c62d2810 |
1 | /* deflate.c -- compress data using the deflation algorithm |
2 | * Copyright (C) 1995-2002 Jean-loup Gailly. |
3 | * For conditions of distribution and use, see copyright notice in zlib.h |
4 | */ |
5 | |
6 | /* |
7 | * ALGORITHM |
8 | * |
9 | * The "deflation" process depends on being able to identify portions |
10 | * of the input text which are identical to earlier input (within a |
11 | * sliding window trailing behind the input currently being processed). |
12 | * |
13 | * The most straightforward technique turns out to be the fastest for |
14 | * most input files: try all possible matches and select the longest. |
15 | * The key feature of this algorithm is that insertions into the string |
16 | * dictionary are very simple and thus fast, and deletions are avoided |
17 | * completely. Insertions are performed at each input character, whereas |
18 | * string matches are performed only when the previous match ends. So it |
19 | * is preferable to spend more time in matches to allow very fast string |
20 | * insertions and avoid deletions. The matching algorithm for small |
21 | * strings is inspired from that of Rabin & Karp. A brute force approach |
22 | * is used to find longer strings when a small match has been found. |
23 | * A similar algorithm is used in comic (by Jan-Mark Wams) and freeze |
24 | * (by Leonid Broukhis). |
25 | * A previous version of this file used a more sophisticated algorithm |
26 | * (by Fiala and Greene) which is guaranteed to run in linear amortized |
27 | * time, but has a larger average cost, uses more memory and is patented. |
28 | * However the F&G algorithm may be faster for some highly redundant |
29 | * files if the parameter max_chain_length (described below) is too large. |
30 | * |
31 | * ACKNOWLEDGEMENTS |
32 | * |
33 | * The idea of lazy evaluation of matches is due to Jan-Mark Wams, and |
34 | * I found it in 'freeze' written by Leonid Broukhis. |
35 | * Thanks to many people for bug reports and testing. |
36 | * |
37 | * REFERENCES |
38 | * |
39 | * Deutsch, L.P.,"DEFLATE Compressed Data Format Specification". |
40 | * Available in ftp://ds.internic.net/rfc/rfc1951.txt |
41 | * |
42 | * A description of the Rabin and Karp algorithm is given in the book |
43 | * "Algorithms" by R. Sedgewick, Addison-Wesley, p252. |
44 | * |
45 | * Fiala,E.R., and Greene,D.H. |
46 | * Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595 |
47 | * |
48 | */ |
49 | |
50 | /* @(#) $Id: deflate.c,v 1.2 2002/03/13 17:45:56 xodnizel Exp $ */ |
51 | |
52 | #include "deflate.h" |
53 | |
54 | const char deflate_copyright[] = |
55 | " deflate 1.1.4 Copyright 1995-2002 Jean-loup Gailly "; |
56 | /* |
57 | If you use the zlib library in a product, an acknowledgment is welcome |
58 | in the documentation of your product. If for some reason you cannot |
59 | include such an acknowledgment, I would appreciate that you keep this |
60 | copyright string in the executable of your product. |
61 | */ |
62 | |
63 | /* =========================================================================== |
64 | * Function prototypes. |
65 | */ |
66 | typedef enum { |
67 | need_more, /* block not completed, need more input or more output */ |
68 | block_done, /* block flush performed */ |
69 | finish_started, /* finish started, need only more output at next deflate */ |
70 | finish_done /* finish done, accept no more input or output */ |
71 | } block_state; |
72 | |
73 | typedef block_state (*compress_func) OF((deflate_state *s, int flush)); |
74 | /* Compression function. Returns the block state after the call. */ |
75 | |
76 | local void fill_window OF((deflate_state *s)); |
77 | local block_state deflate_stored OF((deflate_state *s, int flush)); |
78 | local block_state deflate_fast OF((deflate_state *s, int flush)); |
79 | local block_state deflate_slow OF((deflate_state *s, int flush)); |
80 | local void lm_init OF((deflate_state *s)); |
81 | local void putShortMSB OF((deflate_state *s, uInt b)); |
82 | local void flush_pending OF((z_streamp strm)); |
83 | local int read_buf OF((z_streamp strm, Bytef *buf, unsigned size)); |
84 | #ifdef ASMV |
85 | void match_init OF((void)); /* asm code initialization */ |
86 | uInt longest_match OF((deflate_state *s, IPos cur_match)); |
87 | #else |
88 | local uInt longest_match OF((deflate_state *s, IPos cur_match)); |
89 | #endif |
90 | |
91 | #ifdef DEBUG |
92 | local void check_match OF((deflate_state *s, IPos start, IPos match, |
93 | int length)); |
94 | #endif |
95 | |
96 | /* =========================================================================== |
97 | * Local data |
98 | */ |
99 | |
100 | #define NIL 0 |
101 | /* Tail of hash chains */ |
102 | |
103 | #ifndef TOO_FAR |
104 | # define TOO_FAR 4096 |
105 | #endif |
106 | /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */ |
107 | |
108 | #define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1) |
109 | /* Minimum amount of lookahead, except at the end of the input file. |
110 | * See deflate.c for comments about the MIN_MATCH+1. |
111 | */ |
112 | |
113 | /* Values for max_lazy_match, good_match and max_chain_length, depending on |
114 | * the desired pack level (0..9). The values given below have been tuned to |
115 | * exclude worst case performance for pathological files. Better values may be |
116 | * found for specific files. |
117 | */ |
118 | typedef struct config_s { |
119 | ush good_length; /* reduce lazy search above this match length */ |
120 | ush max_lazy; /* do not perform lazy search above this match length */ |
121 | ush nice_length; /* quit search above this match length */ |
122 | ush max_chain; |
123 | compress_func func; |
124 | } config; |
125 | |
126 | local const config configuration_table[10] = { |
127 | /* good lazy nice chain */ |
128 | /* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */ |
129 | /* 1 */ {4, 4, 8, 4, deflate_fast}, /* maximum speed, no lazy matches */ |
130 | /* 2 */ {4, 5, 16, 8, deflate_fast}, |
131 | /* 3 */ {4, 6, 32, 32, deflate_fast}, |
132 | |
133 | /* 4 */ {4, 4, 16, 16, deflate_slow}, /* lazy matches */ |
134 | /* 5 */ {8, 16, 32, 32, deflate_slow}, |
135 | /* 6 */ {8, 16, 128, 128, deflate_slow}, |
136 | /* 7 */ {8, 32, 128, 256, deflate_slow}, |
137 | /* 8 */ {32, 128, 258, 1024, deflate_slow}, |
138 | /* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* maximum compression */ |
139 | |
140 | /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4 |
141 | * For deflate_fast() (levels <= 3) good is ignored and lazy has a different |
142 | * meaning. |
143 | */ |
144 | |
145 | #define EQUAL 0 |
146 | /* result of memcmp for equal strings */ |
