menubg, png, bugfix
[fceu.git] / sound.c
CommitLineData
c62d2810 1/* FCE Ultra - NES/Famicom Emulator
2 *
3 * Copyright notice for this file:
4 * Copyright (C) 2002 Ben Parnell
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20
21/********************************************************/
22/******* sound.c */
23/******* */
24/******* Sound emulation code and waveform synthesis */
25/******* routines. A few ideas were inspired */
26/******* by code from Marat Fayzullin's EMUlib */
27/******* */
9115e7d2 28/********************************************************/
c62d2810 29
30#include <stdlib.h>
31#include <stdio.h>
32
33#include <string.h>
34
35#include "types.h"
36#include "x6502.h"
37
38#include "fce.h"
39#include "svga.h"
40#include "sound.h"
41
42uint32 soundtsinc;
43uint32 soundtsi;
44
45uint32 Wave[2048];
5232c20c 46int16 WaveFinalMono[2048];
c62d2810 47
48EXPSOUND GameExpSound={0,0,0};
49
50uint8 trimode=0;
51uint8 tricoop=0;
52uint8 PSG[0x18];
53
54uint8 decvolume[3];
55uint8 realvolume[3];
56
57static int32 count[5];
ec4d13a3 58static int32 sqacc[2]={0,0};
c62d2810 59uint8 sqnon=0;
60
4fdfab07 61uint32 soundtsoffs=0;
62
c62d2810 63#undef printf
64uint16 nreg;
9115e7d2 65
66int32 lengthcount[4];
c62d2810 67
5232c20c 68extern int soundvol;
69
c62d2810 70static const uint8 Slengthtable[0x20]=
71{
72 0x5,0x7f,0xA,0x1,0x14,0x2,0x28,0x3,0x50,0x4,0x1E,0x5,0x7,0x6,0x0E,0x7,
73 0x6,0x08,0xC,0x9,0x18,0xa,0x30,0xb,0x60,0xc,0x24,0xd,0x8,0xe,0x10,0xf
74};
75
76static uint32 lengthtable[0x20];
77
78static const uint32 SNoiseFreqTable[0x10]=
79{
80 2,4,8,0x10,0x20,0x30,0x40,0x50,0x65,0x7f,0xbe,0xfe,0x17d,0x1fc,0x3f9,0x7f2
81};
82static uint32 NoiseFreqTable[0x10];
83
ec4d13a3 84static int32 nesincsize32;
d97315ac 85int64 nesincsize;
c62d2810 86
87static const uint8 NTSCPCMTable[0x10]=
88{
89 0xd6,0xbe,0xaa,0xa0,0x8f,0x7f,0x71,0x6b,
90 0x5f,0x50,0x47,0x40,0x35,0x2a,0x24,0x1b
91};
92
93static const uint8 PALPCMTable[0x10]= // These values are just guessed.
94{
95 0xc6,0xb0,0x9d,0x94,0x84,0x75,0x68,0x63,
96 0x58,0x4a,0x41,0x3b,0x31,0x27,0x21,0x19
97};
98
99uint32 PSG_base;
100
101// $4010 - Frequency
102// $4011 - Actual data outputted
103// $4012 - Address register: $c000 + V*64
104// $4013 - Size register: Size in bytes = (V+1)*64
105
106
ec4d13a3 107static int32 PCMacc=0;
c62d2810 108static int PCMfreq;
109int32 PCMIRQCount;
110uint8 PCMBitIndex=0;
111uint32 PCMAddressIndex=0;
112int32 PCMSizeIndex=0;
9115e7d2 113uint8 PCMBuffer=0;
c62d2810 114int vdis=0;
115
d447f17f 116static void Dummyfunc(int end) {};
c62d2810 117
d447f17f 118static void (*DoNoise)(int end)=Dummyfunc;
119static void (*DoTriangle)(int end)=Dummyfunc;
