drc: drop heaps of dead code
[pcsx_rearmed.git] / libpcsxcore / new_dynarec / new_dynarec.c
1 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
2  *   Mupen64plus - new_dynarec.c                                           *
3  *   Copyright (C) 2009-2011 Ari64                                         *
4  *                                                                         *
5  *   This program is free software; you can redistribute it and/or modify  *
6  *   it under the terms of the GNU General Public License as published by  *
7  *   the Free Software Foundation; either version 2 of the License, or     *
8  *   (at your option) any later version.                                   *
9  *                                                                         *
10  *   This program is distributed in the hope that it will be useful,       *
11  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
12  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
13  *   GNU General Public License for more details.                          *
14  *                                                                         *
15  *   You should have received a copy of the GNU General Public License     *
16  *   along with this program; if not, write to the                         *
17  *   Free Software Foundation, Inc.,                                       *
18  *   51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.          *
19  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
20
21 #include <stdlib.h>
22 #include <stdint.h> //include for uint64_t
23 #include <assert.h>
24 #include <errno.h>
25 #include <sys/mman.h>
26
27 #include "emu_if.h" //emulator interface
28
29 //#define DISASM
30 //#define assem_debug printf
31 //#define inv_debug printf
32 #define assem_debug(...)
33 #define inv_debug(...)
34
35 #ifdef __i386__
36 #include "assem_x86.h"
37 #endif
38 #ifdef __x86_64__
39 #include "assem_x64.h"
40 #endif
41 #ifdef __arm__
42 #include "assem_arm.h"
43 #endif
44
45 #ifdef __BLACKBERRY_QNX__
46 #undef __clear_cache
47 #define __clear_cache(start,end) msync(start, (size_t)((void*)end - (void*)start), MS_SYNC | MS_CACHE_ONLY | MS_INVALIDATE_ICACHE);
48 #elif defined(__MACH__)
49 #include <libkern/OSCacheControl.h>
50 #define __clear_cache mach_clear_cache
51 static void __clear_cache(void *start, void *end) {
52   size_t len = (char *)end - (char *)start;
53   sys_dcache_flush(start, len);
54   sys_icache_invalidate(start, len);
55 }
56 #endif
57
58 #define MAXBLOCK 4096
59 #define MAX_OUTPUT_BLOCK_SIZE 262144
60
61 struct regstat
62 {
63   signed char regmap_entry[HOST_REGS];
64   signed char regmap[HOST_REGS];
65   uint64_t was32;
66   uint64_t is32;
67   uint64_t wasdirty;
68   uint64_t dirty;
69   uint64_t u;
70   uint64_t uu;
71   u_int wasconst;
72   u_int isconst;
73   u_int loadedconst;             // host regs that have constants loaded
74   u_int waswritten;              // MIPS regs that were used as store base before
75 };
76
77 // note: asm depends on this layout
78 struct ll_entry
79 {
80   u_int vaddr;
81   u_int reg_sv_flags;
82   void *addr;
83   struct ll_entry *next;
84 };
85
86   u_int start;
87   u_int *source;
88   char insn[MAXBLOCK][10];
89   u_char itype[MAXBLOCK];
90   u_char opcode[MAXBLOCK];
91   u_char opcode2[MAXBLOCK];
92   u_char bt[MAXBLOCK];
93   u_char rs1[MAXBLOCK];
94   u_char rs2[MAXBLOCK];
95   u_char rt1[MAXBLOCK];
96   u_char rt2[MAXBLOCK];
97   u_char us1[MAXBLOCK];
98   u_char us2[MAXBLOCK];
99   u_char dep1[MAXBLOCK];
100   u_char dep2[MAXBLOCK];
101   u_char lt1[MAXBLOCK];
102   static uint64_t gte_rs[MAXBLOCK]; // gte: 32 data and 32 ctl regs
103   static uint64_t gte_rt[MAXBLOCK];
104   static uint64_t gte_unneeded[MAXBLOCK];
105   static u_int smrv[32]; // speculated MIPS register values
106   static u_int smrv_strong; // mask or regs that are likely to have correct values
107   static u_int smrv_weak; // same, but somewhat less likely
108   static u_int smrv_strong_next; // same, but after current insn executes
109   static u_int smrv_weak_next;
110   int imm[MAXBLOCK];
111   u_int ba[MAXBLOCK];
112   char likely[MAXBLOCK];
113   char is_ds[MAXBLOCK];
114   char ooo[MAXBLOCK];
115   uint64_t unneeded_reg[MAXBLOCK];
116   uint64_t unneeded_reg_upper[MAXBLOCK];
117   uint64_t branch_unneeded_reg[MAXBLOCK];
118   uint64_t branch_unneeded_reg_upper[MAXBLOCK];
119   uint64_t p32[MAXBLOCK];
120   uint64_t pr32[MAXBLOCK];
121   signed char regmap_pre[MAXBLOCK][HOST_REGS];
122   static uint64_t current_constmap[HOST_REGS];
123   static uint64_t constmap[MAXBLOCK][HOST_REGS];
124   static struct regstat regs[MAXBLOCK];
125   static struct regstat branch_regs[MAXBLOCK];
126   signed char minimum_free_regs[MAXBLOCK];
127   u_int needed_reg[MAXBLOCK];
128   uint64_t requires_32bit[MAXBLOCK];
129   u_int wont_dirty[MAXBLOCK];
130   u_int will_dirty[MAXBLOCK];
131   int ccadj[MAXBLOCK];
132   int slen;
133   u_int instr_addr[MAXBLOCK];
134   u_int link_addr[MAXBLOCK][3];
135   int linkcount;
136   u_int stubs[MAXBLOCK*3][8];
137   int stubcount;
138   u_int literals[1024][2];
139   int literalcount;
140   int is_delayslot;
141   int cop1_usable;
142   u_char *out;
143   struct ll_entry *jump_in[4096] __attribute__((aligned(16)));
144   struct ll_entry *jump_out[4096];
145   struct ll_entry *jump_dirty[4096];
146   u_int hash_table[65536][4]  __attribute__((aligned(16)));
147   char shadow[1048576]  __attribute__((aligned(16)));
148   void *copy;
149   int expirep;
150   static const u_int using_tlb=0;
151   int new_dynarec_did_compile;
152   int new_dynarec_hacks;
153   u_int stop_after_jal;
154 #ifndef RAM_FIXED
155   static u_int ram_offset;
156 #else
157   static const u_int ram_offset=0;
158 #endif
159   extern u_char restore_candidate[512];
160   extern int cycle_count;
161
162   /* registers that may be allocated */
163   /* 1-31 gpr */
164 #define HIREG 32 // hi
165 #define LOREG 33 // lo
166 #define FSREG 34 // FPU status (FCSR)
167 #define CSREG 35 // Coprocessor status
168 #define CCREG 36 // Cycle count
169 #define INVCP 37 // Pointer to invalid_code
170 #define MMREG 38 // Pointer to memory_map
171 #define ROREG 39 // ram offset (if rdram!=0x80000000)
172 #define TEMPREG 40
173 #define FTEMP 40 // FPU temporary register
174 #define PTEMP 41 // Prefetch temporary register
175 #define TLREG 42 // TLB mapping offset
176 #define RHASH 43 // Return address hash
177 #define RHTBL 44 // Return address hash table address
178 #define RTEMP 45 // JR/JALR address register
179 #define MAXREG 45
180 #define AGEN1 46 // Address generation temporary register
181 #define AGEN2 47 // Address generation temporary register
182 #define MGEN1 48 // Maptable address generation temporary register
183 #define MGEN2 49 // Maptable address generation temporary register
184 #define BTREG 50 // Branch target temporary register
185
186   /* instruction types */
187 #define NOP 0     // No operation
188 #define LOAD 1    // Load
189 #define STORE 2   // Store
190 #define LOADLR 3  // Unaligned load
191 #define STORELR 4 // Unaligned store
192 #define MOV 5     // Move 
193 #define ALU 6     // Arithmetic/logic
194 #define MULTDIV 7 // Multiply/divide
195 #define SHIFT 8   // Shift by register
196 #define SHIFTIMM 9// Shift by immediate
197 #define IMM16 10  // 16-bit immediate
198 #define RJUMP 11  // Unconditional jump to register
199 #define UJUMP 12  // Unconditional jump
200 #define CJUMP 13  // Conditional branch (BEQ/BNE/BGTZ/BLEZ)
201 #define SJUMP 14  // Conditional branch (regimm format)
202 #define COP0 15   // Coprocessor 0
203 #define COP1 16   // Coprocessor 1
204 #define C1LS 17   // Coprocessor 1 load/store
205 #define FJUMP 18  // Conditional branch (floating point)
206 #define FLOAT 19  // Floating point unit
207 #define FCONV 20  // Convert integer to float
208 #define FCOMP 21  // Floating point compare (sets FSREG)
209 #define SYSCALL 22// SYSCALL
210 #define OTHER 23  // Other
211 #define SPAN 24   // Branch/delay slot spans 2 pages
212 #define NI 25     // Not implemented
213 #define HLECALL 26// PCSX fake opcodes for HLE
214 #define COP2 27   // Coprocessor 2 move
215 #define C2LS 28   // Coprocessor 2 load/store
216 #define C2OP 29   // Coprocessor 2 operation
217 #define INTCALL 30// Call interpreter to handle rare corner cases
218
219   /* stubs */
220 #define CC_STUB 1
221 #define FP_STUB 2
222 #define LOADB_STUB 3
223 #define LOADH_STUB 4
224 #define LOADW_STUB 5
225 #define LOADD_STUB 6
226 #define LOADBU_STUB 7
227 #define LOADHU_STUB 8
228 #define STOREB_STUB 9
229 #define STOREH_STUB 10
230 #define STOREW_STUB 11
231 #define STORED_STUB 12
232 #define STORELR_STUB 13
233 #define INVCODE_STUB 14
234
235   /* branch codes */
236 #define TAKEN 1
237 #define NOTTAKEN 2
238 #define NULLDS 3
239
240 // asm linkage
241 int new_recompile_block(int addr);
242 void *get_addr_ht(u_int vaddr);
243 void invalidate_block(u_int block);
244 void invalidate_addr(u_int addr);
245 void remove_hash(int vaddr);
246 void jump_vaddr();
247 void dyna_linker();
248 void dyna_linker_ds();
249 void verify_code();
250 void verify_code_vm();
251 void verify_code_ds();
252 void cc_interrupt();
253 void fp_exception();
254 void fp_exception_ds();
255 void jump_syscall();
256 void jump_syscall_hle();
257 void jump_eret();
258 void jump_hlecall();
259 void jump_intcall();
260 void new_dyna_leave();
261
262 // TLB
263 void TLBWI_new();
264 void TLBWR_new();
265 void read_nomem_new();
266 void read_nomemb_new();
267 void read_nomemh_new();
268 void read_nomemd_new();
269 void write_nomem_new();
270 void write_nomemb_new();
271 void write_nomemh_new();
272 void write_nomemd_new();
273 void write_rdram_new();
274 void write_rdramb_new();
275 void write_rdramh_new();
276 void write_rdramd_new();
277 extern u_int memory_map[1048576];
278
279 // Needed by assembler
280 void wb_register(signed char r,signed char regmap[],uint64_t dirty,uint64_t is32);
281 void wb_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty);
282 void wb_needed_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr);
283 void load_all_regs(signed char i_regmap[]);
284 void load_needed_regs(signed char i_regmap[],signed char next_regmap[]);
285 void load_regs_entry(int t);
286 void load_all_consts(signed char regmap[],int is32,u_int dirty,int i);
287
288 int tracedebug=0;
289
290 //#define DEBUG_CYCLE_COUNT 1
291
292 #define NO_CYCLE_PENALTY_THR 12
293
294 int cycle_multiplier; // 100 for 1.0
295
296 static int CLOCK_ADJUST(int x)
297 {
298   int s=(x>>31)|1;
299   return (x * cycle_multiplier + s * 50) / 100;
300 }
301
302 static u_int get_page(u_int vaddr)
303 {
304   u_int page=vaddr&~0xe0000000;
305   if (page < 0x1000000)
306     page &= ~0x0e00000; // RAM mirrors
307   page>>=12;
308   if(page>2048) page=2048+(page&2047);
309   return page;
310 }
311
312 // no virtual mem in PCSX
313 static u_int get_vpage(u_int vaddr)
314 {
315   return get_page(vaddr);
316 }
317
318 // Get address from virtual address
319 // This is called from the recompiled JR/JALR instructions
320 void *get_addr(u_int vaddr)
321 {
322   u_int page=get_page(vaddr);
323   u_int vpage=get_vpage(vaddr);
324   struct ll_entry *head;
325   //printf("TRACE: count=%d next=%d (get_addr %x,page %d)\n",Count,next_interupt,vaddr,page);
326   head=jump_in[page];
327   while(head!=NULL) {
328     if(head->vaddr==vaddr) {
329   //printf("TRACE: count=%d next=%d (get_addr match %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
330       int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
331       ht_bin[3]=ht_bin[1];
332       ht_bin[2]=ht_bin[0];
333       ht_bin[1]=(int)head->addr;
334       ht_bin[0]=vaddr;
335       return head->addr;
336     }
337     head=head->next;
338   }
339   head=jump_dirty[vpage];
340   while(head!=NULL) {
341     if(head->vaddr==vaddr) {
342       //printf("TRACE: count=%d next=%d (get_addr match dirty %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
343       // Don't restore blocks which are about to expire from the cache
344       if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
345       if(verify_dirty(head->addr)) {
346         //printf("restore candidate: %x (%d) d=%d\n",vaddr,page,invalid_code[vaddr>>12]);
347         invalid_code[vaddr>>12]=0;
348         inv_code_start=inv_code_end=~0;
349         if(vpage<2048) {
350           restore_candidate[vpage>>3]|=1<<(vpage&7);
351         }
352         else restore_candidate[page>>3]|=1<<(page&7);
353         int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
354         if(ht_bin[0]==vaddr) {
355           ht_bin[1]=(int)head->addr; // Replace existing entry
356         }
357         else
358         {
359           ht_bin[3]=ht_bin[1];
360           ht_bin[2]=ht_bin[0];
361           ht_bin[1]=(int)head->addr;
362           ht_bin[0]=vaddr;
363         }
364         return head->addr;
365       }
366     }
367     head=head->next;
368   }
369   //printf("TRACE: count=%d next=%d (get_addr no-match %x)\n",Count,next_interupt,vaddr);
370   int r=new_recompile_block(vaddr);
371   if(r==0) return get_addr(vaddr);
372   // Execute in unmapped page, generate pagefault execption
373   Status|=2;
374   Cause=(vaddr<<31)|0x8;
375   EPC=(vaddr&1)?vaddr-5:vaddr;
376   BadVAddr=(vaddr&~1);
377   Context=(Context&0xFF80000F)|((BadVAddr>>9)&0x007FFFF0);
378   EntryHi=BadVAddr&0xFFFFE000;
379   return get_addr_ht(0x80000000);
380 }
381 // Look up address in hash table first
382 void *get_addr_ht(u_int vaddr)
383 {
384   //printf("TRACE: count=%d next=%d (get_addr_ht %x)\n",Count,next_interupt,vaddr);
385   int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
386   if(ht_bin[0]==vaddr) return (void *)ht_bin[1];
387   if(ht_bin[2]==vaddr) return (void *)ht_bin[3];
388   return get_addr(vaddr);
389 }
390
391 void clear_all_regs(signed char regmap[])
392 {
393   int hr;
394   for (hr=0;hr<HOST_REGS;hr++) regmap[hr]=-1;
395 }
396
397 signed char get_reg(signed char regmap[],int r)
398 {
399   int hr;
400   for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap[hr]==r) return hr;
401   return -1;
402 }
403
404 // Find a register that is available for two consecutive cycles
405 signed char get_reg2(signed char regmap1[],signed char regmap2[],int r)
406 {
407   int hr;
408   for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap1[hr]==r&&regmap2[hr]==r) return hr;
409   return -1;
410 }
411
412 int count_free_regs(signed char regmap[])
413 {
414   int count=0;
415   int hr;
416   for(hr=0;hr<HOST_REGS;hr++)
417   {
418     if(hr!=EXCLUDE_REG) {
419       if(regmap[hr]<0) count++;
420     }
421   }
422   return count;
423 }
424
425 void dirty_reg(struct regstat *cur,signed char reg)
426 {
427   int hr;
428   if(!reg) return;
429   for (hr=0;hr<HOST_REGS;hr++) {
430     if((cur->regmap[hr]&63)==reg) {
431       cur->dirty|=1<<hr;
432     }
433   }
434 }
435
436 // If we dirty the lower half of a 64 bit register which is now being
437 // sign-extended, we need to dump the upper half.
438 // Note: Do this only after completion of the instruction, because
439 // some instructions may need to read the full 64-bit value even if
440 // overwriting it (eg SLTI, DSRA32).
441 static void flush_dirty_uppers(struct regstat *cur)
442 {
443   int hr,reg;
444   for (hr=0;hr<HOST_REGS;hr++) {
445     if((cur->dirty>>hr)&1) {
446       reg=cur->regmap[hr];
447       if(reg>=64) 
448         if((cur->is32>>(reg&63))&1) cur->regmap[hr]=-1;
449     }
450   }
451 }
452
453 void set_const(struct regstat *cur,signed char reg,uint64_t value)
454 {
455   int hr;
456   if(!reg) return;
457   for (hr=0;hr<HOST_REGS;hr++) {
458     if(cur->regmap[hr]==reg) {
459       cur->isconst|=1<<hr;
460       current_constmap[hr]=value;
461     }
462     else if((cur->regmap[hr]^64)==reg) {
463       cur->isconst|=1<<hr;
464       current_constmap[hr]=value>>32;
465     }
466   }
467 }
468
469 void clear_const(struct regstat *cur,signed char reg)
470 {
471   int hr;
472   if(!reg) return;
473   for (hr=0;hr<HOST_REGS;hr++) {
474     if((cur->regmap[hr]&63)==reg) {
475       cur->isconst&=~(1<<hr);
476     }
477   }
478 }
479
480 int is_const(struct regstat *cur,signed char reg)
481 {
482   int hr;
483   if(reg<0) return 0;
484   if(!reg) return 1;
485   for (hr=0;hr<HOST_REGS;hr++) {
486     if((cur->regmap[hr]&63)==reg) {
487       return (cur->isconst>>hr)&1;
488     }
489   }
490   return 0;
491 }
492 uint64_t get_const(struct regstat *cur,signed char reg)
493 {
494   int hr;
495   if(!reg) return 0;
496   for (hr=0;hr<HOST_REGS;hr++) {
497     if(cur->regmap[hr]==reg) {
498       return current_constmap[hr];
499     }
500   }
501   SysPrintf("Unknown constant in r%d\n",reg);
502   exit(1);
503 }
504
505 // Least soon needed registers
506 // Look at the next ten instructions and see which registers
507 // will be used.  Try not to reallocate these.
508 void lsn(u_char hsn[], int i, int *preferred_reg)
509 {
510   int j;
511   int b=-1;
512   for(j=0;j<9;j++)
513   {
514     if(i+j>=slen) {
515       j=slen-i-1;
516       break;
517     }
518     if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
519     {
520       // Don't go past an unconditonal jump
521       j++;
522       break;
523     }
524   }
525   for(;j>=0;j--)
526   {
527     if(rs1[i+j]) hsn[rs1[i+j]]=j;
528     if(rs2[i+j]) hsn[rs2[i+j]]=j;
529     if(rt1[i+j]) hsn[rt1[i+j]]=j;
530     if(rt2[i+j]) hsn[rt2[i+j]]=j;
531     if(itype[i+j]==STORE || itype[i+j]==STORELR) {
532       // Stores can allocate zero
533       hsn[rs1[i+j]]=j;
534       hsn[rs2[i+j]]=j;
535     }
536     // On some architectures stores need invc_ptr
537     #if defined(HOST_IMM8)
538     if(itype[i+j]==STORE || itype[i+j]==STORELR || (opcode[i+j]&0x3b)==0x39 || (opcode[i+j]&0x3b)==0x3a) {
539       hsn[INVCP]=j;
540     }
541     #endif
542     if(i+j>=0&&(itype[i+j]==UJUMP||itype[i+j]==CJUMP||itype[i+j]==SJUMP||itype[i+j]==FJUMP))
543     {
544       hsn[CCREG]=j;
545       b=j;
546     }
547   }
548   if(b>=0)
549   {
550     if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
551     {
552       // Follow first branch
553       int t=(ba[i+b]-start)>>2;
554       j=7-b;if(t+j>=slen) j=slen-t-1;
555       for(;j>=0;j--)
556       {
557         if(rs1[t+j]) if(hsn[rs1[t+j]]>j+b+2) hsn[rs1[t+j]]=j+b+2;
558         if(rs2[t+j]) if(hsn[rs2[t+j]]>j+b+2) hsn[rs2[t+j]]=j+b+2;
559         //if(rt1[t+j]) if(hsn[rt1[t+j]]>j+b+2) hsn[rt1[t+j]]=j+b+2;
560         //if(rt2[t+j]) if(hsn[rt2[t+j]]>j+b+2) hsn[rt2[t+j]]=j+b+2;
561       }
562     }
563     // TODO: preferred register based on backward branch
564   }
565   // Delay slot should preferably not overwrite branch conditions or cycle count
566   if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)) {
567     if(rs1[i-1]) if(hsn[rs1[i-1]]>1) hsn[rs1[i-1]]=1;
568     if(rs2[i-1]) if(hsn[rs2[i-1]]>1) hsn[rs2[i-1]]=1;
569     hsn[CCREG]=1;
570     // ...or hash tables
571     hsn[RHASH]=1;
572     hsn[RHTBL]=1;
573   }
574   // Coprocessor load/store needs FTEMP, even if not declared
575   if(itype[i]==C1LS||itype[i]==C2LS) {
576     hsn[FTEMP]=0;
577   }
578   // Load L/R also uses FTEMP as a temporary register
579   if(itype[i]==LOADLR) {
580     hsn[FTEMP]=0;
581   }
582   // Also SWL/SWR/SDL/SDR
583   if(opcode[i]==0x2a||opcode[i]==0x2e||opcode[i]==0x2c||opcode[i]==0x2d) {
584     hsn[FTEMP]=0;
585   }
586   // Don't remove the TLB registers either
587   if(itype[i]==LOAD || itype[i]==LOADLR || itype[i]==STORE || itype[i]==STORELR || itype[i]==C1LS || itype[i]==C2LS) {
588     hsn[TLREG]=0;
589   }
590   // Don't remove the miniht registers
591   if(itype[i]==UJUMP||itype[i]==RJUMP)
592   {
593     hsn[RHASH]=0;
594     hsn[RHTBL]=0;
595   }
596 }
597
598 // We only want to allocate registers if we're going to use them again soon
599 int needed_again(int r, int i)
600 {
601   int j;
602   int b=-1;
603   int rn=10;
604   
605   if(i>0&&(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000))
606   {
607     if(ba[i-1]<start || ba[i-1]>start+slen*4-4)
608       return 0; // Don't need any registers if exiting the block
609   }
610   for(j=0;j<9;j++)
611   {
612     if(i+j>=slen) {
613       j=slen-i-1;
614       break;
615     }
616     if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
617     {
618       // Don't go past an unconditonal jump
619       j++;
620       break;
621     }
622     if(itype[i+j]==SYSCALL||itype[i+j]==HLECALL||itype[i+j]==INTCALL||((source[i+j]&0xfc00003f)==0x0d))
623     {
624       break;
625     }
626   }
627   for(;j>=1;j--)
628   {
629     if(rs1[i+j]==r) rn=j;
630     if(rs2[i+j]==r) rn=j;
631     if((unneeded_reg[i+j]>>r)&1) rn=10;
632     if(i+j>=0&&(itype[i+j]==UJUMP||itype[i+j]==CJUMP||itype[i+j]==SJUMP||itype[i+j]==FJUMP))
633     {
634       b=j;
635     }
636   }
637   /*
638   if(b>=0)
639   {
640     if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
641     {
642       // Follow first branch
643       int o=rn;
644       int t=(ba[i+b]-start)>>2;
645       j=7-b;if(t+j>=slen) j=slen-t-1;
646       for(;j>=0;j--)
647       {
648         if(!((unneeded_reg[t+j]>>r)&1)) {
649           if(rs1[t+j]==r) if(rn>j+b+2) rn=j+b+2;
650           if(rs2[t+j]==r) if(rn>j+b+2) rn=j+b+2;
651         }
652         else rn=o;
653       }
654     }
655   }*/
656   if(rn<10) return 1;
657   return 0;
658 }
659
660 // Try to match register allocations at the end of a loop with those
661 // at the beginning
662 int loop_reg(int i, int r, int hr)
663 {
664   int j,k;
665   for(j=0;j<9;j++)
666   {
667     if(i+j>=slen) {
668       j=slen-i-1;
669       break;
670     }
671     if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
672     {
673       // Don't go past an unconditonal jump
674       j++;
675       break;
676     }
677   }
678   k=0;
679   if(i>0){
680     if(itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)
681       k--;
682   }
683   for(;k<j;k++)
684   {
685     if(r<64&&((unneeded_reg[i+k]>>r)&1)) return hr;
686     if(r>64&&((unneeded_reg_upper[i+k]>>r)&1)) return hr;
687     if(i+k>=0&&(itype[i+k]==UJUMP||itype[i+k]==CJUMP||itype[i+k]==SJUMP||itype[i+k]==FJUMP))
688     {
689       if(ba[i+k]>=start && ba[i+k]<(start+i*4))
690       {
691         int t=(ba[i+k]-start)>>2;
692         int reg=get_reg(regs[t].regmap_entry,r);
693         if(reg>=0) return reg;
694         //reg=get_reg(regs[t+1].regmap_entry,r);
695         //if(reg>=0) return reg;
696       }
697     }
698   }
699   return hr;
700 }
701
702
703 // Allocate every register, preserving source/target regs
704 void alloc_all(struct regstat *cur,int i)
705 {
706   int hr;
707   
708   for(hr=0;hr<HOST_REGS;hr++) {
709     if(hr!=EXCLUDE_REG) {
710       if(((cur->regmap[hr]&63)!=rs1[i])&&((cur->regmap[hr]&63)!=rs2[i])&&
711          ((cur->regmap[hr]&63)!=rt1[i])&&((cur->regmap[hr]&63)!=rt2[i]))
712       {
713         cur->regmap[hr]=-1;
714         cur->dirty&=~(1<<hr);
715       }
716       // Don't need zeros
717       if((cur->regmap[hr]&63)==0)
718       {
719         cur->regmap[hr]=-1;
720         cur->dirty&=~(1<<hr);
721       }
722     }
723   }
724 }
725
726 #ifdef __i386__
727 #include "assem_x86.c"
728 #endif
729 #ifdef __x86_64__
730 #include "assem_x64.c"
731 #endif
732 #ifdef __arm__
733 #include "assem_arm.c"
734 #endif
735
736 // Add virtual address mapping to linked list
737 void ll_add(struct ll_entry **head,int vaddr,void *addr)
738 {
739   struct ll_entry *new_entry;
740   new_entry=malloc(sizeof(struct ll_entry));
741   assert(new_entry!=NULL);
742   new_entry->vaddr=vaddr;
743   new_entry->reg_sv_flags=0;
744   new_entry->addr=addr;
745   new_entry->next=*head;
746   *head=new_entry;
747 }
748
749 void ll_add_flags(struct ll_entry **head,int vaddr,u_int reg_sv_flags,void *addr)
750 {
751   ll_add(head,vaddr,addr);
752   (*head)->reg_sv_flags=reg_sv_flags;
753 }
754
755 // Check if an address is already compiled
756 // but don't return addresses which are about to expire from the cache
757 void *check_addr(u_int vaddr)
758 {
759   u_int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
760   if(ht_bin[0]==vaddr) {
761     if(((ht_bin[1]-MAX_OUTPUT_BLOCK_SIZE-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
762       if(isclean(ht_bin[1])) return (void *)ht_bin[1];
763   }
764   if(ht_bin[2]==vaddr) {
765     if(((ht_bin[3]-MAX_OUTPUT_BLOCK_SIZE-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
766       if(isclean(ht_bin[3])) return (void *)ht_bin[3];
767   }
768   u_int page=get_page(vaddr);
769   struct ll_entry *head;
770   head=jump_in[page];
771   while(head!=NULL) {
772     if(head->vaddr==vaddr) {
773       if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
774         // Update existing entry with current address
775         if(ht_bin[0]==vaddr) {
776           ht_bin[1]=(int)head->addr;
777           return head->addr;
778         }
779         if(ht_bin[2]==vaddr) {
780           ht_bin[3]=(int)head->addr;
781           return head->addr;
782         }
783         // Insert into hash table with low priority.
784         // Don't evict existing entries, as they are probably
785         // addresses that are being accessed frequently.
786         if(ht_bin[0]==-1) {
787           ht_bin[1]=(int)head->addr;
788           ht_bin[0]=vaddr;
789         }else if(ht_bin[2]==-1) {
790           ht_bin[3]=(int)head->addr;
791           ht_bin[2]=vaddr;
792         }
793         return head->addr;
794       }
795     }
796     head=head->next;
797   }
798   return 0;
799 }
800
801 void remove_hash(int vaddr)
802 {
803   //printf("remove hash: %x\n",vaddr);
804   int *ht_bin=hash_table[(((vaddr)>>16)^vaddr)&0xFFFF];
805   if(ht_bin[2]==vaddr) {
806     ht_bin[2]=ht_bin[3]=-1;
807   }
808   if(ht_bin[0]==vaddr) {
809     ht_bin[0]=ht_bin[2];
810     ht_bin[1]=ht_bin[3];
811     ht_bin[2]=ht_bin[3]=-1;
812   }
813 }
814
815 void ll_remove_matching_addrs(struct ll_entry **head,int addr,int shift)
816 {
817   struct ll_entry *next;
818   while(*head) {
819     if(((u_int)((*head)->addr)>>shift)==(addr>>shift) || 
820        ((u_int)((*head)->addr-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(addr>>shift))
821     {
822       inv_debug("EXP: Remove pointer to %x (%x)\n",(int)(*head)->addr,(*head)->vaddr);
823       remove_hash((*head)->vaddr);
824       next=(*head)->next;
825       free(*head);
826       *head=next;
827     }
828     else
829     {
830       head=&((*head)->next);
831     }
832   }
833 }
834
835 // Remove all entries from linked list
836 void ll_clear(struct ll_entry **head)
837 {
838   struct ll_entry *cur;
839   struct ll_entry *next;
840   if(cur=*head) {
841     *head=0;
842     while(cur) {
843       next=cur->next;
844       free(cur);
845       cur=next;
846     }
847   }
848 }
849
850 // Dereference the pointers and remove if it matches
851 void ll_kill_pointers(struct ll_entry *head,int addr,int shift)
852 {
853   while(head) {
854     int ptr=get_pointer(head->addr);
855     inv_debug("EXP: Lookup pointer to %x at %x (%x)\n",(int)ptr,(int)head->addr,head->vaddr);
856     if(((ptr>>shift)==(addr>>shift)) ||
857        (((ptr-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(addr>>shift)))
858     {
859       inv_debug("EXP: Kill pointer at %x (%x)\n",(int)head->addr,head->vaddr);
860       u_int host_addr=(u_int)kill_pointer(head->addr);
861       #ifdef __arm__
862         needs_clear_cache[(host_addr-(u_int)BASE_ADDR)>>17]|=1<<(((host_addr-(u_int)BASE_ADDR)>>12)&31);
863       #endif
864     }
865     head=head->next;
866   }
867 }
868
869 // This is called when we write to a compiled block (see do_invstub)
870 void invalidate_page(u_int page)
871 {
872   struct ll_entry *head;
873   struct ll_entry *next;
874   head=jump_in[page];
875   jump_in[page]=0;
876   while(head!=NULL) {
877     inv_debug("INVALIDATE: %x\n",head->vaddr);
878     remove_hash(head->vaddr);
879     next=head->next;
880     free(head);
881     head=next;
882   }
883   head=jump_out[page];
884   jump_out[page]=0;
885   while(head!=NULL) {
886     inv_debug("INVALIDATE: kill pointer to %x (%x)\n",head->vaddr,(int)head->addr);
887     u_int host_addr=(u_int)kill_pointer(head->addr);
888     #ifdef __arm__
889       needs_clear_cache[(host_addr-(u_int)BASE_ADDR)>>17]|=1<<(((host_addr-(u_int)BASE_ADDR)>>12)&31);
890     #endif
891     next=head->next;
892     free(head);
893     head=next;
894   }
895 }
896
897 static void invalidate_block_range(u_int block, u_int first, u_int last)
898 {
899   u_int page=get_page(block<<12);
900   //printf("first=%d last=%d\n",first,last);
901   invalidate_page(page);
902   assert(first+5>page); // NB: this assumes MAXBLOCK<=4096 (4 pages)
903   assert(last<page+5);
904   // Invalidate the adjacent pages if a block crosses a 4K boundary
905   while(first<page) {
906     invalidate_page(first);
907     first++;
908   }
909   for(first=page+1;first<last;first++) {
910     invalidate_page(first);
911   }
912   #ifdef __arm__
913     do_clear_cache();
914   #endif
915   
916   // Don't trap writes
917   invalid_code[block]=1;
918
919   #ifdef USE_MINI_HT
920   memset(mini_ht,-1,sizeof(mini_ht));
921   #endif
922 }
923
924 void invalidate_block(u_int block)
925 {
926   u_int page=get_page(block<<12);
927   u_int vpage=get_vpage(block<<12);
928   inv_debug("INVALIDATE: %x (%d)\n",block<<12,page);
929   //inv_debug("invalid_code[block]=%d\n",invalid_code[block]);
930   u_int first,last;
931   first=last=page;
932   struct ll_entry *head;
933   head=jump_dirty[vpage];
934   //printf("page=%d vpage=%d\n",page,vpage);
935   while(head!=NULL) {
936     u_int start,end;
937     if(vpage>2047||(head->vaddr>>12)==block) { // Ignore vaddr hash collision
938       get_bounds((int)head->addr,&start,&end);
939       //printf("start: %x end: %x\n",start,end);
940       if(page<2048&&start>=(u_int)rdram&&end<(u_int)rdram+RAM_SIZE) {
941         if(((start-(u_int)rdram)>>12)<=page&&((end-1-(u_int)rdram)>>12)>=page) {
942           if((((start-(u_int)rdram)>>12)&2047)<first) first=((start-(u_int)rdram)>>12)&2047;
943           if((((end-1-(u_int)rdram)>>12)&2047)>last) last=((end-1-(u_int)rdram)>>12)&2047;
944         }
945       }
946     }
947     head=head->next;
948   }
949   invalidate_block_range(block,first,last);
950 }
951
952 void invalidate_addr(u_int addr)
953 {
954   //static int rhits;
955   // this check is done by the caller
956   //if (inv_code_start<=addr&&addr<=inv_code_end) { rhits++; return; }
957   u_int page=get_vpage(addr);
958   if(page<2048) { // RAM
959     struct ll_entry *head;
960     u_int addr_min=~0, addr_max=0;
961     u_int mask=RAM_SIZE-1;
962     u_int addr_main=0x80000000|(addr&mask);
963     int pg1;
964     inv_code_start=addr_main&~0xfff;
965     inv_code_end=addr_main|0xfff;
966     pg1=page;
967     if (pg1>0) {
968       // must check previous page too because of spans..
969       pg1--;
970       inv_code_start-=0x1000;
971     }
972     for(;pg1<=page;pg1++) {
973       for(head=jump_dirty[pg1];head!=NULL;head=head->next) {
974         u_int start,end;
975         get_bounds((int)head->addr,&start,&end);
976         if(ram_offset) {
977           start-=ram_offset;
978           end-=ram_offset;
979         }
980         if(start<=addr_main&&addr_main<end) {
981           if(start<addr_min) addr_min=start;
982           if(end>addr_max) addr_max=end;
983         }
984         else if(addr_main<start) {
985           if(start<inv_code_end)
986             inv_code_end=start-1;
987         }
988         else {
989           if(end>inv_code_start)
990             inv_code_start=end;
991         }
992       }
993     }
994     if (addr_min!=~0) {
995       inv_debug("INV ADDR: %08x hit %08x-%08x\n", addr, addr_min, addr_max);
996       inv_code_start=inv_code_end=~0;
997       invalidate_block_range(addr>>12,(addr_min&mask)>>12,(addr_max&mask)>>12);
998       return;
999     }
1000     else {
1001       inv_code_start=(addr&~mask)|(inv_code_start&mask);
1002       inv_code_end=(addr&~mask)|(inv_code_end&mask);
1003       inv_debug("INV ADDR: %08x miss, inv %08x-%08x, sk %d\n", addr, inv_code_start, inv_code_end, 0);
1004       return;
1005     }
1006   }
1007   invalidate_block(addr>>12);
1008 }
1009
1010 // This is called when loading a save state.
1011 // Anything could have changed, so invalidate everything.
1012 void invalidate_all_pages()
1013 {
1014   u_int page,n;
1015   for(page=0;page<4096;page++)
1016     invalidate_page(page);
1017   for(page=0;page<1048576;page++)
1018     if(!invalid_code[page]) {
1019       restore_candidate[(page&2047)>>3]|=1<<(page&7);
1020       restore_candidate[((page&2047)>>3)+256]|=1<<(page&7);
1021     }
1022   #ifdef __arm__
1023   __clear_cache((void *)BASE_ADDR,(void *)BASE_ADDR+(1<<TARGET_SIZE_2));
1024   #endif
1025   #ifdef USE_MINI_HT
1026   memset(mini_ht,-1,sizeof(mini_ht));
1027   #endif
1028 }
1029
1030 // Add an entry to jump_out after making a link
1031 void add_link(u_int vaddr,void *src)
1032 {
1033   u_int page=get_page(vaddr);
1034   inv_debug("add_link: %x -> %x (%d)\n",(int)src,vaddr,page);
1035   int *ptr=(int *)(src+4);
1036   assert((*ptr&0x0fff0000)==0x059f0000);
1037   ll_add(jump_out+page,vaddr,src);
1038   //int ptr=get_pointer(src);
1039   //inv_debug("add_link: Pointer is to %x\n",(int)ptr);
1040 }
1041
1042 // If a code block was found to be unmodified (bit was set in
1043 // restore_candidate) and it remains unmodified (bit is clear
1044 // in invalid_code) then move the entries for that 4K page from
1045 // the dirty list to the clean list.
1046 void clean_blocks(u_int page)
1047 {
1048   struct ll_entry *head;
1049   inv_debug("INV: clean_blocks page=%d\n",page);
1050   head=jump_dirty[page];
1051   while(head!=NULL) {
1052     if(!invalid_code[head->vaddr>>12]) {
1053       // Don't restore blocks which are about to expire from the cache
1054       if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1055         u_int start,end;
1056         if(verify_dirty((int)head->addr)) {
1057           //printf("Possibly Restore %x (%x)\n",head->vaddr, (int)head->addr);
1058           u_int i;
1059           u_int inv=0;
1060           get_bounds((int)head->addr,&start,&end);
1061           if(start-(u_int)rdram<RAM_SIZE) {
1062             for(i=(start-(u_int)rdram+0x80000000)>>12;i<=(end-1-(u_int)rdram+0x80000000)>>12;i++) {
1063               inv|=invalid_code[i];
1064             }
1065           }
1066           else if((signed int)head->vaddr>=(signed int)0x80000000+RAM_SIZE) {
1067             inv=1;
1068           }
1069           if(!inv) {
1070             void * clean_addr=(void *)get_clean_addr((int)head->addr);
1071             if((((u_int)clean_addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
1072               u_int ppage=page;
1073               inv_debug("INV: Restored %x (%x/%x)\n",head->vaddr, (int)head->addr, (int)clean_addr);
1074               //printf("page=%x, addr=%x\n",page,head->vaddr);
1075               //assert(head->vaddr>>12==(page|0x80000));
1076               ll_add_flags(jump_in+ppage,head->vaddr,head->reg_sv_flags,clean_addr);
1077               int *ht_bin=hash_table[((head->vaddr>>16)^head->vaddr)&0xFFFF];
1078               if(ht_bin[0]==head->vaddr) {
1079                 ht_bin[1]=(int)clean_addr; // Replace existing entry
1080               }
1081               if(ht_bin[2]==head->vaddr) {
1082                 ht_bin[3]=(int)clean_addr; // Replace existing entry
1083               }
1084             }
1085           }
1086         }
1087       }
1088     }
1089     head=head->next;
1090   }
1091 }
1092
1093
1094 void mov_alloc(struct regstat *current,int i)
1095 {
1096   // Note: Don't need to actually alloc the source registers
1097   if((~current->is32>>rs1[i])&1) {
1098     //alloc_reg64(current,i,rs1[i]);
1099     alloc_reg64(current,i,rt1[i]);
1100     current->is32&=~(1LL<<rt1[i]);
1101   } else {
1102     //alloc_reg(current,i,rs1[i]);
1103     alloc_reg(current,i,rt1[i]);
1104     current->is32|=(1LL<<rt1[i]);
1105   }
1106   clear_const(current,rs1[i]);
1107   clear_const(current,rt1[i]);
1108   dirty_reg(current,rt1[i]);
1109 }
1110
1111 void shiftimm_alloc(struct regstat *current,int i)
1112 {
1113   if(opcode2[i]<=0x3) // SLL/SRL/SRA
1114   {
1115     if(rt1[i]) {
1116       if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1117       else lt1[i]=rs1[i];
1118       alloc_reg(current,i,rt1[i]);
1119       current->is32|=1LL<<rt1[i];
1120       dirty_reg(current,rt1[i]);
1121       if(is_const(current,rs1[i])) {
1122         int v=get_const(current,rs1[i]);
1123         if(opcode2[i]==0x00) set_const(current,rt1[i],v<<imm[i]);
1124         if(opcode2[i]==0x02) set_const(current,rt1[i],(u_int)v>>imm[i]);
1125         if(opcode2[i]==0x03) set_const(current,rt1[i],v>>imm[i]);
1126       }
1127       else clear_const(current,rt1[i]);
1128     }
1129   }
1130   else
1131   {
1132     clear_const(current,rs1[i]);
1133     clear_const(current,rt1[i]);
1134   }
1135
1136   if(opcode2[i]>=0x38&&opcode2[i]<=0x3b) // DSLL/DSRL/DSRA
1137   {
1138     if(rt1[i]) {
1139       if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1140       alloc_reg64(current,i,rt1[i]);
1141       current->is32&=~(1LL<<rt1[i]);
1142       dirty_reg(current,rt1[i]);
1143     }
1144   }
1145   if(opcode2[i]==0x3c) // DSLL32
1146   {
1147     if(rt1[i]) {
1148       if(rs1[i]) alloc_reg(current,i,rs1[i]);
1149       alloc_reg64(current,i,rt1[i]);
1150       current->is32&=~(1LL<<rt1[i]);
1151       dirty_reg(current,rt1[i]);
1152     }
1153   }
1154   if(opcode2[i]==0x3e) // DSRL32
1155   {
1156     if(rt1[i]) {
1157       alloc_reg64(current,i,rs1[i]);
1158       if(imm[i]==32) {
1159         alloc_reg64(current,i,rt1[i]);
1160         current->is32&=~(1LL<<rt1[i]);
1161       } else {
1162         alloc_reg(current,i,rt1[i]);
1163         current->is32|=1LL<<rt1[i];
1164       }
1165       dirty_reg(current,rt1[i]);
1166     }
1167   }
1168   if(opcode2[i]==0x3f) // DSRA32
1169   {
1170     if(rt1[i]) {
1171       alloc_reg64(current,i,rs1[i]);
1172       alloc_reg(current,i,rt1[i]);
1173       current->is32|=1LL<<rt1[i];
1174       dirty_reg(current,rt1[i]);
1175     }
1176   }
1177 }
1178
1179 void shift_alloc(struct regstat *current,int i)
1180 {
1181   if(rt1[i]) {
1182     if(opcode2[i]<=0x07) // SLLV/SRLV/SRAV
1183     {
1184       if(rs1[i]) alloc_reg(current,i,rs1[i]);
1185       if(rs2[i]) alloc_reg(current,i,rs2[i]);
1186       alloc_reg(current,i,rt1[i]);
1187       if(rt1[i]==rs2[i]) {
1188         alloc_reg_temp(current,i,-1);
1189         minimum_free_regs[i]=1;
1190       }
1191       current->is32|=1LL<<rt1[i];
1192     } else { // DSLLV/DSRLV/DSRAV
1193       if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1194       if(rs2[i]) alloc_reg(current,i,rs2[i]);
1195       alloc_reg64(current,i,rt1[i]);
1196       current->is32&=~(1LL<<rt1[i]);
1197       if(opcode2[i]==0x16||opcode2[i]==0x17) // DSRLV and DSRAV need a temporary register
1198       {
1199         alloc_reg_temp(current,i,-1);
1200         minimum_free_regs[i]=1;
1201       }
1202     }
1203     clear_const(current,rs1[i]);
1204     clear_const(current,rs2[i]);
1205     clear_const(current,rt1[i]);
1206     dirty_reg(current,rt1[i]);
1207   }
1208 }
1209
1210 void alu_alloc(struct regstat *current,int i)
1211 {
1212   if(opcode2[i]>=0x20&&opcode2[i]<=0x23) { // ADD/ADDU/SUB/SUBU
1213     if(rt1[i]) {
1214       if(rs1[i]&&rs2[i]) {
1215         alloc_reg(current,i,rs1[i]);
1216         alloc_reg(current,i,rs2[i]);
1217       }
1218       else {
1219         if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1220         if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg(current,i,rs2[i]);
1221       }
1222       alloc_reg(current,i,rt1[i]);
1223     }
1224     current->is32|=1LL<<rt1[i];
1225   }
1226   if(opcode2[i]==0x2a||opcode2[i]==0x2b) { // SLT/SLTU
1227     if(rt1[i]) {
1228       if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1229       {
1230         alloc_reg64(current,i,rs1[i]);
1231         alloc_reg64(current,i,rs2[i]);
1232         alloc_reg(current,i,rt1[i]);
1233       } else {
1234         alloc_reg(current,i,rs1[i]);
1235         alloc_reg(current,i,rs2[i]);
1236         alloc_reg(current,i,rt1[i]);
1237       }
1238     }
1239     current->is32|=1LL<<rt1[i];
1240   }
1241   if(opcode2[i]>=0x24&&opcode2[i]<=0x27) { // AND/OR/XOR/NOR
1242     if(rt1[i]) {
1243       if(rs1[i]&&rs2[i]) {
1244         alloc_reg(current,i,rs1[i]);
1245         alloc_reg(current,i,rs2[i]);
1246       }
1247       else
1248       {
1249         if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1250         if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg(current,i,rs2[i]);
1251       }
1252       alloc_reg(current,i,rt1[i]);
1253       if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1254       {
1255         if(!((current->uu>>rt1[i])&1)) {
1256           alloc_reg64(current,i,rt1[i]);
1257         }
1258         if(get_reg(current->regmap,rt1[i]|64)>=0) {
1259           if(rs1[i]&&rs2[i]) {
1260             alloc_reg64(current,i,rs1[i]);
1261             alloc_reg64(current,i,rs2[i]);
1262           }
1263           else
1264           {
1265             // Is is really worth it to keep 64-bit values in registers?
1266             #ifdef NATIVE_64BIT
1267             if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg64(current,i,rs1[i]);
1268             if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg64(current,i,rs2[i]);
1269             #endif
1270           }
1271         }
1272         current->is32&=~(1LL<<rt1[i]);
1273       } else {
1274         current->is32|=1LL<<rt1[i];
1275       }
1276     }
1277   }
1278   if(opcode2[i]>=0x2c&&opcode2[i]<=0x2f) { // DADD/DADDU/DSUB/DSUBU
1279     if(rt1[i]) {
1280       if(rs1[i]&&rs2[i]) {
1281         if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1282           alloc_reg64(current,i,rs1[i]);
1283           alloc_reg64(current,i,rs2[i]);
1284           alloc_reg64(current,i,rt1[i]);
1285         } else {
1286           alloc_reg(current,i,rs1[i]);
1287           alloc_reg(current,i,rs2[i]);
1288           alloc_reg(current,i,rt1[i]);
1289         }
1290       }
1291       else {
1292         alloc_reg(current,i,rt1[i]);
1293         if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1294           // DADD used as move, or zeroing
1295           // If we have a 64-bit source, then make the target 64 bits too
1296           if(rs1[i]&&!((current->is32>>rs1[i])&1)) {
1297             if(get_reg(current->regmap,rs1[i])>=0) alloc_reg64(current,i,rs1[i]);
1298             alloc_reg64(current,i,rt1[i]);
1299           } else if(rs2[i]&&!((current->is32>>rs2[i])&1)) {
1300             if(get_reg(current->regmap,rs2[i])>=0) alloc_reg64(current,i,rs2[i]);
1301             alloc_reg64(current,i,rt1[i]);
1302           }
1303           if(opcode2[i]>=0x2e&&rs2[i]) {
1304             // DSUB used as negation - 64-bit result
1305             // If we have a 32-bit register, extend it to 64 bits
1306             if(get_reg(current->regmap,rs2[i])>=0) alloc_reg64(current,i,rs2[i]);
1307             alloc_reg64(current,i,rt1[i]);
1308           }
1309         }
1310       }
1311       if(rs1[i]&&rs2[i]) {
1312         current->is32&=~(1LL<<rt1[i]);
1313       } else if(rs1[i]) {
1314         current->is32&=~(1LL<<rt1[i]);
1315         if((current->is32>>rs1[i])&1)
1316           current->is32|=1LL<<rt1[i];
1317       } else if(rs2[i]) {
1318         current->is32&=~(1LL<<rt1[i]);
1319         if((current->is32>>rs2[i])&1)
1320           current->is32|=1LL<<rt1[i];
1321       } else {
1322         current->is32|=1LL<<rt1[i];
1323       }
1324     }
1325   }
1326   clear_const(current,rs1[i]);
1327   clear_const(current,rs2[i]);
1328   clear_const(current,rt1[i]);
1329   dirty_reg(current,rt1[i]);
1330 }
1331
1332 void imm16_alloc(struct regstat *current,int i)
1333 {
1334   if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1335   else lt1[i]=rs1[i];
1336   if(rt1[i]) alloc_reg(current,i,rt1[i]);
1337   if(opcode[i]==0x18||opcode[i]==0x19) { // DADDI/DADDIU
1338     current->is32&=~(1LL<<rt1[i]);
1339     if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
1340       // TODO: Could preserve the 32-bit flag if the immediate is zero
1341       alloc_reg64(current,i,rt1[i]);
1342       alloc_reg64(current,i,rs1[i]);
1343     }
1344     clear_const(current,rs1[i]);
1345     clear_const(current,rt1[i]);
1346   }
1347   else if(opcode[i]==0x0a||opcode[i]==0x0b) { // SLTI/SLTIU
1348     if((~current->is32>>rs1[i])&1) alloc_reg64(current,i,rs1[i]);
1349     current->is32|=1LL<<rt1[i];
1350     clear_const(current,rs1[i]);
1351     clear_const(current,rt1[i]);
1352   }
1353   else if(opcode[i]>=0x0c&&opcode[i]<=0x0e) { // ANDI/ORI/XORI
1354     if(((~current->is32>>rs1[i])&1)&&opcode[i]>0x0c) {
1355       if(rs1[i]!=rt1[i]) {
1356         if(needed_again(rs1[i],i)) alloc_reg64(current,i,rs1[i]);
1357         alloc_reg64(current,i,rt1[i]);
1358         current->is32&=~(1LL<<rt1[i]);
1359       }
1360     }
1361     else current->is32|=1LL<<rt1[i]; // ANDI clears upper bits
1362     if(is_const(current,rs1[i])) {
1363       int v=get_const(current,rs1[i]);
1364       if(opcode[i]==0x0c) set_const(current,rt1[i],v&imm[i]);
1365       if(opcode[i]==0x0d) set_const(current,rt1[i],v|imm[i]);
1366       if(opcode[i]==0x0e) set_const(current,rt1[i],v^imm[i]);
1367     }
1368     else clear_const(current,rt1[i]);
1369   }
1370   else if(opcode[i]==0x08||opcode[i]==0x09) { // ADDI/ADDIU
1371     if(is_const(current,rs1[i])) {
1372       int v=get_const(current,rs1[i]);
1373       set_const(current,rt1[i],v+imm[i]);
1374     }
1375     else clear_const(current,rt1[i]);
1376     current->is32|=1LL<<rt1[i];
1377   }
1378   else {
1379     set_const(current,rt1[i],((long long)((short)imm[i]))<<16); // LUI
1380     current->is32|=1LL<<rt1[i];
1381   }
1382   dirty_reg(current,rt1[i]);
1383 }
1384
1385 void load_alloc(struct regstat *current,int i)
1386 {
1387   clear_const(current,rt1[i]);
1388   //if(rs1[i]!=rt1[i]&&needed_again(rs1[i],i)) clear_const(current,rs1[i]); // Does this help or hurt?
