr);
202
203         return (data & mask) | (old_data >> (shift * 8));
204 }
205
206 static void lightrec_lwc2(struct lightrec_state *state, union code op,
207                           const struct lightrec_mem_map_ops *ops,
208                           void *host, u32 addr)
209 {
210         u32 data = ops->lw(state, op.opcode, host, addr);
211
212         lightrec_mtc2(state, op.i.rt, data);
213 }
214
215 static void lightrec_invalidate_map(struct lightrec_state *state,
216                 const struct lightrec_mem_map *map, u32 addr, u32 len)
217 {
218         if (map == &state->maps[PSX_MAP_KERNEL_USER_RAM]) {
219                 memset(lut_address(state, lut_offset(addr)), 0,
220                        ((len + 3) / 4) * lut_elm_size(state));
221         }
222 }
223
224 static enum psx_map
225 lightrec_get_map_idx(struct lightrec_state *state, u32 kaddr)
226 {
227         const struct lightrec_mem_map *map;
228         unsigned int i;
229
230         for (i = 0; i < state->nb_maps; i++) {
231                 map = &state->maps[i];
232
233                 if (kaddr >= map->pc && kaddr < map->pc + map->length)
234                         return (enum psx_map) i;
235         }
236
237         return PSX_MAP_UNKNOWN;
238 }
239
240 const struct lightrec_mem_map *
241 lightrec_get_map(struct lightrec_state *state, void **host, u32 kaddr)
242 {
243         const struct lightrec_mem_map *map;
244         enum psx_map idx;
245         u32 addr;
246
247         idx = lightrec_get_map_idx(state, kaddr);
248         if (idx == PSX_MAP_UNKNOWN)
249                 return NULL;
250
251         map = &state->maps[idx];
252         addr = kaddr - map->pc;
253
254         while (map->mirror_of)
255                 map = map->mirror_of;
256
257         if (host)
258                 *host = map->address + addr;
259
260         return map;
261 }
262
263 u32 lightrec_rw(struct lightrec_state *state, union code op, u32 base,
264                 u32 data, u32 *flags, struct block *block, u16 offset)
265 {
266         const struct lightrec_mem_map *map;
267         const struct lightrec_mem_map_ops *ops;
268         u32 opcode = op.opcode;
269         bool was_tagged = true;
270         u16 old_flags;
271         u32 addr;
272         void *host;
273
274         addr = kunseg(base + (s16) op.i.imm);
275
276         map = lightrec_get_map(state, &host, addr);
277         if (!map) {
278                 __segfault_cb(state, addr, block);
279                 return 0;
280         }
281
282         if (flags)
283                 was_tagged = LIGHTREC_FLAGS_GET_IO_MODE(*flags);
284
285         if (likely(!map->ops)) {
286                 if (flags && !LIGHTREC_FLAGS_GET_IO_MODE(*flags)) {
287                         /* Force parallel port accesses as HW accesses, because
288                          * the direct-I/O emitters can't differenciate it. */
289                         if (unlikely(map == &state->maps[PSX_MAP_PARALLEL_PORT]))
290                                 *flags |= LIGHTREC_IO_MODE(LIGHTREC_IO_HW);
291                         /* If the base register is 0x0, be extra suspicious.
292                          * Some games (e.g. Sled Storm) actually do segmentation
293                          * faults by using uninitialized pointers, which are
294                          * later initialized to point to hardware registers. */
295                         else if (op.i.rs && base == 0x0)
296                                 *flags |= LIGHTREC_IO_MODE(LIGHTREC_IO_HW);
297                         else
298                                 *flags |= LIGHTREC_IO_MODE(LIGHTREC_IO_DIRECT);
299                 }
300
301                 ops = &lightrec_default_ops;
302         } else if (flags &&
303                    LIGHTREC_FLAGS_GET_IO_MODE(*flags) == LIGHTREC_IO_DIRECT_HW) {
304                 ops = &lightrec_default_ops;
305         } else {
306                 if (flags && !LIGHTREC_FLAGS_GET_IO_MODE(*flags))
307                         *flags |= LIGHTREC_IO_MODE(LIGHTREC_IO_HW);
308
309                 ops = map->ops;
310         }
311
312         if (!was_tagged) {
313                 old_flags = block_set_flags(block, BLOCK_SHOULD_RECOMPILE);
314
315                 if (!(old_flags & BLOCK_SHOULD_RECOMPILE)) {
316                         pr_debug("Opcode of block at "PC_FMT" has been tagged"
317                                  " - flag for recompilation\n", block->pc);
318
319                         lut_write(state, lut_offset(block->pc), NULL);
320                 }
321         }
322
323         switch (op.i.op) {
324         case OP_SB:
325                 ops->sb(state, opcode, host, addr, data);
326                 return 0;
327         case OP_SH:
328                 ops->sh(state, opcode, host, addr, data);
329                 return 0;
330         case OP_SWL:
331                 lightrec_swl(state, ops, opcode, host, addr, data);
332                 return 0;
333         case OP_SWR:
334                 lightrec_swr(state, ops, opcode, host, addr, data);
335                 return 0;
336         case OP_SW:
337                 ops->sw(state, opcode, host, addr, data);
338                 return 0;
339         case OP_SWC2:
340                 lightrec_swc2(state, op, ops, host, addr);
341                 return 0;
342         case OP_LB:
343                 return (s32) (s8) ops->lb(state, opcode, host, addr);
344         case OP_LBU:
345                 return ops->lb(state, opcode, host, addr);
346         case OP_LH:
347                 return (s32) (s16) ops->lh(state, opcode, host, addr);
348         case OP_LHU:
349                 return ops->lh(state, opcode, host, addr);
350         case OP_LWC2:
351                 lightrec_lwc2(state, op, ops, host, addr);
352                 return 0;
353         case OP_LWL:
354                 return lightrec_lwl(state, ops, opcode, host, addr, data);
355         case OP_LWR:
356                 return lightrec_lwr(state, ops, opcode, host, addr, data);
357         case OP_META_LWU:
358                 return ops->lwu(state, opcode, host, addr);
359         case OP_META_SWU:
360                 ops->swu(state, opcode, host, addr, data);
361                 return 0;
362         case OP_LW:
363         default:
364                 return ops->lw(state, opcode, host, addr);
365         }
366 }
367
368 static void lightrec_rw_helper(struct lightrec_state *state,
369                                union code op, u32 *flags,
370                                struct block *block, u16 offset)
371 {
372         u32 ret = lightrec_rw(state, op, state->regs.gpr[op.i.rs],
373                               state->regs.gpr[op.i.rt], flags, block, offset);
374
375         switch (op.i.op) {
376         case OP_LB:
377         case OP_LBU:
378         case OP_LH:
379         case OP_LHU:
380         case OP_LWL:
381         case OP_LWR:
382         case OP_LW:
383         case OP_META_LWU:
384                 if (OPT_HANDLE_LOAD_DELAYS && unlikely(!state->in_delay_slot_n)) {
385                         state->temp_reg = ret;
386                         state->in_delay_slot_n = 0xff;
387                 } else if (op.i.rt) {
388                         state->regs.gpr[op.i.rt] = ret;
389                 }
390                 fallthrough;
391         default:
392                 break;
393         }
394 }
395
396 static void lightrec_rw_cb(struct lightrec_state *state, u32 arg)
397 {
398         lightrec_rw_helper(state, (union code) arg, NULL, NULL, 0);
399 }
400
401 static void lightrec_rw_generic_cb(struct lightrec_state *state, u32 arg)
402 {
403         struct block *block;
404         struct opcode *op;
405         u16 offset = (u16)arg;
406
407         block = lightrec_find_block_from_lut(state->block_cache,
408                                              arg >> 16, state->curr_pc);
409         if (unlikely(!block)) {
410                 pr_err("rw_generic: No block found in LUT for "PC_FMT" offset 0x%"PRIx16"\n",
411                          state->curr_pc, offset);
412                 lightrec_set_exit_flags(state, LIGHTREC_EXIT_SEGFAULT);
413                 return;
414         }
415
416         op = &block->opcode_list[offset];
417         lightrec_rw_helper(state, op->c, &op->flags, block, offset);
418 }
419
420 static u32 clamp_s32(s32 val, s32 min, s32 max)
421 {
422         return val < min ? min : val > max ? max : val;
423 }
424
425 static u16 load_u16(u32 *ptr)
426 {
427         return ((struct u16x2 *) ptr)->l;
428 }
429
430 static void store_u16(u32 *ptr, u16 value)
431 {
432         ((struct u16x2 *) ptr)->l = value;
433 }
434
435 static u32 lightrec_mfc2(struct lightrec_state *state, u8 reg)
436 {
437         s16 gteir1, gteir2, gteir3;
438
439         switch (reg) {
440         case 1:
441         case 3:
442         case 5:
443         case 8:
444         case 9:
445         case 10:
446         case 11:
447                 return (s32)(s16) load_u16(&state->regs.cp2d[reg]);
448         case 7:
449         case 16:
450         case 17:
451         case 18:
452         case 19:
453                 return load_u16(&state->regs.cp2d[reg]);
454         case 28:
455         case 29:
456                 gteir1 = (s16) load_u16(&state->regs.cp2d[9]);
457                 gteir2 = (s16) load_u16(&state->regs.cp2d[10]);
458                 gteir3 = (s16) load_u16(&state->regs.cp2d[11]);
459
460                 return clamp_s32(gteir1 >> 7, 0, 0x1f) << 0 |
461                         clamp_s32(gteir2 >> 7, 0, 0x1f) << 5 |
462                         clamp_s32(gteir3 >> 7, 0, 0x1f) << 10;
463         case 15:
464                 reg = 14;
465                 fallthrough;
466         default:
467                 return state->regs.cp2d[reg];
468         }
469 }
470
471 u32 lightrec_mfc(struct lightrec_state *state, union code op)
472 {
473         u32 val;
474
475         if (op.i.op == OP_CP0)
476                 return state->regs.cp0[op.r.rd];
477
478         if (op.i.op == OP_SWC2) {
479                 val = lightrec_mfc2(state, op.i.rt);
480         } else if (op.r.rs == OP_CP2_BASIC_MFC2)
481                 val = lightrec_mfc2(state, op.r.rd);
482         else {
483                 val = state->regs.cp2c[op.r.rd];
484
485                 switch (op.r.rd) {
486                 case 4:
487                 case 12:
488                 case 20:
489                 case 26:
490                 case 27:
491                 case 29:
492                 case 30:
493                         val = (u32)(s16)val;
494                         fallthrough;
495                 default:
496                         break;
497                 }
498         }
499
500         if (state->ops.cop2_notify)
501                 (*state->ops.cop2_notify)(state, op.opcode, val);