147 | |
148 | struct static_tree_desc_s {int dummy;}; /* for buggy compilers */ |
149 | |
150 | /* =========================================================================== |
151 | * Update a hash value with the given input byte |
152 | * IN assertion: all calls to to UPDATE_HASH are made with consecutive |
153 | * input characters, so that a running hash key can be computed from the |
154 | * previous key instead of complete recalculation each time. |
155 | */ |
156 | #define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask) |
157 | |
158 | |
159 | /* =========================================================================== |
160 | * Insert string str in the dictionary and set match_head to the previous head |
161 | * of the hash chain (the most recent string with same hash key). Return |
162 | * the previous length of the hash chain. |
163 | * If this file is compiled with -DFASTEST, the compression level is forced |
164 | * to 1, and no hash chains are maintained. |
165 | * IN assertion: all calls to to INSERT_STRING are made with consecutive |
166 | * input characters and the first MIN_MATCH bytes of str are valid |
167 | * (except for the last MIN_MATCH-1 bytes of the input file). |
168 | */ |
169 | #ifdef FASTEST |
170 | #define INSERT_STRING(s, str, match_head) \ |
171 | (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \ |
172 | match_head = s->head[s->ins_h], \ |
173 | s->head[s->ins_h] = (Pos)(str)) |
174 | #else |
175 | #define INSERT_STRING(s, str, match_head) \ |
176 | (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \ |
177 | s->prev[(str) & s->w_mask] = match_head = s->head[s->ins_h], \ |
178 | s->head[s->ins_h] = (Pos)(str)) |
179 | #endif |
180 | |
181 | /* =========================================================================== |
182 | * Initialize the hash table (avoiding 64K overflow for 16 bit systems). |
183 | * prev[] will be initialized on the fly. |
184 | */ |
185 | #define CLEAR_HASH(s) \ |
186 | s->head[s->hash_size-1] = NIL; \ |
187 | zmemzero((Bytef *)s->head, (unsigned)(s->hash_size-1)*sizeof(*s->head)); |
188 | |
189 | /* ========================================================================= */ |
190 | int ZEXPORT deflateInit_(strm, level, version, stream_size) |
191 | z_streamp strm; |
192 | int level; |
193 | const char *version; |
194 | int stream_size; |
195 | { |
196 | return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL, |
197 | Z_DEFAULT_STRATEGY, version, stream_size); |
198 | /* To do: ignore strm->next_in if we use it as window */ |
199 | } |
200 | |
201 | /* ========================================================================= */ |
202 | int ZEXPORT deflateInit2_(strm, level, method, windowBits, memLevel, strategy, |
203 | version, stream_size) |
204 | z_streamp strm; |
205 | int level; |
206 | int method; |
207 | int windowBits; |
208 | int memLevel; |
209 | int strategy; |
210 | const char *version; |
211 | int stream_size; |
212 | { |
213 | deflate_state *s; |
214 | int noheader = 0; |
215 | static const char* my_version = ZLIB_VERSION; |
216 | |
217 | ushf *overlay; |
218 | /* We overlay pending_buf and d_buf+l_buf. This works since the average |
219 | * output size for (length,distance) codes is <= 24 bits. |
220 | */ |
221 | |
222 | if (version == Z_NULL || version[0] != my_version[0] || |
223 | stream_size != sizeof(z_stream)) { |
224 | return Z_VERSION_ERROR; |
225 | } |
226 | if (strm == Z_NULL) return Z_STREAM_ERROR; |
227 | |
228 | strm->msg = Z_NULL; |
229 | if (strm->zalloc == Z_NULL) { |
230 | strm->zalloc = zcalloc; |
231 | strm->opaque = (voidpf)0; |
232 | } |
233 | if (strm->zfree == Z_NULL) strm->zfree = zcfree; |
234 | |
235 | if (level == Z_DEFAULT_COMPRESSION) level = 6; |
236 | #ifdef FASTEST |
237 | level = 1; |
238 | #endif |
239 | |
240 | if (windowBits < 0) { /* undocumented feature: suppress zlib header */ |
241 | noheader = 1; |
242 | windowBits = -windowBits; |
243 | } |
244 | if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED || |
245 | windowBits < 9 || windowBits > 15 || level < 0 || level > 9 || |
246 | strategy < 0 || strategy > Z_HUFFMAN_ONLY) { |
247 | return Z_STREAM_ERROR; |
248 | } |
249 | s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state)); |
250 | if (s == Z_NULL) return Z_MEM_ERROR; |
251 | strm->state = (struct internal_state FAR *)s; |
252 | s->strm = strm; |
253 | |
254 | s->noheader = noheader; |
255 | s->w_bits = windowBits; |
256 | s->w_size = 1 << s->w_bits; |
257 | s->w_mask = s->w_size - 1; |
258 | |
259 | s->hash_bits = memLevel + 7; |
260 | s->hash_size = 1 << s->hash_bits; |
261 | s->hash_mask = s->hash_size - 1; |
262 | s->hash_shift = ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH); |
263 | |
264 | s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte)); |
265 | s->prev = (Posf *) ZALLOC(strm, s->w_size, sizeof(Pos)); |
266 | s->head = (Posf *) ZALLOC(strm, s->hash_size, sizeof(Pos)); |
267 | |
268 | s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */ |
269 | |
270 | overlay = (ushf *) ZALLOC(strm, s->lit_bufsize, sizeof(ush)+2); |
271 | s->pending_buf = (uchf *) overlay; |
272 | s->pending_buf_size = (ulg)s->lit_bufsize * (sizeof(ush)+2L); |
273 | |
274 | if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL || |
275 | s->pending_buf == Z_NULL) { |
276 | strm->msg = (char*)ERR_MSG(Z_MEM_ERROR); |
277 | deflateEnd (strm); |
278 | return Z_MEM_ERROR; |
279 | } |
280 | s->d_buf = overlay + s->lit_bufsize/sizeof(ush); |
281 | s->l_buf = s->pending_buf + (1+sizeof(ush))*s->lit_bufsize; |
282 | |
283 | s->level = level; |
284 | s->strategy = strategy; |
285 | s->method = (Byte)method; |
286 | |
287 | return deflateReset(strm); |
288 | } |
289 | |
290 | /* ========================================================================= */ |
291 | int ZEXPORT deflateSetDictionary (strm, dictionary, dictLength) |
292 | z_streamp strm; |
293 | const Bytef *dictionary; |
294 | uInt dictLength; |
295 | { |
296 | deflate_state *s; |
297 | uInt length = dictLength; |
298 | uInt n; |
299 | IPos hash_head = 0; |
300 | |
301 | if (strm == Z_NULL || strm->state == Z_NULL || dictionary == Z_NULL || |
302 | strm->state->status != INIT_STATE) return Z_STREAM_ERROR; |
303 | |
304 | s = strm->state; |
305 | strm->adler = adler32(strm->adler, dictionary, dictLength); |
306 | |
307 | if (length < MIN_MATCH) return Z_OK; |
308 | if (length > MAX_DIST(s)) { |
309 | length = MAX_DIST(s); |
310 | #ifndef USE_DICT_HEAD |
311 | dictionary += dictLength - length; /* use the tail of the dictionary */ |
312 | #endif |
313 | } |