1389   if(!rs1[i]) current->u&=~1LL; // Allow allocating r0 if it's the source register
1390   if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1391   if(rt1[i]&&!((current->u>>rt1[i])&1)) {
1392     alloc_reg(current,i,rt1[i]);
1393     assert(get_reg(current->regmap,rt1[i])>=0);
1394     if(opcode[i]==0x27||opcode[i]==0x37) // LWU/LD
1395     {
1396       current->is32&=~(1LL<<rt1[i]);
1397       alloc_reg64(current,i,rt1[i]);
1398     }
1399     else if(opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
1400     {
1401       current->is32&=~(1LL<<rt1[i]);
1402       alloc_reg64(current,i,rt1[i]);
1403       alloc_all(current,i);
1404       alloc_reg64(current,i,FTEMP);
1405       minimum_free_regs[i]=HOST_REGS;
1406     }
1407     else current->is32|=1LL<<rt1[i];
1408     dirty_reg(current,rt1[i]);
1409     // If using TLB, need a register for pointer to the mapping table
1410     if(using_tlb) alloc_reg(current,i,TLREG);
1411     // LWL/LWR need a temporary register for the old value
1412     if(opcode[i]==0x22||opcode[i]==0x26)
1413     {
1414       alloc_reg(current,i,FTEMP);
1415       alloc_reg_temp(current,i,-1);
1416       minimum_free_regs[i]=1;
1417     }
1418   }
1419   else
1420   {
1421     // Load to r0 or unneeded register (dummy load)
1422     // but we still need a register to calculate the address
1423     if(opcode[i]==0x22||opcode[i]==0x26)
1424     {
1425       alloc_reg(current,i,FTEMP); // LWL/LWR need another temporary
1426     }
1427     // If using TLB, need a register for pointer to the mapping table
1428     if(using_tlb) alloc_reg(current,i,TLREG);
1429     alloc_reg_temp(current,i,-1);
1430     minimum_free_regs[i]=1;
1431     if(opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
1432     {
1433       alloc_all(current,i);
1434       alloc_reg64(current,i,FTEMP);
1435       minimum_free_regs[i]=HOST_REGS;
1436     }
1437   }
1438 }
1439
1440 void store_alloc(struct regstat *current,int i)
1441 {
1442   clear_const(current,rs2[i]);
1443   if(!(rs2[i])) current->u&=~1LL; // Allow allocating r0 if necessary
1444   if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1445   alloc_reg(current,i,rs2[i]);
1446   if(opcode[i]==0x2c||opcode[i]==0x2d||opcode[i]==0x3f) { // 64-bit SDL/SDR/SD
1447     alloc_reg64(current,i,rs2[i]);
1448     if(rs2[i]) alloc_reg(current,i,FTEMP);
1449   }
1450   // If using TLB, need a register for pointer to the mapping table
1451   if(using_tlb) alloc_reg(current,i,TLREG);
1452   #if defined(HOST_IMM8)
1453   // On CPUs without 32-bit immediates we need a pointer to invalid_code
1454   else alloc_reg(current,i,INVCP);
1455   #endif
1456   if(opcode[i]==0x2a||opcode[i]==0x2e||opcode[i]==0x2c||opcode[i]==0x2d) { // SWL/SWL/SDL/SDR
1457     alloc_reg(current,i,FTEMP);
1458   }
1459   // We need a temporary register for address generation
1460   alloc_reg_temp(current,i,-1);
1461   minimum_free_regs[i]=1;
1462 }
1463
1464 void c1ls_alloc(struct regstat *current,int i)
1465 {
1466   //clear_const(current,rs1[i]); // FIXME
1467   clear_const(current,rt1[i]);
1468   if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1469   alloc_reg(current,i,CSREG); // Status
1470   alloc_reg(current,i,FTEMP);
1471   if(opcode[i]==0x35||opcode[i]==0x3d) { // 64-bit LDC1/SDC1
1472     alloc_reg64(current,i,FTEMP);
1473   }
1474   // If using TLB, need a register for pointer to the mapping table
1475   if(using_tlb) alloc_reg(current,i,TLREG);
1476   #if defined(HOST_IMM8)
1477   // On CPUs without 32-bit immediates we need a pointer to invalid_code
1478   else if((opcode[i]&0x3b)==0x39) // SWC1/SDC1
1479     alloc_reg(current,i,INVCP);
1480   #endif
1481   // We need a temporary register for address generation
1482   alloc_reg_temp(current,i,-1);
1483 }
1484
1485 void c2ls_alloc(struct regstat *current,int i)
1486 {
1487   clear_const(current,rt1[i]);
1488   if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
1489   alloc_reg(current,i,FTEMP);
1490   // If using TLB, need a register for pointer to the mapping table
1491   if(using_tlb) alloc_reg(current,i,TLREG);
1492   #if defined(HOST_IMM8)
1493   // On CPUs without 32-bit immediates we need a pointer to invalid_code
1494   else if((opcode[i]&0x3b)==0x3a) // SWC2/SDC2
1495     alloc_reg(current,i,INVCP);
1496   #endif
1497   // We need a temporary register for address generation
1498   alloc_reg_temp(current,i,-1);
1499   minimum_free_regs[i]=1;
1500 }
1501
1502 #ifndef multdiv_alloc
1503 void multdiv_alloc(struct regstat *current,int i)
1504 {
1505   //  case 0x18: MULT
1506   //  case 0x19: MULTU
1507   //  case 0x1A: DIV
1508   //  case 0x1B: DIVU
1509   //  case 0x1C: DMULT
1510   //  case 0x1D: DMULTU
1511   //  case 0x1E: DDIV
1512   //  case 0x1F: DDIVU
1513   clear_const(current,rs1[i]);
1514   clear_const(current,rs2[i]);
1515   if(rs1[i]&&rs2[i])
1516   {
1517     if((opcode2[i]&4)==0) // 32-bit
1518     {
1519       current->u&=~(1LL<<HIREG);
1520       current->u&=~(1LL<<LOREG);
1521       alloc_reg(current,i,HIREG);
1522       alloc_reg(current,i,LOREG);
1523       alloc_reg(current,i,rs1[i]);
1524       alloc_reg(current,i,rs2[i]);
1525       current->is32|=1LL<<HIREG;
1526       current->is32|=1LL<<LOREG;
1527       dirty_reg(current,HIREG);
1528       dirty_reg(current,LOREG);
1529     }
1530     else // 64-bit
1531     {
1532       current->u&=~(1LL<<HIREG);
1533       current->u&=~(1LL<<LOREG);
1534       current->uu&=~(1LL<<HIREG);
1535       current->uu&=~(1LL<<LOREG);
1536       alloc_reg64(current,i,HIREG);
1537       //if(HOST_REGS>10) alloc_reg64(current,i,LOREG);
1538       alloc_reg64(current,i,rs1[i]);
1539       alloc_reg64(current,i,rs2[i]);
1540       alloc_all(current,i);
1541       current->is32&=~(1LL<<HIREG);
1542       current->is32&=~(1LL<<LOREG);
1543       dirty_reg(current,HIREG);
1544       dirty_reg(current,LOREG);
1545       minimum_free_regs[i]=HOST_REGS;
1546     }
1547   }
1548   else
1549   {
1550     // Multiply by zero is zero.
1551     // MIPS does not have a divide by zero exception.
1552     // The result is undefined, we return zero.
1553     alloc_reg(current,i,HIREG);
1554     alloc_reg(current,i,LOREG);
1555     current->is32|=1LL<<HIREG;
1556     current->is32|=1LL<<LOREG;
1557     dirty_reg(current,HIREG);
1558     dirty_reg(current,LOREG);
1559   }
1560 }
1561 #endif
1562
1563 void cop0_alloc(struct regstat *current,int i)
1564 {
1565   if(opcode2[i]==0) // MFC0
1566   {
1567     if(rt1[i]) {
1568       clear_const(current,rt1[i]);
1569       alloc_all(current,i);
1570       alloc_reg(current,i,rt1[i]);
1571       current->is32|=1LL<<rt1[i];
1572       dirty_reg(current,rt1[i]);
1573     }
1574   }
1575   else if(opcode2[i]==4) // MTC0
1576   {
1577     if(rs1[i]){
1578       clear_const(current,rs1[i]);
1579       alloc_reg(current,i,rs1[i]);
1580       alloc_all(current,i);
1581     }
1582     else {
1583       alloc_all(current,i); // FIXME: Keep r0
1584       current->u&=~1LL;
1585       alloc_reg(current,i,0);
1586     }
1587   }
1588   else
1589   {
1590     // TLBR/TLBWI/TLBWR/TLBP/ERET
1591     assert(opcode2[i]==0x10);
1592     alloc_all(current,i);
1593   }
1594   minimum_free_regs[i]=HOST_REGS;
1595 }
1596
1597 void cop1_alloc(struct regstat *current,int i)
1598 {
1599   alloc_reg(current,i,CSREG); // Load status
1600   if(opcode2[i]<3) // MFC1/DMFC1/CFC1
1601   {
1602     if(rt1[i]){
1603       clear_const(current,rt1[i]);
1604       if(opcode2[i]==1) {
1605         alloc_reg64(current,i,rt1[i]); // DMFC1
1606         current->is32&=~(1LL<<rt1[i]);
1607       }else{
1608         alloc_reg(current,i,rt1[i]); // MFC1/CFC1
1609         current->is32|=1LL<<rt1[i];
1610       }
1611       dirty_reg(current,rt1[i]);
1612     }
1613     alloc_reg_temp(current,i,-1);
1614   }
1615   else if(opcode2[i]>3) // MTC1/DMTC1/CTC1
1616   {
1617     if(rs1[i]){
1618       clear_const(current,rs1[i]);
1619       if(opcode2[i]==5)
1620         alloc_reg64(current,i,rs1[i]); // DMTC1
1621       else
1622         alloc_reg(current,i,rs1[i]); // MTC1/CTC1
1623       alloc_reg_temp(current,i,-1);
1624     }
1625     else {
1626       current->u&=~1LL;
1627       alloc_reg(current,i,0);
1628       alloc_reg_temp(current,i,-1);
1629     }
1630   }
1631   minimum_free_regs[i]=1;
1632 }
1633 void fconv_alloc(struct regstat *current,int i)
1634 {
1635   alloc_reg(current,i,CSREG); // Load status
1636   alloc_reg_temp(current,i,-1);
1637   minimum_free_regs[i]=1;
1638 }
1639 void float_alloc(struct regstat *current,int i)
1640 {
1641   alloc_reg(current,i,CSREG); // Load status
1642   alloc_reg_temp(current,i,-1);
1643   minimum_free_regs[i]=1;
1644 }
1645 void c2op_alloc(struct regstat *current,int i)
1646 {
1647   alloc_reg_temp(current,i,-1);
1648 }
1649 void fcomp_alloc(struct regstat *current,int i)
1650 {
1651   alloc_reg(current,i,CSREG); // Load status
1652   alloc_reg(current,i,FSREG); // Load flags
1653   dirty_reg(current,FSREG); // Flag will be modified
1654   alloc_reg_temp(current,i,-1);
1655   minimum_free_regs[i]=1;
1656 }
1657
1658 void syscall_alloc(struct regstat *current,int i)
1659 {
1660   alloc_cc(current,i);
1661   dirty_reg(current,CCREG);
1662   alloc_all(current,i);
1663   minimum_free_regs[i]=HOST_REGS;
1664   current->isconst=0;
1665 }
1666
1667 void delayslot_alloc(struct regstat *current,int i)
1668 {
1669   switch(itype[i]) {
1670     case UJUMP:
1671     case CJUMP:
1672     case SJUMP:
1673     case RJUMP:
1674     case FJUMP:
1675     case SYSCALL:
1676     case HLECALL:
1677     case SPAN:
1678       assem_debug("jump in the delay slot.  this shouldn't happen.\n");//exit(1);
1679       SysPrintf("Disabled speculative precompilation\n");
1680       stop_after_jal=1;
1681       break;
1682     case IMM16:
1683       imm16_alloc(current,i);
1684       break;
1685     case LOAD:
1686     case LOADLR:
1687       load_alloc(current,i);
1688       break;
1689     case STORE:
1690     case STORELR:
1691       store_alloc(current,i);
1692       break;
1693     case ALU:
1694       alu_alloc(current,i);
1695       break;
1696     case SHIFT:
1697       shift_alloc(current,i);
1698       break;
1699     case MULTDIV:
1700       multdiv_alloc(current,i);
1701       break;
1702     case SHIFTIMM:
1703       shiftimm_alloc(current,i);
1704       break;
1705     case MOV:
1706       mov_alloc(current,i);
1707       break;
1708     case COP0:
1709       cop0_alloc(current,i);
1710       break;
1711     case COP1:
1712     case COP2:
1713       cop1_alloc(current,i);
1714       break;
1715     case C1LS:
1716       c1ls_alloc(current,i);
1717       break;
1718     case C2LS:
1719       c2ls_alloc(current,i);
1720       break;
1721     case FCONV:
1722       fconv_alloc(current,i);
1723       break;
1724     case FLOAT:
1725       float_alloc(current,i);
1726       break;
1727     case FCOMP:
1728       fcomp_alloc(current,i);
1729       break;
1730     case C2OP:
1731       c2op_alloc(current,i);
1732       break;
1733   }
1734 }
1735
1736 // Special case where a branch and delay slot span two pages in virtual memory
1737 static void pagespan_alloc(struct regstat *current,int i)
1738 {
1739   current->isconst=0;
1740   current->wasconst=0;
1741   regs[i].wasconst=0;
1742   minimum_free_regs[i]=HOST_REGS;
1743   alloc_all(current,i);
1744   alloc_cc(current,i);
1745   dirty_reg(current,CCREG);
1746   if(opcode[i]==3) // JAL
1747   {
1748     alloc_reg(current,i,31);
1749     dirty_reg(current,31);
1750   }
1751   if(opcode[i]==0&&(opcode2[i]&0x3E)==8) // JR/JALR
1752   {
1753     alloc_reg(current,i,rs1[i]);
1754     if (rt1[i]!=0) {
1755       alloc_reg(current,i,rt1[i]);
1756       dirty_reg(current,rt1[i]);
1757     }
1758   }
1759   if((opcode[i]&0x2E)==4) // BEQ/BNE/BEQL/BNEL
1760   {
1761     if(rs1[i]) alloc_reg(current,i,rs1[i]);
1762     if(rs2[i]) alloc_reg(current,i,rs2[i]);
1763     if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
1764     {
1765       if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1766       if(rs2[i]) alloc_reg64(current,i,rs2[i]);
1767     }
1768   }
1769   else
1770   if((opcode[i]&0x2E)==6) // BLEZ/BGTZ/BLEZL/BGTZL
1771   {
1772     if(rs1[i]) alloc_reg(current,i,rs1[i]);
1773     if(!((current->is32>>rs1[i])&1))
1774     {
1775       if(rs1[i]) alloc_reg64(current,i,rs1[i]);
1776     }
1777   }
1778   else
1779   if(opcode[i]==0x11) // BC1
1780   {
1781     alloc_reg(current,i,FSREG);
1782     alloc_reg(current,i,CSREG);
1783   }
1784   //else ...
1785 }
1786
1787 add_stub(int type,int addr,int retaddr,int a,int b,int c,int d,int e)
1788 {
1789   stubs[stubcount][0]=type;
1790   stubs[stubcount][1]=addr;
1791   stubs[stubcount][2]=retaddr;
1792   stubs[stubcount][3]=a;
1793   stubs[stubcount][4]=b;
1794   stubs[stubcount][5]=c;
1795   stubs[stubcount][6]=d;
1796   stubs[stubcount][7]=e;
1797   stubcount++;
1798 }
1799
1800 // Write out a single register
1801 void wb_register(signed char r,signed char regmap[],uint64_t dirty,uint64_t is32)
1802 {
1803   int hr;
1804   for(hr=0;hr<HOST_REGS;hr++) {
1805     if(hr!=EXCLUDE_REG) {
1806       if((regmap[hr]&63)==r) {
1807         if((dirty>>hr)&1) {
1808           if(regmap[hr]<64) {
1809             emit_storereg(r,hr);
1810           }else{
1811             emit_storereg(r|64,hr);
1812           }
1813         }
1814       }
1815     }
1816   }
1817 }
1818
1819 int mchecksum()
1820 {
1821   //if(!tracedebug) return 0;
1822   int i;
1823   int sum=0;
1824   for(i=0;i<2097152;i++) {
1825     unsigned int temp=sum;
1826     sum<<=1;
1827     sum|=(~temp)>>31;
1828     sum^=((u_int *)rdram)[i];
1829   }
1830   return sum;
1831 }
1832 int rchecksum()
1833 {
1834   int i;
1835   int sum=0;
1836   for(i=0;i<64;i++)
1837     sum^=((u_int *)reg)[i];
1838   return sum;
1839 }
1840 void rlist()
1841 {
1842   int i;
1843   printf("TRACE: ");
1844   for(i=0;i<32;i++)
1845     printf("r%d:%8x%8x ",i,((int *)(reg+i))[1],((int *)(reg+i))[0]);
1846   printf("\n");
1847 }
1848
1849 void enabletrace()
1850 {
1851   tracedebug=1;
1852 }
1853
1854 void memdebug(int i)
1855 {
1856   //printf("TRACE: count=%d next=%d (checksum %x) lo=%8x%8x\n",Count,next_interupt,mchecksum(),(int)(reg[LOREG]>>32),(int)reg[LOREG]);
1857   //printf("TRACE: count=%d next=%d (rchecksum %x)\n",Count,next_interupt,rchecksum());
1858   //rlist();
1859   //if(tracedebug) {
1860   //if(Count>=-2084597794) {
1861   if((signed int)Count>=-2084597794&&(signed int)Count<0) {
1862   //if(0) {
1863     printf("TRACE: count=%d next=%d (checksum %x)\n",Count,next_interupt,mchecksum());
1864     //printf("TRACE: count=%d next=%d (checksum %x) Status=%x\n",Count,next_interupt,mchecksum(),Status);
1865     //printf("TRACE: count=%d next=%d (checksum %x) hi=%8x%8x\n",Count,next_interupt,mchecksum(),(int)(reg[HIREG]>>32),(int)reg[HIREG]);
1866     rlist();
1867     #ifdef __i386__
1868     printf("TRACE: %x\n",(&i)[-1]);
1869     #endif
1870     #ifdef __arm__
1871     int j;
1872     printf("TRACE: %x \n",(&j)[10]);
1873     printf("TRACE: %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x\n",(&j)[1],(&j)[2],(&j)[3],(&j)[4],(&j)[5],(&j)[6],(&j)[7],(&j)[8],(&j)[9],(&j)[10],(&j)[11],(&j)[12],(&j)[13],(&j)[14],(&j)[15],(&j)[16],(&j)[17],(&j)[18],(&j)[19],(&j)[20]);
1874     #endif
1875     //fflush(stdout);
1876   }
1877   //printf("TRACE: %x\n",(&i)[-1]);
1878 }
1879
1880 void tlb_debug(u_int cause, u_int addr, u_int iaddr)
1881 {
1882   printf("TLB Exception: instruction=%x addr=%x cause=%x\n",iaddr, addr, cause);
1883 }
1884
1885 void alu_assemble(int i,struct regstat *i_regs)
1886 {
1887   if(opcode2[i]>=0x20&&opcode2[i]<=0x23) { // ADD/ADDU/SUB/SUBU
1888     if(rt1[i]) {
1889       signed char s1,s2,t;
1890       t=get_reg(i_regs->regmap,rt1[i]);
1891       if(t>=0) {
1892         s1=get_reg(i_regs->regmap,rs1[i]);
1893         s2=get_reg(i_regs->regmap,rs2[i]);
1894         if(rs1[i]&&rs2[i]) {
1895           assert(s1>=0);
1896           assert(s2>=0);
1897           if(opcode2[i]&2) emit_sub(s1,s2,t);
1898           else emit_add(s1,s2,t);
1899         }
1900         else if(rs1[i]) {
1901           if(s1>=0) emit_mov(s1,t);
1902           else emit_loadreg(rs1[i],t);
1903         }
1904         else if(rs2[i]) {
1905           if(s2>=0) {
1906             if(opcode2[i]&2) emit_neg(s2,t);
1907             else emit_mov(s2,t);
1908           }
1909           else {
1910             emit_loadreg(rs2[i],t);
1911             if(opcode2[i]&2) emit_neg(t,t);
1912           }
1913         }
1914         else emit_zeroreg(t);
1915       }
1916     }
1917   }
1918   if(opcode2[i]>=0x2c&&opcode2[i]<=0x2f) { // DADD/DADDU/DSUB/DSUBU
1919     if(rt1[i]) {
1920       signed char s1l,s2l,s1h,s2h,tl,th;
1921       tl=get_reg(i_regs->regmap,rt1[i]);
1922       th=get_reg(i_regs->regmap,rt1[i]|64);
1923       if(tl>=0) {
1924         s1l=get_reg(i_regs->regmap,rs1[i]);
1925         s2l=get_reg(i_regs->regmap,rs2[i]);
1926         s1h=get_reg(i_regs->regmap,rs1[i]|64);
1927         s2h=get_reg(i_regs->regmap,rs2[i]|64);
1928         if(rs1[i]&&rs2[i]) {
1929           assert(s1l>=0);
1930           assert(s2l>=0);
1931           if(opcode2[i]&2) emit_subs(s1l,s2l,tl);
1932           else emit_adds(s1l,s2l,tl);
1933           if(th>=0) {
1934             #ifdef INVERTED_CARRY
1935             if(opcode2[i]&2) {if(s1h!=th) emit_mov(s1h,th);emit_sbb(th,s2h);}
1936             #else
1937             if(opcode2[i]&2) emit_sbc(s1h,s2h,th);
1938             #endif
1939             else emit_add(s1h,s2h,th);
1940           }
1941         }
1942         else if(rs1[i]) {
1943           if(s1l>=0) emit_mov(s1l,tl);
1944           else emit_loadreg(rs1[i],tl);
1945           if(th>=0) {
1946             if(s1h>=0) emit_mov(s1h,th);
1947             else emit_loadreg(rs1[i]|64,th);
1948           }
1949         }
1950         else if(rs2[i]) {
1951           if(s2l>=0) {
1952             if(opcode2[i]&2) emit_negs(s2l,tl);
1953             else emit_mov(s2l,tl);
1954           }
1955           else {
1956             emit_loadreg(rs2[i],tl);
1957             if(opcode2[i]&2) emit_negs(tl,tl);
1958           }
1959           if(th>=0) {
1960             #ifdef INVERTED_CARRY
1961             if(s2h>=0) emit_mov(s2h,th);
1962             else emit_loadreg(rs2[i]|64,th);
1963             if(opcode2[i]&2) {
1964               emit_adcimm(-1,th); // x86 has inverted carry flag
1965               emit_not(th,th);
1966             }
1967             #else
1968             if(opcode2[i]&2) {
1969               if(s2h>=0) emit_rscimm(s2h,0,th);
1970               else {
1971                 emit_loadreg(rs2[i]|64,th);
1972                 emit_rscimm(th,0,th);
1973               }
1974             }else{
1975               if(s2h>=0) emit_mov(s2h,th);
1976               else emit_loadreg(rs2[i]|64,th);
1977             }
1978             #endif
1979           }
1980         }
1981         else {
1982           emit_zeroreg(tl);
1983           if(th>=0) emit_zeroreg(th);
1984         }
1985       }
1986     }
1987   }
1988   if(opcode2[i]==0x2a||opcode2[i]==0x2b) { // SLT/SLTU
1989     if(rt1[i]) {
1990       signed char s1l,s1h,s2l,s2h,t;
1991       if(!((i_regs->was32>>rs1[i])&(i_regs->was32>>rs2[i])&1))
1992       {
1993         t=get_reg(i_regs->regmap,rt1[i]);
1994         //assert(t>=0);
1995         if(t>=0) {
1996           s1l=get_reg(i_regs->regmap,rs1[i]);
1997           s1h=get_reg(i_regs->regmap,rs1[i]|64);
1998           s2l=get_reg(i_regs->regmap,rs2[i]);
1999           s2h=get_reg(i_regs->regmap,rs2[i]|64);
2000           if(rs2[i]==0) // rx<r0
2001           {
2002             assert(s1h>=0);
2003             if(opcode2[i]==0x2a) // SLT
2004               emit_shrimm(s1h,31,t);
2005             else // SLTU (unsigned can not be less than zero)
2006               emit_zeroreg(t);
2007           }
2008           else if(rs1[i]==0) // r0<rx
2009           {
2010             assert(s2h>=0);
2011             if(opcode2[i]==0x2a) // SLT
2012               emit_set_gz64_32(s2h,s2l,t);
2013             else // SLTU (set if not zero)
2014               emit_set_nz64_32(s2h,s2l,t);
2015           }
2016           else {
2017             assert(s1l>=0);assert(s1h>=0);
2018             assert(s2l>=0);assert(s2h>=0);
2019             if(opcode2[i]==0x2a) // SLT
2020               emit_set_if_less64_32(s1h,s1l,s2h,s2l,t);
2021             else // SLTU
2022               emit_set_if_carry64_32(s1h,s1l,s2h,s2l,t);
2023           }
2024         }
2025       } else {
2026         t=get_reg(i_regs->regmap,rt1[i]);
2027         //assert(t>=0);
2028         if(t>=0) {
2029           s1l=get_reg(i_regs->regmap,rs1[i]);
2030           s2l=get_reg(i_regs->regmap,rs2[i]);
2031           if(rs2[i]==0) // rx<r0
2032           {
2033             assert(s1l>=0);
2034             if(opcode2[i]==0x2a) // SLT
2035               emit_shrimm(s1l,31,t);
2036             else // SLTU (unsigned can not be less than zero)
2037               emit_zeroreg(t);
2038           }
2039           else if(rs1[i]==0) // r0<rx
2040           {
2041             assert(s2l>=0);
2042             if(opcode2[i]==0x2a) // SLT
2043               emit_set_gz32(s2l,t);
2044             else // SLTU (set if not zero)
2045               emit_set_nz32(s2l,t);
2046           }
2047           else{
2048             assert(s1l>=0);assert(s2l>=0);
2049             if(opcode2[i]==0x2a) // SLT
2050               emit_set_if_less32(s1l,s2l,t);
2051             else // SLTU
2052               emit_set_if_carry32(s1l,s2l,t);
2053           }
2054         }
2055       }
2056     }
2057   }
2058   if(opcode2[i]>=0x24&&opcode2[i]<=0x27) { // AND/OR/XOR/NOR
2059     if(rt1[i]) {
2060       signed char s1l,s1h,s2l,s2h,th,tl;
2061       tl=get_reg(i_regs->regmap,rt1[i]);
2062       th=get_reg(i_regs->regmap,rt1[i]|64);
2063       if(!((i_regs->was32>>rs1[i])&(i_regs->was32>>rs2[i])&1)&&th>=0)
2064       {
2065         assert(tl>=0);
2066         if(tl>=0) {
2067           s1l=get_reg(i_regs->regmap,rs1[i]);
2068           s1h=get_reg(i_regs->regmap,rs1[i]|64);
2069           s2l=get_reg(i_regs->regmap,rs2[i]);
2070           s2h=get_reg(i_regs->regmap,rs2[i]|64);
2071           if(rs1[i]&&rs2[i]) {
2072             assert(s1l>=0);assert(s1h>=0);
2073             assert(s2l>=0);assert(s2h>=0);
2074             if(opcode2[i]==0x24) { // AND
2075               emit_and(s1l,s2l,tl);
2076               emit_and(s1h,s2h,th);
2077             } else
2078             if(opcode2[i]==0x25) { // OR
2079               emit_or(s1l,s2l,tl);
2080               emit_or(s1h,s2h,th);
2081             } else
2082             if(opcode2[i]==0x26) { // XOR
2083               emit_xor(s1l,s2l,tl);
2084               emit_xor(s1h,s2h,th);
2085             } else
2086             if(opcode2[i]==0x27) { // NOR
2087               emit_or(s1l,s2l,tl);
2088               emit_or(s1h,s2h,th);
2089               emit_not(tl,tl);
2090               emit_not(th,th);
2091             }
2092           }
2093           else
2094           {
2095             if(opcode2[i]==0x24) { // AND
2096               emit_zeroreg(tl);
2097               emit_zeroreg(th);
2098             } else
2099             if(opcode2[i]==0x25||opcode2[i]==0x26) { // OR/XOR
2100               if(rs1[i]){
2101                 if(s1l>=0) emit_mov(s1l,tl);
2102                 else emit_loadreg(rs1[i],tl);
2103                 if(s1h>=0) emit_mov(s1h,th);
2104                 else emit_loadreg(rs1[i]|64,th);
2105               }
2106               else
2107               if(rs2[i]){
2108                 if(s2l>=0) emit_mov(s2l,tl);
2109                 else emit_loadreg(rs2[i],tl);
2110                 if(s2h>=0) emit_mov(s2h,th);
2111                 else emit_loadreg(rs2[i]|64,th);
2112               }
2113               else{
2114                 emit_zeroreg(tl);
2115                 emit_zeroreg(th);
2116               }
2117             } else
2118             if(opcode2[i]==0x27) { // NOR
2119               if(rs1[i]){
2120                 if(s1l>=0) emit_not(s1l,tl);
2121                 else{
2122                   emit_loadreg(rs1[i],tl);
2123                   emit_not(tl,tl);
2124                 }
2125                 if(s1h>=0) emit_not(s1h,th);
2126                 else{
2127                   emit_loadreg(rs1[i]|64,th);
2128                   emit_not(th,th);
2129                 }
2130               }
2131               else
2132               if(rs2[i]){
2133                 if(s2l>=0) emit_not(s2l,tl);
2134                 else{
2135                   emit_loadreg(rs2[i],tl);
2136                   emit_not(tl,tl);
2137                 }
2138                 if(s2h>=0) emit_not(s2h,th);
2139                 else{
2140                   emit_loadreg(rs2[i]|64,th);
2141                   emit_not(th,th);
2142                 }
2143               }
2144               else {
2145                 emit_movimm(-1,tl);
2146                 emit_movimm(-1,th);
2147               }
2148             }
2149           }
2150         }
2151       }
2152       else
2153       {
2154         // 32 bit
2155         if(tl>=0) {
2156           s1l=get_reg(i_regs->regmap,rs1[i]);
2157           s2l=get_reg(i_regs->regmap,rs2[i]);
2158           if(rs1[i]&&rs2[i]) {
2159             assert(s1l>=0);
2160             assert(s2l>=0);
2161             if(opcode2[i]==0x24) { // AND
2162               emit_and(s1l,s2l,tl);
2163             } else
2164             if(opcode2[i]==0x25) { // OR
2165               emit_or(s1l,s2l,tl);
2166             } else
2167             if(opcode2[i]==0x26) { // XOR
2168               emit_xor(s1l,s2l,tl);
2169             } else
2170             if(opcode2[i]==0x27) { // NOR
2171               emit_or(s1l,s2l,tl);
2172               emit_not(tl,tl);
2173             }
2174           }
2175           else
2176           {
2177             if(opcode2[i]==0x24) { // AND
2178               emit_zeroreg(tl);
2179             } else
2180             if(opcode2[i]==0x25||opcode2[i]==0x26) { // OR/XOR
2181               if(rs1[i]){
2182                 if(s1l>=0) emit_mov(s1l,tl);
2183                 else emit_loadreg(rs1[i],tl); // CHECK: regmap_entry?
2184               }
2185               else
2186               if(rs2[i]){
2187                 if(s2l>=0) emit_mov(s2l,tl);
2188                 else emit_loadreg(rs2[i],tl); // CHECK: regmap_entry?
2189               }
2190               else emit_zeroreg(tl);
2191             } else
2192             if(opcode2[i]==0x27) { // NOR
2193               if(rs1[i]){
2194                 if(s1l>=0) emit_not(s1l,tl);
2195                 else {
2196                   emit_loadreg(rs1[i],tl);
2197                   emit_not(tl,tl);
2198                 }
2199               }
2200               else
2201               if(rs2[i]){
2202                 if(s2l>=0) emit_not(s2l,tl);
2203                 else {
2204                   emit_loadreg(rs2[i],tl);
2205                   emit_not(tl,tl);
2206                 }
2207               }
2208               else emit_movimm(-1,tl);
2209             }
2210           }
2211         }
2212       }
2213     }
2214   }
2215 }
2216
2217 void imm16_assemble(int i,struct regstat *i_regs)
2218 {
2219   if (opcode[i]==0x0f) { // LUI
2220     if(rt1[i]) {
2221       signed char t;
2222       t=get_reg(i_regs->regmap,rt1[i]);
2223       //assert(t>=0);
2224       if(t>=0) {
2225         if(!((i_regs->isconst>>t)&1))
2226           emit_movimm(imm[i]<<16,t);
2227       }
2228     }
2229   }
2230   if(opcode[i]==0x08||opcode[i]==0x09) { // ADDI/ADDIU
2231     if(rt1[i]) {
2232       signed char s,t;
2233       t=get_reg(i_regs->regmap,rt1[i]);
2234       s=get_reg(i_regs->regmap,rs1[i]);
2235       if(rs1[i]) {
2236         //assert(t>=0);
2237         //assert(s>=0);
2238         if(t>=0) {
2239           if(!((i_regs->isconst>>t)&1)) {
2240             if(s<0) {
2241               if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2242               emit_addimm(t,imm[i],t);
2243             }else{
2244               if(!((i_regs->wasconst>>s)&1))
2245                 emit_addimm(s,imm[i],t);
2246               else
2247                 emit_movimm(constmap[i][s]+imm[i],t);
2248             }
2249           }
2250         }
2251       } else {
2252         if(t>=0) {
2253           if(!((i_regs->isconst>>t)&1))
2254             emit_movimm(imm[i],t);
2255         }
2256       }
2257     }
2258   }
2259   if(opcode[i]==0x18||opcode[i]==0x19) { // DADDI/DADDIU
2260     if(rt1[i]) {
2261       signed char sh,sl,th,tl;
2262       th=get_reg(i_regs->regmap,rt1[i]|64);
2263       tl=get_reg(i_regs->regmap,rt1[i]);
2264       sh=get_reg(i_regs->regmap,rs1[i]|64);
2265       sl=get_reg(i_regs->regmap,rs1[i]);
2266       if(tl>=0) {
2267         if(rs1[i]) {
2268           assert(sh>=0);
2269           assert(sl>=0);
2270           if(th>=0) {
2271             emit_addimm64_32(sh,sl,imm[i],th,tl);
2272           }
2273           else {
2274             emit_addimm(sl,imm[i],tl);
2275           }
2276         } else {
2277           emit_movimm(imm[i],tl);
2278           if(th>=0) emit_movimm(((signed int)imm[i])>>31,th);
2279         }
2280       }
2281     }
2282   }
2283   else if(opcode[i]==0x0a||opcode[i]==0x0b) { // SLTI/SLTIU
2284     if(rt1[i]) {
2285       //assert(rs1[i]!=0); // r0 might be valid, but it's probably a bug
2286       signed char sh,sl,t;
2287       t=get_reg(i_regs->regmap,rt1[i]);
2288       sh=get_reg(i_regs->regmap,rs1[i]|64);
2289       sl=get_reg(i_regs->regmap,rs1[i]);
2290       //assert(t>=0);
2291       if(t>=0) {
2292         if(rs1[i]>0) {
2293           if(sh<0) assert((i_regs->was32>>rs1[i])&1);
2294           if(sh<0||((i_regs->was32>>rs1[i])&1)) {
2295             if(opcode[i]==0x0a) { // SLTI
2296               if(sl<0) {
2297                 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2298                 emit_slti32(t,imm[i],t);
2299               }else{
2300                 emit_slti32(sl,imm[i],t);
2301               }
2302             }
2303             else { // SLTIU
2304               if(sl<0) {
2305                 if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2306                 emit_sltiu32(t,imm[i],t);
2307               }else{
2308                 emit_sltiu32(sl,imm[i],t);
2309               }
2310             }
2311           }else{ // 64-bit
2312             assert(sl>=0);
2313             if(opcode[i]==0x0a) // SLTI
2314               emit_slti64_32(sh,sl,imm[i],t);
2315             else // SLTIU
2316               emit_sltiu64_32(sh,sl,imm[i],t);
2317           }
2318         }else{
2319           // SLTI(U) with r0 is just stupid,
2320           // nonetheless examples can be found
2321           if(opcode[i]==0x0a) // SLTI
2322             if(0<imm[i]) emit_movimm(1,t);
2323             else emit_zeroreg(t);
2324           else // SLTIU
2325           {
2326             if(imm[i]) emit_movimm(1,t);
2327             else emit_zeroreg(t);
2328           }
2329         }
2330       }
2331     }
2332   }
2333   else if(opcode[i]>=0x0c&&opcode[i]<=0x0e) { // ANDI/ORI/XORI
2334     if(rt1[i]) {
2335       signed char sh,sl,th,tl;
2336       th=get_reg(i_regs->regmap,rt1[i]|64);
2337       tl=get_reg(i_regs->regmap,rt1[i]);
2338       sh=get_reg(i_regs->regmap,rs1[i]|64);
2339       sl=get_reg(i_regs->regmap,rs1[i]);
2340       if(tl>=0 && !((i_regs->isconst>>tl)&1)) {
2341         if(opcode[i]==0x0c) //ANDI
2342         {
2343           if(rs1[i]) {
2344             if(sl<0) {
2345               if(i_regs->regmap_entry[tl]!=rs1[i]) emit_loadreg(rs1[i],tl);
2346               emit_andimm(tl,imm[i],tl);
2347             }else{
2348               if(!((i_regs->wasconst>>sl)&1))
2349                 emit_andimm(sl,imm[i],tl);
2350               else
2351                 emit_movimm(constmap[i][sl]&imm[i],tl);
2352             }
2353           }
2354           else
2355             emit_zeroreg(tl);
2356           if(th>=0) emit_zeroreg(th);
2357         }
2358         else
2359         {
2360           if(rs1[i]) {
2361             if(sl<0) {
2362               if(i_regs->regmap_entry[tl]!=rs1[i]) emit_loadreg(rs1[i],tl);
2363             }
2364             if(th>=0) {
2365               if(sh<0) {
2366                 emit_loadreg(rs1[i]|64,th);
2367               }else{
2368                 emit_mov(sh,th);
2369               }
2370             }
2371             if(opcode[i]==0x0d) //ORI
2372             if(sl<0) {
2373               emit_orimm(tl,imm[i],tl);
2374             }else{
2375               if(!((i_regs->wasconst>>sl)&1))
2376                 emit_orimm(sl,imm[i],tl);
2377               else
2378                 emit_movimm(constmap[i][sl]|imm[i],tl);
2379             }
2380             if(opcode[i]==0x0e) //XORI
2381             if(sl<0) {
2382               emit_xorimm(tl,imm[i],tl);
2383             }else{
2384               if(!((i_regs->wasconst>>sl)&1))
2385                 emit_xorimm(sl,imm[i],tl);
2386               else
2387                 emit_movimm(constmap[i][sl]^imm[i],tl);
2388             }
2389           }
2390           else {
2391             emit_movimm(imm[i],tl);
2392             if(th>=0) emit_zeroreg(th);
2393           }
2394         }
2395       }
2396     }
2397   }
2398 }
2399
2400 void shiftimm_assemble(int i,struct regstat *i_regs)
2401 {
2402   if(opcode2[i]<=0x3) // SLL/SRL/SRA
2403   {
2404     if(rt1[i]) {
2405       signed char s,t;
2406       t=get_reg(i_regs->regmap,rt1[i]);
2407       s=get_reg(i_regs->regmap,rs1[i]);
2408       //assert(t>=0);
2409       if(t>=0&&!((i_regs->isconst>>t)&1)){
2410         if(rs1[i]==0)
2411         {
2412           emit_zeroreg(t);
2413         }
2414         else
2415         {
2416           if(s<0&&i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
2417           if(imm[i]) {
2418             if(opcode2[i]==0) // SLL
2419             {
2420               emit_shlimm(s<0?t:s,imm[i],t);
2421             }
2422             if(opcode2[i]==2) // SRL
2423             {
2424               emit_shrimm(s<0?t:s,imm[i],t);
2425             }
2426             if(opcode2[i]==3) // SRA
2427             {
2428               emit_sarimm(s<0?t:s,imm[i],t);
2429             }
2430           }else{
2431             // Shift by zero
2432             if(s>=0 && s!=t) emit_mov(s,t);
2433           }
2434         }
2435       }
2436       //emit_storereg(rt1[i],t); //DEBUG
2437     }
2438   }
2439   if(opcode2[i]>=0x38&&opcode2[i]<=0x3b) // DSLL/DSRL/DSRA
2440   {
2441     if(rt1[i]) {
2442       signed char sh,sl,th,tl;
2443       th=get_reg(i_regs->regmap,rt1[i]|64);
2444       tl=get_reg(i_regs->regmap,rt1[i]);
2445       sh=get_reg(i_regs->regmap,rs1[i]|64);
2446       sl=get_reg(i_regs->regmap,rs1[i]);
2447       if(tl>=0) {
2448         if(rs1[i]==0)
2449         {
2450           emit_zeroreg(tl);
2451           if(th>=0) emit_zeroreg(th);
2452         }
2453         else
2454         {
2455           assert(sl>=0);
2456           assert(sh>=0);
2457           if(imm[i]) {
2458             if(opcode2[i]==0x38) // DSLL
2459             {
2460               if(th>=0) emit_shldimm(sh,sl,imm[i],th);
2461               emit_shlimm(sl,imm[i],tl);
2462             }
2463             if(opcode2[i]==0x3a) // DSRL
2464             {
2465               emit_shrdimm(sl,sh,imm[i],tl);
2466               if(th>=0) emit_shrimm(sh,imm[i],th);
2467             }
2468             if(opcode2[i]==0x3b) // DSRA
2469             {
2470               emit_shrdimm(sl,sh,imm[i],tl);
2471               if(th>=0) emit_sarimm(sh,imm[i],th);
2472             }
2473           }else{
2474             // Shift by zero
2475             if(sl!=tl) emit_mov(sl,tl);
2476             if(th>=0&&sh!=th) emit_mov(sh,th);
2477           }
2478         }
2479       }
2480     }
2481   }
2482   if(opcode2[i]==0x3c) // DSLL32
2483   {
2484     if(rt1[i]) {
2485       signed char sl,tl,th;
2486       tl=get_reg(i_regs->regmap,rt1[i]);
2487       th=get_reg(i_regs->regmap,rt1[i]|64);
2488       sl=get_reg(i_regs->regmap,rs1[i]);
2489       if(th>=0||tl>=0){
2490         assert(tl>=0);
2491         assert(th>=0);
2492         assert(sl>=0);
2493         emit_mov(sl,th);
2494         emit_zeroreg(tl);
2495         if(imm[i]>32)
2496         {
2497           emit_shlimm(th,imm[i]&31,th);
2498         }
2499       }
2500     }
2501   }
2502   if(opcode2[i]==0x3e) // DSRL32
2503   {
2504     if(rt1[i]) {
2505       signed char sh,tl,th;
2506       tl=get_reg(i_regs->regmap,rt1[i]);
2507       th=get_reg(i_regs->regmap,rt1[i]|64);
2508       sh=get_reg(i_regs->regmap,rs1[i]|64);
2509       if(tl>=0){
2510         assert(sh>=0);
2511         emit_mov(sh,tl);
2512         if(th>=0) emit_zeroreg(th);
2513         if(imm[i]>32)
2514         {
2515           emit_shrimm(tl,imm[i]&31,tl);
2516         }
2517       }
2518     }
2519   }
2520   if(opcode2[i]==0x3f) // DSRA32
2521   {
2522     if(rt1[i]) {
2523       signed char sh,tl;
2524       tl=get_reg(i_regs->regmap,rt1[i]);
2525       sh=get_reg(i_regs->regmap,rs1[i]|64);
2526       if(tl>=0){
2527         assert(sh>=0);
2528         emit_mov(sh,tl);
2529         if(imm[i]>32)
2530         {
2531           emit_sarimm(tl,imm[i]&31,tl);
2532         }
2533       }
2534     }
2535   }
2536 }
2537
2538 #ifndef shift_assemble
2539 void shift_assemble(int i,struct regstat *i_regs)
2540 {
2541   printf("Need shift_assemble for this architecture.\n");
2542   exit(1);
2543 }
2544 #endif
2545
2546 void load_assemble(int i,struct regstat *i_regs)
2547 {
2548   int s,th,tl,addr,map=-1;
2549   int offset;
2550   int jaddr=0;
2551   int memtarget=0,c=0;
2552   int fastload_reg_override=0;
2553   u_int hr,reglist=0;
2554   th=get_reg(i_regs->regmap,rt1[i]|64);
2555   tl=get_reg(i_regs->regmap,rt1[i]);
2556   s=get_reg(i_regs->regmap,rs1[i]);
2557   offset=imm[i];
2558   for(hr=0;hr<HOST_REGS;hr++) {
2559     if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
2560   }
2561   if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
2562   if(s>=0) {
2563     c=(i_regs->wasconst>>s)&1;
2564     if (c) {
2565       memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
2566       if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
2567     }
2568   }
2569   //printf("load_assemble: c=%d\n",c);
2570   //if(c) printf("load_assemble: const=%x\n",(int)constmap[i][s]+offset);
2571   // FIXME: Even if the load is a NOP, we should check for pagefaults...
2572   if(tl<0&&(!c||(((u_int)constmap[i][s]+offset)>>16)==0x1f80)
2573     ||rt1[i]==0) {
2574       // could be FIFO, must perform the read
2575       // ||dummy read
2576       assem_debug("(forced read)\n");
2577       tl=get_reg(i_regs->regmap,-1);
2578       assert(tl>=0);
2579   }
2580   if(offset||s<0||c) addr=tl;
2581   else addr=s;
2582   //if(tl<0) tl=get_reg(i_regs->regmap,-1);
2583  if(tl>=0) {
2584   //printf("load_assemble: c=%d\n",c);
2585   //if(c) printf("load_assemble: const=%x\n",(int)constmap[i][s]+offset);
2586   assert(tl>=0); // Even if the load is a NOP, we must check for pagefaults and I/O
2587   reglist&=~(1<<tl);
2588   if(th>=0) reglist&=~(1<<th);
2589   if(!using_tlb) {
2590     if(!c) {
2591       #ifdef RAM_OFFSET
2592       map=get_reg(i_regs->regmap,ROREG);
2593       if(map<0) emit_loadreg(ROREG,map=HOST_TEMPREG);
2594       #endif
2595 //#define R29_HACK 1
2596       #ifdef R29_HACK
2597       // Strmnnrmn's speed hack
2598       if(rs1[i]!=29||start<0x80001000||start>=0x80000000+RAM_SIZE)
2599       #endif
2600       {
2601         jaddr=emit_fastpath_cmp_jump(i,addr,&fastload_reg_override);
2602       }
2603     }
2604     else if(ram_offset&&memtarget) {
2605       emit_addimm(addr,ram_offset,HOST_TEMPREG);
2606       fastload_reg_override=HOST_TEMPREG;
2607     }
2608   }else{ // using tlb
2609     int x=0;
2610     if (opcode[i]==0x20||opcode[i]==0x24) x=3; // LB/LBU
2611     if (opcode[i]==0x21||opcode[i]==0x25) x=2; // LH/LHU
2612     map=get_reg(i_regs->regmap,TLREG);
2613     assert(map>=0);
2614     reglist&=~(1<<map);
2615     map=do_tlb_r(addr,tl,map,x,-1,-1,c,constmap[i][s]+offset);
2616     do_tlb_r_branch(map,c,constmap[i][s]+offset,&jaddr);
2617   }
2618   int dummy=(rt1[i]==0)||(tl!=get_reg(i_regs->regmap,rt1[i])); // ignore loads to r0 and unneeded reg
2619   if (opcode[i]==0x20) { // LB
2620     if(!c||memtarget) {
2621       if(!dummy) {
2622         #ifdef HOST_IMM_ADDR32
2623         if(c)
2624           emit_movsbl_tlb((constmap[i][s]+offset)^3,map,tl);
2625         else
2626         #endif
2627         {
2628           //emit_xorimm(addr,3,tl);
2629           //gen_tlb_addr_r(tl,map);
2630           //emit_movsbl_indexed((int)rdram-0x80000000,tl,tl);
2631           int x=0,a=tl;
2632 #ifdef BIG_ENDIAN_MIPS
2633           if(!c) emit_xorimm(addr,3,tl);
2634           else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2635 #else
2636           if(!c) a=addr;
2637 #endif
2638           if(fastload_reg_override) a=fastload_reg_override;
2639
2640           emit_movsbl_indexed_tlb(x,a,map,tl);
2641         }
2642       }
2643       if(jaddr)
2644         add_stub(LOADB_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2645     }
2646     else
2647       inline_readstub(LOADB_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2648   }
2649   if (opcode[i]==0x21) { // LH
2650     if(!c||memtarget) {
2651       if(!dummy) {
2652         #ifdef HOST_IMM_ADDR32
2653         if(c)
2654           emit_movswl_tlb((constmap[i][s]+offset)^2,map,tl);
2655         else
2656         #endif
2657         {
2658           int x=0,a=tl;
2659 #ifdef BIG_ENDIAN_MIPS
2660           if(!c) emit_xorimm(addr,2,tl);
2661           else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
2662 #else
2663           if(!c) a=addr;
2664 #endif
2665           if(fastload_reg_override) a=fastload_reg_override;
2666           //#ifdef
2667           //emit_movswl_indexed_tlb(x,tl,map,tl);
2668           //else
2669           if(map>=0) {
2670             gen_tlb_addr_r(a,map);
2671             emit_movswl_indexed(x,a,tl);
2672           }else{
2673             #if 1 //def RAM_OFFSET
2674             emit_movswl_indexed(x,a,tl);
2675             #else
2676             emit_movswl_indexed((int)rdram-0x80000000+x,a,tl);
2677             #endif
2678           }
2679         }
2680       }
2681       if(jaddr)
2682         add_stub(LOADH_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2683     }
2684     else
2685       inline_readstub(LOADH_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2686   }
2687   if (opcode[i]==0x23) { // LW
2688     if(!c||memtarget) {
2689       if(!dummy) {
2690         int a=addr;
2691         if(fastload_reg_override) a=fastload_reg_override;
2692         //emit_readword_indexed((int)rdram-0x80000000,addr,tl);
2693         #ifdef HOST_IMM_ADDR32
2694         if(c)
2695           emit_readword_tlb(constmap[i][s]+offset,map,tl);
2696         else
2697         #endif
2698         emit_readword_indexed_tlb(0,a,map,tl);
2699       }
2700       if(jaddr)
2701         add_stub(LOADW_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2702     }
2703     else
2704       inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2705   }
2706   if (opcode[i]==0x24) { // LBU
2707     if(!c||memtarget) {
2708       if(!dummy) {
2709         #ifdef HOST_IMM_ADDR32
2710         if(c)
2711           emit_movzbl_tlb((constmap[i][s]+offset)^3,map,tl);
2712         else
2713         #endif
2714         {
2715           //emit_xorimm(addr,3,tl);
2716           //gen_tlb_addr_r(tl,map);
2717           //emit_movzbl_indexed((int)rdram-0x80000000,tl,tl);
2718           int x=0,a=tl;
2719 #ifdef BIG_ENDIAN_MIPS
2720           if(!c) emit_xorimm(addr,3,tl);
2721           else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2722 #else
2723           if(!c) a=addr;
2724 #endif
2725           if(fastload_reg_override) a=fastload_reg_override;
2726
2727           emit_movzbl_indexed_tlb(x,a,map,tl);
2728         }
2729       }
2730       if(jaddr)
2731         add_stub(LOADBU_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2732     }
2733     else
2734       inline_readstub(LOADBU_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2735   }
2736   if (opcode[i]==0x25) { // LHU
2737     if(!c||memtarget) {
2738       if(!dummy) {
2739         #ifdef HOST_IMM_ADDR32
2740         if(c)
2741           emit_movzwl_tlb((constmap[i][s]+offset)^2,map,tl);
2742         else
2743         #endif
2744         {
2745           int x=0,a=tl;
2746 #ifdef BIG_ENDIAN_MIPS
2747           if(!c) emit_xorimm(addr,2,tl);
2748           else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
2749 #else
2750           if(!c) a=addr;
2751 #endif
2752           if(fastload_reg_override) a=fastload_reg_override;
2753           //#ifdef
2754           //emit_movzwl_indexed_tlb(x,tl,map,tl);
2755           //#else
2756           if(map>=0) {
2757             gen_tlb_addr_r(a,map);
2758             emit_movzwl_indexed(x,a,tl);
2759           }else{
2760             #if 1 //def RAM_OFFSET
2761             emit_movzwl_indexed(x,a,tl);
2762             #else
2763             emit_movzwl_indexed((int)rdram-0x80000000+x,a,tl);
2764             #endif
2765           }
2766         }
2767       }
2768       if(jaddr)
2769         add_stub(LOADHU_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2770     }
2771     else
2772       inline_readstub(LOADHU_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2773   }
2774   if (opcode[i]==0x27) { // LWU
2775     assert(th>=0);
2776     if(!c||memtarget) {
2777       if(!dummy) {
2778         int a=addr;
2779         if(fastload_reg_override) a=fastload_reg_override;
2780         //emit_readword_indexed((int)rdram-0x80000000,addr,tl);
2781         #ifdef HOST_IMM_ADDR32
2782         if(c)
2783           emit_readword_tlb(constmap[i][s]+offset,map,tl);
2784         else
2785         #endif
2786         emit_readword_indexed_tlb(0,a,map,tl);
2787       }
2788       if(jaddr)
2789         add_stub(LOADW_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2790     }
2791     else {
2792       inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2793     }
2794     emit_zeroreg(th);
2795   }
2796   if (opcode[i]==0x37) { // LD
2797     if(!c||memtarget) {
2798       if(!dummy) {
2799         int a=addr;
2800         if(fastload_reg_override) a=fastload_reg_override;
2801         //gen_tlb_addr_r(tl,map);
2802         //if(th>=0) emit_readword_indexed((int)rdram-0x80000000,addr,th);
2803         //emit_readword_indexed((int)rdram-0x7FFFFFFC,addr,tl);
2804         #ifdef HOST_IMM_ADDR32
2805         if(c)
2806           emit_readdword_tlb(constmap[i][s]+offset,map,th,tl);
2807         else
2808         #endif
2809         emit_readdword_indexed_tlb(0,a,map,th,tl);
2810       }
2811       if(jaddr)
2812         add_stub(LOADD_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2813     }
2814     else
2815       inline_readstub(LOADD_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
2816   }
2817  }
2818   //emit_storereg(rt1[i],tl); // DEBUG
2819   //if(opcode[i]==0x23)
2820   //if(opcode[i]==0x24)
2821   //if(opcode[i]==0x23||opcode[i]==0x24)
2822   /*if(opcode[i]==0x21||opcode[i]==0x23||opcode[i]==0x24)
2823   {
2824     //emit_pusha();
2825     save_regs(0x100f);
2826         emit_readword((int)&last_count,ECX);
2827         #ifdef __i386__
2828         if(get_reg(i_regs->regmap,CCREG)<0)
2829           emit_loadreg(CCREG,HOST_CCREG);
2830         emit_add(HOST_CCREG,ECX,HOST_CCREG);
2831         emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
2832         emit_writeword(HOST_CCREG,(int)&Count);
2833         #endif
2834         #ifdef __arm__
2835         if(get_reg(i_regs->regmap,CCREG)<0)
2836           emit_loadreg(CCREG,0);
2837         else
2838           emit_mov(HOST_CCREG,0);
2839         emit_add(0,ECX,0);
2840         emit_addimm(0,2*ccadj[i],0);
2841         emit_writeword(0,(int)&Count);
2842         #endif
2843     emit_call((int)memdebug);
2844     //emit_popa();
2845     restore_regs(0x100f);
2846   }/**/
2847 }
2848
2849 #ifndef loadlr_assemble
2850 void loadlr_assemble(int i,struct regstat *i_regs)
2851 {
2852   printf("Need loadlr_assemble for this architecture.\n");
2853   exit(1);
2854 }
2855 #endif
2856
2857 void store_assemble(int i,struct regstat *i_regs)
2858 {
2859   int s,th,tl,map=-1;
2860   int addr,temp;
2861   int offset;
2862   int jaddr=0,jaddr2,type;
2863   int memtarget=0,c=0;
2864   int agr=AGEN1+(i&1);
2865   int faststore_reg_override=0;
2866   u_int hr,reglist=0;
2867   th=get_reg(i_regs->regmap,rs2[i]|64);
2868   tl=get_reg(i_regs->regmap,rs2[i]);
2869   s=get_reg(i_regs->regmap,rs1[i]);
2870   temp=get_reg(i_regs->regmap,agr);
2871   if(temp<0) temp=get_reg(i_regs->regmap,-1);
2872   offset=imm[i];
2873   if(s>=0) {
2874     c=(i_regs->wasconst>>s)&1;
2875     if(c) {
2876       memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
2877       if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
2878     }
2879   }
2880   assert(tl>=0);
2881   assert(temp>=0);
2882   for(hr=0;hr<HOST_REGS;hr++) {
2883     if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
2884   }
2885   if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
2886   if(offset||s<0||c) addr=temp;
2887   else addr=s;
2888   if(!using_tlb) {
2889     if(!c) {
2890       jaddr=emit_fastpath_cmp_jump(i,addr,&faststore_reg_override);
2891     }
2892     else if(ram_offset&&memtarget) {
2893       emit_addimm(addr,ram_offset,HOST_TEMPREG);
2894       faststore_reg_override=HOST_TEMPREG;
2895     }
2896   }else{ // using tlb
2897     int x=0;
2898     if (opcode[i]==0x28) x=3; // SB
2899     if (opcode[i]==0x29) x=2; // SH
2900     map=get_reg(i_regs->regmap,TLREG);
2901     assert(map>=0);
2902     reglist&=~(1<<map);
2903     map=do_tlb_w(addr,temp,map,x,c,constmap[i][s]+offset);
2904     do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr);
2905   }
2906
2907   if (opcode[i]==0x28) { // SB
2908     if(!c||memtarget) {
2909       int x=0,a=temp;
2910 #ifdef BIG_ENDIAN_MIPS
2911       if(!c) emit_xorimm(addr,3,temp);
2912       else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
2913 #else
2914       if(!c) a=addr;
2915 #endif
2916       if(faststore_reg_override) a=faststore_reg_override;
2917       //gen_tlb_addr_w(temp,map);
2918       //emit_writebyte_indexed(tl,(int)rdram-0x80000000,temp);
2919       emit_writebyte_indexed_tlb(tl,x,a,map,a);
2920     }
2921     type=STOREB_STUB;
2922   }
2923   if (opcode[i]==0x29) { // SH
2924     if(!c||memtarget) {
2925       int x=0,a=temp;
2926 #ifdef BIG_ENDIAN_MIPS
2927       if(!c) emit_xorimm(addr,2,temp);
2928       else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
2929 #else
2930       if(!c) a=addr;
2931 #endif
2932       if(faststore_reg_override) a=faststore_reg_override;
2933       //#ifdef
2934       //emit_writehword_indexed_tlb(tl,x,temp,map,temp);
2935       //#else
2936       if(map>=0) {
2937         gen_tlb_addr_w(a,map);
2938         emit_writehword_indexed(tl,x,a);
2939       }else
2940         //emit_writehword_indexed(tl,(int)rdram-0x80000000+x,a);
2941         emit_writehword_indexed(tl,x,a);
2942     }
2943     type=STOREH_STUB;
2944   }
2945   if (opcode[i]==0x2B) { // SW
2946     if(!c||memtarget) {
2947       int a=addr;
2948       if(faststore_reg_override) a=faststore_reg_override;
2949       //emit_writeword_indexed(tl,(int)rdram-0x80000000,addr);
2950       emit_writeword_indexed_tlb(tl,0,a,map,temp);
2951     }
2952     type=STOREW_STUB;
2953   }
2954   if (opcode[i]==0x3F) { // SD
2955     if(!c||memtarget) {
2956       int a=addr;
2957       if(faststore_reg_override) a=faststore_reg_override;
2958       if(rs2[i]) {
2959         assert(th>=0);
2960         //emit_writeword_indexed(th,(int)rdram-0x80000000,addr);
2961         //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,addr);
2962         emit_writedword_indexed_tlb(th,tl,0,a,map,temp);
2963       }else{
2964         // Store zero
2965         //emit_writeword_indexed(tl,(int)rdram-0x80000000,temp);
2966         //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,temp);
2967         emit_writedword_indexed_tlb(tl,tl,0,a,map,temp);
2968       }
2969     }
2970     type=STORED_STUB;
2971   }
2972   if(jaddr) {
2973     // PCSX store handlers don't check invcode again
2974     reglist|=1<<addr;
2975     add_stub(type,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
2976     jaddr=0;
2977   }
2978   if(!using_tlb&&!(i_regs->waswritten&(1<<rs1[i]))&&!(new_dynarec_hacks&NDHACK_NO_SMC_CHECK)) {
2979     if(!c||memtarget) {
2980       #ifdef DESTRUCTIVE_SHIFT
2981       // The x86 shift operation is 'destructive'; it overwrites the
2982       // source register, so we need to make a copy first and use that.
