+/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
+ * Mupen64plus - new_dynarec.c *
+ * Copyright (C) 2009-2010 Ari64 *
+ * *
+ * This program is free software; you can redistribute it and/or modify *
+ * it under the terms of the GNU General Public License as published by *
+ * the Free Software Foundation; either version 2 of the License, or *
+ * (at your option) any later version. *
+ * *
+ * This program is distributed in the hope that it will be useful, *
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of *
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
+ * GNU General Public License for more details. *
+ * *
+ * You should have received a copy of the GNU General Public License *
+ * along with this program; if not, write to the *
+ * Free Software Foundation, Inc., *
+ * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. *
+ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
+
+#include <stdlib.h>
+#include <stdint.h> //include for uint64_t
+#include <assert.h>
+
+#include "../recomp.h"
+#include "../recomph.h" //include for function prototypes
+#include "../macros.h"
+#include "../r4300.h"
+#include "../ops.h"
+#include "../interupt.h"
+
+#include "../../memory/memory.h"
+
+#include <sys/mman.h>
+
+#ifdef __i386__
+#include "assem_x86.h"
+#endif
+#ifdef __x86_64__
+#include "assem_x64.h"
+#endif
+#ifdef __arm__
+#include "assem_arm.h"
+#endif
+
+#define MAXBLOCK 4096
+#define MAX_OUTPUT_BLOCK_SIZE 262144
+#define CLOCK_DIVIDER 2
+
+struct regstat
+{
+ signed char regmap_entry[HOST_REGS];
+ signed char regmap[HOST_REGS];
+ uint64_t was32;
+ uint64_t is32;
+ uint64_t wasdirty;
+ uint64_t dirty;
+ uint64_t u;
+ uint64_t uu;
+ u_int wasconst;
+ u_int isconst;
+ uint64_t constmap[HOST_REGS];
+};
+
+struct ll_entry
+{
+ u_int vaddr;
+ u_int reg32;
+ void *addr;
+ struct ll_entry *next;
+};
+
+ u_int start;
+ u_int *source;
+ u_int pagelimit;
+ char insn[MAXBLOCK][10];
+ u_char itype[MAXBLOCK];
+ u_char opcode[MAXBLOCK];
+ u_char opcode2[MAXBLOCK];
+ u_char bt[MAXBLOCK];
+ u_char rs1[MAXBLOCK];
+ u_char rs2[MAXBLOCK];
+ u_char rt1[MAXBLOCK];
+ u_char rt2[MAXBLOCK];
+ u_char us1[MAXBLOCK];
+ u_char us2[MAXBLOCK];
+ u_char dep1[MAXBLOCK];
+ u_char dep2[MAXBLOCK];
+ u_char lt1[MAXBLOCK];
+ int imm[MAXBLOCK];
+ u_int ba[MAXBLOCK];
+ char likely[MAXBLOCK];
+ char is_ds[MAXBLOCK];
+ uint64_t unneeded_reg[MAXBLOCK];
+ uint64_t unneeded_reg_upper[MAXBLOCK];
+ uint64_t branch_unneeded_reg[MAXBLOCK];
+ uint64_t branch_unneeded_reg_upper[MAXBLOCK];
+ uint64_t p32[MAXBLOCK];
+ uint64_t pr32[MAXBLOCK];
+ signed char regmap_pre[MAXBLOCK][HOST_REGS];
+ signed char regmap[MAXBLOCK][HOST_REGS];
+ signed char regmap_entry[MAXBLOCK][HOST_REGS];
+ uint64_t constmap[MAXBLOCK][HOST_REGS];
+ uint64_t known_value[HOST_REGS];
+ u_int known_reg;
+ struct regstat regs[MAXBLOCK];
+ struct regstat branch_regs[MAXBLOCK];
+ u_int needed_reg[MAXBLOCK];
+ uint64_t requires_32bit[MAXBLOCK];
+ u_int wont_dirty[MAXBLOCK];
+ u_int will_dirty[MAXBLOCK];
+ int ccadj[MAXBLOCK];
+ int slen;
+ u_int instr_addr[MAXBLOCK];
+ u_int link_addr[MAXBLOCK][3];
+ int linkcount;
+ u_int stubs[MAXBLOCK*3][8];
+ int stubcount;
+ u_int literals[1024][2];
+ int literalcount;
+ int is_delayslot;
+ int cop1_usable;
+ u_char *out;
+ struct ll_entry *jump_in[4096];
+ struct ll_entry *jump_out[4096];
+ struct ll_entry *jump_dirty[4096];
+ u_int hash_table[65536][4] __attribute__((aligned(16)));
+ char shadow[1048576] __attribute__((aligned(16)));
+ void *copy;
+ int expirep;
+ u_int using_tlb;
+ u_int stop_after_jal;
+ extern u_char restore_candidate[512];
+ extern int cycle_count;
+
+ /* registers that may be allocated */
+ /* 1-31 gpr */
+#define HIREG 32 // hi
+#define LOREG 33 // lo
+#define FSREG 34 // FPU status (FCSR)
+#define CSREG 35 // Coprocessor status
+#define CCREG 36 // Cycle count
+#define INVCP 37 // Pointer to invalid_code
+#define TEMPREG 38
+#define FTEMP 38 // FPU temporary register
+#define PTEMP 39 // Prefetch temporary register
+#define TLREG 40 // TLB mapping offset
+#define RHASH 41 // Return address hash
+#define RHTBL 42 // Return address hash table address
+#define RTEMP 43 // JR/JALR address register
+#define MAXREG 43
+#define AGEN1 44 // Address generation temporary register
+#define AGEN2 45 // Address generation temporary register
+#define MGEN1 46 // Maptable address generation temporary register
+#define MGEN2 47 // Maptable address generation temporary register
+#define BTREG 48 // Branch target temporary register
+
+ /* instruction types */
+#define NOP 0 // No operation
+#define LOAD 1 // Load
+#define STORE 2 // Store
+#define LOADLR 3 // Unaligned load
+#define STORELR 4 // Unaligned store
+#define MOV 5 // Move
+#define ALU 6 // Arithmetic/logic
+#define MULTDIV 7 // Multiply/divide
+#define SHIFT 8 // Shift by register
+#define SHIFTIMM 9// Shift by immediate
+#define IMM16 10 // 16-bit immediate
+#define RJUMP 11 // Unconditional jump to register
+#define UJUMP 12 // Unconditional jump
+#define CJUMP 13 // Conditional branch (BEQ/BNE/BGTZ/BLEZ)
+#define SJUMP 14 // Conditional branch (regimm format)
+#define COP0 15 // Coprocessor 0
+#define COP1 16 // Coprocessor 1
+#define C1LS 17 // Coprocessor 1 load/store
+#define FJUMP 18 // Conditional branch (floating point)
+#define FLOAT 19 // Floating point unit
+#define FCONV 20 // Convert integer to float
+#define FCOMP 21 // Floating point compare (sets FSREG)
+#define SYSCALL 22// SYSCALL
+#define OTHER 23 // Other
+#define SPAN 24 // Branch/delay slot spans 2 pages
+#define NI 25 // Not implemented
+
+ /* stubs */
+#define CC_STUB 1
+#define FP_STUB 2
+#define LOADB_STUB 3
+#define LOADH_STUB 4
+#define LOADW_STUB 5
+#define LOADD_STUB 6
+#define LOADBU_STUB 7
+#define LOADHU_STUB 8
+#define STOREB_STUB 9
+#define STOREH_STUB 10
+#define STOREW_STUB 11
+#define STORED_STUB 12
+#define STORELR_STUB 13
+#define INVCODE_STUB 14
+
+ /* branch codes */
+#define TAKEN 1
+#define NOTTAKEN 2
+#define NULLDS 3
+
+// asm linkage
+int new_recompile_block(int addr);
+void *get_addr_ht(u_int vaddr);
+void invalidate_block(u_int block);
+void invalidate_addr(u_int addr);
+void remove_hash(int vaddr);
+void jump_vaddr();
+void dyna_linker();
+void dyna_linker_ds();
+void verify_code();
+void verify_code_vm();
+void verify_code_ds();
+void cc_interrupt();
+void fp_exception();
+void fp_exception_ds();
+void jump_syscall();
+void jump_eret();
+
+// TLB
+void TLBWI_new();
+void TLBWR_new();
+void read_nomem_new();
+void read_nomemb_new();
+void read_nomemh_new();
+void read_nomemd_new();
+void write_nomem_new();
+void write_nomemb_new();
+void write_nomemh_new();
+void write_nomemd_new();
+void write_rdram_new();
+void write_rdramb_new();
+void write_rdramh_new();
+void write_rdramd_new();
+extern u_int memory_map[1048576];
+
+// Needed by assembler
+void wb_register(signed char r,signed char regmap[],uint64_t dirty,uint64_t is32);
+void wb_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty);
+void wb_needed_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr);
+void load_all_regs(signed char i_regmap[]);
+void load_needed_regs(signed char i_regmap[],signed char next_regmap[]);
+void load_regs_entry(int t);
+void load_all_consts(signed char regmap[],int is32,u_int dirty,int i);
+
+int tracedebug=0;
+
+//#define DEBUG_CYCLE_COUNT 1
+
+void nullf() {}
+//#define assem_debug printf
+//#define inv_debug printf
+#define assem_debug nullf
+#define inv_debug nullf
+
+void tlb_hacks()
+{
+ // Goldeneye hack
+ if (strncmp((char *) ROM_HEADER->nom, "GOLDENEYE",9) == 0)
+ {
+ u_int addr;
+ int n;
+ switch (ROM_HEADER->Country_code&0xFF)
+ {
+ case 0x45: // U
+ addr=0x34b30;
+ break;
+ case 0x4A: // J
+ addr=0x34b70;
+ break;
+ case 0x50: // E
+ addr=0x329f0;
+ break;
+ default:
+ // Unknown country code
+ addr=0;
+ break;
+ }
+ u_int rom_addr=(u_int)rom;
+ #ifdef ROM_COPY
+ // Since memory_map is 32-bit, on 64-bit systems the rom needs to be
+ // in the lower 4G of memory to use this hack. Copy it if necessary.
+ if((void *)rom>(void *)0xffffffff) {
+ munmap(ROM_COPY, 67108864);
+ if(mmap(ROM_COPY, 12582912,
+ PROT_READ | PROT_WRITE,
+ MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS,
+ -1, 0) <= 0) {printf("mmap() failed\n");}
+ memcpy(ROM_COPY,rom,12582912);
+ rom_addr=(u_int)ROM_COPY;
+ }
+ #endif
+ if(addr) {
+ for(n=0x7F000;n<0x80000;n++) {
+ memory_map[n]=(((u_int)(rom_addr+addr-0x7F000000))>>2)|0x40000000;
+ }
+ }
+ }
+}
+
+// Get address from virtual address
+// This is called from the recompiled JR/JALR instructions
+void *get_addr(u_int vaddr)
+{
+ u_int page=(vaddr^0x80000000)>>12;
+ u_int vpage=page;
+ if(page>262143&&tlb_LUT_r[vaddr>>12]) page=(tlb_LUT_r[vaddr>>12]^0x80000000)>>12;
+ if(page>2048) page=2048+(page&2047);
+ if(vpage>262143&&tlb_LUT_r[vaddr>>12]) vpage&=2047; // jump_dirty uses a hash of the virtual address instead
+ if(vpage>2048) vpage=2048+(vpage&2047);
+ struct ll_entry *head;
+ //printf("TRACE: count=%d next=%d (get_addr %x,page %d)\n",Count,next_interupt,vaddr,page);
+ head=jump_in[page];
+ while(head!=NULL) {
+ if(head->vaddr==vaddr&&head->reg32==0) {
+ //printf("TRACE: count=%d next=%d (get_addr match %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
+ int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
+ ht_bin[3]=ht_bin[1];
+ ht_bin[2]=ht_bin[0];
+ ht_bin[1]=(int)head->addr;
+ ht_bin[0]=vaddr;
+ return head->addr;
+ }
+ head=head->next;
+ }
+ head=jump_dirty[vpage];
+ while(head!=NULL) {
+ if(head->vaddr==vaddr&&head->reg32==0) {
+ //printf("TRACE: count=%d next=%d (get_addr match dirty %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
+ // Don't restore blocks which are about to expire from the cache
+ if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
+ if(verify_dirty(head->addr)) {
+ //printf("restore candidate: %x (%d) d=%d\n",vaddr,page,invalid_code[vaddr>>12]);
+ invalid_code[vaddr>>12]=0;
+ memory_map[vaddr>>12]|=0x40000000;
+ if(vpage<2048) {
+ if(tlb_LUT_r[vaddr>>12]) {
+ invalid_code[tlb_LUT_r[vaddr>>12]>>12]=0;
+ memory_map[tlb_LUT_r[vaddr>>12]>>12]|=0x40000000;
+ }
+ restore_candidate[vpage>>3]|=1<<(vpage&7);
+ }
+ else restore_candidate[page>>3]|=1<<(page&7);
+ int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
+ if(ht_bin[0]==vaddr) {
+ ht_bin[1]=(int)head->addr; // Replace existing entry
+ }
+ else
+ {
+ ht_bin[3]=ht_bin[1];
+ ht_bin[2]=ht_bin[0];
+ ht_bin[1]=(int)head->addr;
+ ht_bin[0]=vaddr;
+ }
+ return head->addr;
+ }
+ }
+ head=head->next;
+ }
+ //printf("TRACE: count=%d next=%d (get_addr no-match %x)\n",Count,next_interupt,vaddr);
+ int r=new_recompile_block(vaddr);
+ if(r==0) return get_addr(vaddr);
+ // Execute in unmapped page, generate pagefault execption
+ Status|=2;
+ Cause=(vaddr<<31)|0x8;
+ EPC=(vaddr&1)?vaddr-5:vaddr;
+ BadVAddr=(vaddr&~1);
+ Context=(Context&0xFF80000F)|((BadVAddr>>9)&0x007FFFF0);
+ EntryHi=BadVAddr&0xFFFFE000;
+ return get_addr_ht(0x80000000);
+}
+// Look up address in hash table first
+void *get_addr_ht(u_int vaddr)
+{
+ //printf("TRACE: count=%d next=%d (get_addr_ht %x)\n",Count,next_interupt,vaddr);
+ int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
+ if(ht_bin[0]==vaddr) return (void *)ht_bin[1];
+ if(ht_bin[2]==vaddr) return (void *)ht_bin[3];
+ return get_addr(vaddr);
+}
+
+void *get_addr_32(u_int vaddr,u_int flags)
+{
+ //printf("TRACE: count=%d next=%d (get_addr_32 %x,flags %x)\n",Count,next_interupt,vaddr,flags);
+ int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
+ if(ht_bin[0]==vaddr) return (void *)ht_bin[1];
+ if(ht_bin[2]==vaddr) return (void *)ht_bin[3];
+ u_int page=(vaddr^0x80000000)>>12;
+ u_int vpage=page;
+ if(page>262143&&tlb_LUT_r[vaddr>>12]) page=(tlb_LUT_r[vaddr>>12]^0x80000000)>>12;
+ if(page>2048) page=2048+(page&2047);
+ if(vpage>262143&&tlb_LUT_r[vaddr>>12]) vpage&=2047; // jump_dirty uses a hash of the virtual address instead
+ if(vpage>2048) vpage=2048+(vpage&2047);
+ struct ll_entry *head;
+ head=jump_in[page];
+ while(head!=NULL) {
+ if(head->vaddr==vaddr&&(head->reg32&flags)==0) {
+ //printf("TRACE: count=%d next=%d (get_addr_32 match %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
+ if(head->reg32==0) {
+ int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
+ if(ht_bin[0]==-1) {
+ ht_bin[1]=(int)head->addr;
+ ht_bin[0]=vaddr;
+ }else if(ht_bin[2]==-1) {
+ ht_bin[3]=(int)head->addr;
+ ht_bin[2]=vaddr;
+ }
+ //ht_bin[3]=ht_bin[1];
+ //ht_bin[2]=ht_bin[0];
+ //ht_bin[1]=(int)head->addr;
+ //ht_bin[0]=vaddr;
+ }
+ return head->addr;
+ }
+ head=head->next;
+ }
+ head=jump_dirty[vpage];
+ while(head!=NULL) {
+ if(head->vaddr==vaddr&&(head->reg32&flags)==0) {
+ //printf("TRACE: count=%d next=%d (get_addr_32 match dirty %x: %x)\n",Count,next_interupt,vaddr,(int)head->addr);
+ // Don't restore blocks which are about to expire from the cache
+ if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
+ if(verify_dirty(head->addr)) {
+ //printf("restore candidate: %x (%d) d=%d\n",vaddr,page,invalid_code[vaddr>>12]);
+ invalid_code[vaddr>>12]=0;
+ memory_map[vaddr>>12]|=0x40000000;
+ if(vpage<2048) {
+ if(tlb_LUT_r[vaddr>>12]) {
+ invalid_code[tlb_LUT_r[vaddr>>12]>>12]=0;
+ memory_map[tlb_LUT_r[vaddr>>12]>>12]|=0x40000000;
+ }
+ restore_candidate[vpage>>3]|=1<<(vpage&7);
+ }
+ else restore_candidate[page>>3]|=1<<(page&7);
+ if(head->reg32==0) {
+ int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
+ if(ht_bin[0]==-1) {
+ ht_bin[1]=(int)head->addr;
+ ht_bin[0]=vaddr;
+ }else if(ht_bin[2]==-1) {
+ ht_bin[3]=(int)head->addr;
+ ht_bin[2]=vaddr;
+ }
+ //ht_bin[3]=ht_bin[1];
+ //ht_bin[2]=ht_bin[0];
+ //ht_bin[1]=(int)head->addr;
+ //ht_bin[0]=vaddr;
+ }
+ return head->addr;
+ }
+ }
+ head=head->next;
+ }
+ //printf("TRACE: count=%d next=%d (get_addr_32 no-match %x,flags %x)\n",Count,next_interupt,vaddr,flags);
+ int r=new_recompile_block(vaddr);
+ if(r==0) return get_addr(vaddr);
+ // Execute in unmapped page, generate pagefault execption
+ Status|=2;
+ Cause=(vaddr<<31)|0x8;
+ EPC=(vaddr&1)?vaddr-5:vaddr;
+ BadVAddr=(vaddr&~1);
+ Context=(Context&0xFF80000F)|((BadVAddr>>9)&0x007FFFF0);
+ EntryHi=BadVAddr&0xFFFFE000;
+ return get_addr_ht(0x80000000);
+}
+
+void clear_all_regs(signed char regmap[])
+{
+ int hr;
+ for (hr=0;hr<HOST_REGS;hr++) regmap[hr]=-1;
+}
+
+signed char get_reg(signed char regmap[],int r)
+{
+ int hr;
+ for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&®map[hr]==r) return hr;
+ return -1;
+}
+
+// Find a register that is available for two consecutive cycles
+signed char get_reg2(signed char regmap1[],signed char regmap2[],int r)
+{
+ int hr;
+ for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&®map1[hr]==r&®map2[hr]==r) return hr;
+ return -1;
+}
+
+int count_free_regs(signed char regmap[])
+{
+ int count=0;
+ int hr;
+ for(hr=0;hr<HOST_REGS;hr++)
+ {
+ if(hr!=EXCLUDE_REG) {
+ if(regmap[hr]<0) count++;
+ }
+ }
+ return count;
+}
+
+void dirty_reg(struct regstat *cur,signed char reg)
+{
+ int hr;
+ if(!reg) return;
+ for (hr=0;hr<HOST_REGS;hr++) {
+ if((cur->regmap[hr]&63)==reg) {
+ cur->dirty|=1<<hr;
+ }
+ }
+}
+
+// If we dirty the lower half of a 64 bit register which is now being
+// sign-extended, we need to dump the upper half.
+// Note: Do this only after completion of the instruction, because
+// some instructions may need to read the full 64-bit value even if
+// overwriting it (eg SLTI, DSRA32).
+static void flush_dirty_uppers(struct regstat *cur)
+{
+ int hr,reg;
+ for (hr=0;hr<HOST_REGS;hr++) {
+ if((cur->dirty>>hr)&1) {
+ reg=cur->regmap[hr];
+ if(reg>=64)
+ if((cur->is32>>(reg&63))&1) cur->regmap[hr]=-1;
+ }
+ }
+}
+
+void set_const(struct regstat *cur,signed char reg,uint64_t value)
+{
+ int hr;
+ if(!reg) return;
+ for (hr=0;hr<HOST_REGS;hr++) {
+ if(cur->regmap[hr]==reg) {
+ cur->isconst|=1<<hr;
+ cur->constmap[hr]=value;
+ }
+ else if((cur->regmap[hr]^64)==reg) {
+ cur->isconst|=1<<hr;
+ cur->constmap[hr]=value>>32;
+ }
+ }
+}
+
+void clear_const(struct regstat *cur,signed char reg)
+{
+ int hr;
+ if(!reg) return;
+ for (hr=0;hr<HOST_REGS;hr++) {
+ if((cur->regmap[hr]&63)==reg) {
+ cur->isconst&=~(1<<hr);
+ }
+ }
+}
+
+int is_const(struct regstat *cur,signed char reg)
+{
+ int hr;
+ if(!reg) return 1;
+ for (hr=0;hr<HOST_REGS;hr++) {
+ if((cur->regmap[hr]&63)==reg) {
+ return (cur->isconst>>hr)&1;
+ }
+ }
+ return 0;
+}
+uint64_t get_const(struct regstat *cur,signed char reg)
+{
+ int hr;
+ if(!reg) return 0;
+ for (hr=0;hr<HOST_REGS;hr++) {
+ if(cur->regmap[hr]==reg) {
+ return cur->constmap[hr];
+ }
+ }
+ printf("Unknown constant in r%d\n",reg);
+ exit(1);
+}
+
+// Least soon needed registers
+// Look at the next ten instructions and see which registers
+// will be used. Try not to reallocate these.
+void lsn(u_char hsn[], int i, int *preferred_reg)
+{
+ int j;
+ int b=-1;
+ for(j=0;j<9;j++)
+ {
+ if(i+j>=slen) {
+ j=slen-i-1;
+ break;
+ }
+ if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
+ {
+ // Don't go past an unconditonal jump
+ j++;
+ break;
+ }
+ }
+ for(;j>=0;j--)
+ {
+ if(rs1[i+j]) hsn[rs1[i+j]]=j;
+ if(rs2[i+j]) hsn[rs2[i+j]]=j;
+ if(rt1[i+j]) hsn[rt1[i+j]]=j;
+ if(rt2[i+j]) hsn[rt2[i+j]]=j;
+ if(itype[i+j]==STORE || itype[i+j]==STORELR) {
+ // Stores can allocate zero
+ hsn[rs1[i+j]]=j;
+ hsn[rs2[i+j]]=j;
+ }
+ // On some architectures stores need invc_ptr
+ #if defined(HOST_IMM8)
+ if(itype[i+j]==STORE || itype[i+j]==STORELR || (opcode[i+j]&0x3b)==0x39) {
+ hsn[INVCP]=j;
+ }
+ #endif
+ if(i+j>=0&&(itype[i+j]==UJUMP||itype[i+j]==CJUMP||itype[i+j]==SJUMP||itype[i+j]==FJUMP))
+ {
+ hsn[CCREG]=j;
+ b=j;
+ }
+ }
+ if(b>=0)
+ {
+ if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
+ {
+ // Follow first branch
+ int t=(ba[i+b]-start)>>2;
+ j=7-b;if(t+j>=slen) j=slen-t-1;
+ for(;j>=0;j--)
+ {
+ if(rs1[t+j]) if(hsn[rs1[t+j]]>j+b+2) hsn[rs1[t+j]]=j+b+2;
+ if(rs2[t+j]) if(hsn[rs2[t+j]]>j+b+2) hsn[rs2[t+j]]=j+b+2;
+ //if(rt1[t+j]) if(hsn[rt1[t+j]]>j+b+2) hsn[rt1[t+j]]=j+b+2;
+ //if(rt2[t+j]) if(hsn[rt2[t+j]]>j+b+2) hsn[rt2[t+j]]=j+b+2;
+ }
+ }
+ // TODO: preferred register based on backward branch
+ }
+ // Delay slot should preferably not overwrite branch conditions or cycle count
+ if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)) {
+ if(rs1[i-1]) if(hsn[rs1[i-1]]>1) hsn[rs1[i-1]]=1;
+ if(rs2[i-1]) if(hsn[rs2[i-1]]>1) hsn[rs2[i-1]]=1;
+ hsn[CCREG]=1;
+ // ...or hash tables
+ hsn[RHASH]=1;
+ hsn[RHTBL]=1;
+ }
+ // Coprocessor load/store needs FTEMP, even if not declared
+ if(itype[i]==C1LS) {
+ hsn[FTEMP]=0;
+ }
+ // Load L/R also uses FTEMP as a temporary register
+ if(itype[i]==LOADLR) {
+ hsn[FTEMP]=0;
+ }
+ // Also 64-bit SDL/SDR
+ if(opcode[i]==0x2c||opcode[i]==0x2d) {
+ hsn[FTEMP]=0;
+ }
+ // Don't remove the TLB registers either
+ if(itype[i]==LOAD || itype[i]==LOADLR || itype[i]==STORE || itype[i]==STORELR || itype[i]==C1LS ) {
+ hsn[TLREG]=0;
+ }
+ // Don't remove the miniht registers
+ if(itype[i]==UJUMP||itype[i]==RJUMP)
+ {
+ hsn[RHASH]=0;
+ hsn[RHTBL]=0;
+ }
+}
+
+// We only want to allocate registers if we're going to use them again soon
+int needed_again(int r, int i)
+{
+ int j;
+ int b=-1;
+ int rn=10;
+ int hr;
+ u_char hsn[MAXREG+1];
+ int preferred_reg;
+
+ memset(hsn,10,sizeof(hsn));
+ lsn(hsn,i,&preferred_reg);
+
+ if(i>0&&(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000))
+ {
+ if(ba[i-1]<start || ba[i-1]>start+slen*4-4)
+ return 0; // Don't need any registers if exiting the block
+ }
+ for(j=0;j<9;j++)
+ {
+ if(i+j>=slen) {
+ j=slen-i-1;
+ break;
+ }
+ if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
+ {
+ // Don't go past an unconditonal jump
+ j++;
+ break;
+ }
+ if(itype[i+j]==SYSCALL||((source[i+j]&0xfc00003f)==0x0d))
+ {
+ break;
+ }
+ }
+ for(;j>=1;j--)
+ {
+ if(rs1[i+j]==r) rn=j;
+ if(rs2[i+j]==r) rn=j;
+ if((unneeded_reg[i+j]>>r)&1) rn=10;
+ if(i+j>=0&&(itype[i+j]==UJUMP||itype[i+j]==CJUMP||itype[i+j]==SJUMP||itype[i+j]==FJUMP))
+ {
+ b=j;
+ }
+ }
+ /*
+ if(b>=0)
+ {
+ if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
+ {
+ // Follow first branch
+ int o=rn;
+ int t=(ba[i+b]-start)>>2;
+ j=7-b;if(t+j>=slen) j=slen-t-1;
+ for(;j>=0;j--)
+ {
+ if(!((unneeded_reg[t+j]>>r)&1)) {
+ if(rs1[t+j]==r) if(rn>j+b+2) rn=j+b+2;
+ if(rs2[t+j]==r) if(rn>j+b+2) rn=j+b+2;
+ }
+ else rn=o;
+ }
+ }
+ }*/
+ for(hr=0;hr<HOST_REGS;hr++) {
+ if(hr!=EXCLUDE_REG) {
+ if(rn<hsn[hr]) return 1;
+ }
+ }
+ return 0;
+}
+
+// Try to match register allocations at the end of a loop with those
+// at the beginning
+int loop_reg(int i, int r, int hr)
+{
+ int j,k;
+ for(j=0;j<9;j++)
+ {
+ if(i+j>=slen) {
+ j=slen-i-1;
+ break;
+ }
+ if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
+ {
+ // Don't go past an unconditonal jump
+ j++;
+ break;
+ }
+ }
+ k=0;
+ if(i>0){
+ if(itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)
+ k--;
+ }
+ for(;k<j;k++)
+ {
+ if(r<64&&((unneeded_reg[i+k]>>r)&1)) return hr;
+ if(r>64&&((unneeded_reg_upper[i+k]>>r)&1)) return hr;
+ if(i+k>=0&&(itype[i+k]==UJUMP||itype[i+k]==CJUMP||itype[i+k]==SJUMP||itype[i+k]==FJUMP))
+ {
+ if(ba[i+k]>=start && ba[i+k]<(start+i*4))
+ {
+ int t=(ba[i+k]-start)>>2;
+ int reg=get_reg(regs[t].regmap_entry,r);
+ if(reg>=0) return reg;
+ //reg=get_reg(regs[t+1].regmap_entry,r);
+ //if(reg>=0) return reg;
+ }
+ }
+ }
+ return hr;
+}
+
+
+// Allocate every register, preserving source/target regs
+void alloc_all(struct regstat *cur,int i)
+{
+ int hr;
+
+ for(hr=0;hr<HOST_REGS;hr++) {
+ if(hr!=EXCLUDE_REG) {
+ if(((cur->regmap[hr]&63)!=rs1[i])&&((cur->regmap[hr]&63)!=rs2[i])&&
+ ((cur->regmap[hr]&63)!=rt1[i])&&((cur->regmap[hr]&63)!=rt2[i]))
+ {
+ cur->regmap[hr]=-1;
+ cur->dirty&=~(1<<hr);
+ }
+ // Don't need zeros
+ if((cur->regmap[hr]&63)==0)
+ {
+ cur->regmap[hr]=-1;
+ cur->dirty&=~(1<<hr);
+ }
+ }
+ }
+}
+
+
+void div64(int64_t dividend,int64_t divisor)
+{
+ lo=dividend/divisor;
+ hi=dividend%divisor;
+ //printf("TRACE: ddiv %8x%8x %8x%8x\n" ,(int)reg[HIREG],(int)(reg[HIREG]>>32)
+ // ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
+}
+void divu64(uint64_t dividend,uint64_t divisor)
+{
+ lo=dividend/divisor;
+ hi=dividend%divisor;
+ //printf("TRACE: ddivu %8x%8x %8x%8x\n",(int)reg[HIREG],(int)(reg[HIREG]>>32)
+ // ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
+}
+
+void mult64(uint64_t m1,uint64_t m2)
+{
+ unsigned long long int op1, op2, op3, op4;
+ unsigned long long int result1, result2, result3, result4;
+ unsigned long long int temp1, temp2, temp3, temp4;
+ int sign = 0;
+
+ if (m1 < 0)
+ {
+ op2 = -m1;
+ sign = 1 - sign;
+ }
+ else op2 = m1;
+ if (m2 < 0)
+ {
+ op4 = -m2;
+ sign = 1 - sign;
+ }
+ else op4 = m2;
+
+ op1 = op2 & 0xFFFFFFFF;
+ op2 = (op2 >> 32) & 0xFFFFFFFF;
+ op3 = op4 & 0xFFFFFFFF;
+ op4 = (op4 >> 32) & 0xFFFFFFFF;
+
+ temp1 = op1 * op3;
+ temp2 = (temp1 >> 32) + op1 * op4;
+ temp3 = op2 * op3;
+ temp4 = (temp3 >> 32) + op2 * op4;
+
+ result1 = temp1 & 0xFFFFFFFF;
+ result2 = temp2 + (temp3 & 0xFFFFFFFF);
+ result3 = (result2 >> 32) + temp4;
+ result4 = (result3 >> 32);
+
+ lo = result1 | (result2 << 32);
+ hi = (result3 & 0xFFFFFFFF) | (result4 << 32);
+ if (sign)
+ {
+ hi = ~hi;
+ if (!lo) hi++;
+ else lo = ~lo + 1;
+ }
+}
+
+void multu64(uint64_t m1,uint64_t m2)
+{
+ unsigned long long int op1, op2, op3, op4;
+ unsigned long long int result1, result2, result3, result4;
+ unsigned long long int temp1, temp2, temp3, temp4;
+
+ op1 = m1 & 0xFFFFFFFF;
+ op2 = (m1 >> 32) & 0xFFFFFFFF;
+ op3 = m2 & 0xFFFFFFFF;
+ op4 = (m2 >> 32) & 0xFFFFFFFF;
+
+ temp1 = op1 * op3;
+ temp2 = (temp1 >> 32) + op1 * op4;
+ temp3 = op2 * op3;
+ temp4 = (temp3 >> 32) + op2 * op4;
+
+ result1 = temp1 & 0xFFFFFFFF;
+ result2 = temp2 + (temp3 & 0xFFFFFFFF);
+ result3 = (result2 >> 32) + temp4;
+ result4 = (result3 >> 32);
+
+ lo = result1 | (result2 << 32);
+ hi = (result3 & 0xFFFFFFFF) | (result4 << 32);
+
+ //printf("TRACE: dmultu %8x%8x %8x%8x\n",(int)reg[HIREG],(int)(reg[HIREG]>>32)
+ // ,(int)reg[LOREG],(int)(reg[LOREG]>>32));
+}
+
+uint64_t ldl_merge(uint64_t original,uint64_t loaded,u_int bits)
+{
+ if(bits) {
+ original<<=64-bits;
+ original>>=64-bits;
+ loaded<<=bits;
+ original|=loaded;
+ }
+ else original=loaded;
+ return original;
+}
+uint64_t ldr_merge(uint64_t original,uint64_t loaded,u_int bits)
+{
+ if(bits^56) {
+ original>>=64-(bits^56);
+ original<<=64-(bits^56);
+ loaded>>=bits^56;
+ original|=loaded;
+ }
+ else original=loaded;
+ return original;
+}
+
+#ifdef __i386__
+#include "assem_x86.c"
+#endif
+#ifdef __x86_64__
+#include "assem_x64.c"
+#endif
+#ifdef __arm__
+#include "assem_arm.c"
+#endif
+
+// Add virtual address mapping to linked list
+void ll_add(struct ll_entry **head,int vaddr,void *addr)
+{
+ struct ll_entry *new_entry;
+ new_entry=malloc(sizeof(struct ll_entry));
+ assert(new_entry!=NULL);
+ new_entry->vaddr=vaddr;
+ new_entry->reg32=0;
+ new_entry->addr=addr;
+ new_entry->next=*head;
+ *head=new_entry;
+}
+
+// Add virtual address mapping for 32-bit compiled block
+void ll_add_32(struct ll_entry **head,int vaddr,u_int reg32,void *addr)
+{
+ struct ll_entry *new_entry;
+ new_entry=malloc(sizeof(struct ll_entry));
+ assert(new_entry!=NULL);
+ new_entry->vaddr=vaddr;
+ new_entry->reg32=reg32;
+ new_entry->addr=addr;
+ new_entry->next=*head;
+ *head=new_entry;
+}
+
+// Check if an address is already compiled
+// but don't return addresses which are about to expire from the cache
+void *check_addr(u_int vaddr)
+{
+ u_int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
+ if(ht_bin[0]==vaddr) {
+ if(((ht_bin[1]-MAX_OUTPUT_BLOCK_SIZE-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
+ if(isclean(ht_bin[1])) return (void *)ht_bin[1];
+ }
+ if(ht_bin[2]==vaddr) {
+ if(((ht_bin[3]-MAX_OUTPUT_BLOCK_SIZE-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
+ if(isclean(ht_bin[3])) return (void *)ht_bin[3];
+ }
+ u_int page=(vaddr^0x80000000)>>12;
+ if(page>262143&&tlb_LUT_r[vaddr>>12]) page=(tlb_LUT_r[vaddr>>12]^0x80000000)>>12;
+ if(page>2048) page=2048+(page&2047);
+ struct ll_entry *head;
+ head=jump_in[page];
+ while(head!=NULL) {
+ if(head->vaddr==vaddr&&head->reg32==0) {
+ if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
+ // Update existing entry with current address
+ if(ht_bin[0]==vaddr) {
+ ht_bin[1]=(int)head->addr;
+ return head->addr;
+ }
+ if(ht_bin[2]==vaddr) {
+ ht_bin[3]=(int)head->addr;
+ return head->addr;
+ }
+ // Insert into hash table with low priority.
+ // Don't evict existing entries, as they are probably
+ // addresses that are being accessed frequently.
+ if(ht_bin[0]==-1) {
+ ht_bin[1]=(int)head->addr;
+ ht_bin[0]=vaddr;
+ }else if(ht_bin[2]==-1) {
+ ht_bin[3]=(int)head->addr;
+ ht_bin[2]=vaddr;
+ }
+ return head->addr;
+ }
+ }
+ head=head->next;
+ }
+ return 0;
+}
+
+void remove_hash(int vaddr)
+{
+ //printf("remove hash: %x\n",vaddr);
+ int *ht_bin=hash_table[(((vaddr)>>16)^vaddr)&0xFFFF];
+ if(ht_bin[2]==vaddr) {
+ ht_bin[2]=ht_bin[3]=-1;
+ }
+ if(ht_bin[0]==vaddr) {
+ ht_bin[0]=ht_bin[2];
+ ht_bin[1]=ht_bin[3];
+ ht_bin[2]=ht_bin[3]=-1;
+ }
+}
+
+void ll_remove_matching_addrs(struct ll_entry **head,int addr,int shift)
+{
+ struct ll_entry *next;
+ while(*head) {
+ if(((u_int)((*head)->addr)>>shift)==(addr>>shift) ||
+ ((u_int)((*head)->addr-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(addr>>shift))
+ {
+ inv_debug("EXP: Remove pointer to %x (%x)\n",(int)(*head)->addr,(*head)->vaddr);
+ remove_hash((*head)->vaddr);
+ next=(*head)->next;
+ free(*head);
+ *head=next;
+ }
+ else
+ {
+ head=&((*head)->next);
+ }
+ }
+}
+
+// Remove all entries from linked list
+void ll_clear(struct ll_entry **head)
+{
+ struct ll_entry *cur;
+ struct ll_entry *next;
+ if(cur=*head) {
+ *head=0;
+ while(cur) {
+ next=cur->next;
+ free(cur);
+ cur=next;
+ }
+ }
+}
+
+// Dereference the pointers and remove if it matches
+void ll_kill_pointers(struct ll_entry *head,int addr,int shift)
+{
+ while(head) {
+ int ptr=get_pointer(head->addr);
+ inv_debug("EXP: Lookup pointer to %x at %x (%x)\n",(int)ptr,(int)head->addr,head->vaddr);
+ if(((ptr>>shift)==(addr>>shift)) ||
+ (((ptr-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(addr>>shift)))
+ {
+ inv_debug("EXP: Kill pointer at %x (%x)\n",(int)head->addr,head->vaddr);
+ kill_pointer(head->addr);
+ }
+ head=head->next;
+ }
+}
+
+// This is called when we write to a compiled block (see do_invstub)
+int invalidate_page(u_int page)
+{
+ int modified=0;
+ struct ll_entry *head;
+ struct ll_entry *next;
+ head=jump_in[page];
+ jump_in[page]=0;
+ while(head!=NULL) {
+ inv_debug("INVALIDATE: %x\n",head->vaddr);
+ remove_hash(head->vaddr);
+ next=head->next;
+ free(head);
+ head=next;
+ }
+ head=jump_out[page];
+ jump_out[page]=0;
+ while(head!=NULL) {
+ inv_debug("INVALIDATE: kill pointer to %x (%x)\n",head->vaddr,(int)head->addr);
+ kill_pointer(head->addr);
+ modified=1;
+ next=head->next;
+ free(head);
+ head=next;
+ }
+ return modified;
+}
+void invalidate_block(u_int block)
+{
+ int modified;
+ u_int page,vpage;
+ page=vpage=block^0x80000;
+ if(page>262143&&tlb_LUT_r[block]) page=(tlb_LUT_r[block]^0x80000000)>>12;
+ if(page>2048) page=2048+(page&2047);
+ if(vpage>262143&&tlb_LUT_r[block]) vpage&=2047; // jump_dirty uses a hash of the virtual address instead
+ if(vpage>2048) vpage=2048+(vpage&2047);
+ inv_debug("INVALIDATE: %x (%d)\n",block<<12,page);
+ //inv_debug("invalid_code[block]=%d\n",invalid_code[block]);
+ u_int first,last;
+ first=last=page;
+ struct ll_entry *head;
+ head=jump_dirty[vpage];
+ //printf("page=%d vpage=%d\n",page,vpage);
+ while(head!=NULL) {
+ u_int start,end;
+ if(vpage>2047||(head->vaddr>>12)==block) { // Ignore vaddr hash collision
+ get_bounds((int)head->addr,&start,&end);
+ //printf("start: %x end: %x\n",start,end);
+ if(page<2048&&start>=0x80000000&&end<0x80800000) {
+ if(((start-(u_int)rdram)>>12)<=page&&((end-1-(u_int)rdram)>>12)>=page) {
+ if((((start-(u_int)rdram)>>12)&2047)<first) first=((start-(u_int)rdram)>>12)&2047;
+ if((((end-1-(u_int)rdram)>>12)&2047)>last) last=((end-1-(u_int)rdram)>>12)&2047;
+ }
+ }
+ if(page<2048&&(signed int)start>=(signed int)0xC0000000&&(signed int)end>=(signed int)0xC0000000) {
+ if(((start+memory_map[start>>12]-(u_int)rdram)>>12)<=page&&((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)>=page) {
+ if((((start+memory_map[start>>12]-(u_int)rdram)>>12)&2047)<first) first=((start+memory_map[start>>12]-(u_int)rdram)>>12)&2047;
+ if((((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)&2047)>last) last=((end-1+memory_map[(end-1)>>12]-(u_int)rdram)>>12)&2047;
+ }
+ }
+ }
+ head=head->next;
+ }
+ //printf("first=%d last=%d\n",first,last);
+ modified=invalidate_page(page);
+ assert(first+5>page); // NB: this assumes MAXBLOCK<=4096 (4 pages)
+ assert(last<page+5);
+ // Invalidate the adjacent pages if a block crosses a 4K boundary
+ while(first<page) {
+ invalidate_page(first);
+ first++;
+ }
+ for(first=page+1;first<last;first++) {
+ invalidate_page(first);
+ }
+
+ // Don't trap writes
+ invalid_code[block]=1;
+ // If there is a valid TLB entry for this page, remove write protect
+ if(tlb_LUT_w[block]) {
+ assert(tlb_LUT_r[block]==tlb_LUT_w[block]);
+ // CHECK: Is this right?
+ memory_map[block]=((tlb_LUT_w[block]&0xFFFFF000)-(block<<12)+(unsigned int)rdram-0x80000000)>>2;
+ u_int real_block=tlb_LUT_w[block]>>12;
+ invalid_code[real_block]=1;
+ if(real_block>=0x80000&&real_block<0x80800) memory_map[real_block]=((u_int)rdram-0x80000000)>>2;
+ }
+ else if(block>=0x80000&&block<0x80800) memory_map[block]=((u_int)rdram-0x80000000)>>2;
+ #ifdef __arm__
+ if(modified)
+ __clear_cache((void *)BASE_ADDR,(void *)BASE_ADDR+(1<<TARGET_SIZE_2));
+ #endif
+ #ifdef USE_MINI_HT
+ memset(mini_ht,-1,sizeof(mini_ht));
+ #endif
+}
+void invalidate_addr(u_int addr)
+{
+ invalidate_block(addr>>12);
+}
+void invalidate_all_pages()
+{
+ u_int page,n;
+ for(page=0;page<4096;page++)
+ invalidate_page(page);
+ for(page=0;page<1048576;page++)
+ if(!invalid_code[page]) {
+ restore_candidate[(page&2047)>>3]|=1<<(page&7);
+ restore_candidate[((page&2047)>>3)+256]|=1<<(page&7);
+ }
+ #ifdef __arm__
+ __clear_cache((void *)BASE_ADDR,(void *)BASE_ADDR+(1<<TARGET_SIZE_2));
+ #endif
+ #ifdef USE_MINI_HT
+ memset(mini_ht,-1,sizeof(mini_ht));
+ #endif
+ // TLB
+ for(page=0;page<0x100000;page++) {
+ if(tlb_LUT_r[page]) {
+ memory_map[page]=((tlb_LUT_r[page]&0xFFFFF000)-(page<<12)+(unsigned int)rdram-0x80000000)>>2;
+ if(!tlb_LUT_w[page]||!invalid_code[page])
+ memory_map[page]|=0x40000000; // Write protect
+ }
+ else memory_map[page]=-1;
+ if(page==0x80000) page=0xC0000;
+ }
+ tlb_hacks();
+}
+
+// Add an entry to jump_out after making a link
+void add_link(u_int vaddr,void *src)
+{
+ u_int page=(vaddr^0x80000000)>>12;
+ if(page>262143&&tlb_LUT_r[vaddr>>12]) page=(tlb_LUT_r[vaddr>>12]^0x80000000)>>12;
+ if(page>4095) page=2048+(page&2047);
+ inv_debug("add_link: %x -> %x (%d)\n",(int)src,vaddr,page);
+ ll_add(jump_out+page,vaddr,src);
+ //int ptr=get_pointer(src);
+ //inv_debug("add_link: Pointer is to %x\n",(int)ptr);
+}
+
+// If a code block was found to be unmodified (bit was set in
+// restore_candidate) and it remains unmodified (bit is clear
+// in invalid_code) then move the entries for that 4K page from
+// the dirty list to the clean list.
+void clean_blocks(u_int page)
+{
+ struct ll_entry *head;
+ inv_debug("INV: clean_blocks page=%d\n",page);
+ head=jump_dirty[page];
+ while(head!=NULL) {
+ if(!invalid_code[head->vaddr>>12]) {
+ // Don't restore blocks which are about to expire from the cache
+ if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
+ u_int start,end;
+ if(verify_dirty((int)head->addr)) {
+ //printf("Possibly Restore %x (%x)\n",head->vaddr, (int)head->addr);
+ u_int i;
+ u_int inv=0;
+ get_bounds((int)head->addr,&start,&end);
+ if(start-(u_int)rdram<0x800000) {
+ for(i=(start-(u_int)rdram+0x80000000)>>12;i<=(end-1-(u_int)rdram+0x80000000)>>12;i++) {
+ inv|=invalid_code[i];
+ }
+ }
+ if((signed int)head->vaddr>=(signed int)0xC0000000) {
+ u_int addr = (head->vaddr+(memory_map[head->vaddr>>12]<<2));
+ //printf("addr=%x start=%x end=%x\n",addr,start,end);
+ if(addr<start||addr>=end) inv=1;
+ }
+ else if((signed int)head->vaddr>=(signed int)0x80800000) {
+ inv=1;
+ }
+ if(!inv) {
+ void * clean_addr=(void *)get_clean_addr((int)head->addr);
+ if((((u_int)clean_addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
+ u_int ppage=page;
+ if(page<2048&&tlb_LUT_r[head->vaddr>>12]) ppage=(tlb_LUT_r[head->vaddr>>12]^0x80000000)>>12;
+ inv_debug("INV: Restored %x (%x/%x)\n",head->vaddr, (int)head->addr, (int)clean_addr);
+ //printf("page=%x, addr=%x\n",page,head->vaddr);
+ //assert(head->vaddr>>12==(page|0x80000));
+ ll_add_32(jump_in+ppage,head->vaddr,head->reg32,clean_addr);
+ int *ht_bin=hash_table[((head->vaddr>>16)^head->vaddr)&0xFFFF];
+ if(!head->reg32) {
+ if(ht_bin[0]==head->vaddr) {
+ ht_bin[1]=(int)clean_addr; // Replace existing entry
+ }
+ if(ht_bin[2]==head->vaddr) {
+ ht_bin[3]=(int)clean_addr; // Replace existing entry
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ head=head->next;
+ }
+}
+
+
+void mov_alloc(struct regstat *current,int i)
+{
+ // Note: Don't need to actually alloc the source registers
+ if((~current->is32>>rs1[i])&1) {
+ //alloc_reg64(current,i,rs1[i]);
+ alloc_reg64(current,i,rt1[i]);
+ current->is32&=~(1LL<<rt1[i]);
+ } else {
+ //alloc_reg(current,i,rs1[i]);
+ alloc_reg(current,i,rt1[i]);
+ current->is32|=(1LL<<rt1[i]);
+ }
+ clear_const(current,rs1[i]);
+ clear_const(current,rt1[i]);
+ dirty_reg(current,rt1[i]);
+}
+
+void shiftimm_alloc(struct regstat *current,int i)
+{
+ clear_const(current,rs1[i]);
+ clear_const(current,rt1[i]);
+ if(opcode2[i]<=0x3) // SLL/SRL/SRA
+ {
+ if(rt1[i]) {
+ if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
+ else lt1[i]=rs1[i];
+ alloc_reg(current,i,rt1[i]);
+ current->is32|=1LL<<rt1[i];
+ dirty_reg(current,rt1[i]);
+ }
+ }
+ if(opcode2[i]>=0x38&&opcode2[i]<=0x3b) // DSLL/DSRL/DSRA
+ {
+ if(rt1[i]) {
+ if(rs1[i]) alloc_reg64(current,i,rs1[i]);
+ alloc_reg64(current,i,rt1[i]);
+ current->is32&=~(1LL<<rt1[i]);
+ dirty_reg(current,rt1[i]);
+ }
+ }
+ if(opcode2[i]==0x3c) // DSLL32
+ {
+ if(rt1[i]) {
+ if(rs1[i]) alloc_reg(current,i,rs1[i]);
+ alloc_reg64(current,i,rt1[i]);
+ current->is32&=~(1LL<<rt1[i]);
+ dirty_reg(current,rt1[i]);
+ }
+ }
+ if(opcode2[i]==0x3e) // DSRL32
+ {
+ if(rt1[i]) {
+ alloc_reg64(current,i,rs1[i]);
+ if(imm[i]==32) {
+ alloc_reg64(current,i,rt1[i]);
+ current->is32&=~(1LL<<rt1[i]);
+ } else {
+ alloc_reg(current,i,rt1[i]);
+ current->is32|=1LL<<rt1[i];
+ }
+ dirty_reg(current,rt1[i]);
+ }
+ }
+ if(opcode2[i]==0x3f) // DSRA32
+ {
+ if(rt1[i]) {
+ alloc_reg64(current,i,rs1[i]);
+ alloc_reg(current,i,rt1[i]);
+ current->is32|=1LL<<rt1[i];
+ dirty_reg(current,rt1[i]);
+ }
+ }
+}
+
+void shift_alloc(struct regstat *current,int i)
+{
+ if(rt1[i]) {
+ if(opcode2[i]<=0x07) // SLLV/SRLV/SRAV
+ {
+ if(rs1[i]) alloc_reg(current,i,rs1[i]);
+ if(rs2[i]) alloc_reg(current,i,rs2[i]);
+ alloc_reg(current,i,rt1[i]);
+ if(rt1[i]==rs2[i]) alloc_reg_temp(current,i,-1);
+ current->is32|=1LL<<rt1[i];
+ } else { // DSLLV/DSRLV/DSRAV
+ if(rs1[i]) alloc_reg64(current,i,rs1[i]);
+ if(rs2[i]) alloc_reg(current,i,rs2[i]);
+ alloc_reg64(current,i,rt1[i]);
+ current->is32&=~(1LL<<rt1[i]);
+ if(opcode2[i]==0x16||opcode2[i]==0x17) // DSRLV and DSRAV need a temporary register
+ alloc_reg_temp(current,i,-1);
+ }
+ clear_const(current,rs1[i]);
+ clear_const(current,rs2[i]);
+ clear_const(current,rt1[i]);
+ dirty_reg(current,rt1[i]);
+ }
+}
+
+void alu_alloc(struct regstat *current,int i)
+{
+ if(opcode2[i]>=0x20&&opcode2[i]<=0x23) { // ADD/ADDU/SUB/SUBU
+ if(rt1[i]) {
+ if(rs1[i]&&rs2[i]) {
+ alloc_reg(current,i,rs1[i]);
+ alloc_reg(current,i,rs2[i]);
+ }
+ else {
+ if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
+ if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg(current,i,rs2[i]);
+ }
+ alloc_reg(current,i,rt1[i]);
+ }
+ current->is32|=1LL<<rt1[i];
+ }
+ if(opcode2[i]==0x2a||opcode2[i]==0x2b) { // SLT/SLTU
+ if(rt1[i]) {
+ if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
+ {
+ alloc_reg64(current,i,rs1[i]);
+ alloc_reg64(current,i,rs2[i]);
+ alloc_reg(current,i,rt1[i]);
+ } else {
+ alloc_reg(current,i,rs1[i]);
+ alloc_reg(current,i,rs2[i]);
+ alloc_reg(current,i,rt1[i]);
+ }
+ }
+ current->is32|=1LL<<rt1[i];
+ }
+ if(opcode2[i]>=0x24&&opcode2[i]<=0x27) { // AND/OR/XOR/NOR
+ if(rt1[i]) {
+ if(rs1[i]&&rs2[i]) {
+ alloc_reg(current,i,rs1[i]);
+ alloc_reg(current,i,rs2[i]);
+ }
+ else
+ {
+ if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
+ if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg(current,i,rs2[i]);
+ }
+ alloc_reg(current,i,rt1[i]);
+ if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
+ {
+ if(!((current->uu>>rt1[i])&1)) {
+ alloc_reg64(current,i,rt1[i]);
+ }
+ if(get_reg(current->regmap,rt1[i]|64)>=0) {
+ if(rs1[i]&&rs2[i]) {
+ alloc_reg64(current,i,rs1[i]);
+ alloc_reg64(current,i,rs2[i]);
+ }
+ else
+ {
+ // Is is really worth it to keep 64-bit values in registers?