120static void (*DoPCM)(int end)=Dummyfunc;
121static void (*DoSQ1)(int end)=Dummyfunc;
122static void (*DoSQ2)(int end)=Dummyfunc;
c62d2810 123
124static void CalcDPCMIRQ(void)
125{
126 uint32 freq;
127 uint32 honk;
128 uint32 cycles;
129
130 if(PAL)
131 freq=(PALPCMTable[PSG[0x10]&0xF]<<4);
132 else
133 freq=(NTSCPCMTable[PSG[0x10]&0xF]<<4);
134
135 cycles=(((PSG[0x13]<<4)+1));
9115e7d2 136 cycles*=freq/14;
c62d2810 137 honk=((PSG[0x13]<<4)+1)*freq;
9115e7d2 138 honk-=cycles;
c62d2810 139 //if(PAL) honk/=107;
140 //else honk/=(double)113.66666666;
141 PCMIRQCount=honk*48;
142 //PCMIRQCount=honk*3; //180;
143 //if(PAL) PCMIRQCount*=.93;
144 vdis=0;
145}
146
147static void PrepDPCM()
148{
9115e7d2 149 PCMAddressIndex=0x4000+(PSG[0x12]<<6);
c62d2810 150 PCMSizeIndex=(PSG[0x13]<<4)+1;
9115e7d2 151 PCMBitIndex=0;
c62d2810 152 //PCMBuffer=ARead[0x8000+PCMAddressIndex](0x8000+PCMAddressIndex);
153 if(PAL)
154 PCMfreq=PALPCMTable[PSG[0x10]&0xF];
155 else
156 PCMfreq=NTSCPCMTable[PSG[0x10]&0xF];
ec4d13a3 157 PCMacc=PCMfreq<<18;
c62d2810 158}
159
160uint8 sweepon[2]={0,0};
161int32 curfreq[2]={0,0};
162
163
164uint8 SIRQStat=0;
165
166uint8 SweepCount[2];
167uint8 DecCountTo1[3];
168
169uint8 fcnt=0;
170int32 fhcnt=0;
171int32 fhinc;
172
173static uint8 laster;
174
175/* Instantaneous? Maybe the new freq value is being calculated all of the time... */
176static int FASTAPASS(2) CheckFreq(uint32 cf, uint8 sr)
177{
178 uint32 mod;
179 if(!(sr&0x8))
180 {
181 mod=cf>>(sr&7);
182 if((mod+cf)&0x800)
183 return(0);
184 }
185 return(1);
186}
187
188static DECLFW(Write0x11)
189{
d447f17f 190 DoPCM(0);
c62d2810 191 PSG[0x11]=V&0x7F;
192}
193
194static uint8 DutyCount[2]={0,0};
195
196static DECLFW(Write_PSG)
197{
198 //if((A>=0x4004 && A<=0x4007) || A==0x4015)
4fdfab07 199 //printf("$%04x:$%02x, %d\n",A,V,SOUNDTS);
c62d2810 200 A&=0x1f;
201 switch(A)
202 {
203 case 0x0:
d447f17f 204 DoSQ1(0);
c62d2810 205 if(V&0x10)
206 realvolume[0]=V&0xF;
207 break;
208 case 0x1:
209 sweepon[0]=V&0x80;
210 break;
211 case 0x2:
d447f17f 212 DoSQ1(0);
c62d2810 213 curfreq[0]&=0xFF00;
214 curfreq[0]|=V;
215 break;
9115e7d2 216 case 0x3:
c62d2810 217 if(PSG[0x15]&1)
218 {
d447f17f 219 DoSQ1(0);
c62d2810 220 lengthcount[0]=lengthtable[(V>>3)&0x1f];
9115e7d2 221 sqnon|=1;
c62d2810 222 }
223 sweepon[0]=PSG[1]&0x80;
224 curfreq[0]=PSG[0x2]|((V&7)<<8);
225 decvolume[0]=0xF;
226 DecCountTo1[0]=(PSG[0]&0xF)+1;
227 SweepCount[0]=((PSG[0x1]>>4)&7)+1;
228 DutyCount[0]=0;
ec4d13a3 229 sqacc[0]=((int32)curfreq[0]+1)<<18;
c62d2810 230 break;
231
9115e7d2 232 case 0x4:
d447f17f 233 DoSQ2(0);
c62d2810 234 if(V&0x10)
235 realvolume[1]=V&0xF;
236 break;
237 case 0x5:
238 sweepon[1]=V&0x80;
239 break;