2983       addr=temp;
2984       #endif
2985       #if defined(HOST_IMM8)
2986       int ir=get_reg(i_regs->regmap,INVCP);
2987       assert(ir>=0);
2988       emit_cmpmem_indexedsr12_reg(ir,addr,1);
2989       #else
2990       emit_cmpmem_indexedsr12_imm((int)invalid_code,addr,1);
2991       #endif
2992       #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
2993       emit_callne(invalidate_addr_reg[addr]);
2994       #else
2995       jaddr2=(int)out;
2996       emit_jne(0);
2997       add_stub(INVCODE_STUB,jaddr2,(int)out,reglist|(1<<HOST_CCREG),addr,0,0,0);
2998       #endif
2999     }
3000   }
3001   u_int addr_val=constmap[i][s]+offset;
3002   if(jaddr) {
3003     add_stub(type,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
3004   } else if(c&&!memtarget) {
3005     inline_writestub(type,i,addr_val,i_regs->regmap,rs2[i],ccadj[i],reglist);
3006   }
3007   // basic current block modification detection..
3008   // not looking back as that should be in mips cache already
3009   if(c&&start+i*4<addr_val&&addr_val<start+slen*4) {
3010     SysPrintf("write to %08x hits block %08x, pc=%08x\n",addr_val,start,start+i*4);
3011     assert(i_regs->regmap==regs[i].regmap); // not delay slot
3012     if(i_regs->regmap==regs[i].regmap) {
3013       load_all_consts(regs[i].regmap_entry,regs[i].was32,regs[i].wasdirty,i);
3014       wb_dirtys(regs[i].regmap_entry,regs[i].was32,regs[i].wasdirty);
3015       emit_movimm(start+i*4+4,0);
3016       emit_writeword(0,(int)&pcaddr);
3017       emit_jmp((int)do_interrupt);
3018     }
3019   }
3020   //if(opcode[i]==0x2B || opcode[i]==0x3F)
3021   //if(opcode[i]==0x2B || opcode[i]==0x28)
3022   //if(opcode[i]==0x2B || opcode[i]==0x29)
3023   //if(opcode[i]==0x2B)
3024   /*if(opcode[i]==0x2B || opcode[i]==0x28 || opcode[i]==0x29 || opcode[i]==0x3F)
3025   {
3026     #ifdef __i386__
3027     emit_pusha();
3028     #endif
3029     #ifdef __arm__
3030     save_regs(0x100f);
3031     #endif
3032         emit_readword((int)&last_count,ECX);
3033         #ifdef __i386__
3034         if(get_reg(i_regs->regmap,CCREG)<0)
3035           emit_loadreg(CCREG,HOST_CCREG);
3036         emit_add(HOST_CCREG,ECX,HOST_CCREG);
3037         emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3038         emit_writeword(HOST_CCREG,(int)&Count);
3039         #endif
3040         #ifdef __arm__
3041         if(get_reg(i_regs->regmap,CCREG)<0)
3042           emit_loadreg(CCREG,0);
3043         else
3044           emit_mov(HOST_CCREG,0);
3045         emit_add(0,ECX,0);
3046         emit_addimm(0,2*ccadj[i],0);
3047         emit_writeword(0,(int)&Count);
3048         #endif
3049     emit_call((int)memdebug);
3050     #ifdef __i386__
3051     emit_popa();
3052     #endif
3053     #ifdef __arm__
3054     restore_regs(0x100f);
3055     #endif
3056   }/**/
3057 }
3058
3059 void storelr_assemble(int i,struct regstat *i_regs)
3060 {
3061   int s,th,tl;
3062   int temp;
3063   int temp2;
3064   int offset;
3065   int jaddr=0,jaddr2;
3066   int case1,case2,case3;
3067   int done0,done1,done2;
3068   int memtarget=0,c=0;
3069   int agr=AGEN1+(i&1);
3070   u_int hr,reglist=0;
3071   th=get_reg(i_regs->regmap,rs2[i]|64);
3072   tl=get_reg(i_regs->regmap,rs2[i]);
3073   s=get_reg(i_regs->regmap,rs1[i]);
3074   temp=get_reg(i_regs->regmap,agr);
3075   if(temp<0) temp=get_reg(i_regs->regmap,-1);
3076   offset=imm[i];
3077   if(s>=0) {
3078     c=(i_regs->isconst>>s)&1;
3079     if(c) {
3080       memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE;
3081       if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
3082     }
3083   }
3084   assert(tl>=0);
3085   for(hr=0;hr<HOST_REGS;hr++) {
3086     if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3087   }
3088   assert(temp>=0);
3089   if(!using_tlb) {
3090     if(!c) {
3091       emit_cmpimm(s<0||offset?temp:s,RAM_SIZE);
3092       if(!offset&&s!=temp) emit_mov(s,temp);
3093       jaddr=(int)out;
3094       emit_jno(0);
3095     }
3096     else
3097     {
3098       if(!memtarget||!rs1[i]) {
3099         jaddr=(int)out;
3100         emit_jmp(0);
3101       }
3102     }
3103     #ifdef RAM_OFFSET
3104     int map=get_reg(i_regs->regmap,ROREG);
3105     if(map<0) emit_loadreg(ROREG,map=HOST_TEMPREG);
3106     gen_tlb_addr_w(temp,map);
3107     #else
3108     if((u_int)rdram!=0x80000000) 
3109       emit_addimm_no_flags((u_int)rdram-(u_int)0x80000000,temp);
3110     #endif
3111   }else{ // using tlb
3112     int map=get_reg(i_regs->regmap,TLREG);
3113     assert(map>=0);
3114     reglist&=~(1<<map);
3115     map=do_tlb_w(c||s<0||offset?temp:s,temp,map,0,c,constmap[i][s]+offset);
3116     if(!c&&!offset&&s>=0) emit_mov(s,temp);
3117     do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr);
3118     if(!jaddr&&!memtarget) {
3119       jaddr=(int)out;
3120       emit_jmp(0);
3121     }
3122     gen_tlb_addr_w(temp,map);
3123   }
3124
3125   if (opcode[i]==0x2C||opcode[i]==0x2D) { // SDL/SDR
3126     temp2=get_reg(i_regs->regmap,FTEMP);
3127     if(!rs2[i]) temp2=th=tl;
3128   }
3129
3130 #ifndef BIG_ENDIAN_MIPS
3131     emit_xorimm(temp,3,temp);
3132 #endif
3133   emit_testimm(temp,2);
3134   case2=(int)out;
3135   emit_jne(0);
3136   emit_testimm(temp,1);
3137   case1=(int)out;
3138   emit_jne(0);
3139   // 0
3140   if (opcode[i]==0x2A) { // SWL
3141     emit_writeword_indexed(tl,0,temp);
3142   }
3143   if (opcode[i]==0x2E) { // SWR
3144     emit_writebyte_indexed(tl,3,temp);
3145   }
3146   if (opcode[i]==0x2C) { // SDL
3147     emit_writeword_indexed(th,0,temp);
3148     if(rs2[i]) emit_mov(tl,temp2);
3149   }
3150   if (opcode[i]==0x2D) { // SDR
3151     emit_writebyte_indexed(tl,3,temp);
3152     if(rs2[i]) emit_shldimm(th,tl,24,temp2);
3153   }
3154   done0=(int)out;
3155   emit_jmp(0);
3156   // 1
3157   set_jump_target(case1,(int)out);
3158   if (opcode[i]==0x2A) { // SWL
3159     // Write 3 msb into three least significant bytes
3160     if(rs2[i]) emit_rorimm(tl,8,tl);
3161     emit_writehword_indexed(tl,-1,temp);
3162     if(rs2[i]) emit_rorimm(tl,16,tl);
3163     emit_writebyte_indexed(tl,1,temp);
3164     if(rs2[i]) emit_rorimm(tl,8,tl);
3165   }
3166   if (opcode[i]==0x2E) { // SWR
3167     // Write two lsb into two most significant bytes
3168     emit_writehword_indexed(tl,1,temp);
3169   }
3170   if (opcode[i]==0x2C) { // SDL
3171     if(rs2[i]) emit_shrdimm(tl,th,8,temp2);
3172     // Write 3 msb into three least significant bytes
3173     if(rs2[i]) emit_rorimm(th,8,th);
3174     emit_writehword_indexed(th,-1,temp);
3175     if(rs2[i]) emit_rorimm(th,16,th);
3176     emit_writebyte_indexed(th,1,temp);
3177     if(rs2[i]) emit_rorimm(th,8,th);
3178   }
3179   if (opcode[i]==0x2D) { // SDR
3180     if(rs2[i]) emit_shldimm(th,tl,16,temp2);
3181     // Write two lsb into two most significant bytes
3182     emit_writehword_indexed(tl,1,temp);
3183   }
3184   done1=(int)out;
3185   emit_jmp(0);
3186   // 2
3187   set_jump_target(case2,(int)out);
3188   emit_testimm(temp,1);
3189   case3=(int)out;
3190   emit_jne(0);
3191   if (opcode[i]==0x2A) { // SWL
3192     // Write two msb into two least significant bytes
3193     if(rs2[i]) emit_rorimm(tl,16,tl);
3194     emit_writehword_indexed(tl,-2,temp);
3195     if(rs2[i]) emit_rorimm(tl,16,tl);
3196   }
3197   if (opcode[i]==0x2E) { // SWR
3198     // Write 3 lsb into three most significant bytes
3199     emit_writebyte_indexed(tl,-1,temp);
3200     if(rs2[i]) emit_rorimm(tl,8,tl);
3201     emit_writehword_indexed(tl,0,temp);
3202     if(rs2[i]) emit_rorimm(tl,24,tl);
3203   }
3204   if (opcode[i]==0x2C) { // SDL
3205     if(rs2[i]) emit_shrdimm(tl,th,16,temp2);
3206     // Write two msb into two least significant bytes
3207     if(rs2[i]) emit_rorimm(th,16,th);
3208     emit_writehword_indexed(th,-2,temp);
3209     if(rs2[i]) emit_rorimm(th,16,th);
3210   }
3211   if (opcode[i]==0x2D) { // SDR
3212     if(rs2[i]) emit_shldimm(th,tl,8,temp2);
3213     // Write 3 lsb into three most significant bytes
3214     emit_writebyte_indexed(tl,-1,temp);
3215     if(rs2[i]) emit_rorimm(tl,8,tl);
3216     emit_writehword_indexed(tl,0,temp);
3217     if(rs2[i]) emit_rorimm(tl,24,tl);
3218   }
3219   done2=(int)out;
3220   emit_jmp(0);
3221   // 3
3222   set_jump_target(case3,(int)out);
3223   if (opcode[i]==0x2A) { // SWL
3224     // Write msb into least significant byte
3225     if(rs2[i]) emit_rorimm(tl,24,tl);
3226     emit_writebyte_indexed(tl,-3,temp);
3227     if(rs2[i]) emit_rorimm(tl,8,tl);
3228   }
3229   if (opcode[i]==0x2E) { // SWR
3230     // Write entire word
3231     emit_writeword_indexed(tl,-3,temp);
3232   }
3233   if (opcode[i]==0x2C) { // SDL
3234     if(rs2[i]) emit_shrdimm(tl,th,24,temp2);
3235     // Write msb into least significant byte
3236     if(rs2[i]) emit_rorimm(th,24,th);
3237     emit_writebyte_indexed(th,-3,temp);
3238     if(rs2[i]) emit_rorimm(th,8,th);
3239   }
3240   if (opcode[i]==0x2D) { // SDR
3241     if(rs2[i]) emit_mov(th,temp2);
3242     // Write entire word
3243     emit_writeword_indexed(tl,-3,temp);
3244   }
3245   set_jump_target(done0,(int)out);
3246   set_jump_target(done1,(int)out);
3247   set_jump_target(done2,(int)out);
3248   if (opcode[i]==0x2C) { // SDL
3249     emit_testimm(temp,4);
3250     done0=(int)out;
3251     emit_jne(0);
3252     emit_andimm(temp,~3,temp);
3253     emit_writeword_indexed(temp2,4,temp);
3254     set_jump_target(done0,(int)out);
3255   }
3256   if (opcode[i]==0x2D) { // SDR
3257     emit_testimm(temp,4);
3258     done0=(int)out;
3259     emit_jeq(0);
3260     emit_andimm(temp,~3,temp);
3261     emit_writeword_indexed(temp2,-4,temp);
3262     set_jump_target(done0,(int)out);
3263   }
3264   if(!c||!memtarget)
3265     add_stub(STORELR_STUB,jaddr,(int)out,i,(int)i_regs,temp,ccadj[i],reglist);
3266   if(!using_tlb&&!(i_regs->waswritten&(1<<rs1[i]))&&!(new_dynarec_hacks&NDHACK_NO_SMC_CHECK)) {
3267     #ifdef RAM_OFFSET
3268     int map=get_reg(i_regs->regmap,ROREG);
3269     if(map<0) map=HOST_TEMPREG;
3270     gen_orig_addr_w(temp,map);
3271     #else
3272     emit_addimm_no_flags((u_int)0x80000000-(u_int)rdram,temp);
3273     #endif
3274     #if defined(HOST_IMM8)
3275     int ir=get_reg(i_regs->regmap,INVCP);
3276     assert(ir>=0);
3277     emit_cmpmem_indexedsr12_reg(ir,temp,1);
3278     #else
3279     emit_cmpmem_indexedsr12_imm((int)invalid_code,temp,1);
3280     #endif
3281     #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3282     emit_callne(invalidate_addr_reg[temp]);
3283     #else
3284     jaddr2=(int)out;
3285     emit_jne(0);
3286     add_stub(INVCODE_STUB,jaddr2,(int)out,reglist|(1<<HOST_CCREG),temp,0,0,0);
3287     #endif
3288   }
3289   /*
3290     emit_pusha();
3291     //save_regs(0x100f);
3292         emit_readword((int)&last_count,ECX);
3293         if(get_reg(i_regs->regmap,CCREG)<0)
3294           emit_loadreg(CCREG,HOST_CCREG);
3295         emit_add(HOST_CCREG,ECX,HOST_CCREG);
3296         emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
3297         emit_writeword(HOST_CCREG,(int)&Count);
3298     emit_call((int)memdebug);
3299     emit_popa();
3300     //restore_regs(0x100f);
3301   /**/
3302 }
3303
3304 void c1ls_assemble(int i,struct regstat *i_regs)
3305 {
3306   cop1_unusable(i, i_regs);
3307 }
3308
3309 void c2ls_assemble(int i,struct regstat *i_regs)
3310 {
3311   int s,tl;
3312   int ar;
3313   int offset;
3314   int memtarget=0,c=0;
3315   int jaddr2=0,jaddr3,type;
3316   int agr=AGEN1+(i&1);
3317   int fastio_reg_override=0;
3318   u_int hr,reglist=0;
3319   u_int copr=(source[i]>>16)&0x1f;
3320   s=get_reg(i_regs->regmap,rs1[i]);
3321   tl=get_reg(i_regs->regmap,FTEMP);
3322   offset=imm[i];
3323   assert(rs1[i]>0);
3324   assert(tl>=0);
3325   assert(!using_tlb);
3326
3327   for(hr=0;hr<HOST_REGS;hr++) {
3328     if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
3329   }
3330   if(i_regs->regmap[HOST_CCREG]==CCREG)
3331     reglist&=~(1<<HOST_CCREG);
3332
3333   // get the address
3334   if (opcode[i]==0x3a) { // SWC2
3335     ar=get_reg(i_regs->regmap,agr);
3336     if(ar<0) ar=get_reg(i_regs->regmap,-1);
3337     reglist|=1<<ar;
3338   } else { // LWC2
3339     ar=tl;
3340   }
3341   if(s>=0) c=(i_regs->wasconst>>s)&1;
3342   memtarget=c&&(((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE);
3343   if (!offset&&!c&&s>=0) ar=s;
3344   assert(ar>=0);
3345
3346   if (opcode[i]==0x3a) { // SWC2
3347     cop2_get_dreg(copr,tl,HOST_TEMPREG);
3348     type=STOREW_STUB;
3349   }
3350   else
3351     type=LOADW_STUB;
3352
3353   if(c&&!memtarget) {
3354     jaddr2=(int)out;
3355     emit_jmp(0); // inline_readstub/inline_writestub?
3356   }
3357   else {
3358     if(!c) {
3359       jaddr2=emit_fastpath_cmp_jump(i,ar,&fastio_reg_override);
3360     }
3361     else if(ram_offset&&memtarget) {
3362       emit_addimm(ar,ram_offset,HOST_TEMPREG);
3363       fastio_reg_override=HOST_TEMPREG;
3364     }
3365     if (opcode[i]==0x32) { // LWC2
3366       #ifdef HOST_IMM_ADDR32
3367       if(c) emit_readword_tlb(constmap[i][s]+offset,-1,tl);
3368       else
3369       #endif
3370       int a=ar;
3371       if(fastio_reg_override) a=fastio_reg_override;
3372       emit_readword_indexed(0,a,tl);
3373     }
3374     if (opcode[i]==0x3a) { // SWC2
3375       #ifdef DESTRUCTIVE_SHIFT
3376       if(!offset&&!c&&s>=0) emit_mov(s,ar);
3377       #endif
3378       int a=ar;
3379       if(fastio_reg_override) a=fastio_reg_override;
3380       emit_writeword_indexed(tl,0,a);
3381     }
3382   }
3383   if(jaddr2)
3384     add_stub(type,jaddr2,(int)out,i,ar,(int)i_regs,ccadj[i],reglist);
3385   if(opcode[i]==0x3a) // SWC2
3386   if(!(i_regs->waswritten&(1<<rs1[i]))&&!(new_dynarec_hacks&NDHACK_NO_SMC_CHECK)) {
3387 #if defined(HOST_IMM8)
3388     int ir=get_reg(i_regs->regmap,INVCP);
3389     assert(ir>=0);
3390     emit_cmpmem_indexedsr12_reg(ir,ar,1);
3391 #else
3392     emit_cmpmem_indexedsr12_imm((int)invalid_code,ar,1);
3393 #endif
3394     #if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
3395     emit_callne(invalidate_addr_reg[ar]);
3396     #else
3397     jaddr3=(int)out;
3398     emit_jne(0);
3399     add_stub(INVCODE_STUB,jaddr3,(int)out,reglist|(1<<HOST_CCREG),ar,0,0,0);
3400     #endif
3401   }
3402   if (opcode[i]==0x32) { // LWC2
3403     cop2_put_dreg(copr,tl,HOST_TEMPREG);
3404   }
3405 }
3406
3407 #ifndef multdiv_assemble
3408 void multdiv_assemble(int i,struct regstat *i_regs)
3409 {
3410   printf("Need multdiv_assemble for this architecture.\n");
3411   exit(1);
3412 }
3413 #endif
3414
3415 void mov_assemble(int i,struct regstat *i_regs)
3416 {
3417   //if(opcode2[i]==0x10||opcode2[i]==0x12) { // MFHI/MFLO
3418   //if(opcode2[i]==0x11||opcode2[i]==0x13) { // MTHI/MTLO
3419   if(rt1[i]) {
3420     signed char sh,sl,th,tl;
3421     th=get_reg(i_regs->regmap,rt1[i]|64);
3422     tl=get_reg(i_regs->regmap,rt1[i]);
3423     //assert(tl>=0);
3424     if(tl>=0) {
3425       sh=get_reg(i_regs->regmap,rs1[i]|64);
3426       sl=get_reg(i_regs->regmap,rs1[i]);
3427       if(sl>=0) emit_mov(sl,tl);
3428       else emit_loadreg(rs1[i],tl);
3429       if(th>=0) {
3430         if(sh>=0) emit_mov(sh,th);
3431         else emit_loadreg(rs1[i]|64,th);
3432       }
3433     }
3434   }
3435 }
3436
3437 #ifndef fconv_assemble
3438 void fconv_assemble(int i,struct regstat *i_regs)
3439 {
3440   printf("Need fconv_assemble for this architecture.\n");
3441   exit(1);
3442 }
3443 #endif
3444
3445 #if 0
3446 void float_assemble(int i,struct regstat *i_regs)
3447 {
3448   printf("Need float_assemble for this architecture.\n");
3449   exit(1);
3450 }
3451 #endif
3452
3453 void syscall_assemble(int i,struct regstat *i_regs)
3454 {
3455   signed char ccreg=get_reg(i_regs->regmap,CCREG);
3456   assert(ccreg==HOST_CCREG);
3457   assert(!is_delayslot);
3458   emit_movimm(start+i*4,EAX); // Get PC
3459   emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i]),HOST_CCREG); // CHECK: is this right?  There should probably be an extra cycle...
3460   emit_jmp((int)jump_syscall_hle); // XXX
3461 }
3462
3463 void hlecall_assemble(int i,struct regstat *i_regs)
3464 {
3465   signed char ccreg=get_reg(i_regs->regmap,CCREG);
3466   assert(ccreg==HOST_CCREG);
3467   assert(!is_delayslot);
3468   emit_movimm(start+i*4+4,0); // Get PC
3469   emit_movimm((int)psxHLEt[source[i]&7],1);
3470   emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i]),HOST_CCREG); // XXX
3471   emit_jmp((int)jump_hlecall);
3472 }
3473
3474 void intcall_assemble(int i,struct regstat *i_regs)
3475 {
3476   signed char ccreg=get_reg(i_regs->regmap,CCREG);
3477   assert(ccreg==HOST_CCREG);
3478   assert(!is_delayslot);
3479   emit_movimm(start+i*4,0); // Get PC
3480   emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i]),HOST_CCREG);
3481   emit_jmp((int)jump_intcall);
3482 }
3483
3484 void ds_assemble(int i,struct regstat *i_regs)
3485 {
3486   speculate_register_values(i);
3487   is_delayslot=1;
3488   switch(itype[i]) {
3489     case ALU:
3490       alu_assemble(i,i_regs);break;
3491     case IMM16:
3492       imm16_assemble(i,i_regs);break;
3493     case SHIFT:
3494       shift_assemble(i,i_regs);break;
3495     case SHIFTIMM:
3496       shiftimm_assemble(i,i_regs);break;
3497     case LOAD:
3498       load_assemble(i,i_regs);break;
3499     case LOADLR:
3500       loadlr_assemble(i,i_regs);break;
3501     case STORE:
3502       store_assemble(i,i_regs);break;
3503     case STORELR:
3504       storelr_assemble(i,i_regs);break;
3505     case COP0:
3506       cop0_assemble(i,i_regs);break;
3507     case COP1:
3508       cop1_assemble(i,i_regs);break;
3509     case C1LS:
3510       c1ls_assemble(i,i_regs);break;
3511     case COP2:
3512       cop2_assemble(i,i_regs);break;
3513     case C2LS:
3514       c2ls_assemble(i,i_regs);break;
3515     case C2OP:
3516       c2op_assemble(i,i_regs);break;
3517     case FCONV:
3518       fconv_assemble(i,i_regs);break;
3519     case FLOAT:
3520       float_assemble(i,i_regs);break;
3521     case FCOMP:
3522       fcomp_assemble(i,i_regs);break;
3523     case MULTDIV:
3524       multdiv_assemble(i,i_regs);break;
3525     case MOV:
3526       mov_assemble(i,i_regs);break;
3527     case SYSCALL:
3528     case HLECALL:
3529     case INTCALL:
3530     case SPAN:
3531     case UJUMP:
3532     case RJUMP:
3533     case CJUMP:
3534     case SJUMP:
3535     case FJUMP:
3536       SysPrintf("Jump in the delay slot.  This is probably a bug.\n");
3537   }
3538   is_delayslot=0;
3539 }
3540
3541 // Is the branch target a valid internal jump?
3542 int internal_branch(uint64_t i_is32,int addr)
3543 {
3544   if(addr&1) return 0; // Indirect (register) jump
3545   if(addr>=start && addr<start+slen*4-4)
3546   {
3547     //int t=(addr-start)>>2;
3548     // Delay slots are not valid branch targets
3549     //if(t>0&&(itype[t-1]==RJUMP||itype[t-1]==UJUMP||itype[t-1]==CJUMP||itype[t-1]==SJUMP||itype[t-1]==FJUMP)) return 0;
3550     // 64 -> 32 bit transition requires a recompile
3551     /*if(is32[t]&~unneeded_reg_upper[t]&~i_is32)
3552     {
3553       if(requires_32bit[t]&~i_is32) printf("optimizable: no\n");
3554       else printf("optimizable: yes\n");
3555     }*/
3556     //if(is32[t]&~unneeded_reg_upper[t]&~i_is32) return 0;
3557     return 1;
3558   }
3559   return 0;
3560 }
3561
3562 #ifndef wb_invalidate
3563 void wb_invalidate(signed char pre[],signed char entry[],uint64_t dirty,uint64_t is32,
3564   uint64_t u,uint64_t uu)
3565 {
3566   int hr;
3567   for(hr=0;hr<HOST_REGS;hr++) {
3568     if(hr!=EXCLUDE_REG) {
3569       if(pre[hr]!=entry[hr]) {
3570         if(pre[hr]>=0) {
3571           if((dirty>>hr)&1) {
3572             if(get_reg(entry,pre[hr])<0) {
3573               if(pre[hr]<64) {
3574                 if(!((u>>pre[hr])&1)) {
3575                   emit_storereg(pre[hr],hr);
3576                   if( ((is32>>pre[hr])&1) && !((uu>>pre[hr])&1) ) {
3577                     emit_sarimm(hr,31,hr);
3578                     emit_storereg(pre[hr]|64,hr);
3579                   }
3580                 }
3581               }else{
3582                 if(!((uu>>(pre[hr]&63))&1) && !((is32>>(pre[hr]&63))&1)) {
3583                   emit_storereg(pre[hr],hr);
3584                 }
3585               }
3586             }
3587           }
3588         }
3589       }
3590     }
3591   }
3592   // Move from one register to another (no writeback)
3593   for(hr=0;hr<HOST_REGS;hr++) {
3594     if(hr!=EXCLUDE_REG) {
3595       if(pre[hr]!=entry[hr]) {
3596         if(pre[hr]>=0&&(pre[hr]&63)<TEMPREG) {
3597           int nr;
3598           if((nr=get_reg(entry,pre[hr]))>=0) {
3599             emit_mov(hr,nr);
3600           }
3601         }
3602       }
3603     }
3604   }
3605 }
3606 #endif
3607
3608 // Load the specified registers
3609 // This only loads the registers given as arguments because
3610 // we don't want to load things that will be overwritten
3611 void load_regs(signed char entry[],signed char regmap[],int is32,int rs1,int rs2)
3612 {
3613   int hr;
3614   // Load 32-bit regs
3615   for(hr=0;hr<HOST_REGS;hr++) {
3616     if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
3617       if(entry[hr]!=regmap[hr]) {
3618         if(regmap[hr]==rs1||regmap[hr]==rs2)
3619         {
3620           if(regmap[hr]==0) {
3621             emit_zeroreg(hr);
3622           }
3623           else
3624           {
3625             emit_loadreg(regmap[hr],hr);
3626           }
3627         }
3628       }
3629     }
3630   }
3631   //Load 64-bit regs
3632   for(hr=0;hr<HOST_REGS;hr++) {
3633     if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
3634       if(entry[hr]!=regmap[hr]) {
3635         if(regmap[hr]-64==rs1||regmap[hr]-64==rs2)
3636         {
3637           assert(regmap[hr]!=64);
3638           if((is32>>(regmap[hr]&63))&1) {
3639             int lr=get_reg(regmap,regmap[hr]-64);
3640             if(lr>=0)
3641               emit_sarimm(lr,31,hr);
3642             else
3643               emit_loadreg(regmap[hr],hr);
3644           }
3645           else
3646           {
3647             emit_loadreg(regmap[hr],hr);
3648           }
3649         }
3650       }
3651     }
3652   }
3653 }
3654
3655 // Load registers prior to the start of a loop
3656 // so that they are not loaded within the loop
3657 static void loop_preload(signed char pre[],signed char entry[])
3658 {
3659   int hr;
3660   for(hr=0;hr<HOST_REGS;hr++) {
3661     if(hr!=EXCLUDE_REG) {
3662       if(pre[hr]!=entry[hr]) {
3663         if(entry[hr]>=0) {
3664           if(get_reg(pre,entry[hr])<0) {
3665             assem_debug("loop preload:\n");
3666             //printf("loop preload: %d\n",hr);
3667             if(entry[hr]==0) {
3668               emit_zeroreg(hr);
3669             }
3670             else if(entry[hr]<TEMPREG)
3671             {
3672               emit_loadreg(entry[hr],hr);
3673             }
3674             else if(entry[hr]-64<TEMPREG)
3675             {
3676               emit_loadreg(entry[hr],hr);
3677             }
3678           }
3679         }
3680       }
3681     }
3682   }
3683 }
3684
3685 // Generate address for load/store instruction
3686 // goes to AGEN for writes, FTEMP for LOADLR and cop1/2 loads
3687 void address_generation(int i,struct regstat *i_regs,signed char entry[])
3688 {
3689   if(itype[i]==LOAD||itype[i]==LOADLR||itype[i]==STORE||itype[i]==STORELR||itype[i]==C1LS||itype[i]==C2LS) {
3690     int ra=-1;
3691     int agr=AGEN1+(i&1);
3692     int mgr=MGEN1+(i&1);
3693     if(itype[i]==LOAD) {
3694       ra=get_reg(i_regs->regmap,rt1[i]);
3695       if(ra<0) ra=get_reg(i_regs->regmap,-1); 
3696       assert(ra>=0);
3697     }
3698     if(itype[i]==LOADLR) {
3699       ra=get_reg(i_regs->regmap,FTEMP);
3700     }
3701     if(itype[i]==STORE||itype[i]==STORELR) {
3702       ra=get_reg(i_regs->regmap,agr);
3703       if(ra<0) ra=get_reg(i_regs->regmap,-1);
3704     }
3705     if(itype[i]==C1LS||itype[i]==C2LS) {
3706       if ((opcode[i]&0x3b)==0x31||(opcode[i]&0x3b)==0x32) // LWC1/LDC1/LWC2/LDC2
3707         ra=get_reg(i_regs->regmap,FTEMP);
3708       else { // SWC1/SDC1/SWC2/SDC2
3709         ra=get_reg(i_regs->regmap,agr);
3710         if(ra<0) ra=get_reg(i_regs->regmap,-1);
3711       }
3712     }
3713     int rs=get_reg(i_regs->regmap,rs1[i]);
3714     int rm=get_reg(i_regs->regmap,TLREG);
3715     if(ra>=0) {
3716       int offset=imm[i];
3717       int c=(i_regs->wasconst>>rs)&1;
3718       if(rs1[i]==0) {
3719         // Using r0 as a base address
3720         /*if(rm>=0) {
3721           if(!entry||entry[rm]!=mgr) {
3722             generate_map_const(offset,rm);
3723           } // else did it in the previous cycle
3724         }*/
3725         if(!entry||entry[ra]!=agr) {
3726           if (opcode[i]==0x22||opcode[i]==0x26) {
3727             emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
3728           }else if (opcode[i]==0x1a||opcode[i]==0x1b) {
3729             emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
3730           }else{
3731             emit_movimm(offset,ra);
3732           }
3733         } // else did it in the previous cycle
3734       }
3735       else if(rs<0) {
3736         if(!entry||entry[ra]!=rs1[i])
3737           emit_loadreg(rs1[i],ra);
3738         //if(!entry||entry[ra]!=rs1[i])
3739         //  printf("poor load scheduling!\n");
3740       }
3741       else if(c) {
3742         if(rs1[i]!=rt1[i]||itype[i]!=LOAD) {
3743           if(!entry||entry[ra]!=agr) {
3744             if (opcode[i]==0x22||opcode[i]==0x26) {
3745               emit_movimm((constmap[i][rs]+offset)&0xFFFFFFFC,ra); // LWL/LWR
3746             }else if (opcode[i]==0x1a||opcode[i]==0x1b) {
3747               emit_movimm((constmap[i][rs]+offset)&0xFFFFFFF8,ra); // LDL/LDR
3748             }else{
3749               #ifdef HOST_IMM_ADDR32
3750               if((itype[i]!=LOAD&&(opcode[i]&0x3b)!=0x31&&(opcode[i]&0x3b)!=0x32) || // LWC1/LDC1/LWC2/LDC2
3751                  (using_tlb&&((signed int)constmap[i][rs]+offset)>=(signed int)0xC0000000))
3752               #endif
3753               emit_movimm(constmap[i][rs]+offset,ra);
3754               regs[i].loadedconst|=1<<ra;
3755             }
3756           } // else did it in the previous cycle
3757         } // else load_consts already did it
3758       }
3759       if(offset&&!c&&rs1[i]) {
3760         if(rs>=0) {
3761           emit_addimm(rs,offset,ra);
3762         }else{
3763           emit_addimm(ra,offset,ra);
3764         }
3765       }
3766     }
3767   }
3768   // Preload constants for next instruction
3769   if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS||itype[i+1]==C2LS) {
3770     int agr,ra;
3771     // Actual address
3772     agr=AGEN1+((i+1)&1);
3773     ra=get_reg(i_regs->regmap,agr);
3774     if(ra>=0) {
3775       int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
3776       int offset=imm[i+1];
3777       int c=(regs[i+1].wasconst>>rs)&1;
3778       if(c&&(rs1[i+1]!=rt1[i+1]||itype[i+1]!=LOAD)) {
3779         if (opcode[i+1]==0x22||opcode[i+1]==0x26) {
3780           emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFFC,ra); // LWL/LWR
3781         }else if (opcode[i+1]==0x1a||opcode[i+1]==0x1b) {
3782           emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFF8,ra); // LDL/LDR
3783         }else{
3784           #ifdef HOST_IMM_ADDR32
3785           if((itype[i+1]!=LOAD&&(opcode[i+1]&0x3b)!=0x31&&(opcode[i+1]&0x3b)!=0x32) || // LWC1/LDC1/LWC2/LDC2
3786              (using_tlb&&((signed int)constmap[i+1][rs]+offset)>=(signed int)0xC0000000))
3787           #endif
3788           emit_movimm(constmap[i+1][rs]+offset,ra);
3789           regs[i+1].loadedconst|=1<<ra;
3790         }
3791       }
3792       else if(rs1[i+1]==0) {
3793         // Using r0 as a base address
3794         if (opcode[i+1]==0x22||opcode[i+1]==0x26) {
3795           emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
3796         }else if (opcode[i+1]==0x1a||opcode[i+1]==0x1b) {
3797           emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
3798         }else{
3799           emit_movimm(offset,ra);
3800         }
3801       }
3802     }
3803   }
3804 }
3805
3806 int get_final_value(int hr, int i, int *value)
3807 {
3808   int reg=regs[i].regmap[hr];
3809   while(i<slen-1) {
3810     if(regs[i+1].regmap[hr]!=reg) break;
3811     if(!((regs[i+1].isconst>>hr)&1)) break;
3812     if(bt[i+1]) break;
3813     i++;
3814   }
3815   if(i<slen-1) {
3816     if(itype[i]==UJUMP||itype[i]==RJUMP||itype[i]==CJUMP||itype[i]==SJUMP) {
3817       *value=constmap[i][hr];
3818       return 1;
3819     }
3820     if(!bt[i+1]) {
3821       if(itype[i+1]==UJUMP||itype[i+1]==RJUMP||itype[i+1]==CJUMP||itype[i+1]==SJUMP) {
3822         // Load in delay slot, out-of-order execution
3823         if(itype[i+2]==LOAD&&rs1[i+2]==reg&&rt1[i+2]==reg&&((regs[i+1].wasconst>>hr)&1))
3824         {
3825           #ifdef HOST_IMM_ADDR32
3826           if(!using_tlb||((signed int)constmap[i][hr]+imm[i+2])<(signed int)0xC0000000) return 0;
3827           #endif
3828           // Precompute load address
3829           *value=constmap[i][hr]+imm[i+2];
3830           return 1;
3831         }
3832       }
3833       if(itype[i+1]==LOAD&&rs1[i+1]==reg&&rt1[i+1]==reg)
3834       {
3835         #ifdef HOST_IMM_ADDR32
3836         if(!using_tlb||((signed int)constmap[i][hr]+imm[i+1])<(signed int)0xC0000000) return 0;
3837         #endif
3838         // Precompute load address
3839         *value=constmap[i][hr]+imm[i+1];
3840         //printf("c=%x imm=%x\n",(int)constmap[i][hr],imm[i+1]);
3841         return 1;
3842       }
3843     }
3844   }
3845   *value=constmap[i][hr];
3846   //printf("c=%x\n",(int)constmap[i][hr]);
3847   if(i==slen-1) return 1;
3848   if(reg<64) {
3849     return !((unneeded_reg[i+1]>>reg)&1);
3850   }else{
3851     return !((unneeded_reg_upper[i+1]>>reg)&1);
3852   }
3853 }
3854
3855 // Load registers with known constants
3856 void load_consts(signed char pre[],signed char regmap[],int is32,int i)
3857 {
3858   int hr,hr2;
3859   // propagate loaded constant flags
3860   if(i==0||bt[i])
3861     regs[i].loadedconst=0;
3862   else {
3863     for(hr=0;hr<HOST_REGS;hr++) {
3864       if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((regs[i-1].isconst>>hr)&1)&&pre[hr]==regmap[hr]
3865          &&regmap[hr]==regs[i-1].regmap[hr]&&((regs[i-1].loadedconst>>hr)&1))
3866       {
3867         regs[i].loadedconst|=1<<hr;
3868       }
3869     }
3870   }
3871   // Load 32-bit regs
3872   for(hr=0;hr<HOST_REGS;hr++) {
3873     if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
3874       //if(entry[hr]!=regmap[hr]) {
3875       if(!((regs[i].loadedconst>>hr)&1)) {
3876         if(((regs[i].isconst>>hr)&1)&&regmap[hr]<64&&regmap[hr]>0) {
3877           int value,similar=0;
3878           if(get_final_value(hr,i,&value)) {
3879             // see if some other register has similar value
3880             for(hr2=0;hr2<HOST_REGS;hr2++) {
3881               if(hr2!=EXCLUDE_REG&&((regs[i].loadedconst>>hr2)&1)) {
3882                 if(is_similar_value(value,constmap[i][hr2])) {
3883                   similar=1;
3884                   break;
3885                 }
3886               }
3887             }
3888             if(similar) {
3889               int value2;
3890               if(get_final_value(hr2,i,&value2)) // is this needed?
3891                 emit_movimm_from(value2,hr2,value,hr);
3892               else
3893                 emit_movimm(value,hr);
3894             }
3895             else if(value==0) {
3896               emit_zeroreg(hr);
3897             }
3898             else {
3899               emit_movimm(value,hr);
3900             }
3901           }
3902           regs[i].loadedconst|=1<<hr;
3903         }
3904       }
3905     }
3906   }
3907   // Load 64-bit regs
3908   for(hr=0;hr<HOST_REGS;hr++) {
3909     if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
3910       //if(entry[hr]!=regmap[hr]) {
3911       if(i==0||!((regs[i-1].isconst>>hr)&1)||pre[hr]!=regmap[hr]||bt[i]) {
3912         if(((regs[i].isconst>>hr)&1)&&regmap[hr]>64) {
3913           if((is32>>(regmap[hr]&63))&1) {
3914             int lr=get_reg(regmap,regmap[hr]-64);
3915             assert(lr>=0);
3916             emit_sarimm(lr,31,hr);
3917           }
3918           else
3919           {
3920             int value;
3921             if(get_final_value(hr,i,&value)) {
3922               if(value==0) {
3923                 emit_zeroreg(hr);
3924               }
3925               else {
3926                 emit_movimm(value,hr);
3927               }
3928             }
3929           }
3930         }
3931       }
3932     }
3933   }
3934 }
3935 void load_all_consts(signed char regmap[],int is32,u_int dirty,int i)
3936 {
3937   int hr;
3938   // Load 32-bit regs
3939   for(hr=0;hr<HOST_REGS;hr++) {
3940     if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((dirty>>hr)&1)) {
3941       if(((regs[i].isconst>>hr)&1)&&regmap[hr]<64&&regmap[hr]>0) {
3942         int value=constmap[i][hr];
3943         if(value==0) {
3944           emit_zeroreg(hr);
3945         }
3946         else {
3947           emit_movimm(value,hr);
3948         }
3949       }
3950     }
3951   }
3952   // Load 64-bit regs
3953   for(hr=0;hr<HOST_REGS;hr++) {
3954     if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((dirty>>hr)&1)) {
3955       if(((regs[i].isconst>>hr)&1)&&regmap[hr]>64) {
3956         if((is32>>(regmap[hr]&63))&1) {
3957           int lr=get_reg(regmap,regmap[hr]-64);
3958           assert(lr>=0);
3959           emit_sarimm(lr,31,hr);
3960         }
3961         else
3962         {
3963           int value=constmap[i][hr];
3964           if(value==0) {
3965             emit_zeroreg(hr);
3966           }
3967           else {
3968             emit_movimm(value,hr);
3969           }
3970         }
3971       }
3972     }
3973   }
3974 }
3975
3976 // Write out all dirty registers (except cycle count)
3977 void wb_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty)
3978 {
3979   int hr;
3980   for(hr=0;hr<HOST_REGS;hr++) {
3981     if(hr!=EXCLUDE_REG) {
3982       if(i_regmap[hr]>0) {
3983         if(i_regmap[hr]!=CCREG) {
3984           if((i_dirty>>hr)&1) {
3985             if(i_regmap[hr]<64) {
3986               emit_storereg(i_regmap[hr],hr);
3987             }else{
3988               if( !((i_is32>>(i_regmap[hr]&63))&1) ) {
3989                 emit_storereg(i_regmap[hr],hr);
3990               }
3991             }
3992           }
3993         }
3994       }
3995     }
3996   }
3997 }
3998 // Write out dirty registers that we need to reload (pair with load_needed_regs)
3999 // This writes the registers not written by store_regs_bt
4000 void wb_needed_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4001 {
4002   int hr;
4003   int t=(addr-start)>>2;
4004   for(hr=0;hr<HOST_REGS;hr++) {
4005     if(hr!=EXCLUDE_REG) {
4006       if(i_regmap[hr]>0) {
4007         if(i_regmap[hr]!=CCREG) {
4008           if(i_regmap[hr]==regs[t].regmap_entry[hr] && ((regs[t].dirty>>hr)&1) && !(((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4009             if((i_dirty>>hr)&1) {
4010               if(i_regmap[hr]<64) {
4011                 emit_storereg(i_regmap[hr],hr);
4012               }else{
4013                 if( !((i_is32>>(i_regmap[hr]&63))&1) ) {
4014                   emit_storereg(i_regmap[hr],hr);
4015                 }
4016               }
4017             }
4018           }
4019         }
4020       }
4021     }
4022   }
4023 }
4024
4025 // Load all registers (except cycle count)
4026 void load_all_regs(signed char i_regmap[])
4027 {
4028   int hr;
4029   for(hr=0;hr<HOST_REGS;hr++) {
4030     if(hr!=EXCLUDE_REG) {
4031       if(i_regmap[hr]==0) {
4032         emit_zeroreg(hr);
4033       }
4034       else
4035       if(i_regmap[hr]>0 && (i_regmap[hr]&63)<TEMPREG && i_regmap[hr]!=CCREG)
4036       {
4037         emit_loadreg(i_regmap[hr],hr);
4038       }
4039     }
4040   }
4041 }
4042
4043 // Load all current registers also needed by next instruction
4044 void load_needed_regs(signed char i_regmap[],signed char next_regmap[])
4045 {
4046   int hr;
4047   for(hr=0;hr<HOST_REGS;hr++) {
4048     if(hr!=EXCLUDE_REG) {
4049       if(get_reg(next_regmap,i_regmap[hr])>=0) {
4050         if(i_regmap[hr]==0) {
4051           emit_zeroreg(hr);
4052         }
4053         else
4054         if(i_regmap[hr]>0 && (i_regmap[hr]&63)<TEMPREG && i_regmap[hr]!=CCREG)
4055         {
4056           emit_loadreg(i_regmap[hr],hr);
4057         }
4058       }
4059     }
4060   }
4061 }
4062
4063 // Load all regs, storing cycle count if necessary
4064 void load_regs_entry(int t)
4065 {
4066   int hr;
4067   if(is_ds[t]) emit_addimm(HOST_CCREG,CLOCK_ADJUST(1),HOST_CCREG);
4068   else if(ccadj[t]) emit_addimm(HOST_CCREG,-CLOCK_ADJUST(ccadj[t]),HOST_CCREG);
4069   if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
4070     emit_storereg(CCREG,HOST_CCREG);
4071   }
4072   // Load 32-bit regs
4073   for(hr=0;hr<HOST_REGS;hr++) {
4074     if(regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<TEMPREG) {
4075       if(regs[t].regmap_entry[hr]==0) {
4076         emit_zeroreg(hr);
4077       }
4078       else if(regs[t].regmap_entry[hr]!=CCREG)
4079       {
4080         emit_loadreg(regs[t].regmap_entry[hr],hr);
4081       }
4082     }
4083   }
4084   // Load 64-bit regs
4085   for(hr=0;hr<HOST_REGS;hr++) {
4086     if(regs[t].regmap_entry[hr]>=64&&regs[t].regmap_entry[hr]<TEMPREG+64) {
4087       assert(regs[t].regmap_entry[hr]!=64);
4088       if((regs[t].was32>>(regs[t].regmap_entry[hr]&63))&1) {
4089         int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4090         if(lr<0) {
4091           emit_loadreg(regs[t].regmap_entry[hr],hr);
4092         }
4093         else
4094         {
4095           emit_sarimm(lr,31,hr);
4096         }
4097       }
4098       else
4099       {
4100         emit_loadreg(regs[t].regmap_entry[hr],hr);
4101       }
4102     }
4103   }
4104 }
4105
4106 // Store dirty registers prior to branch
4107 void store_regs_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4108 {
4109   if(internal_branch(i_is32,addr))
4110   {
4111     int t=(addr-start)>>2;
4112     int hr;
4113     for(hr=0;hr<HOST_REGS;hr++) {
4114       if(hr!=EXCLUDE_REG) {
4115         if(i_regmap[hr]>0 && i_regmap[hr]!=CCREG) {
4116           if(i_regmap[hr]!=regs[t].regmap_entry[hr] || !((regs[t].dirty>>hr)&1) || (((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4117             if((i_dirty>>hr)&1) {
4118               if(i_regmap[hr]<64) {
4119                 if(!((unneeded_reg[t]>>i_regmap[hr])&1)) {
4120                   emit_storereg(i_regmap[hr],hr);
4121                   if( ((i_is32>>i_regmap[hr])&1) && !((unneeded_reg_upper[t]>>i_regmap[hr])&1) ) {
4122                     #ifdef DESTRUCTIVE_WRITEBACK
4123                     emit_sarimm(hr,31,hr);
4124                     emit_storereg(i_regmap[hr]|64,hr);
4125                     #else
4126                     emit_sarimm(hr,31,HOST_TEMPREG);
4127                     emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
4128                     #endif
4129                   }
4130                 }
4131               }else{
4132                 if( !((i_is32>>(i_regmap[hr]&63))&1) && !((unneeded_reg_upper[t]>>(i_regmap[hr]&63))&1) ) {
4133                   emit_storereg(i_regmap[hr],hr);
4134                 }
4135               }
4136             }
4137           }
4138         }
4139       }
4140     }
4141   }
4142   else
4143   {
4144     // Branch out of this block, write out all dirty regs
4145     wb_dirtys(i_regmap,i_is32,i_dirty);
4146   }
4147 }
4148
4149 // Load all needed registers for branch target
4150 void load_regs_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4151 {
4152   //if(addr>=start && addr<(start+slen*4))
4153   if(internal_branch(i_is32,addr))
4154   {
4155     int t=(addr-start)>>2;
4156     int hr;
4157     // Store the cycle count before loading something else
4158     if(i_regmap[HOST_CCREG]!=CCREG) {
4159       assert(i_regmap[HOST_CCREG]==-1);
4160     }
4161     if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
4162       emit_storereg(CCREG,HOST_CCREG);
4163     }
4164     // Load 32-bit regs
4165     for(hr=0;hr<HOST_REGS;hr++) {
4166       if(hr!=EXCLUDE_REG&&regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<TEMPREG) {
4167         #ifdef DESTRUCTIVE_WRITEBACK
4168         if(i_regmap[hr]!=regs[t].regmap_entry[hr] || ( !((regs[t].dirty>>hr)&1) && ((i_dirty>>hr)&1) && (((i_is32&~unneeded_reg_upper[t])>>i_regmap[hr])&1) ) || (((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
4169         #else
4170         if(i_regmap[hr]!=regs[t].regmap_entry[hr] ) {
4171         #endif
4172           if(regs[t].regmap_entry[hr]==0) {
4173             emit_zeroreg(hr);
4174           }
4175           else if(regs[t].regmap_entry[hr]!=CCREG)
4176           {
4177             emit_loadreg(regs[t].regmap_entry[hr],hr);
4178           }
4179         }
4180       }
4181     }
4182     //Load 64-bit regs
4183     for(hr=0;hr<HOST_REGS;hr++) {
4184       if(hr!=EXCLUDE_REG&&regs[t].regmap_entry[hr]>=64&&regs[t].regmap_entry[hr]<TEMPREG+64) {
4185         if(i_regmap[hr]!=regs[t].regmap_entry[hr]) {
4186           assert(regs[t].regmap_entry[hr]!=64);
4187           if((i_is32>>(regs[t].regmap_entry[hr]&63))&1) {
4188             int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4189             if(lr<0) {
4190               emit_loadreg(regs[t].regmap_entry[hr],hr);
4191             }
4192             else
4193             {
4194               emit_sarimm(lr,31,hr);
4195             }
4196           }
4197           else
4198           {
4199             emit_loadreg(regs[t].regmap_entry[hr],hr);
4200           }
4201         }
4202         else if((i_is32>>(regs[t].regmap_entry[hr]&63))&1) {
4203           int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
4204           assert(lr>=0);
4205           emit_sarimm(lr,31,hr);
4206         }
4207       }
4208     }
4209   }
4210 }
4211
4212 int match_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
4213 {
4214   if(addr>=start && addr<start+slen*4-4)
4215   {
4216     int t=(addr-start)>>2;
4217     int hr;
4218     if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) return 0;
4219     for(hr=0;hr<HOST_REGS;hr++)
4220     {
4221       if(hr!=EXCLUDE_REG)
4222       {
4223         if(i_regmap[hr]!=regs[t].regmap_entry[hr])
4224         {
4225           if(regs[t].regmap_entry[hr]>=0&&(regs[t].regmap_entry[hr]|64)<TEMPREG+64)
4226           {
4227             return 0;
4228           }
4229           else 
4230           if((i_dirty>>hr)&1)
4231           {
4232             if(i_regmap[hr]<TEMPREG)
4233             {
4234               if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4235                 return 0;
4236             }
4237             else if(i_regmap[hr]>=64&&i_regmap[hr]<TEMPREG+64)
4238             {
4239               if(!((unneeded_reg_upper[t]>>(i_regmap[hr]&63))&1))
4240                 return 0;
4241             }
4242           }
4243         }
4244         else // Same register but is it 32-bit or dirty?