+ #ifdef NATIVE_64BIT
+ if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg64(current,i,rs1[i]);
+ if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg64(current,i,rs2[i]);
+ #endif
+ }
+ }
+ current->is32&=~(1LL<<rt1[i]);
+ } else {
+ current->is32|=1LL<<rt1[i];
+ }
+ }
+ }
+ if(opcode2[i]>=0x2c&&opcode2[i]<=0x2f) { // DADD/DADDU/DSUB/DSUBU
+ if(rt1[i]) {
+ if(rs1[i]&&rs2[i]) {
+ if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
+ alloc_reg64(current,i,rs1[i]);
+ alloc_reg64(current,i,rs2[i]);
+ alloc_reg64(current,i,rt1[i]);
+ } else {
+ alloc_reg(current,i,rs1[i]);
+ alloc_reg(current,i,rs2[i]);
+ alloc_reg(current,i,rt1[i]);
+ }
+ }
+ else {
+ alloc_reg(current,i,rt1[i]);
+ if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
+ // DADD used as move, or zeroing
+ // If we have a 64-bit source, then make the target 64 bits too
+ if(rs1[i]&&!((current->is32>>rs1[i])&1)) {
+ if(get_reg(current->regmap,rs1[i])>=0) alloc_reg64(current,i,rs1[i]);
+ alloc_reg64(current,i,rt1[i]);
+ } else if(rs2[i]&&!((current->is32>>rs2[i])&1)) {
+ if(get_reg(current->regmap,rs2[i])>=0) alloc_reg64(current,i,rs2[i]);
+ alloc_reg64(current,i,rt1[i]);
+ }
+ if(opcode2[i]>=0x2e&&rs2[i]) {
+ // DSUB used as negation - 64-bit result
+ // If we have a 32-bit register, extend it to 64 bits
+ if(get_reg(current->regmap,rs2[i])>=0) alloc_reg64(current,i,rs2[i]);
+ alloc_reg64(current,i,rt1[i]);
+ }
+ }
+ }
+ if(rs1[i]&&rs2[i]) {
+ current->is32&=~(1LL<<rt1[i]);
+ } else if(rs1[i]) {
+ current->is32&=~(1LL<<rt1[i]);
+ if((current->is32>>rs1[i])&1)
+ current->is32|=1LL<<rt1[i];
+ } else if(rs2[i]) {
+ current->is32&=~(1LL<<rt1[i]);
+ if((current->is32>>rs2[i])&1)
+ current->is32|=1LL<<rt1[i];
+ } else {
+ current->is32|=1LL<<rt1[i];
+ }
+ }
+ }
+ clear_const(current,rs1[i]);
+ clear_const(current,rs2[i]);
+ clear_const(current,rt1[i]);
+ dirty_reg(current,rt1[i]);
+}
+
+void imm16_alloc(struct regstat *current,int i)
+{
+ if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
+ else lt1[i]=rs1[i];
+ if(rt1[i]) alloc_reg(current,i,rt1[i]);
+ if(opcode[i]==0x18||opcode[i]==0x19) { // DADDI/DADDIU
+ current->is32&=~(1LL<<rt1[i]);
+ if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
+ // TODO: Could preserve the 32-bit flag if the immediate is zero
+ alloc_reg64(current,i,rt1[i]);
+ alloc_reg64(current,i,rs1[i]);
+ }
+ clear_const(current,rs1[i]);
+ clear_const(current,rt1[i]);
+ }
+ else if(opcode[i]==0x0a||opcode[i]==0x0b) { // SLTI/SLTIU
+ if((~current->is32>>rs1[i])&1) alloc_reg64(current,i,rs1[i]);
+ current->is32|=1LL<<rt1[i];
+ clear_const(current,rs1[i]);
+ clear_const(current,rt1[i]);
+ }
+ else if(opcode[i]>=0x0c&&opcode[i]<=0x0e) { // ANDI/ORI/XORI
+ if(((~current->is32>>rs1[i])&1)&&opcode[i]>0x0c) {
+ if(rs1[i]!=rt1[i]) {
+ if(needed_again(rs1[i],i)) alloc_reg64(current,i,rs1[i]);
+ alloc_reg64(current,i,rt1[i]);
+ current->is32&=~(1LL<<rt1[i]);
+ }
+ }
+ else current->is32|=1LL<<rt1[i]; // ANDI clears upper bits
+ if(is_const(current,rs1[i])) {
+ int v=get_const(current,rs1[i]);
+ if(opcode[i]==0x0c) set_const(current,rt1[i],v&imm[i]);
+ if(opcode[i]==0x0d) set_const(current,rt1[i],v|imm[i]);
+ if(opcode[i]==0x0e) set_const(current,rt1[i],v^imm[i]);
+ }
+ else clear_const(current,rt1[i]);
+ }
+ else if(opcode[i]==0x08||opcode[i]==0x09) { // ADDI/ADDIU
+ if(is_const(current,rs1[i])) {
+ int v=get_const(current,rs1[i]);
+ set_const(current,rt1[i],v+imm[i]);
+ }
+ else clear_const(current,rt1[i]);
+ current->is32|=1LL<<rt1[i];
+ }
+ else {
+ set_const(current,rt1[i],((long long)((short)imm[i]))<<16); // LUI
+ current->is32|=1LL<<rt1[i];
+ }
+ dirty_reg(current,rt1[i]);
+}
+
+void load_alloc(struct regstat *current,int i)
+{
+ clear_const(current,rt1[i]);
+ //if(rs1[i]!=rt1[i]&&needed_again(rs1[i],i)) clear_const(current,rs1[i]); // Does this help or hurt?
+ if(!rs1[i]) current->u&=~1LL; // Allow allocating r0 if it's the source register
+ if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
+ if(rt1[i]) {
+ alloc_reg(current,i,rt1[i]);
+ if(opcode[i]==0x27||opcode[i]==0x37) // LWU/LD
+ {
+ current->is32&=~(1LL<<rt1[i]);
+ alloc_reg64(current,i,rt1[i]);
+ }
+ else if(opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
+ {
+ current->is32&=~(1LL<<rt1[i]);
+ alloc_reg64(current,i,rt1[i]);
+ alloc_all(current,i);
+ alloc_reg64(current,i,FTEMP);
+ }
+ else current->is32|=1LL<<rt1[i];
+ dirty_reg(current,rt1[i]);
+ // If using TLB, need a register for pointer to the mapping table
+ if(using_tlb) alloc_reg(current,i,TLREG);
+ // LWL/LWR need a temporary register for the old value
+ if(opcode[i]==0x22||opcode[i]==0x26)
+ {
+ alloc_reg(current,i,FTEMP);
+ alloc_reg_temp(current,i,-1);
+ }
+ }
+ else
+ {
+ // Load to r0 (dummy load)
+ // but we still need a register to calculate the address
+ alloc_reg_temp(current,i,-1);
+ }
+}
+
+void store_alloc(struct regstat *current,int i)
+{
+ clear_const(current,rs2[i]);
+ if(!(rs2[i])) current->u&=~1LL; // Allow allocating r0 if necessary
+ if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
+ alloc_reg(current,i,rs2[i]);
+ if(opcode[i]==0x2c||opcode[i]==0x2d||opcode[i]==0x3f) { // 64-bit SDL/SDR/SD
+ alloc_reg64(current,i,rs2[i]);
+ if(rs2[i]) alloc_reg(current,i,FTEMP);
+ }
+ // If using TLB, need a register for pointer to the mapping table
+ if(using_tlb) alloc_reg(current,i,TLREG);
+ #if defined(HOST_IMM8)
+ // On CPUs without 32-bit immediates we need a pointer to invalid_code
+ else alloc_reg(current,i,INVCP);
+ #endif
+ if(opcode[i]==0x2c||opcode[i]==0x2d) { // 64-bit SDL/SDR
+ alloc_reg(current,i,FTEMP);
+ }
+ // We need a temporary register for address generation
+ alloc_reg_temp(current,i,-1);
+}
+
+void c1ls_alloc(struct regstat *current,int i)
+{
+ //clear_const(current,rs1[i]); // FIXME
+ clear_const(current,rt1[i]);
+ if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
+ alloc_reg(current,i,CSREG); // Status
+ alloc_reg(current,i,FTEMP);
+ if(opcode[i]==0x35||opcode[i]==0x3d) { // 64-bit LDC1/SDC1
+ alloc_reg64(current,i,FTEMP);
+ }
+ // If using TLB, need a register for pointer to the mapping table
+ if(using_tlb) alloc_reg(current,i,TLREG);
+ #if defined(HOST_IMM8)
+ // On CPUs without 32-bit immediates we need a pointer to invalid_code
+ else if((opcode[i]&0x3b)==0x39) // SWC1/SDC1
+ alloc_reg(current,i,INVCP);
+ #endif
+ // We need a temporary register for address generation
+ alloc_reg_temp(current,i,-1);
+}
+
+#ifndef multdiv_alloc
+void multdiv_alloc(struct regstat *current,int i)
+{
+ // case 0x18: MULT
+ // case 0x19: MULTU
+ // case 0x1A: DIV
+ // case 0x1B: DIVU
+ // case 0x1C: DMULT
+ // case 0x1D: DMULTU
+ // case 0x1E: DDIV
+ // case 0x1F: DDIVU
+ clear_const(current,rs1[i]);
+ clear_const(current,rs2[i]);
+ if(rs1[i]&&rs2[i])
+ {
+ if((opcode2[i]&4)==0) // 32-bit
+ {
+ current->u&=~(1LL<<HIREG);
+ current->u&=~(1LL<<LOREG);
+ alloc_reg(current,i,HIREG);
+ alloc_reg(current,i,LOREG);
+ alloc_reg(current,i,rs1[i]);
+ alloc_reg(current,i,rs2[i]);
+ current->is32|=1LL<<HIREG;
+ current->is32|=1LL<<LOREG;
+ dirty_reg(current,HIREG);
+ dirty_reg(current,LOREG);
+ }
+ else // 64-bit
+ {
+ current->u&=~(1LL<<HIREG);
+ current->u&=~(1LL<<LOREG);
+ current->uu&=~(1LL<<HIREG);
+ current->uu&=~(1LL<<LOREG);
+ alloc_reg64(current,i,HIREG);
+ //if(HOST_REGS>10) alloc_reg64(current,i,LOREG);
+ alloc_reg64(current,i,rs1[i]);
+ alloc_reg64(current,i,rs2[i]);
+ alloc_all(current,i);
+ current->is32&=~(1LL<<HIREG);
+ current->is32&=~(1LL<<LOREG);
+ dirty_reg(current,HIREG);
+ dirty_reg(current,LOREG);
+ }
+ }
+ else
+ {
+ // Multiply by zero is zero.
+ // MIPS does not have a divide by zero exception.
+ // The result is undefined, we return zero.
+ alloc_reg(current,i,HIREG);
+ alloc_reg(current,i,LOREG);
+ current->is32|=1LL<<HIREG;
+ current->is32|=1LL<<LOREG;
+ dirty_reg(current,HIREG);
+ dirty_reg(current,LOREG);
+ }
+}
+#endif
+
+void cop0_alloc(struct regstat *current,int i)
+{
+ if(opcode2[i]==0) // MFC0
+ {
+ if(rt1[i]) {
+ clear_const(current,rt1[i]);
+ alloc_all(current,i);
+ alloc_reg(current,i,rt1[i]);
+ current->is32|=1LL<<rt1[i];
+ dirty_reg(current,rt1[i]);
+ }
+ }
+ else if(opcode2[i]==4) // MTC0
+ {
+ if(rs1[i]){
+ clear_const(current,rs1[i]);
+ alloc_reg(current,i,rs1[i]);
+ alloc_all(current,i);
+ }
+ else {
+ alloc_all(current,i); // FIXME: Keep r0
+ current->u&=~1LL;
+ alloc_reg(current,i,0);
+ }
+ }
+ else
+ {
+ // TLBR/TLBWI/TLBWR/TLBP/ERET
+ assert(opcode2[i]==0x10);
+ alloc_all(current,i);
+ }
+}
+
+void cop1_alloc(struct regstat *current,int i)
+{
+ alloc_reg(current,i,CSREG); // Load status
+ if(opcode2[i]<3) // MFC1/DMFC1/CFC1
+ {
+ assert(rt1[i]);
+ clear_const(current,rt1[i]);
+ if(opcode2[i]==1) {
+ alloc_reg64(current,i,rt1[i]); // DMFC1
+ current->is32&=~(1LL<<rt1[i]);
+ }else{
+ alloc_reg(current,i,rt1[i]); // MFC1/CFC1
+ current->is32|=1LL<<rt1[i];
+ }
+ dirty_reg(current,rt1[i]);
+ alloc_reg_temp(current,i,-1);
+ }
+ else if(opcode2[i]>3) // MTC1/DMTC1/CTC1
+ {
+ if(rs1[i]){
+ clear_const(current,rs1[i]);
+ if(opcode2[i]==5)
+ alloc_reg64(current,i,rs1[i]); // DMTC1
+ else
+ alloc_reg(current,i,rs1[i]); // MTC1/CTC1
+ alloc_reg_temp(current,i,-1);
+ }
+ else {
+ current->u&=~1LL;
+ alloc_reg(current,i,0);
+ alloc_reg_temp(current,i,-1);
+ }
+ }
+}
+void fconv_alloc(struct regstat *current,int i)
+{
+ alloc_reg(current,i,CSREG); // Load status
+ alloc_reg_temp(current,i,-1);
+}
+void float_alloc(struct regstat *current,int i)
+{
+ alloc_reg(current,i,CSREG); // Load status
+ alloc_reg_temp(current,i,-1);
+}
+void fcomp_alloc(struct regstat *current,int i)
+{
+ alloc_reg(current,i,CSREG); // Load status
+ alloc_reg(current,i,FSREG); // Load flags
+ dirty_reg(current,FSREG); // Flag will be modified
+ alloc_reg_temp(current,i,-1);
+}
+
+void syscall_alloc(struct regstat *current,int i)
+{
+ alloc_cc(current,i);
+ dirty_reg(current,CCREG);
+ alloc_all(current,i);
+ current->isconst=0;
+}
+
+void delayslot_alloc(struct regstat *current,int i)
+{
+ switch(itype[i]) {
+ case UJUMP:
+ case CJUMP:
+ case SJUMP:
+ case RJUMP:
+ case FJUMP:
+ case SYSCALL:
+ case SPAN:
+ assem_debug("jump in the delay slot. this shouldn't happen.\n");//exit(1);
+ printf("Disabled speculative precompilation\n");
+ stop_after_jal=1;
+ break;
+ case IMM16:
+ imm16_alloc(current,i);
+ break;
+ case LOAD:
+ case LOADLR:
+ load_alloc(current,i);
+ break;
+ case STORE:
+ case STORELR:
+ store_alloc(current,i);
+ break;
+ case ALU:
+ alu_alloc(current,i);
+ break;
+ case SHIFT:
+ shift_alloc(current,i);
+ break;
+ case MULTDIV:
+ multdiv_alloc(current,i);
+ break;
+ case SHIFTIMM:
+ shiftimm_alloc(current,i);
+ break;
+ case MOV:
+ mov_alloc(current,i);
+ break;
+ case COP0:
+ cop0_alloc(current,i);
+ break;
+ case COP1:
+ cop1_alloc(current,i);
+ break;
+ case C1LS:
+ c1ls_alloc(current,i);
+ break;
+ case FCONV:
+ fconv_alloc(current,i);
+ break;
+ case FLOAT:
+ float_alloc(current,i);
+ break;
+ case FCOMP:
+ fcomp_alloc(current,i);
+ break;
+ }
+}
+
+// Special case where a branch and delay slot span two pages in virtual memory
+static void pagespan_alloc(struct regstat *current,int i)
+{
+ current->isconst=0;
+ current->wasconst=0;
+ regs[i].wasconst=0;
+ alloc_all(current,i);
+ alloc_cc(current,i);
+ dirty_reg(current,CCREG);
+ if(opcode[i]==3) // JAL
+ {
+ alloc_reg(current,i,31);
+ dirty_reg(current,31);
+ }
+ if(opcode[i]==0&&(opcode2[i]&0x3E)==8) // JR/JALR
+ {
+ alloc_reg(current,i,rs1[i]);
+ if (rt1[i]==31) {
+ alloc_reg(current,i,31);
+ dirty_reg(current,31);
+ }
+ }
+ if((opcode[i]&0x2E)==4) // BEQ/BNE/BEQL/BNEL
+ {
+ if(rs1[i]) alloc_reg(current,i,rs1[i]);
+ if(rs2[i]) alloc_reg(current,i,rs2[i]);
+ if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
+ {
+ if(rs1[i]) alloc_reg64(current,i,rs1[i]);
+ if(rs2[i]) alloc_reg64(current,i,rs2[i]);
+ }
+ }
+ else
+ if((opcode[i]&0x2E)==6) // BLEZ/BGTZ/BLEZL/BGTZL
+ {
+ if(rs1[i]) alloc_reg(current,i,rs1[i]);
+ if(!((current->is32>>rs1[i])&1))
+ {
+ if(rs1[i]) alloc_reg64(current,i,rs1[i]);
+ }
+ }
+ else
+ if(opcode[i]==0x11) // BC1
+ {
+ alloc_reg(current,i,FSREG);
+ alloc_reg(current,i,CSREG);
+ }
+ //else ...
+}
+
+add_stub(int type,int addr,int retaddr,int a,int b,int c,int d,int e)
+{
+ stubs[stubcount][0]=type;
+ stubs[stubcount][1]=addr;
+ stubs[stubcount][2]=retaddr;
+ stubs[stubcount][3]=a;
+ stubs[stubcount][4]=b;
+ stubs[stubcount][5]=c;
+ stubs[stubcount][6]=d;
+ stubs[stubcount][7]=e;
+ stubcount++;
+}
+
+// Write out a single register
+void wb_register(signed char r,signed char regmap[],uint64_t dirty,uint64_t is32)
+{
+ int hr;
+ for(hr=0;hr<HOST_REGS;hr++) {
+ if(hr!=EXCLUDE_REG) {
+ if((regmap[hr]&63)==r) {
+ if((dirty>>hr)&1) {
+ if(regmap[hr]<64) {
+ emit_storereg(r,hr);
+ if((is32>>regmap[hr])&1) {
+ emit_sarimm(hr,31,hr);
+ emit_storereg(r|64,hr);
+ }
+ }else{
+ emit_storereg(r|64,hr);
+ }
+ }
+ }
+ }
+ }
+}
+
+int mchecksum()
+{
+ //if(!tracedebug) return 0;
+ int i;
+ int sum=0;
+ for(i=0;i<2097152;i++) {
+ unsigned int temp=sum;
+ sum<<=1;
+ sum|=(~temp)>>31;
+ sum^=((u_int *)rdram)[i];
+ }
+ return sum;
+}
+int rchecksum()
+{
+ int i;
+ int sum=0;
+ for(i=0;i<64;i++)
+ sum^=((u_int *)reg)[i];
+ return sum;
+}
+int fchecksum()
+{
+ int i;
+ int sum=0;
+ for(i=0;i<64;i++)
+ sum^=((u_int *)reg_cop1_fgr_64)[i];
+ return sum;
+}
+void rlist()
+{
+ int i;
+ printf("TRACE: ");
+ for(i=0;i<32;i++)
+ printf("r%d:%8x%8x ",i,((int *)(reg+i))[1],((int *)(reg+i))[0]);
+ printf("\n");
+ printf("TRACE: ");
+ for(i=0;i<32;i++)
+ printf("f%d:%8x%8x ",i,((int*)reg_cop1_simple[i])[1],*((int*)reg_cop1_simple[i]));
+ printf("\n");
+}
+
+void enabletrace()
+{
+ tracedebug=1;
+}
+
+void memdebug(int i)
+{
+ //printf("TRACE: count=%d next=%d (checksum %x) lo=%8x%8x\n",Count,next_interupt,mchecksum(),(int)(reg[LOREG]>>32),(int)reg[LOREG]);
+ //printf("TRACE: count=%d next=%d (rchecksum %x)\n",Count,next_interupt,rchecksum());
+ //rlist();
+ //if(tracedebug) {
+ //if(Count>=-2084597794) {
+ if((signed int)Count>=-2084597794&&(signed int)Count<0) {
+ //if(0) {
+ printf("TRACE: count=%d next=%d (checksum %x)\n",Count,next_interupt,mchecksum());
+ //printf("TRACE: count=%d next=%d (checksum %x) Status=%x\n",Count,next_interupt,mchecksum(),Status);
+ //printf("TRACE: count=%d next=%d (checksum %x) hi=%8x%8x\n",Count,next_interupt,mchecksum(),(int)(reg[HIREG]>>32),(int)reg[HIREG]);
+ rlist();
+ #ifdef __i386__
+ printf("TRACE: %x\n",(&i)[-1]);
+ #endif
+ #ifdef __arm__
+ int j;
+ printf("TRACE: %x \n",(&j)[10]);
+ printf("TRACE: %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x\n",(&j)[1],(&j)[2],(&j)[3],(&j)[4],(&j)[5],(&j)[6],(&j)[7],(&j)[8],(&j)[9],(&j)[10],(&j)[11],(&j)[12],(&j)[13],(&j)[14],(&j)[15],(&j)[16],(&j)[17],(&j)[18],(&j)[19],(&j)[20]);
+ #endif
+ //fflush(stdout);
+ }
+ //printf("TRACE: %x\n",(&i)[-1]);
+}
+
+void tlb_debug(u_int cause, u_int addr, u_int iaddr)
+{
+ printf("TLB Exception: instruction=%x addr=%x cause=%x\n",iaddr, addr, cause);
+}
+
+void alu_assemble(int i,struct regstat *i_regs)
+{
+ if(opcode2[i]>=0x20&&opcode2[i]<=0x23) { // ADD/ADDU/SUB/SUBU
+ if(rt1[i]) {
+ signed char s1,s2,t;
+ t=get_reg(i_regs->regmap,rt1[i]);
+ if(t>=0) {
+ s1=get_reg(i_regs->regmap,rs1[i]);
+ s2=get_reg(i_regs->regmap,rs2[i]);
+ if(rs1[i]&&rs2[i]) {
+ assert(s1>=0);
+ assert(s2>=0);
+ if(opcode2[i]&2) emit_sub(s1,s2,t);
+ else emit_add(s1,s2,t);
+ }
+ else if(rs1[i]) {
+ if(s1>=0) emit_mov(s1,t);
+ else emit_loadreg(rs1[i],t);
+ }
+ else if(rs2[i]) {
+ if(s2>=0) {
+ if(opcode2[i]&2) emit_neg(s2,t);
+ else emit_mov(s2,t);
+ }
+ else {
+ emit_loadreg(rs2[i],t);
+ if(opcode2[i]&2) emit_neg(t,t);
+ }
+ }
+ else emit_zeroreg(t);
+ }
+ }
+ }
+ if(opcode2[i]>=0x2c&&opcode2[i]<=0x2f) { // DADD/DADDU/DSUB/DSUBU
+ if(rt1[i]) {
+ signed char s1l,s2l,s1h,s2h,tl,th;
+ tl=get_reg(i_regs->regmap,rt1[i]);
+ th=get_reg(i_regs->regmap,rt1[i]|64);
+ if(tl>=0) {
+ s1l=get_reg(i_regs->regmap,rs1[i]);
+ s2l=get_reg(i_regs->regmap,rs2[i]);
+ s1h=get_reg(i_regs->regmap,rs1[i]|64);
+ s2h=get_reg(i_regs->regmap,rs2[i]|64);
+ if(rs1[i]&&rs2[i]) {
+ assert(s1l>=0);
+ assert(s2l>=0);
+ if(opcode2[i]&2) emit_subs(s1l,s2l,tl);
+ else emit_adds(s1l,s2l,tl);
+ if(th>=0) {
+ #ifdef INVERTED_CARRY
+ if(opcode2[i]&2) {if(s1h!=th) emit_mov(s1h,th);emit_sbb(th,s2h);}
+ #else
+ if(opcode2[i]&2) emit_sbc(s1h,s2h,th);
+ #endif
+ else emit_add(s1h,s2h,th);
+ }
+ }
+ else if(rs1[i]) {
+ if(s1l>=0) emit_mov(s1l,tl);
+ else emit_loadreg(rs1[i],tl);
+ if(th>=0) {
+ if(s1h>=0) emit_mov(s1h,th);
+ else emit_loadreg(rs1[i]|64,th);
+ }
+ }
+ else if(rs2[i]) {
+ if(s2l>=0) {
+ if(opcode2[i]&2) emit_negs(s2l,tl);
+ else emit_mov(s2l,tl);
+ }
+ else {
+ emit_loadreg(rs2[i],tl);
+ if(opcode2[i]&2) emit_negs(tl,tl);
+ }
+ if(th>=0) {
+ #ifdef INVERTED_CARRY
+ if(s2h>=0) emit_mov(s2h,th);
+ else emit_loadreg(rs2[i]|64,th);
+ if(opcode2[i]&2) {
+ emit_adcimm(-1,th); // x86 has inverted carry flag
+ emit_not(th,th);
+ }
+ #else
+ if(opcode2[i]&2) {
+ if(s2h>=0) emit_rscimm(s2h,0,th);
+ else {
+ emit_loadreg(rs2[i]|64,th);
+ emit_rscimm(th,0,th);
+ }
+ }else{
+ if(s2h>=0) emit_mov(s2h,th);
+ else emit_loadreg(rs2[i]|64,th);
+ }
+ #endif
+ }
+ }
+ else {
+ emit_zeroreg(tl);
+ if(th>=0) emit_zeroreg(th);
+ }
+ }
+ }
+ }
+ if(opcode2[i]==0x2a||opcode2[i]==0x2b) { // SLT/SLTU
+ if(rt1[i]) {
+ signed char s1l,s1h,s2l,s2h,t;
+ if(!((i_regs->was32>>rs1[i])&(i_regs->was32>>rs2[i])&1))
+ {
+ t=get_reg(i_regs->regmap,rt1[i]);
+ //assert(t>=0);
+ if(t>=0) {
+ s1l=get_reg(i_regs->regmap,rs1[i]);
+ s1h=get_reg(i_regs->regmap,rs1[i]|64);
+ s2l=get_reg(i_regs->regmap,rs2[i]);
+ s2h=get_reg(i_regs->regmap,rs2[i]|64);
+ if(rs2[i]==0) // rx<r0
+ {
+ assert(s1h>=0);
+ if(opcode2[i]==0x2a) // SLT
+ emit_shrimm(s1h,31,t);
+ else // SLTU (unsigned can not be less than zero)
+ emit_zeroreg(t);
+ }
+ else if(rs1[i]==0) // r0<rx
+ {
+ assert(s2h>=0);
+ if(opcode2[i]==0x2a) // SLT
+ emit_set_gz64_32(s2h,s2l,t);
+ else // SLTU (set if not zero)
+ emit_set_nz64_32(s2h,s2l,t);
+ }
+ else {
+ assert(s1l>=0);assert(s1h>=0);
+ assert(s2l>=0);assert(s2h>=0);
+ if(opcode2[i]==0x2a) // SLT
+ emit_set_if_less64_32(s1h,s1l,s2h,s2l,t);
+ else // SLTU
+ emit_set_if_carry64_32(s1h,s1l,s2h,s2l,t);
+ }
+ }
+ } else {
+ t=get_reg(i_regs->regmap,rt1[i]);
+ //assert(t>=0);
+ if(t>=0) {
+ s1l=get_reg(i_regs->regmap,rs1[i]);
+ s2l=get_reg(i_regs->regmap,rs2[i]);
+ if(rs2[i]==0) // rx<r0
+ {
+ assert(s1l>=0);
+ if(opcode2[i]==0x2a) // SLT
+ emit_shrimm(s1l,31,t);
+ else // SLTU (unsigned can not be less than zero)
+ emit_zeroreg(t);
+ }
+ else if(rs1[i]==0) // r0<rx
+ {
+ assert(s2l>=0);
+ if(opcode2[i]==0x2a) // SLT
+ emit_set_gz32(s2l,t);
+ else // SLTU (set if not zero)
+ emit_set_nz32(s2l,t);
+ }
+ else{
+ assert(s1l>=0);assert(s2l>=0);
+ if(opcode2[i]==0x2a) // SLT
+ emit_set_if_less32(s1l,s2l,t);
+ else // SLTU
+ emit_set_if_carry32(s1l,s2l,t);
+ }
+ }
+ }
+ }
+ }
+ if(opcode2[i]>=0x24&&opcode2[i]<=0x27) { // AND/OR/XOR/NOR
+ if(rt1[i]) {
+ signed char s1l,s1h,s2l,s2h,th,tl;
+ tl=get_reg(i_regs->regmap,rt1[i]);
+ th=get_reg(i_regs->regmap,rt1[i]|64);
+ if(!((i_regs->was32>>rs1[i])&(i_regs->was32>>rs2[i])&1)&&th>=0)
+ {
+ assert(tl>=0);
+ if(tl>=0) {
+ s1l=get_reg(i_regs->regmap,rs1[i]);
+ s1h=get_reg(i_regs->regmap,rs1[i]|64);
+ s2l=get_reg(i_regs->regmap,rs2[i]);
+ s2h=get_reg(i_regs->regmap,rs2[i]|64);
+ if(rs1[i]&&rs2[i]) {
+ assert(s1l>=0);assert(s1h>=0);
+ assert(s2l>=0);assert(s2h>=0);
+ if(opcode2[i]==0x24) { // AND
+ emit_and(s1l,s2l,tl);
+ emit_and(s1h,s2h,th);
+ } else
+ if(opcode2[i]==0x25) { // OR
+ emit_or(s1l,s2l,tl);
+ emit_or(s1h,s2h,th);
+ } else
+ if(opcode2[i]==0x26) { // XOR
+ emit_xor(s1l,s2l,tl);
+ emit_xor(s1h,s2h,th);
+ } else
+ if(opcode2[i]==0x27) { // NOR
+ emit_or(s1l,s2l,tl);
+ emit_or(s1h,s2h,th);
+ emit_not(tl,tl);
+ emit_not(th,th);
+ }
+ }
+ else
+ {
+ if(opcode2[i]==0x24) { // AND
+ emit_zeroreg(tl);
+ emit_zeroreg(th);
+ } else
+ if(opcode2[i]==0x25||opcode2[i]==0x26) { // OR/XOR
+ if(rs1[i]){
+ if(s1l>=0) emit_mov(s1l,tl);
+ else emit_loadreg(rs1[i],tl);
+ if(s1h>=0) emit_mov(s1h,th);
+ else emit_loadreg(rs1[i]|64,th);
+ }
+ else
+ if(rs2[i]){
+ if(s2l>=0) emit_mov(s2l,tl);
+ else emit_loadreg(rs2[i],tl);
+ if(s2h>=0) emit_mov(s2h,th);
+ else emit_loadreg(rs2[i]|64,th);
+ }
+ else{
+ emit_zeroreg(tl);
+ emit_zeroreg(th);
+ }
+ } else
+ if(opcode2[i]==0x27) { // NOR
+ if(rs1[i]){
+ if(s1l>=0) emit_not(s1l,tl);
+ else{
+ emit_loadreg(rs1[i],tl);
+ emit_not(tl,tl);
+ }
+ if(s1h>=0) emit_not(s1h,th);
+ else{
+ emit_loadreg(rs1[i]|64,th);
+ emit_not(th,th);
+ }
+ }
+ else
+ if(rs2[i]){
+ if(s2l>=0) emit_not(s2l,tl);
+ else{
+ emit_loadreg(rs2[i],tl);
+ emit_not(tl,tl);
+ }
+ if(s2h>=0) emit_not(s2h,th);
+ else{
+ emit_loadreg(rs2[i]|64,th);
+ emit_not(th,th);
+ }
+ }
+ else {
+ emit_movimm(-1,tl);
+ emit_movimm(-1,th);
+ }
+ }
+ }
+ }
+ }
+ else
+ {
+ // 32 bit
+ if(tl>=0) {
+ s1l=get_reg(i_regs->regmap,rs1[i]);
+ s2l=get_reg(i_regs->regmap,rs2[i]);
+ if(rs1[i]&&rs2[i]) {
+ assert(s1l>=0);
+ assert(s2l>=0);
+ if(opcode2[i]==0x24) { // AND
+ emit_and(s1l,s2l,tl);
+ } else
+ if(opcode2[i]==0x25) { // OR
+ emit_or(s1l,s2l,tl);
+ } else
+ if(opcode2[i]==0x26) { // XOR
+ emit_xor(s1l,s2l,tl);
+ } else
+ if(opcode2[i]==0x27) { // NOR
+ emit_or(s1l,s2l,tl);
+ emit_not(tl,tl);
+ }
+ }
+ else
+ {
+ if(opcode2[i]==0x24) { // AND
+ emit_zeroreg(tl);
+ } else
+ if(opcode2[i]==0x25||opcode2[i]==0x26) { // OR/XOR
+ if(rs1[i]){
+ if(s1l>=0) emit_mov(s1l,tl);
+ else emit_loadreg(rs1[i],tl); // CHECK: regmap_entry?
+ }
+ else
+ if(rs2[i]){
+ if(s2l>=0) emit_mov(s2l,tl);
+ else emit_loadreg(rs2[i],tl); // CHECK: regmap_entry?
+ }
+ else emit_zeroreg(tl);
+ } else
+ if(opcode2[i]==0x27) { // NOR
+ if(rs1[i]){
+ if(s1l>=0) emit_not(s1l,tl);
+ else {
+ emit_loadreg(rs1[i],tl);
+ emit_not(tl,tl);
+ }
+ }
+ else
+ if(rs2[i]){
+ if(s2l>=0) emit_not(s2l,tl);
+ else {
+ emit_loadreg(rs2[i],tl);
+ emit_not(tl,tl);
+ }
+ }
+ else emit_movimm(-1,tl);
+ }
+ }
+ }
+ }
+ }
+ }
+}
+
+void imm16_assemble(int i,struct regstat *i_regs)
+{
+ if (opcode[i]==0x0f) { // LUI
+ if(rt1[i]) {
+ signed char t;
+ t=get_reg(i_regs->regmap,rt1[i]);
+ //assert(t>=0);
+ if(t>=0) {
+ if(!((i_regs->isconst>>t)&1))
+ emit_movimm(imm[i]<<16,t);
+ }
+ }
+ }
+ if(opcode[i]==0x08||opcode[i]==0x09) { // ADDI/ADDIU
+ if(rt1[i]) {
+ signed char s,t;
+ t=get_reg(i_regs->regmap,rt1[i]);
+ s=get_reg(i_regs->regmap,rs1[i]);
+ if(rs1[i]) {
+ //assert(t>=0);
+ //assert(s>=0);
+ if(t>=0) {
+ if(!((i_regs->isconst>>t)&1)) {
+ if(s<0) {
+ if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
+ emit_addimm(t,imm[i],t);
+ }else{
+ if(!((i_regs->wasconst>>s)&1))
+ emit_addimm(s,imm[i],t);
+ else
+ emit_movimm(constmap[i][s]+imm[i],t);
+ }
+ }
+ }
+ } else {
+ if(t>=0) {
+ if(!((i_regs->isconst>>t)&1))
+ emit_movimm(imm[i],t);
+ }
+ }
+ }
+ }
+ if(opcode[i]==0x18||opcode[i]==0x19) { // DADDI/DADDIU
+ if(rt1[i]) {
+ signed char sh,sl,th,tl;
+ th=get_reg(i_regs->regmap,rt1[i]|64);
+ tl=get_reg(i_regs->regmap,rt1[i]);
+ sh=get_reg(i_regs->regmap,rs1[i]|64);
+ sl=get_reg(i_regs->regmap,rs1[i]);
+ if(tl>=0) {
+ if(rs1[i]) {
+ assert(sh>=0);
+ assert(sl>=0);
+ if(th>=0) {
+ emit_addimm64_32(sh,sl,imm[i],th,tl);
+ }
+ else {
+ emit_addimm(sl,imm[i],tl);
+ }
+ } else {
+ emit_movimm(imm[i],tl);
+ if(th>=0) emit_movimm(((signed int)imm[i])>>31,th);
+ }
+ }
+ }
+ }
+ else if(opcode[i]==0x0a||opcode[i]==0x0b) { // SLTI/SLTIU
+ if(rt1[i]) {
+ //assert(rs1[i]!=0); // r0 might be valid, but it's probably a bug
+ signed char sh,sl,t;
+ t=get_reg(i_regs->regmap,rt1[i]);
+ sh=get_reg(i_regs->regmap,rs1[i]|64);
+ sl=get_reg(i_regs->regmap,rs1[i]);
+ //assert(t>=0);
+ if(t>=0) {
+ if(rs1[i]>0) {
+ if(sh<0) assert((i_regs->was32>>rs1[i])&1);
+ if(sh<0||((i_regs->was32>>rs1[i])&1)) {
+ if(opcode[i]==0x0a) { // SLTI
+ if(sl<0) {
+ if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
+ emit_slti32(t,imm[i],t);
+ }else{
+ emit_slti32(sl,imm[i],t);
+ }
+ }
+ else { // SLTIU
+ if(sl<0) {
+ if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
+ emit_sltiu32(t,imm[i],t);
+ }else{
+ emit_sltiu32(sl,imm[i],t);
+ }
+ }
+ }else{ // 64-bit
+ assert(sl>=0);
+ if(opcode[i]==0x0a) // SLTI
+ emit_slti64_32(sh,sl,imm[i],t);
+ else // SLTIU
+ emit_sltiu64_32(sh,sl,imm[i],t);
+ }
+ }else{
+ // SLTI(U) with r0 is just stupid,
+ // nonetheless examples can be found
+ if(opcode[i]==0x0a) // SLTI
+ if(0<imm[i]) emit_movimm(1,t);
+ else emit_zeroreg(t);
+ else // SLTIU
+ {
+ if(imm[i]) emit_movimm(1,t);
+ else emit_zeroreg(t);
+ }
+ }
+ }
+ }
+ }
+ else if(opcode[i]>=0x0c&&opcode[i]<=0x0e) { // ANDI/ORI/XORI
+ if(rt1[i]) {
+ signed char sh,sl,th,tl;
+ th=get_reg(i_regs->regmap,rt1[i]|64);
+ tl=get_reg(i_regs->regmap,rt1[i]);
+ sh=get_reg(i_regs->regmap,rs1[i]|64);
+ sl=get_reg(i_regs->regmap,rs1[i]);
+ if(tl>=0 && !((i_regs->isconst>>tl)&1)) {
+ if(opcode[i]==0x0c) //ANDI
+ {
+ if(rs1[i]) {
+ if(sl<0) {
+ if(i_regs->regmap_entry[tl]!=rs1[i]) emit_loadreg(rs1[i],tl);
+ emit_andimm(tl,imm[i],tl);
+ }else{
+ if(!((i_regs->wasconst>>sl)&1))
+ emit_andimm(sl,imm[i],tl);
+ else
+ emit_movimm(constmap[i][sl]&imm[i],tl);
+ }
+ }
+ else
+ emit_zeroreg(tl);
+ if(th>=0) emit_zeroreg(th);
+ }
+ else
+ {
+ if(rs1[i]) {
+ if(sl<0) {
+ if(i_regs->regmap_entry[tl]!=rs1[i]) emit_loadreg(rs1[i],tl);
+ }
+ if(th>=0) {
+ if(sh<0) {
+ emit_loadreg(rs1[i]|64,th);
+ }else{
+ emit_mov(sh,th);
+ }
+ }
+ if(opcode[i]==0x0d) //ORI
+ if(sl<0) {
+ emit_orimm(tl,imm[i],tl);
+ }else{
+ if(!((i_regs->wasconst>>sl)&1))
+ emit_orimm(sl,imm[i],tl);
+ else
+ emit_movimm(constmap[i][sl]|imm[i],tl);
+ }
+ if(opcode[i]==0x0e) //XORI
+ if(sl<0) {
+ emit_xorimm(tl,imm[i],tl);
+ }else{
+ if(!((i_regs->wasconst>>sl)&1))
+ emit_xorimm(sl,imm[i],tl);
+ else
+ emit_movimm(constmap[i][sl]^imm[i],tl);
+ }
+ }
+ else {
+ emit_movimm(imm[i],tl);
+ if(th>=0) emit_zeroreg(th);
+ }
+ }
+ }
+ }
+ }
+}
+
+void shiftimm_assemble(int i,struct regstat *i_regs)
+{
+ if(opcode2[i]<=0x3) // SLL/SRL/SRA
+ {
+ if(rt1[i]) {
+ signed char s,t;
+ t=get_reg(i_regs->regmap,rt1[i]);
+ s=get_reg(i_regs->regmap,rs1[i]);
+ //assert(t>=0);
+ if(t>=0){
+ if(rs1[i]==0)
+ {
+ emit_zeroreg(t);
+ }
+ else
+ {
+ if(s<0&&i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
+ if(imm[i]) {
+ if(opcode2[i]==0) // SLL
+ {
+ emit_shlimm(s<0?t:s,imm[i],t);
+ }
+ if(opcode2[i]==2) // SRL
+ {
+ emit_shrimm(s<0?t:s,imm[i],t);
+ }
+ if(opcode2[i]==3) // SRA
+ {
+ emit_sarimm(s<0?t:s,imm[i],t);
+ }
+ }else{
+ // Shift by zero
+ if(s>=0 && s!=t) emit_mov(s,t);
+ }
+ }
+ }
+ //emit_storereg(rt1[i],t); //DEBUG
+ }
+ }
+ if(opcode2[i]>=0x38&&opcode2[i]<=0x3b) // DSLL/DSRL/DSRA
+ {
+ if(rt1[i]) {
+ signed char sh,sl,th,tl;
+ th=get_reg(i_regs->regmap,rt1[i]|64);
+ tl=get_reg(i_regs->regmap,rt1[i]);
+ sh=get_reg(i_regs->regmap,rs1[i]|64);
+ sl=get_reg(i_regs->regmap,rs1[i]);
+ if(tl>=0) {
+ if(rs1[i]==0)
+ {
+ emit_zeroreg(tl);
+ if(th>=0) emit_zeroreg(th);
+ }
+ else
+ {
+ assert(sl>=0);
+ assert(sh>=0);
+ if(imm[i]) {
+ if(opcode2[i]==0x38) // DSLL
+ {
+ if(th>=0) emit_shldimm(sh,sl,imm[i],th);
+ emit_shlimm(sl,imm[i],tl);
+ }
+ if(opcode2[i]==0x3a) // DSRL
+ {
+ emit_shrdimm(sl,sh,imm[i],tl);
+ if(th>=0) emit_shrimm(sh,imm[i],th);
+ }
+ if(opcode2[i]==0x3b) // DSRA
+ {
+ emit_shrdimm(sl,sh,imm[i],tl);
+ if(th>=0) emit_sarimm(sh,imm[i],th);
+ }
+ }else{
+ // Shift by zero
+ if(sl!=tl) emit_mov(sl,tl);
+ if(th>=0&&sh!=th) emit_mov(sh,th);
+ }
+ }
+ }
+ }
+ }
+ if(opcode2[i]==0x3c) // DSLL32
+ {
+ if(rt1[i]) {
+ signed char sl,tl,th;
+ tl=get_reg(i_regs->regmap,rt1[i]);
+ th=get_reg(i_regs->regmap,rt1[i]|64);
+ sl=get_reg(i_regs->regmap,rs1[i]);
+ if(th>=0||tl>=0){
+ assert(tl>=0);
+ assert(th>=0);
+ assert(sl>=0);
+ emit_mov(sl,th);
+ emit_zeroreg(tl);
+ if(imm[i]>32)
+ {
+ emit_shlimm(th,imm[i]&31,th);
+ }
+ }
+ }
+ }
+ if(opcode2[i]==0x3e) // DSRL32
+ {
+ if(rt1[i]) {
+ signed char sh,tl,th;
+ tl=get_reg(i_regs->regmap,rt1[i]);
+ th=get_reg(i_regs->regmap,rt1[i]|64);
+ sh=get_reg(i_regs->regmap,rs1[i]|64);
+ if(tl>=0){
+ assert(sh>=0);
+ emit_mov(sh,tl);
+ if(th>=0) emit_zeroreg(th);
+ if(imm[i]>32)
+ {
+ emit_shrimm(tl,imm[i]&31,tl);
+ }
+ }
+ }
+ }
+ if(opcode2[i]==0x3f) // DSRA32
+ {
+ if(rt1[i]) {
+ signed char sh,tl;
+ tl=get_reg(i_regs->regmap,rt1[i]);
+ sh=get_reg(i_regs->regmap,rs1[i]|64);
+ if(tl>=0){
+ assert(sh>=0);
+ emit_mov(sh,tl);
+ if(imm[i]>32)
+ {
+ emit_sarimm(tl,imm[i]&31,tl);
+ }
+ }
+ }
+ }
+}
+
+#ifndef shift_assemble
+void shift_assemble(int i,struct regstat *i_regs)
+{
+ printf("Need shift_assemble for this architecture.\n");
+ exit(1);
+}
+#endif
+
+void load_assemble(int i,struct regstat *i_regs)
+{
+ int s,th,tl,addr,map=-1;
+ int offset;
+ int jaddr=0;
+ int memtarget,c=0;
+ u_int hr,reglist=0;
+ th=get_reg(i_regs->regmap,rt1[i]|64);
+ tl=get_reg(i_regs->regmap,rt1[i]);
+ s=get_reg(i_regs->regmap,rs1[i]);
+ offset=imm[i];
+ for(hr=0;hr<HOST_REGS;hr++) {
+ if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
+ }
+ if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
+ if(s>=0) {
+ c=(i_regs->wasconst>>s)&1;
+ memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80800000;
+ if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
+ }
+ if(offset||s<0||c) addr=tl;
+ else addr=s;
+ //printf("load_assemble: c=%d\n",c);
+ //if(c) printf("load_assemble: const=%x\n",(int)constmap[i][s]+offset);
+ // FIXME: Even if the load is a NOP, we should check for pagefaults...