240 case 0x6:
d447f17f 241 DoSQ2(0);
c62d2810 242 curfreq[1]&=0xFF00;
243 curfreq[1]|=V;
244 break;
9115e7d2 245 case 0x7:
c62d2810 246 if(PSG[0x15]&2)
247 {
d447f17f 248 DoSQ2(0);
c62d2810 249 lengthcount[1]=lengthtable[(V>>3)&0x1f];
250 sqnon|=2;
251 }
252 sweepon[1]=PSG[0x5]&0x80;
9115e7d2 253 curfreq[1]=PSG[0x6]|((V&7)<<8);
c62d2810 254 decvolume[1]=0xF;
255 DecCountTo1[1]=(PSG[0x4]&0xF)+1;
256 SweepCount[1]=((PSG[0x5]>>4)&7)+1;
257 DutyCount[1]=0;
ec4d13a3 258 sqacc[1]=((int32)curfreq[1]+1)<<18;
c62d2810 259 break;
9115e7d2 260 case 0x8:
d447f17f 261 DoTriangle(0);
c62d2810 262 if(laster&0x80)
263 {
264 tricoop=V&0x7F;
265 trimode=V&0x80;
266 }
267 if(!(V&0x7F))
268 tricoop=0;
269 laster=V&0x80;
270 break;
d447f17f 271 case 0xa:DoTriangle(0);
c62d2810 272 break;
273 case 0xb:
274 if(PSG[0x15]&0x4)
275 {
d447f17f 276 DoTriangle(0);
c62d2810 277 sqnon|=4;
278 lengthcount[2]=lengthtable[(V>>3)&0x1f];
279 }
280 laster=0x80;
281 tricoop=PSG[0x8]&0x7f;
282 trimode=PSG[0x8]&0x80;
283 break;
d447f17f 284 case 0xC:DoNoise(0);
c62d2810 285 if(V&0x10)
286 realvolume[2]=V&0xF;
287 break;
d447f17f 288 case 0xE:DoNoise(0);break;
c62d2810 289 case 0xF:
290 if(PSG[0x15]&8)
291 {
d447f17f 292 DoNoise(0);
c62d2810 293 sqnon|=8;
294 lengthcount[3]=lengthtable[(V>>3)&0x1f];
295 }
296 decvolume[2]=0xF;
9115e7d2 297 DecCountTo1[2]=(PSG[0xC]&0xF)+1;
c62d2810 298 break;
d447f17f 299 case 0x10:DoPCM(0);
c62d2810 300 if(!(V&0x80))
301 X6502_IRQEnd(FCEU_IQDPCM);
302 break;
9115e7d2 303 case 0x15:
c62d2810 304 {
305 int t=V^PSG[0x15];
306
307 if(t&1)
d447f17f 308 DoSQ1(0);
c62d2810 309 if(t&2)
d447f17f 310 DoSQ2(0);
c62d2810 311 if(t&4)
d447f17f 312 DoTriangle(0);
c62d2810 313 if(t&8)
d447f17f 314 DoNoise(0);
c62d2810 315 if(t&0x10)
d447f17f 316 DoPCM(0);
c62d2810 317 sqnon&=V;
318 if(V&0x10)
319 {
320 if(!(PSG[0x15]&0x10))
321 {
322 PrepDPCM();
323 CalcDPCMIRQ();
324 }
325 else if(vdis)
326 CalcDPCMIRQ();
327 }
328 else
329 PCMIRQCount=0;
330 X6502_IRQEnd(FCEU_IQDPCM);
331 }
332 break;
c62d2810 333 }
334 PSG[A]=V;
335}
336
337DECLFR(Read_PSG)
338{
339 uint8 ret;
340 if(PSG[0x15]&0x10)
d447f17f 341 DoPCM(0);
c62d2810 342 ret=(PSG[0x15]&(sqnon|0x10))|SIRQStat;
343 SIRQStat&=~0x40;
344 X6502_IRQEnd(/*FCEU_IQDPCM|*/FCEU_IQFCOUNT);
345 return ret;
346}
347
348DECLFR(Read_PSGDummy)
349{
350 uint8 ret;
351
352 ret=(PSG[0x15]&sqnon)|SIRQStat;
353 SIRQStat&=~0x40;
354 X6502_IRQEnd(/*FCEU_IQDPCM|*/FCEU_IQFCOUNT);
355 return ret;
356}
357
358static void FASTAPASS(1) FrameSoundStuff(int V)
359{
360 int P;
d447f17f 361 uint32 end = (SOUNDTS<<16)/soundtsinc;
c62d2810 362
d447f17f 363 DoSQ1(end);
364 DoSQ2(end);
365 DoNoise(end);
c62d2810 366
367 switch((V&1))
368 {