314 | zmemcpy(s->window, dictionary, length); |
315 | s->strstart = length; |
316 | s->block_start = (long)length; |
317 | |
318 | /* Insert all strings in the hash table (except for the last two bytes). |
319 | * s->lookahead stays null, so s->ins_h will be recomputed at the next |
320 | * call of fill_window. |
321 | */ |
322 | s->ins_h = s->window[0]; |
323 | UPDATE_HASH(s, s->ins_h, s->window[1]); |
324 | for (n = 0; n <= length - MIN_MATCH; n++) { |
325 | INSERT_STRING(s, n, hash_head); |
326 | } |
327 | if (hash_head) hash_head = 0; /* to make compiler happy */ |
328 | return Z_OK; |
329 | } |
330 | |
331 | /* ========================================================================= */ |
332 | int ZEXPORT deflateReset (strm) |
333 | z_streamp strm; |
334 | { |
335 | deflate_state *s; |
336 | |
337 | if (strm == Z_NULL || strm->state == Z_NULL || |
338 | strm->zalloc == Z_NULL || strm->zfree == Z_NULL) return Z_STREAM_ERROR; |
339 | |
340 | strm->total_in = strm->total_out = 0; |
341 | strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */ |
342 | strm->data_type = Z_UNKNOWN; |
343 | |
344 | s = (deflate_state *)strm->state; |
345 | s->pending = 0; |
346 | s->pending_out = s->pending_buf; |
347 | |
348 | if (s->noheader < 0) { |
349 | s->noheader = 0; /* was set to -1 by deflate(..., Z_FINISH); */ |
350 | } |
351 | s->status = s->noheader ? BUSY_STATE : INIT_STATE; |
352 | strm->adler = 1; |
353 | s->last_flush = Z_NO_FLUSH; |
354 | |
355 | _tr_init(s); |
356 | lm_init(s); |
357 | |
358 | return Z_OK; |
359 | } |
360 | |
361 | /* ========================================================================= */ |
362 | int ZEXPORT deflateParams(strm, level, strategy) |
363 | z_streamp strm; |
364 | int level; |
365 | int strategy; |
366 | { |
367 | deflate_state *s; |
368 | compress_func func; |
369 | int err = Z_OK; |
370 | |
371 | if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; |
372 | s = strm->state; |
373 | |
374 | if (level == Z_DEFAULT_COMPRESSION) { |
375 | level = 6; |
376 | } |
377 | if (level < 0 || level > 9 || strategy < 0 || strategy > Z_HUFFMAN_ONLY) { |
378 | return Z_STREAM_ERROR; |
379 | } |
380 | func = configuration_table[s->level].func; |
381 | |
382 | if (func != configuration_table[level].func && strm->total_in != 0) { |
383 | /* Flush the last buffer: */ |
384 | err = deflate(strm, Z_PARTIAL_FLUSH); |
385 | } |
386 | if (s->level != level) { |
387 | s->level = level; |
388 | s->max_lazy_match = configuration_table[level].max_lazy; |
389 | s->good_match = configuration_table[level].good_length; |
390 | s->nice_match = configuration_table[level].nice_length; |
391 | s->max_chain_length = configuration_table[level].max_chain; |
392 | } |
393 | s->strategy = strategy; |
394 | return err; |
395 | } |
396 | |
397 | /* ========================================================================= |
398 | * Put a short in the pending buffer. The 16-bit value is put in MSB order. |
399 | * IN assertion: the stream state is correct and there is enough room in |
400 | * pending_buf. |
401 | */ |
402 | local void putShortMSB (s, b) |
403 | deflate_state *s; |
404 | uInt b; |
405 | { |
406 | put_byte(s, (Byte)(b >> 8)); |
407 | put_byte(s, (Byte)(b & 0xff)); |
408 | } |
409 | |
410 | /* ========================================================================= |
411 | * Flush as much pending output as possible. All deflate() output goes |
412 | * through this function so some applications may wish to modify it |
413 | * to avoid allocating a large strm->next_out buffer and copying into it. |
414 | * (See also read_buf()). |
415 | */ |
416 | local void flush_pending(strm) |
417 | z_streamp strm; |
418 | { |
419 | unsigned len = strm->state->pending; |
420 | |
421 | if (len > strm->avail_out) len = strm->avail_out; |
422 | if (len == 0) return; |
423 | |
424 | zmemcpy(strm->next_out, strm->state->pending_out, len); |
425 | strm->next_out += len; |
426 | strm->state->pending_out += len; |
427 | strm->total_out += len; |
428 | strm->avail_out -= len; |
429 | strm->state->pending -= len; |
430 | if (strm->state->pending == 0) { |
431 | strm->state->pending_out = strm->state->pending_buf; |
432 | } |
433 | } |
434 | |
435 | /* ========================================================================= */ |
436 | int ZEXPORT deflate (strm, flush) |
437 | z_streamp strm; |
438 | int flush; |
439 | { |
440 | int old_flush; /* value of flush param for previous deflate call */ |
441 | deflate_state *s; |
442 | |
443 | if (strm == Z_NULL || strm->state == Z_NULL || |
444 | flush > Z_FINISH || flush < 0) { |
445 | return Z_STREAM_ERROR; |
446 | } |
447 | s = strm->state; |
448 | |
449 | if (strm->next_out == Z_NULL || |
450 | (strm->next_in == Z_NULL && strm->avail_in != 0) || |
451 | (s->status == FINISH_STATE && flush != Z_FINISH)) { |
452 | ERR_RETURN(strm, Z_STREAM_ERROR); |
453 | } |
454 | if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR); |
455 | |
456 | s->strm = strm; /* just in case */ |
457 | old_flush = s->last_flush; |
458 | s->last_flush = flush; |
459 | |
460 | /* Write the zlib header */ |
461 | if (s->status == INIT_STATE) { |
462 | |
463 | uInt header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8; |
464 | uInt level_flags = (s->level-1) >> 1; |
465 | |
466 | if (level_flags > 3) level_flags = 3; |
467 | header |= (level_flags << 6); |
468 | if (s->strstart != 0) header |= PRESET_DICT; |
469 | header += 31 - (header % 31); |
470 | |
471 | s->status = BUSY_STATE; |
472 | putShortMSB(s, header); |
473 | |
474 | /* Save the adler32 of the preset dictionary: */ |
475 | if (s->strstart != 0) { |
476 | putShortMSB(s, (uInt)(strm->adler >> 16)); |
477 | putShortMSB(s, (uInt)(strm->adler & 0xffff)); |
478 | } |
479 | strm->adler = 1L; |
480 | } |
481 | |
482 | /* Flush as much pending output as possible */ |
483 | if (s->pending != 0) { |
484 | flush_pending(strm); |
485 | if (strm->avail_out == 0) { |
486 | /* Since avail_out is 0, deflate will be called again with |
487 | * more output space, but possibly with both pending and |
488 | * avail_in equal to zero. There won't be anything to do, |
489 | * but this is not an error situation so make sure we |
490 | * return OK instead of BUF_ERROR at next call of deflate: |
491 | */ |
492 | s->last_flush = -1; |
493 | return Z_OK; |
494 | } |
495 | |
496 | /* Make sure there is something to do and avoid duplicate consecutive |
497 | * flushes. For repeated and useless calls with Z_FINISH, we keep |
498 | * returning Z_STREAM_END instead of Z_BUFF_ERROR. |
499 | */ |
500 | } else if (strm->avail_in == 0 && flush <= old_flush && |
501 | flush != Z_FINISH) { |