+ if(tl>=0) {
+ //assert(tl>=0);
+ //assert(rt1[i]);
+ reglist&=~(1<<tl);
+ if(th>=0) reglist&=~(1<<th);
+ if(!using_tlb) {
+ if(!c) {
+//#define R29_HACK 1
+ #ifdef R29_HACK
+ // Strmnnrmn's speed hack
+ if(rs1[i]!=29||start<0x80001000||start>=0x80800000)
+ #endif
+ {
+ emit_cmpimm(addr,0x800000);
+ jaddr=(int)out;
+ #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
+ // Hint to branch predictor that the branch is unlikely to be taken
+ if(rs1[i]>=28)
+ emit_jno_unlikely(0);
+ else
+ #endif
+ emit_jno(0);
+ }
+ }
+ }else{ // using tlb
+ int x=0;
+ if (opcode[i]==0x20||opcode[i]==0x24) x=3; // LB/LBU
+ if (opcode[i]==0x21||opcode[i]==0x25) x=2; // LH/LHU
+ map=get_reg(i_regs->regmap,TLREG);
+ assert(map>=0);
+ map=do_tlb_r(addr,tl,map,x,-1,-1,c,constmap[i][s]+offset);
+ do_tlb_r_branch(map,c,constmap[i][s]+offset,&jaddr);
+ }
+ if (opcode[i]==0x20) { // LB
+ if(!c||memtarget) {
+ #ifdef HOST_IMM_ADDR32
+ if(c)
+ emit_movsbl_tlb((constmap[i][s]+offset)^3,map,tl);
+ else
+ #endif
+ {
+ //emit_xorimm(addr,3,tl);
+ //gen_tlb_addr_r(tl,map);
+ //emit_movsbl_indexed((int)rdram-0x80000000,tl,tl);
+ int x=0;
+ if(!c) emit_xorimm(addr,3,tl);
+ else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
+ emit_movsbl_indexed_tlb(x,tl,map,tl);
+ }
+ if(jaddr)
+ add_stub(LOADB_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
+ }
+ else
+ inline_readstub(LOADB_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
+ }
+ if (opcode[i]==0x21) { // LH
+ if(!c||memtarget) {
+ #ifdef HOST_IMM_ADDR32
+ if(c)
+ emit_movswl_tlb((constmap[i][s]+offset)^2,map,tl);
+ else
+ #endif
+ {
+ int x=0;
+ if(!c) emit_xorimm(addr,2,tl);
+ else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
+ //#ifdef
+ //emit_movswl_indexed_tlb(x,tl,map,tl);
+ //else
+ if(map>=0) {
+ gen_tlb_addr_r(tl,map);
+ emit_movswl_indexed(x,tl,tl);
+ }else
+ emit_movswl_indexed((int)rdram-0x80000000+x,tl,tl);
+ }
+ if(jaddr)
+ add_stub(LOADH_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
+ }
+ else
+ inline_readstub(LOADH_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
+ }
+ if (opcode[i]==0x23) { // LW
+ if(!c||memtarget) {
+ //emit_readword_indexed((int)rdram-0x80000000,addr,tl);
+ #ifdef HOST_IMM_ADDR32
+ if(c)
+ emit_readword_tlb(constmap[i][s]+offset,map,tl);
+ else
+ #endif
+ emit_readword_indexed_tlb(0,addr,map,tl);
+ if(jaddr)
+ add_stub(LOADW_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
+ }
+ else
+ inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
+ }
+ if (opcode[i]==0x24) { // LBU
+ if(!c||memtarget) {
+ #ifdef HOST_IMM_ADDR32
+ if(c)
+ emit_movzbl_tlb((constmap[i][s]+offset)^3,map,tl);
+ else
+ #endif
+ {
+ //emit_xorimm(addr,3,tl);
+ //gen_tlb_addr_r(tl,map);
+ //emit_movzbl_indexed((int)rdram-0x80000000,tl,tl);
+ int x=0;
+ if(!c) emit_xorimm(addr,3,tl);
+ else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
+ emit_movzbl_indexed_tlb(x,tl,map,tl);
+ }
+ if(jaddr)
+ add_stub(LOADBU_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
+ }
+ else
+ inline_readstub(LOADBU_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
+ }
+ if (opcode[i]==0x25) { // LHU
+ if(!c||memtarget) {
+ #ifdef HOST_IMM_ADDR32
+ if(c)
+ emit_movzwl_tlb((constmap[i][s]+offset)^2,map,tl);
+ else
+ #endif
+ {
+ int x=0;
+ if(!c) emit_xorimm(addr,2,tl);
+ else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
+ //#ifdef
+ //emit_movzwl_indexed_tlb(x,tl,map,tl);
+ //#else
+ if(map>=0) {
+ gen_tlb_addr_r(tl,map);
+ emit_movzwl_indexed(x,tl,tl);
+ }else
+ emit_movzwl_indexed((int)rdram-0x80000000+x,tl,tl);
+ if(jaddr)
+ add_stub(LOADHU_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
+ }
+ }
+ else
+ inline_readstub(LOADHU_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
+ }
+ if (opcode[i]==0x27) { // LWU
+ assert(th>=0);
+ if(!c||memtarget) {
+ //emit_readword_indexed((int)rdram-0x80000000,addr,tl);
+ #ifdef HOST_IMM_ADDR32
+ if(c)
+ emit_readword_tlb(constmap[i][s]+offset,map,tl);
+ else
+ #endif
+ emit_readword_indexed_tlb(0,addr,map,tl);
+ if(jaddr)
+ add_stub(LOADW_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
+ }
+ else {
+ inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
+ }
+ emit_zeroreg(th);
+ }
+ if (opcode[i]==0x37) { // LD
+ if(!c||memtarget) {
+ //gen_tlb_addr_r(tl,map);
+ //if(th>=0) emit_readword_indexed((int)rdram-0x80000000,addr,th);
+ //emit_readword_indexed((int)rdram-0x7FFFFFFC,addr,tl);
+ #ifdef HOST_IMM_ADDR32
+ if(c)
+ emit_readdword_tlb(constmap[i][s]+offset,map,th,tl);
+ else
+ #endif
+ emit_readdword_indexed_tlb(0,addr,map,th,tl);
+ if(jaddr)
+ add_stub(LOADD_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
+ }
+ else
+ inline_readstub(LOADD_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
+ }
+ //emit_storereg(rt1[i],tl); // DEBUG
+ }
+ //if(opcode[i]==0x23)
+ //if(opcode[i]==0x24)
+ //if(opcode[i]==0x23||opcode[i]==0x24)
+ /*if(opcode[i]==0x21||opcode[i]==0x23||opcode[i]==0x24)
+ {
+ //emit_pusha();
+ save_regs(0x100f);
+ emit_readword((int)&last_count,ECX);
+ #ifdef __i386__
+ if(get_reg(i_regs->regmap,CCREG)<0)
+ emit_loadreg(CCREG,HOST_CCREG);
+ emit_add(HOST_CCREG,ECX,HOST_CCREG);
+ emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
+ emit_writeword(HOST_CCREG,(int)&Count);
+ #endif
+ #ifdef __arm__
+ if(get_reg(i_regs->regmap,CCREG)<0)
+ emit_loadreg(CCREG,0);
+ else
+ emit_mov(HOST_CCREG,0);
+ emit_add(0,ECX,0);
+ emit_addimm(0,2*ccadj[i],0);
+ emit_writeword(0,(int)&Count);
+ #endif
+ emit_call((int)memdebug);
+ //emit_popa();
+ restore_regs(0x100f);
+ }/**/
+}
+
+#ifndef loadlr_assemble
+void loadlr_assemble(int i,struct regstat *i_regs)
+{
+ printf("Need loadlr_assemble for this architecture.\n");
+ exit(1);
+}
+#endif
+
+void store_assemble(int i,struct regstat *i_regs)
+{
+ int s,th,tl,map=-1;
+ int addr,temp;
+ int offset;
+ int jaddr=0,jaddr2,type;
+ int memtarget,c=0;
+ int agr=AGEN1+(i&1);
+ u_int hr,reglist=0;
+ th=get_reg(i_regs->regmap,rs2[i]|64);
+ tl=get_reg(i_regs->regmap,rs2[i]);
+ s=get_reg(i_regs->regmap,rs1[i]);
+ temp=get_reg(i_regs->regmap,agr);
+ if(temp<0) temp=get_reg(i_regs->regmap,-1);
+ offset=imm[i];
+ if(s>=0) {
+ c=(i_regs->wasconst>>s)&1;
+ memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80800000;
+ if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
+ }
+ assert(tl>=0);
+ assert(temp>=0);
+ for(hr=0;hr<HOST_REGS;hr++) {
+ if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
+ }
+ if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
+ if(offset||s<0||c) addr=temp;
+ else addr=s;
+ if(!using_tlb) {
+ if(!c) {
+ #ifdef R29_HACK
+ // Strmnnrmn's speed hack
+ memtarget=1;
+ if(rs1[i]!=29||start<0x80001000||start>=0x80800000)
+ #endif
+ emit_cmpimm(addr,0x800000);
+ #ifdef DESTRUCTIVE_SHIFT
+ if(s==addr) emit_mov(s,temp);
+ #endif
+ #ifdef R29_HACK
+ if(rs1[i]!=29||start<0x80001000||start>=0x80800000)
+ #endif
+ {
+ jaddr=(int)out;
+ #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
+ // Hint to branch predictor that the branch is unlikely to be taken
+ if(rs1[i]>=28)
+ emit_jno_unlikely(0);
+ else
+ #endif
+ emit_jno(0);
+ }
+ }
+ }else{ // using tlb
+ int x=0;
+ if (opcode[i]==0x28) x=3; // SB
+ if (opcode[i]==0x29) x=2; // SH
+ map=get_reg(i_regs->regmap,TLREG);
+ assert(map>=0);
+ map=do_tlb_w(addr,temp,map,x,c,constmap[i][s]+offset);
+ do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr);
+ }
+
+ if (opcode[i]==0x28) { // SB
+ if(!c||memtarget) {
+ int x=0;
+ if(!c) emit_xorimm(addr,3,temp);
+ else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
+ //gen_tlb_addr_w(temp,map);
+ //emit_writebyte_indexed(tl,(int)rdram-0x80000000,temp);
+ emit_writebyte_indexed_tlb(tl,x,temp,map,temp);
+ }
+ type=STOREB_STUB;
+ }
+ if (opcode[i]==0x29) { // SH
+ if(!c||memtarget) {
+ int x=0;
+ if(!c) emit_xorimm(addr,2,temp);
+ else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
+ //#ifdef
+ //emit_writehword_indexed_tlb(tl,x,temp,map,temp);
+ //#else
+ if(map>=0) {
+ gen_tlb_addr_w(temp,map);
+ emit_writehword_indexed(tl,x,temp);
+ }else
+ emit_writehword_indexed(tl,(int)rdram-0x80000000+x,temp);
+ }
+ type=STOREH_STUB;
+ }
+ if (opcode[i]==0x2B) { // SW
+ if(!c||memtarget)
+ //emit_writeword_indexed(tl,(int)rdram-0x80000000,addr);
+ emit_writeword_indexed_tlb(tl,0,addr,map,temp);
+ type=STOREW_STUB;
+ }
+ if (opcode[i]==0x3F) { // SD
+ if(!c||memtarget) {
+ if(rs2[i]) {
+ assert(th>=0);
+ //emit_writeword_indexed(th,(int)rdram-0x80000000,addr);
+ //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,addr);
+ emit_writedword_indexed_tlb(th,tl,0,addr,map,temp);
+ }else{
+ // Store zero
+ //emit_writeword_indexed(tl,(int)rdram-0x80000000,temp);
+ //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,temp);
+ emit_writedword_indexed_tlb(tl,tl,0,addr,map,temp);
+ }
+ }
+ type=STORED_STUB;
+ }
+ if(jaddr) {
+ add_stub(type,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
+ } else if(!memtarget) {
+ inline_writestub(type,i,constmap[i][s]+offset,i_regs->regmap,rs2[i],ccadj[i],reglist);
+ }
+ if(!using_tlb) {
+ if(!c||memtarget) {
+ #ifdef DESTRUCTIVE_SHIFT
+ // The x86 shift operation is 'destructive'; it overwrites the
+ // source register, so we need to make a copy first and use that.
+ addr=temp;
+ #endif
+ #if defined(HOST_IMM8)
+ int ir=get_reg(i_regs->regmap,INVCP);
+ assert(ir>=0);
+ emit_cmpmem_indexedsr12_reg(ir,addr,1);
+ #else
+ emit_cmpmem_indexedsr12_imm((int)invalid_code,addr,1);
+ #endif
+ jaddr2=(int)out;
+ emit_jne(0);
+ add_stub(INVCODE_STUB,jaddr2,(int)out,reglist|(1<<HOST_CCREG),addr,0,0,0);
+ }
+ }
+ //if(opcode[i]==0x2B || opcode[i]==0x3F)
+ //if(opcode[i]==0x2B || opcode[i]==0x28)
+ //if(opcode[i]==0x2B || opcode[i]==0x29)
+ //if(opcode[i]==0x2B)
+ /*if(opcode[i]==0x2B || opcode[i]==0x28 || opcode[i]==0x29 || opcode[i]==0x3F)
+ {
+ //emit_pusha();
+ save_regs(0x100f);
+ emit_readword((int)&last_count,ECX);
+ #ifdef __i386__
+ if(get_reg(i_regs->regmap,CCREG)<0)
+ emit_loadreg(CCREG,HOST_CCREG);
+ emit_add(HOST_CCREG,ECX,HOST_CCREG);
+ emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
+ emit_writeword(HOST_CCREG,(int)&Count);
+ #endif
+ #ifdef __arm__
+ if(get_reg(i_regs->regmap,CCREG)<0)
+ emit_loadreg(CCREG,0);
+ else
+ emit_mov(HOST_CCREG,0);
+ emit_add(0,ECX,0);
+ emit_addimm(0,2*ccadj[i],0);
+ emit_writeword(0,(int)&Count);
+ #endif
+ emit_call((int)memdebug);
+ //emit_popa();
+ restore_regs(0x100f);
+ }/**/
+}
+
+void storelr_assemble(int i,struct regstat *i_regs)
+{
+ int s,th,tl;
+ int temp;
+ int temp2;
+ int offset;
+ int jaddr=0,jaddr2;
+ int case1,case2,case3;
+ int done0,done1,done2;
+ int memtarget,c=0;
+ u_int hr,reglist=0;
+ th=get_reg(i_regs->regmap,rs2[i]|64);
+ tl=get_reg(i_regs->regmap,rs2[i]);
+ s=get_reg(i_regs->regmap,rs1[i]);
+ temp=get_reg(i_regs->regmap,-1);
+ offset=imm[i];
+ if(s>=0) {
+ c=(i_regs->isconst>>s)&1;
+ memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80800000;
+ if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
+ }
+ assert(tl>=0);
+ for(hr=0;hr<HOST_REGS;hr++) {
+ if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
+ }
+ if(tl>=0) {
+ assert(temp>=0);
+ if(!using_tlb) {
+ if(!c) {
+ emit_cmpimm(s<0||offset?temp:s,0x800000);
+ if(!offset&&s!=temp) emit_mov(s,temp);
+ jaddr=(int)out;
+ emit_jno(0);
+ }
+ else
+ {
+ if(!memtarget||!rs1[i]) {
+ jaddr=(int)out;
+ emit_jmp(0);
+ }
+ }
+ if((u_int)rdram!=0x80000000)
+ emit_addimm_no_flags((u_int)rdram-(u_int)0x80000000,temp);
+ }else{ // using tlb
+ int map=get_reg(i_regs->regmap,TLREG);
+ assert(map>=0);
+ map=do_tlb_w(c||s<0||offset?temp:s,temp,map,0,c,constmap[i][s]+offset);
+ if(!c&&!offset&&s>=0) emit_mov(s,temp);
+ do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr);
+ if(!jaddr&&!memtarget) {
+ jaddr=(int)out;
+ emit_jmp(0);
+ }
+ gen_tlb_addr_w(temp,map);
+ }
+
+ if (opcode[i]==0x2C||opcode[i]==0x2D) { // SDL/SDR
+ temp2=get_reg(i_regs->regmap,FTEMP);
+ if(!rs2[i]) temp2=th=tl;
+ }
+
+ emit_testimm(temp,2);
+ case2=(int)out;
+ emit_jne(0);
+ emit_testimm(temp,1);
+ case1=(int)out;
+ emit_jne(0);
+ // 0
+ if (opcode[i]==0x2A) { // SWL
+ emit_writeword_indexed(tl,0,temp);
+ }
+ if (opcode[i]==0x2E) { // SWR
+ emit_writebyte_indexed(tl,3,temp);
+ }
+ if (opcode[i]==0x2C) { // SDL
+ emit_writeword_indexed(th,0,temp);
+ if(rs2[i]) emit_mov(tl,temp2);
+ }
+ if (opcode[i]==0x2D) { // SDR
+ emit_writebyte_indexed(tl,3,temp);
+ if(rs2[i]) emit_shldimm(th,tl,24,temp2);
+ }
+ done0=(int)out;
+ emit_jmp(0);
+ // 1
+ set_jump_target(case1,(int)out);
+ if (opcode[i]==0x2A) { // SWL
+ // Write 3 msb into three least significant bytes
+ if(rs2[i]) emit_rorimm(tl,8,tl);
+ emit_writehword_indexed(tl,-1,temp);
+ if(rs2[i]) emit_rorimm(tl,16,tl);
+ emit_writebyte_indexed(tl,1,temp);
+ if(rs2[i]) emit_rorimm(tl,8,tl);
+ }
+ if (opcode[i]==0x2E) { // SWR
+ // Write two lsb into two most significant bytes
+ emit_writehword_indexed(tl,1,temp);
+ }
+ if (opcode[i]==0x2C) { // SDL
+ if(rs2[i]) emit_shrdimm(tl,th,8,temp2);
+ // Write 3 msb into three least significant bytes
+ if(rs2[i]) emit_rorimm(th,8,th);
+ emit_writehword_indexed(th,-1,temp);
+ if(rs2[i]) emit_rorimm(th,16,th);
+ emit_writebyte_indexed(th,1,temp);
+ if(rs2[i]) emit_rorimm(th,8,th);
+ }
+ if (opcode[i]==0x2D) { // SDR
+ if(rs2[i]) emit_shldimm(th,tl,16,temp2);
+ // Write two lsb into two most significant bytes
+ emit_writehword_indexed(tl,1,temp);
+ }
+ done1=(int)out;
+ emit_jmp(0);
+ // 2
+ set_jump_target(case2,(int)out);
+ emit_testimm(temp,1);
+ case3=(int)out;
+ emit_jne(0);
+ if (opcode[i]==0x2A) { // SWL
+ // Write two msb into two least significant bytes
+ if(rs2[i]) emit_rorimm(tl,16,tl);
+ emit_writehword_indexed(tl,-2,temp);
+ if(rs2[i]) emit_rorimm(tl,16,tl);
+ }
+ if (opcode[i]==0x2E) { // SWR
+ // Write 3 lsb into three most significant bytes
+ emit_writebyte_indexed(tl,-1,temp);
+ if(rs2[i]) emit_rorimm(tl,8,tl);
+ emit_writehword_indexed(tl,0,temp);
+ if(rs2[i]) emit_rorimm(tl,24,tl);
+ }
+ if (opcode[i]==0x2C) { // SDL
+ if(rs2[i]) emit_shrdimm(tl,th,16,temp2);
+ // Write two msb into two least significant bytes
+ if(rs2[i]) emit_rorimm(th,16,th);
+ emit_writehword_indexed(th,-2,temp);
+ if(rs2[i]) emit_rorimm(th,16,th);
+ }
+ if (opcode[i]==0x2D) { // SDR
+ if(rs2[i]) emit_shldimm(th,tl,8,temp2);
+ // Write 3 lsb into three most significant bytes
+ emit_writebyte_indexed(tl,-1,temp);
+ if(rs2[i]) emit_rorimm(tl,8,tl);
+ emit_writehword_indexed(tl,0,temp);
+ if(rs2[i]) emit_rorimm(tl,24,tl);
+ }
+ done2=(int)out;
+ emit_jmp(0);
+ // 3
+ set_jump_target(case3,(int)out);
+ if (opcode[i]==0x2A) { // SWL
+ // Write msb into least significant byte
+ if(rs2[i]) emit_rorimm(tl,24,tl);
+ emit_writebyte_indexed(tl,-3,temp);
+ if(rs2[i]) emit_rorimm(tl,8,tl);
+ }
+ if (opcode[i]==0x2E) { // SWR
+ // Write entire word
+ emit_writeword_indexed(tl,-3,temp);
+ }
+ if (opcode[i]==0x2C) { // SDL
+ if(rs2[i]) emit_shrdimm(tl,th,24,temp2);
+ // Write msb into least significant byte
+ if(rs2[i]) emit_rorimm(th,24,th);
+ emit_writebyte_indexed(th,-3,temp);
+ if(rs2[i]) emit_rorimm(th,8,th);
+ }
+ if (opcode[i]==0x2D) { // SDR
+ if(rs2[i]) emit_mov(th,temp2);
+ // Write entire word
+ emit_writeword_indexed(tl,-3,temp);
+ }
+ set_jump_target(done0,(int)out);
+ set_jump_target(done1,(int)out);
+ set_jump_target(done2,(int)out);
+ if (opcode[i]==0x2C) { // SDL
+ emit_testimm(temp,4);
+ done0=(int)out;
+ emit_jne(0);
+ emit_andimm(temp,~3,temp);
+ emit_writeword_indexed(temp2,4,temp);
+ set_jump_target(done0,(int)out);
+ }
+ if (opcode[i]==0x2D) { // SDR
+ emit_testimm(temp,4);
+ done0=(int)out;
+ emit_jeq(0);
+ emit_andimm(temp,~3,temp);
+ emit_writeword_indexed(temp2,-4,temp);
+ set_jump_target(done0,(int)out);
+ }
+ if(!c||!memtarget)
+ add_stub(STORELR_STUB,jaddr,(int)out,0,(int)i_regs,rs2[i],ccadj[i],reglist);
+ }
+ if(!using_tlb) {
+ emit_addimm_no_flags((u_int)0x80000000-(u_int)rdram,temp);
+ #if defined(HOST_IMM8)
+ int ir=get_reg(i_regs->regmap,INVCP);
+ assert(ir>=0);
+ emit_cmpmem_indexedsr12_reg(ir,temp,1);
+ #else
+ emit_cmpmem_indexedsr12_imm((int)invalid_code,temp,1);
+ #endif
+ jaddr2=(int)out;
+ emit_jne(0);
+ add_stub(INVCODE_STUB,jaddr2,(int)out,reglist|(1<<HOST_CCREG),temp,0,0,0);
+ }
+ /*
+ emit_pusha();
+ //save_regs(0x100f);
+ emit_readword((int)&last_count,ECX);
+ if(get_reg(i_regs->regmap,CCREG)<0)
+ emit_loadreg(CCREG,HOST_CCREG);
+ emit_add(HOST_CCREG,ECX,HOST_CCREG);
+ emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
+ emit_writeword(HOST_CCREG,(int)&Count);
+ emit_call((int)memdebug);
+ emit_popa();
+ //restore_regs(0x100f);
+ /**/
+}
+
+void c1ls_assemble(int i,struct regstat *i_regs)
+{
+ int s,th,tl;
+ int temp,ar;
+ int map=-1;
+ int offset;
+ int c=0;
+ int jaddr,jaddr2=0,jaddr3,type;
+ int agr=AGEN1+(i&1);
+ u_int hr,reglist=0;
+ th=get_reg(i_regs->regmap,FTEMP|64);
+ tl=get_reg(i_regs->regmap,FTEMP);
+ s=get_reg(i_regs->regmap,rs1[i]);
+ temp=get_reg(i_regs->regmap,agr);
+ if(temp<0) temp=get_reg(i_regs->regmap,-1);
+ offset=imm[i];
+ assert(tl>=0);
+ assert(rs1[i]>0);
+ assert(temp>=0);
+ for(hr=0;hr<HOST_REGS;hr++) {
+ if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
+ }
+ if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
+ if (opcode[i]==0x31||opcode[i]==0x35) // LWC1/LDC1
+ {
+ // Loads use a temporary register which we need to save
+ reglist|=1<<temp;
+ }
+ if (opcode[i]==0x39||opcode[i]==0x3D) // SWC1/SDC1
+ ar=temp;
+ else // LWC1/LDC1
+ ar=tl;
+ //if(s<0) emit_loadreg(rs1[i],ar); //address_generation does this now
+ //else c=(i_regs->wasconst>>s)&1;
+ if(s>=0) c=(i_regs->wasconst>>s)&1;
+ // Check cop1 unusable
+ if(!cop1_usable) {
+ signed char rs=get_reg(i_regs->regmap,CSREG);
+ assert(rs>=0);
+ emit_testimm(rs,0x20000000);
+ jaddr=(int)out;
+ emit_jeq(0);
+ add_stub(FP_STUB,jaddr,(int)out,i,rs,(int)i_regs,is_delayslot,0);
+ cop1_usable=1;
+ }
+ if (opcode[i]==0x39) { // SWC1 (get float address)
+ emit_readword((int)®_cop1_simple[(source[i]>>16)&0x1f],tl);
+ }
+ if (opcode[i]==0x3D) { // SDC1 (get double address)
+ emit_readword((int)®_cop1_double[(source[i]>>16)&0x1f],tl);
+ }
+ // Generate address + offset
+ if(!using_tlb) {
+ if(!c)
+ emit_cmpimm(offset||c||s<0?ar:s,0x800000);
+ }
+ else
+ {
+ map=get_reg(i_regs->regmap,TLREG);
+ assert(map>=0);
+ if (opcode[i]==0x31||opcode[i]==0x35) { // LWC1/LDC1
+ map=do_tlb_r(offset||c||s<0?ar:s,ar,map,0,-1,-1,c,constmap[i][s]+offset);
+ }
+ if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
+ map=do_tlb_w(offset||c||s<0?ar:s,ar,map,0,c,constmap[i][s]+offset);
+ }
+ }
+ if (opcode[i]==0x39) { // SWC1 (read float)
+ emit_readword_indexed(0,tl,tl);
+ }
+ if (opcode[i]==0x3D) { // SDC1 (read double)
+ emit_readword_indexed(4,tl,th);
+ emit_readword_indexed(0,tl,tl);
+ }
+ if (opcode[i]==0x31) { // LWC1 (get target address)
+ emit_readword((int)®_cop1_simple[(source[i]>>16)&0x1f],temp);
+ }
+ if (opcode[i]==0x35) { // LDC1 (get target address)
+ emit_readword((int)®_cop1_double[(source[i]>>16)&0x1f],temp);
+ }
+ if(!using_tlb) {
+ if(!c) {
+ jaddr2=(int)out;
+ emit_jno(0);
+ }
+ else if(((signed int)(constmap[i][s]+offset))>=(signed int)0x80800000) {
+ jaddr2=(int)out;
+ emit_jmp(0); // inline_readstub/inline_writestub? Very rare case
+ }
+ #ifdef DESTRUCTIVE_SHIFT
+ if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
+ if(!offset&&!c&&s>=0) emit_mov(s,ar);
+ }
+ #endif
+ }else{
+ if (opcode[i]==0x31||opcode[i]==0x35) { // LWC1/LDC1
+ do_tlb_r_branch(map,c,constmap[i][s]+offset,&jaddr2);
+ }
+ if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
+ do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr2);
+ }
+ }
+ if (opcode[i]==0x31) { // LWC1
+ //if(s>=0&&!c&&!offset) emit_mov(s,tl);
+ //gen_tlb_addr_r(ar,map);
+ //emit_readword_indexed((int)rdram-0x80000000,tl,tl);
+ #ifdef HOST_IMM_ADDR32
+ if(c) emit_readword_tlb(constmap[i][s]+offset,map,tl);
+ else
+ #endif
+ emit_readword_indexed_tlb(0,offset||c||s<0?tl:s,map,tl);
+ type=LOADW_STUB;
+ }
+ if (opcode[i]==0x35) { // LDC1
+ assert(th>=0);
+ //if(s>=0&&!c&&!offset) emit_mov(s,tl);
+ //gen_tlb_addr_r(ar,map);
+ //emit_readword_indexed((int)rdram-0x80000000,tl,th);
+ //emit_readword_indexed((int)rdram-0x7FFFFFFC,tl,tl);
+ #ifdef HOST_IMM_ADDR32
+ if(c) emit_readdword_tlb(constmap[i][s]+offset,map,th,tl);
+ else
+ #endif
+ emit_readdword_indexed_tlb(0,offset||c||s<0?tl:s,map,th,tl);
+ type=LOADD_STUB;
+ }
+ if (opcode[i]==0x39) { // SWC1
+ //emit_writeword_indexed(tl,(int)rdram-0x80000000,temp);
+ emit_writeword_indexed_tlb(tl,0,offset||c||s<0?temp:s,map,temp);
+ type=STOREW_STUB;
+ }
+ if (opcode[i]==0x3D) { // SDC1
+ assert(th>=0);
+ //emit_writeword_indexed(th,(int)rdram-0x80000000,temp);
+ //emit_writeword_indexed(tl,(int)rdram-0x7FFFFFFC,temp);
+ emit_writedword_indexed_tlb(th,tl,0,offset||c||s<0?temp:s,map,temp);
+ type=STORED_STUB;
+ }
+ if(!using_tlb) {
+ if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
+ #ifndef DESTRUCTIVE_SHIFT
+ temp=offset||c||s<0?ar:s;
+ #endif
+ #if defined(HOST_IMM8)
+ int ir=get_reg(i_regs->regmap,INVCP);
+ assert(ir>=0);
+ emit_cmpmem_indexedsr12_reg(ir,temp,1);
+ #else
+ emit_cmpmem_indexedsr12_imm((int)invalid_code,temp,1);
+ #endif
+ jaddr3=(int)out;
+ emit_jne(0);
+ add_stub(INVCODE_STUB,jaddr3,(int)out,reglist|(1<<HOST_CCREG),temp,0,0,0);
+ }
+ }
+ if(jaddr2) add_stub(type,jaddr2,(int)out,i,offset||c||s<0?ar:s,(int)i_regs,ccadj[i],reglist);
+ if (opcode[i]==0x31) { // LWC1 (write float)
+ emit_writeword_indexed(tl,0,temp);
+ }
+ if (opcode[i]==0x35) { // LDC1 (write double)
+ emit_writeword_indexed(th,4,temp);
+ emit_writeword_indexed(tl,0,temp);
+ }
+ //if(opcode[i]==0x39)
+ /*if(opcode[i]==0x39||opcode[i]==0x31)
+ {
+ emit_pusha();
+ emit_readword((int)&last_count,ECX);
+ if(get_reg(i_regs->regmap,CCREG)<0)
+ emit_loadreg(CCREG,HOST_CCREG);
+ emit_add(HOST_CCREG,ECX,HOST_CCREG);
+ emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
+ emit_writeword(HOST_CCREG,(int)&Count);
+ emit_call((int)memdebug);
+ emit_popa();
+ }/**/
+}
+
+#ifndef multdiv_assemble
+void multdiv_assemble(int i,struct regstat *i_regs)
+{
+ printf("Need multdiv_assemble for this architecture.\n");
+ exit(1);
+}
+#endif
+
+void mov_assemble(int i,struct regstat *i_regs)
+{
+ //if(opcode2[i]==0x10||opcode2[i]==0x12) { // MFHI/MFLO
+ //if(opcode2[i]==0x11||opcode2[i]==0x13) { // MTHI/MTLO
+ assert(rt1[i]>0);
+ if(rt1[i]) {
+ signed char sh,sl,th,tl;
+ th=get_reg(i_regs->regmap,rt1[i]|64);
+ tl=get_reg(i_regs->regmap,rt1[i]);
+ //assert(tl>=0);
+ if(tl>=0) {
+ sh=get_reg(i_regs->regmap,rs1[i]|64);
+ sl=get_reg(i_regs->regmap,rs1[i]);
+ if(sl>=0) emit_mov(sl,tl);
+ else emit_loadreg(rs1[i],tl);
+ if(th>=0) {
+ if(sh>=0) emit_mov(sh,th);
+ else emit_loadreg(rs1[i]|64,th);
+ }
+ }
+ }
+}
+
+#ifndef fconv_assemble
+void fconv_assemble(int i,struct regstat *i_regs)
+{
+ printf("Need fconv_assemble for this architecture.\n");
+ exit(1);
+}
+#endif
+
+#if 0
+void float_assemble(int i,struct regstat *i_regs)
+{
+ printf("Need float_assemble for this architecture.\n");
+ exit(1);
+}
+#endif
+
+void syscall_assemble(int i,struct regstat *i_regs)
+{
+ signed char ccreg=get_reg(i_regs->regmap,CCREG);
+ assert(ccreg==HOST_CCREG);
+ assert(!is_delayslot);
+ emit_movimm(start+i*4,EAX); // Get PC
+ emit_addimm(HOST_CCREG,CLOCK_DIVIDER*ccadj[i],HOST_CCREG); // CHECK: is this right? There should probably be an extra cycle...
+ emit_jmp((int)jump_syscall);
+}
+
+void ds_assemble(int i,struct regstat *i_regs)
+{
+ is_delayslot=1;
+ switch(itype[i]) {
+ case ALU:
+ alu_assemble(i,i_regs);break;
+ case IMM16:
+ imm16_assemble(i,i_regs);break;
+ case SHIFT:
+ shift_assemble(i,i_regs);break;
+ case SHIFTIMM:
+ shiftimm_assemble(i,i_regs);break;
+ case LOAD:
+ load_assemble(i,i_regs);break;
+ case LOADLR:
+ loadlr_assemble(i,i_regs);break;
+ case STORE:
+ store_assemble(i,i_regs);break;
+ case STORELR:
+ storelr_assemble(i,i_regs);break;
+ case COP0:
+ cop0_assemble(i,i_regs);break;
+ case COP1:
+ cop1_assemble(i,i_regs);break;
+ case C1LS:
+ c1ls_assemble(i,i_regs);break;
+ case FCONV:
+ fconv_assemble(i,i_regs);break;
+ case FLOAT:
+ float_assemble(i,i_regs);break;
+ case FCOMP:
+ fcomp_assemble(i,i_regs);break;
+ case MULTDIV:
+ multdiv_assemble(i,i_regs);break;
+ case MOV:
+ mov_assemble(i,i_regs);break;
+ case SYSCALL:
+ case SPAN:
+ case UJUMP:
+ case RJUMP:
+ case CJUMP:
+ case SJUMP:
+ case FJUMP:
+ printf("Jump in the delay slot. This is probably a bug.\n");
+ }
+ is_delayslot=0;
+}
+
+// Is the branch target a valid internal jump?
+int internal_branch(uint64_t i_is32,int addr)
+{
+ if(addr&1) return 0; // Indirect (register) jump
+ if(addr>=start && addr<start+slen*4-4)
+ {
+ int t=(addr-start)>>2;
+ // Delay slots are not valid branch targets
+ //if(t>0&&(itype[t-1]==RJUMP||itype[t-1]==UJUMP||itype[t-1]==CJUMP||itype[t-1]==SJUMP||itype[t-1]==FJUMP)) return 0;
+ // 64 -> 32 bit transition requires a recompile
+ /*if(is32[t]&~unneeded_reg_upper[t]&~i_is32)
+ {
+ if(requires_32bit[t]&~i_is32) printf("optimizable: no\n");
+ else printf("optimizable: yes\n");
+ }*/
+ //if(is32[t]&~unneeded_reg_upper[t]&~i_is32) return 0;
+ if(requires_32bit[t]&~i_is32) return 0;
+ else return 1;
+ }
+ return 0;
+}
+
+#ifndef wb_invalidate
+void wb_invalidate(signed char pre[],signed char entry[],uint64_t dirty,uint64_t is32,
+ uint64_t u,uint64_t uu)
+{
+ int hr;
+ for(hr=0;hr<HOST_REGS;hr++) {
+ if(hr!=EXCLUDE_REG) {
+ if(pre[hr]!=entry[hr]) {
+ if(pre[hr]>=0) {
+ if((dirty>>hr)&1) {
+ if(get_reg(entry,pre[hr])<0) {
+ if(pre[hr]<64) {
+ if(!((u>>pre[hr])&1)) {
+ emit_storereg(pre[hr],hr);
+ if( ((is32>>pre[hr])&1) && !((uu>>pre[hr])&1) ) {
+ emit_sarimm(hr,31,hr);
+ emit_storereg(pre[hr]|64,hr);
+ }
+ }
+ }else{
+ if(!((uu>>(pre[hr]&63))&1) && !((is32>>(pre[hr]&63))&1)) {
+ emit_storereg(pre[hr],hr);
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ // Move from one register to another (no writeback)
+ for(hr=0;hr<HOST_REGS;hr++) {
+ if(hr!=EXCLUDE_REG) {
+ if(pre[hr]!=entry[hr]) {
+ if(pre[hr]>=0&&(pre[hr]&63)<TEMPREG) {
+ int nr;
+ if((nr=get_reg(entry,pre[hr]))>=0) {
+ emit_mov(hr,nr);
+ }
+ }
+ }
+ }
+ }
+}
+#endif
+
+// Load the specified registers
+// This only loads the registers given as arguments because
+// we don't want to load things that will be overwritten
+void load_regs(signed char entry[],signed char regmap[],int is32,int rs1,int rs2)
+{
+ int hr;
+ // Load 32-bit regs
+ for(hr=0;hr<HOST_REGS;hr++) {
+ if(hr!=EXCLUDE_REG&®map[hr]>=0) {
+ if(entry[hr]!=regmap[hr]) {
+ if(regmap[hr]==rs1||regmap[hr]==rs2)
+ {
+ if(regmap[hr]==0) {
+ emit_zeroreg(hr);
+ }
+ else
+ {
+ emit_loadreg(regmap[hr],hr);
+ }
+ }
+ }
+ }
+ }
+ //Load 64-bit regs
+ for(hr=0;hr<HOST_REGS;hr++) {
+ if(hr!=EXCLUDE_REG&®map[hr]>=0) {
+ if(entry[hr]!=regmap[hr]) {
+ if(regmap[hr]-64==rs1||regmap[hr]-64==rs2)
+ {
+ assert(regmap[hr]!=64);
+ if((is32>>(regmap[hr]&63))&1) {
+ int lr=get_reg(regmap,regmap[hr]-64);
+ if(lr>=0)
+ emit_sarimm(lr,31,hr);
+ else
+ emit_loadreg(regmap[hr],hr);
+ }
+ else
+ {
+ emit_loadreg(regmap[hr],hr);
+ }
+ }
+ }
+ }
+ }
+}
+
+// Load registers prior to the start of a loop
+// so that they are not loaded within the loop
+static void loop_preload(signed char pre[],signed char entry[])
+{
+ int hr;
+ for(hr=0;hr<HOST_REGS;hr++) {
+ if(hr!=EXCLUDE_REG) {
+ if(pre[hr]!=entry[hr]) {
+ if(entry[hr]>=0) {
+ if(get_reg(pre,entry[hr])<0) {
+ assem_debug("loop preload:\n");
+ //printf("loop preload: %d\n",hr);
+ if(entry[hr]==0) {
+ emit_zeroreg(hr);
+ }
+ else if(entry[hr]<TEMPREG)
+ {
+ emit_loadreg(entry[hr],hr);
+ }
+ else if(entry[hr]-64<TEMPREG)
+ {
+ emit_loadreg(entry[hr],hr);
+ }
+ }
+ }
+ }
+ }
+ }
+}
+
+// Generate address for load/store instruction
+void address_generation(int i,struct regstat *i_regs,signed char entry[])
+{
+ if(itype[i]==LOAD||itype[i]==LOADLR||itype[i]==STORE||itype[i]==STORELR||itype[i]==C1LS) {
+ int ra;
+ int agr=AGEN1+(i&1);
+ int mgr=MGEN1+(i&1);
+ if(itype[i]==LOAD) {
+ ra=get_reg(i_regs->regmap,rt1[i]);
+ //if(rt1[i]) assert(ra>=0);
+ }
+ if(itype[i]==LOADLR) {
+ ra=get_reg(i_regs->regmap,FTEMP);
+ }
+ if(itype[i]==STORE||itype[i]==STORELR) {
+ ra=get_reg(i_regs->regmap,agr);
+ if(ra<0) ra=get_reg(i_regs->regmap,-1);
+ }
+ if(itype[i]==C1LS) {
+ if (opcode[i]==0x31||opcode[i]==0x35) // LWC1/LDC1
+ ra=get_reg(i_regs->regmap,FTEMP);
+ else { // SWC1/SDC1
+ ra=get_reg(i_regs->regmap,agr);
+ if(ra<0) ra=get_reg(i_regs->regmap,-1);
+ }
+ }
+ int rs=get_reg(i_regs->regmap,rs1[i]);
+ int rm=get_reg(i_regs->regmap,TLREG);
+ if(ra>=0) {
+ int offset=imm[i];
+ int c=(i_regs->wasconst>>rs)&1;
+ if(rs1[i]==0) {
+ // Using r0 as a base address
+ /*if(rm>=0) {
+ if(!entry||entry[rm]!=mgr) {
+ generate_map_const(offset,rm);
+ } // else did it in the previous cycle
+ }*/
+ if(!entry||entry[ra]!=agr) {
+ if (opcode[i]==0x22||opcode[i]==0x26) {
+ emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
+ }else if (opcode[i]==0x1a||opcode[i]==0x1b) {
+ emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
+ }else{
+ emit_movimm(offset,ra);
+ }
+ } // else did it in the previous cycle
+ }
+ else if(rs<0) {
+ if(!entry||entry[ra]!=rs1[i])
+ emit_loadreg(rs1[i],ra);
+ //if(!entry||entry[ra]!=rs1[i])
+ // printf("poor load scheduling!\n");
+ }
+ else if(c) {
+ if(rm>=0) {
+ if(!entry||entry[rm]!=mgr) {
+ if(itype[i]==STORE||itype[i]==STORELR||opcode[i]==0x39||opcode[i]==0x3D) {
+ // Stores to memory go thru the mapper to detect self-modifying
+ // code, loads don't.
+ if((unsigned int)(constmap[i][rs]+offset)>=0xC0000000 ||
+ (unsigned int)(constmap[i][rs]+offset)<0x80800000 )
+ generate_map_const(constmap[i][rs]+offset,rm);
+ }else{
+ if((signed int)(constmap[i][rs]+offset)>=(signed int)0xC0000000)
+ generate_map_const(constmap[i][rs]+offset,rm);
+ }
+ }
+ }
+ if(rs1[i]!=rt1[i]||itype[i]!=LOAD) {
+ if(!entry||entry[ra]!=agr) {
+ if (opcode[i]==0x22||opcode[i]==0x26) {
+ emit_movimm((constmap[i][rs]+offset)&0xFFFFFFFC,ra); // LWL/LWR
+ }else if (opcode[i]==0x1a||opcode[i]==0x1b) {
+ emit_movimm((constmap[i][rs]+offset)&0xFFFFFFF8,ra); // LDL/LDR
+ }else{
+ #ifdef HOST_IMM_ADDR32
+ if((itype[i]!=LOAD&&opcode[i]!=0x31&&opcode[i]!=0x35) ||
+ (using_tlb&&((signed int)constmap[i][rs]+offset)>=(signed int)0xC0000000))
+ #endif
+ emit_movimm(constmap[i][rs]+offset,ra);
+ }
+ } // else did it in the previous cycle
+ } // else load_consts already did it
+ }
+ if(offset&&!c&&rs1[i]) {
+ if(rs>=0) {
+ emit_addimm(rs,offset,ra);
+ }else{
+ emit_addimm(ra,offset,ra);
+ }
+ }
+ }
+ }
+ // Preload constants for next instruction
+ if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS) {
+ int agr,ra;
+ #ifndef HOST_IMM_ADDR32
+ // Mapper entry
+ agr=MGEN1+((i+1)&1);
+ ra=get_reg(i_regs->regmap,agr);
+ if(ra>=0) {
+ int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
+ int offset=imm[i+1];
+ int c=(regs[i+1].wasconst>>rs)&1;
+ if(c) {
+ if(itype[i+1]==STORE||itype[i+1]==STORELR||opcode[i+1]==0x39||opcode[i+1]==0x3D) {
+ // Stores to memory go thru the mapper to detect self-modifying
+ // code, loads don't.
+ if((unsigned int)(constmap[i+1][rs]+offset)>=0xC0000000 ||
+ (unsigned int)(constmap[i+1][rs]+offset)<0x80800000 )
+ generate_map_const(constmap[i+1][rs]+offset,ra);
+ }else{
+ if((signed int)(constmap[i+1][rs]+offset)>=(signed int)0xC0000000)
+ generate_map_const(constmap[i+1][rs]+offset,ra);
+ }
+ }
+ /*else if(rs1[i]==0) {
+ generate_map_const(offset,ra);
+ }*/
+ }
+ #endif
+ // Actual address
+ agr=AGEN1+((i+1)&1);
+ ra=get_reg(i_regs->regmap,agr);
+ if(ra>=0) {
+ int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
+ int offset=imm[i+1];
+ int c=(regs[i+1].wasconst>>rs)&1;
+ if(c&&(rs1[i+1]!=rt1[i+1]||itype[i+1]!=LOAD)) {
+ if (opcode[i+1]==0x22||opcode[i+1]==0x26) {
+ emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFFC,ra); // LWL/LWR
+ }else if (opcode[i+1]==0x1a||opcode[i+1]==0x1b) {
+ emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFF8,ra); // LDL/LDR
+ }else{
+ #ifdef HOST_IMM_ADDR32
+ if((itype[i+1]!=LOAD&&opcode[i+1]!=0x31&&opcode[i+1]!=0x35) ||
+ (using_tlb&&((signed int)constmap[i+1][rs]+offset)>=(signed int)0xC0000000))
+ #endif
+ emit_movimm(constmap[i+1][rs]+offset,ra);
+ }
+ }
+ else if(rs1[i+1]==0) {
+ // Using r0 as a base address
+ if (opcode[i+1]==0x22||opcode[i+1]==0x26) {
+ emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
+ }else if (opcode[i+1]==0x1a||opcode[i+1]==0x1b) {
+ emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
+ }else{
+ emit_movimm(offset,ra);
+ }
+ }
+ }
+ }
+}
+
+int get_final_value(int hr, int i, int *value)
+{
+ int reg=regs[i].regmap[hr];
+ while(i<slen-1) {
+ if(regs[i+1].regmap[hr]!=reg) break;
+ if(!((regs[i+1].isconst>>hr)&1)) break;
+ if(bt[i+1]) break;
+ i++;
+ }
+ if(i<slen-1) {
+ if(itype[i]==UJUMP||itype[i]==RJUMP||itype[i]==CJUMP||itype[i]==SJUMP) {
+ *value=constmap[i][hr];
+ return 1;
+ }
+ if(!bt[i+1]) {
+ if(itype[i+1]==UJUMP||itype[i+1]==RJUMP||itype[i+1]==CJUMP||itype[i+1]==SJUMP) {
+ // Load in delay slot, out-of-order execution
+ if(itype[i+2]==LOAD&&rs1[i+2]==reg&&rt1[i+2]==reg&&((regs[i+1].wasconst>>hr)&1))
+ {
+ #ifdef HOST_IMM_ADDR32
+ if(!using_tlb||((signed int)constmap[i][hr]+imm[i+2])<(signed int)0xC0000000) return 0;
+ #endif
+ // Precompute load address
+ *value=constmap[i][hr]+imm[i+2];
+ return 1;
+ }
+ }
+ if(itype[i+1]==LOAD&&rs1[i+1]==reg&&rt1[i+1]==reg)
+ {
+ #ifdef HOST_IMM_ADDR32
+ if(!using_tlb||((signed int)constmap[i][hr]+imm[i+1])<(signed int)0xC0000000) return 0;
+ #endif
+ // Precompute load address
+ *value=constmap[i][hr]+imm[i+1];
+ //printf("c=%x imm=%x\n",(int)constmap[i][hr],imm[i+1]);
+ return 1;
+ }
+ }
+ }
+ *value=constmap[i][hr];
+ //printf("c=%x\n",(int)constmap[i][hr]);
+ if(i==slen-1) return 1;
+ if(reg<64) {
+ return !((unneeded_reg[i+1]>>reg)&1);
+ }else{
+ return !((unneeded_reg_upper[i+1]>>reg)&1);
+ }
+}
+
+// Load registers with known constants
+void load_consts(signed char pre[],signed char regmap[],int is32,int i)
+{
+ int hr;
+ // Load 32-bit regs
+ for(hr=0;hr<HOST_REGS;hr++) {
+ if(hr!=EXCLUDE_REG&®map[hr]>=0) {
+ //if(entry[hr]!=regmap[hr]) {
+ if(i==0||!((regs[i-1].isconst>>hr)&1)||pre[hr]!=regmap[hr]||bt[i]) {
+ if(((regs[i].isconst>>hr)&1)&®map[hr]<64&®map[hr]>0) {
+ int value;
+ if(get_final_value(hr,i,&value)) {
+ if(value==0) {
+ emit_zeroreg(hr);
+ }
+ else {
+ emit_movimm(value,hr);
+ }
+ }
+ }
+ }
+ }
+ }
+ // Load 64-bit regs
+ for(hr=0;hr<HOST_REGS;hr++) {
+ if(hr!=EXCLUDE_REG&®map[hr]>=0) {
+ //if(entry[hr]!=regmap[hr]) {
+ if(i==0||!((regs[i-1].isconst>>hr)&1)||pre[hr]!=regmap[hr]||bt[i]) {
+ if(((regs[i].isconst>>hr)&1)&®map[hr]>64) {
+ if((is32>>(regmap[hr]&63))&1) {
+ int lr=get_reg(regmap,regmap[hr]-64);
+ assert(lr>=0);
+ emit_sarimm(lr,31,hr);
+ }
+ else
+ {
+ int value;
+ if(get_final_value(hr,i,&value)) {
+ if(value==0) {
+ emit_zeroreg(hr);
+ }
+ else {
+ emit_movimm(value,hr);
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+}
+void load_all_consts(signed char regmap[],int is32,u_int dirty,int i)
+{
+ int hr;
+ // Load 32-bit regs
+ for(hr=0;hr<HOST_REGS;hr++) {
+ if(hr!=EXCLUDE_REG&®map[hr]>=0&&((dirty>>hr)&1)) {
+ if(((regs[i].isconst>>hr)&1)&®map[hr]<64&®map[hr]>0) {
+ int value=constmap[i][hr];
+ if(value==0) {
+ emit_zeroreg(hr);
+ }
+ else {
+ emit_movimm(value,hr);
+ }
+ }
+ }
+ }
+ // Load 64-bit regs
+ for(hr=0;hr<HOST_REGS;hr++) {
+ if(hr!=EXCLUDE_REG&®map[hr]>=0&&((dirty>>hr)&1)) {
+ if(((regs[i].isconst>>hr)&1)&®map[hr]>64) {
+ if((is32>>(regmap[hr]&63))&1) {
+ int lr=get_reg(regmap,regmap[hr]-64);
+ assert(lr>=0);
+ emit_sarimm(lr,31,hr);
+ }
+ else
+ {
+ int value=constmap[i][hr];
+ if(value==0) {
+ emit_zeroreg(hr);
+ }
+ else {
+ emit_movimm(value,hr);
+ }
+ }
+ }
+ }
+ }
+}
+
+// Write out all dirty registers (except cycle count)
+void wb_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty)
+{
+ int hr;
+ for(hr=0;hr<HOST_REGS;hr++) {
+ if(hr!=EXCLUDE_REG) {
+ if(i_regmap[hr]>0) {
+ if(i_regmap[hr]!=CCREG) {
+ if((i_dirty>>hr)&1) {
+ if(i_regmap[hr]<64) {
+ emit_storereg(i_regmap[hr],hr);
+ if( ((i_is32>>i_regmap[hr])&1) ) {
+ #ifdef DESTRUCTIVE_WRITEBACK
+ emit_sarimm(hr,31,hr);
+ emit_storereg(i_regmap[hr]|64,hr);
+ #else
+ emit_sarimm(hr,31,HOST_TEMPREG);
+ emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
+ #endif
+ }
+ }else{
+ if( !((i_is32>>(i_regmap[hr]&63))&1) ) {
+ emit_storereg(i_regmap[hr],hr);
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+}
+// Write out dirty registers that we need to reload (pair with load_needed_regs)
+// This writes the registers not written by store_regs_bt
+void wb_needed_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
+{
+ int hr;
+ int t=(addr-start)>>2;
+ for(hr=0;hr<HOST_REGS;hr++) {
+ if(hr!=EXCLUDE_REG) {
+ if(i_regmap[hr]>0) {
+ if(i_regmap[hr]!=CCREG) {
+ if(i_regmap[hr]==regs[t].regmap_entry[hr] && ((regs[t].dirty>>hr)&1) && !(((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
+ if((i_dirty>>hr)&1) {
+ if(i_regmap[hr]<64) {
+ emit_storereg(i_regmap[hr],hr);
+ if( ((i_is32>>i_regmap[hr])&1) ) {
+ #ifdef DESTRUCTIVE_WRITEBACK
+ emit_sarimm(hr,31,hr);
+ emit_storereg(i_regmap[hr]|64,hr);
+ #else
+ emit_sarimm(hr,31,HOST_TEMPREG);
+ emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
+ #endif
+ }
+ }else{
+ if( !((i_is32>>(i_regmap[hr]&63))&1) ) {
+ emit_storereg(i_regmap[hr],hr);
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+}
+
+// Load all registers (except cycle count)
+void load_all_regs(signed char i_regmap[])
+{
+ int hr;
+ for(hr=0;hr<HOST_REGS;hr++) {
+ if(hr!=EXCLUDE_REG) {
+ if(i_regmap[hr]==0) {
+ emit_zeroreg(hr);
+ }
+ else
+ if(i_regmap[hr]>0 && i_regmap[hr]!=CCREG)
+ {
+ emit_loadreg(i_regmap[hr],hr);
+ }
+ }
+ }
+}
+
+// Load all current registers also needed by next instruction
+void load_needed_regs(signed char i_regmap[],signed char next_regmap[])
+{
+ int hr;
+ for(hr=0;hr<HOST_REGS;hr++) {
+ if(hr!=EXCLUDE_REG) {
+ if(get_reg(next_regmap,i_regmap[hr])>=0) {
+ if(i_regmap[hr]==0) {
+ emit_zeroreg(hr);
+ }
+ else
+ if(i_regmap[hr]>0 && i_regmap[hr]!=CCREG)
+ {
+ emit_loadreg(i_regmap[hr],hr);
+ }
+ }
+ }
+ }
+}
+
+// Load all regs, storing cycle count if necessary
+void load_regs_entry(int t)
+{
+ int hr;
+ if(is_ds[t]) emit_addimm(HOST_CCREG,CLOCK_DIVIDER,HOST_CCREG);
+ else if(ccadj[t]) emit_addimm(HOST_CCREG,-ccadj[t]*CLOCK_DIVIDER,HOST_CCREG);
+ if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
+ emit_storereg(CCREG,HOST_CCREG);
+ }
+ // Load 32-bit regs
+ for(hr=0;hr<HOST_REGS;hr++) {
+ if(regs[t].regmap_entry[hr]>=0&®s[t].regmap_entry[hr]<64) {
+ if(regs[t].regmap_entry[hr]==0) {
+ emit_zeroreg(hr);
+ }
+ else if(regs[t].regmap_entry[hr]!=CCREG)
+ {
+ emit_loadreg(regs[t].regmap_entry[hr],hr);
+ }
+ }
+ }
+ // Load 64-bit regs
+ for(hr=0;hr<HOST_REGS;hr++) {
+ if(regs[t].regmap_entry[hr]>=64) {
+ assert(regs[t].regmap_entry[hr]!=64);
+ if((regs[t].was32>>(regs[t].regmap_entry[hr]&63))&1) {
+ int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
+ if(lr<0) {
+ emit_loadreg(regs[t].regmap_entry[hr],hr);
+ }
+ else
+ {
+ emit_sarimm(lr,31,hr);
+ }
+ }
+ else
+ {
+ emit_loadreg(regs[t].regmap_entry[hr],hr);
+ }
+ }
+ }
+}
+
+// Store dirty registers prior to branch
+void store_regs_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
+{
+ if(internal_branch(i_is32,addr))
+ {
+ int t=(addr-start)>>2;
+ int hr;
+ for(hr=0;hr<HOST_REGS;hr++) {
+ if(hr!=EXCLUDE_REG) {
+ if(i_regmap[hr]>0 && i_regmap[hr]!=CCREG) {
+ if(i_regmap[hr]!=regs[t].regmap_entry[hr] || !((regs[t].dirty>>hr)&1) || (((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
+ if((i_dirty>>hr)&1) {
+ if(i_regmap[hr]<64) {
+ if(!((unneeded_reg[t]>>i_regmap[hr])&1)) {
+ emit_storereg(i_regmap[hr],hr);
+ if( ((i_is32>>i_regmap[hr])&1) && !((unneeded_reg_upper[t]>>i_regmap[hr])&1) ) {
+ #ifdef DESTRUCTIVE_WRITEBACK
+ emit_sarimm(hr,31,hr);
+ emit_storereg(i_regmap[hr]|64,hr);
+ #else
+ emit_sarimm(hr,31,HOST_TEMPREG);
+ emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
+ #endif
+ }
+ }
+ }else{
+ if( !((i_is32>>(i_regmap[hr]&63))&1) && !((unneeded_reg_upper[t]>>(i_regmap[hr]&63))&1) ) {
+ emit_storereg(i_regmap[hr],hr);
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ else
+ {
+ // Branch out of this block, write out all dirty regs
+ wb_dirtys(i_regmap,i_is32,i_dirty);
+ }
+}
+
+// Load all needed registers for branch target
+void load_regs_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
+{
+ //if(addr>=start && addr<(start+slen*4))
+ if(internal_branch(i_is32,addr))
+ {
+ int t=(addr-start)>>2;
+ int hr;
+ // Store the cycle count before loading something else
+ if(i_regmap[HOST_CCREG]!=CCREG) {
+ assert(i_regmap[HOST_CCREG]==-1);
+ }
+ if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
+ emit_storereg(CCREG,HOST_CCREG);
+ }
+ // Load 32-bit regs
+ for(hr=0;hr<HOST_REGS;hr++) {
+ if(hr!=EXCLUDE_REG&®s[t].regmap_entry[hr]>=0&®s[t].regmap_entry[hr]<64) {
+ #ifdef DESTRUCTIVE_WRITEBACK
+ if(i_regmap[hr]!=regs[t].regmap_entry[hr] || ( !((regs[t].dirty>>hr)&1) && ((i_dirty>>hr)&1) && (((i_is32&~unneeded_reg_upper[t])>>i_regmap[hr])&1) ) || (((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
+ #else
+ if(i_regmap[hr]!=regs[t].regmap_entry[hr] ) {
+ #endif
+ if(regs[t].regmap_entry[hr]==0) {
+ emit_zeroreg(hr);
+ }
+ else if(regs[t].regmap_entry[hr]!=CCREG)
+ {
+ emit_loadreg(regs[t].regmap_entry[hr],hr);
+ }
+ }
+ }
+ }
+ //Load 64-bit regs
+ for(hr=0;hr<HOST_REGS;hr++) {
+ if(hr!=EXCLUDE_REG&®s[t].regmap_entry[hr]>=64) {
+ if(i_regmap[hr]!=regs[t].regmap_entry[hr]) {
+ assert(regs[t].regmap_entry[hr]!=64);
+ if((i_is32>>(regs[t].regmap_entry[hr]&63))&1) {
+ int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
+ if(lr<0) {
+ emit_loadreg(regs[t].regmap_entry[hr],hr);
+ }
+ else
+ {
+ emit_sarimm(lr,31,hr);
+ }
+ }
+ else
+ {
+ emit_loadreg(regs[t].regmap_entry[hr],hr);
+ }
+ }
+ else if((i_is32>>(regs[t].regmap_entry[hr]&63))&1) {
+ int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
+ assert(lr>=0);
+ emit_sarimm(lr,31,hr);
+ }
+ }
+ }
+ }
+}
+
+int match_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
+{
+ if(addr>=start && addr<start+slen*4-4)
+ {
+ int t=(addr-start)>>2;
+ int hr;
+ if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) return 0;
+ for(hr=0;hr<HOST_REGS;hr++)
+ {
+ if(hr!=EXCLUDE_REG)
+ {
+ if(i_regmap[hr]!=regs[t].regmap_entry[hr])
+ {
+ if(regs[t].regmap_entry[hr]!=-1)
+ {
+ return 0;
+ }
+ else
+ if((i_dirty>>hr)&1)
+ {
+ if(i_regmap[hr]<64)
+ {
+ if(!((unneeded_reg[t]>>i_regmap[hr])&1))
+ return 0;
+ }
+ else
+ {
+ if(!((unneeded_reg_upper[t]>>(i_regmap[hr]&63))&1))
+ return 0;
+ }
+ }
+ }
+ else // Same register but is it 32-bit or dirty?