4245         if(i_regmap[hr]>=0)
4246         {
4247           if(!((regs[t].dirty>>hr)&1))
4248           {
4249             if((i_dirty>>hr)&1)
4250             {
4251               if(!((unneeded_reg[t]>>i_regmap[hr])&1))
4252               {
4253                 //printf("%x: dirty no match\n",addr);
4254                 return 0;
4255               }
4256             }
4257           }
4258           if((((regs[t].was32^i_is32)&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)
4259           {
4260             //printf("%x: is32 no match\n",addr);
4261             return 0;
4262           }
4263         }
4264       }
4265     }
4266     //if(is32[t]&~unneeded_reg_upper[t]&~i_is32) return 0;
4267     // Delay slots are not valid branch targets
4268     //if(t>0&&(itype[t-1]==RJUMP||itype[t-1]==UJUMP||itype[t-1]==CJUMP||itype[t-1]==SJUMP||itype[t-1]==FJUMP)) return 0;
4269     // Delay slots require additional processing, so do not match
4270     if(is_ds[t]) return 0;
4271   }
4272   else
4273   {
4274     int hr;
4275     for(hr=0;hr<HOST_REGS;hr++)
4276     {
4277       if(hr!=EXCLUDE_REG)
4278       {
4279         if(i_regmap[hr]>=0)
4280         {
4281           if(hr!=HOST_CCREG||i_regmap[hr]!=CCREG)
4282           {
4283             if((i_dirty>>hr)&1)
4284             {
4285               return 0;
4286             }
4287           }
4288         }
4289       }
4290     }
4291   }
4292   return 1;
4293 }
4294
4295 // Used when a branch jumps into the delay slot of another branch
4296 void ds_assemble_entry(int i)
4297 {
4298   int t=(ba[i]-start)>>2;
4299   if(!instr_addr[t]) instr_addr[t]=(u_int)out;
4300   assem_debug("Assemble delay slot at %x\n",ba[i]);
4301   assem_debug("<->\n");
4302   if(regs[t].regmap_entry[HOST_CCREG]==CCREG&&regs[t].regmap[HOST_CCREG]!=CCREG)
4303     wb_register(CCREG,regs[t].regmap_entry,regs[t].wasdirty,regs[t].was32);
4304   load_regs(regs[t].regmap_entry,regs[t].regmap,regs[t].was32,rs1[t],rs2[t]);
4305   address_generation(t,&regs[t],regs[t].regmap_entry);
4306   if(itype[t]==STORE||itype[t]==STORELR||(opcode[t]&0x3b)==0x39||(opcode[t]&0x3b)==0x3a)
4307     load_regs(regs[t].regmap_entry,regs[t].regmap,regs[t].was32,INVCP,INVCP);
4308   cop1_usable=0;
4309   is_delayslot=0;
4310   switch(itype[t]) {
4311     case ALU:
4312       alu_assemble(t,&regs[t]);break;
4313     case IMM16:
4314       imm16_assemble(t,&regs[t]);break;
4315     case SHIFT:
4316       shift_assemble(t,&regs[t]);break;
4317     case SHIFTIMM:
4318       shiftimm_assemble(t,&regs[t]);break;
4319     case LOAD:
4320       load_assemble(t,&regs[t]);break;
4321     case LOADLR:
4322       loadlr_assemble(t,&regs[t]);break;
4323     case STORE:
4324       store_assemble(t,&regs[t]);break;
4325     case STORELR:
4326       storelr_assemble(t,&regs[t]);break;
4327     case COP0:
4328       cop0_assemble(t,&regs[t]);break;
4329     case COP1:
4330       cop1_assemble(t,&regs[t]);break;
4331     case C1LS:
4332       c1ls_assemble(t,&regs[t]);break;
4333     case COP2:
4334       cop2_assemble(t,&regs[t]);break;
4335     case C2LS:
4336       c2ls_assemble(t,&regs[t]);break;
4337     case C2OP:
4338       c2op_assemble(t,&regs[t]);break;
4339     case FCONV:
4340       fconv_assemble(t,&regs[t]);break;
4341     case FLOAT:
4342       float_assemble(t,&regs[t]);break;
4343     case FCOMP:
4344       fcomp_assemble(t,&regs[t]);break;
4345     case MULTDIV:
4346       multdiv_assemble(t,&regs[t]);break;
4347     case MOV:
4348       mov_assemble(t,&regs[t]);break;
4349     case SYSCALL:
4350     case HLECALL:
4351     case INTCALL:
4352     case SPAN:
4353     case UJUMP:
4354     case RJUMP:
4355     case CJUMP:
4356     case SJUMP:
4357     case FJUMP:
4358       SysPrintf("Jump in the delay slot.  This is probably a bug.\n");
4359   }
4360   store_regs_bt(regs[t].regmap,regs[t].is32,regs[t].dirty,ba[i]+4);
4361   load_regs_bt(regs[t].regmap,regs[t].is32,regs[t].dirty,ba[i]+4);
4362   if(internal_branch(regs[t].is32,ba[i]+4))
4363     assem_debug("branch: internal\n");
4364   else
4365     assem_debug("branch: external\n");
4366   assert(internal_branch(regs[t].is32,ba[i]+4));
4367   add_to_linker((int)out,ba[i]+4,internal_branch(regs[t].is32,ba[i]+4));
4368   emit_jmp(0);
4369 }
4370
4371 void do_cc(int i,signed char i_regmap[],int *adj,int addr,int taken,int invert)
4372 {
4373   int count;
4374   int jaddr;
4375   int idle=0;
4376   int t=0;
4377   if(itype[i]==RJUMP)
4378   {
4379     *adj=0;
4380   }
4381   //if(ba[i]>=start && ba[i]<(start+slen*4))
4382   if(internal_branch(branch_regs[i].is32,ba[i]))
4383   {
4384     t=(ba[i]-start)>>2;
4385     if(is_ds[t]) *adj=-1; // Branch into delay slot adds an extra cycle
4386     else *adj=ccadj[t];
4387   }
4388   else
4389   {
4390     *adj=0;
4391   }
4392   count=ccadj[i];
4393   if(taken==TAKEN && i==(ba[i]-start)>>2 && source[i+1]==0) {
4394     // Idle loop
4395     if(count&1) emit_addimm_and_set_flags(2*(count+2),HOST_CCREG);
4396     idle=(int)out;
4397     //emit_subfrommem(&idlecount,HOST_CCREG); // Count idle cycles
4398     emit_andimm(HOST_CCREG,3,HOST_CCREG);
4399     jaddr=(int)out;
4400     emit_jmp(0);
4401   }
4402   else if(*adj==0||invert) {
4403     int cycles=CLOCK_ADJUST(count+2);
4404     // faster loop HACK
4405     if (t&&*adj) {
4406       int rel=t-i;
4407       if(-NO_CYCLE_PENALTY_THR<rel&&rel<0)
4408         cycles=CLOCK_ADJUST(*adj)+count+2-*adj;
4409     }
4410     emit_addimm_and_set_flags(cycles,HOST_CCREG);
4411     jaddr=(int)out;
4412     emit_jns(0);
4413   }
4414   else
4415   {
4416     emit_cmpimm(HOST_CCREG,-CLOCK_ADJUST(count+2));
4417     jaddr=(int)out;
4418     emit_jns(0);
4419   }
4420   add_stub(CC_STUB,jaddr,idle?idle:(int)out,(*adj==0||invert||idle)?0:(count+2),i,addr,taken,0);
4421 }
4422
4423 void do_ccstub(int n)
4424 {
4425   literal_pool(256);
4426   assem_debug("do_ccstub %x\n",start+stubs[n][4]*4);
4427   set_jump_target(stubs[n][1],(int)out);
4428   int i=stubs[n][4];
4429   if(stubs[n][6]==NULLDS) {
4430     // Delay slot instruction is nullified ("likely" branch)
4431     wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
4432   }
4433   else if(stubs[n][6]!=TAKEN) {
4434     wb_dirtys(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty);
4435   }
4436   else {
4437     if(internal_branch(branch_regs[i].is32,ba[i]))
4438       wb_needed_dirtys(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
4439   }
4440   if(stubs[n][5]!=-1)
4441   {
4442     // Save PC as return address
4443     emit_movimm(stubs[n][5],EAX);
4444     emit_writeword(EAX,(int)&pcaddr);
4445   }
4446   else
4447   {
4448     // Return address depends on which way the branch goes
4449     if(itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
4450     {
4451       int s1l=get_reg(branch_regs[i].regmap,rs1[i]);
4452       int s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
4453       int s2l=get_reg(branch_regs[i].regmap,rs2[i]);
4454       int s2h=get_reg(branch_regs[i].regmap,rs2[i]|64);
4455       if(rs1[i]==0)
4456       {
4457         s1l=s2l;s1h=s2h;
4458         s2l=s2h=-1;
4459       }
4460       else if(rs2[i]==0)
4461       {
4462         s2l=s2h=-1;
4463       }
4464       if((branch_regs[i].is32>>rs1[i])&(branch_regs[i].is32>>rs2[i])&1) {
4465         s1h=s2h=-1;
4466       }
4467       assert(s1l>=0);
4468       #ifdef DESTRUCTIVE_WRITEBACK
4469       if(rs1[i]) {
4470         if((branch_regs[i].dirty>>s1l)&(branch_regs[i].is32>>rs1[i])&1)
4471           emit_loadreg(rs1[i],s1l);
4472       } 
4473       else {
4474         if((branch_regs[i].dirty>>s1l)&(branch_regs[i].is32>>rs2[i])&1)
4475           emit_loadreg(rs2[i],s1l);
4476       }
4477       if(s2l>=0)
4478         if((branch_regs[i].dirty>>s2l)&(branch_regs[i].is32>>rs2[i])&1)
4479           emit_loadreg(rs2[i],s2l);
4480       #endif
4481       int hr=0;
4482       int addr=-1,alt=-1,ntaddr=-1;
4483       while(hr<HOST_REGS)
4484       {
4485         if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4486            (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
4487            (branch_regs[i].regmap[hr]&63)!=rs2[i] )
4488         {
4489           addr=hr++;break;
4490         }
4491         hr++;
4492       }
4493       while(hr<HOST_REGS)
4494       {
4495         if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4496            (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
4497            (branch_regs[i].regmap[hr]&63)!=rs2[i] )
4498         {
4499           alt=hr++;break;
4500         }
4501         hr++;
4502       }
4503       if((opcode[i]&0x2E)==6) // BLEZ/BGTZ needs another register
4504       {
4505         while(hr<HOST_REGS)
4506         {
4507           if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
4508              (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
4509              (branch_regs[i].regmap[hr]&63)!=rs2[i] )
4510           {
4511             ntaddr=hr;break;
4512           }
4513           hr++;
4514         }
4515         assert(hr<HOST_REGS);
4516       }
4517       if((opcode[i]&0x2f)==4) // BEQ
4518       {
4519         #ifdef HAVE_CMOV_IMM
4520         if(s1h<0) {
4521           if(s2l>=0) emit_cmp(s1l,s2l);
4522           else emit_test(s1l,s1l);
4523           emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
4524         }
4525         else
4526         #endif
4527         {
4528           emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
4529           if(s1h>=0) {
4530             if(s2h>=0) emit_cmp(s1h,s2h);
4531             else emit_test(s1h,s1h);
4532             emit_cmovne_reg(alt,addr);
4533           }
4534           if(s2l>=0) emit_cmp(s1l,s2l);
4535           else emit_test(s1l,s1l);
4536           emit_cmovne_reg(alt,addr);
4537         }
4538       }
4539       if((opcode[i]&0x2f)==5) // BNE
4540       {
4541         #ifdef HAVE_CMOV_IMM
4542         if(s1h<0) {
4543           if(s2l>=0) emit_cmp(s1l,s2l);
4544           else emit_test(s1l,s1l);
4545           emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
4546         }
4547         else
4548         #endif
4549         {
4550           emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
4551           if(s1h>=0) {
4552             if(s2h>=0) emit_cmp(s1h,s2h);
4553             else emit_test(s1h,s1h);
4554             emit_cmovne_reg(alt,addr);
4555           }
4556           if(s2l>=0) emit_cmp(s1l,s2l);
4557           else emit_test(s1l,s1l);
4558           emit_cmovne_reg(alt,addr);
4559         }
4560       }
4561       if((opcode[i]&0x2f)==6) // BLEZ
4562       {
4563         //emit_movimm(ba[i],alt);
4564         //emit_movimm(start+i*4+8,addr);
4565         emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
4566         emit_cmpimm(s1l,1);
4567         if(s1h>=0) emit_mov(addr,ntaddr);
4568         emit_cmovl_reg(alt,addr);
4569         if(s1h>=0) {
4570           emit_test(s1h,s1h);
4571           emit_cmovne_reg(ntaddr,addr);
4572           emit_cmovs_reg(alt,addr);
4573         }
4574       }
4575       if((opcode[i]&0x2f)==7) // BGTZ
4576       {
4577         //emit_movimm(ba[i],addr);
4578         //emit_movimm(start+i*4+8,ntaddr);
4579         emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
4580         emit_cmpimm(s1l,1);
4581         if(s1h>=0) emit_mov(addr,alt);
4582         emit_cmovl_reg(ntaddr,addr);
4583         if(s1h>=0) {
4584           emit_test(s1h,s1h);
4585           emit_cmovne_reg(alt,addr);
4586           emit_cmovs_reg(ntaddr,addr);
4587         }
4588       }
4589       if((opcode[i]==1)&&(opcode2[i]&0x2D)==0) // BLTZ
4590       {
4591         //emit_movimm(ba[i],alt);
4592         //emit_movimm(start+i*4+8,addr);
4593         emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
4594         if(s1h>=0) emit_test(s1h,s1h);
4595         else emit_test(s1l,s1l);
4596         emit_cmovs_reg(alt,addr);
4597       }
4598       if((opcode[i]==1)&&(opcode2[i]&0x2D)==1) // BGEZ
4599       {
4600         //emit_movimm(ba[i],addr);
4601         //emit_movimm(start+i*4+8,alt);
4602         emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
4603         if(s1h>=0) emit_test(s1h,s1h);
4604         else emit_test(s1l,s1l);
4605         emit_cmovs_reg(alt,addr);
4606       }
4607       if(opcode[i]==0x11 && opcode2[i]==0x08 ) {
4608         if(source[i]&0x10000) // BC1T
4609         {
4610           //emit_movimm(ba[i],alt);
4611           //emit_movimm(start+i*4+8,addr);
4612           emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
4613           emit_testimm(s1l,0x800000);
4614           emit_cmovne_reg(alt,addr);
4615         }
4616         else // BC1F
4617         {
4618           //emit_movimm(ba[i],addr);
4619           //emit_movimm(start+i*4+8,alt);
4620           emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
4621           emit_testimm(s1l,0x800000);
4622           emit_cmovne_reg(alt,addr);
4623         }
4624       }
4625       emit_writeword(addr,(int)&pcaddr);
4626     }
4627     else
4628     if(itype[i]==RJUMP)
4629     {
4630       int r=get_reg(branch_regs[i].regmap,rs1[i]);
4631       if(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]) {
4632         r=get_reg(branch_regs[i].regmap,RTEMP);
4633       }
4634       emit_writeword(r,(int)&pcaddr);
4635     }
4636     else {SysPrintf("Unknown branch type in do_ccstub\n");exit(1);}
4637   }
4638   // Update cycle count
4639   assert(branch_regs[i].regmap[HOST_CCREG]==CCREG||branch_regs[i].regmap[HOST_CCREG]==-1);
4640   if(stubs[n][3]) emit_addimm(HOST_CCREG,CLOCK_ADJUST((int)stubs[n][3]),HOST_CCREG);
4641   emit_call((int)cc_interrupt);
4642   if(stubs[n][3]) emit_addimm(HOST_CCREG,-CLOCK_ADJUST((int)stubs[n][3]),HOST_CCREG);
4643   if(stubs[n][6]==TAKEN) {
4644     if(internal_branch(branch_regs[i].is32,ba[i]))
4645       load_needed_regs(branch_regs[i].regmap,regs[(ba[i]-start)>>2].regmap_entry);
4646     else if(itype[i]==RJUMP) {
4647       if(get_reg(branch_regs[i].regmap,RTEMP)>=0)
4648         emit_readword((int)&pcaddr,get_reg(branch_regs[i].regmap,RTEMP));
4649       else
4650         emit_loadreg(rs1[i],get_reg(branch_regs[i].regmap,rs1[i]));
4651     }
4652   }else if(stubs[n][6]==NOTTAKEN) {
4653     if(i<slen-2) load_needed_regs(branch_regs[i].regmap,regmap_pre[i+2]);
4654     else load_all_regs(branch_regs[i].regmap);
4655   }else if(stubs[n][6]==NULLDS) {
4656     // Delay slot instruction is nullified ("likely" branch)
4657     if(i<slen-2) load_needed_regs(regs[i].regmap,regmap_pre[i+2]);
4658     else load_all_regs(regs[i].regmap);
4659   }else{
4660     load_all_regs(branch_regs[i].regmap);
4661   }
4662   emit_jmp(stubs[n][2]); // return address
4663   
4664   /* This works but uses a lot of memory...
4665   emit_readword((int)&last_count,ECX);
4666   emit_add(HOST_CCREG,ECX,EAX);
4667   emit_writeword(EAX,(int)&Count);
4668   emit_call((int)gen_interupt);
4669   emit_readword((int)&Count,HOST_CCREG);
4670   emit_readword((int)&next_interupt,EAX);
4671   emit_readword((int)&pending_exception,EBX);
4672   emit_writeword(EAX,(int)&last_count);
4673   emit_sub(HOST_CCREG,EAX,HOST_CCREG);
4674   emit_test(EBX,EBX);
4675   int jne_instr=(int)out;
4676   emit_jne(0);
4677   if(stubs[n][3]) emit_addimm(HOST_CCREG,-2*stubs[n][3],HOST_CCREG);
4678   load_all_regs(branch_regs[i].regmap);
4679   emit_jmp(stubs[n][2]); // return address
4680   set_jump_target(jne_instr,(int)out);
4681   emit_readword((int)&pcaddr,EAX);
4682   // Call get_addr_ht instead of doing the hash table here.
4683   // This code is executed infrequently and takes up a lot of space
4684   // so smaller is better.
4685   emit_storereg(CCREG,HOST_CCREG);
4686   emit_pushreg(EAX);
4687   emit_call((int)get_addr_ht);
4688   emit_loadreg(CCREG,HOST_CCREG);
4689   emit_addimm(ESP,4,ESP);
4690   emit_jmpreg(EAX);*/
4691 }
4692
4693 add_to_linker(int addr,int target,int ext)
4694 {
4695   link_addr[linkcount][0]=addr;
4696   link_addr[linkcount][1]=target;
4697   link_addr[linkcount][2]=ext;  
4698   linkcount++;
4699 }
4700
4701 static void ujump_assemble_write_ra(int i)
4702 {
4703   int rt;
4704   unsigned int return_address;
4705   rt=get_reg(branch_regs[i].regmap,31);
4706   assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
4707   //assert(rt>=0);
4708   return_address=start+i*4+8;
4709   if(rt>=0) {
4710     #ifdef USE_MINI_HT
4711     if(internal_branch(branch_regs[i].is32,return_address)&&rt1[i+1]!=31) {
4712       int temp=-1; // note: must be ds-safe
4713       #ifdef HOST_TEMPREG
4714       temp=HOST_TEMPREG;
4715       #endif
4716       if(temp>=0) do_miniht_insert(return_address,rt,temp);
4717       else emit_movimm(return_address,rt);
4718     }
4719     else
4720     #endif
4721     {
4722       #ifdef REG_PREFETCH
4723       if(temp>=0) 
4724       {
4725         if(i_regmap[temp]!=PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
4726       }
4727       #endif
4728       emit_movimm(return_address,rt); // PC into link register
4729       #ifdef IMM_PREFETCH
4730       emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
4731       #endif
4732     }
4733   }
4734 }
4735
4736 void ujump_assemble(int i,struct regstat *i_regs)
4737 {
4738   signed char *i_regmap=i_regs->regmap;
4739   int ra_done=0;
4740   if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
4741   address_generation(i+1,i_regs,regs[i].regmap_entry);
4742   #ifdef REG_PREFETCH
4743   int temp=get_reg(branch_regs[i].regmap,PTEMP);
4744   if(rt1[i]==31&&temp>=0) 
4745   {
4746     int return_address=start+i*4+8;
4747     if(get_reg(branch_regs[i].regmap,31)>0) 
4748     if(i_regmap[temp]==PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
4749   }
4750   #endif
4751   if(rt1[i]==31&&(rt1[i]==rs1[i+1]||rt1[i]==rs2[i+1])) {
4752     ujump_assemble_write_ra(i); // writeback ra for DS
4753     ra_done=1;
4754   }
4755   ds_assemble(i+1,i_regs);
4756   uint64_t bc_unneeded=branch_regs[i].u;
4757   uint64_t bc_unneeded_upper=branch_regs[i].uu;
4758   bc_unneeded|=1|(1LL<<rt1[i]);
4759   bc_unneeded_upper|=1|(1LL<<rt1[i]);
4760   wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
4761                 bc_unneeded,bc_unneeded_upper);
4762   load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
4763   if(!ra_done&&rt1[i]==31)
4764     ujump_assemble_write_ra(i);
4765   int cc,adj;
4766   cc=get_reg(branch_regs[i].regmap,CCREG);
4767   assert(cc==HOST_CCREG);
4768   store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
4769   #ifdef REG_PREFETCH
4770   if(rt1[i]==31&&temp>=0) emit_prefetchreg(temp);
4771   #endif
4772   do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
4773   if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
4774   load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
4775   if(internal_branch(branch_regs[i].is32,ba[i]))
4776     assem_debug("branch: internal\n");
4777   else
4778     assem_debug("branch: external\n");
4779   if(internal_branch(branch_regs[i].is32,ba[i])&&is_ds[(ba[i]-start)>>2]) {
4780     ds_assemble_entry(i);
4781   }
4782   else {
4783     add_to_linker((int)out,ba[i],internal_branch(branch_regs[i].is32,ba[i]));
4784     emit_jmp(0);
4785   }
4786 }
4787
4788 static void rjump_assemble_write_ra(int i)
4789 {
4790   int rt,return_address;
4791   assert(rt1[i+1]!=rt1[i]);
4792   assert(rt2[i+1]!=rt1[i]);
4793   rt=get_reg(branch_regs[i].regmap,rt1[i]);
4794   assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
4795   assert(rt>=0);
4796   return_address=start+i*4+8;
4797   #ifdef REG_PREFETCH
4798   if(temp>=0) 
4799   {
4800     if(i_regmap[temp]!=PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
4801   }
4802   #endif
4803   emit_movimm(return_address,rt); // PC into link register
4804   #ifdef IMM_PREFETCH
4805   emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
4806   #endif
4807 }
4808
4809 void rjump_assemble(int i,struct regstat *i_regs)
4810 {
4811   signed char *i_regmap=i_regs->regmap;
4812   int temp;
4813   int rs,cc,adj;
4814   int ra_done=0;
4815   rs=get_reg(branch_regs[i].regmap,rs1[i]);
4816   assert(rs>=0);
4817   if(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]) {
4818     // Delay slot abuse, make a copy of the branch address register
4819     temp=get_reg(branch_regs[i].regmap,RTEMP);
4820     assert(temp>=0);
4821     assert(regs[i].regmap[temp]==RTEMP);
4822     emit_mov(rs,temp);
4823     rs=temp;
4824   }
4825   address_generation(i+1,i_regs,regs[i].regmap_entry);
4826   #ifdef REG_PREFETCH
4827   if(rt1[i]==31) 
4828   {
4829     if((temp=get_reg(branch_regs[i].regmap,PTEMP))>=0) {
4830       int return_address=start+i*4+8;
4831       if(i_regmap[temp]==PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
4832     }
4833   }
4834   #endif
4835   #ifdef USE_MINI_HT
4836   if(rs1[i]==31) {
4837     int rh=get_reg(regs[i].regmap,RHASH);
4838     if(rh>=0) do_preload_rhash(rh);
4839   }
4840   #endif
4841   if(rt1[i]!=0&&(rt1[i]==rs1[i+1]||rt1[i]==rs2[i+1])) {
4842     rjump_assemble_write_ra(i);
4843     ra_done=1;
4844   }
4845   ds_assemble(i+1,i_regs);
4846   uint64_t bc_unneeded=branch_regs[i].u;
4847   uint64_t bc_unneeded_upper=branch_regs[i].uu;
4848   bc_unneeded|=1|(1LL<<rt1[i]);
4849   bc_unneeded_upper|=1|(1LL<<rt1[i]);
4850   bc_unneeded&=~(1LL<<rs1[i]);
4851   wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
4852                 bc_unneeded,bc_unneeded_upper);
4853   load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],CCREG);
4854   if(!ra_done&&rt1[i]!=0)
4855     rjump_assemble_write_ra(i);
4856   cc=get_reg(branch_regs[i].regmap,CCREG);
4857   assert(cc==HOST_CCREG);
4858   #ifdef USE_MINI_HT
4859   int rh=get_reg(branch_regs[i].regmap,RHASH);
4860   int ht=get_reg(branch_regs[i].regmap,RHTBL);
4861   if(rs1[i]==31) {
4862     if(regs[i].regmap[rh]!=RHASH) do_preload_rhash(rh);
4863     do_preload_rhtbl(ht);
4864     do_rhash(rs,rh);
4865   }
4866   #endif
4867   store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,-1);
4868   #ifdef DESTRUCTIVE_WRITEBACK
4869   if((branch_regs[i].dirty>>rs)&(branch_regs[i].is32>>rs1[i])&1) {
4870     if(rs1[i]!=rt1[i+1]&&rs1[i]!=rt2[i+1]) {
4871       emit_loadreg(rs1[i],rs);
4872     }
4873   }
4874   #endif
4875   #ifdef REG_PREFETCH
4876   if(rt1[i]==31&&temp>=0) emit_prefetchreg(temp);
4877   #endif
4878   #ifdef USE_MINI_HT
4879   if(rs1[i]==31) {
4880     do_miniht_load(ht,rh);
4881   }
4882   #endif
4883   //do_cc(i,branch_regs[i].regmap,&adj,-1,TAKEN);
4884   //if(adj) emit_addimm(cc,2*(ccadj[i]+2-adj),cc); // ??? - Shouldn't happen
4885   //assert(adj==0);
4886   emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),HOST_CCREG);
4887   add_stub(CC_STUB,(int)out,jump_vaddr_reg[rs],0,i,-1,TAKEN,0);
4888   if(itype[i+1]==COP0&&(source[i+1]&0x3f)==0x10)
4889     // special case for RFE
4890     emit_jmp(0);
4891   else
4892     emit_jns(0);
4893   //load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,-1);
4894   #ifdef USE_MINI_HT
4895   if(rs1[i]==31) {
4896     do_miniht_jump(rs,rh,ht);
4897   }
4898   else
4899   #endif
4900   {
4901     //if(rs!=EAX) emit_mov(rs,EAX);
4902     //emit_jmp((int)jump_vaddr_eax);
4903     emit_jmp(jump_vaddr_reg[rs]);
4904   }
4905   /* Check hash table
4906   temp=!rs;
4907   emit_mov(rs,temp);
4908   emit_shrimm(rs,16,rs);
4909   emit_xor(temp,rs,rs);
4910   emit_movzwl_reg(rs,rs);
4911   emit_shlimm(rs,4,rs);
4912   emit_cmpmem_indexed((int)hash_table,rs,temp);
4913   emit_jne((int)out+14);
4914   emit_readword_indexed((int)hash_table+4,rs,rs);
4915   emit_jmpreg(rs);
4916   emit_cmpmem_indexed((int)hash_table+8,rs,temp);
4917   emit_addimm_no_flags(8,rs);
4918   emit_jeq((int)out-17);
4919   // No hit on hash table, call compiler
4920   emit_pushreg(temp);
4921 //DEBUG >
4922 #ifdef DEBUG_CYCLE_COUNT
4923   emit_readword((int)&last_count,ECX);
4924   emit_add(HOST_CCREG,ECX,HOST_CCREG);
4925   emit_readword((int)&next_interupt,ECX);
4926   emit_writeword(HOST_CCREG,(int)&Count);
4927   emit_sub(HOST_CCREG,ECX,HOST_CCREG);
4928   emit_writeword(ECX,(int)&last_count);
4929 #endif
4930 //DEBUG <
4931   emit_storereg(CCREG,HOST_CCREG);
4932   emit_call((int)get_addr);
4933   emit_loadreg(CCREG,HOST_CCREG);
4934   emit_addimm(ESP,4,ESP);
4935   emit_jmpreg(EAX);*/
4936   #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
4937   if(rt1[i]!=31&&i<slen-2&&(((u_int)out)&7)) emit_mov(13,13);
4938   #endif
4939 }
4940
4941 void cjump_assemble(int i,struct regstat *i_regs)
4942 {
4943   signed char *i_regmap=i_regs->regmap;
4944   int cc;
4945   int match;
4946   match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
4947   assem_debug("match=%d\n",match);
4948   int s1h,s1l,s2h,s2l;
4949   int prev_cop1_usable=cop1_usable;
4950   int unconditional=0,nop=0;
4951   int only32=0;
4952   int invert=0;
4953   int internal=internal_branch(branch_regs[i].is32,ba[i]);
4954   if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
4955   if(!match) invert=1;
4956   #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
4957   if(i>(ba[i]-start)>>2) invert=1;
4958   #endif
4959   
4960   if(ooo[i]) {
4961     s1l=get_reg(branch_regs[i].regmap,rs1[i]);
4962     s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
4963     s2l=get_reg(branch_regs[i].regmap,rs2[i]);
4964     s2h=get_reg(branch_regs[i].regmap,rs2[i]|64);
4965   }
4966   else {
4967     s1l=get_reg(i_regmap,rs1[i]);
4968     s1h=get_reg(i_regmap,rs1[i]|64);
4969     s2l=get_reg(i_regmap,rs2[i]);
4970     s2h=get_reg(i_regmap,rs2[i]|64);
4971   }
4972   if(rs1[i]==0&&rs2[i]==0)
4973   {
4974     if(opcode[i]&1) nop=1;
4975     else unconditional=1;
4976     //assert(opcode[i]!=5);
4977     //assert(opcode[i]!=7);
4978     //assert(opcode[i]!=0x15);
4979     //assert(opcode[i]!=0x17);
4980   }
4981   else if(rs1[i]==0)
4982   {
4983     s1l=s2l;s1h=s2h;
4984     s2l=s2h=-1;
4985     only32=(regs[i].was32>>rs2[i])&1;
4986   }
4987   else if(rs2[i]==0)
4988   {
4989     s2l=s2h=-1;
4990     only32=(regs[i].was32>>rs1[i])&1;
4991   }
4992   else {
4993     only32=(regs[i].was32>>rs1[i])&(regs[i].was32>>rs2[i])&1;
4994   }
4995
4996   if(ooo[i]) {
4997     // Out of order execution (delay slot first)
4998     //printf("OOOE\n");
4999     address_generation(i+1,i_regs,regs[i].regmap_entry);
5000     ds_assemble(i+1,i_regs);
5001     int adj;
5002     uint64_t bc_unneeded=branch_regs[i].u;
5003     uint64_t bc_unneeded_upper=branch_regs[i].uu;
5004     bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
5005     bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
5006     bc_unneeded|=1;
5007     bc_unneeded_upper|=1;
5008     wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5009                   bc_unneeded,bc_unneeded_upper);
5010     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs2[i]);
5011     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5012     cc=get_reg(branch_regs[i].regmap,CCREG);
5013     assert(cc==HOST_CCREG);
5014     if(unconditional) 
5015       store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5016     //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
5017     //assem_debug("cycle count (adj)\n");
5018     if(unconditional) {
5019       do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5020       if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
5021         if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
5022         load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5023         if(internal)
5024           assem_debug("branch: internal\n");
5025         else
5026           assem_debug("branch: external\n");
5027         if(internal&&is_ds[(ba[i]-start)>>2]) {
5028           ds_assemble_entry(i);
5029         }
5030         else {
5031           add_to_linker((int)out,ba[i],internal);
5032           emit_jmp(0);
5033         }
5034         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5035         if(((u_int)out)&7) emit_addnop(0);
5036         #endif
5037       }
5038     }
5039     else if(nop) {
5040       emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),cc);
5041       int jaddr=(int)out;
5042       emit_jns(0);
5043       add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5044     }
5045     else {
5046       int taken=0,nottaken=0,nottaken1=0;
5047       do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
5048       if(adj&&!invert) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
5049       if(!only32)
5050       {
5051         assert(s1h>=0);
5052         if(opcode[i]==4) // BEQ
5053         {
5054           if(s2h>=0) emit_cmp(s1h,s2h);
5055           else emit_test(s1h,s1h);
5056           nottaken1=(int)out;
5057           emit_jne(1);
5058         }
5059         if(opcode[i]==5) // BNE
5060         {
5061           if(s2h>=0) emit_cmp(s1h,s2h);
5062           else emit_test(s1h,s1h);
5063           if(invert) taken=(int)out;
5064           else add_to_linker((int)out,ba[i],internal);
5065           emit_jne(0);
5066         }
5067         if(opcode[i]==6) // BLEZ
5068         {
5069           emit_test(s1h,s1h);
5070           if(invert) taken=(int)out;
5071           else add_to_linker((int)out,ba[i],internal);
5072           emit_js(0);
5073           nottaken1=(int)out;
5074           emit_jne(1);
5075         }
5076         if(opcode[i]==7) // BGTZ
5077         {
5078           emit_test(s1h,s1h);
5079           nottaken1=(int)out;
5080           emit_js(1);
5081           if(invert) taken=(int)out;
5082           else add_to_linker((int)out,ba[i],internal);
5083           emit_jne(0);
5084         }
5085       } // if(!only32)
5086           
5087       //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5088       assert(s1l>=0);
5089       if(opcode[i]==4) // BEQ
5090       {
5091         if(s2l>=0) emit_cmp(s1l,s2l);
5092         else emit_test(s1l,s1l);
5093         if(invert){
5094           nottaken=(int)out;
5095           emit_jne(1);
5096         }else{
5097           add_to_linker((int)out,ba[i],internal);
5098           emit_jeq(0);
5099         }
5100       }
5101       if(opcode[i]==5) // BNE
5102       {
5103         if(s2l>=0) emit_cmp(s1l,s2l);
5104         else emit_test(s1l,s1l);
5105         if(invert){
5106           nottaken=(int)out;
5107           emit_jeq(1);
5108         }else{
5109           add_to_linker((int)out,ba[i],internal);
5110           emit_jne(0);
5111         }
5112       }
5113       if(opcode[i]==6) // BLEZ
5114       {
5115         emit_cmpimm(s1l,1);
5116         if(invert){
5117           nottaken=(int)out;
5118           emit_jge(1);
5119         }else{
5120           add_to_linker((int)out,ba[i],internal);
5121           emit_jl(0);
5122         }
5123       }
5124       if(opcode[i]==7) // BGTZ
5125       {
5126         emit_cmpimm(s1l,1);
5127         if(invert){
5128           nottaken=(int)out;
5129           emit_jl(1);
5130         }else{
5131           add_to_linker((int)out,ba[i],internal);
5132           emit_jge(0);
5133         }
5134       }
5135       if(invert) {
5136         if(taken) set_jump_target(taken,(int)out);
5137         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5138         if(match&&(!internal||!is_ds[(ba[i]-start)>>2])) {
5139           if(adj) {
5140             emit_addimm(cc,-CLOCK_ADJUST(adj),cc);
5141             add_to_linker((int)out,ba[i],internal);
5142           }else{
5143             emit_addnop(13);
5144             add_to_linker((int)out,ba[i],internal*2);
5145           }
5146           emit_jmp(0);
5147         }else
5148         #endif
5149         {
5150           if(adj) emit_addimm(cc,-CLOCK_ADJUST(adj),cc);
5151           store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5152           load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5153           if(internal)
5154             assem_debug("branch: internal\n");
5155           else
5156             assem_debug("branch: external\n");
5157           if(internal&&is_ds[(ba[i]-start)>>2]) {
5158             ds_assemble_entry(i);
5159           }
5160           else {
5161             add_to_linker((int)out,ba[i],internal);
5162             emit_jmp(0);
5163           }
5164         }
5165         set_jump_target(nottaken,(int)out);
5166       }
5167
5168       if(nottaken1) set_jump_target(nottaken1,(int)out);
5169       if(adj) {
5170         if(!invert) emit_addimm(cc,CLOCK_ADJUST(adj),cc);
5171       }
5172     } // (!unconditional)
5173   } // if(ooo)
5174   else
5175   {
5176     // In-order execution (branch first)
5177     //if(likely[i]) printf("IOL\n");
5178     //else
5179     //printf("IOE\n");
5180     int taken=0,nottaken=0,nottaken1=0;
5181     if(!unconditional&&!nop) {
5182       if(!only32)
5183       {
5184         assert(s1h>=0);
5185         if((opcode[i]&0x2f)==4) // BEQ
5186         {
5187           if(s2h>=0) emit_cmp(s1h,s2h);
5188           else emit_test(s1h,s1h);
5189           nottaken1=(int)out;
5190           emit_jne(2);
5191         }
5192         if((opcode[i]&0x2f)==5) // BNE
5193         {
5194           if(s2h>=0) emit_cmp(s1h,s2h);
5195           else emit_test(s1h,s1h);
5196           taken=(int)out;
5197           emit_jne(1);
5198         }
5199         if((opcode[i]&0x2f)==6) // BLEZ
5200         {
5201           emit_test(s1h,s1h);
5202           taken=(int)out;
5203           emit_js(1);
5204           nottaken1=(int)out;
5205           emit_jne(2);
5206         }
5207         if((opcode[i]&0x2f)==7) // BGTZ
5208         {
5209           emit_test(s1h,s1h);
5210           nottaken1=(int)out;
5211           emit_js(2);
5212           taken=(int)out;
5213           emit_jne(1);
5214         }
5215       } // if(!only32)
5216           
5217       //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5218       assert(s1l>=0);
5219       if((opcode[i]&0x2f)==4) // BEQ
5220       {
5221         if(s2l>=0) emit_cmp(s1l,s2l);
5222         else emit_test(s1l,s1l);
5223         nottaken=(int)out;
5224         emit_jne(2);
5225       }
5226       if((opcode[i]&0x2f)==5) // BNE
5227       {
5228         if(s2l>=0) emit_cmp(s1l,s2l);
5229         else emit_test(s1l,s1l);
5230         nottaken=(int)out;
5231         emit_jeq(2);
5232       }
5233       if((opcode[i]&0x2f)==6) // BLEZ
5234       {
5235         emit_cmpimm(s1l,1);
5236         nottaken=(int)out;
5237         emit_jge(2);
5238       }
5239       if((opcode[i]&0x2f)==7) // BGTZ
5240       {
5241         emit_cmpimm(s1l,1);
5242         nottaken=(int)out;
5243         emit_jl(2);
5244       }
5245     } // if(!unconditional)
5246     int adj;
5247     uint64_t ds_unneeded=branch_regs[i].u;
5248     uint64_t ds_unneeded_upper=branch_regs[i].uu;
5249     ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
5250     ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
5251     if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
5252     ds_unneeded|=1;
5253     ds_unneeded_upper|=1;
5254     // branch taken
5255     if(!nop) {
5256       if(taken) set_jump_target(taken,(int)out);
5257       assem_debug("1:\n");
5258       wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5259                     ds_unneeded,ds_unneeded_upper);
5260       // load regs
5261       load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5262       address_generation(i+1,&branch_regs[i],0);
5263       load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
5264       ds_assemble(i+1,&branch_regs[i]);
5265       cc=get_reg(branch_regs[i].regmap,CCREG);
5266       if(cc==-1) {
5267         emit_loadreg(CCREG,cc=HOST_CCREG);
5268         // CHECK: Is the following instruction (fall thru) allocated ok?
5269       }
5270       assert(cc==HOST_CCREG);
5271       store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5272       do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
5273       assem_debug("cycle count (adj)\n");
5274       if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
5275       load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5276       if(internal)
5277         assem_debug("branch: internal\n");
5278       else
5279         assem_debug("branch: external\n");
5280       if(internal&&is_ds[(ba[i]-start)>>2]) {
5281         ds_assemble_entry(i);
5282       }
5283       else {
5284         add_to_linker((int)out,ba[i],internal);
5285         emit_jmp(0);
5286       }
5287     }
5288     // branch not taken
5289     cop1_usable=prev_cop1_usable;
5290     if(!unconditional) {
5291       if(nottaken1) set_jump_target(nottaken1,(int)out);
5292       set_jump_target(nottaken,(int)out);
5293       assem_debug("2:\n");
5294       if(!likely[i]) {
5295         wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5296                       ds_unneeded,ds_unneeded_upper);
5297         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5298         address_generation(i+1,&branch_regs[i],0);
5299         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5300         ds_assemble(i+1,&branch_regs[i]);
5301       }
5302       cc=get_reg(branch_regs[i].regmap,CCREG);
5303       if(cc==-1&&!likely[i]) {
5304         // Cycle count isn't in a register, temporarily load it then write it out
5305         emit_loadreg(CCREG,HOST_CCREG);
5306         emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),HOST_CCREG);
5307         int jaddr=(int)out;
5308         emit_jns(0);
5309         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5310         emit_storereg(CCREG,HOST_CCREG);
5311       }
5312       else{
5313         cc=get_reg(i_regmap,CCREG);
5314         assert(cc==HOST_CCREG);
5315         emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),cc);
5316         int jaddr=(int)out;
5317         emit_jns(0);
5318         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
5319       }
5320     }
5321   }
5322 }
5323
5324 void sjump_assemble(int i,struct regstat *i_regs)
5325 {
5326   signed char *i_regmap=i_regs->regmap;
5327   int cc;
5328   int match;
5329   match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5330   assem_debug("smatch=%d\n",match);
5331   int s1h,s1l;
5332   int prev_cop1_usable=cop1_usable;
5333   int unconditional=0,nevertaken=0;
5334   int only32=0;
5335   int invert=0;
5336   int internal=internal_branch(branch_regs[i].is32,ba[i]);
5337   if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5338   if(!match) invert=1;
5339   #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5340   if(i>(ba[i]-start)>>2) invert=1;
5341   #endif
5342
5343   //if(opcode2[i]>=0x10) return; // FIXME (BxxZAL)
5344   //assert(opcode2[i]<0x10||rs1[i]==0); // FIXME (BxxZAL)
5345
5346   if(ooo[i]) {
5347     s1l=get_reg(branch_regs[i].regmap,rs1[i]);
5348     s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
5349   }
5350   else {
5351     s1l=get_reg(i_regmap,rs1[i]);
5352     s1h=get_reg(i_regmap,rs1[i]|64);
5353   }
5354   if(rs1[i]==0)
5355   {
5356     if(opcode2[i]&1) unconditional=1;
5357     else nevertaken=1;
5358     // These are never taken (r0 is never less than zero)
5359     //assert(opcode2[i]!=0);
5360     //assert(opcode2[i]!=2);
5361     //assert(opcode2[i]!=0x10);
5362     //assert(opcode2[i]!=0x12);
5363   }
5364   else {
5365     only32=(regs[i].was32>>rs1[i])&1;
5366   }
5367
5368   if(ooo[i]) {
5369     // Out of order execution (delay slot first)
5370     //printf("OOOE\n");
5371     address_generation(i+1,i_regs,regs[i].regmap_entry);
5372     ds_assemble(i+1,i_regs);
5373     int adj;
5374     uint64_t bc_unneeded=branch_regs[i].u;
5375     uint64_t bc_unneeded_upper=branch_regs[i].uu;
5376     bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
5377     bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
5378     bc_unneeded|=1;
5379     bc_unneeded_upper|=1;
5380     wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5381                   bc_unneeded,bc_unneeded_upper);
5382     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs1[i]);
5383     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5384     if(rt1[i]==31) {
5385       int rt,return_address;
5386       rt=get_reg(branch_regs[i].regmap,31);
5387       assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5388       if(rt>=0) {
5389         // Save the PC even if the branch is not taken
5390         return_address=start+i*4+8;
5391         emit_movimm(return_address,rt); // PC into link register
5392         #ifdef IMM_PREFETCH
5393         if(!nevertaken) emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5394         #endif
5395       }
5396     }
5397     cc=get_reg(branch_regs[i].regmap,CCREG);
5398     assert(cc==HOST_CCREG);
5399     if(unconditional) 
5400       store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5401     //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
5402     assem_debug("cycle count (adj)\n");
5403     if(unconditional) {
5404       do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
5405       if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
5406         if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
5407         load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5408         if(internal)
5409           assem_debug("branch: internal\n");
5410         else
5411           assem_debug("branch: external\n");
5412         if(internal&&is_ds[(ba[i]-start)>>2]) {
5413           ds_assemble_entry(i);
5414         }
5415         else {
5416           add_to_linker((int)out,ba[i],internal);
5417           emit_jmp(0);
5418         }
5419         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5420         if(((u_int)out)&7) emit_addnop(0);
5421         #endif
5422       }
5423     }
5424     else if(nevertaken) {
5425       emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),cc);
5426       int jaddr=(int)out;
5427       emit_jns(0);
5428       add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5429     }
5430     else {
5431       int nottaken=0;
5432       do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
5433       if(adj&&!invert) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
5434       if(!only32)
5435       {
5436         assert(s1h>=0);
5437         if((opcode2[i]&0xf)==0) // BLTZ/BLTZAL
5438         {
5439           emit_test(s1h,s1h);
5440           if(invert){
5441             nottaken=(int)out;
5442             emit_jns(1);
5443           }else{
5444             add_to_linker((int)out,ba[i],internal);
5445             emit_js(0);
5446           }
5447         }
5448         if((opcode2[i]&0xf)==1) // BGEZ/BLTZAL
5449         {
5450           emit_test(s1h,s1h);
5451           if(invert){
5452             nottaken=(int)out;
5453             emit_js(1);
5454           }else{
5455             add_to_linker((int)out,ba[i],internal);
5456             emit_jns(0);
5457           }
5458         }
5459       } // if(!only32)
5460       else
5461       {
5462         assert(s1l>=0);
5463         if((opcode2[i]&0xf)==0) // BLTZ/BLTZAL
5464         {
5465           emit_test(s1l,s1l);
5466           if(invert){
5467             nottaken=(int)out;
5468             emit_jns(1);
5469           }else{
5470             add_to_linker((int)out,ba[i],internal);
5471             emit_js(0);
5472           }
5473         }
5474         if((opcode2[i]&0xf)==1) // BGEZ/BLTZAL
5475         {
5476           emit_test(s1l,s1l);
5477           if(invert){
5478             nottaken=(int)out;
5479             emit_js(1);
5480           }else{
5481             add_to_linker((int)out,ba[i],internal);
5482             emit_jns(0);
5483           }
5484         }
5485       } // if(!only32)
5486           
5487       if(invert) {
5488         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5489         if(match&&(!internal||!is_ds[(ba[i]-start)>>2])) {
5490           if(adj) {
5491             emit_addimm(cc,-CLOCK_ADJUST(adj),cc);
5492             add_to_linker((int)out,ba[i],internal);
5493           }else{
5494             emit_addnop(13);
5495             add_to_linker((int)out,ba[i],internal*2);
5496           }
5497           emit_jmp(0);
5498         }else
5499         #endif
5500         {
5501           if(adj) emit_addimm(cc,-CLOCK_ADJUST(adj),cc);
5502           store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5503           load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5504           if(internal)
5505             assem_debug("branch: internal\n");
5506           else
5507             assem_debug("branch: external\n");
5508           if(internal&&is_ds[(ba[i]-start)>>2]) {
5509             ds_assemble_entry(i);
5510           }
5511           else {
5512             add_to_linker((int)out,ba[i],internal);
5513             emit_jmp(0);
5514           }
5515         }
5516         set_jump_target(nottaken,(int)out);
5517       }
5518
5519       if(adj) {
5520         if(!invert) emit_addimm(cc,CLOCK_ADJUST(adj),cc);
5521       }
5522     } // (!unconditional)
5523   } // if(ooo)
5524   else
5525   {
5526     // In-order execution (branch first)
5527     //printf("IOE\n");
5528     int nottaken=0;
5529     if(rt1[i]==31) {
5530       int rt,return_address;
5531       rt=get_reg(branch_regs[i].regmap,31);
5532       if(rt>=0) {
5533         // Save the PC even if the branch is not taken
5534         return_address=start+i*4+8;
5535         emit_movimm(return_address,rt); // PC into link register
5536         #ifdef IMM_PREFETCH
5537         emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
5538         #endif
5539       }
5540     }
5541     if(!unconditional) {
5542       //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5543       if(!only32)
5544       {
5545         assert(s1h>=0);
5546         if((opcode2[i]&0x0d)==0) // BLTZ/BLTZL/BLTZAL/BLTZALL
5547         {
5548           emit_test(s1h,s1h);
5549           nottaken=(int)out;
5550           emit_jns(1);
5551         }
5552         if((opcode2[i]&0x0d)==1) // BGEZ/BGEZL/BGEZAL/BGEZALL
5553         {
5554           emit_test(s1h,s1h);
5555           nottaken=(int)out;
5556           emit_js(1);
5557         }
5558       } // if(!only32)
5559       else
5560       {
5561         assert(s1l>=0);
5562         if((opcode2[i]&0x0d)==0) // BLTZ/BLTZL/BLTZAL/BLTZALL
5563         {
5564           emit_test(s1l,s1l);
5565           nottaken=(int)out;
5566           emit_jns(1);
5567         }
5568         if((opcode2[i]&0x0d)==1) // BGEZ/BGEZL/BGEZAL/BGEZALL
5569         {
5570           emit_test(s1l,s1l);
5571           nottaken=(int)out;
5572           emit_js(1);
5573         }
5574       }
5575     } // if(!unconditional)
5576     int adj;
5577     uint64_t ds_unneeded=branch_regs[i].u;
5578     uint64_t ds_unneeded_upper=branch_regs[i].uu;
5579     ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
5580     ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
5581     if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
5582     ds_unneeded|=1;
5583     ds_unneeded_upper|=1;
5584     // branch taken
5585     if(!nevertaken) {
5586       //assem_debug("1:\n");
5587       wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5588                     ds_unneeded,ds_unneeded_upper);
5589       // load regs
5590       load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5591       address_generation(i+1,&branch_regs[i],0);
5592       load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
5593       ds_assemble(i+1,&branch_regs[i]);
5594       cc=get_reg(branch_regs[i].regmap,CCREG);
5595       if(cc==-1) {
5596         emit_loadreg(CCREG,cc=HOST_CCREG);
5597         // CHECK: Is the following instruction (fall thru) allocated ok?