502 | ERR_RETURN(strm, Z_BUF_ERROR); |
503 | } |
504 | |
505 | /* User must not provide more input after the first FINISH: */ |
506 | if (s->status == FINISH_STATE && strm->avail_in != 0) { |
507 | ERR_RETURN(strm, Z_BUF_ERROR); |
508 | } |
509 | |
510 | /* Start a new block or continue the current one. |
511 | */ |
512 | if (strm->avail_in != 0 || s->lookahead != 0 || |
513 | (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) { |
514 | block_state bstate; |
515 | |
516 | bstate = (*(configuration_table[s->level].func))(s, flush); |
517 | |
518 | if (bstate == finish_started || bstate == finish_done) { |
519 | s->status = FINISH_STATE; |
520 | } |
521 | if (bstate == need_more || bstate == finish_started) { |
522 | if (strm->avail_out == 0) { |
523 | s->last_flush = -1; /* avoid BUF_ERROR next call, see above */ |
524 | } |
525 | return Z_OK; |
526 | /* If flush != Z_NO_FLUSH && avail_out == 0, the next call |
527 | * of deflate should use the same flush parameter to make sure |
528 | * that the flush is complete. So we don't have to output an |
529 | * empty block here, this will be done at next call. This also |
530 | * ensures that for a very small output buffer, we emit at most |
531 | * one empty block. |
532 | */ |
533 | } |
534 | if (bstate == block_done) { |
535 | if (flush == Z_PARTIAL_FLUSH) { |
536 | _tr_align(s); |
537 | } else { /* FULL_FLUSH or SYNC_FLUSH */ |
538 | _tr_stored_block(s, (char*)0, 0L, 0); |
539 | /* For a full flush, this empty block will be recognized |
540 | * as a special marker by inflate_sync(). |
541 | */ |
542 | if (flush == Z_FULL_FLUSH) { |
543 | CLEAR_HASH(s); /* forget history */ |
544 | } |
545 | } |
546 | flush_pending(strm); |
547 | if (strm->avail_out == 0) { |
548 | s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */ |
549 | return Z_OK; |
550 | } |
551 | } |
552 | } |
553 | Assert(strm->avail_out > 0, "bug2"); |
554 | |
555 | if (flush != Z_FINISH) return Z_OK; |
556 | if (s->noheader) return Z_STREAM_END; |
557 | |
558 | /* Write the zlib trailer (adler32) */ |
559 | putShortMSB(s, (uInt)(strm->adler >> 16)); |
560 | putShortMSB(s, (uInt)(strm->adler & 0xffff)); |
561 | flush_pending(strm); |
562 | /* If avail_out is zero, the application will call deflate again |
563 | * to flush the rest. |
564 | */ |
565 | s->noheader = -1; /* write the trailer only once! */ |
566 | return s->pending != 0 ? Z_OK : Z_STREAM_END; |
567 | } |
568 | |
569 | /* ========================================================================= */ |
570 | int ZEXPORT deflateEnd (strm) |
571 | z_streamp strm; |
572 | { |
573 | int status; |
574 | |
575 | if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; |
576 | |
577 | status = strm->state->status; |
578 | if (status != INIT_STATE && status != BUSY_STATE && |
579 | status != FINISH_STATE) { |
580 | return Z_STREAM_ERROR; |
581 | } |
582 | |
583 | /* Deallocate in reverse order of allocations: */ |
584 | TRY_FREE(strm, strm->state->pending_buf); |
585 | TRY_FREE(strm, strm->state->head); |
586 | TRY_FREE(strm, strm->state->prev); |
587 | TRY_FREE(strm, strm->state->window); |
588 | |
589 | ZFREE(strm, strm->state); |
590 | strm->state = Z_NULL; |
591 | |
592 | return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK; |
593 | } |
594 | |
595 | /* ========================================================================= |
596 | * Copy the source state to the destination state. |
597 | * To simplify the source, this is not supported for 16-bit MSDOS (which |
598 | * doesn't have enough memory anyway to duplicate compression states). |
599 | */ |
600 | int ZEXPORT deflateCopy (dest, source) |
601 | z_streamp dest; |
602 | z_streamp source; |
603 | { |
604 | #ifdef MAXSEG_64K |
605 | return Z_STREAM_ERROR; |
606 | #else |
607 | deflate_state *ds; |
608 | deflate_state *ss; |
609 | ushf *overlay; |
610 | |
611 | |
612 | if (source == Z_NULL || dest == Z_NULL || source->state == Z_NULL) { |
613 | return Z_STREAM_ERROR; |
614 | } |
615 | |
616 | ss = source->state; |
617 | |
618 | *dest = *source; |
619 | |
620 | ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state)); |
621 | if (ds == Z_NULL) return Z_MEM_ERROR; |
622 | dest->state = (struct internal_state FAR *) ds; |
623 | *ds = *ss; |
624 | ds->strm = dest; |
625 | |
626 | ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte)); |
627 | ds->prev = (Posf *) ZALLOC(dest, ds->w_size, sizeof(Pos)); |
628 | ds->head = (Posf *) ZALLOC(dest, ds->hash_size, sizeof(Pos)); |
629 | overlay = (ushf *) ZALLOC(dest, ds->lit_bufsize, sizeof(ush)+2); |
630 | ds->pending_buf = (uchf *) overlay; |
631 | |
632 | if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL || |
633 | ds->pending_buf == Z_NULL) { |
634 | deflateEnd (dest); |
635 | return Z_MEM_ERROR; |
636 | } |
637 | /* following zmemcpy do not work for 16-bit MSDOS */ |
638 | zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte)); |
639 | zmemcpy(ds->prev, ss->prev, ds->w_size * sizeof(Pos)); |
640 | zmemcpy(ds->head, ss->head, ds->hash_size * sizeof(Pos)); |
641 | zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size); |
642 | |
643 | ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf); |
644 | ds->d_buf = overlay + ds->lit_bufsize/sizeof(ush); |
645 | ds->l_buf = ds->pending_buf + (1+sizeof(ush))*ds->lit_bufsize; |
646 | |
647 | ds->l_desc.dyn_tree = ds->dyn_ltree; |
648 | ds->d_desc.dyn_tree = ds->dyn_dtree; |
649 | ds->bl_desc.dyn_tree = ds->bl_tree; |
650 | |
651 | return Z_OK; |
652 | #endif |
653 | } |
654 | |
655 | /* =========================================================================== |
656 | * Read a new buffer from the current input stream, update the adler32 |
657 | * and total number of bytes read. All deflate() input goes through |
658 | * this function so some applications may wish to modify it to avoid |
659 | * allocating a large strm->next_in buffer and copying from it. |
660 | * (See also flush_pending()). |
661 | */ |
662 | local int read_buf(strm, buf, size) |
663 | z_streamp strm; |
664 | Bytef *buf; |
665 | unsigned size; |
666 | { |
667 | unsigned len = strm->avail_in; |
668 | |
669 | if (len > size) len = size; |
670 | if (len == 0) return 0; |
671 | |
672 | strm->avail_in -= len; |
673 | |
674 | if (!strm->state->noheader) { |
675 | strm->adler = adler32(strm->adler, strm->next_in, len); |
676 | } |
677 | zmemcpy(buf, strm->next_in, len); |
678 | strm->next_in += len; |
679 | strm->total_in += len; |
680 | |
681 | return (int)len; |
682 | } |
683 | |
684 | /* =========================================================================== |
685 | * Initialize the "longest match" routines for a new zlib stream |