+ if(i_regmap[hr]>=0)
+ {
+ if(!((regs[t].dirty>>hr)&1))
+ {
+ if((i_dirty>>hr)&1)
+ {
+ if(!((unneeded_reg[t]>>i_regmap[hr])&1))
+ {
+ //printf("%x: dirty no match\n",addr);
+ return 0;
+ }
+ }
+ }
+ if((((regs[t].was32^i_is32)&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)
+ {
+ //printf("%x: is32 no match\n",addr);
+ return 0;
+ }
+ }
+ }
+ }
+ //if(is32[t]&~unneeded_reg_upper[t]&~i_is32) return 0;
+ if(requires_32bit[t]&~i_is32) return 0;
+ // Delay slots are not valid branch targets
+ //if(t>0&&(itype[t-1]==RJUMP||itype[t-1]==UJUMP||itype[t-1]==CJUMP||itype[t-1]==SJUMP||itype[t-1]==FJUMP)) return 0;
+ // Delay slots require additional processing, so do not match
+ if(is_ds[t]) return 0;
+ }
+ else
+ {
+ int hr;
+ for(hr=0;hr<HOST_REGS;hr++)
+ {
+ if(hr!=EXCLUDE_REG)
+ {
+ if(i_regmap[hr]>=0)
+ {
+ if(hr!=HOST_CCREG||i_regmap[hr]!=CCREG)
+ {
+ if((i_dirty>>hr)&1)
+ {
+ return 0;
+ }
+ }
+ }
+ }
+ }
+ }
+ return 1;
+}
+
+// Used when a branch jumps into the delay slot of another branch
+void ds_assemble_entry(int i)
+{
+ int t=(ba[i]-start)>>2;
+ if(!instr_addr[t]) instr_addr[t]=(u_int)out;
+ assem_debug("Assemble delay slot at %x\n",ba[i]);
+ assem_debug("<->\n");
+ if(regs[t].regmap_entry[HOST_CCREG]==CCREG&®s[t].regmap[HOST_CCREG]!=CCREG)
+ wb_register(CCREG,regs[t].regmap_entry,regs[t].wasdirty,regs[t].was32);
+ load_regs(regs[t].regmap_entry,regs[t].regmap,regs[t].was32,rs1[t],rs2[t]);
+ address_generation(t,®s[t],regs[t].regmap_entry);
+ if(itype[t]==STORE||itype[t]==STORELR||(opcode[t]&0x3b)==0x39)
+ load_regs(regs[t].regmap_entry,regs[t].regmap,regs[t].was32,INVCP,INVCP);
+ cop1_usable=0;
+ is_delayslot=0;
+ switch(itype[t]) {
+ case ALU:
+ alu_assemble(t,®s[t]);break;
+ case IMM16:
+ imm16_assemble(t,®s[t]);break;
+ case SHIFT:
+ shift_assemble(t,®s[t]);break;
+ case SHIFTIMM:
+ shiftimm_assemble(t,®s[t]);break;
+ case LOAD:
+ load_assemble(t,®s[t]);break;
+ case LOADLR:
+ loadlr_assemble(t,®s[t]);break;
+ case STORE:
+ store_assemble(t,®s[t]);break;
+ case STORELR:
+ storelr_assemble(t,®s[t]);break;
+ case COP0:
+ cop0_assemble(t,®s[t]);break;
+ case COP1:
+ cop1_assemble(t,®s[t]);break;
+ case C1LS:
+ c1ls_assemble(t,®s[t]);break;
+ case FCONV:
+ fconv_assemble(t,®s[t]);break;
+ case FLOAT:
+ float_assemble(t,®s[t]);break;
+ case FCOMP:
+ fcomp_assemble(t,®s[t]);break;
+ case MULTDIV:
+ multdiv_assemble(t,®s[t]);break;
+ case MOV:
+ mov_assemble(t,®s[t]);break;
+ case SYSCALL:
+ case SPAN:
+ case UJUMP:
+ case RJUMP:
+ case CJUMP:
+ case SJUMP:
+ case FJUMP:
+ printf("Jump in the delay slot. This is probably a bug.\n");
+ }
+ store_regs_bt(regs[t].regmap,regs[t].is32,regs[t].dirty,ba[i]+4);
+ load_regs_bt(regs[t].regmap,regs[t].is32,regs[t].dirty,ba[i]+4);
+ if(internal_branch(regs[t].is32,ba[i]+4))
+ assem_debug("branch: internal\n");
+ else
+ assem_debug("branch: external\n");
+ assert(internal_branch(regs[t].is32,ba[i]+4));
+ add_to_linker((int)out,ba[i]+4,internal_branch(regs[t].is32,ba[i]+4));
+ emit_jmp(0);
+}
+
+void do_cc(int i,signed char i_regmap[],int *adj,int addr,int taken,int invert)
+{
+ int count;
+ int jaddr;
+ int idle=0;
+ if(itype[i]==RJUMP)
+ {
+ *adj=0;
+ }
+ //if(ba[i]>=start && ba[i]<(start+slen*4))
+ if(internal_branch(branch_regs[i].is32,ba[i]))
+ {
+ int t=(ba[i]-start)>>2;
+ if(is_ds[t]) *adj=-1; // Branch into delay slot adds an extra cycle
+ else *adj=ccadj[t];
+ }
+ else
+ {
+ *adj=0;
+ }
+ count=ccadj[i];
+ if(taken==TAKEN && i==(ba[i]-start)>>2 && source[i+1]==0) {
+ // Idle loop
+ if(count&1) emit_addimm_and_set_flags(2*(count+2),HOST_CCREG);
+ idle=(int)out;
+ //emit_subfrommem(&idlecount,HOST_CCREG); // Count idle cycles
+ emit_andimm(HOST_CCREG,3,HOST_CCREG);
+ jaddr=(int)out;
+ emit_jmp(0);
+ }
+ else if(*adj==0||invert) {
+ emit_addimm_and_set_flags(CLOCK_DIVIDER*(count+2),HOST_CCREG);
+ jaddr=(int)out;
+ emit_jns(0);
+ }
+ else
+ {
+ emit_cmpimm(HOST_CCREG,-2*(count+2));
+ jaddr=(int)out;
+ emit_jns(0);
+ }
+ add_stub(CC_STUB,jaddr,idle?idle:(int)out,(*adj==0||invert||idle)?0:(count+2),i,addr,taken,0);
+}
+
+void do_ccstub(int n)
+{
+ literal_pool(256);
+ assem_debug("do_ccstub %x\n",start+stubs[n][4]*4);
+ set_jump_target(stubs[n][1],(int)out);
+ int i=stubs[n][4];
+ if(stubs[n][6]==NULLDS) {
+ // Delay slot instruction is nullified ("likely" branch)
+ wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
+ }
+ else if(stubs[n][6]!=TAKEN) {
+ wb_dirtys(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty);
+ }
+ else {
+ if(internal_branch(branch_regs[i].is32,ba[i]))
+ wb_needed_dirtys(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
+ }
+ if(stubs[n][5]!=-1)
+ {
+ // Save PC as return address
+ emit_movimm(stubs[n][5],EAX);
+ emit_writeword(EAX,(int)&pcaddr);
+ }
+ else
+ {
+ // Return address depends on which way the branch goes
+ if(itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
+ {
+ int s1l=get_reg(branch_regs[i].regmap,rs1[i]);
+ int s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
+ int s2l=get_reg(branch_regs[i].regmap,rs2[i]);
+ int s2h=get_reg(branch_regs[i].regmap,rs2[i]|64);
+ if(rs1[i]==0)
+ {
+ s1l=s2l;s1h=s2h;
+ s2l=s2h=-1;
+ }
+ else if(rs2[i]==0)
+ {
+ s2l=s2h=-1;
+ }
+ if((branch_regs[i].is32>>rs1[i])&(branch_regs[i].is32>>rs2[i])&1) {
+ s1h=s2h=-1;
+ }
+ assert(s1l>=0);
+ #ifdef DESTRUCTIVE_WRITEBACK
+ if(rs1[i]) {
+ if((branch_regs[i].dirty>>s1l)&(branch_regs[i].is32>>rs1[i])&1)
+ emit_loadreg(rs1[i],s1l);
+ }
+ else {
+ if((branch_regs[i].dirty>>s1l)&(branch_regs[i].is32>>rs2[i])&1)
+ emit_loadreg(rs2[i],s1l);
+ }
+ if(s2l>=0)
+ if((branch_regs[i].dirty>>s2l)&(branch_regs[i].is32>>rs2[i])&1)
+ emit_loadreg(rs2[i],s2l);
+ #endif
+ int hr=0;
+ int addr,alt,ntaddr;
+ while(hr<HOST_REGS)
+ {
+ if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
+ (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
+ (branch_regs[i].regmap[hr]&63)!=rs2[i] )
+ {
+ addr=hr++;break;
+ }
+ hr++;
+ }
+ while(hr<HOST_REGS)
+ {
+ if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
+ (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
+ (branch_regs[i].regmap[hr]&63)!=rs2[i] )
+ {
+ alt=hr++;break;
+ }
+ hr++;
+ }
+ if((opcode[i]&0x2E)==6) // BLEZ/BGTZ needs another register
+ {
+ while(hr<HOST_REGS)
+ {
+ if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
+ (branch_regs[i].regmap[hr]&63)!=rs1[i] &&
+ (branch_regs[i].regmap[hr]&63)!=rs2[i] )
+ {
+ ntaddr=hr;break;
+ }
+ hr++;
+ }
+ assert(hr<HOST_REGS);
+ }
+ if((opcode[i]&0x2f)==4) // BEQ
+ {
+ #ifdef HAVE_CMOV_IMM
+ if(s1h<0) {
+ if(s2l>=0) emit_cmp(s1l,s2l);
+ else emit_test(s1l,s1l);
+ emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
+ }
+ else
+ #endif
+ {
+ emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
+ if(s1h>=0) {
+ if(s2h>=0) emit_cmp(s1h,s2h);
+ else emit_test(s1h,s1h);
+ emit_cmovne_reg(alt,addr);
+ }
+ if(s2l>=0) emit_cmp(s1l,s2l);
+ else emit_test(s1l,s1l);
+ emit_cmovne_reg(alt,addr);
+ }
+ }
+ if((opcode[i]&0x2f)==5) // BNE
+ {
+ #ifdef HAVE_CMOV_IMM
+ if(s1h<0) {
+ if(s2l>=0) emit_cmp(s1l,s2l);
+ else emit_test(s1l,s1l);
+ emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
+ }
+ else
+ #endif
+ {
+ emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
+ if(s1h>=0) {
+ if(s2h>=0) emit_cmp(s1h,s2h);
+ else emit_test(s1h,s1h);
+ emit_cmovne_reg(alt,addr);
+ }
+ if(s2l>=0) emit_cmp(s1l,s2l);
+ else emit_test(s1l,s1l);
+ emit_cmovne_reg(alt,addr);
+ }
+ }
+ if((opcode[i]&0x2f)==6) // BLEZ
+ {
+ //emit_movimm(ba[i],alt);
+ //emit_movimm(start+i*4+8,addr);
+ emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
+ emit_cmpimm(s1l,1);
+ if(s1h>=0) emit_mov(addr,ntaddr);
+ emit_cmovl_reg(alt,addr);
+ if(s1h>=0) {
+ emit_test(s1h,s1h);
+ emit_cmovne_reg(ntaddr,addr);
+ emit_cmovs_reg(alt,addr);
+ }
+ }
+ if((opcode[i]&0x2f)==7) // BGTZ
+ {
+ //emit_movimm(ba[i],addr);
+ //emit_movimm(start+i*4+8,ntaddr);
+ emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
+ emit_cmpimm(s1l,1);
+ if(s1h>=0) emit_mov(addr,alt);
+ emit_cmovl_reg(ntaddr,addr);
+ if(s1h>=0) {
+ emit_test(s1h,s1h);
+ emit_cmovne_reg(alt,addr);
+ emit_cmovs_reg(ntaddr,addr);
+ }
+ }
+ if((opcode[i]==1)&&(opcode2[i]&0x2D)==0) // BLTZ
+ {
+ //emit_movimm(ba[i],alt);
+ //emit_movimm(start+i*4+8,addr);
+ emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
+ if(s1h>=0) emit_test(s1h,s1h);
+ else emit_test(s1l,s1l);
+ emit_cmovs_reg(alt,addr);
+ }
+ if((opcode[i]==1)&&(opcode2[i]&0x2D)==1) // BGEZ
+ {
+ //emit_movimm(ba[i],addr);
+ //emit_movimm(start+i*4+8,alt);
+ emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
+ if(s1h>=0) emit_test(s1h,s1h);
+ else emit_test(s1l,s1l);
+ emit_cmovs_reg(alt,addr);
+ }
+ if(opcode[i]==0x11 && opcode2[i]==0x08 ) {
+ if(source[i]&0x10000) // BC1T
+ {
+ //emit_movimm(ba[i],alt);
+ //emit_movimm(start+i*4+8,addr);
+ emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
+ emit_testimm(s1l,0x800000);
+ emit_cmovne_reg(alt,addr);
+ }
+ else // BC1F
+ {
+ //emit_movimm(ba[i],addr);
+ //emit_movimm(start+i*4+8,alt);
+ emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
+ emit_testimm(s1l,0x800000);
+ emit_cmovne_reg(alt,addr);
+ }
+ }
+ emit_writeword(addr,(int)&pcaddr);
+ }
+ else
+ if(itype[i]==RJUMP)
+ {
+ int r=get_reg(branch_regs[i].regmap,rs1[i]);
+ if(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]) {
+ r=get_reg(branch_regs[i].regmap,RTEMP);
+ }
+ emit_writeword(r,(int)&pcaddr);
+ }
+ else {printf("Unknown branch type in do_ccstub\n");exit(1);}
+ }
+ // Update cycle count
+ assert(branch_regs[i].regmap[HOST_CCREG]==CCREG||branch_regs[i].regmap[HOST_CCREG]==-1);
+ if(stubs[n][3]) emit_addimm(HOST_CCREG,CLOCK_DIVIDER*stubs[n][3],HOST_CCREG);
+ emit_call((int)cc_interrupt);
+ if(stubs[n][3]) emit_addimm(HOST_CCREG,-CLOCK_DIVIDER*stubs[n][3],HOST_CCREG);
+ if(stubs[n][6]==TAKEN) {
+ if(internal_branch(branch_regs[i].is32,ba[i]))
+ load_needed_regs(branch_regs[i].regmap,regs[(ba[i]-start)>>2].regmap_entry);
+ else if(itype[i]==RJUMP) {
+ if(get_reg(branch_regs[i].regmap,RTEMP)>=0)
+ emit_readword((int)&pcaddr,get_reg(branch_regs[i].regmap,RTEMP));
+ else
+ emit_loadreg(rs1[i],get_reg(branch_regs[i].regmap,rs1[i]));
+ }
+ }else if(stubs[n][6]==NOTTAKEN) {
+ if(i<slen-2) load_needed_regs(branch_regs[i].regmap,regmap_pre[i+2]);
+ else load_all_regs(branch_regs[i].regmap);
+ }else if(stubs[n][6]==NULLDS) {
+ // Delay slot instruction is nullified ("likely" branch)
+ if(i<slen-2) load_needed_regs(regs[i].regmap,regmap_pre[i+2]);
+ else load_all_regs(regs[i].regmap);
+ }else{
+ load_all_regs(branch_regs[i].regmap);
+ }
+ emit_jmp(stubs[n][2]); // return address
+
+ /* This works but uses a lot of memory...
+ emit_readword((int)&last_count,ECX);
+ emit_add(HOST_CCREG,ECX,EAX);
+ emit_writeword(EAX,(int)&Count);
+ emit_call((int)gen_interupt);
+ emit_readword((int)&Count,HOST_CCREG);
+ emit_readword((int)&next_interupt,EAX);
+ emit_readword((int)&pending_exception,EBX);
+ emit_writeword(EAX,(int)&last_count);
+ emit_sub(HOST_CCREG,EAX,HOST_CCREG);
+ emit_test(EBX,EBX);
+ int jne_instr=(int)out;
+ emit_jne(0);
+ if(stubs[n][3]) emit_addimm(HOST_CCREG,-2*stubs[n][3],HOST_CCREG);
+ load_all_regs(branch_regs[i].regmap);
+ emit_jmp(stubs[n][2]); // return address
+ set_jump_target(jne_instr,(int)out);
+ emit_readword((int)&pcaddr,EAX);
+ // Call get_addr_ht instead of doing the hash table here.
+ // This code is executed infrequently and takes up a lot of space
+ // so smaller is better.
+ emit_storereg(CCREG,HOST_CCREG);
+ emit_pushreg(EAX);
+ emit_call((int)get_addr_ht);
+ emit_loadreg(CCREG,HOST_CCREG);
+ emit_addimm(ESP,4,ESP);
+ emit_jmpreg(EAX);*/
+}
+
+add_to_linker(int addr,int target,int ext)
+{
+ link_addr[linkcount][0]=addr;
+ link_addr[linkcount][1]=target;
+ link_addr[linkcount][2]=ext;
+ linkcount++;
+}
+
+void ujump_assemble(int i,struct regstat *i_regs)
+{
+ signed char *i_regmap=i_regs->regmap;
+ if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
+ address_generation(i+1,i_regs,regs[i].regmap_entry);
+ #ifdef REG_PREFETCH
+ int temp=get_reg(branch_regs[i].regmap,PTEMP);
+ if(rt1[i]==31&&temp>=0)
+ {
+ int return_address=start+i*4+8;
+ if(get_reg(branch_regs[i].regmap,31)>0)
+ if(i_regmap[temp]==PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
+ }
+ #endif
+ ds_assemble(i+1,i_regs);
+ uint64_t bc_unneeded=branch_regs[i].u;
+ uint64_t bc_unneeded_upper=branch_regs[i].uu;
+ bc_unneeded|=1|(1LL<<rt1[i]);
+ bc_unneeded_upper|=1|(1LL<<rt1[i]);
+ wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
+ bc_unneeded,bc_unneeded_upper);
+ load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
+ if(rt1[i]==31) {
+ int rt;
+ unsigned int return_address;
+ assert(rt1[i+1]!=31);
+ assert(rt2[i+1]!=31);
+ rt=get_reg(branch_regs[i].regmap,31);
+ assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
+ //assert(rt>=0);
+ return_address=start+i*4+8;
+ if(rt>=0) {
+ #ifdef USE_MINI_HT
+ if(internal_branch(branch_regs[i].is32,return_address)) {
+ int temp=rt+1;
+ if(temp==EXCLUDE_REG||temp>=HOST_REGS||
+ branch_regs[i].regmap[temp]>=0)
+ {
+ temp=get_reg(branch_regs[i].regmap,-1);
+ }
+ #ifdef HOST_TEMPREG
+ if(temp<0) temp=HOST_TEMPREG;
+ #endif
+ if(temp>=0) do_miniht_insert(return_address,rt,temp);
+ else emit_movimm(return_address,rt);
+ }
+ else
+ #endif
+ {
+ #ifdef REG_PREFETCH
+ if(temp>=0)
+ {
+ if(i_regmap[temp]!=PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
+ }
+ #endif
+ emit_movimm(return_address,rt); // PC into link register
+ #ifdef IMM_PREFETCH
+ emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
+ #endif
+ }
+ }
+ }
+ int cc,adj;
+ cc=get_reg(branch_regs[i].regmap,CCREG);
+ assert(cc==HOST_CCREG);
+ store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
+ #ifdef REG_PREFETCH
+ if(rt1[i]==31&&temp>=0) emit_prefetchreg(temp);
+ #endif
+ do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
+ if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
+ load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
+ if(internal_branch(branch_regs[i].is32,ba[i]))
+ assem_debug("branch: internal\n");
+ else
+ assem_debug("branch: external\n");
+ if(internal_branch(branch_regs[i].is32,ba[i])&&is_ds[(ba[i]-start)>>2]) {
+ ds_assemble_entry(i);
+ }
+ else {
+ add_to_linker((int)out,ba[i],internal_branch(branch_regs[i].is32,ba[i]));
+ emit_jmp(0);
+ }
+}
+
+void rjump_assemble(int i,struct regstat *i_regs)
+{
+ signed char *i_regmap=i_regs->regmap;
+ int temp;
+ int rs,cc,adj;
+ rs=get_reg(branch_regs[i].regmap,rs1[i]);
+ assert(rs>=0);
+ if(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]) {
+ // Delay slot abuse, make a copy of the branch address register
+ temp=get_reg(branch_regs[i].regmap,RTEMP);
+ assert(temp>=0);
+ assert(regs[i].regmap[temp]==RTEMP);
+ emit_mov(rs,temp);
+ rs=temp;
+ }
+ address_generation(i+1,i_regs,regs[i].regmap_entry);
+ #ifdef REG_PREFETCH
+ if(rt1[i]==31)
+ {
+ if((temp=get_reg(branch_regs[i].regmap,PTEMP))>=0) {
+ int return_address=start+i*4+8;
+ if(i_regmap[temp]==PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
+ }
+ }
+ #endif
+ #ifdef USE_MINI_HT
+ if(rs1[i]==31) {
+ int rh=get_reg(regs[i].regmap,RHASH);
+ if(rh>=0) do_preload_rhash(rh);
+ }
+ #endif
+ ds_assemble(i+1,i_regs);
+ uint64_t bc_unneeded=branch_regs[i].u;
+ uint64_t bc_unneeded_upper=branch_regs[i].uu;
+ bc_unneeded|=1|(1LL<<rt1[i]);
+ bc_unneeded_upper|=1|(1LL<<rt1[i]);
+ bc_unneeded&=~(1LL<<rs1[i]);
+ wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
+ bc_unneeded,bc_unneeded_upper);
+ load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],CCREG);
+ if(rt1[i]==31) {
+ int rt,return_address;
+ assert(rt1[i+1]!=31);
+ assert(rt2[i+1]!=31);
+ rt=get_reg(branch_regs[i].regmap,31);
+ assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
+ assert(rt>=0);
+ return_address=start+i*4+8;
+ #ifdef REG_PREFETCH
+ if(temp>=0)
+ {
+ if(i_regmap[temp]!=PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
+ }
+ #endif
+ emit_movimm(return_address,rt); // PC into link register
+ #ifdef IMM_PREFETCH
+ emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
+ #endif
+ }
+ cc=get_reg(branch_regs[i].regmap,CCREG);
+ assert(cc==HOST_CCREG);
+ #ifdef USE_MINI_HT
+ int rh=get_reg(branch_regs[i].regmap,RHASH);
+ int ht=get_reg(branch_regs[i].regmap,RHTBL);
+ if(rs1[i]==31) {
+ if(regs[i].regmap[rh]!=RHASH) do_preload_rhash(rh);
+ do_preload_rhtbl(ht);
+ do_rhash(rs,rh);
+ }
+ #endif
+ store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,-1);
+ #ifdef DESTRUCTIVE_WRITEBACK
+ if((branch_regs[i].dirty>>rs)&(branch_regs[i].is32>>rs1[i])&1) {
+ if(rs1[i]!=rt1[i+1]&&rs1[i]!=rt2[i+1]) {
+ emit_loadreg(rs1[i],rs);
+ }
+ }
+ #endif
+ #ifdef REG_PREFETCH
+ if(rt1[i]==31&&temp>=0) emit_prefetchreg(temp);
+ #endif
+ #ifdef USE_MINI_HT
+ if(rs1[i]==31) {
+ do_miniht_load(ht,rh);
+ }
+ #endif
+ //do_cc(i,branch_regs[i].regmap,&adj,-1,TAKEN);
+ //if(adj) emit_addimm(cc,2*(ccadj[i]+2-adj),cc); // ??? - Shouldn't happen
+ //assert(adj==0);
+ emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
+ add_stub(CC_STUB,(int)out,jump_vaddr_reg[rs],0,i,-1,TAKEN,0);
+ emit_jns(0);
+ //load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,-1);
+ #ifdef USE_MINI_HT
+ if(rs1[i]==31) {
+ do_miniht_jump(rs,rh,ht);
+ }
+ else
+ #endif
+ {
+ //if(rs!=EAX) emit_mov(rs,EAX);
+ //emit_jmp((int)jump_vaddr_eax);
+ emit_jmp(jump_vaddr_reg[rs]);
+ }
+ /* Check hash table
+ temp=!rs;
+ emit_mov(rs,temp);
+ emit_shrimm(rs,16,rs);
+ emit_xor(temp,rs,rs);
+ emit_movzwl_reg(rs,rs);
+ emit_shlimm(rs,4,rs);
+ emit_cmpmem_indexed((int)hash_table,rs,temp);
+ emit_jne((int)out+14);
+ emit_readword_indexed((int)hash_table+4,rs,rs);
+ emit_jmpreg(rs);
+ emit_cmpmem_indexed((int)hash_table+8,rs,temp);
+ emit_addimm_no_flags(8,rs);
+ emit_jeq((int)out-17);
+ // No hit on hash table, call compiler
+ emit_pushreg(temp);
+//DEBUG >
+#ifdef DEBUG_CYCLE_COUNT
+ emit_readword((int)&last_count,ECX);
+ emit_add(HOST_CCREG,ECX,HOST_CCREG);
+ emit_readword((int)&next_interupt,ECX);
+ emit_writeword(HOST_CCREG,(int)&Count);
+ emit_sub(HOST_CCREG,ECX,HOST_CCREG);
+ emit_writeword(ECX,(int)&last_count);
+#endif
+//DEBUG <
+ emit_storereg(CCREG,HOST_CCREG);
+ emit_call((int)get_addr);
+ emit_loadreg(CCREG,HOST_CCREG);
+ emit_addimm(ESP,4,ESP);
+ emit_jmpreg(EAX);*/
+ #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
+ if(rt1[i]!=31&&i<slen-2&&(((u_int)out)&7)) emit_mov(13,13);
+ #endif
+}
+
+void cjump_assemble(int i,struct regstat *i_regs)
+{
+ signed char *i_regmap=i_regs->regmap;
+ int cc;
+ int match;
+ match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
+ assem_debug("match=%d\n",match);
+ int s1h,s1l,s2h,s2l;
+ int prev_cop1_usable=cop1_usable;
+ int unconditional=0,nop=0;
+ int only32=0;
+ int ooo=1;
+ int invert=0;
+ int internal=internal_branch(branch_regs[i].is32,ba[i]);
+ if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
+ if(likely[i]) ooo=0;
+ if(!match) invert=1;
+ #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
+ if(i>(ba[i]-start)>>2) invert=1;
+ #endif
+
+ if(ooo)
+ if((rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]))||
+ (rs2[i]&&(rs2[i]==rt1[i+1]||rs2[i]==rt2[i+1])))
+ {
+ // Write-after-read dependency prevents out of order execution
+ // First test branch condition, then execute delay slot, then branch
+ ooo=0;
+ }
+
+ if(ooo) {
+ s1l=get_reg(branch_regs[i].regmap,rs1[i]);
+ s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
+ s2l=get_reg(branch_regs[i].regmap,rs2[i]);
+ s2h=get_reg(branch_regs[i].regmap,rs2[i]|64);
+ }
+ else {
+ s1l=get_reg(i_regmap,rs1[i]);
+ s1h=get_reg(i_regmap,rs1[i]|64);
+ s2l=get_reg(i_regmap,rs2[i]);
+ s2h=get_reg(i_regmap,rs2[i]|64);
+ }
+ if(rs1[i]==0&&rs2[i]==0)
+ {
+ if(opcode[i]&1) nop=1;
+ else unconditional=1;
+ //assert(opcode[i]!=5);
+ //assert(opcode[i]!=7);
+ //assert(opcode[i]!=0x15);
+ //assert(opcode[i]!=0x17);
+ }
+ else if(rs1[i]==0)
+ {
+ s1l=s2l;s1h=s2h;
+ s2l=s2h=-1;
+ only32=(regs[i].was32>>rs2[i])&1;
+ }
+ else if(rs2[i]==0)
+ {
+ s2l=s2h=-1;
+ only32=(regs[i].was32>>rs1[i])&1;
+ }
+ else {
+ only32=(regs[i].was32>>rs1[i])&(regs[i].was32>>rs2[i])&1;
+ }
+
+ if(ooo) {
+ // Out of order execution (delay slot first)
+ //printf("OOOE\n");
+ address_generation(i+1,i_regs,regs[i].regmap_entry);
+ ds_assemble(i+1,i_regs);
+ int adj;
+ uint64_t bc_unneeded=branch_regs[i].u;
+ uint64_t bc_unneeded_upper=branch_regs[i].uu;
+ bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
+ bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
+ bc_unneeded|=1;
+ bc_unneeded_upper|=1;
+ wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
+ bc_unneeded,bc_unneeded_upper);
+ load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs2[i]);
+ load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
+ cc=get_reg(branch_regs[i].regmap,CCREG);
+ assert(cc==HOST_CCREG);
+ if(unconditional)
+ store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
+ //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
+ //assem_debug("cycle count (adj)\n");
+ if(unconditional) {
+ do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
+ if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
+ if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
+ load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
+ if(internal)
+ assem_debug("branch: internal\n");
+ else
+ assem_debug("branch: external\n");
+ if(internal&&is_ds[(ba[i]-start)>>2]) {
+ ds_assemble_entry(i);
+ }
+ else {
+ add_to_linker((int)out,ba[i],internal);
+ emit_jmp(0);
+ }
+ #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
+ if(((u_int)out)&7) emit_addnop(0);
+ #endif
+ }
+ }
+ else if(nop) {
+ emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
+ int jaddr=(int)out;
+ emit_jns(0);
+ add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
+ }
+ else {
+ int taken=0,nottaken=0,nottaken1=0;
+ do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
+ if(adj&&!invert) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
+ if(!only32)
+ {
+ assert(s1h>=0);
+ if(opcode[i]==4) // BEQ
+ {
+ if(s2h>=0) emit_cmp(s1h,s2h);
+ else emit_test(s1h,s1h);
+ nottaken1=(int)out;
+ emit_jne(1);
+ }
+ if(opcode[i]==5) // BNE
+ {
+ if(s2h>=0) emit_cmp(s1h,s2h);
+ else emit_test(s1h,s1h);
+ if(invert) taken=(int)out;
+ else add_to_linker((int)out,ba[i],internal);
+ emit_jne(0);
+ }
+ if(opcode[i]==6) // BLEZ
+ {
+ emit_test(s1h,s1h);
+ if(invert) taken=(int)out;
+ else add_to_linker((int)out,ba[i],internal);
+ emit_js(0);
+ nottaken1=(int)out;
+ emit_jne(1);
+ }
+ if(opcode[i]==7) // BGTZ
+ {
+ emit_test(s1h,s1h);
+ nottaken1=(int)out;
+ emit_js(1);
+ if(invert) taken=(int)out;
+ else add_to_linker((int)out,ba[i],internal);
+ emit_jne(0);
+ }
+ } // if(!only32)
+
+ //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
+ assert(s1l>=0);
+ if(opcode[i]==4) // BEQ
+ {
+ if(s2l>=0) emit_cmp(s1l,s2l);
+ else emit_test(s1l,s1l);
+ if(invert){
+ nottaken=(int)out;
+ emit_jne(1);
+ }else{
+ add_to_linker((int)out,ba[i],internal);
+ emit_jeq(0);
+ }
+ }
+ if(opcode[i]==5) // BNE
+ {
+ if(s2l>=0) emit_cmp(s1l,s2l);
+ else emit_test(s1l,s1l);
+ if(invert){
+ nottaken=(int)out;
+ emit_jeq(1);
+ }else{
+ add_to_linker((int)out,ba[i],internal);
+ emit_jne(0);
+ }
+ }
+ if(opcode[i]==6) // BLEZ
+ {
+ emit_cmpimm(s1l,1);
+ if(invert){
+ nottaken=(int)out;
+ emit_jge(1);
+ }else{
+ add_to_linker((int)out,ba[i],internal);
+ emit_jl(0);
+ }
+ }
+ if(opcode[i]==7) // BGTZ
+ {
+ emit_cmpimm(s1l,1);
+ if(invert){
+ nottaken=(int)out;
+ emit_jl(1);
+ }else{
+ add_to_linker((int)out,ba[i],internal);
+ emit_jge(0);
+ }
+ }
+ if(invert) {
+ if(taken) set_jump_target(taken,(int)out);
+ #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
+ if(match&&(!internal||!is_ds[(ba[i]-start)>>2])) {
+ if(adj) {
+ emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
+ add_to_linker((int)out,ba[i],internal);
+ }else{
+ emit_addnop(13);
+ add_to_linker((int)out,ba[i],internal*2);
+ }
+ emit_jmp(0);
+ }else
+ #endif
+ {
+ if(adj) emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
+ store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
+ load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
+ if(internal)
+ assem_debug("branch: internal\n");
+ else
+ assem_debug("branch: external\n");
+ if(internal&&is_ds[(ba[i]-start)>>2]) {
+ ds_assemble_entry(i);
+ }
+ else {
+ add_to_linker((int)out,ba[i],internal);
+ emit_jmp(0);
+ }
+ }
+ set_jump_target(nottaken,(int)out);
+ }
+
+ if(nottaken1) set_jump_target(nottaken1,(int)out);
+ if(adj) {
+ if(!invert) emit_addimm(cc,CLOCK_DIVIDER*adj,cc);
+ }
+ } // (!unconditional)
+ } // if(ooo)
+ else
+ {
+ // In-order execution (branch first)
+ //if(likely[i]) printf("IOL\n");
+ //else
+ //printf("IOE\n");
+ int taken=0,nottaken=0,nottaken1=0;
+ if(!unconditional&&!nop) {
+ if(!only32)
+ {
+ assert(s1h>=0);
+ if((opcode[i]&0x2f)==4) // BEQ
+ {
+ if(s2h>=0) emit_cmp(s1h,s2h);
+ else emit_test(s1h,s1h);
+ nottaken1=(int)out;
+ emit_jne(2);
+ }
+ if((opcode[i]&0x2f)==5) // BNE
+ {
+ if(s2h>=0) emit_cmp(s1h,s2h);
+ else emit_test(s1h,s1h);
+ taken=(int)out;
+ emit_jne(1);
+ }
+ if((opcode[i]&0x2f)==6) // BLEZ
+ {
+ emit_test(s1h,s1h);
+ taken=(int)out;
+ emit_js(1);
+ nottaken1=(int)out;
+ emit_jne(2);
+ }
+ if((opcode[i]&0x2f)==7) // BGTZ
+ {
+ emit_test(s1h,s1h);
+ nottaken1=(int)out;
+ emit_js(2);
+ taken=(int)out;
+ emit_jne(1);
+ }
+ } // if(!only32)
+
+ //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
+ assert(s1l>=0);
+ if((opcode[i]&0x2f)==4) // BEQ
+ {
+ if(s2l>=0) emit_cmp(s1l,s2l);
+ else emit_test(s1l,s1l);
+ nottaken=(int)out;
+ emit_jne(2);
+ }
+ if((opcode[i]&0x2f)==5) // BNE
+ {
+ if(s2l>=0) emit_cmp(s1l,s2l);
+ else emit_test(s1l,s1l);
+ nottaken=(int)out;
+ emit_jeq(2);
+ }
+ if((opcode[i]&0x2f)==6) // BLEZ
+ {
+ emit_cmpimm(s1l,1);
+ nottaken=(int)out;
+ emit_jge(2);
+ }
+ if((opcode[i]&0x2f)==7) // BGTZ
+ {
+ emit_cmpimm(s1l,1);
+ nottaken=(int)out;
+ emit_jl(2);
+ }
+ } // if(!unconditional)
+ int adj;
+ uint64_t ds_unneeded=branch_regs[i].u;
+ uint64_t ds_unneeded_upper=branch_regs[i].uu;
+ ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
+ ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
+ if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
+ ds_unneeded|=1;
+ ds_unneeded_upper|=1;
+ // branch taken
+ if(!nop) {
+ if(taken) set_jump_target(taken,(int)out);
+ assem_debug("1:\n");
+ wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
+ ds_unneeded,ds_unneeded_upper);
+ // load regs
+ load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
+ address_generation(i+1,&branch_regs[i],0);
+ load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
+ ds_assemble(i+1,&branch_regs[i]);
+ cc=get_reg(branch_regs[i].regmap,CCREG);
+ if(cc==-1) {
+ emit_loadreg(CCREG,cc=HOST_CCREG);
+ // CHECK: Is the following instruction (fall thru) allocated ok?
+ }
+ assert(cc==HOST_CCREG);
+ store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
+ do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
+ assem_debug("cycle count (adj)\n");
+ if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
+ load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
+ if(internal)
+ assem_debug("branch: internal\n");
+ else
+ assem_debug("branch: external\n");
+ if(internal&&is_ds[(ba[i]-start)>>2]) {
+ ds_assemble_entry(i);
+ }
+ else {
+ add_to_linker((int)out,ba[i],internal);
+ emit_jmp(0);
+ }
+ }
+ // branch not taken
+ cop1_usable=prev_cop1_usable;
+ if(!unconditional) {
+ if(nottaken1) set_jump_target(nottaken1,(int)out);
+ set_jump_target(nottaken,(int)out);
+ assem_debug("2:\n");
+ if(!likely[i]) {
+ wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
+ ds_unneeded,ds_unneeded_upper);
+ load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
+ address_generation(i+1,&branch_regs[i],0);
+ load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
+ ds_assemble(i+1,&branch_regs[i]);
+ }
+ cc=get_reg(branch_regs[i].regmap,CCREG);
+ if(cc==-1&&!likely[i]) {
+ // Cycle count isn't in a register, temporarily load it then write it out
+ emit_loadreg(CCREG,HOST_CCREG);
+ emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
+ int jaddr=(int)out;
+ emit_jns(0);
+ add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
+ emit_storereg(CCREG,HOST_CCREG);
+ }
+ else{
+ cc=get_reg(i_regmap,CCREG);
+ assert(cc==HOST_CCREG);
+ emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
+ int jaddr=(int)out;
+ emit_jns(0);
+ add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
+ }
+ }
+ }
+}
+
+void sjump_assemble(int i,struct regstat *i_regs)
+{
+ signed char *i_regmap=i_regs->regmap;
+ int cc;
+ int match;
+ match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
+ assem_debug("smatch=%d\n",match);
+ int s1h,s1l;
+ int prev_cop1_usable=cop1_usable;
+ int unconditional=0,nevertaken=0;
+ int only32=0;
+ int ooo=1;
+ int invert=0;
+ int internal=internal_branch(branch_regs[i].is32,ba[i]);
+ if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
+ if(likely[i]) ooo=0;
+ if(!match) invert=1;
+ #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
+ if(i>(ba[i]-start)>>2) invert=1;
+ #endif
+
+ //if(opcode2[i]>=0x10) return; // FIXME (BxxZAL)
+ assert(opcode2[i]<0x10||rs1[i]==0); // FIXME (BxxZAL)
+
+ if(ooo)
+ if(rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]))
+ {
+ // Write-after-read dependency prevents out of order execution
+ // First test branch condition, then execute delay slot, then branch
+ ooo=0;
+ }
+ // TODO: Conditional branches w/link must execute in-order so that
+ // condition test and write to r31 occur before cycle count test
+
+ if(ooo) {
+ s1l=get_reg(branch_regs[i].regmap,rs1[i]);
+ s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
+ }
+ else {
+ s1l=get_reg(i_regmap,rs1[i]);
+ s1h=get_reg(i_regmap,rs1[i]|64);
+ }
+ if(rs1[i]==0)
+ {
+ if(opcode2[i]&1) unconditional=1;
+ else nevertaken=1;
+ // These are never taken (r0 is never less than zero)
+ //assert(opcode2[i]!=0);
+ //assert(opcode2[i]!=2);
+ //assert(opcode2[i]!=0x10);
+ //assert(opcode2[i]!=0x12);
+ }
+ else {
+ only32=(regs[i].was32>>rs1[i])&1;
+ }
+
+ if(ooo) {
+ // Out of order execution (delay slot first)
+ //printf("OOOE\n");
+ address_generation(i+1,i_regs,regs[i].regmap_entry);
+ ds_assemble(i+1,i_regs);
+ int adj;
+ uint64_t bc_unneeded=branch_regs[i].u;
+ uint64_t bc_unneeded_upper=branch_regs[i].uu;
+ bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
+ bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
+ bc_unneeded|=1;
+ bc_unneeded_upper|=1;
+ wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
+ bc_unneeded,bc_unneeded_upper);
+ load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs1[i]);
+ load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
+ if(rt1[i]==31) {
+ int rt,return_address;
+ assert(rt1[i+1]!=31);
+ assert(rt2[i+1]!=31);
+ rt=get_reg(branch_regs[i].regmap,31);
+ assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
+ if(rt>=0) {
+ // Save the PC even if the branch is not taken
+ return_address=start+i*4+8;
+ emit_movimm(return_address,rt); // PC into link register
+ #ifdef IMM_PREFETCH
+ if(!nevertaken) emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
+ #endif
+ }
+ }
+ cc=get_reg(branch_regs[i].regmap,CCREG);
+ assert(cc==HOST_CCREG);
+ if(unconditional)
+ store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
+ //do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
+ assem_debug("cycle count (adj)\n");
+ if(unconditional) {
+ do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
+ if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
+ if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
+ load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
+ if(internal)
+ assem_debug("branch: internal\n");
+ else
+ assem_debug("branch: external\n");
+ if(internal&&is_ds[(ba[i]-start)>>2]) {
+ ds_assemble_entry(i);
+ }
+ else {
+ add_to_linker((int)out,ba[i],internal);
+ emit_jmp(0);
+ }
+ #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
+ if(((u_int)out)&7) emit_addnop(0);
+ #endif
+ }
+ }
+ else if(nevertaken) {
+ emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
+ int jaddr=(int)out;
+ emit_jns(0);
+ add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
+ }
+ else {
+ int nottaken=0;
+ do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
+ if(adj&&!invert) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
+ if(!only32)
+ {
+ assert(s1h>=0);
+ if(opcode2[i]==0) // BLTZ
+ {
+ emit_test(s1h,s1h);
+ if(invert){
+ nottaken=(int)out;
+ emit_jns(1);
+ }else{
+ add_to_linker((int)out,ba[i],internal);
+ emit_js(0);
+ }
+ }
+ if(opcode2[i]==1) // BGEZ
+ {
+ emit_test(s1h,s1h);
+ if(invert){
+ nottaken=(int)out;
+ emit_js(1);
+ }else{
+ add_to_linker((int)out,ba[i],internal);
+ emit_jns(0);
+ }
+ }
+ } // if(!only32)
+ else
+ {
+ assert(s1l>=0);
+ if(opcode2[i]==0) // BLTZ
+ {
+ emit_test(s1l,s1l);
+ if(invert){
+ nottaken=(int)out;
+ emit_jns(1);
+ }else{
+ add_to_linker((int)out,ba[i],internal);
+ emit_js(0);
+ }
+ }
+ if(opcode2[i]==1) // BGEZ
+ {
+ emit_test(s1l,s1l);
+ if(invert){
+ nottaken=(int)out;
+ emit_js(1);
+ }else{
+ add_to_linker((int)out,ba[i],internal);
+ emit_jns(0);
+ }
+ }
+ } // if(!only32)
+
+ if(invert) {
+ #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
+ if(match&&(!internal||!is_ds[(ba[i]-start)>>2])) {
+ if(adj) {
+ emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
+ add_to_linker((int)out,ba[i],internal);
+ }else{
+ emit_addnop(13);
+ add_to_linker((int)out,ba[i],internal*2);
+ }
+ emit_jmp(0);
+ }else
+ #endif
+ {
+ if(adj) emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
+ store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
+ load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
+ if(internal)
+ assem_debug("branch: internal\n");
+ else
+ assem_debug("branch: external\n");
+ if(internal&&is_ds[(ba[i]-start)>>2]) {
+ ds_assemble_entry(i);
+ }
+ else {
+ add_to_linker((int)out,ba[i],internal);
+ emit_jmp(0);
+ }
+ }
+ set_jump_target(nottaken,(int)out);
+ }
+
+ if(adj) {
+ if(!invert) emit_addimm(cc,CLOCK_DIVIDER*adj,cc);
+ }
+ } // (!unconditional)
+ } // if(ooo)
+ else
+ {
+ // In-order execution (branch first)
+ //printf("IOE\n");
+ int nottaken=0;
+ if(!unconditional) {
+ //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
+ if(!only32)
+ {
+ assert(s1h>=0);
+ if((opcode2[i]&0x1d)==0) // BLTZ/BLTZL
+ {
+ emit_test(s1h,s1h);
+ nottaken=(int)out;
+ emit_jns(1);
+ }
+ if((opcode2[i]&0x1d)==1) // BGEZ/BGEZL
+ {
+ emit_test(s1h,s1h);
+ nottaken=(int)out;
+ emit_js(1);
+ }
+ } // if(!only32)
+ else
+ {
+ assert(s1l>=0);
+ if((opcode2[i]&0x1d)==0) // BLTZ/BLTZL
+ {
+ emit_test(s1l,s1l);
+ nottaken=(int)out;
+ emit_jns(1);
+ }
+ if((opcode2[i]&0x1d)==1) // BGEZ/BGEZL
+ {
+ emit_test(s1l,s1l);
+ nottaken=(int)out;
+ emit_js(1);
+ }
+ }
+ } // if(!unconditional)
+ int adj;
+ uint64_t ds_unneeded=branch_regs[i].u;
+ uint64_t ds_unneeded_upper=branch_regs[i].uu;
+ ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
+ ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
+ if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
+ ds_unneeded|=1;
+ ds_unneeded_upper|=1;
+ // branch taken
+ if(!nevertaken) {
+ //assem_debug("1:\n");
+ wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
+ ds_unneeded,ds_unneeded_upper);
+ // load regs
+ load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
+ address_generation(i+1,&branch_regs[i],0);
+ load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
+ ds_assemble(i+1,&branch_regs[i]);
+ cc=get_reg(branch_regs[i].regmap,CCREG);
+ if(cc==-1) {
+ emit_loadreg(CCREG,cc=HOST_CCREG);
+ // CHECK: Is the following instruction (fall thru) allocated ok?