369 case 1: /* Envelope decay, linear counter, length counter, freq sweep */
370 if(PSG[0x15]&4 && sqnon&4)
371 if(!(PSG[8]&0x80))
372 {
373 if(lengthcount[2]>0)
374 {
375 lengthcount[2]--;
376 if(lengthcount[2]<=0)
377 {
d447f17f 378 DoTriangle(0);
c62d2810 379 sqnon&=~4;
380 }
9115e7d2 381 }
c62d2810 382 }
383
384 for(P=0;P<2;P++)
385 {
386 if(PSG[0x15]&(P+1) && sqnon&(P+1))
387 {
388 if(!(PSG[P<<2]&0x20))
389 {
390 if(lengthcount[P]>0)
391 {
9115e7d2 392 lengthcount[P]--;
c62d2810 393 if(lengthcount[P]<=0)
394 {
395 sqnon&=~(P+1);
396 }
397 }
398 }
399 }
400 /* Frequency Sweep Code Here */
401 /* xxxx 0000 */
402 /* xxxx = hz. 120/(x+1)*/
403 if(sweepon[P])
404 {
405 int32 mod=0;
406
9115e7d2 407 if(SweepCount[P]>0) SweepCount[P]--;
c62d2810 408 if(SweepCount[P]<=0)
409 {
410 SweepCount[P]=((PSG[(P<<2)+0x1]>>4)&7)+1; //+1;
411 {
412 if(PSG[(P<<2)+0x1]&0x8)
413 {
9115e7d2 414 mod-=(P^1)+((curfreq[P])>>(PSG[(P<<2)+0x1]&7));
c62d2810 415
416 if(curfreq[P] && (PSG[(P<<2)+0x1]&7)/* && sweepon[P]&0x80*/)
417 {
418 curfreq[P]+=mod;
419 }
420 }
421 else
422 {
423 mod=curfreq[P]>>(PSG[(P<<2)+0x1]&7);
424 if((mod+curfreq[P])&0x800)
425 {
426 sweepon[P]=0;
427 curfreq[P]=0;
428 }
429 else
430 {
431 if(curfreq[P] && (PSG[(P<<2)+0x1]&7)/* && sweepon[P]&0x80*/)
432 {
433 curfreq[P]+=mod;
434 }
435 }
436 }
437 }
438 }
9115e7d2 439 }
c62d2810 440 }
441
442 if(PSG[0x15]&0x8 && sqnon&8)
443 {
444 if(!(PSG[0xC]&0x20))
445 {
446 if(lengthcount[3]>0)
447 {
448 lengthcount[3]--;
449 if(lengthcount[3]<=0)
450 {
451 sqnon&=~8;
452 }
453 }
454 }
455 }
456
457 case 0: /* Envelope decay + linear counter */
458 if(!trimode)
9115e7d2 459 {
c62d2810 460 laster=0;
461 if(tricoop)
462 {
d447f17f 463 if(tricoop==1) DoTriangle(0);
c62d2810 464 tricoop--;
465 }
466 }
467
468 for(P=0;P<2;P++)
469 {
470 if(DecCountTo1[P]>0) DecCountTo1[P]--;
471 if(DecCountTo1[P]<=0)
472 {
473 DecCountTo1[P]=(PSG[P<<2]&0xF)+1;
474 if(decvolume[P] || PSG[P<<2]&0x20)
475 {
476 decvolume[P]--;
477 /* Step from 0 to full volume seems to take twice as long
478 as the other steps. I don't know if this is the correct
479 way to double its length, though(or if it even matters).
480 */
481 if((PSG[P<<2]&0x20) && (decvolume[P]==0))
482 DecCountTo1[P]<<=1;
483 decvolume[P]&=15;
484 }
485 }
486 if(!(PSG[P<<2]&0x10))
487 realvolume[P]=decvolume[P];
488 }
489
490 if(DecCountTo1[2]>0) DecCountTo1[2]--;
491 if(DecCountTo1[2]<=0)
492 {
493 DecCountTo1[2]=(PSG[0xC]&0xF)+1;
494 if(decvolume[2] || PSG[0xC]&0x20)
495 {
496 decvolume[2]--;
497 /* Step from 0 to full volume seems to take twice as long
498 as the other steps. I don't know if this is the correct
499 way to double its length, though(or if it even matters).