686 | */ |
687 | local void lm_init (s) |
688 | deflate_state *s; |
689 | { |
690 | s->window_size = (ulg)2L*s->w_size; |
691 | |
692 | CLEAR_HASH(s); |
693 | |
694 | /* Set the default configuration parameters: |
695 | */ |
696 | s->max_lazy_match = configuration_table[s->level].max_lazy; |
697 | s->good_match = configuration_table[s->level].good_length; |
698 | s->nice_match = configuration_table[s->level].nice_length; |
699 | s->max_chain_length = configuration_table[s->level].max_chain; |
700 | |
701 | s->strstart = 0; |
702 | s->block_start = 0L; |
703 | s->lookahead = 0; |
704 | s->match_length = s->prev_length = MIN_MATCH-1; |
705 | s->match_available = 0; |
706 | s->ins_h = 0; |
707 | #ifdef ASMV |
708 | match_init(); /* initialize the asm code */ |
709 | #endif |
710 | } |
711 | |
712 | /* =========================================================================== |
713 | * Set match_start to the longest match starting at the given string and |
714 | * return its length. Matches shorter or equal to prev_length are discarded, |
715 | * in which case the result is equal to prev_length and match_start is |
716 | * garbage. |
717 | * IN assertions: cur_match is the head of the hash chain for the current |
718 | * string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1 |
719 | * OUT assertion: the match length is not greater than s->lookahead. |
720 | */ |
721 | #ifndef ASMV |
722 | /* For 80x86 and 680x0, an optimized version will be provided in match.asm or |
723 | * match.S. The code will be functionally equivalent. |
724 | */ |
725 | #ifndef FASTEST |
726 | local uInt longest_match(s, cur_match) |
727 | deflate_state *s; |
728 | IPos cur_match; /* current match */ |
729 | { |
730 | unsigned chain_length = s->max_chain_length;/* max hash chain length */ |
731 | register Bytef *scan = s->window + s->strstart; /* current string */ |
732 | register Bytef *match; /* matched string */ |
733 | register int len; /* length of current match */ |
734 | int best_len = s->prev_length; /* best match length so far */ |
735 | int nice_match = s->nice_match; /* stop if match long enough */ |
736 | IPos limit = s->strstart > (IPos)MAX_DIST(s) ? |
737 | s->strstart - (IPos)MAX_DIST(s) : NIL; |
738 | /* Stop when cur_match becomes <= limit. To simplify the code, |
739 | * we prevent matches with the string of window index 0. |
740 | */ |
741 | Posf *prev = s->prev; |
742 | uInt wmask = s->w_mask; |
743 | |
744 | #ifdef UNALIGNED_OK |
745 | /* Compare two bytes at a time. Note: this is not always beneficial. |
746 | * Try with and without -DUNALIGNED_OK to check. |
747 | */ |
748 | register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1; |
749 | register ush scan_start = *(ushf*)scan; |
750 | register ush scan_end = *(ushf*)(scan+best_len-1); |
751 | #else |
752 | register Bytef *strend = s->window + s->strstart + MAX_MATCH; |
753 | register Byte scan_end1 = scan[best_len-1]; |
754 | register Byte scan_end = scan[best_len]; |
755 | #endif |
756 | |
757 | /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16. |
758 | * It is easy to get rid of this optimization if necessary. |
759 | */ |
760 | Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever"); |
761 | |
762 | /* Do not waste too much time if we already have a good match: */ |
763 | if (s->prev_length >= s->good_match) { |
764 | chain_length >>= 2; |
765 | } |
766 | /* Do not look for matches beyond the end of the input. This is necessary |
767 | * to make deflate deterministic. |
768 | */ |
769 | if ((uInt)nice_match > s->lookahead) nice_match = s->lookahead; |
770 | |
771 | Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead"); |
772 | |
773 | do { |
774 | Assert(cur_match < s->strstart, "no future"); |
775 | match = s->window + cur_match; |
776 | |
777 | /* Skip to next match if the match length cannot increase |
778 | * or if the match length is less than 2: |
779 | */ |
780 | #if (defined(UNALIGNED_OK) && MAX_MATCH == 258) |
781 | /* This code assumes sizeof(unsigned short) == 2. Do not use |
782 | * UNALIGNED_OK if your compiler uses a different size. |
783 | */ |
784 | if (*(ushf*)(match+best_len-1) != scan_end || |
785 | *(ushf*)match != scan_start) continue; |
786 | |
787 | /* It is not necessary to compare scan[2] and match[2] since they are |
788 | * always equal when the other bytes match, given that the hash keys |
789 | * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at |
790 | * strstart+3, +5, ... up to strstart+257. We check for insufficient |
791 | * lookahead only every 4th comparison; the 128th check will be made |
792 | * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is |
793 | * necessary to put more guard bytes at the end of the window, or |
794 | * to check more often for insufficient lookahead. |
795 | */ |
796 | Assert(scan[2] == match[2], "scan[2]?"); |
797 | scan++, match++; |
798 | do { |
799 | } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) && |
800 | *(ushf*)(scan+=2) == *(ushf*)(match+=2) && |
801 | *(ushf*)(scan+=2) == *(ushf*)(match+=2) && |
802 | *(ushf*)(scan+=2) == *(ushf*)(match+=2) && |
803 | scan < strend); |
804 | /* The funny "do {}" generates better code on most compilers */ |
805 | |
806 | /* Here, scan <= window+strstart+257 */ |
807 | Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan"); |
808 | if (*scan == *match) scan++; |
809 | |
810 | len = (MAX_MATCH - 1) - (int)(strend-scan); |
811 | scan = strend - (MAX_MATCH-1); |
812 | |
813 | #else /* UNALIGNED_OK */ |
814 | |
815 | if (match[best_len] != scan_end || |
816 | match[best_len-1] != scan_end1 || |
817 | *match != *scan || |
818 | *++match != scan[1]) continue; |
819 | |
820 | /* The check at best_len-1 can be removed because it will be made |
821 | * again later. (This heuristic is not always a win.) |
822 | * It is not necessary to compare scan[2] and match[2] since they |
823 | * are always equal when the other bytes match, given that |
824 | * the hash keys are equal and that HASH_BITS >= 8. |
825 | */ |
826 | scan += 2, match++; |
827 | Assert(*scan == *match, "match[2]?"); |
828 | |
829 | /* We check for insufficient lookahead only every 8th comparison; |
830 | * the 256th check will be made at strstart+258. |
831 | */ |
832 | do { |
833 | } while (*++scan == *++match && *++scan == *++match && |
834 | *++scan == *++match && *++scan == *++match && |
835 | *++scan == *++match && *++scan == *++match && |
836 | *++scan == *++match && *++scan == *++match && |
837 | scan < strend); |
838 | |
839 | Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan"); |
840 | |