+ }
+ assert(cc==HOST_CCREG);
+ store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
+ do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
+ assem_debug("cycle count (adj)\n");
+ if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
+ load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
+ if(internal)
+ assem_debug("branch: internal\n");
+ else
+ assem_debug("branch: external\n");
+ if(internal&&is_ds[(ba[i]-start)>>2]) {
+ ds_assemble_entry(i);
+ }
+ else {
+ add_to_linker((int)out,ba[i],internal);
+ emit_jmp(0);
+ }
+ }
+ // branch not taken
+ cop1_usable=prev_cop1_usable;
+ if(!unconditional) {
+ set_jump_target(nottaken,(int)out);
+ assem_debug("1:\n");
+ if(!likely[i]) {
+ wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
+ ds_unneeded,ds_unneeded_upper);
+ load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
+ address_generation(i+1,&branch_regs[i],0);
+ load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
+ ds_assemble(i+1,&branch_regs[i]);
+ }
+ cc=get_reg(branch_regs[i].regmap,CCREG);
+ if(cc==-1&&!likely[i]) {
+ // Cycle count isn't in a register, temporarily load it then write it out
+ emit_loadreg(CCREG,HOST_CCREG);
+ emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
+ int jaddr=(int)out;
+ emit_jns(0);
+ add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
+ emit_storereg(CCREG,HOST_CCREG);
+ }
+ else{
+ cc=get_reg(i_regmap,CCREG);
+ assert(cc==HOST_CCREG);
+ emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
+ int jaddr=(int)out;
+ emit_jns(0);
+ add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
+ }
+ }
+ }
+}
+
+void fjump_assemble(int i,struct regstat *i_regs)
+{
+ signed char *i_regmap=i_regs->regmap;
+ int cc;
+ int match;
+ match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
+ assem_debug("fmatch=%d\n",match);
+ int fs,cs;
+ int eaddr;
+ int ooo=1;
+ int invert=0;
+ int internal=internal_branch(branch_regs[i].is32,ba[i]);
+ if(i==(ba[i]-start)>>2) assem_debug("idle loop\n");
+ if(likely[i]) ooo=0;
+ if(!match) invert=1;
+ #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
+ if(i>(ba[i]-start)>>2) invert=1;
+ #endif
+
+ if(ooo)
+ if(itype[i+1]==FCOMP)
+ {
+ // Write-after-read dependency prevents out of order execution
+ // First test branch condition, then execute delay slot, then branch
+ ooo=0;
+ }
+
+ if(ooo) {
+ fs=get_reg(branch_regs[i].regmap,FSREG);
+ address_generation(i+1,i_regs,regs[i].regmap_entry); // Is this okay?
+ }
+ else {
+ fs=get_reg(i_regmap,FSREG);
+ }
+
+ // Check cop1 unusable
+ if(!cop1_usable) {
+ cs=get_reg(i_regmap,CSREG);
+ assert(cs>=0);
+ emit_testimm(cs,0x20000000);
+ eaddr=(int)out;
+ emit_jeq(0);
+ add_stub(FP_STUB,eaddr,(int)out,i,cs,(int)i_regs,0,0);
+ cop1_usable=1;
+ }
+
+ if(ooo) {
+ // Out of order execution (delay slot first)
+ //printf("OOOE\n");
+ ds_assemble(i+1,i_regs);
+ int adj;
+ uint64_t bc_unneeded=branch_regs[i].u;
+ uint64_t bc_unneeded_upper=branch_regs[i].uu;
+ bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
+ bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
+ bc_unneeded|=1;
+ bc_unneeded_upper|=1;
+ wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
+ bc_unneeded,bc_unneeded_upper);
+ load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs1[i]);
+ load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
+ cc=get_reg(branch_regs[i].regmap,CCREG);
+ assert(cc==HOST_CCREG);
+ do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
+ assem_debug("cycle count (adj)\n");
+ if(1) {
+ int nottaken=0;
+ if(adj&&!invert) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
+ if(1) {
+ assert(fs>=0);
+ emit_testimm(fs,0x800000);
+ if(source[i]&0x10000) // BC1T
+ {
+ if(invert){
+ nottaken=(int)out;
+ emit_jeq(1);
+ }else{
+ add_to_linker((int)out,ba[i],internal);
+ emit_jne(0);
+ }
+ }
+ else // BC1F
+ if(invert){
+ nottaken=(int)out;
+ emit_jne(1);
+ }else{
+ add_to_linker((int)out,ba[i],internal);
+ emit_jeq(0);
+ }
+ {
+ }
+ } // if(!only32)
+
+ if(invert) {
+ if(adj) emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
+ #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
+ else if(match) emit_addnop(13);
+ #endif
+ store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
+ load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
+ if(internal)
+ assem_debug("branch: internal\n");
+ else
+ assem_debug("branch: external\n");
+ if(internal&&is_ds[(ba[i]-start)>>2]) {
+ ds_assemble_entry(i);
+ }
+ else {
+ add_to_linker((int)out,ba[i],internal);
+ emit_jmp(0);
+ }
+ set_jump_target(nottaken,(int)out);
+ }
+
+ if(adj) {
+ if(!invert) emit_addimm(cc,CLOCK_DIVIDER*adj,cc);
+ }
+ } // (!unconditional)
+ } // if(ooo)
+ else
+ {
+ // In-order execution (branch first)
+ //printf("IOE\n");
+ int nottaken=0;
+ if(1) {
+ //printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
+ if(1) {
+ assert(fs>=0);
+ emit_testimm(fs,0x800000);
+ if(source[i]&0x10000) // BC1T
+ {
+ nottaken=(int)out;
+ emit_jeq(1);
+ }
+ else // BC1F
+ {
+ nottaken=(int)out;
+ emit_jne(1);
+ }
+ }
+ } // if(!unconditional)
+ int adj;
+ uint64_t ds_unneeded=branch_regs[i].u;
+ uint64_t ds_unneeded_upper=branch_regs[i].uu;
+ ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
+ ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
+ if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
+ ds_unneeded|=1;
+ ds_unneeded_upper|=1;
+ // branch taken
+ //assem_debug("1:\n");
+ wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
+ ds_unneeded,ds_unneeded_upper);
+ // load regs
+ load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
+ address_generation(i+1,&branch_regs[i],0);
+ load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
+ ds_assemble(i+1,&branch_regs[i]);
+ cc=get_reg(branch_regs[i].regmap,CCREG);
+ if(cc==-1) {
+ emit_loadreg(CCREG,cc=HOST_CCREG);
+ // CHECK: Is the following instruction (fall thru) allocated ok?
+ }
+ assert(cc==HOST_CCREG);
+ store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
+ do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
+ assem_debug("cycle count (adj)\n");
+ if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
+ load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
+ if(internal)
+ assem_debug("branch: internal\n");
+ else
+ assem_debug("branch: external\n");
+ if(internal&&is_ds[(ba[i]-start)>>2]) {
+ ds_assemble_entry(i);
+ }
+ else {
+ add_to_linker((int)out,ba[i],internal);
+ emit_jmp(0);
+ }
+
+ // branch not taken
+ if(1) { // <- FIXME (don't need this)
+ set_jump_target(nottaken,(int)out);
+ assem_debug("1:\n");
+ if(!likely[i]) {
+ wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
+ ds_unneeded,ds_unneeded_upper);
+ load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
+ address_generation(i+1,&branch_regs[i],0);
+ load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
+ ds_assemble(i+1,&branch_regs[i]);
+ }
+ cc=get_reg(branch_regs[i].regmap,CCREG);
+ if(cc==-1&&!likely[i]) {
+ // Cycle count isn't in a register, temporarily load it then write it out
+ emit_loadreg(CCREG,HOST_CCREG);
+ emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
+ int jaddr=(int)out;
+ emit_jns(0);
+ add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
+ emit_storereg(CCREG,HOST_CCREG);
+ }
+ else{
+ cc=get_reg(i_regmap,CCREG);
+ assert(cc==HOST_CCREG);
+ emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
+ int jaddr=(int)out;
+ emit_jns(0);
+ add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
+ }
+ }
+ }
+}
+
+static void pagespan_assemble(int i,struct regstat *i_regs)
+{
+ int s1l=get_reg(i_regs->regmap,rs1[i]);
+ int s1h=get_reg(i_regs->regmap,rs1[i]|64);
+ int s2l=get_reg(i_regs->regmap,rs2[i]);
+ int s2h=get_reg(i_regs->regmap,rs2[i]|64);
+ void *nt_branch=NULL;
+ int taken=0;
+ int nottaken=0;
+ int unconditional=0;
+ if(rs1[i]==0)
+ {
+ s1l=s2l;s1h=s2h;
+ s2l=s2h=-1;
+ }
+ else if(rs2[i]==0)
+ {
+ s2l=s2h=-1;
+ }
+ if((i_regs->is32>>rs1[i])&(i_regs->is32>>rs2[i])&1) {
+ s1h=s2h=-1;
+ }
+ int hr=0;
+ int addr,alt,ntaddr;
+ if(i_regs->regmap[HOST_BTREG]<0) {addr=HOST_BTREG;}
+ else {
+ while(hr<HOST_REGS)
+ {
+ if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
+ (i_regs->regmap[hr]&63)!=rs1[i] &&
+ (i_regs->regmap[hr]&63)!=rs2[i] )
+ {
+ addr=hr++;break;
+ }
+ hr++;
+ }
+ }
+ while(hr<HOST_REGS)
+ {
+ if(hr!=EXCLUDE_REG && hr!=HOST_CCREG && hr!=HOST_BTREG &&
+ (i_regs->regmap[hr]&63)!=rs1[i] &&
+ (i_regs->regmap[hr]&63)!=rs2[i] )
+ {
+ alt=hr++;break;
+ }
+ hr++;
+ }
+ if((opcode[i]&0x2E)==6) // BLEZ/BGTZ needs another register
+ {
+ while(hr<HOST_REGS)
+ {
+ if(hr!=EXCLUDE_REG && hr!=HOST_CCREG && hr!=HOST_BTREG &&
+ (i_regs->regmap[hr]&63)!=rs1[i] &&
+ (i_regs->regmap[hr]&63)!=rs2[i] )
+ {
+ ntaddr=hr;break;
+ }
+ hr++;
+ }
+ }
+ assert(hr<HOST_REGS);
+ if((opcode[i]&0x2e)==4||opcode[i]==0x11) { // BEQ/BNE/BEQL/BNEL/BC1
+ load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,CCREG,CCREG);
+ }
+ emit_addimm(HOST_CCREG,CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
+ if(opcode[i]==2) // J
+ {
+ unconditional=1;
+ }
+ if(opcode[i]==3) // JAL
+ {
+ // TODO: mini_ht
+ int rt=get_reg(i_regs->regmap,31);
+ emit_movimm(start+i*4+8,rt);
+ unconditional=1;
+ }
+ if(opcode[i]==0&&(opcode2[i]&0x3E)==8) // JR/JALR
+ {
+ emit_mov(s1l,addr);
+ if(opcode2[i]==9) // JALR
+ {
+ int rt=get_reg(i_regs->regmap,31);
+ emit_movimm(start+i*4+8,rt);
+ }
+ }
+ if((opcode[i]&0x3f)==4) // BEQ
+ {
+ if(rs1[i]==rs2[i])
+ {
+ unconditional=1;
+ }
+ else
+ #ifdef HAVE_CMOV_IMM
+ if(s1h<0) {
+ if(s2l>=0) emit_cmp(s1l,s2l);
+ else emit_test(s1l,s1l);
+ emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
+ }
+ else
+ #endif
+ {
+ assert(s1l>=0);
+ emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
+ if(s1h>=0) {
+ if(s2h>=0) emit_cmp(s1h,s2h);
+ else emit_test(s1h,s1h);
+ emit_cmovne_reg(alt,addr);
+ }
+ if(s2l>=0) emit_cmp(s1l,s2l);
+ else emit_test(s1l,s1l);
+ emit_cmovne_reg(alt,addr);
+ }
+ }
+ if((opcode[i]&0x3f)==5) // BNE
+ {
+ #ifdef HAVE_CMOV_IMM
+ if(s1h<0) {
+ if(s2l>=0) emit_cmp(s1l,s2l);
+ else emit_test(s1l,s1l);
+ emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
+ }
+ else
+ #endif
+ {
+ assert(s1l>=0);
+ emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
+ if(s1h>=0) {
+ if(s2h>=0) emit_cmp(s1h,s2h);
+ else emit_test(s1h,s1h);
+ emit_cmovne_reg(alt,addr);
+ }
+ if(s2l>=0) emit_cmp(s1l,s2l);
+ else emit_test(s1l,s1l);
+ emit_cmovne_reg(alt,addr);
+ }
+ }
+ if((opcode[i]&0x3f)==0x14) // BEQL
+ {
+ if(s1h>=0) {
+ if(s2h>=0) emit_cmp(s1h,s2h);
+ else emit_test(s1h,s1h);
+ nottaken=(int)out;
+ emit_jne(0);
+ }
+ if(s2l>=0) emit_cmp(s1l,s2l);
+ else emit_test(s1l,s1l);
+ if(nottaken) set_jump_target(nottaken,(int)out);
+ nottaken=(int)out;
+ emit_jne(0);
+ }
+ if((opcode[i]&0x3f)==0x15) // BNEL
+ {
+ if(s1h>=0) {
+ if(s2h>=0) emit_cmp(s1h,s2h);
+ else emit_test(s1h,s1h);
+ taken=(int)out;
+ emit_jne(0);
+ }
+ if(s2l>=0) emit_cmp(s1l,s2l);
+ else emit_test(s1l,s1l);
+ nottaken=(int)out;
+ emit_jeq(0);
+ if(taken) set_jump_target(taken,(int)out);
+ }
+ if((opcode[i]&0x3f)==6) // BLEZ
+ {
+ emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
+ emit_cmpimm(s1l,1);
+ if(s1h>=0) emit_mov(addr,ntaddr);
+ emit_cmovl_reg(alt,addr);
+ if(s1h>=0) {
+ emit_test(s1h,s1h);
+ emit_cmovne_reg(ntaddr,addr);
+ emit_cmovs_reg(alt,addr);
+ }
+ }
+ if((opcode[i]&0x3f)==7) // BGTZ
+ {
+ emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
+ emit_cmpimm(s1l,1);
+ if(s1h>=0) emit_mov(addr,alt);
+ emit_cmovl_reg(ntaddr,addr);
+ if(s1h>=0) {
+ emit_test(s1h,s1h);
+ emit_cmovne_reg(alt,addr);
+ emit_cmovs_reg(ntaddr,addr);
+ }
+ }
+ if((opcode[i]&0x3f)==0x16) // BLEZL
+ {
+ assert((opcode[i]&0x3f)!=0x16);
+ }
+ if((opcode[i]&0x3f)==0x17) // BGTZL
+ {
+ assert((opcode[i]&0x3f)!=0x17);
+ }
+ assert(opcode[i]!=1); // BLTZ/BGEZ
+
+ //FIXME: Check CSREG
+ if(opcode[i]==0x11 && opcode2[i]==0x08 ) {
+ if((source[i]&0x30000)==0) // BC1F
+ {
+ emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
+ emit_testimm(s1l,0x800000);
+ emit_cmovne_reg(alt,addr);
+ }
+ if((source[i]&0x30000)==0x10000) // BC1T
+ {
+ emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
+ emit_testimm(s1l,0x800000);
+ emit_cmovne_reg(alt,addr);
+ }
+ if((source[i]&0x30000)==0x20000) // BC1FL
+ {
+ emit_testimm(s1l,0x800000);
+ nottaken=(int)out;
+ emit_jne(0);
+ }
+ if((source[i]&0x30000)==0x30000) // BC1TL
+ {
+ emit_testimm(s1l,0x800000);
+ nottaken=(int)out;
+ emit_jeq(0);
+ }
+ }
+
+ assert(i_regs->regmap[HOST_CCREG]==CCREG);
+ wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
+ if(likely[i]||unconditional)
+ {
+ emit_movimm(ba[i],HOST_BTREG);
+ }
+ else if(addr!=HOST_BTREG)
+ {
+ emit_mov(addr,HOST_BTREG);
+ }
+ void *branch_addr=out;
+ emit_jmp(0);
+ int target_addr=start+i*4+5;
+ void *stub=out;
+ void *compiled_target_addr=check_addr(target_addr);
+ emit_extjump_ds((int)branch_addr,target_addr);
+ if(compiled_target_addr) {
+ set_jump_target((int)branch_addr,(int)compiled_target_addr);
+ add_link(target_addr,stub);
+ }
+ else set_jump_target((int)branch_addr,(int)stub);
+ if(likely[i]) {
+ // Not-taken path
+ set_jump_target((int)nottaken,(int)out);
+ wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
+ void *branch_addr=out;
+ emit_jmp(0);
+ int target_addr=start+i*4+8;
+ void *stub=out;
+ void *compiled_target_addr=check_addr(target_addr);
+ emit_extjump_ds((int)branch_addr,target_addr);
+ if(compiled_target_addr) {
+ set_jump_target((int)branch_addr,(int)compiled_target_addr);
+ add_link(target_addr,stub);
+ }
+ else set_jump_target((int)branch_addr,(int)stub);
+ }
+}
+
+// Assemble the delay slot for the above
+static void pagespan_ds()
+{
+ assem_debug("initial delay slot:\n");
+ u_int vaddr=start+1;
+ u_int page=(0x80000000^vaddr)>>12;
+ u_int vpage=page;
+ if(page>262143&&tlb_LUT_r[vaddr>>12]) page=(tlb_LUT_r[page^0x80000]^0x80000000)>>12;
+ if(page>2048) page=2048+(page&2047);
+ if(vpage>262143&&tlb_LUT_r[vaddr>>12]) vpage&=2047; // jump_dirty uses a hash of the virtual address instead
+ if(vpage>2048) vpage=2048+(vpage&2047);
+ ll_add(jump_dirty+vpage,vaddr,(void *)out);
+ do_dirty_stub_ds();
+ ll_add(jump_in+page,vaddr,(void *)out);
+ assert(regs[0].regmap_entry[HOST_CCREG]==CCREG);
+ if(regs[0].regmap[HOST_CCREG]!=CCREG)
+ wb_register(CCREG,regs[0].regmap_entry,regs[0].wasdirty,regs[0].was32);
+ if(regs[0].regmap[HOST_BTREG]!=BTREG)
+ emit_writeword(HOST_BTREG,(int)&branch_target);
+ load_regs(regs[0].regmap_entry,regs[0].regmap,regs[0].was32,rs1[0],rs2[0]);
+ address_generation(0,®s[0],regs[0].regmap_entry);
+ if(itype[0]==STORE||itype[0]==STORELR||(opcode[0]&0x3b)==0x39)
+ load_regs(regs[0].regmap_entry,regs[0].regmap,regs[0].was32,INVCP,INVCP);
+ cop1_usable=0;
+ is_delayslot=0;
+ switch(itype[0]) {
+ case ALU:
+ alu_assemble(0,®s[0]);break;
+ case IMM16:
+ imm16_assemble(0,®s[0]);break;
+ case SHIFT:
+ shift_assemble(0,®s[0]);break;
+ case SHIFTIMM:
+ shiftimm_assemble(0,®s[0]);break;
+ case LOAD:
+ load_assemble(0,®s[0]);break;
+ case LOADLR:
+ loadlr_assemble(0,®s[0]);break;
+ case STORE:
+ store_assemble(0,®s[0]);break;
+ case STORELR:
+ storelr_assemble(0,®s[0]);break;
+ case COP0:
+ cop0_assemble(0,®s[0]);break;
+ case COP1:
+ cop1_assemble(0,®s[0]);break;
+ case C1LS:
+ c1ls_assemble(0,®s[0]);break;
+ case FCONV:
+ fconv_assemble(0,®s[0]);break;
+ case FLOAT:
+ float_assemble(0,®s[0]);break;
+ case FCOMP:
+ fcomp_assemble(0,®s[0]);break;
+ case MULTDIV:
+ multdiv_assemble(0,®s[0]);break;
+ case MOV:
+ mov_assemble(0,®s[0]);break;
+ case SYSCALL:
+ case SPAN:
+ case UJUMP:
+ case RJUMP:
+ case CJUMP:
+ case SJUMP:
+ case FJUMP:
+ printf("Jump in the delay slot. This is probably a bug.\n");
+ }
+ int btaddr=get_reg(regs[0].regmap,BTREG);
+ if(btaddr<0) {
+ btaddr=get_reg(regs[0].regmap,-1);
+ emit_readword((int)&branch_target,btaddr);
+ }
+ assert(btaddr!=HOST_CCREG);
+ if(regs[0].regmap[HOST_CCREG]!=CCREG) emit_loadreg(CCREG,HOST_CCREG);
+#ifdef HOST_IMM8
+ emit_movimm(start+4,HOST_TEMPREG);
+ emit_cmp(btaddr,HOST_TEMPREG);
+#else
+ emit_cmpimm(btaddr,start+4);
+#endif
+ int branch=(int)out;
+ emit_jeq(0);
+ store_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,-1);
+ emit_jmp(jump_vaddr_reg[btaddr]);
+ set_jump_target(branch,(int)out);
+ store_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,start+4);
+ load_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,start+4);
+}
+
+// Basic liveness analysis for MIPS registers
+void unneeded_registers(int istart,int iend,int r)
+{
+ int i;
+ uint64_t u,uu,b,bu;
+ uint64_t temp_u,temp_uu;
+ uint64_t tdep;
+ if(iend==slen-1) {
+ u=1;uu=1;
+ }else{
+ u=unneeded_reg[iend+1];
+ uu=unneeded_reg_upper[iend+1];
+ u=1;uu=1;
+ }
+ for (i=iend;i>=istart;i--)
+ {
+ //printf("unneeded registers i=%d (%d,%d) r=%d\n",i,istart,iend,r);
+ if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
+ {
+ // If subroutine call, flag return address as a possible branch target
+ if(rt1[i]==31 && i<slen-2) bt[i+2]=1;
+
+ if(ba[i]<start || ba[i]>=(start+slen*4))
+ {
+ // Branch out of this block, flush all regs
+ u=1;
+ uu=1;
+ /* Hexagon hack
+ if(itype[i]==UJUMP&&rt1[i]==31)
+ {
+ uu=u=0x300C00F; // Discard at, v0-v1, t6-t9
+ }
+ if(itype[i]==RJUMP&&rs1[i]==31)
+ {
+ uu=u=0x300C0F3; // Discard at, a0-a3, t6-t9
+ }
+ if(start>0x80000400&&start<0x80800000) {
+ if(itype[i]==UJUMP&&rt1[i]==31)
+ {
+ //uu=u=0x30300FF0FLL; // Discard at, v0-v1, t0-t9, lo, hi
+ uu=u=0x300FF0F; // Discard at, v0-v1, t0-t9
+ }
+ if(itype[i]==RJUMP&&rs1[i]==31)
+ {
+ //uu=u=0x30300FFF3LL; // Discard at, a0-a3, t0-t9, lo, hi
+ uu=u=0x300FFF3; // Discard at, a0-a3, t0-t9
+ }
+ }*/
+ branch_unneeded_reg[i]=u;
+ branch_unneeded_reg_upper[i]=uu;
+ // Merge in delay slot
+ tdep=(~uu>>rt1[i+1])&1;
+ u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
+ uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
+ u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
+ uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
+ uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
+ u|=1;uu|=1;
+ // If branch is "likely" (and conditional)
+ // then we skip the delay slot on the fall-thru path
+ if(likely[i]) {
+ if(i<slen-1) {
+ u&=unneeded_reg[i+2];
+ uu&=unneeded_reg_upper[i+2];
+ }
+ else
+ {
+ u=1;
+ uu=1;
+ }
+ }
+ }
+ else
+ {
+ // Internal branch, flag target
+ bt[(ba[i]-start)>>2]=1;
+ if(ba[i]<=start+i*4) {
+ // Backward branch
+ if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
+ {
+ // Unconditional branch
+ temp_u=1;temp_uu=1;
+ } else {
+ // Conditional branch (not taken case)
+ temp_u=unneeded_reg[i+2];
+ temp_uu=unneeded_reg_upper[i+2];
+ }
+ // Merge in delay slot
+ tdep=(~temp_uu>>rt1[i+1])&1;
+ temp_u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
+ temp_uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
+ temp_u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
+ temp_uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
+ temp_uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
+ temp_u|=1;temp_uu|=1;
+ // If branch is "likely" (and conditional)
+ // then we skip the delay slot on the fall-thru path
+ if(likely[i]) {
+ if(i<slen-1) {
+ temp_u&=unneeded_reg[i+2];
+ temp_uu&=unneeded_reg_upper[i+2];
+ }
+ else
+ {
+ temp_u=1;
+ temp_uu=1;
+ }
+ }
+ tdep=(~temp_uu>>rt1[i])&1;
+ temp_u|=(1LL<<rt1[i])|(1LL<<rt2[i]);
+ temp_uu|=(1LL<<rt1[i])|(1LL<<rt2[i]);
+ temp_u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
+ temp_uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
+ temp_uu&=~((tdep<<dep1[i])|(tdep<<dep2[i]));
+ temp_u|=1;temp_uu|=1;
+ unneeded_reg[i]=temp_u;
+ unneeded_reg_upper[i]=temp_uu;
+ // Only go three levels deep. This recursion can take an
+ // excessive amount of time if there are a lot of nested loops.
+ if(r<2) {
+ unneeded_registers((ba[i]-start)>>2,i-1,r+1);
+ }else{
+ unneeded_reg[(ba[i]-start)>>2]=1;
+ unneeded_reg_upper[(ba[i]-start)>>2]=1;
+ }
+ } /*else*/ if(1) {
+ if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
+ {
+ // Unconditional branch
+ u=unneeded_reg[(ba[i]-start)>>2];
+ uu=unneeded_reg_upper[(ba[i]-start)>>2];
+ branch_unneeded_reg[i]=u;
+ branch_unneeded_reg_upper[i]=uu;
+ //u=1;
+ //uu=1;
+ //branch_unneeded_reg[i]=u;
+ //branch_unneeded_reg_upper[i]=uu;
+ // Merge in delay slot
+ tdep=(~uu>>rt1[i+1])&1;
+ u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
+ uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
+ u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
+ uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
+ uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
+ u|=1;uu|=1;
+ } else {
+ // Conditional branch
+ b=unneeded_reg[(ba[i]-start)>>2];
+ bu=unneeded_reg_upper[(ba[i]-start)>>2];
+ branch_unneeded_reg[i]=b;
+ branch_unneeded_reg_upper[i]=bu;
+ //b=1;
+ //bu=1;
+ //branch_unneeded_reg[i]=b;
+ //branch_unneeded_reg_upper[i]=bu;
+ // Branch delay slot
+ tdep=(~uu>>rt1[i+1])&1;
+ b|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
+ bu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
+ b&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
+ bu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
+ bu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
+ b|=1;bu|=1;
+ // If branch is "likely" then we skip the
+ // delay slot on the fall-thru path
+ if(likely[i]) {
+ u=b;
+ uu=bu;
+ if(i<slen-1) {
+ u&=unneeded_reg[i+2];
+ uu&=unneeded_reg_upper[i+2];
+ //u=1;
+ //uu=1;
+ }
+ } else {
+ u&=b;
+ uu&=bu;
+ //u=1;
+ //uu=1;
+ }
+ if(i<slen-1) {
+ branch_unneeded_reg[i]&=unneeded_reg[i+2];
+ branch_unneeded_reg_upper[i]&=unneeded_reg_upper[i+2];
+ //branch_unneeded_reg[i]=1;
+ //branch_unneeded_reg_upper[i]=1;
+ } else {
+ branch_unneeded_reg[i]=1;
+ branch_unneeded_reg_upper[i]=1;
+ }
+ }
+ }
+ }
+ }
+ else if(itype[i]==SYSCALL)
+ {
+ // SYSCALL instruction (software interrupt)
+ u=1;
+ uu=1;
+ }
+ else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
+ {
+ // ERET instruction (return from interrupt)
+ u=1;
+ uu=1;
+ }
+ //u=uu=1; // DEBUG
+ tdep=(~uu>>rt1[i])&1;
+ // Written registers are unneeded
+ u|=1LL<<rt1[i];
+ u|=1LL<<rt2[i];
+ uu|=1LL<<rt1[i];
+ uu|=1LL<<rt2[i];
+ // Accessed registers are needed
+ u&=~(1LL<<rs1[i]);
+ u&=~(1LL<<rs2[i]);
+ uu&=~(1LL<<us1[i]);
+ uu&=~(1LL<<us2[i]);
+ // Source-target dependencies
+ uu&=~(tdep<<dep1[i]);
+ uu&=~(tdep<<dep2[i]);
+ // R0 is always unneeded
+ u|=1;uu|=1;
+ // Save it
+ unneeded_reg[i]=u;
+ unneeded_reg_upper[i]=uu;
+ /*
+ printf("ur (%d,%d) %x: ",istart,iend,start+i*4);
+ printf("U:");
+ int r;
+ for(r=1;r<=CCREG;r++) {
+ if((unneeded_reg[i]>>r)&1) {
+ if(r==HIREG) printf(" HI");
+ else if(r==LOREG) printf(" LO");
+ else printf(" r%d",r);
+ }
+ }
+ printf(" UU:");
+ for(r=1;r<=CCREG;r++) {
+ if(((unneeded_reg_upper[i]&~unneeded_reg[i])>>r)&1) {
+ if(r==HIREG) printf(" HI");
+ else if(r==LOREG) printf(" LO");
+ else printf(" r%d",r);
+ }
+ }
+ printf("\n");*/
+ }
+}
+
+// Identify registers which are likely to contain 32-bit values
+// This is used to predict whether any branches will jump to a
+// location with 64-bit values in registers.
+static void provisional_32bit()
+{
+ int i,j;
+ uint64_t is32=1;
+ uint64_t lastbranch=1;
+
+ for(i=0;i<slen;i++)
+ {
+ if(i>0) {
+ if(itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP) {
+ if(i>1) is32=lastbranch;
+ else is32=1;
+ }
+ }
+ if(i>1)
+ {
+ if(itype[i-2]==CJUMP||itype[i-2]==SJUMP||itype[i-2]==FJUMP) {
+ if(likely[i-2]) {
+ if(i>2) is32=lastbranch;
+ else is32=1;
+ }
+ }
+ if((opcode[i-2]&0x2f)==0x05) // BNE/BNEL
+ {
+ if(rs1[i-2]==0||rs2[i-2]==0)
+ {
+ if(rs1[i-2]) {
+ is32|=1LL<<rs1[i-2];
+ }
+ if(rs2[i-2]) {
+ is32|=1LL<<rs2[i-2];
+ }
+ }
+ }
+ }
+ // If something jumps here with 64-bit values
+ // then promote those registers to 64 bits
+ if(bt[i])
+ {
+ uint64_t temp_is32=is32;
+ for(j=i-1;j>=0;j--)
+ {
+ if(ba[j]==start+i*4)
+ //temp_is32&=branch_regs[j].is32;
+ temp_is32&=p32[j];
+ }
+ for(j=i;j<slen;j++)
+ {
+ if(ba[j]==start+i*4)
+ temp_is32=1;
+ }
+ is32=temp_is32;
+ }
+ int type=itype[i];
+ int op=opcode[i];
+ int op2=opcode2[i];
+ int rt=rt1[i];
+ int s1=rs1[i];
+ int s2=rs2[i];
+ if(type==UJUMP||type==RJUMP||type==CJUMP||type==SJUMP||type==FJUMP) {
+ // Branches don't write registers, consider the delay slot instead.
+ type=itype[i+1];
+ op=opcode[i+1];
+ op2=opcode2[i+1];
+ rt=rt1[i+1];
+ s1=rs1[i+1];
+ s2=rs2[i+1];
+ lastbranch=is32;
+ }
+ switch(type) {
+ case LOAD:
+ if(opcode[i]==0x27||opcode[i]==0x37|| // LWU/LD
+ opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
+ is32&=~(1LL<<rt);
+ else
+ is32|=1LL<<rt;
+ break;
+ case STORE:
+ case STORELR:
+ break;
+ case LOADLR:
+ if(op==0x1a||op==0x1b) is32&=~(1LL<<rt); // LDR/LDL
+ if(op==0x22) is32|=1LL<<rt; // LWL
+ break;
+ case IMM16:
+ if (op==0x08||op==0x09|| // ADDI/ADDIU
+ op==0x0a||op==0x0b|| // SLTI/SLTIU
+ op==0x0c|| // ANDI
+ op==0x0f) // LUI
+ {
+ is32|=1LL<<rt;
+ }
+ if(op==0x18||op==0x19) { // DADDI/DADDIU
+ is32&=~(1LL<<rt);
+ //if(imm[i]==0)
+ // is32|=((is32>>s1)&1LL)<<rt;
+ }
+ if(op==0x0d||op==0x0e) { // ORI/XORI
+ uint64_t sr=((is32>>s1)&1LL);
+ is32&=~(1LL<<rt);
+ is32|=sr<<rt;
+ }
+ break;
+ case UJUMP:
+ break;
+ case RJUMP:
+ break;
+ case CJUMP:
+ break;
+ case SJUMP:
+ break;
+ case FJUMP:
+ break;
+ case ALU:
+ if(op2>=0x20&&op2<=0x23) { // ADD/ADDU/SUB/SUBU
+ is32|=1LL<<rt;
+ }
+ if(op2==0x2a||op2==0x2b) { // SLT/SLTU
+ is32|=1LL<<rt;
+ }
+ else if(op2>=0x24&&op2<=0x27) { // AND/OR/XOR/NOR
+ uint64_t sr=((is32>>s1)&(is32>>s2)&1LL);
+ is32&=~(1LL<<rt);
+ is32|=sr<<rt;
+ }
+ else if(op2>=0x2c&&op2<=0x2d) { // DADD/DADDU
+ if(s1==0&&s2==0) {
+ is32|=1LL<<rt;
+ }
+ else if(s2==0) {
+ uint64_t sr=((is32>>s1)&1LL);
+ is32&=~(1LL<<rt);
+ is32|=sr<<rt;
+ }
+ else if(s1==0) {
+ uint64_t sr=((is32>>s2)&1LL);
+ is32&=~(1LL<<rt);
+ is32|=sr<<rt;
+ }
+ else {
+ is32&=~(1LL<<rt);
+ }
+ }
+ else if(op2>=0x2e&&op2<=0x2f) { // DSUB/DSUBU
+ if(s1==0&&s2==0) {
+ is32|=1LL<<rt;
+ }
+ else if(s2==0) {
+ uint64_t sr=((is32>>s1)&1LL);
+ is32&=~(1LL<<rt);
+ is32|=sr<<rt;
+ }
+ else {
+ is32&=~(1LL<<rt);
+ }
+ }
+ break;
+ case MULTDIV:
+ if (op2>=0x1c&&op2<=0x1f) { // DMULT/DMULTU/DDIV/DDIVU
+ is32&=~((1LL<<HIREG)|(1LL<<LOREG));
+ }
+ else {
+ is32|=(1LL<<HIREG)|(1LL<<LOREG);
+ }
+ break;
+ case MOV:
+ {
+ uint64_t sr=((is32>>s1)&1LL);
+ is32&=~(1LL<<rt);
+ is32|=sr<<rt;
+ }
+ break;
+ case SHIFT:
+ if(op2>=0x14&&op2<=0x17) is32&=~(1LL<<rt); // DSLLV/DSRLV/DSRAV
+ else is32|=1LL<<rt; // SLLV/SRLV/SRAV
+ break;
+ case SHIFTIMM:
+ is32|=1LL<<rt;
+ // DSLL/DSRL/DSRA/DSLL32/DSRL32 but not DSRA32 have 64-bit result
+ if(op2>=0x38&&op2<0x3f) is32&=~(1LL<<rt);
+ break;
+ case COP0:
+ if(op2==0) is32|=1LL<<rt; // MFC0
+ break;
+ case COP1:
+ if(op2==0) is32|=1LL<<rt; // MFC1
+ if(op2==1) is32&=~(1LL<<rt); // DMFC1
+ if(op2==2) is32|=1LL<<rt; // CFC1
+ break;
+ case C1LS:
+ break;
+ case FLOAT:
+ case FCONV:
+ break;
+ case FCOMP:
+ break;
+ case SYSCALL:
+ break;
+ default:
+ break;
+ }
+ is32|=1;
+ p32[i]=is32;
+
+ if(i>0)
+ {
+ if(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)
+ {
+ if(rt1[i-1]==31) // JAL/JALR
+ {
+ // Subroutine call will return here, don't alloc any registers
+ is32=1;
+ }
+ else if(i+1<slen)
+ {
+ // Internal branch will jump here, match registers to caller
+ is32=0x3FFFFFFFFLL;
+ }
+ }
+ }
+ }
+}
+
+// Identify registers which may be assumed to contain 32-bit values
+// and where optimizations will rely on this.
+// This is used to determine whether backward branches can safely
+// jump to a location with 64-bit values in registers.
+static void provisional_r32()
+{
+ u_int r32=0;
+ int i;
+
+ for (i=slen-1;i>=0;i--)
+ {
+ int hr;
+ if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
+ {
+ if(ba[i]<start || ba[i]>=(start+slen*4))
+ {
+ // Branch out of this block, don't need anything
+ r32=0;
+ }
+ else
+ {
+ // Internal branch
+ // Need whatever matches the target
+ // (and doesn't get overwritten by the delay slot instruction)
+ r32=0;
+ int t=(ba[i]-start)>>2;
+ if(ba[i]>start+i*4) {
+ // Forward branch
+ //if(!(requires_32bit[t]&~regs[i].was32))
+ // r32|=requires_32bit[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
+ if(!(pr32[t]&~regs[i].was32))
+ r32|=pr32[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
+ }else{
+ // Backward branch
+ if(!(regs[t].was32&~unneeded_reg_upper[t]&~regs[i].was32))
+ r32|=regs[t].was32&~unneeded_reg_upper[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
+ }
+ }
+ // Conditional branch may need registers for following instructions
+ if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
+ {
+ if(i<slen-2) {
+ //r32|=requires_32bit[i+2];
+ r32|=pr32[i+2];
+ r32&=regs[i].was32;
+ // Mark this address as a branch target since it may be called
+ // upon return from interrupt
+ //bt[i+2]=1;
+ }
+ }
+ // Merge in delay slot
+ if(!likely[i]) {
+ // These are overwritten unless the branch is "likely"
+ // and the delay slot is nullified if not taken
+ r32&=~(1LL<<rt1[i+1]);
+ r32&=~(1LL<<rt2[i+1]);
+ }
+ // Assume these are needed (delay slot)
+ if(us1[i+1]>0)
+ {
+ if((regs[i].was32>>us1[i+1])&1) r32|=1LL<<us1[i+1];
+ }
+ if(us2[i+1]>0)
+ {
+ if((regs[i].was32>>us2[i+1])&1) r32|=1LL<<us2[i+1];
+ }
+ if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1))
+ {
+ if((regs[i].was32>>dep1[i+1])&1) r32|=1LL<<dep1[i+1];
+ }
+ if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1))
+ {
+ if((regs[i].was32>>dep2[i+1])&1) r32|=1LL<<dep2[i+1];
+ }
+ }
+ else if(itype[i]==SYSCALL)
+ {
+ // SYSCALL instruction (software interrupt)
+ r32=0;
+ }
+ else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
+ {
+ // ERET instruction (return from interrupt)
+ r32=0;
+ }
+ // Check 32 bits
+ r32&=~(1LL<<rt1[i]);
+ r32&=~(1LL<<rt2[i]);
+ if(us1[i]>0)
+ {
+ if((regs[i].was32>>us1[i])&1) r32|=1LL<<us1[i];
+ }
+ if(us2[i]>0)
+ {
+ if((regs[i].was32>>us2[i])&1) r32|=1LL<<us2[i];
+ }
+ if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1))
+ {
+ if((regs[i].was32>>dep1[i])&1) r32|=1LL<<dep1[i];
+ }
+ if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1))
+ {
+ if((regs[i].was32>>dep2[i])&1) r32|=1LL<<dep2[i];
+ }
+ //requires_32bit[i]=r32;
+ pr32[i]=r32;
+
+ // Dirty registers which are 32-bit, require 32-bit input
+ // as they will be written as 32-bit values
+ for(hr=0;hr<HOST_REGS;hr++)
+ {
+ if(regs[i].regmap_entry[hr]>0&®s[i].regmap_entry[hr]<64) {
+ if((regs[i].was32>>regs[i].regmap_entry[hr])&(regs[i].wasdirty>>hr)&1) {
+ if(!((unneeded_reg_upper[i]>>regs[i].regmap_entry[hr])&1))
+ pr32[i]|=1LL<<regs[i].regmap_entry[hr];
+ //requires_32bit[i]|=1LL<<regs[i].regmap_entry[hr];
+ }
+ }
+ }
+ }
+}
+
+// Write back dirty registers as soon as we will no longer modify them,
+// so that we don't end up with lots of writes at the branches.
+void clean_registers(int istart,int iend,int wr)
+{
+ int i;
+ int r;
+ u_int will_dirty_i,will_dirty_next,temp_will_dirty;
+ u_int wont_dirty_i,wont_dirty_next,temp_wont_dirty;
+ if(iend==slen-1) {
+ will_dirty_i=will_dirty_next=0;
+ wont_dirty_i=wont_dirty_next=0;
+ }else{
+ will_dirty_i=will_dirty_next=will_dirty[iend+1];
+ wont_dirty_i=wont_dirty_next=wont_dirty[iend+1];
+ }
+ for (i=iend;i>=istart;i--)
+ {
+ if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
+ {
+ if(ba[i]<start || ba[i]>=(start+slen*4))
+ {
+ // Branch out of this block, flush all regs
+ if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
+ {
+ // Unconditional branch
+ will_dirty_i=0;
+ wont_dirty_i=0;
+ // Merge in delay slot (will dirty)
+ for(r=0;r<HOST_REGS;r++) {
+ if(r!=EXCLUDE_REG) {
+ if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
+ if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
+ if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
+ if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
+ if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
+ if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
+ if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
+ if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
+ if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
+ if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
+ if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
+ if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
+ if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
+ if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
+ }
+ }
+ }
+ else
+ {
+ // Conditional branch
+ will_dirty_i=0;
+ wont_dirty_i=wont_dirty_next;
+ // Merge in delay slot (will dirty)
+ for(r=0;r<HOST_REGS;r++) {
+ if(r!=EXCLUDE_REG) {
+ if(!likely[i]) {
+ // Might not dirty if likely branch is not taken
+ if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
+ if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
+ if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
+ if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
+ if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
+ if(branch_regs[i].regmap[r]==0) will_dirty_i&=~(1<<r);
+ if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
+ //if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
+ //if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
+ if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
+ if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
+ if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
+ if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
+ if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
+ }
+ }
+ }
+ }
+ // Merge in delay slot (wont dirty)
+ for(r=0;r<HOST_REGS;r++) {
+ if(r!=EXCLUDE_REG) {
+ if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
+ if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
+ if((regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
+ if((regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
+ if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
+ if((branch_regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
+ if((branch_regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
+ if((branch_regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
+ if((branch_regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
+ if(branch_regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
+ }
+ }
+ if(wr) {
+ #ifndef DESTRUCTIVE_WRITEBACK
+ branch_regs[i].dirty&=wont_dirty_i;
+ #endif
+ branch_regs[i].dirty|=will_dirty_i;
+ }
+ }
+ else
+ {
+ // Internal branch
+ if(ba[i]<=start+i*4) {
+ // Backward branch
+ if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
+ {
+ // Unconditional branch
+ temp_will_dirty=0;
+ temp_wont_dirty=0;
+ // Merge in delay slot (will dirty)
+ for(r=0;r<HOST_REGS;r++) {
+ if(r!=EXCLUDE_REG) {
+ if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
+ if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
+ if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
+ if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
+ if((branch_regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
+ if(branch_regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
+ if(branch_regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
+ if((regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
+ if((regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
+ if((regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
+ if((regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
+ if((regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
+ if(regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
+ if(regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
+ }
+ }
+ } else {
+ // Conditional branch (not taken case)
+ temp_will_dirty=will_dirty_next;
+ temp_wont_dirty=wont_dirty_next;
+ // Merge in delay slot (will dirty)
+ for(r=0;r<HOST_REGS;r++) {
+ if(r!=EXCLUDE_REG) {
+ if(!likely[i]) {
+ // Will not dirty if likely branch is not taken
+ if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
+ if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
+ if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
+ if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
+ if((branch_regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
+ if(branch_regs[i].regmap[r]==0) temp_will_dirty&=~(1<<r);
+ if(branch_regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
+ //if((regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
+ //if((regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
+ if((regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
+ if((regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
+ if((regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
+ if(regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
+ if(regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
+ }
+ }
+ }
+ }
+ // Merge in delay slot (wont dirty)
+ for(r=0;r<HOST_REGS;r++) {
+ if(r!=EXCLUDE_REG) {
+ if((regs[i].regmap[r]&63)==rt1[i]) temp_wont_dirty|=1<<r;
+ if((regs[i].regmap[r]&63)==rt2[i]) temp_wont_dirty|=1<<r;
+ if((regs[i].regmap[r]&63)==rt1[i+1]) temp_wont_dirty|=1<<r;
+ if((regs[i].regmap[r]&63)==rt2[i+1]) temp_wont_dirty|=1<<r;
+ if(regs[i].regmap[r]==CCREG) temp_wont_dirty|=1<<r;
+ if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_wont_dirty|=1<<r;
+ if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_wont_dirty|=1<<r;
+ if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_wont_dirty|=1<<r;
+ if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_wont_dirty|=1<<r;
+ if(branch_regs[i].regmap[r]==CCREG) temp_wont_dirty|=1<<r;
+ }
+ }
+ // Deal with changed mappings
+ if(i<iend) {
+ for(r=0;r<HOST_REGS;r++) {
+ if(r!=EXCLUDE_REG) {
+ if(regs[i].regmap[r]!=regmap_pre[i][r]) {
+ temp_will_dirty&=~(1<<r);
+ temp_wont_dirty&=~(1<<r);
+ if((regmap_pre[i][r]&63)>0 && (regmap_pre[i][r]&63)<34) {
+ temp_will_dirty|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
+ temp_wont_dirty|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
+ } else {
+ temp_will_dirty|=1<<r;
+ temp_wont_dirty|=1<<r;
+ }
+ }
+ }
+ }
+ }
+ if(wr) {
+ will_dirty[i]=temp_will_dirty;
+ wont_dirty[i]=temp_wont_dirty;
+ clean_registers((ba[i]-start)>>2,i-1,0);
+ }else{
+ // Limit recursion. It can take an excessive amount
+ // of time if there are a lot of nested loops.