500 */
501 if((PSG[0xC]&0x20) && (decvolume[2]==0))
502 DecCountTo1[2]<<=1;
503 decvolume[2]&=15;
504 }
505 }
506 if(!(PSG[0xC]&0x10))
507 realvolume[2]=decvolume[2];
508
509 break;
510 }
511
512}
513
514void FrameSoundUpdate(void)
515{
516 // Linear counter: Bit 0-6 of $4008
517 // Length counter: Bit 4-7 of $4003, $4007, $400b, $400f
518
519 if(fcnt==3)
520 {
521 if(PSG[0x17]&0x80)
522 fhcnt+=fhinc;
523 if(!(PSG[0x17]&0xC0))
524 {
525 SIRQStat|=0x40;
526 X6502_IRQBegin(FCEU_IQFCOUNT);
527 }
528 }
529 //if(SIRQStat&0x40) X6502_IRQBegin(FCEU_IQFCOUNT);
530 FrameSoundStuff(fcnt);
531 fcnt=(fcnt+1)&3;
532}
533
534static uint32 ChannelBC[5];
535
536static uint32 RectAmp[2][8];
537
538static void FASTAPASS(1) CalcRectAmp(int P)
539{
540 static int tal[4]={1,2,4,6};
541 int V;
542 int x;
543 uint32 *b=RectAmp[P];
544 int m;
545
546 //if(PSG[P<<2]&0x10)
547 V=realvolume[P]<<4;
548 //V=(PSG[P<<2]&15)<<4;
549 //else
550 // V=decvolume[P]<<4;
551 m=tal[(PSG[P<<2]&0xC0)>>6];
552 for(x=0;x<m;x++,b++)
553 *b=0;
554 for(;x<8;x++,b++)
555 *b=V;
556}
557
d447f17f 558static void RDoPCM(int32 end)
c62d2810 559{
560 int32 V;
d447f17f 561 int32 start;
ec4d13a3 562 int32 freq;
c62d2810 563 uint32 out=PSG[0x11]<<3;
564
565 start=ChannelBC[4];
d447f17f 566 if(end==0) end=(SOUNDTS<<16)/soundtsinc;
c62d2810 567 if(end<=start) return;
568 ChannelBC[4]=end;
569
570 if(PSG[0x15]&0x10)
571 {
572 freq=PCMfreq;
ec4d13a3 573 freq<<=18;
c62d2810 574
575 for(V=start;V<end;V++)
576 {
ec4d13a3 577 PCMacc-=nesincsize32;
c62d2810 578 if(PCMacc<=0)
579 {
580 if(!PCMBitIndex)
581 {
582 PCMSizeIndex--;
583 if(!PCMSizeIndex)
584 {
585 if(PSG[0x10]&0x40)
586 PrepDPCM();
587 else
588 {
589 PSG[0x15]&=~0x10;
590 for(;V<end;V++)
591 Wave[V>>4]+=PSG[0x11]<<3;
592 goto endopcmo;
593 }
594 }
595 else
596 {
597 PCMBuffer=ARead[0x8000+PCMAddressIndex](0x8000+PCMAddressIndex);
598 PCMAddressIndex=(PCMAddressIndex+1)&0x7fff;
599 }
600 }
601
602 {
603 int t=(((PCMBuffer>>PCMBitIndex)&1)<<2)-2;
604 uint8 bah=PSG[0x11];
605
606 PCMacc+=freq;
607 PSG[0x11]+=t;
608 if(PSG[0x11]&0x80)
609 PSG[0x11]=bah;
610 else
611 out=PSG[0x11]<<3;
612 }
613 PCMBitIndex=(PCMBitIndex+1)&7;
614 }
615 Wave[V>>4]+=out; //(PSG[0x11]-64)<<3;
616 }
617 }
618 else
619 {
620 if((end-start)>64)
621 {
622 for(V=start;V<=(start|15);V++)
623 Wave[V>>4]+=out;
624 out<<=4;
625 for(V=(start>>4)+1;V<(end>>4);V++)
626 Wave[V]+=out;
627 out>>=4;
628 for(V=end&(~15);V<end;V++)
629 Wave[V>>4]+=out;
630 }
631 else
632 for(V=start;V<end;V++)
633 Wave[V>>4]+=out;
634 }
635 endopcmo:;
636}
637
d447f17f 638static void RDoSQ1(int32 end)
c62d2810 639{
640 int32 V;
d447f17f 641 int32 start;
ec4d13a3 642 int32 freq;
c62d2810 643
c62d2810 644 start=ChannelBC[0];
d447f17f 645 if(end==0) end=(SOUNDTS<<16)/soundtsinc;
c62d2810 646 if(end<=start) return;
647 ChannelBC[0]=end;
648
d447f17f 649 if(!(PSG[0x15]&1 && sqnon&1))
650 return;
651
c62d2810 652 if(curfreq[0]<8 || curfreq[0]>0x7ff)
653 return;
654 if(!CheckFreq(curfreq[0],PSG[0x1]))
655 return;
656
d447f17f 657 CalcRectAmp(0);
658
c62d2810 659 {
660 uint32 out=RectAmp[0][DutyCount[0]];