5598       }
5599       assert(cc==HOST_CCREG);
5600       store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5601       do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
5602       assem_debug("cycle count (adj)\n");
5603       if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
5604       load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5605       if(internal)
5606         assem_debug("branch: internal\n");
5607       else
5608         assem_debug("branch: external\n");
5609       if(internal&&is_ds[(ba[i]-start)>>2]) {
5610         ds_assemble_entry(i);
5611       }
5612       else {
5613         add_to_linker((int)out,ba[i],internal);
5614         emit_jmp(0);
5615       }
5616     }
5617     // branch not taken
5618     cop1_usable=prev_cop1_usable;
5619     if(!unconditional) {
5620       set_jump_target(nottaken,(int)out);
5621       assem_debug("1:\n");
5622       if(!likely[i]) {
5623         wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5624                       ds_unneeded,ds_unneeded_upper);
5625         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5626         address_generation(i+1,&branch_regs[i],0);
5627         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5628         ds_assemble(i+1,&branch_regs[i]);
5629       }
5630       cc=get_reg(branch_regs[i].regmap,CCREG);
5631       if(cc==-1&&!likely[i]) {
5632         // Cycle count isn't in a register, temporarily load it then write it out
5633         emit_loadreg(CCREG,HOST_CCREG);
5634         emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),HOST_CCREG);
5635         int jaddr=(int)out;
5636         emit_jns(0);
5637         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5638         emit_storereg(CCREG,HOST_CCREG);
5639       }
5640       else{
5641         cc=get_reg(i_regmap,CCREG);
5642         assert(cc==HOST_CCREG);
5643         emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),cc);
5644         int jaddr=(int)out;
5645         emit_jns(0);
5646         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
5647       }
5648     }
5649   }
5650 }
5651
5652 void fjump_assemble(int i,struct regstat *i_regs)
5653 {
5654   signed char *i_regmap=i_regs->regmap;
5655   int cc;
5656   int match;
5657   match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5658   assem_debug("fmatch=%d\n",match);
5659   int fs,cs;
5660   int eaddr;
5661   int invert=0;
5662   int internal=internal_branch(branch_regs[i].is32,ba[i]);
5663   if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
5664   if(!match) invert=1;
5665   #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5666   if(i>(ba[i]-start)>>2) invert=1;
5667   #endif
5668
5669   if(ooo[i]) {
5670     fs=get_reg(branch_regs[i].regmap,FSREG);
5671     address_generation(i+1,i_regs,regs[i].regmap_entry); // Is this okay?
5672   }
5673   else {
5674     fs=get_reg(i_regmap,FSREG);
5675   }
5676
5677   // Check cop1 unusable
5678   if(!cop1_usable) {
5679     cs=get_reg(i_regmap,CSREG);
5680     assert(cs>=0);
5681     emit_testimm(cs,0x20000000);
5682     eaddr=(int)out;
5683     emit_jeq(0);
5684     add_stub(FP_STUB,eaddr,(int)out,i,cs,(int)i_regs,0,0);
5685     cop1_usable=1;
5686   }
5687
5688   if(ooo[i]) {
5689     // Out of order execution (delay slot first)
5690     //printf("OOOE\n");
5691     ds_assemble(i+1,i_regs);
5692     int adj;
5693     uint64_t bc_unneeded=branch_regs[i].u;
5694     uint64_t bc_unneeded_upper=branch_regs[i].uu;
5695     bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
5696     bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
5697     bc_unneeded|=1;
5698     bc_unneeded_upper|=1;
5699     wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5700                   bc_unneeded,bc_unneeded_upper);
5701     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs1[i]);
5702     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5703     cc=get_reg(branch_regs[i].regmap,CCREG);
5704     assert(cc==HOST_CCREG);
5705     do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
5706     assem_debug("cycle count (adj)\n");
5707     if(1) {
5708       int nottaken=0;
5709       if(adj&&!invert) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
5710       if(1) {
5711         assert(fs>=0);
5712         emit_testimm(fs,0x800000);
5713         if(source[i]&0x10000) // BC1T
5714         {
5715           if(invert){
5716             nottaken=(int)out;
5717             emit_jeq(1);
5718           }else{
5719             add_to_linker((int)out,ba[i],internal);
5720             emit_jne(0);
5721           }
5722         }
5723         else // BC1F
5724           if(invert){
5725             nottaken=(int)out;
5726             emit_jne(1);
5727           }else{
5728             add_to_linker((int)out,ba[i],internal);
5729             emit_jeq(0);
5730           }
5731         {
5732         }
5733       } // if(!only32)
5734           
5735       if(invert) {
5736         if(adj) emit_addimm(cc,-CLOCK_ADJUST(adj),cc);
5737         #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
5738         else if(match) emit_addnop(13);
5739         #endif
5740         store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5741         load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5742         if(internal)
5743           assem_debug("branch: internal\n");
5744         else
5745           assem_debug("branch: external\n");
5746         if(internal&&is_ds[(ba[i]-start)>>2]) {
5747           ds_assemble_entry(i);
5748         }
5749         else {
5750           add_to_linker((int)out,ba[i],internal);
5751           emit_jmp(0);
5752         }
5753         set_jump_target(nottaken,(int)out);
5754       }
5755
5756       if(adj) {
5757         if(!invert) emit_addimm(cc,CLOCK_ADJUST(adj),cc);
5758       }
5759     } // (!unconditional)
5760   } // if(ooo)
5761   else
5762   {
5763     // In-order execution (branch first)
5764     //printf("IOE\n");
5765     int nottaken=0;
5766     if(1) {
5767       //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
5768       if(1) {
5769         assert(fs>=0);
5770         emit_testimm(fs,0x800000);
5771         if(source[i]&0x10000) // BC1T
5772         {
5773           nottaken=(int)out;
5774           emit_jeq(1);
5775         }
5776         else // BC1F
5777         {
5778           nottaken=(int)out;
5779           emit_jne(1);
5780         }
5781       }
5782     } // if(!unconditional)
5783     int adj;
5784     uint64_t ds_unneeded=branch_regs[i].u;
5785     uint64_t ds_unneeded_upper=branch_regs[i].uu;
5786     ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
5787     ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
5788     if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
5789     ds_unneeded|=1;
5790     ds_unneeded_upper|=1;
5791     // branch taken
5792     //assem_debug("1:\n");
5793     wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5794                   ds_unneeded,ds_unneeded_upper);
5795     // load regs
5796     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5797     address_generation(i+1,&branch_regs[i],0);
5798     load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
5799     ds_assemble(i+1,&branch_regs[i]);
5800     cc=get_reg(branch_regs[i].regmap,CCREG);
5801     if(cc==-1) {
5802       emit_loadreg(CCREG,cc=HOST_CCREG);
5803       // CHECK: Is the following instruction (fall thru) allocated ok?
5804     }
5805     assert(cc==HOST_CCREG);
5806     store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5807     do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
5808     assem_debug("cycle count (adj)\n");
5809     if(adj) emit_addimm(cc,CLOCK_ADJUST(ccadj[i]+2-adj),cc);
5810     load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
5811     if(internal)
5812       assem_debug("branch: internal\n");
5813     else
5814       assem_debug("branch: external\n");
5815     if(internal&&is_ds[(ba[i]-start)>>2]) {
5816       ds_assemble_entry(i);
5817     }
5818     else {
5819       add_to_linker((int)out,ba[i],internal);
5820       emit_jmp(0);
5821     }
5822
5823     // branch not taken
5824     if(1) { // <- FIXME (don't need this)
5825       set_jump_target(nottaken,(int)out);
5826       assem_debug("1:\n");
5827       if(!likely[i]) {
5828         wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
5829                       ds_unneeded,ds_unneeded_upper);
5830         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
5831         address_generation(i+1,&branch_regs[i],0);
5832         load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
5833         ds_assemble(i+1,&branch_regs[i]);
5834       }
5835       cc=get_reg(branch_regs[i].regmap,CCREG);
5836       if(cc==-1&&!likely[i]) {
5837         // Cycle count isn't in a register, temporarily load it then write it out
5838         emit_loadreg(CCREG,HOST_CCREG);
5839         emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),HOST_CCREG);
5840         int jaddr=(int)out;
5841         emit_jns(0);
5842         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
5843         emit_storereg(CCREG,HOST_CCREG);
5844       }
5845       else{
5846         cc=get_reg(i_regmap,CCREG);
5847         assert(cc==HOST_CCREG);
5848         emit_addimm_and_set_flags(CLOCK_ADJUST(ccadj[i]+2),cc);
5849         int jaddr=(int)out;
5850         emit_jns(0);
5851         add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
5852       }
5853     }
5854   }
5855 }
5856
5857 static void pagespan_assemble(int i,struct regstat *i_regs)
5858 {
5859   int s1l=get_reg(i_regs->regmap,rs1[i]);
5860   int s1h=get_reg(i_regs->regmap,rs1[i]|64);
5861   int s2l=get_reg(i_regs->regmap,rs2[i]);
5862   int s2h=get_reg(i_regs->regmap,rs2[i]|64);
5863   void *nt_branch=NULL;
5864   int taken=0;
5865   int nottaken=0;
5866   int unconditional=0;
5867   if(rs1[i]==0)
5868   {
5869     s1l=s2l;s1h=s2h;
5870     s2l=s2h=-1;
5871   }
5872   else if(rs2[i]==0)
5873   {
5874     s2l=s2h=-1;
5875   }
5876   if((i_regs->is32>>rs1[i])&(i_regs->is32>>rs2[i])&1) {
5877     s1h=s2h=-1;
5878   }
5879   int hr=0;
5880   int addr,alt,ntaddr;
5881   if(i_regs->regmap[HOST_BTREG]<0) {addr=HOST_BTREG;}
5882   else {
5883     while(hr<HOST_REGS)
5884     {
5885       if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
5886          (i_regs->regmap[hr]&63)!=rs1[i] &&
5887          (i_regs->regmap[hr]&63)!=rs2[i] )
5888       {
5889         addr=hr++;break;
5890       }
5891       hr++;
5892     }
5893   }
5894   while(hr<HOST_REGS)
5895   {
5896     if(hr!=EXCLUDE_REG && hr!=HOST_CCREG && hr!=HOST_BTREG &&
5897        (i_regs->regmap[hr]&63)!=rs1[i] &&
5898        (i_regs->regmap[hr]&63)!=rs2[i] )
5899     {
5900       alt=hr++;break;
5901     }
5902     hr++;
5903   }
5904   if((opcode[i]&0x2E)==6) // BLEZ/BGTZ needs another register
5905   {
5906     while(hr<HOST_REGS)
5907     {
5908       if(hr!=EXCLUDE_REG && hr!=HOST_CCREG && hr!=HOST_BTREG &&
5909          (i_regs->regmap[hr]&63)!=rs1[i] &&
5910          (i_regs->regmap[hr]&63)!=rs2[i] )
5911       {
5912         ntaddr=hr;break;
5913       }
5914       hr++;
5915     }
5916   }
5917   assert(hr<HOST_REGS);
5918   if((opcode[i]&0x2e)==4||opcode[i]==0x11) { // BEQ/BNE/BEQL/BNEL/BC1
5919     load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,CCREG,CCREG);
5920   }
5921   emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i]+2),HOST_CCREG);
5922   if(opcode[i]==2) // J
5923   {
5924     unconditional=1;
5925   }
5926   if(opcode[i]==3) // JAL
5927   {
5928     // TODO: mini_ht
5929     int rt=get_reg(i_regs->regmap,31);
5930     emit_movimm(start+i*4+8,rt);
5931     unconditional=1;
5932   }
5933   if(opcode[i]==0&&(opcode2[i]&0x3E)==8) // JR/JALR
5934   {
5935     emit_mov(s1l,addr);
5936     if(opcode2[i]==9) // JALR
5937     {
5938       int rt=get_reg(i_regs->regmap,rt1[i]);
5939       emit_movimm(start+i*4+8,rt);
5940     }
5941   }
5942   if((opcode[i]&0x3f)==4) // BEQ
5943   {
5944     if(rs1[i]==rs2[i])
5945     {
5946       unconditional=1;
5947     }
5948     else
5949     #ifdef HAVE_CMOV_IMM
5950     if(s1h<0) {
5951       if(s2l>=0) emit_cmp(s1l,s2l);
5952       else emit_test(s1l,s1l);
5953       emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
5954     }
5955     else
5956     #endif
5957     {
5958       assert(s1l>=0);
5959       emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
5960       if(s1h>=0) {
5961         if(s2h>=0) emit_cmp(s1h,s2h);
5962         else emit_test(s1h,s1h);
5963         emit_cmovne_reg(alt,addr);
5964       }
5965       if(s2l>=0) emit_cmp(s1l,s2l);
5966       else emit_test(s1l,s1l);
5967       emit_cmovne_reg(alt,addr);
5968     }
5969   }
5970   if((opcode[i]&0x3f)==5) // BNE
5971   {
5972     #ifdef HAVE_CMOV_IMM
5973     if(s1h<0) {
5974       if(s2l>=0) emit_cmp(s1l,s2l);
5975       else emit_test(s1l,s1l);
5976       emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
5977     }
5978     else
5979     #endif
5980     {
5981       assert(s1l>=0);
5982       emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
5983       if(s1h>=0) {
5984         if(s2h>=0) emit_cmp(s1h,s2h);
5985         else emit_test(s1h,s1h);
5986         emit_cmovne_reg(alt,addr);
5987       }
5988       if(s2l>=0) emit_cmp(s1l,s2l);
5989       else emit_test(s1l,s1l);
5990       emit_cmovne_reg(alt,addr);
5991     }
5992   }
5993   if((opcode[i]&0x3f)==0x14) // BEQL
5994   {
5995     if(s1h>=0) {
5996       if(s2h>=0) emit_cmp(s1h,s2h);
5997       else emit_test(s1h,s1h);
5998       nottaken=(int)out;
5999       emit_jne(0);
6000     }
6001     if(s2l>=0) emit_cmp(s1l,s2l);
6002     else emit_test(s1l,s1l);
6003     if(nottaken) set_jump_target(nottaken,(int)out);
6004     nottaken=(int)out;
6005     emit_jne(0);
6006   }
6007   if((opcode[i]&0x3f)==0x15) // BNEL
6008   {
6009     if(s1h>=0) {
6010       if(s2h>=0) emit_cmp(s1h,s2h);
6011       else emit_test(s1h,s1h);
6012       taken=(int)out;
6013       emit_jne(0);
6014     }
6015     if(s2l>=0) emit_cmp(s1l,s2l);
6016     else emit_test(s1l,s1l);
6017     nottaken=(int)out;
6018     emit_jeq(0);
6019     if(taken) set_jump_target(taken,(int)out);
6020   }
6021   if((opcode[i]&0x3f)==6) // BLEZ
6022   {
6023     emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
6024     emit_cmpimm(s1l,1);
6025     if(s1h>=0) emit_mov(addr,ntaddr);
6026     emit_cmovl_reg(alt,addr);
6027     if(s1h>=0) {
6028       emit_test(s1h,s1h);
6029       emit_cmovne_reg(ntaddr,addr);
6030       emit_cmovs_reg(alt,addr);
6031     }
6032   }
6033   if((opcode[i]&0x3f)==7) // BGTZ
6034   {
6035     emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
6036     emit_cmpimm(s1l,1);
6037     if(s1h>=0) emit_mov(addr,alt);
6038     emit_cmovl_reg(ntaddr,addr);
6039     if(s1h>=0) {
6040       emit_test(s1h,s1h);
6041       emit_cmovne_reg(alt,addr);
6042       emit_cmovs_reg(ntaddr,addr);
6043     }
6044   }
6045   if((opcode[i]&0x3f)==0x16) // BLEZL
6046   {
6047     assert((opcode[i]&0x3f)!=0x16);
6048   }
6049   if((opcode[i]&0x3f)==0x17) // BGTZL
6050   {
6051     assert((opcode[i]&0x3f)!=0x17);
6052   }
6053   assert(opcode[i]!=1); // BLTZ/BGEZ
6054
6055   //FIXME: Check CSREG
6056   if(opcode[i]==0x11 && opcode2[i]==0x08 ) {
6057     if((source[i]&0x30000)==0) // BC1F
6058     {
6059       emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
6060       emit_testimm(s1l,0x800000);
6061       emit_cmovne_reg(alt,addr);
6062     }
6063     if((source[i]&0x30000)==0x10000) // BC1T
6064     {
6065       emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
6066       emit_testimm(s1l,0x800000);
6067       emit_cmovne_reg(alt,addr);
6068     }
6069     if((source[i]&0x30000)==0x20000) // BC1FL
6070     {
6071       emit_testimm(s1l,0x800000);
6072       nottaken=(int)out;
6073       emit_jne(0);
6074     }
6075     if((source[i]&0x30000)==0x30000) // BC1TL
6076     {
6077       emit_testimm(s1l,0x800000);
6078       nottaken=(int)out;
6079       emit_jeq(0);
6080     }
6081   }
6082
6083   assert(i_regs->regmap[HOST_CCREG]==CCREG);
6084   wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
6085   if(likely[i]||unconditional)
6086   {
6087     emit_movimm(ba[i],HOST_BTREG);
6088   }
6089   else if(addr!=HOST_BTREG)
6090   {
6091     emit_mov(addr,HOST_BTREG);
6092   }
6093   void *branch_addr=out;
6094   emit_jmp(0);
6095   int target_addr=start+i*4+5;
6096   void *stub=out;
6097   void *compiled_target_addr=check_addr(target_addr);
6098   emit_extjump_ds((int)branch_addr,target_addr);
6099   if(compiled_target_addr) {
6100     set_jump_target((int)branch_addr,(int)compiled_target_addr);
6101     add_link(target_addr,stub);
6102   }
6103   else set_jump_target((int)branch_addr,(int)stub);
6104   if(likely[i]) {
6105     // Not-taken path
6106     set_jump_target((int)nottaken,(int)out);
6107     wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
6108     void *branch_addr=out;
6109     emit_jmp(0);
6110     int target_addr=start+i*4+8;
6111     void *stub=out;
6112     void *compiled_target_addr=check_addr(target_addr);
6113     emit_extjump_ds((int)branch_addr,target_addr);
6114     if(compiled_target_addr) {
6115       set_jump_target((int)branch_addr,(int)compiled_target_addr);
6116       add_link(target_addr,stub);
6117     }
6118     else set_jump_target((int)branch_addr,(int)stub);
6119   }
6120 }
6121
6122 // Assemble the delay slot for the above
6123 static void pagespan_ds()
6124 {
6125   assem_debug("initial delay slot:\n");
6126   u_int vaddr=start+1;
6127   u_int page=get_page(vaddr);
6128   u_int vpage=get_vpage(vaddr);
6129   ll_add(jump_dirty+vpage,vaddr,(void *)out);
6130   do_dirty_stub_ds();
6131   ll_add(jump_in+page,vaddr,(void *)out);
6132   assert(regs[0].regmap_entry[HOST_CCREG]==CCREG);
6133   if(regs[0].regmap[HOST_CCREG]!=CCREG)
6134     wb_register(CCREG,regs[0].regmap_entry,regs[0].wasdirty,regs[0].was32);
6135   if(regs[0].regmap[HOST_BTREG]!=BTREG)
6136     emit_writeword(HOST_BTREG,(int)&branch_target);
6137   load_regs(regs[0].regmap_entry,regs[0].regmap,regs[0].was32,rs1[0],rs2[0]);
6138   address_generation(0,&regs[0],regs[0].regmap_entry);
6139   if(itype[0]==STORE||itype[0]==STORELR||(opcode[0]&0x3b)==0x39||(opcode[0]&0x3b)==0x3a)
6140     load_regs(regs[0].regmap_entry,regs[0].regmap,regs[0].was32,INVCP,INVCP);
6141   cop1_usable=0;
6142   is_delayslot=0;
6143   switch(itype[0]) {
6144     case ALU:
6145       alu_assemble(0,&regs[0]);break;
6146     case IMM16:
6147       imm16_assemble(0,&regs[0]);break;
6148     case SHIFT:
6149       shift_assemble(0,&regs[0]);break;
6150     case SHIFTIMM:
6151       shiftimm_assemble(0,&regs[0]);break;
6152     case LOAD:
6153       load_assemble(0,&regs[0]);break;
6154     case LOADLR:
6155       loadlr_assemble(0,&regs[0]);break;
6156     case STORE:
6157       store_assemble(0,&regs[0]);break;
6158     case STORELR:
6159       storelr_assemble(0,&regs[0]);break;
6160     case COP0:
6161       cop0_assemble(0,&regs[0]);break;
6162     case COP1:
6163       cop1_assemble(0,&regs[0]);break;
6164     case C1LS:
6165       c1ls_assemble(0,&regs[0]);break;
6166     case COP2:
6167       cop2_assemble(0,&regs[0]);break;
6168     case C2LS:
6169       c2ls_assemble(0,&regs[0]);break;
6170     case C2OP:
6171       c2op_assemble(0,&regs[0]);break;
6172     case FCONV:
6173       fconv_assemble(0,&regs[0]);break;
6174     case FLOAT:
6175       float_assemble(0,&regs[0]);break;
6176     case FCOMP:
6177       fcomp_assemble(0,&regs[0]);break;
6178     case MULTDIV:
6179       multdiv_assemble(0,&regs[0]);break;
6180     case MOV:
6181       mov_assemble(0,&regs[0]);break;
6182     case SYSCALL:
6183     case HLECALL:
6184     case INTCALL:
6185     case SPAN:
6186     case UJUMP:
6187     case RJUMP:
6188     case CJUMP:
6189     case SJUMP:
6190     case FJUMP:
6191       SysPrintf("Jump in the delay slot.  This is probably a bug.\n");
6192   }
6193   int btaddr=get_reg(regs[0].regmap,BTREG);
6194   if(btaddr<0) {
6195     btaddr=get_reg(regs[0].regmap,-1);
6196     emit_readword((int)&branch_target,btaddr);
6197   }
6198   assert(btaddr!=HOST_CCREG);
6199   if(regs[0].regmap[HOST_CCREG]!=CCREG) emit_loadreg(CCREG,HOST_CCREG);
6200 #ifdef HOST_IMM8
6201   emit_movimm(start+4,HOST_TEMPREG);
6202   emit_cmp(btaddr,HOST_TEMPREG);
6203 #else
6204   emit_cmpimm(btaddr,start+4);
6205 #endif
6206   int branch=(int)out;
6207   emit_jeq(0);
6208   store_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,-1);
6209   emit_jmp(jump_vaddr_reg[btaddr]);
6210   set_jump_target(branch,(int)out);
6211   store_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,start+4);
6212   load_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,start+4);
6213 }
6214
6215 // Basic liveness analysis for MIPS registers
6216 void unneeded_registers(int istart,int iend,int r)
6217 {
6218   int i;
6219   uint64_t u,uu,gte_u,b,bu,gte_bu;
6220   uint64_t temp_u,temp_uu,temp_gte_u=0;
6221   uint64_t tdep;
6222   uint64_t gte_u_unknown=0;
6223   if(new_dynarec_hacks&NDHACK_GTE_UNNEEDED)
6224     gte_u_unknown=~0ll;
6225   if(iend==slen-1) {
6226     u=1;uu=1;
6227     gte_u=gte_u_unknown;
6228   }else{
6229     u=unneeded_reg[iend+1];
6230     uu=unneeded_reg_upper[iend+1];
6231     u=1;uu=1;
6232     gte_u=gte_unneeded[iend+1];
6233   }
6234
6235   for (i=iend;i>=istart;i--)
6236   {
6237     //printf("unneeded registers i=%d (%d,%d) r=%d\n",i,istart,iend,r);
6238     if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
6239     {
6240       // If subroutine call, flag return address as a possible branch target
6241       if(rt1[i]==31 && i<slen-2) bt[i+2]=1;
6242       
6243       if(ba[i]<start || ba[i]>=(start+slen*4))
6244       {
6245         // Branch out of this block, flush all regs
6246         u=1;
6247         uu=1;
6248         gte_u=gte_u_unknown;
6249         /* Hexagon hack 
6250         if(itype[i]==UJUMP&&rt1[i]==31)
6251         {
6252           uu=u=0x300C00F; // Discard at, v0-v1, t6-t9
6253         }
6254         if(itype[i]==RJUMP&&rs1[i]==31)
6255         {
6256           uu=u=0x300C0F3; // Discard at, a0-a3, t6-t9
6257         }
6258         if(start>0x80000400&&start<0x80000000+RAM_SIZE) {
6259           if(itype[i]==UJUMP&&rt1[i]==31)
6260           {
6261             //uu=u=0x30300FF0FLL; // Discard at, v0-v1, t0-t9, lo, hi
6262             uu=u=0x300FF0F; // Discard at, v0-v1, t0-t9
6263           }
6264           if(itype[i]==RJUMP&&rs1[i]==31)
6265           {
6266             //uu=u=0x30300FFF3LL; // Discard at, a0-a3, t0-t9, lo, hi
6267             uu=u=0x300FFF3; // Discard at, a0-a3, t0-t9
6268           }
6269         }*/
6270         branch_unneeded_reg[i]=u;
6271         branch_unneeded_reg_upper[i]=uu;
6272         // Merge in delay slot
6273         tdep=(~uu>>rt1[i+1])&1;
6274         u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6275         uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6276         u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6277         uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6278         uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6279         u|=1;uu|=1;
6280         gte_u|=gte_rt[i+1];
6281         gte_u&=~gte_rs[i+1];
6282         // If branch is "likely" (and conditional)
6283         // then we skip the delay slot on the fall-thru path
6284         if(likely[i]) {
6285           if(i<slen-1) {
6286             u&=unneeded_reg[i+2];
6287             uu&=unneeded_reg_upper[i+2];
6288             gte_u&=gte_unneeded[i+2];
6289           }
6290           else
6291           {
6292             u=1;
6293             uu=1;
6294             gte_u=gte_u_unknown;
6295           }
6296         }
6297       }
6298       else
6299       {
6300         // Internal branch, flag target
6301         bt[(ba[i]-start)>>2]=1;
6302         if(ba[i]<=start+i*4) {
6303           // Backward branch
6304           if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
6305           {
6306             // Unconditional branch
6307             temp_u=1;temp_uu=1;
6308             temp_gte_u=0;
6309           } else {
6310             // Conditional branch (not taken case)
6311             temp_u=unneeded_reg[i+2];
6312             temp_uu=unneeded_reg_upper[i+2];
6313             temp_gte_u&=gte_unneeded[i+2];
6314           }
6315           // Merge in delay slot
6316           tdep=(~temp_uu>>rt1[i+1])&1;
6317           temp_u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6318           temp_uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6319           temp_u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6320           temp_uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6321           temp_uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6322           temp_u|=1;temp_uu|=1;
6323           temp_gte_u|=gte_rt[i+1];
6324           temp_gte_u&=~gte_rs[i+1];
6325           // If branch is "likely" (and conditional)
6326           // then we skip the delay slot on the fall-thru path
6327           if(likely[i]) {
6328             if(i<slen-1) {
6329               temp_u&=unneeded_reg[i+2];
6330               temp_uu&=unneeded_reg_upper[i+2];
6331               temp_gte_u&=gte_unneeded[i+2];
6332             }
6333             else
6334             {
6335               temp_u=1;
6336               temp_uu=1;
6337               temp_gte_u=gte_u_unknown;
6338             }
6339           }
6340           tdep=(~temp_uu>>rt1[i])&1;
6341           temp_u|=(1LL<<rt1[i])|(1LL<<rt2[i]);
6342           temp_uu|=(1LL<<rt1[i])|(1LL<<rt2[i]);
6343           temp_u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
6344           temp_uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
6345           temp_uu&=~((tdep<<dep1[i])|(tdep<<dep2[i]));
6346           temp_u|=1;temp_uu|=1;
6347           temp_gte_u|=gte_rt[i];
6348           temp_gte_u&=~gte_rs[i];
6349           unneeded_reg[i]=temp_u;
6350           unneeded_reg_upper[i]=temp_uu;
6351           gte_unneeded[i]=temp_gte_u;
6352           // Only go three levels deep.  This recursion can take an
6353           // excessive amount of time if there are a lot of nested loops.
6354           if(r<2) {
6355             unneeded_registers((ba[i]-start)>>2,i-1,r+1);
6356           }else{
6357             unneeded_reg[(ba[i]-start)>>2]=1;
6358             unneeded_reg_upper[(ba[i]-start)>>2]=1;
6359             gte_unneeded[(ba[i]-start)>>2]=gte_u_unknown;
6360           }
6361         } /*else*/ if(1) {
6362           if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
6363           {
6364             // Unconditional branch
6365             u=unneeded_reg[(ba[i]-start)>>2];
6366             uu=unneeded_reg_upper[(ba[i]-start)>>2];
6367             gte_u=gte_unneeded[(ba[i]-start)>>2];
6368             branch_unneeded_reg[i]=u;
6369             branch_unneeded_reg_upper[i]=uu;
6370         //u=1;
6371         //uu=1;
6372         //branch_unneeded_reg[i]=u;
6373         //branch_unneeded_reg_upper[i]=uu;
6374             // Merge in delay slot
6375             tdep=(~uu>>rt1[i+1])&1;
6376             u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6377             uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6378             u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6379             uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6380             uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6381             u|=1;uu|=1;
6382             gte_u|=gte_rt[i+1];
6383             gte_u&=~gte_rs[i+1];
6384           } else {
6385             // Conditional branch
6386             b=unneeded_reg[(ba[i]-start)>>2];
6387             bu=unneeded_reg_upper[(ba[i]-start)>>2];
6388             gte_bu=gte_unneeded[(ba[i]-start)>>2];
6389             branch_unneeded_reg[i]=b;
6390             branch_unneeded_reg_upper[i]=bu;
6391         //b=1;
6392         //bu=1;
6393         //branch_unneeded_reg[i]=b;
6394         //branch_unneeded_reg_upper[i]=bu;
6395             // Branch delay slot
6396             tdep=(~uu>>rt1[i+1])&1;
6397             b|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6398             bu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
6399             b&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
6400             bu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
6401             bu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
6402             b|=1;bu|=1;
6403             gte_bu|=gte_rt[i+1];
6404             gte_bu&=~gte_rs[i+1];
6405             // If branch is "likely" then we skip the
6406             // delay slot on the fall-thru path
6407             if(likely[i]) {
6408               u=b;
6409               uu=bu;
6410               gte_u=gte_bu;
6411               if(i<slen-1) {
6412                 u&=unneeded_reg[i+2];
6413                 uu&=unneeded_reg_upper[i+2];
6414                 gte_u&=gte_unneeded[i+2];
6415         //u=1;
6416         //uu=1;
6417               }
6418             } else {
6419               u&=b;
6420               uu&=bu;
6421               gte_u&=gte_bu;
6422         //u=1;
6423         //uu=1;
6424             }
6425             if(i<slen-1) {
6426               branch_unneeded_reg[i]&=unneeded_reg[i+2];
6427               branch_unneeded_reg_upper[i]&=unneeded_reg_upper[i+2];
6428         //branch_unneeded_reg[i]=1;
6429         //branch_unneeded_reg_upper[i]=1;
6430             } else {
6431               branch_unneeded_reg[i]=1;
6432               branch_unneeded_reg_upper[i]=1;
6433             }
6434           }
6435         }
6436       }
6437     }
6438     else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
6439     {
6440       // SYSCALL instruction (software interrupt)
6441       u=1;
6442       uu=1;
6443     }
6444     else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
6445     {
6446       // ERET instruction (return from interrupt)
6447       u=1;
6448       uu=1;
6449     }
6450     //u=uu=1; // DEBUG
6451     tdep=(~uu>>rt1[i])&1;
6452     // Written registers are unneeded
6453     u|=1LL<<rt1[i];
6454     u|=1LL<<rt2[i];
6455     uu|=1LL<<rt1[i];
6456     uu|=1LL<<rt2[i];
6457     gte_u|=gte_rt[i];
6458     // Accessed registers are needed
6459     u&=~(1LL<<rs1[i]);
6460     u&=~(1LL<<rs2[i]);
6461     uu&=~(1LL<<us1[i]);
6462     uu&=~(1LL<<us2[i]);
6463     gte_u&=~gte_rs[i];
6464     if(gte_rs[i]&&rt1[i]&&(unneeded_reg[i+1]&(1ll<<rt1[i])))
6465       gte_u|=gte_rs[i]&gte_unneeded[i+1]; // MFC2/CFC2 to dead register, unneeded
6466     // Source-target dependencies
6467     uu&=~(tdep<<dep1[i]);
6468     uu&=~(tdep<<dep2[i]);
6469     // R0 is always unneeded
6470     u|=1;uu|=1;
6471     // Save it
6472     unneeded_reg[i]=u;
6473     unneeded_reg_upper[i]=uu;
6474     gte_unneeded[i]=gte_u;
6475     /*
6476     printf("ur (%d,%d) %x: ",istart,iend,start+i*4);
6477     printf("U:");
6478     int r;
6479     for(r=1;r<=CCREG;r++) {
6480       if((unneeded_reg[i]>>r)&1) {
6481         if(r==HIREG) printf(" HI");
6482         else if(r==LOREG) printf(" LO");
6483         else printf(" r%d",r);
6484       }
6485     }
6486     printf(" UU:");
6487     for(r=1;r<=CCREG;r++) {
6488       if(((unneeded_reg_upper[i]&~unneeded_reg[i])>>r)&1) {
6489         if(r==HIREG) printf(" HI");
6490         else if(r==LOREG) printf(" LO");
6491         else printf(" r%d",r);
6492       }
6493     }
6494     printf("\n");*/
6495   }
6496   for (i=iend;i>=istart;i--)
6497   {
6498     unneeded_reg_upper[i]=branch_unneeded_reg_upper[i]=-1LL;
6499   }
6500 }
6501
6502 // Write back dirty registers as soon as we will no longer modify them,
6503 // so that we don't end up with lots of writes at the branches.
6504 void clean_registers(int istart,int iend,int wr)
6505 {
6506   int i;
6507   int r;
6508   u_int will_dirty_i,will_dirty_next,temp_will_dirty;
6509   u_int wont_dirty_i,wont_dirty_next,temp_wont_dirty;
6510   if(iend==slen-1) {
6511     will_dirty_i=will_dirty_next=0;
6512     wont_dirty_i=wont_dirty_next=0;
6513   }else{
6514     will_dirty_i=will_dirty_next=will_dirty[iend+1];
6515     wont_dirty_i=wont_dirty_next=wont_dirty[iend+1];
6516   }
6517   for (i=iend;i>=istart;i--)
6518   {
6519     if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
6520     {
6521       if(ba[i]<start || ba[i]>=(start+slen*4))
6522       {
6523         // Branch out of this block, flush all regs
6524         if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
6525         {
6526           // Unconditional branch
6527           will_dirty_i=0;
6528           wont_dirty_i=0;
6529           // Merge in delay slot (will dirty)
6530           for(r=0;r<HOST_REGS;r++) {
6531             if(r!=EXCLUDE_REG) {
6532               if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
6533               if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
6534               if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
6535               if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
6536               if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6537               if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6538               if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6539               if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
6540               if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
6541               if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
6542               if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
6543               if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6544               if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6545               if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6546             }
6547           }
6548         }
6549         else
6550         {
6551           // Conditional branch
6552           will_dirty_i=0;
6553           wont_dirty_i=wont_dirty_next;
6554           // Merge in delay slot (will dirty)
6555           for(r=0;r<HOST_REGS;r++) {
6556             if(r!=EXCLUDE_REG) {
6557               if(!likely[i]) {
6558                 // Might not dirty if likely branch is not taken
6559                 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
6560                 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
6561                 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
6562                 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
6563                 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6564                 if(branch_regs[i].regmap[r]==0) will_dirty_i&=~(1<<r);
6565                 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6566                 //if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
6567                 //if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
6568                 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
6569                 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
6570                 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6571                 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6572                 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6573               }
6574             }
6575           }
6576         }
6577         // Merge in delay slot (wont dirty)
6578         for(r=0;r<HOST_REGS;r++) {
6579           if(r!=EXCLUDE_REG) {
6580             if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
6581             if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
6582             if((regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
6583             if((regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
6584             if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
6585             if((branch_regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
6586             if((branch_regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
6587             if((branch_regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
6588             if((branch_regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
6589             if(branch_regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
6590           }
6591         }
6592         if(wr) {
6593           #ifndef DESTRUCTIVE_WRITEBACK
6594           branch_regs[i].dirty&=wont_dirty_i;
6595           #endif
6596           branch_regs[i].dirty|=will_dirty_i;
6597         }
6598       }
6599       else
6600       {
6601         // Internal branch
6602         if(ba[i]<=start+i*4) {
6603           // Backward branch
6604           if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
6605           {
6606             // Unconditional branch
6607             temp_will_dirty=0;
6608             temp_wont_dirty=0;
6609             // Merge in delay slot (will dirty)
6610             for(r=0;r<HOST_REGS;r++) {
6611               if(r!=EXCLUDE_REG) {
6612                 if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
6613                 if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
6614                 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
6615                 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
6616                 if((branch_regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
6617                 if(branch_regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
6618                 if(branch_regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
6619                 if((regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
6620                 if((regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
6621                 if((regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
6622                 if((regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
6623                 if((regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
6624                 if(regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
6625                 if(regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
6626               }
6627             }
6628           } else {
6629             // Conditional branch (not taken case)
6630             temp_will_dirty=will_dirty_next;
6631             temp_wont_dirty=wont_dirty_next;
6632             // Merge in delay slot (will dirty)
6633             for(r=0;r<HOST_REGS;r++) {
6634               if(r!=EXCLUDE_REG) {
6635                 if(!likely[i]) {
6636                   // Will not dirty if likely branch is not taken
6637                   if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
6638                   if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
6639                   if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
6640                   if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
6641                   if((branch_regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
6642                   if(branch_regs[i].regmap[r]==0) temp_will_dirty&=~(1<<r);
6643                   if(branch_regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
6644                   //if((regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
6645                   //if((regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
6646                   if((regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
6647                   if((regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
6648                   if((regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
6649                   if(regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
6650                   if(regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
6651                 }
6652               }
6653             }
6654           }
6655           // Merge in delay slot (wont dirty)
6656           for(r=0;r<HOST_REGS;r++) {
6657             if(r!=EXCLUDE_REG) {
6658               if((regs[i].regmap[r]&63)==rt1[i]) temp_wont_dirty|=1<<r;
6659               if((regs[i].regmap[r]&63)==rt2[i]) temp_wont_dirty|=1<<r;
6660               if((regs[i].regmap[r]&63)==rt1[i+1]) temp_wont_dirty|=1<<r;
6661               if((regs[i].regmap[r]&63)==rt2[i+1]) temp_wont_dirty|=1<<r;
6662               if(regs[i].regmap[r]==CCREG) temp_wont_dirty|=1<<r;
6663               if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_wont_dirty|=1<<r;
6664               if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_wont_dirty|=1<<r;
6665               if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_wont_dirty|=1<<r;
6666               if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_wont_dirty|=1<<r;
6667               if(branch_regs[i].regmap[r]==CCREG) temp_wont_dirty|=1<<r;
6668             }
6669           }
6670           // Deal with changed mappings
6671           if(i<iend) {
6672             for(r=0;r<HOST_REGS;r++) {
6673               if(r!=EXCLUDE_REG) {
6674                 if(regs[i].regmap[r]!=regmap_pre[i][r]) {
6675                   temp_will_dirty&=~(1<<r);
6676                   temp_wont_dirty&=~(1<<r);
6677                   if((regmap_pre[i][r]&63)>0 && (regmap_pre[i][r]&63)<34) {
6678                     temp_will_dirty|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
6679                     temp_wont_dirty|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
6680                   } else {
6681                     temp_will_dirty|=1<<r;
6682                     temp_wont_dirty|=1<<r;
6683                   }
6684                 }
6685               }
6686             }
6687           }
6688           if(wr) {
6689             will_dirty[i]=temp_will_dirty;
6690             wont_dirty[i]=temp_wont_dirty;
6691             clean_registers((ba[i]-start)>>2,i-1,0);
6692           }else{
6693             // Limit recursion.  It can take an excessive amount
6694             // of time if there are a lot of nested loops.
6695             will_dirty[(ba[i]-start)>>2]=0;
6696             wont_dirty[(ba[i]-start)>>2]=-1;
6697           }
6698         }
6699         /*else*/ if(1)
6700         {
6701           if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
6702           {
6703             // Unconditional branch
6704             will_dirty_i=0;
6705             wont_dirty_i=0;
6706           //if(ba[i]>start+i*4) { // Disable recursion (for debugging)
6707             for(r=0;r<HOST_REGS;r++) {
6708               if(r!=EXCLUDE_REG) {
6709                 if(branch_regs[i].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
6710                   will_dirty_i|=will_dirty[(ba[i]-start)>>2]&(1<<r);
6711                   wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
6712                 }
6713                 if(branch_regs[i].regmap[r]>=0) {
6714                   will_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>(branch_regs[i].regmap[r]&63))&1)<<r;
6715                   wont_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>(branch_regs[i].regmap[r]&63))&1)<<r;
6716                 }
6717               }
6718             }
6719           //}
6720             // Merge in delay slot
6721             for(r=0;r<HOST_REGS;r++) {
6722               if(r!=EXCLUDE_REG) {
6723                 if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
6724                 if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
6725                 if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
6726                 if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
6727                 if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6728                 if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6729                 if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6730                 if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
6731                 if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
6732                 if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
6733                 if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
6734                 if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6735                 if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6736                 if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6737               }
6738             }
6739           } else {
6740             // Conditional branch
6741             will_dirty_i=will_dirty_next;
6742             wont_dirty_i=wont_dirty_next;
6743           //if(ba[i]>start+i*4) { // Disable recursion (for debugging)
6744             for(r=0;r<HOST_REGS;r++) {
6745               if(r!=EXCLUDE_REG) {
6746                 signed char target_reg=branch_regs[i].regmap[r];
6747                 if(target_reg==regs[(ba[i]-start)>>2].regmap_entry[r]) {
6748                   will_dirty_i&=will_dirty[(ba[i]-start)>>2]&(1<<r);
6749                   wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
6750                 }
6751                 else if(target_reg>=0) {
6752                   will_dirty_i&=((unneeded_reg[(ba[i]-start)>>2]>>(target_reg&63))&1)<<r;
6753                   wont_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>(target_reg&63))&1)<<r;
6754                 }
6755                 // Treat delay slot as part of branch too
6756                 /*if(regs[i+1].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
6757                   will_dirty[i+1]&=will_dirty[(ba[i]-start)>>2]&(1<<r);
6758                   wont_dirty[i+1]|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
6759                 }
6760                 else
6761                 {
6762                   will_dirty[i+1]&=~(1<<r);
6763                 }*/
6764               }
6765             }
6766           //}
6767             // Merge in delay slot
6768             for(r=0;r<HOST_REGS;r++) {
6769               if(r!=EXCLUDE_REG) {
6770                 if(!likely[i]) {
6771                   // Might not dirty if likely branch is not taken
6772                   if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
6773                   if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
6774                   if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
6775                   if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
6776                   if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6777                   if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6778                   if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6779                   //if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
6780                   //if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
6781                   if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
6782                   if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
6783                   if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6784                   if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6785                   if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6786                 }
6787               }
6788             }
6789           }
6790           // Merge in delay slot (won't dirty)
6791           for(r=0;r<HOST_REGS;r++) {
6792             if(r!=EXCLUDE_REG) {
6793               if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
6794               if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
6795               if((regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
6796               if((regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
6797               if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
6798               if((branch_regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
6799               if((branch_regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
6800               if((branch_regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
6801               if((branch_regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
6802               if(branch_regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
6803             }
6804           }
6805           if(wr) {
6806             #ifndef DESTRUCTIVE_WRITEBACK
6807             branch_regs[i].dirty&=wont_dirty_i;
6808             #endif
6809             branch_regs[i].dirty|=will_dirty_i;
6810           }
6811         }
6812       }
6813     }
6814     else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
6815     {
6816       // SYSCALL instruction (software interrupt)
6817       will_dirty_i=0;
6818       wont_dirty_i=0;
6819     }
6820     else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
6821     {
6822       // ERET instruction (return from interrupt)
6823       will_dirty_i=0;
6824       wont_dirty_i=0;
6825     }
6826     will_dirty_next=will_dirty_i;
6827     wont_dirty_next=wont_dirty_i;
6828     for(r=0;r<HOST_REGS;r++) {
6829       if(r!=EXCLUDE_REG) {
6830         if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
6831         if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
6832         if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
6833         if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
6834         if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
6835         if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
6836         if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
6837         if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
6838         if(i>istart) {
6839           if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=FJUMP) 
6840           {
6841             // Don't store a register immediately after writing it,
6842             // may prevent dual-issue.
6843             if((regs[i].regmap[r]&63)==rt1[i-1]) wont_dirty_i|=1<<r;
6844             if((regs[i].regmap[r]&63)==rt2[i-1]) wont_dirty_i|=1<<r;
6845           }
6846         }
6847       }
6848     }
6849     // Save it
6850     will_dirty[i]=will_dirty_i;
6851     wont_dirty[i]=wont_dirty_i;
6852     // Mark registers that won't be dirtied as not dirty
6853     if(wr) {
6854       /*printf("wr (%d,%d) %x will:",istart,iend,start+i*4);
6855       for(r=0;r<HOST_REGS;r++) {
6856         if((will_dirty_i>>r)&1) {
6857           printf(" r%d",r);
6858         }
6859       }
6860       printf("\n");*/
6861
6862       //if(i==istart||(itype[i-1]!=RJUMP&&itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=FJUMP)) {
6863         regs[i].dirty|=will_dirty_i;
6864         #ifndef DESTRUCTIVE_WRITEBACK
6865         regs[i].dirty&=wont_dirty_i;
6866         if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
6867         {
6868           if(i<iend-1&&itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000) {
6869             for(r=0;r<HOST_REGS;r++) {
6870               if(r!=EXCLUDE_REG) {
6871                 if(regs[i].regmap[r]==regmap_pre[i+2][r]) {
6872                   regs[i+2].wasdirty&=wont_dirty_i|~(1<<r);
6873                 }else {/*printf("i: %x (%d) mismatch(+2): %d\n",start+i*4,i,r);/*assert(!((wont_dirty_i>>r)&1));*/}
6874               }
6875             }
6876           }
6877         }
6878         else
6879         {
6880           if(i<iend) {
6881             for(r=0;r<HOST_REGS;r++) {
6882               if(r!=EXCLUDE_REG) {
6883                 if(regs[i].regmap[r]==regmap_pre[i+1][r]) {
6884                   regs[i+1].wasdirty&=wont_dirty_i|~(1<<r);
6885                 }else {/*printf("i: %x (%d) mismatch(+1): %d\n",start+i*4,i,r);/*assert(!((wont_dirty_i>>r)&1));*/}
6886               }
6887             }
6888           }
6889         }
6890         #endif
6891       //}
6892     }
6893     // Deal with changed mappings
6894     temp_will_dirty=will_dirty_i;
6895     temp_wont_dirty=wont_dirty_i;
6896     for(r=0;r<HOST_REGS;r++) {
6897       if(r!=EXCLUDE_REG) {
6898         int nr;
6899         if(regs[i].regmap[r]==regmap_pre[i][r]) {
6900           if(wr) {
6901             #ifndef DESTRUCTIVE_WRITEBACK
6902             regs[i].wasdirty&=wont_dirty_i|~(1<<r);
6903             #endif
6904             regs[i].wasdirty|=will_dirty_i&(1<<r);
6905           }
6906         }
6907         else if(regmap_pre[i][r]>=0&&(nr=get_reg(regs[i].regmap,regmap_pre[i][r]))>=0) {
6908           // Register moved to a different register
6909           will_dirty_i&=~(1<<r);
6910           wont_dirty_i&=~(1<<r);
6911           will_dirty_i|=((temp_will_dirty>>nr)&1)<<r;
6912           wont_dirty_i|=((temp_wont_dirty>>nr)&1)<<r;
6913           if(wr) {
6914             #ifndef DESTRUCTIVE_WRITEBACK
6915             regs[i].wasdirty&=wont_dirty_i|~(1<<r);
6916             #endif
6917             regs[i].wasdirty|=will_dirty_i&(1<<r);
6918           }
6919         }
6920         else {
6921           will_dirty_i&=~(1<<r);
6922           wont_dirty_i&=~(1<<r);
6923           if((regmap_pre[i][r]&63)>0 && (regmap_pre[i][r]&63)<34) {
6924             will_dirty_i|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
6925             wont_dirty_i|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
6926           } else {
6927             wont_dirty_i|=1<<r;
6928             /*printf("i: %x (%d) mismatch: %d\n",start+i*4,i,r);/*assert(!((will_dirty>>r)&1));*/
6929           }
6930         }
6931       }
6932     }
6933   }
6934 }
6935
6936 #ifdef DISASM
6937   /* disassembly */
6938 void disassemble_inst(int i)
6939 {
6940     if (bt[i]) printf("*"); else printf(" ");
6941     switch(itype[i]) {
6942       case UJUMP:
6943         printf (" %x: %s %8x\n",start+i*4,insn[i],ba[i]);break;
6944       case CJUMP:
6945         printf (" %x: %s r%d,r%d,%8x\n",start+i*4,insn[i],rs1[i],rs2[i],i?start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14):*ba);break;
6946       case SJUMP:
6947         printf (" %x: %s r%d,%8x\n",start+i*4,insn[i],rs1[i],start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14));break;
6948       case FJUMP:
6949         printf (" %x: %s %8x\n",start+i*4,insn[i],ba[i]);break;
6950       case RJUMP:
6951         if (opcode[i]==0x9&&rt1[i]!=31)
6952           printf (" %x: %s r%d,r%d\n",start+i*4,insn[i],rt1[i],rs1[i]);
6953         else
6954           printf (" %x: %s r%d\n",start+i*4,insn[i],rs1[i]);
6955         break;
6956       case SPAN:
6957         printf (" %x: %s (pagespan) r%d,r%d,%8x\n",start+i*4,insn[i],rs1[i],rs2[i],ba[i]);break;
6958       case IMM16:
6959         if(opcode[i]==0xf) //LUI
6960           printf (" %x: %s r%d,%4x0000\n",start+i*4,insn[i],rt1[i],imm[i]&0xffff);
6961         else
6962           printf (" %x: %s r%d,r%d,%d\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
6963         break;
6964       case LOAD:
6965       case LOADLR:
6966         printf (" %x: %s r%d,r%d+%x\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
6967         break;
6968       case STORE:
6969       case STORELR:
6970         printf (" %x: %s r%d,r%d+%x\n",start+i*4,insn[i],rs2[i],rs1[i],imm[i]);
6971         break;
6972       case ALU:
6973       case SHIFT:
6974         printf (" %x: %s r%d,r%d,r%d\n",start+i*4,insn[i],rt1[i],rs1[i],rs2[i]);
6975         break;
6976       case MULTDIV:
6977         printf (" %x: %s r%d,r%d\n",start+i*4,insn[i],rs1[i],rs2[i]);
6978         break;
6979       case SHIFTIMM:
6980         printf (" %x: %s r%d,r%d,%d\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
6981         break;
6982       case MOV:
6983         if((opcode2[i]&0x1d)==0x10)
6984           printf (" %x: %s r%d\n",start+i*4,insn[i],rt1[i]);
6985         else if((opcode2[i]&0x1d)==0x11)
6986           printf (" %x: %s r%d\n",start+i*4,insn[i],rs1[i]);
6987         else
6988           printf (" %x: %s\n",start+i*4,insn[i]);
6989         break;
6990       case COP0:
6991         if(opcode2[i]==0)
6992           printf (" %x: %s r%d,cpr0[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC0
6993         else if(opcode2[i]==4)
6994           printf (" %x: %s r%d,cpr0[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC0
6995         else printf (" %x: %s\n",start+i*4,insn[i]);
6996         break;
6997       case COP1:
6998         if(opcode2[i]<3)
6999           printf (" %x: %s r%d,cpr1[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC1
7000         else if(opcode2[i]>3)
7001           printf (" %x: %s r%d,cpr1[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC1
7002         else printf (" %x: %s\n",start+i*4,insn[i]);
7003         break;
7004       case COP2:
7005         if(opcode2[i]<3)
7006           printf (" %x: %s r%d,cpr2[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC2
7007         else if(opcode2[i]>3)
7008           printf (" %x: %s r%d,cpr2[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC2
7009         else printf (" %x: %s\n",start+i*4,insn[i]);
7010         break;
7011       case C1LS:
7012         printf (" %x: %s cpr1[%d],r%d+%x\n",start+i*4,insn[i],(source[i]>>16)&0x1f,rs1[i],imm[i]);
7013         break;
7014       case C2LS:
7015         printf (" %x: %s cpr2[%d],r%d+%x\n",start+i*4,insn[i],(source[i]>>16)&0x1f,rs1[i],imm[i]);
7016         break;
7017       case INTCALL:
7018         printf (" %x: %s (INTCALL)\n",start+i*4,insn[i]);
7019         break;
7020       default:
7021         //printf (" %s %8x\n",insn[i],source[i]);
7022         printf (" %x: %s\n",start+i*4,insn[i]);
7023     }
7024 }
7025 #else
7026 static void disassemble_inst(int i) {}
7027 #endif // DISASM
7028
7029 #define DRC_TEST_VAL 0x74657374
7030
7031 static int new_dynarec_test(void)
7032 {
7033   int (*testfunc)(void) = (void *)out;
7034   int ret;
7035   emit_movimm(DRC_TEST_VAL,0); // test
7036   emit_jmpreg(14);
7037   literal_pool(0);
7038 #ifdef __arm__
7039   __clear_cache((void *)testfunc, out);
7040 #endif
7041   SysPrintf("testing if we can run recompiled code..\n");
7042   ret = testfunc();
7043   if (ret == DRC_TEST_VAL)
7044     SysPrintf("test passed.\n");
7045   else
7046     SysPrintf("test failed: %08x\n", ret);
7047   out=(u_char *)BASE_ADDR;
7048   return ret == DRC_TEST_VAL;
7049 }
7050
7051 // clear the state completely, instead of just marking
7052 // things invalid like invalidate_all_pages() does
7053 void new_dynarec_clear_full()
7054 {
7055   int n;
7056   out=(u_char *)BASE_ADDR;
7057   memset(invalid_code,1,sizeof(invalid_code));
7058   memset(hash_table,0xff,sizeof(hash_table));
7059   memset(mini_ht,-1,sizeof(mini_ht));
7060   memset(restore_candidate,0,sizeof(restore_candidate));
7061   memset(shadow,0,sizeof(shadow));
7062   copy=shadow;
7063   expirep=16384; // Expiry pointer, +2 blocks
7064   pending_exception=0;
7065   literalcount=0;
7066   stop_after_jal=0;
7067   inv_code_start=inv_code_end=~0;
7068   // TLB
7069   for(n=0;n<4096;n++) ll_clear(jump_in+n);
7070   for(n=0;n<4096;n++) ll_clear(jump_out+n);
7071   for(n=0;n<4096;n++) ll_clear(jump_dirty+n);
7072 }
7073
7074 void new_dynarec_init()
7075 {
7076   SysPrintf("Init new dynarec\n");
7077   out=(u_char *)BASE_ADDR;
7078 #if BASE_ADDR_FIXED
7079   if (mmap (out, 1<<TARGET_SIZE_2,
7080             PROT_READ | PROT_WRITE | PROT_EXEC,
7081             MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS,
7082             -1, 0) <= 0) {
7083     SysPrintf("mmap() failed: %s\n", strerror(errno));
7084   }
7085 #else
7086   // not all systems allow execute in data segment by default
7087   if (mprotect(out, 1<<TARGET_SIZE_2, PROT_READ | PROT_WRITE | PROT_EXEC) != 0)
7088     SysPrintf("mprotect() failed: %s\n", strerror(errno));
7089 #endif
7090   int n;
7091   cycle_multiplier=200;
7092   new_dynarec_clear_full();
7093 #ifdef HOST_IMM8
7094   // Copy this into local area so we don't have to put it in every literal pool
7095   invc_ptr=invalid_code;
7096 #endif
7097   arch_init();
7098   new_dynarec_test();
7099 #ifndef RAM_FIXED
7100   ram_offset=(u_int)rdram-0x80000000;
7101 #endif
7102   if (ram_offset!=0)
7103     SysPrintf("warning: RAM is not directly mapped, performance will suffer\n");
7104 }
7105
7106 void new_dynarec_cleanup()
7107 {
7108   int n;
7109   #if BASE_ADDR_FIXED
7110   if (munmap ((void *)BASE_ADDR, 1<<TARGET_SIZE_2) < 0) {SysPrintf("munmap() failed\n");}
7111   #endif
7112   for(n=0;n<4096;n++) ll_clear(jump_in+n);
7113   for(n=0;n<4096;n++) ll_clear(jump_out+n);
7114   for(n=0;n<4096;n++) ll_clear(jump_dirty+n);
7115   #ifdef ROM_COPY
7116   if (munmap (ROM_COPY, 67108864) < 0) {SysPrintf("munmap() failed\n");}
7117   #endif
7118 }
7119
7120 static u_int *get_source_start(u_int addr, u_int *limit)
7121 {
7122   if (addr < 0x00200000 ||
7123     (0xa0000000 <= addr && addr < 0xa0200000)) {
7124     // used for BIOS calls mostly?