+ will_dirty[(ba[i]-start)>>2]=0;
+ wont_dirty[(ba[i]-start)>>2]=-1;
+ }
+ }
+ /*else*/ if(1)
+ {
+ if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
+ {
+ // Unconditional branch
+ will_dirty_i=0;
+ wont_dirty_i=0;
+ //if(ba[i]>start+i*4) { // Disable recursion (for debugging)
+ for(r=0;r<HOST_REGS;r++) {
+ if(r!=EXCLUDE_REG) {
+ if(branch_regs[i].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
+ will_dirty_i|=will_dirty[(ba[i]-start)>>2]&(1<<r);
+ wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
+ }
+ }
+ }
+ //}
+ // Merge in delay slot
+ for(r=0;r<HOST_REGS;r++) {
+ if(r!=EXCLUDE_REG) {
+ if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
+ if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
+ if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
+ if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
+ if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
+ if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
+ if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
+ if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
+ if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
+ if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
+ if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
+ if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
+ if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
+ if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
+ }
+ }
+ } else {
+ // Conditional branch
+ will_dirty_i=will_dirty_next;
+ wont_dirty_i=wont_dirty_next;
+ //if(ba[i]>start+i*4) { // Disable recursion (for debugging)
+ for(r=0;r<HOST_REGS;r++) {
+ if(r!=EXCLUDE_REG) {
+ if(branch_regs[i].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
+ will_dirty_i&=will_dirty[(ba[i]-start)>>2]&(1<<r);
+ wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
+ }
+ else
+ {
+ will_dirty_i&=~(1<<r);
+ }
+ // Treat delay slot as part of branch too
+ /*if(regs[i+1].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
+ will_dirty[i+1]&=will_dirty[(ba[i]-start)>>2]&(1<<r);
+ wont_dirty[i+1]|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
+ }
+ else
+ {
+ will_dirty[i+1]&=~(1<<r);
+ }*/
+ }
+ }
+ //}
+ // Merge in delay slot
+ for(r=0;r<HOST_REGS;r++) {
+ if(r!=EXCLUDE_REG) {
+ if(!likely[i]) {
+ // Might not dirty if likely branch is not taken
+ if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
+ if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
+ if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
+ if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
+ if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
+ if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
+ if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
+ //if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
+ //if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
+ if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
+ if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
+ if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
+ if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
+ if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
+ }
+ }
+ }
+ }
+ // Merge in delay slot
+ for(r=0;r<HOST_REGS;r++) {
+ if(r!=EXCLUDE_REG) {
+ if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
+ if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
+ if((regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
+ if((regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
+ if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
+ if((branch_regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
+ if((branch_regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
+ if((branch_regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
+ if((branch_regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
+ if(branch_regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
+ }
+ }
+ if(wr) {
+ #ifndef DESTRUCTIVE_WRITEBACK
+ branch_regs[i].dirty&=wont_dirty_i;
+ #endif
+ branch_regs[i].dirty|=will_dirty_i;
+ }
+ }
+ }
+ }
+ else if(itype[i]==SYSCALL)
+ {
+ // SYSCALL instruction (software interrupt)
+ will_dirty_i=0;
+ wont_dirty_i=0;
+ }
+ else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
+ {
+ // ERET instruction (return from interrupt)
+ will_dirty_i=0;
+ wont_dirty_i=0;
+ }
+ will_dirty_next=will_dirty_i;
+ wont_dirty_next=wont_dirty_i;
+ for(r=0;r<HOST_REGS;r++) {
+ if(r!=EXCLUDE_REG) {
+ if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
+ if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
+ if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
+ if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
+ if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
+ if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
+ if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
+ if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
+ if(i>istart) {
+ if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=FJUMP)
+ {
+ // Don't store a register immediately after writing it,
+ // may prevent dual-issue.
+ if((regs[i].regmap[r]&63)==rt1[i-1]) wont_dirty_i|=1<<r;
+ if((regs[i].regmap[r]&63)==rt2[i-1]) wont_dirty_i|=1<<r;
+ }
+ }
+ }
+ }
+ // Save it
+ will_dirty[i]=will_dirty_i;
+ wont_dirty[i]=wont_dirty_i;
+ // Mark registers that won't be dirtied as not dirty
+ if(wr) {
+ /*printf("wr (%d,%d) %x will:",istart,iend,start+i*4);
+ for(r=0;r<HOST_REGS;r++) {
+ if((will_dirty_i>>r)&1) {
+ printf(" r%d",r);
+ }
+ }
+ printf("\n");*/
+
+ //if(i==istart||(itype[i-1]!=RJUMP&&itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=FJUMP)) {
+ regs[i].dirty|=will_dirty_i;
+ #ifndef DESTRUCTIVE_WRITEBACK
+ regs[i].dirty&=wont_dirty_i;
+ if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
+ {
+ if(i<iend-1&&itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000) {
+ for(r=0;r<HOST_REGS;r++) {
+ if(r!=EXCLUDE_REG) {
+ if(regs[i].regmap[r]==regmap_pre[i+2][r]) {
+ regs[i+2].wasdirty&=wont_dirty_i|~(1<<r);
+ }else {/*printf("i: %x (%d) mismatch(+2): %d\n",start+i*4,i,r);/*assert(!((wont_dirty_i>>r)&1));*/}
+ }
+ }
+ }
+ }
+ else
+ {
+ if(i<iend) {
+ for(r=0;r<HOST_REGS;r++) {
+ if(r!=EXCLUDE_REG) {
+ if(regs[i].regmap[r]==regmap_pre[i+1][r]) {
+ regs[i+1].wasdirty&=wont_dirty_i|~(1<<r);
+ }else {/*printf("i: %x (%d) mismatch(+1): %d\n",start+i*4,i,r);/*assert(!((wont_dirty_i>>r)&1));*/}
+ }
+ }
+ }
+ }
+ #endif
+ //}
+ }
+ // Deal with changed mappings
+ temp_will_dirty=will_dirty_i;
+ temp_wont_dirty=wont_dirty_i;
+ for(r=0;r<HOST_REGS;r++) {
+ if(r!=EXCLUDE_REG) {
+ int nr;
+ if(regs[i].regmap[r]==regmap_pre[i][r]) {
+ if(wr) {
+ #ifndef DESTRUCTIVE_WRITEBACK
+ regs[i].wasdirty&=wont_dirty_i|~(1<<r);
+ #endif
+ regs[i].wasdirty|=will_dirty_i&(1<<r);
+ }
+ }
+ else if((nr=get_reg(regs[i].regmap,regmap_pre[i][r]))>=0) {
+ // Register moved to a different register
+ will_dirty_i&=~(1<<r);
+ wont_dirty_i&=~(1<<r);
+ will_dirty_i|=((temp_will_dirty>>nr)&1)<<r;
+ wont_dirty_i|=((temp_wont_dirty>>nr)&1)<<r;
+ if(wr) {
+ #ifndef DESTRUCTIVE_WRITEBACK
+ regs[i].wasdirty&=wont_dirty_i|~(1<<r);
+ #endif
+ regs[i].wasdirty|=will_dirty_i&(1<<r);
+ }
+ }
+ else {
+ will_dirty_i&=~(1<<r);
+ wont_dirty_i&=~(1<<r);
+ if((regmap_pre[i][r]&63)>0 && (regmap_pre[i][r]&63)<34) {
+ will_dirty_i|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
+ wont_dirty_i|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
+ } else {
+ wont_dirty_i|=1<<r;
+ /*printf("i: %x (%d) mismatch: %d\n",start+i*4,i,r);/*assert(!((will_dirty>>r)&1));*/
+ }
+ }
+ }
+ }
+ }
+}
+
+ /* disassembly */
+void disassemble_inst(int i)
+{
+ if (bt[i]) printf("*"); else printf(" ");
+ switch(itype[i]) {
+ case UJUMP:
+ printf (" %x: %s %8x\n",start+i*4,insn[i],ba[i]);break;
+ case CJUMP:
+ printf (" %x: %s r%d,r%d,%8x\n",start+i*4,insn[i],rs1[i],rs2[i],i?start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14):*ba);break;
+ case SJUMP:
+ printf (" %x: %s r%d,%8x\n",start+i*4,insn[i],rs1[i],start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14));break;
+ case FJUMP:
+ printf (" %x: %s %8x\n",start+i*4,insn[i],ba[i]);break;
+ case RJUMP:
+ printf (" %x: %s r%d\n",start+i*4,insn[i],rs1[i]);break;
+ case SPAN:
+ printf (" %x: %s (pagespan) r%d,r%d,%8x\n",start+i*4,insn[i],rs1[i],rs2[i],ba[i]);break;
+ case IMM16:
+ if(opcode[i]==0xf) //LUI
+ printf (" %x: %s r%d,%4x0000\n",start+i*4,insn[i],rt1[i],imm[i]&0xffff);
+ else
+ printf (" %x: %s r%d,r%d,%d\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
+ break;
+ case LOAD:
+ case LOADLR:
+ printf (" %x: %s r%d,r%d+%x\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
+ break;
+ case STORE:
+ case STORELR:
+ printf (" %x: %s r%d,r%d+%x\n",start+i*4,insn[i],rs2[i],rs1[i],imm[i]);
+ break;
+ case ALU:
+ case SHIFT:
+ printf (" %x: %s r%d,r%d,r%d\n",start+i*4,insn[i],rt1[i],rs1[i],rs2[i]);
+ break;
+ case MULTDIV:
+ printf (" %x: %s r%d,r%d\n",start+i*4,insn[i],rs1[i],rs2[i]);
+ break;
+ case SHIFTIMM:
+ printf (" %x: %s r%d,r%d,%d\n",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
+ break;
+ case MOV:
+ if((opcode2[i]&0x1d)==0x10)
+ printf (" %x: %s r%d\n",start+i*4,insn[i],rt1[i]);
+ else if((opcode2[i]&0x1d)==0x11)
+ printf (" %x: %s r%d\n",start+i*4,insn[i],rs1[i]);
+ else
+ printf (" %x: %s\n",start+i*4,insn[i]);
+ break;
+ case COP0:
+ if(opcode2[i]==0)
+ printf (" %x: %s r%d,cpr0[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC0
+ else if(opcode2[i]==4)
+ printf (" %x: %s r%d,cpr0[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC0
+ else printf (" %x: %s\n",start+i*4,insn[i]);
+ break;
+ case COP1:
+ if(opcode2[i]<3)
+ printf (" %x: %s r%d,cpr1[%d]\n",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC1
+ else if(opcode2[i]>3)
+ printf (" %x: %s r%d,cpr1[%d]\n",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC1
+ else printf (" %x: %s\n",start+i*4,insn[i]);
+ break;
+ case C1LS:
+ printf (" %x: %s cpr1[%d],r%d+%x\n",start+i*4,insn[i],(source[i]>>16)&0x1f,rs1[i],imm[i]);
+ break;
+ default:
+ //printf (" %s %8x\n",insn[i],source[i]);
+ printf (" %x: %s\n",start+i*4,insn[i]);
+ }
+}
+
+void new_dynarec_init()
+{
+ printf("Init new dynarec\n");
+ out=(u_char *)BASE_ADDR;
+ if (mmap (out, 1<<TARGET_SIZE_2,
+ PROT_READ | PROT_WRITE | PROT_EXEC,
+ MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS,
+ -1, 0) <= 0) {printf("mmap() failed\n");}
+ rdword=&readmem_dword;
+ fake_pc.f.r.rs=&readmem_dword;
+ fake_pc.f.r.rt=&readmem_dword;
+ fake_pc.f.r.rd=&readmem_dword;
+ int n;
+ for(n=0x80000;n<0x80800;n++)
+ invalid_code[n]=1;
+ for(n=0;n<65536;n++)
+ hash_table[n][0]=hash_table[n][2]=-1;
+ memset(mini_ht,-1,sizeof(mini_ht));
+ memset(restore_candidate,0,sizeof(restore_candidate));
+ copy=shadow;
+ expirep=16384; // Expiry pointer, +2 blocks
+ pending_exception=0;
+ literalcount=0;
+#ifdef HOST_IMM8
+ // Copy this into local area so we don't have to put it in every literal pool
+ invc_ptr=invalid_code;
+#endif
+ stop_after_jal=0;
+ // TLB
+ using_tlb=0;
+ for(n=0;n<524288;n++) // 0 .. 0x7FFFFFFF
+ memory_map[n]=-1;
+ for(n=524288;n<526336;n++) // 0x80000000 .. 0x807FFFFF
+ memory_map[n]=((u_int)rdram-0x80000000)>>2;
+ for(n=526336;n<1048576;n++) // 0x80800000 .. 0xFFFFFFFF
+ memory_map[n]=-1;
+ for(n=0;n<0x8000;n++) { // 0 .. 0x7FFFFFFF
+ writemem[n] = write_nomem_new;
+ writememb[n] = write_nomemb_new;
+ writememh[n] = write_nomemh_new;
+ writememd[n] = write_nomemd_new;
+ readmem[n] = read_nomem_new;
+ readmemb[n] = read_nomemb_new;
+ readmemh[n] = read_nomemh_new;
+ readmemd[n] = read_nomemd_new;
+ }
+ for(n=0x8000;n<0x8080;n++) { // 0x80000000 .. 0x807FFFFF
+ writemem[n] = write_rdram_new;
+ writememb[n] = write_rdramb_new;
+ writememh[n] = write_rdramh_new;
+ writememd[n] = write_rdramd_new;
+ }
+ for(n=0xC000;n<0x10000;n++) { // 0xC0000000 .. 0xFFFFFFFF
+ writemem[n] = write_nomem_new;
+ writememb[n] = write_nomemb_new;
+ writememh[n] = write_nomemh_new;
+ writememd[n] = write_nomemd_new;
+ readmem[n] = read_nomem_new;
+ readmemb[n] = read_nomemb_new;
+ readmemh[n] = read_nomemh_new;
+ readmemd[n] = read_nomemd_new;
+ }
+ tlb_hacks();
+ arch_init();
+}
+
+void new_dynarec_cleanup()
+{
+ int n;
+ if (munmap ((void *)BASE_ADDR, 1<<TARGET_SIZE_2) < 0) {printf("munmap() failed\n");}
+ for(n=0;n<4096;n++) ll_clear(jump_in+n);
+ for(n=0;n<4096;n++) ll_clear(jump_out+n);
+ for(n=0;n<4096;n++) ll_clear(jump_dirty+n);
+ #ifdef ROM_COPY
+ if (munmap (ROM_COPY, 67108864) < 0) {printf("munmap() failed\n");}
+ #endif
+}
+
+int new_recompile_block(int addr)
+{
+/*
+ if(addr==0x800cd050) {
+ int block;
+ for(block=0x80000;block<0x80800;block++) invalidate_block(block);
+ int n;
+ for(n=0;n<=2048;n++) ll_clear(jump_dirty+n);
+ }
+*/
+ //if(Count==365117028) tracedebug=1;
+ assem_debug("NOTCOMPILED: addr = %x -> %x\n", (int)addr, (int)out);
+ //printf("NOTCOMPILED: addr = %x -> %x\n", (int)addr, (int)out);
+ //printf("TRACE: count=%d next=%d (compile %x)\n",Count,next_interupt,addr);
+ //if(debug)
+ //printf("TRACE: count=%d next=%d (checksum %x)\n",Count,next_interupt,mchecksum());
+ //printf("fpu mapping=%x enabled=%x\n",(Status & 0x04000000)>>26,(Status & 0x20000000)>>29);
+ /*if(Count>=312978186) {
+ rlist();
+ }*/
+ //rlist();
+ start = (u_int)addr&~3;
+ //assert(((u_int)addr&1)==0);
+ if ((int)addr >= 0xa4000000 && (int)addr < 0xa4001000) {
+ source = (u_int *)((u_int)SP_DMEM+start-0xa4000000);
+ pagelimit = 0xa4001000;
+ }
+ else if ((int)addr >= 0x80000000 && (int)addr < 0x80800000) {
+ source = (u_int *)((u_int)rdram+start-0x80000000);
+ pagelimit = 0x80800000;
+ }
+ else if ((signed int)addr >= (signed int)0xC0000000) {
+ //printf("addr=%x mm=%x\n",(u_int)addr,(memory_map[start>>12]<<2));
+ //if(tlb_LUT_r[start>>12])
+ //source = (u_int *)(((int)rdram)+(tlb_LUT_r[start>>12]&0xFFFFF000)+(((int)addr)&0xFFF)-0x80000000);
+ if((signed int)memory_map[start>>12]>=0) {
+ source = (u_int *)((u_int)(start+(memory_map[start>>12]<<2)));
+ pagelimit=(start+4096)&0xFFFFF000;
+ int map=memory_map[start>>12];
+ int i;
+ for(i=0;i<5;i++) {
+ //printf("start: %x next: %x\n",map,memory_map[pagelimit>>12]);
+ if((map&0xBFFFFFFF)==(memory_map[pagelimit>>12]&0xBFFFFFFF)) pagelimit+=4096;
+ }
+ assem_debug("pagelimit=%x\n",pagelimit);
+ assem_debug("mapping=%x (%x)\n",memory_map[start>>12],(memory_map[start>>12]<<2)+start);
+ }
+ else {
+ assem_debug("Compile at unmapped memory address: %x \n", (int)addr);
+ //assem_debug("start: %x next: %x\n",memory_map[start>>12],memory_map[(start+4096)>>12]);
+ return 1; // Caller will invoke exception handler
+ }
+ //printf("source= %x\n",(int)source);
+ }
+ else {
+ printf("Compile at bogus memory address: %x \n", (int)addr);
+ exit(1);
+ }
+
+ /* Pass 1: disassemble */
+ /* Pass 2: register dependencies, branch targets */
+ /* Pass 3: register allocation */
+ /* Pass 4: branch dependencies */
+ /* Pass 5: pre-alloc */
+ /* Pass 6: optimize clean/dirty state */
+ /* Pass 7: flag 32-bit registers */
+ /* Pass 8: assembly */
+ /* Pass 9: linker */
+ /* Pass 10: garbage collection / free memory */
+
+ int i,j;
+ int done=0;
+ unsigned int type,op,op2;
+
+ //printf("addr = %x source = %x %x\n", addr,source,source[0]);
+
+ /* Pass 1 disassembly */
+
+ for(i=0;!done;i++) {
+ bt[i]=0;likely[i]=0;op2=0;
+ opcode[i]=op=source[i]>>26;
+ switch(op)
+ {
+ case 0x00: strcpy(insn[i],"special"); type=NI;
+ op2=source[i]&0x3f;
+ switch(op2)
+ {
+ case 0x00: strcpy(insn[i],"SLL"); type=SHIFTIMM; break;
+ case 0x02: strcpy(insn[i],"SRL"); type=SHIFTIMM; break;
+ case 0x03: strcpy(insn[i],"SRA"); type=SHIFTIMM; break;
+ case 0x04: strcpy(insn[i],"SLLV"); type=SHIFT; break;
+ case 0x06: strcpy(insn[i],"SRLV"); type=SHIFT; break;
+ case 0x07: strcpy(insn[i],"SRAV"); type=SHIFT; break;
+ case 0x08: strcpy(insn[i],"JR"); type=RJUMP; break;
+ case 0x09: strcpy(insn[i],"JALR"); type=RJUMP; break;
+ case 0x0C: strcpy(insn[i],"SYSCALL"); type=SYSCALL; break;
+ case 0x0D: strcpy(insn[i],"BREAK"); type=OTHER; break;
+ case 0x0F: strcpy(insn[i],"SYNC"); type=OTHER; break;
+ case 0x10: strcpy(insn[i],"MFHI"); type=MOV; break;
+ case 0x11: strcpy(insn[i],"MTHI"); type=MOV; break;
+ case 0x12: strcpy(insn[i],"MFLO"); type=MOV; break;
+ case 0x13: strcpy(insn[i],"MTLO"); type=MOV; break;
+ case 0x14: strcpy(insn[i],"DSLLV"); type=SHIFT; break;
+ case 0x16: strcpy(insn[i],"DSRLV"); type=SHIFT; break;
+ case 0x17: strcpy(insn[i],"DSRAV"); type=SHIFT; break;
+ case 0x18: strcpy(insn[i],"MULT"); type=MULTDIV; break;
+ case 0x19: strcpy(insn[i],"MULTU"); type=MULTDIV; break;
+ case 0x1A: strcpy(insn[i],"DIV"); type=MULTDIV; break;
+ case 0x1B: strcpy(insn[i],"DIVU"); type=MULTDIV; break;
+ case 0x1C: strcpy(insn[i],"DMULT"); type=MULTDIV; break;
+ case 0x1D: strcpy(insn[i],"DMULTU"); type=MULTDIV; break;
+ case 0x1E: strcpy(insn[i],"DDIV"); type=MULTDIV; break;
+ case 0x1F: strcpy(insn[i],"DDIVU"); type=MULTDIV; break;
+ case 0x20: strcpy(insn[i],"ADD"); type=ALU; break;
+ case 0x21: strcpy(insn[i],"ADDU"); type=ALU; break;
+ case 0x22: strcpy(insn[i],"SUB"); type=ALU; break;
+ case 0x23: strcpy(insn[i],"SUBU"); type=ALU; break;
+ case 0x24: strcpy(insn[i],"AND"); type=ALU; break;
+ case 0x25: strcpy(insn[i],"OR"); type=ALU; break;
+ case 0x26: strcpy(insn[i],"XOR"); type=ALU; break;
+ case 0x27: strcpy(insn[i],"NOR"); type=ALU; break;
+ case 0x2A: strcpy(insn[i],"SLT"); type=ALU; break;
+ case 0x2B: strcpy(insn[i],"SLTU"); type=ALU; break;
+ case 0x2C: strcpy(insn[i],"DADD"); type=ALU; break;
+ case 0x2D: strcpy(insn[i],"DADDU"); type=ALU; break;
+ case 0x2E: strcpy(insn[i],"DSUB"); type=ALU; break;
+ case 0x2F: strcpy(insn[i],"DSUBU"); type=ALU; break;
+ case 0x30: strcpy(insn[i],"TGE"); type=NI; break;
+ case 0x31: strcpy(insn[i],"TGEU"); type=NI; break;
+ case 0x32: strcpy(insn[i],"TLT"); type=NI; break;
+ case 0x33: strcpy(insn[i],"TLTU"); type=NI; break;
+ case 0x34: strcpy(insn[i],"TEQ"); type=NI; break;
+ case 0x36: strcpy(insn[i],"TNE"); type=NI; break;
+ case 0x38: strcpy(insn[i],"DSLL"); type=SHIFTIMM; break;
+ case 0x3A: strcpy(insn[i],"DSRL"); type=SHIFTIMM; break;
+ case 0x3B: strcpy(insn[i],"DSRA"); type=SHIFTIMM; break;
+ case 0x3C: strcpy(insn[i],"DSLL32"); type=SHIFTIMM; break;
+ case 0x3E: strcpy(insn[i],"DSRL32"); type=SHIFTIMM; break;
+ case 0x3F: strcpy(insn[i],"DSRA32"); type=SHIFTIMM; break;
+ }
+ break;
+ case 0x01: strcpy(insn[i],"regimm"); type=NI;
+ op2=(source[i]>>16)&0x1f;
+ switch(op2)
+ {
+ case 0x00: strcpy(insn[i],"BLTZ"); type=SJUMP; break;
+ case 0x01: strcpy(insn[i],"BGEZ"); type=SJUMP; break;
+ case 0x02: strcpy(insn[i],"BLTZL"); type=SJUMP; break;
+ case 0x03: strcpy(insn[i],"BGEZL"); type=SJUMP; break;
+ case 0x08: strcpy(insn[i],"TGEI"); type=NI; break;
+ case 0x09: strcpy(insn[i],"TGEIU"); type=NI; break;
+ case 0x0A: strcpy(insn[i],"TLTI"); type=NI; break;
+ case 0x0B: strcpy(insn[i],"TLTIU"); type=NI; break;
+ case 0x0C: strcpy(insn[i],"TEQI"); type=NI; break;
+ case 0x0E: strcpy(insn[i],"TNEI"); type=NI; break;
+ case 0x10: strcpy(insn[i],"BLTZAL"); type=SJUMP; break;
+ case 0x11: strcpy(insn[i],"BGEZAL"); type=SJUMP; break;
+ case 0x12: strcpy(insn[i],"BLTZALL"); type=SJUMP; break;
+ case 0x13: strcpy(insn[i],"BGEZALL"); type=SJUMP; break;
+ }
+ break;
+ case 0x02: strcpy(insn[i],"J"); type=UJUMP; break;
+ case 0x03: strcpy(insn[i],"JAL"); type=UJUMP; break;
+ case 0x04: strcpy(insn[i],"BEQ"); type=CJUMP; break;
+ case 0x05: strcpy(insn[i],"BNE"); type=CJUMP; break;
+ case 0x06: strcpy(insn[i],"BLEZ"); type=CJUMP; break;
+ case 0x07: strcpy(insn[i],"BGTZ"); type=CJUMP; break;
+ case 0x08: strcpy(insn[i],"ADDI"); type=IMM16; break;
+ case 0x09: strcpy(insn[i],"ADDIU"); type=IMM16; break;
+ case 0x0A: strcpy(insn[i],"SLTI"); type=IMM16; break;
+ case 0x0B: strcpy(insn[i],"SLTIU"); type=IMM16; break;
+ case 0x0C: strcpy(insn[i],"ANDI"); type=IMM16; break;
+ case 0x0D: strcpy(insn[i],"ORI"); type=IMM16; break;
+ case 0x0E: strcpy(insn[i],"XORI"); type=IMM16; break;
+ case 0x0F: strcpy(insn[i],"LUI"); type=IMM16; break;
+ case 0x10: strcpy(insn[i],"cop0"); type=NI;
+ op2=(source[i]>>21)&0x1f;
+ switch(op2)
+ {
+ case 0x00: strcpy(insn[i],"MFC0"); type=COP0; break;
+ case 0x04: strcpy(insn[i],"MTC0"); type=COP0; break;
+ case 0x10: strcpy(insn[i],"tlb"); type=NI;
+ switch(source[i]&0x3f)
+ {
+ case 0x01: strcpy(insn[i],"TLBR"); type=COP0; break;
+ case 0x02: strcpy(insn[i],"TLBWI"); type=COP0; break;
+ case 0x06: strcpy(insn[i],"TLBWR"); type=COP0; break;
+ case 0x08: strcpy(insn[i],"TLBP"); type=COP0; break;
+ case 0x18: strcpy(insn[i],"ERET"); type=COP0; break;
+ }
+ }
+ break;
+ case 0x11: strcpy(insn[i],"cop1"); type=NI;
+ op2=(source[i]>>21)&0x1f;
+ switch(op2)
+ {
+ case 0x00: strcpy(insn[i],"MFC1"); type=COP1; break;
+ case 0x01: strcpy(insn[i],"DMFC1"); type=COP1; break;
+ case 0x02: strcpy(insn[i],"CFC1"); type=COP1; break;
+ case 0x04: strcpy(insn[i],"MTC1"); type=COP1; break;
+ case 0x05: strcpy(insn[i],"DMTC1"); type=COP1; break;
+ case 0x06: strcpy(insn[i],"CTC1"); type=COP1; break;
+ case 0x08: strcpy(insn[i],"BC1"); type=FJUMP;
+ switch((source[i]>>16)&0x3)
+ {
+ case 0x00: strcpy(insn[i],"BC1F"); break;
+ case 0x01: strcpy(insn[i],"BC1T"); break;
+ case 0x02: strcpy(insn[i],"BC1FL"); break;
+ case 0x03: strcpy(insn[i],"BC1TL"); break;
+ }
+ break;
+ case 0x10: strcpy(insn[i],"C1.S"); type=NI;
+ switch(source[i]&0x3f)
+ {
+ case 0x00: strcpy(insn[i],"ADD.S"); type=FLOAT; break;
+ case 0x01: strcpy(insn[i],"SUB.S"); type=FLOAT; break;
+ case 0x02: strcpy(insn[i],"MUL.S"); type=FLOAT; break;
+ case 0x03: strcpy(insn[i],"DIV.S"); type=FLOAT; break;
+ case 0x04: strcpy(insn[i],"SQRT.S"); type=FLOAT; break;
+ case 0x05: strcpy(insn[i],"ABS.S"); type=FLOAT; break;
+ case 0x06: strcpy(insn[i],"MOV.S"); type=FLOAT; break;
+ case 0x07: strcpy(insn[i],"NEG.S"); type=FLOAT; break;
+ case 0x08: strcpy(insn[i],"ROUND.L.S"); type=FCONV; break;
+ case 0x09: strcpy(insn[i],"TRUNC.L.S"); type=FCONV; break;
+ case 0x0A: strcpy(insn[i],"CEIL.L.S"); type=FCONV; break;
+ case 0x0B: strcpy(insn[i],"FLOOR.L.S"); type=FCONV; break;
+ case 0x0C: strcpy(insn[i],"ROUND.W.S"); type=FCONV; break;
+ case 0x0D: strcpy(insn[i],"TRUNC.W.S"); type=FCONV; break;
+ case 0x0E: strcpy(insn[i],"CEIL.W.S"); type=FCONV; break;
+ case 0x0F: strcpy(insn[i],"FLOOR.W.S"); type=FCONV; break;
+ case 0x21: strcpy(insn[i],"CVT.D.S"); type=FCONV; break;
+ case 0x24: strcpy(insn[i],"CVT.W.S"); type=FCONV; break;
+ case 0x25: strcpy(insn[i],"CVT.L.S"); type=FCONV; break;
+ case 0x30: strcpy(insn[i],"C.F.S"); type=FCOMP; break;
+ case 0x31: strcpy(insn[i],"C.UN.S"); type=FCOMP; break;
+ case 0x32: strcpy(insn[i],"C.EQ.S"); type=FCOMP; break;
+ case 0x33: strcpy(insn[i],"C.UEQ.S"); type=FCOMP; break;
+ case 0x34: strcpy(insn[i],"C.OLT.S"); type=FCOMP; break;
+ case 0x35: strcpy(insn[i],"C.ULT.S"); type=FCOMP; break;
+ case 0x36: strcpy(insn[i],"C.OLE.S"); type=FCOMP; break;
+ case 0x37: strcpy(insn[i],"C.ULE.S"); type=FCOMP; break;
+ case 0x38: strcpy(insn[i],"C.SF.S"); type=FCOMP; break;
+ case 0x39: strcpy(insn[i],"C.NGLE.S"); type=FCOMP; break;
+ case 0x3A: strcpy(insn[i],"C.SEQ.S"); type=FCOMP; break;
+ case 0x3B: strcpy(insn[i],"C.NGL.S"); type=FCOMP; break;
+ case 0x3C: strcpy(insn[i],"C.LT.S"); type=FCOMP; break;
+ case 0x3D: strcpy(insn[i],"C.NGE.S"); type=FCOMP; break;
+ case 0x3E: strcpy(insn[i],"C.LE.S"); type=FCOMP; break;
+ case 0x3F: strcpy(insn[i],"C.NGT.S"); type=FCOMP; break;
+ }
+ break;
+ case 0x11: strcpy(insn[i],"C1.D"); type=NI;
+ switch(source[i]&0x3f)
+ {
+ case 0x00: strcpy(insn[i],"ADD.D"); type=FLOAT; break;
+ case 0x01: strcpy(insn[i],"SUB.D"); type=FLOAT; break;
+ case 0x02: strcpy(insn[i],"MUL.D"); type=FLOAT; break;
+ case 0x03: strcpy(insn[i],"DIV.D"); type=FLOAT; break;
+ case 0x04: strcpy(insn[i],"SQRT.D"); type=FLOAT; break;
+ case 0x05: strcpy(insn[i],"ABS.D"); type=FLOAT; break;
+ case 0x06: strcpy(insn[i],"MOV.D"); type=FLOAT; break;
+ case 0x07: strcpy(insn[i],"NEG.D"); type=FLOAT; break;
+ case 0x08: strcpy(insn[i],"ROUND.L.D"); type=FCONV; break;
+ case 0x09: strcpy(insn[i],"TRUNC.L.D"); type=FCONV; break;
+ case 0x0A: strcpy(insn[i],"CEIL.L.D"); type=FCONV; break;
+ case 0x0B: strcpy(insn[i],"FLOOR.L.D"); type=FCONV; break;
+ case 0x0C: strcpy(insn[i],"ROUND.W.D"); type=FCONV; break;
+ case 0x0D: strcpy(insn[i],"TRUNC.W.D"); type=FCONV; break;
+ case 0x0E: strcpy(insn[i],"CEIL.W.D"); type=FCONV; break;
+ case 0x0F: strcpy(insn[i],"FLOOR.W.D"); type=FCONV; break;
+ case 0x20: strcpy(insn[i],"CVT.S.D"); type=FCONV; break;
+ case 0x24: strcpy(insn[i],"CVT.W.D"); type=FCONV; break;
+ case 0x25: strcpy(insn[i],"CVT.L.D"); type=FCONV; break;
+ case 0x30: strcpy(insn[i],"C.F.D"); type=FCOMP; break;
+ case 0x31: strcpy(insn[i],"C.UN.D"); type=FCOMP; break;
+ case 0x32: strcpy(insn[i],"C.EQ.D"); type=FCOMP; break;
+ case 0x33: strcpy(insn[i],"C.UEQ.D"); type=FCOMP; break;
+ case 0x34: strcpy(insn[i],"C.OLT.D"); type=FCOMP; break;
+ case 0x35: strcpy(insn[i],"C.ULT.D"); type=FCOMP; break;
+ case 0x36: strcpy(insn[i],"C.OLE.D"); type=FCOMP; break;
+ case 0x37: strcpy(insn[i],"C.ULE.D"); type=FCOMP; break;
+ case 0x38: strcpy(insn[i],"C.SF.D"); type=FCOMP; break;
+ case 0x39: strcpy(insn[i],"C.NGLE.D"); type=FCOMP; break;
+ case 0x3A: strcpy(insn[i],"C.SEQ.D"); type=FCOMP; break;
+ case 0x3B: strcpy(insn[i],"C.NGL.D"); type=FCOMP; break;
+ case 0x3C: strcpy(insn[i],"C.LT.D"); type=FCOMP; break;
+ case 0x3D: strcpy(insn[i],"C.NGE.D"); type=FCOMP; break;
+ case 0x3E: strcpy(insn[i],"C.LE.D"); type=FCOMP; break;
+ case 0x3F: strcpy(insn[i],"C.NGT.D"); type=FCOMP; break;
+ }
+ break;
+ case 0x14: strcpy(insn[i],"C1.W"); type=NI;
+ switch(source[i]&0x3f)
+ {
+ case 0x20: strcpy(insn[i],"CVT.S.W"); type=FCONV; break;
+ case 0x21: strcpy(insn[i],"CVT.D.W"); type=FCONV; break;
+ }
+ break;
+ case 0x15: strcpy(insn[i],"C1.L"); type=NI;
+ switch(source[i]&0x3f)
+ {
+ case 0x20: strcpy(insn[i],"CVT.S.L"); type=FCONV; break;
+ case 0x21: strcpy(insn[i],"CVT.D.L"); type=FCONV; break;
+ }
+ break;
+ }
+ break;
+ case 0x14: strcpy(insn[i],"BEQL"); type=CJUMP; break;
+ case 0x15: strcpy(insn[i],"BNEL"); type=CJUMP; break;
+ case 0x16: strcpy(insn[i],"BLEZL"); type=CJUMP; break;
+ case 0x17: strcpy(insn[i],"BGTZL"); type=CJUMP; break;
+ case 0x18: strcpy(insn[i],"DADDI"); type=IMM16; break;
+ case 0x19: strcpy(insn[i],"DADDIU"); type=IMM16; break;
+ case 0x1A: strcpy(insn[i],"LDL"); type=LOADLR; break;
+ case 0x1B: strcpy(insn[i],"LDR"); type=LOADLR; break;
+ case 0x20: strcpy(insn[i],"LB"); type=LOAD; break;
+ case 0x21: strcpy(insn[i],"LH"); type=LOAD; break;
+ case 0x22: strcpy(insn[i],"LWL"); type=LOADLR; break;
+ case 0x23: strcpy(insn[i],"LW"); type=LOAD; break;
+ case 0x24: strcpy(insn[i],"LBU"); type=LOAD; break;
+ case 0x25: strcpy(insn[i],"LHU"); type=LOAD; break;
+ case 0x26: strcpy(insn[i],"LWR"); type=LOADLR; break;
+ case 0x27: strcpy(insn[i],"LWU"); type=LOAD; break;
+ case 0x28: strcpy(insn[i],"SB"); type=STORE; break;
+ case 0x29: strcpy(insn[i],"SH"); type=STORE; break;
+ case 0x2A: strcpy(insn[i],"SWL"); type=STORELR; break;
+ case 0x2B: strcpy(insn[i],"SW"); type=STORE; break;
+ case 0x2C: strcpy(insn[i],"SDL"); type=STORELR; break;
+ case 0x2D: strcpy(insn[i],"SDR"); type=STORELR; break;
+ case 0x2E: strcpy(insn[i],"SWR"); type=STORELR; break;
+ case 0x2F: strcpy(insn[i],"CACHE"); type=NOP; break;
+ case 0x30: strcpy(insn[i],"LL"); type=NI; break;
+ case 0x31: strcpy(insn[i],"LWC1"); type=C1LS; break;
+ case 0x34: strcpy(insn[i],"LLD"); type=NI; break;
+ case 0x35: strcpy(insn[i],"LDC1"); type=C1LS; break;
+ case 0x37: strcpy(insn[i],"LD"); type=LOAD; break;
+ case 0x38: strcpy(insn[i],"SC"); type=NI; break;
+ case 0x39: strcpy(insn[i],"SWC1"); type=C1LS; break;
+ case 0x3C: strcpy(insn[i],"SCD"); type=NI; break;
+ case 0x3D: strcpy(insn[i],"SDC1"); type=C1LS; break;
+ case 0x3F: strcpy(insn[i],"SD"); type=STORE; break;
+ default: strcpy(insn[i],"???"); type=NI; break;
+ }
+ itype[i]=type;
+ opcode2[i]=op2;
+ /* Get registers/immediates */
+ lt1[i]=0;
+ us1[i]=0;
+ us2[i]=0;
+ dep1[i]=0;
+ dep2[i]=0;
+ switch(type) {
+ case LOAD:
+ rs1[i]=(source[i]>>21)&0x1f;
+ rs2[i]=0;
+ rt1[i]=(source[i]>>16)&0x1f;
+ rt2[i]=0;
+ imm[i]=(short)source[i];
+ break;
+ case STORE:
+ case STORELR:
+ rs1[i]=(source[i]>>21)&0x1f;
+ rs2[i]=(source[i]>>16)&0x1f;
+ rt1[i]=0;
+ rt2[i]=0;
+ imm[i]=(short)source[i];
+ if(op==0x2c||op==0x2d||op==0x3f) us1[i]=rs2[i]; // 64-bit SDL/SDR/SD
+ break;
+ case LOADLR:
+ // LWL/LWR only load part of the register,
+ // therefore the target register must be treated as a source too
+ rs1[i]=(source[i]>>21)&0x1f;
+ rs2[i]=(source[i]>>16)&0x1f;
+ rt1[i]=(source[i]>>16)&0x1f;
+ rt2[i]=0;
+ imm[i]=(short)source[i];
+ if(op==0x1a||op==0x1b) us1[i]=rs2[i]; // LDR/LDL
+ if(op==0x26) dep1[i]=rt1[i]; // LWR
+ break;
+ case IMM16:
+ if (op==0x0f) rs1[i]=0; // LUI instruction has no source register
+ else rs1[i]=(source[i]>>21)&0x1f;
+ rs2[i]=0;
+ rt1[i]=(source[i]>>16)&0x1f;
+ rt2[i]=0;
+ if(op>=0x0c&&op<=0x0e) { // ANDI/ORI/XORI
+ imm[i]=(unsigned short)source[i];
+ }else{
+ imm[i]=(short)source[i];
+ }
+ if(op==0x18||op==0x19) us1[i]=rs1[i]; // DADDI/DADDIU
+ if(op==0x0a||op==0x0b) us1[i]=rs1[i]; // SLTI/SLTIU
+ if(op==0x0d||op==0x0e) dep1[i]=rs1[i]; // ORI/XORI
+ break;
+ case UJUMP:
+ rs1[i]=0;
+ rs2[i]=0;
+ rt1[i]=0;
+ rt2[i]=0;
+ // The JAL instruction writes to r31.
+ if (op&1) {
+ rt1[i]=31;
+ }
+ rs2[i]=CCREG;
+ break;
+ case RJUMP:
+ rs1[i]=(source[i]>>21)&0x1f;
+ rs2[i]=0;
+ rt1[i]=0;
+ rt2[i]=0;
+ // The JALR instruction writes to r31.
+ if (op2&1) {
+ rt1[i]=31;
+ }
+ rs2[i]=CCREG;
+ break;
+ case CJUMP:
+ rs1[i]=(source[i]>>21)&0x1f;
+ rs2[i]=(source[i]>>16)&0x1f;
+ rt1[i]=0;
+ rt2[i]=0;
+ if(op&2) { // BGTZ/BLEZ
+ rs2[i]=0;
+ }
+ us1[i]=rs1[i];
+ us2[i]=rs2[i];
+ likely[i]=op>>4;
+ break;
+ case SJUMP:
+ rs1[i]=(source[i]>>21)&0x1f;
+ rs2[i]=CCREG;
+ rt1[i]=0;
+ rt2[i]=0;
+ us1[i]=rs1[i];
+ if(op2&0x10) { // BxxAL
+ rt1[i]=31;
+ // NOTE: If the branch is not taken, r31 is still overwritten
+ }
+ likely[i]=(op2&2)>>1;
+ break;
+ case FJUMP:
+ rs1[i]=FSREG;
+ rs2[i]=CSREG;
+ rt1[i]=0;
+ rt2[i]=0;
+ likely[i]=((source[i])>>17)&1;
+ break;
+ case ALU:
+ rs1[i]=(source[i]>>21)&0x1f; // source
+ rs2[i]=(source[i]>>16)&0x1f; // subtract amount
+ rt1[i]=(source[i]>>11)&0x1f; // destination
+ rt2[i]=0;
+ if(op2==0x2a||op2==0x2b) { // SLT/SLTU
+ us1[i]=rs1[i];us2[i]=rs2[i];
+ }
+ else if(op2>=0x24&&op2<=0x27) { // AND/OR/XOR/NOR
+ dep1[i]=rs1[i];dep2[i]=rs2[i];
+ }
+ else if(op2>=0x2c&&op2<=0x2f) { // DADD/DSUB
+ dep1[i]=rs1[i];dep2[i]=rs2[i];
+ }
+ break;
+ case MULTDIV:
+ rs1[i]=(source[i]>>21)&0x1f; // source
+ rs2[i]=(source[i]>>16)&0x1f; // divisor
+ rt1[i]=HIREG;
+ rt2[i]=LOREG;
+ if (op2>=0x1c&&op2<=0x1f) { // DMULT/DMULTU/DDIV/DDIVU
+ us1[i]=rs1[i];us2[i]=rs2[i];
+ }
+ break;
+ case MOV:
+ rs1[i]=0;
+ rs2[i]=0;
+ rt1[i]=0;
+ rt2[i]=0;
+ if(op2==0x10) rs1[i]=HIREG; // MFHI
+ if(op2==0x11) rt1[i]=HIREG; // MTHI
+ if(op2==0x12) rs1[i]=LOREG; // MFLO
+ if(op2==0x13) rt1[i]=LOREG; // MTLO
+ if((op2&0x1d)==0x10) rt1[i]=(source[i]>>11)&0x1f; // MFxx
+ if((op2&0x1d)==0x11) rs1[i]=(source[i]>>21)&0x1f; // MTxx
+ dep1[i]=rs1[i];
+ break;
+ case SHIFT:
+ rs1[i]=(source[i]>>16)&0x1f; // target of shift
+ rs2[i]=(source[i]>>21)&0x1f; // shift amount
+ rt1[i]=(source[i]>>11)&0x1f; // destination
+ rt2[i]=0;
+ // DSLLV/DSRLV/DSRAV are 64-bit
+ if(op2>=0x14&&op2<=0x17) us1[i]=rs1[i];
+ break;
+ case SHIFTIMM:
+ rs1[i]=(source[i]>>16)&0x1f;
+ rs2[i]=0;
+ rt1[i]=(source[i]>>11)&0x1f;
+ rt2[i]=0;
+ imm[i]=(source[i]>>6)&0x1f;
+ // DSxx32 instructions
+ if(op2>=0x3c) imm[i]|=0x20;
+ // DSLL/DSRL/DSRA/DSRA32/DSRL32 but not DSLL32 require 64-bit source
+ if(op2>=0x38&&op2!=0x3c) us1[i]=rs1[i];
+ break;
+ case COP0:
+ rs1[i]=0;
+ rs2[i]=0;
+ rt1[i]=0;
+ rt2[i]=0;
+ if(op2==0) rt1[i]=(source[i]>>16)&0x1F; // MFC0
+ if(op2==4) rs1[i]=(source[i]>>16)&0x1F; // MTC0
+ if(op2==4&&((source[i]>>11)&0x1f)==12) rt2[i]=CSREG; // Status
+ if(op2==16) if((source[i]&0x3f)==0x18) rs2[i]=CCREG; // ERET
+ break;
+ case COP1:
+ rs1[i]=0;
+ rs2[i]=0;
+ rt1[i]=0;
+ rt2[i]=0;
+ if(op2<3) rt1[i]=(source[i]>>16)&0x1F; // MFC1/DMFC1/CFC1
+ if(op2>3) rs1[i]=(source[i]>>16)&0x1F; // MTC1/DMTC1/CTC1
+ if(op2==5) us1[i]=rs1[i]; // DMTC1
+ rs2[i]=CSREG;
+ break;
+ case C1LS:
+ rs1[i]=(source[i]>>21)&0x1F;
+ rs2[i]=CSREG;
+ rt1[i]=0;
+ rt2[i]=0;
+ imm[i]=(short)source[i];
+ break;
+ case FLOAT:
+ case FCONV:
+ rs1[i]=0;
+ rs2[i]=CSREG;
+ rt1[i]=0;
+ rt2[i]=0;
+ break;
+ case FCOMP:
+ rs1[i]=FSREG;
+ rs2[i]=CSREG;
+ rt1[i]=FSREG;
+ rt2[i]=0;
+ break;
+ case SYSCALL:
+ rs1[i]=CCREG;
+ rs2[i]=0;
+ rt1[i]=0;
+ rt2[i]=0;
+ break;
+ default:
+ rs1[i]=0;
+ rs2[i]=0;
+ rt1[i]=0;
+ rt2[i]=0;
+ }
+ /* Calculate branch target addresses */
+ if(type==UJUMP)
+ ba[i]=((start+i*4+4)&0xF0000000)|(((unsigned int)source[i]<<6)>>4);
+ else if(type==CJUMP&&rs1[i]==rs2[i]&&(op&1))
+ ba[i]=start+i*4+8; // Ignore never taken branch
+ else if(type==SJUMP&&rs1[i]==0&&!(op2&1))
+ ba[i]=start+i*4+8; // Ignore never taken branch
+ else if(type==CJUMP||type==SJUMP||type==FJUMP)
+ ba[i]=start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14);
+ else ba[i]=-1;
+ /* Is this the end of the block? */
+ if(i>0&&(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)) {
+ if(rt1[i-1]!=31) { // Continue past subroutine call (JAL)
+ done=1;
+ // Does the block continue due to a branch?
+ for(j=i-1;j>=0;j--)
+ {
+ if(ba[j]==start+i*4+4) done=j=0;
+ if(ba[j]==start+i*4+8) done=j=0;
+ }
+ }
+ else {
+ if(stop_after_jal) done=1;
+ // Stop on BREAK
+ if((source[i+1]&0xfc00003f)==0x0d) done=1;
+ }
+ // Don't recompile stuff that's already compiled
+ if(check_addr(start+i*4+4)) done=1;
+ // Don't get too close to the limit
+ if(i>MAXBLOCK/2) done=1;
+ }
+ if(i>0&&itype[i-1]==SYSCALL&&stop_after_jal) done=1;
+ assert(i<MAXBLOCK-1);
+ if(start+i*4==pagelimit-4) done=1;
+ assert(start+i*4<pagelimit);
+ if (i==MAXBLOCK-1) done=1;
+ // Stop if we're compiling junk
+ if(itype[i]==NI&&opcode[i]==0x11) {
+ done=stop_after_jal=1;
+ printf("Disabled speculative precompilation\n");
+ }
+ }
+ slen=i;
+ if(itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==RJUMP||itype[i-1]==FJUMP) {
+ if(start+i*4==pagelimit) {
+ itype[i-1]=SPAN;
+ }
+ }
+ assert(slen>0);
+
+ /* Pass 2 - Register dependencies and branch targets */
+
+ unneeded_registers(0,slen-1,0);
+
+ /* Pass 3 - Register allocation */
+
+ struct regstat current; // Current register allocations/status
+ current.is32=1;
+ current.dirty=0;
+ current.u=unneeded_reg[0];
+ current.uu=unneeded_reg_upper[0];
+ clear_all_regs(current.regmap);
+ alloc_reg(¤t,0,CCREG);
+ dirty_reg(¤t,CCREG);
+ current.isconst=0;
+ current.wasconst=0;
+ int ds=0;
+ int cc=0;
+ int hr;
+
+ provisional_32bit();
+
+ if((u_int)addr&1) {
+ // First instruction is delay slot
+ cc=-1;
+ bt[1]=1;
+ ds=1;
+ unneeded_reg[0]=1;
+ unneeded_reg_upper[0]=1;
+ current.regmap[HOST_BTREG]=BTREG;
+ }
+
+ for(i=0;i<slen;i++)
+ {
+ if(bt[i])
+ {
+ int hr;
+ for(hr=0;hr<HOST_REGS;hr++)
+ {
+ // Is this really necessary?