661 freq=curfreq[0]+1;
662 {
ec4d13a3 663 freq<<=18;
c62d2810 664 for(V=start;V<end;V++)
665 {
666 Wave[V>>4]+=out;
ec4d13a3 667 sqacc[0]-=nesincsize32;
c62d2810 668 if(sqacc[0]<=0)
669 {
670 rea:
671 sqacc[0]+=freq;
672 DutyCount[0]++;
673 if(sqacc[0]<=0) goto rea;
674
675 DutyCount[0]&=7;
676 out=RectAmp[0][DutyCount[0]];
677 }
c62d2810 678 }
c62d2810 679 }
d447f17f 680 }
c62d2810 681}
682
d447f17f 683static void RDoSQ2(int32 end)
c62d2810 684{
685 int32 V;
d447f17f 686 int32 start;
ec4d13a3 687 int32 freq;
c62d2810 688
c62d2810 689 start=ChannelBC[1];
d447f17f 690 if(end==0) end=(SOUNDTS<<16)/soundtsinc;
c62d2810 691 if(end<=start) return;
692 ChannelBC[1]=end;
693
d447f17f 694 if(!(PSG[0x15]&2 && sqnon&2))
695 return;
696
c62d2810 697 if(curfreq[1]<8 || curfreq[1]>0x7ff)
698 return;
699 if(!CheckFreq(curfreq[1],PSG[0x5]))
700 return;
701
d447f17f 702 CalcRectAmp(1);
703
c62d2810 704 {
705 uint32 out=RectAmp[1][DutyCount[1]];
706 freq=curfreq[1]+1;
707
708 {
ec4d13a3 709 freq<<=18;
c62d2810 710 for(V=start;V<end;V++)
711 {
712 Wave[V>>4]+=out;
ec4d13a3 713 sqacc[1]-=nesincsize32;
c62d2810 714 if(sqacc[1]<=0)
715 {
716 rea:
717 sqacc[1]+=freq;
718 DutyCount[1]++;
719 if(sqacc[1]<=0) goto rea;
720
721 DutyCount[1]&=7;
722 out=RectAmp[1][DutyCount[1]];
723 }
c62d2810 724 }
c62d2810 725 }
d447f17f 726 }
c62d2810 727}
728
729
d447f17f 730static void RDoTriangle(int32 end)
c62d2810 731{
732 static uint32 tcout=0;
733 int32 V;
d447f17f 734 int32 start; //,freq;
ec4d13a3 735 int32 freq=(((PSG[0xa]|((PSG[0xb]&7)<<8))+1));
c62d2810 736
737 start=ChannelBC[2];
d447f17f 738 if(end==0) end=(SOUNDTS<<16)/soundtsinc;
c62d2810 739 if(end<=start) return;
740 ChannelBC[2]=end;
741
742 if(! (PSG[0x15]&0x4 && sqnon&4 && tricoop) )
743 { // Counter is halted, but we still need to output.
744 for(V=start;V<end;V++)
745 Wave[V>>4]+=tcout;
746 }
747 else if(freq<=4) // 55.9Khz - Might be barely audible on a real NES, but
748 // it's too costly to generate audio at this high of a frequency
749 // (55.9Khz * 32 for the stepping).
750 // The same could probably be said for ~27.8Khz, so we'll
751 // take care of that too. We'll just output the average
752 // value(15/2 - scaled properly for our output format, of course).
753 // We'll also take care of ~18Khz and ~14Khz too, since they should be barely audible.
754 // (Some proof or anything to confirm/disprove this would be nice.).
755 {
756 for(V=start;V<end;V++)
757 Wave[V>>4]+=((0xF<<4)+(0xF<<2))>>1;
758 }
759 else
760 {
ec4d13a3 761 static int32 triacc=0;
9115e7d2 762 static uint8 tc=0;
c62d2810 763
ec4d13a3 764 freq<<=17;
c62d2810 765 for(V=start;V<end;V++)
766 {
ec4d13a3 767 triacc-=nesincsize32;
c62d2810 768 if(triacc<=0)
769 {
770 rea:
771 triacc+=freq; //t;
772 tc=(tc+1)&0x1F;
773 if(triacc<=0) goto rea;
774
775 tcout=(tc&0xF);
776 if(tc&0x10) tcout^=0xF;
777 tcout=(tcout<<4)+(tcout<<2);
778 }
779 Wave[V>>4]+=tcout;
780 }
781 }
782}
783
d447f17f 784static void RDoNoise(int32 end)
c62d2810 785{
786 int32 inc,V;
d447f17f 787 int32 start;
c62d2810 788
789 start=ChannelBC[3];