502
503         return val;
504 }
505
506 static void lightrec_mfc_cb(struct lightrec_state *state, union code op)
507 {
508         u32 rt = lightrec_mfc(state, op);
509
510         if (op.i.op == OP_SWC2)
511                 state->temp_reg = rt;
512         else if (op.r.rt)
513                 state->regs.gpr[op.r.rt] = rt;
514 }
515
516 static void lightrec_mtc0(struct lightrec_state *state, u8 reg, u32 data)
517 {
518         u32 status, oldstatus, cause;
519
520         switch (reg) {
521         case 1:
522         case 4:
523         case 8:
524         case 14:
525         case 15:
526                 /* Those registers are read-only */
527                 return;
528         default:
529                 break;
530         }
531
532         if (reg == 12) {
533                 status = state->regs.cp0[12];
534                 oldstatus = status;
535
536                 if (status & ~data & BIT(16)) {
537                         state->ops.enable_ram(state, true);
538                         lightrec_invalidate_all(state);
539                 } else if (~status & data & BIT(16)) {
540                         state->ops.enable_ram(state, false);
541                 }
542         }
543
544         if (reg == 13) {
545                 state->regs.cp0[13] &= ~0x300;
546                 state->regs.cp0[13] |= data & 0x300;
547         } else {
548                 state->regs.cp0[reg] = data;
549         }
550
551         if (reg == 12 || reg == 13) {
552                 cause = state->regs.cp0[13];
553                 status = state->regs.cp0[12];
554
555                 /* Handle software interrupts */
556                 if ((!!(status & cause & 0x300)) & status)
557                         lightrec_set_exit_flags(state, LIGHTREC_EXIT_CHECK_INTERRUPT);
558
559                 /* Handle hardware interrupts */
560                 if (reg == 12 && !(~status & 0x401) && (~oldstatus & 0x401))
561                         lightrec_set_exit_flags(state, LIGHTREC_EXIT_CHECK_INTERRUPT);
562         }
563 }
564
565 static u32 count_leading_bits(s32 data)
566 {
567         u32 cnt = 33;
568
569 #ifdef __has_builtin
570 #if __has_builtin(__builtin_clrsb)
571         return 1 + __builtin_clrsb(data);
572 #endif
573 #endif
574
575         data = (data ^ (data >> 31)) << 1;
576
577         do {
578                 cnt -= 1;
579                 data >>= 1;
580         } while (data);
581
582         return cnt;
583 }
584
585 static void lightrec_mtc2(struct lightrec_state *state, u8 reg, u32 data)
586 {
587         switch (reg) {
588         case 15:
589                 state->regs.cp2d[12] = state->regs.cp2d[13];
590                 state->regs.cp2d[13] = state->regs.cp2d[14];
591                 state->regs.cp2d[14] = data;
592                 break;
593         case 28:
594                 state->regs.cp2d[9] = (data << 7) & 0xf80;
595                 state->regs.cp2d[10] = (data << 2) & 0xf80;
596                 state->regs.cp2d[11] = (data >> 3) & 0xf80;
597                 break;
598         case 31:
599                 return;
600         case 30:
601                 state->regs.cp2d[31] = count_leading_bits((s32) data);
602                 fallthrough;
603         default:
604                 state->regs.cp2d[reg] = data;
605                 break;
606         }
607 }
608
609 static void lightrec_ctc2(struct lightrec_state *state, u8 reg, u32 data)
610 {
611         switch (reg) {
612         case 4:
613         case 12:
614         case 20:
615         case 26:
616         case 27:
617         case 29:
618         case 30:
619                 store_u16(&state->regs.cp2c[reg], data);
620                 break;
621         case 31:
622                 data = (data & 0x7ffff000) | !!(data & 0x7f87e000) << 31;
623                 fallthrough;
624         default:
625                 state->regs.cp2c[reg] = data;
626                 break;
627         }
628 }
629
630 void lightrec_mtc(struct lightrec_state *state, union code op, u8 reg, u32 data)
631 {
632         if (op.i.op == OP_CP0) {
633                 lightrec_mtc0(state, reg, data);
634         } else {
635                 if (op.i.op == OP_LWC2 || op.r.rs != OP_CP2_BASIC_CTC2)
636                         lightrec_mtc2(state, reg, data);
637                 else
638                         lightrec_ctc2(state, reg, data);
639
640                 if (state->ops.cop2_notify)
641                         (*state->ops.cop2_notify)(state, op.opcode, data);
642         }
643 }
644
645 static void lightrec_mtc_cb(struct lightrec_state *state, u32 arg)
646 {
647         union code op = (union code) arg;
648         u32 data;
649         u8 reg;
650
651         if (op.i.op == OP_LWC2) {
652                 data = state->temp_reg;
653                 reg = op.i.rt;
654         } else {
655                 data = state->regs.gpr[op.r.rt];
656                 reg = op.r.rd;
657         }
658
659         lightrec_mtc(state, op, reg, data);
660 }
661
662 void lightrec_rfe(struct lightrec_state *state)
663 {
664         u32 status;
665
666         /* Read CP0 Status register (r12) */
667         status = state->regs.cp0[12];
668
669         /* Switch the bits */
670         status = ((status & 0x3c) >> 2) | (status & ~0xf);
671
672         /* Write it back */
673         lightrec_mtc0(state, 12, status);
674 }
675
676 void lightrec_cp(struct lightrec_state *state, union code op)
677 {
678         if (op.i.op == OP_CP0) {
679                 pr_err("Invalid CP opcode to coprocessor #0\n");
680                 return;
681         }
682
683         (*state->ops.cop2_op)(state, op.opcode);
684 }
685
686 static void lightrec_cp_cb(struct lightrec_state *state, u32 arg)
687 {
688         lightrec_cp(state, (union code) arg);
689 }
690
691 static struct block * lightrec_get_block(struct lightrec_state *state, u32 pc)
692 {
693         struct block *block = lightrec_find_block(state->block_cache, pc);
694         u8 old_flags;
695
696         if (block && lightrec_block_is_outdated(state, block)) {
697                 pr_debug("Block at "PC_FMT" is outdated!\n", block->pc);
698
699                 old_flags = block_set_flags(block, BLOCK_IS_DEAD);
700                 if (!(old_flags & BLOCK_IS_DEAD)) {
701                         /* Make sure the recompiler isn't processing the block
702                          * we'll destroy */
703                         if (ENABLE_THREADED_COMPILER)
704                                 lightrec_recompiler_remove(state->rec, block);
705
706                         lightrec_unregister_block(state->block_cache, block);
707                         remove_from_code_lut(state->block_cache, block);
708                         lightrec_free_block(state, block);
709                 }
710
711                 block = NULL;
712         }
713
714         if (!block) {
715                 block = lightrec_precompile_block(state, pc);
716                 if (!block) {
717                         pr_err("Unable to recompile block at "PC_FMT"\n", pc);
718                         lightrec_set_exit_flags(state, LIGHTREC_EXIT_SEGFAULT);
719                         return NULL;
720                 }
721
722                 lightrec_register_block(state->block_cache, block);
723         }
724
725         return block;
726 }
727
728 static void * get_next_block_func(struct lightrec_state *state, u32 pc)
729 {
730         struct block *block;
731         bool should_recompile;
732         void *func;
733         int err;
734
735         do {
736                 func = lut_read(state, lut_offset(pc));
737                 if (func && func != state->get_next_block)
738                         break;
739
740                 block = lightrec_get_block(state, pc);
741
742                 if (unlikely(!block))
743                         break;
744
745                 if (OPT_REPLACE_MEMSET &&
746                     block_has_flag(block, BLOCK_IS_MEMSET)) {
747                         func = state->memset_func;
748                         break;
749                 }
750
751                 should_recompile = block_has_flag(block, BLOCK_SHOULD_RECOMPILE) &&
752                         !block_has_flag(block, BLOCK_NEVER_COMPILE) &&
753                         !block_has_flag(block, BLOCK_IS_DEAD);
754
755                 if (unlikely(should_recompile)) {
756                         pr_debug("Block at "PC_FMT" should recompile\n", pc);
757
758                         if (ENABLE_THREADED_COMPILER) {
759                                 lightrec_recompiler_add(state->rec, block);
760                         } else {
761                                 err = lightrec_compile_block(state->cstate, block);
762                                 if (err) {
763                                         state->exit_flags = LIGHTREC_EXIT_NOMEM;
764                                         return NULL;
765                                 }
766                         }
767                 }
768
769                 if (ENABLE_THREADED_COMPILER && likely(!should_recompile))
770                         func = lightrec_recompiler_run_first_pass(state, block, &pc);
771                 else
772                         func = block->function;
773
774                 if (likely(func))
775                         break;
776
777                 if (unlikely(block_has_flag(block, BLOCK_NEVER_COMPILE))) {
778                         pc = lightrec_emulate_block(state, block, pc);
779
780                 } else if (!ENABLE_THREADED_COMPILER) {
781                         /* Block wasn't compiled yet - run the interpreter */
782                         if (block_has_flag(block, BLOCK_FULLY_TAGGED))
783                                 pr_debug("Block fully tagged, skipping first pass\n");
784                         else if (ENABLE_FIRST_PASS && likely(!should_recompile))
785                                 pc = lightrec_emulate_block(state, block, pc);
786
787                         /* Then compile it using the profiled data */
788                         err = lightrec_compile_block(state->cstate, block);
789                         if (err) {
790                                 state->exit_flags = LIGHTREC_EXIT_NOMEM;
791                                 return NULL;
792                         }
793                 } else if (unlikely(block_has_flag(block, BLOCK_IS_DEAD))) {
794                         /*
795                          * If the block is dead but has never been compiled,
796                          * then its function pointer is NULL and we cannot
797                          * execute the block. In that case, reap all the dead
798                          * blocks now, and in the next loop we will create a
799                          * new block.