+ if(current.regmap[hr]==0) current.regmap[hr]=-1;
+ }
+ current.isconst=0;
+ }
+ if(i>1)
+ {
+ if((opcode[i-2]&0x2f)==0x05) // BNE/BNEL
+ {
+ if(rs1[i-2]==0||rs2[i-2]==0)
+ {
+ if(rs1[i-2]) {
+ current.is32|=1LL<<rs1[i-2];
+ int hr=get_reg(current.regmap,rs1[i-2]|64);
+ if(hr>=0) current.regmap[hr]=-1;
+ }
+ if(rs2[i-2]) {
+ current.is32|=1LL<<rs2[i-2];
+ int hr=get_reg(current.regmap,rs2[i-2]|64);
+ if(hr>=0) current.regmap[hr]=-1;
+ }
+ }
+ }
+ }
+ // If something jumps here with 64-bit values
+ // then promote those registers to 64 bits
+ if(bt[i])
+ {
+ uint64_t temp_is32=current.is32;
+ for(j=i-1;j>=0;j--)
+ {
+ if(ba[j]==start+i*4)
+ temp_is32&=branch_regs[j].is32;
+ }
+ for(j=i;j<slen;j++)
+ {
+ if(ba[j]==start+i*4)
+ //temp_is32=1;
+ temp_is32&=p32[j];
+ }
+ if(temp_is32!=current.is32) {
+ //printf("dumping 32-bit regs (%x)\n",start+i*4);
+ #ifdef DESTRUCTIVE_WRITEBACK
+ for(hr=0;hr<HOST_REGS;hr++)
+ {
+ int r=current.regmap[hr];
+ if(r>0&&r<64)
+ {
+ if((current.dirty>>hr)&((current.is32&~temp_is32)>>r)&1) {
+ temp_is32|=1LL<<r;
+ //printf("restore %d\n",r);
+ }
+ }
+ }
+ #endif
+ current.is32=temp_is32;
+ }
+ }
+ memcpy(regmap_pre[i],current.regmap,sizeof(current.regmap));
+ regs[i].wasconst=current.isconst;
+ regs[i].was32=current.is32;
+ regs[i].wasdirty=current.dirty;
+ #ifdef DESTRUCTIVE_WRITEBACK
+ // To change a dirty register from 32 to 64 bits, we must write
+ // it out during the previous cycle (for branches, 2 cycles)
+ if(i<slen-1&&bt[i+1]&&itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP)
+ {
+ uint64_t temp_is32=current.is32;
+ for(j=i-1;j>=0;j--)
+ {
+ if(ba[j]==start+i*4+4)
+ temp_is32&=branch_regs[j].is32;
+ }
+ for(j=i;j<slen;j++)
+ {
+ if(ba[j]==start+i*4+4)
+ //temp_is32=1;
+ temp_is32&=p32[j];
+ }
+ if(temp_is32!=current.is32) {
+ //printf("pre-dumping 32-bit regs (%x)\n",start+i*4);
+ for(hr=0;hr<HOST_REGS;hr++)
+ {
+ int r=current.regmap[hr];
+ if(r>0)
+ {
+ if((current.dirty>>hr)&((current.is32&~temp_is32)>>(r&63))&1) {
+ if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP)
+ {
+ if(rs1[i]!=(r&63)&&rs2[i]!=(r&63))
+ {
+ //printf("dump %d/r%d\n",hr,r);
+ current.regmap[hr]=-1;
+ if(get_reg(current.regmap,r|64)>=0)
+ current.regmap[get_reg(current.regmap,r|64)]=-1;
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ else if(i<slen-2&&bt[i+2]&&(source[i-1]>>16)!=0x1000&&(itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP))
+ {
+ uint64_t temp_is32=current.is32;
+ for(j=i-1;j>=0;j--)
+ {
+ if(ba[j]==start+i*4+8)
+ temp_is32&=branch_regs[j].is32;
+ }
+ for(j=i;j<slen;j++)
+ {
+ if(ba[j]==start+i*4+8)
+ //temp_is32=1;
+ temp_is32&=p32[j];
+ }
+ if(temp_is32!=current.is32) {
+ //printf("pre-dumping 32-bit regs (%x)\n",start+i*4);
+ for(hr=0;hr<HOST_REGS;hr++)
+ {
+ int r=current.regmap[hr];
+ if(r>0)
+ {
+ if((current.dirty>>hr)&((current.is32&~temp_is32)>>(r&63))&1) {
+ if(rs1[i]!=(r&63)&&rs2[i]!=(r&63)&&rs1[i+1]!=(r&63)&&rs2[i+1]!=(r&63))
+ {
+ //printf("dump %d/r%d\n",hr,r);
+ current.regmap[hr]=-1;
+ if(get_reg(current.regmap,r|64)>=0)
+ current.regmap[get_reg(current.regmap,r|64)]=-1;
+ }
+ }
+ }
+ }
+ }
+ }
+ #endif
+ if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP) {
+ if(i+1<slen) {
+ current.u=unneeded_reg[i+1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
+ current.uu=unneeded_reg_upper[i+1]&~((1LL<<us1[i])|(1LL<<us2[i]));
+ if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
+ current.u|=1;
+ current.uu|=1;
+ } else {
+ current.u=1;
+ current.uu=1;
+ }
+ } else {
+ if(i+1<slen) {
+ current.u=branch_unneeded_reg[i]&~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
+ current.uu=branch_unneeded_reg_upper[i]&~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
+ if((~current.uu>>rt1[i+1])&1) current.uu&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
+ current.u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
+ current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
+ current.u|=1;
+ current.uu|=1;
+ } else { printf("oops, branch at end of block with no delay slot\n");exit(1); }
+ }
+ is_ds[i]=ds;
+ if(ds) {
+ ds=0; // Skip delay slot, already allocated as part of branch
+ // ...but we need to alloc it in case something jumps here
+ if(i+1<slen) {
+ current.u=branch_unneeded_reg[i-1]&unneeded_reg[i+1];
+ current.uu=branch_unneeded_reg_upper[i-1]&unneeded_reg_upper[i+1];
+ }else{
+ current.u=branch_unneeded_reg[i-1];
+ current.uu=branch_unneeded_reg_upper[i-1];
+ }
+ current.u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
+ current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
+ if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
+ current.u|=1;
+ current.uu|=1;
+ struct regstat temp;
+ memcpy(&temp,¤t,sizeof(current));
+ temp.wasdirty=temp.dirty;
+ temp.was32=temp.is32;
+ // TODO: Take into account unconditional branches, as below
+ delayslot_alloc(&temp,i);
+ memcpy(regs[i].regmap,temp.regmap,sizeof(temp.regmap));
+ regs[i].wasdirty=temp.wasdirty;
+ regs[i].was32=temp.was32;
+ regs[i].dirty=temp.dirty;
+ regs[i].is32=temp.is32;
+ regs[i].isconst=0;
+ regs[i].wasconst=0;
+ current.isconst=0;
+ // Create entry (branch target) regmap
+ for(hr=0;hr<HOST_REGS;hr++)
+ {
+ int r=temp.regmap[hr];
+ if(r>=0) {
+ if(r!=regmap_pre[i][hr]) {
+ regs[i].regmap_entry[hr]=-1;
+ }
+ else
+ {
+ if(r<64){
+ if((current.u>>r)&1) {
+ regs[i].regmap_entry[hr]=-1;
+ regs[i].regmap[hr]=-1;
+ //Don't clear regs in the delay slot as the branch might need them
+ //current.regmap[hr]=-1;
+ }else
+ regs[i].regmap_entry[hr]=r;
+ }
+ else {
+ if((current.uu>>(r&63))&1) {
+ regs[i].regmap_entry[hr]=-1;
+ regs[i].regmap[hr]=-1;
+ //Don't clear regs in the delay slot as the branch might need them
+ //current.regmap[hr]=-1;
+ }else
+ regs[i].regmap_entry[hr]=r;
+ }
+ }
+ } else {
+ // First instruction expects CCREG to be allocated
+ if(i==0&&hr==HOST_CCREG)
+ regs[i].regmap_entry[hr]=CCREG;
+ else
+ regs[i].regmap_entry[hr]=-1;
+ }
+ }
+ }
+ else { // Not delay slot
+ switch(itype[i]) {
+ case UJUMP:
+ //current.isconst=0; // DEBUG
+ //current.wasconst=0; // DEBUG
+ //regs[i].wasconst=0; // DEBUG
+ clear_const(¤t,rt1[i]);
+ alloc_cc(¤t,i);
+ dirty_reg(¤t,CCREG);
+ if (rt1[i]==31) {
+ alloc_reg(¤t,i,31);
+ dirty_reg(¤t,31);
+ assert(rs1[i+1]!=31&&rs2[i+1]!=31);
+ #ifdef REG_PREFETCH
+ alloc_reg(¤t,i,PTEMP);
+ #endif
+ //current.is32|=1LL<<rt1[i];
+ }
+ delayslot_alloc(¤t,i+1);
+ //current.isconst=0; // DEBUG
+ ds=1;
+ //printf("i=%d, isconst=%x\n",i,current.isconst);
+ break;
+ case RJUMP:
+ //current.isconst=0;
+ //current.wasconst=0;
+ //regs[i].wasconst=0;
+ clear_const(¤t,rs1[i]);
+ clear_const(¤t,rt1[i]);
+ alloc_cc(¤t,i);
+ dirty_reg(¤t,CCREG);
+ if(rs1[i]!=rt1[i+1]&&rs1[i]!=rt2[i+1]) {
+ alloc_reg(¤t,i,rs1[i]);
+ if (rt1[i]==31) {
+ alloc_reg(¤t,i,31);
+ dirty_reg(¤t,31);
+ assert(rs1[i+1]!=31&&rs2[i+1]!=31);
+ #ifdef REG_PREFETCH
+ alloc_reg(¤t,i,PTEMP);
+ #endif
+ }
+ #ifdef USE_MINI_HT
+ if(rs1[i]==31) { // JALR
+ alloc_reg(¤t,i,RHASH);
+ #ifndef HOST_IMM_ADDR32
+ alloc_reg(¤t,i,RHTBL);
+ #endif
+ }
+ #endif
+ delayslot_alloc(¤t,i+1);
+ } else {
+ // The delay slot overwrites our source register,
+ // allocate a temporary register to hold the old value.
+ current.isconst=0;
+ current.wasconst=0;
+ regs[i].wasconst=0;
+ delayslot_alloc(¤t,i+1);
+ current.isconst=0;
+ alloc_reg(¤t,i,RTEMP);
+ }
+ //current.isconst=0; // DEBUG
+ ds=1;
+ break;
+ case CJUMP:
+ //current.isconst=0;
+ //current.wasconst=0;
+ //regs[i].wasconst=0;
+ clear_const(¤t,rs1[i]);
+ clear_const(¤t,rs2[i]);
+ if((opcode[i]&0x3E)==4) // BEQ/BNE
+ {
+ alloc_cc(¤t,i);
+ dirty_reg(¤t,CCREG);
+ if(rs1[i]) alloc_reg(¤t,i,rs1[i]);
+ if(rs2[i]) alloc_reg(¤t,i,rs2[i]);
+ if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
+ {
+ if(rs1[i]) alloc_reg64(¤t,i,rs1[i]);
+ if(rs2[i]) alloc_reg64(¤t,i,rs2[i]);
+ }
+ if((rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]))||
+ (rs2[i]&&(rs2[i]==rt1[i+1]||rs2[i]==rt2[i+1]))) {
+ // The delay slot overwrites one of our conditions.
+ // Allocate the branch condition registers instead.
+ // Note that such a sequence of instructions could
+ // be considered a bug since the branch can not be
+ // re-executed if an exception occurs.
+ current.isconst=0;
+ current.wasconst=0;
+ regs[i].wasconst=0;
+ if(rs1[i]) alloc_reg(¤t,i,rs1[i]);
+ if(rs2[i]) alloc_reg(¤t,i,rs2[i]);
+ if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
+ {
+ if(rs1[i]) alloc_reg64(¤t,i,rs1[i]);
+ if(rs2[i]) alloc_reg64(¤t,i,rs2[i]);
+ }
+ }
+ else delayslot_alloc(¤t,i+1);
+ }
+ else
+ if((opcode[i]&0x3E)==6) // BLEZ/BGTZ
+ {
+ alloc_cc(¤t,i);
+ dirty_reg(¤t,CCREG);
+ alloc_reg(¤t,i,rs1[i]);
+ if(!(current.is32>>rs1[i]&1))
+ {
+ alloc_reg64(¤t,i,rs1[i]);
+ }
+ if(rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1])) {
+ // The delay slot overwrites one of our conditions.
+ // Allocate the branch condition registers instead.
+ // Note that such a sequence of instructions could
+ // be considered a bug since the branch can not be
+ // re-executed if an exception occurs.
+ current.isconst=0;
+ current.wasconst=0;
+ regs[i].wasconst=0;
+ if(rs1[i]) alloc_reg(¤t,i,rs1[i]);
+ if(!((current.is32>>rs1[i])&1))
+ {
+ if(rs1[i]) alloc_reg64(¤t,i,rs1[i]);
+ }
+ }
+ else delayslot_alloc(¤t,i+1);
+ }
+ else
+ // Don't alloc the delay slot yet because we might not execute it
+ if((opcode[i]&0x3E)==0x14) // BEQL/BNEL
+ {
+ current.isconst=0;
+ current.wasconst=0;
+ regs[i].wasconst=0;
+ alloc_cc(¤t,i);
+ dirty_reg(¤t,CCREG);
+ alloc_reg(¤t,i,rs1[i]);
+ alloc_reg(¤t,i,rs2[i]);
+ if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
+ {
+ alloc_reg64(¤t,i,rs1[i]);
+ alloc_reg64(¤t,i,rs2[i]);
+ }
+ }
+ else
+ if((opcode[i]&0x3E)==0x16) // BLEZL/BGTZL
+ {
+ current.isconst=0;
+ current.wasconst=0;
+ regs[i].wasconst=0;
+ alloc_cc(¤t,i);
+ dirty_reg(¤t,CCREG);
+ alloc_reg(¤t,i,rs1[i]);
+ if(!(current.is32>>rs1[i]&1))
+ {
+ alloc_reg64(¤t,i,rs1[i]);
+ }
+ }
+ ds=1;
+ //current.isconst=0;
+ break;
+ case SJUMP:
+ //current.isconst=0;
+ //current.wasconst=0;
+ //regs[i].wasconst=0;
+ clear_const(¤t,rs1[i]);
+ clear_const(¤t,rt1[i]);
+ //if((opcode2[i]&0x1E)==0x0) // BLTZ/BGEZ
+ if((opcode2[i]&0x0E)==0x0) // BLTZ/BGEZ
+ {
+ alloc_cc(¤t,i);
+ dirty_reg(¤t,CCREG);
+ alloc_reg(¤t,i,rs1[i]);
+ if(!(current.is32>>rs1[i]&1))
+ {
+ alloc_reg64(¤t,i,rs1[i]);
+ }
+ if (rt1[i]==31) { // BLTZAL/BGEZAL
+ alloc_reg(¤t,i,31);
+ dirty_reg(¤t,31);
+ assert(rs1[i+1]!=31&&rs2[i+1]!=31);
+ //#ifdef REG_PREFETCH
+ //alloc_reg(¤t,i,PTEMP);
+ //#endif
+ //current.is32|=1LL<<rt1[i];
+ }
+ if(rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1])) {
+ // The delay slot overwrites the branch condition.
+ // Allocate the branch condition registers instead.
+ // Note that such a sequence of instructions could
+ // be considered a bug since the branch can not be
+ // re-executed if an exception occurs.
+ current.isconst=0;
+ current.wasconst=0;
+ regs[i].wasconst=0;
+ if(rs1[i]) alloc_reg(¤t,i,rs1[i]);
+ if(!((current.is32>>rs1[i])&1))
+ {
+ if(rs1[i]) alloc_reg64(¤t,i,rs1[i]);
+ }
+ }
+ else delayslot_alloc(¤t,i+1);
+ }
+ else
+ // Don't alloc the delay slot yet because we might not execute it
+ if((opcode2[i]&0x1E)==0x2) // BLTZL/BGEZL
+ {
+ current.isconst=0;
+ current.wasconst=0;
+ regs[i].wasconst=0;
+ alloc_cc(¤t,i);
+ dirty_reg(¤t,CCREG);
+ alloc_reg(¤t,i,rs1[i]);
+ if(!(current.is32>>rs1[i]&1))
+ {
+ alloc_reg64(¤t,i,rs1[i]);
+ }
+ }
+ ds=1;
+ //current.isconst=0;
+ break;
+ case FJUMP:
+ current.isconst=0;
+ current.wasconst=0;
+ regs[i].wasconst=0;
+ if(likely[i]==0) // BC1F/BC1T
+ {
+ // TODO: Theoretically we can run out of registers here on x86.
+ // The delay slot can allocate up to six, and we need to check
+ // CSREG before executing the delay slot. Possibly we can drop
+ // the cycle count and then reload it after checking that the
+ // FPU is in a usable state, or don't do out-of-order execution.
+ alloc_cc(¤t,i);
+ dirty_reg(¤t,CCREG);
+ alloc_reg(¤t,i,FSREG);
+ alloc_reg(¤t,i,CSREG);
+ if(itype[i+1]==FCOMP) {
+ // The delay slot overwrites the branch condition.
+ // Allocate the branch condition registers instead.
+ // Note that such a sequence of instructions could
+ // be considered a bug since the branch can not be
+ // re-executed if an exception occurs.
+ alloc_cc(¤t,i);
+ dirty_reg(¤t,CCREG);
+ alloc_reg(¤t,i,CSREG);
+ alloc_reg(¤t,i,FSREG);
+ }
+ else {
+ delayslot_alloc(¤t,i+1);
+ alloc_reg(¤t,i+1,CSREG);
+ }
+ }
+ else
+ // Don't alloc the delay slot yet because we might not execute it
+ if(likely[i]) // BC1FL/BC1TL
+ {
+ alloc_cc(¤t,i);
+ dirty_reg(¤t,CCREG);
+ alloc_reg(¤t,i,CSREG);
+ alloc_reg(¤t,i,FSREG);
+ }
+ ds=1;
+ current.isconst=0;
+ break;
+ case IMM16:
+ imm16_alloc(¤t,i);
+ break;
+ case LOAD:
+ case LOADLR:
+ load_alloc(¤t,i);
+ break;
+ case STORE:
+ case STORELR:
+ store_alloc(¤t,i);
+ break;
+ case ALU:
+ alu_alloc(¤t,i);
+ break;
+ case SHIFT:
+ shift_alloc(¤t,i);
+ break;
+ case MULTDIV:
+ multdiv_alloc(¤t,i);
+ break;
+ case SHIFTIMM:
+ shiftimm_alloc(¤t,i);
+ break;
+ case MOV:
+ mov_alloc(¤t,i);
+ break;
+ case COP0:
+ cop0_alloc(¤t,i);
+ break;
+ case COP1:
+ cop1_alloc(¤t,i);
+ break;
+ case C1LS:
+ c1ls_alloc(¤t,i);
+ break;
+ case FCONV:
+ fconv_alloc(¤t,i);
+ break;
+ case FLOAT:
+ float_alloc(¤t,i);
+ break;
+ case FCOMP:
+ fcomp_alloc(¤t,i);
+ break;
+ case SYSCALL:
+ syscall_alloc(¤t,i);
+ break;
+ case SPAN:
+ pagespan_alloc(¤t,i);
+ break;
+ }
+
+ // Drop the upper half of registers that have become 32-bit
+ current.uu|=current.is32&((1LL<<rt1[i])|(1LL<<rt2[i]));
+ if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP) {
+ current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
+ if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
+ current.uu|=1;
+ } else {
+ current.uu|=current.is32&((1LL<<rt1[i+1])|(1LL<<rt2[i+1]));
+ current.uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
+ if((~current.uu>>rt1[i+1])&1) current.uu&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
+ current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
+ current.uu|=1;
+ }
+
+ // Create entry (branch target) regmap
+ for(hr=0;hr<HOST_REGS;hr++)
+ {
+ int r,or,er;
+ r=current.regmap[hr];
+ if(r>=0) {
+ if(r!=regmap_pre[i][hr]) {
+ // TODO: delay slot (?)
+ or=get_reg(regmap_pre[i],r); // Get old mapping for this register
+ if(or<0||(r&63)>=TEMPREG){
+ regs[i].regmap_entry[hr]=-1;
+ }
+ else
+ {
+ // Just move it to a different register
+ regs[i].regmap_entry[hr]=r;
+ // If it was dirty before, it's still dirty
+ if((regs[i].wasdirty>>or)&1) dirty_reg(¤t,r&63);
+ }
+ }
+ else
+ {
+ // Unneeded
+ if(r==0){
+ regs[i].regmap_entry[hr]=0;
+ }
+ else
+ if(r<64){
+ if((current.u>>r)&1) {
+ regs[i].regmap_entry[hr]=-1;
+ //regs[i].regmap[hr]=-1;
+ current.regmap[hr]=-1;
+ }else
+ regs[i].regmap_entry[hr]=r;
+ }
+ else {
+ if((current.uu>>(r&63))&1) {
+ regs[i].regmap_entry[hr]=-1;
+ //regs[i].regmap[hr]=-1;
+ current.regmap[hr]=-1;
+ }else
+ regs[i].regmap_entry[hr]=r;
+ }
+ }
+ } else {
+ // Branches expect CCREG to be allocated at the target
+ if(regmap_pre[i][hr]==CCREG)
+ regs[i].regmap_entry[hr]=CCREG;
+ else
+ regs[i].regmap_entry[hr]=-1;
+ }
+ }
+ memcpy(regs[i].regmap,current.regmap,sizeof(current.regmap));
+ }
+ /* Branch post-alloc */
+ if(i>0)
+ {
+ current.was32=current.is32;
+ current.wasdirty=current.dirty;
+ switch(itype[i-1]) {
+ case UJUMP:
+ memcpy(&branch_regs[i-1],¤t,sizeof(current));
+ branch_regs[i-1].isconst=0;
+ branch_regs[i-1].wasconst=0;
+ branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
+ branch_regs[i-1].uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
+ alloc_cc(&branch_regs[i-1],i-1);
+ dirty_reg(&branch_regs[i-1],CCREG);
+ if(rt1[i-1]==31) { // JAL
+ alloc_reg(&branch_regs[i-1],i-1,31);
+ dirty_reg(&branch_regs[i-1],31);
+ branch_regs[i-1].is32|=1LL<<31;
+ }
+ memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
+ memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
+ break;
+ case RJUMP:
+ memcpy(&branch_regs[i-1],¤t,sizeof(current));
+ branch_regs[i-1].isconst=0;
+ branch_regs[i-1].wasconst=0;
+ branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
+ branch_regs[i-1].uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
+ alloc_cc(&branch_regs[i-1],i-1);
+ dirty_reg(&branch_regs[i-1],CCREG);
+ alloc_reg(&branch_regs[i-1],i-1,rs1[i-1]);
+ if(rt1[i-1]==31) { // JALR
+ alloc_reg(&branch_regs[i-1],i-1,31);
+ dirty_reg(&branch_regs[i-1],31);
+ branch_regs[i-1].is32|=1LL<<31;
+ }
+ #ifdef USE_MINI_HT
+ if(rs1[i-1]==31) { // JALR
+ alloc_reg(&branch_regs[i-1],i-1,RHASH);
+ #ifndef HOST_IMM_ADDR32
+ alloc_reg(&branch_regs[i-1],i-1,RHTBL);
+ #endif
+ }
+ #endif
+ memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
+ memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
+ break;
+ case CJUMP:
+ if((opcode[i-1]&0x3E)==4) // BEQ/BNE
+ {
+ alloc_cc(¤t,i-1);
+ dirty_reg(¤t,CCREG);
+ if((rs1[i-1]&&(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]))||
+ (rs2[i-1]&&(rs2[i-1]==rt1[i]||rs2[i-1]==rt2[i]))) {
+ // The delay slot overwrote one of our conditions
+ // Delay slot goes after the test (in order)
+ current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
+ current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
+ if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
+ current.u|=1;
+ current.uu|=1;
+ delayslot_alloc(¤t,i);
+ current.isconst=0;
+ }
+ else
+ {
+ current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
+ current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
+ // Alloc the branch condition registers
+ if(rs1[i-1]) alloc_reg(¤t,i-1,rs1[i-1]);
+ if(rs2[i-1]) alloc_reg(¤t,i-1,rs2[i-1]);
+ if(!((current.is32>>rs1[i-1])&(current.is32>>rs2[i-1])&1))
+ {
+ if(rs1[i-1]) alloc_reg64(¤t,i-1,rs1[i-1]);
+ if(rs2[i-1]) alloc_reg64(¤t,i-1,rs2[i-1]);
+ }
+ }
+ memcpy(&branch_regs[i-1],¤t,sizeof(current));
+ branch_regs[i-1].isconst=0;
+ branch_regs[i-1].wasconst=0;
+ memcpy(&branch_regs[i-1].regmap_entry,¤t.regmap,sizeof(current.regmap));
+ memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
+ }
+ else
+ if((opcode[i-1]&0x3E)==6) // BLEZ/BGTZ
+ {
+ alloc_cc(¤t,i-1);
+ dirty_reg(¤t,CCREG);
+ if(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]) {
+ // The delay slot overwrote the branch condition
+ // Delay slot goes after the test (in order)
+ current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
+ current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
+ if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
+ current.u|=1;
+ current.uu|=1;
+ delayslot_alloc(¤t,i);
+ current.isconst=0;
+ }
+ else
+ {
+ current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
+ current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
+ // Alloc the branch condition register
+ alloc_reg(¤t,i-1,rs1[i-1]);
+ if(!(current.is32>>rs1[i-1]&1))
+ {
+ alloc_reg64(¤t,i-1,rs1[i-1]);
+ }
+ }
+ memcpy(&branch_regs[i-1],¤t,sizeof(current));
+ branch_regs[i-1].isconst=0;
+ branch_regs[i-1].wasconst=0;
+ memcpy(&branch_regs[i-1].regmap_entry,¤t.regmap,sizeof(current.regmap));
+ memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
+ }
+ else
+ // Alloc the delay slot in case the branch is taken
+ if((opcode[i-1]&0x3E)==0x14) // BEQL/BNEL
+ {
+ memcpy(&branch_regs[i-1],¤t,sizeof(current));
+ branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
+ branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
+ if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
+ alloc_cc(&branch_regs[i-1],i);
+ dirty_reg(&branch_regs[i-1],CCREG);
+ delayslot_alloc(&branch_regs[i-1],i);
+ branch_regs[i-1].isconst=0;
+ alloc_reg(¤t,i,CCREG); // Not taken path
+ dirty_reg(¤t,CCREG);
+ memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
+ }
+ else
+ if((opcode[i-1]&0x3E)==0x16) // BLEZL/BGTZL
+ {
+ memcpy(&branch_regs[i-1],¤t,sizeof(current));
+ branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
+ branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
+ if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
+ alloc_cc(&branch_regs[i-1],i);
+ dirty_reg(&branch_regs[i-1],CCREG);
+ delayslot_alloc(&branch_regs[i-1],i);
+ branch_regs[i-1].isconst=0;
+ alloc_reg(¤t,i,CCREG); // Not taken path
+ dirty_reg(¤t,CCREG);
+ memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
+ }
+ break;
+ case SJUMP:
+ //if((opcode2[i-1]&0x1E)==0) // BLTZ/BGEZ
+ if((opcode2[i-1]&0x0E)==0) // BLTZ/BGEZ
+ {
+ alloc_cc(¤t,i-1);
+ dirty_reg(¤t,CCREG);
+ if(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]) {
+ // The delay slot overwrote the branch condition
+ // Delay slot goes after the test (in order)
+ current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
+ current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
+ if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
+ current.u|=1;
+ current.uu|=1;
+ delayslot_alloc(¤t,i);
+ current.isconst=0;
+ }
+ else
+ {
+ current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
+ current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
+ // Alloc the branch condition register
+ alloc_reg(¤t,i-1,rs1[i-1]);
+ if(!(current.is32>>rs1[i-1]&1))
+ {
+ alloc_reg64(¤t,i-1,rs1[i-1]);
+ }
+ }
+ memcpy(&branch_regs[i-1],¤t,sizeof(current));
+ branch_regs[i-1].isconst=0;
+ branch_regs[i-1].wasconst=0;
+ memcpy(&branch_regs[i-1].regmap_entry,¤t.regmap,sizeof(current.regmap));
+ memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
+ }
+ else
+ // Alloc the delay slot in case the branch is taken
+ if((opcode2[i-1]&0x1E)==2) // BLTZL/BGEZL
+ {
+ memcpy(&branch_regs[i-1],¤t,sizeof(current));
+ branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
+ branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
+ if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
+ alloc_cc(&branch_regs[i-1],i);
+ dirty_reg(&branch_regs[i-1],CCREG);
+ delayslot_alloc(&branch_regs[i-1],i);
+ branch_regs[i-1].isconst=0;
+ alloc_reg(¤t,i,CCREG); // Not taken path
+ dirty_reg(¤t,CCREG);
+ memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
+ }
+ // FIXME: BLTZAL/BGEZAL
+ if(opcode2[i-1]&0x10) { // BxxZAL
+ alloc_reg(&branch_regs[i-1],i-1,31);
+ dirty_reg(&branch_regs[i-1],31);
+ branch_regs[i-1].is32|=1LL<<31;
+ }
+ break;
+ case FJUMP:
+ if(likely[i-1]==0) // BC1F/BC1T
+ {
+ alloc_cc(¤t,i-1);
+ dirty_reg(¤t,CCREG);
+ if(itype[i]==FCOMP) {
+ // The delay slot overwrote the branch condition
+ // Delay slot goes after the test (in order)
+ delayslot_alloc(¤t,i);
+ current.isconst=0;
+ }
+ else
+ {
+ current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
+ current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
+ // Alloc the branch condition register
+ alloc_reg(¤t,i-1,FSREG);
+ }
+ memcpy(&branch_regs[i-1],¤t,sizeof(current));
+ memcpy(&branch_regs[i-1].regmap_entry,¤t.regmap,sizeof(current.regmap));
+ }
+ else // BC1FL/BC1TL
+ {
+ // Alloc the delay slot in case the branch is taken
+ memcpy(&branch_regs[i-1],¤t,sizeof(current));
+ branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
+ branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
+ if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
+ alloc_cc(&branch_regs[i-1],i);
+ dirty_reg(&branch_regs[i-1],CCREG);
+ delayslot_alloc(&branch_regs[i-1],i);
+ branch_regs[i-1].isconst=0;
+ alloc_reg(¤t,i,CCREG); // Not taken path
+ dirty_reg(¤t,CCREG);
+ memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
+ }
+ break;
+ }
+
+ if(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)
+ {
+ if(rt1[i-1]==31) // JAL/JALR
+ {
+ // Subroutine call will return here, don't alloc any registers
+ current.is32=1;
+ current.dirty=0;
+ clear_all_regs(current.regmap);
+ alloc_reg(¤t,i,CCREG);
+ dirty_reg(¤t,CCREG);
+ }
+ else if(i+1<slen)
+ {
+ // Internal branch will jump here, match registers to caller
+ current.is32=0x3FFFFFFFFLL;
+ current.dirty=0;
+ clear_all_regs(current.regmap);
+ alloc_reg(¤t,i,CCREG);
+ dirty_reg(¤t,CCREG);
+ for(j=i-1;j>=0;j--)
+ {
+ if(ba[j]==start+i*4+4) {
+ memcpy(current.regmap,branch_regs[j].regmap,sizeof(current.regmap));
+ current.is32=branch_regs[j].is32;
+ current.dirty=branch_regs[j].dirty;
+ break;
+ }
+ }
+ while(j>=0) {
+ if(ba[j]==start+i*4+4) {
+ for(hr=0;hr<HOST_REGS;hr++) {
+ if(current.regmap[hr]!=branch_regs[j].regmap[hr]) {
+ current.regmap[hr]=-1;
+ }
+ current.is32&=branch_regs[j].is32;
+ current.dirty&=branch_regs[j].dirty;
+ }
+ }
+ j--;
+ }
+ }
+ }
+ }
+
+ // Count cycles in between branches
+ ccadj[i]=cc;
+ if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP||itype[i]==SYSCALL))
+ {
+ cc=0;
+ }
+ else
+ {
+ cc++;
+ }
+
+ flush_dirty_uppers(¤t);
+ if(!is_ds[i]) {
+ regs[i].is32=current.is32;
+ regs[i].dirty=current.dirty;
+ regs[i].isconst=current.isconst;
+ memcpy(constmap[i],current.constmap,sizeof(current.constmap));
+ }
+ for(hr=0;hr<HOST_REGS;hr++) {
+ if(hr!=EXCLUDE_REG&®s[i].regmap[hr]>=0) {
+ if(regmap_pre[i][hr]!=regs[i].regmap[hr]) {
+ regs[i].wasconst&=~(1<<hr);
+ }
+ }
+ }
+ if(current.regmap[HOST_BTREG]==BTREG) current.regmap[HOST_BTREG]=-1;
+ }
+
+ /* Pass 4 - Cull unused host registers */
+
+ uint64_t nr=0;
+
+ for (i=slen-1;i>=0;i--)
+ {
+ int hr;
+ if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
+ {
+ if(ba[i]<start || ba[i]>=(start+slen*4))
+ {
+ // Branch out of this block, don't need anything
+ nr=0;
+ }
+ else
+ {
+ // Internal branch
+ // Need whatever matches the target
+ nr=0;
+ int t=(ba[i]-start)>>2;
+ for(hr=0;hr<HOST_REGS;hr++)
+ {
+ if(regs[i].regmap_entry[hr]>=0) {
+ if(regs[i].regmap_entry[hr]==regs[t].regmap_entry[hr]) nr|=1<<hr;
+ }
+ }
+ }
+ // Conditional branch may need registers for following instructions
+ if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
+ {
+ if(i<slen-2) {
+ nr|=needed_reg[i+2];
+ for(hr=0;hr<HOST_REGS;hr++)
+ {
+ if(regmap_pre[i+2][hr]>=0&&get_reg(regs[i+2].regmap_entry,regmap_pre[i+2][hr])<0) nr&=~(1<<hr);
+ //if((regmap_entry[i+2][hr])>=0) if(!((nr>>hr)&1)) printf("%x-bogus(%d=%d)\n",start+i*4,hr,regmap_entry[i+2][hr]);
+ }
+ }
+ }
+ // Don't need stuff which is overwritten
+ if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
+ if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
+ // Merge in delay slot
+ for(hr=0;hr<HOST_REGS;hr++)
+ {
+ if(!likely[i]) {
+ // These are overwritten unless the branch is "likely"
+ // and the delay slot is nullified if not taken
+ if(rt1[i+1]&&rt1[i+1]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
+ if(rt2[i+1]&&rt2[i+1]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
+ }
+ if(us1[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
+ if(us2[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
+ if(rs1[i+1]==regmap_pre[i][hr]) nr|=1<<hr;
+ if(rs2[i+1]==regmap_pre[i][hr]) nr|=1<<hr;
+ if(us1[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
+ if(us2[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
+ if(rs1[i+1]==regs[i].regmap_entry[hr]) nr|=1<<hr;
+ if(rs2[i+1]==regs[i].regmap_entry[hr]) nr|=1<<hr;
+ if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1)) {
+ if(dep1[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
+ if(dep2[i+1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
+ }
+ if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1)) {
+ if(dep1[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
+ if(dep2[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
+ }
+ if(itype[i+1]==STORE || itype[i+1]==STORELR || (opcode[i+1]&0x3b)==0x39) {
+ if(regmap_pre[i][hr]==INVCP) nr|=1<<hr;
+ if(regs[i].regmap_entry[hr]==INVCP) nr|=1<<hr;
+ }
+ }
+ }
+ else if(itype[i]==SYSCALL)
+ {
+ // SYSCALL instruction (software interrupt)
+ nr=0;
+ }
+ else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
+ {
+ // ERET instruction (return from interrupt)
+ nr=0;
+ }
+ else // Non-branch
+ {
+ if(i<slen-1) {
+ for(hr=0;hr<HOST_REGS;hr++) {
+ if(regmap_pre[i+1][hr]>=0&&get_reg(regs[i+1].regmap_entry,regmap_pre[i+1][hr])<0) nr&=~(1<<hr);
+ if(regs[i].regmap[hr]!=regmap_pre[i+1][hr]) nr&=~(1<<hr);
+ if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
+ if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
+ }
+ }
+ }
+ for(hr=0;hr<HOST_REGS;hr++)
+ {
+ // Overwritten registers are not needed
+ if(rt1[i]&&rt1[i]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
+ if(rt2[i]&&rt2[i]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
+ if(FTEMP==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
+ // Source registers are needed
+ if(us1[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
+ if(us2[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
+ if(rs1[i]==regmap_pre[i][hr]) nr|=1<<hr;
+ if(rs2[i]==regmap_pre[i][hr]) nr|=1<<hr;
+ if(us1[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
+ if(us2[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
+ if(rs1[i]==regs[i].regmap_entry[hr]) nr|=1<<hr;
+ if(rs2[i]==regs[i].regmap_entry[hr]) nr|=1<<hr;
+ if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1)) {
+ if(dep1[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
+ if(dep1[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
+ }
+ if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1)) {
+ if(dep2[i]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
+ if(dep2[i]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
+ }
+ if(itype[i]==STORE || itype[i]==STORELR || (opcode[i]&0x3b)==0x39) {
+ if(regmap_pre[i][hr]==INVCP) nr|=1<<hr;
+ if(regs[i].regmap_entry[hr]==INVCP) nr|=1<<hr;
+ }
+ // Don't store a register immediately after writing it,
+ // may prevent dual-issue.
+ // But do so if this is a branch target, otherwise we
+ // might have to load the register before the branch.
+ if(i>0&&!bt[i]&&((regs[i].wasdirty>>hr)&1)) {
+ if((regmap_pre[i][hr]>0&®map_pre[i][hr]<64&&!((unneeded_reg[i]>>regmap_pre[i][hr])&1)) ||
+ (regmap_pre[i][hr]>64&&!((unneeded_reg_upper[i]>>(regmap_pre[i][hr]&63))&1)) ) {
+ if(rt1[i-1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
+ if(rt2[i-1]==(regmap_pre[i][hr]&63)) nr|=1<<hr;
+ }
+ if((regs[i].regmap_entry[hr]>0&®s[i].regmap_entry[hr]<64&&!((unneeded_reg[i]>>regs[i].regmap_entry[hr])&1)) ||
+ (regs[i].regmap_entry[hr]>64&&!((unneeded_reg_upper[i]>>(regs[i].regmap_entry[hr]&63))&1)) ) {
+ if(rt1[i-1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
+ if(rt2[i-1]==(regs[i].regmap_entry[hr]&63)) nr|=1<<hr;
+ }
+ }
+ }
+ // Cycle count is needed at branches. Assume it is needed at the target too.
+ if(i==0||bt[i]||itype[i]==CJUMP||itype[i]==FJUMP||itype[i]==SPAN) {
+ if(regmap_pre[i][HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
+ if(regs[i].regmap_entry[HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
+ }
+ // Save it
+ needed_reg[i]=nr;
+
+ // Deallocate unneeded registers
+ for(hr=0;hr<HOST_REGS;hr++)
+ {
+ if(!((nr>>hr)&1)) {
+ if(regs[i].regmap_entry[hr]!=CCREG) regs[i].regmap_entry[hr]=-1;
+ if((regs[i].regmap[hr]&63)!=rs1[i] && (regs[i].regmap[hr]&63)!=rs2[i] &&
+ (regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
+ (regs[i].regmap[hr]&63)!=PTEMP && (regs[i].regmap[hr]&63)!=CCREG)
+ {
+ if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
+ {
+ if(likely[i]) {
+ regs[i].regmap[hr]=-1;
+ regs[i].isconst&=~(1<<hr);
+ if(i<slen-2) regmap_pre[i+2][hr]=-1;
+ }
+ }
+ }
+ if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
+ {
+ int d1=0,d2=0,map=0,temp=0;
+ if(get_reg(regs[i].regmap,rt1[i+1]|64)>=0||get_reg(branch_regs[i].regmap,rt1[i+1]|64)>=0)
+ {
+ d1=dep1[i+1];
+ d2=dep2[i+1];
+ }
+ if(using_tlb) {
+ if(itype[i+1]==LOAD || itype[i+1]==LOADLR ||
+ itype[i+1]==STORE || itype[i+1]==STORELR ||
+ itype[i+1]==C1LS )
+ map=TLREG;
+ } else
+ if(itype[i+1]==STORE || itype[i+1]==STORELR || (opcode[i+1]&0x3b)==0x39) {
+ map=INVCP;
+ }
+ if(itype[i+1]==LOADLR || itype[i+1]==STORELR ||
+ itype[i+1]==C1LS )
+ temp=FTEMP;
+ if((regs[i].regmap[hr]&63)!=rs1[i] && (regs[i].regmap[hr]&63)!=rs2[i] &&
+ (regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
+ (regs[i].regmap[hr]&63)!=rt1[i+1] && (regs[i].regmap[hr]&63)!=rt2[i+1] &&
+ (regs[i].regmap[hr]^64)!=us1[i+1] && (regs[i].regmap[hr]^64)!=us2[i+1] &&
+ (regs[i].regmap[hr]^64)!=d1 && (regs[i].regmap[hr]^64)!=d2 &&
+ regs[i].regmap[hr]!=rs1[i+1] && regs[i].regmap[hr]!=rs2[i+1] &&
+ (regs[i].regmap[hr]&63)!=temp && regs[i].regmap[hr]!=PTEMP &&
+ regs[i].regmap[hr]!=RHASH && regs[i].regmap[hr]!=RHTBL &&
+ regs[i].regmap[hr]!=RTEMP && regs[i].regmap[hr]!=CCREG &&
+ regs[i].regmap[hr]!=map )
+ {
+ regs[i].regmap[hr]=-1;
+ regs[i].isconst&=~(1<<hr);
+ if((branch_regs[i].regmap[hr]&63)!=rs1[i] && (branch_regs[i].regmap[hr]&63)!=rs2[i] &&
+ (branch_regs[i].regmap[hr]&63)!=rt1[i] && (branch_regs[i].regmap[hr]&63)!=rt2[i] &&
+ (branch_regs[i].regmap[hr]&63)!=rt1[i+1] && (branch_regs[i].regmap[hr]&63)!=rt2[i+1] &&
+ (branch_regs[i].regmap[hr]^64)!=us1[i+1] && (branch_regs[i].regmap[hr]^64)!=us2[i+1] &&
+ (branch_regs[i].regmap[hr]^64)!=d1 && (branch_regs[i].regmap[hr]^64)!=d2 &&
+ branch_regs[i].regmap[hr]!=rs1[i+1] && branch_regs[i].regmap[hr]!=rs2[i+1] &&
+ (branch_regs[i].regmap[hr]&63)!=temp && branch_regs[i].regmap[hr]!=PTEMP &&
+ branch_regs[i].regmap[hr]!=RHASH && branch_regs[i].regmap[hr]!=RHTBL &&
+ branch_regs[i].regmap[hr]!=RTEMP && branch_regs[i].regmap[hr]!=CCREG &&
+ branch_regs[i].regmap[hr]!=map)
+ {
+ branch_regs[i].regmap[hr]=-1;
+ branch_regs[i].regmap_entry[hr]=-1;
+ if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
+ {
+ if(!likely[i]&&i<slen-2) {
+ regmap_pre[i+2][hr]=-1;
+ }
+ }
+ }
+ }
+ }
+ else
+ {
+ // Non-branch
+ if(i>0)
+ {
+ int d1=0,d2=0,map=-1,temp=-1;
+ if(get_reg(regs[i].regmap,rt1[i]|64)>=0)
+ {
+ d1=dep1[i];
+ d2=dep2[i];
+ }
+ if(using_tlb) {
+ if(itype[i]==LOAD || itype[i]==LOADLR ||
+ itype[i]==STORE || itype[i]==STORELR ||
+ itype[i]==C1LS )
+ map=TLREG;
+ } else if(itype[i]==STORE || itype[i]==STORELR || (opcode[i]&0x3b)==0x39) {
+ map=INVCP;
+ }
+ if(itype[i]==LOADLR || itype[i]==STORELR ||
+ itype[i]==C1LS )
+ temp=FTEMP;
+ if((regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
+ (regs[i].regmap[hr]^64)!=us1[i] && (regs[i].regmap[hr]^64)!=us2[i] &&
+ (regs[i].regmap[hr]^64)!=d1 && (regs[i].regmap[hr]^64)!=d2 &&
+ regs[i].regmap[hr]!=rs1[i] && regs[i].regmap[hr]!=rs2[i] &&
+ (regs[i].regmap[hr]&63)!=temp && regs[i].regmap[hr]!=map &&
+ (itype[i]!=SPAN||regs[i].regmap[hr]!=CCREG))
+ {
+ if(i<slen-1&&!is_ds[i]) {
+ if(regmap_pre[i+1][hr]!=-1 || regs[i].regmap[hr]!=-1)
+ if(regmap_pre[i+1][hr]!=regs[i].regmap[hr])
+ if(regs[i].regmap[hr]<64||!((regs[i].was32>>(regs[i].regmap[hr]&63))&1))
+ {
+ printf("fail: %x (%d %d!=%d)\n",start+i*4,hr,regmap_pre[i+1][hr],regs[i].regmap[hr]);
+ assert(regmap_pre[i+1][hr]==regs[i].regmap[hr]);
+ }
+ regmap_pre[i+1][hr]=-1;
+ if(regs[i+1].regmap_entry[hr]==CCREG) regs[i+1].regmap_entry[hr]=-1;
+ }
+ regs[i].regmap[hr]=-1;
+ regs[i].isconst&=~(1<<hr);
+ }
+ }
+ }
+ }
+ }
+ }
+
+ /* Pass 5 - Pre-allocate registers */
+
+ // If a register is allocated during a loop, try to allocate it for the
+ // entire loop, if possible. This avoids loading/storing registers
+ // inside of the loop.
+
+ signed char f_regmap[HOST_REGS];
+ clear_all_regs(f_regmap);
+ for(i=0;i<slen-1;i++)
+ {
+ if(itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
+ {
+ if(ba[i]>=start && ba[i]<(start+i*4))
+ if(itype[i+1]==NOP||itype[i+1]==MOV||itype[i+1]==ALU
+ ||itype[i+1]==SHIFTIMM||itype[i+1]==IMM16||itype[i+1]==LOAD
+ ||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS
+ ||itype[i+1]==SHIFT||itype[i+1]==COP1||itype[i+1]==FLOAT
+ ||itype[i+1]==FCOMP||itype[i+1]==FCONV)
+ {
+ int t=(ba[i]-start)>>2;
+ if(t>0&&(itype[t-1]!=UJUMP&&itype[t-1]!=RJUMP&&itype[t-1]!=CJUMP&&itype[t-1]!=SJUMP&&itype[t-1]!=FJUMP)) // loop_preload can't handle jumps into delay slots
+ if(t<2||(itype[t-2]!=UJUMP)) // call/ret assumes no registers allocated
+ for(hr=0;hr<HOST_REGS;hr++)
+ {
+ if(regs[i].regmap[hr]>64) {
+ if(!((regs[i].dirty>>hr)&1))
+ f_regmap[hr]=regs[i].regmap[hr];
+ else f_regmap[hr]=-1;
+ }
+ else if(regs[i].regmap[hr]>=0) f_regmap[hr]=regs[i].regmap[hr];
+ if(branch_regs[i].regmap[hr]>64) {
+ if(!((branch_regs[i].dirty>>hr)&1))
+ f_regmap[hr]=branch_regs[i].regmap[hr];
+ else f_regmap[hr]=-1;
+ }
+ else if(branch_regs[i].regmap[hr]>=0) f_regmap[hr]=branch_regs[i].regmap[hr];
+ if(itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS
+ ||itype[i+1]==SHIFT||itype[i+1]==COP1||itype[i+1]==FLOAT
+ ||itype[i+1]==FCOMP||itype[i+1]==FCONV)
+ {
+ // Test both in case the delay slot is ooo,
+ // could be done better...
+ if(count_free_regs(branch_regs[i].regmap)<2
+ ||count_free_regs(regs[i].regmap)<2)
+ f_regmap[hr]=branch_regs[i].regmap[hr];
+ }
+ // Avoid dirty->clean transition
+ // #ifdef DESTRUCTIVE_WRITEBACK here?
+ if(t>0) if(get_reg(regmap_pre[t],f_regmap[hr])>=0) if((regs[t].wasdirty>>get_reg(regmap_pre[t],f_regmap[hr]))&1) f_regmap[hr]=-1;
+ if(f_regmap[hr]>0) {
+ if(regs[t].regmap_entry[hr]<0) {
+ int r=f_regmap[hr];
+ for(j=t;j<=i;j++)
+ {
+ //printf("Test %x -> %x, %x %d/%d\n",start+i*4,ba[i],start+j*4,hr,r);
+ if(r<34&&((unneeded_reg[j]>>r)&1)) break;
+ if(r>63&&((unneeded_reg_upper[j]>>(r&63))&1)) break;
+ if(r>63) {
+ // NB This can exclude the case where the upper-half
+ // register is lower numbered than the lower-half
+ // register. Not sure if it's worth fixing...
+ if(get_reg(regs[j].regmap,r&63)<0) break;
+ if(regs[j].is32&(1LL<<(r&63))) break;
+ }
+ if(regs[j].regmap[hr]==f_regmap[hr]&&(f_regmap[hr]&63)<TEMPREG) {
+ //printf("Hit %x -> %x, %x %d/%d\n",start+i*4,ba[i],start+j*4,hr,r);
+ int k;
+ if(regs[i].regmap[hr]==-1&&branch_regs[i].regmap[hr]==-1) {
+ if(get_reg(regs[i+2].regmap,f_regmap[hr])>=0) break;
+ if(r>63) {
+ if(get_reg(regs[i].regmap,r&63)<0) break;
+ if(get_reg(branch_regs[i].regmap,r&63)<0) break;
+ }
+ k=i;
+ while(k>1&®s[k-1].regmap[hr]==-1) {
+ if(itype[k-1]==STORE||itype[k-1]==STORELR
+ ||itype[k-1]==C1LS||itype[k-1]==SHIFT||itype[k-1]==COP1
+ ||itype[k-1]==FLOAT||itype[k-1]==FCONV
+ ||itype[k-1]==FCOMP) {
+ if(count_free_regs(regs[k-1].regmap)<2) {
+ //printf("no free regs for store %x\n",start+(k-1)*4);
+ break;
+ }
+ }
+ else
+ if(itype[k-1]!=NOP&&itype[k-1]!=MOV&&itype[k-1]!=ALU&&itype[k-1]!=SHIFTIMM&&itype[k-1]!=IMM16&&itype[k-1]!=LOAD) break;
+ if(get_reg(regs[k-1].regmap,f_regmap[hr])>=0) {
+ //printf("no-match due to different register\n");
+ break;
+ }
+ if(itype[k-2]==UJUMP||itype[k-2]==RJUMP||itype[k-2]==CJUMP||itype[k-2]==SJUMP||itype[k-2]==FJUMP) {
+ //printf("no-match due to branch\n");
+ break;
+ }
+ // call/ret fast path assumes no registers allocated
+ if(k>2&&(itype[k-3]==UJUMP||itype[k-3]==RJUMP)) {
+ break;
+ }
+ if(r>63) {
+ // NB This can exclude the case where the upper-half
+ // register is lower numbered than the lower-half
+ // register. Not sure if it's worth fixing...