d447f17f 790 if(end==0) end=(SOUNDTS<<16)/soundtsinc;
c62d2810 791 if(end<=start) return;
792 ChannelBC[3]=end;
793
794 if(PSG[0x15]&0x8 && sqnon&8)
795 {
796 uint32 outo;
797 uint32 amptab[2];
798 uint8 amplitude;
9115e7d2 799
c62d2810 800 amplitude=realvolume[2];
801 //if(PSG[0xC]&0x10)
802 // amplitude=(PSG[0xC]&0xF);
9115e7d2 803 //else
c62d2810 804 // amplitude=decvolume[2]&0xF;
805
9115e7d2 806 inc=NoiseFreqTable[PSG[0xE]&0xF];
c62d2810 807 amptab[0]=((amplitude<<2)+amplitude+amplitude)<<1;
808 amptab[1]=0;
809 outo=amptab[nreg&1];
810
9115e7d2 811 if(amplitude)
c62d2810 812 {
9115e7d2 813 if(PSG[0xE]&0x80) // "short" noise
c62d2810 814 for(V=start;V<end;V++)
9115e7d2 815 {
c62d2810 816 Wave[V>>4]+=outo;
817 if(count[3]>=inc)
9115e7d2 818 {
819 uint8 feedback;
c62d2810 820
821 feedback=((nreg>>8)&1)^((nreg>>14)&1);
822 nreg=(nreg<<1)+feedback;
823 nreg&=0x7fff;
824 outo=amptab[nreg&1];
825 count[3]-=inc;
826 }
827 count[3]+=0x1000;
828 }
829 else
830 for(V=start;V<end;V++)
831 {
832 Wave[V>>4]+=outo;
833 if(count[3]>=inc)
834 {
835 uint8 feedback;
836
837 feedback=((nreg>>13)&1)^((nreg>>14)&1);
838 nreg=(nreg<<1)+feedback;
839 nreg&=0x7fff;
840 outo=amptab[nreg&1];
841 count[3]-=inc;
842 }
843 count[3]+=0x1000;
844 }
845 }
c62d2810 846 }
847}
848
d97315ac 849DECLFW(Write_IRQFM)
850{
ea80a45b 851 PSG[0x17]=V;
d97315ac 852 V=(V&0xC0)>>6;
853 fcnt=0;
854 if(V&0x2)
855 FrameSoundUpdate();
856 fcnt=1;
857 fhcnt=fhinc;
858 X6502_IRQEnd(FCEU_IQFCOUNT);
859 SIRQStat&=~0x40;
ea80a45b 860 //IRQFrameMode=V; // IRQFrameMode is PSG[0x17] upper bits
d97315ac 861}
862
c62d2810 863void SetNESSoundMap(void)
9115e7d2 864{
c62d2810 865 SetWriteHandler(0x4000,0x4013,Write_PSG);
866 SetWriteHandler(0x4011,0x4011,Write0x11);
867 SetWriteHandler(0x4015,0x4015,Write_PSG);
d97315ac 868 SetWriteHandler(0x4017,0x4017,Write_IRQFM);
c62d2810 869 SetReadHandler(0x4015,0x4015,Read_PSG);
870}
871
9115e7d2 872int32 highp; // 0 through 65536, 0 = no high pass, 65536 = max high pass
c62d2810 873
9115e7d2 874int32 lowp; // 0 through 65536, 65536 = max low pass(total attenuation)
c62d2810 875 // 65536 = no low pass
d447f17f 876static void FilterSound(uint32 *in, int16 *outMono, int count)
c62d2810 877{
ec4d13a3 878 static int32 acc=0, acc2=0;
d447f17f 879// static int min=0, max=0;
ec4d13a3 880
881 for(;count;count--,in++,outMono++)
c62d2810 882 {
ec4d13a3 883 int32 diff;
c62d2810 884
ec4d13a3 885 diff = *in - acc;
c62d2810 886
ec4d13a3 887 acc += (diff*highp)>>16;
888 acc2+= (int32) (((int64)((diff-acc2)*lowp))>>16);
c62d2810 889 *in=0;
9115e7d2 890
d447f17f 891 *outMono = acc2*7 >> 2; // * 1.75
892// if (acc2 < min) { printf("min: %i %04x\n", acc2, acc2); min = acc2; }
893// if (acc2 > max) { printf("max: %i %04x\n", acc2, acc2); max = acc2; }
c62d2810 894 }
895}
896
5232c20c 897
898
d97315ac 899static int32 inbuf=0;
c62d2810 900int FlushEmulateSound(void)
901{
c62d2810 902 int x;
4fdfab07 903 uint32 end;
5232c20c 904
c62d2810 905 if(!timestamp) return(0);
906
5232c20c 907 if(!FSettings.SndRate || (soundvol == 0))
c62d2810 908 {
909 end=0;
910 goto nosoundo;
911 }