800                          */
801                         lightrec_reaper_reap(state->reaper);
802                 } else {
803                         lightrec_recompiler_add(state->rec, block);
804                 }
805         } while (state->exit_flags == LIGHTREC_EXIT_NORMAL
806                  && state->current_cycle < state->target_cycle);
807
808         state->curr_pc = pc;
809         return func;
810 }
811
812 static void * lightrec_alloc_code(struct lightrec_state *state, size_t size)
813 {
814         void *code;
815
816         if (ENABLE_THREADED_COMPILER)
817                 lightrec_code_alloc_lock(state);
818
819         code = tlsf_malloc(state->tlsf, size);
820
821         if (ENABLE_THREADED_COMPILER)
822                 lightrec_code_alloc_unlock(state);
823
824         return code;
825 }
826
827 static void lightrec_realloc_code(struct lightrec_state *state,
828                                   void *ptr, size_t size)
829 {
830         /* NOTE: 'size' MUST be smaller than the size specified during
831          * the allocation. */
832
833         if (ENABLE_THREADED_COMPILER)
834                 lightrec_code_alloc_lock(state);
835
836         tlsf_realloc(state->tlsf, ptr, size);
837
838         if (ENABLE_THREADED_COMPILER)
839                 lightrec_code_alloc_unlock(state);
840 }
841
842 static void lightrec_free_code(struct lightrec_state *state, void *ptr)
843 {
844         if (ENABLE_THREADED_COMPILER)
845                 lightrec_code_alloc_lock(state);
846
847         tlsf_free(state->tlsf, ptr);
848
849         if (ENABLE_THREADED_COMPILER)
850                 lightrec_code_alloc_unlock(state);
851 }
852
853 static char lightning_code_data[0x80000];
854
855 static void * lightrec_emit_code(struct lightrec_state *state,
856                                  const struct block *block,
857                                  jit_state_t *_jit, unsigned int *size)
858 {
859         bool has_code_buffer = ENABLE_CODE_BUFFER && state->tlsf;
860         jit_word_t code_size, new_code_size;
861         void *code;
862
863         jit_realize();
864
865         if (ENABLE_DISASSEMBLER)
866                 jit_set_data(lightning_code_data, sizeof(lightning_code_data), 0);
867         else
868                 jit_set_data(NULL, 0, JIT_DISABLE_DATA | JIT_DISABLE_NOTE);
869
870         if (has_code_buffer) {
871                 jit_get_code(&code_size);
872                 code = lightrec_alloc_code(state, (size_t) code_size);
873
874                 if (!code) {
875                         if (ENABLE_THREADED_COMPILER) {
876                                 /* If we're using the threaded compiler, return
877                                  * an allocation error here. The threaded
878                                  * compiler will then empty its job queue and
879                                  * request a code flush using the reaper. */
880                                 return NULL;
881                         }
882
883                         /* Remove outdated blocks, and try again */
884                         lightrec_remove_outdated_blocks(state->block_cache, block);
885
886                         pr_debug("Re-try to alloc %zu bytes...\n", code_size);
887
888                         code = lightrec_alloc_code(state, code_size);
889                         if (!code) {
890                                 pr_err("Could not alloc even after removing old blocks!\n");
891                                 return NULL;
892                         }
893                 }
894
895                 jit_set_code(code, code_size);
896         }
897
898         code = jit_emit();
899
900         jit_get_code(&new_code_size);
901         lightrec_register(MEM_FOR_CODE, new_code_size);
902
903         if (has_code_buffer) {
904                 lightrec_realloc_code(state, code, (size_t) new_code_size);
905
906                 pr_debug("Creating code block at address 0x%" PRIxPTR ", "
907                          "code size: %" PRIuPTR " new: %" PRIuPTR "\n",
908                          (uintptr_t) code, code_size, new_code_size);
909         }
910
911         *size = (unsigned int) new_code_size;
912
913         if (state->ops.code_inv)
914                 state->ops.code_inv(code, new_code_size);
915
916         return code;
917 }
918
919 static struct block * generate_wrapper(struct lightrec_state *state)
920 {
921         struct block *block;
922         jit_state_t *_jit;
923         unsigned int i;
924         jit_node_t *addr[C_WRAPPERS_COUNT - 1];
925         jit_node_t *to_end[C_WRAPPERS_COUNT - 1];
926         u8 tmp = JIT_R1;
927
928 #ifdef __sh__
929         /* On SH, GBR-relative loads target the r0 register.