+ if(get_reg(regs[k-1].regmap,r&63)<0) break;
+ if(regs[k-1].is32&(1LL<<(r&63))) break;
+ }
+ k--;
+ }
+ if(i<slen-1) {
+ if((regs[k].is32&(1LL<<f_regmap[hr]))!=
+ (regs[i+2].was32&(1LL<<f_regmap[hr]))) {
+ //printf("bad match after branch\n");
+ break;
+ }
+ }
+ if(regs[k-1].regmap[hr]==f_regmap[hr]&®map_pre[k][hr]==f_regmap[hr]) {
+ //printf("Extend r%d, %x ->\n",hr,start+k*4);
+ while(k<i) {
+ regs[k].regmap_entry[hr]=f_regmap[hr];
+ regs[k].regmap[hr]=f_regmap[hr];
+ regmap_pre[k+1][hr]=f_regmap[hr];
+ regs[k].wasdirty&=~(1<<hr);
+ regs[k].dirty&=~(1<<hr);
+ regs[k].wasdirty|=(1<<hr)®s[k-1].dirty;
+ regs[k].dirty|=(1<<hr)®s[k].wasdirty;
+ regs[k].wasconst&=~(1<<hr);
+ regs[k].isconst&=~(1<<hr);
+ k++;
+ }
+ }
+ else {
+ //printf("Fail Extend r%d, %x ->\n",hr,start+k*4);
+ break;
+ }
+ assert(regs[i-1].regmap[hr]==f_regmap[hr]);
+ if(regs[i-1].regmap[hr]==f_regmap[hr]&®map_pre[i][hr]==f_regmap[hr]) {
+ //printf("OK fill %x (r%d)\n",start+i*4,hr);
+ regs[i].regmap_entry[hr]=f_regmap[hr];
+ regs[i].regmap[hr]=f_regmap[hr];
+ regs[i].wasdirty&=~(1<<hr);
+ regs[i].dirty&=~(1<<hr);
+ regs[i].wasdirty|=(1<<hr)®s[i-1].dirty;
+ regs[i].dirty|=(1<<hr)®s[i-1].dirty;
+ regs[i].wasconst&=~(1<<hr);
+ regs[i].isconst&=~(1<<hr);
+ branch_regs[i].regmap_entry[hr]=f_regmap[hr];
+ branch_regs[i].wasdirty&=~(1<<hr);
+ branch_regs[i].wasdirty|=(1<<hr)®s[i].dirty;
+ branch_regs[i].regmap[hr]=f_regmap[hr];
+ branch_regs[i].dirty&=~(1<<hr);
+ branch_regs[i].dirty|=(1<<hr)®s[i].dirty;
+ branch_regs[i].wasconst&=~(1<<hr);
+ branch_regs[i].isconst&=~(1<<hr);
+ if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000) {
+ regmap_pre[i+2][hr]=f_regmap[hr];
+ regs[i+2].wasdirty&=~(1<<hr);
+ regs[i+2].wasdirty|=(1<<hr)®s[i].dirty;
+ assert((branch_regs[i].is32&(1LL<<f_regmap[hr]))==
+ (regs[i+2].was32&(1LL<<f_regmap[hr])));
+ }
+ }
+ }
+ for(k=t;k<j;k++) {
+ regs[k].regmap_entry[hr]=f_regmap[hr];
+ regs[k].regmap[hr]=f_regmap[hr];
+ regmap_pre[k+1][hr]=f_regmap[hr];
+ regs[k+1].wasdirty&=~(1<<hr);
+ regs[k].dirty&=~(1<<hr);
+ regs[k].wasconst&=~(1<<hr);
+ regs[k].isconst&=~(1<<hr);
+ }
+ if(regs[j].regmap[hr]==f_regmap[hr])
+ regs[j].regmap_entry[hr]=f_regmap[hr];
+ break;
+ }
+ if(j==i) break;
+ if(regs[j].regmap[hr]>=0)
+ break;
+ if(get_reg(regs[j].regmap,f_regmap[hr])>=0) {
+ //printf("no-match due to different register\n");
+ break;
+ }
+ if((regs[j+1].is32&(1LL<<f_regmap[hr]))!=(regs[j].is32&(1LL<<f_regmap[hr]))) {
+ //printf("32/64 mismatch %x %d\n",start+j*4,hr);
+ break;
+ }
+ if(itype[j]==STORE||itype[j]==STORELR||itype[j]==C1LS
+ ||itype[j]==SHIFT||itype[j]==COP1||itype[j]==FLOAT
+ ||itype[j]==FCOMP||itype[j]==FCONV) {
+ if(count_free_regs(regs[j].regmap)<2) {
+ //printf("No free regs for store %x\n",start+j*4);
+ break;
+ }
+ }
+ else if(itype[j]!=NOP&&itype[j]!=MOV&&itype[j]!=ALU&&itype[j]!=SHIFTIMM&&itype[j]!=IMM16&&itype[j]!=LOAD) break;
+ if(f_regmap[hr]>=64) {
+ if(regs[j].is32&(1LL<<(f_regmap[hr]&63))) {
+ break;
+ }
+ else
+ {
+ if(get_reg(regs[j].regmap,f_regmap[hr]&63)<0) {
+ break;
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ }else{
+ int count=0;
+ for(hr=0;hr<HOST_REGS;hr++)
+ {
+ if(hr!=EXCLUDE_REG) {
+ if(regs[i].regmap[hr]>64) {
+ if(!((regs[i].dirty>>hr)&1))
+ f_regmap[hr]=regs[i].regmap[hr];
+ }
+ else if(regs[i].regmap[hr]>=0) f_regmap[hr]=regs[i].regmap[hr];
+ else if(regs[i].regmap[hr]<0) count++;
+ }
+ }
+ // Try to restore cycle count at branch targets
+ if(bt[i]) {
+ for(j=i;j<slen-1;j++) {
+ if(regs[j].regmap[HOST_CCREG]!=-1) break;
+ if(itype[j]==STORE||itype[j]==STORELR||itype[j]==C1LS
+ ||itype[j]==SHIFT||itype[j]==COP1||itype[j]==FLOAT
+ ||itype[j]==FCOMP||itype[j]==FCONV) {
+ if(count_free_regs(regs[j].regmap)<2) {
+ //printf("no free regs for store %x\n",start+j*4);
+ break;
+ }
+ }
+ else
+ if(itype[j]!=NOP&&itype[j]!=MOV&&itype[j]!=ALU&&itype[j]!=SHIFTIMM&&itype[j]!=IMM16&&itype[j]!=LOAD) break;
+ }
+ if(regs[j].regmap[HOST_CCREG]==CCREG) {
+ int k=i;
+ //printf("Extend CC, %x -> %x\n",start+k*4,start+j*4);
+ while(k<j) {
+ regs[k].regmap_entry[HOST_CCREG]=CCREG;
+ regs[k].regmap[HOST_CCREG]=CCREG;
+ regmap_pre[k+1][HOST_CCREG]=CCREG;
+ regs[k+1].wasdirty|=1<<HOST_CCREG;
+ regs[k].dirty|=1<<HOST_CCREG;
+ regs[k].wasconst&=~(1<<HOST_CCREG);
+ regs[k].isconst&=~(1<<HOST_CCREG);
+ k++;
+ }
+ regs[j].regmap_entry[HOST_CCREG]=CCREG;
+ }
+ // Work backwards from the branch target
+ if(j>i&&f_regmap[HOST_CCREG]==CCREG)
+ {
+ //printf("Extend backwards\n");
+ int k;
+ k=i;
+ while(regs[k-1].regmap[HOST_CCREG]==-1) {
+ if(itype[k-1]==STORE||itype[k-1]==STORELR||itype[k-1]==C1LS
+ ||itype[k-1]==SHIFT||itype[k-1]==COP1||itype[k-1]==FLOAT
+ ||itype[k-1]==FCONV||itype[k-1]==FCOMP) {
+ if(count_free_regs(regs[k-1].regmap)<2) {
+ //printf("no free regs for store %x\n",start+(k-1)*4);
+ break;
+ }
+ }
+ else
+ if(itype[k-1]!=NOP&&itype[k-1]!=MOV&&itype[k-1]!=ALU&&itype[k-1]!=SHIFTIMM&&itype[k-1]!=IMM16&&itype[k-1]!=LOAD) break;
+ k--;
+ }
+ if(regs[k-1].regmap[HOST_CCREG]==CCREG) {
+ //printf("Extend CC, %x ->\n",start+k*4);
+ while(k<=i) {
+ regs[k].regmap_entry[HOST_CCREG]=CCREG;
+ regs[k].regmap[HOST_CCREG]=CCREG;
+ regmap_pre[k+1][HOST_CCREG]=CCREG;
+ regs[k+1].wasdirty|=1<<HOST_CCREG;
+ regs[k].dirty|=1<<HOST_CCREG;
+ regs[k].wasconst&=~(1<<HOST_CCREG);
+ regs[k].isconst&=~(1<<HOST_CCREG);
+ k++;
+ }
+ }
+ else {
+ //printf("Fail Extend CC, %x ->\n",start+k*4);
+ }
+ }
+ }
+ if(itype[i]!=STORE&&itype[i]!=STORELR&&itype[i]!=C1LS&&itype[i]!=SHIFT&&
+ itype[i]!=NOP&&itype[i]!=MOV&&itype[i]!=ALU&&itype[i]!=SHIFTIMM&&
+ itype[i]!=IMM16&&itype[i]!=LOAD&&itype[i]!=COP1&&itype[i]!=FLOAT&&
+ itype[i]!=FCONV&&itype[i]!=FCOMP)
+ {
+ memcpy(f_regmap,regs[i].regmap,sizeof(f_regmap));
+ }
+ }
+ }
+
+ // This allocates registers (if possible) one instruction prior
+ // to use, which can avoid a load-use penalty on certain CPUs.
+ for(i=0;i<slen-1;i++)
+ {
+ if(!i||(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP))
+ {
+ if(!bt[i+1])
+ {
+ if(itype[i]==ALU||itype[i]==MOV||itype[i]==LOAD||itype[i]==SHIFTIMM||itype[i]==IMM16||(itype[i]==COP1&&opcode2[i]<3))
+ {
+ if(rs1[i+1]) {
+ if((hr=get_reg(regs[i+1].regmap,rs1[i+1]))>=0)
+ {
+ if(regs[i].regmap[hr]<0&®s[i+1].regmap_entry[hr]<0)
+ {
+ regs[i].regmap[hr]=regs[i+1].regmap[hr];
+ regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
+ regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
+ regs[i].isconst&=~(1<<hr);
+ regs[i].isconst|=regs[i+1].isconst&(1<<hr);
+ constmap[i][hr]=constmap[i+1][hr];
+ regs[i+1].wasdirty&=~(1<<hr);
+ regs[i].dirty&=~(1<<hr);
+ }
+ }
+ }
+ if(rs2[i+1]) {
+ if((hr=get_reg(regs[i+1].regmap,rs2[i+1]))>=0)
+ {
+ if(regs[i].regmap[hr]<0&®s[i+1].regmap_entry[hr]<0)
+ {
+ regs[i].regmap[hr]=regs[i+1].regmap[hr];
+ regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
+ regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
+ regs[i].isconst&=~(1<<hr);
+ regs[i].isconst|=regs[i+1].isconst&(1<<hr);
+ constmap[i][hr]=constmap[i+1][hr];
+ regs[i+1].wasdirty&=~(1<<hr);
+ regs[i].dirty&=~(1<<hr);
+ }
+ }
+ }
+ if(itype[i+1]==LOAD&&rs1[i+1]&&get_reg(regs[i+1].regmap,rs1[i+1])<0) {
+ if((hr=get_reg(regs[i+1].regmap,rt1[i+1]))>=0)
+ {
+ if(regs[i].regmap[hr]<0&®s[i+1].regmap_entry[hr]<0)
+ {
+ regs[i].regmap[hr]=rs1[i+1];
+ regmap_pre[i+1][hr]=rs1[i+1];
+ regs[i+1].regmap_entry[hr]=rs1[i+1];
+ regs[i].isconst&=~(1<<hr);
+ regs[i].isconst|=regs[i+1].isconst&(1<<hr);
+ constmap[i][hr]=constmap[i+1][hr];
+ regs[i+1].wasdirty&=~(1<<hr);
+ regs[i].dirty&=~(1<<hr);
+ }
+ }
+ }
+ if(lt1[i+1]&&get_reg(regs[i+1].regmap,rs1[i+1])<0) {
+ if((hr=get_reg(regs[i+1].regmap,rt1[i+1]))>=0)
+ {
+ if(regs[i].regmap[hr]<0&®s[i+1].regmap_entry[hr]<0)
+ {
+ regs[i].regmap[hr]=rs1[i+1];
+ regmap_pre[i+1][hr]=rs1[i+1];
+ regs[i+1].regmap_entry[hr]=rs1[i+1];
+ regs[i].isconst&=~(1<<hr);
+ regs[i].isconst|=regs[i+1].isconst&(1<<hr);
+ constmap[i][hr]=constmap[i+1][hr];
+ regs[i+1].wasdirty&=~(1<<hr);
+ regs[i].dirty&=~(1<<hr);
+ }
+ }
+ }
+ #ifndef HOST_IMM_ADDR32
+ if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS) {
+ hr=get_reg(regs[i+1].regmap,TLREG);
+ if(hr>=0) {
+ int sr=get_reg(regs[i+1].regmap,rs1[i+1]);
+ if(sr>=0&&((regs[i+1].wasconst>>sr)&1)) {
+ int nr;
+ if(regs[i].regmap[hr]<0&®s[i+1].regmap_entry[hr]<0)
+ {
+ regs[i].regmap[hr]=MGEN1+((i+1)&1);
+ regmap_pre[i+1][hr]=MGEN1+((i+1)&1);
+ regs[i+1].regmap_entry[hr]=MGEN1+((i+1)&1);
+ regs[i].isconst&=~(1<<hr);
+ regs[i].isconst|=regs[i+1].isconst&(1<<hr);
+ constmap[i][hr]=constmap[i+1][hr];
+ regs[i+1].wasdirty&=~(1<<hr);
+ regs[i].dirty&=~(1<<hr);
+ }
+ else if((nr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1))>=0)
+ {
+ // move it to another register
+ regs[i+1].regmap[hr]=-1;
+ regmap_pre[i+2][hr]=-1;
+ regs[i+1].regmap[nr]=TLREG;
+ regmap_pre[i+2][nr]=TLREG;
+ regs[i].regmap[nr]=MGEN1+((i+1)&1);
+ regmap_pre[i+1][nr]=MGEN1+((i+1)&1);
+ regs[i+1].regmap_entry[nr]=MGEN1+((i+1)&1);
+ regs[i].isconst&=~(1<<nr);
+ regs[i+1].isconst&=~(1<<nr);
+ regs[i].dirty&=~(1<<nr);
+ regs[i+1].wasdirty&=~(1<<nr);
+ regs[i+1].dirty&=~(1<<nr);
+ regs[i+2].wasdirty&=~(1<<nr);
+ }
+ }
+ }
+ }
+ #endif
+ if(itype[i+1]==STORE||itype[i+1]==STORELR||opcode[i+1]==0x39||opcode[i+1]==0x3D) { // SB/SH/SW/SD/SWC1/SDC1
+ if(get_reg(regs[i+1].regmap,rs1[i+1])<0) {
+ hr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1);
+ if(hr<0) hr=get_reg(regs[i+1].regmap,-1);
+ else {regs[i+1].regmap[hr]=AGEN1+((i+1)&1);regs[i+1].isconst&=~(1<<hr);}
+ assert(hr>=0);
+ if(regs[i].regmap[hr]<0&®s[i+1].regmap_entry[hr]<0)
+ {
+ regs[i].regmap[hr]=rs1[i+1];
+ regmap_pre[i+1][hr]=rs1[i+1];
+ regs[i+1].regmap_entry[hr]=rs1[i+1];
+ regs[i].isconst&=~(1<<hr);
+ regs[i].isconst|=regs[i+1].isconst&(1<<hr);
+ constmap[i][hr]=constmap[i+1][hr];
+ regs[i+1].wasdirty&=~(1<<hr);
+ regs[i].dirty&=~(1<<hr);
+ }
+ }
+ }
+ if(itype[i+1]==LOADLR||opcode[i+1]==0x31||opcode[i+1]==0x35) { // LWC1/LDC1
+ if(get_reg(regs[i+1].regmap,rs1[i+1])<0) {
+ int nr;
+ hr=get_reg(regs[i+1].regmap,FTEMP);
+ assert(hr>=0);
+ if(regs[i].regmap[hr]<0&®s[i+1].regmap_entry[hr]<0)
+ {
+ regs[i].regmap[hr]=rs1[i+1];
+ regmap_pre[i+1][hr]=rs1[i+1];
+ regs[i+1].regmap_entry[hr]=rs1[i+1];
+ regs[i].isconst&=~(1<<hr);
+ regs[i].isconst|=regs[i+1].isconst&(1<<hr);
+ constmap[i][hr]=constmap[i+1][hr];
+ regs[i+1].wasdirty&=~(1<<hr);
+ regs[i].dirty&=~(1<<hr);
+ }
+ else if((nr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1))>=0)
+ {
+ // move it to another register
+ regs[i+1].regmap[hr]=-1;
+ regmap_pre[i+2][hr]=-1;
+ regs[i+1].regmap[nr]=FTEMP;
+ regmap_pre[i+2][nr]=FTEMP;
+ regs[i].regmap[nr]=rs1[i+1];
+ regmap_pre[i+1][nr]=rs1[i+1];
+ regs[i+1].regmap_entry[nr]=rs1[i+1];
+ regs[i].isconst&=~(1<<nr);
+ regs[i+1].isconst&=~(1<<nr);
+ regs[i].dirty&=~(1<<nr);
+ regs[i+1].wasdirty&=~(1<<nr);
+ regs[i+1].dirty&=~(1<<nr);
+ regs[i+2].wasdirty&=~(1<<nr);
+ }
+ }
+ }
+ if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR/*||itype[i+1]==C1LS*/) {
+ if(itype[i+1]==LOAD)
+ hr=get_reg(regs[i+1].regmap,rt1[i+1]);
+ if(itype[i+1]==LOADLR||opcode[i+1]==0x31||opcode[i+1]==0x35) // LWC1/LDC1
+ hr=get_reg(regs[i+1].regmap,FTEMP);
+ if(itype[i+1]==STORE||itype[i+1]==STORELR||opcode[i+1]==0x39||opcode[i+1]==0x3D) { // SWC1/SDC1
+ hr=get_reg(regs[i+1].regmap,AGEN1+((i+1)&1));
+ if(hr<0) hr=get_reg(regs[i+1].regmap,-1);
+ }
+ if(hr>=0&®s[i].regmap[hr]<0) {
+ int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
+ if(rs>=0&&((regs[i+1].wasconst>>rs)&1)) {
+ regs[i].regmap[hr]=AGEN1+((i+1)&1);
+ regmap_pre[i+1][hr]=AGEN1+((i+1)&1);
+ regs[i+1].regmap_entry[hr]=AGEN1+((i+1)&1);
+ regs[i].isconst&=~(1<<hr);
+ regs[i+1].wasdirty&=~(1<<hr);
+ regs[i].dirty&=~(1<<hr);
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+
+ /* Pass 6 - Optimize clean/dirty state */
+ clean_registers(0,slen-1,1);
+
+ /* Pass 7 - Identify 32-bit registers */
+
+ provisional_r32();
+
+ u_int r32=0;
+
+ for (i=slen-1;i>=0;i--)
+ {
+ int hr;
+ if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
+ {
+ if(ba[i]<start || ba[i]>=(start+slen*4))
+ {
+ // Branch out of this block, don't need anything
+ r32=0;
+ }
+ else
+ {
+ // Internal branch
+ // Need whatever matches the target
+ // (and doesn't get overwritten by the delay slot instruction)
+ r32=0;
+ int t=(ba[i]-start)>>2;
+ if(ba[i]>start+i*4) {
+ // Forward branch
+ if(!(requires_32bit[t]&~regs[i].was32))
+ r32|=requires_32bit[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
+ }else{
+ // Backward branch
+ //if(!(regs[t].was32&~unneeded_reg_upper[t]&~regs[i].was32))
+ // r32|=regs[t].was32&~unneeded_reg_upper[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
+ if(!(pr32[t]&~regs[i].was32))
+ r32|=pr32[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
+ }
+ }
+ // Conditional branch may need registers for following instructions
+ if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
+ {
+ if(i<slen-2) {
+ r32|=requires_32bit[i+2];
+ r32&=regs[i].was32;
+ // Mark this address as a branch target since it may be called
+ // upon return from interrupt
+ bt[i+2]=1;
+ }
+ }
+ // Merge in delay slot
+ if(!likely[i]) {
+ // These are overwritten unless the branch is "likely"
+ // and the delay slot is nullified if not taken
+ r32&=~(1LL<<rt1[i+1]);
+ r32&=~(1LL<<rt2[i+1]);
+ }
+ // Assume these are needed (delay slot)
+ if(us1[i+1]>0)
+ {
+ if((regs[i].was32>>us1[i+1])&1) r32|=1LL<<us1[i+1];
+ }
+ if(us2[i+1]>0)
+ {
+ if((regs[i].was32>>us2[i+1])&1) r32|=1LL<<us2[i+1];
+ }
+ if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1))
+ {
+ if((regs[i].was32>>dep1[i+1])&1) r32|=1LL<<dep1[i+1];
+ }
+ if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1))
+ {
+ if((regs[i].was32>>dep2[i+1])&1) r32|=1LL<<dep2[i+1];
+ }
+ }
+ else if(itype[i]==SYSCALL)
+ {
+ // SYSCALL instruction (software interrupt)
+ r32=0;
+ }
+ else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
+ {
+ // ERET instruction (return from interrupt)
+ r32=0;
+ }
+ // Check 32 bits
+ r32&=~(1LL<<rt1[i]);
+ r32&=~(1LL<<rt2[i]);
+ if(us1[i]>0)
+ {
+ if((regs[i].was32>>us1[i])&1) r32|=1LL<<us1[i];
+ }
+ if(us2[i]>0)
+ {
+ if((regs[i].was32>>us2[i])&1) r32|=1LL<<us2[i];
+ }
+ if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1))
+ {
+ if((regs[i].was32>>dep1[i])&1) r32|=1LL<<dep1[i];
+ }
+ if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1))
+ {
+ if((regs[i].was32>>dep2[i])&1) r32|=1LL<<dep2[i];
+ }
+ requires_32bit[i]=r32;
+
+ // Dirty registers which are 32-bit, require 32-bit input
+ // as they will be written as 32-bit values
+ for(hr=0;hr<HOST_REGS;hr++)
+ {
+ if(regs[i].regmap_entry[hr]>0&®s[i].regmap_entry[hr]<64) {
+ if((regs[i].was32>>regs[i].regmap_entry[hr])&(regs[i].wasdirty>>hr)&1) {
+ if(!((unneeded_reg_upper[i]>>regs[i].regmap_entry[hr])&1))
+ requires_32bit[i]|=1LL<<regs[i].regmap_entry[hr];
+ }
+ }
+ }
+ //requires_32bit[i]=is32[i]&~unneeded_reg_upper[i]; // DEBUG
+ }
+
+ if(itype[slen-1]==SPAN) {
+ bt[slen-1]=1; // Mark as a branch target so instruction can restart after exception
+ }
+
+ /* Debug/disassembly */
+ if((void*)assem_debug==(void*)printf)
+ for(i=0;i<slen;i++)
+ {
+ printf("U:");
+ int r;
+ for(r=1;r<=CCREG;r++) {
+ if((unneeded_reg[i]>>r)&1) {
+ if(r==HIREG) printf(" HI");
+ else if(r==LOREG) printf(" LO");
+ else printf(" r%d",r);
+ }
+ }
+ printf(" UU:");
+ for(r=1;r<=CCREG;r++) {
+ if(((unneeded_reg_upper[i]&~unneeded_reg[i])>>r)&1) {
+ if(r==HIREG) printf(" HI");
+ else if(r==LOREG) printf(" LO");
+ else printf(" r%d",r);
+ }
+ }
+ printf(" 32:");
+ for(r=0;r<=CCREG;r++) {
+ //if(((is32[i]>>r)&(~unneeded_reg[i]>>r))&1) {
+ if((regs[i].was32>>r)&1) {
+ if(r==CCREG) printf(" CC");
+ else if(r==HIREG) printf(" HI");
+ else if(r==LOREG) printf(" LO");
+ else printf(" r%d",r);
+ }
+ }
+ printf("\n");
+ #if defined(__i386__) || defined(__x86_64__)
+ printf("pre: eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",regmap_pre[i][0],regmap_pre[i][1],regmap_pre[i][2],regmap_pre[i][3],regmap_pre[i][5],regmap_pre[i][6],regmap_pre[i][7]);
+ #endif
+ #ifdef __arm__
+ printf("pre: r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d\n",regmap_pre[i][0],regmap_pre[i][1],regmap_pre[i][2],regmap_pre[i][3],regmap_pre[i][4],regmap_pre[i][5],regmap_pre[i][6],regmap_pre[i][7],regmap_pre[i][8],regmap_pre[i][9],regmap_pre[i][10],regmap_pre[i][12]);
+ #endif
+ printf("needs: ");
+ if(needed_reg[i]&1) printf("eax ");
+ if((needed_reg[i]>>1)&1) printf("ecx ");
+ if((needed_reg[i]>>2)&1) printf("edx ");
+ if((needed_reg[i]>>3)&1) printf("ebx ");
+ if((needed_reg[i]>>5)&1) printf("ebp ");
+ if((needed_reg[i]>>6)&1) printf("esi ");
+ if((needed_reg[i]>>7)&1) printf("edi ");
+ printf("r:");
+ for(r=0;r<=CCREG;r++) {
+ //if(((requires_32bit[i]>>r)&(~unneeded_reg[i]>>r))&1) {
+ if((requires_32bit[i]>>r)&1) {
+ if(r==CCREG) printf(" CC");
+ else if(r==HIREG) printf(" HI");
+ else if(r==LOREG) printf(" LO");
+ else printf(" r%d",r);
+ }
+ }
+ printf("\n");
+ /*printf("pr:");
+ for(r=0;r<=CCREG;r++) {
+ //if(((requires_32bit[i]>>r)&(~unneeded_reg[i]>>r))&1) {
+ if((pr32[i]>>r)&1) {
+ if(r==CCREG) printf(" CC");
+ else if(r==HIREG) printf(" HI");
+ else if(r==LOREG) printf(" LO");
+ else printf(" r%d",r);
+ }
+ }
+ if(pr32[i]!=requires_32bit[i]) printf(" OOPS");
+ printf("\n");*/
+ #if defined(__i386__) || defined(__x86_64__)
+ printf("entry: eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d\n",regs[i].regmap_entry[0],regs[i].regmap_entry[1],regs[i].regmap_entry[2],regs[i].regmap_entry[3],regs[i].regmap_entry[5],regs[i].regmap_entry[6],regs[i].regmap_entry[7]);
+ printf("dirty: ");
+ if(regs[i].wasdirty&1) printf("eax ");
+ if((regs[i].wasdirty>>1)&1) printf("ecx ");
+ if((regs[i].wasdirty>>2)&1) printf("edx ");
+ if((regs[i].wasdirty>>3)&1) printf("ebx ");
+ if((regs[i].wasdirty>>5)&1) printf("ebp ");
+ if((regs[i].wasdirty>>6)&1) printf("esi ");
+ if((regs[i].wasdirty>>7)&1) printf("edi ");
+ #endif
+ #ifdef __arm__
+ printf("entry: r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d\n",regs[i].regmap_entry[0],regs[i].regmap_entry[1],regs[i].regmap_entry[2],regs[i].regmap_entry[3],regs[i].regmap_entry[4],regs[i].regmap_entry[5],regs[i].regmap_entry[6],regs[i].regmap_entry[7],regs[i].regmap_entry[8],regs[i].regmap_entry[9],regs[i].regmap_entry[10],regs[i].regmap_entry[12]);
+ printf("dirty: ");
+ if(regs[i].wasdirty&1) printf("r0 ");
+ if((regs[i].wasdirty>>1)&1) printf("r1 ");
+ if((regs[i].wasdirty>>2)&1) printf("r2 ");
+ if((regs[i].wasdirty>>3)&1) printf("r3 ");
+ if((regs[i].wasdirty>>4)&1) printf("r4 ");
+ if((regs[i].wasdirty>>5)&1) printf("r5 ");
+ if((regs[i].wasdirty>>6)&1) printf("r6 ");
+ if((regs[i].wasdirty>>7)&1) printf("r7 ");
+ if((regs[i].wasdirty>>8)&1) printf("r8 ");
+ if((regs[i].wasdirty>>9)&1) printf("r9 ");
+ if((regs[i].wasdirty>>10)&1) printf("r10 ");
+ if((regs[i].wasdirty>>12)&1) printf("r12 ");
+ #endif
+ printf("\n");
+ disassemble_inst(i);
+ //printf ("ccadj[%d] = %d\n",i,ccadj[i]);
+ #if defined(__i386__) || defined(__x86_64__)
+ printf("eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d dirty: ",regs[i].regmap[0],regs[i].regmap[1],regs[i].regmap[2],regs[i].regmap[3],regs[i].regmap[5],regs[i].regmap[6],regs[i].regmap[7]);
+ if(regs[i].dirty&1) printf("eax ");
+ if((regs[i].dirty>>1)&1) printf("ecx ");
+ if((regs[i].dirty>>2)&1) printf("edx ");
+ if((regs[i].dirty>>3)&1) printf("ebx ");
+ if((regs[i].dirty>>5)&1) printf("ebp ");
+ if((regs[i].dirty>>6)&1) printf("esi ");
+ if((regs[i].dirty>>7)&1) printf("edi ");
+ #endif
+ #ifdef __arm__
+ printf("r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d dirty: ",regs[i].regmap[0],regs[i].regmap[1],regs[i].regmap[2],regs[i].regmap[3],regs[i].regmap[4],regs[i].regmap[5],regs[i].regmap[6],regs[i].regmap[7],regs[i].regmap[8],regs[i].regmap[9],regs[i].regmap[10],regs[i].regmap[12]);
+ if(regs[i].dirty&1) printf("r0 ");
+ if((regs[i].dirty>>1)&1) printf("r1 ");
+ if((regs[i].dirty>>2)&1) printf("r2 ");
+ if((regs[i].dirty>>3)&1) printf("r3 ");
+ if((regs[i].dirty>>4)&1) printf("r4 ");
+ if((regs[i].dirty>>5)&1) printf("r5 ");
+ if((regs[i].dirty>>6)&1) printf("r6 ");
+ if((regs[i].dirty>>7)&1) printf("r7 ");
+ if((regs[i].dirty>>8)&1) printf("r8 ");
+ if((regs[i].dirty>>9)&1) printf("r9 ");
+ if((regs[i].dirty>>10)&1) printf("r10 ");
+ if((regs[i].dirty>>12)&1) printf("r12 ");
+ #endif
+ printf("\n");
+ if(regs[i].isconst) {
+ printf("constants: ");
+ #if defined(__i386__) || defined(__x86_64__)
+ if(regs[i].isconst&1) printf("eax=%x ",(int)constmap[i][0]);
+ if((regs[i].isconst>>1)&1) printf("ecx=%x ",(int)constmap[i][1]);
+ if((regs[i].isconst>>2)&1) printf("edx=%x ",(int)constmap[i][2]);
+ if((regs[i].isconst>>3)&1) printf("ebx=%x ",(int)constmap[i][3]);
+ if((regs[i].isconst>>5)&1) printf("ebp=%x ",(int)constmap[i][5]);
+ if((regs[i].isconst>>6)&1) printf("esi=%x ",(int)constmap[i][6]);
+ if((regs[i].isconst>>7)&1) printf("edi=%x ",(int)constmap[i][7]);
+ #endif
+ #ifdef __arm__
+ if(regs[i].isconst&1) printf("r0=%x ",(int)constmap[i][0]);
+ if((regs[i].isconst>>1)&1) printf("r1=%x ",(int)constmap[i][1]);
+ if((regs[i].isconst>>2)&1) printf("r2=%x ",(int)constmap[i][2]);
+ if((regs[i].isconst>>3)&1) printf("r3=%x ",(int)constmap[i][3]);
+ if((regs[i].isconst>>4)&1) printf("r4=%x ",(int)constmap[i][4]);
+ if((regs[i].isconst>>5)&1) printf("r5=%x ",(int)constmap[i][5]);
+ if((regs[i].isconst>>6)&1) printf("r6=%x ",(int)constmap[i][6]);
+ if((regs[i].isconst>>7)&1) printf("r7=%x ",(int)constmap[i][7]);
+ if((regs[i].isconst>>8)&1) printf("r8=%x ",(int)constmap[i][8]);
+ if((regs[i].isconst>>9)&1) printf("r9=%x ",(int)constmap[i][9]);
+ if((regs[i].isconst>>10)&1) printf("r10=%x ",(int)constmap[i][10]);
+ if((regs[i].isconst>>12)&1) printf("r12=%x ",(int)constmap[i][12]);
+ #endif
+ printf("\n");
+ }
+ printf(" 32:");
+ for(r=0;r<=CCREG;r++) {
+ if((regs[i].is32>>r)&1) {
+ if(r==CCREG) printf(" CC");
+ else if(r==HIREG) printf(" HI");
+ else if(r==LOREG) printf(" LO");
+ else printf(" r%d",r);
+ }
+ }
+ printf("\n");
+ /*printf(" p32:");
+ for(r=0;r<=CCREG;r++) {
+ if((p32[i]>>r)&1) {
+ if(r==CCREG) printf(" CC");
+ else if(r==HIREG) printf(" HI");
+ else if(r==LOREG) printf(" LO");
+ else printf(" r%d",r);
+ }
+ }
+ if(p32[i]!=regs[i].is32) printf(" NO MATCH\n");
+ else printf("\n");*/
+ if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP) {
+ #if defined(__i386__) || defined(__x86_64__)
+ printf("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d dirty: ",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
+ if(branch_regs[i].dirty&1) printf("eax ");
+ if((branch_regs[i].dirty>>1)&1) printf("ecx ");
+ if((branch_regs[i].dirty>>2)&1) printf("edx ");
+ if((branch_regs[i].dirty>>3)&1) printf("ebx ");
+ if((branch_regs[i].dirty>>5)&1) printf("ebp ");
+ if((branch_regs[i].dirty>>6)&1) printf("esi ");
+ if((branch_regs[i].dirty>>7)&1) printf("edi ");
+ #endif
+ #ifdef __arm__
+ printf("branch(%d): r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d dirty: ",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[4],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7],branch_regs[i].regmap[8],branch_regs[i].regmap[9],branch_regs[i].regmap[10],branch_regs[i].regmap[12]);
+ if(branch_regs[i].dirty&1) printf("r0 ");
+ if((branch_regs[i].dirty>>1)&1) printf("r1 ");
+ if((branch_regs[i].dirty>>2)&1) printf("r2 ");
+ if((branch_regs[i].dirty>>3)&1) printf("r3 ");
+ if((branch_regs[i].dirty>>4)&1) printf("r4 ");
+ if((branch_regs[i].dirty>>5)&1) printf("r5 ");
+ if((branch_regs[i].dirty>>6)&1) printf("r6 ");
+ if((branch_regs[i].dirty>>7)&1) printf("r7 ");
+ if((branch_regs[i].dirty>>8)&1) printf("r8 ");
+ if((branch_regs[i].dirty>>9)&1) printf("r9 ");
+ if((branch_regs[i].dirty>>10)&1) printf("r10 ");
+ if((branch_regs[i].dirty>>12)&1) printf("r12 ");
+ #endif
+ printf(" 32:");
+ for(r=0;r<=CCREG;r++) {
+ if((branch_regs[i].is32>>r)&1) {
+ if(r==CCREG) printf(" CC");
+ else if(r==HIREG) printf(" HI");
+ else if(r==LOREG) printf(" LO");
+ else printf(" r%d",r);
+ }
+ }
+ printf("\n");
+ }
+ }
+
+ /* Pass 8 - Assembly */
+ linkcount=0;stubcount=0;
+ ds=0;is_delayslot=0;
+ cop1_usable=0;
+ uint64_t is32_pre=0;
+ u_int dirty_pre=0;
+ u_int beginning=(u_int)out;
+ if((u_int)addr&1) {
+ ds=1;
+ pagespan_ds();
+ }
+ for(i=0;i<slen;i++)
+ {
+ //if(ds) printf("ds: ");
+ if((void*)assem_debug==(void*)printf) disassemble_inst(i);
+ if(ds) {
+ ds=0; // Skip delay slot
+ if(bt[i]) assem_debug("OOPS - branch into delay slot\n");
+ instr_addr[i]=0;
+ } else {
+ #ifndef DESTRUCTIVE_WRITEBACK
+ if(i<2||(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000))
+ {
+ wb_sx(regmap_pre[i],regs[i].regmap_entry,regs[i].wasdirty,is32_pre,regs[i].was32,
+ unneeded_reg[i],unneeded_reg_upper[i]);
+ wb_valid(regmap_pre[i],regs[i].regmap_entry,dirty_pre,regs[i].wasdirty,is32_pre,
+ unneeded_reg[i],unneeded_reg_upper[i]);
+ }
+ is32_pre=regs[i].is32;
+ dirty_pre=regs[i].dirty;
+ #endif
+ // write back
+ if(i<2||(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000))
+ {
+ wb_invalidate(regmap_pre[i],regs[i].regmap_entry,regs[i].wasdirty,regs[i].was32,
+ unneeded_reg[i],unneeded_reg_upper[i]);
+ loop_preload(regmap_pre[i],regs[i].regmap_entry);
+ }
+ // branch target entry point
+ instr_addr[i]=(u_int)out;
+ assem_debug("<->\n");
+ // load regs
+ if(regs[i].regmap_entry[HOST_CCREG]==CCREG&®s[i].regmap[HOST_CCREG]!=CCREG)
+ wb_register(CCREG,regs[i].regmap_entry,regs[i].wasdirty,regs[i].was32);
+ load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i],rs2[i]);
+ address_generation(i,®s[i],regs[i].regmap_entry);
+ load_consts(regmap_pre[i],regs[i].regmap,regs[i].was32,i);
+ if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
+ {
+ // Load the delay slot registers if necessary
+ if(rs1[i+1]!=rs1[i]&&rs1[i+1]!=rs2[i])
+ load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i+1],rs1[i+1]);
+ if(rs2[i+1]!=rs1[i+1]&&rs2[i+1]!=rs1[i]&&rs2[i+1]!=rs2[i])
+ load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs2[i+1],rs2[i+1]);
+ if(itype[i+1]==STORE||itype[i+1]==STORELR||(opcode[i+1]&0x3b)==0x39)
+ load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,INVCP,INVCP);
+ }
+ else if(i+1<slen)
+ {
+ // Preload registers for following instruction
+ if(rs1[i+1]!=rs1[i]&&rs1[i+1]!=rs2[i])
+ if(rs1[i+1]!=rt1[i]&&rs1[i+1]!=rt2[i])
+ load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i+1],rs1[i+1]);
+ if(rs2[i+1]!=rs1[i+1]&&rs2[i+1]!=rs1[i]&&rs2[i+1]!=rs2[i])
+ if(rs2[i+1]!=rt1[i]&&rs2[i+1]!=rt2[i])
+ load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs2[i+1],rs2[i+1]);
+ }
+ // TODO: if(is_ooo(i)) address_generation(i+1);
+ if(itype[i]==CJUMP||itype[i]==FJUMP)
+ load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,CCREG,CCREG);
+ if(itype[i]==STORE||itype[i]==STORELR||(opcode[i]&0x3b)==0x39)
+ load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,INVCP,INVCP);
+ if(bt[i]) cop1_usable=0;
+ // assemble
+ switch(itype[i]) {
+ case ALU:
+ alu_assemble(i,®s[i]);break;
+ case IMM16:
+ imm16_assemble(i,®s[i]);break;
+ case SHIFT:
+ shift_assemble(i,®s[i]);break;
+ case SHIFTIMM:
+ shiftimm_assemble(i,®s[i]);break;
+ case LOAD:
+ load_assemble(i,®s[i]);break;
+ case LOADLR:
+ loadlr_assemble(i,®s[i]);break;
+ case STORE:
+ store_assemble(i,®s[i]);break;
+ case STORELR:
+ storelr_assemble(i,®s[i]);break;
+ case COP0:
+ cop0_assemble(i,®s[i]);break;
+ case COP1:
+ cop1_assemble(i,®s[i]);break;
+ case C1LS:
+ c1ls_assemble(i,®s[i]);break;
+ case FCONV:
+ fconv_assemble(i,®s[i]);break;
+ case FLOAT:
+ float_assemble(i,®s[i]);break;
+ case FCOMP:
+ fcomp_assemble(i,®s[i]);break;
+ case MULTDIV:
+ multdiv_assemble(i,®s[i]);break;
+ case MOV:
+ mov_assemble(i,®s[i]);break;
+ case SYSCALL:
+ syscall_assemble(i,®s[i]);break;
+ case UJUMP:
+ ujump_assemble(i,®s[i]);ds=1;break;
+ case RJUMP:
+ rjump_assemble(i,®s[i]);ds=1;break;
+ case CJUMP:
+ cjump_assemble(i,®s[i]);ds=1;break;
+ case SJUMP:
+ sjump_assemble(i,®s[i]);ds=1;break;
+ case FJUMP:
+ fjump_assemble(i,®s[i]);ds=1;break;
+ case SPAN:
+ pagespan_assemble(i,®s[i]);break;
+ }
+ if(itype[i]==UJUMP||itype[i]==RJUMP||(source[i]>>16)==0x1000)
+ literal_pool(1024);
+ else
+ literal_pool_jumpover(256);
+ }
+ }
+ //assert(itype[i-2]==UJUMP||itype[i-2]==RJUMP||(source[i-2]>>16)==0x1000);
+ // If the block did not end with an unconditional branch,
+ // add a jump to the next instruction.
+ if(i>1) {
+ if(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000&&itype[i-1]!=SPAN) {
+ assert(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP);
+ assert(i==slen);
+ if(itype[i-2]!=CJUMP&&itype[i-2]!=SJUMP&&itype[i-2]!=FJUMP) {
+ store_regs_bt(regs[i-1].regmap,regs[i-1].is32,regs[i-1].dirty,start+i*4);
+ if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
+ emit_loadreg(CCREG,HOST_CCREG);
+ emit_addimm(HOST_CCREG,CLOCK_DIVIDER*(ccadj[i-1]+1),HOST_CCREG);
+ }
+ else if(!likely[i-2])
+ {
+ store_regs_bt(branch_regs[i-2].regmap,branch_regs[i-2].is32,branch_regs[i-2].dirty,start+i*4);
+ assert(branch_regs[i-2].regmap[HOST_CCREG]==CCREG);
+ }
+ else
+ {
+ store_regs_bt(regs[i-2].regmap,regs[i-2].is32,regs[i-2].dirty,start+i*4);
+ assert(regs[i-2].regmap[HOST_CCREG]==CCREG);
+ }
+ add_to_linker((int)out,start+i*4,0);
+ emit_jmp(0);
+ }
+ }
+ else
+ {
+ assert(i>0);
+ assert(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP);
+ store_regs_bt(regs[i-1].regmap,regs[i-1].is32,regs[i-1].dirty,start+i*4);
+ if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
+ emit_loadreg(CCREG,HOST_CCREG);
+ emit_addimm(HOST_CCREG,CLOCK_DIVIDER*(ccadj[i-1]+1),HOST_CCREG);
+ add_to_linker((int)out,start+i*4,0);
+ emit_jmp(0);
+ }
+
+ // TODO: delay slot stubs?
+ // Stubs
+ for(i=0;i<stubcount;i++)
+ {
+ switch(stubs[i][0])
+ {
+ case LOADB_STUB:
+ case LOADH_STUB:
+ case LOADW_STUB:
+ case LOADD_STUB:
+ case LOADBU_STUB:
+ case LOADHU_STUB:
+ do_readstub(i);break;
+ case STOREB_STUB:
+ case STOREH_STUB:
+ case STOREW_STUB:
+ case STORED_STUB:
+ do_writestub(i);break;
+ case CC_STUB:
+ do_ccstub(i);break;
+ case INVCODE_STUB:
+ do_invstub(i);break;
+ case FP_STUB:
+ do_cop1stub(i);break;
+ case STORELR_STUB:
+ do_unalignedwritestub(i);break;
+ }
+ }
+
+ /* Pass 9 - Linker */
+ for(i=0;i<linkcount;i++)
+ {
+ assem_debug("%8x -> %8x\n",link_addr[i][0],link_addr[i][1]);
+ literal_pool(64);
+ if(!link_addr[i][2])
+ {
+ void *stub=out;
+ void *addr=check_addr(link_addr[i][1]);
+ emit_extjump(link_addr[i][0],link_addr[i][1]);
+ if(addr) {
+ set_jump_target(link_addr[i][0],(int)addr);
+ add_link(link_addr[i][1],stub);
+ }
+ else set_jump_target(link_addr[i][0],(int)stub);
+ }
+ else
+ {
+ // Internal branch
+ int target=(link_addr[i][1]-start)>>2;
+ assert(target>=0&&target<slen);
+ assert(instr_addr[target]);
+ //#ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
+ //set_jump_target_fillslot(link_addr[i][0],instr_addr[target],link_addr[i][2]>>1);
+ //#else
+ set_jump_target(link_addr[i][0],instr_addr[target]);
+ //#endif
+ }
+ }
+ // External Branch Targets (jump_in)
+ if(copy+slen*4>(void *)shadow+sizeof(shadow)) copy=shadow;
+ for(i=0;i<slen;i++)
+ {
+ if(bt[i]||i==0)
+ {
+ if(instr_addr[i]) // TODO - delay slots (=null)
+ {
+ u_int vaddr=start+i*4;
+ u_int page=(0x80000000^vaddr)>>12;
+ u_int vpage=page;
+ if(page>262143&&tlb_LUT_r[vaddr>>12]) page=(tlb_LUT_r[page^0x80000]^0x80000000)>>12;
+ if(page>2048) page=2048+(page&2047);
+ if(vpage>262143&&tlb_LUT_r[vaddr>>12]) vpage&=2047; // jump_dirty uses a hash of the virtual address instead
+ if(vpage>2048) vpage=2048+(vpage&2047);
+ literal_pool(256);
+ //if(!(is32[i]&(~unneeded_reg_upper[i])&~(1LL<<CCREG)))
+ if(!requires_32bit[i])
+ {
+ assem_debug("%8x (%d) <- %8x\n",instr_addr[i],i,start+i*4);
+ assem_debug("jump_in: %x\n",start+i*4);
+ ll_add(jump_dirty+vpage,vaddr,(void *)out);
+ int entry_point=do_dirty_stub(i);
+ ll_add(jump_in+page,vaddr,(void *)entry_point);
+ // If there was an existing entry in the hash table,
+ // replace it with the new address.
+ // Don't add new entries. We'll insert the
+ // ones that actually get used in check_addr().
+ int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
+ if(ht_bin[0]==vaddr) {
+ ht_bin[1]=entry_point;
+ }
+ if(ht_bin[2]==vaddr) {
+ ht_bin[3]=entry_point;
+ }
+ }
+ else
+ {
+ u_int r=requires_32bit[i]|!!(requires_32bit[i]>>32);
+ assem_debug("%8x (%d) <- %8x\n",instr_addr[i],i,start+i*4);
+ assem_debug("jump_in: %x (restricted - %x)\n",start+i*4,r);
+ //int entry_point=(int)out;
+ ////assem_debug("entry_point: %x\n",entry_point);
+ //load_regs_entry(i);
+ //if(entry_point==(int)out)
+ // entry_point=instr_addr[i];
+ //else
+ // emit_jmp(instr_addr[i]);
+ //ll_add_32(jump_in+page,vaddr,r,(void *)entry_point);
+ ll_add_32(jump_dirty+vpage,vaddr,r,(void *)out);
+ int entry_point=do_dirty_stub(i);
+ ll_add_32(jump_in+page,vaddr,r,(void *)entry_point);
+ }
+ }
+ }
+ }
+ // Write out the literal pool if necessary
+ literal_pool(0);
+ #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
+ // Align code
+ if(((u_int)out)&7) emit_addnop(13);
+ #endif
+ assert((u_int)out-beginning<MAX_OUTPUT_BLOCK_SIZE);
+ //printf("shadow buffer: %x-%x\n",(int)copy,(int)copy+slen*4);
+ memcpy(copy,source,slen*4);
+ copy+=slen*4;
+
+ #ifdef __arm__
+ __clear_cache((void *)beginning,out);
+ #endif
+
+ // If we're within 256K of the end of the buffer,
+ // start over from the beginning. (Is 256K enough?)
+ if((int)out>BASE_ADDR+(1<<TARGET_SIZE_2)-MAX_OUTPUT_BLOCK_SIZE) out=(u_char *)BASE_ADDR;
+
+ // Trap writes to any of the pages we compiled
+ for(i=start>>12;i<=(start+slen*4)>>12;i++) {
+ invalid_code[i]=0;
+ memory_map[i]|=0x40000000;
+ if((signed int)start>=(signed int)0xC0000000) {
+ assert(using_tlb);
+ j=(((u_int)i<<12)+(memory_map[i]<<2)-(u_int)rdram+(u_int)0x80000000)>>12;
+ invalid_code[j]=0;
+ memory_map[j]|=0x40000000;
+ //printf("write protect physical page: %x (virtual %x)\n",j<<12,start);
+ }
+ }
+
+ /* Pass 10 - Free memory by expiring oldest blocks */
+
+ int end=((((int)out-BASE_ADDR)>>(TARGET_SIZE_2-16))+16384)&65535;
+ while(expirep!=end)
+ {
+ int shift=TARGET_SIZE_2-3; // Divide into 8 blocks
+ int base=BASE_ADDR+((expirep>>13)<<shift); // Base address of this block
+ inv_debug("EXP: Phase %d\n",expirep);
+ switch((expirep>>11)&3)
+ {
+ case 0:
+ // Clear jump_in and jump_dirty
+ ll_remove_matching_addrs(jump_in+(expirep&2047),base,shift);
+ ll_remove_matching_addrs(jump_dirty+(expirep&2047),base,shift);
+ ll_remove_matching_addrs(jump_in+2048+(expirep&2047),base,shift);
+ ll_remove_matching_addrs(jump_dirty+2048+(expirep&2047),base,shift);
+ break;
+ case 1:
+ // Clear pointers
+ ll_kill_pointers(jump_out[expirep&2047],base,shift);
+ ll_kill_pointers(jump_out[(expirep&2047)+2048],base,shift);
+ break;
+ case 2:
+ // Clear hash table
+ for(i=0;i<32;i++) {
+ int *ht_bin=hash_table[((expirep&2047)<<5)+i];
+ if((ht_bin[3]>>shift)==(base>>shift) ||
+ ((ht_bin[3]-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(base>>shift)) {
+ inv_debug("EXP: Remove hash %x -> %x\n",ht_bin[2],ht_bin[3]);
+ ht_bin[2]=ht_bin[3]=-1;
+ }
+ if((ht_bin[1]>>shift)==(base>>shift) ||
+ ((ht_bin[1]-MAX_OUTPUT_BLOCK_SIZE)>>shift)==(base>>shift)) {
+ inv_debug("EXP: Remove hash %x -> %x\n",ht_bin[0],ht_bin[1]);
+ ht_bin[0]=ht_bin[2];
+ ht_bin[1]=ht_bin[3];
+ ht_bin[2]=ht_bin[3]=-1;
+ }
+ }
+ break;
+ case 3:
+ // Clear jump_out
+ #ifdef __arm__
+ if((expirep&2047)==0)
+ __clear_cache((void *)BASE_ADDR,(void *)BASE_ADDR+(1<<TARGET_SIZE_2));
+ #endif
+ ll_remove_matching_addrs(jump_out+(expirep&2047),base,shift);
+ ll_remove_matching_addrs(jump_out+2048+(expirep&2047),base,shift);
+ break;
+ }
+ expirep=(expirep+1)&65535;
+ }
+ return 0;
+}