7125     *limit = (addr&0xa0000000)|0x00200000;
7126     return (u_int *)((u_int)rdram + (addr&0x1fffff));
7127   }
7128   else if (!Config.HLE && (
7129     /* (0x9fc00000 <= addr && addr < 0x9fc80000) ||*/
7130     (0xbfc00000 <= addr && addr < 0xbfc80000))) {
7131     // BIOS
7132     *limit = (addr & 0xfff00000) | 0x80000;
7133     return (u_int *)((u_int)psxR + (addr&0x7ffff));
7134   }
7135   else if (addr >= 0x80000000 && addr < 0x80000000+RAM_SIZE) {
7136     *limit = (addr & 0x80600000) + 0x00200000;
7137     return (u_int *)((u_int)rdram + (addr&0x1fffff));
7138   }
7139 }
7140
7141 static u_int scan_for_ret(u_int addr)
7142 {
7143   u_int limit = 0;
7144   u_int *mem;
7145
7146   mem = get_source_start(addr, &limit);
7147   if (mem == NULL)
7148     return addr;
7149
7150   if (limit > addr + 0x1000)
7151     limit = addr + 0x1000;
7152   for (; addr < limit; addr += 4, mem++) {
7153     if (*mem == 0x03e00008) // jr $ra
7154       return addr + 8;
7155   }
7156 }
7157
7158 struct savestate_block {
7159   uint32_t addr;
7160   uint32_t regflags;
7161 };
7162
7163 static int addr_cmp(const void *p1_, const void *p2_)
7164 {
7165   const struct savestate_block *p1 = p1_, *p2 = p2_;
7166   return p1->addr - p2->addr;
7167 }
7168
7169 int new_dynarec_save_blocks(void *save, int size)
7170 {
7171   struct savestate_block *blocks = save;
7172   int maxcount = size / sizeof(blocks[0]);
7173   struct savestate_block tmp_blocks[1024];
7174   struct ll_entry *head;
7175   int p, s, d, o, bcnt;
7176   u_int addr;
7177
7178   o = 0;
7179   for (p = 0; p < sizeof(jump_in) / sizeof(jump_in[0]); p++) {
7180     bcnt = 0;
7181     for (head = jump_in[p]; head != NULL; head = head->next) {
7182       tmp_blocks[bcnt].addr = head->vaddr;
7183       tmp_blocks[bcnt].regflags = head->reg_sv_flags;
7184       bcnt++;
7185     }
7186     if (bcnt < 1)
7187       continue;
7188     qsort(tmp_blocks, bcnt, sizeof(tmp_blocks[0]), addr_cmp);
7189
7190     addr = tmp_blocks[0].addr;
7191     for (s = d = 0; s < bcnt; s++) {
7192       if (tmp_blocks[s].addr < addr)
7193         continue;
7194       if (d == 0 || tmp_blocks[d-1].addr != tmp_blocks[s].addr)
7195         tmp_blocks[d++] = tmp_blocks[s];
7196       addr = scan_for_ret(tmp_blocks[s].addr);
7197     }
7198
7199     if (o + d > maxcount)
7200       d = maxcount - o;
7201     memcpy(&blocks[o], tmp_blocks, d * sizeof(blocks[0]));
7202     o += d;
7203   }
7204
7205   return o * sizeof(blocks[0]);
7206 }
7207
7208 void new_dynarec_load_blocks(const void *save, int size)
7209 {
7210   const struct savestate_block *blocks = save;
7211   int count = size / sizeof(blocks[0]);
7212   u_int regs_save[32];
7213   uint32_t f;
7214   int i, b;
7215
7216   get_addr(psxRegs.pc);
7217
7218   // change GPRs for speculation to at least partially work..
7219   memcpy(regs_save, &psxRegs.GPR, sizeof(regs_save));
7220   for (i = 1; i < 32; i++)
7221     psxRegs.GPR.r[i] = 0x80000000;
7222
7223   for (b = 0; b < count; b++) {
7224     for (f = blocks[b].regflags, i = 0; f; f >>= 1, i++) {
7225       if (f & 1)
7226         psxRegs.GPR.r[i] = 0x1f800000;
7227     }
7228
7229     get_addr(blocks[b].addr);
7230
7231     for (f = blocks[b].regflags, i = 0; f; f >>= 1, i++) {
7232       if (f & 1)
7233         psxRegs.GPR.r[i] = 0x80000000;
7234     }
7235   }
7236
7237   memcpy(&psxRegs.GPR, regs_save, sizeof(regs_save));
7238 }
7239
7240 int new_recompile_block(int addr)
7241 {
7242   u_int pagelimit = 0;
7243   u_int state_rflags = 0;
7244   int i;
7245
7246   assem_debug("NOTCOMPILED: addr = %x -> %x\n", (int)addr, (int)out);
7247   //printf("NOTCOMPILED: addr = %x -> %x\n", (int)addr, (int)out);
7248   //printf("TRACE: count=%d next=%d (compile %x)\n",Count,next_interupt,addr);
7249   //if(debug) 
7250   //printf("TRACE: count=%d next=%d (checksum %x)\n",Count,next_interupt,mchecksum());
7251   //printf("fpu mapping=%x enabled=%x\n",(Status & 0x04000000)>>26,(Status & 0x20000000)>>29);
7252   /*if(Count>=312978186) {
7253     rlist();
7254   }*/
7255   //rlist();
7256
7257   // this is just for speculation
7258   for (i = 1; i < 32; i++) {
7259     if ((psxRegs.GPR.r[i] & 0xffff0000) == 0x1f800000)
7260       state_rflags |= 1 << i;
7261   }
7262
7263   start = (u_int)addr&~3;
7264   //assert(((u_int)addr&1)==0);
7265   new_dynarec_did_compile=1;
7266   if (Config.HLE && start == 0x80001000) // hlecall
7267   {
7268     // XXX: is this enough? Maybe check hleSoftCall?
7269     u_int beginning=(u_int)out;
7270     u_int page=get_page(start);
7271     invalid_code[start>>12]=0;
7272     emit_movimm(start,0);
7273     emit_writeword(0,(int)&pcaddr);
7274     emit_jmp((int)new_dyna_leave);
7275     literal_pool(0);
7276 #ifdef __arm__
7277     __clear_cache((void *)beginning,out);
7278 #endif
7279     ll_add_flags(jump_in+page,start,state_rflags,(void *)beginning);
7280     return 0;
7281   }
7282
7283   source = get_source_start(start, &pagelimit);
7284   if (source == NULL) {
7285     SysPrintf("Compile at bogus memory address: %08x\n", addr);
7286     exit(1);
7287   }
7288
7289   /* Pass 1: disassemble */
7290   /* Pass 2: register dependencies, branch targets */
7291   /* Pass 3: register allocation */
7292   /* Pass 4: branch dependencies */
7293   /* Pass 5: pre-alloc */
7294   /* Pass 6: optimize clean/dirty state */
7295   /* Pass 7: flag 32-bit registers */
7296   /* Pass 8: assembly */
7297   /* Pass 9: linker */
7298   /* Pass 10: garbage collection / free memory */
7299
7300   int j;
7301   int done=0;
7302   unsigned int type,op,op2;
7303
7304   //printf("addr = %x source = %x %x\n", addr,source,source[0]);
7305   
7306   /* Pass 1 disassembly */
7307
7308   for(i=0;!done;i++) {
7309     bt[i]=0;likely[i]=0;ooo[i]=0;op2=0;
7310     minimum_free_regs[i]=0;
7311     opcode[i]=op=source[i]>>26;
7312     switch(op)
7313     {
7314       case 0x00: strcpy(insn[i],"special"); type=NI;
7315         op2=source[i]&0x3f;
7316         switch(op2)
7317         {
7318           case 0x00: strcpy(insn[i],"SLL"); type=SHIFTIMM; break;
7319           case 0x02: strcpy(insn[i],"SRL"); type=SHIFTIMM; break;
7320           case 0x03: strcpy(insn[i],"SRA"); type=SHIFTIMM; break;
7321           case 0x04: strcpy(insn[i],"SLLV"); type=SHIFT; break;
7322           case 0x06: strcpy(insn[i],"SRLV"); type=SHIFT; break;
7323           case 0x07: strcpy(insn[i],"SRAV"); type=SHIFT; break;
7324           case 0x08: strcpy(insn[i],"JR"); type=RJUMP; break;
7325           case 0x09: strcpy(insn[i],"JALR"); type=RJUMP; break;
7326           case 0x0C: strcpy(insn[i],"SYSCALL"); type=SYSCALL; break;
7327           case 0x0D: strcpy(insn[i],"BREAK"); type=OTHER; break;
7328           case 0x0F: strcpy(insn[i],"SYNC"); type=OTHER; break;
7329           case 0x10: strcpy(insn[i],"MFHI"); type=MOV; break;
7330           case 0x11: strcpy(insn[i],"MTHI"); type=MOV; break;
7331           case 0x12: strcpy(insn[i],"MFLO"); type=MOV; break;
7332           case 0x13: strcpy(insn[i],"MTLO"); type=MOV; break;
7333           case 0x18: strcpy(insn[i],"MULT"); type=MULTDIV; break;
7334           case 0x19: strcpy(insn[i],"MULTU"); type=MULTDIV; break;
7335           case 0x1A: strcpy(insn[i],"DIV"); type=MULTDIV; break;
7336           case 0x1B: strcpy(insn[i],"DIVU"); type=MULTDIV; break;
7337           case 0x20: strcpy(insn[i],"ADD"); type=ALU; break;
7338           case 0x21: strcpy(insn[i],"ADDU"); type=ALU; break;
7339           case 0x22: strcpy(insn[i],"SUB"); type=ALU; break;
7340           case 0x23: strcpy(insn[i],"SUBU"); type=ALU; break;
7341           case 0x24: strcpy(insn[i],"AND"); type=ALU; break;
7342           case 0x25: strcpy(insn[i],"OR"); type=ALU; break;
7343           case 0x26: strcpy(insn[i],"XOR"); type=ALU; break;
7344           case 0x27: strcpy(insn[i],"NOR"); type=ALU; break;
7345           case 0x2A: strcpy(insn[i],"SLT"); type=ALU; break;
7346           case 0x2B: strcpy(insn[i],"SLTU"); type=ALU; break;
7347           case 0x30: strcpy(insn[i],"TGE"); type=NI; break;
7348           case 0x31: strcpy(insn[i],"TGEU"); type=NI; break;
7349           case 0x32: strcpy(insn[i],"TLT"); type=NI; break;
7350           case 0x33: strcpy(insn[i],"TLTU"); type=NI; break;
7351           case 0x34: strcpy(insn[i],"TEQ"); type=NI; break;
7352           case 0x36: strcpy(insn[i],"TNE"); type=NI; break;
7353 #if 0
7354           case 0x14: strcpy(insn[i],"DSLLV"); type=SHIFT; break;
7355           case 0x16: strcpy(insn[i],"DSRLV"); type=SHIFT; break;
7356           case 0x17: strcpy(insn[i],"DSRAV"); type=SHIFT; break;
7357           case 0x1C: strcpy(insn[i],"DMULT"); type=MULTDIV; break;
7358           case 0x1D: strcpy(insn[i],"DMULTU"); type=MULTDIV; break;
7359           case 0x1E: strcpy(insn[i],"DDIV"); type=MULTDIV; break;
7360           case 0x1F: strcpy(insn[i],"DDIVU"); type=MULTDIV; break;
7361           case 0x2C: strcpy(insn[i],"DADD"); type=ALU; break;
7362           case 0x2D: strcpy(insn[i],"DADDU"); type=ALU; break;
7363           case 0x2E: strcpy(insn[i],"DSUB"); type=ALU; break;
7364           case 0x2F: strcpy(insn[i],"DSUBU"); type=ALU; break;
7365           case 0x38: strcpy(insn[i],"DSLL"); type=SHIFTIMM; break;
7366           case 0x3A: strcpy(insn[i],"DSRL"); type=SHIFTIMM; break;
7367           case 0x3B: strcpy(insn[i],"DSRA"); type=SHIFTIMM; break;
7368           case 0x3C: strcpy(insn[i],"DSLL32"); type=SHIFTIMM; break;
7369           case 0x3E: strcpy(insn[i],"DSRL32"); type=SHIFTIMM; break;
7370           case 0x3F: strcpy(insn[i],"DSRA32"); type=SHIFTIMM; break;
7371 #endif
7372         }
7373         break;
7374       case 0x01: strcpy(insn[i],"regimm"); type=NI;
7375         op2=(source[i]>>16)&0x1f;
7376         switch(op2)
7377         {
7378           case 0x00: strcpy(insn[i],"BLTZ"); type=SJUMP; break;
7379           case 0x01: strcpy(insn[i],"BGEZ"); type=SJUMP; break;
7380           case 0x02: strcpy(insn[i],"BLTZL"); type=SJUMP; break;
7381           case 0x03: strcpy(insn[i],"BGEZL"); type=SJUMP; break;
7382           case 0x08: strcpy(insn[i],"TGEI"); type=NI; break;
7383           case 0x09: strcpy(insn[i],"TGEIU"); type=NI; break;
7384           case 0x0A: strcpy(insn[i],"TLTI"); type=NI; break;
7385           case 0x0B: strcpy(insn[i],"TLTIU"); type=NI; break;
7386           case 0x0C: strcpy(insn[i],"TEQI"); type=NI; break;
7387           case 0x0E: strcpy(insn[i],"TNEI"); type=NI; break;
7388           case 0x10: strcpy(insn[i],"BLTZAL"); type=SJUMP; break;
7389           case 0x11: strcpy(insn[i],"BGEZAL"); type=SJUMP; break;
7390           case 0x12: strcpy(insn[i],"BLTZALL"); type=SJUMP; break;
7391           case 0x13: strcpy(insn[i],"BGEZALL"); type=SJUMP; break;
7392         }
7393         break;
7394       case 0x02: strcpy(insn[i],"J"); type=UJUMP; break;
7395       case 0x03: strcpy(insn[i],"JAL"); type=UJUMP; break;
7396       case 0x04: strcpy(insn[i],"BEQ"); type=CJUMP; break;
7397       case 0x05: strcpy(insn[i],"BNE"); type=CJUMP; break;
7398       case 0x06: strcpy(insn[i],"BLEZ"); type=CJUMP; break;
7399       case 0x07: strcpy(insn[i],"BGTZ"); type=CJUMP; break;
7400       case 0x08: strcpy(insn[i],"ADDI"); type=IMM16; break;
7401       case 0x09: strcpy(insn[i],"ADDIU"); type=IMM16; break;
7402       case 0x0A: strcpy(insn[i],"SLTI"); type=IMM16; break;
7403       case 0x0B: strcpy(insn[i],"SLTIU"); type=IMM16; break;
7404       case 0x0C: strcpy(insn[i],"ANDI"); type=IMM16; break;
7405       case 0x0D: strcpy(insn[i],"ORI"); type=IMM16; break;
7406       case 0x0E: strcpy(insn[i],"XORI"); type=IMM16; break;
7407       case 0x0F: strcpy(insn[i],"LUI"); type=IMM16; break;
7408       case 0x10: strcpy(insn[i],"cop0"); type=NI;
7409         op2=(source[i]>>21)&0x1f;
7410         switch(op2)
7411         {
7412           case 0x00: strcpy(insn[i],"MFC0"); type=COP0; break;
7413           case 0x04: strcpy(insn[i],"MTC0"); type=COP0; break;
7414           case 0x10: strcpy(insn[i],"tlb"); type=NI;
7415           switch(source[i]&0x3f)
7416           {
7417             case 0x01: strcpy(insn[i],"TLBR"); type=COP0; break;
7418             case 0x02: strcpy(insn[i],"TLBWI"); type=COP0; break;
7419             case 0x06: strcpy(insn[i],"TLBWR"); type=COP0; break;
7420             case 0x08: strcpy(insn[i],"TLBP"); type=COP0; break;
7421             case 0x10: strcpy(insn[i],"RFE"); type=COP0; break;
7422             //case 0x18: strcpy(insn[i],"ERET"); type=COP0; break;
7423           }
7424         }
7425         break;
7426       case 0x11: strcpy(insn[i],"cop1"); type=NI;
7427         op2=(source[i]>>21)&0x1f;
7428         switch(op2)
7429         {
7430           case 0x00: strcpy(insn[i],"MFC1"); type=COP1; break;
7431           case 0x01: strcpy(insn[i],"DMFC1"); type=COP1; break;
7432           case 0x02: strcpy(insn[i],"CFC1"); type=COP1; break;
7433           case 0x04: strcpy(insn[i],"MTC1"); type=COP1; break;
7434           case 0x05: strcpy(insn[i],"DMTC1"); type=COP1; break;
7435           case 0x06: strcpy(insn[i],"CTC1"); type=COP1; break;
7436           case 0x08: strcpy(insn[i],"BC1"); type=FJUMP;
7437           switch((source[i]>>16)&0x3)
7438           {
7439             case 0x00: strcpy(insn[i],"BC1F"); break;
7440             case 0x01: strcpy(insn[i],"BC1T"); break;
7441             case 0x02: strcpy(insn[i],"BC1FL"); break;
7442             case 0x03: strcpy(insn[i],"BC1TL"); break;
7443           }
7444           break;
7445           case 0x10: strcpy(insn[i],"C1.S"); type=NI;
7446           switch(source[i]&0x3f)
7447           {
7448             case 0x00: strcpy(insn[i],"ADD.S"); type=FLOAT; break;
7449             case 0x01: strcpy(insn[i],"SUB.S"); type=FLOAT; break;
7450             case 0x02: strcpy(insn[i],"MUL.S"); type=FLOAT; break;
7451             case 0x03: strcpy(insn[i],"DIV.S"); type=FLOAT; break;
7452             case 0x04: strcpy(insn[i],"SQRT.S"); type=FLOAT; break;
7453             case 0x05: strcpy(insn[i],"ABS.S"); type=FLOAT; break;
7454             case 0x06: strcpy(insn[i],"MOV.S"); type=FLOAT; break;
7455             case 0x07: strcpy(insn[i],"NEG.S"); type=FLOAT; break;
7456             case 0x08: strcpy(insn[i],"ROUND.L.S"); type=FCONV; break;
7457             case 0x09: strcpy(insn[i],"TRUNC.L.S"); type=FCONV; break;
7458             case 0x0A: strcpy(insn[i],"CEIL.L.S"); type=FCONV; break;
7459             case 0x0B: strcpy(insn[i],"FLOOR.L.S"); type=FCONV; break;
7460             case 0x0C: strcpy(insn[i],"ROUND.W.S"); type=FCONV; break;
7461             case 0x0D: strcpy(insn[i],"TRUNC.W.S"); type=FCONV; break;
7462             case 0x0E: strcpy(insn[i],"CEIL.W.S"); type=FCONV; break;
7463             case 0x0F: strcpy(insn[i],"FLOOR.W.S"); type=FCONV; break;
7464             case 0x21: strcpy(insn[i],"CVT.D.S"); type=FCONV; break;
7465             case 0x24: strcpy(insn[i],"CVT.W.S"); type=FCONV; break;
7466             case 0x25: strcpy(insn[i],"CVT.L.S"); type=FCONV; break;
7467             case 0x30: strcpy(insn[i],"C.F.S"); type=FCOMP; break;
7468             case 0x31: strcpy(insn[i],"C.UN.S"); type=FCOMP; break;
7469             case 0x32: strcpy(insn[i],"C.EQ.S"); type=FCOMP; break;
7470             case 0x33: strcpy(insn[i],"C.UEQ.S"); type=FCOMP; break;
7471             case 0x34: strcpy(insn[i],"C.OLT.S"); type=FCOMP; break;
7472             case 0x35: strcpy(insn[i],"C.ULT.S"); type=FCOMP; break;
7473             case 0x36: strcpy(insn[i],"C.OLE.S"); type=FCOMP; break;
7474             case 0x37: strcpy(insn[i],"C.ULE.S"); type=FCOMP; break;
7475             case 0x38: strcpy(insn[i],"C.SF.S"); type=FCOMP; break;
7476             case 0x39: strcpy(insn[i],"C.NGLE.S"); type=FCOMP; break;
7477             case 0x3A: strcpy(insn[i],"C.SEQ.S"); type=FCOMP; break;
7478             case 0x3B: strcpy(insn[i],"C.NGL.S"); type=FCOMP; break;
7479             case 0x3C: strcpy(insn[i],"C.LT.S"); type=FCOMP; break;
7480             case 0x3D: strcpy(insn[i],"C.NGE.S"); type=FCOMP; break;
7481             case 0x3E: strcpy(insn[i],"C.LE.S"); type=FCOMP; break;
7482             case 0x3F: strcpy(insn[i],"C.NGT.S"); type=FCOMP; break;
7483           }
7484           break;
7485           case 0x11: strcpy(insn[i],"C1.D"); type=NI;
7486           switch(source[i]&0x3f)
7487           {
7488             case 0x00: strcpy(insn[i],"ADD.D"); type=FLOAT; break;
7489             case 0x01: strcpy(insn[i],"SUB.D"); type=FLOAT; break;
7490             case 0x02: strcpy(insn[i],"MUL.D"); type=FLOAT; break;
7491             case 0x03: strcpy(insn[i],"DIV.D"); type=FLOAT; break;
7492             case 0x04: strcpy(insn[i],"SQRT.D"); type=FLOAT; break;
7493             case 0x05: strcpy(insn[i],"ABS.D"); type=FLOAT; break;
7494             case 0x06: strcpy(insn[i],"MOV.D"); type=FLOAT; break;
7495             case 0x07: strcpy(insn[i],"NEG.D"); type=FLOAT; break;
7496             case 0x08: strcpy(insn[i],"ROUND.L.D"); type=FCONV; break;
7497             case 0x09: strcpy(insn[i],"TRUNC.L.D"); type=FCONV; break;
7498             case 0x0A: strcpy(insn[i],"CEIL.L.D"); type=FCONV; break;
7499             case 0x0B: strcpy(insn[i],"FLOOR.L.D"); type=FCONV; break;
7500             case 0x0C: strcpy(insn[i],"ROUND.W.D"); type=FCONV; break;
7501             case 0x0D: strcpy(insn[i],"TRUNC.W.D"); type=FCONV; break;
7502             case 0x0E: strcpy(insn[i],"CEIL.W.D"); type=FCONV; break;
7503             case 0x0F: strcpy(insn[i],"FLOOR.W.D"); type=FCONV; break;
7504             case 0x20: strcpy(insn[i],"CVT.S.D"); type=FCONV; break;
7505             case 0x24: strcpy(insn[i],"CVT.W.D"); type=FCONV; break;
7506             case 0x25: strcpy(insn[i],"CVT.L.D"); type=FCONV; break;
7507             case 0x30: strcpy(insn[i],"C.F.D"); type=FCOMP; break;
7508             case 0x31: strcpy(insn[i],"C.UN.D"); type=FCOMP; break;
7509             case 0x32: strcpy(insn[i],"C.EQ.D"); type=FCOMP; break;
7510             case 0x33: strcpy(insn[i],"C.UEQ.D"); type=FCOMP; break;
7511             case 0x34: strcpy(insn[i],"C.OLT.D"); type=FCOMP; break;
7512             case 0x35: strcpy(insn[i],"C.ULT.D"); type=FCOMP; break;
7513             case 0x36: strcpy(insn[i],"C.OLE.D"); type=FCOMP; break;
7514             case 0x37: strcpy(insn[i],"C.ULE.D"); type=FCOMP; break;
7515             case 0x38: strcpy(insn[i],"C.SF.D"); type=FCOMP; break;
7516             case 0x39: strcpy(insn[i],"C.NGLE.D"); type=FCOMP; break;
7517             case 0x3A: strcpy(insn[i],"C.SEQ.D"); type=FCOMP; break;
7518             case 0x3B: strcpy(insn[i],"C.NGL.D"); type=FCOMP; break;
7519             case 0x3C: strcpy(insn[i],"C.LT.D"); type=FCOMP; break;
7520             case 0x3D: strcpy(insn[i],"C.NGE.D"); type=FCOMP; break;
7521             case 0x3E: strcpy(insn[i],"C.LE.D"); type=FCOMP; break;
7522             case 0x3F: strcpy(insn[i],"C.NGT.D"); type=FCOMP; break;
7523           }
7524           break;
7525           case 0x14: strcpy(insn[i],"C1.W"); type=NI;
7526           switch(source[i]&0x3f)
7527           {
7528             case 0x20: strcpy(insn[i],"CVT.S.W"); type=FCONV; break;
7529             case 0x21: strcpy(insn[i],"CVT.D.W"); type=FCONV; break;
7530           }
7531           break;
7532           case 0x15: strcpy(insn[i],"C1.L"); type=NI;
7533           switch(source[i]&0x3f)
7534           {
7535             case 0x20: strcpy(insn[i],"CVT.S.L"); type=FCONV; break;
7536             case 0x21: strcpy(insn[i],"CVT.D.L"); type=FCONV; break;
7537           }
7538           break;
7539         }
7540         break;
7541 #if 0
7542       case 0x14: strcpy(insn[i],"BEQL"); type=CJUMP; break;
7543       case 0x15: strcpy(insn[i],"BNEL"); type=CJUMP; break;
7544       case 0x16: strcpy(insn[i],"BLEZL"); type=CJUMP; break;
7545       case 0x17: strcpy(insn[i],"BGTZL"); type=CJUMP; break;
7546       case 0x18: strcpy(insn[i],"DADDI"); type=IMM16; break;
7547       case 0x19: strcpy(insn[i],"DADDIU"); type=IMM16; break;
7548       case 0x1A: strcpy(insn[i],"LDL"); type=LOADLR; break;
7549       case 0x1B: strcpy(insn[i],"LDR"); type=LOADLR; break;
7550 #endif
7551       case 0x20: strcpy(insn[i],"LB"); type=LOAD; break;
7552       case 0x21: strcpy(insn[i],"LH"); type=LOAD; break;
7553       case 0x22: strcpy(insn[i],"LWL"); type=LOADLR; break;
7554       case 0x23: strcpy(insn[i],"LW"); type=LOAD; break;
7555       case 0x24: strcpy(insn[i],"LBU"); type=LOAD; break;
7556       case 0x25: strcpy(insn[i],"LHU"); type=LOAD; break;
7557       case 0x26: strcpy(insn[i],"LWR"); type=LOADLR; break;
7558 #if 0
7559       case 0x27: strcpy(insn[i],"LWU"); type=LOAD; break;
7560 #endif
7561       case 0x28: strcpy(insn[i],"SB"); type=STORE; break;
7562       case 0x29: strcpy(insn[i],"SH"); type=STORE; break;
7563       case 0x2A: strcpy(insn[i],"SWL"); type=STORELR; break;
7564       case 0x2B: strcpy(insn[i],"SW"); type=STORE; break;
7565 #if 0
7566       case 0x2C: strcpy(insn[i],"SDL"); type=STORELR; break;
7567       case 0x2D: strcpy(insn[i],"SDR"); type=STORELR; break;
7568 #endif
7569       case 0x2E: strcpy(insn[i],"SWR"); type=STORELR; break;
7570       case 0x2F: strcpy(insn[i],"CACHE"); type=NOP; break;
7571       case 0x30: strcpy(insn[i],"LL"); type=NI; break;
7572       case 0x31: strcpy(insn[i],"LWC1"); type=C1LS; break;
7573 #if 0
7574       case 0x34: strcpy(insn[i],"LLD"); type=NI; break;
7575       case 0x35: strcpy(insn[i],"LDC1"); type=C1LS; break;
7576       case 0x37: strcpy(insn[i],"LD"); type=LOAD; break;
7577 #endif
7578       case 0x38: strcpy(insn[i],"SC"); type=NI; break;
7579       case 0x39: strcpy(insn[i],"SWC1"); type=C1LS; break;
7580 #if 0
7581       case 0x3C: strcpy(insn[i],"SCD"); type=NI; break;
7582       case 0x3D: strcpy(insn[i],"SDC1"); type=C1LS; break;
7583       case 0x3F: strcpy(insn[i],"SD"); type=STORE; break;
7584 #endif
7585       case 0x12: strcpy(insn[i],"COP2"); type=NI;
7586         op2=(source[i]>>21)&0x1f;
7587         //if (op2 & 0x10) {
7588         if (source[i]&0x3f) { // use this hack to support old savestates with patched gte insns
7589           if (gte_handlers[source[i]&0x3f]!=NULL) {
7590             if (gte_regnames[source[i]&0x3f]!=NULL)
7591               strcpy(insn[i],gte_regnames[source[i]&0x3f]);
7592             else
7593               snprintf(insn[i], sizeof(insn[i]), "COP2 %x", source[i]&0x3f);
7594             type=C2OP;
7595           }
7596         }
7597         else switch(op2)
7598         {
7599           case 0x00: strcpy(insn[i],"MFC2"); type=COP2; break;
7600           case 0x02: strcpy(insn[i],"CFC2"); type=COP2; break;
7601           case 0x04: strcpy(insn[i],"MTC2"); type=COP2; break;
7602           case 0x06: strcpy(insn[i],"CTC2"); type=COP2; break;
7603         }
7604         break;
7605       case 0x32: strcpy(insn[i],"LWC2"); type=C2LS; break;
7606       case 0x3A: strcpy(insn[i],"SWC2"); type=C2LS; break;
7607       case 0x3B: strcpy(insn[i],"HLECALL"); type=HLECALL; break;
7608       default: strcpy(insn[i],"???"); type=NI;
7609         SysPrintf("NI %08x @%08x (%08x)\n", source[i], addr + i*4, addr);
7610         break;
7611     }
7612     itype[i]=type;
7613     opcode2[i]=op2;
7614     /* Get registers/immediates */
7615     lt1[i]=0;
7616     us1[i]=0;
7617     us2[i]=0;
7618     dep1[i]=0;
7619     dep2[i]=0;
7620     gte_rs[i]=gte_rt[i]=0;
7621     switch(type) {
7622       case LOAD:
7623         rs1[i]=(source[i]>>21)&0x1f;
7624         rs2[i]=0;
7625         rt1[i]=(source[i]>>16)&0x1f;
7626         rt2[i]=0;
7627         imm[i]=(short)source[i];
7628         break;
7629       case STORE:
7630       case STORELR:
7631         rs1[i]=(source[i]>>21)&0x1f;
7632         rs2[i]=(source[i]>>16)&0x1f;
7633         rt1[i]=0;
7634         rt2[i]=0;
7635         imm[i]=(short)source[i];
7636         if(op==0x2c||op==0x2d||op==0x3f) us1[i]=rs2[i]; // 64-bit SDL/SDR/SD
7637         break;
7638       case LOADLR:
7639         // LWL/LWR only load part of the register,
7640         // therefore the target register must be treated as a source too
7641         rs1[i]=(source[i]>>21)&0x1f;
7642         rs2[i]=(source[i]>>16)&0x1f;
7643         rt1[i]=(source[i]>>16)&0x1f;
7644         rt2[i]=0;
7645         imm[i]=(short)source[i];
7646         if(op==0x1a||op==0x1b) us1[i]=rs2[i]; // LDR/LDL
7647         if(op==0x26) dep1[i]=rt1[i]; // LWR
7648         break;
7649       case IMM16:
7650         if (op==0x0f) rs1[i]=0; // LUI instruction has no source register
7651         else rs1[i]=(source[i]>>21)&0x1f;
7652         rs2[i]=0;
7653         rt1[i]=(source[i]>>16)&0x1f;
7654         rt2[i]=0;
7655         if(op>=0x0c&&op<=0x0e) { // ANDI/ORI/XORI
7656           imm[i]=(unsigned short)source[i];
7657         }else{
7658           imm[i]=(short)source[i];
7659         }
7660         if(op==0x18||op==0x19) us1[i]=rs1[i]; // DADDI/DADDIU
7661         if(op==0x0a||op==0x0b) us1[i]=rs1[i]; // SLTI/SLTIU
7662         if(op==0x0d||op==0x0e) dep1[i]=rs1[i]; // ORI/XORI
7663         break;
7664       case UJUMP:
7665         rs1[i]=0;
7666         rs2[i]=0;
7667         rt1[i]=0;
7668         rt2[i]=0;
7669         // The JAL instruction writes to r31.
7670         if (op&1) {
7671           rt1[i]=31;
7672         }
7673         rs2[i]=CCREG;
7674         break;
7675       case RJUMP:
7676         rs1[i]=(source[i]>>21)&0x1f;
7677         rs2[i]=0;
7678         rt1[i]=0;
7679         rt2[i]=0;
7680         // The JALR instruction writes to rd.
7681         if (op2&1) {
7682           rt1[i]=(source[i]>>11)&0x1f;
7683         }
7684         rs2[i]=CCREG;
7685         break;
7686       case CJUMP:
7687         rs1[i]=(source[i]>>21)&0x1f;
7688         rs2[i]=(source[i]>>16)&0x1f;
7689         rt1[i]=0;
7690         rt2[i]=0;
7691         if(op&2) { // BGTZ/BLEZ
7692           rs2[i]=0;
7693         }
7694         us1[i]=rs1[i];
7695         us2[i]=rs2[i];
7696         likely[i]=op>>4;
7697         break;
7698       case SJUMP:
7699         rs1[i]=(source[i]>>21)&0x1f;
7700         rs2[i]=CCREG;
7701         rt1[i]=0;
7702         rt2[i]=0;
7703         us1[i]=rs1[i];
7704         if(op2&0x10) { // BxxAL
7705           rt1[i]=31;
7706           // NOTE: If the branch is not taken, r31 is still overwritten
7707         }
7708         likely[i]=(op2&2)>>1;
7709         break;
7710       case FJUMP:
7711         rs1[i]=FSREG;
7712         rs2[i]=CSREG;
7713         rt1[i]=0;
7714         rt2[i]=0;
7715         likely[i]=((source[i])>>17)&1;
7716         break;
7717       case ALU:
7718         rs1[i]=(source[i]>>21)&0x1f; // source
7719         rs2[i]=(source[i]>>16)&0x1f; // subtract amount
7720         rt1[i]=(source[i]>>11)&0x1f; // destination
7721         rt2[i]=0;
7722         if(op2==0x2a||op2==0x2b) { // SLT/SLTU
7723           us1[i]=rs1[i];us2[i]=rs2[i];
7724         }
7725         else if(op2>=0x24&&op2<=0x27) { // AND/OR/XOR/NOR
7726           dep1[i]=rs1[i];dep2[i]=rs2[i];
7727         }
7728         else if(op2>=0x2c&&op2<=0x2f) { // DADD/DSUB
7729           dep1[i]=rs1[i];dep2[i]=rs2[i];
7730         }
7731         break;
7732       case MULTDIV:
7733         rs1[i]=(source[i]>>21)&0x1f; // source
7734         rs2[i]=(source[i]>>16)&0x1f; // divisor
7735         rt1[i]=HIREG;
7736         rt2[i]=LOREG;
7737         if (op2>=0x1c&&op2<=0x1f) { // DMULT/DMULTU/DDIV/DDIVU
7738           us1[i]=rs1[i];us2[i]=rs2[i];
7739         }
7740         break;
7741       case MOV:
7742         rs1[i]=0;
7743         rs2[i]=0;
7744         rt1[i]=0;
7745         rt2[i]=0;
7746         if(op2==0x10) rs1[i]=HIREG; // MFHI
7747         if(op2==0x11) rt1[i]=HIREG; // MTHI
7748         if(op2==0x12) rs1[i]=LOREG; // MFLO
7749         if(op2==0x13) rt1[i]=LOREG; // MTLO
7750         if((op2&0x1d)==0x10) rt1[i]=(source[i]>>11)&0x1f; // MFxx
7751         if((op2&0x1d)==0x11) rs1[i]=(source[i]>>21)&0x1f; // MTxx
7752         dep1[i]=rs1[i];
7753         break;
7754       case SHIFT:
7755         rs1[i]=(source[i]>>16)&0x1f; // target of shift
7756         rs2[i]=(source[i]>>21)&0x1f; // shift amount
7757         rt1[i]=(source[i]>>11)&0x1f; // destination
7758         rt2[i]=0;
7759         // DSLLV/DSRLV/DSRAV are 64-bit
7760         if(op2>=0x14&&op2<=0x17) us1[i]=rs1[i];
7761         break;
7762       case SHIFTIMM:
7763         rs1[i]=(source[i]>>16)&0x1f;
7764         rs2[i]=0;
7765         rt1[i]=(source[i]>>11)&0x1f;
7766         rt2[i]=0;
7767         imm[i]=(source[i]>>6)&0x1f;
7768         // DSxx32 instructions
7769         if(op2>=0x3c) imm[i]|=0x20;
7770         // DSLL/DSRL/DSRA/DSRA32/DSRL32 but not DSLL32 require 64-bit source
7771         if(op2>=0x38&&op2!=0x3c) us1[i]=rs1[i];
7772         break;
7773       case COP0:
7774         rs1[i]=0;
7775         rs2[i]=0;
7776         rt1[i]=0;
7777         rt2[i]=0;
7778         if(op2==0) rt1[i]=(source[i]>>16)&0x1F; // MFC0
7779         if(op2==4) rs1[i]=(source[i]>>16)&0x1F; // MTC0
7780         if(op2==4&&((source[i]>>11)&0x1f)==12) rt2[i]=CSREG; // Status
7781         if(op2==16) if((source[i]&0x3f)==0x18) rs2[i]=CCREG; // ERET
7782         break;
7783       case COP1:
7784         rs1[i]=0;
7785         rs2[i]=0;
7786         rt1[i]=0;
7787         rt2[i]=0;
7788         if(op2<3) rt1[i]=(source[i]>>16)&0x1F; // MFC1/DMFC1/CFC1
7789         if(op2>3) rs1[i]=(source[i]>>16)&0x1F; // MTC1/DMTC1/CTC1
7790         if(op2==5) us1[i]=rs1[i]; // DMTC1
7791         rs2[i]=CSREG;
7792         break;
7793       case COP2:
7794         rs1[i]=0;
7795         rs2[i]=0;
7796         rt1[i]=0;
7797         rt2[i]=0;
7798         if(op2<3) rt1[i]=(source[i]>>16)&0x1F; // MFC2/CFC2
7799         if(op2>3) rs1[i]=(source[i]>>16)&0x1F; // MTC2/CTC2
7800         rs2[i]=CSREG;
7801         int gr=(source[i]>>11)&0x1F;
7802         switch(op2)
7803         {
7804           case 0x00: gte_rs[i]=1ll<<gr; break; // MFC2
7805           case 0x04: gte_rt[i]=1ll<<gr; break; // MTC2
7806           case 0x02: gte_rs[i]=1ll<<(gr+32); break; // CFC2
7807           case 0x06: gte_rt[i]=1ll<<(gr+32); break; // CTC2
7808         }
7809         break;
7810       case C1LS:
7811         rs1[i]=(source[i]>>21)&0x1F;
7812         rs2[i]=CSREG;
7813         rt1[i]=0;
7814         rt2[i]=0;
7815         imm[i]=(short)source[i];
7816         break;
7817       case C2LS:
7818         rs1[i]=(source[i]>>21)&0x1F;
7819         rs2[i]=0;
7820         rt1[i]=0;
7821         rt2[i]=0;
7822         imm[i]=(short)source[i];
7823         if(op==0x32) gte_rt[i]=1ll<<((source[i]>>16)&0x1F); // LWC2
7824         else gte_rs[i]=1ll<<((source[i]>>16)&0x1F); // SWC2
7825         break;
7826       case C2OP:
7827         rs1[i]=0;
7828         rs2[i]=0;
7829         rt1[i]=0;
7830         rt2[i]=0;
7831         gte_rs[i]=gte_reg_reads[source[i]&0x3f];
7832         gte_rt[i]=gte_reg_writes[source[i]&0x3f];
7833         gte_rt[i]|=1ll<<63; // every op changes flags
7834         if((source[i]&0x3f)==GTE_MVMVA) {
7835           int v = (source[i] >> 15) & 3;
7836           gte_rs[i]&=~0xe3fll;
7837           if(v==3) gte_rs[i]|=0xe00ll;
7838           else gte_rs[i]|=3ll<<(v*2);
7839         }
7840         break;
7841       case FLOAT:
7842       case FCONV:
7843         rs1[i]=0;
7844         rs2[i]=CSREG;
7845         rt1[i]=0;
7846         rt2[i]=0;
7847         break;
7848       case FCOMP:
7849         rs1[i]=FSREG;
7850         rs2[i]=CSREG;
7851         rt1[i]=FSREG;
7852         rt2[i]=0;
7853         break;
7854       case SYSCALL:
7855       case HLECALL:
7856       case INTCALL:
7857         rs1[i]=CCREG;
7858         rs2[i]=0;
7859         rt1[i]=0;
7860         rt2[i]=0;
7861         break;
7862       default:
7863         rs1[i]=0;
7864         rs2[i]=0;
7865         rt1[i]=0;
7866         rt2[i]=0;
7867     }
7868     /* Calculate branch target addresses */
7869     if(type==UJUMP)
7870       ba[i]=((start+i*4+4)&0xF0000000)|(((unsigned int)source[i]<<6)>>4);
7871     else if(type==CJUMP&&rs1[i]==rs2[i]&&(op&1))
7872       ba[i]=start+i*4+8; // Ignore never taken branch
7873     else if(type==SJUMP&&rs1[i]==0&&!(op2&1))
7874       ba[i]=start+i*4+8; // Ignore never taken branch
7875     else if(type==CJUMP||type==SJUMP||type==FJUMP)
7876       ba[i]=start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14);
7877     else ba[i]=-1;
7878     if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)) {
7879       int do_in_intrp=0;
7880       // branch in delay slot?
7881       if(type==RJUMP||type==UJUMP||type==CJUMP||type==SJUMP||type==FJUMP) {
7882         // don't handle first branch and call interpreter if it's hit
7883         SysPrintf("branch in delay slot @%08x (%08x)\n", addr + i*4, addr);
7884         do_in_intrp=1;
7885       }
7886       // basic load delay detection
7887       else if((type==LOAD||type==LOADLR||type==COP0||type==COP2||type==C2LS)&&rt1[i]!=0) {
7888         int t=(ba[i-1]-start)/4;
7889         if(0 <= t && t < i &&(rt1[i]==rs1[t]||rt1[i]==rs2[t])&&itype[t]!=CJUMP&&itype[t]!=SJUMP) {
7890           // jump target wants DS result - potential load delay effect
7891           SysPrintf("load delay @%08x (%08x)\n", addr + i*4, addr);
7892           do_in_intrp=1;
7893           bt[t+1]=1; // expected return from interpreter
7894         }
7895         else if(i>=2&&rt1[i-2]==2&&rt1[i]==2&&rs1[i]!=2&&rs2[i]!=2&&rs1[i-1]!=2&&rs2[i-1]!=2&&
7896               !(i>=3&&(itype[i-3]==RJUMP||itype[i-3]==UJUMP||itype[i-3]==CJUMP||itype[i-3]==SJUMP))) {
7897           // v0 overwrite like this is a sign of trouble, bail out
7898           SysPrintf("v0 overwrite @%08x (%08x)\n", addr + i*4, addr);
7899           do_in_intrp=1;
7900         }
7901       }
7902       if(do_in_intrp) {
7903         rs1[i-1]=CCREG;
7904         rs2[i-1]=rt1[i-1]=rt2[i-1]=0;
7905         ba[i-1]=-1;
7906         itype[i-1]=INTCALL;
7907         done=2;
7908         i--; // don't compile the DS
7909       }
7910     }
7911     /* Is this the end of the block? */
7912     if(i>0&&(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)) {
7913       if(rt1[i-1]==0) { // Continue past subroutine call (JAL)
7914         done=2;
7915       }
7916       else {
7917         if(stop_after_jal) done=1;
7918         // Stop on BREAK
7919         if((source[i+1]&0xfc00003f)==0x0d) done=1;
7920       }
7921       // Don't recompile stuff that's already compiled
7922       if(check_addr(start+i*4+4)) done=1;
7923       // Don't get too close to the limit
7924       if(i>MAXBLOCK/2) done=1;
7925     }
7926     if(itype[i]==SYSCALL&&stop_after_jal) done=1;
7927     if(itype[i]==HLECALL||itype[i]==INTCALL) done=2;
7928     if(done==2) {
7929       // Does the block continue due to a branch?
7930       for(j=i-1;j>=0;j--)
7931       {
7932         if(ba[j]==start+i*4) done=j=0; // Branch into delay slot
7933         if(ba[j]==start+i*4+4) done=j=0;
7934         if(ba[j]==start+i*4+8) done=j=0;
7935       }
7936     }
7937     //assert(i<MAXBLOCK-1);
7938     if(start+i*4==pagelimit-4) done=1;
7939     assert(start+i*4<pagelimit);
7940     if (i==MAXBLOCK-1) done=1;
7941     // Stop if we're compiling junk
7942     if(itype[i]==NI&&opcode[i]==0x11) {
7943       done=stop_after_jal=1;
7944       SysPrintf("Disabled speculative precompilation\n");
7945     }
7946   }
7947   slen=i;
7948   if(itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==RJUMP||itype[i-1]==FJUMP) {
7949     if(start+i*4==pagelimit) {
7950       itype[i-1]=SPAN;
7951     }
7952   }
7953   assert(slen>0);
7954
7955   /* Pass 2 - Register dependencies and branch targets */
7956
7957   unneeded_registers(0,slen-1,0);
7958   
7959   /* Pass 3 - Register allocation */
7960
7961   struct regstat current; // Current register allocations/status
7962   current.is32=1;
7963   current.dirty=0;
7964   current.u=unneeded_reg[0];
7965   current.uu=unneeded_reg_upper[0];
7966   clear_all_regs(current.regmap);
7967   alloc_reg(&current,0,CCREG);
7968   dirty_reg(&current,CCREG);
7969   current.isconst=0;
7970   current.wasconst=0;
7971   current.waswritten=0;
7972   int ds=0;
7973   int cc=0;
7974   int hr=-1;
7975
7976   if((u_int)addr&1) {
7977     // First instruction is delay slot
7978     cc=-1;
7979     bt[1]=1;
7980     ds=1;
7981     unneeded_reg[0]=1;
7982     unneeded_reg_upper[0]=1;
7983     current.regmap[HOST_BTREG]=BTREG;
7984   }
7985   
7986   for(i=0;i<slen;i++)
7987   {
7988     if(bt[i])
7989     {
7990       int hr;
7991       for(hr=0;hr<HOST_REGS;hr++)
7992       {
7993         // Is this really necessary?
7994         if(current.regmap[hr]==0) current.regmap[hr]=-1;
7995       }
7996       current.isconst=0;
7997       current.waswritten=0;
7998     }
7999     if(i>1)
8000     {
8001       if((opcode[i-2]&0x2f)==0x05) // BNE/BNEL
8002       {
8003         if(rs1[i-2]==0||rs2[i-2]==0)
8004         {
8005           if(rs1[i-2]) {
8006             current.is32|=1LL<<rs1[i-2];
8007             int hr=get_reg(current.regmap,rs1[i-2]|64);
8008             if(hr>=0) current.regmap[hr]=-1;
8009           }
8010           if(rs2[i-2]) {
8011             current.is32|=1LL<<rs2[i-2];
8012             int hr=get_reg(current.regmap,rs2[i-2]|64);
8013             if(hr>=0) current.regmap[hr]=-1;
8014           }
8015         }
8016       }
8017     }
8018     current.is32=-1LL;
8019
8020     memcpy(regmap_pre[i],current.regmap,sizeof(current.regmap));
8021     regs[i].wasconst=current.isconst;
8022     regs[i].was32=current.is32;
8023     regs[i].wasdirty=current.dirty;
8024     regs[i].loadedconst=0;
8025     if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP) {
8026       if(i+1<slen) {
8027         current.u=unneeded_reg[i+1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
8028         current.uu=unneeded_reg_upper[i+1]&~((1LL<<us1[i])|(1LL<<us2[i]));
8029         if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
8030         current.u|=1;
8031         current.uu|=1;
8032       } else {
8033         current.u=1;
8034         current.uu=1;
8035       }
8036     } else {
8037       if(i+1<slen) {
8038         current.u=branch_unneeded_reg[i]&~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
8039         current.uu=branch_unneeded_reg_upper[i]&~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
8040         if((~current.uu>>rt1[i+1])&1) current.uu&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
8041         current.u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
8042         current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
8043         current.u|=1;
8044         current.uu|=1;
8045       } else { SysPrintf("oops, branch at end of block with no delay slot\n");exit(1); }
8046     }
8047     is_ds[i]=ds;
8048     if(ds) {
8049       ds=0; // Skip delay slot, already allocated as part of branch
8050       // ...but we need to alloc it in case something jumps here
8051       if(i+1<slen) {
8052         current.u=branch_unneeded_reg[i-1]&unneeded_reg[i+1];
8053         current.uu=branch_unneeded_reg_upper[i-1]&unneeded_reg_upper[i+1];
8054       }else{
8055         current.u=branch_unneeded_reg[i-1];
8056         current.uu=branch_unneeded_reg_upper[i-1];
8057       }
8058       current.u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
8059       current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
8060       if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
8061       current.u|=1;
8062       current.uu|=1;
8063       struct regstat temp;
8064       memcpy(&temp,&current,sizeof(current));
8065       temp.wasdirty=temp.dirty;
8066       temp.was32=temp.is32;
8067       // TODO: Take into account unconditional branches, as below
8068       delayslot_alloc(&temp,i);
8069       memcpy(regs[i].regmap,temp.regmap,sizeof(temp.regmap));
8070       regs[i].wasdirty=temp.wasdirty;
8071       regs[i].was32=temp.was32;
8072       regs[i].dirty=temp.dirty;
8073       regs[i].is32=temp.is32;
8074       regs[i].isconst=0;
8075       regs[i].wasconst=0;
8076       current.isconst=0;
8077       // Create entry (branch target) regmap
8078       for(hr=0;hr<HOST_REGS;hr++)
8079       {
8080         int r=temp.regmap[hr];
8081         if(r>=0) {
8082           if(r!=regmap_pre[i][hr]) {
8083             regs[i].regmap_entry[hr]=-1;
8084           }
8085           else
8086           {
8087             if(r<64){
8088               if((current.u>>r)&1) {
8089                 regs[i].regmap_entry[hr]=-1;
8090                 regs[i].regmap[hr]=-1;
8091                 //Don't clear regs in the delay slot as the branch might need them
8092                 //current.regmap[hr]=-1;
8093               }else
8094                 regs[i].regmap_entry[hr]=r;
8095             }
8096             else {
8097               if((current.uu>>(r&63))&1) {
8098                 regs[i].regmap_entry[hr]=-1;
8099                 regs[i].regmap[hr]=-1;
8100                 //Don't clear regs in the delay slot as the branch might need them
8101                 //current.regmap[hr]=-1;
8102               }else
8103                 regs[i].regmap_entry[hr]=r;
8104             }
8105           }
8106         } else {
8107           // First instruction expects CCREG to be allocated
8108           if(i==0&&hr==HOST_CCREG) 
8109             regs[i].regmap_entry[hr]=CCREG;
8110           else
8111             regs[i].regmap_entry[hr]=-1;
8112         }
8113       }
8114     }
8115     else { // Not delay slot
8116       switch(itype[i]) {
8117         case UJUMP:
8118           //current.isconst=0; // DEBUG
8119           //current.wasconst=0; // DEBUG
8120           //regs[i].wasconst=0; // DEBUG
8121           clear_const(&current,rt1[i]);
8122           alloc_cc(&current,i);
8123           dirty_reg(&current,CCREG);
8124           if (rt1[i]==31) {
8125             alloc_reg(&current,i,31);
8126             dirty_reg(&current,31);
8127             //assert(rs1[i+1]!=31&&rs2[i+1]!=31);
8128             //assert(rt1[i+1]!=rt1[i]);
8129             #ifdef REG_PREFETCH
8130             alloc_reg(&current,i,PTEMP);
8131             #endif
8132             //current.is32|=1LL<<rt1[i];
8133           }
8134           ooo[i]=1;
8135           delayslot_alloc(&current,i+1);
8136           //current.isconst=0; // DEBUG
8137           ds=1;
8138           //printf("i=%d, isconst=%x\n",i,current.isconst);
8139           break;
8140         case RJUMP:
8141           //current.isconst=0;
8142           //current.wasconst=0;
8143           //regs[i].wasconst=0;
8144           clear_const(&current,rs1[i]);
8145           clear_const(&current,rt1[i]);
8146           alloc_cc(&current,i);
8147           dirty_reg(&current,CCREG);
8148           if(rs1[i]!=rt1[i+1]&&rs1[i]!=rt2[i+1]) {
8149             alloc_reg(&current,i,rs1[i]);
8150             if (rt1[i]!=0) {
8151               alloc_reg(&current,i,rt1[i]);
8152               dirty_reg(&current,rt1[i]);
8153               assert(rs1[i+1]!=rt1[i]&&rs2[i+1]!=rt1[i]);
8154               assert(rt1[i+1]!=rt1[i]);
8155               #ifdef REG_PREFETCH
8156               alloc_reg(&current,i,PTEMP);
8157               #endif
8158             }
8159             #ifdef USE_MINI_HT
8160             if(rs1[i]==31) { // JALR
8161               alloc_reg(&current,i,RHASH);
8162               #ifndef HOST_IMM_ADDR32
8163               alloc_reg(&current,i,RHTBL);
8164               #endif
8165             }
8166             #endif
8167             delayslot_alloc(&current,i+1);
8168           } else {
8169             // The delay slot overwrites our source register,
8170             // allocate a temporary register to hold the old value.