930          * Use it as the temporary register to factorize the move to
931          * JIT_R1. */
932         if (LIGHTREC_REG_STATE == _GBR)
933                 tmp = _R0;
934 #endif
935
936         block = lightrec_malloc(state, MEM_FOR_IR, sizeof(*block));
937         if (!block)
938                 goto err_no_mem;
939
940         _jit = jit_new_state();
941         if (!_jit)
942                 goto err_free_block;
943
944         jit_name("RW wrapper");
945         jit_note(__FILE__, __LINE__);
946
947         /* Wrapper entry point */
948         jit_prolog();
949         jit_tramp(256);
950
951         /* Add entry points */
952         for (i = C_WRAPPERS_COUNT - 1; i > 0; i--) {
953                 jit_ldxi(tmp, LIGHTREC_REG_STATE,
954                          offsetof(struct lightrec_state, c_wrappers[i]));
955                 to_end[i - 1] = jit_b();
956                 addr[i - 1] = jit_indirect();
957         }
958
959         jit_ldxi(tmp, LIGHTREC_REG_STATE,
960                  offsetof(struct lightrec_state, c_wrappers[0]));
961
962         for (i = 0; i < C_WRAPPERS_COUNT - 1; i++)
963                 jit_patch(to_end[i]);
964         jit_movr(JIT_R1, tmp);
965
966         jit_epilog();
967         jit_prolog();
968
969         /* Save all temporaries on stack */
970         for (i = 0; i < NUM_TEMPS; i++) {
971                 if (i + FIRST_TEMP != 1) {
972                         jit_stxi(offsetof(struct lightrec_state, wrapper_regs[i]),
973                                  LIGHTREC_REG_STATE, JIT_R(i + FIRST_TEMP));
974                 }
975         }
976
977         jit_getarg(JIT_R2, jit_arg());
978
979         jit_prepare();
980         jit_pushargr(LIGHTREC_REG_STATE);
981         jit_pushargr(JIT_R2);
982
983         jit_ldxi_ui(JIT_R2, LIGHTREC_REG_STATE,
984                     offsetof(struct lightrec_state, target_cycle));
985
986         /* state->current_cycle = state->target_cycle - delta; */
987         jit_subr(LIGHTREC_REG_CYCLE, JIT_R2, LIGHTREC_REG_CYCLE);
988         jit_stxi_i(offsetof(struct lightrec_state, current_cycle),
989                    LIGHTREC_REG_STATE, LIGHTREC_REG_CYCLE);
990
991         /* Call the wrapper function */
992         jit_finishr(JIT_R1);
993
994         /* delta = state->target_cycle - state->current_cycle */;
995         jit_ldxi_ui(LIGHTREC_REG_CYCLE, LIGHTREC_REG_STATE,
996                     offsetof(struct lightrec_state, current_cycle));
997         jit_ldxi_ui(JIT_R1, LIGHTREC_REG_STATE,
998                     offsetof(struct lightrec_state, target_cycle));
999         jit_subr(LIGHTREC_REG_CYCLE, JIT_R1, LIGHTREC_REG_CYCLE);
1000
1001         /* Restore temporaries from stack */
1002         for (i = 0; i < NUM_TEMPS; i++) {
1003                 if (i + FIRST_TEMP != 1) {
1004                         jit_ldxi(JIT_R(i + FIRST_TEMP), LIGHTREC_REG_STATE,
1005                                  offsetof(struct lightrec_state, wrapper_regs[i]));
1006                 }
1007         }
1008
1009         jit_ret();
1010         jit_epilog();
1011
1012         block->_jit = _jit;
1013         block->opcode_list = NULL;
1014         block->flags = BLOCK_NO_OPCODE_LIST;
1015         block->nb_ops = 0;
1016
1017         block->function = lightrec_emit_code(state, block, _jit,
1018                                              &block->code_size);
1019         if (!block->function)
1020                 goto err_free_block;
1021
1022         state->wrappers_eps[C_WRAPPERS_COUNT - 1] = block->function;
1023
1024         for (i = 0; i < C_WRAPPERS_COUNT - 1; i++)
1025                 state->wrappers_eps[i] = jit_address(addr[i]);
1026
1027         if (ENABLE_DISASSEMBLER) {
1028                 pr_debug("Wrapper block:\n");
1029                 jit_disassemble();
1030         }
1031
1032         jit_clear_state();
1033         return block;
1034
1035 err_free_block:
1036         lightrec_free(state, MEM_FOR_IR, sizeof(*block), block);
1037 err_no_mem:
1038         pr_err("Unable to compile wrapper: Out of memory\n");
1039         return NULL;
1040 }
1041
1042 static u32 lightrec_memset(struct lightrec_state *state)
1043 {
1044         u32 kunseg_pc = kunseg(state->regs.gpr[4]);
1045         void *host;
1046         const struct lightrec_mem_map *map = lightrec_get_map(state, &host, kunseg_pc);
1047         u32 length = state->regs.gpr[5] * 4;
1048
1049         if (!map) {
1050                 pr_err("Unable to find memory map for memset target address "PC_FMT"\n",
1051                        kunseg_pc);
1052                 return 0;
1053         }
1054
1055         pr_debug("Calling host memset, "PC_FMT" (host address 0x%"PRIxPTR") for %u bytes\n",
1056                  kunseg_pc, (uintptr_t)host, length);
1057         memset(host, 0, length);
1058
1059         if (!(state->opt_flags & LIGHTREC_OPT_INV_DMA_ONLY))
1060                 lightrec_invalidate_map(state, map, kunseg_pc, length);
1061
1062         /* Rough estimation of the number of cycles consumed */
1063         return 8 + 5 * (length  + 3 / 4);
1064 }
1065
1066 static u32 lightrec_check_load_delay(struct lightrec_state *state, u32 pc, u8 reg)
1067 {
1068         struct block *block;
1069         union code first_op;
1070
1071         first_op = lightrec_read_opcode(state, pc);
1072
1073         if (likely(!opcode_reads_register(first_op, reg))) {
1074                 state->regs.gpr[reg] = state->temp_reg;
1075         } else {
1076                 block = lightrec_get_block(state, pc);
1077                 if (unlikely(!block)) {
1078                         pr_err("Unable to get block at "PC_FMT"\n", pc);
1079                         lightrec_set_exit_flags(state, LIGHTREC_EXIT_SEGFAULT);
1080                         pc = 0;
1081                 } else {
1082                         pc = lightrec_handle_load_delay(state, block, pc, reg);
1083                 }
1084         }
1085
1086         return pc;
1087 }
1088
1089 static void update_cycle_counter_before_c(jit_state_t *_jit)
1090 {
1091         /* update state->current_cycle */
1092         jit_ldxi_i(JIT_R2, LIGHTREC_REG_STATE,
1093                    offsetof(struct lightrec_state, target_cycle));
1094         jit_subr(JIT_R1, JIT_R2, LIGHTREC_REG_CYCLE);
1095         jit_stxi_i(offsetof(struct lightrec_state, current_cycle),
1096                    LIGHTREC_REG_STATE, JIT_R1);
1097 }
1098
1099 static void update_cycle_counter_after_c(jit_state_t *_jit)
1100 {
1101         /* Recalc the delta */
1102         jit_ldxi_i(JIT_R1, LIGHTREC_REG_STATE,
1103                    offsetof(struct lightrec_state, current_cycle));
1104         jit_ldxi_i(JIT_R2, LIGHTREC_REG_STATE,
1105                    offsetof(struct lightrec_state, target_cycle));
1106         jit_subr(LIGHTREC_REG_CYCLE, JIT_R2, JIT_R1);
1107 }
1108
1109 static void sync_next_pc(jit_state_t *_jit)
1110 {
1111         if (lightrec_store_next_pc()) {
1112                 jit_ldxi_ui(JIT_V0, LIGHTREC_REG_STATE,
1113                             offsetof(struct lightrec_state, next_pc));
1114         }
1115 }
1116
1117 static struct block * generate_dispatcher(struct lightrec_state *state)
1118 {
1119         struct block *block;
1120         jit_state_t *_jit;
1121         jit_node_t *to_end, *loop, *addr, *addr2, *addr3, *addr4, *addr5, *jmp, *jmp2;
1122         unsigned int i;
1123         u32 offset;
1124
1125         block = lightrec_malloc(state, MEM_FOR_IR, sizeof(*block));
1126         if (!block)
1127                 goto err_no_mem;
1128
1129         _jit = jit_new_state();
1130         if (!_jit)
1131                 goto err_free_block;
1132
1133         jit_name("dispatcher");
1134         jit_note(__FILE__, __LINE__);
1135
1136         jit_prolog();
1137         jit_frame(256);
1138
1139         jit_getarg(LIGHTREC_REG_STATE, jit_arg());
1140         jit_getarg(JIT_V0, jit_arg());
1141         jit_getarg(JIT_V1, jit_arg());
1142         jit_getarg_i(LIGHTREC_REG_CYCLE, jit_arg());
1143
1144         /* Force all callee-saved registers to be pushed on the stack */
1145         for (i = 0; i < NUM_REGS; i++)
1146                 jit_movr(JIT_V(i + FIRST_REG), JIT_V(i + FIRST_REG));
1147
1148         loop = jit_label();
1149
1150         /* Call the block's code */
1151         jit_jmpr(JIT_V1);
1152
1153         if (OPT_REPLACE_MEMSET) {
1154                 /* Blocks will jump here when they need to call
1155                  * lightrec_memset() */
1156                 addr3 = jit_indirect();
1157
1158                 jit_movr(JIT_V1, LIGHTREC_REG_CYCLE);
1159
1160                 jit_prepare();
1161                 jit_pushargr(LIGHTREC_REG_STATE);
1162
1163                 jit_finishi(lightrec_memset);
1164                 jit_retval(LIGHTREC_REG_CYCLE);
1165
1166                 jit_ldxi_ui(JIT_V0, LIGHTREC_REG_STATE,
1167                             offsetof(struct lightrec_state, regs.gpr[31]));
1168                 jit_subr(LIGHTREC_REG_CYCLE, JIT_V1, LIGHTREC_REG_CYCLE);
1169
1170                 if (OPT_DETECT_IMPOSSIBLE_BRANCHES || OPT_HANDLE_LOAD_DELAYS)
1171                         jmp = jit_b();
1172         }
1173
1174         if (OPT_DETECT_IMPOSSIBLE_BRANCHES) {
1175                 /* Blocks will jump here when they reach a branch that should
1176                  * be executed with the interpreter, passing the branch's PC
1177                  * in JIT_V0 and the address of the block in JIT_V1. */
1178                 addr4 = jit_indirect();
1179
1180                 sync_next_pc(_jit);
1181                 update_cycle_counter_before_c(_jit);
1182
1183                 jit_prepare();
1184                 jit_pushargr(LIGHTREC_REG_STATE);
1185                 jit_pushargr(JIT_V1);
1186                 jit_pushargr(JIT_V0);
1187                 jit_finishi(lightrec_emulate_block);
1188
1189                 jit_retval(JIT_V0);
1190
1191                 update_cycle_counter_after_c(_jit);
1192
1193                 if (OPT_HANDLE_LOAD_DELAYS)
1194                         jmp2 = jit_b();
1195
1196         }
1197
1198         if (OPT_HANDLE_LOAD_DELAYS) {
1199                 /* Blocks will jump here when they reach a branch with a load
1200                  * opcode in its delay slot. The delay slot has already been
1201                  * executed; the load value is in (state->temp_reg), and the
1202                  * register number is in JIT_V1.