841 | len = MAX_MATCH - (int)(strend - scan); |
842 | scan = strend - MAX_MATCH; |
843 | |
844 | #endif /* UNALIGNED_OK */ |
845 | |
846 | if (len > best_len) { |
847 | s->match_start = cur_match; |
848 | best_len = len; |
849 | if (len >= nice_match) break; |
850 | #ifdef UNALIGNED_OK |
851 | scan_end = *(ushf*)(scan+best_len-1); |
852 | #else |
853 | scan_end1 = scan[best_len-1]; |
854 | scan_end = scan[best_len]; |
855 | #endif |
856 | } |
857 | } while ((cur_match = prev[cur_match & wmask]) > limit |
858 | && --chain_length != 0); |
859 | |
860 | if ((uInt)best_len <= s->lookahead) return (uInt)best_len; |
861 | return s->lookahead; |
862 | } |
863 | |
864 | #else /* FASTEST */ |
865 | /* --------------------------------------------------------------------------- |
866 | * Optimized version for level == 1 only |
867 | */ |
868 | local uInt longest_match(s, cur_match) |
869 | deflate_state *s; |
870 | IPos cur_match; /* current match */ |
871 | { |
872 | register Bytef *scan = s->window + s->strstart; /* current string */ |
873 | register Bytef *match; /* matched string */ |
874 | register int len; /* length of current match */ |
875 | register Bytef *strend = s->window + s->strstart + MAX_MATCH; |
876 | |
877 | /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16. |
878 | * It is easy to get rid of this optimization if necessary. |
879 | */ |
880 | Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever"); |
881 | |
882 | Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead"); |
883 | |
884 | Assert(cur_match < s->strstart, "no future"); |
885 | |
886 | match = s->window + cur_match; |
887 | |
888 | /* Return failure if the match length is less than 2: |
889 | */ |
890 | if (match[0] != scan[0] || match[1] != scan[1]) return MIN_MATCH-1; |
891 | |
892 | /* The check at best_len-1 can be removed because it will be made |
893 | * again later. (This heuristic is not always a win.) |
894 | * It is not necessary to compare scan[2] and match[2] since they |
895 | * are always equal when the other bytes match, given that |
896 | * the hash keys are equal and that HASH_BITS >= 8. |
897 | */ |
898 | scan += 2, match += 2; |
899 | Assert(*scan == *match, "match[2]?"); |
900 | |
901 | /* We check for insufficient lookahead only every 8th comparison; |
902 | * the 256th check will be made at strstart+258. |
903 | */ |
904 | do { |
905 | } while (*++scan == *++match && *++scan == *++match && |
906 | *++scan == *++match && *++scan == *++match && |
907 | *++scan == *++match && *++scan == *++match && |
908 | *++scan == *++match && *++scan == *++match && |
909 | scan < strend); |
910 | |
911 | Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan"); |
912 | |
913 | len = MAX_MATCH - (int)(strend - scan); |
914 | |
915 | if (len < MIN_MATCH) return MIN_MATCH - 1; |
916 | |
917 | s->match_start = cur_match; |
918 | return len <= s->lookahead ? len : s->lookahead; |
919 | } |
920 | #endif /* FASTEST */ |
921 | #endif /* ASMV */ |
922 | |
923 | #ifdef DEBUG |
924 | /* =========================================================================== |
925 | * Check that the match at match_start is indeed a match. |
926 | */ |
927 | local void check_match(s, start, match, length) |
928 | deflate_state *s; |
929 | IPos start, match; |
930 | int length; |
931 | { |
932 | /* check that the match is indeed a match */ |
933 | if (zmemcmp(s->window + match, |
934 | s->window + start, length) != EQUAL) { |
935 | fprintf(stderr, " start %u, match %u, length %d\n", |
936 | start, match, length); |
937 | do { |
938 | fprintf(stderr, "%c%c", s->window[match++], s->window[start++]); |
939 | } while (--length != 0); |
940 | z_error("invalid match"); |
941 | } |
942 | if (z_verbose > 1) { |
943 | fprintf(stderr,"\\[%d,%d]", start-match, length); |
944 | do { putc(s->window[start++], stderr); } while (--length != 0); |
945 | } |
946 | } |
947 | #else |
948 | # define check_match(s, start, match, length) |
949 | #endif |
950 | |
951 | /* =========================================================================== |
952 | * Fill the window when the lookahead becomes insufficient. |
953 | * Updates strstart and lookahead. |
954 | * |
955 | * IN assertion: lookahead < MIN_LOOKAHEAD |
956 | * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD |
957 | * At least one byte has been read, or avail_in == 0; reads are |
958 | * performed for at least two bytes (required for the zip translate_eol |
959 | * option -- not supported here). |
960 | */ |
961 | local void fill_window(s) |
962 | deflate_state *s; |
963 | { |
964 | register unsigned n, m; |
965 | register Posf *p; |
966 | unsigned more; /* Amount of free space at the end of the window. */ |
967 | uInt wsize = s->w_size; |
968 | |
969 | do { |
970 | more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart); |
971 | |
972 | /* Deal with !@#$% 64K limit: */ |
973 | if (more == 0 && s->strstart == 0 && s->lookahead == 0) { |
974 | more = wsize; |
975 | |
976 | } else if (more == (unsigned)(-1)) { |
977 | /* Very unlikely, but possible on 16 bit machine if strstart == 0 |
978 | * and lookahead == 1 (input done one byte at time) |
979 | */ |
980 | more--; |
981 | |
982 | /* If the window is almost full and there is insufficient lookahead, |
983 | * move the upper half to the lower one to make room in the upper half. |
984 | */ |
985 | } else if (s->strstart >= wsize+MAX_DIST(s)) { |
986 | |
987 | zmemcpy(s->window, s->window+wsize, (unsigned)wsize); |
988 | s->match_start -= wsize; |
989 | s->strstart -= wsize; /* we now have strstart >= MAX_DIST */ |
990 | s->block_start -= (long) wsize; |
991 | |
992 | /* Slide the hash table (could be avoided with 32 bit values |
993 | at the expense of memory usage). We slide even when level == 0 |
994 | to keep the hash table consistent if we switch back to level > 0 |
995 | later. (Using level 0 permanently is not an optimal usage of |
996 | zlib, so we don't care about this pathological case.) |
997 | */ |
998 | n = s->hash_size; |
999 | p = &s->head[n]; |
1000 | do { |
1001 | m = *--p; |
1002 | *p = (Pos)(m >= wsize ? m-wsize : NIL); |
1003 | } while (--n); |
1004 | |
1005 | n = wsize; |
1006 | #ifndef FASTEST |
1007 | p = &s->prev[n]; |
1008 | do { |
1009 | m = *--p; |
1010 | *p = (Pos)(m >= wsize ? m-wsize : NIL); |
1011 | /* If n is not on any hash chain, prev[n] is garbage but |
1012 | * its value will never be used. |
1013 | */ |
1014 | } while (--n); |
1015 | #endif |
1016 | more += wsize; |
1017 | } |
1018 | if (s->strm->avail_in == 0) return; |
1019 | |
1020 | /* If there was no sliding: |
1021 | * strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 && |