912
4fdfab07 913 end=(SOUNDTS<<16)/soundtsinc;
d447f17f 914 DoSQ1(end);
915 DoSQ2(end);
916 DoTriangle(end);
917 DoNoise(end);
918 DoPCM(end);
c62d2810 919
920 if(GameExpSound.Fill)
921 GameExpSound.Fill(end&0xF);
922
d447f17f 923 FilterSound(Wave,WaveFinalMono,end>>4);
c62d2810 924
925 if(end&0xF)
926 Wave[0]=Wave[(end>>4)];
9115e7d2 927 Wave[(end>>4)]=0;
c62d2810 928
929 nosoundo:
930 for(x=0;x<5;x++)
931 ChannelBC[x]=end&0xF;
4fdfab07 932 soundtsoffs=(soundtsinc*(end&0xF))>>16;
d97315ac 933 end>>=4;
934 inbuf=end;
935 return(end);
c62d2810 936}
937
c4980f9e 938int GetSoundBuffer(int16 **W)
c62d2810 939{
c4980f9e 940 *W=WaveFinalMono;
d97315ac 941 return inbuf;
c62d2810 942}
943
944void PowerSound(void)
945{
946 int x;
947
948 SetNESSoundMap();
949
950 for(x=0;x<0x16;x++)
951 if(x!=0x14)
952 BWrite[0x4000+x](0x4000+x,0);
953 PSG[0x17]=0; //x40;
954 fhcnt=fhinc;
955 fcnt=0;
956 nreg=1;
4fdfab07 957 soundtsoffs=0;
c62d2810 958}
959
960void ResetSound(void)
961{
962 int x;
963 for(x=0;x<0x16;x++)
964 if(x!=1 && x!=5 && x!=0x14) BWrite[0x4000+x](0x4000+x,0);
965 PSG[0x17]=0;
966 fhcnt=fhinc;
967 fcnt=0;
968 nreg=1;
969}
970
971void SetSoundVariables(void)
972{
9115e7d2 973 int x;
c62d2810 974
975 fhinc=PAL?16626:14915; // *2 CPU clock rate
976 fhinc*=24;
977 for(x=0;x<0x20;x++)
978 lengthtable[x]=Slengthtable[x]<<1;
979
980 if(FSettings.SndRate)
981 {
982 DoNoise=RDoNoise;
983 DoTriangle=RDoTriangle;
984 DoPCM=RDoPCM;
985 DoSQ1=RDoSQ1;
986 DoSQ2=RDoSQ2;
9115e7d2 987 }
c62d2810 988 else
989 {
990 DoNoise=DoTriangle=DoPCM=DoSQ1=DoSQ2=Dummyfunc;
991 }
992
993 if(!FSettings.SndRate) return;
994 if(GameExpSound.RChange)
995 GameExpSound.RChange();
996
ec4d13a3 997 // nesincsizeLL=(int64)((int64)562949953421312*(double)(PAL?PAL_CPU:NTSC_CPU)/(FSettings.SndRate OVERSAMPLE));
d447f17f 998 nesincsize=(int64)(((int64)1<<17)*(double)(PAL?PAL_CPU:NTSC_CPU)/(FSettings.SndRate * 16)); // 308845 - 1832727
ec4d13a3 999 nesincsize32=(int32)nesincsize;
c62d2810 1000 PSG_base=(uint32)(PAL?(long double)PAL_CPU/16:(long double)NTSC_CPU/16);
1001
1002 for(x=0;x<0x10;x++)
1003 {
1004 long double z;
1005 z=SNoiseFreqTable[x]<<1;
1006 z=(PAL?PAL_CPU:NTSC_CPU)/z;
1007 z=(long double)((uint32)((FSettings.SndRate OVERSAMPLE)<<12))/z;
1008 NoiseFreqTable[x]=z;
1009 }
1010 soundtsinc=(uint32)((uint64)(PAL?(long double)PAL_CPU*65536:(long double)NTSC_CPU*65536)/(FSettings.SndRate OVERSAMPLE));
d447f17f 1011 memset(Wave,0,sizeof(Wave));
c62d2810 1012 for(x=0;x<5;x++)
1013 ChannelBC[x]=0;
1014 highp=(250<<16)/FSettings.SndRate; // Arbitrary
ec4d13a3 1015 lowp=(25000<<16)/FSettings.SndRate; // Arbitrary
c62d2810 1016
1017 if(highp>(1<<16)) highp=1<<16;
1018 if(lowp>(1<<16)) lowp=1<<16;
1019}
1020
1021void FixOldSaveStateSFreq(void)
1022{
1023 int x;
1024 for(x=0;x<2;x++)
1025 {
1026 curfreq[x]=PSG[0x2+(x<<2)]|((PSG[0x3+(x<<2)]&7)<<8);
1027 }
1028}
1029
1030void FCEUI_Sound(int Rate)
1031{
1032 FSettings.SndRate=Rate;
1033 SetSoundVariables();
1034}
1035
1036void FCEUI_SetSoundVolume(uint32 volume)
1037{
92764e62 1038 FSettings.SoundVolume=volume;
c62d2810 1039}