1203                  * Jump to a C function which will evaluate the branch target's
1204                  * first opcode, to make sure that it does not read the register
1205                  * in question; and if it does, handle it accordingly. */
1206                 addr5 = jit_indirect();
1207
1208                 sync_next_pc(_jit);
1209                 update_cycle_counter_before_c(_jit);
1210
1211                 jit_prepare();
1212                 jit_pushargr(LIGHTREC_REG_STATE);
1213                 jit_pushargr(JIT_V0);
1214                 jit_pushargr(JIT_V1);
1215                 jit_finishi(lightrec_check_load_delay);
1216
1217                 jit_retval(JIT_V0);
1218
1219                 update_cycle_counter_after_c(_jit);
1220         }
1221
1222         /* The block will jump here, with the number of cycles remaining in
1223          * LIGHTREC_REG_CYCLE */
1224         addr2 = jit_indirect();
1225
1226         sync_next_pc(_jit);
1227
1228         if (OPT_HANDLE_LOAD_DELAYS && OPT_DETECT_IMPOSSIBLE_BRANCHES)
1229               jit_patch(jmp2);
1230
1231         if (OPT_REPLACE_MEMSET
1232             && (OPT_DETECT_IMPOSSIBLE_BRANCHES || OPT_HANDLE_LOAD_DELAYS)) {
1233                 jit_patch(jmp);
1234         }
1235
1236         /* Store back the next PC to the lightrec_state structure */
1237         offset = offsetof(struct lightrec_state, curr_pc);
1238         jit_stxi_i(offset, LIGHTREC_REG_STATE, JIT_V0);
1239
1240         /* Jump to end if state->target_cycle < state->current_cycle */
1241         to_end = jit_blei(LIGHTREC_REG_CYCLE, 0);
1242
1243         /* Convert next PC to KUNSEG and avoid mirrors */
1244         jit_andi(JIT_V1, JIT_V0, 0x10000000 | (RAM_SIZE - 1));
1245         jit_rshi_u(JIT_R1, JIT_V1, 28);
1246         jit_andi(JIT_R2, JIT_V0, BIOS_SIZE - 1);
1247         jit_addi(JIT_R2, JIT_R2, RAM_SIZE);
1248         jit_movnr(JIT_V1, JIT_R2, JIT_R1);
1249
1250         /* If possible, use the code LUT */
1251         if (!lut_is_32bit(state))
1252                 jit_lshi(JIT_V1, JIT_V1, 1);
1253         jit_add_state(JIT_V1, JIT_V1);
1254
1255         offset = offsetof(struct lightrec_state, code_lut);
1256         if (lut_is_32bit(state))
1257                 jit_ldxi_ui(JIT_V1, JIT_V1, offset);
1258         else
1259                 jit_ldxi(JIT_V1, JIT_V1, offset);
1260
1261         /* If we get non-NULL, loop */
1262         jit_patch_at(jit_bnei(JIT_V1, 0), loop);
1263
1264         /* The code LUT will be set to this address when the block at the target
1265          * PC has been preprocessed but not yet compiled by the threaded
1266          * recompiler */
1267         addr = jit_indirect();
1268
1269         /* Slow path: call C function get_next_block_func() */
1270
1271         if (ENABLE_FIRST_PASS || OPT_DETECT_IMPOSSIBLE_BRANCHES) {
1272                 /* We may call the interpreter - update state->current_cycle */
1273                 update_cycle_counter_before_c(_jit);
1274         }
1275
1276         jit_prepare();
1277         jit_pushargr(LIGHTREC_REG_STATE);
1278         jit_pushargr(JIT_V0);
1279
1280         /* Save the cycles register if needed */
1281         if (!(ENABLE_FIRST_PASS || OPT_DETECT_IMPOSSIBLE_BRANCHES))
1282                 jit_movr(JIT_V0, LIGHTREC_REG_CYCLE);
1283
1284         /* Get the next block */
1285         jit_finishi(&get_next_block_func);
1286         jit_retval(JIT_V1);
1287
1288         if (ENABLE_FIRST_PASS || OPT_DETECT_IMPOSSIBLE_BRANCHES) {
1289                 /* The interpreter may have updated state->current_cycle and
1290                  * state->target_cycle - recalc the delta */
1291                 update_cycle_counter_after_c(_jit);
1292         } else {
1293                 jit_movr(LIGHTREC_REG_CYCLE, JIT_V0);
1294         }
1295
1296         /* Reset JIT_V0 to the next PC */
1297         jit_ldxi_ui(JIT_V0, LIGHTREC_REG_STATE,
1298                     offsetof(struct lightrec_state, curr_pc));
1299
1300         /* If we get non-NULL, loop */
1301         jit_patch_at(jit_bnei(JIT_V1, 0), loop);
1302
1303         /* When exiting, the recompiled code will jump to that address */
1304         jit_note(__FILE__, __LINE__);
1305         jit_patch(to_end);
1306
1307         jit_retr(LIGHTREC_REG_CYCLE);
1308         jit_epilog();
1309
1310         block->_jit = _jit;
1311         block->opcode_list = NULL;
1312         block->flags = BLOCK_NO_OPCODE_LIST;
1313         block->nb_ops = 0;
1314
1315         block->function = lightrec_emit_code(state, block, _jit,
1316                                              &block->code_size);
1317         if (!block->function)
1318                 goto err_free_block;
1319
1320         state->eob_wrapper_func = jit_address(addr2);
1321         if (OPT_DETECT_IMPOSSIBLE_BRANCHES)
1322                 state->interpreter_func = jit_address(addr4);
1323         if (OPT_HANDLE_LOAD_DELAYS)
1324                 state->ds_check_func = jit_address(addr5);
1325         if (OPT_REPLACE_MEMSET)
1326                 state->memset_func = jit_address(addr3);
1327         state->get_next_block = jit_address(addr);
1328
1329         if (ENABLE_DISASSEMBLER) {
1330                 pr_debug("Dispatcher block:\n");
1331                 jit_disassemble();
1332         }
1333
1334         /* We're done! */
1335         jit_clear_state();
1336         return block;
1337
1338 err_free_block:
1339         lightrec_free(state, MEM_FOR_IR, sizeof(*block), block);
1340 err_no_mem:
1341         pr_err("Unable to compile dispatcher: Out of memory\n");
1342         return NULL;
1343 }
1344
1345 union code lightrec_read_opcode(struct lightrec_state *state, u32 pc)
1346 {
1347         void *host = NULL;
1348
1349         lightrec_get_map(state, &host, kunseg(pc));
1350
1351         const u32 *code = (u32 *)host;
1352         return (union code) LE32TOH(*code);
1353 }
1354
1355 unsigned int lightrec_cycles_of_opcode(const struct lightrec_state *state,
1356                                        union code code)
1357 {
1358         return state->cycles_per_op;
1359 }
1360
1361 void lightrec_free_opcode_list(struct lightrec_state *state, struct opcode *ops)
1362 {
1363         struct opcode_list *list = container_of(ops, struct opcode_list, ops);
1364
1365         lightrec_free(state, MEM_FOR_IR,
1366                       sizeof(*list) + list->nb_ops * sizeof(struct opcode),
1367                       list);
1368 }
1369
1370 static unsigned int lightrec_get_mips_block_len(const u32 *src)
1371 {
1372         unsigned int i;
1373         union code c;
1374
1375         for (i = 1; ; i++) {
1376                 c.opcode = LE32TOH(*src++);
1377
1378                 if (is_syscall(c))
1379                         return i;
1380
1381                 if (is_unconditional_jump(c))
1382                         return i + 1;
1383         }
1384 }
1385
1386 static struct opcode * lightrec_disassemble(struct lightrec_state *state,
1387                                             const u32 *src, unsigned int *len)
1388 {
1389         struct opcode_list *list;
1390         unsigned int i, length;
1391
1392         length = lightrec_get_mips_block_len(src);
1393
1394         list = lightrec_malloc(state, MEM_FOR_IR,
1395                                sizeof(*list) + sizeof(struct opcode) * length);
1396         if (!list) {
1397                 pr_err("Unable to allocate memory\n");
1398                 return NULL;
1399         }
1400
1401         list->nb_ops = (u16) length;
1402
1403         for (i = 0; i < length; i++) {
1404                 list->ops[i].opcode = LE32TOH(src[i]);
1405                 list->ops[i].flags = 0;
1406         }
1407
1408         *len = length * sizeof(u32);
1409
1410         return list->ops;
1411 }
1412
1413 static struct block * lightrec_precompile_block(struct lightrec_state *state,
1414                                                 u32 pc)
1415 {
1416         struct opcode *list;
1417         struct block *block;
1418         void *host, *addr;
1419         const struct lightrec_mem_map *map = lightrec_get_map(state, &host, kunseg(pc));
1420         const u32 *code = (u32 *) host;
1421         unsigned int length;
1422         bool fully_tagged;
1423         u8 block_flags = 0;
1424
1425         if (!map)
1426                 return NULL;
1427
1428         block = lightrec_malloc(state, MEM_FOR_IR, sizeof(*block));
1429         if (!block) {
1430                 pr_err("Unable to recompile block: Out of memory\n");
1431                 return NULL;
1432         }
1433
1434         list = lightrec_disassemble(state, code, &length);
1435         if (!list) {
1436                 lightrec_free(state, MEM_FOR_IR, sizeof(*block), block);
1437                 return NULL;
1438         }
1439
1440         block->pc = pc;
1441         block->_jit = NULL;
1442         block->function = NULL;
1443         block->opcode_list = list;
1444         block->code = code;
1445         block->next = NULL;
1446         block->flags = 0;
1447         block->code_size = 0;
1448         block->precompile_date = state->current_cycle;
1449         block->nb_ops = length / sizeof(u32);
1450
1451         lightrec_optimize(state, block);
1452
1453         length = block->nb_ops * sizeof(u32);
1454
1455         lightrec_register(MEM_FOR_MIPS_CODE, length);
1456
1457         if (ENABLE_DISASSEMBLER) {
1458                 pr_debug("Disassembled block at PC: 0x%08x\n", block->pc);
1459                 lightrec_print_disassembly(block, code);
1460         }
1461
1462         pr_debug("Block size: %hu opcodes\n", block->nb_ops);
1463