1022 | * more == window_size - lookahead - strstart |
1023 | * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1) |
1024 | * => more >= window_size - 2*WSIZE + 2 |
1025 | * In the BIG_MEM or MMAP case (not yet supported), |
1026 | * window_size == input_size + MIN_LOOKAHEAD && |
1027 | * strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD. |
1028 | * Otherwise, window_size == 2*WSIZE so more >= 2. |
1029 | * If there was sliding, more >= WSIZE. So in all cases, more >= 2. |
1030 | */ |
1031 | Assert(more >= 2, "more < 2"); |
1032 | |
1033 | n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more); |
1034 | s->lookahead += n; |
1035 | |
1036 | /* Initialize the hash value now that we have some input: */ |
1037 | if (s->lookahead >= MIN_MATCH) { |
1038 | s->ins_h = s->window[s->strstart]; |
1039 | UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]); |
1040 | #if MIN_MATCH != 3 |
1041 | Call UPDATE_HASH() MIN_MATCH-3 more times |
1042 | #endif |
1043 | } |
1044 | /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage, |
1045 | * but this is not important since only literal bytes will be emitted. |
1046 | */ |
1047 | |
1048 | } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0); |
1049 | } |
1050 | |
1051 | /* =========================================================================== |
1052 | * Flush the current block, with given end-of-file flag. |
1053 | * IN assertion: strstart is set to the end of the current match. |
1054 | */ |
1055 | #define FLUSH_BLOCK_ONLY(s, eof) { \ |
1056 | _tr_flush_block(s, (s->block_start >= 0L ? \ |
1057 | (charf *)&s->window[(unsigned)s->block_start] : \ |
1058 | (charf *)Z_NULL), \ |
1059 | (ulg)((long)s->strstart - s->block_start), \ |
1060 | (eof)); \ |
1061 | s->block_start = s->strstart; \ |
1062 | flush_pending(s->strm); \ |
1063 | Tracev((stderr,"[FLUSH]")); \ |
1064 | } |
1065 | |
1066 | /* Same but force premature exit if necessary. */ |
1067 | #define FLUSH_BLOCK(s, eof) { \ |
1068 | FLUSH_BLOCK_ONLY(s, eof); \ |
1069 | if (s->strm->avail_out == 0) return (eof) ? finish_started : need_more; \ |
1070 | } |
1071 | |
1072 | /* =========================================================================== |
1073 | * Copy without compression as much as possible from the input stream, return |
1074 | * the current block state. |
1075 | * This function does not insert new strings in the dictionary since |
1076 | * uncompressible data is probably not useful. This function is used |
1077 | * only for the level=0 compression option. |
1078 | * NOTE: this function should be optimized to avoid extra copying from |
1079 | * window to pending_buf. |
1080 | */ |
1081 | local block_state deflate_stored(s, flush) |
1082 | deflate_state *s; |
1083 | int flush; |
1084 | { |
1085 | /* Stored blocks are limited to 0xffff bytes, pending_buf is limited |
1086 | * to pending_buf_size, and each stored block has a 5 byte header: |
1087 | */ |
1088 | ulg max_block_size = 0xffff; |
1089 | ulg max_start; |
1090 | |
1091 | if (max_block_size > s->pending_buf_size - 5) { |
1092 | max_block_size = s->pending_buf_size - 5; |
1093 | } |
1094 | |
1095 | /* Copy as much as possible from input to output: */ |
1096 | for (;;) { |
1097 | /* Fill the window as much as possible: */ |
1098 | if (s->lookahead <= 1) { |
1099 | |
1100 | Assert(s->strstart < s->w_size+MAX_DIST(s) || |
1101 | s->block_start >= (long)s->w_size, "slide too late"); |
1102 | |
1103 | fill_window(s); |
1104 | if (s->lookahead == 0 && flush == Z_NO_FLUSH) return need_more; |
1105 | |
1106 | if (s->lookahead == 0) break; /* flush the current block */ |
1107 | } |
1108 | Assert(s->block_start >= 0L, "block gone"); |
1109 | |
1110 | s->strstart += s->lookahead; |
1111 | s->lookahead = 0; |
1112 | |
1113 | /* Emit a stored block if pending_buf will be full: */ |
1114 | max_start = s->block_start + max_block_size; |
1115 | if (s->strstart == 0 || (ulg)s->strstart >= max_start) { |
1116 | /* strstart == 0 is possible when wraparound on 16-bit machine */ |
1117 | s->lookahead = (uInt)(s->strstart - max_start); |
1118 | s->strstart = (uInt)max_start; |
1119 | FLUSH_BLOCK(s, 0); |
1120 | } |
1121 | /* Flush if we may have to slide, otherwise block_start may become |
1122 | * negative and the data will be gone: |
1123 | */ |
1124 | if (s->strstart - (uInt)s->block_start >= MAX_DIST(s)) { |
1125 | FLUSH_BLOCK(s, 0); |
1126 | } |
1127 | } |
1128 | FLUSH_BLOCK(s, flush == Z_FINISH); |
1129 | return flush == Z_FINISH ? finish_done : block_done; |
1130 | } |
1131 | |
1132 | /* =========================================================================== |
1133 | * Compress as much as possible from the input stream, return the current |
1134 | * block state. |
1135 | * This function does not perform lazy evaluation of matches and inserts |
1136 | * new strings in the dictionary only for unmatched strings or for short |
1137 | * matches. It is used only for the fast compression options. |
1138 | */ |
1139 | local block_state deflate_fast(s, flush) |
1140 | deflate_state *s; |
1141 | int flush; |
1142 | { |
1143 | IPos hash_head = NIL; /* head of the hash chain */ |
1144 | int bflush; /* set if current block must be flushed */ |
1145 | |
1146 | for (;;) { |
1147 | /* Make sure that we always have enough lookahead, except |
1148 | * at the end of the input file. We need MAX_MATCH bytes |
1149 | * for the next match, plus MIN_MATCH bytes to insert the |
1150 | * string following the next match. |
1151 | */ |
1152 | if (s->lookahead < MIN_LOOKAHEAD) { |
1153 | fill_window(s); |
1154 | if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) { |
1155 | return need_more; |
1156 | } |
1157 | if (s->lookahead == 0) break; /* flush the current block */ |
1158 | } |
1159 | |
1160 | /* Insert the string window[strstart .. strstart+2] in the |
1161 | * dictionary, and set hash_head to the head of the hash chain: |
1162 | */ |
1163 | if (s->lookahead >= MIN_MATCH) { |
1164 | INSERT_STRING(s, s->strstart, hash_head); |
1165 | } |
1166 | |
1167 | /* Find the longest match, discarding those <= prev_length. |
1168 | * At this point we have always match_length < MIN_MATCH |
1169 | */ |
1170 | if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) { |
1171 | /* To simplify the code, we prevent matches with the string |
1172 | * of window index 0 (in particular we have to avoid a match |
1173 | * of the string with itself at the start of the input file). |
1174 | */ |
1175 | if (s->strategy != Z_HUFFMAN_ONLY) { |
1176 | s->match_length = longest_match (s, hash_head); |
1177 | } |
1178 | /* longest_match() sets match_start */ |
1179 | } |