8171             current.isconst=0;
8172             current.wasconst=0;
8173             regs[i].wasconst=0;
8174             delayslot_alloc(&current,i+1);
8175             current.isconst=0;
8176             alloc_reg(&current,i,RTEMP);
8177           }
8178           //current.isconst=0; // DEBUG
8179           ooo[i]=1;
8180           ds=1;
8181           break;
8182         case CJUMP:
8183           //current.isconst=0;
8184           //current.wasconst=0;
8185           //regs[i].wasconst=0;
8186           clear_const(&current,rs1[i]);
8187           clear_const(&current,rs2[i]);
8188           if((opcode[i]&0x3E)==4) // BEQ/BNE
8189           {
8190             alloc_cc(&current,i);
8191             dirty_reg(&current,CCREG);
8192             if(rs1[i]) alloc_reg(&current,i,rs1[i]);
8193             if(rs2[i]) alloc_reg(&current,i,rs2[i]);
8194             if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
8195             {
8196               if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
8197               if(rs2[i]) alloc_reg64(&current,i,rs2[i]);
8198             }
8199             if((rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]))||
8200                (rs2[i]&&(rs2[i]==rt1[i+1]||rs2[i]==rt2[i+1]))) {
8201               // The delay slot overwrites one of our conditions.
8202               // Allocate the branch condition registers instead.
8203               current.isconst=0;
8204               current.wasconst=0;
8205               regs[i].wasconst=0;
8206               if(rs1[i]) alloc_reg(&current,i,rs1[i]);
8207               if(rs2[i]) alloc_reg(&current,i,rs2[i]);
8208               if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
8209               {
8210                 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
8211                 if(rs2[i]) alloc_reg64(&current,i,rs2[i]);
8212               }
8213             }
8214             else
8215             {
8216               ooo[i]=1;
8217               delayslot_alloc(&current,i+1);
8218             }
8219           }
8220           else
8221           if((opcode[i]&0x3E)==6) // BLEZ/BGTZ
8222           {
8223             alloc_cc(&current,i);
8224             dirty_reg(&current,CCREG);
8225             alloc_reg(&current,i,rs1[i]);
8226             if(!(current.is32>>rs1[i]&1))
8227             {
8228               alloc_reg64(&current,i,rs1[i]);
8229             }
8230             if(rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1])) {
8231               // The delay slot overwrites one of our conditions.
8232               // Allocate the branch condition registers instead.
8233               current.isconst=0;
8234               current.wasconst=0;
8235               regs[i].wasconst=0;
8236               if(rs1[i]) alloc_reg(&current,i,rs1[i]);
8237               if(!((current.is32>>rs1[i])&1))
8238               {
8239                 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
8240               }
8241             }
8242             else
8243             {
8244               ooo[i]=1;
8245               delayslot_alloc(&current,i+1);
8246             }
8247           }
8248           else
8249           // Don't alloc the delay slot yet because we might not execute it
8250           if((opcode[i]&0x3E)==0x14) // BEQL/BNEL
8251           {
8252             current.isconst=0;
8253             current.wasconst=0;
8254             regs[i].wasconst=0;
8255             alloc_cc(&current,i);
8256             dirty_reg(&current,CCREG);
8257             alloc_reg(&current,i,rs1[i]);
8258             alloc_reg(&current,i,rs2[i]);
8259             if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
8260             {
8261               alloc_reg64(&current,i,rs1[i]);
8262               alloc_reg64(&current,i,rs2[i]);
8263             }
8264           }
8265           else
8266           if((opcode[i]&0x3E)==0x16) // BLEZL/BGTZL
8267           {
8268             current.isconst=0;
8269             current.wasconst=0;
8270             regs[i].wasconst=0;
8271             alloc_cc(&current,i);
8272             dirty_reg(&current,CCREG);
8273             alloc_reg(&current,i,rs1[i]);
8274             if(!(current.is32>>rs1[i]&1))
8275             {
8276               alloc_reg64(&current,i,rs1[i]);
8277             }
8278           }
8279           ds=1;
8280           //current.isconst=0;
8281           break;
8282         case SJUMP:
8283           //current.isconst=0;
8284           //current.wasconst=0;
8285           //regs[i].wasconst=0;
8286           clear_const(&current,rs1[i]);
8287           clear_const(&current,rt1[i]);
8288           //if((opcode2[i]&0x1E)==0x0) // BLTZ/BGEZ
8289           if((opcode2[i]&0x0E)==0x0) // BLTZ/BGEZ
8290           {
8291             alloc_cc(&current,i);
8292             dirty_reg(&current,CCREG);
8293             alloc_reg(&current,i,rs1[i]);
8294             if(!(current.is32>>rs1[i]&1))
8295             {
8296               alloc_reg64(&current,i,rs1[i]);
8297             }
8298             if (rt1[i]==31) { // BLTZAL/BGEZAL
8299               alloc_reg(&current,i,31);
8300               dirty_reg(&current,31);
8301               //#ifdef REG_PREFETCH
8302               //alloc_reg(&current,i,PTEMP);
8303               //#endif
8304               //current.is32|=1LL<<rt1[i];
8305             }
8306             if((rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1])) // The delay slot overwrites the branch condition.
8307                ||(rt1[i]==31&&(rs1[i+1]==31||rs2[i+1]==31||rt1[i+1]==31||rt2[i+1]==31))) { // DS touches $ra
8308               // Allocate the branch condition registers instead.
8309               current.isconst=0;
8310               current.wasconst=0;
8311               regs[i].wasconst=0;
8312               if(rs1[i]) alloc_reg(&current,i,rs1[i]);
8313               if(!((current.is32>>rs1[i])&1))
8314               {
8315                 if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
8316               }
8317             }
8318             else
8319             {
8320               ooo[i]=1;
8321               delayslot_alloc(&current,i+1);
8322             }
8323           }
8324           else
8325           // Don't alloc the delay slot yet because we might not execute it
8326           if((opcode2[i]&0x1E)==0x2) // BLTZL/BGEZL
8327           {
8328             current.isconst=0;
8329             current.wasconst=0;
8330             regs[i].wasconst=0;
8331             alloc_cc(&current,i);
8332             dirty_reg(&current,CCREG);
8333             alloc_reg(&current,i,rs1[i]);
8334             if(!(current.is32>>rs1[i]&1))
8335             {
8336               alloc_reg64(&current,i,rs1[i]);
8337             }
8338           }
8339           ds=1;
8340           //current.isconst=0;
8341           break;
8342         case FJUMP:
8343           current.isconst=0;
8344           current.wasconst=0;
8345           regs[i].wasconst=0;
8346           if(likely[i]==0) // BC1F/BC1T
8347           {
8348             // TODO: Theoretically we can run out of registers here on x86.
8349             // The delay slot can allocate up to six, and we need to check
8350             // CSREG before executing the delay slot.  Possibly we can drop
8351             // the cycle count and then reload it after checking that the
8352             // FPU is in a usable state, or don't do out-of-order execution.
8353             alloc_cc(&current,i);
8354             dirty_reg(&current,CCREG);
8355             alloc_reg(&current,i,FSREG);
8356             alloc_reg(&current,i,CSREG);
8357             if(itype[i+1]==FCOMP) {
8358               // The delay slot overwrites the branch condition.
8359               // Allocate the branch condition registers instead.
8360               alloc_cc(&current,i);
8361               dirty_reg(&current,CCREG);
8362               alloc_reg(&current,i,CSREG);
8363               alloc_reg(&current,i,FSREG);
8364             }
8365             else {
8366               ooo[i]=1;
8367               delayslot_alloc(&current,i+1);
8368               alloc_reg(&current,i+1,CSREG);
8369             }
8370           }
8371           else
8372           // Don't alloc the delay slot yet because we might not execute it
8373           if(likely[i]) // BC1FL/BC1TL
8374           {
8375             alloc_cc(&current,i);
8376             dirty_reg(&current,CCREG);
8377             alloc_reg(&current,i,CSREG);
8378             alloc_reg(&current,i,FSREG);
8379           }
8380           ds=1;
8381           current.isconst=0;
8382           break;
8383         case IMM16:
8384           imm16_alloc(&current,i);
8385           break;
8386         case LOAD:
8387         case LOADLR:
8388           load_alloc(&current,i);
8389           break;
8390         case STORE:
8391         case STORELR:
8392           store_alloc(&current,i);
8393           break;
8394         case ALU:
8395           alu_alloc(&current,i);
8396           break;
8397         case SHIFT:
8398           shift_alloc(&current,i);
8399           break;
8400         case MULTDIV:
8401           multdiv_alloc(&current,i);
8402           break;
8403         case SHIFTIMM:
8404           shiftimm_alloc(&current,i);
8405           break;
8406         case MOV:
8407           mov_alloc(&current,i);
8408           break;
8409         case COP0:
8410           cop0_alloc(&current,i);
8411           break;
8412         case COP1:
8413         case COP2:
8414           cop1_alloc(&current,i);
8415           break;
8416         case C1LS:
8417           c1ls_alloc(&current,i);
8418           break;
8419         case C2LS:
8420           c2ls_alloc(&current,i);
8421           break;
8422         case C2OP:
8423           c2op_alloc(&current,i);
8424           break;
8425         case FCONV:
8426           fconv_alloc(&current,i);
8427           break;
8428         case FLOAT:
8429           float_alloc(&current,i);
8430           break;
8431         case FCOMP:
8432           fcomp_alloc(&current,i);
8433           break;
8434         case SYSCALL:
8435         case HLECALL:
8436         case INTCALL:
8437           syscall_alloc(&current,i);
8438           break;
8439         case SPAN:
8440           pagespan_alloc(&current,i);
8441           break;
8442       }
8443       
8444       // Drop the upper half of registers that have become 32-bit
8445       current.uu|=current.is32&((1LL<<rt1[i])|(1LL<<rt2[i]));
8446       if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP) {
8447         current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
8448         if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
8449         current.uu|=1;
8450       } else {
8451         current.uu|=current.is32&((1LL<<rt1[i+1])|(1LL<<rt2[i+1]));
8452         current.uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
8453         if((~current.uu>>rt1[i+1])&1) current.uu&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
8454         current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
8455         current.uu|=1;
8456       }
8457
8458       // Create entry (branch target) regmap
8459       for(hr=0;hr<HOST_REGS;hr++)
8460       {
8461         int r,or,er;
8462         r=current.regmap[hr];
8463         if(r>=0) {
8464           if(r!=regmap_pre[i][hr]) {
8465             // TODO: delay slot (?)
8466             or=get_reg(regmap_pre[i],r); // Get old mapping for this register
8467             if(or<0||(r&63)>=TEMPREG){
8468               regs[i].regmap_entry[hr]=-1;
8469             }
8470             else
8471             {
8472               // Just move it to a different register
8473               regs[i].regmap_entry[hr]=r;
8474               // If it was dirty before, it's still dirty
8475               if((regs[i].wasdirty>>or)&1) dirty_reg(&current,r&63);
8476             }
8477           }
8478           else
8479           {
8480             // Unneeded
8481             if(r==0){
8482               regs[i].regmap_entry[hr]=0;
8483             }
8484             else
8485             if(r<64){
8486               if((current.u>>r)&1) {
8487                 regs[i].regmap_entry[hr]=-1;
8488                 //regs[i].regmap[hr]=-1;
8489                 current.regmap[hr]=-1;
8490               }else
8491                 regs[i].regmap_entry[hr]=r;
8492             }
8493             else {
8494               if((current.uu>>(r&63))&1) {
8495                 regs[i].regmap_entry[hr]=-1;
8496                 //regs[i].regmap[hr]=-1;
8497                 current.regmap[hr]=-1;
8498               }else
8499                 regs[i].regmap_entry[hr]=r;
8500             }
8501           }
8502         } else {
8503           // Branches expect CCREG to be allocated at the target
8504           if(regmap_pre[i][hr]==CCREG) 
8505             regs[i].regmap_entry[hr]=CCREG;
8506           else
8507             regs[i].regmap_entry[hr]=-1;
8508         }
8509       }
8510       memcpy(regs[i].regmap,current.regmap,sizeof(current.regmap));
8511     }
8512
8513     if(i>0&&(itype[i-1]==STORE||itype[i-1]==STORELR||(itype[i-1]==C2LS&&opcode[i-1]==0x3a))&&(u_int)imm[i-1]<0x800)
8514       current.waswritten|=1<<rs1[i-1];
8515     current.waswritten&=~(1<<rt1[i]);
8516     current.waswritten&=~(1<<rt2[i]);
8517     if((itype[i]==STORE||itype[i]==STORELR||(itype[i]==C2LS&&opcode[i]==0x3a))&&(u_int)imm[i]>=0x800)
8518       current.waswritten&=~(1<<rs1[i]);
8519
8520     /* Branch post-alloc */
8521     if(i>0)
8522     {
8523       current.was32=current.is32;
8524       current.wasdirty=current.dirty;
8525       switch(itype[i-1]) {
8526         case UJUMP:
8527           memcpy(&branch_regs[i-1],&current,sizeof(current));
8528           branch_regs[i-1].isconst=0;
8529           branch_regs[i-1].wasconst=0;
8530           branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
8531           branch_regs[i-1].uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
8532           alloc_cc(&branch_regs[i-1],i-1);
8533           dirty_reg(&branch_regs[i-1],CCREG);
8534           if(rt1[i-1]==31) { // JAL
8535             alloc_reg(&branch_regs[i-1],i-1,31);
8536             dirty_reg(&branch_regs[i-1],31);
8537             branch_regs[i-1].is32|=1LL<<31;
8538           }
8539           memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
8540           memcpy(constmap[i],constmap[i-1],sizeof(current_constmap));
8541           break;
8542         case RJUMP:
8543           memcpy(&branch_regs[i-1],&current,sizeof(current));
8544           branch_regs[i-1].isconst=0;
8545           branch_regs[i-1].wasconst=0;
8546           branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
8547           branch_regs[i-1].uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
8548           alloc_cc(&branch_regs[i-1],i-1);
8549           dirty_reg(&branch_regs[i-1],CCREG);
8550           alloc_reg(&branch_regs[i-1],i-1,rs1[i-1]);
8551           if(rt1[i-1]!=0) { // JALR
8552             alloc_reg(&branch_regs[i-1],i-1,rt1[i-1]);
8553             dirty_reg(&branch_regs[i-1],rt1[i-1]);
8554             branch_regs[i-1].is32|=1LL<<rt1[i-1];
8555           }
8556           #ifdef USE_MINI_HT
8557           if(rs1[i-1]==31) { // JALR
8558             alloc_reg(&branch_regs[i-1],i-1,RHASH);
8559             #ifndef HOST_IMM_ADDR32
8560             alloc_reg(&branch_regs[i-1],i-1,RHTBL);
8561             #endif
8562           }
8563           #endif
8564           memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
8565           memcpy(constmap[i],constmap[i-1],sizeof(current_constmap));
8566           break;
8567         case CJUMP:
8568           if((opcode[i-1]&0x3E)==4) // BEQ/BNE
8569           {
8570             alloc_cc(&current,i-1);
8571             dirty_reg(&current,CCREG);
8572             if((rs1[i-1]&&(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]))||
8573                (rs2[i-1]&&(rs2[i-1]==rt1[i]||rs2[i-1]==rt2[i]))) {
8574               // The delay slot overwrote one of our conditions
8575               // Delay slot goes after the test (in order)
8576               current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
8577               current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
8578               if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
8579               current.u|=1;
8580               current.uu|=1;
8581               delayslot_alloc(&current,i);
8582               current.isconst=0;
8583             }
8584             else
8585             {
8586               current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
8587               current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
8588               // Alloc the branch condition registers
8589               if(rs1[i-1]) alloc_reg(&current,i-1,rs1[i-1]);
8590               if(rs2[i-1]) alloc_reg(&current,i-1,rs2[i-1]);
8591               if(!((current.is32>>rs1[i-1])&(current.is32>>rs2[i-1])&1))
8592               {
8593                 if(rs1[i-1]) alloc_reg64(&current,i-1,rs1[i-1]);
8594                 if(rs2[i-1]) alloc_reg64(&current,i-1,rs2[i-1]);
8595               }
8596             }
8597             memcpy(&branch_regs[i-1],&current,sizeof(current));
8598             branch_regs[i-1].isconst=0;
8599             branch_regs[i-1].wasconst=0;
8600             memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
8601             memcpy(constmap[i],constmap[i-1],sizeof(current_constmap));
8602           }
8603           else
8604           if((opcode[i-1]&0x3E)==6) // BLEZ/BGTZ
8605           {
8606             alloc_cc(&current,i-1);
8607             dirty_reg(&current,CCREG);
8608             if(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]) {
8609               // The delay slot overwrote the branch condition
8610               // Delay slot goes after the test (in order)
8611               current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
8612               current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
8613               if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
8614               current.u|=1;
8615               current.uu|=1;
8616               delayslot_alloc(&current,i);
8617               current.isconst=0;
8618             }
8619             else
8620             {
8621               current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
8622               current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
8623               // Alloc the branch condition register
8624               alloc_reg(&current,i-1,rs1[i-1]);
8625               if(!(current.is32>>rs1[i-1]&1))
8626               {
8627                 alloc_reg64(&current,i-1,rs1[i-1]);
8628               }
8629             }
8630             memcpy(&branch_regs[i-1],&current,sizeof(current));
8631             branch_regs[i-1].isconst=0;
8632             branch_regs[i-1].wasconst=0;
8633             memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
8634             memcpy(constmap[i],constmap[i-1],sizeof(current_constmap));
8635           }
8636           else
8637           // Alloc the delay slot in case the branch is taken
8638           if((opcode[i-1]&0x3E)==0x14) // BEQL/BNEL
8639           {
8640             memcpy(&branch_regs[i-1],&current,sizeof(current));
8641             branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
8642             branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
8643             if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
8644             alloc_cc(&branch_regs[i-1],i);
8645             dirty_reg(&branch_regs[i-1],CCREG);
8646             delayslot_alloc(&branch_regs[i-1],i);
8647             branch_regs[i-1].isconst=0;
8648             alloc_reg(&current,i,CCREG); // Not taken path
8649             dirty_reg(&current,CCREG);
8650             memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
8651           }
8652           else
8653           if((opcode[i-1]&0x3E)==0x16) // BLEZL/BGTZL
8654           {
8655             memcpy(&branch_regs[i-1],&current,sizeof(current));
8656             branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
8657             branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
8658             if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
8659             alloc_cc(&branch_regs[i-1],i);
8660             dirty_reg(&branch_regs[i-1],CCREG);
8661             delayslot_alloc(&branch_regs[i-1],i);
8662             branch_regs[i-1].isconst=0;
8663             alloc_reg(&current,i,CCREG); // Not taken path
8664             dirty_reg(&current,CCREG);
8665             memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
8666           }
8667           break;
8668         case SJUMP:
8669           //if((opcode2[i-1]&0x1E)==0) // BLTZ/BGEZ
8670           if((opcode2[i-1]&0x0E)==0) // BLTZ/BGEZ
8671           {
8672             alloc_cc(&current,i-1);
8673             dirty_reg(&current,CCREG);
8674             if(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]) {
8675               // The delay slot overwrote the branch condition
8676               // Delay slot goes after the test (in order)
8677               current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
8678               current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
8679               if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
8680               current.u|=1;
8681               current.uu|=1;
8682               delayslot_alloc(&current,i);
8683               current.isconst=0;
8684             }
8685             else
8686             {
8687               current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
8688               current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
8689               // Alloc the branch condition register
8690               alloc_reg(&current,i-1,rs1[i-1]);
8691               if(!(current.is32>>rs1[i-1]&1))
8692               {
8693                 alloc_reg64(&current,i-1,rs1[i-1]);
8694               }
8695             }
8696             memcpy(&branch_regs[i-1],&current,sizeof(current));
8697             branch_regs[i-1].isconst=0;
8698             branch_regs[i-1].wasconst=0;
8699             memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
8700             memcpy(constmap[i],constmap[i-1],sizeof(current_constmap));
8701           }
8702           else
8703           // Alloc the delay slot in case the branch is taken
8704           if((opcode2[i-1]&0x1E)==2) // BLTZL/BGEZL
8705           {
8706             memcpy(&branch_regs[i-1],&current,sizeof(current));
8707             branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
8708             branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
8709             if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
8710             alloc_cc(&branch_regs[i-1],i);
8711             dirty_reg(&branch_regs[i-1],CCREG);
8712             delayslot_alloc(&branch_regs[i-1],i);
8713             branch_regs[i-1].isconst=0;
8714             alloc_reg(&current,i,CCREG); // Not taken path
8715             dirty_reg(&current,CCREG);
8716             memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
8717           }
8718           // FIXME: BLTZAL/BGEZAL
8719           if(opcode2[i-1]&0x10) { // BxxZAL
8720             alloc_reg(&branch_regs[i-1],i-1,31);
8721             dirty_reg(&branch_regs[i-1],31);
8722             branch_regs[i-1].is32|=1LL<<31;
8723           }
8724           break;
8725         case FJUMP:
8726           if(likely[i-1]==0) // BC1F/BC1T
8727           {
8728             alloc_cc(&current,i-1);
8729             dirty_reg(&current,CCREG);
8730             if(itype[i]==FCOMP) {
8731               // The delay slot overwrote the branch condition
8732               // Delay slot goes after the test (in order)
8733               delayslot_alloc(&current,i);
8734               current.isconst=0;
8735             }
8736             else
8737             {
8738               current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
8739               current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
8740               // Alloc the branch condition register
8741               alloc_reg(&current,i-1,FSREG);
8742             }
8743             memcpy(&branch_regs[i-1],&current,sizeof(current));
8744             memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
8745           }
8746           else // BC1FL/BC1TL
8747           {
8748             // Alloc the delay slot in case the branch is taken
8749             memcpy(&branch_regs[i-1],&current,sizeof(current));
8750             branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
8751             branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
8752             if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
8753             alloc_cc(&branch_regs[i-1],i);
8754             dirty_reg(&branch_regs[i-1],CCREG);
8755             delayslot_alloc(&branch_regs[i-1],i);
8756             branch_regs[i-1].isconst=0;
8757             alloc_reg(&current,i,CCREG); // Not taken path
8758             dirty_reg(&current,CCREG);
8759             memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
8760           }
8761           break;
8762       }
8763
8764       if(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)
8765       {
8766         if(rt1[i-1]==31) // JAL/JALR
8767         {
8768           // Subroutine call will return here, don't alloc any registers
8769           current.is32=1;
8770           current.dirty=0;
8771           clear_all_regs(current.regmap);
8772           alloc_reg(&current,i,CCREG);
8773           dirty_reg(&current,CCREG);
8774         }
8775         else if(i+1<slen)
8776         {
8777           // Internal branch will jump here, match registers to caller
8778           current.is32=0x3FFFFFFFFLL;
8779           current.dirty=0;
8780           clear_all_regs(current.regmap);
8781           alloc_reg(&current,i,CCREG);
8782           dirty_reg(&current,CCREG);
8783           for(j=i-1;j>=0;j--)
8784           {
8785             if(ba[j]==start+i*4+4) {
8786               memcpy(current.regmap,branch_regs[j].regmap,sizeof(current.regmap));
8787               current.is32=branch_regs[j].is32;
8788               current.dirty=branch_regs[j].dirty;
8789               break;
8790             }
8791           }
8792           while(j>=0) {
8793             if(ba[j]==start+i*4+4) {
8794               for(hr=0;hr<HOST_REGS;hr++) {
8795                 if(current.regmap[hr]!=branch_regs[j].regmap[hr]) {
8796                   current.regmap[hr]=-1;
8797                 }
8798                 current.is32&=branch_regs[j].is32;
8799                 current.dirty&=branch_regs[j].dirty;
8800               }
8801             }
8802             j--;
8803           }
8804         }
8805       }
8806     }
8807
8808     // Count cycles in between branches
8809     ccadj[i]=cc;
8810     if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP||itype[i]==SYSCALL||itype[i]==HLECALL))
8811     {
8812       cc=0;
8813     }
8814 #if !defined(DRC_DBG)
8815     else if(itype[i]==C2OP&&gte_cycletab[source[i]&0x3f]>2)
8816     {
8817       // GTE runs in parallel until accessed, divide by 2 for a rough guess
8818       cc+=gte_cycletab[source[i]&0x3f]/2;
8819     }
8820     else if(/*itype[i]==LOAD||itype[i]==STORE||*/itype[i]==C1LS) // load,store causes weird timing issues
8821     {
8822       cc+=2; // 2 cycle penalty (after CLOCK_DIVIDER)
8823     }
8824     else if(i>1&&itype[i]==STORE&&itype[i-1]==STORE&&itype[i-2]==STORE&&!bt[i])
8825     {
8826       cc+=4;
8827     }
8828     else if(itype[i]==C2LS)
8829     {
8830       cc+=4;
8831     }
8832 #endif
8833     else
8834     {
8835       cc++;
8836     }
8837
8838     flush_dirty_uppers(&current);
8839     if(!is_ds[i]) {
8840       regs[i].is32=current.is32;
8841       regs[i].dirty=current.dirty;
8842       regs[i].isconst=current.isconst;
8843       memcpy(constmap[i],current_constmap,sizeof(current_constmap));
8844     }
8845     for(hr=0;hr<HOST_REGS;hr++) {
8846       if(hr!=EXCLUDE_REG&&regs[i].regmap[hr]>=0) {
8847         if(regmap_pre[i][hr]!=regs[i].regmap[hr]) {
8848           regs[i].wasconst&=~(1<<hr);
8849         }
8850       }
8851     }
8852     if(current.regmap[HOST_BTREG]==BTREG) current.regmap[HOST_BTREG]=-1;
8853     regs[i].waswritten=current.waswritten;
8854   }
8855   
8856   /* Pass 4 - Cull unused host registers */
8857   
8858   uint64_t nr=0;
8859   
8860   for (i=slen-1;i>=0;i--)
8861   {
8862     int hr;
8863     if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
8864     {
8865       if(ba[i]<start || ba[i]>=(start+slen*4))
8866       {
8867         // Branch out of this block, don't need anything
8868         nr=0;
8869       }
8870       else
8871       {
8872         // Internal branch
8873         // Need whatever matches the target
8874         nr=0;
8875         int t=(ba[i]-start)>>2;
8876         for(hr=0;hr<HOST_REGS;hr++)
8877         {
8878           if(regs[i].regmap_entry[hr]>=0) {
8879             if(regs[i].regmap_entry[hr]==regs[t].regmap_entry[hr]) nr|=1<<hr;
8880           }
8881         }
8882       }
8883       // Conditional branch may need registers for following instructions
8884       if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
8885       {
8886         if(i<slen-2) {
8887           nr|=needed_reg[i+2];
8888           for(hr=0;hr<HOST_REGS;hr++)
8889           {
8890             if(regmap_pre[i+2][hr]>=0&&get_reg(regs[i+2].regmap_entry,regmap_pre[i+2][hr])<0) nr&=~(1<<hr);
8891             //if((regmap_entry[i+2][hr])>=0) if(!((nr>>hr)&1)) printf("%x-bogus(%d=%d)\n",start+i*4,hr,regmap_entry[i+2][hr]);
8892           }
8893         }
8894       }
8895       // Don't need stuff which is overwritten
8896       //if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
8897       //if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
8898       // Merge in delay slot
8899       for(hr=0;hr<HOST_REGS;hr++)
8900       {
8901         if(!likely[i]) {
8902           // These are overwritten unless the branch is "likely"
8903           // and the delay slot is nullified if not taken
8904           if(rt1[i+1]&&rt1[i+1]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
8905           if(rt2[i+1]&&rt2[i+1]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
8906         }
8907         if(us1[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
8908         if(us2[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
8909         if(rs1[i+1]==regmap_pre[i][hr]) nr|=1<<hr;
8910         if(rs2[i+1]==regmap_pre[i][hr]) nr|=1<<hr;
8911         if(us1[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
8912         if(us2[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
8913         if(rs1[i+1]==regs[i].regmap_entry[hr]) nr|=1<<hr;
8914         if(rs2[i+1]==regs[i].regmap_entry[hr]) nr|=1<<hr;
8915         if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1)) {
8916           if(dep1[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
8917           if(dep2[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
8918         }
8919         if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1)) {
8920           if(dep1[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
8921           if(dep2[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
8922         }
8923         if(itype[i+1]==STORE || itype[i+1]==STORELR || (opcode[i+1]&0x3b)==0x39 || (opcode[i+1]&0x3b)==0x3a) {
8924           if(regmap_pre[i][hr]==INVCP) nr|=1<<hr;
8925           if(regs[i].regmap_entry[hr]==INVCP) nr|=1<<hr;
8926         }
8927       }
8928     }
8929     else if(itype[i]==SYSCALL||itype[i]==HLECALL||itype[i]==INTCALL)
8930     {
8931       // SYSCALL instruction (software interrupt)
8932       nr=0;
8933     }
8934     else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
8935     {
8936       // ERET instruction (return from interrupt)
8937       nr=0;
8938     }
8939     else // Non-branch
8940     {
8941       if(i<slen-1) {
8942         for(hr=0;hr<HOST_REGS;hr++) {
8943           if(regmap_pre[i+1][hr]>=0&&get_reg(regs[i+1].regmap_entry,regmap_pre[i+1][hr])<0) nr&=~(1<<hr);
8944           if(regs[i].regmap[hr]!=regmap_pre[i+1][hr]) nr&=~(1<<hr);
8945           if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
8946           if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
8947         }
8948       }
8949     }
8950     for(hr=0;hr<HOST_REGS;hr++)
8951     {
8952       // Overwritten registers are not needed
8953       if(rt1[i]&&rt1[i]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
8954       if(rt2[i]&&rt2[i]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
8955       if(FTEMP==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
8956       // Source registers are needed
8957       if(us1[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
8958       if(us2[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
8959       if(rs1[i]==regmap_pre[i][hr]) nr|=1<<hr;
8960       if(rs2[i]==regmap_pre[i][hr]) nr|=1<<hr;
8961       if(us1[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
8962       if(us2[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
8963       if(rs1[i]==regs[i].regmap_entry[hr]) nr|=1<<hr;
8964       if(rs2[i]==regs[i].regmap_entry[hr]) nr|=1<<hr;
8965       if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1)) {
8966         if(dep1[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
8967         if(dep1[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
8968       }
8969       if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1)) {
8970         if(dep2[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
8971         if(dep2[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
8972       }
8973       if(itype[i]==STORE || itype[i]==STORELR || (opcode[i]&0x3b)==0x39 || (opcode[i]&0x3b)==0x3a) {
8974         if(regmap_pre[i][hr]==INVCP) nr|=1<<hr;
8975         if(regs[i].regmap_entry[hr]==INVCP) nr|=1<<hr;
8976       }
8977       // Don't store a register immediately after writing it,
8978       // may prevent dual-issue.
8979       // But do so if this is a branch target, otherwise we
8980       // might have to load the register before the branch.
8981       if(i>0&&!bt[i]&&((regs[i].wasdirty>>hr)&1)) {
8982         if((regmap_pre[i][hr]>0&&regmap_pre[i][hr]<64&&!((unneeded_reg[i]>>regmap_pre[i][hr])&1)) ||
8983            (regmap_pre[i][hr]>64&&!((unneeded_reg_upper[i]>>(regmap_pre[i][hr]&63))&1)) ) {
8984           if(rt1[i-1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
8985           if(rt2[i-1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
8986         }
8987         if((regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64&&!((unneeded_reg[i]>>regs[i].regmap_entry[hr])&1)) ||
8988            (regs[i].regmap_entry[hr]>64&&!((unneeded_reg_upper[i]>>(regs[i].regmap_entry[hr]&63))&1)) ) {
8989           if(rt1[i-1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
8990           if(rt2[i-1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
8991         }
8992       }
8993     }
8994     // Cycle count is needed at branches.  Assume it is needed at the target too.
8995     if(i==0||bt[i]||itype[i]==CJUMP||itype[i]==FJUMP||itype[i]==SPAN) {
8996       if(regmap_pre[i][HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
8997       if(regs[i].regmap_entry[HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
8998     }
8999     // Save it
9000     needed_reg[i]=nr;
9001     
9002     // Deallocate unneeded registers
9003     for(hr=0;hr<HOST_REGS;hr++)
9004     {
9005       if(!((nr>>hr)&1)) {
9006         if(regs[i].regmap_entry[hr]!=CCREG) regs[i].regmap_entry[hr]=-1;
9007         if((regs[i].regmap[hr]&63)!=rs1[i] && (regs[i].regmap[hr]&63)!=rs2[i] &&
9008            (regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
9009            (regs[i].regmap[hr]&63)!=PTEMP && (regs[i].regmap[hr]&63)!=CCREG)
9010         {
9011           if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
9012           {
9013             if(likely[i]) {
9014               regs[i].regmap[hr]=-1;
9015               regs[i].isconst&=~(1<<hr);
9016               if(i<slen-2) {
9017                 regmap_pre[i+2][hr]=-1;
9018                 regs[i+2].wasconst&=~(1<<hr);
9019               }
9020             }
9021           }
9022         }
9023         if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
9024         {
9025           int d1=0,d2=0,map=0,temp=0;
9026           if(get_reg(regs[i].regmap,rt1[i+1]|64)>=0||get_reg(branch_regs[i].regmap,rt1[i+1]|64)>=0)
9027           {
9028             d1=dep1[i+1];
9029             d2=dep2[i+1];
9030           }
9031           if(using_tlb) {
9032             if(itype[i+1]==LOAD || itype[i+1]==LOADLR ||
9033                itype[i+1]==STORE || itype[i+1]==STORELR ||
9034                itype[i+1]==C1LS || itype[i+1]==C2LS)
9035             map=TLREG;
9036           } else
9037           if(itype[i+1]==STORE || itype[i+1]==STORELR ||
9038              (opcode[i+1]&0x3b)==0x39 || (opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1 || SWC2/SDC2
9039             map=INVCP;
9040           }
9041           if(itype[i+1]==LOADLR || itype[i+1]==STORELR ||
9042              itype[i+1]==C1LS || itype[i+1]==C2LS)
9043             temp=FTEMP;
9044           if((regs[i].regmap[hr]&63)!=rs1[i] && (regs[i].regmap[hr]&63)!=rs2[i] &&
9045              (regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
9046              (regs[i].regmap[hr]&63)!=rt1[i+1] && (regs[i].regmap[hr]&63)!=rt2[i+1] &&
9047              (regs[i].regmap[hr]^64)!=us1[i+1] && (regs[i].regmap[hr]^64)!=us2[i+1] &&
9048              (regs[i].regmap[hr]^64)!=d1 && (regs[i].regmap[hr]^64)!=d2 &&
9049              regs[i].regmap[hr]!=rs1[i+1] && regs[i].regmap[hr]!=rs2[i+1] &&
9050              (regs[i].regmap[hr]&63)!=temp && regs[i].regmap[hr]!=PTEMP &&
9051              regs[i].regmap[hr]!=RHASH && regs[i].regmap[hr]!=RHTBL &&
9052              regs[i].regmap[hr]!=RTEMP && regs[i].regmap[hr]!=CCREG &&
9053              regs[i].regmap[hr]!=map )
9054           {
9055             regs[i].regmap[hr]=-1;
9056             regs[i].isconst&=~(1<<hr);
9057             if((branch_regs[i].regmap[hr]&63)!=rs1[i] && (branch_regs[i].regmap[hr]&63)!=rs2[i] &&
9058                (branch_regs[i].regmap[hr]&63)!=rt1[i] && (branch_regs[i].regmap[hr]&63)!=rt2[i] &&
9059                (branch_regs[i].regmap[hr]&63)!=rt1[i+1] && (branch_regs[i].regmap[hr]&63)!=rt2[i+1] &&
9060                (branch_regs[i].regmap[hr]^64)!=us1[i+1] && (branch_regs[i].regmap[hr]^64)!=us2[i+1] &&
9061                (branch_regs[i].regmap[hr]^64)!=d1 && (branch_regs[i].regmap[hr]^64)!=d2 &&
9062                branch_regs[i].regmap[hr]!=rs1[i+1] && branch_regs[i].regmap[hr]!=rs2[i+1] &&
9063                (branch_regs[i].regmap[hr]&63)!=temp && branch_regs[i].regmap[hr]!=PTEMP &&
9064                branch_regs[i].regmap[hr]!=RHASH && branch_regs[i].regmap[hr]!=RHTBL &&
9065                branch_regs[i].regmap[hr]!=RTEMP && branch_regs[i].regmap[hr]!=CCREG &&
9066                branch_regs[i].regmap[hr]!=map)
9067             {
9068               branch_regs[i].regmap[hr]=-1;
9069               branch_regs[i].regmap_entry[hr]=-1;
9070               if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
9071               {
9072                 if(!likely[i]&&i<slen-2) {
9073                   regmap_pre[i+2][hr]=-1;
9074                   regs[i+2].wasconst&=~(1<<hr);
9075                 }
9076               }
9077             }
9078           }
9079         }
9080         else
9081         {
9082           // Non-branch
9083           if(i>0)
9084           {
9085             int d1=0,d2=0,map=-1,temp=-1;
9086             if(get_reg(regs[i].regmap,rt1[i]|64)>=0)
9087             {
9088               d1=dep1[i];
9089               d2=dep2[i];
9090             }
9091             if(using_tlb) {
9092               if(itype[i]==LOAD || itype[i]==LOADLR ||
9093                  itype[i]==STORE || itype[i]==STORELR ||
9094                  itype[i]==C1LS || itype[i]==C2LS)
9095               map=TLREG;
9096             } else if(itype[i]==STORE || itype[i]==STORELR ||
9097                       (opcode[i]&0x3b)==0x39 || (opcode[i]&0x3b)==0x3a) { // SWC1/SDC1 || SWC2/SDC2
9098               map=INVCP;
9099             }
9100             if(itype[i]==LOADLR || itype[i]==STORELR ||
9101                itype[i]==C1LS || itype[i]==C2LS)
9102               temp=FTEMP;
9103             if((regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
9104                (regs[i].regmap[hr]^64)!=us1[i] && (regs[i].regmap[hr]^64)!=us2[i] &&
9105                (regs[i].regmap[hr]^64)!=d1 && (regs[i].regmap[hr]^64)!=d2 &&
9106                regs[i].regmap[hr]!=rs1[i] && regs[i].regmap[hr]!=rs2[i] &&
9107                (regs[i].regmap[hr]&63)!=temp && regs[i].regmap[hr]!=map &&
9108                (itype[i]!=SPAN||regs[i].regmap[hr]!=CCREG))
9109             {
9110               if(i<slen-1&&!is_ds[i]) {
9111                 if(regmap_pre[i+1][hr]!=-1 || regs[i].regmap[hr]!=-1)
9112                 if(regmap_pre[i+1][hr]!=regs[i].regmap[hr])
9113                 if(regs[i].regmap[hr]<64||!((regs[i].was32>>(regs[i].regmap[hr]&63))&1))
9114                 {
9115                   SysPrintf("fail: %x (%d %d!=%d)\n",start+i*4,hr,regmap_pre[i+1][hr],regs[i].regmap[hr]);
9116                   assert(regmap_pre[i+1][hr]==regs[i].regmap[hr]);
9117                 }
9118                 regmap_pre[i+1][hr]=-1;
9119                 if(regs[i+1].regmap_entry[hr]==CCREG) regs[i+1].regmap_entry[hr]=-1;
9120                 regs[i+1].wasconst&=~(1<<hr);
9121               }
9122               regs[i].regmap[hr]=-1;
9123               regs[i].isconst&=~(1<<hr);
9124             }
9125           }
9126         }
9127       }
9128     }
9129   }
9130   
9131   /* Pass 5 - Pre-allocate registers */
9132   
9133   // If a register is allocated during a loop, try to allocate it for the
9134   // entire loop, if possible.  This avoids loading/storing registers
9135   // inside of the loop.
9136   
9137   signed char f_regmap[HOST_REGS];
9138   clear_all_regs(f_regmap);
9139   for(i=0;i<slen-1;i++)
9140   {
9141     if(itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
9142     {
9143       if(ba[i]>=start && ba[i]<(start+i*4)) 
9144       if(itype[i+1]==NOP||itype[i+1]==MOV||itype[i+1]==ALU
9145       ||itype[i+1]==SHIFTIMM||itype[i+1]==IMM16||itype[i+1]==LOAD
9146       ||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS
9147       ||itype[i+1]==SHIFT||itype[i+1]==COP1||itype[i+1]==FLOAT
9148       ||itype[i+1]==FCOMP||itype[i+1]==FCONV
9149       ||itype[i+1]==COP2||itype[i+1]==C2LS||itype[i+1]==C2OP)
9150       {
9151         int t=(ba[i]-start)>>2;
9152         if(t>0&&(itype[t-1]!=UJUMP&&itype[t-1]!=RJUMP&&itype[t-1]!=CJUMP&&itype[t-1]!=SJUMP&&itype[t-1]!=FJUMP)) // loop_preload can't handle jumps into delay slots
9153         if(t<2||(itype[t-2]!=UJUMP&&itype[t-2]!=RJUMP)||rt1[t-2]!=31) // call/ret assumes no registers allocated
9154         for(hr=0;hr<HOST_REGS;hr++)
9155         {
9156           if(regs[i].regmap[hr]>64) {
9157             if(!((regs[i].dirty>>hr)&1))
9158               f_regmap[hr]=regs[i].regmap[hr];
9159             else f_regmap[hr]=-1;
9160           }
9161           else if(regs[i].regmap[hr]>=0) {
9162             if(f_regmap[hr]!=regs[i].regmap[hr]) {
9163               // dealloc old register
9164               int n;
9165               for(n=0;n<HOST_REGS;n++)
9166               {
9167                 if(f_regmap[n]==regs[i].regmap[hr]) {f_regmap[n]=-1;}
9168               }
9169               // and alloc new one
9170               f_regmap[hr]=regs[i].regmap[hr];
9171             }
9172           }
9173           if(branch_regs[i].regmap[hr]>64) {
9174             if(!((branch_regs[i].dirty>>hr)&1))
9175               f_regmap[hr]=branch_regs[i].regmap[hr];
9176             else f_regmap[hr]=-1;
9177           }
9178           else if(branch_regs[i].regmap[hr]>=0) {
9179             if(f_regmap[hr]!=branch_regs[i].regmap[hr]) {
9180               // dealloc old register
9181               int n;
9182               for(n=0;n<HOST_REGS;n++)
9183               {
9184                 if(f_regmap[n]==branch_regs[i].regmap[hr]) {f_regmap[n]=-1;}
9185               }
9186               // and alloc new one
9187               f_regmap[hr]=branch_regs[i].regmap[hr];
9188             }
9189           }
9190           if(ooo[i]) {
9191             if(count_free_regs(regs[i].regmap)<=minimum_free_regs[i+1]) 
9192               f_regmap[hr]=branch_regs[i].regmap[hr];
9193           }else{
9194             if(count_free_regs(branch_regs[i].regmap)<=minimum_free_regs[i+1]) 
9195               f_regmap[hr]=branch_regs[i].regmap[hr];
9196           }
9197           // Avoid dirty->clean transition
9198           #ifdef DESTRUCTIVE_WRITEBACK
9199           if(t>0) if(get_reg(regmap_pre[t],f_regmap[hr])>=0) if((regs[t].wasdirty>>get_reg(regmap_pre[t],f_regmap[hr]))&1) f_regmap[hr]=-1;
9200           #endif
9201           // This check is only strictly required in the DESTRUCTIVE_WRITEBACK
9202           // case above, however it's always a good idea.  We can't hoist the
9203           // load if the register was already allocated, so there's no point
9204           // wasting time analyzing most of these cases.  It only "succeeds"
9205           // when the mapping was different and the load can be replaced with
9206           // a mov, which is of negligible benefit.  So such cases are
9207           // skipped below.
9208           if(f_regmap[hr]>0) {
9209             if(regs[t].regmap[hr]==f_regmap[hr]||(regs[t].regmap_entry[hr]<0&&get_reg(regmap_pre[t],f_regmap[hr])<0)) {
9210               int r=f_regmap[hr];
9211               for(j=t;j<=i;j++)
9212               {
9213                 //printf("Test %x -> %x, %x %d/%d\n",start+i*4,ba[i],start+j*4,hr,r);
9214                 if(r<34&&((unneeded_reg[j]>>r)&1)) break;
9215                 if(r>63&&((unneeded_reg_upper[j]>>(r&63))&1)) break;
9216                 if(r>63) {
9217                   // NB This can exclude the case where the upper-half
9218                   // register is lower numbered than the lower-half
9219                   // register.  Not sure if it's worth fixing...
9220                   if(get_reg(regs[j].regmap,r&63)<0) break;
9221                   if(get_reg(regs[j].regmap_entry,r&63)<0) break;
9222                   if(regs[j].is32&(1LL<<(r&63))) break;
9223                 }
9224                 if(regs[j].regmap[hr]==f_regmap[hr]&&(f_regmap[hr]&63)<TEMPREG) {
9225                   //printf("Hit %x -> %x, %x %d/%d\n",start+i*4,ba[i],start+j*4,hr,r);
9226                   int k;
9227                   if(regs[i].regmap[hr]==-1&&branch_regs[i].regmap[hr]==-1) {
9228                     if(get_reg(regs[i+2].regmap,f_regmap[hr])>=0) break;
9229                     if(r>63) {
9230                       if(get_reg(regs[i].regmap,r&63)<0) break;
9231                       if(get_reg(branch_regs[i].regmap,r&63)<0) break;
9232                     }
9233                     k=i;
9234                     while(k>1&&regs[k-1].regmap[hr]==-1) {
9235                       if(count_free_regs(regs[k-1].regmap)<=minimum_free_regs[k-1]) {
9236                         //printf("no free regs for store %x\n",start+(k-1)*4);
9237                         break;
9238                       }
9239                       if(get_reg(regs[k-1].regmap,f_regmap[hr])>=0) {
9240                         //printf("no-match due to different register\n");
9241                         break;
9242                       }
9243                       if(itype[k-2]==UJUMP||itype[k-2]==RJUMP||itype[k-2]==CJUMP||itype[k-2]==SJUMP||itype[k-2]==FJUMP) {
9244                         //printf("no-match due to branch\n");
9245                         break;
9246                       }
9247                       // call/ret fast path assumes no registers allocated
9248                       if(k>2&&(itype[k-3]==UJUMP||itype[k-3]==RJUMP)&&rt1[k-3]==31) {
9249                         break;
9250                       }
9251                       if(r>63) {
9252                         // NB This can exclude the case where the upper-half
9253                         // register is lower numbered than the lower-half
9254                         // register.  Not sure if it's worth fixing...