1464         fully_tagged = lightrec_block_is_fully_tagged(block);
1465         if (fully_tagged)
1466                 block_flags |= BLOCK_FULLY_TAGGED;
1467
1468         if (block_flags)
1469                 block_set_flags(block, block_flags);
1470
1471         block->hash = lightrec_calculate_block_hash(block);
1472
1473         if (OPT_REPLACE_MEMSET && block_has_flag(block, BLOCK_IS_MEMSET))
1474                 addr = state->memset_func;
1475         else
1476                 addr = state->get_next_block;
1477         lut_write(state, lut_offset(pc), addr);
1478
1479         pr_debug("Blocks created: %u\n", ++state->nb_precompile);
1480
1481         return block;
1482 }
1483
1484 static bool lightrec_block_is_fully_tagged(const struct block *block)
1485 {
1486         const struct opcode *op;
1487         unsigned int i;
1488
1489         for (i = 0; i < block->nb_ops; i++) {
1490                 op = &block->opcode_list[i];
1491
1492                 /* If we have one branch that must be emulated, we cannot trash
1493                  * the opcode list. */
1494                 if (should_emulate(op))
1495                         return false;
1496
1497                 /* Check all loads/stores of the opcode list and mark the
1498                  * block as fully compiled if they all have been tagged. */
1499                 switch (op->c.i.op) {
1500                 case OP_LB:
1501                 case OP_LH:
1502                 case OP_LWL:
1503                 case OP_LW:
1504                 case OP_LBU:
1505                 case OP_LHU:
1506                 case OP_LWR:
1507                 case OP_SB:
1508                 case OP_SH:
1509                 case OP_SWL:
1510                 case OP_SW:
1511                 case OP_SWR:
1512                 case OP_LWC2:
1513                 case OP_SWC2:
1514                 case OP_META_LWU:
1515                 case OP_META_SWU:
1516                         if (!LIGHTREC_FLAGS_GET_IO_MODE(op->flags))
1517                                 return false;
1518                         fallthrough;
1519                 default:
1520                         continue;
1521                 }
1522         }
1523
1524         return true;
1525 }
1526
1527 static void lightrec_reap_block(struct lightrec_state *state, void *data)
1528 {
1529         struct block *block = data;
1530
1531         pr_debug("Reap dead block at "PC_FMT"\n", block->pc);
1532         lightrec_unregister_block(state->block_cache, block);
1533         lightrec_free_block(state, block);
1534 }
1535
1536 static void lightrec_reap_jit(struct lightrec_state *state, void *data)
1537 {
1538         _jit_destroy_state(data);
1539 }
1540
1541 static void lightrec_free_function(struct lightrec_state *state, void *fn)
1542 {
1543         if (ENABLE_CODE_BUFFER && state->tlsf) {
1544                 pr_debug("Freeing code block at 0x%" PRIxPTR "\n", (uintptr_t) fn);
1545                 lightrec_free_code(state, fn);
1546         }
1547 }
1548
1549 static void lightrec_reap_function(struct lightrec_state *state, void *data)
1550 {
1551         lightrec_free_function(state, data);
1552 }
1553
1554 static void lightrec_reap_opcode_list(struct lightrec_state *state, void *data)
1555 {
1556         lightrec_free_opcode_list(state, data);
1557 }
1558
1559 int lightrec_compile_block(struct lightrec_cstate *cstate,
1560                            struct block *block)
1561 {
1562         struct lightrec_state *state = cstate->state;
1563         struct lightrec_branch_target *target;
1564         bool fully_tagged = false;
1565         struct block *block2;
1566         struct opcode *elm;
1567         jit_state_t *_jit, *oldjit;
1568         jit_node_t *start_of_block;
1569         bool skip_next = false;
1570         void *old_fn, *new_fn;
1571         size_t old_code_size;
1572         unsigned int i, j;
1573         u8 old_flags;
1574         u32 offset;
1575
1576         fully_tagged = lightrec_block_is_fully_tagged(block);
1577         if (fully_tagged)
1578                 block_set_flags(block, BLOCK_FULLY_TAGGED);
1579
1580         _jit = jit_new_state();
1581         if (!_jit)
1582                 return -ENOMEM;
1583
1584         oldjit = block->_jit;
1585         old_fn = block->function;
1586         old_code_size = block->code_size;
1587         block->_jit = _jit;
1588
1589         lightrec_regcache_reset(cstate->reg_cache);
1590
1591         if (OPT_PRELOAD_PC && (block->flags & BLOCK_PRELOAD_PC))
1592                 lightrec_preload_pc(cstate->reg_cache, _jit);
1593
1594         cstate->cycles = 0;
1595         cstate->nb_local_branches = 0;
1596         cstate->nb_targets = 0;
1597         cstate->no_load_delay = false;
1598
1599         jit_prolog();
1600         jit_tramp(256);
1601
1602         start_of_block = jit_label();
1603
1604         for (i = 0; i < block->nb_ops; i++) {
1605                 elm = &block->opcode_list[i];
1606
1607                 if (skip_next) {
1608                         skip_next = false;
1609                         continue;
1610                 }
1611
1612                 if (should_emulate(elm)) {
1613                         pr_debug("Branch at offset 0x%x will be emulated\n",
1614                                  i << 2);
1615
1616                         lightrec_emit_jump_to_interpreter(cstate, block, i);
1617                         skip_next = !op_flag_no_ds(elm->flags);
1618                 } else {
1619                         lightrec_rec_opcode(cstate, block, i);
1620                         skip_next = !op_flag_no_ds(elm->flags) && has_delay_slot(elm->c);
1621 #if _WIN32
1622                         /* FIXME: GNU Lightning on Windows seems to use our
1623                          * mapped registers as temporaries. Until the actual bug
1624                          * is found and fixed, unconditionally mark our
1625                          * registers as live here. */
1626                         lightrec_regcache_mark_live(cstate->reg_cache, _jit);
1627 #endif
1628                 }
1629
1630                 cstate->cycles += lightrec_cycles_of_opcode(state, elm->c);
1631         }
1632
1633         for (i = 0; i < cstate->nb_local_branches; i++) {
1634                 struct lightrec_branch *branch = &cstate->local_branches[i];
1635
1636                 pr_debug("Patch local branch to offset 0x%x\n",
1637                          branch->target << 2);
1638
1639                 if (branch->target == 0) {
1640                         jit_patch_at(branch->branch, start_of_block);
1641                         continue;
1642                 }
1643
1644                 for (j = 0; j < cstate->nb_targets; j++) {
1645                         if (cstate->targets[j].offset == branch->target) {
1646                                 jit_patch_at(branch->branch,
1647                                              cstate->targets[j].label);
1648                                 break;
1649                         }
1650                 }
1651
1652                 if (j == cstate->nb_targets)
1653                         pr_err("Unable to find branch target\n");
1654         }
1655
1656         jit_ret();
1657         jit_epilog();
1658
1659         new_fn = lightrec_emit_code(state, block, _jit, &block->code_size);
1660         if (!new_fn) {
1661                 if (!ENABLE_THREADED_COMPILER)
1662                         pr_err("Unable to compile block!\n");
1663                 block->_jit = oldjit;
1664                 jit_clear_state();
1665                 _jit_destroy_state(_jit);
1666                 return -ENOMEM;
1667         }
1668
1669         /* Pause the reaper, because lightrec_reset_lut_offset() may try to set
1670          * the old block->function pointer to the code LUT. */
1671         if (ENABLE_THREADED_COMPILER)
1672                 lightrec_reaper_pause(state->reaper);
1673
1674         block->function = new_fn;
1675         block_clear_flags(block, BLOCK_SHOULD_RECOMPILE);
1676
1677         /* Add compiled function to the LUT */
1678         lut_write(state, lut_offset(block->pc), block->function);
1679
1680         if (ENABLE_THREADED_COMPILER)
1681                 lightrec_reaper_continue(state->reaper);
1682
1683         /* Detect old blocks that have been covered by the new one */
1684         for (i = 0; i < cstate->nb_targets; i++) {
1685                 target = &cstate->targets[i];
1686
1687                 if (!target->offset)
1688                         continue;
1689
1690                 offset = block->pc + target->offset * sizeof(u32);
1691
1692                 /* Pause the reaper while we search for the block until we set
1693                  * the BLOCK_IS_DEAD flag, otherwise the block may be removed
1694                  * under our feet. */
1695                 if (ENABLE_THREADED_COMPILER)
1696                         lightrec_reaper_pause(state->reaper);
1697
1698                 block2 = lightrec_find_block(state->block_cache, offset);
1699                 if (block2) {
1700                         /* No need to check if block2 is compilable - it must
1701                          * be, otherwise block wouldn't be compilable either */
1702
1703                         /* Set the "block dead" flag to prevent the dynarec from
1704                          * recompiling this block */
1705                         old_flags = block_set_flags(block2, BLOCK_IS_DEAD);
1706                 }
1707
1708                 if (ENABLE_THREADED_COMPILER) {
1709                         lightrec_reaper_continue(state->reaper);
1710
1711                         /* If block2 was pending for compilation, cancel it.