1180 | if (s->match_length >= MIN_MATCH) { |
1181 | check_match(s, s->strstart, s->match_start, s->match_length); |
1182 | |
1183 | _tr_tally_dist(s, s->strstart - s->match_start, |
1184 | s->match_length - MIN_MATCH, bflush); |
1185 | |
1186 | s->lookahead -= s->match_length; |
1187 | |
1188 | /* Insert new strings in the hash table only if the match length |
1189 | * is not too large. This saves time but degrades compression. |
1190 | */ |
1191 | #ifndef FASTEST |
1192 | if (s->match_length <= s->max_insert_length && |
1193 | s->lookahead >= MIN_MATCH) { |
1194 | s->match_length--; /* string at strstart already in hash table */ |
1195 | do { |
1196 | s->strstart++; |
1197 | INSERT_STRING(s, s->strstart, hash_head); |
1198 | /* strstart never exceeds WSIZE-MAX_MATCH, so there are |
1199 | * always MIN_MATCH bytes ahead. |
1200 | */ |
1201 | } while (--s->match_length != 0); |
1202 | s->strstart++; |
1203 | } else |
1204 | #endif |
1205 | { |
1206 | s->strstart += s->match_length; |
1207 | s->match_length = 0; |
1208 | s->ins_h = s->window[s->strstart]; |
1209 | UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]); |
1210 | #if MIN_MATCH != 3 |
1211 | Call UPDATE_HASH() MIN_MATCH-3 more times |
1212 | #endif |
1213 | /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not |
1214 | * matter since it will be recomputed at next deflate call. |
1215 | */ |
1216 | } |
1217 | } else { |
1218 | /* No match, output a literal byte */ |
1219 | Tracevv((stderr,"%c", s->window[s->strstart])); |
1220 | _tr_tally_lit (s, s->window[s->strstart], bflush); |
1221 | s->lookahead--; |
1222 | s->strstart++; |
1223 | } |
1224 | if (bflush) FLUSH_BLOCK(s, 0); |
1225 | } |
1226 | FLUSH_BLOCK(s, flush == Z_FINISH); |
1227 | return flush == Z_FINISH ? finish_done : block_done; |
1228 | } |
1229 | |
1230 | /* =========================================================================== |
1231 | * Same as above, but achieves better compression. We use a lazy |
1232 | * evaluation for matches: a match is finally adopted only if there is |
1233 | * no better match at the next window position. |
1234 | */ |
1235 | local block_state deflate_slow(s, flush) |
1236 | deflate_state *s; |
1237 | int flush; |
1238 | { |
1239 | IPos hash_head = NIL; /* head of hash chain */ |
1240 | int bflush; /* set if current block must be flushed */ |
1241 | |
1242 | /* Process the input block. */ |
1243 | for (;;) { |
1244 | /* Make sure that we always have enough lookahead, except |
1245 | * at the end of the input file. We need MAX_MATCH bytes |
1246 | * for the next match, plus MIN_MATCH bytes to insert the |
1247 | * string following the next match. |
1248 | */ |
1249 | if (s->lookahead < MIN_LOOKAHEAD) { |
1250 | fill_window(s); |
1251 | if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) { |
1252 | return need_more; |
1253 | } |
1254 | if (s->lookahead == 0) break; /* flush the current block */ |
1255 | } |
1256 | |
1257 | /* Insert the string window[strstart .. strstart+2] in the |
1258 | * dictionary, and set hash_head to the head of the hash chain: |
1259 | */ |
1260 | if (s->lookahead >= MIN_MATCH) { |
1261 | INSERT_STRING(s, s->strstart, hash_head); |
1262 | } |
1263 | |
1264 | /* Find the longest match, discarding those <= prev_length. |
1265 | */ |
1266 | s->prev_length = s->match_length, s->prev_match = s->match_start; |
1267 | s->match_length = MIN_MATCH-1; |
1268 | |
1269 | if (hash_head != NIL && s->prev_length < s->max_lazy_match && |
1270 | s->strstart - hash_head <= MAX_DIST(s)) { |
1271 | /* To simplify the code, we prevent matches with the string |
1272 | * of window index 0 (in particular we have to avoid a match |
1273 | * of the string with itself at the start of the input file). |
1274 | */ |
1275 | if (s->strategy != Z_HUFFMAN_ONLY) { |
1276 | s->match_length = longest_match (s, hash_head); |
1277 | } |
1278 | /* longest_match() sets match_start */ |
1279 | |
1280 | if (s->match_length <= 5 && (s->strategy == Z_FILTERED || |
1281 | (s->match_length == MIN_MATCH && |
1282 | s->strstart - s->match_start > TOO_FAR))) { |
1283 | |
1284 | /* If prev_match is also MIN_MATCH, match_start is garbage |
1285 | * but we will ignore the current match anyway. |
1286 | */ |
1287 | s->match_length = MIN_MATCH-1; |
1288 | } |
1289 | } |
1290 | /* If there was a match at the previous step and the current |
1291 | * match is not better, output the previous match: |
1292 | */ |
1293 | if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) { |
1294 | uInt max_insert = s->strstart + s->lookahead - MIN_MATCH; |
1295 | /* Do not insert strings in hash table beyond this. */ |
1296 | |
1297 | check_match(s, s->strstart-1, s->prev_match, s->prev_length); |
1298 | |
1299 | _tr_tally_dist(s, s->strstart -1 - s->prev_match, |
1300 | s->prev_length - MIN_MATCH, bflush); |
1301 | |
1302 | /* Insert in hash table all strings up to the end of the match. |
1303 | * strstart-1 and strstart are already inserted. If there is not |
1304 | * enough lookahead, the last two strings are not inserted in |
1305 | * the hash table. |
1306 | */ |
1307 | s->lookahead -= s->prev_length-1; |
1308 | s->prev_length -= 2; |
1309 | do { |
1310 | if (++s->strstart <= max_insert) { |
1311 | INSERT_STRING(s, s->strstart, hash_head); |
1312 | } |
1313 | } while (--s->prev_length != 0); |
1314 | s->match_available = 0; |
1315 | s->match_length = MIN_MATCH-1; |
1316 | s->strstart++; |
1317 | |
1318 | if (bflush) FLUSH_BLOCK(s, 0); |
1319 | |
1320 | } else if (s->match_available) { |
1321 | /* If there was no match at the previous position, output a |
1322 | * single literal. If there was a match but the current match |
1323 | * is longer, truncate the previous match to a single literal. |
1324 | */ |
1325 | Tracevv((stderr,"%c", s->window[s->strstart-1])); |
1326 | _tr_tally_lit(s, s->window[s->strstart-1], bflush); |
1327 | if (bflush) { |
1328 | FLUSH_BLOCK_ONLY(s, 0); |
1329 | } |
1330 | s->strstart++; |
1331 | s->lookahead--; |
1332 | if (s->strm->avail_out == 0) return need_more; |
1333 | } else { |
1334 | /* There is no previous match to compare with, wait for |
1335 | * the next step to decide. |
1336 | */ |
1337 | s->match_available = 1; |
1338 | s->strstart++; |
1339 | s->lookahead--; |
1340 | } |
1341 | } |
1342 | Assert (flush != Z_NO_FLUSH, "no flush?"); |
1343 | if (s->match_available) { |
1344 | Tracevv((stderr,"%c", s->window[s->strstart-1])); |
1345 | _tr_tally_lit(s, s->window[s->strstart-1], bflush); |
1346 | s->match_available = 0; |
1347 | } |
1348 | FLUSH_BLOCK(s, flush == Z_FINISH); |
1349 | return flush == Z_FINISH ? finish_done : block_done; |
1350 | } |