9255                         if(get_reg(regs[k-1].regmap,r&63)<0) break;
9256                         if(regs[k-1].is32&(1LL<<(r&63))) break;
9257                       }
9258                       k--;
9259                     }
9260                     if(i<slen-1) {
9261                       if((regs[k].is32&(1LL<<f_regmap[hr]))!=
9262                         (regs[i+2].was32&(1LL<<f_regmap[hr]))) {
9263                         //printf("bad match after branch\n");
9264                         break;
9265                       }
9266                     }
9267                     if(regs[k-1].regmap[hr]==f_regmap[hr]&&regmap_pre[k][hr]==f_regmap[hr]) {
9268                       //printf("Extend r%d, %x ->\n",hr,start+k*4);
9269                       while(k<i) {
9270                         regs[k].regmap_entry[hr]=f_regmap[hr];
9271                         regs[k].regmap[hr]=f_regmap[hr];
9272                         regmap_pre[k+1][hr]=f_regmap[hr];
9273                         regs[k].wasdirty&=~(1<<hr);
9274                         regs[k].dirty&=~(1<<hr);
9275                         regs[k].wasdirty|=(1<<hr)&regs[k-1].dirty;
9276                         regs[k].dirty|=(1<<hr)&regs[k].wasdirty;
9277                         regs[k].wasconst&=~(1<<hr);
9278                         regs[k].isconst&=~(1<<hr);
9279                         k++;
9280                       }
9281                     }
9282                     else {
9283                       //printf("Fail Extend r%d, %x ->\n",hr,start+k*4);
9284                       break;
9285                     }
9286                     assert(regs[i-1].regmap[hr]==f_regmap[hr]);
9287                     if(regs[i-1].regmap[hr]==f_regmap[hr]&&regmap_pre[i][hr]==f_regmap[hr]) {
9288                       //printf("OK fill %x (r%d)\n",start+i*4,hr);
9289                       regs[i].regmap_entry[hr]=f_regmap[hr];
9290                       regs[i].regmap[hr]=f_regmap[hr];
9291                       regs[i].wasdirty&=~(1<<hr);
9292                       regs[i].dirty&=~(1<<hr);
9293                       regs[i].wasdirty|=(1<<hr)&regs[i-1].dirty;
9294                       regs[i].dirty|=(1<<hr)&regs[i-1].dirty;
9295                       regs[i].wasconst&=~(1<<hr);
9296                       regs[i].isconst&=~(1<<hr);
9297                       branch_regs[i].regmap_entry[hr]=f_regmap[hr];
9298                       branch_regs[i].wasdirty&=~(1<<hr);
9299                       branch_regs[i].wasdirty|=(1<<hr)&regs[i].dirty;
9300                       branch_regs[i].regmap[hr]=f_regmap[hr];
9301                       branch_regs[i].dirty&=~(1<<hr);
9302                       branch_regs[i].dirty|=(1<<hr)&regs[i].dirty;
9303                       branch_regs[i].wasconst&=~(1<<hr);
9304                       branch_regs[i].isconst&=~(1<<hr);
9305                       if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000) {
9306                         regmap_pre[i+2][hr]=f_regmap[hr];
9307                         regs[i+2].wasdirty&=~(1<<hr);
9308                         regs[i+2].wasdirty|=(1<<hr)&regs[i].dirty;
9309                         assert((branch_regs[i].is32&(1LL<<f_regmap[hr]))==
9310                           (regs[i+2].was32&(1LL<<f_regmap[hr])));
9311                       }
9312                     }
9313                   }
9314                   for(k=t;k<j;k++) {
9315                     // Alloc register clean at beginning of loop,
9316                     // but may dirty it in pass 6
9317                     regs[k].regmap_entry[hr]=f_regmap[hr];
9318                     regs[k].regmap[hr]=f_regmap[hr];
9319                     regs[k].dirty&=~(1<<hr);
9320                     regs[k].wasconst&=~(1<<hr);
9321                     regs[k].isconst&=~(1<<hr);
9322                     if(itype[k]==UJUMP||itype[k]==RJUMP||itype[k]==CJUMP||itype[k]==SJUMP||itype[k]==FJUMP) {
9323                       branch_regs[k].regmap_entry[hr]=f_regmap[hr];
9324                       branch_regs[k].regmap[hr]=f_regmap[hr];
9325                       branch_regs[k].dirty&=~(1<<hr);
9326                       branch_regs[k].wasconst&=~(1<<hr);
9327                       branch_regs[k].isconst&=~(1<<hr);
9328                       if(itype[k]!=RJUMP&&itype[k]!=UJUMP&&(source[k]>>16)!=0x1000) {
9329                         regmap_pre[k+2][hr]=f_regmap[hr];
9330                         regs[k+2].wasdirty&=~(1<<hr);
9331                         assert((branch_regs[k].is32&(1LL<<f_regmap[hr]))==
9332                           (regs[k+2].was32&(1LL<<f_regmap[hr])));
9333                       }
9334                     }
9335                     else
9336                     {
9337                       regmap_pre[k+1][hr]=f_regmap[hr];
9338                       regs[k+1].wasdirty&=~(1<<hr);
9339                     }
9340                   }
9341                   if(regs[j].regmap[hr]==f_regmap[hr])
9342                     regs[j].regmap_entry[hr]=f_regmap[hr];
9343                   break;
9344                 }
9345                 if(j==i) break;
9346                 if(regs[j].regmap[hr]>=0)
9347                   break;
9348                 if(get_reg(regs[j].regmap,f_regmap[hr])>=0) {
9349                   //printf("no-match due to different register\n");
9350                   break;
9351                 }
9352                 if((regs[j+1].is32&(1LL<<f_regmap[hr]))!=(regs[j].is32&(1LL<<f_regmap[hr]))) {
9353                   //printf("32/64 mismatch %x %d\n",start+j*4,hr);
9354                   break;
9355                 }
9356                 if(itype[j]==UJUMP||itype[j]==RJUMP||(source[j]>>16)==0x1000)
9357                 {
9358                   // Stop on unconditional branch
9359                   break;
9360                 }
9361                 if(itype[j]==CJUMP||itype[j]==SJUMP||itype[j]==FJUMP)
9362                 {
9363                   if(ooo[j]) {
9364                     if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j+1]) 
9365                       break;
9366                   }else{
9367                     if(count_free_regs(branch_regs[j].regmap)<=minimum_free_regs[j+1]) 
9368                       break;
9369                   }
9370                   if(get_reg(branch_regs[j].regmap,f_regmap[hr])>=0) {
9371                     //printf("no-match due to different register (branch)\n");
9372                     break;
9373                   }
9374                 }
9375                 if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) {
9376                   //printf("No free regs for store %x\n",start+j*4);
9377                   break;
9378                 }
9379                 if(f_regmap[hr]>=64) {
9380                   if(regs[j].is32&(1LL<<(f_regmap[hr]&63))) {
9381                     break;
9382                   }
9383                   else
9384                   {
9385                     if(get_reg(regs[j].regmap,f_regmap[hr]&63)<0) {
9386                       break;
9387                     }
9388                   }
9389                 }
9390               }
9391             }
9392           }
9393         }
9394       }
9395     }else{
9396       // Non branch or undetermined branch target
9397       for(hr=0;hr<HOST_REGS;hr++)
9398       {
9399         if(hr!=EXCLUDE_REG) {
9400           if(regs[i].regmap[hr]>64) {
9401             if(!((regs[i].dirty>>hr)&1))
9402               f_regmap[hr]=regs[i].regmap[hr];
9403           }
9404           else if(regs[i].regmap[hr]>=0) {
9405             if(f_regmap[hr]!=regs[i].regmap[hr]) {
9406               // dealloc old register
9407               int n;
9408               for(n=0;n<HOST_REGS;n++)
9409               {
9410                 if(f_regmap[n]==regs[i].regmap[hr]) {f_regmap[n]=-1;}
9411               }
9412               // and alloc new one
9413               f_regmap[hr]=regs[i].regmap[hr];
9414             }
9415           }
9416         }
9417       }
9418       // Try to restore cycle count at branch targets
9419       if(bt[i]) {
9420         for(j=i;j<slen-1;j++) {
9421           if(regs[j].regmap[HOST_CCREG]!=-1) break;
9422           if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) {
9423             //printf("no free regs for store %x\n",start+j*4);
9424             break;
9425           }
9426         }
9427         if(regs[j].regmap[HOST_CCREG]==CCREG) {
9428           int k=i;
9429           //printf("Extend CC, %x -> %x\n",start+k*4,start+j*4);
9430           while(k<j) {
9431             regs[k].regmap_entry[HOST_CCREG]=CCREG;
9432             regs[k].regmap[HOST_CCREG]=CCREG;
9433             regmap_pre[k+1][HOST_CCREG]=CCREG;
9434             regs[k+1].wasdirty|=1<<HOST_CCREG;
9435             regs[k].dirty|=1<<HOST_CCREG;
9436             regs[k].wasconst&=~(1<<HOST_CCREG);
9437             regs[k].isconst&=~(1<<HOST_CCREG);
9438             k++;
9439           }
9440           regs[j].regmap_entry[HOST_CCREG]=CCREG;          
9441         }
9442         // Work backwards from the branch target
9443         if(j>i&&f_regmap[HOST_CCREG]==CCREG)
9444         {
9445           //printf("Extend backwards\n");
9446           int k;
9447           k=i;
9448           while(regs[k-1].regmap[HOST_CCREG]==-1) {
9449             if(count_free_regs(regs[k-1].regmap)<=minimum_free_regs[k-1]) {
9450               //printf("no free regs for store %x\n",start+(k-1)*4);
9451               break;
9452             }
9453             k--;
9454           }
9455           if(regs[k-1].regmap[HOST_CCREG]==CCREG) {
9456             //printf("Extend CC, %x ->\n",start+k*4);
9457             while(k<=i) {
9458               regs[k].regmap_entry[HOST_CCREG]=CCREG;
9459               regs[k].regmap[HOST_CCREG]=CCREG;
9460               regmap_pre[k+1][HOST_CCREG]=CCREG;
9461               regs[k+1].wasdirty|=1<<HOST_CCREG;
9462               regs[k].dirty|=1<<HOST_CCREG;
9463               regs[k].wasconst&=~(1<<HOST_CCREG);
9464               regs[k].isconst&=~(1<<HOST_CCREG);
9465               k++;
9466             }
9467           }
9468           else {
9469             //printf("Fail Extend CC, %x ->\n",start+k*4);
9470           }
9471         }
9472       }
9473       if(itype[i]!=STORE&&itype[i]!=STORELR&&itype[i]!=C1LS&&itype[i]!=SHIFT&&
9474          itype[i]!=NOP&&itype[i]!=MOV&&itype[i]!=ALU&&itype[i]!=SHIFTIMM&&
9475          itype[i]!=IMM16&&itype[i]!=LOAD&&itype[i]!=COP1&&itype[i]!=FLOAT&&
9476          itype[i]!=FCONV&&itype[i]!=FCOMP)
9477       {
9478         memcpy(f_regmap,regs[i].regmap,sizeof(f_regmap));
9479       }
9480     }
9481   }
9482   
9483   // Cache memory offset or tlb map pointer if a register is available
9484   #ifndef HOST_IMM_ADDR32
9485   #ifndef RAM_OFFSET
9486   if(using_tlb)
9487   #endif
9488   {
9489     int earliest_available[HOST_REGS];
9490     int loop_start[HOST_REGS];
9491     int score[HOST_REGS];
9492     int end[HOST_REGS];
9493     int reg=using_tlb?MMREG:ROREG;
9494
9495     // Init
9496     for(hr=0;hr<HOST_REGS;hr++) {
9497       score[hr]=0;earliest_available[hr]=0;
9498       loop_start[hr]=MAXBLOCK;
9499     }
9500     for(i=0;i<slen-1;i++)
9501     {
9502       // Can't do anything if no registers are available
9503       if(count_free_regs(regs[i].regmap)<=minimum_free_regs[i]) {
9504         for(hr=0;hr<HOST_REGS;hr++) {
9505           score[hr]=0;earliest_available[hr]=i+1;
9506           loop_start[hr]=MAXBLOCK;
9507         }
9508       }
9509       if(itype[i]==UJUMP||itype[i]==RJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP) {
9510         if(!ooo[i]) {
9511           if(count_free_regs(branch_regs[i].regmap)<=minimum_free_regs[i+1]) {
9512             for(hr=0;hr<HOST_REGS;hr++) {
9513               score[hr]=0;earliest_available[hr]=i+1;
9514               loop_start[hr]=MAXBLOCK;
9515             }
9516           }
9517         }else{
9518           if(count_free_regs(regs[i].regmap)<=minimum_free_regs[i+1]) {
9519             for(hr=0;hr<HOST_REGS;hr++) {
9520               score[hr]=0;earliest_available[hr]=i+1;
9521               loop_start[hr]=MAXBLOCK;
9522             }
9523           }
9524         }
9525       }
9526       // Mark unavailable registers
9527       for(hr=0;hr<HOST_REGS;hr++) {
9528         if(regs[i].regmap[hr]>=0) {
9529           score[hr]=0;earliest_available[hr]=i+1;
9530           loop_start[hr]=MAXBLOCK;
9531         }
9532         if(itype[i]==UJUMP||itype[i]==RJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP) {
9533           if(branch_regs[i].regmap[hr]>=0) {
9534             score[hr]=0;earliest_available[hr]=i+2;
9535             loop_start[hr]=MAXBLOCK;
9536           }
9537         }
9538       }
9539       // No register allocations after unconditional jumps
9540       if(itype[i]==UJUMP||itype[i]==RJUMP||(source[i]>>16)==0x1000)
9541       {
9542         for(hr=0;hr<HOST_REGS;hr++) {
9543           score[hr]=0;earliest_available[hr]=i+2;
9544           loop_start[hr]=MAXBLOCK;
9545         }
9546         i++; // Skip delay slot too
9547         //printf("skip delay slot: %x\n",start+i*4);
9548       }
9549       else
9550       // Possible match
9551       if(itype[i]==LOAD||itype[i]==LOADLR||
9552          itype[i]==STORE||itype[i]==STORELR||itype[i]==C1LS) {
9553         for(hr=0;hr<HOST_REGS;hr++) {
9554           if(hr!=EXCLUDE_REG) {
9555             end[hr]=i-1;
9556             for(j=i;j<slen-1;j++) {
9557               if(regs[j].regmap[hr]>=0) break;
9558               if(itype[j]==UJUMP||itype[j]==RJUMP||itype[j]==CJUMP||itype[j]==SJUMP||itype[j]==FJUMP) {
9559                 if(branch_regs[j].regmap[hr]>=0) break;
9560                 if(ooo[j]) {
9561                   if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j+1]) break;
9562                 }else{
9563                   if(count_free_regs(branch_regs[j].regmap)<=minimum_free_regs[j+1]) break;
9564                 }
9565               }
9566               else if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) break;
9567               if(itype[j]==UJUMP||itype[j]==RJUMP||itype[j]==CJUMP||itype[j]==SJUMP||itype[j]==FJUMP) {
9568                 int t=(ba[j]-start)>>2;
9569                 if(t<j&&t>=earliest_available[hr]) {
9570                   if(t==1||(t>1&&itype[t-2]!=UJUMP&&itype[t-2]!=RJUMP)||(t>1&&rt1[t-2]!=31)) { // call/ret assumes no registers allocated
9571                     // Score a point for hoisting loop invariant
9572                     if(t<loop_start[hr]) loop_start[hr]=t;
9573                     //printf("set loop_start: i=%x j=%x (%x)\n",start+i*4,start+j*4,start+t*4);
9574                     score[hr]++;
9575                     end[hr]=j;
9576                   }
9577                 }
9578                 else if(t<j) {
9579                   if(regs[t].regmap[hr]==reg) {
9580                     // Score a point if the branch target matches this register
9581                     score[hr]++;
9582                     end[hr]=j;
9583                   }
9584                 }
9585                 if(itype[j+1]==LOAD||itype[j+1]==LOADLR||
9586                    itype[j+1]==STORE||itype[j+1]==STORELR||itype[j+1]==C1LS) {
9587                   score[hr]++;
9588                   end[hr]=j;
9589                 }
9590               }
9591               if(itype[j]==UJUMP||itype[j]==RJUMP||(source[j]>>16)==0x1000)
9592               {
9593                 // Stop on unconditional branch
9594                 break;
9595               }
9596               else
9597               if(itype[j]==LOAD||itype[j]==LOADLR||
9598                  itype[j]==STORE||itype[j]==STORELR||itype[j]==C1LS) {
9599                 score[hr]++;
9600                 end[hr]=j;
9601               }
9602             }
9603           }
9604         }
9605         // Find highest score and allocate that register
9606         int maxscore=0;
9607         for(hr=0;hr<HOST_REGS;hr++) {
9608           if(hr!=EXCLUDE_REG) {
9609             if(score[hr]>score[maxscore]) {
9610               maxscore=hr;
9611               //printf("highest score: %d %d (%x->%x)\n",score[hr],hr,start+i*4,start+end[hr]*4);
9612             }
9613           }
9614         }
9615         if(score[maxscore]>1)
9616         {
9617           if(i<loop_start[maxscore]) loop_start[maxscore]=i;
9618           for(j=loop_start[maxscore];j<slen&&j<=end[maxscore];j++) {
9619             //if(regs[j].regmap[maxscore]>=0) {printf("oops: %x %x was %d=%d\n",loop_start[maxscore]*4+start,j*4+start,maxscore,regs[j].regmap[maxscore]);}
9620             assert(regs[j].regmap[maxscore]<0);
9621             if(j>loop_start[maxscore]) regs[j].regmap_entry[maxscore]=reg;
9622             regs[j].regmap[maxscore]=reg;
9623             regs[j].dirty&=~(1<<maxscore);
9624             regs[j].wasconst&=~(1<<maxscore);
9625             regs[j].isconst&=~(1<<maxscore);
9626             if(itype[j]==UJUMP||itype[j]==RJUMP||itype[j]==CJUMP||itype[j]==SJUMP||itype[j]==FJUMP) {
9627               branch_regs[j].regmap[maxscore]=reg;
9628               branch_regs[j].wasdirty&=~(1<<maxscore);
9629               branch_regs[j].dirty&=~(1<<maxscore);
9630               branch_regs[j].wasconst&=~(1<<maxscore);
9631               branch_regs[j].isconst&=~(1<<maxscore);
9632               if(itype[j]!=RJUMP&&itype[j]!=UJUMP&&(source[j]>>16)!=0x1000) {
9633                 regmap_pre[j+2][maxscore]=reg;
9634                 regs[j+2].wasdirty&=~(1<<maxscore);
9635               }
9636               // loop optimization (loop_preload)
9637               int t=(ba[j]-start)>>2;
9638               if(t==loop_start[maxscore]) {
9639                 if(t==1||(t>1&&itype[t-2]!=UJUMP&&itype[t-2]!=RJUMP)||(t>1&&rt1[t-2]!=31)) // call/ret assumes no registers allocated
9640                   regs[t].regmap_entry[maxscore]=reg;
9641               }
9642             }
9643             else
9644             {
9645               if(j<1||(itype[j-1]!=RJUMP&&itype[j-1]!=UJUMP&&itype[j-1]!=CJUMP&&itype[j-1]!=SJUMP&&itype[j-1]!=FJUMP)) {
9646                 regmap_pre[j+1][maxscore]=reg;
9647                 regs[j+1].wasdirty&=~(1<<maxscore);
9648               }
9649             }
9650           }
9651           i=j-1;
9652           if(itype[j-1]==RJUMP||itype[j-1]==UJUMP||itype[j-1]==CJUMP||itype[j-1]==SJUMP||itype[j-1]==FJUMP) i++; // skip delay slot
9653           for(hr=0;hr<HOST_REGS;hr++) {
9654             score[hr]=0;earliest_available[hr]=i+i;
9655             loop_start[hr]=MAXBLOCK;
9656           }
9657         }
9658       }
9659     }
9660   }
9661   #endif
9662   
9663   // This allocates registers (if possible) one instruction prior
9664   // to use, which can avoid a load-use penalty on certain CPUs.
9665   for(i=0;i<slen-1;i++)
9666   {
9667     if(!i||(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP))
9668     {
9669       if(!bt[i+1])
9670       {
9671         if(itype[i]==ALU||itype[i]==MOV||itype[i]==LOAD||itype[i]==SHIFTIMM||itype[i]==IMM16
9672            ||((itype[i]==COP1||itype[i]==COP2)&&opcode2[i]<3))
9673         {
9674           if(rs1[i+1]) {
9675             if((hr=get_reg(regs[i+1].regmap,rs1[i+1]))>=0)
9676             {
9677               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
9678               {
9679                 regs[i].regmap[hr]=regs[i+1].regmap[hr];
9680                 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
9681                 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
9682                 regs[i].isconst&=~(1<<hr);
9683                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
9684                 constmap[i][hr]=constmap[i+1][hr];
9685                 regs[i+1].wasdirty&=~(1<<hr);
9686                 regs[i].dirty&=~(1<<hr);
9687               }
9688             }
9689           }
9690           if(rs2[i+1]) {
9691             if((hr=get_reg(regs[i+1].regmap,rs2[i+1]))>=0)
9692             {
9693               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
9694               {
9695                 regs[i].regmap[hr]=regs[i+1].regmap[hr];
9696                 regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
9697                 regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
9698                 regs[i].isconst&=~(1<<hr);
9699                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
9700                 constmap[i][hr]=constmap[i+1][hr];
9701                 regs[i+1].wasdirty&=~(1<<hr);
9702                 regs[i].dirty&=~(1<<hr);
9703               }
9704             }
9705           }
9706           // Preload target address for load instruction (non-constant)
9707           if(itype[i+1]==LOAD&&rs1[i+1]&&get_reg(regs[i+1].regmap,rs1[i+1])<0) {
9708             if((hr=get_reg(regs[i+1].regmap,rt1[i+1]))>=0)
9709             {
9710               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
9711               {
9712                 regs[i].regmap[hr]=rs1[i+1];
9713                 regmap_pre[i+1][hr]=rs1[i+1];
9714                 regs[i+1].regmap_entry[hr]=rs1[i+1];
9715                 regs[i].isconst&=~(1<<hr);
9716                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
9717                 constmap[i][hr]=constmap[i+1][hr];
9718                 regs[i+1].wasdirty&=~(1<<hr);
9719                 regs[i].dirty&=~(1<<hr);
9720               }
9721             }
9722           }
9723           // Load source into target register 
9724           if(lt1[i+1]&&get_reg(regs[i+1].regmap,rs1[i+1])<0) {
9725             if((hr=get_reg(regs[i+1].regmap,rt1[i+1]))>=0)
9726             {
9727               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
9728               {
9729                 regs[i].regmap[hr]=rs1[i+1];
9730                 regmap_pre[i+1][hr]=rs1[i+1];
9731                 regs[i+1].regmap_entry[hr]=rs1[i+1];
9732                 regs[i].isconst&=~(1<<hr);
9733                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
9734                 constmap[i][hr]=constmap[i+1][hr];
9735                 regs[i+1].wasdirty&=~(1<<hr);
9736                 regs[i].dirty&=~(1<<hr);
9737               }
9738             }
9739           }
9740           // Preload map address
9741           #ifndef HOST_IMM_ADDR32
9742           if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS||itype[i+1]==C2LS) {
9743             hr=get_reg(regs[i+1].regmap,TLREG);
9744             if(hr>=0) {
9745               int sr=get_reg(regs[i+1].regmap,rs1[i+1]);
9746               if(sr>=0&&((regs[i+1].wasconst>>sr)&1)) {
9747                 int nr;
9748                 if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
9749                 {
9750                   regs[i].regmap[hr]=MGEN1+((i+1)&1);
9751                   regmap_pre[i+1][hr]=MGEN1+((i+1)&1);
9752                   regs[i+1].regmap_entry[hr]=MGEN1+((i+1)&1);
9753                   regs[i].isconst&=~(1<<hr);
9754                   regs[i].isconst|=regs[i+1].isconst&(1<<hr);
9755                   constmap[i][hr]=constmap[i+1][hr];
9756                   regs[i+1].wasdirty&=~(1<<hr);
9757                   regs[i].dirty&=~(1<<hr);
9758                 }
9759                 else if((nr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1))>=0)
9760                 {
9761                   // move it to another register
9762                   regs[i+1].regmap[hr]=-1;
9763                   regmap_pre[i+2][hr]=-1;
9764                   regs[i+1].regmap[nr]=TLREG;
9765                   regmap_pre[i+2][nr]=TLREG;
9766                   regs[i].regmap[nr]=MGEN1+((i+1)&1);
9767                   regmap_pre[i+1][nr]=MGEN1+((i+1)&1);
9768                   regs[i+1].regmap_entry[nr]=MGEN1+((i+1)&1);
9769                   regs[i].isconst&=~(1<<nr);
9770                   regs[i+1].isconst&=~(1<<nr);
9771                   regs[i].dirty&=~(1<<nr);
9772                   regs[i+1].wasdirty&=~(1<<nr);
9773                   regs[i+1].dirty&=~(1<<nr);
9774                   regs[i+2].wasdirty&=~(1<<nr);
9775                 }
9776               }
9777             }
9778           }
9779           #endif
9780           // Address for store instruction (non-constant)
9781           if(itype[i+1]==STORE||itype[i+1]==STORELR
9782              ||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SB/SH/SW/SD/SWC1/SDC1/SWC2/SDC2
9783             if(get_reg(regs[i+1].regmap,rs1[i+1])<0) {
9784               hr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1);
9785               if(hr<0) hr=get_reg(regs[i+1].regmap,-1);
9786               else {regs[i+1].regmap[hr]=AGEN1+((i+1)&1);regs[i+1].isconst&=~(1<<hr);}
9787               assert(hr>=0);
9788               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
9789               {
9790                 regs[i].regmap[hr]=rs1[i+1];
9791                 regmap_pre[i+1][hr]=rs1[i+1];
9792                 regs[i+1].regmap_entry[hr]=rs1[i+1];
9793                 regs[i].isconst&=~(1<<hr);
9794                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
9795                 constmap[i][hr]=constmap[i+1][hr];
9796                 regs[i+1].wasdirty&=~(1<<hr);
9797                 regs[i].dirty&=~(1<<hr);
9798               }
9799             }
9800           }
9801           if(itype[i+1]==LOADLR||(opcode[i+1]&0x3b)==0x31||(opcode[i+1]&0x3b)==0x32) { // LWC1/LDC1, LWC2/LDC2
9802             if(get_reg(regs[i+1].regmap,rs1[i+1])<0) {
9803               int nr;
9804               hr=get_reg(regs[i+1].regmap,FTEMP);
9805               assert(hr>=0);
9806               if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
9807               {
9808                 regs[i].regmap[hr]=rs1[i+1];
9809                 regmap_pre[i+1][hr]=rs1[i+1];
9810                 regs[i+1].regmap_entry[hr]=rs1[i+1];
9811                 regs[i].isconst&=~(1<<hr);
9812                 regs[i].isconst|=regs[i+1].isconst&(1<<hr);
9813                 constmap[i][hr]=constmap[i+1][hr];
9814                 regs[i+1].wasdirty&=~(1<<hr);
9815                 regs[i].dirty&=~(1<<hr);
9816               }
9817               else if((nr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1))>=0)
9818               {
9819                 // move it to another register
9820                 regs[i+1].regmap[hr]=-1;
9821                 regmap_pre[i+2][hr]=-1;
9822                 regs[i+1].regmap[nr]=FTEMP;
9823                 regmap_pre[i+2][nr]=FTEMP;
9824                 regs[i].regmap[nr]=rs1[i+1];
9825                 regmap_pre[i+1][nr]=rs1[i+1];
9826                 regs[i+1].regmap_entry[nr]=rs1[i+1];
9827                 regs[i].isconst&=~(1<<nr);
9828                 regs[i+1].isconst&=~(1<<nr);
9829                 regs[i].dirty&=~(1<<nr);
9830                 regs[i+1].wasdirty&=~(1<<nr);
9831                 regs[i+1].dirty&=~(1<<nr);
9832                 regs[i+2].wasdirty&=~(1<<nr);
9833               }
9834             }
9835           }
9836           if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR/*||itype[i+1]==C1LS||||itype[i+1]==C2LS*/) {
9837             if(itype[i+1]==LOAD) 
9838               hr=get_reg(regs[i+1].regmap,rt1[i+1]);
9839             if(itype[i+1]==LOADLR||(opcode[i+1]&0x3b)==0x31||(opcode[i+1]&0x3b)==0x32) // LWC1/LDC1, LWC2/LDC2
9840               hr=get_reg(regs[i+1].regmap,FTEMP);
9841             if(itype[i+1]==STORE||itype[i+1]==STORELR||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a) { // SWC1/SDC1/SWC2/SDC2
9842               hr=get_reg(regs[i+1].regmap,AGEN1+((i+1)&1));
9843               if(hr<0) hr=get_reg(regs[i+1].regmap,-1);
9844             }
9845             if(hr>=0&&regs[i].regmap[hr]<0) {
9846               int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
9847               if(rs>=0&&((regs[i+1].wasconst>>rs)&1)) {
9848                 regs[i].regmap[hr]=AGEN1+((i+1)&1);
9849                 regmap_pre[i+1][hr]=AGEN1+((i+1)&1);
9850                 regs[i+1].regmap_entry[hr]=AGEN1+((i+1)&1);
9851                 regs[i].isconst&=~(1<<hr);
9852                 regs[i+1].wasdirty&=~(1<<hr);
9853                 regs[i].dirty&=~(1<<hr);
9854               }
9855             }
9856           }
9857         }
9858       }
9859     }
9860   }
9861   
9862   /* Pass 6 - Optimize clean/dirty state */
9863   clean_registers(0,slen-1,1);
9864   
9865   /* Pass 7 - Identify 32-bit registers */
9866   for (i=slen-1;i>=0;i--)
9867   {
9868     if(itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
9869     {
9870       // Conditional branch
9871       if((source[i]>>16)!=0x1000&&i<slen-2) {
9872         // Mark this address as a branch target since it may be called
9873         // upon return from interrupt
9874         bt[i+2]=1;
9875       }
9876     }
9877   }
9878
9879   if(itype[slen-1]==SPAN) {
9880     bt[slen-1]=1; // Mark as a branch target so instruction can restart after exception
9881   }
9882
9883 #ifdef DISASM
9884   /* Debug/disassembly */
9885   for(i=0;i<slen;i++)
9886   {
9887     printf("U:");
9888     int r;
9889     for(r=1;r<=CCREG;r++) {
9890       if((unneeded_reg[i]>>r)&1) {
9891         if(r==HIREG) printf(" HI");
9892         else if(r==LOREG) printf(" LO");
9893         else printf(" r%d",r);
9894       }
9895     }
9896     printf("\n");
9897     #if defined(__i386__) || defined(__x86_64__)
9898     printf("pre: eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",regmap_pre[i][0],regmap_pre[i][1],regmap_pre[i][2],regmap_pre[i][3],regmap_pre[i][5],regmap_pre[i][6],regmap_pre[i][7]);
9899     #endif
9900     #ifdef __arm__
9901     printf("pre: r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d\n",regmap_pre[i][0],regmap_pre[i][1],regmap_pre[i][2],regmap_pre[i][3],regmap_pre[i][4],regmap_pre[i][5],regmap_pre[i][6],regmap_pre[i][7],regmap_pre[i][8],regmap_pre[i][9],regmap_pre[i][10],regmap_pre[i][12]);
9902     #endif
9903     printf("needs: ");
9904     if(needed_reg[i]&1) printf("eax ");
9905     if((needed_reg[i]>>1)&1) printf("ecx ");
9906     if((needed_reg[i]>>2)&1) printf("edx ");
9907     if((needed_reg[i]>>3)&1) printf("ebx ");
9908     if((needed_reg[i]>>5)&1) printf("ebp ");
9909     if((needed_reg[i]>>6)&1) printf("esi ");
9910     if((needed_reg[i]>>7)&1) printf("edi ");
9911     printf("r:");
9912     for(r=0;r<=CCREG;r++) {
9913       //if(((requires_32bit[i]>>r)&(~unneeded_reg[i]>>r))&1) {
9914       if((requires_32bit[i]>>r)&1) {
9915         if(r==CCREG) printf(" CC");
9916         else if(r==HIREG) printf(" HI");
9917         else if(r==LOREG) printf(" LO");
9918         else printf(" r%d",r);
9919       }
9920     }
9921     printf("\n");
9922     /*printf("pr:");
9923     for(r=0;r<=CCREG;r++) {
9924       //if(((requires_32bit[i]>>r)&(~unneeded_reg[i]>>r))&1) {
9925       if((pr32[i]>>r)&1) {
9926         if(r==CCREG) printf(" CC");
9927         else if(r==HIREG) printf(" HI");
9928         else if(r==LOREG) printf(" LO");
9929         else printf(" r%d",r);
9930       }
9931     }
9932     if(pr32[i]!=requires_32bit[i]) printf(" OOPS");
9933     printf("\n");*/
9934     #if defined(__i386__) || defined(__x86_64__)
9935     printf("entry: eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",regs[i].regmap_entry[0],regs[i].regmap_entry[1],regs[i].regmap_entry[2],regs[i].regmap_entry[3],regs[i].regmap_entry[5],regs[i].regmap_entry[6],regs[i].regmap_entry[7]);
9936     printf("dirty: ");
9937     if(regs[i].wasdirty&1) printf("eax ");
9938     if((regs[i].wasdirty>>1)&1) printf("ecx ");
9939     if((regs[i].wasdirty>>2)&1) printf("edx ");
9940     if((regs[i].wasdirty>>3)&1) printf("ebx ");
9941     if((regs[i].wasdirty>>5)&1) printf("ebp ");
9942     if((regs[i].wasdirty>>6)&1) printf("esi ");
9943     if((regs[i].wasdirty>>7)&1) printf("edi ");
9944     #endif
9945     #ifdef __arm__
9946     printf("entry: r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d\n",regs[i].regmap_entry[0],regs[i].regmap_entry[1],regs[i].regmap_entry[2],regs[i].regmap_entry[3],regs[i].regmap_entry[4],regs[i].regmap_entry[5],regs[i].regmap_entry[6],regs[i].regmap_entry[7],regs[i].regmap_entry[8],regs[i].regmap_entry[9],regs[i].regmap_entry[10],regs[i].regmap_entry[12]);
9947     printf("dirty: ");
9948     if(regs[i].wasdirty&1) printf("r0 ");
9949     if((regs[i].wasdirty>>1)&1) printf("r1 ");
9950     if((regs[i].wasdirty>>2)&1) printf("r2 ");
9951     if((regs[i].wasdirty>>3)&1) printf("r3 ");
9952     if((regs[i].wasdirty>>4)&1) printf("r4 ");
9953     if((regs[i].wasdirty>>5)&1) printf("r5 ");
9954     if((regs[i].wasdirty>>6)&1) printf("r6 ");
9955     if((regs[i].wasdirty>>7)&1) printf("r7 ");
9956     if((regs[i].wasdirty>>8)&1) printf("r8 ");
9957     if((regs[i].wasdirty>>9)&1) printf("r9 ");
9958     if((regs[i].wasdirty>>10)&1) printf("r10 ");
9959     if((regs[i].wasdirty>>12)&1) printf("r12 ");
9960     #endif
9961     printf("\n");
9962     disassemble_inst(i);
9963     //printf ("ccadj[%d] = %d\n",i,ccadj[i]);
9964     #if defined(__i386__) || defined(__x86_64__)
9965     printf("eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d dirty: ",regs[i].regmap[0],regs[i].regmap[1],regs[i].regmap[2],regs[i].regmap[3],regs[i].regmap[5],regs[i].regmap[6],regs[i].regmap[7]);
9966     if(regs[i].dirty&1) printf("eax ");
9967     if((regs[i].dirty>>1)&1) printf("ecx ");
9968     if((regs[i].dirty>>2)&1) printf("edx ");
9969     if((regs[i].dirty>>3)&1) printf("ebx ");
9970     if((regs[i].dirty>>5)&1) printf("ebp ");
9971     if((regs[i].dirty>>6)&1) printf("esi ");
9972     if((regs[i].dirty>>7)&1) printf("edi ");
9973     #endif
9974     #ifdef __arm__
9975     printf("r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d dirty: ",regs[i].regmap[0],regs[i].regmap[1],regs[i].regmap[2],regs[i].regmap[3],regs[i].regmap[4],regs[i].regmap[5],regs[i].regmap[6],regs[i].regmap[7],regs[i].regmap[8],regs[i].regmap[9],regs[i].regmap[10],regs[i].regmap[12]);
9976     if(regs[i].dirty&1) printf("r0 ");
9977     if((regs[i].dirty>>1)&1) printf("r1 ");
9978     if((regs[i].dirty>>2)&1) printf("r2 ");
9979     if((regs[i].dirty>>3)&1) printf("r3 ");
9980     if((regs[i].dirty>>4)&1) printf("r4 ");
9981     if((regs[i].dirty>>5)&1) printf("r5 ");
9982     if((regs[i].dirty>>6)&1) printf("r6 ");
9983     if((regs[i].dirty>>7)&1) printf("r7 ");
9984     if((regs[i].dirty>>8)&1) printf("r8 ");
9985     if((regs[i].dirty>>9)&1) printf("r9 ");
9986     if((regs[i].dirty>>10)&1) printf("r10 ");
9987     if((regs[i].dirty>>12)&1) printf("r12 ");
9988     #endif
9989     printf("\n");
9990     if(regs[i].isconst) {
9991       printf("constants: ");
9992       #if defined(__i386__) || defined(__x86_64__)
9993       if(regs[i].isconst&1) printf("eax=%x ",(int)constmap[i][0]);
9994       if((regs[i].isconst>>1)&1) printf("ecx=%x ",(int)constmap[i][1]);
9995       if((regs[i].isconst>>2)&1) printf("edx=%x ",(int)constmap[i][2]);
9996       if((regs[i].isconst>>3)&1) printf("ebx=%x ",(int)constmap[i][3]);
9997       if((regs[i].isconst>>5)&1) printf("ebp=%x ",(int)constmap[i][5]);
9998       if((regs[i].isconst>>6)&1) printf("esi=%x ",(int)constmap[i][6]);
9999       if((regs[i].isconst>>7)&1) printf("edi=%x ",(int)constmap[i][7]);
10000       #endif
10001       #ifdef __arm__
10002       if(regs[i].isconst&1) printf("r0=%x ",(int)constmap[i][0]);
10003       if((regs[i].isconst>>1)&1) printf("r1=%x ",(int)constmap[i][1]);
10004       if((regs[i].isconst>>2)&1) printf("r2=%x ",(int)constmap[i][2]);
10005       if((regs[i].isconst>>3)&1) printf("r3=%x ",(int)constmap[i][3]);
10006       if((regs[i].isconst>>4)&1) printf("r4=%x ",(int)constmap[i][4]);
10007       if((regs[i].isconst>>5)&1) printf("r5=%x ",(int)constmap[i][5]);
10008       if((regs[i].isconst>>6)&1) printf("r6=%x ",(int)constmap[i][6]);
10009       if((regs[i].isconst>>7)&1) printf("r7=%x ",(int)constmap[i][7]);
10010       if((regs[i].isconst>>8)&1) printf("r8=%x ",(int)constmap[i][8]);
10011       if((regs[i].isconst>>9)&1) printf("r9=%x ",(int)constmap[i][9]);
10012       if((regs[i].isconst>>10)&1) printf("r10=%x ",(int)constmap[i][10]);
10013       if((regs[i].isconst>>12)&1) printf("r12=%x ",(int)constmap[i][12]);
10014       #endif
10015       printf("\n");
10016     }
10017     /*printf(" p32:");
10018     for(r=0;r<=CCREG;r++) {
10019       if((p32[i]>>r)&1) {
10020         if(r==CCREG) printf(" CC");
10021         else if(r==HIREG) printf(" HI");
10022         else if(r==LOREG) printf(" LO");
10023         else printf(" r%d",r);
10024       }
10025     }
10026     if(p32[i]!=regs[i].is32) printf(" NO MATCH\n");
10027     else printf("\n");*/
10028     if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP) {
10029       #if defined(__i386__) || defined(__x86_64__)
10030       printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d dirty: ",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
10031       if(branch_regs[i].dirty&1) printf("eax ");
10032       if((branch_regs[i].dirty>>1)&1) printf("ecx ");
10033       if((branch_regs[i].dirty>>2)&1) printf("edx ");
10034       if((branch_regs[i].dirty>>3)&1) printf("ebx ");
10035       if((branch_regs[i].dirty>>5)&1) printf("ebp ");
10036       if((branch_regs[i].dirty>>6)&1) printf("esi ");
10037       if((branch_regs[i].dirty>>7)&1) printf("edi ");
10038       #endif
10039       #ifdef __arm__
10040       printf("branch(%d): r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d dirty: ",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[4],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7],branch_regs[i].regmap[8],branch_regs[i].regmap[9],branch_regs[i].regmap[10],branch_regs[i].regmap[12]);
10041       if(branch_regs[i].dirty&1) printf("r0 ");
10042       if((branch_regs[i].dirty>>1)&1) printf("r1 ");
10043       if((branch_regs[i].dirty>>2)&1) printf("r2 ");
10044       if((branch_regs[i].dirty>>3)&1) printf("r3 ");
10045       if((branch_regs[i].dirty>>4)&1) printf("r4 ");
10046       if((branch_regs[i].dirty>>5)&1) printf("r5 ");
10047       if((branch_regs[i].dirty>>6)&1) printf("r6 ");
10048       if((branch_regs[i].dirty>>7)&1) printf("r7 ");
10049       if((branch_regs[i].dirty>>8)&1) printf("r8 ");
10050       if((branch_regs[i].dirty>>9)&1) printf("r9 ");
10051       if((branch_regs[i].dirty>>10)&1) printf("r10 ");
10052       if((branch_regs[i].dirty>>12)&1) printf("r12 ");
10053       #endif
10054     }
10055   }
10056 #endif // DISASM
10057
10058   /* Pass 8 - Assembly */
10059   linkcount=0;stubcount=0;
10060   ds=0;is_delayslot=0;
10061   cop1_usable=0;
10062   uint64_t is32_pre=0;
10063   u_int dirty_pre=0;
10064   u_int beginning=(u_int)out;
10065   if((u_int)addr&1) {
10066     ds=1;
10067     pagespan_ds();
10068   }
10069   u_int instr_addr0_override=0;
10070
10071   if (start == 0x80030000) {
10072     // nasty hack for fastbios thing
10073     // override block entry to this code
10074     instr_addr0_override=(u_int)out;
10075     emit_movimm(start,0);
10076     // abuse io address var as a flag that we
10077     // have already returned here once
10078     emit_readword((int)&address,1);
10079     emit_writeword(0,(int)&pcaddr);
10080     emit_writeword(0,(int)&address);
10081     emit_cmp(0,1);
10082     emit_jne((int)new_dyna_leave);
10083   }
10084   for(i=0;i<slen;i++)
10085   {
10086     //if(ds) printf("ds: ");
10087     disassemble_inst(i);
10088     if(ds) {
10089       ds=0; // Skip delay slot
10090       if(bt[i]) assem_debug("OOPS - branch into delay slot\n");
10091       instr_addr[i]=0;
10092     } else {
10093       speculate_register_values(i);
10094       #ifndef DESTRUCTIVE_WRITEBACK
10095       if(i<2||(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000))
10096       {
10097         wb_valid(regmap_pre[i],regs[i].regmap_entry,dirty_pre,regs[i].wasdirty,is32_pre,
10098               unneeded_reg[i],unneeded_reg_upper[i]);
10099       }
10100       if((itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)&&!likely[i]) {
10101         is32_pre=branch_regs[i].is32;
10102         dirty_pre=branch_regs[i].dirty;
10103       }else{
10104         is32_pre=regs[i].is32;
10105         dirty_pre=regs[i].dirty;
10106       }
10107       #endif
10108       // write back
10109       if(i<2||(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000))
10110       {
10111         wb_invalidate(regmap_pre[i],regs[i].regmap_entry,regs[i].wasdirty,regs[i].was32,
10112                       unneeded_reg[i],unneeded_reg_upper[i]);
10113         loop_preload(regmap_pre[i],regs[i].regmap_entry);
10114       }
10115       // branch target entry point
10116       instr_addr[i]=(u_int)out;
10117       assem_debug("<->\n");
10118       // load regs
10119       if(regs[i].regmap_entry[HOST_CCREG]==CCREG&&regs[i].regmap[HOST_CCREG]!=CCREG)
10120         wb_register(CCREG,regs[i].regmap_entry,regs[i].wasdirty,regs[i].was32);
10121       load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i],rs2[i]);
10122       address_generation(i,&regs[i],regs[i].regmap_entry);
10123       load_consts(regmap_pre[i],regs[i].regmap,regs[i].was32,i);
10124       if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
10125       {
10126         // Load the delay slot registers if necessary
10127         if(rs1[i+1]!=rs1[i]&&rs1[i+1]!=rs2[i]&&(rs1[i+1]!=rt1[i]||rt1[i]==0))
10128           load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i+1],rs1[i+1]);
10129         if(rs2[i+1]!=rs1[i+1]&&rs2[i+1]!=rs1[i]&&rs2[i+1]!=rs2[i]&&(rs2[i+1]!=rt1[i]||rt1[i]==0))
10130           load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs2[i+1],rs2[i+1]);
10131         if(itype[i+1]==STORE||itype[i+1]==STORELR||(opcode[i+1]&0x3b)==0x39||(opcode[i+1]&0x3b)==0x3a)
10132           load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,INVCP,INVCP);
10133       }
10134       else if(i+1<slen)
10135       {
10136         // Preload registers for following instruction
10137         if(rs1[i+1]!=rs1[i]&&rs1[i+1]!=rs2[i])
10138           if(rs1[i+1]!=rt1[i]&&rs1[i+1]!=rt2[i])
10139             load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i+1],rs1[i+1]);
10140         if(rs2[i+1]!=rs1[i+1]&&rs2[i+1]!=rs1[i]&&rs2[i+1]!=rs2[i])
10141           if(rs2[i+1]!=rt1[i]&&rs2[i+1]!=rt2[i])
10142             load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs2[i+1],rs2[i+1]);
10143       }
10144       // TODO: if(is_ooo(i)) address_generation(i+1);
10145       if(itype[i]==CJUMP||itype[i]==FJUMP)
10146         load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,CCREG,CCREG);
10147       if(itype[i]==STORE||itype[i]==STORELR||(opcode[i]&0x3b)==0x39||(opcode[i]&0x3b)==0x3a)
10148         load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,INVCP,INVCP);
10149       if(bt[i]) cop1_usable=0;
10150       // assemble
10151       switch(itype[i]) {
10152         case ALU:
10153           alu_assemble(i,&regs[i]);break;
10154         case IMM16:
10155           imm16_assemble(i,&regs[i]);break;
10156         case SHIFT:
10157           shift_assemble(i,&regs[i]);break;
10158         case SHIFTIMM:
10159           shiftimm_assemble(i,&regs[i]);break;
10160         case LOAD:
10161           load_assemble(i,&regs[i]);break;
10162         case LOADLR:
10163           loadlr_assemble(i,&regs[i]);break;
10164         case STORE:
10165           store_assemble(i,&regs[i]);break;
10166         case STORELR:
10167           storelr_assemble(i,&regs[i]);break;
10168         case COP0:
10169           cop0_assemble(i,&regs[i]);break;
10170         case COP1:
10171           cop1_assemble(i,&regs[i]);break;
10172         case C1LS:
10173           c1ls_assemble(i,&regs[i]);break;
10174         case COP2:
10175           cop2_assemble(i,&regs[i]);break;
10176         case C2LS:
10177           c2ls_assemble(i,&regs[i]);break;
10178         case C2OP:
10179           c2op_assemble(i,&regs[i]);break;
10180         case FCONV:
10181           fconv_assemble(i,&regs[i]);break;
10182         case FLOAT:
10183           float_assemble(i,&regs[i]);break;
10184         case FCOMP:
10185           fcomp_assemble(i,&regs[i]);break;
10186         case MULTDIV:
10187           multdiv_assemble(i,&regs[i]);break;
10188         case MOV:
10189           mov_assemble(i,&regs[i]);break;
10190         case SYSCALL:
10191           syscall_assemble(i,&regs[i]);break;
10192         case HLECALL:
10193           hlecall_assemble(i,&regs[i]);break;
10194         case INTCALL:
10195           intcall_assemble(i,&regs[i]);break;
10196         case UJUMP:
10197           ujump_assemble(i,&regs[i]);ds=1;break;
10198         case RJUMP:
10199           rjump_assemble(i,&regs[i]);ds=1;break;
10200         case CJUMP:
10201           cjump_assemble(i,&regs[i]);ds=1;break;
10202         case SJUMP:
10203           sjump_assemble(i,&regs[i]);ds=1;break;
10204         case FJUMP:
10205           fjump_assemble(i,&regs[i]);ds=1;break;
10206         case SPAN:
10207           pagespan_assemble(i,&regs[i]);break;
10208       }
10209       if(itype[i]==UJUMP||itype[i]==RJUMP||(source[i]>>16)==0x1000)
10210         literal_pool(1024);
10211       else
10212         literal_pool_jumpover(256);
10213     }
10214   }
10215   //assert(itype[i-2]==UJUMP||itype[i-2]==RJUMP||(source[i-2]>>16)==0x1000);
10216   // If the block did not end with an unconditional branch,
10217   // add a jump to the next instruction.
10218   if(i>1) {
10219     if(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000&&itype[i-1]!=SPAN) {
10220       assert(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP);
10221       assert(i==slen);
10222       if(itype[i-2]!=CJUMP&&itype[i-2]!=SJUMP&&itype[i-2]!=FJUMP) {
10223         store_regs_bt(regs[i-1].regmap,regs[i-1].is32,regs[i-1].dirty,start+i*4);
10224         if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
10225           emit_loadreg(CCREG,HOST_CCREG);
10226         emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i-1]+1),HOST_CCREG);
10227       }
10228       else if(!likely[i-2])
10229       {
10230         store_regs_bt(branch_regs[i-2].regmap,branch_regs[i-2].is32,branch_regs[i-2].dirty,start+i*4);
10231         assert(branch_regs[i-2].regmap[HOST_CCREG]==CCREG);
10232       }
10233       else
10234       {
10235         store_regs_bt(regs[i-2].regmap,regs[i-2].is32,regs[i-2].dirty,start+i*4);
10236         assert(regs[i-2].regmap[HOST_CCREG]==CCREG);
10237       }
10238       add_to_linker((int)out,start+i*4,0);
10239       emit_jmp(0);
10240     }
10241   }
10242   else
10243   {
10244     assert(i>0);
10245     assert(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP);
10246     store_regs_bt(regs[i-1].regmap,regs[i-1].is32,regs[i-1].dirty,start+i*4);
10247     if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
10248       emit_loadreg(CCREG,HOST_CCREG);
10249     emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i-1]+1),HOST_CCREG);
10250     add_to_linker((int)out,start+i*4,0);
10251     emit_jmp(0);
10252   }
10253
10254   // TODO: delay slot stubs?
10255   // Stubs
10256   for(i=0;i<stubcount;i++)
10257   {
10258     switch(stubs[i][0])
10259     {
10260       case LOADB_STUB:
10261       case LOADH_STUB:
10262       case LOADW_STUB:
10263       case LOADD_STUB:
10264       case LOADBU_STUB:
10265       case LOADHU_STUB:
10266         do_readstub(i);break;
10267       case STOREB_STUB:
10268       case STOREH_STUB:
10269       case STOREW_STUB:
10270       case STORED_STUB:
10271         do_writestub(i);break;
10272       case CC_STUB:
10273         do_ccstub(i);break;
10274       case INVCODE_STUB:
10275         do_invstub(i);break;
10276       case FP_STUB:
10277         do_cop1stub(i);break;
10278       case STORELR_STUB:
10279         do_unalignedwritestub(i);break;
10280     }
10281   }
10282
10283   if (instr_addr0_override)
10284     instr_addr[0] = instr_addr0_override;
10285
10286   /* Pass 9 - Linker */
10287   for(i=0;i<linkcount;i++)
10288   {
10289     assem_debug("%8x -> %8x\n",link_addr[i][0],link_addr[i][1]);
10290     literal_pool(64);
10291     if(!link_addr[i][2])
10292     {
10293       void *stub=out;
10294       void *addr=check_addr(link_addr[i][1]);
10295       emit_extjump(link_addr[i][0],link_addr[i][1]);
10296       if(addr) {
10297         set_jump_target(link_addr[i][0],(int)addr);
10298         add_link(link_addr[i][1],stub);
10299       }
10300       else set_jump_target(link_addr[i][0],(int)stub);
10301     }
10302     else
10303     {
10304       // Internal branch
10305       int target=(link_addr[i][1]-start)>>2;
10306       assert(target>=0&&target<slen);
10307       assert(instr_addr[target]);
10308       //#ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
10309       //set_jump_target_fillslot(link_addr[i][0],instr_addr[target],link_addr[i][2]>>1);
10310       //#else
10311       set_jump_target(link_addr[i][0],instr_addr[target]);
10312       //#endif
10313     }
10314   }
10315   // External Branch Targets (jump_in)
10316   if(copy+slen*4>(void *)shadow+sizeof(shadow)) copy=shadow;
10317   for(i=0;i<slen;i++)
10318   {
10319     if(bt[i]||i==0)
10320     {
10321       if(instr_addr[i]) // TODO - delay slots (=null)
10322       {
10323         u_int vaddr=start+i*4;
10324         u_int page=get_page(vaddr);
10325         u_int vpage=get_vpage(vaddr);
10326         literal_pool(256);
10327         {
10328           assem_debug("%8x (%d) <- %8x\n",instr_addr[i],i,start+i*4);
10329           assem_debug("jump_in: %x\n",start+i*4);
10330           ll_add(jump_dirty+vpage,vaddr,(void *)out);
10331           int entry_point=do_dirty_stub(i);
10332           ll_add_flags(jump_in+page,vaddr,state_rflags,(void *)entry_point);
10333           // If there was an existing entry in the hash table,
10334           // replace it with the new address.
10335           // Don't add new entries.  We'll insert the
10336           // ones that actually get used in check_addr().
10337           int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
10338           if(ht_bin[0]==vaddr) {
10339             ht_bin[1]=entry_point;
10340           }
10341           if(ht_bin[2]==vaddr) {
10342             ht_bin[3]=entry_point;
10343           }
10344         }
10345       }
10346     }
10347   }
10348   // Write out the literal pool if necessary
10349   literal_pool(0);
10350   #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
10351   // Align code
10352   if(((u_int)out)&7) emit_addnop(13);
10353   #endif
10354   assert((u_int)out-beginning<MAX_OUTPUT_BLOCK_SIZE);
10355   //printf("shadow buffer: %x-%x\n",(int)copy,(int)copy+slen*4);
10356   memcpy(copy,source,slen*4);
10357   copy+=slen*4;
10358   
10359   #ifdef __arm__
10360   __clear_cache((void *)beginning,out);
10361   #endif
10362   
10363   // If we're within 256K of the end of the buffer,
10364   // start over from the beginning. (Is 256K enough?)
10365   if((u_int)out>(u_int)BASE_ADDR+(1<<TARGET_SIZE_2)-MAX_OUTPUT_BLOCK_SIZE) out=(u_char *)BASE_ADDR;
10366   
10367   // Trap writes to any of the pages we compiled
10368   for(i=start>>12;i<=(start+slen*4)>>12;i++) {
10369     invalid_code[i]=0;
10370   }
10371   inv_code_start=inv_code_end=~0;
10372
10373   // for PCSX we need to mark all mirrors too
10374   if(get_page(start)<(RAM_SIZE>>12))
10375     for(i=start>>12;i<=(start+slen*4)>>12;i++)
10376       invalid_code[((u_int)0x00000000>>12)|(i&0x1ff)]=
10377       invalid_code[((u_int)0x80000000>>12)|(i&0x1ff)]=
10378       invalid_code[((u_int)0xa0000000>>12)|(i&0x1ff)]=0;
10379   
10380   /* Pass 10 - Free memory by expiring oldest blocks */
10381   
10382   int end=((((int)out-(int)BASE_ADDR)>>(TARGET_SIZE_2-16))+16384)&65535;
10383   while(expirep!=end)
10384   {
10385     int shift=TARGET_SIZE_2-3; // Divide into 8 blocks
10386     int base=(int)BASE_ADDR+((expirep>>13)<<shift); // Base address of this block
10387     inv_debug("EXP: Phase %d\n",expirep);
10388     switch((expirep>>11)&3)
10389     {
10390       case 0:
10391         // Clear jump_in and jump_dirty
10392         ll_remove_matching_addrs(jump_in+(expirep&2047),base,shift);
10393         ll_remove_matching_addrs(jump_dirty+(expirep&2047),base,shift);
10394         ll_remove_matching_addrs(jump_in+2048+(expirep&2047),base,shift);
10395         ll_remove_matching_addrs(jump_dirty+2048+(expirep&2047),base,shift);
10396         break;
10397       case 1:
10398         // Clear pointers
10399         ll_kill_pointers(jump_out[expirep&2047],base,shift);
10400         ll_kill_pointers(jump_out[(expirep&2047)+2048],base,shift);
10401         break;
10402       case 2:
10403         // Clear hash table
10404         for(i=0;i<32;i++) {
10405           int *ht_bin=hash_table[((expirep&2047)<<5)+i];
10406           if((ht_bin[3]>>shift)==(base>>shift) ||
10407              ((ht_bin[3]-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(base>>shift)) {
10408             inv_debug("EXP: Remove hash %x -> %x\n",ht_bin[2],ht_bin[3]);
10409             ht_bin[2]=ht_bin[3]=-1;
10410           }
10411           if((ht_bin[1]>>shift)==(base>>shift) ||
10412              ((ht_bin[1]-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(base>>shift)) {
10413             inv_debug("EXP: Remove hash %x -> %x\n",ht_bin[0],ht_bin[1]);
10414             ht_bin[0]=ht_bin[2];
10415             ht_bin[1]=ht_bin[3];
10416             ht_bin[2]=ht_bin[3]=-1;
10417           }
10418         }
10419         break;
10420       case 3:
10421         // Clear jump_out
10422         #ifdef __arm__
10423         if((expirep&2047)==0) 
10424           do_clear_cache();
10425         #endif
10426         ll_remove_matching_addrs(jump_out+(expirep&2047),base,shift);
10427         ll_remove_matching_addrs(jump_out+2048+(expirep&2047),base,shift);
10428         break;
10429     }
10430     expirep=(expirep+1)&65535;
10431   }
10432   return 0;
10433 }
10434
10435 // vim:shiftwidth=2:expandtab