1712                          * If it's being compiled right now, wait until it
1713                          * finishes. */
1714                         if (block2)
1715                                 lightrec_recompiler_remove(state->rec, block2);
1716                 }
1717
1718                 /* We know from now on that block2 (if present) isn't going to
1719                  * be compiled. We can override the LUT entry with our new
1720                  * block's entry point. */
1721                 offset = lut_offset(block->pc) + target->offset;
1722                 lut_write(state, offset, jit_address(target->label));
1723
1724                 if (block2) {
1725                         pr_debug("Reap block 0x%08x as it's covered by block "
1726                                  "0x%08x\n", block2->pc, block->pc);
1727
1728                         /* Finally, reap the block. */
1729                         if (!ENABLE_THREADED_COMPILER) {
1730                                 lightrec_unregister_block(state->block_cache, block2);
1731                                 lightrec_free_block(state, block2);
1732                         } else if (!(old_flags & BLOCK_IS_DEAD)) {
1733                                 lightrec_reaper_add(state->reaper,
1734                                                     lightrec_reap_block,
1735                                                     block2);
1736                         }
1737                 }
1738         }
1739
1740         if (ENABLE_DISASSEMBLER) {
1741                 pr_debug("Compiling block at PC: 0x%08x\n", block->pc);
1742                 jit_disassemble();
1743         }
1744
1745         jit_clear_state();
1746
1747         if (fully_tagged)
1748                 old_flags = block_set_flags(block, BLOCK_NO_OPCODE_LIST);
1749
1750         if (fully_tagged && !(old_flags & BLOCK_NO_OPCODE_LIST)) {
1751                 pr_debug("Block "PC_FMT" is fully tagged"
1752                          " - free opcode list\n", block->pc);
1753
1754                 if (ENABLE_THREADED_COMPILER) {
1755                         lightrec_reaper_add(state->reaper,
1756                                             lightrec_reap_opcode_list,
1757                                             block->opcode_list);
1758                 } else {
1759                         lightrec_free_opcode_list(state, block->opcode_list);
1760                 }
1761         }
1762
1763         if (oldjit) {
1764                 pr_debug("Block 0x%08x recompiled, reaping old jit context.\n",
1765                          block->pc);
1766
1767                 if (ENABLE_THREADED_COMPILER) {
1768                         lightrec_reaper_add(state->reaper,
1769                                             lightrec_reap_jit, oldjit);
1770                         lightrec_reaper_add(state->reaper,
1771                                             lightrec_reap_function, old_fn);
1772                 } else {
1773                         _jit_destroy_state(oldjit);
1774                         lightrec_free_function(state, old_fn);
1775                 }
1776
1777                 lightrec_unregister(MEM_FOR_CODE, old_code_size);
1778         }
1779
1780         pr_debug("Blocks compiled: %u\n", ++state->nb_compile);
1781
1782         return 0;
1783 }
1784
1785 static void lightrec_print_info(struct lightrec_state *state)
1786 {
1787         if ((state->current_cycle & ~0xfffffff) != state->old_cycle_counter) {
1788                 pr_info("Lightrec RAM usage: IR %u KiB, CODE %u KiB, "
1789                         "MIPS %u KiB, TOTAL %u KiB, avg. IPI %f\n",
1790                         lightrec_get_mem_usage(MEM_FOR_IR) / 1024,
1791                         lightrec_get_mem_usage(MEM_FOR_CODE) / 1024,
1792                         lightrec_get_mem_usage(MEM_FOR_MIPS_CODE) / 1024,
1793                         lightrec_get_total_mem_usage() / 1024,
1794                        lightrec_get_average_ipi());
1795                 state->old_cycle_counter = state->current_cycle & ~0xfffffff;
1796         }
1797 }
1798
1799 u32 lightrec_execute(struct lightrec_state *state, u32 pc, u32 target_cycle)
1800 {
1801         s32 (*func)(struct lightrec_state *, u32, void *, s32) = (void *)state->dispatcher->function;
1802         void *block_trace;
1803         s32 cycles_delta;
1804
1805         state->exit_flags = LIGHTREC_EXIT_NORMAL;
1806
1807         /* Handle the cycle counter overflowing */
1808         if (unlikely(target_cycle < state->current_cycle))
1809                 target_cycle = UINT_MAX;
1810
1811         state->target_cycle = target_cycle;
1812         state->curr_pc = pc;
1813
1814         block_trace = get_next_block_func(state, pc);
1815         if (block_trace) {
1816                 cycles_delta = state->target_cycle - state->current_cycle;
1817
1818                 cycles_delta = (*func)(state, state->curr_pc,
1819                                        block_trace, cycles_delta);
1820
1821                 state->current_cycle = state->target_cycle - cycles_delta;
1822         }
1823
1824         if (ENABLE_THREADED_COMPILER)
1825                 lightrec_reaper_reap(state->reaper);
1826
1827         if (LOG_LEVEL >= INFO_L)
1828                 lightrec_print_info(state);
1829
1830         return state->curr_pc;
1831 }
1832
1833 u32 lightrec_run_interpreter(struct lightrec_state *state, u32 pc,
1834                              u32 target_cycle)
1835 {
1836         struct block *block;
1837
1838         state->exit_flags = LIGHTREC_EXIT_NORMAL;
1839         state->target_cycle = target_cycle;
1840
1841         do {
1842                 block = lightrec_get_block(state, pc);
1843                 if (!block)
1844                         break;
1845
1846                 pc = lightrec_emulate_block(state, block, pc);
1847
1848                 if (ENABLE_THREADED_COMPILER)
1849                         lightrec_reaper_reap(state->reaper);
1850         } while (state->current_cycle < state->target_cycle);
1851
1852         if (LOG_LEVEL >= INFO_L)
1853                 lightrec_print_info(state);
1854
1855         return pc;
1856 }
1857
1858 void lightrec_free_block(struct lightrec_state *state, struct block *block)
1859 {
1860         u8 old_flags;
1861
1862         lightrec_unregister(MEM_FOR_MIPS_CODE, block->nb_ops * sizeof(u32));
1863         old_flags = block_set_flags(block, BLOCK_NO_OPCODE_LIST);
1864
1865         if (!(old_flags & BLOCK_NO_OPCODE_LIST))
1866                 lightrec_free_opcode_list(state, block->opcode_list);
1867         if (block->_jit)
1868                 _jit_destroy_state(block->_jit);
1869         if (block->function) {
1870                 lightrec_free_function(state, block->function);
1871                 lightrec_unregister(MEM_FOR_CODE, block->code_size);
1872         }
1873         lightrec_free(state, MEM_FOR_IR, sizeof(*block), block);
1874 }
1875
1876 struct lightrec_cstate * lightrec_create_cstate(struct lightrec_state *state)
1877 {
1878         struct lightrec_cstate *cstate;
1879
1880         cstate = lightrec_malloc(state, MEM_FOR_LIGHTREC, sizeof(*cstate));
1881         if (!cstate)
1882                 return NULL;
1883
1884         cstate->reg_cache = lightrec_regcache_init(state);
1885         if (!cstate->reg_cache) {
1886                 lightrec_free(state, MEM_FOR_LIGHTREC, sizeof(*cstate), cstate);
1887                 return NULL;
1888         }
1889
1890         cstate->state = state;
1891
1892         return cstate;
1893 }
1894
1895 void lightrec_free_cstate(struct lightrec_cstate *cstate)
1896 {
1897         lightrec_free_regcache(cstate->reg_cache);
1898         lightrec_free(cstate->state, MEM_FOR_LIGHTREC, sizeof(*cstate), cstate);
1899 }
1900
1901 struct lightrec_state * lightrec_init(char *argv0,
1902                                       const struct lightrec_mem_map *map,
1903                                       size_t nb,
1904                                       const struct lightrec_ops *ops)
1905 {
1906         const struct lightrec_mem_map *codebuf_map = &map[PSX_MAP_CODE_BUFFER];
1907         struct lightrec_state *state;
1908         uintptr_t addr;
1909         void *tlsf = NULL;
1910         bool with_32bit_lut = false;
1911         size_t lut_size;
1912
1913         /* Sanity-check ops */
1914         if (!ops || !ops->cop2_op || !ops->enable_ram) {
1915                 pr_err("Missing callbacks in lightrec_ops structure\n");
1916                 return NULL;
1917         }
1918
1919         if (ops->cop2_notify)
1920                 pr_debug("Optional cop2_notify callback in lightrec_ops\n");
1921         else
1922                 pr_debug("No optional cop2_notify callback in lightrec_ops\n");
1923
1924         if (ENABLE_CODE_BUFFER && nb > PSX_MAP_CODE_BUFFER
1925             && codebuf_map->address) {
1926                 tlsf = tlsf_create_with_pool(codebuf_map->address,
1927                                              codebuf_map->length);
1928                 if (!tlsf) {
1929                         pr_err("Unable to initialize code buffer\n");
1930                         return NULL;
1931                 }
1932
1933                 if (__WORDSIZE == 64) {
1934                         addr = (uintptr_t) codebuf_map->address + codebuf_map->length - 1;
1935                         with_32bit_lut = addr == (u32) addr;
1936                 }
1937         }
1938
1939         if (with_32bit_lut)
1940                 lut_size = CODE_LUT_SIZE * 4;
1941         else
1942                 lut_size = CODE_LUT_SIZE * sizeof(void *);
1943
1944         init_jit_with_debug(argv0, stdout);
1945
1946         state = calloc(1, sizeof(*state) + lut_size);
1947         if (!state)
1948                 goto err_finish_jit;
1949
1950         lightrec_register(MEM_FOR_LIGHTREC, sizeof(*state) + lut_size);
1951
1952         state->tlsf = tlsf;
1953         state->with_32bit_lut = with_32bit_lut;
1954         state->in_delay_slot_n = 0xff;
1955         state->cycles_per_op = 2;
1956
1957         state->block_cache = lightrec_blockcache_init(state);
1958         if (!state->block_cache)
1959                 goto err_free_state;
1960
1961         if (ENABLE_THREADED_COMPILER) {
1962                 state->rec = lightrec_recompiler_init(state);
1963                 if (!state->rec)
1964                         goto err_free_block_cache;
1965
1966                 state->reaper = lightrec_reaper_init(state);
1967                 if (!state->reaper)
1968                         goto err_free_recompiler;
1969         } else {
1970                 state->cstate = lightrec_create_cstate(state);
1971                 if (!state->cstate)
1972                         goto err_free_block_cache;
1973         }
1974
1975         state->nb_maps = nb;
1976         state->maps = map;
1977
1978         memcpy(&state->ops, ops, sizeof(*ops));
1979
1980         state->dispatcher = generate_dispatcher(state);
1981         if (!state->dispatcher)
1982                 goto err_free_reaper;
1983
1984         state->c_wrapper_block = generate_wrapper(state);
1985         if (!state->c_wrapper_block)
1986                 goto err_free_dispatcher;
1987
1988         state->c_wrappers[C_WRAPPER_RW] = lightrec_rw_cb;
1989         state->c_wrappers[C_WRAPPER_RW_GENERIC] = lightrec_rw_generic_cb;
1990         state->c_wrappers[C_WRAPPER_MFC] = lightrec_mfc_cb;
1991         state->c_wrappers[C_WRAPPER_MTC] = lightrec_mtc_cb;
1992         state->c_wrappers[C_WRAPPER_CP] = lightrec_cp_cb;
1993
1994         map = &state->maps[PSX_MAP_BIOS];
1995         state->offset_bios = (uintptr_t)map->address - map->pc;
1996
1997         map = &state->maps[PSX_MAP_SCRATCH_PAD];
1998         state->offset_scratch = (uintptr_t)map->address - map->pc;
1999
2000         map = &state->maps[PSX_MAP_HW_REGISTERS];
2001         state->offset_io = (uintptr_t)map->address - map->pc;
2002
2003         map = &state->maps[PSX_MAP_KERNEL_USER_RAM];
2004         state->offset_ram = (uintptr_t)map->address - map->pc;
2005
2006         if (state->maps[PSX_MAP_MIRROR1].address == map->address + 0x200000 &&
2007             state->maps[PSX_MAP_MIRROR2].address == map->address + 0x400000 &&
2008             state->maps[PSX_MAP_MIRROR3].address == map->address + 0x600000)
2009                 state->mirrors_mapped = true;
2010
2011         if (state->offset_bios == 0 &&
2012             state->offset_scratch == 0 &&
2013             state->offset_ram == 0 &&
2014             state->offset_io == 0 &&
2015             state->mirrors_mapped) {
2016                 pr_info("Memory map is perfect. Emitted code will be best.\n");
2017         } else {
2018                 pr_info("Memory map is sub-par. Emitted code will be slow.\n");
2019         }
2020
2021         if (state->with_32bit_lut)
2022                 pr_info("Using 32-bit LUT\n");
2023
2024         return state;
2025
2026 err_free_dispatcher:
2027         lightrec_free_block(state, state->dispatcher);
2028 err_free_reaper:
2029         if (ENABLE_THREADED_COMPILER)
2030                 lightrec_reaper_destroy(state->reaper);
2031 err_free_recompiler:
2032         if (ENABLE_THREADED_COMPILER)
2033                 lightrec_free_recompiler(state->rec);
2034         else
2035                 lightrec_free_cstate(state->cstate);
2036 err_free_block_cache:
2037         lightrec_free_block_cache(state->block_cache);
2038 err_free_state:
2039         lightrec_unregister(MEM_FOR_LIGHTREC, sizeof(*state) +
2040                             lut_elm_size(state) * CODE_LUT_SIZE);
2041         free(state);
2042 err_finish_jit:
2043         finish_jit();
2044         if (ENABLE_CODE_BUFFER && tlsf)
2045                 tlsf_destroy(tlsf);
2046         return NULL;
2047 }
2048
2049 void lightrec_destroy(struct lightrec_state *state)
2050 {
2051         /* Force a print info on destroy*/
2052         state->current_cycle = ~state->current_cycle;
2053         lightrec_print_info(state);
2054
2055         lightrec_free_block_cache(state->block_cache);
2056         lightrec_free_block(state, state->dispatcher);
2057         lightrec_free_block(state, state->c_wrapper_block);
2058
2059         if (ENABLE_THREADED_COMPILER) {
2060                 lightrec_free_recompiler(state->rec);
2061                 lightrec_reaper_destroy(state->reaper);
2062         } else {
2063                 lightrec_free_cstate(state->cstate);
2064         }
2065
2066         finish_jit();
2067         if (ENABLE_CODE_BUFFER && state->tlsf)
2068                 tlsf_destroy(state->tlsf);
2069
2070         lightrec_unregister(MEM_FOR_LIGHTREC, sizeof(*state) +
2071                             lut_elm_size(state) * CODE_LUT_SIZE);
2072         free(state);
2073 }
2074
2075 void lightrec_invalidate(struct lightrec_state *state, u32 addr, u32 len)
2076 {
2077         u32 kaddr = kunseg(addr & ~0x3);
2078         enum psx_map idx = lightrec_get_map_idx(state, kaddr);
2079
2080         switch (idx) {
2081         case PSX_MAP_MIRROR1:
2082         case PSX_MAP_MIRROR2:
2083         case PSX_MAP_MIRROR3:
2084                 /* Handle mirrors */
2085                 kaddr &= RAM_SIZE - 1;
2086                 fallthrough;
2087         case PSX_MAP_KERNEL_USER_RAM:
2088                 break;
2089         default:
2090                 return;
2091         }
2092
2093         memset(lut_address(state, lut_offset(kaddr)), 0,
2094                ((len + 3) / 4) * lut_elm_size(state));
2095 }
2096
2097 void lightrec_invalidate_all(struct lightrec_state *state)
2098 {
2099         memset(state->code_lut, 0, lut_elm_size(state) * CODE_LUT_SIZE);
2100 }
2101
2102 void lightrec_set_unsafe_opt_flags(struct lightrec_state *state, u32 flags)
2103 {
2104         if ((flags ^ state->opt_flags) & LIGHTREC_OPT_INV_DMA_ONLY)
2105                 lightrec_invalidate_all(state);
2106
2107         state->opt_flags = flags;
2108 }
2109
2110 void lightrec_set_exit_flags(struct lightrec_state *state, u32 flags)
2111 {
2112         if (flags != LIGHTREC_EXIT_NORMAL) {
2113                 state->exit_flags |= flags;
2114                 state->target_cycle = state->current_cycle;
2115         }
2116 }
2117
2118 u32 lightrec_exit_flags(struct lightrec_state *state)
2119 {
2120         return state->exit_flags;
2121 }
2122
2123 u32 lightrec_current_cycle_count(const struct lightrec_state *state)
2124 {
2125         return state->current_cycle;
2126 }
2127
2128 void lightrec_reset_cycle_count(struct lightrec_state *state, u32 cycles)
2129 {
2130         state->current_cycle = cycles;
2131
2132         if (state->target_cycle < cycles)
2133                 state->target_cycle = cycles;
2134 }
2135
2136 void lightrec_set_target_cycle_count(struct lightrec_state *state, u32 cycles)
2137 {
2138         if (state->exit_flags == LIGHTREC_EXIT_NORMAL) {
2139                 if (cycles < state->current_cycle)
2140                         cycles = state->current_cycle;
2141
2142                 state->target_cycle = cycles;
2143         }
2144 }
2145
2146 struct lightrec_registers * lightrec_get_registers(struct lightrec_state *state)
2147 {
2148         return &state->regs;
2149 }
2150
2151 void lightrec_set_cycles_per_opcode(struct lightrec_state *state, u32 cycles)
2152 {
2153         state->cycles_per_op = cycles;
2154 }